
University of Kentucky University of Kentucky

UKnowledge UKnowledge

University of Kentucky Doctoral Dissertations Graduate School

2006

INVESTIGATIONS INTO THE COGNITIVE ABILITIES OF INVESTIGATIONS INTO THE COGNITIVE ABILITIES OF

ALTERNATE LEARNING CLASSIFIER SYSTEM ARCHITECTURES ALTERNATE LEARNING CLASSIFIER SYSTEM ARCHITECTURES

David Alexander Gaines
University of Kentucky, david.gaines@jsc.mail

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Gaines, David Alexander, "INVESTIGATIONS INTO THE COGNITIVE ABILITIES OF ALTERNATE LEARNING
CLASSIFIER SYSTEM ARCHITECTURES" (2006). University of Kentucky Doctoral Dissertations. 250.
https://uknowledge.uky.edu/gradschool_diss/250

This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been
accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/gradschool_diss
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

ABSTRACT OF DISSERTATION

David Alexander Gaines

The Graduate School

University of Kentucky

2006

INVESTIGATIONS INTO THE COGNITIVE ABILITIES OF ALTERNATE LEARNING
CLASSIFIER SYSTEM ARCHITECTURES

ABSTRACT OF DISSERTATION

A dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in the

College of Business and Economics
at the University of Kentucky

By
David Alexander Gaines

Lexington, Kentucky

Director: Dr. Ramakrishnan Pakath, Professor of DSIS and Gatton Endowed Research Professor

Lexington, Kentucky

2006

Copyright © David Alexander Gaines 2006

ABSTRACT OF DISSERTATION

INVESTIGATIONS INTO THE COGNITIVE ABILITIES OF ALTERNATE LEARNING
CLASSIFIER SYSTEM ARCHITECTURES

The Learning Classifier System (LCS) and its descendant, XCS, are promising paradigms for
machine learning design and implementation. Whereas LCS allows classifier payoff predictions to
guide system performance, XCS focuses on payoff-prediction accuracy instead, allowing it to evolve
“optimal” classifier sets in particular applications requiring rational thought. This research examines
LCS and XCS performance in artificial situations with broad social/commercial parallels, created
using the non-Markov Iterated Prisoner’s Dilemma (IPD) game-playing scenario, where the setting
is sometimes asymmetric and where irrationality sometimes pays. This research systematically
perturbs a “conventional” IPD-playing LCS-based agent until it results in a full-fledged XCS-based
agent, contrasting the simulated behavior of each LCS variant in terms of a number of performance
measures. The intent is to examine the XCS paradigm to understand how it better copes with a
given situation (if it does) than the LCS perturbations studied.

Experiment results indicate that the majority of the architectural differences do have a

significant effect on the agents’ performance with respect to the performance measures used in this
research. The results of these competitions indicate that while each architectural difference
significantly affected its agent’s performance, no single architectural difference could be credited as
causing XCS’s demonstrated superiority in evolving optimal populations. Instead, the data suggests
that XCS’s ability to evolve optimal populations in the multiplexer and IPD problem domains result
from the combined and synergistic effects of multiple architectural differences.

In addition, it is demonstrated that XCS is able to reliably evolve the Optimal Population [O]

against the TFT opponent. This result supports Kovacs’ Optimality Hypothesis in the IPD
environment and is significant because it is the first demonstrated occurrence of this ability in an
environment other than the multiplexer and Woods problem domains.

It is therefore apparent that while XCS performs better than its LCS-based counterparts, its

demonstrated superiority may not be attributed to a single architectural characteristic. Instead, XCS’s
ability to evolve optimal classifier populations in the multiplexer problem domain and in the IPD
problem domain studied in this research results from the combined and synergistic effects of
multiple architectural differences.

KEYWORDS: Genetic Algorithms, Classifier Systems, Machine Learning, Iterated Prisoner’s
Dilemma, Cognitive Aspects

David Alexander Gaines

31 August 2006

INVESTIGATIONS INTO THE COGNITIVE ABILITIES OF ALTERNATE LEARNING
CLASSIFIER SYSTEM ARCHITECTURES

By

David Alexander Gaines

Ramakrishnan Pakath
Director of Dissertation

Merl M. Hackbart

Director of Graduate Studies

31 August 2006

RULES FOR THE USE OF DISSERTATIONS

Unpublished dissertations submitted for the Doctor’s degree and deposited in the University of
Kentucky Library are as a rule open for inspection, but are to be used only with due regard to the
rights of the author. Bibliographical references may be noted, but quotations or summaries of parts
may be published only with the permission of the author, and with the usual scholarly
acknowledgements.

Extensive copying or publication of the dissertation in whole or in part also requires the consent of
the Dean of the Graduate School of the University of Kentucky.

A library that borrows this dissertation for use by its patrons is expected to secure the signature of
each user.

Name Date

DISSERTATION

David Alexander Gaines

The Graduate School

University of Kentucky

2006

INVESTIGATIONS INTO THE COGNITIVE ABILITIES OF ALTERNATE LEARNING
CLASSIFIER SYSTEM ARCHITECTURES

DISSERTATION

A dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in the

College of Business and Economics
at the University of Kentucky

By
David Alexander Gaines

Lexington, Kentucky

Director: Dr. Ramakrishnan Pakath, Professor of DSIS and Gatton Endowed Research Professor

Lexington, Kentucky

2006

Copyright © David Alexander Gaines 2006

To Betty Jean, who brought me the love of my life.

ACKNOWLEDGMENTS

This research benefited from the efforts of many, the most significant of which was the tireless

and unceasing support and encouragement I received from my dissertation advisor, Dr.

Ramakrishnan Pakath. In the five years I’ve known Ram, he has served as a true example of all that

is right regarding higher education, not only for me, but for countless undergraduate and graduate

students. He is a credit to his profession and I am fortunate for having been able to work with him.

I am also very fortunate to have had an excellent and supportive dissertation committee made

up of Dr. Clyde Holsapple, Dr. Cidambi Srinivasan, Dr. Chen Chung, and Dr. Timothy Smith. Drs.

Srinivasan and Holsapple, in particular, were especially generous with their time, knowledge, and

support as I wound my way through the research process.

I am also grateful to the UK gang: Kiku Jones, Dan Davenport, Partha Mohaptra, Lei Chi,

Dave Kroger, Dennis Pearce, Sharath Sasidharan, Matt Seevers, Haeran Jae, Shannon Rinaldo; and

to the DFM gang: Vern Francis, Jim Parco, Randy Blass, Steve Green, Rita Jordan, Kurt Heppard,

Steve Fraser, Eric Holt, and Andy Armacost, for providing much needed support and motivation

during the entire journey.

Finally, it goes without saying that I could not have finished my doctoral saga without the love,

support, understanding, and occasional kick in the butt I received from my immediate family, Darcy,

Conor, and Katie, as well as from my lifelong heroes Marty and Gary Gaines. The final obligatory

nod goes to the ever-present alter ego, Leonard Leibowitz, for keeping it real.

 iii

TABLE OF CONTENTS

Acknowledgments...iii
List of Tables ...viii
List of Figures...x
List of Equations...xi
Chapter I: Introduction...1

A. Overview ...1
B. Relevant Literature Review ...2

(1) Learning Classifier Systems ...2
(2) The Prisoner’s Dilemma ..3
(3) Prior Experimental Evidence..4

C. Methodology ...4
D. Results ...7
E. Contributions and Limitations ...8

(1) Contributions...8
(2) Limitations ...9

Chapter II: Review of the Literature...10
A. Introduction ..10
B. Artificial Intelligence ..10

(1) Background and Definition...10
(2) Artificial Intelligence Families...11
(3) Artificial Intelligence Strategies...13

(a) Overarching Strategy..14
(b) Representation ..14
(c) Supervision ..14

(4) Machine Learning ...15
(a) Learning by Rote...16
(b) Learning from Instruction ..16
(c) Learning by Analogy ..16
(d) Learning from Examples...17
(e) Learning from Observation and Discovery..18

C. Learning Classifier Systems...18
(1) LCS-0: A “Traditional” Learning Classifier System...19

(a) LCS-0 Architecture...19
i. Rule and Message Subsystem..21
ii. Apportionment of Credit Subsystem ...23
iii. Classifier Discovery Mechanisms...29

(b) Genetic Algorithm ...30
i. Selection ...32
ii. Crossover ..32
iii. Mutation...33

(c) Replacement and Crowding ..34
(d) Classifier Systems: The Holistic Viewpoint..35
(e) Other Mechanisms ...39

 iv

(f) Applications of Classifier Systems and Genetic Algorithms ..40
(g) Shortcomings of the traditional LCS algorithm...41
(h) Summary..42

(2) XCS: An Extended Classifier System...42
(a) Overview..43
(b) XCS Architecture and Major Cycle ...43

i. Matching and the Match Set ...44
ii. The Prediction Array and Action Set ...44
iii. Executing the Action and Updating the Action Set..45
iv. Initial Population and Covering ...47
v. Genetic Algorithm...47

(c) Summary ..48
D. IPD: The Experimental Testbed ...48

(1) The Prisoner’s Dilemma ..49
(2) The Iterated Prisoner’s Dilemma ...52

(a) IPD Players..53
i. RAND..54
ii. CCC ...54
iii. DDD ..54
iv. TFT (Tit for Tat) ..54
v. TFTT (Tit for Two Tats) ...54
vi. TTFT (Two Tits for Tat) ..54
vii. GTFT (Generous Tit for Tat) ...55
viii. JOSS (Joss’s Strategy)...55
ix. FRDM (Friedman’s Strategy)..55

(b) Benefits ..55
(c) Limitations...57

(3) Experimental Testbed Rationale...57
Chapter III: Methodology...61

A. Simulation..61
(1) Agent-Based Simulation...62
(2) Rationale...62

B. Experiments ..62
(1) Goals...63

(a) Complete Payoff Map..63
i. Complete..64
ii. Accurate ..64
iii. Minimal ..64
iv. Non-overlapping ..64

(b) Maximally General Classifiers ..65
i. Over-general..66
ii. Maximally General...66
iii. Sub-optimally General ...66

(2) Prior Research ...66
(3) Differences Between LCS and XCS...68

(a) The Key Difference..68
(b) Population Differences..68

 v

i. Initial Population ..68
ii. Population Size ..68

(c) Genetic Algorithm Differences ..69
i. GA Scope...69
ii. Parent Selection ...69
iii. Classifier Deletion ..69

(d) Action Selection..70
(e) Classifier Updates ...70

(4) Generating Perturbations...70
(5) Performance ..70

(a) Learning vs Steady State Phases ...71
(b) Measures ..72

i. Performance ..72
ii. Population Size ..72
iii. Problem Difficulty..73
iv. System Error ...74
v. Learning Rate ...74
vi. Statistical Tools ...74
vii. Other Possible Measures..75

(6) Experiment Suite and Propositions ...75
(a) The Key Difference..77
(b) Population Differences..77

i. Initial Population ..77
ii. Population Size ..77

(c) Genetic Algorithm Differences ..78
i. GA Scope...78
ii. Parent Selection ...78
iii. Classifier Deletion ..78

(d) Action Selection..79
(e) Classifier Updates ...79

(7) Methodological Issues..79
C. Conclusion...80

Chapter IV: Experimental Findings and Analysis...81
A. Versus TFT ...82

(1) Number of Unique Classifiers ..82
(a) Order of Stabilization...85
(b) Magnitude at Stabilization...85
(c) Learning Rate ..86

(2) % Correct Responses ...87
(a) Order of Stabilization...90
(b) Magnitude at Stabilization...90
(c) Learning Rate ..91

(3) System Error..92
(a) Order of Stabilization...95
(b) Magnitude at Stabilization...95
(c) Learning Rate ..96

(4) % of Optimal Population [O] ...97

 vi

(a) Order of Stabilization.. 100
(b) Magnitude at Stabilization.. 100
(c) Learning Rate ... 101

B. Versus RAND.. 102
(1) Number of Unique Classifiers ... 102

(a) Order of Stabilization.. 105
(b) Magnitude at Stabilization.. 105
(c) Learning Rate ... 106

(2) % Correct Responses .. 107
(a) Order of Stabilization.. 110
(b) Magnitude at Stabilization.. 110
(c) Learning Rate ... 111

(3) System Error... 112
(a) Order of Stabilization.. 115
(b) Magnitude at Stabilization.. 115
(c) Learning Rate ... 116

(4) % of Optimal Population [O] .. 117
C. Proposition Testing... 117

(1) The Key Difference... 117
(2) Population Differences ... 118

(a) Initial Population ... 118
(b) Population Size .. 119

(3) Genetic Algorithm Differences ... 121
(a) GA Scope.. 121
(b) Parent Selection ... 122
(c) Classifier Deletion ... 123

(4) Action Selection ... 124
(5) Classifier Updates... 124

D. Conclusions ... 125
Chapter V: Conclusions ... 127

A. Contributions... 127
B. Limitations.. 128
C. Future Research... 129
D. Summary .. 130

Appendix A: Coding the Program in Visual Basic.NET .. 131
Appendix B: XCS Sets and Parameters ... 134
Appendix C: Program Code Listing... 136
Appendix D: SAS Statistical Tests Output ... 273
Appendix E: Charts, Graphs, and Plots .. 293
References .. 323
Vita .. 329

 vii

LIST OF TABLES

Table I-1 Key Architectural Differences ..5
Table I-2 Agent vs Opponent Competitions...7
Table II-1 Samples of Valid Classifiers...22
Table II-2 Classifier Bid Variables...25
Table II-3 Classifier Strength Variables..27
Table II-4 Biological and Artificial Vernacular Correspondence ...30
Table II-5 Classifier System Extensions...40
Table II-6 Engineering Applications of Genetic Algorithms..40
Table II-7 Applications of Classifier Systems..40
Table II-8 Prisoner’s Dilemma Reward Structure...50
Table III-1 Sample Payoff Landscape ..65
Table III-2 Sample Classifiers ..66
Table III-3 TFT Optimal Population ...73
Table III-4 Competitions Between Agents and Opponents ...76
Table IV-1 Descriptive Characteristics, Unique Classifiers vs TFT...84
Table IV-2 Rank-Ordered Stabilization Encounter versus TFT WRT Unique85
Table IV-3 Rank-Ordered Stabilized Means versus TFT WRT Unique ...86
Table IV-4 Rank-Ordered Learning Rate versus TFT WRT Unique ..87
Table IV-5 Descriptive Characteristics, % Correct vs TFT ..89
Table IV-6 Rank-Ordered Stabilization Encounter versus TFT WRT % Correct90
Table IV-7 Rank-Ordered Stabilized Means versus TFT WRT % Correct ..91
Table IV-8 Rank-Ordered Learning Rate versus TFT WRT % Correct ...92
Table IV-9 Descriptive Characteristics, System Error vs TFT...94
Table IV-10 Rank-Ordered Stabilization Encounter versus TFT WRT System Error.........................95
Table IV-11 Rank-Ordered Stabilized Means versus TFT WRT System Error.....................................96
Table IV-12 Rank-Ordered Learning Rate versus TFT WRT System Error..96
Table IV-13 Descriptive Characteristics, % [O] vs TFT ...99
Table IV-14 Rank-Ordered Stabilization Encounter versus TFT WRT % [O] 100
Table IV-15 Rank-Ordered Stabilized Means versus TFT WRT % [O] .. 101
Table IV-16 Rank-Ordered Learning Rate versus TFT WRT % [O] ... 101
Table IV-17 Descriptive Characteristics, Unique Classifiers vs RAND... 104
Table IV-18 Rank-Ordered Stabilization Encounter versus RAND WRT Unique 105
Table IV-19 Rank-Ordered Stabilized Means versus RAND WRT Unique 106
Table IV-20 Rank-Ordered Learning Rate versus RAND WRT Unique .. 107
Table IV-21 Descriptive Characteristics, % Correct vs RAND .. 109
Table IV-22 Rank-Ordered Stabilization Encounter versus RAND WRT % Correct 110
Table IV-23 Rank-Ordered Stabilized Means versus RAND WRT % Correct 111
Table IV-24 Rank-Ordered Learning Rate versus RAND WRT % Correct 111
Table IV-25 Descriptive Characteristics, System Error vs RAND ... 114
Table IV-26 Rank-Ordered Stabilization Encounter versus RAND WRT System Error................. 115
Table IV-27 Rank-Ordered Stabilized Means versus RAND WRT System Error............................. 116
Table IV-28 Rank-Ordered Learning Rate versus RAND WRT System Error.................................. 116
Table IV-29 Accuracy-Based Fitness: Unique Classifiers vs TFT and RAND 117
Table IV-30 Accuracy-Based Fitness: % [O] vs TFT and RAND.. 118
Table IV-31 Initial Populations: Learning Rates vs TFT and RAND .. 118

 viii

Table IV-32 Initial Populations: Unique Classifiers vs TFT and RAND... 119
Table IV-33 Population Size: Learning Rates vs TFT and RAND... 120
Table IV-34 Population Size: Unique Classifiers vs TFT and RAND ... 120
Table IV-35 GA Scope: Learning Rates vs TFT and RAND .. 121
Table IV-36 GA Scope: % Correct vs TFT and RAND .. 121
Table IV-37 GA Scope: System Error vs TFT and RAND... 122
Table IV-38 Parent Selection: Unique Classifiers vs TFT and RAND .. 122
Table IV-39 Parent Selection: % Correct vs TFT and RAND.. 122
Table IV-40 Parent Selection: System Error vs TFT and RAND... 123
Table IV-41 Parent Selection: Learning Rates vs TFT and RAND.. 123
Table IV-42 Classifier Deletion: % [O] vs TFT and RAND ... 123
Table IV-43 Action Selection: % Correct vs TFT and RAND ... 124
Table IV-44 Action Selection: System Error vs TFT and RAND .. 124
Table IV-45 Action Selection: Learning Rates vs TFT and RAND ... 124
Table IV-46 Classifier Updates: Learning Rates vs TFT and RAND... 125

 ix

LIST OF FIGURES

Figure I-1 Simulation Experiment Program User Interface ..6
Figure II-1 Artificial Intelligence Family Tree...12
Figure II-2 Classes of Techniques That Contain Learning Classifier Systems13
Figure II-3 General Reinforcement Learning Framework ..17
Figure II-4 Interactions between Classifier System and Environment..20
Figure II-5 Traditional Learning Classifier System Modules...21
Figure II-6 Auction in Classifier System ..26
Figure II-7 Simple Genetic Algorithm Flowchart...31
Figure II-8 Classifier System and Environment Interactions: Application Mode..................................35
Figure II-9 Classifier System and Environment Interactions: Learning Mode.......................................35
Figure II-10 Classifier System Major Cycle..36
Figure II-11 Genetic Algorithm in Classifier System ...37
Figure II-12 The Classifier System and Interaction with Environment: Learning Mode38
Figure II-13 Detailed Classifier System and Interaction with Environment: Learning Mode39
Figure II-14 XCS Architecture...44
Figure IV-1 Unique Classifiers vs TFT ..83
Figure IV-2 % Correct vs TFT..88
Figure IV-3 System Error vs TFT...93
Figure IV-4 % [O] vs TFT ...98
Figure IV-5 Unique Classifiers vs RAND... 103
Figure IV-6 % Correct vs RAND .. 108
Figure IV-7 System Error vs RAND... 113

 x

LIST OF EQUATIONS

Equation II-I Calculation of Classifier’s Bid..24
Equation II-II Calculation of Classifier’s Effective Bid...26
Equation II-III Calculation of Classifier’s Strength..27
Equation II-IV Calculation of Inactive Classifier’s Strength After n Iterations.....................................28
Equation II-V Calculation of Taxlife Rate ...28
Equation II-VI Calculation of Classifier’s Strength..29
Equation II-VII Calculation of Classifier’s Selection Probability...32
Equation II-VIII XCS Update Function..45
Equation II-IX XCS Recency Weighting ...46
Equation II-X XCS Error Update Function ...46
Equation II-XI XCS Accuracy Update Function ...46
Equation II-XII XCS Relative Accuracy Function...46
Equation II-XIII XCS Fitness Update Function ..47
Equation II-XIV Prisoner’s Dilemma Reward Property #1...49
Equation II-XV Prisoner’s Dilemma Reward Property #2...50

 xi

CHAPTER I: INTRODUCTION

A. OVERVIEW

Well before the HAL 9000 entered the collective consciousness in Stanley’s Kubrick’s 1968

movie, “2001: A Space Odyssey,” people were intrigued with Artificial Intelligence (AI) and its

potential applications. Intelligent machines in movies, from 2001’s HAL 9000 to Terminator’s liquid

metal cyborg to Star Wars’ R2D2 and C3 PO have accelerated the interest in AI, wowing and

inspiring us to dream of a day when machines are our equals. The appeal is so strong that one of

AI’s pioneers suggested that: “… AI can be defined as the attempt to get real machines to behave

like the ones in the movies” (Allen 2001).

The idea of teaching a machine to behave as a human is alluring, both for practical and for

more esoteric reasons. Imagine having a machine at your disposal to perform your day’s mundane

tasks, and to do them as well as or better than you. Science has made significant strides in this

regard, producing intelligent machines that use genetic algorithms to help manage airport logistics,

that use intelligent text parsing to find and organize job openings, that use robotic machines to

survey and sanitize the battlefield, and that use neural networks to recognize fraudulent credit card

activity (Kahn 2002).

In many areas, however, progress has been disappointing, and in a way, surprising to many

experts. Marvin Minsky, the head of the AI laboratory at MIT, proclaimed in 1967 that “within a

generation the problem of creating Artificial Intelligence will be substantially solved” (Minsky 1967).

About the same time, Herbert Simon, another prominent computer scientist, announced that by

1985 “machines will be capable of doing any work that a man can do” (Simon 1965). That’s hardly

the attitude today. In fact, by 1982 Minsky was admitting, “The AI problem is one of the hardest

science has ever undertaken” (Kolata 1982).

This research, then, furthers the state of AI knowledge in a direction many believe to be the

most promising area for AI, Machine Learning. One expert states emphatically that “Machine

Learning is the most important aspect of AI” and that the ability to continually learn and adapt is

central to intelligence. (Waltz 2000). This research furthers knowledge in this area by examining a

currently popular mechanism for adaptation in Machine Learning, the Learning Classifier System

(LCS) and one of its variants, known as XCS. Through experimentation with these algorithms, this

research contributes to the ongoing discourse about intelligent machines and their ability to learn. A

1

thorough review of the literature indicates that research with the focus and setting chosen here has

not been attempted before. Therefore, the findings from this research are unique and value-adding

to the existing body of knowledge on unsupervised learning systems.

B. RELEVANT LITERATURE REVIEW

(1) Learning Classifier Systems

The concept behind Learning Classifier Systems is simple; an excellent description is provided

by Wilson (Wilson 1994):

A classifier system is a learning system in which a set of condition-action

rules called classifiers competes to control the system and gain credit based on the

system’s receipt of reinforcement from the environment. A classifier’s cumulative

credit, termed strength, determines its influence in the control competition and in

an evolutionary process using a genetic algorithm in which new, plausibly better,

classifiers are generated from strong existing ones, and weak classifiers are

discarded.

This description may be broken down into the primary determinants of an LCS:

• Learning system

• Set of condition-action rules

• Competition and cooperation to control system

• Operation based on reinforcement from the environment

• Evolutionary processes

• Plausibly better classifiers which are generated from strong existing ones

• Removal of weak classifiers

The first classifier system of note was Cognitive System One (CS-1), developed by John

Holland and Judith Reitman in 1978 (Holland and Reitman 1978). CS-1 ran a simulated linear maze

with external payoff only at the maze ends, so that the correct step-direction had to be learned at

each interior point. From these modest beginnings, LCS-based algorithms have been intensely

researched and applied to a wide variety of environments (Wilson and Goldberg 1989).

The most recent incarnation of the LCS paradigm, known as XCS, was originally proposed by

Stewart Wilson in 1995. XCS, or eXtended LCS, differs primarily in its calculation of classifier

2

fitness and in the scope of its genetic algorithm. In XCS, classifier fitness is based on the accuracy of

a classifier’s payoff prediction instead of the magnitude of the payoff. In addition, the genetic

algorithm takes place in XCS’s Action Sets instead of in the population as a whole. XCS has been

shown to work better than traditional Learning Classifier systems in certain environments (Wilson

1995). The current research dissects the differences between XCS and earlier variants of Learning

Classifier Systems to discern the key determinants of XCS’s performance in a new experimental

environment.

(2) The Prisoner’s Dilemma

The new environment under study in the current research is the Iterated Prisoner’s Dilemma

(IPD) game-playing scenario. Because of its broad implications and applicability, the IPD has been

widely studied and applied as a model for interactions between individuals and organizations. In the

current research, the IPD is appealing because it is inherently non-Markov, sometimes asymmetric,

and one where irrationality sometimes outperforms rationality. These characteristics are explained in

greater detail in Chapter II: D. (2) and result in the IPD being particularly challenging to an artificial

player. The IPD game also has broader commercial and social parallels than prior LCS settings

explored. Although it has received sustained research scrutiny since the 1950s, research momentum

exploded after Axelrod’s (Axelrod 1984) pioneering efforts in applying evolutionary systems to

outwit humans. The impetus continues, as evidenced by recent announcements by the United

Kingdom’s Engineering and Physical Sciences Research Council (EPSRC) (2003; 2005). The EPSRC

announced it was co-hosting a series of competitions into the latest developments surrounding the

Iterated Prisoner’s Dilemma and was specifically inviting researchers to best the winner in Axelrod’s

original IPD competitions. In the present research, the IPD game serves as a useful and novel test-

bed for studying Learning Classifier System behavior.

In the Prisoner’s Dilemma (PD), two players can either cooperate (C) or defect (D). If both

cooperate or both defect, each receives a reward of R2 or R3, respectively. If one defects while the

other cooperates, the latter gets a sucker’s payoff of R4 while the former gets R1. Here,

R1>R2>R3>R4 and (R1+R4)/2<R2. Thus, while mutual cooperation is preferred to mutual defection

(R2>R3), individual defection is tempting (R1>R2; R3>R4), and repeated cooperation is more lucrative

than each alternately playing sucker. Therein lies the dilemma: on any given move, should a player

cooperate or defect? In an Iterated PD, players repeatedly play one another and therefore may be

able to exploit prior experience with an opponent.

3

(3) Prior Experimental Evidence

Despite advances in LCS methods and techniques, direct comparison of traditional LCS

algorithms with the XCS algorithm is hard to find. Most research comparing the two approaches has

been focused on their relative performance in learning the Boolean multiplexer functions and in

finding goals in grid-like “woods” and maze environments (Wilson 1999). While useful and

illuminating, these results leave much room for speculation regarding XCS’s purported advantages.

Although preliminary efforts have been made to quantify performance differences between LCS-

and XCS-based algorithms (Kovacs 2000), comparison of XCS with strength-based classifier

systems remains one of the top 5 priorities of future XCS research (Wilson 2003).

Moreover, traditional LCS-based systems have been shown to perform very well in some

settings, such as evolving novel fighter aircraft maneuvering patterns (Smith, Dike et al. 2000; Smith,

Dike et al. 2000). Thus, it would appear that the traditional LCS model is not entirely without merit,

and should therefore not be discarded as a viable Machine Learning technique (Wilson 1999).

Extant research with Learning Classifier Systems and the IPD is limited. Noteworthy examples

include Smith and Dike, et al.’s work with fighter aircraft maneuvering, in which the authors make

the argument that a one-versus-one fighter aircraft scenario is analogous to the IPD (Smith, Dike et

al. 2000), Chalk and Smith’s experimentation with various learning classifier system parameters in an

IPD environment (Chalk and Smith 1997), and Meng and Pakath’s suite of simulation experiments

using a traditional LCS in the IPD (Meng and Pakath 2001). These efforts do not investigate the

performance of XCS in the IPD environment and specifically do not include a comparison of LCS

and XCS in such a setting. This research, therefore, is novel in both its setting and in its approach.

C. METHODOLOGY

This research compares and contrasts traditional LCS-based algorithms with an XCS algorithm

under specific IPD tournament settings to (a) better understand their adaptive behaviors, and (b)

determine to what extent the purported virtues of XCS hold in more complex settings like the IPD.

Using simulation experiments, the learning and steady-state behavior characteristics of a

modern IPD-playing XCS-based adaptive agent (XCS) are repeatedly compared with those of a

series of LCS-based agents beginning with a “traditional” model (LCS-0), followed by agents that

differ from LCS-0 in only one key architectural characteristic. In each comparison, both agents play

against the same IPD opponent(s). This approach draws on the following key architectural

differences between LCS-0 and XCS.

4

Table I-1 Key Architectural Differences
Characteristic LCS-0 XCS
Initial Population Generation Random Through Covering
Population Size Constant, N ≤ N
Parent Selection Fitness

Proportional
Tournament

Action Selection Fitness
Proportional

Biased Exploration

Classifier Fitness Updates Firing Classifier All Matching Classifiers
advocating the same
Action

Classifier Deletion Criteria Classifier Fitness Classifier Fitness and
Resource Balancing

Genetic Algorithm Panmictic Niche
Classifier Fitness Determinant Prediction

Magnitude
Prediction Accuracy

To investigate the effect of these architectural differences, a custom simulation experiment

program was coded in Visual Basic.NET. The final source code listing has approximately 6,500 lines

and provides for the selection of both the learning agent and its opponent, as well as for the setting

of various experimental and simulation parameters. In addition, the program incorporates routines

to collect relevant performance data for later analyses. The following screen capture provides a view

of the simulation program’s user interface.

5

Figure I-1 Simulation Experiment Program User Interface

The initial competitions were conducted between LCS-0, the traditional LCS-based agent, and

each of two pre-programmed IPD-playing opponents. The purpose of these competitions was to

establish baseline performance characteristics against which to compare subsequent competitions.

Subsequent competitions were held between the two pre-programmed IPD-playing opponents

and LCS-based agents which differed in one way from the traditional LCS agent. Because only one

characteristic was changed in each of these competitions, performance differences were necessarily

due to the effects of changing that unique characteristic.

The final competitions were held between a full blown XCS learning agent and the same two

pre-programmed opponents used in previous competitions. Because XCS employs all of the

architectural differences and is theorized to provide superior performance to LCS, these final

competitions provided a theoretical upper bound to learning agent performance.

Ultimately, the following twenty competitions were held:

6

Table I-2 Agent vs Opponent Competitions
Competition
Number

Agent and Architectural Characteristics Opponent

1 TFT
2

LCS-0 (Baseline LCS)
RAND

3 TFT
4

LCS-1 (Initial Population: Random
→Through Covering) RAND

5 TFT
6

LCS-2 (Population Size: Constant, N → ≤
N) RAND

7 TFT
8

LCS-3 (Parent Selection: Fitness
Proportional → Tournament) RAND

9 TFT
10

LCS-4 (Action Selection: Fitness
Proportional → Biased Exploration) RAND

11 TFT
12

LCS-5 (Classifier Fitness Update: Firing
Classifier → All Classifiers in [A]) RAND

13 TFT
14

LCS-6 (Classifier Deletion Criteria: Fitness
Only → Fitness and Resource Balancing) RAND

15 TFT
16

LCS-7 (Genetic Algorithm: Panmictic →
Niche) RAND

17 TFT
18

LCS-8 (Classifier Fitness Determinant:
Magnitude → Accuracy) RAND

19 TFT
20

XCS
RAND

D. RESULTS

Statistical analyses of the data generated during these experiments indicate that the majority of

the architectural differences did have a significant effect on the agents’ performance with respect to

the performance measures used in this research. The results of these competitions indicate that

while each architectural difference significantly affected its agent’s performance, no single

architectural difference could be credited as causing XCS’s demonstrated superiority in evolving

optimal populations. Instead, the data suggests that XCS’s ability to evolve optimal populations in

the multiplexer and IPD problem domains result from the combined and synergistic effects of

multiple architectural differences.

In addition, it was demonstrated that XCS was able to reliably evolve the Optimal Population

[O] against the TFT opponent. This result supports Kovacs’ Optimality Hypothesis in the IPD

environment and is significant because it is the first demonstrated occurrence of this ability in an

environment other than the multiplexer and Woods problem domains.

7

It is therefore apparent that while XCS performs better than its LCS-based counterparts, its

demonstrated superiority may not be attributed to a single architectural characteristic. Instead, XCS’s

ability to evolve optimal classifier populations in the multiplexer problem domain and in the IPD

problem domain studied in this research results from the combined and synergistic effects of

multiple architectural differences.

E. CONTRIBUTIONS AND LIMITATIONS

(1) Contributions

As described previously, the current research is noteworthy because it has not been attempted

previously and therefore offers new insight into the workings of LCS and XCS. Stewart Wilson, the

designer and architect of XCS and a well-regarded authority in the field, commented that the current

research was “… very important …” and “… will reveal some interesting architectural and

performance data about LCS and XCS, and perhaps more importantly, will take XCS into new

territory that should have wide application” (Wilson 2005).

In addition, several specific features of this work distinguish it from prior research with

Learning Classifier Systems:

1. This research constitutes the first known decomposition and study of the XCS algorithm’s

constituent parts. Specifically, eight significant architectural differences between traditional

LCS and XCS systems were identified and analyzed. While each architectural characteristic

was shown to significantly affect performance, none in and of itself could be credited as

providing XCS’s demonstrated superiority. Instead, it is apparent that XCS’s ability to

evolve optimal populations in the multiplexer, woods, and IPD problem domains is due to

the combined and synergistic effects of multiple architectural differences.

2. The Iterated Prisoner’s Dilemma is a new and previously untested problem domain for

XCS-based systems. This domain is unique because it is not a static or deterministic domain

as are the previously studied multiplexer and woods environments. Moreover, depending on

the opponent, IPD competitions often call for irrational decision making, challenging

learning agents in new and previously untested ways. The IPD also has broader social and

business parallels than do previously studied environments, offering greater ability to extend

and apply research results. Other benefits of the IPD problem domain include asymmetric

updates of the knowledge base and the ability to test learning agents against multiple

opponents, including “noisy,” changing, or illogical opponents.

8

3. This research provides the first demonstration of XCS’s ability to reliably evolve the

Optimal Population [O] against the TFT opponent. This result supports Kovacs’ Optimality

Hypothesis in the IPD environment and is significant because it is the first demonstrated

occurrence of this ability in an environment other than the multiplexer and Woods problem

domains.

4. To accomplish this research, a computer simulation program was written in Visual

Basic.NET, the first known instance of such a program in this language. VB.NET offers

several advantages over other languages used in previous classifiers system research. First, it

is executable on common Windows-based personal computers, greatly extending the

flexibility of the researcher. Second, VB.NET modules may be written to integrate program

execution with other Windows-based programs, providing the ability for automatic data

capture and display. This feature is employed in the current research, with modules to

automatically store and display data in Microsoft Excel spreadsheets. VB.NET also offers

the ability to interact with the user in a visual manner, providing the researcher with the

ability to examine evolutionary path traces during the course of normal execution. This

ability is employed in the current research and greatly aided the researcher in tracking

classifiers throughout the evolution process.

(2) Limitations

LCS- and XCS-based learning agents are complex mechanisms with many moving parts; the

lack of understanding regarding these parts provides much of the impetus for the current research.

As an example, the XCS implementation relies on over 20 parameters in its execution (an exposition

of these parameters is provided in Appendix B: XCS Sets and Parameters). Historically, parameter

values have been set relying as much on intuition as on empirical research. This research relies on

these generally accepted values for these parameters, necessarily limiting its results to a specific set of

parameter values. Second, as described later in this paper, there exist many possible competitions

between learning agents and pre-programmed opponents. This research studies competitions

between the learning agents and a select subset of these opponents, again limiting the generality of

the results. Third, the LCS-based learning agents used in this research differ in only one way from

the traditional LCS implementation. Combining architectural differences in a systematic manner

would provide additional information regarding cumulative effects and offers the possibility of

increased insight into the workings of LCS and XCS algorithms.

Copyright © David Alexander Gaines 2006

9

CHAPTER II: REVIEW OF THE LITERATURE

A. INTRODUCTION

Learning Classifier Systems and its more recent variants is one of many techniques belonging to

the field of Artificial Intelligence. This chapter, therefore, provides an introduction to AI and

Machine Learning, particularly as these fields relate to the current research. This introduction to AI

is followed by a description of a traditional Learning Classifier System and its more recent variant,

the eXtended Classifier System. Finally, the chosen testbed for this research, the Iterated Prisoner’s

Dilemma, is explained and detailed. The purpose of this chapter is to provide a general background

of the relevant fields from which theory is drawn in this research, as well as to provide a thorough

and detailed understanding of the techniques under study.

B. ARTIFICIAL INTELLIGENCE

(1) Background and Definition

AI, made possible with the advent of “powerful” computers in the late 1950s, is a relatively

young field compared with more traditional mathematical techniques (Samuel 1959). As it has been

studied for many years, AI has a number of definitions; an appropriate one for the present research

is provided by the American Association for Artificial Intelligence: “…the scientific understanding

of the mechanisms underlying thought and intelligent behavior and their embodiment in machines”

(2004). Modern AI has its roots in the years following the end of World War II, when computer

resources previously devoted to military applications were available for more esoteric pursuits

(Reingold and Nightingale 2000).

Interest in AI continues unabated; in recent years, the Defense Advanced Research Projects

Agency (DARPA) has sponsored contests in California’s Mojave Desert and in artificial urban

environments in which robotic entrants are challenged to navigate a challenging, pre-defined course

without human intervention or control (Flynn 2004; 2006). In the 2004 competition, entrants were

given coordinates of the course just thirty minutes before the race and, although no one vehicle

completed the entire course, “collectively all the engineering problems associated with unmanned

land navigation were solved” (Flynn 2004). The most recent competition resulted in four of five

teams completing a grueling 131.2-mile course in the Mojave Desert, with The Stanford Racing

Team taking the $2M prize with a winning time of 6 hours, 53 minutes (2006). There have been

many other successful AI applications, ranging from IBM’s Deep Blue chess-playing supercomputer,

10

to AI-assisted labs for concocting novel drug candidates, to fraud detection programs in use at many

financial institutions (Menzies 2003; 2004).

(2) Artificial Intelligence Families

Since the inception of AI research, the increasing availability of computing power, both in

institutional form and in the availability of personal computers, has led to a rapid expansion in

theory and techniques. This continually changing landscape has resulted in difficulties in defining the

exact nature of techniques and families of techniques (DeJong and Spears 1993). Figure II-1, based

on work by Alba (Alba and Cotta 1998; Alba 2004) and adapted by Browne (Browne 1999), provides

one typology of different AI techniques. As the figure depicts, there are many classes and categories

of AI techniques, all slightly different in their approaches to harnessing computing power and the

computer’s ability to learn. As shown in Figure II-1, the current research involves a class of

techniques which may be considered part of the Genetic Evolutionary family. While the figure

depicts LCS-based algorithms and Genetic Algorithms as two distinct families, LCS-based

implementations borrow heavily from genetic algorithm-based research.

11

Figure II-1 Artificial Intelligence Family Tree

Artificial Intelligence Techniques

Knowledge-Based

Fuzzy Logic

Intelligent Agents

Enumeratives

Expert
Systems

Decision
Support

Case-Based
Reasoning

Random

Ant
Colony

Cellular
Automata

Immune
Systems

Non-Guided Guided

Dynamic
Programming

Branch &
Bound

Guided

Tabu
Search

Simulated
Annealing

Las Vegas

Non-Guided

Neural Networks Genetic Evolutionary Computation

Hopfield Kohonen
Maps

Multilayer
Perceptron

Genetic
Algorithms

Evolution Strategies
& Programming

Genetic
Programming

Learning Classifier Systems

Michigan
Approach

Hybrid
Approach

Pitt
Approach

LCS ZCS XCS
This Work

Using a different artificial intelligence typology, LCS and XCS may also be thought to belong to

other classes of techniques, drawing inspiration from areas such as Parallel Solutions, Machine

Learning, and Nature Inspired (Browne 1999), as depicted in Figure II-2.

12

Figure II-2 Classes of Techniques That Contain Learning Classifier Systems

Machine
Learning

Nature
Inspired

Rule Induction

Parallel

Solutions

Learning

Classifier-Based
Systems

(3) Artificial Intelligence Strategies

Historically, Evolutionary Algorithms used in various AI techniques have consisted of three

well-defined paradigms: Evolution Strategies, Evolutionary Programming, and Genetic Algorithms

(GA) (Bäck 1996). The first two techniques rely primarily on mutation to evolve, while Genetic

Algorithms use recombination to effect adaptation and learning. Moreover, while Evolutionary

Programming represents individuals as finite state machines, Evolution Strategies uses real values on

a genetic level and Genetic Algorithms use bit strings (Schwefel 1995). As these separate techniques

developed and became more mature, however, these distinctions disappeared as beneficial methods

from one technique were adopted into others (Goldberg, Deb et al. 1991).

The term Evolutionary Algorithms has now been superseded by Evolutionary Computation

(EC), which is also the title of the international journal for the field (DeJong and Spears 1993).

Evolutionary Computation recognizes that the boundaries between the techniques are less clear than

previously defined, that new techniques are emerging (e.g. Genetic Programming), and that

individual methods are less important than the strategies used when categorizing techniques (Koza

1992).

13

(a) Overarching Strategy

The overarching strategy of Evolutionary Algorithms was one of optimization. This was

perhaps most apparent in Genetic Algorithms where an entire population was devoted to the

discovery of a single, optimum individual. Although optimization is still a major task in Evolutionary

Computation, the single optimum has been augmented by other objectives. Co-adaptation, multiple

objectives, and robust optima have all been the subject of algorithmic search (Davis 1991). Genetic

Algorithms have been developed that can find local optima as well as locating the global optimum

(Goldberg 1989).

Learning Classifier-based systems, the focus of this research, are driven to optimize a

population of rules that are themselves optimum in local niches. This requires the important concept

of cooperation for the rules to form a complete optimum. The increase in strategies has led to more

problem types becoming solvable through the use of Evolutionary Computation techniques

(Browne 1999).

(b) Representation

Evolutionary Algorithms were tied to the concept of natural systems, so information was

generally represented in terms of genotypes (the encoding of parameters) and phenotypes (the

response of an individual to an environment). Genetic Algorithms represent knowledge using bit

strings, while knowledge encoding in Evolutionary Programs and Expert Systems were typically

implemented in a more natural language form (Bäck, Fogel et al. 1997). The representation of most

Evolutionary Computation techniques can be a natural form, a bit form, or a domain specific

representation. Over time, the flexibility of representation using the traditional ternary (0, 1, #)

representation was expanded to include multiple punctuation, logical, and mathematical operators

(Koza 1992; Wilson 1999).

(c) Supervision

The three types of supervision that may be applied to a learning technique are summarized by

Smith and Dike (Smith and Dike 1995) following on work by Barto (Barto 1990):

1. Supervised learning: the environment contains a teacher that (directly or indirectly)

provides the correct response for certain environmental states as a training signal for the

learning signal.

2. Unsupervised learning: The learning system has an internally defined teacher with a

prescribed goal that does not need utility feedback of any kind.

14

3. Reinforcement learning: The environment does not directly indicate what the correct

response should have been. Instead, it only provides reward or punishment to indicate

the utility of actions that were actually taken by the system. This type of supervision

forms the basis of learning in Learning Classifier Systems and is explained in greater

detail in the next section.

(4) Machine Learning

The ability to learn is central to Learning Classifier-based machines, so understanding the types

of learning used within Artificial Intelligence assists in understanding the current research and its

underlying algorithms. Soon after the advent of the electronic computer, scientists envisioned its

potential to exhibit learning behavior. Early work by Samuel (Samuel 1959) and others prompted the

development of a number of learning machines and different approaches to Machine Learning.

Various authors have used different, but related definitions of learning. The following

definitions are relevant to the present study. Holsapple, Pakath, Jacob, and Zaveri describe human

learning “as an amalgam of knowledge acquisition and skill acquisition” (Holsapple, Pakath et al.

1993). Narendra and Thathachar propose the following, behavior-oriented, view: “Learning is the

ability of systems to improve their responses based on past experience” (Narendra and Thathachar

1989). Michalski, Carbonell, and Mitchell define learning more cognitively: “Learning processes

include the acquisition of new declarative knowledge, the development of motor and cognitive skills

through instruction and practice, the organization of new knowledge into general, effective

representations, and the discovery of new facts and theories through observation and

experimentation” (Michalski, Carbonell et al. 1983). A common theme in these definitions is an

improvement in the behavior of the system towards an environment, originating from repeated

instructions from that environment.

Because this research is specifically concerned with the ability of machines to demonstrate

learning behavior, it is also instructive to consider more focused definitions. The following

descriptions are particularly relevant to the present study and may be used to indicate whether

learning has occurred:

An agent (Machine Learning system) learns (with respect to an environment)

if its production of a response alters the state of the environment in such a way

that future responses of the same type tend to be better (Kondratoff and

Michalski 1990).

15

Systems that are capable of making changes to themselves over time with the

goal of improving their performance on the tasks confronting them in a particular

environment are said to demonstrate learning (Kondratoff and Michalski 1990).

Many different approaches have been used to implement Machine Learning. The specific

approach used in a particular research study is often based on the task to be learned, the way in

which the task is performed, and on popular theoretical views at the time. For the purposes of this

research, Machine Learning will be categorized according to Michalski, Carbonell, and Mitchell’s

Machine Learning classification scheme. The classifications, ordered approximately in descending

need of required supervision from a teacher are rote learning and direct implementation of new

knowledge, learning from instruction, learning by analogy, learning from examples, and learning

from observation and discovery (Michalski, Carbonell et al. 1983).

(a) Learning by Rote

Rote learning and direct implementation is the most basic way of learning. It amounts to

directly inserting knowledge into a system, either by programming it or by putting the knowledge

into a database (Michalski, Carbonell et al. 1983). The system that learns by rote performs no

inferencing whatsoever; the emphasis is instead on learning through memorization and the

development of indexing schemes to quickly retrieve memorized knowledge when needed

(Holsapple, Pakath et al. 1993). The system itself does nothing with the knowledge, except for

extracting, executing, storing, and reproducing it (Michalski, Carbonell et al. 1983).

(b) Learning from Instruction

Learning from instruction requires more effort on the system’s part; it is very much like

education at school. The learning system must be able to understand, store, and integrate

instructions with what it already knows (Michalski, Carbonell et al. 1983). The system depends on

external sources to incrementally present it with knowledge in an appropriately organized form, and

then selects new knowledge that must be acquired. It then performs syntactic reformulation of this

knowledge to integrate it with existing knowledge (Holsapple, Pakath et al. 1993).

(c) Learning by Analogy

The third category, learning by analogy, requires yet more effort from the system. The system

must find in its existing knowledge something similar to the task to be learned and change the

knowledge already present until it is applicable to the situation at hand (Michalski, Carbonell et al.

16

1983). The system must then store this newly acquired knowledge in its knowledge base until it is

ready to be used. Another way to define analogical learning is the retrieval, transformation, and

augmentation of relevant existing knowledge into new knowledge that is appropriate for effectively

dealing with a new problem that is similar to some previously encountered problem (Holsapple,

Pakath et al. 1993).

(d) Learning from Examples

In this type of learning, the system is presented an example from an environment and

information to associate with the example. This information can be an indication of whether the

example is positive or negative, whether the response of the system was good or bad, or some action

to associate with the example. If the information is given at the same time as the example, it is called

“true learning with examples” (Michalski, Carbonell et al. 1983). If the information is given after the

system has generated a response, it is described as “reinforcement learning” (Kovacs 2002). As will

be described later in this chapter, learning classifier-based systems make extensive use of

reinforcement learning; therefore, it is useful to describe this technique in some detail.

A depiction of a general reinforcement learning scheme is provided in the following diagram.

As the figure indicates, the system interacts with the environment, receiving inputs and emitting

actions that affect the environment and which may result in payoffs.

Figure II-3 General Reinforcement Learning Framework
Environment

Learning System

Reinforcement

Example Response

This framework above represents the key concepts behind reinforcement learning, which has

often been chosen as the appropriate framework for developing learning machines that can function

autonomously (Wilson 1999). Reinforcement learning is frequently chosen as the learning

mechanism in machines because it is often unclear to a human what a machine must do in order to

achieve a defined goal; humans do not “see” the environment the way a machine does, and therefore

cannot predict how the machine’s actions will affect the environment. The desired end results,

however, are often known and rewards can be attached to them. A programmer might say, for

example, “I want the machine to find as much dirt as possible, so I will give the machine a small

17

payoff every time it finds some.” This reward mechanism is usually much easier to implement than

prescribing exactly what steps the machine must perform to find dirt, as a teacher in a learning

instruction environment might do (Wilson 1999).

(e) Learning from Observation and Discovery

The last class of learning, learning from observation and discovery, or unsupervised learning, is

the most sophisticated type of learning. In this type of learning, the learning system is left on its own

to explore its environment and try to make classifications of phenomena it sees or to form theories

about it (Michalski, Carbonell et al. 1983). A system employing this strategy learns by examining a

relevant environment that contains one or more concepts of interest without explicit external

guidance. The system must then identify, capture, codify, and store relevant concepts from the

environment without any supervision (Holsapple, Pakath et al. 1993). Observation may be carried

out passively, without disturbing the environment in any way, or through active interaction with the

environment.

C. LEARNING CLASSIFIER SYSTEMS

Having now addressed AI and its key components as related to this research, the following

sections provide working descriptions of a traditional learning classifier-based system and its more

recent variants.

The learning system of interest in this research is called a classifier system. Learning classifier

systems (LCS) are a Machine Learning paradigm first posited by Holland in the mid-1970s (Holland

1975), that learns syntactically simple string rules, called classifiers, to guide its performance in an

unknown and arbitrary environment. The classifier system derives its name from its ability to

“classify” inputs from its environment into sets, and to recommend actions based on those sets.

Classifier systems are similar in many respects to more traditional control systems. Just as control

systems use feedback to “control” or “adapt” their outputs for particular environments, classifier

systems use feedback to “teach” or “adapt” their classifiers to their unique environments (Dorf

1983; Kovacs 1996).

The classifier system has developed from the merging of expert systems and genetic algorithms

(Holland 1975; Charniak and McDermott 1985; Waterman 1985). This synthesis has overcome the

main drawback to expert systems; namely, the long task of discovering and inputting rules. Using a

genetic algorithm, the classifier system autonomously learns the rules needed to perform in a given

18

environment. In the current study, this environment is a simulated game of the Iterated Prisoner’s

Dilemma.

In Holland’s original work, two ideas emerged which became key topics for future research on

Machine Learning. The first idea was that the Darwinian theory of enhanced survival of fitter

entities could be used to trigger the adaptation of an artificial system to an unknown environment.

This idea later became the basis of research areas like Evolutionary Computation, Adaptive

Behavior, and Artificial Life (Lanzi and Riolo 1999). The second revolutionary idea proposed by

Holland was that a system could learn to perform a task just by trying to maximize the rewards it

received from an unknown environment. This mode of learning through “trial and error”

interactions has been formalized and developed in the area of Reinforcement Learning, which is

now a major branch of Machine Learning research (Lanzi and Riolo 1999). Reinforcement Learning,

as originally postulated by Holland, is closely related to Michalski, Carbonell, and Mitchell’s Learning

by Example classification described in Chapter II: B. (4) (d) . Because most environments are not

static and because learning can never be said to be complete, the classifier learning process may

never be complete.

(1) LCS-0: A “Traditional” Learning Classifier System

The following sections present a simple classifier system as first described by Holland and

Reitman (Holland and Reitman 1978). The significant components of the classifier system are

described, including the genetic algorithm (GA). Because the GA plays a vital role in the classifier

system’s learning ability, the major aspects of this algorithm are examined in some detail. After the

introductory explanation of the classifier system’s components, the entire learning classifier system is

presented, depicting the interaction of its various components. After exposition of the classifier

system and the genetic algorithm, a number of exemplar learning classifier system applications are

reviewed.

(a) LCS-0 Architecture

A classifier system has three major components:

• Rule and message subsystem,

• Apportionment of credit subsystem, and

• Classifier discovery mechanisms (primarily the genetic algorithm).

Figure II-4 depicts how the classifier system interacts with its environment. As described

previously in Chapter II: B. (4) (d) and illustrated in Figure II-3, classifier systems behave according

19

to the mechanism employed in “Learning From Examples.” The classifier system receives

information about the environment, performs internal processing and then affects the environment.

It then uses feedback about the effect on the environment to learn from the experience. Figure II-4

shows the classifier system in learning mode, because the classifier system is using the feedback to

learn from experience. Conversely, if no feedback is provided, the classifier system is said to be in

application mode. Application mode is used after sufficient learning has been accomplished. The

following discussion, up until Chapter II: C. (1) (d) Classifier Systems: The Holistic Viewpoint deals

with the classifier system exclusively in learning mode.

Figure II-4 Interactions between Classifier System and Environment
Environment

Learning Classifier
System

Payoffs/Feedback

Inputs Actions

Figure II-5, Traditional Learning Classifier System Modules provides more detail on the

classifier system’s internal components. In Figure II-5, the Detectors, Effectors, and Classifier Population

blocks make up the rule and message subsystem; the Auction and Reward/Punishment blocks represent

the apportionment of credit subsystem; and the Classifier Discovery block signifies the system’s

classifier discovery subsystem. The following subsections describe these components in detail, and

provide more information about the information flow between them.

20

Figure II-5 Traditional Learning Classifier System Modules

Learning Classifier System

Environment

Payoffs/Feedback

Inputs Actions
Detectors Effectors

Reward/
Punishment

Auction

Classifier
Population

Classifier
Discovery (GA)

 Rule and Message Subsystem

Apportionment of Credit Subsystem

Classifier Discovery Subsystem

i. Rule and Message Subsystem

Each classifier consists of a rule or conditional statement whose constituents are words drawn

from the ternary alphabet (0, 1, #). The benefit of such a representation scheme is that, just as text is

stored on computer disks as 0s and 1s, any rule can be translated into 0s, 1s, and #s, so that it is in

the form of a classifier. Once translated, rules can be manipulated more easily, and rule discovery

and modification can occur. The alphabet is explicitly restricted to allow for the power of genetic

algorithms to be applied to the rule set as described in Chapter II: C. (1) (b) Genetic Algorithm. The

alphabet in no way restricts the representational capacity of the classifiers.

Each classifier has one or more words or conditions as the antecedent, an action statement as

the consequent, and an associated strength. To illustrate, Table II-1, Samples of Valid Classifiers

shows samples of strings that are valid forms for classifiers, (with the “:” symbol denoting the break

between the antecedent and action, (i.e. <antecedent>:<action>), in the first column, and their

associated strength in the second column.

21

Table II-1 Samples of Valid Classifiers
Rule Strength
011:101 23.2
011001##10#110:11 17.3
10101000110011##100#:11100001 32.9
####:1 7.1

The “#” symbol in the ternary alphabet acts as a wild card or “don’t care” in the condition,

matching either a 0 or 1. This allows for more general rules; the more “don’t care” symbols, the

more general the rule. The measure used to quantify this characteristic is called specificity. The

specificity of a classifier is the number of non-# symbols in the antecedent. If a classifier’s

antecedent consists of all # characters then the specificity is zero; if there are no # characters in the

antecedent then the specificity is equal to the antecedent’s string length.

The messages, generated either from the environment or from the action of other classifiers,

match the condition part of a classifier. Therefore, an action is a type of message, with the

consequence of an action being the modification of the environment (or the attempted matching

with another classifier in some classifier systems). In this study, classifiers only match messages from

the environment and actions generated from classifiers only affect the environment.

For a condition to match a message, every part of the condition string must match every part of

the message string. Therefore the message,
011001

would match all of the following conditions

0110#1
011001
##100#

as well as others.

The strength of a classifier provides a measure of the rule’s past performance in the

environment in which it is learning. That is, the higher a classifier’s strength the better it has

performed and the more likely it will actually be used when the condition matches an environmental

message (refer to Chapter II: C. (1) (a) ii. a. for details) and to reproduce when the GA is applied

(refer to Chapter II: C. (1) (b) for additional information). The strength values are relative; therefore,

a range limit is set. If the classifier strength falls out of this range, the strength value can be set to the

closest range extreme to eliminate the range violation.

The rule portion of a classifier has the template:

22

IF <condition> THEN <action>
where

<condition> is encoded as a string from the alphabet, and

<action> is also encoded as a string from the alphabet.

This form differs from those normally found in expert systems. In expert systems, the rules

often consist of sentences, for example:
IF the patient exhibits symptom X, THEN diagnose illness Y

As opposed to the classifier system’s ternary alphabet representation, such syntax makes it very

difficult for a computer system to be able to modify such a rule.

The messages from the environment are filtered and converted via input sensors. The sensors

(called detectors in classifier system parlance) discriminately select certain aspects of the

environment to sense and then translate the input to a binary form which can be processed by the

classifiers.

The actions of matching classifiers modify the environment via the effectors (or output

interface) as depicted previously in Figure II-5, Traditional Learning Classifier System Modules. The

effectors translate the binary action into a form which is appropriate to modify the environment

within an envelope of allowable modifications.

ii. Apportionment of Credit Subsystem

The apportionment of credit subsystem deals with the adjustment of the strength of classifiers

as the classifier system learns (Booker, Goldberg et al. 1989). In a traditional LCS, strength

adjustments occur via three interrelated mechanisms:

• Auction,

• Reinforcement and punishment,

• Taxation.

As the classifier system receives messages from the environment, all the classifiers that match

one (or more) of the messages compete, by submitting a bid, in an auction to determine a victorious

classifier that will affect the environment. Chapter II: C. (1) (a) ii. a. further discusses the auction.

The victorious classifier’s effect will be beneficial or detrimental to the environment. With this

feedback, the apportionment of credit subsystem appropriately uses reinforcement and punishment

to increase or decrease the strength of the victorious classifier that modified the environment.

Chapter II: C. (1) (a) ii. b. Reinforcement and Punishment details how feedback from the

23

environment is used with reinforcement and punishment. Finally, taxation is levied on each classifier

per iteration and on each classifier that submits a bid during an auction. Details of and the need for

taxation are provided in Chapter II: C. (1) (a) ii. c. Taxes.

Computer simulations show that the exact mechanism for the apportionment of credit

subsystem is not critical to the learning ability of the classifier system (Riolo 1988). That is, the

apportionment of credit subsystem may have many forms and the classifier system will still learn,

albeit incrementally more efficiently with the apportionment of credit subsystem in some forms than

others. This is an example of one of the many classifier system parameters which may vary in

different classifier system implementations. The values to which the parameters should be set to

cover a range, guided by biological analogy and empirical results. Many times the parameters are

manipulated during the learning process to determine if such manipulations can enhance learning

(Riolo 1988).

a. Auction: Bidding and Competition

An auction is performed among all the classifiers that have an antecedent that matches at least

one of the environmental messages. The classifier system’s detectors receive input from the

environment and assemble the input into environmental messages. Each classifier attempts to match

each environmental message, with each classifier that matches bidding in the auction.

With the matching classifier pool determined, the auction commences. Each classifier

participating in the auction submits a bid; the bid is a function of the classifier’s strength and

specificity. Only the bid of the victorious classifier is paid, so only the victorious classifier has its

strength decreased by the amount of its winning bid. The bid of classifier i at iteration t, Bi(t), is

calculated as:

Equation II-I Calculation of Classifier’s Bid

(t)iS*)
BRPowBidRatio*2k1(k*0k(t)iB +=

where

24

Table II-2 Classifier Bid Variables
Parameter Description
k0 Classifier Bid Coefficient: positive constant less than

one that acts as an overall risk factor influencing
what proportion of a classifier’s strength will be bid
and possibly lost on a single step.

k1 Bid Coefficient 1: constant less than one for non-
specificity portion of bid.

k2 Bid Coefficient 2: constant less than one for
specificity portion of bid.

BidRatio Measure of the classifier’s normalized specificity. A
BidRatio of 1 means there is just one possible message
that matches its condition, while a BidRatio of zero
means the classifier would be matched by any message
and the antecedent would consist of all wildcard
characters.

BRPow Parameter controlling the importance of the BidRatio in
determining a classifier’s bid (default is 1).

Si(t) Strength of classifier i at step t.

Figure II-6, shown on the next page, provides a simplified view of how the auction functions.

25

Figure II-6 Auction in Classifier System
Environment

Input From
Environment

Detectors Effectors

Actions Affect
Environment

Classifier
Population

01010010:0101
10001001:1001
00101001:1011

.

.

.
11110010:1001
00100001:0011

• Detectors sense information
from environment

• Convert to binary; assemble into
environmental messages

• Match environmental messages
with antecedents of classifiers

• Classifiers that match
environmental message go to
the auction

• Victorious classifier executes

consequent
• Consequent sent to effectors;

effectors modify environment

Auction

Learning Classifier
System

To promote exploration of the classifier space, the bids submitted by each competing classifier

in Equation II-I are not used directly to determine the auction winner; random noise is added to the

auction. Therefore the effective bid, eBi(t), is calculated as the sum of the deterministic bid, BiB (t), and

a noise term, N(σbid), as shown in : Equation II-II

Equation II-II Calculation of Classifier’s Effective Bid
)bidN(σ(t)iB(t)ieB +=

b. Reinforcement and Punishment

Since the pioneering work on Machine Learning by Samuel (Samuel 1959), the credit

assignment problem (Minsky 1961) has been known to be a key problem for any learning system in

which many interacting parts determine the system’s global performance. Credit assignment deals

with the problem of deciding, when many parts of a system are active over a period of time (or even

at every time step), which of those parts active at some step t contribute to achieving some desired

outcome at step t+n, for n > 0.

26

To solve the credit assignment problem in classifier systems, the bucket brigade algorithm, as

defined by Holland (Holland 1986), was developed, and has experienced limited success to date. An

alternative and simpler solution (when possible) is the implementation of the classifier system as a

stimulus-response (S-R) system. This solution has proven to be a successful one as indicated by the

examples provided in Table II-7, Applications of Classifier Systems. An S-R classifier system

activates only one classifier during each iteration and the activated classifier affects the environment.

Therefore the environmental modification can easily be attributed to a single source.

A trainer is necessary to determine whether the environmental modification was beneficial or

detrimental. Some Machine Learning systems require a tutor trainer which knows the correct or best

answer, enabling the system’s actual response to be compared with the correct response.

Fortunately, a classifier system requires only the more flexible reinforcement trainer. Reinforcement

learning requires only positive or negative feedback from the reinforcement trainer as a consequence

of a response.

When the victorious classifier creates a beneficial effect to the environment, the trainer sends

positive feedback, causing an increase in the victorious classifier’s strength. Conversely, a detrimental

effect leads to punishment. Since the victorious classifier’s strength decreases when it wins the

auction and pays its bid (as shown in Equation II-I, Calculation of Classifier’s Bid), punishment

occurs implicitly anytime a reward is not provided. In addition, an adjunct strength reduction may

occur. If the trainer has the ability to rank environmental effects, then the rewards and punishments

can be scaled appropriately.

The strength S (t+i 1) of a classifier i at the end of iteration t is:

Equation II-III Calculation of Classifier’s Strength
(t)iB(t)iR(t)iS1)(tiS −+=+

where

Table II-3 Classifier Strength Variables
Parameter Description
Si(t) Strength of classifier i at beginning of iteration t.
Ri(t) Reward from the environment during iteration t.
Bi(t) Classifier’s bid during iteration t (as defined by

Equation II-I, Calculation of Classifier’s Bid); only
paid if victorious.

27

Again, classifier i only makes a bid payment if victorious in the auction, in which case it will

affect the environment. The reward factor, Ri(t), is only non-zero if the classifier won the auction on

the previous iteration. The reward (or punishment) for the action at iteration t will not be applied

until iteration t + 1. Note that Ri(t) is less than zero for punishment, and greater than zero for

reward.

c. Taxes

Taxation occurs to prevent the classifier population from being cluttered with artificially high

strength classifiers of little or no utility. There are two types of taxes:

• life tax,

• bid tax.

The life tax, taxlife, (also called head tax) is a fixed rate tax applied to every classifier on every

iteration. The purpose is to reduce the strength of classifiers that rarely or never are matched and

therefore provide little or no utility. Non-producing classifiers’ strengths are slowly decreased,

making them candidates for replacement when the classifier discovery mechanisms (primarily the

genetic algorithm) create new classifiers. The bid tax, taxbid, is a fixed-rate tax that is applied to each

classifier that bids during an iteration. One reason for a bid tax is to penalize overly general

classifiers, i.e., classifiers that bid on every step but perhaps seldom win because they have a low

specificity which leads to low bids and so a low chance of winning the auction to post effector

messages (Riolo 1988).

The taxlife reduces the strength of inactive classifiers such that after n iterations of inactivity the

strength of an inactive classifier may be found using the following equation:

Equation II-IV Calculation of Inactive Classifier’s Strength After n Iterations
n)lifeTax(1*S(t)n)S(t −=+

The life tax may be found by Equation II-V:

Equation II-V Calculation of Taxlife Rate
)n1()

2

1
(1lifeTax −=

As will be discussed in Chapter II: C. (1) (a) iii. Classifier Discovery Mechanisms, new

classifiers are inserted into the population at the average strength of their parents, thus the tax rate

28

must be set to ensure that inactive rules are degraded sufficiently before the application of the

genetic algorithm. If this is not done, relatively inactive rules can retain an unrealistically high level of

strength and ultimately reach reproduction disproportionately, thereby cluttering future populations

with large numbers of overrated inactive rules. However, the tax burden can not be so great that

rules which have only remained inactive by chance become so weak that they are essentially

eliminated from any auction. The ultimate objective is to tax classifiers so that newly inactive rules

are not purged and so that old inactive classifiers are not chosen to participate in the system’s

genetic algorithm.

With all the apportionment of credit mechanisms defined, the complete strength equation is

shown in Equation II-VI:

Equation II-VI Calculation of Classifier’s Strength
(t)iB*bidTax(t)iB(t)iR(t)i)SlifeTax(11)(tiS −−+−=+

Recall that:

• R (t) i will only be non-zero if classifier i won the auction on iteration t-1.

• BiB (t) is only paid if classifier i wins the auction.

• Tax * B (t) bid i is only paid if classifier i bids in the auction (irrespective of whether

classifier i wins the auction or not).

iii. Classifier Discovery Mechanisms

Two classifier discovery mechanisms are implemented in a typical LCS:

• Genetic algorithm,

• Triggered cover detector operator.

The foremost operator, the genetic algorithm, provides the bulk of the discovery and learning

capability found in a classifier system. Discussion of the GA is deferred to Chapter II: C. (1) (b) and

its subsections to provide the coverage due.

The triggered cover detector operator (TCDO) is a triggered rule generation mechanism, i.e., a

rule generation operator that is only activated (i.e., triggered) when certain conditions occur. In

practice, it is triggered whenever the classifier system does not have a classifier which matches (i.e.

covers) any environmental message. It responds by producing one new classifier that would be

satisfied by an environmental message at step t with a condition that matches the unmatched

environmental message. The action part is randomly generated on the alphabet.

29

The TCDO is a special case of a mutation operator (described in Chapter II: C. (1) (b)) which

implements a random walk through the space of possible classifiers. A random walk performs

poorly in the astronomical search space of possible classifiers; however, in conjunction with a GA, a

TCDO improves learning relative to the GA being applied alone (Robertson and Riolo 1988).

Two considerations must be accounted for when determining the initial strength given to a new

classifier created by either the TCDO or the GA:

1. The strength should not be too low, otherwise the new classifier will never win an

auction and therefore never get a chance to prove itself better (or worse) than existing

classifiers.

2. The strength should not be too high, otherwise the new classifiers will be tried too

often, overruling existing rules that perform well, and may lead to unstable performance.

Computer simulation studies conclude that rules introduced by the TCDO should have the

average of the strengths of the classifiers in the population; while the offspring of the GA should

have the average strength of the parents (Riolo 1988).

(b) Genetic Algorithm

Most complex organisms evolve by means of two primary processes: natural selection and

sexual reproduction. The first determines which members of a population survive to reproduce, and

the second ensures mixing and recombination (called variability or diversity in the natural sciences)

among the genes of their offspring.

A genetic algorithm is a stochastic search algorithm based on the mechanics of natural

selection (Darwin 1897) and population genetics (Mettler, Gregg et al. 1988). Genetic algorithms are

patterned after natural genetic operators that enable biological populations to effectively and

robustly adapt to their environment and to changes in their environment. Some of the

correspondences between biological genetics and genetic algorithms are shown in Table II-4.

Table II-4 Biological and Artificial Vernacular Correspondence
Biological Term Corresponding Genetic Algorithm Term
chromosome classifier or string
gene character or bit
allele bit value
locus position

Genetic algorithms, as Goldberg states and demonstrates, are theoretically and empirically

proven to provide robust search in complex spaces (Goldberg 1989). While performing its search,

30

the GA balances the need to retain population diversity (exploration) so that potentially important

information is not lost, with the need to focus on fit portions of the population (exploitation)

(Whitley 1989). Reproduction in GA theory, as in biology, is defined as the process of producing

offspring (Melloni, Eisner et al. 1979). However, mating may occur between any two classifiers, as

there is no male-female distinction.

The basic genetic algorithm operators involved in reproduction are:

• Selection,
• Crossover,
• Mutation.

The placement of these operators in the overall genetic algorithm is shown in Figure II-7.

Figure II-7 Simple Genetic Algorithm Flowchart
Initialize parameters

Generate initial population

Determine strengths for all population members (execute
many classifier learning iterations)

Evaluate population statistics

Selection of parents

Crossover

Generate offspring and apply mutation

Update population

In Figure II-7 there is a box that reads, “Determine strength for all population members.” In

the case of a classifier system, this determination can not occur during a single iteration. Classifier

systems determine the ranking among the population members via multiple interactions with the

environment in which strength changes occur via the apportionment of credit subsystem of the

classifier system. Only after multiple interactions with the environment will the classifier strengths

31

http://www.stanford.edu/~buc/SPHINcsX/bkhm15.htm#Mating
http://www.stanford.edu/~buc/SPHINcsX/bkhm15.htm#Selection

represent a measure of how well the classifier performs in the environment. The number of

iterations that occur between each application of the genetic algorithm is called an epoch. Therefore

in Figure II-7, each loop represents one epoch.

i. Selection

Selection deals with the selection of classifiers from the population which will reproduce. The

selection algorithm allocates reproductive trials to classifiers as a function of their strength. Some

selection strategies are deterministic, such as elitism where just a certain percentage of the strongest

classifiers are selected. However, most research has shown that stochastic selection biased by

strength is more productive.

For stochastic selection, the selection probability is proportional to the individual’s strength.

During selection, high strength classifiers have a greater probability of producing offspring for the

next generation than lower strength classifiers. There are many different ways to implement the

stochastic selection operator, with most methods which bias selection towards high strength proving

successful (Goldberg and Samanti 1987).

Fitness proportionate reproduction is a simple rule whereby the probability of reproduction

during a given generation is proportional to the fitness of the individual. In this investigation, the

probability that a classifier, i, will be selected for mating is given simply by the classifier’s strength

divided by the total strength of all the classifiers:

Equation II-VII Calculation of Classifier’s Selection Probability

∑
=

= n

1k kS

iS
iP

where

Pi = Probability of selection for classifier i
Si = Strength of the classifier i
n = Total number of classifiers

This gives every member of the population a finite probability of becoming a parent, with

stronger classifiers having a better chance.

ii. Crossover

Crossover takes a portion of each parent and combines the two portions to create offspring.

After selection, the strings are copied into a mating pool and crossover occurs on the copies.

32

First, pairs of parents are chosen from the copies in the mating pool. That is, the mate for each

individual which was chosen during selection is randomly bred with one of the other classifiers

which was chosen during selection.

Second, each pair of copies undergoes crossing over as follows: an integer position k along the

string is selected uniformly at random on the interval (1, L-1), where L is the length of the string.

Two new strings (classifiers) are created by swapping all characters between positions L and k

inclusively.

To visualize how this works, consider two strings A and B of length L=7 mated at random

from the mating pool:

A = a1 a2 a3 a4 a5 a6 a7
B = b1 b2 b3 b4 b5 b6 b7.

Consider the random selection of k is 4. The resulting crossover yields two new classifiers A’

and B’ following the partial exchange.

A’ = b1 b2 b3 b4 | a5 a6 a7
B’ = a1 a2 a3 a4 | b5 b6 b7.

The simple crossover described above is a special case of the n-point crossover operator. In the

n-point crossover operator, more than one crossover point is selected and several substrings from

each parent are exchanged. Although the mechanics of the selection and crossover operators are

simple, the biased selection and the structured, though stochastic, information exchange of

crossover give genetic algorithms much of their power.

iii. Mutation

Mutation, the random alteration of a string position, performs a secondary role in the

reproduction process. Mutation is needed to guard against premature convergence, and to guarantee

that any location in the search space may be reached. In the classifiers tertiary code, a mutation

could change
0 to a 1 or #;
1 to a 0 or #;

or

to a 0 or 1.

By itself, mutation is a random walk through the classifier space. The frequency of mutation, by

biological analogy and empirical studies, is on the order of one mutation per ten thousand position

transfers.

33

(c) Replacement and Crowding

Replacement and crowding handles the introduction of new classifiers into a population and the

elimination of classifiers from a population. The classic implementations of classifier systems and

genetic algorithms have constant size populations. Therefore for each new individual created,

another individual must be eliminated.

An important dynamic of genetic algorithms and classifier systems is the population percentage

replaced on each generation. Generational replacement genetic algorithm (GRGA) replaces the

entire population with each generation; this is the traditional approach of straight genetic algorithms.

Steady state genetic algorithm (SSGA) replaces only a small portion of the population on each

generation. Classifier systems normally use the SSGA approach. This study will not deviate from the

norm and uses a SSGA.

With a SSGA approach, the question of which classifiers to replace must be answered. The

relative age of a classifier plays no factor in replacement; a classifier may be eliminated after only one

generation or may potentially be immortal. While it is logical to replace low strength classifiers,

simple replacement of the worst classifiers is not the optimal approach. Instead, based on a

technique proposed by DeJong (DeJong 1975), a crowding mechanism among a low strength sub-

population is implemented.

The technique is employed for each new classifier generated for insertion into the population. A

check of crowding factors is made to determine which classifier to replace. Each check consists of

randomly selecting a crowding sub-population from the entire population and then selecting the

lowest strength classifier in the sub-population. The selected classifier is added to a pool of

replacement candidates. When the crowding factor checks are complete, the pool members are

compared to the child and the child replaces the most similar candidate on the basis of similarity

count. Similarity count is a simple count of the positions where both the child and candidate are

identical. This method is beneficial in that it helps maintain diversity within the population (DeJong

1975).

After completing the above, each of the offspring is checked to see if it is a twin to any of the

other members of the population. This may occur even with the above procedure because the twins

may both be offspring. If a twin is found, a mutation is introduced into the lower strength twin. The

process is repeated, if necessary, until the individual is unique. A twin provides no benefits and is

detrimental because it decreases population diversity.

34

http://www.stanford.edu/~buc/SPHINcsX/bkhm15.htm#GRGA
http://www.stanford.edu/~buc/SPHINcsX/bkhm15.htm#SSGA
http://www.stanford.edu/~buc/SPHINcsX/bkhm15.htm#SimilarityCnt
http://www.stanford.edu/~buc/SPHINcsX/bkhm15.htm#SimilarityCnt

(d) Classifier Systems: The Holistic Viewpoint

Now that the components of the classifier system have been introduced, a holistic view may be

more fully appreciated. When the classifier system is not learning, it receives information from the

environment via the detectors, determines the appropriate classifier to fire, then performs the action

prescribed by the fired classifier via the effectors. This arrangement is called application mode, and

is shown in Figure II-8, Classifier System and Environment Interactions: Application Mode.

Figure II-8 Classifier System and Environment Interactions: Application Mode
Environment

Learning Classifier
System Inputs From

Environment
Actions Affect
Environment

When learning is occurring, some form of an initial population must be created. As stated, one

may commence with many possible initial populations. To fully test the learning ability of the

classifier system, a tabula rasa is used. Even if a randomly generated initial population is selected,

many population parameters still must be set. These include the number of conditions in the

antecedent, the word length for each condition and the action and the probability of selecting a # in

the randomly generated population. As described in Chapter I, this study relies on parameter settings

which have proven successful in similar research.

The basic interactions between an environment and a classifier system in learning mode as first

shown in Figure II-4, is repeated in Figure II-9.

Figure II-9 Classifier System and Environment Interactions: Learning Mode
Environment

Learning Classifier
System Inputs From

Environment
Actions Affect
Environment

Payoffs/Feedback

Since the initial classifiers are randomly generated, they are most likely of low quality and should

be considered nothing more than guesses. The classifier system performs many iterations of

interaction with the environment receiving feedback allowing the guesses to be ranked. These

iterations constitute the classifier system’s major cycle; a flowchart of which is shown in Figure

35

http://www.stanford.edu/~buc/SPHINcsX/bkhm15.htm#TabulaRasa

II-10. The major cycle shown in Figure II-10 extends the information provided in Figure II-6. T

earlier figure did not include the feedback used by the apportionment of credit subsystem to reward

or punish the responsible classifier.

Figure II-10 Classifier System Major

he

 Cycle

est

gues l

e

 can

1. Detectors sense information from environment
2. Convert to binary: assemble into environmental messages

1. Compare environmental messages to the antecedent of all classifiers
2. Record all matches

Perform auction amongst all classifiers which matched

After an epoch (of iterations), the genetic algorithm is applied, effectively mating the b

ses. As the iterations and epochs increase, the quality of the guesses increases. Since genera

guesses (i.e., classifier with many # symbols) participate in auctions more than specific guesses, th

initial learning will find some general guesses which are correct more times than not. With the

concept of major cycle and epoch defined, the genetic algorithm flowchart shown in Figure II-7

be specialized for the classifier system, as shown in Figure II-11.

Generate effector message by activating victorious classifier

Effectors modify environment

Send feedback to the apportionment of credit subsystem to pay reward or
apply punishment

Repeat

36

Figure II-11 Genetic Algorithm in Classifier System
Initialize classifier system

Generate initial tabula rasa population

Perform an epoch of iterations of the classifier system’s
major cycle (Figure II-10)

Evaluate population statistics

Selection of parents

Crossover

Generate offspring and apply mutation

Perform crowding and replacement

Repeat

With some learning behind it, the population of classifiers may be thought of as a population of

hypotheses (Holland 1992). As always, a hypothesis (classifier) enters the auction when it is pertinent

to the situation. A hypothesis’ competitiveness is determined by its past performance and its

specificity. For the victorious hypothesis, its destiny is tied to the result of its actions. As epochs

pass, successful hypotheses will exchange information via the genetic algorithm. These offspring will

replace disproved hypotheses with more plausible but untested hypotheses.

Figure II-12 shows more details of the classifier system’s structure, adding detail to Figure II-4.

37

Figure II-12 The Classifier System and Interaction with Environment: Learning Mode
Environment

Feedback
Input From
Environment

Detectors Effectors

Apportionment of Credit
Subsystem

Actions Affect
Environment

Learning Classifier
System

Auction

Classifier
Discovery (GA)

Environmental
Messages

Victorious
Classifier’s Action

Match
environmental
messages with
antecedents of

classifiers

Matched
Classifiers

Population of
classifiers

Bids

Once each epoch
of iterations

Original Strength

Strength Change

With more epochs comes the evolution of more specific hypotheses which control behavior in

their narrow domains, overriding the more general default rules. This development of general (or

default) hypotheses and specific (or exception) hypotheses allows the classifier system to learn

gracefully, permitting the handling of novel situations by general hypotheses while providing for

exception hypotheses when necessary.

As epochs continue and most of the feedback becomes positive, the classifiers may be thought

of as more and more validated hypotheses. Furthermore, when the classifier system can pass criteria

to be considered learned, the classifiers may be considered heuristics and rules.

Figure II-13 shows the detailed interactions of the major components of the classifier system

and a detailed view of the rule and message subsystem.

38

Figure II-13 Detailed Classifier System and Interaction with Environment: Learning Mode
Environment

Feedback
Input From
Environment

Detectors Effectors

Si(t+1)=(1-Taxlife)Si(t)+Ri(t)-Bi(t)-
Taxbid*Bi(t)

Actions Affect
Environment

Learning Classifier
System

Auction

Classifier
Discovery (GA)

Environmental
Messages

Victorious
Classifier’s Action

Match
environmental
messages with
antecedents of

classifiers

Matched
Classifiers

Population of
classifiers

Bids

Once each epoch
of iterations

Original Strength

Strength Change

Parent
Selection

New
Classifiers

Apportionment of Credit Subsystem

Trainer

Classifier Discovery
(TCDO)

(e) Other Mechanisms

The preceding material has described the workings of a simple classifier system and basic

genetic algorithm. The discussion also added relevant background to modifications to the rudiments

used in this study. A variety of other additions and variations to the classifier system have been

suggested in the literature. Many of these were investigated but were either found to be ineffectual

or found not to be appropriate for this study. Table II-5 shows a sampling.

39

Table II-5 Classifier System Extensions
Extension Name References
Implicit Niching (Horn, Goldberg et al. 1994)
Coverage-base Genetic Induction (Greene and Smith 1994)
Fuzzy Classifier Systems (Valenzuela-Rendon 1991), (Parodi and Bonelli 1993)
Using Performance-Based Action Selection (Wilson 1994)
Island Model Genetic Algorithm (Whitley 1993)

(f) Applications of Classifier Systems and Genetic Algorithms

Despite their youth, genetic algorithms, and classifier systems to a lesser extent, have seen rapid

growth in their application. Genetic algorithms have found near optimal solutions in a variety of

environments (Goldberg 1989); Table II-6 presents some GA engineering applications.

Table II-6 Engineering Applications of Genetic Algorithms
Description Reference
Optimal structures using genetic algorithm (Dhingra 1990), (Jensen

1992)
Flow vectoring of supersonic exhaust nozzles to define optimally shaped
contours

(King 1991)

Use of Genetic Algorithms for the strength-to-weight and stiffness-to-
weight optimization of laminates

(Callahan 1991)

Design of optimum welds (Deb 1990)
Path planning of a mobile transporter (Baffes and Wang

1988)
General Electric’s Engineous helped design the engine for the Boeing 777 (Ashley 1992)
VLSI cell placement (Kling and Banerjee

1991)
Design of Air-Injected Hydrocyclone (Karr and Goldberg

1990)
Composite material structures’ design and optimization (Punch, Averill et al.

1995)
Composite laminate staking sequence optimization for buckling load
maximization

(Le Riche and Haftka
1993)

Table II-7 presents some of the more successful classifier system applications. These examples

are stimulus-response (S-R) systems, searching the space of possible stimulus-response rules. Except

for allocating payoffs directly to the classifiers that produced results, the bucket brigade algorithm as

defined by Holland (Holland 1986) did not play a role in these systems.

Table II-7 Applications of Classifier Systems
Description Reference
A robot path planning system using many classifier systems simultaneously. (Dorigo and

40

http://www.stanford.edu/~buc/SPHINcsX/bkhm15.htm#IMGAE

Sirtori 1991)
A classifier system to control a simulated creature in a simple two-
dimensional environment.

(Booker
1982)

The application of a classifier system to the control of gas flow through a
national pipeline system.

(Goldberg
1983)

Application of classifier systems to learning dynamic planning problems,
such as determining plans of movement through artificial environments in
search of food.

(Roberts
1993)

Use of classifier systems to learn to categorize Boolean multiplexer
functions.

(Wilson 1986)

(g) Shortcomings of the traditional LCS algorithm

As a consequence of recent LCS research, several supposed weaknesses of the original LCS

model have been identified (Wilson 1995; Smith, Dike et al. 2000). These potential drawbacks relate

to the traditional practice of associating a classifier’s strength as a measure of its utility and allowing

higher strength classifiers relatively greater opportunity to fire as well as to engage in genetic

procreation. Because strength is directly related to payoff magnitude, the LCSs may be characterized

as payoff-magnitude driven. The perceived weaknesses of the LCS learning algorithm are

summarized below.

1. It is possible that the environment contains niches (a set of states at each of which a

common subset of available classifiers are able to match and are, therefore, all candidates

for firing). Some niches could offer greater payoffs to the LCS than others. It is possible

for classifiers operating in such niches to dominate the population during genetic

procreation as they gain higher rewards and grow disproportionately fitter over time.

Lower strength rules, upon which overall system performance could depend, are purged.

2. One way of mitigating the drawback described above is to share the portion of any

accrued reward intended solely for the firing classifier with all classifiers in the Match Set

that advocate the same action as the firing classifier. The hope is that since the payoff is

divided between multiple, “equivalent” classifiers, no single classifier would grow

dominant. However, this solution introduces another weakness: a single classifier’s

strength now becomes a weaker (indirect) measure of its utility and can no longer be

used as a surrogate for its payoff-generation ability (i.e., as a predictor of its utility); this

ability is now distributed amongst several classifiers; therefore, another measure other

than strength to assess a classifier’s utility must be used.

41

3. In situations where rule-chaining is essential (i.e., deferred payoff systems), early

enabling rules in a lengthy chain will appear less fit over time, even with a reward back-

propagation mechanism in place that offers some of the reward to the enablers. Thus,

when the GA module is invoked, its parent selection mechanism tends to ignore the

relatively weaker enablers despite the fact that they are crucial to system success. Useful

genetic material is often lost as a result. A solution to this problem is to use the GA on

Match Sets rather than on the entire population of classifiers. Thus, there will be no

procreation-related competition between Match Sets where classifiers in one set

dominate those in the others. Such use of a GA is termed as “niche Genetic

Algorithms.” Even with niching, two problems remain …

4. The GA component of the LCS is unable to distinguish specific classifiers having a

certain payoff accuracy from more general versions (i.e., having more # symbols in their

conditions) that offer the same payoff, on average. Consequently, because the more

general versions tend to match environmental states more often than the more specific

ones, the more general versions tend to proliferate over time.

5. Generalizations appear to be desirable. However, there is no mechanism to assure that

the generalizations are good performers in the sense that their actions yield payoffs close

to what is expected when they are fired. That is, with a payoff-magnitude driven LCS,

there is no mechanism in place to ensure that accurate generalizations are evolved.

(h) Summary

Learning Classifier Systems are machine learning paradigms that use simple string rules, or

classifiers, to guide their performance in unknown and arbitrary environments. Developed from the

merging of expert systems and genetic algorithms, Learning Classifier Systems autonomously learn

the rules needed to perform in a given environment and have achieved success in a number of

challenging problem domains. Despite their demonstrated successes in these areas, traditional

Learning Classifier Systems have several shortcomings which result in sub-optimal performance.

(2) XCS: An Extended Classifier System

XCS, or eXtended Classifier System, was first introduced by Stewart Wilson in his seminal

paper, “Classifier Fitness Based on Accuracy,” which appeared in the April, 1995 issue of

Evolutionary Computation (Wilson 1995). Much of the preceding material on traditional Learning

Classifier Systems is relevant to XCS as well; however, XCS employs several mechanisms which alter

42

its execution and subsequently affects its performance. The following sections, therefore, provide a

general overview of XCS, paying particular attention to features which differ from traditional LCS

implementations.

(a) Overview

XCS is a recently developed learning classifier system that differs from traditional LCSs in

several ways. In XCS, classifier fitness is based on the accuracy of a classifier’s payoff prediction

instead of the prediction itself. The second major difference is that the genetic algorithm takes place

in XCS’s Action Sets instead of in the population as a whole (Butz and Wilson 2001).

As in all LCSs and reinforcement learning methods, XCS acts as a learning agent that perceives

inputs describing the current environmental state, responds with actions, and receives reward

(possibly from a separated reinforcement program) as an indication of the value of its action. The

reward received is determined by the reward function, which maps state/action pairs to real

numbers, and it is part of the problem definition (Sutton and Barto 1998). For the purposes of the

current research, only single-step tasks in which the agent’s actions do not influence successive states

are of concern.

The XCS framework will now be described in detail, drawing extensively on Wilson’s tutorial

presentation at the 1999 Genetic and Evolutionary Computation Conference in Orlando, Florida

(Wilson 1999).

(b) XCS Architecture and Major Cycle

Classifiers in XCS are similar to those used in LCS-0, but add several additional parameters.

First, each classifier maintains a prediction parameter which estimates the reward it will receive upon

the execution of its action. XCS classifiers also have ε and F terms; ε is an estimate of the error in a

classifier’s prediction, while F, fitness, is an inverse function of ε. The calculation of ε and F will be

described shortly. XCS uses F as the measure of classifier reliability, so that reliability in effect goes

up as error goes down.

Figure II-14 provides a depiction of XCS’s architecture and major cycle, which is quite similar

to that depicted in Figure II-13, Detailed Classifier System and Interaction with Environment:

Learning Mode, though it differs in several key areas.

43

Figure II-14 XCS Architecture

Environment

Detectors Effectors

Match

Match Set
[M] Prediction Array

Action Set

[A]
Update predictions,

errors, fitnesses

Population of
classifiers [P]

Cover

GA

i. Matching and the Match Set

A received environmental input is compared with the conditions of all the classifiers in the

system’s current population [P]. Classifiers that match the current input are placed in the Match Set

[M]. The other classifiers in the population play no further role in this problem. The contents of the

Match Set embody the entirety of XCS’s current knowledge about what to do with this input.

Formation of the match step is therefore a sort of recognition step; the classifiers in [M] can be said

to recognize this input.

XCS requires that at least θmna actions are present in a Match Set. If this is not the case, covering

classifiers are created with a matching condition. Each attribute in the condition of such a covering

classifier is a # symbol with a probability of P# and the corresponding perceived symbol otherwise.

ii. The Prediction Array and Action Set

Next, XCS calculates a Prediction Array to use in selecting the appropriate action to be

executed. The net prediction for any action existing in the Match Set [M] is simply calculated by

taking a weighted average of the predictions of all classifiers in [M] advocating that action, where the

weights are the respective values of fitness, F. The result is placed in that action’s position in the

44

Prediction Array, and is known as the system prediction for that action. The system prediction is a

quantity distinct from the prediction of any individual classifier.

Next, XCS selects an action from among those advocated by the rules in [M] using a technique

called Biased Exploration. XCS uses Biased Exploration to insure sub-optimal actions are

sometimes executed in order to be sure it has sufficiently updated all classifiers. Biased Exploration

dictates that some fixed percentage of the time, the system chooses a random action from those in

the prediction array. This counterintuitive process is known as “exploration,” which XCS must take

to insure that the apparently optimal classifiers are, in fact, optimal. The rest of the time, XCS will

pick the apparently best, highest predicting action; this is commonly referred to as “exploitation.”

This is an example of the famous—or infamous—explore/exploit dilemma. The system would like

to choose the best action all the time in order to maximize its return. But it can’t determine the best

action without sampling other actions. So there is no way it can ever be certain that its return is

maximal. There are many approaches to this explore/exploit dilemma, and none is perfect. The

subset of [M] which advocates the selected action is called the Action Set [A].

iii. Executing the Action and Updating the Action Set

The chosen action is sent to the environment at which time an environmental reward is

received. In each cycle, XCS updates the rules in [A] based on the reward received. Rules not in [A]

are not updated. As described previously, each XCS classifier maintains a prediction about the

reward it expects in response to its action. The system now has in hand an actual reward; therefore,

the predictions are adjusted accordingly.

XCS’s update function can be represented by the following equation:

Equation II-VIII XCS Update Function
)jpα(Rjpjp −+←

where R is the current reward and α is the learning rate. The value of α is typically about 0.2, so

this step reduces the difference between pj and R by 80%. If R is always the same and the update

occurs infinitely many times, pj will become equal to R, and pj will predict the reward exactly.

An interesting aspect of this procedure is that it achieves a “recencyweighted” estimate of R,

where pj(t) is a sort of exponential moving average of R, such that recent values of R have a greater

weight. This is expressed in the following equation:

45

Equation II-IX XCS Recency Weighting

(0)
j
ptα)(1...2)R(t2α)α(11)α)R(tα(1αR(t)(t)jp −++−−+−−+=

Recency weighting allows XCS to track an environment in which the reward values for given

inputs are slowly changing. Faster tracking results from larger values of α. However, α should not be

too large, or the noise suppression advantages of averaging will be lost.

A classifier’s error and fitness are also updated whenever that classifier is in the Action Set. The

error update is like that for prediction, except the quantity being averaged is not R, but the absolute

difference between R and the current prediction pj:

Equation II-X XCS Error Update Function
)
j

-ε|jpRα(|jεjε −+←

As discussed previously, this term provides a simple measure of the classifier’s current error.

The fitness update is slightly more complex. Initially, the prediction error is used to calculate the

accuracy κj of each classifier as a negative power function of its current error estimate:

Equation II-XI XCS Accuracy Update Function

otherwise
0
ε;

0
ε

j
ifεnχjχ >−≡

The power, n, in this equation is typically quite large, around 5. Accuracy is thus very steeply

inversely related to error. However, κj is not allowed to take on a value of infinity. Therefore, any

classifier with error less than or equal to ε0 is assigned a high, but finite value for accuracy, as shown.

The next step is to compute the relative accuracy, κj′, of the classifiers in the Action Set. Relative

accuracy is calculated as κj divided by the sum of the accuracies of all classifiers in the current Action

Set:

Equation II-XII XCS Relative Accuracy Function

∑
≡

i
χ
j
χ

j
χ'

This is important; the desired information is how the classifiers in [A] compare in terms of

accuracy and not their absolute accuracies per se. Finally, the classifier’s fitness Fj is computed by

updating its current Fj using the value of κj′:

46

Equation II-XIII XCS Fitness Update Function
)
j
F

j
α(χ'jFjF −+←

Thus the fitness of a classifier is an estimate of its accuracy with respect to the accuracies of

other classifiers in the Action Sets in which it occurs.

iv. Initial Population and Covering

As opposed to LCS-0, XCS begins execution with an empty population. As with LCS-0’s

TDCO operation, XCS must therefore sometimes generate classifiers through covering. The process

is identical: a new classifier is generated which matches the received environmental input, has a

random action, and is assigned a low initial prediction. The new classifier has a number of #s in

random positions, dictated by XCS’s parameter P#. These # symbols give the rule an initial

generality that allow it to be tested in several distinct input situations. Covering is only necessary

initially and the number of classifiers created using covering is very small compared with the size of

the input space. Therefore, the vast majority of new rules are derived from existing rules.

v. Genetic Algorithm

Dependent on the threshold θGA and the average time in [A] since the last GA application, a

reproductive event is triggered, in which a GA is called upon to modify the population of rules.

Since the GA in XCS only reproduces classifiers currently in [A], it realizes an implicit niching; as

described previously, this is one of key distinctions between XCS and LCS. The GA chooses two

classifiers for reproduction proportionally to the fitnesses of the classifiers in [A]. The selected

classifiers are reproduced, crossed, mutated, and inserted in the population. The parents stay in the

population competing with their offspring. Moreover, subsumption deletion acts in [A], deleting

more specific classifiers if an accurate, experienced, and more general classifier exists. If the number

of classifiers in a population exceeds the threshold N, excess classifiers are deleted. XCS’s use of

subsumption, where the population size becomes less than or equal to N, is another key

architectural difference between it and traditional LCS implementations. Classifiers for deletion are

selected in [P] proportionally to their Action Set size estimate AS. If sufficiently experienced and

with a significantly low fitness F, the probability of deletion is increased further.

Several observations are relevant at this time. First, the more accurate classifiers in [A] tend to

reproduce, and through crossover, their parts are often recombined. This process tends on balance

to search along the generality/specificity dimension, using pieces of existing higher accuracy

classifiers. Next, a classifier that is more specific can never be less accurate. Since the GA often

47

produces a more specific offspring, it is clear that the population will tend, over time, toward having

classifiers with greater accuracy, i.e., greater ability to predict the consequences of actions.

After the GA completes its work, the children are added to [P]. However, this results in [P]

enlarging by two. XCS maintains a maximum population size, so two classifiers must be deleted

from [P]. There are a number of ways to do this gracefully. Deletion, in fact, provides an

opportunity to keep the system’s resources balanced. Here, balance means that approximately the

same number of classifiers are devoted to each Action Set “niche.” This result is achieved by letting

the probability that classifier Cj will be deleted from [P] be proportional to the average size of the

Action Sets in which it occurs. To perform this task, each classifier has one additional parameter

associated with it. This parameter estimates the number of classifiers contained in its Action Sets.

The probability of deletion is made proportional to this estimate. The result is that classifiers in

Action Sets larger than average will tend to be deleted more often, and the sizes will come down.

Members of small Action Sets will be less likely to be deleted. As a result, Action Sets will tend to be

about the same size. As described previously, XCS’s use of adequate domain coverage as well as

fitness when considering classifiers for deletion is another key architectural difference. Methods for

preferentially eliminating very low fitness classifiers can be added to this balancing based on Action

Set size.

(c) Summary

XCS is a fairly recent type of learning classifier system which differs from more traditional

implementations primarily in its use of classifier accuracy as the main determinant of fitness. Being

accuracy-driven and not magnitude-driven, XCS has been shown to be more effective than the

traditional LCS in certain contexts such as solving various Boolean multiplexer (single-step) and

maze navigation (multi-step) problems (Wilson 1995; Kovacs 1997; Lanzi 1997; Wilson 1998;

Kovacs and Kerber 2001; Butz, Sastry et al. 2002), where the traditional LCS model has been found

to be less successful due to drawbacks mentioned in Chapter II: C. (1) (g) Shortcomings Of The

Traditional LCS Algorithm.

D. IPD: THE EXPERIMENTAL TESTBED

This section addresses the testbed of choice for the current research: the Iterated Prisoner’s

Dilemma. The Prisoner’s Dilemma (PD) and variations such as the Iterated Prisoner’s Dilemma

(IPD) are frequently studied games in the search for and explanation of Machine Learning and

Artificial Intelligence (Axelrod 1987). The prisoner’s dilemma captures, in an abstract manner, the

48

relevant features of many difficult learning environments. In addition, it presents an interesting

testbed because it has been used in a number of disciplines to study phenomena such as

cooperation, altruism, and free-riding (Bendor, Kramer et al. 1991). The following sections review

the history and theory underlying the prisoner’s dilemma and iterated prisoner’s dilemma.

(1) The Prisoner’s Dilemma

The “Prisoner’s Dilemma” game has been extensively discussed in both the public and

academic press. Thousands of articles and many books have been written about this intriguing

puzzle and its apparent representation of many problems of society (Kuhn 2003). The origin of the

game is attributed to Merrill Flood and Melvin Dresher, who devised it in 1950 as part of the Rand

Corporation’s investigations into game theory (Kuhn 2003). The “prisoner’s dilemma” moniker and

the version of the puzzle with prison sentences as payoffs are due to Albert Tucker, who wanted to

make Flood and Dresher’s ideas more accessible to an audience of Stanford psychologists (Kuhn

2003). The name of the game comes from Tucker’s parable, in which two accomplices to a crime are

individually offered a chance to rat on each other. In the story, a prisoner who chose to rat on his

partner would receive a lighter sentence while his partner would receive a harsher sentence.

In the more generic version of the game, two players are faced with a decision, to either

cooperate (C) or defect (D). The decision is made by a player with no knowledge of the other

player’s choice. The payoff received by each player depends on what action (C or D) each takes. If

both players cooperate, each receives a reward of R2. If both players defect, each receives a relatively

smaller reward of R3. If one player defects while the other player cooperates, the cooperating player

gets a sucker’s payoff of R4 while the defector gets the highest possible payoff for the game, R1

(Flood 1958; Shapley 1964; Meng and Pakath 2001).

To create the conditions necessary for the “dilemma,” the payoffs have the following properties

(Axelrod and Hamilton 1981):

Equation II-XIV Prisoner’s Dilemma Reward Property #1

4R3R2R1R >>>

and

49

Equation II-XV Prisoner’s Dilemma Reward Property #2

2R2
4R1R <

+

The effect of Equation II-XIV is if both players defect, each does worse than if both cooperate

(i.e., R2 > R3). Thus, mutual cooperation is preferred to mutual defection. Equation II-XV stipulates

that the payoff obtained through unsynchronized alterations of cooperation and defection is not, on

average, better than that obtained through repeated cooperation. These properties, taken together,

define the Prisoner’s Dilemma (Axelrod 1984).

The game and its inherent dilemma can be illustrated through the use of a concrete example.

Table II-8, Prisoner’s Dilemma Reward Structure, below depicts a typical reward structure for the

classical version of the prisoner’s dilemma. The rewards provided in the table obey Equation II-XIV

and Equation II-XV given previously. In the example, Player One chooses a column, either

cooperating or defecting. Player Two simultaneously chooses a row, also either cooperating or

defecting. Together, these choices result in one of the four possible payoff combinations depicted in

the table. If both players cooperate, each receives a reward of R2; in this case, each receives a reward

of 3. This number might represent a payoff in dollars or the number of years to be spent in prison

for committing some hypothetical crime. If both players defect, each receives a relatively smaller

reward of R3; in this case, 1. If one player defects while the other player cooperates, the cooperating

player gets a sucker’s payoff of R4 (0) while the defector gets the highest possible payoff for the

game, R1 (5) (Axelrod 1984).

Table II-8 Prisoner’s Dilemma Reward Structure
 Player One

 Cooperate Defect

Cooperate

Mutual cooperation:
both players receive
R2 (3)

Player Two gets
suckered: Player One
receives R1 (5),
Player Two receives
R4 (0)

Player Two

Defect

Player One gets
suckered: Player Two
receives R1 (5),
Player One receives
R4 (0)

Mutual defection:
both players receive
R3 (1)

50

A player in such a game faces a quandary as to which choice to make. Suppose Player One

thinks Player Two will cooperate. This means Player One will receive one of the two outcomes in

the upper row of the table. Player One can then either cooperate as well, receiving a reward of 3 for

mutual cooperation, or he can defect, receiving the highest possible reward of 5. Thus, if Player One

thinks Player Two will cooperate, the best choice is to defect.

Suppose, instead, that Player One thinks Player Two will defect. Player One’s reward will then

be one of the two payoffs in the lower row of the table. Player One’s choice is then either to

cooperate, which would result in a sucker’s reward of 0, or to defect, resulting in a low, but slightly

higher reward of 1. Consequently, if Player One thinks Player Two will defect, he is again better off

also defecting.

The end result is that the payoffs are structured such that, no matter what the other player does,

defection yields a higher payoff than cooperation.

The above discussion holds true not only for Player One, but also for Player Two. Therefore,

Player Two should also defect no matter what Player One is expected to do. Consequently, both

players should defect. If this were to happen, both players receive a reward of 1, which is worse than

the reward of 3 which both would have earned with mutual cooperation. Thus, individual rationality

leads to a worse outcome for both players than is inherently possible in the game. Therein lies the

dilemma: if both defect, both do worse than if both had cooperated (Axelrod 1984).

From a game theory perspective, the prisoner’s dilemma can be viewed as a two-person, non-

zero-sum, non-cooperative and simultaneous game (O'Riordan 2000). Also from game theory, the

move D for Player One is said to strictly dominate the move C: whatever his opponent does, Player

One is better off choosing D than C. By symmetry, D also strictly dominates C for Player Two

(Kreps, Milgrom et al. 1982). Thus two “rational” players will defect and receive a payoff of R3,

while two “irrational” players can cooperate and receive greater payoff R2. In standard treatments,

game theory assumes rationality and common knowledge. Each player is rational, knows the other is

rational, knows that the other knows he is rational, etc. Each player also knows how the other values

the outcomes (Kreps, Milgrom et al. 1982). It is also worth noting that the outcome (R3, R3) of both

players defecting is the game’s only strong Nash equilibrium, i.e., it is the only outcome from which

each player could only do worse by unilaterally changing its move (Farrell and Ware 1989). Flood

and Dresher’s interest in the dilemma seems to have stemmed from their view that it provided a

counterexample to the claim that the Nash equilibria of a game constitute its natural “solutions”

(Kuhn 2003).

51

This simple game has been used in a wide variety of theoretical and practical applications,

ranging from biology to economics to politics (Bendor and Mookherjee 1987; Dugatkin 1988; Sober

1992). A common application is that the puzzle illustrates a conflict between individual and group

rationality: a group whose members pursue rational self-interest may all end up worse off than a

group whose members act contrary to rational self-interest (Kuhn 2003). More generally, if the

payoffs are not assumed to represent self-interest, a group whose members rationally pursue any

goals may all meet less success than if they had rationally pursued their goals individually (Kuhn

2003).

The prisoner’s dilemma has been studied in numerous other domains and continues to receive

widespread attention. A survey conducted in the mid-1980s reported that more than a thousand

articles about the Prisoner’s Dilemma were published in the 1960s and 1970s (Donninger 1986).

More recently, a bibliography of writings between 1988 and 1994 that pertain to Axelrod’s research

on the subject indicates its continued popularity, with 209 entries (Axelrod and D'Ambrosio 1994).

(2) The Iterated Prisoner’s Dilemma

The iterated version of the Prisoner’s Dilemma has been discussed ever since the game was

originally devised, with increased interest after Axelrod’s influential publications in the early 1980s.

In his writings, Axelrod described how he invited professional game theorists to submit computer

programs for playing IPDs (Axelrod 1984). Axelrod received 14 entries from game theorists in

economics, sociology, political science, and mathematics (Axelrod 1980). All the programs were

entered into a tournament in which each program played every other program (as well as a clone of

itself and a program that cooperated and defected at random) hundreds of times (Axelrod 1984).

The strategy that scored highest in Axelrod’s initial tournament, Tit for Tat (TFT), simply

cooperates on the first round of the tournament and imitates its opponent’s previous move on every

move thereafter (Axelrod 1987). Thus, TFT is a strategy of cooperation based upon reciprocity.

Upon completion of the initial round of tournaments, Axelrod circulated the results and

solicited entries for a second round. In the second round, Axelrod received 62 entries from six

countries (Axelrod 1980). Most of the contestants were computer hobbyists, but there were also

professors of evolutionary biology, computer science, and physics, as well as the four disciplines

represented in the first round. TFT was again submitted by the winner of the first round, Anatol

Rapoport, from the University of Toronto (Axelrod 1980). Perhaps more significant than TFT’s

victory in the first round of experiments is the fact that it also won in the second round, where all 62

entrants were given the results of the first tournament.

52

In analyzing the second tournament, Axelrod noted that each of the entrants could be assigned

one of five “representative” strategies in such a way that a strategy’s success against a set of others

can be accurately predicted by its success against their representative. As a further demonstration of

the strength of TFT, he calculated the scores each strategy would have received in tournaments in

which one of the representative strategies was five times as common as in the original tournament.

TFT received the highest score in all but one of these hypothetical tournaments (Axelrod 1984).

Axelrod later broadened this set of “representative” strategies to include a total of eight rules

(Axelrod 1987).

Axelrod attributed TFT’s success to four properties. It is nice, meaning that it is never the first

to defect. The eight nice entries in Axelrod’s tournament were the eight highest ranking strategies. It

is retaliatory, meaning it rewards a defection by an opponent with a defection of its own. The

retaliatory property makes it difficult for TFT to be exploited by the rules that were not nice. It is

forgiving, in the sense of being willing to cooperate even with those who have defected against it

(provided their defection wasn’t in the immediately preceding round). An unforgiving rule is

incapable of ever getting the reward payoff after its opponent has defected once. And it is clear,

presumably making it easier for other strategies to predict its behavior so as to facilitate mutually

beneficial interaction (Axelrod 1984).

(a) IPD Players

Axelrod’s research informs the specific implementation of the IPD to be used in the current

research. In his work with over sixty different IPD-playing strategies, Axelrod found that just eight

of the strategies could be used to account for how a particular rule might do against the entire set of

strategies. These eight strategies, then, may be thought of as representatives of the entire set of

strategies in the sense that the scores a given rule gets with them can be used to predict the average

score the rule gets over the full set (Axelrod 1987). Moreover, the eight strategies reflect the full

spectrum of characteristics (i.e. nice vs not-nice, retaliatory vs non-retaliatory, etc) of the entire set of

strategies. For these reasons, Axelrod chose to use these representative strategies in simulation

experimentation with genetic algorithm-based evolving strategies in the IPD (Axelrod 1987). Other

research studying the behavior of LCS learning algorithms in the IPD environment have adopted

Axelrod’s approach and rationale (Chalk and Smith 1997; Meng and Pakath 2001); the current

research will therefore explore LCS and XCS’s behavior with a subset of these opponents. Specific

details of the eight opponents, plus the purely random strategy, are provided in the following

53

sections. The following descriptions are drawn from Meng and Pakath’s work using the LCS in an

IPD environment (Meng and Pakath 2001).

i. RAND

This opponent generates its action randomly regardless of what the opponent did on its

preceding moves. This opponent thus represents a “mindless” strategy. Adaptation is difficult

against this opponent due to its random and chaotic behavior.

ii. CCC

This opponent cooperates on every move regardless of the opponent’s actions on its previous

moves. It is a “nice” strategy and is also the most “generous” of the nine strategies employed.

iii. DDD

This opponent defects on every move regardless of the opponent’s actions on its previous

moves. This strategy is “not-nice” and the most “hostile” of the nine strategies.

iv. TFT (Tit for Tat)

This strategy cooperates in the first move of the game, and thereafter plays whatever action its

opponent played on the preceding move. Characterized as a “nice” strategy, it is also “retaliatory.”

This strategy is one of the simplest of all strategies submitted in Axelrod’s two tournaments, and was

also the winner of both of the competitions. This strategy has been shown to be optimal in many

applications (Kuhn 2003).

v. TFTT (Tit for Two Tats)

This strategy cooperates in the first move of the game, and thereafter only defects if its

opponent defected on the two preceding moves. Characterized as a “nice” strategy, this strategy is

also “retaliatory,” though less so than TFT. Had this rule been submitted in Axelrod’s first

tournament, it would have received the best score, beating even TFT, the actual winner (Axelrod

1984).

vi. TTFT (Two Tits for Tat)

This strategy cooperates in the first move of the game, and thereafter repays an opponent’s

defection with two defections of its own. This strategy may be characterized as “nice” and also as

“retaliatory.”

54

vii. GTFT (Generous Tit for Tat)

This strategy cooperates in the first move of the game, and thereafter defects with less than

100% certainty in response to an opponent’s defection. This opponent is “nice” and “retaliatory,”

though less so than TFT.

viii. JOSS (Joss’s Strategy)

This strategy initially behaves according to the TFT strategy. However, it occasionally sabotages

its opponent even if the opponent has not defected (i.e. defect with some predefined likelihood even

though TFT suggests cooperation). This opponent is characterized as “not-nice” and “retaliatory.”

ix. FRDM (Friedman’s Strategy)

This strategy cooperates in the first move of the game, and cooperates on every subsequent

move until its opponent defects. Thereafter, it defects on every move regardless of what the

opponent does. This strategy is characterized as “nice” and (extremely) “retaliatory.”

In addition to the characteristics described above (nice vs not-nice and retaliatory vs non-

retaliatory), the rules may be classified according to a number of other attributes. Specifically,

strategies RAND, CCC, and DDD are “Fixed” strategies in that they are opponent-invariant and do

not recognize an opponent’s prior moves. The remaining strategies are “Reactive” in that they

respond in some way to what an opponent does (Meng and Pakath 2001). In addition to using

Axelrod’s binary “nice” vs “not-nice” classification to describe whether a strategy is the first to

defect, subsequent research has used ordinal scale to classify a strategy’s proclivity toward hostility.

Specifically, RAND, CCC, TFTT, and GTFT may be classified as “Nicer” while DDD, TFT, TTFT,

JOSS, and FRDM constitute “More Hostile” strategies (Meng and Pakath 2001). A final

categorization is “Predictable” vs “Unpredictable” in describing whether a strategy’s behavior may

be predicted with any certainty. Strategies CCC, DDD, FRDM, TFT, TFTT, and TTFT are wholly

“Predictable” while RAND, GTFT, and JOSS are “Unpredictable” (Meng and Pakath 2001). These

categorizations will provide additional insight into LCS and XCS’s behavior in the proposed

experimental simulations.

(b) Benefits

The PD and IPD are two-person, non-zero-sum, non-cooperative and simultaneous games

(O'Riordan 2000). Moreover, the IPD has the added feature that there is no single “best” strategy:

maximizing one’s own payoff is highly dependent on the strategy adopted by one’s partner (Sigmund

1993). These characteristics provide a wealth of theoretical and practical implications for using the

55

PD and IPD as experimental testbeds. Some of these are detailed in Axelrod’s informative work on

the prisoner’s dilemma and his experimentation with it as a model for encouraging cooperation

(Axelrod 1984).

The IPD is an extremely simple and flexible framework that makes it possible to avoid many of

the restrictive assumptions that might otherwise limit useful analysis (Axelrod 1984). Moreover, it

captures many features of real-life dilemmas, making its study relevant to a variety of applied

settings.

One feature of the IPD that makes it relevant and useful is that the payoffs received by the

players need not be directly comparable to each other. For example, consider the case of a journalist

deciding whether to provide favorable coverage of a Congresswoman’s proposed legislation. If the

journalist cooperates with a Congresswoman by writing a favorable review, he may well be provided

with increased access to the legislator in the future. From the Congresswoman’s perspective, if she

cooperates by making herself available for interviews, she stands a better chance of receiving

favorable coverage. The corresponding rewards for defection are future decreased access and

unfavorable articles. These consequences are not measured in the same units, nor are they directly

comparable; however, they are quantifiable and can thus be used as rewards in an IPD concerning

the hypothetical Congresswoman and journalist (Axelrod 1984).

Another feature of the IPD is that the payoffs do not have to be symmetric. It is often

convenient to view the interaction as equal from the perspective of the two players, but this is not

necessary. Specifically, it is not required that the reward for mutual cooperation, or for any of the

other three payoff parameters, that the rewards have the same magnitude for both players. Indeed,

as described above, it is not even necessary that the rewards be measured using the same units. The

only requirement is that the rewards be ordered and obey Equation II-XIV and Equation II-XV

given previously.

The payoffs provided to a player also do not have to be measured on an absolute scale. They

need only be measured relative to each other. This means that the rewards need only be measured

on an interval scale, such that the rewards may be altered with any positive linear transformation and

still be the same, just as temperature is equivalent whether measured in Centigrade or Fahrenheit

(Axelrod 1984).

Another benefit of using the PD and IPD is that the rewards provided by cooperation need not

be viewed as desirable by anyone other than the players involved in the game. For example,

collusion between business partners is mutually beneficial to the cooperative businesses, but not to

56

society as a whole (Axelrod 1984); however, it still may be modeled as an IPD. In fact, most forms

of corruption are beneficial to the participants while being detrimental to everyone else. On these

occasions, the IPD can be used to model how to prevent cooperation rather than to promote it.

The IPD does not require rationality; it does not even require that the participants are trying to

maximize their rewards. In these cases, it may still be used when the players actions are the results of

standard operating procedures, rules of thumb, instincts, habits, or imitation (Simon 1955; March

and Cyert 1963; Axelrod 1984).

Finally, the IPD is applicable in situations where the actions the players take are not necessarily

the result of conscious choice at all. A player who chooses to either return a favor or not, for

example, may never deliberately think about what strategy he is choosing. In this way, the IPD is

applicable to a number of situations in which the actors act without conscious thought of the

implications of their actions.

Because of its simplicity and flexibility and the characteristics described above, the IPD is

applicable to a broad range of real life situations. It can encompass the actions taken by nations,

such as the raising or lowering of tariffs, and can also be applied to actions taken by bacteria in

response to changes in their chemical environment (Axelrod 1984).

(c) Limitations

Notwithstanding its frequent use in both theoretical and practical applications, the Prisoner’s

Dilemma has a number of limitations as an experimental testbed; Axelrod’s work is informative in

this area as well (Axelrod 1984). Specifically, the abstract formulation of the IPD problem sets aside

many critical features that make actual interaction between actors unique. Some examples of real-life

characteristics that are set aside in the IPD formulation include the possibility of verbal

communication, the direct influence of third parties, the problems associated with implementing a

choice, and the uncertainty about what the other player actually did on the preceding move (Axelrod

1984).

Therefore, notwithstanding its limitations, the IPD has the requisite characteristics which make

it an interesting and informative experimental testbed for the current study.

(3) Experimental Testbed Rationale

As described previously, the Prisoner’s Dilemma and its younger sibling, the Iterated Prisoner’s

Dilemma, is an interesting problem which has been found worthy of study in a wide range of

disciplines. Before proceeding with a description of the experimental design for this study, it is

57

useful to describe why this is so. The PD/IPD model is traditionally viewed as a useful tool for

studying conflicts between self goals and group goals in an organizational or societal setting. The

IPD game scenario is interesting because it offers us the following benefits and research flexibilities.

First, whereas there is an extensive body of literature on artificial agents and agencies, the agents

involved typically use pre-defined behavioral strategies. With LCS/XCS and IPD, one could model

situations where opponent agents may be cooperating, competing, or both, but whose behavioral

strategies are initially unknown and must be discerned through repeated interactions. A good

commercial parallel is that involved in buyer-broker-seller interactions in real estate transactions

where the adaptive agents involved must evolve to be capable negotiators. Such business-like

parallels and extensions are hard to draw with previously-researched Boolean multiplexers and

animats-and-maze environments.

Second, the conventionally-used test beds for the XCS emphasize evolution guided by rational

choice. The IPD setting allows us to measure evolutionary behavior where rationality is not a

paramount consideration, a condition that exists in many business and social contexts. In particular

instances, irrational behavior nets greater total environmental rewards to the LCS/XCS than rational

behavior. Although each player’s self-interest is maximized by defecting, the combined reward

received when both players defect is globally inferior to both cooperating. This property lies at the

heart of the IPD’s appeal: the globally optimal strategy is unstable; it is not an equilibrium. As

mathematician Ian Stewart so aptly put it: “sometimes rational decisions aren’t sensible!” (2006)

Third, the IPD game is inherently non-Markov. An environment has the Markov property if the

agent’s immediate sensations provide all the information that is necessary to choose the best action

in every situation; an environment is non-Markov if it is not Markov (Lanzi and Wilson 1999). The

Markov/non-Markov distinction is crucial in reinforcement learning because it dictates whether an

environment can or cannot be predicted on the basis of current input information. If so, the system

can rely entirely on that information. If not, it must resort to memory-creating mechanisms to

transform the problem to Markov to make more informed action choices (Wilson 1999). This, in

turn, allows testing of various system memory strategies, with emphasis on short-term memory to

preserve on-line learning.

Fourth, unlike traditional Boolean multiplexer test beds, many IPD game playing situations

result in asymmetric updates of the knowledge base due to unequal coverage of the input domains

by detected categorical regularities. This is in contrast to other explored problem domains such as

the multiplexer, where each categorical regularity covers an equal portion of the input domain. As a

58

result, for random inputs, all parts of the multiplexer population are updated and subjected to GA

processes at approximately the same rate. The IPD’s asymmetry could negatively impact the

LCS/XCS systems performance and is worthy of further scrutiny (Wilson 1999).

Fifth, the IPD allows test situations with various types of characteristics. For instance, one may

examine learning and related issues with LCS and XCS (and other types of learning systems) by

pitting each against an opponent who uses a deterministic, fixed strategy such as “always defect.”

Such an opponent (labeled DDD) enables the study of a single-step problem as LCS/XCS cannot

initiate behavioral change in DDD. On the other hand, one may pit the system against an opponent

who is cooperative as long as its opponent is cooperative, but repays every defection with a

defection in the following move as in TFT. Thus, TFT is a deterministic, reactive player. In this

situation, the LCS/XCS must recognize that current action has future (multi-step) ramifications.

One may create longer term impacts as with TTFT (Two Tits for Tat) where the opponent returns

two successive defections in response to one defection by the LCS/XCS. Many such diverse

opponents that exercise the LCS/XCS’s capabilities differently may be easily cast.

Sixth, the IPD setting also allows the introduction of noise into the interactions, an issue that

has received little research attention with LCS/XCS systems. For example, one may define an

opponent called HTFT which is TFT-like but occasionally (i.e., with some predefined probability)

turns “hostile” and defects when TFT recommends cooperation (a stochastic, reactive player). The

LCS/XCS must learn to anticipate and cope with such idiosyncratic behavior to be successful.

Seventh, the IPD setting provides the opportunity to determine whether the LCS/XCS can

cope with stimuli from multiple opponents. Groups of opponent players may take turns interacting

with the system or may simultaneously interact with it through multiple effectors and detectors.

Eighth, last but not least, the IPD setting has never been seriously explored by the LCS and

XCS research communities. Thus, the use of PD/IPD in this research is a novel attempt which

should add to the body of knowledge regarding LCS and XCS abilities.

Several of the above each bring up interesting and challenging system architecture-related

issues. In essence, a single game-playing setting provides the flexibilities needed for assessing

learning systems in a variety of real world-relevant ways. The limitations cited previously also

provide the opportunity for increased study; the current research, for example, could easily be

extended to consider the effect of noise (i.e. uncertainty about an opponent’s move) in LCS and

XCS’s ability to learn in the IPD environment. While exploring every one of these flexibilities in the

59

current research is not practical due to time constraints, they do provide the opportunity for much

additional research in the longer term.

Copyright © David Alexander Gaines 2006

60

CHAPTER III: METHODOLOGY

As described previously, the goal of the current research is to investigate performance

differences between two families of classifier system-based Machine Learning algorithms. The first

set of algorithms, commonly referred to as LCS-based, is the older of the two, and has been shown

to work well in a wide variety of learning environments. The more recent learning algorithm, based

on XCS, builds on the traditional LCS-based algorithm, and has been shown to perform better

under certain conditions and in certain environments. Specifically, the XCS-based algorithm has

been shown to evolve more accurate, maximally general classifiers that efficiently cover the state-

action space of the problem, and also to better display the system’s “knowledge” (Butz and Wilson

2001). To explore these hypothesized advantages, described in detail in Chapter III: B. (1) , the

current research employs a suite of simulation experiments. This section of the paper describes

those experiments, including rationale for simulation’s selection as an appropriate tool for this

research. This section also describes the goals of the simulation experiments, describes each

experiment in detail, outlines propositions for the experiments, and presents appropriate

performance measures for the tests.

A. SIMULATION

This research explores the adaptive and steady-state behaviors of the LCS and XCS learning

algorithms using simulation experiments. Simulation may be defined as “… the process of designing

a model of a real system and conducting experiments with this model …” (Pegden, Shannon et al.

1995). Because it is often cheaper and faster than constructing physical systems, computer

simulation is growing in popularity as a methodological approach for a wide variety of researchers

(Dooley 2002). Moreover, whereas other research methodologies “look backward” and attempt to

determine what happened and why, simulation can enable studies of more complex systems because

it creates observations by “looking forward” into the future (Dooley 2002).

In this case, agent-based simulation, where agents attempt to maximize their fitness (utility)

functions by interacting with other agents and resources (Dooley and Corman 2003), is used to

model LCS- and XCS-based IPD-playing agents which attempt to maximize their rewards in a series

of encounters with one or more opponent agents. By studying the results of these simulation

experiments, this research provides insight into the internal workings of the LCS and XCS

algorithms.

61

(1) Agent-Based Simulation

The particular type of simulation used in the current research is known as agent-based

simulation. Agent-based simulation models are appropriate for situations when the system is best

modeled as a collection of agents who interpret the world around themselves and interact with one

another via some pre-defined schema (Dooley 2002). In the current research, the schema consists of

LCS- and XCS-based agents competing against other agents in an IPD environment. The ultimate

goal of the agents is to maximize the value of a pre-specified objective function which varies

depending on the opponent.

(2) Rationale

As described in Chapter II, it is often unclear to a human what a learning algorithm such as LCS

or XCS must do in order to improve its performance. In many cases, human researchers cannot

comprehend or consider the large number of possible environments the agent may encounter.

Moreover, the researcher does not “see” the environment the way the agent does, and therefore

cannot predict how the agent’s actions will affect the environment (Wilson 1999). Agent-based

simulation provides a way to overcome these obstacles. By carefully defining the agents’ interactions,

environment, and reward structure, the researcher can program the agent to “learn” by rewarding it

when it performs in the desired manner.

In this way, agent-based simulation investigates the agent’s learning and adaptation, and also

focuses on emergent, self-organizing patterns in complex schema (Dooley 2002). In other words,

agent-based simulation allows the LCS- and XCS-based agents to evolve in response to

environmental stimuli as they attempt to maximize their rewards. As described in Chapter II, this is

a key characteristic of reinforcement learning, which has often been chosen as the appropriate

framework for developing learning machines. The intent of the current research is that LCS- and

XCS-based agents will evolve differently, thereby providing a mechanism to explore their

performance in a specified environment.

B. EXPERIMENTS

To investigate the relative performance of LCS- and XCS-based learning algorithms with regard

to their respective characteristics, this research uses a suite of experiments designed to evaluate the

algorithms’ internal workings and performance. Specifically, this research attempts to determine

whether hypothesized superior characteristics of XCS over LCS hold in the IPD environment. In

this sense, this research constitutes both experimental research with specific testable propositions, as

62

well as exploratory research with the general goal of better understanding the internal workings of

the LCS and XCS Machine Learning algorithms.

An experiment may be defined as an investigation that establishes a particular set of

circumstances under a specified protocol to observe and evaluate implications of the resulting

observations (Kuehl 2000). The researcher establishes and controls the protocols in an experiment

to evaluate and test something that for the most part is unknown up to that time. The current

research uses comparative experiments, where more than one set of circumstances are used so that

the responses from the differing circumstances may be compared with each other (Kuehl 2000).

Specifically, various pairings of LCS- and XCS-based agents with competing agents constitute the

two sets of circumstances; the results of trials using these differing circumstances are then compared

to explore the relative performance of the Machine Learning algorithms.

(1) Goals

As described previously, the overriding objective of this research is to compare the relative

performance of Machine Learning agents based on LCS and XCS classifier systems. Prior research

suggests that XCS’s fitness function and niche GA result in a strong tendency to evolve more

desirable classifiers over time than those evolved using a traditional LCS (Butz and Wilson 2001).

Moreover, the resulting classifiers are said to provide for easier recognition of the system’s

accumulated “knowledge” than possible with traditional LCS-based systems (Butz and Wilson 2001).

The net effect is an XCS population which is hypothesized to be more comprehensible, which

requires fewer resources, and which is more adaptable to new problems (Kovacs 1997).

Specific hypothesized advantages of XCS-based systems include 1) complete, accurate, minimal,

and non-overlapping population mapping from inputs and actions to payoff predictions, and 2) the

evolution of classifiers that are maximally general subject to some accuracy criterion. These

advantages have collectively been described as constituting an optimal population or optimal solution

(Kovacs 1997; Kovacs and Kerber 2001). Each perceived advantage is discussed in more detail in

the following sections.

(a) Complete Payoff Map

XCS is said to evolve a complete payoff map of the problem. This means that the system

evolves an internal representation that can determine the quality of each possible action in each

possible state of the encountered environment (Butz and Pelikan 2001). In other words, XCS

63

populations accurately map all condition/action pairs to payoff predictions using the smallest

possible set of non-overlapping classifiers. This quality is commonly measured using four attributes:

i. Complete

Reinforcement learning systems attempt to learn complete maps of their environment. A

complete map is one that has an estimated payoff for each condition/action pair (Kovacs 1997).

Many approaches to reinforcement learning develop such mappings. For example, the well-known

tabular Q Learning approach exhaustively enumerates input/action pairs and maintains a payoff

estimate for each (Munos and Patinel 1994). Because it maintains such mappings for all possible

combinations, Q Learning suffers from poor scalability. XCS’s advantage in this regard is that its

accuracy-based fitness function and niche GA tend towards minimal, as well as complete, mappings.

ii. Accurate

A classifier is accurate if it correctly predicts the payoff accrued after the execution of its

recommended action (Butz, Kovacs et al. 2001). Accurate classifiers also map only to a single reward

(Kovacs and Kerber 2001). Because XCS uses accuracy-based fitness to evolve its set of highly fit

classifiers, it stands to reason that the resultant set of classifiers will also be highly accurate.

iii. Minimal

A minimal population contains the minimum number of rules to describe the problem space

(Kovacs 1997). In other words, XCS’s terminal population includes no unnecessary classifiers

(Kovacs and Kerber 2001). In practice, because the GA component is continually “discovering” new

classifiers, XCS’s final population typically includes a small proportion of extraneous classifiers.

In addition, the chosen experimental testbed in this research, the Iterated Prisoner’s Dilemma,

places certain constraints on the resultant optimal population. Specifically, because of the allowable

sequence of moves and countermoves against certain opponents, LCS and XCS may evolve

populations that contain classifiers with the ability to map to spurious classifiers. This is an

acknowledged characteristic of the chosen experimental testbed and will affect the resultant analyses

as described later in this chapter.

iv. Non-overlapping

This criterion goes hand in hand with the previous one. A non-overlapping population means

that no part of the problem space is described more than once (Kovacs and Kerber 2001). As

opposed to the practice used with traditional classifier systems where classifiers are considered to

64

overlap if their conditions do, in XCS, both conditions and actions must match for the classifiers to

be considered overlapping (Kovacs 1997).

(b) Maximally General Classifiers

Generalization means to treat as equivalent, differently appearing situations that nonetheless

have equivalent consequences for the learning system (Wilson 1998). A necessary condition for

generalization to occur is that the system not only knows the equivalence, but deals with it

“compactly.” That is, the system recognizes environmental situations having equivalent

consequences, but does so using internal structures of significantly less complexity than the raw

environmental data (Wilson 1998).

Classifiers express generalizations using the “don’t care” symbol (#) in their conditions. The #

symbol means the classifier doesn’t care what the value of that particular bit is. Thus, a classifier with

condition 00# matches both 001 and 000 and therefore treats these inputs as equivalent. This

capability provides XCS with the ability to generalize over a given environmental niche. As described

in the following sections, the level of generalization may be quantified.

A classifier may be over-general, maximally general (optimal), or sub-optimally general with

regard to the inputs it matches. A succinct description of these terms is offered by Kovacs (Kovacs

1996; Kovacs 1997), who has kindly granted permission to have it reproduced here. Consider the

following payoff landscape:

Table III-1 Sample Payoff Landscape
Input Action Payoff Rate
00
01

1
1

200
200

10
11

1
1

100
100

0 0

An XCS trained on this payoff landscape might well evolve a population containing the

following classifiers

65

Table III-2 Sample Classifiers
Classifier Condition Action Predicted

Payoff
Prediction

Error
Accuracy Fitness

A ## 1 100 0.5 0.0 Low
B 0# 1 200 0.0 1.0 High
C 10 1 100 0.0 1.0 High
D 11 1 100 0.0 1.0 High
E ## 0 0 0.0 1.0 High

Note that A’s accuracy is 0.0 because its prediction error exceeds a threshold called the accuracy

criterion, as described in Chapter II. Each of the classifiers in this hypothetical population can be

described as being one of the following:

i. Over-general

An overly general classifier matches too many input conditions. This is a problem because some

of the condition/action pairs it matches may payoff at different rates. In the example population

given above, Classifier A is over-general; its perception of the condition/action space is inaccurate

and it should ideally be replaced with more specific classifiers whose conditions do not cross payoff

level boundaries (Kovacs 1997).

ii. Maximally General

A maximally general classifier is one which matches only inputs that payoff at the same rate,

and which can not become more general (i.e. can not add any more #s) without becoming overly

general and therefore inaccurate (i.e. without matching inputs which pay off at different rates). In

the example population given above, Classifiers B and E are maximally general (Kovacs 1997).

iii. Sub-optimally General

In the population given above, Classifiers C and D are sub-optimally general; each matches only

inputs which pay off at the same rate, but there are other inputs which pay off at that rate which

they could also match. Thus, they could each be made more general without losing accuracy; i.e. they

could both be replaced with a single, more general classifier with condition 1# (Kovacs 1997).

(2) Prior Research

Support for these hypothesized advantages has been found in several simulation experiments in

a number of different environments. Notable successes include XCS’s ability to “solve” the 6, 11,

20, 37, and 70 Boolean multiplexer function (Kovacs 1997; Wilson 1999; Butz, Kovacs et al. 2002)

and XCS’s capacity to guide an animat’s way through grid-like “woods” and maze environments

66

(Lanzi 1997; Wilson 1998). In both of these artificial environments, XCS was shown to perform

better than did LCS.

Notwithstanding these successes, XCS is still a fairly new phenomenon that has yet to stand the

more in-depth investigations. Moreover, there are several identified shortcomings and gaps in the

existing research; these include XCS’s difficulty with non-binary inputs and outputs, XCS’s use as a

planning system, application of XCS to non-Markov environments (i.e. where “memory” is

required), XCS’s use in a noisy or uncertain environment, and certain theory and technique issues

(Wilson 1999). In addition, traditional LCS-based systems have been shown to perform very well in

some settings, such as evolving novel fighter aircraft maneuvering patterns (Smith, Dike et al. 2000;

Smith, Dike et al. 2000). Thus, it would appear that the traditional LCS model is not entirely without

merit, and should therefore not be discarded as a viable Machine Learning technique (Wilson 1999).

Of particular interest to this research, then, is a comparison of LCS- and XCS-based algorithms’

performance in an as yet untested IPD environment. In addition, this research explores XCS’s ability

to evolve optimal classifier populations in this environment. As discussed in Chapter II, XCS has

been shown to evolve optimal populations for Boolean multiplexer problems. This is a significant

accomplishment; however, because of their symmetrical and “rational” nature, the Boolean

multiplexer’s use as an experimental testbed does not allow the testing of other desired features of

machine learning algorithms. As described in Chapter II, the Boolean multiplexer is a symmetrical

function, where all areas of the payoff landscape are regularly updated. This provides for frequent

fitness updates and GA applications in all environmental niches, resulting in optimal XCS

performance. In addition, past XCS successes have involved building artificial systems that evolve

“rational thinking” abilities. As described in Chapter II, the IPD environment presents a new

challenge to XCS in this regard as well, because “irrational” behavior in the IPD sometimes

produces better results than does rational behavior.

For these reasons, XCS’s robustness in evolving optimal populations is still open to further

scrutiny. The current research, therefore, compares LCS- and XCS-based learning algorithms, and

also investigates XCS’s ability to evolve optimal populations, in a more asymmetrical and irrational

environment, the IPD. Based on prior limited experimentation involving LCS and the IPD (Chalk

and Smith 1998; Meng and Pakath 2001), the IPD setting is expected to challenge both XCS and

LCS in ways each has not seen before.

67

(3) Differences Between LCS and XCS

This research takes a modern XCS IPD-playing implementation and, using simulation

experiments, repeatedly compares and contrasts it with a series of LCS IPD-playing models

beginning with a “very traditional” LCS model (LCS-0). In subsequent competitions, one key

architectural characteristic is altered so that the resulting agent differs in one way from the baseline

LCS-0. The final competition uses the full-blown XCS implementation for comparison purposes.

Each perturbation is subjected to the same comparative analysis procedures applied to the very first

LCS-0 comparison. In each comparison, barring any required differences in the two game-playing

agents, everything else is held constant. In particular, the pre-cast opponent(s) strategies that each

plays against are identical. This approach requires documenting the ways XCS differs from LCS-0; a

(possibly incomplete) listing of differences is provided below.

(a) The Key Difference

The most cited advantage of XCS over LCS is its use of payoff accuracy-based classifier fitness.

This is contrary to the technique used in LCS-based systems, where accrued payoff magnitude is

used to calculate classifier fitness. To segregate the effect of these two fitness schemes, LCS-0’s

performance will be compared to that of agents using accuracy-based fitness.

(b) Population Differences

i. Initial Population

LCS-0 begins its learning with a randomly or otherwise generated initial population of N

classifiers. XCS starts with an empty population and often uses a procedure called “covering” to

progressively fill the population. The LCS-0 in the following experiments, therefore, will begin with

a randomly generated population whereas LCS-1 and XCS will use covering to fill its population.

ii. Population Size

LCS-0 always maintains a population of size N, even permitting duplicate classifiers to explicitly

co-exist. XCS uses a classifier “numerosity” mechanism whereby a single classifier has an associated

counter that is adjusted as needed to reflect the number of copies of it currently in the population.

The population size need not explicitly equal N, but the individual classifier numerosity values must

always sum to less than or equal to N. In the following experiments, therefore, LCS-0 will explicitly

maintain a population of size N while LCS-2 and XCS will allow their populations to vary ≤ N.

68

(c) Genetic Algorithm Differences

i. GA Scope

LCS-0 systems perform their genetic algorithms panmictically, or by selecting parent classifiers

from the entire population to serve as parents for new classifiers. XCS-based systems, on the other

hand, perform the genetic algorithm using only classifiers that are members of Action Sets. In the

following experiments, therefore, the LCS-0 uses panmictic genetic algorithms while LCS-7 and

XCS perform Action Set genetic algorithms.

ii. Parent Selection

In LCS, a dozen or more parent selection schemes (for GA application) have been advocated

and tested, with fitness-proportional (roulette-wheel) selection being most widely used. Such

experimentation has not been conducted with XCS, where the community has instead gravitated to a

fitness-proportional selection. Recent research (Butz, Sastry et al. 2002) advocates a form of

selection called Tournament Selection as being the best in a wide variety of applications. In the

following experiments, the baseline LCS-0 will use a fitness-proportional selection method while

LCS-3 and XCS will implement Tournament Selection.

iii. Classifier Deletion

Traditional classifier systems have typically selected classifiers for deletion based on some

fitness-based method (Kovacs 1999). Many times, LCS-based systems have simply deleted the

lowest fitness classifier from the entire population. Because LCS is not concerned with evolving a

complete map of the problem environment, this fitness-based deletion scheme has worked

adequately in practice. With XCS-based systems, however, the system is intended to provide a

complete map of the environment. A purely fitness-based deletion scheme, therefore, could lead to

portions of the environment being underrepresented by classifiers. Contemporary XCS-systems,

therefore, have adopted a deletion scheme that attempts to insure all portions of the payoff

landscape are adequately covered while at the same time providing for deletion of sufficiently-

experienced, low-fitness classifiers. LCS-0 will therefore use a fitness-based deletion scheme while

LCS-6 and XCS will preserve “resource balance” by maintaining roughly the same number of

classifiers in each Action Set niche.

69

(d) Action Selection

In LCS and in many existing XCS systems in the literature, action selection is performed using a

proportionate, or roulette-wheel, algorithm. Other XCS systems, however, use biased exploration,

where the action to be performed is selected based on a defined explore-exploit regime. Recent

research with parent selection in the XCS’s GA has shown that the method of selection does have a

significant result of the algorithm’s performance (Butz, Sastry et al. 2002); therefore, it is possible

that the method used to select the action would impact performance as well. In the following

experiments, LCS-0 employs a roulette-wheel action selection method, which then converts to

biased exploration in the LCS-4 and XCS implementations.

(e) Classifier Updates

In LCS-0, a classifier’s fitness is updated every time it fires. Sometimes, some backward reward-

propagation mechanism is employed whereby all “enabling” classifiers’ fitness values are also

updated. XCS-based systems, on the other hand, update classifier parameters whenever the classifier

participates in an Action Set. These two update procedures result in differing numbers of classifiers

receiving updates following each competition, quite likely affecting the agent’s learning rate and

ability. In the following experiments, LCS-0 will update the firing classifier and employ a limited

back propagation update, while LCS-5 and XCS will update all classifiers in the Action Set.

(4) Generating Perturbations

Given this list of differences, one can discern what features our LCS-0 and XCS ought to

possess. Each perturbation is introduced to LCS-0 one at a time so any difference in performance

must necessarily be due to the architectural characteristic’s effect and its interaction with other

components of the algorithm. The very last competition uses a full-blown XCS implementation to

provide a benchmark against with other variants may be compared.

By modifying the algorithms in this way, any differences in the algorithms’ performance can be

isolated to a particular cause. The set of experiments described in the following sections use this

step-wise approach to investigate the questions of interest in this research.

(5) Performance

This research is concerned with comparing LCS- and XCS-based algorithms’ performance in an

as yet untested IPD environment. In addition, this research explores XCS’s ability to evolve optimal

classifier populations in this environment. To do so, it is necessary to measure each algorithm’s

70

performance and then compare their performance using appropriate techniques. The following

sections address possible measures and the selection of several for comparison purposes.

(a) Learning vs Steady State Phases

The LCS and XCS agents have two distinct phases of performance. The first phase, described

here as the learning phase, is characterized by a rapid increase in the agent’s performance and

associated decrease in the system’s population size, and is driven primarily by the elimination of

unfit classifiers. The second phase, known here as the performance phase, is characterized by relatively

steady performance, and can be likened to the steady state phase of a stochastic process.

To compare the relative performance of the two agents, it is appropriate to compare an agent’s

performance in each of the two phases against the other agent’s performance in that phase. The

point at which the agent stops learning and begins performing can be difficult to determine;

however, theory from stochastic process simulation is useful in providing an approach to address

this problem. As is true in Machine Learning, stochastic processes often have a warm up, or start-up

phase, followed by a steady-state phase (Law and Kelton 2000). Stochastic simulation theory in this

area, as well as prior research on learning classifier systems, can therefore be applied to provide a

means to define the end of the learning phase and the beginning of the performance phase in the

current study.

According to stochastic process simulation theory, the beginning of the steady-state period is

often determined through an analysis of a measure’s moving average as well as through visual

inspection of the measure’s graph (Welch 1983; Law and Kelton 2000). This approach will be used

here, with steady state beginning at the point where the graph of performance levels out.

According to various stochastic process simulation references, the most serious consequence of

misidentifying the beginning of the steady-state phase is probably that including the learning

observations in the calculation of the steady state statistics provides a biased estimate of those

parameters (Welch 1983; Law and Kelton 2000). To deal with this problem, deletion of some

number of observations from the beginning of a run, using only the remaining observations to

estimate the steady-state mean performance, is recommended (Welch 1981; Law and Kelton 2000;

Kelton, Sadowski et al. 2002). In the current study, however, we are interested in measuring the rate

of learning during the learning phase; therefore, instead of deleting observations, we instead break

the observations into their constituent learning and performance phases, and then calculate

performance measures for each phase.

71

(b) Measures

In each comparative test, the assessments of relative system performances are based on

performance data gathered from simulation experiments where the LCS variants and XCS play IPD

tournaments against specific opponent players. Pertinent measures include those that help answer

the research questions of interest (i.e. comparing/contrasting learning agent performance in the IPD

environment and ability to evolve optimal IPD populations). The following ways of measuring

performance and examining the evolutionary behaviors of a system have been used in previous

research on LCS and XCS and have been adopted for the current research.

i. Performance

Performance is a measure defined by Wilson (Wilson 1995) which is most commonly used with

XCS-based systems. Performance, referred to in the current research as % Correct, is defined as the

proportion of the last 50 encounters to which the system has responded correctly (Wilson 1995). In

multiplexer systems, “correctly” is defined as “solving” the multiplexer equation. In the IPD

context, “correct” means selecting the move that maximizes an objective function which varies

depending on the opponent. As an example, against a RAND opponent which unbiasedly chooses

to defect or cooperate in each encounter, and which therefore offers no insights for the future, the

correct action for a self-reward maximizing learning agent is to Defect.

This metric is calculated by counting the number of correct responses generated by the agent

during the previous x (nominally 50, but could be any interval) encounters. The number of correct

encounters is then divided by x to calculate a proportion. Because this measure provides an

indication of the agent’s ability to find a solution to a particular problem, larger values indicate a

greater ability to learn for a given problem domain. As with % [O] described later, we anticipate that

“more XCS-like” algorithms will score higher on this measure than “less XCS-like” algorithms.

ii. Population Size

This metric measures the number of unique classifiers present in the population at any given

time. Because the LCS-0 paradigm allows duplicate classifiers to co-exist in the population, this

metric has been adapted to measure the number of unique classifiers in the population. The XCS

paradigm employs a numerosity mechanism whereby a single classifier has an associated counter that

is adjusted as needed to reflect the number of copies of it currently in the population. Therefore, in

XCS, population size is simply the number of macro classifiers present in the population at any

72

given time (Wilson 1995). This metric provides an indication of an agent’s ability to represent its

knowledge compactly, an item which is desirable as the quantity of knowledge to be stored increases.

This metric, referred to in the current research as Unique Classifiers is calculated by counting

the number of unique classifiers in the population every x (nominally 50, but could be any number)

encounters. As described above, this measure provides an indication of the agent’s ability to

represent its knowledge compactly and efficiently; therefore, agents with smaller populations

theoretically are more comprehensible and require fewer resources.

iii. Problem Difficulty

Problem difficulty, measured by % [O] in this research, is the proportion of the optimal

population present in the classifier system on any given time step (Kovacs and Kerber 2001). This

measure is useful as a measure of the progress of the genetic search, and is particularly relevant to

the measurement of the agent’s learning phase. This measure is more difficult to find than the %

Correct measure described previously and requires more trials (inputs to the system) to learn

because even after the classifier system has reached a point where it responds correctly to all its

inputs, it still needs more time to find the optimal solution (Kovacs and Kerber 2001).

This measure can be used to compare the relative performance of the LCS- and XCS-based

algorithms during their learning and steady-state phases. The first step in calculating this measure is

to determine the optimal population, [O], for a given opponent. The optimal population for the

TFT opponent is given in the following table. Because of its random and unpredictable nature, there

is no optimal population for the RAND opponent.

Table III-3 TFT Optimal Population
Number Input Action Expected Payoff
1
2

##;##;C#
##;##;C#

C
D

3
5

3
4

##;##;D#
##;##;D#

C
D

0
1

* Input schema specifies that agent’s and opponent’s prior 3 moves are stored; agent’s move is on
the left, opponent’s move is on the right

The metric is then calculated by determining the average proportion of this [O] population that

existed in the population during the preceding x (nominally 50, but could be any number)

encounters. The optimal population represents the smallest possible set of non-overlapping

classifiers. The ability of an agent to evolve higher percentages of [O] is useful as a measure of the

73

progress of the genetic search, with higher values indicating greater progress and related ability to

fully explore the payoff landscape.

iv. System Error

System error is a measure of the absolute difference between the system prediction for the

chosen action by a system and the actual external payoff (Kovacs 1997; Katagami and Yamada 2002)

and provides an indication of how well the system is able to predict the reward to accrue upon the

execution of a particular action. Though not traditionally used as a performance measure in research

on LCS-based agents, it is informative to compare this measure for different variants of LCS- and

XCS-based agents to determine the effect of the perturbations on the overall accuracy of the system.

This measure is calculated using the sum of the squared differences of the system’s prediction

for each action and the reward actually received by the system for taking that action in the previous

x (nominally 50, but could be any interval) encounters. This sum is then divided by x to provide a

“per encounter” average squared system error between the predicted and actual rewards. A smaller

system error indicates a greater ability by the agent to accurately estimate the payoff matrix for a

given opponent.

v. Learning Rate

Learning Rate is a generic measure which is calculated for each of the preceding performance

measures. It is determined using visual inspection of the graph of a given performance measure to

determine the point at which the system achieves steady state performance with respect to that

measure. The number of encounters required to reach steady state performance is then divided into

the magnitude of the steady state performance to provide a normalized indication of the agent’s

learning rate. Generally speaking, the larger this value, the greater is an agent’s ability to learn.

vi. Statistical Tools

As described previously, the selected measures result from random processes and, with the

exception of Learning Rate, are themselves Random Variables. In addition, given that multiple IID

replications of each simulation are conducted, traditional statistical tools may be used to compare

and contrast each agent’s performance. LCS and XCS researchers have not traditionally performed

rigorous statistical tests on resultant performance measures, opting instead to depict relative

performance using graphs that track each performance measure and drawing conclusions from

visual inspection of these graphs. The data gathered in this research allows the use of statistical tests,

both parametric and non-parametric, to draw supported conclusions regarding each agent’s relative

74

performance. These analyses add validity to reported results whereby one can assess whether two

sets of performance measures are statistically significantly different from one another.

vii. Other Possible Measures

a. Relative Reward

The IPD literature for co-adaptive players shows us several interesting behaviors. Each of these

is an artifact of the red queen effect, so-called, because the red queen in Alice in Wonderland states

that in her world you must keep running just to stand still (Floreano and Nolfi 1997). In an

analogous way, the performance of each player in the two-sided learning problem is relative to that

of its opponent. In other words, when one player adapts and the other uses a static strategy (as

against CCC or DDD), the performance of the adaptive player is absolute with respect to its

opponent. However, when both players are adaptive, the performance ceases to have an absolute

meaning. Instead, its meaning is only relative to the state of its current opponent. Therefore,

measuring the reward received by an agent relative to its opponent provides valuable information

regarding its adaptive behavior.

b. Evolutionary Path Traces

At any point in time, one may pick up an evolved classifier and trace its roots back to the

starting population and examine its evolutionary history and related details very carefully. Such an

examination is called an Evolutionary Path Trace (Wilson 1999) and is useful in discerning the exact

mechanisms responsible for a classifier’s generation and evolution. Because they involve individually

examining numerous populations of classifiers, however, Evolutionary Path Traces can be extremely

time consuming and are therefore only recommended to resolve a specific question not easily

resolved through other means.

(6) Experiment Suite and Propositions

As described in Chapter I: C. , there are a total of twenty competitions; these are listed in the

following table.

75

Table III-4 Competitions Between Agents and Opponents
Competition
Number

Agent and Architectural Characteristics Opponent

1 TFT
2

LCS-0 (Baseline LCS)
RAND

3 TFT
4

LCS-1 (Initial Population: Random
→Through Covering) RAND

5 TFT
6

LCS-2 (Population Size: Constant, N → ≤
N) RAND

7 TFT
8

LCS-3 (Parent Selection: Fitness
Proportional → Tournament) RAND

9 TFT
10

LCS-4 (Action Selection: Fitness
Proportional → Biased Exploration) RAND

11 TFT
12

LCS-5 (Classifier Fitness Update: Firing
Classifier → All Classifiers in [A]) RAND

13 TFT
14

LCS-6 (Classifier Deletion Criteria: Fitness
Only → Fitness and Resource Balancing) RAND

15 TFT
16

LCS-7 (Genetic Algorithm: Panmictic →
Niche) RAND

17 TFT
18

LCS-8 (Classifier Fitness Determinant:
Magnitude → Accuracy) RAND

19 TFT
20

XCS
RAND

The initial competitions, between LCS-0 and TFT and between LCS-0 and RAND, establish

baseline performance characteristics against which to compare subsequent competitions. Likewise,

the final competitions, between XCS and TFT and between XCS and RAND, provide a theoretical

upper bound for each agent’s performance. As described in Chapter I, while XCS is hypothesized to

be superior to the traditional LCS, with supporting evidence in some problem domains, LCS has

been shown to perform well in other problem domains. Therefore, it is informative to compare and

contrast the results of the competitions outlined above, especially as they compare with the

performance exhibited by LCS-0 and XCS.

Although it is possible to make informed guesses regarding expected results of some of these

competitions, the relative performance of other variants is more difficult to predict. Indeed, the

literature provides no clear evidence regarding the expected performance of incremental variants

such as those used in this research. Thus, a portion of the current research may be classified as

exploratory in nature, with the primary goal of providing insight into the internal workings of LCS-

and XCS-based learning agents, especially regarding the effects of XCS’s constituent mechanisms.

76

This exploratory nature notwithstanding, it is possible and appropriate to propose differential effects

resulting from these various architectural differences; these propositions are provided below.

(a) The Key Difference

XCS’s use of payoff accuracy-based classifier fitness is theorized to result in classifiers which are

more comprehensible, provide for easier recognition of the system’s accumulated “knowledge,”

require fewer resources, and are more adaptable to new problems. (Kovacs 1997; Butz and Wilson

2001). The existence of these theorized advantages may be tested using the following propositions:

P1: Agents using accuracy-based fitness will have smaller values of Unique Classifiers than
agents employing magnitude-based fitness.

P2: Agents using accuracy-based fitness will have higher values of % [O] than agents
employing magnitude-based fitness.

(b) Population Differences

i. Initial Population

LCS-based agents begin learning with an initial population consisting of N randomly generated

classifiers. Each of these classifiers constitutes an as-yet untested hypothesis about the agent’s

problem domain. XCS-based agents begin with an empty population and generate classifiers as

needed using a procedure called “covering.” Because LCS-based agents must consider and process

more random information early in their learning processes, XCS-based agents should learn more

quickly and efficiently. In addition, because XCS-based agents create classifiers only when needed,

their populations should logically contain fewer extraneous classifiers.

P3: Agents which begin with empty populations will have larger values for Learning Rate
than agents which begin with randomly generated populations.

P4: Agents which begin with empty populations will have smaller values for Unique
Classifiers than agents which begin with randomly generated populations.

ii. Population Size

LCS-based agents always maintain a population of size N and explicitly permit duplicate

classifiers to co-exist, whereas XCS-based agents employ a classifier “numerosity” counter to reflect

the copies of it currently in the population. Because LCS-based agents do not insure all identical

classifiers are processed identically (i.e. all identical classifiers are not updated when one is fired; all

identical classifiers are not deleted when one is deleted), they evolve populations containing

77

inaccurate and unnecessary classifiers. LCS-based agents should therefore learn more slowly and

have populations that contain extraneous classifiers.

P5: Agents with populations that are allowed to vary ≤ N will have larger values for
Learning Rate than agents which begin with randomly generated populations.

P6: Agents with populations that are allowed to vary ≤ N will have smaller values for
Unique Classifiers than agents which begin with randomly generated populations.

(c) Genetic Algorithm Differences

i. GA Scope

LCS-based agents select parent classifiers panmictically from the entire population, while XCS-

based systems select parents only from Action Set classifiers. Panmictic parent selection introduces

irrelevant genetic material in the GA, which should result in slower and less precise learning.

P7: Agents using panmictic parent selection will have smaller values for Learning Rate than
agents using niche GAs.

P8: Agents using panmictic parent selection will have smaller values for % Correct than
agents using niche GAs.

P9: Agents using panmictic parent selection will have larger values for System Error than
agents using niche GAs.

ii. Parent Selection

Many parent selection schemes have been employed in LCS and XCS research, with conflicting

evidence regarding the efficacy of the various methods. Recent research suggests Tournament

Selection as being the best of all possible parent selection methods; however, this proposition is not

widely supported (Butz, Sastry et al. 2002). Therefore, it is useful to test different parent-selection

methods in the current research to determine their effectiveness in the as-yet untested IPD problem

domain. Evidence of superior performance will be provided using the performance measures %

Correct, Unique Classifiers, System Error, and Learning Rate.

iii. Classifier Deletion

LCS-based agents select classifiers for deletion using classifier fitness only. XCS-based systems,

on the other hand, attempt to maintain a complete map of the problem domain using a method

considering both fitness and resource balance. Because XCS-based systems explicitly consider the

entire payoff map, they should provide a more thorough representation of the entire problem

domain.

P10: Agents using fitness/resource balance deletion will have larger values for % [O] than

78

agents using fitness only.

(d) Action Selection

Historically, LCS-based systems have selected the action to be performed using a proportionate,

or roulette-wheel, algorithm. Modern XCS-based systems use biased exploration, where the action is

selected using a pre-defined balance of exploration and exploitation. There exists no clear evidence

regarding the relative performance of the two methods in the IPD domain; therefore, this research

explores the possibility that one method will be more effective in the chosen testbed. Evidence of

superior performance will be provided using the performance measures % Correct, System Error, and

Learning Rate.

(e) Classifier Updates

LCS-based agents typically update a classifier’s parameters each time it fires and sometimes

update enabling classifiers as well. XCS-based agents update classifier parameters whenever the

classifier is a member of the Action Set. Action Set updates provides environmental feedback to

more classifiers during each cycle than updating only the firing and enabling classifiers; therefore,

XCS-based agents should learn faster than their LCS-based counterparts.

P11: Agents using Action Set updates will have larger values for Learning Rate than agents
updating firing and enabling classifiers only.

(7) Methodological Issues

Both LCS and XCS use a number of parameters, other than those explicitly mentioned in this

narrative, in their operation. These common parameters must be identically operationalized. An

exhaustive listing and exposition of these parameters and their settings is not given here (refer to

Appendix B: XCS Sets and Parameters for parameter descriptions and values), but suffice to note

that much prior work (Wilson 1995; Kovacs 1996; Butz and Wilson 2001; Kovacs and Kerber 2001)

has been consulted in setting all common parameters. Further, all simulation runs are based on

appropriate simulation design (e.g., appropriate use of multiple, independent random number

streams, adequate number of independent run replications, etc.) with particular care taken in terms

of holding as many simulation parameters as possible common for all competitions.

Apart from these considerations, a unique feature of the IPD setting is the choices available in

terms of individual classifier’s condition portions: choices must be made concerning the length of

each condition (i.e., how many prior encounters to encode) and content of each condition (i.e., what

79

to encode about each encounter). Prior experimentation (Meng and Pakath 2001) has shown that

performance against particular opponents is sensitive to both of these factors. Experimenting with

alternative condition designs is beyond the scope of the present research; therefore, a constant

length and content for all of experiments (e.g., a length of 3 encounters where both players’ moves

are recorded, thus yielding a condition of length 6) will be used in the present research.

C. CONCLUSION

A suite of twenty simulation experiments between LCS- and XCS-based learning agents and

two IPD-playing opponents are to be conducted, using a set of five performance measures to

compare results. Although some aspects of this research are exploratory in nature, the theorized

superiority of various mechanisms used by XCS will be tested using a set of propositions and

performance measure results from the twenty competitions.

Copyright © David Alexander Gaines 2006

80

CHAPTER IV: EXPERIMENTAL FINDINGS AND ANALYSIS

This chapter reports the results of the simulation experiments described in Chapter III. The

experiments consisted of competing each of 10 variants of an LCS-based learning system against

two predetermined opponents, repeatedly measuring learning system performance using four key

measures for each competition. An additional metric, Learning Rate, was calculated for each

performance measure to compare each agent’s performance during its learning phase.

The results of these experiments are given as follows: first, graphs of each performance measure

are presented to provide a top-level view of each agent’s performance against each opponent. The Y

axis on each graph depicts the value of the performance measure, while the X axis represents the

number of encounters (in groups of 50) between the agent and its opponent since the first

encounter; hence, the figure 3,201 on the X axis represents encounter 160,050 in the overall

simulation. As described in Chapter III, data points represent the average of the measure over the

preceding 50 encounters and across the 60 replications.

The graph of the performance measure is followed by a table summarizing key data for each

learning agent, including the encounter at which the performance measure stabilized, the measure’s

rates of change prior to and after stabilization, and summary information regarding the agent’s

performance while stabilized. Stabilized data is important for two reasons: first, the encounter at

which the performance measure stabilized provides information regarding each agent’s ability to

learn in an unknown environment, a stated item of interest in this research, while statistics regarding

the agent’s performance while stabilized provide information on the agent’s ultimate ability with

respect to that measure.

As described in Chapter III, the point of stabilization is determined using techniques borrowed

from stochastic process simulation, with steady state beginning at the point where the graph of the

performance measure levels out. In cases where the measure did not fully stabilize, the final 201

encounters between each agent and opponent were used to generate statistics regarding the agent’s

terminal performance. These encounters were chosen because they represent the final performance

level exhibited by the agent and because they provide a sufficient sample size for reliable statistical

analyses. One graph and one set of summary statistics are presented for each combination of

performance measure and opponent (e.g. % Correct and TFT); therefore, there are four graphs and

four tables for each opponent.

81

82

For each measure, following the graph and table, the results of statistical tests of means are

described, as are tables depicting the rank orders of the various performance measures. These rank-

ordered tables provide the basis for drawing conclusions regarding the relative performance of each

variant and are used later in this Chapter for testing the propositions developed in Chapter III.

Finally, summary conclusions regarding the effects of XCS’s architectural differences are

provided.

A. VERSUS TFT

The strategy that scored highest in Axelrod’s initial tournament, Tit for Tat (TFT), cooperates

on the first round of the tournament and imitates its opponent’s previous move on every move

thereafter. Thus, TFT is a strategy of cooperation based upon reciprocity. TFT is also a predictable

strategy in that it follows a well-defined pattern in response to its opponent’s action on the

preceding move.

(1) Number of Unique Classifiers

The graph (Figure IV-1) and table (Table IV-1) on the following pages provide summary data

regarding each agent’s performance against the TFT opponent with respect to the performance

measure Unique Classifiers. As defined in Chapter III, this measure represents the number of unique

classifiers present in the population at any given time and is indicative of an agent’s ability to

represent its learned knowledge compactly.

Figure IV-1 Unique Classifiers vs TFT

Unique Classifiers vs TFT

0

50

100

150

200

250

300

350

1 401 801 1201 1601 2001 2401 2801 3201 3601

Generation (50s)

#

LCS-0
LCS-1
LCS-2
LCS-3
LCS-4
LCS-5
LCS-6
LCS-7
LCS-8
XCS

83

84

Table IV-1 Descriptive Characteristics, Unique Classifiers vs TFT
Stabilization

Point of Occurrence Stabilized Statistics
Agent Unique

Characteristic
Initial
Value

Final
Value

x 103 Value Rate of
Change
Prior

Rate of
Change
After

N Obs Mean Std
Dev

Var Min Max Med Rng Skew t Value Pr > |t|

LCS-0 Baseline LCS 300 27.25 50 25.57 -5.49E-03 1.12E-05 180060 24.10 7.91 62.57 7.00 58.00 23.00 51.00 0.78 1292.61 <.0001

LCS-1
Population initially
empty 0 29.97 190 29.68 1.56E-04 2.90E-05 12060 30.04 8.64 74.63 15.00 61.00 29.00 46.00 0.81 381.83 <.0001

LCS-2
Population size
varies ≤ N 300 64.27 190 64.91 -1.24E-03 -6.40E-05 12060 64.99 4.15 17.20 54.00 80.50 65.00 26.50 0.11 1721.06 <.0001

LCS-3
Parents selected
via tournament 300 18.79 170 18.93 -1.65E-03 -4.67E-06 36060 18.82 5.87 34.43 8.00 45.26 18.00 37.26 0.98 609.10 <.0001

LCS-4
Biased exploration
action selection 300 35.97 60 35.32 -4.41E-03 4.64E-06 168060 35.26 3.75 14.09 21.00 55.09 35.00 34.09 0.16 3850.37 <.0001

LCS-5
Update classifiers
in [A] 300 50.25 100 51.22 -2.49E-03 -9.70E-06 120060 50.82 7.99 63.76 20.02 76.98 51.48 56.96 -0.21 2205.09 <.0001

LCS-6
Fitness/Resource
Balance Deletion 300 35.16 190 34.44 -1.40E-03 7.20E-05 12060 34.92 8.21 67.34 14.00 57.00 35.00 43.00 0.18 467.29 <.0001

LCS-7 Niche GA 300 17.82 190 17.64 -1.49E-03 1.80E-05 12060 17.47 4.56 20.81 7.00 36.00 17.00 29.00 1.01 420.59 <.0001

LCS-8
Accuracy-based
fitness 300 13.69 160 13.63 -1.79E-03 1.50E-06 48060 13.85 3.02 9.14 4.50 29.00 13.98 24.50 0.64 1004.19 <.0001

XCS XCS 0 5.05 60 5.69 9.48E-05 -4.57E-06 168060 5.43 2.13 4.56 4.00 27.00 5.00 23.00 3.14 1043.24 <.0001
Note: Data gathered across 60 replications.

(a) Order of Stabilization

It is informative to compare the encounter at which each agent’s performance stabilized; in

general, the faster the measure stabilized, the fast the agent learned the problem domain with respect

to that measure. The following table provides a list ordered from best to worst of each agent’s

stabilization encounter for the performance measure Unique.

Table IV-2 Rank-Ordered Stabilization Encounter versus TFT WRT Unique
Agent Stabilization

Encounter
(x 103)

LCS-0 50
LCS-4 60
XCS 60
LCS-5 100
LCS-8 160
LCS-3 170
LCS-1 190
LCS-2 190
LCS-6 190
LCS-7 190

LCS-0, the baseline LCS agent, stabilized first, followed closely by LCS-4 (Biased Exploration

action selection instead of Fitness Proportional), and XCS.

(b) Magnitude at Stabilization

Summary statistics indicate that each agent evolved a different number of unique classifiers to

represent the knowledge it learned about the TFT problem domain. Statistical tests of the stabilized

means (refer to the output for test 1.1 on page 273) confirm that each agent’s population stabilized

at a significantly different level. The following table provides a list ordered from best to worst of

stabilized unique population sizes.

85

Table IV-3 Rank-Ordered Stabilized Means versus TFT WRT Unique
Agent Mean Std Dev Var
XCS 5.43 2.13 4.56
LCS-8 13.85 3.02 9.14
LCS-7 17.47 4.56 20.81
LCS-3 18.82 5.87 34.43
LCS-0 24.10 7.91 62.57
LCS-1 30.04 8.64 74.63
LCS-6 34.92 8.21 67.34
LCS-4 35.26 3.75 14.09
LCS-5 50.82 7.99 63.76
LCS-2 64.99 4.15 17.20

The magnitude of this stabilized population provides information regarding each agent’s ability

to represent its learned knowledge compactly and succinctly. Because they begin with empty

populations, it is reasonable to propose that XCS and LCS-1 would contain relatively fewer unique

classifiers. As shown in the preceding table, however, while XCS does indeed contain the smallest

number of unique classifiers, LCS-1 performs in the bottom half of all agents in this measure.

(c) Learning Rate

Dividing the encounter at which the measure stabilized into the mean of the stabilized measure

provides an indication of the agent’s learning rate. This information is rank-ordered from best to

worst in the following table. It should be noted that because XCS and LCS-1 begin with empty

populations, their learning rates on this measure are comparable to each other’s, but not to those of

the other agents.

86

87

Table IV-4 Rank-Ordered Learning Rate versus TFT WRT Unique

Agent Learning Rate
(x 10-3)

LCS-0 -5.49
LCS-4 -4.41
LCS-5 -2.49
LCS-8 -1.79
LCS-3 -1.65
LCS-7 -1.49
LCS-6 -1.40
LCS-2 -1.24

XCS 0.09
LCS-1 0.16

The following graph (Figure IV-2) and table (Table IV-5) provide information on each agent’s

performance in the measure % Correct vs the opponent TFT. Given the particular payoff matrix

used in the current research, “correct” means selecting the move that maximizes the sum of the

agent’s and opponent’s reward on any given encounter. Therefore, against the TFT opponent, the

correct response is to Cooperate when TFT Cooperates, and to Defect when TFT Defects.

As indicated, because smaller populations generally indicate a greater ability to represent learned

knowledge compactly and efficiently, for those agents with randomly generated starting populations,

more negative values for Learning Rate are desirable. For those with empty populations, smaller

values for Learning Rate are preferable. Therefore, all else being equal, LCS-0 can be said to have

outperformed LCS-4 in this measure, and XCS can be said to have outperformed LCS-1.

(2) % Correct Responses

Figure IV-2 % Correct vs TFT

% Correct vs TFT

0

20

40

60

80

100

120

1 401 801 1201 1601 2001 2401 2801 3201 3601

Generation (50s)

%

LCS-0
LCS-1
LCS-2
LCS-3
LCS-4
LCS-5
LCS-6
LCS-7
LCS-8
XCS

88

Table IV-5 Descriptive Characteristics, % Correct vs TFT
Stabilization

Point of Occurrence Stabilized Statistics
Agent Unique

Characteristic
Initial
Value

Final
Value

x 103 Value Rate of
Change
Prior

Rate of
Change
After

N Obs Mean Std
Dev

Var Min Max Med Rng Skew t Value Pr > |t|

LCS-0 Baseline LCS 50.67 98.63 134 98.47 3.57E-04 2.42E-06 79260 98.41 2.06 4.24 82.00 100.00 100.00 18.00 -1.56 13447.30 <.0001

LCS-1
Population initially
empty 44.43 98.53 135 98.00 3.97E-04 8.15E-06 78060 98.03 4.88 23.79 0.00 100.00 100.00 100.00 -13.57 5615.17 <.0001

LCS-2
Population size
varies ≤ N 46.03 84.87 120 84.33 3.19E-04 6.75E-06 96060 84.75 7.17 51.34 0.00 100.00 86.00 100.00 -1.13 3665.98 <.0001

LCS-3
Parents selected
via tournament 57.23 98.10 22 97.23 1.82E-03 4.89E-06 213660 98.30 7.02 49.30 0.00 100.00 100.00 100.00 -8.09 6471.60 <.0001

LCS-4
Biased exploration
action selection 62.96 99.93 0.40 99.75 9.20E-02 9.02E-07 239580 99.73 1.57 2.47 37.04 100.00 100.00 62.96 -10.49 31089.20 <.0001

LCS-5
Update classifiers
in [A] 46.20 96.73 70 94.97 6.97E-04 1.35E-05 156060 96.88 4.46 19.89 0.00 100.00 98.00 100.00 -11.84 8581.95 <.0001

LCS-6
Fitness/Resource
Balance Deletion 47.60 96.50 100 96.17 4.86E-04 3.30E-06 120060 96.41 3.54 12.56 68.00 100.00 98.00 32.00 -1.29 9426.98 <.0001

LCS-7 Niche GA 55.63 98.43 160 97.80 2.64E-04 1.58E-05 48060 98.37 2.21 4.90 72.00 100.00 100.00 28.00 -1.97 9738.05 <.0001

LCS-8
Accuracy-based
fitness 51.23 52.00 .05 51.23 0.00E+00 3.85E-06 240000 50.49 20.39 415.61 0.00 100.00 50.00 100.00 0.03 1213.35 <.0001

XCS XCS 69.54 100.00 0.40 99.87 7.58E-02 6.51E-07 239580 100.00 0.07 0.00 80.00 100.00 100.00 20.00 -204.19 100000.00 <.0001
Note: Data gathered across 60 replications.

89

(a) Order of Stabilization

It is informative to compare the encounter at which each agent’s performance stabilized; in

general, the faster the measure stabilized, the fast the agent learned the problem domain with respect

to that measure. The following table provides a list ordered from best to worst of each agent’s

stabilization encounter for the performance measure % Correct.

Table IV-6 Rank-Ordered Stabilization Encounter versus TFT WRT % Correct
Agent Stabilization

Encounter
(x 103)

LCS-8 0.05
LCS-4 0.4
XCS 0.4
LCS-3 22
LCS-5 70
LCS-6 100
LCS-2 120
LCS-0 134
LCS-1 135
LCS-7 160

LCS-8 (Classifier fitness determined by accuracy instead of magnitude) stabilized first, followed

closely by LCS-4 (Biased Exploration action selection instead of Fitness Proportional), and XCS.

(b) Magnitude at Stabilization

Summary statistics indicate that each agent evolved a differing ability to correctly solve the TFT

problem domain. Statistical tests of the stabilized means (refer to the output for test 1.2 on page

275) confirm that each agent’s % Correct stabilized at a significantly different level with the

exception of agents LCS-0 and LCS-7 which stabilized at levels which were statistically

indistinguishable. The following table provides a list of % Correct ordered from best to worst.

90

Table IV-7 Rank-Ordered Stabilized Means versus TFT WRT % Correct
Agent Mean Std Dev Var
XCS 100.00 0.07 0.00
LCS-4 99.73 1.57 2.47
LCS-0 98.41 2.06 4.24
LCS-7 98.37 2.21 4.90
LCS-3 98.30 7.02 49.30
LCS-1 98.03 4.88 23.79
LCS-5 96.88 4.46 19.89
LCS-6 96.41 3.54 12.56
LCS-2 84.75 7.17 51.34
LCS-8 50.49 20.39 415.61

Many agents are able to provide a high percentage of correct responses in the TFT problem

domain, with XCS answering correctly on every encounter, followed closely by LCS-4 (Biased

Exploration action selection instead of Fitness Proportional), LCS-0 (Baseline LCS), LCS-7 (Niche

Genetic Algorithm instead of Panmictic), LCS-3 (Tournament-based Parent Selection instead of

Fitness Proportional), and LCS-1 (Empty initial population instead of randomly generated).

Interestingly, LCS-8, which relies on classifier accuracy as its measure of fitness scores the lowest on

this measure.

(c) Learning Rate

Dividing the encounter at which the measure stabilized into the mean of the stabilized measure

provides an indication of the agent’s learning rate. This information is rank-ordered from best to

worst in the following table.

91

92

Table IV-8 Rank-Ordered Learning Rate versus TFT WRT % Correct
Agent Learning Rate

(x 10-3)
LCS-4 92.00
XCS 75.80
LCS-3 1.82
LCS-5 0.70
LCS-6 0.49
LCS-1 0.40
LCS-0 0.36
LCS-2 0.32
LCS-7 0.26
LCS-8 0.00

The best agent in terms of % Correct Learning Rate was LCS-4 (Biased Exploration action

selection instead of Fitness Proportional), followed by XCS. All other agents performed orders of

magnitude worse on this metric than did these two agents. It is again interesting to note that LCS-8

performs the worst on this metric, having quickly achieved an approximately 50% correct rate, and

performing at essentially that level during all the remaining encounters.

(3) System Error

The following graph (Figure IV-3) provides a visual depiction of each variant’s performance in

the measure System Error vs the opponent TFT. The System Error measure is a gauge of how

accurately the agent predicts the reward that accrues upon the execution of a particular action. The

graph is followed by a table (Table IV-9) with statistics describing agent performance while

stabilized.

Figure IV-3 System Error vs TFT

System Error vs TFT

0

1

2

3

4

5

6

7

1 401 801 1201 1601 2001 2401 2801 3201 3601

Generation (50s)

(P
re

di
ct

ed
 R

ew
ar

d
- R

ea
liz

ed
 R

ew
ar

d)
 ^

 2

LCS-0
LCS-1
LCS-2
LCS-3
LCS-4
LCS-5
LCS-6
LCS-7
LCS-8
XCS

93

Table IV-9 Descriptive Characteristics, System Error vs TFT
Stabilization

Point of Occurrence Stabilized Statistics
Agent Unique

Characteristic
Initial
Value

Final
Value

x 103 Value Rate of
Change
Prior

Rate of
Change
After

N Obs Mean Std
Dev

Var Min Max Med Rng Skew t Value Pr > |t|

LCS-0 Baseline LCS 2.1399 0.0155 160 0.0201 -1.32E-05 -1.15E-07 48060 0.0178 0.032 0.001 0.000 0.467 0.001 0.467 4.99 121.25 <.0001

LCS-1
Population initially
empty 2.3260 0.0176 140 0.0188 -1.65E-05 -2.00E-08 72060 0.0185 0.037 0.001 0.000 1.193 0.001 1.193 7.38 136.25 <.0001

LCS-2
Population size
varies ≤ N 2.3298 0.1951 100 0.2250 -2.10E-05 -2.99E-07 120060 0.1926 0.132 0.017 0.000 1.163 0.168 1.163 1.20 507.04 <.0001

LCS-3
Parents selected
via tournament 2.6211 0.0084 20 0.0199 -1.30E-04 -6.39E-08 216060 0.0083 0.041 0.002 0.000 2.920 0.000 2.920 19.11 94.62 <.0001

LCS-4
Biased exploration
action selection 5.9305 0.0286 0.30 0.0576 -1.96E-02 -1.45E-07 239700 0.0153 0.063 0.004 0.000 2.702 0.003 2.702 14.52 119.00 <.0001

LCS-5
Update classifiers
in [A] 0.6706 0.0405 80 0.0474 -7.79E-06 -5.75E-08 144060 0.0377 0.059 0.003 0.000 1.581 0.021 1.581 4.48 243.75 <.0001

LCS-6
Fitness/Resource
Balance Deletion 2.0898 0.0484 110 0.0513 -1.85E-05 -3.22E-08 108060 0.0445 0.065 0.004 0.000 1.113 0.020 1.113 3.29 224.21 <.0001

LCS-7 Niche GA 2.2385 0.0147 160 0.0339 -1.38E-05 -4.80E-07 48060 0.0182 0.033 0.001 0.000 0.598 0.001 0.598 4.88 119.68 <.0001

LCS-8
Accuracy-based
fitness 4.5491 1.0314 190 0.9947 -1.87E-05 3.67E-06 12060 1.0203 0.408 0.166 0.000 1.840 1.142 1.840 -0.84 274.67 <.0001

XCS XCS 4.5079 0.0066 30 0.0132 -1.50E-04 -3.88E-08 204060 0.0083 0.026 0.001 0.000 0.233 0.000 0.233 3.10 145.08 <.0001
Note: Data gathered across 60 replications.

94

(a) Order of Stabilization

It is informative to compare the encounter at which each agent’s performance stabilized; in

general, the faster the measure stabilized, the fast the agent learned the problem domain with respect

to that measure. The following table provides a list ordered from best to worst of each agent’s

stabilization encounter for the performance measure System Error.

Table IV-10 Rank-Ordered Stabilization Encounter versus TFT WRT System Error
Agent Stabilization

Encounter
(x 103)

LCS-4 0.3
LCS-3 20
XCS 30
LCS-5 80
LCS-2 100
LCS-6 110
LCS-1 140
LCS-0 160
LCS-7 160
LCS-8 190

LCS-4 (Biased Exploration action selection instead of Fitness Proportional) stabilized first,

followed by LCS-3 (Tournament-based Parent Selection instead of Fitness Proportional), and XCS.

(b) Magnitude at Stabilization

Summary statistics indicate that each agent evolved a differing ability to correctly predict the

specified reward matrix for the TFT problem. Statistical tests of the stabilized means (refer to the

output for test 1.3 on page 278) confirm that each agent’s System Error stabilized at a significantly

different level. The following table provides a list of stabilized System Error ordered from best to

worst.

95

Table IV-11 Rank-Ordered Stabilized Means versus TFT WRT System Error
Agent Mean Std Dev Var
LCS-3 0.0083 0.0410 0.0020
XCS 0.0083 0.0260 0.0010
LCS-4 0.0153 0.0630 0.0040
LCS-0 0.0178 0.0320 0.0010
LCS-7 0.0182 0.0330 0.0010
LCS-1 0.0185 0.0370 0.0010
LCS-5 0.0377 0.0590 0.0030
LCS-6 0.0445 0.0650 0.0040
LCS-2 0.1926 0.1320 0.0170
LCS-8 1.0203 0.4080 0.1660

Many agents are able to accurately learn the reward matrix for the TFT problem domain, with

XCS having the lowest stabilized system error, followed closely by LCS-3 (Tournament-based Parent

Selection instead of Fitness Proportional), LCS-4 (Biased Exploration action selection instead of

Fitness Proportional), LCS-0 (Baseline LCS), LCS-7 (Niche Genetic Algorithm instead of

Panmictic), and LCS-1 (Empty initial population instead of randomly generated). Again, LCS-8, with

its reliance on classifier accuracy as the measure of fitness, scores the lowest on this measure.

(c) Learning Rate

Dividing the encounter at which the measure stabilized into the mean of the stabilized measure

provides an indication of the agent’s learning rate. This information is rank-ordered from best to

worst in the following table.

Table IV-12 Rank-Ordered Learning Rate versus TFT WRT System Error
Agent Learning Rate

(x 10-3)
LCS-4 -19.60
XCS -0.15
LCS-3 -0.13
LCS-2 -0.02
LCS-8 -0.02
LCS-6 -0.02
LCS-1 -0.02
LCS-7 -0.01
LCS-0 -0.01
LCS-5 -0.01

96

97

The best agent in terms of Learning Rate on System Error was LCS-4 (Biased Exploration

action selection instead of Fitness Proportional), followed by XCS and LCS-3 (Tournament-based

Parent Selection instead of Fitness Proportional). All other agents performed much worse on this

metric than these three agents.

(4) % of Optimal Population [O]

The following graph (Figure IV-4) provides a visual depiction of each variant’s performance in

the measure % [O] vs the opponent TFT. As described previously, the optimal population [O] when

competing against TFT includes four classifiers. The following graph, therefore, depicts the

percentage of this four member [O] existing in an agent’s population [P] throughout the simulation.

This figure is followed by a table (Table IV-13) summarizing performance data during stabilization.

Figure IV-4 % [O] vs TFT

% [O] vs TFT

0

20

40

60

80

100

120

1 401 801 1201 1601 2001 2401 2801 3201 3601

Generation (50s)

%

LCS-0
LCS-1
LCS-2
LCS-3
LCS-4
LCS-5
LCS-6
LCS-7
LCS-8
XCS

98

Table IV-13 Descriptive Characteristics, % [O] vs TFT
Stabilization

Point of Occurrence Stabilized Statistics
Agent Unique

Characteristic
Initial
Value

Final
Value

x 103 Value Rate of
Change
Prior

Rate of
Change
After

N Obs Mean Std
Dev

Var Min Max Med Rng Skew t Value Pr > |t|

LCS-0 Baseline LCS 0.16 27.50 140 26.25 1.86E-04 2.08E-05 72060 27.73 11.41 130.30 0.00 50.00 25.00 50.00 0.41 652.12 <.0001

LCS-1
Population initially
empty 0.00 25.00 45 23.75 5.28E-04 8.06E-06 186060 24.32 16.59 275.35 0.00 100.00 25.00 100.00 0.43 632.23 <.0001

LCS-2
Population size
varies ≤ N 0.52 45.20 160 44.17 2.73E-04 2.58E-05 48060 45.04 10.28 105.67 25.00 75.00 50.00 50.00 -1.29 960.45 <.0001

LCS-3
Parents selected
via tournament 0.27 22.08 88 21.25 2.38E-04 7.41E-06 134460 22.27 12.98 168.55 0.00 50.00 25.00 50.00 -0.14 628.96 <.0001

LCS-4
Biased exploration
action selection 0.00 0.42 0 0 0.00E+00 2.10E-06 240000 0.56 3.69 13.63 0.00 28.75 0.00 28.75 6.46 74.20 <.0001

LCS-5
Update classifiers
in [A] 1.61 26.41 80 25.42 2.98E-04 8.25E-06 144060 27.77 13.43 180.26 0.00 75.00 25.00 75.00 0.21 784.99 <.0001

LCS-6
Fitness/Resource
Balance Deletion 0.04 27.50 24 27.50 1.14E-03 0.00E+00 211260 26.90 14.41 207.67 0.00 100.00 25.00 100.00 0.11 857.82 <.0001

LCS-7 Niche GA 0.00 23.75 150 23.54 1.57E-04 4.20E-06 60060 23.78 12.49 156.06 0.00 75.00 25.00 75.00 0.48 466.58 <.0001

LCS-8
Accuracy-based
fitness 0.00 20.0 150 19.58 1.31E-04 8.40E-06 60060 20.25 18.30 334.94 0.00 75.00 25.00 75.00 0.48 271.15 <.0001

XCS XCS 0.16 97.50 40 97.50 2.43E-03 0.00E+00 192060 97.26 7.99 63.88 50.00 100.00 100.00 50.00 -2.75 5332.99 <.0001
 Note: Data gathered across 60 replications.

99

(a) Order of Stabilization

It is informative to compare the encounter at which each agent’s performance stabilized; in

general, the faster the measure stabilized, the fast the agent learned the problem domain with respect

to that measure. The following table provides a list ordered from best to worst of each agent’s

stabilization encounter for the performance measure % [O].

Table IV-14 Rank-Ordered Stabilization Encounter versus TFT WRT % [O]
Agent Stabilization

Encounter
(x 103)

LCS-4 0
LCS-6 24
XCS 40
LCS-1 45
LCS-5 80
LCS-3 88
LCS-0 140
LCS-7 150
LCS-8 150
LCS-2 160

LCS-4 (Biased Exploration action selection instead of Fitness Proportional) stabilized first,

followed by LCS-6 (Classifier Deletion based on Fitness/Resource Balance instead of Fitness Only),

XCS, and LCS-1 (Empty initial population instead of randomly generated).

(b) Magnitude at Stabilization

Summary statistics indicate that each agent evolved a different percentage of the optimal

population. Statistical tests of the stabilized means (refer to the output for test 1.4 on page 281)

confirm that each agent’s % [O] stabilized at a significantly different level with the exception of

LCS-1 and LCS-7 which were indistinguishable from each other, and LCS-0 and LCS-5 which were

also statistically equivalent. The following table provides a list of % [O] ordered from best to worst.

100

Table IV-15 Rank-Ordered Stabilized Means versus TFT WRT % [O]
Agent Mean Std Dev Var
XCS 97.26 7.99 63.88
LCS-2 45.04 10.28 105.67
LCS-5 27.77 13.43 180.26
LCS-0 27.73 11.41 130.30
LCS-6 26.90 14.41 207.67
LCS-1 24.32 16.59 275.35
LCS-7 23.78 12.49 156.06
LCS-3 22.27 12.98 168.55
LCS-8 20.25 18.30 334.94
LCS-4 0.56 3.69 13.63

Not surprisingly given its design, XCS is able to evolve the greatest percentage of the optimal

population, stabilizing with just over 97% of [O], followed by LCS-2 (Population Size allowed to

vary ≤ N instead of constant), LCS-5 (Update [A] instead of firing classifier only), and LCS-0

(Baseline LCS).

(c) Learning Rate

Dividing the encounter at which the measure stabilized into the mean of the stabilized measure

provides an indication of the agent’s learning rate. This information is rank-ordered from best to

worst in the following table.

Table IV-16 Rank-Ordered Learning Rate versus TFT WRT % [O]
Agent Learning Rate

(x 10-3)
XCS 2.43
LCS-6 1.14
LCS-1 0.53
LCS-5 0.30
LCS-2 0.27
LCS-3 0.24
LCS-0 0.19
LCS-7 0.16
LCS-8 0.13
LCS-4 0.00

101

102

The best agent in terms of % [O] Learning Rate was XCS, followed by LCS-6 (Classifier

Deletion based on Fitness/Resource Balance instead of Fitness Only), and LCS-1 (Empty initial

population instead of randomly generated).

B. VERSUS RAND

This section presents results of the learning agents’ competitions against RAND, which

generates its action randomly regardless of what actions were take before. This opponent thus

represents a “mindless” strategy where adaptation and learning are difficult due to its random and

chaotic behavior. Theoretically, it should be impossible to discern any patterns from RAND’s

behavior. Nevertheless, learning against the RAND opponent is possible and provides an indication

of agent learning against a chaotic opponent.

(1) Number of Unique Classifiers

The graph (Figure IV-5) and table (Table IV-17) on the following pages provide summary data

regarding each agent’s performance against the RAND opponent with respect to the performance

measure Unique Classifiers.

Figure IV-5 Unique Classifiers vs RAND

Unique Classifiers vs RAND

0

50

100

150

200

250

300

350

1 401 801 1201 1601 2001 2401 2801 3201 3601

Generation (50s)

#

LCS-0
LCS-1
LCS-2
LCS-3
LCS-4
LCS-5
LCS-6
LCS-7
LCS-8
XCS

103

104

Table IV-17 Descriptive Characteristics, Unique Classifiers vs RAND
Stabilization

Point of Occurrence Stabilized Statistics
Agent Unique

Characteristic
Initial
Value

Final
Value

x 103 Value Rate of
Change
Prior

Rate of
Change
After

N Obs Mean Std
Dev

Var Min Max Med Rng Skew t Value Pr > |t|

LCS-0 Baseline LCS 300 13.91 90 13.89 -3.18E-03 1.82E-07 132060 13.62 2.93 8.61 6.00 27.52 13.48 21.52 0.38 1687.35 <.0001

LCS-1
Population initially
empty 0 15.41 140 15.73 1.12E-04 -5.33E-06 72060 15.38 2.95 8.73 6.50 27.10 15.00 20.60 0.27 1396.84 <.0001

LCS-2
Population size
varies ≤ N 300 75.12 33 76.07 -6.79E-03 -5.69E-06 200460 76.06 5.00 24.96 59.00 97.92 75.98 38.92 0.16 6816.04 <.0001

LCS-3
Parents selected
via tournament 300 13.07 80 13.47 -3.58E-03 -3.33E-06 144060 13.07 3.10 9.61 5.00 31.00 13.00 26.00 0.80 1600.19 <.0001

LCS-4
Biased exploration
action selection 300 88.43 60 87.98 -3.53E-03 3.21E-06 168060 88.52 6.72 45.20 62.09 118.6 88.48 56.46 0.02 5397.94 <.0001

LCS-5
Update classifiers
in [A] 300 63.66 181 63.50 -1.31E-03 8.42E-06 22860 63.99 9.78 95.62 37.84 92.00 65.00 54.16 -0.27 989.44 <.0001

LCS-6
Fitness/Resource
Balance Deletion 300 21.63 130 21.72 -2.14E-03 -1.29E-06 84060 21.64 3.77 14.18 10.00 35.98 21.98 25.98 0.13 1666.31 <.0001

LCS-7 Niche GA 300 12.32 174 12.35 -1.65E-03 -1.15E-06 31260 11.99 2.57 6.58 5.00 21.98 12.00 16.98 0.14 826.03 <.0001

LCS-8
Accuracy-based
fitness 300 12.18 160 12.77 -1.80E-03 -1.48E-05 48060 12.67 2.34 5.48 5.50 22.00 13.00 16.50 0.12 1186.50 <.0001

XCS XCS 0 39.39 55 39.98 7.27E-04 -4.07E-06 174060 39.71 4.03 16.24 26.00 60.96 39.52 34.96 0.24 4111.38 <.0001
 Note: Data gathered across 60 replications.

(a) Order of Stabilization

It is informative to compare the encounter at which each agent’s performance stabilized; in

general, the faster the measure stabilized, the fast the agent learned the problem domain with respect

to that measure. The following table provides a list ordered from best to worst of each agent’s

stabilization encounter for the performance measure Unique.

Table IV-18 Rank-Ordered Stabilization Encounter versus RAND WRT Unique
Agent Stabilization

Encounter
(x 103)

LCS-2 33
XCS 55
LCS-4 60
LCS-3 80
LCS-0 90
LCS-6 130
LCS-1 140
LCS-8 160
LCS-7 174
LCS-5 181

LCS-2 (Population Size allowed to vary ≤ N instead of constant) stabilized first, followed by

XCS, LCS-4 (Biased Exploration action selection instead of Fitness Proportional), LCS-3

(Tournament-based Parent Selection instead of Fitness Proportional), and LCS-0 (Baseline LCS).

(b) Magnitude at Stabilization

Summary statistics indicate that each agent evolved a different number of unique classifiers to

represent the knowledge it learned about the RAND problem domain. Statistical tests of the

stabilized means (refer to the output for test 2.1 on page 284) confirm that each agent’s population

stabilized at a significantly different level. The following table provides a list ordered from best to

worst of stabilized unique population sizes.

105

Table IV-19 Rank-Ordered Stabilized Means versus RAND WRT Unique
Agent Mean Std Dev Var
LCS-7 11.99 2.57 6.58
LCS-8 12.67 2.34 5.48
LCS-3 13.07 3.10 9.61
LCS-0 13.62 2.93 8.61
LCS-1 15.38 2.95 8.73
LCS-6 21.64 3.77 14.18
XCS 39.71 4.03 16.24
LCS-5 63.99 9.78 95.62
LCS-2 76.06 5.00 24.96
LCS-4 88.52 6.72 45.20

The magnitude of this stabilized population provides information regarding each agent’s ability

to represent its learned knowledge compactly and succinctly. Because they begin with empty

populations, it is reasonable to propose that XCS and LCS-1 would contain relatively smaller

numbers of unique classifiers. As shown in the preceding table, however, both LCS-1 and XCS

perform in the middle of the pack with respect to this measure against the RAND opponent.

(c) Learning Rate

Dividing the encounter at which the measure stabilized into the mean of the stabilized measure

provides an indication of the agent’s learning rate. This information is rank-ordered from best to

worst in the following table. It should be noted that because XCS and LCS-1 begin with empty

populations, their learning rates on this measure are comparable to each other’s, but not to those of

the other agents.

106

107

Table IV-20 Rank-Ordered Learning Rate versus RAND WRT Unique
Agent Learning Rate

(x 10-3)
LCS-2 -6.79
LCS-3 -3.58
LCS-4 -3.53
LCS-0 -3.18
LCS-6 -2.14
LCS-8 -1.80
LCS-7 -1.65
LCS-5 -1.31

LCS-1 0.11
XCS 0.73

As indicated, because smaller populations theoretically are more comprehensible and require

fewer resources, for those agents with randomly generated starting populations, more negative

values for Learning Rate are desirable. For those with empty populations, smaller values for

Learning Rate are preferable. Therefore, all else being equal, LCS-2 can be said to have

outperformed LCS-3 in this measure, and LCS-1 can be said to have outperformed XCS.

(2) % Correct Responses

The following graph (Figure IV-6) and table (Table IV-21) provide information on each agent’s

performance in the measure % Correct vs the opponent RAND. Against a RAND opponent which

unbiasedly chooses to defect or cooperate in each encounter, and which therefore offers no insights

for the future, and given the particular payoff matrix used in this research, the correct action for a

self-reward maximizing learning agent is to Defect.

Figure IV-6 % Correct vs RAND

% Correct vs RAND

0

20

40

60

80

100

120

1 401 801 1201 1601 2001 2401 2801 3201 3601

Generation (50s)

%

LCS-0
LCS-1
LCS-2
LCS-3
LCS-4
LCS-5
LCS-6
LCS-7
LCS-8
XCS

108

Table IV-21 Descriptive Characteristics, % Correct vs RAND
Stabilization

Point of Occurrence Stabilized Statistics
Agent Unique

Characteristic
Initial
Value

Final
Value

x 103 Value Rate of
Change
Prior

Rate of
Change
After

N Obs Mean Std
Dev

Var Min Max Med Rng Skew t Value Pr > |t|

LCS-0 Baseline LCS 54.63 99.43 80 98.80 5.52E-04 5.25E-06 144060 99.26 1.51 2.27 68.00 100.0 100.0 32.00 -3.90 25020.0 <.0001

LCS-1
Population initially
empty 55.60 99.00 100 99.00 4.34E-04 0.00E+00 120060 99.35 1.26 1.60 86.00 100.0 100.0 14.00 -2.29 27214.4 <.0001

LCS-2
Population size
varies ≤ N 55.03 97.70 165 97.27 2.56E-04 1.23E-05 42060 97.79 3.05 9.31 68.00 100.0 98.00 32.00 -1.84 6572.71 <.0001

LCS-3
Parents selected
via tournament 54.50 99.73 20 99.23 2.24E-03 2.78E-06 216060 99.52 1.06 1.12 88.00 100.0 100.0 12.00 -2.44 43793.3 <.0001

LCS-4
Biased exploration
action selection 61.93 98.70 2.0 99.02 1.85E-02 -1.62E-06 237660 99.03 2.37 5.59 61.54 100.0 100.0 38.46 -3.14 20409.2 <.0001

LCS-5
Update classifiers
in [A] 69.40 95.50 19 95.20 1.36E-03 1.66E-06 217260 95.78 3.72 13.83 58.00 100.0 96.00 42.00 -1.23 12005.6 <.0001

LCS-6
Fitness/Resource
Balance Deletion 51.40 97.93 60 97.40 7.67E-04 3.79E-06 168060 97.93 2.56 6.55 64.00 100.0 98.00 36.00 -1.82 15691.7 <.0001

LCS-7 Niche GA 52.27 99.40 100 98.83 4.66E-04 5.70E-06 120060 99.30 1.31 1.72 86.00 100.0 100.0 14.00 -2.17 26266.1 <.0001

LCS-8
Accuracy-based
fitness 51.80 53.63 0 51.80 0.00E+00 9.15E-06 240000 53.69 21.19 448.99 0.00 100.0 54.00 100.0 -0.14 1241.28 <.0001

XCS XCS 68.64 99.64 1.2 99.02 2.53E-02 3.12E-06 238620 98.91 4.61 21.23 0.00 100.0 100.0 100.0 -6.88 10486.9 <.0001
Note: Data gathered across 60 replications.

109

(a) Order of Stabilization

It is informative to compare the encounter at which each agent’s performance stabilized; in

general, the faster the measure stabilized, the fast the agent learned the problem domain with respect

to that measure. The following table provides a list ordered from best to worst of each agent’s

stabilization encounter for the performance measure % Correct.

Table IV-22 Rank-Ordered Stabilization Encounter versus RAND WRT % Correct
Agent Stabilization

Encounter
(x 103)

LCS-8 0
XCS 1.2
LCS-4 2
LCS-5 19
LCS-3 20
LCS-6 60
LCS-0 80
LCS-1 100
LCS-7 100
LCS-2 165

LCS-8 (Classifier fitness determined by accuracy instead of magnitude) stabilized first, followed

closely by XCS, and LCS-4 (Biased Exploration action selection instead of Fitness Proportional). All

other agents performed at least an order of magnitude worse on this measure.

(b) Magnitude at Stabilization

Summary statistics indicate that each agent evolved a differing ability to correctly solve the

RAND problem domain. Statistical tests of the stabilized means (refer to the output for test 2.2 on

page 287) confirm that each agent’s % Correct stabilized at a significantly different level with the

exception of agents LCS-0, LCS-1, and LCS-7, whose stabilized means were indistinguishable. The

following table provides a list of % Correct ordered from best to worst.

110

Table IV-23 Rank-Ordered Stabilized Means versus RAND WRT % Correct
Agent Mean Std Dev Var
LCS-3 99.52 1.06 1.12
LCS-1 99.35 1.26 1.60
LCS-7 99.30 1.31 1.72
LCS-0 99.26 1.51 2.27
LCS-4 99.03 2.37 5.59
XCS 98.91 4.61 21.23
LCS-6 97.93 2.56 6.55
LCS-2 97.79 3.05 9.31
LCS-5 95.78 3.72 13.83
LCS-8 53.69 21.19 448.99

Many agents are able to provide a high percentage of correct responses in the RAND problem

domain, with LCS-3 (Tournament-based Parent Selection instead of Fitness Proportional) answering

correctly on nearly every encounter, followed closely by LCS-1 (Empty initial population instead of

randomly generated), LCS-7 (Niche Genetic Algorithm instead of Panmictic), LCS-0 (Baseline LCS),

LCS-4 (Biased Exploration action selection instead of Fitness Proportional), and XCS. Interestingly,

LCS-8, which relies on classifier accuracy as its measure of fitness scores the lowest on this measure.

(c) Learning Rate

Dividing the encounter at which the measure stabilized into the mean of the stabilized measure

provides an indication of the agent’s learning rate. This information is rank-ordered from best to

worst in the following table.

Table IV-24 Rank-Ordered Learning Rate versus RAND WRT % Correct
Agent Learning Rate

(x 10-3)
XCS 25.30
LCS-4 18.50
LCS-3 2.24
LCS-5 1.36
LCS-6 0.77
LCS-0 0.55
LCS-7 0.47
LCS-1 0.43
LCS-2 0.26
LCS-8 0.00

111

112

The best agent in terms of Learning Rate on % Correct was XCS, followed by LCS-4 (Biased

Exploration action selection instead of Fitness Proportional). All other agents performed orders of

magnitude worse on this metric than did these two agents; LCS-8 again performed the worst on this

metric.

(3) System Error

The following graph (Figure IV-7) provides a visual depiction of each variant’s performance in

the measure System Error vs the opponent RAND. The System Error measure is a gauge of how

accurately the agent predicts the reward that accrues upon the execution of a particular action. The

graph is followed by a table (Table IV-25) summarizing agent performance while stabilized.

Figure IV-7 System Error vs RAND

System Error vs RAND

0

1

2

3

4

5

6

7

8

9

1 401 801 1201 1601 2001 2401 2801 3201 3601

Generation (50s)

(P
re

di
ct

ed
 R

ew
ar

d
- R

ea
liz

ed
 R

ew
ar

d)
 ^

 2

LCS-0
LCS-1
LCS-2
LCS-3
LCS-4
LCS-5
LCS-6
LCS-7
LCS-8
XCS

113

Table IV-25 Descriptive Characteristics, System Error vs RAND
Stabilization

Point of Occurrence Stabilized Statistics
Agent Unique

Characteristic
Initial
Value

Final
Value

x 103 Value Rate of
Change
Prior

Rate of
Change
After

N Obs Mean Std
Dev

Var Min Max Med Rng Skew t Value Pr > |t|

LCS-0 Baseline LCS 4.5390 3.9955 84 3.9814 -6.64E-06 1.22E-07 139260 3.9913 0.041 0.002 3.442 4.389 3.998 0.947 -0.78 36164.7 <.0001

LCS-1
Population initially
empty 5.6681 3.9828 75 3.9738 -2.26E-05 7.20E-08 150060 3.9918 0.040 0.002 3.644 4.424 3.999 0.780 -0.54 38694.4 <.0001

LCS-2
Population size
varies ≤ N 4.7552 3.9842 166 3.9788 -4.68E-06 1.59E-07 40860 3.9764 0.080 0.007 3.442 4.414 3.987 0.973 -0.75 9996.0 <.0001

LCS-3
Parents selected
via tournament 4.5135 4.0066 20 3.9982 -2.58E-05 4.67E-08 216060 4.0005 0.054 0.003 3.616 4.493 4.002 0.877 0.07 34572.0 <.0001

LCS-4
Biased exploration
action selection 7.7794 4.0455 2.0 4.1023 -1.84E-03 -2.87E-07 237660 4.0935 0.273 0.074 2.655 6.228 4.082 3.573 0.36 7322.1 <.0001

LCS-5
Update classifiers
in [A] 4.0595 4.1740 75 4.1591 1.33E-06 1.19E-07 150060 4.1607 0.201 0.041 2.484 4.854 4.183 2.370 -0.75 8013.8 <.0001

LCS-6
Fitness/Resource
Balance Deletion 4.8617 3.9658 65 3.9681 -1.37E-05 -1.70E-08 162060 3.9696 0.058 0.003 3.487 4.436 3.980 0.949 -0.83 27620.5 <.0001

LCS-7 Niche GA 4.5749 4.0000 150 3.9992 -3.84E-06 1.60E-08 60060 3.9935 0.039 0.002 3.640 4.424 3.999 0.784 -0.43 25215.1 <.0001

LCS-8
Accuracy-based
fitness 4.6465 3.1901 25 3.1756 -5.88E-05 8.29E-08 240000 3.1937 0.373 0.139 2.204 6.067 3.199 3.863 -0.12 4195.9 <.0001

XCS XCS 6.6726 4.2550 0.3 4.2035 -8.23E-03 2.58E-07 239700 4.2488 0.351 0.124 1.171 6.286 4.294 5.115 -0.98 5920.2 <.0001
Note: Data gathered across 60 replications.

114

(a) Order of Stabilization

It is informative to compare the encounter at which each agent’s performance stabilized; in

general, the faster the measure stabilized, the fast the agent learned the problem domain with respect

to that measure. The following table provides a list ordered from best to worst of each agent’s

stabilization encounter for the performance measure System Error.

Table IV-26 Rank-Ordered Stabilization Encounter versus RAND WRT System Error
Agent Stabilization

Encounter
(x 103)

XCS 0.3
LCS-4 2
LCS-3 20
LCS-8 25
LCS-6 65
LCS-1 75
LCS-5 75
LCS-0 84
LCS-7 150
LCS-2 166

XCS stabilized first, followed by LCS-4 (Biased Exploration action selection instead of Fitness

Proportional), LCS-3 (Tournament-based Parent Selection instead of Fitness Proportional), and

LCS-8 (Classifier fitness determined by accuracy instead of magnitude).

(b) Magnitude at Stabilization

Summary statistics indicate that each agent evolved a differing ability to correctly predict the

specified reward matrix for the RAND problem. Statistical tests of the stabilized means (refer to the

output for test 2.3 on page 289) confirm that each agent’s System Error stabilized at a significantly

different level, with the exception of LCS-0, LCS-1, and LCS-7, whose means were indistinguishable

from each other. The following table provides a list of System Error ordered from best to worst.

115

Table IV-27 Rank-Ordered Stabilized Means versus RAND WRT System Error
Agent Mean Std Dev Var
LCS-8 3.1937 0.3730 0.1390
LCS-6 3.9696 0.0580 0.0030
LCS-2 3.9764 0.0800 0.0070
LCS-0 3.9913 0.0410 0.0020
LCS-1 3.9918 0.0400 0.0020
LCS-7 3.9935 0.0390 0.0020
LCS-3 4.0005 0.0540 0.0030
LCS-4 4.0935 0.2730 0.0740
LCS-5 4.1607 0.2010 0.0410
XCS 4.2488 0.3510 0.1240

As expected, the learning agents were not able to accurately learn reward matrix for the RAND

problem domain. LCS-8 (Classifier fitness determined by accuracy instead of magnitude) had the

lowest stabilized system error, followed closely by LCS-6 (Deletes classifiers based on Fitness and

Resource Balance instead of Fitness Only), LCS-2 (Population Size allowed to vary ≤ N instead of

constant), LCS-0 (Baseline LCS), LCS-1 (Empty initial population instead of randomly generated),

and LCS-7 (Niche Genetic Algorithm instead of Panmictic). XCS scored the lowest on this measure.

(c) Learning Rate

Dividing the encounter at which the measure stabilized into the mean of the stabilized measure

provides an indication of the agent’s learning rate. This information is rank-ordered from best to

worst in the following table.

Table IV-28 Rank-Ordered Learning Rate versus RAND WRT System Error
Agent Learning Rate

(x 10-3)
XCS -8.23
LCS-4 -1.84
LCS-8 -0.06
LCS-3 -0.03
LCS-1 -0.02
LCS-6 -0.01
LCS-0 -0.01
LCS-2 0.00
LCS-7 0.00
LCS-5 0.00

116

The best agent in terms of Learning Rate on System Error was XCS, followed by LCS-4 (Biased

Exploration action selection instead of Fitness Proportional). All other agents performed much

worse on this metric than these two agents.

(4) % of Optimal Population [O]

As described in Chapter III: B. (5) (b) iii. Problem Difficulty, the RAND opponent does not

have an optimal population; therefore, this measure is not analyzed for the RAND opponent.

C. PROPOSITION TESTING

The propositions described in Chapter III: B. (6) Experiment Suite and Propositions may be

tested using performance data from the twenty competitions conducted in this research.

(1) The Key Difference

P1: Agents using accuracy-based fitness will have smaller values of Unique
Classifiers than agents employing magnitude-based fitness.

Table IV-29 Accuracy-Based Fitness: Unique Classifiers vs TFT and RAND
Unique Classifiers Agent/Characteristic Vs TFT Vs RAND

Baseline LCS-0 (Magnitude-based Fitness) 24.10 13.62
LCS-8 (Classifier Fitness Determinant: Magnitude →
Accuracy)

13.85 12.67

XCS (Accuracy-based Fitness) 5.43 39.71

LCS-8 does indeed evolve smaller values of Unique Classifiers against both TFT and RAND,

supporting P1’s supposition that agents relying on accuracy-based fitness represent their learned

knowledge more efficiently and compactly. When compared to all agents, LCS-8 does 2nd best on

this measure vs both TFT and RAND.

P2: Agents using accuracy-based fitness will have higher values of % [O] than
agents employing magnitude-based fitness.

117

Table IV-30 Accuracy-Based Fitness: % [O] vs TFT and RAND
% [O] Agent/Characteristic Vs TFT Vs RAND

Baseline LCS-0 (Magnitude-based Fitness) 27.73 N/A
LCS-8 (Classifier Fitness Determinant: Magnitude →
Accuracy)

20.25 N/A

XCS (Accuracy-based Fitness) 97.26 N/A

LCS-8 evolves a population containing a lower % [O] than does its magnitude-based fitness

counterpart, LCS-0. The data, therefore, does not support P2. When compared to all agents, LCS-8

does 2nd worst vs TFT with respect to this measure. As described in Chapter III, no agents evolved

members of [O] vs RAND. It is likely that XCS’s demonstrated ability to evolve optimal

populations, therefore, results from the combined effects of several architectural characteristics.

The preceding table is noteworthy for another reason, however. XCS’s stabilized value of 97.26

for % [O] indicates that it is indeed able to reliably evolve the optimal population in the IPD

environment against the TFT opponent. This result is significant because it supports the Optimality

Hypothesis (Kovacs 1997; Kovacs and Kerber 2001) in a new and different environment from those

previously tested.

(2) Population Differences

(a) Initial Population

P3: Agents with initially empty populations will learn faster than agents which
begin with randomly generated populations.

Table IV-31 Initial Populations: Learning Rates vs TFT and RAND
Learning Rate (x 10-3)

Vs TFT Vs RAND Agent/Characteristic
Unique Correct Error %[O] Unique Correct Error %[O]

Baseline LCS-0 (N Random
Classifiers)

N/A 0.36 -0.01 0.19 N/A 0.55 -0.01 N/A

LCS-1 (Initial Population:
Random →Through Covering)

N/A 0.40 -0.02 0.53 N/A 0.43 -0.02 N/A

XCS (Empty Initial Population) N/A 75.80 -0.15 2.43 N/A 25.30 -8.23 N/A

Against TFT, LCS-1 does indeed evolve higher Learning Rates on all relevant measures than

LCS-0, which begins with a population of random classifiers. Against RAND, however, LCS-0

outperforms LCS-1 in its % Correct Learning Rate while the two agents’ System Error Learning Rates are

118

essentially equivalent. These results support P3 when the agent competes against an opponent where

learning is possible.

P4: Agents with initially empty populations will have smaller values for Unique
Classifiers than agents which begin with randomly generated populations.

Table IV-32 Initial Populations: Unique Classifiers vs TFT and RAND
Unique Classifiers Agent/Characteristic Vs TFT Vs RAND

Baseline LCS-0 (N Random Classifiers) 24.10 13.62
LCS-1 (Initial Population: Random →Through
Covering)

30.04 15.38

XCS (Empty Initial Population) 5.43 39.71

LCS-1 evolves populations with a greater number of Unique Classifiers than does LCS-0 against

both TFT and RAND. These results do not support P4 for the two opponents used in this research.

Examination of the graphs for this performance measure for both TFT and RAND indicate LCS-1’s

Unique Classifiers measure grows quickly at the beginning of the simulation and then drops slowly for

the remainder of the competitions. The newly created classifiers are likely created as unrecognized

portions of the problem domain are encountered, and may be assigned a significant non-zero fitness

level after their first interaction with the environment. Because these newly created classifiers

maintain this fitness level unless they fire again and because subsumption is not employed, once

these classifiers are created, many of them remain in the population for the duration of the

experiment.

(b) Population Size

P5: Agents with populations that are allowed to vary ≤ N will learn faster than
agents which begin with randomly generated populations.

119

Table IV-33 Population Size: Learning Rates vs TFT and RAND
Learning Rate (x 10-3)

Vs TFT Vs RAND Agent/Characteristic
Unique Correct Error %[O] Unique Correct Error %[O]

Baseline LCS-0 (Maintains
Constant Population Size of N)

-5.49 0.36 -0.01 0.19 -3.18 0.55 -0.01 N/A

LCS-2 (Population Size:
Constant, N → ≤ N)

-1.24 0.32 -0.02 0.27 -6.79 0.26 0.00 N/A

XCS (Population Size Varies ≤
N)

N/A 75.80 -0.15 2.43 N/A 25.30 -8.23 N/A

Against TFT, LCS-2 learns faster only for the %[O] performance measure, performing worse

with respect to Unique Classifiers and % Correct. There is essentially no difference in learning rates for

System Error against TFT. Against RAND, LCS-2 learns faster with respect to Unique Classifiers,

slower with respect to % Correct, and approximately the same with respect to System Error. These

results do not support P5 and suggest that agents with initially full populations perform better than

those using covering in some situations.

P6: Agents with populations that are allowed to vary ≤ N will have smaller values for
Unique Classifiers than agents which begin with randomly generated
populations.

Table IV-34 Population Size: Unique Classifiers vs TFT and RAND
Unique Classifiers Agent/Characteristic Vs TFT Vs RAND

Baseline LCS-0 (Maintains Constant Population Size of
N)

24.10 13.62

LCS-2 (Population Size: Constant, N → ≤ N) 64.99 76.06
XCS (Population Size Varies ≤ N) 5.43 39.71

LCS-2’s evolved population contains more Unique Classifiers than the LCS-0 agent. More

remarkably, LCS-2 performs does worst of all ten agents on this measure against TFT and 2nd worst

against RAND. These results do not support P6 and instead suggest that subsumption results in less

efficient populations in some circumstances and that XCS’s success in this regard is due to the

combined effect of several architectural characteristics.

120

(3) Genetic Algorithm Differences

(a) GA Scope

P7: Agents using panmictic parent selection will learn slower than agents using
niche GAs.

Table IV-35 GA Scope: Learning Rates vs TFT and RAND
Learning Rate (x 10-3)

Vs TFT Vs RAND Agent/Characteristic
Unique Correct Error %[O] Unique Correct Error %[O]

Baseline LCS-0 (Panmictic GA) -5.49 0.36 -0.01 0.19 -3.18 0.55 -0.01 N/A
LCS-7 (Genetic Algorithm: Panmictic →
Niche)

-1.49 0.26 -0.01 0.16 -1.65 0.47 0.00 N/A

XCS (Niche GA) N/A 75.8 -0.15 2.43 N/A 25.30 -8.23 N/A

LCS-7 learns more slowly with respect to all performance measures against both TFT and

RAND, except for System Error where it performs essentially the same as LCS-0. These results do

not support P7 and suggest no degradation in learning rates from panmictic parent selection.

Moreover, these results suggest that XCS’s success in these measures is due to the combined effect

of several architectural characteristics.

P8: Agents using panmictic parent selection will have smaller values for % Correct
than agents using niche GAs.

Table IV-36 GA Scope: % Correct vs TFT and RAND
% Correct Agent/Characteristic Vs TFT Vs RAND

Baseline LCS-0 (Panmictic GA) 98.4* 99.26**
LCS-7 (Genetic Algorithm: Panmictic → Niche) 98.4* 99.30**
XCS (Niche GA) 100 98.91
* These values are statistically indistinguishable from each other.
** These values are statistically indistinguishable from each other.

LCS-7’s stabilized % Correct values were statistically indistinguishable from those of its baseline

LCS-0 against both TFT and RAND. These results do not support P8 and indicate instead that

agents relying on panmictic parent selection suffer no degradation in performance with respect to

their stabilized % Correct values.

121

P9: Agents using panmictic parent selection will have larger values for System Error
than agents using niche GAs.

Table IV-37 GA Scope: System Error vs TFT and RAND
System Error Agent/Characteristic Vs TFT Vs RAND

Baseline LCS-0 (Panmictic GA) 0.0178 3.9913*
LCS-7 (Genetic Algorithm: Panmictic → Niche) 0.0182 3.9935*
XCS (Niche GA) 0.0083 4.2488
* These values are statistically indistinguishable from each other.

Against TFT, LCS-7 stabilizes at a slightly higher System Error value, while against RAND, their

values are statistically indistinguishable. The small magnitude of the difference against TFT and the

equivalence of the values against RAND suggest there is no additional accuracy gained by using

panmictic parent selection.

(b) Parent Selection

Evidence of superior performance will be provided using the performance measures Unique

Classifiers, % Correct, System Error, and Learning Rate.

Table IV-38 Parent Selection: Unique Classifiers vs TFT and RAND
Unique Classifiers Agent/Characteristic Vs TFT Vs RAND

Baseline LCS-0 (Fitness Proportional Parent Selection) 24.10 13.62
LCS-3 (Parent Selection: Fitness Proportional →
Tournament)

18.82 13.07

XCS (Tournament Based Parent Selection) 5.43 39.71

Table IV-39 Parent Selection: % Correct vs TFT and RAND
% Correct Agent/Characteristic Vs TFT Vs RAND

Baseline LCS-0 (Fitness Proportional Parent Selection) 98.4 99.26
LCS-3 (Parent Selection: Fitness Proportional →
Tournament)

98.3 99.52

XCS (Tournament Based Parent Selection) 100 98.91

122

Table IV-40 Parent Selection: System Error vs TFT and RAND
System Error Agent/Characteristic Vs TFT Vs RAND

Baseline LCS-0 (Fitness Proportional Parent Selection) 0.0178 3.9913
LCS-3 (Parent Selection: Fitness Proportional →
Tournament)

0.0083 4.0005

XCS (Tournament Based Parent Selection) 0.0083 4.2488

Table IV-41 Parent Selection: Learning Rates vs TFT and RAND
Learning Rate (x 10-3)

Vs TFT Vs RAND Agent/Characteristic
Unique Correct Error %[O] Unique Correct Error %[O]

Baseline LCS-0 (Fitness Proportional
Parent Selection)

-5.49 0.36 -0.01 0.19 -3.18 0.55 -0.01 N/A

LCS-3 (Parent Selection: Fitness
Proportional → Tournament)

-1.65 1.82 -0.13 0.24 -3.58 2.24 -0.03 N/A

XCS (Tournament Based Parent Selection) N/A 75.80 -0.15 2.43 N/A 25.30 -8.23 N/A

Of the fourteen relevant measures presented in the preceding tables, LCS-3 performs better on

ten of the fourteen, providing support to Tournament-based parent selection as a superior method

to Fitness Proportional Roulette Wheel parent selection.

(c) Classifier Deletion

P10: Agents using fitness/resource balance deletion will have larger values for % [O]
than agents using fitness only.

Table IV-42 Classifier Deletion: % [O] vs TFT and RAND
% [O] Agent/Characteristic Vs TFT Vs RAND

Baseline LCS-0 (Deletion based on Fitness Only) 27.73 N/A
LCS-6 (Classifier Deletion Criteria: Fitness Only →
Fitness and Resource Balancing)

26.90 N/A

XCS (Deletion based on Fitness/Resource Balance) 97.26 N/A

Against TFT, LCS-6 evolves a smaller percentage of [O] than does LCS-0. This result does not

support P10, suggesting that XCS’s success in this regard is due to the combined effect of several

architectural characteristics.

123

(4) Action Selection

Evidence of superior performance will be provided using the performance measures % Correct,

System Error, and Learning Rate.

Table IV-43 Action Selection: % Correct vs TFT and RAND
% Correct Agent/Characteristic Vs TFT Vs RAND

Baseline LCS-0 (Fitness Proportional Action Selection) 98.4 99.26
LCS-4 (Action Selection: Fitness Proportional → Biased
Exploration)

99.7 99.03

XCS (Biased Exploration Action Selection) 100 98.91

Table IV-44 Action Selection: System Error vs TFT and RAND
System Error Agent/Characteristic Vs TFT Vs RAND

Baseline LCS-0 (Fitness Proportional Action Selection) 0.0178 3.9913
LCS-4 (Action Selection: Fitness Proportional → Biased
Exploration)

0.0153 4.0935

XCS (Biased Exploration Action Selection) 0.0083 4.2488

Table IV-45 Action Selection: Learning Rates vs TFT and RAND
Learning Rate (x 10-3)

Vs TFT Vs RAND Agent/Characteristic
Unique Correct Error %[O] Unique Correct Error %[O]

Baseline LCS-0 (Fitness Proportional
Action Selection)

-5.49 0.36 -0.01 0.19 -3.18 0.55 -0.01 N/A

LCS-4 (Action Selection: Fitness
Proportional → Biased Exploration)

-4.41 92.0 -19.6 0.00 -3.53 18.50 -1.84 N/A

XCS (Biased Exploration Action Selection) N/A 75.80 -0.15 2.43 N/A 25.30 -8.23 N/A

Of the twelve relevant measures presented in the preceding tables, LCS-4 performs better on

eight of the twelve, including five of the six measures against TFT, supporting Biased Exploration

Action Selection as a superior method than Fitness Proportional Action Selection, especially against

an opponent where learning is possible.

(5) Classifier Updates

P11: Agents using Action Set updates will learn faster than agents updating firing
and enabling classifiers only.

124

Table IV-46 Classifier Updates: Learning Rates vs TFT and RAND
Learning Rate

Vs TFT Vs RAND Agent/Characteristic
Unique Correct Error %[O] Unique Correct Error %[O]

Baseline LCS-0 (Update Firing Classifier) -5.49 0.36 -0.01 0.19 -3.18 0.55 -0.01 N/A
LCS-5 (Classifier Fitness Update: Firing
Classifier → All Classifiers in [A])

-2.49 0.70 -0.01 0.30 -1.31 1.36 0.00 N/A

XCS (Update [A] Classifiers) N/A 75.80 -0.15 2.43 N/A 25.30 -8.23 N/A

Against TFT, LCS-5 learns more quickly with respect to % Correct and % [O], more slowly

with respect to Unique Classifiers, and essentially the same as LCS-0 with respect to System Error.

Against RAND, LCS-5 learns more with respect to % Correct, more slowly with respect to Unique

Classifiers, and essentially the same as LCS-0 with respect to System Error. These results are

equivocal with respect to P11 and suggest that updating Action Set classifiers does not provide a

significant advantage in and of itself. Again, it appears XCS’s success in these measures is due to the

combined effect of several architectural characteristics.

D. CONCLUSIONS

An experimental simulation suite of twenty competitions between ten LCS- and XCS-based

learning agents and two pre-specified opponents was conducted to determine the effect architectural

differences had on selected performance measures. Graphs and summary data were presented for

each measure and for each competition. Statistical analyses of this data indicate that the majority of

the architectural differences did have a significant effect on the agents’ performance with respect to

the performance measures used in this research.

The data were further analyzed to test various proposed effects of the architectural differences.

The propositions were written in support of XCS’s hypothesized superiority to a traditional LCS

implementation. Of the eleven propositions analyzed in this research, only two were supported by

the experimental data. The data regarding two other propositions were equivocal, while the

remaining seven propositions were not supported. In addition, two exploratory issues, Parent

Selection and Action Selection, were investigated, with the data tending to support Tournament

Based Parent Selection and Biased Exploration Action Selection as superior methods to Fitness

Proportional selection.

In addition, it was demonstrated that XCS was able to reliably evolve the Optimal Population

[O] against the TFT opponent. This result supports Kovacs’ Optimality Hypothesis in the IPD

125

environment and is significant because it is the first demonstrated occurrence of this ability in an

environment other than the multiplexer and Woods problem domains.

It is therefore apparent that while XCS performs better than its LCS-based counterparts, its

demonstrated superiority may not be attributed to a single architectural characteristic. Instead, XCS’s

ability to evolve optimal classifier populations in the multiplexer problem domain and in the IPD

problem domain studied in this research results from the combined and synergistic effects of

multiple architectural differences.

Copyright © David Alexander Gaines 2006

126

CHAPTER V: CONCLUSIONS

Unlike the traditional strength-based LCS model, XCS is accuracy-based; therefore, this

research was intended to compare and contrast the two models under different IPD tournament

settings to better understand their behaviors. Specifically, the current research investigated

performance differences between LCS- and XCS-based classifier systems with the intent of

identifying the effect of architectural differences between the two families. To explore these

hypothesized advantages, this research employed a suite of simulation experiments in which twenty

competitions were conducted between ten LCS- and XCS-based agents and two pre-specified

opponents, measuring key performance parameters for each competition.

The results of these competitions indicate that while each architectural difference significantly

affected its agent’s performance, no single architectural difference could be credited as causing

XCS’s demonstrated superiority in evolving optimal populations. Instead, the data suggests that

XCS’s ability to evolve optimal populations in the multiplexer and IPD problem domains result

from the combined and synergistic effects of multiple architectural differences.

A. CONTRIBUTIONS

This research has answered several questions regarding XCS’s theorized superiority over LCS-

based agents, and has indeed revealed “…some interesting architectural and performance data about

LCS and XCS …” (Wilson 2005). This work provides several noteworthy additions to the existing

body of knowledge on LCS- and XCS-based learning agents.

First, this research provides the first known decomposition and study of the XCS algorithm’s

constituent parts. Specifically, eight significant architectural differences between traditional LCS and

XCS systems were identified and analyzed. While each architectural characteristic was shown to

significantly affect performance, none in and of itself could be credited as providing XCS’s

demonstrated superiority. Instead, it is apparent that XCS’s ability to evolve optimal populations in

the multiplexer, woods, and IPD problem domains is due to the combined and synergistic effects of

multiple architectural differences.

Second, the Iterated Prisoner’s Dilemma is a new and previously untested problem domain for

XCS-based systems. This domain is unique because it is not a static or deterministic domain as are

the previously studied multiplexer and woods environments. Moreover, depending on the opponent,

IPD competitions often call for irrational decision making, challenging learning agents in new and

127

previously untested ways. The IPD also has broader social and business parallels than do previously

studied environments, offering greater ability to extend and apply research results. Other benefits of

the IPD problem domain include asymmetric updates of the knowledge base and the ability to test

learning agents against multiple opponents, including “noisy,” changing, or illogical opponents.

Third, this research provides the first demonstration of XCS’s ability to reliably evolve the

Optimal Population [O] against the TFT opponent. This result supports Kovacs’ Optimality

Hypothesis in the IPD environment and is significant because it is the first demonstrated occurrence

of this ability in an environment other than the multiplexer and Woods problem domains.

Finally, to accomplish this research, a computer simulation program was written in Visual

Basic.NET, the first known instance of such a program in this language. VB.NET offers several

advantages over other languages used in previous classifiers system research. First, it is executable on

common Windows-based personal computers, greatly extending the flexibility of the researcher.

Second, VB.NET modules may be written to integrate program execution with other Windows-

based programs, providing the ability for automatic data capture and display. This feature was

employed in the current research, with modules to automatically store and display data in Microsoft

Excel spreadsheets. VB.NET also offers the ability to interact with the user in a visual manner,

providing the researcher with the ability to examine evolutionary path traces during the course of

normal execution. This ability was employed in the current research and greatly aided the researcher

in tracking classifiers throughout the evolution process.

B. LIMITATIONS

The research described in this paper is necessarily limited as to scope and depth. As described

previously, the LCS and XCS learning algorithms are complex Machine Learning devices, with

intricate internal processing of a large amount of data and parameters. Any proposed research,

therefore, must concentrate on just a portion of the LCS/XCS puzzle. The current research is no

exception in that it focuses on a very narrow problem domain and performs limited experimentation

within this domain. In this regard, the proposed research is limited in its applicability to other

learning mechanisms and environments.

Specifically, this research has not varied any of the parameter settings used in the LCS and XCS

algorithms, relying instead on generally accepted values for these parameters. The results, therefore,

are limited to a specific set of conditions which may not be extensible to other settings. In addition,

there exist many possible competitions between learning agents and pre-programmed opponents.

This research studies a select subset of these opponents, again limiting the generality of the results.

128

Finally, the LCS-based learning agents used in this research differ in only one way from the

traditional LCS implementation. Combining architectural differences in a systematic manner would

provide additional information regarding cumulative effects and offers the possibility of increased

insight into the workings of LCS and XCS algorithms.

C. FUTURE RESEARCH

The LCS-based learning agents used in this research differ in only one way from the traditional

LCS implementation. Combining architectural differences in a systematic manner would provide

additional information regarding cumulative effects and offers the possibility of increased insight

into the workings of LCS and XCS algorithms.

In addition, each simulation experiment in this research consists of a single lengthy competition

between one agent and one opponent. Repeating these competitions using different random seeds

for each competition would provide additional reliability regarding performance results.

Another fruitful area of research involving LCS, XCS, and the IPD involves the exploration of

learning agent performance against new and previously untested IPD opponents. Axelrod’s research

included eight separate classes of IPD opponents, only two of which were studied in the current

research. It is possible to program all of these opponents and to compete them against LCS- and

XCS-based learning agents to study performance characteristics. Extending this idea further to

include competitions against “noisy,” changing, or multiple opponents would provide additional

insight into learning agent abilities, especially regarding XCS’s ability to evolve optimal populations

against other IPD opponents.

As described in Chapter II, one promising area of future research includes studying the ability

of LCS and XCS to operate in a multi-step, or planning, environment. In such an environment, LCS

and XCS would be studied to determine their ability to adjust their learning to account for a string of

moves by its opponent, as opposed to reacting to a single action. Demonstrated proficiency in this

environment would offer promise for a number of multi-step practical applications.

Another area of great potential interest is to apply the LCS and XCS learning paradigms

towards developing cooperation in a given opponent or set of opponents. As described in Axelrod’s

book on the Evolution of Cooperation, it is one thing to learn to react to an opponent’s action to

maximize one’s own rewards. It is another thing entirely, and one of far greater social significance, to

influence that opponent towards mutual cooperation. Several strategies for doing so are outlined in

Axelrod’s book; future experimentation toward this end would be of great interest.

129

As part of the data analysis in the current research, performance histograms and box-and-

whisker plots were generated. These plots indicate some interesting phenomenon about some

agents’ performance. For example, the performance measures for several agents appear to have

significantly skewed probability distributions. In addition, some agents appear to generate non-

continuous performance measure values against some opponents. These plots invite additional

scrutiny to dissect the underlying causes for these interesting phenomena.

D. SUMMARY

The Learning Classifier and eXtended Learning Classifier paradigms are demonstrated

performers in machine learning and artificial intelligence implementations. The currently popular

XCS algorithm has been shown to perform extremely well in certain narrowly defined problem

domains and its superiority has also been demonstrated in a new domain by the current research.

There is, however, much more research to be conducted to fully understand these algorithms as we

aspire to create truly intelligent machines.

The current research also contributes to numerous fields of study, including the broad field of

Artificial Intelligence, and its smaller related fields of Machine Learning and Decision Support

Systems (DSS). The study of Adaptive DSS, in particular, may benefit from results of the current

study, as theories regarding generalizeability and brittleness are developed and explored. In addition,

DSS researchers may find useful information in this research as an example of how an algorithm’s

constituent parts may be dissected and individual effects studied. Finally, it is possible that the

dissection approach used in this research may be useful to developers of other sophisticated or

complex decision tools as they attempt to separate the wheat from the chaff.

Copyright © David Alexander Gaines 2006

130

Appendix A: CODING THE PROGRAM IN VISUAL BASIC.NET

The coding of the custom program used in this research resulted in a number of interesting

challenges and observations. This appendix provides remarks regarding this process for the reader’s

edification.

A major issue faced by researchers using stochastic processes or simulation is insuring random

numbers are generated truly randomly. This issue was also present in the current research. A review

of the documentation for the Visual Basic.NET programming language used in this research

(Microsoft Development Environment 2002, Version 7.0.9466; Microsoft.NET Framework 1.0,

Version 1.0.3705) provided evidence that the random number streams generated by VB.NET’s

Rnd() function were sufficiently random to provide reliable results in the current research. This

evidence notwithstanding, information gleaned from other sources, including mathematical and

computer science texts, simulation-related newsgroups and discussion boards, and discussions with

knowledgeable individuals, indicates that it is possible and desirable to employ custom random

number generators in rigorous scientific research. These random number generators, which may be

coded in commonly available programming languages, provide a truly random number stream,

insuring maximum validity of the research results. It is therefore recommended that future research

involving the LCS and XCS learning algorithms using VB.NET employ a custom random number

generator for maximum reliability.

Although there have been recent uses of Java and Windows-based PCs to conduct classifier

system research, the vast majority of existing research was conducted on Unix-based mainframe

systems, using programs written in C or C++. There were, therefore, concerns regarding potential

performance problems with using VB.NET and Windows-based machines in the current research.

Specifically, the LCS and XCS simulations performed in this research require literally millions of

individual steps and calculations, resulting in lengthy elapsed time from initiation to completion. The

choice of programming language, therefore, was of concern as it was thought VB.NET might not be

as efficient as other programming languages. The authoritative source documentation for VB.NET,

however, states that it executes at the same speed as other programming languages and should

therefore perform as well as other LCS and XCS implementations (Balena 2002). Regarding

hardware concerns, it is quite likely that the computers used to host the experimental simulations in

the current research were slower than their mainframe counterparts used in pre-existing research.

The flexibility and availability of using these machines, however, provide other advantages to the

131

researcher; therefore, future research on Windows-based computers could quite possibly become

more prevalent.

In contrast to concerns regarding VB.NET’s performance, its use as the programming language

in the current research provides several distinct advantages over other possible programming

languages. Specifically, VB.NET is the language used by Microsoft itself to program its Microsoft

Office suite of applications, including Word, Excel, PowerPoint, and Access. This native

compatibility provides the opportunity to integrate data collection routines into the simulation

program’s execution. As described previously, this feature was employed in the current research,

with modules to automatically store and display data in Microsoft Excel spreadsheets. In addition,

VB.NET executables may be deployed on common Windows-based personal computers, greatly

extending the flexibility of the researcher. Finally, as is true of other programming languages offering

Graphical User Interface (GUI) capabilities, VB.NET offers the ability to interact with the user in a

visual manner, providing the researcher with the opportunity to examine evolutionary path traces

during the course of normal execution. These advantages of VB.NET made it an excellent choice

for the current research and will also likely result in an increasing number of LCS and XCS

implementations using VB.NET and other Windows-based programming languages.

Finally, there were a number of programming issues related to the decomposition of XCS into

its constituent mechanisms. First, because a detailed and thorough exposition of the XCS

implementation was readily available (Butz and Wilson 2001), the decision was made to first

program XCS and then to add elements from a traditional LCS implementation. After thorough

analysis and testing, this approach was deemed to have provided the desired isolation of XCS’s

architectural characteristics. However, it may have been preferable to begin with a traditional LCS

implementation and to add on XCS’s functionality until a full blown XCS implementation was

achieved. Based on testing and analyses performed during the course of this research, it is quite

possible that both approaches would result in the exact same results. Secondly, because various the

LCS and XCS algorithms are quite complex, there is necessarily a great deal of interaction between

various classifier sets, parameter settings, and architectural characteristics. For this reason, it is

possible there were unintended interaction effects resulting from the decomposition of XCS. As

with issue one above, detailed analysis and testing provided evidence that the program used in the

current research correctly isolated the architectural characteristics and their effects, and that the

resulting experimental findings and conclusions are therefore valid and reliable. However, because

this is the first research of its type, additional confidence would be provided via replication by

132

another researcher or methodology. Finally, much previous LCS and XCS research has been

performed using previously tested and validated programs. That is, the programs were written by

experts in the field and have been used sufficiently to provide confidence that they were worked as

intended. As stated previously, the custom program used in this research was coded from scratch

using Butz and Wilson’s model (Butz and Wilson 2001), necessitating many design and

implementation decisions on the part of the researcher. As with the other issues related to the

program’s performance, extensive analysis and testing indicates the program worked correctly and

provided the desired implementations of both the LCS and XCS algorithms. Additional confidence

would be gained, however, through testing of this program in other problem domains used in other

existing research. Specifically, it is recommended that the program written for the current research

be exercised in the multiplexer problem domain to replicate existing experimental results. This

validation of the custom program used in this research would lend additional credibility and validity

to the experimental findings and results reported herein.

133

Appendix B: XCS SETS AND PARAMETERS

This appendix provides basic definitions and descriptions of the sets and parameters used in the

XCS learning algorithm. The following descriptions are based substantially on Butz and Wilson’s

comprehensive description of an XCS implementation (Butz and Wilson 2001), using a similar

approach and format. Their words and descriptions are excerpted here with kind permission from

the authors.

THE DIFFERENT SETS

There are four different sets of classifiers that are maintained in Learning Classifier System

paradigms:

1. The population [P] consists of all classifiers that exist at any time t.
2. The match set [M] is formed out of the current [P]; it includes all classifiers that match the

current situation.
3. The action set [A] is formed out of the current [M]; it includes all classifiers of [M] that

propose the executed action.

LEARNING PARAMETERS

The following parameters are used to control a learning classifier system’s learning process:

• N specifies the maximum size of the population (in micro-classifiers, i.e., N is the sum

of the classifier numerosities. The population size, N, should be large enough so that,

starting from an empty population, covering occurs only at the very beginning of a

competition; in the current research, N has been set at 300.

• β is the learning rate for Þ, ε, f, and as. According to Wilson, β should be set in the

range of 0.1-0.2; the current research uses 0.15.

• α, ε0, and ν are used in calculating the fitness of a classifier. Wilson states that α is

normally set to 0.1; this research has also used this convention, setting α to 0.1. The

parameter ε0 is the error value below which classifiers are considered to have equal

accuracy; a typical value would be about one percent of the maximum value of the

reward function; therefore, this research uses 0.05. The power parameter ν is typically 5;

this value has been used in the current research.

• γ is the discount factor used—in multi-step problems—in updating classifier

predictions. The algorithm used in this research adopts the conventional value of 0.71

for this parameter.

134

• θGA is the GA threshold. The GA is applied in a set when the average time since the last

GA in the set is greater than θGA. According to Wilson, this parameter is often set to a

value between 25 and 50; the current research uses 25.

• χ is the probability of applying crossover in the GA. Wilson states that crossover

probabilities between 0.5 and 1.0 have been used; this research uses 0.5.

• μ specifies the probability of applying mutation in the GA. Typical mutation parameter

values are between 0.01 and 0.05; this research uses 0.01.

• θdel is the deletion threshold. If the experience of a classifier is greater than θdel, its fitness

may be considered in its probability of deletion. The algorithm used in this research

adopts Wilson’s recommendation that this value be around 20.

• δ specifies the fraction of the mean fitness in [P] below which the fitness of a classifier

may be considered in its probability of deletion. Likewise, the current research sets δ at

Wilson’s recommend value of 0.1.

• θsub is the subsumption threshold. The experience of a classifier must be greater than θsub

in order to be able to subsume another classifier. Wilson recommends this parameter be

set at 20; this convention has been used here.

• P# is the probability of using a # in one attribute in C when covering. The current

research has adopted Wilson’s recommended value of 0.33 for this parameter.

• ÞI, εI, and fI are used as initial values in new classifiers; each has been set to Wilson’s

recommended value of 0.01.

• Þexplr specifies the probability during action selection of choosing the action uniform

randomly. As with other parameters, the current research uses Wilson’s recommended

value of 0.50.

• θmna specifies the minimal number of actions that must be present in a match set [M], or

else covering will occur; the current research uses the number of possible actions: 2.

• doGASumsumption is a Boolean parameter that specifies if offspring are to be tested

for possible logical subsumption by parents. This parameter varies depending on

whether the particular agent allows for its population to be ≤ N.

• doActionSetSubsumption is a Boolean parameter that specifies if action sets are to be

tested for subsuming classifiers. As with doGASumsumption above, this parameter

varies depending on whether the particular agent allows for its population to be ≤ N.

135

Appendix C: PROGRAM CODE LISTING

Imports System.Reflection
Imports System.Runtime.InteropServices

' General Information about an assembly is controlled through the following
' set of attributes. Change these attribute values to modify the information
' associated with an assembly.

' Review the values of the assembly attributes

<Assembly: AssemblyTitle("Alphabet Soup & Machine Learning")>
<Assembly: AssemblyDescription("VB.NET Implementations of LCS, XCS, and
Variants")>
<Assembly: AssemblyCompany("")>
<Assembly: AssemblyProduct("")>
<Assembly: AssemblyCopyright("2004 by David Gaines")>
<Assembly: AssemblyTrademark("")>
<Assembly: CLSCompliant(True)>

'The following GUID is for the ID of the typelib if this project is exposed
to COM
<Assembly: Guid("5EC79B5F-25DE-480C-A229-9B51B62D7EB5")>

' Version information for an assembly consists of the following four values:
'
' Major Version
' Minor Version
' Build Number
' Revision
'
' You can specify all the values or you can default the Build and Revision
Numbers
' by using the '*' as shown below:

<Assembly: AssemblyVersion("1.0.*")>

Imports System
Imports System.Collections
Imports System.Drawing
Imports System.Math
Imports Microsoft.VisualBasic
Imports System.Threading
Imports System.IO
Imports System.Runtime.Serialization
Imports System.Runtime.Serialization.Formatters.Binary
Imports Scripting
Imports Excel
Imports System.Reflection ' For Missing.Value and BindingFlags
Imports System.Runtime.InteropServices ' For COMException
Imports System.Web.Mail

Module Code

 'Define classifier's data structure
 <Serializable()> Structure Classifier

136

 Public UniqueID As Integer
 Public Number As Integer
 Public Condition() As Char
 Public Action As Char
 Public Prediction As Double
 Public PredictionError As Double
 Public Fitness As Double
 Public Experience As Integer
 Public TimeStamp As Date
 Public ActionSetSize As Double
 Public Numerosity As Integer
 End Structure

 'Define metrics structure
 Structure Metric
 Public Generation As Integer
 Public AgentAction As Char
 Public AgentReward As Integer
 Public OpponentAction As Char
 Public OpponentReward As Integer
 Public Correct As Boolean
 Public SystemPrediction As Decimal
 Public SystemError As Decimal
 Public PopulationCount As Integer
 Public UniquePopulationCount As Integer
 Public PopulationPercentOptimal As Decimal

 End Structure

 'Declare XCS classifier sets
 Public Population As New ArrayList()
 Public ActionSet As New ArrayList()
 Public PreviousActionSet As New ArrayList()
 Public MatchSet As New ArrayList()

 'Declare Environment
 Public Environment() As Char 'array which stores players' previous moves
 Public PreviousEnvironment() As Char 'array which holds previous
Environment

 'Declare other global parameters
 Public frmSplashScreen As New SplashScreen()
 Public frm As New XCSOpeningScreen()
 Public CurrentEncounter As Metric
 Public ExploitEncounters As New ArrayList()
 Public FolderName, ExperimentName As String
 Public SaveDetail As String
 Public Explain As Boolean
 Public ClassifiersCreated As Integer
 Public Enablers() As Integer

 Public Exploit As Boolean
 Public DetailedSW, SummarySW, SASSW, ParameterSW As IO.StreamWriter
 Public Generation As Integer = 1
 Public Problem As String
 Public GraduatedRewards As Boolean
 Public ClassifierUpdates As String

137

 Public ActualFiringClassifier As Integer
 Public ConditionLength As Integer
 Public ExperimentBeginTime, ExperimentEndTime As Date

 Sub Main() 'main loop
 frm.ShowDialog() 'get user input for learning and experimental
parameters
 End Sub

 Public Function RunExperiment() As Boolean

 'Declare learning parameters

 Dim N As Integer = frm.nudN.Value 'maximum population size, equal to
the sum of the classifier numerosities
 Dim Beta As Decimal = frm.nudBeta.Value 'learning rate for
Prediction, PredictionError, Fitness, and ActionSetSize
 Dim Alpha As Decimal = frm.nudAlpha.Value 'learning rate used in
calculating classifier Fitness
 Dim Epsilon0 As Decimal = frm.nudEpsilon0.Value 'error value below
which classifiers are considered to have equal accuracy
 Dim Nu As Integer = frm.nudNu.Value 'power parameter used in
calculating classifier Fitness
 Dim Gamma As Decimal = frm.nudGamma.Value 'discount factor used to
update classifier predictions in multi-step problems
 Dim ThetaGA As Integer = frm.nudThetaGA.Value 'GA threshhold value;
GA is applied when average time since last GA is greater than ThetaGA
 Dim Chi As Decimal = frm.nudChi.Value 'probability of applying
crossover in the GA
 Dim Mu As Decimal = frm.nudMu.Value 'probability of mutating an
allele in the offspring
 Dim ThetaDel As Integer = frm.nudThetaDel.Value 'deletion threshhold
value; if classifier experience is > ThetaDel, its fitness is considered in
its probability of deletion
 Dim Delta As Decimal = frm.nudDelta.Value 'specifies fraction of mean
fitness in [P] below which the fitness of a classifier may be considered in
its probability of deletion
 Dim ThetaSub As Integer = frm.nudThetaSub.Value 'subsumption
threshhold value; classifier experience must be > ThetaSub to be able to
subsume another classifier and to be a member of [O]
 Dim ProbPound As Decimal = frm.nudProbPound.Value 'probability of
using a # in one allele during covering
 Dim InitialPrediction As Decimal = frm.nudInitialPrediction.Value
'initial Prediction in new classifier
 Dim InitialPredictionError As Decimal =
frm.nudInitialPredictionError.Value 'initial PredictionError in new
classifier
 Dim InitialFitness As Decimal = frm.nudInitialPredictionError.Value
'initial Fitness in new classifier
 Dim ProbXPlor As Decimal = frm.nudProbXPlor.Value 'probability of
selecting an action randomly during action selection
 Dim ThetaMNA As Integer = frm.nudThetaMNA.Value 'minimal number of
actions in [A] to preclude covering
 Dim DoGASubsumption As Boolean = frm.cboDoGASub.SelectedIndex
'specifies if offspring are to be tested for possible logical subsumption by
parents

138

 Dim DoASSubsumption As Boolean = frm.cboDoASSub.SelectedIndex
'specifies if action sets are to be tested for subsuming classifiers

 'Declare IPD parameters
 Dim DesiredGenerations As Integer = frm.nudGenerations.Value
 Dim Reward1 As Integer = frm.nudReward1.Value
 Dim Reward2 As Integer = frm.nudReward2.Value
 Dim Reward3 As Integer = frm.nudReward3.Value
 Dim Reward4 As Integer = frm.nudReward4.Value
 Dim NumberMoves As Integer = frm.nudNumberMoves.Value
 ReDim Enablers(NumberMoves)
 If frm.cboWhoseMoves.Text = "Both" Then
 ConditionLength = NumberMoves * 2
 Else
 ConditionLength = NumberMoves
 End If

 Dim Opponent As String

 'Declare experiment parameters
 Dim Replications As Integer = frm.nudReplications.Value
 Dim Frequency As Integer = frm.nudFreq.Value
 Dim PseudoRandomness As String = frm.cboPseudoRandomness.Text

 'Declare agent parameters
 Dim AgentType As String = frm.cboAgentType.Text
 Dim ClassifierFitness As String = frm.cboClassifierFitness.Text
 Dim InitialPopulation As String = frm.cboInitialPopulation.Text
 Dim PopulationSize As String = frm.cboPopSize.Text
 Dim GAScope As String = frm.cboGAScope.Text
 Dim ParentSelection As String = frm.cboParentSelection.Text
 Dim ActionSelection As String = frm.cboActionSelection.Text
 Dim ClassifierDeletion As String = frm.cboClassifierDeletion.Text
 ClassifierUpdates = frm.cboClassifierFitnessUpdates.Text

 'Declare my parameters and variables
 Dim FormProgressBar As ProgressBar = frm.pbar1
 Dim SingleStep As Boolean = True 'flag to indicate single step
problem
 Dim i, Rep As Integer 'counters for replications and experiment
 Dim PredictionArray(2) As Decimal 'position 1 hold Cs, position 2
holds Ds
 Dim P As Decimal 'Q-learning-like payoff quantity
 SaveDetail = frm.cboSaveDetail.Text
 Explain = frm.cboExplain.SelectedIndex
 Problem = frm.cboProblem.Text
 If Problem = "IPD" Then
 Opponent = frm.cboOpponent.Text
 GraduatedRewards = False
 Else
 Opponent = "6-MUX"
 If frm.cboGraduatedRewards.Text = "Yes" Then
 GraduatedRewards = True
 Else
 GraduatedRewards = False
 End If
 End If

139

 ExperimentName = AgentType & " vs " & Opponent & ", " &
DesiredGenerations & " encounters, " & _
 Replications & " reps"

 If frm.cboCrankitUp.Text = "Yes" Then
 Thread.CurrentThread.Priority = ThreadPriority.AboveNormal
 End If

 ' Display the ProgressBar control.
 FormProgressBar.Visible = True

 ' Set Minimum to 1 to represent the first file being copied
 FormProgressBar.Minimum = 1

 ' Set Maximum to the total number of files to copy
 FormProgressBar.Maximum = DesiredGenerations * Replications

 ' Set the initial value of the ProgressBar.
 FormProgressBar.Value = 1

 ' Set the Step property to a value of 1 to represent each file being
copied.
 FormProgressBar.Step = 1

 If PseudoRandomness = "Constant Seed" Then
 Rnd(-1) 'this statement and the next insures same random number
stream for each experiment
 Randomize(1)
 'MsgBox("The 1st constant seed pseudo random number = " & Rnd())
 Else
 Randomize()
 'MsgBox("The 1st time-based seed pseudo random number = " &
Rnd())
 End If

 For Rep = 1 To Replications

 If SaveDetail = "All" Then
 DetailedSW = IO.File.CreateText(FolderName & "\" &
ExperimentName & " " & "Populations, Replication " & Rep & ".txt")
 DetailedSW.WriteLine(AgentType & " vs " & Opponent & ", " & _
 "N = " & N & _
 ", " & PseudoRandomness & ", " & InitialPopulation & _
 ", Total Generations/Encounters = " & _
 DesiredGenerations & ", Measurement Frequency = " &
Frequency)
 DetailedSW.WriteLine()
 SummarySW = IO.File.CreateText(FolderName & "\" &
ExperimentName & " Metrics, Replication " & Rep & ".csv")
 ElseIf SaveDetail = "Summary" Then
 SummarySW = IO.File.CreateText(FolderName & "\" &
ExperimentName & " Metrics, Replication " & Rep & ".csv")
 End If

 'Reset variables, initialize XCS
 Population.Clear()
 ActionSet.Clear()

140

 PreviousActionSet.Clear()
 MatchSet.Clear()
 ClassifiersCreated = 0
 'MetricsQueue.Clear()

 Generation = 1

 'can either populate Population with random classifiers, or can
leave empty and populate by covering
 '--

 If Generation = 1 And InitialPopulation = "N Random Classifiers"
Then
 Population.Add(Nothing)
 'initally populate population with random classifiers
 InitializePopulation(N, InitialPrediction,
InitialPredictionError, _
 InitialFitness)
 If Explain Then
 OutputArrayofClassifierstoScreen("Initial randomly
generated population", Population)
 End If
 End If

 If SaveDetail = "All" Then
 WritePopulation(Rep, 0, "Detailed")
 ElseIf SaveDetail = "Summary" Then
 SummarySW.WriteLine(",Population,,,Correct %" & ",,,,,,," & _
 "Squared Error" & ",,,,,,," & _
 "Agent's Reward" & ",,,,,,," & _
 "Opponent's Reward" & ",,,,,,," & _
 "Optimal %" & ",,,,,,,")
 SummarySW.WriteLine("Generation" & "," & "Pop Size" & "," &
"Unique" & "," & _
 "Mean" & "," & "Std Dev" & "," & "Median" & "," & "Mode"
& "," & _
 "Min" & "," & "Max" & "," & "Range" & "," & _
 "Mean" & "," & "Std Dev" & "," & "Median" & "," & "Mode"
& "," & _
 "Min" & "," & "Max" & "," & "Range" & "," & _
 "Mean" & "," & "Std Dev" & "," & "Median" & "," & "Mode"
& "," & _
 "Min" & "," & "Max" & "," & "Range" & "," & _
 "Mean" & "," & "Std Dev" & "," & "Median" & "," & "Mode"
& "," & _
 "Min" & "," & "Max" & "," & "Range" & "," & _
 "Mean" & "," & "Std Dev" & "," & "Median" & "," & "Mode"
& "," & _
 "Min" & "," & "Max" & "," & "Range")
 End If

 Do
 System.Windows.Forms.Application.DoEvents()
 'get current Environment
 If Generation = 1 Or Opponent = "6-MUX" Then
 Environment = GetSituation()
 End If

141

 If SaveDetail = "All" Then
 DetailedSW.WriteLine("Environment = " &
EnvironmentString())
 End If

 If Explain Then
 OutputConditiontoScreen(Environment, "Environment #" &
Generation)
 End If

 'generate match set out of [P] using current Environment
 MatchSet = GenerateMatchSet(N, ThetaDel, Delta, ProbPound, _
 InitialPrediction, InitialPredictionError,
InitialFitness, ThetaMNA, _
 Environment, ClassifierDeletion, PopulationSize)

 If Explain Then
 'OutputArrayofClassifierstoScreen("Population #" &
Generation, Population)
 OutputArrayofClassifierstoScreen("Match Set # " &
Generation _
 & "; environment was " & EnvironmentString(),
MatchSet)
 End If
 'generate prediction array out of [M]
 PredictionArray = GeneratePredictionArray()
 If SaveDetail = "All" Then
 DetailedSW.WriteLine("Pred (C D) = (" &
FormatNumber(PredictionArray(1), 4) & _
 " " & FormatNumber(PredictionArray(2), 4) & ")")
 End If
 'MsgBox("Prediction array for C = " & PredictionArray(1))
 'MsgBox("Prediction array for D = " & PredictionArray(2))

 'select action according to PA
 CurrentEncounter.Generation = Generation
 CurrentEncounter.AgentAction = SelectAction(PredictionArray,
ProbXPlor, ActionSelection)
 If SaveDetail = "All" Then
 If Exploit Then
 DetailedSW.WriteLine("Exploited and chose action " &
CurrentEncounter.AgentAction)
 Else
 DetailedSW.WriteLine("Explored and chose action " &
CurrentEncounter.AgentAction)
 End If
 End If

 'MsgBox("Chosen action = " & Action)

 'generate action set out of [M] according to action
 GenerateActionSet(CurrentEncounter.AgentAction)

 If Explain Then

142

 OutputArrayofClassifierstoScreen("Choosing action " &
CurrentEncounter.AgentAction & " results in Action Set #" & Generation,
ActionSet)
 End If
 'execute action
 P = PlayGame(CurrentEncounter.AgentAction, Reward1, Reward2,
Reward3, Reward4, Opponent)

 If CurrentEncounter.AgentAction = "C" Or
CurrentEncounter.AgentAction = "0" Then
 CurrentEncounter.SystemPrediction = PredictionArray(1)
'position 1 hold Cs, position 2 holds Ds
 CurrentEncounter.SystemError = (P - PredictionArray(1)) ^
2
 Else
 CurrentEncounter.SystemPrediction = PredictionArray(2)
 CurrentEncounter.SystemError = (P - PredictionArray(2)) ^
2
 End If

 If SaveDetail = "All" Then
 DetailedSW.WriteLine("Agent played " &
CurrentEncounter.AgentAction & _
 " " & Opponent & " played " &
CurrentEncounter.OpponentAction)
 DetailedSW.WriteLine("Agent earned " &
CurrentEncounter.AgentReward & _
 " " & Opponent & " earned " &
CurrentEncounter.OpponentReward)
 DetailedSW.WriteLine("Prediction = " &
FormatNumber(CurrentEncounter.SystemPrediction, 4) & _
 " " & "Squared Error = " &
FormatNumber(CurrentEncounter.SystemError, 4))
 DetailedSW.WriteLine("Correct = " &
CurrentEncounter.Correct)
 DetailedSW.WriteLine()
 End If

 'MsgBox("Agent played " & CurrentEncounter.AgentAction & vbCr
& Opponent & " played " & CurrentEncounter.OpponentAction & vbCr & "Agent
earned " & CurrentEncounter.AgentReward & vbCr & Opponent & " earned " &
CurrentEncounter.OpponentReward & vbCr & "Prediction was " &
CurrentEncounter.SystemPrediction & vbCr & "Error was " &
CurrentEncounter.SystemError & vbCr & "Correct = " &
CurrentEncounter.Correct)
 'Reward(Generation) = PlayGame(Action, Reward1, Reward2,
Reward3, Reward4, Opponent)

 'below lines commented on 3 Oct for single step IPD----------

 'If PreviousActionSet.Count > 0 Then
 ' 'update P
 ' P = UpdateP(PredictionArray, Reward, Generation, Gamma)

 ' 'If ActionSet.Count > 2 Then

143

 ' 'OutputConditiontoScreen(Environment, "Environment #" &
Generation)
 ' 'OutputArrayofClassifierstoScreen("Population #" &
Generation, Population)
 ' 'OutputArrayofClassifierstoScreen("Match Set #" &
Generation, MatchSet)
 ' 'OutputArrayofClassifierstoScreen("Action Set #" &
Generation, ActionSet)
 ' 'MsgBox("Reward = " & Reward(Generation))
 ' 'End If

 ' 'update set [A]-1 using P, possibly deleting in [P]

 ' 'OutputArrayofClassifierstoScreen("Action Set [-1]
before update, generation #" & Generation, PreviousActionSet)
 ' UpdateSet(PreviousActionSet, P, Beta, Epsilon0, Alpha,
Nu, DoASSubsumption, _
 ' ThetaSub)
 ' 'OutputArrayofClassifierstoScreen("Action Set [-1] after
update, generation #" & Generation, PreviousActionSet)
 ' 'OutputArrayofClassifierstoScreen("Action Set after
update, generation #" & Generation, ActionSet)
 ' 'OutputArrayofClassifierstoScreen("Population after
Action Set Update", Population)

 ' 'run GA in [A]-1 considering previous Environment,
inserting and possibly deleting in [P]
 ' RunGA()

 'End If
 'above lines commented on 3 Oct for single-step IPD ---------

 If SingleStep Then

 'update set [A] using P, possibly deleting in [P]
 UpdateSet(P, Beta, Epsilon0, Alpha, Nu, DoASSubsumption,
_
 ThetaSub, ClassifierFitness)
 If Explain Then
 OutputArrayofClassifierstoScreen("Action Set " &
Generation & " after parameter updates", ActionSet)
 OutputArrayofClassifierstoScreen("Population " &
Generation & " after parameter updates", Population)
 End If
 'run GA in [A] considering current Environment, inserting
and possibly deleting in [P]
 RunGA(Generation, ThetaGA, Chi, Mu, DoGASubsumption,
ThetaSub, Epsilon0, _
 N, ThetaDel, Delta, GAScope, ClassifierDeletion,
ParentSelection, PopulationSize)

 'empty previous action set

 Else
 'increment generation

144

 'replace previous action set with current action set
 'OutputArrayofClassifierstoScreen("Action Set before
assignment, generation #" & Generation, _
 ' ActionSet)
 If Generation > 1 Then
 If Explain Then
 OutputArrayofClassifierstoScreen("Previous Action
Set before assignment, generation #" & Generation, _
 PreviousActionSet)
 End If
 End If

 PreviousActionSet = CloneObject(ActionSet)

 'OutputArrayofClassifierstoScreen("Action Set after
assignment, generation #" & Generation, _
 ' ActionSet)
 'OutputArrayofClassifierstoScreen("Previous Action Set
after assignment, generation #" & Generation, _
 ' PreviousActionSet)

 'PreviousActionSet = ActionSet

 PreviousEnvironment = Environment

 'store reward information (already taken care of?)

 'store previous Environment

 End If
 CurrentEncounter.PopulationCount = Population.Count - 1
 CurrentEncounter.UniquePopulationCount =
CountUniqueClassifiers()
 CurrentEncounter.PopulationPercentOptimal =
PercentOptimal(Opponent, Problem, Epsilon0, ThetaSub)
 'Write data to text file
 If SaveDetail = "All" Or SaveDetail = "Summary" Or SaveDetail
= "SAS Only" Then
 'store data
 If Exploit Then
 ExploitEncounters.Add(CurrentEncounter)
 End If

 If SaveDetail = "All" Then
 WritePopulation(Rep, Generation, "Detailed")
 End If

 If Generation Mod Frequency = 0 Then
 If SaveDetail = "Summary" Then
 'commented the following the eliminate
unnecessary stat calculations
 'SummarySW.WriteLine(Generation & "," & _
 ' ArrayAvg(ExploitEncounters,
"PopulationCount") & "," & _
 ' ArrayAvg(ExploitEncounters,
"UniquePopulationCount") & "," & _

145

 ' ArrayAvg(ExploitEncounters, "Correct") * 100
& "," & _
 ' ArrayStdDev(ExploitEncounters, "Correct") *
100 & "," & _
 ' ArrayMed(ExploitEncounters, "Correct") & ","
& _
 ' ArrayMod(ExploitEncounters, "Correct") & ","
& _
 ' ArrayMin(ExploitEncounters, "Correct") & ","
& _
 ' ArrayMax(ExploitEncounters, "Correct") & ","
& _
 ' ArrayRng(ExploitEncounters, "Correct") & ","
& _
 ' ArrayAvg(ExploitEncounters, "SystemError") &
"," & _
 ' ArrayStdDev(ExploitEncounters,
"SystemError") & "," & _
 ' ArrayMed(ExploitEncounters, "SystemError") &
"," & _
 ' ArrayMod(ExploitEncounters, "SystemError") &
"," & _
 ' ArrayMin(ExploitEncounters, "SystemError") &
"," & _
 ' ArrayMax(ExploitEncounters, "SystemError") &
"," & _
 ' ArrayRng(ExploitEncounters, "SystemError") &
"," & _
 ' ArrayAvg(ExploitEncounters, "AgentReward") &
"," & _
 ' ArrayStdDev(ExploitEncounters,
"AgentReward") & "," & _
 ' ArrayMed(ExploitEncounters, "AgentReward") &
"," & _
 ' ArrayMod(ExploitEncounters, "AgentReward") &
"," & _
 ' ArrayMin(ExploitEncounters, "AgentReward") &
"," & _
 ' ArrayMax(ExploitEncounters, "AgentReward") &
"," & _
 ' ArrayRng(ExploitEncounters, "AgentReward") &
"," & _
 ' ArrayAvg(ExploitEncounters,
"OpponentReward") & "," & _
 ' ArrayStdDev(ExploitEncounters,
"OpponentReward") & "," & _
 ' ArrayMed(ExploitEncounters,
"OpponentReward") & "," & _
 ' ArrayMod(ExploitEncounters,
"OpponentReward") & "," & _
 ' ArrayMin(ExploitEncounters,
"OpponentReward") & "," & _
 ' ArrayMax(ExploitEncounters,
"OpponentReward") & "," & _
 ' ArrayRng(ExploitEncounters,
"OpponentReward") & "," & _

146

 ' ArrayAvg(ExploitEncounters,
"PopulationPercentOptimal") * 100 & "," & _
 ' ArrayStdDev(ExploitEncounters,
"PopulationPercentOptimal") * 100 & "," & _
 ' ArrayMed(ExploitEncounters,
"PopulationPercentOptimal") & "," & _
 ' ArrayMod(ExploitEncounters,
"PopulationPercentOptimal") & "," & _
 ' ArrayMin(ExploitEncounters,
"PopulationPercentOptimal") & "," & _
 ' ArrayMax(ExploitEncounters,
"PopulationPercentOptimal") & "," & _
 ' ArrayRng(ExploitEncounters,
"PopulationPercentOptimal"))
 SummarySW.WriteLine(Generation & "," & _
 ArrayAvg(ExploitEncounters, "PopulationCount")
& "," & _
 ArrayAvg(ExploitEncounters,
"UniquePopulationCount") & "," & _
 ArrayAvg(ExploitEncounters, "Correct") * 100 &
"," & _
 "0," & _
 "0," & _
 "0," & _
 "0," & _
 "0," & _
 "0," & _
 ArrayAvg(ExploitEncounters, "SystemError") &
"," & _
 "0," & _
 "0," & _
 "0," & _
 "0," & _
 "0," & _
 "0," & _
 ArrayAvg(ExploitEncounters, "AgentReward") &
"," & _
 "0," & _
 "0," & _
 "0," & _
 "0," & _
 "0," & _
 "0," & _
 ArrayAvg(ExploitEncounters, "OpponentReward")
& "," & _
 "0," & _
 "0," & _
 "0," & _
 "0," & _
 "0," & _
 "0," & _
 ArrayAvg(ExploitEncounters,
"PopulationPercentOptimal") * 100 & "," & _
 "0," & _
 "0," & _
 "0," & _
 "0," & _

147

 "0," & _
 "0")
 SASSW.WriteLine(Rep & " " & AgentType & " " & _
 Generation & " " & _
 ArrayAvg(ExploitEncounters,
"UniquePopulationCount") & " " & _
 ArrayAvg(ExploitEncounters, "Correct") * 100
& " " & _
 FormatNumber(ArrayAvg(ExploitEncounters,
"SystemError"), 4, True) & " " & _
 ArrayAvg(ExploitEncounters,
"PopulationPercentOptimal") * 100)
 ElseIf SaveDetail = "SAS Only" Then
 SASSW.WriteLine(Rep & " " & AgentType & " " & _
 Generation & " " & _
 ArrayAvg(ExploitEncounters,
"UniquePopulationCount") & " " & _
 ArrayAvg(ExploitEncounters, "Correct") * 100
& " " & _
 FormatNumber(ArrayAvg(ExploitEncounters,
"SystemError"), 4, True) & " " & _
 ArrayAvg(ExploitEncounters,
"PopulationPercentOptimal") * 100 & " " & _
 ExploitEncounters.Count)
 End If

 If Explain Then
 MsgBox("Generation " & Generation & vbCr &
"Population.Count = " & Population.Count - 1 & vbCr & _
 "Proportion Correct = " &
FormatPercent(ArrayAvg(ExploitEncounters, "Correct"), 3, True) & vbCr & _
 "Total Squared Error = " &
FormatNumber(ArraySum(ExploitEncounters, "SystemError"), 3, True) & vbCr & _
 "Avg Squared Error = " &
FormatNumber(ArrayAvg(ExploitEncounters, "SystemError"), 3, True) & vbCr & _
 "Total Agent Reward = " &
FormatNumber(ArraySum(ExploitEncounters, "AgentReward"), 3, True) & vbCr & _
 "Average Agent Reward = " &
FormatNumber(ArrayAvg(ExploitEncounters, "AgentReward"), 3, True) & vbCr & _
 "Total Opponent Reward = " &
FormatNumber(ArraySum(ExploitEncounters, "OpponentReward"), 3, True) & vbCr &
_
 "Average Opponent Reward = " &
FormatNumber(ArrayAvg(ExploitEncounters, "OpponentReward"), 3, True))
 End If

 'reset summary data variables
 ExploitEncounters.Clear()
 End If

 End If
 Generation += 1 'increment experiment counter

 FormProgressBar.PerformStep()

 If Generation Mod 1000 = 0 Then
 FormProgressBar.Refresh()

148

 frm.Refresh()
 End If

 Loop Until Generation = DesiredGenerations + 1

 'record final population
 If SaveDetail = "All" Or SaveDetail = "Summary" Then
 SummarySW.WriteLine()
 SummarySW.WriteLine("Final Population:") '& "," &
DateDiff(DateInterval.Minute, ExperimentBeginTime, ExperimentEndTime) & _
 '" minutes" & "," & (DateDiff(DateInterval.Second,
ExperimentBeginTime, ExperimentEndTime) Mod 60) & _
 '" seconds")
 WritePopulation(Rep, Generation, "Summary")

 End If

 'close and dispose of stringwriter objects

 If SaveDetail = "All" Then
 DetailedSW.Flush()
 DetailedSW.Close()
 SummarySW.Flush()
 SummarySW.Close()
 End If
 If SaveDetail = "Summary" Then
 SummarySW.Flush()
 SummarySW.Close()
 End If

 If Explain Then
 MsgBox(N & " classifiers x " &
FormatNumber(DesiredGenerations, 0, True, False, True) & _
 " generations took: " &
DateDiff(DateInterval.Minute, ExperimentBeginTime, ExperimentEndTime) & _
 " minutes, " & (DateDiff(DateInterval.Second,
ExperimentEndTime, ExperimentBeginTime) Mod 60) & _
 " seconds", , "Elapsed Time")
 OutputArrayofClassifierstoScreen("Population #" & Generation
& " Final Population", Population)
 End If
 frm.Refresh()
 Next Rep

 'store in Excel files
 If SaveDetail = "All" Or SaveDetail = "Summary" Then
 StoreDataInExcel(False, Rep - 1, N, Generation - 1, _
 Frequency, PseudoRandomness, InitialPopulation) 'stores metrics
 DeleteCSVFiles()
 End If

 'made this all comments on 26 Jun 05
 'delete all instances of Excel
 'Dim xlApp As Excel.Application
 'On Error Resume Next
 'xlApp = GetObject(, "Excel.Application")
 'On Error GoTo 0

149

 'If xlApp Is Nothing Then
 ' Excel(wasn) 't open - open a new one
 ' xlApp = GetObject("", "Excel.Application")
 'End If
 'xlApp.Quit()
 'xlApp = Nothing

 RunExperiment = True
 'MsgBox("Experiment done")
 FormProgressBar.Visible = False

 End Function 'end of experiment

 Public Function InitializePopulation(ByVal N As Integer, _
 ByVal InitialPrediction As Decimal, _
 ByVal InitialPredictionError As Decimal, ByVal InitialFitness As Decimal)
As ArrayList()

 Dim TempClassifier, TempClassifier2 As Classifier
 Dim i, j, m As Integer 'counter variables for walking through
population
 Dim RandomNumber As Decimal

 For i = 1 To (N - 1) Step 2
 ReDim TempClassifier.Condition(ConditionLength)
 ReDim TempClassifier2.Condition(ConditionLength)

 ClassifiersCreated += 2
 TempClassifier.UniqueID = ClassifiersCreated - 1
 TempClassifier2.UniqueID = ClassifiersCreated

 TempClassifier.Number = i
 TempClassifier2.Number = i + 1
 If i = 1 Then
 For j = 1 To ConditionLength
 TempClassifier.Condition(j) = "#"
 TempClassifier2.Condition(j) = "#"
 Next j
 Else
 For j = 1 To ConditionLength 'don't set array(0), which will
equal 0
 RandomNumber = Rnd()
 If RandomNumber < (1 / 3) Then
 If Problem = "IPD" Then
 TempClassifier.Condition(j) = "C"
 TempClassifier2.Condition(j) = "C"
 Else
 TempClassifier.Condition(j) = "0"
 TempClassifier2.Condition(j) = "0"
 End If
 ElseIf RandomNumber < (2 / 3) Then
 If Problem = "IPD" Then
 TempClassifier.Condition(j) = "D"
 TempClassifier2.Condition(j) = "D"
 Else
 TempClassifier.Condition(j) = "1"
 TempClassifier2.Condition(j) = "1"

150

 End If
 Else
 TempClassifier.Condition(j) = "#"
 TempClassifier2.Condition(j) = "#"
 End If
 Next j

 End If
 If Problem = "IPD" Then
 TempClassifier.Action = "C"
 TempClassifier2.Action = "D"
 Else
 TempClassifier.Action = "0"
 TempClassifier2.Action = "1"
 End If

 'check to see if tempclassifier matches an existing classifier
 For j = 1 To Population.Count - 1
 If ExactMatch(Population(j), TempClassifier) Then
 If Explain Then
 MsgBox("During initial population generation, exact
match between ...")
 OutputClassifiertoScreen(Population(j), "First
Classifier")
 OutputClassifiertoScreen(TempClassifier, "Second
Classifier")
 End If
 For m = 1 To ConditionLength 'don't set array(0), which
will equal 0
 RandomNumber = Rnd()
 If RandomNumber < (1 / 3) Then
 If Problem = "IPD" Then
 TempClassifier.Condition(m) = "C"
 TempClassifier2.Condition(m) = "C"
 Else
 TempClassifier.Condition(m) = "0"
 TempClassifier2.Condition(m) = "0"
 End If

 ElseIf RandomNumber < (2 / 3) Then
 If Problem = "IPD" Then
 TempClassifier.Condition(m) = "D"
 TempClassifier2.Condition(m) = "D"
 Else
 TempClassifier.Condition(m) = "1"
 TempClassifier2.Condition(m) = "1"
 End If
 Else
 TempClassifier.Condition(m) = "#"
 TempClassifier2.Condition(m) = "#"
 End If
 Next m
 'set j = 0 to walk through whole population again
 j = 0
 End If

 Next j

151

 TempClassifier.Prediction = InitialPrediction 'initial very low
prediction
 TempClassifier2.Prediction = InitialPrediction
 TempClassifier.PredictionError = InitialPredictionError 'initial
very low prediction error
 TempClassifier2.PredictionError = InitialPredictionError
 TempClassifier.Fitness = InitialFitness 'intial very low fitness
 TempClassifier2.Fitness = InitialFitness
 TempClassifier.Experience = 0 'no initial experience
 TempClassifier2.Experience = 0
 TempClassifier.TimeStamp = Date.Now 'initial creation time
 TempClassifier2.TimeStamp = Date.Now
 TempClassifier.ActionSetSize = 1 'initial action set size of 1
 TempClassifier2.ActionSetSize = 1
 TempClassifier.Numerosity = 1 'initial numerosity of 1
 TempClassifier2.Numerosity = 1

 Population.Add(TempClassifier)
 Population.Add(TempClassifier2)

 Next i

 End Function

 Public Function GetSituation() As Char()
 Dim i As Integer 'counter for Newizing Environment (number of moves
to remember)
 Dim RandomNumber As Decimal
 Dim NewEnvironment(ConditionLength) As Char 'dimension Environment to
hold correct number of moves

 For i = 1 To ConditionLength 'don't set array(0), which will equal 0
 RandomNumber = Rnd()
 If RandomNumber < 0.5 Then
 If Problem = "IPD" Then
 NewEnvironment(i) = "C"
 Else
 NewEnvironment(i) = "0"
 End If

 Else
 If Problem = "IPD" Then
 NewEnvironment(i) = "D"
 Else
 NewEnvironment(i) = "1"
 End If
 End If
 Next i
 Return NewEnvironment 'function has successfully completed
 End Function

 Public Function GenerateMatchSet(ByVal N As Integer, ByVal ThetaDel As
Integer, _
 ByVal Delta As Decimal, ByVal ProbPound As Decimal, _

152

 ByVal InitialPrediction As Decimal, ByVal InitialPredictionError As
Decimal, _
 ByVal InitialFitness As Decimal, ByVal ThetaMNA As Integer, _
 ByVal Environment() As Char, ByVal ClassifierDeletion As String, _
 ByVal PopulationSize As String) As ArrayList

 Dim NewMatchSet As New ArrayList()
 Dim DiscreteActions As New Collection()

 Dim Message As String = "[M] = "
 Dim ExistingAction As Char
 Dim i, j, DifferentActions As Integer

 If Population.Count = 0 Then
 Population.Add(Nothing)
 If Problem = "IPD" Then
 If Rnd() < 0.5 Then
 ExistingAction = "C"
 Else
 ExistingAction = "D"
 End If
 Else
 If Rnd() < 0.5 Then
 ExistingAction = "0"
 Else
 ExistingAction = "1"
 End If
 End If
 Population.Add(GenerateCoveringClassifier(InitialPrediction, _
 InitialPredictionError, InitialFitness, ThetaDel, Delta, _
 Environment, ProbPound, 1, ExistingAction))

 NewMatchSet = Population
 End If

 While NewMatchSet.Count = 0

 For i = 1 To Population.Count - 1
 If DoesMatch(Population(i), Environment) Then
 If Explain Then
 MsgBox("Population (" & i & ") matches environment")
 End If
 If SaveDetail = "All" Then
 Message &= i & " "
 End If
 j += 1
 NewMatchSet.Add(Population(i))
 End If
 Next

 NewMatchSet.Insert(0, Nothing)
 For i = 1 To NewMatchSet.Count - 1
 ' we need to ignore errors, if duplicates are to be discarded
 On Error Resume Next

 ' the Execute method does the search and returns a
MatchCollection object

153

 ' if duplicates are to be discarded, we just add a key to the
 ' collection item
 ' and the Add method will do the rest
 DiscreteActions.Add(DirectCast(NewMatchSet(i),
Classifier).Action, _
 DirectCast(NewMatchSet(i), Classifier).Action)
 If DiscreteActions.Count >= ThetaMNA Then
 Exit For
 End If

 Next i

 If DiscreteActions.Count < ThetaMNA Then
 If DiscreteActions.Count = 0 Then
 If Problem = "IPD" Then
 If Rnd() < 0.5 Then
 ExistingAction = "C"
 Else
 ExistingAction = "D"
 End If
 Else
 If Rnd() < 0.5 Then
 ExistingAction = "0"
 Else
 ExistingAction = "1"
 End If
 End If
 Else
 ExistingAction = DiscreteActions(1)
 End If
 'Generate covering classifier
 Population.Add(GenerateCoveringClassifier(InitialPrediction,
_
 InitialPredictionError, InitialFitness, ThetaDel, Delta,
_
 Environment, ProbPound, Population.Count,
ExistingAction))
 If Explain Then
 OutputArrayofClassifierstoScreen("Population before
Deletion", Population)
 End If
 DeleteFromPopulation(N, ThetaDel, Delta, ClassifierDeletion,
PopulationSize)
 RenumberPopulation()

 If Explain Then
 OutputArrayofClassifierstoScreen("Population after
Deletion", Population)
 End If
 NewMatchSet.Clear()
 End If
 If SaveDetail = "All" Then
 DetailedSW.WriteLine(Message)
 End If

 End While

154

 Return NewMatchSet
 End Function

 Public Function GeneratePredictionArray() As Decimal()
 Dim i As Integer
 Dim NewPredictionArray(2) As Decimal 'array to hold predictions for
each possible action
 Dim FitnessSumArray(2) As Decimal 'array to hold sum of action
fitnesses

 For i = 1 To MatchSet.Count - 1

 If DirectCast(MatchSet(i), Classifier).Action = "C" Or _
 DirectCast(MatchSet(i), Classifier).Action = "0" Then
 NewPredictionArray(1) += _
 (DirectCast(MatchSet(i), Classifier).Prediction * _
 DirectCast(MatchSet(i), Classifier).Fitness)
 FitnessSumArray(1) += DirectCast(MatchSet(i),
Classifier).Fitness
 Else
 NewPredictionArray(2) += _
 (DirectCast(MatchSet(i), Classifier).Prediction * _
 DirectCast(MatchSet(i), Classifier).Fitness)
 FitnessSumArray(2) += DirectCast(MatchSet(i),
Classifier).Fitness
 End If

 Next i

 For i = 1 To UBound(NewPredictionArray)
 If FitnessSumArray(i) <> 0 Then
 'prediction array equals total prediction divided by total
fitness
 NewPredictionArray(i) = NewPredictionArray(i) /
FitnessSumArray(i)
 End If
 Next i

 GeneratePredictionArray = NewPredictionArray
 If Explain Then
 MsgBox("C prediction: " & FormatNumber(NewPredictionArray(1), 4)
& vbCrLf & "D prediction: " & _
 FormatNumber(NewPredictionArray(2), 4), , "Prediction Array")
 End If

 End Function

 Public Function SelectAction(ByVal PredictionArray() As Decimal, _
 ByVal ProbXPlor As Decimal, ByVal ActionSelection As String) As Char

 Dim Cs, Ds, i, k As Integer 'counters for number of Cs and Ds, and
index
 Dim Random1, Random2 As Decimal
 Random1 = Rnd()
 Random2 = Rnd()

 If ActionSelection = "Biased Exploration" Then

155

 For i = 1 To MatchSet.Count - 1
 If DirectCast(MatchSet(i), Classifier).Action = "C" Or _
 DirectCast(MatchSet(i), Classifier).Action = "0" Then
 Cs += 1
 Else
 Ds += 1
 End If
 Next

 If Random1 < ProbXPlor And Cs > 0 _
 And Ds > 0 Then
 Exploit = False
 If Explain Then
 MsgBox("Exploring ...")
 End If
 If Random2 < 0.5 Then
 If Problem = "IPD" Then
 SelectAction = "C"
 Else
 SelectAction = "0"
 End If
 Else
 If Problem = "IPD" Then
 SelectAction = "D"
 Else
 SelectAction = "1"
 End If
 End If
 If Explain Then
 MsgBox("'Explored' and chose action " & SelectAction)
 End If

 ElseIf Cs > 0 And Ds > 0 Then
 Exploit = True
 If PredictionArray(1) = PredictionArray(2) Then
 If Rnd() < 0.5 Then
 If Problem = "IPD" Then
 SelectAction = "C"
 Else
 SelectAction = "0"
 End If
 Else
 If Problem = "IPD" Then
 SelectAction = "D"
 Else
 SelectAction = "1"
 End If
 End If
 ElseIf PredictionArray(1) > PredictionArray(2) Then
 If Problem = "IPD" Then
 SelectAction = "C"
 Else
 SelectAction = "0"
 End If
 Else
 If Problem = "IPD" Then

156

 SelectAction = "D"
 Else
 SelectAction = "1"
 End If
 End If
 If Explain Then
 MsgBox("'Exploited' and chose 'best' action " &
SelectAction)
 End If
 Else
 Exploit = True
 If Cs > 0 Then
 If Problem = "IPD" Then
 SelectAction = "C"
 Else
 SelectAction = "0"
 End If
 Else
 If Problem = "IPD" Then
 SelectAction = "D"
 Else
 SelectAction = "1"
 End If
 End If
 End If

 If ClassifierUpdates = "Firing Classifier" Then

 'determine firing classifier by selecting matching classifier
with
 'smallest number of #s. If tie, select classifier with higher
fitness.
 'If tie between fitness, select randomly
 Dim LowestClassifierPounds, ClassifierPounds, j As Integer
 LowestClassifierPounds = 1000
 For i = 1 To MatchSet.Count - 1
 ClassifierPounds = 0
 If DirectCast(MatchSet(i), Classifier).Action =
SelectAction Then
 For j = 1 To UBound(DirectCast(MatchSet(i),
Classifier).Condition)
 If DirectCast(MatchSet(i),
Classifier).Condition(j) = "#" Then
 ClassifierPounds += 1
 End If
 Next j
 If ClassifierPounds < LowestClassifierPounds Then
 LowestClassifierPounds = ClassifierPounds
 ActualFiringClassifier = i
 ElseIf ClassifierPounds = LowestClassifierPounds Then
 If DirectCast(MatchSet(i), Classifier).Fitness >
_
 DirectCast(MatchSet(ActualFiringClassifier),
Classifier).Fitness Then
 ActualFiringClassifier = i
 Else
 If Rnd() < 0.5 Then

157

 ActualFiringClassifier = i
 End If
 End If
 End If
 End If
 Next

 For i = 1 To UBound(Enablers) - 1
 Enablers(i) = Enablers(i + 1)
 Next
 Enablers(UBound(Enablers)) =
DirectCast(MatchSet(ActualFiringClassifier), Classifier).UniqueID
 End If
 Return SelectAction

 Else 'fitness proportional selection
 Exploit = True
 Dim FitnessSum, ChoicePoint As Decimal

 'calculate total fitness
 For i = 1 To MatchSet.Count - 1
 FitnessSum += DirectCast(MatchSet(i), Classifier).Fitness
 Next i

 'calculate choice point
 ChoicePoint = Rnd() * FitnessSum

 'reset total fitness
 FitnessSum = 0

 'apply fitness proportional selection
 For i = 1 To MatchSet.Count - 1
 FitnessSum += DirectCast(MatchSet(i), Classifier).Fitness
 If FitnessSum > ChoicePoint Then
 ActualFiringClassifier = i
 For k = 1 To UBound(Enablers) - 1
 Enablers(k) = Enablers(k + 1)
 Next
 Enablers(UBound(Enablers)) = _
 DirectCast(MatchSet(ActualFiringClassifier),
Classifier).UniqueID
 Return DirectCast(MatchSet(i), Classifier).Action
 End If
 Next i
 End If

 End Function

 Public Function GenerateActionSet(ByVal Action As Char) As Boolean

 ActionSet.Clear()
 ActionSet.Add(Nothing)

 If ClassifierUpdates = "Firing Classifier" Then
 ActionSet.Add(MatchSet(ActualFiringClassifier))
 Else
 Dim i, j As Integer

158

 Dim Message As String = "[A] = "
 For i = 1 To MatchSet.Count - 1
 If DirectCast(MatchSet(i), Classifier).Action = Action Then
 If SaveDetail = "All" Then
 Message &= DirectCast(MatchSet(i), Classifier).Number
& " "
 End If
 ActionSet.Add(MatchSet(i))
 End If
 Next
 If SaveDetail = "All" Then
 DetailedSW.WriteLine(Message)
 End If

 GenerateActionSet = True
 End If

 End Function

 Public Function UpdateP(ByVal PredictionArray() As Decimal, _
 ByVal Reward() As Integer, ByVal Generation As Integer, _
 ByVal Gamma As Decimal) As Decimal

 Dim MaxPA As Decimal 'highest prediction in PredictionArray
 If Explain Then
 MsgBox("C prediction: " & PredictionArray(1) & vbCrLf & "D
prediction: " & _
 PredictionArray(2), , "Prediction Array")
 End If

 If PredictionArray(1) > PredictionArray(2) Then
 MaxPA = PredictionArray(1)
 Else
 MaxPA = PredictionArray(2)
 End If
 If Explain Then
 MsgBox("Max prediction array value = " & MaxPA)
 End If
 'UpdateP = Reward(Generation - 1) + Gamma * MaxPA 'this is the
UpdateP value when using multiple time steps
 UpdateP = Reward(Generation - 1) 'this is the UpdateP with one step
problems
 'MsgBox("Previous reward = " & Reward(Generation - 1))
 'MsgBox("Update P = " & UpdateP)
 End Function

 Public Function PlayGame(ByVal Action As Char, ByVal Reward1 As Integer,
_
 ByVal Reward2 As Integer, ByVal Reward3 As Integer, _
 ByVal Reward4 As Integer, ByVal Opponent As String) As Integer

 Dim i As Integer
 If Problem = "IPD" Then
 Select Case Opponent ' Evaluate Opponent
 Case "DDD" ' Opponent always defects
 CurrentEncounter.OpponentAction = "D"
 If Action = "C" Then

159

 CurrentEncounter.OpponentReward = Reward1
 CurrentEncounter.AgentReward = Reward4
 CurrentEncounter.Correct = False
 Else
 CurrentEncounter.OpponentReward = Reward3
 CurrentEncounter.AgentReward = Reward3
 CurrentEncounter.Correct = True
 End If
 PlayGame = CurrentEncounter.AgentReward
 Case "CCC" ' Opponent always cooperates
 CurrentEncounter.OpponentAction = "C"
 If Action = "C" Then
 CurrentEncounter.OpponentReward = Reward2
 CurrentEncounter.AgentReward = Reward2
 CurrentEncounter.Correct = True
 Else
 CurrentEncounter.OpponentReward = Reward4
 CurrentEncounter.AgentReward = Reward1
 CurrentEncounter.Correct = False
 End If
 PlayGame = CurrentEncounter.AgentReward +
CurrentEncounter.OpponentReward
 Case "RAND" ' Opponent is random
 If Rnd() < 0.5 Then
 CurrentEncounter.OpponentAction = "C"
 If Action = "C" Then
 CurrentEncounter.OpponentReward = Reward2
 CurrentEncounter.AgentReward = Reward2
 CurrentEncounter.Correct = False
 Else
 CurrentEncounter.OpponentReward = Reward4
 CurrentEncounter.AgentReward = Reward1
 CurrentEncounter.Correct = True
 End If

 Else
 CurrentEncounter.OpponentAction = "D"
 If Action = "C" Then
 CurrentEncounter.OpponentReward = Reward1
 CurrentEncounter.AgentReward = Reward4
 CurrentEncounter.Correct = False
 Else
 CurrentEncounter.OpponentReward = Reward3
 CurrentEncounter.AgentReward = Reward3
 CurrentEncounter.Correct = True
 End If

 End If
 PlayGame = CurrentEncounter.AgentReward
 Case "TFT" ' Opponent is Tit-for-Tat
 CurrentEncounter.OpponentAction =
Environment(UBound(Environment) - 1)
 If CurrentEncounter.OpponentAction = "C" Then
 If Action = "C" Then
 CurrentEncounter.OpponentReward = Reward2
 CurrentEncounter.AgentReward = Reward2
 CurrentEncounter.Correct = True

160

 Else
 CurrentEncounter.OpponentReward = Reward4
 CurrentEncounter.AgentReward = Reward1
 CurrentEncounter.Correct = False
 End If
 Else
 If Action = "C" Then
 CurrentEncounter.OpponentReward = Reward1
 CurrentEncounter.AgentReward = Reward4
 CurrentEncounter.Correct = True
 Else
 CurrentEncounter.OpponentReward = Reward3
 CurrentEncounter.AgentReward = Reward3
 CurrentEncounter.Correct = False
 End If

 End If
 PlayGame = CurrentEncounter.AgentReward +
CurrentEncounter.OpponentReward
 Case "TFTT" ' Opponent is Tit-for-Two-Tat
 If Environment(UBound(Environment) - 1) = "D" And _
 Environment(UBound(Environment) - 3) = "D" Then
 CurrentEncounter.OpponentAction = "D"
 Else
 CurrentEncounter.OpponentAction = "C"
 End If

 If CurrentEncounter.OpponentAction = "C" Then
 If Action = "C" Then
 CurrentEncounter.OpponentReward = Reward2
 CurrentEncounter.AgentReward = Reward2
 CurrentEncounter.Correct = True
 Else
 CurrentEncounter.OpponentReward = Reward4
 CurrentEncounter.AgentReward = Reward1
 CurrentEncounter.Correct = False
 End If
 Else
 If Action = "C" Then
 CurrentEncounter.OpponentReward = Reward1
 CurrentEncounter.AgentReward = Reward4
 CurrentEncounter.Correct = True
 Else
 CurrentEncounter.OpponentReward = Reward3
 CurrentEncounter.AgentReward = Reward3
 CurrentEncounter.Correct = False
 End If

 End If
 PlayGame = CurrentEncounter.AgentReward +
CurrentEncounter.OpponentReward
 Case "TTFT" ' Opponent is Tit-for-Two-Tat
 If Environment(UBound(Environment) - 1) = "D" Or _
 Environment(UBound(Environment) - 3) = "D" Then
 CurrentEncounter.OpponentAction = "D"
 Else
 CurrentEncounter.OpponentAction = "C"

161

 End If

 If CurrentEncounter.OpponentAction = "C" Then
 If Action = "C" Then
 CurrentEncounter.OpponentReward = Reward2
 CurrentEncounter.AgentReward = Reward2
 CurrentEncounter.Correct = True
 Else
 CurrentEncounter.OpponentReward = Reward4
 CurrentEncounter.AgentReward = Reward1
 CurrentEncounter.Correct = False
 End If
 Else
 If Action = "C" Then
 CurrentEncounter.OpponentReward = Reward1
 CurrentEncounter.AgentReward = Reward4
 CurrentEncounter.Correct = True
 Else
 CurrentEncounter.OpponentReward = Reward3
 CurrentEncounter.AgentReward = Reward3
 CurrentEncounter.Correct = False
 End If

 End If
 PlayGame = CurrentEncounter.AgentReward +
CurrentEncounter.OpponentReward
 Case Else ' Other values.
 MsgBox("Opponent not recognized")
 End Select

 'OpponentAction = InputBox("XCS's action is " & Action & _
 '"; please enter Opp's choice: (C or D)", "Enter Opponent
Action", "C")

 'PlayGame = CurrentEncounter.AgentReward

 For i = 1 To UBound(Environment) - 2 Step 2
 Environment(i) = Environment(i + 2)
 Environment(i + 1) = Environment(i + 3)
 Next
 Environment(UBound(Environment) - 1) = Action
 Environment(UBound(Environment)) =
CurrentEncounter.OpponentAction
 Else
 Dim MUXString(UBound(Environment)) As Integer
 Dim AgentIntegerAction As Integer

 For i = 1 To UBound(Environment)
 If Environment(i) = "0" Then
 MUXString(i) = 0
 ElseIf Environment(i) = "1" Then
 MUXString(i) = 1
 Else
 MsgBox("There is a # in the environment's condition!")
 End If
 Next

162

 If CurrentEncounter.AgentAction = "0" Then
 AgentIntegerAction = 0
 ElseIf CurrentEncounter.AgentAction = "1" Then
 AgentIntegerAction = 1
 Else
 MsgBox("There is a # in the action!")
 End If

 If GraduatedRewards Then

 'put graduated rewards here
 Select Case MUXString(1)
 Case 0
 Select Case MUXString(2)
 Case 0
 If (Not MUXString(1) And Not MUXString(2) And
MUXString(3)) _
 Or (Not MUXString(1) And MUXString(2) And
MUXString(4)) _
 Or (MUXString(1) And Not MUXString(2) And
MUXString(5)) _
 Or (MUXString(1) And MUXString(2) And
MUXString(6)) = AgentIntegerAction Then
 'correct for 00

 CurrentEncounter.AgentReward = 300
 CurrentEncounter.Correct = True
 Else
 'incorrect for 00
 CurrentEncounter.AgentReward = 0
 CurrentEncounter.Correct = False
 End If

 Case 1
 If (Not MUXString(1) And Not MUXString(2) And
MUXString(3)) _
 Or (Not MUXString(1) And MUXString(2) And
MUXString(4)) _
 Or (MUXString(1) And Not MUXString(2) And
MUXString(5)) _
 Or (MUXString(1) And MUXString(2) And
MUXString(6)) = AgentIntegerAction Then
 'correct for 01
 CurrentEncounter.AgentReward = 400
 CurrentEncounter.Correct = True
 Else
 'incorrect for 01
 CurrentEncounter.AgentReward = 100
 CurrentEncounter.Correct = False
 End If
 End Select
 Case 1
 Select Case MUXString(2)
 Case 0
 If (Not MUXString(1) And Not MUXString(2) And
MUXString(3)) _

163

 Or (Not MUXString(1) And MUXString(2) And
MUXString(4)) _
 Or (MUXString(1) And Not MUXString(2) And
MUXString(5)) _
 Or (MUXString(1) And MUXString(2) And
MUXString(6)) = AgentIntegerAction Then
 'correct for 10
 CurrentEncounter.AgentReward = 500
 CurrentEncounter.Correct = True
 Else
 'incorrect for 10
 CurrentEncounter.AgentReward = 200
 CurrentEncounter.Correct = False
 End If

 Case 1
 If (Not MUXString(1) And Not MUXString(2) And
MUXString(3)) _
 Or (Not MUXString(1) And MUXString(2) And
MUXString(4)) _
 Or (MUXString(1) And Not MUXString(2) And
MUXString(5)) _
 Or (MUXString(1) And MUXString(2) And
MUXString(6)) = AgentIntegerAction Then
 'correct for 11
 CurrentEncounter.AgentReward = 1000
 CurrentEncounter.Correct = True
 Else
 'incorrect for 11
 CurrentEncounter.AgentReward = 900
 CurrentEncounter.Correct = False
 End If
 End Select

 End Select
 Else
 If (Not MUXString(1) And Not MUXString(2) And MUXString(3)) _
 Or (Not MUXString(1) And MUXString(2) And MUXString(4)) _
 Or (MUXString(1) And Not MUXString(2) And MUXString(5)) _
 Or (MUXString(1) And MUXString(2) And MUXString(6)) =
AgentIntegerAction Then
 CurrentEncounter.AgentReward = 1000
 CurrentEncounter.Correct = True
 Else
 CurrentEncounter.AgentReward = 0
 CurrentEncounter.Correct = False
 End If

 End If

 End If
 'moved the following line to agent/opponent specific combinations on
14 Jul 04
 'PlayGame = CurrentEncounter.AgentReward
 If Explain Then

164

 MsgBox("Agent played " & CurrentEncounter.AgentAction & "; " &
Opponent & " played " & _
 CurrentEncounter.OpponentAction & vbCrLf & "Reward to agent
was " & PlayGame)
 End If

 End Function

 Public Function UpdateSet(ByVal P As Decimal, ByVal Beta As Decimal, _
 ByVal Epsilon0 As Decimal, ByVal Alpha As Decimal, ByVal Nu As
Integer, _
 ByVal DoASSubsumption As Boolean, ByVal ThetaSub As Integer, _
 ByVal ClassifierFitness As String) As Boolean

 Dim i, j, TempActionSetSize As Integer 'counters
 Dim TempClassifier As Classifier 'temporary classifier to hold
updates

 For j = 1 To ActionSet.Count - 1
 TempActionSetSize += DirectCast(ActionSet(j),
Classifier).Numerosity
 Next

 For i = 1 To ActionSet.Count - 1
 TempClassifier = DirectCast(ActionSet(i), Classifier)
 TempClassifier.Experience += 1

 If TempClassifier.Experience < (1 / Beta) Then
 TempClassifier.Prediction = TempClassifier.Prediction + _
 ((P - TempClassifier.Prediction) /
TempClassifier.Experience)
 TempClassifier.PredictionError =
TempClassifier.PredictionError + _
 (Abs(P - TempClassifier.Prediction) - _
 TempClassifier.PredictionError) /
TempClassifier.Experience
 TempClassifier.ActionSetSize = TempClassifier.ActionSetSize +
_
 (TempActionSetSize - TempClassifier.ActionSetSize) /
TempClassifier.Experience
 Else
 TempClassifier.Prediction = TempClassifier.Prediction + _
 Beta * (P - TempClassifier.Prediction)
 TempClassifier.PredictionError =
TempClassifier.PredictionError + _
 Beta * (Abs(P - TempClassifier.Prediction) - _
 TempClassifier.PredictionError)
 TempClassifier.ActionSetSize = TempClassifier.ActionSetSize +
_
 Beta * (TempActionSetSize - TempClassifier.ActionSetSize)
 End If
 ActionSet(i) = TempClassifier
 Next i

 UpdateFitness(Epsilon0, Alpha, Nu, Beta, P, ClassifierFitness)

 'recreate Action Set if only updating firing classifier

165

 If ClassifierUpdates = "Firing Classifier" Then
 GenerateActionSet(CurrentEncounter.AgentAction)
 End If

 If DoASSubsumption Then
 If ActionSet.Count > 2 Then
 ActionSetSubsumption(ThetaSub, Epsilon0)
 End If
 End If
 UpdateSet = True
 End Function

 Public Function ActionSetSubsumption(ByVal ThetaSub As Integer, _
 ByVal Epsilon0 As Decimal) As Boolean

 Dim CL, C As Classifier
 Dim i, j, k, CLPounds, CPounds, SubsumerNumber As Integer

 If Explain Then
 MsgBox("Performing Action Set subsumption ...")
 End If

 For i = 1 To ActionSet.Count - 1
 CLPounds = 0
 CPounds = 0
 C = DirectCast(ActionSet(i), Classifier)

 If CouldSubsume(C, ThetaSub, Epsilon0) Then
 If Explain Then
 MsgBox("Action set (" & i & ") can subsume")
 'OutputArrayofClassifierstoScreen("Action Set Reminder",
ActionSet)
 End If
 For j = 1 To UBound(C.Condition)
 If CL.Condition <> Nothing Then
 If CL.Condition(j) = "#" Then
 CLPounds += 1
 End If
 End If
 If C.Condition(j) = "#" Then
 CPounds += 1
 End If
 Next j

 If (CL.Condition Is Nothing Or _
 CPounds > CLPounds) Or _
 (CPounds = CLPounds And _
 Rnd() < 0.5) Then
 CL = C
 SubsumerNumber = CL.Number
 End If

 End If
 Next i

 If CL.Condition <> Nothing Then
 For i = ActionSet.Count - 1 To 1 Step -1 'To ActionSet.Count - 1

166

 If IsMoreGeneral(CL, ActionSet(i)) Then
 'If Generation Mod 25 = 0 Then
 ' MsgBox("here")
 'End If
 CL.Numerosity += DirectCast(ActionSet(i),
Classifier).Numerosity 'increase numerosity by subsumed classifer's
numerosity
 If Explain Then
 OutputArrayofClassifierstoScreen("Action Set before "
& CL.Number & " subsumes " & _
 DirectCast(ActionSet(i), Classifier).Number,
ActionSet)
 End If

 For k = 1 To Population.Count - 1
 If DirectCast(Population(k), Classifier).Number =
SubsumerNumber Then
 Population(k) = CL
 End If

 Next k

 Population.RemoveAt(DirectCast(ActionSet(i),
Classifier).Number)
 For k = 1 To ActionSet.Count - 1
 If DirectCast(ActionSet(k), Classifier).Number =
SubsumerNumber Then
 ActionSet(k) = CL
 End If
 Next k
 ActionSet.RemoveAt(i)
 If Explain Then
 OutputArrayofClassifierstoScreen("Action Set after
subsumption", ActionSet)
 End If
 End If

 Next i
 Else
 If Explain Then
 MsgBox("No action set classifiers 'Could Subsume'")
 End If
 End If

 End Function

 Public Function UpdateFitness(ByVal Epsilon0 As Decimal, ByVal Alpha As
Decimal, _
 ByVal Nu As Integer, ByVal Beta As Decimal, ByVal P As Decimal, ByVal
ClassifierFitness As String) As Boolean

 Dim i, j As Integer
 Dim TempClassifier As Classifier

 Dim ScoreVector(ActionSet.Count - 1) As Decimal
 Dim ScoreSum As Decimal

167

 If ClassifierFitness = "Prediction Accuracy" Then 'prediction
accuracy
 For i = 1 To ActionSet.Count - 1
 TempClassifier = DirectCast(ActionSet(i), Classifier)
 If TempClassifier.PredictionError < Epsilon0 Then
 ScoreVector(i) = 1
 Else
 ScoreVector(i) = Alpha * ((TempClassifier.PredictionError
/ _
 Epsilon0) ^ -Nu)
 End If
 ScoreSum += ScoreVector(i) * TempClassifier.Numerosity
 Next i

 For i = 1 To ActionSet.Count - 1
 TempClassifier = DirectCast(ActionSet(i), Classifier)
 TempClassifier.Fitness = TempClassifier.Fitness + Beta *
(ScoreVector(i) * TempClassifier.Numerosity / ScoreSum -
TempClassifier.Fitness)
 ActionSet(i) = TempClassifier
 Next i

 For i = 1 To ActionSet.Count - 1
 For j = 1 To Population.Count - 1
 If DirectCast(ActionSet(i), Classifier).UniqueID = _
 DirectCast(Population(j), Classifier).UniqueID Then
 Population(j) = CloneObject(ActionSet(i))
 End If
 Next j
 Next i
 Else 'prediction magnitude = bucket brigade

 For i = 1 To ActionSet.Count - 1
 TempClassifier = DirectCast(ActionSet(i), Classifier)
 TempClassifier.Fitness = P / (UBound(Enablers) + 1) + _
 (1 - Beta) * TempClassifier.Fitness
 ActionSet(i) = TempClassifier
 For j = 1 To Population.Count - 1
 If DirectCast(ActionSet(i), Classifier).UniqueID = _
 DirectCast(Population(j), Classifier).UniqueID Then
 Population(j) = CloneObject(ActionSet(i))
 End If
 Next j
 Next i

 For i = 1 To Population.Count - 1
 For j = 1 To UBound(Enablers)
 If DirectCast(Population(i), Classifier).UniqueID =
Enablers(j) Then
 TempClassifier = DirectCast(Population(i),
Classifier)
 TempClassifier.Fitness +=
CurrentEncounter.AgentReward / (UBound(Enablers) + 1)
 Population(i) = TempClassifier
 End If
 Next

168

 Next
 End If

 UpdateFitness = True
 End Function

 Public Function RunGA(ByVal Generation As Integer, ByVal ThetaGA As
Integer, _
 ByVal Chi As Decimal, ByVal Mu As Decimal, ByVal DoGASubsumption As
Boolean, _
 ByVal ThetaSub As Decimal, ByVal Epsilon0 As Decimal, ByVal N As Integer,
_
 ByVal ThetaDel As Integer, ByVal Delta As Decimal, ByVal GAScope As
String, _
 ByVal ClassifierDeletion As String, ByVal ParentSelection As String, _
 ByVal PopulationSize As String) As Boolean
 Dim i, r, DeletedMemberNumber As Integer
 Dim TempClassifier, Parent1, Parent2, Child1, Child2 As Classifier

 'check to see if time to run a GA
 If Generation Mod ThetaGA = 0 Then

 If Explain Then
 MsgBox("Generation " & Generation & " mod ThetaGA of " &
ThetaGA & " = 0, so time to GA!")
 End If

 If GAScope <> "Panmictic" Then
 'MsgBox("Action set has " & ActionSet.Count & " members")
 'If ActionSet.Count - 1 < 2 Then
 ' If SaveDetail = "All" Then
 ' DetailedSW.WriteLine("Action Set has only 1
classifier, so no GA :(")
 ' End If

 ' If Explain Then
 ' MsgBox("Action Set has only 1 classifier, so no GA
:(")
 ' End If
 ' Return True
 'Else
 For i = 1 To ActionSet.Count - 1
 TempClassifier = DirectCast(ActionSet(i), Classifier)
 TempClassifier.TimeStamp = Date.Now
 ActionSet(i) = TempClassifier
 Next i

 'select parents from Action Set
 Parent1 = DirectCast(ActionSet(SelectOffspring(ActionSet,
ParentSelection)), Classifier)
 Parent2 = DirectCast(ActionSet(SelectOffspring(ActionSet,
ParentSelection)), Classifier)

 'End If
 Else
 'If Population.Count - 1 < 2 Then
 ' If SaveDetail = "All" Then

169

 ' DetailedSW.WriteLine("Population has only 1
classifier, so no GA :(")
 ' End If

 ' If Explain Then
 ' MsgBox("Population has only 1 classifier, so no GA
:(")
 ' End If
 ' Return True
 'Else

 For i = 1 To Population.Count - 1
 TempClassifier = DirectCast(Population(i), Classifier)
 TempClassifier.TimeStamp = Date.Now
 Population(i) = TempClassifier
 Next i

 'select parents from Population
 Parent1 = DirectCast(Population(SelectOffspring(Population,
ParentSelection)), Classifier)
 Parent2 = DirectCast(Population(SelectOffspring(Population,
ParentSelection)), Classifier)
 'End If
 End If
 'clone parents as children
 Child1 = CloneObject(Parent1)
 Child2 = CloneObject(Parent2)

 'change child parameters
 Child1.Numerosity = 1
 Child2.Numerosity = 1
 Child1.Experience = 0
 Child2.Experience = 0

 'check whether to apply Crossover
 If (Rnd() < Chi And Not ExactMatch(Child1, Child2)) Then
 If Explain Then
 MsgBox("Doing crossover ...")
 End If

 'crossover the two children
 ApplyCrossover(Child1, Child2)

 'update new child parameters
 Child1.Prediction = (Parent1.Prediction + Parent2.Prediction)
/ 2
 Child1.PredictionError = (Parent1.PredictionError +
Parent2.PredictionError) / 2
 Child1.Fitness = (Parent1.Fitness + Parent2.Fitness) / 2
 Child2.Prediction = Child1.Prediction
 Child2.PredictionError = Child1.PredictionError
 Child2.Fitness = Child1.Fitness
 'If Explain Then
 ' OutputClassifiertoScreen(Child1, "Child #1 after
parameter averaging")
 ' OutputClassifiertoScreen(Child2, "Child #2 after
parameter averaging")

170

 'End If
 Else
 If SaveDetail = "All" Then
 DetailedSW.WriteLine("No crossover ...")
 End If

 If Explain Then
 MsgBox("No crossover ...")
 End If
 End If

 'decrease child fitness
 Child1.Fitness = Child1.Fitness * 0.1
 Child2.Fitness = Child2.Fitness * 0.1

 'apply mutation on child 1
 Child1 = ApplyMutation(CloneObject(Child1), Mu)

 'do GA subsumption if specified
 If DoGASubsumption Then
 If DoesSubsume(Parent1, Child1, ThetaSub, Epsilon0) Then

 If Explain Then
 MsgBox("Child 1 subsumed by Parent 1 in RunGA")
 OutputClassifiertoScreen(Child1, "Child 1 to be
subsumed by Parent 1")
 OutputClassifiertoScreen(Parent1, "Parent 1 subsuming
Child 1")
 OutputArrayofClassifierstoScreen("Population before
subsuming Child 1", Population)
 End If
 Parent1.Numerosity += 1
 'maybe ...
 'Population(Parent1.Number) = CloneObject(Parent1)

 '<><><><><><><><><><><><>
 For r = 1 To Population.Count - 1
 If DirectCast(Population(r), Classifier).UniqueID =
Parent1.UniqueID Then

 Population(r) = CloneObject(Parent1)
 End If
 Next r
 '<><><><><><><><><><><><>
 If Explain Then
 OutputClassifiertoScreen(Parent1, "Parent 1 after
subsuming Child 1")
 OutputArrayofClassifierstoScreen("Population after
subsuming Child 1", Population)
 End If
 ElseIf DoesSubsume(Parent2, Child1, ThetaSub, Epsilon0) Then

 If Explain Then
 MsgBox("Child 1 subsumed by Parent 2 in RunGA")
 OutputClassifiertoScreen(Child1, "Child 1 to be
subsumed by Parent 2")

171

 OutputClassifiertoScreen(Parent2, "Parent 2 subsuming
Child 1")
 OutputArrayofClassifierstoScreen("Population before
subsuming Child 1", Population)
 End If
 Parent2.Numerosity += 1

 'maybe ...
 'Population(Parent2.Number) = CloneObject(Parent2)

 '<><><><><><><><><><><><>
 For r = 1 To Population.Count - 1
 If DirectCast(Population(r), Classifier).UniqueID =
Parent2.UniqueID Then

 Population(r) = CloneObject(Parent2)
 End If
 Next r
 '<><><><><><><><><><><><>
 If Explain Then
 OutputClassifiertoScreen(Parent2, "Parent 2 after
subsuming Child 1")
 OutputArrayofClassifierstoScreen("Population after
subsuming Child 2", Population)
 End If
 Else
 If Explain Then
 OutputClassifiertoScreen(Child1, "Child 1 not
subsumed, add to pop")
 OutputArrayofClassifierstoScreen("Population before
adding Child 1", Population)
 End If
 InsertInPopulation(Child1, PopulationSize)
 If Explain Then
 OutputArrayofClassifierstoScreen("Population after
adding Child 1", Population)
 End If
 End If
 Else
 InsertInPopulation(Child1, PopulationSize)
 End If

 DeletedMemberNumber = DeleteFromPopulation(N, ThetaDel, Delta,
ClassifierDeletion, PopulationSize)
 Dim warningparent1, warningparent2 As Boolean
 warningparent1 = False
 warningparent2 = False

 If DeletedMemberNumber < Parent1.Number Then
 warningparent1 = True
 Parent1.Number -= 1
 End If

 If DeletedMemberNumber < Parent2.Number Then
 warningparent2 = True
 Parent2.Number -= 1
 End If

172

 'apply mutation to child2
 Child2 = ApplyMutation(CloneObject(Child2), Mu)

 'do GA subsumption if specified
 If DoGASubsumption Then
 If DoesSubsume(Parent1, Child2, ThetaSub, Epsilon0) Then
 If Explain Then
 MsgBox("Child 2 subsumed by Parent 1 in RunGA")
 OutputClassifiertoScreen(Child2, "Child 2 to be
subsumed by Parent 1")
 OutputClassifiertoScreen(Parent1, "Parent 1 subsuming
Child 2")
 OutputArrayofClassifierstoScreen("Population before
subsuming Child 2", Population)
 End If
 Parent1.Numerosity += 1
 'maybe ...
 'Population(Parent1.Number) = CloneObject(Parent1)

 '<><><><><><><><><><><><>
 For r = 1 To Population.Count - 1
 If DirectCast(Population(r), Classifier).UniqueID =
Parent1.UniqueID Then

 Population(r) = CloneObject(Parent1)
 End If
 Next r
 '<><><><><><><><><><><><>

 If Explain Then
 OutputClassifiertoScreen(Parent1, "Parent 1 after
subsuming Child 2")
 OutputArrayofClassifierstoScreen("Population after
subsuming Child 2", Population)
 End If
 ElseIf DoesSubsume(Parent2, Child2, ThetaSub, Epsilon0) Then

 If Explain Then
 MsgBox("Child 2 subsumed by Parent 2 in RunGA")
 OutputClassifiertoScreen(Child2, "Child 2 to be
subsumed by Parent 2")
 OutputClassifiertoScreen(Parent2, "Parent 2 subsuming
Child 2")
 OutputArrayofClassifierstoScreen("Population before
subsuming Child 2", Population)
 End If
 Parent2.Numerosity += 1
 'maybe ...
 'Population(Parent2.Number) = CloneObject(Parent2)

 '<><><><><><><><><><><><>
 For r = 1 To Population.Count - 1
 If DirectCast(Population(r), Classifier).UniqueID =
Parent2.UniqueID Then

 Population(r) = CloneObject(Parent2)

173

 End If
 Next r
 '<><><><><><><><><><><><>

 If Explain Then
 OutputClassifiertoScreen(Parent2, "Parent 2 after
subsuming Child 2")
 OutputArrayofClassifierstoScreen("Population after
subsuming Child 2", Population)
 End If
 Else
 If Explain Then
 OutputClassifiertoScreen(Child2, "Child 2 not
subsumed, add to pop")
 OutputArrayofClassifierstoScreen("Population before
adding Child 2", Population)
 End If
 InsertInPopulation(Child2, PopulationSize)
 If Explain Then
 OutputArrayofClassifierstoScreen("Population after
adding Child 2", Population)
 End If
 End If
 Else
 InsertInPopulation(Child2, PopulationSize)
 End If
 DeleteFromPopulation(N, ThetaDel, Delta, ClassifierDeletion,
PopulationSize)

 End If
 RenumberPopulation()
 RunGA = True
 End Function

 Public Function SelectOffspring(ByVal WhichSet As ArrayList, ByVal
ParentSelection As String) As Integer

 Dim i As Integer

 If ParentSelection = "Fitness Proportional" Then
 Dim FitnessSum, ChoicePoint As Decimal

 'fitness proportional method
 'calculate total fitness
 For i = 1 To WhichSet.Count - 1
 FitnessSum += DirectCast(WhichSet(i), Classifier).Fitness
 Next i

 'calculate choice point
 ChoicePoint = Rnd() * FitnessSum

 'reset total fitness
 FitnessSum = 0

 'apply fitness proportional selection
 For i = 1 To WhichSet.Count - 1
 FitnessSum += DirectCast(WhichSet(i), Classifier).Fitness

174

 If FitnessSum > ChoicePoint Then
 Return i
 End If
 Next i
 Else
 Dim Index1, Index2, WinningIndex As Integer
 Dim Competitor1, Competitor2 As Classifier
 Dim WinningFitness As Decimal

 'here's the Tournament Selection method
 If WhichSet.Count - 1 < 8 Then
 Index1 = Int((WhichSet.Count - 1) * Rnd() + 1)
 Index2 = Int((WhichSet.Count - 1) * Rnd() + 1)
 If DirectCast(WhichSet(Index1), Classifier).Fitness = _
 DirectCast(WhichSet(Index2), Classifier).Fitness Then
 If Rnd() < 0.5 Then
 Return Index1
 Else
 Return Index2
 End If
 Else
 If DirectCast(WhichSet(Index1), Classifier).Fitness > _
 DirectCast(WhichSet(Index2), Classifier).Fitness Then
 Return Index1
 Else
 Return Index2
 End If
 End If
 Else
 Index1 = Int((WhichSet.Count - 1) * Rnd() + 1)
 WinningIndex = Index1
 WinningFitness = DirectCast(WhichSet(WinningIndex),
Classifier).Fitness
 For i = 2 To Int((WhichSet.Count - 1) * 0.4) Step 1
 Index1 = Int((WhichSet.Count - 1) * Rnd() + 1)
 If DirectCast(WhichSet(Index1), Classifier).Fitness >
WinningFitness Then
 WinningIndex = Index1
 WinningFitness = DirectCast(WhichSet(WinningIndex),
Classifier).Fitness
 End If
 Next i
 Return WinningIndex
 End If

 End If
 End Function

 Function ApplyMutation(ByVal Victim As Classifier, _
 ByVal Mu As Decimal) As Classifier

 Dim i As Integer

 If Explain Then
 OutputClassifiertoScreen(Victim, "Victim before mutation")
 End If

175

 'perform bitwise mutation on classifier condition
 For i = 1 To UBound(Victim.Condition)
 If Rnd() < Mu Then
 If Explain Then
 MsgBox("Mutating allele #" & i)
 End If
 If Victim.Condition(i) = "#" Then
 Victim.Condition(i) = Environment(i)
 Else
 Victim.Condition(i) = "#"
 End If
 End If
 Next

 'now, possibly mutate action
 If Rnd() < Mu Then
 If Explain Then
 MsgBox("Mutating action ...")
 End If
 If Victim.Action = "C" Or Victim.Action = "0" Then
 If Problem = "IPD" Then
 Victim.Action = "D"
 Else
 Victim.Action = "1"
 End If

 Else
 If Problem = "IPD" Then
 Victim.Action = "C"
 Else
 Victim.Action = "0"
 End If

 End If
 End If

 If Explain Then
 OutputClassifiertoScreen(Victim, "Victim after mutation")
 End If

 Return Victim

 End Function

 Public Function DoesSubsume(ByVal Parent As Classifier, ByVal Child As
Classifier, _
 ByVal ThetaSub As Decimal, ByVal Epsilon0 As Decimal) As Boolean
 If Explain Then
 MsgBox("Checking 'Does Subsume' for following classifiers ...")
 OutputClassifiertoScreen(Child, "Potential child")
 OutputClassifiertoScreen(Parent, "Potential parent")
 End If
 If Parent.Action = Child.Action Then
 'MsgBox("Actions DO match")
 If CouldSubsume(Parent, ThetaSub, Epsilon0) Then
 'MsgBox("Parent 'CouldSubsume'")
 If IsMoreGeneral(Parent, Child) Then

176

 'MsgBox("Parent 'IsMoreGeneral'")
 Return True
 Else
 'MsgBox("Parent NOT 'IsMoreGeneral'")
 End If
 Else
 'MsgBox("Parent Not 'CouldSubsume'")

 End If
 Else
 'MsgBox("Actions DON'T match")
 End If
 If Explain Then
 MsgBox("Child not subsumed")
 End If
 DoesSubsume = False
 End Function

 Public Function InsertInPopulation(ByVal Child As Classifier, _
 ByVal PopulationSize As String) As Boolean
 Dim i, j As Integer
 Dim TempClassifier As Classifier
 For i = 1 To Population.Count - 1

 If ExactMatch(Child, Population(i)) And _
 PopulationSize = "Less than or equal to N" Then

 If Explain Then
 MsgBox("Instead of adding child, which exactly matches "
& vbCr & _
 "existing population member " & i & "," & vbCr & _
 "just update existing classifier's numerosity")
 End If
 'OutputClassifiertoScreen(Child, "Child which is exactly
matched by existing #" & i)
 'OutputClassifiertoScreen(Population(i), "Existing population
member " & i)

 'following code updates numerosity of existing classifier
 TempClassifier = DirectCast(Population(i), Classifier)
 TempClassifier.Numerosity += 1
 Population(i) = TempClassifier

 If SaveDetail = "All" Then
 DetailedSW.WriteLine("Increased population member " & i &
"'s numerosity")
 End If

 If Explain Then
 OutputClassifiertoScreen(Population(i), "Pop member " & i
& " after updating numerosity")
 'OutputArrayofClassifierstoScreen("Population after
update", Population)
 End If
 Return True
 End If

177

 Next i
 If Explain Then
 OutputClassifiertoScreen(Child, "Adding child ...")
 'OutputArrayofClassifierstoScreen("Population before adding
child", Population)
 End If
 If SaveDetail = "All" Then
 DetailedSW.WriteLine("Added child to population")
 End If
 ClassifiersCreated += 1
 Child.UniqueID = ClassifiersCreated
 Population.Add(Child)

 End Function

 Public Function DoesMatch(ByVal ClassifiertoCheck As Classifier, _
 ByVal Environment() As Char) As Boolean
 Dim i As Integer
 For i = 1 To UBound(ClassifiertoCheck.Condition)
 If ClassifiertoCheck.Condition(i) <> "#" And _
 ClassifiertoCheck.Condition(i) <> Environment(i) Then
 Return False
 End If
 Next
 DoesMatch = True 'condition matches environment
 End Function

 Public Function ExactMatch(ByVal FirstClassifiertoCheck As Classifier, _
 ByVal SecondClassifiertoCheck As Classifier) As Boolean

 If FirstClassifiertoCheck.Condition <>
SecondClassifiertoCheck.Condition _
 Or FirstClassifiertoCheck.Action <>
SecondClassifiertoCheck.Action Then
 Return False
 End If

 ExactMatch = True 'classifiers match exactly
 End Function

 Public Function GenerateCoveringClassifier(ByVal InitialPrediction As
Decimal, _
 ByVal InitialPredictionError As Decimal, ByVal InitialFitness As
Decimal, _
 ByVal ThetaDel As Integer, ByVal Delta As Decimal, ByVal
Environment() As Char, ByVal ProbPound As Decimal, _
 ByVal Number As Integer, ByVal ExistingAction As Char) As Classifier

 Dim NewClassifier As Classifier
 ReDim NewClassifier.Condition(ConditionLength)

 Dim i As Integer
 ClassifiersCreated += 1

 For i = 1 To UBound(Environment)
 If Rnd() < ProbPound Then
 NewClassifier.Condition(i) = "#"

178

 Else
 NewClassifier.Condition(i) = Environment(i)
 End If
 Next

 If ExistingAction = "C" Then
 NewClassifier.Action = "D"
 ElseIf ExistingAction = "D" Then
 NewClassifier.Action = "C"
 ElseIf ExistingAction = "0" Then
 NewClassifier.Action = "1"
 ElseIf ExistingAction = "1" Then
 NewClassifier.Action = "0"
 End If

 NewClassifier.UniqueID = ClassifiersCreated
 NewClassifier.Number = Number
 NewClassifier.Prediction = InitialPrediction 'initial very low
prediction
 NewClassifier.PredictionError = InitialPredictionError 'initial very
low prediction error
 NewClassifier.Fitness = InitialFitness 'intial very low fitness
 NewClassifier.Experience = 0 'no initial experience
 NewClassifier.TimeStamp = Date.Now 'initial creation time
 NewClassifier.ActionSetSize = 1 'initial action set size of 1
 NewClassifier.Numerosity = 1 'initial numerosity of 1
 If Explain Then
 MsgBox("Generated new classifier ...")
 OutputClassifiertoScreen(NewClassifier, "New Classifier Generated
by Covering")
 End If
 Return NewClassifier
 End Function

 Public Function DeleteFromPopulation(ByVal N As Integer, _
 ByVal ThetaDel As Integer, ByVal Delta As Decimal, _
 ByVal ClassifierDeletion As String, ByVal PopulationSize As String)
As Integer

 Dim i, j, MembertoDelete, TotalNumerosity As Integer
 Dim TotalFitness, AverageFitness, VoteSum, ChoicePoint As Decimal
 Dim TempClassifier As Classifier

 On Error GoTo ErrorHandler

 If PopulationSize = "Constant size of N" Then
 TotalNumerosity = Population.Count - 1
 Else
 For i = 1 To Population.Count - 1
 TotalNumerosity += Population(i).Numerosity
 TotalFitness += Population(i).Fitness
 Next i
 End If

 If TotalNumerosity > N Then
 If Explain Then

179

 MsgBox("Total numerosity = " & TotalNumerosity & ", which
exceeds N --> must delete")
 End If
 AverageFitness = TotalFitness / TotalNumerosity
 VoteSum = 0.0

 For i = 1 To Population.Count - 1
 VoteSum += DeletionVote(ThetaDel, Delta, Population(i),
AverageFitness, ClassifierDeletion)
 Next i

 ChoicePoint = Rnd() * VoteSum

 VoteSum = 0.0
 i = 0
 If ChoicePoint = 0 Then
 i = 1
 Else
 Do While VoteSum < ChoicePoint
 i += 1
 If i = Population.Count Then
 i -= 1
 ChoicePoint = 0
 Else
 VoteSum += DeletionVote(ThetaDel, Delta,
Population(i), AverageFitness, ClassifierDeletion)
 End If
 Loop
 End If

 If Explain Then
 MsgBox("Gonna do something with member " & i)
 OutputArrayofClassifierstoScreen("Population before
deletion", Population)
 End If

 If DirectCast(Population(i), Classifier).Numerosity > 1 Then
 TempClassifier = DirectCast(Population(i), Classifier)
 TempClassifier.Numerosity -= 1
 Population(i) = TempClassifier
 'Population(i).Numerosity -= 1
 If SaveDetail = "All" Then
 DetailedSW.WriteLine("Decreased population member " & i &
"'s numerosity by 1")
 End If
 If Explain Then
 MsgBox("Decreased population member " & i & "'s
numerosity by 1")
 End If
 DeleteFromPopulation = Population.Count
 Else
 Population.RemoveAt(i)
 DeleteFromPopulation = i
 If SaveDetail = "All" Then
 DetailedSW.WriteLine("Deleted population member " & i)
 End If

180

 If Explain Then
 MsgBox("Deleted population member " & i)
 End If
 End If

 If Explain Then
 OutputArrayofClassifierstoScreen("Population after deletion",
Population)
 End If
 Else
 If SaveDetail = "All" Then
 DetailedSW.WriteLine("Population numerosity = " &
TotalNumerosity & ", does not exceed N --> no deletion")
 End If
 If Explain Then
 MsgBox("Population numerosity = " & TotalNumerosity & ",
which does not exceed N --> no deletion")
 End If
 End If

 Exit Function

ErrorHandler:
 If Err.Number = 6 Then
 VoteSum = Decimal.MaxValue
 Else
 MsgBox("Error # " & Err.Number & ", " & Err.Description & " in
DeletionVote")
 End If

 Resume Next

 End Function

 Public Function DeletionVote(ByVal ThetaDel As Integer, ByVal Delta As
Decimal, _
 ByVal Classifier As Classifier, ByVal AverageFitness As Decimal, _
 ByVal ClassifierDeletion As String) As Decimal

 On Error GoTo ErrorHandler
 If ClassifierDeletion = "Fitness Only" Then
 'deletion vote is inverse of classifier's average fitness
 DeletionVote = Classifier.Numerosity / Classifier.Fitness
 Else

 ' Insert code that might generate an error here

 'deletion vote is based on action set size
 DeletionVote = Classifier.ActionSetSize * Classifier.Numerosity

 'if classifier is sufficiently experienced and fitness
signficantly below
 'average fitness, deletion vote is increased
 If Classifier.Experience > ThetaDel And _
 ((Classifier.Fitness / Classifier.Numerosity) < (Delta *
AverageFitness)) Then
 DeletionVote = DeletionVote * _

181

 AverageFitness / (Classifier.Fitness /
Classifier.Numerosity)
 End If
 Exit Function

ErrorHandler:
 If Err.Number = 6 Then
 DeletionVote = Decimal.MaxValue
 Else
 MsgBox("Error # " & Err.Number & ", " & Err.Description & "
in DeletionVote")
 End If

 Resume Next

 End If

 End Function

 Public Function CouldSubsume(ByVal ClassifiertoCheck As Classifier, _
 ByVal ThetaSub As Integer, ByVal Epsilon0 As Decimal) As Boolean
 If ClassifiertoCheck.Experience > ThetaSub Then
 If ClassifiertoCheck.PredictionError < Epsilon0 Then
 Return True
 End If
 End If
 Return False
 End Function

 Public Function IsMoreGeneral(ByVal ClGen As Classifier, _
 ByVal ClSpec As Classifier) As Boolean
 Dim i, ClGenPounds, ClSpecPounds As Integer
 'If Explain Then
 ' OutputClassifiertoScreen(ClGen, "Population #" & ClGen.Number)
 ' OutputClassifiertoScreen(ClSpec, "Population # " &
ClSpec.Number)
 'End If

 For i = 1 To UBound(ClGen.Condition)
 If ClGen.Condition(i) = "#" Then
 ClGenPounds += 1
 End If
 If ClSpec.Condition(i) = "#" Then
 ClSpecPounds += 1
 End If
 Next

 If ClGenPounds <= ClSpecPounds Then
 'MsgBox("CLGen is not more general than CLSpec")
 Return False
 End If

 For i = 1 To UBound(ClGen.Condition)
 If ClGen.Condition(i) <> "#" And ClGen.Condition(i) <>
ClSpec.Condition(i) Then
 'MsgBox("CLGen is not more general than CLSpec")

182

 Return False
 End If
 Next i
 'MsgBox("CLGen IS more general than CLSpec")
 Return True

 End Function

 Public Function OutputConditiontoScreen(ByVal ConditiontoOutput As Array,
_
 ByVal FormTitle As String) As Boolean

 Dim frmConditionOutputForm As New Form()

 Dim i As Integer
 Dim message As String

 'set the caption bar text of the form
 frmConditionOutputForm.Text = FormTitle
 'define the border style of the form to a dialog box
 frmConditionOutputForm.FormBorderStyle = FormBorderStyle.FixedDialog
 'set the MaximizeBox to false to remove the maximize box
 frmConditionOutputForm.MaximizeBox = False
 'set the MinimizeBox to false to remove the minimize box
 frmConditionOutputForm.MinimizeBox = False
 'set the position of the form to the center of the screen
 frmConditionOutputForm.StartPosition = FormStartPosition.CenterScreen
 'set the height of the form
 frmConditionOutputForm.Height = 200 + UBound(ConditiontoOutput)
 'set the width of the form
 frmConditionOutputForm.Width = 300
 'create an ok button
 Dim btnOK As New System.Windows.Forms.Button()
 'set the text of the button to "OK"
 btnOK.Text = "OK"
 'set the position of the button on the form
 btnOK.Location = New
System.Drawing.Point(frmConditionOutputForm.Width - 100, _
 frmConditionOutputForm.Height - 100)
 'add OK button to form
 frmConditionOutputForm.Controls.Add(btnOK)
 'set the cancel button to the OK button
 frmConditionOutputForm.CancelButton = btnOK

 'output condition
 Dim lbl As New System.Windows.Forms.Label()
 message = "Condition = "
 For i = 1 To UBound(ConditiontoOutput) 'don't diplay array(0), which
is undefined
 message &= ConditiontoOutput(i)
 Next
 lbl.Text = message
 lbl.Location = New System.Drawing.Point(10, 20)
 lbl.Size = New Size(UBound(ConditiontoOutput) * 12 + 100, 18)
 'add the label to the form
 frmConditionOutputForm.Controls.Add(lbl)

183

 'display the form
 frmConditionOutputForm.ShowDialog()
 OutputConditiontoScreen = True

 End Function

 Public Function OutputClassifiertoScreen(ByVal ClassifiertoOutput As
Classifier, _
 ByVal FormTitle As String) As Boolean

 Dim frmClassifierOutputForm As New Form()

 Dim i, j As Integer
 Dim message As String

 'set the caption bar text of the form
 frmClassifierOutputForm.Text = FormTitle
 'define the border style of the form to a dialog box
 frmClassifierOutputForm.FormBorderStyle = FormBorderStyle.FixedDialog
 'set the MaximizeBox to false to remove the maximize box
 frmClassifierOutputForm.MaximizeBox = False
 'set the MinimizeBox to false to remove the minimize box
 frmClassifierOutputForm.MinimizeBox = False
 'set the position of the form to the center of the screen
 frmClassifierOutputForm.StartPosition =
FormStartPosition.CenterScreen
 'set the height of the form
 frmClassifierOutputForm.Height = 400
 'set the width of the form
 frmClassifierOutputForm.Width = 600
 'create an ok button
 Dim btnOK As New System.Windows.Forms.Button()
 'set the text of the button to "OK"
 btnOK.Text = "OK"
 'set the position of the button on the form
 btnOK.Location = New
System.Drawing.Point(frmClassifierOutputForm.Width - 100, _
 frmClassifierOutputForm.Height - 100)
 'add OK button to form
 frmClassifierOutputForm.Controls.Add(btnOK)
 'set the cancel button to the OK button
 frmClassifierOutputForm.CancelButton = btnOK

 'classifier number label
 Dim lblNumber As New System.Windows.Forms.Label()
 message = ClassifiertoOutput.Number
 lblNumber.Text = message
 lblNumber.Location = New System.Drawing.Point(10, 10)
 lblNumber.Size = New Size(250, 18)
 frmClassifierOutputForm.Controls.Add(lblNumber)

 'classifier condition label
 Dim lbl2 As New System.Windows.Forms.Label()
 message = "Classifier Condition: "
 For i = 1 To UBound(ClassifiertoOutput.Condition) 'don't diplay
array(0), which is undefined
 message &= ClassifiertoOutput.Condition(i)

184

 Next
 lbl2.Text = message
 lbl2.Location = New System.Drawing.Point(10, 30)
 lbl2.Size = New Size(UBound(ClassifiertoOutput.Condition) * 20 + 150,
18)
 'add the label to the form
 frmClassifierOutputForm.Controls.Add(lbl2)

 'classifier action label
 Dim lbl3 As New System.Windows.Forms.Label()
 message = "Action: " & ClassifiertoOutput.Action
 lbl3.Text = message
 lbl3.Location = New System.Drawing.Point(10, 50)
 lbl3.Size = New Size(250, 18)
 frmClassifierOutputForm.Controls.Add(lbl3)

 'classifier prediction label
 Dim lbl4 As New System.Windows.Forms.Label()
 message = "Prediction: " & ClassifiertoOutput.Prediction
 lbl4.Text = message
 lbl4.Location = New System.Drawing.Point(10, 70)
 lbl4.Size = New Size(250, 18)
 frmClassifierOutputForm.Controls.Add(lbl4)

 'classifier prediction error label
 Dim lbl5 As New System.Windows.Forms.Label()
 message = "Prediction error: " & ClassifiertoOutput.PredictionError
 lbl5.Text = message
 lbl5.Location = New System.Drawing.Point(10, 90)
 lbl5.Size = New Size(250, 18)
 frmClassifierOutputForm.Controls.Add(lbl5)

 'classifier fitness label
 Dim lbl6 As New System.Windows.Forms.Label()
 message = "Fitness: " & ClassifiertoOutput.Fitness
 lbl6.Text = message
 lbl6.Location = New System.Drawing.Point(10, 110)
 lbl6.Size = New Size(250, 18)
 frmClassifierOutputForm.Controls.Add(lbl6)

 'classifier experience label
 Dim lbl7 As New System.Windows.Forms.Label()
 message = "Experience: " & ClassifiertoOutput.Experience
 lbl7.Text = message
 lbl7.Location = New System.Drawing.Point(10, 130)
 lbl7.Size = New Size(250, 18)
 frmClassifierOutputForm.Controls.Add(lbl7)

 'classifier time stamp label
 Dim lbl8 As New System.Windows.Forms.Label()
 message = "Time stamp: " & ClassifiertoOutput.TimeStamp
 lbl8.Text = message
 lbl8.Location = New System.Drawing.Point(10, 150)
 lbl8.Size = New Size(400, 18)
 frmClassifierOutputForm.Controls.Add(lbl8)

 'classifier action set size label

185

 Dim lbl9 As New System.Windows.Forms.Label()
 message = "Action set size: " &
FormatNumber(ClassifiertoOutput.ActionSetSize, 4)
 lbl9.Text = message
 lbl9.Location = New System.Drawing.Point(10, 170)
 lbl9.Size = New Size(250, 18)
 frmClassifierOutputForm.Controls.Add(lbl9)

 'classifier numerosity label
 Dim lbl10 As New System.Windows.Forms.Label()
 message = "Numerosity: " & ClassifiertoOutput.Numerosity
 lbl10.Text = message
 lbl10.Location = New System.Drawing.Point(10, 190)
 lbl10.Size = New Size(250, 18)
 frmClassifierOutputForm.Controls.Add(lbl10)

 'display the form
 frmClassifierOutputForm.ShowDialog()
 OutputClassifiertoScreen = True

 End Function

 Public Function OutputArrayofClassifierstoScreen(ByVal ScreenTitle As
String, _
 ByVal ArrayofClassifiers As ArrayList) As Boolean

 Dim i, j As Integer
 Dim message As String
 Dim frmArrayofClassifiersOutputForm As New Form()

 'set the caption bar text of the form
 frmArrayofClassifiersOutputForm.Text = ScreenTitle
 'define the border style of the form to a dialog box
 frmArrayofClassifiersOutputForm.FormBorderStyle =
FormBorderStyle.FixedDialog
 'set the MaximizeBox to false to remove the maximize box
 frmArrayofClassifiersOutputForm.MaximizeBox = False
 'set the MinimizeBox to false to remove the minimize box
 frmArrayofClassifiersOutputForm.MinimizeBox = False
 'set the position of the form to the center of the screen
 frmArrayofClassifiersOutputForm.StartPosition =
FormStartPosition.CenterScreen
 'set the height of the form
 frmArrayofClassifiersOutputForm.Height = ArrayofClassifiers.Count *
16 + 250
 'set the width of the form
 frmArrayofClassifiersOutputForm.Width = 515 +
UBound(ArrayofClassifiers(1).Condition) * 18

 'create an ok button
 Dim btnOK As New System.Windows.Forms.Button()
 'set the text of the button to "OK"
 btnOK.Text = "OK"
 'set the position of the button on the form
 btnOK.Location = New
System.Drawing.Point(frmArrayofClassifiersOutputForm.Width - 90, _
 frmArrayofClassifiersOutputForm.Height - 75)

186

 'add OK button to form
 frmArrayofClassifiersOutputForm.Controls.Add(btnOK)
 'set the cancel button to the OK button
 frmArrayofClassifiersOutputForm.CancelButton = btnOK
 If Not ScreenTitle Like "*Final*" Then
 Dim btnDontExplain As New System.Windows.Forms.Button()
 'set the text of the button to "OK"
 btnDontExplain.Width = 200
 btnDontExplain.Text = "Stop 'Explaining'"

 'set the position of the button on the form
 btnDontExplain.Location = New
System.Drawing.Point(frmArrayofClassifiersOutputForm.Width - 390, _
 frmArrayofClassifiersOutputForm.Height - 75)
 AddHandler btnDontExplain.Click, AddressOf myClickHandler
 'add 'Don't Explain' button to form
 frmArrayofClassifiersOutputForm.Controls.Add(btnDontExplain)

 End If

 'ArrayofClassifiers title label
 Dim lblNumber As New System.Windows.Forms.Label()
 lblNumber.Text = "#"
 lblNumber.Location = New System.Drawing.Point(9, 20)
 lblNumber.Size = New Size(25, 20)
 lblNumber.TextAlign = ContentAlignment.BottomRight
 lblNumber.Font = New System.Drawing.Font(lblNumber.Font,
FontStyle.Underline)
 frmArrayofClassifiersOutputForm.Controls.Add(lblNumber)

 Dim lblCondition As New System.Windows.Forms.Label()
 lblCondition.Text = "Condition"
 lblCondition.Location = New System.Drawing.Point(40, 20)
 lblCondition.Size = New Size(80, 20)
 lblCondition.TextAlign = ContentAlignment.BottomLeft
 lblCondition.Font = New System.Drawing.Font(lblCondition.Font,
FontStyle.Underline)
 frmArrayofClassifiersOutputForm.Controls.Add(lblCondition)

 Dim lblAction As New System.Windows.Forms.Label()
 lblAction.Text = "Act"
 lblAction.Location = New System.Drawing.Point(55 +
UBound(ArrayofClassifiers(1).Condition) * 9, 20)
 lblAction.Size = New Size(50, 20)
 lblAction.TextAlign = ContentAlignment.BottomCenter
 lblAction.Font = New System.Drawing.Font(lblAction.Font,
FontStyle.Underline)
 frmArrayofClassifiersOutputForm.Controls.Add(lblAction)

 Dim lblPrediction As New System.Windows.Forms.Label()
 lblPrediction.Text = "Pred"
 lblPrediction.Location = New System.Drawing.Point(101 +
UBound(ArrayofClassifiers(1).Condition) * 9, 20)
 lblPrediction.Size = New Size(55, 20)
 lblPrediction.TextAlign = ContentAlignment.BottomCenter

187

 lblPrediction.Font = New System.Drawing.Font(lblPrediction.Font,
FontStyle.Underline)
 frmArrayofClassifiersOutputForm.Controls.Add(lblPrediction)

 Dim lblPredictionError As New System.Windows.Forms.Label()
 lblPredictionError.Text = "Pred Err"
 lblPredictionError.Location = New System.Drawing.Point(156 +
UBound(ArrayofClassifiers(1).Condition) * 9, 20)
 lblPredictionError.Size = New Size(74, 20)
 lblPredictionError.TextAlign = ContentAlignment.BottomCenter
 lblPredictionError.Font = New
System.Drawing.Font(lblPredictionError.Font, FontStyle.Underline)
 frmArrayofClassifiersOutputForm.Controls.Add(lblPredictionError)

 Dim lblFitness As New System.Windows.Forms.Label()
 lblFitness.Text = "Fitness"
 lblFitness.Location = New System.Drawing.Point(227 +
UBound(ArrayofClassifiers(1).Condition) * 9, 20)
 lblFitness.Size = New Size(60, 20)
 lblFitness.TextAlign = ContentAlignment.BottomCenter
 lblFitness.Font = New System.Drawing.Font(lblFitness.Font,
FontStyle.Underline)
 frmArrayofClassifiersOutputForm.Controls.Add(lblFitness)

 Dim lblExperience As New System.Windows.Forms.Label()
 lblExperience.Text = "Exp"
 lblExperience.Location = New System.Drawing.Point(276 +
UBound(ArrayofClassifiers(1).Condition) * 9, 20)
 lblExperience.Size = New Size(65, 20)
 lblExperience.TextAlign = ContentAlignment.BottomCenter
 lblExperience.Font = New System.Drawing.Font(lblExperience.Font,
FontStyle.Underline)
 frmArrayofClassifiersOutputForm.Controls.Add(lblExperience)

 Dim lblTimeStamp As New System.Windows.Forms.Label()
 lblTimeStamp.Text = "Time Stamp"
 lblTimeStamp.Location = New System.Drawing.Point(335 +
UBound(ArrayofClassifiers(1).Condition) * 9, 20)
 lblTimeStamp.Size = New Size(100, 20)
 lblTimeStamp.TextAlign = ContentAlignment.BottomCenter
 lblTimeStamp.Font = New System.Drawing.Font(lblTimeStamp.Font,
FontStyle.Underline)
 frmArrayofClassifiersOutputForm.Controls.Add(lblTimeStamp)

 Dim lblActionSetSize As New System.Windows.Forms.Label()
 lblActionSetSize.Text = "ASS"
 lblActionSetSize.Location = New System.Drawing.Point(415 +
UBound(ArrayofClassifiers(1).Condition) * 9, 20)
 lblActionSetSize.Size = New Size(70, 20)
 lblActionSetSize.TextAlign = ContentAlignment.MiddleCenter
 lblActionSetSize.Font = New
System.Drawing.Font(lblActionSetSize.Font, FontStyle.Underline)
 frmArrayofClassifiersOutputForm.Controls.Add(lblActionSetSize)

 Dim lblNumerosity As New System.Windows.Forms.Label()
 lblNumerosity.Text = "Num"

188

 lblNumerosity.Location = New System.Drawing.Point(475 +
UBound(ArrayofClassifiers(1).Condition) * 9, 20)
 lblNumerosity.Size = New Size(56, 20)
 lblNumerosity.TextAlign = ContentAlignment.BottomCenter
 lblNumerosity.Font = New System.Drawing.Font(lblNumerosity.Font,
FontStyle.Underline)
 frmArrayofClassifiersOutputForm.Controls.Add(lblNumerosity)

 'Display ArrayofClassifiers
 For i = 1 To ArrayofClassifiers.Count - 1
 Dim lbl1 As New System.Windows.Forms.Label()
 message = ArrayofClassifiers(i).Number
 lbl1.TextAlign = ContentAlignment.MiddleRight
 lbl1.Text = message
 lbl1.Location = New System.Drawing.Point(5, 25 + 19 * i)
 'lbl1.AutoSize = True
 lbl1.Size = New Size(25, 12)
 'lbl1.Font = New Font("Courier New", 8, FontStyle.Bold,
GraphicsUnit.Point)
 frmArrayofClassifiersOutputForm.Controls.Add(lbl1)

 Dim lbl2 As New System.Windows.Forms.Label()
 message = ""
 For j = 1 To UBound(ArrayofClassifiers(i).Condition)
 message &= ArrayofClassifiers(i).Condition(j)
 Next j
 lbl2.TextAlign = ContentAlignment.MiddleLeft
 lbl2.Text = message
 lbl2.Location = New System.Drawing.Point(40, 25 + 19 * i)
 lbl2.Size = New Size(j * 11, 12)
 lbl2.Font = New System.Drawing.Font("Courier New", 9,
FontStyle.Regular, GraphicsUnit.Point)
 frmArrayofClassifiersOutputForm.Controls.Add(lbl2)

 Dim lbl3 As New System.Windows.Forms.Label()
 message = ArrayofClassifiers(i).Action
 lbl3.Size = New Size(40, 12)
 lbl3.TextAlign = ContentAlignment.MiddleCenter
 lbl3.Text = message
 lbl3.Font = New System.Drawing.Font("Courier New", 9,
FontStyle.Regular, GraphicsUnit.Point)
 lbl3.Location = New System.Drawing.Point(63 +
UBound(ArrayofClassifiers(i).Condition) * 9, 25 + 19 * i)
 frmArrayofClassifiersOutputForm.Controls.Add(lbl3)

 Dim lbl4 As New System.Windows.Forms.Label()
 message = Format(ArrayofClassifiers(i).Prediction, "0.0000")
 lbl4.Size = New Size(55, 12)
 'lbl4.Font = New Font("Courier New", 8, FontStyle.Bold,
GraphicsUnit.Point)
 lbl4.TextAlign = ContentAlignment.MiddleCenter
 lbl4.Text = message
 lbl4.Location = New System.Drawing.Point(116 +
UBound(ArrayofClassifiers(i).Condition) * 7, 25 + 19 * i)
 frmArrayofClassifiersOutputForm.Controls.Add(lbl4)

 Dim lbl5 As New System.Windows.Forms.Label()

189

 message = Format(ArrayofClassifiers(i).PredictionError, "0.0000")
 lbl5.Size = New Size(65, 12)
 lbl5.TextAlign = ContentAlignment.MiddleCenter
 lbl5.Text = message
 'lbl5.Font = New Font("Courier New", 8, FontStyle.Bold,
GraphicsUnit.Point)
 lbl5.Location = New System.Drawing.Point(170 +
UBound(ArrayofClassifiers(i).Condition) * 7, 25 + 19 * i)
 frmArrayofClassifiersOutputForm.Controls.Add(lbl5)

 Dim lbl6 As New System.Windows.Forms.Label()
 message = Format(ArrayofClassifiers(i).Fitness, "0.0000")
 lbl6.Size = New Size(50, 12)
 lbl6.TextAlign = ContentAlignment.MiddleCenter
 lbl6.Text = message
 'lbl6.Font = New Font("Courier New", 8, FontStyle.Bold,
GraphicsUnit.Point)
 lbl6.Location = New System.Drawing.Point(243 +
UBound(ArrayofClassifiers(i).Condition) * 7, 25 + 19 * i)
 frmArrayofClassifiersOutputForm.Controls.Add(lbl6)

 Dim lbl7 As New System.Windows.Forms.Label()
 message = ArrayofClassifiers(i).Experience
 lbl7.Size = New Size(65, 12)
 lbl7.TextAlign = ContentAlignment.MiddleCenter
 lbl7.Text = message
 'lbl7.Font = New Font("Courier New", 8, FontStyle.Bold,
GraphicsUnit.Point)
 lbl7.Location = New System.Drawing.Point(287 +
UBound(ArrayofClassifiers(i).Condition) * 7, 25 + 19 * i)
 frmArrayofClassifiersOutputForm.Controls.Add(lbl7)

 Dim lbl8 As New System.Windows.Forms.Label()
 message = ArrayofClassifiers(i).TimeStamp.Hour & ":" & _
 ArrayofClassifiers(i).TimeStamp.Minute & ":" &
ArrayofClassifiers(i).TimeStamp.Second '& ":" &
ArrayofClassifiers(i).TimeStamp.Millisecond
 lbl8.Size = New Size(100, 12)
 lbl8.TextAlign = ContentAlignment.MiddleCenter
 lbl8.Text = message
 'lbl8.Font = New Font("Courier New", 8, FontStyle.Bold,
GraphicsUnit.Point)
 lbl8.Location = New System.Drawing.Point(340 +
UBound(ArrayofClassifiers(i).Condition) * 7, 25 + 19 * i)
 frmArrayofClassifiersOutputForm.Controls.Add(lbl8)

 Dim lbl9 As New System.Windows.Forms.Label()
 message = Format(ArrayofClassifiers(i).ActionSetSize, "0.00")
 lbl9.Size = New Size(70, 12)
 lbl9.TextAlign = ContentAlignment.MiddleCenter
 lbl9.Text = message
 'lbl9.Font = New Font("Courier New", 8, FontStyle.Bold,
GraphicsUnit.Point)
 lbl9.Location = New System.Drawing.Point(425 +
UBound(ArrayofClassifiers(i).Condition) * 7, 25 + 19 * i)
 frmArrayofClassifiersOutputForm.Controls.Add(lbl9)

190

 Dim lbl10 As New System.Windows.Forms.Label()
 message = ArrayofClassifiers(i).Numerosity
 lbl10.Size = New Size(86, 12)
 lbl10.TextAlign = ContentAlignment.MiddleCenter
 lbl10.Text = message
 'lbl10.Font = New Font("Courier New", 8, FontStyle.Bold,
GraphicsUnit.Point)
 lbl10.Location = New System.Drawing.Point(470 +
UBound(ArrayofClassifiers(i).Condition) * 7, 25 + 19 * i)
 frmArrayofClassifiersOutputForm.Controls.Add(lbl10)

 Next i

 'display form as modal dialog box
 frmArrayofClassifiersOutputForm.ShowDialog()

 OutputArrayofClassifierstoScreen = True

 End Function

 Public Function ConcatenateString(ByVal Generation As Integer, _
 ByVal Population As ArrayList) As String

 Dim message As String
 Dim i, j As Integer

 'Create string with population members
 For i = 1 To Population.Count - 1

 '#
 message &= Population(i).Number & " "

 'Condition
 For j = 1 To UBound(Population(i).Condition)
 message &= Population(i).Condition(j)
 Next j
 message &= Chr(13)

 ''Action
 'xlSheet.Cells(Generation + (Generation * Population.Count) + 1 +
i, 3) = CStr(Population(i).Action)

 ''Prediction
 'xlSheet.Cells(Generation + (Generation * Population.Count) + 1 +
i, 4) = Format(Population(i).Prediction, "0.0000")

 ''PredictionError
 'xlSheet.Cells(Generation + (Generation * Population.Count) + 1 +
i, 5) = Format(Population(i).PredictionError, "0.0000")

 ''Fitness
 'xlSheet.Cells(Generation + (Generation * Population.Count) + 1 +
i, 6) = Format(Population(i).Fitness, "0.0000")

 ''Experience

191

 'xlSheet.Cells(Generation + (Generation * Population.Count) + 1 +
i, 7) = Population(i).Experience

 ''Time Stamp
 'xlSheet.Cells(Generation + (Generation * Population.Count) + 1 +
i, 8) = Population(i).TimeStamp.Hour & ":" & _
 ' Population(i).TimeStamp.Minute & ":" &
Population(i).TimeStamp.Second & _
 ' ":" & Population(i).TimeStamp.Millisecond

 ''Action Set Size
 'xlSheet.Cells(Generation + (Generation * Population.Count) + 1 +
i, 9) = Format(Population(i).ActionSetSize, "0.00")

 ''Numerosity
 'xlSheet.Cells(Generation + (Generation * Population.Count) + 1 +
i, 10) = Population(i).Numerosity

 Next i

 ConcatenateString = message
 End Function

 Public Function StoreDataInExcel(ByVal Encounters As Boolean, _
 ByVal Replications As Integer, _
 ByVal N As Integer, ByVal NumberofEncounters As Integer, _
 ByVal Freq As Integer, ByVal PseudoRandomness As String, _
 ByVal InitialPopulation As String) As Boolean

 Dim xlApp As Excel.Application
 Dim xlBook, xlBook2 As Excel.Workbook
 Dim xlSheet As Excel.Worksheet
 Dim xlRange As Excel.Range
 Dim xlFileFormat As String
 Dim xlChart As Excel.Chart
 Dim xlTrendline As Excel.Trendline
 Dim xlSeries As Excel.Series

 Dim FileName As String
 'Dim A2Formula As String = "='Replication 1'!A2"
 Dim A3Formula As String = "='Replication 1'!A3"
 Dim B3Formula As String

 Dim File As New FileSystemObject()
 Dim i As Integer = 0
 Dim j, k As Integer

 On Error Resume Next
 'xlApp = CreateObject("Excel.Application")
 xlApp = GetObject(, "Excel.Application")
 'On Error GoTo 0
 If xlApp Is Nothing Then
 'Excel wasn't open - open a new one
 xlApp = CreateObject("Excel.Application")
 xlApp = GetObject("", "Excel.Application")
 End If

192

 'xlApp = CreateObject("Excel.Application")
 'xlApp.Visible = True
 xlApp.DisplayAlerts = False

 xlBook = xlApp.Workbooks.Add()
 xlBook.Worksheets("Sheet3").Delete()
 xlBook.Worksheets("Sheet2").Delete()
 xlSheet = xlBook.Worksheets("Sheet1")
 If Encounters Then 'this section saves all encounters
 xlSheet.Name = i

 xlBook.SaveAs(FileName:=FolderName & "Encounters.xls",
fileformat:=Excel.XlFileFormat.xlWorkbookNormal)
 For Each FileName In Directory.GetFiles(FolderName,
"*encounter*.csv")
 i += 1
 xlBook2 = xlApp.Workbooks.Open(FolderName & "Encounters,
Replication " & i)
 If i = 1 Then
 xlBook2.Worksheets.Copy(after:=xlBook.Worksheets("0"))
 xlSheet = xlBook.Worksheets("0")
 xlSheet.Delete()
 Else
 xlBook2.Worksheets.Copy(After:=xlBook.Worksheets(i - 1))
 End If
 xlBook2.Close()
 xlSheet = xlBook.Worksheets(i)
 xlSheet.Name = i
 xlSheet.Columns("A:AD").AutoFit()
 xlSheet.Range("B3").Select()
 xlApp.ActiveWindow.FreezePanes = True
 Next FileName
 xlBook.Sheets("1").select()
 xlBook.SaveAs(FileName:=FolderName & "Encounters.xls",
fileformat:=Excel.XlFileFormat.xlWorkbookNormal)
 Else 'this section applies to summary metrics
 'xlApp.Visible = True
 xlSheet.Name = "Summary Metrics"

 xlSheet.Range("B1").FormulaR1C1 = "Population"
 xlSheet.Range("D1").FormulaR1C1 = "Correct %"
 xlSheet.Range("K1").FormulaR1C1 = "Squared Error"
 xlSheet.Range("R1").FormulaR1C1 = "Agent Reward"
 xlSheet.Range("Y1").FormulaR1C1 = "Opponent Reward"
 xlSheet.Range("AF1").FormulaR1C1 = "Optimal %"
 xlSheet.Range("B1:C1").MergeCells = True
 xlSheet.Range("B1:C1").HorizontalAlignment = 3
 xlSheet.Range("D1:J1").MergeCells = True
 xlSheet.Range("D1:J1").HorizontalAlignment = 3
 xlSheet.Range("K1:Q1").MergeCells = True
 xlSheet.Range("K1:Q1").HorizontalAlignment = 3
 xlSheet.Range("R1:X1").MergeCells = True
 xlSheet.Range("R1:X1").HorizontalAlignment = 3
 xlSheet.Range("Y1:AE1").MergeCells = True
 xlSheet.Range("Y1:AE1").HorizontalAlignment = 3
 xlSheet.Range("AF1:AL1").MergeCells = True
 xlSheet.Range("AF1:AL1").HorizontalAlignment = 3

193

 xlSheet.Columns("A:AL").AutoFit()

 xlBook.SaveAs(FileName:=FolderName & "\" & _
 ExperimentName & ".xls",
fileformat:=Excel.XlFileFormat.xlWorkbookNormal)
 For Each FileName In Directory.GetFiles(FolderName, "*.csv")
 i += 1
 xlBook2 = xlApp.Workbooks.Open(FolderName & "\" &
ExperimentName & " Metrics, Replication " & i)
 If i = 1 Then
 xlBook2.Worksheets.Copy(after:=xlBook.Worksheets("Summary
Metrics"))
 Else

xlBook2.Worksheets.Copy(After:=xlBook.Worksheets("Replication " & i - 1))
 End If
 xlBook2.Close()

 'format replication sheets
 xlSheet = xlBook.Sheets(i + 1)
 xlSheet.Name = "Replication " & i
 xlSheet.Range("B1:C1").MergeCells = True
 xlSheet.Range("B1:C1").HorizontalAlignment = 3
 xlSheet.Range("D1:J1").MergeCells = True
 xlSheet.Range("D1:J1").HorizontalAlignment = 3
 xlSheet.Range("K1:Q1").MergeCells = True
 xlSheet.Range("K1:Q1").HorizontalAlignment = 3
 xlSheet.Range("R1:X1").MergeCells = True
 xlSheet.Range("R1:X1").HorizontalAlignment = 3
 xlSheet.Range("Y1:AE1").MergeCells = True
 xlSheet.Range("Y1:AE1").HorizontalAlignment = 3
 xlSheet.Range("AF1:AL1").MergeCells = True
 xlSheet.Range("AF1:AL1").HorizontalAlignment = 3
 xlSheet.Range("B3").Select()
 xlApp.ActiveWindow.FreezePanes = True

 Next FileName

 'calculate last row with data
 xlSheet.Range("A2").End(XlDirection.xlDown).Select()
 k = xlApp.ActiveCell.Row
 xlSheet.Range("B3").Select()
 'MsgBox("Last row with data = " & k)

 'average metrics on summary sheet
 B3Formula = "=AVERAGE('Replication 1:Replication " & i & "'!B3)"

 xlSheet = xlBook.Worksheets("Summary Metrics")
 xlSheet.Range("A2:AL2").Formula = "='Replication 1'!A2"
 xlSheet.Range("A3").Formula = A3Formula
 xlSheet.Range("B3").Formula = B3Formula

 'copy observation number
 xlSheet.Range("A3").Copy()
 xlSheet.Range("A3:A" &
k).PasteSpecial(XlPasteType.xlPasteFormulas)

194

 'copy averaging formulas
 xlSheet.Range("B3").Copy()
 xlSheet.Range("B3:AL" &
k).PasteSpecial(XlPasteType.xlPasteFormulas)

 'calculate relative reward
 'commented out on 20 Jul 04 b/c not using as performance measure
 'xlSheet.Range("AF2").FormulaR1C1 = "Relative Reward"
 'xlSheet.Range("AF3").Formula = "=R3-Y3"
 'xlSheet.Range("AF3").Copy()
 'xlSheet.Range("AF3:AF" &
k).PasteSpecial(XlPasteType.xlPasteFormulas)

 'format output
 xlSheet.Range("D3:AL" & k).NumberFormat = "0.000"
 xlSheet.Columns("A:AL").AutoFit()

 xlSheet.Range("B1:C" &
k).Borders(XlBordersIndex.xlEdgeLeft).LineStyle = 1
 xlSheet.Range("B1:C" &
k).Borders(XlBordersIndex.xlEdgeLeft).Weight = 3
 xlSheet.Range("D1:I" &
k).Borders(XlBordersIndex.xlEdgeLeft).LineStyle = 1
 xlSheet.Range("D1:I" &
k).Borders(XlBordersIndex.xlEdgeLeft).Weight = 3
 xlSheet.Range("K1:Q" &
k).Borders(XlBordersIndex.xlEdgeLeft).LineStyle = 1
 xlSheet.Range("K1:Q" &
k).Borders(XlBordersIndex.xlEdgeLeft).Weight = 3
 xlSheet.Range("R1:X" &
k).Borders(XlBordersIndex.xlEdgeLeft).LineStyle = 1
 xlSheet.Range("R1:X" &
k).Borders(XlBordersIndex.xlEdgeLeft).Weight = 3
 xlSheet.Range("Y1:AE" &
k).Borders(XlBordersIndex.xlEdgeLeft).LineStyle = 1
 xlSheet.Range("Y1:AE" &
k).Borders(XlBordersIndex.xlEdgeLeft).Weight = 3
 xlSheet.Range("AF1:AL" &
k).Borders(XlBordersIndex.xlEdgeLeft).LineStyle = 1
 xlSheet.Range("AF1:AL" &
k).Borders(XlBordersIndex.xlEdgeLeft).Weight = 3

 With xlSheet.PageSetup
 .LeftHeader = FileName
 '.CenterHeader = "&F"
 .RightHeader = "Page &P of &N"
 .PrintGridlines = True
 .PrintTitleRows = "$1:$1"
 .Orientation = Excel.XlPageOrientation.xlLandscape
 .Zoom = False
 .FitToPagesWide = 1
 .FitToPagesTall = Int(k / 45) + 5
 End With

 'label and format individual sheets
 For j = 1 To i
 xlSheet = xlBook.Worksheets("Replication " & j)

195

 xlSheet.Range("D3:AL" & k).NumberFormat = "0.000"
 xlSheet.Columns("A:AL").AutoFit()
 xlSheet.Range("B1:C" &
k).Borders(XlBordersIndex.xlEdgeLeft).LineStyle = 1
 xlSheet.Range("B1:C" &
k).Borders(XlBordersIndex.xlEdgeLeft).Weight = 3
 xlSheet.Range("D1:I" &
k).Borders(XlBordersIndex.xlEdgeLeft).LineStyle = 1
 xlSheet.Range("D1:I" &
k).Borders(XlBordersIndex.xlEdgeLeft).Weight = 3
 xlSheet.Range("K1:Q" &
k).Borders(XlBordersIndex.xlEdgeLeft).LineStyle = 1
 xlSheet.Range("K1:Q" &
k).Borders(XlBordersIndex.xlEdgeLeft).Weight = 3
 xlSheet.Range("R1:X" &
k).Borders(XlBordersIndex.xlEdgeLeft).LineStyle = 1
 xlSheet.Range("R1:X" &
k).Borders(XlBordersIndex.xlEdgeLeft).Weight = 3
 xlSheet.Range("Y1:AE" &
k).Borders(XlBordersIndex.xlEdgeLeft).LineStyle = 1
 xlSheet.Range("Y1:AE" &
k).Borders(XlBordersIndex.xlEdgeLeft).Weight = 3
 xlSheet.Range("AF1:AL" &
k).Borders(XlBordersIndex.xlEdgeLeft).LineStyle = 1
 xlSheet.Range("AF1:AL" &
k).Borders(XlBordersIndex.xlEdgeLeft).Weight = 3

 With xlSheet.PageSetup
 .LeftHeader = FileName
 '.CenterHeader = "&F"
 .RightHeader = "Page &P of &N"
 .PrintGridlines = True
 .PrintTitleRows = "$1:$1"
 .Orientation = Excel.XlPageOrientation.xlLandscape
 .Zoom = False
 .FitToPagesWide = 1
 .FitToPagesTall = Int(k / 45) + 5
 End With
 Next

 xlBook.Sheets("Summary Metrics").select()
 xlSheet = xlBook.Worksheets("Summary Metrics")
 xlSheet.Columns("A:AL").AutoFit()
 xlSheet.Range("B3").Select()
 xlApp.ActiveWindow.FreezePanes = True

 'the following code implements charts

 xlChart = xlBook.Charts.Add
 xlChart.ChartType = XlChartType.xlLine

 xlChart.SetSourceData(Source:=xlSheet.Range("C3:D" & k),
PlotBy:=Excel.XlRowCol.xlColumns)

 xlChart.SeriesCollection(1).Name = "=""Unique Classifiers"""
 xlChart.SeriesCollection(2).Name = "=""% Correct"""
 'xlChart.SeriesCollection(3).Name = "=""% Optimal"""

196

 xlChart.Location(XlChartLocation.xlLocationAsNewSheet,
Name:="Agent Charts")

 xlChart.SeriesCollection.NewSeries()
 xlChart.SeriesCollection(3).Values = "='Summary Metrics'!R3C32:R"
& k & "C32"
 xlChart.SeriesCollection(3).Name = "=""% Optimal"""

 xlChart.SeriesCollection.NewSeries()
 xlChart.SeriesCollection(4).Values = "='Summary Metrics'!R3C10:R"
& k & "C10"
 xlChart.SeriesCollection(4).Name = "=""Squared Error"""

 'add chart and axis titles
 With xlChart
 .HasTitle = True
 .ChartTitle.Characters.Text = "Agent Measures"
 .Axes(Excel.XlAxisType.xlCategory,
XlAxisGroup.xlPrimary).HasTitle = True
 .Axes(Excel.XlAxisType.xlCategory,
XlAxisGroup.xlPrimary).AxisTitle.Characters.Text = "Epoch"
 .Axes(Excel.XlAxisType.xlValue,
XlAxisGroup.xlPrimary).HasTitle = True
 .Axes(Excel.XlAxisType.xlValue,
XlAxisGroup.xlPrimary).AxisTitle.Characters.Text = "Percent or Count"
 End With

 'specify grid marks on axes
 With xlChart
 .HasAxis(Excel.XlAxisType.xlCategory, XlAxisGroup.xlPrimary)
= True
 .HasAxis(Excel.XlAxisType.xlValue, XlAxisGroup.xlPrimary) =
True
 End With

 'format x axes grid marks
 If k > 20 Then
 With xlChart.Axes(Excel.XlAxisType.xlCategory)
 .CrossesAt = 1
 .TickLabelSpacing = Int(k / 10)
 .TickMarkSpacing = Int(k / 20)
 .AxisBetweenCategories = True
 .ReversePlotOrder = False
 End With
 End If
 'format y axes numbers
 xlChart.Axes(Excel.XlAxisType.xlValue).TickLabels.NumberFormat =
"0"

 xlChart.Axes(Excel.XlAxisType.xlCategory,
XlAxisGroup.xlPrimary).CategoryType = Excel.XlCategoryType.xlAutomaticScale
 With xlChart.Axes(Excel.XlAxisType.xlCategory)
 .HasMajorGridlines = False
 .HasMinorGridlines = False
 End With
 With xlChart.Axes(Excel.XlAxisType.xlValue)
 .HasMajorGridlines = True

197

 .HasMinorGridlines = False
 End With
 xlChart.HasDataTable = False

 xlBook.SaveAs(FileName:=FolderName & "\" & _
 ExperimentName & ".xls",
fileformat:=Excel.XlFileFormat.xlWorkbookNormal)

 End If

 xlBook.Save()
 xlApp.Quit()
 xlBook2 = Nothing
 xlApp = Nothing
 xlBook = Nothing
 xlBook2 = Nothing
 xlSheet = Nothing
 xlRange = Nothing

 StoreDataInExcel = True

 End Function

 Public Function EnvironmentString() As String
 Dim r As Integer
 EnvironmentString = ""
 For r = 1 To UBound(Environment)
 EnvironmentString &= Environment(r)
 Next r

 End Function

 Public Function DeleteCSVFiles()

 Dim Filename As String
 Dim File As New FileSystemObject()

 For Each Filename In Directory.GetFiles(FolderName, "*.csv")
 File.DeleteFile(Filename)
 Next

 End Function

 Public Function WritePopulation(ByVal Replication As Integer, _
 ByVal Generation As Integer, ByVal Location As String) As Boolean

 Dim x, y As Integer
 Dim Message As String

 If Location = "Detailed" Then
 DetailedSW.WriteLine("Replication " & Replication & ":" &
"Generation " & Generation)
 Else
 SummarySW.WriteLine()
 SummarySW.WriteLine("Classifier #" & "," & "Condition" & _
 "," & "Action" & "," & "Prediction" & "," & "Error" & "," &
"Fitness" & _

198

 "," & "Experience" & "," & "Action Set Size" & "," &
"Numerosity") '& "Time Stamp" & ","
 End If

 'Create string with population members
 Message = ""
 For x = 1 To Population.Count - 1

 '#
 Message = Population(x).Number & ","

 'Condition
 For y = 1 To UBound(Population(x).Condition)
 Message &= Population(x).Condition(y)
 Next y

 'Action
 Message &= "," & CStr(Population(x).Action)

 'Prediction
 Message &= "," & Format(Population(x).Prediction, "0.0000")

 'PredictionError
 Message &= "," & Format(Population(x).PredictionError, "0.0000")

 'Fitness
 Message &= "," & Format(Population(x).Fitness, "0.0000")

 'Experience
 Message &= "," & Population(x).Experience

 'Time Stamp
 If Location = "Detailed" Then
 Message &= "," & Population(x).TimeStamp.Hour & ":" & _
 Population(x).TimeStamp.Minute & ":" &
Population(x).TimeStamp.Second & _
 ":" & Population(x).TimeStamp.Millisecond
 End If

 'Action Set Size
 Message &= "," & Format(Population(x).ActionSetSize, "0.00")

 'Numerosity
 Message &= "," & Population(x).Numerosity

 If Location = "Detailed" Then
 DetailedSW.WriteLine(Message)
 Else
 SummarySW.WriteLine(Message)
 End If

 Next x
 If Location = "Detailed" Then
 DetailedSW.WriteLine()
 End If
 WritePopulation = True
 End Function

199

 Public Function RenumberPopulation()
 Dim i As Integer
 Dim TempClassifier As Classifier
 For i = 1 To Population.Count - 1
 TempClassifier = DirectCast(Population(i), Classifier)
 TempClassifier.Number = i
 Population(i) = TempClassifier
 Next i

 End Function
 ' The average of an array of any type

 Function ArrayAvg(ByVal arr As ArrayList, ByVal DataType As String) As
Decimal
 Dim index As Long
 Dim sum As Object
 Dim count As Long

 For index = 0 To arr.Count - 1
 Select Case DataType
 Case "AgentReward"
 sum += DirectCast(arr(index), Metric).AgentReward
 Case "OpponentReward"
 sum += DirectCast(arr(index), Metric).OpponentReward
 Case "SystemError"
 sum += DirectCast(arr(index), Metric).SystemError
 Case "Correct"
 sum -= DirectCast(arr(index), Metric).Correct
 Case "PopulationCount"
 sum += DirectCast(arr(index), Metric).PopulationCount
 Case "UniquePopulationCount"
 sum += DirectCast(arr(index),
Metric).UniquePopulationCount
 Case "PopulationPercentOptimal"
 sum += DirectCast(arr(index),
Metric).PopulationPercentOptimal
 Case Else
 MsgBox("Datatype not recognized")
 End Select
 count = count + 1
 Next

 ' return the average
 ArrayAvg = sum / count

 End Function

 ' The standard deviation of an array

 Function ArrayStdDev(ByVal arr As ArrayList, ByVal Datatype As String, _
 Optional ByVal SampleStdDev As Boolean = False) As Decimal
 Dim sum As Double
 Dim sumSquare As Double
 Dim value As Double
 Dim index As Long

200

 ' evaluate sum of values
 ' if arr isn't an array, the following statement raises an error
 For index = 0 To arr.Count - 1
 Select Case Datatype
 Case "AgentReward"
 value = DirectCast(arr(index), Metric).AgentReward
 Case "OpponentReward"
 value = DirectCast(arr(index), Metric).OpponentReward
 Case "SystemError"
 value = DirectCast(arr(index), Metric).SystemError
 Case "Correct"
 value = DirectCast(arr(index), Metric).Correct
 Case "PopulationPercentOptimal"
 value = DirectCast(arr(index),
Metric).PopulationPercentOptimal
 Case Else
 MsgBox("Datatype not recognized")
 End Select
 ' add to the running total
 sum += value
 sumSquare += value * value
 Next

 ' evaluate the result
 ' use (Count-1) if evaluating the standard deviation of a sample
 If (sumSquare - (sum * sum / arr.Count)) > 0 Then
 If SampleStdDev Then
 ArrayStdDev = Sqrt((sumSquare - (sum * sum / arr.Count)) /
(arr.Count - 1))
 Else
 ArrayStdDev = Sqrt((sumSquare - (sum * sum / arr.Count)) /
arr.Count)
 End If
 Else
 ArrayStdDev = 0
 End If
 End Function

 ' Return the maximum value in an array
 Function ArrayMax(ByVal arr As ArrayList, ByVal Datatype As String) As
Decimal
 Dim Index As Long

 Select Case Datatype
 Case "AgentReward"
 ArrayMax = DirectCast(arr(0), Metric).AgentReward
 Case "OpponentReward"
 ArrayMax = DirectCast(arr(0), Metric).OpponentReward
 Case "SystemError"
 ArrayMax = DirectCast(arr(0), Metric).SystemError
 Case "Correct"
 ArrayMax = DirectCast(arr(0), Metric).Correct
 Case "PopulationPercentOptimal"
 ArrayMax = DirectCast(arr(Index),
Metric).PopulationPercentOptimal
 Case Else
 MsgBox("Datatype not recognized")

201

 End Select

 For Index = 1 To arr.Count - 1
 Select Case Datatype
 Case "AgentReward"
 If ArrayMax < DirectCast(arr(Index), Metric).AgentReward
Then
 ArrayMax = DirectCast(arr(Index), Metric).AgentReward
 End If
 Case "OpponentReward"
 If ArrayMax < DirectCast(arr(Index),
Metric).OpponentReward Then
 ArrayMax = DirectCast(arr(Index),
Metric).OpponentReward
 End If
 Case "SystemError"
 If ArrayMax < DirectCast(arr(Index), Metric).SystemError
Then
 ArrayMax = DirectCast(arr(Index), Metric).SystemError
 End If
 Case "Correct"
 If ArrayMax < DirectCast(arr(Index), Metric).Correct Then
 ArrayMax = DirectCast(arr(Index), Metric).Correct
 End If
 Case "PopulationPercentOptimal"
 If ArrayMax < DirectCast(arr(Index),
Metric).PopulationPercentOptimal Then
 ArrayMax = DirectCast(arr(Index),
Metric).PopulationPercentOptimal
 End If
 Case Else
 MsgBox("Datatype not recognized")
 End Select
 Next
 End Function

 ' Return the range of values in an array
 Function ArrayRng(ByVal arr As ArrayList, ByVal Datatype As String) As
Decimal
 Dim Index As Long
 ArrayRng = ArrayMax(arr, Datatype) - ArrayMin(arr, Datatype)
 End Function

 Function ArrayMod(ByVal arr As ArrayList, ByVal Datatype As String) As
Decimal
 'For lists, the mode is the most common (frequent) value. A list can
 'have more than one mode, although this function will only return the
 'lowest of these should more than one number occur the maximum number
 'of times.

 Dim Count As Integer
 Dim Number() As Decimal
 Dim CountOfNumber As Integer
 Dim CurrentNumber As Decimal
 Dim Counter As Integer
 Dim HighestNumberIndex As Integer
 Dim HighestNumberCount As Integer

202

 Count = arr.Count

 If Count = 0 Then Return 0

 arr.Sort(New Sort(Datatype))

 ReDim Number(0)
 Select Case Datatype
 Case "AgentReward"
 CurrentNumber = DirectCast(arr(0), Metric).AgentReward
 Case "OpponentReward"
 CurrentNumber = DirectCast(arr(0), Metric).OpponentReward
 Case "SystemError"
 CurrentNumber = DirectCast(arr(0), Metric).SystemError
 Case "Correct"
 CurrentNumber = DirectCast(arr(0), Metric).Correct
 Case "PopulationPercentOptimal"
 CurrentNumber = DirectCast(arr(0),
Metric).PopulationPercentOptimal
 Case Else
 MsgBox("Datatype not recognized")
 End Select

 HighestNumberIndex = 0
 HighestNumberCount = 0
 Number(0) = CurrentNumber

 While Counter <= Count - 1
 Select Case Datatype
 Case "AgentReward"
 If CurrentNumber = DirectCast(arr(Counter),
Metric).AgentReward Then
 CountOfNumber += 1

 If CountOfNumber > HighestNumberCount Then
 HighestNumberCount = CountOfNumber
 HighestNumberIndex = Number.GetUpperBound(0)
 End If
 Else
 ReDim Preserve Number(Number.GetUpperBound(0) + 1)

 CurrentNumber = DirectCast(arr(Counter),
Metric).AgentReward
 Number(Number.GetUpperBound(0)) = CurrentNumber
 CountOfNumber = 1
 End If
 Case "OpponentReward"
 If CurrentNumber = DirectCast(arr(Counter),
Metric).OpponentReward Then
 CountOfNumber += 1

 If CountOfNumber > HighestNumberCount Then
 HighestNumberCount = CountOfNumber
 HighestNumberIndex = Number.GetUpperBound(0)
 End If
 Else

203

 ReDim Preserve Number(Number.GetUpperBound(0) + 1)

 CurrentNumber = DirectCast(arr(Counter),
Metric).OpponentReward
 Number(Number.GetUpperBound(0)) = CurrentNumber
 CountOfNumber = 1
 End If
 Case "SystemError"
 If CurrentNumber = DirectCast(arr(Counter),
Metric).SystemError Then
 CountOfNumber += 1

 If CountOfNumber > HighestNumberCount Then
 HighestNumberCount = CountOfNumber
 HighestNumberIndex = Number.GetUpperBound(0)
 End If
 Else
 ReDim Preserve Number(Number.GetUpperBound(0) + 1)

 CurrentNumber = DirectCast(arr(Counter),
Metric).SystemError
 Number(Number.GetUpperBound(0)) = CurrentNumber
 CountOfNumber = 1
 End If
 Case "Correct"
 If CurrentNumber = DirectCast(arr(Counter),
Metric).Correct Then
 CountOfNumber += 1

 If CountOfNumber > HighestNumberCount Then
 HighestNumberCount = CountOfNumber
 HighestNumberIndex = Number.GetUpperBound(0)
 End If
 Else
 ReDim Preserve Number(Number.GetUpperBound(0) + 1)

 CurrentNumber = DirectCast(arr(Counter),
Metric).Correct
 Number(Number.GetUpperBound(0)) = CurrentNumber
 CountOfNumber = 1
 End If
 Case "PopulationPercentOptimal"
 If CurrentNumber = DirectCast(arr(Counter),
Metric).PopulationPercentOptimal Then
 CountOfNumber += 1

 If CountOfNumber > HighestNumberCount Then
 HighestNumberCount = CountOfNumber
 HighestNumberIndex = Number.GetUpperBound(0)
 End If
 Else
 ReDim Preserve Number(Number.GetUpperBound(0) + 1)

 CurrentNumber = DirectCast(arr(Counter),
Metric).PopulationPercentOptimal
 Number(Number.GetUpperBound(0)) = CurrentNumber
 CountOfNumber = 1

204

 End If

 Case Else
 MsgBox("Datatype not recognized")
 End Select

 Counter += 1
 End While

 Return Number(HighestNumberIndex)
 End Function

 Function ArrayMed(ByVal arr As ArrayList, ByVal Datatype As String) As
Decimal
 'Definition: "Middle value" of a list. The smallest number such that
 'at least half the numbers in the list are no greater than it. If the
 'list has an odd number of entries, the median is the middle entry in
 'the list after sorting the list into increasing order. If the list
 'has an even number of entries, the median is equal to the sum of the
 'two middle (after sorting) numbers divided by two.

 Dim Count As Integer

 Count = arr.Count

 If Count = 0 Then Return 0

 'We need to sort the numbers to get the median
 arr.Sort(New Sort(Datatype))

 'If divisible by two, add the two middle numbers together and return
 'the average (mean!) of those.
 If Count Mod 2 = 0 Then
 Select Case Datatype
 Case "AgentReward"
 ArrayMed = (DirectCast(arr((Count / 2) - 1),
Metric).AgentReward + _
 DirectCast(arr((Count / 2)), Metric).AgentReward) / 2
 Case "OpponentReward"
 ArrayMed = (DirectCast(arr((Count / 2) - 1),
Metric).OpponentReward + _
 DirectCast(arr((Count / 2)), Metric).OpponentReward) / 2
 Case "SystemError"
 ArrayMed = (DirectCast(arr((Count / 2) - 1),
Metric).SystemError + _
 DirectCast(arr((Count / 2)), Metric).SystemError) / 2
 Case "Correct"
 ArrayMed = (DirectCast(arr((Count / 2) - 1),
Metric).Correct + _
 DirectCast(arr((Count / 2)), Metric).Correct) / 2
 Case "PopulationPercentOptimal"
 ArrayMed = (DirectCast(arr((Count / 2) - 1),
Metric).PopulationPercentOptimal + _
 DirectCast(arr((Count / 2)),
Metric).PopulationPercentOptimal) / 2
 Case Else
 MsgBox("Datatype not recognized")

205

 End Select
 Else
 Select Case Datatype
 Case "AgentReward"
 ArrayMed = DirectCast(arr((Count \ 2)),
Metric).AgentReward
 Case "OpponentReward"
 ArrayMed = DirectCast(arr((Count \ 2)),
Metric).OpponentReward
 Case "SystemError"
 ArrayMed = DirectCast(arr((Count \ 2)),
Metric).SystemError
 Case "Correct"
 ArrayMed = DirectCast(arr((Count \ 2)), Metric).Correct
 Case "PopulationPercentOptimal"
 ArrayMed = DirectCast(arr((Count \ 2)),
Metric).PopulationPercentOptimal
 Case Else
 MsgBox("Datatype not recognized")
 End Select
 End If
 End Function

 Public Class Sort
 Implements IComparer
 Private WhichField As String
 Public Sub New(ByVal DataType As String)
 WhichField = DataType
 End Sub

 Public Function Compare(ByVal x As Object, ByVal y As Object) As
Integer Implements System.Collections.IComparer.Compare
 Dim i As Integer

 Select Case WhichField
 Case "AgentReward"
 i = CType(x, Metric).AgentReward.CompareTo(CType(y,
Metric).AgentReward)
 Case "OpponentReward"
 i = CType(x, Metric).OpponentReward.CompareTo(CType(y,
Metric).OpponentReward)
 Case "SystemError"
 i = CType(x, Metric).SystemError.CompareTo(CType(y,
Metric).SystemError)
 Case "Correct"
 i = CType(x, Metric).Correct.CompareTo(CType(y,
Metric).Correct)
 Case "PopulationPercentOptimal"
 i = CType(x,
Metric).PopulationPercentOptimal.CompareTo(CType(y,
Metric).PopulationPercentOptimal)
 Case Else
 MsgBox("Datatype not recognized")

 End Select
 Return i
 End Function

206

 End Class

 ' Return the minimum value in an array
 Function ArrayMin(ByVal arr As ArrayList, ByVal Datatype As String) As
Decimal
 Dim Index As Long

 Select Case Datatype
 Case "AgentReward"
 ArrayMin = DirectCast(arr(0), Metric).AgentReward
 Case "OpponentReward"
 ArrayMin = DirectCast(arr(0), Metric).OpponentReward
 Case "SystemError"
 ArrayMin = DirectCast(arr(0), Metric).SystemError
 Case "Correct"
 ArrayMin = DirectCast(arr(0), Metric).Correct
 Case "PopulationPercentOptimal"
 ArrayMin = DirectCast(arr(0),
Metric).PopulationPercentOptimal
 Case Else
 MsgBox("Datatype not recognized")
 End Select

 For Index = 1 To arr.Count - 1
 Select Case Datatype
 Case "AgentReward"
 If ArrayMin > DirectCast(arr(Index), Metric).AgentReward
Then
 ArrayMin = DirectCast(arr(Index), Metric).AgentReward
 End If
 Case "OpponentReward"
 If ArrayMin > DirectCast(arr(Index),
Metric).OpponentReward Then
 ArrayMin = DirectCast(arr(Index),
Metric).OpponentReward
 End If
 Case "SystemError"
 If ArrayMin > DirectCast(arr(Index), Metric).SystemError
Then
 ArrayMin = DirectCast(arr(Index), Metric).SystemError
 End If
 Case "Correct"
 If ArrayMin > DirectCast(arr(Index), Metric).Correct Then
 ArrayMin = DirectCast(arr(Index), Metric).Correct
 End If
 Case "PopulationPercentOptimal"
 If ArrayMin > DirectCast(arr(Index),
Metric).PopulationPercentOptimal Then
 ArrayMin = DirectCast(arr(Index),
Metric).PopulationPercentOptimal
 End If
 Case Else
 MsgBox("Datatype not recognized")
 End Select
 Next
 End Function

207

 ' Return the sum of the values in an array
 Function ArraySum(ByVal arr As ArrayList, ByVal Datatype As String) As
Decimal

 Dim index As Long

 For index = 0 To arr.Count - 1
 Select Case Datatype
 Case "AgentReward"
 ArraySum = ArraySum + DirectCast(arr(index),
Metric).AgentReward
 Case "OpponentReward"
 ArraySum = ArraySum + DirectCast(arr(index),
Metric).OpponentReward
 Case "SystemError"
 ArraySum = ArraySum + DirectCast(arr(index),
Metric).SystemError
 Case "Correct"
 ArraySum = ArraySum - DirectCast(arr(index),
Metric).Correct
 Case "PopulationPercentOptimal"
 ArraySum = ArraySum - DirectCast(arr(index),
Metric).PopulationPercentOptimal
 Case Else
 MsgBox("Datatype not recognized")
 End Select
 Next
 End Function

 Function CloneObject(ByVal obj As Object) As Object
 'Create a memory stream and a formatter
 Dim ms As New MemoryStream(1000)
 Dim bf As New BinaryFormatter()
 'Serialize the object into the stream
 bf.Serialize(ms, obj)
 'Position stream pointer back to first byte
 ms.Seek(0, SeekOrigin.Begin)
 'Deserialize into another object
 CloneObject = bf.Deserialize(ms)
 'Release memory
 ms.Close()

 End Function

 Function ApplyCrossover(ByVal Classifier1 As Classifier, _
 ByVal Classifier2 As Classifier) As Boolean

 If Explain Then
 MsgBox("Doing crossover ...")
 End If

 Dim x, y, z, j As Integer
 Dim TempCharacter As Char

 'need two random numbers between 1 and length of condition
 x = Rnd() * (UBound(Classifier1.Condition) + 1)

208

 y = Rnd() * (UBound(Classifier2.Condition) + 1)

 'put in correct order
 If x > y Then
 z = y
 y = x
 x = z
 End If
 If SaveDetail = "All" Then
 DetailedSW.WriteLine("Crossover members " & Classifier1.Number &
_
 " and " & Classifier2.Number & " between allelles " & _
 x & " and " & y)
 End If

 If Explain Then
 MsgBox("Lower crossover point is " & x & "; upper crossover point
is " & y)
 OutputClassifiertoScreen(Classifier1, "Child #1 before
crossover")
 OutputClassifiertoScreen(Classifier2, "Child #2 before
crossover")
 End If
 'initialize counter to walk through condition
 j = 0
 Do
 If (x <= j And j < y) Then
 TempCharacter = Classifier1.Condition(j)
 Classifier1.Condition(j) = Classifier2.Condition(j)
 Classifier2.Condition(j) = TempCharacter
 End If
 j += 1
 Loop While j < y
 If Explain Then
 OutputClassifiertoScreen(Classifier1, "Child #1 after crossover")
 OutputClassifiertoScreen(Classifier2, "Child #2 after crossover")
 End If
 '=-=-=-=-=-=-=-=-=-=-=-=

 End Function

 Public Function PercentOptimal(ByVal Opponent As String, _
 ByVal Problem As String, ByVal Epsilon0 As Decimal, _
 ByVal ThetaSub As Integer) As Decimal
 ' we need to ignore errors, if duplicates are to be discarded
 On Error Resume Next

 Dim OptimalClassifiersCollection As New Collection()
 Dim i, j As Integer
 Dim OptimalPopulation As New ArrayList()
 Dim OptimalClassifier As New Classifier()
 Dim OptimalClassifier2 As New Classifier()
 ReDim OptimalClassifier.Condition(ConditionLength)
 ReDim OptimalClassifier2.Condition(ConditionLength)

 OptimalPopulation.Add(Nothing)

209

 If Problem = "IPD" Then
 Select Case Opponent ' Evaluate Opponent
 Case "DDD", "CCC", "RAND" ' Opponent always defects or
cooperates, or is random
 For j = 1 To ConditionLength
 OptimalClassifier.Condition(j) = "#"
 Next
 OptimalClassifier.Action = "D"
 OptimalPopulation.Add(OptimalClassifier)

 OptimalClassifier.Action = "C"
 OptimalPopulation.Add(OptimalClassifier)

 For i = 1 To OptimalPopulation.Count - 1

 ' the Execute method does the search and returns a
MatchCollection object
 ' if duplicates are to be discarded, we just add a
key to the
 ' collection item
 ' and the Add method will do the rest
 For j = 1 To Population.Count - 1
 If ExactMatch(OptimalPopulation(i),
Population(j)) And _
 DirectCast(Population(j),
Classifier).PredictionError < Epsilon0 And _
 DirectCast(Population(j), Classifier).Experience
> ThetaSub Then

OptimalClassifiersCollection.Add(DirectCast(Population(j), Classifier), _
 DirectCast(Population(j),
Classifier).Condition & _
 DirectCast(Population(j),
Classifier).Action)
 End If

 Next j
 Next i
 PercentOptimal = OptimalClassifiersCollection.Count /
(OptimalPopulation.Count - 1)

 'Case "RAND" ' Opponent is random

 Case "TFT" ' Opponent is Tit-for-Tat
 'define optimal population
 For j = 1 To ConditionLength
 If j = ConditionLength - 1 Then
 OptimalClassifier.Condition(j) = "C"
 Else
 OptimalClassifier.Condition(j) = "#"
 End If
 Next

 OptimalClassifier.Action = "C"
 OptimalPopulation.Add(OptimalClassifier)

 OptimalClassifier.Action = "D"

210

 OptimalPopulation.Add(OptimalClassifier)

 For j = 1 To ConditionLength
 If j = ConditionLength - 1 Then
 OptimalClassifier2.Condition(j) = "D"
 Else
 OptimalClassifier2.Condition(j) = "#"
 End If
 Next

 'NextOptimalClassifier.Condition(ConditionLength - 1) =
"D"
 OptimalClassifier2.Action = "C"
 OptimalPopulation.Add(OptimalClassifier2)

 OptimalClassifier2.Action = "D"
 OptimalPopulation.Add(OptimalClassifier2)

 For i = 1 To OptimalPopulation.Count - 1

 ' the Execute method does the search and returns a
MatchCollection object
 ' if duplicates are to be discarded, we just add a
key to the
 ' collection item
 ' and the Add method will do the rest
 For j = 1 To Population.Count - 1
 If ExactMatch(OptimalPopulation(i),
Population(j)) And _
 DirectCast(Population(j),
Classifier).PredictionError < Epsilon0 And _
 DirectCast(Population(j), Classifier).Experience
> ThetaSub Then

OptimalClassifiersCollection.Add(DirectCast(Population(j), Classifier), _
 DirectCast(Population(j),
Classifier).Condition & _
 DirectCast(Population(j),
Classifier).Action)
 End If
 Next j
 Next i
 PercentOptimal = OptimalClassifiersCollection.Count /
(OptimalPopulation.Count - 1)

 Case "TFTT" ' Opponent is Tit-for-Two-Tat
 'define optimal population
 For j = 1 To ConditionLength
 If j = ConditionLength - 1 Or j = ConditionLength - 3
Then
 OptimalClassifier.Condition(j) = "C"
 Else
 OptimalClassifier.Condition(j) = "#"
 End If
 Next

 OptimalClassifier.Action = "C"

211

 OptimalPopulation.Add(OptimalClassifier)

 OptimalClassifier.Action = "D"
 OptimalPopulation.Add(OptimalClassifier)

 OptimalClassifier.Condition(ConditionLength - 1) = "D"
 OptimalClassifier.Condition(ConditionLength - 3) = "D"
 OptimalPopulation.Add(OptimalClassifier)

 OptimalClassifier.Action = "C"
 OptimalPopulation.Add(OptimalClassifier)

 For i = 1 To OptimalPopulation.Count - 1

 ' the Execute method does the search and returns a
MatchCollection object
 ' if duplicates are to be discarded, we just add a
key to the
 ' collection item
 ' and the Add method will do the rest
 For j = 1 To Population.Count - 1
 If ExactMatch(OptimalPopulation(i),
Population(j)) And _
 DirectCast(Population(j),
Classifier).PredictionError < Epsilon0 And _
 DirectCast(Population(j), Classifier).Experience
> ThetaSub Then

OptimalClassifiersCollection.Add(DirectCast(Population(j), Classifier), _
 DirectCast(Population(j),
Classifier).Condition & _
 DirectCast(Population(j),
Classifier).Action)
 End If
 Next j
 Next i
 PercentOptimal = OptimalClassifiersCollection.Count /
(OptimalPopulation.Count - 1)
 Case "TTFT" ' Opponent is Two Tits for Tat

 Case Else ' Other values.
 MsgBox("Opponent not recognized")
 End Select

 End If
 End Function

 Private Sub myClickHandler(ByVal sender As System.Object, ByVal e As
System.EventArgs)
 Explain = False
 MsgBox("'Explanations' turned off; click 'Ok' on this form and on the
next to continue ...")
 End Sub

 Public Function CountUniqueClassifiers() As Integer

212

 Dim UniqueItems As New Collection()
 Dim i As Integer

 For i = 1 To Population.Count - 1
 ' we need to ignore errors, if duplicates are to be discarded
 On Error Resume Next

 ' the Execute method does the search and returns a
MatchCollection object
 ' if duplicates are to be discarded, we just add a key to the
 ' collection item
 ' and the Add method will do the rest
 UniqueItems.Add(DirectCast(Population(i), Classifier), _
 DirectCast(Population(i), Classifier).Condition & _
 DirectCast(Population(i), Classifier).Action)

 Next i
 CountUniqueClassifiers = UniqueItems.Count
 End Function

 Public Function CreateExcelCharts(ByVal Opponent As String, ByVal
Frequency As Integer) As Boolean

 Dim i, k, m As Integer
 Dim j As Char
 Dim xlApp As Excel.Application
 Dim xlBook, xlBook2 As Excel.Workbook
 Dim xlSheet, xlsheet2 As Excel.Worksheet
 Dim xlRange As Excel.Range
 Dim xlFileFormat, FileName As String
 Dim xlChart As Excel.Chart
 Dim xlSeries As Excel.SeriesCollection

 On Error Resume Next
 xlApp = GetObject(, "Excel.Application")
 If xlApp Is Nothing Then
 'Excel wasn't open - open a new one
 xlApp = CreateObject("Excel.Application")
 xlApp = GetObject("", "Excel.Application")
 End If

 'xlApp.Visible = True
 xlApp.DisplayAlerts = False

 'here is the summary charts in a separate workbook
 xlBook = xlApp.Workbooks.Add()
 xlBook.Sheets.Add()
 xlSheet = xlBook.Worksheets("Sheet4")
 xlSheet.Name = "Unique Classifiers"
 xlSheet = xlBook.Worksheets("Sheet1")
 xlSheet.Name = "% Correct"
 xlSheet = xlBook.Worksheets("Sheet2")
 xlSheet.Name = "Squared Error"
 xlSheet = xlBook.Worksheets("Sheet3")
 xlSheet.Name = "% Optimal"

 For i = 1 To xlBook.Worksheets.Count

213

 xlSheet = xlBook.Sheets(i)
 xlSheet.Range("A1").Formula = "LCS-0"
 xlSheet.Range("B1").Formula = "LCS-1"
 xlSheet.Range("c1").Formula = "LCS-2"
 xlSheet.Range("d1").Formula = "LCS-3"
 xlSheet.Range("e1").Formula = "LCS-4"
 xlSheet.Range("f1").Formula = "LCS-5"
 xlSheet.Range("g1").Formula = "LCS-6"
 xlSheet.Range("h1").Formula = "LCS-7"
 xlSheet.Range("i1").Formula = "LCS-8"
 xlSheet.Range("j1").Formula = "XCS"
 For Each FileName In Directory.GetFiles(FolderName, "*.xls")
 If InStr(FileName, "Custom Agent") Then
 xlSheet.Range("k1").Formula = "Custom Agent"
 End If
 Next
 Next

 i = 1

 For Each FileName In Directory.GetFiles(FolderName, "*.xls")
 If InStr(FileName, "LCS-0") Then
 j = "A"
 ElseIf InStr(FileName, "LCS-1") Then
 j = "B"
 ElseIf InStr(FileName, "LCS-2") Then
 j = "C"
 ElseIf InStr(FileName, "LCS-3") Then
 j = "D"
 ElseIf InStr(FileName, "LCS-4") Then
 j = "E"
 ElseIf InStr(FileName, "LCS-5") Then
 j = "F"
 ElseIf InStr(FileName, "LCS-6") Then
 j = "G"
 ElseIf InStr(FileName, "LCS-7") Then
 j = "H"
 ElseIf InStr(FileName, "LCS-8") Then
 j = "I"
 ElseIf InStr(FileName, "XCS") Then
 j = "J"
 ElseIf InStr(FileName, "Custom Agent") Then
 j = "K"
 End If

 xlBook2 = xlApp.Workbooks.Open(FileName)

 xlsheet2 = xlBook2.Worksheets("Summary Metrics")
 xlsheet2.Select()
 xlsheet2.Range(j & "2").End(XlDirection.xlDown).Select()
 k = xlApp.ActiveCell.Row

 'copy population size values
 xlSheet = xlBook.Worksheets("Unique Classifiers")
 xlsheet2.Range("C3:C" & k).Copy()
 xlSheet.Range(j & "2:" & j & k -
1).PasteSpecial(XlPasteType.xlPasteValues)

214

 'copy % correct values
 xlSheet = xlBook.Worksheets("% Correct")
 xlsheet2.Range("D3:D" & k).Copy()
 xlSheet.Range(j & "2:" & j & k -
1).PasteSpecial(XlPasteType.xlPasteValues)

 'copy system error values
 xlSheet = xlBook.Worksheets("Squared Error")
 xlsheet2.Range("K3:K" & k).Copy()
 xlSheet.Range(j & "2:" & j & k -
1).PasteSpecial(XlPasteType.xlPasteValues)

 'copy % optimal values
 xlSheet = xlBook.Worksheets("% Optimal")
 xlsheet2.Range("AF3:AF" & k).Copy()
 xlSheet.Range(j & "2:" & j & k -
1).PasteSpecial(XlPasteType.xlPasteValues)

 i += 1
 xlBook2.Close()
 Next

 For i = 1 To xlBook.Worksheets.Count
 xlSheet = xlBook.Sheets(i)
 xlChart = xlBook.Charts.Add
 xlChart.ChartType = XlChartType.xlLine
 xlChart.SetSourceData(xlSheet.Range("A1:" & j & k - 1),
Excel.XlRowCol.xlColumns)

 With xlChart
 .HasTitle = True
 .ChartTitle.Characters.Text = xlSheet.Name & " vs " &
Opponent
 .Axes(Excel.XlAxisType.xlCategory,
XlAxisGroup.xlPrimary).hastitle = True
 .Axes(Excel.XlAxisType.xlCategory,
XlAxisGroup.xlPrimary).axistitle.characters.text = "Generation (" & Frequency
& "s)"
 .Axes(Excel.XlAxisType.xlValue,
XlAxisGroup.xlPrimary).hastitle = True
 'removed the following line temporarily to recreate color
graphs
 '.PlotArea.Interior.ColorIndex = 2

 If i = 1 Then
 .Axes(Excel.XlAxisType.xlValue,
XlAxisGroup.xlPrimary).axistitle.characters.text = "# of Unique Classifiers"
 ElseIf i = 2 Then
 .Axes(Excel.XlAxisType.xlValue,
XlAxisGroup.xlPrimary).axistitle.characters.text = "% Correct"
 ElseIf i = 3 Then
 .Axes(Excel.XlAxisType.xlValue,
XlAxisGroup.xlPrimary).axistitle.characters.text = "(Predicted Reward -
Realized Reward) ^ 2"
 Else

215

 .Axes(Excel.XlAxisType.xlValue,
XlAxisGroup.xlPrimary).axistitle.characters.text = "%"
 End If

 End With
 With xlChart.Axes(Excel.XlAxisType.xlCategory)
 .HasMajorGridlines = False
 .HasMinorGridlines = False
 End With
 With xlChart.Axes(Excel.XlAxisType.xlValue)
 .HasMajorGridlines = True
 .HasMinorGridlines = False
 End With

 'format x axes grid marks
 If k > 20 Then
 With xlChart.Axes(Excel.XlAxisType.xlCategory)
 .CrossesAt = 1
 .TickLabelSpacing = Int(k / 10)
 .TickMarkSpacing = Int(k / 20)
 .AxisBetweenCategories = True
 .ReversePlotOrder = False
 End With
 End If

 xlChart.HasDataTable = False
 xlChart.Location(XlChartLocation.xlLocationAsObject,
xlSheet.Name)

 Next

 xlBook.SaveAs(FileName:=FolderName & "\" & "Summary Results vs " &
Opponent & ".xls", fileformat:=Excel.XlFileFormat.xlWorkbookNormal)
 xlBook.Save()
 xlApp.Quit()

 xlBook2 = Nothing
 xlApp = Nothing
 xlBook = Nothing
 xlSheet = Nothing
 xlRange = Nothing

 CreateExcelCharts = True

 End Function

End Module

Public Class XCSOpeningScreen
 Inherits System.Windows.Forms.Form

#Region " Windows Form Designer generated code "

 Public Sub New()
 MyBase.New()

216

 'This call is required by the Windows Form Designer.
 InitializeComponent()

 'Add any initialization after the InitializeComponent() call

 End Sub

 'Form overrides dispose to clean up the component list.
 Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)
 If disposing Then
 If Not (components Is Nothing) Then
 components.Dispose()
 End If
 End If
 MyBase.Dispose(disposing)
 End Sub

 'Required by the Windows Form Designer
 Private components As System.ComponentModel.IContainer

 'NOTE: The following procedure is required by the Windows Form Designer
 'It can be modified using the Windows Form Designer.
 'Do not modify it using the code editor.
 Friend WithEvents nudGenerations As System.Windows.Forms.NumericUpDown
 Friend WithEvents lblGenerations As System.Windows.Forms.Label
 Friend WithEvents btnQuit As System.Windows.Forms.Button
 Friend WithEvents btnTest As System.Windows.Forms.Button
 Friend WithEvents nudReward1 As System.Windows.Forms.NumericUpDown
 Friend WithEvents lblReward1 As System.Windows.Forms.Label
 Friend WithEvents lblReward2 As System.Windows.Forms.Label
 Friend WithEvents lblReward3 As System.Windows.Forms.Label
 Friend WithEvents lblReward4 As System.Windows.Forms.Label
 Friend WithEvents lblWhoseMoves As System.Windows.Forms.Label
 Friend WithEvents lblNumberMoves As System.Windows.Forms.Label
 Friend WithEvents nudNumberMoves As System.Windows.Forms.NumericUpDown
 Friend WithEvents nudReward4 As System.Windows.Forms.NumericUpDown
 Friend WithEvents nudReward3 As System.Windows.Forms.NumericUpDown
 Friend WithEvents nudReward2 As System.Windows.Forms.NumericUpDown
 Friend WithEvents lblPopulationSize As System.Windows.Forms.Label
 Friend WithEvents lblProbPound As System.Windows.Forms.Label
 Friend WithEvents nudProbPound As System.Windows.Forms.NumericUpDown
 Friend WithEvents grpLearningParameters As System.Windows.Forms.GroupBox
 Friend WithEvents lblBeta As System.Windows.Forms.Label
 Friend WithEvents nudBeta As System.Windows.Forms.NumericUpDown
 Friend WithEvents lblAlpha As System.Windows.Forms.Label
 Friend WithEvents nudAlpha As System.Windows.Forms.NumericUpDown
 Friend WithEvents nudEpsilon0 As System.Windows.Forms.NumericUpDown
 Friend WithEvents nudNu As System.Windows.Forms.NumericUpDown
 Friend WithEvents lblNu As System.Windows.Forms.Label
 Friend WithEvents nudGamma As System.Windows.Forms.NumericUpDown
 Friend WithEvents nudThetaGA As System.Windows.Forms.NumericUpDown
 Friend WithEvents lblEpsilon0 As System.Windows.Forms.Label
 Friend WithEvents nudChi As System.Windows.Forms.NumericUpDown
 Friend WithEvents nudMu As System.Windows.Forms.NumericUpDown
 Friend WithEvents nudThetaDel As System.Windows.Forms.NumericUpDown
 Friend WithEvents nudDelta As System.Windows.Forms.NumericUpDown
 Friend WithEvents nudThetaSub As System.Windows.Forms.NumericUpDown

217

 Friend WithEvents lblInitialPrediction As System.Windows.Forms.Label
 Friend WithEvents nudInitialPrediction As
System.Windows.Forms.NumericUpDown
 Friend WithEvents nudInitialPredictionError As
System.Windows.Forms.NumericUpDown
 Friend WithEvents nudInitialFitness As System.Windows.Forms.NumericUpDown
 Friend WithEvents nudProbXPlor As System.Windows.Forms.NumericUpDown
 Friend WithEvents nudThetaMNA As System.Windows.Forms.NumericUpDown
 Friend WithEvents lblDoGASub As System.Windows.Forms.Label
 Friend WithEvents lblDoASSub As System.Windows.Forms.Label
 Friend WithEvents cboPseudoRandomness As System.Windows.Forms.ComboBox
 Friend WithEvents lblPseudoRandomness As System.Windows.Forms.Label
 Friend WithEvents cboOpponent As System.Windows.Forms.ComboBox
 Friend WithEvents lblOpponent As System.Windows.Forms.Label
 Friend WithEvents cboCrankitUp As System.Windows.Forms.ComboBox
 Friend WithEvents lblCrankitUp As System.Windows.Forms.Label
 Friend WithEvents nudReplications As System.Windows.Forms.NumericUpDown
 Friend WithEvents lblReplications As System.Windows.Forms.Label
 Friend WithEvents ToolTipN As System.Windows.Forms.ToolTip
 Public WithEvents pbar1 As System.Windows.Forms.ProgressBar
 Friend WithEvents nudN As System.Windows.Forms.NumericUpDown
 Friend WithEvents lblExplain As System.Windows.Forms.Label
 Friend WithEvents lblMeasurementFreq As System.Windows.Forms.Label
 Friend WithEvents cboExplain As System.Windows.Forms.ComboBox
 Friend WithEvents nudFreq As System.Windows.Forms.NumericUpDown
 Friend WithEvents grpIPDParameters As System.Windows.Forms.GroupBox
 Friend WithEvents grpExperimentParameters As
System.Windows.Forms.GroupBox
 Friend WithEvents lblGreater1 As System.Windows.Forms.Label
 Friend WithEvents lblGreater2 As System.Windows.Forms.Label
 Friend WithEvents lblGreater3 As System.Windows.Forms.Label
 Friend WithEvents cboWhoseMoves As System.Windows.Forms.ComboBox
 Friend WithEvents lblSaveDetail As System.Windows.Forms.Label
 Friend WithEvents cboSaveDetail As System.Windows.Forms.ComboBox
 Friend WithEvents grpAgentParameters As System.Windows.Forms.GroupBox
 Friend WithEvents lblClassifierFitness As System.Windows.Forms.Label
 Friend WithEvents cboClassifierFitness As System.Windows.Forms.ComboBox
 Friend WithEvents lblInitialPopulation As System.Windows.Forms.Label
 Friend WithEvents cboInitialPopulation As System.Windows.Forms.ComboBox
 Friend WithEvents lblPopSize As System.Windows.Forms.Label
 Friend WithEvents cboPopSize As System.Windows.Forms.ComboBox
 Friend WithEvents cboGAScope As System.Windows.Forms.ComboBox
 Friend WithEvents lblParentSelection As System.Windows.Forms.Label
 Friend WithEvents cboParentSelection As System.Windows.Forms.ComboBox
 Friend WithEvents lblClassifierDeletion As System.Windows.Forms.Label
 Friend WithEvents cboClassifierDeletion As System.Windows.Forms.ComboBox
 Friend WithEvents lblActionSelection As System.Windows.Forms.Label
 Friend WithEvents cboActionSelection As System.Windows.Forms.ComboBox
 Friend WithEvents lblFitnessUpdates As System.Windows.Forms.Label
 Friend WithEvents cboClassifierFitnessUpdates As
System.Windows.Forms.ComboBox
 Friend WithEvents lblAgentType As System.Windows.Forms.Label
 Friend WithEvents cboAgentType As System.Windows.Forms.ComboBox
 Friend WithEvents cboDoGASub As System.Windows.Forms.ComboBox
 Friend WithEvents cboDoASSub As System.Windows.Forms.ComboBox
 Friend WithEvents Label1 As System.Windows.Forms.Label
 Friend WithEvents cboProblem As System.Windows.Forms.ComboBox

218

 Friend WithEvents lblEMail As System.Windows.Forms.Label
 Friend WithEvents cboEMail As System.Windows.Forms.ComboBox
 Friend WithEvents Label2 As System.Windows.Forms.Label
 Friend WithEvents Label4 As System.Windows.Forms.Label
 Friend WithEvents Label5 As System.Windows.Forms.Label
 Friend WithEvents Label6 As System.Windows.Forms.Label
 Friend WithEvents Label10 As System.Windows.Forms.Label
 Friend WithEvents Label12 As System.Windows.Forms.Label
 Friend WithEvents Label13 As System.Windows.Forms.Label
 Friend WithEvents Label15 As System.Windows.Forms.Label
 Friend WithEvents Label3 As System.Windows.Forms.Label
 Friend WithEvents Label9 As System.Windows.Forms.Label
 Friend WithEvents Label11 As System.Windows.Forms.Label
 Friend WithEvents Label14 As System.Windows.Forms.Label
 Friend WithEvents Label16 As System.Windows.Forms.Label
 Friend WithEvents Label8 As System.Windows.Forms.Label
 Friend WithEvents Label17 As System.Windows.Forms.Label
 Friend WithEvents Label18 As System.Windows.Forms.Label
 Friend WithEvents Label19 As System.Windows.Forms.Label
 Friend WithEvents Label20 As System.Windows.Forms.Label
 Friend WithEvents Label7 As System.Windows.Forms.Label
 Friend WithEvents Label21 As System.Windows.Forms.Label
 Friend WithEvents Label22 As System.Windows.Forms.Label
 Friend WithEvents cboGraduatedRewards As System.Windows.Forms.ComboBox
 Friend WithEvents Label23 As System.Windows.Forms.Label
 Friend WithEvents lblGAScope As System.Windows.Forms.Label
 Friend WithEvents lblCitation As System.Windows.Forms.Label
 <System.Diagnostics.DebuggerStepThrough()> Private Sub
InitializeComponent()
 Me.components = New System.ComponentModel.Container()
 Me.nudGenerations = New System.Windows.Forms.NumericUpDown()
 Me.lblGenerations = New System.Windows.Forms.Label()
 Me.lblWhoseMoves = New System.Windows.Forms.Label()
 Me.btnQuit = New System.Windows.Forms.Button()
 Me.btnTest = New System.Windows.Forms.Button()
 Me.cboWhoseMoves = New System.Windows.Forms.ComboBox()
 Me.grpIPDParameters = New System.Windows.Forms.GroupBox()
 Me.cboGraduatedRewards = New System.Windows.Forms.ComboBox()
 Me.Label1 = New System.Windows.Forms.Label()
 Me.cboProblem = New System.Windows.Forms.ComboBox()
 Me.lblGreater1 = New System.Windows.Forms.Label()
 Me.lblGreater2 = New System.Windows.Forms.Label()
 Me.nudReward4 = New System.Windows.Forms.NumericUpDown()
 Me.lblReward4 = New System.Windows.Forms.Label()
 Me.lblGreater3 = New System.Windows.Forms.Label()
 Me.nudReward3 = New System.Windows.Forms.NumericUpDown()
 Me.lblReward3 = New System.Windows.Forms.Label()
 Me.nudReward2 = New System.Windows.Forms.NumericUpDown()
 Me.lblReward2 = New System.Windows.Forms.Label()
 Me.nudReward1 = New System.Windows.Forms.NumericUpDown()
 Me.lblReward1 = New System.Windows.Forms.Label()
 Me.nudNumberMoves = New System.Windows.Forms.NumericUpDown()
 Me.lblNumberMoves = New System.Windows.Forms.Label()
 Me.lblOpponent = New System.Windows.Forms.Label()
 Me.cboOpponent = New System.Windows.Forms.ComboBox()
 Me.cboPseudoRandomness = New System.Windows.Forms.ComboBox()
 Me.lblPseudoRandomness = New System.Windows.Forms.Label()

219

 Me.lblReplications = New System.Windows.Forms.Label()
 Me.nudReplications = New System.Windows.Forms.NumericUpDown()
 Me.cboCrankitUp = New System.Windows.Forms.ComboBox()
 Me.lblCrankitUp = New System.Windows.Forms.Label()
 Me.lblPopulationSize = New System.Windows.Forms.Label()
 Me.nudN = New System.Windows.Forms.NumericUpDown()
 Me.nudThetaMNA = New System.Windows.Forms.NumericUpDown()
 Me.lblProbPound = New System.Windows.Forms.Label()
 Me.nudProbPound = New System.Windows.Forms.NumericUpDown()
 Me.grpLearningParameters = New System.Windows.Forms.GroupBox()
 Me.lblCitation = New System.Windows.Forms.Label()
 Me.Label23 = New System.Windows.Forms.Label()
 Me.Label21 = New System.Windows.Forms.Label()
 Me.Label22 = New System.Windows.Forms.Label()
 Me.Label7 = New System.Windows.Forms.Label()
 Me.Label19 = New System.Windows.Forms.Label()
 Me.Label20 = New System.Windows.Forms.Label()
 Me.Label17 = New System.Windows.Forms.Label()
 Me.Label18 = New System.Windows.Forms.Label()
 Me.Label8 = New System.Windows.Forms.Label()
 Me.Label14 = New System.Windows.Forms.Label()
 Me.Label16 = New System.Windows.Forms.Label()
 Me.Label11 = New System.Windows.Forms.Label()
 Me.Label9 = New System.Windows.Forms.Label()
 Me.Label3 = New System.Windows.Forms.Label()
 Me.Label2 = New System.Windows.Forms.Label()
 Me.lblEpsilon0 = New System.Windows.Forms.Label()
 Me.Label13 = New System.Windows.Forms.Label()
 Me.Label6 = New System.Windows.Forms.Label()
 Me.Label5 = New System.Windows.Forms.Label()
 Me.Label4 = New System.Windows.Forms.Label()
 Me.cboDoASSub = New System.Windows.Forms.ComboBox()
 Me.lblDoASSub = New System.Windows.Forms.Label()
 Me.nudProbXPlor = New System.Windows.Forms.NumericUpDown()
 Me.nudInitialFitness = New System.Windows.Forms.NumericUpDown()
 Me.nudInitialPredictionError = New
System.Windows.Forms.NumericUpDown()
 Me.lblInitialPrediction = New System.Windows.Forms.Label()
 Me.nudInitialPrediction = New System.Windows.Forms.NumericUpDown()
 Me.nudThetaSub = New System.Windows.Forms.NumericUpDown()
 Me.nudDelta = New System.Windows.Forms.NumericUpDown()
 Me.nudThetaDel = New System.Windows.Forms.NumericUpDown()
 Me.nudMu = New System.Windows.Forms.NumericUpDown()
 Me.nudChi = New System.Windows.Forms.NumericUpDown()
 Me.nudThetaGA = New System.Windows.Forms.NumericUpDown()
 Me.nudGamma = New System.Windows.Forms.NumericUpDown()
 Me.nudNu = New System.Windows.Forms.NumericUpDown()
 Me.lblNu = New System.Windows.Forms.Label()
 Me.nudEpsilon0 = New System.Windows.Forms.NumericUpDown()
 Me.lblAlpha = New System.Windows.Forms.Label()
 Me.nudAlpha = New System.Windows.Forms.NumericUpDown()
 Me.lblBeta = New System.Windows.Forms.Label()
 Me.nudBeta = New System.Windows.Forms.NumericUpDown()
 Me.lblDoGASub = New System.Windows.Forms.Label()
 Me.cboDoGASub = New System.Windows.Forms.ComboBox()
 Me.Label10 = New System.Windows.Forms.Label()
 Me.Label12 = New System.Windows.Forms.Label()

220

 Me.Label15 = New System.Windows.Forms.Label()
 Me.ToolTipN = New System.Windows.Forms.ToolTip(Me.components)
 Me.lblExplain = New System.Windows.Forms.Label()
 Me.lblMeasurementFreq = New System.Windows.Forms.Label()
 Me.lblSaveDetail = New System.Windows.Forms.Label()
 Me.cboClassifierFitness = New System.Windows.Forms.ComboBox()
 Me.lblInitialPopulation = New System.Windows.Forms.Label()
 Me.cboInitialPopulation = New System.Windows.Forms.ComboBox()
 Me.cboPopSize = New System.Windows.Forms.ComboBox()
 Me.cboGAScope = New System.Windows.Forms.ComboBox()
 Me.cboParentSelection = New System.Windows.Forms.ComboBox()
 Me.cboClassifierDeletion = New System.Windows.Forms.ComboBox()
 Me.cboActionSelection = New System.Windows.Forms.ComboBox()
 Me.cboClassifierFitnessUpdates = New System.Windows.Forms.ComboBox()
 Me.cboAgentType = New System.Windows.Forms.ComboBox()
 Me.lblClassifierFitness = New System.Windows.Forms.Label()
 Me.cboExplain = New System.Windows.Forms.ComboBox()
 Me.nudFreq = New System.Windows.Forms.NumericUpDown()
 Me.cboSaveDetail = New System.Windows.Forms.ComboBox()
 Me.lblAgentType = New System.Windows.Forms.Label()
 Me.lblFitnessUpdates = New System.Windows.Forms.Label()
 Me.lblActionSelection = New System.Windows.Forms.Label()
 Me.lblClassifierDeletion = New System.Windows.Forms.Label()
 Me.lblParentSelection = New System.Windows.Forms.Label()
 Me.lblGAScope = New System.Windows.Forms.Label()
 Me.lblPopSize = New System.Windows.Forms.Label()
 Me.lblEMail = New System.Windows.Forms.Label()
 Me.cboEMail = New System.Windows.Forms.ComboBox()
 Me.pbar1 = New System.Windows.Forms.ProgressBar()
 Me.grpExperimentParameters = New System.Windows.Forms.GroupBox()
 Me.grpAgentParameters = New System.Windows.Forms.GroupBox()
 CType(Me.nudGenerations,
System.ComponentModel.ISupportInitialize).BeginInit()
 Me.grpIPDParameters.SuspendLayout()
 CType(Me.nudReward4,
System.ComponentModel.ISupportInitialize).BeginInit()
 CType(Me.nudReward3,
System.ComponentModel.ISupportInitialize).BeginInit()
 CType(Me.nudReward2,
System.ComponentModel.ISupportInitialize).BeginInit()
 CType(Me.nudReward1,
System.ComponentModel.ISupportInitialize).BeginInit()
 CType(Me.nudNumberMoves,
System.ComponentModel.ISupportInitialize).BeginInit()
 CType(Me.nudReplications,
System.ComponentModel.ISupportInitialize).BeginInit()
 CType(Me.nudN, System.ComponentModel.ISupportInitialize).BeginInit()
 CType(Me.nudThetaMNA,
System.ComponentModel.ISupportInitialize).BeginInit()
 CType(Me.nudProbPound,
System.ComponentModel.ISupportInitialize).BeginInit()
 Me.grpLearningParameters.SuspendLayout()
 CType(Me.nudProbXPlor,
System.ComponentModel.ISupportInitialize).BeginInit()
 CType(Me.nudInitialFitness,
System.ComponentModel.ISupportInitialize).BeginInit()

221

 CType(Me.nudInitialPredictionError,
System.ComponentModel.ISupportInitialize).BeginInit()
 CType(Me.nudInitialPrediction,
System.ComponentModel.ISupportInitialize).BeginInit()
 CType(Me.nudThetaSub,
System.ComponentModel.ISupportInitialize).BeginInit()
 CType(Me.nudDelta,
System.ComponentModel.ISupportInitialize).BeginInit()
 CType(Me.nudThetaDel,
System.ComponentModel.ISupportInitialize).BeginInit()
 CType(Me.nudMu, System.ComponentModel.ISupportInitialize).BeginInit()
 CType(Me.nudChi,
System.ComponentModel.ISupportInitialize).BeginInit()
 CType(Me.nudThetaGA,
System.ComponentModel.ISupportInitialize).BeginInit()
 CType(Me.nudGamma,
System.ComponentModel.ISupportInitialize).BeginInit()
 CType(Me.nudNu, System.ComponentModel.ISupportInitialize).BeginInit()
 CType(Me.nudEpsilon0,
System.ComponentModel.ISupportInitialize).BeginInit()
 CType(Me.nudAlpha,
System.ComponentModel.ISupportInitialize).BeginInit()
 CType(Me.nudBeta,
System.ComponentModel.ISupportInitialize).BeginInit()
 CType(Me.nudFreq,
System.ComponentModel.ISupportInitialize).BeginInit()
 Me.grpExperimentParameters.SuspendLayout()
 Me.grpAgentParameters.SuspendLayout()
 Me.SuspendLayout()
 '
 'nudGenerations
 '
 Me.nudGenerations.Location = New System.Drawing.Point(170, 46)
 Me.nudGenerations.Maximum = New Decimal(New Integer() {100000000, 0,
0, 0})
 Me.nudGenerations.Name = "nudGenerations"
 Me.nudGenerations.Size = New System.Drawing.Size(100, 20)
 Me.nudGenerations.TabIndex = 0
 Me.nudGenerations.TextAlign =
System.Windows.Forms.HorizontalAlignment.Right
 Me.nudGenerations.ThousandsSeparator = True
 Me.ToolTipN.SetToolTip(Me.nudGenerations, "Number of encounters
between opponents; results in a new population of classifier" & _
 "s")
 Me.nudGenerations.Value = New Decimal(New Integer() {200000, 0, 0,
0})
 '
 'lblGenerations
 '
 Me.lblGenerations.FlatStyle = System.Windows.Forms.FlatStyle.Flat
 Me.lblGenerations.Location = New System.Drawing.Point(25, 53)
 Me.lblGenerations.Name = "lblGenerations"
 Me.lblGenerations.Size = New System.Drawing.Size(138, 13)
 Me.lblGenerations.TabIndex = 1
 Me.lblGenerations.Text = "Generations/Encounters"
 Me.lblGenerations.TextAlign =
System.Drawing.ContentAlignment.MiddleRight

222

 Me.ToolTipN.SetToolTip(Me.lblGenerations, "Number of encounters
between opponents; each encounter results in a new populatio" & _
 "n of classifiers")
 '
 'lblWhoseMoves
 '
 Me.lblWhoseMoves.FlatStyle = System.Windows.Forms.FlatStyle.Flat
 Me.lblWhoseMoves.Location = New System.Drawing.Point(18, 73)
 Me.lblWhoseMoves.Name = "lblWhoseMoves"
 Me.lblWhoseMoves.Size = New System.Drawing.Size(145, 19)
 Me.lblWhoseMoves.TabIndex = 2
 Me.lblWhoseMoves.Text = "Whose Moves"
 Me.lblWhoseMoves.TextAlign =
System.Drawing.ContentAlignment.MiddleRight
 Me.ToolTipN.SetToolTip(Me.lblWhoseMoves, "Memory model - whose moves
to remember")
 '
 'btnQuit
 '
 Me.btnQuit.DialogResult = System.Windows.Forms.DialogResult.Cancel
 Me.btnQuit.Location = New System.Drawing.Point(406, 494)
 Me.btnQuit.Name = "btnQuit"
 Me.btnQuit.Size = New System.Drawing.Size(156, 51)
 Me.btnQuit.TabIndex = 4
 Me.btnQuit.Text = "Quit"
 '
 'btnTest
 '
 Me.btnTest.Location = New System.Drawing.Point(582, 494)
 Me.btnTest.Name = "btnTest"
 Me.btnTest.Size = New System.Drawing.Size(156, 51)
 Me.btnTest.TabIndex = 5
 Me.btnTest.Text = "Test"
 '
 'cboWhoseMoves
 '
 Me.cboWhoseMoves.Cursor = System.Windows.Forms.Cursors.Arrow
 Me.cboWhoseMoves.DropDownStyle =
System.Windows.Forms.ComboBoxStyle.DropDownList
 Me.cboWhoseMoves.Items.AddRange(New Object() {"Mine Only", "Both",
"Opponent Only"})
 Me.cboWhoseMoves.Location = New System.Drawing.Point(170, 73)
 Me.cboWhoseMoves.Name = "cboWhoseMoves"
 Me.cboWhoseMoves.Size = New System.Drawing.Size(100, 21)
 Me.cboWhoseMoves.TabIndex = 6
 Me.ToolTipN.SetToolTip(Me.cboWhoseMoves, "Specifies whether to
remember both players' moves")
 '
 'grpIPDParameters
 '
 Me.grpIPDParameters.Controls.AddRange(New
System.Windows.Forms.Control() {Me.cboGraduatedRewards, Me.Label1,
Me.cboProblem, Me.lblGreater1, Me.lblGreater2, Me.nudReward4, Me.lblReward4,
Me.lblGreater3, Me.nudReward3, Me.lblReward3, Me.nudReward2, Me.lblReward2,
Me.nudReward1, Me.lblReward1, Me.lblWhoseMoves, Me.nudNumberMoves,
Me.lblNumberMoves, Me.cboWhoseMoves, Me.lblGenerations, Me.nudGenerations,
Me.lblOpponent, Me.cboOpponent})

223

 Me.grpIPDParameters.Location = New System.Drawing.Point(400, 13)
 Me.grpIPDParameters.Name = "grpIPDParameters"
 Me.grpIPDParameters.Size = New System.Drawing.Size(364, 205)
 Me.grpIPDParameters.TabIndex = 9
 Me.grpIPDParameters.TabStop = False
 Me.grpIPDParameters.Text = "IPD Parameters"
 '
 'cboGraduatedRewards
 '
 Me.cboGraduatedRewards.Cursor = System.Windows.Forms.Cursors.Arrow
 Me.cboGraduatedRewards.DropDownStyle =
System.Windows.Forms.ComboBoxStyle.DropDownList
 Me.cboGraduatedRewards.Items.AddRange(New Object() {"Yes", "No"})
 Me.cboGraduatedRewards.Location = New System.Drawing.Point(170, 73)
 Me.cboGraduatedRewards.Name = "cboGraduatedRewards"
 Me.cboGraduatedRewards.Size = New System.Drawing.Size(100, 21)
 Me.cboGraduatedRewards.TabIndex = 74
 Me.ToolTipN.SetToolTip(Me.cboGraduatedRewards, "Specifies whether to
have graduated rewards in 6-MUX")
 '
 'Label1
 '
 Me.Label1.FlatStyle = System.Windows.Forms.FlatStyle.Flat
 Me.Label1.Location = New System.Drawing.Point(67, 27)
 Me.Label1.Name = "Label1"
 Me.Label1.Size = New System.Drawing.Size(96, 17)
 Me.Label1.TabIndex = 72
 Me.Label1.Text = "Type of Problem"
 Me.Label1.TextAlign = System.Drawing.ContentAlignment.MiddleRight
 Me.ToolTipN.SetToolTip(Me.Label1, "ThetaGA - is the GA threshhold -
GA is applied in a set when the average time sin" & _
 "ce the last GA in the set is greater than ThetaGA, ranges from 25-
50")
 '
 'cboProblem
 '
 Me.cboProblem.DropDownStyle =
System.Windows.Forms.ComboBoxStyle.DropDownList
 Me.cboProblem.Items.AddRange(New Object() {"IPD", "6-MUX"})
 Me.cboProblem.Location = New System.Drawing.Point(170, 20)
 Me.cboProblem.Name = "cboProblem"
 Me.cboProblem.Size = New System.Drawing.Size(100, 21)
 Me.cboProblem.TabIndex = 73
 Me.ToolTipN.SetToolTip(Me.cboProblem, "Specifies whether to remember
both players' moves")
 '
 'lblGreater1
 '
 Me.lblGreater1.Font = New System.Drawing.Font("Microsoft Sans Serif",
21.75!, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point,
CType(0, Byte))
 Me.lblGreater1.Location = New System.Drawing.Point(91, 171)
 Me.lblGreater1.Name = "lblGreater1"
 Me.lblGreater1.Size = New System.Drawing.Size(22, 22)
 Me.lblGreater1.TabIndex = 71
 Me.lblGreater1.Text = ">"

224

 Me.lblGreater1.TextAlign =
System.Drawing.ContentAlignment.MiddleCenter
 '
 'lblGreater2
 '
 Me.lblGreater2.Font = New System.Drawing.Font("Microsoft Sans Serif",
21.75!, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point,
CType(0, Byte))
 Me.lblGreater2.Location = New System.Drawing.Point(163, 171)
 Me.lblGreater2.Name = "lblGreater2"
 Me.lblGreater2.Size = New System.Drawing.Size(22, 22)
 Me.lblGreater2.TabIndex = 70
 Me.lblGreater2.Text = ">"
 Me.lblGreater2.TextAlign =
System.Drawing.ContentAlignment.MiddleCenter
 '
 'nudReward4
 '
 Me.nudReward4.Location = New System.Drawing.Point(255, 171)
 Me.nudReward4.Maximum = New Decimal(New Integer() {10, 0, 0, 0})
 Me.nudReward4.Name = "nudReward4"
 Me.nudReward4.Size = New System.Drawing.Size(48, 20)
 Me.nudReward4.TabIndex = 18
 Me.nudReward4.TextAlign =
System.Windows.Forms.HorizontalAlignment.Right
 Me.ToolTipN.SetToolTip(Me.nudReward4, "Reward for cooperating when
opponent defects")
 '
 'lblReward4
 '
 Me.lblReward4.Location = New System.Drawing.Point(248, 151)
 Me.lblReward4.Name = "lblReward4"
 Me.lblReward4.Size = New System.Drawing.Size(62, 20)
 Me.lblReward4.TabIndex = 19
 Me.lblReward4.Text = "Reward 4"
 Me.lblReward4.TextAlign =
System.Drawing.ContentAlignment.MiddleCenter
 Me.ToolTipN.SetToolTip(Me.lblReward4, "Reward for cooperating when
opponent defects")
 '
 'lblGreater3
 '
 Me.lblGreater3.Font = New System.Drawing.Font("Microsoft Sans Serif",
21.75!, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point,
CType(0, Byte))
 Me.lblGreater3.Location = New System.Drawing.Point(230, 171)
 Me.lblGreater3.Name = "lblGreater3"
 Me.lblGreater3.Size = New System.Drawing.Size(22, 22)
 Me.lblGreater3.TabIndex = 17
 Me.lblGreater3.Text = ">"
 Me.lblGreater3.TextAlign =
System.Drawing.ContentAlignment.MiddleCenter
 '
 'nudReward3
 '
 Me.nudReward3.Location = New System.Drawing.Point(188, 171)
 Me.nudReward3.Maximum = New Decimal(New Integer() {10, 0, 0, 0})

225

 Me.nudReward3.Name = "nudReward3"
 Me.nudReward3.Size = New System.Drawing.Size(42, 20)
 Me.nudReward3.TabIndex = 15
 Me.nudReward3.TextAlign =
System.Windows.Forms.HorizontalAlignment.Right
 Me.ToolTipN.SetToolTip(Me.nudReward3, "Reward for defecting when
opponent also defects")
 Me.nudReward3.Value = New Decimal(New Integer() {1, 0, 0, 0})
 '
 'lblReward3
 '
 Me.lblReward3.Location = New System.Drawing.Point(176, 151)
 Me.lblReward3.Name = "lblReward3"
 Me.lblReward3.Size = New System.Drawing.Size(67, 20)
 Me.lblReward3.TabIndex = 16
 Me.lblReward3.Text = "Reward 3"
 Me.lblReward3.TextAlign =
System.Drawing.ContentAlignment.MiddleCenter
 Me.ToolTipN.SetToolTip(Me.lblReward3, "Reward for defecting when
opponent also defects")
 '
 'nudReward2
 '
 Me.nudReward2.Location = New System.Drawing.Point(115, 171)
 Me.nudReward2.Maximum = New Decimal(New Integer() {10, 0, 0, 0})
 Me.nudReward2.Name = "nudReward2"
 Me.nudReward2.Size = New System.Drawing.Size(43, 20)
 Me.nudReward2.TabIndex = 12
 Me.nudReward2.TextAlign =
System.Windows.Forms.HorizontalAlignment.Right
 Me.ToolTipN.SetToolTip(Me.nudReward2, "Reward for cooperating when
opponent also cooperates")
 Me.nudReward2.Value = New Decimal(New Integer() {3, 0, 0, 0})
 '
 'lblReward2
 '
 Me.lblReward2.Location = New System.Drawing.Point(103, 151)
 Me.lblReward2.Name = "lblReward2"
 Me.lblReward2.Size = New System.Drawing.Size(60, 20)
 Me.lblReward2.TabIndex = 13
 Me.lblReward2.Text = "Reward 2"
 Me.lblReward2.TextAlign =
System.Drawing.ContentAlignment.MiddleCenter
 Me.ToolTipN.SetToolTip(Me.lblReward2, "Reward for cooperating when
opponent also cooperates")
 '
 'nudReward1
 '
 Me.nudReward1.Location = New System.Drawing.Point(37, 171)
 Me.nudReward1.Maximum = New Decimal(New Integer() {10, 0, 0, 0})
 Me.nudReward1.Name = "nudReward1"
 Me.nudReward1.Size = New System.Drawing.Size(50, 20)
 Me.nudReward1.TabIndex = 9
 Me.nudReward1.TextAlign =
System.Windows.Forms.HorizontalAlignment.Right
 Me.ToolTipN.SetToolTip(Me.nudReward1, "Reward for defecting when
opponent cooperates")

226

 Me.nudReward1.Value = New Decimal(New Integer() {5, 0, 0, 0})
 '
 'lblReward1
 '
 Me.lblReward1.Location = New System.Drawing.Point(30, 151)
 Me.lblReward1.Name = "lblReward1"
 Me.lblReward1.Size = New System.Drawing.Size(67, 20)
 Me.lblReward1.TabIndex = 10
 Me.lblReward1.Text = "Reward 1"
 Me.lblReward1.TextAlign =
System.Drawing.ContentAlignment.MiddleCenter
 Me.ToolTipN.SetToolTip(Me.lblReward1, "Reward for defecting when
opponent cooperates")
 '
 'nudNumberMoves
 '
 Me.nudNumberMoves.Location = New System.Drawing.Point(170, 98)
 Me.nudNumberMoves.Name = "nudNumberMoves"
 Me.nudNumberMoves.Size = New System.Drawing.Size(100, 20)
 Me.nudNumberMoves.TabIndex = 21
 Me.nudNumberMoves.TextAlign =
System.Windows.Forms.HorizontalAlignment.Right
 Me.ToolTipN.SetToolTip(Me.nudNumberMoves, "Specifies number of moves
to remember")
 Me.nudNumberMoves.Value = New Decimal(New Integer() {3, 0, 0, 0})
 '
 'lblNumberMoves
 '
 Me.lblNumberMoves.FlatStyle = System.Windows.Forms.FlatStyle.Flat
 Me.lblNumberMoves.Location = New System.Drawing.Point(30, 98)
 Me.lblNumberMoves.Name = "lblNumberMoves"
 Me.lblNumberMoves.Size = New System.Drawing.Size(133, 22)
 Me.lblNumberMoves.TabIndex = 22
 Me.lblNumberMoves.Text = "# Moves to Remember"
 Me.lblNumberMoves.TextAlign =
System.Drawing.ContentAlignment.MiddleRight
 Me.ToolTipN.SetToolTip(Me.lblNumberMoves, "Memory model - how many
moves to remember")
 '
 'lblOpponent
 '
 Me.lblOpponent.Location = New System.Drawing.Point(91, 125)
 Me.lblOpponent.Name = "lblOpponent"
 Me.lblOpponent.Size = New System.Drawing.Size(67, 20)
 Me.lblOpponent.TabIndex = 66
 Me.lblOpponent.Text = "Opponent"
 Me.lblOpponent.TextAlign =
System.Drawing.ContentAlignment.MiddleRight
 Me.ToolTipN.SetToolTip(Me.lblOpponent, "Specifies opponent that
learning agent competes against")
 '
 'cboOpponent
 '
 Me.cboOpponent.DropDownStyle =
System.Windows.Forms.ComboBoxStyle.DropDownList
 Me.cboOpponent.Items.AddRange(New Object() {"All", "DDD", "CCC",
"RAND", "TFT", "TFTT", "TTFT"})

227

 Me.cboOpponent.Location = New System.Drawing.Point(170, 125)
 Me.cboOpponent.Name = "cboOpponent"
 Me.cboOpponent.Size = New System.Drawing.Size(100, 21)
 Me.cboOpponent.TabIndex = 67
 Me.ToolTipN.SetToolTip(Me.cboOpponent, "Specifies opponent that
learning agent competes against")
 '
 'cboPseudoRandomness
 '
 Me.cboPseudoRandomness.DropDownStyle =
System.Windows.Forms.ComboBoxStyle.DropDownList
 Me.cboPseudoRandomness.Items.AddRange(New Object() {"Constant Seed",
"Time-Based Seed"})
 Me.cboPseudoRandomness.Location = New System.Drawing.Point(255, 112)
 Me.cboPseudoRandomness.Name = "cboPseudoRandomness"
 Me.cboPseudoRandomness.Size = New System.Drawing.Size(121, 21)
 Me.cboPseudoRandomness.TabIndex = 62
 Me.ToolTipN.SetToolTip(Me.cboPseudoRandomness, "Controls randomness
of random number streams")
 '
 'lblPseudoRandomness
 '
 Me.lblPseudoRandomness.Location = New System.Drawing.Point(176, 112)
 Me.lblPseudoRandomness.Name = "lblPseudoRandomness"
 Me.lblPseudoRandomness.Size = New System.Drawing.Size(79, 20)
 Me.lblPseudoRandomness.TabIndex = 61
 Me.lblPseudoRandomness.Text = "Randomness"
 Me.lblPseudoRandomness.TextAlign =
System.Drawing.ContentAlignment.MiddleRight
 Me.ToolTipN.SetToolTip(Me.lblPseudoRandomness, "Controls randomness
of random number streams")
 '
 'lblReplications
 '
 Me.lblReplications.Location = New System.Drawing.Point(230, 27)
 Me.lblReplications.Name = "lblReplications"
 Me.lblReplications.Size = New System.Drawing.Size(80, 19)
 Me.lblReplications.TabIndex = 62
 Me.lblReplications.Text = "Replications"
 Me.lblReplications.TextAlign =
System.Drawing.ContentAlignment.MiddleRight
 Me.ToolTipN.SetToolTip(Me.lblReplications, "Number of experimental
replications")
 '
 'nudReplications
 '
 Me.nudReplications.BackColor = System.Drawing.Color.White
 Me.nudReplications.Location = New System.Drawing.Point(315, 27)
 Me.nudReplications.Maximum = New Decimal(New Integer() {1000, 0, 0,
0})
 Me.nudReplications.Minimum = New Decimal(New Integer() {1, 0, 0, 0})
 Me.nudReplications.Name = "nudReplications"
 Me.nudReplications.Size = New System.Drawing.Size(64, 20)
 Me.nudReplications.TabIndex = 61
 Me.nudReplications.TextAlign =
System.Windows.Forms.HorizontalAlignment.Right

228

 Me.ToolTipN.SetToolTip(Me.nudReplications, "Number of experimental
replications")
 Me.nudReplications.Value = New Decimal(New Integer() {60, 0, 0, 0})
 '
 'cboCrankitUp
 '
 Me.cboCrankitUp.DropDownStyle =
System.Windows.Forms.ComboBoxStyle.DropDownList
 Me.cboCrankitUp.Items.AddRange(New Object() {"Yes", "No"})
 Me.cboCrankitUp.Location = New System.Drawing.Point(315, 53)
 Me.cboCrankitUp.Name = "cboCrankitUp"
 Me.cboCrankitUp.Size = New System.Drawing.Size(64, 21)
 Me.cboCrankitUp.TabIndex = 62
 Me.ToolTipN.SetToolTip(Me.cboCrankitUp, "Whether to allocate more
system resources to program execution")
 '
 'lblCrankitUp
 '
 Me.lblCrankitUp.Location = New System.Drawing.Point(230, 58)
 Me.lblCrankitUp.Name = "lblCrankitUp"
 Me.lblCrankitUp.Size = New System.Drawing.Size(80, 18)
 Me.lblCrankitUp.TabIndex = 61
 Me.lblCrankitUp.Text = "Crank it Up"
 Me.lblCrankitUp.TextAlign =
System.Drawing.ContentAlignment.MiddleRight
 Me.ToolTipN.SetToolTip(Me.lblCrankitUp, "Whether to allocate more
system resources to program execution")
 '
 'lblPopulationSize
 '
 Me.lblPopulationSize.BackColor = System.Drawing.Color.Transparent
 Me.lblPopulationSize.Font = New System.Drawing.Font("Microsoft Sans
Serif", 9.0!, System.Drawing.FontStyle.Italic,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.lblPopulationSize.ImageAlign =
System.Drawing.ContentAlignment.MiddleRight
 Me.lblPopulationSize.Location = New System.Drawing.Point(55, 27)
 Me.lblPopulationSize.Name = "lblPopulationSize"
 Me.lblPopulationSize.Size = New System.Drawing.Size(24, 22)
 Me.lblPopulationSize.TabIndex = 22
 Me.lblPopulationSize.Text = "N"
 Me.lblPopulationSize.TextAlign =
System.Drawing.ContentAlignment.MiddleRight
 Me.ToolTipN.SetToolTip(Me.lblPopulationSize, "N - Max population size
in XCS (should be large enough so that covering occurs on" & _
 "ly at the beginning of a run); the pop size in T-LCS")
 '
 'nudN
 '
 Me.nudN.BackColor = System.Drawing.Color.White
 Me.nudN.Cursor = System.Windows.Forms.Cursors.Default
 Me.nudN.Increment = New Decimal(New Integer() {2, 0, 0, 0})
 Me.nudN.Location = New System.Drawing.Point(85, 27)
 Me.nudN.Maximum = New Decimal(New Integer() {10000, 0, 0, 0})
 Me.nudN.Minimum = New Decimal(New Integer() {2, 0, 0, 0})
 Me.nudN.Name = "nudN"
 Me.nudN.ReadOnly = True

229

 Me.nudN.Size = New System.Drawing.Size(103, 20)
 Me.nudN.TabIndex = 21
 Me.nudN.TextAlign = System.Windows.Forms.HorizontalAlignment.Right
 Me.nudN.ThousandsSeparator = True
 Me.ToolTipN.SetToolTip(Me.nudN, """Maximum population size"" & vbcr &
""Second Line""")
 Me.nudN.Value = New Decimal(New Integer() {300, 0, 0, 0})
 '
 'nudThetaMNA
 '
 Me.nudThetaMNA.BackColor = System.Drawing.SystemColors.Control
 Me.nudThetaMNA.Location = New System.Drawing.Point(273, 211)
 Me.nudThetaMNA.Maximum = New Decimal(New Integer() {50, 0, 0, 0})
 Me.nudThetaMNA.Name = "nudThetaMNA"
 Me.nudThetaMNA.ReadOnly = True
 Me.nudThetaMNA.Size = New System.Drawing.Size(101, 20)
 Me.nudThetaMNA.TabIndex = 23
 Me.nudThetaMNA.TextAlign =
System.Windows.Forms.HorizontalAlignment.Right
 Me.nudThetaMNA.Value = New Decimal(New Integer() {2, 0, 0, 0})
 '
 'lblProbPound
 '
 Me.lblProbPound.Font = New System.Drawing.Font("Microsoft Sans
Serif", 9.0!, System.Drawing.FontStyle.Italic,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.lblProbPound.Location = New System.Drawing.Point(248, 79)
 Me.lblProbPound.Name = "lblProbPound"
 Me.lblProbPound.Size = New System.Drawing.Size(19, 19)
 Me.lblProbPound.TabIndex = 26
 Me.lblProbPound.Text = "P"
 Me.lblProbPound.TextAlign =
System.Drawing.ContentAlignment.MiddleRight
 Me.ToolTipN.SetToolTip(Me.lblProbPound, "Prob(#) - is the probability
of using a # in one attribute in C when covering, ""c" & _
 "ould be around 0.33""")
 '
 'nudProbPound
 '
 Me.nudProbPound.BackColor = System.Drawing.SystemColors.Control
 Me.nudProbPound.DecimalPlaces = 2
 Me.nudProbPound.Increment = New Decimal(New Integer() {1, 0, 0,
131072})
 Me.nudProbPound.Location = New System.Drawing.Point(273, 79)
 Me.nudProbPound.Maximum = New Decimal(New Integer() {1, 0, 0, 0})
 Me.nudProbPound.Name = "nudProbPound"
 Me.nudProbPound.ReadOnly = True
 Me.nudProbPound.Size = New System.Drawing.Size(101, 20)
 Me.nudProbPound.TabIndex = 25
 Me.nudProbPound.TextAlign =
System.Windows.Forms.HorizontalAlignment.Right
 Me.ToolTipN.SetToolTip(Me.nudProbPound, "Probability of using a # in
a given allele, ""could be around 0.33""")
 Me.nudProbPound.Value = New Decimal(New Integer() {33, 0, 0, 131072})
 '
 'grpLearningParameters
 '

230

 Me.grpLearningParameters.Controls.AddRange(New
System.Windows.Forms.Control() {Me.lblCitation, Me.Label23, Me.Label21,
Me.Label22, Me.Label7, Me.Label19, Me.Label20, Me.Label17, Me.Label18,
Me.Label8, Me.Label14, Me.Label16, Me.Label11, Me.Label9, Me.Label3,
Me.Label2, Me.lblEpsilon0, Me.Label13, Me.Label6, Me.Label5, Me.Label4,
Me.cboDoASSub, Me.lblPopulationSize, Me.lblDoASSub, Me.nudProbXPlor,
Me.nudInitialFitness, Me.nudInitialPredictionError, Me.lblInitialPrediction,
Me.nudInitialPrediction, Me.nudThetaSub, Me.nudDelta, Me.nudThetaDel,
Me.nudMu, Me.nudChi, Me.nudThetaGA, Me.nudGamma, Me.nudNu, Me.lblNu,
Me.nudEpsilon0, Me.lblAlpha, Me.nudAlpha, Me.lblBeta, Me.nudBeta, Me.nudN,
Me.lblProbPound, Me.nudProbPound, Me.nudThetaMNA, Me.lblDoGASub,
Me.cboDoGASub, Me.Label10, Me.Label12, Me.Label15})
 Me.grpLearningParameters.Location = New System.Drawing.Point(7, 9)
 Me.grpLearningParameters.Name = "grpLearningParameters"
 Me.grpLearningParameters.Size = New System.Drawing.Size(388, 379)
 Me.grpLearningParameters.TabIndex = 27
 Me.grpLearningParameters.TabStop = False
 Me.grpLearningParameters.Text = "Learning Parameters"
 '
 'lblCitation
 '
 Me.lblCitation.Location = New System.Drawing.Point(12, 296)
 Me.lblCitation.Name = "lblCitation"
 Me.lblCitation.Size = New System.Drawing.Size(364, 73)
 Me.lblCitation.TabIndex = 125
 Me.lblCitation.Text = "Label24"
 '
 'Label23
 '
 Me.Label23.Font = New System.Drawing.Font("Microsoft Sans Serif",
4.0!, System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point,
CType(0, Byte))
 Me.Label23.Location = New System.Drawing.Point(60, 73)
 Me.Label23.Name = "Label23"
 Me.Label23.Size = New System.Drawing.Size(19, 6)
 Me.Label23.TabIndex = 124
 Me.Label23.Text = "XCS"
 '
 'Label21
 '
 Me.Label21.Font = New System.Drawing.Font("Microsoft Sans Serif",
5.0!, System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point,
CType(0, Byte))
 Me.Label21.Location = New System.Drawing.Point(248, 223)
 Me.Label21.Name = "Label21"
 Me.Label21.Size = New System.Drawing.Size(25, 14)
 Me.Label21.TabIndex = 123
 Me.Label21.Text = "MNA"
 Me.ToolTipN.SetToolTip(Me.Label21, "ThetaMNA - specifies the minimal
number of actions that must be present in a matc" & _
 "h set [M], or else covering will occur, value is problem specific")
 '
 'Label22
 '
 Me.Label22.Font = New System.Drawing.Font("Symbol", 10.0!,
System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point, CType(2,
Byte))

231

 Me.Label22.ImageAlign = System.Drawing.ContentAlignment.TopLeft
 Me.Label22.Location = New System.Drawing.Point(237, 211)
 Me.Label22.Name = "Label22"
 Me.Label22.Size = New System.Drawing.Size(18, 19)
 Me.Label22.TabIndex = 122
 Me.Label22.Text = "q"
 Me.Label22.TextAlign = System.Drawing.ContentAlignment.MiddleCenter
 Me.ToolTipN.SetToolTip(Me.Label22, "ThetaMNA - specifies the minimal
number of actions that must be present in a matc" & _
 "h set [M], or else covering will occur, value is problem specific")
 '
 'Label7
 '
 Me.Label7.Font = New System.Drawing.Font("Microsoft Sans Serif",
5.0!, System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point,
CType(0, Byte))
 Me.Label7.Location = New System.Drawing.Point(261, 145)
 Me.Label7.Name = "Label7"
 Me.Label7.Size = New System.Drawing.Size(12, 13)
 Me.Label7.TabIndex = 121
 Me.Label7.Text = "I"
 Me.ToolTipN.SetToolTip(Me.Label7, "Epsilon(I) - the initial
prediction error in new classifiers, ""very small, essent" & _
 "ially zero""")
 '
 'Label19
 '
 Me.Label19.Font = New System.Drawing.Font("Microsoft Sans Serif",
5.0!, System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point,
CType(0, Byte))
 Me.Label19.Location = New System.Drawing.Point(248, 198)
 Me.Label19.Name = "Label19"
 Me.Label19.Size = New System.Drawing.Size(25, 13)
 Me.Label19.TabIndex = 120
 Me.Label19.Text = "explr"
 Me.ToolTipN.SetToolTip(Me.Label19, "Prob(Expl) - specifies the
probability during action selection of choosing the ac" & _
 "tion uniform randomly, ""could be 0.5, but depends""")
 '
 'Label20
 '
 Me.Label20.Font = New System.Drawing.Font("Microsoft Sans Serif",
9.0!, System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point,
CType(0, Byte))
 Me.Label20.Location = New System.Drawing.Point(237, 185)
 Me.Label20.Name = "Label20"
 Me.Label20.Size = New System.Drawing.Size(18, 19)
 Me.Label20.TabIndex = 119
 Me.Label20.Text = "p"
 Me.Label20.TextAlign = System.Drawing.ContentAlignment.MiddleCenter
 Me.ToolTipN.SetToolTip(Me.Label20, "Prob(Expl) - specifies the
probability during action selection of choosing the ac" & _
 "tion uniform randomly, ""could be 0.5, but depends""")
 '
 'Label17
 '

232

 Me.Label17.Font = New System.Drawing.Font("Microsoft Sans Serif",
5.0!, System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point,
CType(0, Byte))
 Me.Label17.Location = New System.Drawing.Point(261, 171)
 Me.Label17.Name = "Label17"
 Me.Label17.Size = New System.Drawing.Size(12, 14)
 Me.Label17.TabIndex = 118
 Me.Label17.Text = "I"
 Me.ToolTipN.SetToolTip(Me.Label17, "Fitness(I) - the initial fitness
in new classifiers, ""very small, essentially zer" & _
 "o""")
 '
 'Label18
 '
 Me.Label18.Font = New System.Drawing.Font("Microsoft Sans Serif",
9.0!, System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point,
CType(0, Byte))
 Me.Label18.Location = New System.Drawing.Point(248, 165)
 Me.Label18.Name = "Label18"
 Me.Label18.Size = New System.Drawing.Size(19, 13)
 Me.Label18.TabIndex = 117
 Me.Label18.Text = "f"
 Me.Label18.TextAlign = System.Drawing.ContentAlignment.MiddleCenter
 Me.ToolTipN.SetToolTip(Me.Label18, "Fitness(I) - the initial fitness
in new classifiers, ""very small, essentially zer" & _
 "o""")
 '
 'Label8
 '
 Me.Label8.Font = New System.Drawing.Font("Symbol", 10.0!,
System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point, CType(2,
Byte))
 Me.Label8.Location = New System.Drawing.Point(248, 132)
 Me.Label8.Name = "Label8"
 Me.Label8.Size = New System.Drawing.Size(13, 19)
 Me.Label8.TabIndex = 115
 Me.Label8.Text = "e"
 Me.Label8.TextAlign = System.Drawing.ContentAlignment.MiddleRight
 Me.ToolTipN.SetToolTip(Me.Label8, "Epsilon(I) - the initial
prediction error in new classifiers, ""very small, essent" & _
 "ially zero""")
 '
 'Label14
 '
 Me.Label14.Font = New System.Drawing.Font("Microsoft Sans Serif",
5.0!, System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point,
CType(0, Byte))
 Me.Label14.Location = New System.Drawing.Point(255, 66)
 Me.Label14.Name = "Label14"
 Me.Label14.Size = New System.Drawing.Size(18, 13)
 Me.Label14.TabIndex = 114
 Me.Label14.Text = "sub"
 Me.ToolTipN.SetToolTip(Me.Label14, "ThetaSub - is the subsumption
threshold - the experience of a classifier must be " & _
 "greater than ThetaSub in order to be able to subsume another
classifier, ""could " & _
 "be about 20""")

233

 '
 'Label16
 '
 Me.Label16.Font = New System.Drawing.Font("Symbol", 10.0!,
System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point, CType(2,
Byte))
 Me.Label16.Location = New System.Drawing.Point(243, 53)
 Me.Label16.Name = "Label16"
 Me.Label16.Size = New System.Drawing.Size(18, 20)
 Me.Label16.TabIndex = 113
 Me.Label16.Text = "q"
 Me.Label16.TextAlign = System.Drawing.ContentAlignment.MiddleCenter
 Me.ToolTipN.SetToolTip(Me.Label16, "ThetaSub - is the subsumption
threshold - the experience of a classifier must be " & _
 "greater than ThetaSub in order to be able to subsume another
classifier, ""could " & _
 "be about 20""")
 '
 'Label11
 '
 Me.Label11.Font = New System.Drawing.Font("Microsoft Sans Serif",
5.0!, System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point,
CType(0, Byte))
 Me.Label11.Location = New System.Drawing.Point(261, 118)
 Me.Label11.Name = "Label11"
 Me.Label11.Size = New System.Drawing.Size(12, 14)
 Me.Label11.TabIndex = 112
 Me.Label11.Text = "I"
 Me.ToolTipN.SetToolTip(Me.Label11, "Pred(I) - the initial prediction
in new classifiers, ""very small, essentially zer" & _
 "o""")
 '
 'Label9
 '
 Me.Label9.Font = New System.Drawing.Font("Microsoft Sans Serif",
5.0!, System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point,
CType(0, Byte))
 Me.Label9.Location = New System.Drawing.Point(261, 92)
 Me.Label9.Name = "Label9"
 Me.Label9.Size = New System.Drawing.Size(12, 6)
 Me.Label9.TabIndex = 111
 Me.Label9.Text = "#"
 Me.ToolTipN.SetToolTip(Me.Label9, "Prob(#) - is the probability of
using a # in one attribute in C when covering, ""c" & _
 "ould be around 0.33""")
 '
 'Label3
 '
 Me.Label3.Font = New System.Drawing.Font("Symbol", 10.0!,
System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point, CType(2,
Byte))
 Me.Label3.Location = New System.Drawing.Point(248, 27)
 Me.Label3.Name = "Label3"
 Me.Label3.Size = New System.Drawing.Size(19, 19)
 Me.Label3.TabIndex = 108
 Me.Label3.Text = "d"
 Me.Label3.TextAlign = System.Drawing.ContentAlignment.MiddleRight

234

 Me.ToolTipN.SetToolTip(Me.Label3, "Delta - specifies the fraction of
the mean fitness in [P] below which the fitness" & _
 " of a classifier may be considered in its probability of deletion,
typically 0.1" & _
 "")
 '
 'Label2
 '
 Me.Label2.Font = New System.Drawing.Font("Microsoft Sans Serif",
4.0!, System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point,
CType(0, Byte))
 Me.Label2.Location = New System.Drawing.Point(73, 118)
 Me.Label2.Name = "Label2"
 Me.Label2.Size = New System.Drawing.Size(12, 7)
 Me.Label2.TabIndex = 98
 Me.Label2.Text = "0"
 Me.ToolTipN.SetToolTip(Me.Label2, "Epsilon - Used in calculating the
fitness of a classifier, typically 1% of max re" & _
 "ward")
 '
 'lblEpsilon0
 '
 Me.lblEpsilon0.Font = New System.Drawing.Font("Symbol", 10.0!,
System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point, CType(2,
Byte))
 Me.lblEpsilon0.Location = New System.Drawing.Point(60, 105)
 Me.lblEpsilon0.Name = "lblEpsilon0"
 Me.lblEpsilon0.Size = New System.Drawing.Size(13, 20)
 Me.lblEpsilon0.TabIndex = 40
 Me.lblEpsilon0.Text = "e"
 Me.lblEpsilon0.TextAlign =
System.Drawing.ContentAlignment.MiddleRight
 Me.ToolTipN.SetToolTip(Me.lblEpsilon0, "Epsilon - Used in calculating
the fitness of a classifier, typically 1% of max re" & _
 "ward")
 '
 'Label13
 '
 Me.Label13.Font = New System.Drawing.Font("Microsoft Sans Serif",
5.0!, System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point,
CType(0, Byte))
 Me.Label13.Location = New System.Drawing.Point(67, 276)
 Me.Label13.Name = "Label13"
 Me.Label13.Size = New System.Drawing.Size(18, 14)
 Me.Label13.TabIndex = 107
 Me.Label13.Text = "del"
 Me.ToolTipN.SetToolTip(Me.Label13, "ThetaDel - is the deletion
threshold - if the experience of a classifier is great" & _
 "er than ThetaDel, its fitness may be considered in its probability
of deletion, " & _
 """could be about 20""")
 '
 'Label6
 '
 Me.Label6.Font = New System.Drawing.Font("Symbol", 10.0!,
System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point, CType(2,
Byte))

235

 Me.Label6.Location = New System.Drawing.Point(60, 237)
 Me.Label6.Name = "Label6"
 Me.Label6.Size = New System.Drawing.Size(19, 20)
 Me.Label6.TabIndex = 102
 Me.Label6.Text = "m"
 Me.Label6.TextAlign = System.Drawing.ContentAlignment.MiddleRight
 Me.ToolTipN.SetToolTip(Me.Label6, "Mu - specifies the probability of
mutating an allele in the offspring, ranges fro" & _
 "m 0.01-0.05")
 '
 'Label5
 '
 Me.Label5.Font = New System.Drawing.Font("Symbol", 10.0!,
System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point, CType(2,
Byte))
 Me.Label5.Location = New System.Drawing.Point(60, 211)
 Me.Label5.Name = "Label5"
 Me.Label5.Size = New System.Drawing.Size(19, 19)
 Me.Label5.TabIndex = 101
 Me.Label5.Text = "c"
 Me.Label5.TextAlign = System.Drawing.ContentAlignment.MiddleRight
 Me.ToolTipN.SetToolTip(Me.Label5, "Chi - is the probability of
applying crossover in the GA, ranges from 0.5-1.0")
 '
 'Label4
 '
 Me.Label4.Font = New System.Drawing.Font("Symbol", 10.0!,
System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point, CType(2,
Byte))
 Me.Label4.Location = New System.Drawing.Point(67, 158)
 Me.Label4.Name = "Label4"
 Me.Label4.Size = New System.Drawing.Size(12, 20)
 Me.Label4.TabIndex = 100
 Me.Label4.Text = "g"
 Me.Label4.TextAlign = System.Drawing.ContentAlignment.MiddleRight
 Me.ToolTipN.SetToolTip(Me.Label4, "Gamma - Discount factor used (in
multi-step problems) in updating classifier pred" & _
 "ictions, typically 0.71")
 '
 'cboDoASSub
 '
 Me.cboDoASSub.DropDownStyle =
System.Windows.Forms.ComboBoxStyle.DropDownList
 Me.cboDoASSub.Items.AddRange(New Object() {"False", "True"})
 Me.cboDoASSub.Location = New System.Drawing.Point(273, 263)
 Me.cboDoASSub.Name = "cboDoASSub"
 Me.cboDoASSub.Size = New System.Drawing.Size(101, 21)
 Me.cboDoASSub.TabIndex = 97
 Me.ToolTipN.SetToolTip(Me.cboDoASSub, "To be changed")
 '
 'lblDoASSub
 '
 Me.lblDoASSub.Font = New System.Drawing.Font("Microsoft Sans Serif",
8.0!, System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point,
CType(0, Byte))
 Me.lblDoASSub.Location = New System.Drawing.Point(206, 270)
 Me.lblDoASSub.Name = "lblDoASSub"

236

 Me.lblDoASSub.Size = New System.Drawing.Size(61, 13)
 Me.lblDoASSub.TabIndex = 59
 Me.lblDoASSub.Text = "doASSub"
 Me.lblDoASSub.TextAlign = System.Drawing.ContentAlignment.MiddleRight
 Me.ToolTipN.SetToolTip(Me.lblDoASSub, "DoASSub - Boolean parameter
that specifies if action sets are to be tested for su" & _
 "bsuming classifiers")
 '
 'nudProbXPlor
 '
 Me.nudProbXPlor.BackColor = System.Drawing.SystemColors.Control
 Me.nudProbXPlor.DecimalPlaces = 2
 Me.nudProbXPlor.Increment = New Decimal(New Integer() {1, 0, 0,
131072})
 Me.nudProbXPlor.Location = New System.Drawing.Point(273, 185)
 Me.nudProbXPlor.Maximum = New Decimal(New Integer() {1, 0, 0, 0})
 Me.nudProbXPlor.Name = "nudProbXPlor"
 Me.nudProbXPlor.ReadOnly = True
 Me.nudProbXPlor.Size = New System.Drawing.Size(101, 20)
 Me.nudProbXPlor.TabIndex = 57
 Me.nudProbXPlor.TextAlign =
System.Windows.Forms.HorizontalAlignment.Right
 Me.ToolTipN.SetToolTip(Me.nudProbXPlor, "Specifies the probability
during action selection of choosing the action uniform " & _
 "randomly, ""could be 0.5, but depends""")
 Me.nudProbXPlor.Value = New Decimal(New Integer() {5, 0, 0, 65536})
 '
 'nudInitialFitness
 '
 Me.nudInitialFitness.BackColor = System.Drawing.SystemColors.Control
 Me.nudInitialFitness.DecimalPlaces = 2
 Me.nudInitialFitness.Increment = New Decimal(New Integer() {1, 0, 0,
131072})
 Me.nudInitialFitness.Location = New System.Drawing.Point(273, 158)
 Me.nudInitialFitness.Maximum = New Decimal(New Integer() {1, 0, 0,
0})
 Me.nudInitialFitness.Name = "nudInitialFitness"
 Me.nudInitialFitness.ReadOnly = True
 Me.nudInitialFitness.Size = New System.Drawing.Size(101, 20)
 Me.nudInitialFitness.TabIndex = 55
 Me.nudInitialFitness.TextAlign =
System.Windows.Forms.HorizontalAlignment.Right
 Me.nudInitialFitness.Value = New Decimal(New Integer() {1, 0, 0,
131072})
 '
 'nudInitialPredictionError
 '
 Me.nudInitialPredictionError.BackColor =
System.Drawing.SystemColors.Control
 Me.nudInitialPredictionError.DecimalPlaces = 2
 Me.nudInitialPredictionError.Increment = New Decimal(New Integer()
{1, 0, 0, 131072})
 Me.nudInitialPredictionError.Location = New System.Drawing.Point(273,
132)
 Me.nudInitialPredictionError.Maximum = New Decimal(New Integer() {1,
0, 0, 0})
 Me.nudInitialPredictionError.Name = "nudInitialPredictionError"

237

 Me.nudInitialPredictionError.ReadOnly = True
 Me.nudInitialPredictionError.Size = New System.Drawing.Size(101, 20)
 Me.nudInitialPredictionError.TabIndex = 53
 Me.nudInitialPredictionError.TextAlign =
System.Windows.Forms.HorizontalAlignment.Right
 Me.nudInitialPredictionError.Value = New Decimal(New Integer() {1, 0,
0, 131072})
 '
 'lblInitialPrediction
 '
 Me.lblInitialPrediction.Font = New System.Drawing.Font("Microsoft
Sans Serif", 9.0!, System.Drawing.FontStyle.Italic,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.lblInitialPrediction.Location = New System.Drawing.Point(248, 105)
 Me.lblInitialPrediction.Name = "lblInitialPrediction"
 Me.lblInitialPrediction.Size = New System.Drawing.Size(19, 20)
 Me.lblInitialPrediction.TabIndex = 52
 Me.lblInitialPrediction.Text = "p"
 Me.lblInitialPrediction.TextAlign =
System.Drawing.ContentAlignment.MiddleCenter
 Me.ToolTipN.SetToolTip(Me.lblInitialPrediction, "Pred(I) - the
initial prediction in new classifiers, ""very small, essentially zer" & _
 "o""")
 '
 'nudInitialPrediction
 '
 Me.nudInitialPrediction.BackColor =
System.Drawing.SystemColors.Control
 Me.nudInitialPrediction.DecimalPlaces = 2
 Me.nudInitialPrediction.Increment = New Decimal(New Integer() {1, 0,
0, 131072})
 Me.nudInitialPrediction.Location = New System.Drawing.Point(273, 105)
 Me.nudInitialPrediction.Maximum = New Decimal(New Integer() {10, 0,
0, 0})
 Me.nudInitialPrediction.Name = "nudInitialPrediction"
 Me.nudInitialPrediction.ReadOnly = True
 Me.nudInitialPrediction.Size = New System.Drawing.Size(101, 20)
 Me.nudInitialPrediction.TabIndex = 51
 Me.nudInitialPrediction.TextAlign =
System.Windows.Forms.HorizontalAlignment.Right
 Me.nudInitialPrediction.Value = New Decimal(New Integer() {1, 0, 0,
131072})
 '
 'nudThetaSub
 '
 Me.nudThetaSub.BackColor = System.Drawing.SystemColors.Control
 Me.nudThetaSub.Location = New System.Drawing.Point(273, 53)
 Me.nudThetaSub.Minimum = New Decimal(New Integer() {1, 0, 0, 0})
 Me.nudThetaSub.Name = "nudThetaSub"
 Me.nudThetaSub.ReadOnly = True
 Me.nudThetaSub.Size = New System.Drawing.Size(101, 20)
 Me.nudThetaSub.TabIndex = 49
 Me.nudThetaSub.TextAlign =
System.Windows.Forms.HorizontalAlignment.Right
 Me.nudThetaSub.Value = New Decimal(New Integer() {20, 0, 0, 0})
 '
 'nudDelta

238

 '
 Me.nudDelta.BackColor = System.Drawing.SystemColors.Control
 Me.nudDelta.DecimalPlaces = 2
 Me.nudDelta.Increment = New Decimal(New Integer() {1, 0, 0, 131072})
 Me.nudDelta.Location = New System.Drawing.Point(273, 27)
 Me.nudDelta.Maximum = New Decimal(New Integer() {1, 0, 0, 0})
 Me.nudDelta.Minimum = New Decimal(New Integer() {1, 0, 0, 65536})
 Me.nudDelta.Name = "nudDelta"
 Me.nudDelta.ReadOnly = True
 Me.nudDelta.Size = New System.Drawing.Size(101, 20)
 Me.nudDelta.TabIndex = 47
 Me.nudDelta.TextAlign =
System.Windows.Forms.HorizontalAlignment.Right
 Me.nudDelta.Value = New Decimal(New Integer() {1, 0, 0, 65536})
 '
 'nudThetaDel
 '
 Me.nudThetaDel.BackColor = System.Drawing.SystemColors.Control
 Me.nudThetaDel.Location = New System.Drawing.Point(85, 263)
 Me.nudThetaDel.Minimum = New Decimal(New Integer() {1, 0, 0, 0})
 Me.nudThetaDel.Name = "nudThetaDel"
 Me.nudThetaDel.ReadOnly = True
 Me.nudThetaDel.Size = New System.Drawing.Size(103, 20)
 Me.nudThetaDel.TabIndex = 45
 Me.nudThetaDel.TextAlign =
System.Windows.Forms.HorizontalAlignment.Right
 Me.nudThetaDel.Value = New Decimal(New Integer() {20, 0, 0, 0})
 '
 'nudMu
 '
 Me.nudMu.BackColor = System.Drawing.SystemColors.Control
 Me.nudMu.DecimalPlaces = 2
 Me.nudMu.Increment = New Decimal(New Integer() {1, 0, 0, 131072})
 Me.nudMu.Location = New System.Drawing.Point(85, 237)
 Me.nudMu.Maximum = New Decimal(New Integer() {1, 0, 0, 0})
 Me.nudMu.Name = "nudMu"
 Me.nudMu.ReadOnly = True
 Me.nudMu.Size = New System.Drawing.Size(103, 20)
 Me.nudMu.TabIndex = 43
 Me.nudMu.TextAlign = System.Windows.Forms.HorizontalAlignment.Right
 Me.nudMu.Value = New Decimal(New Integer() {1, 0, 0, 131072})
 '
 'nudChi
 '
 Me.nudChi.BackColor = System.Drawing.SystemColors.Control
 Me.nudChi.DecimalPlaces = 2
 Me.nudChi.Increment = New Decimal(New Integer() {1, 0, 0, 131072})
 Me.nudChi.Location = New System.Drawing.Point(85, 211)
 Me.nudChi.Maximum = New Decimal(New Integer() {1, 0, 0, 0})
 Me.nudChi.Minimum = New Decimal(New Integer() {1, 0, 0, 65536})
 Me.nudChi.Name = "nudChi"
 Me.nudChi.ReadOnly = True
 Me.nudChi.Size = New System.Drawing.Size(103, 20)
 Me.nudChi.TabIndex = 41
 Me.nudChi.TextAlign = System.Windows.Forms.HorizontalAlignment.Right
 Me.nudChi.Value = New Decimal(New Integer() {5, 0, 0, 65536})
 '

239

 'nudThetaGA
 '
 Me.nudThetaGA.BackColor = System.Drawing.SystemColors.Control
 Me.nudThetaGA.Location = New System.Drawing.Point(85, 185)
 Me.nudThetaGA.Minimum = New Decimal(New Integer() {1, 0, 0, 0})
 Me.nudThetaGA.Name = "nudThetaGA"
 Me.nudThetaGA.ReadOnly = True
 Me.nudThetaGA.Size = New System.Drawing.Size(103, 20)
 Me.nudThetaGA.TabIndex = 37
 Me.nudThetaGA.TextAlign =
System.Windows.Forms.HorizontalAlignment.Right
 Me.nudThetaGA.Value = New Decimal(New Integer() {25, 0, 0, 0})
 '
 'nudGamma
 '
 Me.nudGamma.BackColor = System.Drawing.SystemColors.Control
 Me.nudGamma.DecimalPlaces = 2
 Me.nudGamma.Increment = New Decimal(New Integer() {1, 0, 0, 131072})
 Me.nudGamma.Location = New System.Drawing.Point(85, 158)
 Me.nudGamma.Maximum = New Decimal(New Integer() {1, 0, 0, 0})
 Me.nudGamma.Minimum = New Decimal(New Integer() {1, 0, 0, 65536})
 Me.nudGamma.Name = "nudGamma"
 Me.nudGamma.ReadOnly = True
 Me.nudGamma.Size = New System.Drawing.Size(103, 20)
 Me.nudGamma.TabIndex = 35
 Me.nudGamma.TextAlign =
System.Windows.Forms.HorizontalAlignment.Right
 Me.nudGamma.Value = New Decimal(New Integer() {71, 0, 0, 131072})
 '
 'nudNu
 '
 Me.nudNu.BackColor = System.Drawing.SystemColors.Control
 Me.nudNu.Location = New System.Drawing.Point(85, 132)
 Me.nudNu.Minimum = New Decimal(New Integer() {1, 0, 0, 0})
 Me.nudNu.Name = "nudNu"
 Me.nudNu.ReadOnly = True
 Me.nudNu.Size = New System.Drawing.Size(103, 20)
 Me.nudNu.TabIndex = 33
 Me.nudNu.TextAlign = System.Windows.Forms.HorizontalAlignment.Right
 Me.nudNu.Value = New Decimal(New Integer() {5, 0, 0, 0})
 '
 'lblNu
 '
 Me.lblNu.Font = New System.Drawing.Font("Symbol", 10.0!,
System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point, CType(2,
Byte))
 Me.lblNu.Location = New System.Drawing.Point(67, 132)
 Me.lblNu.Name = "lblNu"
 Me.lblNu.Size = New System.Drawing.Size(12, 24)
 Me.lblNu.TabIndex = 34
 Me.lblNu.Text = "n"
 Me.lblNu.TextAlign = System.Drawing.ContentAlignment.MiddleRight
 Me.ToolTipN.SetToolTip(Me.lblNu, "Nu - Used in calculating the
fitness of a classifier, typically 5")
 '
 'nudEpsilon0
 '

240

 Me.nudEpsilon0.BackColor = System.Drawing.SystemColors.Control
 Me.nudEpsilon0.DecimalPlaces = 2
 Me.nudEpsilon0.Increment = New Decimal(New Integer() {1, 0, 0,
131072})
 Me.nudEpsilon0.Location = New System.Drawing.Point(85, 105)
 Me.nudEpsilon0.Maximum = New Decimal(New Integer() {2, 0, 0, 65536})
 Me.nudEpsilon0.Minimum = New Decimal(New Integer() {1, 0, 0, 131072})
 Me.nudEpsilon0.Name = "nudEpsilon0"
 Me.nudEpsilon0.ReadOnly = True
 Me.nudEpsilon0.Size = New System.Drawing.Size(103, 20)
 Me.nudEpsilon0.TabIndex = 31
 Me.nudEpsilon0.TextAlign =
System.Windows.Forms.HorizontalAlignment.Right
 Me.nudEpsilon0.Value = New Decimal(New Integer() {5, 0, 0, 131072})
 '
 'lblAlpha
 '
 Me.lblAlpha.Font = New System.Drawing.Font("Symbol", 10.0!,
System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point, CType(2,
Byte))
 Me.lblAlpha.Location = New System.Drawing.Point(60, 79)
 Me.lblAlpha.Name = "lblAlpha"
 Me.lblAlpha.Size = New System.Drawing.Size(19, 19)
 Me.lblAlpha.TabIndex = 30
 Me.lblAlpha.Text = "a"
 Me.lblAlpha.TextAlign = System.Drawing.ContentAlignment.MiddleRight
 Me.ToolTipN.SetToolTip(Me.lblAlpha, "Alpha - Used in calculating the
fitness of a classifier, typically 0.1")
 '
 'nudAlpha
 '
 Me.nudAlpha.BackColor = System.Drawing.SystemColors.Control
 Me.nudAlpha.DecimalPlaces = 2
 Me.nudAlpha.Increment = New Decimal(New Integer() {1, 0, 0, 131072})
 Me.nudAlpha.Location = New System.Drawing.Point(85, 79)
 Me.nudAlpha.Maximum = New Decimal(New Integer() {2, 0, 0, 65536})
 Me.nudAlpha.Minimum = New Decimal(New Integer() {1, 0, 0, 65536})
 Me.nudAlpha.Name = "nudAlpha"
 Me.nudAlpha.ReadOnly = True
 Me.nudAlpha.Size = New System.Drawing.Size(103, 20)
 Me.nudAlpha.TabIndex = 29
 Me.nudAlpha.TextAlign =
System.Windows.Forms.HorizontalAlignment.Right
 Me.nudAlpha.Value = New Decimal(New Integer() {1, 0, 0, 65536})
 '
 'lblBeta
 '
 Me.lblBeta.Font = New System.Drawing.Font("Symbol", 10.0!,
System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point, CType(2,
Byte))
 Me.lblBeta.Location = New System.Drawing.Point(55, 53)
 Me.lblBeta.Name = "lblBeta"
 Me.lblBeta.Size = New System.Drawing.Size(18, 23)
 Me.lblBeta.TabIndex = 28
 Me.lblBeta.Text = "b"
 Me.lblBeta.TextAlign = System.Drawing.ContentAlignment.MiddleRight

241

 Me.ToolTipN.SetToolTip(Me.lblBeta, "Beta - Learning rate for updating
prediction, error, fitness, and action set size" & _
 " estimate of action set classifiers in XCS (ranges from 0.1-0.2)")
 '
 'nudBeta
 '
 Me.nudBeta.BackColor = System.Drawing.SystemColors.Control
 Me.nudBeta.DecimalPlaces = 2
 Me.nudBeta.Increment = New Decimal(New Integer() {1, 0, 0, 131072})
 Me.nudBeta.Location = New System.Drawing.Point(85, 53)
 Me.nudBeta.Maximum = New Decimal(New Integer() {2, 0, 0, 65536})
 Me.nudBeta.Minimum = New Decimal(New Integer() {1, 0, 0, 65536})
 Me.nudBeta.Name = "nudBeta"
 Me.nudBeta.ReadOnly = True
 Me.nudBeta.Size = New System.Drawing.Size(103, 20)
 Me.nudBeta.TabIndex = 27
 Me.nudBeta.TextAlign = System.Windows.Forms.HorizontalAlignment.Right
 Me.nudBeta.Value = New Decimal(New Integer() {15, 0, 0, 131072})
 '
 'lblDoGASub
 '
 Me.lblDoGASub.Font = New System.Drawing.Font("Microsoft Sans Serif",
8.0!, System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point,
CType(0, Byte))
 Me.lblDoGASub.Location = New System.Drawing.Point(206, 243)
 Me.lblDoGASub.Name = "lblDoGASub"
 Me.lblDoGASub.Size = New System.Drawing.Size(61, 14)
 Me.lblDoGASub.TabIndex = 23
 Me.lblDoGASub.Text = "doGASub"
 Me.lblDoGASub.TextAlign = System.Drawing.ContentAlignment.MiddleRight
 Me.ToolTipN.SetToolTip(Me.lblDoGASub, "DoGASub - Boolean parameter
that specifies if offspring are to be tested for poss" & _
 "ible logical subsumption by parents")
 '
 'cboDoGASub
 '
 Me.cboDoGASub.DropDownStyle =
System.Windows.Forms.ComboBoxStyle.DropDownList
 Me.cboDoGASub.Items.AddRange(New Object() {"False", "True"})
 Me.cboDoGASub.Location = New System.Drawing.Point(273, 237)
 Me.cboDoGASub.Name = "cboDoGASub"
 Me.cboDoGASub.Size = New System.Drawing.Size(101, 21)
 Me.cboDoGASub.TabIndex = 96
 Me.ToolTipN.SetToolTip(Me.cboDoGASub, "To be changed")
 '
 'Label10
 '
 Me.Label10.Font = New System.Drawing.Font("Microsoft Sans Serif",
5.0!, System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point,
CType(0, Byte))
 Me.Label10.Location = New System.Drawing.Point(67, 198)
 Me.Label10.Name = "Label10"
 Me.Label10.Size = New System.Drawing.Size(18, 13)
 Me.Label10.TabIndex = 107
 Me.Label10.Text = "GA"
 Me.ToolTipN.SetToolTip(Me.Label10, "ThetaGA - is the GA threshhold -
GA is applied in a set when the average time sin" & _

242

 "ce the last GA in the set is greater than ThetaGA, ranges from 25-
50")
 '
 'Label12
 '
 Me.Label12.Font = New System.Drawing.Font("Symbol", 10.0!,
System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point, CType(2,
Byte))
 Me.Label12.ImageAlign = System.Drawing.ContentAlignment.TopLeft
 Me.Label12.Location = New System.Drawing.Point(55, 185)
 Me.Label12.Name = "Label12"
 Me.Label12.Size = New System.Drawing.Size(18, 19)
 Me.Label12.TabIndex = 106
 Me.Label12.Text = "q"
 Me.Label12.TextAlign = System.Drawing.ContentAlignment.MiddleCenter
 Me.ToolTipN.SetToolTip(Me.Label12, "ThetaGA - is the GA threshhold -
GA is applied in a set when the average time sin" & _
 "ce the last GA in the set is greater than ThetaGA, ranges from 25-
50")
 '
 'Label15
 '
 Me.Label15.Font = New System.Drawing.Font("Symbol", 10.0!,
System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point, CType(2,
Byte))
 Me.Label15.Location = New System.Drawing.Point(55, 263)
 Me.Label15.Name = "Label15"
 Me.Label15.Size = New System.Drawing.Size(18, 20)
 Me.Label15.TabIndex = 106
 Me.Label15.Text = "q"
 Me.Label15.TextAlign = System.Drawing.ContentAlignment.MiddleCenter
 Me.ToolTipN.SetToolTip(Me.Label15, "ThetaDel - is the deletion
threshold - if the experience of a classifier is great" & _
 "er than ThetaDel, its fitness may be considered in its probability
of deletion, " & _
 """could be about 20""")
 '
 'ToolTipN
 '
 Me.ToolTipN.AutoPopDelay = 10000
 Me.ToolTipN.InitialDelay = 500
 Me.ToolTipN.ReshowDelay = 100
 '
 'lblExplain
 '
 Me.lblExplain.Location = New System.Drawing.Point(18, 79)
 Me.lblExplain.Name = "lblExplain"
 Me.lblExplain.Size = New System.Drawing.Size(103, 23)
 Me.lblExplain.TabIndex = 80
 Me.lblExplain.Text = "Explain program"
 Me.lblExplain.TextAlign = System.Drawing.ContentAlignment.MiddleRight
 Me.ToolTipN.SetToolTip(Me.lblExplain, "Specifies whether to explain
program using message boxes and screen output")
 '
 'lblMeasurementFreq
 '
 Me.lblMeasurementFreq.Location = New System.Drawing.Point(6, 27)

243

 Me.lblMeasurementFreq.Name = "lblMeasurementFreq"
 Me.lblMeasurementFreq.Size = New System.Drawing.Size(115, 22)
 Me.lblMeasurementFreq.TabIndex = 84
 Me.lblMeasurementFreq.Text = "Measure frequency"
 Me.lblMeasurementFreq.TextAlign =
System.Drawing.ContentAlignment.MiddleRight
 Me.ToolTipN.SetToolTip(Me.lblMeasurementFreq, "Specifies how many
encounters to run before recording metrics")
 '
 'lblSaveDetail
 '
 Me.lblSaveDetail.Location = New System.Drawing.Point(6, 53)
 Me.lblSaveDetail.Name = "lblSaveDetail"
 Me.lblSaveDetail.Size = New System.Drawing.Size(115, 23)
 Me.lblSaveDetail.TabIndex = 86
 Me.lblSaveDetail.Text = "Save level of detail"
 Me.lblSaveDetail.TextAlign =
System.Drawing.ContentAlignment.MiddleRight
 Me.ToolTipN.SetToolTip(Me.lblSaveDetail, "Specifies what type of
information to store about experiment")
 '
 'cboClassifierFitness
 '
 Me.cboClassifierFitness.DropDownStyle =
System.Windows.Forms.ComboBoxStyle.DropDownList
 Me.cboClassifierFitness.Enabled = False
 Me.cboClassifierFitness.Items.AddRange(New Object() {"Prediction
Magnitude", "Prediction Accuracy"})
 Me.cboClassifierFitness.Location = New System.Drawing.Point(194, 230)
 Me.cboClassifierFitness.Name = "cboClassifierFitness"
 Me.cboClassifierFitness.Size = New System.Drawing.Size(164, 21)
 Me.cboClassifierFitness.TabIndex = 80
 Me.ToolTipN.SetToolTip(Me.cboClassifierFitness, "Specifies how
classifier fitness is calculated")
 '
 'lblInitialPopulation
 '
 Me.lblInitialPopulation.Location = New System.Drawing.Point(12, 46)
 Me.lblInitialPopulation.Name = "lblInitialPopulation"
 Me.lblInitialPopulation.Size = New System.Drawing.Size(176, 20)
 Me.lblInitialPopulation.TabIndex = 76
 Me.lblInitialPopulation.Text = "Initial Population Generation"
 Me.lblInitialPopulation.TextAlign =
System.Drawing.ContentAlignment.MiddleRight
 Me.ToolTipN.SetToolTip(Me.lblInitialPopulation, "Specifies whether
initial population is empty, or consists of N randomly generate" & _
 "d classifiers")
 '
 'cboInitialPopulation
 '
 Me.cboInitialPopulation.DropDownStyle =
System.Windows.Forms.ComboBoxStyle.DropDownList
 Me.cboInitialPopulation.Items.AddRange(New Object() {"N Random
Classifiers", "Through Covering"})
 Me.cboInitialPopulation.Location = New System.Drawing.Point(194, 46)
 Me.cboInitialPopulation.Name = "cboInitialPopulation"
 Me.cboInitialPopulation.Size = New System.Drawing.Size(164, 21)

244

 Me.cboInitialPopulation.TabIndex = 75
 Me.ToolTipN.SetToolTip(Me.cboInitialPopulation, "Specifies whether
initial population is empty, or consists of N randomly generate" & _
 "d classifiers")
 '
 'cboPopSize
 '
 Me.cboPopSize.DropDownStyle =
System.Windows.Forms.ComboBoxStyle.DropDownList
 Me.cboPopSize.Enabled = False
 Me.cboPopSize.Items.AddRange(New Object() {"Constant size of N",
"Less than or equal to N"})
 Me.cboPopSize.Location = New System.Drawing.Point(194, 73)
 Me.cboPopSize.Name = "cboPopSize"
 Me.cboPopSize.Size = New System.Drawing.Size(164, 21)
 Me.cboPopSize.TabIndex = 82
 Me.ToolTipN.SetToolTip(Me.cboPopSize, "Specifies how population size
is allowed to vary")
 '
 'cboGAScope
 '
 Me.cboGAScope.DropDownStyle =
System.Windows.Forms.ComboBoxStyle.DropDownList
 Me.cboGAScope.Items.AddRange(New Object() {"Panmictic", "Niche"})
 Me.cboGAScope.Location = New System.Drawing.Point(194, 204)
 Me.cboGAScope.Name = "cboGAScope"
 Me.cboGAScope.Size = New System.Drawing.Size(164, 21)
 Me.cboGAScope.TabIndex = 84
 Me.ToolTipN.SetToolTip(Me.cboGAScope, "Specifies whether GA is
panmictic or niche")
 '
 'cboParentSelection
 '
 Me.cboParentSelection.DropDownStyle =
System.Windows.Forms.ComboBoxStyle.DropDownList
 Me.cboParentSelection.Enabled = False
 Me.cboParentSelection.Items.AddRange(New Object() {"Fitness
Proportional", "Tournament"})
 Me.cboParentSelection.Location = New System.Drawing.Point(194, 98)
 Me.cboParentSelection.Name = "cboParentSelection"
 Me.cboParentSelection.Size = New System.Drawing.Size(164, 21)
 Me.cboParentSelection.TabIndex = 86
 Me.ToolTipN.SetToolTip(Me.cboParentSelection, "Specifies how parent
selection is performed")
 '
 'cboClassifierDeletion
 '
 Me.cboClassifierDeletion.DropDownStyle =
System.Windows.Forms.ComboBoxStyle.DropDownList
 Me.cboClassifierDeletion.Enabled = False
 Me.cboClassifierDeletion.Items.AddRange(New Object() {"Fitness Only",
"Fitness/Resource Balance"})
 Me.cboClassifierDeletion.Location = New System.Drawing.Point(194,
178)
 Me.cboClassifierDeletion.Name = "cboClassifierDeletion"
 Me.cboClassifierDeletion.Size = New System.Drawing.Size(164, 21)
 Me.cboClassifierDeletion.TabIndex = 88

245

 Me.ToolTipN.SetToolTip(Me.cboClassifierDeletion, "Specifies how
classifiers are selected for deletion")
 '
 'cboActionSelection
 '
 Me.cboActionSelection.DropDownStyle =
System.Windows.Forms.ComboBoxStyle.DropDownList
 Me.cboActionSelection.Items.AddRange(New Object() {"Fitness
Proportional", "Biased Exploration"})
 Me.cboActionSelection.Location = New System.Drawing.Point(194, 125)
 Me.cboActionSelection.Name = "cboActionSelection"
 Me.cboActionSelection.Size = New System.Drawing.Size(164, 21)
 Me.cboActionSelection.TabIndex = 90
 Me.ToolTipN.SetToolTip(Me.cboActionSelection, "Specifies how action
is chosen")
 '
 'cboClassifierFitnessUpdates
 '
 Me.cboClassifierFitnessUpdates.DropDownStyle =
System.Windows.Forms.ComboBoxStyle.DropDownList
 Me.cboClassifierFitnessUpdates.Items.AddRange(New Object() {"Firing
Classifier", "Action Set Classifiers"})
 Me.cboClassifierFitnessUpdates.Location = New
System.Drawing.Point(194, 151)
 Me.cboClassifierFitnessUpdates.Name = "cboClassifierFitnessUpdates"
 Me.cboClassifierFitnessUpdates.Size = New System.Drawing.Size(164,
21)
 Me.cboClassifierFitnessUpdates.TabIndex = 92
 Me.ToolTipN.SetToolTip(Me.cboClassifierFitnessUpdates, "Specifies
which classifiers are updated")
 '
 'cboAgentType
 '
 Me.cboAgentType.DropDownStyle =
System.Windows.Forms.ComboBoxStyle.DropDownList
 Me.cboAgentType.Items.AddRange(New Object() {"All", "Custom Agent",
"LCS-0", "LCS-1", "LCS-2", "LCS-3", "LCS-4", "LCS-5", "LCS-6", "LCS-7", "LCS-
8", "XCS"})
 Me.cboAgentType.Location = New System.Drawing.Point(194, 20)
 Me.cboAgentType.Name = "cboAgentType"
 Me.cboAgentType.Size = New System.Drawing.Size(164, 21)
 Me.cboAgentType.TabIndex = 94
 Me.ToolTipN.SetToolTip(Me.cboAgentType, "Specifies variant of
learning agent to investigate")
 '
 'lblClassifierFitness
 '
 Me.lblClassifierFitness.Location = New System.Drawing.Point(6, 230)
 Me.lblClassifierFitness.Name = "lblClassifierFitness"
 Me.lblClassifierFitness.Size = New System.Drawing.Size(182, 20)
 Me.lblClassifierFitness.TabIndex = 81
 Me.lblClassifierFitness.Text = "Classifier Fitness Based On"
 Me.lblClassifierFitness.TextAlign =
System.Drawing.ContentAlignment.MiddleRight
 Me.ToolTipN.SetToolTip(Me.lblClassifierFitness, "Specifies how
classifier fitness is calculated")
 '

246

 'cboExplain
 '
 Me.cboExplain.AllowDrop = True
 Me.cboExplain.DropDownStyle =
System.Windows.Forms.ComboBoxStyle.DropDownList
 Me.cboExplain.Items.AddRange(New Object() {"No", "Yes"})
 Me.cboExplain.Location = New System.Drawing.Point(133, 79)
 Me.cboExplain.Name = "cboExplain"
 Me.cboExplain.RightToLeft = System.Windows.Forms.RightToLeft.No
 Me.cboExplain.Size = New System.Drawing.Size(86, 21)
 Me.cboExplain.TabIndex = 79
 Me.ToolTipN.SetToolTip(Me.cboExplain, "Specifies whether to explain
program using message boxes and screen output")
 '
 'nudFreq
 '
 Me.nudFreq.BackColor = System.Drawing.Color.White
 Me.nudFreq.Location = New System.Drawing.Point(133, 27)
 Me.nudFreq.Maximum = New Decimal(New Integer() {1000000, 0, 0, 0})
 Me.nudFreq.Minimum = New Decimal(New Integer() {1, 0, 0, 0})
 Me.nudFreq.Name = "nudFreq"
 Me.nudFreq.Size = New System.Drawing.Size(86, 20)
 Me.nudFreq.TabIndex = 83
 Me.nudFreq.TextAlign = System.Windows.Forms.HorizontalAlignment.Right
 Me.ToolTipN.SetToolTip(Me.nudFreq, "Specifies how many encounters to
run before recording metrics")
 Me.nudFreq.Value = New Decimal(New Integer() {50, 0, 0, 0})
 '
 'cboSaveDetail
 '
 Me.cboSaveDetail.DropDownStyle =
System.Windows.Forms.ComboBoxStyle.DropDownList
 Me.cboSaveDetail.Items.AddRange(New Object() {"Summary", "SAS Only",
"None"})
 Me.cboSaveDetail.Location = New System.Drawing.Point(133, 53)
 Me.cboSaveDetail.Name = "cboSaveDetail"
 Me.cboSaveDetail.Size = New System.Drawing.Size(86, 21)
 Me.cboSaveDetail.TabIndex = 85
 Me.ToolTipN.SetToolTip(Me.cboSaveDetail, "Specifies what type of
information to store about experiment")
 '
 'lblAgentType
 '
 Me.lblAgentType.Location = New System.Drawing.Point(12, 20)
 Me.lblAgentType.Name = "lblAgentType"
 Me.lblAgentType.Size = New System.Drawing.Size(176, 20)
 Me.lblAgentType.TabIndex = 95
 Me.lblAgentType.Text = "Agent Type"
 Me.lblAgentType.TextAlign =
System.Drawing.ContentAlignment.MiddleRight
 Me.ToolTipN.SetToolTip(Me.lblAgentType, "Specifies variant of
learning agent to investigate")
 '
 'lblFitnessUpdates
 '
 Me.lblFitnessUpdates.Location = New System.Drawing.Point(6, 151)
 Me.lblFitnessUpdates.Name = "lblFitnessUpdates"

247

 Me.lblFitnessUpdates.Size = New System.Drawing.Size(182, 20)
 Me.lblFitnessUpdates.TabIndex = 93
 Me.lblFitnessUpdates.Text = "Classifier Fitness Updates"
 Me.lblFitnessUpdates.TextAlign =
System.Drawing.ContentAlignment.MiddleRight
 Me.ToolTipN.SetToolTip(Me.lblFitnessUpdates, "Specifies which
classifiers are updated")
 '
 'lblActionSelection
 '
 Me.lblActionSelection.Location = New System.Drawing.Point(12, 125)
 Me.lblActionSelection.Name = "lblActionSelection"
 Me.lblActionSelection.Size = New System.Drawing.Size(176, 20)
 Me.lblActionSelection.TabIndex = 91
 Me.lblActionSelection.Text = "Action Selection"
 Me.lblActionSelection.TextAlign =
System.Drawing.ContentAlignment.MiddleRight
 Me.ToolTipN.SetToolTip(Me.lblActionSelection, "Specifies how action
is chosen")
 '
 'lblClassifierDeletion
 '
 Me.lblClassifierDeletion.Location = New System.Drawing.Point(6, 178)
 Me.lblClassifierDeletion.Name = "lblClassifierDeletion"
 Me.lblClassifierDeletion.Size = New System.Drawing.Size(182, 20)
 Me.lblClassifierDeletion.TabIndex = 89
 Me.lblClassifierDeletion.Text = "Classifier Deletion Based On"
 Me.lblClassifierDeletion.TextAlign =
System.Drawing.ContentAlignment.MiddleRight
 Me.ToolTipN.SetToolTip(Me.lblClassifierDeletion, "Specifies how
classifiers are selected for deletion")
 '
 'lblParentSelection
 '
 Me.lblParentSelection.Location = New System.Drawing.Point(18, 98)
 Me.lblParentSelection.Name = "lblParentSelection"
 Me.lblParentSelection.Size = New System.Drawing.Size(170, 20)
 Me.lblParentSelection.TabIndex = 87
 Me.lblParentSelection.Text = "Parent Selection"
 Me.lblParentSelection.TextAlign =
System.Drawing.ContentAlignment.MiddleRight
 Me.ToolTipN.SetToolTip(Me.lblParentSelection, "Specifies how parent
selection is performed")
 '
 'lblGAScope
 '
 Me.lblGAScope.Location = New System.Drawing.Point(18, 204)
 Me.lblGAScope.Name = "lblGAScope"
 Me.lblGAScope.Size = New System.Drawing.Size(170, 19)
 Me.lblGAScope.TabIndex = 85
 Me.lblGAScope.Text = "GA Scope"
 Me.lblGAScope.TextAlign = System.Drawing.ContentAlignment.MiddleRight
 Me.ToolTipN.SetToolTip(Me.lblGAScope, "Specifies whether GA is
panmictic or niche")
 '
 'lblPopSize
 '

248

 Me.lblPopSize.Location = New System.Drawing.Point(18, 73)
 Me.lblPopSize.Name = "lblPopSize"
 Me.lblPopSize.Size = New System.Drawing.Size(170, 19)
 Me.lblPopSize.TabIndex = 83
 Me.lblPopSize.Text = "Population Size"
 Me.lblPopSize.TextAlign = System.Drawing.ContentAlignment.MiddleRight
 Me.ToolTipN.SetToolTip(Me.lblPopSize, "Specifies how population size
is allowed to vary")
 '
 'lblEMail
 '
 Me.lblEMail.Location = New System.Drawing.Point(255, 85)
 Me.lblEMail.Name = "lblEMail"
 Me.lblEMail.Size = New System.Drawing.Size(55, 19)
 Me.lblEMail.TabIndex = 87
 Me.lblEMail.Text = "E-mail"
 Me.lblEMail.TextAlign = System.Drawing.ContentAlignment.MiddleRight
 Me.ToolTipN.SetToolTip(Me.lblEMail, "Whether to allocate more system
resources to program execution")
 '
 'cboEMail
 '
 Me.cboEMail.DropDownStyle =
System.Windows.Forms.ComboBoxStyle.DropDownList
 Me.cboEMail.Items.AddRange(New Object() {"Yes", "No"})
 Me.cboEMail.Location = New System.Drawing.Point(315, 80)
 Me.cboEMail.Name = "cboEMail"
 Me.cboEMail.Size = New System.Drawing.Size(64, 21)
 Me.cboEMail.TabIndex = 88
 Me.ToolTipN.SetToolTip(Me.cboEMail, "Whether to allocate more system
resources to program execution")
 '
 'pbar1
 '
 Me.pbar1.Location = New System.Drawing.Point(6, 559)
 Me.pbar1.Name = "pbar1"
 Me.pbar1.Size = New System.Drawing.Size(752, 39)
 Me.pbar1.TabIndex = 76
 Me.pbar1.Visible = False
 '
 'grpExperimentParameters
 '
 Me.grpExperimentParameters.Controls.AddRange(New
System.Windows.Forms.Control() {Me.lblEMail, Me.cboEMail, Me.lblCrankitUp,
Me.lblMeasurementFreq, Me.cboSaveDetail, Me.nudReplications, Me.nudFreq,
Me.lblExplain, Me.cboCrankitUp, Me.cboExplain, Me.lblReplications,
Me.lblSaveDetail, Me.cboPseudoRandomness, Me.lblPseudoRandomness})
 Me.grpExperimentParameters.Location = New System.Drawing.Point(6,
395)
 Me.grpExperimentParameters.Name = "grpExperimentParameters"
 Me.grpExperimentParameters.Size = New System.Drawing.Size(389, 158)
 Me.grpExperimentParameters.TabIndex = 87
 Me.grpExperimentParameters.TabStop = False
 Me.grpExperimentParameters.Text = "Experiment Parameters"
 '
 'grpAgentParameters
 '

249

 Me.grpAgentParameters.Controls.AddRange(New
System.Windows.Forms.Control() {Me.lblClassifierFitness,
Me.cboClassifierFitness, Me.cboInitialPopulation, Me.lblInitialPopulation,
Me.cboAgentType, Me.lblAgentType, Me.cboPopSize, Me.lblPopSize,
Me.cboParentSelection, Me.lblParentSelection, Me.lblFitnessUpdates,
Me.lblActionSelection, Me.cboActionSelection, Me.cboClassifierFitnessUpdates,
Me.cboClassifierDeletion, Me.lblClassifierDeletion, Me.cboGAScope,
Me.lblGAScope})
 Me.grpAgentParameters.Location = New System.Drawing.Point(400, 223)
 Me.grpAgentParameters.Name = "grpAgentParameters"
 Me.grpAgentParameters.Size = New System.Drawing.Size(364, 265)
 Me.grpAgentParameters.TabIndex = 88
 Me.grpAgentParameters.TabStop = False
 Me.grpAgentParameters.Text = "Agent Architectural Differences"
 '
 'XCSOpeningScreen
 '
 Me.AcceptButton = Me.btnTest
 Me.AutoScaleBaseSize = New System.Drawing.Size(5, 13)
 Me.CancelButton = Me.btnQuit
 Me.ClientSize = New System.Drawing.Size(779, 603)
 Me.Controls.AddRange(New System.Windows.Forms.Control()
{Me.grpAgentParameters, Me.grpExperimentParameters, Me.pbar1,
Me.grpLearningParameters, Me.grpIPDParameters, Me.btnTest, Me.btnQuit})
 Me.Name = "XCSOpeningScreen"
 Me.Text = "Alphabet Soup and Machine Learning, Main Screen"
 CType(Me.nudGenerations,
System.ComponentModel.ISupportInitialize).EndInit()
 Me.grpIPDParameters.ResumeLayout(False)
 CType(Me.nudReward4,
System.ComponentModel.ISupportInitialize).EndInit()
 CType(Me.nudReward3,
System.ComponentModel.ISupportInitialize).EndInit()
 CType(Me.nudReward2,
System.ComponentModel.ISupportInitialize).EndInit()
 CType(Me.nudReward1,
System.ComponentModel.ISupportInitialize).EndInit()
 CType(Me.nudNumberMoves,
System.ComponentModel.ISupportInitialize).EndInit()
 CType(Me.nudReplications,
System.ComponentModel.ISupportInitialize).EndInit()
 CType(Me.nudN, System.ComponentModel.ISupportInitialize).EndInit()
 CType(Me.nudThetaMNA,
System.ComponentModel.ISupportInitialize).EndInit()
 CType(Me.nudProbPound,
System.ComponentModel.ISupportInitialize).EndInit()
 Me.grpLearningParameters.ResumeLayout(False)
 CType(Me.nudProbXPlor,
System.ComponentModel.ISupportInitialize).EndInit()
 CType(Me.nudInitialFitness,
System.ComponentModel.ISupportInitialize).EndInit()
 CType(Me.nudInitialPredictionError,
System.ComponentModel.ISupportInitialize).EndInit()
 CType(Me.nudInitialPrediction,
System.ComponentModel.ISupportInitialize).EndInit()
 CType(Me.nudThetaSub,
System.ComponentModel.ISupportInitialize).EndInit()

250

 CType(Me.nudDelta,
System.ComponentModel.ISupportInitialize).EndInit()
 CType(Me.nudThetaDel,
System.ComponentModel.ISupportInitialize).EndInit()
 CType(Me.nudMu, System.ComponentModel.ISupportInitialize).EndInit()
 CType(Me.nudChi, System.ComponentModel.ISupportInitialize).EndInit()
 CType(Me.nudThetaGA,
System.ComponentModel.ISupportInitialize).EndInit()
 CType(Me.nudGamma,
System.ComponentModel.ISupportInitialize).EndInit()
 CType(Me.nudNu, System.ComponentModel.ISupportInitialize).EndInit()
 CType(Me.nudEpsilon0,
System.ComponentModel.ISupportInitialize).EndInit()
 CType(Me.nudAlpha,
System.ComponentModel.ISupportInitialize).EndInit()
 CType(Me.nudBeta, System.ComponentModel.ISupportInitialize).EndInit()
 CType(Me.nudFreq, System.ComponentModel.ISupportInitialize).EndInit()
 Me.grpExperimentParameters.ResumeLayout(False)
 Me.grpAgentParameters.ResumeLayout(False)
 Me.ResumeLayout(False)

 End Sub

#End Region

 Public EmailAddress, SmtpServer As String

 Private Sub btnQuit_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnQuit.Click
 If MsgBox("Are you sure you want to quit?", MsgBoxStyle.YesNo Or
MsgBoxStyle.DefaultButton2, "Quit Confirmation") = MsgBoxResult.Yes Then
 End
 End If
 End Sub

 Private Sub XCSOpeningScreen_Load(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles MyBase.Load

 lblCitation.Text = "Learning parameter values adapted from Butz, M.
V. and S. W. Wilson (2001). An algorithmic description of XCS. Advances in
Learning Classifier Systems. Third International Workshop (IWLCS-2000). P. L.
Lanzi, W. Stolzmann and S. W. Wilson. Berlin, Springer-Verlag. 1996: 253-
272."

 'learning parameters
 'cboDoGASub.SelectedItem = "True" 'test offspring for logical
subsumption?
 'cboDoASSub.SelectedItem = "True" 'test action sets for subsuming
classifiers?

 'experiment parameters
 cboPseudoRandomness.SelectedItem = "Constant Seed" 'same random seed
each time?
 cboCrankitUp.SelectedItem = "No" 'run at higher priority?
 cboEMail.SelectedItem = "No" 'e-mail results?

251

 cboExplain.SelectedItem = "No" 'explain program using dialog boxes?
 cboSaveDetail.SelectedItem = "Summary" 'level of detail to record in
files

 'IPD parameters
 cboGraduatedRewards.SelectedItem = "No" 'no graduated rewards if IPD
 cboWhoseMoves.SelectedItem = "Both" 'whose moves to remember
 cboOpponent.SelectedItem = "TFT" 'choose opponent
 cboProblem.SelectedItem = "IPD" 'default to IPD vs MUX

 'agent parameters
 cboAgentType.SelectedItem = "LCS-0"
 cboClassifierFitness.SelectedItem = "Prediction Magnitude" 'how is
classifer fitness determined?
 cboInitialPopulation.SelectedItem = "N Random Classifiers" 'how is
initial population generated?"
 cboPopSize.SelectedItem = "Constant size of N" 'how does population
size vary
 cboGAScope.SelectedItem = "Panmictic"
 cboParentSelection.SelectedItem = "Fitness Proportional"
 cboClassifierDeletion.SelectedItem = "Fitness Only"
 cboActionSelection.SelectedItem = "Fitness Proportional"
 cboClassifierFitnessUpdates.SelectedItem = "Firing Classifier"

 cboClassifierFitness.Enabled = False
 cboInitialPopulation.Enabled = False
 cboPopSize.Enabled = False
 cboGAScope.Enabled = False
 cboParentSelection.Enabled = False
 cboClassifierDeletion.Enabled = False
 cboActionSelection.Enabled = False
 cboClassifierFitnessUpdates.Enabled = False
 cboDoGASub.Enabled = False
 cboDoASSub.Enabled = False

 If MsgBox("Would you like to run an entire simulation suite (all
opponents)?", _
 MsgBoxStyle.YesNo Or MsgBoxStyle.DefaultButton2, "Entire Suite")
= MsgBoxResult.Yes Then
 cboAgentType.SelectedItem = "All"
 cboOpponent.SelectedItem = "All"
 End If
 End Sub

 Private Sub btnTest_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnTest.Click

 'Disable "test" button
 btnTest.Enabled = False

 If cboOpponent.SelectedItem = "All" Then
 If cboAgentType.SelectedItem = "All" Then
 cboOpponent.SelectedItem = "CCC"
 RunAllAgents()

 cboAgentType.SelectedItem = "All"
 cboOpponent.SelectedItem = "DDD"

252

 RunAllAgents()

 cboAgentType.SelectedItem = "All"
 cboOpponent.SelectedItem = "TFT"
 RunAllAgents()

 cboAgentType.SelectedItem = "All"
 cboOpponent.SelectedItem = "RAND"
 RunAllAgents()
 Else
 cboOpponent.SelectedItem = "CCC"
 RunAllAgents()

 cboOpponent.SelectedItem = "DDD"
 RunAllAgents()

 cboOpponent.SelectedItem = "TFT"
 RunAllAgents()

 cboOpponent.SelectedItem = "RAND"
 RunAllAgents()
 End If

 Else
 RunAllAgents()
 End If

 'Try
 'btnTest.Enabled = True
 MsgBox("Experiment done")
 End
 End Sub

 Private Sub RunAllAgents()
 Dim mailObj As New System.Web.Mail.MailMessage()
 System.Web.Mail.SmtpMail.SmtpServer = SmtpServer
 mailObj.Priority = Web.Mail.MailPriority.High
 mailObj.From = "dgaines@uky.edu"
 mailObj.To = EmailAddress
 ExperimentBeginTime = Date.Now

 If cboSaveDetail.SelectedItem = "All" Or cboSaveDetail.SelectedItem =
"Summary" _
 Or cboSaveDetail.SelectedItem = "SAS Only" Then

 FolderName =
System.Environment.GetFolderPath(System.Environment.SpecialFolder.Personal) &
_
 "\xcs\data\" & frm.cboAgentType.Text & " vs " &
frm.cboOpponent.Text & ", " & frm.nudGenerations.Value & _
 " encounters, " & frm.nudReplications.Value & " reps" & ", " &
Format(ExperimentBeginTime, "d MMM yy H.mm.ss")
 MkDir(FolderName)
 'make directory to store results, also save experimental
parameters
 ParameterSW = IO.File.CreateText(FolderName & "\" &
Format(ExperimentBeginTime, "d MMM yy H.mm.ss") & _

253

 " Experiment Parameters.txt")
 'SAS Data File
 If cboSaveDetail.SelectedItem = "SAS Only" Or
cboSaveDetail.SelectedItem = "Summary" Or cboSaveDetail.SelectedItem = "All"
Then
 SASSW = IO.File.CreateText(FolderName & "\" &
Format(ExperimentBeginTime, "d MMM yy H.mm.ss") & _
 " SAS Data.txt")
 SASSW.WriteLine("Replication Agent Generation PopSize
PercentCorrect SquaredError PercentOptimal")
 End If

 'learning parameters
 ParameterSW.WriteLine("Learning Parameters")
 ParameterSW.WriteLine(" N = " & nudN.Value)
 ParameterSW.WriteLine(" Beta = " & nudBeta.Value)
 ParameterSW.WriteLine(" Alpha = " & nudAlpha.Value)
 ParameterSW.WriteLine(" Epsilon0 = " & nudEpsilon0.Value)
 ParameterSW.WriteLine(" Nu = " & nudNu.Value)
 ParameterSW.WriteLine(" Gamma = " & nudGamma.Value)
 ParameterSW.WriteLine(" ThetaGA = " & nudThetaGA.Value)
 ParameterSW.WriteLine(" Chi = " & nudChi.Value)
 ParameterSW.WriteLine(" Mu = " & nudMu.Value)
 ParameterSW.WriteLine(" ThetaDel = " & nudThetaDel.Value)
 ParameterSW.WriteLine(" Delta = " & nudDelta.Value)
 ParameterSW.WriteLine(" ThetaSub = " & nudThetaSub.Value)
 ParameterSW.WriteLine(" ProbPound = " & nudProbPound.Value)
 ParameterSW.WriteLine(" InitialPrediction = " &
nudInitialPrediction.Value)
 ParameterSW.WriteLine(" InitialPredictionError = " &
nudInitialPredictionError.Value)
 ParameterSW.WriteLine(" InitialFitness = " &
nudInitialFitness.Value)
 ParameterSW.WriteLine(" ProbXPlor = " & nudProbXPlor.Value)
 ParameterSW.WriteLine(" ThetaMNA = " & nudThetaMNA.Value)
 If cboDoGASub.SelectedIndex Then
 ParameterSW.WriteLine(" DoGASubsumption = True")
 Else
 ParameterSW.WriteLine(" DoGASubsumption = False")
 End If
 If cboDoASSub.SelectedIndex Then
 ParameterSW.WriteLine(" DoASSubsumption = True")
 Else
 ParameterSW.WriteLine(" DoASSubsumption = False")
 End If

 If cboAgentType.Text = "Custom Agent" Then
 'Custom agent parameters
 ParameterSW.WriteLine()
 ParameterSW.WriteLine("Custom Agent Parameters")
 ParameterSW.WriteLine(" Initial Population = " &
cboInitialPopulation.Text)
 ParameterSW.WriteLine(" Population Size = " &
cboPopSize.Text)
 ParameterSW.WriteLine(" Parent Selection = " &
cboParentSelection.Text)

254

 ParameterSW.WriteLine(" Action Selection = " &
cboActionSelection.Text)
 ParameterSW.WriteLine(" Classifier Fitness Updates = " &
cboClassifierFitnessUpdates.Text)
 ParameterSW.WriteLine(" Classifier Deletion = " &
cboClassifierDeletion.Text)
 ParameterSW.WriteLine(" GA Scope = " & cboGAScope.Text)
 ParameterSW.WriteLine(" Classifier Fitness = " &
cboClassifierFitness.Text)
 End If

 'IPD parameters
 ParameterSW.WriteLine()
 ParameterSW.WriteLine("Problem Parameters")
 ParameterSW.WriteLine(" Problem = " & cboProblem.Text)
 ParameterSW.WriteLine(" Encounters/Generations = " &
nudGenerations.Value)
 ParameterSW.WriteLine(" NumberMoves = " & nudNumberMoves.Value)
 ParameterSW.WriteLine(" WhoseMoves = " & cboWhoseMoves.Text)
 If cboProblem.Text = "IPD" Then
 ParameterSW.WriteLine(" Agent = " & cboAgentType.Text)
 ParameterSW.WriteLine(" Opponent = " & cboOpponent.Text)
 End If
 ParameterSW.WriteLine(" Rewards = " & nudReward1.Value & " > " _
 & nudReward2.Value & " > " & nudReward3.Value & " > " &
nudReward4.Value)

 'experiment parameters
 ParameterSW.WriteLine()
 ParameterSW.WriteLine("Experiment Parameters")
 ParameterSW.WriteLine(" Measurement Frequency = " &
nudFreq.Value)
 ParameterSW.WriteLine(" # of Replications = " &
nudReplications.Value)
 ParameterSW.WriteLine(" PseudoRandomness = " &
cboPseudoRandomness.Text)

 ParameterSW.WriteLine()
 ParameterSW.WriteLine("Experiment Results")
 ParameterSW.WriteLine(" Experiment began at " &
ExperimentBeginTime)

 'ParameterSW.Flush()
 ParameterSW.Close()

 End If

 If cboAgentType.SelectedItem = "All" Then

 cboAgentType.SelectedItem = "LCS-0"
 RunExperiment()

 'notify progress
 If cboEMail.SelectedItem = "Yes" Then
 mailObj.Subject = "Finished LCS-0 ..."
 mailObj.Body = "The experiment begun at " & _

255

 ExperimentBeginTime & " completed execution of LCS-0 at "
& _
 Date.Now & "."
 System.Web.Mail.SmtpMail.Send(mailObj)
 End If

 cboAgentType.SelectedItem = "LCS-1"
 RunExperiment()

 If cboEMail.SelectedValue = "Yes" Then
 'notify progress
 mailObj.Subject = "Finished LCS-1 ..."
 mailObj.Body = "The experiment begun at " & _
 ExperimentBeginTime & " completed execution of LCS-1 at "
& _
 Date.Now & "."
 System.Web.Mail.SmtpMail.Send(mailObj)
 End If

 cboAgentType.SelectedItem = "LCS-2"
 RunExperiment()

 If cboEMail.SelectedItem = "Yes" Then
 'notify progress
 mailObj.Subject = "Finished LCS-2 ..."
 mailObj.Body = "The experiment begun at " & _
 ExperimentBeginTime & " completed execution of LCS-2 at "
& _
 Date.Now & "."
 System.Web.Mail.SmtpMail.Send(mailObj)
 End If

 cboAgentType.SelectedItem = "LCS-3"
 RunExperiment()

 If cboEMail.SelectedItem = "Yes" Then
 'notify progress
 mailObj.Subject = "Finished LCS-3 ..."
 mailObj.Body = "The experiment begun at " & _
 ExperimentBeginTime & " completed execution of LCS-3 at "
& _
 Date.Now & "."
 System.Web.Mail.SmtpMail.Send(mailObj)
 End If

 cboAgentType.SelectedItem = "LCS-4"
 RunExperiment()

 If cboEMail.SelectedItem = "Yes" Then
 'notify progress
 mailObj.Subject = "Finished LCS-4 ..."
 mailObj.Body = "The experiment begun at " & _
 ExperimentBeginTime & " completed execution of LCS-4 at "
& _
 Date.Now & "."
 System.Web.Mail.SmtpMail.Send(mailObj)
 End If

256

 cboAgentType.SelectedItem = "LCS-5"
 RunExperiment()

 If cboEMail.SelectedItem = "Yes" Then
 'notify progress
 mailObj.Subject = "Finished LCS-5 ..."
 mailObj.Body = "The experiment begun at " & _
 ExperimentBeginTime & " completed execution of LCS-5 at "
& _
 Date.Now & "."
 System.Web.Mail.SmtpMail.Send(mailObj)
 End If

 cboAgentType.SelectedItem = "LCS-6"
 RunExperiment()

 If cboEMail.SelectedItem = "Yes" Then
 'notify progress
 mailObj.Subject = "Finished LCS-6 ..."
 mailObj.Body = "The experiment begun at " & _
 ExperimentBeginTime & " completed execution of LCS-6 at "
& _
 Date.Now & "."
 System.Web.Mail.SmtpMail.Send(mailObj)
 End If

 cboAgentType.SelectedItem = "LCS-7"
 RunExperiment()

 If cboEMail.SelectedItem = "Yes" Then
 'notify progress
 mailObj.Subject = "Finished LCS-7 ..."
 mailObj.Body = "The experiment begun at " & _
 ExperimentBeginTime & " completed execution of LCS-7 at "
& _
 Date.Now & "."
 System.Web.Mail.SmtpMail.Send(mailObj)
 End If

 cboAgentType.SelectedItem = "LCS-8"
 RunExperiment()

 If cboEMail.SelectedItem = "Yes" Then
 'notify progress
 mailObj.Subject = "Finished LCS-8 ..."
 mailObj.Body = "The experiment begun at " & _
 ExperimentBeginTime & " completed execution of LCS-8 at "
& _
 Date.Now & "."
 System.Web.Mail.SmtpMail.Send(mailObj)
 End If

 cboAgentType.SelectedItem = "XCS"
 RunExperiment()

 If cboEMail.SelectedItem = "Yes" Then

257

 'notify progress
 mailObj.Subject = "Finished XCS ..."
 mailObj.Body = "The experiment begun at " & _
 ExperimentBeginTime & " completed execution of XCS at " &
_
 Date.Now & "."
 System.Web.Mail.SmtpMail.Send(mailObj)
 End If

 Else
 RunExperiment() 'run a single agent
 If cboEMail.SelectedItem = "Yes" Then
 'notify progress
 mailObj.Subject = "Finished " & cboAgentType.SelectedItem & "
..."
 mailObj.Body = "The experiment begun at " & _
 ExperimentBeginTime & " completed execution of " & _
 cboAgentType.SelectedItem & " at " & _
 Date.Now & "."
 System.Web.Mail.SmtpMail.Send(mailObj)
 End If
 End If

 ExperimentEndTime = Date.Now

 If cboEMail.SelectedItem = "Yes" Then
 mailObj.Subject = "Experiment completed successfully!"
 mailObj.Body = "The experiment begun at " & _
 ExperimentBeginTime & " completed execution at " & _
 ExperimentEndTime & "."

 System.Web.Mail.SmtpMail.Send(mailObj)
 End If

 If cboSaveDetail.SelectedItem = "All" Or cboSaveDetail.SelectedItem =
"Summary" Or cboSaveDetail.SelectedItem = "SAS Only" Then
 If cboSaveDetail.SelectedItem = "All" Or
cboSaveDetail.SelectedItem = "Summary" Then
 CreateExcelCharts(cboOpponent.Text, nudFreq.Value)
 End If
 ParameterSW = IO.File.AppendText(FolderName & "\" &
Format(ExperimentBeginTime, "d MMM yy H.mm.ss") & _
 " Experiment Parameters.txt")
 ParameterSW.WriteLine(" Experiment completed execution at " &
ExperimentEndTime)
 ParameterSW.WriteLine(" Elapsed time was " &
DateDiff(DateInterval.Day, ExperimentBeginTime, ExperimentEndTime) & _
 " days, " & (DateDiff(DateInterval.Hour, ExperimentBeginTime,
ExperimentEndTime) Mod 24) & _
 " hours, " & (DateDiff(DateInterval.Minute,
ExperimentBeginTime, ExperimentEndTime) Mod 60) & _
 " minutes, " & (DateDiff(DateInterval.Second,
ExperimentBeginTime, ExperimentEndTime) Mod 60) & _
 " seconds")
 ParameterSW.WriteLine(" Experiment completed successfully")
 ParameterSW.Flush()
 ParameterSW.Close()

258

 End If
 If SaveDetail = "Summary" Or SaveDetail = "SAS Only" Or SaveDetail =
"All" Then
 SASSW.Flush()
 SASSW.Close()
 End If
 End Sub

 Private Sub nudGenerations_ValueChanged(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles nudGenerations.ValueChanged
 If nudGenerations.Value > (65536 * nudFreq.Value) Then
 nudFreq.Value = Int(nudGenerations.Value / 65536) + 1
 'Else
 ' nudFreq.Value = Int(nudGenerations.Value / 50)
 End If
 End Sub

 Private Sub nudGenerations_Leave(ByVal sender As Object, ByVal e As
System.EventArgs) Handles nudGenerations.Leave
 If nudGenerations.Value > (65536 * nudFreq.Value) Then
 nudFreq.Value = Int(nudGenerations.Value / 65536) + 1
 End If

 End Sub

 Private Sub cboAgentType_SelectedValueChanged(ByVal sender As Object,
ByVal e As System.EventArgs) Handles cboAgentType.SelectedValueChanged
 cboClassifierFitness.Font = New Font(cboClassifierFitness.Font,
FontStyle.Regular)
 lblClassifierFitness.Font = New Font(lblClassifierFitness.Font,
FontStyle.Regular)
 cboInitialPopulation.Font = New Font(cboInitialPopulation.Font,
FontStyle.Regular)
 lblInitialPopulation.Font = New Font(lblInitialPopulation.Font,
FontStyle.Regular)
 cboPopSize.Font = New Font(cboPopSize.Font, FontStyle.Regular)
 lblPopSize.Font = New Font(lblPopSize.Font, FontStyle.Regular)
 cboParentSelection.Font = New Font(cboParentSelection.Font,
FontStyle.Regular)
 lblParentSelection.Font = New Font(lblParentSelection.Font,
FontStyle.Regular)
 cboClassifierDeletion.Font = New Font(cboClassifierDeletion.Font,
FontStyle.Regular)
 lblClassifierDeletion.Font = New Font(lblClassifierDeletion.Font,
FontStyle.Regular)
 cboActionSelection.Font = New Font(cboActionSelection.Font,
FontStyle.Regular)
 lblActionSelection.Font = New Font(lblActionSelection.Font,
FontStyle.Regular)
 cboClassifierFitnessUpdates.Font = New
Font(cboClassifierFitnessUpdates.Font, FontStyle.Regular)
 lblFitnessUpdates.Font = New Font(lblFitnessUpdates.Font,
FontStyle.Regular)
 cboGAScope.Font = New Font(cboGAScope.Font, FontStyle.Regular)
 lblGAScope.Font = New Font(lblGAScope.Font, FontStyle.Regular)
 cboDoGASub.Font = New Font(cboDoGASub.Font, FontStyle.Regular)
 lblDoGASub.Font = New Font(lblDoGASub.Font, FontStyle.Regular)

259

 cboDoASSub.Font = New Font(cboDoASSub.Font, FontStyle.Regular)
 lblDoASSub.Font = New Font(lblDoASSub.Font, FontStyle.Regular)
 Select Case cboAgentType.Text
 Case "All"
 cboClassifierFitness.Enabled = False
 cboInitialPopulation.Enabled = False
 cboPopSize.Enabled = False
 cboGAScope.Enabled = False
 cboParentSelection.Enabled = False
 cboClassifierDeletion.Enabled = False
 cboActionSelection.Enabled = False
 cboClassifierFitnessUpdates.Enabled = False
 cboDoGASub.Enabled = False
 cboDoASSub.Enabled = False
 cboClassifierFitness.SelectedItem = "Prediction Magnitude"
'how is classifer fitness determined?
 cboInitialPopulation.SelectedItem = "N Random Classifiers"
'how is initial population generated?"
 cboPopSize.SelectedItem = "Constant size of N" 'how does
population size vary
 cboGAScope.SelectedItem = "Panmictic"
 cboParentSelection.SelectedItem = "Fitness Proportional"
 cboClassifierDeletion.SelectedItem = "Fitness Only"
 cboActionSelection.SelectedItem = "Fitness Proportional"
 cboClassifierFitnessUpdates.SelectedItem = "Firing
Classifier"

 Case "LCS-0"
 cboClassifierFitness.Enabled = False
 cboInitialPopulation.Enabled = False
 cboPopSize.Enabled = False
 cboGAScope.Enabled = False
 cboParentSelection.Enabled = False
 cboClassifierDeletion.Enabled = False
 cboActionSelection.Enabled = False
 cboClassifierFitnessUpdates.Enabled = False
 cboDoGASub.Enabled = False
 cboDoASSub.Enabled = False
 cboClassifierFitness.SelectedItem = "Prediction Magnitude"
'how is classifer fitness determined?
 cboInitialPopulation.SelectedItem = "N Random Classifiers"
'how is initial population generated?"
 cboPopSize.SelectedItem = "Constant size of N" 'how does
population size vary
 cboGAScope.SelectedItem = "Panmictic"
 cboParentSelection.SelectedItem = "Fitness Proportional"
 cboClassifierDeletion.SelectedItem = "Fitness Only"
 cboActionSelection.SelectedItem = "Fitness Proportional"
 cboClassifierFitnessUpdates.SelectedItem = "Firing
Classifier"

 Case "LCS-1"
 cboClassifierFitness.Enabled = False
 cboInitialPopulation.Enabled = False
 cboPopSize.Enabled = False
 cboGAScope.Enabled = False
 cboParentSelection.Enabled = False

260

 cboClassifierDeletion.Enabled = False
 cboActionSelection.Enabled = False
 cboClassifierFitnessUpdates.Enabled = False
 cboDoGASub.Enabled = False
 cboDoASSub.Enabled = False
 cboClassifierFitness.SelectedItem = "Prediction Magnitude"
'how is classifer fitness determined?
 cboInitialPopulation.SelectedItem = "Through Covering" 'how
is initial population generated?"
 cboInitialPopulation.Font = New
Font(cboInitialPopulation.Font, FontStyle.Bold)
 lblInitialPopulation.Font = New
Font(lblInitialPopulation.Font, FontStyle.Bold)
 cboPopSize.SelectedItem = "Constant size of N" 'how does
population size vary
 cboGAScope.SelectedItem = "Panmictic"
 cboParentSelection.SelectedItem = "Fitness Proportional"
 cboClassifierDeletion.SelectedItem = "Fitness Only"
 cboActionSelection.SelectedItem = "Fitness Proportional"
 cboClassifierFitnessUpdates.SelectedItem = "Firing
Classifier"

 Case "LCS-2"
 cboClassifierFitness.Enabled = False
 cboInitialPopulation.Enabled = False
 cboPopSize.Enabled = False
 cboGAScope.Enabled = False
 cboParentSelection.Enabled = False
 cboClassifierDeletion.Enabled = False
 cboActionSelection.Enabled = False
 cboClassifierFitnessUpdates.Enabled = False
 cboDoGASub.Enabled = False
 cboDoASSub.Enabled = False
 cboClassifierFitness.SelectedItem = "Prediction Magnitude"
'how is classifer fitness determined?
 cboInitialPopulation.SelectedItem = "N Random Classifiers"
'how is initial population generated?"
 cboPopSize.SelectedItem = "Less than or equal to N" 'how does
population size vary
 cboPopSize.Font = New Font(cboPopSize.Font, FontStyle.Bold)
 lblPopSize.Font = New Font(lblPopSize.Font, FontStyle.Bold)
 cboDoGASub.Font = New Font(cboDoGASub.Font, FontStyle.Bold)
 lblDoGASub.Font = New Font(lblDoGASub.Font, FontStyle.Bold)
 cboDoASSub.Font = New Font(cboDoASSub.Font, FontStyle.Bold)
 lblDoASSub.Font = New Font(lblDoASSub.Font, FontStyle.Bold)
 cboGAScope.SelectedItem = "Panmictic"
 cboParentSelection.SelectedItem = "Fitness Proportional"
 cboClassifierDeletion.SelectedItem = "Fitness Only"
 cboActionSelection.SelectedItem = "Fitness Proportional"
 cboClassifierFitnessUpdates.SelectedItem = "Firing
Classifier"

 Case "LCS-3"
 cboClassifierFitness.Enabled = False
 cboInitialPopulation.Enabled = False
 cboPopSize.Enabled = False
 cboGAScope.Enabled = False

261

 cboParentSelection.Enabled = False
 cboClassifierDeletion.Enabled = False
 cboActionSelection.Enabled = False
 cboClassifierFitnessUpdates.Enabled = False
 cboDoGASub.Enabled = False
 cboDoASSub.Enabled = False
 cboClassifierFitness.SelectedItem = "Prediction Magnitude"
'how is classifer fitness determined?
 cboInitialPopulation.SelectedItem = "N Random Classifiers"
'how is initial population generated?"
 cboPopSize.SelectedItem = "Constant size of N" 'how does
population size vary
 cboGAScope.SelectedItem = "Panmictic"
 cboParentSelection.SelectedItem = "Tournament"
 cboParentSelection.Font = New Font(cboParentSelection.Font,
FontStyle.Bold)
 lblParentSelection.Font = New Font(lblParentSelection.Font,
FontStyle.Bold)
 cboClassifierDeletion.SelectedItem = "Fitness Only"
 cboActionSelection.SelectedItem = "Fitness Proportional"
 cboClassifierFitnessUpdates.SelectedItem = "Firing
Classifier"

 Case "LCS-4"
 cboClassifierFitness.Enabled = False
 cboInitialPopulation.Enabled = False
 cboPopSize.Enabled = False
 cboGAScope.Enabled = False
 cboParentSelection.Enabled = False
 cboClassifierDeletion.Enabled = False
 cboActionSelection.Enabled = False
 cboClassifierFitnessUpdates.Enabled = False
 cboDoGASub.Enabled = False
 cboDoASSub.Enabled = False
 cboClassifierFitness.SelectedItem = "Prediction Magnitude"
'how is classifer fitness determined?
 cboInitialPopulation.SelectedItem = "N Random Classifiers"
'how is initial population generated?"
 cboPopSize.SelectedItem = "Constant size of N" 'how does
population size vary
 cboGAScope.SelectedItem = "Panmictic"
 cboParentSelection.SelectedItem = "Fitness Proportional"
 cboClassifierDeletion.SelectedItem = "Fitness Only"
 cboActionSelection.SelectedItem = "Biased Exploration"
 cboActionSelection.Font = New Font(cboActionSelection.Font,
FontStyle.Bold)
 lblActionSelection.Font = New Font(lblActionSelection.Font,
FontStyle.Bold)
 cboClassifierFitnessUpdates.SelectedItem = "Firing
Classifier"

 Case "LCS-5"
 cboClassifierFitness.Enabled = False
 cboInitialPopulation.Enabled = False
 cboPopSize.Enabled = False
 cboGAScope.Enabled = False
 cboParentSelection.Enabled = False

262

 cboClassifierDeletion.Enabled = False
 cboActionSelection.Enabled = False
 cboClassifierFitnessUpdates.Enabled = False
 cboDoGASub.Enabled = False
 cboDoASSub.Enabled = False
 cboClassifierFitness.SelectedItem = "Prediction Magnitude"
'how is classifer fitness determined?
 cboInitialPopulation.SelectedItem = "N Random Classifiers"
'how is initial population generated?"
 cboPopSize.SelectedItem = "Constant size of N" 'how does
population size vary
 cboGAScope.SelectedItem = "Panmictic"
 cboParentSelection.SelectedItem = "Fitness Proportional"
 cboClassifierDeletion.SelectedItem = "Fitness Only"
 cboActionSelection.SelectedItem = "Fitness Proportional"
 cboClassifierFitnessUpdates.SelectedItem = "Action Set
Classifiers"
 cboClassifierFitnessUpdates.Font = New
Font(cboClassifierFitnessUpdates.Font, FontStyle.Bold)
 lblFitnessUpdates.Font = New Font(lblFitnessUpdates.Font,
FontStyle.Bold)

 Case "LCS-6"
 cboClassifierFitness.Enabled = False
 cboInitialPopulation.Enabled = False
 cboPopSize.Enabled = False
 cboGAScope.Enabled = False
 cboParentSelection.Enabled = False
 cboClassifierDeletion.Enabled = False
 cboActionSelection.Enabled = False
 cboClassifierFitnessUpdates.Enabled = False
 cboDoGASub.Enabled = False
 cboDoASSub.Enabled = False
 cboClassifierFitness.SelectedItem = "Prediction Magnitude"
'how is classifer fitness determined?
 cboInitialPopulation.SelectedItem = "N Random Classifiers"
'how is initial population generated?"
 cboPopSize.SelectedItem = "Constant size of N" 'how does
population size vary
 cboGAScope.SelectedItem = "Panmictic"
 cboParentSelection.SelectedItem = "Fitness Proportional"
 cboClassifierDeletion.SelectedItem = "Fitness/Resource
Balance"
 cboClassifierDeletion.Font = New
Font(cboClassifierDeletion.Font, FontStyle.Bold)
 lblClassifierDeletion.Font = New
Font(lblClassifierDeletion.Font, FontStyle.Bold)
 cboActionSelection.SelectedItem = "Fitness Proportional"
 cboClassifierFitnessUpdates.SelectedItem = "Firing
Classifier"

 Case "LCS-7"
 cboClassifierFitness.Enabled = False
 cboInitialPopulation.Enabled = False
 cboPopSize.Enabled = False
 cboGAScope.Enabled = False
 cboParentSelection.Enabled = False

263

 cboClassifierDeletion.Enabled = False
 cboActionSelection.Enabled = False
 cboClassifierFitnessUpdates.Enabled = False
 cboDoGASub.Enabled = False
 cboDoASSub.Enabled = False
 cboClassifierFitness.SelectedItem = "Prediction Magnitude"
'how is classifer fitness determined?
 cboInitialPopulation.SelectedItem = "N Random Classifiers"
'how is initial population generated?"
 cboPopSize.SelectedItem = "Constant size of N" 'how does
population size vary
 cboGAScope.SelectedItem = "Niche"
 cboGAScope.Font = New Font(cboGAScope.Font, FontStyle.Bold)
 lblGAScope.Font = New Font(lblGAScope.Font, FontStyle.Bold)
 cboParentSelection.SelectedItem = "Fitness Proportional"
 cboClassifierDeletion.SelectedItem = "Fitness Only"
 cboActionSelection.SelectedItem = "Fitness Proportional"
 cboClassifierFitnessUpdates.SelectedItem = "Firing
Classifier"

 Case "LCS-8"
 cboClassifierFitness.Enabled = False
 cboInitialPopulation.Enabled = False
 cboPopSize.Enabled = False
 cboGAScope.Enabled = False
 cboParentSelection.Enabled = False
 cboClassifierDeletion.Enabled = False
 cboActionSelection.Enabled = False
 cboClassifierFitnessUpdates.Enabled = False
 cboDoGASub.Enabled = False
 cboDoASSub.Enabled = False
 cboClassifierFitness.SelectedItem = "Prediction Accuracy"
'how is classifer fitness determined?
 cboClassifierFitness.Font = New
Font(cboClassifierFitness.Font, FontStyle.Bold)
 lblClassifierFitness.Font = New
Font(lblClassifierFitness.Font, FontStyle.Bold)
 cboInitialPopulation.SelectedItem = "N Random Classifiers"
'how is initial population generated?"
 cboPopSize.SelectedItem = "Constant size of N" 'how does
population size vary
 cboGAScope.SelectedItem = "Panmictic"
 cboParentSelection.SelectedItem = "Fitness Proportional"
 cboClassifierDeletion.SelectedItem = "Fitness Only"
 cboActionSelection.SelectedItem = "Fitness Proportional"
 cboClassifierFitnessUpdates.SelectedItem = "Firing
Classifier"

 Case "XCS"
 cboClassifierFitness.Enabled = False
 cboInitialPopulation.Enabled = False
 cboPopSize.Enabled = False
 cboGAScope.Enabled = False
 cboParentSelection.Enabled = False
 cboClassifierDeletion.Enabled = False
 cboActionSelection.Enabled = False
 cboClassifierFitnessUpdates.Enabled = False

264

 cboDoGASub.Enabled = False
 cboDoASSub.Enabled = False
 cboClassifierFitness.SelectedItem = "Prediction Accuracy"
'how is classifer fitness determined?
 cboInitialPopulation.SelectedItem = "Through Covering" 'how
is initial population generated?"
 cboPopSize.SelectedItem = "Less than or equal to N" 'how does
population size vary
 cboGAScope.SelectedItem = "Niche"
 cboParentSelection.SelectedItem = "Tournament"
 cboClassifierDeletion.SelectedItem = "Fitness/Resource
Balance"
 cboActionSelection.SelectedItem = "Biased Exploration"
 cboClassifierFitnessUpdates.SelectedItem = "Action Set
Classifiers"

 Case Else
 cboClassifierFitness.Enabled = True
 cboInitialPopulation.Enabled = True
 cboPopSize.Enabled = True
 cboGAScope.Enabled = True
 cboParentSelection.Enabled = True
 cboClassifierDeletion.Enabled = True
 cboActionSelection.Enabled = True
 cboClassifierFitnessUpdates.Enabled = True
 cboDoGASub.Enabled = True
 cboDoASSub.Enabled = True

 End Select
 End Sub

 Private Sub cboPopSize_SelectedValueChanged(ByVal sender As Object, ByVal
e As System.EventArgs) Handles cboPopSize.SelectedValueChanged
 If cboPopSize.Text = "Constant size of N" Then
 cboDoGASub.Text = "False"
 cboDoASSub.Text = "False"
 ElseIf cboPopSize.Text = "Less than or equal to N" Then
 cboDoGASub.Text = "True"
 cboDoASSub.Text = "True"
 End If
 End Sub

 Private Sub cboProblem_SelectedValueChanged(ByVal sender As Object, ByVal
e As System.EventArgs) Handles cboProblem.SelectedValueChanged
 If cboProblem.Text = "6-MUX" Then
 nudNumberMoves.Value = 3
 nudNumberMoves.Enabled = False
 cboOpponent.Enabled = False
 nudReward1.Enabled = False
 nudReward2.Enabled = False
 nudReward3.Enabled = False
 nudReward4.Enabled = False
 lblWhoseMoves.Text = "Graduated Rewards"
 cboGraduatedRewards.Visible = True
 cboWhoseMoves.Visible = False
 cboWhoseMoves.SelectedItem = "Both"

265

 Else
 lblWhoseMoves.Text = "Whose Moves"
 cboGraduatedRewards.Visible = False
 cboWhoseMoves.Visible = True
 cboWhoseMoves.SelectedItem = "Both"
 cboOpponent.Enabled = True
 nudNumberMoves.Enabled = True
 nudReward1.Enabled = True
 nudReward2.Enabled = True
 nudReward3.Enabled = True
 nudReward4.Enabled = True
 End If
 End Sub

 Private Sub cboEMail_SelectedValueChanged(ByVal sender As Object, ByVal e
As System.EventArgs) Handles cboEMail.SelectedValueChanged
 If cboEMail.SelectedItem = "Yes" Then
 EmailAddress = InputBox("Please enter e-mail address:", "E-mail
address", "dgaines@uky.edu")
 SmtpServer = InputBox("Please enter smtp server address:", "SMTP
Server", "smtp.uky.edu")
 End If
 End Sub

 'Private Sub cboAgentType_Leave(ByVal sender As Object, ByVal e As
System.EventArgs) Handles cboAgentType.Leave
 ' cboClassifierFitness.Font = New Font(cboClassifierFitness.Font,
FontStyle.Regular)
 ' lblClassifierFitness.Font = New Font(lblClassifierFitness.Font,
FontStyle.Regular)
 ' cboInitialPopulation.Font = New Font(cboInitialPopulation.Font,
FontStyle.Regular)
 ' lblInitialPopulation.Font = New Font(lblInitialPopulation.Font,
FontStyle.Regular)
 ' cboPopSize.Font = New Font(cboPopSize.Font, FontStyle.Regular)
 ' lblPopSize.Font = New Font(lblPopSize.Font, FontStyle.Regular)
 ' cboParentSelection.Font = New Font(cboParentSelection.Font,
FontStyle.Regular)
 ' lblParentSelection.Font = New Font(lblParentSelection.Font,
FontStyle.Regular)
 ' cboClassifierDeletion.Font = New Font(cboClassifierDeletion.Font,
FontStyle.Regular)
 ' lblClassifierDeletion.Font = New Font(lblClassifierDeletion.Font,
FontStyle.Regular)
 ' cboActionSelection.Font = New Font(cboActionSelection.Font,
FontStyle.Regular)
 ' lblActionSelection.Font = New Font(lblActionSelection.Font,
FontStyle.Regular)
 ' cboClassifierFitnessUpdates.Font = New
Font(cboClassifierFitnessUpdates.Font, FontStyle.Regular)
 ' lblFitnessUpdates.Font = New Font(lblFitnessUpdates.Font,
FontStyle.Regular)
 ' cboGAScope.Font = New Font(cboGAScope.Font, FontStyle.Regular)
 ' lblGAScope.Font = New Font(lblGAScope.Font, FontStyle.Regular)
 ' cboDoGASub.Font = New Font(cboDoGASub.Font, FontStyle.Regular)
 ' lblDoGASub.Font = New Font(lblDoGASub.Font, FontStyle.Regular)
 ' cboDoASSub.Font = New Font(cboDoASSub.Font, FontStyle.Regular)

266

 ' lblDoASSub.Font = New Font(lblDoASSub.Font, FontStyle.Regular)
 ' Select Case cboAgentType.Text
 ' Case "All"
 ' cboClassifierFitness.Enabled = False
 ' cboInitialPopulation.Enabled = False
 ' cboPopSize.Enabled = False
 ' cboGAScope.Enabled = False
 ' cboParentSelection.Enabled = False
 ' cboClassifierDeletion.Enabled = False
 ' cboActionSelection.Enabled = False
 ' cboClassifierFitnessUpdates.Enabled = False
 ' cboDoGASub.Enabled = False
 ' cboDoASSub.Enabled = False
 ' cboClassifierFitness.SelectedItem = "Prediction Magnitude"
'how is classifer fitness determined?
 ' cboInitialPopulation.SelectedItem = "N Random Classifiers"
'how is initial population generated?"
 ' cboPopSize.SelectedItem = "Constant size of N" 'how does
population size vary
 ' cboGAScope.SelectedItem = "Panmictic"
 ' cboParentSelection.SelectedItem = "Fitness Proportional"
 ' cboClassifierDeletion.SelectedItem = "Fitness Only"
 ' cboActionSelection.SelectedItem = "Fitness Proportional"
 ' cboClassifierFitnessUpdates.SelectedItem = "Firing
Classifier"

 ' Case "LCS-0"
 ' cboClassifierFitness.Enabled = False
 ' cboInitialPopulation.Enabled = False
 ' cboPopSize.Enabled = False
 ' cboGAScope.Enabled = False
 ' cboParentSelection.Enabled = False
 ' cboClassifierDeletion.Enabled = False
 ' cboActionSelection.Enabled = False
 ' cboClassifierFitnessUpdates.Enabled = False
 ' cboDoGASub.Enabled = False
 ' cboDoASSub.Enabled = False
 ' cboClassifierFitness.SelectedItem = "Prediction Magnitude"
'how is classifer fitness determined?
 ' cboInitialPopulation.SelectedItem = "N Random Classifiers"
'how is initial population generated?"
 ' cboPopSize.SelectedItem = "Constant size of N" 'how does
population size vary
 ' cboGAScope.SelectedItem = "Panmictic"
 ' cboParentSelection.SelectedItem = "Fitness Proportional"
 ' cboClassifierDeletion.SelectedItem = "Fitness Only"
 ' cboActionSelection.SelectedItem = "Fitness Proportional"
 ' cboClassifierFitnessUpdates.SelectedItem = "Firing
Classifier"

 ' Case "LCS-1"
 ' cboClassifierFitness.Enabled = False
 ' cboInitialPopulation.Enabled = False
 ' cboPopSize.Enabled = False
 ' cboGAScope.Enabled = False
 ' cboParentSelection.Enabled = False
 ' cboClassifierDeletion.Enabled = False

267

 ' cboActionSelection.Enabled = False
 ' cboClassifierFitnessUpdates.Enabled = False
 ' cboDoGASub.Enabled = False
 ' cboDoASSub.Enabled = False
 ' cboClassifierFitness.SelectedItem = "Prediction Magnitude"
'how is classifer fitness determined?
 ' cboInitialPopulation.SelectedItem = "Through Covering" 'how
is initial population generated?"
 ' cboInitialPopulation.Font = New
Font(cboInitialPopulation.Font, FontStyle.Bold)
 ' lblInitialPopulation.Font = New
Font(lblInitialPopulation.Font, FontStyle.Bold)
 ' cboPopSize.SelectedItem = "Constant size of N" 'how does
population size vary
 ' cboGAScope.SelectedItem = "Panmictic"
 ' cboParentSelection.SelectedItem = "Fitness Proportional"
 ' cboClassifierDeletion.SelectedItem = "Fitness Only"
 ' cboActionSelection.SelectedItem = "Fitness Proportional"
 ' cboClassifierFitnessUpdates.SelectedItem = "Firing
Classifier"

 ' Case "LCS-2"
 ' cboClassifierFitness.Enabled = False
 ' cboInitialPopulation.Enabled = False
 ' cboPopSize.Enabled = False
 ' cboGAScope.Enabled = False
 ' cboParentSelection.Enabled = False
 ' cboClassifierDeletion.Enabled = False
 ' cboActionSelection.Enabled = False
 ' cboClassifierFitnessUpdates.Enabled = False
 ' cboDoGASub.Enabled = False
 ' cboDoASSub.Enabled = False
 ' cboClassifierFitness.SelectedItem = "Prediction Magnitude"
'how is classifer fitness determined?
 ' cboInitialPopulation.SelectedItem = "N Random Classifiers"
'how is initial population generated?"
 ' cboPopSize.SelectedItem = "Less than or equal to N" 'how
does population size vary
 ' cboPopSize.Font = New Font(cboPopSize.Font, FontStyle.Bold)
 ' lblPopSize.Font = New Font(lblPopSize.Font, FontStyle.Bold)
 ' cboDoGASub.Font = New Font(cboDoGASub.Font, FontStyle.Bold)
 ' lblDoGASub.Font = New Font(lblDoGASub.Font, FontStyle.Bold)
 ' cboDoASSub.Font = New Font(cboDoASSub.Font, FontStyle.Bold)
 ' lblDoASSub.Font = New Font(lblDoASSub.Font, FontStyle.Bold)
 ' cboGAScope.SelectedItem = "Panmictic"
 ' cboParentSelection.SelectedItem = "Fitness Proportional"
 ' cboClassifierDeletion.SelectedItem = "Fitness Only"
 ' cboActionSelection.SelectedItem = "Fitness Proportional"
 ' cboClassifierFitnessUpdates.SelectedItem = "Firing
Classifier"

 ' Case "LCS-3"
 ' cboClassifierFitness.Enabled = False
 ' cboInitialPopulation.Enabled = False
 ' cboPopSize.Enabled = False
 ' cboGAScope.Enabled = False
 ' cboParentSelection.Enabled = False

268

 ' cboClassifierDeletion.Enabled = False
 ' cboActionSelection.Enabled = False
 ' cboClassifierFitnessUpdates.Enabled = False
 ' cboDoGASub.Enabled = False
 ' cboDoASSub.Enabled = False
 ' cboClassifierFitness.SelectedItem = "Prediction Magnitude"
'how is classifer fitness determined?
 ' cboInitialPopulation.SelectedItem = "N Random Classifiers"
'how is initial population generated?"
 ' cboPopSize.SelectedItem = "Constant size of N" 'how does
population size vary
 ' cboGAScope.SelectedItem = "Panmictic"
 ' cboParentSelection.SelectedItem = "Tournament"
 ' cboParentSelection.Font = New Font(cboParentSelection.Font,
FontStyle.Bold)
 ' lblParentSelection.Font = New Font(lblParentSelection.Font,
FontStyle.Bold)
 ' cboClassifierDeletion.SelectedItem = "Fitness Only"
 ' cboActionSelection.SelectedItem = "Fitness Proportional"
 ' cboClassifierFitnessUpdates.SelectedItem = "Firing
Classifier"

 ' Case "LCS-4"
 ' cboClassifierFitness.Enabled = False
 ' cboInitialPopulation.Enabled = False
 ' cboPopSize.Enabled = False
 ' cboGAScope.Enabled = False
 ' cboParentSelection.Enabled = False
 ' cboClassifierDeletion.Enabled = False
 ' cboActionSelection.Enabled = False
 ' cboClassifierFitnessUpdates.Enabled = False
 ' cboDoGASub.Enabled = False
 ' cboDoASSub.Enabled = False
 ' cboClassifierFitness.SelectedItem = "Prediction Magnitude"
'how is classifer fitness determined?
 ' cboInitialPopulation.SelectedItem = "N Random Classifiers"
'how is initial population generated?"
 ' cboPopSize.SelectedItem = "Constant size of N" 'how does
population size vary
 ' cboGAScope.SelectedItem = "Panmictic"
 ' cboParentSelection.SelectedItem = "Fitness Proportional"
 ' cboClassifierDeletion.SelectedItem = "Fitness Only"
 ' cboActionSelection.SelectedItem = "Biased Exploration"
 ' cboActionSelection.Font = New Font(cboActionSelection.Font,
FontStyle.Bold)
 ' lblActionSelection.Font = New Font(lblActionSelection.Font,
FontStyle.Bold)
 ' cboClassifierFitnessUpdates.SelectedItem = "Firing
Classifier"

 ' Case "LCS-5"
 ' cboClassifierFitness.Enabled = False
 ' cboInitialPopulation.Enabled = False
 ' cboPopSize.Enabled = False
 ' cboGAScope.Enabled = False
 ' cboParentSelection.Enabled = False
 ' cboClassifierDeletion.Enabled = False

269

 ' cboActionSelection.Enabled = False
 ' cboClassifierFitnessUpdates.Enabled = False
 ' cboDoGASub.Enabled = False
 ' cboDoASSub.Enabled = False
 ' cboClassifierFitness.SelectedItem = "Prediction Magnitude"
'how is classifer fitness determined?
 ' cboInitialPopulation.SelectedItem = "N Random Classifiers"
'how is initial population generated?"
 ' cboPopSize.SelectedItem = "Constant size of N" 'how does
population size vary
 ' cboGAScope.SelectedItem = "Panmictic"
 ' cboParentSelection.SelectedItem = "Fitness Proportional"
 ' cboClassifierDeletion.SelectedItem = "Fitness Only"
 ' cboActionSelection.SelectedItem = "Fitness Proportional"
 ' cboClassifierFitnessUpdates.SelectedItem = "Action Set
Classifiers"
 ' cboClassifierFitnessUpdates.Font = New
Font(cboClassifierFitnessUpdates.Font, FontStyle.Bold)
 ' lblFitnessUpdates.Font = New Font(lblFitnessUpdates.Font,
FontStyle.Bold)

 ' Case "LCS-6"
 ' cboClassifierFitness.Enabled = False
 ' cboInitialPopulation.Enabled = False
 ' cboPopSize.Enabled = False
 ' cboGAScope.Enabled = False
 ' cboParentSelection.Enabled = False
 ' cboClassifierDeletion.Enabled = False
 ' cboActionSelection.Enabled = False
 ' cboClassifierFitnessUpdates.Enabled = False
 ' cboDoGASub.Enabled = False
 ' cboDoASSub.Enabled = False
 ' cboClassifierFitness.SelectedItem = "Prediction Magnitude"
'how is classifer fitness determined?
 ' cboInitialPopulation.SelectedItem = "N Random Classifiers"
'how is initial population generated?"
 ' cboPopSize.SelectedItem = "Constant size of N" 'how does
population size vary
 ' cboGAScope.SelectedItem = "Panmictic"
 ' cboParentSelection.SelectedItem = "Fitness Proportional"
 ' cboClassifierDeletion.SelectedItem = "Fitness/Resource
Balance"
 ' cboClassifierDeletion.Font = New
Font(cboClassifierDeletion.Font, FontStyle.Bold)
 ' lblClassifierDeletion.Font = New
Font(lblClassifierDeletion.Font, FontStyle.Bold)
 ' cboActionSelection.SelectedItem = "Fitness Proportional"
 ' cboClassifierFitnessUpdates.SelectedItem = "Firing
Classifier"

 ' Case "LCS-7"
 ' cboClassifierFitness.Enabled = False
 ' cboInitialPopulation.Enabled = False
 ' cboPopSize.Enabled = False
 ' cboGAScope.Enabled = False
 ' cboParentSelection.Enabled = False
 ' cboClassifierDeletion.Enabled = False

270

 ' cboActionSelection.Enabled = False
 ' cboClassifierFitnessUpdates.Enabled = False
 ' cboDoGASub.Enabled = False
 ' cboDoASSub.Enabled = False
 ' cboClassifierFitness.SelectedItem = "Prediction Magnitude"
'how is classifer fitness determined?
 ' cboInitialPopulation.SelectedItem = "N Random Classifiers"
'how is initial population generated?"
 ' cboPopSize.SelectedItem = "Constant size of N" 'how does
population size vary
 ' cboGAScope.SelectedItem = "Niche"
 ' cboGAScope.Font = New Font(cboGAScope.Font, FontStyle.Bold)
 ' lblGAScope.Font = New Font(lblGAScope.Font, FontStyle.Bold)
 ' cboParentSelection.SelectedItem = "Fitness Proportional"
 ' cboClassifierDeletion.SelectedItem = "Fitness Only"
 ' cboActionSelection.SelectedItem = "Fitness Proportional"
 ' cboClassifierFitnessUpdates.SelectedItem = "Firing
Classifier"

 ' Case "LCS-8"
 ' cboClassifierFitness.Enabled = False
 ' cboInitialPopulation.Enabled = False
 ' cboPopSize.Enabled = False
 ' cboGAScope.Enabled = False
 ' cboParentSelection.Enabled = False
 ' cboClassifierDeletion.Enabled = False
 ' cboActionSelection.Enabled = False
 ' cboClassifierFitnessUpdates.Enabled = False
 ' cboDoGASub.Enabled = False
 ' cboDoASSub.Enabled = False
 ' cboClassifierFitness.SelectedItem = "Prediction Accuracy"
'how is classifer fitness determined?
 ' cboClassifierFitness.Font = New
Font(cboClassifierFitness.Font, FontStyle.Bold)
 ' lblClassifierFitness.Font = New
Font(lblClassifierFitness.Font, FontStyle.Bold)
 ' cboInitialPopulation.SelectedItem = "N Random Classifiers"
'how is initial population generated?"
 ' cboPopSize.SelectedItem = "Constant size of N" 'how does
population size vary
 ' cboGAScope.SelectedItem = "Panmictic"
 ' cboParentSelection.SelectedItem = "Fitness Proportional"
 ' cboClassifierDeletion.SelectedItem = "Fitness Only"
 ' cboActionSelection.SelectedItem = "Fitness Proportional"
 ' cboClassifierFitnessUpdates.SelectedItem = "Firing
Classifier"

 ' Case "XCS"
 ' cboClassifierFitness.Enabled = False
 ' cboInitialPopulation.Enabled = False
 ' cboPopSize.Enabled = False
 ' cboGAScope.Enabled = False
 ' cboParentSelection.Enabled = False
 ' cboClassifierDeletion.Enabled = False
 ' cboActionSelection.Enabled = False
 ' cboClassifierFitnessUpdates.Enabled = False
 ' cboDoGASub.Enabled = False

271

 ' cboDoASSub.Enabled = False
 ' cboClassifierFitness.SelectedItem = "Prediction Accuracy"
'how is classifer fitness determined?
 ' cboInitialPopulation.SelectedItem = "Through Covering" 'how
is initial population generated?"
 ' cboPopSize.SelectedItem = "Less than or equal to N" 'how
does population size vary
 ' cboGAScope.SelectedItem = "Niche"
 ' cboParentSelection.SelectedItem = "Tournament"
 ' cboClassifierDeletion.SelectedItem = "Fitness/Resource
Balance"
 ' cboActionSelection.SelectedItem = "Biased Exploration"
 ' cboClassifierFitnessUpdates.SelectedItem = "Action Set
Classifiers"

 ' Case Else
 ' cboClassifierFitness.Enabled = True
 ' cboInitialPopulation.Enabled = True
 ' cboPopSize.Enabled = True
 ' cboGAScope.Enabled = True
 ' cboParentSelection.Enabled = True
 ' cboClassifierDeletion.Enabled = True
 ' cboActionSelection.Enabled = True
 ' cboClassifierFitnessUpdates.Enabled = True
 ' cboDoGASub.Enabled = True
 ' cboDoASSub.Enabled = True

 ' End Select
 'End Sub
End Class

272

Appendix D: SAS STATISTICAL TESTS OUTPUT

1. Versus TFT
1.1. Unique Classifiers

1.1.1. Kruskal-Wallis Test that Unique is equal for all Agents

Obs AGENT1 AGENT2 ABSDIFF STDERR STDIFF PVALUE

1 LCS-0 LCS-1 82739.41 2086.96 39.646 0
2 LCS-0 LCS-2 395571.6 2086.96 189.544 0
3 LCS-0 LCS-3 73632.93 1280.08 57.522 0
4 LCS-0 LCS-4 168162.4 752.55 223.458 0
5 LCS-0 LCS-5 324145.1 826.7 392.094 0
6 LCS-0 LCS-6 155683 2086.96 74.598 0
7 LCS-0 LCS-7 92703.58 2086.96 44.42 0
8 LCS-0 LCS-8 143706.2 1139.18 126.149 0
9 LCS-0 XCS 275139.2 752.55 365.611 0

10 LCS-1 LCS-2 312832.2 2857.27 109.486 0
11 LCS-1 LCS-3 156372.3 2333.92 67 0
12 LCS-1 LCS-4 85423.04 2091.63 40.84 0
13 LCS-1 LCS-5 241405.7 2119.44 113.901 0
14 LCS-1 LCS-6 72943.62 2857.27 25.529 0
15 LCS-1 LCS-7 175443 2857.27 61.402 0
16 LCS-1 LCS-8 226445.6 2259.72 100.21 0
17 LCS-1 XCS 357878.6 2091.63 171.1 0
18 LCS-2 LCS-3 469204.5 2333.92 201.037 0
19 LCS-2 LCS-4 227409.2 2091.63 108.723 0
20 LCS-2 LCS-5 71426.53 2119.44 33.701 0
21 LCS-2 LCS-6 239888.6 2857.27 83.957 0
22 LCS-2 LCS-7 488275.2 2857.27 170.889 0
23 LCS-2 LCS-8 539277.8 2259.72 238.648 0
24 LCS-2 XCS 670710.8 2091.63 320.664 0
25 LCS-3 LCS-4 241795.4 1287.68 187.776 0
26 LCS-3 LCS-5 397778 1332.38 298.548 0
27 LCS-3 LCS-6 229316 2333.92 98.253 0
28 LCS-3 LCS-7 19070.65 2333.92 8.171 4.44E-16
29 LCS-3 LCS-8 70073.26 1545.81 45.331 0
30 LCS-3 XCS 201506.2 1287.68 156.488 0
31 LCS-4 LCS-5 155982.6 838.43 186.042 0
32 LCS-4 LCS-6 12479.42 2091.63 5.966 2.43E-09
33 LCS-4 LCS-7 260866 2091.63 124.719 0
34 LCS-4 LCS-8 311868.6 1147.71 271.73 0
35 LCS-4 XCS 443301.6 765.41 579.171 0
36 LCS-5 LCS-6 168462.1 2119.44 79.484 0
37 LCS-5 LCS-7 416848.7 2119.44 196.679 0
38 LCS-5 LCS-8 467851.3 1197.65 390.642 0
39 LCS-5 XCS 599284.2 838.43 714.772 0
40 LCS-6 LCS-7 248386.6 2857.27 86.931 0
41 LCS-6 LCS-8 299389.2 2259.72 132.49 0
42 LCS-6 XCS 430822.2 2091.63 205.974 0

273

Obs AGENT1 AGENT2 ABSDIFF STDERR STDIFF PVALUE
43 LCS-7 LCS-8 51002.61 2259.72 22.57 0
44 LCS-7 XCS 182435.6 2091.63 87.222 0
45 LCS-8 XCS 131433 1147.71 114.517 0

1.1.2. GLM Bonferroni Test that Unique is equal for all Agents

Agent Comparison

Difference
Between
Means

Simultaneous
95%

Confidence
Intervals

Significance
(5% Level)

LCS-2 - LCS-5 14.17 13.99 14.35 ***
LCS-2 - LCS-4 29.73 29.55 29.91 ***
LCS-2 - LCS-6 30.07 29.83 30.32 ***
LCS-2 - LCS-1 34.95 34.71 35.20 ***
LCS-2 - LCS-0 40.89 40.72 41.07 ***
LCS-2 - LCS-3 46.17 45.97 46.37 ***
LCS-2 - LCS-7 47.52 47.27 47.76 ***
LCS-2 - LCS-8 51.14 50.95 51.33 ***
LCS-2 - XCS 59.56 59.38 59.74 ***
LCS-5 - LCS-2 -14.17 -14.35 -13.99 ***
LCS-5 - LCS-4 15.56 15.49 15.63 ***
LCS-5 - LCS-6 15.90 15.72 16.08 ***
LCS-5 - LCS-1 20.78 20.60 20.96 ***
LCS-5 - LCS-0 26.72 26.65 26.79 ***
LCS-5 - LCS-3 32.00 31.88 32.11 ***
LCS-5 - LCS-7 33.34 33.16 33.53 ***
LCS-5 - LCS-8 36.97 36.87 37.07 ***
LCS-5 - XCS 45.38 45.31 45.46 ***
LCS-4 - LCS-2 -29.73 -29.91 -29.55 ***
LCS-4 - LCS-5 -15.56 -15.63 -15.49 ***
LCS-4 - LCS-6 0.34 0.16 0.52 ***
LCS-4 - LCS-1 5.22 5.04 5.40 ***
LCS-4 - LCS-0 11.16 11.10 11.23 ***
LCS-4 - LCS-3 16.44 16.33 16.55 ***
LCS-4 - LCS-7 17.79 17.61 17.97 ***
LCS-4 - LCS-8 21.41 21.31 21.51 ***
LCS-4 - XCS 29.83 29.76 29.89 ***
LCS-6 - LCS-2 -30.07 -30.32 -29.83 ***
LCS-6 - LCS-5 -15.90 -16.08 -15.72 ***
LCS-6 - LCS-4 -0.34 -0.52 -0.16 ***
LCS-6 - LCS-1 4.88 4.64 5.12 ***
LCS-6 - LCS-0 10.82 10.64 11.00 ***
LCS-6 - LCS-3 16.10 15.90 16.30 ***
LCS-6 - LCS-7 17.45 17.20 17.69 ***
LCS-6 - LCS-8 21.07 20.88 21.26 ***
LCS-6 - XCS 29.49 29.31 29.66 ***
LCS-1 - LCS-2 -34.95 -35.20 -34.71 ***
LCS-1 - LCS-5 -20.78 -20.96 -20.60 ***
LCS-1 - LCS-4 -5.22 -5.40 -5.04 ***
LCS-1 - LCS-6 -4.88 -5.12 -4.64 ***

274

Agent Comparison

Difference
Between
Means

Simultaneous
95%

Confidence
Intervals

Significance
(5% Level)

LCS-1 - LCS-0 5.94 5.76 6.12 ***
LCS-1 - LCS-3 11.22 11.02 11.42 ***
LCS-1 - LCS-7 12.57 12.32 12.81 ***
LCS-1 - LCS-8 16.19 16.00 16.38 ***
LCS-1 - XCS 24.61 24.43 24.78 ***
LCS-0 - LCS-2 -40.89 -41.07 -40.72 ***
LCS-0 - LCS-5 -26.72 -26.79 -26.65 ***
LCS-0 - LCS-4 -11.16 -11.23 -11.10 ***
LCS-0 - LCS-6 -10.82 -11.00 -10.64 ***
LCS-0 - LCS-1 -5.94 -6.12 -5.76 ***
LCS-0 - LCS-3 5.28 5.17 5.39 ***
LCS-0 - LCS-7 6.62 6.45 6.80 ***
LCS-0 - LCS-8 10.25 10.15 10.34 ***
LCS-0 - XCS 18.66 18.60 18.73 ***
LCS-3 - LCS-2 -46.17 -46.37 -45.97 ***
LCS-3 - LCS-5 -32.00 -32.11 -31.88 ***
LCS-3 - LCS-4 -16.44 -16.55 -16.33 ***
LCS-3 - LCS-6 -16.10 -16.30 -15.90 ***
LCS-3 - LCS-1 -11.22 -11.42 -11.02 ***
LCS-3 - LCS-0 -5.28 -5.39 -5.17 ***
LCS-3 - LCS-7 1.35 1.15 1.55 ***
LCS-3 - LCS-8 4.97 4.84 5.10 ***
LCS-3 - XCS 13.39 13.28 13.50 ***
LCS-7 - LCS-2 -47.52 -47.76 -47.27 ***
LCS-7 - LCS-5 -33.34 -33.53 -33.16 ***
LCS-7 - LCS-4 -17.79 -17.97 -17.61 ***
LCS-7 - LCS-6 -17.45 -17.69 -17.20 ***
LCS-7 - LCS-1 -12.57 -12.81 -12.32 ***
LCS-7 - LCS-0 -6.62 -6.80 -6.45 ***
LCS-7 - LCS-3 -1.35 -1.55 -1.15 ***
LCS-7 - LCS-8 3.62 3.43 3.82 ***
LCS-7 - XCS 12.04 11.86 12.22 ***
LCS-8 - LCS-2 -51.14 -51.33 -50.95 ***
LCS-8 - LCS-5 -36.97 -37.07 -36.87 ***
LCS-8 - LCS-4 -21.41 -21.51 -21.31 ***
LCS-8 - LCS-6 -21.07 -21.26 -20.88 ***
LCS-8 - LCS-1 -16.19 -16.38 -16.00 ***
LCS-8 - LCS-0 -10.25 -10.34 -10.15 ***

1.2. % Correct

1.2.1. Kruskal-Wallis Test that % Correct is equal for all Agents

Obs AGENT1 AGENT2 ABSDIFF STDERR STDIFF PVALUE

1 LCS-0 LCS-1 6508.97 2198.6 2.961 0.00307
2 LCS-0 LCS-2 526743.8 2092.25 251.76 0

275

Obs AGENT1 AGENT2 ABSDIFF STDERR STDIFF PVALUE
3 LCS-0 LCS-3 111591.82 1813.35 61.539 0
4 LCS-0 LCS-4 248040.83 1786.61 138.833 0
5 LCS-0 LCS-5 142522.01 1901.75 74.943 0
6 LCS-0 LCS-6 177805.11 1995.47 89.104 0
7 LCS-0 LCS-7 2840.17 2520.72 1.127 0.25986
8 LCS-0 LCS-8 698728.2 1786.22 391.177 0
9 LCS-0 XCS 277265.83 1786.61 155.191 0

10 LCS-1 LCS-2 520234.83 2101.04 247.608 0
11 LCS-1 LCS-3 118100.79 1823.49 64.766 0
12 LCS-1 LCS-4 254549.8 1796.9 141.661 0
13 LCS-1 LCS-5 136013.04 1911.41 71.158 0
14 LCS-1 LCS-6 171296.14 2004.69 85.448 0
15 LCS-1 LCS-7 9349.15 2528.03 3.698 0.00022
16 LCS-1 LCS-8 692219.23 1796.51 385.313 0
17 LCS-1 XCS 283774.81 1796.9 157.925 0
18 LCS-2 LCS-3 638335.62 1693.74 376.879 0
19 LCS-2 LCS-4 774784.63 1665.08 465.313 0
20 LCS-2 LCS-5 384221.79 1788.06 214.882 0
21 LCS-2 LCS-6 348938.69 1887.44 184.874 0
22 LCS-2 LCS-7 529583.98 2436.1 217.39 0
23 LCS-2 LCS-8 171984.4 1664.67 103.315 0
24 LCS-2 XCS 804009.64 1665.08 482.864 0
25 LCS-3 LCS-4 136449.01 1297.4 105.171 0
26 LCS-3 LCS-5 254113.83 1451.86 175.026 0
27 LCS-3 LCS-6 289396.93 1572.63 184.021 0
28 LCS-3 LCS-7 108751.65 2201.21 49.405 0
29 LCS-3 LCS-8 810320.02 1296.86 624.831 0
30 LCS-3 XCS 165674.01 1297.4 127.697 0
31 LCS-4 LCS-5 390562.84 1418.32 275.37 0
32 LCS-4 LCS-6 425845.94 1541.72 276.215 0
33 LCS-4 LCS-7 245200.65 2179.23 112.517 0
34 LCS-4 LCS-8 946769.03 1259.2 751.88 0
35 LCS-4 XCS 29225.01 1259.75 23.199 0
36 LCS-5 LCS-6 35283.1 1673.79 21.08 0
37 LCS-5 LCS-7 145362.18 2274.58 63.907 0
38 LCS-5 LCS-8 556206.19 1417.83 392.293 0
39 LCS-5 XCS 419787.85 1418.32 295.975 0
40 LCS-6 LCS-7 180645.28 2353.5 76.756 0
41 LCS-6 LCS-8 520923.09 1541.27 337.983 0
42 LCS-6 XCS 455070.95 1541.72 295.171 0
43 LCS-7 LCS-8 701568.37 2178.91 321.981 0
44 LCS-7 XCS 274425.66 2179.23 125.928 0
45 LCS-8 XCS 975994.03 1259.2 775.089 0

1.2.2. GLM Bonferroni Test that % Correct is equal for all Agents

Agent
Comparison

Difference
Between
Means

Simultaneous
95%

Confidence
Intervals

Significance
(5% Level)

276

Agent
Comparison

Difference
Between
Means

Simultaneous
95%

Confidence
Intervals

Significance
(5% Level)

XCS - LCS-4 0.27 0.18 0.35 ***
XCS - LCS-0 1.59 1.47 1.71 ***
XCS - LCS-7 1.63 1.48 1.77 ***
XCS - LCS-3 1.70 1.61 1.78 ***
XCS - LCS-1 1.97 1.85 2.09 ***
XCS - LCS-5 3.12 3.03 3.22 ***
XCS - LCS-6 3.59 3.49 3.69 ***
XCS - LCS-2 15.25 15.14 15.36 ***
XCS - LCS-8 49.51 49.42 49.59 ***
LCS-4 - XCS -0.27 -0.35 -0.18 ***
LCS-4 - LCS-0 1.33 1.21 1.45 ***
LCS-4 - LCS-7 1.36 1.21 1.51 ***
LCS-4 - LCS-3 1.43 1.34 1.52 ***
LCS-4 - LCS-1 1.70 1.58 1.83 ***
LCS-4 - LCS-5 2.85 2.76 2.95 ***
LCS-4 - LCS-6 3.32 3.22 3.43 ***
LCS-4 - LCS-2 14.98 14.87 15.09 ***
LCS-4 - LCS-8 49.24 49.16 49.33 ***
LCS-0 - XCS -1.59 -1.71 -1.47 ***
LCS-0 - LCS-4 -1.33 -1.45 -1.21 ***
LCS-0 - LCS-7 0.03 -0.14 0.20
LCS-0 - LCS-3 0.10 -0.02 0.23
LCS-0 - LCS-1 0.38 0.23 0.53 ***
LCS-0 - LCS-5 1.53 1.40 1.66 ***
LCS-0 - LCS-6 2.00 1.86 2.13 ***
LCS-0 - LCS-2 13.66 13.52 13.80 ***
LCS-0 - LCS-8 47.92 47.79 48.04 ***
LCS-7 - XCS -1.63 -1.77 -1.48 ***
LCS-7 - LCS-4 -1.36 -1.51 -1.21 ***
LCS-7 - LCS-0 -0.03 -0.20 0.14
LCS-7 - LCS-3 0.07 -0.08 0.22
LCS-7 - LCS-1 0.35 0.17 0.52 ***
LCS-7 - LCS-5 1.50 1.34 1.65 ***
LCS-7 - LCS-6 1.97 1.81 2.12 ***
LCS-7 - LCS-2 13.62 13.46 13.79 ***
LCS-7 - LCS-8 47.88 47.73 48.03 ***
LCS-3 - XCS -1.70 -1.78 -1.61 ***
LCS-3 - LCS-4 -1.43 -1.52 -1.34 ***
LCS-3 - LCS-0 -0.10 -0.23 0.02
LCS-3 - LCS-7 -0.07 -0.22 0.08
LCS-3 - LCS-1 0.27 0.15 0.40 ***
LCS-3 - LCS-5 1.42 1.33 1.52 ***
LCS-3 - LCS-6 1.89 1.79 2.00 ***
LCS-3 - LCS-2 13.55 13.44 13.67 ***
LCS-3 - LCS-8 47.81 47.72 47.90 ***
LCS-1 - XCS -1.97 -2.09 -1.85 ***
LCS-1 - LCS-4 -1.70 -1.83 -1.58 ***

277

Agent
Comparison

Difference
Between
Means

Simultaneous
95%

Confidence
Intervals

Significance
(5% Level)

LCS-1 - LCS-0 -0.38 -0.53 -0.23 ***
LCS-1 - LCS-7 -0.35 -0.52 -0.17 ***
LCS-1 - LCS-3 -0.27 -0.40 -0.15 ***
LCS-1 - LCS-5 1.15 1.02 1.28 ***
LCS-1 - LCS-6 1.62 1.48 1.76 ***
LCS-1 - LCS-2 13.28 13.14 13.42 ***
LCS-1 - LCS-8 47.54 47.42 47.66 ***
LCS-5 - XCS -3.12 -3.22 -3.03 ***
LCS-5 - LCS-4 -2.85 -2.95 -2.76 ***
LCS-5 - LCS-0 -1.53 -1.66 -1.40 ***
LCS-5 - LCS-7 -1.50 -1.65 -1.34 ***
LCS-5 - LCS-3 -1.42 -1.52 -1.33 ***
LCS-5 - LCS-1 -1.15 -1.28 -1.02 ***
LCS-5 - LCS-6 0.47 0.36 0.58 ***
LCS-5 - LCS-2 12.13 12.01 12.25 ***
LCS-5 - LCS-8 46.39 46.29 46.48 ***
LCS-6 - XCS -3.59 -3.69 -3.49 ***
LCS-6 - LCS-4 -3.32 -3.43 -3.22 ***
LCS-6 - LCS-0 -2.00 -2.13 -1.86 ***
LCS-6 - LCS-7 -1.97 -2.12 -1.81 ***
LCS-6 - LCS-3 -1.89 -2.00 -1.79 ***
LCS-6 - LCS-1 -1.62 -1.76 -1.48 ***
LCS-6 - LCS-5 -0.47 -0.58 -0.36 ***
LCS-6 - LCS-2 11.66 11.53 11.79 ***
LCS-6 - LCS-8 45.92 45.81 46.02 ***
LCS-2 - XCS -15.25 -15.36 -15.14 ***
LCS-2 - LCS-4 -14.98 -15.09 -14.87 ***
LCS-2 - LCS-0 -13.66 -13.80 -13.52 ***
LCS-2 - LCS-7 -13.62 -13.79 -13.46 ***
LCS-2 - LCS-3 -13.55 -13.67 -13.44 ***
LCS-2 - LCS-1 -13.28 -13.42 -13.14 ***

1.3. System Error

1.3.1. Kruskal-Wallis Test that System Error is equal for all Agents

Obs AGENT1 AGENT2 ABSDIFF STDERR STDIFF PVALUE

1 LCS-0 LCS-1 13322.06 2060.95 6.464 0
2 LCS-0 LCS-2 495061.19 1888.93 262.085 0
3 LCS-0 LCS-3 208796.39 1764.9 118.305 0
4 LCS-0 LCS-4 27362.58 1748.99 15.645 0
5 LCS-0 LCS-5 101648.58 1843.41 55.142 0
6 LCS-0 LCS-6 175417.88 1918.68 91.426 0
7 LCS-0 LCS-7 9070.72 2257.47 4.018 0.000059
8 LCS-0 LCS-8 578507.06 3564.04 162.318 0
9 LCS-0 XCS 319760.82 1774.32 180.216 0

278

Obs AGENT1 AGENT2 ABSDIFF STDERR STDIFF PVALUE
10 LCS-1 LCS-2 508383.25 1649.07 308.285 0
11 LCS-1 LCS-3 195474.33 1505.4 129.849 0
12 LCS-1 LCS-4 40684.64 1486.71 27.365 0
13 LCS-1 LCS-5 114970.64 1596.71 72.005 0
14 LCS-1 LCS-6 188739.94 1683.06 112.141 0
15 LCS-1 LCS-7 4251.34 2060.95 2.063 0.039131
16 LCS-1 LCS-8 591829.12 3442.92 171.897 0
17 LCS-1 XCS 306438.76 1516.43 202.08 0
18 LCS-2 LCS-3 703857.58 1259.68 558.761 0
19 LCS-2 LCS-4 467698.61 1237.29 378.002 0
20 LCS-2 LCS-5 393412.6 1367.5 287.687 0
21 LCS-2 LCS-6 319643.3 1467.4 217.83 0
22 LCS-2 LCS-7 504131.91 1888.93 266.887 0
23 LCS-2 LCS-8 83445.87 3342.79 24.963 0
24 LCS-2 XCS 814822.01 1272.84 640.162 0
25 LCS-3 LCS-4 236158.97 1038.11 227.488 0
26 LCS-3 LCS-5 310444.97 1190.32 260.808 0
27 LCS-3 LCS-6 384214.27 1303.86 294.674 0
28 LCS-3 LCS-7 199725.67 1764.9 113.166 0
29 LCS-3 LCS-8 787303.45 3274.3 240.449 0
30 LCS-3 XCS 110964.43 1080.24 102.722 0
31 LCS-4 LCS-5 74286.01 1166.6 63.677 0
32 LCS-4 LCS-6 148055.3 1282.25 115.466 0
33 LCS-4 LCS-7 36433.3 1748.99 20.831 0
34 LCS-4 LCS-8 551144.48 3265.76 168.765 0
35 LCS-4 XCS 347123.4 1054.05 329.325 0
36 LCS-5 LCS-6 73769.3 1408.31 52.382 0
37 LCS-5 LCS-7 110719.3 1843.41 60.062 0
38 LCS-5 LCS-8 476858.48 3317.28 143.75 0
39 LCS-5 XCS 421409.41 1204.24 349.939 0
40 LCS-6 LCS-7 184488.6 1918.68 96.154 0
41 LCS-6 LCS-8 403089.18 3359.69 119.978 0
42 LCS-6 XCS 495178.71 1316.58 376.11 0
43 LCS-7 LCS-8 587577.78 3564.04 164.863 0
44 LCS-7 XCS 310690.1 1774.32 175.104 0
45 LCS-8 XCS 898267.88 3279.39 273.913 0

1.3.2. GLM Bonferroni Test that System Error is equal for all Agents

Agent
Comparison

Difference
Between
Means

Simultaneous 95%
Confidence

Intervals

Significan
ce (5%
Level)

LCS-8 - LCS-2 0.8277031 0.82539 0.83 ***
LCS-8 - LCS-6 0.9758132 0.97349 0.9781 ***
LCS-8 - LCS-5 0.9826385 0.98034 0.9849 ***
LCS-8 - LCS-1 1.0017854 0.9994 1.0042 ***
LCS-8 - LCS-7 1.0020907 0.99962 1.0046 ***
LCS-8 - LCS-0 1.0025392 1.00007 1.005 ***
LCS-8 - LCS-4 1.0050453 1.00279 1.0073 ***

279

LCS-8 - XCS 1.0119981 1.00973 1.0143 ***
LCS-8 - LCS-3 1.0120568 1.00979 1.0143 ***
LCS-2 - LCS-8 -0.8277031 -0.83 -0.8254 ***
LCS-2 - LCS-6 0.1481101 0.14709 0.1491 ***
LCS-2 - LCS-5 0.1549354 0.15399 0.1559 ***
LCS-2 - LCS-1 0.1740824 0.17294 0.1752 ***
LCS-2 - LCS-7 0.1743877 0.17308 0.1757 ***
LCS-2 - LCS-0 0.1748362 0.17353 0.1761 ***
LCS-2 - LCS-4 0.1773422 0.17649 0.1782 ***
LCS-2 - XCS 0.184295 0.18341 0.1852 ***
LCS-2 - LCS-3 0.1843537 0.18348 0.1852 ***
LCS-6 - LCS-8 -0.9758132 -0.9781 -0.9735 ***
LCS-6 - LCS-2 -0.1481101 -0.1491 -0.1471 ***
LCS-6 - LCS-5 0.0068253 0.00585 0.0078 ***
LCS-6 - LCS-1 0.0259723 0.02481 0.0271 ***
LCS-6 - LCS-7 0.0262776 0.02495 0.0276 ***
LCS-6 - LCS-0 0.0267261 0.0254 0.0281 ***
LCS-6 - LCS-4 0.0292321 0.02834 0.0301 ***
LCS-6 - XCS 0.0361849 0.03527 0.0371 ***
LCS-6 - LCS-3 0.0362436 0.03534 0.0371 ***
LCS-5 - LCS-8 -0.9826385 -0.9849 -0.9803 ***
LCS-5 - LCS-2 -0.1549354 -0.1559 -0.154 ***
LCS-5 - LCS-6 -0.0068253 -0.0078 -0.0059 ***
LCS-5 - LCS-1 0.019147 0.01804 0.0203 ***
LCS-5 - LCS-7 0.0194523 0.01818 0.0207 ***
LCS-5 - LCS-0 0.0199008 0.01863 0.0212 ***
LCS-5 - LCS-4 0.0224068 0.0216 0.0232 ***
LCS-5 - XCS 0.0293596 0.02853 0.0302 ***
LCS-5 - LCS-3 0.0294183 0.02859 0.0302 ***
LCS-1 - LCS-8 -1.0017854 -1.0042 -0.9994 ***
LCS-1 - LCS-2 -0.1740824 -0.1752 -0.1729 ***
LCS-1 - LCS-6 -0.0259723 -0.0271 -0.0248 ***
LCS-1 - LCS-5 -0.019147 -0.0203 -0.018 ***
LCS-1 - LCS-7 0.0003053 -0.0011 0.0017
LCS-1 - LCS-0 0.0007538 -0.0007 0.0022
LCS-1 - LCS-4 0.0032599 0.00223 0.0043 ***
LCS-1 - XCS 0.0102126 0.00916 0.0113 ***
LCS-1 - LCS-3 0.0102713 0.00923 0.0113 ***
LCS-7 - LCS-8 -1.0020907 -1.0046 -0.9996 ***
LCS-7 - LCS-2 -0.1743877 -0.1757 -0.1731 ***
LCS-7 - LCS-6 -0.0262776 -0.0276 -0.0249 ***
LCS-7 - LCS-5 -0.0194523 -0.0207 -0.0182 ***
LCS-7 - LCS-1 -0.0003053 -0.0017 0.0011
LCS-7 - LCS-0 0.0004485 -0.0011 0.002
LCS-7 - LCS-4 0.0029546 0.00174 0.0042 ***
LCS-7 - XCS 0.0099073 0.00868 0.0111 ***
LCS-7 - LCS-3 0.009966 0.00874 0.0112 ***
LCS-0 - LCS-8 -1.0025392 -1.005 -1.0001 ***
LCS-0 - LCS-2 -0.1748362 -0.1761 -0.1735 ***
LCS-0 - LCS-6 -0.0267261 -0.0281 -0.0254 ***

280

LCS-0 - LCS-5 -0.0199008 -0.0212 -0.0186 ***
LCS-0 - LCS-1 -0.0007538 -0.0022 0.0007
LCS-0 - LCS-7 -0.0004485 -0.002 0.0011
LCS-0 - LCS-4 0.002506 0.0013 0.0037 ***
LCS-0 - XCS 0.0094588 0.00823 0.0107 ***
LCS-0 - LCS-3 0.0095175 0.0083 0.0107 ***
LCS-4 - LCS-8 -1.0050453 -1.0073 -1.0028 ***
LCS-4 - LCS-2 -0.1773422 -0.1782 -0.1765 ***
LCS-4 - LCS-6 -0.0292321 -0.0301 -0.0283 ***
LCS-4 - LCS-5 -0.0224068 -0.0232 -0.0216 ***
LCS-4 - LCS-1 -0.0032599 -0.0043 -0.0022 ***
LCS-4 - LCS-7 -0.0029546 -0.0042 -0.0017 ***
LCS-4 - LCS-0 -0.002506 -0.0037 -0.0013 ***
LCS-4 - XCS 0.0069528 0.00622 0.0077 ***
LCS-4 - LCS-3 0.0070115 0.00629 0.0077 ***
XCS - LCS-8 -1.0119981 -1.0143 -1.0097 ***
XCS - LCS-2 -0.184295 -0.1852 -0.1834 ***
XCS - LCS-6 -0.0361849 -0.0371 -0.0353 ***
XCS - LCS-5 -0.0293596 -0.0302 -0.0285 ***
XCS - LCS-1 -0.0102126 -0.0113 -0.0092 ***
XCS - LCS-7 -0.0099073 -0.0111 -0.0087 ***

1.4. % [O]

1.4.1. Kruskal-Wallis Test that % [O] is equal for all Agents

Obs AGENT1 AGENT2 ABSDIFF STDERR STDIFF PVALUE

1 LCS-0 LCS-1 73410.92 1707.58 42.991 0
2 LCS-0 LCS-2 272780.66 2291.99 119.015 0
3 LCS-0 LCS-3 98834.83 1796.73 55.008 0
4 LCS-0 LCS-4 514136.85 1653.14 311.005 0
5 LCS-0 LCS-5 3930.37 1775.71 2.213 0.02687
6 LCS-0 LCS-6 21342.99 1678.91 12.712 0
7 LCS-0 LCS-7 73055.07 2150.25 33.975 0
8 LCS-0 LCS-8 150904.57 2150.25 70.18 0
9 LCS-0 XCS 538457.45 1700.12 316.717 0

10 LCS-1 LCS-2 346191.58 1991.34 173.849 0
11 LCS-1 LCS-3 25423.91 1392.99 18.251 0
12 LCS-1 LCS-4 440725.93 1202.12 366.624 0
13 LCS-1 LCS-5 69480.55 1365.78 50.872 0
14 LCS-1 LCS-6 52067.93 1237.31 42.081 0
15 LCS-1 LCS-7 355.85 1826.41 0.195 0.84552
16 LCS-1 LCS-8 77493.65 1826.41 42.429 0
17 LCS-1 XCS 611868.37 1265.94 483.33 0
18 LCS-2 LCS-3 371615.49 2068.29 179.673 0
19 LCS-2 LCS-4 786917.5 1944.86 404.614 0
20 LCS-2 LCS-5 276711.03 2050.06 134.977 0
21 LCS-2 LCS-6 294123.65 1966.81 149.544 0
22 LCS-2 LCS-7 345835.72 2381.84 145.197 0
23 LCS-2 LCS-8 423685.23 2381.84 177.881 0

281

Obs AGENT1 AGENT2 ABSDIFF STDERR STDIFF PVALUE
24 LCS-2 XCS 265676.79 1984.94 133.846 0
25 LCS-3 LCS-4 415302.01 1325.7 313.27 0
26 LCS-3 LCS-5 94904.46 1475.72 64.311 0
27 LCS-3 LCS-6 77491.84 1357.69 57.076 0
28 LCS-3 LCS-7 25779.77 1910.02 13.497 0
29 LCS-3 LCS-8 52069.74 1910.02 27.261 0
30 LCS-3 XCS 637292.28 1383.84 460.526 0
31 LCS-4 LCS-5 510206.47 1297.08 393.35 0
32 LCS-4 LCS-6 492793.85 1161.03 424.445 0
33 LCS-4 LCS-7 441081.78 1775.62 248.41 0
34 LCS-4 LCS-8 363232.28 1775.62 204.566 0
35 LCS-4 XCS 1052594.3 1191.5 883.423 0
36 LCS-5 LCS-6 17412.62 1329.76 13.095 0
37 LCS-5 LCS-7 69124.69 1890.27 36.569 0
38 LCS-5 LCS-8 146974.2 1890.27 77.753 0
39 LCS-5 XCS 542387.82 1356.44 399.86 0
40 LCS-6 LCS-7 51712.07 1799.63 28.735 0
41 LCS-6 LCS-8 129561.58 1799.63 71.993 0
42 LCS-6 XCS 559800.44 1226.99 456.237 0
43 LCS-7 LCS-8 77849.5 2245.78 34.665 0
44 LCS-7 XCS 611512.51 1819.44 336.1 0
45 LCS-8 XCS 689362.02 1819.44 378.888 0

1.4.2. GLM Bonferroni Test that % [O] is equal for all Agents

Agent
Comparison

Difference
Between
Means

Simultaneous
95%

Confidence
Intervals

Significance
(5% Level)

XCS - LCS-2 52.22 52.02 52.43 ***
XCS - LCS-5 69.49 69.35 69.63 ***
XCS - LCS-0 69.53 69.35 69.70 ***
XCS - LCS-6 70.36 70.24 70.49 ***
XCS - LCS-1 72.94 72.81 73.07 ***
XCS - LCS-7 73.48 73.29 73.66 ***
XCS - LCS-3 74.99 74.85 75.13 ***
XCS - LCS-8 77.01 76.82 77.20 ***
XCS - LCS-4 96.70 96.58 96.82 ***
LCS-2 - XCS -52.22 -52.43 -52.02 ***
LCS-2 - LCS-5 17.27 17.06 17.48 ***
LCS-2 - LCS-0 17.31 17.07 17.54 ***
LCS-2 - LCS-6 18.14 17.94 18.34 ***
LCS-2 - LCS-1 20.72 20.51 20.92 ***
LCS-2 - LCS-7 21.25 21.01 21.50 ***
LCS-2 - LCS-3 22.77 22.56 22.98 ***
LCS-2 - LCS-8 24.79 24.54 25.03 ***
LCS-2 - LCS-4 44.48 44.28 44.68 ***
LCS-5 - XCS -69.49 -69.63 -69.35 ***
LCS-5 - LCS-2 -17.27 -17.48 -17.06 ***
LCS-5 - LCS-0 0.04 -0.15 0.22

282

Agent
Comparison

Difference
Between
Means

Simultaneous
95%

Confidence
Intervals

Significance
(5% Level)

LCS-5 - LCS-6 0.87 0.74 1.01 ***
LCS-5 - LCS-1 3.45 3.31 3.59 ***
LCS-5 - LCS-7 3.98 3.79 4.18 ***
LCS-5 - LCS-3 5.50 5.35 5.65 ***
LCS-5 - LCS-8 7.52 7.32 7.71 ***
LCS-5 - LCS-4 27.21 27.08 27.34 ***
LCS-0 - XCS -69.53 -69.70 -69.35 ***
LCS-0 - LCS-2 -17.31 -17.54 -17.07 ***
LCS-0 - LCS-5 -0.04 -0.22 0.15
LCS-0 - LCS-6 0.83 0.66 1.01 ***
LCS-0 - LCS-1 3.41 3.23 3.58 ***
LCS-0 - LCS-7 3.95 3.72 4.17 ***
LCS-0 - LCS-3 5.46 5.28 5.65 ***
LCS-0 - LCS-8 7.48 7.26 7.70 ***
LCS-0 - LCS-4 27.17 27.00 27.34 ***
LCS-6 - XCS -70.36 -70.49 -70.24 ***
LCS-6 - LCS-2 -18.14 -18.34 -17.94 ***
LCS-6 - LCS-5 -0.87 -1.01 -0.74 ***
LCS-6 - LCS-0 -0.83 -1.01 -0.66 ***
LCS-6 - LCS-1 2.57 2.45 2.70 ***
LCS-6 - LCS-7 3.11 2.93 3.30 ***
LCS-6 - LCS-3 4.63 4.49 4.77 ***
LCS-6 - LCS-8 6.65 6.46 6.83 ***
LCS-6 - LCS-4 26.34 26.22 26.46 ***
LCS-1 - XCS -72.94 -73.07 -72.81 ***
LCS-1 - LCS-2 -20.72 -20.92 -20.51 ***
LCS-1 - LCS-5 -3.45 -3.59 -3.31 ***
LCS-1 - LCS-0 -3.41 -3.58 -3.23 ***
LCS-1 - LCS-6 -2.57 -2.70 -2.45 ***
LCS-1 - LCS-7 0.54 0.35 0.73 ***
LCS-1 - LCS-3 2.05 1.91 2.20 ***
LCS-1 - LCS-8 4.07 3.89 4.26 ***
LCS-1 - LCS-4 23.76 23.64 23.89 ***
LCS-7 - XCS -73.48 -73.66 -73.29 ***
LCS-7 - LCS-2 -21.25 -21.50 -21.01 ***
LCS-7 - LCS-5 -3.98 -4.18 -3.79 ***
LCS-7 - LCS-0 -3.95 -4.17 -3.72 ***
LCS-7 - LCS-6 -3.11 -3.30 -2.93 ***
LCS-7 - LCS-1 -0.54 -0.73 -0.35 ***
LCS-7 - LCS-3 1.52 1.32 1.71 ***
LCS-7 - LCS-8 3.54 3.30 3.77 ***
LCS-7 - LCS-4 23.23 23.04 23.41 ***
LCS-3 - XCS -74.99 -75.13 -74.85 ***
LCS-3 - LCS-2 -22.77 -22.98 -22.56 ***
LCS-3 - LCS-5 -5.50 -5.65 -5.35 ***
LCS-3 - LCS-0 -5.46 -5.65 -5.28 ***
LCS-3 - LCS-6 -4.63 -4.77 -4.49 ***

283

Agent
Comparison

Difference
Between
Means

Simultaneous
95%

Confidence
Intervals

Significance
(5% Level)

LCS-3 - LCS-1 -2.05 -2.20 -1.91 ***
LCS-3 - LCS-7 -1.52 -1.71 -1.32 ***
LCS-3 - LCS-8 2.02 1.82 2.22 ***
LCS-3 - LCS-4 21.71 21.57 21.85 ***
LCS-8 - XCS -77.01 -77.20 -76.82 ***
LCS-8 - LCS-2 -24.79 -25.03 -24.54 ***
LCS-8 - LCS-5 -7.52 -7.71 -7.32 ***
LCS-8 - LCS-0 -7.48 -7.70 -7.26 ***
LCS-8 - LCS-6 -6.65 -6.83 -6.46 ***
LCS-8 - LCS-1 -4.07 -4.26 -3.89 ***

2. Versus RAND

2.1. Unique Classifiers
2.1.1. Kruskal-Wallis Test that Unique is equal for all Agents

Obs AGENT1 AGENT2 ABSDIFF STDERR PVALUE STDIFF

1 LCS-0 LCS-1 72441.31 1439.91 50.31 0
2 LCS-0 LCS-2 593093.35 1101.88 538.255 0
3 LCS-0 LCS-3 26549.43 1184.45 22.415 0
4 LCS-0 LCS-4 754815.57 1143.29 660.216 0
5 LCS-0 LCS-5 499579.31 2227.18 224.31 0
6 LCS-0 LCS-6 224746.27 1371.81 163.833 0
7 LCS-0 LCS-7 68670.05 1955.53 35.116 0
8 LCS-0 LCS-8 40028.29 1656.26 24.168 0
9 LCS-0 XCS 374784.18 1134.58 330.328 0

10 LCS-1 LCS-2 520652.04 1350.4 385.553 0
11 LCS-1 LCS-3 98990.75 1418.58 69.782 0
12 LCS-1 LCS-4 682374.26 1384.4 492.904 0
13 LCS-1 LCS-5 427138 2360.04 180.988 0
14 LCS-1 LCS-6 152304.95 1578.38 96.494 0
15 LCS-1 LCS-7 141111.37 2105.6 67.017 0
16 LCS-1 LCS-8 112469.6 1831.02 61.424 0
17 LCS-1 XCS 302342.86 1377.22 219.532 0
18 LCS-2 LCS-3 619642.79 1073.86 577.025 0
19 LCS-2 LCS-4 161722.22 1028.28 157.275 0
20 LCS-2 LCS-5 93514.04 2170.39 43.086 0
21 LCS-2 LCS-6 368347.09 1277.54 288.326 0
22 LCS-2 LCS-7 661763.41 1890.6 350.029 0
23 LCS-2 LCS-8 633121.64 1579.07 400.947 0
24 LCS-2 XCS 218309.18 1018.59 214.325 0
25 LCS-3 LCS-4 781365.01 1116.3 699.958 0
26 LCS-3 LCS-5 526128.75 2213.45 237.696 0
27 LCS-3 LCS-6 251295.7 1349.4 186.228 0
28 LCS-3 LCS-7 42120.62 1939.88 21.713 0
29 LCS-3 LCS-8 13478.86 1637.75 8.23 2.22E-16

284

Obs AGENT1 AGENT2 ABSDIFF STDERR STDIFF PVALUE
30 LCS-3 XCS 401333.61 1107.39 362.415 0
31 LCS-4 LCS-5 255236.26 2191.7 116.456 0
32 LCS-4 LCS-6 530069.31 1313.42 403.581 0
33 LCS-4 LCS-7 823485.63 1915.02 430.013 0
34 LCS-4 LCS-8 794843.86 1608.23 494.235 0
35 LCS-4 XCS 380031.4 1063.24 357.426 0
36 LCS-5 LCS-6 274833.05 2319.11 118.508 0
37 LCS-5 LCS-7 568249.36 2705.65 210.023 0
38 LCS-5 LCS-8 539607.6 2497.93 216.022 0
39 LCS-5 XCS 124795.14 2187.17 57.058 0
40 LCS-6 LCS-7 293416.32 2059.63 142.461 0
41 LCS-6 LCS-8 264774.56 1777.96 148.92 0
42 LCS-6 XCS 150037.91 1305.85 114.897 0
43 LCS-7 LCS-8 28641.76 2259.07 12.679 0
44 LCS-7 XCS 443454.23 1909.84 232.194 0
45 LCS-8 XCS 414812.47 1602.06 258.925 0

2.1.2. GLM Bonferroni Test that Unique is equal for all Agents

Agent
Comparison

Difference
Between
Means

Simultaneous
95%

Confidence
Intervals

Significance
(5% Level)

LCS-4 - LCS-2 12.47 12.42 12.52 ***
LCS-4 - LCS-5 24.53 24.43 24.64 ***
LCS-4 - XCS 48.81 48.76 48.87 ***
LCS-4 - LCS-6 66.88 66.82 66.95 ***
LCS-4 - LCS-1 73.15 73.08 73.22 ***
LCS-4 - LCS-0 74.90 74.85 74.96 ***
LCS-4 - LCS-3 75.45 75.40 75.51 ***
LCS-4 - LCS-8 75.85 75.78 75.93 ***
LCS-4 - LCS-7 76.54 76.45 76.63 ***
LCS-2 - LCS-4 -12.47 -12.52 -12.42 ***
LCS-2 - LCS-5 12.06 11.96 12.17 ***
LCS-2 - XCS 36.35 36.30 36.40 ***
LCS-2 - LCS-6 54.42 54.35 54.48 ***
LCS-2 - LCS-1 60.68 60.62 60.75 ***
LCS-2 - LCS-0 62.44 62.38 62.49 ***
LCS-2 - LCS-3 62.99 62.93 63.04 ***
LCS-2 - LCS-8 63.39 63.31 63.46 ***
LCS-2 - LCS-7 64.07 63.98 64.16 ***
LCS-5 - LCS-4 -24.53 -24.64 -24.43 ***
LCS-5 - LCS-2 -12.06 -12.17 -11.96 ***
LCS-5 - XCS 24.28 24.18 24.39 ***
LCS-5 - LCS-6 42.35 42.24 42.46 ***
LCS-5 - LCS-1 48.62 48.50 48.73 ***
LCS-5 - LCS-0 50.37 50.26 50.48 ***
LCS-5 - LCS-3 50.92 50.82 51.03 ***
LCS-5 - LCS-8 51.32 51.20 51.44 ***
LCS-5 - LCS-7 52.01 51.88 52.13 ***

285

Agent
Comparison

Difference
Between
Means

Simultaneous
95%

Confidence
Intervals

Significance
(5% Level)

XCS - LCS-4 -48.81 -48.87 -48.76 ***
XCS - LCS-2 -36.35 -36.40 -36.30 ***
XCS - LCS-5 -24.28 -24.39 -24.18 ***
XCS - LCS-6 18.07 18.00 18.13 ***
XCS - LCS-1 24.33 24.27 24.40 ***
XCS - LCS-0 26.09 26.03 26.14 ***
XCS - LCS-3 26.64 26.59 26.69 ***
XCS - LCS-8 27.04 26.96 27.12 ***
XCS - LCS-7 27.72 27.63 27.81 ***
LCS-6 - LCS-4 -66.88 -66.95 -66.82 ***
LCS-6 - LCS-2 -54.42 -54.48 -54.35 ***
LCS-6 - LCS-5 -42.35 -42.46 -42.24 ***
LCS-6 - XCS -18.07 -18.13 -18.00 ***
LCS-6 - LCS-1 6.27 6.19 6.34 ***
LCS-6 - LCS-0 8.02 7.95 8.09 ***
LCS-6 - LCS-3 8.57 8.51 8.64 ***
LCS-6 - LCS-8 8.97 8.89 9.06 ***
LCS-6 - LCS-7 9.65 9.56 9.75 ***
LCS-1 - LCS-4 -73.15 -73.22 -73.08 ***
LCS-1 - LCS-2 -60.68 -60.75 -60.62 ***
LCS-1 - LCS-5 -48.62 -48.73 -48.50 ***
LCS-1 - XCS -24.33 -24.40 -24.27 ***
LCS-1 - LCS-6 -6.27 -6.34 -6.19 ***
LCS-1 - LCS-0 1.75 1.68 1.82 ***
LCS-1 - LCS-3 2.30 2.24 2.37 ***
LCS-1 - LCS-8 2.71 2.62 2.79 ***
LCS-1 - LCS-7 3.39 3.29 3.49 ***
LCS-0 - LCS-4 -74.90 -74.96 -74.85 ***
LCS-0 - LCS-2 -62.44 -62.49 -62.38 ***
LCS-0 - LCS-5 -50.37 -50.48 -50.26 ***
LCS-0 - XCS -26.09 -26.14 -26.03 ***
LCS-0 - LCS-6 -8.02 -8.09 -7.95 ***
LCS-0 - LCS-1 -1.75 -1.82 -1.68 ***
LCS-0 - LCS-3 0.55 0.49 0.61 ***
LCS-0 - LCS-8 0.95 0.87 1.03 ***
LCS-0 - LCS-7 1.63 1.54 1.73 ***
LCS-3 - LCS-4 -75.45 -75.51 -75.40 ***
LCS-3 - LCS-2 -62.99 -63.04 -62.93 ***
LCS-3 - LCS-5 -50.92 -51.03 -50.82 ***
LCS-3 - XCS -26.64 -26.69 -26.59 ***
LCS-3 - LCS-6 -8.57 -8.64 -8.51 ***
LCS-3 - LCS-1 -2.30 -2.37 -2.24 ***
LCS-3 - LCS-0 -0.55 -0.61 -0.49 ***
LCS-3 - LCS-8 0.40 0.32 0.48 ***
LCS-3 - LCS-7 1.08 0.99 1.18 ***
LCS-8 - LCS-4 -75.85 -75.93 -75.78 ***
LCS-8 - LCS-2 -63.39 -63.46 -63.31 ***

286

Agent
Comparison

Difference
Between
Means

Simultaneous
95%

Confidence
Intervals

Significance
(5% Level)

LCS-8 - LCS-5 -51.32 -51.44 -51.20 ***
LCS-8 - XCS -27.04 -27.12 -26.96 ***
LCS-8 - LCS-6 -8.97 -9.06 -8.89 ***
LCS-8 - LCS-1 -2.71 -2.79 -2.62 ***

2.2. % Correct

2.2.1. Kruskal-Wallis Test that % Correct is equal for all Agents

Obs AGENT1 AGENT2 ABSDIFF STDERR STDIFF PVALUE

1 LCS-0 LCS-1 12799.86 1967.26 6.506 0
2 LCS-0 LCS-2 201877.19 2790.11 72.355 0
3 LCS-0 LCS-3 49809.7 1712.36 29.088 0
4 LCS-0 LCS-4 26792.29 1680.95 15.939 0
5 LCS-0 LCS-5 459661.68 1710.47 268.734 0
6 LCS-0 LCS-6 228815.79 1807.54 126.59 0
7 LCS-0 LCS-7 128.12 1967.26 0.065 0.94808
8 LCS-0 LCS-8 935044.56 1677.85 557.287 0
9 LCS-0 XCS 88312.62 1679.67 52.577 0

10 LCS-1 LCS-2 214677.05 2852.43 75.261 0
11 LCS-1 LCS-3 37009.84 1812.14 20.423 0
12 LCS-1 LCS-4 13992.43 1782.48 7.85 0
13 LCS-1 LCS-5 472461.54 1810.35 260.978 0
14 LCS-1 LCS-6 241615.65 1902.33 127.01 0
15 LCS-1 LCS-7 12927.97 2054.69 6.292 0
16 LCS-1 LCS-8 947844.42 1779.56 532.627 0
17 LCS-1 XCS 75512.76 1781.28 42.392 0
18 LCS-2 LCS-3 251686.89 2683 93.808 0
19 LCS-2 LCS-4 228669.48 2663.06 85.867 0
20 LCS-2 LCS-5 257784.49 2681.79 96.124 0
21 LCS-2 LCS-6 26938.6 2744.72 9.815 0
22 LCS-2 LCS-7 201749.07 2852.43 70.729 0
23 LCS-2 LCS-8 733167.37 2661.1 275.513 0
24 LCS-2 XCS 290189.8 2662.25 109.002 0
25 LCS-3 LCS-4 23017.41 1496.44 15.381 0
26 LCS-3 LCS-5 509471.38 1529.53 333.09 0
27 LCS-3 LCS-6 278625.49 1637.36 170.167 0
28 LCS-3 LCS-7 49937.82 1812.14 27.557 0
29 LCS-3 LCS-8 984854.26 1492.96 659.664 0
30 LCS-3 XCS 38502.91 1495.01 25.754 0
31 LCS-4 LCS-5 486453.97 1494.28 325.545 0
32 LCS-4 LCS-6 255608.08 1604.48 159.309 0
33 LCS-4 LCS-7 26920.41 1782.48 15.103 0
34 LCS-4 LCS-8 961836.85 1456.82 660.229 0
35 LCS-4 XCS 61520.33 1458.92 42.168 0
36 LCS-5 LCS-6 230845.89 1635.38 141.157 0

287

Obs AGENT1 AGENT2 ABSDIFF STDERR STDIFF PVALUE
37 LCS-5 LCS-7 459533.56 1810.35 253.837 0
38 LCS-5 LCS-8 475382.88 1490.79 318.879 0
39 LCS-5 XCS 547974.3 1492.84 367.069 0
40 LCS-6 LCS-7 228687.67 1902.33 120.214 0
41 LCS-6 LCS-8 706228.77 1601.24 441.052 0
42 LCS-6 XCS 317128.41 1603.14 197.817 0
43 LCS-7 LCS-8 934916.44 1779.56 525.363 0
44 LCS-7 XCS 88440.73 1781.28 49.65 0
45 LCS-8 XCS 1023357.18 1455.35 703.169 0

2.2.2. GLM Bonferroni Test that % Correct is equal for all Agents

Agent
Comparison

Difference
Between
Means

Simultaneous
95%

Confidence
Intervals

Significance
(5% Level)

LCS-3 - LCS-1 0.17 0.07 0.26 ***
LCS-3 - LCS-7 0.22 0.12 0.32 ***
LCS-3 - LCS-0 0.25 0.16 0.35 ***
LCS-3 - LCS-4 0.49 0.41 0.57 ***
LCS-3 - XCS 0.61 0.53 0.69 ***
LCS-3 - LCS-6 1.59 1.50 1.68 ***
LCS-3 - LCS-2 1.73 1.58 1.87 ***
LCS-3 - LCS-5 3.74 3.66 3.82 ***
LCS-3 - LCS-8 45.83 45.75 45.91 ***
LCS-1 - LCS-3 -0.17 -0.26 -0.07 ***
LCS-1 - LCS-7 0.05 -0.06 0.16
LCS-1 - LCS-0 0.09 -0.02 0.19
LCS-1 - LCS-4 0.32 0.23 0.42 ***
LCS-1 - XCS 0.44 0.34 0.54 ***
LCS-1 - LCS-6 1.42 1.32 1.52 ***
LCS-1 - LCS-2 1.56 1.41 1.71 ***
LCS-1 - LCS-5 3.57 3.48 3.67 ***
LCS-1 - LCS-8 45.66 45.57 45.76 ***
LCS-7 - LCS-3 -0.22 -0.32 -0.12 ***
LCS-7 - LCS-1 -0.05 -0.16 0.06
LCS-7 - LCS-0 0.03 -0.07 0.14
LCS-7 - LCS-4 0.27 0.18 0.37 ***
LCS-7 - XCS 0.39 0.29 0.48 ***
LCS-7 - LCS-6 1.37 1.27 1.47 ***
LCS-7 - LCS-2 1.50 1.35 1.66 ***
LCS-7 - LCS-5 3.52 3.42 3.62 ***
LCS-7 - LCS-8 45.61 45.51 45.70 ***
LCS-0 - LCS-3 -0.25 -0.35 -0.16 ***
LCS-0 - LCS-1 -0.09 -0.19 0.02
LCS-0 - LCS-7 -0.03 -0.14 0.07
LCS-0 - LCS-4 0.24 0.15 0.33 ***
LCS-0 - XCS 0.35 0.26 0.44 ***
LCS-0 - LCS-6 1.33 1.24 1.43 ***
LCS-0 - LCS-2 1.47 1.32 1.62 ***

288

Agent
Comparison

Difference
Between
Means

Simultaneous
95%

Confidence
Intervals

Significance
(5% Level)

LCS-0 - LCS-5 3.49 3.39 3.58 ***
LCS-0 - LCS-8 45.57 45.48 45.66 ***
LCS-4 - LCS-3 -0.49 -0.57 -0.41 ***
LCS-4 - LCS-1 -0.32 -0.42 -0.23 ***
LCS-4 - LCS-7 -0.27 -0.37 -0.18 ***
LCS-4 - LCS-0 -0.24 -0.33 -0.15 ***
LCS-4 - XCS 0.12 0.04 0.19 ***
LCS-4 - LCS-6 1.10 1.01 1.18 ***
LCS-4 - LCS-2 1.23 1.09 1.38 ***
LCS-4 - LCS-5 3.25 3.17 3.33 ***
LCS-4 - LCS-8 45.34 45.26 45.41 ***
XCS - LCS-3 -0.61 -0.69 -0.53 ***
XCS - LCS-1 -0.44 -0.54 -0.34 ***
XCS - LCS-7 -0.39 -0.48 -0.29 ***
XCS - LCS-0 -0.35 -0.44 -0.26 ***
XCS - LCS-4 -0.12 -0.19 -0.04 ***
XCS - LCS-6 0.98 0.89 1.07 ***
XCS - LCS-2 1.12 0.98 1.26 ***
XCS - LCS-5 3.13 3.05 3.21 ***
XCS - LCS-8 45.22 45.14 45.30 ***
LCS-6 - LCS-3 -1.59 -1.68 -1.50 ***
LCS-6 - LCS-1 -1.42 -1.52 -1.32 ***
LCS-6 - LCS-7 -1.37 -1.47 -1.27 ***
LCS-6 - LCS-0 -1.33 -1.43 -1.24 ***
LCS-6 - LCS-4 -1.10 -1.18 -1.01 ***
LCS-6 - XCS -0.98 -1.07 -0.89 ***
LCS-6 - LCS-2 0.14 -0.01 0.28
LCS-6 - LCS-5 2.15 2.06 2.24 ***
LCS-6 - LCS-8 44.24 44.15 44.33 ***
LCS-2 - LCS-3 -1.73 -1.87 -1.58 ***
LCS-2 - LCS-1 -1.56 -1.71 -1.41 ***
LCS-2 - LCS-7 -1.50 -1.66 -1.35 ***
LCS-2 - LCS-0 -1.47 -1.62 -1.32 ***
LCS-2 - LCS-4 -1.23 -1.38 -1.09 ***
LCS-2 - XCS -1.12 -1.26 -0.98 ***
LCS-2 - LCS-6 -0.14 -0.28 0.01
LCS-2 - LCS-5 2.01 1.87 2.16 ***
LCS-2 - LCS-8 44.10 43.96 44.25 ***
LCS-5 - LCS-3 -3.74 -3.82 -3.66 ***
LCS-5 - LCS-1 -3.57 -3.67 -3.48 ***
LCS-5 - LCS-7 -3.52 -3.62 -3.42 ***
LCS-5 - LCS-0 -3.49 -3.58 -3.39 ***
LCS-5 - LCS-4 -3.25 -3.33 -3.17 ***
LCS-5 - XCS -3.13 -3.21 -3.05 ***

2.3. System Error

289

2.3.1. Kruskal-Wallis Test that System Error is equal for all Agents

Obs AGENT1 AGENT2 ABSDIFF STDERR STDIFF PVALUE

1 LCS-0 LCS-1 2125.55 1757.03 1.21 0.22638
2 LCS-0 LCS-2 38584.5 2656.76 14.523 0
3 LCS-0 LCS-3 45923.29 1622.72 28.3 0
4 LCS-0 LCS-4 196975.41 1593.56 123.607 0
5 LCS-0 LCS-5 381840.99 1757.03 217.322 0
6 LCS-0 LCS-6 98215 1725.43 56.922 0
7 LCS-0 LCS-7 10243.44 2305.18 4.444 0.00001
8 LCS-0 LCS-8 655936.39 1590.68 412.361 0
9 LCS-0 XCS 436511.11 1591.05 274.354 0

10 LCS-1 LCS-2 40710.05 2634.99 15.45 0
11 LCS-1 LCS-3 43797.74 1586.82 27.601 0
12 LCS-1 LCS-4 194849.86 1556.98 125.146 0
13 LCS-1 LCS-5 379715.44 1723.92 220.263 0
14 LCS-1 LCS-6 100340.55 1691.71 59.313 0
15 LCS-1 LCS-7 8117.89 2280.04 3.56 0.00037
16 LCS-1 LCS-8 658061.94 1554.04 423.453 0
17 LCS-1 XCS 434385.56 1554.41 279.453 0
18 LCS-2 LCS-3 84507.79 2547.4 33.174 0
19 LCS-2 LCS-4 235559.91 2528.92 93.146 0
20 LCS-2 LCS-5 420425.49 2634.99 159.555 0
21 LCS-2 LCS-6 59630.5 2614.02 22.812 0
22 LCS-2 LCS-7 48827.94 3028.18 16.125 0
23 LCS-2 LCS-8 617351.89 2527.11 244.291 0
24 LCS-2 XCS 475095.61 2527.34 187.982 0
25 LCS-3 LCS-4 151052.12 1403.66 107.613 0
26 LCS-3 LCS-5 335917.7 1586.82 211.693 0
27 LCS-3 LCS-6 144138.29 1551.76 92.887 0
28 LCS-3 LCS-7 35679.85 2178.23 16.38 0
29 LCS-3 LCS-8 701859.68 1400.4 501.185 0
30 LCS-3 XCS 390587.82 1400.82 278.829 0
31 LCS-4 LCS-5 184865.58 1556.98 118.733 0
32 LCS-4 LCS-6 295190.4 1521.24 194.047 0
33 LCS-4 LCS-7 186731.97 2156.59 86.587 0
34 LCS-4 LCS-8 852911.8 1366.5 624.157 0
35 LCS-4 XCS 239535.71 1366.93 175.237 0
36 LCS-5 LCS-6 480055.98 1691.71 283.77 0
37 LCS-5 LCS-7 371597.55 2280.04 162.978 0
38 LCS-5 LCS-8 1037777.38 1554.04 667.793 0
39 LCS-5 XCS 54670.12 1554.41 35.171 0
40 LCS-6 LCS-7 108458.43 2255.78 48.08 0
41 LCS-6 LCS-8 557721.4 1518.23 367.351 0
42 LCS-6 XCS 534726.11 1518.61 352.116 0
43 LCS-7 LCS-8 666179.83 2154.47 309.208 0
44 LCS-7 XCS 426267.68 2154.74 197.828 0
45 LCS-8 XCS 1092447.5 1363.58 801.163 0

290

2.3.2. GLM Bonferroni Test that System Error is equal for all Agents

Agent
Comparison

Difference
Between
Means

Simultaneous 95%
Confidence

Intervals
Significance
(5% Level)

XCS - LCS-5 0.088123 0.08562 0.0906 ***
XCS - LCS-4 0.155306 0.15311 0.1575 ***
XCS - LCS-3 0.2483639 0.24611 0.2506 ***
XCS - LCS-7 0.2553154 0.25185 0.2588 ***
XCS - LCS-1 0.2569939 0.25449 0.2595 ***
XCS - LCS-0 0.2574917 0.25493 0.26 ***
XCS - LCS-2 0.2724188 0.26836 0.2765 ***
XCS - LCS-6 0.2792607 0.27682 0.2817 ***
XCS - LCS-8 1.0551342 1.05294 1.0573 ***
LCS-5 - XCS -0.088123 -0.0906 -0.0856 ***
LCS-5 - LCS-4 0.0671831 0.06468 0.0697 ***
LCS-5 - LCS-3 0.160241 0.15769 0.1628 ***
LCS-5 - LCS-7 0.1671924 0.16353 0.1709 ***
LCS-5 - LCS-1 0.1688709 0.1661 0.1716 ***
LCS-5 - LCS-0 0.1693688 0.16654 0.1722 ***
LCS-5 - LCS-2 0.1842959 0.18006 0.1885 ***
LCS-5 - LCS-6 0.1911377 0.18842 0.1939 ***
LCS-5 - LCS-8 0.9670113 0.96451 0.9695 ***
LCS-4 - XCS -0.155306 -0.1575 -0.1531 ***
LCS-4 - LCS-5 -0.0671831 -0.0697 -0.0647 ***
LCS-4 - LCS-3 0.0930579 0.0908 0.0953 ***
LCS-4 - LCS-7 0.1000094 0.09654 0.1035 ***
LCS-4 - LCS-1 0.1016879 0.09918 0.1042 ***
LCS-4 - LCS-0 0.1021857 0.09962 0.1047 ***
LCS-4 - LCS-2 0.1171128 0.11305 0.1212 ***
LCS-4 - LCS-6 0.1239546 0.12151 0.1264 ***
LCS-4 - LCS-8 0.8998282 0.89763 0.902 ***
LCS-3 - XCS -0.2483639 -0.2506 -0.2461 ***
LCS-3 - LCS-5 -0.160241 -0.1628 -0.1577 ***
LCS-3 - LCS-4 -0.0930579 -0.0953 -0.0908 ***
LCS-3 - LCS-7 0.0069515 0.00345 0.0105 ***
LCS-3 - LCS-1 0.0086299 0.00608 0.0112 ***
LCS-3 - LCS-0 0.0091278 0.00652 0.0117 ***
LCS-3 - LCS-2 0.0240549 0.01996 0.0282 ***
LCS-3 - LCS-6 0.0308967 0.0284 0.0334 ***
LCS-3 - LCS-8 0.8067703 0.80452 0.809 ***
LCS-7 - XCS -0.2553154 -0.2588 -0.2519 ***
LCS-7 - LCS-5 -0.1671924 -0.1709 -0.1635 ***
LCS-7 - LCS-4 -0.1000094 -0.1035 -0.0965 ***
LCS-7 - LCS-3 -0.0069515 -0.0105 -0.0034 ***
LCS-7 - LCS-1 0.0016785 -0.002 0.0053
LCS-7 - LCS-0 0.0021763 -0.0015 0.0059
LCS-7 - LCS-2 0.0171034 0.01223 0.022 ***
LCS-7 - LCS-6 0.0239452 0.02032 0.0276 ***
LCS-7 - LCS-8 0.7998188 0.79635 0.8033 ***

291

Agent
Comparison

Difference
Between
Means

Simultaneous 95%
Confidence

Intervals
Significance
(5% Level)

LCS-1 - XCS -0.2569939 -0.2595 -0.2545 ***
LCS-1 - LCS-5 -0.1688709 -0.1716 -0.1661 ***
LCS-1 - LCS-4 -0.1016879 -0.1042 -0.0992 ***
LCS-1 - LCS-3 -0.0086299 -0.0112 -0.0061 ***
LCS-1 - LCS-7 -0.0016785 -0.0053 0.002
LCS-1 - LCS-0 0.0004978 -0.0023 0.0033
LCS-1 - LCS-2 0.0154249 0.01119 0.0197 ***
LCS-1 - LCS-6 0.0222668 0.01955 0.025 ***
LCS-1 - LCS-8 0.7981403 0.79564 0.8006 ***
LCS-0 - XCS -0.2574917 -0.26 -0.2549 ***
LCS-0 - LCS-5 -0.1693688 -0.1722 -0.1665 ***
LCS-0 - LCS-4 -0.1021857 -0.1047 -0.0996 ***
LCS-0 - LCS-3 -0.0091278 -0.0117 -0.0065 ***
LCS-0 - LCS-7 -0.0021763 -0.0059 0.0015
LCS-0 - LCS-1 -0.0004978 -0.0033 0.0023
LCS-0 - LCS-2 0.0149271 0.01066 0.0192 ***
LCS-0 - LCS-6 0.0217689 0.01899 0.0245 ***
LCS-0 - LCS-8 0.7976425 0.79508 0.8002 ***
LCS-2 - XCS -0.2724188 -0.2765 -0.2684 ***
LCS-2 - LCS-5 -0.1842959 -0.1885 -0.1801 ***
LCS-2 - LCS-4 -0.1171128 -0.1212 -0.113 ***
LCS-2 - LCS-3 -0.0240549 -0.0282 -0.02 ***
LCS-2 - LCS-7 -0.0171034 -0.022 -0.0122 ***
LCS-2 - LCS-1 -0.0154249 -0.0197 -0.0112 ***
LCS-2 - LCS-0 -0.0149271 -0.0192 -0.0107 ***
LCS-2 - LCS-6 0.0068418 0.00264 0.011 ***
LCS-2 - LCS-8 0.7827154 0.77865 0.7868 ***
LCS-6 - XCS -0.2792607 -0.2817 -0.2768 ***
LCS-6 - LCS-5 -0.1911377 -0.1939 -0.1884 ***
LCS-6 - LCS-4 -0.1239546 -0.1264 -0.1215 ***
LCS-6 - LCS-3 -0.0308967 -0.0334 -0.0284 ***
LCS-6 - LCS-7 -0.0239452 -0.0276 -0.0203 ***
LCS-6 - LCS-1 -0.0222668 -0.025 -0.0195 ***

292

293

Appendix E: CHARTS, GRAPHS, AND PLOTS

This appendix provides additional information from the current research. Specifically, for

each measure, the following information is provided:

• Graph of each performance measure

• Histograms of each performance measure

• Box and whisker plot of each performance measure

The graphs and plots provide supplementary information into each agent’s performance

with respect to the performance measures used in this research, and offer the opportunity to

draw additional insight regarding agent performance.

Vs TFT Unique Classifiers Performance Measure

Unique Classifiers vs TFT

0

50

100

150

200

250

300

350

1 401 801 1201 1601 2001 2401 2801 3201 3601

Generation (50s)

#

LCS-0
LCS-1
LCS-2
LCS-3
LCS-4
LCS-5
LCS-6
LCS-7
LCS-8
XCS

294

Vs TFT Unique Classifiers Histogram #1

295

Vs TFT Unique Classifiers Histogram #2

296

Vs TFT Unique Classifiers Box and Whisker Plot

297

Vs TFT % Correct Performance Measure

% Correct vs TFT

0

20

40

60

80

100

120

1 401 801 1201 1601 2001 2401 2801 3201 3601

Generation (50s)

%

LCS-0
LCS-1
LCS-2
LCS-3
LCS-4
LCS-5
LCS-6
LCS-7
LCS-8
XCS

298

Vs TFT % Correct Histogram #1

299

Vs TFT % Correct Histogram #2

300

Vs TFT % Correct Box and Whisker Plot

301

Vs TFT System Error Performance Measure

System Error vs TFT

0

1

2

3

4

5

6

7

1 401 801 1201 1601 2001 2401 2801 3201 3601

Generation (50s)

(P
re

di
ct

ed
 R

ew
ar

d
- R

ea
liz

ed
 R

ew
ar

d)
 ^

 2

LCS-0
LCS-1
LCS-2
LCS-3
LCS-4
LCS-5
LCS-6
LCS-7
LCS-8
XCS

302

Vs TFT System Error Histogram #1

303

Vs TFT System Error Histogram #2

304

Vs TFT System Error Box and Whisker Plot

305

Vs TFT % [O] Performance Measure

% [O] vs TFT

0

20

40

60

80

100

120

1 401 801 1201 1601 2001 2401 2801 3201 3601

Generation (50s)

%

LCS-0
LCS-1
LCS-2
LCS-3
LCS-4
LCS-5
LCS-6
LCS-7
LCS-8
XCS

306

Vs TFT % [O] Histogram #1

307

Vs TFT % [O] Histogram #2

308

Vs TFT % [O] Box and Whisker Plot

309

Vs RAND Unique Classifiers Performance Measure

Unique Classifiers vs RAND

0

50

100

150

200

250

300

350

1 401 801 1201 1601 2001 2401 2801 3201 3601

Generation (50s)

#

LCS-0
LCS-1
LCS-2
LCS-3
LCS-4
LCS-5
LCS-6
LCS-7
LCS-8
XCS

310

Vs RAND Unique Classifiers Histogram #1

311

Vs RAND Unique Classifiers Histogram #2

312

Vs RAND Unique Classifiers Box and Whisker Plot

313

Vs RAND % Correct Performance Measure

% Correct vs RAND

0

20

40

60

80

100

120

1 401 801 1201 1601 2001 2401 2801 3201 3601

Generation (50s)

%

LCS-0
LCS-1
LCS-2
LCS-3
LCS-4
LCS-5
LCS-6
LCS-7
LCS-8
XCS

314

Vs RAND % Correct Histogram #1

315

Vs RAND % Correct Histogram #2

316

Vs RAND % Correct Box and Whisker Plot

317

Vs RAND System Error Performance Measure

System Error vs RAND

0

1

2

3

4

5

6

7

8

9

1 401 801 1201 1601 2001 2401 2801 3201 3601

Generation (50s)

(P
re

di
ct

ed
 R

ew
ar

d
- R

ea
liz

ed
 R

ew
ar

d)
 ^

 2

LCS-0
LCS-1
LCS-2
LCS-3
LCS-4
LCS-5
LCS-6
LCS-7
LCS-8
XCS

318

Vs RAND System Error Histogram #1

319

Vs RAND System Error Histogram #2

320

Vs RAND System Error Box and Whisker Plot

321

% [O] vs RAND

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 401 801 1201 1601 2001 2401 2801 3201 3601

Generation (50s)

%

LCS-0
LCS-1
LCS-2
LCS-3
LCS-4
LCS-5
LCS-6
LCS-7
LCS-8
XCS

322

Vs RAND % [O] Performance Measure

REFERENCES

(2003). Prisoner's Dilemma Competition: Celebrating the 20th Anniversary. Swindon, United
Kingdom, Engineering and Physical Sciences Research Council.

(2004). "International Innovation in Artificial Intelligence." Retrieved April 28, 2004, from
http://www.aiai.ed.ac.uk/i3ai/.

(2004). "What is Artificial Intelligence?" Retrieved April 28, 2004, from http://www.aaai.org/.
(2005). "The Iterated Prisoners Dilemma Competition: Celebrating the 20th Anniversary."

Retrieved January 19, 2005, from http://www.prisoners-dilemma.com/.
(2006). "DARPA Grand Challenge." Retrieved 12 July, 2006, from

http://www.darpa.mil/grandchallenge/index.asp.
(2006, 27 August 2006). "Nash Equilibrium." Retrieved 30 August, 2006, from

http://en.wikipedia.org/wiki/Nash_equilibrium.
Alba, E. (2004, July 27, 2001). "Tutorial on Evolutionary Optimization." Retrieved February, 2004,

from http://neo.lcc.uma.es/TutorialEA/semEC/main.html.
Alba, E. and C. Cotta. (1998). "Introduction to Nature-Inspired Algorithmic Techniques." 1998,

from
http://www.wi.leidenuniv.nl/~gusz/FlyingCircus/1.Reading/2.Tutorial/01/index.html.

Allen, F. E. (2001). "Behind the Cutting Edge: The Myth of Artificial Intelligence." American
Heritage 52(1).

Ashley, S. (1992). "Engineous Explores the Design Space." Mechanical Engineering: 49-52.
Axelrod, R. (1980). "Effective Choice in the Prisoner's Dilemma." Journal of Conflict Resolution 24:

3-25.
Axelrod, R. (1980). "More Effective Choice in the Prisoner's Dilemma." Journal of Conflict

Resolution 24: 379-403.
Axelrod, R. (1984). The Evolution of Cooperation. New York, N.Y., Basic Books.
Axelrod, R. (1987). The Evolution of Strategies in the Iterated Prisoner's Dilemma. Genetic

Algorithms and Simulated Annealing. L. Davis. London, Pittman: 32-41.
Axelrod, R. and L. D'Ambrosio. (1994, November, 1996). "Annotated Bibliography on The

Evolution of Cooperation." Retrieved August, 2003, from
http://pscs.physics.lsa.umich.edu/RESEARCH/Evol_of_Coop_Bibliography.html.

Axelrod, R. and W. D. Hamilton (1981). "The Evolution of Cooperation." Science(211): 1390-96.
Bäck, T. (1996). Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary

Programming, Genetic Algorithms. Oxford, U.K., Oxford University Press.
Bäck, T., D. B. Fogel, et al., Eds. (1997). Handbook of Evolutionary Computation. Bristol, U.K.,

Institute of Physics Publishing, Ltd.
Baffes, P. and L. Wang (1988). Mobile Transporter Path Planning Using a Genetic Algorithm

Approach. SPIE's Cambridge Symposium on Advances in Intelligent Robotics Systems.
Balena, F. (2002). Programming Microsoft Visual Basic.NET (Core Reference). Redmond, WA,

Microsoft Press.
Barto, A. G. (1990). Some Learning Tasks from a Control Perspective. Amherst, MA, University of

Massachusetts.
Bendor, J., M. Kramer, et al. (1991). "When in doubt: Cooperation in a noisy prisoner's dilemma."

Journal of Conflict Resolution(35): 691-719.
Bendor, J. and D. Mookherjee (1987). "Institutional structure and the logic of ongoing collective

action." American Political Science Review 81: 129-154.

323

http://www.aiai.ed.ac.uk/i3ai/
http://www.aaai.org/
http://www.prisoners-dilemma.com/
http://www.darpa.mil/grandchallenge/index.asp
http://en.wikipedia.org/wiki/Nash_equilibrium
http://neo.lcc.uma.es/TutorialEA/semEC/main.html
http://www.wi.leidenuniv.nl/%7Egusz/FlyingCircus/1.Reading/2.Tutorial/01/index.html
http://pscs.physics.lsa.umich.edu/RESEARCH/Evol_of_Coop_Bibliography.html

Booker, L. B. (1982). Intelligent Behavior as an Adaptation to the Task Environment. Computer and
Communication Sciences. Ann Arbor, MI, The University of Michigan: 328.

Booker, L. B., D. E. Goldberg, et al. (1989). "Classifier Systems and Genetic Algorithms." Artificial
Intelligence 40: 235-282.

Browne, W. N. L. (1999). The Development of an Industrial Learning Classifier System for
Application to a Steel Hot Strip Mill. Division of Mechanical Engineering and Energy
Studies. Cardiff, Wales, University of Wales: 242.

Butz, M. V., T. Kovacs, et al. (2001). How XCS Evolves Accurate Classifiers. Genetic and
Evolutionary Computation Conference (GECCO-2001), San Francisco, CA, Morgan
Kaufmann.

Butz, M. V., T. Kovacs, et al. (2002). Theory of Generalization and Learning in XCS. Urbana, IL,
Illinois Genetic Algorithms Laboratory.

Butz, M. V. and M. Pelikan (2001). Analyzing the Evolutionary Pressures in XCS. The Genetic and
Evolutionary Computation Conference (GECCO), San Francisco, CA, Morgan Kaufmann.

Butz, M. V., K. Sastry, et al. (2002). Tournament Selection in XCS. Urbana, IL, Illinois Genetic
Algorithms Laboratory: 17.

Butz, M. V. and S. W. Wilson (2001). An algorithmic description of XCS. Advances in Learning
Classifier Systems. Third International Workshop (IWLCS-2000). P. L. Lanzi, W. Stolzmann
and S. W. Wilson. Berlin, Springer-Verlag. 1996: 253-272.

Callahan, K. J. (1991). Strength-to-Weight and Stiffness-to-Weight Optimization of Laminates Using
a Genetic Algorithm. Department of Aerospace Engineering. Tuscaloosa, AL, University of
Alabama.

Chalk, K. and G. D. Smith (1997). Multi-agent Classifier Systems and the Iterated Prisoner's
Dilemma. International Conference of Artificial Neural Nets and Genetic Algorithms
(ANNGA-97), Norwich, U.K., Springer-Verlag.

Chalk, K. and G. D. Smith (1998). Multi-agent Classifier Systems and the Iterated Prisoner's
Dilemma. International Conference, Norwich, U.K., Springer-Verlag.

Charniak, E. and D. McDermott (1985). An Introduction to Artificial Intelligence. Reading, MA,
Addison-Wesley.

Darwin, C. (1897). The Origin of Species by Means of Natural Selection. New York, N.Y., D.
Appleton and Company.

Davis, L., Ed. (1991). Handbook of Genetic Algorithms. New York, N.Y., Van Nostrand Reinhold.
Deb, K. (1990). Optimal Design of a Class of Welded Structures via Genetic Algorithm. 31st

Structures, Structural Dynamics and Materials Conference.
DeJong, K. A. (1975). Analysis of the Behavior of a Class of Genetic Adaptive Systems. Ann Arbor,

MI, University of Michigan.
DeJong, K. A. and W. M. Spears (1993). On the State of Evolutionary Computation. Fifth

International Conference on Genetic Algorithms (ICGA), Urbana-Champaign, IL, Morgan
Kaufmann.

Dhingra, A. K. (1990). A Unified Approach to Multiple Objective Design of Engineering Systems.
Lafayette, IN, Purdue University.

Donninger, C. (1986). Is it always efficient to be nice? Paradoxical Effects of Social Behavior. L.
Dickman and R. Mitter. Heidelberg, Physica Verlag: 123-134.

Dooley, K. J. (2002). Simulation research methods. Companion to Organizations. J. A. C. Baum.
London, Blackwell: 829-848.

Dooley, K. J. and S. Corman (2003). "Agent-based, genetic, and emergent computational models of
complex systems." Encyclopedia of Life Support Systems.

Dorf, R. C. (1983). Modern Control Systems. Reading, MA, Addison-Wesley.

324

Dorigo, M. and E. Sirtori (1991). Alecsys: A Parallel Laboratory for Learning Classifier Systems.
Fourth International Conference on Genetic Algorithms, San Diego, CA, Morgan
Kaufmann.

Dugatkin, L. A. (1988). "Do guppies play tit for tat during predator inspection visits?" Behavioral
Ecology and Sociobiology 2(3): 395-299.

Farrell, J. and R. Ware (1989). "Evolutionary Stability in the Repeated Prisoner's Dilemma."
Theoretical Population Biology 36: 161-167.

Flood, M. M. (1958). "Some experimental games." Management Science 5(1): 526.
Floreano, D. and S. Nolfi (1997). God Save the Red Queen! Competition in Co-Evolutionary

Robotics. Genetic Programming 1997, San Francisco, CA, Morgan Kaufmann.
Flynn, M. (2004). "DARPA Grand Challenge a Stunning Success." Retrieved April 30, 2004, from

http://www.mikeslist.com/81.htm.
Goldberg, D. E. (1983). Computer-Aided Gas Pipeline Operation Using Genetic Algorithms and

Rule Learning, University of Michigan.
Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning.

Reading, MA, Addison Wesley.
Goldberg, D. E., K. Deb, et al. (1991). Don't Worry, Be Messy. Fourth International Conference on

Genetic Algorithms (ICGA-91), San Diego, CA, Morgan Kaufmann Publishers, Inc.
Goldberg, D. E. and M. P. Samanti (1987). Engineering Optimization via Genetic Algorithm. Ninth

Conference on Electronic Computation, Illinois.
Greene, D. P. and S. F. Smith (1994). "Using Coverage as a Model Building Constraint in Learning

Classifier Systems." Evolutionary Computation 2(1): 67-91.
Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor, MI, The University

of Michigan Press.
Holland, J. H. (1986). Escaping Brittleness: The Possibilities of General-Purpose Learning

Algorithms Applied to Parallel Rule-Based Systems. Machine Learning: An Artificial
Intelligence Approach. R. S. Michalski, J. G. Carbonell and T. M. Mitchell. Los Altos, CA,
Morgan Kaufman Publishers, Inc. II.

Holland, J. H. (1992). "Genetic Algorithms." Scientific American: 66-72.
Holland, J. H. and J. S. Reitman (1978). Cognitive Systems Based on Adaptive Algorithms. Pattern-

Directed Inference Systems, Academic Press.
Holsapple, C. W., R. Pakath, et al. (1993). "Learning by problem processors: Adaptive decision

support systems." Decision Support Systems 10(2): 85-108.
Horn, J., D. E. Goldberg, et al. (1994). "Implicit Niching in a Learning Classifier System: Nature's

Way." Evolutionary Computation 2(1): 37-66.
Jensen, E. D. (1992). Topological Structural Design Using Genetic Algorithms. Lafayette, IN,

Purdue University.
Kahn, J. (2002). "It's Alive." Wired 10(3).
Karr, C. L. and D. E. Goldberg (1990). "Genetic Algorithm Based Design of an Air-Injected

Hydrocyclone." Control '90-Mineral and Metallurgical Processing: 265-272.
Katagami, D. and S. Yamada (2002). Interactive Evolutionary Computation for Real Robot from

Viewpoint of Observation. The 7th International Conference on Intelligent Autonomous
(IAS-2002), Marina del Rey, CA, USA.

Kelton, W. D., R. P. Sadowski, et al. (2002). Simulation with Arena. New York, N.Y., McGraw-Hill.
King, E. G. J. (1991). Flow Vectoring of Supersonic Exhaust Nozzles Using a Genetic Algorithm to

Define Optimally-Shaped Contours. Department of Aerospace Engineering. Tuscaloosa,
AL, University of Alabama.

325

http://www.mikeslist.com/81.htm

Kling, R. M. and P. Banerjee (1991). "Empirical and Theoretical Studies of the Simulated Evolution
Method Applied to Standard Cell Placement." IEEE Transactions on CAD 10(10).

Kolata, G. (1982). "How Can Computers Get Common Sense?" Science 217: 1237.
Kondratoff, Y. and R. S. Michalski, Eds. (1990). Machine Learning. San Mateo, CA, Morgan

Kaufmann.
Kovacs, T. (1996). Evolving Optimal Populations with XCS Classifier Systems. School of Computer

Science. Birmingham, U.K., University of Birmingham: 45.
Kovacs, T. (1997). XCS Classifier System Reliably Evolves Accurate, Complete, and Minimal

Representations for Boolean Functions. Soft Computing in Engineering Design and
Manufacturing. A. Roy, P. K. Chawdhry and R. K. Pant. Berlin, Springer-Verlag: 59-68.

Kovacs, T. (1999). Deletion Schemes for Classifier Systems. The Genetic and Evolutionary
Computation Conference (GECCO '99), Morgan Kaufmann.

Kovacs, T. (2000). Strength or Accuracy? Fitness calculation in learning classifier systems. Learning
Classifier Systems. From Foundations to Applications. P. L. Lanzi, W. Stolzmann and S. W.
Wilson, Springer-Verlag. 1813: 143-160.

Kovacs, T. (2002). Two Views of Classifier Systems. Advances in Learning Classifier Systems. P. L.
Lanzi, W. Stolzmann and S. W. Wilson, Springer-Verlag. 2321: 74-87.

Kovacs, T. and M. Kerber (2001). What Makes a Problem Hard for XCS? Advances in Learning
Classifier Systems. P. L. Lanzi, W. Stolzmann and S. W. Wilson, Springer-Verlag. 1996: 80-
99.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural
Selection. Cambridge, MA, The MIT Press/Bradford Books.

Kreps, D., P. Milgrom, et al. (1982). "Rational Cooperation in the Finitely Repeated Prisoner's
Dilemma." Journal of Economic Theory 27: 245-252.

Kuehl, R. O. (2000). Design of Experiments: Statistical Principles of Research Design and Analysis.
Pacific Grove, CA, Duxbury Press.

Kuhn, S. (2003). "The Stanford Encyclopedia of Philosophy." Retrieved Summer, 2003, from
http://plato.stanford.edu/archives/sum2003/entries/prisoner-dilemma/.

Lanzi, P. L. (1997). A Study of the Generalization Capabilities of XCS. Seventh International
Conference on Genetic Algorithms (ICGA-7), San Francisco, CA, Morgan Kaufmann.

Lanzi, P. L. and R. L. Riolo (1999). A Roadmap to the Last Decade of Learning Classifier Research
(From 1989 to 1999). Learning Classifier Systems: From Foundations to Applications. P. L.
Lanzi, W. Stolzmann and S. W. Wilson. Berlin, Springer-Verlag. 1813: 33-61.

Lanzi, P. L. and S. W. Wilson (1999). Optimal Classifier System Performance in Non-Markov
Environments. Milan, Italy, Politecnico di Milano.

Law, A. M. and W. D. Kelton (2000). Simulation modeling and analysis. New York, McGraw-Hill.
Le Riche, R. and R. T. Haftka (1993). "Optimization of Laminate Stacking Sequences for Buckling

Load Maximization by Genetic Algorithm." AIAA Journal 31(5): 951-956.
March, J. G. and R. M. Cyert (1963). A Behavioral Theory of the Firm. Englewood Cliffs, N.J.,

Prentice-Hall.
Melloni, B. J., G. M. Eisner, et al. (1979). Melloni's Illustrated Medical Dictionary. Baltimore, MD,

The Williams & Wilkins Company.
Meng, C.-L. and R. Pakath (2001). "The Iterated Prisoner's Dilemma: Early Experiences with

Learning Classifier System-based Simple Agents." Decision Support Systems 31(4): 379-403.
Menzies, T. (2003). "21st Century AI: Proud, Not Smug." IEEE Intelligent Systems 18(3): 18-24.
Mettler, L. E., T. G. Gregg, et al. (1988). Population Genetics and Evolution. Englewood Cliffs,

N.J., Prentice Hall.

326

http://plato.stanford.edu/archives/sum2003/entries/prisoner-dilemma/

Michalski, R. S., J. G. Carbonell, et al. (1983). An Overview of Machine Learning. Machine Learning:
An Artificial Intelligence Approach. R. S. Michalski, J. G. Carbonell and T. M. Mitchell. Palo
Alto, CA, Tioga Publishing Company: 3-23.

Minsky, M. (1961). Steps Toward Artificial Intelligence. Institute of Radio Engineers, New York,
N.Y., McGraw-Hill.

Minsky, M. L. (1967). Computation: finite and infinite machines. Englewood Cliffs, N.J., Prentice-
Hall.

Munos, R. and J. Patinel (1994). Reinforcement learning with dynamic covering of state-action
space: Partitioning Q-Learning. From Animals to Animats 3: Third International Conference
on Simulation of Adaptive Behavior (SAB-94).

Narendra, K. and M. A. L. Thathachar (1989). Learning Automata: An Introduction. Englewood
Cliffs, NJ, Prentice Hall.

O'Riordan, C. (2000). Iterated Prisoner's Dilemma: A Review. Galway, Ireland, National University
of Ireland, Galway.

Parodi, A. and P. Bonelli (1993). A New Approach to Fuzzy Classifier Systems. Fifth International
Conference on Genetic Algorithms, Morgan Kaufmann.

Pegden, C., R. Shannon, et al. (1995). Introduction to simulation using SIMAN. New York, New
York, McGraw-Hill, Inc.

Punch, W. F., R. C. Averill, et al. (1995). "Design Using Genetic Algorithms - Some Results for
Laminated Composite Structures." IEEE Expert 10(1): 42-49.

Reingold, E. and J. Nightingale. (2000). "Artificial Intelligence Tutorial Review." Retrieved 19
March, 2003, from http://www.psych.utoronto.ca/~reingold/courses/ai/early.html.

Riolo, R. L. (1988). Empirical Studies of Default Hierarchies and Sequences of Rules in Learning
Classifier Systems. Computer Science and Engineering Department. Ann Arbor, MI,
University of Michigan.

Roberts, G. R. (1993). Dynamic Planning for Classifier Systems. International Conference on
Genetic Algorithms, San Mateo, CA, Morgan Kaufmann.

Robertson, G. G. and R. L. Riolo (1988). "A Tale of Two Classifier Systems." Machine Learning 3:
139-159.

Samuel, A. L. (1959). "Some Studies in Machine Learning Using the Game of Checkers." IBM
Journal of Research and Development 3(3): 210-229.

Schwefel, H.-P. (1995). Evolution and Optimum Seeking. New York, NY, John Wiley & Sons, Inc.
Shapley, L. S. (1964). Some topics in two-person games. Annals of Mathematics Studies. M.

Dresher, L. S. Shapley and A. W. Tucker. Princeton, Princeton University Press. 52: 128.
Sigmund, K. (1993). Games of Life: Explorations in Ecology, Evolution, and Behavior. Oxford,

Oxford University Press.
Simon, H. (1965). The Shape of Automation for Men and Management. New York, N.Y., Harper

and Row.
Simon, H. A. (1955). "A Behavioral Model of Rational Choice." Quarterly Journal of Economics 69:

99-118.
Smith, R. E. and B. A. Dike (1995). "Learning novel fighter combat maneuver rules via genetic

algorithms." International Journal of Expert Systems 8(3): 247-276.
Smith, R. E., B. A. Dike, et al. (2000). "Classifier Systems in Combat: Two-sided Learning of

Maneuvers for Advanced Fighter Aircraft." Computer Methods in Applied Mechanics and
Engineering(186): 421-437.

Smith, R. E., B. A. Dike, et al. (2000). The Fighter Aircraft LCS: A Case of Different LCS Goals and
Techniques. Learning Classifier Systems: From Foundations to Applications. P. L. Lanzi,
Springer-Verlag.

327

http://www.psych.utoronto.ca/%7Ereingold/courses/ai/early.html

Sober, E. (1992). "Stable cooperation in iterated prisoner's dilemmas." Economics and
Philosophy(8): 127-139.

Sutton, R. S. and A. G. Barto (1998). Reinforcement Learning: An Introduction. Cambridge, MA,
The MIT Press.

Valenzuela-Rendon, M. (1991). The Fuzzy Classifier System: A Classifier System for Continuously
Varying Variables. Fourth International Conference on Genetic Algorithms, Morgan
Kaufmann.

Waltz, D. L. (2000). "AI's Greatest Trends and Controversies." IEEE Intelligent Systems 15(1): 8-
17.

Waterman, D. A. (1985). A Guide to Expert Systems. Boston, MA, Addison-Wesley Longman
Publishing Co., Inc.

Welch, P. D. (1981). On the Problem of the Initial Transient in Steady-State Simulation. Yorktown
Heights, New York, IBM Watson Research Center.

Welch, P. D. (1983). The Statistical Analysis of Simulation Results. The Computer Performance
Modeling Handbook. S. S. Lavenberg. New York, N.Y., Academic Press.

Whitley, D. (1989). The GENITOR Algorithm and Selection Pressure: Why Rank-based Allocation
of Reproductive Trials is Best. Third International Conference on Genetic Algorithms,
Morgan Kaufmann.

Whitley, D. (1993). An Executable Model of a Simple Genetic Algorithm. Foundations of Genetic
Algorithms II. D. Whitley. San Mateo, CA, Morgan Kaufmann: 45-62.

Wilson, S. W. (1986). Classifier System Learning of a Boolean Function. Cambridge, MA, The
Rowland Institute of Science.

Wilson, S. W. (1994). "ZCS: A Zeroth Level Classifier System." Evolutionary Computation 2(1): 1-
18.

Wilson, S. W. (1995). "Classifier Fitness Based on Accuracy." Evolutionary Computation 3(2): 149-
175.

Wilson, S. W. (1998). Generalization in the XCS Classifier System. Genetic Programming 1998,
Morgan Kaufmann.

Wilson, S. W. (1999). State of XCS Classifier System Research. Learning Classifier Systems: From
Foundations to Applications. P. L. Lanzi, W. Stolzmann and S. W. Wilson. Berlin, Springer-
Verlag. 1813: 63-81.

Wilson, S. W. (1999). "Structure and function of the XCS classifier system." Tutorial Presented at
The Genetic and Evolutionary Computation Conference (GECCO 2002) Retrieved
December, from http://world.std.com/~sw/pubs.html.

Wilson, S. W. (2003). "Introduction to Learning Classifier Systems (mostly XCS)." Tutorial
Presented at The Genetic and Evolutionary Computation Conference, 2003 Retrieved
December, 2003, from http://world.std.com/~sw/pubs.html.

Wilson, S. W. (2005). Opinion on KSEF Grant (KSEF-148-502-04-110) 1-Year Progress Report.
Frankfort, KY, Kentucky Science and Engineering Foundation.

Wilson, S. W. and D. E. Goldberg (1989). A Critical Review of Classifier Systems. Third
International Conference on Genetic Algorithms (ICGA-89), George Mason University,
Fairfax, Virginia, Morgann Kaufmann.

328

http://world.std.com/%7Esw/pubs.html
http://world.std.com/%7Esw/pubs.html

VITA

David A. Gaines
Lieutenant Colonel, USAF
19 June 1966

Ft. Morgan, CO

dgaines@uky.edu

Education

M.S. Air Force Institute of Technology, 1996
Major: Information Resource Management

M.B.A. Wright State University, 1996
Major: Finance

M.S. Air Force Institute of Technology, 1993
Major: Software Systems Management

Thesis: An Analysis of the Records Management Process to Determine the Impact
of Automation on Productivity

B.S. United States Air Force Academy, 1988
Major: Engineering Sciences

Professional Experience

Chief, Applied Engineering Division, Joint Spectrum Center, 2004-Present

Doctoral Student and Candidate, Decision Sciences and Information Systems, University of

Kentucky, 2001-2004

Commander, Cadet Squadron Ten, U.S. Air Force Academy, 2000-2001

Executive Officer and Assistant Professor of Management, United States Air Force

Academy Department of Management, 1996-2000

Chief, Air Force Material Command (AFMC) Reengineering Office, 1994-1996

Graduate Student, Air Force Institute of Technology, 1992-1993

Astronautical Engineer, Titan System Program Office, 1988-1992

Awards, Affiliations, and Certifications

• Kentucky Science and Engineering Foundation Research Grant, AY 2004-2006
• University of Kentucky Research Challenge Doctoral Fellowship, AY 2003-2004

329

mailto:Dave.Gaines@usafa.af.mil

• University of Kentucky Research Challenge Doctoral Fellowship, AY 2002-2003
• University of Kentucky Graduate School Non-Service Fellowship, AY 2001-2002
• United States of America Meritorious Service Medal, 2nd Oak Leaf Cluster, 2001
• Department of the Air Force Achievement Medal, 2nd Oak Leaf Cluster, 1999
• Promoted to Assistant Professor of Management, 1999
• United States Air Force Academy Company Grade Officer of the Year, 1998
• Dean of the Faculty Company Grade Officer of the Year, 1998
• Department of Management Company Grade Officer of the Year, 1998
• State of Colorado nominee for Outstanding Company Grade Officer, 1998
• United States Air Force Academy Company Grade Officer of the Quarter, 3rd Quarter, 1998
• Dean of the Faculty Company Grade Officer of the Quarter, 3rd Quarter, 1998
• Department of Management Company Grade Officer of the Quarter, several times, 1997-

1999
• Sigma Beta Delta National Honor Society in Business, Management, and Administration,

1999-Present
• United States of America Meritorious Service Medal, 1996
• Department of Defense Military Outstanding Volunteer Service Medal, 1996
• General Services Administration 1000 by 2000 Certified Information Resource Management

Professional, 1996
• Air Force Institute of Technology Distinguished Graduate, 3.96 GPA, 1996
• HQ AFMC Company Grade Officer of the Quarter, 1st Quarter, 1995
• Department of the Army Certified Business Process Reengineer, 1995
• Office of the Secretary of Defense Certified Acquisition Professional Development

Program, Level III (Highest), 1994
• Sigma Iota Epsilon Honorary Management Fraternity, 1993-Present
• Mensa, 1993-Present
• Department of the Air Force Achievement Medal, 1992

Papers and Presentations

“Insights into the Adaptive Behavior of Alternate Learning Classifier System Models,” In the
Proceedings of the 2005 INFORMS Annual Meeting, Behavioral Issues in IS, San Francisco, CA,
November, 2005. With Dr. Ramakrishnan Pakath.

“Experimentation with Learning Classifiers and the Iterated Prisoner’s Dilemma,” In the
Proceedings of the 2004 Americas Conference on Information Systems, Special Round Table, New
York City, NY, August, 2004. With Dr. Ramakrishnan Pakath.

“Assessing the Cognitive Abilities of Alternate Learning Classifier System Architectures,” In the
Proceedings of the 2003 Americas Conference on Information Systems, Doctoral Consortium,
Tampa, FL, August, 2003.

“Mobile Computing at the United States Air Force Academy,” T.H.E. Journal (Technological
Horizons in Education). With Dr. Carl Kutsche and Dr. Matthew Morgan, July, 2002.

“Implementing the Balanced Scorecard in a Program Office,” In the Proceedings of the 1999
Acquisition Research Symposium, Rockville, MD, June 1999. With Dr. Julie A. Chesley.

330

“MILSTAR Program Change: Decision-Making in Cyber-Space,” 39th Annual Western Academy of
Management, Western Casewriter’s Association, Portland, OR, March 1998. With Dr. Steve G.
Green and Dr. Kurt A. Heppard.

“The Retrenchment Process: A View From Three Strategic Orientations,” The American Society of
Business and Behavioral Sciences Annual Meeting, Las Vegas, NV, February 1998. With Dr. Martin
J. Hornyak and Dr. Kevin J. Davis.

“Reengineering Headquarters, Air Force Material Command, A White Paper,” For the Commander,
HQ AFMC, March 1995. With the Headquarters Reengineering Focus Group.

“An Analysis of the Records Management Process to Determine the Impact of Automation on
Productivity,” Presented to the Faculty of the School of Logistics and Acquisition Management of
the Air Force Institute of Technology, Air University, in Partial Fulfillment of the Requirements for
the Degree of Master of Science in Software Systems Management, December 1993. With Capt.
Trevor J. Nelson.

David Alexander Gaines

31 August 2006

331

	INVESTIGATIONS INTO THE COGNITIVE ABILITIES OF ALTERNATE LEARNING CLASSIFIER SYSTEM ARCHITECTURES
	Recommended Citation

	Abstract
	Title Page
	Acknowledgements
	Table of Contents
	List of Tables
	Table I-1 Key Architectural Differences
	Table I-2 Agent vs Opponent Competitions
	Table II-1 Samples of Valid Classifiers
	Table II-2 Classifier Bid Variables
	Table II-3 Classifier Strength Variables
	Table II-4 Biological and Artificial Ver
	Table II-5 Classifier System Extensions
	Table II-6 Engineering Applications of G
	Table II-7 Applications of Classifier Sy
	Table II-8 Prisoner’s Dilemma Reward Str
	Table III-1 Sample Payoff Landscape
	Table III-2 Sample Classifiers
	Table III-3 TFT Optimal Population
	Table III-4 Competitions Between Agents
	Table IV-2 Rank-Ordered Stabilization En
	Table IV-3 Rank-Ordered Stabilized Means
	Table IV-4 Rank-Ordered Learning Rate ve
	Table IV-5 Descriptive Characteristics,
	Table IV-6 Rank-Ordered Stabilization En
	Table IV-7 Rank-Ordered Stabilized Means
	Table IV-8 Rank-Ordered Learning Rate ve
	Table IV-10 Rank-Ordered Stabilization E
	Table IV-11 Rank-Ordered Stabilized Mean
	Table IV-12 Rank-Ordered Learning Rate v
	Table IV-13 Descriptive Characteristics,
	Table IV-14 Rank-Ordered Stabilization E
	Table IV-15 Rank-Ordered Stabilized Mean
	Table IV-16 Rank-Ordered Learning Rate v
	Table IV-18 Rank-Ordered Stabilization E
	Table IV-19 Rank-Ordered Stabilized Mean
	Table IV-20 Rank-Ordered Learning Rate v
	Table IV-21 Descriptive Characteristics,
	Table IV-22 Rank-Ordered Stabilization E
	Table IV-23 Rank-Ordered Stabilized Mean
	Table IV-24 Rank-Ordered Learning Rate v
	Table IV-25 Descriptive Characteristics,
	Table IV-26 Rank-Ordered Stabilization E
	Table IV-27 Rank-Ordered Stabilized Mean
	Table IV-28 Rank-Ordered Learning Rate v
	Table IV-29 Accuracy-Based Fitness: Uniq
	Table IV-30 Accuracy-Based Fitness: % [O
	Table IV-31 Initial Populations: Learnin
	Table IV-32 Initial Populations: Unique
	Table IV-33 Population Size: Learning Ra
	Table IV-34 Population Size: Unique Clas
	Table IV-35 GA Scope: Learning Rates vs
	Table IV-36 GA Scope: % Correct vs TFT a
	Table IV-37 GA Scope: System Error vs TF
	Table IV-38 Parent Selection: Unique Cla
	Table IV-39 Parent Selection: % Correct
	Table IV-40 Parent Selection: System Err
	Table IV-41 Parent Selection: Learning R
	Table IV-42 Classifier Deletion: % [O] v
	Table IV-43 Action Selection: % Correct
	Table IV-44 Action Selection: System Err
	Table IV-45 Action Selection: Learning R
	Table IV-46 Classifier Updates: Learning

	List of Figures
	Figure I-1 Simulation Experiment Program
	Figure II-1 Artificial Intelligence Fami
	Figure II-2 Classes of Techniques That C
	Figure II-3 General Reinforcement Learni
	Figure II-4 Interactions between Classif
	Figure II-5 Traditional Learning Classif
	Figure II-6 Auction in Classifier System
	Figure II-7 Simple Genetic Algorithm Flo
	Figure II-8 Classifier System and Enviro
	Figure II-9 Classifier System and Enviro
	Figure II-11 Genetic Algorithm in Classi
	Figure II-12 The Classifier System and I
	Figure II-13 Detailed Classifier System
	Figure II-14 XCS Architecture
	Figure IV-3 System Error vs TFT
	Figure IV-7 System Error vs RAND

	List of Equations
	Equation II-I Calculation of Classifier’
	Equation II-II Calculation of Classifier
	Equation II-III Calculation of Classifie
	Equation II-IV Calculation of Inactive C
	Equation II-V Calculation of Tax Rate
	Equation II-VI Calculation of Classifier
	Equation II-VII Calculation of Classifie
	Equation II-VIII XCS Update Function
	Equation II-IX XCS Recency Weighting
	Equation II-X XCS Error Update Function
	Equation II-XI XCS Accuracy Update Funct
	Equation II-XII XCS Relative Accuracy Fu
	Equation II-XIII XCS Fitness Update Func
	Equation II-XIV Prisoner’s Dilemma Rewar
	Equation II-XV Prisoner’s Dilemma Reward

	Chapter I: Introduction
	A. Overview
	B. Relevant Literature Review
	(1) Learning Classifier Systems
	(2) The Prisoner’s Dilemma
	(3) Prior Experimental Evidence

	C. Methodology
	D. Results
	E. Contributions and Limitations
	(1) Contributions
	(2) Limitations

	Chapter II: Review of the Literature
	A. Introduction
	B. Artificial Intelligence
	(1) Background and Definition
	(2) Artificial Intelligence Families
	(3) Artificial Intelligence Strategies
	(a) Overarching Strategy
	(b) Representation
	(c) Supervision

	(4) Machine Learning
	(a) Learning by Rote
	(b) Learning from Instruction
	(c) Learning by Analogy
	(d) Learning from Examples
	(e) Learning from Observation and Discovery

	C. Learning Classifier Systems
	(1) LCS-0: A “Traditional” Learning Classifier System
	(a) LCS-0 Architecture
	i. Rule and Message Subsystem
	ii. Apportionment of Credit Subsystem
	a. Auction: Bidding and Competition
	b. Reinforcement and Punishment
	c. Taxes

	iii. Classifier Discovery Mechanisms

	(b) Genetic Algorithm
	i. Selection
	ii. Crossover
	iii. Mutation

	(c) Replacement and Crowding
	(d) Classifier Systems: The Holistic Viewpoint
	(e) Other Mechanisms
	(f) Applications of Classifier Systems and Genetic Algorithms
	(g) Shortcomings of the traditional LCS algorithm
	(h) Summary

	(2) XCS: An Extended Classifier System
	(a) Overview
	(b) XCS Architecture and Major Cycle
	i. Matching and the Match Set
	ii. The Prediction Array and Action Set
	iii. Executing the Action and Updating the Action Set
	iv. Initial Population and Covering
	v. Genetic Algorithm

	(c) Summary

	D. IPD: The Experimental Testbed
	(1) The Prisoner’s Dilemma
	(2) The Iterated Prisoner’s Dilemma
	(a) IPD Players
	i. RAND
	ii. CCC
	iii. DDD
	iv. TFT (Tit for Tat)
	v. TFTT (Tit for Two Tats)
	vi. TTFT (Two Tits for Tat)
	vii. GTFT (Generous Tit for Tat)
	viii. JOSS (Joss’s Strategy)
	ix. FRDM (Friedman’s Strategy)

	(b) Benefits
	(c) Limitations

	(3) Experimental Testbed Rationale

	Chapter III: Methodology
	A. Simulation
	(1) Agent-Based Simulation
	(2) Rationale

	B. Experiments
	(1) Goals
	(a) Complete Payoff Map
	i. Complete
	ii. Accurate
	iii. Minimal
	iv. Non-overlapping

	(b) Maximally General Classifiers
	i. Over-general
	ii. Maximally General
	iii. Sub-optimally General

	(2) Prior Research
	(3) Differences Between LCS and XCS
	(a) The Key Difference
	(b) Population Differences
	i. Initial Population
	ii. Population Size

	(c) Genetic Algorithm Differences
	i. GA Scope
	ii. Parent Selection
	iii. Classifier Deletion

	(d) Action Selection
	(e) Classifier Updates

	(4) Generating Perturbations
	(5) Performance
	(a) Learning vs Steady State Phases
	(b) Measures
	i. Performance
	ii. Population Size
	iii. Problem Difficulty
	iv. System Error
	v. Learning Rate
	vi. Statistical Tools
	vii. Other Possible Measures
	a. Relative Reward
	b. Evolutionary Path Traces

	(6) Experiment Suite and Propositions
	(a) The Key Difference
	(b) Population Differences
	i. Initial Population
	ii. Population Size

	(c) Genetic Algorithm Differences
	i. GA Scope
	ii. Parent Selection
	iii. Classifier Deletion

	(d) Action Selection
	(e) Classifier Updates

	(7) Methodological Issues

	C. Conclusion

	Chapter IV: Experimental Findings and Analysis
	A. Versus TFT
	(1) Number of Unique Classifiers
	(a) Order of Stabilization
	(b) Magnitude at Stabilization
	(c) Learning Rate

	(2) % Correct Responses
	(a) Order of Stabilization
	(b) Magnitude at Stabilization
	(c) Learning Rate

	(3) System Error
	(a) Order of Stabilization
	(b) Magnitude at Stabilization
	(c) Learning Rate

	(4) % of Optimal Population [O]
	(a) Order of Stabilization
	(b) Magnitude at Stabilization
	(c) Learning Rate

	B. Versus RAND
	(1) Number of Unique Classifiers
	(a) Order of Stabilization
	(b) Magnitude at Stabilization
	(c) Learning Rate

	(2) % Correct Responses
	(a) Order of Stabilization
	(b) Magnitude at Stabilization
	(c) Learning Rate

	(3) System Error
	(a) Order of Stabilization
	(b) Magnitude at Stabilization
	(c) Learning Rate

	(4) % of Optimal Population [O]

	C. Proposition Testing
	(1) The Key Difference
	(2) Population Differences
	(a) Initial Population
	(b) Population Size

	(3) Genetic Algorithm Differences
	(a) GA Scope
	(b) Parent Selection
	(c) Classifier Deletion

	(4) Action Selection
	(5) Classifier Updates

	D. Conclusions

	Chapter V: Conclusions
	A. Contributions
	B. Limitations
	C. Future Research
	D. Summary

	Appendix A: Coding the Program in Visual Basic.NET
	Appendix B: XCS Sets and Parameters
	Appendix C: Program Code Listing
	Appendix D: SAS Statistical Tests Output
	Appendix E: Charts, Graphs, and Plots
	Vita

