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ABSTRACT OF DISSERTATION 

 
 
 

INVESTIGATIONS INTO THE COGNITIVE ABILITIES OF ALTERNATE LEARNING 
CLASSIFIER SYSTEM ARCHITECTURES

The Learning Classifier System (LCS) and its descendant, XCS, are promising paradigms for 
machine learning design and implementation. Whereas LCS allows classifier payoff predictions to 
guide system performance, XCS focuses on payoff-prediction accuracy instead, allowing it to evolve 
“optimal” classifier sets in particular applications requiring rational thought. This research examines 
LCS and XCS performance in artificial situations with broad social/commercial parallels, created 
using the non-Markov Iterated Prisoner’s Dilemma (IPD) game-playing scenario, where the setting 
is sometimes asymmetric and where irrationality sometimes pays. This research systematically 
perturbs a “conventional” IPD-playing LCS-based agent until it results in a full-fledged XCS-based 
agent, contrasting the simulated behavior of each LCS variant in terms of a number of performance 
measures. The intent is to examine the XCS paradigm to understand how it better copes with a 
given situation (if it does) than the LCS perturbations studied. 

 
Experiment results indicate that the majority of the architectural differences do have a 

significant effect on the agents’ performance with respect to the performance measures used in this 
research. The results of these competitions indicate that while each architectural difference 
significantly affected its agent’s performance, no single architectural difference could be credited as 
causing XCS’s demonstrated superiority in evolving optimal populations. Instead, the data suggests 
that XCS’s ability to evolve optimal populations in the multiplexer and IPD problem domains result 
from the combined and synergistic effects of multiple architectural differences. 

 
In addition, it is demonstrated that XCS is able to reliably evolve the Optimal Population [O] 

against the TFT opponent. This result supports Kovacs’ Optimality Hypothesis in the IPD 
environment and is significant because it is the first demonstrated occurrence of this ability in an 
environment other than the multiplexer and Woods problem domains. 

 
It is therefore apparent that while XCS performs better than its LCS-based counterparts, its 

demonstrated superiority may not be attributed to a single architectural characteristic. Instead, XCS’s 
ability to evolve optimal classifier populations in the multiplexer problem domain and in the IPD 
problem domain studied in this research results from the combined and synergistic effects of 
multiple architectural differences. 



KEYWORDS: Genetic Algorithms, Classifier Systems, Machine Learning, Iterated Prisoner’s 
Dilemma, Cognitive Aspects 
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CHAPTER I: INTRODUCTION 

A. OVERVIEW 

Well before the HAL 9000 entered the collective consciousness in Stanley’s Kubrick’s 1968 

movie, “2001: A Space Odyssey,” people were intrigued with Artificial Intelligence (AI) and its 

potential applications. Intelligent machines in movies, from 2001’s HAL 9000 to Terminator’s liquid 

metal cyborg to Star Wars’ R2D2 and C3 PO have accelerated the interest in AI, wowing and 

inspiring us to dream of a day when machines are our equals. The appeal is so strong that one of 

AI’s pioneers suggested that: “… AI can be defined as the attempt to get real machines to behave 

like the ones in the movies” (Allen 2001). 

The idea of teaching a machine to behave as a human is alluring, both for practical and for 

more esoteric reasons. Imagine having a machine at your disposal to perform your day’s mundane 

tasks, and to do them as well as or better than you. Science has made significant strides in this 

regard, producing intelligent machines that use genetic algorithms to help manage airport logistics, 

that use intelligent text parsing to find and organize job openings, that use robotic machines to 

survey and sanitize the battlefield, and that use neural networks to recognize fraudulent credit card 

activity (Kahn 2002). 

In many areas, however, progress has been disappointing, and in a way, surprising to many 

experts. Marvin Minsky, the head of the AI laboratory at MIT, proclaimed in 1967 that “within a 

generation the problem of creating Artificial Intelligence will be substantially solved” (Minsky 1967). 

About the same time, Herbert Simon, another prominent computer scientist, announced that by 

1985 “machines will be capable of doing any work that a man can do” (Simon 1965). That’s hardly 

the attitude today. In fact, by 1982 Minsky was admitting, “The AI problem is one of the hardest 

science has ever undertaken” (Kolata 1982). 

This research, then, furthers the state of AI knowledge in a direction many believe to be the 

most promising area for AI, Machine Learning. One expert states emphatically that “Machine 

Learning is the most important aspect of AI” and that the ability to continually learn and adapt is 

central to intelligence. (Waltz 2000). This research furthers knowledge in this area by examining a 

currently popular mechanism for adaptation in Machine Learning, the Learning Classifier System 

(LCS) and one of its variants, known as XCS. Through experimentation with these algorithms, this 

research contributes to the ongoing discourse about intelligent machines and their ability to learn. A 
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thorough review of the literature indicates that research with the focus and setting chosen here has 

not been attempted before. Therefore, the findings from this research are unique and value-adding 

to the existing body of knowledge on unsupervised learning systems. 

B. RELEVANT LITERATURE REVIEW 

(1) Learning Classifier Systems 

The concept behind Learning Classifier Systems is simple; an excellent description is provided 

by Wilson (Wilson 1994): 

A classifier system is a learning system in which a set of condition-action 

rules called classifiers competes to control the system and gain credit based on the 

system’s receipt of reinforcement from the environment. A classifier’s cumulative 

credit, termed strength, determines its influence in the control competition and in 

an evolutionary process using a genetic algorithm in which new, plausibly better, 

classifiers are generated from strong existing ones, and weak classifiers are 

discarded. 

This description may be broken down into the primary determinants of an LCS: 

• Learning system 

• Set of condition-action rules 

• Competition and cooperation to control system 

• Operation based on reinforcement from the environment 

• Evolutionary processes 

• Plausibly better classifiers which are generated from strong existing ones 

• Removal of weak classifiers 

The first classifier system of note was Cognitive System One (CS-1), developed by John 

Holland and Judith Reitman in 1978 (Holland and Reitman 1978). CS-1 ran a simulated linear maze 

with external payoff only at the maze ends, so that the correct step-direction had to be learned at 

each interior point. From these modest beginnings, LCS-based algorithms have been intensely 

researched and applied to a wide variety of environments (Wilson and Goldberg 1989).  

The most recent incarnation of the LCS paradigm, known as XCS, was originally proposed by 

Stewart Wilson in 1995. XCS, or eXtended LCS, differs primarily in its calculation of classifier 
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fitness and in the scope of its genetic algorithm. In XCS, classifier fitness is based on the accuracy of 

a classifier’s payoff prediction instead of the magnitude of the payoff. In addition, the genetic 

algorithm takes place in XCS’s Action Sets instead of in the population as a whole. XCS has been 

shown to work better than traditional Learning Classifier systems in certain environments (Wilson 

1995). The current research dissects the differences between XCS and earlier variants of Learning 

Classifier Systems to discern the key determinants of XCS’s performance in a new experimental 

environment. 

(2) The Prisoner’s Dilemma 

The new environment under study in the current research is the Iterated Prisoner’s Dilemma 

(IPD) game-playing scenario. Because of its broad implications and applicability, the IPD has been 

widely studied and applied as a model for interactions between individuals and organizations. In the 

current research, the IPD is appealing because it is inherently non-Markov, sometimes asymmetric, 

and one where irrationality sometimes outperforms rationality. These characteristics are explained in 

greater detail in Chapter II: D. (2) and result in the IPD being particularly challenging to an artificial 

player. The IPD game also has broader commercial and social parallels than prior LCS settings 

explored. Although it has received sustained research scrutiny since the 1950s, research momentum 

exploded after Axelrod’s (Axelrod 1984) pioneering efforts in applying evolutionary systems to 

outwit humans. The impetus continues, as evidenced by recent announcements by the United 

Kingdom’s Engineering and Physical Sciences Research Council (EPSRC) (2003; 2005). The EPSRC 

announced it was co-hosting a series of competitions into the latest developments surrounding the 

Iterated Prisoner’s Dilemma and was specifically inviting researchers to best the winner in Axelrod’s 

original IPD competitions. In the present research, the IPD game serves as a useful and novel test-

bed for studying Learning Classifier System behavior.  

In the Prisoner’s Dilemma (PD), two players can either cooperate (C) or defect (D). If both 

cooperate or both defect, each receives a reward of R2 or R3, respectively. If one defects while the 

other cooperates, the latter gets a sucker’s payoff of R4 while the former gets R1. Here, 

R1>R2>R3>R4 and (R1+R4)/2<R2. Thus, while mutual cooperation is preferred to mutual defection 

(R2>R3), individual defection is tempting (R1>R2; R3>R4), and repeated cooperation is more lucrative 

than each alternately playing sucker. Therein lies the dilemma: on any given move, should a player 

cooperate or defect? In an Iterated PD, players repeatedly play one another and therefore may be 

able to exploit prior experience with an opponent.  
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(3) Prior Experimental Evidence 

Despite advances in LCS methods and techniques, direct comparison of traditional LCS 

algorithms with the XCS algorithm is hard to find. Most research comparing the two approaches has 

been focused on their relative performance in learning the Boolean multiplexer functions and in 

finding goals in grid-like “woods” and maze environments (Wilson 1999). While useful and 

illuminating, these results leave much room for speculation regarding XCS’s purported advantages. 

Although preliminary efforts have been made to quantify performance differences between LCS- 

and XCS-based algorithms (Kovacs 2000), comparison of XCS with strength-based classifier 

systems remains one of the top 5 priorities of future XCS research (Wilson 2003). 

Moreover, traditional LCS-based systems have been shown to perform very well in some 

settings, such as evolving novel fighter aircraft maneuvering patterns (Smith, Dike et al. 2000; Smith, 

Dike et al. 2000). Thus, it would appear that the traditional LCS model is not entirely without merit, 

and should therefore not be discarded as a viable Machine Learning technique (Wilson 1999). 

Extant research with Learning Classifier Systems and the IPD is limited. Noteworthy examples 

include Smith and Dike, et al.’s work with fighter aircraft maneuvering, in which the authors make 

the argument that a one-versus-one fighter aircraft scenario is analogous to the IPD (Smith, Dike et 

al. 2000), Chalk and Smith’s experimentation with various learning classifier system parameters in an 

IPD environment (Chalk and Smith 1997), and Meng and Pakath’s suite of simulation experiments 

using a traditional LCS in the IPD (Meng and Pakath 2001). These efforts do not investigate the 

performance of XCS in the IPD environment and specifically do not include a comparison of LCS 

and XCS in such a setting. This research, therefore, is novel in both its setting and in its approach. 

C. METHODOLOGY 

This research compares and contrasts traditional LCS-based algorithms with an XCS algorithm 

under specific IPD tournament settings to (a) better understand their adaptive behaviors, and (b) 

determine to what extent the purported virtues of XCS hold in more complex settings like the IPD. 

Using simulation experiments, the learning and steady-state behavior characteristics of a 

modern IPD-playing XCS-based adaptive agent (XCS) are repeatedly compared with those of a 

series of LCS-based agents beginning with a “traditional” model (LCS-0), followed by agents that 

differ from LCS-0 in only one key architectural characteristic. In each comparison, both agents play 

against the same IPD opponent(s). This approach draws on the following key architectural 

differences between LCS-0 and XCS. 
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Table I-1 Key Architectural Differences 
Characteristic LCS-0 XCS 
Initial Population Generation Random  Through Covering 
Population Size Constant, N ≤ N 
Parent Selection Fitness 

Proportional 
Tournament 

Action Selection Fitness 
Proportional 

Biased Exploration 

Classifier Fitness Updates Firing Classifier  All Matching Classifiers 
advocating the same 
Action 

Classifier Deletion Criteria Classifier Fitness Classifier Fitness and 
Resource Balancing 

Genetic Algorithm Panmictic Niche 
Classifier Fitness Determinant Prediction 

Magnitude 
Prediction Accuracy 

 
To investigate the effect of these architectural differences, a custom simulation experiment 

program was coded in Visual Basic.NET. The final source code listing has approximately 6,500 lines 

and provides for the selection of both the learning agent and its opponent, as well as for the setting 

of various experimental and simulation parameters. In addition, the program incorporates routines 

to collect relevant performance data for later analyses. The following screen capture provides a view 

of the simulation program’s user interface. 
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Figure I-1 Simulation Experiment Program User Interface 

 
 

The initial competitions were conducted between LCS-0, the traditional LCS-based agent, and 

each of two pre-programmed IPD-playing opponents. The purpose of these competitions was to 

establish baseline performance characteristics against which to compare subsequent competitions. 

Subsequent competitions were held between the two pre-programmed IPD-playing opponents 

and LCS-based agents which differed in one way from the traditional LCS agent. Because only one 

characteristic was changed in each of these competitions, performance differences were necessarily 

due to the effects of changing that unique characteristic. 

The final competitions were held between a full blown XCS learning agent and the same two 

pre-programmed opponents used in previous competitions. Because XCS employs all of the 

architectural differences and is theorized to provide superior performance to LCS, these final 

competitions provided a theoretical upper bound to learning agent performance. 

Ultimately, the following twenty competitions were held: 
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Table I-2 Agent vs Opponent Competitions 
Competition 
Number 

Agent and Architectural Characteristics Opponent 

1 TFT 
2 

LCS-0 (Baseline LCS) 
RAND 

3 TFT 
4 

LCS-1 (Initial Population: Random 
→Through Covering) RAND 

5 TFT 
6 

LCS-2 (Population Size: Constant, N → ≤ 
N) RAND 

7 TFT 
8 

LCS-3 (Parent Selection: Fitness 
Proportional → Tournament) RAND 

9 TFT 
10 

LCS-4 (Action Selection: Fitness 
Proportional → Biased Exploration) RAND 

11 TFT 
12 

LCS-5 (Classifier Fitness Update: Firing 
Classifier  → All Classifiers in [A]) RAND 

13 TFT 
14 

LCS-6 (Classifier Deletion Criteria: Fitness 
Only → Fitness and Resource Balancing) RAND 

15 TFT 
16 

LCS-7 (Genetic Algorithm: Panmictic → 
Niche) RAND 

17 TFT 
18 

LCS-8 (Classifier Fitness Determinant: 
Magnitude → Accuracy) RAND 

19 TFT 
20 

XCS 
RAND 

 

D. RESULTS 

Statistical analyses of the data generated during these experiments indicate that the majority of 

the architectural differences did have a significant effect on the agents’ performance with respect to 

the performance measures used in this research. The results of these competitions indicate that 

while each architectural difference significantly affected its agent’s performance, no single 

architectural difference could be credited as causing XCS’s demonstrated superiority in evolving 

optimal populations. Instead, the data suggests that XCS’s ability to evolve optimal populations in 

the multiplexer and IPD problem domains result from the combined and synergistic effects of 

multiple architectural differences. 

In addition, it was demonstrated that XCS was able to reliably evolve the Optimal Population 

[O] against the TFT opponent. This result supports Kovacs’ Optimality Hypothesis in the IPD 

environment and is significant because it is the first demonstrated occurrence of this ability in an 

environment other than the multiplexer and Woods problem domains. 
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It is therefore apparent that while XCS performs better than its LCS-based counterparts, its 

demonstrated superiority may not be attributed to a single architectural characteristic. Instead, XCS’s 

ability to evolve optimal classifier populations in the multiplexer problem domain and in the IPD 

problem domain studied in this research results from the combined and synergistic effects of 

multiple architectural differences. 

E. CONTRIBUTIONS AND LIMITATIONS 

(1) Contributions 

As described previously, the current research is noteworthy because it has not been attempted 

previously and therefore offers new insight into the workings of LCS and XCS. Stewart Wilson, the 

designer and architect of XCS and a well-regarded authority in the field, commented that the current 

research was  “… very important …” and “… will reveal some interesting architectural and 

performance data about LCS and XCS, and perhaps more importantly, will take XCS into new 

territory that should have wide application” (Wilson 2005).  

In addition, several specific features of this work distinguish it from prior research with 

Learning Classifier Systems:  

1. This research constitutes the first known decomposition and study of the XCS algorithm’s 

constituent parts. Specifically, eight significant architectural differences between traditional 

LCS and XCS systems were identified and analyzed. While each architectural characteristic 

was shown to significantly affect performance, none in and of itself could be credited as 

providing XCS’s demonstrated superiority. Instead, it is apparent that XCS’s ability to 

evolve optimal populations in the multiplexer, woods, and IPD problem domains is due to 

the combined and synergistic effects of multiple architectural differences. 

2. The Iterated Prisoner’s Dilemma is a new and previously untested problem domain for 

XCS-based systems. This domain is unique because it is not a static or deterministic domain 

as are the previously studied multiplexer and woods environments. Moreover, depending on 

the opponent, IPD competitions often call for irrational decision making, challenging 

learning agents in new and previously untested ways. The IPD also has broader social and 

business parallels than do previously studied environments, offering greater ability to extend 

and apply research results. Other benefits of the IPD problem domain include asymmetric 

updates of the knowledge base and the ability to test learning agents against multiple 

opponents, including “noisy,” changing, or illogical opponents. 
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3. This research provides the first demonstration of XCS’s ability to reliably evolve the 

Optimal Population [O] against the TFT opponent. This result supports Kovacs’ Optimality 

Hypothesis in the IPD environment and is significant because it is the first demonstrated 

occurrence of this ability in an environment other than the multiplexer and Woods problem 

domains. 

4. To accomplish this research, a computer simulation program was written in Visual 

Basic.NET, the first known instance of such a program in this language. VB.NET offers 

several advantages over other languages used in previous classifiers system research. First, it 

is executable on common Windows-based personal computers, greatly extending the 

flexibility of the researcher. Second, VB.NET modules may be written to integrate program 

execution with other Windows-based programs, providing the ability for automatic data 

capture and display. This feature is employed in the current research, with modules to 

automatically store and display data in Microsoft Excel spreadsheets. VB.NET also offers 

the ability to interact with the user in a visual manner, providing the researcher with the 

ability to examine evolutionary path traces during the course of normal execution. This 

ability is employed in the current research and greatly aided the researcher in tracking 

classifiers throughout the evolution process. 

(2) Limitations 

LCS- and XCS-based learning agents are complex mechanisms with many moving parts; the 

lack of understanding regarding these parts provides much of the impetus for the current research. 

As an example, the XCS implementation relies on over 20 parameters in its execution (an exposition 

of these parameters is provided in Appendix B: XCS Sets and Parameters). Historically, parameter 

values have been set relying as much on intuition as on empirical research. This research relies on 

these generally accepted values for these parameters, necessarily limiting its results to a specific set of 

parameter values. Second, as described later in this paper, there exist many possible competitions 

between learning agents and pre-programmed opponents. This research studies competitions 

between the learning agents and a select subset of these opponents, again limiting the generality of 

the results. Third, the LCS-based learning agents used in this research differ in only one way from 

the traditional LCS implementation. Combining architectural differences in a systematic manner 

would provide additional information regarding cumulative effects and offers the possibility of 

increased insight into the workings of LCS and XCS algorithms.  

Copyright © David Alexander Gaines 2006 
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CHAPTER II: REVIEW OF THE LITERATURE 

A. INTRODUCTION 

Learning Classifier Systems and its more recent variants is one of many techniques belonging to 

the field of Artificial Intelligence. This chapter, therefore, provides an introduction to AI and 

Machine Learning, particularly as these fields relate to the current research. This introduction to AI 

is followed by a description of a traditional Learning Classifier System and its more recent variant, 

the eXtended Classifier System. Finally, the chosen testbed for this research, the Iterated Prisoner’s 

Dilemma, is explained and detailed. The purpose of this chapter is to provide a general background 

of the relevant fields from which theory is drawn in this research, as well as to provide a thorough 

and detailed understanding of the techniques under study. 

B. ARTIFICIAL INTELLIGENCE 

(1) Background and Definition 

AI, made possible with the advent of “powerful” computers in the late 1950s, is a relatively 

young field compared with more traditional mathematical techniques (Samuel 1959). As it has been 

studied for many years, AI has a number of definitions; an appropriate one for the present research 

is provided by the American Association for Artificial Intelligence: “…the scientific understanding 

of the mechanisms underlying thought and intelligent behavior and their embodiment in machines” 

(2004). Modern AI has its roots in the years following the end of World War II, when computer 

resources previously devoted to military applications were available for more esoteric pursuits 

(Reingold and Nightingale 2000). 

Interest in AI continues unabated; in recent years, the Defense Advanced Research Projects 

Agency (DARPA) has sponsored contests in California’s Mojave Desert and in artificial urban 

environments in which robotic entrants are challenged to navigate a challenging, pre-defined course 

without human intervention or control (Flynn 2004; 2006). In the 2004 competition, entrants were 

given coordinates of the course just thirty minutes before the race and, although no one vehicle 

completed the entire course, “collectively all the engineering problems associated with unmanned 

land navigation were solved” (Flynn 2004). The most recent competition resulted in four of five 

teams completing a grueling 131.2-mile course in the Mojave Desert, with The Stanford Racing 

Team taking the $2M prize with a winning time of 6 hours, 53 minutes (2006). There have been 

many other successful AI applications, ranging from IBM’s Deep Blue chess-playing supercomputer, 
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to AI-assisted labs for concocting novel drug candidates, to fraud detection programs in use at many 

financial institutions (Menzies 2003; 2004). 

(2) Artificial Intelligence Families 

Since the inception of AI research, the increasing availability of computing power, both in 

institutional form and in the availability of personal computers, has led to a rapid expansion in 

theory and techniques. This continually changing landscape has resulted in difficulties in defining the 

exact nature of techniques and families of techniques (DeJong and Spears 1993). Figure II-1, based 

on work by Alba (Alba and Cotta 1998; Alba 2004) and adapted by Browne (Browne 1999), provides 

one typology of different AI techniques. As the figure depicts, there are many classes and categories 

of AI techniques, all slightly different in their approaches to harnessing computing power and the 

computer’s ability to learn. As shown in Figure II-1, the current research involves a class of 

techniques which may be considered part of the Genetic Evolutionary family. While the figure 

depicts LCS-based algorithms and Genetic Algorithms as two distinct families, LCS-based 

implementations borrow heavily from genetic algorithm-based research.  
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Figure II-1 Artificial Intelligence Family Tree 
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Using a different artificial intelligence typology, LCS and XCS may also be thought to belong to 

other classes of techniques, drawing inspiration from areas such as Parallel Solutions, Machine 

Learning, and Nature Inspired (Browne 1999), as depicted in Figure II-2.  
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Figure II-2 Classes of Techniques That Contain Learning Classifier Systems 
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(3) Artificial Intelligence Strategies 

Historically, Evolutionary Algorithms used in various AI techniques have consisted of three 

well-defined paradigms: Evolution Strategies, Evolutionary Programming, and Genetic Algorithms 

(GA) (Bäck 1996). The first two techniques rely primarily on mutation to evolve, while Genetic 

Algorithms use recombination to effect adaptation and learning. Moreover, while Evolutionary 

Programming represents individuals as finite state machines, Evolution Strategies uses real values on 

a genetic level and Genetic Algorithms use bit strings (Schwefel 1995). As these separate techniques 

developed and became more mature, however, these distinctions disappeared as beneficial methods 

from one technique were adopted into others (Goldberg, Deb et al. 1991). 

The term Evolutionary Algorithms has now been superseded by Evolutionary Computation 

(EC), which is also the title of the international journal for the field (DeJong and Spears 1993). 

Evolutionary Computation recognizes that the boundaries between the techniques are less clear than 

previously defined, that new techniques are emerging (e.g. Genetic Programming), and that 

individual methods are less important than the strategies used when categorizing techniques (Koza 

1992). 
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(a) Overarching Strategy 

The overarching strategy of Evolutionary Algorithms was one of optimization. This was 

perhaps most apparent in Genetic Algorithms where an entire population was devoted to the 

discovery of a single, optimum individual. Although optimization is still a major task in Evolutionary 

Computation, the single optimum has been augmented by other objectives. Co-adaptation, multiple 

objectives, and robust optima have all been the subject of algorithmic search (Davis 1991). Genetic 

Algorithms have been developed that can find local optima as well as locating the global optimum 

(Goldberg 1989). 

Learning Classifier-based systems, the focus of this research, are driven to optimize a 

population of rules that are themselves optimum in local niches. This requires the important concept 

of cooperation for the rules to form a complete optimum. The increase in strategies has led to more 

problem types becoming solvable through the use of Evolutionary Computation techniques 

(Browne 1999). 

(b) Representation 

Evolutionary Algorithms were tied to the concept of natural systems, so information was 

generally represented in terms of genotypes (the encoding of parameters) and phenotypes (the 

response of an individual to an environment). Genetic Algorithms represent knowledge using bit 

strings, while knowledge encoding in Evolutionary Programs and Expert Systems were typically 

implemented in a more natural language form (Bäck, Fogel et al. 1997). The representation of most 

Evolutionary Computation techniques can be a natural form, a bit form, or a domain specific 

representation. Over time, the flexibility of representation using the traditional ternary (0, 1, #) 

representation was expanded to include multiple punctuation, logical, and mathematical operators 

(Koza 1992; Wilson 1999). 

(c) Supervision 

The three types of supervision that may be applied to a learning technique are summarized by 

Smith and Dike (Smith and Dike 1995) following on work by Barto (Barto 1990): 

1. Supervised learning: the environment contains a teacher that (directly or indirectly) 

provides the correct response for certain environmental states as a training signal for the 

learning signal. 

2. Unsupervised learning: The learning system has an internally defined teacher with a 

prescribed goal that does not need utility feedback of any kind. 
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3. Reinforcement learning: The environment does not directly indicate what the correct 

response should have been. Instead, it only provides reward or punishment to indicate 

the utility of actions that were actually taken by the system. This type of supervision 

forms the basis of learning in Learning Classifier Systems and is explained in greater 

detail in the next section. 

(4) Machine Learning 

The ability to learn is central to Learning Classifier-based machines, so understanding the types 

of learning used within Artificial Intelligence assists in understanding the current research and its 

underlying algorithms. Soon after the advent of the electronic computer, scientists envisioned its 

potential to exhibit learning behavior. Early work by Samuel (Samuel 1959) and others prompted the 

development of a number of learning machines and different approaches to Machine Learning.  

Various authors have used different, but related definitions of learning. The following 

definitions are relevant to the present study. Holsapple, Pakath, Jacob, and Zaveri describe human 

learning “as an amalgam of knowledge acquisition and skill acquisition” (Holsapple, Pakath et al. 

1993). Narendra and Thathachar propose the following, behavior-oriented, view: “Learning is the 

ability of systems to improve their responses based on past experience” (Narendra and Thathachar 

1989). Michalski, Carbonell, and Mitchell define learning more cognitively: “Learning processes 

include the acquisition of new declarative knowledge, the development of motor and cognitive skills 

through instruction and practice, the organization of new knowledge into general, effective 

representations, and the discovery of new facts and theories through observation and 

experimentation” (Michalski, Carbonell et al. 1983). A common theme in these definitions is an 

improvement in the behavior of the system towards an environment, originating from repeated 

instructions from that environment.  

Because this research is specifically concerned with the ability of machines to demonstrate 

learning behavior, it is also instructive to consider more focused definitions. The following 

descriptions are particularly relevant to the present study and may be used to indicate whether 

learning has occurred: 

An agent (Machine Learning system) learns (with respect to an environment) 

if its production of a response alters the state of the environment in such a way 

that future responses of the same type tend to be better (Kondratoff and 

Michalski 1990).  
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Systems that are capable of making changes to themselves over time with the 

goal of improving their performance on the tasks confronting them in a particular 

environment are said to demonstrate learning (Kondratoff and Michalski 1990). 

Many different approaches have been used to implement Machine Learning. The specific 

approach used in a particular research study is often based on the task to be learned, the way in 

which the task is performed, and on popular theoretical views at the time. For the purposes of this 

research, Machine Learning will be categorized according to Michalski, Carbonell, and Mitchell’s 

Machine Learning classification scheme. The classifications, ordered approximately in descending 

need of required supervision from a teacher are rote learning and direct implementation of new 

knowledge, learning from instruction, learning by analogy, learning from examples, and learning 

from observation and discovery (Michalski, Carbonell et al. 1983). 

(a) Learning by Rote 

Rote learning and direct implementation is the most basic way of learning. It amounts to 

directly inserting knowledge into a system, either by programming it or by putting the knowledge 

into a database (Michalski, Carbonell et al. 1983). The system that learns by rote performs no 

inferencing whatsoever; the emphasis is instead on learning through memorization and the 

development of indexing schemes to quickly retrieve memorized knowledge when needed 

(Holsapple, Pakath et al. 1993). The system itself does nothing with the knowledge, except for 

extracting, executing, storing, and reproducing it (Michalski, Carbonell et al. 1983). 

(b) Learning from Instruction 

Learning from instruction requires more effort on the system’s part; it is very much like 

education at school. The learning system must be able to understand, store, and integrate 

instructions with what it already knows (Michalski, Carbonell et al. 1983). The system depends on 

external sources to incrementally present it with knowledge in an appropriately organized form, and 

then selects new knowledge that must be acquired. It then performs syntactic reformulation of this 

knowledge to integrate it with existing knowledge (Holsapple, Pakath et al. 1993). 

(c) Learning by Analogy 

The third category, learning by analogy, requires yet more effort from the system. The system 

must find in its existing knowledge something similar to the task to be learned and change the 

knowledge already present until it is applicable to the situation at hand (Michalski, Carbonell et al. 
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1983). The system must then store this newly acquired knowledge in its knowledge base until it is 

ready to be used. Another way to define analogical learning is the retrieval, transformation, and 

augmentation of relevant existing knowledge into new knowledge that is appropriate for effectively 

dealing with a new problem that is similar to some previously encountered problem (Holsapple, 

Pakath et al. 1993). 

(d) Learning from Examples 

In this type of learning, the system is presented an example from an environment and 

information to associate with the example. This information can be an indication of whether the 

example is positive or negative, whether the response of the system was good or bad, or some action 

to associate with the example. If the information is given at the same time as the example, it is called 

“true learning with examples” (Michalski, Carbonell et al. 1983). If the information is given after the 

system has generated a response, it is described as “reinforcement learning” (Kovacs 2002). As will 

be described later in this chapter, learning classifier-based systems make extensive use of 

reinforcement learning; therefore, it is useful to describe this technique in some detail. 

A depiction of a general reinforcement learning scheme is provided in the following diagram. 

As the figure indicates, the system interacts with the environment, receiving inputs and emitting 

actions that affect the environment and which may result in payoffs. 

Figure II-3 General Reinforcement Learning Framework 
Environment 

Learning System 

Reinforcement 

Example Response 

 
This framework above represents the key concepts behind reinforcement learning, which has 

often been chosen as the appropriate framework for developing learning machines that can function 

autonomously (Wilson 1999). Reinforcement learning is frequently chosen as the learning 

mechanism in machines because it is often unclear to a human what a machine must do in order to 

achieve a defined goal; humans do not “see” the environment the way a machine does, and therefore 

cannot predict how the machine’s actions will affect the environment. The desired end results, 

however, are often known and rewards can be attached to them. A programmer might say, for 

example, “I want the machine to find as much dirt as possible, so I will give the machine a small 
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payoff every time it finds some.” This reward mechanism is usually much easier to implement than 

prescribing exactly what steps the machine must perform to find dirt, as a teacher in a learning 

instruction environment might do (Wilson 1999).  

(e) Learning from Observation and Discovery 

The last class of learning, learning from observation and discovery, or unsupervised learning, is 

the most sophisticated type of learning. In this type of learning, the learning system is left on its own 

to explore its environment and try to make classifications of phenomena it sees or to form theories 

about it (Michalski, Carbonell et al. 1983). A system employing this strategy learns by examining a 

relevant environment that contains one or more concepts of interest without explicit external 

guidance. The system must then identify, capture, codify, and store relevant concepts from the 

environment without any supervision (Holsapple, Pakath et al. 1993). Observation may be carried 

out passively, without disturbing the environment in any way, or through active interaction with the 

environment. 

C. LEARNING CLASSIFIER SYSTEMS 

Having now addressed AI and its key components as related to this research, the following 

sections provide working descriptions of a traditional learning classifier-based system and its more 

recent variants. 

The learning system of interest in this research is called a classifier system. Learning classifier 

systems (LCS) are a Machine Learning paradigm first posited by Holland in the mid-1970s (Holland 

1975), that learns syntactically simple string rules, called classifiers, to guide its performance in an 

unknown and arbitrary environment. The classifier system derives its name from its ability to 

“classify” inputs from its environment into sets, and to recommend actions based on those sets. 

Classifier systems are similar in many respects to more traditional control systems. Just as control 

systems use feedback to “control” or “adapt” their outputs for particular environments, classifier 

systems use feedback to “teach” or “adapt” their classifiers to their unique environments (Dorf 

1983; Kovacs 1996). 

The classifier system has developed from the merging of expert systems and genetic algorithms 

(Holland 1975; Charniak and McDermott 1985; Waterman 1985). This synthesis has overcome the 

main drawback to expert systems; namely, the long task of discovering and inputting rules. Using a 

genetic algorithm, the classifier system autonomously learns the rules needed to perform in a given 
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environment. In the current study, this environment is a simulated game of the Iterated Prisoner’s 

Dilemma. 

In Holland’s original work, two ideas emerged which became key topics for future research on 

Machine Learning. The first idea was that the Darwinian theory of enhanced survival of fitter 

entities could be used to trigger the adaptation of an artificial system to an unknown environment. 

This idea later became the basis of research areas like Evolutionary Computation, Adaptive 

Behavior, and Artificial Life (Lanzi and Riolo 1999). The second revolutionary idea proposed by 

Holland was that a system could learn to perform a task just by trying to maximize the rewards it 

received from an unknown environment. This mode of learning through “trial and error” 

interactions has been formalized and developed in the area of Reinforcement Learning, which is 

now a major branch of Machine Learning research (Lanzi and Riolo 1999). Reinforcement Learning, 

as originally postulated by Holland, is closely related to Michalski, Carbonell, and Mitchell’s Learning 

by Example classification described in Chapter II: B. (4) (d) . Because most environments are not 

static and because learning can never be said to be complete, the classifier learning process may 

never be complete.  

(1) LCS-0: A “Traditional” Learning Classifier System 

The following sections present a simple classifier system as first described by Holland and 

Reitman (Holland and Reitman 1978). The significant components of the classifier system are 

described, including the genetic algorithm (GA). Because the GA plays a vital role in the classifier 

system’s learning ability, the major aspects of this algorithm are examined in some detail. After the 

introductory explanation of the classifier system’s components, the entire learning classifier system is 

presented, depicting the interaction of its various components. After exposition of the classifier 

system and the genetic algorithm, a number of exemplar learning classifier system applications are 

reviewed. 

(a) LCS-0 Architecture 

A classifier system has three major components:  

• Rule and message subsystem,  

• Apportionment of credit subsystem, and 

• Classifier discovery mechanisms (primarily the genetic algorithm).  

Figure II-4 depicts how the classifier system interacts with its environment. As described 

previously in Chapter II: B. (4) (d) and illustrated in Figure II-3, classifier systems behave according 
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to the mechanism employed in “Learning From Examples.” The classifier system receives 

information about the environment, performs internal processing and then affects the environment. 

It then uses feedback about the effect on the environment to learn from the experience. Figure II-4 

shows the classifier system in learning mode, because the classifier system is using the feedback to 

learn from experience. Conversely, if no feedback is provided, the classifier system is said to be in 

application mode. Application mode is used after sufficient learning has been accomplished. The 

following discussion, up until Chapter II: C. (1) (d)  Classifier Systems: The Holistic Viewpoint deals 

with the classifier system exclusively in learning mode. 

Figure II-4 Interactions between Classifier System and Environment 
Environment 

Learning Classifier 
System 

Payoffs/Feedback 

Inputs Actions 

 
Figure II-5, Traditional Learning Classifier System Modules provides more detail on the 

classifier system’s internal components. In Figure II-5, the Detectors, Effectors, and Classifier Population 

blocks make up the rule and message subsystem; the Auction and Reward/Punishment blocks represent 

the apportionment of credit subsystem; and the Classifier Discovery block signifies the system’s 

classifier discovery subsystem. The following subsections describe these components in detail, and 

provide more information about the information flow between them.  
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Figure II-5 Traditional Learning Classifier System Modules 
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i. Rule and Message Subsystem 

Each classifier consists of a rule or conditional statement whose constituents are words drawn 

from the ternary alphabet (0, 1, #). The benefit of such a representation scheme is that, just as text is 

stored on computer disks as 0s and 1s, any rule can be translated into 0s, 1s, and #s, so that it is in 

the form of a classifier. Once translated, rules can be manipulated more easily, and rule discovery 

and modification can occur. The alphabet is explicitly restricted to allow for the power of genetic 

algorithms to be applied to the rule set as described in Chapter II: C. (1) (b)  Genetic Algorithm. The 

alphabet in no way restricts the representational capacity of the classifiers.  

Each classifier has one or more words or conditions as the antecedent, an action statement as 

the consequent, and an associated strength. To illustrate, Table II-1, Samples of Valid Classifiers 

shows samples of strings that are valid forms for classifiers, (with the “:” symbol denoting the break 

between the antecedent and action, (i.e. <antecedent>:<action>), in the first column, and their 

associated strength in the second column. 
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Table II-1 Samples of Valid Classifiers 
Rule Strength 
011:101 23.2 
011001##10#110:11 17.3 
10101000110011##100#:11100001 32.9 
####:1 7.1 

 

The “#” symbol in the ternary alphabet acts as a wild card or “don’t care” in the condition, 

matching either a 0 or 1. This allows for more general rules; the more “don’t care” symbols, the 

more general the rule. The measure used to quantify this characteristic is called specificity. The 

specificity of a classifier is the number of non-# symbols in the antecedent. If a classifier’s 

antecedent consists of all # characters then the specificity is zero; if there are no # characters in the 

antecedent then the specificity is equal to the antecedent’s string length.  

The messages, generated either from the environment or from the action of other classifiers, 

match the condition part of a classifier. Therefore, an action is a type of message, with the 

consequence of an action being the modification of the environment (or the attempted matching 

with another classifier in some classifier systems). In this study, classifiers only match messages from 

the environment and actions generated from classifiers only affect the environment. 

For a condition to match a message, every part of the condition string must match every part of 

the message string. Therefore the message,  
011001 

would match all of the following conditions  

0110#1 
011001 
##100# 
###### 

as well as others. 

The strength of a classifier provides a measure of the rule’s past performance in the 

environment in which it is learning. That is, the higher a classifier’s strength the better it has 

performed and the more likely it will actually be used when the condition matches an environmental 

message (refer to Chapter II: C. (1) (a) ii. a. for details) and to reproduce when the GA is applied 

(refer to Chapter II: C. (1) (b) for additional information). The strength values are relative; therefore, 

a range limit is set. If the classifier strength falls out of this range, the strength value can be set to the 

closest range extreme to eliminate the range violation. 

The rule portion of a classifier has the template: 
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IF <condition> THEN <action> 
where 

<condition> is encoded as a string from the alphabet, and 

<action> is also encoded as a string from the alphabet. 

This form differs from those normally found in expert systems. In expert systems, the rules 

often consist of sentences, for example:  
IF the patient exhibits symptom X, THEN diagnose illness Y 
 
As opposed to the classifier system’s ternary alphabet representation, such syntax makes it very 

difficult for a computer system to be able to modify such a rule.  

The messages from the environment are filtered and converted via input sensors. The sensors 

(called detectors in classifier system parlance) discriminately select certain aspects of the 

environment to sense and then translate the input to a binary form which can be processed by the 

classifiers.  

The actions of matching classifiers modify the environment via the effectors (or output 

interface) as depicted previously in Figure II-5, Traditional Learning Classifier System Modules. The 

effectors translate the binary action into a form which is appropriate to modify the environment 

within an envelope of allowable modifications. 

ii. Apportionment of Credit Subsystem  

The apportionment of credit subsystem deals with the adjustment of the strength of classifiers 

as the classifier system learns (Booker, Goldberg et al. 1989). In a traditional LCS, strength 

adjustments occur via three interrelated mechanisms: 

• Auction,  

• Reinforcement and punishment,  

• Taxation. 

As the classifier system receives messages from the environment, all the classifiers that match 

one (or more) of the messages compete, by submitting a bid, in an auction to determine a victorious 

classifier that will affect the environment. Chapter II: C. (1) (a) ii. a. further discusses the auction. 

The victorious classifier’s effect will be beneficial or detrimental to the environment. With this 

feedback, the apportionment of credit subsystem appropriately uses reinforcement and punishment 

to increase or decrease the strength of the victorious classifier that modified the environment. 

Chapter II: C. (1) (a) ii. b.  Reinforcement and Punishment details how feedback from the 
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environment is used with reinforcement and punishment. Finally, taxation is levied on each classifier 

per iteration and on each classifier that submits a bid during an auction. Details of and the need for 

taxation are provided in Chapter II: C. (1) (a) ii. c.  Taxes.  

Computer simulations show that the exact mechanism for the apportionment of credit 

subsystem is not critical to the learning ability of the classifier system (Riolo 1988). That is, the 

apportionment of credit subsystem may have many forms and the classifier system will still learn, 

albeit incrementally more efficiently with the apportionment of credit subsystem in some forms than 

others. This is an example of one of the many classifier system parameters which may vary in 

different classifier system implementations. The values to which the parameters should be set to 

cover a range, guided by biological analogy and empirical results. Many times the parameters are 

manipulated during the learning process to determine if such manipulations can enhance learning 

(Riolo 1988). 

a. Auction: Bidding and Competition  

An auction is performed among all the classifiers that have an antecedent that matches at least 

one of the environmental messages. The classifier system’s detectors receive input from the 

environment and assemble the input into environmental messages. Each classifier attempts to match 

each environmental message, with each classifier that matches bidding in the auction. 

With the matching classifier pool determined, the auction commences. Each classifier 

participating in the auction submits a bid; the bid is a function of the classifier’s strength and 

specificity. Only the bid of the victorious classifier is paid, so only the victorious classifier has its 

strength decreased by the amount of its winning bid. The bid of classifier i at iteration t, Bi(t), is 

calculated as: 

Equation II-I Calculation of Classifier’s Bid 

(t)iS*)
BRPowBidRatio*2k1(k*0k(t)iB +=  

 

where 
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Table II-2 Classifier Bid Variables 
Parameter Description 
k0 Classifier Bid Coefficient: positive constant less than 

one that acts as an overall risk factor influencing 
what proportion of a classifier’s strength will be bid 
and possibly lost on a single step. 

k1 Bid Coefficient 1: constant less than one for non-
specificity portion of bid. 

k2 Bid Coefficient 2: constant less than one for 
specificity portion of bid. 

BidRatio Measure of the classifier’s normalized specificity. A 
BidRatio of 1 means there is just one possible message 
that matches its condition, while a BidRatio of zero 
means the classifier would be matched by any message 
and the antecedent would consist of all wildcard 
characters. 

BRPow Parameter controlling the importance of the BidRatio in 
determining a classifier’s bid (default is 1). 

Si(t) Strength of classifier i at step t. 
 

Figure II-6, shown on the next page, provides a simplified view of how the auction functions. 
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Figure II-6 Auction in Classifier System 
Environment 

Input From 
Environment 

Detectors Effectors 

Actions Affect 
Environment 

Classifier 
Population 

 
01010010:0101 
10001001:1001 
00101001:1011 

. 

. 

. 
11110010:1001 
00100001:0011 

• Detectors sense information 
from environment 

• Convert to binary; assemble into 
environmental messages 

• Match environmental messages 
with antecedents of classifiers 

• Classifiers that match 
environmental message go to 
the auction 

 
 
 
 
• Victorious classifier executes 

consequent 
• Consequent sent to effectors; 

effectors modify environment 

Auction 

Learning Classifier 
System 

 
To promote exploration of the classifier space, the bids submitted by each competing classifier 

in Equation II-I are not used directly to determine the auction winner; random noise is added to the 

auction. Therefore the effective bid, eBi(t), is calculated as the sum of the deterministic bid, BiB (t), and 

a noise term, N(σbid), as shown in : Equation II-II

Equation II-II Calculation of Classifier’s Effective Bid 
)bidN(σ(t)iB(t)ieB +=  

b. Reinforcement and Punishment 

Since the pioneering work on Machine Learning by Samuel (Samuel 1959), the credit 

assignment problem (Minsky 1961) has been known to be a key problem for any learning system in 

which many interacting parts determine the system’s global performance. Credit assignment deals 

with the problem of deciding, when many parts of a system are active over a period of time (or even 

at every time step), which of those parts active at some step t contribute to achieving some desired 

outcome at step t+n, for n > 0. 
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To solve the credit assignment problem in classifier systems, the bucket brigade algorithm, as 

defined by Holland (Holland 1986), was developed, and has experienced limited success to date. An 

alternative and simpler solution (when possible) is the implementation of the classifier system as a 

stimulus-response (S-R) system. This solution has proven to be a successful one as indicated by the 

examples provided in Table II-7, Applications of Classifier Systems. An S-R classifier system 

activates only one classifier during each iteration and the activated classifier affects the environment. 

Therefore the environmental modification can easily be attributed to a single source. 

A trainer is necessary to determine whether the environmental modification was beneficial or 

detrimental. Some Machine Learning systems require a tutor trainer which knows the correct or best 

answer, enabling the system’s actual response to be compared with the correct response. 

Fortunately, a classifier system requires only the more flexible reinforcement trainer. Reinforcement 

learning requires only positive or negative feedback from the reinforcement trainer as a consequence 

of a response. 

When the victorious classifier creates a beneficial effect to the environment, the trainer sends 

positive feedback, causing an increase in the victorious classifier’s strength. Conversely, a detrimental 

effect leads to punishment. Since the victorious classifier’s strength decreases when it wins the 

auction and pays its bid (as shown in Equation II-I, Calculation of Classifier’s Bid), punishment 

occurs implicitly anytime a reward is not provided. In addition, an adjunct strength reduction may 

occur. If the trainer has the ability to rank environmental effects, then the rewards and punishments 

can be scaled appropriately.  

The strength S (t+i 1) of a classifier i at the end of iteration t is: 

Equation II-III Calculation of Classifier’s Strength 
(t)iB(t)iR(t)iS1)(tiS −+=+  

 

where 

Table II-3 Classifier Strength Variables 
Parameter Description 
Si(t) Strength of classifier i at beginning of iteration t. 
Ri(t) Reward from the environment during iteration t. 
Bi(t) Classifier’s bid during iteration t (as defined by 

Equation II-I, Calculation of Classifier’s Bid); only 
paid if victorious. 
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Again, classifier i only makes a bid payment if victorious in the auction, in which case it will 

affect the environment. The reward factor, Ri(t), is only non-zero if the classifier won the auction on 

the previous iteration. The reward (or punishment) for the action at iteration t will not be applied 

until iteration t + 1. Note that Ri(t) is less than zero for punishment, and greater than zero for 

reward. 

c. Taxes 

Taxation occurs to prevent the classifier population from being cluttered with artificially high 

strength classifiers of little or no utility. There are two types of taxes:  

• life tax, 

• bid tax. 

The life tax, taxlife, (also called head tax) is a fixed rate tax applied to every classifier on every 

iteration. The purpose is to reduce the strength of classifiers that rarely or never are matched and 

therefore provide little or no utility. Non-producing classifiers’ strengths are slowly decreased, 

making them candidates for replacement when the classifier discovery mechanisms (primarily the 

genetic algorithm) create new classifiers. The bid tax, taxbid, is a fixed-rate tax that is applied to each 

classifier that bids during an iteration. One reason for a bid tax is to penalize overly general 

classifiers, i.e., classifiers that bid on every step but perhaps seldom win because they have a low 

specificity which leads to low bids and so a low chance of winning the auction to post effector 

messages (Riolo 1988).  

The taxlife reduces the strength of inactive classifiers such that after n iterations of inactivity the 

strength of an inactive classifier may be found using the following equation: 

Equation II-IV Calculation of Inactive Classifier’s Strength After n Iterations 
n)lifeTax(1*S(t)n)S(t −=+  

 

The life tax may be found by Equation II-V: 

Equation II-V Calculation of Taxlife Rate 
)n1()

2

1
(1lifeTax −=  

 

As will be discussed in Chapter II: C. (1) (a) iii.  Classifier Discovery Mechanisms, new 

classifiers are inserted into the population at the average strength of their parents, thus the tax rate 
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must be set to ensure that inactive rules are degraded sufficiently before the application of the 

genetic algorithm. If this is not done, relatively inactive rules can retain an unrealistically high level of 

strength and ultimately reach reproduction disproportionately, thereby cluttering future populations 

with large numbers of overrated inactive rules. However, the tax burden can not be so great that 

rules which have only remained inactive by chance become so weak that they are essentially 

eliminated from any auction. The ultimate objective is to tax classifiers so that newly inactive rules 

are not purged and so that old inactive classifiers are not chosen to participate in the system’s 

genetic algorithm. 

With all the apportionment of credit mechanisms defined, the complete strength equation is 

shown in Equation II-VI: 

Equation II-VI Calculation of Classifier’s Strength 
(t)iB*bidTax(t)iB(t)iR(t)i)SlifeTax(11)(tiS −−+−=+  

 

Recall that: 

• R (t) i will only be non-zero if classifier i won the auction on iteration t-1. 

• BiB (t) is only paid if classifier i wins the auction. 

• Tax  * B (t) bid i is only paid if classifier i bids in the auction (irrespective of whether 

classifier i wins the auction or not). 

iii. Classifier Discovery Mechanisms  

Two classifier discovery mechanisms are implemented in a typical LCS: 

• Genetic algorithm,  

• Triggered cover detector operator.  

The foremost operator, the genetic algorithm, provides the bulk of the discovery and learning 

capability found in a classifier system. Discussion of the GA is deferred to Chapter II: C. (1) (b) and 

its subsections to provide the coverage due.  

The triggered cover detector operator (TCDO) is a triggered rule generation mechanism, i.e., a 

rule generation operator that is only activated (i.e., triggered) when certain conditions occur. In 

practice, it is triggered whenever the classifier system does not have a classifier which matches (i.e. 

covers) any environmental message. It responds by producing one new classifier that would be 

satisfied by an environmental message at step t with a condition that matches the unmatched 

environmental message. The action part is randomly generated on the alphabet.  
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The TCDO is a special case of a mutation operator (described in Chapter II: C. (1) (b) ) which 

implements a random walk through the space of possible classifiers. A random walk performs 

poorly in the astronomical search space of possible classifiers; however, in conjunction with a GA, a 

TCDO improves learning relative to the GA being applied alone (Robertson and Riolo 1988). 

Two considerations must be accounted for when determining the initial strength given to a new 

classifier created by either the TCDO or the GA:  

1. The strength should not be too low, otherwise the new classifier will never win an 

auction and therefore never get a chance to prove itself better (or worse) than existing 

classifiers. 

2. The strength should not be too high, otherwise the new classifiers will be tried too 

often, overruling existing rules that perform well, and may lead to unstable performance.  

Computer simulation studies conclude that rules introduced by the TCDO should have the 

average of the strengths of the classifiers in the population; while the offspring of the GA should 

have the average strength of the parents (Riolo 1988). 

(b) Genetic Algorithm 

Most complex organisms evolve by means of two primary processes: natural selection and 

sexual reproduction. The first determines which members of a population survive to reproduce, and 

the second ensures mixing and recombination (called variability or diversity in the natural sciences) 

among the genes of their offspring.  

A genetic algorithm  is a stochastic search algorithm based on the mechanics of natural 

selection (Darwin 1897) and population genetics (Mettler, Gregg et al. 1988). Genetic algorithms are 

patterned after natural genetic operators that enable biological populations to effectively and 

robustly adapt to their environment and to changes in their environment. Some of the 

correspondences between biological genetics and genetic algorithms are shown in Table II-4.  

Table II-4 Biological and Artificial Vernacular Correspondence 
Biological Term Corresponding Genetic Algorithm Term
chromosome classifier or string 
gene character or bit 
allele bit value 
locus position 

 

Genetic algorithms, as Goldberg states and demonstrates, are theoretically and empirically 

proven to provide robust search in complex spaces (Goldberg 1989). While performing its search, 

 
 

30



the GA balances the need to retain population diversity (exploration) so that potentially important 

information is not lost, with the need to focus on fit portions of the population (exploitation) 

(Whitley 1989). Reproduction in GA theory, as in biology, is defined as the process of producing 

offspring (Melloni, Eisner et al. 1979). However, mating may occur between any two classifiers, as 

there is no male-female distinction.  

The basic genetic algorithm operators involved in reproduction are:  

• Selection,  
• Crossover,  
• Mutation.  

The placement of these operators in the overall genetic algorithm is shown in Figure II-7. 

Figure II-7 Simple Genetic Algorithm Flowchart 
Initialize parameters 

Generate initial population 

Determine strengths for all population members (execute 
many classifier learning iterations)

Evaluate population statistics 

Selection of parents 

Crossover 

Generate offspring and apply mutation 

Update population  
 

In Figure II-7 there is a box that reads, “Determine strength for all population members.” In 

the case of a classifier system, this determination can not occur during a single iteration. Classifier 

systems determine the ranking among the population members via multiple interactions with the 

environment in which strength changes occur via the apportionment of credit subsystem of the 

classifier system. Only after multiple interactions with the environment will the classifier strengths 
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represent a measure of how well the classifier performs in the environment. The number of 

iterations that occur between each application of the genetic algorithm is called an epoch. Therefore 

in Figure II-7, each loop represents one epoch.  

i. Selection 

Selection deals with the selection of classifiers from the population which will reproduce. The 

selection algorithm allocates reproductive trials to classifiers as a function of their strength. Some 

selection strategies are deterministic, such as elitism where just a certain percentage of the strongest 

classifiers are selected. However, most research has shown that stochastic selection biased by 

strength is more productive.  

For stochastic selection, the selection probability is proportional to the individual’s strength. 

During selection, high strength classifiers have a greater probability of producing offspring for the 

next generation than lower strength classifiers. There are many different ways to implement the 

stochastic selection operator, with most methods which bias selection towards high strength proving 

successful (Goldberg and Samanti 1987). 

Fitness proportionate reproduction is a simple rule whereby the probability of reproduction 

during a given generation is proportional to the fitness of the individual. In this investigation, the 

probability that a classifier, i, will be selected for mating is given simply by the classifier’s strength 

divided by the total strength of all the classifiers: 

Equation II-VII Calculation of Classifier’s Selection Probability 

∑
=

= n

1k kS

iS
iP  

 
where  

Pi = Probability of selection for classifier i 
Si = Strength of the classifier i 
n = Total number of classifiers 
 

This gives every member of the population a finite probability of becoming a parent, with 

stronger classifiers having a better chance.  

ii. Crossover 

Crossover takes a portion of each parent and combines the two portions to create offspring. 

After selection, the strings are copied into a mating pool and crossover occurs on the copies. 
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First, pairs of parents are chosen from the copies in the mating pool. That is, the mate for each 

individual which was chosen during selection is randomly bred with one of the other classifiers 

which was chosen during selection.  

Second, each pair of copies undergoes crossing over as follows: an integer position k along the 

string is selected uniformly at random on the interval (1, L-1), where L is the length of the string. 

Two new strings (classifiers) are created by swapping all characters between positions L and k 

inclusively. 

To visualize how this works, consider two strings A and B of length L=7 mated at random 

from the mating pool: 

A = a1 a2 a3 a4 a5 a6 a7 
B = b1 b2 b3 b4 b5 b6 b7. 
 

Consider the random selection of k is 4. The resulting crossover yields two new classifiers A’ 

and B’ following the partial exchange.  

A’ = b1 b2 b3 b4 | a5 a6 a7 
B’ = a1 a2 a3 a4 | b5 b6 b7. 
 

The simple crossover described above is a special case of the n-point crossover operator. In the 

n-point crossover operator, more than one crossover point is selected and several substrings from 

each parent are exchanged. Although the mechanics of the selection and crossover operators are 

simple, the biased selection and the structured, though stochastic, information exchange of 

crossover give genetic algorithms much of their power. 

iii. Mutation 

Mutation, the random alteration of a string position, performs a secondary role in the 

reproduction process. Mutation is needed to guard against premature convergence, and to guarantee 

that any location in the search space may be reached. In the classifiers tertiary code, a mutation 

could change 
0 to a 1 or #; 
1 to a 0 or #; 
 

or 

# to a 0 or 1. 
 

By itself, mutation is a random walk through the classifier space. The frequency of mutation, by 

biological analogy and empirical studies, is on the order of one mutation per ten thousand position 

transfers. 
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(c) Replacement and Crowding  

Replacement and crowding handles the introduction of new classifiers into a population and the 

elimination of classifiers from a population. The classic implementations of classifier systems and 

genetic algorithms have constant size populations. Therefore for each new individual created, 

another individual must be eliminated.  

An important dynamic of genetic algorithms and classifier systems is the population percentage 

replaced on each generation. Generational replacement genetic algorithm (GRGA) replaces the 

entire population with each generation; this is the traditional approach of straight genetic algorithms. 

Steady state genetic algorithm (SSGA) replaces only a small portion of the population on each 

generation. Classifier systems normally use the SSGA approach. This study will not deviate from the 

norm and uses a SSGA.  

With a SSGA approach, the question of which classifiers to replace must be answered. The 

relative age of a classifier plays no factor in replacement; a classifier may be eliminated after only one 

generation or may potentially be immortal. While it is logical to replace low strength classifiers, 

simple replacement of the worst classifiers is not the optimal approach. Instead, based on a 

technique proposed by DeJong (DeJong 1975), a crowding mechanism among a low strength sub-

population is implemented. 

The technique is employed for each new classifier generated for insertion into the population. A 

check of crowding factors is made to determine which classifier to replace. Each check consists of 

randomly selecting a crowding sub-population from the entire population and then selecting the 

lowest strength classifier in the sub-population. The selected classifier is added to a pool of 

replacement candidates. When the crowding factor checks are complete, the pool members are 

compared to the child and the child replaces the most similar candidate on the basis of similarity 

count. Similarity count is a simple count of the positions where both the child and candidate are 

identical. This method is beneficial in that it helps maintain diversity within the population (DeJong 

1975).  

After completing the above, each of the offspring is checked to see if it is a twin to any of the 

other members of the population. This may occur even with the above procedure because the twins 

may both be offspring. If a twin is found, a mutation is introduced into the lower strength twin. The 

process is repeated, if necessary, until the individual is unique. A twin provides no benefits and is 

detrimental because it decreases population diversity. 
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(d) Classifier Systems: The Holistic Viewpoint  

Now that the components of the classifier system have been introduced, a holistic view may be 

more fully appreciated. When the classifier system is not learning, it receives information from the 

environment via the detectors, determines the appropriate classifier to fire, then performs the action 

prescribed by the fired classifier via the effectors. This arrangement is called application mode, and 

is shown in Figure II-8, Classifier System and Environment Interactions: Application Mode. 

Figure II-8 Classifier System and Environment Interactions: Application Mode 
Environment 

Learning Classifier 
System Inputs From 

Environment 
Actions Affect
Environment

 
When learning is occurring, some form of an initial population must be created. As stated, one 

may commence with many possible initial populations. To fully test the learning ability of the 

classifier system, a tabula rasa is used. Even if a randomly generated initial population is selected, 

many population parameters still must be set. These include the number of conditions in the 

antecedent, the word length for each condition and the action and the probability of selecting a # in 

the randomly generated population. As described in Chapter I, this study relies on parameter settings 

which have proven successful in similar research. 

The basic interactions between an environment and a classifier system in learning mode as first 

shown in Figure II-4, is repeated in Figure II-9. 

Figure II-9 Classifier System and Environment Interactions: Learning Mode 
Environment 
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System Inputs From 

Environment 
Actions Affect
Environment

Payoffs/Feedback 

 
Since the initial classifiers are randomly generated, they are most likely of low quality and should 

be considered nothing more than guesses. The classifier system performs many iterations of 

interaction with the environment receiving feedback allowing the guesses to be ranked. These 

iterations constitute the classifier system’s major cycle; a flowchart of which is shown in Figure 
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II-10. The major cycle shown in Figure II-10 extends the information provided in Figure II-6. T

earlier figure did not include the feedback used by the apportionment of credit subsystem to reward

or punish the responsible classifier. 

Figure II-10 Classifier System Major

he 
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 can 

1. Detectors sense information from environment 
2. Convert to binary: assemble into environmental messages

1. Compare environmental messages to the antecedent of all classifiers 
2. Record all matches

Perform auction amongst all classifiers which matched 

 
After an epoch (of iterations), the genetic algorithm is applied, effectively mating the b

ses. As the iterations and epochs increase, the quality of the guesses increases. Since genera

guesses (i.e., classifier with many # symbols) participate in auctions more than specific guesses, th

initial learning will find some general guesses which are correct more times than not. With the 

concept of major cycle and epoch defined, the genetic algorithm flowchart shown in Figure II-7

be specialized for the classifier system, as shown in Figure II-11. 

Generate effector message by activating victorious classifier 

Effectors modify environment 

Send feedback to the apportionment of credit subsystem to pay reward or 
apply punishment

Repeat 
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Figure II-11 Genetic Algorithm in Classifier System 
Initialize classifier system 

Generate initial tabula rasa population 

Perform an epoch of iterations of the classifier system’s 
major cycle (Figure II-10)

Evaluate population statistics 

Selection of parents 

Crossover 

Generate offspring and apply mutation 

Perform crowding and replacement 

Repeat 

 
With some learning behind it, the population of classifiers may be thought of as a population of 

hypotheses (Holland 1992). As always, a hypothesis (classifier) enters the auction when it is pertinent 

to the situation. A hypothesis’ competitiveness is determined by its past performance and its 

specificity. For the victorious hypothesis, its destiny is tied to the result of its actions. As epochs 

pass, successful hypotheses will exchange information via the genetic algorithm. These offspring will 

replace disproved hypotheses with more plausible but untested hypotheses.  

Figure II-12 shows more details of the classifier system’s structure, adding detail to Figure II-4. 
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Figure II-12 The Classifier System and Interaction with Environment: Learning Mode 
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With more epochs comes the evolution of more specific hypotheses which control behavior in 

their narrow domains, overriding the more general default rules. This development of general (or 

default) hypotheses and specific (or exception) hypotheses allows the classifier system to learn 

gracefully, permitting the handling of novel situations by general hypotheses while providing for 

exception hypotheses when necessary.  

As epochs continue and most of the feedback becomes positive, the classifiers may be thought 

of as more and more validated hypotheses. Furthermore, when the classifier system can pass criteria 

to be considered learned, the classifiers may be considered heuristics and rules. 

Figure II-13 shows the detailed interactions of the major components of the classifier system 

and a detailed view of the rule and message subsystem. 
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Figure II-13 Detailed Classifier System and Interaction with Environment: Learning Mode 
Environment 

Feedback 
Input From 
Environment 

Detectors Effectors 

Si(t+1)=(1-Taxlife)Si(t)+Ri(t)-Bi(t)-
Taxbid*Bi(t)

Actions Affect 
Environment 

Learning Classifier 
System 

Auction 

Classifier 
Discovery (GA) 

Environmental 
Messages 

Victorious 
Classifier’s Action

Match 
environmental 
messages with 
antecedents of 

classifiers 

Matched 
Classifiers

Population of 
classifiers 

Bids 

Once each epoch 
of iterations 

Original Strength 

Strength Change 

Parent 
Selection 

New 
Classifiers

Apportionment of Credit Subsystem 

Trainer 

Classifier Discovery 
(TCDO)

 
(e) Other Mechanisms  

The preceding material has described the workings of a simple classifier system and basic 

genetic algorithm. The discussion also added relevant background to modifications to the rudiments 

used in this study. A variety of other additions and variations to the classifier system have been 

suggested in the literature. Many of these were investigated but were either found to be ineffectual 

or found not to be appropriate for this study. Table II-5 shows a sampling. 
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Table II-5 Classifier System Extensions 
Extension Name References 
Implicit Niching (Horn, Goldberg et al. 1994)  
Coverage-base Genetic Induction (Greene and Smith 1994)  
Fuzzy Classifier Systems (Valenzuela-Rendon 1991), (Parodi and Bonelli 1993) 
Using Performance-Based Action Selection (Wilson 1994) 
Island Model Genetic Algorithm (Whitley 1993) 
 

(f) Applications of Classifier Systems and Genetic Algorithms  

Despite their youth, genetic algorithms, and classifier systems to a lesser extent, have seen rapid 

growth in their application. Genetic algorithms have found near optimal solutions in a variety of 

environments (Goldberg 1989); Table II-6 presents some GA engineering applications. 

Table II-6 Engineering Applications of Genetic Algorithms 
Description Reference 
Optimal structures using genetic algorithm (Dhingra 1990), (Jensen 

1992)  
Flow vectoring of supersonic exhaust nozzles to define optimally shaped 
contours 

(King 1991)  

Use of Genetic Algorithms for the strength-to-weight and stiffness-to-
weight optimization of laminates 

(Callahan 1991)  

Design of optimum welds  (Deb 1990) 
Path planning of a mobile transporter (Baffes and Wang 

1988) 
General Electric’s Engineous helped design the engine for the Boeing 777 (Ashley 1992)  
VLSI cell placement (Kling and Banerjee 

1991)  
Design of Air-Injected Hydrocyclone (Karr and Goldberg 

1990)  
Composite material structures’ design and optimization (Punch, Averill et al. 

1995)  
Composite laminate staking sequence optimization for buckling load 
maximization 

(Le Riche and Haftka 
1993)  

 

Table II-7 presents some of the more successful classifier system applications. These examples 

are stimulus-response (S-R) systems, searching the space of possible stimulus-response rules. Except 

for allocating payoffs directly to the classifiers that produced results, the bucket brigade algorithm as 

defined by Holland (Holland 1986) did not play a role in these systems.  

Table II-7 Applications of Classifier Systems 
Description Reference 
A robot path planning system using many classifier systems simultaneously. (Dorigo and 
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Sirtori 1991) 
A classifier system to control a simulated creature in a simple two-
dimensional environment. 

(Booker 
1982) 

The application of a classifier system to the control of gas flow through a 
national pipeline system. 

(Goldberg 
1983) 

Application of classifier systems to learning dynamic planning problems, 
such as determining plans of movement through artificial environments in 
search of food. 

(Roberts 
1993) 

Use of classifier systems to learn to categorize Boolean multiplexer 
functions. 

(Wilson 1986)

 
(g) Shortcomings of the traditional LCS algorithm 

As a consequence of recent LCS research, several supposed weaknesses of the original LCS 

model have been identified (Wilson 1995; Smith, Dike et al. 2000). These potential drawbacks relate 

to the traditional practice of associating a classifier’s strength as a measure of its utility and allowing 

higher strength classifiers relatively greater opportunity to fire as well as to engage in genetic 

procreation. Because strength is directly related to payoff magnitude, the LCSs may be characterized 

as payoff-magnitude driven. The perceived weaknesses of the LCS learning algorithm are 

summarized below. 

1. It is possible that the environment contains niches (a set of states at each of which a 

common subset of available classifiers are able to match and are, therefore, all candidates 

for firing). Some niches could offer greater payoffs to the LCS than others. It is possible 

for classifiers operating in such niches to dominate the population during genetic 

procreation as they gain higher rewards and grow disproportionately fitter over time. 

Lower strength rules, upon which overall system performance could depend, are purged. 

2. One way of mitigating the drawback described above is to share the portion of any 

accrued reward intended solely for the firing classifier with all classifiers in the Match Set 

that advocate the same action as the firing classifier. The hope is that since the payoff is 

divided between multiple, “equivalent” classifiers, no single classifier would grow 

dominant. However, this solution introduces another weakness: a single classifier’s 

strength now becomes a weaker (indirect) measure of its utility and can no longer be 

used as a surrogate for its payoff-generation ability (i.e., as a predictor of its utility); this 

ability is now distributed amongst several classifiers; therefore, another measure other 

than strength to assess a classifier’s utility must be used. 
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3. In situations where rule-chaining is essential (i.e., deferred payoff systems), early 

enabling rules in a lengthy chain will appear less fit over time, even with a reward back-

propagation mechanism in place that offers some of the reward to the enablers. Thus, 

when the GA module is invoked, its parent selection mechanism tends to ignore the 

relatively weaker enablers despite the fact that they are crucial to system success. Useful 

genetic material is often lost as a result. A solution to this problem is to use the GA on 

Match Sets rather than on the entire population of classifiers. Thus, there will be no 

procreation-related competition between Match Sets where classifiers in one set 

dominate those in the others. Such use of a GA is termed as “niche Genetic 

Algorithms.” Even with niching, two problems remain … 

4. The GA component of the LCS is unable to distinguish specific classifiers having a 

certain payoff accuracy from more general versions (i.e., having more # symbols in their 

conditions) that offer the same payoff, on average. Consequently, because the more 

general versions tend to match environmental states more often than the more specific 

ones, the more general versions tend to proliferate over time. 

5. Generalizations appear to be desirable. However, there is no mechanism to assure that 

the generalizations are good performers in the sense that their actions yield payoffs close 

to what is expected when they are fired. That is, with a payoff-magnitude driven LCS, 

there is no mechanism in place to ensure that accurate generalizations are evolved. 

(h) Summary 

Learning Classifier Systems are machine learning paradigms that use simple string rules, or 

classifiers, to guide their performance in unknown and arbitrary environments. Developed from the 

merging of expert systems and genetic algorithms, Learning Classifier Systems autonomously learn 

the rules needed to perform in a given environment and have achieved success in a number of 

challenging problem domains. Despite their demonstrated successes in these areas, traditional 

Learning Classifier Systems have several shortcomings which result in sub-optimal performance. 

(2) XCS: An Extended Classifier System 

XCS, or eXtended Classifier System, was first introduced by Stewart Wilson in his seminal 

paper, “Classifier Fitness Based on Accuracy,” which appeared in the April, 1995 issue of 

Evolutionary Computation (Wilson 1995). Much of the preceding material on traditional Learning 

Classifier Systems is relevant to XCS as well; however, XCS employs several mechanisms which alter 
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its execution and subsequently affects its performance. The following sections, therefore, provide a 

general overview of XCS, paying particular attention to features which differ from traditional LCS 

implementations. 

(a) Overview 

XCS is a recently developed learning classifier system that differs from traditional LCSs in 

several ways. In XCS, classifier fitness is based on the accuracy of a classifier’s payoff prediction 

instead of the prediction itself. The second major difference is that the genetic algorithm takes place 

in XCS’s Action Sets instead of in the population as a whole (Butz and Wilson 2001). 

As in all LCSs and reinforcement learning methods, XCS acts as a learning agent that perceives 

inputs describing the current environmental state, responds with actions, and receives reward 

(possibly from a separated reinforcement program) as an indication of the value of its action. The 

reward received is determined by the reward function, which maps state/action pairs to real 

numbers, and it is part of the problem definition (Sutton and Barto 1998). For the purposes of the 

current research, only single-step tasks in which the agent’s actions do not influence successive states 

are of concern. 

The XCS framework will now be described in detail, drawing extensively on Wilson’s tutorial 

presentation at the 1999 Genetic and Evolutionary Computation Conference in Orlando, Florida 

(Wilson 1999).  

(b) XCS Architecture and Major Cycle 

Classifiers in XCS are similar to those used in LCS-0, but add several additional parameters. 

First, each classifier maintains a prediction parameter which estimates the reward it will receive upon 

the execution of its action. XCS classifiers also have ε and F terms; ε is an estimate of the error in a 

classifier’s prediction, while F, fitness, is an inverse function of ε. The calculation of ε and F will be 

described shortly. XCS uses F as the measure of classifier reliability, so that reliability in effect goes 

up as error goes down. 

Figure II-14 provides a depiction of XCS’s architecture and major cycle, which is quite similar 

to that depicted in Figure II-13, Detailed Classifier System and Interaction with Environment: 

Learning Mode, though it differs in several key areas.  

 
 

43



Figure II-14 XCS Architecture 
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i. Matching and the Match Set 

A received environmental input is compared with the conditions of all the classifiers in the 

system’s current population [P]. Classifiers that match the current input are placed in the Match Set 

[M]. The other classifiers in the population play no further role in this problem. The contents of the 

Match Set embody the entirety of XCS’s current knowledge about what to do with this input. 

Formation of the match step is therefore a sort of recognition step; the classifiers in [M] can be said 

to recognize this input. 

XCS requires that at least θmna actions are present in a Match Set. If this is not the case, covering 

classifiers are created with a matching condition. Each attribute in the condition of such a covering 

classifier is a # symbol with a probability of P# and the corresponding perceived symbol otherwise. 

ii. The Prediction Array and Action Set 

Next, XCS calculates a Prediction Array to use in selecting the appropriate action to be 

executed. The net prediction for any action existing in the Match Set [M] is simply calculated by 

taking a weighted average of the predictions of all classifiers in [M] advocating that action, where the 

weights are the respective values of fitness, F. The result is placed in that action’s position in the 
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Prediction Array, and is known as the system prediction for that action. The system prediction is a 

quantity distinct from the prediction of any individual classifier. 

Next, XCS selects an action from among those advocated by the rules in [M] using a technique 

called Biased Exploration. XCS uses Biased Exploration to insure sub-optimal actions are 

sometimes executed in order to be sure it has sufficiently updated all classifiers. Biased Exploration 

dictates that some fixed percentage of the time, the system chooses a random action from those in 

the prediction array. This counterintuitive process is known as “exploration,” which XCS must take 

to insure that the apparently optimal classifiers are, in fact, optimal. The rest of the time, XCS will 

pick the apparently best, highest predicting action; this is commonly referred to as “exploitation.” 

This is an example of the famous—or infamous—explore/exploit dilemma. The system would like 

to choose the best action all the time in order to maximize its return. But it can’t determine the best 

action without sampling other actions. So there is no way it can ever be certain that its return is 

maximal. There are many approaches to this explore/exploit dilemma, and none is perfect. The 

subset of [M] which advocates the selected action is called the Action Set [A].  

iii. Executing the Action and Updating the Action Set 

The chosen action is sent to the environment at which time an environmental reward is 

received. In each cycle, XCS updates the rules in [A] based on the reward received. Rules not in [A] 

are not updated. As described previously, each XCS classifier maintains a prediction about the 

reward it expects in response to its action. The system now has in hand an actual reward; therefore, 

the predictions are adjusted accordingly. 

XCS’s update function can be represented by the following equation: 

Equation II-VIII XCS Update Function 
)jpα(Rjpjp −+←  

 
where R is the current reward and α is the learning rate. The value of α is typically about 0.2, so 

this step reduces the difference between pj and R by 80%. If R is always the same and the update 

occurs infinitely many times, pj will become equal to R, and pj will predict the reward exactly. 

An interesting aspect of this procedure is that it achieves a “recencyweighted” estimate of R, 

where pj(t) is a sort of exponential moving average of R, such that recent values of R have a greater 

weight. This is expressed in the following equation:  
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Equation II-IX XCS Recency Weighting 

(0)
j
ptα)(1...2)R(t2α)α(11)α)R(tα(1αR(t)(t)jp −++−−+−−+=  

 
Recency weighting allows XCS to track an environment in which the reward values for given 

inputs are slowly changing. Faster tracking results from larger values of α. However, α should not be 

too large, or the noise suppression advantages of averaging will be lost. 

A classifier’s error and fitness are also updated whenever that classifier is in the Action Set. The 

error update is like that for prediction, except the quantity being averaged is not R, but the absolute 

difference between R and the current prediction pj:  

Equation II-X XCS Error Update Function 
)
j

-ε|jpRα(|jεjε −+←  

 
As discussed previously, this term provides a simple measure of the classifier’s current error. 

The fitness update is slightly more complex. Initially, the prediction error is used to calculate the 

accuracy κj of each classifier as a negative power function of its current error estimate:  

Equation II-XI XCS Accuracy Update Function 

otherwise
0
ε;

0
ε

j
ifεnχjχ >−≡  

 
The power, n, in this equation is typically quite large, around 5. Accuracy is thus very steeply 

inversely related to error. However, κj is not allowed to take on a value of infinity. Therefore, any 

classifier with error less than or equal to ε0 is assigned a high, but finite value for accuracy, as shown. 

The next step is to compute the relative accuracy, κj′, of the classifiers in the Action Set. Relative 

accuracy is calculated as κj divided by the sum of the accuracies of all classifiers in the current Action 

Set:  

Equation II-XII XCS Relative Accuracy Function 

∑
≡

i
χ
j
χ

j
χ'  

 
This is important; the desired information is how the classifiers in [A] compare in terms of 

accuracy and not their absolute accuracies per se. Finally, the classifier’s fitness Fj is computed by 

updating its current Fj using the value of κj′:  
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Equation II-XIII XCS Fitness Update Function 
)
j
F

j
α(χ'jFjF −+←  

 
Thus the fitness of a classifier is an estimate of its accuracy with respect to the accuracies of 

other classifiers in the Action Sets in which it occurs. 

iv. Initial Population and Covering 

As opposed to LCS-0, XCS begins execution with an empty population. As with LCS-0’s 

TDCO operation, XCS must therefore sometimes generate classifiers through covering. The process 

is identical: a new classifier is generated which matches the received environmental input, has a 

random action, and is assigned a low initial prediction. The new classifier has a number of #s in 

random positions, dictated by XCS’s parameter P#. These # symbols give the rule an initial 

generality that allow it to be tested in several distinct input situations. Covering is only necessary 

initially and the number of classifiers created using covering is very small compared with the size of 

the input space. Therefore, the vast majority of new rules are derived from existing rules. 

v. Genetic Algorithm 

Dependent on the threshold θGA and the average time in [A] since the last GA application, a 

reproductive event is triggered, in which a GA is called upon to modify the population of rules. 

Since the GA in XCS only reproduces classifiers currently in [A], it realizes an implicit niching; as 

described previously, this is one of key distinctions between XCS and LCS. The GA chooses two 

classifiers for reproduction proportionally to the fitnesses of the classifiers in [A]. The selected 

classifiers are reproduced, crossed, mutated, and inserted in the population. The parents stay in the 

population competing with their offspring. Moreover, subsumption deletion acts in [A], deleting 

more specific classifiers if an accurate, experienced, and more general classifier exists. If the number 

of classifiers in a population exceeds the threshold N, excess classifiers are deleted. XCS’s use of 

subsumption, where the population size becomes less than or equal to N, is another key 

architectural difference between it and traditional LCS implementations. Classifiers for deletion are 

selected in [P] proportionally to their Action Set size estimate AS. If sufficiently experienced and 

with a significantly low fitness F, the probability of deletion is increased further. 

Several observations are relevant at this time. First, the more accurate classifiers in [A] tend to 

reproduce, and through crossover, their parts are often recombined. This process tends on balance 

to search along the generality/specificity dimension, using pieces of existing higher accuracy 

classifiers. Next, a classifier that is more specific can never be less accurate. Since the GA often 
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produces a more specific offspring, it is clear that the population will tend, over time, toward having 

classifiers with greater accuracy, i.e., greater ability to predict the consequences of actions. 

After the GA completes its work, the children are added to [P]. However, this results in [P] 

enlarging by two. XCS maintains a maximum population size, so two classifiers must be deleted 

from [P]. There are a number of ways to do this gracefully. Deletion, in fact, provides an 

opportunity to keep the system’s resources balanced. Here, balance means that approximately the 

same number of classifiers are devoted to each Action Set “niche.” This result is achieved by letting 

the probability that classifier Cj will be deleted from [P] be proportional to the average size of the 

Action Sets in which it occurs. To perform this task, each classifier has one additional parameter 

associated with it. This parameter estimates the number of classifiers contained in its Action Sets. 

The probability of deletion is made proportional to this estimate. The result is that classifiers in 

Action Sets larger than average will tend to be deleted more often, and the sizes will come down. 

Members of small Action Sets will be less likely to be deleted. As a result, Action Sets will tend to be 

about the same size. As described previously, XCS’s use of adequate domain coverage as well as 

fitness when considering classifiers for deletion is another key architectural difference. Methods for 

preferentially eliminating very low fitness classifiers can be added to this balancing based on Action 

Set size. 

(c) Summary 

XCS is a fairly recent type of learning classifier system which differs from more traditional 

implementations primarily in its use of classifier accuracy as the main determinant of fitness. Being 

accuracy-driven and not magnitude-driven, XCS has been shown to be more effective than the 

traditional LCS in certain contexts such as solving various Boolean multiplexer (single-step) and 

maze navigation (multi-step) problems (Wilson 1995; Kovacs 1997; Lanzi 1997; Wilson 1998; 

Kovacs and Kerber 2001; Butz, Sastry et al. 2002), where the traditional LCS model has been found 

to be less successful due to drawbacks mentioned in Chapter II: C. (1) (g)  Shortcomings Of The 

Traditional LCS Algorithm.  

D. IPD: THE EXPERIMENTAL TESTBED 

This section addresses the testbed of choice for the current research: the Iterated Prisoner’s 

Dilemma. The Prisoner’s Dilemma (PD) and variations such as the Iterated Prisoner’s Dilemma 

(IPD) are frequently studied games in the search for and explanation of Machine Learning and 

Artificial Intelligence (Axelrod 1987). The prisoner’s dilemma captures, in an abstract manner, the 
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relevant features of many difficult learning environments. In addition, it presents an interesting 

testbed because it has been used in a number of disciplines to study phenomena such as 

cooperation, altruism, and free-riding (Bendor, Kramer et al. 1991). The following sections review 

the history and theory underlying the prisoner’s dilemma and iterated prisoner’s dilemma. 

(1) The Prisoner’s Dilemma 

The “Prisoner’s Dilemma” game has been extensively discussed in both the public and 

academic press. Thousands of articles and many books have been written about this intriguing 

puzzle and its apparent representation of many problems of society (Kuhn 2003). The origin of the 

game is attributed to Merrill Flood and Melvin Dresher, who devised it in 1950 as part of the Rand 

Corporation’s investigations into game theory (Kuhn 2003). The “prisoner’s dilemma” moniker and 

the version of the puzzle with prison sentences as payoffs are due to Albert Tucker, who wanted to 

make Flood and Dresher’s ideas more accessible to an audience of Stanford psychologists (Kuhn 

2003). The name of the game comes from Tucker’s parable, in which two accomplices to a crime are 

individually offered a chance to rat on each other. In the story, a prisoner who chose to rat on his 

partner would receive a lighter sentence while his partner would receive a harsher sentence. 

In the more generic version of the game, two players are faced with a decision, to either 

cooperate (C) or defect (D). The decision is made by a player with no knowledge of the other 

player’s choice. The payoff received by each player depends on what action (C or D) each takes. If 

both players cooperate, each receives a reward of R2. If both players defect, each receives a relatively 

smaller reward of R3. If one player defects while the other player cooperates, the cooperating player 

gets a sucker’s payoff of R4 while the defector gets the highest possible payoff for the game, R1 

(Flood 1958; Shapley 1964; Meng and Pakath 2001). 

To create the conditions necessary for the “dilemma,” the payoffs have the following properties 

(Axelrod and Hamilton 1981):  

Equation II-XIV Prisoner’s Dilemma Reward Property #1 

4R3R2R1R >>>  

and 
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Equation II-XV Prisoner’s Dilemma Reward Property #2 

2R2
4R1R <

+
 

The effect of Equation II-XIV is if both players defect, each does worse than if both cooperate 

(i.e., R2 > R3). Thus, mutual cooperation is preferred to mutual defection. Equation II-XV stipulates 

that the payoff obtained through unsynchronized alterations of cooperation and defection is not, on 

average, better than that obtained through repeated cooperation. These properties, taken together, 

define the Prisoner’s Dilemma (Axelrod 1984). 

The game and its inherent dilemma can be illustrated through the use of a concrete example. 

Table II-8, Prisoner’s Dilemma Reward Structure, below depicts a typical reward structure for the 

classical version of the prisoner’s dilemma. The rewards provided in the table obey Equation II-XIV 

and Equation II-XV given previously. In the example, Player One chooses a column, either 

cooperating or defecting. Player Two simultaneously chooses a row, also either cooperating or 

defecting. Together, these choices result in one of the four possible payoff combinations depicted in 

the table. If both players cooperate, each receives a reward of R2; in this case, each receives a reward 

of 3. This number might represent a payoff in dollars or the number of years to be spent in prison 

for committing some hypothetical crime. If both players defect, each receives a relatively smaller 

reward of R3; in this case, 1. If one player defects while the other player cooperates, the cooperating 

player gets a sucker’s payoff of R4 (0) while the defector gets the highest possible payoff for the 

game, R1 (5) (Axelrod 1984). 

Table II-8 Prisoner’s Dilemma Reward Structure 
  Player One 

 
  Cooperate Defect 

Cooperate 

Mutual cooperation: 
both players receive 
R2 (3) 

Player Two gets 
suckered: Player One 
receives R1 (5), 
Player Two receives 
R4 (0) 

Player Two 

Defect 

Player One gets 
suckered: Player Two 
receives R1 (5), 
Player One receives 
R4 (0) 

Mutual defection: 
both players receive 
R3 (1) 
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A player in such a game faces a quandary as to which choice to make. Suppose Player One 

thinks Player Two will cooperate. This means Player One will receive one of the two outcomes in 

the upper row of the table. Player One can then either cooperate as well, receiving a reward of 3 for 

mutual cooperation, or he can defect, receiving the highest possible reward of 5. Thus, if Player One 

thinks Player Two will cooperate, the best choice is to defect. 

Suppose, instead, that Player One thinks Player Two will defect. Player One’s reward will then 

be one of the two payoffs in the lower row of the table. Player One’s choice is then either to 

cooperate, which would result in a sucker’s reward of 0, or to defect, resulting in a low, but slightly 

higher reward of 1. Consequently, if Player One thinks Player Two will defect, he is again better off 

also defecting. 

The end result is that the payoffs are structured such that, no matter what the other player does, 

defection yields a higher payoff than cooperation.  

The above discussion holds true not only for Player One, but also for Player Two. Therefore, 

Player Two should also defect no matter what Player One is expected to do. Consequently, both 

players should defect. If this were to happen, both players receive a reward of 1, which is worse than 

the reward of 3 which both would have earned with mutual cooperation. Thus, individual rationality 

leads to a worse outcome for both players than is inherently possible in the game. Therein lies the 

dilemma: if both defect, both do worse than if both had cooperated (Axelrod 1984). 

From a game theory perspective, the prisoner’s dilemma can be viewed as a two-person, non-

zero-sum, non-cooperative and simultaneous game (O'Riordan 2000). Also from game theory, the 

move D for Player One is said to strictly dominate the move C: whatever his opponent does, Player 

One is better off choosing D than C. By symmetry, D also strictly dominates C for Player Two 

(Kreps, Milgrom et al. 1982). Thus two “rational” players will defect and receive a payoff of R3, 

while two “irrational” players can cooperate and receive greater payoff R2. In standard treatments, 

game theory assumes rationality and common knowledge. Each player is rational, knows the other is 

rational, knows that the other knows he is rational, etc. Each player also knows how the other values 

the outcomes (Kreps, Milgrom et al. 1982). It is also worth noting that the outcome (R3, R3) of both 

players defecting is the game’s only strong Nash equilibrium, i.e., it is the only outcome from which 

each player could only do worse by unilaterally changing its move (Farrell and Ware 1989). Flood 

and Dresher’s interest in the dilemma seems to have stemmed from their view that it provided a 

counterexample to the claim that the Nash equilibria of a game constitute its natural “solutions” 

(Kuhn 2003). 
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This simple game has been used in a wide variety of theoretical and practical applications, 

ranging from biology to economics to politics (Bendor and Mookherjee 1987; Dugatkin 1988; Sober 

1992). A common application is that the puzzle illustrates a conflict between individual and group 

rationality: a group whose members pursue rational self-interest may all end up worse off than a 

group whose members act contrary to rational self-interest (Kuhn 2003). More generally, if the 

payoffs are not assumed to represent self-interest, a group whose members rationally pursue any 

goals may all meet less success than if they had rationally pursued their goals individually (Kuhn 

2003). 

The prisoner’s dilemma has been studied in numerous other domains and continues to receive 

widespread attention. A survey conducted in the mid-1980s reported that more than a thousand 

articles about the Prisoner’s Dilemma were published in the 1960s and 1970s (Donninger 1986). 

More recently, a bibliography of writings between 1988 and 1994 that pertain to Axelrod’s research 

on the subject indicates its continued popularity, with 209 entries (Axelrod and D'Ambrosio 1994). 

(2) The Iterated Prisoner’s Dilemma 

The iterated version of the Prisoner’s Dilemma has been discussed ever since the game was 

originally devised, with increased interest after Axelrod’s influential publications in the early 1980s. 

In his writings, Axelrod described how he invited professional game theorists to submit computer 

programs for playing IPDs (Axelrod 1984). Axelrod received 14 entries from game theorists in 

economics, sociology, political science, and mathematics (Axelrod 1980). All the programs were 

entered into a tournament in which each program played every other program (as well as a clone of 

itself and a program that cooperated and defected at random) hundreds of times (Axelrod 1984). 

The strategy that scored highest in Axelrod’s initial tournament, Tit for Tat (TFT), simply 

cooperates on the first round of the tournament and imitates its opponent’s previous move on every 

move thereafter (Axelrod 1987). Thus, TFT is a strategy of cooperation based upon reciprocity.  

Upon completion of the initial round of tournaments, Axelrod circulated the results and 

solicited entries for a second round. In the second round, Axelrod received 62 entries from six 

countries (Axelrod 1980). Most of the contestants were computer hobbyists, but there were also 

professors of evolutionary biology, computer science, and physics, as well as the four disciplines 

represented in the first round. TFT was again submitted by the winner of the first round, Anatol 

Rapoport, from the University of Toronto (Axelrod 1980). Perhaps more significant than TFT’s 

victory in the first round of experiments is the fact that it also won in the second round, where all 62 

entrants were given the results of the first tournament. 
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In analyzing the second tournament, Axelrod noted that each of the entrants could be assigned 

one of five “representative” strategies in such a way that a strategy’s success against a set of others 

can be accurately predicted by its success against their representative. As a further demonstration of 

the strength of TFT, he calculated the scores each strategy would have received in tournaments in 

which one of the representative strategies was five times as common as in the original tournament. 

TFT received the highest score in all but one of these hypothetical tournaments (Axelrod 1984). 

Axelrod later broadened this set of “representative” strategies to include a total of eight rules 

(Axelrod 1987). 

Axelrod attributed TFT’s success to four properties. It is nice, meaning that it is never the first 

to defect. The eight nice entries in Axelrod’s tournament were the eight highest ranking strategies. It 

is retaliatory, meaning it rewards a defection by an opponent with a defection of its own. The 

retaliatory property makes it difficult for TFT to be exploited by the rules that were not nice. It is 

forgiving, in the sense of being willing to cooperate even with those who have defected against it 

(provided their defection wasn’t in the immediately preceding round). An unforgiving rule is 

incapable of ever getting the reward payoff after its opponent has defected once. And it is clear, 

presumably making it easier for other strategies to predict its behavior so as to facilitate mutually 

beneficial interaction (Axelrod 1984). 

(a) IPD Players 

Axelrod’s research informs the specific implementation of the IPD to be used in the current 

research. In his work with over sixty different IPD-playing strategies, Axelrod found that just eight 

of the strategies could be used to account for how a particular rule might do against the entire set of 

strategies. These eight strategies, then, may be thought of as representatives of the entire set of 

strategies in the sense that the scores a given rule gets with them can be used to predict the average 

score the rule gets over the full set (Axelrod 1987). Moreover, the eight strategies reflect the full 

spectrum of characteristics (i.e. nice vs not-nice, retaliatory vs non-retaliatory, etc) of the entire set of 

strategies. For these reasons, Axelrod chose to use these representative strategies in simulation 

experimentation with genetic algorithm-based evolving strategies in the IPD (Axelrod 1987). Other 

research studying the behavior of LCS learning algorithms in the IPD environment have adopted 

Axelrod’s approach and rationale (Chalk and Smith 1997; Meng and Pakath 2001); the current 

research will therefore explore LCS and XCS’s behavior with a subset of these opponents. Specific 

details of the eight opponents, plus the purely random strategy, are provided in the following 
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sections. The following descriptions are drawn from Meng and Pakath’s work using the LCS in an 

IPD environment (Meng and Pakath 2001). 

i. RAND 

This opponent generates its action randomly regardless of what the opponent did on its 

preceding moves. This opponent thus represents a “mindless” strategy. Adaptation is difficult 

against this opponent due to its random and chaotic behavior. 

ii. CCC 

This opponent cooperates on every move regardless of the opponent’s actions on its previous 

moves. It is a “nice” strategy and is also the most “generous” of the nine strategies employed. 

iii. DDD 

This opponent defects on every move regardless of the opponent’s actions on its previous 

moves. This strategy is “not-nice” and the most “hostile” of the nine strategies. 

iv. TFT (Tit for Tat) 

This strategy cooperates in the first move of the game, and thereafter plays whatever action its 

opponent played on the preceding move. Characterized as a “nice” strategy, it is also “retaliatory.” 

This strategy is one of the simplest of all strategies submitted in Axelrod’s two tournaments, and was 

also the winner of both of the competitions. This strategy has been shown to be optimal in many 

applications (Kuhn 2003). 

v. TFTT (Tit for Two Tats) 

This strategy cooperates in the first move of the game, and thereafter only defects if its 

opponent defected on the two preceding moves. Characterized as a “nice” strategy, this strategy is 

also “retaliatory,” though less so than TFT. Had this rule been submitted in Axelrod’s first 

tournament, it would have received the best score, beating even TFT, the actual winner (Axelrod 

1984). 

vi. TTFT (Two Tits for Tat) 

This strategy cooperates in the first move of the game, and thereafter repays an opponent’s 

defection with two defections of its own. This strategy may be characterized as “nice” and also as 

“retaliatory.” 
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vii. GTFT (Generous Tit for Tat) 

This strategy cooperates in the first move of the game, and thereafter defects with less than 

100% certainty in response to an opponent’s defection. This opponent is “nice” and “retaliatory,” 

though less so than TFT. 

viii. JOSS (Joss’s Strategy) 

This strategy initially behaves according to the TFT strategy. However, it occasionally sabotages 

its opponent even if the opponent has not defected (i.e. defect with some predefined likelihood even 

though TFT suggests cooperation). This opponent is characterized as “not-nice” and “retaliatory.” 

ix. FRDM (Friedman’s Strategy) 

This strategy cooperates in the first move of the game, and cooperates on every subsequent 

move until its opponent defects. Thereafter, it defects on every move regardless of what the 

opponent does. This strategy is characterized as “nice” and (extremely) “retaliatory.” 

In addition to the characteristics described above (nice vs not-nice and retaliatory vs non-

retaliatory), the rules may be classified according to a number of other attributes. Specifically, 

strategies RAND, CCC, and DDD are “Fixed” strategies in that they are opponent-invariant and do 

not recognize an opponent’s prior moves. The remaining strategies are “Reactive” in that they 

respond in some way to what an opponent does (Meng and Pakath 2001). In addition to using 

Axelrod’s binary “nice” vs “not-nice” classification to describe whether a strategy is the first to 

defect, subsequent research has used ordinal scale to classify a strategy’s proclivity toward hostility. 

Specifically, RAND, CCC, TFTT, and GTFT may be classified as “Nicer” while DDD, TFT, TTFT, 

JOSS, and FRDM constitute “More Hostile” strategies (Meng and Pakath 2001). A final 

categorization is “Predictable” vs “Unpredictable” in describing whether a strategy’s behavior may 

be predicted with any certainty. Strategies CCC, DDD, FRDM, TFT, TFTT, and TTFT are wholly 

“Predictable” while RAND, GTFT, and JOSS are “Unpredictable” (Meng and Pakath 2001). These 

categorizations will provide additional insight into LCS and XCS’s behavior in the proposed 

experimental simulations. 

(b) Benefits 

The PD and IPD are two-person, non-zero-sum, non-cooperative and simultaneous games 

(O'Riordan 2000). Moreover, the IPD has the added feature that there is no single “best” strategy: 

maximizing one’s own payoff is highly dependent on the strategy adopted by one’s partner (Sigmund 

1993). These characteristics provide a wealth of theoretical and practical implications for using the 

 
 

55



PD and IPD as experimental testbeds. Some of these are detailed in Axelrod’s informative work on 

the prisoner’s dilemma and his experimentation with it as a model for encouraging cooperation 

(Axelrod 1984).  

The IPD is an extremely simple and flexible framework that makes it possible to avoid many of 

the restrictive assumptions that might otherwise limit useful analysis (Axelrod 1984). Moreover, it 

captures many features of real-life dilemmas, making its study relevant to a variety of applied 

settings.  

One feature of the IPD that makes it relevant and useful is that the payoffs received by the 

players need not be directly comparable to each other. For example, consider the case of a journalist 

deciding whether to provide favorable coverage of a Congresswoman’s proposed legislation. If the 

journalist cooperates with a Congresswoman by writing a favorable review, he may well be provided 

with increased access to the legislator in the future. From the Congresswoman’s perspective, if she 

cooperates by making herself available for interviews, she stands a better chance of receiving 

favorable coverage. The corresponding rewards for defection are future decreased access and 

unfavorable articles. These consequences are not measured in the same units, nor are they directly 

comparable; however, they are quantifiable and can thus be used as rewards in an IPD concerning 

the hypothetical Congresswoman and journalist (Axelrod 1984). 

Another feature of the IPD is that the payoffs do not have to be symmetric. It is often 

convenient to view the interaction as equal from the perspective of the two players, but this is not 

necessary. Specifically, it is not required that the reward for mutual cooperation, or for any of the 

other three payoff parameters, that the rewards have the same magnitude for both players. Indeed, 

as described above, it is not even necessary that the rewards be measured using the same units. The 

only requirement is that the rewards be ordered and obey Equation II-XIV and Equation II-XV 

given previously. 

The payoffs provided to a player also do not have to be measured on an absolute scale. They 

need only be measured relative to each other. This means that the rewards need only be measured 

on an interval scale, such that the rewards may be altered with any positive linear transformation and 

still be the same, just as temperature is equivalent whether measured in Centigrade or Fahrenheit 

(Axelrod 1984). 

Another benefit of using the PD and IPD is that the rewards provided by cooperation need not 

be viewed as desirable by anyone other than the players involved in the game. For example, 

collusion between business partners is mutually beneficial to the cooperative businesses, but not to 

 
 

56



society as a whole (Axelrod 1984); however, it still may be modeled as an IPD. In fact, most forms 

of corruption are beneficial to the participants while being detrimental to everyone else. On these 

occasions, the IPD can be used to model how to prevent cooperation rather than to promote it. 

The IPD does not require rationality; it does not even require that the participants are trying to 

maximize their rewards. In these cases, it may still be used when the players actions are the results of 

standard operating procedures, rules of thumb, instincts, habits, or imitation (Simon 1955; March 

and Cyert 1963; Axelrod 1984). 

Finally, the IPD is applicable in situations where the actions the players take are not necessarily 

the result of conscious choice at all. A player who chooses to either return a favor or not, for 

example, may never deliberately think about what strategy he is choosing. In this way, the IPD is 

applicable to a number of situations in which the actors act without conscious thought of the 

implications of their actions. 

Because of its simplicity and flexibility and the characteristics described above, the IPD is 

applicable to a broad range of real life situations. It can encompass the actions taken by nations, 

such as the raising or lowering of tariffs, and can also be applied to actions taken by bacteria in 

response to changes in their chemical environment (Axelrod 1984).  

(c) Limitations 

Notwithstanding its frequent use in both theoretical and practical applications, the Prisoner’s 

Dilemma has a number of limitations as an experimental testbed; Axelrod’s work is informative in 

this area as well (Axelrod 1984). Specifically, the abstract formulation of the IPD problem sets aside 

many critical features that make actual interaction between actors unique. Some examples of real-life 

characteristics that are set aside in the IPD formulation include the possibility of verbal 

communication, the direct influence of third parties, the problems associated with implementing a 

choice, and the uncertainty about what the other player actually did on the preceding move (Axelrod 

1984).  

Therefore, notwithstanding its limitations, the IPD has the requisite characteristics which make 

it an interesting and informative experimental testbed for the current study. 

(3) Experimental Testbed Rationale 

As described previously, the Prisoner’s Dilemma and its younger sibling, the Iterated Prisoner’s 

Dilemma, is an interesting problem which has been found worthy of study in a wide range of 

disciplines. Before proceeding with a description of the experimental design for this study, it is 
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useful to describe why this is so. The PD/IPD model is traditionally viewed as a useful tool for 

studying conflicts between self goals and group goals in an organizational or societal setting. The 

IPD game scenario is interesting because it offers us the following benefits and research flexibilities. 

First, whereas there is an extensive body of literature on artificial agents and agencies, the agents 

involved typically use pre-defined behavioral strategies. With LCS/XCS and IPD, one could model 

situations where opponent agents may be cooperating, competing, or both, but whose behavioral 

strategies are initially unknown and must be discerned through repeated interactions. A good 

commercial parallel is that involved in buyer-broker-seller interactions in real estate transactions 

where the adaptive agents involved must evolve to be capable negotiators. Such business-like 

parallels and extensions are hard to draw with previously-researched Boolean multiplexers and 

animats-and-maze environments.  

Second, the conventionally-used test beds for the XCS emphasize evolution guided by rational 

choice. The IPD setting allows us to measure evolutionary behavior where rationality is not a 

paramount consideration, a condition that exists in many business and social contexts. In particular 

instances, irrational behavior nets greater total environmental rewards to the LCS/XCS than rational 

behavior. Although each player’s self-interest is maximized by defecting, the combined reward 

received when both players defect is globally inferior to both cooperating. This property lies at the 

heart of the IPD’s appeal: the globally optimal strategy is unstable; it is not an equilibrium. As 

mathematician Ian Stewart so aptly put it: “sometimes rational decisions aren’t sensible!” (2006) 

Third, the IPD game is inherently non-Markov. An environment has the Markov property if the 

agent’s immediate sensations provide all the information that is necessary to choose the best action 

in every situation; an environment is non-Markov if it is not Markov (Lanzi and Wilson 1999). The 

Markov/non-Markov distinction is crucial in reinforcement learning because it dictates whether an 

environment can or cannot be predicted on the basis of current input information. If so, the system 

can rely entirely on that information. If not, it must resort to memory-creating mechanisms to 

transform the problem to Markov to make more informed action choices (Wilson 1999). This, in 

turn, allows testing of various system memory strategies, with emphasis on short-term memory to 

preserve on-line learning.  

Fourth, unlike traditional Boolean multiplexer test beds, many IPD game playing situations 

result in asymmetric updates of the knowledge base due to unequal coverage of the input domains 

by detected categorical regularities. This is in contrast to other explored problem domains such as 

the multiplexer, where each categorical regularity covers an equal portion of the input domain. As a 
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result, for random inputs, all parts of the multiplexer population are updated and subjected to GA 

processes at approximately the same rate. The IPD’s asymmetry could negatively impact the 

LCS/XCS systems performance and is worthy of further scrutiny (Wilson 1999). 

Fifth, the IPD allows test situations with various types of characteristics. For instance, one may 

examine learning and related issues with LCS and XCS (and other types of learning systems) by 

pitting each against an opponent who uses a deterministic, fixed strategy such as “always defect.” 

Such an opponent (labeled DDD) enables the study of a single-step problem as LCS/XCS cannot 

initiate behavioral change in DDD. On the other hand, one may pit the system against an opponent 

who is cooperative as long as its opponent is cooperative, but repays every defection with a 

defection in the following move as in TFT. Thus, TFT is a deterministic, reactive player. In this 

situation, the LCS/XCS must recognize that current action has future (multi-step) ramifications. 

One may create longer term impacts as with TTFT (Two Tits for Tat) where the opponent returns 

two successive defections in response to one defection by the LCS/XCS. Many such diverse 

opponents that exercise the LCS/XCS’s capabilities differently may be easily cast.  

Sixth, the IPD setting also allows the introduction of noise into the interactions, an issue that 

has received little research attention with LCS/XCS systems. For example, one may define an 

opponent called HTFT which is TFT-like but occasionally (i.e., with some predefined probability) 

turns “hostile” and defects when TFT recommends cooperation (a stochastic, reactive player). The 

LCS/XCS must learn to anticipate and cope with such idiosyncratic behavior to be successful.  

Seventh, the IPD setting provides the opportunity to determine whether the LCS/XCS can 

cope with stimuli from multiple opponents. Groups of opponent players may take turns interacting 

with the system or may simultaneously interact with it through multiple effectors and detectors.  

Eighth, last but not least, the IPD setting has never been seriously explored by the LCS and 

XCS research communities. Thus, the use of PD/IPD in this research is a novel attempt which 

should add to the body of knowledge regarding LCS and XCS abilities. 

Several of the above each bring up interesting and challenging system architecture-related 

issues. In essence, a single game-playing setting provides the flexibilities needed for assessing 

learning systems in a variety of real world-relevant ways. The limitations cited previously also 

provide the opportunity for increased study; the current research, for example, could easily be 

extended to consider the effect of noise (i.e. uncertainty about an opponent’s move) in LCS and 

XCS’s ability to learn in the IPD environment. While exploring every one of these flexibilities in the 
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current research is not practical due to time constraints, they do provide the opportunity for much 

additional research in the longer term.  
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CHAPTER III: METHODOLOGY 

As described previously, the goal of the current research is to investigate performance 

differences between two families of classifier system-based Machine Learning algorithms. The first 

set of algorithms, commonly referred to as LCS-based, is the older of the two, and has been shown 

to work well in a wide variety of learning environments. The more recent learning algorithm, based 

on XCS, builds on the traditional LCS-based algorithm, and has been shown to perform better 

under certain conditions and in certain environments. Specifically, the XCS-based algorithm has 

been shown to evolve more accurate, maximally general classifiers that efficiently cover the state-

action space of the problem, and also to better display the system’s “knowledge” (Butz and Wilson 

2001). To explore these hypothesized advantages, described in detail in Chapter III: B. (1) , the 

current research employs a suite of simulation experiments. This section of the paper describes 

those experiments, including rationale for simulation’s selection as an appropriate tool for this 

research. This section also describes the goals of the simulation experiments, describes each 

experiment in detail, outlines propositions for the experiments, and presents appropriate 

performance measures for the tests. 

A. SIMULATION 

This research explores the adaptive and steady-state behaviors of the LCS and XCS learning 

algorithms using simulation experiments. Simulation may be defined as “… the process of designing 

a model of a real system and conducting experiments with this model …” (Pegden, Shannon et al. 

1995). Because it is often cheaper and faster than constructing physical systems, computer 

simulation is growing in popularity as a methodological approach for a wide variety of researchers 

(Dooley 2002). Moreover, whereas other research methodologies “look backward” and attempt to 

determine what happened and why, simulation can enable studies of more complex systems because 

it creates observations by “looking forward” into the future (Dooley 2002). 

In this case, agent-based simulation, where agents attempt to maximize their fitness (utility) 

functions by interacting with other agents and resources (Dooley and Corman 2003), is used to 

model LCS- and XCS-based IPD-playing agents which attempt to maximize their rewards in a series 

of encounters with one or more opponent agents. By studying the results of these simulation 

experiments, this research provides insight into the internal workings of the LCS and XCS 

algorithms. 
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(1) Agent-Based Simulation 

The particular type of simulation used in the current research is known as agent-based 

simulation. Agent-based simulation models are appropriate for situations when the system is best 

modeled as a collection of agents who interpret the world around themselves and interact with one 

another via some pre-defined schema (Dooley 2002). In the current research, the schema consists of 

LCS- and XCS-based agents competing against other agents in an IPD environment. The ultimate 

goal of the agents is to maximize the value of a pre-specified objective function which varies 

depending on the opponent. 

(2) Rationale 

As described in Chapter II, it is often unclear to a human what a learning algorithm such as LCS 

or XCS must do in order to improve its performance. In many cases, human researchers cannot 

comprehend or consider the large number of possible environments the agent may encounter. 

Moreover, the researcher does not “see” the environment the way the agent does, and therefore 

cannot predict how the agent’s actions will affect the environment (Wilson 1999). Agent-based 

simulation provides a way to overcome these obstacles. By carefully defining the agents’ interactions, 

environment, and reward structure, the researcher can program the agent to “learn” by rewarding it 

when it performs in the desired manner.  

In this way, agent-based simulation investigates the agent’s learning and adaptation, and also 

focuses on emergent, self-organizing patterns in complex schema (Dooley 2002). In other words, 

agent-based simulation allows the LCS- and XCS-based agents to evolve in response to 

environmental stimuli as they attempt to maximize their rewards. As described in Chapter II, this is 

a key characteristic of reinforcement learning, which has often been chosen as the appropriate 

framework for developing learning machines. The intent of the current research is that LCS- and 

XCS-based agents will evolve differently, thereby providing a mechanism to explore their 

performance in a specified environment. 

B. EXPERIMENTS 

To investigate the relative performance of LCS- and XCS-based learning algorithms with regard 

to their respective characteristics, this research uses a suite of experiments designed to evaluate the 

algorithms’ internal workings and performance. Specifically, this research attempts to determine 

whether hypothesized superior characteristics of XCS over LCS hold in the IPD environment. In 

this sense, this research constitutes both experimental research with specific testable propositions, as 
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well as exploratory research with the general goal of better understanding the internal workings of 

the LCS and XCS Machine Learning algorithms. 

An experiment may be defined as an investigation that establishes a particular set of 

circumstances under a specified protocol to observe and evaluate implications of the resulting 

observations (Kuehl 2000). The researcher establishes and controls the protocols in an experiment 

to evaluate and test something that for the most part is unknown up to that time. The current 

research uses comparative experiments, where more than one set of circumstances are used so that 

the responses from the differing circumstances may be compared with each other (Kuehl 2000). 

Specifically, various pairings of LCS- and XCS-based agents with competing agents constitute the 

two sets of circumstances; the results of trials using these differing circumstances are then compared 

to explore the relative performance of the Machine Learning algorithms. 

(1) Goals 

As described previously, the overriding objective of this research is to compare the relative 

performance of Machine Learning agents based on LCS and XCS classifier systems. Prior research 

suggests that XCS’s fitness function and niche GA result in a strong tendency to evolve more 

desirable classifiers over time than those evolved using a traditional LCS (Butz and Wilson 2001). 

Moreover, the resulting classifiers are said to provide for easier recognition of the system’s 

accumulated “knowledge” than possible with traditional LCS-based systems (Butz and Wilson 2001). 

The net effect is an XCS population which is hypothesized to be more comprehensible, which 

requires fewer resources, and which is more adaptable to new problems (Kovacs 1997). 

Specific hypothesized advantages of XCS-based systems include 1) complete, accurate, minimal, 

and non-overlapping population mapping from inputs and actions to payoff predictions, and 2) the 

evolution of classifiers that are maximally general subject to some accuracy criterion. These 

advantages have collectively been described as constituting an optimal population or optimal solution 

(Kovacs 1997; Kovacs and Kerber 2001). Each perceived advantage is discussed in more detail in 

the following sections. 

(a) Complete Payoff Map 

XCS is said to evolve a complete payoff map of the problem. This means that the system 

evolves an internal representation that can determine the quality of each possible action in each 

possible state of the encountered environment (Butz and Pelikan 2001). In other words, XCS 
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populations accurately map all condition/action pairs to payoff predictions using the smallest 

possible set of non-overlapping classifiers. This quality is commonly measured using four attributes: 

i. Complete 

Reinforcement learning systems attempt to learn complete maps of their environment. A 

complete map is one that has an estimated payoff for each condition/action pair (Kovacs 1997). 

Many approaches to reinforcement learning develop such mappings. For example, the well-known 

tabular Q Learning approach exhaustively enumerates input/action pairs and maintains a payoff 

estimate for each (Munos and Patinel 1994). Because it maintains such mappings for all possible 

combinations, Q Learning suffers from poor scalability. XCS’s advantage in this regard is that its 

accuracy-based fitness function and niche GA tend towards minimal, as well as complete, mappings. 

ii. Accurate 

A classifier is accurate if it correctly predicts the payoff accrued after the execution of its 

recommended action (Butz, Kovacs et al. 2001). Accurate classifiers also map only to a single reward 

(Kovacs and Kerber 2001). Because XCS uses accuracy-based fitness to evolve its set of highly fit 

classifiers, it stands to reason that the resultant set of classifiers will also be highly accurate. 

iii. Minimal 

A minimal population contains the minimum number of rules to describe the problem space 

(Kovacs 1997). In other words, XCS’s terminal population includes no unnecessary classifiers 

(Kovacs and Kerber 2001). In practice, because the GA component is continually “discovering” new 

classifiers, XCS’s final population typically includes a small proportion of extraneous classifiers. 

In addition, the chosen experimental testbed in this research, the Iterated Prisoner’s Dilemma, 

places certain constraints on the resultant optimal population. Specifically, because of the allowable 

sequence of moves and countermoves against certain opponents, LCS and XCS may evolve 

populations that contain classifiers with the ability to map to spurious classifiers. This is an 

acknowledged characteristic of the chosen experimental testbed and will affect the resultant analyses 

as described later in this chapter. 

iv. Non-overlapping 

This criterion goes hand in hand with the previous one. A non-overlapping population means 

that no part of the problem space is described more than once (Kovacs and Kerber 2001). As 

opposed to the practice used with traditional classifier systems where classifiers are considered to 
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overlap if their conditions do, in XCS, both conditions and actions must match for the classifiers to 

be considered overlapping (Kovacs 1997).  

(b) Maximally General Classifiers 

Generalization means to treat as equivalent, differently appearing situations that nonetheless 

have equivalent consequences for the learning system (Wilson 1998). A necessary condition for 

generalization to occur is that the system not only knows the equivalence, but deals with it 

“compactly.” That is, the system recognizes environmental situations having equivalent 

consequences, but does so using internal structures of significantly less complexity than the raw 

environmental data (Wilson 1998). 

Classifiers express generalizations using the “don’t care” symbol (#) in their conditions. The # 

symbol means the classifier doesn’t care what the value of that particular bit is. Thus, a classifier with 

condition 00# matches both 001 and 000 and therefore treats these inputs as equivalent. This 

capability provides XCS with the ability to generalize over a given environmental niche. As described 

in the following sections, the level of generalization may be quantified. 

A classifier may be over-general, maximally general (optimal), or sub-optimally general with 

regard to the inputs it matches. A succinct description of these terms is offered by Kovacs (Kovacs 

1996; Kovacs 1997), who has kindly granted permission to have it reproduced here. Consider the 

following payoff landscape: 

Table III-1 Sample Payoff Landscape 
Input Action Payoff Rate 
00 
01 

1 
1 

200 
200 

10 
11 

1 
1 

100 
100 

## 0 0 
 

An XCS trained on this payoff landscape might well evolve a population containing the 

following classifiers 
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Table III-2 Sample Classifiers 
Classifier Condition Action Predicted 

Payoff 
Prediction 

Error 
Accuracy Fitness 

A ## 1 100 0.5 0.0 Low 
B 0# 1 200 0.0 1.0 High 
C 10 1 100 0.0 1.0 High 
D 11 1 100 0.0 1.0 High 
E ## 0 0 0.0 1.0 High 

 

Note that A’s accuracy is 0.0 because its prediction error exceeds a threshold called the accuracy 

criterion, as described in Chapter II. Each of the classifiers in this hypothetical population can be 

described as being one of the following: 

i. Over-general 

An overly general classifier matches too many input conditions. This is a problem because some 

of the condition/action pairs it matches may payoff at different rates. In the example population 

given above, Classifier A is over-general; its perception of the condition/action space is inaccurate 

and it should ideally be replaced with more specific classifiers whose conditions do not cross payoff 

level boundaries (Kovacs 1997). 

ii. Maximally General 

A maximally general classifier is one which matches only inputs that payoff at the same rate, 

and which can not become more general (i.e. can not add any more #s) without becoming overly 

general and therefore inaccurate (i.e. without matching inputs which pay off at different rates). In 

the example population given above, Classifiers B and E are maximally general (Kovacs 1997). 

iii. Sub-optimally General 

In the population given above, Classifiers C and D are sub-optimally general; each matches only 

inputs which pay off at the same rate, but there are other inputs which pay off at that rate which 

they could also match. Thus, they could each be made more general without losing accuracy; i.e. they 

could both be replaced with a single, more general classifier with condition 1# (Kovacs 1997). 

(2) Prior Research 

Support for these hypothesized advantages has been found in several simulation experiments in 

a number of different environments. Notable successes include XCS’s ability to “solve” the 6, 11, 

20, 37, and 70 Boolean multiplexer function (Kovacs 1997; Wilson 1999; Butz, Kovacs et al. 2002) 

and XCS’s capacity to guide an animat’s way through grid-like “woods” and maze environments 
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(Lanzi 1997; Wilson 1998). In both of these artificial environments, XCS was shown to perform 

better than did LCS. 

Notwithstanding these successes, XCS is still a fairly new phenomenon that has yet to stand the 

more in-depth investigations. Moreover, there are several identified shortcomings and gaps in the 

existing research; these include XCS’s difficulty with non-binary inputs and outputs, XCS’s use as a 

planning system, application of XCS to non-Markov environments (i.e. where “memory” is 

required), XCS’s use in a noisy or uncertain environment, and certain theory and technique issues 

(Wilson 1999). In addition, traditional LCS-based systems have been shown to perform very well in 

some settings, such as evolving novel fighter aircraft maneuvering patterns (Smith, Dike et al. 2000; 

Smith, Dike et al. 2000). Thus, it would appear that the traditional LCS model is not entirely without 

merit, and should therefore not be discarded as a viable Machine Learning technique (Wilson 1999). 

Of particular interest to this research, then, is a comparison of LCS- and XCS-based algorithms’ 

performance in an as yet untested IPD environment. In addition, this research explores XCS’s ability 

to evolve optimal classifier populations in this environment. As discussed in Chapter II, XCS has 

been shown to evolve optimal populations for Boolean multiplexer problems. This is a significant 

accomplishment; however, because of their symmetrical and “rational” nature, the Boolean 

multiplexer’s use as an experimental testbed does not allow the testing of other desired features of 

machine learning algorithms. As described in Chapter II, the Boolean multiplexer is a symmetrical 

function, where all areas of the payoff landscape are regularly updated. This provides for frequent 

fitness updates and GA applications in all environmental niches, resulting in optimal XCS 

performance. In addition, past XCS successes have involved building artificial systems that evolve 

“rational thinking” abilities. As described in Chapter II, the IPD environment presents a new 

challenge to XCS in this regard as well, because “irrational” behavior in the IPD sometimes 

produces better results than does rational behavior. 

For these reasons, XCS’s robustness in evolving optimal populations is still open to further 

scrutiny. The current research, therefore, compares LCS- and XCS-based learning algorithms, and 

also investigates XCS’s ability to evolve optimal populations, in a more asymmetrical and irrational 

environment, the IPD. Based on prior limited experimentation involving LCS and the IPD (Chalk 

and Smith 1998; Meng and Pakath 2001), the IPD setting is expected to challenge both XCS and 

LCS in ways each has not seen before. 
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(3) Differences Between LCS and XCS 

This research takes a modern XCS IPD-playing implementation and, using simulation 

experiments, repeatedly compares and contrasts it with a series of LCS IPD-playing models 

beginning with a “very traditional” LCS model (LCS-0). In subsequent competitions, one key 

architectural characteristic is altered so that the resulting agent differs in one way from the baseline 

LCS-0. The final competition uses the full-blown XCS implementation for comparison purposes. 

Each perturbation is subjected to the same comparative analysis procedures applied to the very first 

LCS-0 comparison. In each comparison, barring any required differences in the two game-playing 

agents, everything else is held constant. In particular, the pre-cast opponent(s) strategies that each 

plays against are identical. This approach requires documenting the ways XCS differs from LCS-0; a 

(possibly incomplete) listing of differences is provided below. 

(a) The Key Difference 

The most cited advantage of XCS over LCS is its use of payoff accuracy-based classifier fitness. 

This is contrary to the technique used in LCS-based systems, where accrued payoff magnitude is 

used to calculate classifier fitness. To segregate the effect of these two fitness schemes, LCS-0’s 

performance will be compared to that of agents using accuracy-based fitness.  

(b) Population Differences 

i. Initial Population 

LCS-0 begins its learning with a randomly or otherwise generated initial population of N 

classifiers. XCS starts with an empty population and often uses a procedure called “covering” to 

progressively fill the population. The LCS-0 in the following experiments, therefore, will begin with 

a randomly generated population whereas LCS-1 and XCS will use covering to fill its population. 

ii. Population Size 

LCS-0 always maintains a population of size N, even permitting duplicate classifiers to explicitly 

co-exist. XCS uses a classifier “numerosity” mechanism whereby a single classifier has an associated 

counter that is adjusted as needed to reflect the number of copies of it currently in the population. 

The population size need not explicitly equal N, but the individual classifier numerosity values must 

always sum to less than or equal to N. In the following experiments, therefore, LCS-0 will explicitly 

maintain a population of size N while LCS-2 and XCS will allow their populations to vary ≤ N. 
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(c) Genetic Algorithm Differences 

i. GA Scope 

LCS-0 systems perform their genetic algorithms panmictically, or by selecting parent classifiers 

from the entire population to serve as parents for new classifiers. XCS-based systems, on the other 

hand, perform the genetic algorithm using only classifiers that are members of Action Sets. In the 

following experiments, therefore, the LCS-0 uses panmictic genetic algorithms while LCS-7 and 

XCS perform Action Set genetic algorithms. 

ii. Parent Selection 

In LCS, a dozen or more parent selection schemes (for GA application) have been advocated 

and tested, with fitness-proportional (roulette-wheel) selection being most widely used. Such 

experimentation has not been conducted with XCS, where the community has instead gravitated to a 

fitness-proportional selection. Recent research (Butz, Sastry et al. 2002) advocates a form of 

selection called Tournament Selection as being the best in a wide variety of applications. In the 

following experiments, the baseline LCS-0 will use a fitness-proportional selection method while 

LCS-3 and XCS will implement Tournament Selection. 

iii. Classifier Deletion 

Traditional classifier systems have typically selected classifiers for deletion based on some 

fitness-based method (Kovacs 1999). Many times, LCS-based systems have simply deleted the 

lowest fitness classifier from the entire population. Because LCS is not concerned with evolving a 

complete map of the problem environment, this fitness-based deletion scheme has worked 

adequately in practice. With XCS-based systems, however, the system is intended to provide a 

complete map of the environment. A purely fitness-based deletion scheme, therefore, could lead to 

portions of the environment being underrepresented by classifiers. Contemporary XCS-systems, 

therefore, have adopted a deletion scheme that attempts to insure all portions of the payoff 

landscape are adequately covered while at the same time providing for deletion of sufficiently-

experienced, low-fitness classifiers. LCS-0 will therefore use a fitness-based deletion scheme while 

LCS-6 and XCS will preserve “resource balance” by maintaining roughly the same number of 

classifiers in each Action Set niche. 
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(d) Action Selection 

In LCS and in many existing XCS systems in the literature, action selection is performed using a 

proportionate, or roulette-wheel, algorithm. Other XCS systems, however, use biased exploration, 

where the action to be performed is selected based on a defined explore-exploit regime. Recent 

research with parent selection in the XCS’s GA has shown that the method of selection does have a 

significant result of the algorithm’s performance (Butz, Sastry et al. 2002); therefore, it is possible 

that the method used to select the action would impact performance as well. In the following 

experiments, LCS-0 employs a roulette-wheel action selection method, which then converts to 

biased exploration in the LCS-4 and XCS implementations. 

(e) Classifier Updates 

In LCS-0, a classifier’s fitness is updated every time it fires. Sometimes, some backward reward-

propagation mechanism is employed whereby all “enabling” classifiers’ fitness values are also 

updated. XCS-based systems, on the other hand, update classifier parameters whenever the classifier 

participates in an Action Set. These two update procedures result in differing numbers of classifiers 

receiving updates following each competition, quite likely affecting the agent’s learning rate and 

ability. In the following experiments, LCS-0 will update the firing classifier and employ a limited 

back propagation update, while LCS-5 and XCS will update all classifiers in the Action Set. 

(4) Generating Perturbations 

Given this list of differences, one can discern what features our LCS-0 and XCS ought to 

possess. Each perturbation is introduced to LCS-0 one at a time so any difference in performance 

must necessarily be due to the architectural characteristic’s effect and its interaction with other 

components of the algorithm. The very last competition uses a full-blown XCS implementation to 

provide a benchmark against with other variants may be compared. 

By modifying the algorithms in this way, any differences in the algorithms’ performance can be 

isolated to a particular cause. The set of experiments described in the following sections use this 

step-wise approach to investigate the questions of interest in this research. 

(5) Performance 

This research is concerned with comparing LCS- and XCS-based algorithms’ performance in an 

as yet untested IPD environment. In addition, this research explores XCS’s ability to evolve optimal 

classifier populations in this environment. To do so, it is necessary to measure each algorithm’s 
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performance and then compare their performance using appropriate techniques. The following 

sections address possible measures and the selection of several for comparison purposes. 

(a) Learning vs Steady State Phases 

The LCS and XCS agents have two distinct phases of performance. The first phase, described 

here as the learning phase, is characterized by a rapid increase in the agent’s performance and 

associated decrease in the system’s population size, and is driven primarily by the elimination of 

unfit classifiers. The second phase, known here as the performance phase, is characterized by relatively 

steady performance, and can be likened to the steady state phase of a stochastic process. 

To compare the relative performance of the two agents, it is appropriate to compare an agent’s 

performance in each of the two phases against the other agent’s performance in that phase. The 

point at which the agent stops learning and begins performing can be difficult to determine; 

however, theory from stochastic process simulation is useful in providing an approach to address 

this problem. As is true in Machine Learning, stochastic processes often have a warm up, or start-up 

phase, followed by a steady-state phase (Law and Kelton 2000). Stochastic simulation theory in this 

area, as well as prior research on learning classifier systems, can therefore be applied to provide a 

means to define the end of the learning phase and the beginning of the performance phase in the 

current study. 

According to stochastic process simulation theory, the beginning of the steady-state period is 

often determined through an analysis of a measure’s moving average as well as through visual 

inspection of the measure’s graph (Welch 1983; Law and Kelton 2000). This approach will be used 

here, with steady state beginning at the point where the graph of performance levels out. 

According to various stochastic process simulation references, the most serious consequence of 

misidentifying the beginning of the steady-state phase is probably that including the learning 

observations in the calculation of the steady state statistics provides a biased estimate of those 

parameters (Welch 1983; Law and Kelton 2000). To deal with this problem, deletion of some 

number of observations from the beginning of a run, using only the remaining observations to 

estimate the steady-state mean performance, is recommended (Welch 1981; Law and Kelton 2000; 

Kelton, Sadowski et al. 2002). In the current study, however, we are interested in measuring the rate 

of learning during the learning phase; therefore, instead of deleting observations, we instead break 

the observations into their constituent learning and performance phases, and then calculate 

performance measures for each phase.  
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(b) Measures 

In each comparative test, the assessments of relative system performances are based on 

performance data gathered from simulation experiments where the LCS variants and XCS play IPD 

tournaments against specific opponent players. Pertinent measures include those that help answer 

the research questions of interest (i.e. comparing/contrasting learning agent performance in the IPD 

environment and ability to evolve optimal IPD populations). The following ways of measuring 

performance and examining the evolutionary behaviors of a system have been used in previous 

research on LCS and XCS and have been adopted for the current research. 

i. Performance 

Performance is a measure defined by Wilson (Wilson 1995) which is most commonly used with 

XCS-based systems. Performance, referred to in the current research as % Correct, is defined as the 

proportion of the last 50 encounters to which the system has responded correctly (Wilson 1995). In 

multiplexer systems, “correctly” is defined as “solving” the multiplexer equation. In the IPD 

context, “correct” means selecting the move that maximizes an objective function which varies 

depending on the opponent. As an example, against a RAND opponent which unbiasedly chooses 

to defect or cooperate in each encounter, and which therefore offers no insights for the future, the 

correct action for a self-reward maximizing learning agent is to Defect.  

This metric is calculated by counting the number of correct responses generated by the agent 

during the previous x (nominally 50, but could be any interval) encounters. The number of correct 

encounters is then divided by x to calculate a proportion. Because this measure provides an 

indication of the agent’s ability to find a solution to a particular problem, larger values indicate a 

greater ability to learn for a given problem domain. As with % [O] described later, we anticipate that 

“more XCS-like” algorithms will score higher on this measure than “less XCS-like” algorithms. 

ii. Population Size 

This metric measures the number of unique classifiers present in the population at any given 

time. Because the LCS-0 paradigm allows duplicate classifiers to co-exist in the population, this 

metric has been adapted to measure the number of unique classifiers in the population. The XCS 

paradigm employs a numerosity mechanism whereby a single classifier has an associated counter that 

is adjusted as needed to reflect the number of copies of it currently in the population. Therefore, in 

XCS, population size is simply the number of macro classifiers present in the population at any 

 
 

72



given time (Wilson 1995). This metric provides an indication of an agent’s ability to represent its 

knowledge compactly, an item which is desirable as the quantity of knowledge to be stored increases. 

This metric, referred to in the current research as Unique Classifiers is calculated by counting 

the number of unique classifiers in the population every x (nominally 50, but could be any number) 

encounters. As described above, this measure provides an indication of the agent’s ability to 

represent its knowledge compactly and efficiently; therefore, agents with smaller populations 

theoretically are more comprehensible and require fewer resources. 

iii. Problem Difficulty 

Problem difficulty, measured by % [O] in this research, is the proportion of the optimal 

population present in the classifier system on any given time step (Kovacs and Kerber 2001). This 

measure is useful as a measure of the progress of the genetic search, and is particularly relevant to 

the measurement of the agent’s learning phase. This measure is more difficult to find than the % 

Correct measure described previously and requires more trials (inputs to the system) to learn 

because even after the classifier system has reached a point where it responds correctly to all its 

inputs, it still needs more time to find the optimal solution (Kovacs and Kerber 2001). 

This measure can be used to compare the relative performance of the LCS- and XCS-based 

algorithms during their learning and steady-state phases. The first step in calculating this measure is 

to determine the optimal population, [O], for a given opponent. The optimal population for the 

TFT opponent is given in the following table. Because of its random and unpredictable nature, there 

is no optimal population for the RAND opponent. 

Table III-3 TFT Optimal Population 
Number Input Action Expected Payoff 
1 
2 

##;##;C# 
##;##;C# 

C 
D 

3 
5 

3 
4 

##;##;D# 
##;##;D# 

C 
D 

0 
1 

* Input schema specifies that agent’s and opponent’s prior 3 moves are stored; agent’s move is on 
the left, opponent’s move is on the right 

 

The metric is then calculated by determining the average proportion of this [O] population that 

existed in the population during the preceding x (nominally 50, but could be any number) 

encounters. The optimal population represents the smallest possible set of non-overlapping 

classifiers. The ability of an agent to evolve higher percentages of [O] is useful as a measure of the 
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progress of the genetic search, with higher values indicating greater progress and related ability to 

fully explore the payoff landscape. 

iv. System Error 

System error is a measure of the absolute difference between the system prediction for the 

chosen action by a system and the actual external payoff (Kovacs 1997; Katagami and Yamada 2002) 

and provides an indication of how well the system is able to predict the reward to accrue upon the 

execution of a particular action. Though not traditionally used as a performance measure in research 

on LCS-based agents, it is informative to compare this measure for different variants of LCS- and 

XCS-based agents to determine the effect of the perturbations on the overall accuracy of the system. 

This measure is calculated using the sum of the squared differences of the system’s prediction 

for each action and the reward actually received by the system for taking that action in the previous 

x (nominally 50, but could be any interval) encounters. This sum is then divided by x to provide a 

“per encounter” average squared system error between the predicted and actual rewards. A smaller 

system error indicates a greater ability by the agent to accurately estimate the payoff matrix for a 

given opponent. 

v. Learning Rate 

Learning Rate is a generic measure which is calculated for each of the preceding performance 

measures. It is determined using visual inspection of the graph of a given performance measure to 

determine the point at which the system achieves steady state performance with respect to that 

measure. The number of encounters required to reach steady state performance is then divided into 

the magnitude of the steady state performance to provide a normalized indication of the agent’s 

learning rate. Generally speaking, the larger this value, the greater is an agent’s ability to learn. 

vi. Statistical Tools 

As described previously, the selected measures result from random processes and, with the 

exception of Learning Rate, are themselves Random Variables. In addition, given that multiple IID 

replications of each simulation are conducted, traditional statistical tools may be used to compare 

and contrast each agent’s performance. LCS and XCS researchers have not traditionally performed 

rigorous statistical tests on resultant performance measures, opting instead to depict relative 

performance using graphs that track each performance measure and drawing conclusions from 

visual inspection of these graphs. The data gathered in this research allows the use of statistical tests, 

both parametric and non-parametric, to draw supported conclusions regarding each agent’s relative 
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performance. These analyses add validity to reported results whereby one can assess whether two 

sets of performance measures are statistically significantly different from one another. 

vii. Other Possible Measures 

a. Relative Reward 

The IPD literature for co-adaptive players shows us several interesting behaviors. Each of these 

is an artifact of the red queen effect, so-called, because the red queen in Alice in Wonderland states 

that in her world you must keep running just to stand still (Floreano and Nolfi 1997). In an 

analogous way, the performance of each player in the two-sided learning problem is relative to that 

of its opponent. In other words, when one player adapts and the other uses a static strategy (as 

against CCC or DDD), the performance of the adaptive player is absolute with respect to its 

opponent. However, when both players are adaptive, the performance ceases to have an absolute 

meaning. Instead, its meaning is only relative to the state of its current opponent. Therefore, 

measuring the reward received by an agent relative to its opponent provides valuable information 

regarding its adaptive behavior. 

b. Evolutionary Path Traces 

At any point in time, one may pick up an evolved classifier and trace its roots back to the 

starting population and examine its evolutionary history and related details very carefully. Such an 

examination is called an Evolutionary Path Trace (Wilson 1999) and is useful in discerning the exact 

mechanisms responsible for a classifier’s generation and evolution. Because they involve individually 

examining numerous populations of classifiers, however, Evolutionary Path Traces can be extremely 

time consuming and are therefore only recommended to resolve a specific question not easily 

resolved through other means. 

(6) Experiment Suite and Propositions 

As described in Chapter I: C. , there are a total of twenty competitions; these are listed in the 

following table. 
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Table III-4 Competitions Between Agents and Opponents 
Competition 
Number 

Agent and Architectural Characteristics Opponent 

1 TFT 
2 

LCS-0 (Baseline LCS) 
RAND 

3 TFT 
4 

LCS-1 (Initial Population: Random 
→Through Covering) RAND 

5 TFT 
6 

LCS-2 (Population Size: Constant, N → ≤ 
N) RAND 

7 TFT 
8 

LCS-3 (Parent Selection: Fitness 
Proportional → Tournament) RAND 

9 TFT 
10 

LCS-4 (Action Selection: Fitness 
Proportional → Biased Exploration) RAND 

11 TFT 
12 

LCS-5 (Classifier Fitness Update: Firing 
Classifier  → All Classifiers in [A]) RAND 

13 TFT 
14 

LCS-6 (Classifier Deletion Criteria: Fitness 
Only → Fitness and Resource Balancing) RAND 

15 TFT 
16 

LCS-7 (Genetic Algorithm: Panmictic → 
Niche) RAND 

17 TFT 
18 

LCS-8 (Classifier Fitness Determinant: 
Magnitude → Accuracy) RAND 

19 TFT 
20 

XCS 
RAND 

 

The initial competitions, between LCS-0 and TFT and between LCS-0 and RAND, establish 

baseline performance characteristics against which to compare subsequent competitions. Likewise, 

the final competitions, between XCS and TFT and between XCS and RAND, provide a theoretical 

upper bound for each agent’s performance. As described in Chapter I, while XCS is hypothesized to 

be superior to the traditional LCS, with supporting evidence in some problem domains, LCS has 

been shown to perform well in other problem domains. Therefore, it is informative to compare and 

contrast the results of the competitions outlined above, especially as they compare with the 

performance exhibited by LCS-0 and XCS. 

Although it is possible to make informed guesses regarding expected results of some of these 

competitions, the relative performance of other variants is more difficult to predict. Indeed, the 

literature provides no clear evidence regarding the expected performance of incremental variants 

such as those used in this research. Thus, a portion of the current research may be classified as 

exploratory in nature, with the primary goal of providing insight into the internal workings of LCS- 

and XCS-based learning agents, especially regarding the effects of XCS’s constituent mechanisms. 
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This exploratory nature notwithstanding, it is possible and appropriate to propose differential effects 

resulting from these various architectural differences; these propositions are provided below. 

(a) The Key Difference 

XCS’s use of payoff accuracy-based classifier fitness is theorized to result in classifiers which are 

more comprehensible, provide for easier recognition of the system’s accumulated “knowledge,” 

require fewer resources, and are more adaptable to new problems. (Kovacs 1997; Butz and Wilson 

2001). The existence of these theorized advantages may be tested using the following propositions: 

P1: Agents using accuracy-based fitness will have smaller values of Unique Classifiers than 
agents employing magnitude-based fitness. 

P2: Agents using accuracy-based fitness will have higher values of % [O] than agents 
employing magnitude-based fitness. 

 

(b) Population Differences 

i. Initial Population 

LCS-based agents begin learning with an initial population consisting of N randomly generated 

classifiers. Each of these classifiers constitutes an as-yet untested hypothesis about the agent’s 

problem domain. XCS-based agents begin with an empty population and generate classifiers as 

needed using a procedure called “covering.” Because LCS-based agents must consider and process 

more random information early in their learning processes, XCS-based agents should learn more 

quickly and efficiently. In addition, because XCS-based agents create classifiers only when needed, 

their populations should logically contain fewer extraneous classifiers. 

P3: Agents which begin with empty populations will have larger values for Learning Rate 
than agents which begin with randomly generated populations. 

P4: Agents which begin with empty populations will have smaller values for Unique 
Classifiers than agents which begin with randomly generated populations. 

 

ii. Population Size 

LCS-based agents always maintain a population of size N and explicitly permit duplicate 

classifiers to co-exist, whereas XCS-based agents employ a classifier “numerosity” counter to reflect 

the copies of it currently in the population. Because LCS-based agents do not insure all identical 

classifiers are processed identically (i.e. all identical classifiers are not updated when one is fired; all 

identical classifiers are not deleted when one is deleted), they evolve populations containing 
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inaccurate and unnecessary classifiers. LCS-based agents should therefore learn more slowly and 

have populations that contain extraneous classifiers. 

P5: Agents with populations that are allowed to vary ≤ N will have larger values for 
Learning Rate than agents which begin with randomly generated populations. 

P6: Agents with populations that are allowed to vary ≤ N will have smaller values for 
Unique Classifiers than agents which begin with randomly generated populations. 

 

(c) Genetic Algorithm Differences 

i. GA Scope 

LCS-based agents select parent classifiers panmictically from the entire population, while XCS-

based systems select parents only from Action Set classifiers. Panmictic parent selection introduces 

irrelevant genetic material in the GA, which should result in slower and less precise learning. 

P7: Agents using panmictic parent selection will have smaller values for Learning Rate than 
agents using niche GAs. 

P8: Agents using panmictic parent selection will have smaller values for % Correct than 
agents using niche GAs. 

P9: Agents using panmictic parent selection will have larger values for System Error than 
agents using niche GAs. 

 

ii. Parent Selection 

Many parent selection schemes have been employed in LCS and XCS research, with conflicting 

evidence regarding the efficacy of the various methods. Recent research suggests Tournament 

Selection as being the best of all possible parent selection methods; however, this proposition is not 

widely supported (Butz, Sastry et al. 2002). Therefore, it is useful to test different parent-selection 

methods in the current research to determine their effectiveness in the as-yet untested IPD problem 

domain. Evidence of superior performance will be provided using the performance measures % 

Correct, Unique Classifiers, System Error, and Learning Rate. 

iii. Classifier Deletion 

LCS-based agents select classifiers for deletion using classifier fitness only. XCS-based systems, 

on the other hand, attempt to maintain a complete map of the problem domain using a method 

considering both fitness and resource balance. Because XCS-based systems explicitly consider the 

entire payoff map, they should provide a more thorough representation of the entire problem 

domain. 

P10: Agents using fitness/resource balance deletion will have larger values for % [O] than 
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agents using fitness only. 
 

(d) Action Selection 

Historically, LCS-based systems have selected the action to be performed using a proportionate, 

or roulette-wheel, algorithm. Modern XCS-based systems use biased exploration, where the action is 

selected using a pre-defined balance of exploration and exploitation. There exists no clear evidence 

regarding the relative performance of the two methods in the IPD domain; therefore, this research 

explores the possibility that one method will be more effective in the chosen testbed. Evidence of 

superior performance will be provided using the performance measures % Correct, System Error, and 

Learning Rate. 

(e) Classifier Updates 

LCS-based agents typically update a classifier’s parameters each time it fires and sometimes 

update enabling classifiers as well. XCS-based agents update classifier parameters whenever the 

classifier is a member of the Action Set. Action Set updates provides environmental feedback to 

more classifiers during each cycle than updating only the firing and enabling classifiers; therefore, 

XCS-based agents should learn faster than their LCS-based counterparts. 

P11: Agents using Action Set updates will have larger values for Learning Rate than agents 
updating firing and enabling classifiers only. 

 

(7) Methodological Issues 

Both LCS and XCS use a number of parameters, other than those explicitly mentioned in this 

narrative, in their operation. These common parameters must be identically operationalized. An 

exhaustive listing and exposition of these parameters and their settings is not given here (refer to 

Appendix B: XCS Sets and Parameters for parameter descriptions and values), but suffice to note 

that much prior work (Wilson 1995; Kovacs 1996; Butz and Wilson 2001; Kovacs and Kerber 2001) 

has been consulted in setting all common parameters. Further, all simulation runs are based on 

appropriate simulation design (e.g., appropriate use of multiple, independent random number 

streams, adequate number of independent run replications, etc.) with particular care taken in terms 

of holding as many simulation parameters as possible common for all competitions.  

Apart from these considerations, a unique feature of the IPD setting is the choices available in 

terms of individual classifier’s condition portions: choices must be made concerning the length of 

each condition (i.e., how many prior encounters to encode) and content of each condition (i.e., what 
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to encode about each encounter). Prior experimentation (Meng and Pakath 2001) has shown that 

performance against particular opponents is sensitive to both of these factors. Experimenting with 

alternative condition designs is beyond the scope of the present research; therefore, a constant 

length and content for all of experiments (e.g., a length of 3 encounters where both players’ moves 

are recorded, thus yielding a condition of length 6) will be used in the present research.  

C. CONCLUSION 

A suite of twenty simulation experiments between LCS- and XCS-based learning agents and 

two IPD-playing opponents are to be conducted, using a set of five performance measures to 

compare results. Although some aspects of this research are exploratory in nature, the theorized 

superiority of various mechanisms used by XCS will be tested using a set of propositions and 

performance measure results from the twenty competitions. 

 

Copyright © David Alexander Gaines 2006 
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CHAPTER IV: EXPERIMENTAL FINDINGS AND ANALYSIS 

This chapter reports the results of the simulation experiments described in Chapter III. The 

experiments consisted of competing each of 10 variants of an LCS-based learning system against 

two predetermined opponents, repeatedly measuring learning system performance using four key 

measures for each competition. An additional metric, Learning Rate, was calculated for each 

performance measure to compare each agent’s performance during its learning phase. 

The results of these experiments are given as follows: first, graphs of each performance measure 

are presented to provide a top-level view of each agent’s performance against each opponent. The Y 

axis on each graph depicts the value of the performance measure, while the X axis represents the 

number of encounters (in groups of 50) between the agent and its opponent since the first 

encounter; hence, the figure 3,201 on the X axis represents encounter 160,050 in the overall 

simulation. As described in Chapter III, data points represent the average of the measure over the 

preceding 50 encounters and across the 60 replications. 

The graph of the performance measure is followed by a table summarizing key data for each 

learning agent, including the encounter at which the performance measure stabilized, the measure’s 

rates of change prior to and after stabilization, and summary information regarding the agent’s 

performance while stabilized. Stabilized data is important for two reasons: first, the encounter at 

which the performance measure stabilized provides information regarding each agent’s ability to 

learn in an unknown environment, a stated item of interest in this research, while statistics regarding 

the agent’s performance while stabilized provide information on the agent’s ultimate ability with 

respect to that measure.  

As described in Chapter III, the point of stabilization is determined using techniques borrowed 

from stochastic process simulation, with steady state beginning at the point where the graph of the 

performance measure levels out. In cases where the measure did not fully stabilize, the final 201 

encounters between each agent and opponent were used to generate statistics regarding the agent’s 

terminal performance. These encounters were chosen because they represent the final performance 

level exhibited by the agent and because they provide a sufficient sample size for reliable statistical 

analyses. One graph and one set of summary statistics are presented for each combination of 

performance measure and opponent (e.g. % Correct and TFT); therefore, there are four graphs and 

four tables for each opponent.  
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For each measure, following the graph and table, the results of statistical tests of means are 

described, as are tables depicting the rank orders of the various performance measures. These rank-

ordered tables provide the basis for drawing conclusions regarding the relative performance of each 

variant and are used later in this Chapter for testing the propositions developed in Chapter III.  

Finally, summary conclusions regarding the effects of XCS’s architectural differences are 

provided. 

A. VERSUS TFT 

The strategy that scored highest in Axelrod’s initial tournament, Tit for Tat (TFT), cooperates 

on the first round of the tournament and imitates its opponent’s previous move on every move 

thereafter. Thus, TFT is a strategy of cooperation based upon reciprocity. TFT is also a predictable 

strategy in that it follows a well-defined pattern in response to its opponent’s action on the 

preceding move. 

(1) Number of Unique Classifiers 

The graph (Figure IV-1) and table (Table IV-1) on the following pages provide summary data 

regarding each agent’s performance against the TFT opponent with respect to the performance 

measure Unique Classifiers. As defined in Chapter III, this measure represents the number of unique 

classifiers present in the population at any given time and is indicative of an agent’s ability to 

represent its learned knowledge compactly.  

 



 

Figure IV-1 Unique Classifiers vs TFT 

Unique Classifiers vs TFT

0

50

100

150

200

250

300

350

1 401 801 1201 1601 2001 2401 2801 3201 3601

Generation (50s)

#

LCS-0
LCS-1
LCS-2
LCS-3
LCS-4
LCS-5
LCS-6
LCS-7
LCS-8
XCS

 

83

 
 



 

 
 

84

Table IV-1 Descriptive Characteristics, Unique Classifiers vs TFT 
Stabilization 

Point of Occurrence Stabilized Statistics 
Agent Unique 

Characteristic 
Initial 
Value 

Final 
Value 

x 103 Value Rate of 
Change 
Prior 

Rate of 
Change 
After 

N Obs Mean Std 
Dev 

Var Min Max Med Rng Skew t Value Pr > |t|

LCS-0 Baseline LCS 300 27.25 50 25.57 -5.49E-03 1.12E-05 180060 24.10 7.91 62.57 7.00 58.00 23.00 51.00 0.78 1292.61 <.0001

LCS-1 
Population initially 
empty 0 29.97 190 29.68 1.56E-04 2.90E-05 12060 30.04 8.64 74.63 15.00 61.00 29.00 46.00 0.81 381.83 <.0001

LCS-2 
Population size 
varies ≤ N 300 64.27 190 64.91 -1.24E-03 -6.40E-05 12060 64.99 4.15 17.20 54.00 80.50 65.00 26.50 0.11 1721.06 <.0001

LCS-3 
Parents selected 
via tournament 300 18.79 170 18.93 -1.65E-03 -4.67E-06 36060 18.82 5.87 34.43 8.00 45.26 18.00 37.26 0.98 609.10 <.0001

LCS-4 
Biased exploration 
action selection 300 35.97 60 35.32 -4.41E-03 4.64E-06 168060 35.26 3.75 14.09 21.00 55.09 35.00 34.09 0.16 3850.37 <.0001

LCS-5 
Update classifiers 
in [A] 300 50.25 100 51.22 -2.49E-03 -9.70E-06 120060 50.82 7.99 63.76 20.02 76.98 51.48 56.96 -0.21 2205.09 <.0001

LCS-6 
Fitness/Resource 
Balance Deletion 300 35.16 190 34.44 -1.40E-03 7.20E-05 12060 34.92 8.21 67.34 14.00 57.00 35.00 43.00 0.18 467.29 <.0001

LCS-7 Niche GA 300 17.82 190 17.64 -1.49E-03 1.80E-05 12060 17.47 4.56 20.81 7.00 36.00 17.00 29.00 1.01 420.59 <.0001

LCS-8 
Accuracy-based 
fitness 300 13.69 160 13.63 -1.79E-03 1.50E-06 48060 13.85 3.02 9.14 4.50 29.00 13.98 24.50 0.64 1004.19 <.0001

XCS XCS 0 5.05 60 5.69 9.48E-05 -4.57E-06 168060 5.43 2.13 4.56 4.00 27.00 5.00 23.00 3.14 1043.24 <.0001
Note: Data gathered across 60 replications. 
 



 

(a) Order of Stabilization 

It is informative to compare the encounter at which each agent’s performance stabilized; in 

general, the faster the measure stabilized, the fast the agent learned the problem domain with respect 

to that measure. The following table provides a list ordered from best to worst of each agent’s 

stabilization encounter for the performance measure Unique. 

Table IV-2 Rank-Ordered Stabilization Encounter versus TFT WRT Unique 
Agent Stabilization 

Encounter 
(x 103) 

LCS-0 50 
LCS-4 60 
XCS 60 
LCS-5 100 
LCS-8 160 
LCS-3 170 
LCS-1 190 
LCS-2 190 
LCS-6 190 
LCS-7 190 

 

LCS-0, the baseline LCS agent, stabilized first, followed closely by LCS-4 (Biased Exploration 

action selection instead of Fitness Proportional), and XCS. 

(b) Magnitude at Stabilization 

Summary statistics indicate that each agent evolved a different number of unique classifiers to 

represent the knowledge it learned about the TFT problem domain. Statistical tests of the stabilized 

means (refer to the output for test 1.1 on page 273) confirm that each agent’s population stabilized 

at a significantly different level. The following table provides a list ordered from best to worst of 

stabilized unique population sizes. 
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Table IV-3 Rank-Ordered Stabilized Means versus TFT WRT Unique 
Agent Mean Std Dev Var 
XCS 5.43 2.13 4.56 
LCS-8 13.85 3.02 9.14 
LCS-7 17.47 4.56 20.81 
LCS-3 18.82 5.87 34.43 
LCS-0 24.10 7.91 62.57 
LCS-1 30.04 8.64 74.63 
LCS-6 34.92 8.21 67.34 
LCS-4 35.26 3.75 14.09 
LCS-5 50.82 7.99 63.76 
LCS-2 64.99 4.15 17.20 

 

The magnitude of this stabilized population provides information regarding each agent’s ability 

to represent its learned knowledge compactly and succinctly. Because they begin with empty 

populations, it is reasonable to propose that XCS and LCS-1 would contain relatively fewer unique 

classifiers. As shown in the preceding table, however, while XCS does indeed contain the smallest 

number of unique classifiers, LCS-1 performs in the bottom half of all agents in this measure. 

(c) Learning Rate 

Dividing the encounter at which the measure stabilized into the mean of the stabilized measure 

provides an indication of the agent’s learning rate. This information is rank-ordered from best to 

worst in the following table. It should be noted that because XCS and LCS-1 begin with empty 

populations, their learning rates on this measure are comparable to each other’s, but not to those of 

the other agents. 
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Table IV-4 Rank-Ordered Learning Rate versus TFT WRT Unique 
 

 

Agent Learning Rate 
(x 10-3) 

LCS-0 -5.49 
LCS-4 -4.41 
LCS-5 -2.49 
LCS-8 -1.79 
LCS-3 -1.65 
LCS-7 -1.49 
LCS-6 -1.40 
LCS-2 -1.24 
  
XCS 0.09 
LCS-1 0.16 

The following graph (Figure IV-2) and table (Table IV-5) provide information on each agent’s 

performance in the measure % Correct vs the opponent TFT. Given the particular payoff matrix 

used in the current research, “correct” means selecting the move that maximizes the sum of the 

agent’s and opponent’s reward on any given encounter. Therefore, against the TFT opponent, the 

correct response is to Cooperate when TFT Cooperates, and to Defect when TFT Defects.

As indicated, because smaller populations generally indicate a greater ability to represent learned 

knowledge compactly and efficiently, for those agents with randomly generated starting populations, 

more negative values for Learning Rate are desirable. For those with empty populations, smaller 

values for Learning Rate are preferable. Therefore, all else being equal, LCS-0 can be said to have 

outperformed LCS-4 in this measure, and XCS can be said to have outperformed LCS-1. 

(2) % Correct Responses 



 

Figure IV-2 % Correct vs TFT 
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Table IV-5 Descriptive Characteristics, % Correct vs TFT 
Stabilization 

Point of Occurrence Stabilized Statistics 
Agent Unique 

Characteristic 
Initial 
Value 

Final 
Value 

x 103 Value Rate of 
Change 
Prior 

Rate of 
Change 
After 

N Obs Mean Std 
Dev 

Var Min Max Med Rng Skew t Value Pr > |t|

LCS-0 Baseline LCS 50.67 98.63 134 98.47 3.57E-04 2.42E-06 79260 98.41 2.06 4.24 82.00 100.00 100.00 18.00 -1.56 13447.30 <.0001 

LCS-1 
Population initially 
empty 44.43 98.53 135 98.00 3.97E-04 8.15E-06 78060 98.03 4.88 23.79 0.00 100.00 100.00 100.00 -13.57 5615.17 <.0001 

LCS-2 
Population size 
varies ≤ N 46.03 84.87 120 84.33 3.19E-04 6.75E-06 96060 84.75 7.17 51.34 0.00 100.00 86.00 100.00 -1.13 3665.98 <.0001 

LCS-3 
Parents selected 
via tournament 57.23 98.10 22 97.23 1.82E-03 4.89E-06 213660 98.30 7.02 49.30 0.00 100.00 100.00 100.00 -8.09 6471.60 <.0001 

LCS-4 
Biased exploration 
action selection 62.96 99.93 0.40 99.75 9.20E-02 9.02E-07 239580 99.73 1.57 2.47 37.04 100.00 100.00 62.96 -10.49 31089.20 <.0001 

LCS-5 
Update classifiers 
in [A] 46.20 96.73 70 94.97 6.97E-04 1.35E-05 156060 96.88 4.46 19.89 0.00 100.00 98.00 100.00 -11.84 8581.95 <.0001 

LCS-6 
Fitness/Resource 
Balance Deletion 47.60 96.50 100 96.17 4.86E-04 3.30E-06 120060 96.41 3.54 12.56 68.00 100.00 98.00 32.00 -1.29 9426.98 <.0001 

LCS-7 Niche GA 55.63 98.43 160 97.80 2.64E-04 1.58E-05 48060 98.37 2.21 4.90 72.00 100.00 100.00 28.00 -1.97 9738.05 <.0001 

LCS-8 
Accuracy-based 
fitness 51.23 52.00 .05 51.23 0.00E+00 3.85E-06 240000 50.49 20.39 415.61 0.00 100.00 50.00 100.00 0.03 1213.35 <.0001 

XCS XCS 69.54 100.00 0.40 99.87 7.58E-02 6.51E-07 239580 100.00 0.07 0.00 80.00 100.00 100.00 20.00 -204.19 100000.00 <.0001 
Note: Data gathered across 60 replications. 
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(a) Order of Stabilization 

It is informative to compare the encounter at which each agent’s performance stabilized; in 

general, the faster the measure stabilized, the fast the agent learned the problem domain with respect 

to that measure. The following table provides a list ordered from best to worst of each agent’s 

stabilization encounter for the performance measure % Correct. 

Table IV-6 Rank-Ordered Stabilization Encounter versus TFT WRT % Correct 
Agent Stabilization 

Encounter 
(x 103) 

LCS-8 0.05 
LCS-4 0.4 
XCS 0.4 
LCS-3 22 
LCS-5 70 
LCS-6 100 
LCS-2 120 
LCS-0 134 
LCS-1 135 
LCS-7 160 

 

LCS-8 (Classifier fitness determined by accuracy instead of magnitude) stabilized first, followed 

closely by LCS-4 (Biased Exploration action selection instead of Fitness Proportional), and XCS. 

(b) Magnitude at Stabilization 

Summary statistics indicate that each agent evolved a differing ability to correctly solve the TFT 

problem domain. Statistical tests of the stabilized means (refer to the output for test 1.2 on page 

275) confirm that each agent’s % Correct stabilized at a significantly different level with the 

exception of agents LCS-0 and LCS-7 which stabilized at levels which were statistically 

indistinguishable. The following table provides a list of % Correct ordered from best to worst. 
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Table IV-7 Rank-Ordered Stabilized Means versus TFT WRT % Correct 
Agent Mean Std Dev Var
XCS 100.00 0.07 0.00
LCS-4 99.73 1.57 2.47
LCS-0 98.41 2.06 4.24
LCS-7 98.37 2.21 4.90
LCS-3 98.30 7.02 49.30
LCS-1 98.03 4.88 23.79
LCS-5 96.88 4.46 19.89
LCS-6 96.41 3.54 12.56
LCS-2 84.75 7.17 51.34
LCS-8 50.49 20.39 415.61

 

Many agents are able to provide a high percentage of correct responses in the TFT problem 

domain, with XCS answering correctly on every encounter, followed closely by LCS-4 (Biased 

Exploration action selection instead of Fitness Proportional), LCS-0 (Baseline LCS), LCS-7 (Niche 

Genetic Algorithm instead of Panmictic), LCS-3 (Tournament-based Parent Selection instead of 

Fitness Proportional), and LCS-1 (Empty initial population instead of randomly generated). 

Interestingly, LCS-8, which relies on classifier accuracy as its measure of fitness scores the lowest on 

this measure. 

(c) Learning Rate 

Dividing the encounter at which the measure stabilized into the mean of the stabilized measure 

provides an indication of the agent’s learning rate. This information is rank-ordered from best to 

worst in the following table.  
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Table IV-8 Rank-Ordered Learning Rate versus TFT WRT % Correct 
Agent Learning Rate 

(x 10-3) 
LCS-4 92.00 
XCS 75.80 
LCS-3 1.82 
LCS-5 0.70 
LCS-6 0.49 
LCS-1 0.40 
LCS-0 0.36 
LCS-2 0.32 
LCS-7 0.26 
LCS-8 0.00 

 

The best agent in terms of % Correct Learning Rate was LCS-4 (Biased Exploration action 

selection instead of Fitness Proportional), followed by XCS. All other agents performed orders of 

magnitude worse on this metric than did these two agents. It is again interesting to note that LCS-8 

performs the worst on this metric, having quickly achieved an approximately 50% correct rate, and 

performing at essentially that level during all the remaining encounters. 

(3) System Error 

The following graph (Figure IV-3) provides a visual depiction of each variant’s performance in 

the measure System Error vs the opponent TFT. The System Error measure is a gauge of how 

accurately the agent predicts the reward that accrues upon the execution of a particular action. The 

graph is followed by a table (Table IV-9) with statistics describing agent performance while 

stabilized.  



 

Figure IV-3 System Error vs TFT 
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Table IV-9 Descriptive Characteristics, System Error vs TFT 
Stabilization 

Point of Occurrence Stabilized Statistics 
Agent Unique 

Characteristic 
Initial 
Value 

Final 
Value 

x 103 Value Rate of 
Change 
Prior 

Rate of 
Change 
After 

N Obs Mean Std 
Dev 

Var Min Max Med Rng Skew t Value Pr > |t|

LCS-0 Baseline LCS 2.1399 0.0155 160 0.0201 -1.32E-05 -1.15E-07 48060 0.0178 0.032 0.001 0.000 0.467 0.001 0.467 4.99 121.25 <.0001 

LCS-1 
Population initially 
empty 2.3260 0.0176 140 0.0188 -1.65E-05 -2.00E-08 72060 0.0185 0.037 0.001 0.000 1.193 0.001 1.193 7.38 136.25 <.0001 

LCS-2 
Population size 
varies ≤ N 2.3298 0.1951 100 0.2250 -2.10E-05 -2.99E-07 120060 0.1926 0.132 0.017 0.000 1.163 0.168 1.163 1.20 507.04 <.0001 

LCS-3 
Parents selected 
via tournament 2.6211 0.0084 20 0.0199 -1.30E-04 -6.39E-08 216060 0.0083 0.041 0.002 0.000 2.920 0.000 2.920 19.11 94.62 <.0001 

LCS-4 
Biased exploration 
action selection 5.9305 0.0286 0.30 0.0576 -1.96E-02 -1.45E-07 239700 0.0153 0.063 0.004 0.000 2.702 0.003 2.702 14.52 119.00 <.0001 

LCS-5 
Update classifiers 
in [A] 0.6706 0.0405 80 0.0474 -7.79E-06 -5.75E-08 144060 0.0377 0.059 0.003 0.000 1.581 0.021 1.581 4.48 243.75 <.0001 

LCS-6 
Fitness/Resource 
Balance Deletion 2.0898 0.0484 110 0.0513 -1.85E-05 -3.22E-08 108060 0.0445 0.065 0.004 0.000 1.113 0.020 1.113 3.29 224.21 <.0001 

LCS-7 Niche GA 2.2385 0.0147 160 0.0339 -1.38E-05 -4.80E-07 48060 0.0182 0.033 0.001 0.000 0.598 0.001 0.598 4.88 119.68 <.0001 

LCS-8 
Accuracy-based 
fitness 4.5491 1.0314 190 0.9947 -1.87E-05 3.67E-06 12060 1.0203 0.408 0.166 0.000 1.840 1.142 1.840 -0.84 274.67 <.0001 

XCS XCS 4.5079 0.0066 30 0.0132 -1.50E-04 -3.88E-08 204060 0.0083 0.026 0.001 0.000 0.233 0.000 0.233 3.10 145.08 <.0001 
Note: Data gathered across 60 replications. 

 

 

 
 

94



 

(a) Order of Stabilization 

It is informative to compare the encounter at which each agent’s performance stabilized; in 

general, the faster the measure stabilized, the fast the agent learned the problem domain with respect 

to that measure. The following table provides a list ordered from best to worst of each agent’s 

stabilization encounter for the performance measure System Error. 

Table IV-10 Rank-Ordered Stabilization Encounter versus TFT WRT System Error 
Agent Stabilization 

Encounter 
(x 103) 

LCS-4 0.3 
LCS-3 20 
XCS 30 
LCS-5 80 
LCS-2 100 
LCS-6 110 
LCS-1 140 
LCS-0 160 
LCS-7 160 
LCS-8 190 

 

LCS-4 (Biased Exploration action selection instead of Fitness Proportional) stabilized first, 

followed by LCS-3 (Tournament-based Parent Selection instead of Fitness Proportional), and XCS. 

(b) Magnitude at Stabilization 

Summary statistics indicate that each agent evolved a differing ability to correctly predict the 

specified reward matrix for the TFT problem. Statistical tests of the stabilized means (refer to the 

output for test 1.3 on page 278) confirm that each agent’s System Error stabilized at a significantly 

different level. The following table provides a list of stabilized System Error ordered from best to 

worst. 
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Table IV-11 Rank-Ordered Stabilized Means versus TFT WRT System Error 
Agent Mean Std Dev Var
LCS-3 0.0083 0.0410 0.0020
XCS 0.0083 0.0260 0.0010
LCS-4 0.0153 0.0630 0.0040
LCS-0 0.0178 0.0320 0.0010
LCS-7 0.0182 0.0330 0.0010
LCS-1 0.0185 0.0370 0.0010
LCS-5 0.0377 0.0590 0.0030
LCS-6 0.0445 0.0650 0.0040
LCS-2 0.1926 0.1320 0.0170
LCS-8 1.0203 0.4080 0.1660

 

Many agents are able to accurately learn the reward matrix for the TFT problem domain, with 

XCS having the lowest stabilized system error, followed closely by LCS-3 (Tournament-based Parent 

Selection instead of Fitness Proportional), LCS-4 (Biased Exploration action selection instead of 

Fitness Proportional), LCS-0 (Baseline LCS), LCS-7 (Niche Genetic Algorithm instead of 

Panmictic), and LCS-1 (Empty initial population instead of randomly generated). Again, LCS-8, with 

its reliance on classifier accuracy as the measure of fitness, scores the lowest on this measure. 

(c) Learning Rate 

Dividing the encounter at which the measure stabilized into the mean of the stabilized measure 

provides an indication of the agent’s learning rate. This information is rank-ordered from best to 

worst in the following table.  

Table IV-12 Rank-Ordered Learning Rate versus TFT WRT System Error 
Agent Learning Rate 

(x 10-3) 
LCS-4 -19.60 
XCS -0.15 
LCS-3 -0.13 
LCS-2 -0.02 
LCS-8 -0.02 
LCS-6 -0.02 
LCS-1 -0.02 
LCS-7 -0.01 
LCS-0 -0.01 
LCS-5 -0.01 
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The best agent in terms of Learning Rate on System Error was LCS-4 (Biased Exploration 

action selection instead of Fitness Proportional), followed by XCS and LCS-3 (Tournament-based 

Parent Selection instead of Fitness Proportional). All other agents performed much worse on this 

metric than these three agents. 

(4) % of Optimal Population [O] 

The following graph (Figure IV-4) provides a visual depiction of each variant’s performance in 

the measure % [O] vs the opponent TFT. As described previously, the optimal population [O] when 

competing against TFT includes four classifiers. The following graph, therefore, depicts the 

percentage of this four member [O] existing in an agent’s population [P] throughout the simulation. 

This figure is followed by a table (Table IV-13) summarizing performance data during stabilization. 



 

Figure IV-4 % [O] vs TFT 
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Table IV-13 Descriptive Characteristics, % [O] vs TFT 
Stabilization 

Point of Occurrence Stabilized Statistics 
Agent Unique 

Characteristic 
Initial 
Value 

Final 
Value 

x 103 Value Rate of 
Change 
Prior 

Rate of 
Change 
After 

N Obs Mean Std 
Dev 

Var Min Max Med Rng Skew t Value Pr > |t|

LCS-0 Baseline LCS 0.16 27.50 140 26.25 1.86E-04 2.08E-05 72060 27.73 11.41 130.30 0.00 50.00 25.00 50.00 0.41 652.12 <.0001 

LCS-1 
Population initially 
empty 0.00 25.00 45 23.75 5.28E-04 8.06E-06 186060 24.32 16.59 275.35 0.00 100.00 25.00 100.00 0.43 632.23 <.0001 

LCS-2 
Population size 
varies ≤ N 0.52 45.20 160 44.17 2.73E-04 2.58E-05 48060 45.04 10.28 105.67 25.00 75.00 50.00 50.00 -1.29 960.45 <.0001 

LCS-3 
Parents selected 
via tournament 0.27 22.08 88 21.25 2.38E-04 7.41E-06 134460 22.27 12.98 168.55 0.00 50.00 25.00 50.00 -0.14 628.96 <.0001 

LCS-4 
Biased exploration 
action selection 0.00 0.42 0 0 0.00E+00 2.10E-06 240000 0.56 3.69 13.63 0.00 28.75 0.00 28.75 6.46 74.20 <.0001 

LCS-5 
Update classifiers 
in [A] 1.61 26.41 80 25.42 2.98E-04 8.25E-06 144060 27.77 13.43 180.26 0.00 75.00 25.00 75.00 0.21 784.99 <.0001 

LCS-6 
Fitness/Resource 
Balance Deletion 0.04 27.50 24 27.50 1.14E-03 0.00E+00 211260 26.90 14.41 207.67 0.00 100.00 25.00 100.00 0.11 857.82 <.0001 

LCS-7 Niche GA 0.00 23.75 150 23.54 1.57E-04 4.20E-06 60060 23.78 12.49 156.06 0.00 75.00 25.00 75.00 0.48 466.58 <.0001 

LCS-8 
Accuracy-based 
fitness 0.00 20.0 150 19.58 1.31E-04 8.40E-06 60060 20.25 18.30 334.94 0.00 75.00 25.00 75.00 0.48 271.15 <.0001 

XCS XCS 0.16 97.50 40 97.50 2.43E-03 0.00E+00 192060 97.26 7.99 63.88 50.00 100.00 100.00 50.00 -2.75 5332.99 <.0001 
 Note: Data gathered across 60 replications. 
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(a) Order of Stabilization 

It is informative to compare the encounter at which each agent’s performance stabilized; in 

general, the faster the measure stabilized, the fast the agent learned the problem domain with respect 

to that measure. The following table provides a list ordered from best to worst of each agent’s 

stabilization encounter for the performance measure % [O]. 

Table IV-14 Rank-Ordered Stabilization Encounter versus TFT WRT % [O] 
Agent Stabilization 

Encounter 
(x 103) 

LCS-4 0 
LCS-6 24 
XCS 40 
LCS-1 45 
LCS-5 80 
LCS-3 88 
LCS-0 140 
LCS-7 150 
LCS-8 150 
LCS-2 160 

 

LCS-4 (Biased Exploration action selection instead of Fitness Proportional) stabilized first, 

followed by LCS-6 (Classifier Deletion based on Fitness/Resource Balance instead of Fitness Only), 

XCS, and LCS-1 (Empty initial population instead of randomly generated). 

(b) Magnitude at Stabilization 

Summary statistics indicate that each agent evolved a different percentage of the optimal 

population. Statistical tests of the stabilized means (refer to the output for test 1.4 on page 281) 

confirm that each agent’s % [O] stabilized at a significantly different level with the exception of 

LCS-1 and LCS-7 which were indistinguishable from each other, and LCS-0 and LCS-5 which were 

also statistically equivalent. The following table provides a list of % [O] ordered from best to worst. 
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Table IV-15 Rank-Ordered Stabilized Means versus TFT WRT % [O] 
Agent Mean Std Dev Var
XCS 97.26 7.99 63.88
LCS-2 45.04 10.28 105.67
LCS-5 27.77 13.43 180.26
LCS-0 27.73 11.41 130.30
LCS-6 26.90 14.41 207.67
LCS-1 24.32 16.59 275.35
LCS-7 23.78 12.49 156.06
LCS-3 22.27 12.98 168.55
LCS-8 20.25 18.30 334.94
LCS-4 0.56 3.69 13.63

 

Not surprisingly given its design, XCS is able to evolve the greatest percentage of the optimal 

population, stabilizing with just over 97% of [O], followed by LCS-2 (Population Size allowed to 

vary ≤ N instead of constant), LCS-5 (Update [A] instead of firing classifier only), and LCS-0 

(Baseline LCS). 

(c) Learning Rate 

Dividing the encounter at which the measure stabilized into the mean of the stabilized measure 

provides an indication of the agent’s learning rate. This information is rank-ordered from best to 

worst in the following table.  

Table IV-16 Rank-Ordered Learning Rate versus TFT WRT % [O] 
Agent Learning Rate 

(x 10-3) 
XCS 2.43 
LCS-6 1.14 
LCS-1 0.53 
LCS-5 0.30 
LCS-2 0.27 
LCS-3 0.24 
LCS-0 0.19 
LCS-7 0.16 
LCS-8 0.13 
LCS-4 0.00 
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The best agent in terms of % [O] Learning Rate was XCS, followed by LCS-6 (Classifier 

Deletion based on Fitness/Resource Balance instead of Fitness Only), and LCS-1 (Empty initial 

population instead of randomly generated).  

B. VERSUS RAND 

This section presents results of the learning agents’ competitions against RAND, which 

generates its action randomly regardless of what actions were take before. This opponent thus 

represents a “mindless” strategy where adaptation and learning are difficult due to its random and 

chaotic behavior. Theoretically, it should be impossible to discern any patterns from RAND’s 

behavior. Nevertheless, learning against the RAND opponent is possible and provides an indication 

of agent learning against a chaotic opponent. 

(1) Number of Unique Classifiers 

The graph (Figure IV-5) and table (Table IV-17) on the following pages provide summary data 

regarding each agent’s performance against the RAND opponent with respect to the performance 

measure Unique Classifiers. 

 



 

Figure IV-5 Unique Classifiers vs RAND 
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Table IV-17 Descriptive Characteristics, Unique Classifiers vs RAND 
Stabilization 

Point of Occurrence Stabilized Statistics 
Agent Unique 

Characteristic 
Initial 
Value 

Final 
Value 

x 103 Value Rate of 
Change 
Prior 

Rate of 
Change 
After 

N Obs Mean Std 
Dev 

Var Min Max Med Rng Skew t Value Pr > |t|

LCS-0 Baseline LCS 300 13.91 90 13.89 -3.18E-03 1.82E-07 132060 13.62 2.93 8.61 6.00 27.52 13.48 21.52 0.38 1687.35 <.0001 

LCS-1 
Population initially 
empty 0 15.41 140 15.73 1.12E-04 -5.33E-06 72060 15.38 2.95 8.73 6.50 27.10 15.00 20.60 0.27 1396.84 <.0001 

LCS-2 
Population size 
varies ≤ N 300 75.12 33 76.07 -6.79E-03 -5.69E-06 200460 76.06 5.00 24.96 59.00 97.92 75.98 38.92 0.16 6816.04 <.0001 

LCS-3 
Parents selected 
via tournament 300 13.07 80 13.47 -3.58E-03 -3.33E-06 144060 13.07 3.10 9.61 5.00 31.00 13.00 26.00 0.80 1600.19 <.0001 

LCS-4 
Biased exploration 
action selection 300 88.43 60 87.98 -3.53E-03 3.21E-06 168060 88.52 6.72 45.20 62.09 118.6 88.48 56.46 0.02 5397.94 <.0001 

LCS-5 
Update classifiers 
in [A] 300 63.66 181 63.50 -1.31E-03 8.42E-06 22860 63.99 9.78 95.62 37.84 92.00 65.00 54.16 -0.27 989.44 <.0001 

LCS-6 
Fitness/Resource 
Balance Deletion 300 21.63 130 21.72 -2.14E-03 -1.29E-06 84060 21.64 3.77 14.18 10.00 35.98 21.98 25.98 0.13 1666.31 <.0001 

LCS-7 Niche GA 300 12.32 174 12.35 -1.65E-03 -1.15E-06 31260 11.99 2.57 6.58 5.00 21.98 12.00 16.98 0.14 826.03 <.0001 

LCS-8 
Accuracy-based 
fitness 300 12.18 160 12.77 -1.80E-03 -1.48E-05 48060 12.67 2.34 5.48 5.50 22.00 13.00 16.50 0.12 1186.50 <.0001 

XCS XCS 0 39.39 55 39.98 7.27E-04 -4.07E-06 174060 39.71 4.03 16.24 26.00 60.96 39.52 34.96 0.24 4111.38 <.0001 
 Note: Data gathered across 60 replications. 
 



 

(a) Order of Stabilization 

It is informative to compare the encounter at which each agent’s performance stabilized; in 

general, the faster the measure stabilized, the fast the agent learned the problem domain with respect 

to that measure. The following table provides a list ordered from best to worst of each agent’s 

stabilization encounter for the performance measure Unique. 

Table IV-18 Rank-Ordered Stabilization Encounter versus RAND WRT Unique 
Agent Stabilization 

Encounter 
(x 103) 

LCS-2 33 
XCS 55 
LCS-4 60 
LCS-3 80 
LCS-0 90 
LCS-6 130 
LCS-1 140 
LCS-8 160 
LCS-7 174 
LCS-5 181 

 

LCS-2 (Population Size allowed to vary ≤ N instead of constant) stabilized first, followed by 

XCS, LCS-4 (Biased Exploration action selection instead of Fitness Proportional), LCS-3 

(Tournament-based Parent Selection instead of Fitness Proportional), and LCS-0 (Baseline LCS). 

(b) Magnitude at Stabilization 

Summary statistics indicate that each agent evolved a different number of unique classifiers to 

represent the knowledge it learned about the RAND problem domain. Statistical tests of the 

stabilized means (refer to the output for test 2.1 on page 284) confirm that each agent’s population 

stabilized at a significantly different level. The following table provides a list ordered from best to 

worst of stabilized unique population sizes. 
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Table IV-19 Rank-Ordered Stabilized Means versus RAND WRT Unique 
Agent Mean Std Dev Var
LCS-7 11.99 2.57 6.58
LCS-8 12.67 2.34 5.48
LCS-3 13.07 3.10 9.61
LCS-0 13.62 2.93 8.61
LCS-1 15.38 2.95 8.73
LCS-6 21.64 3.77 14.18
XCS 39.71 4.03 16.24
LCS-5 63.99 9.78 95.62
LCS-2 76.06 5.00 24.96
LCS-4 88.52 6.72 45.20

 

The magnitude of this stabilized population provides information regarding each agent’s ability 

to represent its learned knowledge compactly and succinctly. Because they begin with empty 

populations, it is reasonable to propose that XCS and LCS-1 would contain relatively smaller 

numbers of unique classifiers. As shown in the preceding table, however, both LCS-1 and XCS 

perform in the middle of the pack with respect to this measure against the RAND opponent. 

(c) Learning Rate 

Dividing the encounter at which the measure stabilized into the mean of the stabilized measure 

provides an indication of the agent’s learning rate. This information is rank-ordered from best to 

worst in the following table. It should be noted that because XCS and LCS-1 begin with empty 

populations, their learning rates on this measure are comparable to each other’s, but not to those of 

the other agents. 
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Table IV-20 Rank-Ordered Learning Rate versus RAND WRT Unique 
Agent Learning Rate 

(x 10-3) 
LCS-2 -6.79 
LCS-3 -3.58 
LCS-4 -3.53 
LCS-0 -3.18 
LCS-6 -2.14 
LCS-8 -1.80 
LCS-7 -1.65 
LCS-5 -1.31 
  
LCS-1 0.11 
XCS 0.73 

 

As indicated, because smaller populations theoretically are more comprehensible and require 

fewer resources, for those agents with randomly generated starting populations, more negative 

values for Learning Rate are desirable. For those with empty populations, smaller values for 

Learning Rate are preferable. Therefore, all else being equal, LCS-2 can be said to have 

outperformed LCS-3 in this measure, and LCS-1 can be said to have outperformed XCS. 

(2) % Correct Responses 

The following graph (Figure IV-6) and table (Table IV-21) provide information on each agent’s 

performance in the measure % Correct vs the opponent RAND. Against a RAND opponent which 

unbiasedly chooses to defect or cooperate in each encounter, and which therefore offers no insights 

for the future, and given the particular payoff matrix used in this research, the correct action for a 

self-reward maximizing learning agent is to Defect. 



 

Figure IV-6 % Correct vs RAND 
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Table IV-21 Descriptive Characteristics, % Correct vs RAND 
Stabilization 

Point of Occurrence Stabilized Statistics 
Agent Unique 

Characteristic 
Initial 
Value 

Final 
Value 

x 103 Value Rate of 
Change 
Prior 

Rate of 
Change 
After 

N Obs Mean Std 
Dev 

Var Min Max Med Rng Skew t Value Pr > |t|

LCS-0 Baseline LCS 54.63 99.43 80 98.80 5.52E-04 5.25E-06 144060 99.26 1.51 2.27 68.00 100.0 100.0 32.00 -3.90 25020.0 <.0001 

LCS-1 
Population initially 
empty 55.60 99.00 100 99.00 4.34E-04 0.00E+00 120060 99.35 1.26 1.60 86.00 100.0 100.0 14.00 -2.29 27214.4 <.0001 

LCS-2 
Population size 
varies ≤ N 55.03 97.70 165 97.27 2.56E-04 1.23E-05 42060 97.79 3.05 9.31 68.00 100.0 98.00 32.00 -1.84 6572.71 <.0001 

LCS-3 
Parents selected 
via tournament 54.50 99.73 20 99.23 2.24E-03 2.78E-06 216060 99.52 1.06 1.12 88.00 100.0 100.0 12.00 -2.44 43793.3 <.0001 

LCS-4 
Biased exploration 
action selection 61.93 98.70 2.0 99.02 1.85E-02 -1.62E-06 237660 99.03 2.37 5.59 61.54 100.0 100.0 38.46 -3.14 20409.2 <.0001 

LCS-5 
Update classifiers 
in [A] 69.40 95.50 19 95.20 1.36E-03 1.66E-06 217260 95.78 3.72 13.83 58.00 100.0 96.00 42.00 -1.23 12005.6 <.0001 

LCS-6 
Fitness/Resource 
Balance Deletion 51.40 97.93 60 97.40 7.67E-04 3.79E-06 168060 97.93 2.56 6.55 64.00 100.0 98.00 36.00 -1.82 15691.7 <.0001 

LCS-7 Niche GA 52.27 99.40 100 98.83 4.66E-04 5.70E-06 120060 99.30 1.31 1.72 86.00 100.0 100.0 14.00 -2.17 26266.1 <.0001 

LCS-8 
Accuracy-based 
fitness 51.80 53.63 0 51.80 0.00E+00 9.15E-06 240000 53.69 21.19 448.99 0.00 100.0 54.00 100.0 -0.14 1241.28 <.0001 

XCS XCS 68.64 99.64 1.2 99.02 2.53E-02 3.12E-06 238620 98.91 4.61 21.23 0.00 100.0 100.0 100.0 -6.88 10486.9 <.0001 
Note: Data gathered across 60 replications. 
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(a) Order of Stabilization 

It is informative to compare the encounter at which each agent’s performance stabilized; in 

general, the faster the measure stabilized, the fast the agent learned the problem domain with respect 

to that measure. The following table provides a list ordered from best to worst of each agent’s 

stabilization encounter for the performance measure % Correct. 

Table IV-22 Rank-Ordered Stabilization Encounter versus RAND WRT % Correct 
Agent Stabilization 

Encounter 
(x 103) 

LCS-8 0 
XCS 1.2 
LCS-4 2 
LCS-5 19 
LCS-3 20 
LCS-6 60 
LCS-0 80 
LCS-1 100 
LCS-7 100 
LCS-2 165 

 

LCS-8 (Classifier fitness determined by accuracy instead of magnitude) stabilized first, followed 

closely by XCS, and LCS-4 (Biased Exploration action selection instead of Fitness Proportional). All 

other agents performed at least an order of magnitude worse on this measure. 

(b) Magnitude at Stabilization 

Summary statistics indicate that each agent evolved a differing ability to correctly solve the 

RAND problem domain. Statistical tests of the stabilized means (refer to the output for test 2.2 on 

page 287) confirm that each agent’s % Correct stabilized at a significantly different level with the 

exception of agents LCS-0, LCS-1, and LCS-7, whose stabilized means were indistinguishable. The 

following table provides a list of % Correct ordered from best to worst. 
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Table IV-23 Rank-Ordered Stabilized Means versus RAND WRT % Correct 
Agent Mean Std Dev Var
LCS-3 99.52 1.06 1.12
LCS-1 99.35 1.26 1.60
LCS-7 99.30 1.31 1.72
LCS-0 99.26 1.51 2.27
LCS-4 99.03 2.37 5.59
XCS 98.91 4.61 21.23
LCS-6 97.93 2.56 6.55
LCS-2 97.79 3.05 9.31
LCS-5 95.78 3.72 13.83
LCS-8 53.69 21.19 448.99

 

Many agents are able to provide a high percentage of correct responses in the RAND problem 

domain, with LCS-3 (Tournament-based Parent Selection instead of Fitness Proportional) answering 

correctly on nearly every encounter, followed closely by LCS-1 (Empty initial population instead of 

randomly generated), LCS-7 (Niche Genetic Algorithm instead of Panmictic), LCS-0 (Baseline LCS), 

LCS-4 (Biased Exploration action selection instead of Fitness Proportional), and XCS. Interestingly, 

LCS-8, which relies on classifier accuracy as its measure of fitness scores the lowest on this measure. 

(c) Learning Rate 

Dividing the encounter at which the measure stabilized into the mean of the stabilized measure 

provides an indication of the agent’s learning rate. This information is rank-ordered from best to 

worst in the following table.  

Table IV-24 Rank-Ordered Learning Rate versus RAND WRT % Correct 
Agent Learning Rate 

(x 10-3) 
XCS 25.30 
LCS-4 18.50 
LCS-3 2.24 
LCS-5 1.36 
LCS-6 0.77 
LCS-0 0.55 
LCS-7 0.47 
LCS-1 0.43 
LCS-2 0.26 
LCS-8 0.00 
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The best agent in terms of Learning Rate on % Correct was XCS, followed by LCS-4 (Biased 

Exploration action selection instead of Fitness Proportional). All other agents performed orders of 

magnitude worse on this metric than did these two agents; LCS-8 again performed the worst on this 

metric. 

(3) System Error 

The following graph (Figure IV-7) provides a visual depiction of each variant’s performance in 

the measure System Error vs the opponent RAND. The System Error measure is a gauge of how 

accurately the agent predicts the reward that accrues upon the execution of a particular action. The 

graph is followed by a table (Table IV-25) summarizing agent performance while stabilized.  



 

Figure IV-7 System Error vs RAND 
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Table IV-25 Descriptive Characteristics, System Error vs RAND 
Stabilization 

Point of Occurrence Stabilized Statistics 
Agent Unique 

Characteristic 
Initial 
Value 

Final 
Value 

x 103 Value Rate of 
Change 
Prior 

Rate of 
Change 
After 

N Obs Mean Std 
Dev 

Var Min Max Med Rng Skew t Value Pr > |t|

LCS-0 Baseline LCS 4.5390 3.9955 84 3.9814 -6.64E-06 1.22E-07 139260 3.9913 0.041 0.002 3.442 4.389 3.998 0.947 -0.78 36164.7 <.0001 

LCS-1 
Population initially 
empty 5.6681 3.9828 75 3.9738 -2.26E-05 7.20E-08 150060 3.9918 0.040 0.002 3.644 4.424 3.999 0.780 -0.54 38694.4 <.0001 

LCS-2 
Population size 
varies ≤ N 4.7552 3.9842 166 3.9788 -4.68E-06 1.59E-07 40860 3.9764 0.080 0.007 3.442 4.414 3.987 0.973 -0.75 9996.0 <.0001 

LCS-3 
Parents selected 
via tournament 4.5135 4.0066 20 3.9982 -2.58E-05 4.67E-08 216060 4.0005 0.054 0.003 3.616 4.493 4.002 0.877 0.07 34572.0 <.0001 

LCS-4 
Biased exploration 
action selection 7.7794 4.0455 2.0 4.1023 -1.84E-03 -2.87E-07 237660 4.0935 0.273 0.074 2.655 6.228 4.082 3.573 0.36 7322.1 <.0001 

LCS-5 
Update classifiers 
in [A] 4.0595 4.1740 75 4.1591 1.33E-06 1.19E-07 150060 4.1607 0.201 0.041 2.484 4.854 4.183 2.370 -0.75 8013.8 <.0001 

LCS-6 
Fitness/Resource 
Balance Deletion 4.8617 3.9658 65 3.9681 -1.37E-05 -1.70E-08 162060 3.9696 0.058 0.003 3.487 4.436 3.980 0.949 -0.83 27620.5 <.0001 

LCS-7 Niche GA 4.5749 4.0000 150 3.9992 -3.84E-06 1.60E-08 60060 3.9935 0.039 0.002 3.640 4.424 3.999 0.784 -0.43 25215.1 <.0001 

LCS-8 
Accuracy-based 
fitness 4.6465 3.1901 25 3.1756 -5.88E-05 8.29E-08 240000 3.1937 0.373 0.139 2.204 6.067 3.199 3.863 -0.12 4195.9 <.0001 

XCS XCS 6.6726 4.2550 0.3 4.2035 -8.23E-03 2.58E-07 239700 4.2488 0.351 0.124 1.171 6.286 4.294 5.115 -0.98 5920.2 <.0001 
Note: Data gathered across 60 replications. 
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(a) Order of Stabilization 

It is informative to compare the encounter at which each agent’s performance stabilized; in 

general, the faster the measure stabilized, the fast the agent learned the problem domain with respect 

to that measure. The following table provides a list ordered from best to worst of each agent’s 

stabilization encounter for the performance measure System Error. 

Table IV-26 Rank-Ordered Stabilization Encounter versus RAND WRT System Error 
Agent Stabilization 

Encounter 
(x 103) 

XCS 0.3 
LCS-4 2 
LCS-3 20 
LCS-8 25 
LCS-6 65 
LCS-1 75 
LCS-5 75 
LCS-0 84 
LCS-7 150 
LCS-2 166 

 

XCS stabilized first, followed by LCS-4 (Biased Exploration action selection instead of Fitness 

Proportional), LCS-3 (Tournament-based Parent Selection instead of Fitness Proportional), and 

LCS-8 (Classifier fitness determined by accuracy instead of magnitude). 

(b) Magnitude at Stabilization 

Summary statistics indicate that each agent evolved a differing ability to correctly predict the 

specified reward matrix for the RAND problem. Statistical tests of the stabilized means (refer to the 

output for test 2.3 on page 289) confirm that each agent’s System Error stabilized at a significantly 

different level, with the exception of LCS-0, LCS-1, and LCS-7, whose means were indistinguishable 

from each other. The following table provides a list of System Error ordered from best to worst. 
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Table IV-27 Rank-Ordered Stabilized Means versus RAND WRT System Error 
Agent Mean Std Dev Var
LCS-8 3.1937 0.3730 0.1390
LCS-6 3.9696 0.0580 0.0030
LCS-2 3.9764 0.0800 0.0070
LCS-0 3.9913 0.0410 0.0020
LCS-1 3.9918 0.0400 0.0020
LCS-7 3.9935 0.0390 0.0020
LCS-3 4.0005 0.0540 0.0030
LCS-4 4.0935 0.2730 0.0740
LCS-5 4.1607 0.2010 0.0410
XCS 4.2488 0.3510 0.1240

 

As expected, the learning agents were not able to accurately learn reward matrix for the RAND 

problem domain. LCS-8 (Classifier fitness determined by accuracy instead of magnitude) had the 

lowest stabilized system error, followed closely by LCS-6 (Deletes classifiers based on Fitness and 

Resource Balance instead of Fitness Only), LCS-2 (Population Size allowed to vary ≤ N instead of 

constant), LCS-0 (Baseline LCS), LCS-1 (Empty initial population instead of randomly generated), 

and LCS-7 (Niche Genetic Algorithm instead of Panmictic). XCS scored the lowest on this measure. 

(c) Learning Rate 

Dividing the encounter at which the measure stabilized into the mean of the stabilized measure 

provides an indication of the agent’s learning rate. This information is rank-ordered from best to 

worst in the following table.  

Table IV-28 Rank-Ordered Learning Rate versus RAND WRT System Error 
Agent Learning Rate 

(x 10-3) 
XCS -8.23 
LCS-4 -1.84 
LCS-8 -0.06 
LCS-3 -0.03 
LCS-1 -0.02 
LCS-6 -0.01 
LCS-0 -0.01 
LCS-2 0.00 
LCS-7 0.00 
LCS-5 0.00 

 

 
 

116



 

The best agent in terms of Learning Rate on System Error was XCS, followed by LCS-4 (Biased 

Exploration action selection instead of Fitness Proportional). All other agents performed much 

worse on this metric than these two agents. 

(4) % of Optimal Population [O] 

As described in Chapter III: B. (5) (b) iii.  Problem Difficulty, the RAND opponent does not 

have an optimal population; therefore, this measure is not analyzed for the RAND opponent. 

C. PROPOSITION TESTING 

The propositions described in Chapter III: B. (6) Experiment Suite and Propositions may be 

tested using performance data from the twenty competitions conducted in this research. 

(1) The Key Difference 

P1: Agents using accuracy-based fitness will have smaller values of Unique 
Classifiers than agents employing magnitude-based fitness. 

 

Table IV-29 Accuracy-Based Fitness: Unique Classifiers vs TFT and RAND 
Unique Classifiers Agent/Characteristic Vs TFT Vs RAND 

Baseline LCS-0 (Magnitude-based Fitness) 24.10 13.62
LCS-8 (Classifier Fitness Determinant: Magnitude → 
Accuracy) 

13.85 12.67

XCS (Accuracy-based Fitness) 5.43 39.71
 

LCS-8 does indeed evolve smaller values of Unique Classifiers against both TFT and RAND, 

supporting P1’s supposition that agents relying on accuracy-based fitness represent their learned 

knowledge more efficiently and compactly. When compared to all agents, LCS-8 does 2nd best on 

this measure vs both TFT and RAND. 

 

P2: Agents using accuracy-based fitness will have higher values of % [O] than 
agents employing magnitude-based fitness. 
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Table IV-30 Accuracy-Based Fitness: % [O] vs TFT and RAND 
% [O] Agent/Characteristic Vs TFT Vs RAND 

Baseline LCS-0 (Magnitude-based Fitness) 27.73 N/A
LCS-8 (Classifier Fitness Determinant: Magnitude → 
Accuracy) 

20.25 N/A

XCS (Accuracy-based Fitness) 97.26 N/A
 

LCS-8 evolves a population containing a lower % [O] than does its magnitude-based fitness 

counterpart, LCS-0. The data, therefore, does not support P2. When compared to all agents, LCS-8 

does 2nd worst vs TFT with respect to this measure. As described in Chapter III, no agents evolved 

members of [O] vs RAND. It is likely that XCS’s demonstrated ability to evolve optimal 

populations, therefore, results from the combined effects of several architectural characteristics. 

The preceding table is noteworthy for another reason, however. XCS’s stabilized value of 97.26 

for % [O] indicates that it is indeed able to reliably evolve the optimal population in the IPD 

environment against the TFT opponent. This result is significant because it supports the Optimality 

Hypothesis (Kovacs 1997; Kovacs and Kerber 2001) in a new and different environment from those 

previously tested. 

(2) Population Differences 

(a) Initial Population 

P3: Agents with initially empty populations will learn faster than agents which 
begin with randomly generated populations. 

 

Table IV-31 Initial Populations: Learning Rates vs TFT and RAND 
Learning Rate (x 10-3) 

Vs TFT Vs RAND Agent/Characteristic 
Unique Correct Error %[O] Unique Correct Error %[O]

Baseline LCS-0 (N Random 
Classifiers) 

N/A 0.36 -0.01 0.19 N/A 0.55 -0.01 N/A

LCS-1 (Initial Population: 
Random →Through Covering) 

N/A 0.40 -0.02 0.53 N/A 0.43 -0.02 N/A

XCS (Empty Initial Population) N/A 75.80 -0.15 2.43 N/A 25.30 -8.23 N/A

 

Against TFT, LCS-1 does indeed evolve higher Learning Rates on all relevant measures than 

LCS-0, which begins with a population of random classifiers. Against RAND, however, LCS-0 

outperforms LCS-1 in its % Correct Learning Rate while the two agents’ System Error Learning Rates are 
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essentially equivalent. These results support P3 when the agent competes against an opponent where 

learning is possible. 

P4: Agents with initially empty populations will have smaller values for Unique 
Classifiers than agents which begin with randomly generated populations. 

 

Table IV-32 Initial Populations: Unique Classifiers vs TFT and RAND 
Unique Classifiers Agent/Characteristic Vs TFT Vs RAND 

Baseline LCS-0 (N Random Classifiers) 24.10 13.62
LCS-1 (Initial Population: Random →Through 
Covering) 

30.04 15.38

XCS (Empty Initial Population) 5.43 39.71
 

LCS-1 evolves populations with a greater number of Unique Classifiers than does LCS-0 against 

both TFT and RAND. These results do not support P4 for the two opponents used in this research. 

Examination of the graphs for this performance measure for both TFT and RAND indicate LCS-1’s 

Unique Classifiers measure grows quickly at the beginning of the simulation and then drops slowly for 

the remainder of the competitions. The newly created classifiers are likely created as unrecognized 

portions of the problem domain are encountered, and may be assigned a significant non-zero fitness 

level after their first interaction with the environment. Because these newly created classifiers 

maintain this fitness level unless they fire again and because subsumption is not employed, once 

these classifiers are created, many of them remain in the population for the duration of the 

experiment. 

(b) Population Size 

P5: Agents with populations that are allowed to vary ≤ N will learn faster than 
agents which begin with randomly generated populations. 
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Table IV-33 Population Size: Learning Rates vs TFT and RAND 
Learning Rate (x 10-3) 

Vs TFT Vs RAND Agent/Characteristic 
Unique Correct Error %[O] Unique Correct Error %[O]

Baseline LCS-0 (Maintains 
Constant Population Size of N) 

-5.49 0.36 -0.01 0.19 -3.18 0.55 -0.01 N/A

LCS-2 (Population Size: 
Constant, N → ≤ N) 

-1.24 0.32 -0.02 0.27 -6.79 0.26 0.00 N/A

XCS (Population Size Varies ≤ 
N) 

N/A 75.80 -0.15 2.43 N/A 25.30 -8.23 N/A

 

Against TFT, LCS-2 learns faster only for the %[O] performance measure, performing worse 

with respect to Unique Classifiers and % Correct. There is essentially no difference in learning rates for 

System Error against TFT. Against RAND, LCS-2 learns faster with respect to Unique Classifiers, 

slower with respect to % Correct, and approximately the same with respect to System Error. These 

results do not support P5 and suggest that agents with initially full populations perform better than 

those using covering in some situations. 

 

P6: Agents with populations that are allowed to vary ≤ N will have smaller values for 
Unique Classifiers than agents which begin with randomly generated 
populations. 

 

Table IV-34 Population Size: Unique Classifiers vs TFT and RAND 
Unique Classifiers Agent/Characteristic Vs TFT Vs RAND 

Baseline LCS-0 (Maintains Constant Population Size of 
N) 

24.10 13.62

LCS-2 (Population Size: Constant, N → ≤ N) 64.99 76.06
XCS (Population Size Varies ≤ N) 5.43 39.71

 

LCS-2’s evolved population contains more Unique Classifiers than the LCS-0 agent. More 

remarkably, LCS-2 performs does worst of all ten agents on this measure against TFT and 2nd worst 

against RAND. These results do not support P6 and instead suggest that subsumption results in less 

efficient populations in some circumstances and that XCS’s success in this regard is due to the 

combined effect of several architectural characteristics.  
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(3) Genetic Algorithm Differences 

(a) GA Scope 

P7: Agents using panmictic parent selection will learn slower than agents using 
niche GAs. 

 

Table IV-35 GA Scope: Learning Rates vs TFT and RAND 
Learning Rate (x 10-3) 

Vs TFT Vs RAND Agent/Characteristic 
Unique Correct Error %[O] Unique Correct Error %[O]

Baseline LCS-0 (Panmictic GA) -5.49 0.36 -0.01 0.19 -3.18 0.55 -0.01 N/A
LCS-7 (Genetic Algorithm: Panmictic → 
Niche) 

-1.49 0.26 -0.01 0.16 -1.65 0.47 0.00 N/A

XCS (Niche GA) N/A 75.8 -0.15 2.43 N/A 25.30 -8.23 N/A
 

LCS-7 learns more slowly with respect to all performance measures against both TFT and 

RAND, except for System Error where it performs essentially the same as LCS-0. These results do 

not support P7 and suggest no degradation in learning rates from panmictic parent selection. 

Moreover, these results suggest that XCS’s success in these measures is due to the combined effect 

of several architectural characteristics. 

 

P8: Agents using panmictic parent selection will have smaller values for % Correct 
than agents using niche GAs. 

 

Table IV-36 GA Scope: % Correct vs TFT and RAND 
% Correct Agent/Characteristic Vs TFT Vs RAND 

Baseline LCS-0 (Panmictic GA) 98.4* 99.26**
LCS-7 (Genetic Algorithm: Panmictic → Niche) 98.4* 99.30**
XCS (Niche GA) 100 98.91
* These values are statistically indistinguishable from each other. 
** These values are statistically indistinguishable from each other. 

 

LCS-7’s stabilized % Correct values were statistically indistinguishable from those of its baseline 

LCS-0 against both TFT and RAND. These results do not support P8 and indicate instead that 

agents relying on panmictic parent selection suffer no degradation in performance with respect to 

their stabilized % Correct values. 
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P9: Agents using panmictic parent selection will have larger values for System Error 
than agents using niche GAs. 

 

Table IV-37 GA Scope: System Error vs TFT and RAND 
System Error Agent/Characteristic Vs TFT Vs RAND 

Baseline LCS-0 (Panmictic GA) 0.0178 3.9913*
LCS-7 (Genetic Algorithm: Panmictic → Niche) 0.0182 3.9935*
XCS (Niche GA) 0.0083 4.2488
* These values are statistically indistinguishable from each other. 

 

Against TFT, LCS-7 stabilizes at a slightly higher System Error value, while against RAND, their 

values are statistically indistinguishable. The small magnitude of the difference against TFT and the 

equivalence of the values against RAND suggest there is no additional accuracy gained by using 

panmictic parent selection. 

(b) Parent Selection 

Evidence of superior performance will be provided using the performance measures Unique 

Classifiers, % Correct, System Error, and Learning Rate. 

Table IV-38 Parent Selection: Unique Classifiers vs TFT and RAND 
Unique Classifiers Agent/Characteristic Vs TFT Vs RAND 

Baseline LCS-0 (Fitness Proportional Parent Selection) 24.10 13.62
LCS-3 (Parent Selection: Fitness Proportional → 
Tournament) 

18.82 13.07

XCS (Tournament Based Parent Selection) 5.43 39.71
 

Table IV-39 Parent Selection: % Correct vs TFT and RAND 
% Correct Agent/Characteristic Vs TFT Vs RAND 

Baseline LCS-0 (Fitness Proportional Parent Selection) 98.4 99.26
LCS-3 (Parent Selection: Fitness Proportional → 
Tournament) 

98.3 99.52

XCS (Tournament Based Parent Selection) 100 98.91
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Table IV-40 Parent Selection: System Error vs TFT and RAND 
System Error Agent/Characteristic Vs TFT Vs RAND 

Baseline LCS-0 (Fitness Proportional Parent Selection) 0.0178 3.9913
LCS-3 (Parent Selection: Fitness Proportional → 
Tournament) 

0.0083 4.0005

XCS (Tournament Based Parent Selection) 0.0083 4.2488
 

Table IV-41 Parent Selection: Learning Rates vs TFT and RAND 
Learning Rate (x 10-3) 

Vs TFT Vs RAND Agent/Characteristic 
Unique Correct Error %[O] Unique Correct Error %[O]

Baseline LCS-0 (Fitness Proportional 
Parent Selection) 

-5.49 0.36 -0.01 0.19 -3.18 0.55 -0.01 N/A

LCS-3 (Parent Selection: Fitness 
Proportional → Tournament) 

-1.65 1.82 -0.13 0.24 -3.58 2.24 -0.03 N/A

XCS (Tournament Based Parent Selection) N/A 75.80 -0.15 2.43 N/A 25.30 -8.23 N/A
 

Of the fourteen relevant measures presented in the preceding tables, LCS-3 performs better on 

ten of the fourteen, providing support to Tournament-based parent selection as a superior method 

to Fitness Proportional Roulette Wheel parent selection. 

(c) Classifier Deletion 

P10: Agents using fitness/resource balance deletion will have larger values for % [O] 
than agents using fitness only. 

 

Table IV-42 Classifier Deletion: % [O] vs TFT and RAND 
% [O] Agent/Characteristic Vs TFT Vs RAND 

Baseline LCS-0 (Deletion based on Fitness Only) 27.73 N/A
LCS-6 (Classifier Deletion Criteria: Fitness Only → 
Fitness and Resource Balancing) 

26.90 N/A

XCS (Deletion based on Fitness/Resource Balance) 97.26 N/A
 

Against TFT, LCS-6 evolves a smaller percentage of [O] than does LCS-0. This result does not 

support P10, suggesting that XCS’s success in this regard is due to the combined effect of several 

architectural characteristics. 
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(4) Action Selection 

Evidence of superior performance will be provided using the performance measures % Correct, 

System Error, and Learning Rate. 

Table IV-43 Action Selection: % Correct vs TFT and RAND 
% Correct Agent/Characteristic Vs TFT Vs RAND 

Baseline LCS-0 (Fitness Proportional Action Selection) 98.4 99.26
LCS-4 (Action Selection: Fitness Proportional → Biased 
Exploration) 

99.7 99.03

XCS (Biased Exploration Action Selection) 100 98.91
 

Table IV-44 Action Selection: System Error vs TFT and RAND 
System Error Agent/Characteristic Vs TFT Vs RAND 

Baseline LCS-0 (Fitness Proportional Action Selection) 0.0178 3.9913
LCS-4 (Action Selection: Fitness Proportional → Biased 
Exploration) 

0.0153 4.0935

XCS (Biased Exploration Action Selection) 0.0083 4.2488
 

Table IV-45 Action Selection: Learning Rates vs TFT and RAND 
Learning Rate (x 10-3) 

Vs TFT Vs RAND Agent/Characteristic 
Unique Correct Error %[O] Unique Correct Error %[O]

Baseline LCS-0 (Fitness Proportional 
Action Selection) 

-5.49 0.36 -0.01 0.19 -3.18 0.55 -0.01 N/A

LCS-4 (Action Selection: Fitness 
Proportional → Biased Exploration) 

-4.41 92.0 -19.6 0.00 -3.53 18.50 -1.84 N/A

XCS (Biased Exploration Action Selection) N/A 75.80 -0.15 2.43 N/A 25.30 -8.23 N/A
 

Of the twelve relevant measures presented in the preceding tables, LCS-4 performs better on 

eight of the twelve, including five of the six measures against TFT, supporting Biased Exploration 

Action Selection as a superior method than Fitness Proportional Action Selection, especially against 

an opponent where learning is possible. 

(5) Classifier Updates 

P11: Agents using Action Set updates will learn faster than agents updating firing 
and enabling classifiers only. 
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Table IV-46 Classifier Updates: Learning Rates vs TFT and RAND 
Learning Rate 

Vs TFT Vs RAND Agent/Characteristic 
Unique Correct Error %[O] Unique Correct Error %[O]

Baseline LCS-0 (Update Firing Classifier) -5.49 0.36 -0.01 0.19 -3.18 0.55 -0.01 N/A
LCS-5 (Classifier Fitness Update: Firing 
Classifier  → All Classifiers in [A]) 

-2.49 0.70 -0.01 0.30 -1.31 1.36 0.00 N/A

XCS (Update [A] Classifiers) N/A 75.80 -0.15 2.43 N/A 25.30 -8.23 N/A
 

Against TFT, LCS-5 learns more quickly with respect to % Correct and % [O], more slowly 

with respect to Unique Classifiers, and essentially the same as LCS-0 with respect to System Error. 

Against RAND, LCS-5 learns more with respect to % Correct, more slowly with respect to Unique 

Classifiers, and essentially the same as LCS-0 with respect to System Error. These results are 

equivocal with respect to P11 and suggest that updating Action Set classifiers does not provide a 

significant advantage in and of itself. Again, it appears XCS’s success in these measures is due to the 

combined effect of several architectural characteristics. 

D. CONCLUSIONS 

An experimental simulation suite of twenty competitions between ten LCS- and XCS-based 

learning agents and two pre-specified opponents was conducted to determine the effect architectural 

differences had on selected performance measures. Graphs and summary data were presented for 

each measure and for each competition. Statistical analyses of this data indicate that the majority of 

the architectural differences did have a significant effect on the agents’ performance with respect to 

the performance measures used in this research. 

The data were further analyzed to test various proposed effects of the architectural differences. 

The propositions were written in support of XCS’s hypothesized superiority to a traditional LCS 

implementation. Of the eleven propositions analyzed in this research, only two were supported by 

the experimental data. The data regarding two other propositions were equivocal, while the 

remaining seven propositions were not supported. In addition, two exploratory issues, Parent 

Selection and Action Selection, were investigated, with the data tending to support Tournament 

Based Parent Selection and Biased Exploration Action Selection as superior methods to Fitness 

Proportional selection.  

In addition, it was demonstrated that XCS was able to reliably evolve the Optimal Population 

[O] against the TFT opponent. This result supports Kovacs’ Optimality Hypothesis in the IPD 
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environment and is significant because it is the first demonstrated occurrence of this ability in an 

environment other than the multiplexer and Woods problem domains. 

It is therefore apparent that while XCS performs better than its LCS-based counterparts, its 

demonstrated superiority may not be attributed to a single architectural characteristic. Instead, XCS’s 

ability to evolve optimal classifier populations in the multiplexer problem domain and in the IPD 

problem domain studied in this research results from the combined and synergistic effects of 

multiple architectural differences. 

 

Copyright © David Alexander Gaines 2006 
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CHAPTER V: CONCLUSIONS 

Unlike the traditional strength-based LCS model, XCS is accuracy-based; therefore, this 

research was intended to compare and contrast the two models under different IPD tournament 

settings to better understand their behaviors. Specifically, the current research investigated 

performance differences between LCS- and XCS-based classifier systems with the intent of 

identifying the effect of architectural differences between the two families. To explore these 

hypothesized advantages, this research employed a suite of simulation experiments in which twenty 

competitions were conducted between ten LCS- and XCS-based agents and two pre-specified 

opponents, measuring key performance parameters for each competition. 

The results of these competitions indicate that while each architectural difference significantly 

affected its agent’s performance, no single architectural difference could be credited as causing 

XCS’s demonstrated superiority in evolving optimal populations. Instead, the data suggests that 

XCS’s ability to evolve optimal populations in the multiplexer and IPD problem domains result 

from the combined and synergistic effects of multiple architectural differences. 

A. CONTRIBUTIONS 

This research has answered several questions regarding XCS’s theorized superiority over LCS-

based agents, and has indeed revealed “…some interesting architectural and performance data about 

LCS and XCS …” (Wilson 2005). This work provides several noteworthy additions to the existing 

body of knowledge on LCS- and XCS-based learning agents. 

First, this research provides the first known decomposition and study of the XCS algorithm’s 

constituent parts. Specifically, eight significant architectural differences between traditional LCS and 

XCS systems were identified and analyzed. While each architectural characteristic was shown to 

significantly affect performance, none in and of itself could be credited as providing XCS’s 

demonstrated superiority. Instead, it is apparent that XCS’s ability to evolve optimal populations in 

the multiplexer, woods, and IPD problem domains is due to the combined and synergistic effects of 

multiple architectural differences. 

Second, the Iterated Prisoner’s Dilemma is a new and previously untested problem domain for 

XCS-based systems. This domain is unique because it is not a static or deterministic domain as are 

the previously studied multiplexer and woods environments. Moreover, depending on the opponent, 

IPD competitions often call for irrational decision making, challenging learning agents in new and 

 
 

127



 

previously untested ways. The IPD also has broader social and business parallels than do previously 

studied environments, offering greater ability to extend and apply research results. Other benefits of 

the IPD problem domain include asymmetric updates of the knowledge base and the ability to test 

learning agents against multiple opponents, including “noisy,” changing, or illogical opponents. 

Third, this research provides the first demonstration of XCS’s ability to reliably evolve the 

Optimal Population [O] against the TFT opponent. This result supports Kovacs’ Optimality 

Hypothesis in the IPD environment and is significant because it is the first demonstrated occurrence 

of this ability in an environment other than the multiplexer and Woods problem domains. 

Finally, to accomplish this research, a computer simulation program was written in Visual 

Basic.NET, the first known instance of such a program in this language. VB.NET offers several 

advantages over other languages used in previous classifiers system research. First, it is executable on 

common Windows-based personal computers, greatly extending the flexibility of the researcher. 

Second, VB.NET modules may be written to integrate program execution with other Windows-

based programs, providing the ability for automatic data capture and display. This feature was 

employed in the current research, with modules to automatically store and display data in Microsoft 

Excel spreadsheets. VB.NET also offers the ability to interact with the user in a visual manner, 

providing the researcher with the ability to examine evolutionary path traces during the course of 

normal execution. This ability was employed in the current research and greatly aided the researcher 

in tracking classifiers throughout the evolution process. 

B. LIMITATIONS 

The research described in this paper is necessarily limited as to scope and depth. As described 

previously, the LCS and XCS learning algorithms are complex Machine Learning devices, with 

intricate internal processing of a large amount of data and parameters. Any proposed research, 

therefore, must concentrate on just a portion of the LCS/XCS puzzle. The current research is no 

exception in that it focuses on a very narrow problem domain and performs limited experimentation 

within this domain. In this regard, the proposed research is limited in its applicability to other 

learning mechanisms and environments.  

Specifically, this research has not varied any of the parameter settings used in the LCS and XCS 

algorithms, relying instead on generally accepted values for these parameters. The results, therefore, 

are limited to a specific set of conditions which may not be extensible to other settings. In addition, 

there exist many possible competitions between learning agents and pre-programmed opponents. 

This research studies a select subset of these opponents, again limiting the generality of the results. 
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Finally, the LCS-based learning agents used in this research differ in only one way from the 

traditional LCS implementation. Combining architectural differences in a systematic manner would 

provide additional information regarding cumulative effects and offers the possibility of increased 

insight into the workings of LCS and XCS algorithms.  

C. FUTURE RESEARCH 

The LCS-based learning agents used in this research differ in only one way from the traditional 

LCS implementation. Combining architectural differences in a systematic manner would provide 

additional information regarding cumulative effects and offers the possibility of increased insight 

into the workings of LCS and XCS algorithms.  

In addition, each simulation experiment in this research consists of a single lengthy competition 

between one agent and one opponent. Repeating these competitions using different random seeds 

for each competition would provide additional reliability regarding performance results.  

Another fruitful area of research involving LCS, XCS, and the IPD involves the exploration of 

learning agent performance against new and previously untested IPD opponents. Axelrod’s research 

included eight separate classes of IPD opponents, only two of which were studied in the current 

research. It is possible to program all of these opponents and to compete them against LCS- and 

XCS-based learning agents to study performance characteristics. Extending this idea further to 

include competitions against “noisy,” changing, or multiple opponents would provide additional 

insight into learning agent abilities, especially regarding XCS’s ability to evolve optimal populations 

against other IPD opponents. 

As described in Chapter II, one promising area of future research includes studying the ability 

of LCS and XCS to operate in a multi-step, or planning, environment. In such an environment, LCS 

and XCS would be studied to determine their ability to adjust their learning to account for a string of 

moves by its opponent, as opposed to reacting to a single action. Demonstrated proficiency in this 

environment would offer promise for a number of multi-step practical applications. 

Another area of great potential interest is to apply the LCS and XCS learning paradigms 

towards developing cooperation in a given opponent or set of opponents. As described in Axelrod’s 

book on the Evolution of Cooperation, it is one thing to learn to react to an opponent’s action to 

maximize one’s own rewards. It is another thing entirely, and one of far greater social significance, to 

influence that opponent towards mutual cooperation. Several strategies for doing so are outlined in 

Axelrod’s book; future experimentation toward this end would be of great interest. 
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As part of the data analysis in the current research, performance histograms and box-and-

whisker plots were generated. These plots indicate some interesting phenomenon about some 

agents’ performance. For example, the performance measures for several agents appear to have 

significantly skewed probability distributions. In addition, some agents appear to generate non-

continuous performance measure values against some opponents. These plots invite additional 

scrutiny to dissect the underlying causes for these interesting phenomena. 

D. SUMMARY 

The Learning Classifier and eXtended Learning Classifier paradigms are demonstrated 

performers in machine learning and artificial intelligence implementations. The currently popular 

XCS algorithm has been shown to perform extremely well in certain narrowly defined problem 

domains and its superiority has also been demonstrated in a new domain by the current research. 

There is, however, much more research to be conducted to fully understand these algorithms as we 

aspire to create truly intelligent machines. 

The current research also contributes to numerous fields of study, including the broad field of 

Artificial Intelligence, and its smaller related fields of Machine Learning and Decision Support 

Systems (DSS). The study of Adaptive DSS, in particular, may benefit from results of the current 

study, as theories regarding generalizeability and brittleness are developed and explored. In addition, 

DSS researchers may find useful information in this research as an example of how an algorithm’s 

constituent parts may be dissected and individual effects studied. Finally, it is possible that the 

dissection approach used in this research may be useful to developers of other sophisticated or 

complex decision tools as they attempt to separate the wheat from the chaff.  

 

Copyright © David Alexander Gaines 2006 
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Appendix A: CODING THE PROGRAM IN VISUAL BASIC.NET 

The coding of the custom program used in this research resulted in a number of interesting 

challenges and observations. This appendix provides remarks regarding this process for the reader’s 

edification. 

A major issue faced by researchers using stochastic processes or simulation is insuring random 

numbers are generated truly randomly. This issue was also present in the current research. A review 

of the documentation for the Visual Basic.NET programming language used in this research 

(Microsoft Development Environment 2002, Version 7.0.9466; Microsoft.NET Framework 1.0, 

Version 1.0.3705) provided evidence that the random number streams generated by VB.NET’s 

Rnd() function were sufficiently random to provide reliable results in the current research. This 

evidence notwithstanding, information gleaned from other sources, including mathematical and 

computer science texts, simulation-related newsgroups and discussion boards, and discussions with 

knowledgeable individuals, indicates that it is possible and desirable to employ custom random 

number generators in rigorous scientific research. These random number generators, which may be 

coded in commonly available programming languages, provide a truly random number stream, 

insuring maximum validity of the research results. It is therefore recommended that future research 

involving the LCS and XCS learning algorithms using VB.NET employ a custom random number 

generator for maximum reliability. 

Although there have been recent uses of Java and Windows-based PCs to conduct classifier 

system research, the vast majority of existing research was conducted on Unix-based mainframe 

systems, using programs written in C or C++. There were, therefore, concerns regarding potential 

performance problems with using VB.NET and Windows-based machines in the current research. 

Specifically, the LCS and XCS simulations performed in this research require literally millions of 

individual steps and calculations, resulting in lengthy elapsed time from initiation to completion. The 

choice of programming language, therefore, was of concern as it was thought VB.NET might not be 

as efficient as other programming languages. The authoritative source documentation for VB.NET, 

however, states that it executes at the same speed as other programming languages and should 

therefore perform as well as other LCS and XCS implementations (Balena 2002). Regarding 

hardware concerns, it is quite likely that the computers used to host the experimental simulations in 

the current research were slower than their mainframe counterparts used in pre-existing research. 

The flexibility and availability of using these machines, however, provide other advantages to the 
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researcher; therefore, future research on Windows-based computers could quite possibly become 

more prevalent. 

In contrast to concerns regarding VB.NET’s performance, its use as the programming language 

in the current research provides several distinct advantages over other possible programming 

languages. Specifically, VB.NET is the language used by Microsoft itself to program its Microsoft 

Office suite of applications, including Word, Excel, PowerPoint, and Access. This native 

compatibility provides the opportunity to integrate data collection routines into the simulation 

program’s execution. As described previously, this feature was employed in the current research, 

with modules to automatically store and display data in Microsoft Excel spreadsheets. In addition, 

VB.NET executables may be deployed on common Windows-based personal computers, greatly 

extending the flexibility of the researcher. Finally, as is true of other programming languages offering 

Graphical User Interface (GUI) capabilities, VB.NET offers the ability to interact with the user in a 

visual manner, providing the researcher with the opportunity to examine evolutionary path traces 

during the course of normal execution. These advantages of VB.NET made it an excellent choice 

for the current research and will also likely result in an increasing number of LCS and XCS 

implementations using VB.NET and other Windows-based programming languages. 

Finally, there were a number of programming issues related to the decomposition of XCS into 

its constituent mechanisms. First, because a detailed and thorough exposition of the XCS 

implementation was readily available (Butz and Wilson 2001), the decision was made to first 

program XCS and then to add elements from a traditional LCS implementation. After thorough 

analysis and testing, this approach was deemed to have provided the desired isolation of XCS’s 

architectural characteristics. However, it may have been preferable to begin with a traditional LCS 

implementation and to add on XCS’s functionality until a full blown XCS implementation was 

achieved. Based on testing and analyses performed during the course of this research, it is quite 

possible that both approaches would result in the exact same results. Secondly, because various the 

LCS and XCS algorithms are quite complex, there is necessarily a great deal of interaction between 

various classifier sets, parameter settings, and architectural characteristics. For this reason, it is 

possible there were unintended interaction effects resulting from the decomposition of XCS. As 

with issue one above, detailed analysis and testing provided evidence that the program used in the 

current research correctly isolated the architectural characteristics and their effects, and that the 

resulting experimental findings and conclusions are therefore valid and reliable. However, because 

this is the first research of its type, additional confidence would be provided via replication by 
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another researcher or methodology. Finally, much previous LCS and XCS research has been 

performed using previously tested and validated programs. That is, the programs were written by 

experts in the field and have been used sufficiently to provide confidence that they were worked as 

intended. As stated previously, the custom program used in this research was coded from scratch 

using Butz and Wilson’s model (Butz and Wilson 2001), necessitating many design and 

implementation decisions on the part of the researcher. As with the other issues related to the 

program’s performance, extensive analysis and testing indicates the program worked correctly and 

provided the desired implementations of both the LCS and XCS algorithms. Additional confidence 

would be gained, however, through testing of this program in other problem domains used in other 

existing research. Specifically, it is recommended that the program written for the current research 

be exercised in the multiplexer problem domain to replicate existing experimental results. This 

validation of the custom program used in this research would lend additional credibility and validity 

to the experimental findings and results reported herein. 
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Appendix B: XCS SETS AND PARAMETERS 

This appendix provides basic definitions and descriptions of the sets and parameters used in the 

XCS learning algorithm. The following descriptions are based substantially on Butz and Wilson’s 

comprehensive description of an XCS implementation (Butz and Wilson 2001), using a similar 

approach and format. Their words and descriptions are excerpted here with kind permission from 

the authors. 

THE DIFFERENT SETS 

There are four different sets of classifiers that are maintained in Learning Classifier System 

paradigms: 

1. The population [P] consists of all classifiers that exist at any time t. 
2. The match set [M] is formed out of the current [P]; it includes all classifiers that match the 

current situation. 
3. The action set [A] is formed out of the current [M]; it includes all classifiers of [M] that 

propose the executed action. 
 
LEARNING PARAMETERS 

The following parameters are used to control a learning classifier system’s learning process: 

• N specifies the maximum size of the population (in micro-classifiers, i.e., N is the sum 

of the classifier numerosities. The population size, N, should be large enough so that, 

starting from an empty population, covering occurs only at the very beginning of a 

competition; in the current research, N has been set at 300. 

• β is the learning rate for Þ, ε, f, and as. According to Wilson, β should be set in the 

range of 0.1-0.2; the current research uses 0.15. 

• α, ε0, and ν are used in calculating the fitness of a classifier. Wilson states that α is 

normally set to 0.1; this research has also used this convention, setting α to 0.1. The 

parameter ε0 is the error value below which classifiers are considered to have equal 

accuracy; a typical value would be about one percent of the maximum value of the 

reward function; therefore, this research uses 0.05. The power parameter ν is typically 5; 

this value has been used in the current research. 

• γ is the discount factor used—in multi-step problems—in updating classifier 

predictions. The algorithm used in this research adopts the conventional value of 0.71 

for this parameter. 
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• θGA is the GA threshold. The GA is applied in a set when the average time since the last 

GA in the set is greater than θGA. According to Wilson, this parameter is often set to a 

value between 25 and 50; the current research uses 25. 

• χ is the probability of applying crossover in the GA. Wilson states that crossover 

probabilities between 0.5 and 1.0 have been used; this research uses 0.5. 

• μ specifies the probability of applying mutation in the GA. Typical mutation parameter 

values are between 0.01 and 0.05; this research uses 0.01. 

• θdel is the deletion threshold. If the experience of a classifier is greater than θdel, its fitness 

may be considered in its probability of deletion. The algorithm used in this research 

adopts Wilson’s recommendation that this value be around 20. 

• δ specifies the fraction of the mean fitness in [P] below which the fitness of a classifier 

may be considered in its probability of deletion. Likewise, the current research sets δ at 

Wilson’s recommend value of 0.1. 

• θsub is the subsumption threshold. The experience of a classifier must be greater than θsub 

in order to be able to subsume another classifier. Wilson recommends this parameter be 

set at 20; this convention has been used here. 

• P# is the probability of using a # in one attribute in C when covering. The current 

research has adopted Wilson’s recommended value of 0.33 for this parameter. 

• ÞI, εI, and fI are used as initial values in new classifiers; each has been set to Wilson’s 

recommended value of 0.01. 

• Þexplr specifies the probability during action selection of choosing the action uniform 

randomly. As with other parameters, the current research uses Wilson’s recommended 

value of 0.50. 

• θmna specifies the minimal number of actions that must be present in a match set [M], or 

else covering will occur; the current research uses the number of possible actions: 2. 

• doGASumsumption is a Boolean parameter that specifies if offspring are to be tested 

for possible logical subsumption by parents. This parameter varies depending on 

whether the particular agent allows for its population to be ≤ N. 

• doActionSetSubsumption is a Boolean parameter that specifies if action sets are to be 

tested for subsuming classifiers. As with doGASumsumption above, this parameter 

varies depending on whether the particular agent allows for its population to be ≤ N. 
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Appendix C: PROGRAM CODE LISTING 

Imports System.Reflection 
Imports System.Runtime.InteropServices 
 
' General Information about an assembly is controlled through the following  
' set of attributes. Change these attribute values to modify the information 
' associated with an assembly. 
 
' Review the values of the assembly attributes 
 
<Assembly: AssemblyTitle("Alphabet Soup & Machine Learning")>  
<Assembly: AssemblyDescription("VB.NET Implementations of LCS, XCS, and 
Variants")>  
<Assembly: AssemblyCompany("")>  
<Assembly: AssemblyProduct("")>  
<Assembly: AssemblyCopyright("2004 by David Gaines")>  
<Assembly: AssemblyTrademark("")>  
<Assembly: CLSCompliant(True)>  
 
'The following GUID is for the ID of the typelib if this project is exposed 
to COM 
<Assembly: Guid("5EC79B5F-25DE-480C-A229-9B51B62D7EB5")>  
 
' Version information for an assembly consists of the following four values: 
' 
'      Major Version 
'      Minor Version  
'      Build Number 
'      Revision 
' 
' You can specify all the values or you can default the Build and Revision 
Numbers  
' by using the '*' as shown below: 
 
<Assembly: AssemblyVersion("1.0.*")>  
 
Imports System 
Imports System.Collections 
Imports System.Drawing 
Imports System.Math 
Imports Microsoft.VisualBasic 
Imports System.Threading 
Imports System.IO 
Imports System.Runtime.Serialization 
Imports System.Runtime.Serialization.Formatters.Binary 
Imports Scripting 
Imports Excel 
Imports System.Reflection ' For Missing.Value and BindingFlags 
Imports System.Runtime.InteropServices ' For COMException 
Imports System.Web.Mail 
 
Module Code 
 
    'Define classifier's data structure 
    <Serializable()> Structure Classifier 
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        Public UniqueID As Integer 
        Public Number As Integer 
        Public Condition() As Char 
        Public Action As Char 
        Public Prediction As Double 
        Public PredictionError As Double 
        Public Fitness As Double 
        Public Experience As Integer 
        Public TimeStamp As Date 
        Public ActionSetSize As Double 
        Public Numerosity As Integer 
    End Structure 
 
    'Define metrics structure 
    Structure Metric 
        Public Generation As Integer 
        Public AgentAction As Char 
        Public AgentReward As Integer 
        Public OpponentAction As Char 
        Public OpponentReward As Integer 
        Public Correct As Boolean 
        Public SystemPrediction As Decimal 
        Public SystemError As Decimal 
        Public PopulationCount As Integer 
        Public UniquePopulationCount As Integer 
        Public PopulationPercentOptimal As Decimal 
 
    End Structure 
 
    'Declare XCS classifier sets 
    Public Population As New ArrayList() 
    Public ActionSet As New ArrayList() 
    Public PreviousActionSet As New ArrayList() 
    Public MatchSet As New ArrayList() 
 
    'Declare Environment 
    Public Environment() As Char 'array which stores players' previous moves 
    Public PreviousEnvironment() As Char 'array which holds previous 
Environment 
 
    'Declare other global parameters 
    Public frmSplashScreen As New SplashScreen() 
    Public frm As New XCSOpeningScreen() 
    Public CurrentEncounter As Metric 
    Public ExploitEncounters As New ArrayList() 
    Public FolderName, ExperimentName As String 
    Public SaveDetail As String 
    Public Explain As Boolean 
    Public ClassifiersCreated As Integer 
    Public Enablers() As Integer 
 
    Public Exploit As Boolean 
    Public DetailedSW, SummarySW, SASSW, ParameterSW As IO.StreamWriter 
    Public Generation As Integer = 1 
    Public Problem As String 
    Public GraduatedRewards As Boolean 
    Public ClassifierUpdates As String 
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    Public ActualFiringClassifier As Integer 
    Public ConditionLength As Integer 
    Public ExperimentBeginTime, ExperimentEndTime As Date 
 
    Sub Main() 'main loop 
        frm.ShowDialog() 'get user input for learning and experimental 
parameters 
    End Sub 
 
    Public Function RunExperiment() As Boolean 
 
        'Declare learning parameters 
 
        Dim N As Integer = frm.nudN.Value 'maximum population size, equal to 
the sum of the classifier numerosities 
        Dim Beta As Decimal = frm.nudBeta.Value 'learning rate for 
Prediction, PredictionError, Fitness, and ActionSetSize 
        Dim Alpha As Decimal = frm.nudAlpha.Value 'learning rate used in 
calculating classifier Fitness 
        Dim Epsilon0 As Decimal = frm.nudEpsilon0.Value 'error value below 
which classifiers are considered to have equal accuracy 
        Dim Nu As Integer = frm.nudNu.Value 'power parameter used in 
calculating classifier Fitness 
        Dim Gamma As Decimal = frm.nudGamma.Value 'discount factor used to 
update classifier predictions in multi-step problems  
        Dim ThetaGA As Integer = frm.nudThetaGA.Value 'GA threshhold value; 
GA is applied when average time since last GA is greater than ThetaGA 
        Dim Chi As Decimal = frm.nudChi.Value 'probability of applying 
crossover in the GA 
        Dim Mu As Decimal = frm.nudMu.Value 'probability of mutating an 
allele in the offspring 
        Dim ThetaDel As Integer = frm.nudThetaDel.Value 'deletion threshhold 
value; if classifier experience is > ThetaDel, its fitness is considered in 
its probability of deletion 
        Dim Delta As Decimal = frm.nudDelta.Value 'specifies fraction of mean 
fitness in [P] below which the fitness of a classifier may be considered in 
its probability of deletion 
        Dim ThetaSub As Integer = frm.nudThetaSub.Value 'subsumption 
threshhold value; classifier experience must be > ThetaSub to be able to 
subsume another classifier and to be a member of [O] 
        Dim ProbPound As Decimal = frm.nudProbPound.Value 'probability of 
using a # in one allele during covering 
        Dim InitialPrediction As Decimal = frm.nudInitialPrediction.Value 
'initial Prediction in new classifier 
        Dim InitialPredictionError As Decimal = 
frm.nudInitialPredictionError.Value 'initial PredictionError in new 
classifier 
        Dim InitialFitness As Decimal = frm.nudInitialPredictionError.Value 
'initial Fitness in new classifier 
        Dim ProbXPlor As Decimal = frm.nudProbXPlor.Value 'probability of 
selecting an action randomly during action selection 
        Dim ThetaMNA As Integer = frm.nudThetaMNA.Value 'minimal number of 
actions in [A] to preclude covering 
        Dim DoGASubsumption As Boolean = frm.cboDoGASub.SelectedIndex 
'specifies if offspring are to be tested for possible logical subsumption by 
parents 
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        Dim DoASSubsumption As Boolean = frm.cboDoASSub.SelectedIndex 
'specifies if action sets are to be tested for subsuming classifiers 
 
        'Declare IPD parameters 
        Dim DesiredGenerations As Integer = frm.nudGenerations.Value 
        Dim Reward1 As Integer = frm.nudReward1.Value 
        Dim Reward2 As Integer = frm.nudReward2.Value 
        Dim Reward3 As Integer = frm.nudReward3.Value 
        Dim Reward4 As Integer = frm.nudReward4.Value 
        Dim NumberMoves As Integer = frm.nudNumberMoves.Value 
        ReDim Enablers(NumberMoves) 
        If frm.cboWhoseMoves.Text = "Both" Then 
            ConditionLength = NumberMoves * 2 
        Else 
            ConditionLength = NumberMoves 
        End If 
 
        Dim Opponent As String 
 
        'Declare experiment parameters 
        Dim Replications As Integer = frm.nudReplications.Value 
        Dim Frequency As Integer = frm.nudFreq.Value 
        Dim PseudoRandomness As String = frm.cboPseudoRandomness.Text 
 
        'Declare agent parameters 
        Dim AgentType As String = frm.cboAgentType.Text 
        Dim ClassifierFitness As String = frm.cboClassifierFitness.Text 
        Dim InitialPopulation As String = frm.cboInitialPopulation.Text 
        Dim PopulationSize As String = frm.cboPopSize.Text 
        Dim GAScope As String = frm.cboGAScope.Text 
        Dim ParentSelection As String = frm.cboParentSelection.Text 
        Dim ActionSelection As String = frm.cboActionSelection.Text 
        Dim ClassifierDeletion As String = frm.cboClassifierDeletion.Text 
        ClassifierUpdates = frm.cboClassifierFitnessUpdates.Text 
 
        'Declare my parameters and variables 
        Dim FormProgressBar As ProgressBar = frm.pbar1 
        Dim SingleStep As Boolean = True 'flag to indicate single step 
problem 
        Dim i, Rep As Integer 'counters for replications and experiment 
        Dim PredictionArray(2) As Decimal 'position 1 hold Cs, position 2 
holds Ds 
        Dim P As Decimal 'Q-learning-like payoff quantity 
        SaveDetail = frm.cboSaveDetail.Text 
        Explain = frm.cboExplain.SelectedIndex 
        Problem = frm.cboProblem.Text 
        If Problem = "IPD" Then 
            Opponent = frm.cboOpponent.Text 
            GraduatedRewards = False 
        Else 
            Opponent = "6-MUX" 
            If frm.cboGraduatedRewards.Text = "Yes" Then 
                GraduatedRewards = True 
            Else 
                GraduatedRewards = False 
            End If 
        End If 
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        ExperimentName = AgentType & " vs " & Opponent & ", " & 
DesiredGenerations & " encounters, " & _ 
          Replications & " reps" 
 
        If frm.cboCrankitUp.Text = "Yes" Then 
            Thread.CurrentThread.Priority = ThreadPriority.AboveNormal 
        End If 
 
        ' Display the ProgressBar control. 
        FormProgressBar.Visible = True 
 
        ' Set Minimum to 1 to represent the first file being copied 
        FormProgressBar.Minimum = 1 
 
        ' Set Maximum to the total number of files to copy 
        FormProgressBar.Maximum = DesiredGenerations * Replications 
 
        ' Set the initial value of the ProgressBar. 
        FormProgressBar.Value = 1 
 
        ' Set the Step property to a value of 1 to represent each file being 
copied. 
        FormProgressBar.Step = 1 
 
        If PseudoRandomness = "Constant Seed" Then 
            Rnd(-1) 'this statement and the next insures same random number 
stream for each experiment 
            Randomize(1) 
            'MsgBox("The 1st constant seed pseudo random number = " & Rnd()) 
        Else 
            Randomize() 
            'MsgBox("The 1st time-based seed pseudo random number = " & 
Rnd()) 
        End If 
 
        For Rep = 1 To Replications 
 
            If SaveDetail = "All" Then 
                DetailedSW = IO.File.CreateText(FolderName & "\" & 
ExperimentName & " " & "Populations, Replication " & Rep & ".txt") 
                DetailedSW.WriteLine(AgentType & " vs " & Opponent & ", " & _ 
                    "N = " & N & _ 
                    ", " & PseudoRandomness & ", " & InitialPopulation & _ 
                    ", Total Generations/Encounters = " & _ 
                    DesiredGenerations & ", Measurement Frequency = " & 
Frequency) 
                DetailedSW.WriteLine() 
                SummarySW = IO.File.CreateText(FolderName & "\" & 
ExperimentName & " Metrics, Replication " & Rep & ".csv") 
            ElseIf SaveDetail = "Summary" Then 
                SummarySW = IO.File.CreateText(FolderName & "\" & 
ExperimentName & " Metrics, Replication " & Rep & ".csv") 
            End If 
 
            'Reset variables, initialize XCS 
            Population.Clear() 
            ActionSet.Clear() 
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            PreviousActionSet.Clear() 
            MatchSet.Clear() 
            ClassifiersCreated = 0 
            'MetricsQueue.Clear() 
 
            Generation = 1 
 
            'can either populate Population with random classifiers, or can 
leave empty and populate by covering 
            '----------------------------------------------------------------
------------------- 
            If Generation = 1 And InitialPopulation = "N Random Classifiers" 
Then 
                Population.Add(Nothing) 
                'initally populate population with random classifiers 
                InitializePopulation(N, InitialPrediction, 
InitialPredictionError, _ 
                        InitialFitness) 
                If Explain Then 
                    OutputArrayofClassifierstoScreen("Initial randomly 
generated population", Population) 
                End If 
            End If 
 
            If SaveDetail = "All" Then 
                WritePopulation(Rep, 0, "Detailed") 
            ElseIf SaveDetail = "Summary" Then 
                SummarySW.WriteLine(",Population,,,Correct %" & ",,,,,,," & _ 
                    "Squared Error" & ",,,,,,," & _ 
                    "Agent's Reward" & ",,,,,,," & _ 
                    "Opponent's Reward" & ",,,,,,," & _ 
                    "Optimal %" & ",,,,,,,") 
                SummarySW.WriteLine("Generation" & "," & "Pop Size" & "," & 
"Unique" & "," & _ 
                    "Mean" & "," & "Std Dev" & "," & "Median" & "," & "Mode" 
& "," & _ 
                    "Min" & "," & "Max" & "," & "Range" & "," & _ 
                    "Mean" & "," & "Std Dev" & "," & "Median" & "," & "Mode" 
& "," & _ 
                    "Min" & "," & "Max" & "," & "Range" & "," & _ 
                    "Mean" & "," & "Std Dev" & "," & "Median" & "," & "Mode" 
& "," & _ 
                    "Min" & "," & "Max" & "," & "Range" & "," & _ 
                    "Mean" & "," & "Std Dev" & "," & "Median" & "," & "Mode" 
& "," & _ 
                    "Min" & "," & "Max" & "," & "Range" & "," & _ 
                    "Mean" & "," & "Std Dev" & "," & "Median" & "," & "Mode" 
& "," & _ 
                    "Min" & "," & "Max" & "," & "Range") 
            End If 
 
            Do 
                System.Windows.Forms.Application.DoEvents() 
                'get current Environment 
                If Generation = 1 Or Opponent = "6-MUX" Then 
                    Environment = GetSituation() 
                End If 

 
 

141



 

 
                If SaveDetail = "All" Then 
                    DetailedSW.WriteLine("Environment = " & 
EnvironmentString()) 
                End If 
 
                If Explain Then 
                    OutputConditiontoScreen(Environment, "Environment #" & 
Generation) 
                End If 
 
                'generate match set out of [P] using current Environment 
                MatchSet = GenerateMatchSet(N, ThetaDel, Delta, ProbPound, _ 
                    InitialPrediction, InitialPredictionError, 
InitialFitness, ThetaMNA, _ 
                    Environment, ClassifierDeletion, PopulationSize) 
 
                If Explain Then 
                    'OutputArrayofClassifierstoScreen("Population #" & 
Generation, Population) 
                    OutputArrayofClassifierstoScreen("Match Set # " & 
Generation _ 
                        & "; environment was " & EnvironmentString(), 
MatchSet) 
                End If 
                'generate prediction array out of [M] 
                PredictionArray = GeneratePredictionArray() 
                If SaveDetail = "All" Then 
                    DetailedSW.WriteLine("Pred (C D) = (" & 
FormatNumber(PredictionArray(1), 4) & _ 
                    " " & FormatNumber(PredictionArray(2), 4) & ")") 
                End If 
                'MsgBox("Prediction array for C = " & PredictionArray(1)) 
                'MsgBox("Prediction array for D = " & PredictionArray(2)) 
 
                'select action according to PA 
                CurrentEncounter.Generation = Generation 
                CurrentEncounter.AgentAction = SelectAction(PredictionArray, 
ProbXPlor, ActionSelection) 
                If SaveDetail = "All" Then 
                    If Exploit Then 
                        DetailedSW.WriteLine("Exploited and chose action " & 
CurrentEncounter.AgentAction) 
                    Else 
                        DetailedSW.WriteLine("Explored and chose action " & 
CurrentEncounter.AgentAction) 
                    End If 
                End If 
 
                'MsgBox("Chosen action = " & Action) 
 
                'generate action set out of [M] according to action 
                GenerateActionSet(CurrentEncounter.AgentAction) 
 
                If Explain Then 
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                    OutputArrayofClassifierstoScreen("Choosing action " & 
CurrentEncounter.AgentAction & " results in Action Set #" & Generation, 
ActionSet) 
                End If 
                'execute action 
                P = PlayGame(CurrentEncounter.AgentAction, Reward1, Reward2, 
Reward3, Reward4, Opponent) 
 
                If CurrentEncounter.AgentAction = "C" Or 
CurrentEncounter.AgentAction = "0" Then 
                    CurrentEncounter.SystemPrediction = PredictionArray(1) 
'position 1 hold Cs, position 2 holds Ds 
                    CurrentEncounter.SystemError = (P - PredictionArray(1)) ^ 
2 
                Else 
                    CurrentEncounter.SystemPrediction = PredictionArray(2) 
                    CurrentEncounter.SystemError = (P - PredictionArray(2)) ^ 
2 
                End If 
 
                If SaveDetail = "All" Then 
                    DetailedSW.WriteLine("Agent played " & 
CurrentEncounter.AgentAction & _ 
                        " " & Opponent & " played " & 
CurrentEncounter.OpponentAction) 
                    DetailedSW.WriteLine("Agent earned " & 
CurrentEncounter.AgentReward & _ 
                        " " & Opponent & " earned " & 
CurrentEncounter.OpponentReward) 
                    DetailedSW.WriteLine("Prediction = " & 
FormatNumber(CurrentEncounter.SystemPrediction, 4) & _ 
                        " " & "Squared Error = " & 
FormatNumber(CurrentEncounter.SystemError, 4)) 
                    DetailedSW.WriteLine("Correct = " & 
CurrentEncounter.Correct) 
                    DetailedSW.WriteLine() 
                End If 
 
                'MsgBox("Agent played " & CurrentEncounter.AgentAction & vbCr 
& Opponent & " played " & CurrentEncounter.OpponentAction & vbCr & "Agent 
earned " & CurrentEncounter.AgentReward & vbCr & Opponent & " earned " & 
CurrentEncounter.OpponentReward & vbCr & "Prediction was " & 
CurrentEncounter.SystemPrediction & vbCr & "Error was " & 
CurrentEncounter.SystemError & vbCr & "Correct = " & 
CurrentEncounter.Correct) 
                'Reward(Generation) = PlayGame(Action, Reward1, Reward2, 
Reward3, Reward4, Opponent) 
 
                'below lines commented on 3 Oct for single step IPD----------
------------------------- 
 
                'If PreviousActionSet.Count > 0 Then 
                '    'update P 
                '    P = UpdateP(PredictionArray, Reward, Generation, Gamma) 
 
                '    'If ActionSet.Count > 2 Then 

 
 

143



 

                '    'OutputConditiontoScreen(Environment, "Environment #" & 
Generation) 
                '    'OutputArrayofClassifierstoScreen("Population #" & 
Generation, Population) 
                '    'OutputArrayofClassifierstoScreen("Match Set #" & 
Generation, MatchSet) 
                '    'OutputArrayofClassifierstoScreen("Action Set #" & 
Generation, ActionSet) 
                '    'MsgBox("Reward = " & Reward(Generation)) 
                '    'End If 
 
                '    'update set [A]-1 using P, possibly deleting in [P] 
 
                '    'OutputArrayofClassifierstoScreen("Action Set [-1] 
before update, generation #" & Generation, PreviousActionSet) 
                '    UpdateSet(PreviousActionSet, P, Beta, Epsilon0, Alpha, 
Nu, DoASSubsumption, _ 
                '        ThetaSub) 
                '    'OutputArrayofClassifierstoScreen("Action Set [-1] after 
update, generation #" & Generation, PreviousActionSet) 
                '    'OutputArrayofClassifierstoScreen("Action Set after 
update, generation #" & Generation, ActionSet) 
                '    'OutputArrayofClassifierstoScreen("Population after 
Action Set Update", Population) 
 
                '    'run GA in [A]-1 considering previous Environment, 
inserting and possibly deleting in [P] 
                '    RunGA() 
 
                'End If 
                'above lines commented on 3 Oct for single-step IPD ---------
------------------------ 
 
                If SingleStep Then 
 
                    'update set [A] using P, possibly deleting in [P] 
                    UpdateSet(P, Beta, Epsilon0, Alpha, Nu, DoASSubsumption, 
_ 
                        ThetaSub, ClassifierFitness) 
                    If Explain Then 
                        OutputArrayofClassifierstoScreen("Action Set " & 
Generation & " after parameter updates", ActionSet) 
                        OutputArrayofClassifierstoScreen("Population " & 
Generation & " after parameter updates", Population) 
                    End If 
                    'run GA in [A] considering current Environment, inserting 
and possibly deleting in [P] 
                    RunGA(Generation, ThetaGA, Chi, Mu, DoGASubsumption, 
ThetaSub, Epsilon0, _ 
                        N, ThetaDel, Delta, GAScope, ClassifierDeletion, 
ParentSelection, PopulationSize) 
 
                    'empty previous action set 
 
                Else 
                    'increment generation 
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                    'replace previous action set with current action set 
                    'OutputArrayofClassifierstoScreen("Action Set before 
assignment, generation #" & Generation, _ 
                    '    ActionSet) 
                    If Generation > 1 Then 
                        If Explain Then 
                            OutputArrayofClassifierstoScreen("Previous Action 
Set before assignment, generation #" & Generation, _ 
                                PreviousActionSet) 
                        End If 
                    End If 
 
                    PreviousActionSet = CloneObject(ActionSet) 
 
                    'OutputArrayofClassifierstoScreen("Action Set after 
assignment, generation #" & Generation, _ 
                    '    ActionSet) 
                    'OutputArrayofClassifierstoScreen("Previous Action Set 
after assignment, generation #" & Generation, _ 
                    '    PreviousActionSet) 
 
                    'PreviousActionSet = ActionSet 
 
                    PreviousEnvironment = Environment 
 
                    'store reward information (already taken care of?) 
 
                    'store previous Environment 
 
                End If 
                CurrentEncounter.PopulationCount = Population.Count - 1 
                CurrentEncounter.UniquePopulationCount = 
CountUniqueClassifiers() 
                CurrentEncounter.PopulationPercentOptimal = 
PercentOptimal(Opponent, Problem, Epsilon0, ThetaSub) 
                'Write data to text file 
                If SaveDetail = "All" Or SaveDetail = "Summary" Or SaveDetail 
= "SAS Only" Then 
                    'store data 
                    If Exploit Then 
                        ExploitEncounters.Add(CurrentEncounter) 
                    End If 
 
                    If SaveDetail = "All" Then 
                        WritePopulation(Rep, Generation, "Detailed") 
                    End If 
 
                    If Generation Mod Frequency = 0 Then 
                        If SaveDetail = "Summary" Then 
                            'commented the following the eliminate 
unnecessary stat calculations 
                            'SummarySW.WriteLine(Generation & "," & _ 
                            '    ArrayAvg(ExploitEncounters, 
"PopulationCount") & "," & _ 
                            '    ArrayAvg(ExploitEncounters, 
"UniquePopulationCount") & "," & _ 
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                            '    ArrayAvg(ExploitEncounters, "Correct") * 100 
& "," & _ 
                            '    ArrayStdDev(ExploitEncounters, "Correct") * 
100 & "," & _ 
                            '    ArrayMed(ExploitEncounters, "Correct") & "," 
& _ 
                            '    ArrayMod(ExploitEncounters, "Correct") & "," 
& _ 
                            '    ArrayMin(ExploitEncounters, "Correct") & "," 
& _ 
                            '    ArrayMax(ExploitEncounters, "Correct") & "," 
& _ 
                            '    ArrayRng(ExploitEncounters, "Correct") & "," 
& _ 
                            '    ArrayAvg(ExploitEncounters, "SystemError") & 
"," & _ 
                            '    ArrayStdDev(ExploitEncounters, 
"SystemError") & "," & _ 
                            '    ArrayMed(ExploitEncounters, "SystemError") & 
"," & _ 
                            '    ArrayMod(ExploitEncounters, "SystemError") & 
"," & _ 
                            '    ArrayMin(ExploitEncounters, "SystemError") & 
"," & _ 
                            '    ArrayMax(ExploitEncounters, "SystemError") & 
"," & _ 
                            '    ArrayRng(ExploitEncounters, "SystemError") & 
"," & _ 
                            '    ArrayAvg(ExploitEncounters, "AgentReward") & 
"," & _ 
                            '    ArrayStdDev(ExploitEncounters, 
"AgentReward") & "," & _ 
                            '    ArrayMed(ExploitEncounters, "AgentReward") & 
"," & _ 
                            '    ArrayMod(ExploitEncounters, "AgentReward") & 
"," & _ 
                            '    ArrayMin(ExploitEncounters, "AgentReward") & 
"," & _ 
                            '    ArrayMax(ExploitEncounters, "AgentReward") & 
"," & _ 
                            '    ArrayRng(ExploitEncounters, "AgentReward") & 
"," & _ 
                            '    ArrayAvg(ExploitEncounters, 
"OpponentReward") & "," & _ 
                            '    ArrayStdDev(ExploitEncounters, 
"OpponentReward") & "," & _ 
                            '    ArrayMed(ExploitEncounters, 
"OpponentReward") & "," & _ 
                            '    ArrayMod(ExploitEncounters, 
"OpponentReward") & "," & _ 
                            '    ArrayMin(ExploitEncounters, 
"OpponentReward") & "," & _ 
                            '    ArrayMax(ExploitEncounters, 
"OpponentReward") & "," & _ 
                            '    ArrayRng(ExploitEncounters, 
"OpponentReward") & "," & _ 
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                            '    ArrayAvg(ExploitEncounters, 
"PopulationPercentOptimal") * 100 & "," & _ 
                            '    ArrayStdDev(ExploitEncounters, 
"PopulationPercentOptimal") * 100 & "," & _ 
                            '    ArrayMed(ExploitEncounters, 
"PopulationPercentOptimal") & "," & _ 
                            '    ArrayMod(ExploitEncounters, 
"PopulationPercentOptimal") & "," & _ 
                            '    ArrayMin(ExploitEncounters, 
"PopulationPercentOptimal") & "," & _ 
                            '    ArrayMax(ExploitEncounters, 
"PopulationPercentOptimal") & "," & _ 
                            '    ArrayRng(ExploitEncounters, 
"PopulationPercentOptimal")) 
                            SummarySW.WriteLine(Generation & "," & _ 
                               ArrayAvg(ExploitEncounters, "PopulationCount") 
& "," & _ 
                               ArrayAvg(ExploitEncounters, 
"UniquePopulationCount") & "," & _ 
                               ArrayAvg(ExploitEncounters, "Correct") * 100 & 
"," & _ 
                               "0," & _ 
                               "0," & _ 
                               "0," & _ 
                               "0," & _ 
                               "0," & _ 
                               "0," & _ 
                               ArrayAvg(ExploitEncounters, "SystemError") & 
"," & _ 
                               "0," & _ 
                               "0," & _ 
                               "0," & _ 
                               "0," & _ 
                               "0," & _ 
                               "0," & _ 
                               ArrayAvg(ExploitEncounters, "AgentReward") & 
"," & _ 
                               "0," & _ 
                               "0," & _ 
                               "0," & _ 
                               "0," & _ 
                               "0," & _ 
                               "0," & _ 
                               ArrayAvg(ExploitEncounters, "OpponentReward") 
& "," & _ 
                               "0," & _ 
                               "0," & _ 
                               "0," & _ 
                               "0," & _ 
                               "0," & _ 
                               "0," & _ 
                               ArrayAvg(ExploitEncounters, 
"PopulationPercentOptimal") * 100 & "," & _ 
                               "0," & _ 
                               "0," & _ 
                               "0," & _ 
                               "0," & _ 
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                               "0," & _ 
                               "0") 
                            SASSW.WriteLine(Rep & " " & AgentType & " " & _ 
                                Generation & " " & _ 
                                ArrayAvg(ExploitEncounters, 
"UniquePopulationCount") & " " & _ 
                                ArrayAvg(ExploitEncounters, "Correct") * 100 
& " " & _ 
                                FormatNumber(ArrayAvg(ExploitEncounters, 
"SystemError"), 4, True) & " " & _ 
                                ArrayAvg(ExploitEncounters, 
"PopulationPercentOptimal") * 100) 
                        ElseIf SaveDetail = "SAS Only" Then 
                            SASSW.WriteLine(Rep & " " & AgentType & " " & _ 
                                 Generation & " " & _ 
                                 ArrayAvg(ExploitEncounters, 
"UniquePopulationCount") & " " & _ 
                                 ArrayAvg(ExploitEncounters, "Correct") * 100 
& " " & _ 
                                 FormatNumber(ArrayAvg(ExploitEncounters, 
"SystemError"), 4, True) & " " & _ 
                                 ArrayAvg(ExploitEncounters, 
"PopulationPercentOptimal") * 100 & " " & _ 
                                 ExploitEncounters.Count) 
                        End If 
 
                        If Explain Then 
                            MsgBox("Generation " & Generation & vbCr & 
"Population.Count = " & Population.Count - 1 & vbCr & _ 
                            "Proportion Correct = " & 
FormatPercent(ArrayAvg(ExploitEncounters, "Correct"), 3, True) & vbCr & _ 
                            "Total Squared Error = " & 
FormatNumber(ArraySum(ExploitEncounters, "SystemError"), 3, True) & vbCr & _ 
                            "Avg Squared Error = " & 
FormatNumber(ArrayAvg(ExploitEncounters, "SystemError"), 3, True) & vbCr & _ 
                            "Total Agent Reward = " & 
FormatNumber(ArraySum(ExploitEncounters, "AgentReward"), 3, True) & vbCr & _ 
                            "Average Agent Reward = " & 
FormatNumber(ArrayAvg(ExploitEncounters, "AgentReward"), 3, True) & vbCr & _ 
                            "Total Opponent Reward = " & 
FormatNumber(ArraySum(ExploitEncounters, "OpponentReward"), 3, True) & vbCr & 
_ 
                            "Average Opponent Reward = " & 
FormatNumber(ArrayAvg(ExploitEncounters, "OpponentReward"), 3, True)) 
                        End If 
 
                        'reset summary data variables 
                        ExploitEncounters.Clear() 
                    End If 
 
                End If 
                Generation += 1 'increment experiment counter 
 
                FormProgressBar.PerformStep() 
 
                If Generation Mod 1000 = 0 Then 
                    FormProgressBar.Refresh() 
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                    frm.Refresh() 
                End If 
 
            Loop Until Generation = DesiredGenerations + 1 
 
            'record final population 
            If SaveDetail = "All" Or SaveDetail = "Summary" Then 
                SummarySW.WriteLine() 
                SummarySW.WriteLine("Final Population:") '& "," & 
DateDiff(DateInterval.Minute, ExperimentBeginTime, ExperimentEndTime) & _ 
                '" minutes" & "," & (DateDiff(DateInterval.Second, 
ExperimentBeginTime, ExperimentEndTime) Mod 60) & _ 
                '" seconds") 
                WritePopulation(Rep, Generation, "Summary") 
 
            End If 
 
            'close and dispose of stringwriter objects 
 
            If SaveDetail = "All" Then 
                DetailedSW.Flush() 
                DetailedSW.Close() 
                SummarySW.Flush() 
                SummarySW.Close() 
            End If 
            If SaveDetail = "Summary" Then 
                SummarySW.Flush() 
                SummarySW.Close() 
            End If 
 
            If Explain Then 
                MsgBox(N & " classifiers x " & 
FormatNumber(DesiredGenerations, 0, True, False, True) & _ 
                                " generations took:  " & 
DateDiff(DateInterval.Minute, ExperimentBeginTime, ExperimentEndTime) & _ 
                                " minutes, " & (DateDiff(DateInterval.Second, 
ExperimentEndTime, ExperimentBeginTime) Mod 60) & _ 
                                " seconds", , "Elapsed Time") 
                OutputArrayofClassifierstoScreen("Population #" & Generation 
& " Final Population", Population) 
            End If 
            frm.Refresh() 
        Next Rep 
 
        'store in Excel files 
        If SaveDetail = "All" Or SaveDetail = "Summary" Then 
            StoreDataInExcel(False, Rep - 1, N, Generation - 1, _ 
            Frequency, PseudoRandomness, InitialPopulation) 'stores metrics 
            DeleteCSVFiles() 
        End If 
 
        'made this all comments on 26 Jun 05 
        'delete all instances of Excel 
        'Dim xlApp As Excel.Application 
        'On Error Resume Next 
        'xlApp = GetObject(, "Excel.Application") 
        'On Error GoTo 0 
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        'If xlApp Is Nothing Then 
        '    Excel(wasn) 't open - open a new one 
        '    xlApp = GetObject("", "Excel.Application") 
        'End If 
        'xlApp.Quit() 
        'xlApp = Nothing 
 
        RunExperiment = True 
        'MsgBox("Experiment done") 
        FormProgressBar.Visible = False 
 
    End Function 'end of experiment 
 
    Public Function InitializePopulation(ByVal N As Integer, _ 
    ByVal InitialPrediction As Decimal, _ 
    ByVal InitialPredictionError As Decimal, ByVal InitialFitness As Decimal) 
As ArrayList() 
 
        Dim TempClassifier, TempClassifier2 As Classifier 
        Dim i, j, m As Integer 'counter variables for walking through 
population 
        Dim RandomNumber As Decimal 
 
        For i = 1 To (N - 1) Step 2 
            ReDim TempClassifier.Condition(ConditionLength) 
            ReDim TempClassifier2.Condition(ConditionLength) 
 
            ClassifiersCreated += 2 
            TempClassifier.UniqueID = ClassifiersCreated - 1 
            TempClassifier2.UniqueID = ClassifiersCreated 
 
            TempClassifier.Number = i 
            TempClassifier2.Number = i + 1 
            If i = 1 Then 
                For j = 1 To ConditionLength 
                    TempClassifier.Condition(j) = "#" 
                    TempClassifier2.Condition(j) = "#" 
                Next j 
            Else 
                For j = 1 To ConditionLength 'don't set array(0), which will 
equal 0 
                    RandomNumber = Rnd() 
                    If RandomNumber < (1 / 3) Then 
                        If Problem = "IPD" Then 
                            TempClassifier.Condition(j) = "C" 
                            TempClassifier2.Condition(j) = "C" 
                        Else 
                            TempClassifier.Condition(j) = "0" 
                            TempClassifier2.Condition(j) = "0" 
                        End If 
                    ElseIf RandomNumber < (2 / 3) Then 
                        If Problem = "IPD" Then 
                            TempClassifier.Condition(j) = "D" 
                            TempClassifier2.Condition(j) = "D" 
                        Else 
                            TempClassifier.Condition(j) = "1" 
                            TempClassifier2.Condition(j) = "1" 
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                        End If 
                    Else 
                        TempClassifier.Condition(j) = "#" 
                        TempClassifier2.Condition(j) = "#" 
                    End If 
                Next j 
 
            End If 
            If Problem = "IPD" Then 
                TempClassifier.Action = "C" 
                TempClassifier2.Action = "D" 
            Else 
                TempClassifier.Action = "0" 
                TempClassifier2.Action = "1" 
            End If 
 
            'check to see if tempclassifier matches an existing classifier 
            For j = 1 To Population.Count - 1 
                If ExactMatch(Population(j), TempClassifier) Then 
                    If Explain Then 
                        MsgBox("During initial population generation, exact 
match between ...") 
                        OutputClassifiertoScreen(Population(j), "First 
Classifier") 
                        OutputClassifiertoScreen(TempClassifier, "Second 
Classifier") 
                    End If 
                    For m = 1 To ConditionLength 'don't set array(0), which 
will equal 0 
                        RandomNumber = Rnd() 
                        If RandomNumber < (1 / 3) Then 
                            If Problem = "IPD" Then 
                                TempClassifier.Condition(m) = "C" 
                                TempClassifier2.Condition(m) = "C" 
                            Else 
                                TempClassifier.Condition(m) = "0" 
                                TempClassifier2.Condition(m) = "0" 
                            End If 
 
                        ElseIf RandomNumber < (2 / 3) Then 
                            If Problem = "IPD" Then 
                                TempClassifier.Condition(m) = "D" 
                                TempClassifier2.Condition(m) = "D" 
                            Else 
                                TempClassifier.Condition(m) = "1" 
                                TempClassifier2.Condition(m) = "1" 
                            End If 
                        Else 
                            TempClassifier.Condition(m) = "#" 
                            TempClassifier2.Condition(m) = "#" 
                        End If 
                    Next m 
                    'set j = 0 to walk through whole population again 
                    j = 0 
                End If 
 
            Next j 
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            TempClassifier.Prediction = InitialPrediction 'initial very low 
prediction 
            TempClassifier2.Prediction = InitialPrediction 
            TempClassifier.PredictionError = InitialPredictionError 'initial 
very low prediction error 
            TempClassifier2.PredictionError = InitialPredictionError 
            TempClassifier.Fitness = InitialFitness 'intial very low fitness 
            TempClassifier2.Fitness = InitialFitness 
            TempClassifier.Experience = 0 'no initial experience 
            TempClassifier2.Experience = 0 
            TempClassifier.TimeStamp = Date.Now 'initial creation time 
            TempClassifier2.TimeStamp = Date.Now 
            TempClassifier.ActionSetSize = 1 'initial action set size of 1 
            TempClassifier2.ActionSetSize = 1 
            TempClassifier.Numerosity = 1 'initial numerosity of 1 
            TempClassifier2.Numerosity = 1 
 
            Population.Add(TempClassifier) 
            Population.Add(TempClassifier2) 
 
        Next i 
 
    End Function 
 
    Public Function GetSituation() As Char() 
        Dim i As Integer 'counter for Newizing Environment (number of moves 
to remember) 
        Dim RandomNumber As Decimal 
        Dim NewEnvironment(ConditionLength) As Char 'dimension Environment to 
hold correct number of moves 
 
        For i = 1 To ConditionLength 'don't set array(0), which will equal 0 
            RandomNumber = Rnd() 
            If RandomNumber < 0.5 Then 
                If Problem = "IPD" Then 
                    NewEnvironment(i) = "C" 
                Else 
                    NewEnvironment(i) = "0" 
                End If 
 
            Else 
                If Problem = "IPD" Then 
                    NewEnvironment(i) = "D" 
                Else 
                    NewEnvironment(i) = "1" 
                End If 
            End If 
        Next i 
        Return NewEnvironment 'function has successfully completed 
    End Function 
 
    Public Function GenerateMatchSet(ByVal N As Integer, ByVal ThetaDel As 
Integer, _ 
        ByVal Delta As Decimal, ByVal ProbPound As Decimal, _ 
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        ByVal InitialPrediction As Decimal, ByVal InitialPredictionError As 
Decimal, _ 
        ByVal InitialFitness As Decimal, ByVal ThetaMNA As Integer, _ 
        ByVal Environment() As Char, ByVal ClassifierDeletion As String, _ 
        ByVal PopulationSize As String) As ArrayList 
 
        Dim NewMatchSet As New ArrayList() 
        Dim DiscreteActions As New Collection() 
 
        Dim Message As String = "[M] = " 
        Dim ExistingAction As Char 
        Dim i, j, DifferentActions As Integer 
 
        If Population.Count = 0 Then 
            Population.Add(Nothing) 
            If Problem = "IPD" Then 
                If Rnd() < 0.5 Then 
                    ExistingAction = "C" 
                Else 
                    ExistingAction = "D" 
                End If 
            Else 
                If Rnd() < 0.5 Then 
                    ExistingAction = "0" 
                Else 
                    ExistingAction = "1" 
                End If 
            End If 
            Population.Add(GenerateCoveringClassifier(InitialPrediction, _ 
                InitialPredictionError, InitialFitness, ThetaDel, Delta, _ 
                Environment, ProbPound, 1, ExistingAction)) 
 
            NewMatchSet = Population 
        End If 
 
        While NewMatchSet.Count = 0 
 
            For i = 1 To Population.Count - 1 
                If DoesMatch(Population(i), Environment) Then 
                    If Explain Then 
                        MsgBox("Population (" & i & ") matches environment") 
                    End If 
                    If SaveDetail = "All" Then 
                        Message &= i & " " 
                    End If 
                    j += 1 
                    NewMatchSet.Add(Population(i)) 
                End If 
            Next 
 
            NewMatchSet.Insert(0, Nothing) 
            For i = 1 To NewMatchSet.Count - 1 
                ' we need to ignore errors, if duplicates are to be discarded 
                On Error Resume Next 
 
                ' the Execute method does the search and returns a 
MatchCollection object 
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                ' if duplicates are to be discarded, we just add a key to the  
                ' collection item 
                ' and the Add method will do the rest 
                DiscreteActions.Add(DirectCast(NewMatchSet(i), 
Classifier).Action, _ 
                    DirectCast(NewMatchSet(i), Classifier).Action) 
                If DiscreteActions.Count >= ThetaMNA Then 
                    Exit For 
                End If 
 
            Next i 
 
            If DiscreteActions.Count < ThetaMNA Then 
                If DiscreteActions.Count = 0 Then 
                    If Problem = "IPD" Then 
                        If Rnd() < 0.5 Then 
                            ExistingAction = "C" 
                        Else 
                            ExistingAction = "D" 
                        End If 
                    Else 
                        If Rnd() < 0.5 Then 
                            ExistingAction = "0" 
                        Else 
                            ExistingAction = "1" 
                        End If 
                    End If 
                Else 
                    ExistingAction = DiscreteActions(1) 
                End If 
                'Generate covering classifier 
                Population.Add(GenerateCoveringClassifier(InitialPrediction, 
_ 
                    InitialPredictionError, InitialFitness, ThetaDel, Delta, 
_ 
                    Environment, ProbPound, Population.Count, 
ExistingAction)) 
                If Explain Then 
                    OutputArrayofClassifierstoScreen("Population before 
Deletion", Population) 
                End If 
                DeleteFromPopulation(N, ThetaDel, Delta, ClassifierDeletion, 
PopulationSize) 
                RenumberPopulation() 
 
                If Explain Then 
                    OutputArrayofClassifierstoScreen("Population after 
Deletion", Population) 
                End If 
                NewMatchSet.Clear() 
            End If 
            If SaveDetail = "All" Then 
                DetailedSW.WriteLine(Message) 
            End If 
 
        End While 
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        Return NewMatchSet 
    End Function 
 
    Public Function GeneratePredictionArray() As Decimal() 
        Dim i As Integer 
        Dim NewPredictionArray(2) As Decimal 'array to hold predictions for 
each possible action 
        Dim FitnessSumArray(2) As Decimal 'array to hold sum of action 
fitnesses 
 
        For i = 1 To MatchSet.Count - 1 
 
            If DirectCast(MatchSet(i), Classifier).Action = "C" Or _ 
            DirectCast(MatchSet(i), Classifier).Action = "0" Then 
                NewPredictionArray(1) += _ 
                (DirectCast(MatchSet(i), Classifier).Prediction * _ 
                DirectCast(MatchSet(i), Classifier).Fitness) 
                FitnessSumArray(1) += DirectCast(MatchSet(i), 
Classifier).Fitness 
            Else 
                NewPredictionArray(2) += _ 
                (DirectCast(MatchSet(i), Classifier).Prediction * _ 
                DirectCast(MatchSet(i), Classifier).Fitness) 
                FitnessSumArray(2) += DirectCast(MatchSet(i), 
Classifier).Fitness 
            End If 
 
        Next i 
 
        For i = 1 To UBound(NewPredictionArray) 
            If FitnessSumArray(i) <> 0 Then 
                'prediction array equals total prediction divided by total 
fitness 
                NewPredictionArray(i) = NewPredictionArray(i) / 
FitnessSumArray(i) 
            End If 
        Next i 
 
        GeneratePredictionArray = NewPredictionArray 
        If Explain Then 
            MsgBox("C prediction: " & FormatNumber(NewPredictionArray(1), 4) 
& vbCrLf & "D prediction: " & _ 
               FormatNumber(NewPredictionArray(2), 4), , "Prediction Array") 
        End If 
 
    End Function 
 
    Public Function SelectAction(ByVal PredictionArray() As Decimal, _ 
        ByVal ProbXPlor As Decimal, ByVal ActionSelection As String) As Char 
 
        Dim Cs, Ds, i, k As Integer 'counters for number of Cs and Ds, and 
index 
        Dim Random1, Random2 As Decimal 
        Random1 = Rnd() 
        Random2 = Rnd() 
 
        If ActionSelection = "Biased Exploration" Then 
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            For i = 1 To MatchSet.Count - 1 
                If DirectCast(MatchSet(i), Classifier).Action = "C" Or _ 
                    DirectCast(MatchSet(i), Classifier).Action = "0" Then 
                    Cs += 1 
                Else 
                    Ds += 1 
                End If 
            Next 
 
            If Random1 < ProbXPlor And Cs > 0 _ 
                And Ds > 0 Then 
                Exploit = False 
                If Explain Then 
                    MsgBox("Exploring ...") 
                End If 
                If Random2 < 0.5 Then 
                    If Problem = "IPD" Then 
                        SelectAction = "C" 
                    Else 
                        SelectAction = "0" 
                    End If 
                Else 
                    If Problem = "IPD" Then 
                        SelectAction = "D" 
                    Else 
                        SelectAction = "1" 
                    End If 
                End If 
                If Explain Then 
                    MsgBox("'Explored' and chose action " & SelectAction) 
                End If 
 
            ElseIf Cs > 0 And Ds > 0 Then 
                Exploit = True 
                If PredictionArray(1) = PredictionArray(2) Then 
                    If Rnd() < 0.5 Then 
                        If Problem = "IPD" Then 
                            SelectAction = "C" 
                        Else 
                            SelectAction = "0" 
                        End If 
                    Else 
                        If Problem = "IPD" Then 
                            SelectAction = "D" 
                        Else 
                            SelectAction = "1" 
                        End If 
                    End If 
                ElseIf PredictionArray(1) > PredictionArray(2) Then 
                    If Problem = "IPD" Then 
                        SelectAction = "C" 
                    Else 
                        SelectAction = "0" 
                    End If 
                Else 
                    If Problem = "IPD" Then 
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                        SelectAction = "D" 
                    Else 
                        SelectAction = "1" 
                    End If 
                End If 
                If Explain Then 
                    MsgBox("'Exploited' and chose 'best' action " & 
SelectAction) 
                End If 
            Else 
                Exploit = True 
                If Cs > 0 Then 
                    If Problem = "IPD" Then 
                        SelectAction = "C" 
                    Else 
                        SelectAction = "0" 
                    End If 
                Else 
                    If Problem = "IPD" Then 
                        SelectAction = "D" 
                    Else 
                        SelectAction = "1" 
                    End If 
                End If 
            End If 
 
            If ClassifierUpdates = "Firing Classifier" Then 
 
                'determine firing classifier by selecting matching classifier 
with 
                'smallest number of #s. If tie, select classifier with higher 
fitness. 
                'If tie between fitness, select randomly 
                Dim LowestClassifierPounds, ClassifierPounds, j As Integer 
                LowestClassifierPounds = 1000 
                For i = 1 To MatchSet.Count - 1 
                    ClassifierPounds = 0 
                    If DirectCast(MatchSet(i), Classifier).Action = 
SelectAction Then 
                        For j = 1 To UBound(DirectCast(MatchSet(i), 
Classifier).Condition) 
                            If DirectCast(MatchSet(i), 
Classifier).Condition(j) = "#" Then 
                                ClassifierPounds += 1 
                            End If 
                        Next j 
                        If ClassifierPounds < LowestClassifierPounds Then 
                            LowestClassifierPounds = ClassifierPounds 
                            ActualFiringClassifier = i 
                        ElseIf ClassifierPounds = LowestClassifierPounds Then 
                            If DirectCast(MatchSet(i), Classifier).Fitness > 
_ 
                                DirectCast(MatchSet(ActualFiringClassifier), 
Classifier).Fitness Then 
                                ActualFiringClassifier = i 
                            Else 
                                If Rnd() < 0.5 Then 
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                                    ActualFiringClassifier = i 
                                End If 
                            End If 
                        End If 
                    End If 
                Next 
 
                For i = 1 To UBound(Enablers) - 1 
                    Enablers(i) = Enablers(i + 1) 
                Next 
                Enablers(UBound(Enablers)) = 
DirectCast(MatchSet(ActualFiringClassifier), Classifier).UniqueID 
            End If 
            Return SelectAction 
 
        Else 'fitness proportional selection 
            Exploit = True 
            Dim FitnessSum, ChoicePoint As Decimal 
 
            'calculate total fitness 
            For i = 1 To MatchSet.Count - 1 
                FitnessSum += DirectCast(MatchSet(i), Classifier).Fitness 
            Next i 
 
            'calculate choice point 
            ChoicePoint = Rnd() * FitnessSum 
 
            'reset total fitness 
            FitnessSum = 0 
 
            'apply fitness proportional selection 
            For i = 1 To MatchSet.Count - 1 
                FitnessSum += DirectCast(MatchSet(i), Classifier).Fitness 
                If FitnessSum > ChoicePoint Then 
                    ActualFiringClassifier = i 
                    For k = 1 To UBound(Enablers) - 1 
                        Enablers(k) = Enablers(k + 1) 
                    Next 
                    Enablers(UBound(Enablers)) = _ 
                        DirectCast(MatchSet(ActualFiringClassifier), 
Classifier).UniqueID 
                    Return DirectCast(MatchSet(i), Classifier).Action 
                End If 
            Next i 
        End If 
 
    End Function 
 
    Public Function GenerateActionSet(ByVal Action As Char) As Boolean 
 
        ActionSet.Clear() 
        ActionSet.Add(Nothing) 
 
        If ClassifierUpdates = "Firing Classifier" Then 
            ActionSet.Add(MatchSet(ActualFiringClassifier)) 
        Else 
            Dim i, j As Integer 
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            Dim Message As String = "[A] = " 
            For i = 1 To MatchSet.Count - 1 
                If DirectCast(MatchSet(i), Classifier).Action = Action Then 
                    If SaveDetail = "All" Then 
                        Message &= DirectCast(MatchSet(i), Classifier).Number 
& " " 
                    End If 
                    ActionSet.Add(MatchSet(i)) 
                End If 
            Next 
            If SaveDetail = "All" Then 
                DetailedSW.WriteLine(Message) 
            End If 
 
            GenerateActionSet = True 
        End If 
 
    End Function 
 
    Public Function UpdateP(ByVal PredictionArray() As Decimal, _ 
        ByVal Reward() As Integer, ByVal Generation As Integer, _ 
        ByVal Gamma As Decimal) As Decimal 
 
        Dim MaxPA As Decimal 'highest prediction in PredictionArray 
        If Explain Then 
            MsgBox("C prediction: " & PredictionArray(1) & vbCrLf & "D 
prediction: " & _ 
            PredictionArray(2), , "Prediction Array") 
        End If 
 
        If PredictionArray(1) > PredictionArray(2) Then 
            MaxPA = PredictionArray(1) 
        Else 
            MaxPA = PredictionArray(2) 
        End If 
        If Explain Then 
            MsgBox("Max prediction array value = " & MaxPA) 
        End If 
        'UpdateP = Reward(Generation - 1) + Gamma * MaxPA 'this is the 
UpdateP value when using multiple time steps 
        UpdateP = Reward(Generation - 1) 'this is the UpdateP with one step 
problems 
        'MsgBox("Previous reward = " & Reward(Generation - 1)) 
        'MsgBox("Update P = " & UpdateP) 
    End Function 
 
    Public Function PlayGame(ByVal Action As Char, ByVal Reward1 As Integer, 
_ 
        ByVal Reward2 As Integer, ByVal Reward3 As Integer, _ 
        ByVal Reward4 As Integer, ByVal Opponent As String) As Integer 
 
        Dim i As Integer 
        If Problem = "IPD" Then 
            Select Case Opponent ' Evaluate Opponent 
                Case "DDD"   ' Opponent always defects 
                    CurrentEncounter.OpponentAction = "D" 
                    If Action = "C" Then 
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                        CurrentEncounter.OpponentReward = Reward1 
                        CurrentEncounter.AgentReward = Reward4 
                        CurrentEncounter.Correct = False 
                    Else 
                        CurrentEncounter.OpponentReward = Reward3 
                        CurrentEncounter.AgentReward = Reward3 
                        CurrentEncounter.Correct = True 
                    End If 
                    PlayGame = CurrentEncounter.AgentReward 
                Case "CCC"   ' Opponent always cooperates 
                    CurrentEncounter.OpponentAction = "C" 
                    If Action = "C" Then 
                        CurrentEncounter.OpponentReward = Reward2 
                        CurrentEncounter.AgentReward = Reward2 
                        CurrentEncounter.Correct = True 
                    Else 
                        CurrentEncounter.OpponentReward = Reward4 
                        CurrentEncounter.AgentReward = Reward1 
                        CurrentEncounter.Correct = False 
                    End If 
                    PlayGame = CurrentEncounter.AgentReward + 
CurrentEncounter.OpponentReward 
                Case "RAND"   ' Opponent is random 
                    If Rnd() < 0.5 Then 
                        CurrentEncounter.OpponentAction = "C" 
                        If Action = "C" Then 
                            CurrentEncounter.OpponentReward = Reward2 
                            CurrentEncounter.AgentReward = Reward2 
                            CurrentEncounter.Correct = False 
                        Else 
                            CurrentEncounter.OpponentReward = Reward4 
                            CurrentEncounter.AgentReward = Reward1 
                            CurrentEncounter.Correct = True 
                        End If 
 
                    Else 
                        CurrentEncounter.OpponentAction = "D" 
                        If Action = "C" Then 
                            CurrentEncounter.OpponentReward = Reward1 
                            CurrentEncounter.AgentReward = Reward4 
                            CurrentEncounter.Correct = False 
                        Else 
                            CurrentEncounter.OpponentReward = Reward3 
                            CurrentEncounter.AgentReward = Reward3 
                            CurrentEncounter.Correct = True 
                        End If 
 
                    End If 
                    PlayGame = CurrentEncounter.AgentReward 
                Case "TFT" ' Opponent is Tit-for-Tat 
                    CurrentEncounter.OpponentAction = 
Environment(UBound(Environment) - 1) 
                    If CurrentEncounter.OpponentAction = "C" Then 
                        If Action = "C" Then 
                            CurrentEncounter.OpponentReward = Reward2 
                            CurrentEncounter.AgentReward = Reward2 
                            CurrentEncounter.Correct = True 
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                        Else 
                            CurrentEncounter.OpponentReward = Reward4 
                            CurrentEncounter.AgentReward = Reward1 
                            CurrentEncounter.Correct = False 
                        End If 
                    Else 
                        If Action = "C" Then 
                            CurrentEncounter.OpponentReward = Reward1 
                            CurrentEncounter.AgentReward = Reward4 
                            CurrentEncounter.Correct = True 
                        Else 
                            CurrentEncounter.OpponentReward = Reward3 
                            CurrentEncounter.AgentReward = Reward3 
                            CurrentEncounter.Correct = False 
                        End If 
 
                    End If 
                    PlayGame = CurrentEncounter.AgentReward + 
CurrentEncounter.OpponentReward 
                Case "TFTT" ' Opponent is Tit-for-Two-Tat 
                    If Environment(UBound(Environment) - 1) = "D" And _ 
                        Environment(UBound(Environment) - 3) = "D" Then 
                        CurrentEncounter.OpponentAction = "D" 
                    Else 
                        CurrentEncounter.OpponentAction = "C" 
                    End If 
 
                    If CurrentEncounter.OpponentAction = "C" Then 
                        If Action = "C" Then 
                            CurrentEncounter.OpponentReward = Reward2 
                            CurrentEncounter.AgentReward = Reward2 
                            CurrentEncounter.Correct = True 
                        Else 
                            CurrentEncounter.OpponentReward = Reward4 
                            CurrentEncounter.AgentReward = Reward1 
                            CurrentEncounter.Correct = False 
                        End If 
                    Else 
                        If Action = "C" Then 
                            CurrentEncounter.OpponentReward = Reward1 
                            CurrentEncounter.AgentReward = Reward4 
                            CurrentEncounter.Correct = True 
                        Else 
                            CurrentEncounter.OpponentReward = Reward3 
                            CurrentEncounter.AgentReward = Reward3 
                            CurrentEncounter.Correct = False 
                        End If 
 
                    End If 
                    PlayGame = CurrentEncounter.AgentReward + 
CurrentEncounter.OpponentReward 
                Case "TTFT" ' Opponent is Tit-for-Two-Tat 
                    If Environment(UBound(Environment) - 1) = "D" Or _ 
                        Environment(UBound(Environment) - 3) = "D" Then 
                        CurrentEncounter.OpponentAction = "D" 
                    Else 
                        CurrentEncounter.OpponentAction = "C" 
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                    End If 
 
                    If CurrentEncounter.OpponentAction = "C" Then 
                        If Action = "C" Then 
                            CurrentEncounter.OpponentReward = Reward2 
                            CurrentEncounter.AgentReward = Reward2 
                            CurrentEncounter.Correct = True 
                        Else 
                            CurrentEncounter.OpponentReward = Reward4 
                            CurrentEncounter.AgentReward = Reward1 
                            CurrentEncounter.Correct = False 
                        End If 
                    Else 
                        If Action = "C" Then 
                            CurrentEncounter.OpponentReward = Reward1 
                            CurrentEncounter.AgentReward = Reward4 
                            CurrentEncounter.Correct = True 
                        Else 
                            CurrentEncounter.OpponentReward = Reward3 
                            CurrentEncounter.AgentReward = Reward3 
                            CurrentEncounter.Correct = False 
                        End If 
 
                    End If 
                    PlayGame = CurrentEncounter.AgentReward + 
CurrentEncounter.OpponentReward 
                Case Else   ' Other values. 
                    MsgBox("Opponent not recognized") 
            End Select 
 
            'OpponentAction = InputBox("XCS's action is " & Action & _ 
            '"; please enter Opp's choice: (C or D)", "Enter Opponent 
Action", "C") 
 
            'PlayGame = CurrentEncounter.AgentReward 
 
            For i = 1 To UBound(Environment) - 2 Step 2 
                Environment(i) = Environment(i + 2) 
                Environment(i + 1) = Environment(i + 3) 
            Next 
            Environment(UBound(Environment) - 1) = Action 
            Environment(UBound(Environment)) = 
CurrentEncounter.OpponentAction 
        Else 
            Dim MUXString(UBound(Environment)) As Integer 
            Dim AgentIntegerAction As Integer 
 
            For i = 1 To UBound(Environment) 
                If Environment(i) = "0" Then 
                    MUXString(i) = 0 
                ElseIf Environment(i) = "1" Then 
                    MUXString(i) = 1 
                Else 
                    MsgBox("There is a # in the environment's condition!") 
                End If 
            Next 
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            If CurrentEncounter.AgentAction = "0" Then 
                AgentIntegerAction = 0 
            ElseIf CurrentEncounter.AgentAction = "1" Then 
                AgentIntegerAction = 1 
            Else 
                MsgBox("There is a # in the action!") 
            End If 
 
 
            If GraduatedRewards Then 
 
                'put graduated rewards here 
                Select Case MUXString(1) 
                    Case 0 
                        Select Case MUXString(2) 
                            Case 0 
                                If (Not MUXString(1) And Not MUXString(2) And 
MUXString(3)) _ 
                                    Or (Not MUXString(1) And MUXString(2) And 
MUXString(4)) _ 
                                    Or (MUXString(1) And Not MUXString(2) And 
MUXString(5)) _ 
                                    Or (MUXString(1) And MUXString(2) And 
MUXString(6)) = AgentIntegerAction Then 
                                    'correct for 00 
 
                                    CurrentEncounter.AgentReward = 300 
                                    CurrentEncounter.Correct = True 
                                Else 
                                    'incorrect for 00 
                                    CurrentEncounter.AgentReward = 0 
                                    CurrentEncounter.Correct = False 
                                End If 
 
                            Case 1 
                                If (Not MUXString(1) And Not MUXString(2) And 
MUXString(3)) _ 
                                    Or (Not MUXString(1) And MUXString(2) And 
MUXString(4)) _ 
                                    Or (MUXString(1) And Not MUXString(2) And 
MUXString(5)) _ 
                                    Or (MUXString(1) And MUXString(2) And 
MUXString(6)) = AgentIntegerAction Then 
                                    'correct for 01 
                                    CurrentEncounter.AgentReward = 400 
                                    CurrentEncounter.Correct = True 
                                Else 
                                    'incorrect for 01 
                                    CurrentEncounter.AgentReward = 100 
                                    CurrentEncounter.Correct = False 
                                End If 
                        End Select 
                    Case 1 
                        Select Case MUXString(2) 
                            Case 0 
                                If (Not MUXString(1) And Not MUXString(2) And 
MUXString(3)) _ 
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                                    Or (Not MUXString(1) And MUXString(2) And 
MUXString(4)) _ 
                                    Or (MUXString(1) And Not MUXString(2) And 
MUXString(5)) _ 
                                    Or (MUXString(1) And MUXString(2) And 
MUXString(6)) = AgentIntegerAction Then 
                                    'correct for 10 
                                    CurrentEncounter.AgentReward = 500 
                                    CurrentEncounter.Correct = True 
                                Else 
                                    'incorrect for 10 
                                    CurrentEncounter.AgentReward = 200 
                                    CurrentEncounter.Correct = False 
                                End If 
 
                            Case 1 
                                If (Not MUXString(1) And Not MUXString(2) And 
MUXString(3)) _ 
                                    Or (Not MUXString(1) And MUXString(2) And 
MUXString(4)) _ 
                                    Or (MUXString(1) And Not MUXString(2) And 
MUXString(5)) _ 
                                    Or (MUXString(1) And MUXString(2) And 
MUXString(6)) = AgentIntegerAction Then 
                                    'correct for 11 
                                    CurrentEncounter.AgentReward = 1000 
                                    CurrentEncounter.Correct = True 
                                Else 
                                    'incorrect for 11 
                                    CurrentEncounter.AgentReward = 900 
                                    CurrentEncounter.Correct = False 
                                End If 
                        End Select 
 
                End Select 
            Else 
                If (Not MUXString(1) And Not MUXString(2) And MUXString(3)) _ 
                Or (Not MUXString(1) And MUXString(2) And MUXString(4)) _ 
                Or (MUXString(1) And Not MUXString(2) And MUXString(5)) _ 
                Or (MUXString(1) And MUXString(2) And MUXString(6)) = 
AgentIntegerAction Then 
                    CurrentEncounter.AgentReward = 1000 
                    CurrentEncounter.Correct = True 
                Else 
                    CurrentEncounter.AgentReward = 0 
                    CurrentEncounter.Correct = False 
                End If 
 
            End If 
 
 
        End If 
        'moved the following line to agent/opponent specific combinations on 
14 Jul 04 
        'PlayGame = CurrentEncounter.AgentReward 
        If Explain Then 
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            MsgBox("Agent played " & CurrentEncounter.AgentAction & "; " & 
Opponent & " played " & _ 
                CurrentEncounter.OpponentAction & vbCrLf & "Reward to agent 
was " & PlayGame) 
        End If 
 
    End Function 
 
    Public Function UpdateSet(ByVal P As Decimal, ByVal Beta As Decimal, _ 
        ByVal Epsilon0 As Decimal, ByVal Alpha As Decimal, ByVal Nu As 
Integer, _ 
        ByVal DoASSubsumption As Boolean, ByVal ThetaSub As Integer, _ 
        ByVal ClassifierFitness As String) As Boolean 
 
        Dim i, j, TempActionSetSize As Integer 'counters 
        Dim TempClassifier As Classifier 'temporary classifier to hold 
updates 
 
        For j = 1 To ActionSet.Count - 1 
            TempActionSetSize += DirectCast(ActionSet(j), 
Classifier).Numerosity 
        Next 
 
        For i = 1 To ActionSet.Count - 1 
            TempClassifier = DirectCast(ActionSet(i), Classifier) 
            TempClassifier.Experience += 1 
 
            If TempClassifier.Experience < (1 / Beta) Then 
                TempClassifier.Prediction = TempClassifier.Prediction + _ 
                    ((P - TempClassifier.Prediction) / 
TempClassifier.Experience) 
                TempClassifier.PredictionError = 
TempClassifier.PredictionError + _ 
                    (Abs(P - TempClassifier.Prediction) - _ 
                    TempClassifier.PredictionError) / 
TempClassifier.Experience 
                TempClassifier.ActionSetSize = TempClassifier.ActionSetSize + 
_ 
                    (TempActionSetSize - TempClassifier.ActionSetSize) / 
TempClassifier.Experience 
            Else 
                TempClassifier.Prediction = TempClassifier.Prediction + _ 
                    Beta * (P - TempClassifier.Prediction) 
                TempClassifier.PredictionError = 
TempClassifier.PredictionError + _ 
                    Beta * (Abs(P - TempClassifier.Prediction) - _ 
                    TempClassifier.PredictionError) 
                TempClassifier.ActionSetSize = TempClassifier.ActionSetSize + 
_ 
                    Beta * (TempActionSetSize - TempClassifier.ActionSetSize) 
            End If 
            ActionSet(i) = TempClassifier 
        Next i 
 
        UpdateFitness(Epsilon0, Alpha, Nu, Beta, P, ClassifierFitness) 
 
        'recreate Action Set if only updating firing classifier 
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        If ClassifierUpdates = "Firing Classifier" Then 
            GenerateActionSet(CurrentEncounter.AgentAction) 
        End If 
 
        If DoASSubsumption Then 
            If ActionSet.Count > 2 Then 
                ActionSetSubsumption(ThetaSub, Epsilon0) 
            End If 
        End If 
        UpdateSet = True 
    End Function 
 
    Public Function ActionSetSubsumption(ByVal ThetaSub As Integer, _ 
       ByVal Epsilon0 As Decimal) As Boolean 
 
        Dim CL, C As Classifier 
        Dim i, j, k, CLPounds, CPounds, SubsumerNumber As Integer 
 
        If Explain Then 
            MsgBox("Performing Action Set subsumption ...") 
        End If 
 
        For i = 1 To ActionSet.Count - 1 
            CLPounds = 0 
            CPounds = 0 
            C = DirectCast(ActionSet(i), Classifier) 
 
            If CouldSubsume(C, ThetaSub, Epsilon0) Then 
                If Explain Then 
                    MsgBox("Action set (" & i & ") can subsume") 
                    'OutputArrayofClassifierstoScreen("Action Set Reminder", 
ActionSet) 
                End If 
                For j = 1 To UBound(C.Condition) 
                    If CL.Condition <> Nothing Then 
                        If CL.Condition(j) = "#" Then 
                            CLPounds += 1 
                        End If 
                    End If 
                    If C.Condition(j) = "#" Then 
                        CPounds += 1 
                    End If 
                Next j 
 
                If (CL.Condition Is Nothing Or _ 
                    CPounds > CLPounds) Or _ 
                    (CPounds = CLPounds And _ 
                    Rnd() < 0.5) Then 
                    CL = C 
                    SubsumerNumber = CL.Number 
                End If 
 
            End If 
        Next i 
 
        If CL.Condition <> Nothing Then 
            For i = ActionSet.Count - 1 To 1 Step -1 'To ActionSet.Count - 1 
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                If IsMoreGeneral(CL, ActionSet(i)) Then 
                    'If Generation Mod 25 = 0 Then 
                    '    MsgBox("here") 
                    'End If 
                    CL.Numerosity += DirectCast(ActionSet(i), 
Classifier).Numerosity 'increase numerosity by subsumed classifer's 
numerosity 
                    If Explain Then 
                        OutputArrayofClassifierstoScreen("Action Set before " 
& CL.Number & " subsumes " & _ 
                            DirectCast(ActionSet(i), Classifier).Number, 
ActionSet) 
                    End If 
 
                    For k = 1 To Population.Count - 1 
                        If DirectCast(Population(k), Classifier).Number = 
SubsumerNumber Then 
                            Population(k) = CL 
                        End If 
 
                    Next k 
 
                    Population.RemoveAt(DirectCast(ActionSet(i), 
Classifier).Number) 
                    For k = 1 To ActionSet.Count - 1 
                        If DirectCast(ActionSet(k), Classifier).Number = 
SubsumerNumber Then 
                            ActionSet(k) = CL 
                        End If 
                    Next k 
                    ActionSet.RemoveAt(i) 
                    If Explain Then 
                        OutputArrayofClassifierstoScreen("Action Set after 
subsumption", ActionSet) 
                    End If 
                End If 
 
            Next i 
        Else 
            If Explain Then 
                MsgBox("No action set classifiers 'Could Subsume'") 
            End If 
        End If 
 
    End Function 
 
 
    Public Function UpdateFitness(ByVal Epsilon0 As Decimal, ByVal Alpha As 
Decimal, _ 
        ByVal Nu As Integer, ByVal Beta As Decimal, ByVal P As Decimal, ByVal 
ClassifierFitness As String) As Boolean 
 
        Dim i, j As Integer 
        Dim TempClassifier As Classifier 
 
        Dim ScoreVector(ActionSet.Count - 1) As Decimal 
        Dim ScoreSum As Decimal 
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        If ClassifierFitness = "Prediction Accuracy" Then 'prediction 
accuracy 
            For i = 1 To ActionSet.Count - 1 
                TempClassifier = DirectCast(ActionSet(i), Classifier) 
                If TempClassifier.PredictionError < Epsilon0 Then 
                    ScoreVector(i) = 1 
                Else 
                    ScoreVector(i) = Alpha * ((TempClassifier.PredictionError 
/ _ 
                        Epsilon0) ^ -Nu) 
                End If 
                ScoreSum += ScoreVector(i) * TempClassifier.Numerosity 
            Next i 
 
            For i = 1 To ActionSet.Count - 1 
                TempClassifier = DirectCast(ActionSet(i), Classifier) 
                TempClassifier.Fitness = TempClassifier.Fitness + Beta * 
(ScoreVector(i) * TempClassifier.Numerosity / ScoreSum - 
TempClassifier.Fitness) 
                ActionSet(i) = TempClassifier 
            Next i 
 
            For i = 1 To ActionSet.Count - 1 
                For j = 1 To Population.Count - 1 
                    If DirectCast(ActionSet(i), Classifier).UniqueID = _ 
                        DirectCast(Population(j), Classifier).UniqueID Then 
                        Population(j) = CloneObject(ActionSet(i)) 
                    End If 
                Next j 
            Next i 
        Else 'prediction magnitude = bucket brigade 
 
            For i = 1 To ActionSet.Count - 1 
                TempClassifier = DirectCast(ActionSet(i), Classifier) 
                TempClassifier.Fitness = P / (UBound(Enablers) + 1) + _ 
                    (1 - Beta) * TempClassifier.Fitness 
                ActionSet(i) = TempClassifier 
                For j = 1 To Population.Count - 1 
                    If DirectCast(ActionSet(i), Classifier).UniqueID = _ 
                        DirectCast(Population(j), Classifier).UniqueID Then 
                        Population(j) = CloneObject(ActionSet(i)) 
                    End If 
                Next j 
            Next i 
 
            For i = 1 To Population.Count - 1 
                For j = 1 To UBound(Enablers) 
                    If DirectCast(Population(i), Classifier).UniqueID = 
Enablers(j) Then 
                        TempClassifier = DirectCast(Population(i), 
Classifier) 
                        TempClassifier.Fitness += 
CurrentEncounter.AgentReward / (UBound(Enablers) + 1) 
                        Population(i) = TempClassifier 
                    End If 
                Next 
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            Next 
        End If 
 
        UpdateFitness = True 
    End Function 
 
    Public Function RunGA(ByVal Generation As Integer, ByVal ThetaGA As 
Integer, _ 
    ByVal Chi As Decimal, ByVal Mu As Decimal, ByVal DoGASubsumption As 
Boolean, _ 
    ByVal ThetaSub As Decimal, ByVal Epsilon0 As Decimal, ByVal N As Integer, 
_ 
    ByVal ThetaDel As Integer, ByVal Delta As Decimal, ByVal GAScope As 
String, _ 
    ByVal ClassifierDeletion As String, ByVal ParentSelection As String, _ 
    ByVal PopulationSize As String) As Boolean 
        Dim i, r, DeletedMemberNumber As Integer 
        Dim TempClassifier, Parent1, Parent2, Child1, Child2 As Classifier 
 
        'check to see if time to run a GA 
        If Generation Mod ThetaGA = 0 Then 
 
            If Explain Then 
                MsgBox("Generation " & Generation & " mod ThetaGA of " & 
ThetaGA & " = 0, so time to GA!") 
            End If 
 
            If GAScope <> "Panmictic" Then 
                'MsgBox("Action set has " & ActionSet.Count & " members") 
                'If ActionSet.Count - 1 < 2 Then 
                '    If SaveDetail = "All" Then 
                '        DetailedSW.WriteLine("Action Set has only 1 
classifier, so no GA :(") 
                '    End If 
 
                '    If Explain Then 
                '        MsgBox("Action Set has only 1 classifier, so no GA 
:(") 
                '    End If 
                '    Return True 
                'Else 
                For i = 1 To ActionSet.Count - 1 
                    TempClassifier = DirectCast(ActionSet(i), Classifier) 
                    TempClassifier.TimeStamp = Date.Now 
                    ActionSet(i) = TempClassifier 
                Next i 
 
                'select parents from Action Set 
                Parent1 = DirectCast(ActionSet(SelectOffspring(ActionSet, 
ParentSelection)), Classifier) 
                Parent2 = DirectCast(ActionSet(SelectOffspring(ActionSet, 
ParentSelection)), Classifier) 
 
                'End If 
            Else 
                'If Population.Count - 1 < 2 Then 
                '    If SaveDetail = "All" Then 
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                '        DetailedSW.WriteLine("Population has only 1 
classifier, so no GA :(") 
                '    End If 
 
                '    If Explain Then 
                '        MsgBox("Population has only 1 classifier, so no GA 
:(") 
                '    End If 
                '    Return True 
                'Else 
 
                For i = 1 To Population.Count - 1 
                    TempClassifier = DirectCast(Population(i), Classifier) 
                    TempClassifier.TimeStamp = Date.Now 
                    Population(i) = TempClassifier 
                Next i 
 
                'select parents from Population 
                Parent1 = DirectCast(Population(SelectOffspring(Population, 
ParentSelection)), Classifier) 
                Parent2 = DirectCast(Population(SelectOffspring(Population, 
ParentSelection)), Classifier) 
                'End If 
            End If 
            'clone parents as children 
            Child1 = CloneObject(Parent1) 
            Child2 = CloneObject(Parent2) 
 
            'change child parameters 
            Child1.Numerosity = 1 
            Child2.Numerosity = 1 
            Child1.Experience = 0 
            Child2.Experience = 0 
 
            'check whether to apply Crossover 
            If (Rnd() < Chi And Not ExactMatch(Child1, Child2)) Then 
                If Explain Then 
                    MsgBox("Doing crossover ...") 
                End If 
 
                'crossover the two children 
                ApplyCrossover(Child1, Child2) 
 
                'update new child parameters 
                Child1.Prediction = (Parent1.Prediction + Parent2.Prediction) 
/ 2 
                Child1.PredictionError = (Parent1.PredictionError + 
Parent2.PredictionError) / 2 
                Child1.Fitness = (Parent1.Fitness + Parent2.Fitness) / 2 
                Child2.Prediction = Child1.Prediction 
                Child2.PredictionError = Child1.PredictionError 
                Child2.Fitness = Child1.Fitness 
                'If Explain Then 
                '    OutputClassifiertoScreen(Child1, "Child #1 after 
parameter averaging") 
                '    OutputClassifiertoScreen(Child2, "Child #2 after 
parameter averaging") 
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                'End If 
            Else 
                If SaveDetail = "All" Then 
                    DetailedSW.WriteLine("No crossover ...") 
                End If 
 
                If Explain Then 
                    MsgBox("No crossover ...") 
                End If 
            End If 
 
            'decrease child fitness 
            Child1.Fitness = Child1.Fitness * 0.1 
            Child2.Fitness = Child2.Fitness * 0.1 
 
            'apply mutation on child 1 
            Child1 = ApplyMutation(CloneObject(Child1), Mu) 
 
            'do GA subsumption if specified 
            If DoGASubsumption Then 
                If DoesSubsume(Parent1, Child1, ThetaSub, Epsilon0) Then 
 
                    If Explain Then 
                        MsgBox("Child 1 subsumed by Parent 1 in RunGA") 
                        OutputClassifiertoScreen(Child1, "Child 1 to be 
subsumed by Parent 1") 
                        OutputClassifiertoScreen(Parent1, "Parent 1 subsuming 
Child 1") 
                        OutputArrayofClassifierstoScreen("Population before 
subsuming Child 1", Population) 
                    End If 
                    Parent1.Numerosity += 1 
                    'maybe ... 
                    'Population(Parent1.Number) = CloneObject(Parent1) 
 
                    '<><><><><><><><><><><><> 
                    For r = 1 To Population.Count - 1 
                        If DirectCast(Population(r), Classifier).UniqueID = 
Parent1.UniqueID Then 
 
                            Population(r) = CloneObject(Parent1) 
                        End If 
                    Next r 
                    '<><><><><><><><><><><><> 
                    If Explain Then 
                        OutputClassifiertoScreen(Parent1, "Parent 1 after 
subsuming Child 1") 
                        OutputArrayofClassifierstoScreen("Population after 
subsuming Child 1", Population) 
                    End If 
                ElseIf DoesSubsume(Parent2, Child1, ThetaSub, Epsilon0) Then 
 
                    If Explain Then 
                        MsgBox("Child 1 subsumed by Parent 2 in RunGA") 
                        OutputClassifiertoScreen(Child1, "Child 1 to be 
subsumed by Parent 2") 
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                        OutputClassifiertoScreen(Parent2, "Parent 2 subsuming 
Child 1") 
                        OutputArrayofClassifierstoScreen("Population before 
subsuming Child 1", Population) 
                    End If 
                    Parent2.Numerosity += 1 
 
                    'maybe ... 
                    'Population(Parent2.Number) = CloneObject(Parent2) 
 
                    '<><><><><><><><><><><><> 
                    For r = 1 To Population.Count - 1 
                        If DirectCast(Population(r), Classifier).UniqueID = 
Parent2.UniqueID Then 
 
                            Population(r) = CloneObject(Parent2) 
                        End If 
                    Next r 
                    '<><><><><><><><><><><><> 
                    If Explain Then 
                        OutputClassifiertoScreen(Parent2, "Parent 2 after 
subsuming Child 1") 
                        OutputArrayofClassifierstoScreen("Population after 
subsuming Child 2", Population) 
                    End If 
                Else 
                    If Explain Then 
                        OutputClassifiertoScreen(Child1, "Child 1 not 
subsumed, add to pop") 
                        OutputArrayofClassifierstoScreen("Population before 
adding Child 1", Population) 
                    End If 
                    InsertInPopulation(Child1, PopulationSize) 
                    If Explain Then 
                        OutputArrayofClassifierstoScreen("Population after 
adding Child 1", Population) 
                    End If 
                End If 
            Else 
                InsertInPopulation(Child1, PopulationSize) 
            End If 
 
            DeletedMemberNumber = DeleteFromPopulation(N, ThetaDel, Delta, 
ClassifierDeletion, PopulationSize) 
            Dim warningparent1, warningparent2 As Boolean 
            warningparent1 = False 
            warningparent2 = False 
 
            If DeletedMemberNumber < Parent1.Number Then 
                warningparent1 = True 
                Parent1.Number -= 1 
            End If 
 
            If DeletedMemberNumber < Parent2.Number Then 
                warningparent2 = True 
                Parent2.Number -= 1 
            End If 
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            'apply mutation to child2 
            Child2 = ApplyMutation(CloneObject(Child2), Mu) 
 
            'do GA subsumption if specified 
            If DoGASubsumption Then 
                If DoesSubsume(Parent1, Child2, ThetaSub, Epsilon0) Then 
                    If Explain Then 
                        MsgBox("Child 2 subsumed by Parent 1 in RunGA") 
                        OutputClassifiertoScreen(Child2, "Child 2 to be 
subsumed by Parent 1") 
                        OutputClassifiertoScreen(Parent1, "Parent 1 subsuming 
Child 2") 
                        OutputArrayofClassifierstoScreen("Population before 
subsuming Child 2", Population) 
                    End If 
                    Parent1.Numerosity += 1 
                    'maybe ... 
                    'Population(Parent1.Number) = CloneObject(Parent1) 
 
                    '<><><><><><><><><><><><> 
                    For r = 1 To Population.Count - 1 
                        If DirectCast(Population(r), Classifier).UniqueID = 
Parent1.UniqueID Then 
 
                            Population(r) = CloneObject(Parent1) 
                        End If 
                    Next r 
                    '<><><><><><><><><><><><> 
 
                    If Explain Then 
                        OutputClassifiertoScreen(Parent1, "Parent 1 after 
subsuming Child 2") 
                        OutputArrayofClassifierstoScreen("Population after 
subsuming Child 2", Population) 
                    End If 
                ElseIf DoesSubsume(Parent2, Child2, ThetaSub, Epsilon0) Then 
 
                    If Explain Then 
                        MsgBox("Child 2 subsumed by Parent 2 in RunGA") 
                        OutputClassifiertoScreen(Child2, "Child 2 to be 
subsumed by Parent 2") 
                        OutputClassifiertoScreen(Parent2, "Parent 2 subsuming 
Child 2") 
                        OutputArrayofClassifierstoScreen("Population before 
subsuming Child 2", Population) 
                    End If 
                    Parent2.Numerosity += 1 
                    'maybe ... 
                    'Population(Parent2.Number) = CloneObject(Parent2) 
 
                    '<><><><><><><><><><><><> 
                    For r = 1 To Population.Count - 1 
                        If DirectCast(Population(r), Classifier).UniqueID = 
Parent2.UniqueID Then 
 
                            Population(r) = CloneObject(Parent2) 
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                        End If 
                    Next r 
                    '<><><><><><><><><><><><> 
 
                    If Explain Then 
                        OutputClassifiertoScreen(Parent2, "Parent 2 after 
subsuming Child 2") 
                        OutputArrayofClassifierstoScreen("Population after 
subsuming Child 2", Population) 
                    End If 
                Else 
                    If Explain Then 
                        OutputClassifiertoScreen(Child2, "Child 2 not 
subsumed, add to pop") 
                        OutputArrayofClassifierstoScreen("Population before 
adding Child 2", Population) 
                    End If 
                    InsertInPopulation(Child2, PopulationSize) 
                    If Explain Then 
                        OutputArrayofClassifierstoScreen("Population after 
adding Child 2", Population) 
                    End If 
                End If 
            Else 
                InsertInPopulation(Child2, PopulationSize) 
            End If 
            DeleteFromPopulation(N, ThetaDel, Delta, ClassifierDeletion, 
PopulationSize) 
 
        End If 
        RenumberPopulation() 
        RunGA = True 
    End Function 
 
    Public Function SelectOffspring(ByVal WhichSet As ArrayList, ByVal 
ParentSelection As String) As Integer 
 
        Dim i As Integer 
 
        If ParentSelection = "Fitness Proportional" Then 
            Dim FitnessSum, ChoicePoint As Decimal 
 
            'fitness proportional method 
            'calculate total fitness 
            For i = 1 To WhichSet.Count - 1 
                FitnessSum += DirectCast(WhichSet(i), Classifier).Fitness 
            Next i 
 
            'calculate choice point 
            ChoicePoint = Rnd() * FitnessSum 
 
            'reset total fitness 
            FitnessSum = 0 
 
            'apply fitness proportional selection 
            For i = 1 To WhichSet.Count - 1 
                FitnessSum += DirectCast(WhichSet(i), Classifier).Fitness 
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                If FitnessSum > ChoicePoint Then 
                    Return i 
                End If 
            Next i 
        Else 
            Dim Index1, Index2, WinningIndex As Integer 
            Dim Competitor1, Competitor2 As Classifier 
            Dim WinningFitness As Decimal 
 
            'here's the Tournament Selection method 
            If WhichSet.Count - 1 < 8 Then 
                Index1 = Int((WhichSet.Count - 1) * Rnd() + 1) 
                Index2 = Int((WhichSet.Count - 1) * Rnd() + 1) 
                If DirectCast(WhichSet(Index1), Classifier).Fitness = _ 
                    DirectCast(WhichSet(Index2), Classifier).Fitness Then 
                    If Rnd() < 0.5 Then 
                        Return Index1 
                    Else 
                        Return Index2 
                    End If 
                Else 
                    If DirectCast(WhichSet(Index1), Classifier).Fitness > _ 
                        DirectCast(WhichSet(Index2), Classifier).Fitness Then 
                        Return Index1 
                    Else 
                        Return Index2 
                    End If 
                End If 
            Else 
                Index1 = Int((WhichSet.Count - 1) * Rnd() + 1) 
                WinningIndex = Index1 
                WinningFitness = DirectCast(WhichSet(WinningIndex), 
Classifier).Fitness 
                For i = 2 To Int((WhichSet.Count - 1) * 0.4) Step 1 
                    Index1 = Int((WhichSet.Count - 1) * Rnd() + 1) 
                    If DirectCast(WhichSet(Index1), Classifier).Fitness > 
WinningFitness Then 
                        WinningIndex = Index1 
                        WinningFitness = DirectCast(WhichSet(WinningIndex), 
Classifier).Fitness 
                    End If 
                Next i 
                Return WinningIndex 
            End If 
 
        End If 
    End Function 
 
    Function ApplyMutation(ByVal Victim As Classifier, _ 
    ByVal Mu As Decimal) As Classifier 
 
        Dim i As Integer 
 
        If Explain Then 
            OutputClassifiertoScreen(Victim, "Victim before mutation") 
        End If 
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        'perform bitwise mutation on classifier condition 
        For i = 1 To UBound(Victim.Condition) 
            If Rnd() < Mu Then 
                If Explain Then 
                    MsgBox("Mutating allele #" & i) 
                End If 
                If Victim.Condition(i) = "#" Then 
                    Victim.Condition(i) = Environment(i) 
                Else 
                    Victim.Condition(i) = "#" 
                End If 
            End If 
        Next 
 
        'now, possibly mutate action 
        If Rnd() < Mu Then 
            If Explain Then 
                MsgBox("Mutating action ...") 
            End If 
            If Victim.Action = "C" Or Victim.Action = "0" Then 
                If Problem = "IPD" Then 
                    Victim.Action = "D" 
                Else 
                    Victim.Action = "1" 
                End If 
 
            Else 
                If Problem = "IPD" Then 
                    Victim.Action = "C" 
                Else 
                    Victim.Action = "0" 
                End If 
 
            End If 
        End If 
 
        If Explain Then 
            OutputClassifiertoScreen(Victim, "Victim after mutation") 
        End If 
 
        Return Victim 
 
    End Function 
 
    Public Function DoesSubsume(ByVal Parent As Classifier, ByVal Child As 
Classifier, _ 
    ByVal ThetaSub As Decimal, ByVal Epsilon0 As Decimal) As Boolean 
        If Explain Then 
            MsgBox("Checking 'Does Subsume' for following classifiers ...") 
            OutputClassifiertoScreen(Child, "Potential child") 
            OutputClassifiertoScreen(Parent, "Potential parent") 
        End If 
        If Parent.Action = Child.Action Then 
            'MsgBox("Actions DO match") 
            If CouldSubsume(Parent, ThetaSub, Epsilon0) Then 
                'MsgBox("Parent 'CouldSubsume'") 
                If IsMoreGeneral(Parent, Child) Then 
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                    'MsgBox("Parent 'IsMoreGeneral'") 
                    Return True 
                Else 
                    'MsgBox("Parent NOT 'IsMoreGeneral'") 
                End If 
            Else 
                'MsgBox("Parent Not 'CouldSubsume'") 
 
            End If 
        Else 
            'MsgBox("Actions DON'T match") 
        End If 
        If Explain Then 
            MsgBox("Child not subsumed") 
        End If 
        DoesSubsume = False 
    End Function 
 
    Public Function InsertInPopulation(ByVal Child As Classifier, _ 
        ByVal PopulationSize As String) As Boolean 
        Dim i, j As Integer 
        Dim TempClassifier As Classifier 
        For i = 1 To Population.Count - 1 
 
            If ExactMatch(Child, Population(i)) And _ 
                PopulationSize = "Less than or equal to N" Then 
 
                If Explain Then 
                    MsgBox("Instead of adding child, which exactly matches " 
& vbCr & _ 
                    "existing population member " & i & "," & vbCr & _ 
                    "just update existing classifier's numerosity") 
                End If 
                'OutputClassifiertoScreen(Child, "Child which is exactly 
matched by existing #" & i) 
                'OutputClassifiertoScreen(Population(i), "Existing population 
member " & i ) 
 
                'following code updates numerosity of existing classifier 
                TempClassifier = DirectCast(Population(i), Classifier) 
                TempClassifier.Numerosity += 1 
                Population(i) = TempClassifier 
 
                If SaveDetail = "All" Then 
                    DetailedSW.WriteLine("Increased population member " & i & 
"'s numerosity") 
                End If 
 
                If Explain Then 
                    OutputClassifiertoScreen(Population(i), "Pop member " & i 
& " after updating numerosity") 
                    'OutputArrayofClassifierstoScreen("Population after 
update", Population) 
                End If 
                Return True 
            End If 
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        Next i 
        If Explain Then 
            OutputClassifiertoScreen(Child, "Adding child ...") 
            'OutputArrayofClassifierstoScreen("Population before adding 
child", Population) 
        End If 
        If SaveDetail = "All" Then 
            DetailedSW.WriteLine("Added child to population") 
        End If 
        ClassifiersCreated += 1 
        Child.UniqueID = ClassifiersCreated 
        Population.Add(Child) 
 
    End Function 
 
    Public Function DoesMatch(ByVal ClassifiertoCheck As Classifier, _ 
    ByVal Environment() As Char) As Boolean 
        Dim i As Integer 
        For i = 1 To UBound(ClassifiertoCheck.Condition) 
            If ClassifiertoCheck.Condition(i) <> "#" And _ 
            ClassifiertoCheck.Condition(i) <> Environment(i) Then 
                Return False 
            End If 
        Next 
        DoesMatch = True 'condition matches environment 
    End Function 
 
    Public Function ExactMatch(ByVal FirstClassifiertoCheck As Classifier, _ 
        ByVal SecondClassifiertoCheck As Classifier) As Boolean 
 
        If FirstClassifiertoCheck.Condition <> 
SecondClassifiertoCheck.Condition _ 
            Or FirstClassifiertoCheck.Action <> 
SecondClassifiertoCheck.Action Then 
            Return False 
        End If 
 
        ExactMatch = True 'classifiers match exactly 
    End Function 
 
    Public Function GenerateCoveringClassifier(ByVal InitialPrediction As 
Decimal, _ 
        ByVal InitialPredictionError As Decimal, ByVal InitialFitness As 
Decimal, _ 
        ByVal ThetaDel As Integer, ByVal Delta As Decimal, ByVal 
Environment() As Char, ByVal ProbPound As Decimal, _ 
        ByVal Number As Integer, ByVal ExistingAction As Char) As Classifier 
 
        Dim NewClassifier As Classifier 
        ReDim NewClassifier.Condition(ConditionLength) 
 
        Dim i As Integer 
        ClassifiersCreated += 1 
 
        For i = 1 To UBound(Environment) 
            If Rnd() < ProbPound Then 
                NewClassifier.Condition(i) = "#" 
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            Else 
                NewClassifier.Condition(i) = Environment(i) 
            End If 
        Next 
 
        If ExistingAction = "C" Then 
            NewClassifier.Action = "D" 
        ElseIf ExistingAction = "D" Then 
            NewClassifier.Action = "C" 
        ElseIf ExistingAction = "0" Then 
            NewClassifier.Action = "1" 
        ElseIf ExistingAction = "1" Then 
            NewClassifier.Action = "0" 
        End If 
 
        NewClassifier.UniqueID = ClassifiersCreated 
        NewClassifier.Number = Number 
        NewClassifier.Prediction = InitialPrediction 'initial very low 
prediction 
        NewClassifier.PredictionError = InitialPredictionError 'initial very 
low prediction error 
        NewClassifier.Fitness = InitialFitness 'intial very low fitness 
        NewClassifier.Experience = 0 'no initial experience 
        NewClassifier.TimeStamp = Date.Now 'initial creation time 
        NewClassifier.ActionSetSize = 1 'initial action set size of 1 
        NewClassifier.Numerosity = 1 'initial numerosity of 1 
        If Explain Then 
            MsgBox("Generated new classifier ...") 
            OutputClassifiertoScreen(NewClassifier, "New Classifier Generated 
by Covering") 
        End If 
        Return NewClassifier 
    End Function 
 
    Public Function DeleteFromPopulation(ByVal N As Integer, _ 
        ByVal ThetaDel As Integer, ByVal Delta As Decimal, _ 
        ByVal ClassifierDeletion As String, ByVal PopulationSize As String) 
As Integer 
 
        Dim i, j, MembertoDelete, TotalNumerosity As Integer 
        Dim TotalFitness, AverageFitness, VoteSum, ChoicePoint As Decimal 
        Dim TempClassifier As Classifier 
 
        On Error GoTo ErrorHandler 
 
        If PopulationSize = "Constant size of N" Then 
            TotalNumerosity = Population.Count - 1 
        Else 
            For i = 1 To Population.Count - 1 
                TotalNumerosity += Population(i).Numerosity 
                TotalFitness += Population(i).Fitness 
            Next i 
        End If 
 
        If TotalNumerosity > N Then 
            If Explain Then 
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                MsgBox("Total numerosity = " & TotalNumerosity & ", which 
exceeds N --> must delete") 
            End If 
            AverageFitness = TotalFitness / TotalNumerosity 
            VoteSum = 0.0 
 
            For i = 1 To Population.Count - 1 
                VoteSum += DeletionVote(ThetaDel, Delta, Population(i), 
AverageFitness, ClassifierDeletion) 
            Next i 
 
            ChoicePoint = Rnd() * VoteSum 
 
            VoteSum = 0.0 
            i = 0 
            If ChoicePoint = 0 Then 
                i = 1 
            Else 
                Do While VoteSum < ChoicePoint 
                    i += 1 
                    If i = Population.Count Then 
                        i -= 1 
                        ChoicePoint = 0 
                    Else 
                        VoteSum += DeletionVote(ThetaDel, Delta, 
Population(i), AverageFitness, ClassifierDeletion) 
                    End If 
                Loop 
            End If 
 
            If Explain Then 
                MsgBox("Gonna do something with member " & i) 
                OutputArrayofClassifierstoScreen("Population before 
deletion", Population) 
            End If 
 
            If DirectCast(Population(i), Classifier).Numerosity > 1 Then 
                TempClassifier = DirectCast(Population(i), Classifier) 
                TempClassifier.Numerosity -= 1 
                Population(i) = TempClassifier 
                'Population(i).Numerosity -= 1 
                If SaveDetail = "All" Then 
                    DetailedSW.WriteLine("Decreased population member " & i & 
"'s numerosity by 1") 
                End If 
                If Explain Then 
                    MsgBox("Decreased population member " & i & "'s 
numerosity by 1") 
                End If 
                DeleteFromPopulation = Population.Count 
            Else 
                Population.RemoveAt(i) 
                DeleteFromPopulation = i 
                If SaveDetail = "All" Then 
                    DetailedSW.WriteLine("Deleted population member " & i) 
                End If 
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                If Explain Then 
                    MsgBox("Deleted population member " & i) 
                End If 
            End If 
 
            If Explain Then 
                OutputArrayofClassifierstoScreen("Population after deletion", 
Population) 
            End If 
        Else 
            If SaveDetail = "All" Then 
                DetailedSW.WriteLine("Population numerosity = " & 
TotalNumerosity & ", does not exceed N --> no deletion") 
            End If 
            If Explain Then 
                MsgBox("Population numerosity = " & TotalNumerosity & ", 
which does not exceed N --> no deletion") 
            End If 
        End If 
 
        Exit Function 
 
ErrorHandler: 
        If Err.Number = 6 Then 
            VoteSum = Decimal.MaxValue 
        Else 
            MsgBox("Error # " & Err.Number & ", " & Err.Description & " in 
DeletionVote") 
        End If 
 
        Resume Next 
 
    End Function 
 
    Public Function DeletionVote(ByVal ThetaDel As Integer, ByVal Delta As 
Decimal, _ 
        ByVal Classifier As Classifier, ByVal AverageFitness As Decimal, _ 
        ByVal ClassifierDeletion As String) As Decimal 
 
        On Error GoTo ErrorHandler 
        If ClassifierDeletion = "Fitness Only" Then 
            'deletion vote is inverse of classifier's average fitness 
            DeletionVote = Classifier.Numerosity / Classifier.Fitness 
        Else 
 
            ' Insert code that might generate an error here 
 
            'deletion vote is based on action set size 
            DeletionVote = Classifier.ActionSetSize * Classifier.Numerosity 
 
            'if classifier is sufficiently experienced and fitness 
signficantly below 
            'average fitness, deletion vote is increased 
            If Classifier.Experience > ThetaDel And _ 
                ((Classifier.Fitness / Classifier.Numerosity) < (Delta * 
AverageFitness)) Then 
                DeletionVote = DeletionVote * _ 
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                    AverageFitness / (Classifier.Fitness / 
Classifier.Numerosity) 
            End If 
            Exit Function 
 
ErrorHandler: 
            If Err.Number = 6 Then 
                DeletionVote = Decimal.MaxValue 
            Else 
                MsgBox("Error # " & Err.Number & ", " & Err.Description & " 
in DeletionVote") 
            End If 
 
            Resume Next 
 
        End If 
 
 
    End Function 
 
    Public Function CouldSubsume(ByVal ClassifiertoCheck As Classifier, _ 
    ByVal ThetaSub As Integer, ByVal Epsilon0 As Decimal) As Boolean 
        If ClassifiertoCheck.Experience > ThetaSub Then 
            If ClassifiertoCheck.PredictionError < Epsilon0 Then 
                Return True 
            End If 
        End If 
        Return False 
    End Function 
 
    Public Function IsMoreGeneral(ByVal ClGen As Classifier, _ 
        ByVal ClSpec As Classifier) As Boolean 
        Dim i, ClGenPounds, ClSpecPounds As Integer 
        'If Explain Then 
        '    OutputClassifiertoScreen(ClGen, "Population #" & ClGen.Number) 
        '    OutputClassifiertoScreen(ClSpec, "Population # " & 
ClSpec.Number) 
        'End If 
 
        For i = 1 To UBound(ClGen.Condition) 
            If ClGen.Condition(i) = "#" Then 
                ClGenPounds += 1 
            End If 
            If ClSpec.Condition(i) = "#" Then 
                ClSpecPounds += 1 
            End If 
        Next 
 
        If ClGenPounds <= ClSpecPounds Then 
            'MsgBox("CLGen is not more general than CLSpec") 
            Return False 
        End If 
 
        For i = 1 To UBound(ClGen.Condition) 
            If ClGen.Condition(i) <> "#" And ClGen.Condition(i) <> 
ClSpec.Condition(i) Then 
                'MsgBox("CLGen is not more general than CLSpec") 
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                Return False 
            End If 
        Next i 
        'MsgBox("CLGen IS more general than CLSpec") 
        Return True 
 
    End Function 
 
    Public Function OutputConditiontoScreen(ByVal ConditiontoOutput As Array, 
_ 
    ByVal FormTitle As String) As Boolean 
 
        Dim frmConditionOutputForm As New Form() 
 
        Dim i As Integer 
        Dim message As String 
 
        'set the caption bar text of the form 
        frmConditionOutputForm.Text = FormTitle 
        'define the border style of the form to a dialog box 
        frmConditionOutputForm.FormBorderStyle = FormBorderStyle.FixedDialog 
        'set the MaximizeBox to false to remove the maximize box 
        frmConditionOutputForm.MaximizeBox = False 
        'set the MinimizeBox to false to remove the minimize box 
        frmConditionOutputForm.MinimizeBox = False 
        'set the position of the form to the center of the screen 
        frmConditionOutputForm.StartPosition = FormStartPosition.CenterScreen 
        'set the height of the form 
        frmConditionOutputForm.Height = 200 + UBound(ConditiontoOutput) 
        'set the width of the form 
        frmConditionOutputForm.Width = 300 
        'create an ok button 
        Dim btnOK As New System.Windows.Forms.Button() 
        'set the text of the button to "OK" 
        btnOK.Text = "OK" 
        'set the position of the button on the form 
        btnOK.Location = New 
System.Drawing.Point(frmConditionOutputForm.Width - 100, _ 
            frmConditionOutputForm.Height - 100) 
        'add OK button to form 
        frmConditionOutputForm.Controls.Add(btnOK) 
        'set the cancel button to the OK button 
        frmConditionOutputForm.CancelButton = btnOK 
 
        'output condition 
        Dim lbl As New System.Windows.Forms.Label() 
        message = "Condition = " 
        For i = 1 To UBound(ConditiontoOutput) 'don't diplay array(0), which 
is undefined 
            message &= ConditiontoOutput(i) 
        Next 
        lbl.Text = message 
        lbl.Location = New System.Drawing.Point(10, 20) 
        lbl.Size = New Size(UBound(ConditiontoOutput) * 12 + 100, 18) 
        'add the label to the form 
        frmConditionOutputForm.Controls.Add(lbl) 
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        'display the form 
        frmConditionOutputForm.ShowDialog() 
        OutputConditiontoScreen = True 
 
    End Function 
 
    Public Function OutputClassifiertoScreen(ByVal ClassifiertoOutput As 
Classifier, _ 
    ByVal FormTitle As String) As Boolean 
 
        Dim frmClassifierOutputForm As New Form() 
 
        Dim i, j As Integer 
        Dim message As String 
 
        'set the caption bar text of the form 
        frmClassifierOutputForm.Text = FormTitle 
        'define the border style of the form to a dialog box 
        frmClassifierOutputForm.FormBorderStyle = FormBorderStyle.FixedDialog 
        'set the MaximizeBox to false to remove the maximize box 
        frmClassifierOutputForm.MaximizeBox = False 
        'set the MinimizeBox to false to remove the minimize box 
        frmClassifierOutputForm.MinimizeBox = False 
        'set the position of the form to the center of the screen 
        frmClassifierOutputForm.StartPosition = 
FormStartPosition.CenterScreen 
        'set the height of the form 
        frmClassifierOutputForm.Height = 400 
        'set the width of the form 
        frmClassifierOutputForm.Width = 600 
        'create an ok button 
        Dim btnOK As New System.Windows.Forms.Button() 
        'set the text of the button to "OK" 
        btnOK.Text = "OK" 
        'set the position of the button on the form 
        btnOK.Location = New 
System.Drawing.Point(frmClassifierOutputForm.Width - 100, _ 
            frmClassifierOutputForm.Height - 100) 
        'add OK button to form 
        frmClassifierOutputForm.Controls.Add(btnOK) 
        'set the cancel button to the OK button 
        frmClassifierOutputForm.CancelButton = btnOK 
 
        'classifier number label 
        Dim lblNumber As New System.Windows.Forms.Label() 
        message = ClassifiertoOutput.Number 
        lblNumber.Text = message 
        lblNumber.Location = New System.Drawing.Point(10, 10) 
        lblNumber.Size = New Size(250, 18) 
        frmClassifierOutputForm.Controls.Add(lblNumber) 
 
        'classifier condition label 
        Dim lbl2 As New System.Windows.Forms.Label() 
        message = "Classifier Condition: " 
        For i = 1 To UBound(ClassifiertoOutput.Condition) 'don't diplay 
array(0), which is undefined 
            message &= ClassifiertoOutput.Condition(i) 
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        Next 
        lbl2.Text = message 
        lbl2.Location = New System.Drawing.Point(10, 30) 
        lbl2.Size = New Size(UBound(ClassifiertoOutput.Condition) * 20 + 150, 
18) 
        'add the label to the form 
        frmClassifierOutputForm.Controls.Add(lbl2) 
 
        'classifier action label 
        Dim lbl3 As New System.Windows.Forms.Label() 
        message = "Action: " & ClassifiertoOutput.Action 
        lbl3.Text = message 
        lbl3.Location = New System.Drawing.Point(10, 50) 
        lbl3.Size = New Size(250, 18) 
        frmClassifierOutputForm.Controls.Add(lbl3) 
 
        'classifier prediction label 
        Dim lbl4 As New System.Windows.Forms.Label() 
        message = "Prediction: " & ClassifiertoOutput.Prediction 
        lbl4.Text = message 
        lbl4.Location = New System.Drawing.Point(10, 70) 
        lbl4.Size = New Size(250, 18) 
        frmClassifierOutputForm.Controls.Add(lbl4) 
 
        'classifier prediction error label 
        Dim lbl5 As New System.Windows.Forms.Label() 
        message = "Prediction error: " & ClassifiertoOutput.PredictionError 
        lbl5.Text = message 
        lbl5.Location = New System.Drawing.Point(10, 90) 
        lbl5.Size = New Size(250, 18) 
        frmClassifierOutputForm.Controls.Add(lbl5) 
 
        'classifier fitness label 
        Dim lbl6 As New System.Windows.Forms.Label() 
        message = "Fitness: " & ClassifiertoOutput.Fitness 
        lbl6.Text = message 
        lbl6.Location = New System.Drawing.Point(10, 110) 
        lbl6.Size = New Size(250, 18) 
        frmClassifierOutputForm.Controls.Add(lbl6) 
 
        'classifier experience label 
        Dim lbl7 As New System.Windows.Forms.Label() 
        message = "Experience: " & ClassifiertoOutput.Experience 
        lbl7.Text = message 
        lbl7.Location = New System.Drawing.Point(10, 130) 
        lbl7.Size = New Size(250, 18) 
        frmClassifierOutputForm.Controls.Add(lbl7) 
 
        'classifier time stamp label 
        Dim lbl8 As New System.Windows.Forms.Label() 
        message = "Time stamp: " & ClassifiertoOutput.TimeStamp 
        lbl8.Text = message 
        lbl8.Location = New System.Drawing.Point(10, 150) 
        lbl8.Size = New Size(400, 18) 
        frmClassifierOutputForm.Controls.Add(lbl8) 
 
        'classifier action set size label 
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        Dim lbl9 As New System.Windows.Forms.Label() 
        message = "Action set size: " & 
FormatNumber(ClassifiertoOutput.ActionSetSize, 4) 
        lbl9.Text = message 
        lbl9.Location = New System.Drawing.Point(10, 170) 
        lbl9.Size = New Size(250, 18) 
        frmClassifierOutputForm.Controls.Add(lbl9) 
 
        'classifier numerosity label 
        Dim lbl10 As New System.Windows.Forms.Label() 
        message = "Numerosity: " & ClassifiertoOutput.Numerosity 
        lbl10.Text = message 
        lbl10.Location = New System.Drawing.Point(10, 190) 
        lbl10.Size = New Size(250, 18) 
        frmClassifierOutputForm.Controls.Add(lbl10) 
 
        'display the form 
        frmClassifierOutputForm.ShowDialog() 
        OutputClassifiertoScreen = True 
 
    End Function 
 
    Public Function OutputArrayofClassifierstoScreen(ByVal ScreenTitle As 
String, _ 
        ByVal ArrayofClassifiers As ArrayList) As Boolean 
 
        Dim i, j As Integer 
        Dim message As String 
        Dim frmArrayofClassifiersOutputForm As New Form() 
 
        'set the caption bar text of the form 
        frmArrayofClassifiersOutputForm.Text = ScreenTitle 
        'define the border style of the form to a dialog box 
        frmArrayofClassifiersOutputForm.FormBorderStyle = 
FormBorderStyle.FixedDialog 
        'set the MaximizeBox to false to remove the maximize box 
        frmArrayofClassifiersOutputForm.MaximizeBox = False 
        'set the MinimizeBox to false to remove the minimize box 
        frmArrayofClassifiersOutputForm.MinimizeBox = False 
        'set the position of the form to the center of the screen 
        frmArrayofClassifiersOutputForm.StartPosition = 
FormStartPosition.CenterScreen 
        'set the height of the form 
        frmArrayofClassifiersOutputForm.Height = ArrayofClassifiers.Count * 
16 + 250 
        'set the width of the form 
        frmArrayofClassifiersOutputForm.Width = 515 + 
UBound(ArrayofClassifiers(1).Condition) * 18 
 
        'create an ok button 
        Dim btnOK As New System.Windows.Forms.Button() 
        'set the text of the button to "OK" 
        btnOK.Text = "OK" 
        'set the position of the button on the form 
        btnOK.Location = New 
System.Drawing.Point(frmArrayofClassifiersOutputForm.Width - 90, _ 
            frmArrayofClassifiersOutputForm.Height - 75) 
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        'add OK button to form 
        frmArrayofClassifiersOutputForm.Controls.Add(btnOK) 
        'set the cancel button to the OK button 
        frmArrayofClassifiersOutputForm.CancelButton = btnOK 
        If Not ScreenTitle Like "*Final*" Then 
            Dim btnDontExplain As New System.Windows.Forms.Button() 
            'set the text of the button to "OK" 
            btnDontExplain.Width = 200 
            btnDontExplain.Text = "Stop 'Explaining'" 
 
            'set the position of the button on the form 
            btnDontExplain.Location = New 
System.Drawing.Point(frmArrayofClassifiersOutputForm.Width - 390, _ 
                frmArrayofClassifiersOutputForm.Height - 75) 
            AddHandler btnDontExplain.Click, AddressOf myClickHandler 
            'add 'Don't Explain' button to form 
            frmArrayofClassifiersOutputForm.Controls.Add(btnDontExplain) 
 
        End If 
 
 
        'ArrayofClassifiers title label 
        Dim lblNumber As New System.Windows.Forms.Label() 
        lblNumber.Text = "#" 
        lblNumber.Location = New System.Drawing.Point(9, 20) 
        lblNumber.Size = New Size(25, 20) 
        lblNumber.TextAlign = ContentAlignment.BottomRight 
        lblNumber.Font = New System.Drawing.Font(lblNumber.Font, 
FontStyle.Underline) 
        frmArrayofClassifiersOutputForm.Controls.Add(lblNumber) 
 
        Dim lblCondition As New System.Windows.Forms.Label() 
        lblCondition.Text = "Condition" 
        lblCondition.Location = New System.Drawing.Point(40, 20) 
        lblCondition.Size = New Size(80, 20) 
        lblCondition.TextAlign = ContentAlignment.BottomLeft 
        lblCondition.Font = New System.Drawing.Font(lblCondition.Font, 
FontStyle.Underline) 
        frmArrayofClassifiersOutputForm.Controls.Add(lblCondition) 
 
        Dim lblAction As New System.Windows.Forms.Label() 
        lblAction.Text = "Act" 
        lblAction.Location = New System.Drawing.Point(55 + 
UBound(ArrayofClassifiers(1).Condition) * 9, 20) 
        lblAction.Size = New Size(50, 20) 
        lblAction.TextAlign = ContentAlignment.BottomCenter 
        lblAction.Font = New System.Drawing.Font(lblAction.Font, 
FontStyle.Underline) 
        frmArrayofClassifiersOutputForm.Controls.Add(lblAction) 
 
        Dim lblPrediction As New System.Windows.Forms.Label() 
        lblPrediction.Text = "Pred" 
        lblPrediction.Location = New System.Drawing.Point(101 + 
UBound(ArrayofClassifiers(1).Condition) * 9, 20) 
        lblPrediction.Size = New Size(55, 20) 
        lblPrediction.TextAlign = ContentAlignment.BottomCenter 
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        lblPrediction.Font = New System.Drawing.Font(lblPrediction.Font, 
FontStyle.Underline) 
        frmArrayofClassifiersOutputForm.Controls.Add(lblPrediction) 
 
        Dim lblPredictionError As New System.Windows.Forms.Label() 
        lblPredictionError.Text = "Pred Err" 
        lblPredictionError.Location = New System.Drawing.Point(156 + 
UBound(ArrayofClassifiers(1).Condition) * 9, 20) 
        lblPredictionError.Size = New Size(74, 20) 
        lblPredictionError.TextAlign = ContentAlignment.BottomCenter 
        lblPredictionError.Font = New 
System.Drawing.Font(lblPredictionError.Font, FontStyle.Underline) 
        frmArrayofClassifiersOutputForm.Controls.Add(lblPredictionError) 
 
        Dim lblFitness As New System.Windows.Forms.Label() 
        lblFitness.Text = "Fitness" 
        lblFitness.Location = New System.Drawing.Point(227 + 
UBound(ArrayofClassifiers(1).Condition) * 9, 20) 
        lblFitness.Size = New Size(60, 20) 
        lblFitness.TextAlign = ContentAlignment.BottomCenter 
        lblFitness.Font = New System.Drawing.Font(lblFitness.Font, 
FontStyle.Underline) 
        frmArrayofClassifiersOutputForm.Controls.Add(lblFitness) 
 
        Dim lblExperience As New System.Windows.Forms.Label() 
        lblExperience.Text = "Exp" 
        lblExperience.Location = New System.Drawing.Point(276 + 
UBound(ArrayofClassifiers(1).Condition) * 9, 20) 
        lblExperience.Size = New Size(65, 20) 
        lblExperience.TextAlign = ContentAlignment.BottomCenter 
        lblExperience.Font = New System.Drawing.Font(lblExperience.Font, 
FontStyle.Underline) 
        frmArrayofClassifiersOutputForm.Controls.Add(lblExperience) 
 
        Dim lblTimeStamp As New System.Windows.Forms.Label() 
        lblTimeStamp.Text = "Time Stamp" 
        lblTimeStamp.Location = New System.Drawing.Point(335 + 
UBound(ArrayofClassifiers(1).Condition) * 9, 20) 
        lblTimeStamp.Size = New Size(100, 20) 
        lblTimeStamp.TextAlign = ContentAlignment.BottomCenter 
        lblTimeStamp.Font = New System.Drawing.Font(lblTimeStamp.Font, 
FontStyle.Underline) 
        frmArrayofClassifiersOutputForm.Controls.Add(lblTimeStamp) 
 
        Dim lblActionSetSize As New System.Windows.Forms.Label() 
        lblActionSetSize.Text = "ASS" 
        lblActionSetSize.Location = New System.Drawing.Point(415 + 
UBound(ArrayofClassifiers(1).Condition) * 9, 20) 
        lblActionSetSize.Size = New Size(70, 20) 
        lblActionSetSize.TextAlign = ContentAlignment.MiddleCenter 
        lblActionSetSize.Font = New 
System.Drawing.Font(lblActionSetSize.Font, FontStyle.Underline) 
        frmArrayofClassifiersOutputForm.Controls.Add(lblActionSetSize) 
 
        Dim lblNumerosity As New System.Windows.Forms.Label() 
        lblNumerosity.Text = "Num" 
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        lblNumerosity.Location = New System.Drawing.Point(475 + 
UBound(ArrayofClassifiers(1).Condition) * 9, 20) 
        lblNumerosity.Size = New Size(56, 20) 
        lblNumerosity.TextAlign = ContentAlignment.BottomCenter 
        lblNumerosity.Font = New System.Drawing.Font(lblNumerosity.Font, 
FontStyle.Underline) 
        frmArrayofClassifiersOutputForm.Controls.Add(lblNumerosity) 
 
        'Display ArrayofClassifiers 
        For i = 1 To ArrayofClassifiers.Count - 1 
            Dim lbl1 As New System.Windows.Forms.Label() 
            message = ArrayofClassifiers(i).Number 
            lbl1.TextAlign = ContentAlignment.MiddleRight 
            lbl1.Text = message 
            lbl1.Location = New System.Drawing.Point(5, 25 + 19 * i) 
            'lbl1.AutoSize = True 
            lbl1.Size = New Size(25, 12) 
            'lbl1.Font = New Font("Courier New", 8, FontStyle.Bold, 
GraphicsUnit.Point) 
            frmArrayofClassifiersOutputForm.Controls.Add(lbl1) 
 
            Dim lbl2 As New System.Windows.Forms.Label() 
            message = "" 
            For j = 1 To UBound(ArrayofClassifiers(i).Condition) 
                message &= ArrayofClassifiers(i).Condition(j) 
            Next j 
            lbl2.TextAlign = ContentAlignment.MiddleLeft 
            lbl2.Text = message 
            lbl2.Location = New System.Drawing.Point(40, 25 + 19 * i) 
            lbl2.Size = New Size(j * 11, 12) 
            lbl2.Font = New System.Drawing.Font("Courier New", 9, 
FontStyle.Regular, GraphicsUnit.Point) 
            frmArrayofClassifiersOutputForm.Controls.Add(lbl2) 
 
            Dim lbl3 As New System.Windows.Forms.Label() 
            message = ArrayofClassifiers(i).Action 
            lbl3.Size = New Size(40, 12) 
            lbl3.TextAlign = ContentAlignment.MiddleCenter 
            lbl3.Text = message 
            lbl3.Font = New System.Drawing.Font("Courier New", 9, 
FontStyle.Regular, GraphicsUnit.Point) 
            lbl3.Location = New System.Drawing.Point(63 + 
UBound(ArrayofClassifiers(i).Condition) * 9, 25 + 19 * i) 
            frmArrayofClassifiersOutputForm.Controls.Add(lbl3) 
 
            Dim lbl4 As New System.Windows.Forms.Label() 
            message = Format(ArrayofClassifiers(i).Prediction, "0.0000") 
            lbl4.Size = New Size(55, 12) 
            'lbl4.Font = New Font("Courier New", 8, FontStyle.Bold, 
GraphicsUnit.Point) 
            lbl4.TextAlign = ContentAlignment.MiddleCenter 
            lbl4.Text = message 
            lbl4.Location = New System.Drawing.Point(116 + 
UBound(ArrayofClassifiers(i).Condition) * 7, 25 + 19 * i) 
            frmArrayofClassifiersOutputForm.Controls.Add(lbl4) 
 
            Dim lbl5 As New System.Windows.Forms.Label() 
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            message = Format(ArrayofClassifiers(i).PredictionError, "0.0000") 
            lbl5.Size = New Size(65, 12) 
            lbl5.TextAlign = ContentAlignment.MiddleCenter 
            lbl5.Text = message 
            'lbl5.Font = New Font("Courier New", 8, FontStyle.Bold, 
GraphicsUnit.Point) 
            lbl5.Location = New System.Drawing.Point(170 + 
UBound(ArrayofClassifiers(i).Condition) * 7, 25 + 19 * i) 
            frmArrayofClassifiersOutputForm.Controls.Add(lbl5) 
 
            Dim lbl6 As New System.Windows.Forms.Label() 
            message = Format(ArrayofClassifiers(i).Fitness, "0.0000") 
            lbl6.Size = New Size(50, 12) 
            lbl6.TextAlign = ContentAlignment.MiddleCenter 
            lbl6.Text = message 
            'lbl6.Font = New Font("Courier New", 8, FontStyle.Bold, 
GraphicsUnit.Point) 
            lbl6.Location = New System.Drawing.Point(243 + 
UBound(ArrayofClassifiers(i).Condition) * 7, 25 + 19 * i) 
            frmArrayofClassifiersOutputForm.Controls.Add(lbl6) 
 
            Dim lbl7 As New System.Windows.Forms.Label() 
            message = ArrayofClassifiers(i).Experience 
            lbl7.Size = New Size(65, 12) 
            lbl7.TextAlign = ContentAlignment.MiddleCenter 
            lbl7.Text = message 
            'lbl7.Font = New Font("Courier New", 8, FontStyle.Bold, 
GraphicsUnit.Point) 
            lbl7.Location = New System.Drawing.Point(287 + 
UBound(ArrayofClassifiers(i).Condition) * 7, 25 + 19 * i) 
            frmArrayofClassifiersOutputForm.Controls.Add(lbl7) 
 
            Dim lbl8 As New System.Windows.Forms.Label() 
            message = ArrayofClassifiers(i).TimeStamp.Hour & ":" & _ 
                ArrayofClassifiers(i).TimeStamp.Minute & ":" & 
ArrayofClassifiers(i).TimeStamp.Second '& ":" & 
ArrayofClassifiers(i).TimeStamp.Millisecond 
            lbl8.Size = New Size(100, 12) 
            lbl8.TextAlign = ContentAlignment.MiddleCenter 
            lbl8.Text = message 
            'lbl8.Font = New Font("Courier New", 8, FontStyle.Bold, 
GraphicsUnit.Point) 
            lbl8.Location = New System.Drawing.Point(340 + 
UBound(ArrayofClassifiers(i).Condition) * 7, 25 + 19 * i) 
            frmArrayofClassifiersOutputForm.Controls.Add(lbl8) 
 
            Dim lbl9 As New System.Windows.Forms.Label() 
            message = Format(ArrayofClassifiers(i).ActionSetSize, "0.00") 
            lbl9.Size = New Size(70, 12) 
            lbl9.TextAlign = ContentAlignment.MiddleCenter 
            lbl9.Text = message 
            'lbl9.Font = New Font("Courier New", 8, FontStyle.Bold, 
GraphicsUnit.Point) 
            lbl9.Location = New System.Drawing.Point(425 + 
UBound(ArrayofClassifiers(i).Condition) * 7, 25 + 19 * i) 
            frmArrayofClassifiersOutputForm.Controls.Add(lbl9) 
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            Dim lbl10 As New System.Windows.Forms.Label() 
            message = ArrayofClassifiers(i).Numerosity 
            lbl10.Size = New Size(86, 12) 
            lbl10.TextAlign = ContentAlignment.MiddleCenter 
            lbl10.Text = message 
            'lbl10.Font = New Font("Courier New", 8, FontStyle.Bold, 
GraphicsUnit.Point) 
            lbl10.Location = New System.Drawing.Point(470 + 
UBound(ArrayofClassifiers(i).Condition) * 7, 25 + 19 * i) 
            frmArrayofClassifiersOutputForm.Controls.Add(lbl10) 
 
        Next i 
 
        'display form as modal dialog box 
        frmArrayofClassifiersOutputForm.ShowDialog() 
 
        OutputArrayofClassifierstoScreen = True 
 
    End Function 
 
    Public Function ConcatenateString(ByVal Generation As Integer, _ 
    ByVal Population As ArrayList) As String 
 
        Dim message As String 
        Dim i, j As Integer 
 
        'Create string with population members 
        For i = 1 To Population.Count - 1 
 
            '# 
            message &= Population(i).Number & " " 
 
            'Condition 
            For j = 1 To UBound(Population(i).Condition) 
                message &= Population(i).Condition(j) 
            Next j 
            message &= Chr(13) 
 
 
            ''Action 
            'xlSheet.Cells(Generation + (Generation * Population.Count) + 1 + 
i, 3) = CStr(Population(i).Action) 
 
            ''Prediction 
            'xlSheet.Cells(Generation + (Generation * Population.Count) + 1 + 
i, 4) = Format(Population(i).Prediction, "0.0000") 
 
            ''PredictionError 
            'xlSheet.Cells(Generation + (Generation * Population.Count) + 1 + 
i, 5) = Format(Population(i).PredictionError, "0.0000") 
 
            ''Fitness 
            'xlSheet.Cells(Generation + (Generation * Population.Count) + 1 + 
i, 6) = Format(Population(i).Fitness, "0.0000") 
 
            ''Experience 
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            'xlSheet.Cells(Generation + (Generation * Population.Count) + 1 + 
i, 7) = Population(i).Experience 
 
            ''Time Stamp 
            'xlSheet.Cells(Generation + (Generation * Population.Count) + 1 + 
i, 8) = Population(i).TimeStamp.Hour & ":" & _ 
            '    Population(i).TimeStamp.Minute & ":" & 
Population(i).TimeStamp.Second & _ 
            '    ":" & Population(i).TimeStamp.Millisecond 
 
            ''Action Set Size 
            'xlSheet.Cells(Generation + (Generation * Population.Count) + 1 + 
i, 9) = Format(Population(i).ActionSetSize, "0.00") 
 
            ''Numerosity 
            'xlSheet.Cells(Generation + (Generation * Population.Count) + 1 + 
i, 10) = Population(i).Numerosity 
 
        Next i 
 
        ConcatenateString = message 
    End Function 
 
    Public Function StoreDataInExcel(ByVal Encounters As Boolean, _ 
    ByVal Replications As Integer, _ 
    ByVal N As Integer, ByVal NumberofEncounters As Integer, _ 
    ByVal Freq As Integer, ByVal PseudoRandomness As String, _ 
    ByVal InitialPopulation As String) As Boolean 
 
        Dim xlApp As Excel.Application 
        Dim xlBook, xlBook2 As Excel.Workbook 
        Dim xlSheet As Excel.Worksheet 
        Dim xlRange As Excel.Range 
        Dim xlFileFormat As String 
        Dim xlChart As Excel.Chart 
        Dim xlTrendline As Excel.Trendline 
        Dim xlSeries As Excel.Series 
 
        Dim FileName As String 
        'Dim A2Formula As String = "='Replication 1'!A2" 
        Dim A3Formula As String = "='Replication 1'!A3" 
        Dim B3Formula As String 
 
        Dim File As New FileSystemObject() 
        Dim i As Integer = 0 
        Dim j, k As Integer 
 
        On Error Resume Next 
        'xlApp = CreateObject("Excel.Application") 
        xlApp = GetObject(, "Excel.Application") 
        'On Error GoTo 0 
        If xlApp Is Nothing Then 
            'Excel wasn't open - open a new one 
            xlApp = CreateObject("Excel.Application") 
            xlApp = GetObject("", "Excel.Application") 
        End If 
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        'xlApp = CreateObject("Excel.Application") 
        'xlApp.Visible = True 
        xlApp.DisplayAlerts = False 
 
        xlBook = xlApp.Workbooks.Add() 
        xlBook.Worksheets("Sheet3").Delete() 
        xlBook.Worksheets("Sheet2").Delete() 
        xlSheet = xlBook.Worksheets("Sheet1") 
        If Encounters Then 'this section saves all encounters 
            xlSheet.Name = i 
 
            xlBook.SaveAs(FileName:=FolderName & "Encounters.xls", 
fileformat:=Excel.XlFileFormat.xlWorkbookNormal) 
            For Each FileName In Directory.GetFiles(FolderName, 
"*encounter*.csv") 
                i += 1 
                xlBook2 = xlApp.Workbooks.Open(FolderName & "Encounters, 
Replication " & i) 
                If i = 1 Then 
                    xlBook2.Worksheets.Copy(after:=xlBook.Worksheets("0")) 
                    xlSheet = xlBook.Worksheets("0") 
                    xlSheet.Delete() 
                Else 
                    xlBook2.Worksheets.Copy(After:=xlBook.Worksheets(i - 1)) 
                End If 
                xlBook2.Close() 
                xlSheet = xlBook.Worksheets(i) 
                xlSheet.Name = i 
                xlSheet.Columns("A:AD").AutoFit() 
                xlSheet.Range("B3").Select() 
                xlApp.ActiveWindow.FreezePanes = True 
            Next FileName 
            xlBook.Sheets("1").select() 
            xlBook.SaveAs(FileName:=FolderName & "Encounters.xls", 
fileformat:=Excel.XlFileFormat.xlWorkbookNormal) 
        Else 'this section applies to summary metrics 
            'xlApp.Visible = True 
            xlSheet.Name = "Summary Metrics" 
 
            xlSheet.Range("B1").FormulaR1C1 = "Population" 
            xlSheet.Range("D1").FormulaR1C1 = "Correct %" 
            xlSheet.Range("K1").FormulaR1C1 = "Squared Error" 
            xlSheet.Range("R1").FormulaR1C1 = "Agent Reward" 
            xlSheet.Range("Y1").FormulaR1C1 = "Opponent Reward" 
            xlSheet.Range("AF1").FormulaR1C1 = "Optimal %" 
            xlSheet.Range("B1:C1").MergeCells = True 
            xlSheet.Range("B1:C1").HorizontalAlignment = 3 
            xlSheet.Range("D1:J1").MergeCells = True 
            xlSheet.Range("D1:J1").HorizontalAlignment = 3 
            xlSheet.Range("K1:Q1").MergeCells = True 
            xlSheet.Range("K1:Q1").HorizontalAlignment = 3 
            xlSheet.Range("R1:X1").MergeCells = True 
            xlSheet.Range("R1:X1").HorizontalAlignment = 3 
            xlSheet.Range("Y1:AE1").MergeCells = True 
            xlSheet.Range("Y1:AE1").HorizontalAlignment = 3 
            xlSheet.Range("AF1:AL1").MergeCells = True 
            xlSheet.Range("AF1:AL1").HorizontalAlignment = 3 

 
 

193



 

            xlSheet.Columns("A:AL").AutoFit() 
 
            xlBook.SaveAs(FileName:=FolderName & "\" & _ 
                ExperimentName & ".xls", 
fileformat:=Excel.XlFileFormat.xlWorkbookNormal) 
            For Each FileName In Directory.GetFiles(FolderName, "*.csv") 
                i += 1 
                xlBook2 = xlApp.Workbooks.Open(FolderName & "\" & 
ExperimentName & " Metrics, Replication " & i) 
                If i = 1 Then 
                    xlBook2.Worksheets.Copy(after:=xlBook.Worksheets("Summary 
Metrics")) 
                Else 
                    
xlBook2.Worksheets.Copy(After:=xlBook.Worksheets("Replication " & i - 1)) 
                End If 
                xlBook2.Close() 
 
                'format replication sheets 
                xlSheet = xlBook.Sheets(i + 1) 
                xlSheet.Name = "Replication " & i 
                xlSheet.Range("B1:C1").MergeCells = True 
                xlSheet.Range("B1:C1").HorizontalAlignment = 3 
                xlSheet.Range("D1:J1").MergeCells = True 
                xlSheet.Range("D1:J1").HorizontalAlignment = 3 
                xlSheet.Range("K1:Q1").MergeCells = True 
                xlSheet.Range("K1:Q1").HorizontalAlignment = 3 
                xlSheet.Range("R1:X1").MergeCells = True 
                xlSheet.Range("R1:X1").HorizontalAlignment = 3 
                xlSheet.Range("Y1:AE1").MergeCells = True 
                xlSheet.Range("Y1:AE1").HorizontalAlignment = 3 
                xlSheet.Range("AF1:AL1").MergeCells = True 
                xlSheet.Range("AF1:AL1").HorizontalAlignment = 3 
                xlSheet.Range("B3").Select() 
                xlApp.ActiveWindow.FreezePanes = True 
 
            Next FileName 
 
            'calculate last row with data 
            xlSheet.Range("A2").End(XlDirection.xlDown).Select() 
            k = xlApp.ActiveCell.Row 
            xlSheet.Range("B3").Select() 
            'MsgBox("Last row with data = " & k) 
 
            'average metrics on summary sheet 
            B3Formula = "=AVERAGE('Replication 1:Replication " & i & "'!B3)" 
 
            xlSheet = xlBook.Worksheets("Summary Metrics") 
            xlSheet.Range("A2:AL2").Formula = "='Replication 1'!A2" 
            xlSheet.Range("A3").Formula = A3Formula 
            xlSheet.Range("B3").Formula = B3Formula 
 
            'copy observation number 
            xlSheet.Range("A3").Copy() 
            xlSheet.Range("A3:A" & 
k).PasteSpecial(XlPasteType.xlPasteFormulas) 
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            'copy averaging formulas 
            xlSheet.Range("B3").Copy() 
            xlSheet.Range("B3:AL" & 
k).PasteSpecial(XlPasteType.xlPasteFormulas) 
 
            'calculate relative reward 
            'commented out on 20 Jul 04 b/c not using as performance measure 
            'xlSheet.Range("AF2").FormulaR1C1 = "Relative Reward" 
            'xlSheet.Range("AF3").Formula = "=R3-Y3" 
            'xlSheet.Range("AF3").Copy() 
            'xlSheet.Range("AF3:AF" & 
k).PasteSpecial(XlPasteType.xlPasteFormulas) 
 
            'format output 
            xlSheet.Range("D3:AL" & k).NumberFormat = "0.000" 
            xlSheet.Columns("A:AL").AutoFit() 
 
            xlSheet.Range("B1:C" & 
k).Borders(XlBordersIndex.xlEdgeLeft).LineStyle = 1 
            xlSheet.Range("B1:C" & 
k).Borders(XlBordersIndex.xlEdgeLeft).Weight = 3 
            xlSheet.Range("D1:I" & 
k).Borders(XlBordersIndex.xlEdgeLeft).LineStyle = 1 
            xlSheet.Range("D1:I" & 
k).Borders(XlBordersIndex.xlEdgeLeft).Weight = 3 
            xlSheet.Range("K1:Q" & 
k).Borders(XlBordersIndex.xlEdgeLeft).LineStyle = 1 
            xlSheet.Range("K1:Q" & 
k).Borders(XlBordersIndex.xlEdgeLeft).Weight = 3 
            xlSheet.Range("R1:X" & 
k).Borders(XlBordersIndex.xlEdgeLeft).LineStyle = 1 
            xlSheet.Range("R1:X" & 
k).Borders(XlBordersIndex.xlEdgeLeft).Weight = 3 
            xlSheet.Range("Y1:AE" & 
k).Borders(XlBordersIndex.xlEdgeLeft).LineStyle = 1 
            xlSheet.Range("Y1:AE" & 
k).Borders(XlBordersIndex.xlEdgeLeft).Weight = 3 
            xlSheet.Range("AF1:AL" & 
k).Borders(XlBordersIndex.xlEdgeLeft).LineStyle = 1 
            xlSheet.Range("AF1:AL" & 
k).Borders(XlBordersIndex.xlEdgeLeft).Weight = 3 
 
            With xlSheet.PageSetup 
                .LeftHeader = FileName 
                '.CenterHeader = "&F" 
                .RightHeader = "Page &P of &N" 
                .PrintGridlines = True 
                .PrintTitleRows = "$1:$1" 
                .Orientation = Excel.XlPageOrientation.xlLandscape 
                .Zoom = False 
                .FitToPagesWide = 1 
                .FitToPagesTall = Int(k / 45) + 5 
            End With 
 
            'label and format individual sheets 
            For j = 1 To i 
                xlSheet = xlBook.Worksheets("Replication " & j) 
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                xlSheet.Range("D3:AL" & k).NumberFormat = "0.000" 
                xlSheet.Columns("A:AL").AutoFit() 
                xlSheet.Range("B1:C" & 
k).Borders(XlBordersIndex.xlEdgeLeft).LineStyle = 1 
                xlSheet.Range("B1:C" & 
k).Borders(XlBordersIndex.xlEdgeLeft).Weight = 3 
                xlSheet.Range("D1:I" & 
k).Borders(XlBordersIndex.xlEdgeLeft).LineStyle = 1 
                xlSheet.Range("D1:I" & 
k).Borders(XlBordersIndex.xlEdgeLeft).Weight = 3 
                xlSheet.Range("K1:Q" & 
k).Borders(XlBordersIndex.xlEdgeLeft).LineStyle = 1 
                xlSheet.Range("K1:Q" & 
k).Borders(XlBordersIndex.xlEdgeLeft).Weight = 3 
                xlSheet.Range("R1:X" & 
k).Borders(XlBordersIndex.xlEdgeLeft).LineStyle = 1 
                xlSheet.Range("R1:X" & 
k).Borders(XlBordersIndex.xlEdgeLeft).Weight = 3 
                xlSheet.Range("Y1:AE" & 
k).Borders(XlBordersIndex.xlEdgeLeft).LineStyle = 1 
                xlSheet.Range("Y1:AE" & 
k).Borders(XlBordersIndex.xlEdgeLeft).Weight = 3 
                xlSheet.Range("AF1:AL" & 
k).Borders(XlBordersIndex.xlEdgeLeft).LineStyle = 1 
                xlSheet.Range("AF1:AL" & 
k).Borders(XlBordersIndex.xlEdgeLeft).Weight = 3 
 
                With xlSheet.PageSetup 
                    .LeftHeader = FileName 
                    '.CenterHeader = "&F" 
                    .RightHeader = "Page &P of &N" 
                    .PrintGridlines = True 
                    .PrintTitleRows = "$1:$1" 
                    .Orientation = Excel.XlPageOrientation.xlLandscape 
                    .Zoom = False 
                    .FitToPagesWide = 1 
                    .FitToPagesTall = Int(k / 45) + 5 
                End With 
            Next 
 
            xlBook.Sheets("Summary Metrics").select() 
            xlSheet = xlBook.Worksheets("Summary Metrics") 
            xlSheet.Columns("A:AL").AutoFit() 
            xlSheet.Range("B3").Select() 
            xlApp.ActiveWindow.FreezePanes = True 
 
            'the following code implements charts 
 
            xlChart = xlBook.Charts.Add 
            xlChart.ChartType = XlChartType.xlLine 
 
            xlChart.SetSourceData(Source:=xlSheet.Range("C3:D" & k), 
PlotBy:=Excel.XlRowCol.xlColumns) 
 
            xlChart.SeriesCollection(1).Name = "=""Unique Classifiers""" 
            xlChart.SeriesCollection(2).Name = "=""% Correct""" 
            'xlChart.SeriesCollection(3).Name = "=""% Optimal""" 
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            xlChart.Location(XlChartLocation.xlLocationAsNewSheet, 
Name:="Agent Charts") 
 
            xlChart.SeriesCollection.NewSeries() 
            xlChart.SeriesCollection(3).Values = "='Summary Metrics'!R3C32:R" 
& k & "C32" 
            xlChart.SeriesCollection(3).Name = "=""% Optimal""" 
 
            xlChart.SeriesCollection.NewSeries() 
            xlChart.SeriesCollection(4).Values = "='Summary Metrics'!R3C10:R" 
& k & "C10" 
            xlChart.SeriesCollection(4).Name = "=""Squared Error""" 
 
            'add chart and axis titles 
            With xlChart 
                .HasTitle = True 
                .ChartTitle.Characters.Text = "Agent Measures" 
                .Axes(Excel.XlAxisType.xlCategory, 
XlAxisGroup.xlPrimary).HasTitle = True 
                .Axes(Excel.XlAxisType.xlCategory, 
XlAxisGroup.xlPrimary).AxisTitle.Characters.Text = "Epoch" 
                .Axes(Excel.XlAxisType.xlValue, 
XlAxisGroup.xlPrimary).HasTitle = True 
                .Axes(Excel.XlAxisType.xlValue, 
XlAxisGroup.xlPrimary).AxisTitle.Characters.Text = "Percent or Count" 
            End With 
 
            'specify grid marks on axes 
            With xlChart 
                .HasAxis(Excel.XlAxisType.xlCategory, XlAxisGroup.xlPrimary) 
= True 
                .HasAxis(Excel.XlAxisType.xlValue, XlAxisGroup.xlPrimary) = 
True 
            End With 
 
            'format x axes grid marks 
            If k > 20 Then 
                With xlChart.Axes(Excel.XlAxisType.xlCategory) 
                    .CrossesAt = 1 
                    .TickLabelSpacing = Int(k / 10) 
                    .TickMarkSpacing = Int(k / 20) 
                    .AxisBetweenCategories = True 
                    .ReversePlotOrder = False 
                End With 
            End If 
            'format y axes numbers 
            xlChart.Axes(Excel.XlAxisType.xlValue).TickLabels.NumberFormat = 
"0" 
 
            xlChart.Axes(Excel.XlAxisType.xlCategory, 
XlAxisGroup.xlPrimary).CategoryType = Excel.XlCategoryType.xlAutomaticScale 
            With xlChart.Axes(Excel.XlAxisType.xlCategory) 
                .HasMajorGridlines = False 
                .HasMinorGridlines = False 
            End With 
            With xlChart.Axes(Excel.XlAxisType.xlValue) 
                .HasMajorGridlines = True 
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                .HasMinorGridlines = False 
            End With 
            xlChart.HasDataTable = False 
 
            xlBook.SaveAs(FileName:=FolderName & "\" & _ 
                ExperimentName & ".xls", 
fileformat:=Excel.XlFileFormat.xlWorkbookNormal) 
 
        End If 
 
        xlBook.Save() 
        xlApp.Quit() 
        xlBook2 = Nothing 
        xlApp = Nothing 
        xlBook = Nothing 
        xlBook2 = Nothing 
        xlSheet = Nothing 
        xlRange = Nothing 
 
        StoreDataInExcel = True 
 
    End Function 
 
    Public Function EnvironmentString() As String 
        Dim r As Integer 
        EnvironmentString = "" 
        For r = 1 To UBound(Environment) 
            EnvironmentString &= Environment(r) 
        Next r 
 
    End Function 
 
    Public Function DeleteCSVFiles() 
 
        Dim Filename As String 
        Dim File As New FileSystemObject() 
 
        For Each Filename In Directory.GetFiles(FolderName, "*.csv") 
            File.DeleteFile(Filename) 
        Next 
 
    End Function 
 
    Public Function WritePopulation(ByVal Replication As Integer, _ 
        ByVal Generation As Integer, ByVal Location As String) As Boolean 
 
        Dim x, y As Integer 
        Dim Message As String 
 
        If Location = "Detailed" Then 
            DetailedSW.WriteLine("Replication " & Replication & ":" & 
"Generation " & Generation) 
        Else 
            SummarySW.WriteLine() 
            SummarySW.WriteLine("Classifier #" & "," & "Condition" & _ 
                "," & "Action" & "," & "Prediction" & "," & "Error" & "," & 
"Fitness" & _ 
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                "," & "Experience" & "," & "Action Set Size" & "," & 
"Numerosity") '& "Time Stamp" & ","  
        End If 
 
        'Create string with population members 
        Message = "" 
        For x = 1 To Population.Count - 1 
 
            '# 
            Message = Population(x).Number & "," 
 
            'Condition 
            For y = 1 To UBound(Population(x).Condition) 
                Message &= Population(x).Condition(y) 
            Next y 
 
            'Action 
            Message &= "," & CStr(Population(x).Action) 
 
            'Prediction 
            Message &= "," & Format(Population(x).Prediction, "0.0000") 
 
            'PredictionError 
            Message &= "," & Format(Population(x).PredictionError, "0.0000") 
 
            'Fitness 
            Message &= "," & Format(Population(x).Fitness, "0.0000") 
 
            'Experience 
            Message &= "," & Population(x).Experience 
 
            'Time Stamp 
            If Location = "Detailed" Then 
                Message &= "," & Population(x).TimeStamp.Hour & ":" & _ 
                    Population(x).TimeStamp.Minute & ":" & 
Population(x).TimeStamp.Second & _ 
                    ":" & Population(x).TimeStamp.Millisecond 
            End If 
 
            'Action Set Size 
            Message &= "," & Format(Population(x).ActionSetSize, "0.00") 
 
            'Numerosity 
            Message &= "," & Population(x).Numerosity 
 
            If Location = "Detailed" Then 
                DetailedSW.WriteLine(Message) 
            Else 
                SummarySW.WriteLine(Message) 
            End If 
 
        Next x 
        If Location = "Detailed" Then 
            DetailedSW.WriteLine() 
        End If 
        WritePopulation = True 
    End Function 
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    Public Function RenumberPopulation() 
        Dim i As Integer 
        Dim TempClassifier As Classifier 
        For i = 1 To Population.Count - 1 
            TempClassifier = DirectCast(Population(i), Classifier) 
            TempClassifier.Number = i 
            Population(i) = TempClassifier 
        Next i 
 
    End Function 
    ' The average of an array of any type 
 
    Function ArrayAvg(ByVal arr As ArrayList, ByVal DataType As String) As 
Decimal 
        Dim index As Long 
        Dim sum As Object 
        Dim count As Long 
 
        For index = 0 To arr.Count - 1 
            Select Case DataType 
                Case "AgentReward" 
                    sum += DirectCast(arr(index), Metric).AgentReward 
                Case "OpponentReward" 
                    sum += DirectCast(arr(index), Metric).OpponentReward 
                Case "SystemError" 
                    sum += DirectCast(arr(index), Metric).SystemError 
                Case "Correct" 
                    sum -= DirectCast(arr(index), Metric).Correct 
                Case "PopulationCount" 
                    sum += DirectCast(arr(index), Metric).PopulationCount 
                Case "UniquePopulationCount" 
                    sum += DirectCast(arr(index), 
Metric).UniquePopulationCount 
                Case "PopulationPercentOptimal" 
                    sum += DirectCast(arr(index), 
Metric).PopulationPercentOptimal 
                Case Else 
                    MsgBox("Datatype not recognized") 
            End Select 
            count = count + 1 
        Next 
 
        ' return the average 
        ArrayAvg = sum / count 
 
    End Function 
 
    ' The standard deviation of an array 
 
    Function ArrayStdDev(ByVal arr As ArrayList, ByVal Datatype As String, _ 
    Optional ByVal SampleStdDev As Boolean = False) As Decimal 
        Dim sum As Double 
        Dim sumSquare As Double 
        Dim value As Double 
        Dim index As Long 
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        ' evaluate sum of values 
        ' if arr isn't an array, the following statement raises an error 
        For index = 0 To arr.Count - 1 
            Select Case Datatype 
                Case "AgentReward" 
                    value = DirectCast(arr(index), Metric).AgentReward 
                Case "OpponentReward" 
                    value = DirectCast(arr(index), Metric).OpponentReward 
                Case "SystemError" 
                    value = DirectCast(arr(index), Metric).SystemError 
                Case "Correct" 
                    value = DirectCast(arr(index), Metric).Correct 
                Case "PopulationPercentOptimal" 
                    value = DirectCast(arr(index), 
Metric).PopulationPercentOptimal 
                Case Else 
                    MsgBox("Datatype not recognized") 
            End Select 
            ' add to the running total 
            sum += value 
            sumSquare += value * value 
        Next 
 
        ' evaluate the result 
        ' use (Count-1) if evaluating the standard deviation of a sample 
        If (sumSquare - (sum * sum / arr.Count)) > 0 Then 
            If SampleStdDev Then 
                ArrayStdDev = Sqrt((sumSquare - (sum * sum / arr.Count)) / 
(arr.Count - 1)) 
            Else 
                ArrayStdDev = Sqrt((sumSquare - (sum * sum / arr.Count)) / 
arr.Count) 
            End If 
        Else 
            ArrayStdDev = 0 
        End If 
    End Function 
 
    ' Return the maximum value in an array 
    Function ArrayMax(ByVal arr As ArrayList, ByVal Datatype As String) As 
Decimal 
        Dim Index As Long 
 
        Select Case Datatype 
            Case "AgentReward" 
                ArrayMax = DirectCast(arr(0), Metric).AgentReward 
            Case "OpponentReward" 
                ArrayMax = DirectCast(arr(0), Metric).OpponentReward 
            Case "SystemError" 
                ArrayMax = DirectCast(arr(0), Metric).SystemError 
            Case "Correct" 
                ArrayMax = DirectCast(arr(0), Metric).Correct 
            Case "PopulationPercentOptimal" 
                ArrayMax = DirectCast(arr(Index), 
Metric).PopulationPercentOptimal 
            Case Else 
                MsgBox("Datatype not recognized") 
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        End Select 
 
        For Index = 1 To arr.Count - 1 
            Select Case Datatype 
                Case "AgentReward" 
                    If ArrayMax < DirectCast(arr(Index), Metric).AgentReward 
Then 
                        ArrayMax = DirectCast(arr(Index), Metric).AgentReward 
                    End If 
                Case "OpponentReward" 
                    If ArrayMax < DirectCast(arr(Index), 
Metric).OpponentReward Then 
                        ArrayMax = DirectCast(arr(Index), 
Metric).OpponentReward 
                    End If 
                Case "SystemError" 
                    If ArrayMax < DirectCast(arr(Index), Metric).SystemError 
Then 
                        ArrayMax = DirectCast(arr(Index), Metric).SystemError 
                    End If 
                Case "Correct" 
                    If ArrayMax < DirectCast(arr(Index), Metric).Correct Then 
                        ArrayMax = DirectCast(arr(Index), Metric).Correct 
                    End If 
                Case "PopulationPercentOptimal" 
                    If ArrayMax < DirectCast(arr(Index), 
Metric).PopulationPercentOptimal Then 
                        ArrayMax = DirectCast(arr(Index), 
Metric).PopulationPercentOptimal 
                    End If 
                Case Else 
                    MsgBox("Datatype not recognized") 
            End Select 
        Next 
    End Function 
 
    ' Return the range of values in an array 
    Function ArrayRng(ByVal arr As ArrayList, ByVal Datatype As String) As 
Decimal 
        Dim Index As Long 
        ArrayRng = ArrayMax(arr, Datatype) - ArrayMin(arr, Datatype) 
    End Function 
 
    Function ArrayMod(ByVal arr As ArrayList, ByVal Datatype As String) As 
Decimal 
        'For lists, the mode is the most common (frequent) value. A list can 
        'have more than one mode, although this function will only return the 
        'lowest of these should more than one number occur the maximum number 
        'of times. 
 
        Dim Count As Integer 
        Dim Number() As Decimal 
        Dim CountOfNumber As Integer 
        Dim CurrentNumber As Decimal 
        Dim Counter As Integer 
        Dim HighestNumberIndex As Integer 
        Dim HighestNumberCount As Integer 
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        Count = arr.Count 
 
        If Count = 0 Then Return 0 
 
        arr.Sort(New Sort(Datatype)) 
 
        ReDim Number(0) 
        Select Case Datatype 
            Case "AgentReward" 
                CurrentNumber = DirectCast(arr(0), Metric).AgentReward 
            Case "OpponentReward" 
                CurrentNumber = DirectCast(arr(0), Metric).OpponentReward 
            Case "SystemError" 
                CurrentNumber = DirectCast(arr(0), Metric).SystemError 
            Case "Correct" 
                CurrentNumber = DirectCast(arr(0), Metric).Correct 
            Case "PopulationPercentOptimal" 
                CurrentNumber = DirectCast(arr(0), 
Metric).PopulationPercentOptimal 
            Case Else 
                MsgBox("Datatype not recognized") 
        End Select 
 
        HighestNumberIndex = 0 
        HighestNumberCount = 0 
        Number(0) = CurrentNumber 
 
        While Counter <= Count - 1 
            Select Case Datatype 
                Case "AgentReward" 
                    If CurrentNumber = DirectCast(arr(Counter), 
Metric).AgentReward Then 
                        CountOfNumber += 1 
 
                        If CountOfNumber > HighestNumberCount Then 
                            HighestNumberCount = CountOfNumber 
                            HighestNumberIndex = Number.GetUpperBound(0) 
                        End If 
                    Else 
                        ReDim Preserve Number(Number.GetUpperBound(0) + 1) 
 
                        CurrentNumber = DirectCast(arr(Counter), 
Metric).AgentReward 
                        Number(Number.GetUpperBound(0)) = CurrentNumber 
                        CountOfNumber = 1 
                    End If 
                Case "OpponentReward" 
                    If CurrentNumber = DirectCast(arr(Counter), 
Metric).OpponentReward Then 
                        CountOfNumber += 1 
 
                        If CountOfNumber > HighestNumberCount Then 
                            HighestNumberCount = CountOfNumber 
                            HighestNumberIndex = Number.GetUpperBound(0) 
                        End If 
                    Else 
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                        ReDim Preserve Number(Number.GetUpperBound(0) + 1) 
 
                        CurrentNumber = DirectCast(arr(Counter), 
Metric).OpponentReward 
                        Number(Number.GetUpperBound(0)) = CurrentNumber 
                        CountOfNumber = 1 
                    End If 
                Case "SystemError" 
                    If CurrentNumber = DirectCast(arr(Counter), 
Metric).SystemError Then 
                        CountOfNumber += 1 
 
                        If CountOfNumber > HighestNumberCount Then 
                            HighestNumberCount = CountOfNumber 
                            HighestNumberIndex = Number.GetUpperBound(0) 
                        End If 
                    Else 
                        ReDim Preserve Number(Number.GetUpperBound(0) + 1) 
 
                        CurrentNumber = DirectCast(arr(Counter), 
Metric).SystemError 
                        Number(Number.GetUpperBound(0)) = CurrentNumber 
                        CountOfNumber = 1 
                    End If 
                Case "Correct" 
                    If CurrentNumber = DirectCast(arr(Counter), 
Metric).Correct Then 
                        CountOfNumber += 1 
 
                        If CountOfNumber > HighestNumberCount Then 
                            HighestNumberCount = CountOfNumber 
                            HighestNumberIndex = Number.GetUpperBound(0) 
                        End If 
                    Else 
                        ReDim Preserve Number(Number.GetUpperBound(0) + 1) 
 
                        CurrentNumber = DirectCast(arr(Counter), 
Metric).Correct 
                        Number(Number.GetUpperBound(0)) = CurrentNumber 
                        CountOfNumber = 1 
                    End If 
                Case "PopulationPercentOptimal" 
                    If CurrentNumber = DirectCast(arr(Counter), 
Metric).PopulationPercentOptimal Then 
                        CountOfNumber += 1 
 
                        If CountOfNumber > HighestNumberCount Then 
                            HighestNumberCount = CountOfNumber 
                            HighestNumberIndex = Number.GetUpperBound(0) 
                        End If 
                    Else 
                        ReDim Preserve Number(Number.GetUpperBound(0) + 1) 
 
                        CurrentNumber = DirectCast(arr(Counter), 
Metric).PopulationPercentOptimal 
                        Number(Number.GetUpperBound(0)) = CurrentNumber 
                        CountOfNumber = 1 
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                    End If 
 
                Case Else 
                    MsgBox("Datatype not recognized") 
            End Select 
 
            Counter += 1 
        End While 
 
        Return Number(HighestNumberIndex) 
    End Function 
 
    Function ArrayMed(ByVal arr As ArrayList, ByVal Datatype As String) As 
Decimal 
        'Definition: "Middle value" of a list. The smallest number such that 
        'at least half the numbers in the list are no greater than it. If the 
        'list has an odd number of entries, the median is the middle entry in 
        'the list after sorting the list into increasing order. If the list 
        'has an even number of entries, the median is equal to the sum of the 
        'two middle (after sorting) numbers divided by two. 
 
        Dim Count As Integer 
 
        Count = arr.Count 
 
        If Count = 0 Then Return 0 
 
        'We need to sort the numbers to get the median 
        arr.Sort(New Sort(Datatype)) 
 
        'If divisible by two, add the two middle numbers together and return  
        'the average (mean!) of those. 
        If Count Mod 2 = 0 Then 
            Select Case Datatype 
                Case "AgentReward" 
                    ArrayMed = (DirectCast(arr((Count / 2) - 1), 
Metric).AgentReward + _ 
                    DirectCast(arr((Count / 2)), Metric).AgentReward) / 2 
                Case "OpponentReward" 
                    ArrayMed = (DirectCast(arr((Count / 2) - 1), 
Metric).OpponentReward + _ 
                    DirectCast(arr((Count / 2)), Metric).OpponentReward) / 2 
                Case "SystemError" 
                    ArrayMed = (DirectCast(arr((Count / 2) - 1), 
Metric).SystemError + _ 
                    DirectCast(arr((Count / 2)), Metric).SystemError) / 2 
                Case "Correct" 
                    ArrayMed = (DirectCast(arr((Count / 2) - 1), 
Metric).Correct + _ 
                    DirectCast(arr((Count / 2)), Metric).Correct) / 2 
                Case "PopulationPercentOptimal" 
                    ArrayMed = (DirectCast(arr((Count / 2) - 1), 
Metric).PopulationPercentOptimal + _ 
                    DirectCast(arr((Count / 2)), 
Metric).PopulationPercentOptimal) / 2 
                Case Else 
                    MsgBox("Datatype not recognized") 
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            End Select 
        Else 
            Select Case Datatype 
                Case "AgentReward" 
                    ArrayMed = DirectCast(arr((Count \ 2)), 
Metric).AgentReward 
                Case "OpponentReward" 
                    ArrayMed = DirectCast(arr((Count \ 2)), 
Metric).OpponentReward 
                Case "SystemError" 
                    ArrayMed = DirectCast(arr((Count \ 2)), 
Metric).SystemError 
                Case "Correct" 
                    ArrayMed = DirectCast(arr((Count \ 2)), Metric).Correct 
                Case "PopulationPercentOptimal" 
                    ArrayMed = DirectCast(arr((Count \ 2)), 
Metric).PopulationPercentOptimal 
                Case Else 
                    MsgBox("Datatype not recognized") 
            End Select 
        End If 
    End Function 
 
    Public Class Sort 
        Implements IComparer 
        Private WhichField As String 
        Public Sub New(ByVal DataType As String) 
            WhichField = DataType 
        End Sub 
 
        Public Function Compare(ByVal x As Object, ByVal y As Object) As 
Integer Implements System.Collections.IComparer.Compare 
            Dim i As Integer 
 
            Select Case WhichField 
                Case "AgentReward" 
                    i = CType(x, Metric).AgentReward.CompareTo(CType(y, 
Metric).AgentReward) 
                Case "OpponentReward" 
                    i = CType(x, Metric).OpponentReward.CompareTo(CType(y, 
Metric).OpponentReward) 
                Case "SystemError" 
                    i = CType(x, Metric).SystemError.CompareTo(CType(y, 
Metric).SystemError) 
                Case "Correct" 
                    i = CType(x, Metric).Correct.CompareTo(CType(y, 
Metric).Correct) 
                Case "PopulationPercentOptimal" 
                    i = CType(x, 
Metric).PopulationPercentOptimal.CompareTo(CType(y, 
Metric).PopulationPercentOptimal) 
                Case Else 
                    MsgBox("Datatype not recognized") 
 
            End Select 
            Return i 
        End Function 
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    End Class 
 
    ' Return the minimum value in an array 
    Function ArrayMin(ByVal arr As ArrayList, ByVal Datatype As String) As 
Decimal 
        Dim Index As Long 
 
        Select Case Datatype 
            Case "AgentReward" 
                ArrayMin = DirectCast(arr(0), Metric).AgentReward 
            Case "OpponentReward" 
                ArrayMin = DirectCast(arr(0), Metric).OpponentReward 
            Case "SystemError" 
                ArrayMin = DirectCast(arr(0), Metric).SystemError 
            Case "Correct" 
                ArrayMin = DirectCast(arr(0), Metric).Correct 
            Case "PopulationPercentOptimal" 
                ArrayMin = DirectCast(arr(0), 
Metric).PopulationPercentOptimal 
            Case Else 
                MsgBox("Datatype not recognized") 
        End Select 
 
        For Index = 1 To arr.Count - 1 
            Select Case Datatype 
                Case "AgentReward" 
                    If ArrayMin > DirectCast(arr(Index), Metric).AgentReward 
Then 
                        ArrayMin = DirectCast(arr(Index), Metric).AgentReward 
                    End If 
                Case "OpponentReward" 
                    If ArrayMin > DirectCast(arr(Index), 
Metric).OpponentReward Then 
                        ArrayMin = DirectCast(arr(Index), 
Metric).OpponentReward 
                    End If 
                Case "SystemError" 
                    If ArrayMin > DirectCast(arr(Index), Metric).SystemError 
Then 
                        ArrayMin = DirectCast(arr(Index), Metric).SystemError 
                    End If 
                Case "Correct" 
                    If ArrayMin > DirectCast(arr(Index), Metric).Correct Then 
                        ArrayMin = DirectCast(arr(Index), Metric).Correct 
                    End If 
                Case "PopulationPercentOptimal" 
                    If ArrayMin > DirectCast(arr(Index), 
Metric).PopulationPercentOptimal Then 
                        ArrayMin = DirectCast(arr(Index), 
Metric).PopulationPercentOptimal 
                    End If 
                Case Else 
                    MsgBox("Datatype not recognized") 
            End Select 
        Next 
    End Function 
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    ' Return the sum of the values in an array 
    Function ArraySum(ByVal arr As ArrayList, ByVal Datatype As String) As 
Decimal 
 
        Dim index As Long 
 
        For index = 0 To arr.Count - 1 
            Select Case Datatype 
                Case "AgentReward" 
                    ArraySum = ArraySum + DirectCast(arr(index), 
Metric).AgentReward 
                Case "OpponentReward" 
                    ArraySum = ArraySum + DirectCast(arr(index), 
Metric).OpponentReward 
                Case "SystemError" 
                    ArraySum = ArraySum + DirectCast(arr(index), 
Metric).SystemError 
                Case "Correct" 
                    ArraySum = ArraySum - DirectCast(arr(index), 
Metric).Correct 
                Case "PopulationPercentOptimal" 
                    ArraySum = ArraySum - DirectCast(arr(index), 
Metric).PopulationPercentOptimal 
                Case Else 
                    MsgBox("Datatype not recognized") 
            End Select 
        Next 
    End Function 
 
    Function CloneObject(ByVal obj As Object) As Object 
        'Create a memory stream and a formatter 
        Dim ms As New MemoryStream(1000) 
        Dim bf As New BinaryFormatter() 
        'Serialize the object into the stream 
        bf.Serialize(ms, obj) 
        'Position stream pointer back to first byte 
        ms.Seek(0, SeekOrigin.Begin) 
        'Deserialize into another object 
        CloneObject = bf.Deserialize(ms) 
        'Release memory 
        ms.Close() 
 
    End Function 
 
    Function ApplyCrossover(ByVal Classifier1 As Classifier, _ 
    ByVal Classifier2 As Classifier) As Boolean 
 
        If Explain Then 
            MsgBox("Doing crossover ...") 
        End If 
 
        Dim x, y, z, j As Integer 
        Dim TempCharacter As Char 
 
        'need two random numbers between 1 and length of condition 
        x = Rnd() * (UBound(Classifier1.Condition) + 1) 

 
 

208



 

        y = Rnd() * (UBound(Classifier2.Condition) + 1) 
 
        'put in correct order 
        If x > y Then 
            z = y 
            y = x 
            x = z 
        End If 
        If SaveDetail = "All" Then 
            DetailedSW.WriteLine("Crossover members " & Classifier1.Number & 
_ 
                " and " & Classifier2.Number & " between allelles " & _ 
                x & " and " & y) 
        End If 
 
        If Explain Then 
            MsgBox("Lower crossover point is " & x & "; upper crossover point 
is " & y) 
            OutputClassifiertoScreen(Classifier1, "Child #1 before 
crossover") 
            OutputClassifiertoScreen(Classifier2, "Child #2 before 
crossover") 
        End If 
        'initialize counter to walk through condition 
        j = 0 
        Do 
            If (x <= j And j < y) Then 
                TempCharacter = Classifier1.Condition(j) 
                Classifier1.Condition(j) = Classifier2.Condition(j) 
                Classifier2.Condition(j) = TempCharacter 
            End If 
            j += 1 
        Loop While j < y 
        If Explain Then 
            OutputClassifiertoScreen(Classifier1, "Child #1 after crossover") 
            OutputClassifiertoScreen(Classifier2, "Child #2 after crossover") 
        End If 
        '=-=-=-=-=-=-=-=-=-=-=-= 
 
    End Function 
 
    Public Function PercentOptimal(ByVal Opponent As String, _ 
    ByVal Problem As String, ByVal Epsilon0 As Decimal, _ 
    ByVal ThetaSub As Integer) As Decimal 
        ' we need to ignore errors, if duplicates are to be discarded 
        On Error Resume Next 
 
        Dim OptimalClassifiersCollection As New Collection() 
        Dim i, j As Integer 
        Dim OptimalPopulation As New ArrayList() 
        Dim OptimalClassifier As New Classifier() 
        Dim OptimalClassifier2 As New Classifier() 
        ReDim OptimalClassifier.Condition(ConditionLength) 
        ReDim OptimalClassifier2.Condition(ConditionLength) 
 
        OptimalPopulation.Add(Nothing) 
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        If Problem = "IPD" Then 
            Select Case Opponent ' Evaluate Opponent 
                Case "DDD", "CCC", "RAND"   ' Opponent always defects or 
cooperates, or is random 
                    For j = 1 To ConditionLength 
                        OptimalClassifier.Condition(j) = "#" 
                    Next 
                    OptimalClassifier.Action = "D" 
                    OptimalPopulation.Add(OptimalClassifier) 
 
                    OptimalClassifier.Action = "C" 
                    OptimalPopulation.Add(OptimalClassifier) 
 
                    For i = 1 To OptimalPopulation.Count - 1 
 
                        ' the Execute method does the search and returns a 
MatchCollection object 
                        ' if duplicates are to be discarded, we just add a 
key to the  
                        ' collection item 
                        ' and the Add method will do the rest 
                        For j = 1 To Population.Count - 1 
                            If ExactMatch(OptimalPopulation(i), 
Population(j)) And _ 
                            DirectCast(Population(j), 
Classifier).PredictionError < Epsilon0 And _ 
                            DirectCast(Population(j), Classifier).Experience 
> ThetaSub Then 
                                
OptimalClassifiersCollection.Add(DirectCast(Population(j), Classifier), _ 
                                    DirectCast(Population(j), 
Classifier).Condition & _ 
                                    DirectCast(Population(j), 
Classifier).Action) 
                            End If 
 
                        Next j 
                    Next i 
                    PercentOptimal = OptimalClassifiersCollection.Count / 
(OptimalPopulation.Count - 1) 
 
                    'Case "RAND"   ' Opponent is random 
 
                Case "TFT" ' Opponent is Tit-for-Tat 
                    'define optimal population 
                    For j = 1 To ConditionLength 
                        If j = ConditionLength - 1 Then 
                            OptimalClassifier.Condition(j) = "C" 
                        Else 
                            OptimalClassifier.Condition(j) = "#" 
                        End If 
                    Next 
 
                    OptimalClassifier.Action = "C" 
                    OptimalPopulation.Add(OptimalClassifier) 
 
                    OptimalClassifier.Action = "D" 
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                    OptimalPopulation.Add(OptimalClassifier) 
 
                    For j = 1 To ConditionLength 
                        If j = ConditionLength - 1 Then 
                            OptimalClassifier2.Condition(j) = "D" 
                        Else 
                            OptimalClassifier2.Condition(j) = "#" 
                        End If 
                    Next 
 
                    'NextOptimalClassifier.Condition(ConditionLength - 1) = 
"D" 
                    OptimalClassifier2.Action = "C" 
                    OptimalPopulation.Add(OptimalClassifier2) 
 
                    OptimalClassifier2.Action = "D" 
                    OptimalPopulation.Add(OptimalClassifier2) 
 
                    For i = 1 To OptimalPopulation.Count - 1 
 
                        ' the Execute method does the search and returns a 
MatchCollection object 
                        ' if duplicates are to be discarded, we just add a 
key to the  
                        ' collection item 
                        ' and the Add method will do the rest 
                        For j = 1 To Population.Count - 1 
                            If ExactMatch(OptimalPopulation(i), 
Population(j)) And _ 
                            DirectCast(Population(j), 
Classifier).PredictionError < Epsilon0 And _ 
                            DirectCast(Population(j), Classifier).Experience 
> ThetaSub Then 
                                
OptimalClassifiersCollection.Add(DirectCast(Population(j), Classifier), _ 
                                    DirectCast(Population(j), 
Classifier).Condition & _ 
                                    DirectCast(Population(j), 
Classifier).Action) 
                            End If 
                        Next j 
                    Next i 
                    PercentOptimal = OptimalClassifiersCollection.Count / 
(OptimalPopulation.Count - 1) 
 
                Case "TFTT" ' Opponent is Tit-for-Two-Tat 
                    'define optimal population 
                    For j = 1 To ConditionLength 
                        If j = ConditionLength - 1 Or j = ConditionLength - 3 
Then 
                            OptimalClassifier.Condition(j) = "C" 
                        Else 
                            OptimalClassifier.Condition(j) = "#" 
                        End If 
                    Next 
 
                    OptimalClassifier.Action = "C" 
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                    OptimalPopulation.Add(OptimalClassifier) 
 
                    OptimalClassifier.Action = "D" 
                    OptimalPopulation.Add(OptimalClassifier) 
 
                    OptimalClassifier.Condition(ConditionLength - 1) = "D" 
                    OptimalClassifier.Condition(ConditionLength - 3) = "D" 
                    OptimalPopulation.Add(OptimalClassifier) 
 
                    OptimalClassifier.Action = "C" 
                    OptimalPopulation.Add(OptimalClassifier) 
 
                    For i = 1 To OptimalPopulation.Count - 1 
 
                        ' the Execute method does the search and returns a 
MatchCollection object 
                        ' if duplicates are to be discarded, we just add a 
key to the  
                        ' collection item 
                        ' and the Add method will do the rest 
                        For j = 1 To Population.Count - 1 
                            If ExactMatch(OptimalPopulation(i), 
Population(j)) And _ 
                            DirectCast(Population(j), 
Classifier).PredictionError < Epsilon0 And _ 
                            DirectCast(Population(j), Classifier).Experience 
> ThetaSub Then 
                                
OptimalClassifiersCollection.Add(DirectCast(Population(j), Classifier), _ 
                                    DirectCast(Population(j), 
Classifier).Condition & _ 
                                    DirectCast(Population(j), 
Classifier).Action) 
                            End If 
                        Next j 
                    Next i 
                    PercentOptimal = OptimalClassifiersCollection.Count / 
(OptimalPopulation.Count - 1) 
                Case "TTFT" ' Opponent is Two Tits for Tat 
 
                Case Else   ' Other values. 
                    MsgBox("Opponent not recognized") 
            End Select 
 
        End If 
    End Function 
 
 
 
    Private Sub myClickHandler(ByVal sender As System.Object, ByVal e As 
System.EventArgs) 
        Explain = False 
        MsgBox("'Explanations' turned off; click 'Ok' on this form and on the 
next to continue ...") 
    End Sub 
 
    Public Function CountUniqueClassifiers() As Integer 
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        Dim UniqueItems As New Collection() 
        Dim i As Integer 
 
        For i = 1 To Population.Count - 1 
            ' we need to ignore errors, if duplicates are to be discarded 
            On Error Resume Next 
 
            ' the Execute method does the search and returns a 
MatchCollection object 
            ' if duplicates are to be discarded, we just add a key to the  
            ' collection item 
            ' and the Add method will do the rest 
            UniqueItems.Add(DirectCast(Population(i), Classifier), _ 
                DirectCast(Population(i), Classifier).Condition & _ 
                DirectCast(Population(i), Classifier).Action) 
 
        Next i 
        CountUniqueClassifiers = UniqueItems.Count 
    End Function 
 
    Public Function CreateExcelCharts(ByVal Opponent As String, ByVal 
Frequency As Integer) As Boolean 
 
        Dim i, k, m As Integer 
        Dim j As Char 
        Dim xlApp As Excel.Application 
        Dim xlBook, xlBook2 As Excel.Workbook 
        Dim xlSheet, xlsheet2 As Excel.Worksheet 
        Dim xlRange As Excel.Range 
        Dim xlFileFormat, FileName As String 
        Dim xlChart As Excel.Chart 
        Dim xlSeries As Excel.SeriesCollection 
 
        On Error Resume Next 
        xlApp = GetObject(, "Excel.Application") 
        If xlApp Is Nothing Then 
            'Excel wasn't open - open a new one 
            xlApp = CreateObject("Excel.Application") 
            xlApp = GetObject("", "Excel.Application") 
        End If 
 
        'xlApp.Visible = True 
        xlApp.DisplayAlerts = False 
 
        'here is the summary charts in a separate workbook 
        xlBook = xlApp.Workbooks.Add() 
        xlBook.Sheets.Add() 
        xlSheet = xlBook.Worksheets("Sheet4") 
        xlSheet.Name = "Unique Classifiers" 
        xlSheet = xlBook.Worksheets("Sheet1") 
        xlSheet.Name = "% Correct" 
        xlSheet = xlBook.Worksheets("Sheet2") 
        xlSheet.Name = "Squared Error" 
        xlSheet = xlBook.Worksheets("Sheet3") 
        xlSheet.Name = "% Optimal" 
 
        For i = 1 To xlBook.Worksheets.Count 
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            xlSheet = xlBook.Sheets(i) 
            xlSheet.Range("A1").Formula = "LCS-0" 
            xlSheet.Range("B1").Formula = "LCS-1" 
            xlSheet.Range("c1").Formula = "LCS-2" 
            xlSheet.Range("d1").Formula = "LCS-3" 
            xlSheet.Range("e1").Formula = "LCS-4" 
            xlSheet.Range("f1").Formula = "LCS-5" 
            xlSheet.Range("g1").Formula = "LCS-6" 
            xlSheet.Range("h1").Formula = "LCS-7" 
            xlSheet.Range("i1").Formula = "LCS-8" 
            xlSheet.Range("j1").Formula = "XCS" 
            For Each FileName In Directory.GetFiles(FolderName, "*.xls") 
                If InStr(FileName, "Custom Agent") Then 
                    xlSheet.Range("k1").Formula = "Custom Agent" 
                End If 
            Next 
        Next 
 
        i = 1 
 
        For Each FileName In Directory.GetFiles(FolderName, "*.xls") 
            If InStr(FileName, "LCS-0") Then 
                j = "A" 
            ElseIf InStr(FileName, "LCS-1") Then 
                j = "B" 
            ElseIf InStr(FileName, "LCS-2") Then 
                j = "C" 
            ElseIf InStr(FileName, "LCS-3") Then 
                j = "D" 
            ElseIf InStr(FileName, "LCS-4") Then 
                j = "E" 
            ElseIf InStr(FileName, "LCS-5") Then 
                j = "F" 
            ElseIf InStr(FileName, "LCS-6") Then 
                j = "G" 
            ElseIf InStr(FileName, "LCS-7") Then 
                j = "H" 
            ElseIf InStr(FileName, "LCS-8") Then 
                j = "I" 
            ElseIf InStr(FileName, "XCS") Then 
                j = "J" 
            ElseIf InStr(FileName, "Custom Agent") Then 
                j = "K" 
            End If 
 
            xlBook2 = xlApp.Workbooks.Open(FileName) 
 
            xlsheet2 = xlBook2.Worksheets("Summary Metrics") 
            xlsheet2.Select() 
            xlsheet2.Range(j & "2").End(XlDirection.xlDown).Select() 
            k = xlApp.ActiveCell.Row 
 
            'copy population size values 
            xlSheet = xlBook.Worksheets("Unique Classifiers") 
            xlsheet2.Range("C3:C" & k).Copy() 
            xlSheet.Range(j & "2:" & j & k - 
1).PasteSpecial(XlPasteType.xlPasteValues) 

 
 

214



 

 
            'copy % correct values 
            xlSheet = xlBook.Worksheets("% Correct") 
            xlsheet2.Range("D3:D" & k).Copy() 
            xlSheet.Range(j & "2:" & j & k - 
1).PasteSpecial(XlPasteType.xlPasteValues) 
 
            'copy system error values 
            xlSheet = xlBook.Worksheets("Squared Error") 
            xlsheet2.Range("K3:K" & k).Copy() 
            xlSheet.Range(j & "2:" & j & k - 
1).PasteSpecial(XlPasteType.xlPasteValues) 
 
            'copy % optimal values 
            xlSheet = xlBook.Worksheets("% Optimal") 
            xlsheet2.Range("AF3:AF" & k).Copy() 
            xlSheet.Range(j & "2:" & j & k - 
1).PasteSpecial(XlPasteType.xlPasteValues) 
 
            i += 1 
            xlBook2.Close() 
        Next 
 
        For i = 1 To xlBook.Worksheets.Count 
            xlSheet = xlBook.Sheets(i) 
            xlChart = xlBook.Charts.Add 
            xlChart.ChartType = XlChartType.xlLine 
            xlChart.SetSourceData(xlSheet.Range("A1:" & j & k - 1), 
Excel.XlRowCol.xlColumns) 
 
            With xlChart 
                .HasTitle = True 
                .ChartTitle.Characters.Text = xlSheet.Name & " vs " & 
Opponent 
                .Axes(Excel.XlAxisType.xlCategory, 
XlAxisGroup.xlPrimary).hastitle = True 
                .Axes(Excel.XlAxisType.xlCategory, 
XlAxisGroup.xlPrimary).axistitle.characters.text = "Generation (" & Frequency 
& "s)" 
                .Axes(Excel.XlAxisType.xlValue, 
XlAxisGroup.xlPrimary).hastitle = True 
                'removed the following line temporarily to recreate color 
graphs 
                '.PlotArea.Interior.ColorIndex = 2 
 
                If i = 1 Then 
                    .Axes(Excel.XlAxisType.xlValue, 
XlAxisGroup.xlPrimary).axistitle.characters.text = "# of Unique Classifiers" 
                ElseIf i = 2 Then 
                    .Axes(Excel.XlAxisType.xlValue, 
XlAxisGroup.xlPrimary).axistitle.characters.text = "% Correct" 
                ElseIf i = 3 Then 
                    .Axes(Excel.XlAxisType.xlValue, 
XlAxisGroup.xlPrimary).axistitle.characters.text = "(Predicted Reward - 
Realized Reward) ^ 2" 
                Else 
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                    .Axes(Excel.XlAxisType.xlValue, 
XlAxisGroup.xlPrimary).axistitle.characters.text = "%" 
                End If 
 
            End With 
            With xlChart.Axes(Excel.XlAxisType.xlCategory) 
                .HasMajorGridlines = False 
                .HasMinorGridlines = False 
            End With 
            With xlChart.Axes(Excel.XlAxisType.xlValue) 
                .HasMajorGridlines = True 
                .HasMinorGridlines = False 
            End With 
 
 
            'format x axes grid marks 
            If k > 20 Then 
                With xlChart.Axes(Excel.XlAxisType.xlCategory) 
                    .CrossesAt = 1 
                    .TickLabelSpacing = Int(k / 10) 
                    .TickMarkSpacing = Int(k / 20) 
                    .AxisBetweenCategories = True 
                    .ReversePlotOrder = False 
                End With 
            End If 
 
            xlChart.HasDataTable = False 
            xlChart.Location(XlChartLocation.xlLocationAsObject, 
xlSheet.Name) 
 
        Next 
 
        xlBook.SaveAs(FileName:=FolderName & "\" & "Summary Results vs " & 
Opponent & ".xls", fileformat:=Excel.XlFileFormat.xlWorkbookNormal) 
        xlBook.Save() 
        xlApp.Quit() 
 
        xlBook2 = Nothing 
        xlApp = Nothing 
        xlBook = Nothing 
        xlSheet = Nothing 
        xlRange = Nothing 
 
        CreateExcelCharts = True 
 
    End Function 
 
End Module 
 
Public Class XCSOpeningScreen 
    Inherits System.Windows.Forms.Form 
 
#Region " Windows Form Designer generated code " 
 
    Public Sub New() 
        MyBase.New() 
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        'This call is required by the Windows Form Designer. 
        InitializeComponent() 
 
        'Add any initialization after the InitializeComponent() call 
 
    End Sub 
 
    'Form overrides dispose to clean up the component list. 
    Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean) 
        If disposing Then 
            If Not (components Is Nothing) Then 
                components.Dispose() 
            End If 
        End If 
        MyBase.Dispose(disposing) 
    End Sub 
 
    'Required by the Windows Form Designer 
    Private components As System.ComponentModel.IContainer 
 
    'NOTE: The following procedure is required by the Windows Form Designer 
    'It can be modified using the Windows Form Designer.   
    'Do not modify it using the code editor. 
    Friend WithEvents nudGenerations As System.Windows.Forms.NumericUpDown 
    Friend WithEvents lblGenerations As System.Windows.Forms.Label 
    Friend WithEvents btnQuit As System.Windows.Forms.Button 
    Friend WithEvents btnTest As System.Windows.Forms.Button 
    Friend WithEvents nudReward1 As System.Windows.Forms.NumericUpDown 
    Friend WithEvents lblReward1 As System.Windows.Forms.Label 
    Friend WithEvents lblReward2 As System.Windows.Forms.Label 
    Friend WithEvents lblReward3 As System.Windows.Forms.Label 
    Friend WithEvents lblReward4 As System.Windows.Forms.Label 
    Friend WithEvents lblWhoseMoves As System.Windows.Forms.Label 
    Friend WithEvents lblNumberMoves As System.Windows.Forms.Label 
    Friend WithEvents nudNumberMoves As System.Windows.Forms.NumericUpDown 
    Friend WithEvents nudReward4 As System.Windows.Forms.NumericUpDown 
    Friend WithEvents nudReward3 As System.Windows.Forms.NumericUpDown 
    Friend WithEvents nudReward2 As System.Windows.Forms.NumericUpDown 
    Friend WithEvents lblPopulationSize As System.Windows.Forms.Label 
    Friend WithEvents lblProbPound As System.Windows.Forms.Label 
    Friend WithEvents nudProbPound As System.Windows.Forms.NumericUpDown 
    Friend WithEvents grpLearningParameters As System.Windows.Forms.GroupBox 
    Friend WithEvents lblBeta As System.Windows.Forms.Label 
    Friend WithEvents nudBeta As System.Windows.Forms.NumericUpDown 
    Friend WithEvents lblAlpha As System.Windows.Forms.Label 
    Friend WithEvents nudAlpha As System.Windows.Forms.NumericUpDown 
    Friend WithEvents nudEpsilon0 As System.Windows.Forms.NumericUpDown 
    Friend WithEvents nudNu As System.Windows.Forms.NumericUpDown 
    Friend WithEvents lblNu As System.Windows.Forms.Label 
    Friend WithEvents nudGamma As System.Windows.Forms.NumericUpDown 
    Friend WithEvents nudThetaGA As System.Windows.Forms.NumericUpDown 
    Friend WithEvents lblEpsilon0 As System.Windows.Forms.Label 
    Friend WithEvents nudChi As System.Windows.Forms.NumericUpDown 
    Friend WithEvents nudMu As System.Windows.Forms.NumericUpDown 
    Friend WithEvents nudThetaDel As System.Windows.Forms.NumericUpDown 
    Friend WithEvents nudDelta As System.Windows.Forms.NumericUpDown 
    Friend WithEvents nudThetaSub As System.Windows.Forms.NumericUpDown 
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    Friend WithEvents lblInitialPrediction As System.Windows.Forms.Label 
    Friend WithEvents nudInitialPrediction As 
System.Windows.Forms.NumericUpDown 
    Friend WithEvents nudInitialPredictionError As 
System.Windows.Forms.NumericUpDown 
    Friend WithEvents nudInitialFitness As System.Windows.Forms.NumericUpDown 
    Friend WithEvents nudProbXPlor As System.Windows.Forms.NumericUpDown 
    Friend WithEvents nudThetaMNA As System.Windows.Forms.NumericUpDown 
    Friend WithEvents lblDoGASub As System.Windows.Forms.Label 
    Friend WithEvents lblDoASSub As System.Windows.Forms.Label 
    Friend WithEvents cboPseudoRandomness As System.Windows.Forms.ComboBox 
    Friend WithEvents lblPseudoRandomness As System.Windows.Forms.Label 
    Friend WithEvents cboOpponent As System.Windows.Forms.ComboBox 
    Friend WithEvents lblOpponent As System.Windows.Forms.Label 
    Friend WithEvents cboCrankitUp As System.Windows.Forms.ComboBox 
    Friend WithEvents lblCrankitUp As System.Windows.Forms.Label 
    Friend WithEvents nudReplications As System.Windows.Forms.NumericUpDown 
    Friend WithEvents lblReplications As System.Windows.Forms.Label 
    Friend WithEvents ToolTipN As System.Windows.Forms.ToolTip 
    Public WithEvents pbar1 As System.Windows.Forms.ProgressBar 
    Friend WithEvents nudN As System.Windows.Forms.NumericUpDown 
    Friend WithEvents lblExplain As System.Windows.Forms.Label 
    Friend WithEvents lblMeasurementFreq As System.Windows.Forms.Label 
    Friend WithEvents cboExplain As System.Windows.Forms.ComboBox 
    Friend WithEvents nudFreq As System.Windows.Forms.NumericUpDown 
    Friend WithEvents grpIPDParameters As System.Windows.Forms.GroupBox 
    Friend WithEvents grpExperimentParameters As 
System.Windows.Forms.GroupBox 
    Friend WithEvents lblGreater1 As System.Windows.Forms.Label 
    Friend WithEvents lblGreater2 As System.Windows.Forms.Label 
    Friend WithEvents lblGreater3 As System.Windows.Forms.Label 
    Friend WithEvents cboWhoseMoves As System.Windows.Forms.ComboBox 
    Friend WithEvents lblSaveDetail As System.Windows.Forms.Label 
    Friend WithEvents cboSaveDetail As System.Windows.Forms.ComboBox 
    Friend WithEvents grpAgentParameters As System.Windows.Forms.GroupBox 
    Friend WithEvents lblClassifierFitness As System.Windows.Forms.Label 
    Friend WithEvents cboClassifierFitness As System.Windows.Forms.ComboBox 
    Friend WithEvents lblInitialPopulation As System.Windows.Forms.Label 
    Friend WithEvents cboInitialPopulation As System.Windows.Forms.ComboBox 
    Friend WithEvents lblPopSize As System.Windows.Forms.Label 
    Friend WithEvents cboPopSize As System.Windows.Forms.ComboBox 
    Friend WithEvents cboGAScope As System.Windows.Forms.ComboBox 
    Friend WithEvents lblParentSelection As System.Windows.Forms.Label 
    Friend WithEvents cboParentSelection As System.Windows.Forms.ComboBox 
    Friend WithEvents lblClassifierDeletion As System.Windows.Forms.Label 
    Friend WithEvents cboClassifierDeletion As System.Windows.Forms.ComboBox 
    Friend WithEvents lblActionSelection As System.Windows.Forms.Label 
    Friend WithEvents cboActionSelection As System.Windows.Forms.ComboBox 
    Friend WithEvents lblFitnessUpdates As System.Windows.Forms.Label 
    Friend WithEvents cboClassifierFitnessUpdates As 
System.Windows.Forms.ComboBox 
    Friend WithEvents lblAgentType As System.Windows.Forms.Label 
    Friend WithEvents cboAgentType As System.Windows.Forms.ComboBox 
    Friend WithEvents cboDoGASub As System.Windows.Forms.ComboBox 
    Friend WithEvents cboDoASSub As System.Windows.Forms.ComboBox 
    Friend WithEvents Label1 As System.Windows.Forms.Label 
    Friend WithEvents cboProblem As System.Windows.Forms.ComboBox 
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    Friend WithEvents lblEMail As System.Windows.Forms.Label 
    Friend WithEvents cboEMail As System.Windows.Forms.ComboBox 
    Friend WithEvents Label2 As System.Windows.Forms.Label 
    Friend WithEvents Label4 As System.Windows.Forms.Label 
    Friend WithEvents Label5 As System.Windows.Forms.Label 
    Friend WithEvents Label6 As System.Windows.Forms.Label 
    Friend WithEvents Label10 As System.Windows.Forms.Label 
    Friend WithEvents Label12 As System.Windows.Forms.Label 
    Friend WithEvents Label13 As System.Windows.Forms.Label 
    Friend WithEvents Label15 As System.Windows.Forms.Label 
    Friend WithEvents Label3 As System.Windows.Forms.Label 
    Friend WithEvents Label9 As System.Windows.Forms.Label 
    Friend WithEvents Label11 As System.Windows.Forms.Label 
    Friend WithEvents Label14 As System.Windows.Forms.Label 
    Friend WithEvents Label16 As System.Windows.Forms.Label 
    Friend WithEvents Label8 As System.Windows.Forms.Label 
    Friend WithEvents Label17 As System.Windows.Forms.Label 
    Friend WithEvents Label18 As System.Windows.Forms.Label 
    Friend WithEvents Label19 As System.Windows.Forms.Label 
    Friend WithEvents Label20 As System.Windows.Forms.Label 
    Friend WithEvents Label7 As System.Windows.Forms.Label 
    Friend WithEvents Label21 As System.Windows.Forms.Label 
    Friend WithEvents Label22 As System.Windows.Forms.Label 
    Friend WithEvents cboGraduatedRewards As System.Windows.Forms.ComboBox 
    Friend WithEvents Label23 As System.Windows.Forms.Label 
    Friend WithEvents lblGAScope As System.Windows.Forms.Label 
    Friend WithEvents lblCitation As System.Windows.Forms.Label 
    <System.Diagnostics.DebuggerStepThrough()> Private Sub 
InitializeComponent() 
        Me.components = New System.ComponentModel.Container() 
        Me.nudGenerations = New System.Windows.Forms.NumericUpDown() 
        Me.lblGenerations = New System.Windows.Forms.Label() 
        Me.lblWhoseMoves = New System.Windows.Forms.Label() 
        Me.btnQuit = New System.Windows.Forms.Button() 
        Me.btnTest = New System.Windows.Forms.Button() 
        Me.cboWhoseMoves = New System.Windows.Forms.ComboBox() 
        Me.grpIPDParameters = New System.Windows.Forms.GroupBox() 
        Me.cboGraduatedRewards = New System.Windows.Forms.ComboBox() 
        Me.Label1 = New System.Windows.Forms.Label() 
        Me.cboProblem = New System.Windows.Forms.ComboBox() 
        Me.lblGreater1 = New System.Windows.Forms.Label() 
        Me.lblGreater2 = New System.Windows.Forms.Label() 
        Me.nudReward4 = New System.Windows.Forms.NumericUpDown() 
        Me.lblReward4 = New System.Windows.Forms.Label() 
        Me.lblGreater3 = New System.Windows.Forms.Label() 
        Me.nudReward3 = New System.Windows.Forms.NumericUpDown() 
        Me.lblReward3 = New System.Windows.Forms.Label() 
        Me.nudReward2 = New System.Windows.Forms.NumericUpDown() 
        Me.lblReward2 = New System.Windows.Forms.Label() 
        Me.nudReward1 = New System.Windows.Forms.NumericUpDown() 
        Me.lblReward1 = New System.Windows.Forms.Label() 
        Me.nudNumberMoves = New System.Windows.Forms.NumericUpDown() 
        Me.lblNumberMoves = New System.Windows.Forms.Label() 
        Me.lblOpponent = New System.Windows.Forms.Label() 
        Me.cboOpponent = New System.Windows.Forms.ComboBox() 
        Me.cboPseudoRandomness = New System.Windows.Forms.ComboBox() 
        Me.lblPseudoRandomness = New System.Windows.Forms.Label() 

 
 

219



 

        Me.lblReplications = New System.Windows.Forms.Label() 
        Me.nudReplications = New System.Windows.Forms.NumericUpDown() 
        Me.cboCrankitUp = New System.Windows.Forms.ComboBox() 
        Me.lblCrankitUp = New System.Windows.Forms.Label() 
        Me.lblPopulationSize = New System.Windows.Forms.Label() 
        Me.nudN = New System.Windows.Forms.NumericUpDown() 
        Me.nudThetaMNA = New System.Windows.Forms.NumericUpDown() 
        Me.lblProbPound = New System.Windows.Forms.Label() 
        Me.nudProbPound = New System.Windows.Forms.NumericUpDown() 
        Me.grpLearningParameters = New System.Windows.Forms.GroupBox() 
        Me.lblCitation = New System.Windows.Forms.Label() 
        Me.Label23 = New System.Windows.Forms.Label() 
        Me.Label21 = New System.Windows.Forms.Label() 
        Me.Label22 = New System.Windows.Forms.Label() 
        Me.Label7 = New System.Windows.Forms.Label() 
        Me.Label19 = New System.Windows.Forms.Label() 
        Me.Label20 = New System.Windows.Forms.Label() 
        Me.Label17 = New System.Windows.Forms.Label() 
        Me.Label18 = New System.Windows.Forms.Label() 
        Me.Label8 = New System.Windows.Forms.Label() 
        Me.Label14 = New System.Windows.Forms.Label() 
        Me.Label16 = New System.Windows.Forms.Label() 
        Me.Label11 = New System.Windows.Forms.Label() 
        Me.Label9 = New System.Windows.Forms.Label() 
        Me.Label3 = New System.Windows.Forms.Label() 
        Me.Label2 = New System.Windows.Forms.Label() 
        Me.lblEpsilon0 = New System.Windows.Forms.Label() 
        Me.Label13 = New System.Windows.Forms.Label() 
        Me.Label6 = New System.Windows.Forms.Label() 
        Me.Label5 = New System.Windows.Forms.Label() 
        Me.Label4 = New System.Windows.Forms.Label() 
        Me.cboDoASSub = New System.Windows.Forms.ComboBox() 
        Me.lblDoASSub = New System.Windows.Forms.Label() 
        Me.nudProbXPlor = New System.Windows.Forms.NumericUpDown() 
        Me.nudInitialFitness = New System.Windows.Forms.NumericUpDown() 
        Me.nudInitialPredictionError = New 
System.Windows.Forms.NumericUpDown() 
        Me.lblInitialPrediction = New System.Windows.Forms.Label() 
        Me.nudInitialPrediction = New System.Windows.Forms.NumericUpDown() 
        Me.nudThetaSub = New System.Windows.Forms.NumericUpDown() 
        Me.nudDelta = New System.Windows.Forms.NumericUpDown() 
        Me.nudThetaDel = New System.Windows.Forms.NumericUpDown() 
        Me.nudMu = New System.Windows.Forms.NumericUpDown() 
        Me.nudChi = New System.Windows.Forms.NumericUpDown() 
        Me.nudThetaGA = New System.Windows.Forms.NumericUpDown() 
        Me.nudGamma = New System.Windows.Forms.NumericUpDown() 
        Me.nudNu = New System.Windows.Forms.NumericUpDown() 
        Me.lblNu = New System.Windows.Forms.Label() 
        Me.nudEpsilon0 = New System.Windows.Forms.NumericUpDown() 
        Me.lblAlpha = New System.Windows.Forms.Label() 
        Me.nudAlpha = New System.Windows.Forms.NumericUpDown() 
        Me.lblBeta = New System.Windows.Forms.Label() 
        Me.nudBeta = New System.Windows.Forms.NumericUpDown() 
        Me.lblDoGASub = New System.Windows.Forms.Label() 
        Me.cboDoGASub = New System.Windows.Forms.ComboBox() 
        Me.Label10 = New System.Windows.Forms.Label() 
        Me.Label12 = New System.Windows.Forms.Label() 
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        Me.Label15 = New System.Windows.Forms.Label() 
        Me.ToolTipN = New System.Windows.Forms.ToolTip(Me.components) 
        Me.lblExplain = New System.Windows.Forms.Label() 
        Me.lblMeasurementFreq = New System.Windows.Forms.Label() 
        Me.lblSaveDetail = New System.Windows.Forms.Label() 
        Me.cboClassifierFitness = New System.Windows.Forms.ComboBox() 
        Me.lblInitialPopulation = New System.Windows.Forms.Label() 
        Me.cboInitialPopulation = New System.Windows.Forms.ComboBox() 
        Me.cboPopSize = New System.Windows.Forms.ComboBox() 
        Me.cboGAScope = New System.Windows.Forms.ComboBox() 
        Me.cboParentSelection = New System.Windows.Forms.ComboBox() 
        Me.cboClassifierDeletion = New System.Windows.Forms.ComboBox() 
        Me.cboActionSelection = New System.Windows.Forms.ComboBox() 
        Me.cboClassifierFitnessUpdates = New System.Windows.Forms.ComboBox() 
        Me.cboAgentType = New System.Windows.Forms.ComboBox() 
        Me.lblClassifierFitness = New System.Windows.Forms.Label() 
        Me.cboExplain = New System.Windows.Forms.ComboBox() 
        Me.nudFreq = New System.Windows.Forms.NumericUpDown() 
        Me.cboSaveDetail = New System.Windows.Forms.ComboBox() 
        Me.lblAgentType = New System.Windows.Forms.Label() 
        Me.lblFitnessUpdates = New System.Windows.Forms.Label() 
        Me.lblActionSelection = New System.Windows.Forms.Label() 
        Me.lblClassifierDeletion = New System.Windows.Forms.Label() 
        Me.lblParentSelection = New System.Windows.Forms.Label() 
        Me.lblGAScope = New System.Windows.Forms.Label() 
        Me.lblPopSize = New System.Windows.Forms.Label() 
        Me.lblEMail = New System.Windows.Forms.Label() 
        Me.cboEMail = New System.Windows.Forms.ComboBox() 
        Me.pbar1 = New System.Windows.Forms.ProgressBar() 
        Me.grpExperimentParameters = New System.Windows.Forms.GroupBox() 
        Me.grpAgentParameters = New System.Windows.Forms.GroupBox() 
        CType(Me.nudGenerations, 
System.ComponentModel.ISupportInitialize).BeginInit() 
        Me.grpIPDParameters.SuspendLayout() 
        CType(Me.nudReward4, 
System.ComponentModel.ISupportInitialize).BeginInit() 
        CType(Me.nudReward3, 
System.ComponentModel.ISupportInitialize).BeginInit() 
        CType(Me.nudReward2, 
System.ComponentModel.ISupportInitialize).BeginInit() 
        CType(Me.nudReward1, 
System.ComponentModel.ISupportInitialize).BeginInit() 
        CType(Me.nudNumberMoves, 
System.ComponentModel.ISupportInitialize).BeginInit() 
        CType(Me.nudReplications, 
System.ComponentModel.ISupportInitialize).BeginInit() 
        CType(Me.nudN, System.ComponentModel.ISupportInitialize).BeginInit() 
        CType(Me.nudThetaMNA, 
System.ComponentModel.ISupportInitialize).BeginInit() 
        CType(Me.nudProbPound, 
System.ComponentModel.ISupportInitialize).BeginInit() 
        Me.grpLearningParameters.SuspendLayout() 
        CType(Me.nudProbXPlor, 
System.ComponentModel.ISupportInitialize).BeginInit() 
        CType(Me.nudInitialFitness, 
System.ComponentModel.ISupportInitialize).BeginInit() 
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        CType(Me.nudInitialPredictionError, 
System.ComponentModel.ISupportInitialize).BeginInit() 
        CType(Me.nudInitialPrediction, 
System.ComponentModel.ISupportInitialize).BeginInit() 
        CType(Me.nudThetaSub, 
System.ComponentModel.ISupportInitialize).BeginInit() 
        CType(Me.nudDelta, 
System.ComponentModel.ISupportInitialize).BeginInit() 
        CType(Me.nudThetaDel, 
System.ComponentModel.ISupportInitialize).BeginInit() 
        CType(Me.nudMu, System.ComponentModel.ISupportInitialize).BeginInit() 
        CType(Me.nudChi, 
System.ComponentModel.ISupportInitialize).BeginInit() 
        CType(Me.nudThetaGA, 
System.ComponentModel.ISupportInitialize).BeginInit() 
        CType(Me.nudGamma, 
System.ComponentModel.ISupportInitialize).BeginInit() 
        CType(Me.nudNu, System.ComponentModel.ISupportInitialize).BeginInit() 
        CType(Me.nudEpsilon0, 
System.ComponentModel.ISupportInitialize).BeginInit() 
        CType(Me.nudAlpha, 
System.ComponentModel.ISupportInitialize).BeginInit() 
        CType(Me.nudBeta, 
System.ComponentModel.ISupportInitialize).BeginInit() 
        CType(Me.nudFreq, 
System.ComponentModel.ISupportInitialize).BeginInit() 
        Me.grpExperimentParameters.SuspendLayout() 
        Me.grpAgentParameters.SuspendLayout() 
        Me.SuspendLayout() 
        ' 
        'nudGenerations 
        ' 
        Me.nudGenerations.Location = New System.Drawing.Point(170, 46) 
        Me.nudGenerations.Maximum = New Decimal(New Integer() {100000000, 0, 
0, 0}) 
        Me.nudGenerations.Name = "nudGenerations" 
        Me.nudGenerations.Size = New System.Drawing.Size(100, 20) 
        Me.nudGenerations.TabIndex = 0 
        Me.nudGenerations.TextAlign = 
System.Windows.Forms.HorizontalAlignment.Right 
        Me.nudGenerations.ThousandsSeparator = True 
        Me.ToolTipN.SetToolTip(Me.nudGenerations, "Number of encounters 
between opponents; results in a new population of classifier" & _ 
        "s") 
        Me.nudGenerations.Value = New Decimal(New Integer() {200000, 0, 0, 
0}) 
        ' 
        'lblGenerations 
        ' 
        Me.lblGenerations.FlatStyle = System.Windows.Forms.FlatStyle.Flat 
        Me.lblGenerations.Location = New System.Drawing.Point(25, 53) 
        Me.lblGenerations.Name = "lblGenerations" 
        Me.lblGenerations.Size = New System.Drawing.Size(138, 13) 
        Me.lblGenerations.TabIndex = 1 
        Me.lblGenerations.Text = "Generations/Encounters" 
        Me.lblGenerations.TextAlign = 
System.Drawing.ContentAlignment.MiddleRight 
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        Me.ToolTipN.SetToolTip(Me.lblGenerations, "Number of encounters 
between opponents; each encounter results in a new populatio" & _ 
        "n of classifiers") 
        ' 
        'lblWhoseMoves 
        ' 
        Me.lblWhoseMoves.FlatStyle = System.Windows.Forms.FlatStyle.Flat 
        Me.lblWhoseMoves.Location = New System.Drawing.Point(18, 73) 
        Me.lblWhoseMoves.Name = "lblWhoseMoves" 
        Me.lblWhoseMoves.Size = New System.Drawing.Size(145, 19) 
        Me.lblWhoseMoves.TabIndex = 2 
        Me.lblWhoseMoves.Text = "Whose Moves" 
        Me.lblWhoseMoves.TextAlign = 
System.Drawing.ContentAlignment.MiddleRight 
        Me.ToolTipN.SetToolTip(Me.lblWhoseMoves, "Memory model - whose moves 
to remember") 
        ' 
        'btnQuit 
        ' 
        Me.btnQuit.DialogResult = System.Windows.Forms.DialogResult.Cancel 
        Me.btnQuit.Location = New System.Drawing.Point(406, 494) 
        Me.btnQuit.Name = "btnQuit" 
        Me.btnQuit.Size = New System.Drawing.Size(156, 51) 
        Me.btnQuit.TabIndex = 4 
        Me.btnQuit.Text = "Quit" 
        ' 
        'btnTest 
        ' 
        Me.btnTest.Location = New System.Drawing.Point(582, 494) 
        Me.btnTest.Name = "btnTest" 
        Me.btnTest.Size = New System.Drawing.Size(156, 51) 
        Me.btnTest.TabIndex = 5 
        Me.btnTest.Text = "Test" 
        ' 
        'cboWhoseMoves 
        ' 
        Me.cboWhoseMoves.Cursor = System.Windows.Forms.Cursors.Arrow 
        Me.cboWhoseMoves.DropDownStyle = 
System.Windows.Forms.ComboBoxStyle.DropDownList 
        Me.cboWhoseMoves.Items.AddRange(New Object() {"Mine Only", "Both", 
"Opponent Only"}) 
        Me.cboWhoseMoves.Location = New System.Drawing.Point(170, 73) 
        Me.cboWhoseMoves.Name = "cboWhoseMoves" 
        Me.cboWhoseMoves.Size = New System.Drawing.Size(100, 21) 
        Me.cboWhoseMoves.TabIndex = 6 
        Me.ToolTipN.SetToolTip(Me.cboWhoseMoves, "Specifies whether to 
remember both players' moves") 
        ' 
        'grpIPDParameters 
        ' 
        Me.grpIPDParameters.Controls.AddRange(New 
System.Windows.Forms.Control() {Me.cboGraduatedRewards, Me.Label1, 
Me.cboProblem, Me.lblGreater1, Me.lblGreater2, Me.nudReward4, Me.lblReward4, 
Me.lblGreater3, Me.nudReward3, Me.lblReward3, Me.nudReward2, Me.lblReward2, 
Me.nudReward1, Me.lblReward1, Me.lblWhoseMoves, Me.nudNumberMoves, 
Me.lblNumberMoves, Me.cboWhoseMoves, Me.lblGenerations, Me.nudGenerations, 
Me.lblOpponent, Me.cboOpponent}) 
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        Me.grpIPDParameters.Location = New System.Drawing.Point(400, 13) 
        Me.grpIPDParameters.Name = "grpIPDParameters" 
        Me.grpIPDParameters.Size = New System.Drawing.Size(364, 205) 
        Me.grpIPDParameters.TabIndex = 9 
        Me.grpIPDParameters.TabStop = False 
        Me.grpIPDParameters.Text = "IPD Parameters" 
        ' 
        'cboGraduatedRewards 
        ' 
        Me.cboGraduatedRewards.Cursor = System.Windows.Forms.Cursors.Arrow 
        Me.cboGraduatedRewards.DropDownStyle = 
System.Windows.Forms.ComboBoxStyle.DropDownList 
        Me.cboGraduatedRewards.Items.AddRange(New Object() {"Yes", "No"}) 
        Me.cboGraduatedRewards.Location = New System.Drawing.Point(170, 73) 
        Me.cboGraduatedRewards.Name = "cboGraduatedRewards" 
        Me.cboGraduatedRewards.Size = New System.Drawing.Size(100, 21) 
        Me.cboGraduatedRewards.TabIndex = 74 
        Me.ToolTipN.SetToolTip(Me.cboGraduatedRewards, "Specifies whether to 
have graduated rewards in 6-MUX") 
        ' 
        'Label1 
        ' 
        Me.Label1.FlatStyle = System.Windows.Forms.FlatStyle.Flat 
        Me.Label1.Location = New System.Drawing.Point(67, 27) 
        Me.Label1.Name = "Label1" 
        Me.Label1.Size = New System.Drawing.Size(96, 17) 
        Me.Label1.TabIndex = 72 
        Me.Label1.Text = "Type of Problem" 
        Me.Label1.TextAlign = System.Drawing.ContentAlignment.MiddleRight 
        Me.ToolTipN.SetToolTip(Me.Label1, "ThetaGA - is the GA threshhold - 
GA is applied in a set when the average time sin" & _ 
        "ce the last GA in the set is greater than ThetaGA, ranges from 25-
50") 
        ' 
        'cboProblem 
        ' 
        Me.cboProblem.DropDownStyle = 
System.Windows.Forms.ComboBoxStyle.DropDownList 
        Me.cboProblem.Items.AddRange(New Object() {"IPD", "6-MUX"}) 
        Me.cboProblem.Location = New System.Drawing.Point(170, 20) 
        Me.cboProblem.Name = "cboProblem" 
        Me.cboProblem.Size = New System.Drawing.Size(100, 21) 
        Me.cboProblem.TabIndex = 73 
        Me.ToolTipN.SetToolTip(Me.cboProblem, "Specifies whether to remember 
both players' moves") 
        ' 
        'lblGreater1 
        ' 
        Me.lblGreater1.Font = New System.Drawing.Font("Microsoft Sans Serif", 
21.75!, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, 
CType(0, Byte)) 
        Me.lblGreater1.Location = New System.Drawing.Point(91, 171) 
        Me.lblGreater1.Name = "lblGreater1" 
        Me.lblGreater1.Size = New System.Drawing.Size(22, 22) 
        Me.lblGreater1.TabIndex = 71 
        Me.lblGreater1.Text = ">" 
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        Me.lblGreater1.TextAlign = 
System.Drawing.ContentAlignment.MiddleCenter 
        ' 
        'lblGreater2 
        ' 
        Me.lblGreater2.Font = New System.Drawing.Font("Microsoft Sans Serif", 
21.75!, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, 
CType(0, Byte)) 
        Me.lblGreater2.Location = New System.Drawing.Point(163, 171) 
        Me.lblGreater2.Name = "lblGreater2" 
        Me.lblGreater2.Size = New System.Drawing.Size(22, 22) 
        Me.lblGreater2.TabIndex = 70 
        Me.lblGreater2.Text = ">" 
        Me.lblGreater2.TextAlign = 
System.Drawing.ContentAlignment.MiddleCenter 
        ' 
        'nudReward4 
        ' 
        Me.nudReward4.Location = New System.Drawing.Point(255, 171) 
        Me.nudReward4.Maximum = New Decimal(New Integer() {10, 0, 0, 0}) 
        Me.nudReward4.Name = "nudReward4" 
        Me.nudReward4.Size = New System.Drawing.Size(48, 20) 
        Me.nudReward4.TabIndex = 18 
        Me.nudReward4.TextAlign = 
System.Windows.Forms.HorizontalAlignment.Right 
        Me.ToolTipN.SetToolTip(Me.nudReward4, "Reward for cooperating when 
opponent defects") 
        ' 
        'lblReward4 
        ' 
        Me.lblReward4.Location = New System.Drawing.Point(248, 151) 
        Me.lblReward4.Name = "lblReward4" 
        Me.lblReward4.Size = New System.Drawing.Size(62, 20) 
        Me.lblReward4.TabIndex = 19 
        Me.lblReward4.Text = "Reward 4" 
        Me.lblReward4.TextAlign = 
System.Drawing.ContentAlignment.MiddleCenter 
        Me.ToolTipN.SetToolTip(Me.lblReward4, "Reward for cooperating when 
opponent defects") 
        ' 
        'lblGreater3 
        ' 
        Me.lblGreater3.Font = New System.Drawing.Font("Microsoft Sans Serif", 
21.75!, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, 
CType(0, Byte)) 
        Me.lblGreater3.Location = New System.Drawing.Point(230, 171) 
        Me.lblGreater3.Name = "lblGreater3" 
        Me.lblGreater3.Size = New System.Drawing.Size(22, 22) 
        Me.lblGreater3.TabIndex = 17 
        Me.lblGreater3.Text = ">" 
        Me.lblGreater3.TextAlign = 
System.Drawing.ContentAlignment.MiddleCenter 
        ' 
        'nudReward3 
        ' 
        Me.nudReward3.Location = New System.Drawing.Point(188, 171) 
        Me.nudReward3.Maximum = New Decimal(New Integer() {10, 0, 0, 0}) 
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        Me.nudReward3.Name = "nudReward3" 
        Me.nudReward3.Size = New System.Drawing.Size(42, 20) 
        Me.nudReward3.TabIndex = 15 
        Me.nudReward3.TextAlign = 
System.Windows.Forms.HorizontalAlignment.Right 
        Me.ToolTipN.SetToolTip(Me.nudReward3, "Reward for defecting when 
opponent also defects") 
        Me.nudReward3.Value = New Decimal(New Integer() {1, 0, 0, 0}) 
        ' 
        'lblReward3 
        ' 
        Me.lblReward3.Location = New System.Drawing.Point(176, 151) 
        Me.lblReward3.Name = "lblReward3" 
        Me.lblReward3.Size = New System.Drawing.Size(67, 20) 
        Me.lblReward3.TabIndex = 16 
        Me.lblReward3.Text = "Reward 3" 
        Me.lblReward3.TextAlign = 
System.Drawing.ContentAlignment.MiddleCenter 
        Me.ToolTipN.SetToolTip(Me.lblReward3, "Reward for defecting when 
opponent also defects") 
        ' 
        'nudReward2 
        ' 
        Me.nudReward2.Location = New System.Drawing.Point(115, 171) 
        Me.nudReward2.Maximum = New Decimal(New Integer() {10, 0, 0, 0}) 
        Me.nudReward2.Name = "nudReward2" 
        Me.nudReward2.Size = New System.Drawing.Size(43, 20) 
        Me.nudReward2.TabIndex = 12 
        Me.nudReward2.TextAlign = 
System.Windows.Forms.HorizontalAlignment.Right 
        Me.ToolTipN.SetToolTip(Me.nudReward2, "Reward for cooperating when 
opponent also cooperates") 
        Me.nudReward2.Value = New Decimal(New Integer() {3, 0, 0, 0}) 
        ' 
        'lblReward2 
        ' 
        Me.lblReward2.Location = New System.Drawing.Point(103, 151) 
        Me.lblReward2.Name = "lblReward2" 
        Me.lblReward2.Size = New System.Drawing.Size(60, 20) 
        Me.lblReward2.TabIndex = 13 
        Me.lblReward2.Text = "Reward 2" 
        Me.lblReward2.TextAlign = 
System.Drawing.ContentAlignment.MiddleCenter 
        Me.ToolTipN.SetToolTip(Me.lblReward2, "Reward for cooperating when 
opponent also cooperates") 
        ' 
        'nudReward1 
        ' 
        Me.nudReward1.Location = New System.Drawing.Point(37, 171) 
        Me.nudReward1.Maximum = New Decimal(New Integer() {10, 0, 0, 0}) 
        Me.nudReward1.Name = "nudReward1" 
        Me.nudReward1.Size = New System.Drawing.Size(50, 20) 
        Me.nudReward1.TabIndex = 9 
        Me.nudReward1.TextAlign = 
System.Windows.Forms.HorizontalAlignment.Right 
        Me.ToolTipN.SetToolTip(Me.nudReward1, "Reward for defecting when 
opponent cooperates") 
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        Me.nudReward1.Value = New Decimal(New Integer() {5, 0, 0, 0}) 
        ' 
        'lblReward1 
        ' 
        Me.lblReward1.Location = New System.Drawing.Point(30, 151) 
        Me.lblReward1.Name = "lblReward1" 
        Me.lblReward1.Size = New System.Drawing.Size(67, 20) 
        Me.lblReward1.TabIndex = 10 
        Me.lblReward1.Text = "Reward 1" 
        Me.lblReward1.TextAlign = 
System.Drawing.ContentAlignment.MiddleCenter 
        Me.ToolTipN.SetToolTip(Me.lblReward1, "Reward for defecting when 
opponent cooperates") 
        ' 
        'nudNumberMoves 
        ' 
        Me.nudNumberMoves.Location = New System.Drawing.Point(170, 98) 
        Me.nudNumberMoves.Name = "nudNumberMoves" 
        Me.nudNumberMoves.Size = New System.Drawing.Size(100, 20) 
        Me.nudNumberMoves.TabIndex = 21 
        Me.nudNumberMoves.TextAlign = 
System.Windows.Forms.HorizontalAlignment.Right 
        Me.ToolTipN.SetToolTip(Me.nudNumberMoves, "Specifies number of moves 
to remember") 
        Me.nudNumberMoves.Value = New Decimal(New Integer() {3, 0, 0, 0}) 
        ' 
        'lblNumberMoves 
        ' 
        Me.lblNumberMoves.FlatStyle = System.Windows.Forms.FlatStyle.Flat 
        Me.lblNumberMoves.Location = New System.Drawing.Point(30, 98) 
        Me.lblNumberMoves.Name = "lblNumberMoves" 
        Me.lblNumberMoves.Size = New System.Drawing.Size(133, 22) 
        Me.lblNumberMoves.TabIndex = 22 
        Me.lblNumberMoves.Text = "# Moves to Remember" 
        Me.lblNumberMoves.TextAlign = 
System.Drawing.ContentAlignment.MiddleRight 
        Me.ToolTipN.SetToolTip(Me.lblNumberMoves, "Memory model - how many 
moves to remember") 
        ' 
        'lblOpponent 
        ' 
        Me.lblOpponent.Location = New System.Drawing.Point(91, 125) 
        Me.lblOpponent.Name = "lblOpponent" 
        Me.lblOpponent.Size = New System.Drawing.Size(67, 20) 
        Me.lblOpponent.TabIndex = 66 
        Me.lblOpponent.Text = "Opponent" 
        Me.lblOpponent.TextAlign = 
System.Drawing.ContentAlignment.MiddleRight 
        Me.ToolTipN.SetToolTip(Me.lblOpponent, "Specifies opponent that 
learning agent competes against") 
        ' 
        'cboOpponent 
        ' 
        Me.cboOpponent.DropDownStyle = 
System.Windows.Forms.ComboBoxStyle.DropDownList 
        Me.cboOpponent.Items.AddRange(New Object() {"All", "DDD", "CCC", 
"RAND", "TFT", "TFTT", "TTFT"}) 
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        Me.cboOpponent.Location = New System.Drawing.Point(170, 125) 
        Me.cboOpponent.Name = "cboOpponent" 
        Me.cboOpponent.Size = New System.Drawing.Size(100, 21) 
        Me.cboOpponent.TabIndex = 67 
        Me.ToolTipN.SetToolTip(Me.cboOpponent, "Specifies opponent that 
learning agent competes against") 
        ' 
        'cboPseudoRandomness 
        ' 
        Me.cboPseudoRandomness.DropDownStyle = 
System.Windows.Forms.ComboBoxStyle.DropDownList 
        Me.cboPseudoRandomness.Items.AddRange(New Object() {"Constant Seed", 
"Time-Based Seed"}) 
        Me.cboPseudoRandomness.Location = New System.Drawing.Point(255, 112) 
        Me.cboPseudoRandomness.Name = "cboPseudoRandomness" 
        Me.cboPseudoRandomness.Size = New System.Drawing.Size(121, 21) 
        Me.cboPseudoRandomness.TabIndex = 62 
        Me.ToolTipN.SetToolTip(Me.cboPseudoRandomness, "Controls randomness 
of random number streams") 
        ' 
        'lblPseudoRandomness 
        ' 
        Me.lblPseudoRandomness.Location = New System.Drawing.Point(176, 112) 
        Me.lblPseudoRandomness.Name = "lblPseudoRandomness" 
        Me.lblPseudoRandomness.Size = New System.Drawing.Size(79, 20) 
        Me.lblPseudoRandomness.TabIndex = 61 
        Me.lblPseudoRandomness.Text = "Randomness" 
        Me.lblPseudoRandomness.TextAlign = 
System.Drawing.ContentAlignment.MiddleRight 
        Me.ToolTipN.SetToolTip(Me.lblPseudoRandomness, "Controls randomness 
of random number streams") 
        ' 
        'lblReplications 
        ' 
        Me.lblReplications.Location = New System.Drawing.Point(230, 27) 
        Me.lblReplications.Name = "lblReplications" 
        Me.lblReplications.Size = New System.Drawing.Size(80, 19) 
        Me.lblReplications.TabIndex = 62 
        Me.lblReplications.Text = "Replications" 
        Me.lblReplications.TextAlign = 
System.Drawing.ContentAlignment.MiddleRight 
        Me.ToolTipN.SetToolTip(Me.lblReplications, "Number of experimental 
replications") 
        ' 
        'nudReplications 
        ' 
        Me.nudReplications.BackColor = System.Drawing.Color.White 
        Me.nudReplications.Location = New System.Drawing.Point(315, 27) 
        Me.nudReplications.Maximum = New Decimal(New Integer() {1000, 0, 0, 
0}) 
        Me.nudReplications.Minimum = New Decimal(New Integer() {1, 0, 0, 0}) 
        Me.nudReplications.Name = "nudReplications" 
        Me.nudReplications.Size = New System.Drawing.Size(64, 20) 
        Me.nudReplications.TabIndex = 61 
        Me.nudReplications.TextAlign = 
System.Windows.Forms.HorizontalAlignment.Right 
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        Me.ToolTipN.SetToolTip(Me.nudReplications, "Number of experimental 
replications") 
        Me.nudReplications.Value = New Decimal(New Integer() {60, 0, 0, 0}) 
        ' 
        'cboCrankitUp 
        ' 
        Me.cboCrankitUp.DropDownStyle = 
System.Windows.Forms.ComboBoxStyle.DropDownList 
        Me.cboCrankitUp.Items.AddRange(New Object() {"Yes", "No"}) 
        Me.cboCrankitUp.Location = New System.Drawing.Point(315, 53) 
        Me.cboCrankitUp.Name = "cboCrankitUp" 
        Me.cboCrankitUp.Size = New System.Drawing.Size(64, 21) 
        Me.cboCrankitUp.TabIndex = 62 
        Me.ToolTipN.SetToolTip(Me.cboCrankitUp, "Whether to allocate more 
system resources to program execution") 
        ' 
        'lblCrankitUp 
        ' 
        Me.lblCrankitUp.Location = New System.Drawing.Point(230, 58) 
        Me.lblCrankitUp.Name = "lblCrankitUp" 
        Me.lblCrankitUp.Size = New System.Drawing.Size(80, 18) 
        Me.lblCrankitUp.TabIndex = 61 
        Me.lblCrankitUp.Text = "Crank it Up" 
        Me.lblCrankitUp.TextAlign = 
System.Drawing.ContentAlignment.MiddleRight 
        Me.ToolTipN.SetToolTip(Me.lblCrankitUp, "Whether to allocate more 
system resources to program execution") 
        ' 
        'lblPopulationSize 
        ' 
        Me.lblPopulationSize.BackColor = System.Drawing.Color.Transparent 
        Me.lblPopulationSize.Font = New System.Drawing.Font("Microsoft Sans 
Serif", 9.0!, System.Drawing.FontStyle.Italic, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.lblPopulationSize.ImageAlign = 
System.Drawing.ContentAlignment.MiddleRight 
        Me.lblPopulationSize.Location = New System.Drawing.Point(55, 27) 
        Me.lblPopulationSize.Name = "lblPopulationSize" 
        Me.lblPopulationSize.Size = New System.Drawing.Size(24, 22) 
        Me.lblPopulationSize.TabIndex = 22 
        Me.lblPopulationSize.Text = "N" 
        Me.lblPopulationSize.TextAlign = 
System.Drawing.ContentAlignment.MiddleRight 
        Me.ToolTipN.SetToolTip(Me.lblPopulationSize, "N - Max population size 
in XCS (should be large enough so that covering occurs on" & _ 
        "ly at the beginning of a run); the pop size in T-LCS") 
        ' 
        'nudN 
        ' 
        Me.nudN.BackColor = System.Drawing.Color.White 
        Me.nudN.Cursor = System.Windows.Forms.Cursors.Default 
        Me.nudN.Increment = New Decimal(New Integer() {2, 0, 0, 0}) 
        Me.nudN.Location = New System.Drawing.Point(85, 27) 
        Me.nudN.Maximum = New Decimal(New Integer() {10000, 0, 0, 0}) 
        Me.nudN.Minimum = New Decimal(New Integer() {2, 0, 0, 0}) 
        Me.nudN.Name = "nudN" 
        Me.nudN.ReadOnly = True 
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        Me.nudN.Size = New System.Drawing.Size(103, 20) 
        Me.nudN.TabIndex = 21 
        Me.nudN.TextAlign = System.Windows.Forms.HorizontalAlignment.Right 
        Me.nudN.ThousandsSeparator = True 
        Me.ToolTipN.SetToolTip(Me.nudN, """Maximum population size"" & vbcr & 
""Second Line""") 
        Me.nudN.Value = New Decimal(New Integer() {300, 0, 0, 0}) 
        ' 
        'nudThetaMNA 
        ' 
        Me.nudThetaMNA.BackColor = System.Drawing.SystemColors.Control 
        Me.nudThetaMNA.Location = New System.Drawing.Point(273, 211) 
        Me.nudThetaMNA.Maximum = New Decimal(New Integer() {50, 0, 0, 0}) 
        Me.nudThetaMNA.Name = "nudThetaMNA" 
        Me.nudThetaMNA.ReadOnly = True 
        Me.nudThetaMNA.Size = New System.Drawing.Size(101, 20) 
        Me.nudThetaMNA.TabIndex = 23 
        Me.nudThetaMNA.TextAlign = 
System.Windows.Forms.HorizontalAlignment.Right 
        Me.nudThetaMNA.Value = New Decimal(New Integer() {2, 0, 0, 0}) 
        ' 
        'lblProbPound 
        ' 
        Me.lblProbPound.Font = New System.Drawing.Font("Microsoft Sans 
Serif", 9.0!, System.Drawing.FontStyle.Italic, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.lblProbPound.Location = New System.Drawing.Point(248, 79) 
        Me.lblProbPound.Name = "lblProbPound" 
        Me.lblProbPound.Size = New System.Drawing.Size(19, 19) 
        Me.lblProbPound.TabIndex = 26 
        Me.lblProbPound.Text = "P" 
        Me.lblProbPound.TextAlign = 
System.Drawing.ContentAlignment.MiddleRight 
        Me.ToolTipN.SetToolTip(Me.lblProbPound, "Prob(#) - is the probability 
of using a # in one attribute in C when covering, ""c" & _ 
        "ould be around 0.33""") 
        ' 
        'nudProbPound 
        ' 
        Me.nudProbPound.BackColor = System.Drawing.SystemColors.Control 
        Me.nudProbPound.DecimalPlaces = 2 
        Me.nudProbPound.Increment = New Decimal(New Integer() {1, 0, 0, 
131072}) 
        Me.nudProbPound.Location = New System.Drawing.Point(273, 79) 
        Me.nudProbPound.Maximum = New Decimal(New Integer() {1, 0, 0, 0}) 
        Me.nudProbPound.Name = "nudProbPound" 
        Me.nudProbPound.ReadOnly = True 
        Me.nudProbPound.Size = New System.Drawing.Size(101, 20) 
        Me.nudProbPound.TabIndex = 25 
        Me.nudProbPound.TextAlign = 
System.Windows.Forms.HorizontalAlignment.Right 
        Me.ToolTipN.SetToolTip(Me.nudProbPound, "Probability of using a # in 
a given allele, ""could be around 0.33""") 
        Me.nudProbPound.Value = New Decimal(New Integer() {33, 0, 0, 131072}) 
        ' 
        'grpLearningParameters 
        ' 

 
 

230



 

        Me.grpLearningParameters.Controls.AddRange(New 
System.Windows.Forms.Control() {Me.lblCitation, Me.Label23, Me.Label21, 
Me.Label22, Me.Label7, Me.Label19, Me.Label20, Me.Label17, Me.Label18, 
Me.Label8, Me.Label14, Me.Label16, Me.Label11, Me.Label9, Me.Label3, 
Me.Label2, Me.lblEpsilon0, Me.Label13, Me.Label6, Me.Label5, Me.Label4, 
Me.cboDoASSub, Me.lblPopulationSize, Me.lblDoASSub, Me.nudProbXPlor, 
Me.nudInitialFitness, Me.nudInitialPredictionError, Me.lblInitialPrediction, 
Me.nudInitialPrediction, Me.nudThetaSub, Me.nudDelta, Me.nudThetaDel, 
Me.nudMu, Me.nudChi, Me.nudThetaGA, Me.nudGamma, Me.nudNu, Me.lblNu, 
Me.nudEpsilon0, Me.lblAlpha, Me.nudAlpha, Me.lblBeta, Me.nudBeta, Me.nudN, 
Me.lblProbPound, Me.nudProbPound, Me.nudThetaMNA, Me.lblDoGASub, 
Me.cboDoGASub, Me.Label10, Me.Label12, Me.Label15}) 
        Me.grpLearningParameters.Location = New System.Drawing.Point(7, 9) 
        Me.grpLearningParameters.Name = "grpLearningParameters" 
        Me.grpLearningParameters.Size = New System.Drawing.Size(388, 379) 
        Me.grpLearningParameters.TabIndex = 27 
        Me.grpLearningParameters.TabStop = False 
        Me.grpLearningParameters.Text = "Learning Parameters" 
        ' 
        'lblCitation 
        ' 
        Me.lblCitation.Location = New System.Drawing.Point(12, 296) 
        Me.lblCitation.Name = "lblCitation" 
        Me.lblCitation.Size = New System.Drawing.Size(364, 73) 
        Me.lblCitation.TabIndex = 125 
        Me.lblCitation.Text = "Label24" 
        ' 
        'Label23 
        ' 
        Me.Label23.Font = New System.Drawing.Font("Microsoft Sans Serif", 
4.0!, System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point, 
CType(0, Byte)) 
        Me.Label23.Location = New System.Drawing.Point(60, 73) 
        Me.Label23.Name = "Label23" 
        Me.Label23.Size = New System.Drawing.Size(19, 6) 
        Me.Label23.TabIndex = 124 
        Me.Label23.Text = "XCS" 
        ' 
        'Label21 
        ' 
        Me.Label21.Font = New System.Drawing.Font("Microsoft Sans Serif", 
5.0!, System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point, 
CType(0, Byte)) 
        Me.Label21.Location = New System.Drawing.Point(248, 223) 
        Me.Label21.Name = "Label21" 
        Me.Label21.Size = New System.Drawing.Size(25, 14) 
        Me.Label21.TabIndex = 123 
        Me.Label21.Text = "MNA" 
        Me.ToolTipN.SetToolTip(Me.Label21, "ThetaMNA - specifies the minimal 
number of actions that must be present in a matc" & _ 
        "h set [M], or else covering will occur, value is problem specific") 
        ' 
        'Label22 
        ' 
        Me.Label22.Font = New System.Drawing.Font("Symbol", 10.0!, 
System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point, CType(2, 
Byte)) 
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        Me.Label22.ImageAlign = System.Drawing.ContentAlignment.TopLeft 
        Me.Label22.Location = New System.Drawing.Point(237, 211) 
        Me.Label22.Name = "Label22" 
        Me.Label22.Size = New System.Drawing.Size(18, 19) 
        Me.Label22.TabIndex = 122 
        Me.Label22.Text = "q" 
        Me.Label22.TextAlign = System.Drawing.ContentAlignment.MiddleCenter 
        Me.ToolTipN.SetToolTip(Me.Label22, "ThetaMNA - specifies the minimal 
number of actions that must be present in a matc" & _ 
        "h set [M], or else covering will occur, value is problem specific") 
        ' 
        'Label7 
        ' 
        Me.Label7.Font = New System.Drawing.Font("Microsoft Sans Serif", 
5.0!, System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point, 
CType(0, Byte)) 
        Me.Label7.Location = New System.Drawing.Point(261, 145) 
        Me.Label7.Name = "Label7" 
        Me.Label7.Size = New System.Drawing.Size(12, 13) 
        Me.Label7.TabIndex = 121 
        Me.Label7.Text = "I" 
        Me.ToolTipN.SetToolTip(Me.Label7, "Epsilon(I) - the initial 
prediction error in new classifiers, ""very small, essent" & _ 
        "ially zero""") 
        ' 
        'Label19 
        ' 
        Me.Label19.Font = New System.Drawing.Font("Microsoft Sans Serif", 
5.0!, System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point, 
CType(0, Byte)) 
        Me.Label19.Location = New System.Drawing.Point(248, 198) 
        Me.Label19.Name = "Label19" 
        Me.Label19.Size = New System.Drawing.Size(25, 13) 
        Me.Label19.TabIndex = 120 
        Me.Label19.Text = "explr" 
        Me.ToolTipN.SetToolTip(Me.Label19, "Prob(Expl) - specifies the 
probability during action selection of choosing the ac" & _ 
        "tion uniform randomly, ""could be 0.5, but depends""") 
        ' 
        'Label20 
        ' 
        Me.Label20.Font = New System.Drawing.Font("Microsoft Sans Serif", 
9.0!, System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point, 
CType(0, Byte)) 
        Me.Label20.Location = New System.Drawing.Point(237, 185) 
        Me.Label20.Name = "Label20" 
        Me.Label20.Size = New System.Drawing.Size(18, 19) 
        Me.Label20.TabIndex = 119 
        Me.Label20.Text = "p" 
        Me.Label20.TextAlign = System.Drawing.ContentAlignment.MiddleCenter 
        Me.ToolTipN.SetToolTip(Me.Label20, "Prob(Expl) - specifies the 
probability during action selection of choosing the ac" & _ 
        "tion uniform randomly, ""could be 0.5, but depends""") 
        ' 
        'Label17 
        ' 
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        Me.Label17.Font = New System.Drawing.Font("Microsoft Sans Serif", 
5.0!, System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point, 
CType(0, Byte)) 
        Me.Label17.Location = New System.Drawing.Point(261, 171) 
        Me.Label17.Name = "Label17" 
        Me.Label17.Size = New System.Drawing.Size(12, 14) 
        Me.Label17.TabIndex = 118 
        Me.Label17.Text = "I" 
        Me.ToolTipN.SetToolTip(Me.Label17, "Fitness(I) - the initial fitness 
in new classifiers, ""very small, essentially zer" & _ 
        "o""") 
        ' 
        'Label18 
        ' 
        Me.Label18.Font = New System.Drawing.Font("Microsoft Sans Serif", 
9.0!, System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point, 
CType(0, Byte)) 
        Me.Label18.Location = New System.Drawing.Point(248, 165) 
        Me.Label18.Name = "Label18" 
        Me.Label18.Size = New System.Drawing.Size(19, 13) 
        Me.Label18.TabIndex = 117 
        Me.Label18.Text = "f" 
        Me.Label18.TextAlign = System.Drawing.ContentAlignment.MiddleCenter 
        Me.ToolTipN.SetToolTip(Me.Label18, "Fitness(I) - the initial fitness 
in new classifiers, ""very small, essentially zer" & _ 
        "o""") 
        ' 
        'Label8 
        ' 
        Me.Label8.Font = New System.Drawing.Font("Symbol", 10.0!, 
System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point, CType(2, 
Byte)) 
        Me.Label8.Location = New System.Drawing.Point(248, 132) 
        Me.Label8.Name = "Label8" 
        Me.Label8.Size = New System.Drawing.Size(13, 19) 
        Me.Label8.TabIndex = 115 
        Me.Label8.Text = "e" 
        Me.Label8.TextAlign = System.Drawing.ContentAlignment.MiddleRight 
        Me.ToolTipN.SetToolTip(Me.Label8, "Epsilon(I) - the initial 
prediction error in new classifiers, ""very small, essent" & _ 
        "ially zero""") 
        ' 
        'Label14 
        ' 
        Me.Label14.Font = New System.Drawing.Font("Microsoft Sans Serif", 
5.0!, System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point, 
CType(0, Byte)) 
        Me.Label14.Location = New System.Drawing.Point(255, 66) 
        Me.Label14.Name = "Label14" 
        Me.Label14.Size = New System.Drawing.Size(18, 13) 
        Me.Label14.TabIndex = 114 
        Me.Label14.Text = "sub" 
        Me.ToolTipN.SetToolTip(Me.Label14, "ThetaSub - is the subsumption 
threshold - the experience of a classifier must be " & _ 
        "greater than ThetaSub in order to be able to subsume another 
classifier, ""could " & _ 
        "be about 20""") 
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        ' 
        'Label16 
        ' 
        Me.Label16.Font = New System.Drawing.Font("Symbol", 10.0!, 
System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point, CType(2, 
Byte)) 
        Me.Label16.Location = New System.Drawing.Point(243, 53) 
        Me.Label16.Name = "Label16" 
        Me.Label16.Size = New System.Drawing.Size(18, 20) 
        Me.Label16.TabIndex = 113 
        Me.Label16.Text = "q" 
        Me.Label16.TextAlign = System.Drawing.ContentAlignment.MiddleCenter 
        Me.ToolTipN.SetToolTip(Me.Label16, "ThetaSub - is the subsumption 
threshold - the experience of a classifier must be " & _ 
        "greater than ThetaSub in order to be able to subsume another 
classifier, ""could " & _ 
        "be about 20""") 
        ' 
        'Label11 
        ' 
        Me.Label11.Font = New System.Drawing.Font("Microsoft Sans Serif", 
5.0!, System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point, 
CType(0, Byte)) 
        Me.Label11.Location = New System.Drawing.Point(261, 118) 
        Me.Label11.Name = "Label11" 
        Me.Label11.Size = New System.Drawing.Size(12, 14) 
        Me.Label11.TabIndex = 112 
        Me.Label11.Text = "I" 
        Me.ToolTipN.SetToolTip(Me.Label11, "Pred(I) - the initial prediction 
in new classifiers, ""very small, essentially zer" & _ 
        "o""") 
        ' 
        'Label9 
        ' 
        Me.Label9.Font = New System.Drawing.Font("Microsoft Sans Serif", 
5.0!, System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point, 
CType(0, Byte)) 
        Me.Label9.Location = New System.Drawing.Point(261, 92) 
        Me.Label9.Name = "Label9" 
        Me.Label9.Size = New System.Drawing.Size(12, 6) 
        Me.Label9.TabIndex = 111 
        Me.Label9.Text = "#" 
        Me.ToolTipN.SetToolTip(Me.Label9, "Prob(#) - is the probability of 
using a # in one attribute in C when covering, ""c" & _ 
        "ould be around 0.33""") 
        ' 
        'Label3 
        ' 
        Me.Label3.Font = New System.Drawing.Font("Symbol", 10.0!, 
System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point, CType(2, 
Byte)) 
        Me.Label3.Location = New System.Drawing.Point(248, 27) 
        Me.Label3.Name = "Label3" 
        Me.Label3.Size = New System.Drawing.Size(19, 19) 
        Me.Label3.TabIndex = 108 
        Me.Label3.Text = "d" 
        Me.Label3.TextAlign = System.Drawing.ContentAlignment.MiddleRight 
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        Me.ToolTipN.SetToolTip(Me.Label3, "Delta - specifies the fraction of 
the mean fitness in [P] below which the fitness" & _ 
        " of a classifier may be considered in its probability of deletion, 
typically 0.1" & _ 
        "") 
        ' 
        'Label2 
        ' 
        Me.Label2.Font = New System.Drawing.Font("Microsoft Sans Serif", 
4.0!, System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point, 
CType(0, Byte)) 
        Me.Label2.Location = New System.Drawing.Point(73, 118) 
        Me.Label2.Name = "Label2" 
        Me.Label2.Size = New System.Drawing.Size(12, 7) 
        Me.Label2.TabIndex = 98 
        Me.Label2.Text = "0" 
        Me.ToolTipN.SetToolTip(Me.Label2, "Epsilon - Used in calculating the 
fitness of a classifier, typically 1% of max re" & _ 
        "ward") 
        ' 
        'lblEpsilon0 
        ' 
        Me.lblEpsilon0.Font = New System.Drawing.Font("Symbol", 10.0!, 
System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point, CType(2, 
Byte)) 
        Me.lblEpsilon0.Location = New System.Drawing.Point(60, 105) 
        Me.lblEpsilon0.Name = "lblEpsilon0" 
        Me.lblEpsilon0.Size = New System.Drawing.Size(13, 20) 
        Me.lblEpsilon0.TabIndex = 40 
        Me.lblEpsilon0.Text = "e" 
        Me.lblEpsilon0.TextAlign = 
System.Drawing.ContentAlignment.MiddleRight 
        Me.ToolTipN.SetToolTip(Me.lblEpsilon0, "Epsilon - Used in calculating 
the fitness of a classifier, typically 1% of max re" & _ 
        "ward") 
        ' 
        'Label13 
        ' 
        Me.Label13.Font = New System.Drawing.Font("Microsoft Sans Serif", 
5.0!, System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point, 
CType(0, Byte)) 
        Me.Label13.Location = New System.Drawing.Point(67, 276) 
        Me.Label13.Name = "Label13" 
        Me.Label13.Size = New System.Drawing.Size(18, 14) 
        Me.Label13.TabIndex = 107 
        Me.Label13.Text = "del" 
        Me.ToolTipN.SetToolTip(Me.Label13, "ThetaDel - is the deletion 
threshold - if the experience of a classifier is great" & _ 
        "er than ThetaDel, its fitness may be considered in its probability 
of deletion, " & _ 
        """could be about 20""") 
        ' 
        'Label6 
        ' 
        Me.Label6.Font = New System.Drawing.Font("Symbol", 10.0!, 
System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point, CType(2, 
Byte)) 
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        Me.Label6.Location = New System.Drawing.Point(60, 237) 
        Me.Label6.Name = "Label6" 
        Me.Label6.Size = New System.Drawing.Size(19, 20) 
        Me.Label6.TabIndex = 102 
        Me.Label6.Text = "m" 
        Me.Label6.TextAlign = System.Drawing.ContentAlignment.MiddleRight 
        Me.ToolTipN.SetToolTip(Me.Label6, "Mu - specifies the probability of 
mutating an allele in the offspring, ranges fro" & _ 
        "m 0.01-0.05") 
        ' 
        'Label5 
        ' 
        Me.Label5.Font = New System.Drawing.Font("Symbol", 10.0!, 
System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point, CType(2, 
Byte)) 
        Me.Label5.Location = New System.Drawing.Point(60, 211) 
        Me.Label5.Name = "Label5" 
        Me.Label5.Size = New System.Drawing.Size(19, 19) 
        Me.Label5.TabIndex = 101 
        Me.Label5.Text = "c" 
        Me.Label5.TextAlign = System.Drawing.ContentAlignment.MiddleRight 
        Me.ToolTipN.SetToolTip(Me.Label5, "Chi - is the probability of 
applying crossover in the GA, ranges from 0.5-1.0") 
        ' 
        'Label4 
        ' 
        Me.Label4.Font = New System.Drawing.Font("Symbol", 10.0!, 
System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point, CType(2, 
Byte)) 
        Me.Label4.Location = New System.Drawing.Point(67, 158) 
        Me.Label4.Name = "Label4" 
        Me.Label4.Size = New System.Drawing.Size(12, 20) 
        Me.Label4.TabIndex = 100 
        Me.Label4.Text = "g" 
        Me.Label4.TextAlign = System.Drawing.ContentAlignment.MiddleRight 
        Me.ToolTipN.SetToolTip(Me.Label4, "Gamma - Discount factor used (in 
multi-step problems) in updating classifier pred" & _ 
        "ictions, typically 0.71") 
        ' 
        'cboDoASSub 
        ' 
        Me.cboDoASSub.DropDownStyle = 
System.Windows.Forms.ComboBoxStyle.DropDownList 
        Me.cboDoASSub.Items.AddRange(New Object() {"False", "True"}) 
        Me.cboDoASSub.Location = New System.Drawing.Point(273, 263) 
        Me.cboDoASSub.Name = "cboDoASSub" 
        Me.cboDoASSub.Size = New System.Drawing.Size(101, 21) 
        Me.cboDoASSub.TabIndex = 97 
        Me.ToolTipN.SetToolTip(Me.cboDoASSub, "To be changed") 
        ' 
        'lblDoASSub 
        ' 
        Me.lblDoASSub.Font = New System.Drawing.Font("Microsoft Sans Serif", 
8.0!, System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point, 
CType(0, Byte)) 
        Me.lblDoASSub.Location = New System.Drawing.Point(206, 270) 
        Me.lblDoASSub.Name = "lblDoASSub" 

 
 

236



 

        Me.lblDoASSub.Size = New System.Drawing.Size(61, 13) 
        Me.lblDoASSub.TabIndex = 59 
        Me.lblDoASSub.Text = "doASSub" 
        Me.lblDoASSub.TextAlign = System.Drawing.ContentAlignment.MiddleRight 
        Me.ToolTipN.SetToolTip(Me.lblDoASSub, "DoASSub - Boolean parameter 
that specifies if action sets are to be tested for su" & _ 
        "bsuming classifiers") 
        ' 
        'nudProbXPlor 
        ' 
        Me.nudProbXPlor.BackColor = System.Drawing.SystemColors.Control 
        Me.nudProbXPlor.DecimalPlaces = 2 
        Me.nudProbXPlor.Increment = New Decimal(New Integer() {1, 0, 0, 
131072}) 
        Me.nudProbXPlor.Location = New System.Drawing.Point(273, 185) 
        Me.nudProbXPlor.Maximum = New Decimal(New Integer() {1, 0, 0, 0}) 
        Me.nudProbXPlor.Name = "nudProbXPlor" 
        Me.nudProbXPlor.ReadOnly = True 
        Me.nudProbXPlor.Size = New System.Drawing.Size(101, 20) 
        Me.nudProbXPlor.TabIndex = 57 
        Me.nudProbXPlor.TextAlign = 
System.Windows.Forms.HorizontalAlignment.Right 
        Me.ToolTipN.SetToolTip(Me.nudProbXPlor, "Specifies the probability 
during action selection of choosing the action uniform " & _ 
        "randomly, ""could be 0.5, but depends""") 
        Me.nudProbXPlor.Value = New Decimal(New Integer() {5, 0, 0, 65536}) 
        ' 
        'nudInitialFitness 
        ' 
        Me.nudInitialFitness.BackColor = System.Drawing.SystemColors.Control 
        Me.nudInitialFitness.DecimalPlaces = 2 
        Me.nudInitialFitness.Increment = New Decimal(New Integer() {1, 0, 0, 
131072}) 
        Me.nudInitialFitness.Location = New System.Drawing.Point(273, 158) 
        Me.nudInitialFitness.Maximum = New Decimal(New Integer() {1, 0, 0, 
0}) 
        Me.nudInitialFitness.Name = "nudInitialFitness" 
        Me.nudInitialFitness.ReadOnly = True 
        Me.nudInitialFitness.Size = New System.Drawing.Size(101, 20) 
        Me.nudInitialFitness.TabIndex = 55 
        Me.nudInitialFitness.TextAlign = 
System.Windows.Forms.HorizontalAlignment.Right 
        Me.nudInitialFitness.Value = New Decimal(New Integer() {1, 0, 0, 
131072}) 
        ' 
        'nudInitialPredictionError 
        ' 
        Me.nudInitialPredictionError.BackColor = 
System.Drawing.SystemColors.Control 
        Me.nudInitialPredictionError.DecimalPlaces = 2 
        Me.nudInitialPredictionError.Increment = New Decimal(New Integer() 
{1, 0, 0, 131072}) 
        Me.nudInitialPredictionError.Location = New System.Drawing.Point(273, 
132) 
        Me.nudInitialPredictionError.Maximum = New Decimal(New Integer() {1, 
0, 0, 0}) 
        Me.nudInitialPredictionError.Name = "nudInitialPredictionError" 
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        Me.nudInitialPredictionError.ReadOnly = True 
        Me.nudInitialPredictionError.Size = New System.Drawing.Size(101, 20) 
        Me.nudInitialPredictionError.TabIndex = 53 
        Me.nudInitialPredictionError.TextAlign = 
System.Windows.Forms.HorizontalAlignment.Right 
        Me.nudInitialPredictionError.Value = New Decimal(New Integer() {1, 0, 
0, 131072}) 
        ' 
        'lblInitialPrediction 
        ' 
        Me.lblInitialPrediction.Font = New System.Drawing.Font("Microsoft 
Sans Serif", 9.0!, System.Drawing.FontStyle.Italic, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte)) 
        Me.lblInitialPrediction.Location = New System.Drawing.Point(248, 105) 
        Me.lblInitialPrediction.Name = "lblInitialPrediction" 
        Me.lblInitialPrediction.Size = New System.Drawing.Size(19, 20) 
        Me.lblInitialPrediction.TabIndex = 52 
        Me.lblInitialPrediction.Text = "p" 
        Me.lblInitialPrediction.TextAlign = 
System.Drawing.ContentAlignment.MiddleCenter 
        Me.ToolTipN.SetToolTip(Me.lblInitialPrediction, "Pred(I) - the 
initial prediction in new classifiers, ""very small, essentially zer" & _ 
        "o""") 
        ' 
        'nudInitialPrediction 
        ' 
        Me.nudInitialPrediction.BackColor = 
System.Drawing.SystemColors.Control 
        Me.nudInitialPrediction.DecimalPlaces = 2 
        Me.nudInitialPrediction.Increment = New Decimal(New Integer() {1, 0, 
0, 131072}) 
        Me.nudInitialPrediction.Location = New System.Drawing.Point(273, 105) 
        Me.nudInitialPrediction.Maximum = New Decimal(New Integer() {10, 0, 
0, 0}) 
        Me.nudInitialPrediction.Name = "nudInitialPrediction" 
        Me.nudInitialPrediction.ReadOnly = True 
        Me.nudInitialPrediction.Size = New System.Drawing.Size(101, 20) 
        Me.nudInitialPrediction.TabIndex = 51 
        Me.nudInitialPrediction.TextAlign = 
System.Windows.Forms.HorizontalAlignment.Right 
        Me.nudInitialPrediction.Value = New Decimal(New Integer() {1, 0, 0, 
131072}) 
        ' 
        'nudThetaSub 
        ' 
        Me.nudThetaSub.BackColor = System.Drawing.SystemColors.Control 
        Me.nudThetaSub.Location = New System.Drawing.Point(273, 53) 
        Me.nudThetaSub.Minimum = New Decimal(New Integer() {1, 0, 0, 0}) 
        Me.nudThetaSub.Name = "nudThetaSub" 
        Me.nudThetaSub.ReadOnly = True 
        Me.nudThetaSub.Size = New System.Drawing.Size(101, 20) 
        Me.nudThetaSub.TabIndex = 49 
        Me.nudThetaSub.TextAlign = 
System.Windows.Forms.HorizontalAlignment.Right 
        Me.nudThetaSub.Value = New Decimal(New Integer() {20, 0, 0, 0}) 
        ' 
        'nudDelta 
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        ' 
        Me.nudDelta.BackColor = System.Drawing.SystemColors.Control 
        Me.nudDelta.DecimalPlaces = 2 
        Me.nudDelta.Increment = New Decimal(New Integer() {1, 0, 0, 131072}) 
        Me.nudDelta.Location = New System.Drawing.Point(273, 27) 
        Me.nudDelta.Maximum = New Decimal(New Integer() {1, 0, 0, 0}) 
        Me.nudDelta.Minimum = New Decimal(New Integer() {1, 0, 0, 65536}) 
        Me.nudDelta.Name = "nudDelta" 
        Me.nudDelta.ReadOnly = True 
        Me.nudDelta.Size = New System.Drawing.Size(101, 20) 
        Me.nudDelta.TabIndex = 47 
        Me.nudDelta.TextAlign = 
System.Windows.Forms.HorizontalAlignment.Right 
        Me.nudDelta.Value = New Decimal(New Integer() {1, 0, 0, 65536}) 
        ' 
        'nudThetaDel 
        ' 
        Me.nudThetaDel.BackColor = System.Drawing.SystemColors.Control 
        Me.nudThetaDel.Location = New System.Drawing.Point(85, 263) 
        Me.nudThetaDel.Minimum = New Decimal(New Integer() {1, 0, 0, 0}) 
        Me.nudThetaDel.Name = "nudThetaDel" 
        Me.nudThetaDel.ReadOnly = True 
        Me.nudThetaDel.Size = New System.Drawing.Size(103, 20) 
        Me.nudThetaDel.TabIndex = 45 
        Me.nudThetaDel.TextAlign = 
System.Windows.Forms.HorizontalAlignment.Right 
        Me.nudThetaDel.Value = New Decimal(New Integer() {20, 0, 0, 0}) 
        ' 
        'nudMu 
        ' 
        Me.nudMu.BackColor = System.Drawing.SystemColors.Control 
        Me.nudMu.DecimalPlaces = 2 
        Me.nudMu.Increment = New Decimal(New Integer() {1, 0, 0, 131072}) 
        Me.nudMu.Location = New System.Drawing.Point(85, 237) 
        Me.nudMu.Maximum = New Decimal(New Integer() {1, 0, 0, 0}) 
        Me.nudMu.Name = "nudMu" 
        Me.nudMu.ReadOnly = True 
        Me.nudMu.Size = New System.Drawing.Size(103, 20) 
        Me.nudMu.TabIndex = 43 
        Me.nudMu.TextAlign = System.Windows.Forms.HorizontalAlignment.Right 
        Me.nudMu.Value = New Decimal(New Integer() {1, 0, 0, 131072}) 
        ' 
        'nudChi 
        ' 
        Me.nudChi.BackColor = System.Drawing.SystemColors.Control 
        Me.nudChi.DecimalPlaces = 2 
        Me.nudChi.Increment = New Decimal(New Integer() {1, 0, 0, 131072}) 
        Me.nudChi.Location = New System.Drawing.Point(85, 211) 
        Me.nudChi.Maximum = New Decimal(New Integer() {1, 0, 0, 0}) 
        Me.nudChi.Minimum = New Decimal(New Integer() {1, 0, 0, 65536}) 
        Me.nudChi.Name = "nudChi" 
        Me.nudChi.ReadOnly = True 
        Me.nudChi.Size = New System.Drawing.Size(103, 20) 
        Me.nudChi.TabIndex = 41 
        Me.nudChi.TextAlign = System.Windows.Forms.HorizontalAlignment.Right 
        Me.nudChi.Value = New Decimal(New Integer() {5, 0, 0, 65536}) 
        ' 
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        'nudThetaGA 
        ' 
        Me.nudThetaGA.BackColor = System.Drawing.SystemColors.Control 
        Me.nudThetaGA.Location = New System.Drawing.Point(85, 185) 
        Me.nudThetaGA.Minimum = New Decimal(New Integer() {1, 0, 0, 0}) 
        Me.nudThetaGA.Name = "nudThetaGA" 
        Me.nudThetaGA.ReadOnly = True 
        Me.nudThetaGA.Size = New System.Drawing.Size(103, 20) 
        Me.nudThetaGA.TabIndex = 37 
        Me.nudThetaGA.TextAlign = 
System.Windows.Forms.HorizontalAlignment.Right 
        Me.nudThetaGA.Value = New Decimal(New Integer() {25, 0, 0, 0}) 
        ' 
        'nudGamma 
        ' 
        Me.nudGamma.BackColor = System.Drawing.SystemColors.Control 
        Me.nudGamma.DecimalPlaces = 2 
        Me.nudGamma.Increment = New Decimal(New Integer() {1, 0, 0, 131072}) 
        Me.nudGamma.Location = New System.Drawing.Point(85, 158) 
        Me.nudGamma.Maximum = New Decimal(New Integer() {1, 0, 0, 0}) 
        Me.nudGamma.Minimum = New Decimal(New Integer() {1, 0, 0, 65536}) 
        Me.nudGamma.Name = "nudGamma" 
        Me.nudGamma.ReadOnly = True 
        Me.nudGamma.Size = New System.Drawing.Size(103, 20) 
        Me.nudGamma.TabIndex = 35 
        Me.nudGamma.TextAlign = 
System.Windows.Forms.HorizontalAlignment.Right 
        Me.nudGamma.Value = New Decimal(New Integer() {71, 0, 0, 131072}) 
        ' 
        'nudNu 
        ' 
        Me.nudNu.BackColor = System.Drawing.SystemColors.Control 
        Me.nudNu.Location = New System.Drawing.Point(85, 132) 
        Me.nudNu.Minimum = New Decimal(New Integer() {1, 0, 0, 0}) 
        Me.nudNu.Name = "nudNu" 
        Me.nudNu.ReadOnly = True 
        Me.nudNu.Size = New System.Drawing.Size(103, 20) 
        Me.nudNu.TabIndex = 33 
        Me.nudNu.TextAlign = System.Windows.Forms.HorizontalAlignment.Right 
        Me.nudNu.Value = New Decimal(New Integer() {5, 0, 0, 0}) 
        ' 
        'lblNu 
        ' 
        Me.lblNu.Font = New System.Drawing.Font("Symbol", 10.0!, 
System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point, CType(2, 
Byte)) 
        Me.lblNu.Location = New System.Drawing.Point(67, 132) 
        Me.lblNu.Name = "lblNu" 
        Me.lblNu.Size = New System.Drawing.Size(12, 24) 
        Me.lblNu.TabIndex = 34 
        Me.lblNu.Text = "n" 
        Me.lblNu.TextAlign = System.Drawing.ContentAlignment.MiddleRight 
        Me.ToolTipN.SetToolTip(Me.lblNu, "Nu - Used in calculating the 
fitness of a classifier, typically 5") 
        ' 
        'nudEpsilon0 
        ' 
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        Me.nudEpsilon0.BackColor = System.Drawing.SystemColors.Control 
        Me.nudEpsilon0.DecimalPlaces = 2 
        Me.nudEpsilon0.Increment = New Decimal(New Integer() {1, 0, 0, 
131072}) 
        Me.nudEpsilon0.Location = New System.Drawing.Point(85, 105) 
        Me.nudEpsilon0.Maximum = New Decimal(New Integer() {2, 0, 0, 65536}) 
        Me.nudEpsilon0.Minimum = New Decimal(New Integer() {1, 0, 0, 131072}) 
        Me.nudEpsilon0.Name = "nudEpsilon0" 
        Me.nudEpsilon0.ReadOnly = True 
        Me.nudEpsilon0.Size = New System.Drawing.Size(103, 20) 
        Me.nudEpsilon0.TabIndex = 31 
        Me.nudEpsilon0.TextAlign = 
System.Windows.Forms.HorizontalAlignment.Right 
        Me.nudEpsilon0.Value = New Decimal(New Integer() {5, 0, 0, 131072}) 
        ' 
        'lblAlpha 
        ' 
        Me.lblAlpha.Font = New System.Drawing.Font("Symbol", 10.0!, 
System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point, CType(2, 
Byte)) 
        Me.lblAlpha.Location = New System.Drawing.Point(60, 79) 
        Me.lblAlpha.Name = "lblAlpha" 
        Me.lblAlpha.Size = New System.Drawing.Size(19, 19) 
        Me.lblAlpha.TabIndex = 30 
        Me.lblAlpha.Text = "a" 
        Me.lblAlpha.TextAlign = System.Drawing.ContentAlignment.MiddleRight 
        Me.ToolTipN.SetToolTip(Me.lblAlpha, "Alpha - Used in calculating the 
fitness of a classifier, typically 0.1") 
        ' 
        'nudAlpha 
        ' 
        Me.nudAlpha.BackColor = System.Drawing.SystemColors.Control 
        Me.nudAlpha.DecimalPlaces = 2 
        Me.nudAlpha.Increment = New Decimal(New Integer() {1, 0, 0, 131072}) 
        Me.nudAlpha.Location = New System.Drawing.Point(85, 79) 
        Me.nudAlpha.Maximum = New Decimal(New Integer() {2, 0, 0, 65536}) 
        Me.nudAlpha.Minimum = New Decimal(New Integer() {1, 0, 0, 65536}) 
        Me.nudAlpha.Name = "nudAlpha" 
        Me.nudAlpha.ReadOnly = True 
        Me.nudAlpha.Size = New System.Drawing.Size(103, 20) 
        Me.nudAlpha.TabIndex = 29 
        Me.nudAlpha.TextAlign = 
System.Windows.Forms.HorizontalAlignment.Right 
        Me.nudAlpha.Value = New Decimal(New Integer() {1, 0, 0, 65536}) 
        ' 
        'lblBeta 
        ' 
        Me.lblBeta.Font = New System.Drawing.Font("Symbol", 10.0!, 
System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point, CType(2, 
Byte)) 
        Me.lblBeta.Location = New System.Drawing.Point(55, 53) 
        Me.lblBeta.Name = "lblBeta" 
        Me.lblBeta.Size = New System.Drawing.Size(18, 23) 
        Me.lblBeta.TabIndex = 28 
        Me.lblBeta.Text = "b" 
        Me.lblBeta.TextAlign = System.Drawing.ContentAlignment.MiddleRight 
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        Me.ToolTipN.SetToolTip(Me.lblBeta, "Beta - Learning rate for updating 
prediction, error, fitness, and action set size" & _ 
        " estimate of action set classifiers in XCS (ranges from 0.1-0.2)") 
        ' 
        'nudBeta 
        ' 
        Me.nudBeta.BackColor = System.Drawing.SystemColors.Control 
        Me.nudBeta.DecimalPlaces = 2 
        Me.nudBeta.Increment = New Decimal(New Integer() {1, 0, 0, 131072}) 
        Me.nudBeta.Location = New System.Drawing.Point(85, 53) 
        Me.nudBeta.Maximum = New Decimal(New Integer() {2, 0, 0, 65536}) 
        Me.nudBeta.Minimum = New Decimal(New Integer() {1, 0, 0, 65536}) 
        Me.nudBeta.Name = "nudBeta" 
        Me.nudBeta.ReadOnly = True 
        Me.nudBeta.Size = New System.Drawing.Size(103, 20) 
        Me.nudBeta.TabIndex = 27 
        Me.nudBeta.TextAlign = System.Windows.Forms.HorizontalAlignment.Right 
        Me.nudBeta.Value = New Decimal(New Integer() {15, 0, 0, 131072}) 
        ' 
        'lblDoGASub 
        ' 
        Me.lblDoGASub.Font = New System.Drawing.Font("Microsoft Sans Serif", 
8.0!, System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point, 
CType(0, Byte)) 
        Me.lblDoGASub.Location = New System.Drawing.Point(206, 243) 
        Me.lblDoGASub.Name = "lblDoGASub" 
        Me.lblDoGASub.Size = New System.Drawing.Size(61, 14) 
        Me.lblDoGASub.TabIndex = 23 
        Me.lblDoGASub.Text = "doGASub" 
        Me.lblDoGASub.TextAlign = System.Drawing.ContentAlignment.MiddleRight 
        Me.ToolTipN.SetToolTip(Me.lblDoGASub, "DoGASub - Boolean parameter 
that specifies if offspring are to be tested for poss" & _ 
        "ible logical subsumption by parents") 
        ' 
        'cboDoGASub 
        ' 
        Me.cboDoGASub.DropDownStyle = 
System.Windows.Forms.ComboBoxStyle.DropDownList 
        Me.cboDoGASub.Items.AddRange(New Object() {"False", "True"}) 
        Me.cboDoGASub.Location = New System.Drawing.Point(273, 237) 
        Me.cboDoGASub.Name = "cboDoGASub" 
        Me.cboDoGASub.Size = New System.Drawing.Size(101, 21) 
        Me.cboDoGASub.TabIndex = 96 
        Me.ToolTipN.SetToolTip(Me.cboDoGASub, "To be changed") 
        ' 
        'Label10 
        ' 
        Me.Label10.Font = New System.Drawing.Font("Microsoft Sans Serif", 
5.0!, System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point, 
CType(0, Byte)) 
        Me.Label10.Location = New System.Drawing.Point(67, 198) 
        Me.Label10.Name = "Label10" 
        Me.Label10.Size = New System.Drawing.Size(18, 13) 
        Me.Label10.TabIndex = 107 
        Me.Label10.Text = "GA" 
        Me.ToolTipN.SetToolTip(Me.Label10, "ThetaGA - is the GA threshhold - 
GA is applied in a set when the average time sin" & _ 
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        "ce the last GA in the set is greater than ThetaGA, ranges from 25-
50") 
        ' 
        'Label12 
        ' 
        Me.Label12.Font = New System.Drawing.Font("Symbol", 10.0!, 
System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point, CType(2, 
Byte)) 
        Me.Label12.ImageAlign = System.Drawing.ContentAlignment.TopLeft 
        Me.Label12.Location = New System.Drawing.Point(55, 185) 
        Me.Label12.Name = "Label12" 
        Me.Label12.Size = New System.Drawing.Size(18, 19) 
        Me.Label12.TabIndex = 106 
        Me.Label12.Text = "q" 
        Me.Label12.TextAlign = System.Drawing.ContentAlignment.MiddleCenter 
        Me.ToolTipN.SetToolTip(Me.Label12, "ThetaGA - is the GA threshhold - 
GA is applied in a set when the average time sin" & _ 
        "ce the last GA in the set is greater than ThetaGA, ranges from 25-
50") 
        ' 
        'Label15 
        ' 
        Me.Label15.Font = New System.Drawing.Font("Symbol", 10.0!, 
System.Drawing.FontStyle.Italic, System.Drawing.GraphicsUnit.Point, CType(2, 
Byte)) 
        Me.Label15.Location = New System.Drawing.Point(55, 263) 
        Me.Label15.Name = "Label15" 
        Me.Label15.Size = New System.Drawing.Size(18, 20) 
        Me.Label15.TabIndex = 106 
        Me.Label15.Text = "q" 
        Me.Label15.TextAlign = System.Drawing.ContentAlignment.MiddleCenter 
        Me.ToolTipN.SetToolTip(Me.Label15, "ThetaDel - is the deletion 
threshold - if the experience of a classifier is great" & _ 
        "er than ThetaDel, its fitness may be considered in its probability 
of deletion, " & _ 
        """could be about 20""") 
        ' 
        'ToolTipN 
        ' 
        Me.ToolTipN.AutoPopDelay = 10000 
        Me.ToolTipN.InitialDelay = 500 
        Me.ToolTipN.ReshowDelay = 100 
        ' 
        'lblExplain 
        ' 
        Me.lblExplain.Location = New System.Drawing.Point(18, 79) 
        Me.lblExplain.Name = "lblExplain" 
        Me.lblExplain.Size = New System.Drawing.Size(103, 23) 
        Me.lblExplain.TabIndex = 80 
        Me.lblExplain.Text = "Explain program" 
        Me.lblExplain.TextAlign = System.Drawing.ContentAlignment.MiddleRight 
        Me.ToolTipN.SetToolTip(Me.lblExplain, "Specifies whether to explain 
program using message boxes and screen output") 
        ' 
        'lblMeasurementFreq 
        ' 
        Me.lblMeasurementFreq.Location = New System.Drawing.Point(6, 27) 
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        Me.lblMeasurementFreq.Name = "lblMeasurementFreq" 
        Me.lblMeasurementFreq.Size = New System.Drawing.Size(115, 22) 
        Me.lblMeasurementFreq.TabIndex = 84 
        Me.lblMeasurementFreq.Text = "Measure frequency" 
        Me.lblMeasurementFreq.TextAlign = 
System.Drawing.ContentAlignment.MiddleRight 
        Me.ToolTipN.SetToolTip(Me.lblMeasurementFreq, "Specifies how many 
encounters to run before recording metrics") 
        ' 
        'lblSaveDetail 
        ' 
        Me.lblSaveDetail.Location = New System.Drawing.Point(6, 53) 
        Me.lblSaveDetail.Name = "lblSaveDetail" 
        Me.lblSaveDetail.Size = New System.Drawing.Size(115, 23) 
        Me.lblSaveDetail.TabIndex = 86 
        Me.lblSaveDetail.Text = "Save level of detail" 
        Me.lblSaveDetail.TextAlign = 
System.Drawing.ContentAlignment.MiddleRight 
        Me.ToolTipN.SetToolTip(Me.lblSaveDetail, "Specifies what type of 
information to store about experiment") 
        ' 
        'cboClassifierFitness 
        ' 
        Me.cboClassifierFitness.DropDownStyle = 
System.Windows.Forms.ComboBoxStyle.DropDownList 
        Me.cboClassifierFitness.Enabled = False 
        Me.cboClassifierFitness.Items.AddRange(New Object() {"Prediction 
Magnitude", "Prediction Accuracy"}) 
        Me.cboClassifierFitness.Location = New System.Drawing.Point(194, 230) 
        Me.cboClassifierFitness.Name = "cboClassifierFitness" 
        Me.cboClassifierFitness.Size = New System.Drawing.Size(164, 21) 
        Me.cboClassifierFitness.TabIndex = 80 
        Me.ToolTipN.SetToolTip(Me.cboClassifierFitness, "Specifies how 
classifier fitness is calculated") 
        ' 
        'lblInitialPopulation 
        ' 
        Me.lblInitialPopulation.Location = New System.Drawing.Point(12, 46) 
        Me.lblInitialPopulation.Name = "lblInitialPopulation" 
        Me.lblInitialPopulation.Size = New System.Drawing.Size(176, 20) 
        Me.lblInitialPopulation.TabIndex = 76 
        Me.lblInitialPopulation.Text = "Initial Population Generation" 
        Me.lblInitialPopulation.TextAlign = 
System.Drawing.ContentAlignment.MiddleRight 
        Me.ToolTipN.SetToolTip(Me.lblInitialPopulation, "Specifies whether 
initial population is empty, or consists of N randomly generate" & _ 
        "d classifiers") 
        ' 
        'cboInitialPopulation 
        ' 
        Me.cboInitialPopulation.DropDownStyle = 
System.Windows.Forms.ComboBoxStyle.DropDownList 
        Me.cboInitialPopulation.Items.AddRange(New Object() {"N Random 
Classifiers", "Through Covering"}) 
        Me.cboInitialPopulation.Location = New System.Drawing.Point(194, 46) 
        Me.cboInitialPopulation.Name = "cboInitialPopulation" 
        Me.cboInitialPopulation.Size = New System.Drawing.Size(164, 21) 
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        Me.cboInitialPopulation.TabIndex = 75 
        Me.ToolTipN.SetToolTip(Me.cboInitialPopulation, "Specifies whether 
initial population is empty, or consists of N randomly generate" & _ 
        "d classifiers") 
        ' 
        'cboPopSize 
        ' 
        Me.cboPopSize.DropDownStyle = 
System.Windows.Forms.ComboBoxStyle.DropDownList 
        Me.cboPopSize.Enabled = False 
        Me.cboPopSize.Items.AddRange(New Object() {"Constant size of N", 
"Less than or equal to N"}) 
        Me.cboPopSize.Location = New System.Drawing.Point(194, 73) 
        Me.cboPopSize.Name = "cboPopSize" 
        Me.cboPopSize.Size = New System.Drawing.Size(164, 21) 
        Me.cboPopSize.TabIndex = 82 
        Me.ToolTipN.SetToolTip(Me.cboPopSize, "Specifies how population size 
is allowed to vary") 
        ' 
        'cboGAScope 
        ' 
        Me.cboGAScope.DropDownStyle = 
System.Windows.Forms.ComboBoxStyle.DropDownList 
        Me.cboGAScope.Items.AddRange(New Object() {"Panmictic", "Niche"}) 
        Me.cboGAScope.Location = New System.Drawing.Point(194, 204) 
        Me.cboGAScope.Name = "cboGAScope" 
        Me.cboGAScope.Size = New System.Drawing.Size(164, 21) 
        Me.cboGAScope.TabIndex = 84 
        Me.ToolTipN.SetToolTip(Me.cboGAScope, "Specifies whether GA is 
panmictic or niche") 
        ' 
        'cboParentSelection 
        ' 
        Me.cboParentSelection.DropDownStyle = 
System.Windows.Forms.ComboBoxStyle.DropDownList 
        Me.cboParentSelection.Enabled = False 
        Me.cboParentSelection.Items.AddRange(New Object() {"Fitness 
Proportional", "Tournament"}) 
        Me.cboParentSelection.Location = New System.Drawing.Point(194, 98) 
        Me.cboParentSelection.Name = "cboParentSelection" 
        Me.cboParentSelection.Size = New System.Drawing.Size(164, 21) 
        Me.cboParentSelection.TabIndex = 86 
        Me.ToolTipN.SetToolTip(Me.cboParentSelection, "Specifies how parent 
selection is performed") 
        ' 
        'cboClassifierDeletion 
        ' 
        Me.cboClassifierDeletion.DropDownStyle = 
System.Windows.Forms.ComboBoxStyle.DropDownList 
        Me.cboClassifierDeletion.Enabled = False 
        Me.cboClassifierDeletion.Items.AddRange(New Object() {"Fitness Only", 
"Fitness/Resource Balance"}) 
        Me.cboClassifierDeletion.Location = New System.Drawing.Point(194, 
178) 
        Me.cboClassifierDeletion.Name = "cboClassifierDeletion" 
        Me.cboClassifierDeletion.Size = New System.Drawing.Size(164, 21) 
        Me.cboClassifierDeletion.TabIndex = 88 
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        Me.ToolTipN.SetToolTip(Me.cboClassifierDeletion, "Specifies how 
classifiers are selected for deletion") 
        ' 
        'cboActionSelection 
        ' 
        Me.cboActionSelection.DropDownStyle = 
System.Windows.Forms.ComboBoxStyle.DropDownList 
        Me.cboActionSelection.Items.AddRange(New Object() {"Fitness 
Proportional", "Biased Exploration"}) 
        Me.cboActionSelection.Location = New System.Drawing.Point(194, 125) 
        Me.cboActionSelection.Name = "cboActionSelection" 
        Me.cboActionSelection.Size = New System.Drawing.Size(164, 21) 
        Me.cboActionSelection.TabIndex = 90 
        Me.ToolTipN.SetToolTip(Me.cboActionSelection, "Specifies how action 
is chosen") 
        ' 
        'cboClassifierFitnessUpdates 
        ' 
        Me.cboClassifierFitnessUpdates.DropDownStyle = 
System.Windows.Forms.ComboBoxStyle.DropDownList 
        Me.cboClassifierFitnessUpdates.Items.AddRange(New Object() {"Firing 
Classifier", "Action Set Classifiers"}) 
        Me.cboClassifierFitnessUpdates.Location = New 
System.Drawing.Point(194, 151) 
        Me.cboClassifierFitnessUpdates.Name = "cboClassifierFitnessUpdates" 
        Me.cboClassifierFitnessUpdates.Size = New System.Drawing.Size(164, 
21) 
        Me.cboClassifierFitnessUpdates.TabIndex = 92 
        Me.ToolTipN.SetToolTip(Me.cboClassifierFitnessUpdates, "Specifies 
which classifiers are updated") 
        ' 
        'cboAgentType 
        ' 
        Me.cboAgentType.DropDownStyle = 
System.Windows.Forms.ComboBoxStyle.DropDownList 
        Me.cboAgentType.Items.AddRange(New Object() {"All", "Custom Agent", 
"LCS-0", "LCS-1", "LCS-2", "LCS-3", "LCS-4", "LCS-5", "LCS-6", "LCS-7", "LCS-
8", "XCS"}) 
        Me.cboAgentType.Location = New System.Drawing.Point(194, 20) 
        Me.cboAgentType.Name = "cboAgentType" 
        Me.cboAgentType.Size = New System.Drawing.Size(164, 21) 
        Me.cboAgentType.TabIndex = 94 
        Me.ToolTipN.SetToolTip(Me.cboAgentType, "Specifies variant of 
learning agent to investigate") 
        ' 
        'lblClassifierFitness 
        ' 
        Me.lblClassifierFitness.Location = New System.Drawing.Point(6, 230) 
        Me.lblClassifierFitness.Name = "lblClassifierFitness" 
        Me.lblClassifierFitness.Size = New System.Drawing.Size(182, 20) 
        Me.lblClassifierFitness.TabIndex = 81 
        Me.lblClassifierFitness.Text = "Classifier Fitness Based On" 
        Me.lblClassifierFitness.TextAlign = 
System.Drawing.ContentAlignment.MiddleRight 
        Me.ToolTipN.SetToolTip(Me.lblClassifierFitness, "Specifies how 
classifier fitness is calculated") 
        ' 
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        'cboExplain 
        ' 
        Me.cboExplain.AllowDrop = True 
        Me.cboExplain.DropDownStyle = 
System.Windows.Forms.ComboBoxStyle.DropDownList 
        Me.cboExplain.Items.AddRange(New Object() {"No", "Yes"}) 
        Me.cboExplain.Location = New System.Drawing.Point(133, 79) 
        Me.cboExplain.Name = "cboExplain" 
        Me.cboExplain.RightToLeft = System.Windows.Forms.RightToLeft.No 
        Me.cboExplain.Size = New System.Drawing.Size(86, 21) 
        Me.cboExplain.TabIndex = 79 
        Me.ToolTipN.SetToolTip(Me.cboExplain, "Specifies whether to explain 
program using message boxes and screen output") 
        ' 
        'nudFreq 
        ' 
        Me.nudFreq.BackColor = System.Drawing.Color.White 
        Me.nudFreq.Location = New System.Drawing.Point(133, 27) 
        Me.nudFreq.Maximum = New Decimal(New Integer() {1000000, 0, 0, 0}) 
        Me.nudFreq.Minimum = New Decimal(New Integer() {1, 0, 0, 0}) 
        Me.nudFreq.Name = "nudFreq" 
        Me.nudFreq.Size = New System.Drawing.Size(86, 20) 
        Me.nudFreq.TabIndex = 83 
        Me.nudFreq.TextAlign = System.Windows.Forms.HorizontalAlignment.Right 
        Me.ToolTipN.SetToolTip(Me.nudFreq, "Specifies how many encounters to 
run before recording metrics") 
        Me.nudFreq.Value = New Decimal(New Integer() {50, 0, 0, 0}) 
        ' 
        'cboSaveDetail 
        ' 
        Me.cboSaveDetail.DropDownStyle = 
System.Windows.Forms.ComboBoxStyle.DropDownList 
        Me.cboSaveDetail.Items.AddRange(New Object() {"Summary", "SAS Only", 
"None"}) 
        Me.cboSaveDetail.Location = New System.Drawing.Point(133, 53) 
        Me.cboSaveDetail.Name = "cboSaveDetail" 
        Me.cboSaveDetail.Size = New System.Drawing.Size(86, 21) 
        Me.cboSaveDetail.TabIndex = 85 
        Me.ToolTipN.SetToolTip(Me.cboSaveDetail, "Specifies what type of 
information to store about experiment") 
        ' 
        'lblAgentType 
        ' 
        Me.lblAgentType.Location = New System.Drawing.Point(12, 20) 
        Me.lblAgentType.Name = "lblAgentType" 
        Me.lblAgentType.Size = New System.Drawing.Size(176, 20) 
        Me.lblAgentType.TabIndex = 95 
        Me.lblAgentType.Text = "Agent Type" 
        Me.lblAgentType.TextAlign = 
System.Drawing.ContentAlignment.MiddleRight 
        Me.ToolTipN.SetToolTip(Me.lblAgentType, "Specifies variant of 
learning agent to investigate") 
        ' 
        'lblFitnessUpdates 
        ' 
        Me.lblFitnessUpdates.Location = New System.Drawing.Point(6, 151) 
        Me.lblFitnessUpdates.Name = "lblFitnessUpdates" 
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        Me.lblFitnessUpdates.Size = New System.Drawing.Size(182, 20) 
        Me.lblFitnessUpdates.TabIndex = 93 
        Me.lblFitnessUpdates.Text = "Classifier Fitness Updates" 
        Me.lblFitnessUpdates.TextAlign = 
System.Drawing.ContentAlignment.MiddleRight 
        Me.ToolTipN.SetToolTip(Me.lblFitnessUpdates, "Specifies which 
classifiers are updated") 
        ' 
        'lblActionSelection 
        ' 
        Me.lblActionSelection.Location = New System.Drawing.Point(12, 125) 
        Me.lblActionSelection.Name = "lblActionSelection" 
        Me.lblActionSelection.Size = New System.Drawing.Size(176, 20) 
        Me.lblActionSelection.TabIndex = 91 
        Me.lblActionSelection.Text = "Action Selection" 
        Me.lblActionSelection.TextAlign = 
System.Drawing.ContentAlignment.MiddleRight 
        Me.ToolTipN.SetToolTip(Me.lblActionSelection, "Specifies how action 
is chosen") 
        ' 
        'lblClassifierDeletion 
        ' 
        Me.lblClassifierDeletion.Location = New System.Drawing.Point(6, 178) 
        Me.lblClassifierDeletion.Name = "lblClassifierDeletion" 
        Me.lblClassifierDeletion.Size = New System.Drawing.Size(182, 20) 
        Me.lblClassifierDeletion.TabIndex = 89 
        Me.lblClassifierDeletion.Text = "Classifier Deletion Based On" 
        Me.lblClassifierDeletion.TextAlign = 
System.Drawing.ContentAlignment.MiddleRight 
        Me.ToolTipN.SetToolTip(Me.lblClassifierDeletion, "Specifies how 
classifiers are selected for deletion") 
        ' 
        'lblParentSelection 
        ' 
        Me.lblParentSelection.Location = New System.Drawing.Point(18, 98) 
        Me.lblParentSelection.Name = "lblParentSelection" 
        Me.lblParentSelection.Size = New System.Drawing.Size(170, 20) 
        Me.lblParentSelection.TabIndex = 87 
        Me.lblParentSelection.Text = "Parent Selection" 
        Me.lblParentSelection.TextAlign = 
System.Drawing.ContentAlignment.MiddleRight 
        Me.ToolTipN.SetToolTip(Me.lblParentSelection, "Specifies how parent 
selection is performed") 
        ' 
        'lblGAScope 
        ' 
        Me.lblGAScope.Location = New System.Drawing.Point(18, 204) 
        Me.lblGAScope.Name = "lblGAScope" 
        Me.lblGAScope.Size = New System.Drawing.Size(170, 19) 
        Me.lblGAScope.TabIndex = 85 
        Me.lblGAScope.Text = "GA Scope" 
        Me.lblGAScope.TextAlign = System.Drawing.ContentAlignment.MiddleRight 
        Me.ToolTipN.SetToolTip(Me.lblGAScope, "Specifies whether GA is 
panmictic or niche") 
        ' 
        'lblPopSize 
        ' 
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        Me.lblPopSize.Location = New System.Drawing.Point(18, 73) 
        Me.lblPopSize.Name = "lblPopSize" 
        Me.lblPopSize.Size = New System.Drawing.Size(170, 19) 
        Me.lblPopSize.TabIndex = 83 
        Me.lblPopSize.Text = "Population Size" 
        Me.lblPopSize.TextAlign = System.Drawing.ContentAlignment.MiddleRight 
        Me.ToolTipN.SetToolTip(Me.lblPopSize, "Specifies how population size 
is allowed to vary") 
        ' 
        'lblEMail 
        ' 
        Me.lblEMail.Location = New System.Drawing.Point(255, 85) 
        Me.lblEMail.Name = "lblEMail" 
        Me.lblEMail.Size = New System.Drawing.Size(55, 19) 
        Me.lblEMail.TabIndex = 87 
        Me.lblEMail.Text = "E-mail" 
        Me.lblEMail.TextAlign = System.Drawing.ContentAlignment.MiddleRight 
        Me.ToolTipN.SetToolTip(Me.lblEMail, "Whether to allocate more system 
resources to program execution") 
        ' 
        'cboEMail 
        ' 
        Me.cboEMail.DropDownStyle = 
System.Windows.Forms.ComboBoxStyle.DropDownList 
        Me.cboEMail.Items.AddRange(New Object() {"Yes", "No"}) 
        Me.cboEMail.Location = New System.Drawing.Point(315, 80) 
        Me.cboEMail.Name = "cboEMail" 
        Me.cboEMail.Size = New System.Drawing.Size(64, 21) 
        Me.cboEMail.TabIndex = 88 
        Me.ToolTipN.SetToolTip(Me.cboEMail, "Whether to allocate more system 
resources to program execution") 
        ' 
        'pbar1 
        ' 
        Me.pbar1.Location = New System.Drawing.Point(6, 559) 
        Me.pbar1.Name = "pbar1" 
        Me.pbar1.Size = New System.Drawing.Size(752, 39) 
        Me.pbar1.TabIndex = 76 
        Me.pbar1.Visible = False 
        ' 
        'grpExperimentParameters 
        ' 
        Me.grpExperimentParameters.Controls.AddRange(New 
System.Windows.Forms.Control() {Me.lblEMail, Me.cboEMail, Me.lblCrankitUp, 
Me.lblMeasurementFreq, Me.cboSaveDetail, Me.nudReplications, Me.nudFreq, 
Me.lblExplain, Me.cboCrankitUp, Me.cboExplain, Me.lblReplications, 
Me.lblSaveDetail, Me.cboPseudoRandomness, Me.lblPseudoRandomness}) 
        Me.grpExperimentParameters.Location = New System.Drawing.Point(6, 
395) 
        Me.grpExperimentParameters.Name = "grpExperimentParameters" 
        Me.grpExperimentParameters.Size = New System.Drawing.Size(389, 158) 
        Me.grpExperimentParameters.TabIndex = 87 
        Me.grpExperimentParameters.TabStop = False 
        Me.grpExperimentParameters.Text = "Experiment Parameters" 
        ' 
        'grpAgentParameters 
        ' 
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        Me.grpAgentParameters.Controls.AddRange(New 
System.Windows.Forms.Control() {Me.lblClassifierFitness, 
Me.cboClassifierFitness, Me.cboInitialPopulation, Me.lblInitialPopulation, 
Me.cboAgentType, Me.lblAgentType, Me.cboPopSize, Me.lblPopSize, 
Me.cboParentSelection, Me.lblParentSelection, Me.lblFitnessUpdates, 
Me.lblActionSelection, Me.cboActionSelection, Me.cboClassifierFitnessUpdates, 
Me.cboClassifierDeletion, Me.lblClassifierDeletion, Me.cboGAScope, 
Me.lblGAScope}) 
        Me.grpAgentParameters.Location = New System.Drawing.Point(400, 223) 
        Me.grpAgentParameters.Name = "grpAgentParameters" 
        Me.grpAgentParameters.Size = New System.Drawing.Size(364, 265) 
        Me.grpAgentParameters.TabIndex = 88 
        Me.grpAgentParameters.TabStop = False 
        Me.grpAgentParameters.Text = "Agent Architectural Differences" 
        ' 
        'XCSOpeningScreen 
        ' 
        Me.AcceptButton = Me.btnTest 
        Me.AutoScaleBaseSize = New System.Drawing.Size(5, 13) 
        Me.CancelButton = Me.btnQuit 
        Me.ClientSize = New System.Drawing.Size(779, 603) 
        Me.Controls.AddRange(New System.Windows.Forms.Control() 
{Me.grpAgentParameters, Me.grpExperimentParameters, Me.pbar1, 
Me.grpLearningParameters, Me.grpIPDParameters, Me.btnTest, Me.btnQuit}) 
        Me.Name = "XCSOpeningScreen" 
        Me.Text = "Alphabet Soup and Machine Learning, Main Screen" 
        CType(Me.nudGenerations, 
System.ComponentModel.ISupportInitialize).EndInit() 
        Me.grpIPDParameters.ResumeLayout(False) 
        CType(Me.nudReward4, 
System.ComponentModel.ISupportInitialize).EndInit() 
        CType(Me.nudReward3, 
System.ComponentModel.ISupportInitialize).EndInit() 
        CType(Me.nudReward2, 
System.ComponentModel.ISupportInitialize).EndInit() 
        CType(Me.nudReward1, 
System.ComponentModel.ISupportInitialize).EndInit() 
        CType(Me.nudNumberMoves, 
System.ComponentModel.ISupportInitialize).EndInit() 
        CType(Me.nudReplications, 
System.ComponentModel.ISupportInitialize).EndInit() 
        CType(Me.nudN, System.ComponentModel.ISupportInitialize).EndInit() 
        CType(Me.nudThetaMNA, 
System.ComponentModel.ISupportInitialize).EndInit() 
        CType(Me.nudProbPound, 
System.ComponentModel.ISupportInitialize).EndInit() 
        Me.grpLearningParameters.ResumeLayout(False) 
        CType(Me.nudProbXPlor, 
System.ComponentModel.ISupportInitialize).EndInit() 
        CType(Me.nudInitialFitness, 
System.ComponentModel.ISupportInitialize).EndInit() 
        CType(Me.nudInitialPredictionError, 
System.ComponentModel.ISupportInitialize).EndInit() 
        CType(Me.nudInitialPrediction, 
System.ComponentModel.ISupportInitialize).EndInit() 
        CType(Me.nudThetaSub, 
System.ComponentModel.ISupportInitialize).EndInit() 
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        CType(Me.nudDelta, 
System.ComponentModel.ISupportInitialize).EndInit() 
        CType(Me.nudThetaDel, 
System.ComponentModel.ISupportInitialize).EndInit() 
        CType(Me.nudMu, System.ComponentModel.ISupportInitialize).EndInit() 
        CType(Me.nudChi, System.ComponentModel.ISupportInitialize).EndInit() 
        CType(Me.nudThetaGA, 
System.ComponentModel.ISupportInitialize).EndInit() 
        CType(Me.nudGamma, 
System.ComponentModel.ISupportInitialize).EndInit() 
        CType(Me.nudNu, System.ComponentModel.ISupportInitialize).EndInit() 
        CType(Me.nudEpsilon0, 
System.ComponentModel.ISupportInitialize).EndInit() 
        CType(Me.nudAlpha, 
System.ComponentModel.ISupportInitialize).EndInit() 
        CType(Me.nudBeta, System.ComponentModel.ISupportInitialize).EndInit() 
        CType(Me.nudFreq, System.ComponentModel.ISupportInitialize).EndInit() 
        Me.grpExperimentParameters.ResumeLayout(False) 
        Me.grpAgentParameters.ResumeLayout(False) 
        Me.ResumeLayout(False) 
 
    End Sub 
 
#End Region 
 
    Public EmailAddress, SmtpServer As String 
 
    Private Sub btnQuit_Click(ByVal sender As System.Object, ByVal e As 
System.EventArgs) Handles btnQuit.Click 
        If MsgBox("Are you sure you want to quit?", MsgBoxStyle.YesNo Or 
MsgBoxStyle.DefaultButton2, "Quit Confirmation") = MsgBoxResult.Yes Then 
            End 
        End If 
    End Sub 
 
 
    Private Sub XCSOpeningScreen_Load(ByVal sender As System.Object, ByVal e 
As System.EventArgs) Handles MyBase.Load 
 
 
        lblCitation.Text = "Learning parameter values adapted from Butz, M. 
V. and S. W. Wilson (2001). An algorithmic description of XCS. Advances in 
Learning Classifier Systems. Third International Workshop (IWLCS-2000). P. L. 
Lanzi, W. Stolzmann and S. W. Wilson. Berlin, Springer-Verlag. 1996: 253-
272." 
 
        'learning parameters 
        'cboDoGASub.SelectedItem = "True" 'test offspring for logical 
subsumption? 
        'cboDoASSub.SelectedItem = "True" 'test action sets for subsuming 
classifiers? 
 
        'experiment parameters 
        cboPseudoRandomness.SelectedItem = "Constant Seed" 'same random seed 
each time? 
        cboCrankitUp.SelectedItem = "No" 'run at higher priority? 
        cboEMail.SelectedItem = "No" 'e-mail results? 

 
 

251



 

        cboExplain.SelectedItem = "No" 'explain program using dialog boxes? 
        cboSaveDetail.SelectedItem = "Summary" 'level of detail to record in 
files 
 
        'IPD parameters 
        cboGraduatedRewards.SelectedItem = "No" 'no graduated rewards if IPD 
        cboWhoseMoves.SelectedItem = "Both" 'whose moves to remember 
        cboOpponent.SelectedItem = "TFT" 'choose opponent 
        cboProblem.SelectedItem = "IPD" 'default to IPD vs MUX 
 
        'agent parameters 
        cboAgentType.SelectedItem = "LCS-0" 
        cboClassifierFitness.SelectedItem = "Prediction Magnitude" 'how is 
classifer fitness determined? 
        cboInitialPopulation.SelectedItem = "N Random Classifiers" 'how is 
initial population generated?" 
        cboPopSize.SelectedItem = "Constant size of N" 'how does population 
size vary 
        cboGAScope.SelectedItem = "Panmictic" 
        cboParentSelection.SelectedItem = "Fitness Proportional" 
        cboClassifierDeletion.SelectedItem = "Fitness Only" 
        cboActionSelection.SelectedItem = "Fitness Proportional" 
        cboClassifierFitnessUpdates.SelectedItem = "Firing Classifier" 
 
        cboClassifierFitness.Enabled = False 
        cboInitialPopulation.Enabled = False 
        cboPopSize.Enabled = False 
        cboGAScope.Enabled = False 
        cboParentSelection.Enabled = False 
        cboClassifierDeletion.Enabled = False 
        cboActionSelection.Enabled = False 
        cboClassifierFitnessUpdates.Enabled = False 
        cboDoGASub.Enabled = False 
        cboDoASSub.Enabled = False 
 
        If MsgBox("Would you like to run an entire simulation suite (all 
opponents)?", _ 
            MsgBoxStyle.YesNo Or MsgBoxStyle.DefaultButton2, "Entire Suite") 
= MsgBoxResult.Yes Then 
            cboAgentType.SelectedItem = "All" 
            cboOpponent.SelectedItem = "All" 
        End If 
    End Sub 
 
    Private Sub btnTest_Click(ByVal sender As System.Object, ByVal e As 
System.EventArgs) Handles btnTest.Click 
 
        'Disable "test" button 
        btnTest.Enabled = False 
 
        If cboOpponent.SelectedItem = "All" Then 
            If cboAgentType.SelectedItem = "All" Then 
                cboOpponent.SelectedItem = "CCC" 
                RunAllAgents() 
 
                cboAgentType.SelectedItem = "All" 
                cboOpponent.SelectedItem = "DDD" 
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                RunAllAgents() 
 
                cboAgentType.SelectedItem = "All" 
                cboOpponent.SelectedItem = "TFT" 
                RunAllAgents() 
 
                cboAgentType.SelectedItem = "All" 
                cboOpponent.SelectedItem = "RAND" 
                RunAllAgents() 
            Else 
                cboOpponent.SelectedItem = "CCC" 
                RunAllAgents() 
 
                cboOpponent.SelectedItem = "DDD" 
                RunAllAgents() 
 
                cboOpponent.SelectedItem = "TFT" 
                RunAllAgents() 
 
                cboOpponent.SelectedItem = "RAND" 
                RunAllAgents() 
            End If 
 
        Else 
            RunAllAgents() 
        End If 
 
        'Try 
        'btnTest.Enabled = True 
        MsgBox("Experiment done") 
        End 
    End Sub 
 
    Private Sub RunAllAgents() 
        Dim mailObj As New System.Web.Mail.MailMessage() 
        System.Web.Mail.SmtpMail.SmtpServer = SmtpServer 
        mailObj.Priority = Web.Mail.MailPriority.High 
        mailObj.From = "dgaines@uky.edu" 
        mailObj.To = EmailAddress 
        ExperimentBeginTime = Date.Now 
 
        If cboSaveDetail.SelectedItem = "All" Or cboSaveDetail.SelectedItem = 
"Summary" _ 
                    Or cboSaveDetail.SelectedItem = "SAS Only" Then 
 
            FolderName = 
System.Environment.GetFolderPath(System.Environment.SpecialFolder.Personal) & 
_ 
                "\xcs\data\" & frm.cboAgentType.Text & " vs " & 
frm.cboOpponent.Text & ", " & frm.nudGenerations.Value & _ 
            " encounters, " & frm.nudReplications.Value & " reps" & ", " & 
Format(ExperimentBeginTime, "d MMM yy H.mm.ss") 
            MkDir(FolderName) 
            'make directory to store results, also save experimental 
parameters 
            ParameterSW = IO.File.CreateText(FolderName & "\" & 
Format(ExperimentBeginTime, "d MMM yy H.mm.ss") & _ 
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            " Experiment Parameters.txt") 
            'SAS Data File 
            If cboSaveDetail.SelectedItem = "SAS Only" Or 
cboSaveDetail.SelectedItem = "Summary" Or cboSaveDetail.SelectedItem = "All" 
Then 
                SASSW = IO.File.CreateText(FolderName & "\" & 
Format(ExperimentBeginTime, "d MMM yy H.mm.ss") & _ 
                    " SAS Data.txt") 
                SASSW.WriteLine("Replication Agent Generation PopSize 
PercentCorrect SquaredError PercentOptimal") 
            End If 
 
            'learning parameters 
            ParameterSW.WriteLine("Learning Parameters") 
            ParameterSW.WriteLine("  N = " & nudN.Value) 
            ParameterSW.WriteLine("  Beta = " & nudBeta.Value) 
            ParameterSW.WriteLine("  Alpha = " & nudAlpha.Value) 
            ParameterSW.WriteLine("  Epsilon0 = " & nudEpsilon0.Value) 
            ParameterSW.WriteLine("  Nu = " & nudNu.Value) 
            ParameterSW.WriteLine("  Gamma = " & nudGamma.Value) 
            ParameterSW.WriteLine("  ThetaGA = " & nudThetaGA.Value) 
            ParameterSW.WriteLine("  Chi = " & nudChi.Value) 
            ParameterSW.WriteLine("  Mu = " & nudMu.Value) 
            ParameterSW.WriteLine("  ThetaDel = " & nudThetaDel.Value) 
            ParameterSW.WriteLine("  Delta = " & nudDelta.Value) 
            ParameterSW.WriteLine("  ThetaSub = " & nudThetaSub.Value) 
            ParameterSW.WriteLine("  ProbPound = " & nudProbPound.Value) 
            ParameterSW.WriteLine("  InitialPrediction = " & 
nudInitialPrediction.Value) 
            ParameterSW.WriteLine("  InitialPredictionError = " & 
nudInitialPredictionError.Value) 
            ParameterSW.WriteLine("  InitialFitness = " & 
nudInitialFitness.Value) 
            ParameterSW.WriteLine("  ProbXPlor = " & nudProbXPlor.Value) 
            ParameterSW.WriteLine("  ThetaMNA = " & nudThetaMNA.Value) 
            If cboDoGASub.SelectedIndex Then 
                ParameterSW.WriteLine("  DoGASubsumption = True") 
            Else 
                ParameterSW.WriteLine("  DoGASubsumption = False") 
            End If 
            If cboDoASSub.SelectedIndex Then 
                ParameterSW.WriteLine("  DoASSubsumption = True") 
            Else 
                ParameterSW.WriteLine("  DoASSubsumption = False") 
            End If 
 
            If cboAgentType.Text = "Custom Agent" Then 
                'Custom agent parameters 
                ParameterSW.WriteLine() 
                ParameterSW.WriteLine("Custom Agent Parameters") 
                ParameterSW.WriteLine("  Initial Population = " & 
cboInitialPopulation.Text) 
                ParameterSW.WriteLine("  Population Size = " & 
cboPopSize.Text) 
                ParameterSW.WriteLine("  Parent Selection = " & 
cboParentSelection.Text) 
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                ParameterSW.WriteLine("  Action Selection = " & 
cboActionSelection.Text) 
                ParameterSW.WriteLine("  Classifier Fitness Updates = " & 
cboClassifierFitnessUpdates.Text) 
                ParameterSW.WriteLine("  Classifier Deletion = " & 
cboClassifierDeletion.Text) 
                ParameterSW.WriteLine("  GA Scope = " & cboGAScope.Text) 
                ParameterSW.WriteLine("  Classifier Fitness = " & 
cboClassifierFitness.Text) 
            End If 
 
            'IPD parameters 
            ParameterSW.WriteLine() 
            ParameterSW.WriteLine("Problem Parameters") 
            ParameterSW.WriteLine("  Problem = " & cboProblem.Text) 
            ParameterSW.WriteLine("  Encounters/Generations = " & 
nudGenerations.Value) 
            ParameterSW.WriteLine("  NumberMoves = " & nudNumberMoves.Value) 
            ParameterSW.WriteLine("  WhoseMoves = " & cboWhoseMoves.Text) 
            If cboProblem.Text = "IPD" Then 
                ParameterSW.WriteLine("  Agent = " & cboAgentType.Text) 
                ParameterSW.WriteLine("  Opponent = " & cboOpponent.Text) 
            End If 
            ParameterSW.WriteLine("  Rewards = " & nudReward1.Value & " > " _ 
                & nudReward2.Value & " > " & nudReward3.Value & " > " & 
nudReward4.Value) 
 
            'experiment parameters 
            ParameterSW.WriteLine() 
            ParameterSW.WriteLine("Experiment Parameters") 
            ParameterSW.WriteLine("  Measurement Frequency = " & 
nudFreq.Value) 
            ParameterSW.WriteLine("  # of Replications = " & 
nudReplications.Value) 
            ParameterSW.WriteLine("  PseudoRandomness = " & 
cboPseudoRandomness.Text) 
 
            ParameterSW.WriteLine() 
            ParameterSW.WriteLine("Experiment Results") 
            ParameterSW.WriteLine("  Experiment began at " & 
ExperimentBeginTime) 
 
            'ParameterSW.Flush() 
            ParameterSW.Close() 
 
        End If 
 
        If cboAgentType.SelectedItem = "All" Then 
 
            cboAgentType.SelectedItem = "LCS-0" 
            RunExperiment() 
 
            'notify progress 
            If cboEMail.SelectedItem = "Yes" Then 
                mailObj.Subject = "Finished LCS-0 ..." 
                mailObj.Body = "The experiment begun at " & _ 
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                    ExperimentBeginTime & " completed execution of LCS-0 at " 
& _ 
                    Date.Now & "." 
                System.Web.Mail.SmtpMail.Send(mailObj) 
            End If 
 
            cboAgentType.SelectedItem = "LCS-1" 
            RunExperiment() 
 
            If cboEMail.SelectedValue = "Yes" Then 
                'notify progress 
                mailObj.Subject = "Finished LCS-1 ..." 
                mailObj.Body = "The experiment begun at " & _ 
                    ExperimentBeginTime & " completed execution of LCS-1 at " 
& _ 
                    Date.Now & "." 
                System.Web.Mail.SmtpMail.Send(mailObj) 
            End If 
 
            cboAgentType.SelectedItem = "LCS-2" 
            RunExperiment() 
 
            If cboEMail.SelectedItem = "Yes" Then 
                'notify progress 
                mailObj.Subject = "Finished LCS-2 ..." 
                mailObj.Body = "The experiment begun at " & _ 
                    ExperimentBeginTime & " completed execution of LCS-2 at " 
& _ 
                    Date.Now & "." 
                System.Web.Mail.SmtpMail.Send(mailObj) 
            End If 
 
            cboAgentType.SelectedItem = "LCS-3" 
            RunExperiment() 
 
            If cboEMail.SelectedItem = "Yes" Then 
                'notify progress 
                mailObj.Subject = "Finished LCS-3 ..." 
                mailObj.Body = "The experiment begun at " & _ 
                    ExperimentBeginTime & " completed execution of LCS-3 at " 
& _ 
                    Date.Now & "." 
                System.Web.Mail.SmtpMail.Send(mailObj) 
            End If 
 
            cboAgentType.SelectedItem = "LCS-4" 
            RunExperiment() 
 
            If cboEMail.SelectedItem = "Yes" Then 
                'notify progress 
                mailObj.Subject = "Finished LCS-4 ..." 
                mailObj.Body = "The experiment begun at " & _ 
                    ExperimentBeginTime & " completed execution of LCS-4 at " 
& _ 
                    Date.Now & "." 
                System.Web.Mail.SmtpMail.Send(mailObj) 
            End If 
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            cboAgentType.SelectedItem = "LCS-5" 
            RunExperiment() 
 
            If cboEMail.SelectedItem = "Yes" Then 
                'notify progress 
                mailObj.Subject = "Finished LCS-5 ..." 
                mailObj.Body = "The experiment begun at " & _ 
                    ExperimentBeginTime & " completed execution of LCS-5 at " 
& _ 
                    Date.Now & "." 
                System.Web.Mail.SmtpMail.Send(mailObj) 
            End If 
 
            cboAgentType.SelectedItem = "LCS-6" 
            RunExperiment() 
 
            If cboEMail.SelectedItem = "Yes" Then 
                'notify progress 
                mailObj.Subject = "Finished LCS-6 ..." 
                mailObj.Body = "The experiment begun at " & _ 
                    ExperimentBeginTime & " completed execution of LCS-6 at " 
& _ 
                    Date.Now & "." 
                System.Web.Mail.SmtpMail.Send(mailObj) 
            End If 
 
            cboAgentType.SelectedItem = "LCS-7" 
            RunExperiment() 
 
            If cboEMail.SelectedItem = "Yes" Then 
                'notify progress 
                mailObj.Subject = "Finished LCS-7 ..." 
                mailObj.Body = "The experiment begun at " & _ 
                    ExperimentBeginTime & " completed execution of LCS-7 at " 
& _ 
                    Date.Now & "." 
                System.Web.Mail.SmtpMail.Send(mailObj) 
            End If 
 
            cboAgentType.SelectedItem = "LCS-8" 
            RunExperiment() 
 
            If cboEMail.SelectedItem = "Yes" Then 
                'notify progress 
                mailObj.Subject = "Finished LCS-8 ..." 
                mailObj.Body = "The experiment begun at " & _ 
                    ExperimentBeginTime & " completed execution of LCS-8 at " 
& _ 
                    Date.Now & "." 
                System.Web.Mail.SmtpMail.Send(mailObj) 
            End If 
 
            cboAgentType.SelectedItem = "XCS" 
            RunExperiment() 
 
            If cboEMail.SelectedItem = "Yes" Then 
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                'notify progress 
                mailObj.Subject = "Finished XCS ..." 
                mailObj.Body = "The experiment begun at " & _ 
                    ExperimentBeginTime & " completed execution of XCS at " & 
_ 
                    Date.Now & "." 
                System.Web.Mail.SmtpMail.Send(mailObj) 
            End If 
 
        Else 
            RunExperiment() 'run a single agent 
            If cboEMail.SelectedItem = "Yes" Then 
                'notify progress 
                mailObj.Subject = "Finished " & cboAgentType.SelectedItem & " 
..." 
                mailObj.Body = "The experiment begun at " & _ 
                    ExperimentBeginTime & " completed execution of " & _ 
                    cboAgentType.SelectedItem & " at " & _ 
                    Date.Now & "." 
                System.Web.Mail.SmtpMail.Send(mailObj) 
            End If 
        End If 
 
        ExperimentEndTime = Date.Now 
 
        If cboEMail.SelectedItem = "Yes" Then 
            mailObj.Subject = "Experiment completed successfully!" 
            mailObj.Body = "The experiment begun at " & _ 
                ExperimentBeginTime & " completed execution at " & _ 
                ExperimentEndTime & "." 
 
            System.Web.Mail.SmtpMail.Send(mailObj) 
        End If 
 
        If cboSaveDetail.SelectedItem = "All" Or cboSaveDetail.SelectedItem = 
"Summary" Or cboSaveDetail.SelectedItem = "SAS Only" Then 
            If cboSaveDetail.SelectedItem = "All" Or 
cboSaveDetail.SelectedItem = "Summary" Then 
                CreateExcelCharts(cboOpponent.Text, nudFreq.Value) 
            End If 
            ParameterSW = IO.File.AppendText(FolderName & "\" & 
Format(ExperimentBeginTime, "d MMM yy H.mm.ss") & _ 
                " Experiment Parameters.txt") 
            ParameterSW.WriteLine("  Experiment completed execution at " & 
ExperimentEndTime) 
            ParameterSW.WriteLine("  Elapsed time was " & 
DateDiff(DateInterval.Day, ExperimentBeginTime, ExperimentEndTime) & _ 
                " days, " & (DateDiff(DateInterval.Hour, ExperimentBeginTime, 
ExperimentEndTime) Mod 24) & _ 
                " hours, " & (DateDiff(DateInterval.Minute, 
ExperimentBeginTime, ExperimentEndTime) Mod 60) & _ 
                " minutes, " & (DateDiff(DateInterval.Second, 
ExperimentBeginTime, ExperimentEndTime) Mod 60) & _ 
                " seconds") 
            ParameterSW.WriteLine("  Experiment completed successfully") 
            ParameterSW.Flush() 
            ParameterSW.Close() 
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        End If 
        If SaveDetail = "Summary" Or SaveDetail = "SAS Only" Or SaveDetail = 
"All" Then 
            SASSW.Flush() 
            SASSW.Close() 
        End If 
    End Sub 
 
    Private Sub nudGenerations_ValueChanged(ByVal sender As System.Object, 
ByVal e As System.EventArgs) Handles nudGenerations.ValueChanged 
        If nudGenerations.Value > (65536 * nudFreq.Value) Then 
            nudFreq.Value = Int(nudGenerations.Value / 65536) + 1 
            'Else 
            '    nudFreq.Value = Int(nudGenerations.Value / 50) 
        End If 
    End Sub 
 
    Private Sub nudGenerations_Leave(ByVal sender As Object, ByVal e As 
System.EventArgs) Handles nudGenerations.Leave 
        If nudGenerations.Value > (65536 * nudFreq.Value) Then 
            nudFreq.Value = Int(nudGenerations.Value / 65536) + 1 
        End If 
 
    End Sub 
 
    Private Sub cboAgentType_SelectedValueChanged(ByVal sender As Object, 
ByVal e As System.EventArgs) Handles cboAgentType.SelectedValueChanged 
        cboClassifierFitness.Font = New Font(cboClassifierFitness.Font, 
FontStyle.Regular) 
        lblClassifierFitness.Font = New Font(lblClassifierFitness.Font, 
FontStyle.Regular) 
        cboInitialPopulation.Font = New Font(cboInitialPopulation.Font, 
FontStyle.Regular) 
        lblInitialPopulation.Font = New Font(lblInitialPopulation.Font, 
FontStyle.Regular) 
        cboPopSize.Font = New Font(cboPopSize.Font, FontStyle.Regular) 
        lblPopSize.Font = New Font(lblPopSize.Font, FontStyle.Regular) 
        cboParentSelection.Font = New Font(cboParentSelection.Font, 
FontStyle.Regular) 
        lblParentSelection.Font = New Font(lblParentSelection.Font, 
FontStyle.Regular) 
        cboClassifierDeletion.Font = New Font(cboClassifierDeletion.Font, 
FontStyle.Regular) 
        lblClassifierDeletion.Font = New Font(lblClassifierDeletion.Font, 
FontStyle.Regular) 
        cboActionSelection.Font = New Font(cboActionSelection.Font, 
FontStyle.Regular) 
        lblActionSelection.Font = New Font(lblActionSelection.Font, 
FontStyle.Regular) 
        cboClassifierFitnessUpdates.Font = New 
Font(cboClassifierFitnessUpdates.Font, FontStyle.Regular) 
        lblFitnessUpdates.Font = New Font(lblFitnessUpdates.Font, 
FontStyle.Regular) 
        cboGAScope.Font = New Font(cboGAScope.Font, FontStyle.Regular) 
        lblGAScope.Font = New Font(lblGAScope.Font, FontStyle.Regular) 
        cboDoGASub.Font = New Font(cboDoGASub.Font, FontStyle.Regular) 
        lblDoGASub.Font = New Font(lblDoGASub.Font, FontStyle.Regular) 
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        cboDoASSub.Font = New Font(cboDoASSub.Font, FontStyle.Regular) 
        lblDoASSub.Font = New Font(lblDoASSub.Font, FontStyle.Regular) 
        Select Case cboAgentType.Text 
            Case "All" 
                cboClassifierFitness.Enabled = False 
                cboInitialPopulation.Enabled = False 
                cboPopSize.Enabled = False 
                cboGAScope.Enabled = False 
                cboParentSelection.Enabled = False 
                cboClassifierDeletion.Enabled = False 
                cboActionSelection.Enabled = False 
                cboClassifierFitnessUpdates.Enabled = False 
                cboDoGASub.Enabled = False 
                cboDoASSub.Enabled = False 
                cboClassifierFitness.SelectedItem = "Prediction Magnitude" 
'how is classifer fitness determined? 
                cboInitialPopulation.SelectedItem = "N Random Classifiers" 
'how is initial population generated?" 
                cboPopSize.SelectedItem = "Constant size of N" 'how does 
population size vary 
                cboGAScope.SelectedItem = "Panmictic" 
                cboParentSelection.SelectedItem = "Fitness Proportional" 
                cboClassifierDeletion.SelectedItem = "Fitness Only" 
                cboActionSelection.SelectedItem = "Fitness Proportional" 
                cboClassifierFitnessUpdates.SelectedItem = "Firing 
Classifier" 
 
            Case "LCS-0" 
                cboClassifierFitness.Enabled = False 
                cboInitialPopulation.Enabled = False 
                cboPopSize.Enabled = False 
                cboGAScope.Enabled = False 
                cboParentSelection.Enabled = False 
                cboClassifierDeletion.Enabled = False 
                cboActionSelection.Enabled = False 
                cboClassifierFitnessUpdates.Enabled = False 
                cboDoGASub.Enabled = False 
                cboDoASSub.Enabled = False 
                cboClassifierFitness.SelectedItem = "Prediction Magnitude" 
'how is classifer fitness determined? 
                cboInitialPopulation.SelectedItem = "N Random Classifiers" 
'how is initial population generated?" 
                cboPopSize.SelectedItem = "Constant size of N" 'how does 
population size vary 
                cboGAScope.SelectedItem = "Panmictic" 
                cboParentSelection.SelectedItem = "Fitness Proportional" 
                cboClassifierDeletion.SelectedItem = "Fitness Only" 
                cboActionSelection.SelectedItem = "Fitness Proportional" 
                cboClassifierFitnessUpdates.SelectedItem = "Firing 
Classifier" 
 
            Case "LCS-1" 
                cboClassifierFitness.Enabled = False 
                cboInitialPopulation.Enabled = False 
                cboPopSize.Enabled = False 
                cboGAScope.Enabled = False 
                cboParentSelection.Enabled = False 
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                cboClassifierDeletion.Enabled = False 
                cboActionSelection.Enabled = False 
                cboClassifierFitnessUpdates.Enabled = False 
                cboDoGASub.Enabled = False 
                cboDoASSub.Enabled = False 
                cboClassifierFitness.SelectedItem = "Prediction Magnitude" 
'how is classifer fitness determined? 
                cboInitialPopulation.SelectedItem = "Through Covering" 'how 
is initial population generated?" 
                cboInitialPopulation.Font = New 
Font(cboInitialPopulation.Font, FontStyle.Bold) 
                lblInitialPopulation.Font = New 
Font(lblInitialPopulation.Font, FontStyle.Bold) 
                cboPopSize.SelectedItem = "Constant size of N" 'how does 
population size vary 
                cboGAScope.SelectedItem = "Panmictic" 
                cboParentSelection.SelectedItem = "Fitness Proportional" 
                cboClassifierDeletion.SelectedItem = "Fitness Only" 
                cboActionSelection.SelectedItem = "Fitness Proportional" 
                cboClassifierFitnessUpdates.SelectedItem = "Firing 
Classifier" 
 
            Case "LCS-2" 
                cboClassifierFitness.Enabled = False 
                cboInitialPopulation.Enabled = False 
                cboPopSize.Enabled = False 
                cboGAScope.Enabled = False 
                cboParentSelection.Enabled = False 
                cboClassifierDeletion.Enabled = False 
                cboActionSelection.Enabled = False 
                cboClassifierFitnessUpdates.Enabled = False 
                cboDoGASub.Enabled = False 
                cboDoASSub.Enabled = False 
                cboClassifierFitness.SelectedItem = "Prediction Magnitude" 
'how is classifer fitness determined? 
                cboInitialPopulation.SelectedItem = "N Random Classifiers" 
'how is initial population generated?" 
                cboPopSize.SelectedItem = "Less than or equal to N" 'how does 
population size vary 
                cboPopSize.Font = New Font(cboPopSize.Font, FontStyle.Bold) 
                lblPopSize.Font = New Font(lblPopSize.Font, FontStyle.Bold) 
                cboDoGASub.Font = New Font(cboDoGASub.Font, FontStyle.Bold) 
                lblDoGASub.Font = New Font(lblDoGASub.Font, FontStyle.Bold) 
                cboDoASSub.Font = New Font(cboDoASSub.Font, FontStyle.Bold) 
                lblDoASSub.Font = New Font(lblDoASSub.Font, FontStyle.Bold) 
                cboGAScope.SelectedItem = "Panmictic" 
                cboParentSelection.SelectedItem = "Fitness Proportional" 
                cboClassifierDeletion.SelectedItem = "Fitness Only" 
                cboActionSelection.SelectedItem = "Fitness Proportional" 
                cboClassifierFitnessUpdates.SelectedItem = "Firing 
Classifier" 
 
            Case "LCS-3" 
                cboClassifierFitness.Enabled = False 
                cboInitialPopulation.Enabled = False 
                cboPopSize.Enabled = False 
                cboGAScope.Enabled = False 
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                cboParentSelection.Enabled = False 
                cboClassifierDeletion.Enabled = False 
                cboActionSelection.Enabled = False 
                cboClassifierFitnessUpdates.Enabled = False 
                cboDoGASub.Enabled = False 
                cboDoASSub.Enabled = False 
                cboClassifierFitness.SelectedItem = "Prediction Magnitude" 
'how is classifer fitness determined? 
                cboInitialPopulation.SelectedItem = "N Random Classifiers" 
'how is initial population generated?" 
                cboPopSize.SelectedItem = "Constant size of N" 'how does 
population size vary 
                cboGAScope.SelectedItem = "Panmictic" 
                cboParentSelection.SelectedItem = "Tournament" 
                cboParentSelection.Font = New Font(cboParentSelection.Font, 
FontStyle.Bold) 
                lblParentSelection.Font = New Font(lblParentSelection.Font, 
FontStyle.Bold) 
                cboClassifierDeletion.SelectedItem = "Fitness Only" 
                cboActionSelection.SelectedItem = "Fitness Proportional" 
                cboClassifierFitnessUpdates.SelectedItem = "Firing 
Classifier" 
 
            Case "LCS-4" 
                cboClassifierFitness.Enabled = False 
                cboInitialPopulation.Enabled = False 
                cboPopSize.Enabled = False 
                cboGAScope.Enabled = False 
                cboParentSelection.Enabled = False 
                cboClassifierDeletion.Enabled = False 
                cboActionSelection.Enabled = False 
                cboClassifierFitnessUpdates.Enabled = False 
                cboDoGASub.Enabled = False 
                cboDoASSub.Enabled = False 
                cboClassifierFitness.SelectedItem = "Prediction Magnitude" 
'how is classifer fitness determined? 
                cboInitialPopulation.SelectedItem = "N Random Classifiers" 
'how is initial population generated?" 
                cboPopSize.SelectedItem = "Constant size of N" 'how does 
population size vary 
                cboGAScope.SelectedItem = "Panmictic" 
                cboParentSelection.SelectedItem = "Fitness Proportional" 
                cboClassifierDeletion.SelectedItem = "Fitness Only" 
                cboActionSelection.SelectedItem = "Biased Exploration" 
                cboActionSelection.Font = New Font(cboActionSelection.Font, 
FontStyle.Bold) 
                lblActionSelection.Font = New Font(lblActionSelection.Font, 
FontStyle.Bold) 
                cboClassifierFitnessUpdates.SelectedItem = "Firing 
Classifier" 
 
            Case "LCS-5" 
                cboClassifierFitness.Enabled = False 
                cboInitialPopulation.Enabled = False 
                cboPopSize.Enabled = False 
                cboGAScope.Enabled = False 
                cboParentSelection.Enabled = False 
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                cboClassifierDeletion.Enabled = False 
                cboActionSelection.Enabled = False 
                cboClassifierFitnessUpdates.Enabled = False 
                cboDoGASub.Enabled = False 
                cboDoASSub.Enabled = False 
                cboClassifierFitness.SelectedItem = "Prediction Magnitude" 
'how is classifer fitness determined? 
                cboInitialPopulation.SelectedItem = "N Random Classifiers" 
'how is initial population generated?" 
                cboPopSize.SelectedItem = "Constant size of N" 'how does 
population size vary 
                cboGAScope.SelectedItem = "Panmictic" 
                cboParentSelection.SelectedItem = "Fitness Proportional" 
                cboClassifierDeletion.SelectedItem = "Fitness Only" 
                cboActionSelection.SelectedItem = "Fitness Proportional" 
                cboClassifierFitnessUpdates.SelectedItem = "Action Set 
Classifiers" 
                cboClassifierFitnessUpdates.Font = New 
Font(cboClassifierFitnessUpdates.Font, FontStyle.Bold) 
                lblFitnessUpdates.Font = New Font(lblFitnessUpdates.Font, 
FontStyle.Bold) 
 
            Case "LCS-6" 
                cboClassifierFitness.Enabled = False 
                cboInitialPopulation.Enabled = False 
                cboPopSize.Enabled = False 
                cboGAScope.Enabled = False 
                cboParentSelection.Enabled = False 
                cboClassifierDeletion.Enabled = False 
                cboActionSelection.Enabled = False 
                cboClassifierFitnessUpdates.Enabled = False 
                cboDoGASub.Enabled = False 
                cboDoASSub.Enabled = False 
                cboClassifierFitness.SelectedItem = "Prediction Magnitude" 
'how is classifer fitness determined? 
                cboInitialPopulation.SelectedItem = "N Random Classifiers" 
'how is initial population generated?" 
                cboPopSize.SelectedItem = "Constant size of N" 'how does 
population size vary 
                cboGAScope.SelectedItem = "Panmictic" 
                cboParentSelection.SelectedItem = "Fitness Proportional" 
                cboClassifierDeletion.SelectedItem = "Fitness/Resource 
Balance" 
                cboClassifierDeletion.Font = New 
Font(cboClassifierDeletion.Font, FontStyle.Bold) 
                lblClassifierDeletion.Font = New 
Font(lblClassifierDeletion.Font, FontStyle.Bold) 
                cboActionSelection.SelectedItem = "Fitness Proportional" 
                cboClassifierFitnessUpdates.SelectedItem = "Firing 
Classifier" 
 
            Case "LCS-7" 
                cboClassifierFitness.Enabled = False 
                cboInitialPopulation.Enabled = False 
                cboPopSize.Enabled = False 
                cboGAScope.Enabled = False 
                cboParentSelection.Enabled = False 
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                cboClassifierDeletion.Enabled = False 
                cboActionSelection.Enabled = False 
                cboClassifierFitnessUpdates.Enabled = False 
                cboDoGASub.Enabled = False 
                cboDoASSub.Enabled = False 
                cboClassifierFitness.SelectedItem = "Prediction Magnitude" 
'how is classifer fitness determined? 
                cboInitialPopulation.SelectedItem = "N Random Classifiers" 
'how is initial population generated?" 
                cboPopSize.SelectedItem = "Constant size of N" 'how does 
population size vary 
                cboGAScope.SelectedItem = "Niche" 
                cboGAScope.Font = New Font(cboGAScope.Font, FontStyle.Bold) 
                lblGAScope.Font = New Font(lblGAScope.Font, FontStyle.Bold) 
                cboParentSelection.SelectedItem = "Fitness Proportional" 
                cboClassifierDeletion.SelectedItem = "Fitness Only" 
                cboActionSelection.SelectedItem = "Fitness Proportional" 
                cboClassifierFitnessUpdates.SelectedItem = "Firing 
Classifier" 
 
            Case "LCS-8" 
                cboClassifierFitness.Enabled = False 
                cboInitialPopulation.Enabled = False 
                cboPopSize.Enabled = False 
                cboGAScope.Enabled = False 
                cboParentSelection.Enabled = False 
                cboClassifierDeletion.Enabled = False 
                cboActionSelection.Enabled = False 
                cboClassifierFitnessUpdates.Enabled = False 
                cboDoGASub.Enabled = False 
                cboDoASSub.Enabled = False 
                cboClassifierFitness.SelectedItem = "Prediction Accuracy" 
'how is classifer fitness determined? 
                cboClassifierFitness.Font = New 
Font(cboClassifierFitness.Font, FontStyle.Bold) 
                lblClassifierFitness.Font = New 
Font(lblClassifierFitness.Font, FontStyle.Bold) 
                cboInitialPopulation.SelectedItem = "N Random Classifiers" 
'how is initial population generated?" 
                cboPopSize.SelectedItem = "Constant size of N" 'how does 
population size vary 
                cboGAScope.SelectedItem = "Panmictic" 
                cboParentSelection.SelectedItem = "Fitness Proportional" 
                cboClassifierDeletion.SelectedItem = "Fitness Only" 
                cboActionSelection.SelectedItem = "Fitness Proportional" 
                cboClassifierFitnessUpdates.SelectedItem = "Firing 
Classifier" 
 
            Case "XCS" 
                cboClassifierFitness.Enabled = False 
                cboInitialPopulation.Enabled = False 
                cboPopSize.Enabled = False 
                cboGAScope.Enabled = False 
                cboParentSelection.Enabled = False 
                cboClassifierDeletion.Enabled = False 
                cboActionSelection.Enabled = False 
                cboClassifierFitnessUpdates.Enabled = False 
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                cboDoGASub.Enabled = False 
                cboDoASSub.Enabled = False 
                cboClassifierFitness.SelectedItem = "Prediction Accuracy" 
'how is classifer fitness determined? 
                cboInitialPopulation.SelectedItem = "Through Covering" 'how 
is initial population generated?" 
                cboPopSize.SelectedItem = "Less than or equal to N" 'how does 
population size vary 
                cboGAScope.SelectedItem = "Niche" 
                cboParentSelection.SelectedItem = "Tournament" 
                cboClassifierDeletion.SelectedItem = "Fitness/Resource 
Balance" 
                cboActionSelection.SelectedItem = "Biased Exploration" 
                cboClassifierFitnessUpdates.SelectedItem = "Action Set 
Classifiers" 
 
            Case Else 
                cboClassifierFitness.Enabled = True 
                cboInitialPopulation.Enabled = True 
                cboPopSize.Enabled = True 
                cboGAScope.Enabled = True 
                cboParentSelection.Enabled = True 
                cboClassifierDeletion.Enabled = True 
                cboActionSelection.Enabled = True 
                cboClassifierFitnessUpdates.Enabled = True 
                cboDoGASub.Enabled = True 
                cboDoASSub.Enabled = True 
 
        End Select 
    End Sub 
 
 
    Private Sub cboPopSize_SelectedValueChanged(ByVal sender As Object, ByVal 
e As System.EventArgs) Handles cboPopSize.SelectedValueChanged 
        If cboPopSize.Text = "Constant size of N" Then 
            cboDoGASub.Text = "False" 
            cboDoASSub.Text = "False" 
        ElseIf cboPopSize.Text = "Less than or equal to N" Then 
            cboDoGASub.Text = "True" 
            cboDoASSub.Text = "True" 
        End If 
    End Sub 
 
    Private Sub cboProblem_SelectedValueChanged(ByVal sender As Object, ByVal 
e As System.EventArgs) Handles cboProblem.SelectedValueChanged 
        If cboProblem.Text = "6-MUX" Then 
            nudNumberMoves.Value = 3 
            nudNumberMoves.Enabled = False 
            cboOpponent.Enabled = False 
            nudReward1.Enabled = False 
            nudReward2.Enabled = False 
            nudReward3.Enabled = False 
            nudReward4.Enabled = False 
            lblWhoseMoves.Text = "Graduated Rewards" 
            cboGraduatedRewards.Visible = True 
            cboWhoseMoves.Visible = False 
            cboWhoseMoves.SelectedItem = "Both" 
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        Else 
            lblWhoseMoves.Text = "Whose Moves" 
            cboGraduatedRewards.Visible = False 
            cboWhoseMoves.Visible = True 
            cboWhoseMoves.SelectedItem = "Both" 
            cboOpponent.Enabled = True 
            nudNumberMoves.Enabled = True 
            nudReward1.Enabled = True 
            nudReward2.Enabled = True 
            nudReward3.Enabled = True 
            nudReward4.Enabled = True 
        End If 
    End Sub 
 
    Private Sub cboEMail_SelectedValueChanged(ByVal sender As Object, ByVal e 
As System.EventArgs) Handles cboEMail.SelectedValueChanged 
        If cboEMail.SelectedItem = "Yes" Then 
            EmailAddress = InputBox("Please enter e-mail address:", "E-mail 
address", "dgaines@uky.edu") 
            SmtpServer = InputBox("Please enter smtp server address:", "SMTP 
Server", "smtp.uky.edu") 
        End If 
    End Sub 
 
    'Private Sub cboAgentType_Leave(ByVal sender As Object, ByVal e As 
System.EventArgs) Handles cboAgentType.Leave 
    '    cboClassifierFitness.Font = New Font(cboClassifierFitness.Font, 
FontStyle.Regular) 
    '    lblClassifierFitness.Font = New Font(lblClassifierFitness.Font, 
FontStyle.Regular) 
    '    cboInitialPopulation.Font = New Font(cboInitialPopulation.Font, 
FontStyle.Regular) 
    '    lblInitialPopulation.Font = New Font(lblInitialPopulation.Font, 
FontStyle.Regular) 
    '    cboPopSize.Font = New Font(cboPopSize.Font, FontStyle.Regular) 
    '    lblPopSize.Font = New Font(lblPopSize.Font, FontStyle.Regular) 
    '    cboParentSelection.Font = New Font(cboParentSelection.Font, 
FontStyle.Regular) 
    '    lblParentSelection.Font = New Font(lblParentSelection.Font, 
FontStyle.Regular) 
    '    cboClassifierDeletion.Font = New Font(cboClassifierDeletion.Font, 
FontStyle.Regular) 
    '    lblClassifierDeletion.Font = New Font(lblClassifierDeletion.Font, 
FontStyle.Regular) 
    '    cboActionSelection.Font = New Font(cboActionSelection.Font, 
FontStyle.Regular) 
    '    lblActionSelection.Font = New Font(lblActionSelection.Font, 
FontStyle.Regular) 
    '    cboClassifierFitnessUpdates.Font = New 
Font(cboClassifierFitnessUpdates.Font, FontStyle.Regular) 
    '    lblFitnessUpdates.Font = New Font(lblFitnessUpdates.Font, 
FontStyle.Regular) 
    '    cboGAScope.Font = New Font(cboGAScope.Font, FontStyle.Regular) 
    '    lblGAScope.Font = New Font(lblGAScope.Font, FontStyle.Regular) 
    '    cboDoGASub.Font = New Font(cboDoGASub.Font, FontStyle.Regular) 
    '    lblDoGASub.Font = New Font(lblDoGASub.Font, FontStyle.Regular) 
    '    cboDoASSub.Font = New Font(cboDoASSub.Font, FontStyle.Regular) 
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    '    lblDoASSub.Font = New Font(lblDoASSub.Font, FontStyle.Regular) 
    '    Select Case cboAgentType.Text 
    '        Case "All" 
    '            cboClassifierFitness.Enabled = False 
    '            cboInitialPopulation.Enabled = False 
    '            cboPopSize.Enabled = False 
    '            cboGAScope.Enabled = False 
    '            cboParentSelection.Enabled = False 
    '            cboClassifierDeletion.Enabled = False 
    '            cboActionSelection.Enabled = False 
    '            cboClassifierFitnessUpdates.Enabled = False 
    '            cboDoGASub.Enabled = False 
    '            cboDoASSub.Enabled = False 
    '            cboClassifierFitness.SelectedItem = "Prediction Magnitude" 
'how is classifer fitness determined? 
    '            cboInitialPopulation.SelectedItem = "N Random Classifiers" 
'how is initial population generated?" 
    '            cboPopSize.SelectedItem = "Constant size of N" 'how does 
population size vary 
    '            cboGAScope.SelectedItem = "Panmictic" 
    '            cboParentSelection.SelectedItem = "Fitness Proportional" 
    '            cboClassifierDeletion.SelectedItem = "Fitness Only" 
    '            cboActionSelection.SelectedItem = "Fitness Proportional" 
    '            cboClassifierFitnessUpdates.SelectedItem = "Firing 
Classifier" 
 
    '        Case "LCS-0" 
    '            cboClassifierFitness.Enabled = False 
    '            cboInitialPopulation.Enabled = False 
    '            cboPopSize.Enabled = False 
    '            cboGAScope.Enabled = False 
    '            cboParentSelection.Enabled = False 
    '            cboClassifierDeletion.Enabled = False 
    '            cboActionSelection.Enabled = False 
    '            cboClassifierFitnessUpdates.Enabled = False 
    '            cboDoGASub.Enabled = False 
    '            cboDoASSub.Enabled = False 
    '            cboClassifierFitness.SelectedItem = "Prediction Magnitude" 
'how is classifer fitness determined? 
    '            cboInitialPopulation.SelectedItem = "N Random Classifiers" 
'how is initial population generated?" 
    '            cboPopSize.SelectedItem = "Constant size of N" 'how does 
population size vary 
    '            cboGAScope.SelectedItem = "Panmictic" 
    '            cboParentSelection.SelectedItem = "Fitness Proportional" 
    '            cboClassifierDeletion.SelectedItem = "Fitness Only" 
    '            cboActionSelection.SelectedItem = "Fitness Proportional" 
    '            cboClassifierFitnessUpdates.SelectedItem = "Firing 
Classifier" 
 
    '        Case "LCS-1" 
    '            cboClassifierFitness.Enabled = False 
    '            cboInitialPopulation.Enabled = False 
    '            cboPopSize.Enabled = False 
    '            cboGAScope.Enabled = False 
    '            cboParentSelection.Enabled = False 
    '            cboClassifierDeletion.Enabled = False 
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    '            cboActionSelection.Enabled = False 
    '            cboClassifierFitnessUpdates.Enabled = False 
    '            cboDoGASub.Enabled = False 
    '            cboDoASSub.Enabled = False 
    '            cboClassifierFitness.SelectedItem = "Prediction Magnitude" 
'how is classifer fitness determined? 
    '            cboInitialPopulation.SelectedItem = "Through Covering" 'how 
is initial population generated?" 
    '            cboInitialPopulation.Font = New 
Font(cboInitialPopulation.Font, FontStyle.Bold) 
    '            lblInitialPopulation.Font = New 
Font(lblInitialPopulation.Font, FontStyle.Bold) 
    '            cboPopSize.SelectedItem = "Constant size of N" 'how does 
population size vary 
    '            cboGAScope.SelectedItem = "Panmictic" 
    '            cboParentSelection.SelectedItem = "Fitness Proportional" 
    '            cboClassifierDeletion.SelectedItem = "Fitness Only" 
    '            cboActionSelection.SelectedItem = "Fitness Proportional" 
    '            cboClassifierFitnessUpdates.SelectedItem = "Firing 
Classifier" 
 
    '        Case "LCS-2" 
    '            cboClassifierFitness.Enabled = False 
    '            cboInitialPopulation.Enabled = False 
    '            cboPopSize.Enabled = False 
    '            cboGAScope.Enabled = False 
    '            cboParentSelection.Enabled = False 
    '            cboClassifierDeletion.Enabled = False 
    '            cboActionSelection.Enabled = False 
    '            cboClassifierFitnessUpdates.Enabled = False 
    '            cboDoGASub.Enabled = False 
    '            cboDoASSub.Enabled = False 
    '            cboClassifierFitness.SelectedItem = "Prediction Magnitude" 
'how is classifer fitness determined? 
    '            cboInitialPopulation.SelectedItem = "N Random Classifiers" 
'how is initial population generated?" 
    '            cboPopSize.SelectedItem = "Less than or equal to N" 'how 
does population size vary 
    '            cboPopSize.Font = New Font(cboPopSize.Font, FontStyle.Bold) 
    '            lblPopSize.Font = New Font(lblPopSize.Font, FontStyle.Bold) 
    '            cboDoGASub.Font = New Font(cboDoGASub.Font, FontStyle.Bold) 
    '            lblDoGASub.Font = New Font(lblDoGASub.Font, FontStyle.Bold) 
    '            cboDoASSub.Font = New Font(cboDoASSub.Font, FontStyle.Bold) 
    '            lblDoASSub.Font = New Font(lblDoASSub.Font, FontStyle.Bold) 
    '            cboGAScope.SelectedItem = "Panmictic" 
    '            cboParentSelection.SelectedItem = "Fitness Proportional" 
    '            cboClassifierDeletion.SelectedItem = "Fitness Only" 
    '            cboActionSelection.SelectedItem = "Fitness Proportional" 
    '            cboClassifierFitnessUpdates.SelectedItem = "Firing 
Classifier" 
 
    '        Case "LCS-3" 
    '            cboClassifierFitness.Enabled = False 
    '            cboInitialPopulation.Enabled = False 
    '            cboPopSize.Enabled = False 
    '            cboGAScope.Enabled = False 
    '            cboParentSelection.Enabled = False 
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    '            cboClassifierDeletion.Enabled = False 
    '            cboActionSelection.Enabled = False 
    '            cboClassifierFitnessUpdates.Enabled = False 
    '            cboDoGASub.Enabled = False 
    '            cboDoASSub.Enabled = False 
    '            cboClassifierFitness.SelectedItem = "Prediction Magnitude" 
'how is classifer fitness determined? 
    '            cboInitialPopulation.SelectedItem = "N Random Classifiers" 
'how is initial population generated?" 
    '            cboPopSize.SelectedItem = "Constant size of N" 'how does 
population size vary 
    '            cboGAScope.SelectedItem = "Panmictic" 
    '            cboParentSelection.SelectedItem = "Tournament" 
    '            cboParentSelection.Font = New Font(cboParentSelection.Font, 
FontStyle.Bold) 
    '            lblParentSelection.Font = New Font(lblParentSelection.Font, 
FontStyle.Bold) 
    '            cboClassifierDeletion.SelectedItem = "Fitness Only" 
    '            cboActionSelection.SelectedItem = "Fitness Proportional" 
    '            cboClassifierFitnessUpdates.SelectedItem = "Firing 
Classifier" 
 
    '        Case "LCS-4" 
    '            cboClassifierFitness.Enabled = False 
    '            cboInitialPopulation.Enabled = False 
    '            cboPopSize.Enabled = False 
    '            cboGAScope.Enabled = False 
    '            cboParentSelection.Enabled = False 
    '            cboClassifierDeletion.Enabled = False 
    '            cboActionSelection.Enabled = False 
    '            cboClassifierFitnessUpdates.Enabled = False 
    '            cboDoGASub.Enabled = False 
    '            cboDoASSub.Enabled = False 
    '            cboClassifierFitness.SelectedItem = "Prediction Magnitude" 
'how is classifer fitness determined? 
    '            cboInitialPopulation.SelectedItem = "N Random Classifiers" 
'how is initial population generated?" 
    '            cboPopSize.SelectedItem = "Constant size of N" 'how does 
population size vary 
    '            cboGAScope.SelectedItem = "Panmictic" 
    '            cboParentSelection.SelectedItem = "Fitness Proportional" 
    '            cboClassifierDeletion.SelectedItem = "Fitness Only" 
    '            cboActionSelection.SelectedItem = "Biased Exploration" 
    '            cboActionSelection.Font = New Font(cboActionSelection.Font, 
FontStyle.Bold) 
    '            lblActionSelection.Font = New Font(lblActionSelection.Font, 
FontStyle.Bold) 
    '            cboClassifierFitnessUpdates.SelectedItem = "Firing 
Classifier" 
 
    '        Case "LCS-5" 
    '            cboClassifierFitness.Enabled = False 
    '            cboInitialPopulation.Enabled = False 
    '            cboPopSize.Enabled = False 
    '            cboGAScope.Enabled = False 
    '            cboParentSelection.Enabled = False 
    '            cboClassifierDeletion.Enabled = False 
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    '            cboActionSelection.Enabled = False 
    '            cboClassifierFitnessUpdates.Enabled = False 
    '            cboDoGASub.Enabled = False 
    '            cboDoASSub.Enabled = False 
    '            cboClassifierFitness.SelectedItem = "Prediction Magnitude" 
'how is classifer fitness determined? 
    '            cboInitialPopulation.SelectedItem = "N Random Classifiers" 
'how is initial population generated?" 
    '            cboPopSize.SelectedItem = "Constant size of N" 'how does 
population size vary 
    '            cboGAScope.SelectedItem = "Panmictic" 
    '            cboParentSelection.SelectedItem = "Fitness Proportional" 
    '            cboClassifierDeletion.SelectedItem = "Fitness Only" 
    '            cboActionSelection.SelectedItem = "Fitness Proportional" 
    '            cboClassifierFitnessUpdates.SelectedItem = "Action Set 
Classifiers" 
    '            cboClassifierFitnessUpdates.Font = New 
Font(cboClassifierFitnessUpdates.Font, FontStyle.Bold) 
    '            lblFitnessUpdates.Font = New Font(lblFitnessUpdates.Font, 
FontStyle.Bold) 
 
    '        Case "LCS-6" 
    '            cboClassifierFitness.Enabled = False 
    '            cboInitialPopulation.Enabled = False 
    '            cboPopSize.Enabled = False 
    '            cboGAScope.Enabled = False 
    '            cboParentSelection.Enabled = False 
    '            cboClassifierDeletion.Enabled = False 
    '            cboActionSelection.Enabled = False 
    '            cboClassifierFitnessUpdates.Enabled = False 
    '            cboDoGASub.Enabled = False 
    '            cboDoASSub.Enabled = False 
    '            cboClassifierFitness.SelectedItem = "Prediction Magnitude" 
'how is classifer fitness determined? 
    '            cboInitialPopulation.SelectedItem = "N Random Classifiers" 
'how is initial population generated?" 
    '            cboPopSize.SelectedItem = "Constant size of N" 'how does 
population size vary 
    '            cboGAScope.SelectedItem = "Panmictic" 
    '            cboParentSelection.SelectedItem = "Fitness Proportional" 
    '            cboClassifierDeletion.SelectedItem = "Fitness/Resource 
Balance" 
    '            cboClassifierDeletion.Font = New 
Font(cboClassifierDeletion.Font, FontStyle.Bold) 
    '            lblClassifierDeletion.Font = New 
Font(lblClassifierDeletion.Font, FontStyle.Bold) 
    '            cboActionSelection.SelectedItem = "Fitness Proportional" 
    '            cboClassifierFitnessUpdates.SelectedItem = "Firing 
Classifier" 
 
    '        Case "LCS-7" 
    '            cboClassifierFitness.Enabled = False 
    '            cboInitialPopulation.Enabled = False 
    '            cboPopSize.Enabled = False 
    '            cboGAScope.Enabled = False 
    '            cboParentSelection.Enabled = False 
    '            cboClassifierDeletion.Enabled = False 
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    '            cboActionSelection.Enabled = False 
    '            cboClassifierFitnessUpdates.Enabled = False 
    '            cboDoGASub.Enabled = False 
    '            cboDoASSub.Enabled = False 
    '            cboClassifierFitness.SelectedItem = "Prediction Magnitude" 
'how is classifer fitness determined? 
    '            cboInitialPopulation.SelectedItem = "N Random Classifiers" 
'how is initial population generated?" 
    '            cboPopSize.SelectedItem = "Constant size of N" 'how does 
population size vary 
    '            cboGAScope.SelectedItem = "Niche" 
    '            cboGAScope.Font = New Font(cboGAScope.Font, FontStyle.Bold) 
    '            lblGAScope.Font = New Font(lblGAScope.Font, FontStyle.Bold) 
    '            cboParentSelection.SelectedItem = "Fitness Proportional" 
    '            cboClassifierDeletion.SelectedItem = "Fitness Only" 
    '            cboActionSelection.SelectedItem = "Fitness Proportional" 
    '            cboClassifierFitnessUpdates.SelectedItem = "Firing 
Classifier" 
 
    '        Case "LCS-8" 
    '            cboClassifierFitness.Enabled = False 
    '            cboInitialPopulation.Enabled = False 
    '            cboPopSize.Enabled = False 
    '            cboGAScope.Enabled = False 
    '            cboParentSelection.Enabled = False 
    '            cboClassifierDeletion.Enabled = False 
    '            cboActionSelection.Enabled = False 
    '            cboClassifierFitnessUpdates.Enabled = False 
    '            cboDoGASub.Enabled = False 
    '            cboDoASSub.Enabled = False 
    '            cboClassifierFitness.SelectedItem = "Prediction Accuracy" 
'how is classifer fitness determined? 
    '            cboClassifierFitness.Font = New 
Font(cboClassifierFitness.Font, FontStyle.Bold) 
    '            lblClassifierFitness.Font = New 
Font(lblClassifierFitness.Font, FontStyle.Bold) 
    '            cboInitialPopulation.SelectedItem = "N Random Classifiers" 
'how is initial population generated?" 
    '            cboPopSize.SelectedItem = "Constant size of N" 'how does 
population size vary 
    '            cboGAScope.SelectedItem = "Panmictic" 
    '            cboParentSelection.SelectedItem = "Fitness Proportional" 
    '            cboClassifierDeletion.SelectedItem = "Fitness Only" 
    '            cboActionSelection.SelectedItem = "Fitness Proportional" 
    '            cboClassifierFitnessUpdates.SelectedItem = "Firing 
Classifier" 
 
    '        Case "XCS" 
    '            cboClassifierFitness.Enabled = False 
    '            cboInitialPopulation.Enabled = False 
    '            cboPopSize.Enabled = False 
    '            cboGAScope.Enabled = False 
    '            cboParentSelection.Enabled = False 
    '            cboClassifierDeletion.Enabled = False 
    '            cboActionSelection.Enabled = False 
    '            cboClassifierFitnessUpdates.Enabled = False 
    '            cboDoGASub.Enabled = False 
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    '            cboDoASSub.Enabled = False 
    '            cboClassifierFitness.SelectedItem = "Prediction Accuracy" 
'how is classifer fitness determined? 
    '            cboInitialPopulation.SelectedItem = "Through Covering" 'how 
is initial population generated?" 
    '            cboPopSize.SelectedItem = "Less than or equal to N" 'how 
does population size vary 
    '            cboGAScope.SelectedItem = "Niche" 
    '            cboParentSelection.SelectedItem = "Tournament" 
    '            cboClassifierDeletion.SelectedItem = "Fitness/Resource 
Balance" 
    '            cboActionSelection.SelectedItem = "Biased Exploration" 
    '            cboClassifierFitnessUpdates.SelectedItem = "Action Set 
Classifiers" 
 
    '        Case Else 
    '            cboClassifierFitness.Enabled = True 
    '            cboInitialPopulation.Enabled = True 
    '            cboPopSize.Enabled = True 
    '            cboGAScope.Enabled = True 
    '            cboParentSelection.Enabled = True 
    '            cboClassifierDeletion.Enabled = True 
    '            cboActionSelection.Enabled = True 
    '            cboClassifierFitnessUpdates.Enabled = True 
    '            cboDoGASub.Enabled = True 
    '            cboDoASSub.Enabled = True 
 
    '    End Select 
    'End Sub 
End Class 
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Appendix D: SAS STATISTICAL TESTS OUTPUT 

1. Versus TFT 
1.1. Unique Classifiers 

1.1.1. Kruskal-Wallis Test that Unique is equal for all Agents 
 

Obs AGENT1 AGENT2 ABSDIFF STDERR STDIFF PVALUE 
       

1 LCS-0 LCS-1 82739.41 2086.96 39.646 0
2 LCS-0 LCS-2 395571.6 2086.96 189.544 0
3 LCS-0 LCS-3 73632.93 1280.08 57.522 0
4 LCS-0 LCS-4 168162.4 752.55 223.458 0
5 LCS-0 LCS-5 324145.1 826.7 392.094 0
6 LCS-0 LCS-6 155683 2086.96 74.598 0
7 LCS-0 LCS-7 92703.58 2086.96 44.42 0
8 LCS-0 LCS-8 143706.2 1139.18 126.149 0
9 LCS-0 XCS 275139.2 752.55 365.611 0

10 LCS-1 LCS-2 312832.2 2857.27 109.486 0
11 LCS-1 LCS-3 156372.3 2333.92 67 0
12 LCS-1 LCS-4 85423.04 2091.63 40.84 0
13 LCS-1 LCS-5 241405.7 2119.44 113.901 0
14 LCS-1 LCS-6 72943.62 2857.27 25.529 0
15 LCS-1 LCS-7 175443 2857.27 61.402 0
16 LCS-1 LCS-8 226445.6 2259.72 100.21 0
17 LCS-1 XCS 357878.6 2091.63 171.1 0
18 LCS-2 LCS-3 469204.5 2333.92 201.037 0
19 LCS-2 LCS-4 227409.2 2091.63 108.723 0
20 LCS-2 LCS-5 71426.53 2119.44 33.701 0
21 LCS-2 LCS-6 239888.6 2857.27 83.957 0
22 LCS-2 LCS-7 488275.2 2857.27 170.889 0
23 LCS-2 LCS-8 539277.8 2259.72 238.648 0
24 LCS-2 XCS 670710.8 2091.63 320.664 0
25 LCS-3 LCS-4 241795.4 1287.68 187.776 0
26 LCS-3 LCS-5 397778 1332.38 298.548 0
27 LCS-3 LCS-6 229316 2333.92 98.253 0
28 LCS-3 LCS-7 19070.65 2333.92 8.171 4.44E-16
29 LCS-3 LCS-8 70073.26 1545.81 45.331 0
30 LCS-3 XCS 201506.2 1287.68 156.488 0
31 LCS-4 LCS-5 155982.6 838.43 186.042 0
32 LCS-4 LCS-6 12479.42 2091.63 5.966 2.43E-09
33 LCS-4 LCS-7 260866 2091.63 124.719 0
34 LCS-4 LCS-8 311868.6 1147.71 271.73 0
35 LCS-4 XCS 443301.6 765.41 579.171 0
36 LCS-5 LCS-6 168462.1 2119.44 79.484 0
37 LCS-5 LCS-7 416848.7 2119.44 196.679 0
38 LCS-5 LCS-8 467851.3 1197.65 390.642 0
39 LCS-5 XCS 599284.2 838.43 714.772 0
40 LCS-6 LCS-7 248386.6 2857.27 86.931 0
41 LCS-6 LCS-8 299389.2 2259.72 132.49 0
42 LCS-6 XCS 430822.2 2091.63 205.974 0

 
 

273



 

Obs AGENT1 AGENT2 ABSDIFF STDERR STDIFF PVALUE 
43 LCS-7 LCS-8 51002.61 2259.72 22.57 0
44 LCS-7 XCS 182435.6 2091.63 87.222 0
45 LCS-8 XCS 131433 1147.71 114.517 0

 
1.1.2. GLM Bonferroni Test that Unique is equal for all Agents 

 

Agent Comparison 

Difference 
Between 
Means 

Simultaneous 
95% 

Confidence 
Intervals 

Significance 
(5% Level) 

LCS-2 - LCS-5 14.17 13.99 14.35 *** 
LCS-2 - LCS-4 29.73 29.55 29.91 *** 
LCS-2 - LCS-6 30.07 29.83 30.32 *** 
LCS-2 - LCS-1 34.95 34.71 35.20 *** 
LCS-2 - LCS-0 40.89 40.72 41.07 *** 
LCS-2 - LCS-3 46.17 45.97 46.37 *** 
LCS-2 - LCS-7 47.52 47.27 47.76 *** 
LCS-2 - LCS-8 51.14 50.95 51.33 *** 
LCS-2 - XCS 59.56 59.38 59.74 *** 
LCS-5 - LCS-2 -14.17 -14.35 -13.99 *** 
LCS-5 - LCS-4 15.56 15.49 15.63 *** 
LCS-5 - LCS-6 15.90 15.72 16.08 *** 
LCS-5 - LCS-1 20.78 20.60 20.96 *** 
LCS-5 - LCS-0 26.72 26.65 26.79 *** 
LCS-5 - LCS-3 32.00 31.88 32.11 *** 
LCS-5 - LCS-7 33.34 33.16 33.53 *** 
LCS-5 - LCS-8 36.97 36.87 37.07 *** 
LCS-5 - XCS 45.38 45.31 45.46 *** 
LCS-4 - LCS-2 -29.73 -29.91 -29.55 *** 
LCS-4 - LCS-5 -15.56 -15.63 -15.49 *** 
LCS-4 - LCS-6 0.34 0.16 0.52 *** 
LCS-4 - LCS-1 5.22 5.04 5.40 *** 
LCS-4 - LCS-0 11.16 11.10 11.23 *** 
LCS-4 - LCS-3 16.44 16.33 16.55 *** 
LCS-4 - LCS-7 17.79 17.61 17.97 *** 
LCS-4 - LCS-8 21.41 21.31 21.51 *** 
LCS-4 - XCS 29.83 29.76 29.89 *** 
LCS-6 - LCS-2 -30.07 -30.32 -29.83 *** 
LCS-6 - LCS-5 -15.90 -16.08 -15.72 *** 
LCS-6 - LCS-4 -0.34 -0.52 -0.16 *** 
LCS-6 - LCS-1 4.88 4.64 5.12 *** 
LCS-6 - LCS-0 10.82 10.64 11.00 *** 
LCS-6 - LCS-3 16.10 15.90 16.30 *** 
LCS-6 - LCS-7 17.45 17.20 17.69 *** 
LCS-6 - LCS-8 21.07 20.88 21.26 *** 
LCS-6 - XCS 29.49 29.31 29.66 *** 
LCS-1 - LCS-2 -34.95 -35.20 -34.71 *** 
LCS-1 - LCS-5 -20.78 -20.96 -20.60 *** 
LCS-1 - LCS-4 -5.22 -5.40 -5.04 *** 
LCS-1 - LCS-6 -4.88 -5.12 -4.64 *** 
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Agent Comparison 

Difference 
Between 
Means 

Simultaneous 
95% 

Confidence 
Intervals 

Significance 
(5% Level) 

LCS-1 - LCS-0 5.94 5.76 6.12 *** 
LCS-1 - LCS-3 11.22 11.02 11.42 *** 
LCS-1 - LCS-7 12.57 12.32 12.81 *** 
LCS-1 - LCS-8 16.19 16.00 16.38 *** 
LCS-1 - XCS 24.61 24.43 24.78 *** 
LCS-0 - LCS-2 -40.89 -41.07 -40.72 *** 
LCS-0 - LCS-5 -26.72 -26.79 -26.65 *** 
LCS-0 - LCS-4 -11.16 -11.23 -11.10 *** 
LCS-0 - LCS-6 -10.82 -11.00 -10.64 *** 
LCS-0 - LCS-1 -5.94 -6.12 -5.76 *** 
LCS-0 - LCS-3 5.28 5.17 5.39 *** 
LCS-0 - LCS-7 6.62 6.45 6.80 *** 
LCS-0 - LCS-8 10.25 10.15 10.34 *** 
LCS-0 - XCS 18.66 18.60 18.73 *** 
LCS-3 - LCS-2 -46.17 -46.37 -45.97 *** 
LCS-3 - LCS-5 -32.00 -32.11 -31.88 *** 
LCS-3 - LCS-4 -16.44 -16.55 -16.33 *** 
LCS-3 - LCS-6 -16.10 -16.30 -15.90 *** 
LCS-3 - LCS-1 -11.22 -11.42 -11.02 *** 
LCS-3 - LCS-0 -5.28 -5.39 -5.17 *** 
LCS-3 - LCS-7 1.35 1.15 1.55 *** 
LCS-3 - LCS-8 4.97 4.84 5.10 *** 
LCS-3 - XCS 13.39 13.28 13.50 *** 
LCS-7 - LCS-2 -47.52 -47.76 -47.27 *** 
LCS-7 - LCS-5 -33.34 -33.53 -33.16 *** 
LCS-7 - LCS-4 -17.79 -17.97 -17.61 *** 
LCS-7 - LCS-6 -17.45 -17.69 -17.20 *** 
LCS-7 - LCS-1 -12.57 -12.81 -12.32 *** 
LCS-7 - LCS-0 -6.62 -6.80 -6.45 *** 
LCS-7 - LCS-3 -1.35 -1.55 -1.15 *** 
LCS-7 - LCS-8 3.62 3.43 3.82 *** 
LCS-7 - XCS 12.04 11.86 12.22 *** 
LCS-8 - LCS-2 -51.14 -51.33 -50.95 *** 
LCS-8 - LCS-5 -36.97 -37.07 -36.87 *** 
LCS-8 - LCS-4 -21.41 -21.51 -21.31 *** 
LCS-8 - LCS-6 -21.07 -21.26 -20.88 *** 
LCS-8 - LCS-1 -16.19 -16.38 -16.00 *** 
LCS-8 - LCS-0 -10.25 -10.34 -10.15 *** 

 
1.2. % Correct 

1.2.1. Kruskal-Wallis Test that % Correct is equal for all Agents 
 

Obs AGENT1 AGENT2 ABSDIFF STDERR STDIFF PVALUE
       

1 LCS-0 LCS-1 6508.97 2198.6 2.961 0.00307
2 LCS-0 LCS-2 526743.8 2092.25 251.76 0
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Obs AGENT1 AGENT2 ABSDIFF STDERR STDIFF PVALUE
3 LCS-0 LCS-3 111591.82 1813.35 61.539 0
4 LCS-0 LCS-4 248040.83 1786.61 138.833 0
5 LCS-0 LCS-5 142522.01 1901.75 74.943 0
6 LCS-0 LCS-6 177805.11 1995.47 89.104 0
7 LCS-0 LCS-7 2840.17 2520.72 1.127 0.25986
8 LCS-0 LCS-8 698728.2 1786.22 391.177 0
9 LCS-0 XCS 277265.83 1786.61 155.191 0

10 LCS-1 LCS-2 520234.83 2101.04 247.608 0
11 LCS-1 LCS-3 118100.79 1823.49 64.766 0
12 LCS-1 LCS-4 254549.8 1796.9 141.661 0
13 LCS-1 LCS-5 136013.04 1911.41 71.158 0
14 LCS-1 LCS-6 171296.14 2004.69 85.448 0
15 LCS-1 LCS-7 9349.15 2528.03 3.698 0.00022
16 LCS-1 LCS-8 692219.23 1796.51 385.313 0
17 LCS-1 XCS 283774.81 1796.9 157.925 0
18 LCS-2 LCS-3 638335.62 1693.74 376.879 0
19 LCS-2 LCS-4 774784.63 1665.08 465.313 0
20 LCS-2 LCS-5 384221.79 1788.06 214.882 0
21 LCS-2 LCS-6 348938.69 1887.44 184.874 0
22 LCS-2 LCS-7 529583.98 2436.1 217.39 0
23 LCS-2 LCS-8 171984.4 1664.67 103.315 0
24 LCS-2 XCS 804009.64 1665.08 482.864 0
25 LCS-3 LCS-4 136449.01 1297.4 105.171 0
26 LCS-3 LCS-5 254113.83 1451.86 175.026 0
27 LCS-3 LCS-6 289396.93 1572.63 184.021 0
28 LCS-3 LCS-7 108751.65 2201.21 49.405 0
29 LCS-3 LCS-8 810320.02 1296.86 624.831 0
30 LCS-3 XCS 165674.01 1297.4 127.697 0
31 LCS-4 LCS-5 390562.84 1418.32 275.37 0
32 LCS-4 LCS-6 425845.94 1541.72 276.215 0
33 LCS-4 LCS-7 245200.65 2179.23 112.517 0
34 LCS-4 LCS-8 946769.03 1259.2 751.88 0
35 LCS-4 XCS 29225.01 1259.75 23.199 0
36 LCS-5 LCS-6 35283.1 1673.79 21.08 0
37 LCS-5 LCS-7 145362.18 2274.58 63.907 0
38 LCS-5 LCS-8 556206.19 1417.83 392.293 0
39 LCS-5 XCS 419787.85 1418.32 295.975 0
40 LCS-6 LCS-7 180645.28 2353.5 76.756 0
41 LCS-6 LCS-8 520923.09 1541.27 337.983 0
42 LCS-6 XCS 455070.95 1541.72 295.171 0
43 LCS-7 LCS-8 701568.37 2178.91 321.981 0
44 LCS-7 XCS 274425.66 2179.23 125.928 0
45 LCS-8 XCS 975994.03 1259.2 775.089 0

 
1.2.2. GLM Bonferroni Test that % Correct is equal for all Agents 

 

Agent 
Comparison 

Difference 
Between 
Means 

Simultaneous 
95% 

Confidence 
Intervals 

Significance 
(5% Level) 
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Agent 
Comparison 

Difference 
Between 
Means 

Simultaneous 
95% 

Confidence 
Intervals 

Significance 
(5% Level) 

XCS   - LCS-4 0.27 0.18 0.35 *** 
XCS   - LCS-0 1.59 1.47 1.71 *** 
XCS   - LCS-7 1.63 1.48 1.77 *** 
XCS   - LCS-3 1.70 1.61 1.78 *** 
XCS   - LCS-1 1.97 1.85 2.09 *** 
XCS   - LCS-5 3.12 3.03 3.22 *** 
XCS   - LCS-6 3.59 3.49 3.69 *** 
XCS   - LCS-2 15.25 15.14 15.36 *** 
XCS   - LCS-8 49.51 49.42 49.59 *** 
LCS-4 - XCS -0.27 -0.35 -0.18 *** 
LCS-4 - LCS-0 1.33 1.21 1.45 *** 
LCS-4 - LCS-7 1.36 1.21 1.51 *** 
LCS-4 - LCS-3 1.43 1.34 1.52 *** 
LCS-4 - LCS-1 1.70 1.58 1.83 *** 
LCS-4 - LCS-5 2.85 2.76 2.95 *** 
LCS-4 - LCS-6 3.32 3.22 3.43 *** 
LCS-4 - LCS-2 14.98 14.87 15.09 *** 
LCS-4 - LCS-8 49.24 49.16 49.33 *** 
LCS-0 - XCS -1.59 -1.71 -1.47 *** 
LCS-0 - LCS-4 -1.33 -1.45 -1.21 *** 
LCS-0 - LCS-7 0.03 -0.14 0.20  
LCS-0 - LCS-3 0.10 -0.02 0.23  
LCS-0 - LCS-1 0.38 0.23 0.53 *** 
LCS-0 - LCS-5 1.53 1.40 1.66 *** 
LCS-0 - LCS-6 2.00 1.86 2.13 *** 
LCS-0 - LCS-2 13.66 13.52 13.80 *** 
LCS-0 - LCS-8 47.92 47.79 48.04 *** 
LCS-7 - XCS -1.63 -1.77 -1.48 *** 
LCS-7 - LCS-4 -1.36 -1.51 -1.21 *** 
LCS-7 - LCS-0 -0.03 -0.20 0.14  
LCS-7 - LCS-3 0.07 -0.08 0.22  
LCS-7 - LCS-1 0.35 0.17 0.52 *** 
LCS-7 - LCS-5 1.50 1.34 1.65 *** 
LCS-7 - LCS-6 1.97 1.81 2.12 *** 
LCS-7 - LCS-2 13.62 13.46 13.79 *** 
LCS-7 - LCS-8 47.88 47.73 48.03 *** 
LCS-3 - XCS -1.70 -1.78 -1.61 *** 
LCS-3 - LCS-4 -1.43 -1.52 -1.34 *** 
LCS-3 - LCS-0 -0.10 -0.23 0.02  
LCS-3 - LCS-7 -0.07 -0.22 0.08  
LCS-3 - LCS-1 0.27 0.15 0.40 *** 
LCS-3 - LCS-5 1.42 1.33 1.52 *** 
LCS-3 - LCS-6 1.89 1.79 2.00 *** 
LCS-3 - LCS-2 13.55 13.44 13.67 *** 
LCS-3 - LCS-8 47.81 47.72 47.90 *** 
LCS-1 - XCS -1.97 -2.09 -1.85 *** 
LCS-1 - LCS-4 -1.70 -1.83 -1.58 *** 
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Agent 
Comparison 

Difference 
Between 
Means 

Simultaneous 
95% 

Confidence 
Intervals 

Significance 
(5% Level) 

LCS-1 - LCS-0 -0.38 -0.53 -0.23 *** 
LCS-1 - LCS-7 -0.35 -0.52 -0.17 *** 
LCS-1 - LCS-3 -0.27 -0.40 -0.15 *** 
LCS-1 - LCS-5 1.15 1.02 1.28 *** 
LCS-1 - LCS-6 1.62 1.48 1.76 *** 
LCS-1 - LCS-2 13.28 13.14 13.42 *** 
LCS-1 - LCS-8 47.54 47.42 47.66 *** 
LCS-5 - XCS -3.12 -3.22 -3.03 *** 
LCS-5 - LCS-4 -2.85 -2.95 -2.76 *** 
LCS-5 - LCS-0 -1.53 -1.66 -1.40 *** 
LCS-5 - LCS-7 -1.50 -1.65 -1.34 *** 
LCS-5 - LCS-3 -1.42 -1.52 -1.33 *** 
LCS-5 - LCS-1 -1.15 -1.28 -1.02 *** 
LCS-5 - LCS-6 0.47 0.36 0.58 *** 
LCS-5 - LCS-2 12.13 12.01 12.25 *** 
LCS-5 - LCS-8 46.39 46.29 46.48 *** 
LCS-6 - XCS -3.59 -3.69 -3.49 *** 
LCS-6 - LCS-4 -3.32 -3.43 -3.22 *** 
LCS-6 - LCS-0 -2.00 -2.13 -1.86 *** 
LCS-6 - LCS-7 -1.97 -2.12 -1.81 *** 
LCS-6 - LCS-3 -1.89 -2.00 -1.79 *** 
LCS-6 - LCS-1 -1.62 -1.76 -1.48 *** 
LCS-6 - LCS-5 -0.47 -0.58 -0.36 *** 
LCS-6 - LCS-2 11.66 11.53 11.79 *** 
LCS-6 - LCS-8 45.92 45.81 46.02 *** 
LCS-2 - XCS -15.25 -15.36 -15.14 *** 
LCS-2 - LCS-4 -14.98 -15.09 -14.87 *** 
LCS-2 - LCS-0 -13.66 -13.80 -13.52 *** 
LCS-2 - LCS-7 -13.62 -13.79 -13.46 *** 
LCS-2 - LCS-3 -13.55 -13.67 -13.44 *** 
LCS-2 - LCS-1 -13.28 -13.42 -13.14 *** 

 
1.3. System Error 

1.3.1. Kruskal-Wallis Test that System Error is equal for all Agents 
 

Obs AGENT1 AGENT2 ABSDIFF STDERR STDIFF PVALUE 
       

1 LCS-0 LCS-1 13322.06 2060.95 6.464 0
2 LCS-0 LCS-2 495061.19 1888.93 262.085 0
3 LCS-0 LCS-3 208796.39 1764.9 118.305 0
4 LCS-0 LCS-4 27362.58 1748.99 15.645 0
5 LCS-0 LCS-5 101648.58 1843.41 55.142 0
6 LCS-0 LCS-6 175417.88 1918.68 91.426 0
7 LCS-0 LCS-7 9070.72 2257.47 4.018 0.000059
8 LCS-0 LCS-8 578507.06 3564.04 162.318 0
9 LCS-0 XCS 319760.82 1774.32 180.216 0

 
 

278



 

Obs AGENT1 AGENT2 ABSDIFF STDERR STDIFF PVALUE 
10 LCS-1 LCS-2 508383.25 1649.07 308.285 0
11 LCS-1 LCS-3 195474.33 1505.4 129.849 0
12 LCS-1 LCS-4 40684.64 1486.71 27.365 0
13 LCS-1 LCS-5 114970.64 1596.71 72.005 0
14 LCS-1 LCS-6 188739.94 1683.06 112.141 0
15 LCS-1 LCS-7 4251.34 2060.95 2.063 0.039131
16 LCS-1 LCS-8 591829.12 3442.92 171.897 0
17 LCS-1 XCS 306438.76 1516.43 202.08 0
18 LCS-2 LCS-3 703857.58 1259.68 558.761 0
19 LCS-2 LCS-4 467698.61 1237.29 378.002 0
20 LCS-2 LCS-5 393412.6 1367.5 287.687 0
21 LCS-2 LCS-6 319643.3 1467.4 217.83 0
22 LCS-2 LCS-7 504131.91 1888.93 266.887 0
23 LCS-2 LCS-8 83445.87 3342.79 24.963 0
24 LCS-2 XCS 814822.01 1272.84 640.162 0
25 LCS-3 LCS-4 236158.97 1038.11 227.488 0
26 LCS-3 LCS-5 310444.97 1190.32 260.808 0
27 LCS-3 LCS-6 384214.27 1303.86 294.674 0
28 LCS-3 LCS-7 199725.67 1764.9 113.166 0
29 LCS-3 LCS-8 787303.45 3274.3 240.449 0
30 LCS-3 XCS 110964.43 1080.24 102.722 0
31 LCS-4 LCS-5 74286.01 1166.6 63.677 0
32 LCS-4 LCS-6 148055.3 1282.25 115.466 0
33 LCS-4 LCS-7 36433.3 1748.99 20.831 0
34 LCS-4 LCS-8 551144.48 3265.76 168.765 0
35 LCS-4 XCS 347123.4 1054.05 329.325 0
36 LCS-5 LCS-6 73769.3 1408.31 52.382 0
37 LCS-5 LCS-7 110719.3 1843.41 60.062 0
38 LCS-5 LCS-8 476858.48 3317.28 143.75 0
39 LCS-5 XCS 421409.41 1204.24 349.939 0
40 LCS-6 LCS-7 184488.6 1918.68 96.154 0
41 LCS-6 LCS-8 403089.18 3359.69 119.978 0
42 LCS-6 XCS 495178.71 1316.58 376.11 0
43 LCS-7 LCS-8 587577.78 3564.04 164.863 0
44 LCS-7 XCS 310690.1 1774.32 175.104 0
45 LCS-8 XCS 898267.88 3279.39 273.913 0

 
1.3.2. GLM Bonferroni Test that System Error is equal for all Agents 

 

Agent 
Comparison 

Difference 
Between 
Means 

Simultaneous 95% 
Confidence 

Intervals 

Significan
ce (5% 
Level) 

LCS-8 - LCS-2 0.8277031 0.82539 0.83 *** 
LCS-8 - LCS-6 0.9758132 0.97349 0.9781 *** 
LCS-8 - LCS-5 0.9826385 0.98034 0.9849 *** 
LCS-8 - LCS-1 1.0017854 0.9994 1.0042 *** 
LCS-8 - LCS-7 1.0020907 0.99962 1.0046 *** 
LCS-8 - LCS-0 1.0025392 1.00007 1.005 *** 
LCS-8 - LCS-4 1.0050453 1.00279 1.0073 *** 
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LCS-8 - XCS 1.0119981 1.00973 1.0143 *** 
LCS-8 - LCS-3 1.0120568 1.00979 1.0143 *** 
LCS-2 - LCS-8 -0.8277031 -0.83 -0.8254 *** 
LCS-2 - LCS-6 0.1481101 0.14709 0.1491 *** 
LCS-2 - LCS-5 0.1549354 0.15399 0.1559 *** 
LCS-2 - LCS-1 0.1740824 0.17294 0.1752 *** 
LCS-2 - LCS-7 0.1743877 0.17308 0.1757 *** 
LCS-2 - LCS-0 0.1748362 0.17353 0.1761 *** 
LCS-2 - LCS-4 0.1773422 0.17649 0.1782 *** 
LCS-2 - XCS 0.184295 0.18341 0.1852 *** 
LCS-2 - LCS-3 0.1843537 0.18348 0.1852 *** 
LCS-6 - LCS-8 -0.9758132 -0.9781 -0.9735 *** 
LCS-6 - LCS-2 -0.1481101 -0.1491 -0.1471 *** 
LCS-6 - LCS-5 0.0068253 0.00585 0.0078 *** 
LCS-6 - LCS-1 0.0259723 0.02481 0.0271 *** 
LCS-6 - LCS-7 0.0262776 0.02495 0.0276 *** 
LCS-6 - LCS-0 0.0267261 0.0254 0.0281 *** 
LCS-6 - LCS-4 0.0292321 0.02834 0.0301 *** 
LCS-6 - XCS 0.0361849 0.03527 0.0371 *** 
LCS-6 - LCS-3 0.0362436 0.03534 0.0371 *** 
LCS-5 - LCS-8 -0.9826385 -0.9849 -0.9803 *** 
LCS-5 - LCS-2 -0.1549354 -0.1559 -0.154 *** 
LCS-5 - LCS-6 -0.0068253 -0.0078 -0.0059 *** 
LCS-5 - LCS-1 0.019147 0.01804 0.0203 *** 
LCS-5 - LCS-7 0.0194523 0.01818 0.0207 *** 
LCS-5 - LCS-0 0.0199008 0.01863 0.0212 *** 
LCS-5 - LCS-4 0.0224068 0.0216 0.0232 *** 
LCS-5 - XCS 0.0293596 0.02853 0.0302 *** 
LCS-5 - LCS-3 0.0294183 0.02859 0.0302 *** 
LCS-1 - LCS-8 -1.0017854 -1.0042 -0.9994 *** 
LCS-1 - LCS-2 -0.1740824 -0.1752 -0.1729 *** 
LCS-1 - LCS-6 -0.0259723 -0.0271 -0.0248 *** 
LCS-1 - LCS-5 -0.019147 -0.0203 -0.018 *** 
LCS-1 - LCS-7 0.0003053 -0.0011 0.0017  
LCS-1 - LCS-0 0.0007538 -0.0007 0.0022  
LCS-1 - LCS-4 0.0032599 0.00223 0.0043 *** 
LCS-1 - XCS 0.0102126 0.00916 0.0113 *** 
LCS-1 - LCS-3 0.0102713 0.00923 0.0113 *** 
LCS-7 - LCS-8 -1.0020907 -1.0046 -0.9996 *** 
LCS-7 - LCS-2 -0.1743877 -0.1757 -0.1731 *** 
LCS-7 - LCS-6 -0.0262776 -0.0276 -0.0249 *** 
LCS-7 - LCS-5 -0.0194523 -0.0207 -0.0182 *** 
LCS-7 - LCS-1 -0.0003053 -0.0017 0.0011  
LCS-7 - LCS-0 0.0004485 -0.0011 0.002  
LCS-7 - LCS-4 0.0029546 0.00174 0.0042 *** 
LCS-7 - XCS 0.0099073 0.00868 0.0111 *** 
LCS-7 - LCS-3 0.009966 0.00874 0.0112 *** 
LCS-0 - LCS-8 -1.0025392 -1.005 -1.0001 *** 
LCS-0 - LCS-2 -0.1748362 -0.1761 -0.1735 *** 
LCS-0 - LCS-6 -0.0267261 -0.0281 -0.0254 *** 
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LCS-0 - LCS-5 -0.0199008 -0.0212 -0.0186 *** 
LCS-0 - LCS-1 -0.0007538 -0.0022 0.0007  
LCS-0 - LCS-7 -0.0004485 -0.002 0.0011  
LCS-0 - LCS-4 0.002506 0.0013 0.0037 *** 
LCS-0 - XCS 0.0094588 0.00823 0.0107 *** 
LCS-0 - LCS-3 0.0095175 0.0083 0.0107 *** 
LCS-4 - LCS-8 -1.0050453 -1.0073 -1.0028 *** 
LCS-4 - LCS-2 -0.1773422 -0.1782 -0.1765 *** 
LCS-4 - LCS-6 -0.0292321 -0.0301 -0.0283 *** 
LCS-4 - LCS-5 -0.0224068 -0.0232 -0.0216 *** 
LCS-4 - LCS-1 -0.0032599 -0.0043 -0.0022 *** 
LCS-4 - LCS-7 -0.0029546 -0.0042 -0.0017 *** 
LCS-4 - LCS-0 -0.002506 -0.0037 -0.0013 *** 
LCS-4 - XCS 0.0069528 0.00622 0.0077 *** 
LCS-4 - LCS-3 0.0070115 0.00629 0.0077 *** 
XCS   - LCS-8 -1.0119981 -1.0143 -1.0097 *** 
XCS   - LCS-2 -0.184295 -0.1852 -0.1834 *** 
XCS   - LCS-6 -0.0361849 -0.0371 -0.0353 *** 
XCS   - LCS-5 -0.0293596 -0.0302 -0.0285 *** 
XCS   - LCS-1 -0.0102126 -0.0113 -0.0092 *** 
XCS   - LCS-7 -0.0099073 -0.0111 -0.0087 *** 

 
1.4. % [O] 

1.4.1. Kruskal-Wallis Test that % [O] is equal for all Agents 
 
Obs AGENT1 AGENT2 ABSDIFF STDERR STDIFF PVALUE
       

1 LCS-0 LCS-1 73410.92 1707.58 42.991 0
2 LCS-0 LCS-2 272780.66 2291.99 119.015 0
3 LCS-0 LCS-3 98834.83 1796.73 55.008 0
4 LCS-0 LCS-4 514136.85 1653.14 311.005 0
5 LCS-0 LCS-5 3930.37 1775.71 2.213 0.02687
6 LCS-0 LCS-6 21342.99 1678.91 12.712 0
7 LCS-0 LCS-7 73055.07 2150.25 33.975 0
8 LCS-0 LCS-8 150904.57 2150.25 70.18 0
9 LCS-0 XCS 538457.45 1700.12 316.717 0

10 LCS-1 LCS-2 346191.58 1991.34 173.849 0
11 LCS-1 LCS-3 25423.91 1392.99 18.251 0
12 LCS-1 LCS-4 440725.93 1202.12 366.624 0
13 LCS-1 LCS-5 69480.55 1365.78 50.872 0
14 LCS-1 LCS-6 52067.93 1237.31 42.081 0
15 LCS-1 LCS-7 355.85 1826.41 0.195 0.84552
16 LCS-1 LCS-8 77493.65 1826.41 42.429 0
17 LCS-1 XCS 611868.37 1265.94 483.33 0
18 LCS-2 LCS-3 371615.49 2068.29 179.673 0
19 LCS-2 LCS-4 786917.5 1944.86 404.614 0
20 LCS-2 LCS-5 276711.03 2050.06 134.977 0
21 LCS-2 LCS-6 294123.65 1966.81 149.544 0
22 LCS-2 LCS-7 345835.72 2381.84 145.197 0
23 LCS-2 LCS-8 423685.23 2381.84 177.881 0
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Obs AGENT1 AGENT2 ABSDIFF STDERR STDIFF PVALUE
24 LCS-2 XCS 265676.79 1984.94 133.846 0
25 LCS-3 LCS-4 415302.01 1325.7 313.27 0
26 LCS-3 LCS-5 94904.46 1475.72 64.311 0
27 LCS-3 LCS-6 77491.84 1357.69 57.076 0
28 LCS-3 LCS-7 25779.77 1910.02 13.497 0
29 LCS-3 LCS-8 52069.74 1910.02 27.261 0
30 LCS-3 XCS 637292.28 1383.84 460.526 0
31 LCS-4 LCS-5 510206.47 1297.08 393.35 0
32 LCS-4 LCS-6 492793.85 1161.03 424.445 0
33 LCS-4 LCS-7 441081.78 1775.62 248.41 0
34 LCS-4 LCS-8 363232.28 1775.62 204.566 0
35 LCS-4 XCS 1052594.3 1191.5 883.423 0
36 LCS-5 LCS-6 17412.62 1329.76 13.095 0
37 LCS-5 LCS-7 69124.69 1890.27 36.569 0
38 LCS-5 LCS-8 146974.2 1890.27 77.753 0
39 LCS-5 XCS 542387.82 1356.44 399.86 0
40 LCS-6 LCS-7 51712.07 1799.63 28.735 0
41 LCS-6 LCS-8 129561.58 1799.63 71.993 0
42 LCS-6 XCS 559800.44 1226.99 456.237 0
43 LCS-7 LCS-8 77849.5 2245.78 34.665 0
44 LCS-7 XCS 611512.51 1819.44 336.1 0
45 LCS-8 XCS 689362.02 1819.44 378.888 0

 
1.4.2. GLM Bonferroni Test that % [O] is equal for all Agents 

 

Agent 
Comparison 

Difference 
Between 
Means 

Simultaneous 
95% 

Confidence 
Intervals 

Significance 
(5% Level) 

XCS   - LCS-2 52.22 52.02 52.43 *** 
XCS   - LCS-5 69.49 69.35 69.63 *** 
XCS   - LCS-0 69.53 69.35 69.70 *** 
XCS   - LCS-6 70.36 70.24 70.49 *** 
XCS   - LCS-1 72.94 72.81 73.07 *** 
XCS   - LCS-7 73.48 73.29 73.66 *** 
XCS   - LCS-3 74.99 74.85 75.13 *** 
XCS   - LCS-8 77.01 76.82 77.20 *** 
XCS   - LCS-4 96.70 96.58 96.82 *** 
LCS-2 - XCS -52.22 -52.43 -52.02 *** 
LCS-2 - LCS-5 17.27 17.06 17.48 *** 
LCS-2 - LCS-0 17.31 17.07 17.54 *** 
LCS-2 - LCS-6 18.14 17.94 18.34 *** 
LCS-2 - LCS-1 20.72 20.51 20.92 *** 
LCS-2 - LCS-7 21.25 21.01 21.50 *** 
LCS-2 - LCS-3 22.77 22.56 22.98 *** 
LCS-2 - LCS-8 24.79 24.54 25.03 *** 
LCS-2 - LCS-4 44.48 44.28 44.68 *** 
LCS-5 - XCS -69.49 -69.63 -69.35 *** 
LCS-5 - LCS-2 -17.27 -17.48 -17.06 *** 
LCS-5 - LCS-0 0.04 -0.15 0.22  
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Agent 
Comparison 

Difference 
Between 
Means 

Simultaneous 
95% 

Confidence 
Intervals 

Significance 
(5% Level) 

LCS-5 - LCS-6 0.87 0.74 1.01 *** 
LCS-5 - LCS-1 3.45 3.31 3.59 *** 
LCS-5 - LCS-7 3.98 3.79 4.18 *** 
LCS-5 - LCS-3 5.50 5.35 5.65 *** 
LCS-5 - LCS-8 7.52 7.32 7.71 *** 
LCS-5 - LCS-4 27.21 27.08 27.34 *** 
LCS-0 - XCS -69.53 -69.70 -69.35 *** 
LCS-0 - LCS-2 -17.31 -17.54 -17.07 *** 
LCS-0 - LCS-5 -0.04 -0.22 0.15  
LCS-0 - LCS-6 0.83 0.66 1.01 *** 
LCS-0 - LCS-1 3.41 3.23 3.58 *** 
LCS-0 - LCS-7 3.95 3.72 4.17 *** 
LCS-0 - LCS-3 5.46 5.28 5.65 *** 
LCS-0 - LCS-8 7.48 7.26 7.70 *** 
LCS-0 - LCS-4 27.17 27.00 27.34 *** 
LCS-6 - XCS -70.36 -70.49 -70.24 *** 
LCS-6 - LCS-2 -18.14 -18.34 -17.94 *** 
LCS-6 - LCS-5 -0.87 -1.01 -0.74 *** 
LCS-6 - LCS-0 -0.83 -1.01 -0.66 *** 
LCS-6 - LCS-1 2.57 2.45 2.70 *** 
LCS-6 - LCS-7 3.11 2.93 3.30 *** 
LCS-6 - LCS-3 4.63 4.49 4.77 *** 
LCS-6 - LCS-8 6.65 6.46 6.83 *** 
LCS-6 - LCS-4 26.34 26.22 26.46 *** 
LCS-1 - XCS -72.94 -73.07 -72.81 *** 
LCS-1 - LCS-2 -20.72 -20.92 -20.51 *** 
LCS-1 - LCS-5 -3.45 -3.59 -3.31 *** 
LCS-1 - LCS-0 -3.41 -3.58 -3.23 *** 
LCS-1 - LCS-6 -2.57 -2.70 -2.45 *** 
LCS-1 - LCS-7 0.54 0.35 0.73 *** 
LCS-1 - LCS-3 2.05 1.91 2.20 *** 
LCS-1 - LCS-8 4.07 3.89 4.26 *** 
LCS-1 - LCS-4 23.76 23.64 23.89 *** 
LCS-7 - XCS -73.48 -73.66 -73.29 *** 
LCS-7 - LCS-2 -21.25 -21.50 -21.01 *** 
LCS-7 - LCS-5 -3.98 -4.18 -3.79 *** 
LCS-7 - LCS-0 -3.95 -4.17 -3.72 *** 
LCS-7 - LCS-6 -3.11 -3.30 -2.93 *** 
LCS-7 - LCS-1 -0.54 -0.73 -0.35 *** 
LCS-7 - LCS-3 1.52 1.32 1.71 *** 
LCS-7 - LCS-8 3.54 3.30 3.77 *** 
LCS-7 - LCS-4 23.23 23.04 23.41 *** 
LCS-3 - XCS -74.99 -75.13 -74.85 *** 
LCS-3 - LCS-2 -22.77 -22.98 -22.56 *** 
LCS-3 - LCS-5 -5.50 -5.65 -5.35 *** 
LCS-3 - LCS-0 -5.46 -5.65 -5.28 *** 
LCS-3 - LCS-6 -4.63 -4.77 -4.49 *** 
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Agent 
Comparison 

Difference 
Between 
Means 

Simultaneous 
95% 

Confidence 
Intervals 

Significance 
(5% Level) 

LCS-3 - LCS-1 -2.05 -2.20 -1.91 *** 
LCS-3 - LCS-7 -1.52 -1.71 -1.32 *** 
LCS-3 - LCS-8 2.02 1.82 2.22 *** 
LCS-3 - LCS-4 21.71 21.57 21.85 *** 
LCS-8 - XCS -77.01 -77.20 -76.82 *** 
LCS-8 - LCS-2 -24.79 -25.03 -24.54 *** 
LCS-8 - LCS-5 -7.52 -7.71 -7.32 *** 
LCS-8 - LCS-0 -7.48 -7.70 -7.26 *** 
LCS-8 - LCS-6 -6.65 -6.83 -6.46 *** 
LCS-8 - LCS-1 -4.07 -4.26 -3.89 *** 

 
2. Versus RAND 

2.1. Unique Classifiers 
2.1.1. Kruskal-Wallis Test that Unique is equal for all Agents 

 
Obs AGENT1 AGENT2 ABSDIFF STDERR PVALUE STDIFF 
       

1 LCS-0 LCS-1 72441.31 1439.91 50.31 0
2 LCS-0 LCS-2 593093.35 1101.88 538.255 0
3 LCS-0 LCS-3 26549.43 1184.45 22.415 0
4 LCS-0 LCS-4 754815.57 1143.29 660.216 0
5 LCS-0 LCS-5 499579.31 2227.18 224.31 0
6 LCS-0 LCS-6 224746.27 1371.81 163.833 0
7 LCS-0 LCS-7 68670.05 1955.53 35.116 0
8 LCS-0 LCS-8 40028.29 1656.26 24.168 0
9 LCS-0 XCS 374784.18 1134.58 330.328 0

10 LCS-1 LCS-2 520652.04 1350.4 385.553 0
11 LCS-1 LCS-3 98990.75 1418.58 69.782 0
12 LCS-1 LCS-4 682374.26 1384.4 492.904 0
13 LCS-1 LCS-5 427138 2360.04 180.988 0
14 LCS-1 LCS-6 152304.95 1578.38 96.494 0
15 LCS-1 LCS-7 141111.37 2105.6 67.017 0
16 LCS-1 LCS-8 112469.6 1831.02 61.424 0
17 LCS-1 XCS 302342.86 1377.22 219.532 0
18 LCS-2 LCS-3 619642.79 1073.86 577.025 0
19 LCS-2 LCS-4 161722.22 1028.28 157.275 0
20 LCS-2 LCS-5 93514.04 2170.39 43.086 0
21 LCS-2 LCS-6 368347.09 1277.54 288.326 0
22 LCS-2 LCS-7 661763.41 1890.6 350.029 0
23 LCS-2 LCS-8 633121.64 1579.07 400.947 0
24 LCS-2 XCS 218309.18 1018.59 214.325 0
25 LCS-3 LCS-4 781365.01 1116.3 699.958 0
26 LCS-3 LCS-5 526128.75 2213.45 237.696 0
27 LCS-3 LCS-6 251295.7 1349.4 186.228 0
28 LCS-3 LCS-7 42120.62 1939.88 21.713 0
29 LCS-3 LCS-8 13478.86 1637.75 8.23 2.22E-16
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Obs AGENT1 AGENT2 ABSDIFF STDERR STDIFF PVALUE 
30 LCS-3 XCS 401333.61 1107.39 362.415 0
31 LCS-4 LCS-5 255236.26 2191.7 116.456 0
32 LCS-4 LCS-6 530069.31 1313.42 403.581 0
33 LCS-4 LCS-7 823485.63 1915.02 430.013 0
34 LCS-4 LCS-8 794843.86 1608.23 494.235 0
35 LCS-4 XCS 380031.4 1063.24 357.426 0
36 LCS-5 LCS-6 274833.05 2319.11 118.508 0
37 LCS-5 LCS-7 568249.36 2705.65 210.023 0
38 LCS-5 LCS-8 539607.6 2497.93 216.022 0
39 LCS-5 XCS 124795.14 2187.17 57.058 0
40 LCS-6 LCS-7 293416.32 2059.63 142.461 0
41 LCS-6 LCS-8 264774.56 1777.96 148.92 0
42 LCS-6 XCS 150037.91 1305.85 114.897 0
43 LCS-7 LCS-8 28641.76 2259.07 12.679 0
44 LCS-7 XCS 443454.23 1909.84 232.194 0
45 LCS-8 XCS 414812.47 1602.06 258.925 0

 
2.1.2. GLM Bonferroni Test that Unique is equal for all Agents 

 

Agent 
Comparison 

Difference 
Between 
Means 

Simultaneous 
95% 

Confidence 
Intervals 

Significance 
(5% Level) 

LCS-4 - LCS-2 12.47 12.42 12.52 *** 
LCS-4 - LCS-5 24.53 24.43 24.64 *** 
LCS-4 - XCS 48.81 48.76 48.87 *** 
LCS-4 - LCS-6 66.88 66.82 66.95 *** 
LCS-4 - LCS-1 73.15 73.08 73.22 *** 
LCS-4 - LCS-0 74.90 74.85 74.96 *** 
LCS-4 - LCS-3 75.45 75.40 75.51 *** 
LCS-4 - LCS-8 75.85 75.78 75.93 *** 
LCS-4 - LCS-7 76.54 76.45 76.63 *** 
LCS-2 - LCS-4 -12.47 -12.52 -12.42 *** 
LCS-2 - LCS-5 12.06 11.96 12.17 *** 
LCS-2 - XCS 36.35 36.30 36.40 *** 
LCS-2 - LCS-6 54.42 54.35 54.48 *** 
LCS-2 - LCS-1 60.68 60.62 60.75 *** 
LCS-2 - LCS-0 62.44 62.38 62.49 *** 
LCS-2 - LCS-3 62.99 62.93 63.04 *** 
LCS-2 - LCS-8 63.39 63.31 63.46 *** 
LCS-2 - LCS-7 64.07 63.98 64.16 *** 
LCS-5 - LCS-4 -24.53 -24.64 -24.43 *** 
LCS-5 - LCS-2 -12.06 -12.17 -11.96 *** 
LCS-5 - XCS 24.28 24.18 24.39 *** 
LCS-5 - LCS-6 42.35 42.24 42.46 *** 
LCS-5 - LCS-1 48.62 48.50 48.73 *** 
LCS-5 - LCS-0 50.37 50.26 50.48 *** 
LCS-5 - LCS-3 50.92 50.82 51.03 *** 
LCS-5 - LCS-8 51.32 51.20 51.44 *** 
LCS-5 - LCS-7 52.01 51.88 52.13 *** 
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Agent 
Comparison 

Difference 
Between 
Means 

Simultaneous 
95% 

Confidence 
Intervals 

Significance 
(5% Level) 

XCS   - LCS-4 -48.81 -48.87 -48.76 *** 
XCS   - LCS-2 -36.35 -36.40 -36.30 *** 
XCS   - LCS-5 -24.28 -24.39 -24.18 *** 
XCS   - LCS-6 18.07 18.00 18.13 *** 
XCS   - LCS-1 24.33 24.27 24.40 *** 
XCS   - LCS-0 26.09 26.03 26.14 *** 
XCS   - LCS-3 26.64 26.59 26.69 *** 
XCS   - LCS-8 27.04 26.96 27.12 *** 
XCS   - LCS-7 27.72 27.63 27.81 *** 
LCS-6 - LCS-4 -66.88 -66.95 -66.82 *** 
LCS-6 - LCS-2 -54.42 -54.48 -54.35 *** 
LCS-6 - LCS-5 -42.35 -42.46 -42.24 *** 
LCS-6 - XCS -18.07 -18.13 -18.00 *** 
LCS-6 - LCS-1 6.27 6.19 6.34 *** 
LCS-6 - LCS-0 8.02 7.95 8.09 *** 
LCS-6 - LCS-3 8.57 8.51 8.64 *** 
LCS-6 - LCS-8 8.97 8.89 9.06 *** 
LCS-6 - LCS-7 9.65 9.56 9.75 *** 
LCS-1 - LCS-4 -73.15 -73.22 -73.08 *** 
LCS-1 - LCS-2 -60.68 -60.75 -60.62 *** 
LCS-1 - LCS-5 -48.62 -48.73 -48.50 *** 
LCS-1 - XCS -24.33 -24.40 -24.27 *** 
LCS-1 - LCS-6 -6.27 -6.34 -6.19 *** 
LCS-1 - LCS-0 1.75 1.68 1.82 *** 
LCS-1 - LCS-3 2.30 2.24 2.37 *** 
LCS-1 - LCS-8 2.71 2.62 2.79 *** 
LCS-1 - LCS-7 3.39 3.29 3.49 *** 
LCS-0 - LCS-4 -74.90 -74.96 -74.85 *** 
LCS-0 - LCS-2 -62.44 -62.49 -62.38 *** 
LCS-0 - LCS-5 -50.37 -50.48 -50.26 *** 
LCS-0 - XCS -26.09 -26.14 -26.03 *** 
LCS-0 - LCS-6 -8.02 -8.09 -7.95 *** 
LCS-0 - LCS-1 -1.75 -1.82 -1.68 *** 
LCS-0 - LCS-3 0.55 0.49 0.61 *** 
LCS-0 - LCS-8 0.95 0.87 1.03 *** 
LCS-0 - LCS-7 1.63 1.54 1.73 *** 
LCS-3 - LCS-4 -75.45 -75.51 -75.40 *** 
LCS-3 - LCS-2 -62.99 -63.04 -62.93 *** 
LCS-3 - LCS-5 -50.92 -51.03 -50.82 *** 
LCS-3 - XCS -26.64 -26.69 -26.59 *** 
LCS-3 - LCS-6 -8.57 -8.64 -8.51 *** 
LCS-3 - LCS-1 -2.30 -2.37 -2.24 *** 
LCS-3 - LCS-0 -0.55 -0.61 -0.49 *** 
LCS-3 - LCS-8 0.40 0.32 0.48 *** 
LCS-3 - LCS-7 1.08 0.99 1.18 *** 
LCS-8 - LCS-4 -75.85 -75.93 -75.78 *** 
LCS-8 - LCS-2 -63.39 -63.46 -63.31 *** 
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Agent 
Comparison 

Difference 
Between 
Means 

Simultaneous 
95% 

Confidence 
Intervals 

Significance 
(5% Level) 

LCS-8 - LCS-5 -51.32 -51.44 -51.20 *** 
LCS-8 - XCS -27.04 -27.12 -26.96 *** 
LCS-8 - LCS-6 -8.97 -9.06 -8.89 *** 
LCS-8 - LCS-1 -2.71 -2.79 -2.62 *** 

 
2.2. % Correct 

2.2.1. Kruskal-Wallis Test that % Correct is equal for all Agents 
 

Obs AGENT1 AGENT2 ABSDIFF STDERR STDIFF PVALUE
       

1 LCS-0 LCS-1 12799.86 1967.26 6.506 0
2 LCS-0 LCS-2 201877.19 2790.11 72.355 0
3 LCS-0 LCS-3 49809.7 1712.36 29.088 0
4 LCS-0 LCS-4 26792.29 1680.95 15.939 0
5 LCS-0 LCS-5 459661.68 1710.47 268.734 0
6 LCS-0 LCS-6 228815.79 1807.54 126.59 0
7 LCS-0 LCS-7 128.12 1967.26 0.065 0.94808
8 LCS-0 LCS-8 935044.56 1677.85 557.287 0
9 LCS-0 XCS 88312.62 1679.67 52.577 0

10 LCS-1 LCS-2 214677.05 2852.43 75.261 0
11 LCS-1 LCS-3 37009.84 1812.14 20.423 0
12 LCS-1 LCS-4 13992.43 1782.48 7.85 0
13 LCS-1 LCS-5 472461.54 1810.35 260.978 0
14 LCS-1 LCS-6 241615.65 1902.33 127.01 0
15 LCS-1 LCS-7 12927.97 2054.69 6.292 0
16 LCS-1 LCS-8 947844.42 1779.56 532.627 0
17 LCS-1 XCS 75512.76 1781.28 42.392 0
18 LCS-2 LCS-3 251686.89 2683 93.808 0
19 LCS-2 LCS-4 228669.48 2663.06 85.867 0
20 LCS-2 LCS-5 257784.49 2681.79 96.124 0
21 LCS-2 LCS-6 26938.6 2744.72 9.815 0
22 LCS-2 LCS-7 201749.07 2852.43 70.729 0
23 LCS-2 LCS-8 733167.37 2661.1 275.513 0
24 LCS-2 XCS 290189.8 2662.25 109.002 0
25 LCS-3 LCS-4 23017.41 1496.44 15.381 0
26 LCS-3 LCS-5 509471.38 1529.53 333.09 0
27 LCS-3 LCS-6 278625.49 1637.36 170.167 0
28 LCS-3 LCS-7 49937.82 1812.14 27.557 0
29 LCS-3 LCS-8 984854.26 1492.96 659.664 0
30 LCS-3 XCS 38502.91 1495.01 25.754 0
31 LCS-4 LCS-5 486453.97 1494.28 325.545 0
32 LCS-4 LCS-6 255608.08 1604.48 159.309 0
33 LCS-4 LCS-7 26920.41 1782.48 15.103 0
34 LCS-4 LCS-8 961836.85 1456.82 660.229 0
35 LCS-4 XCS 61520.33 1458.92 42.168 0
36 LCS-5 LCS-6 230845.89 1635.38 141.157 0
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Obs AGENT1 AGENT2 ABSDIFF STDERR STDIFF PVALUE
37 LCS-5 LCS-7 459533.56 1810.35 253.837 0
38 LCS-5 LCS-8 475382.88 1490.79 318.879 0
39 LCS-5 XCS 547974.3 1492.84 367.069 0
40 LCS-6 LCS-7 228687.67 1902.33 120.214 0
41 LCS-6 LCS-8 706228.77 1601.24 441.052 0
42 LCS-6 XCS 317128.41 1603.14 197.817 0
43 LCS-7 LCS-8 934916.44 1779.56 525.363 0
44 LCS-7 XCS 88440.73 1781.28 49.65 0
45 LCS-8 XCS 1023357.18 1455.35 703.169 0

 
2.2.2. GLM Bonferroni Test that % Correct is equal for all Agents 

 

Agent 
Comparison 

Difference 
Between 
Means 

Simultaneous 
95% 

Confidence 
Intervals 

Significance 
(5% Level) 

LCS-3 - LCS-1 0.17 0.07 0.26 *** 
LCS-3 - LCS-7 0.22 0.12 0.32 *** 
LCS-3 - LCS-0 0.25 0.16 0.35 *** 
LCS-3 - LCS-4 0.49 0.41 0.57 *** 
LCS-3 - XCS 0.61 0.53 0.69 *** 
LCS-3 - LCS-6 1.59 1.50 1.68 *** 
LCS-3 - LCS-2 1.73 1.58 1.87 *** 
LCS-3 - LCS-5 3.74 3.66 3.82 *** 
LCS-3 - LCS-8 45.83 45.75 45.91 *** 
LCS-1 - LCS-3 -0.17 -0.26 -0.07 *** 
LCS-1 - LCS-7 0.05 -0.06 0.16  
LCS-1 - LCS-0 0.09 -0.02 0.19  
LCS-1 - LCS-4 0.32 0.23 0.42 *** 
LCS-1 - XCS 0.44 0.34 0.54 *** 
LCS-1 - LCS-6 1.42 1.32 1.52 *** 
LCS-1 - LCS-2 1.56 1.41 1.71 *** 
LCS-1 - LCS-5 3.57 3.48 3.67 *** 
LCS-1 - LCS-8 45.66 45.57 45.76 *** 
LCS-7 - LCS-3 -0.22 -0.32 -0.12 *** 
LCS-7 - LCS-1 -0.05 -0.16 0.06  
LCS-7 - LCS-0 0.03 -0.07 0.14  
LCS-7 - LCS-4 0.27 0.18 0.37 *** 
LCS-7 - XCS 0.39 0.29 0.48 *** 
LCS-7 - LCS-6 1.37 1.27 1.47 *** 
LCS-7 - LCS-2 1.50 1.35 1.66 *** 
LCS-7 - LCS-5 3.52 3.42 3.62 *** 
LCS-7 - LCS-8 45.61 45.51 45.70 *** 
LCS-0 - LCS-3 -0.25 -0.35 -0.16 *** 
LCS-0 - LCS-1 -0.09 -0.19 0.02  
LCS-0 - LCS-7 -0.03 -0.14 0.07  
LCS-0 - LCS-4 0.24 0.15 0.33 *** 
LCS-0 - XCS 0.35 0.26 0.44 *** 
LCS-0 - LCS-6 1.33 1.24 1.43 *** 
LCS-0 - LCS-2 1.47 1.32 1.62 *** 
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Agent 
Comparison 

Difference 
Between 
Means 

Simultaneous 
95% 

Confidence 
Intervals 

Significance 
(5% Level) 

LCS-0 - LCS-5 3.49 3.39 3.58 *** 
LCS-0 - LCS-8 45.57 45.48 45.66 *** 
LCS-4 - LCS-3 -0.49 -0.57 -0.41 *** 
LCS-4 - LCS-1 -0.32 -0.42 -0.23 *** 
LCS-4 - LCS-7 -0.27 -0.37 -0.18 *** 
LCS-4 - LCS-0 -0.24 -0.33 -0.15 *** 
LCS-4 - XCS 0.12 0.04 0.19 *** 
LCS-4 - LCS-6 1.10 1.01 1.18 *** 
LCS-4 - LCS-2 1.23 1.09 1.38 *** 
LCS-4 - LCS-5 3.25 3.17 3.33 *** 
LCS-4 - LCS-8 45.34 45.26 45.41 *** 
XCS   - LCS-3 -0.61 -0.69 -0.53 *** 
XCS   - LCS-1 -0.44 -0.54 -0.34 *** 
XCS   - LCS-7 -0.39 -0.48 -0.29 *** 
XCS   - LCS-0 -0.35 -0.44 -0.26 *** 
XCS   - LCS-4 -0.12 -0.19 -0.04 *** 
XCS   - LCS-6 0.98 0.89 1.07 *** 
XCS   - LCS-2 1.12 0.98 1.26 *** 
XCS   - LCS-5 3.13 3.05 3.21 *** 
XCS   - LCS-8 45.22 45.14 45.30 *** 
LCS-6 - LCS-3 -1.59 -1.68 -1.50 *** 
LCS-6 - LCS-1 -1.42 -1.52 -1.32 *** 
LCS-6 - LCS-7 -1.37 -1.47 -1.27 *** 
LCS-6 - LCS-0 -1.33 -1.43 -1.24 *** 
LCS-6 - LCS-4 -1.10 -1.18 -1.01 *** 
LCS-6 - XCS -0.98 -1.07 -0.89 *** 
LCS-6 - LCS-2 0.14 -0.01 0.28  
LCS-6 - LCS-5 2.15 2.06 2.24 *** 
LCS-6 - LCS-8 44.24 44.15 44.33 *** 
LCS-2 - LCS-3 -1.73 -1.87 -1.58 *** 
LCS-2 - LCS-1 -1.56 -1.71 -1.41 *** 
LCS-2 - LCS-7 -1.50 -1.66 -1.35 *** 
LCS-2 - LCS-0 -1.47 -1.62 -1.32 *** 
LCS-2 - LCS-4 -1.23 -1.38 -1.09 *** 
LCS-2 - XCS -1.12 -1.26 -0.98 *** 
LCS-2 - LCS-6 -0.14 -0.28 0.01  
LCS-2 - LCS-5 2.01 1.87 2.16 *** 
LCS-2 - LCS-8 44.10 43.96 44.25 *** 
LCS-5 - LCS-3 -3.74 -3.82 -3.66 *** 
LCS-5 - LCS-1 -3.57 -3.67 -3.48 *** 
LCS-5 - LCS-7 -3.52 -3.62 -3.42 *** 
LCS-5 - LCS-0 -3.49 -3.58 -3.39 *** 
LCS-5 - LCS-4 -3.25 -3.33 -3.17 *** 
LCS-5 - XCS -3.13 -3.21 -3.05 *** 

 
2.3. System Error 
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2.3.1. Kruskal-Wallis Test that System Error is equal for all Agents 
 

Obs AGENT1 AGENT2 ABSDIFF STDERR STDIFF PVALUE
       

1 LCS-0 LCS-1 2125.55 1757.03 1.21 0.22638
2 LCS-0 LCS-2 38584.5 2656.76 14.523 0
3 LCS-0 LCS-3 45923.29 1622.72 28.3 0
4 LCS-0 LCS-4 196975.41 1593.56 123.607 0
5 LCS-0 LCS-5 381840.99 1757.03 217.322 0
6 LCS-0 LCS-6 98215 1725.43 56.922 0
7 LCS-0 LCS-7 10243.44 2305.18 4.444 0.00001
8 LCS-0 LCS-8 655936.39 1590.68 412.361 0
9 LCS-0 XCS 436511.11 1591.05 274.354 0

10 LCS-1 LCS-2 40710.05 2634.99 15.45 0
11 LCS-1 LCS-3 43797.74 1586.82 27.601 0
12 LCS-1 LCS-4 194849.86 1556.98 125.146 0
13 LCS-1 LCS-5 379715.44 1723.92 220.263 0
14 LCS-1 LCS-6 100340.55 1691.71 59.313 0
15 LCS-1 LCS-7 8117.89 2280.04 3.56 0.00037
16 LCS-1 LCS-8 658061.94 1554.04 423.453 0
17 LCS-1 XCS 434385.56 1554.41 279.453 0
18 LCS-2 LCS-3 84507.79 2547.4 33.174 0
19 LCS-2 LCS-4 235559.91 2528.92 93.146 0
20 LCS-2 LCS-5 420425.49 2634.99 159.555 0
21 LCS-2 LCS-6 59630.5 2614.02 22.812 0
22 LCS-2 LCS-7 48827.94 3028.18 16.125 0
23 LCS-2 LCS-8 617351.89 2527.11 244.291 0
24 LCS-2 XCS 475095.61 2527.34 187.982 0
25 LCS-3 LCS-4 151052.12 1403.66 107.613 0
26 LCS-3 LCS-5 335917.7 1586.82 211.693 0
27 LCS-3 LCS-6 144138.29 1551.76 92.887 0
28 LCS-3 LCS-7 35679.85 2178.23 16.38 0
29 LCS-3 LCS-8 701859.68 1400.4 501.185 0
30 LCS-3 XCS 390587.82 1400.82 278.829 0
31 LCS-4 LCS-5 184865.58 1556.98 118.733 0
32 LCS-4 LCS-6 295190.4 1521.24 194.047 0
33 LCS-4 LCS-7 186731.97 2156.59 86.587 0
34 LCS-4 LCS-8 852911.8 1366.5 624.157 0
35 LCS-4 XCS 239535.71 1366.93 175.237 0
36 LCS-5 LCS-6 480055.98 1691.71 283.77 0
37 LCS-5 LCS-7 371597.55 2280.04 162.978 0
38 LCS-5 LCS-8 1037777.38 1554.04 667.793 0
39 LCS-5 XCS 54670.12 1554.41 35.171 0
40 LCS-6 LCS-7 108458.43 2255.78 48.08 0
41 LCS-6 LCS-8 557721.4 1518.23 367.351 0
42 LCS-6 XCS 534726.11 1518.61 352.116 0
43 LCS-7 LCS-8 666179.83 2154.47 309.208 0
44 LCS-7 XCS 426267.68 2154.74 197.828 0
45 LCS-8 XCS 1092447.5 1363.58 801.163 0
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2.3.2. GLM Bonferroni Test that System Error is equal for all Agents 
 

Agent 
Comparison 

Difference 
Between 
Means 

Simultaneous 95% 
Confidence 

Intervals 
Significance 
(5% Level) 

XCS   - LCS-5 0.088123 0.08562 0.0906 *** 
XCS   - LCS-4 0.155306 0.15311 0.1575 *** 
XCS   - LCS-3 0.2483639 0.24611 0.2506 *** 
XCS   - LCS-7 0.2553154 0.25185 0.2588 *** 
XCS   - LCS-1 0.2569939 0.25449 0.2595 *** 
XCS   - LCS-0 0.2574917 0.25493 0.26 *** 
XCS   - LCS-2 0.2724188 0.26836 0.2765 *** 
XCS   - LCS-6 0.2792607 0.27682 0.2817 *** 
XCS   - LCS-8 1.0551342 1.05294 1.0573 *** 
LCS-5 - XCS -0.088123 -0.0906 -0.0856 *** 
LCS-5 - LCS-4 0.0671831 0.06468 0.0697 *** 
LCS-5 - LCS-3 0.160241 0.15769 0.1628 *** 
LCS-5 - LCS-7 0.1671924 0.16353 0.1709 *** 
LCS-5 - LCS-1 0.1688709 0.1661 0.1716 *** 
LCS-5 - LCS-0 0.1693688 0.16654 0.1722 *** 
LCS-5 - LCS-2 0.1842959 0.18006 0.1885 *** 
LCS-5 - LCS-6 0.1911377 0.18842 0.1939 *** 
LCS-5 - LCS-8 0.9670113 0.96451 0.9695 *** 
LCS-4 - XCS -0.155306 -0.1575 -0.1531 *** 
LCS-4 - LCS-5 -0.0671831 -0.0697 -0.0647 *** 
LCS-4 - LCS-3 0.0930579 0.0908 0.0953 *** 
LCS-4 - LCS-7 0.1000094 0.09654 0.1035 *** 
LCS-4 - LCS-1 0.1016879 0.09918 0.1042 *** 
LCS-4 - LCS-0 0.1021857 0.09962 0.1047 *** 
LCS-4 - LCS-2 0.1171128 0.11305 0.1212 *** 
LCS-4 - LCS-6 0.1239546 0.12151 0.1264 *** 
LCS-4 - LCS-8 0.8998282 0.89763 0.902 *** 
LCS-3 - XCS -0.2483639 -0.2506 -0.2461 *** 
LCS-3 - LCS-5 -0.160241 -0.1628 -0.1577 *** 
LCS-3 - LCS-4 -0.0930579 -0.0953 -0.0908 *** 
LCS-3 - LCS-7 0.0069515 0.00345 0.0105 *** 
LCS-3 - LCS-1 0.0086299 0.00608 0.0112 *** 
LCS-3 - LCS-0 0.0091278 0.00652 0.0117 *** 
LCS-3 - LCS-2 0.0240549 0.01996 0.0282 *** 
LCS-3 - LCS-6 0.0308967 0.0284 0.0334 *** 
LCS-3 - LCS-8 0.8067703 0.80452 0.809 *** 
LCS-7 - XCS -0.2553154 -0.2588 -0.2519 *** 
LCS-7 - LCS-5 -0.1671924 -0.1709 -0.1635 *** 
LCS-7 - LCS-4 -0.1000094 -0.1035 -0.0965 *** 
LCS-7 - LCS-3 -0.0069515 -0.0105 -0.0034 *** 
LCS-7 - LCS-1 0.0016785 -0.002 0.0053  
LCS-7 - LCS-0 0.0021763 -0.0015 0.0059  
LCS-7 - LCS-2 0.0171034 0.01223 0.022 *** 
LCS-7 - LCS-6 0.0239452 0.02032 0.0276 *** 
LCS-7 - LCS-8 0.7998188 0.79635 0.8033 *** 
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Agent 
Comparison 

Difference 
Between 
Means 

Simultaneous 95% 
Confidence 

Intervals 
Significance 
(5% Level) 

LCS-1 - XCS -0.2569939 -0.2595 -0.2545 *** 
LCS-1 - LCS-5 -0.1688709 -0.1716 -0.1661 *** 
LCS-1 - LCS-4 -0.1016879 -0.1042 -0.0992 *** 
LCS-1 - LCS-3 -0.0086299 -0.0112 -0.0061 *** 
LCS-1 - LCS-7 -0.0016785 -0.0053 0.002  
LCS-1 - LCS-0 0.0004978 -0.0023 0.0033  
LCS-1 - LCS-2 0.0154249 0.01119 0.0197 *** 
LCS-1 - LCS-6 0.0222668 0.01955 0.025 *** 
LCS-1 - LCS-8 0.7981403 0.79564 0.8006 *** 
LCS-0 - XCS -0.2574917 -0.26 -0.2549 *** 
LCS-0 - LCS-5 -0.1693688 -0.1722 -0.1665 *** 
LCS-0 - LCS-4 -0.1021857 -0.1047 -0.0996 *** 
LCS-0 - LCS-3 -0.0091278 -0.0117 -0.0065 *** 
LCS-0 - LCS-7 -0.0021763 -0.0059 0.0015  
LCS-0 - LCS-1 -0.0004978 -0.0033 0.0023  
LCS-0 - LCS-2 0.0149271 0.01066 0.0192 *** 
LCS-0 - LCS-6 0.0217689 0.01899 0.0245 *** 
LCS-0 - LCS-8 0.7976425 0.79508 0.8002 *** 
LCS-2 - XCS -0.2724188 -0.2765 -0.2684 *** 
LCS-2 - LCS-5 -0.1842959 -0.1885 -0.1801 *** 
LCS-2 - LCS-4 -0.1171128 -0.1212 -0.113 *** 
LCS-2 - LCS-3 -0.0240549 -0.0282 -0.02 *** 
LCS-2 - LCS-7 -0.0171034 -0.022 -0.0122 *** 
LCS-2 - LCS-1 -0.0154249 -0.0197 -0.0112 *** 
LCS-2 - LCS-0 -0.0149271 -0.0192 -0.0107 *** 
LCS-2 - LCS-6 0.0068418 0.00264 0.011 *** 
LCS-2 - LCS-8 0.7827154 0.77865 0.7868 *** 
LCS-6 - XCS -0.2792607 -0.2817 -0.2768 *** 
LCS-6 - LCS-5 -0.1911377 -0.1939 -0.1884 *** 
LCS-6 - LCS-4 -0.1239546 -0.1264 -0.1215 *** 
LCS-6 - LCS-3 -0.0308967 -0.0334 -0.0284 *** 
LCS-6 - LCS-7 -0.0239452 -0.0276 -0.0203 *** 
LCS-6 - LCS-1 -0.0222668 -0.025 -0.0195 *** 
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Appendix E:  CHARTS, GRAPHS, AND PLOTS 

This appendix provides additional information from the current research. Specifically, for 

each measure, the following information is provided: 

• Graph of each performance measure 

• Histograms of each performance measure 

• Box and whisker plot of each performance measure 

The graphs and plots provide supplementary information into each agent’s performance 

with respect to the performance measures used in this research, and offer the opportunity to 

draw additional insight regarding agent performance. 
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Vs TFT Unique Classifiers Histogram #1 
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Vs TFT Unique Classifiers Histogram #2 
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Vs TFT Unique Classifiers Box and Whisker Plot 
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Vs TFT % Correct Histogram #1 
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Vs TFT % Correct Histogram #2 
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Vs TFT % Correct Box and Whisker Plot 
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Vs TFT System Error Histogram #1 
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Vs TFT System Error Histogram #2 
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Vs TFT System Error Box and Whisker Plot 
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Vs TFT % [O] Histogram #1 
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Vs TFT % [O] Box and Whisker Plot 
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Vs RAND Unique Classifiers Histogram #1 
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Vs RAND Unique Classifiers Histogram #2 
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Vs RAND Unique Classifiers Box and Whisker Plot 
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Vs RAND % Correct Histogram #1 
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Vs RAND % Correct Histogram #2 
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Vs RAND % Correct Box and Whisker Plot 
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Vs RAND System Error Box and Whisker Plot 
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Vs RAND % [O] Performance Measure 
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