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ABSTRACT OF DISSERTATION 

 
 

ELIMINATING THE POSITION SENSOR IN A SWITCHED 
RELUCTANCE MOTOR DRIVE ACTUATOR APPLICATION 

The switched reluctance motor (SRM) is receiving attention because of its merits: 

high operating temperature capability, fault tolerance, inherent shoot-through preventing 

inverter topology, high power density, high speed operation, and small rotor inertia. Rotor 

position information plays a critical role in the control of the SRM. Conventionally, 

separate position sensors, are used to obtain this information. Position sensors add 

complexity and cost to the control system and reduce its reliability and flexibility. 

In order to overcome the drawbacks of position sensors, this dissertation proposed 

and investigated a position sensorless control system that meets the needs of an electric 

actuator application. It is capable of working from zero to high speeds. In the control 

system, two different control strategies are proposed, one for low speeds and one for high 

speeds. Each strategy utilizes a state observer to estimate rotor position and speed and is 

capable of 4 quadrant operation.  

In the low speed strategy a Luenberger observer, which has been named the 

inductance profile demodulator based observer, is used where a pulse voltage is applied 

to the SRM’s idle phases generating triangle shaped phase currents. The amplitude of the 



  

phase current is modulated by the SRM’s inductance. The current is demodulated and 

combined with the output of a state observer to produce an error input to the observer so 

that the observer will track the actual SRM rotor position. The strategy can determine the 

SRM’s rotor position at standstill and low speeds with torques up to rated torque. 

Another observer, named the simplified flux model based observer, is used for 

medium and high speeds. In this case, the flux is computed using the measured current 

and a simplified flux model. The difference between the computed flux and the measured 

flux generates an error that is input to the observer so that it will track the actual SRM 

rotor position. Since the speed ranges of the two control stragegies overlap, the final 

control system is capable of working from zero to high speed by switching between the 

two observers according to the estimated speed. The stability and performance of the 

observers are verified with simulation and experiments. 

 

KEYWORDS: Switched Reluctance Motor, Sensorless Control, Flux model, Real Time 

Control, Actuator Application 
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Chapter 1  Introduction 

The switched reluctance motor (SRM) drive is a relative newcomer to the motor 

drive industry. The SRM is an electric motor in which torque is produced by the 

tendency of its movable part to move to a position where the inductance of the excited 

winding is maximized [1]. The SRM is considered as an alternative to conventional 

motors in variable speed applications. High efficiency at rated load and low cost make 

SRMs suitable to drive pumps, compressors, and fans. It is a good choice to be 

customized for applications ranging from turbine starter/generators to electric cars to 

washing machines because of its high power density and high efficiency [1]. Its phase 

independence characteristic makes it fault tolerant for critical applications. It is being 

investigated for various industrial and military applications, including electronic 

power steering and anti-lock braking systems in conventional vehicles and the main 

propulsion unit for electric/hybrid vehicles, aircraft engine starters and fuel pumps 

[2]. SRMs can be developed to meet the requirements of systems from a few watts to 

hundreds of kilowatts. The existing commercial applications include laboratory 

centrifuges, variable speed drives, slide door operators, screw air compressors, 

washing machines, food processors, air conditioning, vacuum cleaning systems, and 

roll door systems.  

The first recognizable SRM was built by Davidson as a traction drive for an 

electric locomotive in 1838. But due to its poor performance it was not widely 

applied. Being driven with modern power electronics and using electronic controls, 

SRMs can achieve remarkably better performance. The stepper motor, invented and 

patented in the 1920’s by C. L. Walker, included many features of modern veriable 

reluctance (VR) stepper motors and therefore of the SRM. Belsord and Hoft in 1971 

and 1972 described many of the essential features of the modern SRM, with electronic 

commutation positively synchronized with rotor position [3]. The first reference to the 

name “switched reluctance” was made by S.A.Nasar in a paper in the IEE 

Proceedings in 1969, but it was used to describe a rudimentary switched reluctance 

machine [4]. Dr. Lawrenson and his colleagues connected the term switched 

reluctance with the modern form of the SRM. The term became popular from the 

1980s onwards, through the efforts of the first commercial exploiters of the 

technology, Switched Reluctance Drives Ltd., which is located in the north of 
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England and a part of Emerson Electric Co. The machines are alternatively known as 

variable reluctance motors (VRM), reflecting the origins of the technology being 

derived from VR stepper motors. It is also called an electronically commutated 

reluctance (ECR) motor [1] to emphasize the character of its commutator. Another 

name of the SRM is brushless reluctance motor that underlines the fact that SRM is 

brushless. 

The SRM has several advantages over conventional motors.  

1)  Efficient, it maintains high efficiency over wide speed and load ranges.  

2)  Quick start, the fact that there is no winding, commutator or permanent 

magnets on its rotor, and there are no brushes on its stator, along with its 

salient rotor poles make the SRM’s rotor inertia less than that of its 

conventional peers so that it can accelerate more quickly.  

3)  Low cost, simple construction allows low manufacturing cost. Its stator and 

rotor are built up from a stack of salient pole laminations. There is no 

winding mounting cost for the rotor.  

4)  Wide speed range, it does not have a brush commutator mechanical speed 

limit, no rotor winding, and no rotor magnets so it can run up to high speeds 

with no specific mechanical arrangement. It also can run at low speeds and 

zero speed providing full rated torque.  

5)  Four quadrant operation, it can run forward or backward in either motoring 

or generating mode.  

6)  Shape adaptable, it may be designed as a pancake, or long to match available 

space [5].  

7)  Fault tolerant, its unique inverter topology prevents its inverter from 

experiencing an inverter shoot-through failure. In each leg of the inverter, 

there is a phase winding in between the two switches preventing 

shoot-through.  

8)  Sensorless, SRM control is possible without position sensors. The rotor 

position information can be obtained from the electrical parameters of the 

phases because of the large inductance change and flux change during an 

electrical period of rotor rotation.  

The SRM also has some disadvantages.  

1)  The SRM requires a small air gap to maximize its power density which 

makes it more difficult to manufacture. It is also a source of inductance 
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asymmetry.  

2)  The position sensor is a fragile part of the SRM control system. In some 

situations, position sensors are not allowed to be used. For instance, sensor 

wires are prohibited in hermetically sealed compressors. Sensorless control 

is expected to solve this problem.  

3)  Potential cost of the control electronics is high. But the cost is decreasing 

with the development of electronic technologies.  

4)  The torque output inherently changes with rotor position. Since the torque 

produced by each phase is pulse shaped, the sum of the torque generated by 

all phase is not generally smooth. It is possible to make the torque smoother 

with a more complex control.  

5)  Acoustic noise, induced by the time varying phase current which deforms 

the stator yoke with time, can be severe. Good mechanical construction can 

reduce this problem.  

6)  The design of the SRM’s electromagnetic interference (EMI) filter is 

challenging because the inverter induces high ac harmonics in the DC input 

to the inverter.  

The SRM can be rotary or linear, and the rotor can be interior or exterior. The 

windings may be excited separately or together depending on the phase number of the 

motor and the torque requirement.  
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Chapter 2 Background 

2.1 SRM basics 

2.1.1 SRM structure 

The SRM consists of stator and rotor laminations, both with double salient poles. 

The SRM can be made with different number of phases, for example, 1-phase, 

2-phase, 3-phase, 4-phase, and even more phases for different applications. Each 

phase is wound with alternating magnetic polarity on symmetrically located stator 

poles. The rotor has no winding or magnets. Due to the symmetry of the phases, there 

is often negligible mutual inductance between them. The excitation of a phase 

magnetizes both the stator and the rotor. This produces a torque, causing the rotor to 

align its poles with the poles of the excited stator. Thus, sequential phase excitation 

causes rotor motion, which synchronously aligns the rotor poles with the excited 

phases.  

The section profile of a 4-phase SRM is shown in Figure 2.1. The four phases are 

named A, B, C and D respectively. In the figure, the rotor is at the aligned position 

with phase A. This 4-phase 8/6 (# of stator poles / # of rotor poles) SRM was used in 

this dissertation. 

 

Figure 2.1 SRM structure and geometrical dimensions 
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Several dimensions labeled in Figure 2.1 will be used in the dissertation. Among 

them are: 

Rshaft  the shaft radius; 

Rry  the rotor yoke radius; 

Rg the rotor pole radius, i.e. the distance from the rotor center to the air 

gap; 

Rsy  the stator yoke radius; 

Rout  the outside radius of the stator; 

There are two important dimensions that are not shown in the figure. They are: 

g  the air gap, i.e. the distance between the stator pole and the rotor pole 

when they are aligned; 

lstk  the length of the lamination stack, in the direction perpendicular to the 

page; 

Stf the lamination stacking factor which is the fraction of the lamination 

stack length occupied by iron; 

2.1.2 SRM flux linkage 

The magnetic flux density tends to take the route that has lower magnetic 

reluctance. Thus the field produces a force that drags the rotor towards the aligned 

rotor position of an excited phase. Sequentially exciting the phases brakes or drives 

the rotor continuously. The flux linkage calculated by finite element analysis (FEA) 

when the rotor is at 10 mechanical degrees from the aligned position with phase A is 

shown in Figure 2.2. The current direction of phase A is also shown in the figure. The 

two poles of phase A are on the top and the bottom, as shown in Figure 2.1. The flux 

tends to drag the rotor towards the aligned position of phase A in this case.  

The flux linkage versus phase current curve family is shown in Figure 2.3. It is 

obtained by finite element analysis. The curves are plotted for every mechanical 

degree from the unaligned rotor position (-30° for this 4-phase SRM) to the aligned 

rotor position (0°), respectively from the bottom to the top. The aligned position is 

defined as the rotor position where any pair of rotor poles is exactly aligned with the 

stator poles of interest, for instance, the rotor position related to phase A in Figure 2.1. 

The unaligned position is the rotor position where the inter-polar axis of the rotor is 

aligned with the stator poles of interest, for example, the rotor position related to 

phase C in Figure 2.1. At the aligned position, because of the small air gap, the iron 
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saturates at high currents. At the unaligned position, due to its large air gap, the iron is 

not susceptible to magnetic saturation. The SRM is designed to make the iron saturate 

at high currents in order to maximize the energy conversion. 

  
Figure 2.2 the SRM flux linkage 
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Figure 2.3 the SRM flux versus current at different rotor positions at 1° intervals 

obtained by FE analysis 

2.1.3 SRM torque 

The flux linkage tends to take the route that has the lowest reluctance, and this 

tendency produces a torque. The torque is a function of the phase current and the rotor 

position. There is no torque at the aligned position, but there is restoring toque that 
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tends to return the rotor towards the aligned position at other rotor positions. The 

aligned rotor position is a stable equilibrium. At the unaligned position, the torque is 

also zero because it is at the minimum inductance. If the rotor is displaced to either 

side of the unaligned position, there is a toque that tends to displace it still further 

until it rotates to the closest aligned position. The unaligned position is an unstable 

equilibrium. 

A family of static torque curves for different constant currents calculated by FEA 

for the 4-phase SRM used in this research is shown in Figure 2.4. In the figure, the 

torque curves for each of the 4 phases correspond to constant phase currents equal to 

10, 20, 30, and 40 amperes. If the phases are energized at the rotor positions at which 

the torque is positive, the total torque output is positive and keeps driving or braking 

the rotor depending on the direction of rotor rotation. The total torque output in this 

case is shown in Figure 2.5.  

 

 

Figure 2.4 the SRM torque versus rotor position 

 The total torque output versus the rotor position with a fault of phase A is shown 

in Figure 2.6. It is zero when the rotor position is at the aligned position with regard to 

phase B, in this case, 15 degrees. The total torque output versus the rotor position with 

a fault of phase A and phase B is shown in Figure 2.7. The torque is zero at the rotor 

positions from the unaligned position of phase D to the aligned position of phase C. 
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This fact shows that the 4 phase SRM has inherent problem to work at zero speed for 

any position with rated torque and a fault of one phase or two phases. 

 
Figure 2.5 the total torque output vs rotor position 

 
Figure 2.6 the total torque output vs rotor position with a fault of phase A 
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2.1.4 SRM inverter 

The SRM inverter used in this research is shown in Figure 2.8. It has 4 legs for 

the 4-phase SRM. Each inverter leg has two power electronic switches and two 

diodes. The two switches and the two diodes of phase A are named Q1, Q2, D1, and 

D2 respectively, as shown in Figure 2.8. 

  

Figure 2.7 the total torque output vs rotor position with a fault of phase A and B 

When both switches, Q1 and Q2 are on, the winding phase current increases and 

the winding is being charged. The equivalent schematic for this mode is shown in 

Figure 2.9a. When Q1 or Q2 is off, D1 or D2 respectively will conduct the remaining 

current This is called free-wheeling mode. In this mode one diode and one switch are 

on essentially shorting the winding. The flux keeps constant ideally in this mode and 

the current changes the slowest in this mode. At zero speed the current is ideally 

constant though the current actually decreases slowly due to the winding’s resistance 

and the voltage drops across the inverter semiconductors. At higher speeds the SRM’s 

back EMF will reduce the current when motoring and increase the current when 

generating. The equivalent schematic of the freewheeling mode is shown in Figure 

2.9b. When both of the switches are turned off and there is current in the winding, 

both diodes will conduct current. This mode is called the discharging model. Now the 

voltage across the winding is the reverse of the power supply voltage. The power 
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supply discharges the winding through the two diodes. The equivalent circuit 

schematic for the discharging mode is shown in Figure 2.9c. The phase current is 

controlled by sequencing the inverter through these three modes. 

Q1

Q2

D1 

D2

phA phB phC phD 

 

Figure 2.8 the SRM inverter 

 

   
a b c 

Figure 2.9 the SRM inverter working modes 

2.1.5 SRM phase current 

 It is desirable to control the SRM’s phase current to a constant value during the 

torque-producing period of time, as shown in Figure 2.10. First the phase current is 

increased to the desired constant current level called the commanded current before 

the rotor reaches the torque-producing region. This is accomplished by putting the 

inverter into the charging mode. Because of the SRM’s low inductance before the 

rotor and stator poles overlap, the phase current rises up quickly in the charging mode. 

After the current reaches the commanded current determined by the commanded 

torque, the inverter goes to either the freewheeling mode (motoring) or the 

discharging mode to decrease the current. Once the current is less than the 
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commanded current by a predetermined amount, the inverter goes back to the 

charging mode to increase the current again. This procedure is continued until the 

rotor is close to the end of the torque-producing region, after which the inverter is put 

into the discharging mode to reduce the phase current to zero rapidly to avoid 

producing the opposite torque. 
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Figure 2.10 SRM phase current 

 

2.2 An analytical model of the SRM 

To model the SRM the flux linked by a phase must be determined from which 

other machine properties like torque, inductance and back EMF can be computed. 

Different methods can be used from FEA to curve fitting, from truncated Fourier 

series to exponential functions. In the simulation system that this dissertation uses, an 

analytical flux model is used. It is constructed by considering two cases according to 

the rotor position. The first case, termed the overlap case, consists of those rotor 

positions for which a rotor pole overlaps with the stator pole of interest. In the second 

case, namely the non-overlap case, the stator pole under consideration does not have 
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any angular extent that overlaps with a rotor pole.  

In the non-overlap case, it is assumed that the inductance is independent of 

current. There is only fringing flux and iron saturation is negligible. But in the overlap 

case, iron saturation needs to be considered and the total flux consists of both a main 

flux and a fringing flux. 

The non-overlap case is explained in more detail in [6], while the overlap case is 

described in more detail in [7]. The basic results from these two references are 

introduced here because they are used as the SRM model of the simulation system in 

Matlab/Simulink. 

2.2.1 The non-overlap case 

The geometry of the SRM in this case is shown in Figure 2.11. The stator poles of 

phase A do not have any overlapped area with any rotor poles. The actual SRM 

geometry can be approximated with the unwrapped rectangular geometry in Figure 

2.12. The dimensions lr1 and lr2 are equal if the rotor is at the unaligned position 

relative to the phase A stator pole and are unequal otherwise. The parameter lr is the 

total horizontal length of the rotor yoke between the two neighbor poles.  

The flux linked by a phase in this case is divided into two parts. One part is 

contributed by the part of the magnetic field generated by the winding that goes from 

the stator pole to the rotor through the rotor slot between the two rotor poles. The 

other part is contributed by the part of the magnetic field generated by the winding 

that that returns through the stator slot. To obtain the contribution by the rotor, the 

vector potential A is introduced and the boundary conditions of the rectangular region 

between the rotor poles are defined. Then the basic magneto static theories are applied 

to solve the flux linked by the phase due to the magnetic field that goes to the rotor.  

The flux linked by a phase (λpr), contributed by the rotor, in terms of the phase 

current (IΦ) is 
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where nser is the number of pole windings in series and npar is the number of pole 
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windings in parallel, Np is the number of winding turns per pole, μo is the 

permeability of free space, nodd is the odd integers from one to infinity.   

 

 

Figure 2.11 the rotor position in the non-overlap case 
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Figure 2.12 the approximated rectangular geometry in the non-overlap case 

The starting point for finding the field in the stator slot is the approximate 

geometry in Figure 2.12. Like the rotor case, the stator slot also forms a rectangular 

box. The field actually has to be found in both stator slots on either side of the stator 

pole. Since the basic geometry is the same for both of these slots, the field solution 

only has to be obtained for one slot and then the same solution is applied to the other 

[6].  

In [6], the stator contribution to the unaligned flux is: 
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where ls is the length of the stator slot in x direction, hs is the height of the slot, lw is 

the length of the winding in x direction, ashn and aspn are the Fourier coefficients of 

the solution given in [6]. 

Thus the total phase flux in the non-overlap case is
 

),(),(),(, φφφφ θλθλθλ iii psprno +=            2-3 

2.2.2 The overlap case 

In the overlap case, the flux linked by a phase is broken into two parts, , one due 

to the main field called the main flux and the other due to the fringing field called the 

fringing flux. The major difference between these two fluxes is that their contour 

paths have different air gaps. The main flux is computed using a contour that passes 

through the small air gap that is between the rotor pole and the stator pole where they 

overlap. The fringing flux is computed using a contour that passes thorugh the greater 

air gap between the rotor yoke and the stator pole, as shown in Figure 2.13. 

The main flux contribution, including the effect of iron saturation, to the total flux 

linked by a phase is [7] 
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Here mFel ,  is one half of the total length of the main flux contour in the iron and g is 

the air gap. The number of turns and the current in the winding around each of the two 

stator poles that make up the phase are Np and IФ respectively. μ is the magnetic 

permeability of the iron, pw is the stator pole width, and satB  is the flux density when 

the iron is saturated. The iron is characterized by μ and satB .. The angle θ  is taken 

to be zero at the aligned position. 

 

 

Figure 2.13 the contours of the main flux and the fringing flux 

The fringing flux is found by simply substituting the effective fringing flux air 

gap, fg , [7] for the main flux air gap g and substituting the area of the fringing flux 

path for the area of pole overlap. Thus the fringing flux is 
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In the equation, 

 

 ( ) frfFef gll 1,1 ++= μ  and  ( ) frfFef gll 1,2 −−= μ  



 16

 

where fFel ,  is a half of the total length of the fringing flux contour in iron.  

The total flux linked by an SRM phase in the overlap case is simply the sum of 

the main flux and the fringing flux linked by that phase. 
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The main flux is given by (2-4) and the fringing flux is given by (2-5). 

The flux over a full period of rotor position is 
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2.3 A torque method to obtain the flux of SRM 

Because of its salient poles and the fact that iron saturation plays a critical role in 

its operation, it is difficult to model the SRM precisely [8]. Ultimately it is necessary 

to measure the flux linked by a phase of the SRM to predict its performance and to 

verify model results. Typically a pulse voltage is applied to one phase of the SRM 

with its rotor locked at a fixed rotor position. As the current in the phase increases the 

phase current is measured and the phase voltage is integrated to obtain the flux as a 

function of current. This process is repeated at different rotor positions to obtain a 

family of flux curves for different rotor positions. If first a positive voltage pulse is 

applied to the phase to increase the current and then a negative voltage pulse is 

applied to return the current to zero, it is found that the increasing and decreasing flux 

curves are not equal and a loop occurs, because of both iron and copper losses. The 

flux loop resulting from the losses incurred during the measurement complicates 

determining the phase flux linkage curves, which should be lossless.  

There is an alternative “torque method” to measure the flux linked by a phase that 

does not need a correction for losses. It applies a dc current to the SRM’s phase 

instead of the pulse voltage normally used, to avoid the iron losses. The output torque 

is measured instead of the phase voltage so that the results do not depend on the 
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copper losses. The static torque curves of the SRM are measured versus phase current 

at a fixed rotor position and the process is then repeated for different rotor positions. 

Then this data, a measurement of the unaligned inductance, and conservation of 

energy are used to compute the loss independent flux linked by the SRM’s phase. The 

same approach can be used to compute the SRM’s flux leakage from finite element 

analysis (FEA) computed static torque data, simplifying the computation of the 

nonlinear flux linkage curves. 

2.3.1 Power losses 

      It is shown below how the power losses (including iron losses and copper loss) 

are avoided in the torque method for measuring the flux linked by a phase. 

2.3.1.1 Eddy current loss and hysteresis loss 

According to [9, 10], the eddy current loss per unit volume is proportional to 

square of the derivative of flux density. 
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where eddyK  is a constant of proportionality, B  is the magnetic field density in the 

winding, and veddyP  is the power loss per unit volume due to the eddy current. 

Because the phase voltage phV  is proportional to the derivative of flux density, 

 

dt
dBVph ∝                 2-9 

 

the eddy current losses are proportional to the phase voltage squared  

 

2
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and thus the eddy current losses can be modeled as a resistor connected in parallel 
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with the electromagnetic phase voltage phV . 

Hysteresis loss is more complicated to compute analytically. It can be expressed 

as being proportional to the derivative of flux density [9]. To obtain a simple 

conceptual schematic of the SRM’s phase circuit, the two iron losses mechanisms are 

modeled as a resistor Riron in parallel with the winding as shown in Figure 2.14. 

The copper loss is the power consumed by the phase resistance, which is 

represented by a resister Rcopper in series with the phase winding as shown in Figure 

2.14. 

The classic way to measure the flux linked by an SRM phase is to lock its rotor, 

apply a pulse voltage Vph, measure Icopper and integrate the phase voltage Vph to get the 

flux. This process is repeated at various rotor positions to obtain a family of flux 

versus current curves. It is clear from Figure 2.14 that the measurable current Icopper is 

not equal to the electromagnetic winding current Iph because of the iron losses and the 

measurable phase voltage Vph is not equal to the electromagnetic winding voltage 

because of the copper resistance. The flux linked by an SRM phase using this method 

has inherent errors due to the iron and copper losses. 

          

                

Rcopper

RironLφ

Icopper 

Iφ
Iiron  

 
Vφ 
 
 

 

Figure 2.14 the SRM phase circuit with losses 

2.3.1.2 Avoiding the loss induced measurement errors 

The SRM’s phase circuit shown in Figure 2.14 reduces to the circuit shown in 

Figure 2.15 when the input is a dc current and thus the nonlinear SRM phase 

inductance Lφ behaves as a short circuit, shorting the iron loss resistor. In this case all 

of the measured current Icopper flows through the shorted equivalent magnetic winding 

and none flow through the iron loss resistance so that the winding current Icopper is 

exactly equal to the current Iφ. Because the measured torque only depends on the 

change of the energy stored in the winding the voltage across the copper loss resistor 

Rcopper never needs to be known and thus the value of Rcopper does not need to be 
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known. 

Even though the model of the SRM phase in Figure 2.14 and Figure 2.15 is not 

perfect the concept presented is more general than the model. When the input voltage 

is dc and the rotor is not rotating, the eddy current loss and hysteresis loss are both 

zero since they both are due to the time rate of change of the magnetic field in the 

iron.  

 Rcopper 
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Icopper 

Iφ + 
 
Vφ 
 
 
-

 

Figure 2.15 the static model of SRM 

2.3.2 Obtaining flux from the static torque 

The flux linked by the SRM’s phase is found using conservation of energy. The 

starting point is the co-energy defined in the usual way. 

 

diidiTiWd e ),(),(),( θλθθθ +=′            2-11 

 

Here θ  is the rotor position, i  is the phase current, ),( iW θ′  is the co-energy, 

),( iTe θ  is the static torque, ),( iθλ  is the flux linkage as a function of the phase 

current and the rotor position. The Co-energy is computed by integrating the torque at 

a fixed phase current ( di  = 0). Because co-energy is conserved the value of this 

integral does not depend on the choice of path in the i-θ space. 
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where iniθ  is the initial rotor position, which is taken to be the unaligned rotor 

position. For the unaligned rotor position, the co-energy can be computed simply 

because there is no magnetic iron saturation at this position.  



 20

 

2

2
1),( iLiW uu ⋅=′ θ                2-13 

 

Here θ u is the unaligned rotor position and Lu is the phase inductance at the unaligned 

rotor position. The unaligned inductance can be computed from a single FEA 

calculation or found from a single experimental measurement, at a sufficiently low 

current that the SRM losses have a very small effect. The flux linked by a phase is the 

derivative of co-energy relative to the phase current holding the rotor position 

constant, as shown below 
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From experiments or finite element analysis, a θNNi ×  torque matrix 
eT  is 

created. Its rows represent different rotor positions from the unaligned rotor position 

to the aligned rotor position, and its columns represent different phase current samples 

from zero to a maximum value. Current samples are
iNiii ⋅⋅⋅21, , while rotor positions 

are
θ

θθθ N⋅⋅⋅21, . Here i1 is defined to be zero and θ1 is defined to be the unaligned 

rotor position θu. With these definitions equations (2-12) and (2-14) are transformed 

into their discrete form in (2-15) and (2-16). 
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The initial values of the co-energy and flux at the boundaries of the problem are 
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Here i1 = 0 A. 

 

2.3.3 Comparing with the classic method 

In this section, the experimental results for the classic method and the torque 

method to measure the SRM’s flux linage curves are compared.  

2.3.3.1 The Classic method 

As discussed above, the classic method of measuring the flux linked by a SRM 

phase is to apply a pulse voltage while the rotor is locked at a certain position. The 

current is measured and the voltage is integrated to obtain flux and thus the flux 

versus current curve is plotted. A dc power supply and a simple one-phase inverter 

consisting of two power MOSFETs and two diodes are used to generate the pulse 

voltage to the phase under test. A signal generator provides the input signals to the 

two power MOSFETs that conduct the increasing phase current. The two diodes 

conduct the decreasing current when the two MOSFETs are off. The circuit used in 

the classic method and its experimental set-up are shown in Figure 2.16 and Figure 

2.17 respectively. The voltage and current waveforms obtained at the aligned rotor 

position are shown in Figure 2.18. The sudden increase of the current in the increasing 

period is due to the iron saturation. 

SRM 

 

Figure 2.16 the one-phase inverter circuit used in the classic method 
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Figure 2.17 the experimental set-up for the classic method 

 

 

Figure 2.18 the voltage and current waveforms obtained at the aligned rotor position 

 

Because the copper losses and the iron losses, a loop is formed in the flux-current 

space because the rising and the falling currents do not match. The flux loop and an 

adjusted flux curve obtained at the aligned rotor position are shown in Figure 2.19. In 

this figure, the phase current and the flux are both filtered digitally to eliminate the 

high frequency noise. The adjusted flux curve is obtained from the flux loop data by 

subtracting an Iφ Rφ voltage drop from the terminal voltage before it is integrated to 
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obtain the flux. The value of Rφ is adjusted so there is no loop. Doing this assumes the 

Rφ value does not change as the current changes and that the iron losses can be 

modeled as an equivalent constant series resistance. An interesting result is that the 

adjusted curve is not in the middle of the loop as would be expected. This happens 

because the voltage across the electromagnetic winding is lower than the terminal 

voltage when the phase current is increasing and larger in value when the phase 

current is decreasing. Thus the flux increases less rapidly and to a lower value than 

the terminal voltage would indicate when the flux increases and decreases more 

rapidly than the terminal voltage would indicate when the flux decreases.  

 

 

Figure 2.19 the flux loop and the adjusted flux curve 

2.3.3.2 The torque method  

The diagram and the experimental set-up for the torque method are shown in 

Figure 2.20 and Figure 2.21. A torque transducer is used to measure the static torque 

and a position sensor is used to obtain the rotor position information. Equations (2-16, 

17, 18 and 19) are used to obtain the flux from the torque data. In the experiment Ni is 

40 and Nθ is 30. It is best to obtain more data in the current direction rather than the θ 

direction since a derivative of the co-energy with respect to current is required and 

derivatives are more numerically noisy than integrals. 
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Figure 2.20 the set-up diagram for the torque method 
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Figure 2.21 the experimental set-up for the torque method 

2.3.3.3 Comparison between the torque method and the classic method 

The experimental fluxes obtained by using the torque method and the classic 

method are shown in Figure 2.22. In this figure, the flux curves are presented at the 

aligned position (0°), 5°, 10°, 15°, 20°, 25° and the unaligned position (30°). The 

curves are smoothed by curve fitting with polynomial function of degree 5. Though 

the results are similar for both methods they are not identical, presumably because of 

the errors inherent in compensating the classic data for losses. Another error that must 

be dealt with in the classic method is differences in the time at which the voltage and 

current are sampled that result from the dynamic nature of the experiment. Because 

the torque method uses a static experiment this sampling error does not occur. 
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Figure 2.22 the measured flux obtained using the classic method (solid lines) and the 

torque method (dashed lines) 

2.3.4 Applying the torque method to FEA 

Since calculating torque in finite element analysis (FEA) when there is iron 

saturation is easier to automate than calculating the flux linked by a phase directly 

(from the vector potential), the torque method is expected to be a useful approach for 

obtaining the flux linked by a SRM phase from FEA. The FEA application of the 

torque method is verified with the measured data and results from an analytical model 

[6, 7].  

2.3.4.1 The torque method applied to FEA 

The finite element analysis model of the experimental motor is built with Ansoft 

Maxwell 2D software and the static torque is calculated. The FEA model drawing is 

shown in Figure 2.1. The calculated torque is used to obtain the flux linked by a 

phase. To use finite element analysis, the dimensions of the motor, turn number of the 

winding, iron material need to be known. 

2.3.4.2 An analytical model 

An analytical flux model that includes iron saturation in the motor is presented in 

[6, 7]. The dimensions, iron properties, and number of turns used in FEA are used in 

this analytical model. 
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2.3.4.3 Comparison between the experimental results, FEA results and the 

analytical model 

The comparison between the FEA results and the analytical model is shown in 

Figure 2.23. In this figure, the flux curves are presented at the aligned position (0°), 

5°, 10°, 15°, 20°, 25° and the unaligned position (30°). The curves are smoothed by 

curve fitting with polynomial function of degree 5. Presumably the FEA results are 

more accurate and the error between these results and the analytical model results are 

due to the difficulty of modeling the nonlinear behavior of the SRM analytically.  

Both the analytical and FEA flux linkage curves predict higher flux levels than the 

measured data. Also, both the analytical and FEA flux linkage curves saturate more 

strongly than the measured curves do. This is most likely due to errors in modeling 

the iron B-H curve. The experimental SRM is a commercial machine and the 

manufacturer considers the iron characteristics and the motor geometry to be 

proprietary information. Thus both the analytical and FEA results assumed the iron 

was 3.25% SiFe with an initial relative permeability of 5000 and a saturation flux 

density equal to 1.8 T. The dimensions used in both the analytical and FEA 

calculations were obtained from measurements of the partially disassembled machine. 

This is another source of error. The torque obtained from the experimental 

measurement, FEA computation and the analytical model is shown in Figure 2.24. 

Polynomial curve fitting is applied to the measured torque and the FEA computed 

torque. The difference between the FEA torque and the analytical model torque is due 

to the difficulty of modeling the nonlinear behavior of the SRM analytically. 

 

Figure 2.23 The predicted flux linked by an SRM phase obtained using FEA static 

torque (dashed lines) and using an analytical model (solid lines) 
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Figure 2.24 Torque versus the rotor position, experimental torque (dashed lines), FEA 

results (dotted lines) and the analytical model results (solid lines) at the phase current 

equal to 10A, 20A, 30A, and 40A 

 
The flux linked by a phase was also computed using the vector potential at the 

aligned position for two different currents. These results are compared to those 

obtained using the FEA torque and the analytical model results in Table 2.1. 

 

Table 2.1 FEA predicted flux using the vector potential, using the FEA torque, and 

predicted by the analytical model. 

 

Iφ 

Flux from vector 

potential  

(Weber) 

Flux from 

torque 

 (Weber) 

Flux from the analytical 

model 

(Weber) 

1 A 1.12 x 10-3 1.12 x 10-3 1.12 x 10-3 

40A 0.0289 0.0299 0.0273 
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Chapter 3 Simulation model and hardware implementation of 

the SRM sensorless control 

In this chapter, the SRM sensorless control system simulation and 

implementation in hardware and software are presented. The SRM used here is 

manufactured by Rocky Mountain Technologies. It is a 42Vdc, 2 hp peak power, four 

phase or 8/6 SRM with a maximum speed of 15,000 rpm. The simulation is done 

using Matlab/Simulink. The system is implemented with a digital signal processor 

(DSP) of TMS320C6711 made by Taxes Insturments, an A/D converter board, a 

separate analog current regulator with a digital control logic circuit, and a standard 4 

phase SRM inverter.. 

3.1  SRM sensorless control system simulation model in 

Matlab/Simulink 

The control system was designed and simulated using Matlab/Simulink. The 

SRM drive system structure is shown in Figure 3.1. It consists of five components, an 

electromagnetic interference (EMI) filter, a power electronic inverter, an SRM, a 

current regulator and a software implementation block.  

The EMI filter eliminates ac harmonics generated by the inverter in the DC input 

current. The current regulator keeps the phase currents equal to the commanded 

current when the SRM phases need to be energized. It also controls the inverter 

switches to create the sensing currents when the phases are idle and the sensing 

currents are needed. The software implementation block generates the commands to 

the current regulator including the commanded current and the logic signal to control 

whether the inverter should generate torque producing current or sensing current. The 

software implementation block estimates the rotor position from the measured phase 

current and/or flux input from the analog-to-digital board. Since the inverter and SRM 

model have been described earlier, the EMI filter, the current regulator, and the 

software implementation block will be described in this chapter. 

3.1.1 The EMI filter 

     The EMI filter consists of an inductor and a capacitor, both of which have 

parasitic resistance, as shown in the dashed block in Figure 3.2. 
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Figure 3.1 SRM simulation system in Matlab/Simulink 
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Figure 3.2 the EMI filter circuit 

 
To model the EMI filter, its state equations need to be obtained so that the state 

space function block in Matlab/Simulink can be used. The Matlab/Simulink filter 

model is developed with the inputs Vin and IPOW, and the outputs, IL and VPOW.  Two 

states are defined in the state equations. One is the current in the inductor, IL and the 

other is the voltage across the capacitor, VC. According to KVL,  

 

dt
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L
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     According to KCL, 
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where the parameters, L, RS, RP, RC, and CF are the inductor, the parasitic resistor of 

the inductor in series with the inductor, the parasitic resistor of the inductor in parallel 

with the inductor, the parasitic resistor of the capacitor in series with the capacitor and 

the capacitor, as illustrated in Figure 3.2. The two states, IL and VC, are also shown in 

the figure. 

After rearranging, (3-1) and (3-2) become  
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     In matrix format this is 

 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

+

POW

in

C

LS

C

L

F
P

FC
P

I
V

V
IR

dt
dV
dt
dI

C
R
L

CR
R

L

01
1)11(

       3-5 

 

     In the standard state space format (3-5) can be arranged into the standard form 

 

uBxAx +=
•

                3-6 

 

Where 



 31

 

⎥
⎦

⎤
⎢
⎣

⎡
=

C

L

V
I

x ,  ⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

+
−=

−

01
1)11(

1

S

F
P

FC
P

R

C
R
L

CR
R

L
A , 

1

)11(
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

+
=

F
P

FC
P

C
R
L

CR
R

L
B ,   ⎥

⎦

⎤
⎢
⎣

⎡
=

POW

in

I
V

u  

 

     The output VPOW is  
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     In matrix format, the outputs are 
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In the standard state space format the output is expressed as 
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  Since A, B, C and D matrices are all known, the standard Matlab/Simulink state 

space function block can be applied in the SRM motor drive model. The currents IPOW 

and IL are shown in Figure 3.3. It shows that the current in the inductor, IL, has much 

less high frequency harmonics than the inverter bus current IPOW. In the experimental 
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system, L=0.63 mH, CF=16mF, Rs=70mΩ , Rp=2Ω, Rc=0Ω.   

 

Figure 3.3 IPOW and IL waveforms in the EMI filter 

3.1.2 Current Regulator 

The function of the current regulator is to regulate the current in the SRM phases. 

It consists of 4 sub-regulators, one for each phase. The 4 sub-regulators work 

independently. Each sub-regulator consists of an analog part and a digital part. In the 

analog part the analog phase current signal is input to three voltage comparators to 

generate three digital signals that regulate the SRM phase current, control the sense 

currents, and protect the inverter. 

The three voltage comparators with their inputs and outputs are shown 

conceptually in Figure 3.4. The phase current is input to all three comparators. It is 

compared to the commanded current in the first comparator, to a low current reference 

in the second comparator and to an over current reference in the third comparator. The 

three comparators are named as comp1, comp2 and comp3 respectively. The outputs 

of the comparators are named as I_low, I_chop, and I_over.  

I_low is ‘1’ when the phase current is higher than the low current reference. It is 

‘0’ when the phase current is lower than the low current reference and determines 
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when sense pulses can be applied to the SRM. It is needed because the sensing current 

can only be injected into a phase to obtain the rotor position information after the 

torque producing current has ideally gone to zero because all sense currents must start 

from zero current to only depend on the unsaturated phase inductance and not the 

initial value of the current. Setting the low current reference very low, when I_low is 

‘0’, one can safely say that the torque producing current varnishes so that the sensing 

current can be injected. In the experimental system the low current reference is 5A 

while the peak torque producing current is 40A. 

The control signal I_chop is ‘1’ when the phase current is higher than the 

commanded current and it is ‘0’ when the phase current is lower than the commanded 

current by a hysteresis amount. When I_chop is ‘0’ and the phase is in the torque 

producing region, the two inverter phase switches are turned on to charge the phase 

windings. When I_chop is ‘1’, one of the two inverter phase switches is turned off to 

decrease the phase current if the SRM is motoring. If the SRM is generating both 

switches are turned off to decrease the phase current. 

The control signal I_over is an inverter circuit protection signal. It is ‘1’ when the 

phase current is higher than the over current reference. When this happens a latch is 

set and the current regulator is shut down immediately. The control signal I_over is ‘0’ 

when the phase current is lower than the over current reference and has no effect on 

the current regulator.  
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comp2

comp3

I_low 

I_chop 

I_over 

 
Figure 3.4 the voltage comparators in the current regulator 

 

The digital part of the current regulator is a logic circuit. The register transfer 

level schematic of the digital part of one of the four sub-regulators is shown in Figure 
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3.5. Its inputs are:  

modin:  the injection current pulse signal, also called sensing pulse signal, a 

20 KHz, 50% duty cycle signal; 

comin:   the torque producing command signal, a ‘1’ means input current to 

produce torque , ‘0’ means do not produce torque and enter the 

sensing mode; 

I_low:   output of comp1, ‘1’ means the phase current is higher than the low 

current reference and thus do not apply sensing pulses to the SRM phase, ‘0’ 

means the phase current is lower than the low current reference and sensing pulses 

can be applied to the SRM phase. 

I_chop:   output of comp2, ‘1’ means the phase current is higher than the 

commanded current. ‘0’ means the phase current is lower than the 

commanded current by a hysteresis amount.  

I_over:   output of comp3, ‘1’ means the phase current is higher than the over 

current reference, ‘0’ means the phase current is lower than the over 

current reference. 

The outputs of the digital part of one of the four sub-regulators are: 

sense:   sensing current indication signal, ‘1’ means that the sensing current 

can be injected, ‘0’ means the opposite; 

Q1, Q2:   a ‘1’ means turn on the respective inverter switch and ‘0’ means turn 

off the respective inverter switch; 

Shutdown: shutdown command, ‘1’ means the circuit needs to be shut down, ‘0’ 

means the opposite. 

This logic circuit gives the input signals to the gate drives of the two switches. 

When the command signal, comin, is ‘0’, the pulse signal modin will be routed 

directly to Q1 and Q2 overriding any other control signals so that sensing current is 

injected into the phase. When comin is ‘1’, no sensing pulses can be applied to the 

SRM and the circuit will turn the two switches on and off to keep the phase current 

constant at the commanded current. 

The top RS flip-flop in Figure 3.5 produces the output named sense and is used to 

make sure that the sensing current is only injected after the torque producing current 

vanishes. This is accomplished with the I_low signal and a two modulation cycle time 

delay produced by the two D flip-flops before the RS flip-flop. The bottom RS 



 35

flip-flop is used to save the over current fault indication. When a ‘0’ to ‘1’ transition 

of I_over occurs, the negative output, Qn, of the RS flip-flop will be reset to ‘1’. It 

will not be set back to ‘0’ until the enable has a ‘0’ to ‘1’ transition. The T flip-flop 

distributes the switching frequency evenly between the upper and lower switches 

when the inverter is regulating the phase current in the freewheeling mode where only 

one switch is turned off to decrease the current. 
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Figure 3.5 the logic circuit of the current regulator 

 

The digital circuit is modeled with Matlab/Simulink and simulated with the rest 

of the drive system. The simulation results for the input and output signals are shown 

in Figure 3.6. In the figure, the horizontal axis is time in seconds. All the signals 

shown in the figure except the phase current are digital. The plotted phase current has 

been scaled down so its maximum value is 2. The I_over signal is never ‘1’ in 

simulation because the commanded current is always lower than the over current 

reference so that I_chop changes to a ‘1’ before I_over does so that the phase current 

decreases in freewheeling mode. The over current protection is still useful in reality 

because it will shut down the inverter immediately to protect the inverter should a 

control error or inverter switch failure occur. 
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3.1.3 The software implementation block 

The software implementation block in the Matlab/Simulink model of the SRM 

drive system contains the commanded current computation, advance angles 

computation, a commutator, and two sensorless control strategies.  

When the SRM is rotating its phases need to be energized before the rotor reaches 

the torque-producing region so that the phase current can build up to the commanded 

current at the beginning of the torque producing region. The phases need to be 

de-energized before the end of the torque-producing region because the phase current 

needs some time to decrease to zero and thus to limit the production of torque 

opposite to the desired torque. The ideal torque-producing region and phase current 

waveform are shown in Figure 3.7. In the ideal case, the turn-on angle, namely 

θon_ideal, is where the stator poles just start to overlap with a pair of rotor poles. The 

turn-off angle, namely θoff_ideal, is the aligned position. If from θon_ideal to θoff_ideal the 

linked flux increases, the phase current will produce positive torque. As described 

above, the actual turn-on and turn-off angles need to be moved forward to θon and θoff 

respectively as shown in Figure 3.8. How much they need to be moved forward 

depends on the rotor speed, the power supply voltage Vpow, and the commanded 

current. 

 
Figure 3.6 the current regulator’s digital input and output signals relative to the scaled 

phase current 
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The commutator produces commands to all of the phases based on the estimated 

rotor position in the sensorless control systems. Conceptually the output of the 

commutator for a given phase is ‘1’ if the estimated angle input to the commutator is 

between θon and θoff. Things are a little more complicated because the rotor position is 

wrapped into an electrical period, which is from -θu to θu. If the turn-on angle θon is 

greater than –θu, as shown in Figure 3.8a, the commutator energizes the phase in the 

bold region, in which offon θθθ ≤≤ . If θon is less than -θu and thus wrapped, as shown in 

Figure 3.8b, the commutator energizes the phase in two separate bold regions, in 

which offu θθθ ≤≤−  or uon θθθ ≤≤ .  

The commanded current is determined by the torque command. It is simply set as 

a linear function of the torque command, as in (3-10).  

 

ocommiTcomm ITkI +⋅=              3-10 

 

Here Icomm is the commanded current, iTk is the linear coefficient, Tcomm is the 

commanded torque, and Io is the offset current. 
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Figure 3.7 the ideal and actual region of torque-producing current 
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  a) 
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  b) 
 

Figure 3.8 the two cases of the on and off angles 
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The structure of the Simulink model’s software implementation block is shown in 

Figure 3.9. The sensorless control in Figure 3.9 acquires data and estimates the rotor 

position. This will be explained in more detail in the following chapters. 
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Figure 3.9 the software implementation block structure 

3.2 SRM sensorless drive system hardware implementation 

The SRM drive system is implemented with three main components, a power 

inverter, a printed circuit board (PCB) current regulator using a Field Programmable 

Gate Array (FPGA) chip, and a Digital Signal Processor (DSP) with an 

analog-to-digital converter (ADC) board, as shown in Figure 3.10. The inverter is 

implemented with a power printed circuit board bus bar assembly. The current 

regulator is implemented with a PCB board and an Actel ProASIC APA500K FPGA 

chip. The microprocessor function unit is implemented in a TI TMS320C6711 

floating point DSP. The ADC board is a TI THS1206 evaluation board. It samples the 

phase currents and/or phase fluxes. The maximum sampling rate is 6 MSPS and the 

resolution is 12 bits. Since the ADC board can only sample 4 channels, an analog 

multiplexer is used when 8 channels need to be sampled for the simplified flux model 

based observer. An HEDS-55X optical encoder position sensor is used to verify the 

accuracy of the estimated rotor position. The EMI filter and the advance angle 

algorism are not in the hardware implementation. The detailed parameters of the 

experimental SRM are shown in appendix IV. 
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3.2.1 Power Inverter 

The torque producing current is high, so the inverter needs to be implemented 

with PCB bus bars that have rather thick copper. The power electronic switches and 

diodes need to be mounted on heat sinks to limit their temperature rise due to their 

switching and conduction losses. To design the power bus bar assembly, four nodes of 

each inverter phase leg are defined. These nodes are called "power, ground, upper, and 

lower. Among them, the two nodes, power and ground, are shared by all of the 

inverter phases. The other two nodes, upper and lower, are independent for each phase 

and are denoted upperA, lowerA, upperB, lowerB, upperC, lowerC, upperD, and 

lowerD for phase A, B, C and D respectively, as shown in Figure 3.11a.  
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Figure 3.10 the hardware implementation of the SRM sensorless control system 

 
The inverter consists of three layers separated by stand offs, the DC PCB bus bar, 

the PCB phase bus bar, and the heat sink, which are assembled together in vertical 

direction from the top to the bottom, as shown in Figure 3.11b. All of the inverter 

power electronic switches and diodes are mounted on the heat sink to conduct the heat 

from the device losses away from the devices and into the ambient air. The phase bus 

bar provides 8 nodes, upperA, lowerA, upperB, lowerB, upperC, lowerC, upperD, and 

lowerD. The DC bus bar provides two nodes, power and ground. These nodes are 

connected to the switches and diodes as shown in the schematic Figure 3.11a with 

Litz wire. The experimental power inverter is shown in Figure 3.12. 
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Figure 3.11 the bus bar assembly 

 

 

Figure 3.12 the experimental bus bar assembly 

3.2.2 The current regulator board 

The current regulator PCB board includes signal conditioning, voltage 

comparators, voltage integrators, low pass filters, analog switches and a FPGA.  
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3.2.2.1 Signal conditioning 

Since the chosen ADC board can only sample voltage signals between 1.5V and 

3.5V, every signal being sampled needs to be signal conditioned into this voltage 

range. The current sensor used is a LEM’s HAW-20P. Its conversion table is shown in 

Table 3.1. 

 

Table 3.1 the conversion table of the current sensor HAW-20P 

Current (A, input) 0 10 20 30 40 50 (maximum) 

Voltage (V, output) 0 2 4 6 8 10 

   

 Assuming the maximum SRM current is 40 A, the voltage range of the current 

sensor’s output is 0 ~ 8 V. After multiplying its output by a gain of 0.2 and then 

adding a reference voltage of 1.5 V, the voltage range into the ADC board is 1.5 ~ 3.5 

V.  

 Besides the phase current, the demodulated sensing current signal and the flux 

also need to be signal conditioned. The sensing current is demodulated with a low 

pass filter and the filter output is level shifted into the voltage 1.5 ~ 3.5 V range. The 

phase flux is obtained by integrating the phase voltage using an analog integrator. The 

output of this analog integrator is then level shifted into the 1.5 ~ 3.5 V range before it 

is sampled by the ADC board.  

3.2.2.2 Low speed position demodulator 

At low speeds, sensing voltage pulses are applied to the SRM phases that are not 

being used at that time to produce torque. The resulting phase current is amplitude 

modulated by the SRM’s phase inductance. The amplitude modulated phase current is 

demodulated with a low pass filter to obtain the position information in the inductance 

variation. Only a low pass filter is required because both the SRM current and SRM 

inductance are always positive. The output signal of the filter is named )(θg .  This 

signal is proportional to the inverse of the phase inductance. The demodulator is 

described in detail in the following chapter. The filter circuit schematic is shown in 

Figure 3.13.  
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Figure 3.13 the low pass filter and demodulator circuit 

 The transfer function of the low pass filter is 
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3.2.2.3 Voltage integrator (flux generator) 

At high speeds position sensing uses the measured phase flux while the SRM is 

producing torque. No sense pulses are used. The measured phase flux is obtained by 

integrating the phase voltage. The DC offset voltage of the operational amplifier used 

in the integrator circuit will create an error over a torque producing period of time if 

the phase voltage is not high enough or the period is too long. This means the flux 

generators can not work at zero speed. In addition, it must be insured that the output 

of the integrator is set to zero each time the current goes to zero since it is known that 

the flux is zero when the current is zero. The circuit schematic of the integrator is 

shown in Figure 3.14. The actual phase voltage drop across the winding inductance is 

the measured phase voltage minus the voltage drop across the internal resistance of 

the winding. Thus the phase flux is given by (3-12) when the phase is producing 

torque. 

∫ ⋅−=
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)( φφφφλ              3-12 
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Figure 3.14 the voltage integrator circuit 

  

The relationship between the input and the output of the voltage integrator is  

 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=

=+⋅−⋅
⋅

=

∫

1

0

0

))()((1

)(
0 4

3

23

senseif

senseifdtVtI
R
RtV

CR
tVout

t
offsetφφ

  3-13 

 
 The ratio of R3 to R4 is determined by the internal series resistance of the phase 

winding. The output the integrator is the actual flux value times
23

1
CR ⋅

 plus the error 

due to the operational amplifiers offset voltage Voffset. The MOSFET in Figure 3.14 is 

turned on to set the measured flux to zero whenever the current is zero and thus it is 

know that the flux is zero. 

3.2.2.4 Voltage comparator 

The voltage comparators are used to generate the digital signals, I_low, I_chop, 

and I_over. A typical voltage comparator circuit is shown in Figure 3.15. The 

capacitors are used to eliminate high frequency AC harmonics or noise. The pull up 

voltage Vcc is chosen to be the digital circuit power supply so that the outputs of the 

comparators can be directly routed to the digital circuit. The resister R6 provides 

hysteresis as shown in Figure 3.16. 
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Figure 3.15 the voltage comparator circuit 
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Figure 3.16 the hestersis area of the voltage comparator 

3.2.2.5 FPGA implementation of current regulator logic 

To realize the digital part of the current regulator, an FPGA chip is chosen and 

programmed with the VHDL language. The VHDL code is in appendix I. 

Besides the 4 copies of the digital circuit shown in Figure 3.5 required for the 

4-phase SRM, there are two components in the FPGA chip that have not been 

described so far. One of them is a data communication interface with the DSP. The 

other one is a frequency divider. 

Through the data communication interface, the DSP obtains the digital sense 

signals in Figure 3.5 and the outputs of the optical encoder position sensor. The 

microprocessor sends the enable signal and MorG signal to the FPGA chip. The 

enable signal is used to enable the control system. When it is ‘1’, the control system is 

enabled. The MorG signal is used to define the operation mode of the SRM. When it 

is ‘1’, the SRM works in motoring mode. When it is ‘0’, the SRM works in generating 

mode. The data communication interface uses a 1 MHz 50% duty cycle clock signal. 

The interface consists of an 8x2 multiplexer and a 1x8 demultiplexer with storage, as 
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shown in Figure 3.17. The bit assignment is shown in Table 3.2.  
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Figure 3.17 the interface between DSP and FPGA 

 

Table 3.2 the interface bit assignment 

Interface 

Signal 

Connected 

to 

Connecte

d 

signal 

Description 

I7 FPGA internal Sense[3] Sense signal for phase D, generated by the 

logic circuit 

I6 FPGA internal Sense[2] Sense signal for phase C, generated by the 

logic circuit 

I5 FPGA internal Sense[1] Sense signal for phase B, generated by the 

logic circuit 

I4 FPGA internal Sense[0] Sense signal for phase A, generated by the 

logic circuit 

I3 FPGA internal shutdown Over current fault signal, generated by the 

logic circuit 

I2 FPGA internal I Optical encoder channel I signal  

I1 FPGA internal A Optical encoder channel A signal  

I0 FPGA internal B Optical encoder channel B signal  

S1 DSP Timer 1 Timer1 Select line bit #1, generated by DSP timer 1 

S0 DSP McBSP0 DX Select bit #0, generated by DSP McBSP0 
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Table 3.2 the interface bit assignment (continued) 

O1 DSP McBSP0 CLKS Output line bit #1, read by DSP McBSP0 

O0 DSP McBSP0 DR Output line bit #0, read by DSP McBSP0 

In DSP McBSP0 CLKR Input signal, generated by DSP McBSP0 

Sel2 DSP McBSP0 FSR Select line #2, generated by DSP McBSP0 

Sel1 DSP McBSP0 CLKX Select line #1, generated by DSP McBSP0 

Sel0 DSP McBSP0 FSX Select line #0, generated by DSP McBSP0 

Out7 FPGA internal IorV[1] Select line # 1 of an analog multiplexer 

Out6 FPGA internal IorV[0] Select line # 0 of an analog multiplexer 

Out5 FPGA internal Enable Logic circuit enable signal generated by the 

DSP 

Out4 FPGA internal MorG MorG signal in the logic circuit, generated 

by DSP 

Out3 FPGA internal Comm[3] Figure 3.5 Comin signal generated by the 

DSP for phase D 

Out2 FPGA internal Comm[2] Figure 3.5 Comin signal generated by the 

DSP for phase C 

Out1 FPGA internal Comm[1] Figure 3.5 Comin signal generated by the 

DSP for phase B 

Out0 FPGA internal Comm[0] Figure 3.5 Comin signal generated by the 

DSP for phase A 

Clock FPGA internal clock 1 MHz 50% duty cycle to drive the logic 

circuit 

 

The frequency divider generates a 20 KHz 40% duty cycle pulse signal from the 

1 MHz 50% duty cycle clock signal. The 20 KHz pulse signal is used to control the 

power electronics switches in the inverter when the sensing current needs to be 

injected. The frequency is chosen as high as possible while insuring the sensing 

current is high enough to measure and low enough to not produce significant torque or 

iron saturation. A high sensing frequency allows a demodulator low pass filter with a 

higher break frequency which in turn reduces the filter’s delay error. The register 

transfer level schematic of the frequency divider is shown in Figure 3.18. 
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Figure 3.18 the clock divider's register transfer level schematic 

3.2.2.6 The printed circuit board 

The printed circuit board schematic circuit is drawn in Electronics Workbench’s 

Multisim and it is then converted into an input file for the Ultiboard PCB layout 

software. The 3D view of the PCB board generated by the Ultiboard Software is 

shown in Figure 3.19. It consists of 4 copies of the circuit shown in Figure 3.20, each 

copy for a different SRM phase. It also consists of 4 gate drives circuits, the FPGA 

and interface connectors. The signal flow of one phase on the print circuit board is 

shown in Figure 3.20. 

3.2.3 DSP implementation 

The flow chart of the DSP C++ software is shown in Figure 3.21 and the main 

part of the code is in appendix II. At the beginning, the program initializes all the 

parameters, disables the current regulator, clears all storage matrices, chooses the low 

speed sensorless strategy, enters the start mode that is used to find the initial rotor 

position, and then starts the timer for a software interrupt that calls function 

‘call_microcontroller’ periodically.  

The software interrupt is activated by the timer every tsample seconds. When the 

interrupt occurs, the function call_microcontroller is called. In the first tstart seconds, 

the motor works in the start mode to find out the initial rotor position. In the start 

mode, there is no command sent to any phase to produce torque so the SRM xremains 

at standstill. The time tstart needs to be long enough for the observer to converge to the 

initial position. After tstart, the low speed sensorless strategy is used to control the 

SRM. The sensorless control must work from zero speed and from zero torque to 
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rated torque. With the low speed strategy, the sense signals in Figure 3.5 for each of 

the phases are used to determine which phases are idle. The sensing currents are 

demodulated, sampled, and input to the microprocessor where an error function 

generates an error signal to drive the observer. The rotor position and speed are then 

estimated. 

When the low speed sensorless strategy is being used and the estimated speed 

exceeds 100 rad/s, the controller changes to the high speed sensorless strategy. If the 

high speed sensorless strategy is being used and the estimated speed drops to less than 

50 rad/s, the controller changes to the low speed strategy. In between the two speeds, 

the present control strategy will be used. The two strategies will be described in more 

detail in the following chapters. 

In the high speed sensorless strategy, the phase currents and phase fluxes are 

measured and sampled by the microprocessor. A simplified analytical flux model 

calculates the phase fluxes and the difference between the calculated fluxes and the 

measured fluxes is an error that drives the observer. The observer then estimates the 

rotor position and speed. 

After the rotor position is estimated, it is input to the commutator. The 

commutator’s outputs, are the commands to each phase to produce torque or not 

produce torque according the estimated rotor position. 

 

Figure 3.19 the current regulator board 
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Figure 3.20 the signal flow of the printed circuit board 
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Figure 3.21 the flow chart of the program in DSP 
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Chapter 4 Inductance profile demodulator based state 

observer sensorless control 

4.1 Sensorless control review 

Rotor position information plays a critical role in the control of the SRM. 

Conventionally, a separate position sensor, either a resolver or an optical encoder, is 

used to get this information. A resolver is a rotating transformer where the coupling 

between the primary winding on the rotor and the two secondary windings on the 

stator depends on the shaft position. An optical encoder is mounted on the shaft and 

with the shaft turning the optical encoder generates a pulse output voltage each time 

the rotor rotates through a fixed angle on one or more channels. The position sensors 

add complexity and cost to the SRM drive system and reduce its reliability.  

In order to overcome the drawbacks of the position sensors, a number of methods 

have been proposed to control the SRM without position sensors. These sensorless 

control strategies can be divided into three categories. In the first category, small 

currents are injected into the idle phases. An example of the injected currents is shown 

in Figure 4.1. The currents are so small that they do not produce noticeable torque and 

the iron does not saturate. In this case the relationship between the current and the 

corresponding inductance is independent of the current. The small currents are 

measured and used to estimate the rotor position since the currents contain the rotor 

position information. In the second category, the torque producing currents are used to 

estimate the rotor position. A typical torque producing current is shown in Figure 4.1. 

Since the torque producing current is relatively high the iron typically saturates due to 

the nature of SRM. This effect of iron saturation needs to be considered to obtain the 

correct rotor position from the current information. The third category of sensorless 

control methods has not been proposed so far. It is a mixed method that not only 

injected currents but also the torque producing currents are used to estimate the rotor 

position. It can be chosen when the application requires the SRM to work at zero 

speed, low speeds and high speeds. The classification of the sensorless strategies is 

shown in Figure 4.2. 

4.1.1 The first category, injected currents are used 

Several methods have been proposed to use small injected currents to obtain the 
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SRM’s rotor position [12-15]. All of these methods are based on the fact that the 

phase inductance of the SRM is a function of its rotor position independent of the 

phase current if the current is small. This is true if the injected current is low enough 

that the iron does not saturate. This group of methods has advantages and 

disadvantages. Advantages: 1) They work at low speeds, zero speed and starting. 2) 

They do not need to consider the effect of iron saturation that makes the inductance 

profile nonlinear with the phase current. 3) They do not need to consider the 

complicated flux model so that the real time computations required to implement 

them on a microprocessor can be done rapidly. Disadvantages: 1) They have difficulty 

working at high speeds. This is because the frequency of the injected currents is 

limited by the SRM phase inductance and the injected currents may need to go 

through low pass filters that generate a time delay. For the approach developed here 

the delay time introduced by such a filter results in an ever increasing position error as 

the speed increases. Another reason these injected current methods can not work at 

high speeds is that the injected current time windows become small at high speeds so 

that the currents do not have enough information about the rotor position. 2) Some 

strategies need additional hardware to inject the sense currents. 3) Some strategies 

need memory to store look up tables that contain injected current amplitude versus 

rotor position data.  

 

Figure 4.1 an example of the injected current and torque producing current 
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Figure 4.2 the classification of sensorless control strategies 

 

A sinusoidal current was injected by Brosse A. et al. into the SRM through a 

separate converter [12]. The induced voltage signal depends on the rotor position. 

This voltage was measured and its power was evaluated. The value was then 

translated into the rotor position through a prior stored look up table that contained the 

signal power values at a number of rotor positions. An observer and PI controller were 

used to get the rotor position. This method gave continuous rotor position 

information, but it needs additional hardware to inject the sinusoidal current. 

A pulse voltage was applied to the idle phases by Harris W. D. et al. [13], Suresh 

G. et al. [14], and Gao H. et al. [15]. The resulting current was measured and used to 

calculate the rotor position in [13]. An observer was also used to offer high accuracy 

position estimation, but it needed memory to store look up tables. The current was 

demodulated into the rotor position using an envelop detector which worked as a 

counter counting the successive current peaks [14]. This significantly increases the 

required time for the observer to converge to the correct angle and does not work at 

zero speed. Thus at zero speed each phase is excited and then the amplitudes of all 

phase currents are compared to know the rotor position roughly [15]. Obviously 

torque can not be produced continuously at zero speed with this method. This simple 

method for estimating the rotor position working at standstill is adequate to start the 

SRM but not for operating for significant periods of time at stand still.  
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4.1.2 The second category, the torque producing current is used 

 The methods in this category only use the torque producing current. State 

observers or phase current patterns are used to identify the rotor position. These 

methods also have advantages and disadvantages. Advantages: 1) They work over a 

large speed range including high speeds. 2) They do not need additional hardware for 

current injection. They only need motor terminal measurements. Disadvantages: 1) 

They have inherent problems working at low speeds, especially at zero speed. A small 

dc offset can cause voltage integrators to fail at zero to low speeds since these 

methods integrate phase voltage to measure phase flux. 2) The current pattern does 

not change quickly enough to determine a continuous rotor position for those methods 

that use current patterns. 3) In many of these methods intensive computation is 

required to complete flux calculations or they need memory to store a flux model. 4) 

Iron saturation needs to be considered in this case because the torque producing 

current is typically high enough to cause iron saturation. 

In general there are two groups of methods to realize the rotor position estimation 

using the torque producing currents. In the first group, state observers are used to 

estimate the rotor position [16-21]. In the second group, current patterns, the 

increasing and decreasing phase current slopes, are used to obtain the phase 

inductance and hence the rotor position [22-26]. There are several other practical 

methods that also use the torque producing current to realize sensorless control of the 

SRM [27-29].  

4.1.2.1 Observer based sensorless control 

Lumsdaine A. et al. used state observers to estimate the SRM’s rotor position. In 

their observers, the states are the phase fluxes, the rotor position and the rotor speed 

[16, 17]. The phase currents were measured and estimated by a SRM flux model. The 

difference between the measured and the estimated fluxes drove the state observers. 

Several practical observers were given and stability was proven. The flux model used 

in the observers was Fourier series based. Husain I. et al. used sliding mode state 

observers to estimate the rotor position [18-20]. The rotor position and the rotor speed 

were used as states in the observers. The phase voltage was integrated to obtain the 

flux digitally and then the phase current was estimated with an analytical flux model. 

The difference between the measured current and the estimated current was computed 

and drove the stator observer. A geometry based simplified analytical flux model of 
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SRM was used in [20]. Its simplicity made it possible to run in a real-time controller. 

The phase voltage was integrated to get the estimated flux and the actual flux was 

obtained by a simple flux model, which is an exponential function of rotor position 

and current. Then the difference was used to drive a sliding mode observer to obtain 

the rotor position. In these papers, the flux was obtained by integrating the phase 

voltage digitally. Due to the high frequency of the phase voltage when the current 

chops, the sampling rate needs to be very high in this case. Yang I. -W. et al. also used 

a state observer in which phase currents and the rotor speed were states [21]. The 

difference between the estimated phase current and the measured phase current drove 

the observer. Two observers, a sliding mode observer and a binary mode observer 

were proposed and verified experimentally.  

This group of methods gives continuous and smooth rotor position information 

and good stability with sophisticated control system gains.  

4.1.2.2 Chopping current pattern based sensorless control 

The increasing and decreasing slopes of the chopping current were used to 

estimate the rotor position in [22-26]. Suresh G. et al. proposed an equation in that the 

rotor position was unknown and the slopes of the phase current and other terminal 

measurements are known variables [22]. Fahimi B. et al. studied these methods at 

every speed range and gave a practical method to compute the rotor position [23]. 

Salmasi F. R. et al. built another equation to solve for the rotor position for low speed 

applications [24, 25]. Gao H. et al. proposed a method that worked at low speeds [26]. 

Back EMF was detected by the slopes of the phase currents, and then the current 

command was adjusted to assure that the currents were applied on either positive 

slopes or negative slopes of the inductance profile depending on generating or 

motoring mode. This group of methods provides simple control that is relatively easy 

to implement in a real-time controller. No additional hardware was required because 

only SRM terminal measurement of voltage and current are needed. But these 

methods suffer from problems with high frequency noise in the phase current. They 

are difficult to implement in high speed applications because they typically 

differentiate the phase current and thus amplify high frequency noise if the 

differentiating circuits have large bandwidth. 
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4.1.2.3 Other methods using the torque producing currents 

   There are also some other methods to realize sensorless control of SRM using the 

torque producing currents that do not fall into the above categories. Lyons J. P. et al. 

integrated the phase voltage to get the actual flux and compared it with a known flux 

value at a reference rotor position [27]. When the actual flux of a phase is equal to the 

known flux value, the rotor then is at the reference position with regard to the phase. 

Mondal S. K. et al. gave a current command to a phase according to the current 

patterns of other phases [28]. Mese E. et al. used an artificial neural network (ANN) 

to realize sensorless control [29]. The flux linkage and phase current were input to the 

neural networks, and the rotor position was the output of the networks. Training data 

were obtained from a SRM flux model or experiments. 

4.2 Proposed control strategies 

With the development of microprocessor and DSP technology, computation 

intensive and accurate control strategies are now feasible. Since none of the methods 

described above can work well over the whole SRM speed range, more than one 

control strategy is required in a large speed range application. Generally, for low 

speed application, current injection has inherent advantage for starting from standstill 

with rated torque. For high speed applications, the sensorless control strategies based 

on the torque producing currents are better choices. That is because in this case there 

is no limitation introduced by the choice of injection frequency and the torque 

producing currents have longer time windows at high speeds, and hence they provide 

more information to obtain the rotor position. In this dissertation, a sensorless control 

system that utilizes a strategy for zero and low speeds and a strategy for high speeds is 

proposed. The zero speed and low speed strategy uses injected currents, while the 

high speed strategy uses the torque producing current. Since this control system uses 

both the injected current and the torque producing current, it falls into the third 

sensorless control category. 

 The low speed strategy is described in this chapter and the high speed strategy 

will be described in the following chapter. 

At zero to medium speeds, a pulse voltage signal is applied to the idle SRM 

phases to generate sensing current or injected current. The injected current is 

modulated by the SRM’s phase inductance and contains the rotor position 

information. . If the actual rotor position is not equal to the estimated rotor position, 
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then the injected current amplitude will be different from the computed current 

amplitude. The difference generates an error signal through a deliberately defined 

error function. The error signal then drives a Luenberger observer. This method 

including the demodulation of the SRM’s modulated phase current, the proposed error 

function, and observer has been named the inductance profile demodulator based 

observer. It works at zero speed because for any SRM rotor position there always are 

idle phases that the sensing current can be injected into. It has difficulty working at 

high speeds. The reason is in part because the injected current is demodulated using a 

low pass filter whose break frequency is determined by the frequency of the injected 

current. The demodulator low pass filters have an inherent time delay determined by 

their break frequency. At high speeds, the time delay generates a position error 

proportional to speed that makes the sensorless control fail. Another contributor to the 

inductance profile demodulator based observer sensorless control failure is that the 

time windows for injecting current becomes smaller at high speeds so that they do not 

contain enough information for error function and observer to figure out the rotor 

position.  

4.3 The state observer 

The electromechanical operation of a SRM can be modeled by 
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where θ is the rotor position, ω is the rotor speed. B is the viscous damping, J is the 

inertia, Te is the electrically generated torque, and TL is the mechanical load torque. 

For simplicity, viscous damping is lumped into TL. It is also assumed that Te is 

equal to TL, which means the motor is at steady state and running at a constant speed. 

This assumption is reasonable because the electrical time constants are usually much 

less than the mechanical time constants. With these considerations equation (4-2) is 

simplified as 
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The corresponding observer model  
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where H1 is the proportional gain for the position, H2 is the proportional gain for the 

speed, θ̂  is the estimated rotor position, and ω̂  is the estimated rotor speed. The 

function )ˆ,( θθf  is the error signal reflecting the difference between the estimated 

rotor position and the actual rotor position. A block diagram of the observer is shown 

in Figure 4.3. 
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Figure 4.3 the block diagram of the inductance profile demodulator based observer 

 

 Subtracting (4-1) from (4-4) and (4-3) from (4-5) gives the observer’s error 

dynamics. 
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where the rotor position error θθθ −= ˆe , and the rotor speed error ωωω −= ˆe . In 

matrix format, it becomes 
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The challenge of the observer design is the error function. At zero and low speeds 

a sensing current is injected into the idle phases and this injected current contains the 

rotor position information that is used to generate the error fuction.  

4.4 Error function definition 

The phase inductance L(θ) is a function of rotor position when the iron is not 

saturated as shown in Figure 4.4. . It has its maximum value at the aligned position 

and its minimum value at the unaligned position. When a fixed duration pulse voltage 

is applied to the phase, a current like the one shown in Figure 4.4 is obtained. The 

cycle average value of the current is called g(θ), where θ is the rotor position, as 

shown in Figure 4.4. 

 To obtain the relationship between the inductance function L(θ) and g(θ), basic 

circuit theory is applied. 

 

dt
tdILtV )()()( ⋅= θ               4-9 

 

Here V(t) is the pulse voltage, I(t) is the injected current, and t is time. It is assumed 

that the rotor position does not change during a pulse period because the mechanical 

time constant is much greater than the pulse period. Solving I(t) in terms of V(t) gives 

(4-10). 
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Figure 4.4 the injected current 

 

The injected current is a repetitive triangle waveform signal. The peak of the 

triangle current I(θ) is 
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where Vs is the peak of the pulse voltage and approximately equal to the inverter’s dc 

power supply voltage, T is the period, and D is the duty cycle. The result in (4-11) is 

only valid if the current starts from zero. To make sure the current goes to zero after 

each period, the duty cycle D should not be greater than 50%. The average current 

value of the triangle Iave (θ) is (4-12).  
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 The g(θ) function is defined to be equal to Iave(θ).  
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The g(θ) for the various phases are named g1(θ), g2(θ), g3(θ), g4 (θ), for phase A, 

B, C and D respectively. They are not only given by (4-12) but can also be measured 

by measuring the injected current in each of the 4 phases. If the rotor position is 

estimated as θ̂ , the g (θ) value can be estimated through 
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 The estimated )ˆ(θg  are named as )ˆ(1 θg , )ˆ(2 θg , )ˆ(3 θg , and )ˆ(4 θg  for 

phase A, B, C and D respectively. They are calculated using (4-12) with the estimated 

rotor position. 
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Where )ˆ(θiL  is the inductance function of the ith phase. 

 The error function )ˆ,( θθf  is defined as (4-16) 
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assuming none of the phases are producing torque. The error function value versus the 

rotor position θ is plotted in Figure 4.5 when the estimated rotor position θ̂  is 2 

mechanical degrees greater than θ (i.e. 2=θe ). 

 

Figure 4.5 error function value versus the rotor position 

It is seen that the value of the error function takes on different values depending 

on the rotor’s position for the same error but that its value is negative in the whole 

electrical period. It is also verified that the error function value is always negative 

when the estimated rotor position is greater than the actual rotor position and that it is 

monotonic with the angle error. This assures that this error function can be used as a 

feedback signal for the observer. 

 This error function can only be used in the start mode when there is no torque 

production, and the sensing current is injected into all of the phases to detect the rotor 

position. When the motor needs to produce torque, no sensing current can be injected 

for those rotor positions which torque is produced. For these rotor positions the sense 

signal is one, i.e. sense =1, and g(θ) for that phase is set equal to )ˆ(θg .  
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 With this definition of the error function, the function’s value is plotted in Figure 
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4.6 versus the rotor position when the estimated rotor position θ̂  is 2 mechanical 

degrees greater than the actual rotor position θ and positive torque is being generated. 

The error function values using (4-16) and (4-17) versus rotor position when the 

estimated rotor position error is -5, -4, -3, -2, -1, 1, 2, 3, 4, 5 mechanical degrees are 

shown in Figure 4.7. 

 

 

Figure 4.6 the error function value versus the rotor position with consideration of the 

torque producing current 

  

 

Figure 4.7 the error function value versus the rotor position curves at different rotor 

position error, -5, -4, -3, -2, -1, 1, 2, 3, 4, and 5 mechanical degrees 
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The error function defined by (4-17) is still monotonic and negative when the 

rotor position error is greater than zero. It is monotonic and positive when the rotor 

position error is less than zero. This assures that the error function with this definition 

can be used as a feedback signal for the observer. 

4.5 System stability and performance of the observer 

 The error function in (4-16) can be rewritten as  

 

),ˆ()ˆ,( 1 eff θθθθ −=              4-18 

 

 Applying (4-21) into (4-8), the observer becomes  
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 It can be rearranged as 

 

),(2 uXfX =                4-20 

 

where 
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 It is obviously a nonlinear system. To analyze its stability, a scalar W is defined as 

 

XQXW T=                4-22 
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where Q is a positive definite 2 x 2 matrix. Note that X, W, u are all functions of time. 

By definition, 0≥W  and W=0 when X=0. The temporal derivative of W is 

 

XQXXQXW TT +=              4-23 

 

 Applying (4-20) into (4-23), it becomes  

 

),(),( 22 uXfQXXQuXfW TT +=           4-24 

 

 Since W  and the two terms on the right ride are all scalars, transposing the first 

term or the second term gives 

 

),()()(),( 22 uXfQQXXQQuXfW TTTT +=+=        4-25 

 

 To assure the system is stable, W needs to be negative so that every state will 

decay to zero. Thus the condition for the system to be stable is 

 

0)(),(2 <+ XQQuXf TT   or  0),()( 2 <+ uXfQQX TT      4-26 

 

 Choosing Q=I, the identity matrix, applying (4-21) into (4-26), the condition 

becomes 
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A sufficient condition for stability is 
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where N>0.  

 Meeting the requirements in (4-28) and (4-29) assure the stability of the nonlinear 

system given in (4-8). Due to the complexity of ),ˆ(1 θθ ef , a more practical condition 

needs to be developed. Assume  

 

θθθθ ekf ⋅−= )ˆ()ˆ,(               4-30 

 

where )ˆ(θk is a nonlinear periodic function of the rotor position that can be 

estimated from the results in Figure 4.7. Its period is an electrical period divided by 

the phase number, in this case, 15 degrees. Its boundaries are minfk  and maxfk . 

 

maxfmin )ˆ( fkkk ≤≤ θ                4-31 

 

 Inserting (4-30) into (4-8), gives 
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 The Eigen values of the characteristic matrix for fixed θ̂  are 

 

)ˆ(4)ˆ(
2
1)ˆ(

2
1

2
22

112,1 θθθ kHkHkHEigen ⋅−⋅±⋅−=  

 

 According to classic control theory, the Eigen values need to be negative real 

numbers or have negative real parts for the system to be stable.  
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0][ 2,1 <Eigenreal               4-33 

 

 Since 0)ˆ( >θk , to satisfy the stability requirement imposed on 1H  and 2H  is 

01 >H , 02 >H                4-34 

 

 The settling time for the rotor speed and the rotor position is a function of the 

rotor position. If )ˆ(4)ˆ( 2
22

1 θθ kHkH ⋅<⋅ , the two Eigen values are conjugate complex 

numbers with a common real part of )ˆ(1 θkH ⋅ . If )ˆ(4)ˆ( 2
22

1 θθ kHkH ⋅=⋅ , the two 

Eigen values are identical and they are )ˆ(1 θkH ⋅ . If )ˆ(4)ˆ( 2
22

1 θθ kHkH ⋅>⋅ , the two 

Eigen values are unequal real numbers. In this case, the settling time will be 

determined by the Eigen value that has smaller absolute real part, which is 

)ˆ(4)ˆ()ˆ( 2
22

11 θθθ kHkHkH ⋅−⋅+⋅− . The settling time is approximately 5 time 

constants or 5 divided by the real part of the Eigen value that has a smaller real part. 
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 When the settling time is greater than the time for one electrical period of the 

rotor position, the average value of the error function over an electrical period, called 

the error average function )( efave θ , can be used to determine the system 

performance. If the SRM is not rotating this approximation can not be used and (4-35) 

must be used. The error average function )( efave θ  is defined as 
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The error average function value versus the rotor position error is plotted in 
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Figure 4.8. In the plot, the horizontal axis is the rotor position error and the vertical 

axis is the error average function value. 

 

 
Figure 4.8 the error function value average versus the rotor position error 

 

When the rotor position error is positive and small, the error average function 

value is monotonic and negative and when the rotor position error is negative and 

small, the error average function value is monotonic and positive. To linearize the 

error average function, it is assumed that the operating point is at zero position error, 

i.e. eθ =0. 

  

eavee kfave θθ −=)(               4-37 

 

where avek  is the absolute value of the slope of the curve in Figure 4.8 at the origin.  

 Substituting )ˆ,( θθf  with )( efave θ  in (4-8) and applying (4-37) into it gives 
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 Since avek  is a positive number, the system is still stable if (4-33) is satisfied. 

The settling time of the control system has the same format of (4-35) except that k(θ) 

is substituted by avek . 
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4.6 The speed limitation of the inductance profile demodulator 

based observer 

The inductance profile demodulator based observer has two inherent speed 

limits. One of them is caused by the frequency of the modulating signal and the 

resulting time delay of the demodulator, which is a low pass filter, the other one is 

caused by the sampling frequency of the microprocessor implementation of the 

observer and error function. 

4.6.1 The time delay of the demodulator 

The demodulator used is the low pass filter circuit shown in Figure 3.12. Its 

transfer function is given by (3-11). The Bode plot of the transfer function is shown in 

Figure 4.9.  

The transfer function in polar coordinates is  
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Assume the input current to the demodulator is sinusoidal (the first harmonic of the 

current) 

 

)](cos[)( 0ttVtV inin +⋅= ω              4-41 



 70

 

It can be transformed into an Euler format  

 

})({Re)( 0ttjeVtV inin
+⋅= ω             4-42 

 

 

Figure 4.9 the Bode plot of the low pass filter function 

 

where Vin is the amplitude, ω is the frequency, ωt0 is the phase. The output of the 

demodulator is just the transfer function times the input voltage 
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Taking the real part the output voltage is  
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The time delay td of the transfer function is the time difference between the input 

voltage and the output voltage. 
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For the demodulator to work correctly ω⋅⋅ 12 CR  must be small,  
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Thus the time delay through the demodulator is simply a constant. 

 

12 CRtd ⋅=                 4-47 

 

The time delay corresponds to an error in the estimated rotor position which depends 

on speed. 

 

mmderror CRt ωωθ ⋅⋅=⋅= 12              4-48 

 

If the maximum allowed rotor position error is errorMaxθ , then the maximum rotor 

speed that this observer can work at is 
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4.6.2 Sampling frequency limitation 

According to the Nyquist sampling theorem, the sampling frequency needs to be 

at least twice that of the maximum frequency of the original signal so that the full 

information will be preserved.  

The inductance profile occurs 6 times in one rotor revolution, and it is 

symmetrical on the aligned rotor position axis. To preserve the nth harmonic, 

assuming the first harmonic is the inductance profile waveform itself, the sample 

frequency needs to be at least 24n times of the rotor speed. 
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where sampleF  is the sampling frequency, as shown below 
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where sampleT  is the sampling time. Thus the sample time limited maximum speed the 

position esimator can work at is 

 

sample
Maxm

Tn ⋅
=

2617.0
2ω               4-52 

 

The actual speed limit is the minimum of the above two limitations, 

1Maxmω and 2Maxmω . 
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The speeds mentioned above in the dissertation are specificed in section 4.9. 

4.7 Simulation results 

The sensorless control system is simulated using the Matlab/Simulink model. 
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The observer gains are chosen as H1=200, and H2=10000. The inductance profile 

demodulator based observer is simulated and shown to work from zero speed to 

medium speeds (5,000 rpm).  

4.7.1 Zero speed simulation 

At zero speed, the rotor is locked at a certain position and one or two 

corresponding phases produce torque. The simulation results are shown in Figure 4.10 

and 4.11below.  

The estimated position reaches steady state at 0.006s. The steady state error is 

1.4 mechanical degrees. 

 

 

Figure 4.10 the estimated and actual rotor position in degree of the zero speed 

simulation 

 

Figure 4.11 the estimated rotor speed of the zero speed simulation 
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 The phase currents are shown in Figure 4.12. During the transient time, phase A 

was energized with torque producing current for a moment, then as the observer 

figured out the rotor position the correct Phase B was instead energized. The sensing 

current was injected into the idle phases 

 

Figure 4.12 the phase currents of all 4 phases of the zero speed simulation 

 

The error function signal )ˆ,( θθf  generated for the zero speed simulation is 

shown in Figure 4.13. At steady state, the error function output becomes close zero. 

 

Figure 4.13 the error function generated signal of the zero speed simulation 

4.7.2 Medium speed operation 

The inductance profile demodulator based observer is simulated with the motor 
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running at 2000 rpm. The estimated rotor position and the actual rotor position are 

shown in Figure 4.14. The estimated rotor position follows the actual rotor position 

very well. The estimated rotor speed is shown in Figure 4.15. It oscillates around the 

correct value of 2000 rpm because the observer system is nonlinear and differences 

between the measured g(θ) and the calculated g(θ). The estimated speed transient is 

over in about 10ms. The current in each of the 4 phases are shown in Figure 4.16. The 

error function value is shown in Figure 4.17, and the electrical torque output of the 

motor is shown in Figure 4.18. 

 

Figure 4.14 the estimated and actual rotor positions when the motor is running at 2000 

rpm 

 

 

Figure 4.15 the estimated rotor speed when the motor is turning at 2000 rpm 
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Figure 4.16 the current of the 4 phases when the motor is turning at 2000 rpm 

 

 

Figure 4.17 the error function value versus time when the motor is running at 2000 

rpm 

4.8 Experiment results 

4.8.1 Inductance asymmetry of the motor 

Due to manufacturing tolerances, the inductance profiles among the 4 phases of 

the experimental SRM are not identical. This is caused in part by the different length 

of the stator poles and the rotor poles. Since the inductance profiles are not identical, 

the g(θ) profiles are not identical either, as shown in Figure 4.19. The ripples on the 
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profiles are due to the high frequency modulation sensing current.  

 

 

Figure 4.18 the electrical torque of the SRM when the motor is running at 2000 rpm 
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Figure 4.19 the g(θ) asymmetry of the motor 

The aligned inductance and the unaligned inductance among the 4 phases are 

different. In each phase, the aligned inductance and the unaligned inductance with 

different pairs of the rotor poles are different. Since the g(θ) profiles are repetitive 

with a period equal to 180 degrees, the rotor position period is changed from 60 

degrees to 180 degrees. Based on the measured g(θ) profiles, the inductance profiles 

for the experimental SRM were computed and are shown in Figure 4.20. 
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Figure 4.20 the inductance profiles of the 4 phases based on the measured g(θ) 

profiles 

To test if the error function in (4-16) and (4-17) still work with the inductance 

asymmetry, the error function value versus the rotor position curves with a rotor 

position error of 2 degrees and -2 degrees are plotted in Figure 4.21 for the 

experimental SRM. 

 

Figure 4.21 the error function value versus the rotor position at the rotor position error, 

2 degrees (error_2) and -2 degrees (error_n2) with the inductance asymmetry 
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The error functions in the plots have different amplitudes because of the 

inductance asymmetry. The error function value is still monotonic and positive when 

the rotor position error is positive over a whole electrical period. It is monotonic and 

negative when the rotor position error is negative over a whole electrical period. This 

insures that the error function will still work with the inductance asymmetry. 

4.8.2 Starting process 

The inductance profile demodulator based observer is implemented in the 

experimental system. A DC motor is used to load the SRM. For the initial data the 

torque command and resulting current command are set low so that the shaft friction 

of the DC motor which is the only SRM load is adequate to prevent the SRM from 

accelerating too fast to record the data. A start process is recorded in the figures 

below. The estimated and actual rotor positions are shown in Figure 4.22. Note that 

the estimated rotor position is shifted up 180 degrees for easier viewing. The 

estimated rotor position error is shown in Figure 4.23. It is within ±5 degrees worst 

case including the noise with an rms value equal to less than 2 degrees. The noise is 

due to the high frequency modulation current. The large spikes in the error that go 

above 20 degrees on the curve are due to the fact that the rotor positions are wrapped 

into an electrical period. When one of the rotor positions is wrapped from 180 to 0 

degree, the difference between these two rotor positions is momentarily close to 180 

or -180 degrees and results in the spikes. The estimated rotor speed is shown in Figure 

4.24. The error function value is shown in Figure 4.25.  
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Figure 4.22 the estimated and actual rotor positions of the starting process 
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Figure 4.23 the estimated rotor position error during the starting process 
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Figure 4.24 the estimated rotor speed during the starting process 

4.8.3  Constant speed operation 

Data has also been taken when the SRM is turning at a constant speed of 15.0 

rad/s. The estimated and actual rotor positions are shown in Figure 4.26. The 

estimated rotor position error is shown in Figure 4.27. The estimated rotor speed is 

shown in Figure 4.28. The error function value is shown in Figure 4.29. The noise on 
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these curves is also due to the modulation current. The SRM phase current is shown in 

Figure 4.30. The waveform shows the alternating low amplitude modulation current 

and the high amplitude torque producing current.  
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Figure 4.25 the error function value during the starting process 
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Figure 4.26 the estimated and actual rotor positions at steady state 
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Figure 4.27 the estimated position error at steady state 
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Figure 4.28 the estimated rotor speed at steady state 
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Figure 4.29 the error function value 
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Figure 4.30 the current of a phase 

 

4.9 Speed limitation 

In the hardware implementation of the inductance profile demodulator based 

observer, the components chosen for the low pass filter demodulator are R2=18.2 KΩ, 

C1=560 pF. The predicted maximum operating speed limited by the demodulator is 

1Maxmω =860 rad/s using (4-40). When the sampling time is Tsample=600μs, the 



 84

sampling time speed limitation is 2Maxmω = 218 rad/s according to (4-52) if n is 

chosen to be 2. The sampling time includes the analog to digital conversion time, the 

computation time of the control algorithm, and the data communication time. A higher 

speed DSP, a DSP with general purpose input/output (GPIO), a more efficient 

program or a higher speed ADC board can help reduce the sampling time. 

Furthermore, if a portion or the whole part of the program can be implemented into 

the FPGA chip as a special purpose microprocessor, it can run much faster. The actual 

observed speed limitation of the inductance profile demodulator based observer is 218 

rad/s. When the SRM accelerates and reaches the speed limitation, the estimated 

angles will be incorrect causing the torque producing currents to be produced at the 

wrong rotor positions and the electrical torque decreases. Figure 4.31 shows that when 

the speed reaches 180 rad/s, the inductance profile demodulator based observer starts 

to fail. Using this measured maximum speed in (4-43), n is computed to be 2.4. This 

means that for the sensorless control to work properly, the first, the second, and a part 

of the third harmonic of the inductance profile need to be preserved in the sampling.  

In another experiment, the sampling time is set to Tsample=60μs using a more 

efficient program. Now 2Maxmω = 1131 rad/s according to (4-52) if n is chosen to be 

4. The speed limitation of the observer should now be determined by the 

demodulator’s time delay and be equal to 1Maxmω , which is 860 rad/s. The estimated 

rotor speed for this experiment is shown in Figure 4.32. It is seen that the maximum 

experimental speed limit is 500 rad/s, lower than the theoretical speed limit. This is 

most likely due to the asymmetry of the experimental SRM causes larger rotor 

position error, as shown in Figure 4.33. The average position error is 10 mechanical 

degrees, which is 1/3 of the torque producing region. This position error causes a 

decrease in torque and hence a decrease in the speed. 

4.10 The torque drop 

The torque drops with a position error. The torque output is shown in Table 4.1 

with different rotor position error. The rotor position error is the estimated position 

subtracted by the actual position in degree. In this case, the torque producing region is 

from -25 degree to 0 degree. It is found that the torque is close to zero when the rotor 

position error is -10 degrees. This is the reason why the rotor speed can not increase 

any longer when it reaches its maximum in Figure 4.33.  
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Figure 4.31 the speed limitation of the observer at tsample=600μs 

 

Estimated rotor speed vs time

0

100

200

300

400

500

600

0.1 0.2 0.3 0.4 0.5 0.6 0.7

time (s)

ro
to

r s
pe

ed
 (r

ad
/s

)

 

Figure 4.32 the speed limitation of the observer at tsample=60μs 
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Figure 4.33 the estimated rotor position error at tsample=60μs in the speed limitation 
experiment 

 
 
 

Table 4.1 The torque output with different rotor position errors 
 

Position 
error 

(degree)
Torque 
(Nm) 

Percent of 
the max 
torque  

Position 
error 

(degree) 
Torque 
(Nm) 

Percent of 
the max 
torque 

0 2.2824 100.00%     
1 2.2644 99.21%  -1 2.2568 98.88% 
2 2.2192 97.23%  -2 2.2076 96.72% 
3 2.1512 94.25%  -3 2.1212 92.94% 
4 2.0676 90.59%  -4 2.0084 88.00% 
5 1.9436 85.16%  -5 1.8812 82.42% 
6 1.8504 81.07%  -6 1.7336 75.96% 
7 1.7552 76.90%  -7 1.5528 68.03% 
8 1.6592 72.70%  -8 1.3528 59.27% 
9 1.562 68.44%  -9 1.1484 50.32% 
10 1.4632 64.11%  -10 0.9424 41.29% 
11 1.364 59.76%  -11 0.7368 32.28% 
12 1.2636 55.36%  -12 0.532 23.31% 
13 1.1624 50.93%  -13 0.3272 14.34% 
14 1.0608 46.48%  -14 0.1236 5.42% 
15 0.9596 42.04%  -15 -0.0792 -3.47% 
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4.11 The rotor position resolution 

The estimated rotor position resolution is basically the rotor speed times the 

sampling time. The actual rotor position is obtained by an optical encoder, which 

produces 360 pulses every mechanical cycle. The resolution of the estimated and 

actual rotor position is listed in Table 4.2 at different rotor speeds and sampling time. 

 

Table 4.2 the resolution of the estimated and actual rotor positions 

Rotor speed 

(rpm) 

Estimated position 

resolution when 

tsampling=600us (degree) 

Estimated position 

resolution when 

tsampling=60us (degree)

Actual position 

resolution (degree) 

0 0 0 1 

500 1.8 0.18 1 

1000 3.6 0.36 1 

5000 18 1.8 1 

10000 36 3.6 1 

15000 54 5.4 1 

 

4.12 Transient response 

The theoretical settling time is determined using (4-30) is 0.024s with 

kave=11.46, H1=200, and H2=10000. To obtain the settling time experimentally, two 

experiments have been done. In the first experiment, the rotor shaft is grabbed 

suddenly when it is turning at a constant speed. The rotor speed changes from the 

constant speed to zero immediately, as shown in Figure 4.34. It is seen that the 

estimated rotor speed responses goes to zero 0.03s later than the actual rotor speed 

does. In the second experiment, the SRM is controlled with the optical encoder 

position sensor. With the rotor turning at a constant speed, a sudden change is made to 

the estimated rotor position. The transient response of the estimated rotor position and 

the rotor speed are shown in Figure 4.35 and Figure 4.36. The experimental settling 

time for the rotor position and the rotor speed are 0.02s and 0.03s respectively. 
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the transient response of the rotor speed
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Figure 4.34 the step response of the estimated and actual rotor speeds 
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Figure 4.35 the estimated rotor position transient response 
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the estimated rotor speed
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Figure 4.36 the estimated rotor speed transient response 
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Chapter 5 A simplified flux model based state observer 

sensorless control 

In this chapter, a simplified analytical flux model of the SRM is developed. It is 

then implemented into an observer of a sensorless SRM control system for medium 

and high speed applications. 

5.1 A simplified flux model 

To compute the flux in real time, a simple SRM flux model is developed. The 

model accuracy has been traded for speed of computation so that the model run in a 

real time controller. A detailed SRM model has been proposed in [6, 7]. It is 

simplified by modeling the magnetization curve for the Fe with two piecewise linear 

curves. The piecewise analytical formula for flux linkage and instantaneous torque are 

obtained using basic electromagnetic theory. Because of the mathematical simplicity, 

the model provides rapid computation for a real time controller or state observer. This 

simplified model does not need any experimental data from the motor. It only needs 

the geometrical dimensions and magnetic parameters of the iron.  

5.1.1 Introduction of flux models 

The flux linked by a SRM phase is a function of its current and rotor position 

assuming the phases are independent. Computation of the flux linked by an individual 

phase of the SRM is a significant challenge because of its salient poles and the fact 

that iron saturation plays a critical role in the SRM’s operation. Several papers have 

been published that present flux models for the SRM. Because of the complexity of 

these models for the flux linked by an SRM phase, they are not applicable for use in a 

rotor position state observer, which must run at high speed in a microprocessor or 

DSP. It is expected that an analytical SRM model will be a good choice for a state 

observer. The detailed analytical model presented previously is too unwieldy for a 

state observer [6, 7]. Curve fitting to obtain an analytical flux model for the SRM is 

another alternative. The disadvantage of curve fitting is that it requires significant data 

that must be obtained from measurements or from finite element analysis [31, 32]. 

Another approach combines the flux function versus phase current at the aligned rotor 

position, the flux function versus phase current at the unaligned rotor position, and a 
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suitable angular function in between these rotor positions to obtain an analytical flux 

model [33]. The suitable angular function for use in between the aligned and 

unaligned rotor positions is complicated and nonlinear so that this model is a not a 

good choice to implement a state observer in a real time control system. Truncated 

Fourier series functions have also been used to express the inductance of a SRM 

phase, but this approach is also complicated and not a good choice to implement a 

state observer for sensorless control [34, 35].   

5.1.2 Breaking the simplified flux model into two cases 

The simplified analytical SRM model is constructed by considering two cases, the 

case where the stator poles of a given phase overlap with the rotor poles and the case 

where the stator poles of a given phase do not overlap with the rotor poles, according 

to the rotor position. The model is based on the basic magnetic field laws so that it 

does not need experimental data from the machine or any finite element analysis 

results. The model only needs the geometrical dimensions, number of turns, winding 

connections and the magnetic characteristics of the iron, all of which can be obtained 

from the manufacturer of the motor. The model runs rapidly in a microprocessor 

because it does not have any series, square root, sine or cosine functions to be 

computed, all of which take a long time to compute in a microprocessor.  

5.1.2.1 The case with no stator and rotor pole overlap 

When the stator and rotor poles do not overlap it is assumed that the phases are 

independent, there is no iron saturation and that the SRM phase inductance varies 

quadratically with the rotor position away from the unaligned position. 
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Here )(θnL  is the inductance function applicable to the non-overlap case, uL  is the 

inductance at the unaligned rotor position, uθ  is the unaligned rotor position angle, 

and 
pfθ is the effective rotor position boundary at which the rotor and stator poles just 

start to overlap. Thus the flux linked by a single SRM phase when there is no rotor 

and stator pole overlap is 
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φφ θθλ ILI n ⋅= )(),(                5-2 

 

Here φI  is the phase current. All of the quantities in (5-1) and (5-2) are known except 

θ and φI   so that in this case the inductance parameters can be pre-computed before 

(5-2) is used in a state observer. 

The torque can be expressed as in (5-3) by using conservation of energy 

 

2
2)(

)()(),( φφ θθ
θθθ ILLIT
pfu

u
upo −

−
−−=            5-3 

5.1.2.2 The overlap case 

To model the flux with rotor and stator pole overlap, iron saturation needs to be 

considered. To simplify the flux model, the magnetization curve is simplified as two 

linear curves. One represents the unsaturated iron and the other represents the 

saturated iron. Since there is in general only a partial overlapped area between the 

stator poles of interest and the rotor poles, the total phase flux is broken into the main 

flux and fringing flux. The main flux passes from the stator to the rotor where the 

stator and rotor poles overlap. The fringing flux passes from the stator to the rotor 

where the stator and rotor poles do not overlap. The main flux and the fringing flux 

are computed separately but their equations have the same form. 

5.1.2.2.1 The piece wise linear magnetization curves 

With the stator and rotor poles overlapping, iron saturation in the SRM is 

important. The iron’s magnetization curve is modeled as a piece wise linear curve. 
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Here )(HB  is the flux density, which is a function of the magnetic intensity H . The 

parameter satB  is the saturation flux density of the iron, 0μ  is the permeability of free 

space, 1μ  is the approximate saturated iron permeability, μ  is the unsaturated 

permeability of the iron, and μ/satsat BH =  is the value of magnetic intensity at which 
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saturation begins. The ideal magnetization curve and the approximate piece wise 

linear curve are shown in Figure 5.1 for SiFe. 

5.1.2.2.2 Breaking the flux into main and fringing fluxes 

With pole overlap the flux linked by a phase is broken into two parts, the main 

flux and the fringing flux. The contours of the two fluxes are shown in Figure 2.10. 

The main flux is due to the field that passes from the stator to the rotor where the 

stator and rotor poles overlap and thus the air gap is small. The fringing flux is due to 

the field that passes from the stator to the rotor where the stator and rotor poles do not 

overlap and thus where the air gap is larger.  

 

 

Figure 5.1 the ideal magnetization curve and piece wise linear curves 

5.1.2.2.3 The main flux 

According to Ampere’s law,  

 

npar
I

NgHlH pmgmFemFe
φ⋅=⋅+⋅ ,,,             5-5 

 

Here mFeH ,  is the H field in the iron part of the main flux contour, mgH ,  is the H 

field in the air gap part of the main flux contour, pN  is the number of turns per stator 

pole, mFel ,  is equal to half of the length of the iron part of the main flux path, g  is 

the air gap on one side of the rotor between the rotor and stator poles where they 

overlap, and npar  is the number of pole windings in parallel for a phase. 
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The relationship between the B field, the H field in the iron and the H field in the 

air gap when the iron is not saturated is 

 

mgomFem HHB ,, ⋅=⋅= μμ              5-6 

 

Iron saturation occurs when the B field in the iron reaches the value satB . At this point, 

the H field can be expressed as 

 

satsatmFe HBB μ==,               5-7 

 

The current at which iron saturation occurs for the main flux satmI ,  can be 

obtained by combining (5-5), (5-6) and (5-7). It is a constant and given by (5-8). 
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The relationship between the H field in the iron and the B field when the iron is 

saturated can be expressed as 

 

μμ //)( 1, satsatmmFe BBBH +−=             5-9 

 

Combining (5-5), (5-6), and (5-9), the main flux B field with and without iron 

saturation is given by (5-10). 
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The main flux, denoted mλ , is the main flux density times the overlapped area 

between the stator and rotor poles. It is expressed as 

 

STFlRIBNnserI stkpfgmpm ⋅⋅−⋅⋅⋅⋅= )()(),( θθθλ φφ         5-11 

 

Here nser is the number of windings in series for a phase, pfθ  is the effective stator 

pole width [7], STF is the stacking factor, lstk is the length of the stack, and the 

expression STFlR stkpfg ⋅⋅−⋅ )( θθ  is the overlapped area of the stator pole with a rotor 

pole. Note that the rotor position θ  is zero when a pair of rotor poles is aligned with 

the phase’s stator poles. 

5.1.2.2.4 The fringing flux 

Using the same process used for the main flux, the fringing field and fringing flux 

can be computed for the region in Figure 2.10 where the rotor and stator poles do not 

overlap. The results for the main field can be used with the air gap g replaced with the 

larger fringing air gap to obtain the fringing field. The fringing air gap is 

 

pfof ggg θθθ /)( ⋅+=               5-12 

 

The fringing air gap depends on rotor position where go is the air gap required to 

obtain the correct unsaturated inductance value at the rotor position where the rotor 

poles and the stator poles just start to overlap. With the above consideration the 

saturation current for the fringing flux )(, θsatfI , which is a function of rotor position, 

can be expressed as 
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Here fFel ,  is equal to a half of the length of the iron part of the fringing flux contour. 

Similarly, the fringing flux density is 
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The fringing flux, denoted fλ , is the fringing flux density times the 

non-overlapped area of the stator pole. 

 

STFlRIBNnserI stkgfpf ⋅⋅⋅⋅⋅⋅= θθθλ φφ ),(),(          5-15 

5.1.2.2.5 The total flux when the rotor and the stator overlap 

The total flux is the sum of the main flux and the fringing flux 

 

),(),(),( θλθλθλ φφφ III fmo +=              5-16 

 

Here the function ),( θλ φIo  denotes the total flux when the rotor and the stator 

overlap. 

The instantaneous torque can be obtained using conservation of energy and the 

flux shown in (5-16). The complete equations to compute the instantaneous torque for 

the overlap case are shown in appendix III. 

5.1.3 Verifying the model with experiment measurement 

The flux linked by a phase computed with the simplified model is compared with 

the measured flux from a 2 Hp peak power 4 phase 8/6 SRM with a maximum speed 

of 15,000 rpm. Figure 5.2 shows a comparison of the predicted flux linked by a phase 

computed with the simplified model with the measured flux from the commercial 

SRM. They match well. In the simplified model, the degree to which the iron 

saturates is determined by the value of μ1. The values of the iron parameters chosen 

by the simplified model are μ=1000 μo, μ1= 50 μo, Bsat=1.6T. (The results are 

presumably different for different phases) 
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Figure 5.2 the comparison of the simplified model to the experimental data 

5.2 The simplified flux model based observer 

To estimate the rotor position of the SRM at higher speeds using the torque 

producing SRM current, another Luenberger observer is proposed. In the state 

observer, the rotor position and the rotor speed are the two states as in the low speed 

case. A new error function is defined to drive the observer using the simplified flux 

model. The error function is defined as 
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where jθ̂  is the estimated rotor position for the jth phase (it is zero when the jth phase 

is at the aligned position), ji  is the jth phase’s measured current, jλ̂  is the jth 

phase’s calculated flux linkage, which is predicted by the simplified model using the 

estimated rotor position and the measured phase current, jλ  is the jth phase’s actual 

flux linkage. The actual flux linkage is a function of the actual rotor position jθ  and 

the measured phase current, but it is obtained by measuring the integration of the 

phase voltage. The function )( jsign θ  is the sign of the estimated rotor position for 

the jth phase. It is 1 when jθ̂  is greater than zero, -1 when jθ̂  is less than zero, and 0 

when jθ̂  is equal to zero. Note that the estimated rotor position jθ̂  is wrapped into 
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the electrical period (from uθ−  to uθ ). 

With the error definition, the error dynamic of the state observer becomes 
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where H3 and H4 are the state observer gains. Because the integral of the 

measured voltage is used for the measured flux this state observer only works at 

speeds high enough that offset voltages in the integrator circuit do not create too large 

of an error over the integrating interval. In addition, it must be insured that the output 

of the integrator is set to zero each time the current goes to zero. This is realized by 

having the sense signals turn on MOSFETs to short the integrating capacitors. The 

integrator schematic in the experimental system is shown in Figure 3.13. The block 

diagram of the state observer is shown in Figure 5.3. 
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Figure 5.3 the sensorless control system using the simplified model 

 

5.3 The error function with the simplified model 

To verify that the error function defined in (5-17) has the desired properties to 

drive the observer, the error function value versus the rotor position curves when the 

rotor position error is 1, 2, 3, 4, 5, -1, -2, -3, -4, and -5 mechanical degrees are plotted 

in Figure 5.4. The error function is monotonic and negative when the rotor position 
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error is positive. It is monotonic and positive when the rotor position error is negative. 

This insures that this error function can be used to drive the observer. 

 

 

Figure 5.4 the error function based on the simplified flux model  

 
 The average value of the error function over an electrical period versus the 

position error is shown in Figure 5.5. The sign of the average value of the error 

function is opposite to the sign of the rotor position error except when the rotor 

position error is from -30 to -26 mechanical degrees. This can cause the sensorless 

control to fail when the estimated rotor position is 26 to 30 degrees less than the 

actual one. Note that the curve does not go exactly through the origin. This is because 

in the simulation file, the actual flux is obtained with the detailed flux model in [6, 7], 

while the calculated flux is predicted through the simplified flux model and there are 

differences between the flux computed with the two models at the same current and 

rotor position. This models the differences that exist between the actual SRM flux and 

the flux computed using the simplified SRM model for the same current and rotor 

position in the actual system. 
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Figure 5.5 the average value of the error function versus the rotor position error 

 

5.4 Stability and performance of the simplified flux model based 

observer 

Since the control system time constant is generally greater than the period of time 

of the rotor position, the error average function can be used to characterize the error 

function when the rotor is running at sufficiently high speeds. To linearize the error 

average function, it is assumed that a zero function value occurs with zero angle error.  

  

eavee kf θθ ⋅−= 2)(               5-19 

 

In (5-19) 2avek  is the derivative of the error average function in Figure 5.5 with 

respect to the position error where the position error is zero.  

 Applying (5-19) into (5-18), the simplified flux model based observer becomes 
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 The Eigen values of the characteristic matrix in (5-20) are 
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 According to control theory, the Eigen values need to be negative real numbers or 

have negative real parts so that the system is exponentially stable.  
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 Since 02 >avek , to satisfy (5-22), 1H  and 2H are set as  
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5.5 Simulation results 

The simplified model is used in the state observer to predict the calculated flux 
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while the detailed model is used to simulate the actual SRM. Simulation results for 

the estimated flux and the actual flux when the motor runs at 190 rpm are shown in 

Figure 5.6. The rotor position error between the estimated rotor position and the 

actual rotor position is shown in Figure 5.7. The spikes in the rotor position errors in 

Figure 5.7 are due to the fact that the estimated rotor position and the actual rotor 

position values are wrapped to stay within one electrical period and when this 

wrapping occurs the error momentarily is equal to the angle of one electrical cycle. 

 

Figure 5.6 the calculated flux linkage and the actual flux linkage in the simplified flux 

model based observer sensorless control simulation with the SRM running at 190 rpm 

 

 

Figure 5.7 the rotor position error versus time in the simplified flux model based 

observer sensorless control simulation with the SRM running at 190 rpm 
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5.6 Experimental results 

The experimental SRM drive system is shown in Figure 5.8.  

 

 

Figure 5.8 the experimental set-up of the simplified flux model based observer 

sensorless control system using the simplified model 

 

The calculated and actual fluxes from the experimental system operating at 190 

rpm are shown in Figure 5.9 and the rotor position error from the experimental system 

is shown in Figure 5.10. The spikes in the rotor position errors in and Figure 5.10 are 

due to the fact that the estimated rotor position and the actual rotor position values are 

wrapped to stay within an electrical period and when this wrapping occurs the error 

momentarily is equal to the angle of one electrical cycle. Because of the inductance 

asymmetry and the signal conditioning circuit asymmetry, the measured fluxes need 

to be adjusted by adding dc offsets and multiplying factors. After these adjustments, 

the electrical period is 60 degrees, but the period of 180 degrees is still used to be 

consistent with the inductance profile demodulator based observer. The experimental 

data is taken at steady state; while the simulation result shows the state observer’s 

settling time with an initial position error of 5 degrees. Note that the estimated fluxes 

in Figure 5.6 and Figure 5.9 are shifted up 0.02 Weber to separate the flux plots for 
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easier viewing. The angle error ripple in the actual system is larger and has a lower 

frequency (six flux pulses per cycle) than predicted by simulation. This is due in part 

to the fact that the phase inductance of the experimental machine depended on which 

rotor poles were near the stator pole of that phase. There were also differences in the 

phase inductance from phase to phase. None of these machine asymmetries were 

modeled in the simulation. Also note that the modeling errors apparent in Figure 5.2 

do not create a noticeable error in the estimated flux and only a small error in the 

estimated rotor position. The phase current at high speeds is shown in Figure 5.11. 

The current does not chop as it does when the rotor runs at low speeds. Note that there 

are still sense pulses at high speed when there is no torque producing current even 

though they are not used. These sense pulses can be eliminated with an improved 

control design.  
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Figure 5.9 the estimated flux linkage and the actual flux linkage for phase A in the 

sensorless control experiment with the SRM operating at 190 rpm 
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rotor position error vs time
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Figure 5.10 the rotor position error versus time in the simplified flux model based 

observer sensorless control experiment with the SRM operating at 190 rpm 
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Figure 5.11 the phase current at high speeds 
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5.7 Speed limitation 

The speed limitation of the observer depends on the digital sampling rate. Assume 

k samples need to be taken in a torque producing period for the rotor position to be 

determined. It is assumed that the torque producing region is 3/4 of electrical period, 

i.e. 45 degrees at high speeds. In this case the speed limit for the simplified flux 

model based observer is  

sample
Maxm

Tk ⋅⋅
=

8
1

3ω               5-25 

Because this observer needs to sample 8 channels, both currents and fluxes for 4 

phases, the sampling time is noticeably greater than for the inductance profile 

demodulator based observer. In this observer, Tsample=100μs, so 3Maxmω =1250 when k 

is chosen to be 1. The actual speed response without load is shown in Figure 5.12. The 

estimated rotor position error is shown in Figure 5.13. The position error starts to be 

rather big when the rotor speed reaches 10,000 rpm so that the output torque 

decreases.  
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Figure 5.12 the estimated rotor speed limitation of the simplified flux based observer 
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Figure 5.13 the estimated rotor position error of the simplified flux based observer 

 

5.8 Transient response 

Using Figure 5.5, the coefficient kave2 is approximately 0.048. Then with H3=2 x 

103, H4=1 x 104 and using (5-24), the settling time of the system is 0.25s. To obtain 

the transient response experimentally, the commanded current is increased suddenly 

when the rotor is running at a constant speed. The experimental transient response of 

the rotor position error and the rotor speed are shown in Figure 5.14 and Figure 5.15 

respectively. In the experiment, the settling time for the rotor position and the rotor 

speed is 0.28s and 0.2s. When the gains H3 and H4 are changed to 2 x 104 and 2 x 

106, the analytical settling time is 0.011s according to (5-24). The experimental 

transient response of the rotor speed is shown in Figure 5.16. In the experiment, the 

estimated rotor position was given a step change when the rotor was running at 200 

rad/s. The estimated rotor speed settled down in 0.012s, which is close to the 

analytical value.  
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estimated and actual speeds vs time
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Figure 5.14 the transient response of the rotor speed with H3=2 x 103 and H4=2 x 104 
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Figure 5.15 The transient response of the rotor speed with H3=2 x 106 and H4=2 x 106 
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5.9 Combination of the two strategies 

The two control strategies are combined together so that full speed range 

operation with rated torque can be realized. At start and low speeds, the inductance 

profile demodulator based observer is applied. At medium and high speeds, the 

simplified flux model based observer is applied.  

To determine the speed at which to switch between the two observers, namely the 

switching speed, it is assumed that the input voltage offset of the voltage integrator’s 

operational amplifier is Voffset, and that the average integrator output voltage is Vout. 

To make sure the offset voltage does not create too large of an integrator error, it is 

required that the offset voltage integration error over a torque producing period is less 

than or equal to 1/10 of the output voltage. Here a torque producing period is assumed 

to θperiod. So the switch speed is 

 

out

offsetperiod
Switchm

VRC
V
⋅⋅

≥
1.0
θω              5-26 

 

In the experiment, Vout is 1V, Voffset=0.02V, so the switch speed is 10 rad/s. 

Actually 100 rad/s is chosen to insure there is no integrator saturation due to 

unpredictable events and because the inductance profile demodulator based observer 

can operate to about 500 rad/s. The estimated rotor speed versus time curve in the 

experimental is shown in Figure 5.17. The spike at 100 rad/s is due to the switching 

from the inductance profile based observer to the simplified flux model based 

observer. The change in the torque (slope of the speed) due to the change in algorithm 

at 100rad/s is due to the change in control angles between the two algorithms. The 

error signal versus time curve is shown in Figure 5.18. The two observers are driven 

by two different error signals whose magnitudes are 100 times different in value, as 

shown in the figure. This is consistent with the order of magnitude difference in the 

settling times of the two observers with inductance profile demodulator based 

observer (low speed) being the faster one. 
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Figure 5.16 the estimated rotor speed with the combination of the two observers 
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Figure 5.17 the error signal with the combination of the two observers 
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Contributation and future research 

 
To eliminate the position sensor in the SRM drive system for applications that 

must operate from zero speed to high speeds with any torque output, a control strategy 

that combines two new position estimation methods has been proposed, designed and 

evaluated in this dissertation. In each method, a state observer is applied to estimate 

the rotor position and speed.  

For low speeds, an inductance profile demodulator based observer is utilized. A 

relatively high frequency pulse voltage is applied to the idle phases producing a 

triangle shaped current that is modulated by the SRM’s phase inductance. The current 

is then demodulated and used to produce an error between the actual and estimated 

rotor position. This error is used in an observer to estimate the rotor position. It is 

based on the fact that the inductance is a function of the rotor position and 

independent of current when the current is small and the iron does not saturate. The 

method works at zero speed to medium speeds from zero to rated torque. It is capable 

of 4 quadrant operation. It can find the rotor’s position at startup without rotating the 

rotor. The factors that determine the maximum rotor speeds that the inductance profile 

demodulator based observer can work at have been given. The demodulator, basically 

a low pass filter, has an inherent time delay that results a large position error at high 

speeds. The larger position error can cause the sensorless control to fail. Another 

factor is that the sampling rate needs to be high enough to preserve the inductance 

profile information from the demodulated signal. It was verified in the dissertation 

using two different sampling rates. In the experiment that uses the lower sampling 

rate, the sampling rate limits the rotor speed, while in the higher sampling rate 

experiment, the time delay limits the rotor speed. The transient response experiment 

was conducted. The experimental settling time is 0.024s, while the settling time of the 

rotor speed and rotor position is 0.02 and 0.03 respectively. The system stability was 

investigated and researched with simulation and experiments. The system is robust 

because that it can work with inductance asymmetry. 

For medium and high speeds, another observer, namely simplified flux model 

based observer, is used to estimate the rotor position and rotor speed. In this observer, 

the flux is calculated using the measured current and a simplified flux model. The 

simplified flux model is based on a published detailed analytical flux model. Because 
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of its simplicity, it can be run in real time rapidly in a microprocessor. The calculated 

flux is compared with the measured flux to produce an error that drives the observer. 

It is also capable of 4 quadrant operation. The factor that determines the maximum 

speed this observer can work is basically the sampling rate. The stability and 

performance of the observer has been verified with simulation and experiments.  

Since the two speed ranges overlap, the control system is capable of working 

from zero to high speed by switching between the two observers according to the 

estimated speed.  

The inductance profile demodulator based observer is unique. It can figure out the 

rotor position at zero speed with the rated torque for any position without rotor 

rotation. It doesn’t need additional inverter to inject the modulation current. Since 

there are always idle phases into which the modulation current can be injected, the 

rotor position can be figured out without rotor rotation for any position from the 

modulation current. Then the inverter can apply torque producing current to the 

phase(s) according to the estimated rotor position to produce torque. This is one of the 

requirements of the actuator application. The sensorless control can still be 

accomplished with the inductance asymmetry. This demonstrates the robustness of the 

system. 

The simplified flux model based observer can work at higher speeds than its peers 

because it integrates the phase voltage to obtain the flux from hardware, instead of 

digitally. This significantly lowers the required sampling rate for the discrete control 

system. The simplified flux model is very simple for computation. There is no series, 

exponential functions, floating point division or square root function which need 

much more computation time than addition, sbustraction and multiplication. This 

remarkably lowers the required computation time. These two facts make the observer 

run at very high speeds.  

The estimated rotor position from the two observers is very accurate from zero to 

medium speeds. The torque produced by the SRM falls off when the position 

estimators are in error and this loss of torque was used to determine the maximum 

speeds the position estimators are capable of operating at.  

Several things can be done to extend the application and improve the 

performance of the control system. A feedback loop can be added to control the rotor 

speed by regulating the commanded current. The commanded current can be set by 

the microcontroller and converted into an analog signal using a digital-to-analog 
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converter.  

The fault tolerance of the SRM drive system at zero and low speeds needs to be 

investigated. There is an inherent problem for a 4-phase SRM to work at zero speed 

for any rotor position with one faulted phase. This is because the torque producing 

time windows of the remaining 3 phases don’t cover the full 360º of rotor rotation. . 

The position estimator developed has the potential of working at low speeds with one 

faulted phase and possibly two faulted phases. This potential needs to be investigated. 

The on and off angles should be set as functions of the rotor speed, power supply 

voltage, commanded currents in simulation, but they are held constant in the 

experiment. This should be done in the future. The angles can also be optimized to 

reduce the torque ripple.  

The program in the DSP, including the commutator, can be implemented in the 

FPGA to reduce the computation time. If the total DSP program can be implemented 

into the FPGA, it would work as a special purpose microprocessor, which can run 

much faster than the DSP.  

The EMI filter was not implemented into the experimental system. This should be 

done in the future. 

The inductance asymmetry can be added to the simulation model to describe the 

actual system better. Also the generating mode of SRM needs to be evaluated 

experimentally. The position estimator was designed to operate in all four quadrants. 

However no generating experiments were conducted. In this dissertation, two SRM 

drive system states, the rotor position and the rotor speed are used in the position 

estimator’s observer. The phase currents or phase fluxes can be used as additional 

states in the observer to potentially estimate the rotor position more accurately. 

 



 114

Appendices 

Appendix I. VHDL code in the FPGA chip 
 
The entities tree: 
i_reg_4ph_dsp 
 divider 
  counter 
  comparator_50 
  comparator_30 
 i_reg_4ph_comp 
  ph_ckt_new 
 interfact_fpga_dsp_3 
   
Module i_reg_4ph_dsp 
-- 
-- Updated on Sep 2 2004 
-- Q1gate, Q1source, Q2gate, Q2source  Q1 and Q2 
-- IorV(1 downto 0) added 
-- Modin is used instead of IO_clock 
-- 
-- Updated on Dec. 17 2004 
-- Inverted Q1 and Q2 in ph_ckt_new module for level shifting 
-- Inverted A, B and I signals from the op encoder for level shifting 
-- 
-- Updated on Jan. 26 2005 
-- Changed the polarity of Over_I_Probe to active low to drive  
-- shutdown signal of the Dual Gate Drive chips. 
-- 
-- Updated on Feb. 4 2005 
-- Use IO_clock to generate modin signal (1M, 0.5D  20KHz, 0.6D) 
-- 
-- Updated on Sep. 12 2005 
-- MorG was used to get rid of the modulation current when flux method is used 
-- 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
entity i_reg_4ph_dsp is 

Port ( modin : out std_logic; -- generated by IO_clock, test it with an output 
        IO_clock : in std_logic; 
      sense_low : in std_logic_vector(3 downto 0); 
           I_chop : in std_logic_vector(3 downto 0); 
           over_I : in std_logic_vector(3 downto 0); 
           didtcomp : in std_logic_vector(3 downto 0); 
           do_sense_high : out std_logic_vector(3 downto 0); 
           didtout : out std_logic_vector(3 downto 0); 
           Q1 : out std_logic_vector(3 downto 0); 
           Q2 : out std_logic_vector(3 downto 0); 
           I_sense : out std_logic_vector(3 downto 0); 
           IorV : out std_logic_vector(1 downto 0); 
           A : in std_logic; 
           B : in std_logic; 
           I : in std_logic; 
           Timer1 : in std_logic; 
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           DX : in std_logic; 
           DR : out std_logic; 
           CLKS : out std_logic; 
           CLKR : in std_logic; 
           FSR : in std_logic; 
           CLKX : in std_logic; 
           FSX : in std_logic; 
    enable_probe: out std_logic; 
           MorG_probe: out std_logic; 
    comin_probe: out std_logic_vector(3 downto 0); 
    over_I_probe: out std_logic 
     ); 
end entity i_reg_4ph_dsp; 
architecture Behavioral of i_reg_4ph_dsp is 
signal enable, MorG, over_I_out: std_logic; 
signal comin, I_sense_temp: std_logic_vector(3 downto 0); 
signal modin_tmp: std_logic;  
signal IO_clock_c : std_logic; 
signal modin_c : std_logic; 
signal comin_c, sense_low_c, I_chop_c, over_I_c : std_logic_vector(3 downto 0); 
signal Q1_c, Q2_c: std_logic_vector(3 downto 0); 
signal IorV_c: std_logic_vector(1 downto 0); 

 signal do_sense_out_c: std_logic_vector(3 downto 0); 
signal didtcomp_c, do_sense_high_c, didtout_c: std_logic_vector(3 downto 0); 
signal A_c, B_c, I_c: std_logic; 
signal Timer1_c, DX_c, DR_c: std_logic; 
signal CLKS_c, CLKR_c, FSR_c, CLKX_c, FSX_c: std_logic; 

 Probe signals 
signal enable_probe_c, MorG_probe_c, over_I_probe_c: std_logic; 
signal comin_probe_c, I_sense_c: std_logic_vector(3 downto 0); 
signal A_inv, B_inv, I_inv: std_logic; 
component GL33 

port( 
 GL   :out  std_logic; 
 PAD   :in  std_logic); 
end component; 
component IB33 

port(PAD : in std_logic := ‘U’; Y : out std_logic); 
end component; 
component OB33PH 

port(PAD : out std_logic; A : in std_logic := ‘U’); 
end component; 
component i_reg_4ph_comp is 

Port ( modin : in std_logic; 
           comin : in std_logic_vector(3 downto 0); 
           sense_low : in std_logic_vector(3 downto 0); 
           I_chop : in std_logic_vector(3 downto 0); 
           over_I : in std_logic_vector(3 downto 0); 
           didtcomp : in std_logic_vector(3 downto 0); 
           enable : in std_logic; 
           MorG : in std_logic; 
           Q1: out std_logic_vector(3 downto 0); 
           Q2: out std_logic_vector(3 downto 0);           
           over_I_out : out std_logic; 
           do_sense_out : out std_logic_vector(3 downto 0); 
           do_sense_high : out std_logic_vector(3 downto 0); 
           didtout : out std_logic_vector(3 downto 0)); 
end component i_reg_4ph_comp; 
component interface_fpga_dsp_3 is 

Port ( A : in std_logic; 
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           B : in std_logic; 
           I : in std_logic; 
           Enable : out std_logic; 
     MorG: out std_logic; 
           omm. : out std_logic_vector(3 downto 0); 
           IorV : out std_logic_vector(1 downto 0);  
           over_I : in std_logic; 
           I_sense : in std_logic_vector(3 downto 0); 
     clock: in std_logic;   -- to dffs for holding output signals 
           Timer1 : in std_logic; -- select line 1 of mux  
           DX : in std_logic;     -- select line 0 of mux 
           DR : out std_logic;    -- output line 1 of mux 
           CLKS : out std_logic;  -- output line 0 of mux 
           CLKR : in std_logic;--  input line 1 of decoder 
           FSR: in std_logic;  --  input line 0 of decoder 
           CLKX : in std_logic;-- select line 1 of decoder 
           FSX : in std_logic);-- select line 0 of decoder 
end component interface_fpga_dsp_3; 
component divider is 

port (clockin, enable: in std_logic; 
          clockout: out std_logic); 
end component divider; 
begin 

 test probes 
enable_probe_c <= enable; 
MorG_probe_c   <=  MorG; 
over_I_probe_c <= not over_I_out; 
comin_probe_c  <= comin; 
I_sense_c      <= I_sense_temp; 
A_inv          <= not A_c; 
B_inv          <= not B_c; 
I_inv          <= not I_c; 
-- Define input and output pads 
-- common inputs 

IO_clock_pad : GL33      
      port map(PAD => IO_clock, GL => IO_clock_c);    

A_pad : IB33      
      port map(PAD => A, Y => A_c);  

B_pad : IB33      
      port map(PAD => B, Y => B_c);  

I_pad : IB33      
      port map(PAD => I, Y => I_c);  

Timer1_pad : IB33      
      port map(PAD => Timer1, Y => Timer1_c);  

DX_pad : IB33      
      port map(PAD => DX, Y => DX_c);  

CLKR_pad : IB33      
      port map(PAD => CLKR, Y => CLKR_c);  

FSR_pad : IB33      
      port map(PAD => FSR, Y => FSR_c);  

CLKX_pad : IB33      
      port map(PAD => CLKX, Y => CLKX_c);  

FSX_pad : IB33      
      port map(PAD => FSX, Y => FSX_c);  

 common output(s) 
modin_pad : OB33PH   -- Added for testing modin generated by IO_clock 

      port map(PAD => modin, A => modin_c); 
DR_pad : OB33PH 

      port map(PAD => DR, A => DR_c); 
CLKS_pad : OB33PH 
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      port map(PAD => CLKS, A => CLKS_c); 
IorV_0_pad : OB33PH 

      port map(PAD => IorV(0), A => IorV_c(0)); 
IorV_1_pad : OB33PH 

      port map(PAD => IorV(1), A => IorV_c(1)); 
MorG_probe_pad : OB33PH 

      port map(PAD => MorG_probe, A => MorG_probe_c); 
enable_probe_pad : OB33PH 

      port map(PAD => enable_probe, A => enable_probe_c); 
comin_probe_0_pad : OB33PH 

      port map(PAD => comin_probe(0), A => comin_probe_c(0)); 
comin_probe_1_pad : OB33PH 

      port map(PAD => comin_probe(1), A => comin_probe_c(1)); 
comin_probe_2_pad : OB33PH 

      port map(PAD => comin_probe(2), A => comin_probe_c(2)); 
comin_probe_3_pad : OB33PH 

      port map(PAD => comin_probe(3), A => comin_probe_c(3)); 
over_I_probe_pad : OB33PH 

      port map(PAD => over_I_probe, A => over_I_probe_c); 
 phase #0 inputs and outputs 

sense_low_0_pad : IB33 
      port map(PAD => sense_low(0), Y => sense_low_c(0)); 

I_chop_0_pad : IB33 
      port map(PAD => I_chop(0), Y => I_chop_c(0)); 

over_I_0_pad : IB33 
      port map(PAD => over_I(0), Y => over_I_c(0)); 

didtcomp_0_pad : IB33 
      port map(PAD => didtcomp(0), Y => didtcomp_c(0)); 

Q1_0_pad : OB33PH 
      port map(PAD => Q1(0), A => Q1_c(0)); 

Q2_0_pad : OB33PH 
      port map(PAD => Q2(0), A => Q2_c(0)); 

I_sense_0_pad : OB33PH 
      port map(PAD => I_sense(0), A => I_sense_c(0)); 

do_sense_high_0_pad : OB33PH 
      port map(PAD => do_sense_high(0), A => do_sense_high_c(0)); 

didt_out_0_pad : OB33PH 
      port map(PAD => didtout(0), A => didtout_c(0)); 
 

 phase #1 inputs and outputs 
sense_low_1_pad : IB33 

      port map(PAD => sense_low(1), Y => sense_low_c(1)); 
I_chop_1_pad : IB33 

      port map(PAD => I_chop(1), Y => I_chop_c(1)); 
over_I_1_pad : IB33 

      port map(PAD => over_I(1), Y => over_I_c(1)); 
didtcomp_1_pad : IB33 

      port map(PAD => didtcomp(1), Y => didtcomp_c(1)); 
Q1_1_pad : OB33PH 

      port map(PAD => Q1(1), A => Q1_c(1)); 
Q2_1_pad : OB33PH 

      port map(PAD => Q2(1), A => Q2_c(1)); 
I_sense_1_pad : OB33PH 

      port map(PAD => I_sense(1), A => I_sense_c(1)); 
do_sense_high_1_pad : OB33PH 

      port map(PAD => do_sense_high(1), A => do_sense_high_c(1)); 
didt_out_1_pad : OB33PH 

      port map(PAD => didtout(1), A => didtout_c(1)); 
 phase #2 inputs and outputs 

sense_low_2_pad : IB33 
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      port map(PAD => sense_low(2), Y => sense_low_c(2)); 
I_chop_2_pad : IB33 

      port map(PAD => I_chop(2), Y => I_chop_c(2)); 
over_I_2_pad : IB33 

      port map(PAD => over_I(2), Y => over_I_c(2)); 
didtcomp_2_pad : IB33 

      port map(PAD => didtcomp(2), Y => didtcomp_c(2)); 
Q1_2_pad : OB33PH 

      port map(PAD => Q1(2), A => Q1_c(2)); 
Q2_2_pad : OB33PH 

      port map(PAD => Q2(2), A => Q2_c(2)); 
I_sense_2_pad : OB33PH 

      port map(PAD => I_sense(2), A => I_sense_c(2)); 
do_sense_high_2_pad : OB33PH 

      port map(PAD => do_sense_high(2), A => do_sense_high_c(2)); 
didt_out_2_pad : OB33PH 

      port map(PAD => didtout(2), A => didtout_c(2)); 
 phase #3 inputs and outputs 

sense_low_3_pad : IB33 
      port map(PAD => sense_low(3), Y => sense_low_c(3)); 

I_chop_3_pad : IB33 
      port map(PAD => I_chop(3), Y => I_chop_c(3)); 

over_I_3_pad : IB33 
      port map(PAD => over_I(3), Y => over_I_c(3)); 

didtcomp_3_pad : IB33 
      port map(PAD => didtcomp(3), Y => didtcomp_c(3)); 

Q1_3_pad : OB33PH 
      port map(PAD => Q1(3), A => Q1_c(3)); 

Q2_3_pad : OB33PH 
      port map(PAD => Q2(3), A => Q2_c(3)); 

I_sense_3_pad : OB33PH 
      port map(PAD => I_sense(3), A => I_sense_c(3)); 

do_sense_high_3_pad : OB33PH 
      port map(PAD => do_sense_high(3), A => do_sense_high_c(3)); 

didt_out_3_pad : OB33PH 
      port map(PAD => didtout(3), A => didtout_c(3)); 
Modindff: process (IO_clock_c) is 
begin 
if (rising_edge(IO_clock_c)) then 
modin_c <= not modin_tmp; 
end if; 
end process; 
U0: divider 
port map (clockin => IO_clock_c, enable => enable, clockout=> modin_tmp); 
U1: i_reg_4ph_comp 
port map (modin => modin_c, comin=>comin, sense_low=>sense_low_c, 
          I_chop=>I_chop_c, over_I=>over_I_c, didtcomp=>didtcomp_c, 
enable=>enable,MorG=>MorG,Q2source=>Q2source_c,Q1=>Q1_c, Q2=>Q2_c,   
over_I_out=>over_I_out,do_sense_out=>I_sense_temp,do_sense_high=>do_sense_high_c, 
didtout=>didtout_c); 
U2: interface_fpga_dsp_3 
port map (A=>A_inv, B=>B_inv, I=>I_inv, Enable=>enable,  
             MorG=>MorG, omm.=>comin, IorV=>IorV_c, over_I=>over_I_out, 
             I_sense=>I_sense_temp, clock=>IO_clock_c, Timer1=>Timer1_c, 
    DX=>DX_c, DR=>DR_c, CLKS=>CLKS_c, CLKR=>CLKR_c, FSR=>FSR_c, 
CLKX=>CLKX_c, FSX=>FSX_c); 
end architecture Behavioral; 
 
Entity Divider 
-- divider.vhd 
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-- To divide the IO_clock signal by 50 to get Modin signal 
--                  1MHz                     20KHz 
--      ----------------------------------------- 
--      |                           | 
--     \ /                           | 
--     reset                         | 
-- IO_clock->counter -> comparator_50 ->DFF ->INV ----\ 
--                |                              RSFF  modin 
--                -> comparator_30 ->DFF ->INV ----/ 
-- duty cycle could be random, here 0.6 is chosen 
-- created on 02/03/04 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
entity divider is 

port (clockin, enable: in std_logic; 
          clockout: out std_logic); 
end entity divider; 
architecture RTL of divider is 
signal comp1,comp2,d1,d2,s,r,srout: std_logic; 
signal pre_state,next_state: std_logic; 
signal sr: std_logic_vector(2 downto 0); 
signal Q: std_logic_vector(5 downto 0); 
signal temp_aclr: std_logic; 
component counter is  

port(Enable, Aclr, Clock : in std_logic; Q : out  
        std_logic_vector(5 downto 0)) ; 
end component counter; 
component comparator_50 is  

port( DataA : in std_logic_vector(5 downto 0); AEB : out  
        std_logic) ; 
end component comparator_50; 
component comparator_30 is  

port( DataA : in std_logic_vector(5 downto 0); AEB : out  
        std_logic) ; 
end component comparator_30; 
begin 
sr<=s & r & pre_state; 
temp_aclr<= d1 and enable; 
counter_0: counter 

port map(Enable=>enable, Aclr=>temp_aclr, Clock=>clockin, Q=>Q); 
comp_50_0: comparator_50 

port map(DataA=>Q, AEB=>comp1); 
comp_30_0: comparator_30 

port map(DataA=>Q, AEB=>comp2); 
s<=not d1; 
r<=not d2; 
clockout<=srout; 
dff1: process(clockin) 
begin 
if(rising_edge(clockin)) then 
d1<=comp1; 
end if; 
end process dff1; 
dff2: process(clockin) 
begin 
if(rising_edge(clockin)) then 
d2<=comp2; 
end if; 
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end process dff2; 
-------------- describe S R Flip Flops-------------- 
srff_comb: process (sr) is 
begin 
case sr is 
when”000” => srout<=’0’;  -- next_state is deleted because  
when”001” => srout<=’1’;  -- it is the same as srout 
when”010” => srout<=’0’;  
when”011” => srout<=’0’;  
when”100” => srout<=’1’;  
when”101” => srout<=’1’;  
when”110” => srout<=’0’;  
when”111” => srout<=’0’;  
when others=> srout<=’0’; 
end case; 
end process srff_comb; 
srff_dff: process(clockin) is 
begin 
if (rising_edge(clockin)) then 
pre_state<=srout; 
end if; 
end process srff_dff; 
end architecture RTL; 
 
Entity counter 

 Version: 6.0 Production 6.0.0.133 
library ieee; 
use ieee.std_logic_1164.all; 
library a500K; 
entity counter is  

port(Enable, Aclr, Clock : in std_logic; Q : out  
        std_logic_vector(5 downto 0)) ; 
end counter; 
architecture DEF_ARCH of  counter is 

component AND3 
        port(A, B, C : in std_logic := ‘U’; Y : out std_logic) ; 

end component; 
component AND2 

        port(A, B : in std_logic := ‘U’; Y : out std_logic) ; 
end component; 
component XOR2 

        port(A, B : in std_logic := ‘U’; Y : out std_logic) ; 
end component; 
component DFFC 

        port(CLK, D, CLR : in std_logic := ‘U’; Q : out std_logic 
        ) ; 

end component; 
   component INV 
        port(A : in std_logic := ‘U’; Y : out std_logic) ; 

end component; 
signal Q_0_net, Q_1_net, Q_2_net, Q_3_net, Q_4_net, Q_5_net,  

        Sum_1_net, Sum_2_net, Sum_3_net, Sum_4_net, Sum_5_net,  
        Sum_6_net, Sum_0_net, AND2_1_Y, AND3_0_Y, AND2_2_Y,  
        AND3_1_Y, AND3_2_Y, AND2_0_Y, INV_0_Y : std_logic ; 

begin    
Q(0) <= Q_0_net; 
Q(1) <= Q_1_net; 
Q(2) <= Q_2_net; 
Q(3) <= Q_3_net; 
Q(4) <= Q_4_net; 
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Q(5) <= Q_5_net; 
AND3_2 : AND3 

      port map(A => Q_2_net, B => Q_3_net, C => Q_4_net, Y =>  
        AND3_2_Y); 

AND2_0 : AND2 
      port map(A => AND3_0_Y, B => AND3_2_Y, Y => AND2_0_Y); 

XOR2_Sum_6_inst : XOR2 
      port map(A => AND2_0_Y, B => Q_5_net, Y => Sum_6_net); 

DFFC_Q_3_inst : DFFC 
      port map(CLK => Clock, D => Sum_4_net, CLR => INV_0_Y, Q =>  
        Q_3_net); 

INV_0 : INV 
      port map(A => Aclr, Y => INV_0_Y); 

AND2_1 : AND2 
      port map(A => Enable, B => Q_0_net, Y => AND2_1_Y); 

AND3_0 : AND3 
      port map(A => Enable, B => Q_0_net, C => Q_1_net, Y =>  
        AND3_0_Y); 

XOR2_Sum_1_inst : XOR2 
      port map(A => Enable, B => Q_0_net, Y => Sum_1_net); 

AND3_1 : AND3 
      port map(A => AND3_0_Y, B => Q_2_net, C => Q_3_net, Y =>  
        AND3_1_Y); 

DFFC_Q_5_inst : DFFC 
      port map(CLK => Clock, D => Sum_6_net, CLR => INV_0_Y, Q =>  
        Q_5_net); 

XOR2_Sum_2_inst : XOR2 
      port map(A => AND2_1_Y, B => Q_1_net, Y => Sum_2_net); 

DFFC_Q_1_inst : DFFC 
      port map(CLK => Clock, D => Sum_2_net, CLR => INV_0_Y, Q =>  
        Q_1_net); 

DFFC_Q_2_inst : DFFC 
      port map(CLK => Clock, D => Sum_3_net, CLR => INV_0_Y, Q =>  
        Q_2_net); 

XOR2_Sum_3_inst : XOR2 
      port map(A => AND3_0_Y, B => Q_2_net, Y => Sum_3_net); 

XOR2_Sum_4_inst : XOR2 
      port map(A => AND2_2_Y, B => Q_3_net, Y => Sum_4_net); 

AND2_2 : AND2 
      port map(A => AND3_0_Y, B => Q_2_net, Y => AND2_2_Y); 

XOR2_Sum_5_inst : XOR2 
      port map(A => AND3_1_Y, B => Q_4_net, Y => Sum_5_net); 

DFFC_Q_4_inst : DFFC 
      port map(CLK => Clock, D => Sum_5_net, CLR => INV_0_Y, Q =>  
        Q_4_net); 

DFFC_Q_0_inst : DFFC 
      port map(CLK => Clock, D => Sum_1_net, CLR => INV_0_Y, Q =>  
        Q_0_net); 
--  software bug, not in use 
--    INV_Sum_0_inst : INV 
--      port map(A => Enable, Y => Sum_0_net); 
end DEF_ARCH; 
 
Entity comparator_50 

 Version: 6.0 Production 6.0.0.133 
library ieee; 
use ieee.std_logic_1164.all; 
library a500K; 
entity comparator_50 is  

port( DataA : in std_logic_vector(5 downto 0); AEB : out  
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        std_logic) ; 
end comparator_50; 
architecture DEF_ARCH of  comparator_50 is 

component NAND3 
        port(A, B, C : in std_logic := ‘U’; Y : out std_logic) ; 

end component; 
component AND3FTT 

        port(A, B, C : in std_logic := ‘U’; Y : out std_logic) ; 
end component; 
component AND3FFT 

        port(A, B, C : in std_logic := ‘U’; Y : out std_logic) ; 
end component; 

--  software bug: ANDTree_Data_2_net is not used 
--    signal Temp_0_net, Temp_1_net, ANDTree_Data_2_net : std_logic ; 

signal Temp_0_net, Temp_1_net : std_logic ; 
begin    
NAND3_AEB : NAND3 

      port map(A => Temp_0_net, B => Temp_1_net,  
      C => ‘1’, Y => AEB); 

AND3FTT_Temp_1_inst : AND3FTT 
      port map(A => DataA(3), B => DataA(4), C => DataA(5),  
      Y => Temp_1_net); 

AND3FFT_Temp_0_inst : AND3FFT 
      port map(A => DataA(0), B => DataA(2), C => DataA(1),  
      Y => Temp_0_net); 
end DEF_ARCH; 
 
Entity comparator_30 

 Version: 6.0 Production 6.0.0.133 
library ieee; 
use ieee.std_logic_1164.all; 
library a500K; 
entity comparator_30 is  

port( DataA : in std_logic_vector(5 downto 0); AEB : out  
        std_logic) ; 
end comparator_30; 
architecture DEF_ARCH of  comparator_30 is 

component AND3FTT 
        port(A, B, C : in std_logic := ‘U’; Y : out std_logic) ; 

end component; 
component NAND3 

        port(A, B, C : in std_logic := ‘U’; Y : out std_logic) ; 
end component; 

--  software bug: ANDTree_Data_2_net is not used 
--    signal Temp_0_net, Temp_1_net, ANDTree_Data_2_net : std_logic ; 

signal Temp_0_net, Temp_1_net : std_logic ; 
begin    
AND3FTT_Temp_0_inst : AND3FTT 

      port map(A => DataA(0), B => DataA(1), C => DataA(2), Y =>  
        Temp_0_net); 

NAND3_AEB : NAND3 
      port map(A => Temp_0_net, B => Temp_1_net, C => ‘1’, Y => AEB); 

AND3FTT_Temp_1_inst : AND3FTT 
      port map(A => DataA(5), B => DataA(4), C => DataA(3), Y =>  
        Temp_1_net); 
end DEF_ARCH; 
 
Entity i_reg_4ph_comp 
-- This module works well before August 
---- Updated on Sep 2 2004 
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-- Q1gate, Q1source, Q2gate, Q2source  Q1 and Q2 
-- Only modin is used, no IO_clock any more 
-- 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
entity i_reg_4ph_comp is 

Port ( modin : in std_logic; 
           comin : in std_logic_vector(3 downto 0); 
           sense_low : in std_logic_vector(3 downto 0); 
           I_chop : in std_logic_vector(3 downto 0); 
           over_I : in std_logic_vector(3 downto 0); 
           didtcomp : in std_logic_vector(3 downto 0); 
           enable : in std_logic; 
           MorG : in std_logic; 
           Q1: out std_logic_vector(3 downto 0); 
           Q2: out std_logic_vector(3 downto 0); 
           over_I_out : out std_logic; 
           do_sense_out : out std_logic_vector(3 downto 0); 
           do_sense_high : out std_logic_vector(3 downto 0); 
           didtout : out std_logic_vector(3 downto 0)); 
end i_reg_4ph_comp; 
architecture Behavioral of i_reg_4ph_comp is 
component ph_ckt_new is 

Port ( modin :     in std_logic;  --10KHz omm. 
         comin :     in std_logic;  --Gengerating Torque 
           sense_low :  in std_logic; --Current is zero 
           I_chop :        in std_logic; 
           over_I :        in std_logic; 
           I_off :           in std_logic; 
           enable :        in std_logic; 
           MorG :        in std_logic; 
           didtcomp:     in std_logic;  -- new input 
           Q1gate,Q2gate: out std_logic; 
           over_I_out :     out std_logic; 
           do_sense_low : out std_logic;  -- hanged from do_sense_out 
           do_sense_high, didtout: out std_logic  -- new outputs 
           ); 
end component ph_ckt_new; 
signal over_I_out_tmp: std_logic_vector(3 downto 0); 
signal I_off: std_logic; 
begin 
I_off<= over_I_out_tmp(0) or over_I_out_tmp(1) or over_I_out_tmp(2) or over_I_out_tmp(3); 
over_I_out<= I_off; 
U0: ph_ckt_new 
port map (modin=>modin, comin=>comin(0), sense_low=>sense_low(0), 
          I_chop=>I_chop(0), over_I=>over_I(0), I_off=>I_off, enable=>enable, MorG=>MorG, 
    didtcomp=>didtcomp(0),Q1gate=>Q1(0), Q2gate=>Q2(0), 
    over_I_out=>over_I_out_tmp(0), do_sense_low=>do_sense_out(0), 
    do_sense_high=>do_sense_high(0), didtout=>didtout(0)); 
U1: ph_ckt_new 
port map (modin=>modin, comin=>comin(1), sense_low=>sense_low(1), 
          I_chop=>I_chop(1), over_I=>over_I(1), I_off=>I_off, enable=>enable, MorG=>MorG, 
    didtcomp=>didtcomp(1), Q1gate=>Q1(1), Q2gate=>Q2(1), 
    over_I_out=>over_I_out_tmp(1), do_sense_low=>do_sense_out(1), 
    do_sense_high=>do_sense_high(1), didtout=>didtout(1)); 
U2: ph_ckt_new 
port map (modin=>modin, comin=>comin(2), sense_low=>sense_low(2), 
          I_chop=>I_chop(2), over_I=>over_I(2), I_off=>I_off, enable=>enable, MorG=>MorG, 
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    didtcomp=>didtcomp(2), Q1gate=>Q1(2), Q2gate=>Q2(2), 
    over_I_out=>over_I_out_tmp(2), do_sense_low=>do_sense_out(2), 
    do_sense_high=>do_sense_high(2), didtout=>didtout(2)); 
U3: ph_ckt_new 
port map (modin=>modin, comin=>comin(3), sense_low=>sense_low(3), 
          I_chop=>I_chop(3), over_I=>over_I(3), I_off=>I_off, enable=>enable, MorG=>MorG, 
    didtcomp=>didtcomp(3), Q1gate=>Q1(3), Q2gate=>Q2(3), 
    over_I_out=>over_I_out_tmp(3), do_sense_low=>do_sense_out(3), 
    do_sense_high=>do_sense_high(3), didtout=>didtout(3)); 
end Behavioral;  
 
Entity ph_ckt_new 
-- Built on Feb. 16, 2004 
-- included didt circuit in the logic subsystem in the MATLAB model 
-- signal MorG and Enable are set as regular Ios 
--  
-- Updated on Sep 2 2004 
-- Q1gate, Q1source, Q2gate, Q2source  Q1 and Q2 
-- only modin is used, no IO_clock any more 
-- 
-- Updated on Dec. 17 2004 
-- Inverted Q1 and Q2 in this module for level shifting 
-- 
-- Updated on Jan 31 2005 
-- Save fault SRFF is deleted to avoid the noice from over_I input 
-- 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
entity ph_ckt_new is 

Port ( modin :     in std_logic;  --10KHz omm. 
         comin :     in std_logic;  --Gengerating Torque 
           sense_low :  in std_logic; --Current is zero 
           I_chop :        in std_logic; 
           over_I :        in std_logic; 
           I_off :           in std_logic; 
           enable :        in std_logic; 
           MorG :        in std_logic;  -- used to avoid modulation at high speeds 
           didtcomp:     in std_logic;  -- new input 
           Q1gate,Q2gate:     out std_logic; 
           over_I_out :     out std_logic; 
           do_sense_low : out std_logic;  -- hanged from do_sense_out 
           do_sense_high, didtout: out std_logic  -- new outputs 
           ); 
end entity ph_ckt_new; 
architecture Behavioral of ph_ckt_new is 
signal and_1_output, and_2_output, and_3_output, and_4_output: std_logic; 
signal and_5_output, and_6_output: std_logic;   -- for the do_sense_high signal 
signal or_1_output,  or_2_output,  or_3_output: std_logic; 
signal comin_inv, sense_low_inv, I_chop_inv, I_off_inv, enable_inv: std_logic; 
signal sense_low_inv_hold: std_logic; 
signal Q1_temp,Q1,Q1_inv:std_logic; 
signal QT_temp, Q_I_chop, Q_I_chop_inv: std_logic; 
signal Q3_temp,Q3: std_logic;  -- for do_sense_high signal 
signal D1_temp,D1_inv_temp,D1_temp_inv,D2_temp,D2_inv_temp:std_logic; 
signal Q1on, Q2on, IO_clock_inv: std_logic; 
signal sr1: std_logic_vector(2 downto 0); 
signal sr2: std_logic_vector(2 downto 0); 
signal sr3: std_logic_vector(2 downto 0); -- for do_sense_high signal 
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signal pre_state,next_state: std_logic; 
signal pre_state_3,next_state_3: std_logic;  -- for do_sense_high RSFF 
 
begin 
sr1<=and_2_output & comin & pre_state; --combinational logic operation. 
Sr3<=comin_inv & and_5_output & pre_state_3;   -- for do_sense_high  
-------------- do inverse----------------------- 
comin_inv<=not comin; 
sense_low_inv<=not sense_low; 
I_chop_inv<=not I_chop; 
I_off_inv<=not I_off; 
enable_inv<=not enable; 
-------------- describe “and” gates------------- 
and_1_output<=modin and comin_inv and Q1 and MorG; -- added MorG to avoid modulation at high 
speeds 
and_2_output<=sense_low_inv_hold and comin_inv; 
and_3_output<=Q_I_chop; -- MorG and Q_I_chop; 
and_4_output<=Q_I_chop_inv; --MorG and Q_I_chop_inv; 
and_5_output<=I_chop and comin;   --- for do_sense_high signal 
and_6_output<=Q3 and comin;   --- for do_sense_high signal 
do_sense_high<= and_6_output;   --- for do_sense_high signal 
Q1on<=or_1_output and or_2_output and enable and I_off_inv;  
Q2on<=or_1_output and or_3_output and enable and I_off_inv;  
-------------- describe “or” gates-------------- 
or_1_output<=and_1_output or comin; 
or_2_output<=and_3_output or I_chop_inv; 
or_3_output<=and_4_output or I_chop_inv; 
-------additional part------------- 
Q1gate<= not Q1on; 
Q2gate<= not Q2on; 

 Added on Jan. 31 2005 to avoid the noise of the over_I input 
over_I_out<= over_I; 
-------------- describe Flip Flops-------------- 
srff1_comb: process (sr1) is 
begin 
case sr1 is 
when”000” => Q1_temp<=’0’; next_state<=’0’; 
when”001” => Q1_temp<=’1’; next_state<=’1’; 
when”010” => Q1_temp<=’0’; next_state<=’0’; 
when”011” => Q1_temp<=’0’; next_state<=’0’; 
when”100” => Q1_temp<=’1’; next_state<=’1’; 
when”101” => Q1_temp<=’1’; next_state<=’1’; 
when”110” => Q1_temp<=’0’; next_state<=’0’; 
when”111” => Q1_temp<=’0’; next_state<=’0’; 
when others=> Q1_temp<=’1’; next_state<=’0’; 
end case; 
Q1<=Q1_temp; 
do_sense_low<=Q1; 
end process srff1_comb; 
srff1_dff: process(modin) is 
begin 
if (rising_edge(modin)) then 
pre_state<=next_state; 
end if; 
end process srff1_dff 
--------------- T Flip Flop--------------------- 
TFF: process (I_chop_inv, enable) is 
begin 
   if (enable = ‘0’) then 
     QT_temp <=’0’;  
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   else 
   if (rising_edge(I_chop_inv)) then   
      QT_temp <= not QT_temp; 
       end if; 
 end if; 
      Q_I_chop<=QT_temp; 
      Q_I_chop_inv<= not QT_temp; 
end process TFF; 
-------------- save fault S R Flip Flop-------- 
-- srff2_comb: process (sr2) is 
-- begin 
-- case sr2 is 
-- when”000” => Q2_temp<=’0’; next_state_2<=’0’; 
-- when”001” => Q2_temp<=’1’; next_state_2<=’1’; 
-- when”010” => Q2_temp<=’0’; next_state_2<=’0’; 
-- when”011” => Q2_temp<=’0’; next_state_2<=’0’; 
-- when”100” => Q2_temp<=’1’; next_state_2<=’1’; 
-- when”101” => Q2_temp<=’1’; next_state_2<=’1’; 
-- when”110” => Q2_temp<=’0’; next_state_2<=’0’; 
-- when”111” => Q2_temp<=’0’; next_state_2<=’0’; 
-- when others=> Q2_temp<=’0’; next_state_2<=’0’; 
-- end case; 
-- Q2<=Q2_temp; 
-- over_I_out<=Q2; 
-- end process srff2_comb; 
-- srff2_dff: process(modin) is 
-- begin 
-- if (rising_edge(modin)) then 
-- pre_state_2<=next_state_2; 
-- end if; 
-- end process srff2_dff; 
--------------- zero order holder and delay realized with 2 D flip flops------ 
Holder: process (modin) is 
begin 
if (rising_edge(modin)) then 
D1_temp<=sense_low_inv; 
end if; 
end process Holder; 
Delay: process (modin) is 
begin 
if (rising_edge(modin)) then 
D2_temp<=D1_temp; 
end if; 
sense_low_inv_hold<= D2_temp; 
end process Delay; 
----------------------RSFF for do_sense_high signal------- 
srff3_comb: process (sr3) is 
begin 
case sr3 is 
when”000” => Q3_temp<=’0’; next_state_3<=’0’; 
when”001” => Q3_temp<=’1’; next_state_3<=’1’; 
when”010” => Q3_temp<=’0’; next_state_3<=’0’; 
when”011” => Q3_temp<=’0’; next_state_3<=’0’; 
when”100” => Q3_temp<=’1’; next_state_3<=’1’; 
when”101” => Q3_temp<=’1’; next_state_3<=’1’; 
when”110” => Q3_temp<=’0’; next_state_3<=’0’; 
when”111” => Q3_temp<=’0’; next_state_3<=’0’; 
when others=> Q3_temp<=’0’; next_state_3<=’0’; 
end case; 
Q3<=Q3_temp; 
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end process srff3_comb; 
srff3_dff: process(modin) is 
begin 
if (rising_edge(modin)) then 
pre_state_3<=next_state_3; 
end if; 
end process srff3_dff; 
--------------process for didtout signal--------------- 
didtoutprocess: process (comin, didtcomp) 
begin 
if(comin=’1’) then 
   didtout<=didtcomp; 
else 
   didtout<=’0’; 
end if; 
end process didtoutprocess; 
end architecture Behavioral; 
 
Entity interfact_fpga_dsp_3 
-- The McBSP1 are used as GPIO, Timer1 is used as GPIO too. 
-- A potential problem is that the clock signal frequency should be higher than the  
-- frequency of the output signals 
-- It works well according to simulation 
-- It worked will before August 2004 
-- 
-- Updated on Sep 2 2004 
-- IorV(1 downto 0) added 
--  
-- Updated on Feb 4 2005 
-- for the decoder, 3 select lines are set as FSR, CLKX, FSX 
-- only one input is set CLKR so that only one output is assigned for one time 
-- 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
entity interface_fpga_dsp_3 is 

Port ( A : in std_logic; 
           B : in std_logic; 
           I : in std_logic;  -- because I appear once per resolution, not useful for position 
           Enable : out std_logic; 
     MorG: out std_logic; 
           omm. : out std_logic_vector(3 downto 0); 
           IorV : out std_logic_vector(1 downto 0); 
           over_I : in std_logic; 
           I_sense : in std_logic_vector(3 downto 0); 
     clock: in std_logic;   -- to dffs for holding output signals 
           Timer1 : in std_logic; -- select line 1 of mux  
           DX : in std_logic;     -- select line 0 of mux 
           DR : out std_logic;    -- output line 1 of mux 
           CLKS : out std_logic;  -- output line 0 of mux 
           CLKR : in std_logic;--  input line 1 of decoder 
           FSR: in std_logic;  --  input line 0 of decoder 
           CLKX : in std_logic;-- select line 1 of decoder 
           FSX : in std_logic);-- select line 0 of decoder 
end interface_fpga_dsp_3; 
architecture Behavioral of interface_fpga_dsp_3 is 
signal A_tmp, B_tmp,I_tmp, reset_tmp, over_I_tmp, clock_tmp: std_logic; 
signal I_sense_tmp: std_logic_vector(3 downto 0); 
signal Timer1_tmp, DX_tmp, CLKR_tmp, FSR_tmp, CLKX_tmp, FSX_tmp: std_logic; 
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signal Enable_tmp, MorG_tmp,DR_tmp, CLKS_tmp: std_logic; 
signal omm._tmp: std_logic_vector(3 downto 0); 
signal IorV_tmp: std_logic_vector(1 downto 0); 
-- signal dir: std_logic; -- output of the counter, direction of the rotation 
-- signal counter_out: std_logic_vector(1 downto 0); -- outputs of the counter 
signal muxsel: std_logic_vector(1 downto 0); 
signal decodersel: std_logic_vector(2 downto 0); 
begin 
-- PAD instantiation // will be realized in Actel Libero software 
-- input PADs 
 Timer1_tmp  <= Timer1; 
 DX_tmp   <= DX; 
 A_tmp   <= A; 
 B_tmp   <= B; 
 I_tmp      <= I; 
 -- reset_tmp  <= reset; 
 over_I_tmp  <= over_I; 
 clock_tmp  <= clock; 
 I_sense_tmp(0) <= I_sense(0); 
 I_sense_tmp(1) <= I_sense(1); 
 I_sense_tmp(2) <= I_sense(2); 
 I_sense_tmp(3) <= I_sense(3); 
 CLKR_tmp <= CLKR; 
 FSR_tmp <= FSR; 
 CLKX_tmp <= CLKX; 
 FSX_tmp <= FSX; 

 output PADs 
Enable <= Enable_tmp; 
 MorG <= MorG_tmp; 
 DR <= DR_tmp; 
 CLKS <= CLKS_tmp; 
 omm. <= omm._tmp; 
 IorV <= IorV_tmp; 

 select lines for the mux and decoder 
muxsel<= Timer1_tmp & DX_tmp; 
decodersel<= FSR_tmp & CLKX_tmp & FSX_tmp; 
mux8x2: process (muxsel, I_sense_tmp, over_I_tmp,A_tmp,B_tmp, I_tmp) is 
begin 
case muxsel is 
when “11” => CLKS_tmp <= I_sense_tmp(3); DR_tmp <= I_sense_tmp(2); 
when “10” => CLKS_tmp <= I_sense_tmp(1); DR_tmp <= I_sense_tmp(0); 
when “01” => CLKS_tmp <= over_I_tmp;     DR_tmp <= I_tmp; 
when “00” => CLKS_tmp <= A_tmp; DR_tmp <= B_tmp; 
when others => CLKS_tmp <= A_tmp; DR_tmp <= B_tmp; 
end case; 
end process; 
decoder: process (clock_tmp) is 
begin 
if (rising_edge(clock_tmp)) then 
case decodersel is 
when “111” => IorV_tmp(1) <= CLKR_tmp;  
when “110” => IorV_tmp(0) <= CLKR_tmp;  
when “101” => Enable_tmp  <= CLKR_tmp;  
when “100” => MorG_tmp   <= CLKR_tmp;  
when “011” => omm._tmp(3) <= CLKR_tmp;  
when “010” => omm._tmp(2) <= CLKR_tmp;  
when “001” => omm._tmp(1) <= CLKR_tmp;  
when “000” => omm._tmp(0) <= CLKR_tmp;  
when others => MorG_tmp<= CLKR_tmp; 
end case; 
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end if; 
end process; 
 
end Behavioral; 
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Appendix II. C/C++ code in DSP 

 
Only the C files programmed by the author are presented here. The header files and the files generated 
by the code composer studio are not presented here.  
 
Main.c 
/********************************************************************/ 
/* final program for the THS1206 EVM connected to an C6711 DSK.        */ 
/*                                                                */ 
/* The following jumper setting should be used:                           */ 
/* Daughter Card Style THS1206 EVM:                                */ 
/*    J1  1-2     /  J2  1-2   /  J3  2-5  /  J4  open               */ 
/*    J5  open    /  J6  open  /  J7  1-2  /  J10 closed              */ 
/*    J11 open    /  J12 2-3   /  J13 1-2                             */ 
/* Supply voltage from DSP, CLK from Timer 0, Input AINP              */ 
/* AD converter address: 0xA0020000                                 */ 
/*                                                                 */ 
/* The following jumper setting should be used:                         */ 
/* Modular THS1206 EVM:                                             */ 
/*    W1, W2, W3, W9, W10 – Closed                                   */ 
/*    W11 – Open                                                    */ 
/*    W5, W6 – 1-2                                                   */ 
/* Supply voltage from DSP, CLK from Timer 0, Input AINP           */ 
/* AD converter address: 0xA0024000                               */ 
/* DSP/BIOS II and CSL used                                       */ 
/*                                                               */ 
/* This program runs sensorless control for SRM                    */ 
/* Copy right 2005 Jinhui Zhang, Arthur Radun,                     */ 
/* Power Electronics Lab, University of Kentucky                   */ 
/********************************************************************/ 
  
/* include files for data converter support */ 
#include “dc_conf.h” 
#include “t1206_fn.h” 
#include “mcbsp.h” 
#include “Rockymotin.h” 
#include “lookuptable.h” 
#include “variables.h” 
/* include files for DSP/BIOS               */ 
#include <std.h>   
#include <swi.h> 
#include <log.h>                           
 
/* include files for chip support library   */ 
#include <csl.h> 
#include <csl_legacy.h> 
#include <csl_irq.h> 
#include <csl_timer.h> 
 
#define phase 4 /* size of data buffer */  
#define dataSaveSize 1000  // size of data saved 
#define savestep 10 /* data save step based on the sampling time */ 
 
/* function prototypes */ 
TIMER_HANDLE init_timer0(unsigned int period); 
void init_dsk(void); 
void wait(void); 
void GetSignals_McBSP1(void); 
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float errorlow(int); 
float errorhigh(void); 
void SenseTheta(void); 
void Commutator(int); 
void MicroController(void); 
float flux(float theta, float phi); 
void motor_init(void); 
void storeData(void); 
void sendOutComm(void); 
void DoCalculationFunc(void); 
void calculatePhaseIV(void); 
 
/* DSP/BIOS objects, created with the Config Tool               */ 
extern LOG_Obj trace;            
extern far SWI_Obj SwiStartConversion;   
// extern far SWI_Obj SwiDoCalculation;   
 
int posR=0; 
short gtheta_short[phase]; 
float gtheta[phase]; 
short phaseI_short[phase], phaseLamda_short[phase]; 
float phaseI[phase], phaseLamda[phase], phaseLamdah[phase]; 
int I_sense[phase]; 
int omm.[phase], omm._act[phase]; 
int omm.[cDataSize],commHighA[cDataSize]; 
int omm[cDataSize],commHighB[cDataSize]; 
int commC[cDataSize],commHighC[cDataSize]; 
int commD[cDataSize],commHighD[cDataSize]; 
float galpha[phase]; 
float thetah,omegah,error; 
int thetahInt; 
int observer, startRecord, sensorless, highSpeed; 
int Enable, MorG, IorV0, IorV1, Enable_act,MorG_act,IorV0_act,IorV1_act; 
float time; 
int matrixCnt, savei; 
float gthetaMatrix0[dataSaveSize]; 
float gthetaMatrix1[dataSaveSize]; 
float gthetaMatrix2[dataSaveSize]; 
float gthetaMatrix3[dataSaveSize]; 
 
float galphaMatrix0[dataSaveSize]; 
float galphaMatrix1[dataSaveSize]; 
float galphaMatrix2[dataSaveSize]; 
float galphaMatrix3[dataSaveSize]; 
 
int IsenseMatrix0[dataSaveSize]; 
int IsenseMatrix1[dataSaveSize]; 
int IsenseMatrix2[dataSaveSize]; 
int IsenseMatrix3[dataSaveSize]; 
 
int commMatrix0[dataSaveSize]; 
int commMatrix1[dataSaveSize]; 
int commMatrix2[dataSaveSize]; 
int commMatrix3[dataSaveSize]; 
 
float phaseLamdaMatrix0[dataSaveSize]; 
float phaseLamdaMatrix1[dataSaveSize]; 
float phaseLamdaMatrix2[dataSaveSize]; 
float phaseLamdaMatrix3[dataSaveSize]; 
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float phaseLamdahMatrix0[dataSaveSize]; 
float phaseLamdahMatrix1[dataSaveSize]; 
float phaseLamdahMatrix2[dataSaveSize]; 
float phaseLamdahMatrix3[dataSaveSize]; 
 
float phaseIMatrix0[dataSaveSize]; 
float phaseIMatrix1[dataSaveSize]; 
float phaseIMatrix2[dataSaveSize]; 
float phaseIMatrix3[dataSaveSize]; 
 
int posRMatrix[dataSaveSize]; 
float posEMatrix[dataSaveSize]; // angle error 
float thetahMatrix[dataSaveSize]; 
float omegahMatrix[dataSaveSize]; 
float errorMatrix[dataSaveSize]; 
float timeMatrix[dataSaveSize]; 
float runtimeMatrix[dataSaveSize]; 
 
LgUns time1,time2,time3,time4; 
float runtime,runtime2,runtime3; 
 
void main(void) 
{ 

TIMER_HANDLE hTimer; 
 

/* CSL_Init – required for the CSL functions of the driver  */ 
CSL_Init(); 

 
/* initialize the DSK and timer 0      */ 
init_dsk();                      
hTimer = init_timer0(ADC1_TIM_PERIOD); 
init_McBSP1(); 
init_timer1(); 

     
/* configure the data converter        */ 
dc_configure(&Ths1206_1); 

     
motor_init(); 

     
/* start the timer                     */ 
TIMER_Start(hTimer);   

 
/* Let’s go... DSP/BIOS takes control and will generate     */ 
/* a “PeriodFunc” software interrupt every second.          */ 

} 
 
/****************************************************************/ 
/* BlockReady                                                   */ 
/* This function will be called when the dc_rblock routine is      */ 
/* finished. It posts a DoCalculation software interrupt.          */ 
/****************************************************************/ 
void BlockReady1206(void *pDC) 
{ 
//    LOG_printf(&trace, “1206 Interrupt”); 
//    SWI_post(&SwiDoCalculation); 
DoCalculationFunc(); 
} 
void BlockReady1206_V(void *pDC) 
{ 

calculatePhaseIV(); 
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} 
void BlockReady1206_I(void *pDC) 
{ 

if(IorV1_act!=0) 
  {set_IorV1(0); wait(); IorV1_act=0;} 
 if(IorV0_act!=1) 
  {set_IorV0(1); wait(); IorV0_act=1;} 

dc_rblock(&Ths1206_1, phaseLamda_short, phase, BlockReady1206_V); 
} 
 
/****************************************************************/ 
/* SwiStartConversionFunc                                        */ 
/* This software omm. oni starts a new conversion using the        */ 
/* dc_rblock function.                                           */ 
/****************************************************************/ 
void StartConversionFunc() 
{ 
 time1=CLK_gethtime();  
//    dc_rblock(&Ths1206_1, gtheta_short, phase, &BlockReady1206); 
 // Get current singals 
 if (observer==0)  // inductance profile based observer is chosen 
 { 
 /****************************************************************/ 
 /* Inductance Profile Based Observer                              */ 
 /* Only gtheta is measured                                       */ 
 /****************************************************************/ 
 if(IorV1_act!=0) 
  {set_IorV1(0); wait(); IorV1_act=0;} 
 if(IorV0_act!=0) 
  {set_IorV0(0); wait(); IorV0_act=0;} 

dc_rblock(&Ths1206_1, gtheta_short, phase, &BlockReady1206); 
} 
else if (observer==1)  // torque producing current based observer is chosen 
{ 

 /****************************************************************/ 
 /* Torque producing current Based Observer                        */ 
 /* Now phase current is measured and then phase voltage           */ 
 /****************************************************************/ 
 if(IorV1_act!=1) 
  {set_IorV1(1); wait(); IorV1_act=1;} 
 if(IorV0_act!=0) 
  {set_IorV0(0); wait(); IorV0_act=0;} 

dc_rblock(&Ths1206_1, phaseI_short, phase,BlockReady1206_I); 
} 

} 
 
void DoCalculationFunc() 
{ 
 int i,value[phase]; 

for (i=0; i<phase; i++)  
{ 

        value[i] = gtheta_short[i] & 0x0FFF; 
        gtheta[i] = 2.778-(6.78E-4)*value[i];  
        // gtheta[i] = (Vref_plus-Vref_minus-(Vref_plus-Vref_minus)*value/4096)*5.0/3.6;  

}  // the signal conditioning board changed the analog signals’ polarity 
      // at the reference (Vref_plus+Vref_minus)/2 
      // The offset is 1.5 V for the phase currents 
      // times 5.0 to convert it into ampere 
      // DC gain of the low pass filter is 3.6 
 GetSignals_McBSP1(); 
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 MicroController(); 
 sendOutComm(); 
 if (startRecord==1) storeData(); 
// time2=CLK_gethtime();  
// runtime=(time2-time1)*4/150; 
} 
 
void calculatePhaseIV() 
{ 
 int valueI[phase]; 
 int valueLamda[phase]; 
    valueI[0] = phaseI_short[0] & 0x0FFF; 
    phaseI[0] = (2.0-2.0*valueI[0]*2.441E-4)*25.2;  
    valueLamda[0] = phaseLamda_short[0] & 0x0FFF; 
    phaseLamda[0] = (2-2*valueLamda[0]*2.441E-4-0.05)*0.01884*0.72; 
 
    valueI[1] = phaseI_short[1] & 0x0FFF; 
    phaseI[1] = (2.0-2.0*valueI[1]*2.441E-4)*25.2;  
    valueLamda[1] = phaseLamda_short[1] & 0x0FFF; 
    phaseLamda[1] = (2-2*valueLamda[1]*2.441E-4-0.018)*0.01884*0.8; 
 
    valueI[2] = phaseI_short[2] & 0x0FFF; 
    phaseI[2] = (2.0-2.0*valueI[2]*2.441E-4)*25.2;  
    valueLamda[2] = phaseLamda_short[2] & 0x0FFF; 
    phaseLamda[2] = (2-2*valueLamda[2]*2.441E-4-0.05)*0.01884*1.0; 
 
    valueI[3] = phaseI_short[3] & 0x0FFF; 
    phaseI[3] = (2.0-2.0*valueI[3]*2.441E-4)*25.2;  
    valueLamda[3] = phaseLamda_short[3] & 0x0FFF; 
    phaseLamda[3] = (2-2*valueLamda[3]*2.441E-4-0.045)*0.01884*0.8; 
 
 GetSignals_McBSP1(); 
 MicroController(); 
 sendOutComm(); 
 if (startRecord==1) storeData(); 
 time2=CLK_gethtime();  

runtime=(time2-time1)*4/150; 
} 
 
/****************************************************************/ 
/* PeriodFunc                                                    */ 
/* The function will be called every second by DSP/BIOS and       */ 
/* posts a StartConversion SWI to start a new conversion.          */ 
/****************************************************************/ 
void PeriodFunc() 
{                                  
 time+=tsamplem; 
// if (time>100) time=0; 

SWI_post(&SwiStartConversion); 
} 
 
 
void wait() 
{ 
int i; 
 for (i=0;i<5;i++) ; 
} 
 
/********************************************************************************/ 
/* ChannelA()                          */ 
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/* The function will to called every time with a pulse signal form A channel       */ 
/*                                                         */ 
/********************************************************************************/ 
void ChannelA(void) 
{ 
// int pcr; 
if (posR==5) startRecord=1; 
 
/* 
pcr=get_McBSP1_CLKS_DR(); 
if ((pcr & 0x00000010)==0x00000010) posR +=1; 
 else if ((pcr & 0x00000010)==0x00000000) posR -=1; 
  else LOG_printf(&trace, “read McBSP1 error”);  
*/ 
posR+=1;  
if (posR==180)  posR =0; 
// else if (posR==-1) posR=179; 
 
///////////////// To test the motor’s symmetry //// 03-24-05 
 
// THS1206Conversion(); 
// MicroController(Vpower,over_I,gtheta,I_sense,didtd, omm.,thetah,&omegah, 
//     &Icomm, &Enable, &MorG,&error); 
// storeData(); 
 
} 
 
/********************************************************************************/ 
/* ChannelI()                          */ 
/* The function will to called every time with a pulse signal form I channel       */ 
/* To omm. onize the real rotor position                        
 */ 
/********************************************************************************/ 
void ChannelI(void) 
{ 
 
posR = 122; 
 
} 
 
/****************************************************************/ 
/* GetSignals_McBSP1           */ 
/* The function will be called by SwiGetSignals      */ 
/* It gets signals through McBSP1         */ 
/****************************************************************/ 
void GetSignals_McBSP1(void) 
{ 
 int pcr; 
// Get circuit signals  
 put_muxsel(1, 1);  // get I_sense[3] and I_sense[2] 
 wait(); 
 pcr=get_McBSP1_CLKS_DR(); 
 if ((pcr & 0x00000040)==0x00000040) I_sense[3]=1; 
  else if ((pcr & 0x00000040)==0x00000000) I_sense[3]=0; 
   else LOG_printf(&trace, “read McBSP1 error”); 
 if ((pcr & 0x00000010)==0x00000010) I_sense[2]=1; 
  else if ((pcr & 0x00000010)==0x00000000) I_sense[2]=0; 
   else LOG_printf(&trace, “read McBSP1 error”); 
    
 put_muxsel(1, 0);  // get I_sense[1] and I_sense[0] 



 136

 wait(); 
 pcr=get_McBSP1_CLKS_DR(); 
 if ((pcr & 0x00000040)==0x00000040) I_sense[1]=1; 
  else if ((pcr & 0x00000040)==0x00000000) I_sense[1]=0; 
   else LOG_printf(&trace, “read McBSP1 error”); 
 if ((pcr & 0x00000010)==0x00000010) I_sense[0]=1; 
  else if ((pcr & 0x00000010)==0x00000000) I_sense[0]=0; 
   else LOG_printf(&trace, “read McBSP1 error”); 
} 
 
void sendOutComm(void) 
{ 
 
if ((Enable==1)  && (time>=0.2)) 
// if (Enable==1) 
 { 
      
 if ( omm.[3]!= omm._act[3]) 
  {set_comm3( omm.[3]); wait(); omm._act[3]= omm.[3];} 
 if ( omm.[2]!= omm._act[2]) 
  {set_comm2( omm.[2]); wait(); omm._act[2]= omm.[2];} 
 if ( omm.[1]!= omm._act[1]) 
  {set_comm1( omm.[1]); wait(); omm._act[1]= omm.[1];} 
 if ( omm.[0]!= omm._act[0]) 
  {set_comm0( omm.[0]); wait(); omm._act[0]= omm.[0];} 
 } 
 
} 
 
/*  MicroController Program   */ 
 
void MicroController(void) 
{ 
SenseTheta(); 
Commutator(thetahInt); 
/* 
if (observer==0) 
Commutator(thetahInt);   // using posR to do sensored control, thetahInt do sensorless 
else if (sensorless==1) 
Commutator(thetahInt); 
else 
Commutator(posR); 
*/ 
} 
 
void SenseTheta(void) 
{ 
if (observer==0) 
{ 
 omegah += error*H2*tsamplem;           
 thetah += (omegah+error*H1)*tsamplem;  
 while(thetah<0) 
  thetah+=pi; 
 while(thetah>pi) 
  thetah-=pi; 
 thetahInt=(int)(thetah*57.325); // 180/pi 
 error=errorlow(thetahInt);   // calculate error after thetah to make sure it’s in rang(0 pi) 
 
} 
else  
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{ 
 omegah += error*H4*tsamplem;           
 thetah += (omegah+error*H3)*tsamplem;  
 while(thetah<0) 
  thetah+=pi; 
 while(thetah>pi) 
  thetah-=pi; 
 thetahInt=(int)(thetah*57.325); // 180/pi 
 error=errorhigh(); // flux method 
 
// if(omegah>10) sensorless=1;   // high speed using sensorless control 
// else if (omegah<10) sensorless=0; // low speed using sensored control 
  
} 
 
// added on for testing the response time 
/* 
if(time>5.0) 
{ 
  startRecord=1; 
  if (matrixCnt==100) 
 thetah-=15*3.14/180; 
} 
*/ 
 
if(omegah>100) observer=1; 
else if (omegah<50) observer=0; 
if(omegah>100) highSpeed=1; 
else if (omegah<80) highSpeed=0; 
// if (omegah>10) startRecord=1; 
} 
     
 
float errorlow(int alphaInt) 
{ 
float error; 
 galpha[0]=gmatrix0[alphaInt]; 
 galpha[1]=gmatrix1[alphaInt]; 
 galpha[2]=gmatrix2[alphaInt]; 
 galpha[3]=gmatrix3[alphaInt]; 
 
// galpha[0]=gmatrix0[posR]; 
// galpha[1]=gmatrix1[posR]; 
// galpha[2]=gmatrix2[posR]; 
// galpha[3]=gmatrix3[posR]; 
 
if (I_sense[0]==0)  gtheta[0]=galpha[0]; 
if (I_sense[1]==0)  gtheta[1]=galpha[1]; 
if (I_sense[2]==0)  gtheta[2]=galpha[2]; 
if (I_sense[3]==0)  gtheta[3]=galpha[3]; 
 
error=galpha[0]*gtheta[1]-galpha[1]*gtheta[0]+ 
      galpha[1]*gtheta[2]-galpha[2]*gtheta[1]+ 
      galpha[2]*gtheta[3]-galpha[3]*gtheta[2]+ 
      galpha[3]*gtheta[0]-galpha[0]*gtheta[3]; 
// Filter out the high amplitude noise 
// if (error>0.8) error=0.8; 
// else if(error<-0.8) error=-0.8; 
return (error); 
} 
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float errorhigh(void) 
{ 
int i; 
float errorh; 
float thetatemp[phase]; 
float temp=0; 
// thetatemp[0]=posR*0.017444; // actual angle 
thetatemp[0]=thetah;   // estimated angle 
thetatemp[1]=thetatemp[0]+0.7854; // 45 degree phase shift 
thetatemp[2]=thetatemp[1]+0.7854; 
thetatemp[3]=thetatemp[2]+0.7854; 
// thetatemp=thetah;   // estimated angle 
for (i=0;i<phase;i++) 
{  

if((I_sense[i]==0)&&( omm.[i]==1)) 
 { 
  // wrap the angle into -30 ~ 30 period 
  while(thetatemp[i] > 0.5236) 
   thetatemp[i] -= 1.0472; 
  while(thetatemp[i] < -0.5236) 
   thetatemp[i] += 1.0472; 
  phaseLamdah[i] = flux(thetatemp[i],phaseI[i]); 
  if(thetatemp[i]>=0) 
  temp += phaseLamdah[i]-phaseLamda[i]; 
  else 
  temp += phaseLamda[i]-phaseLamdah[i]; 
 } 
 else 
 phaseLamdah[i] = 0.0; 
} 
errorh=temp; 
return(errorh); 
} 
 
void Commutator(int alphaInt) 
{ 
if (highSpeed==0) 
{ 

omm.[0]= omm.[alphaInt]; 
omm.[1]= omm[alphaInt]; 
omm.[2]=commC[alphaInt]; 
omm.[3]=commD[alphaInt]; 

} 
else 
{ 

omm.[0]=commHighA[alphaInt]; 
omm.[1]=commHighB[alphaInt]; 
omm.[2]=commHighC[alphaInt]; 
omm.[3]=commHighD[alphaInt]; 

} 
} 
 
/********************************************************************************/ 
/* motor_init()                          */ 
/* The function will to called in the main function to initialize the motor       */ 
/* rotor position and initialize other variables                        */ 
/********************************************************************************/ 
void motor_init(void) 
{      
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 int i,j;      // j is used in the look up table generation program 
time=0;     // the real time 
omegah=0;    // the estimated rotor speed 
error=0;    // the error for the estimator 
thetah=qod*pi/180; // The rotor position for Phase A in radian 
observer=0;             // 0 inductance profile based observer, 1  flux control 
startRecord=0;   // not start until the motor starts moving (channelA is called) 
sensorless=1;   // 1=sensorless control, 0=sensored control 
highSpeed=0; 
matrixCnt=0; 
savei=1; 
// Initialize command signals 

 Enable=1; 
 MorG=1; 
 IorV1=0; 
 IorV0=0; 
 omm.[3]=0; 
 omm.[2]=0; 
 omm.[1]=0; 
 omm.[0]=0; 
  
 // Disable the current regulator 
 
 set_Enable(0);  
 wait();  
 Enable_act = 0; 
  
 set_MorG(MorG);  
 wait();   
 MorG_act = MorG; 
 
 set_IorV1(IorV1);  
 wait();  
 IorV1_act = IorV1; 
  
 set_IorV0(IorV0);  
 wait();  
 IorV0_act = IorV0; 
  
 set_comm3( omm.[3]);  
 wait();  
 omm._act[3] = omm.[3]; 
  
 set_comm2( omm.[2]);  
 wait();  
 omm._act[2] = omm.[2]; 
  
 set_comm1( omm.[1]); 
 wait();  
 omm._act[1] = omm.[1]; 
 
 set_comm0( omm.[0]);  
 wait();  
 omm._act[0] = omm.[0]; 
 
 // Enable the current regulator 
 set_Enable(Enable);  
 wait();  
 Enable_act = Enable; 
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// Give a current command, which is 0.619*4.5*5=14 Ampere  
/* DSS_spWrite(0x0000);  // cancelled to adjust the current command externally 04-04-05 
 
 Enable=1; 
 set_Enable(Enable);  
 wait();  
 Enable_act = 1; 
*/  
// Initialize the rotor position to the aligned position with Phase A 
/* 
 set_comm0(1);  
 wait();  
 omm._act[0] = 1; 
 
 waitlong(); 
  
 set_comm0(0);  
 wait();  
 omm._act[0] = 0; 
*/ 

posR=0;     // the actual rotor position 
     
// generate a look up table for the commutator 
for(i=0;i<cDataSize;i++) 
{ 
j=i; 
while(j<-30) 
 j +=60; 
while(j>30) 
 j -=60; 
if((j>=qon)&&(j<=qoff)) 
 omm.[i]=1; 
else 
 omm.[i]=0; 
if((j>=qon2)||(j<=qoff2)) 
 commHighA[i]=1; 
else 
 commHighA[i]=0; 
 
j=i+45; 
while(j<-30) 
 j +=60; 
while(j>30) 
 j -=60; 
if((j>=qon)&&(j<=qoff)) 
 omm[i]=1; 
else 
 omm[i]=0; 
if((j>=qon2)||(j<=qoff2)) 
 commHighB[i]=1; 
else 
 commHighB[i]=0; 
  
j=i+90; 
while(j<-30) 
 j +=60; 
while(j>30) 
 j -=60; 
if((j>=qon)&&(j<=qoff)) 
 commC[i]=1; 
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else 
 commC[i]=0; 
if((j>=qon2)||(j<=qoff2)) 
 commHighC[i]=1; 
else 
 commHighC[i]=0; 
  
j=i+135; 
while(j<-30) 
 j +=60; 
while(j>30) 
 j -=60; 
if((j>=qon)&&(j<=qoff)) 
 commD[i]=1; 
else 
 commD[i]=0; 
if((j>=qon2)||(j<=qoff2)) 
 commHighD[i]=1; 
else 
 commHighD[i]=0; 
} 
 
for(i=0;i<dataSaveSize;i++)  // initialize data save matries 

{ 
     gthetaMatrix0[i] = 0.0; 
  gthetaMatrix1[i] = 0.0; 
  gthetaMatrix2[i] = 0.0; 
  gthetaMatrix3[i] = 0.0; 
 
     galphaMatrix0[i] = 0.0; 
  galphaMatrix1[i] = 0.0; 
  galphaMatrix2[i] = 0.0; 
  galphaMatrix3[i] = 0.0; 
 
  thetahMatrix[i]  = 0.0; 
  omegahMatrix[i]  = 0.0; 
  errorMatrix[i]  = 0.0; 
  posRMatrix[i]  = 0; 
  posEMatrix[i]  = 0; 
 
  commMatrix0[i]  = 0.0; 
  commMatrix1[i]  = 0.0; 
  commMatrix2[i]  = 0.0; 
  commMatrix3[i]  = 0.0; 
 
  IsenseMatrix0[i] = 0; 
  IsenseMatrix1[i] = 0; 
  IsenseMatrix2[i] = 0; 
  IsenseMatrix3[i] = 0; 
 
  phaseLamdaMatrix0[i]= 0.0; 
  phaseLamdaMatrix1[i]= 0.0; 
  phaseLamdaMatrix2[i]= 0.0; 
  phaseLamdaMatrix3[i]= 0.0; 
   
  phaseLamdahMatrix0[i]= 0.0; 
  phaseLamdahMatrix1[i]= 0.0; 
  phaseLamdahMatrix2[i]= 0.0; 
  phaseLamdahMatrix3[i]= 0.0;  
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  phaseIMatrix0[i] = 0; 
  phaseIMatrix1[i] = 0; 
  phaseIMatrix2[i] = 0; 
  phaseIMatrix3[i] = 0; 
 
  runtimeMatrix[i] = 0; 
  timeMatrix[i]  = 0; 

} 
// End of initialization of the rotor  
} 
 
 
/********************************************************************************/ 
/* storeData()                          */ 
/* The function will store data every savestep*tsemplem seconds                 */ 
/********************************************************************************/ 
 
void storeData(void) 
{ 
if (matrixCnt<dataSaveSize) 
 if(savei>=savestep)  
 {  
   
  gthetaMatrix0[matrixCnt] = gtheta[0];  
  gthetaMatrix1[matrixCnt] = gtheta[1]; 
  gthetaMatrix2[matrixCnt] = gtheta[2]; 
  gthetaMatrix3[matrixCnt] = gtheta[3]; 
 
  galphaMatrix0[matrixCnt] = galpha[0];  
  galphaMatrix1[matrixCnt] = galpha[1]; 
  galphaMatrix2[matrixCnt] = galpha[2]; 
  galphaMatrix3[matrixCnt] = galpha[3]; 
 
  thetahMatrix[matrixCnt]  = thetah; 
  omegahMatrix[matrixCnt]  = omegah; 
  errorMatrix[matrixCnt]  = error; 
  posRMatrix[matrixCnt]  = posR; 
  posEMatrix[matrixCnt]  = thetah*57.325-posR; 
   
  commMatrix0[matrixCnt]  = omm.[0]; 
  commMatrix1[matrixCnt]  = omm.[1]; 
  commMatrix2[matrixCnt]  = omm.[2]; 
  commMatrix3[matrixCnt]  = omm.[3]; 
   
  IsenseMatrix0[matrixCnt] = I_sense[0]; 
  IsenseMatrix1[matrixCnt] = I_sense[1]; 
  IsenseMatrix2[matrixCnt] = I_sense[2]; 
  IsenseMatrix3[matrixCnt] = I_sense[3]; 
   
  phaseLamdaMatrix0[matrixCnt]= phaseLamda[0]; 
  phaseLamdaMatrix1[matrixCnt]= phaseLamda[1]; 
  phaseLamdaMatrix2[matrixCnt]= phaseLamda[2]; 
  phaseLamdaMatrix3[matrixCnt]= phaseLamda[3]; 
   
  phaseLamdahMatrix0[matrixCnt]= phaseLamdah[0]; 
  phaseLamdahMatrix1[matrixCnt]= phaseLamdah[1]; 
  phaseLamdahMatrix2[matrixCnt]= phaseLamdah[2]; 
  phaseLamdahMatrix3[matrixCnt]= phaseLamdah[3];  
   
  phaseIMatrix0[matrixCnt] = phaseI[0]; 
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  phaseIMatrix1[matrixCnt] = phaseI[1]; 
  phaseIMatrix2[matrixCnt] = phaseI[2]; 
  phaseIMatrix3[matrixCnt] = phaseI[3]; 
   
  runtimeMatrix[matrixCnt] = runtime; 
  timeMatrix[matrixCnt]  = time1; 
   
  matrixCnt += 1; 
  savei = 1; 
 } 
 else 
  savei += 1; 
// single sequence data 
/* 
else 
 {  
  matrixCnt=0;  
 } 
*/ 
} 
 
float flux(float theta, float phi) 
{ 
float theta_abs, phi_abs,thetatemp; 
float Lno, gf, Isatf, lamdam, lamdaf; 
 
theta_abs=fabs(theta); 
thetatemp=thetapf-theta_abs;  
phi_abs=fabs(phi); 
 
 if (theta_abs>thetapf) 
   {   
     Lno=LuL+(thetau-theta_abs)*4.1583E-4; 
//     Lno=LuL+((Lpo-LuL)/(thetau-thetapf))*(thetau-theta_abs); 
     return (Lno*phi_abs);  
   }  
 else 
   {   
//     gf= geff+go*(1-Rg*(thetapf-theta_abs)/pwf);  
     gf=0.0012-0.0023*thetatemp;  
//     Isatf= Bsat*(lfe+2*gf*u/uo)/(u*N) ; 
     Isatf= 2.3945+gf*9.5493E4 ; 
     if(phi_abs<Isatm) 
//         lamdam=lstk*STF*Rg*(thetapf-theta_abs)*u*N*N*phi_abs/(lfe+2*g*u/uo) ; 
         lamdam=0.0026*thetatemp*phi_abs; 
     else 
//         
lamdam=N*lstk*STF*Rg*(thetapf-theta_abs)*(uo*N*phi_abs+lfe*Bsat+uo*lfe*Hsat)/(lfe); 
         lamdam=thetatemp*(3.7699E-5*phi_abs+0.4514)*0.1406; 
     if(phi_abs<Isatf) 
//       lamdaf=lstk*STF*Rg*theta_abs*(u*N*N*phi_abs/(lfe+2*gf*u/uo)) ; 
         lamdaf=0.0012*theta_abs*(5.6549*phi_abs/(lfe+10000*gf)) ; 
     else 
//       lamdaf=N*lstk*STF*Rg*theta_abs*(uo*N*phi_abs+lfe*Bsat+uo*lfe*Hsat)/(lfe+2*gf) 
; 
       lamdaf=0.0353*theta_abs*(3.7699E-5*phi_abs+0.4514)/(lfe+2*gf); 
     return (lamdaf+lamdam); 
    } 
} 
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Mcbsp_functions.c 
 
 #include <c6x.h> 
 #include “c6x11dsk.h” 
 #include <csl.h> 
 #include <csl_legacy.h> 
 #include <csl_timer.h> 
 #include “mcbsp.h” 
 
#define SP1_SRGR_V   0x00000000 
#define SP1_SPCR_V   0x00000000 
#define SP1_PCR_V   0x00003f0c  // DX,CLKR,FSR,CLKX,FSX are outputs 
          // CLKS, DR are inputs 
          // use with FPGA chip on the current 
          // regulator board. 
          // initialize enable =0 
 
#define SP1_PCR_V   0x00003000  // use to test optical encoder signals 
          // A->FSR, B->CLKX, I->CLKR 
          // A_fpga-> CLKS,  B_fpga->DR; 
 
           
#define SP1_PCR_V   0x00003f0b  // use with FPGA chip, <CLKS DR>=<c1, c0>, 
                                        //              <Enable, MorG>=<clkx,fsx> 
 
// PCR description 
// 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Reserved 
// _______________|_______________|_______________|_______________| 
//  |15 | 14 | 13 | 12 | 11 | 10 |  9 |  8 |  7 |  6 |  5 |  4 |  3 |  2 |  1 |  0 |  
// |0  | 0  | 1  | 1  | 1  | 1  | 1 |  1 |  0 |  0 |  0 |  0 |  0 |  0 |  0 |  0 |  
// reserved   RIOEN   FSRM    CLKRM  CLKSSTAT DRSTAT   FSRP   CLKRP 
//         XIOEN   FSXM    CLKXM    res    DXSTAT   FSXP    CLKXP 
// when McBSP is used as GPIO, XIOEN and RIOEN should be ‘1’ both, 
// and XRST and RRST in SPCR register @ the 16th bit and the 0th bit 
// should be ‘0’ both. 
*/ 
/****************************************************************/ 
/* init_GPIO                                                    */ 
/* This initializes the McBSP                                     */ 
/****************************************************************/ 
 
void init_McBSP1(void) 
{ 
 * (UINT32 *) McBSP1_SRGR = (UINT32) SP1_SRGR_V;  
 * (UINT32 *) McBSP1_SPCR = (UINT32) SP1_SPCR_V; 
 * (UINT32 *) McBSP1_PCR  = (UINT32) SP1_PCR_V; 
 return; 
} 
 
void init_timer1(void) 
{ 
 TIMER_setDatOut(_TIMER_hDev1, 0); 
 return; 
} 
int get_McBSP0(void) 
{ 
 int pcr; 
 pcr = (int) ( * (UINT32 *) McBSP0_PCR ); 
 return (pcr); 
} 
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// McBSP 0 functions 
int get_McBSP0_CLKX(void) 
{ 
 int pcr; 
 pcr = (int) ( * (UINT32 *) McBSP0_PCR ); 
 pcr = pcr >> 1; 
 pcr = pcr & 0x00000001; 
 return (pcr); 
} 
int get_McBSP0_FSX(void) 
{ 
 int pcr; 
 pcr = (int) ( * (UINT32 *) McBSP0_PCR ); 
 pcr = pcr >> 3; 
 pcr = pcr & 0x00000001; 
 return (pcr); 
} 
int get_McBSP0_CLKR(void) 
{ 
 int pcr; 
 pcr = (int) ( * (UINT32 *) McBSP0_PCR ); 
 pcr = pcr >> 0; 
 pcr = pcr & 0x00000001; 
 return (pcr); 
} 
int get_McBSP0_FSR(void) 
{ 
 int pcr; 
 pcr = (int) ( * (UINT32 *) McBSP0_PCR ); 
 pcr = pcr >> 2; 
 pcr = pcr & 0x00000001; 
 return (pcr); 
} 
int get_McBSP0_DR(void) 
{ 
 int pcr; 
 pcr = (int) ( * (UINT32 *) McBSP0_PCR ); 
 pcr = pcr >> 4; 
 pcr = pcr & 0x00000001; 
 return (pcr); 
} 
int get_McBSP0_CLKS(void) 
{ 
 int pcr; 
 pcr = (int) ( * (UINT32 *) McBSP0_PCR ); 
 pcr = pcr >> 6; 
 pcr = pcr & 0x00000001; 
 return (pcr); 
} 
void put_McBSP0_CLKX(int clkxp) 
{ 
 if(clkxp==0) 
   * (UINT32 *) McBSP0_PCR  = (* (UINT32 *) McBSP0_PCR) & 0xfffffffd;  
 else 

• (UINT32 *) McBSP0_PCR  = (* (UINT32 *) McBSP0_PCR) | 0x00000002;  
} 
void put_McBSP0_FSX(int fsxp) 
{ 
 if(fsxp==0) 
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   * (UINT32 *) McBSP0_PCR  = (* (UINT32 *) McBSP0_PCR) & 0xfffffff7;  
 else 

• (UINT32 *) McBSP0_PCR  = (* (UINT32 *) McBSP0_PCR) | 0x00000008;  
} 
void put_McBSP0_DX(int dx_stat) 
{ 
 if(dx_stat==0) 
   * (UINT32 *) McBSP0_PCR  = (* (UINT32 *) McBSP0_PCR) & 0xffffffdf;  
 else 

• (UINT32 *) McBSP0_PCR  = (* (UINT32 *) McBSP0_PCR) | 0x00000020;  
} 
void put_McBSP0_CLKR(int clkrp) 
{ 
 if(clkrp==0) 
   * (UINT32 *) McBSP0_PCR  = (* (UINT32 *) McBSP0_PCR) & 0xfffffffe;  
 else 

• (UINT32 *) McBSP0_PCR  = (* (UINT32 *) McBSP0_PCR) | 0x00000001;  
} 
void put_McBSP0_FSR(int fsrp) 
{ 
 if(fsrp==0) 
   * (UINT32 *) McBSP0_PCR  = (* (UINT32 *) McBSP0_PCR) & 0xfffffffb;  
 else 

• (UINT32 *) McBSP0_PCR  = (* (UINT32 *) McBSP0_PCR) | 0x00000004;  
} 
 
// McBSP 1 functions 
int get_McBSP1_CLKX(void) 
{ 
 int pcr; 
 pcr = (int) ( * (UINT32 *) McBSP1_PCR ); 
 pcr = pcr >> 1; 
 pcr = pcr & 0x00000001; 
 return (pcr); 
} 
int get_McBSP1_FSX(void) 
{ 
 int pcr; 
 pcr = (int) ( * (UINT32 *) McBSP1_PCR ); 
 pcr = pcr >> 3; 
 pcr = pcr & 0x00000001; 
 return (pcr); 
} 
int get_McBSP1_CLKR(void) 
{ 
 int pcr; 
 pcr = (int) ( * (UINT32 *) McBSP1_PCR ); 
 pcr = pcr >> 0; 
 pcr = pcr & 0x00000001; 
 return (pcr); 
} 
int get_McBSP1_FSR(void) 
{ 
 int pcr; 
 pcr = (int) ( * (UINT32 *) McBSP1_PCR ); 
 pcr = pcr >> 2; 
 pcr = pcr & 0x00000001; 
 return (pcr); 
} 
int get_McBSP1_DR(void) 
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{ 
 int pcr; 
 pcr = (int) ( * (UINT32 *) McBSP1_PCR ); 
 pcr = pcr >> 4; 
 pcr = pcr & 0x00000001; 
 return (pcr); 
} 
int get_McBSP1_CLKS(void) 
{ 
 int pcr; 
 pcr = (int) ( * (UINT32 *) McBSP1_PCR ); 
 pcr = pcr >> 6; 
 pcr = pcr & 0x00000001; 
 return (pcr); 
} 
void put_McBSP1_CLKX(int clkxp) 
{ 
 if(clkxp==0) 
   * (UINT32 *) McBSP1_PCR  = (* (UINT32 *) McBSP1_PCR) & 0xfffffffd;  
 else 

• (UINT32 *) McBSP1_PCR  = (* (UINT32 *) McBSP1_PCR) | 0x00000002;  
} 
void put_McBSP1_FSX(int fsxp) 
{ 
 if(fsxp==0) 
   * (UINT32 *) McBSP1_PCR  = (* (UINT32 *) McBSP1_PCR) & 0xfffffff7;  
 else 

• (UINT32 *) McBSP1_PCR  = (* (UINT32 *) McBSP1_PCR) | 0x00000008;  
} 
void put_McBSP1_DX(int dx_stat) 
{ 
 if(dx_stat==0) 
   * (UINT32 *) McBSP1_PCR  = (* (UINT32 *) McBSP1_PCR) & 0xffffffdf;  
 else 

• (UINT32 *) McBSP1_PCR  = (* (UINT32 *) McBSP1_PCR) | 0x00000020;  
} 
void put_McBSP1_CLKR(int clkrp) 
{ 
 if(clkrp==0) 
   * (UINT32 *) McBSP1_PCR  = (* (UINT32 *) McBSP1_PCR) & 0xfffffffe;  
 else 

• (UINT32 *) McBSP1_PCR  = (* (UINT32 *) McBSP1_PCR) | 0x00000001;  
} 
void put_McBSP1_FSR(int fsrp) 
{ 
 if(fsrp==0) 
   * (UINT32 *) McBSP1_PCR  = (* (UINT32 *) McBSP1_PCR) & 0xfffffffb;  
 else 

• (UINT32 *) McBSP1_PCR  = (* (UINT32 *) McBSP1_PCR) | 0x00000004;  
} 
 
int get_McBSP1_CLKS_DR(void) 
{ 
 int pcr; 
 pcr = (int) ( * (UINT32 *) McBSP1_PCR ); 
 pcr = pcr & 0x00000050; 
 return (pcr); 
} 
int get_McBSP1_FSR_CLKX_CLKR(void) 
{ 
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 int pcr; 
 pcr = (int) ( * (UINT32 *) McBSP1_PCR ); 
 pcr = pcr & 0x00000007; 
 return (pcr); 
} 
void put_McBSP1_CLKR_FSR(int clkr, int fsr) 
{ 
 if(clkr==1) 
  if(fsr==1) 
   * (UINT32 *) McBSP1_PCR  = (* (UINT32 *) McBSP1_PCR) | 0x00000005;  
  else 

• (UINT32 *) McBSP1_PCR  = ((* (UINT32 *) McBSP1_PCR) | 0x00000001) & 
0xfffffffb ;  

 else 
  if(fsr==1) 
   * (UINT32 *) McBSP1_PCR  = ((* (UINT32 *) McBSP1_PCR) | 0x00000004) & 
0xfffffffe ;  
  else 

• (UINT32 *) McBSP1_PCR  = (* (UINT32 *) McBSP1_PCR) & 0xfffffffa ;  
} 
void put_McBSP1_CLKX_FSX(int clkx, int fsx) 
{ 
 if(clkx==1) 
  if(fsx==1) 
   * (UINT32 *) McBSP1_PCR  = (* (UINT32 *) McBSP1_PCR) | 0x0000000a;  
  else 

• (UINT32 *) McBSP1_PCR  = ((* (UINT32 *) McBSP1_PCR) | 0x00000002) & 
0xfffffff7 ;  

 else 
  if(fsx==1) 
   * (UINT32 *) McBSP1_PCR  = ((* (UINT32 *) McBSP1_PCR) | 0x00000008) & 
0xfffffffd ;  
  else 

• (UINT32 *) McBSP1_PCR  = (* (UINT32 *) McBSP1_PCR) & 0xfffffff5 ;  
} 
 
void put_muxsel(int timer1, int dx) 
{ 
 TIMER_setDatOut(_TIMER_hDev1, timer1); 
 put_McBSP1_DX(dx); 
} 
 
/* The last 4 digits of McBSP1_PCR are the values for 
 FSX  FSR  CLKX  CLKR 
The input of the encoder is CLKR, The select lines of the encoder are the other 3 
  --------- 
  | D  | -> IorV1 (111)  
  | E | -> IorV0  (110) 
   | C | -> Enable (101) 
  | O | -> MorG   (100) 
CLKR -> | D | -> Comm[3] -  phase 1 on the board (011) 
  | E | -> Comm[2] -  phase 1 on the board (010) 
  | R | -> Comm[1] -  phase 1 on the board (001) 
  |  | -> Comm[0] -  phase 1 on the board (000) 
  --------- 
  /\ /\ /\ 
  FSR   FSX 
     CLKX 
*/ 
void set_IorV1(int iorv1) 
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{ 
 if (iorv1==1) 
  * (UINT32 *) McBSP1_PCR  = (* (UINT32 *) McBSP1_PCR) | 0x0000000f;  
 else if (iorv1==0) 
  * T32 *) McBSP1_PCR  = ((* (UINT32 *) McBSP1_PCR) | 0x0000000e) & 0xfffffffe;  

•  return; 
} 
void set_IorV0(int iorv0) 
{ 
 if (iorv0==1) 
  * (UINT32 *) McBSP1_PCR  = ((* (UINT32 *) McBSP1_PCR) | 0x00000007) & 
0xfffffff7;  
 else if (iorv0==0) 
  * T32 *) McBSP1_PCR  = ((* (UINT32 *) McBSP1_PCR) | 0x00000006) & 0xfffffff6;
  

•  return; 
} 
void set_Enable(int Enable) 
{ 
 if (Enable==1) 
  * (UINT32 *) McBSP1_PCR  = ((* (UINT32 *) McBSP1_PCR) | 0x0000000d) & 
0xfffffffd;  
 else if (Enable==0) 
  * T32 *) McBSP1_PCR  = ((* (UINT32 *) McBSP1_PCR) | 0x0000000c) & 0xfffffffc;  

•  return; 
} 
void set_MorG(int morg) 
{ 
 if (morg==1) 
  * (UINT32 *) McBSP1_PCR  = ((* (UINT32 *) McBSP1_PCR) | 0x00000005) & 
0xfffffff5;  
 else if (morg==0) 
  * T32 *) McBSP1_PCR  = ((* (UINT32 *) McBSP1_PCR) | 0x00000004) & 0xfffffff4;
  

•  return; 
} 
void set_comm3(int comm omm. if (comm omm. 
  * (UINT32 *) McBSP1_PCR  = ((* (UINT32 *) McBSP1_PCR) | 0x0000000b) & 
0xfffffffb;  
 else if (comm omm. 
  * T32 *) McBSP1_PCR  = ((* (UINT32 *) McBSP1_PCR) | 0x0000000a) & 0xfffffffa;  

•  return; 
} 
void set_comm2(int comm omm. if (comm omm. 
  * (UINT32 *) McBSP1_PCR  = ((* (UINT32 *) McBSP1_PCR) | 0x00000003) & 
0xfffffff3;  
 else if (comm omm. 
  * (UINT32 *) McBSP1_PCR  = ((* (UINT32 *) McBSP1_PCR) | 0x00000002) & 
0xfffffff2;  
 return; 
} 
void set_comm1(int comm) 
{ 
 if (comm==1) 
  * (UINT32 *) McBSP1_PCR  = ((* (UINT32 *) McBSP1_PCR) | 0x00000009) & 
0xfffffff9;  
 else if (comm==0) 
  * (UINT32 *) McBSP1_PCR  = ((* (UINT32 *) McBSP1_PCR) | 0x00000008) & 
0xfffffff8;  
 return; 
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} 
void set_comm0(int comm) 
{ 
 if (comm==1) 
  * (UINT32 *) McBSP1_PCR  = ((* (UINT32 *) McBSP1_PCR) | 0x00000001) & 
0xfffffff1;  
 else if (comm==0) 
  * (UINT32 *) McBSP1_PCR  = (* (UINT32 *) McBSP1_PCR) & 0xfffffff0;  
 return; 
} 
 



 151

 Appendix III. The torque equations for the overlap case 
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Appendix IV. The parameters of the switched reluctance motor 

parameters value description 

Rshaft 0.306 inches The shaft radius 

Rry 0.846 inches The rotor yoke radius 

Rg 1.031 inches The distance from the center to the air gap 

Rsy 1.623 inches The stator yoke radius 

Rout 1.968 inches The outside radius 

g 0.009 inches The thickness of the air gap 

lstk 1.983 inches The stack lamination length 

Stf 0.9 The stacking factor 

θp 23.82o Rotor pole width in degree 

Bsat 1.6 tesla The saturation flux density 

μ 1000 μo The permeability of the unsaturated iron 

μ1 50 μo The permeability of the saturated iron 

P 1.2 hp The rated power output 

Ppeak 2 hp The peak power output 

ωmax 15,000 rpm The maximum rotor speed 

La 1.27 mH The inductance at the aligned position 

Lu 0.19 mH The inductance at the unaligned position 

Note:  

1. Since the manufacturer considers the parameters of the motor proprietary 

information, so the values shown here are measured or estimated and might 

not be accurate. 

2. Due to the inductance asymmetry, the inductance at the aligned and unaligned 

position is obtaind for phase A with a certain pair of rotor poles.  
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