
University of Kentucky University of Kentucky

UKnowledge UKnowledge

University of Kentucky Doctoral Dissertations Graduate School

2005

ELIMINATING THE POSITION SENSOR IN A SWITCHED ELIMINATING THE POSITION SENSOR IN A SWITCHED

RELUCTANCE MOTOR DRIVE ACTUATOR APPLICATION RELUCTANCE MOTOR DRIVE ACTUATOR APPLICATION

Jinhui Zhang
University of Kentucky

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Zhang, Jinhui, "ELIMINATING THE POSITION SENSOR IN A SWITCHED RELUCTANCE MOTOR DRIVE
ACTUATOR APPLICATION" (2005). University of Kentucky Doctoral Dissertations. 343.
https://uknowledge.uky.edu/gradschool_diss/343

This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been
accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/gradschool_diss
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

ABSTRACT OF DISSERTATION

Jinhui Zhang

The Graduate School

University of Kentucky

2005

ELIMINATING THE POSITION SENSOR IN A SWITCHED
RELUCTANCE MOTOR DRIVE ACTUATOR APPLICATION

ABSTRACT OF DISSERTATION

A dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in the

College of Engineering
at the University of Kentucky

By

Jinhui Zhang

Lexington, Kentucky

Director: Dr. Arthur V. Radun, Professor of Electrical engineering

Lexington, Kentucky

2005

Copyright © Jinhui Zhang 2005

ABSTRACT OF DISSERTATION

ELIMINATING THE POSITION SENSOR IN A SWITCHED
RELUCTANCE MOTOR DRIVE ACTUATOR APPLICATION

The switched reluctance motor (SRM) is receiving attention because of its merits:

high operating temperature capability, fault tolerance, inherent shoot-through preventing

inverter topology, high power density, high speed operation, and small rotor inertia. Rotor

position information plays a critical role in the control of the SRM. Conventionally,

separate position sensors, are used to obtain this information. Position sensors add

complexity and cost to the control system and reduce its reliability and flexibility.

In order to overcome the drawbacks of position sensors, this dissertation proposed

and investigated a position sensorless control system that meets the needs of an electric

actuator application. It is capable of working from zero to high speeds. In the control

system, two different control strategies are proposed, one for low speeds and one for high

speeds. Each strategy utilizes a state observer to estimate rotor position and speed and is

capable of 4 quadrant operation.

In the low speed strategy a Luenberger observer, which has been named the

inductance profile demodulator based observer, is used where a pulse voltage is applied

to the SRM’s idle phases generating triangle shaped phase currents. The amplitude of the

phase current is modulated by the SRM’s inductance. The current is demodulated and

combined with the output of a state observer to produce an error input to the observer so

that the observer will track the actual SRM rotor position. The strategy can determine the

SRM’s rotor position at standstill and low speeds with torques up to rated torque.

Another observer, named the simplified flux model based observer, is used for

medium and high speeds. In this case, the flux is computed using the measured current

and a simplified flux model. The difference between the computed flux and the measured

flux generates an error that is input to the observer so that it will track the actual SRM

rotor position. Since the speed ranges of the two control stragegies overlap, the final

control system is capable of working from zero to high speed by switching between the

two observers according to the estimated speed. The stability and performance of the

observers are verified with simulation and experiments.

KEYWORDS: Switched Reluctance Motor, Sensorless Control, Flux model, Real Time

Control, Actuator Application

ELIMINATING THE POSITION SENSOR IN A SWITCHED

RELUCTANCE MOTOR DRIVE ACTUATOR APPLICATION

By

Jinhui Zhang

 Director of Dissertation

 Director of Graduate Studies

RULES FOR THE USE OF DISSERTATION

Unpublished dissertations submitted for the Doctor’s degree and deposited in the

University of Kentucky are as a rule open for inspection, but are to be used only with

due regard to the rights of the authors. Bibliographical references may be noted, but

quotations of summaries of parts may be published only with the permission of the

author, and the usual scholarly acknowledgements.

Extensive copying or publication of the thesis in whole or in part requires also the

consent of the Dean of the Graduate School of the University of Kentucky.

A library that borrows this dissertation for use by its patrons is expected to secure the

signature of each user.

Name Date

DISSERTATION

Jinhui Zhang

The Graduate School
University of Kentucky

2005

ELIMINATING THE POSITION SENSOR IN A SWITCHED

RELUCTANCE MOTOR DRIVE ACTUATOR APPLICATION

DISSERTATION

A dissertation submitted in partial fulfillment of the

requirements for the degree of Doctor of Philosophy in the
College of Engineering

at the University of Kentucky

By
Jinhui Zhang

Lexington, Kentucky

Director: Dr. Arthur V. Radun, Professor of Electrical engineering

Lexington, Kentucky

2005

Copyright © Jinhui Zhang 2005

To my parents; Zhang, Senyou and Wang, Meifang, my wife, Li, Haoju, my sons, Leonald and Larry,

my sisters, Xijing and Jin’ge.

 iii

Acknowledgements

I would like to sincerely thank Dr. Arthur Radun for his financial support and

academic guidance since the fall semester, 2001. He exemplifies the high quality

scholarship to which I aspire. Next, I wish to thank the complete Dissertation

Committee, and the outside examiner, respectively, Dr. Jimmie J. Cathey, Dr. J.

Robert Heath, Dr. L. S. Stephens, and Dr. Alan T. Male. Each individual provided

great advice that guided me to successfully finish this work.

I thank Dr. YuMing Zhang for his support as the director of graduate studies,

Qiang Li and Xiaohu Feng for their support in the experiments. I also would like to

extend my thanks and gratitude to the staff working in the Department of Electrical

and Computer Engineering at the University of Kentucky for providing me with office

facilities all through the process of my doctoral studies.

Besides, I would like to thank my parents who have been supporting me from my

early age to get good education. I also would like to express my appreciation to my

wife for her sacrifice in taking care of my children and giving up the opportunity of

Ph.D study. My children are the source of my encouragement.

In addition to the above listed people, I also would like to thank all my friends in

the Electrical and Computer Engineering department, the Chinese Students and

Scholars Association, and the Lexington Chinese Christian Church for their

encouragement, support, and prayers.

 iv

Table of contents

Acknowledgements __ iii
Table of figures__ vii
Table of tables __ ix

Chapter 1 Introduction _____________________________________ 1

Chapter 2 Background _____________________________________ 4
2.1 SRM basics ___ 4

2.1.1 SRM structure __ 4
2.1.2 SRM flux linkage ___ 5
2.1.3 SRM torque __ 6
2.1.4 SRM inverter___ 9
2.1.5 SRM phase current ___ 10

2.2 An analytical model of the SRM _____________________________________ 11
2.2.1 The non-overlap case ___ 12
2.2.2 The overlap case ___ 14

2.3 A torque method to obtain the flux of SRM ____________________________ 16
2.3.1 Power losses __ 17

2.3.1.1 Eddy current loss and hysteresis loss ___________________________________ 17
2.3.1.2 Avoiding the loss induced measurement errors____________________________ 18

2.3.2 Obtaining flux from the static torque _____________________________________ 19
2.3.3 Comparing with the classic method ______________________________________ 21

2.3.3.1 The Classic method___ 21
2.3.3.2 The torque method ___ 23
2.3.3.3 Comparison between the torque method and the classic method ______________ 24

2.3.4 Applying the torque method to FEA ______________________________________ 25
2.3.4.1 The torque method applied to FEA _____________________________________ 25
2.3.4.2 An analytical model __ 25
2.3.4.3 Comparison between the experimental results, FEA results and the analytical model
 __ 26

Chapter 3 Simulation model and hardware implementation of the SRM
sensorless control __ 28

3.1 SRM sensorless control system simulation model in Matlab/Simulink ______ 28
3.1.1 The EMI filter ___ 28
3.1.2 Current Regulator __ 32
3.1.3 The software implementation block ______________________________________ 36

3.2 SRM sensorless drive system hardware implementation _________________ 38
3.2.1 Power Inverter___ 39
3.2.2 The current regulator board___ 40

3.2.2.1 Signal conditioning ___ 41
3.2.2.2 Low speed position demodulator ______________________________________ 41
3.2.2.3 Voltage integrator (flux generator) _____________________________________ 42
3.2.2.4 Voltage comparator ___ 43
3.2.2.5 FPGA implementation of current regulator logic __________________________ 44
3.2.2.6 The printed circuit board___ 47

3.2.3 DSP implementation __ 47

Chapter 4 Inductance profile demodulator based state observer
sensorless control __ 51

 v

4.1 Sensorless control review ___ 51
4.1.1 The first category, injected currents are used _______________________________ 51
4.1.2 The second category, the torque producing current is used_____________________ 54

4.1.2.1 Observer based sensorless control______________________________________ 54
4.1.2.2 Chopping current pattern based sensorless control _________________________ 55
4.1.2.3 Other methods using the torque producing currents ________________________ 56

4.2 Proposed control strategies ___ 56
4.3 The state observer___ 57
4.4 Error function definition ___ 59
4.5 System stability and performance of the observer ______________________ 64
4.6 The speed limitation of the inductance profile demodulator based observer _ 69

4.6.1 The time delay of the demodulator _______________________________________ 69
4.6.2 Sampling frequency limitation __ 72

4.7 Simulation results ___ 72
4.7.1 Zero speed simulation ___ 73
4.7.2 Medium speed operation ___ 74

4.8 Experiment results __ 76
4.8.1 Inductance asymmetry of the motor ______________________________________ 76
4.8.2 Starting process __ 79
4.8.3 Constant speed operation___ 80

4.9 Speed limitation __ 83
4.10 The torque drop __ 84
4.11 The rotor position resolution __ 87
4.12 Transient response __ 87

Chapter 5 A simplified flux model based state observer sensorless
control __ 90

5.1 A simplified flux model___ 90
5.1.1 Introduction of flux models___ 90
5.1.2 Breaking the simplified flux model into two cases ___________________________ 91

5.1.2.1 The case with no stator and rotor pole overlap ____________________________ 91
5.1.2.2 The overlap case ___ 92

5.1.3 Verifying the model with experiment measurement __________________________ 96
5.2 The simplified flux model based observer _____________________________ 97
5.3 The error function with the simplified model __________________________ 98
5.4 Stability and performance of the simplified flux model based observer ____ 100
5.5 Simulation results __ 101
5.6 Experimental results__ 103
5.7 Speed limitation ___ 106
5.8 Transient response ___ 107
5.9 Combination of the two strategies___________________________________ 109

Contributation and future research____________________________ 111

Appendices__ 114
Appendix I. VHDL code in the FPGA chip _________________________________ 114

 vi

Appendix II. C/C++ code in DSP ___ 130
Appendix III. The torque equations for the overlap case______________________ 151
Appendix IV. The parameters of the switched reluctance motor________________ 152

 vii

Table of figures
Figure 2.1 SRM structure and geometrical dimensions ..4
Figure 2.2 the SRM flux linkage...6
Figure 2.3 the SRM flux versus current at different rotor positions at 1° intervals obtained by FE
analysis..6
Figure 2.4 the SRM torque versus rotor position ..7
Figure 2.5 the total torque output vs rotor position ...8
Figure 2.6 the total torque output vs rotor position with a fault of phase A......................................8
Figure 2.7 the total torque output vs rotor position with a fault of phase A and B............................9
Figure 2.8 the SRM inverter..10
Figure 2.9 the SRM inverter working modes ..10
Figure 2.10 SRM phase current...11
Figure 2.11 the rotor position in the non-overlap case ..13
Figure 2.12 the approximated rectangular geometry in the non-overlap case.................................13
Figure 2.13 the contours of the main flux and the fringing flux ...15
Figure 2.14 the SRM phase circuit with losses ...18
Figure 2.15 the static model of SRM ..19
Figure 2.16 the one-phase inverter circuit used in the classic method ..21
Figure 2.17 the experimental set-up for the classic method..22
Figure 2.18 the voltage and current waveforms obtained at the aligned rotor position22
Figure 2.19 the flux loop and the adjusted flux curve...23
Figure 2.20 the set-up diagram for the torque method ..24
Figure 2.21 the experimental set-up for the torque method ..24
Figure 2.22 the measured flux obtained using the classic method (solid lines) and the torque
method (dashed lines) ...25
Figure 2.23 The predicted flux linked by an SRM phase obtained using FEA static torque (dashed
lines) and using an analytical model (solid lines) ...26
Figure 2.24 Torque versus the rotor position, experimental torque (dashed lines), FEA results
(dotted lines) and the analytical model results (solid lines) at the phase current equal to 10A, 20A,
30A, and 40A ..27
Figure 3.1 SRM simulation system in Matlab/Simulink ...29
Figure 3.2 the EMI filter circuit ..29
Figure 3.3 IPOW and IL waveforms in the EMI filter..32
Figure 3.4 the voltage comparators in the current regulator..33
Figure 3.5 the logic circuit of the current regulator...35
Figure 3.6 the current regulator’s digital input and output signals relative to the scaled phase
current ...36
Figure 3.7 the ideal and actual region of torque-producing current ..37
Figure 3.8 the two cases of the on and off angles ...37
Figure 3.9 the software implementation block structure ...38
Figure 3.10 the hardware implementation of the SRM sensorless control system..........................39
Figure 3.11 the bus bar assembly ..40
Figure 3.12 the experimental bus bar assembly ..40
Figure 3.13 the low pass filter and demodulator circuit ..42
Figure 3.14 the voltage integrator circuit ..43
Figure 3.15 the voltage comparator circuit ...44
Figure 3.16 the hestersis area of the voltage comparator ..44
Figure 3.17 the interface between DSP and FPGA ...45
Figure 3.18 the clock divider's register transfer level schematic...47
Figure 3.19 the current regulator board...48
Figure 3.20 the signal flow of the printed circuit board ..49
Figure 3.21 the flow chart of the program in DSP ..50
Figure 4.1 an example of the injected current and torque producing current..................................52
Figure 4.2 the classification of sensorless control strategies...53
Figure 4.3 the block diagram of the inductance profile demodulator based observer.....................58
Figure 4.4 the injected current...60

 viii

Figure 4.5 error function value versus the rotor position ..62
Figure 4.6 the error function value versus the rotor position with consideration of the torque
producing current ..63
Figure 4.7 the error function value versus the rotor position curves at different rotor position error,
-5, -4, -3, -2, -1, 1, 2, 3, 4, and 5 mechanical degrees ...63
Figure 4.8 the error function value average versus the rotor position error68
Figure 4.9 the Bode plot of the low pass filter function..70
Figure 4.10 the estimated and actual rotor position in degree of the zero speed simulation...........73
Figure 4.11 the estimated rotor speed of the zero speed simulation..73
Figure 4.12 the phase currents of all 4 phases of the zero speed simulation...................................74
Figure 4.13 the error function generated signal of the zero speed simulation.................................74
Figure 4.14 the estimated and actual rotor positions when the motor is running at 2000 rpm........75
Figure 4.15 the estimated rotor speed when the motor is turning at 2000 rpm75
Figure 4.16 the current of the 4 phases when the motor is turning at 2000 rpm76
Figure 4.17 the error function value versus time when the motor is running at 2000 rpm76
Figure 4.18 the electrical torque of the SRM when the motor is running at 2000 rpm...................77
Figure 4.19 the g(θ) asymmetry of the motor..77
Figure 4.20 the inductance profiles of the 4 phases based on the measured g(θ) profiles...............78
Figure 4.21 the error function value versus the rotor position at the rotor position error, 2 degrees
(error_2) and -2 degrees (error_n2) with the inductance asymmetry ..78
Figure 4.22 the estimated and actual rotor positions of the starting process...................................79
Figure 4.23 the estimated rotor position error during the starting process......................................80
Figure 4.24 the estimated rotor speed during the starting process ..80
Figure 4.25 the error function value during the starting process...81
Figure 4.26 the estimated and actual rotor positions at steady state..81
Figure 4.27 the estimated position error at steady state ..82
Figure 4.28 the estimated rotor speed at steady state ..82
Figure 4.29 the error function value..83
Figure 4.30 the current of a phase ...83
Figure 4.31 the speed limitation of the observer at tsample=600μs..85
Figure 4.32 the speed limitation of the observer at tsample=60μs..85
Figure 4.33 the estimated rotor position error at tsample=60μs in the speed limitation experiment ..86
Figure 4.34 the step response of the estimated and actual rotor speeds ..88
Figure 4.35 the estimated rotor position transient response ..88
Figure 4.36 the estimated rotor speed transient response..89
Figure 5.1 the ideal magnetization curve and piece wise linear curves ..93
Figure 5.2 the comparison of the simplified model to the experimental data97
Figure 5.3 the sensorless control system using the simplified model ...98
Figure 5.4 the error function based on the simplified flux model ...99
Figure 5.5 the average value of the error function versus the rotor position error100
Figure 5.6 the calculated flux linkage and the actual flux linkage in the simplified flux model
based observer sensorless control simulation with the SRM running at 190 rpm.........................102
Figure 5.7 the rotor position error versus time in the simplified flux model based observer
sensorless control simulation with the SRM running at 190 rpm..102
Figure 5.8 the experimental set-up of the simplified flux model based observer sensorless control
system using the simplified model ..103
Figure 5.9 the estimated flux linkage and the actual flux linkage for phase A in the sensorless
control experiment with the SRM operating at 190 rpm...104
Figure 5.10 the rotor position error versus time in the simplified flux model based observer
sensorless control experiment with the SRM operating at 190 rpm..105
Figure 5.11 the phase current at high speeds...105
Figure 5.12 the estimated rotor speed limitation of the simplified flux based observer................106
Figure 5.13 the estimated rotor position error of the simplified flux based observer107
Figure 5.14 the transient response of the rotor speed with H3=2 x 103 and H4=2 x 104................108
Figure 5.15 The transient response of the rotor speed with H3=2 x 106 and H4=2 x 106108
Figure 5.16 the estimated rotor speed with the combination of the two observers110
Figure 5.17 the error signal with the combination of the two observers110

 ix

Table of tables
Table 2.1 FEA predicted flux using the vector potential, using the FEA torque, and predicted by
the analytical model. ...27
Table 3.1 the conversion table of the current sensor HAW-20P..41
Table 3.2 the interface bit assignment ...45
Table 4.1 The torque output with different rotor position errors ...86
Table 4.2 the resolution of the estimated and actual rotor positions ...87

 1

Chapter 1 Introduction

The switched reluctance motor (SRM) drive is a relative newcomer to the motor

drive industry. The SRM is an electric motor in which torque is produced by the

tendency of its movable part to move to a position where the inductance of the excited

winding is maximized [1]. The SRM is considered as an alternative to conventional

motors in variable speed applications. High efficiency at rated load and low cost make

SRMs suitable to drive pumps, compressors, and fans. It is a good choice to be

customized for applications ranging from turbine starter/generators to electric cars to

washing machines because of its high power density and high efficiency [1]. Its phase

independence characteristic makes it fault tolerant for critical applications. It is being

investigated for various industrial and military applications, including electronic

power steering and anti-lock braking systems in conventional vehicles and the main

propulsion unit for electric/hybrid vehicles, aircraft engine starters and fuel pumps

[2]. SRMs can be developed to meet the requirements of systems from a few watts to

hundreds of kilowatts. The existing commercial applications include laboratory

centrifuges, variable speed drives, slide door operators, screw air compressors,

washing machines, food processors, air conditioning, vacuum cleaning systems, and

roll door systems.

The first recognizable SRM was built by Davidson as a traction drive for an

electric locomotive in 1838. But due to its poor performance it was not widely

applied. Being driven with modern power electronics and using electronic controls,

SRMs can achieve remarkably better performance. The stepper motor, invented and

patented in the 1920’s by C. L. Walker, included many features of modern veriable

reluctance (VR) stepper motors and therefore of the SRM. Belsord and Hoft in 1971

and 1972 described many of the essential features of the modern SRM, with electronic

commutation positively synchronized with rotor position [3]. The first reference to the

name “switched reluctance” was made by S.A.Nasar in a paper in the IEE

Proceedings in 1969, but it was used to describe a rudimentary switched reluctance

machine [4]. Dr. Lawrenson and his colleagues connected the term switched

reluctance with the modern form of the SRM. The term became popular from the

1980s onwards, through the efforts of the first commercial exploiters of the

technology, Switched Reluctance Drives Ltd., which is located in the north of

 2

England and a part of Emerson Electric Co. The machines are alternatively known as

variable reluctance motors (VRM), reflecting the origins of the technology being

derived from VR stepper motors. It is also called an electronically commutated

reluctance (ECR) motor [1] to emphasize the character of its commutator. Another

name of the SRM is brushless reluctance motor that underlines the fact that SRM is

brushless.

The SRM has several advantages over conventional motors.

1) Efficient, it maintains high efficiency over wide speed and load ranges.

2) Quick start, the fact that there is no winding, commutator or permanent

magnets on its rotor, and there are no brushes on its stator, along with its

salient rotor poles make the SRM’s rotor inertia less than that of its

conventional peers so that it can accelerate more quickly.

3) Low cost, simple construction allows low manufacturing cost. Its stator and

rotor are built up from a stack of salient pole laminations. There is no

winding mounting cost for the rotor.

4) Wide speed range, it does not have a brush commutator mechanical speed

limit, no rotor winding, and no rotor magnets so it can run up to high speeds

with no specific mechanical arrangement. It also can run at low speeds and

zero speed providing full rated torque.

5) Four quadrant operation, it can run forward or backward in either motoring

or generating mode.

6) Shape adaptable, it may be designed as a pancake, or long to match available

space [5].

7) Fault tolerant, its unique inverter topology prevents its inverter from

experiencing an inverter shoot-through failure. In each leg of the inverter,

there is a phase winding in between the two switches preventing

shoot-through.

8) Sensorless, SRM control is possible without position sensors. The rotor

position information can be obtained from the electrical parameters of the

phases because of the large inductance change and flux change during an

electrical period of rotor rotation.

The SRM also has some disadvantages.

1) The SRM requires a small air gap to maximize its power density which

makes it more difficult to manufacture. It is also a source of inductance

 3

asymmetry.

2) The position sensor is a fragile part of the SRM control system. In some

situations, position sensors are not allowed to be used. For instance, sensor

wires are prohibited in hermetically sealed compressors. Sensorless control

is expected to solve this problem.

3) Potential cost of the control electronics is high. But the cost is decreasing

with the development of electronic technologies.

4) The torque output inherently changes with rotor position. Since the torque

produced by each phase is pulse shaped, the sum of the torque generated by

all phase is not generally smooth. It is possible to make the torque smoother

with a more complex control.

5) Acoustic noise, induced by the time varying phase current which deforms

the stator yoke with time, can be severe. Good mechanical construction can

reduce this problem.

6) The design of the SRM’s electromagnetic interference (EMI) filter is

challenging because the inverter induces high ac harmonics in the DC input

to the inverter.

The SRM can be rotary or linear, and the rotor can be interior or exterior. The

windings may be excited separately or together depending on the phase number of the

motor and the torque requirement.

 4

Chapter 2 Background

2.1 SRM basics

2.1.1 SRM structure

The SRM consists of stator and rotor laminations, both with double salient poles.

The SRM can be made with different number of phases, for example, 1-phase,

2-phase, 3-phase, 4-phase, and even more phases for different applications. Each

phase is wound with alternating magnetic polarity on symmetrically located stator

poles. The rotor has no winding or magnets. Due to the symmetry of the phases, there

is often negligible mutual inductance between them. The excitation of a phase

magnetizes both the stator and the rotor. This produces a torque, causing the rotor to

align its poles with the poles of the excited stator. Thus, sequential phase excitation

causes rotor motion, which synchronously aligns the rotor poles with the excited

phases.

The section profile of a 4-phase SRM is shown in Figure 2.1. The four phases are

named A, B, C and D respectively. In the figure, the rotor is at the aligned position

with phase A. This 4-phase 8/6 (# of stator poles / # of rotor poles) SRM was used in

this dissertation.

Figure 2.1 SRM structure and geometrical dimensions

 5

Several dimensions labeled in Figure 2.1 will be used in the dissertation. Among

them are:

Rshaft the shaft radius;

Rry the rotor yoke radius;

Rg the rotor pole radius, i.e. the distance from the rotor center to the air

gap;

Rsy the stator yoke radius;

Rout the outside radius of the stator;

There are two important dimensions that are not shown in the figure. They are:

g the air gap, i.e. the distance between the stator pole and the rotor pole

when they are aligned;

lstk the length of the lamination stack, in the direction perpendicular to the

page;

Stf the lamination stacking factor which is the fraction of the lamination

stack length occupied by iron;

2.1.2 SRM flux linkage

The magnetic flux density tends to take the route that has lower magnetic

reluctance. Thus the field produces a force that drags the rotor towards the aligned

rotor position of an excited phase. Sequentially exciting the phases brakes or drives

the rotor continuously. The flux linkage calculated by finite element analysis (FEA)

when the rotor is at 10 mechanical degrees from the aligned position with phase A is

shown in Figure 2.2. The current direction of phase A is also shown in the figure. The

two poles of phase A are on the top and the bottom, as shown in Figure 2.1. The flux

tends to drag the rotor towards the aligned position of phase A in this case.

The flux linkage versus phase current curve family is shown in Figure 2.3. It is

obtained by finite element analysis. The curves are plotted for every mechanical

degree from the unaligned rotor position (-30° for this 4-phase SRM) to the aligned

rotor position (0°), respectively from the bottom to the top. The aligned position is

defined as the rotor position where any pair of rotor poles is exactly aligned with the

stator poles of interest, for instance, the rotor position related to phase A in Figure 2.1.

The unaligned position is the rotor position where the inter-polar axis of the rotor is

aligned with the stator poles of interest, for example, the rotor position related to

phase C in Figure 2.1. At the aligned position, because of the small air gap, the iron

 6

saturates at high currents. At the unaligned position, due to its large air gap, the iron is

not susceptible to magnetic saturation. The SRM is designed to make the iron saturate

at high currents in order to maximize the energy conversion.

Figure 2.2 the SRM flux linkage

Flux vs current

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 5 10 15 20 25 30 35 40

current (A)

flu
x

(W
eb

er
)

Figure 2.3 the SRM flux versus current at different rotor positions at 1° intervals

obtained by FE analysis

2.1.3 SRM torque

The flux linkage tends to take the route that has the lowest reluctance, and this

tendency produces a torque. The torque is a function of the phase current and the rotor

position. There is no torque at the aligned position, but there is restoring toque that

 7

tends to return the rotor towards the aligned position at other rotor positions. The

aligned rotor position is a stable equilibrium. At the unaligned position, the torque is

also zero because it is at the minimum inductance. If the rotor is displaced to either

side of the unaligned position, there is a toque that tends to displace it still further

until it rotates to the closest aligned position. The unaligned position is an unstable

equilibrium.

A family of static torque curves for different constant currents calculated by FEA

for the 4-phase SRM used in this research is shown in Figure 2.4. In the figure, the

torque curves for each of the 4 phases correspond to constant phase currents equal to

10, 20, 30, and 40 amperes. If the phases are energized at the rotor positions at which

the torque is positive, the total torque output is positive and keeps driving or braking

the rotor depending on the direction of rotor rotation. The total torque output in this

case is shown in Figure 2.5.

Figure 2.4 the SRM torque versus rotor position

 The total torque output versus the rotor position with a fault of phase A is shown

in Figure 2.6. It is zero when the rotor position is at the aligned position with regard to

phase B, in this case, 15 degrees. The total torque output versus the rotor position with

a fault of phase A and phase B is shown in Figure 2.7. The torque is zero at the rotor

positions from the unaligned position of phase D to the aligned position of phase C.

 8

This fact shows that the 4 phase SRM has inherent problem to work at zero speed for

any position with rated torque and a fault of one phase or two phases.

Figure 2.5 the total torque output vs rotor position

Figure 2.6 the total torque output vs rotor position with a fault of phase A

 9

2.1.4 SRM inverter

The SRM inverter used in this research is shown in Figure 2.8. It has 4 legs for

the 4-phase SRM. Each inverter leg has two power electronic switches and two

diodes. The two switches and the two diodes of phase A are named Q1, Q2, D1, and

D2 respectively, as shown in Figure 2.8.

Figure 2.7 the total torque output vs rotor position with a fault of phase A and B

When both switches, Q1 and Q2 are on, the winding phase current increases and

the winding is being charged. The equivalent schematic for this mode is shown in

Figure 2.9a. When Q1 or Q2 is off, D1 or D2 respectively will conduct the remaining

current This is called free-wheeling mode. In this mode one diode and one switch are

on essentially shorting the winding. The flux keeps constant ideally in this mode and

the current changes the slowest in this mode. At zero speed the current is ideally

constant though the current actually decreases slowly due to the winding’s resistance

and the voltage drops across the inverter semiconductors. At higher speeds the SRM’s

back EMF will reduce the current when motoring and increase the current when

generating. The equivalent schematic of the freewheeling mode is shown in Figure

2.9b. When both of the switches are turned off and there is current in the winding,

both diodes will conduct current. This mode is called the discharging model. Now the

voltage across the winding is the reverse of the power supply voltage. The power

 10

supply discharges the winding through the two diodes. The equivalent circuit

schematic for the discharging mode is shown in Figure 2.9c. The phase current is

controlled by sequencing the inverter through these three modes.

Q1

Q2

D1

D2

phA phB phC phD

Figure 2.8 the SRM inverter

a b c

Figure 2.9 the SRM inverter working modes

2.1.5 SRM phase current

 It is desirable to control the SRM’s phase current to a constant value during the

torque-producing period of time, as shown in Figure 2.10. First the phase current is

increased to the desired constant current level called the commanded current before

the rotor reaches the torque-producing region. This is accomplished by putting the

inverter into the charging mode. Because of the SRM’s low inductance before the

rotor and stator poles overlap, the phase current rises up quickly in the charging mode.

After the current reaches the commanded current determined by the commanded

torque, the inverter goes to either the freewheeling mode (motoring) or the

discharging mode to decrease the current. Once the current is less than the

 11

commanded current by a predetermined amount, the inverter goes back to the

charging mode to increase the current again. This procedure is continued until the

rotor is close to the end of the torque-producing region, after which the inverter is put

into the discharging mode to reduce the phase current to zero rapidly to avoid

producing the opposite torque.

Unaligned
Position

Inductance
profile

l

Aligned
Position

Rotor
Position

Phase current

Torque-producing
Region

Command
current

Figure 2.10 SRM phase current

2.2 An analytical model of the SRM

To model the SRM the flux linked by a phase must be determined from which

other machine properties like torque, inductance and back EMF can be computed.

Different methods can be used from FEA to curve fitting, from truncated Fourier

series to exponential functions. In the simulation system that this dissertation uses, an

analytical flux model is used. It is constructed by considering two cases according to

the rotor position. The first case, termed the overlap case, consists of those rotor

positions for which a rotor pole overlaps with the stator pole of interest. In the second

case, namely the non-overlap case, the stator pole under consideration does not have

 12

any angular extent that overlaps with a rotor pole.

In the non-overlap case, it is assumed that the inductance is independent of

current. There is only fringing flux and iron saturation is negligible. But in the overlap

case, iron saturation needs to be considered and the total flux consists of both a main

flux and a fringing flux.

The non-overlap case is explained in more detail in [6], while the overlap case is

described in more detail in [7]. The basic results from these two references are

introduced here because they are used as the SRM model of the simulation system in

Matlab/Simulink.

2.2.1 The non-overlap case

The geometry of the SRM in this case is shown in Figure 2.11. The stator poles of

phase A do not have any overlapped area with any rotor poles. The actual SRM

geometry can be approximated with the unwrapped rectangular geometry in Figure

2.12. The dimensions lr1 and lr2 are equal if the rotor is at the unaligned position

relative to the phase A stator pole and are unequal otherwise. The parameter lr is the

total horizontal length of the rotor yoke between the two neighbor poles.

The flux linked by a phase in this case is divided into two parts. One part is

contributed by the part of the magnetic field generated by the winding that goes from

the stator pole to the rotor through the rotor slot between the two rotor poles. The

other part is contributed by the part of the magnetic field generated by the winding

that that returns through the stator slot. To obtain the contribution by the rotor, the

vector potential A is introduced and the boundary conditions of the rectangular region

between the rotor poles are defined. Then the basic magneto static theories are applied

to solve the flux linked by the phase due to the magnetic field that goes to the rotor.

The flux linked by a phase (λpr), contributed by the rotor, in terms of the phase

current (IΦ) is

()
φ

ππ

ππ

μλ I
n

lr
nhrn

lr
lr
nlr

lr
lr
nlr

llN
npar
nser

odd
rstkpopr ∑

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

+
⎟
⎠
⎞

⎜
⎝
⎛

⋅=
tanh

sinsin

4
2

2

2

1

1

2 2-1

where nser is the number of pole windings in series and npar is the number of pole

 13

windings in parallel, Np is the number of winding turns per pole, μo is the

permeability of free space, nodd is the odd integers from one to infinity.

Figure 2.11 the rotor position in the non-overlap case

Rotor Iron

Stator Iron

Winding

lr

lr 1 lr2

pw

hr
X0

Yhs

Figure 2.12 the approximated rectangular geometry in the non-overlap case

The starting point for finding the field in the stator slot is the approximate

geometry in Figure 2.12. Like the rotor case, the stator slot also forms a rectangular

box. The field actually has to be found in both stator slots on either side of the stator

pole. Since the basic geometry is the same for both of these slots, the field solution

only has to be obtained for one slot and then the same solution is applied to the other

[6].

In [6], the stator contribution to the unaligned flux is:

+
⎩
⎨
⎧ −

⋅
= ⋅

23
22 2

2 lwcsxhscsy
lwhs

IlN
npar
nser stkp

ps
φλ

 14

() +⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛+∑

∞

= ⋅1
2

2

sinsinhcosh
n

n
ls
nlw

ls
nhs

lwhsn
ls

ls
nhsash ππ

π
π

⎭
⎬
⎫
⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛+∑

∞

=1

sincos
n

n
ls
nlw

nlw
ls

ls
nlwasp π

π
π 2-2

where ls is the length of the stator slot in x direction, hs is the height of the slot, lw is

the length of the winding in x direction, ashn and aspn are the Fourier coefficients of

the solution given in [6].

Thus the total phase flux in the non-overlap case is

),(),(),(, φφφφ θλθλθλ iii psprno += 2-3

2.2.2 The overlap case

In the overlap case, the flux linked by a phase is broken into two parts, , one due

to the main field called the main flux and the other due to the fringing field called the

fringing flux. The major difference between these two fluxes is that their contour

paths have different air gaps. The main flux is computed using a contour that passes

through the small air gap that is between the rotor pole and the stator pole where they

overlap. The fringing flux is computed using a contour that passes thorugh the greater

air gap between the rotor yoke and the stator pole, as shown in Figure 2.13.

The main flux contribution, including the effect of iron saturation, to the total flux

linked by a phase is [7]

⎥
⎥

⎦

⎤
⎟
⎠
⎞

⎜
⎝
⎛++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ +

⎟
⎠
⎞

⎜
⎝
⎛ +

−
=⎟⎠

⎞⎜
⎝
⎛

2
2

2
1

1

,

,

2

21
1

,

parparp

satm

p

satm

p

satm

parmFe

mFe

gw
om

n
I

n
I

N
Bl

N
Bl

N
Bl

n
I

l
g

g
l

g
RpI

φφ

φ
φ

μμ

μ
θλθλ

 2-4

where

 tfstk
p

osero slNn ⋅⋅ ⋅⋅=
2

2

μλ

 15

Here mFel , is one half of the total length of the main flux contour in the iron and g is

the air gap. The number of turns and the current in the winding around each of the two

stator poles that make up the phase are Np and IФ respectively. μ is the magnetic

permeability of the iron, pw is the stator pole width, and satB is the flux density when

the iron is saturated. The iron is characterized by μ and satB .. The angle θ is taken

to be zero at the aligned position.

Figure 2.13 the contours of the main flux and the fringing flux

The fringing flux is found by simply substituting the effective fringing flux air

gap, fg , [7] for the main flux air gap g and substituting the area of the fringing flux

path for the area of pole overlap. Thus the fringing flux is

⎥
⎥

⎦

⎤
⎟
⎠
⎞

⎜
⎝
⎛++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ +=⎟⎠

⎞⎜
⎝
⎛

2
2

2
1

1

,

2

21,

parparp

satf

p

satf

p

satf

parfFe

f

f

g
of

n
I

n
I

N
Bl

N
Bl

N
Bl

n
I

l
g

g
RI

φφ

φ
φ

μμ

μ
θλθλ

 2-5

In the equation,

 () frfFef gll 1,1 ++= μ and () frfFef gll 1,2 −−= μ

 16

where fFel , is a half of the total length of the fringing flux contour in iron.

The total flux linked by an SRM phase in the overlap case is simply the sum of

the main flux and the fringing flux linked by that phase.

),(),(),(, φφφφ θλθλθλ III fmov += 2-6

The main flux is given by (2-4) and the fringing flux is given by (2-5).

The flux over a full period of rotor position is

)(),(

)(),(),(

,

,

overlapnonor
R
pI

overlapor
R
pII

g

w
no

g

w
ov

−>

≤=

θθλ

θθλθλ

φφ

φφφφ

 2-7

2.3 A torque method to obtain the flux of SRM

Because of its salient poles and the fact that iron saturation plays a critical role in

its operation, it is difficult to model the SRM precisely [8]. Ultimately it is necessary

to measure the flux linked by a phase of the SRM to predict its performance and to

verify model results. Typically a pulse voltage is applied to one phase of the SRM

with its rotor locked at a fixed rotor position. As the current in the phase increases the

phase current is measured and the phase voltage is integrated to obtain the flux as a

function of current. This process is repeated at different rotor positions to obtain a

family of flux curves for different rotor positions. If first a positive voltage pulse is

applied to the phase to increase the current and then a negative voltage pulse is

applied to return the current to zero, it is found that the increasing and decreasing flux

curves are not equal and a loop occurs, because of both iron and copper losses. The

flux loop resulting from the losses incurred during the measurement complicates

determining the phase flux linkage curves, which should be lossless.

There is an alternative “torque method” to measure the flux linked by a phase that

does not need a correction for losses. It applies a dc current to the SRM’s phase

instead of the pulse voltage normally used, to avoid the iron losses. The output torque

is measured instead of the phase voltage so that the results do not depend on the

 17

copper losses. The static torque curves of the SRM are measured versus phase current

at a fixed rotor position and the process is then repeated for different rotor positions.

Then this data, a measurement of the unaligned inductance, and conservation of

energy are used to compute the loss independent flux linked by the SRM’s phase. The

same approach can be used to compute the SRM’s flux leakage from finite element

analysis (FEA) computed static torque data, simplifying the computation of the

nonlinear flux linkage curves.

2.3.1 Power losses

 It is shown below how the power losses (including iron losses and copper loss)

are avoided in the torque method for measuring the flux linked by a phase.

2.3.1.1 Eddy current loss and hysteresis loss

According to [9, 10], the eddy current loss per unit volume is proportional to

square of the derivative of flux density.

2

⎟
⎠
⎞

⎜
⎝
⎛=

dt
dBKP eddyveddy 2-8

where eddyK is a constant of proportionality, B is the magnetic field density in the

winding, and veddyP is the power loss per unit volume due to the eddy current.

Because the phase voltage phV is proportional to the derivative of flux density,

dt
dBVph ∝ 2-9

the eddy current losses are proportional to the phase voltage squared

2
pheddyveddy VKP ⋅∝ 2-10

and thus the eddy current losses can be modeled as a resistor connected in parallel

 18

with the electromagnetic phase voltage phV .

Hysteresis loss is more complicated to compute analytically. It can be expressed

as being proportional to the derivative of flux density [9]. To obtain a simple

conceptual schematic of the SRM’s phase circuit, the two iron losses mechanisms are

modeled as a resistor Riron in parallel with the winding as shown in Figure 2.14.

The copper loss is the power consumed by the phase resistance, which is

represented by a resister Rcopper in series with the phase winding as shown in Figure

2.14.

The classic way to measure the flux linked by an SRM phase is to lock its rotor,

apply a pulse voltage Vph, measure Icopper and integrate the phase voltage Vph to get the

flux. This process is repeated at various rotor positions to obtain a family of flux

versus current curves. It is clear from Figure 2.14 that the measurable current Icopper is

not equal to the electromagnetic winding current Iph because of the iron losses and the

measurable phase voltage Vph is not equal to the electromagnetic winding voltage

because of the copper resistance. The flux linked by an SRM phase using this method

has inherent errors due to the iron and copper losses.

Rcopper

RironLφ

Icopper

Iφ
Iiron

Vφ

Figure 2.14 the SRM phase circuit with losses

2.3.1.2 Avoiding the loss induced measurement errors

The SRM’s phase circuit shown in Figure 2.14 reduces to the circuit shown in

Figure 2.15 when the input is a dc current and thus the nonlinear SRM phase

inductance Lφ behaves as a short circuit, shorting the iron loss resistor. In this case all

of the measured current Icopper flows through the shorted equivalent magnetic winding

and none flow through the iron loss resistance so that the winding current Icopper is

exactly equal to the current Iφ. Because the measured torque only depends on the

change of the energy stored in the winding the voltage across the copper loss resistor

Rcopper never needs to be known and thus the value of Rcopper does not need to be

 19

known.

Even though the model of the SRM phase in Figure 2.14 and Figure 2.15 is not

perfect the concept presented is more general than the model. When the input voltage

is dc and the rotor is not rotating, the eddy current loss and hysteresis loss are both

zero since they both are due to the time rate of change of the magnetic field in the

iron.

 Rcopper

Lφ

Icopper

Iφ +

Vφ

-

Figure 2.15 the static model of SRM

2.3.2 Obtaining flux from the static torque

The flux linked by the SRM’s phase is found using conservation of energy. The

starting point is the co-energy defined in the usual way.

diidiTiWd e),(),(),(θλθθθ +=′ 2-11

Here θ is the rotor position, i is the phase current,),(iW θ′ is the co-energy,

),(iTe θ is the static torque,),(iθλ is the flux linkage as a function of the phase

current and the rotor position. The Co-energy is computed by integrating the torque at

a fixed phase current (di = 0). Because co-energy is conserved the value of this

integral does not depend on the choice of path in the i-θ space.

∫+′=′
θ

θ
θθθθ

i eini diTiWiW),(),(),(2-12

where iniθ is the initial rotor position, which is taken to be the unaligned rotor

position. For the unaligned rotor position, the co-energy can be computed simply

because there is no magnetic iron saturation at this position.

 20

2

2
1),(iLiW uu ⋅=′ θ 2-13

Here θ u is the unaligned rotor position and Lu is the phase inductance at the unaligned

rotor position. The unaligned inductance can be computed from a single FEA

calculation or found from a single experimental measurement, at a sufficiently low

current that the SRM losses have a very small effect. The flux linked by a phase is the

derivative of co-energy relative to the phase current holding the rotor position

constant, as shown below

.

i
iWi

∂
∂

=
),('),(θθλ 2-14

From experiments or finite element analysis, a θNNi × torque matrix
eT is

created. Its rows represent different rotor positions from the unaligned rotor position

to the aligned rotor position, and its columns represent different phase current samples

from zero to a maximum value. Current samples are
iNiii ⋅⋅⋅21, , while rotor positions

are
θ

θθθ N⋅⋅⋅21, . Here i1 is defined to be zero and θ1 is defined to be the unaligned

rotor position θu. With these definitions equations (2-12) and (2-14) are transformed

into their discrete form in (2-15) and (2-16).

i

k

n
nnjnejjk

NjNk

iTiWiW

⋅⋅⋅=⋅⋅⋅=

−×+′=′ ∑
=

−

2,1,3,2

)(),([),(),(
2

11

θ

θθθθθ 2-15

i

jj

jkjk
jk

NjNk

ii
iWiW

i

⋅⋅⋅=⋅⋅⋅=

−

′−′
=

−

−

3,2,2,1

),(),(
),(

1

1

θ

θθ
θλ 2-16

The initial values of the co-energy and flux at the boundaries of the problem are

 21

ijuj NjiLiW ⋅⋅⋅==′ 2,1
2
1),(2

1θ 2-17

θθλ Nkik ⋅⋅⋅== 2,10),(1 2-18

Here i1 = 0 A.

2.3.3 Comparing with the classic method

In this section, the experimental results for the classic method and the torque

method to measure the SRM’s flux linage curves are compared.

2.3.3.1 The Classic method

As discussed above, the classic method of measuring the flux linked by a SRM

phase is to apply a pulse voltage while the rotor is locked at a certain position. The

current is measured and the voltage is integrated to obtain flux and thus the flux

versus current curve is plotted. A dc power supply and a simple one-phase inverter

consisting of two power MOSFETs and two diodes are used to generate the pulse

voltage to the phase under test. A signal generator provides the input signals to the

two power MOSFETs that conduct the increasing phase current. The two diodes

conduct the decreasing current when the two MOSFETs are off. The circuit used in

the classic method and its experimental set-up are shown in Figure 2.16 and Figure

2.17 respectively. The voltage and current waveforms obtained at the aligned rotor

position are shown in Figure 2.18. The sudden increase of the current in the increasing

period is due to the iron saturation.

SRM

Figure 2.16 the one-phase inverter circuit used in the classic method

 22

Figure 2.17 the experimental set-up for the classic method

Figure 2.18 the voltage and current waveforms obtained at the aligned rotor position

Because the copper losses and the iron losses, a loop is formed in the flux-current

space because the rising and the falling currents do not match. The flux loop and an

adjusted flux curve obtained at the aligned rotor position are shown in Figure 2.19. In

this figure, the phase current and the flux are both filtered digitally to eliminate the

high frequency noise. The adjusted flux curve is obtained from the flux loop data by

subtracting an Iφ Rφ voltage drop from the terminal voltage before it is integrated to

 23

obtain the flux. The value of Rφ is adjusted so there is no loop. Doing this assumes the

Rφ value does not change as the current changes and that the iron losses can be

modeled as an equivalent constant series resistance. An interesting result is that the

adjusted curve is not in the middle of the loop as would be expected. This happens

because the voltage across the electromagnetic winding is lower than the terminal

voltage when the phase current is increasing and larger in value when the phase

current is decreasing. Thus the flux increases less rapidly and to a lower value than

the terminal voltage would indicate when the flux increases and decreases more

rapidly than the terminal voltage would indicate when the flux decreases.

Figure 2.19 the flux loop and the adjusted flux curve

2.3.3.2 The torque method

The diagram and the experimental set-up for the torque method are shown in

Figure 2.20 and Figure 2.21. A torque transducer is used to measure the static torque

and a position sensor is used to obtain the rotor position information. Equations (2-16,

17, 18 and 19) are used to obtain the flux from the torque data. In the experiment Ni is

40 and Nθ is 30. It is best to obtain more data in the current direction rather than the θ

direction since a derivative of the co-energy with respect to current is required and

derivatives are more numerically noisy than integrals.

 24

Torque
Transducer

SRM

DC
Power

Position
Encoding

Figure 2.20 the set-up diagram for the torque method

Experimental SRM

Position Sensor

Torque Transducer

Figure 2.21 the experimental set-up for the torque method

2.3.3.3 Comparison between the torque method and the classic method

The experimental fluxes obtained by using the torque method and the classic

method are shown in Figure 2.22. In this figure, the flux curves are presented at the

aligned position (0°), 5°, 10°, 15°, 20°, 25° and the unaligned position (30°). The

curves are smoothed by curve fitting with polynomial function of degree 5. Though

the results are similar for both methods they are not identical, presumably because of

the errors inherent in compensating the classic data for losses. Another error that must

be dealt with in the classic method is differences in the time at which the voltage and

current are sampled that result from the dynamic nature of the experiment. Because

the torque method uses a static experiment this sampling error does not occur.

 25

Figure 2.22 the measured flux obtained using the classic method (solid lines) and the

torque method (dashed lines)

2.3.4 Applying the torque method to FEA

Since calculating torque in finite element analysis (FEA) when there is iron

saturation is easier to automate than calculating the flux linked by a phase directly

(from the vector potential), the torque method is expected to be a useful approach for

obtaining the flux linked by a SRM phase from FEA. The FEA application of the

torque method is verified with the measured data and results from an analytical model

[6, 7].

2.3.4.1 The torque method applied to FEA

The finite element analysis model of the experimental motor is built with Ansoft

Maxwell 2D software and the static torque is calculated. The FEA model drawing is

shown in Figure 2.1. The calculated torque is used to obtain the flux linked by a

phase. To use finite element analysis, the dimensions of the motor, turn number of the

winding, iron material need to be known.

2.3.4.2 An analytical model

An analytical flux model that includes iron saturation in the motor is presented in

[6, 7]. The dimensions, iron properties, and number of turns used in FEA are used in

this analytical model.

 26

2.3.4.3 Comparison between the experimental results, FEA results and the

analytical model

The comparison between the FEA results and the analytical model is shown in

Figure 2.23. In this figure, the flux curves are presented at the aligned position (0°),

5°, 10°, 15°, 20°, 25° and the unaligned position (30°). The curves are smoothed by

curve fitting with polynomial function of degree 5. Presumably the FEA results are

more accurate and the error between these results and the analytical model results are

due to the difficulty of modeling the nonlinear behavior of the SRM analytically.

Both the analytical and FEA flux linkage curves predict higher flux levels than the

measured data. Also, both the analytical and FEA flux linkage curves saturate more

strongly than the measured curves do. This is most likely due to errors in modeling

the iron B-H curve. The experimental SRM is a commercial machine and the

manufacturer considers the iron characteristics and the motor geometry to be

proprietary information. Thus both the analytical and FEA results assumed the iron

was 3.25% SiFe with an initial relative permeability of 5000 and a saturation flux

density equal to 1.8 T. The dimensions used in both the analytical and FEA

calculations were obtained from measurements of the partially disassembled machine.

This is another source of error. The torque obtained from the experimental

measurement, FEA computation and the analytical model is shown in Figure 2.24.

Polynomial curve fitting is applied to the measured torque and the FEA computed

torque. The difference between the FEA torque and the analytical model torque is due

to the difficulty of modeling the nonlinear behavior of the SRM analytically.

Figure 2.23 The predicted flux linked by an SRM phase obtained using FEA static

torque (dashed lines) and using an analytical model (solid lines)

 27

Figure 2.24 Torque versus the rotor position, experimental torque (dashed lines), FEA

results (dotted lines) and the analytical model results (solid lines) at the phase current

equal to 10A, 20A, 30A, and 40A

The flux linked by a phase was also computed using the vector potential at the

aligned position for two different currents. These results are compared to those

obtained using the FEA torque and the analytical model results in Table 2.1.

Table 2.1 FEA predicted flux using the vector potential, using the FEA torque, and

predicted by the analytical model.

Iφ

Flux from vector

potential

(Weber)

Flux from

torque

 (Weber)

Flux from the analytical

model

(Weber)

1 A 1.12 x 10-3 1.12 x 10-3 1.12 x 10-3

40A 0.0289 0.0299 0.0273

 28

Chapter 3 Simulation model and hardware implementation of

the SRM sensorless control

In this chapter, the SRM sensorless control system simulation and

implementation in hardware and software are presented. The SRM used here is

manufactured by Rocky Mountain Technologies. It is a 42Vdc, 2 hp peak power, four

phase or 8/6 SRM with a maximum speed of 15,000 rpm. The simulation is done

using Matlab/Simulink. The system is implemented with a digital signal processor

(DSP) of TMS320C6711 made by Taxes Insturments, an A/D converter board, a

separate analog current regulator with a digital control logic circuit, and a standard 4

phase SRM inverter..

3.1 SRM sensorless control system simulation model in

Matlab/Simulink

The control system was designed and simulated using Matlab/Simulink. The

SRM drive system structure is shown in Figure 3.1. It consists of five components, an

electromagnetic interference (EMI) filter, a power electronic inverter, an SRM, a

current regulator and a software implementation block.

The EMI filter eliminates ac harmonics generated by the inverter in the DC input

current. The current regulator keeps the phase currents equal to the commanded

current when the SRM phases need to be energized. It also controls the inverter

switches to create the sensing currents when the phases are idle and the sensing

currents are needed. The software implementation block generates the commands to

the current regulator including the commanded current and the logic signal to control

whether the inverter should generate torque producing current or sensing current. The

software implementation block estimates the rotor position from the measured phase

current and/or flux input from the analog-to-digital board. Since the inverter and SRM

model have been described earlier, the EMI filter, the current regulator, and the

software implementation block will be described in this chapter.

3.1.1 The EMI filter

 The EMI filter consists of an inductor and a capacitor, both of which have

parasitic resistance, as shown in the dashed block in Figure 3.2.

 29

EMI
Filter

Inverter

A B C D

Current
Regulator

Software

Implemen-
tation

SRM

Ipow
Phase voltages

Communication
BUS

Vpow

Switch gate
drive signals

Phase
currents

Phase
fluxes

4 4
2

4
Vin

Figure 3.1 SRM simulation system in Matlab/Simulink

Rs

Rc

CF

IL

Vc

Ipow

Vin

Rp

L

Vpow

Iin

Figure 3.2 the EMI filter circuit

To model the EMI filter, its state equations need to be obtained so that the state

space function block in Matlab/Simulink can be used. The Matlab/Simulink filter

model is developed with the inputs Vin and IPOW, and the outputs, IL and VPOW. Two

states are defined in the state equations. One is the current in the inductor, IL and the

other is the voltage across the capacitor, VC. According to KVL,

dt
dVCRV

dt
dI

R
LIR

dt
dILV C

FCC
L

P
LS

L
in ++++=)(3-1

 30

 According to KCL,

POW
C

F
L

P
L I

dt
dVC

dt
dI

R
LI +=+ 3-2

where the parameters, L, RS, RP, RC, and CF are the inductor, the parasitic resistor of

the inductor in series with the inductor, the parasitic resistor of the inductor in parallel

with the inductor, the parasitic resistor of the capacitor in series with the capacitor and

the capacitor, as illustrated in Figure 3.2. The two states, IL and VC, are also shown in

the figure.

After rearranging, (3-1) and (3-2) become

CLS
C

FC
L

P
in VIR

dt
dVCR

dt
dI

R
LV ++++=)11(3-3

L
C

F
L

P
POW I

dt
dVC

dt
dI

R
LI +−= 3-4

 In matrix format this is

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

+

POW

in

C

LS

C

L

F
P

FC
P

I
V

V
IR

dt
dV
dt
dI

C
R
L

CR
R

L

01
1)11(

 3-5

 In the standard state space format (3-5) can be arranged into the standard form

uBxAx +=
•

 3-6

Where

 31

⎥
⎦

⎤
⎢
⎣

⎡
=

C

L

V
I

x , ⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

+
−=

−

01
1)11(

1

S

F
P

FC
P

R

C
R
L

CR
R

L
A ,

1

)11(
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

+
=

F
P

FC
P

C
R
L

CR
R

L
B , ⎥

⎦

⎤
⎢
⎣

⎡
=

POW

in

I
V

u

 The output VPOW is

dt
dVCRVV C

FCCPOW += 3-7

 In matrix format, the outputs are

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

dt
dV
dt
dI

CR
RL

V
I

V
I

C

L

FC

p

C

L

POW

in

0
0/

 3-8

In the standard state space format the output is expressed as

uDxCy += 3-9

Where

A
CR

RL
IC

FC

p
⋅⎥
⎦

⎤
⎢
⎣

⎡
+=

0
0/

, B
CR

RL
D

FC

p
⋅⎥
⎦

⎤
⎢
⎣

⎡
=

0
0/

 Since A, B, C and D matrices are all known, the standard Matlab/Simulink state

space function block can be applied in the SRM motor drive model. The currents IPOW

and IL are shown in Figure 3.3. It shows that the current in the inductor, IL, has much

less high frequency harmonics than the inverter bus current IPOW. In the experimental

 32

system, L=0.63 mH, CF=16mF, Rs=70mΩ , Rp=2Ω, Rc=0Ω.

Figure 3.3 IPOW and IL waveforms in the EMI filter

3.1.2 Current Regulator

The function of the current regulator is to regulate the current in the SRM phases.

It consists of 4 sub-regulators, one for each phase. The 4 sub-regulators work

independently. Each sub-regulator consists of an analog part and a digital part. In the

analog part the analog phase current signal is input to three voltage comparators to

generate three digital signals that regulate the SRM phase current, control the sense

currents, and protect the inverter.

The three voltage comparators with their inputs and outputs are shown

conceptually in Figure 3.4. The phase current is input to all three comparators. It is

compared to the commanded current in the first comparator, to a low current reference

in the second comparator and to an over current reference in the third comparator. The

three comparators are named as comp1, comp2 and comp3 respectively. The outputs

of the comparators are named as I_low, I_chop, and I_over.

I_low is ‘1’ when the phase current is higher than the low current reference. It is

‘0’ when the phase current is lower than the low current reference and determines

 33

when sense pulses can be applied to the SRM. It is needed because the sensing current

can only be injected into a phase to obtain the rotor position information after the

torque producing current has ideally gone to zero because all sense currents must start

from zero current to only depend on the unsaturated phase inductance and not the

initial value of the current. Setting the low current reference very low, when I_low is

‘0’, one can safely say that the torque producing current varnishes so that the sensing

current can be injected. In the experimental system the low current reference is 5A

while the peak torque producing current is 40A.

The control signal I_chop is ‘1’ when the phase current is higher than the

commanded current and it is ‘0’ when the phase current is lower than the commanded

current by a hysteresis amount. When I_chop is ‘0’ and the phase is in the torque

producing region, the two inverter phase switches are turned on to charge the phase

windings. When I_chop is ‘1’, one of the two inverter phase switches is turned off to

decrease the phase current if the SRM is motoring. If the SRM is generating both

switches are turned off to decrease the phase current.

The control signal I_over is an inverter circuit protection signal. It is ‘1’ when the

phase current is higher than the over current reference. When this happens a latch is

set and the current regulator is shut down immediately. The control signal I_over is ‘0’

when the phase current is lower than the over current reference and has no effect on

the current regulator.

Phase
current

Over current reference

Command
current

Low current reference
comp1

comp2

comp3

I_low

I_chop

I_over

Figure 3.4 the voltage comparators in the current regulator

The digital part of the current regulator is a logic circuit. The register transfer

level schematic of the digital part of one of the four sub-regulators is shown in Figure

 34

3.5. Its inputs are:

modin: the injection current pulse signal, also called sensing pulse signal, a

20 KHz, 50% duty cycle signal;

comin: the torque producing command signal, a ‘1’ means input current to

produce torque , ‘0’ means do not produce torque and enter the

sensing mode;

I_low: output of comp1, ‘1’ means the phase current is higher than the low

current reference and thus do not apply sensing pulses to the SRM phase, ‘0’

means the phase current is lower than the low current reference and sensing pulses

can be applied to the SRM phase.

I_chop: output of comp2, ‘1’ means the phase current is higher than the

commanded current. ‘0’ means the phase current is lower than the

commanded current by a hysteresis amount.

I_over: output of comp3, ‘1’ means the phase current is higher than the over

current reference, ‘0’ means the phase current is lower than the over

current reference.

The outputs of the digital part of one of the four sub-regulators are:

sense: sensing current indication signal, ‘1’ means that the sensing current

can be injected, ‘0’ means the opposite;

Q1, Q2: a ‘1’ means turn on the respective inverter switch and ‘0’ means turn

off the respective inverter switch;

Shutdown: shutdown command, ‘1’ means the circuit needs to be shut down, ‘0’

means the opposite.

This logic circuit gives the input signals to the gate drives of the two switches.

When the command signal, comin, is ‘0’, the pulse signal modin will be routed

directly to Q1 and Q2 overriding any other control signals so that sensing current is

injected into the phase. When comin is ‘1’, no sensing pulses can be applied to the

SRM and the circuit will turn the two switches on and off to keep the phase current

constant at the commanded current.

The top RS flip-flop in Figure 3.5 produces the output named sense and is used to

make sure that the sensing current is only injected after the torque producing current

vanishes. This is accomplished with the I_low signal and a two modulation cycle time

delay produced by the two D flip-flops before the RS flip-flop. The bottom RS

 35

flip-flop is used to save the over current fault indication. When a ‘0’ to ‘1’ transition

of I_over occurs, the negative output, Qn, of the RS flip-flop will be reset to ‘1’. It

will not be set back to ‘0’ until the enable has a ‘0’ to ‘1’ transition. The T flip-flop

distributes the switching frequency evenly between the upper and lower switches

when the inverter is regulating the phase current in the freewheeling mode where only

one switch is turned off to decrease the current.

R Q
S Qn

T Q
 Qn

D Q
 Qn

D Q
 Qn

R Q
S Qn

modin

comin

I_low

I_chop

I_over

Enable

sense

Q1

Q2

shutdown

Figure 3.5 the logic circuit of the current regulator

The digital circuit is modeled with Matlab/Simulink and simulated with the rest

of the drive system. The simulation results for the input and output signals are shown

in Figure 3.6. In the figure, the horizontal axis is time in seconds. All the signals

shown in the figure except the phase current are digital. The plotted phase current has

been scaled down so its maximum value is 2. The I_over signal is never ‘1’ in

simulation because the commanded current is always lower than the over current

reference so that I_chop changes to a ‘1’ before I_over does so that the phase current

decreases in freewheeling mode. The over current protection is still useful in reality

because it will shut down the inverter immediately to protect the inverter should a

control error or inverter switch failure occur.

 36

3.1.3 The software implementation block

The software implementation block in the Matlab/Simulink model of the SRM

drive system contains the commanded current computation, advance angles

computation, a commutator, and two sensorless control strategies.

When the SRM is rotating its phases need to be energized before the rotor reaches

the torque-producing region so that the phase current can build up to the commanded

current at the beginning of the torque producing region. The phases need to be

de-energized before the end of the torque-producing region because the phase current

needs some time to decrease to zero and thus to limit the production of torque

opposite to the desired torque. The ideal torque-producing region and phase current

waveform are shown in Figure 3.7. In the ideal case, the turn-on angle, namely

θon_ideal, is where the stator poles just start to overlap with a pair of rotor poles. The

turn-off angle, namely θoff_ideal, is the aligned position. If from θon_ideal to θoff_ideal the

linked flux increases, the phase current will produce positive torque. As described

above, the actual turn-on and turn-off angles need to be moved forward to θon and θoff

respectively as shown in Figure 3.8. How much they need to be moved forward

depends on the rotor speed, the power supply voltage Vpow, and the commanded

current.

Figure 3.6 the current regulator’s digital input and output signals relative to the scaled

phase current

 37

The commutator produces commands to all of the phases based on the estimated

rotor position in the sensorless control systems. Conceptually the output of the

commutator for a given phase is ‘1’ if the estimated angle input to the commutator is

between θon and θoff. Things are a little more complicated because the rotor position is

wrapped into an electrical period, which is from -θu to θu. If the turn-on angle θon is

greater than –θu, as shown in Figure 3.8a, the commutator energizes the phase in the

bold region, in which offon θθθ ≤≤ . If θon is less than -θu and thus wrapped, as shown in

Figure 3.8b, the commutator energizes the phase in two separate bold regions, in

which offu θθθ ≤≤− or uon θθθ ≤≤ .

The commanded current is determined by the torque command. It is simply set as

a linear function of the torque command, as in (3-10).

ocommiTcomm ITkI +⋅= 3-10

Here Icomm is the commanded current, iTk is the linear coefficient, Tcomm is the

commanded torque, and Io is the offset current.

Ideal
torque-
producing
region

Actual
phase
current

 θon θon_ideal θoff θoff_ideal

Figure 3.7 the ideal and actual region of torque-producing current

-θu θon θoff θa θu

 a)

-θu θoff θa θon θu

 b)

Figure 3.8 the two cases of the on and off angles

 38

The structure of the Simulink model’s software implementation block is shown in

Figure 3.9. The sensorless control in Figure 3.9 acquires data and estimates the rotor

position. This will be explained in more detail in the following chapters.

Command
current

calculation
Advance

angle
calculation

Commutator

Sensorless
control

Torque
command

Speed

VPOW

Phase currents

Phase fluxes

on angle

off angle

Rotor position

Command current

4

Commands

Figure 3.9 the software implementation block structure

3.2 SRM sensorless drive system hardware implementation

The SRM drive system is implemented with three main components, a power

inverter, a printed circuit board (PCB) current regulator using a Field Programmable

Gate Array (FPGA) chip, and a Digital Signal Processor (DSP) with an

analog-to-digital converter (ADC) board, as shown in Figure 3.10. The inverter is

implemented with a power printed circuit board bus bar assembly. The current

regulator is implemented with a PCB board and an Actel ProASIC APA500K FPGA

chip. The microprocessor function unit is implemented in a TI TMS320C6711

floating point DSP. The ADC board is a TI THS1206 evaluation board. It samples the

phase currents and/or phase fluxes. The maximum sampling rate is 6 MSPS and the

resolution is 12 bits. Since the ADC board can only sample 4 channels, an analog

multiplexer is used when 8 channels need to be sampled for the simplified flux model

based observer. An HEDS-55X optical encoder position sensor is used to verify the

accuracy of the estimated rotor position. The EMI filter and the advance angle

algorism are not in the hardware implementation. The detailed parameters of the

experimental SRM are shown in appendix IV.

 39

3.2.1 Power Inverter

The torque producing current is high, so the inverter needs to be implemented

with PCB bus bars that have rather thick copper. The power electronic switches and

diodes need to be mounted on heat sinks to limit their temperature rise due to their

switching and conduction losses. To design the power bus bar assembly, four nodes of

each inverter phase leg are defined. These nodes are called "power, ground, upper, and

lower. Among them, the two nodes, power and ground, are shared by all of the

inverter phases. The other two nodes, upper and lower, are independent for each phase

and are denoted upperA, lowerA, upperB, lowerB, upperC, lowerC, upperD, and

lowerD for phase A, B, C and D respectively, as shown in Figure 3.11a.

Software
implemented

in
DSP

ADC

 Signal conditioning

Voltage integrators

Voltage comparators

Digital
ckt. in
FPGA

SRM DC
motor

I
N
V
E
R
T
E
R

G
A
T
E

D
R
R
I
V
E

DC

POWER
SUPPLY

PC

Current Regulator Board

Phase
current

A

B

C

D

Gate
Drive

Phase current/flux BUS

BUS Digital
signal

Optical
encoder
channel
signals

Optical
encoder

Figure 3.10 the hardware implementation of the SRM sensorless control system

The inverter consists of three layers separated by stand offs, the DC PCB bus bar,

the PCB phase bus bar, and the heat sink, which are assembled together in vertical

direction from the top to the bottom, as shown in Figure 3.11b. All of the inverter

power electronic switches and diodes are mounted on the heat sink to conduct the heat

from the device losses away from the devices and into the ambient air. The phase bus

bar provides 8 nodes, upperA, lowerA, upperB, lowerB, upperC, lowerC, upperD, and

lowerD. The DC bus bar provides two nodes, power and ground. These nodes are

connected to the switches and diodes as shown in the schematic Figure 3.11a with

Litz wire. The experimental power inverter is shown in Figure 3.12.

 40

Figure 3.11 the bus bar assembly

Figure 3.12 the experimental bus bar assembly

3.2.2 The current regulator board

The current regulator PCB board includes signal conditioning, voltage

comparators, voltage integrators, low pass filters, analog switches and a FPGA.

Heat sink

DC bus bar

ground

power

lowerA

upperA

lowerD

upperD

a) b)

lowerB lowerC

upperB upperC

Phase bus bar

 41

3.2.2.1 Signal conditioning

Since the chosen ADC board can only sample voltage signals between 1.5V and

3.5V, every signal being sampled needs to be signal conditioned into this voltage

range. The current sensor used is a LEM’s HAW-20P. Its conversion table is shown in

Table 3.1.

Table 3.1 the conversion table of the current sensor HAW-20P

Current (A, input) 0 10 20 30 40 50 (maximum)

Voltage (V, output) 0 2 4 6 8 10

 Assuming the maximum SRM current is 40 A, the voltage range of the current

sensor’s output is 0 ~ 8 V. After multiplying its output by a gain of 0.2 and then

adding a reference voltage of 1.5 V, the voltage range into the ADC board is 1.5 ~ 3.5

V.

 Besides the phase current, the demodulated sensing current signal and the flux

also need to be signal conditioned. The sensing current is demodulated with a low

pass filter and the filter output is level shifted into the voltage 1.5 ~ 3.5 V range. The

phase flux is obtained by integrating the phase voltage using an analog integrator. The

output of this analog integrator is then level shifted into the 1.5 ~ 3.5 V range before it

is sampled by the ADC board.

3.2.2.2 Low speed position demodulator

At low speeds, sensing voltage pulses are applied to the SRM phases that are not

being used at that time to produce torque. The resulting phase current is amplitude

modulated by the SRM’s phase inductance. The amplitude modulated phase current is

demodulated with a low pass filter to obtain the position information in the inductance

variation. Only a low pass filter is required because both the SRM current and SRM

inductance are always positive. The output signal of the filter is named)(θg . This

signal is proportional to the inverse of the phase inductance. The demodulator is

described in detail in the following chapter. The filter circuit schematic is shown in

Figure 3.13.

 42

Vin Vout R1

R2 C1

C1

R2

R1

Figure 3.13 the low pass filter and demodulator circuit

 The transfer function of the low pass filter is

sCR
RR

sVin
sVoutsf

⋅⋅+
==

12

12

1
/

)(
)()(3-11

3.2.2.3 Voltage integrator (flux generator)

At high speeds position sensing uses the measured phase flux while the SRM is

producing torque. No sense pulses are used. The measured phase flux is obtained by

integrating the phase voltage. The DC offset voltage of the operational amplifier used

in the integrator circuit will create an error over a torque producing period of time if

the phase voltage is not high enough or the period is too long. This means the flux

generators can not work at zero speed. In addition, it must be insured that the output

of the integrator is set to zero each time the current goes to zero since it is known that

the flux is zero when the current is zero. The circuit schematic of the integrator is

shown in Figure 3.14. The actual phase voltage drop across the winding inductance is

the measured phase voltage minus the voltage drop across the internal resistance of

the winding. Thus the phase flux is given by (3-12) when the phase is producing

torque.

∫ ⋅−=
t

dtRIV
0

)(φφφφλ 3-12

 43

Vout

C2
R3

R4

-VΦ

IΦ

sense

Figure 3.14 the voltage integrator circuit

The relationship between the input and the output of the voltage integrator is

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=

=+⋅−⋅
⋅

=

∫

1

0

0

))()((1

)(
0 4

3

23

senseif

senseifdtVtI
R
RtV

CR
tVout

t
offsetφφ

 3-13

 The ratio of R3 to R4 is determined by the internal series resistance of the phase

winding. The output the integrator is the actual flux value times
23

1
CR ⋅

 plus the error

due to the operational amplifiers offset voltage Voffset. The MOSFET in Figure 3.14 is

turned on to set the measured flux to zero whenever the current is zero and thus it is

know that the flux is zero.

3.2.2.4 Voltage comparator

The voltage comparators are used to generate the digital signals, I_low, I_chop,

and I_over. A typical voltage comparator circuit is shown in Figure 3.15. The

capacitors are used to eliminate high frequency AC harmonics or noise. The pull up

voltage Vcc is chosen to be the digital circuit power supply so that the outputs of the

comparators can be directly routed to the digital circuit. The resister R6 provides

hysteresis as shown in Figure 3.16.

 44

Figure 3.15 the voltage comparator circuit

Vout

Vcc

0

V1-V2

6

5

R
RVcc−

Figure 3.16 the hestersis area of the voltage comparator

3.2.2.5 FPGA implementation of current regulator logic

To realize the digital part of the current regulator, an FPGA chip is chosen and

programmed with the VHDL language. The VHDL code is in appendix I.

Besides the 4 copies of the digital circuit shown in Figure 3.5 required for the

4-phase SRM, there are two components in the FPGA chip that have not been

described so far. One of them is a data communication interface with the DSP. The

other one is a frequency divider.

Through the data communication interface, the DSP obtains the digital sense

signals in Figure 3.5 and the outputs of the optical encoder position sensor. The

microprocessor sends the enable signal and MorG signal to the FPGA chip. The

enable signal is used to enable the control system. When it is ‘1’, the control system is

enabled. The MorG signal is used to define the operation mode of the SRM. When it

is ‘1’, the SRM works in motoring mode. When it is ‘0’, the SRM works in generating

mode. The data communication interface uses a 1 MHz 50% duty cycle clock signal.

The interface consists of an 8x2 multiplexer and a 1x8 demultiplexer with storage, as

Vout

C3

R5

R5

V1

V2

C3

R6

R6

Vcc

 45

shown in Figure 3.17. The bit assignment is shown in Table 3.2.

I7

I6

I5

I4

I3

I2

I1

I0

S1 S0 Sel1 Sel0

Out7

Out6

Out5

Out4

Out3

Out2

Out1

Out0

O0 O1 In

Clock

Multi-
plexer

Demulti-
plexer
with

storage

Sel2
DSP

FPGA

Figure 3.17 the interface between DSP and FPGA

Table 3.2 the interface bit assignment

Interface

Signal

Connected

to

Connecte

d

signal

Description

I7 FPGA internal Sense[3] Sense signal for phase D, generated by the

logic circuit

I6 FPGA internal Sense[2] Sense signal for phase C, generated by the

logic circuit

I5 FPGA internal Sense[1] Sense signal for phase B, generated by the

logic circuit

I4 FPGA internal Sense[0] Sense signal for phase A, generated by the

logic circuit

I3 FPGA internal shutdown Over current fault signal, generated by the

logic circuit

I2 FPGA internal I Optical encoder channel I signal

I1 FPGA internal A Optical encoder channel A signal

I0 FPGA internal B Optical encoder channel B signal

S1 DSP Timer 1 Timer1 Select line bit #1, generated by DSP timer 1

S0 DSP McBSP0 DX Select bit #0, generated by DSP McBSP0

 46

Table 3.2 the interface bit assignment (continued)

O1 DSP McBSP0 CLKS Output line bit #1, read by DSP McBSP0

O0 DSP McBSP0 DR Output line bit #0, read by DSP McBSP0

In DSP McBSP0 CLKR Input signal, generated by DSP McBSP0

Sel2 DSP McBSP0 FSR Select line #2, generated by DSP McBSP0

Sel1 DSP McBSP0 CLKX Select line #1, generated by DSP McBSP0

Sel0 DSP McBSP0 FSX Select line #0, generated by DSP McBSP0

Out7 FPGA internal IorV[1] Select line # 1 of an analog multiplexer

Out6 FPGA internal IorV[0] Select line # 0 of an analog multiplexer

Out5 FPGA internal Enable Logic circuit enable signal generated by the

DSP

Out4 FPGA internal MorG MorG signal in the logic circuit, generated

by DSP

Out3 FPGA internal Comm[3] Figure 3.5 Comin signal generated by the

DSP for phase D

Out2 FPGA internal Comm[2] Figure 3.5 Comin signal generated by the

DSP for phase C

Out1 FPGA internal Comm[1] Figure 3.5 Comin signal generated by the

DSP for phase B

Out0 FPGA internal Comm[0] Figure 3.5 Comin signal generated by the

DSP for phase A

Clock FPGA internal clock 1 MHz 50% duty cycle to drive the logic

circuit

The frequency divider generates a 20 KHz 40% duty cycle pulse signal from the

1 MHz 50% duty cycle clock signal. The 20 KHz pulse signal is used to control the

power electronics switches in the inverter when the sensing current needs to be

injected. The frequency is chosen as high as possible while insuring the sensing

current is high enough to measure and low enough to not produce significant torque or

iron saturation. A high sensing frequency allows a demodulator low pass filter with a

higher break frequency which in turn reduces the filter’s delay error. The register

transfer level schematic of the frequency divider is shown in Figure 3.18.

 47

Figure 3.18 the clock divider's register transfer level schematic

3.2.2.6 The printed circuit board

The printed circuit board schematic circuit is drawn in Electronics Workbench’s

Multisim and it is then converted into an input file for the Ultiboard PCB layout

software. The 3D view of the PCB board generated by the Ultiboard Software is

shown in Figure 3.19. It consists of 4 copies of the circuit shown in Figure 3.20, each

copy for a different SRM phase. It also consists of 4 gate drives circuits, the FPGA

and interface connectors. The signal flow of one phase on the print circuit board is

shown in Figure 3.20.

3.2.3 DSP implementation

The flow chart of the DSP C++ software is shown in Figure 3.21 and the main

part of the code is in appendix II. At the beginning, the program initializes all the

parameters, disables the current regulator, clears all storage matrices, chooses the low

speed sensorless strategy, enters the start mode that is used to find the initial rotor

position, and then starts the timer for a software interrupt that calls function

‘call_microcontroller’ periodically.

The software interrupt is activated by the timer every tsample seconds. When the

interrupt occurs, the function call_microcontroller is called. In the first tstart seconds,

the motor works in the start mode to find out the initial rotor position. In the start

mode, there is no command sent to any phase to produce torque so the SRM xremains

at standstill. The time tstart needs to be long enough for the observer to converge to the

initial position. After tstart, the low speed sensorless strategy is used to control the

SRM. The sensorless control must work from zero speed and from zero torque to

Counter

DFF

DFF

R
RSFF

S

50

30

reset

Output
pulse

Comparator

Comparator

Input
clock

 48

rated torque. With the low speed strategy, the sense signals in Figure 3.5 for each of

the phases are used to determine which phases are idle. The sensing currents are

demodulated, sampled, and input to the microprocessor where an error function

generates an error signal to drive the observer. The rotor position and speed are then

estimated.

When the low speed sensorless strategy is being used and the estimated speed

exceeds 100 rad/s, the controller changes to the high speed sensorless strategy. If the

high speed sensorless strategy is being used and the estimated speed drops to less than

50 rad/s, the controller changes to the low speed strategy. In between the two speeds,

the present control strategy will be used. The two strategies will be described in more

detail in the following chapters.

In the high speed sensorless strategy, the phase currents and phase fluxes are

measured and sampled by the microprocessor. A simplified analytical flux model

calculates the phase fluxes and the difference between the calculated fluxes and the

measured fluxes is an error that drives the observer. The observer then estimates the

rotor position and speed.

After the rotor position is estimated, it is input to the commutator. The

commutator’s outputs, are the commands to each phase to produce torque or not

produce torque according the estimated rotor position.

Figure 3.19 the current regulator board

 49

 -0.2

Command
current
(0~2V)

Current
sensor
(0~15V)

 -1

 -

 +

I_chop

Over
current
reference
(-10V)

 Yes 0
 >= ?
 No 1

I_over

Low
current
reference
(-1V)

 Yes 0
 >= ?
 No 1

I_low

I_sense

1
1
+STfilt

-

+

)(θg

Reference
voltage 1
(1.5V)

 0.09

 0.09

 -1

 -1

-

+

-

Reference
voltage 2
(2.5V)

Vupper

Vlower

seriesRIV ⋅− φφ

flux

Phase current

 -4.5

Reset

ST int

1

-

+

Rseries

a

b

a > b ?

Yes = 0

No = 1

Figure 3.20 the signal flow of the printed circuit board

 50

Start

Time > 1 S?

Initialization:
Disable current regulator and all 4 phases, clear all
storage memory, choose low speed strategy, enable the
current regulator and choose start mode, start timer and a
software interrupt called SWI_microprocessor to call a
subfunction called ‘Call_microprocessor’.

SWI occurs?

Keep start mode

Speed> 100rad/s?

High speed strategy

Keep the present strategy

Speed<50 rad/s?

Low speed strategy

High speed strategy?

Measure phase fluxes,
phase current

Measure sensing current

Calculate estimated fluxes
subtract the measured ones

Calculate error function
value

Estimate the rotor position
and speed with the observer

Sensing mode?

Send out the phase commands
Store data

Change from start mode to
torque generating mode

Get ‘sense’ for each phase
to know if it’s idle

N

Y

N

Y

Y

N

N

Y

Figure 3.21 the flow chart of the program in DSP

 51

Chapter 4 Inductance profile demodulator based state

observer sensorless control

4.1 Sensorless control review

Rotor position information plays a critical role in the control of the SRM.

Conventionally, a separate position sensor, either a resolver or an optical encoder, is

used to get this information. A resolver is a rotating transformer where the coupling

between the primary winding on the rotor and the two secondary windings on the

stator depends on the shaft position. An optical encoder is mounted on the shaft and

with the shaft turning the optical encoder generates a pulse output voltage each time

the rotor rotates through a fixed angle on one or more channels. The position sensors

add complexity and cost to the SRM drive system and reduce its reliability.

In order to overcome the drawbacks of the position sensors, a number of methods

have been proposed to control the SRM without position sensors. These sensorless

control strategies can be divided into three categories. In the first category, small

currents are injected into the idle phases. An example of the injected currents is shown

in Figure 4.1. The currents are so small that they do not produce noticeable torque and

the iron does not saturate. In this case the relationship between the current and the

corresponding inductance is independent of the current. The small currents are

measured and used to estimate the rotor position since the currents contain the rotor

position information. In the second category, the torque producing currents are used to

estimate the rotor position. A typical torque producing current is shown in Figure 4.1.

Since the torque producing current is relatively high the iron typically saturates due to

the nature of SRM. This effect of iron saturation needs to be considered to obtain the

correct rotor position from the current information. The third category of sensorless

control methods has not been proposed so far. It is a mixed method that not only

injected currents but also the torque producing currents are used to estimate the rotor

position. It can be chosen when the application requires the SRM to work at zero

speed, low speeds and high speeds. The classification of the sensorless strategies is

shown in Figure 4.2.

4.1.1 The first category, injected currents are used

Several methods have been proposed to use small injected currents to obtain the

 52

SRM’s rotor position [12-15]. All of these methods are based on the fact that the

phase inductance of the SRM is a function of its rotor position independent of the

phase current if the current is small. This is true if the injected current is low enough

that the iron does not saturate. This group of methods has advantages and

disadvantages. Advantages: 1) They work at low speeds, zero speed and starting. 2)

They do not need to consider the effect of iron saturation that makes the inductance

profile nonlinear with the phase current. 3) They do not need to consider the

complicated flux model so that the real time computations required to implement

them on a microprocessor can be done rapidly. Disadvantages: 1) They have difficulty

working at high speeds. This is because the frequency of the injected currents is

limited by the SRM phase inductance and the injected currents may need to go

through low pass filters that generate a time delay. For the approach developed here

the delay time introduced by such a filter results in an ever increasing position error as

the speed increases. Another reason these injected current methods can not work at

high speeds is that the injected current time windows become small at high speeds so

that the currents do not have enough information about the rotor position. 2) Some

strategies need additional hardware to inject the sense currents. 3) Some strategies

need memory to store look up tables that contain injected current amplitude versus

rotor position data.

Figure 4.1 an example of the injected current and torque producing current

 53

Figure 4.2 the classification of sensorless control strategies

A sinusoidal current was injected by Brosse A. et al. into the SRM through a

separate converter [12]. The induced voltage signal depends on the rotor position.

This voltage was measured and its power was evaluated. The value was then

translated into the rotor position through a prior stored look up table that contained the

signal power values at a number of rotor positions. An observer and PI controller were

used to get the rotor position. This method gave continuous rotor position

information, but it needs additional hardware to inject the sinusoidal current.

A pulse voltage was applied to the idle phases by Harris W. D. et al. [13], Suresh

G. et al. [14], and Gao H. et al. [15]. The resulting current was measured and used to

calculate the rotor position in [13]. An observer was also used to offer high accuracy

position estimation, but it needed memory to store look up tables. The current was

demodulated into the rotor position using an envelop detector which worked as a

counter counting the successive current peaks [14]. This significantly increases the

required time for the observer to converge to the correct angle and does not work at

zero speed. Thus at zero speed each phase is excited and then the amplitudes of all

phase currents are compared to know the rotor position roughly [15]. Obviously

torque can not be produced continuously at zero speed with this method. This simple

method for estimating the rotor position working at standstill is adequate to start the

SRM but not for operating for significant periods of time at stand still.

Sensorless

Control

1st category:
Injection current is used

2nd category:
Torque producing current is used

Pulse waveform

Sine waveform

Observer based

Current pattern based

Other methods

3rd category:
Both types of the current are used

This dissertation

 54

4.1.2 The second category, the torque producing current is used

 The methods in this category only use the torque producing current. State

observers or phase current patterns are used to identify the rotor position. These

methods also have advantages and disadvantages. Advantages: 1) They work over a

large speed range including high speeds. 2) They do not need additional hardware for

current injection. They only need motor terminal measurements. Disadvantages: 1)

They have inherent problems working at low speeds, especially at zero speed. A small

dc offset can cause voltage integrators to fail at zero to low speeds since these

methods integrate phase voltage to measure phase flux. 2) The current pattern does

not change quickly enough to determine a continuous rotor position for those methods

that use current patterns. 3) In many of these methods intensive computation is

required to complete flux calculations or they need memory to store a flux model. 4)

Iron saturation needs to be considered in this case because the torque producing

current is typically high enough to cause iron saturation.

In general there are two groups of methods to realize the rotor position estimation

using the torque producing currents. In the first group, state observers are used to

estimate the rotor position [16-21]. In the second group, current patterns, the

increasing and decreasing phase current slopes, are used to obtain the phase

inductance and hence the rotor position [22-26]. There are several other practical

methods that also use the torque producing current to realize sensorless control of the

SRM [27-29].

4.1.2.1 Observer based sensorless control

Lumsdaine A. et al. used state observers to estimate the SRM’s rotor position. In

their observers, the states are the phase fluxes, the rotor position and the rotor speed

[16, 17]. The phase currents were measured and estimated by a SRM flux model. The

difference between the measured and the estimated fluxes drove the state observers.

Several practical observers were given and stability was proven. The flux model used

in the observers was Fourier series based. Husain I. et al. used sliding mode state

observers to estimate the rotor position [18-20]. The rotor position and the rotor speed

were used as states in the observers. The phase voltage was integrated to obtain the

flux digitally and then the phase current was estimated with an analytical flux model.

The difference between the measured current and the estimated current was computed

and drove the stator observer. A geometry based simplified analytical flux model of

 55

SRM was used in [20]. Its simplicity made it possible to run in a real-time controller.

The phase voltage was integrated to get the estimated flux and the actual flux was

obtained by a simple flux model, which is an exponential function of rotor position

and current. Then the difference was used to drive a sliding mode observer to obtain

the rotor position. In these papers, the flux was obtained by integrating the phase

voltage digitally. Due to the high frequency of the phase voltage when the current

chops, the sampling rate needs to be very high in this case. Yang I. -W. et al. also used

a state observer in which phase currents and the rotor speed were states [21]. The

difference between the estimated phase current and the measured phase current drove

the observer. Two observers, a sliding mode observer and a binary mode observer

were proposed and verified experimentally.

This group of methods gives continuous and smooth rotor position information

and good stability with sophisticated control system gains.

4.1.2.2 Chopping current pattern based sensorless control

The increasing and decreasing slopes of the chopping current were used to

estimate the rotor position in [22-26]. Suresh G. et al. proposed an equation in that the

rotor position was unknown and the slopes of the phase current and other terminal

measurements are known variables [22]. Fahimi B. et al. studied these methods at

every speed range and gave a practical method to compute the rotor position [23].

Salmasi F. R. et al. built another equation to solve for the rotor position for low speed

applications [24, 25]. Gao H. et al. proposed a method that worked at low speeds [26].

Back EMF was detected by the slopes of the phase currents, and then the current

command was adjusted to assure that the currents were applied on either positive

slopes or negative slopes of the inductance profile depending on generating or

motoring mode. This group of methods provides simple control that is relatively easy

to implement in a real-time controller. No additional hardware was required because

only SRM terminal measurement of voltage and current are needed. But these

methods suffer from problems with high frequency noise in the phase current. They

are difficult to implement in high speed applications because they typically

differentiate the phase current and thus amplify high frequency noise if the

differentiating circuits have large bandwidth.

 56

4.1.2.3 Other methods using the torque producing currents

 There are also some other methods to realize sensorless control of SRM using the

torque producing currents that do not fall into the above categories. Lyons J. P. et al.

integrated the phase voltage to get the actual flux and compared it with a known flux

value at a reference rotor position [27]. When the actual flux of a phase is equal to the

known flux value, the rotor then is at the reference position with regard to the phase.

Mondal S. K. et al. gave a current command to a phase according to the current

patterns of other phases [28]. Mese E. et al. used an artificial neural network (ANN)

to realize sensorless control [29]. The flux linkage and phase current were input to the

neural networks, and the rotor position was the output of the networks. Training data

were obtained from a SRM flux model or experiments.

4.2 Proposed control strategies

With the development of microprocessor and DSP technology, computation

intensive and accurate control strategies are now feasible. Since none of the methods

described above can work well over the whole SRM speed range, more than one

control strategy is required in a large speed range application. Generally, for low

speed application, current injection has inherent advantage for starting from standstill

with rated torque. For high speed applications, the sensorless control strategies based

on the torque producing currents are better choices. That is because in this case there

is no limitation introduced by the choice of injection frequency and the torque

producing currents have longer time windows at high speeds, and hence they provide

more information to obtain the rotor position. In this dissertation, a sensorless control

system that utilizes a strategy for zero and low speeds and a strategy for high speeds is

proposed. The zero speed and low speed strategy uses injected currents, while the

high speed strategy uses the torque producing current. Since this control system uses

both the injected current and the torque producing current, it falls into the third

sensorless control category.

 The low speed strategy is described in this chapter and the high speed strategy

will be described in the following chapter.

At zero to medium speeds, a pulse voltage signal is applied to the idle SRM

phases to generate sensing current or injected current. The injected current is

modulated by the SRM’s phase inductance and contains the rotor position

information. . If the actual rotor position is not equal to the estimated rotor position,

 57

then the injected current amplitude will be different from the computed current

amplitude. The difference generates an error signal through a deliberately defined

error function. The error signal then drives a Luenberger observer. This method

including the demodulation of the SRM’s modulated phase current, the proposed error

function, and observer has been named the inductance profile demodulator based

observer. It works at zero speed because for any SRM rotor position there always are

idle phases that the sensing current can be injected into. It has difficulty working at

high speeds. The reason is in part because the injected current is demodulated using a

low pass filter whose break frequency is determined by the frequency of the injected

current. The demodulator low pass filters have an inherent time delay determined by

their break frequency. At high speeds, the time delay generates a position error

proportional to speed that makes the sensorless control fail. Another contributor to the

inductance profile demodulator based observer sensorless control failure is that the

time windows for injecting current becomes smaller at high speeds so that they do not

contain enough information for error function and observer to figure out the rotor

position.

4.3 The state observer

The electromechanical operation of a SRM can be modeled by

ωθ
=

dt
d 4-1

][1
Le TT

JJ
B

dt
d

−+−= ωω 4-2

where θ is the rotor position, ω is the rotor speed. B is the viscous damping, J is the

inertia, Te is the electrically generated torque, and TL is the mechanical load torque.

For simplicity, viscous damping is lumped into TL. It is also assumed that Te is

equal to TL, which means the motor is at steady state and running at a constant speed.

This assumption is reasonable because the electrical time constants are usually much

less than the mechanical time constants. With these considerations equation (4-2) is

simplified as

 58

0=
dt
dω 4-3

The corresponding observer model

)ˆ,(ˆ
ˆ

1 θθωθ fH
dt
d

⋅+= 4-4

)ˆ,(
ˆ

2 θθω fH
dt
d

⋅= 4-5

where H1 is the proportional gain for the position, H2 is the proportional gain for the

speed, θ̂ is the estimated rotor position, and ω̂ is the estimated rotor speed. The

function)ˆ,(θθf is the error signal reflecting the difference between the estimated

rotor position and the actual rotor position. A block diagram of the observer is shown

in Figure 4.3.

H1 s
1

H2
s
1

)ˆ,(θθf

 ω̂

θ̂

θ

Figure 4.3 the block diagram of the inductance profile demodulator based observer

 Subtracting (4-1) from (4-4) and (4-3) from (4-5) gives the observer’s error

dynamics.

)ˆ,(1 θθω
θ fHe

dt
de

⋅+= 4-6

 59

)ˆ,(2 θθω fH
dt
de

⋅= 4-7

where the rotor position error θθθ −= ˆe , and the rotor speed error ωωω −= ˆe . In

matrix format, it becomes

)ˆ,(
00
10

2

1 θθ
ω

θ

ω

θ

f
H
H

e
e

dt
de
dt
de

⋅⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

 4-8

The challenge of the observer design is the error function. At zero and low speeds

a sensing current is injected into the idle phases and this injected current contains the

rotor position information that is used to generate the error fuction.

4.4 Error function definition

The phase inductance L(θ) is a function of rotor position when the iron is not

saturated as shown in Figure 4.4. . It has its maximum value at the aligned position

and its minimum value at the unaligned position. When a fixed duration pulse voltage

is applied to the phase, a current like the one shown in Figure 4.4 is obtained. The

cycle average value of the current is called g(θ), where θ is the rotor position, as

shown in Figure 4.4.

 To obtain the relationship between the inductance function L(θ) and g(θ), basic

circuit theory is applied.

dt
tdILtV)()()(⋅= θ 4-9

Here V(t) is the pulse voltage, I(t) is the injected current, and t is time. It is assumed

that the rotor position does not change during a pulse period because the mechanical

time constant is much greater than the pulse period. Solving I(t) in terms of V(t) gives

(4-10).

 60

∫⋅=
t

dttV
L

tI
0

)(
)(

1)(
θ

 4-10

Inductance
L (θ)

Rotor
position
(θ)

Pulse voltage

Injected
current

g (θ)

Unaligned
position Aligned

position

Unaligned
position

Figure 4.4 the injected current

The injected current is a repetitive triangle waveform signal. The peak of the

triangle current I(θ) is

)(
)(

θ
θ

L
TDVsI ⋅⋅

= 4-11

where Vs is the peak of the pulse voltage and approximately equal to the inverter’s dc

power supply voltage, T is the period, and D is the duty cycle. The result in (4-11) is

only valid if the current starts from zero. To make sure the current goes to zero after

each period, the duty cycle D should not be greater than 50%. The average current

value of the triangle Iave (θ) is (4-12).

 61

)(
)(

2

θ
θ

L
TDVsIave
⋅⋅

= 4-12

 The g(θ) function is defined to be equal to Iave(θ).

)()(θθ aveIg = 4-13

The g(θ) for the various phases are named g1(θ), g2(θ), g3(θ), g4 (θ), for phase A,

B, C and D respectively. They are not only given by (4-12) but can also be measured

by measuring the injected current in each of the 4 phases. If the rotor position is

estimated as θ̂ , the g (θ) value can be estimated through

)ˆ(
)ˆ(

2

θ
θ

L
TDVsg ⋅⋅

= 4-14

 The estimated)ˆ(θg are named as)ˆ(1 θg ,)ˆ(2 θg ,)ˆ(3 θg , and)ˆ(4 θg for

phase A, B, C and D respectively. They are calculated using (4-12) with the estimated

rotor position.

4,3,2,1
)ˆ(

)ˆ(
2

=
⋅⋅

= i
L

TDVsg
i

i θ
θ 4-15

Where)ˆ(θiL is the inductance function of the ith phase.

 The error function)ˆ,(θθf is defined as (4-16)

)ˆ()()ˆ()(

)ˆ()()ˆ()(

)ˆ()()ˆ()(

)ˆ()()ˆ()()ˆ,(

4114

3443

2332

1221

θθθθ

θθθθ

θθθθ

θθθθθθ

gggg

gggg

gggg

ggggf

⋅−⋅

+⋅−⋅

+⋅−⋅

+⋅−⋅=

 4-16

 62

assuming none of the phases are producing torque. The error function value versus the

rotor position θ is plotted in Figure 4.5 when the estimated rotor position θ̂ is 2

mechanical degrees greater than θ (i.e. 2=θe).

Figure 4.5 error function value versus the rotor position

It is seen that the value of the error function takes on different values depending

on the rotor’s position for the same error but that its value is negative in the whole

electrical period. It is also verified that the error function value is always negative

when the estimated rotor position is greater than the actual rotor position and that it is

monotonic with the angle error. This assures that this error function can be used as a

feedback signal for the observer.

 This error function can only be used in the start mode when there is no torque

production, and the sensing current is injected into all of the phases to detect the rotor

position. When the motor needs to produce torque, no sensing current can be injected

for those rotor positions which torque is produced. For these rotor positions the sense

signal is one, i.e. sense =1, and g(θ) for that phase is set equal to)ˆ(θg .

⎩
⎨
⎧

=
phaseiniscurrentproducingtorquewhen)ˆ(

injectediscurrentsensingwhen)(
)(

θ
θ

θ
g
I

g
ave

 4-17

 With this definition of the error function, the function’s value is plotted in Figure

 63

4.6 versus the rotor position when the estimated rotor position θ̂ is 2 mechanical

degrees greater than the actual rotor position θ and positive torque is being generated.

The error function values using (4-16) and (4-17) versus rotor position when the

estimated rotor position error is -5, -4, -3, -2, -1, 1, 2, 3, 4, 5 mechanical degrees are

shown in Figure 4.7.

Figure 4.6 the error function value versus the rotor position with consideration of the

torque producing current

Figure 4.7 the error function value versus the rotor position curves at different rotor

position error, -5, -4, -3, -2, -1, 1, 2, 3, 4, and 5 mechanical degrees

 64

The error function defined by (4-17) is still monotonic and negative when the

rotor position error is greater than zero. It is monotonic and positive when the rotor

position error is less than zero. This assures that the error function with this definition

can be used as a feedback signal for the observer.

4.5 System stability and performance of the observer

 The error function in (4-16) can be rewritten as

),ˆ()ˆ,(1 eff θθθθ −= 4-18

 Applying (4-21) into (4-8), the observer becomes

⎥
⎦

⎤
⎢
⎣

⎡

⋅
⋅+

=⎥
⎦

⎤
⎢
⎣

⎡

),ˆ(
),ˆ(

12

11

θ

θω

ω

θ

θ
θ
efH

efHe
e
e

dt
d 4-19

 It can be rearranged as

),(2 uXfX = 4-20

where

⎥
⎦

⎤
⎢
⎣

⎡
=

ω

θ

e
e

X , ⎥
⎦

⎤
⎢
⎣

⎡
⋅
⋅+

=
),(

),(
),(

12

11
2

θ

θω

eufH
eufHe

uXf , θ̂=u 4-21

 It is obviously a nonlinear system. To analyze its stability, a scalar W is defined as

XQXW T= 4-22

 65

where Q is a positive definite 2 x 2 matrix. Note that X, W, u are all functions of time.

By definition, 0≥W and W=0 when X=0. The temporal derivative of W is

XQXXQXW TT += 4-23

 Applying (4-20) into (4-23), it becomes

),(),(22 uXfQXXQuXfW TT += 4-24

 Since W and the two terms on the right ride are all scalars, transposing the first

term or the second term gives

),()()(),(22 uXfQQXXQQuXfW TTTT +=+= 4-25

 To assure the system is stable, W needs to be negative so that every state will

decay to zero. Thus the condition for the system to be stable is

0)(),(2 <+ XQQuXf TT or 0),()(2 <+ uXfQQX TT 4-26

 Choosing Q=I, the identity matrix, applying (4-21) into (4-26), the condition

becomes

0),ˆ(),ˆ(1211 <⋅⋅+⋅⋅+⋅ ωθθθθω θθ eefHeefHee 4-27

A sufficient condition for stability is

)(
),ˆ(2

1
1

1
θ

ω
θθ e

Ne
ef

H +−= 4-28

 66

)(
),ˆ(2

1
1

2
ω

θ
θθ e

Ne
ef

H +−= 4-29

where N>0.

 Meeting the requirements in (4-28) and (4-29) assure the stability of the nonlinear

system given in (4-8). Due to the complexity of),ˆ(1 θθ ef , a more practical condition

needs to be developed. Assume

θθθθ ekf ⋅−=)ˆ()ˆ,(4-30

where)ˆ(θk is a nonlinear periodic function of the rotor position that can be

estimated from the results in Figure 4.7. Its period is an electrical period divided by

the phase number, in this case, 15 degrees. Its boundaries are minfk and maxfk .

maxfmin)ˆ(fkkk ≤≤ θ 4-31

 Inserting (4-30) into (4-8), gives

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

⋅−
⋅−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ω

θ

ω

θ

θ
θ

e
e

kH
kH

dt
de
dt
de

0)ˆ(
1)ˆ(

2

1 4-32

 The Eigen values of the characteristic matrix for fixed θ̂ are

)ˆ(4)ˆ(
2
1)ˆ(

2
1

2
22

112,1 θθθ kHkHkHEigen ⋅−⋅±⋅−=

 According to classic control theory, the Eigen values need to be negative real

numbers or have negative real parts for the system to be stable.

 67

0][2,1 <Eigenreal 4-33

 Since 0)ˆ(>θk , to satisfy the stability requirement imposed on 1H and 2H is

01 >H , 02 >H 4-34

 The settling time for the rotor speed and the rotor position is a function of the

rotor position. If)ˆ(4)ˆ(2
22

1 θθ kHkH ⋅<⋅ , the two Eigen values are conjugate complex

numbers with a common real part of)ˆ(1 θkH ⋅ . If)ˆ(4)ˆ(2
22

1 θθ kHkH ⋅=⋅ , the two

Eigen values are identical and they are)ˆ(1 θkH ⋅ . If)ˆ(4)ˆ(2
22

1 θθ kHkH ⋅>⋅ , the two

Eigen values are unequal real numbers. In this case, the settling time will be

determined by the Eigen value that has smaller absolute real part, which is

)ˆ(4)ˆ()ˆ(2
22

11 θθθ kHkHkH ⋅−⋅+⋅− . The settling time is approximately 5 time

constants or 5 divided by the real part of the Eigen value that has a smaller real part.

⎪
⎪
⎩

⎪⎪
⎨

⎧

⋅>⋅
⋅−⋅−⋅

⋅≤⋅
⋅

=
)ˆ(4)ˆ(

)ˆ(4)ˆ()ˆ(

5.2

)ˆ(4)ˆ(
)ˆ(

5.2

2
22

1

2
22

11

2
22

1
1

θθ
θθθ

θθ
θ

kHkHif
kHkHkH

kHkHif
kH

Tsattle

 4-35

 When the settling time is greater than the time for one electrical period of the

rotor position, the average value of the error function over an electrical period, called

the error average function)(efave θ , can be used to determine the system

performance. If the SRM is not rotating this approximation can not be used and (4-35)

must be used. The error average function)(efave θ is defined as

∑
−=

+⋅=
u

u
e

u
e ffave

θ

θθ

θθθ
θ

θ),(
2
1)(

 4-36

The error average function value versus the rotor position error is plotted in

 68

Figure 4.8. In the plot, the horizontal axis is the rotor position error and the vertical

axis is the error average function value.

Figure 4.8 the error function value average versus the rotor position error

When the rotor position error is positive and small, the error average function

value is monotonic and negative and when the rotor position error is negative and

small, the error average function value is monotonic and positive. To linearize the

error average function, it is assumed that the operating point is at zero position error,

i.e. eθ =0.

eavee kfave θθ −=)(4-37

where avek is the absolute value of the slope of the curve in Figure 4.8 at the origin.

 Substituting)ˆ,(θθf with)(efave θ in (4-8) and applying (4-37) into it gives

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⋅−
⋅−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ω

θ

ω

θ

e
e

kH
kH

dt
de
dt
de

ave

ave

0
1

2

1 4-38

 69

 Since avek is a positive number, the system is still stable if (4-33) is satisfied.

The settling time of the control system has the same format of (4-35) except that k(θ)

is substituted by avek .

⎪
⎪
⎩

⎪⎪
⎨

⎧

⋅<⋅
⋅−⋅−⋅

⋅<⋅
⋅

=
aveave

aveaveave

aveave
ave

sattle

kHkHif
kHkHkH

kHkHif
kH

T
2

22
1

2
22

11

2
22

1
1

4
4

5.2

45.2

 4-39

4.6 The speed limitation of the inductance profile demodulator

based observer

The inductance profile demodulator based observer has two inherent speed

limits. One of them is caused by the frequency of the modulating signal and the

resulting time delay of the demodulator, which is a low pass filter, the other one is

caused by the sampling frequency of the microprocessor implementation of the

observer and error function.

4.6.1 The time delay of the demodulator

The demodulator used is the low pass filter circuit shown in Figure 3.12. Its

transfer function is given by (3-11). The Bode plot of the transfer function is shown in

Figure 4.9.

The transfer function in polar coordinates is

)(tan
)(1

/)(12
1

2
12

12 ω
ω

ω ⋅⋅−
⋅⋅+

=
− CRje

CR
RRf 4-40

Assume the input current to the demodulator is sinusoidal (the first harmonic of the

current)

)](cos[)(0ttVtV inin +⋅= ω 4-41

 70

It can be transformed into an Euler format

})({Re)(0ttjeVtV inin
+⋅= ω 4-42

Figure 4.9 the Bode plot of the low pass filter function

where Vin is the amplitude, ω is the frequency, ωt0 is the phase. The output of the

demodulator is just the transfer function times the input voltage

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧
⎥
⎦

⎤
⎢
⎣

⎡ ⋅⋅
−+

⋅
⋅⋅+

⋅=

−

ω
ωω

ω

)(tan

Re
)(1

/)(

12
1

0

2
12

12

CRttj
e

CR
RRVtV inout 4-43

Taking the real part the output voltage is

 71

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡ ⋅⋅
−+⋅

⋅⋅+
⋅=

−

ω
ωω

ω
)(tancos

)(1
/)(12

1

0
2

12

12 CRtt
CR
RRVtV inout 4-44

The time delay td of the transfer function is the time difference between the input

voltage and the output voltage.

ω
ω)(tan 12

1 ⋅⋅
=

− CRtd 4-45

For the demodulator to work correctly ω⋅⋅ 12 CR must be small,

ωω ⋅⋅≈⋅⋅−
1212

1)(tan CRCR 4-46

Thus the time delay through the demodulator is simply a constant.

12 CRtd ⋅= 4-47

The time delay corresponds to an error in the estimated rotor position which depends

on speed.

mmderror CRt ωωθ ⋅⋅=⋅= 12 4-48

If the maximum allowed rotor position error is errorMaxθ , then the maximum rotor

speed that this observer can work at is

12
1

CR
errorMax

Maxm
⋅

=
θω 4-49

 72

4.6.2 Sampling frequency limitation

According to the Nyquist sampling theorem, the sampling frequency needs to be

at least twice that of the maximum frequency of the original signal so that the full

information will be preserved.

The inductance profile occurs 6 times in one rotor revolution, and it is

symmetrical on the aligned rotor position axis. To preserve the nth harmonic,

assuming the first harmonic is the inductance profile waveform itself, the sample

frequency needs to be at least 24n times of the rotor speed.

π
ω
2

24 m
sample nF ≥ 4-50

where sampleF is the sampling frequency, as shown below

sample
sample

T
F 1

= 4-51

where sampleT is the sampling time. Thus the sample time limited maximum speed the

position esimator can work at is

sample
Maxm

Tn ⋅
=

2617.0
2ω 4-52

The actual speed limit is the minimum of the above two limitations,

1Maxmω and 2Maxmω .

⎭
⎬
⎫

⎩
⎨
⎧

⋅⋅
=

sample

errorMax
Maxm

TnCR
2617.0,min

12

θω 4-53

The speeds mentioned above in the dissertation are specificed in section 4.9.

4.7 Simulation results

The sensorless control system is simulated using the Matlab/Simulink model.

 73

The observer gains are chosen as H1=200, and H2=10000. The inductance profile

demodulator based observer is simulated and shown to work from zero speed to

medium speeds (5,000 rpm).

4.7.1 Zero speed simulation

At zero speed, the rotor is locked at a certain position and one or two

corresponding phases produce torque. The simulation results are shown in Figure 4.10

and 4.11below.

The estimated position reaches steady state at 0.006s. The steady state error is

1.4 mechanical degrees.

Figure 4.10 the estimated and actual rotor position in degree of the zero speed

simulation

Figure 4.11 the estimated rotor speed of the zero speed simulation

 74

 The phase currents are shown in Figure 4.12. During the transient time, phase A

was energized with torque producing current for a moment, then as the observer

figured out the rotor position the correct Phase B was instead energized. The sensing

current was injected into the idle phases

Figure 4.12 the phase currents of all 4 phases of the zero speed simulation

The error function signal)ˆ,(θθf generated for the zero speed simulation is

shown in Figure 4.13. At steady state, the error function output becomes close zero.

Figure 4.13 the error function generated signal of the zero speed simulation

4.7.2 Medium speed operation

The inductance profile demodulator based observer is simulated with the motor

 75

running at 2000 rpm. The estimated rotor position and the actual rotor position are

shown in Figure 4.14. The estimated rotor position follows the actual rotor position

very well. The estimated rotor speed is shown in Figure 4.15. It oscillates around the

correct value of 2000 rpm because the observer system is nonlinear and differences

between the measured g(θ) and the calculated g(θ). The estimated speed transient is

over in about 10ms. The current in each of the 4 phases are shown in Figure 4.16. The

error function value is shown in Figure 4.17, and the electrical torque output of the

motor is shown in Figure 4.18.

Figure 4.14 the estimated and actual rotor positions when the motor is running at 2000

rpm

Figure 4.15 the estimated rotor speed when the motor is turning at 2000 rpm

 76

Figure 4.16 the current of the 4 phases when the motor is turning at 2000 rpm

Figure 4.17 the error function value versus time when the motor is running at 2000

rpm

4.8 Experiment results

4.8.1 Inductance asymmetry of the motor

Due to manufacturing tolerances, the inductance profiles among the 4 phases of

the experimental SRM are not identical. This is caused in part by the different length

of the stator poles and the rotor poles. Since the inductance profiles are not identical,

the g(θ) profiles are not identical either, as shown in Figure 4.19. The ripples on the

 77

profiles are due to the high frequency modulation sensing current.

Figure 4.18 the electrical torque of the SRM when the motor is running at 2000 rpm

inductance profile asymmetry

0

0.5

1

1.5

2

2.5

3

0 50 100 150 200 250 300 350
rotor position (degree)

g(
th

et
a)

g(θ)_A
g(θ)_B
g(θ)_C
g(θ)_D

Figure 4.19 the g(θ) asymmetry of the motor

The aligned inductance and the unaligned inductance among the 4 phases are

different. In each phase, the aligned inductance and the unaligned inductance with

different pairs of the rotor poles are different. Since the g(θ) profiles are repetitive

with a period equal to 180 degrees, the rotor position period is changed from 60

degrees to 180 degrees. Based on the measured g(θ) profiles, the inductance profiles

for the experimental SRM were computed and are shown in Figure 4.20.

 78

inductance profile of 4 phases

0
0.0002

0.0004
0.0006
0.0008

0.001
0.0012

0.0014
0.0016

0 50 100 150 200 250 300 350

rotor position (degree)

in
du

ct
an

ce
 (H

)
B A

C D

Figure 4.20 the inductance profiles of the 4 phases based on the measured g(θ)

profiles

To test if the error function in (4-16) and (4-17) still work with the inductance

asymmetry, the error function value versus the rotor position curves with a rotor

position error of 2 degrees and -2 degrees are plotted in Figure 4.21 for the

experimental SRM.

Figure 4.21 the error function value versus the rotor position at the rotor position error,

2 degrees (error_2) and -2 degrees (error_n2) with the inductance asymmetry

 79

The error functions in the plots have different amplitudes because of the

inductance asymmetry. The error function value is still monotonic and positive when

the rotor position error is positive over a whole electrical period. It is monotonic and

negative when the rotor position error is negative over a whole electrical period. This

insures that the error function will still work with the inductance asymmetry.

4.8.2 Starting process

The inductance profile demodulator based observer is implemented in the

experimental system. A DC motor is used to load the SRM. For the initial data the

torque command and resulting current command are set low so that the shaft friction

of the DC motor which is the only SRM load is adequate to prevent the SRM from

accelerating too fast to record the data. A start process is recorded in the figures

below. The estimated and actual rotor positions are shown in Figure 4.22. Note that

the estimated rotor position is shifted up 180 degrees for easier viewing. The

estimated rotor position error is shown in Figure 4.23. It is within ±5 degrees worst

case including the noise with an rms value equal to less than 2 degrees. The noise is

due to the high frequency modulation current. The large spikes in the error that go

above 20 degrees on the curve are due to the fact that the rotor positions are wrapped

into an electrical period. When one of the rotor positions is wrapped from 180 to 0

degree, the difference between these two rotor positions is momentarily close to 180

or -180 degrees and results in the spikes. The estimated rotor speed is shown in Figure

4.24. The error function value is shown in Figure 4.25.

the estimated and actual rotor position

0
50

100
150
200

250
300

350
400

0 0.05 0.1 0.15 0.2 0.25 0.3
time (s)

po
si

tio
n

actual position
estimated position +180

Figure 4.22 the estimated and actual rotor positions of the starting process

 80

position error

-20
-15

-10
-5
0

5
10

15
20

0 0.05 0.1 0.15 0.2 0.25 0.3

time (s)

ro
to

r p
os

iti
on

 e
rro

r

Figure 4.23 the estimated rotor position error during the starting process

estimated rotor speed

0

2

4

6

8

10

12

14

0 0.05 0.1 0.15 0.2 0.25 0.3

time (s)

ro
to

r s
pe

ed
 (r

ad
/s

)

Figure 4.24 the estimated rotor speed during the starting process

4.8.3 Constant speed operation

Data has also been taken when the SRM is turning at a constant speed of 15.0

rad/s. The estimated and actual rotor positions are shown in Figure 4.26. The

estimated rotor position error is shown in Figure 4.27. The estimated rotor speed is

shown in Figure 4.28. The error function value is shown in Figure 4.29. The noise on

 81

these curves is also due to the modulation current. The SRM phase current is shown in

Figure 4.30. The waveform shows the alternating low amplitude modulation current

and the high amplitude torque producing current.

error function value

-1

-0.5

0

0.5

1

1.5

2

2.5

0 0.05 0.1 0.15 0.2 0.25 0.3

time (s)

er
ro

r f
un

ct
io

n
va

lu
e

Figure 4.25 the error function value during the starting process

the estimated and actual position

0
50

100
150
200
250
300
350
400

0 0.02 0.04 0.06 0.08 0.1

time (s)

ro
to

r p
os

iti
on

actual position
estimated position+180

Figure 4.26 the estimated and actual rotor positions at steady state

 82

estimated position error

-20
-15

-10
-5
0

5
10

15
20

0 0.02 0.04 0.06 0.08 0.1

time (s)

es
tim

at
ed

 p
os

iti
on

 e
rro

r (
de

gr
ee

)

Figure 4.27 the estimated position error at steady state

estimated rotor speed

0
2
4
6
8

10
12
14
16
18
20

0 0.02 0.04 0.06 0.08 0.1

time (s)

es
tim

at
ed

 ro
to

r s
pe

ed
 (r

ad
/s

)

Figure 4.28 the estimated rotor speed at steady state

 83

error function value

-1.5
-1

-0.5
0

0.5
1

1.5
2

2.5
3

0 0.02 0.04 0.06 0.08 0.1

time (s)

er
ro

r f
un

ct
io

n
va

lu
e

(A
)

Figure 4.29 the error function value

phase C current

0

2

4

6

8

10

12

14

16

0 0.1 0.2 0.3 0.4

time (s)

c
u
r
r
e
n
t

(
A
)

Figure 4.30 the current of a phase

4.9 Speed limitation

In the hardware implementation of the inductance profile demodulator based

observer, the components chosen for the low pass filter demodulator are R2=18.2 KΩ,

C1=560 pF. The predicted maximum operating speed limited by the demodulator is

1Maxmω =860 rad/s using (4-40). When the sampling time is Tsample=600μs, the

 84

sampling time speed limitation is 2Maxmω = 218 rad/s according to (4-52) if n is

chosen to be 2. The sampling time includes the analog to digital conversion time, the

computation time of the control algorithm, and the data communication time. A higher

speed DSP, a DSP with general purpose input/output (GPIO), a more efficient

program or a higher speed ADC board can help reduce the sampling time.

Furthermore, if a portion or the whole part of the program can be implemented into

the FPGA chip as a special purpose microprocessor, it can run much faster. The actual

observed speed limitation of the inductance profile demodulator based observer is 218

rad/s. When the SRM accelerates and reaches the speed limitation, the estimated

angles will be incorrect causing the torque producing currents to be produced at the

wrong rotor positions and the electrical torque decreases. Figure 4.31 shows that when

the speed reaches 180 rad/s, the inductance profile demodulator based observer starts

to fail. Using this measured maximum speed in (4-43), n is computed to be 2.4. This

means that for the sensorless control to work properly, the first, the second, and a part

of the third harmonic of the inductance profile need to be preserved in the sampling.

In another experiment, the sampling time is set to Tsample=60μs using a more

efficient program. Now 2Maxmω = 1131 rad/s according to (4-52) if n is chosen to be

4. The speed limitation of the observer should now be determined by the

demodulator’s time delay and be equal to 1Maxmω , which is 860 rad/s. The estimated

rotor speed for this experiment is shown in Figure 4.32. It is seen that the maximum

experimental speed limit is 500 rad/s, lower than the theoretical speed limit. This is

most likely due to the asymmetry of the experimental SRM causes larger rotor

position error, as shown in Figure 4.33. The average position error is 10 mechanical

degrees, which is 1/3 of the torque producing region. This position error causes a

decrease in torque and hence a decrease in the speed.

4.10 The torque drop

The torque drops with a position error. The torque output is shown in Table 4.1

with different rotor position error. The rotor position error is the estimated position

subtracted by the actual position in degree. In this case, the torque producing region is

from -25 degree to 0 degree. It is found that the torque is close to zero when the rotor

position error is -10 degrees. This is the reason why the rotor speed can not increase

any longer when it reaches its maximum in Figure 4.33.

 85

Estimated rotor speed vs time

-20

30

80

130

180

0 0.5 1 1.5 2 2.5 3 3.5

time (s)

ro
to

r s
pe

ed
 (r

ad
/s

)

Figure 4.31 the speed limitation of the observer at tsample=600μs

Estimated rotor speed vs time

0

100

200

300

400

500

600

0.1 0.2 0.3 0.4 0.5 0.6 0.7

time (s)

ro
to

r s
pe

ed
 (r

ad
/s

)

Figure 4.32 the speed limitation of the observer at tsample=60μs

 86

position error vs time

-20

-15

-10

-5

0

5

10

0.1 0.2 0.3 0.4 0.5 0.6 0.7
time (s)

es
tim

at
ed

 ro
to

r p
os

iti
on

 e
rr

or
 (d

eg
re

e)

Figure 4.33 the estimated rotor position error at tsample=60μs in the speed limitation
experiment

Table 4.1 The torque output with different rotor position errors

Position
error

(degree)
Torque
(Nm)

Percent of
the max
torque

Position
error

(degree)
Torque
(Nm)

Percent of
the max
torque

0 2.2824 100.00%
1 2.2644 99.21% -1 2.2568 98.88%
2 2.2192 97.23% -2 2.2076 96.72%
3 2.1512 94.25% -3 2.1212 92.94%
4 2.0676 90.59% -4 2.0084 88.00%
5 1.9436 85.16% -5 1.8812 82.42%
6 1.8504 81.07% -6 1.7336 75.96%
7 1.7552 76.90% -7 1.5528 68.03%
8 1.6592 72.70% -8 1.3528 59.27%
9 1.562 68.44% -9 1.1484 50.32%
10 1.4632 64.11% -10 0.9424 41.29%
11 1.364 59.76% -11 0.7368 32.28%
12 1.2636 55.36% -12 0.532 23.31%
13 1.1624 50.93% -13 0.3272 14.34%
14 1.0608 46.48% -14 0.1236 5.42%
15 0.9596 42.04% -15 -0.0792 -3.47%

 87

4.11 The rotor position resolution

The estimated rotor position resolution is basically the rotor speed times the

sampling time. The actual rotor position is obtained by an optical encoder, which

produces 360 pulses every mechanical cycle. The resolution of the estimated and

actual rotor position is listed in Table 4.2 at different rotor speeds and sampling time.

Table 4.2 the resolution of the estimated and actual rotor positions

Rotor speed

(rpm)

Estimated position

resolution when

tsampling=600us (degree)

Estimated position

resolution when

tsampling=60us (degree)

Actual position

resolution (degree)

0 0 0 1

500 1.8 0.18 1

1000 3.6 0.36 1

5000 18 1.8 1

10000 36 3.6 1

15000 54 5.4 1

4.12 Transient response

The theoretical settling time is determined using (4-30) is 0.024s with

kave=11.46, H1=200, and H2=10000. To obtain the settling time experimentally, two

experiments have been done. In the first experiment, the rotor shaft is grabbed

suddenly when it is turning at a constant speed. The rotor speed changes from the

constant speed to zero immediately, as shown in Figure 4.34. It is seen that the

estimated rotor speed responses goes to zero 0.03s later than the actual rotor speed

does. In the second experiment, the SRM is controlled with the optical encoder

position sensor. With the rotor turning at a constant speed, a sudden change is made to

the estimated rotor position. The transient response of the estimated rotor position and

the rotor speed are shown in Figure 4.35 and Figure 4.36. The experimental settling

time for the rotor position and the rotor speed are 0.02s and 0.03s respectively.

 88

the transient response of the rotor speed

-5

0

5

10

15

20

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

time (s)

ro
to

r s
pe

ed
 (r

ad
/s)

estimated
actual

Figure 4.34 the step response of the estimated and actual rotor speeds

the estimated rotor position

0.4

0.6

0.8

1

1.2

1.4

0.055 0.06 0.065 0.07 0.075 0.08 0.085 0.09
time (s)

ro
to

r p
os

iti
on

 (r
ad

ia
n)

Figure 4.35 the estimated rotor position transient response

 89

the estimated rotor speed

0

5

10

15

20

25

30

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
time (s)

ro
to

r s
pe

ed
 (r

ad
/s

)

Figure 4.36 the estimated rotor speed transient response

 90

Chapter 5 A simplified flux model based state observer

sensorless control

In this chapter, a simplified analytical flux model of the SRM is developed. It is

then implemented into an observer of a sensorless SRM control system for medium

and high speed applications.

5.1 A simplified flux model

To compute the flux in real time, a simple SRM flux model is developed. The

model accuracy has been traded for speed of computation so that the model run in a

real time controller. A detailed SRM model has been proposed in [6, 7]. It is

simplified by modeling the magnetization curve for the Fe with two piecewise linear

curves. The piecewise analytical formula for flux linkage and instantaneous torque are

obtained using basic electromagnetic theory. Because of the mathematical simplicity,

the model provides rapid computation for a real time controller or state observer. This

simplified model does not need any experimental data from the motor. It only needs

the geometrical dimensions and magnetic parameters of the iron.

5.1.1 Introduction of flux models

The flux linked by a SRM phase is a function of its current and rotor position

assuming the phases are independent. Computation of the flux linked by an individual

phase of the SRM is a significant challenge because of its salient poles and the fact

that iron saturation plays a critical role in the SRM’s operation. Several papers have

been published that present flux models for the SRM. Because of the complexity of

these models for the flux linked by an SRM phase, they are not applicable for use in a

rotor position state observer, which must run at high speed in a microprocessor or

DSP. It is expected that an analytical SRM model will be a good choice for a state

observer. The detailed analytical model presented previously is too unwieldy for a

state observer [6, 7]. Curve fitting to obtain an analytical flux model for the SRM is

another alternative. The disadvantage of curve fitting is that it requires significant data

that must be obtained from measurements or from finite element analysis [31, 32].

Another approach combines the flux function versus phase current at the aligned rotor

position, the flux function versus phase current at the unaligned rotor position, and a

 91

suitable angular function in between these rotor positions to obtain an analytical flux

model [33]. The suitable angular function for use in between the aligned and

unaligned rotor positions is complicated and nonlinear so that this model is a not a

good choice to implement a state observer in a real time control system. Truncated

Fourier series functions have also been used to express the inductance of a SRM

phase, but this approach is also complicated and not a good choice to implement a

state observer for sensorless control [34, 35].

5.1.2 Breaking the simplified flux model into two cases

The simplified analytical SRM model is constructed by considering two cases, the

case where the stator poles of a given phase overlap with the rotor poles and the case

where the stator poles of a given phase do not overlap with the rotor poles, according

to the rotor position. The model is based on the basic magnetic field laws so that it

does not need experimental data from the machine or any finite element analysis

results. The model only needs the geometrical dimensions, number of turns, winding

connections and the magnetic characteristics of the iron, all of which can be obtained

from the manufacturer of the motor. The model runs rapidly in a microprocessor

because it does not have any series, square root, sine or cosine functions to be

computed, all of which take a long time to compute in a microprocessor.

5.1.2.1 The case with no stator and rotor pole overlap

When the stator and rotor poles do not overlap it is assumed that the phases are

independent, there is no iron saturation and that the SRM phase inductance varies

quadratically with the rotor position away from the unaligned position.

2

2

)(
)()()(

pfu

u
upoun LLLL

θθ
θθ

θ
−
−

−+= 5-1

Here)(θnL is the inductance function applicable to the non-overlap case, uL is the

inductance at the unaligned rotor position, uθ is the unaligned rotor position angle,

and
pfθ is the effective rotor position boundary at which the rotor and stator poles just

start to overlap. Thus the flux linked by a single SRM phase when there is no rotor

and stator pole overlap is

 92

φφ θθλ ILI n ⋅=)(),(5-2

Here φI is the phase current. All of the quantities in (5-1) and (5-2) are known except

θ and φI so that in this case the inductance parameters can be pre-computed before

(5-2) is used in a state observer.

The torque can be expressed as in (5-3) by using conservation of energy

2
2)(

)()(),(φφ θθ
θθθ ILLIT
pfu

u
upo −

−
−−= 5-3

5.1.2.2 The overlap case

To model the flux with rotor and stator pole overlap, iron saturation needs to be

considered. To simplify the flux model, the magnetization curve is simplified as two

linear curves. One represents the unsaturated iron and the other represents the

saturated iron. Since there is in general only a partial overlapped area between the

stator poles of interest and the rotor poles, the total phase flux is broken into the main

flux and fringing flux. The main flux passes from the stator to the rotor where the

stator and rotor poles overlap. The fringing flux passes from the stator to the rotor

where the stator and rotor poles do not overlap. The main flux and the fringing flux

are computed separately but their equations have the same form.

5.1.2.2.1 The piece wise linear magnetization curves

With the stator and rotor poles overlapping, iron saturation in the SRM is

important. The iron’s magnetization curve is modeled as a piece wise linear curve.

())(
)()(

1 satsatsat

sat

HHHHH
HHHHB

>−+=
≤=

μμ
μ 5-4

Here)(HB is the flux density, which is a function of the magnetic intensity H . The

parameter satB is the saturation flux density of the iron, 0μ is the permeability of free

space, 1μ is the approximate saturated iron permeability, μ is the unsaturated

permeability of the iron, and μ/satsat BH = is the value of magnetic intensity at which

 93

saturation begins. The ideal magnetization curve and the approximate piece wise

linear curve are shown in Figure 5.1 for SiFe.

5.1.2.2.2 Breaking the flux into main and fringing fluxes

With pole overlap the flux linked by a phase is broken into two parts, the main

flux and the fringing flux. The contours of the two fluxes are shown in Figure 2.10.

The main flux is due to the field that passes from the stator to the rotor where the

stator and rotor poles overlap and thus the air gap is small. The fringing flux is due to

the field that passes from the stator to the rotor where the stator and rotor poles do not

overlap and thus where the air gap is larger.

Figure 5.1 the ideal magnetization curve and piece wise linear curves

5.1.2.2.3 The main flux

According to Ampere’s law,

npar
I

NgHlH pmgmFemFe
φ⋅=⋅+⋅ ,,, 5-5

Here mFeH , is the H field in the iron part of the main flux contour, mgH , is the H

field in the air gap part of the main flux contour, pN is the number of turns per stator

pole, mFel , is equal to half of the length of the iron part of the main flux path, g is

the air gap on one side of the rotor between the rotor and stator poles where they

overlap, and npar is the number of pole windings in parallel for a phase.

 94

The relationship between the B field, the H field in the iron and the H field in the

air gap when the iron is not saturated is

mgomFem HHB ,, ⋅=⋅= μμ 5-6

Iron saturation occurs when the B field in the iron reaches the value satB . At this point,

the H field can be expressed as

satsatmFe HBB μ==, 5-7

The current at which iron saturation occurs for the main flux satmI , can be

obtained by combining (5-5), (5-6) and (5-7). It is a constant and given by (5-8).

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⋅
= gl

N
BnparI

o
mFe

p

sat
satm μ

μ
μ ,,

 5-8

The relationship between the H field in the iron and the B field when the iron is

saturated can be expressed as

μμ //)(1, satsatmmFe BBBH +−= 5-9

Combining (5-5), (5-6), and (5-9), the main flux B field with and without iron

saturation is given by (5-10).

)(

11

)()(

,

1
,

1
,

,

,

2

satm
o

mfe

satmfe
p

op

satm

o
mfe

p
m

iI
gl

Bl
npar

IN

N

iI
gl

N
npar
I

IB

>
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

=

≤
+

⋅=

φ

φ

φ
φ

φ

μ
μ

μμ
μ

μ
μ

μ

 5-10

 95

The main flux, denoted mλ , is the main flux density times the overlapped area

between the stator and rotor poles. It is expressed as

STFlRIBNnserI stkpfgmpm ⋅⋅−⋅⋅⋅⋅=)()(),(θθθλ φφ 5-11

Here nser is the number of windings in series for a phase, pfθ is the effective stator

pole width [7], STF is the stacking factor, lstk is the length of the stack, and the

expression STFlR stkpfg ⋅⋅−⋅)(θθ is the overlapped area of the stator pole with a rotor

pole. Note that the rotor position θ is zero when a pair of rotor poles is aligned with

the phase’s stator poles.

5.1.2.2.4 The fringing flux

Using the same process used for the main flux, the fringing field and fringing flux

can be computed for the region in Figure 2.10 where the rotor and stator poles do not

overlap. The results for the main field can be used with the air gap g replaced with the

larger fringing air gap to obtain the fringing field. The fringing air gap is

pfof ggg θθθ /)(⋅+= 5-12

The fringing air gap depends on rotor position where go is the air gap required to

obtain the correct unsaturated inductance value at the rotor position where the rotor

poles and the stator poles just start to overlap. With the above consideration the

saturation current for the fringing flux)(, θsatfI , which is a function of rotor position,

can be expressed as

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⋅
=)()(,, θ

μ
μ

μ
θ f

o
fFe

p

sat
satf gl

N
BnparI 5-13

Here fFel , is equal to a half of the length of the iron part of the fringing flux contour.

Similarly, the fringing flux density is

 96

))((
)(

11

))((
)(

),(

,

1
,

1
,

,

,

2

θ
θ

μ
μ

μμ
μ

θ
θ

μ
μ

μ
θ

φ

φ

φ
φ

φ

satf
o

mfe

satmfe
p

op

satf

o
mfe

p
f

II
gfl

Bl
npar

IN

N

II
gfl

N
npar

I
IB

>
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

=

≤
+

⋅=

 5-14

The fringing flux, denoted fλ , is the fringing flux density times the

non-overlapped area of the stator pole.

STFlRIBNnserI stkgfpf ⋅⋅⋅⋅⋅⋅= θθθλ φφ),(),(5-15

5.1.2.2.5 The total flux when the rotor and the stator overlap

The total flux is the sum of the main flux and the fringing flux

),(),(),(θλθλθλ φφφ III fmo += 5-16

Here the function),(θλ φIo denotes the total flux when the rotor and the stator

overlap.

The instantaneous torque can be obtained using conservation of energy and the

flux shown in (5-16). The complete equations to compute the instantaneous torque for

the overlap case are shown in appendix III.

5.1.3 Verifying the model with experiment measurement

The flux linked by a phase computed with the simplified model is compared with

the measured flux from a 2 Hp peak power 4 phase 8/6 SRM with a maximum speed

of 15,000 rpm. Figure 5.2 shows a comparison of the predicted flux linked by a phase

computed with the simplified model with the measured flux from the commercial

SRM. They match well. In the simplified model, the degree to which the iron

saturates is determined by the value of μ1. The values of the iron parameters chosen

by the simplified model are μ=1000 μo, μ1= 50 μo, Bsat=1.6T. (The results are

presumably different for different phases)

 97

Figure 5.2 the comparison of the simplified model to the experimental data

5.2 The simplified flux model based observer

To estimate the rotor position of the SRM at higher speeds using the torque

producing SRM current, another Luenberger observer is proposed. In the state

observer, the rotor position and the rotor speed are the two states as in the low speed

case. A new error function is defined to drive the observer using the simplified flux

model. The error function is defined as

()∑
=

−=
4

1

),()ˆ,()()ˆ,(
j

jjjjjjj iisignf θλθλθθθ 5-17

where jθ̂ is the estimated rotor position for the jth phase (it is zero when the jth phase

is at the aligned position), ji is the jth phase’s measured current, jλ̂ is the jth

phase’s calculated flux linkage, which is predicted by the simplified model using the

estimated rotor position and the measured phase current, jλ is the jth phase’s actual

flux linkage. The actual flux linkage is a function of the actual rotor position jθ and

the measured phase current, but it is obtained by measuring the integration of the

phase voltage. The function)(jsign θ is the sign of the estimated rotor position for

the jth phase. It is 1 when jθ̂ is greater than zero, -1 when jθ̂ is less than zero, and 0

when jθ̂ is equal to zero. Note that the estimated rotor position jθ̂ is wrapped into

 98

the electrical period (from uθ− to uθ).

With the error definition, the error dynamic of the state observer becomes

()∑
=

−⋅⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
4

14

3),()ˆ,()(
00
10

j
jjjjjjj iisign

H
H

e
e

dt
de
dt
de

θλθλθ
ω

θ

ω

θ

 5-18

where H3 and H4 are the state observer gains. Because the integral of the

measured voltage is used for the measured flux this state observer only works at

speeds high enough that offset voltages in the integrator circuit do not create too large

of an error over the integrating interval. In addition, it must be insured that the output

of the integrator is set to zero each time the current goes to zero. This is realized by

having the sense signals turn on MOSFETs to short the integrating capacitors. The

integrator schematic in the experimental system is shown in Figure 3.13. The block

diagram of the state observer is shown in Figure 5.3.

 I

V

3H

s
14H Simplified

model

R

θ̂

ω̂

λ̂

λ
Σ Sign (θ̂ j) s

1

s
1

Figure 5.3 the sensorless control system using the simplified model

5.3 The error function with the simplified model

To verify that the error function defined in (5-17) has the desired properties to

drive the observer, the error function value versus the rotor position curves when the

rotor position error is 1, 2, 3, 4, 5, -1, -2, -3, -4, and -5 mechanical degrees are plotted

in Figure 5.4. The error function is monotonic and negative when the rotor position

 99

error is positive. It is monotonic and positive when the rotor position error is negative.

This insures that this error function can be used to drive the observer.

Figure 5.4 the error function based on the simplified flux model

 The average value of the error function over an electrical period versus the

position error is shown in Figure 5.5. The sign of the average value of the error

function is opposite to the sign of the rotor position error except when the rotor

position error is from -30 to -26 mechanical degrees. This can cause the sensorless

control to fail when the estimated rotor position is 26 to 30 degrees less than the

actual one. Note that the curve does not go exactly through the origin. This is because

in the simulation file, the actual flux is obtained with the detailed flux model in [6, 7],

while the calculated flux is predicted through the simplified flux model and there are

differences between the flux computed with the two models at the same current and

rotor position. This models the differences that exist between the actual SRM flux and

the flux computed using the simplified SRM model for the same current and rotor

position in the actual system.

 100

Figure 5.5 the average value of the error function versus the rotor position error

5.4 Stability and performance of the simplified flux model based

observer

Since the control system time constant is generally greater than the period of time

of the rotor position, the error average function can be used to characterize the error

function when the rotor is running at sufficiently high speeds. To linearize the error

average function, it is assumed that a zero function value occurs with zero angle error.

eavee kf θθ ⋅−= 2)(5-19

In (5-19) 2avek is the derivative of the error average function in Figure 5.5 with

respect to the position error where the position error is zero.

 Applying (5-19) into (5-18), the simplified flux model based observer becomes

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⋅−
⋅−

=⎥
⎦

⎤
⎢
⎣

⎡
ω

θ

ω

θ

e
e

kH
kH

e
e

dt
d

ave

ave

0
1

24

23 5-20

 101

 The Eigen values of the characteristic matrix in (5-20) are

24
2

2
2

3234,3 4
2
1

2
1

aveaveave kHkHkHEigen ⋅−⋅±⋅−= 5-21

 According to control theory, the Eigen values need to be negative real numbers or

have negative real parts so that the system is exponentially stable.

0][4,3 <Eigenreal 5-22

 Since 02 >avek , to satisfy (5-22), 1H and 2H are set as

03 >H , 04 >H 5-23

 If 24
2

2
2

3 4 aveave kHkH ⋅<⋅ , the two Eigen values are conjugate complex numbers

with a common real part. If 24
2

2
2

3 4 aveave kHkH ⋅=⋅ , the real part of the two Eigen

values are identical and they are 23 avekH ⋅ . If 24
2

2
2

3 4 aveave kHkH ⋅>⋅ , the two Eigen

values are unequal real numbers. In this case, the settling time will be determined by

the greater Eigen value, which is 24
2

2
2

323 4
2
1

2
1

aveaveave kHkHkH ⋅−⋅+⋅− . The settling

time is approximately five time constants and thus 5 over the real part of the Eigen

value with the smaller real part.

⎪
⎪
⎩

⎪⎪
⎨

⎧

⋅>⋅
⋅−⋅−⋅

⋅<⋅
⋅

=
24

2
2

2
3

24
2

2
2

323

24
2

2
2

3
23

4
4

5.2

45.2

aveave

aveaveave

aveave
ave

sattle

kHkHif
kHkHkH

kHkHif
kH

T

 5-24

5.5 Simulation results

The simplified model is used in the state observer to predict the calculated flux

 102

while the detailed model is used to simulate the actual SRM. Simulation results for

the estimated flux and the actual flux when the motor runs at 190 rpm are shown in

Figure 5.6. The rotor position error between the estimated rotor position and the

actual rotor position is shown in Figure 5.7. The spikes in the rotor position errors in

Figure 5.7 are due to the fact that the estimated rotor position and the actual rotor

position values are wrapped to stay within one electrical period and when this

wrapping occurs the error momentarily is equal to the angle of one electrical cycle.

Figure 5.6 the calculated flux linkage and the actual flux linkage in the simplified flux

model based observer sensorless control simulation with the SRM running at 190 rpm

Figure 5.7 the rotor position error versus time in the simplified flux model based

observer sensorless control simulation with the SRM running at 190 rpm

 103

5.6 Experimental results

The experimental SRM drive system is shown in Figure 5.8.

Figure 5.8 the experimental set-up of the simplified flux model based observer

sensorless control system using the simplified model

The calculated and actual fluxes from the experimental system operating at 190

rpm are shown in Figure 5.9 and the rotor position error from the experimental system

is shown in Figure 5.10. The spikes in the rotor position errors in and Figure 5.10 are

due to the fact that the estimated rotor position and the actual rotor position values are

wrapped to stay within an electrical period and when this wrapping occurs the error

momentarily is equal to the angle of one electrical cycle. Because of the inductance

asymmetry and the signal conditioning circuit asymmetry, the measured fluxes need

to be adjusted by adding dc offsets and multiplying factors. After these adjustments,

the electrical period is 60 degrees, but the period of 180 degrees is still used to be

consistent with the inductance profile demodulator based observer. The experimental

data is taken at steady state; while the simulation result shows the state observer’s

settling time with an initial position error of 5 degrees. Note that the estimated fluxes

in Figure 5.6 and Figure 5.9 are shifted up 0.02 Weber to separate the flux plots for

 104

easier viewing. The angle error ripple in the actual system is larger and has a lower

frequency (six flux pulses per cycle) than predicted by simulation. This is due in part

to the fact that the phase inductance of the experimental machine depended on which

rotor poles were near the stator pole of that phase. There were also differences in the

phase inductance from phase to phase. None of these machine asymmetries were

modeled in the simulation. Also note that the modeling errors apparent in Figure 5.2

do not create a noticeable error in the estimated flux and only a small error in the

estimated rotor position. The phase current at high speeds is shown in Figure 5.11.

The current does not chop as it does when the rotor runs at low speeds. Note that there

are still sense pulses at high speed when there is no torque producing current even

though they are not used. These sense pulses can be eliminated with an improved

control design.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 0.1 0.2 0.3 0.4 0.5 0.6
time (s)

flu
x

(W
eb

be
r)

actual flux
calculated flux + 0.02

Figure 5.9 the estimated flux linkage and the actual flux linkage for phase A in the

sensorless control experiment with the SRM operating at 190 rpm

 105

rotor position error vs time

-10

-8

-6

-4

-2

0

2

4

6

8

10

0 0.1 0.2 0.3 0.4 0.5 0.6

time (s)

ro
to

r p
os

iti
on

 e
rr

or
 (d

eg
re

e)

Figure 5.10 the rotor position error versus time in the simplified flux model based

observer sensorless control experiment with the SRM operating at 190 rpm

phase current vs time

-5

0

5

10

15

20

25

30

35

40

0.015 0.02 0.025 0.03 0.035

time (s)

ph
as

e
cu

rr
en

t (
A

)

Figure 5.11 the phase current at high speeds

 106

5.7 Speed limitation

The speed limitation of the observer depends on the digital sampling rate. Assume

k samples need to be taken in a torque producing period for the rotor position to be

determined. It is assumed that the torque producing region is 3/4 of electrical period,

i.e. 45 degrees at high speeds. In this case the speed limit for the simplified flux

model based observer is

sample
Maxm

Tk ⋅⋅
=

8
1

3ω 5-25

Because this observer needs to sample 8 channels, both currents and fluxes for 4

phases, the sampling time is noticeably greater than for the inductance profile

demodulator based observer. In this observer, Tsample=100μs, so 3Maxmω =1250 when k

is chosen to be 1. The actual speed response without load is shown in Figure 5.12. The

estimated rotor position error is shown in Figure 5.13. The position error starts to be

rather big when the rotor speed reaches 10,000 rpm so that the output torque

decreases.

Estimated rotor speed

0

200

400

600

800

1000

1200

1400

0 0.2 0.4 0.6 0.8 1 1.2

time (s)

ro
to

r s
pe

ed
 (r

ad
/s

)

Figure 5.12 the estimated rotor speed limitation of the simplified flux based observer

 107

position error

-20

-10

0

10

20

30

40

0 0.2 0.4 0.6 0.8 1 1.2

time (s)

es
tim

at
ed

 p
os

iti
on

 e
rr

or
 (d

eg
re

e)

Figure 5.13 the estimated rotor position error of the simplified flux based observer

5.8 Transient response

Using Figure 5.5, the coefficient kave2 is approximately 0.048. Then with H3=2 x

103, H4=1 x 104 and using (5-24), the settling time of the system is 0.25s. To obtain

the transient response experimentally, the commanded current is increased suddenly

when the rotor is running at a constant speed. The experimental transient response of

the rotor position error and the rotor speed are shown in Figure 5.14 and Figure 5.15

respectively. In the experiment, the settling time for the rotor position and the rotor

speed is 0.28s and 0.2s. When the gains H3 and H4 are changed to 2 x 104 and 2 x

106, the analytical settling time is 0.011s according to (5-24). The experimental

transient response of the rotor speed is shown in Figure 5.16. In the experiment, the

estimated rotor position was given a step change when the rotor was running at 200

rad/s. The estimated rotor speed settled down in 0.012s, which is close to the

analytical value.

 108

estimated and actual speeds vs time

0

5

10

15

20

25

30

35

40

45

50

0 1 2 3 4 5 6 7

time (s)

ro
to

r s
pe

ed
 (r

ad
/s

)

estimated
actual

Figure 5.14 the transient response of the rotor speed with H3=2 x 103 and H4=2 x 104

The estimated rotor speed

125

175

225

275

325

375

425

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

time (s)

th
e

ro
to

r s
pe

ed
 (r

ad
/s

)

Figure 5.15 The transient response of the rotor speed with H3=2 x 106 and H4=2 x 106

 109

5.9 Combination of the two strategies

The two control strategies are combined together so that full speed range

operation with rated torque can be realized. At start and low speeds, the inductance

profile demodulator based observer is applied. At medium and high speeds, the

simplified flux model based observer is applied.

To determine the speed at which to switch between the two observers, namely the

switching speed, it is assumed that the input voltage offset of the voltage integrator’s

operational amplifier is Voffset, and that the average integrator output voltage is Vout.

To make sure the offset voltage does not create too large of an integrator error, it is

required that the offset voltage integration error over a torque producing period is less

than or equal to 1/10 of the output voltage. Here a torque producing period is assumed

to θperiod. So the switch speed is

out

offsetperiod
Switchm

VRC
V
⋅⋅

≥
1.0
θω 5-26

In the experiment, Vout is 1V, Voffset=0.02V, so the switch speed is 10 rad/s.

Actually 100 rad/s is chosen to insure there is no integrator saturation due to

unpredictable events and because the inductance profile demodulator based observer

can operate to about 500 rad/s. The estimated rotor speed versus time curve in the

experimental is shown in Figure 5.17. The spike at 100 rad/s is due to the switching

from the inductance profile based observer to the simplified flux model based

observer. The change in the torque (slope of the speed) due to the change in algorithm

at 100rad/s is due to the change in control angles between the two algorithms. The

error signal versus time curve is shown in Figure 5.18. The two observers are driven

by two different error signals whose magnitudes are 100 times different in value, as

shown in the figure. This is consistent with the order of magnitude difference in the

settling times of the two observers with inductance profile demodulator based

observer (low speed) being the faster one.

 110

estimated rotor speed

0

200

400

600

800

1000

1200

1400

0 0.2 0.4 0.6 0.8 1 1.2

time (s)

ro
to

r s
pe

ed
 (r

ad
/s

)

Figure 5.16 the estimated rotor speed with the combination of the two observers

error vs time

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1 1.2

time (s)

er
ro

r

Figure 5.17 the error signal with the combination of the two observers

 111

Contributation and future research

To eliminate the position sensor in the SRM drive system for applications that

must operate from zero speed to high speeds with any torque output, a control strategy

that combines two new position estimation methods has been proposed, designed and

evaluated in this dissertation. In each method, a state observer is applied to estimate

the rotor position and speed.

For low speeds, an inductance profile demodulator based observer is utilized. A

relatively high frequency pulse voltage is applied to the idle phases producing a

triangle shaped current that is modulated by the SRM’s phase inductance. The current

is then demodulated and used to produce an error between the actual and estimated

rotor position. This error is used in an observer to estimate the rotor position. It is

based on the fact that the inductance is a function of the rotor position and

independent of current when the current is small and the iron does not saturate. The

method works at zero speed to medium speeds from zero to rated torque. It is capable

of 4 quadrant operation. It can find the rotor’s position at startup without rotating the

rotor. The factors that determine the maximum rotor speeds that the inductance profile

demodulator based observer can work at have been given. The demodulator, basically

a low pass filter, has an inherent time delay that results a large position error at high

speeds. The larger position error can cause the sensorless control to fail. Another

factor is that the sampling rate needs to be high enough to preserve the inductance

profile information from the demodulated signal. It was verified in the dissertation

using two different sampling rates. In the experiment that uses the lower sampling

rate, the sampling rate limits the rotor speed, while in the higher sampling rate

experiment, the time delay limits the rotor speed. The transient response experiment

was conducted. The experimental settling time is 0.024s, while the settling time of the

rotor speed and rotor position is 0.02 and 0.03 respectively. The system stability was

investigated and researched with simulation and experiments. The system is robust

because that it can work with inductance asymmetry.

For medium and high speeds, another observer, namely simplified flux model

based observer, is used to estimate the rotor position and rotor speed. In this observer,

the flux is calculated using the measured current and a simplified flux model. The

simplified flux model is based on a published detailed analytical flux model. Because

 112

of its simplicity, it can be run in real time rapidly in a microprocessor. The calculated

flux is compared with the measured flux to produce an error that drives the observer.

It is also capable of 4 quadrant operation. The factor that determines the maximum

speed this observer can work is basically the sampling rate. The stability and

performance of the observer has been verified with simulation and experiments.

Since the two speed ranges overlap, the control system is capable of working

from zero to high speed by switching between the two observers according to the

estimated speed.

The inductance profile demodulator based observer is unique. It can figure out the

rotor position at zero speed with the rated torque for any position without rotor

rotation. It doesn’t need additional inverter to inject the modulation current. Since

there are always idle phases into which the modulation current can be injected, the

rotor position can be figured out without rotor rotation for any position from the

modulation current. Then the inverter can apply torque producing current to the

phase(s) according to the estimated rotor position to produce torque. This is one of the

requirements of the actuator application. The sensorless control can still be

accomplished with the inductance asymmetry. This demonstrates the robustness of the

system.

The simplified flux model based observer can work at higher speeds than its peers

because it integrates the phase voltage to obtain the flux from hardware, instead of

digitally. This significantly lowers the required sampling rate for the discrete control

system. The simplified flux model is very simple for computation. There is no series,

exponential functions, floating point division or square root function which need

much more computation time than addition, sbustraction and multiplication. This

remarkably lowers the required computation time. These two facts make the observer

run at very high speeds.

The estimated rotor position from the two observers is very accurate from zero to

medium speeds. The torque produced by the SRM falls off when the position

estimators are in error and this loss of torque was used to determine the maximum

speeds the position estimators are capable of operating at.

Several things can be done to extend the application and improve the

performance of the control system. A feedback loop can be added to control the rotor

speed by regulating the commanded current. The commanded current can be set by

the microcontroller and converted into an analog signal using a digital-to-analog

 113

converter.

The fault tolerance of the SRM drive system at zero and low speeds needs to be

investigated. There is an inherent problem for a 4-phase SRM to work at zero speed

for any rotor position with one faulted phase. This is because the torque producing

time windows of the remaining 3 phases don’t cover the full 360º of rotor rotation. .

The position estimator developed has the potential of working at low speeds with one

faulted phase and possibly two faulted phases. This potential needs to be investigated.

The on and off angles should be set as functions of the rotor speed, power supply

voltage, commanded currents in simulation, but they are held constant in the

experiment. This should be done in the future. The angles can also be optimized to

reduce the torque ripple.

The program in the DSP, including the commutator, can be implemented in the

FPGA to reduce the computation time. If the total DSP program can be implemented

into the FPGA, it would work as a special purpose microprocessor, which can run

much faster than the DSP.

The EMI filter was not implemented into the experimental system. This should be

done in the future.

The inductance asymmetry can be added to the simulation model to describe the

actual system better. Also the generating mode of SRM needs to be evaluated

experimentally. The position estimator was designed to operate in all four quadrants.

However no generating experiments were conducted. In this dissertation, two SRM

drive system states, the rotor position and the rotor speed are used in the position

estimator’s observer. The phase currents or phase fluxes can be used as additional

states in the observer to potentially estimate the rotor position more accurately.

 114

Appendices

Appendix I. VHDL code in the FPGA chip

The entities tree:
i_reg_4ph_dsp
 divider
 counter
 comparator_50
 comparator_30
 i_reg_4ph_comp
 ph_ckt_new
 interfact_fpga_dsp_3

Module i_reg_4ph_dsp
--
-- Updated on Sep 2 2004
-- Q1gate, Q1source, Q2gate, Q2source Q1 and Q2
-- IorV(1 downto 0) added
-- Modin is used instead of IO_clock
--
-- Updated on Dec. 17 2004
-- Inverted Q1 and Q2 in ph_ckt_new module for level shifting
-- Inverted A, B and I signals from the op encoder for level shifting
--
-- Updated on Jan. 26 2005
-- Changed the polarity of Over_I_Probe to active low to drive
-- shutdown signal of the Dual Gate Drive chips.
--
-- Updated on Feb. 4 2005
-- Use IO_clock to generate modin signal (1M, 0.5D 20KHz, 0.6D)
--
-- Updated on Sep. 12 2005
-- MorG was used to get rid of the modulation current when flux method is used
--
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity i_reg_4ph_dsp is

Port (modin : out std_logic; -- generated by IO_clock, test it with an output
 IO_clock : in std_logic;
 sense_low : in std_logic_vector(3 downto 0);
 I_chop : in std_logic_vector(3 downto 0);
 over_I : in std_logic_vector(3 downto 0);
 didtcomp : in std_logic_vector(3 downto 0);
 do_sense_high : out std_logic_vector(3 downto 0);
 didtout : out std_logic_vector(3 downto 0);
 Q1 : out std_logic_vector(3 downto 0);
 Q2 : out std_logic_vector(3 downto 0);
 I_sense : out std_logic_vector(3 downto 0);
 IorV : out std_logic_vector(1 downto 0);
 A : in std_logic;
 B : in std_logic;
 I : in std_logic;
 Timer1 : in std_logic;

 115

 DX : in std_logic;
 DR : out std_logic;
 CLKS : out std_logic;
 CLKR : in std_logic;
 FSR : in std_logic;
 CLKX : in std_logic;
 FSX : in std_logic;
 enable_probe: out std_logic;
 MorG_probe: out std_logic;
 comin_probe: out std_logic_vector(3 downto 0);
 over_I_probe: out std_logic
);
end entity i_reg_4ph_dsp;
architecture Behavioral of i_reg_4ph_dsp is
signal enable, MorG, over_I_out: std_logic;
signal comin, I_sense_temp: std_logic_vector(3 downto 0);
signal modin_tmp: std_logic;
signal IO_clock_c : std_logic;
signal modin_c : std_logic;
signal comin_c, sense_low_c, I_chop_c, over_I_c : std_logic_vector(3 downto 0);
signal Q1_c, Q2_c: std_logic_vector(3 downto 0);
signal IorV_c: std_logic_vector(1 downto 0);

 signal do_sense_out_c: std_logic_vector(3 downto 0);
signal didtcomp_c, do_sense_high_c, didtout_c: std_logic_vector(3 downto 0);
signal A_c, B_c, I_c: std_logic;
signal Timer1_c, DX_c, DR_c: std_logic;
signal CLKS_c, CLKR_c, FSR_c, CLKX_c, FSX_c: std_logic;

 Probe signals
signal enable_probe_c, MorG_probe_c, over_I_probe_c: std_logic;
signal comin_probe_c, I_sense_c: std_logic_vector(3 downto 0);
signal A_inv, B_inv, I_inv: std_logic;
component GL33

port(
 GL :out std_logic;
 PAD :in std_logic);
end component;
component IB33

port(PAD : in std_logic := ‘U’; Y : out std_logic);
end component;
component OB33PH

port(PAD : out std_logic; A : in std_logic := ‘U’);
end component;
component i_reg_4ph_comp is

Port (modin : in std_logic;
 comin : in std_logic_vector(3 downto 0);
 sense_low : in std_logic_vector(3 downto 0);
 I_chop : in std_logic_vector(3 downto 0);
 over_I : in std_logic_vector(3 downto 0);
 didtcomp : in std_logic_vector(3 downto 0);
 enable : in std_logic;
 MorG : in std_logic;
 Q1: out std_logic_vector(3 downto 0);
 Q2: out std_logic_vector(3 downto 0);
 over_I_out : out std_logic;
 do_sense_out : out std_logic_vector(3 downto 0);
 do_sense_high : out std_logic_vector(3 downto 0);
 didtout : out std_logic_vector(3 downto 0));
end component i_reg_4ph_comp;
component interface_fpga_dsp_3 is

Port (A : in std_logic;

 116

 B : in std_logic;
 I : in std_logic;
 Enable : out std_logic;
 MorG: out std_logic;
 omm. : out std_logic_vector(3 downto 0);
 IorV : out std_logic_vector(1 downto 0);
 over_I : in std_logic;
 I_sense : in std_logic_vector(3 downto 0);
 clock: in std_logic; -- to dffs for holding output signals
 Timer1 : in std_logic; -- select line 1 of mux
 DX : in std_logic; -- select line 0 of mux
 DR : out std_logic; -- output line 1 of mux
 CLKS : out std_logic; -- output line 0 of mux
 CLKR : in std_logic;-- input line 1 of decoder
 FSR: in std_logic; -- input line 0 of decoder
 CLKX : in std_logic;-- select line 1 of decoder
 FSX : in std_logic);-- select line 0 of decoder
end component interface_fpga_dsp_3;
component divider is

port (clockin, enable: in std_logic;
 clockout: out std_logic);
end component divider;
begin

 test probes
enable_probe_c <= enable;
MorG_probe_c <= MorG;
over_I_probe_c <= not over_I_out;
comin_probe_c <= comin;
I_sense_c <= I_sense_temp;
A_inv <= not A_c;
B_inv <= not B_c;
I_inv <= not I_c;
-- Define input and output pads
-- common inputs

IO_clock_pad : GL33
 port map(PAD => IO_clock, GL => IO_clock_c);

A_pad : IB33
 port map(PAD => A, Y => A_c);

B_pad : IB33
 port map(PAD => B, Y => B_c);

I_pad : IB33
 port map(PAD => I, Y => I_c);

Timer1_pad : IB33
 port map(PAD => Timer1, Y => Timer1_c);

DX_pad : IB33
 port map(PAD => DX, Y => DX_c);

CLKR_pad : IB33
 port map(PAD => CLKR, Y => CLKR_c);

FSR_pad : IB33
 port map(PAD => FSR, Y => FSR_c);

CLKX_pad : IB33
 port map(PAD => CLKX, Y => CLKX_c);

FSX_pad : IB33
 port map(PAD => FSX, Y => FSX_c);

 common output(s)
modin_pad : OB33PH -- Added for testing modin generated by IO_clock

 port map(PAD => modin, A => modin_c);
DR_pad : OB33PH

 port map(PAD => DR, A => DR_c);
CLKS_pad : OB33PH

 117

 port map(PAD => CLKS, A => CLKS_c);
IorV_0_pad : OB33PH

 port map(PAD => IorV(0), A => IorV_c(0));
IorV_1_pad : OB33PH

 port map(PAD => IorV(1), A => IorV_c(1));
MorG_probe_pad : OB33PH

 port map(PAD => MorG_probe, A => MorG_probe_c);
enable_probe_pad : OB33PH

 port map(PAD => enable_probe, A => enable_probe_c);
comin_probe_0_pad : OB33PH

 port map(PAD => comin_probe(0), A => comin_probe_c(0));
comin_probe_1_pad : OB33PH

 port map(PAD => comin_probe(1), A => comin_probe_c(1));
comin_probe_2_pad : OB33PH

 port map(PAD => comin_probe(2), A => comin_probe_c(2));
comin_probe_3_pad : OB33PH

 port map(PAD => comin_probe(3), A => comin_probe_c(3));
over_I_probe_pad : OB33PH

 port map(PAD => over_I_probe, A => over_I_probe_c);
 phase #0 inputs and outputs

sense_low_0_pad : IB33
 port map(PAD => sense_low(0), Y => sense_low_c(0));

I_chop_0_pad : IB33
 port map(PAD => I_chop(0), Y => I_chop_c(0));

over_I_0_pad : IB33
 port map(PAD => over_I(0), Y => over_I_c(0));

didtcomp_0_pad : IB33
 port map(PAD => didtcomp(0), Y => didtcomp_c(0));

Q1_0_pad : OB33PH
 port map(PAD => Q1(0), A => Q1_c(0));

Q2_0_pad : OB33PH
 port map(PAD => Q2(0), A => Q2_c(0));

I_sense_0_pad : OB33PH
 port map(PAD => I_sense(0), A => I_sense_c(0));

do_sense_high_0_pad : OB33PH
 port map(PAD => do_sense_high(0), A => do_sense_high_c(0));

didt_out_0_pad : OB33PH
 port map(PAD => didtout(0), A => didtout_c(0));

 phase #1 inputs and outputs
sense_low_1_pad : IB33

 port map(PAD => sense_low(1), Y => sense_low_c(1));
I_chop_1_pad : IB33

 port map(PAD => I_chop(1), Y => I_chop_c(1));
over_I_1_pad : IB33

 port map(PAD => over_I(1), Y => over_I_c(1));
didtcomp_1_pad : IB33

 port map(PAD => didtcomp(1), Y => didtcomp_c(1));
Q1_1_pad : OB33PH

 port map(PAD => Q1(1), A => Q1_c(1));
Q2_1_pad : OB33PH

 port map(PAD => Q2(1), A => Q2_c(1));
I_sense_1_pad : OB33PH

 port map(PAD => I_sense(1), A => I_sense_c(1));
do_sense_high_1_pad : OB33PH

 port map(PAD => do_sense_high(1), A => do_sense_high_c(1));
didt_out_1_pad : OB33PH

 port map(PAD => didtout(1), A => didtout_c(1));
 phase #2 inputs and outputs

sense_low_2_pad : IB33

 118

 port map(PAD => sense_low(2), Y => sense_low_c(2));
I_chop_2_pad : IB33

 port map(PAD => I_chop(2), Y => I_chop_c(2));
over_I_2_pad : IB33

 port map(PAD => over_I(2), Y => over_I_c(2));
didtcomp_2_pad : IB33

 port map(PAD => didtcomp(2), Y => didtcomp_c(2));
Q1_2_pad : OB33PH

 port map(PAD => Q1(2), A => Q1_c(2));
Q2_2_pad : OB33PH

 port map(PAD => Q2(2), A => Q2_c(2));
I_sense_2_pad : OB33PH

 port map(PAD => I_sense(2), A => I_sense_c(2));
do_sense_high_2_pad : OB33PH

 port map(PAD => do_sense_high(2), A => do_sense_high_c(2));
didt_out_2_pad : OB33PH

 port map(PAD => didtout(2), A => didtout_c(2));
 phase #3 inputs and outputs

sense_low_3_pad : IB33
 port map(PAD => sense_low(3), Y => sense_low_c(3));

I_chop_3_pad : IB33
 port map(PAD => I_chop(3), Y => I_chop_c(3));

over_I_3_pad : IB33
 port map(PAD => over_I(3), Y => over_I_c(3));

didtcomp_3_pad : IB33
 port map(PAD => didtcomp(3), Y => didtcomp_c(3));

Q1_3_pad : OB33PH
 port map(PAD => Q1(3), A => Q1_c(3));

Q2_3_pad : OB33PH
 port map(PAD => Q2(3), A => Q2_c(3));

I_sense_3_pad : OB33PH
 port map(PAD => I_sense(3), A => I_sense_c(3));

do_sense_high_3_pad : OB33PH
 port map(PAD => do_sense_high(3), A => do_sense_high_c(3));

didt_out_3_pad : OB33PH
 port map(PAD => didtout(3), A => didtout_c(3));
Modindff: process (IO_clock_c) is
begin
if (rising_edge(IO_clock_c)) then
modin_c <= not modin_tmp;
end if;
end process;
U0: divider
port map (clockin => IO_clock_c, enable => enable, clockout=> modin_tmp);
U1: i_reg_4ph_comp
port map (modin => modin_c, comin=>comin, sense_low=>sense_low_c,
 I_chop=>I_chop_c, over_I=>over_I_c, didtcomp=>didtcomp_c,
enable=>enable,MorG=>MorG,Q2source=>Q2source_c,Q1=>Q1_c, Q2=>Q2_c,
over_I_out=>over_I_out,do_sense_out=>I_sense_temp,do_sense_high=>do_sense_high_c,
didtout=>didtout_c);
U2: interface_fpga_dsp_3
port map (A=>A_inv, B=>B_inv, I=>I_inv, Enable=>enable,
 MorG=>MorG, omm.=>comin, IorV=>IorV_c, over_I=>over_I_out,
 I_sense=>I_sense_temp, clock=>IO_clock_c, Timer1=>Timer1_c,
 DX=>DX_c, DR=>DR_c, CLKS=>CLKS_c, CLKR=>CLKR_c, FSR=>FSR_c,
CLKX=>CLKX_c, FSX=>FSX_c);
end architecture Behavioral;

Entity Divider
-- divider.vhd

 119

-- To divide the IO_clock signal by 50 to get Modin signal
-- 1MHz 20KHz
-- ---
-- | |
-- \ / |
-- reset |
-- IO_clock->counter -> comparator_50 ->DFF ->INV ----\
-- | RSFF modin
-- -> comparator_30 ->DFF ->INV ----/
-- duty cycle could be random, here 0.6 is chosen
-- created on 02/03/04
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity divider is

port (clockin, enable: in std_logic;
 clockout: out std_logic);
end entity divider;
architecture RTL of divider is
signal comp1,comp2,d1,d2,s,r,srout: std_logic;
signal pre_state,next_state: std_logic;
signal sr: std_logic_vector(2 downto 0);
signal Q: std_logic_vector(5 downto 0);
signal temp_aclr: std_logic;
component counter is

port(Enable, Aclr, Clock : in std_logic; Q : out
 std_logic_vector(5 downto 0)) ;
end component counter;
component comparator_50 is

port(DataA : in std_logic_vector(5 downto 0); AEB : out
 std_logic) ;
end component comparator_50;
component comparator_30 is

port(DataA : in std_logic_vector(5 downto 0); AEB : out
 std_logic) ;
end component comparator_30;
begin
sr<=s & r & pre_state;
temp_aclr<= d1 and enable;
counter_0: counter

port map(Enable=>enable, Aclr=>temp_aclr, Clock=>clockin, Q=>Q);
comp_50_0: comparator_50

port map(DataA=>Q, AEB=>comp1);
comp_30_0: comparator_30

port map(DataA=>Q, AEB=>comp2);
s<=not d1;
r<=not d2;
clockout<=srout;
dff1: process(clockin)
begin
if(rising_edge(clockin)) then
d1<=comp1;
end if;
end process dff1;
dff2: process(clockin)
begin
if(rising_edge(clockin)) then
d2<=comp2;
end if;

 120

end process dff2;
-------------- describe S R Flip Flops--------------
srff_comb: process (sr) is
begin
case sr is
when”000” => srout<=’0’; -- next_state is deleted because
when”001” => srout<=’1’; -- it is the same as srout
when”010” => srout<=’0’;
when”011” => srout<=’0’;
when”100” => srout<=’1’;
when”101” => srout<=’1’;
when”110” => srout<=’0’;
when”111” => srout<=’0’;
when others=> srout<=’0’;
end case;
end process srff_comb;
srff_dff: process(clockin) is
begin
if (rising_edge(clockin)) then
pre_state<=srout;
end if;
end process srff_dff;
end architecture RTL;

Entity counter

 Version: 6.0 Production 6.0.0.133
library ieee;
use ieee.std_logic_1164.all;
library a500K;
entity counter is

port(Enable, Aclr, Clock : in std_logic; Q : out
 std_logic_vector(5 downto 0)) ;
end counter;
architecture DEF_ARCH of counter is

component AND3
 port(A, B, C : in std_logic := ‘U’; Y : out std_logic) ;

end component;
component AND2

 port(A, B : in std_logic := ‘U’; Y : out std_logic) ;
end component;
component XOR2

 port(A, B : in std_logic := ‘U’; Y : out std_logic) ;
end component;
component DFFC

 port(CLK, D, CLR : in std_logic := ‘U’; Q : out std_logic
) ;

end component;
 component INV
 port(A : in std_logic := ‘U’; Y : out std_logic) ;

end component;
signal Q_0_net, Q_1_net, Q_2_net, Q_3_net, Q_4_net, Q_5_net,

 Sum_1_net, Sum_2_net, Sum_3_net, Sum_4_net, Sum_5_net,
 Sum_6_net, Sum_0_net, AND2_1_Y, AND3_0_Y, AND2_2_Y,
 AND3_1_Y, AND3_2_Y, AND2_0_Y, INV_0_Y : std_logic ;

begin
Q(0) <= Q_0_net;
Q(1) <= Q_1_net;
Q(2) <= Q_2_net;
Q(3) <= Q_3_net;
Q(4) <= Q_4_net;

 121

Q(5) <= Q_5_net;
AND3_2 : AND3

 port map(A => Q_2_net, B => Q_3_net, C => Q_4_net, Y =>
 AND3_2_Y);

AND2_0 : AND2
 port map(A => AND3_0_Y, B => AND3_2_Y, Y => AND2_0_Y);

XOR2_Sum_6_inst : XOR2
 port map(A => AND2_0_Y, B => Q_5_net, Y => Sum_6_net);

DFFC_Q_3_inst : DFFC
 port map(CLK => Clock, D => Sum_4_net, CLR => INV_0_Y, Q =>
 Q_3_net);

INV_0 : INV
 port map(A => Aclr, Y => INV_0_Y);

AND2_1 : AND2
 port map(A => Enable, B => Q_0_net, Y => AND2_1_Y);

AND3_0 : AND3
 port map(A => Enable, B => Q_0_net, C => Q_1_net, Y =>
 AND3_0_Y);

XOR2_Sum_1_inst : XOR2
 port map(A => Enable, B => Q_0_net, Y => Sum_1_net);

AND3_1 : AND3
 port map(A => AND3_0_Y, B => Q_2_net, C => Q_3_net, Y =>
 AND3_1_Y);

DFFC_Q_5_inst : DFFC
 port map(CLK => Clock, D => Sum_6_net, CLR => INV_0_Y, Q =>
 Q_5_net);

XOR2_Sum_2_inst : XOR2
 port map(A => AND2_1_Y, B => Q_1_net, Y => Sum_2_net);

DFFC_Q_1_inst : DFFC
 port map(CLK => Clock, D => Sum_2_net, CLR => INV_0_Y, Q =>
 Q_1_net);

DFFC_Q_2_inst : DFFC
 port map(CLK => Clock, D => Sum_3_net, CLR => INV_0_Y, Q =>
 Q_2_net);

XOR2_Sum_3_inst : XOR2
 port map(A => AND3_0_Y, B => Q_2_net, Y => Sum_3_net);

XOR2_Sum_4_inst : XOR2
 port map(A => AND2_2_Y, B => Q_3_net, Y => Sum_4_net);

AND2_2 : AND2
 port map(A => AND3_0_Y, B => Q_2_net, Y => AND2_2_Y);

XOR2_Sum_5_inst : XOR2
 port map(A => AND3_1_Y, B => Q_4_net, Y => Sum_5_net);

DFFC_Q_4_inst : DFFC
 port map(CLK => Clock, D => Sum_5_net, CLR => INV_0_Y, Q =>
 Q_4_net);

DFFC_Q_0_inst : DFFC
 port map(CLK => Clock, D => Sum_1_net, CLR => INV_0_Y, Q =>
 Q_0_net);
-- software bug, not in use
-- INV_Sum_0_inst : INV
-- port map(A => Enable, Y => Sum_0_net);
end DEF_ARCH;

Entity comparator_50

 Version: 6.0 Production 6.0.0.133
library ieee;
use ieee.std_logic_1164.all;
library a500K;
entity comparator_50 is

port(DataA : in std_logic_vector(5 downto 0); AEB : out

 122

 std_logic) ;
end comparator_50;
architecture DEF_ARCH of comparator_50 is

component NAND3
 port(A, B, C : in std_logic := ‘U’; Y : out std_logic) ;

end component;
component AND3FTT

 port(A, B, C : in std_logic := ‘U’; Y : out std_logic) ;
end component;
component AND3FFT

 port(A, B, C : in std_logic := ‘U’; Y : out std_logic) ;
end component;

-- software bug: ANDTree_Data_2_net is not used
-- signal Temp_0_net, Temp_1_net, ANDTree_Data_2_net : std_logic ;

signal Temp_0_net, Temp_1_net : std_logic ;
begin
NAND3_AEB : NAND3

 port map(A => Temp_0_net, B => Temp_1_net,
 C => ‘1’, Y => AEB);

AND3FTT_Temp_1_inst : AND3FTT
 port map(A => DataA(3), B => DataA(4), C => DataA(5),
 Y => Temp_1_net);

AND3FFT_Temp_0_inst : AND3FFT
 port map(A => DataA(0), B => DataA(2), C => DataA(1),
 Y => Temp_0_net);
end DEF_ARCH;

Entity comparator_30

 Version: 6.0 Production 6.0.0.133
library ieee;
use ieee.std_logic_1164.all;
library a500K;
entity comparator_30 is

port(DataA : in std_logic_vector(5 downto 0); AEB : out
 std_logic) ;
end comparator_30;
architecture DEF_ARCH of comparator_30 is

component AND3FTT
 port(A, B, C : in std_logic := ‘U’; Y : out std_logic) ;

end component;
component NAND3

 port(A, B, C : in std_logic := ‘U’; Y : out std_logic) ;
end component;

-- software bug: ANDTree_Data_2_net is not used
-- signal Temp_0_net, Temp_1_net, ANDTree_Data_2_net : std_logic ;

signal Temp_0_net, Temp_1_net : std_logic ;
begin
AND3FTT_Temp_0_inst : AND3FTT

 port map(A => DataA(0), B => DataA(1), C => DataA(2), Y =>
 Temp_0_net);

NAND3_AEB : NAND3
 port map(A => Temp_0_net, B => Temp_1_net, C => ‘1’, Y => AEB);

AND3FTT_Temp_1_inst : AND3FTT
 port map(A => DataA(5), B => DataA(4), C => DataA(3), Y =>
 Temp_1_net);
end DEF_ARCH;

Entity i_reg_4ph_comp
-- This module works well before August
---- Updated on Sep 2 2004

 123

-- Q1gate, Q1source, Q2gate, Q2source Q1 and Q2
-- Only modin is used, no IO_clock any more
--
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity i_reg_4ph_comp is

Port (modin : in std_logic;
 comin : in std_logic_vector(3 downto 0);
 sense_low : in std_logic_vector(3 downto 0);
 I_chop : in std_logic_vector(3 downto 0);
 over_I : in std_logic_vector(3 downto 0);
 didtcomp : in std_logic_vector(3 downto 0);
 enable : in std_logic;
 MorG : in std_logic;
 Q1: out std_logic_vector(3 downto 0);
 Q2: out std_logic_vector(3 downto 0);
 over_I_out : out std_logic;
 do_sense_out : out std_logic_vector(3 downto 0);
 do_sense_high : out std_logic_vector(3 downto 0);
 didtout : out std_logic_vector(3 downto 0));
end i_reg_4ph_comp;
architecture Behavioral of i_reg_4ph_comp is
component ph_ckt_new is

Port (modin : in std_logic; --10KHz omm.
 comin : in std_logic; --Gengerating Torque
 sense_low : in std_logic; --Current is zero
 I_chop : in std_logic;
 over_I : in std_logic;
 I_off : in std_logic;
 enable : in std_logic;
 MorG : in std_logic;
 didtcomp: in std_logic; -- new input
 Q1gate,Q2gate: out std_logic;
 over_I_out : out std_logic;
 do_sense_low : out std_logic; -- hanged from do_sense_out
 do_sense_high, didtout: out std_logic -- new outputs
);
end component ph_ckt_new;
signal over_I_out_tmp: std_logic_vector(3 downto 0);
signal I_off: std_logic;
begin
I_off<= over_I_out_tmp(0) or over_I_out_tmp(1) or over_I_out_tmp(2) or over_I_out_tmp(3);
over_I_out<= I_off;
U0: ph_ckt_new
port map (modin=>modin, comin=>comin(0), sense_low=>sense_low(0),
 I_chop=>I_chop(0), over_I=>over_I(0), I_off=>I_off, enable=>enable, MorG=>MorG,
 didtcomp=>didtcomp(0),Q1gate=>Q1(0), Q2gate=>Q2(0),
 over_I_out=>over_I_out_tmp(0), do_sense_low=>do_sense_out(0),
 do_sense_high=>do_sense_high(0), didtout=>didtout(0));
U1: ph_ckt_new
port map (modin=>modin, comin=>comin(1), sense_low=>sense_low(1),
 I_chop=>I_chop(1), over_I=>over_I(1), I_off=>I_off, enable=>enable, MorG=>MorG,
 didtcomp=>didtcomp(1), Q1gate=>Q1(1), Q2gate=>Q2(1),
 over_I_out=>over_I_out_tmp(1), do_sense_low=>do_sense_out(1),
 do_sense_high=>do_sense_high(1), didtout=>didtout(1));
U2: ph_ckt_new
port map (modin=>modin, comin=>comin(2), sense_low=>sense_low(2),
 I_chop=>I_chop(2), over_I=>over_I(2), I_off=>I_off, enable=>enable, MorG=>MorG,

 124

 didtcomp=>didtcomp(2), Q1gate=>Q1(2), Q2gate=>Q2(2),
 over_I_out=>over_I_out_tmp(2), do_sense_low=>do_sense_out(2),
 do_sense_high=>do_sense_high(2), didtout=>didtout(2));
U3: ph_ckt_new
port map (modin=>modin, comin=>comin(3), sense_low=>sense_low(3),
 I_chop=>I_chop(3), over_I=>over_I(3), I_off=>I_off, enable=>enable, MorG=>MorG,
 didtcomp=>didtcomp(3), Q1gate=>Q1(3), Q2gate=>Q2(3),
 over_I_out=>over_I_out_tmp(3), do_sense_low=>do_sense_out(3),
 do_sense_high=>do_sense_high(3), didtout=>didtout(3));
end Behavioral;

Entity ph_ckt_new
-- Built on Feb. 16, 2004
-- included didt circuit in the logic subsystem in the MATLAB model
-- signal MorG and Enable are set as regular Ios
--
-- Updated on Sep 2 2004
-- Q1gate, Q1source, Q2gate, Q2source Q1 and Q2
-- only modin is used, no IO_clock any more
--
-- Updated on Dec. 17 2004
-- Inverted Q1 and Q2 in this module for level shifting
--
-- Updated on Jan 31 2005
-- Save fault SRFF is deleted to avoid the noice from over_I input
--
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity ph_ckt_new is

Port (modin : in std_logic; --10KHz omm.
 comin : in std_logic; --Gengerating Torque
 sense_low : in std_logic; --Current is zero
 I_chop : in std_logic;
 over_I : in std_logic;
 I_off : in std_logic;
 enable : in std_logic;
 MorG : in std_logic; -- used to avoid modulation at high speeds
 didtcomp: in std_logic; -- new input
 Q1gate,Q2gate: out std_logic;
 over_I_out : out std_logic;
 do_sense_low : out std_logic; -- hanged from do_sense_out
 do_sense_high, didtout: out std_logic -- new outputs
);
end entity ph_ckt_new;
architecture Behavioral of ph_ckt_new is
signal and_1_output, and_2_output, and_3_output, and_4_output: std_logic;
signal and_5_output, and_6_output: std_logic; -- for the do_sense_high signal
signal or_1_output, or_2_output, or_3_output: std_logic;
signal comin_inv, sense_low_inv, I_chop_inv, I_off_inv, enable_inv: std_logic;
signal sense_low_inv_hold: std_logic;
signal Q1_temp,Q1,Q1_inv:std_logic;
signal QT_temp, Q_I_chop, Q_I_chop_inv: std_logic;
signal Q3_temp,Q3: std_logic; -- for do_sense_high signal
signal D1_temp,D1_inv_temp,D1_temp_inv,D2_temp,D2_inv_temp:std_logic;
signal Q1on, Q2on, IO_clock_inv: std_logic;
signal sr1: std_logic_vector(2 downto 0);
signal sr2: std_logic_vector(2 downto 0);
signal sr3: std_logic_vector(2 downto 0); -- for do_sense_high signal

 125

signal pre_state,next_state: std_logic;
signal pre_state_3,next_state_3: std_logic; -- for do_sense_high RSFF

begin
sr1<=and_2_output & comin & pre_state; --combinational logic operation.
Sr3<=comin_inv & and_5_output & pre_state_3; -- for do_sense_high
-------------- do inverse-----------------------
comin_inv<=not comin;
sense_low_inv<=not sense_low;
I_chop_inv<=not I_chop;
I_off_inv<=not I_off;
enable_inv<=not enable;
-------------- describe “and” gates-------------
and_1_output<=modin and comin_inv and Q1 and MorG; -- added MorG to avoid modulation at high
speeds
and_2_output<=sense_low_inv_hold and comin_inv;
and_3_output<=Q_I_chop; -- MorG and Q_I_chop;
and_4_output<=Q_I_chop_inv; --MorG and Q_I_chop_inv;
and_5_output<=I_chop and comin; --- for do_sense_high signal
and_6_output<=Q3 and comin; --- for do_sense_high signal
do_sense_high<= and_6_output; --- for do_sense_high signal
Q1on<=or_1_output and or_2_output and enable and I_off_inv;
Q2on<=or_1_output and or_3_output and enable and I_off_inv;
-------------- describe “or” gates--------------
or_1_output<=and_1_output or comin;
or_2_output<=and_3_output or I_chop_inv;
or_3_output<=and_4_output or I_chop_inv;
-------additional part-------------
Q1gate<= not Q1on;
Q2gate<= not Q2on;

 Added on Jan. 31 2005 to avoid the noise of the over_I input
over_I_out<= over_I;
-------------- describe Flip Flops--------------
srff1_comb: process (sr1) is
begin
case sr1 is
when”000” => Q1_temp<=’0’; next_state<=’0’;
when”001” => Q1_temp<=’1’; next_state<=’1’;
when”010” => Q1_temp<=’0’; next_state<=’0’;
when”011” => Q1_temp<=’0’; next_state<=’0’;
when”100” => Q1_temp<=’1’; next_state<=’1’;
when”101” => Q1_temp<=’1’; next_state<=’1’;
when”110” => Q1_temp<=’0’; next_state<=’0’;
when”111” => Q1_temp<=’0’; next_state<=’0’;
when others=> Q1_temp<=’1’; next_state<=’0’;
end case;
Q1<=Q1_temp;
do_sense_low<=Q1;
end process srff1_comb;
srff1_dff: process(modin) is
begin
if (rising_edge(modin)) then
pre_state<=next_state;
end if;
end process srff1_dff
--------------- T Flip Flop---------------------
TFF: process (I_chop_inv, enable) is
begin
 if (enable = ‘0’) then
 QT_temp <=’0’;

 126

 else
 if (rising_edge(I_chop_inv)) then
 QT_temp <= not QT_temp;
 end if;
 end if;
 Q_I_chop<=QT_temp;
 Q_I_chop_inv<= not QT_temp;
end process TFF;
-------------- save fault S R Flip Flop--------
-- srff2_comb: process (sr2) is
-- begin
-- case sr2 is
-- when”000” => Q2_temp<=’0’; next_state_2<=’0’;
-- when”001” => Q2_temp<=’1’; next_state_2<=’1’;
-- when”010” => Q2_temp<=’0’; next_state_2<=’0’;
-- when”011” => Q2_temp<=’0’; next_state_2<=’0’;
-- when”100” => Q2_temp<=’1’; next_state_2<=’1’;
-- when”101” => Q2_temp<=’1’; next_state_2<=’1’;
-- when”110” => Q2_temp<=’0’; next_state_2<=’0’;
-- when”111” => Q2_temp<=’0’; next_state_2<=’0’;
-- when others=> Q2_temp<=’0’; next_state_2<=’0’;
-- end case;
-- Q2<=Q2_temp;
-- over_I_out<=Q2;
-- end process srff2_comb;
-- srff2_dff: process(modin) is
-- begin
-- if (rising_edge(modin)) then
-- pre_state_2<=next_state_2;
-- end if;
-- end process srff2_dff;
--------------- zero order holder and delay realized with 2 D flip flops------
Holder: process (modin) is
begin
if (rising_edge(modin)) then
D1_temp<=sense_low_inv;
end if;
end process Holder;
Delay: process (modin) is
begin
if (rising_edge(modin)) then
D2_temp<=D1_temp;
end if;
sense_low_inv_hold<= D2_temp;
end process Delay;
----------------------RSFF for do_sense_high signal-------
srff3_comb: process (sr3) is
begin
case sr3 is
when”000” => Q3_temp<=’0’; next_state_3<=’0’;
when”001” => Q3_temp<=’1’; next_state_3<=’1’;
when”010” => Q3_temp<=’0’; next_state_3<=’0’;
when”011” => Q3_temp<=’0’; next_state_3<=’0’;
when”100” => Q3_temp<=’1’; next_state_3<=’1’;
when”101” => Q3_temp<=’1’; next_state_3<=’1’;
when”110” => Q3_temp<=’0’; next_state_3<=’0’;
when”111” => Q3_temp<=’0’; next_state_3<=’0’;
when others=> Q3_temp<=’0’; next_state_3<=’0’;
end case;
Q3<=Q3_temp;

 127

end process srff3_comb;
srff3_dff: process(modin) is
begin
if (rising_edge(modin)) then
pre_state_3<=next_state_3;
end if;
end process srff3_dff;
--------------process for didtout signal---------------
didtoutprocess: process (comin, didtcomp)
begin
if(comin=’1’) then
 didtout<=didtcomp;
else
 didtout<=’0’;
end if;
end process didtoutprocess;
end architecture Behavioral;

Entity interfact_fpga_dsp_3
-- The McBSP1 are used as GPIO, Timer1 is used as GPIO too.
-- A potential problem is that the clock signal frequency should be higher than the
-- frequency of the output signals
-- It works well according to simulation
-- It worked will before August 2004
--
-- Updated on Sep 2 2004
-- IorV(1 downto 0) added
--
-- Updated on Feb 4 2005
-- for the decoder, 3 select lines are set as FSR, CLKX, FSX
-- only one input is set CLKR so that only one output is assigned for one time
--
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity interface_fpga_dsp_3 is

Port (A : in std_logic;
 B : in std_logic;
 I : in std_logic; -- because I appear once per resolution, not useful for position
 Enable : out std_logic;
 MorG: out std_logic;
 omm. : out std_logic_vector(3 downto 0);
 IorV : out std_logic_vector(1 downto 0);
 over_I : in std_logic;
 I_sense : in std_logic_vector(3 downto 0);
 clock: in std_logic; -- to dffs for holding output signals
 Timer1 : in std_logic; -- select line 1 of mux
 DX : in std_logic; -- select line 0 of mux
 DR : out std_logic; -- output line 1 of mux
 CLKS : out std_logic; -- output line 0 of mux
 CLKR : in std_logic;-- input line 1 of decoder
 FSR: in std_logic; -- input line 0 of decoder
 CLKX : in std_logic;-- select line 1 of decoder
 FSX : in std_logic);-- select line 0 of decoder
end interface_fpga_dsp_3;
architecture Behavioral of interface_fpga_dsp_3 is
signal A_tmp, B_tmp,I_tmp, reset_tmp, over_I_tmp, clock_tmp: std_logic;
signal I_sense_tmp: std_logic_vector(3 downto 0);
signal Timer1_tmp, DX_tmp, CLKR_tmp, FSR_tmp, CLKX_tmp, FSX_tmp: std_logic;

 128

signal Enable_tmp, MorG_tmp,DR_tmp, CLKS_tmp: std_logic;
signal omm._tmp: std_logic_vector(3 downto 0);
signal IorV_tmp: std_logic_vector(1 downto 0);
-- signal dir: std_logic; -- output of the counter, direction of the rotation
-- signal counter_out: std_logic_vector(1 downto 0); -- outputs of the counter
signal muxsel: std_logic_vector(1 downto 0);
signal decodersel: std_logic_vector(2 downto 0);
begin
-- PAD instantiation // will be realized in Actel Libero software
-- input PADs
 Timer1_tmp <= Timer1;
 DX_tmp <= DX;
 A_tmp <= A;
 B_tmp <= B;
 I_tmp <= I;
 -- reset_tmp <= reset;
 over_I_tmp <= over_I;
 clock_tmp <= clock;
 I_sense_tmp(0) <= I_sense(0);
 I_sense_tmp(1) <= I_sense(1);
 I_sense_tmp(2) <= I_sense(2);
 I_sense_tmp(3) <= I_sense(3);
 CLKR_tmp <= CLKR;
 FSR_tmp <= FSR;
 CLKX_tmp <= CLKX;
 FSX_tmp <= FSX;

 output PADs
Enable <= Enable_tmp;
 MorG <= MorG_tmp;
 DR <= DR_tmp;
 CLKS <= CLKS_tmp;
 omm. <= omm._tmp;
 IorV <= IorV_tmp;

 select lines for the mux and decoder
muxsel<= Timer1_tmp & DX_tmp;
decodersel<= FSR_tmp & CLKX_tmp & FSX_tmp;
mux8x2: process (muxsel, I_sense_tmp, over_I_tmp,A_tmp,B_tmp, I_tmp) is
begin
case muxsel is
when “11” => CLKS_tmp <= I_sense_tmp(3); DR_tmp <= I_sense_tmp(2);
when “10” => CLKS_tmp <= I_sense_tmp(1); DR_tmp <= I_sense_tmp(0);
when “01” => CLKS_tmp <= over_I_tmp; DR_tmp <= I_tmp;
when “00” => CLKS_tmp <= A_tmp; DR_tmp <= B_tmp;
when others => CLKS_tmp <= A_tmp; DR_tmp <= B_tmp;
end case;
end process;
decoder: process (clock_tmp) is
begin
if (rising_edge(clock_tmp)) then
case decodersel is
when “111” => IorV_tmp(1) <= CLKR_tmp;
when “110” => IorV_tmp(0) <= CLKR_tmp;
when “101” => Enable_tmp <= CLKR_tmp;
when “100” => MorG_tmp <= CLKR_tmp;
when “011” => omm._tmp(3) <= CLKR_tmp;
when “010” => omm._tmp(2) <= CLKR_tmp;
when “001” => omm._tmp(1) <= CLKR_tmp;
when “000” => omm._tmp(0) <= CLKR_tmp;
when others => MorG_tmp<= CLKR_tmp;
end case;

 129

end if;
end process;

end Behavioral;

 130

Appendix II. C/C++ code in DSP

Only the C files programmed by the author are presented here. The header files and the files generated
by the code composer studio are not presented here.

Main.c
/**/
/* final program for the THS1206 EVM connected to an C6711 DSK. */
/* */
/* The following jumper setting should be used: */
/* Daughter Card Style THS1206 EVM: */
/* J1 1-2 / J2 1-2 / J3 2-5 / J4 open */
/* J5 open / J6 open / J7 1-2 / J10 closed */
/* J11 open / J12 2-3 / J13 1-2 */
/* Supply voltage from DSP, CLK from Timer 0, Input AINP */
/* AD converter address: 0xA0020000 */
/* */
/* The following jumper setting should be used: */
/* Modular THS1206 EVM: */
/* W1, W2, W3, W9, W10 – Closed */
/* W11 – Open */
/* W5, W6 – 1-2 */
/* Supply voltage from DSP, CLK from Timer 0, Input AINP */
/* AD converter address: 0xA0024000 */
/* DSP/BIOS II and CSL used */
/* */
/* This program runs sensorless control for SRM */
/* Copy right 2005 Jinhui Zhang, Arthur Radun, */
/* Power Electronics Lab, University of Kentucky */
/**/

/* include files for data converter support */
#include “dc_conf.h”
#include “t1206_fn.h”
#include “mcbsp.h”
#include “Rockymotin.h”
#include “lookuptable.h”
#include “variables.h”
/* include files for DSP/BIOS */
#include <std.h>
#include <swi.h>
#include <log.h>

/* include files for chip support library */
#include <csl.h>
#include <csl_legacy.h>
#include <csl_irq.h>
#include <csl_timer.h>

#define phase 4 /* size of data buffer */
#define dataSaveSize 1000 // size of data saved
#define savestep 10 /* data save step based on the sampling time */

/* function prototypes */
TIMER_HANDLE init_timer0(unsigned int period);
void init_dsk(void);
void wait(void);
void GetSignals_McBSP1(void);

 131

float errorlow(int);
float errorhigh(void);
void SenseTheta(void);
void Commutator(int);
void MicroController(void);
float flux(float theta, float phi);
void motor_init(void);
void storeData(void);
void sendOutComm(void);
void DoCalculationFunc(void);
void calculatePhaseIV(void);

/* DSP/BIOS objects, created with the Config Tool */
extern LOG_Obj trace;
extern far SWI_Obj SwiStartConversion;
// extern far SWI_Obj SwiDoCalculation;

int posR=0;
short gtheta_short[phase];
float gtheta[phase];
short phaseI_short[phase], phaseLamda_short[phase];
float phaseI[phase], phaseLamda[phase], phaseLamdah[phase];
int I_sense[phase];
int omm.[phase], omm._act[phase];
int omm.[cDataSize],commHighA[cDataSize];
int omm[cDataSize],commHighB[cDataSize];
int commC[cDataSize],commHighC[cDataSize];
int commD[cDataSize],commHighD[cDataSize];
float galpha[phase];
float thetah,omegah,error;
int thetahInt;
int observer, startRecord, sensorless, highSpeed;
int Enable, MorG, IorV0, IorV1, Enable_act,MorG_act,IorV0_act,IorV1_act;
float time;
int matrixCnt, savei;
float gthetaMatrix0[dataSaveSize];
float gthetaMatrix1[dataSaveSize];
float gthetaMatrix2[dataSaveSize];
float gthetaMatrix3[dataSaveSize];

float galphaMatrix0[dataSaveSize];
float galphaMatrix1[dataSaveSize];
float galphaMatrix2[dataSaveSize];
float galphaMatrix3[dataSaveSize];

int IsenseMatrix0[dataSaveSize];
int IsenseMatrix1[dataSaveSize];
int IsenseMatrix2[dataSaveSize];
int IsenseMatrix3[dataSaveSize];

int commMatrix0[dataSaveSize];
int commMatrix1[dataSaveSize];
int commMatrix2[dataSaveSize];
int commMatrix3[dataSaveSize];

float phaseLamdaMatrix0[dataSaveSize];
float phaseLamdaMatrix1[dataSaveSize];
float phaseLamdaMatrix2[dataSaveSize];
float phaseLamdaMatrix3[dataSaveSize];

 132

float phaseLamdahMatrix0[dataSaveSize];
float phaseLamdahMatrix1[dataSaveSize];
float phaseLamdahMatrix2[dataSaveSize];
float phaseLamdahMatrix3[dataSaveSize];

float phaseIMatrix0[dataSaveSize];
float phaseIMatrix1[dataSaveSize];
float phaseIMatrix2[dataSaveSize];
float phaseIMatrix3[dataSaveSize];

int posRMatrix[dataSaveSize];
float posEMatrix[dataSaveSize]; // angle error
float thetahMatrix[dataSaveSize];
float omegahMatrix[dataSaveSize];
float errorMatrix[dataSaveSize];
float timeMatrix[dataSaveSize];
float runtimeMatrix[dataSaveSize];

LgUns time1,time2,time3,time4;
float runtime,runtime2,runtime3;

void main(void)
{

TIMER_HANDLE hTimer;

/* CSL_Init – required for the CSL functions of the driver */
CSL_Init();

/* initialize the DSK and timer 0 */
init_dsk();
hTimer = init_timer0(ADC1_TIM_PERIOD);
init_McBSP1();
init_timer1();

/* configure the data converter */
dc_configure(&Ths1206_1);

motor_init();

/* start the timer */
TIMER_Start(hTimer);

/* Let’s go... DSP/BIOS takes control and will generate */
/* a “PeriodFunc” software interrupt every second. */

}

/**/
/* BlockReady */
/* This function will be called when the dc_rblock routine is */
/* finished. It posts a DoCalculation software interrupt. */
/**/
void BlockReady1206(void *pDC)
{
// LOG_printf(&trace, “1206 Interrupt”);
// SWI_post(&SwiDoCalculation);
DoCalculationFunc();
}
void BlockReady1206_V(void *pDC)
{

calculatePhaseIV();

 133

}
void BlockReady1206_I(void *pDC)
{

if(IorV1_act!=0)
 {set_IorV1(0); wait(); IorV1_act=0;}
 if(IorV0_act!=1)
 {set_IorV0(1); wait(); IorV0_act=1;}

dc_rblock(&Ths1206_1, phaseLamda_short, phase, BlockReady1206_V);
}

/**/
/* SwiStartConversionFunc */
/* This software omm. oni starts a new conversion using the */
/* dc_rblock function. */
/**/
void StartConversionFunc()
{
 time1=CLK_gethtime();
// dc_rblock(&Ths1206_1, gtheta_short, phase, &BlockReady1206);
 // Get current singals
 if (observer==0) // inductance profile based observer is chosen
 {
 /**/
 /* Inductance Profile Based Observer */
 /* Only gtheta is measured */
 /**/
 if(IorV1_act!=0)
 {set_IorV1(0); wait(); IorV1_act=0;}
 if(IorV0_act!=0)
 {set_IorV0(0); wait(); IorV0_act=0;}

dc_rblock(&Ths1206_1, gtheta_short, phase, &BlockReady1206);
}
else if (observer==1) // torque producing current based observer is chosen
{

 /**/
 /* Torque producing current Based Observer */
 /* Now phase current is measured and then phase voltage */
 /**/
 if(IorV1_act!=1)
 {set_IorV1(1); wait(); IorV1_act=1;}
 if(IorV0_act!=0)
 {set_IorV0(0); wait(); IorV0_act=0;}

dc_rblock(&Ths1206_1, phaseI_short, phase,BlockReady1206_I);
}

}

void DoCalculationFunc()
{
 int i,value[phase];

for (i=0; i<phase; i++)
{

 value[i] = gtheta_short[i] & 0x0FFF;
 gtheta[i] = 2.778-(6.78E-4)*value[i];
 // gtheta[i] = (Vref_plus-Vref_minus-(Vref_plus-Vref_minus)*value/4096)*5.0/3.6;

} // the signal conditioning board changed the analog signals’ polarity
 // at the reference (Vref_plus+Vref_minus)/2
 // The offset is 1.5 V for the phase currents
 // times 5.0 to convert it into ampere
 // DC gain of the low pass filter is 3.6
 GetSignals_McBSP1();

 134

 MicroController();
 sendOutComm();
 if (startRecord==1) storeData();
// time2=CLK_gethtime();
// runtime=(time2-time1)*4/150;
}

void calculatePhaseIV()
{
 int valueI[phase];
 int valueLamda[phase];
 valueI[0] = phaseI_short[0] & 0x0FFF;
 phaseI[0] = (2.0-2.0*valueI[0]*2.441E-4)*25.2;
 valueLamda[0] = phaseLamda_short[0] & 0x0FFF;
 phaseLamda[0] = (2-2*valueLamda[0]*2.441E-4-0.05)*0.01884*0.72;

 valueI[1] = phaseI_short[1] & 0x0FFF;
 phaseI[1] = (2.0-2.0*valueI[1]*2.441E-4)*25.2;
 valueLamda[1] = phaseLamda_short[1] & 0x0FFF;
 phaseLamda[1] = (2-2*valueLamda[1]*2.441E-4-0.018)*0.01884*0.8;

 valueI[2] = phaseI_short[2] & 0x0FFF;
 phaseI[2] = (2.0-2.0*valueI[2]*2.441E-4)*25.2;
 valueLamda[2] = phaseLamda_short[2] & 0x0FFF;
 phaseLamda[2] = (2-2*valueLamda[2]*2.441E-4-0.05)*0.01884*1.0;

 valueI[3] = phaseI_short[3] & 0x0FFF;
 phaseI[3] = (2.0-2.0*valueI[3]*2.441E-4)*25.2;
 valueLamda[3] = phaseLamda_short[3] & 0x0FFF;
 phaseLamda[3] = (2-2*valueLamda[3]*2.441E-4-0.045)*0.01884*0.8;

 GetSignals_McBSP1();
 MicroController();
 sendOutComm();
 if (startRecord==1) storeData();
 time2=CLK_gethtime();

runtime=(time2-time1)*4/150;
}

/**/
/* PeriodFunc */
/* The function will be called every second by DSP/BIOS and */
/* posts a StartConversion SWI to start a new conversion. */
/**/
void PeriodFunc()
{
 time+=tsamplem;
// if (time>100) time=0;

SWI_post(&SwiStartConversion);
}

void wait()
{
int i;
 for (i=0;i<5;i++) ;
}

/**/
/* ChannelA() */

 135

/* The function will to called every time with a pulse signal form A channel */
/* */
/**/
void ChannelA(void)
{
// int pcr;
if (posR==5) startRecord=1;

/*
pcr=get_McBSP1_CLKS_DR();
if ((pcr & 0x00000010)==0x00000010) posR +=1;
 else if ((pcr & 0x00000010)==0x00000000) posR -=1;
 else LOG_printf(&trace, “read McBSP1 error”);
*/
posR+=1;
if (posR==180) posR =0;
// else if (posR==-1) posR=179;

///////////////// To test the motor’s symmetry //// 03-24-05

// THS1206Conversion();
// MicroController(Vpower,over_I,gtheta,I_sense,didtd, omm.,thetah,&omegah,
// &Icomm, &Enable, &MorG,&error);
// storeData();

}

/**/
/* ChannelI() */
/* The function will to called every time with a pulse signal form I channel */
/* To omm. onize the real rotor position
 */
/**/
void ChannelI(void)
{

posR = 122;

}

/**/
/* GetSignals_McBSP1 */
/* The function will be called by SwiGetSignals */
/* It gets signals through McBSP1 */
/**/
void GetSignals_McBSP1(void)
{
 int pcr;
// Get circuit signals
 put_muxsel(1, 1); // get I_sense[3] and I_sense[2]
 wait();
 pcr=get_McBSP1_CLKS_DR();
 if ((pcr & 0x00000040)==0x00000040) I_sense[3]=1;
 else if ((pcr & 0x00000040)==0x00000000) I_sense[3]=0;
 else LOG_printf(&trace, “read McBSP1 error”);
 if ((pcr & 0x00000010)==0x00000010) I_sense[2]=1;
 else if ((pcr & 0x00000010)==0x00000000) I_sense[2]=0;
 else LOG_printf(&trace, “read McBSP1 error”);

 put_muxsel(1, 0); // get I_sense[1] and I_sense[0]

 136

 wait();
 pcr=get_McBSP1_CLKS_DR();
 if ((pcr & 0x00000040)==0x00000040) I_sense[1]=1;
 else if ((pcr & 0x00000040)==0x00000000) I_sense[1]=0;
 else LOG_printf(&trace, “read McBSP1 error”);
 if ((pcr & 0x00000010)==0x00000010) I_sense[0]=1;
 else if ((pcr & 0x00000010)==0x00000000) I_sense[0]=0;
 else LOG_printf(&trace, “read McBSP1 error”);
}

void sendOutComm(void)
{

if ((Enable==1) && (time>=0.2))
// if (Enable==1)
 {

 if (omm.[3]!= omm._act[3])
 {set_comm3(omm.[3]); wait(); omm._act[3]= omm.[3];}
 if (omm.[2]!= omm._act[2])
 {set_comm2(omm.[2]); wait(); omm._act[2]= omm.[2];}
 if (omm.[1]!= omm._act[1])
 {set_comm1(omm.[1]); wait(); omm._act[1]= omm.[1];}
 if (omm.[0]!= omm._act[0])
 {set_comm0(omm.[0]); wait(); omm._act[0]= omm.[0];}
 }

}

/* MicroController Program */

void MicroController(void)
{
SenseTheta();
Commutator(thetahInt);
/*
if (observer==0)
Commutator(thetahInt); // using posR to do sensored control, thetahInt do sensorless
else if (sensorless==1)
Commutator(thetahInt);
else
Commutator(posR);
*/
}

void SenseTheta(void)
{
if (observer==0)
{
 omegah += error*H2*tsamplem;
 thetah += (omegah+error*H1)*tsamplem;
 while(thetah<0)
 thetah+=pi;
 while(thetah>pi)
 thetah-=pi;
 thetahInt=(int)(thetah*57.325); // 180/pi
 error=errorlow(thetahInt); // calculate error after thetah to make sure it’s in rang(0 pi)

}
else

 137

{
 omegah += error*H4*tsamplem;
 thetah += (omegah+error*H3)*tsamplem;
 while(thetah<0)
 thetah+=pi;
 while(thetah>pi)
 thetah-=pi;
 thetahInt=(int)(thetah*57.325); // 180/pi
 error=errorhigh(); // flux method

// if(omegah>10) sensorless=1; // high speed using sensorless control
// else if (omegah<10) sensorless=0; // low speed using sensored control

}

// added on for testing the response time
/*
if(time>5.0)
{
 startRecord=1;
 if (matrixCnt==100)
 thetah-=15*3.14/180;
}
*/

if(omegah>100) observer=1;
else if (omegah<50) observer=0;
if(omegah>100) highSpeed=1;
else if (omegah<80) highSpeed=0;
// if (omegah>10) startRecord=1;
}

float errorlow(int alphaInt)
{
float error;
 galpha[0]=gmatrix0[alphaInt];
 galpha[1]=gmatrix1[alphaInt];
 galpha[2]=gmatrix2[alphaInt];
 galpha[3]=gmatrix3[alphaInt];

// galpha[0]=gmatrix0[posR];
// galpha[1]=gmatrix1[posR];
// galpha[2]=gmatrix2[posR];
// galpha[3]=gmatrix3[posR];

if (I_sense[0]==0) gtheta[0]=galpha[0];
if (I_sense[1]==0) gtheta[1]=galpha[1];
if (I_sense[2]==0) gtheta[2]=galpha[2];
if (I_sense[3]==0) gtheta[3]=galpha[3];

error=galpha[0]*gtheta[1]-galpha[1]*gtheta[0]+
 galpha[1]*gtheta[2]-galpha[2]*gtheta[1]+
 galpha[2]*gtheta[3]-galpha[3]*gtheta[2]+
 galpha[3]*gtheta[0]-galpha[0]*gtheta[3];
// Filter out the high amplitude noise
// if (error>0.8) error=0.8;
// else if(error<-0.8) error=-0.8;
return (error);
}

 138

float errorhigh(void)
{
int i;
float errorh;
float thetatemp[phase];
float temp=0;
// thetatemp[0]=posR*0.017444; // actual angle
thetatemp[0]=thetah; // estimated angle
thetatemp[1]=thetatemp[0]+0.7854; // 45 degree phase shift
thetatemp[2]=thetatemp[1]+0.7854;
thetatemp[3]=thetatemp[2]+0.7854;
// thetatemp=thetah; // estimated angle
for (i=0;i<phase;i++)
{

if((I_sense[i]==0)&&(omm.[i]==1))
 {
 // wrap the angle into -30 ~ 30 period
 while(thetatemp[i] > 0.5236)
 thetatemp[i] -= 1.0472;
 while(thetatemp[i] < -0.5236)
 thetatemp[i] += 1.0472;
 phaseLamdah[i] = flux(thetatemp[i],phaseI[i]);
 if(thetatemp[i]>=0)
 temp += phaseLamdah[i]-phaseLamda[i];
 else
 temp += phaseLamda[i]-phaseLamdah[i];
 }
 else
 phaseLamdah[i] = 0.0;
}
errorh=temp;
return(errorh);
}

void Commutator(int alphaInt)
{
if (highSpeed==0)
{

omm.[0]= omm.[alphaInt];
omm.[1]= omm[alphaInt];
omm.[2]=commC[alphaInt];
omm.[3]=commD[alphaInt];

}
else
{

omm.[0]=commHighA[alphaInt];
omm.[1]=commHighB[alphaInt];
omm.[2]=commHighC[alphaInt];
omm.[3]=commHighD[alphaInt];

}
}

/**/
/* motor_init() */
/* The function will to called in the main function to initialize the motor */
/* rotor position and initialize other variables */
/**/
void motor_init(void)
{

 139

 int i,j; // j is used in the look up table generation program
time=0; // the real time
omegah=0; // the estimated rotor speed
error=0; // the error for the estimator
thetah=qod*pi/180; // The rotor position for Phase A in radian
observer=0; // 0 inductance profile based observer, 1 flux control
startRecord=0; // not start until the motor starts moving (channelA is called)
sensorless=1; // 1=sensorless control, 0=sensored control
highSpeed=0;
matrixCnt=0;
savei=1;
// Initialize command signals

 Enable=1;
 MorG=1;
 IorV1=0;
 IorV0=0;
 omm.[3]=0;
 omm.[2]=0;
 omm.[1]=0;
 omm.[0]=0;

 // Disable the current regulator

 set_Enable(0);
 wait();
 Enable_act = 0;

 set_MorG(MorG);
 wait();
 MorG_act = MorG;

 set_IorV1(IorV1);
 wait();
 IorV1_act = IorV1;

 set_IorV0(IorV0);
 wait();
 IorV0_act = IorV0;

 set_comm3(omm.[3]);
 wait();
 omm._act[3] = omm.[3];

 set_comm2(omm.[2]);
 wait();
 omm._act[2] = omm.[2];

 set_comm1(omm.[1]);
 wait();
 omm._act[1] = omm.[1];

 set_comm0(omm.[0]);
 wait();
 omm._act[0] = omm.[0];

 // Enable the current regulator
 set_Enable(Enable);
 wait();
 Enable_act = Enable;

 140

// Give a current command, which is 0.619*4.5*5=14 Ampere
/* DSS_spWrite(0x0000); // cancelled to adjust the current command externally 04-04-05

 Enable=1;
 set_Enable(Enable);
 wait();
 Enable_act = 1;
*/
// Initialize the rotor position to the aligned position with Phase A
/*
 set_comm0(1);
 wait();
 omm._act[0] = 1;

 waitlong();

 set_comm0(0);
 wait();
 omm._act[0] = 0;
*/

posR=0; // the actual rotor position

// generate a look up table for the commutator
for(i=0;i<cDataSize;i++)
{
j=i;
while(j<-30)
 j +=60;
while(j>30)
 j -=60;
if((j>=qon)&&(j<=qoff))
 omm.[i]=1;
else
 omm.[i]=0;
if((j>=qon2)||(j<=qoff2))
 commHighA[i]=1;
else
 commHighA[i]=0;

j=i+45;
while(j<-30)
 j +=60;
while(j>30)
 j -=60;
if((j>=qon)&&(j<=qoff))
 omm[i]=1;
else
 omm[i]=0;
if((j>=qon2)||(j<=qoff2))
 commHighB[i]=1;
else
 commHighB[i]=0;

j=i+90;
while(j<-30)
 j +=60;
while(j>30)
 j -=60;
if((j>=qon)&&(j<=qoff))
 commC[i]=1;

 141

else
 commC[i]=0;
if((j>=qon2)||(j<=qoff2))
 commHighC[i]=1;
else
 commHighC[i]=0;

j=i+135;
while(j<-30)
 j +=60;
while(j>30)
 j -=60;
if((j>=qon)&&(j<=qoff))
 commD[i]=1;
else
 commD[i]=0;
if((j>=qon2)||(j<=qoff2))
 commHighD[i]=1;
else
 commHighD[i]=0;
}

for(i=0;i<dataSaveSize;i++) // initialize data save matries

{
 gthetaMatrix0[i] = 0.0;
 gthetaMatrix1[i] = 0.0;
 gthetaMatrix2[i] = 0.0;
 gthetaMatrix3[i] = 0.0;

 galphaMatrix0[i] = 0.0;
 galphaMatrix1[i] = 0.0;
 galphaMatrix2[i] = 0.0;
 galphaMatrix3[i] = 0.0;

 thetahMatrix[i] = 0.0;
 omegahMatrix[i] = 0.0;
 errorMatrix[i] = 0.0;
 posRMatrix[i] = 0;
 posEMatrix[i] = 0;

 commMatrix0[i] = 0.0;
 commMatrix1[i] = 0.0;
 commMatrix2[i] = 0.0;
 commMatrix3[i] = 0.0;

 IsenseMatrix0[i] = 0;
 IsenseMatrix1[i] = 0;
 IsenseMatrix2[i] = 0;
 IsenseMatrix3[i] = 0;

 phaseLamdaMatrix0[i]= 0.0;
 phaseLamdaMatrix1[i]= 0.0;
 phaseLamdaMatrix2[i]= 0.0;
 phaseLamdaMatrix3[i]= 0.0;

 phaseLamdahMatrix0[i]= 0.0;
 phaseLamdahMatrix1[i]= 0.0;
 phaseLamdahMatrix2[i]= 0.0;
 phaseLamdahMatrix3[i]= 0.0;

 142

 phaseIMatrix0[i] = 0;
 phaseIMatrix1[i] = 0;
 phaseIMatrix2[i] = 0;
 phaseIMatrix3[i] = 0;

 runtimeMatrix[i] = 0;
 timeMatrix[i] = 0;

}
// End of initialization of the rotor
}

/**/
/* storeData() */
/* The function will store data every savestep*tsemplem seconds */
/**/

void storeData(void)
{
if (matrixCnt<dataSaveSize)
 if(savei>=savestep)
 {

 gthetaMatrix0[matrixCnt] = gtheta[0];
 gthetaMatrix1[matrixCnt] = gtheta[1];
 gthetaMatrix2[matrixCnt] = gtheta[2];
 gthetaMatrix3[matrixCnt] = gtheta[3];

 galphaMatrix0[matrixCnt] = galpha[0];
 galphaMatrix1[matrixCnt] = galpha[1];
 galphaMatrix2[matrixCnt] = galpha[2];
 galphaMatrix3[matrixCnt] = galpha[3];

 thetahMatrix[matrixCnt] = thetah;
 omegahMatrix[matrixCnt] = omegah;
 errorMatrix[matrixCnt] = error;
 posRMatrix[matrixCnt] = posR;
 posEMatrix[matrixCnt] = thetah*57.325-posR;

 commMatrix0[matrixCnt] = omm.[0];
 commMatrix1[matrixCnt] = omm.[1];
 commMatrix2[matrixCnt] = omm.[2];
 commMatrix3[matrixCnt] = omm.[3];

 IsenseMatrix0[matrixCnt] = I_sense[0];
 IsenseMatrix1[matrixCnt] = I_sense[1];
 IsenseMatrix2[matrixCnt] = I_sense[2];
 IsenseMatrix3[matrixCnt] = I_sense[3];

 phaseLamdaMatrix0[matrixCnt]= phaseLamda[0];
 phaseLamdaMatrix1[matrixCnt]= phaseLamda[1];
 phaseLamdaMatrix2[matrixCnt]= phaseLamda[2];
 phaseLamdaMatrix3[matrixCnt]= phaseLamda[3];

 phaseLamdahMatrix0[matrixCnt]= phaseLamdah[0];
 phaseLamdahMatrix1[matrixCnt]= phaseLamdah[1];
 phaseLamdahMatrix2[matrixCnt]= phaseLamdah[2];
 phaseLamdahMatrix3[matrixCnt]= phaseLamdah[3];

 phaseIMatrix0[matrixCnt] = phaseI[0];

 143

 phaseIMatrix1[matrixCnt] = phaseI[1];
 phaseIMatrix2[matrixCnt] = phaseI[2];
 phaseIMatrix3[matrixCnt] = phaseI[3];

 runtimeMatrix[matrixCnt] = runtime;
 timeMatrix[matrixCnt] = time1;

 matrixCnt += 1;
 savei = 1;
 }
 else
 savei += 1;
// single sequence data
/*
else
 {
 matrixCnt=0;
 }
*/
}

float flux(float theta, float phi)
{
float theta_abs, phi_abs,thetatemp;
float Lno, gf, Isatf, lamdam, lamdaf;

theta_abs=fabs(theta);
thetatemp=thetapf-theta_abs;
phi_abs=fabs(phi);

 if (theta_abs>thetapf)
 {
 Lno=LuL+(thetau-theta_abs)*4.1583E-4;
// Lno=LuL+((Lpo-LuL)/(thetau-thetapf))*(thetau-theta_abs);
 return (Lno*phi_abs);
 }
 else
 {
// gf= geff+go*(1-Rg*(thetapf-theta_abs)/pwf);
 gf=0.0012-0.0023*thetatemp;
// Isatf= Bsat*(lfe+2*gf*u/uo)/(u*N) ;
 Isatf= 2.3945+gf*9.5493E4 ;
 if(phi_abs<Isatm)
// lamdam=lstk*STF*Rg*(thetapf-theta_abs)*u*N*N*phi_abs/(lfe+2*g*u/uo) ;
 lamdam=0.0026*thetatemp*phi_abs;
 else
//
lamdam=N*lstk*STF*Rg*(thetapf-theta_abs)*(uo*N*phi_abs+lfe*Bsat+uo*lfe*Hsat)/(lfe);
 lamdam=thetatemp*(3.7699E-5*phi_abs+0.4514)*0.1406;
 if(phi_abs<Isatf)
// lamdaf=lstk*STF*Rg*theta_abs*(u*N*N*phi_abs/(lfe+2*gf*u/uo)) ;
 lamdaf=0.0012*theta_abs*(5.6549*phi_abs/(lfe+10000*gf)) ;
 else
// lamdaf=N*lstk*STF*Rg*theta_abs*(uo*N*phi_abs+lfe*Bsat+uo*lfe*Hsat)/(lfe+2*gf)
;
 lamdaf=0.0353*theta_abs*(3.7699E-5*phi_abs+0.4514)/(lfe+2*gf);
 return (lamdaf+lamdam);
 }
}

 144

Mcbsp_functions.c

 #include <c6x.h>
 #include “c6x11dsk.h”
 #include <csl.h>
 #include <csl_legacy.h>
 #include <csl_timer.h>
 #include “mcbsp.h”

#define SP1_SRGR_V 0x00000000
#define SP1_SPCR_V 0x00000000
#define SP1_PCR_V 0x00003f0c // DX,CLKR,FSR,CLKX,FSX are outputs
 // CLKS, DR are inputs
 // use with FPGA chip on the current
 // regulator board.
 // initialize enable =0

#define SP1_PCR_V 0x00003000 // use to test optical encoder signals
 // A->FSR, B->CLKX, I->CLKR
 // A_fpga-> CLKS, B_fpga->DR;

#define SP1_PCR_V 0x00003f0b // use with FPGA chip, <CLKS DR>=<c1, c0>,
 // <Enable, MorG>=<clkx,fsx>

// PCR description
// 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Reserved
// _______________|_______________|_______________|_______________|
// |15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
// |0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
// reserved RIOEN FSRM CLKRM CLKSSTAT DRSTAT FSRP CLKRP
// XIOEN FSXM CLKXM res DXSTAT FSXP CLKXP
// when McBSP is used as GPIO, XIOEN and RIOEN should be ‘1’ both,
// and XRST and RRST in SPCR register @ the 16th bit and the 0th bit
// should be ‘0’ both.
*/
/**/
/* init_GPIO */
/* This initializes the McBSP */
/**/

void init_McBSP1(void)
{
 * (UINT32 *) McBSP1_SRGR = (UINT32) SP1_SRGR_V;
 * (UINT32 *) McBSP1_SPCR = (UINT32) SP1_SPCR_V;
 * (UINT32 *) McBSP1_PCR = (UINT32) SP1_PCR_V;
 return;
}

void init_timer1(void)
{
 TIMER_setDatOut(_TIMER_hDev1, 0);
 return;
}
int get_McBSP0(void)
{
 int pcr;
 pcr = (int) (* (UINT32 *) McBSP0_PCR);
 return (pcr);
}

 145

// McBSP 0 functions
int get_McBSP0_CLKX(void)
{
 int pcr;
 pcr = (int) (* (UINT32 *) McBSP0_PCR);
 pcr = pcr >> 1;
 pcr = pcr & 0x00000001;
 return (pcr);
}
int get_McBSP0_FSX(void)
{
 int pcr;
 pcr = (int) (* (UINT32 *) McBSP0_PCR);
 pcr = pcr >> 3;
 pcr = pcr & 0x00000001;
 return (pcr);
}
int get_McBSP0_CLKR(void)
{
 int pcr;
 pcr = (int) (* (UINT32 *) McBSP0_PCR);
 pcr = pcr >> 0;
 pcr = pcr & 0x00000001;
 return (pcr);
}
int get_McBSP0_FSR(void)
{
 int pcr;
 pcr = (int) (* (UINT32 *) McBSP0_PCR);
 pcr = pcr >> 2;
 pcr = pcr & 0x00000001;
 return (pcr);
}
int get_McBSP0_DR(void)
{
 int pcr;
 pcr = (int) (* (UINT32 *) McBSP0_PCR);
 pcr = pcr >> 4;
 pcr = pcr & 0x00000001;
 return (pcr);
}
int get_McBSP0_CLKS(void)
{
 int pcr;
 pcr = (int) (* (UINT32 *) McBSP0_PCR);
 pcr = pcr >> 6;
 pcr = pcr & 0x00000001;
 return (pcr);
}
void put_McBSP0_CLKX(int clkxp)
{
 if(clkxp==0)
 * (UINT32 *) McBSP0_PCR = (* (UINT32 *) McBSP0_PCR) & 0xfffffffd;
 else

• (UINT32 *) McBSP0_PCR = (* (UINT32 *) McBSP0_PCR) | 0x00000002;
}
void put_McBSP0_FSX(int fsxp)
{
 if(fsxp==0)

 146

 * (UINT32 *) McBSP0_PCR = (* (UINT32 *) McBSP0_PCR) & 0xfffffff7;
 else

• (UINT32 *) McBSP0_PCR = (* (UINT32 *) McBSP0_PCR) | 0x00000008;
}
void put_McBSP0_DX(int dx_stat)
{
 if(dx_stat==0)
 * (UINT32 *) McBSP0_PCR = (* (UINT32 *) McBSP0_PCR) & 0xffffffdf;
 else

• (UINT32 *) McBSP0_PCR = (* (UINT32 *) McBSP0_PCR) | 0x00000020;
}
void put_McBSP0_CLKR(int clkrp)
{
 if(clkrp==0)
 * (UINT32 *) McBSP0_PCR = (* (UINT32 *) McBSP0_PCR) & 0xfffffffe;
 else

• (UINT32 *) McBSP0_PCR = (* (UINT32 *) McBSP0_PCR) | 0x00000001;
}
void put_McBSP0_FSR(int fsrp)
{
 if(fsrp==0)
 * (UINT32 *) McBSP0_PCR = (* (UINT32 *) McBSP0_PCR) & 0xfffffffb;
 else

• (UINT32 *) McBSP0_PCR = (* (UINT32 *) McBSP0_PCR) | 0x00000004;
}

// McBSP 1 functions
int get_McBSP1_CLKX(void)
{
 int pcr;
 pcr = (int) (* (UINT32 *) McBSP1_PCR);
 pcr = pcr >> 1;
 pcr = pcr & 0x00000001;
 return (pcr);
}
int get_McBSP1_FSX(void)
{
 int pcr;
 pcr = (int) (* (UINT32 *) McBSP1_PCR);
 pcr = pcr >> 3;
 pcr = pcr & 0x00000001;
 return (pcr);
}
int get_McBSP1_CLKR(void)
{
 int pcr;
 pcr = (int) (* (UINT32 *) McBSP1_PCR);
 pcr = pcr >> 0;
 pcr = pcr & 0x00000001;
 return (pcr);
}
int get_McBSP1_FSR(void)
{
 int pcr;
 pcr = (int) (* (UINT32 *) McBSP1_PCR);
 pcr = pcr >> 2;
 pcr = pcr & 0x00000001;
 return (pcr);
}
int get_McBSP1_DR(void)

 147

{
 int pcr;
 pcr = (int) (* (UINT32 *) McBSP1_PCR);
 pcr = pcr >> 4;
 pcr = pcr & 0x00000001;
 return (pcr);
}
int get_McBSP1_CLKS(void)
{
 int pcr;
 pcr = (int) (* (UINT32 *) McBSP1_PCR);
 pcr = pcr >> 6;
 pcr = pcr & 0x00000001;
 return (pcr);
}
void put_McBSP1_CLKX(int clkxp)
{
 if(clkxp==0)
 * (UINT32 *) McBSP1_PCR = (* (UINT32 *) McBSP1_PCR) & 0xfffffffd;
 else

• (UINT32 *) McBSP1_PCR = (* (UINT32 *) McBSP1_PCR) | 0x00000002;
}
void put_McBSP1_FSX(int fsxp)
{
 if(fsxp==0)
 * (UINT32 *) McBSP1_PCR = (* (UINT32 *) McBSP1_PCR) & 0xfffffff7;
 else

• (UINT32 *) McBSP1_PCR = (* (UINT32 *) McBSP1_PCR) | 0x00000008;
}
void put_McBSP1_DX(int dx_stat)
{
 if(dx_stat==0)
 * (UINT32 *) McBSP1_PCR = (* (UINT32 *) McBSP1_PCR) & 0xffffffdf;
 else

• (UINT32 *) McBSP1_PCR = (* (UINT32 *) McBSP1_PCR) | 0x00000020;
}
void put_McBSP1_CLKR(int clkrp)
{
 if(clkrp==0)
 * (UINT32 *) McBSP1_PCR = (* (UINT32 *) McBSP1_PCR) & 0xfffffffe;
 else

• (UINT32 *) McBSP1_PCR = (* (UINT32 *) McBSP1_PCR) | 0x00000001;
}
void put_McBSP1_FSR(int fsrp)
{
 if(fsrp==0)
 * (UINT32 *) McBSP1_PCR = (* (UINT32 *) McBSP1_PCR) & 0xfffffffb;
 else

• (UINT32 *) McBSP1_PCR = (* (UINT32 *) McBSP1_PCR) | 0x00000004;
}

int get_McBSP1_CLKS_DR(void)
{
 int pcr;
 pcr = (int) (* (UINT32 *) McBSP1_PCR);
 pcr = pcr & 0x00000050;
 return (pcr);
}
int get_McBSP1_FSR_CLKX_CLKR(void)
{

 148

 int pcr;
 pcr = (int) (* (UINT32 *) McBSP1_PCR);
 pcr = pcr & 0x00000007;
 return (pcr);
}
void put_McBSP1_CLKR_FSR(int clkr, int fsr)
{
 if(clkr==1)
 if(fsr==1)
 * (UINT32 *) McBSP1_PCR = (* (UINT32 *) McBSP1_PCR) | 0x00000005;
 else

• (UINT32 *) McBSP1_PCR = ((* (UINT32 *) McBSP1_PCR) | 0x00000001) &
0xfffffffb ;

 else
 if(fsr==1)
 * (UINT32 *) McBSP1_PCR = ((* (UINT32 *) McBSP1_PCR) | 0x00000004) &
0xfffffffe ;
 else

• (UINT32 *) McBSP1_PCR = (* (UINT32 *) McBSP1_PCR) & 0xfffffffa ;
}
void put_McBSP1_CLKX_FSX(int clkx, int fsx)
{
 if(clkx==1)
 if(fsx==1)
 * (UINT32 *) McBSP1_PCR = (* (UINT32 *) McBSP1_PCR) | 0x0000000a;
 else

• (UINT32 *) McBSP1_PCR = ((* (UINT32 *) McBSP1_PCR) | 0x00000002) &
0xfffffff7 ;

 else
 if(fsx==1)
 * (UINT32 *) McBSP1_PCR = ((* (UINT32 *) McBSP1_PCR) | 0x00000008) &
0xfffffffd ;
 else

• (UINT32 *) McBSP1_PCR = (* (UINT32 *) McBSP1_PCR) & 0xfffffff5 ;
}

void put_muxsel(int timer1, int dx)
{
 TIMER_setDatOut(_TIMER_hDev1, timer1);
 put_McBSP1_DX(dx);
}

/* The last 4 digits of McBSP1_PCR are the values for
 FSX FSR CLKX CLKR
The input of the encoder is CLKR, The select lines of the encoder are the other 3

 | D | -> IorV1 (111)
 | E | -> IorV0 (110)
 | C | -> Enable (101)
 | O | -> MorG (100)
CLKR -> | D | -> Comm[3] - phase 1 on the board (011)
 | E | -> Comm[2] - phase 1 on the board (010)
 | R | -> Comm[1] - phase 1 on the board (001)
 | | -> Comm[0] - phase 1 on the board (000)

 /\ /\ /\
 FSR FSX
 CLKX
*/
void set_IorV1(int iorv1)

 149

{
 if (iorv1==1)
 * (UINT32 *) McBSP1_PCR = (* (UINT32 *) McBSP1_PCR) | 0x0000000f;
 else if (iorv1==0)
 * T32 *) McBSP1_PCR = ((* (UINT32 *) McBSP1_PCR) | 0x0000000e) & 0xfffffffe;

• return;
}
void set_IorV0(int iorv0)
{
 if (iorv0==1)
 * (UINT32 *) McBSP1_PCR = ((* (UINT32 *) McBSP1_PCR) | 0x00000007) &
0xfffffff7;
 else if (iorv0==0)
 * T32 *) McBSP1_PCR = ((* (UINT32 *) McBSP1_PCR) | 0x00000006) & 0xfffffff6;

• return;
}
void set_Enable(int Enable)
{
 if (Enable==1)
 * (UINT32 *) McBSP1_PCR = ((* (UINT32 *) McBSP1_PCR) | 0x0000000d) &
0xfffffffd;
 else if (Enable==0)
 * T32 *) McBSP1_PCR = ((* (UINT32 *) McBSP1_PCR) | 0x0000000c) & 0xfffffffc;

• return;
}
void set_MorG(int morg)
{
 if (morg==1)
 * (UINT32 *) McBSP1_PCR = ((* (UINT32 *) McBSP1_PCR) | 0x00000005) &
0xfffffff5;
 else if (morg==0)
 * T32 *) McBSP1_PCR = ((* (UINT32 *) McBSP1_PCR) | 0x00000004) & 0xfffffff4;

• return;
}
void set_comm3(int comm omm. if (comm omm.
 * (UINT32 *) McBSP1_PCR = ((* (UINT32 *) McBSP1_PCR) | 0x0000000b) &
0xfffffffb;
 else if (comm omm.
 * T32 *) McBSP1_PCR = ((* (UINT32 *) McBSP1_PCR) | 0x0000000a) & 0xfffffffa;

• return;
}
void set_comm2(int comm omm. if (comm omm.
 * (UINT32 *) McBSP1_PCR = ((* (UINT32 *) McBSP1_PCR) | 0x00000003) &
0xfffffff3;
 else if (comm omm.
 * (UINT32 *) McBSP1_PCR = ((* (UINT32 *) McBSP1_PCR) | 0x00000002) &
0xfffffff2;
 return;
}
void set_comm1(int comm)
{
 if (comm==1)
 * (UINT32 *) McBSP1_PCR = ((* (UINT32 *) McBSP1_PCR) | 0x00000009) &
0xfffffff9;
 else if (comm==0)
 * (UINT32 *) McBSP1_PCR = ((* (UINT32 *) McBSP1_PCR) | 0x00000008) &
0xfffffff8;
 return;

 150

}
void set_comm0(int comm)
{
 if (comm==1)
 * (UINT32 *) McBSP1_PCR = ((* (UINT32 *) McBSP1_PCR) | 0x00000001) &
0xfffffff1;
 else if (comm==0)
 * (UINT32 *) McBSP1_PCR = (* (UINT32 *) McBSP1_PCR) & 0xfffffff0;
 return;
}

 151

 Appendix III. The torque equations for the overlap case

),(),(),(θθθ φφφ ITITIT ofomo +=

)(),(

)(),(

,1
2

,

,

2

,
2

,

2

satmmsatm

o
mFe

satm

o
mFe

om

IIITI
gL

STFlstkRgNp
npar
nser

III
gL

STFlstkRgNp
npar
nserIT

>+
+

−=

≤
+

−=

φφ

φφφ

θ

μ
μ

μ

μ
μ

μθ

mFe

satmmFesat
satm

om

Lg

IILB
npar

IINp

STFlstkRgNpnserIT
,

1

,
1

,

2
,

2

1

))(11(
2

)(

),(

μ
μ

μμμθ
φ

φ

φ

+

−−+
−

=

))((),(),(

))((
)(

)(

2
),(

,21

,
,

,
22

θθθ

θ
θμ

μθθμ
μθ

φφφ

φφφ

satfofof

satf
fffe

go
fffe

gof

IIITIT

II
gL

pwf
Rg

gL
RISTFlstkNp

npar
nserIT

>+=

≤
+

⋅⋅−+
=

)(

)(
)(

2
),(

,

,
2

,
2

1 θμ

μθθμ
θμθφ

fffe

go
fffe

gsatfof gL
pwf

Rg
gL

RISTFlstkNp
npar
nserIT

+

⋅⋅−+
=

)]()(11(

2
))((

[),(

,
1

,

2
,

2

2

θ
μμ

θ
μθ

φ

φ
φ

satfffesat

satf
goof

IILB

npar
IINp

RSTFlstkNpnserIT

−−

+
−

=

 152

Appendix IV. The parameters of the switched reluctance motor

parameters value description

Rshaft 0.306 inches The shaft radius

Rry 0.846 inches The rotor yoke radius

Rg 1.031 inches The distance from the center to the air gap

Rsy 1.623 inches The stator yoke radius

Rout 1.968 inches The outside radius

g 0.009 inches The thickness of the air gap

lstk 1.983 inches The stack lamination length

Stf 0.9 The stacking factor

θp 23.82o Rotor pole width in degree

Bsat 1.6 tesla The saturation flux density

μ 1000 μo The permeability of the unsaturated iron

μ1 50 μo The permeability of the saturated iron

P 1.2 hp The rated power output

Ppeak 2 hp The peak power output

ωmax 15,000 rpm The maximum rotor speed

La 1.27 mH The inductance at the aligned position

Lu 0.19 mH The inductance at the unaligned position

Note:

1. Since the manufacturer considers the parameters of the motor proprietary

information, so the values shown here are measured or estimated and might

not be accurate.

2. Due to the inductance asymmetry, the inductance at the aligned and unaligned

position is obtaind for phase A with a certain pair of rotor poles.

 153

REFERENCE

[1] Salmasi, F.R.; Fahimi, B.; Gao, H.; Ehsani, M.; Sensorless control of switched

reluctance motor drive based on BEMF calculation, Applied Power
Electronics Conference and Exposition, 2002. APEC 2002. Seventeenth
Annual IEEE , Volume: 1 , 2002 Page(s): 293 -298 vol.1

[2] Husain I.; Radun A.; Nairus J.; Fault analysis and excitation requirements for
switched reluctance generators, IEEE transactions on energy conversion,
Volume: 17, No.1 2002 Page(s): 67 -72

[3] T.J.E.Miller, Switched reluctance motors and their control, Magna physics
publications, 1993

[4] S. A. Nasar, DC switched reluctance motor, IEE proceedings, Vol 116, No.6,
1048-1049, 1969

[5] Cameron D. E. and J. H. Lang, ; Variable-Reluctance Generators in Electric
Power System; IEEE Transactions on Industry Applications, Vol. 29, No. 6,
1993

[6] A. V. Radun, "Analytical calculation of the switched reluctance motor's
unaligned inductance," IEEE Transactions on Magnetics, Vol: 35, No. 6, pp
4473-4481, November 1999

[7] A. V. Radun, Analytically computing the flux linked by a switched reluctance
motor phase when the stator and the rotor poles overlap, IEEE transactions on
magnetics, Vol. 36, Issue 4, July 2000, Page(s) 1996-2003

[8] Miller,T.J.E.;McGilp,M, “Nonlinear theory of the switched reluctance motor
for rapid computer-aided design”, Electric Power Applications, IEE
Proceedings B [see also IEE Proceedings-Electric Power
Applications] ,Volume: 137 , Issue: 6, Nov. 1990 Pages:337 – 347

[9] Raulin, V., Husain , I., and Radun, A. “Modeling of Losses in Switched
Reluctance Machines,” IEEE Trans. On Industry App., p 227-234, Nov./Dec.
2004

[10] P. Materu and R. Krishnan, “Estimation of Switched Reluctance Motor
Losses”, IEEE Industry Applications Society Annual Conf. Rec., Pittsburgh,
pp. 79-90, 1988

[11] Edrington, C.S.; Fahimi, B., “An auto-calibrating model for an 8/6 switched
reluctance motor drive: application to design and control”, Power Electronics
Specialist, 2003. PESC '03. IEEE 34th Annual Conference on ,Volume: 1
, 15-19 June 2003 Pages:409 - 415 vol.1

[12] Brosse, A.; Henneberger, G.; Schniedermeyer, M.; Lorenz, R.D.; Nagel, N.;
"Sensorless control of a SRM at low speeds and standstill based on signal
power evaluation", Industrial Electronics Society, 1998. IECON '98.
Proceedings of the 24th Annual Conference of the IEEE , Volume: 3 , 31
Aug.-4 Sept. 1998 Pages:1538 - 1543 vol.3

[13] Harris, W.D.; Lang, J.H.; "A simple motion estimator for variable-reluctance
motors", Industry Applications, IEEE Transactions on ,Volume: 26 , Issue: 2
, March-April 1990 Pages:237 – 243

[14] Gao, H.; Salmasi, F.R.; Ehsani, M.; "Sensorless control of SRM at standstill",
Applied Power Electronics Conference and Exposition, 2001. APEC 2001.
Sixteenth Annual IEEE , Volume: 2 , 4-8 March 2001 Pages:850 - 856 vol.2

[15] Suresh, G.; Fahimi, B.; Ehsani, M.; "Improvement of the accuracy and speed
range in sensorless control of switched reluctance motors", Applied Power
Electronics Conference and Exposition, 1998. APEC '98. Conference

 154

Proceedings 1998., Thirteenth Annual ,Volume: 2 , 15-19 Feb. 1998
Pages:771 - 777 vol.2

[16] Lumsdaine, A.; Lang, J.H.; Balas, M.J.; "A State Observer for Variable
Reluctance Motors: Analysis and Experiments", Circuits, Systems and
Computers, 1985. Nineteeth Asilomar Conference on , November 6-8, 1985
Pages:660 – 664

[17] Lumsdaine, A.; Lang, J.H.; "State observers for variable-reluctance motors"
Industrial Electronics, IEEE Transactions on ,Volume: 37 , Issue: 2 , April
1990 Pages:133 – 142

[18] Husain, I.; Islam, M.S.; "Observers for position and speed estimations in
switched reluctance motors", Decision and Control, 2001. Proceedings of the
40th IEEE Conference on , Volume: 3 , 4-7 Dec. 2001 Pages:2217 - 2222 vol.3

[19] Hossain, S.A.; Husain, I.; Klode, H.; Lequesne, B.; Omekanda, A.M.;
Gopalakrishnan, S.; "Four-quadrant and zero-speed sensorless control of a
switched reluctance motor", Industry Applications, IEEE Transactions on ,
Volume: 39 , Issue: 5 , Sept.-Oct. 2003 Pages:1343 – 1349

[20] Hossain, S.A.; Husain, I.; "A geometry based simplified analytical model of
switched reluctance machines for real-time controller implementation", Power
Electronics, IEEE Transactions on , Volume: 18 , Issue: 6 , Nov. 2003,
Pages:1384 – 1389

[21] Yang, I.-W.; Kim, Y.-S.; "Rotor speed and position sensorless control of a
switched reluctance motor using the binary observer", Electric Power
Applications, IEE Proceedings- , Volume: 147 , Issue: 3 , May 2000 Pages:220
– 226

[22] Suresh, G.; Fahimi, B.; Rahman, K.M.; Ehsani, M.; "Inductance based position
encoding for sensorless SRM drives", Power Electronics Specialists
Conference, 1999. PESC 99. 30th Annual IEEE ,Volume: 2 , 27 June-1 July
1999 Pages:832 - 837 vol.2

[23] Fahimi, B.; Emadi, A.; Sepe, B., Jr.; "Position sensorless control", Industry
Applications Magazine, IEEE ,Volume: 10 , Issue: 1 , Jan-Feb 2004
Pages:40 – 47

[24] Salmasi, F.R.; Fahimi, B.; Gao, H.; Ehsani, M.; "Robust sensorless rotor
position detection in switched reluctance motors for low speed applications",
Power Electronics Specialists Conference, 2001. PESC. 2001 IEEE 32nd
Annual , Volume: 2 , 17-21 June 2001 Pages:839 - 843 vol.2

[25] Salmasi, F.R.; Fahimi, B.; Gao, H.; Ehsani, M.; "Sensorless control of
switched reluctance motor drive based on BEMF calculation"", Applied Power
Electronics Conference and Exposition, 2002. APEC 2002. Seventeenth
Annual IEEE , Volume: 1 , 10-14 Pages:293 - 298 vol.1 March 2002

[26] Gao, H.; Fahimi, B.; Salmasi, F.R.; Ehsani, M.; "Sensorless control of the
switched reluctance motor drive based on the stiff system control concept and
signature detection", Industry Applications Conference, 2001. Thirty-Sixth
IAS Annual Meeting. Conference Record of the 2001 IEEE , Volume: 1 , 30
Sept.-4 Oct. 2001 Pages:490 - 495 vol.1

[27] Lyons, J.P.; MacMinn, S.R.; Preston, M.A.; "Flux-current methods for SRM
rotor position estimation", Industry Applications Society Annual Meeting,
1991., Conference Record of the 1991 IEEE , 28 Sept.-4 Oct. 1991 Pages:482
- 487 vol.1

[28] Mondal, S.K.; Saxena, S.N.; Bhadra, S.N.; Muni, B.P.; "Evaluation of a novel
analog based closed-loop sensorless controller for switched reluctance motor

 155

drive", Industry Applications Conference, 2001. Thirty-Sixth IAS Annual
Meeting. Conference Record of the 2001 IEEE , Volume: 3 , 30 Sept.-4 Oct.
2001 Pages:2073 - 2080 vol.3

[29] Mese, E.; Torrey, D.A.; "An approach for sensorless position estimation for
switched reluctance motors using artifical neural networks", Power
Electronics, IEEE Transactions on , Volume: 17 , Issue: 1 , Jan. 2002 Pages:66
– 75

[30] Fahimi, B.; Suresh, G.; Ehsani, M.; ""Review of sensorless control methods in
switched reluctance motor drives", Industry Applications Conference, 2000.
Conference Record of the 2000 IEEE ,Volume: 3 , 8-12 Oct. 2000
Pages:1850 - 1857 vol.3

[31] D. A. Torrey and J. H. Lang, "Modeling a nonlinear variable reluctance motor
drive," IEE Proceedings, Vol. 137, pt. B, pp. 314-326, 1990

[32] T. J. E. Miller and McGilp, "Nonlinear theory of the switched reluctance
motor for rapid computer-aided design," IEE Proceedings, Vol. 137, pt. B, pp.
337-347, 1990

[33] M. Stiebler and K. Liu, "An Analytical Model of Switched Reluctance
machines," IEEE Transactions on Energy Conversion, Vol. 14, No. 4, pp.
1100-1105, Dec. 1999

[34] P. G. Barrass and B. C. Mecrow, “Flux and torque control of switched
reluctance machines”, Electric Power Applications, IEE Proceedings- ,
Volume: 145 Issue: 6, Nov. 1998, Page(s): 519 –527

[35] Suresh, G.; Fahimi, B.; Rahman, K.M.; Ehsani, M.;’Inductance based position
encoding for sensorless SRM drives’, Power Electronics Specialists
Conference, 1999. PESC99. 30th Annual IEEE, Volume: 2 , 27 June-1 July
1999 Pages:832 - 837 vol.2

[36] Radun A. V., "Design considerations for the switched reluctance motor," IEEE
Transactions on Industry Applications, Vol. 31, No. 5, pp. 1079 - 1087,
September/October, 1995

[37] Radun A. V., and Y. Q. Xiang., "Switched reluctance starter/generator system
modeling results," Trans. SAE, J. Aerosp., vol. 104, sec. 1, pp. 257-266, 1995

[38] Hussain, I., Radun, A. V., and Nairus, J., "Unbalanced Force Calculation in
Switched Reluctance Machines," IEEE Transactions on Magnetics, Vol. 36, n.
1., pp. 330-338 January 2000

[39] Brosse, A.; Henneberger, G.; Schniedermeyer, M.; Lorenz, R.D.; Nagel, N.;
"Sensorless control of a SRM at low speeds and standstill based on signal
power evaluation", Industrial Electronics Society, 1998. IECON '98.
Proceedings of the 24th Annual Conference of the IEEE , Volume: 3 , 31
Aug.-4 Sept. 1998 Pages:1538 - 1543 vol.3

[40] Harris, W.D.; Lang, J.H.; "A simple motion estimator for variable-reluctance
motors", Industry Applications, IEEE Transactions on, Volume: 26, Issue: 2,
March-April 1990 Pages: 237 – 243

[41] Zhang, Jinhui; Radun, A.V.; "A new method to measure the switched
reluctance motor’s flux"; Applied Power Electronics Conference and
Exposition, 2005, APEC 2005, Twentieth annual IEEE, Volume 3, 6-10
March, 2005, pages 1994-1999

[42] Zhang, Jinhui; Radun, A.V.; "A simplified analytical flux model of the
switched reluctance motor "; International Electric Motors and Drives
Conference, 2005, IEMDC 2005, Twentieth annual IEEE, Volume 3, 6-10
March, 2005, pages 1994-1999

 156

VITA

Name: Jinhui Zhang
Date of Birth: September 3, 1976
Place of Birth: Zhengzhou, China
Eductaion:
• University of Kentucky, Expected in October 2005 Ph. D. of Electrical Engineering
• Tianjin University, China, March 2001 M. S. of Electrical Engineering
• Zhengzhou University, China, June 1997 B. S. of Electrical Engineering
Experience:
• Research Assistant, August 2001 to present, University of Kentucky
• Research Assistant, August 1998 to March 2001, Tianjin University
Publications:
• Jinhui Zhang, Arthur Radun, A simplified switched reluctance motor’s flux model. IEEE’s

International Electrical Motor Drive Conference (IEMDC), May 2005
• Jinhui Zhang, Arthur Radun, A new method to measure switched reluctance motor’s flux

model. IEEE’s Applied Power Electronics Conference (APEC), March 2005
• Ping Wang, Jinhui Zhang, A single phase active filter design and implementation. Power

Supply Magazine, April 2000
Honors:
• Ranked #1 in the 1994 industrial automation class
• IEEE student member
• SAE student member

	ELIMINATING THE POSITION SENSOR IN A SWITCHED RELUCTANCE MOTOR DRIVE ACTUATOR APPLICATION
	Recommended Citation

	Abstract
	Acknowledgements
	Table of contents
	Table of figures
	Table of tables
	Chapter 1 Introduction
	Chapter 2 Background
	2.1 SRM basics
	2.1.1 SRM structure
	2.1.2 SRM flux linkage
	2.1.3 SRM torque
	2.1.4 SRM inverter
	2.1.5 SRM phase current

	2.2 An analytical model of the SRM
	2.2.1 The non-overlap case
	2.2.2 The overlap case

	2.3 A torque method to obtain the flux of SRM
	2.3.1 Power losses
	2.3.1.1 Eddy current loss and hysteresis loss
	2.3.1.2 Avoiding the loss induced measurement errors

	2.3.2 Obtaining flux from the static torque
	2.3.3 Comparing with the classic method
	2.3.3.1 The Classic method
	2.3.3.2 The torque method
	2.3.3.3 Comparison between the torque method and the classic method

	2.3.4 Applying the torque method to FEA
	2.3.4.1 The torque method applied to FEA
	2.3.4.2 An analytical model
	2.3.4.3 Comparison between the experimental results, FEA results and the analytical model

	Chapter 3 Simulation model and hardware implementation of the SRM sensorless control
	3.1 SRM sensorless control system simulation model in Matlab/Simulink
	3.1.1 The EMI filter
	3.1.2 Current Regulator
	3.1.3 The software implementation block

	3.2 SRM sensorless drive system hardware implementation
	3.2.1 Power Inverter
	3.2.2 The current regulator board
	3.2.2.1 Signal conditioning
	3.2.2.2 Low speed position demodulator
	3.2.2.3 Voltage integrator (flux generator)
	3.2.2.4 Voltage comparator
	3.2.2.5 FPGA implementation of current regulator logic
	3.2.2.6 The printed circuit board

	3.2.3 DSP implementation

	Chapter 4 Inductance profile demodulator based state observer sensorless control
	4.1 Sensorless control review
	4.1.1 The first category, injected currents are used
	4.1.2 The second category, the torque producing current is used
	4.1.2.1 Observer based sensorless control
	4.1.2.2 Chopping current pattern based sensorless control
	4.1.2.3 Other methods using the torque producing currents

	4.2 Proposed control strategies
	4.3 The state observer
	4.4 Error function definition
	4.5 System stability and performance of the observer
	4.6 The speed limitation of the inductance profile demodulator based observer
	4.6.1 The time delay of the demodulator
	4.6.2 Sampling frequency limitation

	4.7 Simulation results
	4.7.1 Zero speed simulation
	4.7.2 Medium speed operation

	4.8 Experiment results
	4.8.1 Inductance asymmetry of the motor
	4.8.2 Starting process
	4.8.3 Constant speed operation

	4.9 Speed limitation
	4.10 The torque drop
	4.11 The rotor position resolution
	4.12 Transient response

	Chapter 5 A simplified flux model based state observer sensorless control
	5.1 A simplified flux model
	5.1.1 Introduction of flux models
	5.1.2 Breaking the simplified flux model into two cases
	5.1.2.1 The case with no stator and rotor pole overlap
	5.1.2.2 The overlap case
	5.1.2.2.1 The piece wise linear magnetization curves
	5.1.2.2.2 Breaking the flux into main and fringing fluxes
	5.1.2.2.3 The main flux
	5.1.2.2.4 The fringing flux
	5.1.2.2.5 The total flux when the rotor and the stator overlap

	5.1.3 Verifying the model with experiment measurement

	5.2 The simplified flux model based observer
	5.3 The error function with the simplified model
	5.4 Stability and performance of the simplified flux model based observer
	5.5 Simulation results
	5.6 Experimental results
	5.7 Speed limitation
	5.8 Transient response
	5.9 Combination of the two strategies
	Appendix I. VHDL code in the FPGA chip
	Appendix II. C/C++ code in DSP
	Appendix III. The torque equations for the overlap case
	Appendix IV. The parameters of the switched reluctance motor
	Reference
	Vita

