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ABSTRACT OF DISSERTATION

ELIMINATING THE POSITION SENSOR IN A SWITCHED
RELUCTANCE MOTOR DRIVE ACTUATOR APPLICATION

The switched reluctance motor (SRM) is receiving attention because of its merits:
high operating temperature capability, fault tolerance, inherent shoot-through preventing
inverter topology, high power density, high speed operation, and small rotor inertia. Rotor
position information plays a critical role in the control of the SRM. Conventionally,
separate position sensors, are used to obtain this information. Position sensors add
complexity and cost to the control system and reduce its reliability and flexibility.

In order to overcome the drawbacks of position sensors, this dissertation proposed
and investigated a position sensorless control system that meets the needs of an electric
actuator application. It is capable of working from zero to high speeds. In the control
system, two different control strategies are proposed, one for low speeds and one for high
speeds. Each strategy utilizes a state observer to estimate rotor position and speed and is
capable of 4 quadrant operation.

In the low speed strategy a Luenberger observer, which has been named the
inductance profile demodulator based observer, is used where a pulse voltage is applied

to the SRM’s idle phases generating triangle shaped phase currents. The amplitude of the



phase current is modulated by the SRM’s inductance. The current is demodulated and
combined with the output of a state observer to produce an error input to the observer so
that the observer will track the actual SRM rotor position. The strategy can determine the
SRM’s rotor position at standstill and low speeds with torques up to rated torque.

Another observer, named the simplified flux model based observer, is used for
medium and high speeds. In this case, the flux is computed using the measured current
and a simplified flux model. The difference between the computed flux and the measured
flux generates an error that is input to the observer so that it will track the actual SRM
rotor position. Since the speed ranges of the two control stragegies overlap, the final
control system is capable of working from zero to high speed by switching between the
two observers according to the estimated speed. The stability and performance of the

observers are verified with simulation and experiments.

KEYWORDS: Switched Reluctance Motor, Sensorless Control, Flux model, Real Time
Control, Actuator Application
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Chapter 1  Introduction

The switched reluctance motor (SRM) drive is a relative newcomer to the motor
drive industry. The SRM is an electric motor in which torque is produced by the
tendency of its movable part to move to a position where the inductance of the excited
winding is maximized [1]. The SRM is considered as an alternative to conventional
motors in variable speed applications. High efficiency at rated load and low cost make
SRMs suitable to drive pumps, compressors, and fans. It is a good choice to be
customized for applications ranging from turbine starter/generators to electric cars to
washing machines because of its high power density and high efficiency [1]. Its phase
independence characteristic makes it fault tolerant for critical applications. It is being
investigated for various industrial and military applications, including electronic
power steering and anti-lock braking systems in conventional vehicles and the main
propulsion unit for electric/hybrid vehicles, aircraft engine starters and fuel pumps
[2]. SRMs can be developed to meet the requirements of systems from a few watts to
hundreds of kilowatts. The existing commercial applications include laboratory
centrifuges, variable speed drives, slide door operators, screw air compressors,
washing machines, food processors, air conditioning, vacuum cleaning systems, and
roll door systems.

The first recognizable SRM was built by Davidson as a traction drive for an
electric locomotive in 1838. But due to its poor performance it was not widely
applied. Being driven with modern power electronics and using electronic controls,
SRMs can achieve remarkably better performance. The stepper motor, invented and
patented in the 1920°s by C. L. Walker, included many features of modern veriable
reluctance (VR) stepper motors and therefore of the SRM. Belsord and Hoft in 1971
and 1972 described many of the essential features of the modern SRM, with electronic
commutation positively synchronized with rotor position [3]. The first reference to the
name “switched reluctance” was made by S.A.Nasar in a paper in the IEE
Proceedings in 1969, but it was used to describe a rudimentary switched reluctance
machine [4]. Dr. Lawrenson and his colleagues connected the term switched
reluctance with the modern form of the SRM. The term became popular from the
1980s onwards, through the efforts of the first commercial exploiters of the

technology, Switched Reluctance Drives Ltd., which is located in the north of
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England and a part of Emerson Electric Co. The machines are alternatively known as

variable reluctance motors (VRM), reflecting the origins of the technology being

derived from VR stepper motors. It is also called an electronically commutated

reluctance (ECR) motor [1] to emphasize the character of its commutator. Another

name of the SRM is brushless reluctance motor that underlines the fact that SRM is

brushless.

The SRM has several advantages over conventional motors.

1)
2)

3)

4)

5)

6)

7)

8)

Efficient, it maintains high efficiency over wide speed and load ranges.
Quick start, the fact that there is no winding, commutator or permanent
magnets on its rotor, and there are no brushes on its stator, along with its
salient rotor poles make the SRM’s rotor inertia less than that of its
conventional peers so that it can accelerate more quickly.

Low cost, simple construction allows low manufacturing cost. Its stator and
rotor are built up from a stack of salient pole laminations. There is no
winding mounting cost for the rotor.

Wide speed range, it does not have a brush commutator mechanical speed
limit, no rotor winding, and no rotor magnets so it can run up to high speeds
with no specific mechanical arrangement. It also can run at low speeds and
zero speed providing full rated torque.

Four quadrant operation, it can run forward or backward in either motoring
or generating mode.

Shape adaptable, it may be designed as a pancake, or long to match available
space [5].

Fault tolerant, its unique inverter topology prevents its inverter from
experiencing an inverter shoot-through failure. In each leg of the inverter,
there is a phase winding in between the two switches preventing
shoot-through.

Sensorless, SRM control is possible without position sensors. The rotor
position information can be obtained from the electrical parameters of the
phases because of the large inductance change and flux change during an

electrical period of rotor rotation.

The SRM also has some disadvantages.

1)

The SRM requires a small air gap to maximize its power density which

makes it more difficult to manufacture. It is also a source of inductance

2



asymmetry.

2) The position sensor is a fragile part of the SRM control system. In some
situations, position sensors are not allowed to be used. For instance, sensor
wires are prohibited in hermetically sealed compressors. Sensorless control
is expected to solve this problem.

3) Potential cost of the control electronics is high. But the cost is decreasing
with the development of electronic technologies.

4) The torque output inherently changes with rotor position. Since the torque
produced by each phase is pulse shaped, the sum of the torque generated by
all phase is not generally smooth. It is possible to make the torque smoother
with a more complex control.

5) Acoustic noise, induced by the time varying phase current which deforms
the stator yoke with time, can be severe. Good mechanical construction can
reduce this problem.

6) The design of the SRM’s electromagnetic interference (EMI) filter is
challenging because the inverter induces high ac harmonics in the DC input
to the inverter.

The SRM can be rotary or linear, and the rotor can be interior or exterior. The

windings may be excited separately or together depending on the phase number of the

motor and the torque requirement.



Chapter 2 Background

2.1 SRM basics

2.1.1 SRM structure

The SRM consists of stator and rotor laminations, both with double salient poles.
The SRM can be made with different number of phases, for example, 1-phase,
2-phase, 3-phase, 4-phase, and even more phases for different applications. Each
phase is wound with alternating magnetic polarity on symmetrically located stator
poles. The rotor has no winding or magnets. Due to the symmetry of the phases, there
is often negligible mutual inductance between them. The excitation of a phase
magnetizes both the stator and the rotor. This produces a torque, causing the rotor to
align its poles with the poles of the excited stator. Thus, sequential phase excitation
causes rotor motion, which synchronously aligns the rotor poles with the excited
phases.

The section profile of a 4-phase SRM is shown in Figure 2.1. The four phases are
named A, B, C and D respectively. In the figure, the rotor is at the aligned position
with phase A. This 4-phase 8/6 (# of stator poles / # of rotor poles) SRM was used in

this dissertation.

Figure 2.1 SRM structure and geometrical dimensions



Several dimensions labeled in Figure 2.1 will be used in the dissertation. Among

them are:
Rihatt the shaft radius;
Ry the rotor yoke radius;
R, the rotor pole radius, i.e. the distance from the rotor center to the air
gap;
Rgy the stator yoke radius;
Rout the outside radius of the stator;

There are two important dimensions that are not shown in the figure. They are:
g the air gap, i.e. the distance between the stator pole and the rotor pole

when they are aligned;

L the length of the lamination stack, in the direction perpendicular to the
page;
Sir the lamination stacking factor which is the fraction of the lamination

stack length occupied by iron;

2.1.2 SRM flux linkage

The magnetic flux density tends to take the route that has lower magnetic
reluctance. Thus the field produces a force that drags the rotor towards the aligned
rotor position of an excited phase. Sequentially exciting the phases brakes or drives
the rotor continuously. The flux linkage calculated by finite element analysis (FEA)
when the rotor is at 10 mechanical degrees from the aligned position with phase A is
shown in Figure 2.2. The current direction of phase A is also shown in the figure. The
two poles of phase A are on the top and the bottom, as shown in Figure 2.1. The flux
tends to drag the rotor towards the aligned position of phase A in this case.

The flux linkage versus phase current curve family is shown in Figure 2.3. It is
obtained by finite element analysis. The curves are plotted for every mechanical
degree from the unaligned rotor position (-30° for this 4-phase SRM) to the aligned
rotor position (0°), respectively from the bottom to the top. The aligned position is
defined as the rotor position where any pair of rotor poles is exactly aligned with the
stator poles of interest, for instance, the rotor position related to phase A in Figure 2.1.
The unaligned position is the rotor position where the inter-polar axis of the rotor is
aligned with the stator poles of interest, for example, the rotor position related to

phase C in Figure 2.1. At the aligned position, because of the small air gap, the iron
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saturates at high currents. At the unaligned position, due to its large air gap, the iron is
not susceptible to magnetic saturation. The SRM is designed to make the iron saturate

at high currents in order to maximize the energy conversion.

Figure 2.2 the SRM flux linkage
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Figure 2.3 the SRM flux versus current at different rotor positions at 1° intervals

obtained by FE analysis

2.1.3 SRM torque

The flux linkage tends to take the route that has the lowest reluctance, and this
tendency produces a torque. The torque is a function of the phase current and the rotor

position. There is no torque at the aligned position, but there is restoring toque that



tends to return the rotor towards the aligned position at other rotor positions. The
aligned rotor position is a stable equilibrium. At the unaligned position, the torque is
also zero because it is at the minimum inductance. If the rotor is displaced to either
side of the unaligned position, there is a toque that tends to displace it still further
until it rotates to the closest aligned position. The unaligned position is an unstable
equilibrium.

A family of static torque curves for different constant currents calculated by FEA
for the 4-phase SRM used in this research is shown in Figure 2.4. In the figure, the
torque curves for each of the 4 phases correspond to constant phase currents equal to
10, 20, 30, and 40 amperes. If the phases are energized at the rotor positions at which
the torque is positive, the total torque output is positive and keeps driving or braking
the rotor depending on the direction of rotor rotation. The total torque output in this

case is shown in Figure 2.5.

torque vs rotor position for the 4 phases
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Figure 2.4 the SRM torque versus rotor position

The total torque output versus the rotor position with a fault of phase A is shown
in Figure 2.6. It is zero when the rotor position is at the aligned position with regard to
phase B, in this case, 15 degrees. The total torque output versus the rotor position with
a fault of phase A and phase B is shown in Figure 2.7. The torque is zero at the rotor

positions from the unaligned position of phase D to the aligned position of phase C.
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This fact shows that the 4 phase SRM has inherent problem to work at zero speed for

any position with rated torque and a fault of one phase or two phases.

total torque vs otor position at different currents
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Figure 2.5 the total torque output vs rotor position

torque vs rotor position at different currents with 1 phase fault
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Figure 2.6 the total torque output vs rotor position with a fault of phase A



2.14 SRM inverter

The SRM inverter used in this research is shown in Figure 2.8. It has 4 legs for
the 4-phase SRM. Each inverter leg has two power electronic switches and two
diodes. The two switches and the two diodes of phase A are named Q1, Q2, D1, and

D2 respectively, as shown in Figure 2.8.

torque vs rotor position at different currents with a fault of 2 phases
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Figure 2.7 the total torque output vs rotor position with a fault of phase A and B

When both switches, Q1 and Q2 are on, the winding phase current increases and
the winding is being charged. The equivalent schematic for this mode is shown in
Figure 2.9a. When Q1 or Q2 is off, D1 or D2 respectively will conduct the remaining
current This is called free-wheeling mode. In this mode one diode and one switch are
on essentially shorting the winding. The flux keeps constant ideally in this mode and
the current changes the slowest in this mode. At zero speed the current is ideally
constant though the current actually decreases slowly due to the winding’s resistance
and the voltage drops across the inverter semiconductors. At higher speeds the SRM’s
back EMF will reduce the current when motoring and increase the current when
generating. The equivalent schematic of the freewheeling mode is shown in Figure
2.9b. When both of the switches are turned off and there is current in the winding,
both diodes will conduct current. This mode is called the discharging model. Now the

voltage across the winding is the reverse of the power supply voltage. The power



supply discharges the winding through the two diodes. The equivalent circuit
schematic for the discharging mode is shown in Figure 2.9c. The phase current is

controlled by sequencing the inverter through these three modes.
Q1 é T é I ET | é I
15"~ A1 ©i8 B
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Q2
Gl [T % [T 7
N
Figure 2.8 the SRM inverter
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Figure 2.9 the SRM inverter working modes

2.1.5 SRM phase current

It is desirable to control the SRM’s phase current to a constant value during the
torque-producing period of time, as shown in Figure 2.10. First the phase current is
increased to the desired constant current level called the commanded current before
the rotor reaches the torque-producing region. This is accomplished by putting the
inverter into the charging mode. Because of the SRM’s low inductance before the
rotor and stator poles overlap, the phase current rises up quickly in the charging mode.
After the current reaches the commanded current determined by the commanded
torque, the inverter goes to either the freewheeling mode (motoring) or the

discharging mode to decrease the current. Once the current is less than the
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commanded current by a predetermined amount, the inverter goes back to the
charging mode to increase the current again. This procedure is continued until the
rotor is close to the end of the torque-producing region, after which the inverter is put
into the discharging mode to reduce the phase current to zero rapidly to avoid

producing the opposite torque.
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Figure 2.10 SRM phase current

2.2 An analytical model of the SRM

To model the SRM the flux linked by a phase must be determined from which
other machine properties like torque, inductance and back EMF can be computed.
Different methods can be used from FEA to curve fitting, from truncated Fourier
series to exponential functions. In the simulation system that this dissertation uses, an
analytical flux model is used. It is constructed by considering two cases according to
the rotor position. The first case, termed the overlap case, consists of those rotor
positions for which a rotor pole overlaps with the stator pole of interest. In the second

case, namely the non-overlap case, the stator pole under consideration does not have
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any angular extent that overlaps with a rotor pole.

In the non-overlap case, it is assumed that the inductance is independent of
current. There is only fringing flux and iron saturation is negligible. But in the overlap
case, iron saturation needs to be considered and the total flux consists of both a main
flux and a fringing flux.

The non-overlap case is explained in more detail in [6], while the overlap case is
described in more detail in [7]. The basic results from these two references are
introduced here because they are used as the SRM model of the simulation system in

Matlab/Simulink.

2.2.1 The non-overlap case

The geometry of the SRM in this case is shown in Figure 2.11. The stator poles of
phase A do not have any overlapped area with any rotor poles. The actual SRM
geometry can be approximated with the unwrapped rectangular geometry in Figure

2.12. The dimensions Irj and Irp are equal if the rotor is at the unaligned position

relative to the phase A stator pole and are unequal otherwise. The parameter Ir is the
total horizontal length of the rotor yoke between the two neighbor poles.

The flux linked by a phase in this case is divided into two parts. One part is
contributed by the part of the magnetic field generated by the winding that goes from
the stator pole to the rotor through the rotor slot between the two rotor poles. The
other part is contributed by the part of the magnetic field generated by the winding
that that returns through the stator slot. To obtain the contribution by the rotor, the
vector potential A is introduced and the boundary conditions of the rectangular region
between the rotor poles are defined. Then the basic magneto static theories are applied
to solve the flux linked by the phase due to the magnetic field that goes to the rotor.

The flux linked by a phase (A,;), contributed by the rotor, in terms of the phase

. [ nlr . ( mlr2
sin sin
Ir Ir
+

ML 4 Nyl -1 S —— 11 sy, 21

npar Modd — (znY tanh(mllrhrj

current (Ip) 1s

ﬂpr =

where nser is the number of pole windings in series and npar is the number of pole
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windings in parallel, N, is the number of winding turns per pole, p, is the

permeability of free space, noqq is the odd integers from one to infinity.

Figure 2.11 the rotor position in the non-overlap case

C> Stator Iron %
h Y‘O ‘% >< +—Winding

/n— — <—| I‘? /f'h
0
~

< Ir >
Roto{lro/

Figure 2.12 the approximated rectangular geometry in the non-overlap case

—

The starting point for finding the field in the stator slot is the approximate
geometry in Figure 2.12. Like the rotor case, the stator slot also forms a rectangular
box. The field actually has to be found in both stator slots on either side of the stator
pole. Since the basic geometry is the same for both of these slots, the field solution
only has to be obtained for one slot and then the same solution is applied to the other
[6].

In [6], the stator contribution to the unaligned flux is:

nser 2Np’lsuly [2 Iw
ps = 2% Y hs? — cSX— +

= —Csy .
npar hs-lw (3
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kd [ 2
+ZaShn cosh(ﬂnhs)— !S sinh(ﬂnhsjsin(ﬂﬂlw) N
n=1 L Is (711’]) hs.lw Is Is

+Zaspn cos lw)__1s sin niw 2-2
prt Is Iwzn Is

where I 1s the length of the stator slot in x direction, hg is the height of the slot, 1y is
the length of the winding in x direction, ash, and asp, are the Fourier coefficients of
the solution given in [6].

Thus the total phase flux in the non-overlap case is

ﬂaﬁ, no(e, |¢) = ﬂpr(@, |¢) + ips(e, |¢) 23

2.2.2 The overlap case

In the overlap case, the flux linked by a phase is broken into two parts, , one due
to the main field called the main flux and the other due to the fringing field called the
fringing flux. The major difference between these two fluxes is that their contour
paths have different air gaps. The main flux is computed using a contour that passes
through the small air gap that is between the rotor pole and the stator pole where they
overlap. The fringing flux is computed using a contour that passes thorugh the greater
air gap between the rotor yoke and the stator pole, as shown in Figure 2.13.

The main flux contribution, including the effect of iron saturation, to the total flux

linked by a phase is [7]

2n(0,1) = 2o P R0 (1+ 29) lo, ImBoat _
|Fe,m Npar /JNp

g
1 _J
( " IFe,mjg 2.4

|mlBsat ? 2|szsat |¢ |¢ ?
+ +
UNp MNp  Npar Npar

where

Np?
Ao = Nser - .
ser + Lo )

stk - Stf
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Here Ire.m is one half of the total length of the main flux contour in the iron and g is
the air gap. The number of turns and the current in the winding around each of the two
stator poles that make up the phase are N, and l¢ respectively. p is the magnetic
permeability of the iron, p is the stator pole width, and Bsa is the flux density when
the iron is saturated. The iron is characterized by p and Bsax.. The angle @ is taken

to be zero at the aligned position.

Fringing
Flux
Contour

Hain
Flux
Contour

Figure 2.13 the contours of the main flux and the fringing flux

The fringing flux is found by simply substituting the effective fringing flux air
gap, Or, [7] for the main flux air gap @ and substituting the area of the fringing flux

path for the area of pole overlap. Thus the fringing flux is

(0, |¢] = Ao Rg@{[l_i_ 201 j ly N lt1Bsar
g IFe,f Npar ,UNP

2-5
2
[llesatj 2|szsat |¢ ( |¢ jz
+ +
lLle ,UNp Npar Npar

In the equation,

lti=lre.r +(ur+1)gr  and li2 = lIre. 1 — (26 —1)gt
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where Ire ¢ 1s a half of the total length of the fringing flux contour in iron.
The total flux linked by an SRM phase in the overlap case is simply the sum of
the main flux and the fringing flux linked by that phase.

A6.00(0,15) = An(0,15) + A1 (6, 15) 2-6

The main flux is given by (2-4) and the fringing flux is given by (2-5).

The flux over a full period of rotor position is

A6(6,15) = 14,010, 1) (6 < P o overlap)
Rg 2.7
Ag.n0(6, 19) (> % or non—overlap)
g

2.3 Atorque method to obtain the flux of SRM

Because of its salient poles and the fact that iron saturation plays a critical role in
its operation, it is difficult to model the SRM precisely [8]. Ultimately it is necessary
to measure the flux linked by a phase of the SRM to predict its performance and to
verify model results. Typically a pulse voltage is applied to one phase of the SRM
with its rotor locked at a fixed rotor position. As the current in the phase increases the
phase current is measured and the phase voltage is integrated to obtain the flux as a
function of current. This process is repeated at different rotor positions to obtain a
family of flux curves for different rotor positions. If first a positive voltage pulse is
applied to the phase to increase the current and then a negative voltage pulse is
applied to return the current to zero, it is found that the increasing and decreasing flux
curves are not equal and a loop occurs, because of both iron and copper losses. The
flux loop resulting from the losses incurred during the measurement complicates
determining the phase flux linkage curves, which should be lossless.

There is an alternative “torque method” to measure the flux linked by a phase that
does not need a correction for losses. It applies a dc current to the SRM’s phase
instead of the pulse voltage normally used, to avoid the iron losses. The output torque

is measured instead of the phase voltage so that the results do not depend on the
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copper losses. The static torque curves of the SRM are measured versus phase current
at a fixed rotor position and the process is then repeated for different rotor positions.
Then this data, a measurement of the unaligned inductance, and conservation of
energy are used to compute the loss independent flux linked by the SRM’s phase. The
same approach can be used to compute the SRM’s flux leakage from finite element
analysis (FEA) computed static torque data, simplifying the computation of the

nonlinear flux linkage curves.

2.3.1 Power losses

It is shown below how the power losses (including iron losses and copper loss)

are avoided in the torque method for measuring the flux linked by a phase.

2.3.1.1 Eddy current loss and hysteresis loss

According to [9, 10], the eddy current loss per unit volume is proportional to

square of the derivative of flux density.
2
Pveddy = Keddy(dBj 2-8
dt

where K.y, 1s a constant of proportionality, B is the magnetic field density in the

winding, and P is the power loss per unit volume due to the eddy current.

veddy

Because the phase voltage V,,, is proportional to the derivative of flux density,

ph a
the eddy current losses are proportional to the phase voltage squared

Puecsy o K, -V 50" 2-10

and thus the eddy current losses can be modeled as a resistor connected in parallel
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with the electromagnetic phase voltage V.

Hysteresis loss is more complicated to compute analytically. It can be expressed
as being proportional to the derivative of flux density [9]. To obtain a simple
conceptual schematic of the SRM’s phase circuit, the two iron losses mechanisms are
modeled as a resistor Ri,, in parallel with the winding as shown in Figure 2.14.

The copper loss is the power consumed by the phase resistance, which is
represented by a resister Reopper 10 series with the phase winding as shown in Figure
2.14.

The classic way to measure the flux linked by an SRM phase is to lock its rotor,
apply a pulse voltage Vi, measure Ieopper and integrate the phase voltage Vo, to get the
flux. This process is repeated at various rotor positions to obtain a family of flux
versus current curves. It is clear from Figure 2.14 that the measurable current Leopper 1S
not equal to the electromagnetic winding current I, because of the iron losses and the
measurable phase voltage V,, 1s not equal to the electromagnetic winding voltage
because of the copper resistance. The flux linked by an SRM phase using this method

has inherent errors due to the iron and copper losses.

Icopper Rcopper
Y * Iiron
I(P
Vo R
L‘P iron

Figure 2.14 the SRM phase circuit with losses

2.3.1.2 Avoiding the loss induced measurement errors

The SRM’s phase circuit shown in Figure 2.14 reduces to the circuit shown in
Figure 2.15 when the input is a dc current and thus the nonlinear SRM phase
inductance L, behaves as a short circuit, shorting the iron loss resistor. In this case all
of the measured current Icopper flows through the shorted equivalent magnetic winding
and none flow through the iron loss resistance so that the winding current Icopper 1S
exactly equal to the current I,. Because the measured torque only depends on the
change of the energy stored in the winding the voltage across the copper loss resistor

Reopper never needs to be known and thus the value of Reopper does not need to be

18



known.

Even though the model of the SRM phase in Figure 2.14 and Figure 2.15 is not
perfect the concept presented is more general than the model. When the input voltage
is dc and the rotor is not rotating, the eddy current loss and hysteresis loss are both
zero since they both are due to the time rate of change of the magnetic field in the

iron.

Icopper Rcopper

Figure 2.15 the static model of SRM

2.3.2 Obtaining flux from the static torque

The flux linked by the SRM’s phase is found using conservation of energy. The

starting point is the co-energy defined in the usual way.
dW’(0,i) =T, (6,i)d0 + A(0,i)di 2-11

Here @ is the rotor position, i is the phase current, W'(6,i) is the co-energy,
T.(6,1) is the static torque, A(8,i) is the flux linkage as a function of the phase

current and the rotor position. The Co-energy is computed by integrating the torque at
a fixed phase current (di = 0). Because co-energy is conserved the value of this

integral does not depend on the choice of path in the i-0 space.
W'(i,<9):W’(Qini,i)+'[:Te(6,i)d9 2-12

where 6, is the initial rotor position, which is taken to be the unaligned rotor

position. For the unaligned rotor position, the co-energy can be computed simply

because there is no magnetic iron saturation at this position.
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W’(Hu,i):%Lu i 2-13

Here 0, is the unaligned rotor position and L, is the phase inductance at the unaligned
rotor position. The unaligned inductance can be computed from a single FEA
calculation or found from a single experimental measurement, at a sufficiently low
current that the SRM losses have a very small effect. The flux linked by a phase is the
derivative of co-energy relative to the phase current holding the rotor position

constant, as shown below

W'(6,1)

0. ="

2-14

From experiments or finite element analysis, a N,xN, torque matrix T, 1is
created. Its rows represent different rotor positions from the unaligned rotor position
to the aligned rotor position, and its columns represent different phase current samples

from zero to a maximum value. Current samples areiy, i, -+ iy , while rotor positions
are,,0,---6, . Here 1y is defined to be zero and 0, is defined to be the unaligned

rotor position 6,. With these definitions equations (2-12) and (2-14) are transformed

into their discrete form in (2-15) and (2-16).

K
W'(@,.1;) zwr(elsij)+Z[Te(‘9n’ij)><(‘9n —0.,) 2-15
n=2

k=2,3---N,, j=12---N,

W(6,,1;) -W'(,i;.)
=i

k=1,2---N,, j=2,3---N,

l(gkaij):

2-16

The initial values of the co-energy and flux at the boundaries of the problem are
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wx@¢)=%gh2 j=12---N, 2-17

A(6,,i,) =0 k=12--N, 2-18

Herei; =0 A.

2.3.3 Comparing with the classic method

In this section, the experimental results for the classic method and the torque

method to measure the SRM’s flux linage curves are compared.

2.3.3.1 The Classic method

As discussed above, the classic method of measuring the flux linked by a SRM
phase is to apply a pulse voltage while the rotor is locked at a certain position. The
current is measured and the voltage is integrated to obtain flux and thus the flux
versus current curve is plotted. A dc power supply and a simple one-phase inverter
consisting of two power MOSFETs and two diodes are used to generate the pulse
voltage to the phase under test. A signal generator provides the input signals to the
two power MOSFETs that conduct the increasing phase current. The two diodes
conduct the decreasing current when the two MOSFETs are off. The circuit used in
the classic method and its experimental set-up are shown in Figure 2.16 and Figure
2.17 respectively. The voltage and current waveforms obtained at the aligned rotor
position are shown in Figure 2.18. The sudden increase of the current in the increasing

period is due to the iron saturation.

N

nn E; ZX&%d

o—

Figure 2.16 the one-phase inverter circuit used in the classic method
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Figure 2.18 the voltage and current waveforms obtained at the aligned rotor position

Because the copper losses and the iron losses, a loop is formed in the flux-current
space because the rising and the falling currents do not match. The flux loop and an
adjusted flux curve obtained at the aligned rotor position are shown in Figure 2.19. In
this figure, the phase current and the flux are both filtered digitally to eliminate the
high frequency noise. The adjusted flux curve is obtained from the flux loop data by

subtracting an Iy Ry voltage drop from the terminal voltage before it is integrated to
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obtain the flux. The value of Ry is adjusted so there is no loop. Doing this assumes the
Ry value does not change as the current changes and that the iron losses can be
modeled as an equivalent constant series resistance. An interesting result is that the
adjusted curve is not in the middle of the loop as would be expected. This happens
because the voltage across the electromagnetic winding is lower than the terminal
voltage when the phase current is increasing and larger in value when the phase
current is decreasing. Thus the flux increases less rapidly and to a lower value than
the terminal voltage would indicate when the flux increases and decreases more

rapidly than the terminal voltage would indicate when the flux decreases.

Flux versus current, loop and adjusted curve
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Figure 2.19 the flux loop and the adjusted flux curve

2.3.3.2 The torque method

The diagram and the experimental set-up for the torque method are shown in
Figure 2.20 and Figure 2.21. A torque transducer is used to measure the static torque
and a position sensor is used to obtain the rotor position information. Equations (2-16,
17, 18 and 19) are used to obtain the flux from the torque data. In the experiment Ni is
40 and Ny 1s 30. It is best to obtain more data in the current direction rather than the 0
direction since a derivative of the co-energy with respect to current is required and

derivatives are more numerically noisy than integrals.
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Figure 2.20 the set-up diagram for the torque method

Torque Transducer

Experimental SRM

Figure 2.21 the experimental set-up for the torque method

2.3.3.3 Comparison between the torque method and the classic method

The experimental fluxes obtained by using the torque method and the classic
method are shown in Figure 2.22. In this figure, the flux curves are presented at the
aligned position (0°), 5°, 10°, 15°, 20°, 25° and the unaligned position (30°). The
curves are smoothed by curve fitting with polynomial function of degree 5. Though
the results are similar for both methods they are not identical, presumably because of
the errors inherent in compensating the classic data for losses. Another error that must
be dealt with in the classic method is differences in the time at which the voltage and
current are sampled that result from the dynamic nature of the experiment. Because

the torque method uses a static experiment this sampling error does not occur.
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Figure 2.22 the measured flux obtained using the classic method (solid lines) and the

torque method (dashed lines)

2.3.4 Applying the torque method to FEA

Since calculating torque in finite element analysis (FEA) when there is iron
saturation is easier to automate than calculating the flux linked by a phase directly
(from the vector potential), the torque method is expected to be a useful approach for
obtaining the flux linked by a SRM phase from FEA. The FEA application of the
torque method is verified with the measured data and results from an analytical model

[6, 7.

2.3.4.1 The torque method applied to FEA

The finite element analysis model of the experimental motor is built with Ansoft
Maxwell 2D software and the static torque is calculated. The FEA model drawing is
shown in Figure 2.1. The calculated torque is used to obtain the flux linked by a
phase. To use finite element analysis, the dimensions of the motor, turn number of the

winding, iron material need to be known.

2.3.4.2 An analytical model

An analytical flux model that includes iron saturation in the motor is presented in
[6, 7]. The dimensions, iron properties, and number of turns used in FEA are used in

this analytical model.
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2.3.4.3 Comparison between the experimental results, FEA results and the

analytical model

The comparison between the FEA results and the analytical model is shown in
Figure 2.23. In this figure, the flux curves are presented at the aligned position (0°),
5°, 10°, 15°, 20°, 25° and the unaligned position (30°). The curves are smoothed by
curve fitting with polynomial function of degree 5. Presumably the FEA results are
more accurate and the error between these results and the analytical model results are
due to the difficulty of modeling the nonlinear behavior of the SRM analytically.

Both the analytical and FEA flux linkage curves predict higher flux levels than the
measured data. Also, both the analytical and FEA flux linkage curves saturate more
strongly than the measured curves do. This is most likely due to errors in modeling
the iron B-H curve. The experimental SRM is a commercial machine and the
manufacturer considers the iron characteristics and the motor geometry to be
proprietary information. Thus both the analytical and FEA results assumed the iron
was 3.25% SiFe with an initial relative permeability of 5000 and a saturation flux
density equal to 1.8 T. The dimensions used in both the analytical and FEA
calculations were obtained from measurements of the partially disassembled machine.
This is another source of error. The torque obtained from the experimental
measurement, FEA computation and the analytical model is shown in Figure 2.24.
Polynomial curve fitting is applied to the measured torque and the FEA computed
torque. The difference between the FEA torque and the analytical model torque is due
to the difficulty of modeling the nonlinear behavior of the SRM analytically.

Fhux versus Cument, FEA, Anahytical model
0.03 T T T T

-~~~ FEA results.
Anahytical model

0.025
0.02

0.015

Flux (Webber)

0 15 20 25 30 35 40
Current(4)

Figure 2.23 The predicted flux linked by an SRM phase obtained using FEA static

torque (dashed lines) and using an analytical model (solid lines)
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Torque versus position, experimental torque results, FEA results, the analytical model
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Figure 2.24 Torque versus the rotor position, experimental torque (dashed lines), FEA
results (dotted lines) and the analytical model results (solid lines) at the phase current

equal to 10A, 20A, 30A, and 40A

The flux linked by a phase was also computed using the vector potential at the
aligned position for two different currents. These results are compared to those

obtained using the FEA torque and the analytical model results in Table 2.1.

Table 2.1 FEA predicted flux using the vector potential, using the FEA torque, and
predicted by the analytical model.

Flux from vector Flux from Flux from the analytical
Iy potential torque model
(Weber) (Weber) (Weber)
1A 1.12x 107 1.12x 10~ 1.12x 107
40A 0.0289 0.0299 0.0273
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Chapter 3 Simulation model and hardware implementation of

the SRM sensorless control

In this chapter, the SRM sensorless control system simulation and
implementation in hardware and software are presented. The SRM used here is
manufactured by Rocky Mountain Technologies. It is a 42Vdc, 2 hp peak power, four
phase or 8/6 SRM with a maximum speed of 15,000 rpm. The simulation is done
using Matlab/Simulink. The system is implemented with a digital signal processor
(DSP) of TMS320C6711 made by Taxes Insturments, an A/D converter board, a
separate analog current regulator with a digital control logic circuit, and a standard 4

phase SRM inverter..

3.1 SRM sensorless control system simulation model in
Matlab/Simulink

The control system was designed and simulated using Matlab/Simulink. The
SRM drive system structure is shown in Figure 3.1. It consists of five components, an
electromagnetic interference (EMI) filter, a power electronic inverter, an SRM, a
current regulator and a software implementation block.

The EMI filter eliminates ac harmonics generated by the inverter in the DC input
current. The current regulator keeps the phase currents equal to the commanded
current when the SRM phases need to be energized. It also controls the inverter
switches to create the sensing currents when the phases are idle and the sensing
currents are needed. The software implementation block generates the commands to
the current regulator including the commanded current and the logic signal to control
whether the inverter should generate torque producing current or sensing current. The
software implementation block estimates the rotor position from the measured phase
current and/or flux input from the analog-to-digital board. Since the inverter and SRM
model have been described earlier, the EMI filter, the current regulator, and the

software implementation block will be described in this chapter.

3.1.1 The EMI filter

The EMI filter consists of an inductor and a capacitor, both of which have

parasitic resistance, as shown in the dashed block in Figure 3.2.
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Figure 3.2 the EMI filter circuit

To model the EMI filter, its state equations need to be obtained so that the state
space function block in Matlab/Simulink can be used. The Matlab/Simulink filter
model is developed with the inputs Vi, and Ipow, and the outputs, I and Vpow. Two
states are defined in the state equations. One is the current in the inductor, I and the

other is the voltage across the capacitor, V. According to KVL,

vinzL%+Rs(|L+£%)+vc+Rch dve 3-1
dt Re dt dt
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According to KCL,

|L+Lﬂ=CF dVC+|Pow 3-2
Re dt dt

where the parameters, L, Rs, Rp, R¢, and Cr are the inductor, the parasitic resistor of
the inductor in series with the inductor, the parasitic resistor of the inductor in parallel
with the inductor, the parasitic resistor of the capacitor in series with the capacitor and
the capacitor, as illustrated in Figure 3.2. The two states, I} and V¢, are also shown in
the figure.

After rearranging, (3-1) and (3-2) become

Vin=L(1+L)%+ RCCF%-F RslL+Vc 3-3
Re™ dt dt

|Pow=£%—CF%—i—lL 3-4

Re dt dt

In matrix format this is

L(+2-) ReCr dle Rs 1T1L] [ Vi
Re dt |, _ 3-5
L c dVc 1 0{lVc lpow
L _cr || 8¥e
Re dt

In the standard state space format (3-5) can be arranged into the standard form

;<:Ax+Bu 3-6

Where
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-1
PL} L(1+i) RcCk {Rs 1}
X= , A=— LRP ,
VC = _CF 1
Re

-1

L(1+ %) RcCr

U= Vin
L _Cr ’ | lpow
Re
The output Vpow is

Vreow =Vc + Rc CF%

3-7

In matrix format, the outputs are

dic

lin I L/ Rp 0 dt
= + 3'8
Vpow Ve 0 RcCr || dVc

dt

In the standard state space format the output is expressed as

y=Cx+Du

Where

L/Rp 0 L/Rp 0
C=1+ A, D= B
0 RcCk 0 RcCr

Since A, B, C and D matrices are all known, the standard Matlab/Simulink state
space function block can be applied in the SRM motor drive model. The currents Ipow
and Iy are shown in Figure 3.3. It shows that the current in the inductor, I;, has much

less high frequency harmonics than the inverter bus current Ipow. In the experimental
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system, L=0.63 mH, Cg=16mF, Rs=70mQQ , Rp=2Q2, Rc=0€2.
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Figure 3.3 Ipow and I} waveforms in the EMI filter

3.1.2 Current Regulator

The function of the current regulator is to regulate the current in the SRM phases.
It consists of 4 sub-regulators, one for each phase. The 4 sub-regulators work
independently. Each sub-regulator consists of an analog part and a digital part. In the
analog part the analog phase current signal is input to three voltage comparators to
generate three digital signals that regulate the SRM phase current, control the sense
currents, and protect the inverter.

The three voltage comparators with their inputs and outputs are shown
conceptually in Figure 3.4. The phase current is input to all three comparators. It is
compared to the commanded current in the first comparator, to a low current reference
in the second comparator and to an over current reference in the third comparator. The
three comparators are named as compl, comp2 and comp3 respectively. The outputs
of the comparators are named as I low, I chop, and I over.

I low is ‘1’ when the phase current is higher than the low current reference. It is

‘0’ when the phase current is lower than the low current reference and determines
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when sense pulses can be applied to the SRM. It is needed because the sensing current
can only be injected into a phase to obtain the rotor position information after the
torque producing current has ideally gone to zero because all sense currents must start
from zero current to only depend on the unsaturated phase inductance and not the
initial value of the current. Setting the low current reference very low, when I low is
‘0’, one can safely say that the torque producing current varnishes so that the sensing
current can be injected. In the experimental system the low current reference is SA
while the peak torque producing current is 40A.

The control signal I chop is ‘1’ when the phase current is higher than the
commanded current and it is ‘0’ when the phase current is lower than the commanded
current by a hysteresis amount. When I chop is ‘0’ and the phase is in the torque
producing region, the two inverter phase switches are turned on to charge the phase
windings. When I chop is ‘1°, one of the two inverter phase switches is turned off to
decrease the phase current if the SRM is motoring. If the SRM is generating both
switches are turned off to decrease the phase current.

The control signal I over is an inverter circuit protection signal. It is ‘1’ when the
phase current is higher than the over current reference. When this happens a latch is
set and the current regulator is shut down immediately. The control signal I over is ‘0’
when the phase current is lower than the over current reference and has no effect on

the current regulator.

Phase

>+ I low
current 1 —
comp
Low current reference >
>+ I chop
Command J comp2 -
current -
>+ I over
R comp3 —
Over current reference "=

Figure 3.4 the voltage comparators in the current regulator

The digital part of the current regulator is a logic circuit. The register transfer

level schematic of the digital part of one of the four sub-regulators is shown in Figure
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3.5. Its inputs are:

modin: the injection current pulse signal, also called sensing pulse signal, a
20 KHz, 50% duty cycle signal;

comin: the torque producing command signal, a ‘1’ means input current to
produce torque , ‘0’ means do not produce torque and enter the
sensing mode;

I low: output of compl, ‘1’ means the phase current is higher than the low

current reference and thus do not apply sensing pulses to the SRM phase, ‘0’

means the phase current is lower than the low current reference and sensing pulses

can be applied to the SRM phase.

I chop: output of comp2, ‘1’ means the phase current is higher than the
commanded current. ‘0’ means the phase current is lower than the
commanded current by a hysteresis amount.

I over: output of comp3, ‘1’ means the phase current is higher than the over
current reference, ‘0’ means the phase current is lower than the over
current reference.

The outputs of the digital part of one of the four sub-regulators are:

sense: sensing current indication signal, ‘1’ means that the sensing current
can be injected, ‘0’ means the opposite;

Q1,Q2: a ‘1’ means turn on the respective inverter switch and ‘0’ means turn
off the respective inverter switch;

Shutdown: shutdown command, ‘1’ means the circuit needs to be shut down, 0’
means the opposite.

This logic circuit gives the input signals to the gate drives of the two switches.
When the command signal, comin, is ‘0’, the pulse signal modin will be routed
directly to Q1 and Q2 overriding any other control signals so that sensing current is
injected into the phase. When comin is ‘1’, no sensing pulses can be applied to the
SRM and the circuit will turn the two switches on and off to keep the phase current
constant at the commanded current.

The top RS flip-flop in Figure 3.5 produces the output named sense and is used to
make sure that the sensing current is only injected after the torque producing current
vanishes. This is accomplished with the I low signal and a two modulation cycle time

delay produced by the two D flip-flops before the RS flip-flop. The bottom RS
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flip-flop is used to save the over current fault indication. When a ‘0’ to ‘1’ transition
of I over occurs, the negative output, Qn, of the RS flip-flop will be reset to ‘1°. It
will not be set back to ‘0’ until the enable has a ‘0’ to ‘1’ transition. The T flip-flop
distributes the switching frequency evenly between the upper and lower switches
when the inverter is regulating the phase current in the freewheeling mode where only

one switch is turned off to decrease the current.

modin ~
comin I :{>O T F
sense
I low L LR Q —L >
—>|>Q—>D QD Q =D>S Qn | g
Qn Qn >
> Q1
I chop >
—>I>O—l—>T Q
Qn
I over > Q2
e -~ »
*—»
Enable R Q shutdown
—>|>Q »S On ® >

Figure 3.5 the logic circuit of the current regulator

The digital circuit is modeled with Matlab/Simulink and simulated with the rest
of the drive system. The simulation results for the input and output signals are shown
in Figure 3.6. In the figure, the horizontal axis is time in seconds. All the signals
shown in the figure except the phase current are digital. The plotted phase current has
been scaled down so its maximum value is 2. The I over signal is never ‘1’ in
simulation because the commanded current is always lower than the over current
reference so that I _chop changes to a ‘1’ before I over does so that the phase current
decreases in freewheeling mode. The over current protection is still useful in reality
because it will shut down the inverter immediately to protect the inverter should a

control error or inverter switch failure occur.
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3.1.3 The software implementation block

The software implementation block in the Matlab/Simulink model of the SRM
drive system contains the commanded current computation, advance angles
computation, a commutator, and two sensorless control strategies.

When the SRM is rotating its phases need to be energized before the rotor reaches
the torque-producing region so that the phase current can build up to the commanded
current at the beginning of the torque producing region. The phases need to be
de-energized before the end of the torque-producing region because the phase current
needs some time to decrease to zero and thus to limit the production of torque
opposite to the desired torque. The ideal torque-producing region and phase current
waveform are shown in Figure 3.7. In the ideal case, the turn-on angle, namely
Oon ideal, 1S Where the stator poles just start to overlap with a pair of rotor poles. The
turn-oft angle, namely Oofr ideal, 1S the aligned position. If from oy ideat t0 Oofr igear the
linked flux increases, the phase current will produce positive torque. As described
above, the actual turn-on and turn-off angles need to be moved forward to 6,, and Oy
respectively as shown in Figure 3.8. How much they need to be moved forward
depends on the rotor speed, the power supply voltage V., and the commanded

current.
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Lchop i i i i L VLT i

|_ower

Enable

N
current mw ! ! : i \\_‘_‘—v——m
- : !

G2

sense | | : : : i3 : - : : :
i i i i i i i i i

] 05 1 1.5 2 265 3 35 4 4.5 5

3

x 10

Figure 3.6 the current regulator’s digital input and output signals relative to the scaled

phase current
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The commutator produces commands to all of the phases based on the estimated
rotor position in the sensorless control systems. Conceptually the output of the
commutator for a given phase is ‘1’ if the estimated angle input to the commutator is
between 0., and O,¢. Things are a little more complicated because the rotor position is
wrapped into an electrical period, which is from -0, to 0,. If the turn-on angle 6,, is
greater than —0,, as shown in Figure 3.8a, the commutator energizes the phase in the
bold region, in which @&n<8< G . If O, 1s less than -0, and thus wrapped, as shown in
Figure 3.8b, the commutator energizes the phase in two separate bold regions, in

which —A <0< G or Gn<O< A .

The commanded current is determined by the torque command. It is simply set as

a linear function of the torque command, as in (3-10).
lcomm =Kit - Tcomm =+ lo 3-10

Here Icomm is the commanded current, kit is the linear coefficient, Teomm 1S the

commanded torque, and I, is the offset current.

Actual . ------ Ideal
phase

curgent producing
r\ region

eon eoniideal eoff eoffiideal

Figure 3.7 the ideal and actual region of torque-producing current

Figure 3.8 the two cases of the on and off angles
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The structure of the Simulink model’s software implementation block is shown in
Figure 3.9. The sensorless control in Figure 3.9 acquires data and estimates the rotor

position. This will be explained in more detail in the following chapters.

Torque
command | Command
—> current ® >
calculation Command current
Advance on angle
> angle
»| calculation off angle
Vrow
> L 4
Phase currents | Sensorless Speed Commutator —
control
Phase fluxes R Commands
" Rotor position

Figure 3.9 the software implementation block structure

3.2 SRM sensorless drive system hardware implementation

The SRM drive system is implemented with three main components, a power
inverter, a printed circuit board (PCB) current regulator using a Field Programmable
Gate Array (FPGA) chip, and a Digital Signal Processor (DSP) with an
analog-to-digital converter (ADC) board, as shown in Figure 3.10. The inverter is
implemented with a power printed circuit board bus bar assembly. The current
regulator is implemented with a PCB board and an Actel ProASIC APASO00K FPGA
chip. The microprocessor function unit is implemented in a TI TMS320C6711
floating point DSP. The ADC board is a TI THS1206 evaluation board. It samples the
phase currents and/or phase fluxes. The maximum sampling rate is 6 MSPS and the
resolution is 12 bits. Since the ADC board can only sample 4 channels, an analog
multiplexer is used when 8 channels need to be sampled for the simplified flux model
based observer. An HEDS-55X optical encoder position sensor is used to verify the
accuracy of the estimated rotor position. The EMI filter and the advance angle
algorism are not in the hardware implementation. The detailed parameters of the

experimental SRM are shown in appendix IV.
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3.2.1 Power Inverter

The torque producing current is high, so the inverter needs to be implemented
with PCB bus bars that have rather thick copper. The power electronic switches and
diodes need to be mounted on heat sinks to limit their temperature rise due to their
switching and conduction losses. To design the power bus bar assembly, four nodes of
each inverter phase leg are defined. These nodes are called "power, ground, upper, and
lower. Among them, the two nodes, power and ground, are shared by all of the
inverter phases. The other two nodes, upper and lower, are independent for each phase
and are denoted upperA, lowerA, upperB, lowerB, upperC, lowerC, upperD, and
lowerD for phase A, B, C and D respectively, as shown in Figure 3.11a.

Optical
encoder

>

< |
N
B v
- E
C R
< T
E
D | R
Optical &
encoder
channel Phase A
signals current
Phase current/flux
Software
DC implemented
POWER DSp <P | FC
SUPPLY Digital BUS
signal

Figure 3.10 the hardware implementation of the SRM sensorless control system

The inverter consists of three layers separated by stand offs, the DC PCB bus bar,
the PCB phase bus bar, and the heat sink, which are assembled together in vertical
direction from the top to the bottom, as shown in Figure 3.11b. All of the inverter
power electronic switches and diodes are mounted on the heat sink to conduct the heat
from the device losses away from the devices and into the ambient air. The phase bus
bar provides 8 nodes, upperA, lowerA, upperB, lowerB, upperC, lowerC, upperD, and
lowerD. The DC bus bar provides two nodes, power and ground. These nodes are
connected to the switches and diodes as shown in the schematic Figure 3.11a with

Litz wire. The experimental power inverter is shown in Figure 3.12.
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Figure 3.12 the experimental bus bar assembly

3.2.2 The current regulator board

The current regulator PCB board includes signal conditioning, voltage

comparators, voltage integrators, low pass filters, analog switches and a FPGA.
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3.2.2.1 Signal conditioning
Since the chosen ADC board can only sample voltage signals between 1.5V and
3.5V, every signal being sampled needs to be signal conditioned into this voltage

range. The current sensor used is a LEM’s HAW-20P. Its conversion table is shown in

Table 3.1.

Table 3.1 the conversion table of the current sensor HAW-20P

Current (A, input) | 0 10 20 30 40 | 50 (maximum)

Voltage (V, output) 0 2 4 6 8 10

Assuming the maximum SRM current is 40 A, the voltage range of the current
sensor’s output is 0 ~ 8 V. After multiplying its output by a gain of 0.2 and then
adding a reference voltage of 1.5 V, the voltage range into the ADC board is 1.5 ~ 3.5
V.

Besides the phase current, the demodulated sensing current signal and the flux
also need to be signal conditioned. The sensing current is demodulated with a low
pass filter and the filter output is level shifted into the voltage 1.5 ~ 3.5 V range. The
phase flux is obtained by integrating the phase voltage using an analog integrator. The
output of this analog integrator is then level shifted into the 1.5 ~ 3.5 V range before it
is sampled by the ADC board.

3.2.2.2 Low speed position demodulator

At low speeds, sensing voltage pulses are applied to the SRM phases that are not
being used at that time to produce torque. The resulting phase current is amplitude
modulated by the SRM’s phase inductance. The amplitude modulated phase current is
demodulated with a low pass filter to obtain the position information in the inductance
variation. Only a low pass filter is required because both the SRM current and SRM

inductance are always positive. The output signal of the filter is named g(#). This

signal is proportional to the inverse of the phase inductance. The demodulator is
described in detail in the following chapter. The filter circuit schematic is shown in

Figure 3.13.
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Vout

Figure 3.13 the low pass filter and demodulator circuit

The transfer function of the low pass filter is

_Vout(s) R:/Ri

= = 3-11
Vin(s) 1+R2-Ci-s

f(s)

3.2.2.3 \Voltage integrator (flux generator)

At high speeds position sensing uses the measured phase flux while the SRM is
producing torque. No sense pulses are used. The measured phase flux is obtained by
integrating the phase voltage. The DC offset voltage of the operational amplifier used
in the integrator circuit will create an error over a torque producing period of time if
the phase voltage is not high enough or the period is too long. This means the flux
generators can not work at zero speed. In addition, it must be insured that the output
of the integrator is set to zero each time the current goes to zero since it is known that
the flux is zero when the current is zero. The circuit schematic of the integrator is
shown in Figure 3.14. The actual phase voltage drop across the winding inductance is
the measured phase voltage minus the voltage drop across the internal resistance of
the winding. Thus the phase flux is given by (3-12) when the phase is producing

torque.

t
Ao=[ (V,=1,-R,) dt 3-12
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Figure 3.14 the voltage integrator circuit

The relationship between the input and the output of the voltage integrator is

L Vgt =2 1(t) + Ve
Rs.cz'jo(W()_E' #(0) + Vorse) if sense=0

Vout(t)= 3-13
0 if sense=1

The ratio of R3 to R4 is determined by the internal series resistance of the phase

winding. The output the integrator is the actual flux value times

plus the error
3-C2

due to the operational amplifiers offset voltage Vosrer. The MOSFET in Figure 3.14 is

turned on to set the measured flux to zero whenever the current is zero and thus it is

know that the flux is zero.

3.2.2.4 \oltage comparator

The voltage comparators are used to generate the digital signals, I low, I chop,
and I over. A typical voltage comparator circuit is shown in Figure 3.15. The
capacitors are used to eliminate high frequency AC harmonics or noise. The pull up
voltage Vcc is chosen to be the digital circuit power supply so that the outputs of the
comparators can be directly routed to the digital circuit. The resister R¢ provides

hysteresis as shown in Figure 3.16.
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Figure 3.16 the hestersis area of the voltage comparator

3.2.2.5 FPGA implementation of current regulator logic

To realize the digital part of the current regulator, an FPGA chip is chosen and
programmed with the VHDL language. The VHDL code is in appendix 1.

Besides the 4 copies of the digital circuit shown in Figure 3.5 required for the
4-phase SRM, there are two components in the FPGA chip that have not been
described so far. One of them is a data communication interface with the DSP. The
other one is a frequency divider.

Through the data communication interface, the DSP obtains the digital sense
signals in Figure 3.5 and the outputs of the optical encoder position sensor. The
microprocessor sends the enable signal and MorG signal to the FPGA chip. The
enable signal is used to enable the control system. When it is ‘1°, the control system is
enabled. The MorG signal is used to define the operation mode of the SRM. When it
is ‘1°, the SRM works in motoring mode. When it is ‘0’, the SRM works in generating
mode. The data communication interface uses a | MHz 50% duty cycle clock signal.

The interface consists of an 8x2 multiplexer and a 1x8 demultiplexer with storage, as
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shown in Figure 3.17. The bit assignment is shown in Table 3.2.

Clock ——————————— $ ________
I; —E'P ‘—E—>Out7
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I, —» —i—»Outl
Iy —EP —i—POuto

T T 4 v T { T

Figure 3.17 the interface between DSP and FPGA

Table 3.2 the interface bit assignment

Interface Connected Connecte Description
Signal to d
signal

I; FPGA internal | Sense[3] | Sense signal for phase D, generated by the
logic circuit

Ig FPGA internal | Sense[2] | Sense signal for phase C, generated by the
logic circuit

I5 FPGA internal | Sense[l] | Sense signal for phase B, generated by the
logic circuit

I FPGA internal | Sense[0] | Sense signal for phase A, generated by the
logic circuit

I; FPGA internal | shutdown | Over current fault signal, generated by the
logic circuit

L FPGA internal | I Optical encoder channel I signal

I FPGA internal | A Optical encoder channel A signal

Io FPGA internal | B Optical encoder channel B signal

Sy DSP Timer 1 Timer1 Select line bit #1, generated by DSP timer 1

So DSP McBSPO | DX Select bit #0, generated by DSP McBSPO
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Table 3.2 the interface bit assignment (continued)

O, DSP McBSPO | CLKS Output line bit #1, read by DSP McBSP0O

Oy DSP McBSPO | DR Output line bit #0, read by DSP McBSPO0

In DSP McBSPO | CLKR Input signal, generated by DSP McBSPO

Sel, DSP McBSPO | FSR Select line #2, generated by DSP McBSPO

Sel, DSP McBSPO | CLKX Select line #1, generated by DSP McBSPO

Sely DSP McBSPO | FSX Select line #0, generated by DSP McBSP0

Out; FPGA internal | IorV[1] Select line # 1 of an analog multiplexer

Outs FPGA internal | IorV[0] Select line # 0 of an analog multiplexer

Outs FPGA internal | Enable Logic circuit enable signal generated by the
DSP

Outy FPGA internal | MorG MorG signal in the logic circuit, generated
by DSP

Out; FPGA internal | Comm][3] | Figure 3.5 Comin signal generated by the
DSP for phase D

Out, FPGA internal | Comm[2] | Figure 3.5 Comin signal generated by the
DSP for phase C

Out, FPGA internal | Comm[1] | Figure 3.5 Comin signal generated by the
DSP for phase B

Out, FPGA internal | Comm[0] | Figure 3.5 Comin signal generated by the
DSP for phase A

Clock FPGA internal | clock 1 MHz 50% duty cycle to drive the logic

circuit

The frequency divider generates a 20 KHz 40% duty cycle pulse signal from the
1 MHz 50% duty cycle clock signal. The 20 KHz pulse signal is used to control the
power electronics switches in the inverter when the sensing current needs to be
injected. The frequency is chosen as high as possible while insuring the sensing
current is high enough to measure and low enough to not produce significant torque or
iron saturation. A high sensing frequency allows a demodulator low pass filter with a

higher break frequency which in turn reduces the filter’s delay error. The register

transfer level schematic of the frequency divider is shown in Figure 3.18.
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Figure 3.18 the clock divider's register transfer level schematic

3.2.2.6 The printed circuit board

The printed circuit board schematic circuit is drawn in Electronics Workbench’s
Multisim and it is then converted into an input file for the Ultiboard PCB layout
software. The 3D view of the PCB board generated by the Ultiboard Software is
shown in Figure 3.19. It consists of 4 copies of the circuit shown in Figure 3.20, each
copy for a different SRM phase. It also consists of 4 gate drives circuits, the FPGA
and interface connectors. The signal flow of one phase on the print circuit board is

shown in Figure 3.20.

3.2.3 DSP implementation

The flow chart of the DSP C++ software is shown in Figure 3.21 and the main
part of the code is in appendix II. At the beginning, the program initializes all the
parameters, disables the current regulator, clears all storage matrices, chooses the low
speed sensorless strategy, enters the start mode that is used to find the initial rotor
position, and then starts the timer for a software interrupt that calls function
‘call_microcontroller’ periodically.

The software interrupt is activated by the timer every tsample Seconds. When the
interrupt occurs, the function call microcontroller is called. In the first tg.« seconds,
the motor works in the start mode to find out the initial rotor position. In the start
mode, there is no command sent to any phase to produce torque so the SRM xremains
at standstill. The time tg,+ needs to be long enough for the observer to converge to the
initial position. After ty.«, the low speed sensorless strategy is used to control the

SRM. The sensorless control must work from zero speed and from zero torque to
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rated torque. With the low speed strategy, the sense signals in Figure 3.5 for each of
the phases are used to determine which phases are idle. The sensing currents are
demodulated, sampled, and input to the microprocessor where an error function
generates an error signal to drive the observer. The rotor position and speed are then
estimated.

When the low speed sensorless strategy is being used and the estimated speed
exceeds 100 rad/s, the controller changes to the high speed sensorless strategy. If the
high speed sensorless strategy is being used and the estimated speed drops to less than
50 rad/s, the controller changes to the low speed strategy. In between the two speeds,
the present control strategy will be used. The two strategies will be described in more
detail in the following chapters.

In the high speed sensorless strategy, the phase currents and phase fluxes are
measured and sampled by the microprocessor. A simplified analytical flux model
calculates the phase fluxes and the difference between the calculated fluxes and the
measured fluxes is an error that drives the observer. The observer then estimates the
rotor position and speed.

After the rotor position is estimated, it is input to the commutator. The
commutator’s outputs, are the commands to each phase to produce torque or not

produce torque according the estimated rotor position.

Figure 3.19 the current regulator board
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Figure 3.20 the signal flow of the printed circuit board



Initialization:

Disable current regulator and all 4 phases, clear all
storage memory, choose low speed strategy, enable the
current regulator and choose start mode, start timer and a
software interrupt called SWI_microprocessor to call a
subfunction called ‘Call_microprocessor’.
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Figure 3.21 the flow chart of the program in DSP
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Chapter 4 Inductance profile demodulator based state

observer sensorless control

4.1 Sensorless control review

Rotor position information plays a critical role in the control of the SRM.
Conventionally, a separate position sensor, either a resolver or an optical encoder, is
used to get this information. A resolver is a rotating transformer where the coupling
between the primary winding on the rotor and the two secondary windings on the
stator depends on the shaft position. An optical encoder is mounted on the shaft and
with the shaft turning the optical encoder generates a pulse output voltage each time
the rotor rotates through a fixed angle on one or more channels. The position sensors
add complexity and cost to the SRM drive system and reduce its reliability.

In order to overcome the drawbacks of the position sensors, a number of methods
have been proposed to control the SRM without position sensors. These sensorless
control strategies can be divided into three categories. In the first category, small
currents are injected into the idle phases. An example of the injected currents is shown
in Figure 4.1. The currents are so small that they do not produce noticeable torque and
the iron does not saturate. In this case the relationship between the current and the
corresponding inductance is independent of the current. The small currents are
measured and used to estimate the rotor position since the currents contain the rotor
position information. In the second category, the torque producing currents are used to
estimate the rotor position. A typical torque producing current is shown in Figure 4.1.
Since the torque producing current is relatively high the iron typically saturates due to
the nature of SRM. This effect of iron saturation needs to be considered to obtain the
correct rotor position from the current information. The third category of sensorless
control methods has not been proposed so far. It is a mixed method that not only
injected currents but also the torque producing currents are used to estimate the rotor
position. It can be chosen when the application requires the SRM to work at zero
speed, low speeds and high speeds. The classification of the sensorless strategies is

shown in Figure 4.2.

4.1.1 The first category, injected currents are used

Several methods have been proposed to use small injected currents to obtain the
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SRM’s rotor position [12-15]. All of these methods are based on the fact that the
phase inductance of the SRM is a function of its rotor position independent of the
phase current if the current is small. This is true if the injected current is low enough
that the iron does not saturate. This group of methods has advantages and
disadvantages. Advantages: 1) They work at low speeds, zero speed and starting. 2)
They do not need to consider the effect of iron saturation that makes the inductance
profile nonlinear with the phase current. 3) They do not need to consider the
complicated flux model so that the real time computations required to implement
them on a microprocessor can be done rapidly. Disadvantages: 1) They have difficulty
working at high speeds. This is because the frequency of the injected currents is
limited by the SRM phase inductance and the injected currents may need to go
through low pass filters that generate a time delay. For the approach developed here
the delay time introduced by such a filter results in an ever increasing position error as
the speed increases. Another reason these injected current methods can not work at
high speeds is that the injected current time windows become small at high speeds so
that the currents do not have enough information about the rotor position. 2) Some
strategies need additional hardware to inject the sense currents. 3) Some strategies
need memory to store look up tables that contain injected current amplitude versus

rotor position data.

Phase current vs Time
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Figure 4.1 an example of the injected current and torque producing current
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Figure 4.2 the classification of sensorless control strategies

A sinusoidal current was injected by Brosse A. et al. into the SRM through a
separate converter [12]. The induced voltage signal depends on the rotor position.
This voltage was measured and its power was evaluated. The value was then
translated into the rotor position through a prior stored look up table that contained the
signal power values at a number of rotor positions. An observer and PI controller were
used to get the rotor position. This method gave continuous rotor position
information, but it needs additional hardware to inject the sinusoidal current.

A pulse voltage was applied to the idle phases by Harris W. D. et al. [13], Suresh
G. et al. [14], and Gao H. et al. [15]. The resulting current was measured and used to
calculate the rotor position in [13]. An observer was also used to offer high accuracy
position estimation, but it needed memory to store look up tables. The current was
demodulated into the rotor position using an envelop detector which worked as a
counter counting the successive current peaks [14]. This significantly increases the
required time for the observer to converge to the correct angle and does not work at
zero speed. Thus at zero speed each phase is excited and then the amplitudes of all
phase currents are compared to know the rotor position roughly [15]. Obviously
torque can not be produced continuously at zero speed with this method. This simple
method for estimating the rotor position working at standstill is adequate to start the

SRM but not for operating for significant periods of time at stand still.
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4.1.2 The second category, the torque producing current is used

The methods in this category only use the torque producing current. State
observers or phase current patterns are used to identify the rotor position. These
methods also have advantages and disadvantages. Advantages: 1) They work over a
large speed range including high speeds. 2) They do not need additional hardware for
current injection. They only need motor terminal measurements. Disadvantages: 1)
They have inherent problems working at low speeds, especially at zero speed. A small
dc offset can cause voltage integrators to fail at zero to low speeds since these
methods integrate phase voltage to measure phase flux. 2) The current pattern does
not change quickly enough to determine a continuous rotor position for those methods
that use current patterns. 3) In many of these methods intensive computation is
required to complete flux calculations or they need memory to store a flux model. 4)
Iron saturation needs to be considered in this case because the torque producing
current is typically high enough to cause iron saturation.

In general there are two groups of methods to realize the rotor position estimation
using the torque producing currents. In the first group, state observers are used to
estimate the rotor position [16-21]. In the second group, current patterns, the
increasing and decreasing phase current slopes, are used to obtain the phase
inductance and hence the rotor position [22-26]. There are several other practical

methods that also use the torque producing current to realize sensorless control of the

SRM [27-29].

4.1.2.1 Observer based sensorless control

Lumsdaine A. et al. used state observers to estimate the SRM’s rotor position. In
their observers, the states are the phase fluxes, the rotor position and the rotor speed
[16, 17]. The phase currents were measured and estimated by a SRM flux model. The
difference between the measured and the estimated fluxes drove the state observers.
Several practical observers were given and stability was proven. The flux model used
in the observers was Fourier series based. Husain 1. et al. used sliding mode state
observers to estimate the rotor position [18-20]. The rotor position and the rotor speed
were used as states in the observers. The phase voltage was integrated to obtain the
flux digitally and then the phase current was estimated with an analytical flux model.
The difference between the measured current and the estimated current was computed

and drove the stator observer. A geometry based simplified analytical flux model of
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SRM was used in [20]. Its simplicity made it possible to run in a real-time controller.
The phase voltage was integrated to get the estimated flux and the actual flux was
obtained by a simple flux model, which is an exponential function of rotor position
and current. Then the difference was used to drive a sliding mode observer to obtain
the rotor position. In these papers, the flux was obtained by integrating the phase
voltage digitally. Due to the high frequency of the phase voltage when the current
chops, the sampling rate needs to be very high in this case. Yang I. -W. et al. also used
a state observer in which phase currents and the rotor speed were states [21]. The
difference between the estimated phase current and the measured phase current drove
the observer. Two observers, a sliding mode observer and a binary mode observer
were proposed and verified experimentally.

This group of methods gives continuous and smooth rotor position information

and good stability with sophisticated control system gains.

4.1.2.2 Chopping current pattern based sensorless control

The increasing and decreasing slopes of the chopping current were used to
estimate the rotor position in [22-26]. Suresh G. et al. proposed an equation in that the
rotor position was unknown and the slopes of the phase current and other terminal
measurements are known variables [22]. Fahimi B. et al. studied these methods at
every speed range and gave a practical method to compute the rotor position [23].
Salmasi F. R. et al. built another equation to solve for the rotor position for low speed
applications [24, 25]. Gao H. et al. proposed a method that worked at low speeds [26].
Back EMF was detected by the slopes of the phase currents, and then the current
command was adjusted to assure that the currents were applied on either positive
slopes or negative slopes of the inductance profile depending on generating or
motoring mode. This group of methods provides simple control that is relatively easy
to implement in a real-time controller. No additional hardware was required because
only SRM terminal measurement of voltage and current are needed. But these
methods suffer from problems with high frequency noise in the phase current. They
are difficult to implement in high speed applications because they typically
differentiate the phase current and thus amplify high frequency noise if the

differentiating circuits have large bandwidth.
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4.1.2.3 Other methods using the torque producing currents

There are also some other methods to realize sensorless control of SRM using the
torque producing currents that do not fall into the above categories. Lyons J. P. et al.
integrated the phase voltage to get the actual flux and compared it with a known flux
value at a reference rotor position [27]. When the actual flux of a phase is equal to the
known flux value, the rotor then is at the reference position with regard to the phase.
Mondal S. K. et al. gave a current command to a phase according to the current
patterns of other phases [28]. Mese E. et al. used an artificial neural network (ANN)
to realize sensorless control [29]. The flux linkage and phase current were input to the
neural networks, and the rotor position was the output of the networks. Training data

were obtained from a SRM flux model or experiments.

4.2 Proposed control strategies

With the development of microprocessor and DSP technology, computation
intensive and accurate control strategies are now feasible. Since none of the methods
described above can work well over the whole SRM speed range, more than one
control strategy is required in a large speed range application. Generally, for low
speed application, current injection has inherent advantage for starting from standstill
with rated torque. For high speed applications, the sensorless control strategies based
on the torque producing currents are better choices. That is because in this case there
is no limitation introduced by the choice of injection frequency and the torque
producing currents have longer time windows at high speeds, and hence they provide
more information to obtain the rotor position. In this dissertation, a sensorless control
system that utilizes a strategy for zero and low speeds and a strategy for high speeds is
proposed. The zero speed and low speed strategy uses injected currents, while the
high speed strategy uses the torque producing current. Since this control system uses
both the injected current and the torque producing current, it falls into the third
sensorless control category.

The low speed strategy is described in this chapter and the high speed strategy
will be described in the following chapter.

At zero to medium speeds, a pulse voltage signal is applied to the idle SRM
phases to generate sensing current or injected current. The injected current is
modulated by the SRM’s phase inductance and contains the rotor position

information. . If the actual rotor position is not equal to the estimated rotor position,
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then the injected current amplitude will be different from the computed current
amplitude. The difference generates an error signal through a deliberately defined
error function. The error signal then drives a Luenberger observer. This method
including the demodulation of the SRM’s modulated phase current, the proposed error
function, and observer has been named the inductance profile demodulator based
observer. It works at zero speed because for any SRM rotor position there always are
idle phases that the sensing current can be injected into. It has difficulty working at
high speeds. The reason is in part because the injected current is demodulated using a
low pass filter whose break frequency is determined by the frequency of the injected
current. The demodulator low pass filters have an inherent time delay determined by
their break frequency. At high speeds, the time delay generates a position error
proportional to speed that makes the sensorless control fail. Another contributor to the
inductance profile demodulator based observer sensorless control failure is that the
time windows for injecting current becomes smaller at high speeds so that they do not
contain enough information for error function and observer to figure out the rotor

position.

4.3 The state observer

The electromechanical operation of a SRM can be modeled by

d—9=a) 4-1
dt

dw B 1

90 B o S[Te=T 4-2
e 1L

where 0 is the rotor position, ® is the rotor speed. B is the viscous damping, J is the
inertia, Tk is the electrically generated torque, and Ty is the mechanical load torque.
For simplicity, viscous damping is lumped into Ti. It is also assumed that T, is
equal to Tr, which means the motor is at steady state and running at a constant speed.
This assumption is reasonable because the electrical time constants are usually much
less than the mechanical time constants. With these considerations equation (4-2) is

simplified as

57



do

— = 4-3
dt
The corresponding observer model

9 _ s H,- f(6,0) 4-4
dt

do A

—=H.,f(0,0 4-5
el (0,0)

where H; is the proportional gain for the position, H is the proportional gain for the
speed, 0 is the estimated rotor position, and @ 1is the estimated rotor speed. The
function f (6, é) is the error signal reflecting the difference between the estimated

rotor position and the actual rotor position. A block diagram of the observer is shown

in Figure 4.3.
L1é
»H1 S >
f(0,0)
LYTZ 1
L | B ¥ g 0

Figure 4.3 the block diagram of the inductance profile demodulator based observer

Subtracting (4-1) from (4-4) and (4-3) from (4-5) gives the observer’s error

dynamics.
%:eﬁHl-f(e,é) 4-6
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deo A
—“=H,-f(6,0 4-7

where the rotor position error eo=0—0, and the rotor speed error eo=@w—w. In

matrix format, it becomes

des

Tqr 0 1 H n
dt |_ ol | M - £(0,0) 4-8
des| |0 0len| |H,

The challenge of the observer design is the error function. At zero and low speeds
a sensing current is injected into the idle phases and this injected current contains the

rotor position information that is used to generate the error fuction.

4.4 Error function definition

The phase inductance L(0) is a function of rotor position when the iron is not
saturated as shown in Figure 4.4. . It has its maximum value at the aligned position
and its minimum value at the unaligned position. When a fixed duration pulse voltage
is applied to the phase, a current like the one shown in Figure 4.4 is obtained. The
cycle average value of the current is called g(8), where 0 is the rotor position, as
shown in Figure 4.4.

To obtain the relationship between the inductance function L(0) and g(0), basic
circuit theory is applied.

di(t)

g 4-9
dt

V(t)=L(0)-

Here V(1) is the pulse voltage, I(t) is the injected current, and t is time. It is assumed
that the rotor position does not change during a pulse period because the mechanical
time constant is much greater than the pulse period. Solving I(t) in terms of V(t) gives

(4-10).
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(1) =;J.;V(t)dt 4-10
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Figure 4.4 the injected current

The injected current is a repetitive triangle waveform signal. The peak of the

triangle current I(0) is

_Vs-D-T
L(0)

1(6) 4-11

where Vs is the peak of the pulse voltage and approximately equal to the inverter’s dc
power supply voltage, T is the period, and D is the duty cycle. The result in (4-11) is
only valid if the current starts from zero. To make sure the current goes to zero after
each period, the duty cycle D should not be greater than 50%. The average current
value of the triangle I,y (0) is (4-12).
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Vs-D*-T

lave(6) = o) 4-12

The g(0) function is defined to be equal to L,y(0).

g(0) = lae(8)

The g(0) for the various phases are named g,(8), 22(0), g3(0), g4 (0), for phase A,
B, C and D respectively. They are not only given by (4-12) but can also be measured

by measuring the injected current in each of the 4 phases. If the rotor position is

estimated as 6 , the g (0) value can be estimated through

Vs-D*-T

0) = _
9(0) L) 4-14

The estimated g(é) are named as gl(é), gz(é), g3(é), and g4(é) for

phase A, B, C and D respectively. They are calculated using (4-12) with the estimated
rotor position.

Vs-D*-T

(0) = -
9:(0) L)

1=1,2,3,4

Where Li(é) is the inductance function of the ith phase.

The error function f (0, é) is defined as (4-16)

f(0,0)=9,(0)-9,(0)- 9,(0)-9,(0)+
9,(0)-9:(0) - 95(0)- 9,(0) +
95(0)-9,(0) - 9,(0)-9,(0) +
9.(0)-9,(0) - 9,(0)-9,(0)

4-16

61



assuming none of the phases are producing torque. The error function value versus the

A

rotor position 0 is plotted in Figure 4.5 when the estimated rotor position 6 is 2

mechanical degrees greater than 0 (i.e. €0=2").

error function

30 —20 -10 0 10 20 30

Rotor position (degree)

Figure 4.5 error function value versus the rotor position

It is seen that the value of the error function takes on different values depending
on the rotor’s position for the same error but that its value is negative in the whole
electrical period. It is also verified that the error function value is always negative
when the estimated rotor position is greater than the actual rotor position and that it is
monotonic with the angle error. This assures that this error function can be used as a

feedback signal for the observer.

This error function can only be used in the start mode when there is no torque
production, and the sensing current is injected into all of the phases to detect the rotor
position. When the motor needs to produce torque, no sensing current can be injected
for those rotor positions which torque is produced. For these rotor positions the sense

signal is one, i.e. sense =1, and g(0) for that phase is set equal to g (6) .

4-17

0) = {lave(e) when sensing current is injected

g(é) when torque producing current is in phase

With this definition of the error function, the function’s value is plotted in Figure

62



4.6 versus the rotor position when the estimated rotor position € is 2 mechanical
degrees greater than the actual rotor position 0 and positive torque is being generated.
The error function values using (4-16) and (4-17) versus rotor position when the
estimated rotor position error is -5, -4, -3, -2, -1, 1, 2, 3, 4, 5 mechanical degrees are

shown in Figure 4.7.
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Figure 4.6 the error function value versus the rotor position with consideration of the

torque producing current
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Figure 4.7 the error function value versus the rotor position curves at different rotor

position error, -5, -4, -3, -2, -1, 1, 2, 3, 4, and 5 mechanical degrees
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The error function defined by (4-17) is still monotonic and negative when the
rotor position error is greater than zero. It is monotonic and positive when the rotor
position error is less than zero. This assures that the error function with this definition

can be used as a feedback signal for the observer.

4.5 System stability and performance of the observer

The error function in (4-16) can be rewritten as

f(0,0)=—11(0, &) 4-18
Applying (4-21) into (4-8), the observer becomes

N e

It can be rearranged as

X = f,(X,u) 4-20
where
o eo+Hi- fi(u,es) A
X = , F2(X,u) = , u=460 4-21
o H2- fi(u,eo)

It is obviously a nonlinear system. To analyze its stability, a scalar W is defined as

W=X"QX 4-22
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where Q is a positive definite 2 x 2 matrix. Note that X, W, u are all functions of time.

By definition,W >0 and W=0 when X=0. The temporal derivative of W is

W=X"QX+X"QX 4-23

Applying (4-20) into (4-23), it becomes

W = fo(X,u)' QX +XTQ f2(X,u) 4-24

Since W and the two terms on the right ride are all scalars, transposing the first

term or the second term gives

W= f2X,0)"(Q+QN) X =XT(Q+Q") f2(X,u) 4-25

To assure the system is stable, W needs to be negative so that every state will

decay to zero. Thus the condition for the system to be stable is

f2X,u)' (Q+Q")X <0 or X' (Q+Q") f2(X,u)<0 4-26

Choosing Q=I, the identity matrix, applying (4-21) into (4-26), the condition

becomes

oo+ Hi- f1(0,e0)-e0+ H2- f1(0,e0)- €0 <0 4-27

A sufficient condition for stability is

€o+—) 4-28
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1 (o +ﬂ) 4-29

Hy=———
211(6,e0) o

where N>0.

Meeting the requirements in (4-28) and (4-29) assure the stability of the nonlinear
system given in (4-8). Due to the complexity of f 1(é,ea) , @ more practical condition

needs to be developed. Assume
f(0,0)=—k(6)-eo 4-30

where k(é) is a nonlinear periodic function of the rotor position that can be

estimated from the results in Figure 4.7. Its period is an electrical period divided by

the phase number, in this case, 15 degrees. Its boundaries are Kimin and Kmax .
kfmin < k(é) < kfmax 4-3 1

Inserting (4-30) into (4-8), gives

des R

ot || -H k@) 1 m 432
el [-H, k@ ofles

dt

The Eigen values of the characteristic matrix for fixed 6 are

Eigen:» = —% H 1-k(é)i%\/H12-k(é)2 —4Hk(0)

According to classic control theory, the Eigen values need to be negative real

numbers or have negative real parts for the system to be stable.
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real[Eigeni.2]<0 4-33

Since k() > 0, to satisfy the stability requirement imposed on Hi and H: is

Hi>0, H2>0 4-34

The settling time for the rotor speed and the rotor position is a function of the
rotor position. If Hi>k(8)> < 4H2-k(), the two Eigen values are conjugate complex
numbers with a common real part of Hik(8) . If Hi%k(0)> =4H2k(6), the two

Eigen values are identical and they are Hi-k(@) . If H1%k(0)*> > 4H2-k(9), the two

Eigen values are unequal real numbers. In this case, the settling time will be

determined by the Eigen value that has smaller absolute real part, which is

—H1-k(é)+\/H12-k(é)2—4H k(@) . The settling time is approximately 5 time

constants or 5 divided by the real part of the Eigen value that has a smaller real part.

2.5

Hik(0
Tsattle= 1 ( ) 25

if H12%Kk(0)? <4H2k(0)

. _ _ it Hi2k(0)* > 4H2k(9)
Hi-k(@) - H1%Kk(@) — 4H »k(8)

4-35

When the settling time is greater than the time for one electrical period of the
rotor position, the average value of the error function over an electrical period, called

the error average function fave (&) , can be used to determine the system

performance. If the SRM is not rotating this approximation can not be used and (4-35)

must be used. The error average function fave (¢) is defined as

QU
fave (&) = ﬁ- > (0,0 +6)
#=—6u

4-36

The error average function value versus the rotor position error is plotted in
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Figure 4.8. In the plot, the horizontal axis is the rotor position error and the vertical

axis is the error average function value.

Errarfye

-30 =20 =10 1] 10 20 30
positionError

Figure 4.8 the error function value average versus the rotor position error

When the rotor position error is positive and small, the error average function
value is monotonic and negative and when the rotor position error is negative and
small, the error average function value is monotonic and positive. To linearize the
error average function, it is assumed that the operating point is at zero position error,

1.e. G=0.

fave (He) =— Kave G 4-37

where Kae is the absolute value of the slope of the curve in Figure 4.8 at the origin.

Substituting f (6, @) with fave (&) in (4-8)and applying (4-37) into it gives

des
dt _ - H1 Kave 11||e0 438
% - H2 ‘Kave 01| €0
dt
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Since kae is a positive number, the system is still stable if (4-33) is satisfied.
The settling time of the control system has the same format of (4-35) except that k(0)
is substituted by Kave .

2.5

H 1 kave
Tsattle = 25

if le'kave2 < 4H 2-Kave

if Hi 2 kave2 < 4H 2 kave

H - Kave — 4/ H1 2 Kave? — 4H >-Kae

4-39

4.6 The speed limitation of the inductance profile demodulator
based observer

The inductance profile demodulator based observer has two inherent speed
limits. One of them is caused by the frequency of the modulating signal and the
resulting time delay of the demodulator, which is a low pass filter, the other one is
caused by the sampling frequency of the microprocessor implementation of the

observer and error function.

4.6.1 The time delay of the demodulator

The demodulator used is the low pass filter circuit shown in Figure 3.12. Its
transfer function is given by (3-11). The Bode plot of the transfer function is shown in
Figure 4.9.

The transfer function in polar coordinates is

(o) R2/Ri gltan” (-R2-Ci- w)

®) = 4-40
J1+(R2-Ci- )’

Assume the input current to the demodulator is sinusoidal (the first harmonic of the

current)

Vin(t) =Vin - cos[a(t +10)] 4-41
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It can be transformed into an Euler format

Vin(t) = Vin- Re {e J2(L+ 1)y 442

Bode plot of the low pass filter

0 e

Magnitude (dB)

R e et L b

Phase (deg)

10° 10° 10" 10 10"

frequency (Hz)

Figure 4.9 the Bode plot of the low pass filter function

where Vi, is the amplitude, o is the frequency, wt, is the phase. The output of the

demodulator is just the transfer function times the input voltage

R2/Ri _
J1+(R2-Ci- o)’

joo t+to— tan”'(Rz2-C1- @)
)

Vout(t) =Vin- Re<e 4-43

Taking the real part the output voltage is
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-1
Vour(t) = Vin - R/RL oo a{uto—tan (R:-Cr a’)} 4-44
J1+(R2-Ci- ) ®

The time delay tq of the transfer function is the time difference between the input

voltage and the output voltage.

. tan"'(R2-Ci- @) 145
@

For the demodulator to work correctly R2-Ci-@ must be small,

tan"'(R2-Ci-w)~R2-Ci-@ 4-46

Thus the time delay through the demodulator is simply a constant.

te =R2-Ci 4-47

The time delay corresponds to an error in the estimated rotor position which depends

on speed.

Gerror=td-awm=R2-Ci- @m 4-48

If the maximum allowed rotor position error is &rmormax, then the maximum rotor

speed that this observer can work at is

@rrorMax

R>-Ci

(U Maxl =

4-49

71



4.6.2 Sampling frequency limitation

According to the Nyquist sampling theorem, the sampling frequency needs to be
at least twice that of the maximum frequency of the original signal so that the full
information will be preserved.

The inductance profile occurs 6 times in one rotor revolution, and it is
symmetrical on the aligned rotor position axis. To preserve the nth harmonic,
assuming the first harmonic is the inductance profile waveform itself, the sample

frequency needs to be at least 24n times of the rotor speed.

Feample>24n 20 4-50
2w

where Fsample 1s the sampling frequency, as shown below

1

sample

4-51

Fsample =

where Tsample is the sampling time. Thus the sample time limited maximum speed the

position esimator can work at is

o= 20T 4.5
N - Tsample

The actual speed limit is the minimum of the above two limitations,

mvax and ommax2 .

(OmMax= mln{ 4-53

&rrorMax 02617
R2-Ci ’ N - Tsample

The speeds mentioned above in the dissertation are specificed in section 4.9.

4.7 Simulation results

The sensorless control system is simulated using the Matlab/Simulink model.
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The observer gains are chosen as H;=200, and H,=10000. The inductance profile
demodulator based observer is simulated and shown to work from zero speed to

medium speeds (5,000 rpm).

4.7.1 Zero speed simulation

At zero speed, the rotor is locked at a certain position and one or two
corresponding phases produce torque. The simulation results are shown in Figure 4.10
and 4.11below.

The estimated position reaches steady state at 0.006s. The steady state error is

1.4 mechanical degrees.

rator position vs time

rotor pogition

0.6

1 1 1 1 |
0.004 0.006 0.008 0.01 0.012 0014
time (sec)

Figure 4.10 the estimated and actual rotor position in degree of the zero speed

simulation

the estimated rotor speed

rotor speed (rpm)

] 0.02 0.04 0.08 0.08 0.1 0.12 0.14
tirne (sec)

Figure 4.11 the estimated rotor speed of the zero speed simulation
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The phase currents are shown in Figure 4.12. During the transient time, phase A
was energized with torque producing current for a moment, then as the observer
figured out the rotor position the correct Phase B was instead energized. The sensing

current was injected into the idle phases

phase current ws Time

40 T T T T T T
20 A B
0 " " " " " "
leD 0.002 0.004 0.008 0.008 0.01 0.012 0014
B
_ -0 _/\l\'\'\Nl\l\l\l\l\N'\N\l\l\l\N\l\'\'\Nl\l\NN\'\N'\Nl\l\l\N\l\ |
<
E D 1 1 1 1 1 1
£ 1DD 0.002 0.004 0.008 0.008 0.01 0.012 0014
(&) T T T T T T
& E
o
£ 5j i
0 sttt oG G ool
20 0.002 0.004 0.006 0.003 0.01 0.012 0.014
n]
138 i
Gl ottt bt bttt )
0 0.002 0.004 0.008 0.008 0.01 0.012 0.014
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Figure 4.12 the phase currents of all 4 phases of the zero speed simulation

The error function signal f(@,é) generated for the zero speed simulation is

shown in Figure 4.13. At steady state, the error function output becomes close zero.

etrar function vs time
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Figure 4.13 the error function generated signal of the zero speed simulation

4.7.2 Medium speed operation

The inductance profile demodulator based observer is simulated with the motor
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running at 2000 rpm. The estimated rotor position and the actual rotor position are
shown in Figure 4.14. The estimated rotor position follows the actual rotor position
very well. The estimated rotor speed is shown in Figure 4.15. It oscillates around the
correct value of 2000 rpm because the observer system is nonlinear and differences
between the measured g(0) and the calculated g(0). The estimated speed transient is
over in about 10ms. The current in each of the 4 phases are shown in Figure 4.16. The
error function value is shown in Figure 4.17, and the electrical torque output of the

motor is shown in Figure 4.18.

estimated rotor position
T T T

Figure 4.14 the estimated and actual rotor positions when the motor is running at 2000

Figure 4.15 the estimated rotor speed when the motor is turning at 2000 rpm
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Figure 4.16 the current of the 4 phases when the motor is turning at 2000 rpm
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Figure 4.17 the error function value versus time when the motor is running at 2000

rpm
4.8 Experiment results

4.8.1 Inductance asymmetry of the motor

Due to manufacturing tolerances, the inductance profiles among the 4 phases of
the experimental SRM are not identical. This is caused in part by the different length
of the stator poles and the rotor poles. Since the inductance profiles are not identical,

the g(0) profiles are not identical either, as shown in Figure 4.19. The ripples on the
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profiles are due to the high frequency modulation sensing current.

torgue vs time
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Figure 4.18 the electrical torque of the SRM when the motor is running at 2000 rpm
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Figure 4.19 the g(0) asymmetry of the motor

The aligned inductance and the unaligned inductance among the 4 phases are
different. In each phase, the aligned inductance and the unaligned inductance with
different pairs of the rotor poles are different. Since the g(0) profiles are repetitive
with a period equal to 180 degrees, the rotor position period is changed from 60
degrees to 180 degrees. Based on the measured g(0) profiles, the inductance profiles

for the experimental SRM were computed and are shown in Figure 4.20.
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inductance profile of 4 phases
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Figure 4.20 the inductance profiles of the 4 phases based on the measured g(0)
profiles

To test if the error function in (4-16) and (4-17) still work with the inductance
asymmetry, the error function value versus the rotor position curves with a rotor

position error of 2 degrees and -2 degrees are plotted in Figure 4.21 for the

experimental SRM.
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Figure 4.21 the error function value versus the rotor position at the rotor position error,

2 degrees (error_2) and -2 degrees (error_n2) with the inductance asymmetry
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The error functions in the plots have different amplitudes because of the
inductance asymmetry. The error function value is still monotonic and positive when
the rotor position error is positive over a whole electrical period. It is monotonic and
negative when the rotor position error is negative over a whole electrical period. This

insures that the error function will still work with the inductance asymmetry.

4.8.2 Starting process

The inductance profile demodulator based observer is implemented in the
experimental system. A DC motor is used to load the SRM. For the initial data the
torque command and resulting current command are set low so that the shaft friction
of the DC motor which is the only SRM load is adequate to prevent the SRM from
accelerating too fast to record the data. A start process is recorded in the figures
below. The estimated and actual rotor positions are shown in Figure 4.22. Note that
the estimated rotor position is shifted up 180 degrees for easier viewing. The
estimated rotor position error is shown in Figure 4.23. It is within +5 degrees worst
case including the noise with an rms value equal to less than 2 degrees. The noise is
due to the high frequency modulation current. The large spikes in the error that go
above 20 degrees on the curve are due to the fact that the rotor positions are wrapped
into an electrical period. When one of the rotor positions is wrapped from 180 to 0
degree, the difference between these two rotor positions is momentarily close to 180
or -180 degrees and results in the spikes. The estimated rotor speed is shown in Figure

4.24. The error function value is shown in Figure 4.25.

the estimated and actual rotor position

—— actual position
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233 A /
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Figure 4.22 the estimated and actual rotor positions of the starting process
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Figure 4.23 the estimated rotor position error during the starting process
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Figure 4.24 the estimated rotor speed during the starting process

4.8.3 Constant speed operation

Data has also been taken when the SRM is turning at a constant speed of 15.0
rad/s. The estimated and actual rotor positions are shown in Figure 4.26. The
estimated rotor position error is shown in Figure 4.27. The estimated rotor speed is

shown in Figure 4.28. The error function value is shown in Figure 4.29. The noise on
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these curves is also due to the modulation current. The SRM phase current is shown in
Figure 4.30. The waveform shows the alternating low amplitude modulation current

and the high amplitude torque producing current.

error function value
2.5
2
(0]
=
© 1.5
S 1
% 0.5 | Ju | L ) [ [
S 0
@
-05 ] | ' !
'1 T T T T T
0 0.05 0.1 0.15 0.2 0.25 0.3
time (s)
Figure 4.25 the error function value during the starting process
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Figure 4.26 the estimated and actual rotor positions at steady state
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Figure 4.27 the estimated position error at steady state
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Figure 4.28 the estimated rotor speed at steady state
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Figure 4.29 the error function value
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Figure 4.30 the current of a phase

4.9 Speed limitation

In the hardware implementation of the inductance profile demodulator based

83

observer, the components chosen for the low pass filter demodulator are R,=18.2 KQ,
C1=560 pF. The predicted maximum operating speed limited by the demodulator is
ammvaa =860 rad/s using (4-40). When the sampling time 1S Tsample=600us, the




sampling time speed limitation is @mmae = 218 rad/s according to (4-52) if n is

chosen to be 2. The sampling time includes the analog to digital conversion time, the
computation time of the control algorithm, and the data communication time. A higher
speed DSP, a DSP with general purpose input/output (GPIO), a more efficient
program or a higher speed ADC board can help reduce the sampling time.
Furthermore, if a portion or the whole part of the program can be implemented into
the FPGA chip as a special purpose microprocessor, it can run much faster. The actual
observed speed limitation of the inductance profile demodulator based observer is 218
rad/s. When the SRM accelerates and reaches the speed limitation, the estimated
angles will be incorrect causing the torque producing currents to be produced at the
wrong rotor positions and the electrical torque decreases. Figure 4.31 shows that when
the speed reaches 180 rad/s, the inductance profile demodulator based observer starts
to fail. Using this measured maximum speed in (4-43), n is computed to be 2.4. This
means that for the sensorless control to work properly, the first, the second, and a part
of the third harmonic of the inductance profile need to be preserved in the sampling.
In another experiment, the sampling time is set to Tsample=60pus using a more

efficient program. Now wmmax2 = 1131 rad/s according to (4-52) if n is chosen to be

4. The speed limitation of the observer should now be determined by the

demodulator’s time delay and be equal to @mmaa , which is 860 rad/s. The estimated

rotor speed for this experiment is shown in Figure 4.32. It is seen that the maximum
experimental speed limit is 500 rad/s, lower than the theoretical speed limit. This is
most likely due to the asymmetry of the experimental SRM causes larger rotor
position error, as shown in Figure 4.33. The average position error is 10 mechanical
degrees, which is 1/3 of the torque producing region. This position error causes a

decrease in torque and hence a decrease in the speed.

4.10 The torque drop

The torque drops with a position error. The torque output is shown in Table 4.1
with different rotor position error. The rotor position error is the estimated position
subtracted by the actual position in degree. In this case, the torque producing region is
from -25 degree to 0 degree. It is found that the torque is close to zero when the rotor
position error is -10 degrees. This is the reason why the rotor speed can not increase

any longer when it reaches its maximum in Figure 4.33.
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Figure 4.31 the speed limitation of the observer at tgmpie=600s
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Figure 4.32 the speed limitation of the observer at tgmpie=60ps
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Figure 4.33 the estimated rotor position error at tsmple=60ps in the speed limitation
experiment

Table 4.1 The torque output with different rotor position errors

Position Percent of Position Percent of
error Torque the max error Torque the max

(degree) (Nm) torque (degree) (Nm) torque
0 2.2824 100.00%
1 2.2644 99.21% -1 2.2568 98.88%
2 2.2192 97.23% -2 2.2076 96.72%
3 2.1512 94.25% -3 21212 92.94%
4 2.0676 90.59% -4 2.0084 88.00%
5 1.9436 85.16% -5 1.8812 82.42%
6 1.8504 81.07% -6 1.7336 75.96%
7 1.7552 76.90% -7 1.5528 68.03%
8 1.6592 72.70% -8 1.3528 59.27%
9 1.562 68.44% -9 1.1484 50.32%
10 1.4632 64.11% -10 0.9424 41.29%
11 1.364 59.76% -11 0.7368 32.28%
12 1.2636 55.36% -12 0.532 23.31%
13 1.1624 50.93% -13 0.3272 14.34%
14 1.0608 46.48% -14 0.1236 5.42%
15 0.9596 42.04% -15 -0.0792 -3.47%
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4.11 The rotor position resolution

The estimated rotor position resolution is basically the rotor speed times the
sampling time. The actual rotor position is obtained by an optical encoder, which
produces 360 pulses every mechanical cycle. The resolution of the estimated and

actual rotor position is listed in Table 4.2 at different rotor speeds and sampling time.

Table 4.2 the resolution of the estimated and actual rotor positions

Rotor speed Estimated position Estimated position Actual position
(rpm) resolution when resolution when resolution (degree)
teampling=000us (degree) | tsampling=60us (degree)

0 0 0 1
500 1.8 0.18 1
1000 3.6 0.36 1
5000 18 1.8 1
10000 36 3.6 1
15000 54 54 1

4.12 Transient response

The theoretical settling time is determined using (4-30) is 0.024s with
kave=11.46, H;=200, and H,=10000. To obtain the settling time experimentally, two
experiments have been done. In the first experiment, the rotor shaft is grabbed
suddenly when it is turning at a constant speed. The rotor speed changes from the
constant speed to zero immediately, as shown in Figure 4.34. It is seen that the
estimated rotor speed responses goes to zero 0.03s later than the actual rotor speed
does. In the second experiment, the SRM is controlled with the optical encoder
position sensor. With the rotor turning at a constant speed, a sudden change is made to
the estimated rotor position. The transient response of the estimated rotor position and
the rotor speed are shown in Figure 4.35 and Figure 4.36. The experimental settling

time for the rotor position and the rotor speed are 0.02s and 0.03s respectively.
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the transient response of the rotor speed

Figure 4.35 the estimated rotor position transient response
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Figure 4.36 the estimated rotor speed transient response

89

0.18

0.2



Chapter 5 A simplified flux model based state observer

sensorless control

In this chapter, a simplified analytical flux model of the SRM is developed. It is
then implemented into an observer of a sensorless SRM control system for medium

and high speed applications.

5.1 Asimplified flux model

To compute the flux in real time, a simple SRM flux model is developed. The
model accuracy has been traded for speed of computation so that the model run in a
real time controller. A detailed SRM model has been proposed in [6, 7]. It is
simplified by modeling the magnetization curve for the Fe with two piecewise linear
curves. The piecewise analytical formula for flux linkage and instantaneous torque are
obtained using basic electromagnetic theory. Because of the mathematical simplicity,
the model provides rapid computation for a real time controller or state observer. This
simplified model does not need any experimental data from the motor. It only needs

the geometrical dimensions and magnetic parameters of the iron.

5.1.1 Introduction of flux models

The flux linked by a SRM phase is a function of its current and rotor position
assuming the phases are independent. Computation of the flux linked by an individual
phase of the SRM is a significant challenge because of its salient poles and the fact
that iron saturation plays a critical role in the SRM’s operation. Several papers have
been published that present flux models for the SRM. Because of the complexity of
these models for the flux linked by an SRM phase, they are not applicable for use in a
rotor position state observer, which must run at high speed in a microprocessor or
DSP. 1t is expected that an analytical SRM model will be a good choice for a state
observer. The detailed analytical model presented previously is too unwieldy for a
state observer [6, 7]. Curve fitting to obtain an analytical flux model for the SRM is
another alternative. The disadvantage of curve fitting is that it requires significant data
that must be obtained from measurements or from finite element analysis [31, 32].
Another approach combines the flux function versus phase current at the aligned rotor

position, the flux function versus phase current at the unaligned rotor position, and a
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suitable angular function in between these rotor positions to obtain an analytical flux
model [33]. The suitable angular function for use in between the aligned and
unaligned rotor positions is complicated and nonlinear so that this model is a not a
good choice to implement a state observer in a real time control system. Truncated
Fourier series functions have also been used to express the inductance of a SRM
phase, but this approach is also complicated and not a good choice to implement a

state observer for sensorless control [34, 35].

5.1.2 Breaking the simplified flux model into two cases

The simplified analytical SRM model is constructed by considering two cases, the
case where the stator poles of a given phase overlap with the rotor poles and the case
where the stator poles of a given phase do not overlap with the rotor poles, according
to the rotor position. The model is based on the basic magnetic field laws so that it
does not need experimental data from the machine or any finite element analysis
results. The model only needs the geometrical dimensions, number of turns, winding
connections and the magnetic characteristics of the iron, all of which can be obtained
from the manufacturer of the motor. The model runs rapidly in a microprocessor
because it does not have any series, square root, sine or cosine functions to be

computed, all of which take a long time to compute in a microprocessor.

5.1.2.1 The case with no stator and rotor pole overlap

When the stator and rotor poles do not overlap it is assumed that the phases are
independent, there is no iron saturation and that the SRM phase inductance varies

quadratically with the rotor position away from the unaligned position.

2
(eu _0) 5_1

L.(@) =L, +(Ly - Lu)m

Here L, (0) is the inductance function applicable to the non-overlap case, L, is the
inductance at the unaligned rotor position, ¢, is the unaligned rotor position angle,
and ¢ is the effective rotor position boundary at which the rotor and stator poles just

start to overlap. Thus the flux linked by a single SRM phase when there is no rotor

and stator pole overlap is
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(1,0 =L,(0)-1, 5-2

Here 1, is the phase current. All of the quantities in (5-1) and (5-2) are known except
O and |, so that in this case the inductance parameters can be pre-computed before

(5-2) is used in a state observer.

The torque can be expressed as in (5-3) by using conservation of energy

TN C il DN 5-3
T(I¢39) (Lpo Lu)(au _gpf )2 I¢

5.1.2.2 The overlap case

To model the flux with rotor and stator pole overlap, iron saturation needs to be
considered. To simplify the flux model, the magnetization curve is simplified as two
linear curves. One represents the unsaturated iron and the other represents the
saturated iron. Since there is in general only a partial overlapped area between the
stator poles of interest and the rotor poles, the total phase flux is broken into the main
flux and fringing flux. The main flux passes from the stator to the rotor where the
stator and rotor poles overlap. The fringing flux passes from the stator to the rotor
where the stator and rotor poles do not overlap. The main flux and the fringing flux

are computed separately but their equations have the same form.

5.1.2.2.1 The piece wise linear magnetization curves

With the stator and rotor poles overlapping, iron saturation in the SRM is

important. The iron’s magnetization curve is modeled as a piece wise linear curve.

B(H)=uH (H<H)
= /UHsat +:ul(H - Hsat) (H > Hsat)

Here B(H) is the flux density, which is a function of the magnetic intensity H . The
parameter B_, 1s the saturation flux density of the iron, , is the permeability of free
space, u, 1is the approximate saturated iron permeability, x is the unsaturated

permeability of the iron, and H_ =B_ /x is the value of magnetic intensity at which

sat
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saturation begins. The ideal magnetization curve and the approximate piece wise

linear curve are shown in Figure 5.1 for SiFe.

5.1.2.2.2 Breaking the flux into main and fringing fluxes

With pole overlap the flux linked by a phase is broken into two parts, the main
flux and the fringing flux. The contours of the two fluxes are shown in Figure 2.10.
The main flux is due to the field that passes from the stator to the rotor where the
stator and rotor poles overlap and thus the air gap is small. The fringing flux is due to
the field that passes from the stator to the rotor where the stator and rotor poles do not

overlap and thus where the air gap is larger.
magnetization curves

1.5

-y
!

Flux density

CUTVE

0.5

H
Field intensity

Figure 5.1 the ideal magnetization curve and piece wise linear curves

5.1.2.2.3 The main flux

According to Ampere’s law,

|
HFem‘IFem-’_Hg’m'g:NP' ? 5-5
e npar
Here H., is the H field in the iron part of the main flux contour, H_ ~is the H

field in the air gap part of the main flux contour, N is the number of turns per stator

pole, | is equal to half of the length of the iron part of the main flux path, ¢ is

Fe,m
the air gap on one side of the rotor between the rotor and stator poles where they

overlap, and npar is the number of pole windings in parallel for a phase.
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The relationship between the B field, the H field in the iron and the H field in the

air gap when the iron is not saturated is

Bm:lLl'HFe,mZﬂo'Hg,m 5-6

Iron saturation occurs when the B field in the iron reaches the value B, . At this point,
the H field can be expressed as
BFe,m = Bsat = ﬂHsat 5-7

The current at which iron saturation occurs for the main flux | can be

m,sat

obtained by combining (5-5), (5-6) and (5-7). It is a constant and given by (5-8).

| _ npar - B, (I LM QJ 5.8
m,sat N Fe,m
M

p 0

The relationship between the H field in the iron and the B field when the iron is

saturated can be expressed as
HFe»m:(Bm_Bsat)//ul +Bsat/:u 5-9

Combining (5-5), (5-6), and (5-9), the main flux B field with and without iron
saturation is given by (5-10).

2

I LN .
B,(l,)=—"—- P (1, <ipe)
npar ’
p Ife,m+ﬁg
0
5-10
npar +Ife,m Bsat ;_;
=Np/lo P . (I¢>im,sat)
Ife,m70+g
H

94



The main flux, denoted A, is the main flux density times the overlapped area

m >

between the stator and rotor poles. It is expressed as
An(1,,0)=nser -N_-B, (1,)-R, (0, —6)-1,, -STF 5-11

Here nseris the number of windings in series for a phase, ¢ 1is the effective stator

pole width [7], STF is the stacking factor, ly is the length of the stack, and the

expressionR; - (6, —6)-l, -STF is the overlapped area of the stator pole with a rotor

pole. Note that the rotor position € is zero when a pair of rotor poles is aligned with

the phase’s stator poles.

5.1.2.2.4 The fringing flux

Using the same process used for the main flux, the fringing field and fringing flux
can be computed for the region in Figure 2.10 where the rotor and stator poles do not
overlap. The results for the main field can be used with the air gap g replaced with the

larger fringing air gap to obtain the fringing field. The fringing air gap is
91(0) =9+ o0/ b 5-12

The fringing air gap depends on rotor position where g, is the air gap required to
obtain the correct unsaturated inductance value at the rotor position where the rotor
poles and the stator poles just start to overlap. With the above consideration the

saturation current for the fringing flux|, _ (), which is a function of rotor position,

f,sat

can be expressed as
npar - Bsa
| (0) = 0= (I +”gf<e>j 5-13
H Iz

Here |, ; isequal to a half of the length of the iron part of the fringing flux contour.

Similarly, the fringing flux density is
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2

|¢ ”Np

Bf(lgﬁae):npar'lfe’m—i_ﬂgf(e) (I¢S|f,sat(6))
N /“El IJ 5-14
+Ife,mBsat T
N A (1,51, (0)
Lon 22+ (0)

1

The fringing flux, denoted A, , is the fringing flux density times the

non-overlapped area of the stator pole.

A,(1,,0)=nser-N_-B,(1,,0)-R, -0l -STF 5-15

5.1.2.2.5 The total flux when the rotor and the stator overlap

The total flux is the sum of the main flux and the fringing flux

20(1,,0) = 2, (1,,0)+ 2 (1,,0) 5-16

Here the function 2 (1,,6) denotes the total flux when the rotor and the stator

overlap.
The instantaneous torque can be obtained using conservation of energy and the
flux shown in (5-16). The complete equations to compute the instantaneous torque for

the overlap case are shown in appendix III.

5.1.3 Verifying the model with experiment measurement

The flux linked by a phase computed with the simplified model is compared with
the measured flux from a 2 Hp peak power 4 phase 8/6 SRM with a maximum speed
of 15,000 rpm. Figure 5.2 shows a comparison of the predicted flux linked by a phase
computed with the simplified model with the measured flux from the commercial
SRM. They match well. In the simplified model, the degree to which the iron
saturates is determined by the value of ;. The values of the iron parameters chosen
by the simplified model are u=1000 p,, pi= 50 po, Be=1.6T. (The results are
presumably different for different phases)
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Figure 5.2 the comparison of the simplified model to the experimental data

5.2 The simplified flux model based observer

To estimate the rotor position of the SRM at higher speeds using the torque
producing SRM current, another Luenberger observer is proposed. In the state
observer, the rotor position and the rotor speed are the two states as in the low speed
case. A new error function is defined to drive the observer using the simplified flux

model. The error function is defined as

f(6,67):isign(é)(/ﬂ-(ij,é)—/lj(i,-,a)) 5-17
i1

where ¢ is the estimated rotor position for the jth phase (it is zero when the jth phase
is at the aligned position), ij is the jth phase’s measured current, j; is the jth
phase’s calculated flux linkage, which is predicted by the simplified model using the
estimated rotor position and the measured phase current, 1j is the jth phase’s actual
flux linkage. The actual flux linkage is a function of the actual rotor position 4 and
the measured phase current, but it is obtained by measuring the integration of the
phase voltage. The function sign(4)) is the sign of the estimated rotor position for
the jth phase. It is 1 when 4 is greater than zero, -1 when § is less than zero, and 0

when 4 is equal to zero. Note that the estimated rotor position ¢ is wrapped into
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the electrical period (from —au to éu).

With the error definition, the error dynamic of the state observer becomes

deo

Sl fo e [H] & o _

o {0 JM{HJ ;S'gn(@)(ﬁ‘("’m (i ) 5-18
t

where H; and Hjs are the state observer gains. Because the integral of the
measured voltage is used for the measured flux this state observer only works at
speeds high enough that offset voltages in the integrator circuit do not create too large
of an error over the integrating interval. In addition, it must be insured that the output
of the integrator is set to zero each time the current goes to zero. This is realized by
having the sense signals turn on MOSFETs to short the integrating capacitors. The
integrator schematic in the experimental system is shown in Figure 3.13. The block

diagram of the state observer is shown in Figure 5.3.

)] g |
Hs PR— | — >
+ S o
@
‘ » 1 - Simplified
S model
y)
J . + 1
T« Sign (0)) e=Q< S
A

Figure 5.3 the sensorless control system using the simplified model

5.3 The error function with the simplified model

To verify that the error function defined in (5-17) has the desired properties to
drive the observer, the error function value versus the rotor position curves when the
rotor position error is 1, 2, 3, 4, 5, -1, -2, -3, -4, and -5 mechanical degrees are plotted

in Figure 5.4. The error function is monotonic and negative when the rotor position
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error is positive. It is monotonic and positive when the rotor position error is negative.

This insures that this error function can be used to drive the observer.
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Figure 5.4 the error function based on the simplified flux model

The average value of the error function over an electrical period versus the
position error is shown in Figure 5.5. The sign of the average value of the error
function is opposite to the sign of the rotor position error except when the rotor
position error is from -30 to -26 mechanical degrees. This can cause the sensorless
control to fail when the estimated rotor position is 26 to 30 degrees less than the
actual one. Note that the curve does not go exactly through the origin. This is because
in the simulation file, the actual flux is obtained with the detailed flux model in [6, 7],
while the calculated flux is predicted through the simplified flux model and there are
differences between the flux computed with the two models at the same current and
rotor position. This models the differences that exist between the actual SRM flux and
the flux computed using the simplified SRM model for the same current and rotor

position in the actual system.
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Figure 5.5 the average value of the error function versus the rotor position error

5.4 Stability and performance of the simplified flux model based

observer

Since the control system time constant is generally greater than the period of time
of the rotor position, the error average function can be used to characterize the error
function when the rotor is running at sufficiently high speeds. To linearize the error

average function, it is assumed that a zero function value occurs with zero angle error.

f(6e)=— Kave:- O 5-19

In (5-19) Kkae: is the derivative of the error average function in Figure 5.5 with
respect to the position error where the position error is zero.

Applying (5-19) into (5-18), the simplified flux model based observer becomes
(5] —H., -Kawe 1]je
d €] _| 7y ree ’ 5-20
dt| eo - H4 ‘Kave2 0 || €0
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The Eigen values of the characteristic matrix in (5-20) are

Eigenss= —% H 3 Kave2 + %\/H 32 Kavea? — 4H 4+ Kavea 5-21

According to control theory, the Eigen values need to be negative real numbers or

have negative real parts so that the system is exponentially stable.
real[Eigens.4]<0 5-22
Since Kawe2 >0, to satisfy (5-22), Hi and H: are set as

H:>0, H4>0 5-23

If H3? Kave2” < 4H 4-Kavez , the two Eigen values are conjugate complex numbers
with a common real part. If Hs’ Kae2® = 4H4-Kae2, the real part of the two Eigen

values are identical and they are Hs- Kaez . If H3% Kave2” > 4H 4-Kae2, the two Eigen

values are unequal real numbers. In this case, the settling time will be determined by

the greater Eigen value, which is —% H 3- Kave2 + %\/ H 32 Kavez” — 4H 4-Kavez . The settling

time is approximately five time constants and thus 5 over the real part of the Eigen

value with the smaller real part.

2.5

H 3- Kave2
Tsattle = 2 5

if Hs 2. kavez2 < 4H 4 Kavez

if Hs 2. kavez2 > 4H 4-Kave2

H 3- Kave2 —\/H 3% Kave2? — 4H - Kave2

5-24

5.5 Simulation results

The simplified model is used in the state observer to predict the calculated flux
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while the detailed model is used to simulate the actual SRM. Simulation results for

the estimated flux and the actual flux when the motor runs at 190 rpm are shown in

Figure 5.6. The rotor position error between the estimated rotor position and the

actual rotor position is shown in Figure 5.7. The spikes in the rotor position errors in

Figure 5.7 are due to the fact that the estimated rotor position and the actual rotor

position values are wrapped to stay within one electrical period and when this

wrapping occurs the error momentarily is equal to the angle of one electrical cycle.
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Figure 5.6 the calculated flux linkage and the actual flux linkage in the simplified flux

model based observer sensorless control simulation with the SRM running at 190 rpm
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Figure 5.7 the rotor position error versus time in the simplified flux model based

observer sensorless control simulation with the SRM running at 190 rpm
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5.6 Experimental results

The experimental SRM drive system is shown in Figure 5.8.

L

DC motor load

Figure 5.8 the experimental set-up of the simplified flux model based observer

sensorless control system using the simplified model

The calculated and actual fluxes from the experimental system operating at 190
rpm are shown in Figure 5.9 and the rotor position error from the experimental system
is shown in Figure 5.10. The spikes in the rotor position errors in and Figure 5.10 are
due to the fact that the estimated rotor position and the actual rotor position values are
wrapped to stay within an electrical period and when this wrapping occurs the error
momentarily is equal to the angle of one electrical cycle. Because of the inductance
asymmetry and the signal conditioning circuit asymmetry, the measured fluxes need
to be adjusted by adding dc offsets and multiplying factors. After these adjustments,
the electrical period is 60 degrees, but the period of 180 degrees is still used to be
consistent with the inductance profile demodulator based observer. The experimental
data is taken at steady state; while the simulation result shows the state observer’s
settling time with an initial position error of 5 degrees. Note that the estimated fluxes

in Figure 5.6 and Figure 5.9 are shifted up 0.02 Weber to separate the flux plots for
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easier viewing. The angle error ripple in the actual system is larger and has a lower
frequency (six flux pulses per cycle) than predicted by simulation. This is due in part
to the fact that the phase inductance of the experimental machine depended on which
rotor poles were near the stator pole of that phase. There were also differences in the
phase inductance from phase to phase. None of these machine asymmetries were
modeled in the simulation. Also note that the modeling errors apparent in Figure 5.2
do not create a noticeable error in the estimated flux and only a small error in the
estimated rotor position. The phase current at high speeds is shown in Figure 5.11.
The current does not chop as it does when the rotor runs at low speeds. Note that there
are still sense pulses at high speed when there is no torque producing current even
though they are not used. These sense pulses can be eliminated with an improved

control design.
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Figure 5.9 the estimated flux linkage and the actual flux linkage for phase A in the

sensorless control experiment with the SRM operating at 190 rpm
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Figure 5.10 the rotor position error versus time in the simplified flux model based

observer sensorless control experiment with the SRM operating at 190 rpm
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Figure 5.11 the phase current at high speeds
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5.7 Speed limitation

The speed limitation of the observer depends on the digital sampling rate. Assume
k samples need to be taken in a torque producing period for the rotor position to be
determined. It is assumed that the torque producing region is 3/4 of electrical period,
i.e. 45 degrees at high speeds. In this case the speed limit for the simplified flux

model based observer is

mMax3 = S 5-25
8 . k 'Tsample

Because this observer needs to sample 8 channels, both currents and fluxes for 4
phases, the sampling time is noticeably greater than for the inductance profile
demodulator based observer. In this observer, Tsampie=100us, S0 @wmmaxs =1250 when k
is chosen to be 1. The actual speed response without load is shown in Figure 5.12. The
estimated rotor position error is shown in Figure 5.13. The position error starts to be
rather big when the rotor speed reaches 10,000 rpm so that the output torque

decreases.
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Figure 5.12 the estimated rotor speed limitation of the simplified flux based observer
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Figure 5.13 the estimated rotor position error of the simplified flux based observer

5.8 Transient response

Using Figure 5.5, the coefficient kaye 1s approximately 0.048. Then with H3=2 x
10°, Hy=1 x 10" and using (5-24), the settling time of the system is 0.25s. To obtain
the transient response experimentally, the commanded current is increased suddenly
when the rotor is running at a constant speed. The experimental transient response of
the rotor position error and the rotor speed are shown in Figure 5.14 and Figure 5.15
respectively. In the experiment, the settling time for the rotor position and the rotor
speed is 0.28s and 0.2s. When the gains H3 and H4 are changed to 2 x 10" and 2 x
10°, the analytical settling time is 0.011s according to (5-24). The experimental
transient response of the rotor speed is shown in Figure 5.16. In the experiment, the
estimated rotor position was given a step change when the rotor was running at 200
rad/s. The estimated rotor speed settled down in 0.012s, which is close to the

analytical value.
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Figure 5.14 the transient response of the rotor speed with H3=2 x 10’ and H,=2 x 10*
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Figure 5.15 The transient response of the rotor speed with H=2 x 10° and H,=2 x 10°
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5.9 Combination of the two strategies

The two control strategies are combined together so that full speed range
operation with rated torque can be realized. At start and low speeds, the inductance
profile demodulator based observer is applied. At medium and high speeds, the
simplified flux model based observer is applied.

To determine the speed at which to switch between the two observers, namely the
switching speed, it is assumed that the input voltage offset of the voltage integrator’s
operational amplifier is Voser, and that the average integrator output voltage is V.
To make sure the offset voltage does not create too large of an integrator error, it is
required that the offset voltage integration error over a torque producing period is less
than or equal to 1/10 of the output voltage. Here a torque producing period is assumed

t0 Operiod- SO the switch speed is

(D Switch ZM 5-26
0.1-RC -Vout

In the experiment, Vo is 1V, Viet=0.02V, so the switch speed is 10 rad/s.
Actually 100 rad/s is chosen to insure there is no integrator saturation due to
unpredictable events and because the inductance profile demodulator based observer
can operate to about 500 rad/s. The estimated rotor speed versus time curve in the
experimental is shown in Figure 5.17. The spike at 100 rad/s is due to the switching
from the inductance profile based observer to the simplified flux model based
observer. The change in the torque (slope of the speed) due to the change in algorithm
at 100rad/s is due to the change in control angles between the two algorithms. The
error signal versus time curve is shown in Figure 5.18. The two observers are driven
by two different error signals whose magnitudes are 100 times different in value, as
shown in the figure. This is consistent with the order of magnitude difference in the
settling times of the two observers with inductance profile demodulator based

observer (low speed) being the faster one.
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Figure 5.16 the estimated rotor speed with the combination of the two observers
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Figure 5.17 the error signal with the combination of the two observers
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Contributation and future research

To eliminate the position sensor in the SRM drive system for applications that
must operate from zero speed to high speeds with any torque output, a control strategy
that combines two new position estimation methods has been proposed, designed and
evaluated in this dissertation. In each method, a state observer is applied to estimate
the rotor position and speed.

For low speeds, an inductance profile demodulator based observer is utilized. A
relatively high frequency pulse voltage is applied to the idle phases producing a
triangle shaped current that is modulated by the SRM’s phase inductance. The current
is then demodulated and used to produce an error between the actual and estimated
rotor position. This error is used in an observer to estimate the rotor position. It is
based on the fact that the inductance is a function of the rotor position and
independent of current when the current is small and the iron does not saturate. The
method works at zero speed to medium speeds from zero to rated torque. It is capable
of 4 quadrant operation. It can find the rotor’s position at startup without rotating the
rotor. The factors that determine the maximum rotor speeds that the inductance profile
demodulator based observer can work at have been given. The demodulator, basically
a low pass filter, has an inherent time delay that results a large position error at high
speeds. The larger position error can cause the sensorless control to fail. Another
factor is that the sampling rate needs to be high enough to preserve the inductance
profile information from the demodulated signal. It was verified in the dissertation
using two different sampling rates. In the experiment that uses the lower sampling
rate, the sampling rate limits the rotor speed, while in the higher sampling rate
experiment, the time delay limits the rotor speed. The transient response experiment
was conducted. The experimental settling time is 0.024s, while the settling time of the
rotor speed and rotor position is 0.02 and 0.03 respectively. The system stability was
investigated and researched with simulation and experiments. The system is robust
because that it can work with inductance asymmetry.

For medium and high speeds, another observer, namely simplified flux model
based observer, is used to estimate the rotor position and rotor speed. In this observer,
the flux is calculated using the measured current and a simplified flux model. The

simplified flux model is based on a published detailed analytical flux model. Because
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of its simplicity, it can be run in real time rapidly in a microprocessor. The calculated
flux is compared with the measured flux to produce an error that drives the observer.
It is also capable of 4 quadrant operation. The factor that determines the maximum
speed this observer can work is basically the sampling rate. The stability and
performance of the observer has been verified with simulation and experiments.

Since the two speed ranges overlap, the control system is capable of working
from zero to high speed by switching between the two observers according to the
estimated speed.

The inductance profile demodulator based observer is unique. It can figure out the
rotor position at zero speed with the rated torque for any position without rotor
rotation. It doesn’t need additional inverter to inject the modulation current. Since
there are always idle phases into which the modulation current can be injected, the
rotor position can be figured out without rotor rotation for any position from the
modulation current. Then the inverter can apply torque producing current to the
phase(s) according to the estimated rotor position to produce torque. This is one of the
requirements of the actuator application. The sensorless control can still be
accomplished with the inductance asymmetry. This demonstrates the robustness of the
system.

The simplified flux model based observer can work at higher speeds than its peers
because it integrates the phase voltage to obtain the flux from hardware, instead of
digitally. This significantly lowers the required sampling rate for the discrete control
system. The simplified flux model is very simple for computation. There is no series,
exponential functions, floating point division or square root function which need
much more computation time than addition, sbustraction and multiplication. This
remarkably lowers the required computation time. These two facts make the observer
run at very high speeds.

The estimated rotor position from the two observers is very accurate from zero to
medium speeds. The torque produced by the SRM falls off when the position
estimators are in error and this loss of torque was used to determine the maximum
speeds the position estimators are capable of operating at.

Several things can be done to extend the application and improve the
performance of the control system. A feedback loop can be added to control the rotor
speed by regulating the commanded current. The commanded current can be set by

the microcontroller and converted into an analog signal using a digital-to-analog
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converter.

The fault tolerance of the SRM drive system at zero and low speeds needs to be
investigated. There is an inherent problem for a 4-phase SRM to work at zero speed
for any rotor position with one faulted phase. This is because the torque producing
time windows of the remaining 3 phases don’t cover the full 360° of rotor rotation. .
The position estimator developed has the potential of working at low speeds with one
faulted phase and possibly two faulted phases. This potential needs to be investigated.

The on and off angles should be set as functions of the rotor speed, power supply
voltage, commanded currents in simulation, but they are held constant in the
experiment. This should be done in the future. The angles can also be optimized to
reduce the torque ripple.

The program in the DSP, including the commutator, can be implemented in the
FPGA to reduce the computation time. If the total DSP program can be implemented
into the FPGA, it would work as a special purpose microprocessor, which can run
much faster than the DSP.

The EMI filter was not implemented into the experimental system. This should be
done in the future.

The inductance asymmetry can be added to the simulation model to describe the
actual system better. Also the generating mode of SRM needs to be evaluated
experimentally. The position estimator was designed to operate in all four quadrants.
However no generating experiments were conducted. In this dissertation, two SRM
drive system states, the rotor position and the rotor speed are used in the position
estimator’s observer. The phase currents or phase fluxes can be used as additional

states in the observer to potentially estimate the rotor position more accurately.
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Appendices
Appendix I. VHDL code in the FPGA chip

The entities tree:
i reg 4ph_dsp
divider
counter
comparator 50
comparator 30
i reg 4ph_comp
ph_ckt new
interfact fpga dsp 3

Module i _reg 4ph dsp

-- Updated on Sep 2 2004

-- Qlgate, Qlsource, Q2gate, Q2source = QI and Q2

-- IorV(1 downto 0) added

-- Modin is used instead of IO_clock

-- Updated on Dec. 17 2004

-- Inverted Q1 and Q2 in ph_ckt new module for level shifting

-- Inverted A, B and I signals from the op encoder for level shifting

-- Updated on Jan. 26 2005

-- Changed the polarity of Over I Probe to active low to drive

-- shutdown signal of the Dual Gate Drive chips.

-- Updated on Feb. 4 2005

-- Use IO _clock to generate modin signal (1M, 0.5D - 20KHz, 0.6D)
-- Updated on Sep. 12 2005

-- MorG was used to get rid of the modulation current when flux method is used

library IEEE;

use I[EEE.STD LOGIC 1164.ALL;

use [EEE.STD LOGIC ARITH.ALL;

use [EEE.STD LOGIC UNSIGNED.ALL;

entity i_reg_4ph _dsp is

Port ( modin : out std_logic; -- generated by 10_clock, test it with an output

10_clock : in std_logic;
sense_low : in std_logic_vector(3 downto 0);
I chop : in std_logic_vector(3 downto 0);
over I :instd logic vector(3 downto 0);
didtcomp : in std_logic_vector(3 downto 0);
do_sense high : out std_logic_vector(3 downto 0);
didtout : out std_logic_vector(3 downto 0);
Q1 : out std_logic_vector(3 downto 0);
Q2 : out std_logic_vector(3 downto 0);
I sense : out std_logic_vector(3 downto 0);
IorV : out std_logic_vector(1 downto 0);
A :in std_logic;
B :in std_logic;
I:instd logic;
Timerl : in std_logic;
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DX :in std_logic;
DR : out std_logic;
CLKS : out std_logic;
CLKR : in std_logic;
FSR : in std_logic;
CLKX : in std_logic;
FSX : in std_logic;
enable_probe: out std_logic;
MorG_probe: out std_logic;
comin_probe: out std_logic_vector(3 downto 0);
over_I probe: out std_logic
)i
end entity i_reg 4ph_dsp;
architecture Behavioral of i_reg 4ph _dsp is
signal enable, MorG, over I out: std logic;
signal comin, I_sense temp: std_logic_vector(3 downto 0);
signal modin_tmp: std_logic;
signal IO_clock c: std_logic;
signal modin_c : std_logic;
signal comin_c, sense_low_c, 1 chop c, over I c: std logic vector(3 downto 0);
signal Q1 _c, Q2 c: std_logic_vector(3 downto 0);
signal IorV_c: std_logic_vector(1 downto 0);

B signal do sense out c: std logic vector(3 downto 0);
signal didtcomp c, do_sense_high c, didtout c: std logic_vector(3 downto 0);
signal A ¢, B ¢, I c:std logic;
signal Timerl ¢, DX c, DR c: std logic;
signal CLKS ¢, CLKR ¢, FSR ¢, CLKX c, FSX c: std logic;

B Probe signals
signal enable probe c, MorG_probe c, over I probe c: std_logic;
signal comin_probe c, 1 sense c: std logic vector(3 downto 0);
signal A_inv, B inv, [ inv: std_logic;

component GL33
port(
GL :out std logic;
PAD :in  std_logic);

end component;
component IB33
port(PAD : in std_logic := ‘U’; Y : out std_logic);
end component;
component OB33PH
port(PAD : out std_logic; A : in std_logic := ‘U’);
end component;
component i_reg_4ph_comp is
Port ( modin : in std_logic;
comin : in std_logic_vector(3 downto 0);
sense_low : in std_logic vector(3 downto 0);
I chop : in std_logic_vector(3 downto 0);
over I :instd logic vector(3 downto 0);
didtcomp : in std_logic_vector(3 downto 0);
enable : in std_logic;
MorG : in std_logic;
Ql: out std_logic_vector(3 downto 0);
Q2: out std_logic_vector(3 downto 0);
over_I out: out std_logic;
do_sense out : out std logic_vector(3 downto 0);
do_sense high : out std_logic_vector(3 downto 0);
didtout : out std_logic vector(3 downto 0));
end component i_reg_4ph_comp;
component interface fpga dsp 3 is
Port (A : in std_logic;
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B :instd logic;
I:instd logic;
Enable : out std_logic;
MorG: out std_logic;
omm. : out std_logic_vector(3 downto 0);
TorV : out std_logic_vector(1 downto 0);
over I:in std logic;
I sense : in std_logic_vector(3 downto 0);

clock: in std_logic;  -- to dffs for holding output signals
Timerl1 : in std_logic; -- select line 1 of mux

DX :in std_logic; -- select line 0 of mux

DR : out std_logic; -- output line 1 of mux

CLKS : out std_logic; -- output line 0 of mux
CLKR : in std logic;-- input line 1 of decoder
FSR:in std logic; -- input line 0 of decoder
CLKX :in std_logic;-- select line 1 of decoder
FSX : in std_logic);-- select line 0 of decoder
end component interface fpga dsp 3;
component divider is
port (clockin, enable: in std_logic;
clockout: out std_logic);
end component divider;
begin
B test probes
enable probe c <= enable;
MorG probe ¢ <= MorG;
over I probe ¢ <=notover I out;
comin_probe ¢ <= comin;

I sense ¢ <=1 sense temp;
A _inv <=notA c;

B inv <=notB c;

[ inv <=notl c;

-- Define input and output pads
-- common inputs
10 _clock pad: GL33
port map(PAD =>10_clock, GL =>10_clock c);
A pad:IB33
port map(PAD =>A,Y =>A c¢);
B pad:IB33
port map(PAD => B, Y =>B c¢);
I pad:1B33
port map(PAD =>1, Y =>1 c¢);
Timerl pad : IB33
port map(PAD => Timerl, Y => Timer1_c);
DX pad:1B33
port map(PAD => DX, Y => DX c);
CLKR pad : 1B33
port map(PAD => CLKR, Y => CLKR c¢);
FSR pad : IB33
port map(PAD =>FSR, Y =>FSR c¢);
CLKX pad: IB33
port map(PAD => CLKX, Y => CLKX ¢);
FSX pad:IB33
port map(PAD => FSX, Y => FSX c¢);
B common output(s)
modin_pad : OB33PH  -- Added for testing modin generated by IO_clock
port map(PAD => modin, A => modin_c);
DR pad : OB33PH
port map(PAD => DR, A=>DR c);
CLKS pad : OB33PH
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port map(PAD => CLKS, A => CLKS c¢);
IorV_0 pad: OB33PH

port map(PAD =>IorV(0), A =>ITorV_c(0));
IorV_1 pad: OB33PH

port map(PAD =>IorV(1), A=>IorV_c(1));
MorG_probe pad : OB33PH

port map(PAD => MorG_probe, A => MorG_probe c);
enable probe pad : OB33PH

port map(PAD => enable_probe, A => enable probe c);
comin_probe 0 pad : OB33PH

port map(PAD => comin_probe(0), A => comin_probe_c(0));
comin_probe 1 pad: OB33PH

port map(PAD => comin_probe(1), A=> comin_probe c(1));
comin_probe 2 pad: OB33PH

port map(PAD => comin_probe(2), A => comin_probe c(2));
comin_probe 3 pad : OB33PH

port map(PAD => comin_probe(3), A=> comin_probe c(3));
over I probe pad: OB33PH

port map(PAD => over I probe, A=> over I probe c);
B phase #0 inputs and outputs
sense low 0 pad : IB33

port map(PAD => sense_low(0), Y => sense_low_c(0));
I chop 0 pad:IB33

port map(PAD =>1 chop(0), Y =>1 chop c(0));
over I 0 pad:IB33

port map(PAD => over _1(0), Y => over 1 ¢(0));
didtcomp 0 pad : IB33

port map(PAD => didtcomp(0), Y => didtcomp_c(0));
Q1 _0 pad: OB33PH

port map(PAD => Q1(0), A=> Q1 _c(0));
Q2 0 pad: OB33PH

port map(PAD => Q2(0), A=> Q2 _c(0));
I sense 0 pad: OB33PH

port map(PAD =>1 sense(0), A=>1 sense c(0));
do_sense high 0 pad: OB33PH

port map(PAD => do_sense_high(0), A =>do_sense_high c(0));
didt out 0 pad: OB33PH

port map(PAD => didtout(0), A => didtout_c(0));

B phase #1 inputs and outputs
sense_low 1 pad:IB33

port map(PAD =>sense_low(1), Y =>sense low_c(1));
I chop 1 pad:IB33

port map(PAD =>1 chop(1), Y =>1 chop c(1));
over I 1 pad:IB33

port map(PAD => over I(1), Y =>over I c(1));
didtcomp 1 pad : IB33

port map(PAD => didtcomp(1), Y => didtcomp_c(1));
Q1 1 pad: OB33PH

port map(PAD => Q1(1), A=> QI c(1));
Q2 1 pad: OB33PH

port map(PAD => Q2(1), A=> Q2 _c(1));
I sense 1 pad: OB33PH

port map(PAD =>1 sense(1), A=>1 sense c(1));
do_sense high 1 pad: OB33PH

port map(PAD => do_sense_high(1), A=>do_sense_high c(1));
didt out 1 pad: OB33PH

port map(PAD => didtout(1), A => didtout_c(1));
B phase #2 inputs and outputs
sense_low 2 pad:IB33
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port map(PAD => sense low(2), Y =>sense_low_c(2));
I chop 2 pad:IB33
port map(PAD =>1 chop(2), Y =>1 chop c(2));
over I 2 pad:IB33
port map(PAD => over I(2), Y =>over 1 c(2));
didtcomp 2 pad : IB33
port map(PAD => didtcomp(2), Y => didtcomp_c(2));
Q1 _2 pad: OB33PH
port map(PAD => Q1(2), A=> Q1 _c(2));
Q2_2 pad: OB33PH
port map(PAD => Q2(2), A=> Q2 _c(2));
I sense 2 pad: OB33PH
port map(PAD =>1 sense(2), A=>1 sense c(2));
do_sense high 2 pad: OB33PH
port map(PAD =>do_sense high(2), A=>do_sense high c(2));
didt out 2 pad: OB33PH
port map(PAD => didtout(2), A => didtout_c(2));
B phase #3 inputs and outputs
sense_low 3 pad:IB33
port map(PAD => sense_low(3), Y => sense_low_c(3));
I chop 3 pad:IB33
port map(PAD =>1 chop(3), Y =>1 chop c(3));
over I 3 pad:IB33
port map(PAD => over 1(3), Y =>over 1 ¢(3));
didtcomp 3 pad : IB33
port map(PAD => didtcomp(3), Y => didtcomp_c(3));
Q1 _3 pad: OB33PH
port map(PAD => Q1(3), A=> Q1 c(3));
Q2 3 pad: OB33PH
port map(PAD => Q2(3), A=> Q2 _c(3));
I sense 3 pad: OB33PH
port map(PAD =>1 sense(3), A=>1 sense c(3));
do_sense high 3 pad: OB33PH
port map(PAD => do_sense_high(3), A=>do_sense_high c(3));
didt out 3 pad: OB33PH
port map(PAD => didtout(3), A => didtout_c(3));
Modindff: process (I0_clock c) is
begin
if (rising_edge(IO_clock c)) then
modin_c <= not modin_tmp;
end if;
end process;
UO0: divider
port map (clockin =>10 clock c, enable => enable, clockout=> modin_tmp);
Ul:i_reg 4ph_comp
port map (modin => modin_c, comin=>comin, sense_low=>sense low_c,

I _chop=>I chop c, over I=>over I c, didtcomp=>didtcomp c,
enable=>enable,MorG=>MorG,Q2source=>Q2source ¢,Q1=>Q1 ¢, Q2=>Q2 c,
over_I out=>over I out,do _sense out=>I sense temp,do_sense high=>do sense high c,
didtout=>didtout c);

U2: interface fpga dsp 3
port map (A=>A_inv, B=>B_inv, [=>] inv, Enable=>enable,
MorG=>MorG, omm.=>comin, lorV=>IorV _c, over I=>over I out,
I _sense=>1 sense temp, clock=>10 clock c, Timerl=>Timer1 c,
DX=>DX ¢, DR=>DR ¢, CLKS=>CLKS ¢, CLKR=>CLKR ¢, FSR=>FSR c,
CLKX=>CLKX c, FSX=>FSX c);
end architecture Behavioral;

Entity Divider
-- divider.vhd
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-- To divide the IO_clock signal by 50 to get Modin signal
- 1MHz > 20KHz

- | |
- \/ \
-- reset |
-- IO_clock->counter -> comparator 50 ->DFF ->INV ----\
-- | RSFF - modin
-- -> comparator 30 ->DFF ->INV ----/
-- duty cycle could be random, here 0.6 is chosen
-- created on 02/03/04
library IEEE;
use I[EEE.STD LOGIC 1164.ALL;
use [EEE.STD LOGIC ARITH.ALL;
use [EEE.STD LOGIC UNSIGNED.ALL;
entity divider is
port (clockin, enable: in std_logic;
clockout: out std_logic);
end entity divider;
architecture RTL of divider is
signal comp1,comp2,d1,d2,s,r,srout: std_logic;
signal pre_state,next_state: std_logic;
signal sr: std logic vector(2 downto 0);
signal Q: std logic vector(5 downto 0);
signal temp_aclr: std_logic;
component counter is
port(Enable, Aclr, Clock : in std_logic; Q : out
std logic vector(5 downto 0)) ;
end component counter;
component comparator_50 is
port( DataA : in std_logic_vector(5 downto 0); AEB : out
std_logic) ;
end component comparator 50;
component comparator 30 is
port( DataA : in std_logic_vector(5 downto 0); AEB : out
std_logic) ;
end component comparator_30;
begin
sr<=s & r & pre_state;
temp_aclr<=dl and enable;
counter_0: counter
port map(Enable=>enable, Acl=>temp_aclr, Clock=>clockin, Q=>Q);
comp_ 50 0: comparator 50
port map(DataA=>Q, AEB=>compl);
comp_ 30 0: comparator 30
port map(DataA=>Q, AEB=>comp2);
s<=not dl;
r<=not d2;
clockout<=srout;
dff1: process(clockin)
begin
if(rising_edge(clockin)) then
dl<=compl;
end if;
end process dffl;
dff2: process(clockin)
begin
if(rising_edge(clockin)) then
d2<=comp2;
end if;
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end process dff2;
—————————————— describe S R Flip Flops--------------
srff _comb: process (sr) is

begin

case sr is

when”000” => srout<="0’; -- next_state is deleted because
when”001” => srout<="1"; -- it is the same as srout

when”010” => srout<="0’;
when”011” => srout<="0’;
when”100” => srout<="1";
when”101” => srout<="1";
when”110” => srout<="0’;
when”111” => srout<="0’;
when others=> srout<="0’;
end case;

end process srff_comb;
srff_dff: process(clockin) is
begin

if (rising_edge(clockin)) then
pre_state<=srout;

end if;

end process srff_dff;

end architecture RTL;

Entity counter
B Version: 6.0 Production 6.0.0.133
library ieee;
use ieee.std_logic 1164.all;
library a500K;
entity counter is
port(Enable, Aclr, Clock : in std_logic; Q : out
std_logic vector(5 downto 0)) ;
end counter;
architecture DEF_ ARCH of counter is
component AND3
port(A, B, C : in std_logic := ‘U’; Y : out std_logic) ;
end component;
component AND2
port(A, B : in std_logic := ‘U’; Y : out std_logic) ;
end component;
component XOR2
port(A, B : in std_logic := ‘U’; Y : out std_logic) ;
end component;
component DFFC
port(CLK, D, CLR : in std_logic := ‘U’; Q : out std_logic
)
end component;
component INV
port(A : in std_logic := ‘U’; Y : out std_logic) ;
end component;
signal Q 0 net, Q 1 net, Q 2 net, Q 3 net, Q 4 net, Q 5 net,
Sum_1 net, Sum 2 net, Sum 3 net, Sum 4 net, Sum 5 net,
Sum_6 net, Sum 0 net, AND2 1 Y,AND3 0 Y,AND2 2 Y,
AND3 1 Y,AND3 2 Y,AND2 0 Y,INV_0 Y :std logic;
begin
Q(0) <= Q_0_net;
Q(1) <= Q_1_net;
Q(2) <= Q_2_net;
Q(3) <= Q_3_net;
Q(4) <= Q_4_net;
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Q(5) <= Q_5_net;
AND3 2 :AND3
port map(A=>Q 2 net, B=>Q 3 net, C=>Q 4 net,Y =
AND3 2 Y);
AND2 0:AND2
port map(A=>AND3 0 Y,B=>AND3 2 Y,Y=>AND2 0 Y);
XOR2 _Sum_ 6 inst : XOR2
port map(A=>AND2 0 Y, B=>Q_5 net, Y =>Sum 6 net);
DFFC _Q 3 inst: DFFC
port map(CLK => Clock, D =>Sum 4 net, CLR=>INV 0 Y, Q=>
Q_3 net);
INV_0:INV
port map(A =>Aclr, Y =>INV_0 Y);
AND2 1:AND2
port map(A => Enable, B=>Q 0 net, Y =>AND2 1 Y);
AND3 0:AND3
port map(A => Enable, B=>Q 0 net, C=>Q 1 net,Y=>
AND3 0 Y);
XOR2 Sum 1 inst : XOR2
port map(A => Enable, B=>Q 0 net, Y => Sum_1 net);
AND3 1:AND3
port map(A=>AND3 0 Y,B=>Q 2 net, C=>Q 3 net,Y=>
AND3 1 Y);
DFFC Q 5 inst: DFFC
port map(CLK => Clock, D => Sum 6 net, CLR=>INV 0 Y, Q=>
Q 5 net);
XOR2 Sum 2 inst: XOR2
port map(A=>AND2 1 Y,B=>Q 1 net, Y =>Sum 2 net);
DFFC_Q 1 inst: DFFC
port map(CLK => Clock, D => Sum_2 net, CLR=>INV _0_Y, Q =>
Q_1 net);
DFFC _Q 2 inst: DFFC
port map(CLK => Clock, D => Sum_3 net, CLR=>INV 0 Y, Q=>
Q 2 net);
XOR2 Sum 3 inst: XOR2
port map(A=>AND3 0 Y,B=>Q 2 net, Y =>Sum 3 net);
XOR2 Sum 4 inst: XOR2
port map(A=>AND2 2 Y,B=>Q 3 net, Y =>Sum 4 net);
AND2 2 : AND2
port map(A=>AND3 0 Y,B=>Q 2 net,Y=>AND2 2 Y);
XOR2 Sum 5 inst: XOR2
port map(A=>AND3 1 Y,B=>Q 4 net, Y =>Sum 5 net);
DFFC_Q 4 inst: DFFC
port map(CLK => Clock, D => Sum_5 net, CLR=>INV 0 Y, Q=>
Q 4 net);
DFFC _Q 0 inst: DFFC
port map(CLK => Clock, D=>Sum 1 net, CLR=>INV 0 Y, Q=>
Q 0 net);
-- software bug, not in use
-- INV_Sum 0 inst: INV
-- port map(A => Enable, Y => Sum_0 net);
end DEF_ARCH;

Entity comparator 50
B Version: 6.0 Production 6.0.0.133
library ieee;
use ieee.std_logic 1164.all;
library aS00K;
entity comparator 50 is
port( DataA : in std_logic vector(5 downto 0); AEB : out
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std_logic) ;
end comparator 50;
architecture DEF_ ARCH of comparator 50 is
component NAND3
port(A, B, C : in std logic := ‘U’; Y : out std_logic) ;
end component;
component AND3FTT
port(A, B, C : in std_logic := ‘U’; Y : out std_logic) ;
end component;
component AND3FFT
port(A, B, C : in std_logic := ‘U’; Y : out std_logic) ;
end component;
-- software bug: ANDTree Data 2 net is not used
-- signal Temp 0 net, Temp 1 net, ANDTree Data 2 net: std logic ;
signal Temp 0 net, Temp 1 net: std logic ;
begin
NAND3 AEB: NAND3
port map(A =>Temp 0 net, B=>Temp 1 net,
C=>‘1",Y=>AEB);
AND3FTT Temp 1 inst : AND3FTT
port map(A => DataA(3), B => DataA(4), C => DataA(5),
Y =>Temp 1 net);
AND3FFT Temp O inst : AND3FFT
port map(A => DataA(0), B => DataA(2), C => DataA(1),
Y =>Temp 0 net);
end DEF ARCH;

Entity comparator 30
B Version: 6.0 Production 6.0.0.133
library ieee;
use ieee.std_logic 1164.all;
library a500K;
entity comparator 30 is
port( DataA : in std_logic_vector(5 downto 0); AEB : out
std_logic) ;
end comparator 30;
architecture DEF_ ARCH of comparator 30 is
component AND3FTT
port(A, B, C : in std_logic := ‘U’; Y : out std_logic) ;
end component;
component NAND3
port(A, B, C : in std_logic := ‘U’; Y : out std_logic) ;
end component;
-- software bug: ANDTree Data 2 net is not used
-- signal Temp 0 net, Temp 1 net, ANDTree Data 2 net: std logic ;
signal Temp 0 net, Temp 1 net : std logic ;
begin
AND3FTT Temp O inst: AND3FTT
port map(A => DataA(0), B => DataA(1), C => DataA(2), Y =>
Temp 0 net);
NAND3 AEB : NAND3
port map(A =>Temp 0 net, B=>Temp 1 net, C=> 1", Y => AEB);
AND3FTT Temp 1 inst: AND3FTT
port map(A => DataA(5), B => DataA(4), C => DataA(3), Y =>
Temp 1 net);
end DEF_ARCH;

Entity i reg 4ph _comp

-- This module works well before August
---- Updated on Sep 2 2004
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-- Qlgate, Qlsource, Q2gate, Q2source > QI and Q2
-- Only modin is used, no IO_clock any more

library IEEE;

use [EEE.STD LOGIC 1164.ALL;

use [EEE.STD LOGIC ARITH.ALL;

use [EEE.STD LOGIC UNSIGNED.ALL;

entity i_reg_4ph_comp is

Port ( modin : in std_logic;

comin : in std_logic_vector(3 downto 0);
sense_low : in std_logic_vector(3 downto 0);
I chop : in std_logic_vector(3 downto 0);
over I:instd logic vector(3 downto 0);
didtcomp : in std_logic_vector(3 downto 0);
enable : in std_logic;
MorG : in std_logic;
Ql: out std_logic_vector(3 downto 0);
Q2: out std_logic_vector(3 downto 0);
over I out: out std_logic;
do_sense out : out std logic_vector(3 downto 0);
do_sense high : out std_logic_vector(3 downto 0);
didtout : out std_logic_vector(3 downto 0));

endi reg 4ph _comp;

architecture Behavioral of i_reg 4ph_comp is

component ph_ckt new is

Port ( modin : in std logic; --10KHz omm.
comin : in std logic; --Gengerating Torque
sense_low : instd logic; --Current is zero
I chop: in std_logic;
over I: in std_logic;
I off: in std_logic;
enable : in std_logic;
MorG : in std_logic;
didtcomp: in std_logic; -- new input
Qlgate,Q2gate: out std_logic;
over I out: out std_logic;
do_sense low : out std logic; -- hanged from do_sense out
do_sense high, didtout: out std logic -- new outputs
);

end component ph_ckt new;
signal over I out tmp: std_logic_vector(3 downto 0);
signal I off: std_logic;
begin
I off<=over I out tmp(0) or over I out tmp(1) or over I out tmp(2) or over I out tmp(3);
over I out<=1 off;
UO: ph_ckt new
port map (modin=>modin, comin=>comin(0), sense_low=>sense low(0),
I chop=>I chop(0), over I=>over 1(0), I off=>I off, enable=>enable, MorG=>MorG,
didtcomp=>didtcomp(0),Q1gate=>Q1(0), Q2gate=>Q2(0),
over I out=>over I out tmp(0), do_sense low=>do sense out(0),
do_sense high=>do_sense high(0), didtout=>didtout(0));
Ul: ph_ckt new
port map (modin=>modin, comin=>comin(1), sense_low=>sense low(1),
I _chop=>I chop(1), over I=>over I(1), I off=>I off, enable=>enable, MorG=>MorG,
didtcomp=>didtcomp(1), Q1gate=>Q1(1), Q2gate=>Q2(1),
over I out=>over I out tmp(1), do_sense low=>do sense_out(1),
do_sense high=>do sense high(1), didtout=>didtout(1));
U2: ph_ckt new
port map (modin=>modin, comin=>comin(2), sense_low=>sense low(2),
I chop=>I chop(2), over I=>over 1(2), ] off=>I off, enable=>enable, MorG=>MorG,
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didtcomp=>didtcomp(2), Q1gate=>Q1(2), Q2gate=>Q2(2),
over I out=>over I out tmp(2), do sense low=>do sense out(2),
do_sense high=>do _sense high(2), didtout=>didtout(2));
U3: ph_ckt new
port map (modin=>modin, comin=>comin(3), sense_low=>sense low(3),
I _chop=>I chop(3), over I=>over I(3), I off=>1 off, enable=>enable, MorG=>MorG,
didtcomp=>didtcomp(3), Q1gate=>Q1(3), Q2gate=>Q2(3),
over I out=>over I out tmp(3), do_sense low=>do sense out(3),
do_sense high=>do_sense_high(3), didtout=>didtout(3));
end Behavioral;

Entity ph_ckt new

-- Built on Feb. 16, 2004

-- included didt circuit in the logic subsystem in the MATLAB model
-- signal MorG and Enable are set as regular los

-- Updated on Sep 2 2004

-- Qlgate, Qlsource, Q2gate, Q2source = Q1 and Q2

-- only modin is used, no IO_clock any more

-- Updated on Dec. 17 2004

-- Inverted Q1 and Q2 in this module for level shifting

-- Updated on Jan 31 2005

-- Save fault SRFF is deleted to avoid the noice from over I input

library IEEE;

use IEEE.STD LOGIC 1164.ALL;

use [EEE.STD LOGIC ARITH.ALL;

use [EEE.STD LOGIC UNSIGNED.ALL;
entity ph_ckt new is

Port ( modin : in std_logic; --10KHz omm.
comin : in std_logic; --Gengerating Torque
sense_low : instd logic; --Current is zero
I chop: in std_logic;
over I: in std_logic;
I off: in std_logic;
enable : in std_logic;
MorG : in std_logic; --used to avoid modulation at high speeds
didtcomp: in std_logic; -- new input
Qlgate,Q2gate: out std_logic;
over I out: out std_logic;
do_sense low : out std_logic; -- hanged from do_sense out
do_sense high, didtout: out std logic -- new outputs
);

end entity ph_ckt new;

architecture Behavioral of ph_ckt new is

signal and 1 output, and 2 output, and 3 output, and 4 output: std_logic;
signal and 5 output, and 6 _output: std logic;  -- for the do_sense high signal
signal or_1 _output, or 2 output, or 3 output: std_logic;

signal comin_inv, sense low _inv, I chop inv, I off inv, enable inv: std logic;
signal sense low_inv_hold: std_logic;

signal Q1 _temp,Q1,Q1 inv:std logic;

signal QT temp, Q I chop, Q I chop_inv: std logic;

signal Q3_temp,Q3: std_logic; -- for do_sense_high signal

signal D1_temp,D1_inv_temp,D1_temp inv,D2 temp,D2 inv_temp:std logic;
signal Qlon, Q2on, IO _clock inv: std logic;

signal srl: std_logic_vector(2 downto 0);

signal sr2: std_logic_vector(2 downto 0);

signal sr3: std logic vector(2 downto 0); -- for do_sense high signal
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signal pre_state,next_state: std logic;
signal pre_state 3,next state 3:std logic; -- for do sense high RSFF

begin
srl<=and 2 output & comin & pre_state; --combinational logic operation.
Sr3<=comin_inv & and_5 output & pre_state 3;  -- for do_sense high

—————————————— do inverse
comin_inv<=not comin;

sense_low_inv<=not sense_low;

I _chop_inv<=not I chop;

I off inv<=not I off;

enable inv<=not enable;

—————————————— describe “and” gates-------------

and 1 output<=modin and comin_inv and Q1 and MorG; -- added MorG to avoid modulation at high
speeds

and 2 output<=sense low inv_hold and comin_inv;

and 3 output<=Q I chop; -- MorG and Q_I chop;

and 4 output<=Q I chop_inv; --MorG and Q_I chop_inv;

and 5 output<=I chop and comin;  --- for do_sense high signal
and 6 output<=Q3 and comin;  --- for do_sense_high signal
do_sense high<=and 6 output; --- for do_sense high signal

Qlon<=or_1_output and or_2 output and enable and I off inv;
Q2on<=or 1 output and or 3 output and enable and I off inv;
—————————————— describe “or” gates--------------

or 1 output<=and 1 output or comin;

or_2 output<=and 3 output or I chop_inv;

or_3 output<=and 4 output or I chop_inv;

Qlgate<=not Qlon;
Q2gate<= not Q2on;

B Added on Jan. 31 2005 to avoid the noise of the over I input
over I out<=over I;

-------------- describe Flip Flops--------------
srffl _comb: process (srl) is

begin

case srl is

when”000” => Q1 temp<="0’; next state<="0’;
when”001” => Q1 temp<="1’; next state<="1’;
when”010” => Q1 _temp<="0’; next_state<="0’;
when”011” => Q1_temp<="0’; next_state<="0’;
when”100” => Q1 _temp<="1’; next_state<="1";
when”101” => Q1 _temp<="1’; next_state<="1";
when”110” => Q1 _temp<="0’; next_state<="0’;
when”111” => Q1_temp<="0’; next_state<="0’;
when others=> Q1 _temp<="1’; next_state<="0’;
end case;
QI<=Q1 temp;
do_sense low<=QlI;
end process srffl _comb;
srffl_dff: process(modin) is
begin
if (rising_edge(modin)) then
pre_state<=next state;
end if;
end process srffl_dff
——————————————— T Flip Flop-----------------—---
TFF: process (I_chop_inv, enable) is
begin

if (enable = ‘0’) then

QT _temp <=’0’;
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else
if (rising_edge(I_chop_inv)) then
QT _temp <=not QT _temp;
end if;
end if;

Q I chop<=QT_temp;

Q_I chop_inv<=not QT temp;
end process TFF;
-------------- save fault S R Flip Flop--------
-- srff2_comb: process (sr2) is
-- begin
-- case sr2 is
-- when”000” => Q2_temp<=’0’; next_state 2<="0’;
-- when”001” => Q2 temp<='1’; next_state 2<="1’;
-- when”010” => Q2_temp<="0’; next_state 2<="0’;
-- when”011” => Q2_temp<="0’; next_state 2<="0’;
-- when”100” => Q2_temp<="1’; next_state 2<="1;
-- when”101” => Q2_temp<="1’; next_state 2<="1;
-- when”110” => Q2_temp<="0’; next_state 2<="0’;
-- when”111” => Q2_temp<="0’; next_state 2<="0’;
-- when others=> Q2_temp<="0’; next_state 2<="0’;
-- end case;
-- Q2<=Q2_temp;
--over_[ out<=Q2;
-- end process srff2_comb;
-- srff2_dff: process(modin) is
-- begin
-- if (rising_edge(modin)) then
-- pre_state 2<=next_state 2;
-- end if;
-- end process srff2_dff;
——————————————— zero order holder and delay realized with 2 D flip flops------
Holder: process (modin) is
begin
if (rising_edge(modin)) then
D1 temp<=sense low_inv;
end if;
end process Holder;
Delay: process (modin) is
begin
if (rising_edge(modin)) then
D2 temp<=DI1_temp;
end if;
sense_low_inv_hold<= D2_temp;
end process Delay;
RSFF for do_sense high signal-------
srff3_comb: process (sr3) is
begin
case sr3 is
when”000” => Q3_temp<="0’; next_state 3<="0’;
when”001” => Q3 temp<="1"; next state 3<="1’;
when”010” => Q3_temp<="0’; next_state 3<="0’;
when”011” => Q3 _temp<="0’; next_state 3<="0’;
when”100” => Q3_temp<="1"; next_state 3<="1’;
when”101” => Q3_temp<="1"; next_state 3<="1’;
when”110” => Q3 _temp<="0’; next_state 3<="0’;
when”111” => Q3 temp<="0’; next_state 3<="0’;
when others=> Q3 temp<=0’; next_state 3<="0’;
end case;
Q3<=Q3_temp;
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end process srff3_comb;
srff3_dff: process(modin) is
begin

if (rising_edge(modin)) then
pre_state 3<=next state 3;
end if;

end process srff3_dff;

didtoutprocess: process (comin, didtcomp)
begin
if(comin="1") then
didtout<=didtcomp;
else
didtout<="0’;
end if;
end process didtoutprocess;
end architecture Behavioral;

Entity interfact fpga dsp 3

-- The McBSP1 are used as GPIO, Timerl1 is used as GPIO too.

-- A potential problem is that the clock signal frequency should be higher than the
-- frequency of the output signals

-- It works well according to simulation

-- It worked will before August 2004

-- Updated on Sep 2 2004

--TorV(1 downto 0) added

-- Updated on Feb 4 2005

-- for the decoder, 3 select lines are set as FSR, CLKX, FSX

-- only one input is set CLKR so that only one output is assigned for one time

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD _LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL,;

entity interface fpga dsp 3 is

Port (A : in std_logic;
B :in std logic;
I:instd logic; -- because I appear once per resolution, not useful for position
Enable : out std_logic;
MorG: out std_logic;
omm. : out std_logic_vector(3 downto 0);

IorV : out std_logic_vector(1 downto 0);
over I:instd logic;
I sense : in std logic vector(3 downto 0);

clock: in std logic;  -- to dffs for holding output signals
Timerl] : in std_logic; -- select line 1 of mux

DX : in std_logic; -- select line 0 of mux

DR : out std logic; -- output line 1 of mux

CLKS : out std_logic; -- output line 0 of mux
CLKR :in std_logic;-- input line 1 of decoder
FSR:in std logic; -- input line 0 of decoder
CLKX :in std_logic;-- select line 1 of decoder
FSX : in std_logic);-- select line 0 of decoder
end interface fpga dsp 3;
architecture Behavioral of interface fpga dsp 3 is
signal A_tmp, B_tmp,I_tmp, reset tmp, over I tmp, clock tmp: std logic;
signal I sense_tmp: std logic vector(3 downto 0);
signal Timerl tmp, DX tmp, CLKR tmp, FSR tmp, CLKX tmp, FSX tmp: std logic;
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signal Enable tmp, MorG_tmp,DR_tmp, CLKS tmp: std_logic;

signal omm. tmp: std logic vector(3 downto 0);

signal IorV_tmp: std logic vector(l downto 0);

-- signal dir: std_logic; -- output of the counter, direction of the rotation

-- signal counter_out: std logic_vector(1 downto 0); -- outputs of the counter
signal muxsel: std_logic_vector(1 downto 0);

signal decodersel: std_logic_vector(2 downto 0);

begin
-- PAD instantiation // will be realized in Actel Libero software
-- input PADs
Timerl tmp <= Timerl;
DX tmp <= DX;
A tmp <= A;
B _tmp <= B;
I tmp <= I
-- reset_tmp <= reset,
over | tmp <= over_[;
clock tmp <= clock;

I sense tmp(0) <= 1 sense(0);
I sense tmp(1) <= 1 sense(l);
I sense tmp(2) <= 1 sense(2);
I sense tmp(3) <= 1 sense(3);
CLKR tmp <=CLKR;
FSR_tmp <=FSR;
CLKX tmp <=CLKX;
FSX tmp <=FSX;
B output PADs
Enable <= Enable tmp;
MorG <= MorG_tmp;
DR <=DR_tmp;
CLKS <= CLKS_tmp;
omm. <= omm._tmp;
TIorV <=IorV_tmp;
B select lines for the mux and decoder
muxsel<= Timerl tmp & DX tmp;
decodersel<= FSR tmp & CLKX tmp & FSX tmp;
mux8x2: process (muxsel, I sense tmp, over I tmp,A tmp,B tmp, I tmp) is
begin
case muxsel is
when “11” => CLKS tmp <=1 sense tmp(3); DR _tmp <=1 sense_tmp(2);
when “10” => CLKS_ tmp <=1 sense_tmp(1); DR_tmp <=1 sense tmp(0);
when “01” => CLKS_tmp <= over I tmp; DR _tmp <=1 tmp;
when “00” => CLKS tmp <=A_tmp; DR _tmp <= B_tmp;
when others => CLKS tmp <=A_tmp; DR _tmp <= B_tmp;
end case;
end process;
decoder: process (clock tmp) is
begin
if (rising_edge(clock tmp)) then
case decodersel is
when “111” =>lorV_tmp(1) <= CLKR tmp;
when “110” => IorV_tmp(0) <= CLKR_tmp;
when “101” => Enable tmp <=CLKR tmp;
when “100” =>MorG_tmp <= CLKR_tmp;
when “011”=> omm._tmp(3) <= CLKR_tmp;
when “010” => omm. tmp(2) <= CLKR_tmp;
when “001”=> omm. tmp(1) <= CLKR tmp;
when “000” => omm._ tmp(0) <= CLKR tmp;
when others => MorG_tmp<= CLKR_tmp;
end case;
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end if;
end process;

end Behavioral,
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Appendix Il. C/C++ code in DSP

Only the C files programmed by the author are presented here. The header files and the files generated
by the code composer studio are not presented here.

Main.c
/********************************************************************/
/* final program for the THS1206 EVM connected to an C6711 DSK. */
/* */
/* The following jumper setting should be used: */
/* Daughter Card Style THS1206 EVM: */
/* I 12 /J2 12/ J3 2-5 / J4 open */
/* J5 open / J6 open / J7 1-2 / J10 closed */
/* J11 open /[ J122-3/ J131-2 */
/* Supply voltage from DSP, CLK from Timer 0, Input AINP */
/* AD converter address: 0xA0020000 */
/* */
/* The following jumper setting should be used: */
/* Modular THS1206 EVM: */
/* W1, W2, W3, W9, W10 — Closed */
/* W11 - Open */
/* W5, W6 —1-2 */
/* Supply voltage from DSP, CLK from Timer 0, Input AINP */
/* AD converter address: 0xA0024000 */
/* DSP/BIOS 1I and CSL used */
/* */
/* This program runs sensorless control for SRM */
/* Copy right 2005 Jinhui Zhang, Arthur Radun, */
/* Power Electronics Lab, University of Kentucky */

/********************************************************************/

/* include files for data converter support */
#include “dc_conf.h”

#include “t1206_fn.h”

#include “mcbsp.h”

#include “Rockymotin.h”

#include “lookuptable.h”

#include “variables.h”

/* include files for DSP/BIOS */
#include <std.h>

#include <swi.h>

#include <log.h>

/* include files for chip support library ~ */
#include <csl.h>

#include <csl_legacy.h>

#include <csl_irq.h>

#include <csl_timer.h>

#define phase 4 /* size of data buffer */
#define dataSaveSize 1000 // size of data saved
#define savestep 10 /* data save step based on the sampling time */

/* function prototypes */

TIMER HANDLE init_timerO(unsigned int period);
void init_dsk(void);

void wait(void);

void GetSignals McBSP1(void);
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float errorlow(int);

float errorhigh(void);

void SenseTheta(void);

void Commutator(int);

void MicroController(void);
float flux(float theta, float phi);
void motor_init(void);

void storeData(void);

void sendOutComm(void);
void DoCalculationFunc(void);
void calculatePhaselV(void);

/* DSP/BIOS objects, created with the Config Tool */
extern LOG_Obj trace;

extern far SWI_Obj SwiStartConversion;

// extern far SWI_Obj SwiDoCalculation;

int posR=0;

short gtheta short[phase];

float gtheta[phase];

short phasel _short[phase], phaseLamda_short[phase];
float phasel[phase], phaseLamda[phase], phaseLamdah[phase];
int I_sense[phase];

int omm.[phase], omm. act[phase];

int omm.[cDataSize],commHighA[cDataSize];
int omm[cDataSize],commHighB[cDataSize];

int commC[cDataSize],commHighC[cDataSize];

int commDJ[cDataSize],commHighD[cDataSize];
float galpha[phase];

float thetah,omegah,error;

int thetahlnt;

int observer, startRecord, sensorless, highSpeed;

int Enable, MorG, lorVO0, IorV1, Enable_act,MorG_act,lorVO0_act,lorV1 _act;
float time;

int matrixCnt, savei;

float gthetaMatrixO[dataSaveSize];

float gthetaMatrix 1[dataSaveSize];

float gthetaMatrix2[dataSaveSize];

float gthetaMatrix3[dataSaveSize];

dataSaveSize
dataSaveSize
dataSaveSize
dataSaveSize];

float galphaMatrix0
float galphaMatrix1
float galphaMatrix2
float galphaMatrix3

>

l

relrelrelre

]
l;
]
]

>

int IsenseMatrix0[dataSaveSize];
int IsenseMatrix 1[dataSaveSize];
].
]

int IsenseMatrix2[dataSaveSize
int IsenseMatrix3[dataSaveSize];

b

int commMatrixQ[dataSaveSize];
int commMatrix 1[dataSaveSize];
int commMatrix2[dataSaveSize];
int commMatrix3[dataSaveSize];

float phaseLamdaMatrix0
float phaseLamdaMatrix 1
float phaseLamdaMatrix2
float phaseLamdaMatrix3

dataSaveSize];
dataSaveSize];
].
]

dataSaveSize
dataSaveSize];

E

[relrelrelre
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float phaseLamdahMatrixO[dataSaveSize];
float phaseLamdahMatrix 1[dataSaveSize];
float phaseLamdahMatrix2[dataSaveSize];
float phaseLamdahMatrix3[dataSaveSize];

dataSaveSize
dataSaveSize
dataSaveSize
dataSaveSize];

float phaseIMatrix0
float phaselMatrix 1
float phaseIMatrix2
float phaselMatrix3

B

B

relrelrelre

]
5
]
]

int posRMatrix[dataSaveSize];

float posEMatrix[dataSaveSize]; // angle error
float thetahMatrix[dataSaveSize];

float omegahMatrix[dataSaveSize];

float errorMatrix[dataSaveSize];

float timeMatrix[dataSaveSize];

float runtimeMatrix[dataSaveSize];

LgUns timel,time2,time3,time4;
float runtime,runtime2,runtime3;

void main(void)

{

TIMER _HANDLE hTimer;

/* CSL_Init — required for the CSL functions of the driver */

CSL_Init();

/* initialize the DSK and timer 0 */

init_dsk();

hTimer = init_timerO(ADC1_TIM_PERIOD);

init McBSP1();

init_timer1();

/* configure the data converter */

dc_configure(&Ths1206 1);

motor_init();

/* start the timer */

TIMER_ Start(hTimer);

/* Let’s go... DSP/BIOS takes control and will generate */

/* a “PeriodFunc” software interrupt every second. */
H
/****************************************************************/
/* BlockReady */
/* This function will be called when the dc_rblock routine is */
/* finished. It posts a DoCalculation software interrupt. */

J s sk sk sk sk sk sk Rk kst Rk sk ks b sk kR sk sk sk Rk Rk sk Rk ook ok /
void BlockReady1206(void *pDC)

{
/! LOG _printf(&trace, “1206 Interrupt”);

/! SWI post(&SwiDoCalculation);
DoCalculationFunc();

H
void BlockReady1206 V(void *pDC)

calculatePhasel V();
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H
void BlockReady1206 I(void *pDC)

{
if(IorV1_act!=0)
{set TorV1(0); wait(); lorV1 act=0;}
if(IorVO_act!=1)
{set_TorVO(1); wait(); lorVO_act=1;}
dc_rblock(&Ths1206 1, phaseLamda_short, phase, BlockReady1206 V);
H
/****************************************************************/
/* SwiStartConversionFunc */
/* This software omm. oni starts a new conversion using the */
/* dc_rblock function. */

/****************************************************************/

void StartConversionFunc()

{
time1=CLK gethtime();

/! dc_rblock(&Ths1206 1, gtheta short, phase, &BlockReady1206);
/I Get current singals
if (observer==0) // inductance profile based observer is chosen

/****************************************************************/

/* Inductance Profile Based Observer */
/* Only gtheta is measured */
/****************************************************************/
if(TorV1_act!=0)

{set TorV1(0); wait(); lorV1 act=0;}
if(TorVO_act!=0)

{set_TorV0(0); wait(); IorVO_act=0;}
dc_rblock(&Ths1206 1, gtheta_short, phase, &BlockReady1206);

else if (observer==1) // torque producing current based observer is chosen

{

/****************************************************************/

/* Torque producing current Based Observer */

/* Now phase current is measured and then phase voltage */
/****************************************************************/

if(TorV1_act!=1)
{set TorV1(1); wait(); lorV1_act=1;}
if(TorVO_act!=0)
{set_TorV0(0); wait(); IorVO_act=0;}
dc_rblock(&Ths1206 1, phasel short, phase,BlockReady1206 1);
}
H

void DoCalculationFunc()
{
int i,value[phase];
for (i=0; i<phase; i++)
{
value[i] = gtheta_short[i] & 0xOFFF;
gtheta[i] = 2.778-(6.78E-4)*value[i];
/I gtheta[i] = (Vref plus-Vref minus-(Vref plus-Vref minus)*value/4096)*5.0/3.6;
} // the signal conditioning board changed the analog signals’ polarity
// at the reference (Vref plus+Vref minus)/2
// The offset is 1.5 V for the phase currents
// times 5.0 to convert it into ampere
// DC gain of the low pass filter is 3.6
GetSignals McBSP1();
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MicroController();
sendOutCommy();
if (startRecord==1) storeData();
/" time2=CLK gethtime();
/' runtime=(time2-time1)*4/150;

}

void calculatePhaselV()
{
int valuel[phase];
int valueLamda[phase];
valuel[0] = phasel short[0] & 0xOFFF;
phasel[0] = (2.0-2.0*valuel[0]*2.441E-4)*25.2;
valueLamda[0] = phaseLamda_short[0] & 0xOFFF;
phaseLamda[0] = (2-2*valueLamda[0]*2.441E-4-0.05)*0.01884*0.72;

valuel[1] = phasel short[1] & 0xOFFF;

phasel[1] = (2.0-2.0*valuel[1]*2.441E-4)*25.2;

valueLamda[ 1] = phaseLamda_short[1] & 0xOFFF;

phaseLamda[1] = (2-2*valueLamda[1]¥2.441E-4-0.018)*0.01884*0.8;

valuel[2] = phasel_short[2] & 0xOFFF;

phasel[2] = (2.0-2.0*valuel[2]*2.441E-4)*25.2;

valueLamda[2] = phaseLamda_short[2] & OxOFFF;

phaseLamda[2] = (2-2*valueLamda[2]*2.441E-4-0.05)*0.01884*1.0;

valuel[3] = phasel_short[3] & 0xOFFF;

phasel[3] = (2.0-2.0*valuel[3]*2.441E-4)*25.2;

valueLamda[3] = phaseLamda_short[3] & 0xOFFF;

phaseLamda[3] = (2-2*valueLamda[3]¥2.441E-4-0.045)*0.01884*0.8;

GetSignals McBSP1();
MicroController();
sendOutCommy();

if (startRecord==1) storeData();
time2=CLK gethtime();
runtime=(time2-time1)*4/150;

}

[/ st s e st st s e shestesi e e stesi sk ke st st sk st ke st sk sesteste skt st stk stttk st stesiokeste kool steotoiokoskokokokoskokokokokokokokokekek /

/* PeriodFunc */
/* The function will be called every second by DSP/BIOS and */

/* posts a StartConversion SWI to start a new conversion. */
/****************************************************************/

void PeriodFunc()

{
time+=tsamplem;
/I if (time>100) time=0;
SWI_post(&SwiStartConversion);
H

void wait()

{
int i;

for (1=0;i<5;i++) ;
}

/********************************************************************************/

/* Channel A() */
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/* The function will to called every time with a pulse signal form A channel */

/* */
/********************************************************************************/
void ChannelA(void)

// int pcr;

if (posR==5) startRecord=1;

/*
per=get McBSP1 CLKS DR();
if ((per & 0x00000010)==0x00000010) posR +=1;
else if ((pcr & 0x00000010)==0x00000000) posR -=1;
else LOG_printf(&trace, “read McBSP1 error”);
*/
posR+=1;
if (posR==180) posR =0;
/I else if (posR==-1) posR=179;

/111111111111711 To test the motor’s symmetry //// 03-24-05

// THS1206Conversion();
/I MicroController(Vpower,over I, gtheta,l sense,didtd, omm.,thetah,&omegah,

/! &lcomm, &Enable, &MorG,&error);
// storeData();
H
/********************************************************************************/
/* Channell() */
/* The function will to called every time with a pulse signal form I channel */
/*To omm. onize the real rotor position

*/
/********************************************************************************/
void Channell(void)
{
posR = 122;
H
[ R SRR R SRR SOR SRR R SRR R R SRR SRR R Rk RSk Rk
/* GetSignals McBSP1 */
/* The function will be called by SwiGetSignals */
/* 1t gets signals through McBSP1 */

/****************************************************************/
void GetSignals McBSP1(void)
{ .
nt pcr;
/I Get circuit signals
put_muxsel(1, 1); // get] sense[3] and I sense[2]
wait();
per=get McBSP1_CLKS DR();
if ((per & 0x00000040)==0x00000040) I_sense[3]=1;
else if ((per & 0x00000040)==0x00000000) I sense[3]=0;
else LOG_printf(&trace, “read McBSP1 error”);
if ((per & 0x00000010)==0x00000010) I_sense[2]=1;
else if ((pcr & 0x00000010)==0x00000000) I sense[2]=0;
else LOG_printf(&trace, “read McBSP1 error”);

put_muxsel(1, 0); // get] sense[l] and I _sense[0]
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wait();
pcr=get McBSP1 CLKS DR();
if ((per & 0x00000040)==0x00000040) I _sense[1]=1;
else if ((pcr & 0x00000040)==0x00000000) I sense[1]=0;
else LOG_printf(&trace, “read McBSP1 error”);
if ((per & 0x00000010)==0x00000010) I_sense[0]=1;
else if ((pcr & 0x00000010)==0x00000000) I sense[0]=0;
else LOG_printf(&trace, “read McBSP1 error”);

}

void sendOutComm(void)

{

if ((Enable==1) && (time>=0.2))
/I if (Enable==1)

{
if ( omm.[3]!'= omm._act[3])
{set_comm3( omm.[3]); wait(); omm._act[3]= omm.[3];}
if ( omm.[2]!= omm. act[2])
{set_comm2( omm.[2]); wait(); omm._act[2]= omm.[2];}
if ( omm.[1]!= omm. act[1])
{set_comml( omm.[1]); wait(); omm._act[1]= omm.[1];}
if ( omm.[0]'= omm. act[0])
{set_commO( omm.[0]); wait(); omm._act[0]= omm.[0];}
H
H

/*  MicroController Program  */

void MicroController(void)
{

SenseTheta();
Commutator(thetahInt);

/*

if (observer==0)
Commutator(thetahInt);  // using posR to do sensored control, thetahInt do sensorless
else if (sensorless==1)
Commutator(thetahlInt);
else

Commutator(posR);

*/

H

void SenseTheta(void)
{
if (observer==0)
{
omegah += error*H2*tsamplem;
thetah += (omegah+error*H1)*tsamplem;
while(thetah<0)
thetah+=pi;
while(thetah>pi)
thetah-=pi;
thetahInt=(int)(thetah*57.325);// 180/pi
error=errorlow(thetahlnt);  // calculate error after thetah to make sure it’s in rang(0 pi)

else
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/
1

}

omegah += error*H4*tsamplem;
thetah += (omegah-+error*H3)*tsamplem;
while(thetah<0)

thetah+=pi;
while(thetah>pi)

thetah-=pi;
thetahInt=(int)(thetah*57.325);// 180/pi
error=errorhigh();  // flux method

if(omegah>10) sensorless=1; // high speed using sensorless control
else if (omegah<10) sensorless=0; // low speed using sensored control

// added on for testing the response time

/*

if(time>5.0)

{

}

*/

startRecord=1;
if (matrixCnt==100)
thetah-=15%3.14/180;

if(omegah>100) observer=1;

else if (omegah<50) observer=0;
if(omegah>100) highSpeed=1;
else if (omegah<80) highSpeed=0;
/1 if (omegah>10) startRecord=1;

}

float errorlow(int alphalnt)

{

float error;
galpha[0]=gmatrix(O[alphalnt];
galpha[ 1 ][=gmatrix 1 [alphalnt];
galpha[2]=gmatrix2[alphalnt];
galpha[3]=gmatrix3[alphalnt];

// galphal
// galpha
// galpha
// galpha

0]=gmatrix0
1]=gmatrix1
2]=gmatrix2
3]=gmatrix3

posR];
posR];
posR];
posR];

e
e

if (I_sense[0]==0) gtheta[0]=galpha[0];
if (I_sense[1]==0) gtheta[1]=galpha[1];
if (I_sense[2]==0) gtheta[2]=galpha[2];
if (I_sense[3]==0) gtheta[3]=galpha[3];

error=galpha[0]*gtheta[1]-galpha[1]*gtheta[0]+

galpha[1]*gtheta[2]-galpha[2]*gtheta[1]+
galpha[2]*gtheta[3]-galpha[3]*gtheta[2]+
galpha[3]*gtheta[0]-galpha[0]*gtheta[3];

>

// Filter out the high amplitude noise
/1 if (error>0.8) error=0.8;

// else if(error<-0.8) error=-0.8;
return (error);

}
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float errorhigh(void)

L

int1;

float errorh;

float thetatemp[phase];

float temp=0;

// thetatemp[0]=posR*0.017444;  // actual angle
thetatemp[0]=thetah; // estimated angle
thetatemp][ 1 ]=thetatemp[0]+0.7854; // 45 degree phase shift
thetatemp[2]=thetatemp[1]+0.7854;
thetatemp| 3 ]=thetatemp[2]+0.7854;

// thetatemp=thetah; // estimated angle

for (i=0;i<phase;i++)

if((L_sense[i]==0)&&( omm.[i]==1))
{

// wrap the angle into -30 ~ 30 period
while(thetatemp[i] > 0.5236)
thetatemp[i] -= 1.0472;
while(thetatemp[i] <-0.5236)
thetatemp[i] += 1.0472;
phaseLamdah[i] = flux(thetatemp[i],phasel[i]);
if(thetatemp[i]>=0)
temp += phaseLamdah[i]-phaseLamdali];
else
temp += phaseLamda[i]-phaseLamdah[i];
H
else
phaseLamdah[i] = 0.0;
H
errorh=temp;
return(errorh);

}

void Commutator(int alphalnt)
{
if (highSpeed==0)
{
omm.[0]= omm.[alphalnt];
omm.[1]= omm/alphalnt];
omm.[2]=commC[alphalnt];
omm.[3]=commDJalphalnt];

}

else

{
omm.[0]=commHighA [alphalnt];
omm.[1]=commHighB/[alphalnt];
omm.[2]=commHighC[alphalnt];
omm.[3]=commHighD[alphalnt];

/********************************************************************************/
/* motor_init() */
/* The function will to called in the main function to initialize the motor */
/* rotor position and initialize other variables */

/********************************************************************************/

void motor_init(void)

{
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int i,j; // j is used in the look up table generation program

time=0; // the real time

omegah=0; // the estimated rotor speed

error=0; // the error for the estimator

thetah=qod*pi/180; // The rotor position for Phase A in radian

observer=0; // 0=>1inductance profile based observer, 1> flux control
startRecord=0; // not start until the motor starts moving (channelA is called)
sensorless=1; // 1=sensorless control, 0=sensored control

highSpeed=0;
matrixCnt=0;
savei=1;
// Initialize command signals
Enable=1;
MorG=1;
TorV1=0;
TorV0=0;
omm.[3]=0;
omm.[2]=0;
omm.[1]=0;
omm.[0]=0;

// Disable the current regulator

set_Enable(0);
wait();
Enable act = 0

set MorG(MorG);
wait();
MorG_act= MorG;

set TorVI(IorV1);
wait();
IorV1 _act=  lorVl,;

set TorVO(IorV0);
wait();
IorVO _act= IorVo;

set_comm3( omm.[3]);
wait();
omm. act[3] = omm.[3];

set comm2( omm.[2]);
wait();
omm._act[2] = omm.[2];

set_ comml( omm.[1]);
wait();
omm._act[1] = omm.[1];

set_commO( omm.[0]);
wait();
omm._act[0] = omm.[0];

// Enable the current regulator
set _Enable(Enable);

wait();

Enable act =  Enable;
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/I Give a current command, which is 0.619%4.5*5=14 Ampere
/¥ DSS_spWrite(0x0000); // cancelled to adjust the current command externally 04-04-05

Enable=1;

set Enable(Enable);

wait();

Enable act = 1
*/
// Initialize the rotor position to the aligned position with Phase A
/ %

set_ commO(1);

wait();

omm. act[0] = 1;

waitlong();

set_commO(0);
wait();
omm._act[0] = 0;
*/
posR=0; // the actual rotor position

// generate a look up table for the commutator
for(i=0;i<cDataSize;i++)
L
=L
while(j<-30)
j +=60;
while(5>30)

j -=60;
if((j>=qon)&&(j<=qoft))
omm.[i]=1;

else
omm.[i]=0;
if((j>=qon2)||(j<=qoff2))
commHighA[i]=1;
else
commHighA[i]=0;

j=i+45;

while(j<-30)
j +=60;

while(5>30)

j -=60;
if{(j>=qon)&&(j<=qoff))
omm[i]=1;

else
omm[i]=0;
if(j>=qon2)||(j<=qoff2))
commHighB[i]=1;
else
commHighB[i]=0;

j=1190;
while(j<-30)
j +=60;
while(j>30)
Jj —=60;
if((j>=qon)& &(j<=qoft))
commC[i]=1;

140



else

commC[i]=0;
if(j>=qon2)||(j<=qoff2))

commHighC[i]=1;
else

commHighC[i]=0;

j=it+135;
while(j<-30)
j +=60;
while(5>30)
Jj —=60;
if((j>=qon)& &(j<=qoff))
commDJi]=1;
else
commDJ[i]=0;
if((j>=qon2)||(j<=qoff2))
commHighDJi]=1;
else
commHighD[i]=0;

b
for(i=0;i<dataSaveSize;i++) // initialize data save matries

{

gthetaMatrixO[i] = 0.0
gthetaMatrix1[i] = 0.0;
gthetaMatrix2[i] = 0.0;
gthetaMatrix3[i] = 0.0;

galphaMatrixO[i] =  0.0;
galphaMatrix1[i] =  0.0;
galphaMatrix2[i] =  0.0;
galphaMatrix3[i] = 0.0;
thetahMatrix[i] = 0.0;
omegahMatrix|[i] = 0.0
errorMatrix[i] = 0.0;
posRMatrix([i] = 0
posEMatrix|[i] = 0
commMatrixO[i] = 0.0;
commMatrix1[i] = 0.0;
commMatrix2[i] = 0.0;
commMatrix3[i] = 0.0
IsenseMatrix0[i] = 0;
IsenseMatrix1[i] = 0;
IsenseMatrix2[i] = 0;
IsenseMatrix3[i] = 0
phaseLamdaMatrix0[i]= 0.0;
phaseLamdaMatrix1[i]= 0.0;
phaseLamdaMatrix2[i]= 0.0;
phaseLamdaMatrix3[i]= 0.0;

phaseLamdahMatrixO[i
phaseLamdahMatrix1[i
phaseLamdahMatrix2[i

[

1=0.0
1=0.0;
1=0.0;
phaseLamdahMatrix3[i]=0.0
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phaselMatrix0[i] =
phaselMatrix1[i]
phaseIMatrix2[i]
phaselMatrix3[i] =

SR

=

runtimeMatrix[i] =
timeMatrix[i]

I
=2

// End of initialization of the rotor

}

/********************************************************************************/

/* storeDatal() */

/* The function will store data every savestep*tsemplem seconds */
/********************************************************************************/

void storeData(void)

if (matrixCnt<dataSaveSize)
if(savei>=savestep)

{

gthetaMatrixO[matrixCnt]=  gtheta[0];
gthetaMatrix1[matrixCnt]=  gtheta[1];
gthetaMatrix2[matrixCnt]=  gtheta[2];
gthetaMatrix3[matrixCnt]=  gtheta[3];

galphaMatrixO[matrixCnt] = galpha[0];
galphaMatrix 1[matrixCnt] = galpha[l];
galphaMatrix2[matrixCnt] = galpha[2];
galphaMatrix3[matrixCnt] = galpha[3];
thetahMatrix[matrixCnt] = thetah;
omegahMatrix[matrixCnt] = omegah;
errorMatrix[matrixCnt] = error;
posRMatrix[matrixCnt] = posR;
posEMatrix[matrixCnt] = thetah*57.325-posR;
commMatrixO[ matrixCnt] = omm.[0];
commMatrix I [matrixCnt] = omm.[1];
commMatrix2[matrixCnt] = omm.[2];
commMatrix3[matrixCnt] = omm.[3];
IsenseMatrixO[matrixCnt]= 1 sense[0];
IsenseMatrix1[matrixCnt]= 1 sense[l];
IsenseMatrix2[matrixCnt]= 1 sense[2];
IsenseMatrix3[matrixCnt]= I sense[3];

phaseLamdaMatrixO[matrixCnt]= phaseLamda[0];
phaseLamdaMatrix 1 [matrixCnt]= phaseLamda[1];
phaseLamdaMatrix2[matrixCnt]= phaseLamda[2];
phaseLamdaMatrix3[matrixCnt]= phaseLamda[3];

phaseLamdahMatrixO[matrixCnt]= phaseLamdah[0];
phaseLamdahMatrix 1[matrixCnt]= phaseLamdah[1];
phaseLamdahMatrix2[matrixCnt]= phaseLamdah[2];
phaseLamdahMatrix3[matrixCnt]= phaseLamdah[3];

phaseIMatrixO[matrixCnt] = phasel[0];
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phaselMatrix 1 [matrixCnt] = phasel[l];

phaseIMatrix2[matrixCnt] = phasel[2];
phaseIMatrix3[matrixCnt] = phasel[3];
runtimeMatrix[matrixCnt] = runtime;
timeMatrix[matrixCnt] = timel;

matrixCnt += 1;

savei= 1;
§
else
savei += 1;
// single sequence data
/*
else
{
matrixCnt=0;
H
*/
§
float flux(float theta, float phi)
{

float theta abs, phi_abs,thetatemp;
float Lno, gf, Isatf, lamdam, lamdaf;

theta abs=fabs(theta);
thetatemp=thetapf-theta abs;
phi_abs=fabs(phi);

if (theta_abs>thetapf)
Lno=LuL+(thetau-theta _abs)*4.1583E-4;

/! Lno=LuL+((Lpo-LuL)/(thetau-thetapf))*(thetau-theta abs);
return (Lno*phi_abs);

H
else
{
/! gf= geff+go*(1-Rg*(thetapf-theta abs)/pwf);
gf=0.0012-0.0023*thetatemp;
/! Isatf= Bsat*(Ife+2*gf*u/uo)/(u*N) ;

Isatf= 2.3945+gf*9.5493E4 ;
if(phi_abs<Isatm)
/! lamdam=Istk*STF*Rg*(thetapf-theta abs)*u*N*N*phi_abs/(Ife+2*g*u/uo) ;
lamdam=0.0026*thetatemp*phi_abs;
else
/
lamdam=N*Istk*STF*Rg*(thetapf-theta abs)*(uo*N*phi_abs+Ife*Bsat+uo*Ife*Hsat)/(Ife);
lamdam=thetatemp*(3.7699E-5*phi_abs+0.4514)*0.1406;
if(phi_abs<Isatf)
/! lamdaf=Istk*STF*Rg*theta abs*(u*N*N*phi_abs/(lfe+2*gf*u/uo)) ;
lamdaf=0.0012*theta_abs*(5.6549*phi_abs/(1fe+10000*gf)) ;
else
/! lamdaf=N*Istk¥*STF*Rg*theta_abs*(uo*N*phi_abs+lfe*Bsat+uo*Ife*Hsat)/(Ife+2*gf)

lamdaf=0.0353*theta_abs*(3.7699E-5*phi_abs+0.4514)/(Ife+2*gf);

return (lamdaftlamdam);

}
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Mcbsp_functions.c

#include <c6x.h>
#include “c6x11dsk.h”
#include <csl.h>
#include <csl legacy.h>
#include <csl_timer.h>

#include “mcbsp.h”
#define SP1_SRGR V 0x00000000
#define SP1_SPCR _V 0x00000000
#define SP1 PCR V 0x00003f0c  // DX,CLKR,FSR,CLKX,FSX are outputs
// CLKS, DR are inputs
// use with FPGA chip on the current
// regulator board.
// initialize enable =0
#define SP1 PCR V 0x00003000 // use to test optical encoder signals
// A->FSR, B->CLKX, I->CLKR
/I A_fpga-> CLKS, B fpga->DR;
#define SP1 PCR V 0x00003f0b  // use with FPGA chip, <CLKS DR>=<cl1, c0>,
/! <Enable, MorG>=<clkx,fsx>
// PCR description

/31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Reserved
4 | | | \

/|15 14| 13| 12| 11| 10] 9| 8] 7| 6] 5| 4] 3| 2| 1] O]

/10 j0 |1 |1 |1 |1 1] 1| O] O] O] O] O] 0] O] O]

/I reserved RIOEN FSRM CLKRM CLKSSTAT DRSTAT FSRP CLKRP

/ XIOEN FSXM CLKXM res DXSTAT FSXP CLKXP

// when McBSP is used as GPIO, XIOEN and RIOEN should be ‘1’ both,

// and XRST and RRST in SPCR register @ the 16" bit and the 0" bit

// should be ‘0’ both.

*/
/****************************************************************/
/* init_ GPIO */
/* This initializes the McBSP */

s sk kR ok ok ok kool ok ok okl kol kol kol ok okt ok ol kool ol ok ok ok ok ok ook o/

void init McBSP1(void)

{
* (UINT32 *) McBSP1_SRGR = (UINT32) SP1_SRGR _V;
* (UINT32 *) McBSP1_SPCR = (UINT32) SP1_SPCR_V;
* (UINT32 *) McBSP1_PCR = (UINT32) SP1_PCR V;
return;

}

void init_timerl(void)

{
TIMER _setDatOut( TIMER hDevl, 0);
return;

}
int get McBSPO(void)

{
int per;
per = (int) ( * (UINT32 *) McBSPO_PCR );
return (pcr);
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// McBSP 0 functions
int get McBSPO_CLKX(void)
{ .
nt pcr;
per = (int) ( * (UINT32 *) McBSPO_PCR );
per =per >>1;
per = per & 0x00000001;
return (pcr);
§
int get McBSPO_FSX(void)

{ .
nt pcr;
per = (int) ( * (UINT32 *) McBSPO_PCR );
per = per >> 3;
per = per & 0x00000001;
return (pcr);
i

int get McBSPO_CLKR(void)
{
int pcr;
per = (int) ( * (UINT32 *) McBSPO _PCR );
per = per >>0;
per = per & 0x00000001;
return (pcr);

i
int get McBSPO_FSR(void)

{ .
int per;
per = (int) ( * (UINT32 *) McBSPO PCR );
per = per >>2;
per = per & 0x00000001;
return (pcr);
i
int get McBSP0O DR(void)
{ .
nt pcr;
per = (int) ( * (UINT32 *) McBSPO PCR );
per = per >> 4;
per = per & 0x00000001;
return (pcr);
}
int get McBSPO_CLKS(void)
{ .
int pcr;
per = (int) ( * (UINT32 *) McBSPO_PCR );
per = per >> 6;
per = per & 0x00000001;
return (pcr);
H

void put McBSP0O CLKX(int clkxp)
if(clkxp==0)
* (UINT32 *) McBSPO PCR = (* (UINT32 *) McBSPO PCR) & Oxfffftffd;
e e (UINT32 *) McBSPO PCR = (* (UINT32 *) McBSP0 PCR) | 0x00000002;
Eloid put McBSPO FSX(int fsxp)

if(fsxp==0)
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* (UINT32 *) McBSPO_PCR = (* (UINT32 *) McBSPO_PCR) & Oxfffffff7;

ohe e (UINT32 *) McBSPO_PCR = (* (UINT32 *) McBSP0_PCR) | 0x00000008;
\}loid put McBSPO DX(int dx_stat)
{ if(dx_stat==0)
* (UINT32 *) McBSPO PCR = (* (UINT32 *) McBSPO_PCR) & Oxffffffdf;
\ e e (UINT32 *) McBSPO PCR = (* (UINT32 *) McBSP0 PCR) | 0x00000020;

void put McBSP0O CLKR(int clkrp)

if(clkrp==0)

* (UINT32 *) McBSPO_PCR = (* (UINT32 *) McBSP0_PCR) & Oxffftfffe;
else

e (UINT32 *) McBSPO PCR = (* (UINT32 *) McBSP0O_PCR) | 0x00000001;

H
void put McBSPO FSR(int fsrp)

if(fsrp==0)

* (UINT32 *) McBSPO PCR = (* (UINT32 *) McBSP0_PCR) & Oxfffffttb;
else

e (UINT32 *) McBSPO PCR = (* (UINT32 *) McBSPO_PCR) | 0x00000004;

}

// McBSP 1 functions
int get McBSP1_CLKX(void)

{ .
int pcr;
per = (int) ( * (UINT32 *) McBSP1_PCR);
per = per >> 1;
per = per & 0x00000001;
return (pcr);
}
int get McBSP1_FSX(void)
{ .
nt pcr;

per = (int) ( * (UINT32 *) McBSP1 PCR);
per = per >>3;

per = per & 0x00000001;

return (pcr);

}
int get McBSP1_CLKR(void)

{ .
nt pcr;
per = (int) ( * (UINT32 *) McBSP1 _PCR);
per = per >>0;
per = per & 0x00000001;
return (pcr);
h
int get McBSP1_FSR(void)
{ .
int per;

per = (int) ( * (UINT32 *) McBSP1_PCR);
per = per >>2;

per = per & 0x00000001;

return (pcr);

j
int get McBSP1_DR(void)
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int pcr;
per = (int) ( * (UINT32 *) McBSP1 PCR);
per = per >> 4
per = per & 0x00000001;
return (pcr);
i
int get McBSP1_CLKS(void)
{
int pcr;
per = (int) ( * (UINT32 *) McBSP1_PCR);
per = per >> 6;
per = per & 0x00000001;
return (pcr);
H
void put McBSP1 CLKX(int clkxp)

if(clkxp==0)

* (UINT32 *) McBSP1_PCR = (* (UINT32 *) McBSP1_PCR) & Oxffffftfd;
else

e (UINT32 *) McBSP1 PCR = (* (UINT32 *) McBSP1_PCR) | 0x00000002;

}
void put McBSP1 FSX(int fsxp)
if(fsxp==0)
* (UINT32 *) McBSP1 PCR = (* (UINT32 *) McBSP1_PCR) & Oxffffftf7;
else

e (UINT32 *) McBSPI PCR = (* (UINT32 *) McBSP1_PCR) | 0x00000008;

H
void put McBSP1 DX(int dx_stat)

{
if(dx_stat==0)
* (UINT32 *) McBSP1 PCR = (* (UINT32 *) McBSP1_PCR) & Oxffftffdf;
else
e (UINT32 *) McBSP1_PCR = (* (UINT32 *) McBSP1_PCR) | 0x00000020;
h
void put McBSP1 CLKR(int clkrp)
{
if(clkrp==0)
* (UINT32 *) McBSP1_PCR = (* (UINT32 *) McBSP1_PCR) & Oxffftfffe;
else

e (UINT32 *)McBSP1 PCR = (* (UINT32 *) McBSP1_PCR) | 0x00000001;

}
void put McBSP1 FSR(int fsrp)

{
if(fsrp==0)
* (UINT32 *) McBSP1 PCR = (* (UINT32 *) McBSP1_PCR) & Oxfffffttb;
else
e (UINT32 *) McBSP1 PCR = (* (UINT32 *) McBSP1_PCR) | 0x00000004;
H
int get McBSP1_CLKS DR(void)
{
int pcr;

per = (int) ( * (UINT32 *) McBSP1_PCR);
per = per & 0x00000050;
return (pcr);

}
int get McBSP1_FSR_CLKX_ CLKR(void)
{
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int per;
per = (int) ( * (UINT32 *) McBSP1 PCR);
per = per & 0x00000007;

return (pcr);
H
void put McBSP1_CLKR FSR(int clkr, int fsr)
{
if(clkr==1)
if(fsr==1)
* (UINT32 *) McBSP1_PCR = (* (UINT32 *) McBSP1_PCR) | 0x00000005;
else
e (UINT32 *) McBSP1 PCR = ((* (UINT32 *) McBSP1 PCR) | 0x00000001) &
Oxffifttb ;
else
if(fsr==1)
* (UINT32 *) McBSP1 PCR = ((* (UINT32 *) McBSP1 PCR) | 0x00000004) &
Oxffffftfe ;
else

e (UINT32 *)McBSP1 PCR = (* (UINT32 *) McBSP1 PCR) & Oxfffffffa ;

}
void put McBSP1 CLKX FSX(int clkx, int fsx)

if(clkx==1)
if(fsx==1)
* (UINT32 *) McBSP1 PCR = (* (UINT32 *) McBSP1_PCR) | 0x0000000a;
else
e (UINT32 *) McBSP1_PCR = ((* (UINT32 *) McBSP1_PCR) | 0x00000002) &
OxfTfftt7 ;
else
if(fsx==1)
* (UINT32 *) McBSP1 PCR = ((* (UINT32 *) McBSP1_PCR) | 0x00000008) &
OxfTfftfd ;
else
e (UINT32 *) McBSP1 PCR = (* (UINT32 *) McBSP1_PCR) & Oxffffftt5 ;
b
void put_muxsel(int timer1, int dx)
{
TIMER _setDatOut( TIMER hDevl, timerl);
put McBSP1 DX(dx);
H
/* The last 4 digits of McBSP1_PCR are the values for

FSX FSR CLKX CLKR

The input of the encoder is CLKR, The select lines of the encoder are the other 3
D |->TorVI(111)

E |->TorVO (110)
C | ->Enable (101)
O |->MorG (100)
D |->Comm
E
R

CLKR -> [3] - phase 1 on the board (011)
| > Comm[2] --> phase 1 on the board (010)
| > Comm[1] --> phase 1 on the board (001)
| > Comm[0] - phase 1 on the board (000)
ANNA
FSR  FSX
CLKX
*/

void set lorVI1(int iorvl)
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if (lorvl==1)
* (UINT32 *) McBSP1 PCR = (* (UINT32 *) McBSP1_PCR) | 0x0000000f;

else if (iorv1==0)
* T32 *) McBSP1_PCR = ((* (UINT32 *) McBSP1_PCR) | 0x0000000¢) & Oxffftfffe;
e  return;

}

void set_IorVO0(int iorv0)
{
if (iorv0==1)
* (UINT32 *) McBSP1 PCR = ((* (UINT32 *) McBSP1 _PCR) | 0x00000007) &
OxfIfffff7;
else if (iorv0==0)
* T32 *) McBSP1 PCR = ((* (UINT32 *) McBSP1_PCR) | 0x00000006) & Oxfffftfto;

. return;
void set_Enable(int Enable)

if (Enable==1)
* (UINT32 *) McBSP1 PCR = ((* (UINT32 *) McBSP1_PCR) | 0x0000000d) &
Oxfiffttd;
else if (Enable==0)
*T32 *) McBSP1_PCR = ((* (UINT32 *) McBSP1_PCR) | 0x0000000¢) & Oxfffffffc;
e  return;

void set MorG(int morg)
{
if (morg==1)
* (UINT32 *) McBSP1_PCR = ((* (UINT32 *) McBSP1_PCR) | 0x00000005) &
OxfTTTtLS;
else if (morg==0)
* T32 *) McBSP1_PCR = ((* (UINT32 *) McBSP1_PCR) | 0x00000004) & Oxffffftf4;

e  return;
H
void set_ comm3(int comm omm. if(comm omm.
* (UINT32 *) McBSP1_PCR = ((* (UINT32 *) McBSP1_PCR) | 0x0000000b) &
Oxfffffttb;
else if (comm omm.
*T32 *) McBSP1_PCR = ((* (UINT32 *) McBSP1_PCR) | 0x0000000a) & Oxfffffffa;
e  return;
H
void set_ comm2(int comm omm. if (comm omm.
* (UINT32 *) McBSP1 PCR = ((* (UINT32 *) McBSP1 _PCR) | 0x00000003) &
OxfTTfftf3;
else if (comm omm.
* (UINT32 *) McBSP1_PCR
Ox T2,
return;

((* (UINT32 *) McBSP1_PCR) | 0x00000002) &

}

void set_comm1 (int comm)
{
if (comm==1)
* (UINT32 *) McBSP1_PCR
OxfTffffto;
else if (comm==0)
* (UINT32 *) McBSP1_PCR
OxfTffes;
return;

((* (UINT32 *) McBSP1 PCR) | 0x00000009) &

((* (UINT32 *) McBSP1 PCR) | 0x00000008) &
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}

void set_commO(int comm)
{
if (comm==1)
* (UINT32 *) McBSP1 PCR = ((* (UINT32 *) McBSP1_PCR) | 0x00000001) &
Oxfffttr1;
else if (comm==0)
* (UINT32 *) McBSP1 PCR = (* (UINT32 *) McBSP1_PCR) & Oxftffttfo;
return;
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Appendix I11. The torque equations for the overlap case

T,(1,,0)=T,,(,,0)+T, (1,,0)

_ nser uNp®Rglstk STF 2

p (P Py
npar LFe,m +£g

0

Tom(|¢>9) =

nser «Np” Rglstk STF
= - HTP g Iri,sat+T1m(|¢’9) (I¢> Im,sat)
npar | U

Fe,m +—40
0

Np(L," = 1ea)

1 1
+ Bsat I‘Fe,m (7_7)(I ¢ Im,sat)
Y7,

T, (1,.6) = nser 4, NpRg stk STF —21Par H
g+&LFe,m
u
L )0y 9o
nser et TH9¢(0)— '/I'W
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Appendix IV. The parameters of the switched reluctance motor

parameters value description

Rinatt 0.306 inches The shaft radius

Ry 0.846 inches The rotor yoke radius

R, 1.031 inches The distance from the center to the air gap
Rgy 1.623 inches The stator yoke radius

Rout 1.968 inches The outside radius

g 0.009 inches The thickness of the air gap

L 1.983 inches The stack lamination length

Sie 0.9 The stacking factor

0, 23.82° Rotor pole width in degree

Bat 1.6 tesla The saturation flux density

u 1000 p, The permeability of the unsaturated iron
T8 50 o The permeability of the saturated iron

P 1.2 hp The rated power output

Ppeak 2 hp The peak power output

®max 15,000 rpm The maximum rotor speed

La 1.27 mH The inductance at the aligned position
Lu 0.19 mH The inductance at the unaligned position
Note:

1. Since the manufacturer considers the parameters of the motor proprietary
information, so the values shown here are measured or estimated and might
not be accurate.

2. Due to the inductance asymmetry, the inductance at the aligned and unaligned

position is obtaind for phase A with a certain pair of rotor poles.
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