View metadata, citation and similar papers at core.ac.uk brought to you by X{'CORE

provided by University of Kentucky

UK J I __ d University of Kentucky
[1OWIET ge UKnowledge
University of Kentucky Doctoral Dissertations Graduate School

2000

Stream Cipher Analysis Based on FCSRs

Jinzhong Xu
University of Kentucky, jxu@accesstech.com

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation

Xu, Jinzhong, "Stream Cipher Analysis Based on FCSRs" (2000). University of Kentucky Doctoral
Dissertations. 320.

https://uknowledge.uky.edu/gradschool_diss/320

This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been
accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

https://core.ac.uk/display/232559437?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/gradschool_diss
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

ABSTRACT OF DISSERTATION

Jinzhong Xu

The Graduate School
University of Kentucky
2000

STREAM CIPHER ANALYSIS BASED ON
FCSRS

ABSTRACT OF DISSERTATION

A dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy
at the University of Kentucky

By

Jinzhong Xu
Lexington, Kentucky
Director: Dr. Andrew Klapper, Professor of Computer Science
Lexington, Kentucky
2000

ABSTRACT OF DISSERTATION

STREAM CIPHER ANALYSIS BASED ON
FCSRS

Cryptosystems are used to provide security in communications and data trans-
missions. Stream ciphers are private key systems that are often used to transform
large volumn data. In order to have security, key streams used in stream ciphers must
be fully analyzed so that they do not contain specific patterns, statistical infomation
and structures with which attackers are able to quickly recover the entire key streams

and then break down the systems.

Based on different schemes to generate sequences and different ways to represent
them, there are a variety of stream cipher analyses. The most important one is
the linear analysis based on linear feedback shift registers (LFSRs) which have been
extensively studied since the 1960’s. Every sequence over a finite field has a well de-
fined linear complexity. If a sequence has small linear complexity, it can be efficiently
recoverd by Berlekamp-Messay algorithm. Therefore, key streams must have large
linear complexities. A lot of work have been done to generate and analyze sequences
that have large linear complexities. In the early 1990’s, Klapper and Goresky discov-
ered feedback with carry shift registers over Z/(p) (p-FCSRS), p is prime. Based on
p-FCSRs, they developed a stream cipher analysis that has similar properties to linear
analysis. For instance, every sequence over Z/(p) has a well defined p-adic complexity

and key streams of small p-adic complexity are not secure for use in stream ciphers.

This disstation focuses on stream cipher analysis based on feedback with carry
shift registers. The first objective is to develop a stream cipher analysis based on
feedback with carry shift registers over Z/(N) (N-FCSRs), N is any integer greater

than 1, not necessary prime. The core of the analysis is a new rational approximation

algorithm that can be used to efficiently compute rational representations of eventu-
ally periodic N-adic sequences. This algorithm is different from that used in p-adic
sequence analysis which was given by Klapper and Goresky. Their algorithm is a

modification of De Weger’s rational approximation algorithm.

The second objective is to generalize feedback with carry shift register architecture
to more general algebraic settings which are called algebraic feedback shift registers
(AFSRs). By using algebraic operations and structures on certain rings, we are able
to not only construct feedback with carry shift registers, but also develop rational

approximation algorithms which create new analyses of stream ciphers.

The cryptographic implication of the current work is that any sequences used in
stream ciphers must have large N-adic complexities and large AFSR-based complex-

ities as well as large linear complexities.

Jinzhong Xu

Date

STREAM CIPHER ANALYSIS BASED ON
FCSRS

by

Jinzhong Xu

Director of Dissertation

Director of Graduate Studies

Date

RULES FOR THE USE OF DISSERTATION

Unpublished dissertations submitted for the Doctor’s degrees and deposited in the
University of Kentucky Library are as a rule open for inspection, but are to be used
only with due regard to the rights of the authors. Bibliographical references may
be noted, but quotations or summaries of parts may be published only with the
permission of the author, and with the usual scholarly acknowledgements.

Extensive copying or publication of the thesis in whole or in part requires also the
consent of the Dean of The Graduate School of the University of Kentucky.

A library which borrows this thesis for use by its patrons is expected to secure the
signature of each user.

Name and Address

i
o
=+
o

DISSERTATION

Jinzhong Xu

The Graduate School
University of Kentucky
2000

STREAM CIPHER ANALYSIS BASED ON
FCSRS

DISSERTATION

A dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy
at the University of Kentucky

By

Jinzhong Xu
Lexington, Kentucky
Director: Dr. Andrew Klapper, Professor of Computer Science
Lexington, Kentucky
2000

0

1

1.1

1.2

1.3

2

2.1

2.2

2.3

2.4

2.5

3

3.1

3.2

3.3

3.4

3.5

3.6

Table of Contents

List of Tables

List of Figures

Introduction

Linear Feedback Shift Registers
Register Construction and Output Sequences

Psuedo-Random Generators and m-Sequences

An Extension of LFSRs

Feedback with Carry Shift Registers over 7/(V)
Register Description and Examples 00
Characteristics of N-FCSRs0 o000 o000
Exponential Representation
[-sequences e e

Linear Complexities of N-adic [-Sequences

The Synthesis of N-FCSRs

Preliminaries L
The Rational Approximation Algorithm
Proof of the Rational Approximation Algorithm
Register Construction oL
Distribution of N-adic complexities

Conclusions

1l

vi

11

13
14
16
24
26

32

45

4 Algebraic Feedback Shift Registers

4.1

4.2

4.3

4.4

4.5

4.6

4.6.

4.6.2 Quadratic Extensions of Z[v/N]

4.7

Algebraic Feedback Shift Registers

Rational Approximation o L

Rational Approximation over Z

Rational Approximation for AFSRs over Polynomial Rings

Rational Approximation for Ramified Extensions
Rational Approximation for Quadratic Extensions

1 Imaginary Quadratic Extensions of Z

Comments

Bibliography

Vita

v

72
73
78
90
90
92
96
99
100

103

104

108

2.1

2.2

2.3

2.4

2.5

2.6

3.1

4.1

4.2

List of Tables

Output of a 6-FCSRo o 16
Output of a 3-FCSR o 19
Primitive Roots of Z/(q) 28
Number of Strong 2-Primes oo 36
Prime Chain of Length 6 41
List of Triples (¢,p, N) o 42
Distribution of 2-Adic Complexities of Length <8 71
Output of An x-AFSRo oo 75
Output of A m-AFSRo o 76

1.1

1.2

2.1

2.2

3.1

4.1

4.2

List of Figures

A Private Key System oo 1
An One-Time-Pad System 2
A Linear Feedback Shift Register 7
A Summation Cipher L oo 11
An N-FCSR Architecture, 15
Summation of N-adic Sequences 21
Rational Approximation Algorithm for N-FCSRs 50
An AFSR Architectureaftero o000 74
Rational Approximation Algorithm for AFSRs 82

vi

Introduction

As the world enters the information era, securely protecting digital data has become
an urgent and serious problem. For instance, with the fast development of internet
technology, more and more businesses are operated electronically through the infor-
mation highway. Every moment countless data streams such as bank transactions,
credit card numbers, database queries, and confidential documents are transmitted
online. On the other hand, computer hackers sneak into networks and eavesdroppers
tap lines and scan digital signals. They threaten the security and privacy of business
institutions as well as individuals. Therefore, extensive study must be made and
advanced technology must be developed to provide secure communication systems.

This is what cryptography does.

One way of protecting communication is to use a private key to transform (en-
crypt) meaningful message data (plain texts) into unreadable texts (cipher texts), and
then send the ciphertexts through public channels. The message will be transformed
back (deciphered) on the receiving site with the same key which is only shared by the

sender and receiver. The following diagram represents such a scheme.

Ere(m) public channel Drc(c)

ke?‘ ’Eey

private channel

Figure 1: A Private Key System

clock—— key stream|
generator

!
k; private channel k;
My o \m; D k; c; @k b,
public channel

Figure 2: An One-Time-Pad System

There are many proposed and implemented cryptosystems in various applications.
Different systems have different features and design goals. When transferring very
large volume data, speed is an important concern. In this case, a class of private
key cryptosystems called stream ciphers are often employed [31, 35]. Stream ciphers
divide the plain text into characters and encrypt each character by adding time-
varying noise. Hence the same plain-text character corresponds to different cipher-

text characters at different times.

One of the most remarkable stream ciphers is the so called one-time-pad [39].
Assume that the data to be sent is binary. Bob and Alice securely share a purely
random binary sequence (or key stream). When Bob wants to send data to Alice, he
uses the next unused bits of the key stream to encipher the data and then sends the
resulting cipher text to Alice. The encryption is done by doing an XOR operation
(0+0=0,140=041=1,141 = 0) between the data stream and the key stream.

Upon receiving the cipher text, Alice uses the same key stream bits to do an XOR
operation with the received text. This will recover the message from the cipher text.
Both Bob and Alice never reuse key stream bits. (This system was used in World
War II with the key stream written on a pad of paper. Each sheet was used for one
day then discarded, hence “one-time-pad”). The one-time-pad system is extremely

fast due to its simplicity. The scheme can be depicted in Figire 2.

An attack on a system is a way to find the key without direct knowledge of

the key. For example, the cipher text only attack assumes that cryptanalysts only
know the scheme and the cipher text. The security of a system depends on the
"difficulty’ of successful attacks. For any system, besides its correctness, one of the
most overwhelming concerns is its security. Therefore, before a cryptosystem can
be used, a complete analysis against potential attacks must be made [2, 11, 12, 35].
Cryptology is the systematic study of the design and evaluation of cryptosystems. It

defines security measures and provides mathematical models and analytical tools.

A cryptosystem is said to have perfect secrecy provided that based only on the
cipher text, a cryptanalyst has no better attack than guessing, no matter how much
computational power is available. The most distinguishing feature of the one-time-
pad is that the system has perfect secrecy, and this feature is realized by the purely
random property of the key stream [2, 35, 39]. Hence in order to use the one-time-pad,
we must have: (1) a means for generating long purely random sequences; and (2) a
secure channel to distribute the key stream. Since the key stream size is the same
as the data stream size, securely distributing the key stream is as hard as securely
sending the data stream itself. Also, we do not have an efficient and reliable device
which can actually generate purely (uniformly) random sequences. Therefore the

one-time-pad is not practical in most cases.

In practice, the purely random key stream generator is often replaced by a finite
state machine. This makes the hardware implementation and the secure distribution
of a key stream feasible because only a small size of data (key) is needed to initialize
such a generator. However, good statistical properties of the key stream are essential
in producing highly confusing cipher text and thus providing security. Hence stream
cipher designers are looking for devices which can efficiently generate large period se-
quences that satisfy various statistical criterion. Also, since the key stream generator
is a deterministic machine, designers must not allow attackers to recover the generator
by analyzing the cipher text or a part of the key stream. Therefore, the analysis of

key streams becomes very important in stream cipher design and application [19, 35].

The present dissertation focuses on stream cipher analysis based on feedback with
carry shift registers. In Chapter 1 we give a brief review of linear feedback shift
registers (LFSRs). LFSRs are feedback shift registers with no carry and all operations

conducted in a finite field such as Z/(p) with p a prime number. Since the 1960’s,
LFSRs have been used as building blocks in key stream designs [35]. Because the
Berlekamp-Messay algorithm can efficiently recover a generator of a sequence if its
linear complexity is small [32], designers must analyze both the linear complexity and
the statistical properties of the generated sequences. This raises a question whether
there are other families of generators that have features similar to those of LFSRs
and provide different complexities and thus different analysis. The effort to find such
generators had not been greatly successful until the early 90’s when Klapper and
Goresky discovered feedback with carry shift registers over 7/(2) (2-adic FCSRs)
(20, 21, 22, 23].

In Chapter 2 we introduce feedback with carry shift registers over Z/(N) for any
positive integer N > 1 (N-FCSRs), and then in Chapter 3 develop the full analysis of
N-adic sequences based on these registers. We use N-adic numbers as a mathematical
model to represent N-adic sequences. Since the algebraic structure of general N-adic
numbers is much weaker than that of p-adic numbers, the p-adic analytical tools and
lattice theory cannot be easily utilized to design a synthesis algorithm for N-adic
periodic sequences. The main contribution of this dissertation is the design of a new
algorithm which can efficiently synthesize any N-adic sequence. This algorithm is
different from that for 2-adic sequences which was given by Klapper and Goresky
by modifying De Weger’s rational approximation algorithm for p-adic numbers [10].
Also, we will show that if an N-adic sequence of length [is randomly picked, the
probability of having its N-adic complexity at least [/2 is not less than 1/2.

Note that an analysis of key streams based on a class of generators generally
consists of three phases: (1) Describe the register architecture and implementation;
(2) Discuss the properties of output sequences; and (3) Design algorithms to solve
the register synthesis problem, i.e., given a part of a key stream, find the smallest size
register that generates the entire key stream. Once such an algorithm is developed,
an associated complexity can be defined for sequences, and then all sequences having

relatively small such complexity must not be used in any stream cipher schemes.

Another aim of this dissertation is to construct more general feedback with carry
shift registers and develop related analyses of stream ciphers. In Chapter 4, based on
algebraic operations on certain rings, we introduce algebraic feedback with carry shift

registers (AFSRs). Although the description of AFSRs is abstract, there are several

interesting cases in which registers can be practically implemented, for instance, func-
tion fields, quadratic number fields and ramification of N-FCSRs. In this chapter, we
first describe a framework for a general rational approximation algorithm, and show
that the algorithm converges efficiently when some specific conditions are satisfied.
We then show these specific conditions can be realized in many useful instances such

as quadratic number fields and ramification of N-FCSRs.

As a summary, this dissertation is a study of stream cipher analysis based on
feedback with carry shift registers. The results are mainly divided into two parts:
one for N-FCSR based analysis, and the other for AFSR based analysis. In both
cases, register synthesis algorithms are created and then the corresponding analysis
is developed. Examples and experimental data are also provided to support both the
theoretical results and algorithm implementations. The cryptographic implication
of the current work is that any sequences used in stream ciphers must have large

complexities as defined in this dissertation.

Chapter 1

Linear Feedback Shift Registers

Linear feedback shift registers (LFSRs) have been widely used in various areas such
as cryptography and coding theory. The most important characteristics of LFSRs
are: (1) they are simple and thus fast; (2) the statistical properties of the output
sequences can be fully analyzed by using efficient algebraic tools; (3) the Berlekamp-
Massey algorithm efficiently solves the register synthesis problem. There are many
fast devices that use LFSRs as building blocks and generate sequences whose linear
complexities are provably large and whose statistical properties are good. Hence
LFSRs are fundamental in both theoretical research and real applications. In this

chapter we give a brief review of the main properties of LFSRs.

1.1 Register Construction and Output Sequences

Let F = GF(p™) be a Galois field. For any integer r > 0 and r fixed elements
{qg € F:1<i<r} (clled taps), an LFSR of length r consists of r cells with
initial contents { @; € F: 0 < ¢ < r—1}. For any n > r, if the current state is

(ap-1,-",an_r), then a, is determined by the linear recurrence relation

”
ap = — E Un—iq; -
=1

The device outputs the rightmost element a,,_,., shifts all the cells one unit right, and

feeds a, back to the leftmost cell. That is, the state change is given by
(an—ly Ap—2,° " 7an—7“) — (ana Ap—1,°"" 7an—7"+1) .

6

Ap—1|Qn—2 R Ap—p41 | Cp—p —

an

Z Gn—i4q;

Figure 1.1: A Linear Feedback Shift Register

Here the summation is taken as addition in the field F'. The architecture of a length

r register is depicted in Figure 1.1.

Any configuration of the r cells forms a state of the LFSR. If ¢, # 0, the following
polynomial g(x) € F[x] of degree r is useful in the analysis of LFSRs:

() =qo+ qr + @2’ + -+ ga" with qo=—1 .

This polynomial is called the connection polynomial. An infinite sequence A = {a; €
F,1 > 0} has period T if for any ¢ > 0, a;17 = a;. Such a sequence is called periodic. If
this is only true for ¢ greater than some index ¢, then the sequence is called eventually

periodic. For an LFSR of length r over F', we have the following facts (see [35]).

1. There are only finitely many possible states, and the state with all the cells zero will
produce a 0O-sequence. The output sequence is eventually periodic and the maximal

possible period is p™" — 1.

2. The power series g,(7) = .52, a;x° associated with the output sequence is called
the generating function of the sequence. It is a rational function over F' in the form,
p(z)
gs(z) =
q(z)
with deg(p(x)) < r. The output sequence is strictly periodic if and only if deg(p(z)) <
deg(q(z)).

3. There is a one-to-one correspondence between LFSRs of length r with ¢. # 0 and
rational functions p(z)/q(z) with deg(q(z)) = r and deg(p(x)) < r.

4. The period of the output sequence is the smallest 7' such that g(z)|(zT — 1) or,
equivalently, the order of in the multiplicative group (F[z]/(q(x)))*.

Note that for the output sequence { a; } of an LFSR of length r and any n > r, there

is a relation
r
> an—iqi =0 .
=0

Such a relation is called a linear recurrence relation of length r, and may be repre-

sented by the characteristic polynomial
c(z) =qr" + qa" "+ g+ g

which is reciprocal to the polynomial ¢(z). In general, a sequence A over F may have
many linear recurrence relations. The one having smallest length is called a minimal
recurrence relation. It is unique up to a constant multiple. The corresponding char-
acteristic polynomial with the leading coefficient 1 is called the minimal polynomial,
denoted by m 4(x). Therefore, for a given sequence A over F, finding a shortest LFSR

that generates A is equivalent to finding the minimal polynomial.

Definition 1.1.1 The linear complexity (span) of a sequence A over I is the degree
of its minimal polynomial, denoted by A(A).

The best known efficient way to find the minimal polynomial of a sequence is the
Berlekamp-Massey algorithm (B-M algorithm for short). This algorithm is not just
important in cryptanalysis, but also in coding theory. In fact, it was originally de-
signed as a decoding algorithm for BCH codes [3, 32]. The following is the conclusion
of the B-M algorithm.

Theorem 1.1.1 For a sequence A over F' with linear complexity X, the B-M algo-
rithm can compute its minimal polynomial by processing at most 2\ consecutive bits.

The time complexity of the algorithm is quadratic, i.e., O(\?).

From the point of view of cryptography, the B-M algorithm provides an efficient

attack on stream ciphers if the key streams have relatively small linear complexity.

In other words, the linear complexity of sequences is an important security measure.
Any useful key stream generators must be secure against the B-M attack. In this
dissertation, we will point out that this alone is not secure enough because there
exist other attacks that are as efficient as the B-M algorithm, but whose corresponding

security measures are radically different.

1.2 Psuedo-Random Generators and m-Sequences

LFSRs are deterministic devices and the sequences they generate cannot be purely
random. However, by properly setting an LFSR, we can get an output sequence
which looks like a random sequence in certain regards. For instance, the occurrence
of symbols is nearly balanced and patterns of strings are distributed uniformally. A
sequence generator is called pseudo-random if the generated sequence satisfies certain
statistical criteria. There are many suggested such criteria and several proposed by
Golomb have been widely accepted in the cryptographic community [14]. To gain
maximal security in stream ciphers, key streams must be highly unpredictable and
the substring patterns cannot be used to accumulate statistics and then to utilize an

efficient attack.

Statistical properties of sequences generated by LFSRs can be characterized by their
minimal polynomials. Recall that an element o in a finite field F' is primitive if
every non-zero element in F' is a power of a, i.e., o' for some ¢ > 0. An irreducible
monic polynomial in F[z] is called primitive if it has a root which is primitive in the

extension field it generates.

Definition 1.2.1 A sequence A is called an m-sequence if its minimal polynomial

ma(z) is irreducible and it has a primitive root.

Suppose the minimal polynomial m4(z) of an m-sequnce has degree r. Then the
m-sequence can be generated by an LFSR of length r. Hence the period of the m-
sequence reaches the maximal possible value p™" — 1 for registers of length r. Let
t = p™ and F be the extension field of F' = G'F(t), formed by adjoining a root of the

minimal polynomial. For any element 3 € E, the trace function is defined as

Tr(B)=08+8+---+08 .

10

By Galois theory, Tr(3) € F and the trace function is linear [17]. The following

theorem is often called the trace representation of m-sequences [35].

Theorem 1.2.1 Let m(x) be a primitive polynomial of degree r and o € E a prim-
itive root of m(x). Then for every sequence A = {a; : © > 0} in F with minimal

polynomial m(z), there is an element B € E such that a; = Tr(Ba'), i > 0.

For the binary case, i.e., F' = {0, 1}, some statistical properties of m-sequences can

be stated more precisely.

Theorem 1.2.2 Let the hypotheses be the same as in Theorem 1.2.1, but the charac-
teristic of the field be 2. Suppose A = {a;} is an m-sequence. Then (1) in one period,
the number of 0's is 2°~1 — 1 and number of 1's is 2"71; (2) for any s, 1 < s <r and
any subsequence B of length s, the number of occurences of B in one period of A is

2775 — 1 if B#0; 2"=° otherwise.

Because of the Berlekamp-Massey algorithm, the linear complexity is an important
security measure of a binary sequence. Note that an m-sequence has nice statistical
properties, but low linear complexity. We are interested in sequences that have good
statistical properties and large linear complexities. Here is an interesting question:
if A is a random binary sequence of length n, what is the probability that its linear
complexity is greater than n/2 7 In [35], Rueppel carefully investigated the linear

complexity profile of binary sequences. Here we state one of his results.

Theorem 1.2.3 Let N, (L) be number of binary sequences of period n having linear
complexity exactly L. Ifn > L > 0, then

Nn(L) — 2min(2n—2L72L—1))

Ifn>L=0,then N,(L) = 1.

This result tells us that the vast majority of the possible binary sequences of length
n have linear complexity close to n/2. However, high linear complexity alone is not a
sufficient security criterion. As pointed out by Rueppel in [35], the complexities of all
the prefixes of a given sequence (complezxily profile) are more important. In general,

complexity profiles are harder to analyze.

11

m-sequence 1 a;

m-sequence 2 b

Figure 1.2: A Summation Cipher

By using LFSRs as building blocks, various types of key stream generators have been
proposed. One such type is the so-called nonlinear combiner. It takes several m-
sequences as inputs, combines them by a nonlinear function (filter), and then outputs
a sequence. The desire is that (1) if the input m-sequences have good statistical
properties, they will be inherited by the output sequence; (2) if the input m-sequences
have small linear complexities, the nonlinear combining function will increase the
linear complexity significantly. One example is the summation cipher which was

proposed by Rueppel [35]. A simple case is depicted in Figure 1.2.

Here the summation is taken as integers and o; is the carry bit. Note that integer
addition is a highly non-linear operation when considered in F' = {0,1}. The following

result ([35] Property 9.3) characterizes the output sequence of the summation cipher.

Proposition 1.2.4 Lel A and B be two binary m-sequences whose primitive minimal
polynomials have relatively prime degrees ry and ro. If A and B are added over the
reals, then the sum sequence C' has linear complexity close to its period length, i.e.,
AC) < (2 = 1)(2 — 1) with near equality.

1.3 An Extension of LFSRs

The register architecture of LFSRs is still valid when F' is replaced by any ring. In
particular, we can take R = Z/(N) for any positive N > 1. We call these registers
N-LFSRs.

12

N-LFSRs have applications as random number generators and for codes defined over
the integers modulo N ([4, 5, 37]). Compared with LFSRs, the biggest difference
is that the ring Z/(N) may have non-trivial zero divisors. This adds complexity
to the analysis of the registers and the decoding procedures. Several authors have
investigated N-LFSRs from different point of views. The most important problems
are to find a proper algebraic tool for analyzing output sequences, and to design an
efficient synthesis algorithm. Fortunately, since N can be factored into a product of
distinct prime powers, by the Chinese remainder theorem the problem can be reduced
to the case Z/(p?). In [34], Reeds and Sloane successfully extended the Berlekamp-
Massey algorithm to N-LFSRs by an elegant modification of the original procedure.
Dai and Qi in [33] successfully established the trace representation by using p-adic
number fields. For a periodic sequence A over Z/(N), the linear complexity of A is

defined to be the smallest length of N-LFSRs that generate A.

Chapter 2

Feedback with Carry Shift
Registers over Z/(N)

As described in the previous chapter, the algebraic tools associated with LFSRs pro-
vide a systematic analysis of sequences. This analysis leads to a variety of appli-
cations based on LFSRs. Since 1955, effort has been directed towards the study of
other (“non-linear”) feedback architectures which would give rise to fundamentally
new or different kinds of pseudorandom sequence generators and analyses [8, 13, 14,
16, 35, 41, 42]. However, the LFSR-based analysis had been the only general purpose
tool until the early 90’s when Klapper and Goresky discovered feedback with carry
shift registers (FCSRs). Their work focused on FCSRs that generate sequences over
Z/(p), where p is a prime number. They proved that FCSRs share many important
properties with LFSRs. In particular, by modifying de Weger’s rational approxima-
tion algorithm [10], they designed an efficient algorithm to solve the register synthesis
problem. Furthermore, their algorithm leads to an efficient attack on the summation
cipher [20, 21, 22, 23]. In this chapter, we first describe feedback with carry shift
registers over Z/(N) for any integer N > 1 (N-FCSRs), and then present the basic
properties of the defined registers. Although most of the properties are parallel to
those described in [23] for the binary case (2-FCSRs), we present some new properties
of general N-FCSRs. For example, we show that there are many N-adic sequences
which can be generated by small N-FCSRs, but cannot be generated by small N-
LFSRs. We use N-adic numbers as algebraic tools to analyze sequences generated
by N-FCSRs. For a composite N, the algebraic structure of N-adic numbers is much

weaker than that of p-adic numbers [26]. This weakness hinders the generalization

13

14

of the synthesis algorithm of p-FCSRs. We investigate register synthesis in the next
chapter.

2.1 Register Description and Examples

Let N > 1 be an integer and S = {a : 0 < a < N — 1}. For any integer r > 1,
the state of a feedback with carry shift register over Z/(N) consists of r integers
ag,dy,dg- -+ ,a,_1 € S and an arbitrary integer M = M,_;, the memory. The

state change function is determined by r + 1 integers d,qy,q2,---,¢q, € S such that
ged(d, N) =1 and ¢, # 0 as follows:

Step 1: Compute the integer sum,

c=M,_1+a_1q1 + a,—2q2+ -+ + aoq,

Step 2: Compute a, € S, M, € Z such that

oc=da, + M,N

Step 3: Change the memory M,_; to M,.

Step 4: Output a¢ and use a, to shift the register loading cells, replacing

(a1, --,a0) by (ap,---,a).

Here is how a, and M, in Step 2 can be computed. First, divide o by N and get
a non-negative remainder b,, i.e., 0 = b, + kN for some k € Z. Let w be the
inverse of d modular N, i.e., 0 < w < N and wd = 1 4+ [N for some [€ Z. Since
w and b, are in S, there are a,,h € S such that wb, = a, + hN. It follows that
da, = dwb, — dhN = (1 + IN)b, — dhN = b, + (I — dh)N, and ¢ = b, + kN =
da, — (I —dh)N + kN = da, + M, N, where M, = k —1+d. If d is 1, we simply have
a. = b, and M, = k. An N-FCSR is depicted in Figure 2.1

As seen, an N-FCSR is a simple device and is similar to an LFSR. The most com-
putationally costly operations are integer multiplication and division in Step 2, but
they can be implemented efficiently for small N. An N-FCSR outputs a sequence
A = {ag,a1,aq,- -+, } over S by infinitely iterating the state change. The first r out-

put symbols are the initial register configuration. For n > r. a, is determined by

15

My 1 e Gp—1(Un-2 e An—r41| Gn—yr —>

2.

Figure 2.1: An N-FCSR Architecture

both the memory and the current register cells. In the whole processing, the coeffi-
cients {d, q1,q2,- -, q,} (called taps) are fixed. To explore their importance, we call

the following integer
q=—d+qN+@N* 4+ +qN

the connection number. For convenience, let go = —d, so ¢ = Si_, ¢; N'. We will see
that this number acts similarly to the connection polynomial in the analysis of LFSR
([35] or Chapter 1). The connection numbers with go = —1 are special, and make
the register state change operation and implementation easier. Let us first look at an

example.

Example 1: Set N =6, S = {0,1,2,3,4,5}. Choose r = 3, (ag,a1,a2) = (1,2,3),
(d,q1,q2,q3) = (1,1,1,5), and the initial memory M = 0. Then the connection
number g = —14+6+36+5%6% = 1121. Table 2.1 displays the states and the outputs

of first 15 iterations.

In 1991, Marsaglia and Zaman [30] suggested and statistically analyzed a type of
pseudo-random number generators over Z/(N). The proposed generators use a trun-
cated sum or difference of two previous bits. For instance, one of the Marsaglia-Zaman
schemes is the so called add-with-carry. For 0 < s < r, a; € 5, assume ag,ay,- -+, a,_1
and c¢._; are initialized with a; € S and ¢,y € {0,1}. Then for n > r, a, is deter-
mined by

Up = Up_s + Upy + Cpq mod N

16

Table 2.1: Output of a 6-FCSR

q q2 a3
memory 1 1 5 output
0 1 2 3 3
3 0 1 2 2
2 2 0 1 1
1 3 2 0 0
1 0 3 2 2
2 2 0 3 3
3 1 2 0 0
1 0 1 2 2
2 0 0 1 1
1 1 0 0 0
0 2 1 0 0
0 3 2 1 1
1 4 3 2 2
3 0 4 3 3
3 4 0 4 4
4 3 4 0 0

and
Up—s + Qp—r + Cp_1
e = | N] .

In particular, when s = 1 and r = 2, the generator operates like a Fibonacci sequence.
We see that these generators are nothing but the special cases of N-FCSRs with all
the taps ¢; = 0 except for ¢, = g, = 1. In 1998 Bach cryptographically analyzed
the Marsaglia-Zaman’s generators and developed an algorithm (see [1]) to recover the
generator. Compared with the Bach’s results, our analysis of N-FCSR and N-adic

sequences will be different, more general and more comprehensive.

2.2 Characteristics of N-FCSRs

In this section we study characteristics of output sequences of an N-FCSR. Most of
them are generalizations of those described by Klapper and Goresky for 2-FCSRs
[23]. We first show that the output sequence is eventually periodic. By the register

construction, this amounts to showing that the memory is bounded.

17

Proposition 2.2.1 For an N-FCSR, lel w be the Hamming weight of ¢ — qo with
respect to N, the number of non-zero q; among {q1,--+,q.}. Suppose thal al the stale
with index n > r, the register has the memory M = M,,. Then the following hold.

(1) If |M,,—1| <w(N —1), then |M,| < w(N —1);

(2) If | My,—1| > w(N — 1), then |M,| < |M,—1] — 1.

Proof: Without loss of generality, we may assume the current state is (a,—1, a,—2,- - -, ao),

i.e., n = r. From the register construction we have,
r—1

o= aiq—1+ M,_y =da, + M,N .

=0
Let v = Zf:_& a;Gy—;. Then v > 0.

Suppose |M,_1| < w(N —1). Note that a;,¢; < (N —=1),0<:<r—1. If o > 0,
then |o —da,| < maz(o,da,) < maz{w(N—1)*+w(N —1),(N—1)*} = w(N —1)N.
Hence |M,| = |o — da,|/N < w(N —1)N/N = w(N —1). If 0 < 0, then |o| =
v+ M,_1| < |M,_1] < w(N —1). Therefore |M,| = |o — da,.|/N < (|o]| + da,)/N <
(w(N—=1)+ (N —-1)*)/N <w(N —1)N/N = w(N —1).

Now assume |M,_;| > w(N — 1) 4 1. We then have two cases: (1) |M,_| =
w(N —=1)+1; (2) [M,_1] > w(N — 1) + 2. For Case 1, if ¢ > 0, then |0 — da,| <
maz{o,da,} < mazr{w(N -1 +w(N—-1)+1,(N—-1)*} <w(N —1)N + 1. Hence
M, | = |o —da,|/N < (w(N —1)N + 1)/N. Since |M,| is an integer, it follows that
IM,| <w(N-1) <|M,_1|]—1. If 0 < 0, then |o| = [v+M,_1| < |M,_1| = w(N—-1)+1.
Hence |M,| = |o — da,|/N < (Jo| +da,)/N < (w(N —1)+1+w(N —-1)})/N <
(w(N —1)N +1)/N = w(N —1) +1/N. Since N > 1 and |M,| is an integer,
M| <w(N —-1) < |M,_y| —1.

For Case 2, we have that (N —1)|M,_1| > (N —1)(w(N —1)+2) > w(N — 1)2—|—N
since N > 2. This implies that |o| < w(N —1)* 4+ |M,_1] < (|M,_1] = 1)N. If ¢ > 0,
we have |0 — da,| < max{o,da,} < maz{(|M,_1| —1)N,w(N —1)N}. It follows that
M, | = |o—da,|/N < mazx{|M,_1|—-1,w(N—1)} = |M,_;|—-1. If 6 < 0, we then have
lo| < |M,_1|and |o—da,| < [M,_1|+(N—=1)* < w(N=1)2+|M,_;| < (|M,_1|—1)N.
This implies that |M,| = |0 —da,|/N < (|M,_,|—1). O

This Proposition shows that after a finite number of iterations, the absolute value

of the memory is bounded by w(N — 1). In particular, after a finite number of state

18

changes, an N-FCSR will fall into a periodic mode, and then the register will generate
the periodic part of the output sequence. Hence, when an N-FCSR enters a periodic
mode, we may assume that the memory has its absolute value bounded by w(N — 1).
This implies that the hardware memory required in implementing such an N-FCSR

is fully determined by the parameters N, r and the Hamming weight w < r.

Since an N-FCSR is in effect a finite state machine, the output is an eventually
periodic sequence and the period is determined by the number of distinct states
which the register actually goes through. Since a state consists of the memory M
with |[M| < w(N — 1) and the register cells 0 < a; < N —1land 0 <i<r—1,a
state is determined by r N-nary bits and a memory integer between —w(N — 1) and
w(N —1). Note that the state having all a’s and M zero causes the N-FCSR to output
all 0’s. Hence the total maximal number of states or maximal possible period of the
output sequence is < (2w(N — 1) + 1)N” — 1. This number may not be achievable
by an N-FCSR. In fact, in the case when gy = —1 we can show that the memory will
eventually fall into the range [0, w(N — 1)].

Proposition 2.2.2 For an N-FCSR of length r with d =1 (i.e.,qo = —1) and initial
memory M._y, after a finite number of iterations, the register has 0 < M,, < w(N—1).

Proof: By Proposition 2.2.1, we only need to show that the memory M,, > 0 after
a finite number of iterations. Note that if at a state with index n we have M,, > 0,

then 0 =37 _, a,—;q; + M, > 0. Hence, 0 = a,, + M,,41 N with a,, € S and M, > 0.

Now we consider the case when M,, < 0. Suppose M,, = —1. Let v, = >°7_; ¢p—iqi.
If v, =0,theno =M, =—-1=(N—-1)+(=1)N. So, a, =N —1 and M,4; = —1.
Since ¢; are not all zero, v,,, v,11, - - cannot be all zero. Namely, there is an integer &k
such that v, =---=v,p, =0and M,, = M,y; =--- = M,y = —1, but v,4+1 > 0.
We then have o0 = Myy,, + vyq541 > 0. This implies that M, 1z > 0.

Suppose M,, = =2, or, =3 (i.e. |M,| = 2, or 3). From the equation o = M, +v,, =
dnt1 + My N, it follows that M,.; > M, + 1. Suppose M, < —4 (i.e., [M,| > 4).
We claim that |M,,+1| < |M,|—1,i.e., M,x1 > M, +1. Note that if o = M,, +v,, > 0,
then M, .1 > 0. Hence, we assume that ¢ < 0. Let M,, = —b — kN with b € S and
k>0.Ifv,—b>0,then o = (v,—b)—kN gives rise to a,+1 = v,—band M, = —k.

19

Table 2.2: Output of a 3-FCSR

q q2 qs3
memory 1 0 1 output
-1 2 1 2 2
1 0 2 1 1
0 1 0 2 2
1 0 1 0 0
-1 2 0 1 1
0 1 2 0 0
-1 2 1 2 2

If v, —b <0, then 0 = (N 4+ v, —b) — (k + 1)N gives rise to a,+1 = N + v, — b and
M1 = —(k+1). We show that k+1 < |M,|—1,i.e, (|M,|—b)/N+1<|M,|—1.

It is equivalent to show that
(N—-1)|M,| >2N —b.

For N > 2, it is easy to show that 2N/(N — 1) < 4. Hence, 2N/(N — 1) <4 < |M,]|.
It follows that
(N -1)|M,| >2N >2N —b.

This completes the proof. O

For an N-FCSR of length r, the above proposition shows that if d = 1, the maximal
possible period of the output sequence is less than or equal to (w(N — 1)+ 1)N" — 1.
The following example shows that if an N-FCSR has d # 1, then the memory may

switch between positive and negative as the register changes states.

Example 2: Set N = 3, S = {0,1,2}. Choose r = 3, (ao,a1,a2) = (2,1,2),
(d,q1,q2,q3) = (2,1,0,1), and the initial memory M = —1. Then the connection
number ¢ = —2 + 3 + 27 = 28. Table 2.2 displays the states and the outputs of the

register in one period.

In this example, ¢ = 28 and the Hamming weight of ¢ — d is 2. According to
Proposition 2.2.1, the number of possible states is (2w(N — 1)+ 1)N* -1 =3 -1 =
242, but the period is only 6. Hence it seems hard to compute the exact period by
counting the number of distinct states that the register goes through. We return
to the computation of period of output sequences for N-FCSRs later, once we have

established some algebraic machinery.

20

Recall that the algebraic tools used in the analysis of LFSRs are polynomials and
formal power series over finite fields (see Chapter 1). For p-FCSRs (p prime), p-adic
numbers are the algebraic tools employed in analysis (see Klapper and Goresky [23]).
In their analysis, the assumption that p is prime is crucial. However for any N > 1
(prime or composite), the general theory of N-adic numbers still holds. See Koblitz’s
book [26] and Mahler’s book [29] for reference.

An N-adic number is a sum of type 322, a;N*,a; € S. Any two N-adic numbers
can be added and multiplied. Algebraically, the set of N-adic numbers Zm) is
a ring. Also, N-adic numbers are equipped with a topology with respect to which
addition and multiplication are continuous and Zm) is complete. In this topology,
an element is near 0 if it is divisible by a high power of N. Note that —1 = (N — 1)+
(N —1)N + (N —1)N? + - -, and for every non-negative integer z there is a unique

finite N-adic expansion
t=ag+a;N+ayN*+ -4 a;N'

with a; € S and a; # 0. Hence all integers are N-adic numbers.

We now use N-adic numbers to represent output sequences of N-FCSRs. Let
A = {ag,ay, - ,a,_1,a,, -} be an infinite sequence over S. We call the N-adic

number

a=a(A,N)= ZaiNi
=0

the generating number of A, and A the coefficient sequence of . We need the following

lemma;:

Lemma 2.2.3 Let A and B be two eventually periodic N-adic sequences, and let
a(A,N) and a(B, N) be the corresponding N-adic numbers. Then the sum: oA, N)+

a(B, N) is an N-adic number whose coefficient sequence is eventually periodic.

Proof: Suppose A has the prefix part {ag, a1, +,a,_1} and the strictly periodic
part {@y, Gyt1, Gus2, 5 ar+u_1}, where L is the period. Similarly, suppose B has the
prefix part {bg, by, -, b,_1 } and the strictly periodic part {b,, bys1,bps2,+, brrv_1},
where T is the period. Note that any strictly periodic sequence can be generated
by a pure-cycling register. Then A can be generated by combining a pure-cycling

register and A’s prefix sequence. This is also true for the sequence B. To get the

21

a;

Af 4u—1s" " "y Qy|Qy—1, -+, QO

| .
L’ by | by_1, .., bo b

bT—}—v—h e

Figure 2.2: Summation of N-adic Sequences

summation sequence of A and B, let 0_; = 0. Then at every index ¢ > 0, we have
a; +b;+ 01 =c¢;+0;N,and C = {¢;} is the expected output sequence. It follows
that C' is the coefficient sequence of the N-adic number a(A, N) + o(B, N). Figure

2.2 displays the device construction.

In Figure 2.2, the feedback arrows represent the pure cycling which produce the
strictly periodic parts of A and B, respectively. Since a;,b; < N, the carry bit o; is
either 0 or 1. This implies that the device depicted in Figure 2.2 only has finitely

many states. Therefore, the output sequence C' is eventually periodic. O

The following result states the relation between rational numbers and eventually

periodic sequences over S.

Proposition 2.2.4 Lel A be an N-adic sequence. Then
(1) a(A,N) = =1 if and only if A=(N—-1,N—1,N —1,--+);
(2) a(A,N) = —u/q,gcd(u,q) =1 with ¢ > 1 and ged(N,q) =1 if and only if
A is eventually periodic;
(3) 0 <u<gqif and only A is strictly periodic.

and (3). First we assume that the sequence A is

Proof: We only need to show (2)
i > 0 for a fixed L. Multiplying a by (1 — NT), we

strictly periodic, i.e., a;11, = ay,

22

get that
(1-— NL)a = ZaiNi — ZaiNH'L
=0 =0
L-1) o0) 0)
= Z CZZ'NZ + (Z CLZ'NZ — ZaiNH_L)
=0 =L =0
-1 '
= E aiNZ .
=0
-1 '
Thus o = EaiNZ/(l—NL) = —u/q with ¢ > v > 0 and ged(N,q) = 1 and
=0
ged(u,q) = 1.

Conversely, let L = ord,(N), i.e., the smallest positive integer L such that NI =
1 (mod q). Let k be an integer such that N — 1 = kq. Then —u/q = ku/(1 — NL).
Since ku < kg = N — 1, the N-adic expansion of ku has the highest term N/ with
7 < L —1. That is,

ku=ag+a;N+ayN*+ - +ar_ N1,

Moreover,

71_NL:1+NL+N2L+---.

It follows that " .
u i
S aP L

=0

with a; = @; yuod 1,- Therefore, —u/q has a strictly periodic N-adic coeflicient sequence.
For an eventually periodic sequence A, there is an index i such that

Al = {a207a20+17a20+27 y Qig+js 7}

is strictly periodic. Therefore, by the the first part proof there is a ug such that
io—1 ' R
a(A,N) = Z a;N'+ N"°—— .
=0 q

It follows that a(A, N) = —u/q for some u.

Conversely, if @ = —u/q with ¢ > 1 and ged(N, q) = 1, we can rewrite the rational
number as & = v — (up/q) such that 0 < ug < ¢. By the first part proof, —ug/q is the

23

generating number of a strictly periodic sequence B = {b;}, i.e., —ug/q = 352, b; N'.
If v is positive, it has a finite N-adic expansion, i.e., v = vg + v N + -+ + v, N? for
some ! > 0. Let v; = 0,7 > {. Then by Lemma 2.2.3, the summation sequence of {v;}

and B is eventually periodic.

If v <0, we have v = —|v|, and |v| = vo + vy N + -+ + v, N for some ¢ > 0. Note
that for each v;, —v; = (N —v;) + (N —1)N + (N — 1)N? + - - - +. Hence the N-adic
number v = —vg— v N — -+ —v; N is a sum of finitely many N-adic numbers whose

coefficient sequences are eventually periodic. Thus, a = v — (ug/q) itself is a sum of
finitely many N-adic numbers whose coefficient sequences are eventually periodic. It

then follows from Lemma 2.2.3 that the resulting sequence is eventually periodic. O

Here we are only concerned with the problem that for any rational number —u/q
with ged(N,q) = 1, the coefficient sequence of its N-adic expansion is eventually
periodic. In the next chapter, we give an algorithm which explicitly constructs an
N-FCSR to generate the sequence corresponding to the number —u/q, and the size

of the constructed register will be minimized.

By Propositions 2.2.1 and 2.2.4, we see that the generating number for the output
sequence of an N-FCSR is a rational number with the denominator relatively prime
to N. Furthermore, this rational number can be explicitly expressed by using the

register configuration.

Theorem 2.2.5 For an N-FCSR, let q be the connection number with qo = —d:
=@+ aN+ N 4+ +¢N",

and let the initial memory be M,_, and the inilial state (a,_y,---,a0). Then the

generating number with respect to N can be expressed as follows:

ST (Y i i)N™ — M,y N”
q

Proof: At a given state of index n — 1, suppose the memory is M,,_; (n > r) and
the register cells are loaded as: (a1, -, a,—,). We then look at the state change.

By definition, we have that

24

.
Opn = Mn—l + Zan—iQia
=1

= da, + M, * N.

Therefore, we have that

dan - Mn—l + Zan—iQi - Mn * N
=1

= Z Gn—iQ; + (Mn—l - Mn * N)
=1

Thus
ad = d(z aiNi)
=0
r—1) 00
= d(z a;N' + Z a,N™)
=0 n=r
r—1 00 r 00
= AT N + S G)N+ (M — My s NN
=0 n=r ;=1 n=r
r—1 r 00
= d(z aiNZ) + Mr_lNr + E qiNZ(E an_iNn_Z)
=0 i=1 n=r
r) r—1) r—1r—i—1)]
= (Z N)a + d(z a;N') — Z Z giN'a;N" + M,_;N".
=1 =0 =1 ;=0
Note that go = —d, and we then can move the first term to the left and rearrange the

indices. It follows that

>0 X0 Gitn-i) N — M, 1 N”
q

O

o =

2.3 Exponential Representation

The trace representation of LFSR sequences is a powerful technique in the analysis
of sequences (see Chapter 1). Although the algebra used in analyzing N-FCSRs is

different, there is a similar representation for periodic N-adic sequence generated by

an N-FSCR.

25

Theorem 2.3.1 Suppose a periodic N-adic sequence A = {a; : 1+ > 0} is generaled
by an N-FCSR with the connection number ¢ > 1. Let v = N™' € Z/(q) be the
multiplicative inverse of N in the ring Z/(q). Then there exists an element C' € Z/(q)
and an invertible element D € Z/(N) such that for all i >0

a; = D[C" (mod q)] (mod N) .

Here the notation means that first the integer Cy' is reduced to the remainder after
division by q (mod q operation); then the remainder is multiplied by a constant D (0 <
D < N—1), and then the product is reduced further to a number between 0 and N—1 by
the modular operation mod N. Furthermore, D = (—q)~"(mod N) is only dependent
onqand N, and D =1 if g= —1 (mod N). This is always true when N = 2. Also
a(A) =—-C/q.

Note that if the sequence A is a zero sequence, the result is still valid by choosing C' to
be zero. Also note that if @« = —1, then the sequence must be A = {a; = N—1::¢ > 0}.
In this case the result is valid by choosing v to be 1, C' to be 1 and D to be N — 1.

Proof: In the initial state Sy, suppose the memory has the value M and the register
cells are loaded with ag,ay, -+, a,_1. By the assumption, the sequence is strictly
periodic. Hence, the rational representation is @ = —ug/q with 0 < ug < ¢ and the
period is T' = ord,(N). Starting at the initial state, every state S; afterward has an
associated rational number with the same denominator ¢ and a numerator u;, denoted

by

with 0 < wuy; < g— 1. Consider the states S;_; and S;. We have that

. u U

f(St—l) = ay_1 + Nf(St), 1.6. — Nj + a1 = — l‘ql
This implies that w;—y = Nu; — a;_1g € Z. This follows that u;—1 = Nus(mod q), or
equivalently, u; = N~'u,_1(mod q). Hence each term of the sequence {ug, uy,- -, } is

obtained by multiplying the previous term by ~ and reducing modulo g.

Hence, u; = y'ug (mod q). Note that —a;_1q = u;—y (mod N). Let D = (—q)~" mod N,
we then have that

a;—1 = Dus_y (mod N) = D[ugy"™" mod g] (mod N) . O

26

Example 3: Consider an N-FCSR with the configuration: N = 10,r = 3,9 = 1109,
and the initial loading ag = 2,a1 = 7,a; = 9 and the initial memory m = 0. Then
the output sequence is {2,7,9,8,5,4,9,9,3,3,7,4,5,7,7,0,6,4,1,2,---, }. By Theo-
rem 2.2.5, the rational number is @ = —52/1109. Note that v = 107! (mod 1109) =
111, D = (—q) 'mod 10 = 1 and u = 52. It follows that

a; = [52 % (111)" mod(1109))(mod 10)

for all 2 > 0.

Remark: In Theorem 2.3.1, the constant D is necessary, and it cannot be moved to
the inside of the modular operation. For example, let N = 10,r = 3,¢ = 1103. Then
D =3 and v = 331. Assume a sequence A = {qa;} is generated as

a; = D[5527" (mod q)](mod N) = 3[552 * 331°(mod 1103)](mod 10).

For i =0, ag = 3[552(mod 1103)](mod 10) = 1656(mod 10) = 6, but if D is moved to
the inside, it gives that

[D5527° (mod 1103)](mod N) = [3 % 552(mod 1103)](mod 10)
1656(mod 1103)](mod 10)
— [553](mod 10)

= 3.

[
[
Hence, ag # [D5527°(mod 1103)](mod N).

2.4 [-sequences

By Theorem 2.2.5, an N-FCSR with a given initial state and memory has an associated
rational number a = u/q. We call an N-FCSR reduced if ged(q,u) = 1. Then the
period of the output sequence can be computed by just using the connection number

g. The following is a corollary to Theorem 2.3.1.

Corollary 2.4.1 Let o = u/q. Then the output sequence of an N-FCSR with the
connection number q has period T = ord,(N) provided that ged(u,q) = 1. In par-
ticular, if q is a prime power and N is a primitive root of 7/(q)", then T = ¢(q).

27

One consequence of this corollary is that for ¢ = p™, an odd prime power of p, there is
an integer N and an N-FCSR with connection number ¢ whose output sequence has
period equal to the size ¢(q) of the multiplicative group Z/(q)", where ¢ is the Euler
phi-function. This is because in this case there exists at least one primitive root N
in Z/(q)" (p-24, [9]). In [23], the notion of an [-sequence is defined for N = 2. That
is, a sequence generated by a 2-FCSR whose connection number ¢ is a prime power

such that 2 is a primitive root modulo ¢. In general, we have the following definition.

Definition 2.4.1 An N-adic periodic sequence A is called an [-sequence if it can
be generated by an N-FCSR with a prime power connection number q such that the
element N is primitive in Z/(q).

For an odd prime power ¢q of p, to find a primitive root modulo ¢ there is no known
better way to proceed than as follows. Try g = 2, g = 3, etc ... until g is a primitive
root. See Cohen’s book [9] for more detailed discussion of this problem. In the
reference, it is pointed out that for some special cases there are better algorithms.
For example, if the prime factorization of ¢(q) is known, then the Chinese remainder
theorem can be used to reduce the problem to that for a small prime power. Table 2.3
displays all the primitive roots of Z/(q)" for prime numbers ¢ < 100. The table was

made by an exhaustive search.

As we see in Table 2.3, for example, for some prime numbers, 2 is primitive root,
but 10 is not; or, vice versa. Schneier gave a complete list of prime numbers < 10,000
for which 2 is primitive [36]. There are efficient techniques for finding large primes

q for which 2 is a primitive root [9]. The following result holds.

Proposition 2.4.2 For a prime power q, if 2 is a primitive root in Z/(q), then N is
a primilive root if and only if N = 2" (mod q) for some t with { relatively prime to

©(q).

The next two results explore some distribution properties of N-adic [-sequences. First
we consider [-sequences with prime connection numbers. In this case, for any two
different symbols s; and s;, the number of the occurrences of s; differs that of s; at

most by one.

Table 2.3: Primitive Roots of Z/(q)

prime number ‘

primitive roots

3 2

5 2,3

7 3,5

11 2,6, 7,8

13 2,6, 7, 11

17 3, 5,6, 7,10, 11, 12, 14

19 2,3, 10, 13, 14, 15

23 5, 7,10, 11, 14, 15, 17, 19, 20, 21

29 2.3,8, 10, 11, 14, 15, 18, 19, 21, 26, 27

31 3,11, 12, 13, 17, 21, 22, 24

37 2,5, 13, 15, 17, 18, 19, 20, 22, 24, 32, 35

41 6, 7, 11, 12, 13, 15, 17, 19, 22, 24, 26, 28, 29, 30, 34
35

43 3,5, 12, 18, 19, 20, 26, 28, 29, 30, 33, 34

47 5,10, 11 13 15 19 20 22 23 26 29 30 31 33 35
38, 39, 40, 41, 43, 44, 45

53 2,3, 5,8, 12, 14, 18, 19, 20, 21, 22, 26, 27, 31, 32
33, 34, 35, 39, 41, 45, 48, 50, 51,

59 2,6, 8, 10, 11, 13, 14, 18, 23, 24, 30, 31, 32, 33, 34
37, 38, 39, 40, 42, 43, 44, 47, 50, 52, 54, 55, 56

61 2,6, 7, 10, 17, 18, 26, 30, 31, 35, 43, 44, 51, 54, 55
50

67 2,7, 11, 12, 13, 18, 20, 28, 31, 32, 34, 41, 44, 46, 48
50, 51, 57, 61, 63

71 7,11, 13, 21, 22, 28, 31, 33, 35, 42, 44, 47, 52, 53, 55
56, 59, 61, 62, 63, 65, 67, 68, 69

73 5, 11, 13, 14, 15, 20, 26, 28, 29, 31, 33, 34, 39, 40, 42
44, 45, 47, 53, 58, 59, 60, 62, 63

79 3, 6, 7, 28, 29, 30, 34, 35, 37, 39, 43, 47, 48, 53, 54
59, 60, 63, 66, 68, 70, 74, 75, 77

83 2,5, 6,8, 13, 14, 15, 18, 19, 20, 22, 24, 32, 34, 35
39, 42, 43, 45, 46, 47, 50, 52, 53, 54, 55, 56, 57, 58, 60
62, 66, 67, 71, 72, 73, 74, 76, 79, 80

89 3,6, 7, 13, 14, 15, 19, 23, 24, 26, 27, 28, 29, 30, 31
33, 35, 38, 41, 43, 46, 48, 51, 54, 56, 58, 59, 60, 61, 62
63, 65, 66, 70, 74, 75, 76, 82, 33, 86

97 5,7, 10, 13, 14, 15, 17, 21, 23, 26, 29, 37, 38, 39, 40
41, 56, 57, 58, 59, 60, 63, 71, 74, 76, 80, 82, 83, 84, 87
90, 92

29

Proposition 2.4.3 Let g be a prime and N a primitive root in Z/(q). Let A be a
periodic N-adic [-sequence, i.e., a periodic sequence generated by an N-FCSR with
the connection number q. In a single period, define A; = {1 :a; = 35,0 <i < q—1}
foreach j:0<j < N —1. Then, for any j # k we have that |A; — Ax] <1 .

Proof: Let a(A) = —u/q be the rational representation of the sequence A. By
Theorem 2.3.1, a; = D[uN~*(mod q)] (mod N),i > 0. Here D = (—q)~! mod N.
Since ¢ is a prime, it follows that both N~! and u are invertible modulo ¢q. Note
that N~! is primitive in Z/(g). This then implies that {uN~"(mod ¢)|0 < i < q} =
(Z/(q))*, the multiplicative group. Thus, {b; = uN~*(mod ¢)} = {1,2,---,q—1}. Let
g=kN+v, 1 <v<N-—1. Since a; = Db;(mod N) and D is invertible, the number
A, is the same as the number of occurrences of j in the set {b;(mod N) : 0 <1 < g—1}.

We can list b; in a matrix as follows:

1 2 cev—1 o N-—1
N N+1 N 42 o N4wv-—1 o 9N -1
2N 2N +1 2N +2 - 2N 4+wv-—-1 -+ 3N -1
(k—1)N (k—D)N+1 (k—)N+2 - (k—=1D)N+v—1 - kN—1
kN EN +1 EN +2 o kN +4v—1

The elements in j-th column contribute to A;. Hence, A; =u+1for1 <7< v —1;
Aj=uforj=0orv<y<N-1. 0O

When connection numbers are prime powers, the numbers of occurrences of dif-
ferent symbols are still close to being balanced. To be precise, we recall a distribution
property of finite sequences. An N-adic sequence A of period T' is said to have the
de Bruijn property if for any two distinct subsequences B and (' of length less than
log,(7T'), in a single period of A the numbers of occurrences of B and C' are the same.
The de Bruijn property is one of Golomb’s randomness postulates [14, 35]. Next we

show that N-adic [-sequences are close to having the de Bruijn property.

Theorem 2.4.4 Let g be a power of a prime p, say g = p°, for some e > 0. Assume
that N is primitive modulo q. Let A be a (purely) periodic N-adic [-sequence generated
by an N-FCSR with connection number q. For any integer s > 0, let S; and Sy be

two distinct sequences with length s. Then the numbers of occurrences of S1 and Sy

30

with their starting positions in a fized period of A differ by at most 2. Furthermore,
if s> |logn(qg+ N)|, a subsequence of A of length s occurs at most once.

Proof: The purely periodic N-adic sequence with connection number ¢ is precisely
the N-adic expansion of a rational number —z/q with 0 < < ¢. The sequence has
maximal period if and only if ged(z,q) = 1. Since N is primitive modulo g, the cyclic
shifts of A correspond to the set of all rational numbers —z/q with 0 < x < ¢ and
ged(z,q) = 1. Thus Sy occurs in A if and only if it occurs as the first s-coefficients in
the N-adic expansion of some rational number —z/q with 0 < = < ¢ and ged(z, q) = 1.
Two such rational numbers —z1/q and —x3/q have the same first s-coefficients in their

N-adic expansions if and only if —z1/¢ = —z3/q (modN?). That is,
21 — 22 = 0 mod N°.

Thus we only need to count the number of such that 0 < z < ¢, p fz and x has
the first s-symbols fixed. (Equivalently, the expansion of —x /¢ has the prefix S;.)

Let r = |logy(q¢ + N)|. Then (¢4 N) has an N-adic expansion:
g+ N=bo+aN+---4+¢N 0<¢G<N-1,0<b<N-—-1,q #0.

Let d = N —bg and gy = —d. Then q = Y'_, ¢:N'. Since ged(q, N) = ged(by, N) = 1,
it follows that ged(d, N) = 1. Therefore, by the definition of N-FCSRs, the corre-
sponding register has length r.

Suppose s > r. Since the N-FCSR associated with —z/q has length r, 0 < z <
g < N? and then z is uniquely determined by its congruence class mod N?®. Thus,
there is either zero or one such z for a given r symbols. Hence a subsequence of A

having length s occurs at most once.

We now assume s < r. First we count the number of x such that 0 < x < ¢ and the
first s-symbols are fixed, ignoring the condition ged(z,q) = 1. Let C = ¢o, 1, -+, €51,

and B B
w:EcZ'Ni, q:ZbiNi, q’:ZbiNi.
=0 =0 =0

If w < ¢, then every choice of ¢,,---,c, with 3/_ ¢;N* < 3°0__ b;N' gives a unique
z such that 0 < z < q. If w > ¢/, then every choice of ¢,, -, ¢, with S/_ ¢, N* <

31

S, b;N* gives a unique in the right range. Note that for every = with 0 < z < g,
by comparing the coefficients ¢, b,;¢,_1,b._1;-- -, ¢5, bs in order, the number x must
be in one of the two cases discussed. Also note that 7_, ¢; N* = Y°/__ b, N if and only
if all the coefficients are the same, 1.e., there is only one choice of ¢y, - - -, ¢, that makes
the equality hold. Therefore, for different choices of first s-symbols, the numbers of

corresponding z’s differ by at most one.

Next we consider the condition ged(z,q) = 1. If ged(z,q) > 1, then z = py for
some y, 0 < y < p~'. For x; = pyi,x2 = pya, since ged(N,q) = 1, we have that
1 = x2 (mod N*) if and only if y; = y, (mod N?®). By the proof of the preceding
paragraph, the numbers of such y’s differ by at most one. Let G be the number of
z’s with 0 < z < ¢, ged(z,q) = 1 and = = w(mod N*); G}, be the number of z’s
with 0 < z < g and = = w(mod N®); and G, , be the number of z’s with 0 < z < ¢,
plz and x = w(mod N*). Thus G}, , = G +G? . For any x = py, if x = w(mod N*),
then multiplying by the inverse of p in Z/(N?), we have y = w*(mod N*®), where
w* = p~tw(mod N*). Conversely, if y = w*(mod N*®), then z = py = w(mod N*).
That is, G, , = G?U/f’l. Therefore, for two distinct w, w’, the following equations hold

G2, — G| = |G =GR < 1

Therefore, the G can be derived as follows:

G = lfe:0<a<q gedie.q) =1, 2= wmod N}
= He:0<z<qg,z=wmodN°} —{z:0< 2 <q,plz,z =w modN*}|
— o e
w,1 w,2

Thus, for two distinct w and w’, we have that
|G — Gl < NG = Gl G0 — Gl

Gy — G|+ |GoE =GR
2.

IN

This completes the proof. O

32
2.5 Linear Complexities of N-adic [-Sequences

As discussed in Section 1.3, the linear complexity of an N-adic sequence A is defined
as the smallest length of an N-LFSR that generates A. Reeds and Sloane extended
the Berlekamp-Massey algorithm to N-LFSRs [34]. Hence, for an N-adic sequence
linear complexity is an important security measure. However, high linear complexity
alone is not sufficient when other methods of cryptoanalysis exist. Note that one
way to increase linear complexities is to employ non-linear operations in registers.
Since N-FCSRs use integer addition with carry, this operation is highly non-linear
compared with operations used in N-LFSRs. However, for a general N-adic sequence
there may be no deterministic relation between its linear complexity and the smallest
length of an N-FCSR that generates the sequence. In this section, we consider some
special N-adic [-sequences and investigate their linear complexities. We show that the
linear complexities of certain [-sequences are almost half of their periods. We must
point out that Kim, Seo, Lee and Lim observed the same result as the author did in
the special case when N = 2. They explored more statistical data to show that the
existence of such sequences is not rare [40]. Here, we discuss the problem in a more

general setting.

Recall that a binary bit b is called the complement of b if b+ b= 1. For N > 1,
an N-adic symbol s is an integer such that 0 < s < N — 1. We can generalize the
notion of binary bit-complement to N-adic symbols. Two N-adic symbols s and s
are called complementary if s + s = N — 1. An N-adic sequence of even length 2k,
A = (ag, a1, -, az-1) is called symmetrically complementary if a;+a;1p = N —1,i =
0,1,---,k — 1. That is, if the second half of the sequence is added to the first half,
then the resulting sequence is (N — 1, N — 1,---, N — 1) of length k. Klapper and
Goresky [15] first observed that 2-adic [sequences are symmetrically complementary.
We use the notation [z], for the reduced residue of modulo ¢. Thus, [z], = y if
and only if + = y (mod ¢) with 0 < y < ¢. For N-adic [-sequences, we present the

following result.

Theorem 2.5.1 Let A = {ag,a1,---} be an N-adic [-sequence generated by an N-
FCSR with prime power connection number q. Then A is symmetrically complemen-

tary.

33

Proof: Since A is an N-adic [-sequence, by Theorem 2.3.1, there is an integer
D = (—q)~(mod N) and anon zero integer C' € Z/(q) such that a; = [D[CN~¢],]y for
i > 0. Let y = N7' (mod q). Note that p(q) = 2¢ for some ¢ and v* —1 = 0 (mod q).
This implies that (v —1)(7* + 1) = 0 (mod q). Since N is primitive modulo g, N~!
is primitive, too. It follows that 4 = —1 (mod ¢) and [], = ¢ — 1. Therefore,

Aivt = [D[C’Yi+t]q]N
= [D[-Cy,ln

for all « > 0. Let [C4‘], = #;. Since C and « are relatively prime to q, t; > 0.
It then follows that [-C#i], = ¢ — t; and a;4+ + a; = [Dt;]xy + [D(q — ¢;)]n. Since
D = —q'(mod N), Dg = —1 (mod N) = N — 1(mod N). Let [Dt;]Jy = z. Then
Dt; = z (mod N). This implies that D(qg —¢;) = (N — 1 — z) (mod N) and 0 <
(N—1—2z)< N. Hence, [D(g—t)]n=N—-1—zand a3+ +a;, =N —1. O

Corollary 2.5.2 Let all the assumptions be the same as before and ¢(q) = 2t for
some t. Then the linear complexity of the sequence A is at most t +1 = (p(q) +2)/2.

Proof: To compute the linear complexity of A over R = 7Z/(N), we need to find a
linear recurrence of A with minimal length. This is equivalent to finding a minimal
degree polynomial r(z) = YL rz! with ry # 0 and ry invertible in R such that
Z?:o ria,—; = 0. Here, all coefficients are considered in the residue ring R, and all
polynomials are considered in R[z]. Let as(z) = 352, a;x* be the generating function.
By Theorem 2.5.1, we have that

L
@ = 1 — z2
Yizoair’ + TIZy(N = 1 — ag)z'
- 1 — g2
(CiZo o) (1 —2)(a0 + arz + - + a2’ ') + (N — 1))

1 —z2
(1—2)(ap+ a1z + -+ a_y2'™') + (N — 1)t
(1 —2)(1+ 2 '

Since (1 — z)(1 + 2') = 1 — x + o' — 2" gives a recurrence relation of A with the

length ¢ + 1, the linear complexity of A is not greater than ¢ 4 1.0

34

Note that since the second half of the sequence of A is the complement of the
first half, the complexity of the sequence is essentially determined by its first half.
We have not found a general condition on ¢ and N such that the corresponding N-
adic [-sequence has the linear complexity equal to ¢ + 1. Since both R and R[z]
have zero divisors when N is a composite integer, it is more complicated to define
the fractions (quotients) over R and R[z]. For a detailed characterization, we refer
to [7]. We first concern ourselves with the case when N = 2. Since —1 = 1 over Z/(2),
(14z)(1+2") = (1—|—$)2(Zf;é :z:i), which we denote by r(z). Let d(z) = 1+z+---+2'!
and h(z) = (1—z)(ao+aiz+- - -+a,_12'~1)+(N—1)z". By the proof of Corollary 2.5.2,
we see that h(z)/r(z) is a rational representation of A over R[z]. We would like to

know when
-1

ged(h(z),r(z)) = gcd(i aixl,in) =1.

=0
This is true when d(z) is irreducible over Z/(2) unless all the a; are 1 or 0. This leads

to the following result.

Theorem 2.5.3 Let A = {ag,ay, -, } be a periodic 2-adic l-sequence generated
by a 2-FCSR with the prime connection number g =2p+ 1. If p is an odd prime and
2 is primitive mod p, then the linear complexity of A is A\(A) =p+ 1.

Proof: Note that h(x)/r(z) is the rational representation of A over R[z] and (1) =
(N —1)17 # 0. It follows that ged(h(z), (1 — z)*) = 1. Since r(z) = (1 — z)*d(z), we
only need to show that ged(h(x),d(xz)) = 1. By assumption, 2 is primitive modulo
p. le., the only cyclotomic cosets modulo p over Z/(2) are Cy = {0} and C; =
{1,2,---,p — 1}. Hence d(z) is the minimal polynomial of §, where 6 is a primitive
root of 2 — 1. Thus d(z) is irreducible [28, 7.5, p.197]. It remains to show that
d(z) fh(x). Suppose d(z)|h(x). Then h(#) = 0. Since ” = 1, we have

0 = (1—=0)(ao+arf+--+a, 6°7")+0°
= (ap— ap_1 + 1)+ (a1 — ag)f + (ag — a1)0* + - + (ap_1 — ap_2)07™"
Since d(x) is the minimal polynomial of 6, the polynomial
f(x) = (a0 — ap_1 + 1)+ (a1 — ag)x + - + (ap_1 — ap_g)x?™"
must be a multiple of d(x). That is, ap,—; —ap—i—1 = 0,(1 <1 <p—1) and ag—a,-1+

1=0;0rap—; —ap_i-1=1,(1<i<p-—1)and ag —ay,—1 +1 = 1. In the first case,

we have that ap =ay =+ = a,_1 and ag —a,_1 + 1 = 0, a contradiction.

35

For the second case, ag,aq, -+, a,-1 can be solved as a solution of a system of
linear equations over Z/(2). In fact, the linear system has the following coefficient

matrix over Z/(2):

1 0 0 0 —1

-1 10 0 0

M= 0 -1 1 0 0

o 00 --- —1 1
Since the matrix has rank p — 1 and Z/(2) only has two elements, the system
has two solutions ¢y = a3 = -+ = a,_1y = 1l and @ = a3 = -+ = a,_o =0, or
ag=az=---=day,q =0and a =a3=---=a,_» =1. That is, A = (101010--)

or A = (010101 ---). Therefore a(A) = 1/(1 — 2?) or 2/(1 — 2?). This implies that

g =3 and p = 1. This is a contradiction since p is not prime. O

For convenience, a prime ¢ is called a 2-prime if 2 is primitive modulo ¢. A number
g =2p+1isa strong 2-prime if ¢ and p are prime and 2 is primitive modulo ¢ and
p. For such a ¢, the corresponding 2-FCSRs produce [-sequences whose periods are

2p, and whose linear spans are p + 1, more than half of their periods.

For a large integer m, what is the chance of finding a strong 2-prime ¢ near m? We
do not have a precise answer, but can give an approximation. By the Prime Number
Theorem [9, 27], we need to try about In(m) numbers near m to get a prime ¢. Since
about one third of the primes have 2 as a primitive root [25], we need to try about
3In(m) numbers near m to get a prime ¢ such that 2 is primitive modulo ¢q. Write
g =2p+ 1. We want p to be prime and 2 to be primitive modulo p. Hence we have
to try about 31In(m/2) such ¢’s. Therefore, to find a strong 2-prime number ¢ near

m, we have to try about 9In(m)In(m/2) numbers near m.

Kim, Seo, Lee and Lim in [40] checked all the prime numbers having bit length up
to 24. Their data (Table 2.4) indicates that the number of strong 2-primes increases
proportionally to the bit length.

Let v(m) stand for the number of strong 2-primes having bit length In(m). There

are about m/2 integers having length In(m). Hence, the number of strong 2-primes

36

Table 2.4: Number of Strong 2-Primes

bit length 10 11 12 13 14
2-primes 70 127 232 425 814
strong 2-primes | 1 3 7 10 17

bit length 15 16 17 18 19
2-primes 1521 | 2861 | 5393 10179 | 19424
strong 2-primes | 32 62 97 172 295
bit length 20 21 22 23 24
2-primes 36912 | 70499 | 134766 | 257971 | 495113
2-strong prime | 542 924 1748 3162 5838

of length In(m) is about m/(181In(m)In(m/2)). From Table 2.4, we may observe the

following:
m m

18 - In(m) In(m/2) svim) < 9 -In(m)In(2m)

We also may notice that v(m) is about one percent of the number of 2-primes with

the same bit length.

When N is not 2, by using ring homomorphisms, we can prove a result similar to

Theorem 2.5.3. Let N have the prime factorization:

N = pypy - pit.
Here, the p;’s are distinct prime numbers and e; > 0 are integers. For each i, let
F; = 7Z/(pi) be the residue field. Then, for each i, there is a ring homomorphism
wi + R = Z/(N) — F,. Furthermore, ¢, induces a homomorphism between the
polynomial rings [17, 18]:

@i Rlz] — Fi[z].

We first state a simple lemma:

Lemma 2.5.4 Let A = {ag,ay, -, -} be a periodic N-adic l-sequence generated by
an N-FCSR with the prime connection number ¢ = 2p 4+ 1. If 3|N and p > 2, then

there exists at least one a; such that a;(mod 3) = 0.

Proof: Since A is an [-sequence, by Theorem 2.3.1 there are constants D € Z/(N)

37

and C € Z/(q) such that
a; = D[C N~ (mod q)](mod N), i > 0.
Since N~! is primitive modulo ¢ and ¢ > 5, we have
{CN~(mod q) :i=0,1,---,g—1} = {1,2,3,4,--- ¢ — 1}.

Hence there is an ¢ such that a; = 3D(mod N). This implies that a;(mod 3) = 0
because 3|N. O

Theorem 2.5.5 Let A = {ag,a1, -+, -} be a periodic N-adic l-sequence generaled
by an N-FCSR with the prime connection number g = 2p+ 1. Let A(A) be the linear
complexily of A over R=Z/(N), px a prime factor of N. If (1) p is an odd prime;
(2) pi is primilive modulo p; and (3) q > N?, then p < AM(A) <p+ 1.

Proof: By Corollary 2.5.2, we only need to show that A(A) > p. Suppose A\(A) < p.
This implies that A has a recurrence relation with length less than p, or, equivalently,

the generating function of A over R can be represented as

f(z)
g(z)

a(Az) =) aizt =
=0

with deg(g(x)) < p.

Applying the homomorphism ¢, : R — Fj to the sequence A, we have the induced
sequence over Fy: A = {pp(a;) = a;}. Since a; + apr; = (N — 1)(mod pp) =

—1(mod py), over F}, the generating function of the sequence A can be expressed as

2p—1— ¢
Zi:o a;T

oz(;l) = apET
Y dir’ + g (N — 1 —a;)at*r
B 1 — a2
(X 2 (1=)@+ @ + -+ Gy 2P + a?)
B 1 —a?

(1 —2)(ao+ arx + -+ + ap_qaP™) — a?
(1 —2)(1 + ap) '

Let

h(z) = (1 —x)(ao+ arx+ -+ ap_12°7") — 2P,

38

=
=
Il
Y
ol
pug
=

Hence, a(A) = h(z)/r(z) = f(x)/g(x). Since the degree of g(zx) is strictly less
than p, ged(h(z),7(x)) has degree strictly greater than 1. We show that in fact
deg(gcd((z),7(x))) <1, a contradiction. Let d(=0 —x+2*—---+aP™!) over

Fy.. Note that A(1) # 0. Then gcd(h(z),7(x)) = ged(h(z), (1 + x)d(z)). We show
that d(z) is irreducible in Fj[z].

First, consider the polynomial d*(z) = 1 + = + 22 4+ - 4+ 2P over Fi. Since
pi. 1s primitive modulo p, the only pg-cyclotomic cosets modulo p are Cy = {0} and
Cy ={1,2,---,p— 1}. Hence, d*(x) is the minimal polynomial of 6, where 6 is a
primitive root z? — 1 over an extension field of Fj, and thus d*(x) is irreducible [28,

7.5, p.197]. Note that d(z) = d*(—z). It follows that d(z) is irreducible.

Next we show that d(z) fh(z). Note that d(—0) = d*(#) = 0. Suppose d(z)|h(z).
Then h(—6) = 0. From the equation §? = 1, we have

0 = h(-0)
= (1+0)(ag— a0+ ay0* — - — ay_s0”~2 + a,_107" 1) — (—0)7
= (Go+ ap—1+ 1)+ (—a1 + ao)0 + (az — @) + (—as + @2)60° + - - -

+(_&p—2 + &p—S)ep_Q + (&p—l - %—2)‘92)_1
Since d*(x) is the minimal polynomial of 8, the polynomial

w(z) = (ao+ap_1 + 1)+ (=a1 + do)z + (a2 — a1)a® + (—as + ag)z® + - --

H(—ps + p-3) 2”7+ (Apoy — @poz)a”

is a multiple of d*(z). That is, w(z) = 0 or w(z) = 3-d*(x) for some nonzero element

B € Fy. If w(z) =0, it follows that ap = a; = -+ = a,—1 and ag + a,—1 +1 =0. We
shall show that this is impossible. Suppose a9 = a; = -+ = a,—1 = a. Then a # 0
and

il(l’) = (1—Jj)(&0+&1$—|-..._|_&p_1$p—1)_wp
= EZ(1_'r)(l‘|‘.TL’—|-.TL‘2—|—..._I_:L,p—l)_xp

39

= a(l —aP)— 2P
= a—(a+1)zP.

On the other hand, we have that ;L(l’) = d(z)(¢c + z) for some element ¢ € Fj. That

s,

h(z) = (c+z)1—z+a? =2+ — P72 4 2P 1)
= c+(l—cz+(c—Dz*+-+(c—1)aP " +2”
= a—(a+1)z”.
By comparing the coefficients over F,, we have ¢ = a = 1 and h(z) = 14+2P = 1 —22”.

This is impossible unless py = 3. If p; = 3, then a(A) = 1/(1 —). This implies that
A={a; =1:1>0} Since p, = 3 and p; is a prime factor of N, by Lemma 2.5.4
there is some ¢ such that a; = 0. This contradiction shows that & cannot be 3, and

then CZ(:L’) cannot divide ZL(ZL’)

We now consider the case w(z) = - d*(z) with § € Fy and 8 # 0. By comparing
the coefficients of the polynomials, we have a system of linear equations in variables

(EEO, &1, e ,Elp_g, Elp_l) over Fk

ET'O—I_Elp—l‘l'1 -
—ay +ap =

ay —a; =

T @ @

—az+ ay =

_&p—Q + afp—S =

Apy — Gp_g =

The coeflicient matrix is:

40

1 00 0 1
1 -1 0 0 0
M= 0 -1 1 0 0
0o 00 -~ —11

If pr. # 2, the determinant is non-zero. Hence the coefficient matrix is non-singular

and the system has the unique solution:

_ B—1 _ —p—1
Ao = — (3 A2i41 = 5

2

If pr = 2, the matrix has rank p — 1. The system has two solutions, (010101 - - -)
and (101010---). Therefore, in both cases A has the pattern (zyzy---), where x
and y are two elements in Fj. Since the prime connection number ¢ > N? and A
is an [-sequence, the fractions —1/q, —N/q and —N?/q represent three shifts of the
sequence A. It follows that A contains the pairs (10),(01) and (00). The presence of
the first two pairs imply that = # y and the last pair shows that * = y = 0. This is

impossible.

Therefore, ged(h(zx),d(x)) = 1 and (1 + z) is the only possible common factor of h(z)

and 7(z). Hence, we have shown that deg(ged(h(z),7(z))) < 1, and this contradicts

the previous result that deg(ged(h(z),7(x))) > 1. This contradiction shows that
deg(g(x)) > p, and then A(A) > p. O

We now are interested in triples of integers (¢, p, N) satisfying the conditions: (1)
q is prime; (2) ¢ = 2p + 1 and p is odd and prime; (3) N is primitive modulo ¢; (4)
there is a prime factor of N, denoted as v(N, p), such that v(N, p) is primitive modulo
p over the finite field Z/(v(N,p)). Table 2.6 lists all the such triples with ¢ < 10000
and N < 30.

By Theorem 2.5.5 and Table 2.6, we see that there are many N-adic sequences
whose linear complexities are significantly larger than the lengths of the correspond-
ing N-FCSRs. For example, choose ¢ = 8699, p = 4349 and N = 10. Then any
decimal sequence generated by a 10-FCSR with connection number ¢ = 8699 has
linear complexity at least p = 4349, but the length of the 10-FCSR is only 4.

Theorem 2.5.5 raises some deep questions in number theory. For instance, we are

Table 2.5: Prime Chain of Length 6

P1 P2 P3 P4 Ps Pe

89 179 359 719 1439 2879
63419 126839 253679 507359 1014719 2029439
127139 | 254279 508559 1017119 | 2034239 4068479
405269 | 810539 1621079 | 3242159 | 6484319 12968639
810809 | 1621619 | 3243239 | 6486479 | 12972959 | 25945919

41

concerned with pairs of primes (p, q) such that ¢ = 2p + 1, or in general, a chain of
primes (p1, p2,- -, pt) such that p;y1 = 2p; + 1,1 < <t —1. Let us call this a prime
chain of length t. Now one interesting question is whether there exists a prime chain
of length ¢ for any ¢ > 1. We have checked this question for numbers up to 1,000,000.
The maximal length of prime chains we have found is 6. However it seems hard to
show that length of a prime chain never exceeds 6. Note that if a prime chain starts
at p and the last decimal digit of p is 1, 3, or 7, then the chain has length less than
or equal to 3. Hence, if a prime chain exists of length greater than 3, then all the
prime numbers in the chain have the last digit 9. Table 2.5 presents all the prime
chains of length 6 with starting prime <1,000,000. Another question is whether there
are infinitely many prime pairs (p, ¢) with ¢ = 2p + 1. This question is similar to the

problem of arithmetic progressions of prime numbers [38].

Table 2.6: List of Triples (¢, p, N)

q=2p+1 | p N primitive modulo q v(N,p)

7 3 3 3

11 5263 2.3

23 11 | 7,10,11,14,20,21 71
7 93 | 5,10,11,15,19,20,22,23.30 5.11,19,23
59 20 | 2,6,8,10,11,14,18,24.30 2311

33 A1 | 13,14,10.22 13,7,19.11
107 53 | 2.5.6.8,15,18,20,21,22,24,26 23 2.5.3
167 83 | 5,10.13,15,20,26.30 5.2.13
179 89 |6,7.18.21,23,24.26,28 30 3.7.23.13
227 113 | 5,6,15,17,18,20,24 53,17
263 131 | 10,14,20,28,29,30 2,29

347 173 | 2.5.6.7.8,15.17,18.19.20.21,22.24.26 28 | 2,5.3.7.17.19.11
359 179 | 7.14.21,26.28 72

467 933 | 5,6,11,15,18,20, 24 5.3.11
479 939 | 13,19.26 13.19
503 251 | 19,29 19,29
563 931 | 6,15,18,22,24,26 311,13
537 293 | 2,5.6.8,11,13,14,15,18,19.20,23 24 2.53.11,13,7,19.23
719 359 |19 19

339 419 | 11,17.22.26 11,172
363 131 | 7.13,14,21,26,28 713

337 143 | 5,10,15,20,23,29.30 5.2.23.20
933 191 | 10,20,22,26,29.30 2,29
1010 | 500 | 2.6.7.8,10,13,18,21,22,24,28.30 2.3.7.13
1187 [593 | 5,6,7,15.18,20,21,22,24.26.28 5.3.7.11.13
1283 | 641 | 6,15,18,21,23,24 3,23
1307 | 653 | 2,5.6.8,14,15,18,20.24,29 2.5.3.29
1319 659 | 26,29 2,29
1367 | 683 | 5,7.10.11,13,14,15,17,20,21,22,26.28.30 | 5,7.11.13.17
1439 719 | 11,17,22,23 11,17,23
1487 | 743 | 5.10,13,15,20,26,29.30 5.13.29
1523 761 | 7.11,21,28 711
1619 | 809 | 6,13,21,22.24.30 3,11
1907 | 953 | 5,6.11,15,18.19,20.24 531119
2027 | 1013 | 5,6,7,15,18.20,21,24,28,29 5.3.7.29
2039 1019 | 7,13,14,21,22,26,28 7132
2099 | 1049 | 6,14,18,23,24,30 3.7.23
2207 | 1103 | 5,7,10,14.15,20,21,28.30 5.7

2447 [1223 | 5,10,15,20.23.30 5,23
2459 1229 | 2,6,8,10,13,17,18,21,22,24,28.30 23131711

42

Table 2.6 Continued

q=2p+1 | p N primitive modulo q v(N,P)
2579 1289 | 11,13 11,13
9319 | 1409 | 6,13,18,19.24.30 3.13.19
9370 | 1439 | 7,14,17,21,23 28,29 717.23.29
2003 | 1451 | 10,2030 2

2063 1481 | 6,15,13,21,24 3

2999 1499 | 17,19,23 17,19,23
3023 1511 | 11,22 11

3167 | 1583 | 5,10,15.20,30 5

3203 1601 | 6,7,15,17,18,21,22,23 24,28 3.7.17.11,23
3467 1733 | 2,5,6.8,15,18,20,21,22,24.26 28 25311
3779 | 1889 | 6,14,18,19,22.24.30 3.7.19.11
3803 | 1901 | 2,6.8.15,17,18,20,21,22,24.98 2317
3363 | 1931 | 10,13,20,26,30 2.13
3047 | 1973 | 2,6.8,14,15,18,20,24 237
1007 | 2003 | 5,10,15,20,30 5

4079 2039 | 11,22 11

4127 2063 | 5,10,15,19,20,30 5,19
4139 | 2069 | 2,6.8,10,13.18.21,24,28.29.30 2.3.13.20
4259 | 2129 | 6,18,22,24,30 3,11
4983 | 2141 | 2,6.8,11,14,15,18,20,24 23,117
4547 | 2273 | 5,6,7,11,15,18,19,20,21,23,24.26,28 | 5,3,7,11,19.23.13
4679 2339 | 22,29 2,29
4787 | 2393 | 5.6,14,15,18,20,22.24.29 5.3.7.11,29
4799 | 2399 | 11,13,19,22,26,29 11,13,19,29
4919 | 2459 | 13,17,26 13,17,2
5087 | 2543 | 5.10,15,20,23,30 5.23
5099 | 2549 | 2,6.8.10,14,18,19.22,93.24.26.30 | 2,3,19.23
5387 | 2603 | 2,5.6,7.8,13,15.18,20 21.22.24.28 | 2,5,3.7.13
5399 2699 | 7,11,14.21,22.28 7112
5433 | 2741 | 2,6,8,15,13,20,21,24,26 23 29 2.3.13.29
5507 | 2753 | 5.6,15,18.20,24,29 5.3.,29
5639 | 2819 | 14,17,23.28 2.17.23
5307 | 2903 | 5.10,15.20,30 5

5879 2939 | 22,29 2,29
5927 | 2963 | 5,10,11,15,17,20,22.,30 521117
5039 | 2969 | 6,13,17,18,22,24,30 3.13.17.11
6047 | 3023 | 5,10,13,15,17,20,26,30 513,17
6599 3299 | 26 2

6659 | 3329 | 6,11,18.21,23,24.30 3.11.23
6719 | 3350 | 11,13,22.23.26 11,13.23

43

Table 2.6 Continued

q=2p+1 | p N primitive modulo q v(N,P)
6779 | 3389 | 6,18,24.30 3

6327 | 3413 | 2.5.6,8,13,15,18,19.20,.21,22,24.28 | 2.5.3,13.19
6299 | 3449 | 6,7,18,21,22,24.28.29 30 3,7.11,29
6983 | 3491 | 10,11,14,20,22,26,23 30 2,11

7070 | 3539 | 7.14,17,19,21,26.28 721719
7187 | 3593 | 5,6,11,13,15,18,19,20.24 5.3.11,13,10
7247 3623 | 5,7,10,11,14,15,20,21,22.23.28.20.30 | 5,7,11,23,29
7523 | 3761 | 6,15,18,22.24 3,11

7550 | 3779 | 17.19.26 17.19,2
7607 | 3303 | 5,10,13,15,20,26.30 5.2.13
7643 | 3821 | 6,14,15,18,10,24 3.7.19
7703 | 3851 | 10,11,20.22,26.30 211

7727 | 3363 | 5,10,13,15,20,26.30 5.13

7823 3911 | 23 23

3039 2019 | 11,13,22.26 11,132
147 | 4073 | 5.6,14.15,18,20,24 5.3.7
8423 | 4211 | 7,14,21,28 7

8543 | 4271 | 13,26,29 13,29
8699 | 4349 | 2.6.8,10,13,14,17,18,24.30 2.3.13.17
747 | 4373 | 2.5,6,7.8,13,15,18,19,20,21,22,24.28 | 2,5,3,7,13,19,11
8783 4391 | 17 17

8319 | 4409 | 6,13,14.,18,24.30 3.13.7
3063 | 4431 | 6,15,18,24,29 3,29

0167 | 4733 | 5,15,19,20 5,10

0587 | 4793 | 5,6.7.15,18.20,21,22,24,28,29 5.3.7.11.29
0339 | 4919 | 13,19,26.29 13.19,29
9887 4943 | 11,22 11

44

Chapter 3

The Synthesis of N-FCSRs

The main objective of this chapter is to develop a cryptographical analysis on N-adic
key streams based on N-FCSRs. The core of the analysis is a rational approximation
algorithm. For an N-adic sequence A, the synthesis problem is to find a minimal
length N-FCSR that generates the entire sequence by only processing a part of A.
The synthesis problem is solved by two steps: (1) compute the reduced rational
representation of A; (2) use the rational representation to explicitly construct an N-
FCSR that generates A. The approach used here is different from that used by Klapper
and Goresky [23] for p-FCSRs. They employed lattice theory and de Weger’s rational
approximation algorithm for p-adic numbers [10]. This approach does not work for
general N-FCSRs because the algebraic structures of general N-adic numbers are
weaker. Also the rational approximation algorithm presented here is totally different
from that developed by Bach [1]. Bach’s algorithm is designed only for add-with-
carry’ generators that are special cases of N-FCSRs. Noticed that for N-adic numbers,
the addition with carry prevents the convergence of direct modifications of the original
Berlekamp-Massey algorithm [32]. We have found a way to overcome the difficulty
caused by the addition-carry.

In Section 1, we introduce notation and provide preliminary results. In Section
2, we describe the rational approximation algorithm, and in Section 3, we prove the
correctness and convergence of the algorithm. We then solve the register synthesis
problem for N-FCSRs. The implementation details and the algorithm improvements

are also discussed in this section. In Section 4, we present an algorithm that constructs

45

46

an N-FCSR for any reduced rational number u/q with ged(q, N) = 1. Combining this
with the rational approximation algorithm completely solves the N-FCSR register
synthesis problem. In Section 6, we introduce an N-adic complexity (or N-adic span)
for finite length sequences. Essentially, the N-adic span of a sequence is the length
of the minimal length N-FCSRs that generates the given sequence. The N-adic span
is different from the linear span that is based on LFSRs. As seen in Section 2.5,
there are varieties of sequences that have small N-adic span, but large linear span.
Cryptographically, this means that there are key streams that may be secure against
LFSR-based attacks, but not secure against N-FCSR-based attacks. One interesting
question of N-adic span is the distribution among all sequences of a fixed length. In
this section, we prove that more than half of the sequences of a length n will have

N-adic span greater then or equal to n/2.

3.1 Preliminaries

To analyze eventually periodic N-adic sequences, we have used integers, rational num-
bers and N-adic numbers as algebraic models. For further analysis, we need to intro-

duce certain measures on these algebraic objects. Recall that S = {s:0 < s < N—1}.
Definition 3.1.1 For any integer x # 0, the index with respect to the base N,
indy(z), is defined as follows:

(1) indn(z) =t if x>0, 2 =ag+ a1 N+ -+ a;N" with a; € S and a; # 0;

(2) indy(x) = indn(—z) if < 0;

(3) indyn(0) = —o0.

Note that we have indy(z) = indn(|z|), hence we may assume z > 0 when we
compute the index. We may view indy(x) as the floor of the logarithm of |z| with

respect to the base N. We have the following arithmetic properties of the index

function.

Proposition 3.1.1 For any two integers x and y, indy(zy) < indy(z)+indy(y)+1.
In particular, if a € S,y > 0, then indn(ay) < indn(y) + 1. Also, indy(z + y) <
maz(indy(z),indy(y)) + 1.

47

Proof: If one of z,y is zero, it is true when we take the convention ¢+ (—o0) = —o0
for any finite integer a. So for the multiplication we assume both z and y to be

non-zero and positive. Let s = indy(x), t = indn(y). We then have two expansions:

r = ag+aN+---a,N°,
y = bo—|—blN—|—tht

It follows that zy < (N*t! — 1)(N**! — 1) = Ns+i+2 — N+l N1 4 1 and then
indy(zy) <s+1t+1=1indy(z)+ mmdn(y) + 1.

For the addition, we have that |z + y| < |z] + |y| < (Nt — 1) + (N — 1) and
then indy(z +y) = indn(lz +y|) <(s+1)or (1 +1). O

Note that the inequalities can be equalities for both multiplication and addition.
For instance, let # = 7, y = 1 and z = 15. Thus we have indy(z) = 2,indy(y) = 0
and indy(z) = 3, but indy(z + y) = 3 = maz(indy(z),indy(y)) + 1 and indy(zz) =
6 = indy(z) + indy(2) + 1.

For any pair of integers (h,r) with r # 0, we define the following function induced
by the index function. We assume the second component in any integer pair to be

non-zero unless the contrary is stated explicitly.
Definition 3.1.2 For N > 1, ®y(h,r) = maz{indy(h),indy(r)}.

Proposition 3.1.2 For any pairs (hy,r1), (he,r2) and any k > 0, we have :
(1) ®n(h1 + he,r1 4+ 1r2) < max{®n(h1,r1), Pn(ha,re)} + 1.
(2) ®n(hira + rihe,rire) < On(he, 1) + Py (A2, m2) + 2.
(3) O (NF(hy,r)) =k + ®n(h1,71).
Proof: By Definition 3.1.1 and Proposition 3.1.1, it is possible to show (1), (2) and

(3). We present the proof of (2) as an example. It follows from the definition and
Proposition 3.1.1 that

O(hyry + r1h2, T172)

maz{indy(hiry + rih2),indn(rir) }
mazx{indy(hiry),indn(rihy), indy(r) + indy(r2)} + 1
maz{®(h1,r1) + ®(ha,12), ®(h1,71) + P(ha, 7))} + 2
O(hy,r1) + ®(hg,re) +2. O.

IN IA

48

Note that the inequalities in (1) and (2) also can be equalities. For instance, let
N be 2 and (hy,71) = (6,7), (he,r2) = (9,15). Thus, ®(hy,r1) = 2 and ®(hy,) = 3,
but q)(hl'rg + Tlhg, T1T2) = @(153, 105) =7= q)(hl, Tl) + q)(hz, Tg) + 2.

Recall that in the original Berlekamp-Massey algorithm, the degree of a polyno-
mial and the maximal degree of a pair of polynomials act as norm functions. They
are important in the proof of correctness and fast convergence of the algorithm.
Here we replace them by the index function and the function ®. Also note that in
the Berlekamp-Massey algorithm the arithmetic operations are taken in the ring of
polynomials over a field and the addition has no carry. Here we are doing integer
arithmetic, so both multiplication and addition create carries and then may increase
the values of ind and ®.

By Theorem 2.2.5, any eventually periodic N-adic sequence A = (ag,ay,---) can
be represented as a rational number «(A) = u/q with ged(N,q) = 1. By removing
the greatest common factor, we may further assume that ¢ > 0 and ged(u, ¢) = 1, i.e.,
the rational representation is reduced. Therefore, we have a unique integer pair (u, q)
associated with the sequence A. The ®-value of this pair is important. We state the

following definition.

Definition 3.1.3 Let u/q be the reduced rational representation of an N-adic se-
quence A. Then the N-adic span (or N-adic complexity) is defined as An(A) = ®(u, q).

Comparing with the linear span, we note that the N-adic span of a sequence A may
not be exactly equal to the minimal length of an N-FCSR that generates A. Also,
the physical size of an N-FCSR is determined by both the length of the register and
the memory size. However, the quantity Ay(A) is the dominating parameter in both
the algorithm design and the register construction. It can be proved that the number
of bits required for the register and Ay(A) only differs by a log(An(A)) term. We
will return to this problem after presenting and proving the rational approximation

algorithm.

49

3.2 The Rational Approximation Algorithm

We are concerned with finite N-adic sequences as inputs. In cryptanalysis, these
sequences may be small parts of N-adic key streams. For a given input sequence, the
output of the rational approximation algorithm will be a pair of integers (h,r) whose

corresponding rational number h/r is the rational representation of the key stream.

Let A be an N-adic key stream and a = h/q be its associated rational number.
Assume the input sequence is a (consecutive) part of the key stream. To compute «a,
we iteratively construct integer pairs (h;,r;). Each pair (h;,r;) is constructed such
that the N-adic expansion of the rational number k;/r; matches the input sequence
up to i-th position. When a new symbol is input, we find a new pair (h;41,741) if
necessary by forming a linear combination of (h;,r;) and an earlier pair. This is done

so that the new pair approximates more symbols.

To make this idea work, there are two things we must be concerned with: (1) pairs
{(hi,r;)} must converge to a pair (h’,r’) such that A'/r" = h/r; and (2) the number of
iterations leading to convergence must be as small as possible. Note that from stage
i to stage ¢ + 1, if the expansion of h;y1/r;11 matches one more symbol than that
of hi/r; does, but the size ®n(hiy1,ri+1) increases at least one, then the convergent
speed will be very slow and the size of the pair that the algorithm converges to will be
very large. Also note that in general a linear combination of integer pairs (hy,71) and
(h2,72) may increase in size (®-value) because N-adic integer addition has carries.

This is one of many difficulties of the algorithm.

We overcome this difficulty as follows: when we form a linear combination of
(hi,r;) and an earlier pair to construct (hii1,7+1), we make the pair (hiy1,7i+1)
approximate at least three more symbols, but the size of the new pair increase at

most two. This idea works, but it adds complexity to the proof of the algorithm.

We first present the pseudocode of the rational approximation algorithm for any
N > 1. Then in the next section we prove its correctness and fast convergence. The

implementation details and improvements for small N are discussed later.

Let the input sequence be {a;: 0<a; < N —1,0<i < L} and a = X2 a;N'.

Rational Approximation Algorithm for N-FCSR
Pre-work:
(1) shift the sequence: a + 1+ Na.

(2) set (ho,m0) = (0,1), (h1,m1) = (ao + a1 N + aaN*, 1 + N3),m = 0,1 = 1.

loop: {
if(e > L 4 1) quit the loop.
if((h; — r;a) = 0 mod(NTY)) hiyy = hiyrppr = riyi =1+ 1
else {
if(3s # 0 with |s| < [N?/2] and N**3 | s(h; — ;)
set (hiy1,rip1) = s(hi,r;)
else {
find s,t such that
(a) (5,1) # (0,0)
) lsl. i< (V2]
(c) N“v3 | s(hi — ria) + IN“"(hy — 1)
set (hiy1,7mig1) = s(hiy1:) F AN (B)
} end of ’else’
if (1) (I)N(hi-}-lari-l—l) > (I)N(hi,ri) and
(2) On(hiyri) <t —m+ Pn(hy,) and
(3)t#0
then set m =1
} end of "ELSE’
} end of loop
Post work:
(1) find & = u/q from the equation 1 + N(u/q) = u*/q*.
(2) reduce the output to u*/¢* with ged(u*, ¢*) = 1.

Figure 3.1: Rational Approximation Algorithm for N-FCSRs

50

51

Remarks: (1) The purpose of replacing a by 1 + Na (i.e., shifting «) is to assure
that the shifted sequence has its first element relatively prime to N.

2 lOI’]\/Y—?)7 the bounds on the inte erss,ti side t GZOOPIGGdtOCIa e to
g g
[—5, 5] The reason of this Change is explained later.

(3) Furthermore, when N is 2 or 3, we can modify the algorithm so that it is more

efficient. The modified algorithms will be given after we prove the algorithm above.

We prove that the algorithm is correct and works similarly to the Berlekamp-
Massey algorithm. Comparing with the original Berlekamp-Massey algorithm, the
critical modification is that whenever a discrepancy occurs, 3 more elements in the
sequence are processed (see line 4-5 and 7-11 inside the loop). The goal of the process-
ing is to find a new rational number whose N-adic expansion matches all the processed
elements and whose ®-value is bounded and can be estimated by the previous values.
Note that integer addition and multiplication have carries and N may be composite.
The former makes the original B-M algorithm fails, and the latter makes Klapper and
Goresky’s lattice based approach fails.

3.3 Proof of the Rational Approximation Algo-
rithm

Several lemmas are needed to prove the correctness and convergence of the algorithm.
In the sequel, we state and prove the lemmas and explain why the algorithm works.
First of all we have to ensure that the algorithm can make progress correctly at each

index 1.

Lemma 3.3.1 The integer s under the second condition ‘if” can be computed and

checked efficiently.

Proof: Suppose the integer s is a solution of the equation: b = 0 (mod N?), where
b= (h; — r;a)/N* mod N3. Let d = ged(b, N?),b = bod, N* = dL. We then have:
xby = 0 (mod L). Equivalently, z = 0 (mod L) since ged(by, L) = 1. Hence we only
need to check if there is an integer k such that |kL| < N?/2. This is true if and only
if L<N?%*/2.0

52

Lemma 3.3.2 The integers s and t exist except when N = 3. For N = 3, the bounds
need to be enlarged to be [—5,5]. Further more when N = 3, we can choose s,1 such

that |s| # 5 or |t| # 5.

Proof: For integers x and y, there are unique wq, wy, wy € S such that
z(b; + b1 N 4+ biaN?) 4+ y(em + eyt N + ¢uiaN?) = wo + wi N + wy N*(mod N?).

Here,

bi + bi+1N + bH_QNZ = (hZ — 'I“Z'Oé)/Ni mod NS,

and

em + cmia N + nyaN? = (hy — rna)/N™ mod N°.
Let W(z,y) = (wo,wr,wz). We need to find suitable integers s and ¢ such that
U(s,t) = (0,0,0). First note that there are only N? distinct triples (wg,wy,ws).

There are several cases that need to be analyzed.

If N =3, we choose z,y such that —2 < z,y < 3. Then we have 6> = 36 distinct
pairs (z,y), but only N* = 27 distinct triples (wp, wy,wy). This shows that there
are two different pairs (21, 41), (22, y2) that map into the same number wq + w1 N +
wyN? (mod N?). Then (s,t) = (z1,y1) — (22,y2) # (0,0) is a non-zero pair such that
=5 < s,t <5 and ¥(s,t) = (0,0,0). Suppose ¥(s,t) = (0,0,0), but |s|] = [{| = 5.
We then have

N3|5[(bi + b N + bi+2N2) + (¢ + 1t N + Cm+2N2)]
Since ged(N,5) = 1, this implies that
N3|[(bi + b N + bi+2N2) + (¢ + et N + Cm+2N2)]

and then we can choose s,t € {1,—1}.

In the case when N = 2k is even, we consider the map ¥(z,y) for —N?/4 < z,y <
N?/4. Note that | N?/4| = k* and we have (2k* 4+ 1)* > N? = 8k°. Now similarly
we have (s,t) = (z1,y1) — (z2,y2) # (0,0) such that —|N?/2] < s,t < [N?/2] and
W(s, 1) = (0,0,0).

In the case when N = 2k + 1 with & > 2 is odd, we have LN2/4J = k* + k.
We consider integers z,y such that —(k* + k) < z,y < (k* + k). This gives us

53

(2(k* 4 k) + 1)* different pairs (z,y). Note that & > 1, we have the inequality
(2(k* + k) +1)* — (2k +1)° = 2k[2k(k* — 1) — 1] > 0

It follows that the number of distinct such pairs (z, y) is greater the number of distinct
triples (wg, w1, ws). Again we get a pair (s,¢) such that —2(k* 4+ k) < s,t < 2(k*+ k)
and U(s,t) = (0,0,0). Since | N?/2] = 2(k? + k), we are done. O

Notice that there may exist more than one such pair of (s,?), and we may select
one such that indy(s),indy(t) are minimized so that ®(h,41,741) can be minimized.
To find s and ¢ efficiently, we may pre-compute a table. The number of entries in the
table is at most N*. When NV is not very large, we may simply conduct an exhaustive
search. Note that number s and ¢ are not independent. When N is large, we can use

the following lemma.
Lemma 3.3.3 The numbers s and L can be compuled in time O(N*log® N).

Proof: Let a = ag + EllN + ELQNQ, b= 7)0 + BlN + I;QNQ with ago 7£ 0,7)0 7£ 0 and
0 < a;, b < N—1. By Lemma 3.3.2, there exist s and ¢ such that sa+tb = 0 (mod N?)

and |s|, [t| < N2. We now compute s and ¢ by reducing the search space.

Let u = ged(N?,a,b) and K = N?/u. Then we have the equations
\ sa = —tb (mod K).

Let d = ged(K,a'), a' = a"d and K = K;d. Then ged(d,b) = 1. This implies that
d|t, and then t = t;d and sa" = —t;b (mod K;). Since ged(a”, Ky) = 1, there is an

* such that v"a” + ¢K; = 1 for some integer ¢. This gives

inverse v of ¢ in Z/(Ky)
us the equation

s=—tbv (mod Ky).

We then search for ¢; such that this equation holds and |t;d|, |s| < N?. Since greatest
common divisor and division can be computed in time O(log® N) and |¢;] is in the
range [0, N?/d], s and ¢ can be computed in time O(N?log® N/d?). O

Note that since |byv (mod K;)| < K; < N3, we can build a table for any fixed K
which is a factor of N. Let 7(N?) be an upper bound on the number of factors of

N3. Hence the number of tables is bounded by 7(N?).

54

Before proceeding with the correctness proof, we explain why we need pre-work
and post work in the algorithm. The purpose of pre-work is so the first pair (A,)
satisfies (a) (h, —ary,) = 0 (mod N™) but not 0 (mod N™*'), (b) There is no integer
s with |s| < N?/2 so that N?|s(a,, + @mi1 N + an12N?). Here we assume a,, is the
first non-zero bit and h,, = 0. By shifting the sequence by setting a < 1 + Na, we
have ag = 1. Then the pair (0,1) satisfies both (a) and (b) for the modified input
sequence. Furthermore, the algorithm is designed to make both (a) and (b) true for
indices ¢ at which the combination updating (updating by using s and ¢) occurs. The
reason to enforce these conditions is to guarantee that s # 0 and ¢t # 0 whenever
they are used, and then r; # 0 for each pair (h;,r;) in the algorithm. We need the

following definition.

Definition 3.3.1 We define an index to be a turning point as follows:
(1) The initial index m is a turning point;
(2) If my is a turning point, mqy > my is the turning point following my if
(6) (s — @) 0 (mod N7+1)
(b) there is no integer s # 0 such that
1 < [N2/2], N2#]s(h, — ary)
(¢) ON(hmyt1, Tz 41) > PN (s Tmy)
(d) O (hmysTmy) < (M2 —ma) + On (o, 7my)
(e) my is the smallest integer satisfying (a), (b), (¢) and (d).
Note that 2(a) and 2(b) hold initially by the pre-work. Also note that an index ¢ is
a turning point if it is either the initial index m or it is one obtained from updating
m =1 in the algorithm.
Lemma 3.3.4 If (hiy1,7i41) = s(hi,ri) + tNi_m(hm,rm) in the algorithm, then
On(hip1,7i41) < max(Pn(hi, 1), —m + On(hy, 1)) + 2

Proof: Let u = max(®n(hi,r:),i—m+®n(hpm,rm)) and hiyy = sh;+tN"™h,,. Note
that indy(hiy1) = indy(lhiy1]). When N # 3, we have that |s|, [t| < [N?/2] < N?/2,

99

and then
|hig] < (N?/2)(NFH — 1) + (N?/2)(N#T — 1) < N#F2 — 1.

Hence indy(z) < (1 +2). We can do a similar computation for r;y; = sr; +tN*""r,,

and then the conclusion follows by the definition of ®.

For the case N = 3, by Lemma 3.3.2, s, are chosen such that |s|, |t| < 5, but not
|s| = |t| = 5. In other words, one of |s| and |¢| is less than 5. It follows that

|hig1] < B(NATE — 1) + 4(N*H — 1) = (N — 1) < N#3
The same argument is true for r;y1, and this completes the proof.0

We say the algorithm is convergent at an index ¢ if h;/r; = a = u/q. The
following observation assures that if (h;,r;) approximates o up to the i-th position,

but ®y(h;i,r;) is much smaller than ¢, then the algorithm is convergent at :.
Lemma 3.3.5 Ifi > ®n(u,q) + Pn(hi,ri) + 2, then hi/ri = u/q.

Proof: Note that h;/r; —u/q = bN'/qr; for some b. If b # 0, then ®x(bN*, gr;) >
By Proposition 3.1.2, ®n(bN, qr;) = On(hiqg — ru,riq) < ®n(r, q) + On(hiy 1) + 2

This is a contradiction, so b= 0. O

i

We must show that if the algorithm is not convergent at some index, then there is
a larger index that is a turning point. Before updating (h;, r;) to (hit1,ri41) by using
s and t, there are two cases that may cause the algorithm to converge. The first case
is when the pair (hi,r;) to (hit1,7i41) is repeatedly updated by just increasing the
index. In this case ®x(h;,r;) stays unchanged, but it approximates more and more
bits. The above lemma says that if the number of these updatings is large enough,
the algorithm converges. The second case is when (h;, ;) to (i1, 741) is updated by
multiplying by an integer s. Then ®n(hit1,riz1) < @n(hi,) +2. On the other hand,
hiy1 — ariyy = s(h; —ar;) = 0 (mod N'*3). This shows that the ®-value increases
by at most 2, but it approximates at least 3 more bits. This implies that if this case
repeats enough times, the algorithm converges. For convenience, we introduce some

terminology.

In the algorithm, at an index i, if 2; — ar; = 0 (modN*) but not (mod N'*1),

then (hit1,riq1) is obtained either by multiplying by an integer s or as a combination

56

of (hi,r;) and (A, rm) by using a pair of integers s and ¢t. We call either such an ¢ an
updating index, with the former a type 1 updating, and the latter a type 2 updating.
If a type 2 updating occurs under the condition ®n(h;,r;) < i —m + Py(hpm,Tm)
and ®x(hiy1,rie1) > On(hi, 1), it is called a turn-updating. That is, ¢ is the turning

point next to m.

Before proceeding, recall that each pair (h;,r;) in the algorithm corresponds to a
rational number h;/r;. Therefore we must show that r; is never zero, otherwise the
output from the algorithm would not correspond to an N-FCSR. We use the following
three lemmas to prove this fact. We say two pairs (hy,71) and (hg,ry) are Z-linearly

independent if x(hy,r1) + y(ha,re) = (0,0) implies that x = y = 0.

Lemma 3.3.6 Let ¢ be a type 2 updaling index and (s,t) be the pair used in the

combination. Then neither s nor t is zero.

Proof: Recall that N*+3|s(h; — ar;) +t(hy, —ar,)N™. If s = 0, then N**3|t(h,, —
ar,)N'=™ and N™*3|t(h,, — ar,,). This is impossible because m is a turning-point.
If t =0, then N**3|s(h; — ar;). This is also impossible because i is a type 2 updating

index. O

Lemma 3.3.7 Let m be a turning point. For any index 1 > (m + 1) before the next
turning point, (R, rm) and (hy,r;) are Z-linearly independent. At any updating index
i: (hH-ler-l) 7£ (070)

Proof: The proof is by induction. Note that at the initial stage, we have (h,,, r.,) =
(0,1) and (hyug1, Tmt1) = (@ N™ + app1n N™ T 4 a2 NP2 1+ N™43) with a,,, # 0.
This shows that (h,,,) and (hy41,7mt1) are Z-linearly independent.

Suppose (hy,,7r) and (hi,r;) are Z-linearly independent and 7 is an updating
index. If ¢ is a type 1 updating index, we have (hiy1,riy1) = s(hi, 1) with s # 0. So
(AT) and (higr1,ripq1) are still Z-linearly independent. If ¢ is a type 2 updating
index, there are s # 0 and ¢ # 0 such that

(Ris1sriv1) = 8(hiy i) + AN By 7).

57

Suppose there are x and y such that z(h;y1,7i41) + Y(Am,7m) = (0,0). Then
zs(hiyri) + (tNT™ 4+ y)(hp,) = (0,0).

This implies that s = 0 and 2t N™™ 4 y = 0. Since s # 0, it follows that = = 0,
so y = 0. This shows that (hy,,r,) and (hit1,7r41) are Z-linearly independent. In
particular, (h;41,7i41) # (0,0). A similar argument shows that if 7 is a type 2 updating
index, then (h;,r;) and (hiy1,7r:41) are Z-linearly independent. Since a new turning
point is obtained only by type 2 updating, it follows that if ¢ is a turning-point and
(hi,r;) and (hiy1,7i41) are updated into the new (hy,, r.m) and (Ayg1, 'my1), then they
are still Z-linearly independent. This completes the proof. O

Lemma 3.3.8 At any updating index i, we have indy(h;) < 1.

Proof: The proof is again by induction on 7. Note that at the initial stage, h,, = 0.
Hence indy(h,,) < m. Now suppose the lemmais true for every updating index k < 1.
We prove it is true for the next updating index. By the inductive hypothesis we have
indy(h;) < i and indy(h,) < m. Since h;yq = sh; or hiyy = sh; +tN'"™h,,, we have
indy(h;) < i and indy(N"™h,,) < 1. It follows that |h;y;| < N2(NH — 1) < N3
and indy(hi+1) < i+3. On the other hand, we at least have h;y1 = h;42 = hits, hence
we have indy(hits) < i+ 3. Since the next updating index j > ¢+ 3 and h; = hy1,
this shows that at the next updating index j, indy(h;) = indy(hiy3) <i+3 < j. O

Theorem 3.3.9 For every j, r; # 0.

Proof: This is true initially. Since it is true for type 1 updating, we only need to

consider the type 2 updating case with j =2+ 1, ¢ an updating index. We have that
(Ris1smiv1) = 8(hiy i) + AN (hny 7).

Suppose 141 = 0. Then hiy1 = hiy1 — ripia = 0 (mod N*3). If hiyy # 0, then
indy(hiy1) > i + 3. By Lemma 3.3.8, we have indy(h;) < i and, indy (N (b, 7)) <
(t—m)+m = 1. It follows that indy(hit1) <142 < ¢4 3. This contradiction shows
that h;41 = 0. Therefore (hi41,741) = (0,0). This contradicts Lemma 3.3.7. O

We know that at each step the pair (h;,r;) represents a rational number whose

N-adic expansion approximates a up to the (¢ — 1)-th term. Next we show that if

58

the algorithm is not convergent up to index 7, then there is such an index ¢ that is a

turning point. First we prove the following.

Lemma 3.3.10 Let m be a turning point and 1 be an updating index before the next
turning point. If ®n(hi, 1) < i —m 4 On(hom,rm), then for every j > i before the
next turning point, ®n(h;,r;) <j—m+ On(hpm, rm).

Proof: We only need to consider the next updating index j after :. We have (1)
(hig1,7mip1) = s(hiyri) or (2) (higr,7mip1) = s(hiyri) + tN™(hy,, 7). Recall that an
updating occurs if and only if A; —rja = 0 (mod N*) but # 0 (mod N'*t1). Note that
(hit1,7i41) = -+ = (hj,r;) and j — i > 3.

In case (1), we have

On(hjry) = On(hipr, i)
< On(hy,r) +2
< i—m4On(hp,rm) +2
< (G =)+ O

In case (2), we have ®n(hiy1,7i41) < Py (hi,r;) because i is a type 2 updating index,
but not a turning point. By the assumption, ®n(hi,ri) < ¢t — m + Oy (hpm,rm).
Therefore

On(hj,r;) = Onl(hiy1,risn)
< On(hy,ri)
< i—m+ Px(hm,Tm)
< g=—m4+Ox(hpm,rm) -

This completes the proof. O

An index k > m is called normal if ®x(hg,rr) < (K —m)+ ®n(hpm,rm). Thus we
see that once a normal updating is reached, all further updating indices are normal

until the next turning point.

Lemma 3.3.11 Let m be a turning point, and let § = On(hps1,Tmt1) — PN (R, 7).

Then either the algorithm converges with no more turning points, or it will first reach

59

a normal index k with no more than 6 — 2 updating, and then reach another turning

point.

Proof: First note that at any updating index 7, k41 — ar;y = 0 (mod N**2). In

particular, since m is obtained by a type 2 updating, k41 — arpger = 0 (mod N™13).

Let 11 =m =19 <13 <13 <--- <1 be consecutive updating indices. Suppose

they satisfy the conditions
CI)N(hi],rij) > ij —m + (I)N(hm,Tm), 0<] <t.

In other words ¢;, (5 > 0), are all not normal. Let u; = ¢; — ;1,0 < j < ¢. Then
u; > 3 and
t
it—m:Zuj > 3(1 +1).
7=0
On the other hand, we have

(h’ij+17ri]+1): = (h’ij+17rij+1)7 0 S] gt_la
and
(I)N(hij+17 7“2']+1) § ma;L'(CI)N(hij,rij),ij —m + (I)N(hm, Tm)) + 2.
Therefore @y (hi,11,75,41) < ®n(hij,ri;) +2,0 <7 <t — 1. This implies that
q)N(hitv Tit) <2+ (I)N(hm-}-lv rm-l-l)‘
It follows that
it —m+ On (b, 7)) — On (b, 75,)
> 3(t + 1) + (I)N(hma rm) - (q)N(hm-Ha rm-H) + Qt)
=3+1t—0.
This shows that if £ = § — 3, then i#; would be a normal index, so ¢ < § — 2.

Once a normal index k is reached, by Lemma 3.3.10 all the updating indices
1 > k are normal. Furthermore, either there is another turning point or the algorithm

converges. [

If the difference i —®y(h;, r;) is large enough, then by Lemma 3.3.5, the algorithm

converges. Thus we want to bound ®y(h;,7;). In order to bound ®x(h;,r;), we have

60

to carefully estimate the increase at each updating. Let m and m; be consecutive

turning points. We define the increase from m to m; as

ﬁml - q)N(hml ; Tml) - q)N(hm+17 rm+1)-

At start, we set 3,, = 0. Let k,, be the number of turning points less than m.

Lemma 3.3.12 At any turning point m,

q)N(hm—}—l;rm—}—l) S (m + 3) + ka + Z 5] - q)N(hmarm)

j<m

and

Proof: Initially we have k,, = 0 and 3,, = 0. Note that ®x(hmi1,7me1) = m +3
and ®x (A,) = 0. Hence the lemma is true at the first turning point. Suppose it
is true at turning point m and m; is the next turning point. Let w + 1 be the total

number of updatings occurring up to m;. Then we have
my =m+uo+ U + -+ Uy,

with u; > 3 the difference between the i-th and (: 4+ 1)-th updating. Since m; is a

turning point, there exist s and ¢ such that

Py 15 Ty 41) = SRy Ty) F EN™ T (B, 7).

By the induction and the fact that —®x(hmt1, Tmt1) = Bmy — PN (hm,, T,), we have

(I)N(hml-l—lvrml—}—l) S (ml _m) ‘I’Q‘I’q)N(hmarm)
< (mi—m)+2+ (m+3)+ 2k, + Z Bi — On(Pmtt, 1)
i<m
= (my+3) + 2k + 1)+ Y B+ By — Onlbny s 7y
i<m
= (mi+3) 4+ 2k, + Y B — On(hys Ty)

Jj<m
It is left for us to show the second estimate. It is true at the initial turning point.
We assume that at the turning point m

3(km + Y Bi/2) < m.

j<m

61

Note that 8., = On(hmy s Tm,) — PN (Ams1, Pmy1) < 2w and

my

m+ug + U+ Uy

B(km + D Bi/2) tuo+ur + -+ uy
j<m

3(km + > Bi/2) +3+ 3w
j<m

> 3(kn + 2 5i/2) +3 430, /2

j<m

= 3(km, + > Bi/2).

J<my

Y

Y

Equivalently, we have the desired result

2m1

kal-l-ZﬁjST-

J<my
This completes the proof of Lemma 3.3.12. O

Let us define A, to be the smallest ®x(h,r) among all the pairs (h,r) with
h —ar =0 (mod N™). For the eventually periodic sequence A = {a; € S} and
a=3Y2,a;N* = u/q with u and q relatively prime, we define A\(A) = ®x(u, q).

Lemma 3.3.13 Let m be a turning point and let (h,r) be associated with Ap,11. Then

we have

Ami1r = (m—=2) — On(hp, 1) -

Proof: We have h/r — hy, /1y, = (hry — rhy) /vy with hr,, — rhy, = bN™ # 0 for
some b. Then ®n(hr,, — rhy,,rry,) > m. On the other hand, we have

Oy (hry — rhy,rry) < On(hyr) + On (A,) + 2.

Consequently, A,11 = On(h,r) > (m —2) — On(hp,rm) O

Lemma 3.3.14 At any turning point m,

QN (g1, Trng1) — Amgr <5+ 2k, + E B;

j<m

62

Proof: By Lemma 3.3.12, we have that
(I)N(hm—}—larm—l—l) S (m + 3) + ka + Z /6] - (I)N(hmvrm)
i<m

On the other hand, by Lemma 3.3.13, we have that
Ama1 > (m—=2) — On(hy,).
Then we have that

q)N(hm—}—l;'rm—}—l) _/\m+1 S (m+3)‘|’2km + Z/Bj _q)N(hmarm) - (m_Q_q)N(hnnrm))

i<m
i<m

This proves Lemma 3.3.14. O

We now are ready to state and prove the main theorem about the convergence
of the algorithm. We assume the pre-work has been performed. That is, the first

non-zero term in A is 1.

Theorem 3.3.15 Let m be a turning point and o(A) = u/q with w and q relatively
prime. Then when m > 6(3 + X), the algorithm is convergent at m + 1. That is,

hm—}—l

u
Pmil G
Therefore u/q can be recovered by removing the greatest common divisor of h,,+1 and

m+1-

Proof: We have

Rps1q — Tt B bN™H
Tm+1(] Tm+1(]
for some integer b. If b # 0, we consider the ®-value of the pair (Aynt1¢—Tm41, rme1q)

= (bN™*! r,.11q). First we have the inequalities

ON(hmg1q = Tms1t, Tmg1q) < 24+ On(hpmyr, Tmgr) + P (u, q)
< 24542k, + Zﬁj—l-)\m-u—l-)\

i<m
2m

T+ 5 42
+5

IN

63

On the other hand, we have ®n(bN™t 1, 11q) > (m + 1). Now we see that when
m > 6(3 + A), the following inequality holds

9
m—|—1§7—|—?m—|—2)\<m—|-1.

This inequality is a contradiction. Thus b = 0 and the conclusion follows. O

We have shown that the algorithm converges in at most 6(3 + A) iterations.
Note that in each iteration ¢, the computation time used depends on the value
of ®n(h;,r;) that is always less than or equal to 7. Since s and ¢ can be computed
in time O(N?log?(N)) and |s|,[t| < N2, the time complexity of each iteration is
O(12(3 + X) + N? log?’(N)). Therefore we have the following

Corollary 3.3.16 The time complexity of the rational approximation algorithm is

O(6A(12X + N?log’(N))).

3.4 Register Construction

For any given eventually periodic sequence A over S, the rational approximation
algorithm finds a rational representation a(A,N) = wu/q with ged(u,q) = 1 and
gcd(N,q) = 1. The objective of this section is to explicitly construct an N-FCSR
from o = u/q which generates A. As described in Section 2.1, in order to build an N-
FCSR, we must have (1) register length r; (2) register taps: ¢; (0 <7 < r); (3) initial
memory M; and (4) initial loading (ag, a1, -+, a,—1). The next theorem describes an

algorithm which computes all these data.

Theorem 3.4.1 Let o = u/q be a reduced rational number with integers ¢ > 0 and
gcd(N,q) = 1. Then we can construct an N-FCSR with length r = indy(q+ N) that
generates an eventually periodic N-adic sequence whose corresponding N -adic number

is o =u/q.

Proof: Consider the N-adic expansion of ¢ + V:

g+ N =b+q@N + @N* 4+ ¢N°+--- 4+ ¢q.N",

64

with, 0 < b,q; < N,q, # 0 and ged(N,b) = 1. Let g = —(N—b). Since ged(N,q) =1,
ged(N, qo) = 1.

By Theorem 2.2.5, we need to find integers M and {ag, a1, ...a,_1} with a; € S such
that

u Z;;%)(Z?:O ¢i@pn_i)N" — MN"

o= — =
q

(3.5.1)

Step 1 Expand u in powers of N as follows
r-1 .
u=> bN' 4+ wN"
i=0
with b; € S and w € Z.
Step 2 Compute ag € S such that goag = by + [oN. For 0 < n <r — 1, do:
(1) hpy = by — L1

(2) compute ¢, € S and v, € Z by division such that

n
Zqian_i —h, =v,N —c,.
i=1

(3) compute a,, € S and z, € Z such that ¢, = a,q0 + 2, N.
(4) I, = vy + 2.

Step 3 Set M = [, — w and output a;,0 < <r —1.

To prove correctness, we consider the following equations:

r—1 r—1

Z(zn:qz'an_i)N” = Z(lnN+hn)Nn

n=0 =0 n=0
= S(an — ey + by)N”
:ff r—1
= S (N =L,)N+ 3 b, N"
= ;:0— (w—1,)N". -

65

Remark: If we start with an N-adic sequence A = (ag, a1, az,--), in Step 2 we do

not need to compute ag,ay, -+, a,_1.

Regarding register hardware implementation, the total size of an N-FCSR is the
register length plus the register memory size. Assume a hardware memory unit can
hold an integer between 0 and N — 1. Then each a; and each ¢; can be stored in
one such unit. To store the register memory M, we need indy(M) + 1 units for |M|
and an extra unit for sign. Notice that the size of register memory varies when the
register changes states. Fortunately, by Proposition 2.2.1, the register memory size is

always bounded.

Corollary 3.4.2 Let o = u/q be a reduced rational number with integers ¢ > 0 and
gcd(N,q) = 1. Let ¢ = o+ 1N + gaN* + -+ + q.N" be the expansion of q with
—“N<qgp<0,0<aq1,q9,,¢-1<N,0<q. <N. Let w be the Hamming weight
of ¢ — qo, the number of nonzero ¢;, 1 <1 <r. Then an N-FCSR can be constructed

with memory size:

s < maz{indy((w+ 1)(N = 1)) + 2,indy(u) — r + 2}.

Proof: Let My be the initial memory, and M the memory at an arbitrary time.
By the proof of Theorem 3.4.1 and equation (3.5.1), we have that

r—1 n
U= Z(Z Gitn—i)N" — MoN".
n=0 =0
Note that
r—1 n
MoN™ = Z Zqian_iNn —u
n=0 =0

r—1 r—1
= qu Zan—iNn — Uu.
=0 n=t
Let ¢t =3¢ |g:|. We then have

r—1 r—1
IMoN"| < D lail D2 lan—i| N + [u]
1=0 n=t

66

r—1

< L(N=1D) N+ uf
n=0

< HNT = 1)+ |y

< INT + |ul.

It follows that

indnv(Mo) < indy(IN" + |u]) —r
max{r +indy(t),indy(u)} +1 —r
max{indy(t) + 1,indn(u) —r + 1}.

IA

By Proposition 2.2.1, if the register enters a period, then |M| < w(N —1). Therefore,
the memory size s is less than or equal to maxz{indy(Moy), w(N — 1)} + 1. Note that
since t < (w+ 1)(N — 1), we have that

®
IN

mazx{indy(Mo),w(N — 1)} 4+ 1
< maz{indy((w+ 1)(N — 1)) + 1,indn(u) —r+ Lw(N —1)} + 1
< maz{indy((w+ 1)(N = 1)) 4+ 2,indy(u) — r + 2}.

This completes the proof. O

Recall that for an eventually periodic N-adic sequence A = (a; : ¢ > 0), there is a
unique rational representation a = a(A) = 2, a;N* = u/q with ¢ > 0, ged(N, q) =
1 and ged(u,q) = 1. Also recall that A = A(A) = ®(u,q). Note that in the above
corollary, r = indy(q+ N). Hence w < r < indy(q) +1 < A+ 1. We then have
(w+1)(N —=1) < (A+2)N. By Proposition 3.1.1, indy(A+ 2)N = indy(A +2) + 1,
it follows that indy(r(w + 1)(N — 1)) < 2-indy(X +2) + 2. By Corollary 3.4.2, we

have proved the following:

Theorem 3.4.3 For an eventually periodic N-adic sequence A = (a; : 1 > 0), let
A=MA) and a =372 = u/q with ged(N,q) = 1. Then an N-FCSR that outputs A

can be constructed with size bounded by

A+indyn(A+2) + 4.

67

As noticed before, the register setting with go = —1 simplifies the register operations.
If we are willing to sacrifice the register size by at most two, we can always make g

be —1.

Corollary 3.4.4 Let q= g+ N+---+q.N" be the connection number with gy < 0
and ged(qo, N) = 1. Then there is a positive integer x < N such that

$q:_1+61N+62N2+"‘+CuNu7 ¢ €S,¢c, #0,u <r+1.

Proof: By elementary number theory there is an integer x such that 0 < z < N
and gor = —1 4+ bN with b < 0. Then the conclusion follows. O

This corollary shows that the number of register taps increases by at most one.
Since u is replaced by zu, the register memory size may also increase by one. There-

fore, the total register size may increase by two.

To conclude this section, let us look an example. Let N = 10 and the input

sequence be:
A=1(2,7,9,8,5,4,9,9,3,3,7,4,5,7,7,0,6,4,1,2,8,1,2,2,6,0,9,5,5,0).

We have implemented the rational approximation algorithm without doing shifting:
a — 14+ Na. With the input sequence, the program is stabilized at the 10-th input

symbol. It outputs an integer pair:
(h,r) = (—689925600, 14713990200).

The GCD of h and r is 13267800. After removing the GCD, the pair is reduced to:
(u,q) = (—52,1109). Therefore, the connection number is ¢ = 1109, a prime number.
By applying the register constructing algorithm, we have that ¢ = —1+104+10% 4105,
The register has three taps: (1,1,1), the initial loading cells: (aq,ay,a0) = (9,7,2),
and the initial memory M = 0. By running the constructed register, we generate the

entire sequence which has period 1108:

279854993374577064128122609550280102350944870
753655781888538795398101348582788426322823408
212697313824522057255343193475704273341945994
498213712158481552317109000112473565792036984

68

375691899775152968404937020358606300448694162
091125859392687299113600774916759280214724410
673789540167480438571541179742520809774038133
846907750405949381440933633307085488199001236
119123723395838032610897537671653543318223835
769304825646782903373453329460291349607424183
352192351078516311685051732394714396952867277
728896525310561316084364454443206849279966377
830370190113597201450066254229358718773904497
198976490551292463442181114612046018986514172
115736771765917873026861754779427446568065242
957266580540055017862878415184476828909998875
264342079630156243081002248470315950629796413
936995513058379088741406073127008863992250832
407197852755893262104598325195614284588202574
791902259618661530922495940506185590663666929
145118009987638808762766041619673891024623283
464566817761642306951743532170966265466705397
086503925758166478076489214836883149482676052
856030471327222711034746894386839156355455567
9315072003362216962980988640.

3.5 Distribution of N-adic complexities

Recall that an eventually periodic N-adic sequence is determined by a single period
which is a finite sequence. There are various methods that can generate eventually
periodic N-adic sequences. Our question is: for a random N-adic sequence of length
n, what is the probability that the sequence can be generated by a small N-FCSR?

To answer this question, we first introduce the following definitions.

Definition 3.5.1 For an N-adic sequence S, = (ao,...a,—1) of length n, we say an

integer pair (h,r) with ged(r, N) =1 is an approzimation of S, if

h —r(ag+ a1 N + ayN? + ...+ an_lN”_l) =0 mod(N™).

69

Since r is relatively prime to N, the rational number h/r can be expanded as an
N-adic number. Therefore for an approximation (h,r), the first n bits of the N-
adic expansion of the rational number h/r are just ag,ay,as,...,a,—;. Recall that

O(h,r) = maz{indn(|h]), indn(|r])}.

Definition 3.5.2 The N-adic complexity of S, A\(S,) is the smallest ®(h,r), where

(h,r) is an approzimation of S,,.
Theorem: For n > 2, define

A= {5:|A(5n) < [(n = 2)/2]} and B = {S:|A(5.) = [(n —2)/2]}.

Then |B| > (N —1)N" 1.
Proof: Note that A does not intersect B, hence |A| + |B| = N". Therefore we only
need to show that |A| < N™71.

For every j with 0 < j < N, we can define a map from A into B. Let ¢;(a) =
a+j (mod N)foralla:0 < a < N. Then ¢, is a bijection on the set {0,1,2,---, N—1}

and it has no fixed points.

For any S, = aoay...a,—1 € A, we have an integer pair (h,r) such that A(S,) =
®(h,r) and
h—r(ag+aiN +ayN* + ...+ a,_1N"') = bN".

for some b € 7.

Define the map ¢; by

SOj(GOCh T Gn—zan—1) = G0G1---Gn—2¢j(an—1)-

Let j be fixed and let (u,q) be the integer pair corresponding to ¢;(S,). Let

A = Mp;(S,)) = ®(u,q). We then have ur — hg = N" !¢ for some non-zero integer

C.

Since indy(ur — hq) < ®(h,r) + ®(u, q) + 2, we have

70

b(h,r)+ P(u,q) > (n—1) — 2.

Let n = 2k be even. Then |(n —2)/2] = k — 1. It follows that

A > (n—1)—2—d(h,r)
> (2k—1)—2—(k—1)+1
> (k—1)
= [(n—2)/2].

If n =2k + 1 is odd, then |[(n —2)/2] =k —1, but

Aj

vV

(n—1)—2—®(h,r)
> 9%k -2 (k—1)+1
> (n-2)2).

This shows that for every S, € A, ¢;(S,) is in B, and for every fixed j, ¢; is one-to-
one. Consequently, ;(A4) C B:1<j <N —1.

Next we show that all the ¢;(A) are disjoint. Suppose not. Then there exist two
distinct indices j and k£ and two sequences S,, = agay - - - a,_1 and S;L =boby -+ b,_; €

A such that ¢;(S,) = ¢x(S,). That is,

dopdy Gn—2¢j(an—1) = boby - -+ bn—2¢k(bn—1)-

This implies that a; = 6;,0 < ¢ < (n —2) and a,—1 + j = b,—1 + k (mod N). Note

Sh, S;L are both in 4. If a,,_1 # b,_1, we have two sequences:

Sn = Qopa1dag - 0p—20p—

’

Sn = 1G4y Ap_2b,_4

with the last symbol different. An argument similar to the above shows that A(S,) >
|(n —2)/2] and then S, & A. This is impossible. Hence S, = S,. Consequently,
(j — k) =0 (mod N) and j = k. This contradiction implies that the sets ¢;(A),
1 <5 <N —1 are disjoint. It follows that

B> 3 [os(A)l = (N = DAl

71

Table 3.1: Distribution of 2-Adic Complexities of Length <8

size/2-adic |0 1 2 3 4 5 6 7| total
1 2 2

2 3 1 4

3 3 4 1 8

4 3 8 4 1 16

5 3 8 16 4 1 32

6 3 8 34 14 4 1 64

7 3 8 38 60 14 4 1 128
8 3 8 38 130 58 14 4 1 |256

Since |A| + |B] = N™, this shows that |A| < N*~! and |[B| > (N —1)N". O

The result just proved says that if we randomly generate an N-adic sequence S of
length n, the probability of getting one with N-adic complexity less than (n —2)/2 is
less than or equal to 1/N.

The following table displays the distribution of 2-adic complexities of binary se-

quences of length up to 8. The table was generated by an exhaustive computation.

Comparing this table with the linear complexity profile described by Rueppel in [35],
there exist some similar characteristics. For instance, the number of sequences of
length n with N-adic complexity equal to [n — 2/2] is greater than or equal to the

half of the total. However, we are not able to prove this result yet.

3.6 Conclusions

We have described feedback with carry shift registers over Z/(N) for any N > 1
(N-FCSR). Efficient algorithms have been developed and proved to solve the register
synthesis problem for N-FCSRs. Cryptographically they provide a way to analyze
sequences over Z/(N) similarly to the way the Berlekamp-Massey algorithm and
LFSRs can be used. Consequently any sequence over Z/(N) used as a key stream in
a stream cipher must have high N-adic complexity. It is an interesting open problem

to find efficient devices that can generate sequences with large N-adic complexity.

Chapter 4

Algebraic Feedback Shift Registers

In this chapter, we first briefly discuss algebraic feedback shift registers(AFSRs) [24].
This class of registers is based on the algebra of m-adic numbers, where 7 is an
element in a ring R, and produce sequences of elements in R/(7). They generalize
linear feedback shift registers over finite fields and feedback with carry shift registers
over the rational integers. The main goal of this chapter is to present a solution to
the register synthesis problem for certain AFSRs. We give several cases where the
register synthesis problem can be solved by an efficient algorithm. Consequently, any
keystreams over R/(m) used in stream ciphers must be unable to be generated by
a small register in this class. This extends the analysis of N-FCSRs developed in
the previous chapters. In Section 1, after reviewing some concepts in commutative
algebra, we give the definition of AFSRs. Then we state the main properties and
characteristics of AFSRs. In Section 2, we describe a set of numerical conditions and
a general rational approximation procedure. We prove that the procedure can be used
to efficiently compute the rational representation of eventually periodic sequences over
R/(m) if the set of conditions are satisfied. In the remaining sections we present cases
over which the set of conditions hold, and then the efficient rational approximation
algorithms exist. These cases include AFSRs over the rational integers, polynomial

rings over finite fields and certain rings whose fraction fields are quadratic number

fields.

72

73

4.1 Algebraic Feedback Shift Registers

Let R be an integral domain which is a commutative ring with no zero divisors
[17, 18]. Let [be its field of fractions. Let m € R. The principal ideal generated by
7 is denoted [= (7). We assume throughout that the quotient K = R/(n) is finite,
called the residue ring of (R,). Since 7 is not necessary prime, the residue ring may

have zero divisors. In general, K is isomorphic to a direct sum of finite many Galois

fields.

Let S be a complete set of representatives for K in R. That is, for every element
a € K there is a unique element o € S that reduces to @ modulo 7. Then the set of

power series
iami, a; € S, (4.1)
i=0
forms a ring, k. If N2, I™ = (0) (that is, R is separable with respect to the [-adic
topology), then there is an embedding of R in R. We assume this throughout.
There is a well defined notion of the reduction of an element o € & modulo 7. If « is

o0
a= g a;m’,
=0

then the reduction of a modulo 7 is ag. We also refer to
Z ClH_l’iTi
=0

as the integral quotient of a by 7, denoted quo(a, 7). Thus in general
a = (amod 7) + mquo(a, 7).
Note that if & € R, then quo(a,7) € R.

Now let 7' be a second (possibly the same) complete set of representatives for K in

R.

Definition 4.1.1 An algebraic feedback shift register (or AFSR) over (R,m,S,T)
of length r is specified by r + 1 elements qo,q1,---,q. € T called the taps, with qg
invertible modulo w. It is an automaton each of whose stales consists of r elements
ap,ay, -+ ,a,-1 € S and an element m € R (the extra memory or carry). The state

is updated by the following steps.

74

2

Figure 4.1: An AFSR Architectureafter

1. Compute
T =2 Gitn_i+m.

i=1

2. Find a, € S such that gya, = Tmod 7.

3. Replace (ap_r, -, an_1) by (an_ry1,---,a,) and replace m by quo(T — qoan, 7).

A diagram of an AFSR is given in Figure 4.1.

Such a device outputs an infinite sequence by repeatedly outputting the last ele-

ment ag and changing states.

Example 1 Let R = Z, the integer domain; 7 = N > 1, an integer; and S =
{0,1,2,---, N — 1}. Then any AFSR under this setting is nothing but an N-FCSR
defined in Chapter 2.

Example 2 Let R be a polynomial ring over the Galois field GF(2) and 7 = 1+z+2?,
an irreducible polynomial. We then have the residue field K = R/(7) = G/(4) and
a complete representative set S = {0,1,z,1 + z}. Let r = 3, (ag,a1,a2) = (1,2,0),
(G0, G152, 93) = (1,2,0,1), and the initial memory M = 0.

Table 4.1 displays the state changes and outputs of the first 17 iterations of an AFSR
over R with connection element ¢ = 1 + a7 + 7°, initial state (1,z,0) and initial
memory M = 0. We see that the output enters a periodic part at the seventh

iteration.

75

Table 4.1: Output of an x-AFSR

q1 q2 g3
memory X 0 1 output
0 1 X 1 1
0 14x 1 X X
1 14+x | 14x 1 1
1 1 14+x | 14x 14+x
0 0 1 14x 1+x
0 14+x 0 1 1
1 0 1+4x| O 0
0 1 0 14+x 14x
0 1 1 0 0
0 X 1 1 1
1 X X 1 1
1 14+x X X X
1 X 14+x X X
1 0 X 14x 14+x
0 1+4+x 0 X X
1 14+x | 14x 0 0
1 0 14+4x| O 0

Example 3 Let R be a polynomial ring over a Galois field F'. Let # = x. Then R/(n)
is isomorphic to F. If we choose S =T = F' (a complete set of representatives of the
residue field), then any AFSR over (R, 7,5, T) with initial memory zero is nothing
but a linear feedback shift register over F.

Example 4 Let R = Z[i], the Gaussian domain, and 7 = 1 4+ 4. Then 7 is a prime
element because the norm is 2. For an arbitrary element w € R, w = a + bz for some
integers @ and b. Note that w = a + b = (a —b) + b(1 +¢) = (¢ + b)mod 7 and
2= (141 —1) =0mod m. It follows that R/(7) = G(2). Then we can choose
S = {0,1}. Let (az,a1,a0) = (1,1,1), (go,q1,92,93) = (1,1,0,1) and the initial
memory m = 0. By using the relation that 2 = 7(2 — 7), we can execute the register
and produce a binary sequence. Table 4.2 displays the state changes and outputs for

the index 7 =0,1,2,3,4,5,6.

An AFSR is a finite state device provided that the extra memory takes on only
finitely many values throughout an infinite execution. If this is the case, then the

output is an eventually periodic sequence. In general, the extra memory may take

76

Table 4.2: Output of a 7-AFSR

q q2 qs3
memory 1 0 1 output

0 1 1 1 1
2—m 0 1 1 1
l—m 1 0 1 1
l—m 1 1 0 0
1l —m 0 1 1 1
1 —m 1 0 1 1
l—m 1 1 0 0

infinitely many values. But in many interesting cases (such as in the examples above),
memory values are confined within a finite set. In this dissertation, we are primarily
concerned with AFSRs over polynomial rings over finite fields and AFSRs over rings

whose fraction fields are finite extensions of the rational numbers (number fields).

We first consider AFSRs over polynomial rings.

Proposition 4.1.1 For any AFSR with R a polynomial ring over a finite field and
7 being a polynomial (not necessary irreducible) with the degree d > 0. Let t =

max{deg(s):s € SUT}. Suppose at a state the register has memory M of degree u.
Then the following facts hold.

(1) If w < 2t, then this remains true in all later states;

(2) If w > 2t, then the degree in the next stale decreases at least by one.

Proof: Let M,_; be the memory polynomial at the current state and M, be
that at the next state. By definition,

r—1

c = Y aiq—i+ M,
=0

= M,m+a,.

If u < 2t, then the degree of ¢ is less than or equal to 2¢. Suppose deg(M,) > 2t. Since
a. € S and deg(a,) < t, the degree of M, m + a, is deg(M,) + d > 2t, a contradiction.

If u > 2t, then the degree of o is u. Suppose deg(M,) > u. We then have
deg(M,m + a,) = deg(M,) + d > u, a contradiction. O

77

The rings whose fraction fields are number fields are particularly important in
both pure and computational algebraic number theory. The following conditions

states when the memory of an AFSR over such rings is bounded.

Proposition 4.1.2 [2/] Suppose F is a finite extension of the rational numbers. If
for every embedding of F' in the complex numbers we have |7| > 1, then the memory
in the infinite execution of any AFSR over F takes on only finitely many values. If
there is an embedding of I' in the complex numbers such that |x| < 1, then there is

an AFSR whose memory grows unboundedly from some initial state.

For an AFSR with taps qo,- -, ., we call the following element

QZQO-I-QUT-I-QWTQ—I-'“—I-QHTT

in R the connection number. We associate with any infinite sequence A = (ag, ay, - -)

over S the m-adic number .
a=a(A,r)=> a;mt.
=0

The following facts are similar to facts for N-FCSRs and can be proved similarly [24].

1. Suppose A is the output from an AFSR with connection number g = g9+ ¢1 7 +

-+« 4+ g,m" and initial extra memory m. Then the associated m-adic number is

E;;%)(Z?:o ¢iGp_i)T" — mn"

o=) (4.2)
q

2. Adding b to the memory adds —bw /g to the output.

3. For any u,q € R, with ¢ # Omod =, there is at most one AFSR over R, 7, and

S with connection element ¢, whose output corresponds to u/q.

4. Given a connection element
g=—q+) g
i=1

with qo, -+, q. € T, and u € R, there is an AFSR over R with output sequence
A such that a(A,7) = u/q. Furthermore, there is an efficient algorithm for
constructing this AFSR.

78
4.2 Rational Approximation

The register synthesis problem for AFSRs is similar to that for N-FCSR. For a given
sequence over S, given only a small prefix of the sequence, we would like to construct
an AFSR of minimal size such that the register can generate the entire sequence. For
an eventually periodic sequence A = (a;) over S with period L, there is an index
19 > 0 such that a,1;, = a; for ¢ > 19. Let a be the m-adic number associated with A.
Then we have that

=0 2220
Therefore,
ig—1) Z’L:o—f?L—l ﬂ_i—zo
_ 2 20 1=10
o = Z a;m +m 7
— 1 —m

This shows that an eventually periodic sequence has a rational representation. In
order to construct an AFSR to generate an eventually periodic sequence A, we have
to find the rational representation first. Thus the register synthesis problem for

AFSRs can be solved if the following (loosely defined) problem can be solved.

Rational Approximation
Instance: A prefix of a sequence A.

Problem: Find elements qo,q1,--+,¢- € T and u € R such that

alA,m) = ur — = g
—qo+ i1 46T ¢

We say this problem is loosely defined because there are many u and ¢;s that satisfy
this equality, and it is not stated what minimality condition they should satisfy so
that the resulting AFSR is minimal. Nor is it stated how large a prefix of the sequence
should suffice for success. Minimality should mean that r is small, but it also depends
on the representation of the extra memory. It would be attractive to represent the
memory as a polynomial in 7 with coefficients in S, or perhaps in S U —S5, but
this is only possible in certain cases (for example, when R is the integers and S =

{0,1,---,m—1}). In what follows we use algebraically defined notions of minimality.

79

In many specific implementations of AFSRs reasonable bounds can be given relating

these minimality notions and minimality for the specific implementations.

We may hope to improve the size of the generator by removing common factors
from u and ¢. Such common factors can be found, for example, if R is a Euclidean
domain. Such rings, however, are rare. For example, there is a small finite list of
Euclidean domains R whose fraction fields are quadratic extensions of the rationals
[6]. Furthermore, some multiples of ¢ may have smaller m-adic expansions than that
of g. An example is given in Section 4.5. Even if it were known that the minimal
register arises when u and ¢ are relatively prime, R might have an infinite unit group.
In this case multiplying some u and ¢ by the same unit will decrease the size of the
register (there are infinitely many pairs (vu, vg) with v a unit, but only finitely many
registers of any given size). Thus it must be stressed that the algorithm given here
will give some generator of the given sequence (under suitable conditions), but not

necessarily the minimal one.

Regarding the required size of the prefix, an algorithm solving the rational approx-
imation problem will result in an effective register synthesis algorithm if any prefix
whose length is polynomial in the size of the smallest AFSR that outputs A results
in a correct rational representation of a(A,). In the algorithm we present, the size

of the required prefix is in fact always linear in the size of the smallest AFSR.

In this section we give a set of conditions on R under which a rational approxi-
mation algorithm exists. The algorithm is a modification of the Berlekamp-Massey
algorithm (BM-algorithm) [32]. Recall that the idea of the BM-algorithm is to main-
tain a best rational approximation up to the jth term of the prefix at stage 5. When
a new symbol is processed, if the current best approximation no longer works (i.e., a
“discrepancy” occurs), a combination of the current best approximation and a pre-
vious one results in a new best approximation. In the case of the Berlekamp-Massey
algorithm, these are approximations to power series by rational functions (quotients
of polynomials). A critical fact that makes the algorithm work is that the degree
of the sum of two polynomials is at most the maximum of the degrees of the two
polynomials. When there is a carry in addition and multiplication, this is false for
reasonable analogues of degree. In order to control the growth of the approximations
it is necessary to produce a new approximation that works for several new terms at

once. To make this effective we need a measure of the size of elements of R that

80

increases in a controlled way when we perform various algebraic operations. Thus we

assume we have a function ¢r . : R — Z U {—o00} satisfying the following properties.

Property 1: There are non-negative integers b and ¢ such that

1. ¢r-(0) = —oc0 and ¢p(x) > 0 if 2 £ 0;

2. for all 7,y € R we have ¢p(vy) < ¢rr(2) + drx(y) + b;

3. for all 2,y € R, we have ¢p.(z £ y) < max{dn.(z), brr(y)} + c;
4. forall z € Rand k > 0 € Z, we have dp.(7%z) = k + dp. ().

Here we use the convention that —oo 4+ a = —oo for every a. Such a function ¢p , is

called an index function. From it we define a function @, on R x R by ®p.(z,y) =
max{¢r.(2), or(y)} for any z,y € R.

Proposition 4.2.1 For any two pairs (hy,r1), (h2,r2) € R X R and integer k > 0,

1. ®p(h1 + he,r1 +12) < max{Ppr(h1,71), PrAlho,m2)} + ¢;
2. ®pr(hiry — rihg,riry) < Ora(hy,r1) + PrA(ho,r2) + b+ ¢;

3. q)Rﬂr(Tf'k(hl,?"l)) = k‘ —|— q)Rm(hl, 7“1).

Suppose some AFSR over R and 7 has connection number ¢ = >>7_, ¢;7" with
g; € T', and produces an output sequence whose associated m-adic number is a = u/q,

where u is given be equation (4.2). Then it follows from Property 1 that

¢(q) <7+ cflog(r)] +e

and

d(u) <r+ c+ max{2c[log(r —1)] + e+ f+b,é(m)},

where e = max{¢(z): x € T}, f = max{¢(z) : € S}, and m is the initial memory.
In most cases ¢(m) is a measure of the amount of memory required to store the
memory. If this is the case, then ®(u,q) is at most linear in the size of the AFSR.

Thus if we can bound the execution time of a rational approximation algorithm in

81

terms of ®(u, q), then we will have also bounded the execution time in terms of the

size of the AFSR.

We also assume we have a finite subset Pr , of R such that the following properties

hold.

Property 2 There are integers B > ' > 0 such that

1. for every s € R if s € Pg,, then 78 does not divide s;
2. for any hy, hy € R, there exist s, € Pr, such that 7B|shy + tho;

3. for any hy,hy € R and any s,t € Pr ., we have

PRrx(shy + thy) < max{dpr(h1), drx(h2)} + C.

It follows that for any two pairs (hy,71), (h2,72) and any s,t € Pgr ., we have

(I)RJ(S(hl, 7"1) —|— t(hg, 7"2)) S maX{CI)RJr(hl, Tl), (I)Rﬂr(hg, Tg)} —|— C

Such a set Pg, is called an inlerpolation sel. When there is no risk of ambigu-
ity we drop the subscripts and simply write ¢ = ¢p ., etc. With these definitions
and properties, the rational approximation algorithm is given in Figure 4.2. In the
remainder of this section we show that this algorithm solves the Rational Approxima-
tion Problem for any ring that has a function ¢ and predicate P satisfying Properties

1 and 2. In subsequent sections we give several examples of such rings.

At the start of the algorithm, we replace a by 14+ 7. The purpose is to guarantee
that (ho —arg) = 0 modulo 7° but not modulo 7', and that there is no element s € R
with s € P such that 78|s(hg — arg).

We now proceed to show that the algorithm outputs a correct rational representa-
tion of o when enough bits are given. We start with some definitions that will make

the explanation simpler.

At an index 1, if h;—ar; = 0 (modr') but h;—ar; # (mod 7'+, then (h;y1,7i41) is
obtained either by multiplying by an element s € R or as a combination of s(h;,r;) +
t(hm,rm). We call either such an ¢ an updating index, with the former a type 1

82

Rational_Approximation
begin
input A ={a, € 5,0 <1<k}
a+— 147 Zf:o anri
(ho,m0) <— (0,1)
(hy,r1) ¢— (ao+ - +ap_ 7?71 1 + 7PF)
m +— 0
for i =m+1tok—1)
if ((h; — ria) # 0 mod(m'*1)) {
if (s #£0€ PA(m*B | s(h; — ri)))
(hi+17ri+1) — S(hz',ﬁ)
else {
Find s,t € P, not both zero, with
T +B | s(h; — ria) + 1T (hy — 1)
(hig1,mip1) ¢— s(hiy 1) + 17 ™ (i, 7))
}
if (®(hip1,7iq1) > ®(hs,r;) and (hy,r) <t —m+ O(hp,rm)
and ¢ # 0)
mé<— 1t

}
output u,q with 1 4+ 7(u/q) = hg/ry
end

Figure 4.2: Rational Approximation Algorithm for AFSRs

updating, and the latter a type 2 updating. If a type 2 updating occurs under the
condition ®(h;,r;) < i —m+ ®(hy, 1) and O(hip1,ripr) > P(hi, 1), it is called a

turning-point. We also call 1 = 0 a turning-point.

Recall that each pair (h;,r;) in the algorithm corresponds to a fraction h;/r; €
Q(R). Therefore we must show that r; is never zero. Otherwise the output from
the algorithm would not correspond to an AFSR. We use the following three lemmas
to prove this fact. We say two pairs (hy,71), (hg,re) are R-linearly independent if
z(hy,71) + y(he,r2) = (0,0) implies that z = y = 0.

Lemma 4.2.2 Let m be a turning point, 1 > m be a type 2 updating index, and (s, 1)

be the pair used in the combination. Then neither s nort is zero.

83

Proof: Recall that by Property 2 there exist s and ¢ satisfying 7'*8|s(h; — ar;) +
t(hp — ary,)m'=™. If s = 0, then #'*B|t(h,, — ar,,)m'~™, so 7™ *B|t(h,, — ar,,). This
is impossible because m is a turning-point. If ¢ = 0, then 7*8|s(h; — ar;). This is

also impossible because 7 is a type 2 updating index. O

Lemma 4.2.3 Let m be a turning point. For any index 1 > (m + 1) before the next
turning point, (R, 7m) and (h;,r;) are R-linearly independent. At any updating index
i (hH-ler-l) 7£ (070)

Proof: The proof is by induction. Note that at the initial stage m = 0, (A, rm) =
(0,1), and (Apmy1, Tma1) = (ag+ -+ +ap_ w871 1+ 78) with ag # 0. This shows that
(P, 7)) and (Rpmy1, rmer1) are R-linearly independent.

Suppose (A, 7y,) and (h;,r;) are R-linearly independent and ¢ is an updating
index. If 7 is a type 1 updating index, we have (h;y1,7ri11) = s(h;,r;) with s # 0. So
(P, 7m) and (hiy1,7i41) are still R-linearly independent. If ¢ is a type 2 updating
index, there are s # 0 and ¢ # 0 such that

(hi-}-la Ti+1) = S(hiv Ti) + tﬂ-i_m(hmv Tm)'
Suppose there are z,y € R such that z(h;41,7i41) + Y(Am,) = (0,0). Then
z5(hiyri) + (2t ™™ 4 y)(hpy) = (0,0).

This implies that zs = 0 and zt7'™™ 4 y = 0. Since s # 0, it follows that z = 0,
so y = 0. This shows that (h.,,r,) and (hiy1,ri+1) are R-linearly independent. In
particular, (h;41,7i41) # (0,0). A similar argument shows that if 7 is a type 2 updating
index, then (h;,r;) and (hiy1,7r;41) are R-linearly independent. Since a new turning
point is obtained only by a type 2 updating, it follows that if 7 is a turning-point, so
(hiyr;) and (hip1,7i41) are replaced by (A, rym) and (Apt1, Tmt1), then the new pairs

are still R-linearly independent. This completes the proof. O
Lemma 4.2.4 At any updating index i we have ¢(h;) < 1.

Proof: The proof is again by induction on 7. At the initial stage h,, = 0. Hence
&(hy) < m. Now we suppose ¢(hy) < k for every updating index & < ¢. We prove

84

the same is true for the next updating index. By the inductive hypothesis we have
é(h;) < i and ¢(h,,) < m. Since h;yy = sh; or hiyy = sh; + 7" h,,, $(h;) < i, and
H(m' " h,,) < 1, it follows from Property 2 that ¢(h;11) < max{d(h;), d(7" " hy,)} +
C' <1+ B. On the other hand, we at least have h;11 = h;39 = --- = h;y B, hence we
have ¢(h;+5) < i + B. Since the next updating index j > ¢+ B and h; = h;yq, this
shows that at the next updating index j, ¢(h;) = ¢p(hiy1) <i+ B < j. O

Theorem 4.2.5 For every j, r; # 0.

Proof: We prove this by induction. It is true initially. Since it is true for a type 1
updating, we only need to consider the type 2 updating case with j =1 + 1, where 1

is an updating index. We have
(hi—}—h ri—l—l) — S(hi7 ri) + tﬂ-i_m(hma rm)-

Suppose ;41 = 0. Then h;yy = hiy1 — rigia = 0 (mod 7+8). If h;yy # 0, then
é(hiy1) > 1+ B. By Lemma 4.2.4, we have ¢(h;) < ¢ and, ¢(7" "™ (hpm,Tm)) <
(t —m) +m = 1. It follows that ¢(h;11) < i+ C < i+ B. This contradiction shows
that h;11 = 0. Therefore (h;41,7i41) = (0,0). This contradicts Lemma 4.2.3. O

We say the algorithm is convergent at index i if h;/r; = a. We should point
out again that ®(h;,r;) may not be minimized when the algorithm converges. The
following lemma shows that if the pair (h;, r;) approximates o up to the i-th position,
but ®(h;,r;) is much smaller than ¢, then the algorithm is convergent at i. We may

assume a = u/q with ®(u,¢) minimal among in the set of ®(h,r) with o = h/r.
Lemma 4.2.6 [fi > ®(u,q) + ®(h;,r;) + b+ ¢, then h;/r; = u/q.

Proof: Note that h;/r; — u/q = zn'/qr; for some x € R. If x # 0, then by
Property 1 ®(xn’, qr;) > 1. On the other hand, by Property 2 we have ®(zn’, qr;) =
O(hig — riu,riq) < O(r,q) + (A, 1) + b+ c. When i > O(r,q) + ®(hi,ri) + b+ ¢

which is a contradiction. Hence z = 0 and h;/r; = u/q = a. O

Besides updating (h,7;) to (hit1,ri41) with a type 2 updating, there are two
cases when this can be true. The first is when (h;11, ri41) equals (hi, 1), so ®(h;,r;) is

unchanged. Lemma 4.2.6 implies that if the number of such updatings is large enough,

85

the algorithm must have converged. The second case is when (h;i1,741) is formed
by a type 1 updating. In this case, it follows from Property 2 that ®(h;1q,7i41) <
®(h;,r;) + C. However, h;y1 — ariyy = s(h; — ar;) = 0 (mod 7**8). This shows that
the ®-value increases by at most C', but it approximates at least B more symbols.
If this case repeats enough, then the hypotheses of Lemma 4.2.6 must hold, so the

algorithm must have converged.

Next we show that if the algorithm is not convergent at an index ¢ then it even-

tually converges or reaches a turning point.

Lemma 4.2.7 Let m be a turning point and let © be an updating index before the next
turning point. If ®(h;,r;) <t —m + ®(hy,, 1), then ®(hj,rj) < j—m+ ®(hy,, 1)

for every 7 > 1 before the next turning point.

Proof: =~ We only need to consider the next updating index j after . We have (1)
(hiz1,riv1) = s(hiy 1) or (2) (hizr,7i01) = s(hiyri) + 477" (b, 7). Recall that an
updating occurs if and only if h; — rja = 0 (mod 7') but # 0 (mod ='*'). Note that
(hig1,7i41) = -+ = (hj,rj) and j —i > B,so i + C' < j. In case (1) we have

O(hj,r;) = ®(hit1,7it1)
O(hiyr;)+C

i—m+ ®(hy,rm)+C
(7 = m) + @, 7n)-

IAN IA A

In case (2) we have ®(hiy1,7i41) < ®(hi,7;) because i is a type 2 updating index but

not a turning point. Therefore

O(hj,r;) = O(hip1,7it1)
< O(hy, 1)
< i—m+ P(hy,)
< Jmmt O, 1)

remains true. O

An index k& > m is called normal if ®(hy,ry) < (k—m) + ®(h,,, 7). Thus the
above lemma shows that once a normal updating is reached, all further updating

indices are normal at least until the next turning point.

86

Lemma 4.2.8 Let m be a turning point and 6 = ®(hpi1,Tmy1) — P(Ap,7m). Then
either the algorithm converges with no more turning points, or it will first reach a
normal index k with no more than (6 —C) /(B —C) updatings, and then reach another

turning point.

Proof: First note that, since m is obtained by a type 2 updating, A, 41 — ar,41 =

0 (mod 7Tm+B).

Let m =19 < 11 < 13 < --+ < 1y be consecutive updating indices. Suppose that for
0 <5 <t we have
D(hijyri) > 15 —m+ @by,).

In other words the ¢; for 5 > 1 are all not normal. Let u; =1; —1;_7 for 1 < 7 < L.
Then u; > B and 1, —m = Z;’:l u; > Bt. On the other hand, for 1 < j <1 —1 we

have
(hi]‘}'l’ rij‘}'l) == (hij+17rij+1)’

and

D(hi 41, 7i,41) < max(®(hi,, 1), 05 —m + @(hpm, 1)) + C.
Therefore

(hi]+1ari]+1> = q)(hig+17rig+1)
< (I)(hij,ﬁ'])—l-c.

This implies that

(I)(hit, Tit)

IA

C(t - 1) + q)(hilaril)
= O(t — 1) + q)(hm+1,rm+1).

It follows that

it —m~+ Oy, rm) — ®(hi, i) > Bt+ ®(hp,rm) — (P(hmtr, 1) + C(E—1))
= C+4+(B-0C)t—o.

This shows that if ¢ > (6§ — C')/(B — C), then #; is a normal index. So ¢t < (§ —
C)/(B —). Once a normal index k is reached, by Lemma 4.2.7 all the updating

87

indices 7 > k are normal. It follows from Lemma 4.2.6 that either there is another

turning point or the algorithm converges. O

If the difference i — ®(h;, ;) is large enough, then by Lemma 4.2.6, the algorithm
converges. Thus to bound the number of iterations the algorithm takes to converge,
we must bound ®(h;, ;). To bound ®(h;,r;), we must carefully estimate the increase
at each updating. Let m and m; be consecutive turning points. We define the increase

from m to my as

/Bml = q)(hmlarml) - q)(hm—l—la Tm—l—l)-

At the start point, we can set 3,, = 0. Let k,, be the number of turning points less
than m. Let D = B+ ¢[log(B)] + g, where g = max{¢(z),d(1) : x € S}. We then
have that ®(hy,r) < F. We now are ready to prove the next lemma.

Lemma 4.2.9 Al any turning point m

(I)(hm+1,7'm+1) < (m + B) + Ckm + E /Bj - (I)(hm,rm) + D

i<m

and

Ckm+Z/BjSCFm.

j<m

Proof: The proof is by induction. For the base case, m = 0, we have kg = 0, 5y = 0,
O(h1,r1) < D < D+ B, and ®(hg,r9) = 0. Thus the lemma is true at the first

turning point.

Suppose the lemma is true at a turning point m and m; is the next turning point.

Let w + 1 be the total number of updatings occurring up to m;. Then we have
my =m+uo+ U + -+ Uy,

with u; > B the difference between the i-th and (¢ + 1)-st updatings. Since m; is a

turning point, there exist s and ¢ such that

Py 15 Prg 1) = SRy s Ty) F 270 7 (B).

88

By induction and the fact that —® (A1, rms1) = By — @ (A, 7,), wWe have

O(hmy41sTmy+1) < (my—m)+C+ (b, 1)
< (mi—m)+CH4(m+B)+ Chn+ Y B; — (b1, Tms1) + D
i<m
= (mi4+B)+Clkn+1)+ Y Bi+ By — P(hmy, 7my) + D
j<m
= (m1+ B)+ Chpy + > Bi = ®(hmy, 'my)-

J<mq
It remains to show the second inequality. It is true at the initial turning point. We

assume that at a turning point m

BCky,, + B(Y. 8;) < Cm. .

j<m
We have 3,,, = ®(hpy, rmy) — (g1, Tmr1) < Cw and

Cmy Cm 4 Clug + uy + -+ 4)

BCky + B(Y>_ Bi) 4+ Clug +ur + -+ 4 uy)
i<m

BCk,, + B(Y_ B;)+ BC(w+ 1)
i<m
i<m

= BCkny, + B(Y_ 5)).

J<my

v

Y

Vv

Equivalently, we have the desired result

Cm
Chmy + 32 B <
<m B
i<mi
which completes the proof. O
Let A, be the smallest ®(h,r) with h —ar =0 (mod 7). For the eventually
periodic sequence A = ag, a,- -+, with ¢; € S, and a = 22, a;7" = u/q with ®(u, q)

minimal, we define A(A) = ®(u, q).

Lemma 4.2.10 [f m is a turning point, then

Ami1 = (m—b—c¢)— O(hp,rm).

89

Proof: Let h—ar=0 (mod 7™%') and A,,41 = ®(h,r). Then (h,r) # (hp,rm).
We have
h h, hr,, —rh,,

r 'm '’'m

xm™

T,

for some © # 0 € R. Therefore ®(hr,, — rh,,rr,) > m. On the other hand, we have
O(hry, — rhy,rryn) < O(hyr) + ®(hp,rm) + b+ c.

Consequently, A,p1 = ®(h,r) > (m —b—c¢) — ®(hy,ry). O

We now are ready to state and prove the main theorem on the convergence of the

algorithm.

Theorem 4.2.11 Let i be any index and a(A) = u/q with ®(u,q) minimal. Then

when BR(b+c)+B) +D 2B
. +c)+ B)+
i A
' B—C TB-c™
the algorithm is convergent at v. That is,
h; u
ri

Proof: By Lemma 4.2.6 it suffices to show that ¢« > b4 ¢+ XA 4+ ®(h;,r;). Let m
be the last turning point before ¢, let { = 1 — m — 1, and let w be the number of

updatings between m and ¢. Thus w < ¢/B. Then

b+c+ A+ 0(hiyr)) < b+e+ A+ P(hpmyr,rmer) + Cw
Cm

< b—l—c—l—)\—l—m—l—B—l—?—q)(hm,rm)—l—Cw—l—D
C'm
bt+c+A+B+—+ 1 +b+c+Cw+D

B

Cm Ol
2(b B42\+—+—+D
(bte)+ B2+ —-+ 5+

= Q(b—l—c)—l—B—l—Q)\—l—%(i—l)—l—D,

IN

IN

90

where the second line follows from Lemma 4.2.9 and the third line follows from Lemma

4.2.10. It follows that b+ ¢+ A + ®(h;,r;) < v if

2b4¢)+ B+2\+D < (i —1).

This is equivalent to the hypotheses on 7 in the statement of the theorem. O

4.3 Rational Approximation over Z

We now apply the general rational approximation algorithm to N-FCSRs. We view
any N-FCSR as an AFSR over the ring R = Z, the ordinary integers. In this case
m > 1 is an integer (possibly composite). Let S ={a:0<a <7 —1}. If 2 #0
and |z| = ag+ a;m + -+ + ayw’ with a; € S and a; # 0, then we define ¢z .(z) = ¢.
Equivalently, ¢z .(z) = t if 7' < |z| < 7'*'. Then by Proposition 3.1.1, Property 1
holds with b =1 and ¢ = 1. We also define

: |72/2] ifm >4
xepzv’flf|m|§{5 ifm = 3.

Then by Lemma 3.3.1 and 3.3.2, Property 2 holds with B = 3 and C' = 2. It
follows that the Rational Approximation Algorithm converges in 22 + 6 steps.

Suppose m is the initial memory of an AFSR over Z, . If ¢z.(m) < k, then
the m can be represented by k + 1 elements of S plus one sign bit. Thus, by the
discussion following Proposition 4.2.1, the number of symbols of the output sequence
needed to synthesize an equivalent AFSR is at most linear in the size of the smallest

AFSR that generates the sequence.

4.4 Rational Approximation for AFSRs over Poly-
nomial Rings

Let F be a finite field and R=F[x] be the polynomial ring over F. Let 7 be any
polynomial in R and d > 0 be the degree of m. Note that the residue ring K =
R/(7) has finitely many elements and it may have zero divisors. Let S = {a €

R : deg(a) < d} be a complete representative set of K. Over these settings, we can

91

construct AFSRs and output sequences are sequences over S. In particular, if 7 is an
irreducible polynomial, the output sequences can be interpreted as sequences over an

extension of field F.

For any polynomial g(z), by polynomial division g(z) = ¢'(z)m + s(z) with
deg(g') < deg(g) and s(z) € S. Hence, a polynomial f(z) € R can be uniquely ex-
panded in terms of powers of m with coefficients in S. If f(z) # 0 and f(x) = ap+a;m+
<+ aym’ with a; € S and a; # 0, we then define ¢r (f(z)) =t = |deg(f)/d], which
we call the degree of f(z) relative to m. Note that summation of two polynomials

does not increase degrees. That is, ¢r . (f(2) + g(z)) < max{¢r..(f(x)), dr(g(x))}.

For multiplication of two polynomials f(x) and g(x), we have that

Prx(f(2)9(2)) < dr(f(2)) + drr(g(x)) + 1.
This implies that Property 1 holds with b =1 and ¢ = 0. We also define
f(z) € Prr if deg(f(2)) < d.

In order to construct a rational approximation algorithm under the setting above, we

must find the constants B and C' such that Property 2 holds.

Proposition 4.4.1 Let a(z),b(z),c(z),d(z) € S with a(z) # 0 and b(z) # 0. Then

there are polynomials u(x),v(x) € Pr not both zero such that

*lu(z)(a(x) + c(z)7) + v(2)(b(z) + d(x)m).

Proof: For any pair (u(z),v(z)) €S x S, let
w(z) = u(z)(a(z) + c(z)m) + v(z)(b(x) + d(z)m)mod (7‘(‘2) with ¢g - (w) < 1.

Let Q = |F|, the size of the field. Then we have at most 9?7 different such w(z). Note
that |S x S — (0,0)] = Q2%+ — 1. This implies that there are at least two different

nonzero pairs (ui(x), vi(x)), (uz(z), v2(x)) such that
(u1(2) = uz(@))(a(x) + c(z)m) + (vi(z) = va(2))(b(z) + d(z)7) = 0 mod (7).

This completes the proof. O

92

Proposition 4.4.2 For any f(z),g9(z) € R and u(z),v(z) € Prx, we have

Prx(u()f(2) + o(z)g(z)) < max{dr(f(z)), brr(9(2))} + 1.

Proof: Any polynomial in Pg, has degree at most d. Then, deg(u(z)f(x) +
v(x)g(x)) < max{deg(f),deg(g)} + d. Therefore,

{max{deg(ﬁ;)v deg(ff”J L

max{ Veil(f)J , VG“CC’Z(Q)J} +1

= max{dr(f), orr(9)} +1.

IN

quJr(uf + Ug)

IN

This proves the result. O

By Proposition 4.4.1 and 4.4.2, we see that Property 2 holds with B = 2 and
C' = 1. This implies that the rational approximation algorithm converges in 13 + 4\
steps.

One special case is when 7 = z. In this case, S equals F. If ¢ is chosen to be
—1 and the initial extra memory is chosen to be 0, then the resulting AFSR is just
a regular LFSR over F. We see that we can choose b =0,¢=0, B=1,and C =0
so that Property 1 and 2 holds. This leads to the BM-algorithm, which converges in
2X + 3 steps.

4.5 Rational Approximation for Ramified Exten-
sions

Let @ be aring, 7 € (), S a complete set of residues modulo 7, and suppose we have
an index function ¢g , and interpolation set Py . with respect to 7. Let b, ¢, B, and

(' be the constants in Properties 1 and 2 with respect to ¢g , and Fg ;.

Let d be a positive integer and € = +1. Assume that the polynomial X¢ — 7 is
irreducible over (), and 7 is a root of this polynomial. In this section we consider the

case when

d—1
R=0Qr] = {Zaﬂri ta; € Q}

93

We have R/(m) = Q/(7), so S is a complete set of representatives for R modulo 7 as

well.

For any z = Y720 a;n’, a; € Q, we define

drx(x) = max{dog . (a;)+1:0<:1<d—1}.

This is well defined because, by the irreducibility of X% — er, this representation of z

s unique.

Proposition 4.5.1 For any x € R and non-zero integer k, ¢pr.(7"2) = k+ ¢r.(2).

Proof: If 2 = Y5 ain?, let w = max{¢g.(a;) : 0 < i < d—1} and let j
be the largest index such that w = ¢g,(a;). Then ¢p. () = dw + j. Letting
rr = ' = Y40 dlnt, with @b € Q, we have a) = eag_y7 and a! = a;_; for 1 <
i < d-—1. Let w' = max{¢g.(al) : 0 < i < d—1} and let 5 be the largest
index such that w' = ¢g,(a%). If j < d—1, then w’ = w and 3 = 5 + 1. Hence

Opo(2)=dw' +j =dw+j+1=0¢p.(x)+1. lf j=d—1,thenw =w+1, j/=0,
and ¢pr(z)=dw' +j =dw+d=(dw+j—1)+1=¢p(z)+1. O

Proposition 4.5.2 For any x,y € R, ¢p.(x +y) < max{or.(x),¢r(y)} + cd.

Proof: Let
P -1
T = ZamZ and y = anrl,

with a;,b; € Z. Then

with ¢; = a; + b;. Since

¢Q,T(Ci) S maX{¢Q,’T(ai)7¢Q,’T(bi) : 0 S i S d— 1} +c

94

it follows that

Ora(z) = max{dog.(c;)+1:0<i<d—1}
max{dog -(a;) +i,dpg-(b;)) +1:0<i<d—1}+cd
= max{¢p.(2),dr.(y):0<i<d—1}+cd.

IA

This proves the proposition. O

Proposition 4.5.3 Let b/ = cd[log(d)]| + bd. Then for any z.y € R, ¢p.(zy) <
¢R,7{'($) + CbRJr(y) + b/-

Proof: As before let z = S5 ar® and y = Y050 br? with a;,b; € Q. Then

2z =ay =) ¢m? with

i d-1
c; = (Z albi—l) + €T (Z albd—i—i—l) .

(=0 =i+1
Thus
7 d—1
qb(R,ﬂ'(;Cy)) = Imnax {dqbQJ (Z a;bi_l> +e7 (Z a;de_l) —I-Z :0 S 7 S d— 1}
(=0 =1+1
< max{dmax{¢q (abi_1), 1 + dq(abayi—1)} + i} + cd [log(d)]
< max{dmax{¢q (@) + ¢q-(bic1), 1 + ¢q.-(a1) + ¢@-(bayri—1)} + 1}
+cd [log(d)] + bd
S ¢R,7r($) + ¢R,7r(y) + bla

which proves the proposition. O

We now have proved that Property 1 holds with ¢ = ed and b = ¢d [log(d)] + bd.
Let e = max{¢q (z) : € S} and let k satisfy

b+ ¢

kE—cllog(k)] > e+ + 1. (4.3)

Let B" = 2d(k 4+ 1) and C" = d(k + c[log(k)] +e)+d —1+b + . Then it
follows from equation (4.3) that B’ > C’. For any z = Y0 ;7' € R, let x € P, if
og,-(a;) < k+cllog(k)] + e for every i. Let Pp, = {u—v:u,v € Py}. The following

two propositions prove Property 2 with respect to ®p . and Pg ..

95
Proposition 4.5.4 For any =,y € R, there are s,t € Pr, such that 7®'|sx + ty.

Proof: For any u,v € R, there is a unique representation:

ur +vy = wo +wym+ -+ wd_le/_l (mod 7TB/),
with w; € S for 0 < i < d—1. If N = |5], then there are NB' = N2+1) distinct
representations in this form.

Let z = Zf:o Z]'Tj with z; € S. Then ¢g.(z) < k + c[log(k)] + e. Also,
¢Q7T(Tk+1) < k+14+e < Ek+cllogk)] +e It follows that there are at least
N*+1 4 1 choices for each coefficient a; of = € Py. Thus

[Pol > (N**! + 1),
and there are at least (N*+! 4 1)@ choices for a pair u,v € Py. It follows that there
are u,v,u',v' € Py with (u,v) # (u/,v'), and uz + vy = v’z +v'y (mod 75").

Therefore s = u — u’ and { = v — v’ satisfy the conclusions of the proposition. O

Proposition 4.5.5 For any hi,hy € R and any s,t € R, let h = shy + thy. If
s,t € Ppr, then
Sran(h) < max{@px(hn), brn(ha)} + C'.

Proof: Let w = max{¢r~(h1),¢r~(h2)}. By Propositions 4.5.2 and 4.5.3,
Orx(sh1 + thy) < max{¢r.(shi), dr~(th)} +b'. Since s € Pr,, we have s = u — v

for some u,v € Fy. Thus

OrA(8) < max{dp.(u), dr.(v)} + ¢
< d(k+cflog(k)] +e)+d—1+¢.

The same bound holds for ¢. It follows that

ORa(shy +thy) < d(k+c[log(k)]+e)+d—1+c +b +max{dr.(hi),drr(h2)}
= + maX{¢R,W(hl)7 ¢R,7r(h2)}7

which completes the proof. O

96

It follows that there is a rational approximation algorithm for R, . Suppose any
element = of @) can be represented using at most pog ,(x) bits for some p. Then
any element m of R can be represented using at most pog .(x) bits. Thus, by the
discussion following Proposition 4.2.1, the number of symbols of the output sequence
of an AFSR over R, m needed to synthesize an equivalent AFSR is at most linear in

the size of the smallest AFSR that generates the sequence.

While the algorithm is guaranteed to find a rational representation for the given
sequence, its ® value may not be minimal. In fact it may be that multiplying both
elements in a pair by the same element (thus leaving the corresponding rational
element unchanged) decreases ®. For example, suppose 7 = 3 and d = 2 so 7% = 3.
Let x = 27— 14w, y = 28— 157, and z = 1+ 7. Then ¢p () = ¢r(y) = 6. However,
ze = —154 137 and zy = —17 4+ 137 so ¢r(2x) = dr(zy) = 5.

The constants &', ¢/, B’, and C' can sometimes be improved upon, giving an
improvement in the estimate of the number of iterations sufficient for convergence of
the algorithm. If @ = Z and 7 > 0, then we can take &' = d(3 + f) — 1 where f is
the smallest integer satisfying d < 7/*!. This allows us to take B’ = 2(f + 4)d and
C'" = B’ — 2. Sometimes we can further improve these constants. For example, if
d = 2 and 7 > 4, then in our original version we have b’ = 6, ¢/ = 2, B’ = 30, and
C'" = 29. The general bounds for Q = Z give b’ =5, ¢ =2, B'= 16, and C' = 14. It
is possible to improve the last two to B” = 10 and C' = 9 by a different choice of the
set P.

4.6 Rational Approximation for Quadratic Exten-
sions

In this section we consider the case of a quadratic extension of a ring). Again let
@ be a domain, 7 € @, S a complete set of residues modulo 7 with N = |S|, and
suppose we have an index function ¢g , and interpolation set Py, with respect to 7.
Let b, ¢, B, and ' be the constants in Properties 1 and 2 with respect to ¢¢ , and
Py -

Let m,g € Q) with m® = 7 for some a > 1. Let m be a root of the polynomial

X% —2gmX + m”, and assume 7 € Q. In this section we consider whether there

97

is a rational approximation algorithm for R = Q[r]. If we let A = m* — g?m?,

then m = gm + v/—A and we also have R = Q[v/—A]. The norm from (the field of
fractions of) R to (the field of fractions of) @ is given by I'(u 4+ vv/—A) = u? + Av?.
In particular, I'(7) = 7. Let

Prn(z) = dg.-(I'(2)).

It follows immediately that

¢R,w($y) S ¢R,W(x) + ¢R77r(y) + bv

and
¢ra(m"r) = k + ¢ra(1).

However, the additivity condition for an index function does not in general hold.
Therefore, we assume at this point that it does hold. That is, we assume that there

is a ¢ such that for any xq, 21, y0,y1 € Q

bg.-((zo+ y0)* + Az1 + y1)?) < max{og-(xf + Az}), do-(vs + Ayi) + . (4.4)

At the end of this section we give examples of rings () for which this condition holds.
For now we show that if it holds, then the remaining conditions — the existence of a set

Pr satisfying Property 2 — for the existence of a rational approximation algorithm

hold.

First we consider the case when a > 2. Let e = max{¢g .(z) : * € S} and let
z=2e+3b+3c+ + ¢g-(A). Choose r € Z large enough that 4r > 2a* — 5a +
2(a — 1)z +4(a — 1)b[log(r)]. Then we can choose k € Z so that

z 4 2r + 2b [log(r)] dr —2a +5

B <k< =1 (4.5)
It follows from equation (4.5) that
z42r +2b[log(r)] < (k+1)a+1 (4.6)
and
2a 4 2k(a — 1) =1 < 4(r + 1), (4.7)

Let C" = 2r42b [log(r)]|+z. Let Py = {s = so+s1vV—A : 50,81 € Q and ¢g -(si) <
r+bflog(r)] + e}, and Pr, = {s —s":s,s" € Pp}. It is immediate that ¢gr.(shi +

98

thy) < max{¢p(h1),pr~(h2)} + C’ for any hyi,hy € R and s,t € Pr.. Also, let
B'=(k+1)a+ 1. Then B" > C" by equation (4.6).

As in the Section 4.5,
H{(s,t) :s,t € Po}| > (N™' 4+ 1)

To bound the number of residue classes modulo 78" we need a lemma.
Lemma 4.6.1 For any k > 0, n:tDe+1 divides rothl=1)

Proof: let d,e € Q). Then

(2gm — m)(md 4+ me) = m(m(2gd + m”‘_Qe) —dm)
= m(mf — nd)
for some f € Q.

We iterate this a times: For any d,e € @) there are f,h € @ such that (2gm —
m)(md+me) = m*(mf+nh) = 7(2gm—n)(mf+mh). Thus (2gm—7r)“_1(md—|—7re) =
m(mf + wh). It follows that

(2gm — m)* k=t = (2gm — m)*FNED(9gm — 1)
= 7Tk+1(mf + 7h)

for some f.h € (). Now we have
Ta—}—k(a—l) — :|:7ra+k(a_1)(7'r - ng)a-{—k(a—l)

= :I:fr”‘+k(a_1)7rk+1(mf + 7h)
= :|:7r(k+1)a+1(mf + 7h).

This proves the lemma.O

Now let = + my € R, with z,y € Q. We can write 2 = 2o 4+ 27T 5= and
y = yo + y1 7D Tt follows from Lemma 4.6.1 that 78" = #¢+1D2+1 divides both
rotk(a=1) and grotkle=1D)=1 " The number of distinct choices modulo 78 of zy and
yo is N2at2k(a=1)-1" Tt follows from equation (4.7) that for any u,v € R there are
s,1,8',1' € Py such that su+tv = s'u + t'v (mod 78"). Therefore s — s',1 — 1" is a

pair in Pg , satisfying the requirements of the second part of Property 2.

99

Now consider the case when a = 1. Then 7 = 7(27 — 7) = 7(47 — 27 — 1) so =*
divides 7. In this case we can choose r so that z + 2b[log(r)| <2r +4, B’ = 4r 4+ 5,
and C' = z+42b[log(r)] and a similar argument works. We have proved the following

theorem.

Theorem 4.6.2 [f equation (4.4) holds, then there is a rational approzimation algo-
rithm for R with respect to m.

4.6.1 Imaginary Quadratic Extensions of Z

In this subsection we assume R = Z[r| is an imaginary quadratic extension of the

integers, with 72 — 2gmm + N = 0 and N = m".

In this case A is a positive integer. We carry out the above construction with
Q) =7, 7 = N, and index function and interpolation set as in Section 4.3. It suffices
to show equation (4.4) holds. Let z = x¢ + z1vV/—A and y = yo + y1vV/—A with
To,21,Y0,y1 € Z. We then have I'(z + y) = (20 + y0)* + A(z1 + y1)?. Notice that
(c+ d)* < 2(c* + d*) for any real numbers ¢ and d. This implies that

I(z+y) < 202} +yi)+2A(25 + v3)
< 2I(=x) 4 2T(y).

Let wy = ¢p.(z) = ¢z n(I'(2)) and wy = ¢r(y) = dzn(I'(y)). Then we have

I(z) < Nt -1

?

Y

I(y) < Nt -1
and

'z +y) < 4(Nmm(w1’w2)+1 —1).

Since N > 2, we have ¢p.(z 4+ y) = dzn(I'(z + y)) < max{w;,ws} + 2. We have

proven the following corollary.

Corollary 4.6.3 If R = Z[rn] is an imaginary quadratic extension of the inlegers,
with 7 —2gmm+ N = 0 and N = m®, then R has a rational approximation algorithm

with respect to m.

100

Any element m = z¢ + z;/—A can be represented using ¢z n(7o) + ¢z n(1) <
dzn(T3 + Az?) = ¢dpr(m) elements of {0,1,---, N — 1}. Thus, by the discussion
following Proposition 4.2.1, the number of symbols of the output sequence of an
AFSR over R, m needed to synthesize an equivalent AFSR is at most linear in the
size of the smallest AFSR that generates the sequence.

4.6.2 Quadratic Extensions of Z[v/N]

In this subsection we let N be a positive integer which is not a perfect square, let
72 = N, and let Q = Z[7]. Let 72 — 2gmm + 7 = 0 with 7 = m® and g,m € Q, and
let R=Q[r]. Thus Q =Z +7Z and R=Q + 7Q. Let A = m® — g’m? = Ag+ A7
with Ag > 0, Ay # 0 in Z, and A2 > NA}. That is, the norm (from the fraction field

of @ to the rational numbers) of A is positive.

We use the index function and interpolation set defined in Section 4.5, with con-

stants b, ¢, B, and C for Properties 1 and 2.
Lemma 4.6.4 Ifu € Q, then 2¢q . (u) — 2 < ¢g..(u?).

Proof: Let u = ug+ w17, so u* = u? + Nuj + 2uou;7. We have u3 < ud + Nui.

Suppose N*~! < uy < N* and N'=! < uy < N'. Then

20g,-(v) = 2max{2¢zn(uo),2¢z,n(u1) + 1}
= 2max{2k,2[+ 1}.

We also have u2 + Nu? > max{N?*=1 N2=-D+1] 5o

bo,-(u?) > 207 n(ug + Nuj)
> 2max{2k —1,2[}

= 2¢Q,T(u) - 27

which proves the lemma. O

Lemma 4.6.5 Lel A = Ao+ A7 with Ao, Ay € Z, Ag > 0, Ay # 0, and A > NAZ.
If u,v € Q, then 2¢q . (u) < dg.(u? + Av?) + 2 and 2¢q . (v) < ¢g - (u? + Av?) + 2.

101

Proof: Let u = ug+ Tu; and v = vg + Tv; with ug, uy,ve, vy € Z. Then
w4+ Av? = uj 4+ Nuf + Agvg + AgNvi + 2A, Nvgvy
+(2uous + 2A¢vovy + Ajvg + Ay Nvi)r. (4.8)
We have
Aovd + AgNvi + 2A: Nvgvr = Ag(vo + VNv1)? + 20001V N(A1VN — Ag) (4.9)
= Ao(vo — VNv1)? + 20001 VN (A1VN 4 Ag)(4.10)
Suppose that AV N — Ay and AjvV/'N + Ag have the same sign. Then AN —A2 > 0,

which is false by hypothesis. Thus one is positive and one is negative. Whatever the
sign of vovy is, either expression (4.9) or expression (4.10) is nonnegative. It follows

from equation (4.8) that

20z n(ug + Nu?)

> max{4¢z n(uo) — 2,40z n(u1)}
20+ (u) — 2.

¢Q7T(u2 + AUZ)

v

It also follows that

¢Q,T(U2 + AUZ) > 2¢Z,N(ong + AONUf + 2A 1 Nvgvy)
> 2max{¢zn((vo £ VNv1)?), dz.n(2V Nvovy) }.

Let m = ¢zn(vo) and [= ¢z n(v1). If 1 > m + 1, then dz n((vo = vV Nuv1)?) > N2
If m >1>m—1, then ¢z n(2v/ Nvgvy) > max{2m, 2l + 1} — 1. If m — 2 > [, then
bz.n((vo £V Nvy)?) > N¥=1 In every case it follows that
bo.-(u?+ Av?) > 2(max{2¢z n(ve), 20z.n(v1) + 1} —1)
= 2¢g..(v) —2.
The lemma follows. O

Let © = xg + mx; and y = yo + 7y;. We have

Ore(r+y) = dor((zo+y0)* + Az +uy1)*)

max{g,-((zo + 0)*), b, (1 + y1)*) + ¢ (A) + b} + ¢
max{2¢q (70 + yo), 20~ (21 + y1) + b (A) + b} +c+4
max{2¢q (20), 260, (Yo), 260, (1) + dq,-(A) + b,
20q,-(y1) + ¢, (A) + b} + 3¢ + 4.

IAN IAIA

102

By Lemma 4.6.5, both 2ég , (7o) and 2¢¢g ,(z,) are bounded by ¢g . (23 + Az?) + 2,
and similarly for y. It follows that
Orr(z+y) < max{dor(vg+ Azi), do-(ys + Ayp)} +b+3c+6
= max{gnn(e). bra(y)} + b+ 3c 6.

We have proved the following.

Corollary 4.6.6 Let N be a posilive integer which is not a perfect square, let 7> = N,
and let Q = Z[7]. Lel 7> —2gmn+7 = 0 with T = m® and g,m € Q, and lel R = Q|«].
Ifm®—g*m? = Ag+ A7 with Ag > 0, Ay # 0, and A3 > NAZ, then R has a rational

approximation algorithm with respect to m.

Any element m = xg + 17 + 22V —A + 237vV/—A € R, with x; € Z, can be

represented using °9_, ¢z n elements, plus four sign bits. We have

3
Y bz
=0

IA

dmax{¢z n(z;):2=0,---,3}

< 2max{¢g. (o + 17), g (T2 + x37)}
bg.-((xo + 217) + Azg 4 257)%) + 2
quJr(m) —|— 2.

IA

Thus, by the discussion following Proposition 4.2.1, the number of symbols of the
output sequence of an AFSR over R, m needed to synthesize an equivalent AFSR is

at most linear in the size of the smallest AFSR that generates the sequence.

Remarks:
(1) We have shown the existence of constants b, ¢, B, C, but have not attempted to
optimize them. We know the algorithm converges after a linear number of iterations.

In many cases the convergence may be more rapid than indicated by the results here.

(2) Rational approximation algorithms exist for extensions by roots of other quadratic
polynomials. For instance, 7 = 3 + /=3 is a root of the equation X? —6X +12 = 0.
Let N = 12. Then N* = 77(7 — 6). In this case we can choose b = 1. Since this
is an imaginary quadratic extension, the additivity condition on the index function
holds, in this case with ¢/ = 1. We can also take B’ = 7, and C’ = 6 to establish
a rational approximation algorithm. The task of completely characterizing those

quadratic extensions for which there is a rational approximation algorithm remains.

103

4.7 Comments

For rational m-adic numbers over a domain R, a general rational approximation al-
gorithm has been developed. This algorithm can be used to cryptanalyze sequences
that can be generated by an AFSR over R/(m). There are several ways to represent
any such sequence as a w-adic number: by different choices of the complete set of
representatives S, or by different choices of the ring R with given residue ring R/(m).
For each representation a cryptographic complexity is associated with the sequence.
For secure use of such a sequence in stream ciphers, these complexities must be large

to guarantee security against the rational approximation algorithms.

Since R is an integral domain, there is a quotient field Q(R) = {z/y : =,y €
R,y # 0}. However, R may not be a greatest common divisor (GCD) domain, and so
a fraction may not have a reduced form, i.e., z/y = u/q with ged(u,q) = 1. Even if
R is a GCD domain, we may not have an efficient way to compute the GCD. If R is
a Euclidean domain, it is a GCD domain and a Euclidean algorithm may be used to
compute the GCD. It is well known that only finitely many quadratic number fields

are fraction fields of Euclidean domains.

We also know that if R is a Dedekind domain, then R being a GCD domain is
equivalent to R being a unique factorization domain (UFD). Although we do not
know if R being a Euclidean domain is equivalent to it being a UFD., there are many

rings that are not U.F.D.

The complexities of algebraic structure of the underling ring project difficulties in
the analysis of sequences. For instance, in general we can not assume that the gener-
ating fraction a has a reduced form. It remains a research project to systematically
characterize integral domains over which AFSRs have efficient rational approximation
algorithms. Deeper algebraic theory and tools may be needed in such investigations.
For cases with rational approximation algorithms, the optimal implementation is an-

other interesting issue.

Bibliography

[1] E. Bach. Efficient prediction of marsaglia-zaman random number generators.

IEEE Trans. Inform. Theory., (May), 1998.

[2] H. Beker and F.Piper. Cipher Systems, The Protection of Communicalions. John
Wiley and Sons, 1982.

[3] E. R. Berlekamp. Algebraic Coding Theory. McGraw-Hill, New York, 1968.
[4] 1. F. Blake. Codes over certain rings. Inform. Control, 20:396-404, 1972.
[5] 1. F. Blake. Codes over integer residue rings. Inform. Control, 29:295-300, 1975.

[6] Z. Borevich and 1. Shafarevich. Number Theory. Academic Press, New York,
1966.

[7] B.Stenstrom. Rings and Modules of Quotients, volume 237 of Lecture Notes in
Mathematics. Springer-Verlag, New York, 1971.

[8] G. Xiao C. Ding and W. Shan. The Stability Theory of Steam Ciphers. Springer-
Verlag, 1991.

[9] H. Cohen. A Course in Compulational Algebraic Nnumber Theory. Springer
Verlag, New York, 1993.

[10] B. M. M. de Weger. Approximation lattices of p-adic numbers. J. Num. Th.,
24:70-88, 1986.

[11] D. E. Denning. Cryptology and Data Security. Addison-Wesley, 1990.

[12] C. Pomerance (editor). Cryptology and Computational Number Theory, vol-
ume 42 of Proceedings of Symposia in Applied mathematics. AMS, Providence,
1990.

104

105

[13] D. Gollmann and W.G. Chambers. Clocking controlled shift registers: A review.
IEEE J. on Selected Areas in Communications, 7(4):525-533, 1989.

[14] S.W. Golomb. Shift Register Sequences. Holden-Day, San Francisco, Calif, 1967.

[15] M. Goresky and A. Klapper. Large period nearly debruijin fesr sequences.
Advances in Cryptology-FEurocrypt 1995, Lecture Notes in Computer Science,
921:263-273, 1995.

[16] C.G. Giinther. Alternating step generators controlled by de bruijn sequences.
Advances in Cryptology-FUROCRYPT’87 Proceedings, pages 5-14, 1991.

[17] N. Jacobson. Basic Algebra I. W.H. Freeman, San Francisco, 1974.
[18] N. Jacobson. Basic Algebra II. W.H. Freeman, San Francisco, 1980.

[19] E. L. Key. An analysis of the structure and complexity of nonlinear sequence

generators. [EEE Trans. Info. Theory, 1'T-22(6):732-736, 1976.

[20] A. Klapper. Feedback with carry shift registers over finite fields, fast software
encryption. Lecture Notes in Computer Science, 1008:170-178, 1995.

[21] A. Klapper and M. Goresky. 2-adic shift registers. fast software encryption.
Lecture Notes in Computer Science, 809:174-178, 1994.

[22] A. Klapper and M. Goresky. Cryptanalysis based on 2-adic rational approxima-
tion. Advances in Cryptology, Crypto '95, Lecture Notes in Compuler Science,
963:262-273, 1995.

(23] A. Klapper and M. Goresky. Feedback shift registers, 2-adic span, and combiners
with memory. Journal of Cryptology, 10:111-147, 1997.

[24] A. Klapper and J. Xu. Algebraic feedback shift registers, to appear,. Theoretical
Computer Science, 1998.

[25] D. Knuth. The Art of Compuer Programming, Vol 2. Seminumerical Algorithms.
Addison-Wesley, Reading MA, 1981.

[26] N. Koblitz. p-Adic Numbers, p-Adic Analysis, and Zeta Functions, volume 58 of
Graduate Texts in Mathematics. Springer Verlag, New York, 1984.

[27]

28]

[29]

[30]

[34]

[35]

[38]

[39]

106

N. Koblitz. A Course in Number Theory and Cryptography, volume 114 of Grad-
uate Texts in Mathematics. Springer Verlag, New York, 1987.

F. J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes.
North-Holland, Amsterdam,New York, 1993.

K. Mahler. p-adic numbers and their functions. 2nd Edition, Cambridge Univ.
Press, 1967.

G. Marsaglia and A. Zaman. A new class of random number generators. Ann.

Appl. Prob., 1:462-480, 1991.

J. Massey and R. Rueppel. Methods of, and Apparatus for, Transforming a
Digital Data Sequence into an Encoded Form, volume 4797922 of U.S. Patent.
1989.

J. L. Massey. Shift-register synthesis and bch decoding. IFEE, Trans. Info. Th.,
IT-15(1):122-127, 1969.

W. Qi and Z. Dai. The trace representation of sequences and the structural anal-
ysis of the space of nonlinear filtered sequences over z/(p?). Acta Mathematicae

Applicatae Sinica, 20(1):128-136, 1997.

J.A. Reeds and N.J.A. Sloane. Shift-register synthesis (modulo m). SIAM J.
Comput., 14(3):505-513, August, 1985.

R. Rueppel. Analysis and Design of Stream Ciphers. Springer Verlag, New York,
1986.

B. Schneier. Applied Cryptography. 2nd Edition, John Wiley and Sons, New
York, 1996.

P. Shankar. On bch codes over arbitrary integer rings. ITEEFE Trans. Inform.
Theory., I'T-25:480-483, 1977.

W. Sierpinski. 250 Problems in Flementary Number Theory. American Elsevier
Publishing Company Inc., New York, 1970.

D. R. Stinson. Cryptography: Theory and Practice. CRC, Boca Raton, London,
Tokyo, 1995.

107

[40] A. Lee Y. Kim, C. Seo and J. Lim. On the linear span of fcsr. submitted to
Elsevier, 1997.

[41] N. Zierler. Linear recurring sequences. J. of SIAM, 7(1):31-48, 1959.

[42] N. Zierler and W.H. Mills. Products of linear recurring sequences. J. of Algebra,
27(1):67-69, 1973.

Vita

Jinzhong Xu was born in Shanghai, P. R. China, on December 10, 1958. After
finishing his study at Jiangsu Teacher’s College, Suzhou, P. R. China (now it is named
as Suzhou University), he received the degree of Bachelor of Science in January 1982.
Right after the graduation, he was teaching mathematics in high school. In the fall
of the same year, he entered Guangxi Normal University in Guilin, P. R. China and
began to receive his graduate education. He got his degree of Master of Science
from Nanjing University, P. R. China in November 1984. In October 1985, he was
employed by Suzhou University, P. R. China, and was teaching at the Department
of Mathematics. From 1987 to 1988, he went to University of Toronto, Toronto,
Canada as a visiting scholar under an educational exchange program between Jiangsu
Province, China and Ontario Province, Canada. From September 1988 to July 1991,
he was teaching at Suzhou University as a mathematics lecturer. In August 1991,
he entered the Graduate School of University of Kentucky. From the fall of 1991 to
the summer of 1994, he was teaching mathematics at the University of Kentucky as
a teaching assistant. From the fall of 1994 to the summer of 1995, he received the
Dissertation Year Fellowship, awarded by University of Kentucky. He received his
Ph.D. degree in mathematics from the College of Arts and Science of University of
Kentucky in May 1997. Based on his mathematics researches, his book ”Flat Covers
of Modules” was published by Springer-Verlag in November 1996. From the Fall of
1995 to the Spring of 1999, he was a research assistant and a teaching assistant at the
department of computer science. Since 1999, he has been employed by Assessment

Technologies, Inc. as a senior researcher.

Signature of Student

108

	Stream Cipher Analysis Based on FCSRs
	Recommended Citation

	tmp.1322491687.pdf.waiKd

