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ABSTRACT OF DISSERTATION 

 
 

 
THE TRANSPORT AND MODULATION OF HIV PROTEASE INHIBITORS INTO 

THE RAT CENTRAL NERVOUS SYSTEM AND MILK 
 

 
 The objective of this dissertation is to study the mechanism by which HIV 

protease inhibitors enter into the central nervous system (CNS) and breast milk of rats, and what 

effects MDR modulators have on the distribution and metabolism of HIV protease inhibitors.  

The transporter P-glycoprotein (P-gp) has been shown to limit the distribution of HIV protease 

inhibitors into the CNS of rodents.  This thesis examined the effects of GF120918, an MDR 

modulator, on the CNS distribution of amprenavir, an HIV protease inhibitor, in rats.  GF120918 

significantly increased the unbound CNS concentrations of amprenavir without altering the 

unbound blood concentrations of amprenavir.  The results of these studies show that GF120918 

can inhibit P-gp at the blood brain barrier (BBB) to increase the unbound CNS concentration of 

amprenavir and potentially other HIV protease inhibitors.  Many first generation MDR 

modulators inhibited both P-gp transport and CYP3A metabolism.  Therefore, a principal goal of 

this thesis was to determine if GF120918 could selectively inhibit P-gp transport without 

inhibiting CYP3A metabolism.  Using in vitro (human) and in vivo (rat) studies, GF120918 

selectively inhibited P-gp at the BBB without inhibiting CYP3A metabolism.  The transporter 

MRP1 has been shown to both transport HIV protease inhibitors and expressed in the CNS.  

Studies contained in the thesis have shown that mrp1 is not localized to the BBB of rats, 

therefore, mrp1 is unlikely to play a significant role in the distribution of HIV protease inhibitors 

into the CNS of rats.  The distribution of nelfinavir, an HIV protease inhibitor, into rat breast 

milk was studied in the thesis as a first approach in understanding the extent to which HIV 

protease inhibitors can accumulate into milk.  The concentration of nelfinavir in rat milk was



 approximately half that of plasma.  P-gp protein expression was detected in lactating rat 

mammary tissue.  However, GF120918 showed no effect on the distribution of nelfinavir into rat 

milk suggesting that P-gp does not play a significant role in the distribution of HIV protease 

inhibitors into milk.   

 

 Keywords: HIV Protease Inhibitors, P-glycoprotein, MRP1, Lactating Rat Model, MDR 

Modulation 
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CHAPTER I. INTRODUCTION 
 

The viral load of the human immunodeficiency virus (HIV) in plasma can be reduced to 

levels below the limit of detection using a combination of nucleoside reverse transcriptase 

inhibitors, non-nucleoside reverse transcriptase inhibitors, and HIV protease inhibitors (Rana and 

Dudley, 1999).  This combination of antiretroviral drugs has reduced the mortality of individuals 

infected with HIV (Lambotte et al., 2003).  Unfortunately, discontinuation of the antiretroviral 

therapy will cause the plasma viral load to return to pretherapeutic levels (Lambotte et al., 2003).  

One explanation for the rebound of HIV in the plasma is the existence of HIV reservoirs, where 

the viron is able to survive in the body even during antiretroviral therapy.  One of the proposed 

HIV reservoirs is the central nervous system (CNS)(Pierson et al., 2000).  An indicator of HIV 

survival in the CNS is the prevalence of HIV-associated dementia, a cognitive and motor 

impairment observed in HIV positive patients (Swindells et al., 1999).     

P-glycoprotein (P-gp), the product of the ABCB1 (formerly MDR1) gene, reduces the 

distribution of the HIV protease inhibitors indinavir, saquinavir, ritonavir, nelfinavir, and 

amprenavir into the CNS (Bellamy, 1996; Asperen et al., 1997; Kim et al., 1998; Lee et al., 

1998; Polli et al., 1999).  P-gp is located on the apical membrane of capillary endothelial cells 

that make up the blood-brain barrier (BBB).  The distribution of HIV protease inhibitors into the 

CNS is significantly greater in mdr1a -/- knockout mice (Kim et al., 1998) and in mice treated 

with the MDR modulators valspodar (PSC-833), LY-335979 (Choo et al., 2000), and GF120918 

(Polli et al., 1999) compared to mdr1a +/+ and control mice, respectively.  The hypothesized 

clinical significance of P-gp efflux of HIV protease inhibitors at the BBB is sub-therapeutic 

concentrations of HIV protease inhibitors in the CNS.  The use of MDR modulators with HIV 

protease inhibitors could potentially increase the distribution of HIV protease inhibitors into the 

CNS to levels that would reduce the prevalence of HIV-associated dementia.      

 One obstacle in MDR modulation, the use of MDR modulators to inhibit P-gp, is the 

inadvertent effects of the MDR modulators on drug metabolism.  Many substrates/inhibitors of 

P-gp are also substrates/inhibitors of the metabolizing enzyme cytochrome P4503A4 (Kim et al., 

1999; Wandel et al., 1999; Yasuda et al., 2002).  For example, there is an increase in the plasma 

concentration of doxorubicin, a P-gp and CYP3A4 substrate, when cyclosporine is co-

administered (Bartlett et al., 1994).  Cyclosporine inhibits both P-gp and CYP3A4, and therefore 
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cyclosporine not only increases the distribution of doxorubicin by inhibiting P-gp, but also 

inhibits CYP3A4 metabolism of doxorubicin (Wandel et al., 1999). It would be advantageous to 

identify MDR modulators that selectively inhibit P-gp over CYP3A4 in order to avoid toxicities 

due to metabolism inhibition.      

 HIV protease inhibitors are also transported by the multidrug-resistant associated protein 

(MRP1) the product of the ABCC1 gene (Srinivas et al., 1998; van der Sandt et al., 2001).  There 

are conflicting reports on the expression of MRP1 at the BBB (Regina et al., 1998; Seetharaman 

et al., 1998a; Sugiyama et al., 1999; Decleves et al., 2000).  If MRP1 is expressed at the BBB it 

could have a significant effect on the distribution of PIs into the CNS.  Clarifying its expression 

would help in identifying the potential mechanisms by which HIV protease inhibitors distribute 

into the CNS.   

 Just as the BBB regulates transport into the CNS (De Boer et al., 1998), the mammary-

epithelial barrier regulates transport into breast milk (Shennan, 1998).  It has also been shown 

that specific carrier mediated transporters are located at the mammary epithelial barrier and can 

cause elevated milk concentrations of xenobiotics, including the HIV reverse transcriptase 

inhibitor zidovudine (Oo et al., 1995; Gerk et al., 2001; Alcorn and McNamara, 2002).  It has 

been observed that there is an increase in the risk of HIV transmission through breast feeding, 

with increased HIV viral load in milk (Rousseau et al., 2003).  HIV reverse transcriptase 

inhibitors have been used to prevent the transmission of HIV from mother to child through breast 

milk (Nolan et al., 2002), and therefore it is hypothesized that HIV protease inhibitors will also 

prevent the transmission of HIV through milk.  

 There is little information concerning the distribution and transport of HIV protease 

inhibitors into breast milk.  This lack of information makes it difficult to determine if HIV 

protease inhibitors can be used to prevent the transmission of HIV through milk.  Preliminary 

studies have shown mRNA expression of mdr1b (P-gp) in rat mammary tissue.  Therefore, P-gp 

could potentially play a significant role in the distribution of HIV protease inhibitors into milk.  

In addition to understanding the transport of HIV protease inhibitors into milk, determining the 

protein expression and transport function of P-gp at the mammary epithelial barrier would help 

in identifying potential distribution pathways of other P-gp substrates into milk.      
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CHAPTER II. BACKGROUND 

A.  HIV Protease Inhibitors 

 

 The HIV protease is responsible for the cleavage of the HIV gag-pol polyprotein into its 

functional subunits, including the integrase and reverse transcriptase enzymes (Flexner, 1998).  

Three of the cleavage sites for the HIV protease contain a phenylalanine-proline or tyrosine-

proline bond.  A relatively new class of drugs, called HIV protease inhibitors, prevents the HIV 

protease from cleaving the gag-pol polyprotein into its functional subunits (Flexner, 1998).  An 

immature viron is produced that can not infect other cells with the HIV genome.  HIV protease 

inhibitors prevent HIV infected cells from infecting new cells, but do not affect previously 

infected cells.    

 There are currently 6 FDA approved HIV protease inhibitors; amprenavir, indinavir, 

lopinavir, nelfinavir, ritonavir, and saquinavir (Pomerantz and Horn, 2003).  Figure 1 shows the 

structures of indinavir, nelfinavir, ritonavir, saquinavir, and amprenavir.  Most of the HIV 

protease inhibitors are designed as synthetic analogs of the phenylalanine-proline sequence 

(Flexner, 1998).  It has been shown that HIV protease inhibitors in combination with nucleoside 

and non-nucleoside reverse transcriptase inhibitors can reduce the HIV viral load in plasma 

below detectable levels (Rana and Dudley, 1999).  In addition to lowering the plasma viral load, 

HIV protease inhibitors also reduce the viral load in lymphoid tissue, a known reservoir for HIV 

(Ruiz et al., 1999).   

 The greater lipophilicity of the HIV protease inhibitors compared to HIV reverse 

transcriptase inhibitors may explain the differences in antiviral activity in the lymphoid tissue.  

For example, the predicted octanol to water coefficients (log P, mean ± S.D.) for the neutral form 

of amprenavir, indinavir, lopinavir, nelfinavir, ritonavir, and saquinavir are 4.20, 2.88, 6.26, 

6.98, 5.28, and 4.44, respectively, estimated using chemical properties prediction software (ACD 

Labs 6.0).  These values are greater than the predicted log P for the HIV reverse transcriptase 

inhibitors zidovudine (-0.53) and didanosine (-1.33).  However, HIV protease inhibitors are 

extensively bound to plasma proteins, especially to α-1-acid glycoprotein, which limits their 

tissue distribution (Acosta, 2002).  The human plasma protein binding values for amprenavir, 

indinavir, nelfinavir, ritonavir, and saquinavir are 90%, 60%, ≥ 98%, ≥ 99%, and 97% , 
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respectively (Acosta et al., 2000).  In contrast, the HIV reverse transcriptase inhibitors 

zidovudine and didanosine are minimally bound to human plasma proteins (Acosta et al., 1996) 

(Product Sheet, Videx).   

 It was predicted that antiretroviral drugs, including HIV reverse transcriptase and 

protease inhibitors, would completely eradicate HIV from the body (Perelson et al., 1997).  

Although the HIV virus can be reduced to undetectable levels in the plasma for an extended 

period of time, the virus is able to persist (Finzi et al., 1997; Wong et al., 1997).  The failure of 

the antiretroviral therapy can be explained by the existence of reservoirs in the body where HIV 

is able to survive (Pierson et al., 2000; Sonza and Crowe, 2001; Lambotte et al., 2003).  One 

proposed reservoir is the CNS, which is a result of subtherapeutic concentrations of the 

antiretroviral drugs (Chun and Fauci, 1999; Ruiz et al., 1999; Pierson et al., 2000; Sonza and 

Crowe, 2001).  As mentioned previously, P-gp transports HIV protease inhibitors out of the 

BBB, and away from the CNS (Kim et al., 1998).  It is hypothesized that P-gp causes 

subtherapeutic concentrations of the HIV protease inhibitors in the CNS.  Therefore, increasing 

the distribution of HIV protease inhibitors into the CNS could potentially reduce the HIV viral 

load in the CNS and ameliorate the effects of HIV-associated dementia.  One method to increase 

the distribution of the HIV protease inhibitors into the CNS is to inhibit P-gp at the BBB. 
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Figure 1: Structure of indinavir, nelfinavir, ritonavir, saquinavir, and amprenavir. 
 
 
 

 
 
Flexner. N Engl J Med, 1998.  
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B. ATP-Binding Cassette (ABC) Transporters 

 

 P-gp is part of the ATP-binding cassette (ABC) family of transporters (Dean et al., 

2001b).  ABC transporters use ATP hydrolysis to transport molecules across a cell membrane 

(Dean et al., 2001a).  A functional ABC transporter contains 2 ATP binding sites and contains 1 

or more transmembrane domain.  Each transmembrane domain can contain 6 to 11 

transmembrane helices.  The ATP-binding sites are located in the intracellular compartment and 

contain a Walker A, Walker B, and a signature motif (Dean et al., 2001b).  The signature motif 

differentiates the ABC transporters from other proteins containing ATP binding sites (Dean et 

al., 2001a).  Human ABC transporters have been categorized into 7 subfamilies (ABC A through 

G) based on the gene structure, domains, and sequence homology of the ATP-binding cassette 

and transmembrane domains (Dean and Allikmets, 2001).  ABC transporters are responsible for 

transporting both endogenous (e.g. bile-acids) and exogenous (e.g. doxorubicin) molecules 

(Dean et al., 2001b).   

 P-gp, the product of the ABCB1 gene, is known to transport the HIV protease inhibitors 

amprenavir, indinavir, nelfinavir, ritonavir, and saquinavir (Kim et al., 1998; van der Sandt et al., 

2001; Williams et al., 2002) and has a significant effect on the distribution of HIV protease 

inhibitors into the CNS of rodents (Polli et al., 1999; Choo et al., 2000).  MRP1, another ABC 

transporter and the product of ABCC1 gene, has been reported to transport the HIV protease 

inhibitors saquinavir, ritonavir, and indinavir but not amprenavir (Jones et al., 2001a; Jones et al., 

2001b; van der Sandt et al., 2001; Williams et al., 2002).  There is also a report that shows an 

inverse relationship in the intracellular accumulation of saquinavir and ritonavir with the level of 

MRP1 expression in human lymphocytes (Meaden et al., 2002), further suggesting that 

saquinavir and ritonavir are substrates of MRP1.  However, one report shows that indinavir, 

saquinavir, and ritonavir are not substrates of MRP1 (Huisman et al., 2002).  The discrepancy 

has not been resolved between these reports on the transport of indinavir, saquinavir, and 

ritonavir using MRP1 transfected cell lines.   

MRP2, the product of the ABCC2 gene, has been shown to transport the HIV protease 

inhibitors saquinavir, ritonavir, and indinavir (Huisman et al., 2002; Williams et al., 2002).  

MRP3 and MRP5, the products of the ABCC3 and ABCC5 genes respectively, have been shown 

not to transport the HIV protease inhibitors saquinavir, ritonavir, and indinavir (Huisman et al., 

 6



2002).  The murine breast cancer resistance protein 1 (Bcrp1), another ABC transporter, has also 

been reported to not transport saquinavir, ritonavir, and indinavir (Huisman et al., 2002).  The 

focus of this dissertation will be on the ABC transporters ABCB1 (P-gp) and ABCC1 (MRP1).            

   

 ABCB1 (P-gp) 

 

 P-gp is a 170 kDa protein consisting of 1280 amino acids (Figure 2) (Fardel et al., 1996; 

Ambudkar et al., 1999; Borst and Elferink, 2002).  P-gp consists of two homologous halves 

containing 2 transmembrane domains and 2 ATP binding sites.  Each transmembrane domain 

consists of 6 transmembrane helices for a total of 12 transmembrane helices.  P-gp is 

glycosylated and phosphorylated, but only phosphorylation appears to affect transport activity 

(Fardel et al., 1996).       

 P-gp was initially discovered in cancer cells resistant to traditional chemotherapeutic 

agents (Gottesman and Pastan, 1993).  P-gp actively transports xenobiotics out of cells causing 

sub-therapeutic intracellular concentrations.  This is one mechanism which can result in 

multidrug resistance.  P-gp is also located on the apical membrane of non-cancer cells, including 

intestinal cells, hepatocytes, kidney cells, and brain capillary endothelial cells (Ambudkar et al., 

1999).  Because P-gp is located on excretory organs, like the kidney and liver, it has been 

suggested that it plays a role in the excretion of xenobiotics.  However, the presence of P-gp in 

non-secretory organs (i.e. brain and testis) would suggest that it plays a role in the distribution of 

xenobiotics as well.  

 Mice and rats possess two functionally equivalent proteins for human P-gp, called mdr1a 

and mdr1b (Deuchars et al., 1992; Gottesman and Pastan, 1993).  The tissue distribution and 

cellular orientation of mdr1a and mdr1b are similar to that of MDR1, which makes the rodent a 

convenient and relevant model for P-gp function in vivo (Schinkel, 1998).  A knockout mouse 

lacking the mdr1a and/or mdr1b genes has been developed and used to determine the effects of 

P-gp in vivo (Schinkel, 1998).  For example, the distribution of nelfinavir into the CNS is over 

27 times higher in mdr1a knockout mice than in wild-type mice (Choo et al., 2000).  This would 

be further evidence that P-gp can play a significant role in the distribution of xenobiotics into the 

CNS.  Interestingly, knockout mice deficient in P-gp do not show any physiological 

abnormalities.  This would suggest that either P-gp does not play a significant role in the 
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distribution and elimination of endogenous compounds and/or other redundant systems take the 

place of P-gp.  

 P-gp transports an array of structurally diverse compounds including anthracyclines, 

vinca alkaloids, steroids, and HIV protease inhibitors (Sharom, 1997; Lee et al., 1998; Ambudkar 

et al., 1999; Borst and Elferink, 2002).  In general, most of the substrates for P-gp are lipophilic 

molecules.  The binding site(s) of P-gp have yet to be definitively identified.  There are 

numerous studies that would argue for multiple binding sites for P-gp substrates (Martin et al., 

2000; Wang et al., 2000; Garrigues et al., 2002).  Although multiple binding sites have been 

suggested, it also has been shown that substrate binding to one site can cause changes in other 

binding sites (Wang et al., 2000).  This complex relationship makes it difficult to accurately 

describe the mechanism by which P-gp substrates are transported and may also explain why P-gp 

can transport such a diverse array of molecules.  In addition to substrate binding sites, another 

binding site for the MDR modulators GF120918 and nicardipine has been proposed (Martin et 

al., 2000).   In the model proposed by Martin et al. (Martin et al., 2000), GF120918 and 

nicardipine caused allosteric changes to the other binding sites, and thus showed noncompetitive 

inhibition of P-gp transport.  However, GF120918 has been shown to competitively inhibit 

daunorubicin transport, a model P-gp substrate, using rat liver membrane vesicles (Wallstab et 

al., 1999).  This illustrates the complex nature of substrate/inhibitor binding to P-gp.  An 

“induced-fit mechanism” has been proposed to explain how P-gp is able to transport a wide 

variety of structurally different molecules (Loo and Clarke, 2001; Loo et al., 2003).  In their 

proposed model, the transmembrane helices change their orientation to accommodate the binding 

of structurally different substrates.  Thus, the three dimensional structure of P-gp would be 

different for structurally different substrates.  Unfortunately, there is no all inclusive model to 

explain P-gp transport and inhibition, but it is clear that the substrate binding site(s) allow P-gp 

to transport a wide variety of molecules.      
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Figure 2: Structure of P-glycoprotein. 

 

 
Modified from Borst et al. J Natl Cancer Inst, 2000. 

 

 ABCC1  

 

 MRP1 is a 190 kDa protein that contains 17 transmembrane helices (Leslie et al., 2001) 

(Figure 3).  MRP1 is the product of the ABCC1 gene and is located on the basolateral membrane 

of cells.  Like MDR1, MRP1 contains two nucleotide binding domains and uses ATP hydrolysis 

as its source of energy.  In rodents there is only 1 functionally equivalent protein, mrp1, which is 

expressed in the liver, kidney, lung, intestine, and brain (Cherrington et al., 2002).   

 Cells with elevated levels of MRP1 show similar drug resistant profiles to cells that 

express elevated levels of MDR1 (Borst et al., 2000).  This would suggest that MRP1 substrates 

are also substrates of P-gp.  However, it appears that MRP1 transports glutathione, sulfate, or 

glucuronide conjugates (Jedlitschky et al., 1996).  For example, doxorubicin and daunorubicin do 

not inhibit the transport of leukotriene, a model MRP1 substrate (Priebe et al., 1998), yet, the 
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glutathione conjugates of doxorubicin and daunorubicin do inhibit leukotriene transport.  

Conjugation may not be necessary for MRP1 transport.  For example, vincristine is cotransported 

with reduced glutathione by MRP1 (Loe et al., 1998).  This would explain how MRP1 is able to 

transport unconjugated molecules.  The cotransport of unconjugated drugs with reduced 

glutathione may explain why Huisman et al. (Huisman et al., 2002) did not observe the transport 

of indinavir, saquinavir, and ritonavir in MRP1 transfected cells since glutathione levels were not 

measured.  MRP1 is also able to transport multivalent organic anions like methotrexate without 

glutathione (Ishikawa et al., 2000).  In general, MRP1 transport requires a negatively charged 

molecule.  The different methods of transport (i.e. cotransport or conjugation) allow MRP1 to 

transport a variety of molecules.           

 

 

Figure 3: Structure of MRP1. 

 
Modified from Borst et al. J Natl Cancer Inst, 2000. 
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C. Blood-Brain Barrier 

 

 The BBB is comprised of capillary endothelial cells that restrict the transport of 

endogenous and exogenous substances into and out of the CNS, and is responsible for 

maintaining the microenvironment of the brain (Huber et al., 2001).  Brain capillary endothelial 

cells have tight junctions, as indicated by a high transendothelial electrical resistance (1100 to 

2000 Ω•m2) in rat brains (Wolburg and Lippoldt, 2002).  The BBB is characterized by having 

limited paracellular diffusion and transcytosis activity (Bickel et al., 2001).  Therefore, 

molecules must pass through the endothelial cells (transcellular) to enter the CNS.  Hydrophilic 

molecules, which cannot readily pass through the lipid bilayer, would have limited distribution 

into the CNS.  However, capillary endothelial cells have specialized proteins that transport 

molecules across the apical and basolateral membranes (Figure 4) (Huber et al., 2001).  For 

example, glucose, which is an essential nutrient for the CNS, is transported by GLUT1, a 

facilitated transport protein (Klepper and Voit, 2002).  A deficiency in GLUT1 causes low levels 

of glucose in the CNS, termed hypoglycorrhachia, which in turn causes abnormal physiologic 

functioning of the brain and is associated with seizures and developmental delay (Klepper and 

Voit, 2002).  This deficiency illustrates the importance of the BBB on the microenvironment of 

the CNS.  

 Brain capillary endothelial cells are surrounded by astrocytes, a type of glial cell, which 

form foot processes (Prat et al., 2001).  Although capillary endothelial cells form the BBB, 

surrounding cells, like astrocytes, are essential for the regulation and maintenance of the BBB 

(Prat et al., 2001; Wolburg and Lippoldt, 2002; Rieckmann and Engelhardt, 2003).  For example, 

brain endothelial cells grown in the presence of glial cells show a significant increase in the 

expression of γ-glutamyl transferase, a marker of the BBB, and increased tight junctions (Abbott, 

2002).     

 P-gp has been identified on the apical membrane of brain capillary endothelial cells 

(Demeule et al., 2000) and is responsible for transporting a variety of xenobiotics away from the 

CNS (Tanigawara, 2000).  Its influence on the distribution of xenobiotics into the CNS can be 

seen in mdr1a and mdr1a/1b knockout mice (Borst and Schinkel, 1996).  Table 1 lists the plasma 
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and brain mdr1a (-/-) to mdr1a (+/+) concentration ratios for a variety of xenobiotics that are 

transported by P-gp (Pardridge, 1998).  It should be noted that the concentrations of the 

xenobiotics, with the exception of vinblastine, in the plasma and brain samples were determined 

by total radioactivity, and therefore, represents both the parent drug and their metabolite(s).  The 

plasma concentrations of vinblastine, ivermectin, digoxin, and loperamide were greater in mdr1a 

knockout mice as indicated by the plasma ratio being greater than 1.  This suggests that P-gp 

plays a role in the elimination of these drugs.  The brain ratios for vinblastine, ivermectin, 

digoxin, and loperamide were substantially larger than the plasma ratios, indicating that P-gp 

plays a significant role in the distribution of these drugs into the CNS.  The plasma ratios for 

cyclosporine A, dexamethasone, morphine, and ondansteron were not different in mdr1a 

knockout versus wild-type mice.  However, there was an increase in the distribution of these 

drugs into the CNS.  P-gp can also change the pharmacological or toxicological effects of a drug 

in the CNS.  For example, mdr1a knockout mice are 100 times more sensitive to ivermectin CNS 

toxicity compared to wild-type mice (Schinkel et al., 1994).  Also, the antinociceptive effects of 

morphine are altered in mdr1a knockout mice (Zong and Pollack, 2000).   

 There is confusion concerning the expression of MRP1 at the BBB. The mRNA of mrp1 

has been found in isolated rat brain endothelial cells (Regina et al., 1998; Decleves et al., 2000) 

suggesting that it plays a role in the distribution of xenobiotics into the CNS.  MRP1 has been 

detected in isolated and cultured bovine endothelial cells (Huai-Yun et al., 1998; Zhang et al., 

2000a). However, MRP1 was not found in human capillary endothelial cells and the expression 

of MRP1 was associated with glial fibrillary acidic protein (GFAP), a marker of glial cells 

(Seetharaman et al., 1998a).  This would suggest that MRP1 is expressed in glial cells and not in 

capillary endothelial cells.  By contrast, the expression of MDR1 in isolated human brain 

endothelial cells was associated with the expression of platelet endothelial cell adhesion 

molecule (PECAM), a marker of endothelial cells (Seetharaman et al., 1998a), which is 

consistent with P-gp being expressed at the BBB.  Interestingly, the expression of MRP1 has 

been shown to increase in cultured human brain endothelial cells compared to the originally 

isolated cells, whereas the expression of MDR1 decreases (Seetharaman et al., 1998b).  Mrp1 

also appears to be elevated in an immortalized rat brain endothelial cell line (RBE4), a cell line 

used for in vitro drug transport studies (Regina et al., 1998).  It has been suggested that isolated 

brain endothelial cells are contaminated with glial cells which also express transport proteins 
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(Ballerini et al., 2002).  The contamination with glial cells may explain why mrp1 has been 

detected in rat and bovine brain endothelial cells (Huai-Yun et al., 1998; Regina et al., 1998; 

Decleves et al., 2000; Zhang et al., 2000a).  Since HIV protease inhibitors are transported by 

MRP1 (Jones et al., 2001a; Jones et al., 2001b; van der Sandt et al., 2001; Williams et al., 2002), 

determining the expression of MRP1 at the BBB would help to identify possible mechanisms for 

the transport of HIV protease inhibitors into the CNS.   

 

 

Figure 4: Transport mechanisms at the blood-brain barrier. 

 
   

 

Huber et al. Trends Neurosci, 2001 
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Table 1: The distribution of xenobiotics into the CNS of mdr1a knockout and wild-type 

mice. 

   mdr1a (-/-):mdr1a (+/+) 
Drug   Plasma        Brain   
Vinblastine  2         22 

Ivermectin  3         87 

Digoxin  4         66 

Cyclosporine A 1         17 

Dexamethasone 1         2 

Morphine  1         2 

Ondansetron  1         4 

Loperamide  2         13 

 

D. HIV-Associated Dementia  
 

 HIV-associated dementia is a cognitive motor disorder that had an estimated prevalence 

of 20 to 30% in HIV-1-infected individuals during the early 1990s (Swindells et al., 1999; Kaul 

et al., 2001).  The prevalence of HIV-associated dementia has decreased significantly with the 

advent of new antiretroviral drugs, like HIV protease inhibitors (Sacktor, 2002; Albright et al., 

2003).  However, HIV-associated dementia is still prevalent in HIV infected individuals even 

with these new drugs (Kaul et al., 2001; Sacktor, 2002; McArthur et al., 2003).  The mechanism 

of HIV-associated dementia is poorly understood, however, it is known that the HIV does not 

infect neurons (Kaul et al., 2001).  The HIV enters the CNS during the initial stages of infection 

and resides in the CNS thereafter.  The pathology of HIV-associated dementia is associated with 

an increase in microglia cells, increased TNF-α mRNA in both microglia and astrocytes, and 

neuronal loss (Kaul et al., 2001).  A proposed model by which neurons are damaged by the HIV-

1 virus is shown in Figure 5.  In this model, the HIV-1 virus infects microglia/macrophage cells 

in the CNS, which causes the release of neurotoxins that cause free radical damage to neurons.  

Another proposed mechanism is the HIV-1 virus releases gp120 surface proteins, which causes 

uninfected microglia cells to release neurotoxins that damage the neuron.  Many HIV protease 

inhibitors and reverse transcriptase inhibitors do not distribute into the brain in sufficient 
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concentrations to affect HIV replication, hence, it is theorized that increasing the extent of 

distribution of HIV drugs would help to ameliorate the effects of HIV-associated dementia.  One 

method to increase the distribution of HIV PIs would be to coadminister an MDR modulator 

with HIV protease inhibitors to inhibit P-gp at the BBB.   

 

Figure 5: Proposed mechanism of HIV-associated dementia. 
 

 
 

Kaul et al. Nature, 2001. 
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E.  MDR Modulators         
 

 MDR modulators were first used to inhibit P-gp in cancer cell lines that were resistant to 

a variety of antineoplastic drugs (Tsuruo et al., 1983; Feng et al., 1991; Roepe, 1992).  First 

generation MDR modulators include calcium channel blockers, calmodulin antagonists, cyclic 

peptides, and vinca alkaloid analogues (Ford, 1996).  These first generation MDR modulators 

were therapeutic agents that were also substrates for P-gp.  For example, verapamil, a calcium 

channel blocker, has been used clinically as an MDR modulator with doxorubicin, vinblastine, 

and vincristine (Raderer and Scheithauer, 1993).  However, in these clinical studies, the 

measured plasma concentrations for verapamil (1-2 µM) were below the optimal in vitro 

concentrations to inhibit P-gp (6-10 µM).   A limiting factor in achieving plasma concentrations 

of verapamil high enough to inhibit P-gp is the cardiotoxic effects of verapamil (Raderer and 

Scheithauer, 1993; Ford, 1996; Krishna and Mayer, 2000).  Other first generation MDR 

modulators also caused unwanted pharmacological effects when administered in doses sufficient 

to inhibit P-gp.    

 Over time, a second generation of MDR modulators that were analogues of the first 

generation MDR modulators was utilized.  The principal advantage of these second generation 

MDR modulators was their limited pharmacological effects.  For example, dexverapamil, the R-

enantiomer of verapamil, showed reduced cardiotoxic effects, and valspodar is a non-

immunosuppressive analog of cyclosporine (Krishna and Mayer, 2000).  However, both first and 

second generation MDR modulators showed significant effects on metabolism, and especially on 

the enzyme cytochrome P4503A4 (Lum et al., 1992; Raderer and Scheithauer, 1993; Lum and 

Gosland, 1995).  For example, R-verapamil, valspodar, and cyclosporine have caused a decrease 

in the metabolic clearance of paclitaxel, etoposide, and doxorubicin (Bartlett et al., 1994; Berg et 

al., 1995; Boote et al., 1996).  This overlap in substrates is not surprising since both P-gp and 

CYP3A4 substrates are characterized as large lipophilic molecules (Wang et al., 2001).   

 The relative selectivity of the MDR modulators for CYP3A4 and P-gp was determined by 

comparing the IC50 of P-gp in Caco-2 cells to the IC50 of CYP3A4 in liver microsomes 

(Wandel et al., 1999).  Figure 6 shows the results of these experiments for cyclosporine and 

valspodar (PSC 833).  There is no direct way to compare the IC50 of P-gp and CYP3A4 for each 

drug individually, however, the relative selectivity of cyclosporine and valspodar for CYP3A4 
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and P-gp can be compared.  Since a higher concentration of valspodar was needed to inhibit 

CYP3A4 compared to cyclosporine, it can be concluded that cyclosporine is a more potent 

inhibitor of CYP3A4 than valspodar.  On the other hand, a higher concentration of cyclosporine 

was needed to inhibit P-gp compared to valspodar, and therefore, it can be concluded that 

valspodar is a better inhibitor of P-gp.  Unfortunately, these results do not indicate if valspodar or 

cyclosporine is a selective inhibitor of P-gp or CYP3A4.  In fact, valspodar has been shown to 

inhibit the clearance of etoposide, a CYP3A4 substrate (Boote et al., 1996).      

 Third generation MDR modulators were designed based on the structure activity 

relationship of P-gp.  Figure 7 shows the structure of GF120918, a third generation MDR 

modulator.  Ideally, MDR modulators would inhibit P-gp without altering metabolism, which 

can lead to toxicities.  Therefore, determining the selectivity of MDR modulators, like 

GF120918, would help to identify candidates to be used for MDR modulation clinically.  

GF120918 has been shown not to inhibit CYP3A4 metabolism in vitro (Cummins et al., 2002).  

GF120918 has also been shown to selectively inhibit P-gp transport without inhibiting CYP3A4 

metabolism in a rat single-pass intestinal perfusion model (Cummins et al., 2003).  This would 

further suggest that third generation modulators are able to inhibit P-gp transport without altering 

drug metabolism.       
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Figure 6: IC50 of valspodar (PSC 833) and cyclosporine for CYP3A4 metabolism and P-gp 

transport.  The IC50 of cyclosporine and valspodar for the metabolism of nifedipine, a 

CYP3A4 substrate, was determined in human liver microsomes (shown on the left).  The 

IC50 of cyclosporine and valspodar for the transport of digoxin, a P-gp substrate, across a 

Caco2 monolayer was determined (shown on right). 

     
  

 

Modified from Wandel et al. Cancer Res. 1999.         
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Figure 7: Structure of GF120918 

 

 
 
 
F. Distribution of HIV Protease Inhibitors into Breast Milk 
 
 There is little information concerning the distribution of most xenobiotics into breast 

milk.  Even less is known about the mechanisms (i.e. passive diffusion and active transport) by 

which a xenobiotic can gain access to the milk from the plasma.  Mammary epithelial cells, like 

brain capillary endothelial cells, regulate the distribution of xenobiotics into milk.  Mammary 

epithelial cells form tight junctions that limit paracellular transport.  Therefore, xenobiotics must 

enter into milk through the transcellular pathway.  Lipophilicity, protein binding in milk and 

plasma, fat partitioning, and ionization have been used to predict the extent of xenobiotic 

accumulation in milk (Fleishaker et al., 1987).  These models assume that xenobiotics passively 

diffuse into the breast.  However, some drugs have been shown to be actively transported into 

milk, including cimetidine and nitrofurantoin (Oo et al., 1995; Gerk et al., 2001).   The mRNA of 

many drug transporters, including ABCB1 and ABCC1, are expressed in lactating mammary 

epithelial cells (Alcorn et al., 2002).  Preliminary studies in this lab have shown that the mRNA 
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of mdr1b, one of the rodent genes responsible for the production of P-gp, is expressed in rat 

mammary tissue using polymerase chain reaction (PCR) (Figure 8).  This would suggest that P-

gp could play a significant role in the distribution of P-gp substrates into breast milk, including 

HIV protease inhibitors.   

 The HIV viral load in breast milk is considered a risk factor for the transmission of HIV 

from mother to child (Fowler and Newell, 2002).  The concentrations of zidovudine (AZT), a 

reverse transcriptase inhibitor used in the treatment of HIV, in breast milk are equivalent to that 

of maternal serum concentrations (Briggs et al., 1998).  It has been shown that the transmission 

of the HIV through breastfeeding can be significantly reduced by using reverse transcriptase 

inhibitors (Fowler and Newell, 2002).  This would suggest that other antiretroviral drugs, like 

HIV protease inhibitors, may also prevent the transmission of HIV through breast milk.  HIV 

protease inhibitors are lipophilic, and therefore, the tight junctions of the mammary epithelial 

barrier should not prevent their distribution into milk.  However, the protein expression and 

functionality of P-gp at the mammary epithelial barrier are unknown.  Understanding the 

distribution and mechanisms by which HIV protease inhibitors enter into breast milk would help 

to determine if HIV protease inhibitors could be used to prevent the transmission of HIV through 

breast milk.    
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Figure 8: Expression of mdr1b in rat tissue.  mRNA from male rat livers, female rat livers, 

lactating female rat livers, and female lactating mammary tissue was isolated and 

converted to cDNA. Beta2-microglobulin (housing keeping gene) and mdr1b were 

amplified using PCR.  (In collaboration with R. Muller)  
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CHAPTER III. HYPOTHESIS AND SPECIFIC AIMS 
 

The major thrust of the work presented in this dissertation will address the ability of P-gp to 

control the distribution of HIV protease inhibitors across the BBB, and the ability of MDR 

modulators to increase the distribution of HIV protease inhibitors into the CNS.    This work will 

be guided by the following hypotheses and specific aims: 

 

Hypothesis 1: The co-administration of GF120918 will increase the unbound brain to blood ratio 

of amprenavir in rats by inhibiting P-gp at the blood-brain barrier, but GF120918 will not alter 

the systemic clearance of amprenavir. 

 

Specific Aim 1. To determine the effects of GF120918 on the CNS distribution of amprenavir into 

the CNS of rats.  

 

Specific Aim 2. To determine the effects of GF120918 on the systemic clearance of amprenavir in 

rats.  

 

 Specific Aim 1 will determine if MDR modulators, like GF120918, can be used to 

increase the CNS distribution of HIV protease inhibitors.  Since HIV protease inhibitors are 

extensively bound to plasma proteins, it is necessary to determine the unbound concentration of 

amprenavir in plasma and the CNS.  This will avoid ambiguity concerning the effects of 

GF120918 on the plasma protein binding of amprenavir, versus the inhibition of P-gp at the 

BBB.  The brain to blood ratio of unbound amprenavir will be compared in rats treated with 

GF120918 and control rats.  Amprenavir is a substrate of CYP3A and therefore, specific Aim 2 

will determine if GF120918 has a significant effect on the systemic clearance of amprenavir.  

Amprenavir will be given as a constant infusion and the systemic clearance of amprenavir will 

be determined from the plasma steady-state concentrations.  The systemic clearance of 

amprenavir in the absence and presence of GF120918 will be compared.  

 

Hypothesis 2: GF120918, unlike cyclosporine, will selectively inhibit P-gp transport relative to 

CYP3A metabolism in vitro 
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Specific Aim 3. To determine the in vitro inhibition constant (Ki) of GF120918 and cyclosporine 

for CYP3A4. 

 

Specific Aim 4. To determine the in vitro inhibition constant (Ki) of GF120918 and cyclosporine 

for MDR1. 

 

 Specific Aims 3 and 4 will determine the in vitro selectivity of GF120918 and 

cyclosporine for P-gp and CYP3A4.  An expression system for CYP3A4 will be used to 

determine the apparent inhibition constants of GF120918 and cyclosporine, using midazolam as 

a model CYP3A4 substrate.  Nonlinear simultaneous fitting will be used to obtain the inhibition 

constants of GF120918 and cyclosporine for CYP3A4.   

 MDR1 transfected pig kidney cells (LLC-MDR1) and non-transfected kidney cells (LLC-

PK1) will be used to determine the apparent inhibition constants of GF120918 and cyclosporine 

for P-gp, using doxorubicin as a model P-gp substrate.  Nonlinear simultaneous fitting will be 

used to obtain the inhibition constant of GF120918 and cyclosporine for P-gp.  The in vitro 

inhibition constants of P-gp and CYP3A4 will be compared to determine the selectivity of the 

MDR modulators.  The selective inhibition determined in vitro will then be tested in vivo using 

the rat model. 

 

Hypothesis 3: GF120918, unlike cyclosporine, will selectively inhibit P-gp transport at the BBB 

over CYP3A metabolism in vivo. 

 

Specific Aim 5. To determine the selectivity of GF120918 and cyclosporine for CYP3A and P-gp 

inhibition using the rat model.   

 

 

 Specific Aim 5 will determine the selective inhibition of GF120918 and cyclosporine in 

vivo using the rat model.  The CNS distribution of nelfinavir will be used as a marker for the 

effects of GF120918 and cyclosporine on P-gp at the BBB.  The unbound brain to plasma ratio 

of nelfinavir in the presence and absence of GF120918 and cyclosporine will be compared to 
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determine the effects of the MDR modulators on P-gp at the BBB.  The concentrations of the two 

MDR modulators will be measured to determine the concentrations needed to produce, or not 

produce, an effect at the BBB.   

 Midazolam will be used as a model CYP3A substrate to determine the effects of 

GF120918 and cyclosporine on CYP3A metabolism.  Midazolam is metabolized by CYP3A in 

humans and rats (Kobayashi et al., 2002).  Although midazolam appears to be a substrate of 

MDR1, the contribution of MDR1 to the overall transport of midazolam is negligible because the 

passive diffusion of midazolam is significantly greater than the MDR1 dependent transport (Kim 

et al., 1999; Tolle-Sander et al., 2003).  Therefore, it will be assumed that the effects of the MDR 

modulators on the clearance of midazolam will be due to inhibition of CYP3A metabolism and 

not by P-gp-dependent elimination of midazolam.  The oral clearance of midazolam will be used 

to determine the effects of GF120918 and cyclosporine on CYP3A metabolism.  The systemic 

clearance of midazolam in rats is similar to that of hepatic-blood-flow, suggesting that the 

metabolism of midazolam is blood-flow rate limited in rats (Kotegawa et al., 2002).  The effect 

of ketoconazole, a CYP3A inhibitor, was significantly greater for the oral clearance rather than 

the systemic clearance of midazolam (Kotegawa et al., 2002), again suggesting that the 

elimination of midazolam is blood-flow rate limited.   Therefore, the most sensitive measure of 

CYP3A inhibition would be to determine the oral clearance of midazolam in the presence of 

GF120918 and cyclosporine.  Nonlinear simultaneous fitting will be used to obtain the inhibition 

constant of GF120918 and cyclosporine for CYP3A.   

 

Hypothesis 4: Mrp1 is localized to capillary endothelial cells in the CNS, and therefore, may 

play a role in the distribution of HIV protease inhibitors into the CNS.  
 

Specific Aim 6. To determine the expression of mdr1a and mrp1 at the blood-brain barrier of 

rats. 

 

 Capillary endothelial cells will be isolated from rat brains.  A fraction of the cells will be 

used to measure γ-glutamyl transferase activity, a marker of the BBB.  The mRNA will be 

collected from the remaining cells and the expression of GFAP and PECAM will be determined 

by PCR as a measure of glial cell contamination and endothelial cell enrichment, respectively.  
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The expression profile of PECAM, GFAP, mrp1, mdr1a and the activity of γ-glutamyl 

transferase activity will be compared to determine if mrp1 is localized to the BBB.  The mdr1a 

gene will be used as a positive control since it is known to be localized to the BBB.  It is 

postulated that if mrp1 is localized to the BBB, then it will play a significant role in the CNS 

distribution of xenobiotics, including HIV protease inhibitors.  Alternatively, if mrp1 is not 

localized to the BBB then it will be assumed that mpr1 does not play a significant role in the 

distribution of xenobiotics into the CNS.   

 

Hypothesis 5: P-gp, located in lactating mammary epithelium , plays an important role in the 
transport of MDR substrates into milk. 
 

Specific Aim 7. To determine the distribution of nelfinavir into rat milk. 

 

Specific Aim 8. To determine if P-gp plays a significant role in the distribution of nelfinavir into 

rat milk.         

 

   The distribution of nelfinavir into rat milk will be determined by measuring the milk to 

plasma ratio of nelfinavir after a constant infusion.  The role of P-gp at the mammary epithelial 

barrier will also be determined by analyzing the distribution of nelfinavir into rat milk in the 

presence and absence of the MDR modulator GF120918.  After the milk sample is taken, the 

brain will be excised and the brain to plasma ratio of nelfinavir will be determined and used as a 

positive control for the inhibition of P-gp.  Rat mammary tissue will also be excised from the rat 

after the brain has been removed.  The protein expression of P-gp will be determined in both rat 

brain and mammary tissue.   
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CHAPTER IV. MATERIALS AND METHODS 

A. Materials  

 

 Acetonitrile, sodium acetate, acetic acid, methanol, heptane, ethyl acetate, zinc sulfate 

heptahydrate were obtained from Fisher Scientific (Pittsburg, PA).  Midazolam, doxorubicin, 

cyclosporine, dimethyl sulfoxide (DMSO), sodium phosphate, adenosine triphosphate (ATP), 

adenosine monophosphate (AMP), Mes (2-[N-morpholino] ethanesulfonic acid), EGTA 

(ethylene gycol-bis (beta-aminoethylether)- N,N,N’,N’-tetraacetic acid), dithiothreitol, sodium 

azide, zinc acetate, ascorbic acid, sodium hydroxide, ammonium molybdate, (+/-)-verapamil 

hydrochloride, sodium orthovanadate, antifoam A concentrate, lauryl sulfate (SDS; sodium 

dodecylsulfate), Tween, hydroxypropylmethylcellulose, bovine Albumin Fraction V (BSA), 

cyclosporine A (cyclosporine) were obtained from Sigma-Aldrich (St. Louis, MO).  Amprenavir, 
14C-amprenavir (96.5 µCi/mg), and GF120918 were a generous gift from GlaxoSmithKline 

(Research Triangle, NC).  Polyethylene Glycol 400 (PEG-400) was obtained from Union 

Carbide Chemicals (Danbury, CT).  1-OH midazolam was a generous gift from Roche 

Laboratories.  Cytochrome P4503A4 Supersomes are microsomes from insect cells (BT1-TN-

5B1-4) that were infected with CYP3A4, P450 reductase, and cytochrome b5 cDNA and were 

obtained from BD Bioscience Company (Woburn, MA).  Control Supersomes (no gene 

infected), CYP3A1 Supersomes (infected with CYP3A1, rat P450 reductase, and human 

cytochrome b5), CYP3A2 Supersomes (infected with CYP3A2, rat P450 reductase, and human 

cytochrome b5), rat liver microsomes, and the NADPH regenerating system (NADP+, glucose-6-

phosphate, MgCl2, glucose-6-phosphate dehydrogenase), and crude membrane vesicles (MDR1 

infected and control) were also purchased from BD Bioscience Company (Woburn, MA).  

Supersomes were kept at -70 ºC and the NADPH regenerating system was kept at -20 ºC prior to 

use, as indicated by manufacture.  LLC-PK1 (pig kidney epithelial) cells were obtained from 

American Type Culture Collection (Manassas, VA).  LLC-MDR1 cells (MDR1 transfected LLC-

PK1 cells) were a generous gift from Dr. A. Schinkel (van der Sandt et al., 2000).  MDR1-

baculovirus was a gift from Dr. U. Subrahmanyeswara Rao (University of North Carolina).  SF9 

cells, SFM II-900 media, trypsin, and M-199 media were obtained from Invitrogen (Carlsbad, 

CA).  3H-Vincristine (250 µCi•ml-1) was obtained from Moravek Biochemicals (Brea, CA).  

Cyclosporine D was obtained from Novartis Pharmaceuticals Company.  The solid phase 
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extraction column (Bond Elute LRCTM, C18, 200mg/10mL) was obtained from Varian (Harbor 

City, CA).  Midazolam•HCl was obtained from Bedford Laboratories (Bedford, OH).  Nelfinavir 

was extracted from Viracept tablets (Agouron Pharmaceuticals, Inc., a Pfizer Company, Ann 

Arbor, MI), yielding a white solid having a purity of 98.6% by microtitration and exhibiting a 

single peak by HPLC.  C219 (mouse anti-human P-gp) and JSB1 (mouse anti-hamster P-gp) 

primary antibodies were obtained from Signet Laboratories (Dedham, MA).  Alkaline 

phosphatase linked IgG1 (rabbit anti-mouse) and IgG2a (rabbi anti-mouse) antibodies were 

obtained from ZYMED Laboratories Inc. (San Francisco, CA).  NBT (nitro blue tetrazolium)-

BCIP (5-bromo-4-chloro-3-indolyl-phosphate) was obtained from Pierce (Rockford, IL).            

B. Intracerebral Microdialysis of Amprenavir   

 

 1. Study Design 

 

Five rats were dosed orally with 250 mg kg-1 of GF120918 in suspension (0.5% 

hydroxypropylmethylcellulose, 1% Tween-80) for four consecutive days.  On the third day, the 

cannula was placed in the left femoral vein, a CMA/20 microdialysis probe was placed in the 

jugular vein, and a CMA/12 microdialysis probe guide was placed in the frontal cortex (3 mm 

anterior and 3 mm lateral from bregma).  On the fourth day, a CMA/12 microdialysis probe was 

placed in the probe guide.  The animal was placed in an Awake Animal System (Bioanalytical 

Systems Inc., IN), which prevents the different tubing (i.e. microdialysis tubes and femoral vein 

cannula) from tangling.  Approximately 2 hours after the fourth daily dose of GF120918, the rat 

was given a constant intravenous (i.v.) infusion of amprenavir (26.8 mg•h-1•kg-1, 0.05 ml•h-1) in 

PEG-400.  Dialysate (Na+ 155 mM; K+ 2.9 mM; Ca2+ 2 mM; Mg2+ 0.7 mM; Cl- 138mM; HCO3
- 

25 mM; and glucose 6.0 mM (pH 7.4)) was perfused through the probes at a rate of 1µl•min-1.  

Samples were taken from the CMA/12 and CMA/20 probes every 45 minutes over 5.25 hours.  

For the control group, five rats were treated identically as the treatment group with the exception 

that the animals were given suspension vehicle without GF120918.   
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2.  Animals 

 

 Ten adult male Sprague-Dawley rats (250 - 350 g) were used in all experiments.  Animals 

were purchased from Harlan laboratories (Indianapolis, IN).  Animals were maintained under a 

12:12-hr light/dark cycle and had access to food and water ad lib prior and during the 

experiments.   

 

 3. Microdialysis Surgery 

 

 Equipment: 

1 Scalpel and Blade * (George Tiemann and Co., Plainview, NY) 

1 Scissor * (George Tiemann and Co., Plainview, NY) 

1 Microsurgical scissor * (George Tiemann and Co., Plainview, NY) 

2 Forceps * (George Tiemann and Co., Plainview, NY) 

1 Ryder needle holder * (George Tiemann and Co., Plainview, NY) 

Trocar * (George Tiemann and Co., Plainview, NY) 

Vessel Dilator (George Tiemann and Co., Plainview, NY) 

Skin Button (Instech Laboratories, PA) * 

Gauze *  

2-3cc Syringes (George Tiemann and Co., Plainview, NY) 

4-2 inch Suture (George Tiemann and Co., Plainview, NY) 

1 Suture and Needle (George Tiemann and Co., Plainview, NY) 

Koft Animal Stereotaxic (David Koft Instruments, Tujunga, CA) 

Skull Drill (Messner Emtronic, Western, Germany) 

CMA/20 Microdialysis Probes (CMA/Microdialysis, Acton, MA) 

CMA/12 Guide Cannula (CMA/Microdialysis, Acton, MA) 

 CMA/12 Microdialysis Probes (CMA/Microdialysis, Acton, MA) 

 Introducer (CMA/Microdialysis, Acton, MA) 

Heat Lamp 

BAS Animal Bowl (Bioanalytical Systems Inc., West Lafayette, IN) 

BAS Raturn ( (Bioanalytical Systems Inc., West Lafayette, IN) 
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* Autoclaved prior to use. 

  

 Solutions: 

Ketamine (100mg/ ml) (Fort Dodge Laboratories, Inc., Fort Doge, Iowa) 

Xylazine (20 mg•ml-1) (Butler Company, Columbus, OH) 

0.9% Sodium chloride solution (Abbott Laboratories, Chicago, IL) 

 

 Cannulas: 

 Cannulas were prepared using 2.5 feet of PE-50 tubing (Becton, Dickinson, Sparks, MD) 

and 3.5 cm of silastic tubing (Dow Corning, Midland, MI).  The silastic tubing was soaked in 

ethyl ether for approximately 30 seconds and then placed over the PE-50 tubing.  The silastic 

tubing extended 3.5 cm from the PE-50 tubing.  Cannulas were stored in 70% ethanol.   

 

 Preoperative: 

Each rat was injected intraperitoneally (i.p.) with 1 ml•kg-1 of 3:1 vol:vol Ketamine: 

Xylazine solution.  After approximately 20 minutes the toe reflex was checked.  The area around 

the femoral and jugular veins and the shoulder blade were shaved.  The shaved areas were 

generously wiped with betadine solution and alcohol.  The rat was placed on a surgical board 

with the arms and feet tied so that the leg and arm were taut but not blocking blood-flow.  The 

cannulas were connected to 22 gauge needles, which were attached to the syringes filled with 

saline.  Saline was washed through the tubing to remove any alcohol.  A sterilized drape was 

placed over the animal with the femoral and jugular vein areas exposed.       

 

Cannulation of Femoral Vein: 

 Holding the scalpel at 30° to the skin, and pulling the skin apart, an incision 

approximately 0.75 inch long was made on the skin over the femoral vein.  The connective tissue 

around the femoral vein was removed using forceps and the femoral vein was isolated from the 

femoral artery and nerve.  Approximately 2 cm of the femoral vein was cleaned of all extraneous 

tissue.  Forceps were placed under the vein and a piece of suture was placed around the vein at 

the distal end.  The suture was tied to prevent blood-flow into the vein (Figure 9).  Next, a 

second piece of suture was placed around the vein proximal to the first suture.  Tension was 
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placed on the vein by clamping the tied suture with a pair of Ryder needle holders and gently 

pulling the suture.  A small incision was made on the vein close to the tied suture.  With the aid 

of a vessel dilator, the silastic tubing end of the cannula was inserted into the vein using forceps.  

Once the silastic tubing was completely inserted into the vein, the other suture was tied.  Another 

incision was made dorsal midline between the scapulae.  A trocar was passed under the skin 

from the incision at the femoral vein to the dorsal midline incision.  The cannula was passed 

through the trocar and secured with a skin button on the back of the rat.   

 

Figure 9: Cannulation of Femoral Vein. 
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Insertion of the CMA/20 Probe: 

 A small incision was made (0.75 inch) in the skin over the pectoral muscle on the left 

side of the midline.  The jugular vein was exposed but not isolated.  A needle with a plastic guide 

(Introducer) was inserted into the pectoral muscle and then into the jugular vein.  The needle was 

removed and a CMA20 probe was placed in the plastic guide.  The probe was sutured to the 

pectoral muscle and the plastic guide was removed.  The CMA20 inlet and outlet tubes were 

passed under the skin to the dorsal midline incision with the aid of a trocar.  The inlet and outlet 

tubes were secured to the back of the rat with a skin button. The surgical button was then sutured 

to the fascia and muscle on the back.  All incisions were then sutured.          

 

Insertion of the CMA/12 Guide Cannula: 

 An incision was made on the top of the head to expose approximately 3 cm of the skull 

anterior from bregma.  A stereotaxic device was used to locate the frontal cortex (3 mm anterior 

and 3 mm lateral from bregma), and a small hole was made in the skull using a skull drill.  Two 

screws were placed approximately 2 cm anterior and posterior from the hole.  The dura matter 

was broken with a 25 gauge needle.  A CMA/12 Cannula Guide was then lowered into the brain 

over 10 minutes.  The CMA/12 Cannula Guide was secured to the skull by placing dental 

cement over the guide and the two screws.  

 

 Postoperative Recovery:  

 All incision sites, with the exception of the skull, were cleaned with hydrogen peroxide 

and alcohol.  The animal was then placed in a BAS animal bowl under external heat (heat 

lamp).  The rat was monitored closely until the effects of the anesthesia wore off.  The animal 

was then connected to the BAS Awake Animal System to prevent the cannula and tubing from 

twisting.        

 

 4. Microdialysis Experiment 

 

 Equipment: 

 FEP Tubing (4 pieces, 0.5 m long) (CMA/Microdialysis, Acton, MA) 

 1 cc Glass syringe with needle (CMA/Microdialysis, Acton, MA) 
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 Tubing Adapters (6) (CMA/Microdialysis, Acton, MA) 

 CMA/100 Microinjection Pump (CMA/Microdialysis, Acton, MA) 

 

 Insertion of the CMA/12 Probe: 

 The FEP tubing was connected to the inlet and outlet ports of the microdialysis probes 

using tubing adapters.  A CMA/12 probe was prepared as described by the manufacture.  The 

dummy guide was removed from the CMA/12 guide cannula using forceps.  The CMA/12 

probe was then inserted into the cannula and sealed with super glue.  The CMA/20 probe was 

prepared as described by the manufacture.  Dialysate was perfused through the probes at a rate of 

1 µl•min-1 using a CMA/100 microinjection pump.  The probes were equilibrated for at least 1 

hour prior to sampling.   

 

 Sampling: 

Samples were collected in HPLC Inserts (Sun International, NC) for 45 minutes at a rate 

of 1 µl•min-1.  A 15 µl sample was removed and placed in a 4 mL scintillation vial (Fisher) for 

retrodialysis.  14C-Amprenavir was analyzed using a Packard Tri-Carb liquid scintillation 

analyzer (Packard Instrument Co., CT).  The remaining sample was used for amprenavir analysis 

by HPLC.     

 

Retrodialysis 

 Retrodialysis was used to determine the in vivo recovery of amprenavir.  A known 

concentration of 14C-labeled amprenavir in the microdialysis dialysate was perfused through the 

probe.  The amount of amprenavir recovered from the brain or blood in vivo was determined by 

the fraction of 14C-labeled amprenavir lost.  Fraction loss was determined by the following 

equation. 

  100Recovery  % •
−

=
before

afterbefore

dpm
dpmdpm

 Equation 1 

   

Where dpmbefore is the disintegration per minute in the dialysate before being perfused through 

the probe, and dpmafter is the disintegration per minute in the dialysate after being perfused 

through the probe.  
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The assumption that the fraction of amprenavir lost through the microdialysis probe 

would be equal to the amount recovered was tested in vitro.  A known concentration of 

amprenavir was placed in the dialysate to determine the fraction loss when perfused through a 

probe.  In vitro recovery was determined by placing a known concentration of amprenavir in a 

beaker with a probe being perfused with blank dialysate.  Recovery was determined by dividing 

the concentration of amprenavir in the dialysate by the concentration in the beaker.  The blood 

and brain samples were corrected by dividing the concentration of amprenavir in the dialysate by 

the recovery of the probe.  The specific activity of 14C-amprenavir was measured (4.06 pg/dpm), 

and used to determine the contribution of 14C-amprenavir to the overall mass of amprenavir 

(radiolabeled and non-radiolabeled amprenavir) in the dialysate.  The mass of non-radiolabeled 

amprenavir was determined by subtracting the 14C-amprenavir mass from the overall mass of 

amprenavir in the dialysate.    

 

5. HPLC Analysis of Amprenavir 

 

Amprenavir was analyzed using a reverse phase (C18 microbore column, Bioanalytical 

Systems Inc., IN) microbore HPLC system.  A CMA/200 sample injector (CMA/Microdialysis, 

MA)) with a mobile phase consisting of 60% H2O and 40% acetonitrile (vol:vol) at a flow rate of 

0.1 ml min-1 was used.  Amprenavir was detected with a fluorescence detector (Bioanalytical 

Systems Inc., IN) with an excitation and emission wavelength of 244 and 340 nm, respectively.  

A 10 µl sample was injected onto the column.  Amprenavir had a retention time of 6.85 minutes.  

The limit of detection for amprenavir was 100 ng•ml-1.  Intra-day and inter-day assay precisions 

(% C.V.) were less than 10%.  The intra-day and inter-day accuracy were between 90 - 110%.  

The chromatograms were analyzed with a C-R3A Shimadzu Chromatopac for the peak height of 

amprenavir (Figure 10).   
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Figure 10: HPLC Chromatogram of amprenavir in dialysate. 

 

 
 

 

6.  Statistical Analysis 

 

The unbound brain to blood ratio (BBR) was calculated by dividing the brain 

concentration by the plasma concentration.  A two-way ANOVA with a Bonferroni post-hoc test 

was used to examine the effect of time and treatment on the BBR.  A p value less than 0.05 was 

considered statistically significant. 
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B. Determination of the In Vitro Inhibition Constants of GF120918 and Cyclosporine for                  
Cytochrome P4503A4.     
   

 1.  Study Design 

 

 CYP3A4 

 Cytochrome P4503A4 Supersomes with P450 reductase and cytochrome b5 were used to 

determine the inhibition constants of the MDR modulators GF120918 and cyclosporine.  

Midazolam (Figure 11) was used as a model substrate of CYP3A4, which is metabolized to 1-

OH midazolam (Figure 11).  The reaction mixture consisted of a 200 µl solution contain 10 pmol 

CYP3A4 Supersomes or control insect Supersomes (no CYP3A4), 1.3 mM NADP+, 3.3 mM 

glucose-6-phosphate, 0.4 U•ml-1 glucose-6-phosphate dehydrogenase, and 3.3 mM MgCl2 at 37 

ºC.  The reaction was initiated with the addition of midazolam at 0, 0.5, 1, 2, 7, 20, 50, 100, or 

200 µM and incubated at 37 ºC.  For the inhibition studies 2 µg•ml-1 of GF120918 or 18 µg•ml-1 

of cyclosporine was added using DMSO as a solubilizing agent (0.5% vol. DMSO, control 

samples also contained 0.5% DMSO).  The reaction was stopped with the addition of 200 µl of 

ice cold methanol.  The sample was vortexed for 5 minutes followed by centrifugation at 1800 g 

with an IEC clinical centrifuge for 5 minutes.  A 300 µl aliquot was taken and dried down under 

nitrogen at 37 ºC.  The sample was resuspended in 100 µl of HPLC mobile phase and analyzed 

by HPLC for 1-OH midazolam. 

 

 CYP3A2 and Rat Liver Microsomes 

 CYP3A2 Supersomes were treated identically to the CYP3A4 Supersomes, with the 

exception that the concentrations of midazolam were between 0 to 1 mM.  Rat liver microsomes 

were treated the same as the Supersomes with the exception that 0.2 mg of total protein was 

used.     

 

 2.  HPLC Analysis of Midazolam 

 

Samples were analyzed by a previously reported HPLC method (Ma and Lau, 1996).  A 

LC-10ADvp Shimadzu LC pump, SCL-10Avp system controller, SIL-10ADvp auto injector, and 

a SPD-10Avp UV-VIS detector were used to analyze 1-OH midazolam.  The mobile phase 
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consisted of methanol:acetonitrile:14.9 mM sodium acetate at pH 3 (10:23:67, vol:vol:vol).  A 

reverse phase SUPELCOSIL ABZ+ Plus column (25 cm X 4.6 mm, 5 µm) was used to separate 

1-OH midazolam.  A 50 µl sample was injected onto the column at a flow rate of 1 ml•min-1 and 

was analyzed by ultraviolet detection (U.V.) at 230 nm.  The recovery of midazolam was 85%.  

Midazolam had a retention time of 6.12 minutes and was analyzed by Class-VP v5.03 software 

(Shimadzu Corporation, Columbia, MD) for peak height.                

 

 3. Statistical Analysis  

 

 The apparent inhibitory constant (Ki) was determined using simultaneous nonlinear 

regression.  Cyclosporine has been shown to be a competitive inhibitor of CYP3A4 (Wandel et 

al., 1999) and therefore the formation rate of 1-OH midazolam versus substrate concentration 

was modeled assuming competitive inhibition (Equation 2).  GF120918 did not show any 

inhibition of CYP3A4 at a concentration of 0.12 µg•ml-1 (Cummins et al., 2002) and therefore 2 

µg•ml-1 of GF120918 was used for these studies.  The 95% confidence intervals for the Km and 

Vmax of midazolam in the presence and absence of GF120918 were estimated using nonlinear 

regression assuming one binding site (GraphPad Prism 3.03, San Diego, CA).  The Michaelis-

Menten parameters were compared in order to determine what type of inhibition (i.e. 

competitive, non-competitive, uncompetitive), if any, occurs in the presence of GF120918.  

Simultaneous fitting of the data WinNonlin 4.0 (Pharsight Corp., San Francisco, CA) was used to 

estimate the inhibitory constant for cyclosporine.         

 







 ++

•
=

Ki
][Inhibitor 1Km  Midazolam][

Vmax][Midazolam  Midazolam OH-1 of rateFormation    Equation 2 
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Figure 11: Structure of midazolam, 1’-hydroxy midazolam, and 4-hydroxy midazolam. 

 

 

C. Determination of the In Vitro Inhibition Constants of GF120918 and Cyclosporine for P-gp. 

   

 1. MDR1 Transfected LLC-PK1 Cells  

 

 MDR1 transfected LLC-PK1 cells were used to determine the P-gp-dependent flux of 

doxorubicin, a model P-gp substrate.  Both LLC-PK1 and LLC-MDR1 cells were cultured in M-

199 medium containing L-glutamine, streptomycin (0.1 µg•ml-1), penicillin (0.1 U•ml-1), and 5% 

FBS at 37 ºC with 5% CO2 in Costar triangle flasks (Fisher Scientific).  For the transport studies 

cells were seeded onto polycarbonate Snapwells (12 mm diameter, 0.4 um, Corning Costar 

Corp., Cambridge, MA) at a density of 1.2 x 105 cells•cm2.  The cells were cultured for 5 to 7 

days with the medium being replaced after 3 days.  Cell monolayer confluence was determined 

by the transepithelial electrical resistance using a Millicell meter (Millipore Corp., Cambridge, 
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MA).  The monolayer was considered confluent when the TEER value was greater than 130 

Ω•cm2, as previously reported in the literature (van der Sandt et al., 2000).     

 After the cells reached confluence, the Snapwells were placed in a side by side diffusion 

chamber system (Navicyte, Inc., San Diego, CA).  The diffusion chambers were incubated at 37 

ºC by a RTE-110 recirculating water bath (Neslab Instruments, Portsmouth, NH).  Five ml of 

medium was added to the apical compartment and 5 ml of medium containing 0, 10, 20, 40, 100, 

or 200 µM of doxorubicin was added to the basolateral compartment.  For the inhibition studies, 

0.2 µg•ml-1 of GF120918 or 18 µg•ml-1 of cyclosporine was added to the media in the apical and 

basolateral compartments using DMSO as a solubilizing agent (0.5% vol. of DMSO, controls 

also contained 0.5% DMSO).  The transport study was stopped by removing the media in the two 

compartments.  The P-gp-dependent flux of doxorubicin was determined by subtracting the 

transport of doxorubicin from the basolateral to apical compartment in the LLC-PK1 cells from 

the LLC-MDR1 cells.   

 

 2.  HPLC Analysis of Doxorubicin 

 

 The concentration of doxorubicin in the medium samples was analyzed by a previously 

reported HPLC method (Fogli et al., 1999).  A LC-10ADvp Shimadzu LC pump, SCL-10Avp 

system controller, SIL-10ADvp auto injector, and a RF-10Axl fluorescence detector were used to 

analyze doxorubicin.  The mobile phase consisted of 50 mM monobasic sodium phosphate at pH 

4.0 and acetonitrile (65:35, vol:vol).  A reverse phase SUPELCOSIL ABZ+ Plus column (25 cm 

X 4.6 mm, 5 µm) was used to separate doxorubicin.  A 100 µl sample from the medium was 

vortexed with 500 µl of acetonitrile for 5 minutes.  The sample was then centrifuged at 1800 g 

for 5 minutes using an IEC clinical centrifuge.  The supernatant was decanted and dried down 

under nitrogen at 37 ºC.  The sample was then resuspended in 100 µl of mobile phase and a 50 µl 

sample was injected onto the HPLC system.  The recovery of doxorubicin was 81%.  

Doxorubicin had a retention time of 14.3 minutes and was analyzed by Class-VP v5.03 software 

(Shimadzu Corporation, Columbia, MD) for the peak height of doxorubicin (Figure 12).             
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3. Statistical Analysis  

 

 GF120918 and cyclosporine have been shown to be competitive inhibitors of P-gp 

(Bohme et al., 1993; Wallstab et al., 1999), and therefore the P-gp-dependent flux of doxorubicin 

versus substrate concentration was modeled assuming competitive inhibition.  The apparent 

inhibitory constants of GF120918 and cyclosporine were estimated using simultaneous nonlinear 

regression with WinNonlin 4.0 (Pharsight Corp., San Francisco, CA).    

 

Figure 12: HPLC chromatogram of doxorubicin in cell media.  
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D. Inhibition of P-gp at the BBB by GF120918 and Cyclosporine.   
 

 1.  Study Design 

 

 Nelfinavir was used as a model substrate for P-gp.  The effect of P-gp modulation by 

GF120918 and cyclosporine was determined by measuring the CNS distribution of nelfinavir.  

The concentrations of GF120918 and cyclosporine were determined and compared to the in vitro 

results for inhibition of P-gp (Chapter IV.C).    

 The systemic clearance and terminal half-life of nelfinavir were determined by giving 3 

rats an intravenous bolus dose of nelfinavir (12 mg•kg-1 in 0.1 ml of DMSO).  Both femoral and 

jugular veins were cannulated for drug delivery and plasma sampling, respectively.  Plasma 

samples were taken at 0, 1, 5, 10, 20, 30, 40 minutes and 1, 1.7, 2.3, 3, 3.7, 4.3, and 5 hours for 

the analysis of nelfinavir.  The results from these studies were used to determine the rate and 

duration of nelfinavir’s infusion needed to produce steady-state plasma concentrations.  In order 

to determine the blood concentration time-profile of cyclosporine, 3 rats were given an i.v. bolus 

dose of cyclosporine (20 mg-1•kg-1, in DMSO).  Both femoral and jugular veins were cannulated 

for drug delivery and blood sampling, respectively.  Blood samples were collected at 5 minutes, 

1, 2, 3, and 4 hours after the i.v. bolus dose.  The plasma concentration time-profile of GF120918 

was determined by giving an i.v. bolus dose of GF120918 (10 mg-1•kg-1, in DMSO).  Plasma 

samples were collected at 5, 10, 30 minutes, and 1, 2, 3, 4, and 5 hours after the i.v. bolus dose.     

      

 For the CNS distribution studies, the femoral and jugular veins of 15 rats were cannulated 

for drug delivery and blood/plasma sampling, respectively.  Approximately 24 hours after the 

surgery 5 rats were given either an i.v. dose of DMSO (0.1 ml), GF120918 (10 mg•kg-1), or 

cyclosporine (20 mg•kg-1).  Five minutes after the dose of the MDR modulator or DMSO, a 

constant infusion of nelfinavir (2.7 mg•hr-1, 1.5 ml•min-1 H2O pH =2) was given for 4 hours.  

Plasma samples were taken at 0, 0.5, 1, 2, 3, and 4 hours after the start of the infusion for the 

analysis of nelfinavir.  Two additional blood or plasma samples were taken at 0.5 and 4 hours for 

the analysis of cyclosporine or GF120918, respectively.  After the 4 hour blood/plasma sample, 

the animal was decapitated.  The top part of the skull was removed and the brain was excised and 

immediately frozen.       
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 2. Animals 

 

 Fifteen adult male Sprague-Dawley rats (250 - 350 g) were used in all experiments.  

Animals were purchased from Harlan laboratories (Indianapolis, IN).  Animals were maintained 

under a 12:12-hr light/dark cycle and had access to food and water ad lib prior and during the 

experiments. 

 

 3. Surgery 

  

 Cannulation of Femoral and Jugular Veins: 

 The surgery for the cannulation of the femoral vein is described in section Chapter 

IV.A.3.  For the cannulation of the jugular vein, an incision into the skin above the jugular vein 

was made.  The jugular vein was cannulated in the same way the femoral vein was cannulated.  

The cannula was then passed under the skin with the aid of a trocar, to the dorsal midline 

incision.  The cannula was secured to the back of the rat with a skin button.   

 

 4. HPLC Analysis of Nelfinavir, GF120918, and Cyclosporine  

 

 The concentrations of nelfinavir in plasma and brain samples were analyzed with an 

HPLC method.  A LC-10ADvp Shimadzu LC pump, SCL-10Avp system controller, SIL-

10ADvp auto injector, and a SPD-10Avp UV-VIS detector (254 nm) were used to analyze 

nelfinavir.  The mobile phase consisted of acetonitrile and 200 mM acetate buffer (48:52, 

vol:vol) with a flow rate of 1.5 ml•min-1.  A reverse phase SUPELCOSIL ABZ+ Plus column 

(25 cm X 4.6 mm, 5 µm) at 37 ºC was used to separate nelfinavir.  A 100 µl plasma sample was 

vortexed with 500 µl of acetonitrile for 5 minutes.  The sample was then centrifuged at 1800 g 

for 5 minutes using an IEC clinical centrifuge.  The supernatant was decanted and dried down 

under nitrogen at 37 ºC.  The sample was resuspended in 100 µl of mobile phase and a 50 µl 

sample was injected onto the HPLC system.  Nelfinavir had a retention time of 14.5 minutes.  

The recovery of nelfinavir from plasma was 86%.  The limit of detection of nelfinavir was 50 

ng•ml-1.  The chromatograms were analyzed by Class-VP v5.03 software (Shimadzu) for the 

peak height of nelfinavir (Figure 13a). 
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 For the analysis of nelfinavir in the brain, a 1 gram brain sample was homogenized in 2.5 

ml of phosphate buffered saline at pH 7.4 with a Tissumizer (TeKmar, OH).  Acetonitrile (12.5 

ml) was added to the homogenate and vortexed for 10 minutes.  The sample was centrifuged at 

400 g for 10 minutes and the supernatant was decanted and dried down under nitrogen at 37 ºC.  

The sample was resuspended in 1 ml of mobile phase and passed through an Acrodisc CR13 mm 

syringe filter (Gelman Laboratory).  The solution was dried down under nitrogen at 37 ºC, and 

then resuspended in 100 µl of mobile phase.  A 50 µl sample was injected onto the HPLC 

system.  The recovery of nelfinavir from brain homogenates was 86%.  The chromatograms were 

analyzed by Class-VP v5.03 software (Shimadzu) for the peak height of nelfinavir (Figure 13b). 

 GF120918 plasma samples were analyzed with a previously reported HPLC method 

(Kemper et al., 2001).   A LC-10ADvp Shimadzu LC pump, SCL-10Avp system controller, SIL-

10ADvp auto injector, and a RF-10Axl fluorescence detector (excitation wavelength = 260 nm, 

emission wavelength = 460 nm) were used to analyze GF120918.  The mobile phase consisted of 

acetonitrile and 50 mM sodium acetate buffer at pH 4.2 (35:65, vol:vol) with a flow rate of 1 

ml•min-1.  A reverse phase SUPELCOSIL ABZ+ Plus column (25 cm X 4.6 mm, 5 µm) was 

used to separate GF120918.  A 100 µl plasma sample was vortexed with 500 µl of acetonitrile 

for 5 minutes.  The supernatant was decanted and dried down under nitrogen at 37 ºC.  The 

sample was resuspended in 100 µl of mobile phase and a 50 µl sample was injected onto the 

HPLC system.  GF120918 had a retention time of 5.3 minutes.  The recovery of GF120918 from 

plasma was 84%.  The limit of detection of GF120918 was determined to be 25 nM.  The 

chromatograms were analyzed by Class-VP v5.03 software (Shimadzu Corporation, Columbia, 

MD) for the peak height of GF120918 (Figure 14). 

 Cyclosporine blood samples were analyzed with HPLC by the lab of Dr. Jimmi Hatton 

(University of Kentucky).  A LC-10AD auto injector, SCL-10AD system controller, SIL-10AD 

autoinjector, and a SPD-10Avp UV-VIS detector (214 nm) were used to analyze cyclosporine.  

The mobile phase consisted of acetonitrile, water, and methanol (51:31:18, vol:vol:vol) with a 

flow rate of 1 ml•min-1.  A SupelcosilTM LC-18 column (5 cm X 4.6 mm ID, 3µm) at 80 ºC was 

used to separate cyclosporine.    A 100 µl blood sample was vortexed with 3 ml of 182 mM zinc 

sulfate, methanol, and acetonitrile (47:32:21, vol:vol:vol) containing 50 µg of cyclosporine D 

(internal standard) for 45 seconds, followed by centrifugation for 5 minutes.  The supernatant 

was decanted and added to a solid phase extraction column.  Acetonitrile and water (8 ml, 50:50, 
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vol:vol) was added to the solid phase extraction column.  Ethyl acetate (2 ml) was used to elute 

cyclosporine from the column.  The eluted solution was dried under air at 60 ºC.  The sample 

was reconstituted in acetonitrile, water, methanol (51:31:18, vol:vol:vol) and vortexed for 1 

minute.  Heptane (1 ml) was added to the sample and centrifuged for 3 minutes.  The bottom 

layer was removed and a 50 µl sample was injected onto the HPLC system.  The chromatograms 

were analyzed by Class-VP v5.03 software (Shimadzu Corporation, Columbia, MD) for peak 

area. 

Figure 13: Chromatogram of nelfinavir in plasma and brain. 
a.  
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Figure 13: (Continued) 

b. Brain 

 

 44



Figure 14: Chromatogram of GF120918 in plasma. 
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 5.  Statistical Analysis 

 

 A one-way ANOVA was used to determine if the concentration of nelfinavir at the 4th 

hour of the infusion, were different between the 3 groups (control, GF120918, and cyclosporine).  

The brain to plasma ratio of nelfinavir was used to determine the extent of nelfinavir distribution 

into the CNS.  The brain to plasma ratios were compared using a one-way ANOVA 

(nonparametric) and a Tukey’s post-hoc test.  A p value less than 0.05 was considered 

statistically significant.     

 

E. In Vivo Studies with Midazolam  
 

 1.  Study Design  

 

 Midazolam was used as a model CYP3A substrate to determine the effects of GF120918 

and cyclosporine on hepatic metabolism.  Jugular and femoral cannulas were placed in 15 rats 

for drug delivery and blood/plasma sampling.  Approximately 24 hours after the surgery 5 rats 

were given either an i.v. dose of DMSO (0.1 ml), GF120918 (10 mg•kg-1), or cyclosporine (20 

mg•kg-1) in DMSO (0.1 ml).  Five minutes after the injection of the MDR modulator or DMSO 

an oral gavage of midazolam (15 mg•kg-1) was given.  Plasma samples were taken at 0, 5, 10, 20, 

and 30 minutes and at 1, 1.5, 2, 3, 4, and 5 hours.  Two additional blood or plasma samples were 

taken at 0.5 and 4 hours for the analysis of cyclosporine or GF120918, respectively. 

 

 2. Animals 

 

 Fifteen Adult male Sprague-Dawley rats (250 - 350 g) were used in all experiments.  

Animals were purchased from Harlan laboratories (Indianapolis, IN).  Animals were maintained 

under a 12:12-hr light/dark cycle and had access to food and water ad lib prior and during the 

experiments. 
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 3. Surgery 

 

 Cannulas were placed in the femoral and jugular vein as described in Chapter IV.D.3. 

  

 4.  HPLC Analysis of Midazolam, GF120918, and Cyclosporine 

 

 The concentration of midazolam in plasma was analyzed by a previously reported HPLC 

method (Ma and Lau, 1996) and is described in Chapter IV.B.5.  A 100 µl plasma sample was 

vortexed with 500 µl of acetonitrile for 5 minutes.  The sample was then centrifuged for 5 

minutes at 1800 g using an IEC clinical centrifuge.  The supernatant was decanted and dried 

down under nitrogen at 37 ºC.  The sample was resuspended in 100 µl of mobile phase and a 50 

µl sample was injected onto the HPLC system (Figure 15).  Midazolam had an extraction 

efficiency of 88%.  GF120918 and cyclosporine samples were analyzed by HPLC as described in 

Chapter IV.D.4.     
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Figure 15: Chromatogram of midazolam before and after an oral gavage of 
midazolam•HCl (15 mg•kg-1).   
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5. Statistical Analysis 

 

 The oral clearance of midazolam was determined using noncompartmental 

pharmacokinetic analysis by WinNonlin 4.0 (Pharsight, CA).  The area under the curve (AUC) 

was determined using the linear trapezoidal method.  The terminal half-life was estimated using 

the last 4 data points and was used to extrapolate the terminal AUC.  Oral clearance was 

calculated by taking the dose of midazolam and dividing it by the AUC.  A one-way ANOVA 

(nonparametric) and a Tukey’s post-hoc test were used to determine if there was a significant 

difference between the 3 groups.  A p value of less than 0.05 was considered statistically 

significant.       

 

F. The mRNA Expression of Mdr1a and Mrp1 at the BBB 
 

 1.  Study Design 

 

 Male rat brains were homogenized and the capillary endothelial cells were isolated using 

the capillary depletion method (Triguero et al., 1990).  In this method (for details see below), 

brain capillary endothelial cells are isolated using density centrifugation.  Two fractions are 

created, a capillary enriched fraction and a capillary depleted fraction.  The mRNA from the 

capillary enriched fraction, capillary depleted fraction, and whole brain homogenates were 

collected and reverse transcribed to cDNA.  PECAM and GFAP were amplified by PCR and 

were used as a marker of endothelial cell and glial cell expression, respectively.  The mRNA 

expression of mdr1a and mrp1 was also determined in the capillary enriched fraction, capillary 

depleted fraction, and whole brain homogenates to determine their localization (i.e. at the BBB 

or in the parenchyma) in the CNS.    

 The mRNA expression of β-actin, PECAM, GFAP, mdr1a, and mrp1 was initially 

determined using qualitative PCR, however, it became necessary to use quantitative PCR to 

measure the relative expression of the 5 genes.  In addition, a small aliquot from the capillary 

enriched fraction, capillary depleted fraction, and whole brain homogenate was used to 

determine the activity of γ-glutamyl transferase, a marker of the BBB. 
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 2. Isolation of Brain Capillary Endothelial Cells 

 

 Brain capillary endothelial cells were isolated using the capillary depletion method 

(Triguero et al., 1990).  Male Sprague-Dawley rat brains were ordered from Pel-Freez 

Biologicals (Rogers, AK).  A 0.5 gram brain sample was homogenized with 3.5 ml of 

physiologic buffer containing 10 mM HEPES, 141 mM NaCl, 4 mM KCl, 2.8 mM CaCl2, 1 mM 

MgSO4, 1 mM NaH2PO4, and 10 mM D-glucose (pH 7.4) with a Dounce glass homogenizer.  

Dextran (26%, 4 ml) was mixed with the brain homogenate and centrifuged at 5400 g for 15 

minutes at 4 ºC.  Two layers were formed after centrifugation, a top layer (depleted of 

endothelial cells) and a bottom layer (enriched with endothelial cells).  

           

 3. γ-Glutamyl Transferase 

                  

 An aliquot from the capillary depleted and enriched fraction, and the whole brain 

homogenate was used to determine the activity of γ-glutamyl transferase.  The activity was 

determined using the procedure outlined by the manufacture (Sigma Diagnostic, Procedure No. 

545).  A 20 µl sample from the capillary depleted fraction, capillary enriched fraction, and whole 

brain homogenates was incubated with 2.3 µmol γ-glutamyl-p-nitroanilide and 50 µmol of 

glycylglycine at 37 ºC for 20 minutes.  The reaction was stopped with the addition of acetic acid 

(2 ml).  Sodium nitrite (1 mg) was added and the solution was incubated for 3 minutes at room 

temperature.  Ammonium sulfamate (1 mg) was added and the solution was incubated at room 

temperature for 3 minutes.  Finally 0.523 mg of naphthylethylenediamine was added.  The 

solution was transferred to a cuvette and the absorption was measured by a Shimadzu UV-2501 

PV spectrophotometer at 550 nm.   

 

 4.  Reverse Transcription and PCR Methods 

 

 RNA samples were reverse transcribed (RT) using Superscript First-Strand Synthesis 

System for RT-PCR (Invitrogen, Carlsbad, CA).  One to 5 µg of total RNA was placed into a 

PCR tube containing 1 mM dNTP and 50 ng of oligo (dT).  The sample was incubated at 65 ºC 

for 5 minutes and allowed to cool on ice.  RT buffer, MgCl2 (5 mM), DTT (0.01 M), 
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RNaseOUT, and SuperScript II RT were added to the PCR tube.  The sample was incubated at 

42 ºC for 50 minutes followed by 70 ºC for 15 minutes.  The sample was placed on ice before 

RNase H was added and incubated at 37 ºC for 20 minutes.   

 For qualitative PCR, the samples contained 1 µg of cDNA, 1X PCR buffer, 1.5 mM 

MgCl2, 0.2 mM dNTP mix, 0.2 µM sense primer, 0.2 uM antisense primer, and 0.04 units/µl of 

taq DNA polymerase.  PCR amplification contained three steps for each cycle.  In the first step, 

the sample was incubated at 94 ºC for 1 minute.  In the second step, the sample was incubated at 

62 ºC for 1 minute to allow the primers to anneal to the cDNA.  In the final step, the sample was 

incubated at 72 ºC for 1 minute for amplification.  The PCR samples were amplified between 25 

to 50 cycles using a Peltier Thermal Cycler (DNA engine).  PCR samples were run on 1.5% 

agarose gels with ethidium bromide and analyzed by U.V. radiation.   

 For quantitative PCR, cDNA samples were amplified using the SYBR Green PCR Core 

Reagent system (Applied Biosystems, Foster City, CA).  The PCR samples contained 

approximately 1µg of cDNA, 1X SYBR green, 3 mM MgCl2, 1.25 mM dNTP mix, 0.01 µM 

fluorescein, 0.5 µM sense and antisense primers, and 2.5 units/µl of Taq polymerase.  The 

samples were incubated at 94 ºC for 4 minutes before PCR amplification was initiated.  There 

were 3 steps for each cycle.  In the first step the sample was incubated at 94 ºC for 1 minute.  In 

the second step the sample was incubated at 64 ºC for 1 minute, and finally in the third step the 

sample was incubated at 72 ºC for 1 minute.  The PCR samples were amplified up to 50 cycles 

using the iCycler Real-Time PCR Detection System (Bio-Rad Laboratories, Hercules, CA).  

Intercalated SYBR green was measured by fluorescence with an excitation wavelength of 490 

nm and an emission wavelength of 515 nm during the elongation step (72 ºC for 1 minute).  PCR 

products were run on a 1.5% agarose gels with ethidium bromide and analyzed with a Chemi-

Imager 4000 (Alpha Innotech Corporation, San Leandro, CA).             
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5. Primers for Qualitative PCR 

 

 PCR primers were designed with Vector NTI 7.1 (Infomax Inc., Frederick, Maryland), 

using the mRNA sequence.    

 

 a. β-Actin (Serazin-Leroy et al., 1998) (Gene Bank No. V01217, Product Size 763bp)   

  Sense Primer: GAT CTT GAT CTT CAT GGT GCT AGG    

  Antisense Primer: TTG TAA CAA ACT GGG ACG ATA TGG 

 

 b. PECAM (Gene Bank No. U77697, Product 334-695 (361 b.p.)) 

 

  Sense: TGC GAA ATG CTC TCC AAA CC 

  Antisense: CAG AGC ACC GAA GCA CCA TT 

 

 c. GFAP (Gene Bank No. NM_017009, Product size 54-609 (555 b.p.)) 

 

  Sense: GCC GCT CCT ATG CCT CCT CCG A 

  Anti-sense: ATC TCC TCC TCC AGC GAC TCA 

 

 d. Mdr1a (Decleves et al., 2000) (Gene Bank No. S66618, Product Size 440 b.p.) 

  

  Sense: CCC GTC TTG ATC ATG TGG CC 

  Anti-sense: GGA CAG AAA CAG AGG ATC GC 

  

 e. Mrp1 (Decleves et al., 2000) (Gene Bank No. X96394, Product Size 394)  

 

  Sense: AGG CTC TGG CTT GGC TCT AT 

  Anti-sense: CTG GCT TGG TGT GAA CTG AT 
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6.  Quantitative PCR 

 

 a. β-Actin (Gene Bank No. V01217, Product Size 2574-3040 (255 b.p. without intron) 

 

  Sense: TCT CTT CCA GCC TC CTT CC 

  Antisense: ATA GAG CCA CCA ATC CAC AC 

 

 b. PECAM (Gene Bank No. U77697, Product Size 80-257 (177 b.p.)) 

  Sense: ACA TAA CAG AGC TGT TTC CCA GGC 

  Antisense: TCT CCT CGG CAA TCT TGC TGA A 

 

 c. GFAP (Gene Bank No. NM_017009, Product Size 234-420 (186 b.p.)) 

 

  Sense: TGT TGG TAG TAA GCT GGT CCA G 

  Anti-sense: AGA TGA TGG AGC TCA ATG ACC G 

 

 d. Mdr1a (Gene Bank No. AF286167, Product Size 5-120 (115 b.p.)) 

 

  Sense: AGC TCG AAG AAG ACC TTA ACG G 

  Antisense: CGA AAC ATT GTG AGC ACA CTG ACC 

 

 e. Mrp1 (Decleves et al., 2000) (Gene Bank No. X96394, Product Size 394)  

 

  Sense: AGG CTC TGG CTT GGC TCT AT 

  Antisense: CTG GCT TGG TGT GAA CTG AT 
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G.  The Distribution of Nelfinavir into Rat Milk and the CNS 
 

 1. Study Design 

 

 A cross-over design was used to determine the distribution of nelfinavir into milk.  

Jugular and femoral cannulas were placed in 8 rats for drug delivery and plasma sampling.  

Approximately 24 hours after the surgery, the pups were removed from the mother to allow milk 

accumulation in the mammary ducts.  A constant infusion of nelfinavir (2.7 mg•hr-1, 1.5 ml•min-1 

H2O pH =2) was given.  At the 6th hour of the infusion either DMSO (0.1 ml) or GF120918 (10 

mg•kg-1) in DMSO (0.1 ml) was given.   Plasma samples were taken at 0, 1, 3, 5, 6, 7, and 8 

hours.  The milk was collected after the 8th hour plasma sample.  After a 24 hour washout period 

the animals were given a second constant infusion of nelfinavir (2.7 mg•kg-1).  The rat was given 

the opposite treatment from the previous day (either DMSO or GF120918) at the 6th hour.  

Plasma samples were taken at 0, 1, 3, 5, 6, 7, and 8 hours.  The milk was collected after the 8th 

hour plasma sample was taken.  Brain and mammary tissue were excised for nelfinavir analysis 

(brain only) and protein expression of P-gp (brain and mammary tissue). 

   

 2. Animals 

 

 Eight adult female lactating Sprague-Dawley rats with pups (250 - 350 g) were used in all 

experiments.  Animals were purchased from Harlan laboratories (Indianapolis, IN).  Animals 

were maintained under a 12:12-hr light/dark cycle and had access to food and water ad lib prior 

and during the experiments.    

 

 3.  Surgery 

 

 Cannulas were placed in the femoral and jugular vein as described in Chapter IV.D.3. 
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4.  HPLC Analysis of Nelfinavir 

 

 The plasma and brain concentrations of nelfinavir were determined using the HPLC 

method described in Chapter IV.D.5.  The milk samples were treated and analyzed identically to 

that of the plasma samples (Figure 16). 

 

 

Figure 16: Chromatogram of nelfinavir in milk.   
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 5. Statistical Analysis 

 

 A student t-test (parametric) was used to determine if there was a significant difference in 

the plasma concentrations at the 8th hour, the milk to plasma ratio, and the brain to plasma ratio 

of nelfinavir between the control and GF120918 animals.   

    

 6.  Protein Expression of P-gp in Rat Mammary, Brain, and Liver Tissues.   

 

 The protein expression of P-gp in rat mammary, brain, and rat liver tissues was 

determined by western blots.  Approximately 0.5 grams of rat mammary, brain, and liver tissues 

were homogenized in 5 ml of hypotonic lysis buffer (10 mM Tris HCl, 10 mM NaCl, 10 µg•ml-1 

leupeptin, 10 µg•ml-1 aprotinin, 1 mM phenylmethylsulfonyl fluoride) using a Tissumizer 

(TeKmar, OH).  The homogenate was then centrifuge at 3000 g for 15 minutes at 4ºC to remove 

nuclear and particulate matter.  The supernatant was decanted and centrifuged at 40000 g for 30 

minutes at 4ºC.  The supernatant was decanted and the remaining pellet was resuspended in 1 ml 

of hypotonic lysis buffer solution.  A small aliquot (20 µl) was used to determine total protein 

concentration using the method of Lowry et al. (Lowry et al., 1951).   

 Homogenized samples (40 µg of total protein) were incubated at 70 ºC for 5 minutes and 

loaded onto a 4-12% NuPage Bis-Tris gel.  The proteins were separated with electrophoresis 

chromatography for 1 hour at 200 volts (constant) and 120 mA (initial).  The protein was 

transferred from the gel to a polyvinylidene difluoride (PVDF) membrane at 25 volts (constant) 

and 160 mA (initial) for 2 hours.  The membrane was blocked over night at 4 ºC with 5% 

albumin in TBST buffer.  The membrane was incubated with C219 or JSB1 primary antibody 

(200 ng•ml-1, 20 ml) for 1 hour.  The membrane was then washed 3 times with TBST buffer (50 

ml) for 15 minutes each time.  The membrane was then incubated with either IgG1 secondary 

antibody (1:25000 dilution in 20 ml of 5% albumin-TBST buffer, used with JSB1 primary 

antibody) or IgG2a secondary antibody (1:25000 dilution in 20 ml of 5% albumin-TBST buffer, 

used with C219 primary antibody) for 1 hour.  The membrane was then washed 3 times with 

TBST buffer (50 ml) for 15 minutes each time.  The membrane was imaged using the NBT/BCIP 

staining according to the manufacturer’s instruction.    
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CHAPTER V. RESULTS AND DISCUSSION 
 

A. Intracerebral Microdialysis of Amprenavir 
  

 1.  Microdialysis In Vitro Recovery 

  

 The microdialysis technique was used to determine the unbound concentration of 

amprenavir in the blood and CNS of rats after an oral administration of GF120918.  One critical 

step of the microdialysis technique is to determine the fraction of a drug recovered from the 

sampling fluid.  Relative recovery is a term used to describe the extraction efficiency and is 

defined as the concentration of a drug in the dialysate fluid divided by the concentration in the 

sampling fluid.  The relative recovery of amprenavir was estimated using the retrodialysis 

technique, which assumed that the fraction of amprenavir lost through the microdialysis probe is 

equal to relative recovery of the amprenavir.  The in vitro recovery and loss of amprenavir were 

determined to be 0.45 ± 0.05 and 0.44 ± 0.03, respectively, and are shown in Figure 17.  There 

was no statistical difference between the in vitro recovery and loss, and therefore, it was assumed 

that retrodialysis would be an accurate measurement of in vivo recovery.    

 

 2. Intracerebral and Blood Concentrations of Amprenavir 

 

 According to information from GlaxoSmithKline (personal communication) the plasma 

half-life of amprenavir is approximately 45 minutes in rats, and therefore a constant infusion of 

amprenavir for 5.25 hours should produce steady-state concentrations in blood.  Figure 18 shows 

the concentration-time profile of amprenavir for a representative animal in the control and 

GF120918 treated animals.  The blood and brain concentrations of amprenavir did not reach 

steady-state by 5.25 hours, as can be seen in Figure 18.  There are many plausible reasons for 

this discrepancy.  One possible reason is because PEG-400, the vehicle used for amprenavir, 

caused changes in the elimination of amprenavir.  A second possible reason is the microdialysis 

procedure produced stress on the animals, which caused changes in the elimination of 

amprenavir.  Because steady state concentrations in the blood were not produced, the effects of 

GF120918 on the systemic clearance of amprenavir could not be accurately measured. 
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Figure 17: In vitro loss and recovery of amprenavir through a microdialysis probe.  CMA-

12 microdialysis probes were placed in a solution containing amprenavir (1 µg/ml).  The 

microdialysis probes were perfused with 14C-amprenavir, and the in vitro recovery and loss 

of amprenavir were determined.  Each data point represents the average of 3 different 

probes.  Results are shown as mean ± S.D.. 
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Figure 18: Concentration-time profile of unbound amprenavir in the blood and CNS 

dialysates of a representative rat.  Amprenavir was infused (26.8 mg•h-1•kg-1) for 5.25 

hours.  (a) Control animal. (b) GF120918 (250 mg•kg-1) treated animal.   

 

a. Control Animal 
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Figure 18: (Continued) 

 

b. GF120918 Treated Animal 
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    Although steady-state concentrations of amprenavir were not achieved, the concentration-

time profile of amprenavir in the blood and CNS parallel one another.  The BBR of amprenavir 

at the last 4 time points was not significantly different (p = 0.80) from one another within the 

control or GF120918 treated groups (Figure 19).  This indicates that the distribution of 

amprenavir into the CNS is rapid.  The initial CNS concentrations of amprenavir in the control 

group were below the limit of detection and therefore could not be used in the analysis.  There 

was a statistically significant difference (p < 0.001) in the BBR of amprenavir between the 

control and GF120918 treated groups at each time point.  As a result, the unbound concentration, 

and thus the effective concentration, of amprenavir was increased in the extracellular fluid of the 

CNS in the presence of a MDR modulator (GF120918).  There was no effect of GF120918 (p = 

0.20) on the blood concentrations at each time point (Figure 20) between the control and 

GF120918 treated animals.  This would indicate that the increase in the distribution of 

amprenavir into the CNS is due to alterations at the BBB (i.e. inhibition of P-gp), and not due to 

changes in the plasma protein binding of amprenavir by GF120918.      

 The increase in the distribution of amprenavir into the CNS in the presence of GF120918 

was similar to the increase in the BBR (13 fold based on total radioactivity) seen in whole body 

autoradiography studies in mice at 2 hours post dose (Polli et al., 1999).  There was a high 

degree of variability in the BBR of amprenavir for the GF120918 treated animals.  The 

variability can be attributed to varying plasma concentrations of GF120918 for each animal.  The 

co-administration of an MDR modulator with a protease inhibitor may have a significant effect 

on decreasing HIV viral load in the CNS.  The decrease in viral load could potentially ameliorate 

the effects of HIV-associated dementia. 
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Figure 19: Unbound brain to blood ratio of amprenavir in rats.  The unbound brain to 
blood ratio was determined at the last 4 time points of the infusion of amprenavir (26.8 
mg•h-1•kg-1) after an oral dose of GF120918 (250 mg•kg-1) or vehicle.  Each time point 
represents 5 rats for each group and is shown as mean ± S.D..  
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Figure 20: Blood dialysate concentrations of amprenavir in control and GF120918 treated 

animals.  A constant infusion of amprenavir was given (26.8 mg•h-1•kg-1) for 5.25 hr to 

control and GF120918 treated animals (n = 5 rats for each group).  Results shown as mean 

± S.D..  
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B. In Vitro Inhibition of Cytochrome P4503A 
 
 1.  Inhibition of CYP3A4 (Human) 
 
 Since many MDR modulators significantly alter CYP3A4 metabolism, it was deemed 

necessary to determine if GF120918 inhibits CYP3A4.  An in vitro expression system for 

CYP3A4 was used to determine the Ki of GF120918 and cyclosporine.  Midazolam was used as 

a model CYP3A substrate, and is metabolized to 1-hydroxy midazolam by CYP3A4.  Figure 21 

shows the formation of 1-hydroxy midazolam over 20 minutes by the CYP3A4 expression 

system with 5 µM midazolam.  The formation of 1-hydroxy midazolam appears to be linear up to 

15 minutes (r2 = 0.94).  For the inhibition studies with cyclosporine and GF120918, midazolam 

was incubated with the CYP3A4 expression system for 10 minutes.   

 Figure 22 shows the Michaelis-Menten curve for the formation of 1-hydroxy midazolam 

by CYP3A4.  The apparent Km and Vmax were determined to be 3.26 µM (1.80 to 4.70, 95% 

confidence interval (C.I.)) and 32.0 pmol•min-1 (29.2 to 34.8, 95% C.I.), respectively.  The 

apparent Km of midazolam in human liver microsomes has been reported to be 3.9 and 11.7 µM 

(Andrews et al., 2002; Patki et al., 2003).  In a recombinant CYP3A4 expression system, the 

apparent Km of midazolam has been reported to be 0.8 µM, 5.4 µM, 3.1 µM, and 4.4 µM using 

infected insect cells, transfected b-lymphoblastoid cells, transformed yeast cells, and transformed 

E. coli cells, respectively (Andrews et al., 2002; Patki et al., 2003).  The Km determined in this 

dissertation (3.26 µM) is within the reported values for CYP3A4 expression systems (0.8 – 5.4 

µM). The Michaelis-Menten curves for 1-hydroxy midazolam in the presence of cyclosporine 

and GF120918 are shown in Figures 23 and 24, respectively, and the kinetic parameters are 

shown in Table 2.  GF120918, at a concentration of 3.33 µM, had no statistically significant 

effect on the apparent Km or Vmax of midazolam.  This is consistent with other reports that 

showed no inhibition of CYP3A4 metabolism by GF120918 with a concentration of 0.200 to 5 

µM (Cummins et al., 2002; Cummins et al., 2003).  Therefore, it was concluded that GF120918 

is not an inhibitor of CYP3A4, at least up to concentrations of 5 µM.  Cyclosporine significantly 

increased the Km of midazolam, but showed no effect on Vmax.  This is consistent with other 

reports that have shown cyclosporine to be a competitive inhibitor of CYP3A (Abel and Back, 

1993; Wandel et al., 1999).  The apparent Ki of cyclosporine was determined to be 1.64 µM 

(0.95 to 2.32, 95% C.I.).  The apparent Ki of cyclosporine has been reported to be 4.9 µM and 
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6.8 µM using human liver microsomes (Abel and Back, 1993; Wandel et al., 1999).  Differences 

between the Ki reported in these studies versus the reported values could be a result of non-

specific binding of cyclosporine to the different metabolizing systems used (human liver 

microsomes versus CYP3A4 expression systems), or due to differences in the CYP3A4 activity 

in human liver microsomes versus CYP3A4 expression system.  The in vitro results are 

consistent with results from the use of cyclosporine as an MDR modulator clinically, where it 

has been shown to inhibit the metabolism of doxorubicin, daunorubicin, and etoposide (Lum et 

al., 1992; Bartlett et al., 1994; List et al., 2001).  The inhibition of CYP3A4 mediated 

metabolism by cyclosporine can potentially increase the concentration of other co-administered 

CYP3A4 substrates to toxic levels.  GF120918, on the other hand, could potentially inhibit P-gp 

without altering CYP3A4 metabolism, which makes it a better candidate as an MDR modulator 

clinically.         

 

 

Table 2: Apparent Km and Vmax of midazolam in the presence and absence of 
cyclosporine and GF120918.   

Treatment Vmax pmol•min-1 (95% C.I.) Km µM (95% C.I.) 

Control 32.0 (29.2 to 34.8) 3.26 (1.80 to 4.70) 

Cyclosporine (15 µM) 29.3 (26.4 to 32.2) 26.4 (17.6 to 25.2) 

GF120918 (3.33 µM) 26.8 (25.0 to 28.5)  3.80 (2.63 to 4.97) 
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Figure 21: Formation of 1-hydroxy midazolam by the CYP3A4 expression system over 

time.  Midazolam (10 µM) was incubated in the presence of CYP3A4 Supersomes (20 pmol 

of P450) and the formation of 1-hydroxy midazolam was determined at different time 

points.  Results are shown as mean (in triplicate) ± S.D..  
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Figure 22: Michaelis-Menten curve for the formation of 1-hydroxy midazolam.  The 

formation of 1-hydroxy midazolam was determined using CYP3A4 Supersomes (20 pmol of 

P450) at varying concentration of midazolam (0 to 200 µM).  Results are shown as the mean 

(duplicate) for the formation of 1-hydroxy midazolam.     
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Figure 23: Michaelis-Menten curve for the formation of 1-hydroxy midazolam in the 

presence of cyclosporine.  The formation of 1-hydroxy midazolam was determined using 

CYP3A4 Supersomes (20 pmol of P450) at varying concentration of midazolam in the 

presence of cyclosporine (15 µM).  Results are shown as the mean (duplicate) for the 

formation of 1-hydroxy midazolam.   
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Figure 24: Michaelis-Menten curve for the formation of 1-hydroxy midazolam in the 

presence of GF120918.  The formation of 1-hydroxy midazolam was determined using 

CYP3A4 Supersomes (20 pmol of P450) at varying concentration of midazolam in the 

presence of GF120918 (3.33 µM).  Results are shown as the mean (duplicate) for the 

formation of 1-hydroxy midazolam. 
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2.  Inhibition of CYP3A1 and CYP3A2 (Rat) 

 

 Midazolam is predominately metabolized to 4-hydroxy midazolam by CYP3A1 and 

CYP3A2, and to 1-hydroxy and 1,4-dihydroxy midazolam to a lesser extent in rats (Ghosal et al., 

1996; Higashikawa et al., 1999; Kobayashi et al., 2002).  The 4-hydroxy midazolam metabolite 

standard was not available, so the formation of 1-hydroxy midazolam was used to determine the 

inhibitory effects of GF120918 and cyclosporine on CYP3A in rats.  Figure 25 shows the 

formation of 1-hydroxy midazolam by CYP3A2 over 20 minutes.  The formation of 1-hydroxy 

midazolam appeared to be linear up to 10 minutes (r2 = 0.98) and therefore, midazolam was 

incubated for 5 minutes for the inhibition studies.   

 Figure 26 shows the formation of 1-hydroxy midazolam by CYP3A2 when incubated 

with midazolam from 0 to 1 mM.  The formation of 1-hydroxy midazolam initially increases, 

followed by a decrease in activity at higher concentrations of midazolam.  This type of profile 

was also seen in the formation of 1,4-dihydroxy midazolam in rat liver microsomes by Ghosal et 

al. (Ghosal et al., 1996).  This profile could be due to the existence of a second binding site 

(Hutzler and Tracy, 2002), which causes allosteric changes that reduce the activity of CYP3A2.  

At lower concentrations of midazolam (Figure 27), the formation of 1-hydroxy midazolam 

appears to follow Michaelis-Menten kinetics.  The apparent Km and Vmax was determined to be 

3.46 µM (1.93 to 4.99, 95% C.I.) and 16.9 pmol•min-1 (15.3 to 18.4, 95% C.I.), respectively, and 

is shown in Table 3.  The formation of 1-hydroxy midazolam in the presence of cyclosporine or 

GF120918 is shown in Figures 28 and 29, respectively.  The apparent Km and Vmax values for 

the formation of 1-hydroxy midazolam in the presence of cyclosporine and GF120918 were 5.10 

µM (3.01 to 7.18, 95% C.I.), 14.0 pmol•min-1 (12.6 to 15.5, 95% C.I.) and 5.18 µM (2.90 to 7.46, 

95% C.I.), 15.3 pmol•min-1 (13.6 to 17.0, 95% C.I.), respectively (Table 3).  GF120918 showed 

no effect on the in vitro metabolism of midazolam by CYP3A2, which is consistent with the in 

vitro CYP3A4 results.  However, cyclosporine also showed no effect on the in vitro metabolism 

of midazolam by CYP3A2, which is inconsistent with the CYP3A4 results.  A possible reason 

for this result is that the inhibition by cyclosporine could be masked by the inhibitory effects of 

midazolam at higher concentrations.  Another possible explanation for the lack of effect by 

cyclosporine is that cyclosporine inhibits the formation of 4-hydroxy midazolam (the primary 

metabolite of CYP3A2), but not the formation of 1-hydroxy midazolam.  Since midazolam is 
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metabolized by CYP3A1 and CYP3A2, the CYP3A1 expression system was also used to 

determine the effects of cyclosporine and GF120918 on CYP3A metabolism.   

 

Table 3:  Kinetic parameters for the formation of 1-hydroxy midazolam by CYP3A2.   

Treatment Vmax pmol•min-1 (95% C.I.) Km µM (95% C.I.) 

Control 16.9 (15.3 to 18.4) 3.46 (1.93 to 4.99) 

Cyclosporine (15 µM) 14.0 (12.6 to 15.5) 5.10 (3.01 to 7.18) 

GF120918 (3.33 µM) 15.3 (13.6 to 17.0)  5.18 (2.90 to 7.46) 

 

 

 Like CYP3A2, the formation of 1-hydroxy midazolam by CYP3A1 initially increases, 

but then decreases at higher concentrations of midazolam (Figure 30).  The decrease in activity at 

higher concentrations of midazolam made the CYP3A1 and CYP3A2 system difficult to 

interpret, and therefore, rat liver microsomes were used to determine the effects of cyclosporine 

and GF120918.  The formation of 1-hydroxy midazolam appeared to be linear for 30 minutes (r2 

= 0.96, Figure 31), using rat liver microsomes, and therefore, the rat liver microsomes were 

incubated for 10 minutes for the inhibition studies.  Figure 32 shows the formation of 1-hydroxy 

midazolam when incubated with midazolam from 0 to 500 µM.  The kinetic parameters from 

these studies are shown in Table 4.  The apparent Km for the formation of 1-hydroxy midazolam 

has been reported to be 32.3 µM by Ghosal et al. (Ghosal et al., 1996), which is lower than the 

Km (99.4 µM) from these studies.  The difference in the Km values could be explained by the 

fact that the concentration range of midazolam used by Ghosal et al. (0 to 120 µM) was lower 

than the present studies (0 to 500 µM).  If the analysis of the kinetic parameters is done using the 

results from 0 to 120 µM midazolam (Figure 33), the apparent Km becomes 48.4 µM (27.5 to 

69.3, 95% C.I.), which is in good agreement with the 32.3 µM reported value.  The formation of 

1-hydroxy midazolam by rat liver microsomes in the presence of cyclosporine or GF120918 is 

shown in Figures 34 and 35, respectively.  There was no statistical difference in the apparent Km 

for the formation of 1-hydroxy midazolam in the presence of cyclosporine or GF120918 (Table 

4).  The apparent lack of inhibition by cyclosporine in the CYP3A2 and in rat liver microsomes 

is difficult to explain, since cyclosporine has been shown to inhibit the elimination of etoposide, 

a CYP3A substrate, in rats (Burgio et al., 1996).  Since the apparent Km for the formation of 1-
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hydroxy midazolam was higher in the presence of cyclosporine (but not statistically different 

from the control Km), it is possible that the lack of statistical significance is due to too few data 

points, i.e., a lack of statistical power.  As mentioned previously, it is possible that cyclosporine 

does not inhibit the formation of 1-hydroxy midazolam in rats, but rather inhibits the formation 

of 4-hydroxy midazolam, the primary metabolite of CYP3A1 and CYP3A2.  Since cyclosporine 

did not inhibit the formation of 1-hydroxy midazolam in rats, it is impossible to determine what 

effects, if any, GF120918 has on CYP3A1 and/or CYP3A2. 

           

Table 4: Kinetic parameters for the formation of 1-hydroxy midazolam by rat liver 
microsomes. 

Treatment Vmax pmol•min-1 (95% C.I.) Km µM (95% C.I.) 

Control 21.5 (19.0 to 23.9) 99.4 (66.6 to 132) 

Cyclosporine (15 µM) 19.1 (15.3 to 22.9) 174 (91.7 to 257) 

GF120918 (3.33 µM) 17.8 (14.7 to 20.9)  126.8 (67.8 to 186) 
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Figure 25: Formation of 1-hydroxy midazolam by CYP3A2.  The formation of 1-hydroxy 
midazolam in the presence of midazolam (10 µM) was determined over 25 minutes using 
CYP3A2 Supersomes (20 pmol of P450).  Results are shown as the mean (duplicates) for 
the formation of 1-hydroxy midazolam.     
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Figure 26: Formation of 1-hydroxy midazolam by the CYP3A2.  The formation of 1-
hydroxy midazolam in the presence of midazolam (10 µM) was determined using CYP3A2 
Supersomes (20 pmol of P450) at varying concentration of midazolam.  Results are shown 
as the mean (duplicate) for the formation of 1-hydroxy midazolam.  
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Figure 27: Formation of 1-hydroxy midazolam by CYP3A2 expression system.  Midazolam 
(0 to 60 µM) was incubated with the CYP3A2 Supersomes (20 pmol P450) for 5 minutes.  
Results are shown as the mean (duplicate) for the formation of 1-hydroxy midazolam.      
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Figure 28: Formation of 1-hydroxy midazolam in the presence of cyclosporine by CYP3A2.  
The formation of 1-hydroxy midazolam was determined using CYP3A2 Supersomes (20 
pmol of P450) at varying concentration of midazolam in the presence of cyclosporine (15 
µM).  Results are shown as the mean (duplicate) for the formation of 1-hydroxy 
midazolam. 
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Figure 29: Formation of 1-hydroxy midazolam in the presence of GF120918 by CYP3A2.  
The formation of 1-hydroxy midazolam was determined using CYP3A2 Supersomes (20 
pmol of P450) at varying concentration of midazolam in the presence of GF120918 (3.33 
µM).  Results are shown as the mean (duplicate) for the formation of 1-hydroxy 
midazolam. 
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Figure 30: Formation of 1-hydroxy midazolam by the CYP3A1.  The formation of 1-
hydroxy midazolam in the presence of midazolam (10 µM) was determined using CYP3A1 
Supersomes (20 pmol of P450) at varying concentration of midazolam.  Results are shown 
as the mean (duplicate) for the formation of 1-hydroxy midazolam. 
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Figure 31: Formation of 1-hydroxy midazolam using rat liver microsomes.  The formation 
of 1-hydroxy midazolam was determined over 30 minutes, using rat liver microsomes (0.2 
mg/ml protein).  Results are shown as the mean (duplicate) for the formation of 1-hydroxy 
midazolam.     
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Figure 32: Formation of 1-hydroxy midazolam by rat liver microsomes.  The formation of 
1-hydroxy midazolam was determined using rat liver microsomes (0.2 mg/ml protein) at 
varying concentration of midazolam.  Results are shown as the mean (duplicate) for the 
formation of 1-hydroxy midazolam. 
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Figure 33: Formation of 1-hydroxy midazolam by rat liver microsomes (0 to 120 µM).  The 
formation of 1-hydroxy midazolam was determined using rat liver microsomes (0.2 mg/ml 
protein) at varying concentration of midazolam.  Results are shown as the mean (duplicate) 
for the formation of 1-hydroxy midazolam. 
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Figure 34: Formation of 1-hydroxy midazolam by rat liver microsomes in the presence of 
cyclosporine.  The formation of 1-hydroxy midazolam was determined using rat liver 
microsomes (0.2 mg/ml protein) at varying concentration of midazolam in the presence of 
cyclosporine (15 µM).  Results are shown as the mean (duplicate) for the formation of 1-
hydroxy midazolam. 
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Figure 35: Formation of 1-hydroxy midazolam by rat liver microsomes in the presence of 
GF120918.  The formation of 1-hydroxy midazolam was determined using rat liver 
microsomes (0.2 mg/ml protein) at varying concentration of midazolam in the presence of 
GF120918 (3.33 µM).  Results are shown as the mean (duplicate) for the formation of 1-
hydroxy midazolam. 
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C. In Vitro Inhibition of MDR1 
 

 MDR1 Transfected LLC-PK1 Cells 

 

 The P-gp-dependent transport of doxorubicin across a cell monolayer was employed to 

determine the inhibition constants for cyclosporine and GF120918.  The time course for the P-

gp-dependent transport (basolateral to apical) of doxorubicin (5 µM) appeared to be linear for 4 

hours (r2 = 0.85, Figure 36).  For the P-gp inhibition studies, the transport of doxorubicin was 

determined for 3 hours.  Figure 37 shows the P-gp-dependent transport of doxorubicin 

(basolateral to apical) from 0 to 200 µM.  The apparent Km and Vmax values for doxorubicin 

were determined to be 65.7 µM (40.0 to 91.5, 95% C.I.) and 37.9 pmol•hr-1 (31.8 to 44.0, 95% 

C.I.), respectively, and are shown in Table 5.  Both cyclosporine and GF120918 significantly 

reduced the P-gp-dependent transport of doxorubicin (Figures 38 and 39).  The Ki of GF120918 

was determined to be 84.7 nM (53.1 to 116, 95% C.I.), which is higher than the reported value of 

35 nM using rat liver membrane vesicles (Wallstab et al., 1999).  The differences in the Ki 

values could be due to differences in the MDR1 (human) versus mdr1a and mdr1b (rat) 

transporters or the two different types of in vitro systems (MDR membrane vesicles versus 

MDR1 transfected cells).  Since GF120918 showed no inhibition of CYP3A4 up to 3.33 µM and 

the apparent Ki for P-gp is 35 nM, this would suggest that GF120918 should be able to 

selectively inhibit P-gp in vivo.  The apparent Ki of cyclosporine for P-gp was determined to be 

2.96 µM (1.84 to 4.09, 95% C.I.).  The apparent Ki value for cyclosporine has been reported to 

be 1.5 µM using rat liver membrane vesicles (Bohme et al., 1993).  Again, the differences in the 

apparent Ki values could be due to differences in the MDR1 (human) versus mdr1a and mdr1b 

(rat) transporters or differences in the in vitro systems used.  The confidence intervals for the Ki 

of cyclosporine for P-gp and CYP3A4 overlapped, which suggests that cyclosporine is unable to 

inhibit P-gp without inhibiting CYP3A4 metabolism.  Some caution must be taken in this 

analysis though, since the inhibition constants in these studies did not take into account such 

effects as binding of cyclosporine to the transport (LLC-MDR1 cells) and metabolism (CYP3A4 

Supersomes) systems.   
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Figure 36: The basolateral to apical transport of doxorubicin across LLC-PK1 and LLC-

MDR1 monolayer.  LLC-MDR1 and LLC-PK1 cells were grown to a confluent monolayer 

and placed in a side by side diffusion chamber system.  Doxorubicin (5 µM) was placed in 

the basolateral compartment and the transport of doxorubicin in the apical compartment 

was measured over time.  Each time point was done in triplicate and the results are shown 

as mean ± S.D.. 
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Figure 37: The P-gp-dependent transport of doxorubicin.  The transport of doxorubicin to 

the apical compartment was determined at varying concentration of doxorubicin (0 to 200 

µM) in the basolateral compartment.  Results are shown as mean (triplicate) ± S.D..  
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Figure 38: The P-gp-dependent transport of doxorubicin in the presence of cyclosporine.  

The transport of doxorubicin to the apical compartment was determined at varying 

concentrations of doxorubicin (0 to 200 µM) in the basolateral compartment in the 

presence of 15 µM cyclosporine.  Results are shown as mean (triplicate) ± S.D.. 
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Figure 39: The P-gp-dependent transport of doxorubicin in the presence of GF120918.  The 

transport of doxorubicin to the apical compartment was determined at varying 

concentrations of doxorubicin (0 to 200 µM) in the basolateral compartment in the 

presence of 0.33 µM GF120918.  Results are shown as mean (triplicate) ± S.D.. 

 
 

Table 5: Apparent Km and Ki values of doxorubicin, cyclosporine, and GF120918.   

 Km µM (95% C.I.) Ki µM (95% C.I.) 

Doxorubicin 65.7 (40.0 to 91.5)  -- 

Cyclosporine -- 2.96 (1.84 to 4.09) 

GF120918 -- 0.085 (0.053 to 0.116) 
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D. In Vivo Inhibition of P-gp 
   

 Nelfinavir was used as a model P-gp substrate to determine the effects of GF120918 and 

cyclosporine on P-gp at the BBB.  Using mdr1a knockout mice, P-gp shows its greatest effect on 

nelfinavir in limiting its CNS distribution compared to the other HIV protease inhibitors (Choo et 

al., 2000).   Therefore, nelfinavir was chosen as the model P-gp substrate.  The concentrations of 

GF120918 and cyclosporine were measured and compared to the in vitro inhibitory constants of 

P-gp.   

            

 1.  Pharmacokinetic Studies with Nelfinavir  

 

 An i.v. bolus dose of nelfinavir (12 mg•kg-1) was given to 3 rats in order to determine the 

pharmacokinetics of nelfinavir.  Figure 40 shows the concentration-time profile of nelfinavir 

over 5 hours.  Table 6 shows the pharmacokinetic results from the i.v. bolus.  The systemic 

clearance (12 ml•min-1) of nelfinavir is very close to the hepatic blood-flow of a rat (Davies and 

Morris, 1993) (13.8 ml•min-1).  This would suggest that the clearance of nelfinavir is blood-flow 

rate limited, and therefore, any inhibition of its metabolism would not likely affect its systemic 

clearance.  This is important since nelfinavir is metabolized by CYP3A4 in humans (Baede-van 

Dijk et al., 2001) and most likely is metabolized by CYP3A in rats.  The volume of distribution 

of nelfinavir is well above the total body water of a rat indicating that nelfinavir is well 

distributed throughout the body.   
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Figure 40: Concentration-time profile of nelfinavir after an I.V. bolus.  Three rats were 

given an I.V. bolus of nelfinavir (12 mg•kg-1).  Insert shows the log concentration time 

profile.  Results are shown as mean ± S.D..  

 

 

 

Table 6: The systemic clearance, volume of distributionSteady-State, and terminal half-life of 

nelfinavir. Parameters were determined using noncompartmental pharmacokinetics 

analysis by Winnonlin 4.0.  

 

       Mean ± Standard Deviation 

Systemic Clearance     12 ± 5 ml•min-1 

Volume of DistributionSteady-State   2.8 ± 0.3 L•kg-1 

Terminal Half-Life     1.0 ± 0.2 hr 
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 2.  Pharmacokinetics of Cyclosporine  

 

 An i.v. bolus dose of cyclosporine (20 mg•kg-1) was given to 3 rats in order to determine 

the concentrations of cyclosporine that would be achieved during the infusion study with 

nelfinavir.  The concentration-time profile of cyclosporine is shown in Figure 41.  The blood 

concentrations of cyclosporine at 1 hour and 4 hour post injection were 18.2 µM ± 5.5 and 4.40 

µM ± 0.5, respectively.  These values are above the reported in vitro Ki value of cyclosporine for 

P-gp (2.96 µM) and CYP3A4 (1.64 µM).   
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Figure 41: Concentration-time profile of cyclosporine after an I.V. injection.  Cyclosporine 
(20 mg•kg-1) was given as an i.v. bolus dose to 3 rats.  Blood samples were collected every 
hour, for 4 hours.  Results are shown as mean (triplicate) ± S.D..   
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3.  Pharmacokinetics of GF120918 
  
 An i.v. bolus dose of GF120918 (10 mg•kg-1) was given to 3 rats in order to determine 

what concentrations of GF120918 would be achieved during the infusion study with nelfinavir.  

The concentration-time profile of GF120918 is shown in Figure 42.  The concentrations of 

GF120918 at 1 hour and 4 hour post i.v. dose, were 4.31 µM ± 0.40 and 1.70 µM ± 0.65, 

respectively.  The plasma concentrations of GF120918 observed in the rats were well above what 

was observed in mice given the same i.v. dose of GF120918 (Hyafil et al., 1993).  Differences in 

the distribution and/or elimination of GF120918 might explain the higher concentrations.  The 

concentrations of GF120918 were high enough to inhibit P-gp based on the in vitro inhibitory 

constant.  
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Figure 42: Concentration-time profile of GF120918 after an i.v. injection.  GF120918 (10 
mg•kg-1) was given as an i.v. bolus dose to 3 rats.  Results are shown as mean (triplicate) ± 
S.D..      
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4. CNS Distribution of Nelfinavir 

 

 Figure 43 shows the plasma concentration-time profile of nelfinavir from a representative 

rat from the control, cyclosporine, and GF120918 treated animals.  Nelfinavir was infused at a 

constant rate of 2.7 mg•hr-1, which should produce a steady-state concentration of 3.75 µg•ml-1.  

Nelfinavir appeared to be approaching steady-state plasma concentrations by 4 hours, with a 

mean plasma concentration of 2.20 ± 2.05, 1.45 ± 0.11, and 1.40 ± 0.52 µg•ml-1 for the control, 

cyclosporine, and GF120918, respectively, at 4 hours.  There was no statistical difference (p = 

0.06) between the 3 groups, although there was a significant amount of variation within each 

group.  This variation is consistent with the i.v. bolus results which showed a significant amount 

of variation in the systemic clearance.   

 The brain concentrations (mean ± s.d.) of nelfinavir after the 4 hour infusion for control, 

cyclosporine, and GF120918 treated animals were 0.247 ± 0.274, 0.402 ± 0.267, and 9.56 ± 3.39, 

respectively.  The brain to plasma ratio of nelfinavir is shown in Figure 44 (mean ± s.d).  There 

was a statistically significant difference (p < 0.001) between the control and GF120918 treated 

animals.  However, there was no statistical difference (p > 0.05) in the brain to plasma ratio of 

nelfinavir between the control and cyclosporine treated animals.   

 The concentrations of cyclosporine and GF120918 at 30 minutes and 4 hours are shown 

in Table 7 (mean ± s.d.).  The concentrations of GF120918 were well above the in vitro 

inhibition constant for P-gp (0.085 µM).  These results are consistent with the microdialysis data 

(Chapter 5.A.) and another report which used GF120918 to inhibit P-gp at the BBB to increase 

the distribution of amprenavir and nelfinavir into the CNS (Edwards et al., 2002; Savolainen et 

al., 2002).  The concentrations of cyclosporine were within the range of the in vitro inhibition 

constant for P-gp (2.96 µM), however, no inhibition of P-gp at the BBB was observed.  One 

possible explanation for this discrepancy is that cyclosporine is extensively bound in blood 

(Lemaire and Tillement, 1982).  Cyclosporine is 44% bound to RBC and 95% bound to plasma 

proteins in rats.  Accounting for the binding of cyclosporine from the RBC and plasma proteins 

the theoretical free concentration at 30 minutes and 4 hours would be 0.147 and 0.081 µM, 

respectively, and therefore cyclosporine would be well below the in vitro Ki for P-gp.  Burgio et 

al. (Burgio et al., 1996) also did not observe any increase in the distribution of etoposide, a P-gp 

substrate, into the CNS with the co-administration of cyclosporine (5 mg•kg-1, i.v.).  Arboix et al. 
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did not see an increase in the distribution of vinblastine into the CNS with the co-administration 

of cyclosporine (200 mg•kg-1, intraperitoneally (i.p.)).  There are two reports which show an 

increase in the distribution of vinblastine and doxorubicin into the CNS with the co-

administration of cyclosporine (200 mg•kg-1, i.p.), however, the plasma concentrations of 

vinblastine and doxorubicin also increased significantly (Zhang et al., 2000b; Saito et al., 2001).  

In fact, the increase in the concentration of vinblastine and doxorubicin in the plasma was greater 

than the increase in brain concentrations, indicating that the increases in CNS concentrations are 

due to changes in elimination rather than inhibition of P-gp at the BBB.  The distribution of 

rhodamine into the CNS was increased significantly with the co-administration of cyclosporine 

(10 mg•kg-1), in addition to a constant infusion of cyclosporine (1 mg•kg-1•hr-1) (Wang et al., 

1995b).  Differences in the concentration of cyclosporine between the different studies could 

explain the discrepancy.  The rhodamine study by Wang et al. (Wang et al., 1995a) used a 

loading and a maintenance dose of cyclosporine, whereas the other studies just used a single dose 

only.  The results from these studies would suggest that cyclosporine does not inhibit P-gp at the 

BBB when the blood concentrations of cyclosporine are in the range of 2.70 to 4.91 µM.       
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Figure 43: Concentration-time profile of nelfinavir in plasma for a representative rat in the 

control, cyclosporine, and GF120918 treated animals.  A constant infusion of nelfinavir (2.7 

mg•hr-1) was given for 4 hours after an i.v. bolus of (a) DMSO (control), (b) cyclosporine 

(20 mg•kg-1), and (c) GF120918 (10 mg•kg-1).   

a. Control  
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Figure 43: (Continued) 

 

b. Cyclosporine 
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Figure 43: (Continued) 

 

c. GF120918 
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Figure 44: BBR of nelfinavir in the absence and presence of cyclosporine or GF10918.  

Nelfinavir was infused (2.7 mg•hr-1) for 4 hours.  The brain was removed after 4 hours.  

Results are shown as mean ±S.D. of 5 rats for each group. 

 

 
 

 

 

Table 7: Blood concentrations of cyclosporine and plasma concentrations of GF120918.  

The concentrations of GF120918 and cyclosporine at 30 minutes and 4 hours into the 

infusion of nelfinavir were determined.  The results are shown as mean (n = 5) ± S.D..    

µM ( Mean ± S.D.) 

   30 minutes µM  4 hours µM  

GF120918  3.94 ± 1.12   1.64 ± 0.15 

Cyclosporine  4.91 ± 0.43   2.70 ± 0.81 
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E. In Vivo Results for Midazolam 
 

 Midazolam was used as a model CYP3A substrate to determine the effects of GF120918 

and cyclosporine on CYP3A metabolism in vivo.  The systemic clearance of midazolam is 

similar to hepatic blood-flow and therefore its metabolism is most likely blood-flow rate limited 

(Kotegawa et al., 2002).  Ketoconazole showed a greater effect on the oral clearance of 

midazolam compared to the systemic clearance, further suggesting that the elimination of 

midazolam is blood-flow rate limited.  It has been shown that the liver is responsible for the 

majority of midazolam’s oral clearance (Kotegawa et al., 2002) presumably by CYP3A 

metabolism.   

  

  1.  Oral Clearance of Midazolam 

 

 The oral clearance of midazolam was used to determine the effects of cyclosporine and 

GF120918 on CYP3A metabolism in vivo.  The plasma concentration-time profile of midazolam 

after a 15 mg•kg-1 oral gavage of midazolam is shown in Figure 45.  The oral clearance and 

terminal half-life were determined to be 490 (336 to 644, 95% C.I.) ml•min-1•kg-1 and 1.07 (0.91 

to 1.24), 95% C.I.) hr, respectively.  The oral clearance and terminal half-life of midazolam after 

an oral dose of midazolam (15 mg•kg-1) has been reported to be 1054 ml•min-1•kg-1 and 1.03 hr, 

respectively (Kotegawa et al., 2002).  The terminal half-life of midazolam determined in these 

studies is similar to that of Kotegawa et al., however, the oral clearance in these studies is 

significantly lower.  The oral clearances (mean ± S.D.) of midazolam for control, GF120918, and 

cyclosporine treated animals are shown in Figure 46.  The oral clearance and terminal half-life of 

midazolam for the GF120918 treated animals were 509 ml•min-1•kg-1 (354 to 664, 95% C.I.) and 

1.14 (0.87 to 1.42, 95% C.I.) hr, respectively.  GF120918 showed no significant effect on either 

parameter, which is consistent with the in vitro CYP3A4 results, where GF120918 (3.33 µM) 

showed no effect on metabolism.  The concentrations of GF120918 at 0.5 and 4 hours post oral 

dose are shown in Table 8.  The oral clearance and terminal half-life of midazolam for the 

cyclosporine treated animals were 69 (22.7 to 116, 95% C.I.) ml•min-1•kg-1 and 1.32 (0.61 o 

2.02, 95% C.I.) hr, respectively.  Cyclosporine significantly decreased the oral clearance of 

midazolam, which is consistent with the inhibition of CYP3A4 in vitro.  Cyclosporine has been 
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shown to inhibit the clearance of etoposide in rats, without inhibiting P-gp at the BBB (Burgio et 

al., 1996).  The plasma concentrations of vinblastine and doxorubicin were also increased 

significantly with the co-administration of cyclosporine, further suggesting that cyclosporine can 

alter the metabolism of CYP3A substrates (Zhang et al., 2000b; Saito et al., 2001).  The 

concentration of cyclosporine at 0.5 and 4 hours post oral dose are shown in Table 8.   

 Table 9 compares the in vitro and in vivo results for the inhibition of P-gp and CYP3A by 

GF120918.  By comparing the in vitro Ki values for human P-gp and CYP3A4, it is apparent that 

GF120918 specifically inhibits P-gp over CYP3A4.  This is consistent with the in vivo results 

using the rat model where GF120918 inhibited P-gp at the BBB, but had no effect of CYP3A 

metabolism.  Table 10 compares the in vitro and in vivo results for the inhibition of P-gp and 

CYP3A by cyclosporine.  The in vitro Ki values for human P-gp and CYP3A4 were not 

statistically different from one another.  However, cyclosporine only inhibited CYP3A 

metabolism in vivo and not P-gp at the BBB.  One explanation for this discrepancy is that the 

concentration of cyclosporine during the absorption phase of midazolam (between 0 to 30 

minutes) was significantly higher than the measured concentration of cyclosporine at 30 minutes 

or 4 hours.  Since the plasma concentration-time profile of cyclosporine has been shown to be 

biphasic after an i.v. bolus dose (Kawai et al., 1998), it is possible that the concentrations of 

cyclosporine at the initial time point (between 1 to 15 minutes) for the oral absorption of 

midazolam were significantly higher than the concentration of cyclosporine at 30 minutes.  The 

results from these studies would indicate that GF120918 is a safer drug to administer for MDR 

modulation, since it does not appear to inhibit CYP3A4 and therefore should not affect CYP3A4 

dependent metabolism of other drugs. 
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Figure 45: Concentration-time profile of midazolam in plasma.  Concentration-time profile 

of midazolam in plasma for (a) control, (b) cyclosporine (20 mg•kg-1), and (c) GF120918 (10 

mg•kg-1) treated animals.  Rats were given an intragastric dose of midazolam (1.5 mg•kg-1).  

Results are shown as mean ± S.D. of 5 rats for each group. 

 

a. Control 
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Figure 45: (Continued) 

 

b. Cyclosporine 
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Figure 45: (Continued) 

 

c. GF120918 
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Figure 46: Oral clearance of midazolam after an intragastric dose (15 mg•kg-1).  The oral 

clearance of midazolam was determined for control, GF120918 (10 mg•kg-1), cyclosporine 

(20 mg•kg-1) treated animals.  Results are shown mean ± S.D. of 5 rats. 

 
 

Table 8: Plasma and blood concentrations of GF120918 and cyclosporine, respectively.  

The concentrations of GF120918 and Cyclosporine at 30 minutes and 4 hours after an 

intragastric dose of midazolam (15 mg•kg-1).  Results are shown mean ± S.D. of 5 rats. 

 

   30 minutes µM (S.D.)  4 hours µM (S.D.) 

GF120918  4.00 ± 0.36   1.86 ± 0.11   

Cyclosporine  4.06 ± 1.56   2.14 ± 1.00 
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Table 9: In vitro and in vivo inhibition of P-gp and CYP3A by GF120918. 

 In Vitro (Human) In Vivo (Rat) 

P-gp Ki =  85 nM Inhibition of P-gp at BBB 

1.64 to 3.94 µM 

CYP3A No Inhibition Observed up 

to 3.33 µM  

No Inhibition of CYP3A 

Metabolism 

1.86 to 4.00 µM 

 

Table 10: In vitro and in vivo inhibition of P-gp and CYP3A by cyclosporine. 

 

 In Vitro (Human) In Vivo (Rat) 

P-gp Ki = 2.96 µM No Inhibition of P-gp at 

BBB 

2.70 to 4.91 µM 

CYP3A Ki =  1.64 µM Inhibition of CYP3A 

Metabolism 

2.14 to 4.06 µM 
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F. Expression of mdr1a and mrp1 at the BBB 
  

1. Qualitative PCR 

 

 There are conflicting reports concerning the mRNA expression of mrp1 at the BBB.  In 

order to further investigate this issue, capillary endothelial cells were isolated from rat brains and 

the mRNA expression of mdr1a and mrp1 was determined.  One possible explanation for the 

conflicting reports is the contamination of isolated capillary endothelial cells by glial cells (e.g. 

astrocytes).  Glial cells are also known to express drug transporters, including mrp1 (Ballerini et 

al., 2002).  The mRNA expression of GFAP, a glial cell marker, was measured in the isolated 

endothelial cells to determine if there were glial cell contamination.  The expression of PECAM 

was also measured as a marker of endothelial cells.   

 Brain capillary endothelial cells were isolated using density centrifugation.  According to 

established methods, two fractions are produced from the centrifugation, a bottom fraction 

containing capillary endothelial cells and a top fraction containing glial cells, neurons, and fat.  

The mRNA from each fraction was isolated and converted to cDNA.  Figure 47 shows the 

expression of PECAM and GFAP in the bottom fraction, top fraction, and in whole brains as 

determined using PCR (30 cycles).  The bottom fraction (capillary endothelial cells) did not 

express GFAP at 30 cycles, suggesting that the isolated endothelial cells were not contaminated 

with glial cells.  The bottom fraction did express PECAM, which is expected since it is an 

endothelial cell marker.  The top fraction (capillary depleted fraction) expressed both GFAP and 

PECAM.  The expression of PECAM in the top fraction would suggest that the isolation process 

did not recover all of the endothelial cells.  This may help explain some of the discrepancy in the 

literature concerning the expression of drug transporters in the CNS.   The expression of GFAP 

is consistent with the top fraction expressing glial cells.  The whole brain homogenate contained 

both GFAP and PECAM, which is expected since both capillary endothelial cells and glial cells 

are found in the whole brain samples.    

 Figure 48 shows the expression of mdr1a and mrp1 in the two fractions and in whole 

brains.  Mdr1a was expressed in both the top and bottom fraction.  This is consistent with the 

expression of PECAM.  Mrp1 was also expressed in the top and bottom fractions.  Since the top 

fraction contains both endothelial cells and glial cells and the bottom fraction contains only 
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endothelial cells, this would indicate that mrp1 is located in capillary endothelial cells.  

However, the expression of GFAP changes at increasing number of cycles (Figure 49).  At 25 

and 30 cycles no GFAP is detected.  However, at 40 and 50 cycles GFAP is detected in the 

bottom fraction, suggesting that there is some glial cell contamination.  This also would help to 

explain some of the discrepancies in the literature concerning the location of mrp1.  One way to 

overcome the difficulties of glial cell contamination is to determine the relative concentrations of 

PECAM, GFAP, mdr1a, and mrp1 and compare these expression profiles.   
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Figure 47: Expression of PECAM and GFAP in rat whole brain, capillary depleted, and 

capillary enriched homogenates.  cDNA (0.1 µg/ml) from whole brain, capillary depleted, 

and capillary enriched homogenates was amplified using PCR (30 cycles).  The products of 

the PCR were run on a 1.5 % agarose TBE gel.      

 

 
Lane   Source       Gene 

1   ΦX174 RF DNA/Hae III Ladder 

2   Isolated Endothelial Cell Fraction   GFAP 

3   Depleted Endothelial Cell Fraction   GFAP 

4   Whole Brain      GFAP 

5   Negative      GFAP 

6   Isolated Endothelial Cell Fraction   PECAM 

7   Depleted Endothelial Cell Fraction   PECAM  

8   Whole Brain      PECAM  

9   Negative      PECAM 

 110



Figure 48: Expression of mdr1a and mrp1 in rat whole brain, capillary depleted, and 

capillary enriched homogenates.  cDNA (0.1 µg/ml) from whole brain, capillary depleted, 

and capillary enriched homogenates were amplified using PCR (30 cycles).  The products 

of the PCR were run on a 1.5 % agarose TBE gel. 

 
Lane   Source       Gene 

1   ΦX174 RF DNA/Hae III Ladder 

2   Isolated Endothelial Cell Fraction   mdr1a 

3   Depleted Endothelial Cell Fraction   mdr1a 

4   Whole Brain      mdr1a 

5   Negative      

6   Isolated Endothelial Cell Fraction   mrp1 

7   Depleted Endothelial Cell Fraction   mrp1  

8   Whole Brain      mrp1  
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Figure 49: Expression of β-actin and GFAP in capillary enriched homogenates.  cDNA (0.1 

µg/ml) from rat capillary enriched homogenates were amplified using PCR  at 25, 30, 40, 

and 50 cycles.  The products of the PCR were run on a 1.5 % agarose TBE gel.      

 

Lane   Number of Amplification Cycles   Gene 

1   ΦX174 RF DNA/Hae III Ladder 

2   25       β-Actin  

3   30       β-Actin 

4   40       β-Actin 

5   50       β-Actin 

6   25       GFAP 

7   30       GFAP 

8   40       GFAP 

9   50       GFAP 
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2. Quantitative PCR 

  

 Quantitative PCR was used to determine the relative expression of PECAM, GFAP, 

mdr1a, and mrp1.  In addition, γ-glutamyl transferase activity was determined as a functional 

marker of the BBB.  Since mdr1a is localized to the BBB, it was assumed that if mrp1 were 

localized to the BBB, then it too would be important in the distribution of HIV PIs into the CNS.  

The expression profile of PECAM, GFAP, mdr1a, mrp1, and γ-glutamyl transferase were 

compared to determine if mrp1 were localized to the BBB.  Figure 50 shows the activity of γ-

glutamyl transferase in the bottom fraction, top fraction, and rat whole brain.  The activity was 

corrected for total protein levels using the Lowry method.  All three fractions showed γ-glutamyl 

transferase activity.  The activity in the top fraction and the whole brain was not significantly 

different (p < 0.05) from each other, suggesting that the percentage of endothelial cells is similar.  

This is consistent with the results from the qualitative PCR where PECAM was expressed in the 

top fraction and in whole brain.  There was a statistically significant (p < 0.05) increase (8.7 fold) 

in the activity of γ-glutamyl transferase between the bottom fraction and the whole brain.  This 

would indicate that there is an 8-fold enrichment in the amount of endothelial cells.  This too is 

consistent with the qualitative PCR which showed no expression of GFAP but did express 

PECAM at 30 cycles.   
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Figure 50: γ-Glutamyl transferase activity in rat whole brain, capillary depleted, and 

capillary enriched homogenates.  γ-Glutamyl transferase activity was corrected for total 

protein.  Results are shown mean ± S.D. of 3.   

 
   n = 3 for each group 
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 The expression of PECAM, GFAP, mdr1a, and mrp1 were corrected using β-actin as a 

house keeping gene.  Figure 51 (mean ± s.d.) shows the relative expression of PECAM in the 

bottom fraction, top fraction, and whole brain.  The relative expression of PECAM for the whole 

brain and top fraction were not significantly different (p > 0.05) from each other.  This is 

consistent with the γ-glutamyl transferase activity and confirms the observation that capillary 

endothelial cells are located in both fractions.  There was a statistically significant (p < 0.05) 

increase (5.4 fold) in the relative expression of PECAM between the bottom fraction and whole 

brain.  Again this is consistent with the γ-glutamyl transferase activity confirming an enrichment 

of capillary endothelial cells in the bottom fraction.  The relative expression of GFAP is shown 

in Figure 52 (mean ± s.d.).  There was no significant difference (p = 0.15) in the expression of 

GFAP in the top fraction, bottom fraction, or whole brain.  This is consistent with the qualitative 

PCR where the expression of GFAP was observed at higher cycles (>30).  However, it must be 

noted that the levels of GFAP in the isolated endothelial cells is similar to the levels in the top 

fraction and in whole brains.  One possible explanation why higher PCR cycles were needed to 

observe the expression of GFAP in qualitative PCR versus quantitative PCR is that the primers 

used in the quantitative PCR were more efficient in amplifying GFAP as compared to the 

qualitative GFAP primers.  Differences in primer efficiencies may also explain some of the 

differences observed in the literature concerning the expression of mrp1 at the BBB.   
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Figure 51: Relative expression of PECAM in rat whole brain, capillary depleted, and 

capillary enriched homogenates.  cDNA (0.1 µg/ml) from whole brain, capillary depleted, 

and capillary enriched homogenates were amplified by PCR and quantified using SYBR 

green.  PECAM expressions were corrected with β-actin.  Results are shown mean ± S.D. of 

3 rats. 
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Figure 52: Relative expression of GFAP in rat whole brain, capillary depleted, and 

capillary enriched homogenates.  cDNA (0.1 µg/ml) from whole brain, capillary depleted, 

and capillary enriched homogenates were amplified by PCR and quantified using SYBR 

green.  GFAP expressions were corrected with β-actin.  Results are shown mean ± S.D. of 3 

rats. 
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 Figure 53 shows the relative expression of mdr1a.  There was no significant difference (p 

> 0.05) between the top fraction and whole brain.  There was a statistically significant (p < 0.05) 

increase (8.8 fold) in the mdr1a expression between the bottom fraction and the whole brain.  

This indicates that mdr1a is localized to the BBB which is consistent with other literature reports 

for mdr1a (Demeule et al., 2001).  The relative expression of mrp1 (Figure 64) on the other hand 

did not show a statistically significant increase (p = 0.82) in expression in the bottom fraction.  

This would suggest that mrp1 is not localized to the BBB, however it should be noted that these 

experiments do not conclusively show the absence of mrp1 in endothelial cells.  The parallel 

expression of GFAP and MRP1 was also observed in human brain tissue (Seetharaman et al., 

1998a).  From these studies it can be concluded that mrp1 is not localized to the BBB and 

therefore does not play a significant role in the distribution of HIV PIs into the CNS.  Concurrent 

with these studies, a knockout mouse for mrp1 was developed and the CNS distribution of 

fluorescein, a model mrp1 substrate, was determined (Sun et al., 2001) in the knockout mouse.  

There was no significant difference in the CNS distribution of fluorescein between mrp1 

knockout mice (mrp1 -/-) and wild-type mice (mrp+/+).  These results are consistent with the 

findings in these studies.   
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Figure 53: Relative expression of mdr1a in rat whole brain, capillary depleted, and 

capillary enriched homogenates.  cDNA (0.1 µg/ml) from whole brain, capillary depleted, 

and capillary enriched homogenates were amplified by PCR and quantified using SYBR 

green.  Mdr1a expressions were corrected with β-actin.  Results are shown mean ± S.D. of 3 

rats. 
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Figure 54: Relative expression of mrp1 in rat whole brain, capillary depleted, and capillary 

enriched homogenates.  cDNA (0.1 µg/ml) from whole brain, capillary depleted, and 

capillary enriched homogenates were amplified by PCR and quantified using SYBR green.  

Mrp1 expressions were corrected with β-actin.  Results are shown mean ± S.D. of 3.   
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G. Distribution of Nelfinavir into Rat Milk 
 

 As mentioned previously, HIV reverse transcriptase inhibitors have been used to reduce 

the transmission of HIV from mother to child through breast milk.  This leads one to postulate 

about the use of other antiretroviral drugs, including HIV protease inhibitors, to prevent the 

transmission of HIV from mother to child.  Unfortunately, there is little information concerning 

the distribution of HIV protease inhibitors into breast milk.  Therefore the distribution of 

nelfinavir into rat milk was determined as a first attempt to understand the distribution of HIV 

protease inhibitors into milk.  Since nelfinavir is lipophilic, transcellular flux across the 

mammary epithelial cells should not be a barrier to its distribution.  However, preliminary 

studies have shown the presence of mdr1b mRNA in rat mammary tissue.  Therefore P-gp may 

play a role in the distribution of nelfinavir into milk.  The protein expression of P-gp was 

determined in lactating rat mammary tissue.  The effects of GF120918 on the distribution of 

nelfinavir into the CNS and milk were determined.   

 Figure 55 shows the western blot of rat mammary tissue and brain samples for P-gp using 

the C219 and JSB1 antibodies.  The C219 is a mouse antibody against P-gp.  However, C219 

also reacts with MDR3, another ABC transporter.  Therefore a second antibody, JSB1 was used 

to detect P-gp as well.  JSB1 is a mouse antibody against hamster P-gp.  It does not cross react 

with MDR3.  The results of the western blot show the expression of P-gp in both rat mammary 

tissue and rat brains.  This is consistent with the expression of mdr1b mRNA in rat mammary 

tissue and would suggest that P-gp may play a role in the distribution of HIV PIs into milk.     
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Figure 55: Western blot of P-gp in rat brain and mammary tissues using C219 (a) and 

JSB1 (b) antibody.  Rat brain and mammary homogenates (40 µg total protein) were 

loaded onto a NuPAGE 4 to 12 % Bis-Tris gel and transferred to a PVDF membrane.  

Membranes were incubated with primary antibody (either C219 or JSB1, 250 ng/ml) and 

then incubated with a secondary antibody (1:25000 dilution) linked to alkaline 

phosphatase.  Membranes were imaged using NBT/BCIP.   

a. C219 

 
Lane   Sample 

1   Brain #1 

2   Brain #2 

3   Brain #3 

4   Mammary #1 

5   Mammary #2 

6   Mammary #3 

7   Liver (Positive Control) 

8   Negative Control 
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Figure 55: (Continued) 

b. JSB1 

 

 
 

Lane   Sample 

1   Brain #1 

2   Brain #2 

3   Brain #3 

4   Mammary #1 

5   Mammary #2 

6   Mammary #3 

7   Liver (Positive Control) 

8   Negative Control 
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 In order to determine the distribution of nelfinavir into milk,and if P-gp plays a 

significant role in the distribution of nelfinavir into milk, nelfinavir (2.7 mg•hr-1) was infused 

into lactating rats for 8 hours.  Using a cross-over design GF120918 or DMSO (vehicle) was 

given i.v. at 6 hours.  Approximately 16 hours after the end of the first infusion the rat was given 

a second infusion of nelfinavir and was given the opposite treatment of GF120918 or DMSO as 

the previous day.  The brain was removed from the rats at the end of the second infusion in order 

to determine the brain to plasma ratio.  Plasma samples were collected during the infusion and a 

milk sample was taken after the 8 hour plasma sample.  Figure 56 shows the concentration-time 

profile of nelfinavir for a representative rat in the GF120918 and control groups.   
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Figure 56: Concentration-time profile of nelfinavir in plasma from control (a) and 

GF120918 (b) treated rats.  A constant infusion of nelfinavir (12 mg•kg-1) was given for 8 

hours.  An i.v. dose of GF120918 or DMSO (vehicle) was given at 6 hours.  Brain and milk 

samples were taken at 8 hours.   

 

a.  Control 
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b.  GF120918  
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      There was a high degree of variability in the plasma concentrations of nelfinavir as can 

be seen by the 8 hour plasma concentrations (Figure 57).  There was no statistical difference (p = 

0.35) between the control and GF120918 treated animals at 8 hours.  Figure 58 shows the milk to 

plasma ratio of nelfinavir in the control and GF120918 treated animals.  The average milk to 

plasma ratio of nelfinavir is 0.500 and 0.544 for the control and treated animals respectively.  

This indicates that nelfinavir does distribute into milk, but the concentrations are about half that 

of plasma concentrations.  Nelfinavir is extensively bound to human plasma proteins, which may 

help to explain the lower concentration of nelfinavir in milk compared to plasma.  There was no 

statistical difference (0.33) in the milk to plasma ratio of nelfinavir for GF120918 treated 

animals and control animals.  There was a statistically significant difference (p = 0.03) in the 

brain to blood ratio of nelfinavir in the presence of GF120918 (Figure 59).  This indicates that 

the concentrations of GF120918 should be enough to inhibit P-gp at the mammary epithelial 

barrier.  These results suggest that P-gp does not play a significant role in the distribution of 

nelfinavir into milk, even though P-gp is expressed in rat mammary tissue.       
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Figure 57: Plasma concentrations of nelfinavir at 8 hours in rats.  A constant infusion of 

nelfinavir (12 mg•kg-1) was given for 8 hours.  An i.v. bolus dose of GF120918 or DMSO 

(vehicle) was given at 6 hours.  Results are shown as mean ± S.D. for 6 animals.   
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Figure 58: Milk to plasma ratio of nelfinavir at 8 hours in rats.  A constant infusion of 

nelfinavir (12 mg•kg-1) was given for 8 hours.  An i.v. bolus dose of GF120918 or DMSO 

(vehicle) was given at 6 hours.  Results are shown as mean ± S.D. for 6 animals.   
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Figure 59: Brain to plasma ratio of nelfinavir at 8 hours in rats.  A constant infusion of 

nelfinavir (12 mg•kg-1) was given for 8 hours.  An i.v. bolus dose of GF120918 or DMSO 

(vehicle) was given at 6 hours.  Results are shown as mean ± S.D. for 3 animals.   
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CHAPTER VI. CONCLUSIONS 
 

  This dissertation studied the distribution and modulation of HIV protease 

inhibitors into the CNS and milk of rats.  MDR modulators have been shown to increase the 

distribution of HIV protease inhibitors into the CNS of rodents (Kim et al., 1998; Polli et al., 

1999; Choo et al., 2000).  HIV protease inhibitors are significantly bound to plasma binding 

proteins, including α-1-acid glycoprotein and albumin (Acosta et al., 2000; Acosta, 2002).  

Unfortunately, the previously mentioned studies did not discriminate between the effects of the 

MDR modulators on inhibiting P-gp at the BBB and the displacement of the HIV protease 

inhibitors from plasma binding proteins.  As part of this dissertation, a third generation MDR 

modulator, GF120918, was administered to rats and caused an 8-fold increase in the unbound 

concentration of amprenavir, an HIV protease inhibitor, in the CNS.  GF120918 showed no 

significant effect on the unbound blood concentrations of amprenavir, indicating that the increase 

in the CNS distribution of amprenavir is due to inhibition of P-gp at the BBB and not 

displacement of amprenavir from plasma binding proteins.  

 Clinically, MDR modulators have been shown to reduce the elimination of antineoplastic 

drugs (Lum et al., 1992; Raderer and Scheithauer, 1993; Lum and Gosland, 1995).  One reason 

for the reduction in the elimination of these antineoplastic drugs is that many MDR modulators 

inhibit CYP3A metabolism (Wandel et al., 1999).  This enzyme is responsible for metabolizing 

numerous xenobiotics including antineoplastic drugs and HIV protease inhibitors (Raderer and 

Scheithauer, 1993; Acosta, 2002).  A principal goal of this dissertation was to determine the 

selectivity of GF120918 for inhibition of P-gp transport and CYP3A metabolism.  In vitro, 

GF120918 showed no effect on CYP3A4 (human) metabolism, but did inhibit P-gp dependent 

transport (human), indicating that, at least in vitro, GF120918 is a selective inhibitor of P-gp 

transport over CYP3A4 metabolism.  In rats, GF120918 inhibited P-gp at the BBB, but showed 

no effect of CYP3A metabolism.  This is consistent with the in vitro results which show 

GF120918 to be a selective inhibitor of P-gp.   Cyclosporine inhibited CYP3A4 (human) 

metabolism and P-gp (human) transport in vitro.  The inhibition constants of cyclosporine for 

CYP3A4 and P-gp transport were not significantly different from one another, indicating that in 

vitro cyclosporine is not a selective inhibitor of P-gp.  In rats, cyclosporine inhibited CYP3A 

metabolism, but showed no effect on P-gp transport at the BBB.  The inconsistency between the 
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in vitro and in vivo results for cyclosporine may be due to interspecies differences in CYP3A or 

P-gp since human proteins were studied in vitro and comparisons made in vivo with the rat.  

Another reason for observing such a large effect of cyclosporine on CYP3A in vivo was that 

such inhibition would have been magnified by decreasing both the first pass effect and systemic 

clearance of midazolam.    

 HIV protease inhibitors are also transported by MRP1 (Jones et al., 2001a; van der Sandt 

et al., 2001; Williams et al., 2002), and therefore, another goal of the dissertation was to 

determine if mrp1 plays an important role in the distribution of HIV protease inhibitors into the 

CNS of rats.  MRP1 is expressed in the CNS, but there are conflicting reports concerning the 

mRNA expression of MRP1 at the BBB (Huai-Yun et al., 1998; Regina et al., 1998; 

Seetharaman et al., 1998a; Decleves et al., 2000; Zhang et al., 2000a).  Mrp1 is expressed in glial 

cells (Ballerini et al., 2002) and therefore it is possible that the initial reports which indicated that 

mrp1 is expressed at the BBB (Huai-Yun et al., 1998; Regina et al., 1998; Decleves et al., 2000; 

Zhang et al., 2000a), might have also been contaminated with glial cells.  Mdr1a has been shown 

to be localized to the BBB (Seetharaman et al., 1998a) and therefore an assumption of this 

dissertation was that if mrp1 was also localized to the BBB, then it would be important in the 

distribution of HIV protease inhibitors into the CNS.  In studies conducted as part of this 

dissertation, the activity of γ-glutamyl transferase and the mRNA expression of PECAM, 

markers of capillary endothelial cells (the BBB) and mRNA expression of GFAP, a marker of 

glial cells were measured in isolated capillary endothelial cells and whole rat brain homogenates.  

The expression profile of γ-glutamyl transferase, PECAM, and GFAP were compared to the 

mRNA expression of mdr1a and mrp1.  The endothelial cell fraction isolated from rat brains 

contained glial cells.  There was a >5 fold increase in the expression of γ-glutamyl transferase 

activity, PECAM mRNA, and mdr1a mRNA in the isolated endothelial cell fraction.  This 

indicates that mdr1a is localized to the BBB, which is consistent with other literature reports 

(Seetharaman et al., 1998a).  By contrast, there was no increase in the expression of mrp1 mRNA 

in the isolated endothelial cell fraction, which indicates that mrp1 is not localized to the BBB.  

Assuming that only transporters that are localized to the BBB play a significant role in the 

distribution of xenobiotics into the CNS, then mrp1 does not play a significant role in the 

distribution of HIV protease inhibitors into the CNS of rats.   
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  Antiretroviral drugs have been used to reduce the transmission of the HIV virus from 

mother to child during breast feeding (Fowler and Newell, 2002).  Another goal of the thesis was 

to determine the distribution of nelfinavir into rat milk as a first approach in understanding the 

extent to which HIV protease inhibitors can accumulate into milk.  Current studies documented 

the presence of P-gp in lactating rat mammary tissue.  Therefore a possible role of P-gp in the 

distribution of HIV protease inhibitors into rat milk was examined.  The distribution of nelfinavir 

into rat milk was determined by measuring the milk to plasma ratio of nelfinavir after an 8 hour 

infusion.  The milk to plasma ratio of nelfinavir was measured in the presence and absence of 

GF120918 in order to determine if P-gp plays a significant role in the distribution of HIV 

protease inhibitors into milk.  GF120918 had no significant effect on the distribution of 

nelfinavir into rat milk and therefore it was concluded that P-gp does not play a significant role 

in the distribution of HIV protease inhibitors into rat milk.  The concentration of nelfinavir in 

milk was approximately half that of the plasma concentration (milk to plasma ratio = 0.5).  

Potentially, the administration of nelfinavir and other HIV protease inhibitors could prevent the 

transmission of HIV from mother to child during breast feeding.   

 The research presented has shown that (1) GF120918 can significantly increase the 

distribution of HIV protease inhibitors into the CNS of rats by inhibiting P-gp at the BBB, (2) 

GF120918 can selectively inhibit P-gp transport without inhibiting CYP3A metabolism, both in 

vitro (human) and in vivo (rats), (3) mrp1 is not localized to the BBB of rats, and therefore does 

not play a significant role in the distribution of HIV protease inhibitors into the CNS, (4) the 

concentrations of nelfinavir in rat milk were approximately half that of plasma, and (5) P-gp does 

not play a significant role in the distribution of HIV protease inhibitors into rat milk.  
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APPENDICES 

 
1.  Quantitative PCR Results 
 
 1.  Β-Actin 
 PCR Quantification 
 

 
PCR Quantification Spreadsheet Data for FAM-490  
 
Well Identifier Ct Setpoint 
  
A01 Standard Sample #1 18.1  
A02  18 Standard Sample #1 
A03  18.4 Standard Sample #1 
A04  20.2 Standard Sample #2 
A05  20 Standard Sample #2 
A06  20.9 Standard Sample #2 
A07  24.2 Standard Sample #3 
A08  23.2 Standard Sample #3 
A09  22.5 Standard Sample #3 
A10  25.1 Standard Sample #4 
A11  24.5 Standard Sample #4 
A12  25.3 Standard Sample #4 
B01  27.6 Standard Sample #5 
B02  28.7 Standard Sample #5 
B03  27.8 Standard Sample #5 
B04  21.7 Whole Brain #1 
B05  21 Whole Brain #1 
B07  20.9 Whole Brain #2 
B08  21.7 Whole Brain #2 
B10  19.6 Whole Brain #3 
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B11  20.2 Whole Brain #3 
C01  22.5 Capillary Depleted Fraction #1 
C02  22.6 Capillary Depleted Fraction #1 
C04  23.4 Capillary Depleted Fraction #2 
C05  22.8 Capillary Depleted Fraction #2 
C07  28.1 Capillary Depleted Fraction #3 
C08  28.5 Capillary Depleted Fraction #3 
C10  21.2 Capillary Enriched Fraction #1 
C11  22.8 Capillary Enriched Fraction #1 
D01  21.5 Capillary Enriched Fraction #2 
D02  21.3 Capillary Enriched Fraction #2 
D04  20.7 Capillary Enriched Fraction #3 
D05  20.8 Capillary Enriched Fraction #3 
D07  N/A Negative Control 
D08  N/A Negative Control 
D09  44.9 Negative Control 
  
 Melt Curve 
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 1.5% Agarose Gel Stained with Ethidium Bromide 
 

 
 
 
 
 
 2. PECAM 
 PCR Quantification 

 
PCR Quantification Spreadsheet Data for FAM-490  
 
Well Identifier Ct Setpoint 
  
E01  23.5 Standard #1 
E02  23.2 Standard #1 
E03  23.5 Standard #1 
E04  25.8 Standard #2 
E05  24.8 Standard #2 
E06  26.1 Standard #2 
E07  27.8 Standard #3 
E08  27.2 Standard #3 
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E09  28.2 Standard #3 
E10  31.1 Standard #4 
E11  30.5 Standard #4 
E12  30.5 Standard #4 
F01  33.6 Standard #5 
F02  33.4 Standard #5 
F03  33.8 Standard #5 
F04  29.2 Whole Brain #1 
F05  29.1 Whole Brain #1 
F07  28.7 Whole Brain #2 
F08  28.9 Whole Brain #2 
F10  29.7 Whole Brain #3 
F11  29.7 Whole Brain #3 
G01  33.3 Capillary Depleted Fraction #1 
G02  32.7 Capillary Depleted Fraction #1 
G04  31.1 Capillary Depleted Fraction #2 
G05  30.5 Capillary Depleted Fraction #2 
G07  41 Capillary Depleted Fraction #3 
G08  38.7 Capillary Depleted Fraction #3 
G10  27.2 Capillary Enriched  Fraction #1 
G11  28.1 Capillary Enriched  Fraction #1 
H01  26.7 Capillary Enriched  Fraction #2 
H02  26.7 Capillary Enriched  Fraction #2 
H04  27.5 Capillary Enriched  Fraction #3 
H05  27.1 Capillary Enriched  Fraction #3 
H08  39.6 Negative Control  
H09  44.5 Negative Control 
 
 Melt Curve 

  
 1.5% Agarose Gel Stained with Ethidium Bromide 
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3. GFAP 
 PCR Quantification 

 
PCR Quantification Spreadsheet Data for FAM-490  
 
Well Identifier Ct Setpoint 
  
E01  18.9 Standard #1 
E02  19.6 Standard #1 
E03  19.3 Standard #1 
E04  20.3 Standard #2 
E05  20 Standard #2 
E06  20.9 Standard #2 
E07  23.3 Standard #3 
E08  22.8 Standard #3 
E09  23.2 Standard #3 
E10  25.4 Standard #4 
E11  25.7 Standard #4 
E12  25.3 Standard #4 
F01  28.3 Standard #5 
F02  27.4 Standard #5 
F03  27.6 Standard #5 
F04  24.8 Whole Brain #1 
F05  24.8 Whole Brain #1 
F07  24.3 Whole Brain #2 
F08  24.2 Whole Brain #2 
F10  24.5 Whole Brain #3 
F11  25.6 Whole Brain #3 
G01  26.3 Capillary Depleted Fraction #1 
G02  26 Capillary Depleted Fraction #1 
G04  27 Capillary Depleted Fraction #2 
G05  26 Capillary Depleted Fraction #2 
G07  31.9 Capillary Depleted Fraction #3 
G08  31.8 Capillary Depleted Fraction #3 
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G10  25.6 Capillary Enriched Fraction #1 
G11  26 Capillary Enriched Fraction #1 
H01  25.2 Capillary Enriched Fraction #2 
H02  25.2 Capillary Enriched Fraction #2 
H04  24.8 Capillary Enriched Fraction #3 
H05  24.7 Capillary Enriched Fraction #3 
H08  N/A Negative  
H09  N/A Negative 
 
 Melt Curve 

  
 1.5% Agarose Gel Stained with Ethidium Bromide 
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 4. mdr1a  
 PCR Quantification 

 
PCR Quantification Spreadsheet Data for FAM-490  
 
Well Identifier Ct Sample 
    Liver as Standard Curve 
A01  21.1 Standard Curve #1 
A02  20.4 Standard Curve #1 
A03  20.9 Standard Curve #1 
A04  22.3 Standard Curve #2  
A05  21.9 Standard Curve #2  
A06  22.4 Standard Curve #2  
A07  25.1 Standard Curve #3  
A08  25.1 Standard Curve #3  
A09  24.2 Standard Curve #3  
A10  26.8 Standard Curve #4  
A11  26.3 Standard Curve #4  
A12  27.1 Standard Curve #4  
B01  29.6 Standard Curve #5 
B02  30 Standard Curve #5 
B03  29.8 Standard Curve #5 
B04  20.4 Brain #1  
B05  20 Brain #1  
B07  20.7 Brain #2  
B08  20.6 Brain #2  
B10  20.9 Brain #3  
B11  21.5 Brain #3  
C01  20.5 Capillary Depleted Fraction #1  
C02  20.3 Capillary Depleted Fraction #1  
C04  20.9 Capillary Depleted Fraction #2  
C05  20 Capillary Depleted Fraction #2  
C07  20.4 Capillary Depleted Fraction #3  
C08  20.8 Capillary Depleted Fraction #3  
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C10  20.6 Capillary Enriched Fraction #1  
C11  22.5 Capillary Enriched Fraction #1  
 D01  22.1 Capillary Enriched Fraction #2  
D02  22 Capillary Enriched Fraction #2  
D04  20.9 Capillary Enriched Fraction #3  
D05  20.9 Capillary Enriched Fraction #3  
D07  36.1 Negative 
D08  35.7 Negative 
 

 Melt Curve 

 

 1.5% Agarose Gel Stained with Ethidium Bromide 
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 5. mrp1 
 PCR Quantification 

 
PCR Quantification Spreadsheet Data for FAM-490  
 
Well Identifier Ct Setpoint 
    Brain as Standard Curve 
E01  26.8 Standard Curve #1 
E02  26.7 Standard Curve #1 
E03  26.6 Standard Curve #1 
E04  27.2 Standard Curve #2 
E05  27.2 Standard Curve #2 
E06  27.9 Standard Curve #2 
E07  30.5 Standard Curve #3 
E08  30 Standard Curve #3 
E09  30.4 Standard Curve #3 
E10  33.6 Standard Curve #4 
E11  34 Standard Curve #4 
E12  33.7 Standard Curve #4 
F01  37.2 Standard Curve #5 
F02  36.5 Standard Curve #5 
F03  36.1 Standard Curve #5 
F04  27.7 Whole Brain #1 
F05  27.6 Whole Brain #1 
F07  27.4 Whole Brain #2 
F08  27.6 Whole Brain #2 
F10  28.4 Whole Brain #3 
F11  28.4 Whole Brain #3 
G01  31.4 Capillary depleted Fraction #1 
G02  30.8 Capillary depleted Fraction #1 
G04  30.8 Capillary depleted Fraction #2 
G05  30.5 Capillary depleted Fraction #2 
G07  36 Capillary depleted Fraction #3 
G08  35.7 Capillary depleted Fraction #3 
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G10  28.7 Capillary Enriched Fraction #1 
G11  29.1 Capillary Enriched Fraction #1 
H01  28.2 Capillary Enriched Fraction #2 
H02  28.2 Capillary Enriched Fraction #2 
H04  28.9 Capillary Enriched Fraction #3 
H05  28.4 Capillary Enriched Fraction #3 
H07  N/A Negative 
H10  N/A Negative 
 
 Melt Curve 

  

 1.5% Agarose Gel Stained with Ethidium Bromide 
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