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ABSTRACT OF DISSERTATION 
 
 
 
 

NEUROCHEMICAL STUDIES OF ATTENTION-DEFICIT/HYPERACTIVITY 
DISORDER MEDICATIONS IN THE STRIATUM AND  
NUCLEUS ACCUMBENS OF THE FISCHER 344 RAT 

 

Stimulant medications such as D-amphetamine, mixed-salts (75% D- and 
25% L-) amphetamine; Adderall®, and methylphenidate are first-line treatments 
for Attention-Deficit/Hyperactivity Disorder (ADHD). In vivo studies have 
predominantly focused on these stimulants in the context of drug abuse, and  
their therapeutic mechanistic properties are only theoretical.  Previously, in vivo 
techniques have been limited by poor temporal and spatial resolution, and 
characterizations of these medications in rodent models have not been possible 
at low, clinically relevant levels. In order to address these issues, our laboratory 
used in vivo high speed chronoamperometric microelectrodes to characterize the 
effects of local applications of D-amphetamine, L-amphetamine, D,L-
amphetamine, and Adderall® at low levels in the striatum and nucleus 
accumbens of 3-6 month old, male Fischer 344 (F344) rats.  Our results showed 
significant differences between the faster kinetics of dopamine (DA) release 
signals caused by D,L-amphetamine and the slower kinetics resulting from D-
amphetamine. These data support that resulting DA concentrations evoked by D- 
and D,L-amphetamine are correlated with the amount of D-amphetamine in the 
drug and only the time courses of the signals are affected by L-amphetamine.  
Additionally, locally applied D- and L-amphetamine caused DA release signals 
with similar amplitudes or concentrations of evoked DA; however, the signals 
were significantly faster for L-amphetamine. Adderall® caused significantly 
greater DA release that lasted over a longer time course compared to DA release 
caused by D- or D,L-amphetamine.  These data support the hypothesis that 
amphetamine isomers, alone or in combination, interact differently with the DA 
transporter (DAT) to subsequently cause reversal of transport of DA out of 
presynaptic membranes of DA neuronal projections. Finally, reverse 
microdialysis studies were carried out to assess low levels of D-amphetamine, 
Adderall® (75% D-, 25% L-amphetamine), methylphenidate, and a new mixed-
salts amphetamine that we referred to as Reverse Adderall (75% L-, 25% D-



amphetamine) in the striatum of F344 rats.  These data reveal a stimulant 
concentration-response curve for DA with double plateaus that may be explained 
by dual mechanisms of reverse transport of DA through the DAT.  In addition, 
reverse microdialysis of methylphenidate caused DA overflow similar to the 
effects of the other stimulants. 
 
KEYWORDS:  ADHD, Amphetamine, Dopamine, Voltammetry, Microdialysis 
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Chapter 1: Introduction 

 
Attention-Deficit/Hyperactivity Disorder 

 This dissertation describes work completed to investigate the 

neurochemical properties of medications prescribed for Attention-

Deficit/Hyperactivity Disorder (ADHD).  Concerns are often raised about the 

validity of such a disorder, due in part to the increasing use of stimulant 

medications in children over the last decade.  However, a growing body of data 

exists regarding the neurobiological basis of ADHD symptoms with increasing 

evidence that the disorder is continual from childhood to adulthood.  ADHD is not 

a unique disorder to the United States and has a cross-cultural prevalence in the 

estimated range of 3-17% with an estimated prevalence of 5-10% in elementary 

school age children (Lahey et al.  1999). Likewise, adult ADHD prevalence is 

accurately estimated to be 2-4% due to improved recognition and diagnosis in 

adults (Kessler et al. 2005).   

 Although stimulants used to treat ADHD are very safe medications with a 

long track record of clinical use, they are under increasing scrutiny due to some 

isolated rare cardiac deaths while using the medications. The news media have 

been buzzing about a proposed “black-box” warning for stimulant medications, 

which would alert physicians and patients that a drug carries rare but significant 

risks (Vendantam 2006).  Proposals are under review to require the warning by 

the Food and Drug Administration on medications such as Ritalin®, Adderall®, 

and Dexedrine®, all discussed in the text of this dissertation.  Fewer than 10% of 

prescription drugs carry such a warning (Vedantam 2006).  As of 2004, sales of 

all ADHD drugs totaled $3.1 billion, and an estimated 2.5 million children and 1.5 

million adults were using these medications (Vedantam 2006; Mathews 2006).   

 George Still first described the condition clinically termed now as ADHD in 

1901 by noticing the symptoms of “over-activity, inattention, poor inhibitory 

volition, aggressiveness, defiance, resistance to discipline, lawlessness, 

spitefulness, and dishonesty” that were observed in over 20 children (Still 1902).  

In an early Diagnostic and Statistical Manual of Mental Disorders (1968) the 
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condition was given the name of Hyperkinetic Disorder of Childhood.  Today, the 

current DSM-IV-TR (2000) classifies the disorder as ADHD with three distinct 

subtypes:  1) predominantly inattentive 2) predominantly hyperactive-impulsive 

and 3) combined.  Each subtype requires the fulfillment of at least six of nine 

symptoms present prior to age seven.  Symptoms must persist in two or more 

settings, and clearly demonstrate clinically significant impairment in social, 

academic, or occupation functioning (DSM-IV-TR, 2000).   

 

ADHD Etiology 
 

 Many studies have investigated the etiology of ADHD including genetic, 

neuroimaging, and electrophysiological pursuits.  Familial studies have found a 

greater risk for siblings and parents of children with ADHD (Faraone and 

Biederman 1994).  The risk for the disorder was found to be higher in biological 

than adopted children of ADHD individuals (Morrison and Stewart 1973).  Twin 

studies have been carried out to investigate heritability, shared environment, and 

non-shared environments.  Conclusive evidence supported that deficient 

parenting and family adversity did not lead to the manifestation of ADHD (Levy et 

al. 1997; Goodman and Stevenson 1989).  Finally, studies that investigated 

correlations with lower socioeconomic status, higher psychosocial adversity, and 

increased parental conflict found no direct links (Scahill et al. 1999; Biederman et 

al. 1995a, 1995b).  Conclusive evidence points to common genetic vulnerability 

of probands and first-degree relatives.   

 To date, components of the dopaminergic system have been studied 

because of the consensus that dysregulation of dopaminergic neurotransmission 

is central to the disorder.  The dopamine transporter (DAT) and the allelic 

variation in the DAT gene, DAT1, have been associated with ADHD and remain 

functionally unexplained (Cook et al. 1995).  The dopamine (DA)  D4 receptor 

(D4R), having seven 48 base pair repeats in exon 3, is slightly less effective than 

other variants in the inhibition of the second messenger cAMP.  Activated cAMP 

has been shown to impair function in the prefrontal cortex. (Asghari et al. 1995).  
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DAT1 and D4R genes are modestly accepted to be associated with susceptibility 

to ADHD.   

 Neuroimaging studies have investigated the anatomical substrates of 

ADHD and support dysfunction and dysregulation in multiple brain regions.  Data 

support anomalies in cerebellar-striatal/adrenergic-prefrontal circuitry which can 

be improved by use of stimulant medications (Castellanos et al. 1996; Solanto et 

al. 2001).  It is widely accepted that dysfunction within this distributed circuit 

underlies the symptomatology of ADHD.  These circuits specifically include 

multiple brain regions such as right prefrontal cortex, the caudate nucleus, globus 

pallidus, and cerebellar vermis, all reported to have reduced volumes in ADHD 

individuals consistent with the possibility of hypofunctionality of normal brain 

function (Castellanos et al. 1996).  However, these findings are given with 

caution due to normal variability in anatomical brain measures and the inclusion 

of treated and untreated individuals (Solanto et al. 2001).  

  

 Dopamine Function in the Normal Mammalian Central Nervous System 
 

 An extensive review of DA neurotransmission, including interactions with 

other neurotransmitters, is beyond the scope of this thesis; however, the 

following outline provides a general explanation of the system we investigated.  

In the next section, the effects of stimulants will be described in the context of DA 

neurotransmission.  DA synthesis is initiated in the soma of DA neurons by the 

precursor, L-tyrosine, being converted to 3,4-dihydroxyphenylalanine (DOPA) via 

the enzyme tyrosine hydroxylase (TH) (Cooper et al. 1996; Seiden and Dykstra 

1977).  The decarboxylation of DOPA into DA by L-aromatic amino acid 

decarboxylase is the final synthetic step in neurons that use DA as their primary 

neurotransmitter (Fig. 1.1).  TH activity is determined via end-product inhibition 

and phosphorylation (Cooper et al. 1996).  During times of increased need for DA 

neuronal release, new TH protein can be synthesized or TH activity will be 

increased to meet the demands of the releasing neuron.  TH is described to be 
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the rate limiting step in the synthesis of DA based on known saturation levels of 

TH (Squire et al. 2003)(Fig 1.1).   

The majority of cell bodies that synthesize DA in the brain lie in the zona 

compacta of the substantia nigra (SN) and project via the nigrostriatal pathway to 

the striatum, including the caudate nucleus, putamen, and the amygdala (Solanto 

et al. 2001; Cooper et al. 1996).  The mesolimbic pathway originates from DA 

synthesis in the cell bodies located in the ventral medial tegmentum.  These DA 

projections run lateral to the nigrostriatal pathway and innervate the nucleus 

accumbens, olfactory tubercle, and selective regions of the prefrontal cortex 

forming the mesocortical pathway.  Projections exist as well from the midbrain to 

the anterior cingulated cortex (mesocortical pathway), and finally the 

tuberoinfundibular tract that forms from the arcuate nucleus projecting to the 

pituitary gland (Dahlstrom and Fuxe 1964; Lindvall and Bjorklund 1974; Seiden et 

al. 1993).  DA levels are highest in the striatum (10 µg/g), nucleus accumbens (5 

µg/g), olfactory tubercle (6 µg/g), but much less in the cortex (0.1 µg/g) (Cooper 

et al. 1996).   

 Following synthesis, DA is released through two mechanisms:  impulse 

dependent release and transporter-mediated release.  Cytoplasmic DA is 

packaged into the vesicles via the Mg2+-dependent vesicular monoamine 

transporter, VMAT2, predominantly found in brain catecholamine neurons 

(Solanto et al. 2001; Cooper et al. 1996).  Vesicles concentrate near the 

presynaptic terminal where they remain primed for cellular membrane fusion and 

subsequent exocytosis thereby releasing the stored DA into the synaptic cleft.  

DA release from vesicles predominantly occurs via a Ca2+-dependent exocytotic 

process whereby Ca2+ influx leads to ATP hydrolysis and depolarization of the 

membrane (Winkler 1988; Seiden and Sabol 1993).  Transporter-mediated 

release of DA occurs mainly as a result of pharmacologic manipulation of the 

DAT in the presence of uptake inhibitors such as amphetamine (Blaszkowski and 

Bogdanski 1972; Paton 1973) (Fig 1.2). 

 Following release of DA, multiple synaptic targets determine the 

downstream effects on future DA release.  For example, DA stimulates 
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presynaptic DA receptors (autoreceptors) that exist on most parts of the DA 

neuron and are a part of the D2 receptor family (Civelli et al. 1993; Cooper et al. 

1996; Squire et al. 2003).  The D2 family contains D2, D3, and D4 subtypes of 

receptors, with DA receptor 2 (D2R) primarily found as an autoreceptor that 

regulates future DA synthesis and release.  Release-modulating autoreceptors 

function to provide feedback inhibition of further transmitter release and can be 

found on neurons that release other neurotransmitters.  Synthesis-modulating 

autoreceptors are suggested to regulate DA synthesis based on increases in DA 

synthesis in the presence of DA receptor antagonists (Squire et al. 2003).  The 

D2Rs are localized to the striatum, nucleus accumbens, olfactory tubercle, and 

neuron cell bodies in the substantia nigra and ventral tegmental area.  They most 

often serve as autorceptors that inhibit future DA synthesis and release.  D3 

receptors are mainly found in the nucleus accumbens, olfactory tubercle, and 

hypothalamus.  They are sparsely found in the caudate, cortex and DA neurons 

originating in the substantia nigra.  These receptors, primarily autoreceptors, are 

less abundant than D2Rs and are thought to inhibit Ca2+ entry into the 

presynaptic cell.  D4Rs are predominantly located in the frontal cortex, midbrain, 

and amygdala, are less in number than D2Rs, and are proposed to be highly 

variable in humans. Impulse-modulating autoreceptors located to the soma and 

dendrites of DA neurons regulate overall cellular firing rate (Cooper et al. 1996).   

 The D1 type DA receptor family classifies two DA receptor subtypes, D1 

and D5.  The D1 receptors are most highly concentrated in the striatum and 

nucleus accumbens and typically lead to the stimulation of adenylate cyclase and 

increase IP3 turnover.  D5 receptors are most often found in the hippocampus and 

hypothalamus, but can be found in the striatum and nucleus accumbens and 

have been shown to stimulate adenylate cyclase (Cooper et al. 1996).   

 The termination of DA neurotransmission is accomplished via three 

distinct mechanisms.  The first is diffusion away from a receptor followed by 

dilution in extracellular (EC) fluid to subphysiological levels. Second, enzymes 

can inactivate EC and intracellular (IC) DA such as monoamine oxidase (MAO) 

and catechol-O-methyl-transferase (COMT).  Finally, the NaCl-dependent 
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neuronal DAT, having 12 transmembrane domains, can accumulate both IC DA 

and NE.  DAT function is Na+- and temperature-dependent and requires 2 Na+ 

ions and 1 Cl- ion for activation (Harris and Baldessarini 1973; Holz and Coyle 

1974; Krueger 1990).  

 

Stimulant Treatments of ADHD 
 

Amphetamine Isomers 
 

In 1887, synthetic amphetamine was invented by Lazar Edeleano, a 

student at the University of Berlin studying under A. W. Hofmann (Edeleano 

1887).  It received this generic name from a contraction of α-methyl-

phenethylamine and today boasts greater than 20 trade names as described by 

the Merck Index listing (Sulzer et al. 2005).  Amphetamine became available 

commercially in 1932 as Benzedrine® (50% D-, 50% L- amphetamine), available 

primarily in inhaler form for treatment of narcolepsy.  Over time, Benzedrine® was 

made available in tablet form as an over-the-counter medication (Prinzmetal and 

Bloomberg 1935).  Within the first three years of availability, greater than 50 

million Benzedrine® tablets were sold (Sulzer et al. 2005).  In the 1970s, 10 

billion tablets were produced annually leading to the imposition of legal quotas 

brought forth by the United States Justice Department (Sulzer et al. 2005). 

Amphetamine has been administered in all major United States wars and military 

conflicts to promote alertness among the troops, in particular the air forces for 

flights and bombing missions lasting many hours (Caldwell et al. 2003).  While 

amphetamine derivatives have more than 30 known uses, its use as a treatment 

for ADHD surpasses them all.  The National Institute of Mental Health (NIMH) 

estimates an occurrence of ADHD in 3-5% of the population; and two million 

prescriptions are written per month for stimulant medications to treat ADHD 

(Vendantam 2006). 

In general, it is believed that amphetamine interacts with the uptake 

process of released catecholamines.  Amphetamine is thought to mimic DA and 
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is taken up into the synaptic terminal via the DAT in a competitive relationship 

with DA.  Amphetamine then interferes with the normal uptake process of DA and 

causes a reversal of normal DAT function (Kuczenski 1983; Reith et al. 1986; 

Heikkila et al. 1975).  Catecholamine release is thought to be independent of 

spike activity supported by amphetamine-induced release of DA that was 

inhibited by drugs that interfere with catecholamine synthesis such as α-methyl-

para-tyrosine (Solanto et al. 2001).  Likewise, the majority of released 

catecholamines in the presence of amphetamine undergo reverse transport 

through the DAT rather than release after Ca2+-dependent spike activity (Cooper 

et al. 1996).  Amphetamine will also accumulate catecholamines released due to 

spike activity as the drug is thought to block normal reuptake of DAT or the 

norepinephrine transporter (NET) (Solanto et al. 2001) (Fig 1.2).   

The following effects of amphetamine have been described at the 

monoaminergic synapse:  a) inhibition of monoamine oxidase (MAO), b) 

blockade of reuptake by the DAT, and c) promotion of monoamine release into 

the synaptic cleft (Seiden et al. 1993) (Fig. 1.2).  After amphetamine gains 

presynaptic access by way of the monoamine transporter, it is thought to cause 

direct inhibition of IC vesicular monoamine transporters (VMAT) that package DA 

into vesicles.  This leads to an increase in IC levels of monoamine 

neurotransmitters which cause reverse transport of the amines via cell 

membrane transporters (Sulzer et al. 1993,1995). Increases in synaptic and EC 

DA result in a dose-dependent manner in the presence of amphetamine (Solanto 

et al. 2001).  Amphetamine directly inhibits MAO, the enzyme that metabolizes 

DA into 3,4-dihydroxy-O-phenylacetic acid (DOPAC) and homovanillic acid 

(HVA).  This leads to decreased formation of the oxidized metabolites of DA, NE, 

and (serotonin) 5-HT.  This occurs even at low doses leading to an increase in 

DA release and a decrease in DOPAC production (Bowers and Hoffman 1984; 

Elchisak et al. 1976; Imperato and Di Chiara 1984; Karoum et al. 1994; 

Zetterstrom et al. 1988, 1983).  There are no known interactions between 

amphetamine and COMT, another enzyme that metabolizes DA into 3-

methoxytyramine (3-MT).  After the increases in EC and synaptic DA, elevated 3-
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MT levels result (Karoum et al. 1994).  The physiological effect of increased 

levels of EC DA from nigrostriatal DA neurons is feedback inhibition of DA 

neuronal firing via stimulation of autoreceptors and second messenger systems 

decreasing phasic DA release (Solanto et al.  2001) (Fig 1.2). 

Studies have been done to investigate the cellular targets of amphetamine 

and most data support interactions of amphetamine with catecholamine 

transporters.  Combinations of reserpine and amphetamine have been used to 

evaluate the role of vesicles in causing the amphetamine-evoked release of DA.  

The VMAT inhibitor, reserpine, was administered prior to amphetamine yielding 

mixed results; some in vivo experiments supported no effect on DA release and 

others reported reserpine blockade (Arbuthnott et al. 1990, Parker and Cebeddu 

1986, Sabol et al. 1993).  Some evidence support that vesicular stores of DA 

contributed to increased synaptic DA levels after amphetamine administration 

due to data indicating that TH is upregulated in the presence of reserpine or 

amphetamine.  It is also likely that most cellular DA is vesicular and must be 

released to concentrate the cytoplasm in preparation for reverse transport 

through the DAT (Fon et al. 1997; Mosharov et al. 2003).  Cellular studies have 

linked the roles of the DAT and the VMAT in causing amphetamine-induced DA 

release.  COS cells that expressed both VMATs and/or DATs were exposed to 

amphetamine.  These studies indicated that amphetamine caused DA release in 

cells with the DAT, but significantly more release occurred in the presence of 

cells containing VMAT or both VMAT/DAT.  Finally, these data supported that no 

DA release occurred from cells without VMAT or DAT (Pifl et al. 1995).  Jones et 

al. (1998) stimulated DA terminals to cause a stable baseline of DA release after 

which amphetamine was added and a subsequent increase in DA resulted.  

These data support that vesicular storage was altered in the presence of 

amphetamine.  Discussion is often raised due to information that supports de 

novo synthesis of DA in the presence of amphetamine caused by upregulation of 

TH activity (Kuczenski 1975).  Other data indicate an interaction between MAO 

and amphetamine that would decrease DA metabolite levels such as DOPAC. 



 

 9

The DAT functions normally to maintain cytosolic DA, likely dependent on 

a gating mechanism (Jardetzky 1966).  While a number of theoretical 

explanations exist, prevailing ideas propose an asymmetric operation of the DAT 

to more efficiently take up EC DA in efforts to concentrate cytosolic DA.  

Alternatively, gradients of ions coupled with substrate and membrane potential 

may cause the DAT to favor DA uptake (Sulzer et al. 2005).  Interference of 

these mechanisms by amphetamine leads to reverse transport of DA through the 

DAT.  Previous literature discussed facilitated exchange diffusion as the 

predominant model of amphetamine-induced reverse transport of the DAT based 

on structural properties and their inclination to cause asymmetric substrate flux in 

a one-for-one exchange pattern (Sulzer et al. 2005).  Facilitated exchange 

diffusion was first studied in other systems looking at glucose transport and other 

molecules (Stein 1967); however, more recent investigations have directly 

attempted to measure the exchange properties of the DAT in the presence of 

various substrates.  Jones et al. (1999) used reserpine-like compounds to 

displace vesicular DA stores leading to increased levels of DA in the cytosol.  

Increasing cytosolic levels of DA alone was not enough to cause efflux of DA, 

and DAT uptake of amphetamine was necessary for reverse transport of the 

DAT.  However, some reports have noted inconsistencies and support DA 

release independent of amphetamine uptake.  For example, amphetamine 

injected into large dopamine neurons of the pond snail caused reverse transport 

of DA without transport of amphetamine (Sulzer et al. 1995).  Therefore, other 

conformational states of the DAT have been noted that would account for all 

sources of amphetamine-dependent DA efflux.  Patch-clamp recordings of cells 

expressing the DAT have supported rapid, relatively increased current events 

that indicate ion channel-like conductance of DA (Galli et al. 1996; Galli et al. 

1998).  A channel-like state of the DAT could allow a greater net flux of DA that 

exceeds the amounts of DA released via reverse transport.  Recently, recordings 

from dopamine neurons and cells transfected with DATs supported channel-like 

events that caused relatively transient (milliseconds), robust release of DA 

molecules (Kahlig et al. 2005).   
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 Dextroamphetamine sulfate is commercially available for ADHD treatment 

and has compared favorably with stimulants such as methylphenidate (Pelham et 

al. 1990; Elia et al. 1993).  Racemic amphetamine, the first available treatment 

for children with behavioral disorders, is no longer commercially available.  

However, Adderall® (75% D- 25% L-amphetamine) is a leading prescription 

stimulant for children with ADHD.  Data have supported that both enantiomers 

can be more effective in treating ADHD than the other, dependent on different 

subtypes of ADHD patients (Arnold et al. 1972, 1976). Other data support that 

the dextro- isomer caused greater presynaptic release of DA than the levo- 

isomer (Taylor and Snyder 1970, 1971; Arnold et al. 1972, 1973, 1976; Phillips 

and Fibiger 1973; Segal 1975) while the levo- isomer has shown greater effects 

on behavioral measures in rats in comparison to D-amphetamine (Segal 1975).  

Further discussion of amphetamine enantiomer-dependent effects will occur in 

Chapters 3, 4, and 5.   

 

Methylphenidate 
 

  From the mid 1980’s until now, methylphenidate (Ritalin®) topped market 

sales as one of the most prescribed stimulants for ADHD pharmacotherapy 

(Patrick and Markowitz 1997).  Due to increased incidence of side effects with D-

amphetamine and a dosing schedule that corresponded with school hours, 

methylphenidate became a mainstay for ADHD treatment.  The use of 

methylphenidate increased five-fold in the early 1990s due in part to clinical 

diagnostic guideline revisions but not without growing concerns regarding its 

recreational abuse (Diller 1996). 

 The majority of methylphenidate used clinically contains a racemic form of 

50:50 threo-R,R(+)- and threo-S,S(-)-isomers, and data support that the 

catecholaminergic effects of racemic methylphenidate are attributed to the active 

threo-R,R (+)-stereoisomer (Patrick et al. 1987; Srinivas et al. 1992).  Studies to 

assess the necessity for the costly removal of the (-) isomer have provided data 

to support that both the therapeutic and adverse side effects are attributable to 
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the active (+)-isomer.  (-)Methylphenidate has been found to penetrate the brain 

following systemic metabolism and may interact with ethanol to form the 

metabolite ethylphenidate (Patrick et al. 2005).  While ethylphenidate is known to 

be active in the CNS, its pharmacological effects are uncertain (Markowitz et al. 

2000).    Due in part to this and other factors, a new separation of the 

methylphenidate isomers has recently been approved in an immediate release 

formulation and can be administered at one-half the dose of the racemic mixture 

(Patrick et al. 2005).   

 The attributed decrease of ADHD symptoms when using methylphenidate 

appears to be dependent on the facilitation of catecholaminergic 

neurotransmission similar in some ways to amphetamine.  Methylphenidate binds 

selectively to the DAT or NET with high affinity (Schweri et al. 1985; Gatley et al. 

1996) and blocks the synaptic clearance of impulse-released DA and NE leading 

to EC neurotransmitter accumulation (Fig. 1.2).  In a study of the striatum in 

baboons, methylphenidate was shown to bind to the DAT, and (+)-isomer caused 

the most potent DA accumulation in the rat striatum (Ding et al. 1994; Aoyama 

1994, 1996).  Similarities to cocaine have been noted as methylphenidate 

competes with cocaine for DAT binding in the striatum to accumulate EC DA 

(Volkow et al. 1995; Gatley et al. 1996).   

 Methylphenidate is primarily thought to interrupt normal DA function by 

blocking the DAT from uptake of impulse-dependent release of DA differing from 

the effects of amphetamine that have been shown to trigger DA release through 

the DAT (Fig 1.2).    Studies were done to determine the source of accumulating 

DA after methylphenidate.  Reserpine, an agent that disrupts vesicular 

membranes, attenuated DA release following treatment with methylphenidate 

(Braestrup 1977; Patrick and Markowitz 1997).  Reduction of a newly-

synthesized pool of DA via inhibition with α-para-methyl-tyrosine decreased DA 

release caused by amphetamine but not methylphenidate (Patrick and Markowitz 

1997).  Taken together, most of the literature support postsynaptic dopaminergic 

agonistic activity as a key component of eliciting a response to methylphenidate.   
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The Dopamine Transporter:  Regulation of Stimulant Effects 
 

 Although some debate exists, immunohistochemical studies of the DAT 

have supported that this catecholamine transporter protein can exist outside of 

the synapse (Nirenberg et al. 1996, 1997a, 1997b; Hoffman et al. 1998; Squire et 

al. 2003; Cragg and Rice 2004).  Conclusions from these studies have discussed 

that the predominant role of the DAT is to accumulate DA which has diffused 

from the synaptic cleft.  Additionally, studies of DAT knockout mice have 

supported decreased DA clearance and a complete loss of autoreceptor- 

mediated tone (Jones et al.  1999).  Without the DAT, intraneuronal DA levels are 

decreased leading to attenuated feedback inhibition of TH and subsequent 

synthesis and release of DA (Gainetdinov et al.  1998).   

The stimulants that we tested and their effects in the striatum are primarily 

regulated by the DAT.  Amphetamine analogues: methylphenidate and cocaine 

are thought to block the DAT to increase synaptic and extracellular levels of DA. 

The DAT constitutively cycles from the cell membrane to the intracellular milieu 

where it is ultimately degraded or undergoes recycling and returns to the cell 

membrane (Daniels and Amara 1999; Loder and Melikian 2003).  In addition, 

recent evidence has supported substrate induced effects on DAT function and/or 

trafficking (Melikian and Buckley 1999; Fleckenstein et al. 1999; Kahlig et al. 

2005; Gulley and Zahniser 2003; Saunders et al. 2000; Johnson et al. 2005; Little 

et al. 2002; Daws et al. 2002; Cass et al. 1993a).  Pharmacological interactions 

with DA release, DAT function, and/or trafficking are theoretically believed to be 

the underlying basis for addictive properties and likely therapeutic activity.  Table 

1.1 provides a summary of the effects of DAT substrates on subsequent DAT 

function and availability after acute and chronic exposure. 

Pharmacological interactions of stimulants and the DAT have been shown 

to be substrate dependent.  The endogenous substrate for the DAT, DA, has 

been shown to cause changes in surface expression and/or DAT function.  Data 

have supported decreased DAT clearance abilities after repeated, rapid DA 

applications (Gulley et al. 2002) and increased localization of the DAT to the 
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cytosol (Saunders et al. 2000).  Finally, DA has been shown to indirectly cause 

upregulation of surface DAT by stimulating D2R autoreceptors that upregulate DA 

clearance (Parsons et al. 1993; Cass and Gerhardt 1994; Rothblat and 

Schneider 1997; Dickinson 1999; Hoffman et al. 1999; Mayfield and Zahniser 

2001).  Acute amphetamine administration caused a reduction of transport 

capacity thought to be due to intracellular DAT trafficking (Fleckenstein et al. 

1999; Saunders et al. 2000); however, some reports support that amphetamine 

initially caused upregulation to the cell surface prior to causing internalization 

(Johnson et al. 2005).  Other studies support substrate-dependent differences in 

DAT conformation that differentially allow DA to pass through via formation of a 

pore versus the constitutive state, an alternating access gate (Kahlig et al.  

2005).  Alternately, drugs thought to predominantly inhibit reuptake of DA by the 

DAT, such as cocaine and methylphenidate, have opposite effects on DAT levels 

and upregulation of the DAT to the cell surface has been supported (Daws et al. 

2002; Little et al. 2002).  Additionally, studies of DAT surface expression have 

supported inconsistencies between the effects of chronic and acute exposure of 

amphetamine isomers, methylphenidate, and cocaine.  For example, while acute 

cocaine exposure caused upregulation of DATs to the cell surface, chronic 

cocaine has been shown to cause decreased levels of functional plasma 

membrane DATs (Benmansour et al. 1992; Cass et al. 1993a; Jones et al. 1996; 

Fleckenstein et al. 1999).   

We hypothesized that differential effects of the stimulants we tested could 

be attributed to differential regulation of the DAT caused by the amounts of DA 

released and/or interactions with the DAT.  The methodologies that we employed 

for our studies are predominantly thought to provide a means for in vivo 

monitoring of the function of cellular machinery involved in DA release and 

uptake such as the DAT.  The DA release signals we present in Chapters 3 and 

4 represent the effects of amphetamine isomers as they cause reverse transport 

of DA release (measures of rise time) and then blockade and/or down regulation 

of DAT function and location (measures of 80% decay) (See Chapter 2 Figure 

2.1).   
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Rationale of Specific Aims 
  

 Upon initial review of the body of literature describing differences between 

D- and L- amphetamine, it is evident that most clinical and scientific studies were 

carried out in the 1970s.  These studies were inconclusive and, in some cases, 

the extension was made that either enantiomer could be helpful in decreasing 

ADHD symptoms.  Since the 1970s, a majority of the literature has focused on 

methylphenidate in terms of its clinical use, and amphetamine in terms of abuse.  

Due to the historical nature of safety and efficacy of amphetamine, it has largely 

been ignored in terms of mechanistic interactions with catecholaminergic 

signaling.  As the number of stimulants prescribed per month continues to 

increase, it is important to build upon the data collected over two decades ago 

using sensitive techniques with high resolution to examine target effects and 

more efficient ways of causing a clinical effect.  Additionally, the neurochemical 

effects of the D- and L-amphetamine isomers have remained difficult to identify 

and replicate (Popper 1994). 

The dextro- isomer has been estimated to be at least two times more 

potent in vivo in causing stereotypies in rats than the levo- isomer (Taylor and 

Snyder 1970).  Harris and Baldessarini (1973) present data that supported a 

four-fold difference in potency of D-amphetamine versus L-amphetamine as 

measured using in vitro DA uptake studies.  Sprague-Dawley rats trained to 

discriminate between levers in response to drug-induced physiological states, 

self-administered both amphetamine enantiomers in two different studies (Jones 

et al. 1974; Yokel and Pickens 1973).  However, data from these studies support 

that it took greater amounts of L-amphetamine to equal the behavioral responses 

induced by a smaller dose of D-amphetamine.  Studies completed in mice 

assessing L-amphetamine and D-amphetamine potentiation of locomotor activity 

support increased potency of D-amphetamine (Stromberg and Svensson 1975).  

Additionally, the L-amphetamine dose-response curve displayed biphasic 

properties that support stimulation of locomotor activity at high doses while 
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depression of activity occurred at low doses (Stromberg and Svensson 1975). 

The most recent study conducted investigated differences in D- and L- 

derivatives and their effects on a canine model of narcolepsy (Kanbayashi et al. 

2000).  The data from the Kanbayashi et al. (2000) study indicate that D-

amphetamine was two times more potent in increasing wakefulness, while the 

enantiomers were similar in effects on rapid eye movement.  Microdialysis 

studies revealed similarities in the overall effect of maximum DA overflow with L-

amphetamine, reaching a DA overflow plateau over a longer time period 

(Kanbayashi 2000).  Finally, the distribution kinetics of D- and L- amphetamine 

were studied after intravenous administration of racemic amphetamine to 

Sprague-Dawley rats and these data support similar isomer terminal half-lives 

(Hutchaleelaha et al. 1994).   

Clinical studies have provided evidence that D-amphetamine was superior 

to racemic amphetamine in terms of improvement in ratings of target symptoms 

(Gross 1976).  Smith and Davis (1977) suggested that L-amphetamine was only 

half as potent as D-amphetamine in causing feelings of euphoria.  Taken 

together, these data support enantiomer-dependent differences in molecular, 

behavioral, and clinical effects.  Conversely, other studies support similarities 

between isomers of amphetamine.  Arnold et al. (1972) administered L-

amphetamine and D-amphetamine to hyperkinetic children (the clinical diagnosis 

for ADHD at the time) and determined that both were significantly more effective 

than placebo in influencing parent-teacher ratings.  Data from this study indicate 

that D- and L-amphetamine targeted symptoms of hyperactivity and 

aggressiveness, while D-amphetamine also decreased inattentiveness (Arnold et 

al. 1972).  Arnold et al. (1976) suggested in a later study that L-amphetamine 

was a useful drug option for treatment of minimal brain dysfunction (the clinical 

diagnosis for ADHD at that time), and the behavioral outcomes of D- and L- 

isomers were similar.  Prior to these studies, a clinical study assessed and found 

no clinical differences between Benzedrine® (50:50 D,L- amphetamine) and 

Dexedrine® (D-amphetamine) (Bradley 1950).  These clinical studies, conducted 

to examine stimulant medications with different amphetamine isomers, have 
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provided information to support the use of drugs containing L-amphetamine while 

others have provided equivocal results.  These data were collected at a time 

when the symptoms of the disorder were not well characterized.  Likewise, 

participant exclusion/inclusion criteria were not always similar, and the number of 

participants included for statistical analysis was not always optimal. 

 Based on the rise and fall of treatment alternatives for ADHD, the market 

has seen racemic amphetamine (Benzedrine®) come and go, replaced by a 

separated D-amphetamine (Dexedrine®), paralleled in the most recent years with 

the return of a mixture containing both enantiomers (Adderall®, mixed salts 

amphetamine).  Even though Adderall® currently leads the ADHD prescription 

market, no studies have been published addressing the components and the 

chosen ratio of D- and L- amphetamine.  Originally marketed to be longer-lasting 

and the only ADHD drug that could eliminate the need for “in-school” dosing, 

Adderall® maintains a sparse collection of data that would support or reject this 

hypothetical conjecture (Popper 1994).  Unpublished data from the Richwood 

Pharmaceutical Company (1997) supported a differential rate of absorption and 

an associated increased efficacy due the activity of the four Adderall® salts not 

found in other stimulants.  While no animal studies exist, a few clinical studies 

sponsored by Shire Pharmaceuticals have addressed the claims of Adderall’s® 

longer lasting activity.  An initial study by Swanson et al. (1998) found data to 

support rapid improvements in teacher ratings that occurred within 1.5 hours 

after administration that lasted throughout the day.  The peak time of effects and 

duration of action increased dependent on dose (Swanson et al. 1998).  In a 

comparison of Adderall® versus Ritalin® (methylphenidate), Adderall® continued 

to improve measures taken at time points of the day when the effects of a single 

dose of Ritalin had dissipated (Pelham et al. 1999).  This study collected data 

that consistently supported the 1:2 dosing ratio between D-amphetamine and 

methylphenidate, and suggested that Adderall® is at least twice as potent in 

acutely improving the behavior and academic productivity of children with ADHD 

(Pelham et al. 1999).  An independent study of high relevance to the data we 

present is a recent clinical study that compared Adderall® versus extended-
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release and immediate-release D-amphetamine sulfate in a double-blind, 

placebo-controlled paradigm.  James et al. (2001) took dependent measures of 

classroom behavior, recreational activity, parent observation, locomotor activity, 

and adverse effects.  These data revealed similarities between immediate-

release D-amphetamine and Adderall® while extended-release D-amphetamine 

displayed more sustained effects on most measures.  Specifically, Adderall® 

significantly reduced locomotor activity relative to D-amphetamine (immediate- 

and extended-release) with effects that lasted longer than the other drugs.  

Weight loss occurred with all three drugs tested in this study; however, Adderall® 

did not cause decreased sleep duration (James et al. 2001). 

Basic science studies with increased temporal and spatial resolution, and 

techniques with high sensitivity are necessary to further examine the properties 

of amphetamine enantiomers in vivo. The studies completed for this dissertation 

are the first studies to characterize the effects of locally applied, clinically 

relevant, commercially available stimulants and their components on DA 

neurotransmission. These studies made use of local drug applications to 

eliminate drug pharmacokinetic issues from the study.  Due to this, drugs were 

applied in low levels to approximate clinically relevant levels of ADHD 

medications based on theoretical tissue dilution (voltammetry) and percent 

recovery (microdialysis) (Gerhardt and Palmer 1987; Shader et al. 1999; Solanto 

et al. 2001).  At this date, there are no in vivo animal studies of Adderall® 

regarding measures of neurotransmitters or behavior.  In general, we 

hypothesize that amphetamine analogs differ in their ability to cause DA release 

and differentially alter DA uptake.  This hypothesis was studied using the 

following specific aims:  

 

Specific Aim 1:  Is it possible to reliably measure DA release signals evoked by 

amphetamine isomers at maximally effective concentrations related to 

therapeutic levels using high speed chronoamperometry? Do locally applied 

amphetamine isomers differentially affect DA release signals as measured by in 

vivo voltammetry?  Since amphetamine isomer associated differences have been 
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noted in the clinic, it is possible that in vivo differences will be visible in DA 

neurotransmission in the striatum and nucleus accumbens of the rat brain, 

regions implicated in human studies of ADHD.   

 

Specific Aim 2: Adderall® has been noted by clinicians to be a long-acting 

stimulant treatment for ADHD and data have supported that Adderall® decreases 

symptoms of hyperactivity over a longer time period than D-amphetamine.  

Therefore, do local applications of Adderall® cause differential effects on DA 

release signals compared to D-amphetamine at lower, clinically relevant levels of 

drug?  

 

Specific Aim 3:  Using techniques (microdialysis and HPLC) that allow for 

increased sensitivity to measure lower levels of analytes in vivo, will comparisons 

of stimulant concentration-response curves support differences in efficacy and 

potency?   

 
Summary of Experiments 

 
 Single isomer compounds such as dextroamphetamine (Dexedrine), 

dexmethylphenidate (Focalin®), and racemic compounds such as 

methylphenidate (Ritalin®) and mixed-salts amphetamine (Adderall®) are the 

most current medications available for treating the symptoms of ADHD.  The 

drug Adderall® is made of an approximate combination of 25% L-amphetamine 

and 75% D-amphetamine and has been marketed since the 1990s as a first-line 

stimulant treatment for ADHD.  Following clinical use of Adderall®, Benzedrine® 

(D,L-amphetamine), and D-amphetamine, differences have been noted in 

regards to their individual effects in decreasing symptoms.  Potential differences 

at the level of neurotransmission have not been characterized between these 

treatment options.  To investigate any differences in amphetamine isomers, high 

speed chronoamperometry was used allowing for measures of real-time DA 

release signals in Chapter 3.  Using Nafion®-coated, single carbon fiber 
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microelectrodes, amphetamine-induced DA levels and signal time courses were 

measured in the striatum and nucleus accumbens core of anesthetized male 

Fischer 344 rats.  To study the individual effects of amphetamine isomers on DA 

neurotransmission, low concentrations of drugs were administered locally via 

pressure ejection through a micropipette.   

For these studies, the L-amphetamine in a 50:50 D,L-amphetamine 

solution did not cause increased release of DA; however, it did seem to affect DA 

release signal kinetics.  Signals evoked by D,L-amphetamine had significantly 

faster rise and decay times in both the striatum and nucleus accumbens core.  

After local applications of L-amphetamine alone, evoked DA signals were not 

significantly different in measures of amplitude from D-amphetamine evoked DA 

release signals; however, these L-amphetamine-evoked DA release signals 

displayed the rapid signal kinetics seen with D,L-amphetamine.  The results of 

these studies supported the hypothesis that amphetamine isomers differentially 

cause release of DA in the striatum and nucleus accumbens core.  These data 

support the possibility that L-amphetamine may have unique actions on the DAT, 

and the way in which reverse transport of DA occurs following administration of 

amphetamine.   

 Following the studies discussed in Chapter 3, we then tested Adderall® in 

the 75% D: 25% L-amphetamine combination making use of all four 

amphetamine salts to make comparisons with D-amphetamine and D,L-

amphetamine at lower, more clinically relevant concentrations in Chapter 4.  

During the time in which these studies were carried out, prescriptions and sales 

of Adderall®, for the first time, were similar to those of methylphenidate.  

Additionally, these are the first data generated from in vivo measures of 

Adderall® since its introduction to the market.  The technique of high speed 

chronoamperometry using Nafion®-coated, single carbon fiber microelectrodes 

was used to study amphetamine-evoked DA release produced by Adderall®, D-

amphetamine, or D,L-amphetamine in the striatum of anesthetized male Fischer 

344 rats.  The amphetamine solutions were locally applied from micropipettes by 

pressure ejection. Local applications of Adderall® resulted in significantly greater 
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DA release signal amplitudes and prolonged time courses compared to D-

amphetamine and D,L-amphetamine.  These are the first in vivo data to support 

the hypothesis that the combination of amphetamine enantiomers and salts in 

Adderall® have effects on DA release, which result in increased and prolonged 

DA release compared to D- and D,L-amphetamine.    

While the results discussed in Chapter 3 and 4 made use of second-by-

second recording methods to determine the effects of acute applications of 

stimulants on DA release, Chapter 5 describes studies completed using a 

technique having greater sensitivity to detect lower levels of analyte.  We tested 

the hypothesis that differential stimulant concentration-response curves of DA 

and metabolites would result dependent on the amount of amphetamine isomer 

present.  In addition, we predicted that DA overflow caused by methylphenidate 

would differ from amphetamine.  For these studies, complete Adderall®, D-

amphetamine, and methylphenidate concentration-response curves were 

determined across theoretical subtherapeutic to abuse levels of drug. Finally, 

comparisons were made with “Reverse Adderall” containing 25% D-

amphetamine and 75% L-amphetamine. The technique of reverse microdialysis 

was used to study local drug-evoked DA release accumulation in the striatum of 

anesthetized male Fischer 344 rats.  These data support a D-amphetamine 

concentration-response curve of DA with double plateaus.  These resulting 

concentration-response curves provide insight into functional properties of the 

DAT and/or specific release of DA stores.  Additionally, DA levels after local 

applications of methylphenidate were similar to those caused by amphetamine.  

These methylphenidate data likely resulted due to reuptake blockade of a small 

amount of impulse-dependent DA being released under anesthesia.  However, 

these data may also support a DA releasing effect of methylphenidate.  
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Table 1.1 DAT and Substrate Interactions 
 
DAT Substrate    Effects on the DAT (Acute unless otherwise noted) 
Dopamine  ● Decreased transporter currents in vitro (Gulley and      

Zahniser 2003) 

• Rapid applications of DA decreased DAT clearance 

abilities in vivo (Gulley et al. 2002) 

• Increased localization of DATs to cytosol in vitro 

(Saunders et al. 2000) 

• Inhibited channel mode of the DAT in vitro (Kahlig et al. 

2005) 

 
Amphetamine ● Rapidly decreased DAT function and caused 

intracellular accumulation and internalization of an 

active DAT in vitro, in vivo (Kahlig et al. 2004; Saunders 

et al. 2000; Fleckenstein et al. 1999) 

• Induced a channel-like DAT in vitro (Kahlig et al. 2005) 

• Initially recruited DATs to the plasma membrane to 

cause DA efflux followed by internalization after 

continued exposure in vitro (Johnson et al. 2005) 

 
Methylphenidate       ● Increased DAT density and caused upregulation of 

DATs to the plasma membrane in vitro (Little et al. 

2002) 

• Chronic use was followed by decreased levels of DATs 

density in the rat striatum but not nucleus accumbens 

(Izenwasser et al. 1999; Moll et al. 2001) 

 
Table 1.1 Continued Next Page   
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Table 1.1 Continued  
Cocaine ● Increased DAT density and caused mobilization of the 

DAT to the cell surface in vitro (Daws et al. 2002; Little 

et al. 2002) 

• Functional upregulation and increased clearance of the 

DAT in vitro, in vivo (Cass et al. 1993, Sabeti et al. 

2002; David et al. 1998; Zahniser et al. 1999; Zahniser 

and Sorkin 2004) 

• Chronic exposure caused down regulation of DAT 

function and substrate binding in vivo, in vitro 

(Benmansour et al. 1992; Cass et al. 1993; Jones et al. 

1996; Fleckenstein et al. 1999) 

• Following cessation of chronic use, increased DAT 

levels (Malison et al. 1998)  
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Figure 1.1 Dopamine Synthesis and Clearance 

 
The precursor L-tyrosine is converted to dihydroxyphenylalanine (DOPA) which 

reacts with aromatic acid decarboxylase to form DA.  DA can be packaged in 

vesicles for storage until depolarization leads to vesicular fusion with the plasma 

membrane and DA is released.  DA clearance results from (a) metabolism via 

COMT into 3-MT (b) uptake by the DAT and (c) intracellular degradation via 

enzymes such as MAO into DOPAC.  Extracellular levels of DA interact with DA 

receptors (autoreceptors and postsynaptic receptors) resulting in presynaptic 

effects and postsynaptic down regulation of further DA release.   
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Figure 1.2 Theoretical Targets of Amphetamine Activity 

 
Amphetamine (X) theoretically interacts with multiple cellular targets.  Data 

support that DA gains presynaptic access through the DAT where it can block 

VMATs and cause emptying of vesicles to increase cytoplasmic levels of DA.  

Interactions with MAO have been noted leading to decreased levels of DOPAC.  

Finally, due to increased cytoplasmic levels of DA and/or interactions with 

amphetamine, the DAT begins to work in reverse fashion to allow DA to exit the 

cell.  Amphetamine subsequently blocks future reuptake or normal function of the 

DAT and undergoes conformation changes and/or internalization.  

Methylphenidate ( ) is thought to block the reuptake of Ca2+-dependent DA 

released through the DAT, causing DA release different from the activity of 

amphetamine.  
Copyright © Barry Matthew Joyce 2006 
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Chapter 2:  Materials and Methods 
 

The Fischer 344 Rat as an Animal Model of Normal Dopaminergic Function 
 

Since the primary purpose of these studies was to assess mechanistic 

properties using low levels of stimulants, we chose normal male Fischer 344 

(F344) rats as a model of the mammalian central nervous system.  The F344 is 

an inbred strain of rat lending to increased genetic homogeneity.  While some 

variations still exist between rats within this strain, the central nervous system 

lacks the heterogeneity of other outbred strains (Masoro 1990).  Additionally, any 

variations between these rats are thought to mimic the variations present in the 

normal human population.  While F344 rats, in general, show a constant increase 

in body weight and weight fluctuations between individual rats do not occur when 

fed ad libitum, they are also known to be a rat strain most related to human aging 

(Austad 1997; Stanford et al. 2001). This rat strain was also chosen due to the 

cost effective nature of their inclusion in these studies and availability.  Data have 

supported that stimulants work to improve attention via maintenance of alertness 

in normal, healthy subjects (Syed et al. 2005), and the success of stimulant 

treatments for ADHD to decrease hyperactivity and increase attention is known 

to be highly variable from one patient to another (Rapoport et al. 1978; Elia et al. 

1991).  Therefore, in characterizing the effects of stimulants on dopaminergic 

neurotransmission, it was important to choose a non-diseased rat model.  Finally, 

3-6 month old rats were chosen for these studies to mimic developmental 

similarities of a young human population inclusive of the majority of patients 

receiving stimulants for ADHD. Additionally, this age group of the F344 rat is 

considered to be developmentally mature which would decrease variations in 

brain physiology.  Finally, the F344 rat has been extensively used in our 

laboratory due in part to small variations in brain size across age levels allowing 

for more accurate targeting of stereotaxic coordinates. 
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Urethane as Anesthesia for Electrochemical Recordings and Microdialysis 
in the Living Fischer 344 Rat Brain 

 
 Intraperitoneal (i.p.) injections of 25% urethane prepared in 0.9% saline 

and administered at 1.25 g/kg were given to each rat.  Each awake rat was 

restrained and administered 0.7 ml of 25% urethane for an initial injection.  After 

15 minutes, the weight of the rat was determined and the final dosing amount 

was calculated.  The remainder of dosing was divided evenly among the next two 

injections both 15 minutes apart.  After 45 minutes from initial dosing, a response 

to a toe pinch was determined.  If no response resulted from the toe pinch, the 

experiment was carried out as described below.  Sabeti et al. (2003) recently 

studied the effects of different anesthesias on measures of dopamine (DA) 

signals recorded in awake, behaving animals until they were completely 

anesthetized.  The results of these studies support that urethane only minimally 

affected DA release and signal decay in comparison to chloral hydrate and 

ethanol (Sabeti et al. 2003).   

 
In Vivo Chronoamperometric Recordings 

 
Animal Preparation for Acute Electrochemical Recordings 

 
The F344 rats were anesthetized as described above and placed into a 

stereotaxic frame (Kopf, Tujunga, CA) with the incisor bar set at -2.3 mm.  Body 

temperature was maintained at 37º C as indicated by a rectal thermometer while 

rats rested on a heating pad (Braintree Scientific, Braintree, MA).  A cross-type 

incision was made over the medial portion of the skin between the rat’s ears and 

retracted in place using bulldog clips to anchor the movement of the skin during 

surgery.  The skull overlying the medial cortex was removed bilaterally for 

recordings in striatum and nucleus accumbens where noted.  Working 

microelectrodes were inserted bilaterally into the striatum (AP + 1.0 mm, ML +/- 

2.3 mm, DV -4.0 to -6.0 mm; 0.5 mm increments).  Reference electrodes (200µm 
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o.d., Ag/AgCl) were placed 8-10 mm posterior to bregma and 0.5 to 1.0 mm 

lateral to midline and were cemented in place using dental acrylic.  All stereotaxic 

coordinates were determined with respect to bregma using the atlas of Paxinos 

and Watson (1998).  All procedures were performed in accordance with the 

National Institutes of Health Guidelines for the Care and use of Mammals in 

Neuroscience and Behavioral Research (2003) and were approved by the Animal 

Care and Use Committee of the University of Kentucky.  Figure 2.4 shows a 

F344 rat prepared for in vivo electrochemical recordings.   

 
Electrochemical Microelectrodes 

 
Single carbon-fiber type electrochemical working microelectrodes (30 µm 

o.d.) were used to measure DA release signals (Fig. 2.6).  The microelectrodes 

(Quanteon, L.L.C., Nicholasville, KY) were pre-dried at 200 ºC prior to coating 

with Nafion® (5% solution, 1-3 coats, Aldrich Chemical Co., Milwaukee, WI).  

They were dipped in Nafion® solution and dried at 200º C for 5 minutes between 

each coat (Fig. 2.7).  Prior to use, all microelectrodes were calibrated in vitro to 

determine their selectivity, sensitivity, and reduction/oxidation current responses 

to DA.  For use in these studies, microelectrodes had an average selectivity of 

>900:1 for DA over 3,4-dihydroxyphenylacetic acid (DOPAC) or ascorbic acid.  

Each microelectrode displayed linear responses to DA additions up to 8 µM 

(Hoffman and Gerhardt 1999; Gerhardt and Hoffman 2001).  Reduction/oxidation 

current ratios averaging between 0.5 to 0.7 were exhibited, indicating that the 

microelectrode was detecting DA and not serotonin (5-HT) or ascorbic acid 

(Gerhardt and Hoffman 2001; Gerhardt and Burmeister 2000).  The limit of 

detection for DA was typically 25 nM.  Refer to Figure 2.1 for further detail 

regarding the reduction/oxidation current ratios and performance of the 

microelectrodes. 
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Electrochemical Instrumentation 
 

The microelectrodes were connected to a headstage (Quanteon, L.L.C. 

Nicholasville, KY) with a gold-plated amphenol (wire-crimp, Mill-Max®, Oyster 

Bay, New York).  The headstage was connected to a high-speed Pentium-IV 

microcomputer- controlled instrument, the FAST-12 (Fast Analytic Sensing 

Technology, Quanteon, L.L.C. Nicholasville, KY) and chronoamperometric 

measurements (5 Hz) were performed.  An oxidation potential was applied (+0.55 

V; 0.0V resting versus Ag/AgCl reference) to the working microelectrode.  The 

potential of the working microelectrode was changed relative to a stable, 

Teflon™ coated, silver wire electroplated in 1- M HCl saturated in NaCl (Ag/AgCl 

Reference Electrode).  The resulting oxidation current and subsequent reduction 

current from the microelectrodes were integrated during the final 80% of each 

100-ms pulse.  Both oxidation and reduction currents were continually recorded 

and averaged to 1 Hz.  In all recordings, reverse current ratios (redox ratios) 

were used to further confirm the detection of DA by the microelectrode measures 

(Gerhardt and Hoffman 2001; Gerhardt and Burmeister 2000).  
  

Drugs for Use with In Vivo Electrochemical Recordings 
 

Urethane, D-amphetamine and D,L-amphetamine were obtained from 

Sigma (St. Louis, MO).  The L-amphetamine isomer was obtained from the NIH-

NIDA/Division of Neuroscience and Behavioral Research (Bethesda, MD).  The 

four components of Adderall®, D-amphetamine saccharate, D,L-amphetamine 

aspartate, D-amphetamine sulfate, and D,L-amphetamine sulfate, were obtained 

from Shire Pharmaceuticals (Hampshire, Chineham, England).  DA and DOPAC 

were obtained from Aldrich (Milwaukee, WI).  All drug solutions were prepared in 

0.9% saline and adjusted to a final pH of 7.4 
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Pressure Ejection Coupled to In Vivo Electrochemical Recordings 
 

To circumvent the use of parental drugs to alter monoaminergic function 

and to directly study the extracellular regulation of DA, local application of drugs 

coupled with in vivo electrochemical recordings was used to study drug-induced 

release of DA (Hebert and Gerhardt 1999; Hoffman and Gerhardt 1999).  Single-

barrel glass micropipettes (Kopf Puller, Tujunga, CA) (1 mm outer diameter, 0.58 

mm inner diameter, AM systems, Inc., Everett, WA) with an inner tip diameter of 

7-11µm were attached to Nafion®-coated carbon-fiber microelectrodes with sticky 

wax (Kerr, Orange, CA) so that the tip of the electrode and micropipette were in 

the same plane and measured 250 µm apart.   

The volume of applied drug was kept constant at 500 nl and was 

measured using a dissection microscope fitted with a calibrated reticule (1 mm 

change=25 nl of fluid) (Cass et al. 1992, 1993a; Friedemann and Gerhardt 1992).  

The amounts of drugs applied in Chapter 3 were determined as: 2 nanomoles D-

amphetamine, 4 nanomoles D,L-amphetamine, 2 nanomoles D,L-amphetamine 

and 2 nanomoles L-amphetamine.  For Chapter 4, Adderall®, D,L-amphetamine 

or D-amphtamine solutions were applied in the following amounts (0.68 

nanomoles Adderall®, 1 nanomole D,L-amphetamine, and 0.5 nanomoles D-

amhetamine). For the data presented in Appendix 1, high concentrations of D-

amphetamine and Adderall were selected for use and were applied in the 

following amounts 2 nanomoles D-amphetamine and 2.72 nanomoles Adderall® 

(West et al. 1999; Shader et al. 1999; Kuczenski and Segal 2001; Solanto et al. 

2001).  The data from Chapter 3 support that L-amphetamine only regulates the 

time-course of D-amphetamine and does not contribute to the potency of an 

amphetamine solution. Therefore a constant 0.5 nanomoles of the D-

amphetamine isomer were applied in all drug treatments in Chapter 4 in order to 

investigate the effects of differing amounts of L-amphetamine.   

The stimulant concentrations used for pressure ejection were chosen 

based on the necessary amount of stimulus needed to give consistent and 

comparable DA responses.  It is difficult to accurately predict the dilution factor of 
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a locally applied drug to the brain tissue at varying depths.  We estimate that our 

drug solutions used in Chapter 3 (40-400 μM) were in the upper range of 

effective concentrations of plasma levels determined after clinical use of 

stimulants (10-50 μM)(West et al.  1999; Shader et al. 1999; Gerhardt and 

Palmer 1987; Solanto et al. 2001). The concentrations were then decreased for 

the studies described in Chapter 4 and were estimated to be in the therapeutic 

range for ADHD. 

 

Stimulant-Evoked Release of DA 
 

Electrochemical measurements were performed at 5 Hz to establish a 

baseline response.  After achieving a steady state signal (usually in 5 minutes), 

the effects of local applications of the amphetamine solutions were studied 

(Gerhardt et al. 1986,1987; Gerhardt and Palmer 1987; Cass et al. 1993b; 

Luthman et al. 1993).  The drug solutions were applied over a 20 second period 

to minimize any local dilution of DA release signals by the drug solutions.  A 

typical amphetamine-induced DA release signal is shown in Figure 2.1.  After 

returning to baseline, the electrode assembly was lowered an additional 0.5 mm, 

and the drug solution was ejected at the next depth.  Typically, six- eight signals 

were recorded in the striatum (three signals in the nucleus accumbens) bilaterally 

in the individual animals. 

 

Histology After In Vivo Electrochemical Recordings 
 

Following the recording sessions, rats were perfused with saline, followed 

by 4% paraformaldehyde.  The brains were subsequently removed, frozen with 

dry ice, sliced into 50-µm coronal sections, and stained with Cresyl Violet stain 

for histological evaluation of probe placement and recording tracks.  Data from 

histologically confirmed correct placement of microelectrodes into the striatum 

(and nucleus accumbens) were used for data analysis.  No data were rejected 

based on incorrect placement of microelectrode assembly in these studies.  
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Figure 2.2 shows a typical slice from the striatum of a F344 rat following after an 

in vivo chronoamperometric recording session.  This technique is noted to be 

minimally invasive relative to other in vivo recording techniques, and greater 

spatial resolution can be resolved due to the 30 μm outer diameter of the 

microelectrode (Fig. 2.2).   
 

Analysis of Data Collected Using In Vivo Voltammetry 
 

We chose recordings with redox ratios indicative of predominant DA 

signals (0.5-0.7) with signal amplitudes ≥0.05 µM DA for analysis of temporal 

dynamics of DA release: rise times (TR) and 80% decay times (T80) (Fig. 2.1) 

(Gerhardt and Hoffman 2001).  The numbers of animals and recording signals for 

each drug group in Chapter 3 for striatum were: D-amphetamine (n=7 animals, 

28 recordings), D,L-amphetamine (n=7 animals, 34 recordings), 2 x D,L-

amphetamine (n=7 animals, 40 recordings) and nucleus accumbens: D-

amphetamne (n=7 animals and 17 recordings), 2 x D,L-amphetamine (n=7 

animals and 16 recordings), and D,L-amphetamine (7 animals, 21 recordings).  

The number of animals used for the comparison of D- versus L-amphetamine 

were n=9, 34 recordings and n=7 rats, 17 recordings in the striatum and n=16 

and 4 rats in the nucleus accumbens respectively.  For the studies completed for 

Chapter 4, the following animals and signals were used for data analysis:  D,L-

amphetamine (n=10 animals, n=30 signals), Adderall® (n=10 animals, n=54 

signals), and D-amphetamine (n=10 animals, n=42 signals).  DA signals were 

heterogeneous in nature, which is the normal distribution of DA signals in the rat 

striatum (Friedemann and Gerhardt 1992).  Multiple recordings were taken 

bilaterally at various striatal (and nucleus accumbens) depths in each animal and 

each recording depth.  Therefore, to avoid artificially increasing degrees of 

freedom and pseudoreplication by treating each recording independently, a 

nested between-groups analysis of variance (MANOVA) was used (Hurlbert 

1984; Salvatore et al. 2004).  SYSTAT’s Multivariate General Linear Model 

(SYSTAT Software, Richmond, CA, USA) was used for statistical analysis while 
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all analyses were followed by Tukeys post-hoc comparisons.  Statistical 

significance was defined as p<0.05.   

 

Intracerebral Reverse Microdialysis Measures of Dopamine and Metabolites 
 

Animal Preparation 
 

The animals were prepared for study similar to the descriptions provided 

earlier in this chapter.  Differences in surgical procedures are described here.  

After the retraction of the skin and tissue and exposure of the skull overlying the 

striatum, a small craniotomy was placed in the right hemisphere only 

(coordinates with respect to bregma:  +1.0 mm AP, ±2.2 mm ML) (Paxinos and 

Watson 1998).  A microdialysis probe with a 2-mm membrane (CMA/11, CMA 

Microdialysis, Stockholm, Sweden) (Fig. 2.9) was lowered into the striatum (6 

mm below the cortical surface) and remained at this depth for the duration of the 

experiment Fig. 2.5).  1000 μl gastight syringes (1001 LTN, Hamilton USA, Reno, 

NV) containing dialyzing fluids were positioned in a syringe pump (KDS230, KD 

Scientific, Holliston, MA) which was set at flow rate of 1 µl/min, chosen based on 

desired percent recovery for striatum and the microdialysis probe membrane 

length employed (Fig. 2.10). Syringes were connected to a liquid switch 

(CMA/110, CMA Microdialysis, Stockholm, Sweden) that allowed for alternation 

between treatments:  artificial cerebral spinal fluid (aCSF) and aCSF + drug (Fig.  

2.8).  Teflon tubing (FEP tubing, 0.12 mm inner diameter, CMA Microdialysis, 

Stockholm, Sweden) and tubing adapters (CMA Microdialysis, Stockholm, 

Sweden) were used to establish all connections.   

 

In Vivo Intracerebral Reverse Microdialysis 
 

Following probe insertion, perfusion with aCSF (in mM:  NaCl 123, KCl 3, 

CaCl2 1, MgCl2 1, NaHCO3 25, NaH2PO4 1, and glucose 5.9) at a pH of 7.4 was 

initiated.  Samples were then collected at twenty minute intervals into a 0.2 ml 
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microcentrifuge tube and injected into the HPLC-EC system.  The order of 

administration for each of the drug solutions tested was as follows:  samples 1-6 

(aCSF), sample 7 (aCSF + amphetamine solution), samples 8-12 (aCSF).   

Probe recoveries were collected using a standard solution with known 

concentrations of DA, norepinephrine (NE), serotonin (5-HT), 3,4-

dihydroxphenylacetic acid (DOPAC), Homovanillic Acid (HVA) and 5-

Hydroxyindole Acetic Acid (5-HIAA).  In order for a probe to be used in these 

studies, an in vitro probe recovery of 10% ± 1 was required based on 

methodological standards. Based on this exchange rate of 10-20%, seen for 

molecules similar in size to amphetamine such as DA, NE, and 5-HT, we 

determined the effective concentrations of stimulant drugs across a range of 

starting concentrations. Stimulant concentrations were chosen to represent a 

range of concentrations that included clinically relevant levels.  Based on the 

approximate exchange rate, solutions of aCSF only, 0.1 µM, 0.5 µM, 1 µM, 5 µM, 

10 µM, 25 µM, 50 µM, 100 µM, 400 µM (for D-amphetamine, L-amphetamine, 

methylphenidate, D,L-amphetamine, and cocaine), 533 µM (for Reverse Adderall 

only), and 539 µM (for Adderall® only) were prepared via serial dilutions at a pH 

of 7.4.  Solutions were prepared for study and consisted of normal aCSF and 

drug.   Prior to each experiment, 20 mM ascorbic acid was added to each 

solution and solutions were aerated with 95% O2/5% CO2.  Solutions were 

immediately added to individual 1000 μl gastight syringes.   

 
Histology of the Striatum Following Intracerebral Reverse Microdialysis 

 
Following each experiment, rats were intracardially perfused with 0.9% 

NaCl solution followed by a 4% paraformaldehyde solution.  They were then 

decapitated, and their brains were frozen, sliced on a cryostat, and stained with 

Cresyl Violet.  Probe placements were confirmed histologically.  An example of a 

brain section after a microdialysis experiment is shown in Figure 2.3.   
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Analysis of Microdialysis Samples 
 

 HPLC analysis followed the methods described by Hall et al. (1989).  The 

low level detections of DOPAC, DA, 5-HT, NE, 5-HIAA, and HVA were performed 

using an isocratic HPLC system (Beckman, Inc., Fullerton, CA) coupled to a 

dual-channel electrochemical array detector (model 5300A, ESA, Inc., 

Chelmsford, MA), E1 = +0.35 mV and E2 = -0.25 mV, with an ESA model 5011A 

dual analytical cell. The compounds of interest were separated with reverse-

phase chromatography, using a C18 column (4.6 mm x 75 mm, 3 μm particle 

size, Shiseido CapCell Pak UG120, Shiseido Co., LTD., Tokyo, Japan) with a pH 

4.1 citrate-acetate mobile phase, containing 4% methanol and 0.34 mM 1-

octane-sulfonic acid and delivered at a flow rate of 2.0 ml/min. Peaks for the 

analytes were identified by retention times from known standards.  

 

Statistical Analysis of Analyte Levels in Microdialysis Samples 
 

 Data were collected from 5-6 animals per 10 drug concentrations (for 

Adderall®, D-amphetamine, Reverse Adderall, and methylphenidate).  Data were 

collected for 5-6 animals for the highest drug concentration only for L-

amphetamine, D,L-amphetamine, and cocaine.  The raw microdialysis values 

were expressed as nM based on a 1 x 10-7 M mixed standard of known analytes 

and concentration used to determine a percent recovery in vitro prior to use of 

each probe.  Outliers were excluded based on data falling outside of 2 standard 

deviations from the mean. Concentration-response curves were constructed 

based on the mean peak DA overflow concentration following the twenty minute 

reverse microdialysis of each drug concentration.  GraphPad Prism statistical 

analysis software, version 4.0 (Prism, San Diego, CA, USA), was used to 

determine the appropriate nonlinear curve fit and Log half maximal effective 

concentration (EC50) of each drug. An initial one-way analysis of variance was 

used to determine significance of DA overflow from the aCSF control.  A second 

one-way analysis of variance was used followed by post-hoc t-tests with 
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Bonferroni’s corrections to compare DA following reverse microdialysis of 

clinically relevant drug concentrations and maximum concentrations.  Statistical 

significance was defined as p<0.05. 
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Figure 2.1 Typical Amphetamine-Evoked DA Release Signal 
 

A representation of typical tracings of D-amphetamine-induced DA release 

measured by high-speed (5 Hz) chronoamperometry is shown.  The top signal 

indicates the oxidation of DA and the bottom signal indicates the reduction 

current.  The measured reduction/oxidation (redox) ratio of this DA release signal 

is characteristic of DA detection by the microelectrode.  Rise time (TR) is 

indicated and defined by the total time required for the DA signal to reach the 

indicated maximum amplitude.  80% decay time (T80) is a measure of the total 

time required for the DA release signal to decay 80%.  Inset:  Measured redox 

ratios of carbon fiber microelectrodes used for experiments.  Prior to use of each 

microelectrode, in vitro calibrations were completed to determine redox ratios 

before insertion into the rat brain.  The mean in vivo redox ratio was determined 

by averaging ratios from amphetamine-induced DA recordings in multiple rat 

brains.  The in vivo and in vitro redox ratios are similar to those expected for DA 

and notably different from recordings of 5-HT and ascorbate in vitro. 
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Figure 2.2 Histological Preparation of a Rat Brain After Acute 
Electrochemical Recordings 

Following the recording session and perfusion of the rat, brains were removed, 

frozen, sectioned, and stained with Cresyl Violet to check accuracy of probe 

placement.  Arrow denotes probe track of a carbon fiber microelectrode coupled 

to a micropipette in the striatum (Chapters 3 and 4).  The tip of the 

microelectrode, with an outer diameter of 30 µm, was waxed 250 µm from the tip 

of a micropipette (inner diameter of 10 µm).  The histology above shows little 

damage after a complete experiment. 
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Figure 2.3 Histological Preparation of Rat Brain Striatum After a 
Microdialysis Experiment 

Following the microdialysis session and perfusion of the rat, brains were 

removed, frozen, and sectioned on a cryostat and subsequently stained with 

Cresyl Violet to check accuracy of probe placement.  Arrow denotes probe track 

of the microdialysis probe in the striatum (Chapter 5).  The membrane of the 

microdialysis probe had an outer diameter of 240 µm and was 2 mm in length.   
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Figure 2.4 Fischer 344 Rat Prepared for In Vivo Voltammetric Recordings 
3-6 month old F344 rats were anesthetized with 25% urethane and carbon fiber 

microelectrodes were lowered into the striatum for recordings of DA release 

signals.  

 
 

Figure 2.5 Fischer 344 Rat Prepared for Intracerebral Reverse Microdialysis 
3-6 month old F344 rats were anesthetized with 25% urethane and CMA 

microdialysis probes were lowered into the striatum for microdialysis of aCSF. 
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Figure 2.6 Carbon Fiber Microelectrode 
 Carbon fiber microelectrode (above) and the gold-plated amphenol (below) used 

to connect the probe to the recording system head stage. 

 
 
 
 

                   
 

Figure 2.7  Schematic of a Carbon Fiber Microelectrode  
The single channel recording tip of a carbon fiber microelectrode coated with 

Nafion® (yellow)(left) to increase selectivity for DA, and an electromicrograph of a 

carbon fiber microelectrode tip (Right). 
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Figure 2.8 CMA/110 Liquid Switch  
The CMA/110 Liquid Switch with 3 syringe capacity, blue tubing adapters, and 

tubing (left) and the reverse side (right) with central outlet tube that connects to 

the microdialysis probe. 

 

 
 
 

Figure 2.9 CMA/11 Microdialysis Probe (2 mm membrane) 
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Figure 2.10 Microsyringe Pump and1000µl Hamilton Syringes Containing 
aCSF and Stimulant  

 

 
 

Figure 2.11 ESA Coulochem III High Performance Liquid Chromatography 
Electrochemical Detector and Auto-Sampler 

Copyright © Barry Matthew Joyce 2006 
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Chapter 3: Differential Effects of Amphetamine Isomers on Dopamine 
Release in the Rat Striatum and Nucleus Accumbens Core 

 

Introduction 
 

Since their initial discovery in the mid 1900s, stimulants have been used 

as first-line agents in treating ADHD.  Recently, development of sustained- 

release delivery systems, racemic compounds, and single-isomers of already 

approved stimulants have led to an increase in the number of marketed 

stimulants available for treatment options.  In the 1990s Adderall® was marketed 

as a stimulant with an increased half-life of efficacy that attained approximately 

29% of the market share in stimulant prescriptions by 2000 (Goodman and 

Nachman 2000).  The drug Adderall® is made of an equal-weight composition of 

four amphetamine salts (D-amphetamine saccharate, D,L-amphetamine 

aspartate, D-amphetamine sulfate and D,L-amphetamine sulfate) yielding a 

combination of 75% D-amphetamine and 25% L-amphetamine.  The longer 

efficacy of Adderall® has generally been attributed to differential absorption of 

component salts (Hampshire, Chineham, England), however, data supporting 

this has never been shown.  James et al. (2001) recently published the first 

randomized, double-blind, cross-over comparison of Adderall® versus immediate 

and timed-release D-amphetamine.  This study demonstrated the faster onset 

and longer duration of action of Adderall® when compared to D-amphetamine on 

target symptoms of hyperactivity, however potencies between the two are similar.  

Benzedrine® (D,L-amphetamine) had been used as a treatment for ADHD until 

removed from the market in the 1970s due to the increased abuse potential 

associated with this medication.  A clinical study completed around this same 

time indicated that individuals respond differently in regards to efficacy and side 

effects of Benzedrine® versus D-amphetamine (Gross, 1976).   

 For several decades, stimulants such as methylphenidate and D-

amphetamine have been instrumental in treating the symptoms of ADHD and are 

thought to be safe and effective.  Given their widespread use, their mechanisms 
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of therapeutic action in the context of ADHD remain unclear (Solanto et al. 2001; 

Goodman et al. 2001).  In the presence of D-amphetamine, dose-dependent 

increases in pre-synaptic dopamine (DA) and norepinephrine (NE) release occur 

via a calcium-independent mechanism (Carboni et al. 1989; Kahlig and Galli 

2003).  Amphetamine is likely to be active at multiple cellular targets including the 

vesicular monoamine transporter (VMAT), the DA transporter (DAT), and 

monoamine oxidase (MAO).  The therapeutic nature of stimulants and their 

known interactions with DA support the current consensus hypothesis that ADHD 

symptomatology is likely due to dysregulation of catecholaminergic 

neurotransmission.   Interruptions in dopaminergic neurotransmission in the 

prefrontal cortex, striatum, and nucleus accumbens have been implicated 

(Solanto et al. 2001; Biederman and Faraone 2002).   

 In regards to increasing extracellular DA in the brain, L-amphetamine is 

often considered to be inactive (Goodman et al. 2001) while differential 

pharmacokinetic properties have been shown in comparison with D-

amphetamine.  L-amphetamine has displayed paradoxical effects such as 

decreased locomotion in mice at low doses and increased locomotion in mice at 

high doses (Stromberg and Svensson 1975).  Rats will self-administer L-

amphetamine, and children with ADHD have been successfully treated with L-

amphetamine (Yokel and Pickens 1973; Arnold et al. 1976).  Hippocampal data 

have shown that the enantiomers initiate differential release of DA (Kuczenski et 

al. 1995).  Kanbayashi et al. (2000) showed that D-amphetamine treats different 

symptoms than L-amphetamine in a canine model of narcolepsy.  D-and L-

amphetamine administered alone versus in combination and the relevance of the 

enantiomer interactions have not been shown in the context of therapeutic doses. 

 For the studies described in this chapter we investigated the potential 

differences between the dynamics of DA release produced by racemic 

amphetamine (D,L-amphetamine) compared to D-amphetamine.  In addition, we 

directly compared the effects of the single D- and L-amphetamine enantiomers.  

We tested the hypothesis that L-amphetamine has differential effects on DAT 

regulation in comparison to D-amphetamine.  We used the technique of high 
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speed chronoamperometry coupled with Nafion®-coated single carbon-fiber 

microelectrodes to measure locally-applied (D,L-, D-, and L-) amphetamine-

evoked DA release on a second-by-second basis in the striatum and nucleus 

accumbens core of anesthetized Fischer 344 (F344) rats.  Local applications of 

drugs were used to avoid pharmacokinetic issues and interference with the 

kinetics of the direct actions of amphetamine isomers.   

 

Methods 
 

Drug Concentrations used for In Vivo Electrochemical Recordings 
 

The volume of applied drug was kept constant at 500 nl and was 

measured using a dissection microscope fitted with a calibrated reticule (1 mm 

change=25 nl of fluid) (Cass et al. 1992, 1993a; Friedemann and Gerhardt 1992).  

Drugs were dissolved in 0.9% physiological saline and final drug solutions were 

brought to a pH of 7.4.  The amounts of drugs applied were determined as: 2 

nanomoles D-amphetamine, 4 nanomoles D,L-amphetamine, 2 nanomoles D,L-

amphetamine and 2 nanomoles L-amphetamine.  For additional 
methodological details, see Chapter 2. 
 

Results 
 

Amphetamine-Induced Release of DA 
 

 All amphetamine solutions applied locally yielded increases in extracellular 

levels of DA and elongated signals similar to the slow releasing properties 

associated with amphetamine and in comparison to the faster signals produced 

via potassium induced depolarization release of DA (Hoffman and Gerhardt 

1999).  Figure 2.1 (Chapter 2) displays the oxidation and reduction current 

signals recorded following local application of approximately 500 nl of an 

amphetamine solution.  Carbon fiber microelectrodes that primarily measure DA 
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were used according to in vitro calibration data; the average in vitro redox ratios 

are shown as the inset of Figure 2.1.  These ratios were compared to those 

observed in vivo during the recordings in rat brain and indicated no significant 

difference.  However, these ratios were significantly different than in vitro redox 

ratio measurements of 5-HT and the interferent ascorbic acid.  These high-

temperature treated, Nafion®-coated microelectrodes reliably measured 

amphetamine evoked DA signals that yielded the chemical fingerprint redox ratio 

for DA (~0.78) (Gerhardt and Hoffman 2001). 

 
Comparisons of D-amphetamine and D,L-amphetamine-Induced DA 

Release in the Rat Striatum 
 

 At equivalent concentration and volume, D-amphetamine, D,L-

amphetamine and 2x D,L-amphetamine (double the concentration of the D,L-

amphetamine to match the concentration of D-amphetamine used in the first 

solution) were locally applied to the striatum.  A total of 28, 34, and 40 DA 

release recordings for D-amphetamine, D,L-amphetamine and 2x D,L-

amphetamine respectively were recorded.  Figure 3.1 displays representative 

signals from 2 x D,L- and D-amphetamine-evoked DA, indicating the similar 

amplitudes and significantly different time course of DA release signals: the inset 

displays the differences in time course.  When considering the amplitudes of the 

recorded DA signals from multiple sites in the rat striatum, D,L-amphetamine 

evoked significantly lower DA amplitudes that were approximately one-half of 

those evoked by both D-amphetamine and 2x D,L-amphetamine (p<0.01, Fig. 3.2 

a).  Amplitudes of the DA signals produced by D-amphetamine and 2x D,L-

amphetamine were not significantly different. In Figure 3.2 b the data were 

expressed by the amplitudes of the DA signals in respect to the nanomoles of the 

D-amphetamine isomer that was locally applied.  In this format, the DA release 

amplitudes were normalized and there was no significant difference between the 

three amphetamine solutions.  The amplitude of the DA signal was related to the 
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concentration of the D-amphetamine isomer in the applied solution, and the L-

amphetamine had little or no effect on the absolute amplitude of DA release.   

 The temporal properties of the evoked DA release signals were 

significantly different between the D,L-amphetamine and D-amphetamine 

solutions.  Rise time (TR) comparisons indicated that both D,L-amphetamine 

solutions resulted in DA signals with significantly faster TR than D-amphetamine 

(2 x D,L-amphetamine p<0.01; D,L-amphetamine p<0.05, Fig. 3.3 a).  Finally, 

D,L-amphetamine solutions yielded DA signals with a significantly faster T80 

(p<0.001, Fig. 3.3 b). 

   

Comparisons of D-, D,L-, and 2 x D,L-amphetamine- Evoked DA Release in 
the Nucleus Accumbens Core 

 
 These studies were carried out to examine the effects of local applications 

of D-amphetamine and D,L-amphetamine on DA release signals in the nucleus 

accumbens core.  A total of 17, 16, and 21 DA release signals, collected from 

seven rats for each group, were used to make comparisons between D-

amphetamine, D,L-amphetamine, and 2x D,L-amphetamine respectively.  

Amplitudes of DA release signals caused by D,L-amphetamine were significantly 

lower than D-amphetamine and 2 x D,L-amphetamine-evoked DA release signal 

amplitudes, while the latter two were not significantly different from each other 

(p<0.05; Fig. 3.4 a).  Figure 3.4 b shows the amplitude data normalized to the 

nanomoles of the D-amphetamine isomer applied.  Similar to data collected in 

the striatum, there were no differences when viewing the amplitudes of DA 

release in respect to the amount of D-amphetamine applied.  These data support 

that the overall DA release corresponded to the amount of D-amphetamine 

isomer applied and was independent of the amount of L-amphetamine. 

 DA signal kinetic differences resulted in the nucleus accumbens core 

analogous to data collected in the striatum.  D,L-amphetamine solutions 

produced DA signals with faster TR than D-amphetamine-evoked DA release 

(p<0.01; Fig 3.5 a). While T80 decay times were not significantly different when 
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compared via repeated-measures ANOVA, significance was shown using a pair 

wise comparison followed by Bonferroni corrections for multiple comparisons.  

T80 decay times were significantly faster with D,L-amphetamine evoked DA 

signals (p<0.001; Fig 3.5 b).   

 

D-amphetamine Versus L-amphetamine Induced DA Release in the Striatum 
and Nucleus Accumbens Core 

 
 A comparison of the properties of single isomer drug solutions were 

carried out to investigate the effects of locally applied D-amphetamine and L-

amphetamine on DA release in the striatum and nucleus accumbens core.  A 

major finding supported by these data was that D-amphetamine evoked DA 

signal amplitudes were not significantly different from L-amphetamine evoked DA 

signal amplitudes (Fig 3.6 a).  DA release signals were recorded from a total of 9 

rats, 34 signals for D-amphetamine and 7 rats, 17 signals for L-amphetamine.  

Significantly faster TR and T80 were observed in the presence of L-amphetamine 

when compared to D-amphetamine (p<0.001; Fig 3.6 b,c) similar to the 

differences found between D-amphetamine and D,L-amphetamine.  Similar to the 

differences between D- versus L- amphetamine in the striatum, differences in the 

nucleus accumbens were supported by data from a total of 4 rats with L-

amphetamine and 16 rats with D-amphetamine (data not shown). 

  

Discussion 
 

 The studies described here explain the faster onset and offset of DA 

release in the presence of D-amphetamine versus D,L-amphetamine when the 

drugs were applied locally to the striatum and core of the nucleus accumbens of 

anesthetized rats.  The amplitudes of DA release were related to the amount of 

D-amphetamine present in the solution, and the presence of L-amphetamine only 

seems to regulate the time course of DA release.  When comparing local 

applications of the D- and L-isomers, we saw that the overall DA signal 
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amplitudes were slightly smaller in the presence of L-amphetamine indicating its 

potency in causing DA release in the CNS.  These findings are similar to 

previous literature that support differential potency and efficacy reported in 

clinical studies (Arnold et al. 1976).  Comparatively, previous animal studies have 

shown differences in the effects on behavior between D- and L-amphetamine 

(Yokel and Pickens 1973; Jones et al. 1974; Smith and Davis 1977).  In HEK 293 

cells transfected with the human DAT (hDAT), L-amphetamine has been shown 

to serve as a potential substrate for the transporter (Sitte et al. 1998).  In regards 

to measurements of transporter currents, the potency associated with L-

amphetamine was three to six times lower than that reported with D-

amphetamine, while both D- and L- amphetamine produced similar currents.  

This is the first time that the high temporal resolution of voltammetry has been 

used to examine in vivo differences in the presence of rapid, first-time exposure 

to stimulants as opposed to alternate systemic routes of administration.  The data 

presented in this chapter differ from data collected supporting greater differences 

in potency between the amphetamine isomers and a lack of kinetic differences 

that have been supported by data from alternative methodologies (Kuczenski et 

al. 1995; Kanbayashi et al. 2000). 

 For these studies, L-amphetamine was given in combination with D-

amphetamine and the results support a theoretical mechanism describing the 

role of L-amphetamine in altering D-amphetamine-evoked DA release.  One 

possibility involves effects not previously described of L-amphetamine 

interactions with the DAT.  DA neurotransmission is rapidly regulated by the 

DAT, and a plausible explanation is a novel relationship between the DAT and L-

amphetamine (Gulley and Zahniser 2003).  On the order of seconds (acute 

amphetamine exposure), previous information support the down regulation of 

DAT activity in two ways:  by direct inhibition of D-amphetamine or via the 

internalization of the DAT from the membrane to intracellular locations regulated 

by protein kinase C.  L-amphetamine could block the rapid down regulation of 

membrane DAT activity caused by D-amphetamine.  This would allow the rapid 

efflux of DA through the DAT and a faster influx of DA via DAT reuptake after the 
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DA signal amplitude approaches its peak measurement.  Potential L-

amphetamine competitive inhibition may block D-amphetamine for the D2R 

autoreceptors that would phosphorylate the DAT downstream via PKC.  A 

second explanation could involve a target site on the DAT where L-amphetamine 

may inhibit rapid down regulation caused by D-amphetamine.  This hypothesis 

could be studied in cells transfected with the hDAT, while measuring the Vmax of 

D-amphetamine evoked DA efflux with or without L-amphetamine.  The study of 

second messenger regulation involved in this process would be valuable for 

determining its role in DAT membrane expression and/or activity.  While these 

are potential mechanisms of activity, it is possible that these differential effects 

are being determined via other cellular targets such as MAO inhibition, V-MAT 

effects, or direct regulation of the DAT and/or DA receptors.   

 These studies were designed to measure the effects of amphetamines 

used for the treatment of ADHD on DA neurotransmission however some 

caveats should be noted.  While a racemic mixture of D- and L-amphetamine 

was used and compared to D-amphetamine, this combination of amphetamine is 

not commercially available except in the form of Adderall®, 25% L-amphetamine: 

75% D-amphetamine.  In Chapters 4 and 5, we present data describing the 

effects of Adderall similar to what is commercially available.  Therapeutic levels 

of amphetamine are projected to be in the range of 10-50 µM (Shader er al. 

1999; Solanto et al. 2001) or even lower, however, the concentrations used for 

these studies may have been higher.  Concentrations were used that would have 

yielded effective tissue concentrations in the range of 40-400 µM based on local 

dilution of the applied drug after ejection from the micropipette (Gerhardt and 

Palmer 1987).  Data collected at lower drug concentrations will be presented in 

Chapters 4 and 5.  The F344 rats that were used for analysis are not animal 

models of ADHD; therefore the information gained from these studies explain the 

normal biology of the system and not a diseased model.  The recordings 

completed for this study were taken from the striatum and nucleus accumbens 

core of rats allowing for predominant measurement of DA versus other 

neurotransmitters that may be important to the effects of amphetamine on the 
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CNS.  The drug solutions were locally applied to the brain region of interest 

circumventing issues of systemic nature that would be caused by oral or 

intraperitoneal dosing of amphetamine (Gerasimov et al. 2000).  It is necessary 

to carry out future studies that will use lower doses/concentrations of stimulant 

medications to mimic the therapeutic effects (Kuczenski and Segal 2001).   

 The data support that D,L-amphetamine and L-amphetamine locally 

applied to the striatum and nucleus accumbens result in more rapid release of 

DA in comparison to evoked DA release caused by D-amphetamine.  The data 

shown here indicates that L-amphetamine does not significantly increase DA 

release evoked by D,L-amphetamine, yet it evokes a similar DA response when 

applied alone.  In correlation with clinical and experiment data, our findings 

suggest that the presence of L-amphetamine given alone, or in combination with 

D-amphetamine can cause differential behavioral effects relative to D-

amphetamine.  Future studies are needed to create a better explanation of the 

mechanisms of drugs that are used in the treatment of ADHD.   
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Figure 3.1 Representative DA Release Signals Evoked by D- and 2 x D,L-
amphetamine 

 
Representative DA release signals from the F344 rat striatum indicating the time 

course of DA release.  The faster TR and T80 of 2x D,L-amphetamine is indicated 

by the solid line and the longer time kinetics of D-amphetamine is shown by the 

dashed line.  Inset:  The first minute of DA release of these representative 

signals and their significant differences.   
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Figure 3.2 Amplitudes of Amphetamine-Evoked DA Signals in the Striatum 

 
a. Amplitudes of DA release recorded in the striatum following local application of 

D-amphetamine, D,L-amphetamine, and 2 x D,L-amphetamine.  2 x D,L-, D-

amphetamine versus D,L -amphetamine (**p<0.01). b.  Amplitudes of DA release 

normalized with respect to nanomoles D-amphetamine in the drug solution.  

Redox ratios of predominantly DA confirmed signal identities.   
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Figure 3.3 Kinetics of Amphetamine-Evoked DA Release Signals in the 

Striatum 
 

 a. Rise times of DA release signals evoked by local applications of 

amphetamine in the rat striatum.  D,L-amphetamine and 2x D,L-amphetamine 

versus D-amphetamine; *p<0.05 and **p<0.01, respectively.  Redox ratios of 

predominantly DA confirmed signal identities.  b. T80 decay times of DA release 

signals evoked by local applications of amphetamine in the rat striatum.  D,L-

amphetamine and 2x D,L-amphetamine versus D-amphetamine; ***p<0.001.  

Redox ratios of predominantly DA confirmed signal identities. 
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Figure 3.4 Amplitudes of Amphetamine-Evoked DA Signals in the Nucleus 

Accumbens Core 
 
a.  Amplitudes of DA release recorded in the nucleus accumbens core following 

local application of D-amphetamine, D,L-amphetamine, and 2 x D,L-

amphetamine.  D,L-amphetamine versus D-amphetamine (*p<0.05).  b. 
Amplitudes of DA release normalized with respect to nanomoles D-amphetamine 

in the drug solution.  Redox ratios of predominantly DA confirmed signal 

identities.   
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Figure 3.5 Kinetics of Amphetamine-Evoked DA Release Signals in the 

Nucleus Accumbens Core 
 

a. Rise times were significantly longer for D-amphetamine versus D,L-, and 2 x 

D,L- amphetamine (**p<0.01) b.  T80 decay times were significantly longer for D-

amphetamine versus D,L-, and 2 x D,L- amphetamine (***p<0.001).   
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Figure 3.6 Amplitude and Kinetics of D- and L-amphetamine Evoked DA 

Release in the Striatum (Continued on next page) 
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Figure 3.6 Continued a.  DA release signal amplitudes comparing the effects of 

single enantiomer applications of D- and L-amphetamine in the striatum revealed 

no significant differences.  b. L-amphetamine rise times were significantly faster 

than D-amphetamine rise times (***p<0.001). c. T80 decay times of L-

amphetamine were significantly faster than D-amphetamine (***p<0.001).   
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Chapter 4: Adderall® Produces Increased Striatal Dopamine Release and A 

Prolonged Time Course Compared to Amphetamine Isomers 
 

Introduction 
 

Adderall® has been available for clinical use since the 1990s and was 

initially advertised as a long-acting amphetamine that would eliminate the need 

for multiple administrations during the day (Popper 1994).  The drug made a 

prominent entry into the market and by the turn of the century constituted 25% of 

the prescriptions written for ADHD (Goodman and Nachman 2000).  Recent data 

indicate that Adderall® in its extended release form (Adderall XR®) continues to 

increase in yearly sales that now outsell the main methylphenidate sustained 

release form, Concerta® (Mathews 2006). Adderall® consists of a combination of 

four amphetamine salts:  D-amphetamine saccharate, D,L-amphetamine 

aspartate, D-amphetamine sulfate, and D,L-amphetamine sulfate at equal 

weights.  This mixture gives an approximate amount of D- versus L- 

amphetamine of 75-80% and 20-25% in a 10 mg tablet (Patrick and Markowitz 

1997).  

The prolonged activity of this drug in its immediate release form has been 

suggested by the pharmaceutical company (Hampshire, Chineham, England) to 

be due to the differential absorption of the component salts, however these data 

were never published (Popper 1994). The first randomized, double-blind, 

crossover comparison of Adderall® versus D-amphetamine supports that 

Adderall® worked slightly faster and lasted longer than D-amphetamine (at the 

same total doses) in decreasing hyperactivity, while the two drugs displayed 

similar potencies (James et al.  2001).  There are few published studies reporting 

the in vivo DA releasing properties of clinically used stimulants such as Adderall® 

and Dexedrine® (100% D-amphetamine).  

D-amphetamine and related isomers are believed to promote presynaptic 

release of dopamine (DA) in the striatum by inducing reverse transport and 

blocking the reuptake capabilities of the dopamine transporter (DAT) (Glowinski 
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et al. 1966; Carboni et al. 1989; Sulzer et al. 1993, 1995; Pierce and Kalivas 

1997; Gnegy et al. 2004).  The apparent interaction between amphetamine and 

DA/NE neurotransmission supports the current consensus hypothesis that ADHD 

symptomatology results from dysregulation of the release properties of 

catecholaminergic projections to the prefrontal cortex and/or striatum (Solanto et 

al. 2001; Biederman et al. 2002).  The data support differences between the 

pharmacokinetic properties of D-amphetamine and L-amphetamine.  L-

amphetamine is noted to be slightly more potent than D-amphetamine in use as 

a sympathomimetic drug while the D-isomer is suggested to be 3 to 4 times more 

potent than the L-isomer in acting as a central nervous system stimulant 

(Goodman et al. 2001).  Rats are known to self administer L-amphetamine and 

data support that it is effective in treating children with ADHD (Arnold et al. 1972, 

1976; Yokel and Pickens 1973,1974).   

In this study, we investigated clinical reports of differential response to 

Adderall® by comparing the dynamics of DA release evoked by D-amphetamine, 

D,L-amphetamine, and Adderall® in the striatum of anesthetized rats.  Our prior 

studies support that there are differences in kinetics of evoked DA release that 

differ between D-amphetamine and D,L- amphetamine when locally-applied in rat 

striatum (Chapter 3).  High speed chronoamperometry coupled with Nafion®-

coated single carbon fiber microelectrodes was used to test the hypothesis that 

the enantiomers and/or components of Adderall® evoke greater DA release in rat 

striatum with a longer time course.  This is the first in vivo demonstration of the 

effects of Adderall® versus D-amphetamine and D,L-amphetamine on DA 

neurotransmission using local applications of drugs to evaluate their effects in the 

rat brain.  Drugs were applied in low levels to better simulate clinically relevant 

levels of these ADHD medications, and locally to eliminate drug pharmacokinetic 

issues from the study.  The success of stimulant treatments for ADHD to 

decrease hyperactivity and increase attention is known to be highly variable from 

one patient to another (Rapoport et al. 1978; Elia et al. 1991).  Since the primary 

purpose of these studies was to assess mechanistic properties using low levels 

of amphetamine, we chose normal, developmentally mature adult (3-6 month 
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old), F344 rats to study the effects of amphetamine isomers on striatal DA 

neurotransmission. 

 
Methods 

 
Drug Concentrations used for In Vivo Electrochemical Recordings 

 

The volume of applied drug was kept constant at 500 nl and was 

measured using a dissection microscope fitted with a calibrated reticule (1 mm 

change=25 nl of fluid) (Cass et al. 1992, 1993a; Friedemann and Gerhardt 1992).  

Drugs were dissolved in 0.9% physiological saline and final drug solutions were 

brought to a pH of 7.4.  Adderall®, D,L-amphetamine or D-amphtamine solutions 

were applied in the following amounts (0.68 nanomoles Adderall®, 1 nanomole 

D,L-amphetamine, and 0.5 nanomoles D-amhetamine).  Therefore a constant 0.5 

nanomoles of the D-amphetamine isomer were applied in all drug treatments in 

Chapter 4 in order to investigate the effects of differing amounts of L-

amphetamine.  For methodological details, see Chapter 2. 
 

Results 
 

Signal Confirmation 
 

After local applications of the amphetamine solutions to the striatum, the 

resulting DA signals exhibited slow release and uptake properties as compared 

to the faster properties of DA signals produced by depolarization with potassium 

applications (Friedmann and Gerhardt 1992).  We confirmed that our 

microelectrodes were measuring primarily DA by comparing the mean redox 

ratios obtained in vivo to those of in vitro calibrations, finding no significant 

differences similar to data shown in Figure 2.1 of Chapter 2.  However, our redox 

ratios were significantly different from the much lower ratios obtained from in vitro 

measures of serotonin (5-HT) and ascorbic acid (Fig. 2.1). Taken together, our 
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measurements confirm that Nafion®-coated carbon fiber microelectrodes used for 

these studies were capable of measuring signals that match the chemical 

fingerprint for DA upon local applications of amphetamine solutions and that 

signals produced by locally-applied D-amphetamine were predominantly DA. 

   

Comparisons of Adderall®, D-amphetamine, and D,L- amphetamine  in the 
Rat Striatum 

 
These studies investigated the effects of locally applied amphetamine 

solutions of D,L-amphetamine, Adderall®, and D-amphetamine. Significant 

differences were found among the resulting DA signal amplitudes.  Figure 4.1 

shows three representative DA release signals from applications of D-

amphetamine, D,L-amphetamine, and Adderall® and the differences in 

amplitudes and time courses of the signals.    The respective in vivo redox ratios 

(0.7-0.8) of the three drug-induced signals, indicative of predominantly DA 

release signals, are shown in the inset of Figure 4.1.   

Applications of Adderall® resulted in significantly greater DA release 

amplitudes compared to D-amphetamine (p<0.001) and D,L- amphetamine 

(p<0.001) supportive of a greater effect on DA neurotransmission (Fig 4.2 a).  

Adderall® showed nearly a 40% greater effect on DA release amplitude in 

comparison to the other amphetamine isomers, providing the first in vivo data in 

parallel with the noted clinical efficacy of this drug. The amplitude of DA released 

per nanoliter of drug applied was significantly greater for Adderall® than for the 

other drugs tested indicating greater effects on evoked DA release at the same 

volume of drug applied into rat striatum (Fig. 4.2 b; p<0.001).  This effect was 

achieved with the same number of equivalents of D-amphetamine in the 

Adderall® drug solution.  This information supports the increased magnitude of 

DA evoked by D-amphetamine in the context of a smaller amount of L-

amphetamine. 

Temporal differences in the drug-evoked signals were also observed in 

the rise times (TR) and 80% decay times (T80) among Adderall®, D,L-
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amphetamine, and D-amphetamine (Fig. 4.3 a, 4.3 b; p<0.001, p<0.05).  

Adderall®, as shown in Figure 4.3 a, evoked DA release over a significantly 

longer period of time as compared to the other drugs supporting the increased 

time course of activity associated with this drug in the clinic (p<0.001).  D-

amphetamine evoked DA release over a small but significantly longer time period 

in comparison to D,L-amphetamine, replicating our work described in Chapter 3 

(Fig. 4.3 a; p<0.05).  The 40% longer effect on TR by Adderall® greatly contributes 

to the increased amplitude and total area of Adderall®-evoked DA signals.  Figure 

4.3 b shows the significant differences in decay times among Adderall®, D-

amphetamine, and D,L-amphetamine (p<0.001) indicative of an increased effect 

on the time course of DA release.  The 50% longer T80 associated with the 

clearance of Adderall®-evoked DA release is likely due to a greater amount of DA 

that remains to be cleared.  This likely has implications on the clearance 

capacity/availability of the DAT that is available to remove DA from the 

extracellular space (Cass et al. 1993b; Giros et al. 1996; Saunders et al. 2000; 

Gulley et al. 2002; Madras et al. 2002; Kahlig and Galli 2003; Kahlig et al.  2004).  

The increased T80 associated with Adderall® theoretically supports that the 

components of Adderall® cause an initial DAT upregulation to the plasma 

membrane or changes DAT conformation to allow more DA to pass through.  

This is followed by a very potent blockade and/or a decrease in plasma 

membrane or functional DAT levels that contribute to the elongated Adderall® 

evoked DA release signals. 

 
Discussion 

 
In summary, these are the first in vivo data reporting differences between 

Adderall®, D-amphetamine, and D,L-amphetamine and their effects on DA 

release signal properties in rat striatum with potential implications to their clinical 

differences.  Adderall® produced DA release signals with the longest rise time 

and decay time as compared to D-amphetamine and D,L-amphetamine.  

Differences were also observed between the effects of D- and D,L-amphetamine 
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on the kinetics of DA release.  Taken together, these data support the hypothesis 

that Adderall® evokes greater DA release in rat striatum with a longer time 

course, which is produced by the combination of amphetamine enantiomers 

and/or salts present in the drug solution.   

While these studies were designed to investigate the effects of 

amphetamine isomers on DA release and uptake properties, the clinical 

implications of these data should be interpreted with caution.  Acute local 

applications of stimulants in anesthetized animals do not mimic repeated 

systemic administration of stimulants in ADHD patients.  Route and time course 

of amphetamine administration have been shown to affect DA measures in 

microdialysis studies (Kametani et al. 1995; Purdom et al. 2003) supporting the 

use of drug-naïve animals for these studies.  Although it would be most ideal to 

apply the stimulants in amounts that mimic the level striatal nerve endings would 

see physiologically with administration of oral medication for ADHD, data on what 

these concentrations may actually be, and the comparative dosing levels for a rat 

compared to the human are not exactly known.  Therefore we chose to apply the 

stimulants at a concentration designed to both give us consistent and 

comparable DA responses, as well as be at an intermediate portion of the D-

amphetamine concentration-response curve.  Further data on the stimulant 

concentration-response curves are shown in Chapter 5. 

These data are consistent with previous reports that this drug has been 

designed to work over a longer time scale, including its initial effects on DA 

release and its overall activity half-life (Cody et al. 2003).  In addition, these data 

correlate with clinical reports of increased duration of action of Adderall® when 

compared to D-amphetamine in regards to measures of locomotor activity in 

humans (James et al. 2001).  These findings replicate our previous in vivo 

voltammetric studies that investigated differences between D-amphetamine and 

D,L-amphetamine evoked DA release signals (Chapter 3).  In Chapter 3, we 

concluded that local applications of D,L-amphetamine caused a faster release of 

DA than D-amphetamine alone in the striatum and nucleus accumbens core.  

Our present study showed similarities to our previous data in respect to DA 
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release signal amplitudes as well as significant differences in the rise time of the 

signals between D- and D,L-amphetamine.   

The current study points to differential interactions between these 

stimulant drugs and the DAT.  The Adderall® data support that it regulates the 

DAT in such a way that it remains capable of reverse transport of DA into the 

extracellular space and then blocks the uptake of DA both over a longer time 

period (Fig. 4.4).  It is also important to note that nearly all of the DA signals 

recorded in the presence of Adderall® were prolonged and signal decay was 

typically longer than 5 minutes, almost double the signal decay times of the other 

drugs tested.  The kinetic differences observed indicated an overall elongated 

Adderall® effect on DA release similar to previous DA uptake studies carried out 

in the rat striatum after exposure to a selective DA uptake inhibitor, GBR- 12909 

(Cass and Gerhardt 1995).  The amplitude of DA released per volume of drug 

applied was highest with Adderall®, indicating a greater evoked DA response 

elicited than if the same volumes of D-amphetamine and D,L-amphetamine were 

locally administered. While the current data provide evidence for amphetamine 

salt and/or isomer dependent differences in DA evoked release, additional 

studies are necessary to examine specific component interactions with the DAT.     

Due to the elongated time course of the Adderall®-evoked DA release 

signals, we suggest that Adderall® may be causing reverse transport of DA 

through the DAT over a longer time period.  However, a consideration of recent 

literature describing DAT-substrate effects poses other theoretical explanations.  

The DAT is a dynamic protein that shuttles to and from the plasma membrane or 

can undergo conformational changes to regulate its ability to transport DA in and 

out of the cell (Kahlig et al. 2004; Johnson et al. 2005).  Johnson et al. (2005) 

performed in vitro synaptosome studies to assess substrate dependent changes 

in DAT function and found that plasma membrane availability of DATs increased 

in response to acute exposure of amphetamine (<1 min), however the available 

DATs differed in their capacity to transport DA.  

While these studies provide acute exposure of drug over 30 seconds, 

similar to the 20 second application time for our studies, there was an increase in 
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DAT plasma membrane availability over this time frame.   Previous work 

investigating hDAT transfected HEK 293 cells has indicated that both 

enantiomers of amphetamine are substrates with differing potencies and similar 

transporter currents (Sitte et al. 1998).  Likewise, in vitro data support differential 

DAT states that determine the rate and amount of DA that can pass in response 

to amphetamine (Kahlig et al. 2005).  Kahlig et al. (2005) described two 

independent mechanisms by which DAT-mediated DA efflux can occur:  a highly 

regulated facilitated exchange mechanism or a more rapid process that allows for 

bursts of DA efflux through an open channel.   

Considering the noted in vitro observations of the DAT, we propose L- 

amphetamine in Adderall® may be altering DAT function or availability to regulate 

the efficiency by which DA is allowed to pass through.  Upon initial application of 

Adderall®, 1) externalization of the DAT may occur (Johnson et al. 2005) similar 

to initial cocaine induced upregulation of the DAT to the plasma membrane 

(Zahniser and Sorkin 2004) or 2) DATs may undergo conformation changes to an 

open channel mode (Kahlig et al. 2005) to allow large amounts of DA to exit the 

cell representing the large amplitudes seen in our DA release signals.  

Secondary modifications of plasma membrane DAT function or availability 

(trafficking) could decrease plasma membrane levels of DATs similar to DAT 

levels after chronic cocaine exposure (Gulley et al. 2002; Zahniser and Sorkin 

2004).  The decreased plasma membrane availability of the DAT would lead to 

accumulation of extracellular DA over a longer time period to explain the 

elongated Adderall®-evoked DA release signals.  This could be accomplished via 

DA receptor and PKC dependent protein-protein interactions that regulate DAT 

conformation and functional states (Fig. 4.4) (Torres et al. 2003; Khoshbouei et 

al. 2004).   

 In summary, we have shown that Adderall® has a greater effect on DA 

release in the rat striatum compared to D- and D,L- amphetamine.  This study 

documents important information concerning low levels of ADHD drugs and the 

differences seen in evoked DA release signals when varying the ratio of D-

amphetamine to L-amphetamine and salt components.  These findings are 
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similar to clinical data suggesting that Adderall® may be a more potent or a 

longer acting drug choice for certain behavioral symptoms of ADHD.  Future 

studies are needed to elucidate the specific mechanisms governing D-

amphetamine and Adderall®-induced release of DA in vivo. 
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Figure 4.1 Representative DA Release Signals Caused by Local 

Applications of Adderall®, D-amphetamine, and D,L-amphetamine in the 

Striatum 
 

Typical recordings indicating the time course of DA release in the striatum of rat 

brain induced by D,L-amphetamine (circles), D-amphetamine (triangles), and 

Adderall® (squares).  All drug solutions contain an equivalent 0.5 nmol of D-

amphetamine.  Inset:  Measured average in vivo redox ratios of all DA release 

signals, indicative of predominantly DA, included for statistical analysis (n=30, 42, 

54 signals; error bars represent S.E.M). 
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Figure 4.2 Amplitudes of DA Release Signals in the Striatum After Local 

Applications of Adderall®, D,L-amphetamine, and D-amphetamine 

 
 a. The amplitudes of DA release measured in the rat striatum after local 

application of Adderall® were significantly greater compared to D-amphetamine, 

or D,L-amphetamine (***p<0.001).  b. Amplitude of DA (nM) recorded per volume 

of drug applied (nl) in the rat striatum was significantly greater for Adderall® in 

comparison to D-amphetamine and D,L-amphetamine (***p<0.001).  All drug 

solutions contained an equivalent 0.5 nmol D-amphetamine.  Data analyzed by 

MANOVA with Tukeys post-hoc comparisons; error bars represent S.E.M. 

(n=animals, signals;  10, 54; 10, 42; and 10, 30). 
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Figure 4.3 Kinetics of DA Release Signals After Local Applications of 

Adderall®, D,L-amphetamine, and D-amphetamine in the Striatum 

 
a. Rise times for Adderall®-evoked DA release signals in the rat striatum were 

significantly longer than D-amphetamine or D,L-amphetamine evoked DA signals 

(***p<0.001).  Rise times for D-amphetamine evoked DA release signals were 

significantly longer than D,L-amphetamine evoked DA signals similar to prior 

studies (†p<0.05). b. T80 decay times for Adderall®-evoked DA release signals in 

the rat striatum were significantly longer than those produced by D-amphetamine 

or D,L-amphetamine (***p<0.001).  Data analyzed by MANOVA with Tukeys 

post-hoc comparisons; error bars represent S.E.M. (n=animals, signals;  10, 54; 

10, 42; and 10, 30).   
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Figure 4.4 Theoretical Model of Activity Describing Adderall®  

Evoked- DA Release Signals 
 
A. Physiological Function of the DAT:  Under normal conditions, the DAT 

functions to remove presynaptically released extracellular DA for recycling and 

intracellular degradation (Cooper et al. 1996).  B. Phase I Adderall®:  
Amphetamine is theorized to cause a reversal of DA transport through the DAT 

while also blocking future DA reuptake (Seiden and Sabol 1993; Solanto et al. 

2001).  Down regulation of DAT activity results via amphetamine blockade, 

modulation of DAT function, or endocytosis of the DAT over a longer time period 

for Adderall® (Gulley and Zahniser  2003; Torres et al. 2003; Kahlig and Galli 

2003; Khoshbouei et al. 2004; Kahlig et al. 2005).  Early on, Adderall® may 

potently induce an open-pore mode of the DAT or cause an upregulation of 

plasma membrane DATs to allow increased levels of DA to pass through (Kahlig 

et al. 2005; Johnson et al. 2005). C. Phase II Adderall®: Down regulation of 

plasma membrane DATs  or inhibition of DAT function supports the elongated 

decay times seen with Adderall® (Saunders et al. 2000; Gulley et al. 2002; 

Zahniser and Sorkin 2004; Kahlig et al. 2004).  
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Chapter 5: Reverse Microdialysis Studies of the Effects of Psychomotor 
Stimulants Used to Treat ADHD on Extracellular Dopamine 

 
Introduction 

 
Attention-deficit/hyperactivity disorder (ADHD) has an estimated 

prevalence of 3-17% in school age children with stimulant medications being 

used as the predominant mode of treatment (Lahey et al. 1999; Goldman et al. 

1998; Solanto et al. 2001).  Cardinal symptoms of ADHD, such as impulsivity, 

inattention, and motor restlessness, lead to impairment of function in social, 

school, and home settings that are improved by treatment with stimulant 

medications (DSM-IV-TR 2000).  In 2004, prescription sales of stimulants for 

ADHD totaled $3.1 billion dollars, while 2.5 million children and 1.5 million adults 

were estimated to use these medications (Vedantam 2006). Until 2005, sales of 

methylphenidate exceeded the other treatment options.  However, while 

collecting the data for these studies, sales of Adderall® ($1.16 billion) were 

similar or surpassed sales of methylphenidate ($929 million) medications during 

calendar year 2005 (Mathews 2006).  At the current time, all ADHD medications 

are under scrutiny from the media in light of FDA hearings regarding potential 

risks and a need for further characterization.   

Dexedrine® (D-amphetamine), Adderall® (mixed-salts amphetamine), and 

Ritalin® (methylphenidate) are thought to reduce the symptoms of ADHD via 

actions on dopamine (DA) and norepinephrine (NE) nerve endings in the CNS 

(Solanto et al. 2001).  However, their mechanisms of action on neurotransmitter 

release and uptake remain speculative (Ohno 2003).  Specifically, frontal cortex 

and subcortical neural networks (including structures of the basal ganglia) are 

implicated in MRI morphological studies of ADHD versus healthy controls 

(Durston 2003; Solanto et al. 2001; and Sowell et al. 2003).  Within these brain 

structures, catecholaminergic membrane transporters are targets of most ADHD 

stimulants; however, previous data support differential mechanistic theories at 

the level of neurotransmission.  Stimulants inhibit the dopamine transporter 
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(DAT) causing DA levels to increase (Bergman et al. 1989; Cadoni et al. 1995; 

Wall et al. 1993).  While amphetamine is suspected to facilitate DA 

neurotransmission, in general, it is uncertain what differences exist between the 

optical isomers of amphetamine and how they compare to the effects of 

methylphenidate.  In the 1990s the drug Adderall®, containing a mixture of 75-

80% D- and 20-25% L-amphetamine across four component salts, was 

introduced and marketed as a robust treatment for the symptoms of ADHD 

compared to other medications (Popper 1994; Patrick et al. 1997).  One clinical 

study compared Adderall® to D-amphetamine and found that Adderall® 

decreased specific symptoms of hyperactivity slightly faster and over a longer 

time period than D-amphetamine (James et al. 2001).  Other clinical trials 

support that Adderall® is more effective than methylphenidate on outcomes 

measured 4 to 5 hours after dosing (Pelham et al. 1999).  Adderall® given as a 

single morning dose was equivalent to methylphenidate received twice daily in 

regards to clinical improvements during the day (Pelham et al. 1999). In addition, 

methylphenidate has been characterized to have similar effects on DATs as 

cocaine.  Sonders et al. (1997) categorized pharmacological agents that act on 

the human dopamine transporter (hDAT) into two groups:  DA-like (including DA 

and amphetamine) and cocaine-like (including cocaine and methylphenidate).   

Our previously published in vivo voltammetry data showed differences in 

kinetics between amphetamine optical isomers (Chapter 3).  For these studies, 

we found that drugs with L-amphetamine produced faster rise times and signal 

decay times compared to D-amphetamine.  Additionally, data collected by our 

group showed greater amplitudes and longer DA response signal kinetics 

following local applications of Adderall® in comparison with D-amphetamine and 

D,L-amphetamine (Chapter 4).  Our previous studies support differential 

interactions with the mechanisms responsible for presynaptic DA release. 

Due in part to the clinical reports of Adderall® efficacy in comparison to 

other ADHD treatments, we set out to test the hypothesis that D-amphetamine 

and Adderall® (75% D- 25% L- amphetamine) will differ in resulting extracellular 

DA response over a range of concentrationss.  In addition, we speculated that 
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increased DA levels will be produced by amphetamine compared to little or no 

DA response after local applications of methylphenidate and cocaine in 

anesthetized rats.  This concentration-response characterization was carried out 

using reverse microdialysis in drug-naïve animals to circumvent issues regarding 

DAT trafficking and/or change in function following substrate exposure (Kahlig 

and Galli 2003; Kahlig et al. 2004; Purdom et al. 2003).  Finally, we compared 

these drugs with a novel combination of 25% D- 75% L- amphetamine and 

termed this “Reverse Adderall” to investigate the efficacy and potency of a drug 

with more L- than D-amphetamine.  We sought to construct concentration-

response curves for DA and 3,4 dihydroxyphenylacetic acid (DOPAC) of these 

drug solutions to further describe the properties of stimulants that make use of 

different combinations of amphetamine isomers. The concentration range 

included clinically relevant and high-dose effective tissue concentrations 

potentially relevant to stimulant abuse.  Using the technique of microdialysis we 

were able to take measures of DA metabolites following degradation by 

monoamine oxidase.  We suspected that differential effects on metabolite levels 

would result.  Studies of individual concentration-response curves of stimulant 

drugs will demonstrate differential effects the drugs have on DA and metabolite 

levels.  In addition, these are the first experiments, to our knowledge, that have 

investigated these drugs in the context of ADHD using a local administration 

method.   

While we have described the use of voltammetric studies to investigate 

the properties of stimulants at low levels, it is difficult to accurately predict what 

the resulting effective concentrations were.  Voltammetry affords the ability to 

study neurotransmission with high temporal and spatial resolution; however, we 

lose a magnitude of sensitivity that is available using High Performance Liquid 

Chromatography (HPLC) with electrochemical detection (EC).  Using HPLC-EC 

to analyze samples collected during reverse microdialysis (local application) of 

stimulant drugs allows for studies to be carried out with more accurately 

projected drug concentrations.  These studies were designed to complement our 

previous studies and mimic longer administration (over 20 minutes) in converse 
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to the rapid pressure ejection used earlier (20 seconds).  As a final rationale of 

this work, we proposed to investigate complete concentration-response studies 

using reverse microdialysis coupled with HPLC-EC.  Our data are the first 

characterizations of these drugs across low (clinical) and high (abuse) levels 

using local applications of stimulant drugs.  Investigations of concentration-

response patterns were intended to increase our understanding of ADHD drug 

mechanistic activity by looking at their effects on DA and metabolite levels.   

 

For methodological details, see Chapter 2. 
 

Results 
 

Basal Levels of DA and DOPAC 
 

 Measures of the analytes were consistent with previous data of samples 

taken from the striatum.  Average baseline levels of DA (<10 nM) were measured 

and found to be similar to previously collected data in the striatum of 

anesthetized and awake-behaving rats (Gerhardt and Maloney 1999; Ferguson 

et al. 2003; Garris et al. 1994; Kawagoe et al. 1992; Parsons and Justice 1992) 

(Fig. 5.1-5.4).  Baseline DOPAC levels were determined to be (~800-1000 nM) in 

the rats used for the D-amphetamine and Adderall® studies and were similar to 

previously reported levels (Ferguson et al. 2003) and lower than other reports of 

DOPAC measures that have been above 1000 nM.  The DOPAC data were 

represented in percent of baseline due to increased variance in baseline samples 

collected from the rats used for the Reverse Adderall and methylphenidate 

studies (Fig. 5.5-5.8).  Homovanillic acid (HVA) levels were determined as 

percent of baseline, and no additional analysis was completed due to similarities 

between the data sets (Fig. 5.11). 
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Comparisons of DA and Metabolite Response After Reverse Microdialysis 
of Stimulants in the Striatum 

  

The twenty minute local tissue perfusions of drugs (including 

methylphenidate) induced a dose-dependent increase in DA overflow followed by 

a 60 minute time period to return to baseline supporting the DAT and DA uptake 

blocking effects of the tested stimulants (Fig. 5.1-5.4) (Wise and Hoffman 1992; 

Sulzer et al. 1993; Castellanos et al. 1996; Schweri et al. 1985).  The resulting 

DA levels, at the highest concentration of drug, were similar to previous 

microdialysis measures of ~150 nM (Seeman and Madras 2002).  The measures 

of DA were elongated over 40 minutes (2 samples) after stimulus compared to 

local perfusions of potassium, which depolarizes the cell and causes subsequent 

return of DA levels to baseline within 20 minutes (1 sample) after removal of 

potassium solution (Hebert et al. 1996; Purdom et al. 2003; Stanford et al. 2001).  

Furthermore, applications of low concentrations of stimulants did not result in DA 

levels being higher than levels after artificial cerebral spinal fluid (aCSF) control 

(Fig. 5.1-5.4).   

 The resulting D-amphetamine concentration-response curve of DA in rat 

striatum displayed a double-sigmoidal pattern that supports biphasic effects on 

DA stores and/or DAT trafficking (Fig 5.1) (Kahlig et al. 2005).  Plateaus in the 

DA response occurred at the lower concentration (1 µM D-amphetamine) and at 

a higher concentration (100 µM D-amphetamine).  At 0.1 µM D-amphetamine, 

little or no increase in DA overflow resulted in comparison to aCSF control; and 

no significant differences were found between 100 µM and 400 µM D-

amphetamine supporting an upper plateau in DA measures (Fig 5.1).  While two 

half-maximal effective concentration (EC50) values are indicated for the lower (D-

amphetamine I) and upper (D-amphetamine II) portions of this concentration-

response curve (Table 5.1), the EC50 of D-amphetamine II was used to make 

conclusions regarding potency and efficacy.   

The resulting methylphenidate concentration-response curve of DA in the 

rat striatum supports a dose-dependent increase in DA levels (Fig 5.2).  Since 



 

 79

methylphenidate had previously been characterized as a DAT blocker and not a 

substrate that undergoes transport through the DAT, we hypothesized that we 

would see little or no change in DA levels in an anesthetized rat.  Applications of 

0.5-400 µM methylphenidate increased DA concentrations significantly greater 

than aCSF control.  0.1 µM methylphenidate did not cause increased DA levels 

significantly different from control indicating the lower plateau of the 

concentration-response curve.  The two highest concentrations tested (100 and 

400 µM) were not significantly different supporting an upper level plateau (Fig. 

5.2).   

Figure 5.3 displays the resulting Adderall® concentration-response curve 

of DA measured in the rat striatum.  An upper plateau in DA levels occurred at 

100 µM Adderall, as 100 µM and 400 µM Adderall were not significantly different 

in response.  At 0.1 µM Adderall, DA levels were not significantly different from 

local application of aCSF control.  Finally, the Reverse Adderall (75% L-

amphetamine, 25% D-amphetamine) concentration-response curve of DA 

showed a dose-dependent increase in evoked DA at all concentrations tested 

except for 0.1 µM; which was not significantly different from aCSF control (Fig. 

5.4).  While Reverse Adderall was predominantly made of L-amphetamine, it did 

not increase DA levels to the extent of Adderall® at some concentrations (Table 

5.1).  The highest two concentrations of Reverse Adderall tested were 

significantly different supporting that a plateau of DA measures will likely occur at 

a higher concentration.    

 

Comparisons of Potencies of Stimulants after Reverse Microdialysis 
in the Striatum 

 
Potencies were extrapolated from the median concentration along the 

concentration-response curves for D-amphetamine II, methylphenidate, 

Adderall®, and Reverse Adderall and are represented as EC50 in Table 5.1. The 

stimulants in order of their potency on DA overflow were:  methylphenidate (10 

µM) > Adderall® (25 µM) > D-amphetamine II (50 µM) = Reverse Adderall (50 
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µM).  The two potency concentrations for D-amphetamine represent EC50 values 

for both plateaus of the concentration-response curve of DA, however the most 

similar response in effects on DA levels to the other stimulants tested is 

represented in the above order of potency.  The effects of methylphenidate on 

increasing DA levels could be due to an action of methylphenidate only seen with 

local application, but it is more likely that our anesthesia does not completely 

remove spontaneous neuronal activity supporting that methylphenidate blocked 

uptake of spike-dependent DA release (Sabeti et al.  2003; Kish et al. 1999).  

These data support the increased potency of Adderall® and replicate data from 

Chapter 4 that indicate that Adderall® had the greatest effect on DA release in 

comparison to D- and D,L-amphetamine.  Finally, Reverse Adderall (made of 

predominantly L-amphetamine) and D-amphetamine were similar in potency 

supporting the DA releasing properties of L-amphetamine and replicating the 

data presented in Chapter 3 that DA signal amplitudes were similar between D- 

and L- amphetamine.   

 

Comparisons of Efficacies of Stimulants after Reverse Microdialysis 
in the Striatum 

 

At the highest effective concentrations, Adderall® and Reverse Adderall 

were similar in their effects on DA levels and caused greater increases in DA 

levels than D-amphetamine and methylphenidate.  Measures of efficacy in 

regards to increased DA levels resulting from D-amphetamine and 

methylphenidate were similar.  In a comparison of these stimulants versus 

cocaine, Adderall® (p<0.001) and D-amphetamine (p<0.05) caused significantly 

greater increases in DA levels than cocaine (Fig. 5.9 a).  While these data did not 

support that methylphenidate caused significantly greater DA levels compared to 

cocaine, average DA increases resembled that caused by amphetamine isomers 

more so than cocaine (Fig. 5.9a).  These data support an unpredicted 

dissociation of methylphenidate and cocaine, likely visible due to the local 

application of drugs used in these studies.  Reverse Adderall (p<0.01) and L-
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amphetamine (p<0.05) caused significantly greater DA levels when compared to 

the effects of cocaine. The lower DA levels produced by D,L-amphetamine are 

supported by previous voltammetric data that indicated faster kinetics of DA 

release and uptake in comparison to D-amphetamine and Adderall® (Chapters 3 

and 4) (Fig. 5.9b) and also the approximate D-amphetamine in this drug solution 

was only half of the other amphetamine isomers in attempt to make comparisons 

with the data in Chapter 3.   L-amphetamine caused similar DA levels to the other 

stimulants and replicated previous voltammetric data that demonstrated no 

differences in evoked DA amplitudes when compared to D-amphetamine 

(Chapter 3) (Fig. 5.9b).  

    

Changes in Metabolite Levels Following Reverse Microdialysis of 

Adderall®, D-amphetamine, Methylphenidate, and Reverse Adderall 

 

 Figure 5.5 shows the individual tracings of detected DOPAC levels 

(represented as % of baseline) following reverse microdialysis of D-amphetamine 

at multiple concentrations.  While some variability was found, D-amphetamine 

generally caused a dose-dependent decrease in DOPAC levels similar to 

Adderall and Reverse Adderall.  The resulting response curve for changes in 

DOPAC levels did not mimic the double-sigmoidal pattern seen in the response 

curve of DA.  D-amphetamine, Adderall®, and Reverse Adderall decreased 

DOPAC levels in a similar manner following local perfusion of drug at 120 

minutes and continued to decrease DOPAC production up to one hour when 

DOPAC levels returned to baseline (Fig. 5.5-5.8). While methylphenidate caused 

increased DA levels similar to the other stimulants, it did not affect DOPAC levels 

in a consistent manner and was similar in this aspect to the effects of cocaine.   

Table 5.1 shows the concentrations that caused a half-maximal response 

extrapolated from the response curves for DOPAC.  Differences in the maximal 

stimulant concentration effects on DOPAC levels are shown in Figures 5.10 a, b.   

DOPAC production was less significantly affected by methylphenidate and 

cocaine in comparison to Adderall® (p<0.001; Fig. 5.10a), and D-amphetamine 
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(p<0.01, p<0.05; Fig. 5.10a).  Reverse Adderall, L-amphetamine, and D,L-

amphetamine all caused significantly greater effects on DOPAC levels in 

comparison to cocaine (p<0.001; Fig. 5.10b).  An initial increase in DOPAC was 

seen following application of 100 µM and 400 µM methylphenidate followed by a 

decrease similar to that of other concentrations without a dose-dependent pattern 

(Fig. 5.6).  Figure 5.11 shows measures of HVA following reverse microdialysis 

of D-amphetamine, methylphenidate, Adderall®, and Reverse Adderall.  No clear 

dose-response pattern was detected across measures of HVA supported by the 

decreased levels of HVA in the rat CNS compared to nonhuman primates 

(Cooper et al. 1996).     

 
Discussion 

 
These data represent novel findings regarding the effects of D-

amphetamine across a range of concentrations and the activity of local 

applications of methylphenidate compared to its analog, cocaine.  The 

concentration-response curve for D-amphetamine displayed a double-sigmoidal 

pattern that supported dual-functionality properties of the DAT and/or differential 

mechanisms by which high and low concentrations of D-amphetamine affect DA 

efflux and DAT trafficking.  These data support potent increased DA levels 

caused by local application of methylphenidate in a dose-dependent pattern. 

Replicating our data in Chapter 4, Adderall® resulted in the most efficacious 

effects on increased DA levels; while the EC50 (DA) of methylphenidate 

supported the greatest potency when compared to the other stimulant 

concentration-response data.  Decreased DA levels caused by cocaine 

compared to higher DA levels after local application of methylphenidate indicate 

a dissociation between the local effects of methylphenidate and cocaine.  

Measures of DOPAC support differential interactions with the process of MAO 

degradation of DA between amphetamine stimulants and methylphenidate.  

Cocaine and methylphenidate were similar in effects on DOPAC production at 

the highest concentrations.   
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 The data shown here were consistent with the known DA releasing 

properties of amphetamine, predominantly due to the DAT reversal of normal 

reuptake into the presynaptic terminal (Giros et al. 1996).  Likewise, 

amphetamine has been shown to impair DA reuptake, inhibit MAO activity, and 

affect vesicular conditions that lead to emptying of vesicular stores via the 

vesicular monoamine transporter 2 (VMAT2) (Horn et al. 1971; Sulzer et al. 

1995; Dubocovich et al. 1985; Heikkila et al. 1975; Uretsky and Snodgrass 1977; 

Green and El Hait 1978; Cadoni et al 1995).  To our knowledge, this is the first in 

vivo study making use of local applications of a range of concentrations in drug 

naïve animals.  We chose to carry out these studies in this manner based on 

information supporting the dynamic changes that occur in DA neuronal systems 

in response to DAT substrates and inhibitors.  Purdom et al. (2003) showed data 

supporting that the order of administration of different concentrations of D-

amphetamine significantly affected DA and DOPAC levels.  These results were 

attributed to persistent changes in DAT membrane availability and/or function.  

Other in vitro studies have shown substrate dependent trafficking of the DAT to 

and from the plasma membrane and subsequent ability to transport DA (Kahlig et 

al. 2005; Johnson et al. 2005; Saunders et al. 2000; Kahligh et al. 2004; Kahlig 

and Galli 2003).   

One possible mechanism for the D-amphetamine double-sigmoidal 

concentration-response curve involves targeting of specific DA pools and 

amphetamine concentration-dependent effects.  Some data support contribution 

of both cytosolic and vesicular stores to the released DA following exposure to 

amphetamine (Pifl et al. 1995); while other data indicate a predominant vesicular 

DA contribution (Jones et al. 1998).  Jones et al. (1998) measured DA released 

following electrical stimulation and amphetamine perfusion of striatal brain slices 

and noticed a delay in DA release with amphetamine, supporting that the DA had 

to be redistributed to the cytosol prior to being released from the cell.  Based on 

these different contributions to amphetamine-evoked DA increases, our data are 

in agreement with previous investigations that support lower concentrations of D-

amphetamine release “newly synthesized” DA pools in the cytosol, and higher 
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concentrations contributed to the emptying of vesicular stores. As a result a 

biphasic pattern and a marked increase in the amount of DA released at the 

higher concentrations (Seiden et al. 1993; Langeloh and Trendelenburg 1987; 

Sulzer et al. 1993, 2005).   

An alternative mechanism for the D-amphetamine concentration-response 

curve might be explained by an upregulation of DAT levels caused by stimulation 

of D2R autoreceptors leading to second messenger regulation.  Previous data 

support a link between stimulation of D2R autoreceptors and levels of membrane 

DATs (Parsons et al. 1993; Cass and Gerhardt 1994; Rothblat and Schneider 

1997; Dickinson et al. 1999; Hoffman et al. 1999; Mayfield and Zahniser 2001).  

For example, in vivo measures of DA have shown decreased DA clearance in the 

striatum, prefrontal cortex, and nucleus accumbens after administration of the 

D2R antagonist raclopride (Cass and Gerhardt 1994).  In addition, acute 

amphetamine stimulation has been shown to cause increased synaptosomal 

DAT surface expression that occurs within 30 seconds of treatment (Johnson et 

al. 2005), while other reports have indicated rapid trafficking of the DAT.  These 

studies support that the effects we observed over 20 minutes could be caused by 

DAT trafficking (Fleckenstein et al. 1999; Saunders et al. 2000).  Due to the 

comparatively increased sensitivity of D2R autoreceptors, low levels of 

extracellular DA are sufficient to stimulate these autoreceptors that would result 

in increased DA clearance (Cooper et al. 2003) (Fig. 5.12).  The small amounts 

of released DA required to stimulate these autoreceptors would be taken up 

quickly through increased levels of membrane DATs, supporting the effects we 

see with the first plateau of the D-amphetamine concentration-response curve.  

At higher concentrations of D-amphetamine, increased DAT trafficking to the 

membrane will likely occur; however, the higher concentrations of D-

amphetamine will more potently cause reverse transport of DATs to move DA 

into the extracellular space (Khoshbouei et al. 2004; Gorentla and Vaughan 

2005) (Fig. 5.12).  The unaffected DATs will not be able to counteract this 

response. Even though DAT levels are increasing, the increased levels of 

amphetamine will also potently block eventual clearance of DA from the 
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extracellular space. It is possible that D2R autoreceptor desensitization is likely to 

occur which would decrease upregulation of DATs to the plasma membrane (Kim 

et al.  2001; Namkung and Sibley 2004; Ferguson et al. 1996; Tang et al. 1994). 

Finally, data support that interactions of amphetamine and the DAT lead to DAT 

internalization via phosphorylation of target residues in the C- and N- termini 

(Khoshbouei et al. 2004; Kahlig et al. 2006; Fog et al. 2006), providing theoretical 

support for the effects we see in the second plateau of the D-amphetamine 

concentration-response curve.  

While the double plateaus we note here are in regards to increasing 

concentrations of D-amphetamine, other reports suggest biphasic effects of 

catecholamine transporters over different parameters.  Johnson et al. (2005) 

described the effects of amphetamine on DAT surface expression in rat 

synaptosomes.  They described initial amphetamine upregulation of DATs to the 

plasma membrane leading to DA efflux followed by amphetamine induced 

internalization of DATs after repeated doses of amphetamine.  Jayanthi et al. 

(2005) described mechanisms that contribute to a biphasic regulation of 

endogenous serotonin transporters (SERTs) expressed in platelets.  Protein 

kinase c (PKC) activation in platelets resulted in the initial reduction of functional 

SERTs followed by enhanced endocytosis of SERTs.  Finally, due to the high 

percentage of D-amphetamine in Adderall®, it is surprising that two plateaus of 

the D-ampheatmine concentration-response curve are not distinguishable in the 

Adderall® concentration-response curve.  Taking into consideration data from 

Chapter 3, the faster kinetics of the effects of L-amphetamine in combination with 

the slower kinetics of D-amphetamine could either mask 1) the noticeable 

differences of source (cytosolic versus vesicular) contribution of DA or 2) the 

effects on DAT trafficking.   

The increased DA levels we report after reverse microdialysis of 

methylphenidate were in contrast to our hypothesis that local applications of 

methylphenidate would not cause increased DA levels in an anesthetized rat.  

Due to reports that methylphenidate mainly works to block reuptake of impulse-

released DA from predominantly vesicular stores (Sonders et al. 1997; Clemens 
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et al. 1979; Volkow et al. 1998) and is thought to mainly be a DAT blocker 

(Riddle et al. 2005; Bergman et al. 1989), it was surprising that enough 

spontaneous release occurred in anesthetized rats to cause accumulation of DA.  

These studies were carried out in anesthetized F344 rats and the urethane 

anesthesia that we use here has been shown to markedly decrease intrinsic 

neuronal firing rates but not affect DAT activity mediated by local applications of 

stimulants (Warenycia and McKenzie 1988; Sabeti et al. 2003).  While 

spontaneous firing rates measured by multiple single-unit electrophysiology were 

significantly decreased after anesthesia in a freely-moving animal, they were not 

completely ablated in the striatum (Kish et al. 1999).  Sonders et al. (1997) 

classified methylphenidate in a group of pharmacological agents that are 

cocaine-like in terms of voltage dependence of their subtractive currents from 

control current and placed amphetamine in a category similar to measures in the 

presence DA, the endogenous substrate for the DAT.  Our results are consistent 

with the effects of intraperitoneal administration of methylphenidate in freely-

moving rat microdialysis studies (Berridge et al. 2006).  Additionally, our data 

parallel a study that investigated the neurochemical effects of subcutaneously 

administered DA uptake inhibitors and releasers in anesthetized rats.  Hurd and 

Ungerstedt (1989) found that amphetamine and methylphenidate caused similar 

increases in DA levels however methylphenidate caused these levels over a 

longer time period.  This study also reported that methylphenidate had less of an 

effect on decreasing DOPAC levels compared to the more pronounced decrease 

caused by amphetamine (Hurd and Ungerstedt 1989).  Our data were similar to 

others in the effects of methylphenidate in comparison to amphetamine on 

behavior.  Similar to D-amphetamine, methylphenidate has been shown to 

induce locomotor activity at low doses and cause stereotypies at higher doses 

(Fessler et al. 1980; Hughes and Greig 1976; Scheel-Kruger 1971).  Additionally, 

methylphenidate has also been found to be reinforcing in regards to drug abuse 

potential in humans, and it has been self-administered by animal models (Stoops 

et al.  2005; Rush et al. 2001; Risner and Jones 1976).  In general, cocaine and 

methylphenidate are thought to work in a similar manner by predominantly acting 
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as competitive inhibitors of the DAT and increases in extracellular DA result 

predominantly from this blockade after impulse-dependent release of DA.  

Other studies have brought forward some inconsistencies and support that 

cocaine-like, DAT blockers may have DA releasing properties (Stamford et al. 

1989; Shore 1976; Ewing et al. 1983; Venton et al. 2006).  Additional evidence 

support that these DAT inhibitors must act in a local manner due to studies that 

have shown cocaine-evoked DA release in striatal terminals isolated from cell 

bodies (Lee et al. 1996).  Finally, Russell et al. (1998) demonstrated that 

methylphenidate caused DA release in brain slices mainly from vesicular stores 

and suggested that vesicular function may be impaired in ADHD neuropathology, 

and another study also showed methylphenidate induced DA increases with 

microdialysis (Butcher et al. 1991).   

These data support the differential local effects of methylphenidate and a 

potential dissociation of the effects of cocaine and methylphenidate.  Increased 

DA levels caused by local applications of methylphenidate were not significantly 

different from DA levels caused by cocaine.  However, on average, DA levels 

after cocaine were lower than DA levels after applications of methylphenidate, 

and methylphenidate caused DA levels similar to the amphetamine isomers.  It is 

possible that methylphenidate has DA releasing properties other than just 

blockade of the DAT. 

While the argument can be made that these local applications failed to 

account for pharmacokinetic differences between these stimulants, we propose 

that this is a particular strength of our study.  For these experiments, drugs were 

applied over a range of concentrations, including clinically relevant 

concentrations (10-50 µM) and potentially drug abuse levels (>400 µM) (West et 

al. 1999; Shader et al. 1999; Kuczenski and Segal 2001; Solanto et al. 2001; 

Grilly and Loveland 2001). The low concentrations were projected to simulate 

potential levels of drug that would be present in brain tissue following systemic or 

oral administration.  Finally, administering the drugs via reverse microdialysis 

eliminated pharmacokinetic issues from the study.     



 

 88

In summary, we have shown that the D-amphetamine concentration-

response curve of DA displayed a double plateau pattern indicating effects on DA 

stores and/or rapid regulation of DAT trafficking and/or function.  This study 

provides important information describing the effects of stimulants over clinically 

relevant and possibly abuse levels on DA neurotransmission and metabolite 

production.  These data support that methylphenidate may cause DA release in 

addition to acting as a DA uptake inhibitor.  Taken together, these data explain 

the effects of clinically available stimulants on DA levels over a range of 

concentrations and how alternative combinations of amphetamine isomers show 

promising effects.   
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Drug EC50 [Drug] (μM) 

For DA 

EC50 [Drug] (µM) 
For DOPAC 

D-amphetamine I 0.5 Not Determined 

D-amphetamine II 50 5 

Methylphenidate 10 1 

Adderall® 25 10 

Reverse Adderall 50 25 

 

Table 5.1 Stimulant Potency on DA and DOPAC Measures 
 

Values determined for EC50 represent extrapolation of potency measures from 

the stimulant concentration response curves of DA and DOPAC.    
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Figure 5.1 D-amphetamine Concentration-Response Curve for DA with a 

Double Plateau 
 

a. Complete D-amphetamine concentration-response curve of DA levels after 

reverse microdialysis in the striatum of rat brain with two plateaus.  b.  Mean 

individual microdialysis sample runs are shown including collection over two 

hours for basal DA measures followed by a 20 minute local application of drug 

(respective concentration) in the aCSF (arrow indicates time point of stimulation) 

and completed with perfusion of aCSF for 100 minutes longer.  Inset:  
Representation of each average peak response including aCSF (a) control (n=5 

rats per concentration; error bars represent S.E.M.). 
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Figure 5.2 Methylphenidate Concentration-Response Curve of DA 
 

a. Complete methylphenidate concentration-response curve of DA levels after 

reverse microdialysis in the striatum of rat brain.  b.  Mean microdialysis sample 

runs are shown including collection over two hours for basal DA measures 

followed by a 20 minute local application of drug (respective concentration) in the 

aCSF (arrow indicates time point of stimulation) and completed with perfusion of 

aCSF for 100 minutes longer.  Inset:  representation of each average peak 

response including aCSF (a) control (n=5 rats per concentration; error bars 

represent S.E.M.). 
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Figure 5.3 Adderall® Concentration-Response Curve of DA 

 

a. Complete Adderall® concentration-response curve of DA levels after reverse 

microdialysis in the striatum of rat brain.  b.  Mean individual microdialysis 

sample runs are shown including collection over two hours for basal DA 

measures followed by a 20 minute local application of drug (respective 

concentration) in the aCSF (arrow indicates time point of stimulation) and 

completed with perfusion of aCSF for 100 minutes longer.  Inset:  representation 

of each average peak response including aCSF (a) control (n=5 rats per 

concentration; error bars represent S.E.M.). 
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Figure 5.4 Reverse Adderall Concentration-Response Curve of DA 
 

a. Complete Reverse Adderall concentration-response curve of DA levels after 

reverse microdialysis in the striatum of rat brain.  b.  Mean individual 

microdialysis sample runs are shown including collection over two hours for basal 

DA measures followed by a 20 minute local application of drug (respective 

concentration) in the aCSF (arrow indicates time point of stimulation) and 

completed with perfusion of aCSF for 100 minutes longer.  Inset:  representation 

of each average peak response including aCSF (a) control (n=5 rats per 

concentration; error bars represent S.E.M.). 
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Figure 5.5 D-amphetamine Response Curve for DOPAC (% of Baseline) 
 

a.   Complete D-amphetamine response curve of DOPAC production after 

reverse microdialysis in the striatum of rat brain.  b.  Mean individual 

microdialysis sample runs are shown including collection over two hours for basal 

DOPAC measures followed by a 20 minute local application of drug (respective 

concentration) in the aCSF (arrow indicates time point of stimulation) and 

completed with perfusion of aCSF for 100 minutes longer.  Inset:  Average 

representation of each peak response including aCSF (a) control (n=5 rats per 

concentration; data are represented in percent of baseline calculated from the 

change occurring 20 minutes after stimulation at time point 140 minutes; error 

bars represent S.E.M. for percent of baseline). 
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Figure 5.6 Methylphenidate Response Curve of DOPAC (% of Baseline) 
 

a. Complete methylphenidate response curve of DOPAC production after reverse 

microdialysis in the striatum of rat brain.  b.  Mean individual microdialysis 

sample runs are shown including collection over two hours for basal DOPAC 

measures followed by a 20 minute local application of drug (respective 

concentration) in the aCSF (arrow indicates time point of stimulation) and 

completed with perfusion of aCSF for 100 minutes longer.  Inset:  representation 

of each average peak response including aCSF (a) control  (n=5 rats per 

concentration; data are represented in percent of baseline calculated from the 

change occurring 20 minutes after stimulation at time point 140 minutes; error 

bars represent S.E.M. for percent of baseline). 
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Figure 5.7 Adderall® Response Curve of (DOPAC % Baseline) 
 

a.  Complete Adderall® response curve of DOPAC production after reverse 

microdialysis in the striatum of rat brain.  b.  Mean individual microdialysis 

sample runs are shown including collection over two hours for basal DOPAC 

measures followed by a 20 minute local application of drug (respective 

concentration) in the aCSF (arrow indicates time point of stimulation) and 

completed with perfusion of aCSF for 100 minutes longer.  Inset:   representation 

of each average peak response including aCSF (a) control  (n=5 rats per 

concentration; data are represented in percent of baseline calculated from the 

change occurring 20 minutes after stimulation at time point 140 minutes; error 

bars represent S.E.M. for percent of baseline). 
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Figure 5.8  Reverse Adderall Response Curve of (DOPAC % of Baseline) 
a.  Complete Reverse Adderall response curve of DOPAC production after 

reverse microdialysis in the striatum of rat brain.  b.  Mean individual 

microdialysis sample runs are shown including collection over two hours for basal 

DOPAC measures followed by a 20 minute local application of drug (respective 

concentration) in the aCSF (arrow indicates time point of stimulation) and 

completed with perfusion of aCSF for 100 minutes longer.  Inset:  representation 

of each average peak response including aCSF (a) control.  (n=5 rats per 

concentration; data are represented in percent of baseline calculated from the 

change occurring 20 minutes after stimulation at time point 140 minutes; error 

bars represent S.E.M. for percent of baseline). 
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Figure 5.9 Comparisons of Stimulant Efficacies on DA Levels 
 

a. ADHD Drugs Versus Cocaine:  Comparisons of DA levels after reverse 

microdialysis of the highest concentrations of ADHD medications tested in the 

F344 rat striatum versus cocaine (all solutions are equimolar to D-amphetamine).  

Adderall® (***p<0.001) and D-amphetamine (*p<0.05) caused significantly 

greater DA levels than cocaine.  There was a trend for methylphenidate to cause 

greater DA levels than cocaine supporting a dissociation between the effects of 

these two stimulants.  b. Non-ADHD Drugs Versus Cocaine: Comparisons of 

DA levels after reverse microdialysis of the highest concentrations of non-ADHD 

amphetamine isomers tested in the F344 rat striatum versus cocaine.  Reverse 

Adderall (**p<0.01) and L-amphetamine (*p<0.05) caused significantly greater 

DA levels than cocaine.  (n=5 rats per concentration; data represent mean ± 

S.E.M.). 
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Figure 5.10 Comparison of Stimulant Efficacies on DOPAC Levels (% of 
Baseline) 

  
a. ADHD Drugs Versus Cocaine:   DOPAC levels following reverse 

microdialysis of the highest concentrations of ADHD stimulants tested in the 

striatum of rat brain represented as percent of baseline (based on DOPAC 

measures 20 minutes following stimulus).  Adderall® (***p<0.001; ###p<0.001) 

and D-amphetamine (**p<0.01; #p<0.05) had significantly greater effects on 

DOPAC production in comparison to methylphenidate and cocaine respectively.  

b. Non-ADHD Drugs Versus Cocaine:  DOPAC levels following reverse 

microdialysis of the highest concentrations of non-ADHD stimulants tested in the 

striatum of rat brain represented as percent of baseline (based on DOPAC 

measures 20 minutes following stimulus).  Reverse Adderall, L-amphetamine, 

and D,L-amphetamine (***p<0.001) had significantly greater effects on DOPAC 

production in comparison to cocaine  (n=5 rats per concentration; data represent 

mean ± S.E.M.). 
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5.11 HVA Levels After Reverse Microdialysis of D-amphetamine, 

Methylphenidate, Adderall®, and Reverse Adderall in the Striatum 

 
HVA levels (% of Baseline) after local application of a. D-amphetamine, b. 
methylphenidate, c. Adderall, and d. Reverse Adderall did not reveal a dose-

response pattern similar to DOPAC. Individual microdialysis sample runs are 

shown including collection over two hours for basal DA measures followed by a 

20 minute local application of drug (respective concentration) in the aCSF (arrow 

indicates time point of stimulation) and completed with perfusion of aCSF for 100 

minutes longer (n=5 rats for each concentration; data represent mean ± S.E.M.).  

Refer to Fig. 5.1-5.8 for representation of concentrations and corresponding 

colors. 
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5.12 Theoretical Model of Activity Describing the Double Plateaus of the D-

amphetamine Concentration Response Curve for DA 
Plateau I Low [D-amphetamine]:  Lower concentrations of D-amphetamine 

cause reverse transport of low levels of DA through the DAT leading to 

stimulation of DA sensitive D2R autoreceptors.  Autoreceptor stimulation has 

been shown to signal the upregulation of functional DATs to the plasma 

membrane to increase DA clearance (Parsons et al.  1993; Cass and Gerhardt 

1994; Rothblat and Schneider 1997; Mayfield and Zahniser 2001).  Due to the 

increased clearance of DA, the first plateau of the concentration-response curve 

potentially results.  Plateau II High [D-amphetamine]: Amphetamine has been 

shown to interact with DATs and facilitate DA release followed by DAT 

internalization (Johnson et al.  2005; Fleckenstein et al. 1999; Saunders et al. 

2000; Khoshbouei et al. 2004; Gorentla and Vaughan 2005).  Higher 

concentrations of D-amphetamine will likely cause increased DA release and 

DAT internalization.  D2R autoreceptor desensitization is likely to occur and 

interrupt DAT expression (Kim et al.  2001; Namkung and Sibley 2004; Ferguson 

et al. 1996; Tang et al. 1994).  Higher levels of extracellular DA and decreased 

DA clearance could cause the second plateau. 

Copyright © Barry Matthew Joyce 2006 
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Chapter 6: Discussion and Conclusions 
 
 Numerous clinical studies have provided data to support that 

amphetamine isomer and stimulant dependent differences exist (James et al. 

2005; Gross 1976; Arnold et al. 1972; 1976; Ahmann et al. 2001; Greenhill et al. 

2001; Swanson et al. 1998; Biederman et al. 2006; Pelham et al. 1999; Bradley 

1950; Smith and Davis 1977).  Additionally, animal studies have often been 

inconclusive in describing amphetamine enantiomer differences (Stromberg and 

Svensson 1975; Jones et al. 1974; Yokel and Pickens 1973; Kanbayashi et al. 

2000; Hutchaleelaha et al. 1994; Risner and Jones 1975).  Previous findings 

from basic science studies have been limited by decreased sensitivity of the 

techniques employed.  The differences described in this dissertation are novel 

and important findings generated via techniques with capabilities to measure low 

levels of analyte in vivo.   

Due to the known safety and efficacy of these medications, their clinical 

use to treat ADHD has increased over the last few decades.  While the 

stimulants we tested are known to be safe, there are unanswered questions that 

merit further investigation.  If we can determine the specific interactions of these 

medications and their cellular targets then it will be possible to design analogue 

drugs that have less abuse potential, increased efficacy, increased consistency 

across patients, more accurate targeting of specific symptoms, and decreased 

side effects.  Finally, if different behavioral outcomes result following prescribed 

use of stimulant medications, then correlations to specific patterns of 

neurotransmission can allow for accurate determination of the necessary 

components of stimulant treatments that may be forthcoming.  Our studies have 

sought to address some of these questions by completing the first studies, to our 

knowledge, that look at these drugs and their components’ interactions with DA 

neurotransmission.   

 In Chapter 3, we used microelectrodes and local applications of 

amphetamine enantiomers to investigate differences in the effects on DA release 

and regulation.  The majority of the in vivo investigations of amphetamine 
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isomers have made use of only systemic amphetamine administration while 

observing changes in measures of DA uptake or analyte level changes across 

microdialysis samples.  Therefore, our first objective of these studies was to 

determine if we could accurately and consistently evoke DA release signals at a 

maximally effective concentration.  After determining an effective concentration in 

which we could consistently record DA release signals, we were able to test 

multiple amphetamine isomers.  These recordings were completed in the 

striatum, a region rich in DA nerve endings and an area implicated in human 

anatomical studies of ADHD (Durston 2003; Solanto 2001; and Sowell et al. 

2003).  An important finding from these studies addressed previously reported 

differences between D- and L- amphetamine; our data support that the two 

enantiomers were similar in efficacy when applied locally to the striatum.  

However, kinetic differences were found between D- and L-amphetamine that 

support differential interactions and/or regulation of the DAT, the primary target of 

amphetamine.  When the two enantiomers were applied in combination, these 

data indicate that resulting DA signal amplitudes were dependent on the amount 

of D-amphetamine.  Finally, kinetic differences were observed; D,L-amphetamine 

caused transient DA release signals compared to the longer signals recorded 

after local application of D-amphetamine.  While these initial findings were some 

of the first to show in vivo differences in amphetamine isomer effects on DA 

release and uptake, we concluded that these concentrations were either in the 

upper range or higher than clinically effective concentrations in the brain after 

clinical use of amphetamine in humans (Shader et al. 1999; Solanto et al. 2001; 

West et al. 1999; Grady et al. 1996; Seeman and Madras 2002).   

In converse to studies completed for Chapter 3 in which we did not make 

use of Adderall® to evoke DA release, we completed studies to investigate the 

effects of clinically available Adderall® and D-amphetamine in Chapter 4.  Based 

on the data from Chapter 3, we maintained equimolar amounts of D-

amphetamine across all drug solutions and tested these at similar concentrations 

to those in Chapter 3.  To address concerns that the concentrations tested were 

too high for clinical relevance, we also used lower drug concentrations.  After 
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determining that we could consistently measure the effects of decreased levels of 

amphetamine isomers on DA release signal recordings; a complete analysis was 

conducted of amphetamine isomers at these levels.  An important finding from 

these studies was that low-level Adderall® produced increased striatal DA 

release and a prolonged time course compared to amphetamine isomers.  While 

the amplitude of DA release was significantly increased compared to D- and D,L- 

amphetamine, the kinetics of DA release signals were also significantly 

elongated for Adderall®.  These data support that the combination of salts and/or 

enantiomers in Adderall contribute to a greater effect on the DAT in causing 

reverse transport of DA over a longer period and a DAT blocking effect lasting 

longer than the effects caused by amphetamine isomers.  Since it is hard to 

speculate what this increased effect on DA release and uptake caused by 

Adderall® indicates without specific mechanistic investigations, the effect does 

correlate with findings that Adderall® had longer lasting effects on symptoms of 

locomotor activity compared to D-amphetamine in a recent clinical study (James 

et al. 2001).  We also replicated the significant difference in rise time between D-

amphetamine (slower) and D,L-amphetamine (faster) from Chapter 3 at these 

low levels.  While these concentrations of amphetamine isomers were lower in 

magnitude, it is still difficult to verify the resulting effective concentration in the 

brain and if these concentrations were maximally effective.  Therefore reverse 

microdialysis studies were necessary to identify and locally apply specific 

effective concentrations that could be tested at much lower levels than were 

studied in Chapters 3 and 4.   

 In Chapter 5 we used a different in vivo technique, intracerebral reverse 

microdialysis, having decreased temporal and spatial resolution compared to the 

electrochemical methods used in Chapters 3 and 4.  This technique was chosen 

to complete the concentration-response studies carried out in Chapter 5 because 

of the ability to more accurately determine the effective concentrations in which 

we wanted to locally apply in the striatum and the ability to sample the effects on 

analytes of lower levels of amphetamine isomers due to the coupling of High 

Performance Liquid Chromotography with electrochemical detection (HPLC-EC).  
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Finally, using microdialysis, we had the added ability to monitor the effects of 

methylphenidate not possible with our current in vivo voltammetric techniques.  

We used drug-naïve animals to make the concentration-response 

characterizations due to data that support changes in measures of DA levels 

before and after exposure to amphetamine (Purdom et al. 2003).   

One major finding in Chapter 5 was that the concentration-response curve 

of D-amphetamine had two plateaus.  These data are among the first to directly 

support a dissociation in the effects of high and low doses of amphetamine on 

the DAT.  These data correlate with previous findings that 1) different sources of 

cellular DA are affected by different stimulants or 2) biphasic regulation of the 

DAT (Langeloh and Trendelenburg 1987; Sulzer et al. 2005,1993; Jones et al. 

1998; Johnson et al. 2005;  Jayanthi et al. 2005; Kahlig et al. 2005).  The 

concentration-response curve of D-amphetamine supports differences in the 

effects of low versus high-level stimulants that could correlate with clinical versus 

drug abuse levels.  The biphasic properties of the D-amphetamine concentration-

response curve are supported by other studies that have provided evidence in 

biphasic regulation of catecholamine transporters and data that support the 

release of different DA stores.  Finally, this concentration-response curve could 

be the first in vivo observation of the paradoxical effects of stimulants in humans.  

Low doses are known to reduce locomotor activity and distractibility in humans, 

while higher doses have caused sleeplessness and restlessness (Seeman and 

Madras 2002). 

A second major finding of the data in Chapter 5 is the robust increase in 

DA levels caused by methylphenidate in the anesthetized rat.  Methylphenidate is 

generally regarded to contribute to impulse-dependent accumulation of DA 

(Bergman et al. 1989).  Based on the similar increases in DA levels caused by 

methylphenidate and the other amphetamine analogs, methylphenidate either 

blocked reuptake of impulse-released DA or displaced DA from DA neurons 

when applied locally.  Due to the decreased sensitivity of temporal measures with 

this technique, we no longer saw distinct differences in the effects of these 

stimulants, in particular at the suspected clinical levels.  Finally, we compared 
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these stimulants with cocaine, a drug that has been grouped with 

methylphenidate and impulse-dependent accumulation of DA (Sonders et al.  

1997). Our data support that methylphenidate increased DA levels more similar 

to the effects of amphetamine than cocaine.  These data have important 

implications regarding the potential dissociation of the properties of cocaine and 

methylphenidate and promote a unified theory that initially increasing DA 

neurotransmission is important for decreasing the symptoms of ADHD.   

 Combined, these in vivo data have replicated clinical and animal 

behavioral observations that stimulants have different effects on behavioral 

outcomes.  Chapter 3 brought about the relationship of L-amphetamine’s effects 

on D-amphetamine-evoked DA release, since the two were not additive in their 

effects on DA signal amplitudes when applied together but demonstrated a 

regulatory mechanism.  In regards to these data, we proposed that differential 

amphetamine enantiomer interactions with the DAT and resulting effects on DAT 

function/expression occur.  In Chapters 4 and 5 we propose more theoretical 

explanations of the effects on the DAT and what these data represent.  Not only 

do these data reveal differences between enantiomers but also differences that 

are present between varying ratios of D and L-amphetamine.  While the effects of 

D- and L- amphetamine were not additive in Chapter 3, the sum of their effects 

may indicate why a 75% D- and 25% L-amphetamine mixture had the greatest 

effects on DA in Chapter 4.  According to the data in Chapter 3, L-amphetamine 

caused faster DA release and therefore a relatively small amount of L-

amphetamine in Adderall® could prime the DAT for a relatively greater proportion 

of D-amphetamine to cause a more robust and elongated effect on DA 

neurotransmission.  In regards to our robust effects with Adderall in Chapter 4, 

most of the literature support that stimulants that cause fast abrupt increases in 

DA are more reinforcing or likely to be abused (Volkow 2006; Volkow and 

Swanson 2003).  Conversely, drugs and delivery systems that cause slower 

effects on DAT blockade and DA increases are thought to have less abuse 

liability (Spencer et al. 2006).  It is possible that Adderall displays a trend to fall 
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into the latter category of medications due to our data that support the elongated 

effects of Adderall.   

      

Future Investigations of Stimulant Medications 
   

 In conclusion, we have made progress in conducting some of the first in 

vivo experiments to date looking at stimulant drugs in the context of their clinical 

and therapeutic use.  The differences that we report are novel because 

techniques with the sensitivity to measure the effects of low-levels of drugs have 

not been available previously, the studies were carried out in drug-naïve animals 

to study the effects in brain tissue with decreased variability, and the drugs were 

applied locally to eliminate drug pharmacokinetic issues from these studies.  

Future studies are necessary to characterize the effects of amphetamine isomers 

and methylphenidate on other neurotransmitters and brain regions such as the 

prefrontal cortex.  In addition, animal models of ADHD are forthcoming and 

locally applied stimulant effects should be studied in these models (Solanto et al.  

2001; Giros et al. 1996; Wultz et al. 1990; Van Den Buuse and De Jong 1989; 

Hess et al. 1992, 1996).  The development of microelectrode arrays that have 

capabilities to assess multiple neurotransmitters and target recordings in more 

discrete brain loci by our lab will allow for investigations of the effects of 

stimulants on glutamate, norepinephrine, and 5-HT neurotransmission in the 

striatum, prefrontal cortex, and cerebellum (Nickell et al. 2005, 2006; Day et al. 

2006; Pomerleau et al. 2003; Burmeister et al. 2002).  According to current 

estimates, 120,000,000 prescriptions have been given since we began collecting 

the data for this dissertation (Vendentam 2006).  Knowing that these drugs are 

safe and effective is no longer sufficient to neglect necessary studies to 

characterize their properties that could yield more efficient, selective ADHD 

medications with less side effects and abuse potential.   

 

Copyright © Barry Matthew Joyce 2006 
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Appendix 1:  Comparisons of High Concentrations of D-amphetamine and 

Adderall®- Evoked DA Release in the Rat Striatum 
 

For these in vivo voltammetric studies, two different amphetamine 

solutions were locally applied to evoke DA release signals in the striatum at 

higher amounts than used in Chapter 4:  D-amphetamine and Adderall® (mixed 

from only amphetamine sulfate components of Adderall® to allow for the 75% D-

amphetamine: 25% L-amphetamine ratio) and D-amphetamine.  The volume of 

applied drug was kept constant at 500 nl and was measured using a dissection 

microscope fitted with a calibrated reticule (1 mm change=25 nl of fluid) (Cass et 

al. 1992, 1993a; Friedemann and Gerhardt 1992).  Drugs were dissolved in 0.9% 

physiological saline and final drug solutions were brought to a pH of 7.4.  High 

concentrations of D-amphetamine and Adderall were selected for use and were 

applied in the following amounts 2 nanomoles D-amphetamine and 2.72 

nanomoles Adderall®. Figure A1.1 shows a complete representative signal for 

both drugs indicating no difference in amplitudes or signal decay, but a difference 

in the time course of DA release.   When considering the amplitudes of DA 

recordings in the striatum after application of Adderall® and D-amphetamine, the 

mean amplitudes after local application of these drugs were not significantly 

different (Fig. A1.2a).  When comparing amplitude of DA release per nanoliter of 

drug applied, there was no difference, indicating that either drug solution applied 

at a similar volume is capable of producing a similar DA response signal (Fig 

A1.2b). A comparison of rise times (TR) of the amphetamine-induced DA signals 

in the striatum indicate significantly faster rise times in the presence of D-

amphetamine when compared to DA signals produced by Adderall® (p<0.01; Fig 

A1.3a). When comparing the T80 signal decay times, indicative of DA uptake after 

release, there was no significant difference between the average T80 decay time 

of Adderall® and D-amphetamine (Fig A1.4b). 

At the higher concentrations of Adderall® and D-amphetamine tested, 

there were no differences in the amplitude of DA release signals which may be 
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interpreted in two ways.  The first description may reveal a caveat that these 

concentrations result in a local tissue concentration that may be too high to 

notice the differences, however this is unlikely when noticing the higher 

amplitude generated in the presence of lower drug concentrations.  The similar 

amplitudes of the DA release signals caused by the higher concentrations of D-

amphetamine and Adderall® are smaller than the amplitudes of the DA release 

signals evoked by the lower drug concentrations tested.  This supports a 

potential inhibition of DAT reverse transport of DA at these levels of D-

amphetamine that likely has implications in situations of abuse or the paradoxical 

effects that have classically been associated with stimulants (Stromberg and 

Svensson 1975; Grilly and Loveland 2001).  It is interesting that across the high 

and low concentrations (from Chapter 4), the kinetics are similar.  These data 

strengthen the argument that studies with decreased stimulant concentrations 

are necessary to determine potential differences in effects on DA 

neurotransmission as they relate to clinical use.  While these data replicated the 

major finding in Chapter 3, that the amount of DA release is dependent on the 

amount of D-amphetamine applied; further investigations of these effects are 

warranted in future studies. 
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Figure A1.1 Representative DA Release Signals in the Striatum Caused by 

Local Applications of Higher Levels of D-amphetamine and Adderall® 

 

Typical recordings indicating the time course of DA release in the striatum of rat 

brain induced by D-amphetamine (Triangles), and Adderall® (squares).  All drug 

solutions contain an equivalent 2 nmol of D-amphetamine.  Inset:  Measured 

average in vivo redox ratios of all DA release signals, indicative of predominantly 

DA, included for statistical analysis (n= 34, 49 signals; error bars represent 

S.E.M.) 
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Figure A1.2  Amplitudes of DA Release Signals in the Striatum After Local 

Applications of Higher Levels of Adderall®, and D-amphetamine 

 
 a. The amplitudes of DA release measured in the rat striatum after local 

application of Adderall® were not significantly different compared to D-

amphetamine.  b.  Amplitudes of DA (nM) recorded per volumes of drug applied 

(nl) in the rat striatum were not different between Adderall® and D-amphetamine.  

All drug solutions contained an equivalent 2 nmol of D-amphetamine.  Data 

analyzed by MANOVA with Tukeys post-hoc comparisons; error bars represent 

S.E.M. (n=animals, signals; 11, 49; 15, 34).    
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Figure A1.3 Kinetics of DA Release Signals After Local Applications of 

Higher Levels of Adderall® and D-amphetamine in the Striatum 

 
 a. Rise times for Adderall® evoked DA release signals in the rat striatum were 

significantly longer than D-amphetamine evoked DA signals (**p<0.01). b. T80 

decay times for Adderall® evoked DA release signals in the rat striatum were not 

significantly longer than those produced by D-amphetamine.  All drug solutions 

contained an equivalent 2 nmol D-amphetamine.  Data analyzed by MANOVA 

with Tukeys post-hoc comparisons; error bars represent S.E.M. (n= animals, 

signals; 11, 49; 15, 34).   

Copyright © Barry Matthew Joyce 2006 
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