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ABSTRACT OF DISSERTATION 
 
 
 

MOLECULAR MECHANISMS THAT MEDIATE METASTASIS SUPPRESSOR 
ACTIVITY OF NM23-H1 

 
 

        Metastasis is the spread of cancer cells from the primary tumor to distant sites. It 

is the most dangerous attribute of cancer, and also the principle cause of cancer-

related morbidity and mortality. Metastasis suppressor genes are a group of genes 

that suppress tumor metastasis without significant effect on tumorigenicity. NM23 was 

the first identified metastasis suppressor gene, and loss of its expression is a frequent 

hallmark of metastatic growth in multiple cancers (e.g. melanoma, carcinomas of 

breast, stomach and liver). NM23-H1 possesses at least three enzymatic activities, 

including nucleoside diphosphate kinase (NDPK), histidine kinase (hisK), and a more 

recently described 3’-5’ exonuclease (EXO). While the hisK has been shown to be 

linked to the suppression of cell motility, the NDPK has been reported to be unrelated 

to the suppression of metastatic potential indirectly. Relevance of EXO has not been 

addressed. Other known 3’-5’ exonuclease are closely associated with DNA repair 

functions, suggesting NM23-H1 may suppress mutations required for metastasis.  

        As a transcription factor, NM23 has been shown to modestly downregulate the 

transcription on PDGF-A chain, a growth factor oncogene, either alone or in 

association with another transcriptional factor, Pur . 　 At the same time, identification 

of NM23-H1 as a 3’-5’exonuclease suggests the role of NM23-H1 in DNA repair. 



 

Etoposide and cisplatin elicited nuclear translocation of H1 within 4 h in HeLa and 

HepG2 cells, seen as accumulation of H1 in small intranuclear foci, strongly 

suggesting the DNA repair function of H1. To investigate the enzymatic function 

contributing to metastasis suppressor activity of H1, complementation system was 

used by transfecting NM23-H1 with individually disrupted enzymatic function into 2 

melanoma cell lines, 1205LU and WM793. Overexpression of H1 in 1205LU 

suppressed lung metastasis in vivo without effect on indices of transformation (e.g. 

proliferation, soft agar colonization). EXO- deficient H1 and NDPK-deficient H1 lost 

suppression of lung metastasis, while hisK-deficient H1 maintained suppressor 

activity. Consistent with the results in 1205LU cells, EXO-deficient H1 and NDPK-

deficient H1 lost suppression of the progression of WM793 cells in protein-free 

medium, while WT and hisK-deficient H1 prevented the progression. Taken together, 

these data suggest that the NDPK and/or 3’-5’EXO activity of H1 inhibits the 

progression of premetastatic cells to the metastatic phenotype, possibly via a DNA 

repair function or other structural transactions with DNA. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1. Metastasis and genomic instability 

        Metastasis is the spreading of tumor cells from their primary sites to distant 

locations. It may occur via the blood, a lymphatics route, or through the body cavities. 

Because of the limited treatment options for metastatic disease, metastasis is the 

principle cause of morbidity and mortality of cancer patients (reviewed in Steeg, 2003). 

        Metastasis is the end-result of a complicated, multistage process. Each of these 

sequential steps is rate-limiting (reviewed in Shevde and Welch, 2003; reviewed in 

Fidler, 2003). First, tumor cells detach from the primary tumor, invade the host stroma 

and penetrate blood vessels (Intravasation). Secondly, after tumor emboli enter the 

circulation, cells must survive shear forces, immune surveillance, or maybe nitric oxide 

produced by cytokine-activated endothelial cells (Dong et al, 1994). Finally, surviving 

tumor cells penetrate blood vessels (Extravasation) and colonize in the secondary site. 

Metastases form with proliferation of tumor cells and angiogenesis (Figure 1 from 

Fidler, 2003). 

        The majority of data show that metastasis is a highly selective process (reviewed 

in Talmadge and Fidler, 1982; Talmadge et al., 1982) and is quite inefficient (reviewed 

in Weiss, 1990). Progressing from premetastatic to metastatic state, a tumor cell must 

overcome a series of barrier to finish all steps of metastasis. During the process of 

evolution, tumor cells may have undergone many coordinated changes and acquired 

genetic variability to become more malignant. Nowell (reviewed in Nowell, 1976) 

suggested that increasing genetic instability of the evolving cells and associated 

selection process result in accelerating tumor progression toward malignancy. This 
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hypothesis was tested by Fidler group, and they found that high metastatic clone of 

fibrosarcoma cells were phenotypically less stable than low metastatic clone. 

Furthermore, the spontaneous mutation rate of high metastatic cells were determined 

to have 3- to 7- fold increase as compared to their low metastatic counterparts. These 

data support the hypothesis that tumor evolution could be the consequence of 

acquired genetic alterations (Cifone and Fidler, 1981).  
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Figure 1. The steps of the process of metastasis 
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1.2. Metastasis suppressor genes and NM23 

        By definition, metastasis suppressor genes suppress the ability of tumor cells to 

metastasize, without affecting their primary tumor growth characteristics. These genes 

are identified by their decreased expression in metastatic tumor cells, compared with 

their expression in non-metastatic cells (reviewed in Steeg, 2003). Since the 

identification of the first metastasis suppressor gene, nm23, in 1988 by P.S. Steeg, 

more than a dozen of metastasis suppressor genes have been identified, and their 

functional data have been completed or not characterized yet (reviewed in Shevde and 

Welch, 2003). Many high-throughput techniques have been used during the discovery 

of these genes, such as differential display, microarrays, and serial analysis of gene 

expression (SAGE).  A very instrumental method employed in identifying several 

metastasis suppressor genes (e.g., BRMS1, KISS-1, MKK4, and CD44-s) is microcell-

mediated chromosome transfer (MMCT), a method to identify a chromosomal region 

that has metastasis suppression function in vivo. In the case of genetic loss, transfer of 

a single human tagged chromosome into metastatic cells, would suppress metastasis. 

Identified metastasis suppressor genes can be validated by re-expression in 

metastatic cell lines. Its re-expression should significantly inhibit metastasis, but have 

no effect on primary tumor growth.  Even though the number of metastasis suppressor 

genes is continuing to grow, the roles they play in predicting the prognosis of 

metastatic diseases as well as therapeutic strategies is not yet known. 

        NM23 was the first identified metastasis suppressor gene by screening cDNA 

libraries of matched metastatic/non-metastatic murine melanoma cell lines by 

substraction cloning (Steeg et al., 1988). NM23 stands for ‘non-metastatic clone 23 

gene’. Loss of NM23 expression is linked to metastasis in multiple cancers (e.g. 

melanoma, breast cancer, and stomach and liver carcinomas). The human NM23 
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protein has sequence homology over the entire translated region with developmentally 

regulated protein in Drosophila, encoded by the abnormal wing discs (awd) gene. 

Mutations in awd cause abnormal tissue morphology and necrosis and widespread 

aberrant differentiation in Drosophila, analogous to changes in malignant progression 

(Rosengard et al., 1989). To date, eight NM23 family members have been identified, 

designated NM23-H1 through NM23-H8 (Lacombe et al., 2000). Of these, only H1 and 

H2 have been reported metastasis suppressor activity (Shevde and Welch, 2003). 

        NM23-H1 and NM23-H2 are 88% identical in sequence and map 4 kb apart on 

chromosome 17q21-22 near the BRCA1 locus (De la Rosa et al., 1995). High 

resolution X-ray structures indicate that NM23-NDPK enzymes are hexameric 

consisting of subunits of 152 amino acids. These amino acids fold into four-stranded 

antiparallel β sheets and surrounding α helices (reviewed in Postel, 1998) (Figure 2). 

The Killer of prune (K-pn) mutation is located in awd (Dearolf et al., 1988) and 

substitutes a serine for a proline in Drosophila NDP kinase (A.Shearn, personal 

communication; Lascu et al., 1992). K-pn is a dominant lethal mutation (Orevi and 

Falk, 1975) in flies carrying the prune eye colour mutation, which suggests that the 

product of awd interacts with that of prune. 
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Figure 2. The structure representations of NM23-H1 (A) Amino acid sequence and 

secondary structure assignment of NM23-H1 (B) Ribbon diagram of the NDPK/NM23-

H1 monomer. Helices, b-sheets, and K-pn loop are all labeled as indicated (C) Space 

filling representation of the hexamer of NM23-H1. The key residues studied in this 

project are demonstrated in both monomer and hexamer stuctures. 
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        NM23-H1 possesses at least three enzymatic activities, including nucleoside 

diphosphate kinase (NDPK), histidine kinase (hisK), and a 3’-5’ exonuclease (EXO) 

more recently described by our lab (Ma et al., 2002, 2004). Mutations of P96 or S120 

of H1 lacking motility suppressive capacity upon transfection are deficient in histidine-

dependent protein phosphotransferase pathways in vitro, suggesting the hisK is linked 

to the suppression of metastasis (Freije et al., 1997). Some indirect evidence has 

demonstrated that the NDPK appears to be unrelated to metastasis suppression 

(MacDonald et al., 1993), but this has not been tested directly. Relevance of EXO has 

not been addressed. Other known 3’-5’ exonucleases are closely associated with DNA 

repair functions and the maintenance of genomic integrity, and their loss would be 

expected to cause increased mutation rates, suggesting NM23-H1 may have the 

potential to suppress mutations required for metastasis.  

 

 

1.3. 3’-5’ exonucleases and DNA repair 

        DNA replication is a highly organized process. DNA polymerases play an 

essential role to maintain the integrity of the genome during this whole process. 

Besides their 5’-3’ DNA synthesis function, many DNA polymerases (e.g. pol γ, pol δ 

and pol ε) contain intrinsic proofreading 3’-5’ exonuclease activity. The role of 3’-5’ 

exonuclease is to proofread for the polymerase. Thus, this enhances the accuracy of 

DNA synthesis and ensures the high-fidelity of DNA replication.  

        However, some 3’-5’ exonucleases are not “polymerase-associated”, and are, 

thus, termed “autonomous 3’-5’ exonucleases” (reviewed in Shevelev and Hübscher, 

2002). At least eight human autonomous 3’-5’ exonucleases have been identified in 

mammals, including the protein TREX1, TREX2, p53, MRE11, RAD1, RAD9, APE1 
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and VDJP. These exonucleases are thought to maintain the accuracy of DNA 

replication and improve the relatively inefficient proofreading of polymerase-associated 

exonuclease (the error rate of DNA polymerases in DNA synthesis is 10-4-10-5). They 

may also assist exo-deficient polymerases under different cases of genotoxic stress 

(such as, imbalance of dNTPs, action of DNA-damaging agents). However, none of 

these functions has been demonstrated to date. 

        The spontaneous mutation rate in eukaryotic cells is low (estimated 10 -10-10-12 

per cell division) because of the base pairing rules recognized by the 5'-3' catalytic 

function as well as the 3'-5' exonuclease proofreading function. Inactivation of any of 

the gene products responsible for mechanisms that limit errors following DNA 

replication results in an increased spontaneous mutation rate, termed the "mutator" 

phenotype. The E.coli chromosome is replicated by the pol III holoenzyme. The 

catalytic core of the enzyme contains the α subunit (the polymerase), the ε subunit 

(3’-5’ exonuclease, product of the dnaQ gene), and the θ subunit (exonuclease 

stabilizer) (reviewed in Kelman and O’Donnell, 1995). The enhanced expression of 

dnaQ in wild-type E.coli results in about 100-fold decrease in frequency of 

spontaneous mutations and 10-fold the frequency of UV-induced mutations (Ciesla 

et al., 1990). These results suggest that increasing the cellular level of an 

autonomous 3’-5’ exonuclease has an antimutator effect.  Furthermore, if dnaQ was 

mutated and transferred to the chromosome, replacing the wild-type gene, the cells 

became inviable (Fijalkowska and Schaaper, 1996). These results demonstrated that 

loss of proofreading exonuclease activity in dnaQ is lethal due to excessive error 

rates (error catastrophe). Error catastrophe can occur when mutations accumulate to 

such an extent that the entire system breaks down, which leads to strong mutator 

phenotypes, cancer susceptibility and progression, and even inviability. 
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        The 3’-5’ exonuclease activity of NM23-H1 is dependent upon the presence of 

Mg2+, is most pronounced with single-stranded substrates or mismatched bases at 

the 3' terminus of double-stranded substrates, and is inhibited by both ATP and the 

incorporation of cordycepin, a 2'-deoxyadenosine analogue, into the 3'-terminal 

position (Ma, et al., 2004). Each of these is a common feature of other 3’-5’ EXOs 

described previously, suggesting the possibility of NM23-H1 functioning as an 

autonomous EXO. NM23-H1 possesses a Yx1D motif in the primary sequence, 

revealing a strong homology to the EXO III motif found in most 3’-5’ EXOs, which is 

Yx3D. Interestingly, E.coli NDPK retains the conventional Yx3D form. However, the 

purpose of EXO activity of NM23-H1 in the cell and antimutator function remain to be 

established. If NM23 is identified as both a 3’-5’ exonuclease and suppressor of the 

mutator phenotype, that may provide the strong evidence of anti-metastasis and anti-

progression of NM23 by decreasing mutation rates and thus maintaining genomic 

stability. 

 

 

1.4. Nucleoside diphosphate kinase and histidine kinase 

        Until recently, nucleoside diphosphate kinase (NDPK) was the only known 

activity of NM23. NDPKs are ubiquitous enzymes catalyzing the transfer of 

phosphate groups from triphosphate to diphsophate nucleotides, thereby maintaining 

an appropriate balance of cellular NTP and dNTP levels. 

        NDP + ATP <=> NTP + ADP; 

        dNDP + ATP <=> dNTP + ADP, 

NDPK uses energy of ATP to make triphosphates of ribonucleoside diphosphates 

and deoxyribonucleoside diphosphates in both de novo and salvage biosynthesis. 

http://oregonstate.edu/instruct/bb451/winter2004/common451/chemstructs/molex/atp.htm
http://oregonstate.edu/instruct/bb451/winter2004/common451/chemstructs/molex/adp.htm
http://oregonstate.edu/instruct/bb451/winter2004/common451/chemstructs/molex/atp.htm
http://oregonstate.edu/instruct/bb451/winter2004/common451/chemstructs/molex/adp.htm
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        Fidelity in DNA synthesis and repair is largely dependent on a balanced supply 

of deoxynucleotide triphosphate (dNTP) pools. It is therefore not surprising that 

(d)NTP/(d)NDP pool imbalances are associated with mis-incorporation of DNA 

synthesis, impairment of DNA repair, and thus compromised genomic integrity and 

malignant growth (Ji and Mathews, 1991). Evidence shows that the mutator 

phenotype of ndk (the structural gene for NDP kinase in E.coli) mutant cells is a 

result of the dNTP imbalance (Zhang et al., 1996).   Furthermore, ATP/ADP and 

GTP/GDP distribution across the cytosol is important for the control of signaling 

pathways and actin-based mechanistic events involved in (tumor) cell motility, 

growth and invasion. The ability of NDPK to supply GTP implies a role in G-protein-

mediated signaling. It was reported that NDPK could serve as a guanine nucleotide 

exchange factor as well as a GTPase-activating protein (Zhu et al., 1999). Rad is the 

prototypic member of a new class of Ras-related GTPases. Purification of the 

GTPase-activating protein (GAP) for Rad revealed NM23. In the presence of ATP, 

GDP-Rad was reconverted to GTP-Rad by the nucleoside diphosphate (NDP) kinase 

activity of NM23. Simultaneously, Rad regulated NM23 by enhancing its NDP kinase 

activity and decreasing its autophosphorylation. The interaction of NM23 and Rad 

provides a potential novel mechanism for bidirectional, bimolecular regulation in 

which NM23 stimulates both GTP hydrolysis and GTP loading of Rad whereas Rad 

regulates activity of NM23.  

        Besides NDPK activity, histidine kinase activity is another enzymatic function of 

NM23-H1. Histidine protein kinases are well described in prokaryotes and lower 

eukaryotes, where they form the ‘two-component’ signal transduction system. The 

two-component regulator system is comprised of two proteins, a histidine protein 

kinase (sensor protein), which is usually cell membrane-bound, and a partner 
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response regulator (effector protein), which is in the cytoplasm and associated with 

an internal response. The sensor kinase, when activated by a signal, 

autophosphorylates a histidine residue using ATP as a phosphodonor. 

Subsequently, the phosphorylated sensor kinase serves as a phosphodonor to a 

conserved aspartate residue in the response regulator. The response regulator 

protein in turn transmits the signal to the target protein to elicit an adaptive response 

to the stimulus (Calera et al., 1998). The signaling pathway also includes a 

phosphatase that dephosphorylates the response regulator, returning it to the 

nonstimulated state, where it once again can respond to the signal. The 

phosphatase may be the histidine kinase itself, the response regulator, or a separate 

protein. 

        NM23-H1 has been reported to exhibit a histidine protein kinase activity, and 

this activity correlated with motility suppression (Salerno et al., 2003). P96S mutant 

NM23-H1-transfected MDA-MB-435 human breast carcinoma lines exhibited motility 

levels at or above the control transfectants, indicating that these mutations can 

abrogate the motility-suppressive phenotype of NM23-H1 (MacDonald et al., 1996). 

This mutation exhibited normal autophosphorylation and nucleoside-diphosphate 

kinase (NDPK) characteristics but deficient histidine kinase activity, suggesting that 

histidine-dependent protein phosphotransfer activity of NM23-H1 may be responsible 

for metastasis suppression effects (Freije et al., 1997).   

        Even though NM23-H1 is “sticky” and has been shown to associate with 

numerous proteins (Salerno et al., 2003), the physiological substrates of NM23 are 

still unknown. Kinase suppressor of Ras (KSR) was shown to interact with NM23-H1 

in a manner consistent with a “two-component” signal transduction system 

(Hartsough et al., 2002). NM23-H1 co-immunoprecipitated with KSR from lysates of 
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transiently transfected 293T cells and in MDA-MB-435 breast carcinoma cells. 

Autophosphorylated recombinent NM23-H1 was also shown to phosphorylate KSR in 

vitro, with phosphoamino acid analysis identified serine as the major target residue. 

Phosphorylated MAPK but not total MAPK levels were reduced in an nm23-H1 

transfectant of MDA-MB-435 cells. The P96S kinase-deficient NM23-H1 transfectant 

exhibited relatively high levels of activated MAP kinase, suggesting that the histidine 

protein kinase activity of NM23-H1 is needed for suppression of MAP kinase 

activation. Taken together, one hypothesis proposes that NM23-H1 promotes a 

histidine protein kinase signaling cascade, results in a novel pattern of KSR 

phosphorylation and diminishes its ability to facilitate MAP kinase activation (Salerno 

et al., 2003). 

 

 

1.5. DNA binding and transcriptional regulation 

        By screening of a cervical carcinoma cell complementary DNA library with a 

DNA fragment containing PuF binding sites, human c-myc transcription factor PuF 

was identified as NM23-H2 nucleoside diphosphate kinase (Postel et al., 1993). The 

link between NM23 and the c-myc oncogene suggests that the NM23 protein can 

function in vitro in the transcriptional regulation of c-myc expression, their alteration 

or removal from the promoter may be necessary for activation of the c-myc gene 

(Postel, 1998). Unlike typical DNA binding proteins that are involved in transcriptional 

regulation, NM23-H2 has shown a preference for single-stranded polypyrimidine-rich 

sequences (Hilderbrandt et al., 1995). In vivo, NM23-H2 binds to and activates the 

translocated c-myc allele in Burkitt's lymphoma cells (Ji et al., 1995). 
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        Our laboratory first demonstrated that NM23-H1 binds to a silencer element in 

the platelet-derived growth factor (PDGF) A-chain promoter and downregulates the 

transcription of the PDGF A-chain gene (Ma et al., 2002).  As a growth factor, PDGF 

has been implicated in many forms of human cancer (reviewed in Silver, 1992) and 

may play an active role in the progression of some cancers to the metastatic 

phenotype. For example, overexpression of PDGF B-chain confers a tumorigenic 

and metastatic phenotype to human T98G glioblastoma cells (Potapova et al., 1996), 

while elevated levels of PDGF A-chain are correlated with angiogenic and metastatic 

potential in human breast cancer cells and human melanoma cell lines (Westermark 

et al., 1986; Anan et al., 1996).  

        Our lab has demonstrated that the A-chain gene is under the strong repressive 

influence of multiple silencer elements, located both in the 5’-flanking sequence and 

in the first intron (Liu et al., 1996). Further study revealed that a significant 

component of the silencer activity could be attributed to a 31bp sequence, termed 

the 5’-S1 nuclease-hypersensitive, or 5’SHS element (-1418 to -1388), and another 

silencer to a 24 bp sequence in the first intron, designated as the intSHS. Such 

nuclease-sensitive structures appeared in the promoter regions of many eukaryotic 

genes are often correlated with the induction of cell specific transcription. Many of 

these nuclease-hypersensitive transcriptional elements are characterized by 

homopurine/homopyrimidine tracts, and the overrepresentation of these motifs in 

eukaryotic genomes further suggests global involvement in transcription. Screening 

of a HeLa cDNA expression library with the C-rich strand of a PDGF-A silencer 

sequence (5'SHS) yielded three cDNA clones encoding NM23-H1. Transient 

transfection analyses in HepG2 cells revealed that both NM23-H1 and -H2 repressed 

transcriptional activity driven by the PDGF-A basal promoter (-82 to +8), and another 
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negative regulatory region (-1853 to -883), which contains the 5'-SHS (Ma et al., 

2002). These studies demonstrate for the first time that NM23-H1 interacts both 

structurally and functionally with DNA. They also indicate a role for NM23 proteins in 

repressing transcription of a growth factor oncogene, providing a possible molecular 

mechanism to explain their metastasis-suppressing effects. 

       Recently, NM23/NDPK was shown to bind to p53, WT1, and ING1 genes, 

suggesting that this protein may act as antimetastatic factor by favoring their 

transcription. Also, it was demonstrated that NM23 binds to the promoter of NM23-

H1, suggesting the presence of a feedback regulation system for the protein level in 

the cells (Cervoni et al., 2006). All these results suggest that NM23/NDPK DNA 

binding may be involved in the transcription regulation of these genes. 

 

1.6. Project objectives 

        Despite extensive study, the molecular mechanisms underlying the metastasis 

suppressor activity of NM23 are still not clear. The overall goal of this project has 

been to elucidate those mechanisms with a particular focus on its H1 isoform (NM23-

H1). 

        Our first working model proposed that NM23s facilitate assembly of functional 

silencer complexes (FSCs) at the 5’SHS and related intSHS elements by binding to 

poly-purine/poly-pyrimidine motifs within their non-B-form DNA structures, and 

inducing silencer-competent DNA topology. Loss of NM23 proteins during tumor 

progression results in derepression of PDGF A-chain gene transcription, increased 
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A-chain expression, and ultimately, enhanced tumor growth and metastatic potential 

in at least some cancers. 

        In order to test this hypothesis, two single-stranded DNA binding proteins, Purα 

and YB-1, were purified and EMSA was performed to identify that whether they could 

bind to 5’SHS silencer element and NHE (nuclease hypersensitive element) basal 

promoter region of PDGF A-chain as elements of FSCs. Transient transfection was 

conducted to demonstrate transcription regulation of each single protein and their 

combinations with NM23. Finally, ethylation interference footprinting was employed 

to localize the binding site of Purα on NHE element. 

        NM23 H1 was shown to possess a modest downregulation function on the 

PDGF A-chain gene, either on itself or with other single-stranded DNA binding 

proteins, suggesting this transcriptional inhibition of PDGF is very modest. At the 

same time, NM23-H1 was identified as a 3’-5’ exonuclease (3’-5’ EXO) in our lab. 3’-

5’ EXOs are well-accepted to play an essential role in maintaining genome integrity, 

with their loss resulting in an increased mutation rate. Accumulated genetic 

alterations are known to underlie tumorigenesis and metastasis, suggesting the 

novel hypothesis that the 3’-5’ EXO of NM23-H1 may have potentially important 

implications for metastasis suppression as well. So, the alternative hypothesis is that 

loss of the 3’-5’ EXO activity of NM23-H1 compromises genomic stability, which in 

turn, facilitates progression of the primary tumor cell to a metastasis-competent state 

and continuation of the metastatic phenotype. 

        To test the second hypothesis, a panel of melanoma cells was screened and a 

premetastatic cell line WM793 and a metastatic cell line 1205LU were chosen due to 

their low expression of NM23-H1 and –H2. Both cell lines were used for our 
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complementation system by stably transfecting wild type NM23-H1 and mutant 

variants, with disrupted 3’-5’ EXO, NDPK, and HisK activities, back into cells 

respectively. Then, their metastasis suppressor activities were compared using in 

vitro models of motility and invasiveness, and in vivo models of metastasis, to 

determine which enzymatic activity contributing to the function of metastasis 

suppression (Figure 3). Besides, NM23 nuclear translocation and nuclear foci 

formation in response to DNA damage were investigated in both HepG2 and HeLa 

cells. 
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Figure 3. Schematic illustration of experimental design. In this complementation 

system, melanoma cell lines were stably transfected with wild type NM23-H1 and 

mutant variants, with disrupted 3’-5’ EXO, NDPK, and HisK activities, respevtively. 

Metastasis suppressor activities of different transfected cells were compared using in 

vitro models of motility and invasiveness, and in vivo models of metastasis, to 

determine which enzymatic activity contributing to the function of metastasis 

suppression. Transformation phenotype of all the transfected cells has also been 

tested. 
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CHAPTER TWO 
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2.1. Introduction 

        Platelet-derived growth factors (PDGFs) are a family of glycoprotein dimers 

comprised of four constituent polypeptides, designated PDGF-A, PDGF-B, PDGF-C 

and PDGF-D (reviewed in Pietras et al., 2003). PDGF-A and PDGF-B exhibit 

considerable amino acid sequence homology and are encoded by distinct genes 

found on separate chromosomes (Bartram et al., 1984; Bonthron et al., 1988). The 

PDGFs possess potent mitogenic, chemotactic and angiogenic properties that 

contribute to normal embryonic development, cellular differentiation and wound 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T39-4FNDS0T-3&_coverDate=03%2F28%2F2005&_alid=404699988&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=4941&_sort=d&view=c&_acct=C000001898&_version=1&_urlVersion=0&_userid=16764&md5=00ab0ea7a55c38ee2bdf7ba691802005#aff1#aff1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T39-4FNDS0T-3&_coverDate=03%2F28%2F2005&_alid=404699988&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=4941&_sort=d&view=c&_acct=C000001898&_version=1&_urlVersion=0&_userid=16764&md5=00ab0ea7a55c38ee2bdf7ba691802005#aff1#aff1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T39-4FNDS0T-3&_coverDate=03%2F28%2F2005&_alid=404699988&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=4941&_sort=d&view=c&_acct=C000001898&_version=1&_urlVersion=0&_userid=16764&md5=00ab0ea7a55c38ee2bdf7ba691802005#aff1#aff1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T39-4FNDS0T-3&_coverDate=03%2F28%2F2005&_alid=404699988&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=4941&_sort=d&view=c&_acct=C000001898&_version=1&_urlVersion=0&_userid=16764&md5=00ab0ea7a55c38ee2bdf7ba691802005#aff2#aff2
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T39-4FNDS0T-3&_coverDate=03%2F28%2F2005&_alid=404699988&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=4941&_sort=d&view=c&_acct=C000001898&_version=1&_urlVersion=0&_userid=16764&md5=00ab0ea7a55c38ee2bdf7ba691802005#aff1#aff1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T39-4FNDS0T-3&_coverDate=03%2F28%2F2005&_alid=375107189&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=4941&_sort=d&view=c&_acct=C000001898&_version=1&_urlVersion=0&_userid=16764&md5=bff41c221ba8c4c2b1fad25cfe1850a5#bib26#bib26
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T39-4FNDS0T-3&_coverDate=03%2F28%2F2005&_alid=375107189&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=4941&_sort=d&view=c&_acct=C000001898&_version=1&_urlVersion=0&_userid=16764&md5=bff41c221ba8c4c2b1fad25cfe1850a5#bib2#bib2
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T39-4FNDS0T-3&_coverDate=03%2F28%2F2005&_alid=375107189&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=4941&_sort=d&view=c&_acct=C000001898&_version=1&_urlVersion=0&_userid=16764&md5=bff41c221ba8c4c2b1fad25cfe1850a5#bib3#bib3
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healing. PDGF expression is usually under tight repressive control but is induced by 

various forms of stress, such as tissue injury, inflammation, and acute exposure to 

mitogens (including PDGF itself). Inappropriate PDGF expression is linked to a 

variety of fibroproliferative disorders, with unregulated PDGF signaling representing 

an oncogenic stimulus in many cancers (Schilling et al., 1998; Shamah et al., 1993).  

        PDGF-A expression is controlled to a significant degree via regulation of its 

transcription rate (reviewed in Kaetzel, 2003). The PDGF-A promoter is highly GC-

rich and its activity is regulated via the binding of such transcriptional regulators as 

the Sp/Kruppel-like factors (KLFs), early growth response gene (egr-1), Wilms tumor 

protein 1 (WT1), GC factor 2, and nuclear factor I-X (NFI-X) to their respective 

cognate response elements. The PDGF-A promoter also assumes unusual single-

stranded conformations, especially in a region which has been termed the nuclease-

hypersensitive element (NHE; Ma et al., 2002) by virtue of its hypersensitivity to 

single-strand-specific endonucleases (Wang et al., 1992). Nuclease-hypersensitive 

elements have also been identified in other regions of the PDGF-A gene, including 

two structurally similar silencer elements located upstream of the promoter (Liu et al., 

1996) and within the first intron (Wang et al., 1994); these have been designated the 

5′-S1-hypersensitive (5′SHS) and intSHS sequences, respectively (Figure 4). DNA 

binding proteins with specificity for single-stranded motifs in these promoter and 

silencer elements have yet to be identified.  

        Our previous data indicated that H1 can bind to DNA, recognizing both the 

5’SHS silencer and the NHE of the c-myc promoter, with a high affinity for single 

stranded forms of elements. Thus, binding of H1 and H2 to DNA elements that 

mediate either enhancement or repression appears to indicate that their function is 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T39-4FNDS0T-3&_coverDate=03%2F28%2F2005&_alid=375107189&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=4941&_sort=d&view=c&_acct=C000001898&_version=1&_urlVersion=0&_userid=16764&md5=bff41c221ba8c4c2b1fad25cfe1850a5#bib28#bib28
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http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T39-4FNDS0T-3&_coverDate=03%2F28%2F2005&_alid=375107189&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=4941&_sort=d&view=c&_acct=C000001898&_version=1&_urlVersion=0&_userid=16764&md5=bff41c221ba8c4c2b1fad25cfe1850a5#bib14#bib14
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T39-4FNDS0T-3&_coverDate=03%2F28%2F2005&_alid=375107189&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=4941&_sort=d&view=c&_acct=C000001898&_version=1&_urlVersion=0&_userid=16764&md5=bff41c221ba8c4c2b1fad25cfe1850a5#bib22#bib22
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T39-4FNDS0T-3&_coverDate=03%2F28%2F2005&_alid=375107189&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=4941&_sort=d&view=c&_acct=C000001898&_version=1&_urlVersion=0&_userid=16764&md5=bff41c221ba8c4c2b1fad25cfe1850a5#bib33#bib33
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T39-4FNDS0T-3&_coverDate=03%2F28%2F2005&_alid=375107189&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=4941&_sort=d&view=c&_acct=C000001898&_version=1&_urlVersion=0&_userid=16764&md5=bff41c221ba8c4c2b1fad25cfe1850a5#bib21#bib21
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T39-4FNDS0T-3&_coverDate=03%2F28%2F2005&_alid=375107189&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=4941&_sort=d&view=c&_acct=C000001898&_version=1&_urlVersion=0&_userid=16764&md5=bff41c221ba8c4c2b1fad25cfe1850a5#bib21#bib21
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T39-4FNDS0T-3&_coverDate=03%2F28%2F2005&_alid=375107189&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=4941&_sort=d&view=c&_acct=C000001898&_version=1&_urlVersion=0&_userid=16764&md5=bff41c221ba8c4c2b1fad25cfe1850a5#bib34#bib34
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related to the specific DNA sequence recognized. Both H1 and H2 have been shown 

to bind members of the ROR/RZR family of nuclear orphan receptors, suggesting a 

role in facilitating the docking of other transcription factors. A prominent example of 

other transcription factor is the PUR family (α and β) of proteins that bind single-

stranded G-rich motifs. Purα was recognized as a transcription activator for several 

promoters, including human neurotropic JC virus (Chen et al., 1995), myelin basic 

protein, FE65, and neuronal acetylcholine receptor genes (reviewed in Gallia et al., 

2000). Purα can function either as a repressor or activator depending on promoter 

and cellular context, and has also been shown to interact with RNA (Gallia et al., 

2000). We proposed a model in which 5’SHS silencer activity and the promoter is 

mediated by the binding of single-strand specific proteins (both G-rich and C-rich 

strand binding proteins), which may serve to stabilize a DNA conformation required 

for repressive interactions of the silencer with other factors that interact with the 

5’SHS silencer and the promoter of the A-chain gene. 
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Figure 4. Prominent nuclease-hypersensitive elements in the PDGF-A promoter 

and proximal flanking regions. At the top of the figure, the four nuclease-

hypersensitive elements portrayed as unpaired loops are: the 5′SHS silencer (−1438 

to −1388), a serum response element (SRE; −477 to −468), the nuclease-

hypersensitive promoter element (NHE; −100 to −40), and the intron SHS silencer 

(intSHS; +1605 to +1630). Expanded below the promoter region is the nucleotide 

sequence of the NHE, within which the boundaries of 12 consensus Purα binding 

sites (GGN, where N is not a G) are identified with black lines above the sequence. 

The four consensus Sp1 binding sites (Sp-A through Sp-D) are identified with black 

boxes. The TATA box is shown in bold upper case letters. 
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2.2. Materials and methods 

2.2.1. Cell culture and transient transfection assays 

        Plasmids pAC261 and pACF11 have been described (Kaetzel et al., 1994). 

Transient transfections in HepG2 cells were conducted with 5×105 per 60 mm dish 

using Lipofectamine (Invitrogen). Transfection efficiency was normalized by 

cotransfection with RSV β-gal (1 μg), a plasmid expressing β-galactosidase (β-gal). 

Cells were harvested 48 h after transfection, with determination of chloramphenicol 

acetyltransferase (CAT) and β-gal activities conducted as described (Kaetzel et al., 

1994). Mouse embryo fibroblast cell lines (MEFs) were derived from wild-type mice 

(Purα +/+) and a line harboring targeted ablation of both (Purα −/−) Purα gene copies 

(Khalili et al., 2003). Cells were transfected with pAC261-luciferase and the Renilla 

luciferase plasmid, phRL-SV40, using the liposomal reagent, Tfx-10 (Promega). After 

48 h, activities of firefly and Renilla luciferase were assayed using the dual luciferase 

system as described by the manufacturer (Promega). Transfections were conducted 

in duplicate with three or more replicate experiments. 

 

2.2.2. Electrophoretic mobility shift assay (EMSA) 

        Expression of GST-Purα in Escherichia coli and its purification have been 

described previously (Gallia et al., 1998). Binding reactions for EMSAs were 

conducted in a 20 μl volume at room temperature for 30 min. Reactions contained 

20,000 cpm (20–40 fmol) of oligodeoxyribonucleotides, 100 ng of purified GST-Purα, 

and 1 μg of poly(dI–dC) as nonspecific competitor. Protein–DNA complexes and 

radiolabeled probes were resolved by electrophoresis through 6% polyacrylamide 
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gels in 0.5X TBE buffer (45 mM Tris borate, 1 mM EDTA, pH 8.3), with radiolabeled 

bands visualized by phosphorimaging (Molecular Dynamics). 

Oligodeoxyribonucleotide sequences employed were: 5′SHS, 5′-CTA GAG ACG 

TGG GGA GGG GGC CTG CAG GTG TGT-3′; PDGF-A NHE, 5′-CTA GAG GGG 

GCG GGG GCG GGG GCG GGG GAG GGG-3′; non-specific competitor R1, 5′-GTA 

CGT ACG TAC GTA CGT ACG TAC GTA CGT ACG T-3′. 

 

2.2.3. Ethylation interference footprinting 

        32P-endlabeled NHE (G-rich sense strand, −104 to +6) was modified with N-

ethyl-N-nitrosourea as described previously (Maul et al., 1998). Binding reactions 

were scaled up from EMSA conditions by approximately 10-fold (200 ng of GST-

Purα, 10 μg of poly (dI–dC), 0.4 pmol of probe). Protein-bound and free DNA were 

separated by nondenaturing electrophoresis, followed by autoradiography and 

electroelution of bands. Piperidine cleavage products were dried under speed 

vacuum and subjected to three cycles of resuspension in H2O and drying. DNA 

fragments were suspended in formamide loading buffer, resolved by electrophoresis 

through 8% polyacrylamide sequencing gels, and visualized by phosphorimaging. 

 

2.2.4. RNA isolation and real time PCR 

        Purα +/+ and Purα −/− MEFs were incubated in the presence or absence of 

10% fetal bovine serum (FBS) for the times indicated in the text. One μg of total RNA 

was reverse transcribed using a SuperScript First strand synthesis kit for RT-PCR 
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(Invitrogen). DNA products from reverse transcription reactions were diluted with 

H2O for measurement of PDGF-A (1:10) or 18S (1:1000) mRNAs by real-time PCR. 

A relative standard curve was made by diluting the cDNA product from a single 

sample from 1 pg to 100 ng. Analysis was conducted with the ABI Prism Sequence 

Detection System 7700 analyzer, with relative initial RNA concentrations determined 

from Ct values based on the standard curve. 

 

 

2.3. Results 

2.3.1. Purα binds to G-rich strands of the 5′SHS silencer and NHE of the PDGF-A 

gene 

        The human PDGF-A gene contains at least four paranemic elements that are 

highly GC-rich and contain multiple GGN repeat sequences (Figure 4), consensus 

binding sites for Purα (Gallia et al., 2000). To assess binding of Purα to G-rich 

strands of the 5′SHS silencer (Liu et al., 1996) and nuclease-hypersensitive promoter 

element NHE (Ma et al., 2004), EMSAs were conducted with GST-tagged human 

Purα (GST-Purα). IPTG treatment resulted in strong induction of a 66 kDa band 

corresponding to GST-Purα  (Figure 5A), which was purified using GSH-Sepharose 

chromatography and its identity confirmed by immunoblot analysis with anti-GST 

antibody (Figure 5B). Incubation of GST-Purα (100 ng) with the single-stranded, G-

rich strand of the PDGF-A NHE sequence resulted in the formation of a complex 

(Figure 5B, lane 2) not obtained with GST polypeptide alone (Figure 5B, compare 

lanes 7 and 8). Unlabeled NHE efficiently displaced labeled NHE from the 
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complexes (IC50<1 nM; Fig. 5B, lanes 3–5), indicating high affinity binding of GST-

Purα to the NHE sequence. Displacement of radiolabeled 5′SHS with unlabeled 

homologous competitor was also efficient (lanes 11–13). Specificity of binding 

between GST-Purα and the NHE and 5′SHS motifs was indicated by the lack of 

displacement with an irrelevant DNA sequence (lanes 6 and 14).  
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Figure 5. Purα binds to G-rich strands of the 5′ SHS silencer and NHE with high 

affinity and nucleotide sequence-selectivity. (A) Expression and purification of 

GST-Purα. SDS-PAGE analysis of protein lysates from E. coli expressing 

recombinant GST-Purα (left), obtained before (pre-ind.) and after (post-ind.) IPTG 

induction. At right is the analysis of GST-Purα protein obtained by GSH-sepharose 

affinity purification. Purified GST-Purα was subjected to SDS-PAGE and either 

stained with Coomassie blue (1 μg GST-Purα, Coom.) or analyzed by Western blot 

(100 ng GST-Purα, WB) with anti-GST antibody. (B) EMSA of GST-Purα binding with 

the NHE promoter (top) and 5′SHS silencer (bottom) elements. GST-Purα (100 ng) 

was incubated with a 32P-endlabeled oligodeoxyribonucleotide corresponding to the 

G-rich sense strand of the NHE element (32P-NHEs), either in the absence (lane 2) 

or presence of 50- (lane 3) or 100-fold (lane 4) molar excess of unlabeled 

homologous competitor DNA. An irrelevant 33 nt oligodeoxyribonucleotide (NS, lane 

5) was employed as a negative control. The same experimental paradigm was 

employed in the analysis of GST-Purα binding to the G-rich strand of the 5′SHS 

(5′SHSs; lanes 6–10). (C) Ethylation interference footprinting (EIF) analysis of 

binding between GST-Purα and the NHE. Ethylated, 32P-endlabeled NHEs probe 

was incubated with affinity purified GST-Purα and subjected to nondenaturing 

electrophoresis to separate bound and free DNA. Shown are products obtained 

following piperidine cleavage at guanine residues of free and bound probes, and 

ethylated probe alone. At left are the footprint dimensions (FP) obtained, with the 

location of Sp1 site A identified at right.  
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2.3.2. Localization of Purα binding to the PDGF-A NHE sequence by ethylation 

interference footprinting analysis 

        To localize nucleotide residues essential for binding of Purα to the NHE 

sequence, ethylation interference footprinting (EIF) was conducted. EIF permits 

single nucleotide resolution mapping of protein contacts with DNA, primarily at 

guanine residues (Büning et al., 1995 and Maul et al., 1998). A single-stranded DNA 

corresponding to nucleotides −104 to −6 was radiolabeled, ethylated, and incubated 

with purified GST-Purα. Interference with Purα-NHE complex formation was evident 

when residues located between −91 and −77 were ethylated, seen as a decrease in 

intensity of bands in the bound relative to the free lane (Figure 5C). The footprinted 

region contains a multitude of the GGN motifs characteristic of Purα binding sites 

(see Figure 4). Footprinting was most pronounced at residues −89 through −82, 

coinciding with two GGN repeats (GGA GGC) and one of the four consensus Sp1 

sites (Sp-A) of the NHE. 

 

2.3.3. Forced expression of Purα upregulates transcriptional activity of the NHE 

        Having shown Purα binds in vitro with high affinity and DNA sequence-

selectivity to the G-rich strands of the NHE and 5′SHS elements of the PDGF-A 

gene, we sought to determine whether the protein could regulate the respective 

transcriptional activities associated with these elements. To this end, the effects of 

forced Purα expression on reporter constructs containing these elements were 

assessed by transient transfection analysis in HepG2 (human hepatoma) cells. 

HepG2 cells were employed as they exhibit a significant PDGF-A promoter activity 
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upon which either enhancement or repression could be observed (Maul et al., 1998). 

Purα expression resulted in a nearly 3-fold induction in transcription mediated by a 

−261 to +8 fragment of the PDGF-A promoter region, which contains the NHE 

(Figure 6A). A similar effect (2.5-fold) was also seen with a shorter PDGF-A 

promoter fragment (−84 to +8; Figure 6B) containing only the NHE and TATA motifs, 

localizing the region necessary for Purα induction to the NHE. Purα expression 

resulted in a much smaller, albeit statistically significant (1.3-fold) induction in Rous 

sarcoma virus promoter activity (Figure 6C), indicating the specificity of Purα-

mediated induction of NHE activity. Constructs in which the 5′SHS was either 

relocated adjacent to the −261 promoter fragment, or studied in the context of a 1.8 

kb promoter fragment, exhibited the same 2.5–3-fold enhancement to forced Purα 

expression (data not shown). Thus, Purα does not appear to interact functionally with 

the 5′SHS silencer, despite its affinity for the element in vitro. Induction of NHE 

activity by Purα dominated over the modest repressive activity of NM23-H1 (Figure 

6A), an inhibitor of NHE activity in HepG2 cells (Ma et al., 2002). Expression of YB-1, 

which cooperates with Purα to activate the viral lytic control element of the human JC 

polyomavirus (JCV; Chen et al., 1995) and which binds with high affinity to the C-rich 

strand of the NHE in vitro (data not shown), had no effect on NHE activity alone or in 

combination with Purα. The ability of YB-1 to bind the NHE sequence suggests that it 

may be relevant in some physiological contexts, such as endothelial cells, in which 

the YB-1 family member DNA binding protein B (dbpB) has been shown to activate 

the PDGF-B promoter (Stenina et al., 2000).  
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Figure 6. Forced expression of Purα upregulates PDGF-A promoter activity. (A) 

HepG2 cells were transfected with the PDGF-A chain promoter-CAT reporter 

construct (pAC261cat) shown above the panel. Values (relative CAT activity) 

represent the ratio of CAT activity divided by β-galactosidase (β-gal) activity obtained 

by cotransfection with the control plasmid, pRSV-βgal. Cells were transfected with 

the various combinations of vectors driving expression of Purα, NM23-H1 and YB-1, 

as indicated. (B) Effects of Purα expression on activity of the −82 to +8 PDGF-A 

promoter subfragment. (C) Effects of Purα expression on activity of the Rous 

sarcoma virus enhancer-promoter. Asterisks denote means that are significantly 

different (p≤0.05) from that obtained with pAC261cat (panels A and B) or pRSV-βgal 

(panel C) alone.  
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2.3.4. Purα expression is required for optimal expression of PDGF-A gene: studies in 

MEFs derived from Purα knockout mice 

        To further establish the relevance of Purα to regulation of PDGF-A gene 

transcription, NHE activity and PDGF-A mRNA levels were compared in embryo 

fibroblasts (MEFs) derived from wild-type and Purα knockout mice (Khalili et al., 

2003). The mouse and human PDGF-A promoters are very similar in nucleotide 

sequence, with the mouse version also highly GC-rich and harboring at least two of 

the four Sp1 motifs found in the human gene (Figure 7A). Of note is the conservation 

of sequence in the mouse gene corresponding to −86 to −81 of the human gene, the 

area of strongest Purα binding identified by EIF analysis. Transcriptional activity of 

the −261 to +8 fragment of the human PDGF-A gene, which contains the NHE, was 

reduced by ~30% in MEFs derived from mice homozygous (−/−) for the Purα 

knockout mutation relative to the wild-type (+/+). This indicates a role for Purα in 

maintaining transcriptional tone of the PDGF-A promoter in fibroblasts and thus, by 

inference, possibly other cell types.  

        To confirm whether the effects of Purα expression on PDGF-A promoter activity 

are manifested in expression of the endogenous PDGF-A gene, steady-state 

concentrations of PDGF-A mRNA were measured in MEFs derived from wild-type 

and Purα −/− mice using real-time polymerase chain reaction (RT-PCR) analysis 

(Figure 7B). Following 24 h of serum-deprivation, −/− MEFs exhibited a 35% lower 

level of PDGF-A mRNA than wild-type MEFs. To examine whether Purα might 

participate in the well-documented induction of PDGF-A expression and proximal 

promoter activity in response to mitogen stimulation (reviewed in Kaetzel, 2003), 

mRNA concentrations were also measured following administration of fetal bovine 
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serum (FBS), a potent inducer of PDGF-A expression. In wild-type MEFs, PDGF-A 

mRNA levels were induced significantly by FBS within 2 h and peaked within 4 h, 

falling back to near baseline levels by 24 h. FBS induced mRNA concentrations in 

−/− MEFs to levels comparable to those seen in wild-type MEFs at 2, 4 and 8 h post-

treatment. At 24 h, however, mRNA levels in the −/− MEFs fell to concentrations 

significantly below that of the corresponding treatment time in wild-type MEFs, 

consistent with their relative difference prior to FBS treatment (panel C). Thus, Purα 

is necessary for optimal PDGF-A expression under basal conditions, but is not 

required for optimal induction of the gene in response to exposure to FBS. 
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Figure 7. Purα is required for optimal NHE activity and expression of PDGF-A 

mRNA. (A) Nucleotide sequence alignment of the mouse and human PDGF-A 

promoters. The sequences were obtained from the human (gi 37538282_c9000-

71530) and mouse (gi38081379_c148280-127560) genome databases; both were 

previously derived (Bonthron et al., 1988 and Rorsman and Betsholtz, 1992). Sp1 

motifs are identified by shading and brackets. (B) Transient transfection analysis of 

NHE activity in MEFs derived from wild-type (Purα +/+) and Purα knockout 

(Purα −/−) mice. Values represent relative luciferase activities obtained with 

pAC261luc, corrected for differences in transfection efficiency with the Renilla 

luciferase reporter construct phRL-SV40. (C) Steady-state concentrations of PDGF-

A mRNA in MEFs from Purα +/+ and Purα −/− mice as determined by real-time 

polymerase chain reaction analysis. (D) Inactivation of the Purα gene does not 

influence induction of the murine PDGF-A gene by fetal bovine serum. Values in 

panels C and D are expressed relative to those obtained in untreated Purα +/+ MEFs 

(fold-change). Bars represent means±S.E.M. (n=5), with asterisks denoting 

significant differences (p<0.05). 
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2.4. Discussion 

        To date, the only transcription factors shown to interact with the PDGF-A 

promoter, such as the positively acting Sp/Krüppel proteins and the repressive 

factors WT1, GCF2 and NFI-X, bind to DNA in double-stranded form (reviewed in 

Kaetzel, 2003). The considerable single-stranded (paranemic) character of the 

PDGF-A promoter, however, suggested that single-stranded DNA binding proteins 

might also play important roles in regulation of promoter activity. The current study 

has provided the novel observation that Purα, a transcription factor with an affinity for 

single-stranded GGN motifs, activates transcription of the PDGF-A gene via binding 

interactions with the G-rich strand of the promoter. The NHE region of the PDGF-A 

promoter contains at least 12 such GGN motifs (Figure 4), consistent with multiple 

potential targets for Purα interaction. A subfragment of the PDGF-A promoter (−84 to 

+8) containing eight of these motifs exhibits full transcriptional inducibility upon 

forced expression of Purα, indicating this region represents a minimal Purα response 

element. However, ethylation interference footprinting indicated that Purα also binds 

with high affinity to a region found further upstream (−91 to −77) which contains a 

single GGN motif, strongly suggesting these upstream sites may also be competent 

for Purα responsiveness. Accordingly, a comprehensive mutagenic analysis of Purα 

binding and transcriptional responsiveness of all 12 GGN motifs, singly and in 

combination, might be informative in elucidating this complex molecular interaction.  

        Purα mRNA is expressed in all metazoan tissues examined to date (Johnson, 

2003), suggesting potential for wide-ranging roles in the regulation of PDGF-A gene 

transcription. The similarly ubiquitous patterns of expression for Sp1 and other 

Sp/Krüppel proteins suggests the PDGF-A promoter may exist in an equilibrium 
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between double-stranded (Sp-bound; moderate transcription) and single-stranded 

(Purα-bound, higher transcription) states, as shown in the model of Figure 8. This 

model is similar to that proposed for the myelin basic promoter (MBP) gene, where a 

transcriptional repressor, MyEF-2, is displaced from key response elements as 

Purα levels increase over the course of brain development (Muralidharan et al., 

1997). Of additional relevance is the cell cycle-dependent pattern of Purα 

expression, in which nuclear levels of the protein are low in early G1 phase but 

increase progressively throughout S, G2, and M-phases (Itoh et al., 1998). This 

raises the possibility that Purα may play an important role in shifting the equilibrium 

of the PDGF-A promoter toward a single-stranded and a more transcriptionally active 

structure in proliferating cells, particularly at later stages of the cell cycle. In this 

regard, Purα is a DNA unwinding protein (Darbinian et al., 2001a) with the potential 

for both creating and stabilizing single-stranded conformations. It should also be 

noted that Purα may also interact with a double-stranded CCAGCA motif in the ovine 

placental lactogen promoter (Limesand et al., 2004). While such a motif is not 

apparent in the PDGF-A promoter, the possibility that Purα may interact with double-

stranded motifs in this region cannot be formally excluded.  
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Figure 8. A proposed model portraying an equilibrium between the double-

stranded NHE bound by Sp1 (left) and the single-stranded condition, stabilized 

via binding of Purα dimers and a hypothetical C-strand binding protein (CS-

BP; right). The Sp1-bound, double-stranded state is shown to impart moderate 

transcriptional tone while the Purα-bound, single-stranded condition provides high 

transcriptional activity. The CS-BP is presented in light of a similar model described 

for the MCAT enhancer of the vascular smooth muscle α-actin (SMA) gene (Kelm et 

al., 1997). 
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        Purα is a transcription-enhancing factor in the context of the PDGF-A promoter, 

consistent with its interactions with regulatory elements in promoters of such genes 

as myelin basic protein, neuron-specific FE65, and neuronal nicotinic acetylcholine 

receptor (nAchR). In the current study, Purα failed to augment the silencer activity of 

the 5′SHS element, in contrast with its high affinity for the G-rich strand of the 5′SHS 

sequence in vitro. This observation also contrasts with the silencer promoting activity 

of Purα in its interactions with the muscle-specific MCAT enhancer in the vascular 

smooth muscle α-actin gene (Kelm et al., 1997). The apparent lack of functional 

interaction between Purα and the 5′SHS silencer could be the result of competition 

with other silencing factors with greater affinity and/or abundance in the HepG2 cells 

studies.  

        The use of MEFs derived from Purα knockout mice yielded the observation that 

Purα expression was necessary for optimal expression of PDGF-A mRNA, at least in 

the MEF system. Close inspection of the NHE region of the mouse PDGF-A 

promoter reveals the presence of at least three GGN motifs within close proximity of 

each other (GGA GGC GGG GG GGC, analogous to −89 to −64 of the human 

promoter sequence), strongly suggesting this sequence is the target of Purα action in 

both the mouse and human. Although the loss of transcriptional activity resulting 

from Purα gene inactivation was statistically significant, the effect was rather modest. 

This is not surprising in light of the abundance of Sp1 proteins in mammalian cells, 

with which Purα may be competing for access to the NHE region in wild-type MEFs. 

Another potential attenuating factor is the aforementioned cell cycle-dependent 

pattern of Purα expression. The contribution of Purα to PDGF-A gene transcription 

and steady-state concentrations of PDGF-A mRNA might only be exerted transiently 

at the late stages (late S, M) of the cell cycle.  
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        Our current model describes a competitive scenario between Purα and Sp1 for 

access to the NHE. However, Purα and Sp1 have also been shown to associate 

physically and collaborate functionally in the activation of the MB1 regulatory 

element of the MBP gene in mouse brain (Tretiakova et al., 1999). This interaction 

was proposed to require the phosphorylated form of Sp1, whose levels are 

developmentally regulated and increase over the course of brain development. 

Moreover, Purα and Sp1 function cooperatively to activate transcription of the CD11c 

gene during PMA-induced monocytic differentiation in U937 cells (Shelley et al., 

2002). Thus, the potential for functional collaboration between these transcription 

factors at the NHE must also be considered, although an underlying mechanism that 

could accommodate the presence of both factors at the same site is obscure at 

present. One plausible notion is that phosphorylated Sp1 provides the initial 

interaction with double-stranded DNA, followed by recruitment of Purα via protein–

protein interactions, Purα-mediated DNA unwinding, and either displacement of Sp1 

or cooperative recruitment of transcriptional coactivators by both factors. The NHE is 

currently being employed for testing of this complex molecular model.  

        The demonstration that Purα is a positive transcriptional regulator of PDGF 

expression, the latter a long-recognized contributor to oncogenic transformation and 

neovascularization, represents an important addition to the known roles of Purα in 

cell cycle control and oncogenesis (see review, Johnson, 2003). For example, 

Purα associates with a number of cell cycle control proteins, including 

hypophosphorylated retinoblastoma protein, cyclin A (Itoh et al., 1998) and CDK2 in 

S-phase (Barr and Johnson, 2001), cyclin B1 in M-phase (Barr and Johnson, 2001), 

and CDK5 (Gilden and ter Meulen, 2002). Our observed enhancement of a tumor-

promoting mechanism contrasts with most reports to date, however, which suggest 
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Purα may serve tumor-suppressor-like functions. Purα opposes growth colony 

formation in K-ras transformed cells (Barr and Johnson, 2001) and other tumor cell 

types (Darbinian et al., 2001b). An anti-oncogenic role of Purα in human cancer per 

se is suggested strongly by its downregulation in CML patients at diagnosis 

(Bruchova et al., 2002), and the frequent deletion of the PURA locus in 

myelodysplastic syndrome, a condition that often precedes AML (Lezon-Geyda et 

al., 2001). On the other hand, Purγ was recently shown to be upregulated in all 

members of a tumor tissue panel, suggesting at least this isoform may have tumor-

promoting functions (Liu and Johnson, 2002). Addition of PDGF-A to the list of genes 

upregulated by Purα suggests the role of Purα in cancer may be more complex than 

indicated initially. Studies to further examine the potential Purα−PDGF axis of 

cellular transformation appear to be warranted.  

        Our lab’s previous data showed transient transfection analyses in HepG2 cells 

revealed that both NM23-H1 and -H2 repressed transcriptional activity driven by the 

PDGF-A basal promoter (-82 to +8). Activity of the negative regulatory region (-1853 

to -883), which contains the 5’-SHS, was also inhibited modestly by NM23-H1 and 

NM23-H2, indicating the role for NM23 proteins in repressing transcription of a 

growth factor oncogene, providing a possible molecular mechanism to explain their 

metastasis-suppressing effects. In these current experiments, we only tested a 

minimum transcriptional downregulation of PDGF-A chain by NM23-H1 either 

binding to 5’SHS (negative regulatory element) or NHE (positive basal regulatory 

element). Compared with the basal transcriptional regulation, there is no significant 

difference between two of them. When NM23-H1 cotransfected with Pura or YB-1 

(single-stranded DNA binding proteins), their transcriptional regulation function on 

PDGF-A chain couldn’t be changed by NM23-H1 overexpression. This suggests that 
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transcriptional downregulation of NM23 on PDGF-A chain is very weak. Considering 

the strong metastasis suppression of NM23, this theory of transcriptional repression 

of oncogene is not ideal. So, we need a new model to explain the metastasis 

suppressor function of NM23. 
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CHAPTER THREE 

DNA DAMAGING AGENTS CAUSE THE ACCUMULATION OF NM23 PROTEINS IN 

NUCLEAR FOCI, SUGGESTING A ROLE IN DNA REPAIR 

 

3.1. Introduction 

        Our current data in this project suggests that only minimum transcriptional 

downregulation on PDGF-A chain promoter comes from NM23-H1. Thus, the potent 

metastasis suppressor activity of NM23 would appear to be mediated via some other 

function of the molecule. A potential candidate is the 3’-5’exonuclease of NM23-H1 

discovered in our lab (Ma et al., 2004) and nuclease of NM23-H2 (Postel et al., 2000). 

In NM23-H2, lysine-12, a phylogenetically conserved residue, was identified as the 

amino acid forming the covalent complex with DNA, and critical for the cleavage of the 

DNA phosphodiester backbone. It is also known that lysine-12 lies in the catalytic 

pocket, essentially involved in the NDP kinase phosphorylation reaction. These 

findings suggest catalysis of DNA cleavage and phosphorylation of nucleotides by 

NM23/NDPK share a single active site, implying a DNA repair function (Postel et al., 

2000). 

        As a multifunctional enzyme, NM23 is distributed ubiquitously, though its 

expression may vary in a differentiation- and tissue-specific manner. The proteins are 

found both in the cytoplasm and in the nucleus (Rosengard et al., 1989). In case of 

stress, such as virus infection, T lymphocyte attack, or ATP depletion, cytoplasmic 

NM23s translocate into the nucleus alone or in combination with other proteins. NM23-

H1 is predominantly localized in the cytoplasm of Epstein-Barr virus (EBV)-negative B-

lymphocytes (Subramanian et al., 2001). However, in cells that are transfected with 

EBNA-3C, the viral oncoprotein of EBV, NM23-H1 signals were pronounced in the 
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nucleus and colocalized with EBNA-3C. In the nucleus, EBNA-3C reverses the NM23-

H1 mediated suppression of tumor cell migration. These observations indicate that 

NM23 could sense the viral infection and translocate into the nucleus and lose its 

function of suppression of tumor cell migration.  

        Recently, NM23-H1 was found as one component of an ER-associated complex 

containing PP32 and the granzyme A substrates SET, HMG-2, and Ape1 (Fan et al., 

2003). NM23 could sense the cellular changes in tumor cells and translocate into 

nucleus, nicking DNA and inducing caspase-independent apoptosis. When K562 cells 

are loading with perforin and granzyme, which are cytolytic proteins released from 

cytotoxic T lymphocytes (CTL) and NK cells, NM23-H1 is released from cytoplasm. 

Then released NM23-H1 translocates to the nucleus, and induces DNA single-

stranded nicks. All these results suggest that NM23 may also function as a stress or 

energy sensor, sensing any cytoplasmic changes caused by virus infection, ATP 

depletion, or DNA damage. Translocated NM23s will either repair damaged DNA, or 

induce apoptosis if the DNA damage is impossible to be repaired. 

        To obtain direct evidence regarding the translocation of NM23 proteins into 

nucleus on DNA damage, two tumor cell lines, HepG2 and HeLa, were used and 

treated with the DNA damaging agents, cisplatin and etoposide. Western blot and 

immunofluorescence were employed to measure the localization and 

compartmentation of NM23. Also, co-localization of NM23 with Ape1 was investigated 

after cells were treated with DNA damaging agents. 

 

3.2. Materials and methods  

3.2.1. Cell culture and preparation of nuclear extract 
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        HepG2, HeLa cells were grown at 37ºC under 5% CO2 in DMEM medium 

supplemented with 5% fetal bovine serum (FBS) and 2 mM glutamine. Cells grown 

to 80% confluence were used for fractionation. Each cell line was treated with 

cisplatin (15 μg/ml) and etoposide (15 μg/ml) for 2 h, 4 h, and 24 h. DMSO treatment 

was used as control. After cells were treated for different time period, the growth 

medium was aspirated; the plate was rinsed 2 times with 5 ml ice-cold PBS and cells 

removed with a teflon-coated scraper (Costar). Cell nuclear extracts were prepared 

as described previously (Pines et al., 2005). Briefly, 107 cells were washed once with 

phosphate-buffered saline (PBS) and resuspended in 100 μl of hypotonic lysis buffer 

A [10 mM HEPES, 10 mM KCl, 0.1 mM MgCl2, 0.1 mM EDTA, 2 μg/ml leupeptin, 2 

μg/ml pepstatin and 0.5 mM phenylmethylsulfonyl fluoride (PMSF), pH 7.9]. After 10 

min, cells were homogenized by 10 strokes with a loose-fitting Dounce homogenizer. 

Nuclei were collected by centrifugation at 500 g at 4ºC for 5 min in a microcentrifuge. 

The supernatant was considered as the cytoplasmic fraction. Nuclei were then 

washed three times with the same volumes of buffer A in order to minimize 

cytoplasmic contamination. Nuclear proteins were extracted with 100 μl of buffer B 

(10 mM HEPES, 400 mM NaCl, 1.5 mM MgCl2, 0.1 mM EDTA, 2 μg/ml leupeptin, 2 

μg/ml pepstatin and 0.5 mM PMSF, pH 7.9). After incubating for 30 min at 4ºC, 

samples were centrifuged at 12,000 g for 20 min at 4ºC. Nuclear extracts were then 

analysed for protein concentration by Bradford assay (Bio-rad) and stored at -80ºC in 

aliquots. 

 

3.2.2. Western blot  

        Protein (40–50 mg/lane) was mixed with loading buffer and separated by 15% 

SDS–PAGE. Protein was transferred to membrane by semidry transfer apparutus. 
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Following fixation of proteins, the membrane was wetted in methanol, rinsed in 

distilled water, and blocked in blocking buffer containing 5% dry nonfat milk for 

overnight, NM23s was detected using a polyclonal rabbit anti-NM23 antibody (Santa 

Cruz) at a final dilution of 1:100 (final concentration 2 μg/ml) for 1 h. Membranes 

were then incubated with buffer containing 1:10,000 diluted goat anti-rabbit 

secondary antibody conjugated to horseradish peroxidase for 1 h at room 

temperature. Bound secondary antibodies were detected using chemiluminescence 

for 5 min.  

 

3.2.3. Immunofluorescence staining 

        HeLa Cells (1x104) were grown on 8-chamber, polystyrene vessel tissue culture 

glass slide (BD) and treated with etoposide and cisplantin for different time period. 

Cells were washed three times with PBS and fixed with 4% formaldehyde for 10 min. 

Then cells were permeabilized with 0.3% Triton X-100 for 10 min and then 

preincubated with 10% goat serum for 2 h. Cells were incubated with an anti-NM23 

(Santa Cruz) polyclonal antibody overnight. Primary antibody labeling was visualized 

by incubation with anti-rabbit IgG-FITC (Santa Cruz, 1:100) for 60 min. 4’,6’-

diamidino-2-phenylindole (DAPI) (Sigma) was used for nuclear conunterstaining. 

Prepared slides were then analyzed by fluorescent microscopy. For co-localization, 

anti-Ape1 antibody was used as another primary antibody, and goat-anti-mouse-

Texas Red was used as secondary antibody. 

 

 

3.3. Results 

3.3.1. NM23 translocates into the nucleus following treatment with DNA damaging 
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agents 

        To examine whether NM23 has a role in the cellular response to DNA damage, 

we probed its intracellular localization by western blot and indirect 

immunofluorescence. After HeLa cells were exposured to cisplatin and etoposide for 

different time course, nuclear extract was obtained and western blot analysis was 

performed. Both anti-cancer reagents induced nuclear translocation of NM23 

compared with untreated cells (DMSO control). It seems that cisplatin induces 

nuclear tanslocation of NM23 faster (peak time is at 2 hour of treatment) than 

etoposide (peak time is at 4 hour of treatment) (Figure 9A). To verify the results from 

western blot of nuclear extract, indirect immunofluorescence and confocal analysis 

were performed on both cell lines treated by etoposide. Immunofluorescence 

microscopy (Figure 9B) and confocal microscopy (Figure 9C) results are all 

consistent with western blot with peak time of nuclear NM23 increasing at 4 h of 

treatment. Obviously, increase of nuclear NM23 is after its increase in the cytoplasm, 

suggesting that both neosynthesis and nuclear translocation of NM23 take place at 

the time of DNA damage. 
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Figure 9. Cisplatin- and etoposide-induced expression of NM23 and 

translocation from the cytoplasm to the nucleus. (A) Cells were cultured in 

DMEM and treated with cisplatin and etoposide (15 μg/ml) for the indicated times. 

Western blot analysis, performed as described in materials and methods, of NM23 

expression levels of nuclear extract is indicated. DMSO, solvent for cisplantin and 

etoposide, was used as control treatment. (B) Hela cells were grown on 8-well 

chamber slides and treated with etoposide (15 μg/ml) for the indicated times. Cells 

were then fixed, permeabilized, and stained for NM23 (green). Nuclei were 

conterstained by DAPI (blue). Immunofluorescence microscopy was used for 

visualization. (C) HepG2 cells were grown on 8-well chamber slides and treated with 

etoposide (15 μg/ml) for the indicated times. Cells were then fixed, permeabilized, 

and stained for NM23. Confocal microscopy was used for image analysis. 
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3.3.2. DNA damaging agents induces the concentration of NM23 within nuclear foci  

        Inhibition of the topoisomerase II function can result in DNA double-strand breaks 

(DSBs) and, thus, lead to chromosomal translocations. DSBs must be recognized and 

be able to promote the recruitment of some DNA repair proteins to the damaged sites 

in order to initiate repair (Kantidze et al., 2006). To clarify the question we have 

checked whether the exposure of cells to etoposide triggers the formation of NM23 

nuclear foci, which so far have been taken as an indicator for the presence of DNA 

repair (Raderschall et al., 1999 and Robinson et al., 2005). In untreated HeLa cells, 

NM23 showed diffuse staining of the cytoplasm and nuclei (Figure 9C, DMSO 

treatment). After exposure to DNA damage reagents etoposide for 4h and 24 h, 

NM23s relocalized to distinct nuclear foci (Figure 10). We propose that these foci 

represent sites of processing of DNA double-strand breaks (DSBs). 
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Figure 10. Etoposide induces nuclear foci formation of NM23. HeLa cells were 

grown on 8-well chamber slides and treated with etoposide (15 µg/ml). Cells were 

fixed, permeabilized, and stained with anti-NM23 polycolonal antibody (Sigma, 1:100 

dilution) and FITC conjugated secondary antibody. Immunofluorescence microscopy 

was used for visualization. 
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3.3.3. NM23 does not co-localize with Ape1 in response to DNA damage 

        To further investigate the molecular relationship between NM23 and Ape1 after 

DNA damage, we examined whether NM23s co-localized with Ape1, which has been 

reported to co-translocate into nucleus with NM23s in response to Granzyme A loading 

or CTL attack (Fan et al., 2003). Ape1 is Apurinic apyrimidinic endonuclease redox 

effector factor-1 (APE1/Ref-1) involved both in the base excision repair (BER) of DNA 

lesions and in the eukaryotic transcriptional regulation (Pines et al., 2005). After cells 

were treated with etoposide for 4 h and 24 h, cells were stained with anti-NM23 

(green) and Ape1/Ref-1 (red). Both protein expressions were induced by etoposide 

treatment, and nuclear foci were formed at 4 h and 24 h treatment. In contrast to 

previous report that both proteins are in the cytoplasm, most Ape1 was found in the 

nucleus even before the etoposide treatment. Four hour treatment induced more Ape1 

expression in the nucleus and translocation of NM23 only. But NM23 foci do not co-

localize with Ape1 foci. After 24 h of treatment, even though NM23 expression are still 

high in the nucleus and foci are very significant, Ape1 staining and foci are lost in 

some cells which still contain NM23 foci (Figure 11). All these data suggest that in 

response to different DNA damage, NM23 and Ape1 might react differently. They may 

localize to their own binding sites to initiate DNA repair and function for different time 

periods. 

 

 

 

 

 



 53

Figure 11. Etoposide induces NM23 and Ape1 foci that do not co-localize. HeLa 

cells treated with etoposide for indicated time. After fixation, cells were stained and 

examined by immunofluorescence microscopy. NM23 was visualized with FITC-

conjugated antibody (green) and Ape1 was visualized using a Texas red (TR)-

conjugated secondary antibody (red). No colocalization (yellow) was seen when 

images of NM23 (green) and Ape1 (red) were merged. FITC is shown at left, TR 

staining red in the middle, and the merged image at right. 
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3.4. Discussion 

        Etoposide and cisplatin are both clinically widely used anti-cancer drugs. Cisplatin 

is used in the treatment of several types of cancer and is particularly effective against 

testicular tumors. Cisplatin introduces cytotoxic DNA damage predominantly in the 

form of intrastrand crosslinks between adjacent purines (Yamada et al., 1997). 

Etoposide specifically inhibits topoisomerase II (Topo II). It acts after cleavage of DNA 

by Topo II, leaving a lesion in which the enzyme is covalently linked to 5'-ends 

whereas 3' termini are free. These lesions likely develop into double-strand breaks and 

single-strand DNA gaps. As a consequence, etoposide triggers checkpoint activation 

(Rossi et al., 2006). Cell cycle checkpoints are regulatory pathways that control the 

order and timing of cell cycle transitions and ensure that critical events such as DNA 

replication and chromosome segregation are completed with high fidelity. In addition, 

checkpoints respond to damage by arresting the cell cycle to provide time for repair 

and by inducing transcription of genes that facilitate repair (reviewed in Elledge, 1996; 

reviewed in Weinert, 1998). 

        One hallmark of the DNA damage response is the aggregation of multiprotein 

complexes into foci or repair centers. A large amount of evidence showed that many 

DNA repair proteins, such as P53 (Al Rashid et al., 2005), PCNA (Essers et al., 2005), 

Rad 51 (Tarsounas et al., 2003), MRN complex (Mre11, Rad50 and NBS1) (Stracker 

et al., 2002), accumulate at the DNA damage site to form nuclear foci. NM23s have 

been reported to be distributed broadly in the cell in a differentiation and tissue specific 

manner. The proteins are found in the cytoplasm, in mitochondria, and in the nucleus. 

Our western blot and immunoflurescence results suggested that NM23s mostly exist in 

the cytoplasm. If NM23s play an important role in DNA repair, they should go into 

nucleus and accumulate at the DNA damage site, either alone or with other DNA 



 56

repair proteins. In the current study, as shown in western blot, NM23 expression is 

induced dramatically in two tumor cell line (HepG2, HeLa) in response to etoposide 

and cisplatin treatment. Cisplatin elicits peak translocation within 2 h of treatment, 

while etoposide induces nuclear translocation peak at 4 h of treatment, suggesting 

different repair responses induced by two different chemical reagents. But both 

treatments cause NM23 expression returning to near baseline levels by 24 h. 

Immunofluorescence studies in Hela cells confirm the immunoblot results and 

demonstrate increased expression and nuclear translocation of NM23 during periods 

of genomic stress. Furthermore, distinct nuclear foci were demonstrated in the cells 

following exposure to DNA damaging agents. Taken together, these results strongly 

suggest the DNA repair function of NM23s in the DNA damage response. 

        More studies are actively underway to investigate the potential role of NM23 in 

DNA repair and physical interactions between H1 and other repair proteins. More DNA 

damaging treatments are employed in our lab to explore the repair mechanisms of 

NM23. In fact, we have observed that UV irradiation appears to induce NM23-H1 

expression and localization in nuclear foci to an even greater extent than etoposide 

and cispatin. Moreover, NM23-H1 containing foci appear to colocalize with Rad1, a 

component of the 9-1-1 complex (Rad9, Rad1, and Hus1) implicated DNA damage 

induced by UV and other agents. 

        NM23 and Ape1 have been described as two components of the SET complex 

in the cytoplasm (Fan et al., 2003). Other reports have described that Ape1 is found 

in the cytoplasm at a significant level when determined by immunocytochemistry with 

anti-Ape1 antibodies (Ramana et al., 1998 and Kakolyris et al., 1999). Our results 

are consistent with the earlier report (Takao et al., 1998), in that Ape1 molecules 

were exclusively present in the nuclei. Four hour of etoposide treatment induces 
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significantly increased expression of Ape1 in the nucleus, and those foci formed after 

etoposide treatment seem to be much larger than NM23 foci in the same cells. 

Almost no NM23 foci and Ape1 foci colocalize. At the time point of 24 h treatment, 

some cells lost staining of Ape1, but NM23 foci are still contained in the nucleus, 

suggesting different functioning time in the process of DNA repair. All these data 

suggest that, even though the NM23, as an exonuclease, and Ape1, as an 

endonuclease, participate DNA repair, their interaction may be limited to responses 

to specific types of lesions. 

        The isoform of NM23s in this current study could not be determined because 

the antibodies used in immunoblot and immunofluorescence studies cross-react to 

both NM23-H1 and H2. More specific anti-NM23-H1 antibody should be used in 

order to determine whether the DNA repair function is more related to NM23-H1. 

        While DNA repair is an obvious potential function of the 3’-5’ EXO activity, 

another outcome of cells after genomic insult, apoptosis, has to be considered. In 

this regard, the study about the relationship of NM23 and apoptosis has been 

performed to investigate complementary function of NM23 in our lab. 
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CHAPTER FOUR 

THE NDPK AND, POSSIBLY, 3’-5’EXO ACTIVITIES OF NM23-H1 PLAY 

IMPORTANT ROLES IN SUPPRESSING PROGRESSION OF HUMAN 

MELANOMA CELLS TO A METASTATIC PHENOTYPE 

 

4.1. Introduction 

        Once the hypothesis of DNA repair function of NM23 EXO activities has been 

tested, we will test for the first time the extent to which exonuclease activities, and by 

extension, the repair activities of H1 are required for the ability to suppress tumor 

metastasis. In the cell culture models for studying antimetastatic activities of NM23 

proteins, melanoma is a highly suitable cell to establish the study model. Because, 

first, the metastasis suppressor function of NM23-H1 was identified in melanoma 

cells (Steeg et al., 1988). Second, melanoma is highly metastatic compared with 

another two skin cancers, basal cell cancer and squamous cell cancer. Although 

representing only approximately 4% of skin cancers, melanoma accounts for 

approximately 79% of skin cancer deaths, with an annual mortality of 2.3 per 

100,000 people. Third, clinical data indicates a reverse correlation between NM23 

expression in primary melanomas and rate of progression to metastasis (Florenes et 

al., 1992). Last, there is the availability of a panel of melanoma cell lines, developed 

and characterized in the laboratory of M.Herlyn (Wistar Inst), that represent different 

stages of progression (Herlyn et al., 1985) and can be used for the study of NM23 in 

impairing progression of melanoma cells and suppression of metastasis. 

        Clinical and histologic studies have resulted in defining five major steps of 

melanoma development and progression (Figure 12). Step 1, common acquired and 

congenital nevi with structurally normal melanocytes; step 2, dysplastic nevi with 
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structural and architectural atypia; step 3, RGP (radial growth phase), 

nontumorigenic primary melanomas without metastatic competence, corresponding 

to this early stage of horizontally spreading growth in the epidermal and papillary 

dermal layers of skin; step 4, VGP (vertical growth phase), tumorigenic primary 

melanomas with competence for metastasis, representing a more progressed and 

invasive stage characterized by aggressive downward invasion into dermal layer and 

beyond; and step 5, metastatic melanoma, which were derived either from metastatic 

lesions or by repeated passaging of tumor explants of prematastatic lines in rodents 

(Herlyn et al., 1985). It is now appreciated that transformation of melanocytes into 

malignant melanoma involves the interplay between genetic factors, UV exposure, 

and the tumor microenvironment. 
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Figure 12. Process of melanoma development from normal melanocytes. Nevi 

are characterized by aberrant cell growth, consisting of enlarged, coalescent nests of 

nevocytes, which display different degrees of cytologic dysplasia. Further 

progression results in malignant cells, which grow only within or in close proximity to 

the epidermis (radial growth phase; RGP). Eventually, cells acquire the ability to 

invade deeply into dermis (vertical growth phase; VGP) and then into lymphatics and 

blood vessels, leading to systemic dissemination (metastatic melanoma). BM, 

basement membrane (Graphic is from http:// www.wistar.upenn.edu/herlyn/default). 
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        Over 18 years of intensive study, multiple enzymatic activities of NM23-H1 have 

been uncovered. But the molecular mechanisms underlying its anti-metastatic activity 

remains controversial. To date, the strongest case for metastasis-suppressing activity 

has been made for the hisK of NM23-H1. Some evidence demonstrated that hisK null 

mutants of NM23-H1 (such as P96S and S120G) lose some of the motility-suppressing 

activity of the wild-type protein when overexpressed in MDA-MB-435 breast carcinoma 

cells (Freije et al., 1997; Wagner et al., 1997). However, definitive validation of the role 

played by the hisK awaits detailed characterization of relevant downstream hisK 

substrates and their relationships to metastasis suppression. Other data indicated that 

there is no correlation between NDPK activity and suppression of tumor metastatic 

potential among control and NM23-H1 transfected murine melanoma cells (MacDonald 

et al., 1993). This has yet to be demonstrated using the forced expression model used 

above due to lethality associated with overexpression of NDPK mutants.  

        3’-5’ exonuclease activity is a newly identified biochemical function of NM23-H1 in 

our lab (Ma et al., 2004). This activity is very intriguing in light of the association of 

these enzymes with DNA repair processes, and the mutator phenotype which often 

arises as a consequence of their deficiencies (reviewed in Shevelev and Hübescher, 

2002). To overcome numerous barriers in the whole metastasis process, tumor cells 

must acquire enough genetic alterations which are usually caused by accumulation of 

mutations. So, a primary working hypothesis of this current project is that 3’-5’ EXO 

activity plays a major role in metastasis suppressor function of NM23-H1 molecule. 

Loss of NM23 could lead to accumulation of mutation and thus progression to the 

metastatic phenotype. This hypothesis does not exclude contributions from NDPK and 

hisK activities of NM23-H1 to the metastatic process. In fact, this highly selective and 
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low efficient process could be completed by combination of multiple functions of 

metastasis suppressor. 

        To study the relevance of EXO or possibly other enzymatic activities to 

metastasis suppression, two melanoma cell lines were selected because of their 

abnormally low amount of NM23-H1 and NM23-H2 expression. WM793, a VGP cell 

line, represents a premetastatic cell line, while 1205LU, a MET cell line, represents 

metastatic cell line. After stable transfection and fluorescence-activated cell sorting, all 

the transfected cell lines are expressing equal amount of wild-type or variant mutant 

NM23-H1, including H118F mutant which was previously reported lethal to cells, was 

successfully transfected into both 1205LU and WM793 cells. These cell lines were 

used to measure the metastatic characteristics both in cell culture (motility assay, 

invasion assay) and in vivo, using standard approaches of experimental and 

spontaneous metastasis. Relevance of an enzymatic activity to suppression of 

metastasis should be apparent through a significant reduction in the antimetastatic 

activity of its corresponding mutant. The relevance of enzymatic activities of NM23-H1 

to prevention of tumor progression in premetastatic WM793 cells was also tested. 

        Motility assay and invasion assay are most widely used in vitro methods to study 

cell migration and the effect of various chemoattractants. These assays are largely 

based on the use of Boyden chambers or Transwell culture inserts in which porous 

membranes separate seeded cells from a chemotactic factor supplied in the medium 

in the lower chamber (de la Monte et al., 2002). Matrigel is considered as in vitro 

counterpart of basement membrane. It has been used to characterize involvement of 

ECM receptors and matrix degrading enzymes which play roles in tumor progression. 

But in vitro assays of invasiveness have been less than perfect. Animal models 

provide a more clinically accurate mechanism to study metastasis. Spontaneous 
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metastasis assay in nude mice takes about 4 months to complete. It recapitulates all 

the metastatic steps; therefore it’s the best study model even though it is time 

consuming. Experimental metastasis takes only 1 month. But this assay skips many 

early steps of metastasis and starts from survival of cells in blood stream (see Figure 

1). 

        Based on definition, metastasis suppressor genes differ from tumor suppressor 

genes by which transfection of metastasis suppressor gene back to cells has no effect 

on cell proliferation, colony formation in soft agar, and primary tumor growth. Cell 

proliferation rate was determined by MTS assay in the current project. It’s very 

important to know the growth rate of all parent cells and transfected cells. Because the 

tested cells stayed in animal model in such a long time, similar growth rate of all the 

cell lines won’t have any effect on metastasis assay. 

 

 

4.2. Materials and methods 

4.2.1. Cell culture, whole cell extract, and western blot 

        Melanoma cell lines were cultured in MCDB153/L15 (Sigma) medium (v/v: 4/1) 

supplemented with CaCl2 (2 mM), insulin (5 mg/ml) and 2% fetal bovine serum (FBS) 

(Gibco). At confluence, cells were centrifuged at 500 g for 5 min at 4ºC and 

supernatant was discarded. The cell pellet was loosened by gently vortexing for 5 s 

followed by addition of equal volume of M-Per (Pierce) with vigorous shaking. After 

incubation in 4ºC overnight, an aliquot was examined under a microscope to ensure 

that cells had uniformly lysed. The supernatant was aspirated after spinning for 30 

min at maximum speed at 4ºC. The protein concentration was measured by Bradford 

assay (BioRad). Protein (40-50 mg/lane) was mixed with loading buffer and 
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separated by 15% SDS-PAGE. Protein was transferred to a nitrocellulose membrane 

by a semidry transfer apparatus. NM23s was detected using a polycolonal anti-

NDPK antibody (Lab vision) at a final dilution of 1:500 for 1 h, and goat anti-rabbit 

secondary antibody conjugated to HRP for 1 h at room temperature. Bound 

secondary antibodies were detected using chemiluminescence (Amersham) for 5 

min. 

 

4.2.2. Plasmid construction, stable transfection, and flow cytometry 

        Wild-type and variant mutant NM23-H1 cDNA were cloned into the pCI vector. 

Other features in this vector include CMV promoter, green fluorescence protein 

(GFP) cDNA, and an internal ribosome entry sequence (IRES) interposed between 

the cDNAs to permit cotranslation of NM23-H1 and GFP from a bicistronic mRNA. 

Melanoma cells were seeded in six-well plates with 2 x 105 cells/well. Cells at a 

confluence of 70% were incubated with DNA (wt or mutant NM23-H1 cDNA) and 

Fugene 6 (Roche) complex (3:1 ratio) for 48 h at 37ºC. pSV2Neo was cotransfected 

as a selection marker. After 48 h incubation, cells were split in a 1:4 ratio to 100 mm 

dishes. Twenty-four later, geneticin (G418, Life technologies; 250 µg/ml) was added 

for selection. After 4 weeks selection, all the cell colones were trypsinized and 

pooled together. Cells were sorted by fluorescence-activated cell sorting (FACS) 

using a FACS Calibur flow cytometer. The sorting procedure has yielded more than 

95% GFP fluorescent cells (Figure 13). 
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Figure 13. Procedures of stable transfection of melanoma cells. 
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4.2.3. Two-dimentional gel electrophoresis 

        Materials for the first and second dimension were obtained from Bio-Rad. 

Approximately 50 μg of purified proteins and whole cell extracts from transfected 

1205Lu cells were loaded in 350 μl of rehydration buffer containing 8 M urea, 4% 

CHAPS, 100mM DTT, 0.2% Bio-lytes, and 0.001% bromophenol blue. ReadyStrip 

IPG strips (17 cm, PH 4-7) were placed side down into the rehydration buffer in a 

tray channel with 3 ml of mineral oil applied on the top. Rehydration was carried out 

for 12 h at 50 volts. The first dimension of electrophoresis was run in a Protean IEF 

cell, according to the manufacturer's instructions. To solubilize focused proteins and 

allow SDS binding, IPG strips were equilibrated prior to second dimension 

electrophoresis with 375 mM Tris–HCl, pH 8.8, 6 M urea, 2% SDS, 2% DTT, 20% 

glycerol for 10 min to reduce sulfhydryl groups, followed by 375 mM Tris–HCl, pH 

8.8, 6 M urea, 2% SDS, 2% iodoacetamide, 20% glycerol for an additional 10 min 

period to alkylate sulfhydryl groups. Second dimension electrophoresis was 

performed in 15% acrylamide gels. Then western blot was performed as previously 

described.  

 

4.2.4. Motility assay 

        Transwell 24-well plates (6.5 mm diameter, 8.0 μm pore size) (Corning Inc, Life 

Sciences) were incubated at 37ºC overnight before 1x104 melanoma cells (in 0.1 ml 

of medium) were plated in the upper compartment. The lower compartment was 

loaded with 0.6 ml of medium plus 10% FBS as chemoattractant. After 24 h of 

incubation at 37ºC, non-invading cells in the upper compartment were removed with 

a cotton swab. The microporous membrane was fixed in 70% ethanol for 1 h and 

cells reaching the membrane surface of the lower compartment were stained with 
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hematoxylin for 2 h. Stained cells were counted using an inverted light microscope. 

Five random high power fields (10x10) were counted to get an average number for 

one well. The experiments were repeated in triplicate wells for at least three times.  

 

4.2.5. MTS assay 

        Cell viability was assessed with the nonradioactive cell proliferation 3-(4,5-

dimethyl-thiazol-2yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium 

(MTS) assay using CellTiter96 AQueous Reagent (Promega) as described by the 

manufacturer. Briefly, cells were cultured in 96-well plates at a concentration of 2 x 

103/well. On day 1, day 2, day 3, day 4, and day 5, 20 µL of CellTiter96 AQueous 

Reagent (MTS/PMS mixture solution) were added into each well of 96-well plate 

containing 100 µL of cells in culture medium. Then the plate was incubated for 1 hour 

at 37°C, 5% CO2, and formazan absorbance was measured at 490 nm on a ELISA 

plate reader. Each measurement was done in triplicate and the mean value was 

calculated. 

 

4.2.6. Soft agar assay 

        For anchorage-independent growth, 5x104 parent and transfected cells were 

resuspended in 3 ml of growth medium containing 0.3% Nobel agar and plated on 

each well of 6-well plate containing a solidified bottom layer made of 1% Nobel agar in 

medium. After the 0.3% Nobel agar solidified, 2 ml of growth medium was added to the 

plates and replaced every 3 days. 28 days after plating, colonies were stained with 

crystal violet (0.005%) and imaged at 10X magnification. Each experiment was 

performed in triplicate and the mean value was calculated. 
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4.2.7. Invasion assay 

        BD BioCoatTM MatrigelTM invasion chamber (24-well format) were incubated at 

37ºC overnight before 1x104 melanoma cells (in 0.1 ml of medium) were plated in the 

upper compartment. The lower compartment was loaded with 0.6 ml of medium plus 

10% FBS as chemoattractant. After 24 h of incubation at 37ºC, non-invading cells in 

the upper compartment were removed with a cotton swab. The microporous 

membrane was fixed in 70% ethanol for 1 h and cells reaching the membrane 

surface of the lower compartment were stained with hematoxylin for 2 h. Stained 

cells were counted using an inverted light microscope. Five random high power fields 

(10x10) were counted to get an average number for one well. The experiments were 

repeated in triplicate wells for at least three times. The standard error of the mean 

was calculated from independently performed experiments. The statistical 

significance of the data was analyzed using the Student t test. 

 

4.2.8. Progression of WM793 in protein-free medium 

        This is a modified method from development of invasive and growth factor-

independent cell variants from primary human melanomas (Kath et al., 1991). WM793 

parent and transfected cells were plated at high density (2x104) in 24-well plates 

precoated with 0.1% gelatin in serum free medium. After 1 week adaptation, cells were 

trypsinized and reseeded at low density (1000 cells/well of 6-well plate). Two months 

later, colonies formed in each well from each cell line were counted, and then pooled 

and replated in the protein free medium at low density for next passage. Total 4 

passages were performed. Results were expressed as the % colony formation 

efficiency (# of colony yield per 1000 seeded cells) at each selection cycle (Figure 14). 
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Figure 14. Progression of premetastatic melanoma cells in protein-free medium. 
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4.2.9. In vivo metastasis assays 

        Care of mice, surgery and injection protocols were approved by the IACUC at 

the University of Kentucky Medical Center (protocol # 00319M2001 and 

00801M2004) and followed the National Institutes of Health guidelines. To produce 

spontaneous lung metastasis, a total of 2 million 1205LU parent or transfected cells 

in 200 μl HBSS were injected subcutaneously into the flank of athymic nude mice 

(Harlan, nu/nu) using a 1 ml tuberculin syringe. Tumor volumes were recorded every 

3 days from two-dimensional measurements obtained with vernier calipers, using a 

standard formula (Tomayko and Reynolds, 1989). After 28 days, when tumors reach 

800 mm3 (~1 cm diameter), mice were anathesized under isofluorene and primary 

tumors were removed and checked for fluorescence (Kodak Image Station 4000). 

Nude mice were kept for another 3 months to permit metastatic growth. At the end of 

the experimental period, mice were euthanatized and lung metastasis was 

determined by counting metastatic nodules under a dissection microscope.  Freshly 

dissected lungs were mounted in OCT (Tissue Tek) and frozen in a bath of liqud 

nitrogen. A total of 10 μm lung sections were obtained using a cryo-microtome (Leica 

3050S) and were mounted onto glass slides (Super Frost Plus, Fisher). All the slides 

were stained by H.E. staining. Photographs were taken at 10 and 20 

magnification. To produce experimental lung metastasis, 2x106 cells were injected 

directly into the lateral tail vein as described previously (Kath et al., 1991). Lungs 

were scored for metastasis nodules and frozen for section as described above 

(Figure 15). 
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Figure 15. Illustration of procedures of in vivo metastasis assays. In 

spontaneous metastasis assay, 2x106 1205LU parent or transfected cells were 

injected subcutaneously. After one month, the primary tumors were removed and 

mice were kept alive for another three months to let lung metastases formed. At the 

end of the experiment, mice were sacrificed and lung nodules were counted. In 

experimental metastasis assay, 2x106 1205LU parent or transfected cells were 

injected through tail vein, and lung nodules were counted after one month (graphics 

from Minn et al., 2005).  
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4.3. Results 

4.3.1. Expression of NM23-H1 and NM23-H2 is frequently lost in many metastatic 

melanoma cell lines 

        A panel of melanoma cells, including different stages of RGP, VGP, and MET, 

was screened by immunoblot for NM23 expression. A significant loss of expression 

for both NM23-H1 and NM23-H2 has been demonstrated in five out of seven total 

MET cell lines (Figure 16). Another two MET cell lines, WM164 and 451LU, are 

demonstrated marked expression of NM23-H1 and NM23-H2, suggesting the 

multifunctional enzymatic activities of NM23s instead of metastasis suppression. 

Interestingly, WM793, a cell line from VGP group, was also found the total loss of 

NM23-H1 and H2 expression, suggesting the potential malignancy and invasiveness 

of this cell line. Two cell lines were employed for overexpressing wild-type or mutant 

NM23-H1 by stable transfection due to their very low expression of endogenous 

NM23s. 1205LU from MET represents highly metastatic melanoma cells, and 

WM793 from VGP represents premetastatic models of melanoma. 1205LU cells 

were originally derived from WM793 cells in animal models. Forced expression of 

wild-type and mutant NM23-H1 in these two cell lines provides useful tools to 

determine the extent to which each of the enzymatic activities of NM23-H1, the 3’-5’ 

EXO in particular, suppresses metastatic progression. 
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Figure 16. Expression of NM23-H1 and H2 in melanoma cell lines. Whole cell 

extract from each melanoma cell line was obtained and 40 μg total protein was 

loaded for each lane. Following SDS-PAGE gel and semidry transfer of protein, 

western blot was performed by using anti-NDPK antibody (Lab vision, 1:500 dilution) 

and goat-anti-rabbit secondary antibody (Pierce, 1:10,000 dilution). RGP, radial 

growth phase; VGP, vertical growth phase; MET, metastatic 
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4.3.2. Motility of melanoma cells is inversely correlated to the expression of NM23s 

        Since the expression of NM23 is related to clinical outcome of tumor patients 

(Ohba et al., 2005; Wang et al., 2004; Terada et al., 2002), it is highly likely that the 

expression of NM23s is also correlated with tumor cell invasiveness. To investigate 

the relationship between NM23s and motility of melanoma cells, transwell motility 

assay was carried out among different melanoma cell lines. As we expected, cell 

motility is inversely correlated with the expression of NM23-H1 and NM23-H2. Three 

MET cell line, WM1158, 1205LU, and WM239, exhibited the highest motility 

compared with other melanoma cell lines, while other VGP or RGP cells 

demonstrated minimum of motility. Interestingly, 451LU from MET with 

extraordinarily high expression of NM23 exhibited the lowest motility, suggesting 

NM23 is not exclusively correlated to metastasis suppression, but highly correlated 

to  cell motility (Figure 17). 
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Figure 17. Motility of melanoma cells is inversely correlated to the expression 

of NM23s. Melanoma cells (1x104 cells per well) were plated into upper chamber of 

24-well transwell plate. Cells were incubated at 37ºC for 24 h with 10% FBS in the 

medium in the lower chamber as chemoattractant. Cells were removed by cotton 

swab at the end of the experiment, and cells migrated through the pores of 

membrane were fixed and stained with hematoxylin. Stained cells were counted 

under an inverted light microscope. Five random high power fields (10x10) were 

counted to get an average number for one well. The experiments were repeated in 

triplicate wells for at least three times.  
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4.3.3. Wild-type and variant mutant NM23-H1 are stably expressed in WM793 and 

1205LU cells 

        Transiently transfected cells were selected by G418 (geneticin, 250 µg/ml) for 

about 4 weeks. After drug selection, cell colonies are full of the whole 100 mm 

dishes. Not all of those colonies are GFP-positive. Those GFP-negative colonies are 

probably from G418 resistant cells, or more possibly, are from pSV2Neo only 

transfected cells. Some colonies are partially green: part of cells is green, but 

another part of cells in the same colony is not green, suggesting those tumor cells 

are heterogeneous even under the situation of cell culture.  Some colonies are 

unanimously GFP positive. The intensity of GFP is varied in different green cells, 

suggesting either the difference of cDNA copy numbers in stable transfection or the 

difference of transcriptional or translational level. To make sure that all the forced 

expressions of NM23-H1 are at the same level, fluorescence associated cell sorting 

(FACS) was employed to obtain all GFP positive cells with similar intensity of green 

signal. The sorting procedures have yielded more than 95% GFP fluorescent cells 

(Figure 18A and B) and intensity of GFP in each transfected cell line is at the range 

of 102 to 104 compared with the non-transfected parent cells.  

        To further compare the protein expression in each transfected cell line, western 

blot of whole cell extract from each cell was performed immediately after cell sorting 

(passage 2 and passage 3). After several passages, stably transfected cells 

(passage 8) were measured again for protein expression. In the early passage, 

transfected cell obtained significant overexpression of NM23s compared with parent 

cells. This was more obvious in WM793 cells with almost no endogenous NM23s 

expressed in parent cells (Figure 18C). After several passages, 1205LU transfected 

cells were demonstrated fading GFP signal under the UV microscope. So, we are 
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concerned about that the transfected 1205LU cells are losing NM23 expression. But 

transfected WM793 cells are very stable in showing the percentage and intensity of 

green cells. To investigate whether transfected 1205LU cells are still expressing 

NM23-H1 at later passage level, western blot was performed again on whole cell 

extract of transfected 1205LU cells at passage 8. Different from the result of passage 

3, all the mutant transfected cells demonstrated the same amount of protein 

expression as parent cells while wild-type NM23-H1 transfected cells express 

minimally increased proteins (Figure 18D). There are two possibilities explaining this. 

It could be the transfection that is not stable enough, so cells keep losing inserted 

NM23 copy. Another possibility is that NM23 expression is tightly controlled in this 

cell line. So, if they are expressing mutant NM23, the cell will downregulate the 

endogenous NM23 expression. Western blot could not tell between the endogenous 

NM23 and mutant NM23, but 2-D gel would provide this informaton based on their 

changed pI value of those mutants. 
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Figure 18. Wild-type and variant mutant NM23-H1 are stably expressed in 

WM793 and 1205LU cells. (A) Stably transfected WM793 cells sorted for GFP 

fluorescence represent highly enriched transfectant populations. Shown is GFP 

fluorescence in WM 793 cells that express wild-type or mutant variants of NM23-H1. 

(B) Stably transfected 1205LU cells. (C) Western blot of whole cell extract of 

transfected cells at passage 3. P, parent cell. W, wild-type. (D) Western blot of whole 

cell extract of transfected 1205LU cells at passage 8. 
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4.3.4. Endogenous and mutant NM23s are equally expressed in transfected 1205LU 

cells 

        Wild-type or mutant NM23s were overexpressed in stably transfected 1205LU 

cells at early passage number (P3). After several passages, the expression of NM23 

went down (Figure 18D) to the level of endogenous protein level, suggesting that 

NM23 expression is strictly limited to some extent. To measure the origin of the 

protein expressed in transfected 1205LU cells, 2-D gel was employed to separate 

the wild-type (endogenous) and all mutant NM23s. Single amino acid change causes 

significant change of pI value of each mutant. Purified wild-type NM23-H1 and K12Q 

mutant were run on 2-D gel to test their pI value. The K12Q mutant (theoretical pI 

5.60) was separated markedly from wild-type NM23-H1 (theoretical pI 5.83) (Figure 

19A). To study the persistence of forced NM23 expression in stably transfected 

1205LU cells, 50 μg whole cell extract from parent cell line and three mutant 

transfected cell lines were loaded and run on 2-D gel followed by western blot. In 

parent cell, different from purified wild-type NM23-H1, endogenous NM23-H1 was 

demonstrated as two separate dots, suggesting the existence of phosphorylated 

NM23-H1. These two protein dots have been demonstrated in every mutant 

transfected cell line at decreased level compared with parent cells. Furthermore, all 

mutant NM23-H1s have been demonstrated in each cell line at the same expression 

level of endogenous protein, indicating mutant protein and endogenous protein are 

equally expressed in each mutant transfected cell lines (Figure 19 B). 
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Figure 19. Mutant NM23-H1 is stably expressed in transfected 1205Lu cells. (A) 

Purified wild-type NM23-H1 (3 μg) and K12Q mutant protein (6 μg) were loaded on 17 

cm IPG strips. Gels were run on first dimensional and secondary dimensional gel as 

described in methods. Proteins were transferred to nitrocellulose membrane by 

semidry methods followed by detection with western blot. (B). Whole cell extract from 

1205LU cells and three transfected cell line (50 μg) was tested in the same way as 

(A). 
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4.3.5. Overexpression of NM23-H1 in melanoma cells has no effect on 

transformation phenotype 

        NM23-H1 is a metastasis suppressor protein and should not have any effect on 

transformation phenotype. To test whether NM23 transfection has no effect on cell 

proliferation, a serial of MTS assay was performed from day 1 to day 5 on both cell 

lines. Either wild-type NM23-H1 or mutant NM23-H1 transfection has no any effect 

on proliferation of both cell line compared with parent cells, consistant with the 

definition of metastasis suppressor gene (Figure 20A). Anchorage independent 

growth assay in soft agar is considered as a stringent assay for detecting malignant 

transformation of cells. Colony formation in soft agar of transfected cell lines was 

compared and transfected WM793 cells showed similar colony formation ability as 

parent cells. For 1205LU cells, wild-type and K12Q, H118F mutant overexpression has 

no effect on anchorage independent growth in soft agar compared with parent cells. 

But to our surprise, P96S mutant transfected cells had significantly decreased colony 

numbers compared with other 1205LU transfected cells, suggesting adominant-

negative function of this mutant (Figure 20 B). 
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Figure 20. Overexpression of NM23-H1 in melanoma cells has no effect on the 

transformed phenotype. (A) Cell proliferation rate was determined by MTS assay. 

Cells were plated in 96-well plate from 2x103 on day 0, and were measured on day 1 

to day 5. (B) Cells (5x104) were seeded in the top medium and stained by 0.005% 

crystal violet for 1 h after 28 days. Colony numbers were counted by five random 

high power fields to get an average number. The experiments were repeated in 

triplicate wells for at least three times.  
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B.  
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4.3.6. Forced expression of wild-type and K12Q mutant NM23-H1 decreased motility 

in 1205LU cells 

        Cell motility is a complex cellular function that is altered through changes in cell 

adhesion and is also reflected through cellular migration (Sattler et al., 2003). 

Enhanced motility is one of the characteristics of malignant cells. To determine that 

the relationship between motility and NM23 as well as the contribution of enzymatic 

functions of NM23-H1 to motility, transwell motility assay of parent and transfected 

WM793 and 1205LU cell lines was performed. Wild-type NM23-H1 transfected cells 

were expected to lower the motility of WM793 cells based on the metastasis 

suppression nature of NM23-H1. Surprisingly, wild-type NM23-H1 transfected 

WM793 cells as well as all the H1 mutant-transfected WM793 cells had a tendency 

to enhance cell motility compared with parent cells, with significance in K12Q and 

H118F mutant tranfected cell lines. For 1205LU cells, wild-type and K12Q mutant 

transfected cells decreased cell motility markedly, while H118F and P96S mutant 

transfected cells have no significant difference with parent cells (Figure 21). 
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Figure 21. Overexpression of NM23-H1 wild-type and K12Q mutant decreases 

motility in 1205LU cell. 1x104 cells were plated in upper chamber with 0.1 ml of 

medium plus 2% FBS. 0.6 ml of medium plus 10% FBS was added into lower 

chamber as chemoattractant. Cells were incubated at 37°C for 24 h to let cell 

migrate. At the end of the experiment, non-migrated cells were removed by cotton 

tips, and migrated cells were fixed and stained with hemotaxyolin for 2 h. Cells were 

counted by five random high power fields to get an average number. The 

experiments were repeated in triplicate wells for at least three times.  
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4.3.7. NM23-H1 K12Q mutant lost invasion-suppressor activity in WM793 cell but not 

in 1205LU cell 

        Measurement of the tumor cell invasion through a microporous membrane 

coated with BD Matrigel™ Matrix in Boyden-like chambers is a widely accepted in 

vitro metastasis assay. Matrigel is a reconstituted basement membrane, which 

simulates the basement membrane in vivo. Degradation of these matrix membranes 

is a feature of invasive cells and has been used in an attempt to understand the 

process regulating critical steps of tumor cell invasion. To investigate the effect of 

NM23-H1 on cell invasion activity, all the transfected WM793 and 1205LU cells were 

measured for invasiveness compared with the parent cells. Inconsistant with motility 

assay, wild-type, H118F mutant and P96S transfected WM793 cells all exhibited 

decreased invasiveness compared with parent cells, while K12Q mutant NM23-H1 

transfection lost the function of invasion suppression, suggesting exonuclease 

function of NM23-H1 may play a role in malignancy and tumor progression. For 

metastatic cell line 1205LU, transfection of NM23-H1 and variant mutants decrease 

invasiveness of metastatic melanoma cells, consistent with the results of motility 

assay. Loss of exonuclease function of NM23-H1 has no effect on invasion activity 

compared with wild-type H1 and other mutant H1 (Figure 22). 
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Figure 22. NM23-H1 K12Q mutant lost invasion-suppressor activity in WM793 

cell but not in 1205LU cell. 1x104 cells were plated in upper chamber with 0.1 ml of 

medium plus 2% FBS. 0.6 ml of medium plus 10% FBS was added into lower 

chamber as chemoattractant. Cells were incubated at 37°C for 24 h to let cell invade 

the matrix and migrate. At the end of the experiment, non-invaded cells were 

removed by cotton tips, and invaded cells were fixed and stained with hemotaxyolin 

for 2 h. Cells were counted by five random high power fields to get an average 

number. The experiments were repeated in triplicate wells for at least three times.  
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4.3.8. NM23-H1 impairs the progression of premetastic melanoma cell WM793 and 

exonuclease and NDPK activities are all involved. 

        The hypothesis of the current project is that exonuclease function of NM23-H1 

may play an important role in DNA repair. Loss of this function leads to accumulation 

of mutations and genomic instability, and thus the progression of tumor cells. 

WM793 is the early stage of 1205LU (see 5.1 introduction). There is a progression of 

WM793 cells in vitro and in vivo, to become 1205LU cells. To investigate whether 

replacing NM23-H1 back into WM793 cells can prevent progression of this cell line in 

serum-free medium, diluted WM793 cells were plated in six-well plate with protein 

free medium (w/o either serum or insulin). After 8-10 weeks, cell colony numbers 

were counted and cells were pooled and replated for next cycle (as described in 

methods). First, WM793 cells progressed in protein free medium. The colony 

formation efficiency was about 20 out of 1000 seeded cells. This efficiency increased 

to 200 out of 1000 cells by the end of fourth cycle, suggesting the WM793 cell line 

progressed and became more malignant after cultured in protein free medium. Wild-

type NM23-H1 significantly suppressed this progression process, ending up with less 

number of colonies and smaller colony size than that of other mutant transfected 

cells at 3rd and 4th cycle. But K12Q mutant (exonuclease deficient) lost the function of 

suppression of cell progression. By the end of 3rd and 4th cycle, colony numbers and 

size were both similar to that of parent cells and significantly increased by comparing 

with wild-type H1 transfected cells. Interestingly, H118F mutant (NDPK deficient) 

transfection also demonstrated the similar results as K12Q mutant by the end of 4th 

cycle (similar colony size but less colony numbers) even though it has no difference 

in colony number and size with wild-type H1 transfected cells by the end of 3rd cycle, 

suggesting NDPK may also be involved in the suppression of tumor progression. 
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Surprisingly, P96S mutant H1 (hisK deficient) prevents WM793 progression as 

effectively as wild-type H1, with the least and smallest colonies formed by the end of 

3rd and 4th cycle, suggesting that hisK is not associated with suppression of WM793 

cell progression (Figure 23A). Summary of colony numbers of each cell line at each 

cycle are shown in Figure 23B. 

        Since this experiment took such a long time to complete, the stability of the 

overexpression level of NM23-H1 and variant mutants was concerned. To test the 

consistency of GFP expression in each transfected WM793 cells, 30 colonies from 

each transfected cell line were counted to compare the ratio of GFP-positive and 

GFP-negative colonies. The result showed that wild-type, K12Q and P96S H1 

transfected cells kept consistent GFP expression, with only small fraction of colonies 

with GFP expression lost. H118F H1-transfected cells were somewhat less stable, 

but 50% of its colonies retained detectable GFP expression (Table 1).  
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Figure 23. The NDPK, and possibly, 3’-5’exonuclease activities of NM23-H1 are 

associated with suppression of progression of premetastatic WM793 

melanoma cells to a growth factor-independent phenotype. (A)  After adapted in 

serum-free medium at high density for 1 week, cells were plated at low density in 

protein free medium (serum free medium plus no insulin). Each cycle took about 8-

10 weeks. Colony numbers were counted as colony formation efficiency at the end of 

each cycle, and cells were pooled and replated for the next cycle. Representive 

formed colonies from each cell line were fixed with 4% formaldehyde and stained 

with 0.005% crystal violet. (B) Summary of colony formation efficiency of each cell 

line at each cycle. 
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Table 1. Expression of heterologous gene products is maintained for the 

WM793 cell panel over the course of four cycles of selection in protein-free 

culture medium. A total of 30 colonies from each cell line were counted. 

 GFP+ GFP- 

WM793-WT 21 9 

WM793-K12Q 25 5 

WM793-H118F 15 15 

WM793-P96S 25 5 
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4.3.9. Wild-type and P96S NM23-H1 suppress spontaneous lung metastasis of 

1205LU cells while K12Q and H118F mutant H1 lost metastasis suppressor activity 

        In vitro metastasis assays test only one or two characteristics of metastatic 

tumor cells. In vivo models provide a more clinically accurate mechanism for 

studying tumor development and progression. To determine which enzymatic 

function of NM23-H1 is associated with metastasis suppression, spontaneous lung 

metastasis of 1205LU was performed on athymic nude mice. 2x106 parent and 

transfected 1205LU cells were injected subcutaneously on the left flank of each 

mouse. Four weeks later, when skin primary tumor volume reached 0.8-1.0 cm3, 

tumors were removed and mice were kept for another 3 months for lung metastases 

formation. Removed tumors were scanned with Kodak Image Station 4000 for GFP 

expression. Generally, the primary tumor grew at the same rate, suggesting that 

transfection of wild-type H1 and mutant H1 into 1205LU has no effect on primary 

tumor growth, consistent with the definition of metastasis suppressor gene. K12Q 

mutant H1 transfected tumor cells grew a little slower. But the primary tumors in this 

group reached 0.8 cm3 5 days later and excised at that time (Figure 24).  
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Figure 24. Transfection of wild-type and mutant H1 has no effect on primary 

tumor growth. Two million cells were injected subcutaneously on the flank of each 

mouse. After 4 weeks, when primary tumors reached 0.8-1.0 cm3, tumors were 

excised and mice were kept for another 3 months for lung metastses formation. 
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        After primary tumors were removed, the mice were kept for another 3 months 

for lung metastasis. Three months later, all the mice were sacrificed and lungs were 

examined for nodule formation. Metastasis rate was calculated by number of mice 

with lung metastasis/total number of mice in this group. In parent cell group, 50% 

metastasis rate has been observed, suggesting the malignancy and invasiveness of 

this melanoma cell line. Wild-type H1 transfection significantly suppresses 

metastasis with metastasis rate down to 15%. K12Q and H118F mutant H1 lost 

metastasis suppression function with similar metastasis rate as parent 1205LU cells, 

suggesting that exonuclease and NDPK are both involved in metastasis suppression 

in vivo. Unexpectedly, P96S mutant, previously reported as contributor of increased 

cell motility, still as strongly inhibit lung metastasis as wild-type H1, suggesting this 

mutant may not be associated with metastasis suppression on this melanoma cell 

line in in vivo model (Table 2). 
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Table 2. Metastasis rate of 1205LU parent cell and transfected cell in 

spontaneous metastasis model. After primary tumors were excised, mice were 

kept for another 3 months to permit formation of lung macrometastasis. When mice 

were sacrificed, lungs were examined for metastasis nodules. Metastasis rate was 

calculated as number of mouse with lung metastasis/ total mouse number in this 

group. 

Cell lines # of mouse with 

lung metastasis 

Metastasis rate 

1205LU 6/12 50% 

1205LU-WT 2/13 15% 

1205LU-K12Q 5/8 62.5% 

1205LU-H118F 5/10 50% 

1205LU-P96S 2/9 22% 
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        To determine the primary tumors and metastasized nodules are consistently 

expressing GFP, indicating exogenous proteins expressed in these tumor cells, the 

excised primary tumors and lungs with macrometastasis were scanned for GFP 

fluorescence. Compared with 1205LU parent cell with no fluorescence, all the 

transfected cell-induced primary tumors and metastasized lung nodules 

demonstrated high intensity of fluorescence, suggesting the stability of transfected 

cells in vivo. Compared with other transfected cell-induced primary tumors and lung 

nodules, P96S mutant H1 transfected cell-caused tumors were observed with 

relatively low fluorescence, even though the high intensity of GFP signal of the cells 

in cell culture system (Figure 25).  
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Figure 25. GFP is consistently expressed in both primary tumors and 

metastasized lung nodules. Removed primary tumors and lungs with 

macrometastasis were scanned for fluorescence with Kodak Image Station 4000. 

Tumors in parent cell group which do not harbor a GFP transgene were used as 

negative controls.  
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4.3.10. Experimental metastasis assay demonstrated similar results as in 

spontaneous metastasis assay 

        To confirm the results observed in spontaneous metastasis assay described 

above, experimental metastasis assay was performed on nude mice with the same 

1205LU parent cells and transfected cells. 2x106 cells were injected through tail vein, 

and one month later, mice were sacrificed and lungs were examined for 

macrometastasis. Similar results have been observed as the results of spontaneous 

metastasis. Wild-type NM23-H1 suppresses lung nodule formation while K12Q and 

H118F mutant H1 lost suppression function of tumor metastasis, the similar results 

that have been observed in spontaneous metastasis assay. Inconsistent with the 

results of spontaneous metastasis, P96S mutant H1 also lost metastasis suppression 

function. Unfortunately, since the standard error in each group is very high, all the 

results in this experiment have no statistic significance (Figure 26). 
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Figure 26. Experimental metastasis assay demonstrated similar results as in 

spontaneous metastasis assay. (A) Lung nodule numbers in each group. (B) 

Representative picture of metastases on the lung from parent cell group (a and b) 

and wild-type H1 group (c and d). (C) Histological images of normal lung and 

metastasized nodules stained by hematoxylin and eosin. 
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4.4. Discussion 

        Our lab has obtained some data supporting the hypothesis of DNA repair role of 

NM23 in yeast. These observations need to be validated in cells derived from higher 

vertebrates, preferably in human cell lines. A panel of melanoma cells, including 

different stages of RGP, VGP, and MET, was screened by western blot to identify 

human cell lines devoid of NM23 expression in which DNA repair activity can be 

assessed, and complementation experiments conducted with a minimum of 

background NM23 expression.  

        A significant loss of expression for both NM23-H1 and NM23-H2 has been 

demonstrated in five out of seven total MET cell lines (Figure 16), suggesting that the 

expression of NM23 is highly related to metastasis. This relationship was further 

testified by motility assay of melanoma cell lines (Figure 17). Interestingly, WM793 cell 

from VGP group which has been testified non-metastatic in experimental rodent 

models has also been observed to be devoid of detectable expression of either H1 or 

H2. WM793 was established from the vertical growth phase of a primary lesion of 

patient 793. Cell line 1205LU, the metastatic variant of WM793, was established after 

repeated passages of WM793 cells both in vitro and in vivo in nude mice 

(Samasundaram et al., 2005). Because of their very low expression of NM23s, and 

also the fact that they stands for premetastatic and metastatic cell lines, respectively,  

these two cell lines were chosen as our study model for stable transfection. 

        The major goal of the project is to elucidate the molecular mechanisms 

underlying metastasis suppressor activity of NM23 proteins. To determine which 

enzymatic function is relevant to metastasis suppression, a panel of NM23-H1 has 

been developed in our laboratory in which the primary biochemical activities of the 

molecule (EXO, NDPK, and hisK) have been individually inactivated. Lysine-12 has 
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been reported as the most critical amino acid of NM23-H2 that cleaves the 

phosphodiester bond by transiently forming a covalent bond with DNA (Postel et al., 

2000). In NM23-H1, K12Q mutant is also demonstrated deficient of exonuclease 

function. So far K12Q mutant is the only mutant we have which is exonuclease- 

deficient. So the transfected cells should lose metastasis suppression if exonuclease 

function and DNA repair activity are involved in metastasis suppression. Unfortunately, 

lysine-12 is equally critical for the NDP kinase reaction, suggesting a connection 

between the two seemingly disparate enzymatic activities, NDP kinase and nuclease. 

NM23 seems to use a single active site both for the cleavage of the DNA 

phosphodiester backbone and for the phosphorylation of nucleotides. So, K12Q mutant 

is also NDPK- and hisK-deficient. This would make the interpretation very difficult and 

complicated. To address this issue, another two mutants, H118F (NDPK- and hisK-

deficient) and P96S (hisK-deficient) have been used for stable transfection and later in 

vitro and in vivo experiments. Comparison of the results derived from the three 

mutants will provide indirect evidence for studying the mechanisms of NM23 in 

metastasis suppression. E5A is a promising mutant because it was reported 

exonuclease-deficient only with intact NDPK (Yoon et al., 2005). Results from this 

mutant would give us direct evidence to support the relationship between exonuclease 

and metastasis suppression. Now E5A mutant has been constructed, and all three 

enzymatic functions have been measured. EXO is deficient in this mutant, while NDPK 

and hisK are intact. Table 3 is the summary of biochemical activities of wild-type and 

mutant NM23s. 
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Table 3. Enzymatic function of wild-type and mutant NM23-H1s.  

 

 EXO NDPK hisK 

WT +++ +++ +++ 

K12Q + + - 

H118F +++ - - 

P96S +++ +++ - 

E5A + +++ +++ 
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        Transfected cells were selected under G418 for about 4 weeks to get rid of non-

stably transfected cells. Acquired colonies contain cells with GFP expression 

differently: 1) all the cells in one colony are GFP positive, suggesting that all cells are 

stably transfected; 2) cells in one colony are partially green, suggesting that some cells 

are devoid of plasmid DNA insert after multiple cell divisions; 3) all the cells in one 

colony are GFP negative, suggesting that those cells are either antibiotic resistant or 

pSV2Neo-transfected only. Existence of high percentage of GFP negative cells 

requires further selection. To obtain cells consistently expressing wild-type or mutant 

NM23, fluorescence-activated cell sorting (FACS) was performed on all the transfected 

cell lines. The sorting procedure has yielded more than 95% GFP positive cells in each 

transfected cell lines. Furthermore, the sorting procedure has yielded GFP positive 

cells with similar intensity of fluorescence, indicating that equal amount of NM23-H1 is 

expressed across cell lines (Figure 18A and B). Immunoblot analysis further validated 

the forced expression of wild-type and mutant NM23-H1, which was achieved at much 

higher levels than the endogenous NM23-H1 expression in the parent 1205LU and 

WM793 cells (Figure 18C). 

        After G418 selection and cell sorting, the stably transfected cell lines were ready 

for in vitro and in vivo study. But after several passages, 1205LU mutant transfected 

cell lines have exhibited decreased expression of GFP, suggesting decreased NM23-

H1 mutant as well. This was confirmed by immunoblot result. Western blot of WCE 

from 1205LU and transfected cells at passage 8 demonstrated decreased expression 

of NM23 mutants as low as endogenous NM23 in parent cells while wild-type 

transfected cells are expressing 30-50% more NM23 proteins than parent cells (Figure 

18D). Compared with the immunoblot result from passage 3, this result suggested that 

NM23 expressions are decreased in all the transfected cell lines after a while. This 
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could be caused by cell line which tightly limits NM23 expression in the cell. NM23 

expression must be precisely controlled in 1205LU cells. In the early passage, forced 

expression broke the balance of this control system. So cells overexpress wild-type or 

mutant NM23s. After a serial passage, cells have gradually gained back the balance 

again and express much less amount of NM23s. This has been demonstrated by 2-D 

gel which allows the separation of wild-type NM23-H1 and variant mutant NM23-H1 

because of their different pI. Compared with parent 1205LU cells expressing a certain 

amount of endogenous NM23-H1, all mutant transfected cell lines express equal 

amount of proteins, including 50% of endogenous NM23-H1, and 50% of mutant 

NM23-H1(Figure 19B). All these data suggested that 1205LU cells downregulated 

endogenous NM23 expression when overexpressing mutant NM23s, without change 

the total amount of NM23 expression in the cell. 

        After the mutant NM23 proteins were confirmed to be persistently expressed in 

the transfected cells, these cells were used to perform in vivo and in vitro studies as 

designed. Even though there is strong evidence to support the role of hisK function 

in anti-metastatic activity, other enzymatic functions of NM23-H1 should also be 

considered. It is reasonable that multiple functions of this protein are involved in the 

metastasis suppression which could be a multi-step process. Our hypothesis 

proposed that 3’-5’ exonuclease function of NM23-H1 play a major role in DNA repair 

and maintenance of genomic stability and loss of this protein could lead to 

accumulation of mutations, and thus tumor progression. Since NDPK function of 

NM23-H1 is also important in keeping NTP pool in balance while imbalanced NTP 

pool is the reason to induce mutations, loss of NDPK may be involved in tumor 

progression. So, all these three primary enzymatic activities of NM23-H1 were 
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determined systematically the relevance to antimetastatic action through both in vitro 

and in vivo studies. 

        To study the relevance of an enzymatic function to metastasis suppression, two 

human melanoma cell lines were chosen for proposed studies. 1205LU and WM793, 

represent highly metastatic and premetastatic cell line, respectively. Wild-type and 

variant mutant forms of NM23-H1 were stably transfected into two cell lines. Then, 

parent and transfected cells were used to measure the metastatic characteristics 

both in cell culture (such as motility, invasion) and in vivo, using standard 

approaches of experimental and spontaneous metastasis. 

        Before the test of metastatic characteristic of two cell lines, transformed growth 

in cell culture was determined. In vitro cell transformation is associated with certain 

phenotypic changes such as loss of contact inhibition and anchorage independence, 

allowing cells to form colonies in soft agar. The definition of metastasis suppressor 

gene describes the way how those genes work. Re-expression of those genes back 

into tumor cells should have no effect on primary tumor size, but should reduce 

metastasis formation significantly. A constitutive murine nm23-1 expression 

construct was transfected into highly metastatic K-1735 TK murine melanoma cells, 

and these nm23-1-transfected TK clones exhibited no significant differences in 

intrinsic tumor cell growth, i.e., primary tumor size in vivo, anchorage-dependent 

growth rate in vitro, and anchorage-independent colony formation in soft agar in vitro 

while they exhibited significant reductions in tumor metastatic potential independent 

of tumor cell growth (Leone et al., 1991). 

        Consistent with the data previously described, transfection of wild-type and 

mutant NM23-H1 has no impact on proliferation rate of two human melanoma cell 
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lines. This is very important to know because different cell proliferation rates would 

confound the result of metastasis assay, such as migration assay, invasion assay, in 

particular, spontaneous metastasis assay because of the long time period of this 

study. For colony formation in soft agar, all transfected WM793 cell lines formed 

colonies as many as parent cells. But for 1205LU cell line, wild-type, K12Q, and H118F 

H1 transfected cells exhibited similar colony formation ability as parent cells; only 

P96S H1 transfection demonstrated dominant-negative function and significantly 

reduced colony formation. The reason is unclear because P96S mutant is hisK 

deficient, while K12Q and H118F mutant are both hisK deficient. It is also unclear 

whether the deficiency of colony formation ability in soft agar is the reason to cause 

less lung metastases formed in nude mice in spontaneous metastasis assay 

compared with another two mutants (Table 2). Another result we found is the colony 

size in soft agar of two melanoma cell lines. 1205LU cell lines formed much bigger 

colonies which are consisting of 100-200 cells in each single colony, suggesting the 

high malignancy of this tumor cell line, while WM793 cell lines formed much smaller 

colonies which are consisting of 20-50 cells in each single colony, suggesting the 

much lower malignancy of this cell line (Figure 20). Because of this low 

tumorigenicity of WM793 cells, we didn’t get primary tumors or lung nodules formed 

in all the animal experiments, including both spontaneous metastasis assay and 

experimental metastasis assay by injecting WM793 parent and transfected cells into 

both nude mice and SCID mice.  

        Tumor cells must be able to detach from the primary tumor and invade the 

surrounding tissue at the beginning of metastasis. To accomplish these steps, they 

utilize a serial of proteinase, such as matrix metalloproteinases (MMPs), serine 

proteinases, and cathepsins, to degrade and remold the surrounding stroma or ECM. 
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In this project, both motility assay and invasion assay were employed to measure 

whether transfection of variant H1 forms will have any effect on these two 

characteristics of tumor cells. At room temperature, BD Matrigel™ Matrix 

polymerizes to produce biologically active matrix material resembling the mammalian 

cellular basement membrane. Cells behave as they do in vivo when they are 

cultured on BD Matrigel™ Matrix. It provides a physiologically relevant environment 

for studies of migration and invasion. For metastatic 1205LU cells, transfection of 

wild-type NM23-H1 inhibits both motility and invasion significantly, consistent with its 

classical metastasis suppressor actions. All the enzymatic deficient mutant H1s 

inhibit motility and invasion ability of 1205LU cells as much as wild-type H1, even 

though P96S mutation (hisK- deficient) was previously described to be able to disrupt 

NM23-H1 mediated inhibition of motility and invasion (Freije et al., 1997). These 

results suggested that any of these enzymatic functions may not have direct effect 

on cell motility and invasion activities. Surprisingly, for premeatstatic WM793 cells, 

transfection of wild-type or mutant H1 did not suppress cell motility. This is a result 

inconsistent with metastasis suppressor activity of H1 and the reason is unknown. 

Different from motility assay, transfection of wild-type H1, H 118F and P96S mutant H1 

markedly inhibit invasion activity of WM793 cells, but K12Q mutant H1 disrupts this 

inhibition function by wild-type and other mutant H1. K12Q is the only mutant we have 

that lost exonuclease function, suggesting this enzymatic function may play some 

roles in cell invasion activity directly or indirectly.  

        NM23 proteins may resist genetic and epigenetic changes by regulating 

chromatin structure to preserve genomic integrity. We propose that 3’-5’ 

exonuclease may mediate the transactions with genome to oppose progression of 

premetastatic cells to metastatic cells. This progression-inhibiting activity of NM23-
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H1 could be the primary role in metastasis suppression activity. WM793 cell, a VGP 

cell line, makes an appropriate model system for our proposed studies because it’s 

highly invasive but non-metastatic as well as the NM23s level in this cell line is under 

detection. Replacing back wild-type and enzymatically-defective forms of NM23-H1 

into the cell made quite stable cell lines and helped us to find out the contributions of 

enzymatic functions of NM23-H1 to the process of progression. WM793 cells 

reproducibly give rise to metastatic forms when placed under selective pressure, 

such as cultured in protein-free (growth factor-free) medium, or repeated passaging 

in vivo (Rodeck et al., 1987: Herlyn et al., 1990). Complementation of wild-type 

NM23-H1 significantly blocks the progression process of WM793 cells which did 

progress markedly after 4 cycle’s passage in protein-free medium. Constructs of the 

3’-5’ EXO-deficient mutant, K12Q lost the function of progression blockage exhibited 

by wild-type H1, possibly by disrupting DNA repair or chromatin remodeling activities 

of small endogenous NM23 pools via a dominant-negative mechanism. To our 

surprise, H118F mutant H1 also opposes progression of WM793 to the more 

malignant phenotype after multiple cycles of selection. H118F mutant is both NDPK- 

and hisK-deficient. If histidine kinase is not correlated to anti-progression action, then 

NDPK must be involved in progression-inhibiting action. It is reasonable considering 

the importance of maintenance of balanced NTP pool by NDPK to preserve genomic 

integrity. 

        In vitro assay can only determine one or two features of cells associated with 

metastasis. In vivo metastasis assay is more important because it mimics the whole 

process of cancer metastasis, which is more clinically associated. In particular, 

spontaneous lung metastasis recapitulates most of the steps of cancer metastasis. 

So, this assay would provide more accurate and more clinically related information 
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over the course of the proposed experiments. Transfection of wild-type or mutant 

NM23-H1 has no effect on primary tumor growth even though K12Q mutant H1 

transfected 1205LU cells reached target tumor size 5 days later. Despite the high 

invasiveness and highly metastatic features of 1205LU cells, it took another 3 

months for the formation of lung metastases, implying the low efficiency of 

metastasis process. Interestingly, the in vivo metastasis results of 1205LU cell lines 

are in very similar pattern as in vitro progression assay of WM793 cells. As shown in 

table 3, wild-type H1 and P96S mutant H1 inhibit lung metastasis, while K12Q and 

H118F failed to oppose metastasis of 1205LU cells, suggesting exonuclease and 

NDPK, instead of hisK are the primary enzymatic functions contributing to metastasis 

suppressor activity. In this animal model, all cell lines must survive and grow in a 

comparatively growth factor-deprived environment, so the selective pressure placed 

on these cells would cause the similar effects as in progression assay of WM793 

cells. Injection of 2 millions of parent or transfected 1205LU cells through tail vein set 

up a high barrier to overcome by treatments. In this experiment, even wild-type H1 

transfected cells formed Lung nodules in 4 out of 10 mice, with whole lung 

metastases formed in one mouse. This “overdose” injection makes less difference 

between different treatments. Fewer amounts of tumor cells should be injected when 

this experiment is repeated.  
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CHAPTER FIVE 

GENERAL DISCUSSION 

 

5.1. Summary of findings 

        Both tumorigenesis and metastasis are induced by genetic instability which is a 

result of multiple mutational “hits”, including misregulation of gene transcription as 

well as the loss of DNA repair enzymes (reviewed in Hartsough and Steeg, 1998). 

Some of the well-studied oncogenes, such as ras and myc, induce both cell 

transformation and metastatic competence (reviewed in Bernards and Weinberg, 

2002). When tumor cells obtain further genetic alterations, some cells acquire 

sufficient capacity to dissociate from the primary tumor, survive in the bloodstream, 

spread through the circulation, and proliferate at the secondary site. Eventually these 

tumor cells progress from benign tumor to malignant tumor with accumulating 

mutations. 

        The hypothesis that loss of gene functions could also induce tumor progression 

prompted the idea of metastasis suppressor gene. As the first metastasis 

suppressor, NM23 was identified in 1988 (Steeg et al., 1988). Since then more than 

fifteen suppressor genes have been identified by using many techniques, such as 

differential display, microarray, microcell-mediated chromosome transfer, subtractive 

hybridization, etc (reviewed in Shevde and Welch, 2003). These genes affect many 

aspects of signal transduction, including pathways that are involved in invasion 

(TIMPs), growth factor receptor signaling (KAI-1), the RAS-MAPK pathway (NM23) 

(reviewed in Steeg, 2003), some metastasis suppressors affects cell-cell adhesion 

(Cadherins) (reviewed in Jiang, 1996; Berx et al., 1996), and transcription (Brms1) 
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(Meehan et al., 2004: Cicek et al., 2005), or metastatic colonization (MKK4) (Hickson 

et al., 2006).  

        To identify differentially expressed genes that might be essential for metastasis, 

murine melanoma cells were used to perform differential colony hybridization. NM23-

H1 was discovered on the basis of its much higher level in cells with low metastatic 

activity than in their highly metastatic counterparts (Steeg et al., 1988). Low NM23-

H1 protein and mRNA expression correlated with a variety of tumor types, including 

breast, melanoma, and gastric, ovarian carcinomas (reviewed in De la Rosa et al., 

1995). But in general, cancers containing overexpressed, mutated NM23-H1 protein 

are rare events (Leone et al., 1993; Chang et al., 1994), whereas loss of expression 

of NM23-H1 is a common feature of aggressive, poorly differentiated tumors 

(reviewed in Hartsough and Steeg, 1998). 

        Over 18 years of intensive study, multiple and diverse enzymatic activities (e.g. 

NDPK, hisK, and 3’-5’EXO) and regulatory activities have been ascribed to NM23s, 

but the molecular mechanism underlying the metastasis suppressor activity of 

NM23-H1 remains unclear. HisK is the only enzymatic activity that correlates tightly 

with the motility-suppression effect of NM23-H1 even though the downstream 

substrates have not been identified yet. NDPK appears to be not related 

to`metastasis suppression. Our lab has demonstrated that NM23 proteins can 

modestly repress gene transcription, possibly in the manner of a classical 

transcription factor (Ma et al., 2002). Later, we also demonstrated NM23-H1 

possesses 3’-5’ exonuclease function (Ma et al., 2004). This function is appealing as 

the metastasis suppressor activity because it might have the effect on multiple 

aspects of the metastatic phenotype. The most direct function would be an 

antimutator activity through which genetic alterations are opposed, and thus, 
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malignant progression is blocked. From our previous studies, some important 

questions arise: Does NM23-H1 downregulate oncogene, such as PDGF, directly or 

assist other negatively regulatory proteins to downregulate PDGF? Is the 3’-5’ EXO 

function of NM23-H1 involved in DNA repair and, if so, what kind of DNA repair 

mechanism is this protein involved? Is NM23-H1 associated with suppression of 

tumor progression, and which enzymatic function is involved?  Is the 3’-5’ EXO a key 

mediator of the metastasis suppressor activity of NM23-H1? Are NDPK and hisK 

functions also related to this activity? 

        To address all these questions systematically, first, transcriptional regulation of 

NM23-H1 and another single-DNA-stranded binding protein Purα on PDGF-A chain 

was determined to study the direct and indirect regulations of NM23 on oncogene 

PDGF. Then, two tumor cell lines (HepG2 and HeLa) were employed to examine the 

nuclear translocation and nuclear foci formation of NM23s on DNA damage. Finally, 

two melanoma cell lines (prematastatic WM793 and metastatic 1205LU) were 

constructed to study the impact of wild-type and enzymatically-defective forms of 

NM23-H1 on metastatic phenotype and the process of metastatic progression. 

Resolving these questions would add greater knowledge on relationship of cancer 

metastasis and NM23, and aid in the development of mechanism-based therapeutic 

strategies for cancer metastasis treatment and prevention. 

 

5.1.1. NM23-H1 minimally downregulates PDGF-A chain promoter and has no effect 

on transcriptional regulation of Purα on PDGF-A chain promoter 

        NM23-H2 activates transcription of c-MYC promoter by binding to its nuclease-

hypersensitive element (NHE) (Postel et al., 1993; Berberich and Postel, 1995; Lee 

et al., 1997). NM23-H1 was first identified as a DNA-binding protein with 
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transcriptional repressor activity on the PDGF-A chain promoter in our lab (Ma et al., 

2002). Basal transcription of the PDGF-A chain gene is mediated by the interplay of 

positive and negative regulatory elements in the promoter region, which are GC-rich 

and possess non-B DNA structure. Screening of a HeLa cDNA expression library 

with the C-rich strand of a PDGF-A silencer sequence (5'-S1 nuclease-

hypersensitive site (SHS)) yielded three cDNA clones encoding NM23-H1, the 

known protein implicated as a suppressor of metastasis in melanoma and breast 

carcinoma. Transient transfection analyses in HepG2 cells revealed that NM23-H1 

modestly repressed transcriptional activity driven by the PDGF-A basal promoter (-

82 to +8) as well as the negative regulatory region (-1853 to -883), indicating a 

potential role for NM23 proteins in repressing transcription of a growth factor 

oncogene, and providing a possible molecular mechanism to explain their 

metastasis-suppressing effects. 

        Recently, cDNA microarrays were used to investigate the downstream genes 

involved in NM23-mediated suppression of metastasis (Zhao et al., 2004). 

Microarray analyses revealed significant as well as consistent alterations in the 

expression (up- and downregulation) of more than 2000 genes which are involved in 

different cellular functions: invasion and metastasis, apoptosis and senescence, 

signal transduction molecules and transcription factors, cell cycle and repair, 

adhesion, and angiogenesis. The results suggest the role of NM23 may play in 

transcriptional regulation of a large amount of downstream genes. Furthermore, 

analyses by chromatin immunoprecipitation (ChIP) in viable M14 cells (human 

melanoma cell) showed DNA sequences bound to NM23 are correlated to 

oncosuppressor gene p53, WT1, ING1, and NM23-H1 (Cervoni et al., 2006), 

suggesting NM23 binding is involved in the transcription regulation of these genes. 
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        To further investigate whether NM23 facilitates other transcription factors to 

bind to silencer region of PDGF-A chain promoter, and form functional silencer 

complex, Purα was purified and examined for its binding and functional regulation of 

PDGF-A chain promoter alone and with NM23-H1. Purα is a single-stranded DNA 

binding protein and can function either as a repressor or activator depending on 

promoter and cellular context. The original model proposed in our lab hypothesized 

that 5’SHS silencer activity is mediated by the binding of NM23-H1, and other single-

strand specific protein, such as Purα, may serve to stabilize a DNA conformation 

required for repressive interactions of the silencer with transcriptional of A-chain 

gene.  

        Despite the sequence-specific binding of Purα with NHE fragment as well as 

5’SHS silencer region in vitro (Figure 5B), transient transfection analyses 

demonstrated that Purα does not appear to interact functionally with the 5’-SHS 

silencer (Data not shown). Induction of NHE activity by Purα  dominated over the 

modest repressive activity of NM23-H1 (Figure 6A). GST-pull down assay indicated 

no physical interaction between NM23-H1 and Purα (data not shown), which is not 

supportive for our original hypothesis of functional silencer complex. All these 

results, taken together, suggested that NM23-H1 has very weak transcriptional 

regulation on growth factor oncogene PDGF, and has no effect on another positive 

transcription factor Purα of PDGF-A chain promoter. Considering the broad 

transcriptional regulation fuction of NM23-H1, may be its transcriptional regulation on 

other genes, such as some oncogenes, or tumor/metastasis suppressor genes, 

should be investigated. 
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        Because the effect of transcriptional regulation of NM23-H1 is very subtle, it 

seems not to be an ideal model to address the profound metastasis suppressor 

activity. A new hypothesis should be proposed to explain its anti-metastasis function.    

 

5.1.2. NM23s may play a role in DNA repair 

        Some hereditary cancer syndromes are associated with DNA repair deficiencies 

and increased chromosomal fragility (reviewed in Fearon, 1997). Xeroderma 

pigmentosum (van steeg et al., 2000), Fanconi’s anemia (reviewed in Strathdee and 

Buchwald, 1992), and ataxia telangiectasia (Swift et al., 1991) are inherited human 

disease associated with a predisposition to cancer, chromosomal instability, and 

DNA repair defects. Specifically, DNA repair gene inactivation seems lead to a 

“mutator phenotype”, with a resultant increased rate of mutations in other cellular 

genes, so initiation and progression of a cancerous cell may be greatly accelerated 

by the inactivation of DNA repair genes (reviewed in Fearon, 1999). 

        During tumor progression, cancer cells must exhibit a mutator phenotype. 

Everyday, approximately 105 lesions are introduced in genomic DNA in one single 

cell (reviewed in Ames et al., 1995). Most of these lesions are recognized and 

corrected by cellular repair mechanism. Only a very small fraction of lesions escape 

and result in mutations at the time of DNA replication. These early-formed mutations 

could be random and may be involved in genes maintaining genetic stability, such as 

DNA repair enzymes. If so, a cascade of mutations would be ensued, and then 

multiple mutations throughout the genome will be accumulated. When tumor cells 

accumulate enough mutations which allow them to invade surrounding tissues, 

evade from immune recognition and destruction, and to proliferate at the secondary 

site, they become metastatic (reviewed in Bielas and Loeb, 2005). 
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        3’-5’ exonuclease activity of NM23-H1 was identified by our lab (Ma et al., 

2004). This enzymatic activity of other known 3’-5’ exonucleases can proofread for 

DNA polymerase and excise the incorrectly incorporated nucleotides during DNA 

replication. So, enzymes that contain 3’-5’ exonuclease activities are involved 

directly in maintaining genome stability (reviewed in Shevelev and Hübscher, 2002). 

Loss of this function could lead to strong mutator phenotype. In E.coli, when ndk, the 

gene for NDP kinase, was disrupted, no effects on cell growth or morphology were 

found surprisingly. However, a mutator phenotype was found in ndk-disruption 

strains with significantly increased frequencies of spontaneous mutations to 

rifampicin and nalidixic acid resistance (Lu et al., 1995). In Drosophila, mutation in 

abnormal wing discs (awd) gene, 78% identical to the nm23 gene of mammals, 

causes morphologically abnormal wing discs and poorly differentiated leg and eye-

antenna discs, as well as defects in brain cells and ovary cells (Dearolf et al., 1988). 

In mice, nm23-M1 gene knockout is not teratogenic and the pups can grow to adult 

age without apparent health problems. However, they undergo a growth retardation 

and knocked out females cannot feed their pups (Arnaud-Dabernat et al., 2003). 

Human breast and ovarian carcinoma cells transfected with nm23-H1 exhibit 

increased sensitivity to cisplatin, which is typically a phenotype of DNA repair defects 

(Ferguson et al., 1996; Aebi et al., 1996). Taken together, all these phenotypic 

properties listed above and the nature of NM23-H1 as a 3’-5’ exonuclease indicate 

that NM23 is an obvious DNA repair protein candidate, even though the involvement 

of NM23 in DNA repair has not been shown directly.   

        Upon damage of DNA in eukaryotic cells, several repair and checkpoint 

proteins undergo a dramatic intranuclear relocalization, translocating to nuclear foci 

thought to represent sites of DNA damage and repair (Barr et al., 2003). To further 
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investigate the involvement of NM23 in DNA repair, nuclear translocation and 

nuclear foci formation of NM23 on DNA damage were examined by using two tumor 

cell lines, HepG2 and HeLa cells. Etoposide and cisplatin were used as DNA-

damaging agents to treat cells for different time courses. Western blot, 

immunofluorescence microscopy, and confocal microscopy results unanimously 

demonstrated that nuclear relocalization of NM23 in two cell lines in response to 

DNA damage. Nuclear foci bodies were also obvious in Hela cells after 4 h and 24 h 

etoposide treatment even though no colocalization of NM23 and Ape1, an 

endonuclease described previously interacting with NM23 in a complex (Fan et al., 

2003), was seen. All these evidence strongly suggests that NM23s play a very 

important role in DNA repair.  

        After the role of NM23 in DNA repair was approved, a new question comes out: 

what DNA repair pathway is NM23 participated in? First, base excision repair (BER) 

is a possible pathway based on the nuclease feature of NM23. Site-directed 

mutagenesis identified that Lys12 is the critical amino acid responsible for the 

cleavage activity by NM23-H2. Substitution of lysine with glutamine completely 

abrogates DNA cleavage activity (Postel et al., 2000). Similar result was found in 

NM23-H1 in our lab. Enzymes that use a lysine-amine to cleave DNA belong to a 

subtype of BER enzymes known as bifunctional glycosylase/lyase (reviewed in 

Postel, 2003; Nash et al., 1997). It is highly likely that NM23-H1 and –H2 cleave 

DNA via the glycosylase/AP lyase like mechanism. Secondly, mismatch repair 

(MMR) should also be considered. MMR proteins are known to mediate the cellular 

response to cisplatin damage (reviewed in Postel, 2003). Cells deficient in DNA 

MMR show moderate cisplatin resistance (Fink et al., 1996; Drummond et al., 1996). 

NM23 was observed to increase and translocate into nucleus in response to cisplatin 
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treatment in tumor cell lines in our study, suggesting MMR is a candidate repair 

mechanism for NM23; however, our previous data demonstrated that purified 

recombinant NM23-H1 only digests overhanging mismatched 3' termini from double-

stranded DNA templates, and does not cleave internal mismatches (Ma et al., 2004), 

suggesting the limitations of the role of NM23-H1 in MMR. Finally, since NM23 was 

shown to respond to etoposide damage and etoposide is a topoisomerase II usually 

inducing double-strand breaks (DSB), DSB repair (DSBR) could also be one repair 

pathway NM23 using as a cellular defending mechanism for DNA damage. In 

mammalian cells, DSBR is mediated either by the error-free homologous 

recombination (HR) or the more predominant error-prone nonhomologous end 

joining (NHEJ) pathways (reviewed in Jackson, 2002). We are currently investigating 

which DNA repair mechanism is NM23 involved in repairing DNA damage. It’s 

possible that three pathways could be induced individually or all together depending 

on different insulting. More DNA damage methods, such as ultraviolet light, ionizing 

radiation, hydroxyurea, and MMS, etc, should be used to trigger cell DNA damage to 

study the accurate repair pathways. 

 

5.1.3. NM23-H1 opposes the progression of premetastatic melanoma cells, and 

NDPK and/or 3’-5’ exonuclease could be the major enzyme associated with this 

activity 

        Tumors have long been known to become more aggressive in clinical behavior 

and more ‘malignant’ in their characteristics over time. This has been termed ‘tumor 

progression’ and includes, among other properties invasion and metastasis, as well 

as more efficient escape from apoptosis and host immune surveillance (reviewed in 

Nowell, 2002). Tumor progression is driven by enhanced mutagenesis and clonal 
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evolution, in which single cells expand by stepwise selections to populate a tumor 

(reviewed in Bielas and Loeb, 2005). Clonal evolution of more and more aggressive 

subpopulations involves multiple sequential genetic changes in a variety of genes. 

Perhaps the best documented example of clonal evolution in a human malignancy is 

colon cancer, in which Vogelstein and coworkers (Kinzler and Vogelstein, 1996), as 

well as other laboratories, have shown a series of genetic changes associated with 

the clinical progression from benign colonic polyps to invasive and metastatic 

adenocarcinoma. 

        The clinical and histologic progression observed in the growth phases of 

melanoma is hypothesized to correspond to the accumulation of genetic mutations 

critical for cell proliferation, differentiation, and cell death (Clark et al., 1984). Primary 

melanoma cells in vertical growth phase (VGP) are phenotypically and genetically 

different from metastatic melanoma cells (MET). VGP cells must go through 

progression to develop MET cells. To examine whether NM23-H1 opposes the 

progression of VGP cells in vitro and whether 3’-5’ exonuclease of NM23-H1 is the 

major mediator of this activity, premetastatic melanoma cell WM793 was chosen due 

to the loss of expression of NM23-H1 and H2 in this cell line and stably transfected 

with wild-type and variant mutant NM23-H1. Then all the transfected WM793 cell 

lines alone with parent cells were exposed to protein- free medium (FBS- and 

insulin-free) for selection of growth factor independence. The whole experiment took 

4 rounds of selections to be finished (Figure 23). The first two selections didn’t make 

significant difference between parent cell and all the transfected cell lines. The 

marked difference in colony formation numbers among cell lines was obvious after 

the third round of selection, and the difference in colony size was obvious after the 

fourth round of selection. Significant progression of WM793 cells cultured in protein 
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free medium has been demonstrated by about 10 folds increase in colony numbers 

(20 colonies out of 1000 cells after first round of selection vs 200 colonies out of 

1000 cells after fourth round of selection). Wild-type NM23-H1 significantly opposes 

this progression process as well as P96S mutant (HisK-deficient), suggesting NM23-

H1 may block the accumulation of mutations as a DNA repair protein, and histidine 

kinase is not involved in DNA repair function of H1 and thus prevention of tumor 

progression. 

        As expected, K12Q mutant (EXO-deficient and NDPK-deficient) almost totally 

lost the activity to oppose tumor progression. The colony formation efficiency and 

colony size of K12Q mutant transfected cells were very close to that of parent cells. 

These results suggested that both NDPK and/or exonuclease may be involved in 

decreasing mutation rate and opposing tumor progression. Exonuclease activity of 

H1 decreases mutation rate through DNA repair mechanism while NDPK activity of 

H1 may lower mutation rate by keeping balanced dNTP pool to prevent 

misincorporation of nucleotide during DNA replication. The involvement of NDPK in 

opposing tumor progression was confirmed by the partial blockade of progression of 

H118F transfected WM793 cells. Histidine kinase activity of H1 may have effects on 

tumor cell motility or invasion ability, it seems to have nothing to do with decreasing 

mutation rate and progression suppression.  

        After 4 rounds of selection in protein free medium, all the parent WM793 and 

transfected WM793 cells progressed to be more aggressive and more growth factor-

independent, which is one of the phenotype metastatic melanoma cells possess. But 

it’s not for sure whether these cell lines have acquired enough abilities to 

metastasize as 1205LU cells. It is estimated that between six and ten clonal 

successions may be required to generate highly malignant human cancer cells 
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(reviewed in Bernards and Weinberg, 2002). It would be interesting if those selected 

cell lines could be used for in vitro and in vivo metastasis assay compared with 

metastatic 1205LU cells, and also used for microarray to find out the genetic 

alterations compared with the counterparts before selections. 

        

5.1.4. NDPK and/or 3’-5’ exonuclease activities could be the mediators of metastasis 

suppression 

        The major goal of this project is to identify the underlying molecular nature of 

metastasis suppression of NM23-H1. Two melanoma cell lines were chosen for our 

study model because of their very low amount of expression of NM23-H1 and H2. 

After stably transfected with wild-type and variant mutant H1 and verified the protein 

expression by western blot and 2D-gel, two cell lines were performed both 

transformation phenotype assays and metastasis phenotype assays. Due to the very 

low tumorigenicity and metastasis ability of WM793 and transfected WM793 cells 

(about 5% tumor formation rate and 5% metastasis rate), we failed all the in vivo 

animal experiments (including spontaneous metastasis assay and experimental 

metastasis assay) with these cells by using either athymic nude mice and more 

immunocompromised SCID mice. 

        As a metastasis suppressor gene, nm23-H1 transfection has no effect on cell 

proliferation rate (Leone et al., 1991; Russell et al., 1998). However, some data 

provide evidence that the nm23 genes are involved in cell proliferation (Cipollini et 

al., 1997; Caligo et al., 1997), and they are preferentially expressed in the S-phase 

of the cell cycle (Sorscher et al., 1993; Caligo et al., 1995). To find out whether 

transfection of wild-type and mutant nm23-H1 has any effect on WM793 and 1205LU 

cells, MTT assay was performed and both cell lines exhibit similar proliferation rate 
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for transfected cells compared with parent cells. This is very important to know 

because some of our experiments, such as selection for growth factor independence 

and spontaneous metastasis assay, are very time-consuming. They took 8 months 

and 4 months, respectively, to be finished. So, if the proliferation rate is different 

among cell lines, then it may change or complicate the interpretation of metastasis 

results. 

        The dislodgement of tumor cells from the primary tumor, and followed by 

subsequent invasion into neighboring tissue is the first step in the formation of tumor 

metastasis. Tumor cell invasion requires specific enzymes (proteases, collagenases) 

to break up the barrier and to migrate through the basal lamina. In in vitro Boyden 

chamber assay, only cells with ability to secret proteolysis enzymes and ability to 

migrate can reach the lower chamber. As we expected, transfection of wild-type 

NM23-H1 inhibited cell invasion in 1205LU and WM793 cells, consistent with the 

definition of metastasis suppressor and previous data (Cantor et al., 1993). 

Interestingly, in 1205LU cells, K12Q mutant H1 didn’t lose the inhibition of invasion as 

we expected, but the inhibition of invasion was lost in WM793 cells, suggesting the 

critical role of exonuclease activity of H1 in preventing progression of premetastatic 

melanoma cells. For 1205LU cells which are metastatic cells, since the genetic 

changes have occurred before H1 was overexpressed, transfection of exonuclease 

deficient H1 did not cause loss of inhibition function. While in the premetastic 

WM793 cells, genetic changes responsible for metastasis phenotype haven’t taken 

place, so overexpression of mutant H1 had different effect on invasion inhibition. 

Furthermore, P96S mutant H1 didn’t lose the invasion inhibition in both cell lines, 

inconsistent with previous data from Steeg group (MacDonald et al., 1996; Freije et 

al., 1997). This inconsistency could be caused by different cell types, or caused by 
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having no effect of H1 transfection on proteolytic enzyme releasing in those cells 

even though the motility ability may have changed. 

        Metastasis is a complex physiologic process and investigation of the process 

has proven a challenging task. In vitro metastasis assays can only capture one or 

two aspects of metastatic tumor cells instead of whole complex physiologic process. 

So they are by no means comprehensive and accurate. In vivo models provide the 

most physiologically relevant models for studying metastasis, especially, the 

spontaneous lung metastasis, which plausibly mimics the clinical situation of 

metastasis both in pathophysiology and location. Experimental metastasis (through 

tail vein injection) does not recapitulate all the necessary steps that a cell needs to 

perform in order to metastasize from an ectopic site. It tests the ability of the cells to 

survive in the blood stream, to colonize, and to grow in the lung. In our spontaneous 

lung metastasis assays, two millions of 1205LU parent cells and all the transfected 

cells were injected under the skin. Five to seven days later, primary tumors formed in 

every group. The growth rate of primary tumors in each group is quite similar except 

K12Q mutant H1 transfected cells. Tumors in this group grew slower than other 

groups after 10 day postinjection, but still reached 800 mm3 (the size ready to be 

removed) on day 30 postinjection. The reason to cause this slightly slow growth is 

not clear. After all the tumors reached 800 mm3, they were removed and all the mice 

were kept for another 3 months to let tumor cells to metastasize to the lung. At the 

end of this experiment, all the mice were sacrificed and lung metastasized nodules 

were counted. As shown in table 2, wild-type H1 inhibited lung metastasis as well as 

P96S mutant H1, while K12Q and H118F mutant H1 lost metastasis suppression 

activity, suggesting the involvement of exonuclease and NDPK in the metastasis 

suppression.  
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        The lung metastasis assay has the similar result as that of selection of growth 

factor independence assay even though two different cell lines were used in these 

two experiments respectively. There is one common point for these two experiments: 

long period. Selection of growth factor independence assay took 8 months, and lung 

metastasis assay took 4 months. This long period of the whole experiment means all 

the tumor cells were selected under the influence of NM23-H1 or individually 

enzymatic deficient mutant H1. So cells progressed with genetic changes if their 

mutation rate is increased (imbalanced dNTP pool) or loss of function of DNA repair 

(loss of exonuclease). 

        NDPK activity has long been thought as a function not relevant to metastasis 

suppression. This is the first time that we provide evidence to show the relevance of 

this enzymatic function to metastasis suppressor activity. The evidence includes the 

involvement of H118F mutant and K12Q mutant in anti-progression of premetastatic 

WM793 to metastatic phenotype in cell culture, as well as anti-metastasis in animal 

model. Both of the two mutants lack NDPK activity, suggesting this enzymatic 

function is essential in maintaining metastasis suppressor activity and anti-

progression activity. Even though hisK is also deficient in H118F and K12Q mutants, 

P96S mutant H1 (hisK-deficient only) still keeps anti-progression activity in cell culture 

and anti-metastasis activity in spontaneous metastasis assay, strongly suggesting 

hisK is not associated with these two activities. EXO is deficient in K12Q mutant only 

and NDPK is also deficient in this mutant, so the involvement of EXO in anti-

progression and anti-metastasis activities could be alone or in concert with NDPK. 

The direct evidence will be provided when E5A mutant H1 is tested for anti-

progression and anti-metastasis activities. 
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        Taken all the results together, a working model is proposed to address the 

molecular mechanisms that mediate the metastasis suppressor activity of NM23-H1 

(Figure 27). 
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Figure 27. Molecular mechanisms that mediate metastasis suppressor activity 

of NM23-H1 in melanoma cells.  

 

 

 

 

 

  

 

NM23-H1 

NDPK EXO hisK 

Balanced 
dNTP Pool ? 

DNA 
Repair ? 

Apoptosis ? Cell Motility 

 
VGP 

Mutation rates    ? 

Progression 

 
RGP 

 
MET 



 133

5.2. Future studies 

        This project is mainly focusing on the study of underlying mechanisms of 

metastasis suppression of NM23-H1. Even though some questions have been 

answered by our preliminary data, intensive investigations should be done to 

understand the functions of NM23 in metastasis as well as the development of novel 

therapeutic strategies to combat progression to the metastatic phenotype. 

 

5.2.1. To further study exonuclease function of NM23-H1 in blocking tumor 

progression and metastasis suppression 

        K12Q mutant is the only exonuclease-deficient mutant used in the current 

project. But this mutant is also NDPK and hisK deficient. Since NDPK may be 

associated with metastasis suppression and progression inhibition, it’s necessary to 

use exonuclease deficient only mutant to confirm our current results. We have a 

candidate mutant E5A. The mutant is previously described as exonuclease deficient 

but NDPK intact. We already constructed this mutant and the biochemical functions 

are under active test. Once the biochemical activities are tested and the E5A mutant 

genes are stably transfected into cell lines, all the in vitro and in vivo metastasis 

assays as well as progression assay will be performed to examine the role of 

exonuclease in NM23-dependent metastasis suppression. 
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5.2.2. To compare the gene profile and protein expression profile in NM23-H1 

deficient and proficient cell lines and to functionally validate some of these NM23-

dependent genes 

        Previously, WM1158, another nm23-deficient metastatic melanoma cell line, 

and WRO82 cell line were infected with the Ad5-H1 adenoviral expression vector. 

Analysis of mRNA expression profiles revealed that 13 out of total 46 downregulated 

genes were associated with transcription, DNA repair, and replication. Microarray 

analysis will be performed for more cell lines, such as WM793, 1205LU, in pair wise, 

to compare the gene profile, as well as parent cells compared with transfected cells. 

Furthermore, WM793 parent and transfected cell line could be compared with the 

counterpart cell lines after 4 cycles of selection. Since cell progression was seen 

obviously after 4 cycles of selection, genomic alterations should be found by 

comparing cells before and after selection. Besides genomic technologies, 

proteomics may also be applied to identify molecular factors involved in nm23-

associated metastasis suppression. After the nm23-dependent genes or proteins are 

found, functional validation will be performed by transfecting back those genes 

(downregulated genes in metastatic cells) or knocking out those genes (upregulated 

genes in metastatic cells) to see whether metastasis function will be suppressed in 

the cells. 

 

5.2.3. To investigate whether introduction of NM23-H1 facilitates apoptosis following 

genotoxic stress 
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        Recently, NM23-H1 was proposed as an endpoint effector of apoptosis (Fan et 

al., 2003). When cytotoxic T cell or natural killer cell attacks target cell by releasing 

granzyme A, granzyme A cleaves NM23-H1 inhibitor, SET, and unleashes NM23-H1 

(activated DNase) to induce caspase-independent apoptosis. This finding suggests 

the possibility that immune surveillance may be compromised as a consequence of 

NM23-deficiency. To investigate whether introduction of NM23-H1 induces apoptosis 

under genotoxic stress, activation of caspase-8 will be measured across the 1205LU 

cell panel as an early indicator of apoptotic activity. Apoptosis will be measured 

under basal conditions and in response to genotoxic insult, such as etoposide, 

cisplatin and UV light. These assays should determine the extent to which 1205LU 

cells might be resistant to programmed cell death in the absence of NM23-H1 and its 

attendant 3’-5’ EXO activity. In in vivo assay, examination of melanoma cell 

apoptosis at early times after lung tissue seeding of melanoma cells provides insight 

into tumor outgrowth at later stages. 1205LU cell panel will be injected into nude 

mice through tail vein. One week later, lung tissues will be excised and the levels of 

apoptotic cells will be examined by Dead-End TUNEL Assay in frozen tissue 

sections (Ervin and COX, 2005). 
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