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ABSTRACT OF DISSERTATION 
 
 
 
 

PERMISSIVENESS OF SELECTED CELL LINES TO EQUINE ARTERITIS VIRUS: 
ESTABLISHMENT, CHARACTERIZATION, AND SIGNIFICANCE OF 

PERSISTENT INFECTION IN HELA CELLS 
 
 

A major goal of this research was to evaluate a variety of cell lines for their 

permissiveness to equine arteritis virus (EAV) infection and then identify the mechanism 

that restricts EAV infection in certain cell lines. The cell lines BHK-21, RK-13, and 

C2C12 were found to support productive infection with EAV strain VBS53, whereas 

Hela, Hep-2, and L-M cell lines exhibited limited susceptibility to infection with this 

virus. In the course of the study, it was found that the Hela cell line became more 

susceptible to infection with EAV strain VBS53 after extended serial passage. The 

respective cell lines were referred to as Hela High (passage 170-221) and Hela Low 

(passage 95-115) lines. While the Hela High cell line was more susceptible than the Hela 

Low cell line, it was still considerably less susceptible than the BHK-21 cell line to EAV 

infection. Subsequent studies demonstrated that infection with EAV strain VBS53 was 

restricted at the entry step in Hela, Hep-2, and L-M cell lines.  

The second major goal of this research was to establish an in vitro model of 

persistent EAV infection using cell culture and then use the persistently infected cultures 

as a tool to study virus-host cell interactions, and to investigate virus and host cell 

evolution. Persistent infection was successfully established in the Hela High cell line with 

the VBS53 strain of EAV. Properties of the persistently infected Hela High cell line were 

characterized. Virus evolution with respect to virus growth characteristics, ability of the 

virus to initiate secondary persistent infection, and genetic changes during persistent 



EAV infection in Hela cells was investigated. Neutralization phenotypic changes of 

viruses were observed during the course of persistent EAV infection in Hela cells. 

Reverse genetics studies identified that amino acid 98 of the GP5 protein is a new 

neutralization determinant of EAV. Using an in vitro assay, it was found that EAV 

probably became progressively less virulent during the course of persistent infection in 

Hela cells. The potential changes in pathogenicity of EAV during persistent infection of 

Hela cells need to be verified by inoculation of horses.     

 

KEYWORDS:  Equine Arteritis Virus, Hela Cells, Persistent Infection, Neutralization 
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Chapter One: General Introduction 
 

I. INTRODUCTION 

Equine viral arteritis (EVA) is a globally distributed infectious disease of equids 

caused by equine arteritis virus (EAV). EAV was first isolated from the lung of an 

aborted fetus in the course of an outbreak of respiratory disease and abortion in 

Standardbred horses at Bucyrus, Ohio, USA, in 1953 (Doll et al. 1957a; 1957b). The 

majority of horses develop a subclinical infection following natural exposure to EAV. 

Occasionally, clinical disease can occur: influenza-like illnesses in adult horses, abortion 

in pregnant mares, and interstitial pneumonia, or enteritis, or pneumonoenteritis in young 

foals (Glaser et al. 1997; Timoney and McCollum 1993). Up to 30% to 70% of stallions 

infected with EAV can subsequently become carriers which constantly shed the virus in 

semen (Timoney and McCollum 1993). Persistently infected stallions are the principal 

reservoir of EAV and are responsible for perpetuation and dissemination of EAV in 

equine populations (Timoney et al. 1987; Timoney and McCollum 1993). Carrier 

stallions are also thought to be a significant natural source of genetic and phenotypic 

diversity of EAV (Balasuriya et al. 1999a; 2004a; Hedges et al. 1999a). 

Persistent infection of cell culture has been documented with many viruses. Such 

infections have been used to study virus-host cell interactions and they have also been 

shown to be a useful tool for investigating virus and cell evolutions (Ahmed et al. 1981; 

Colbere-Garapin et al. 1989; de la Torre et al. 1988a; Kaplan et al. 1989). Persistent 

infection in cell culture could possibly serve as a model system for elucidating 

mechanisms of viral persistence in vivo.  

In this introductory chapter, the molecular biology of EAV is addressed in section II 

with EAV infection and persistently infected stallions discussed in section III. Persistent 

infections of cell cultures with RNA viruses will be reviewed in section IV followed by 

the research objectives of this study in section V. 

 

II. EQUINE ARTERITIS VIRUS 

1. Classification and genome organization 

Based on similarities in genomic organization and protein expression strategies, the 

Arteriviridae (genus Arterivirus), Coronaviridae (genera Coronavirus and Torovirus), 
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and Roniviridae (genus Okavirus) were grouped together in the order Nidovirales (Table 

1.1; Cavanagh 1997; de Vries et al. 1997). Arteriviruses comprise four members: equine 

arteritis virus (EAV), porcine respiratory and reproductive syndrome virus (PRRSV), 

lactate dehydrogenase-elevating virus (LDV), and simian hemorrhagic fever virus (SHFV) 

(Snijder and Meulenberg 1998). Coronaviruses can be grouped into three clusters on the 

basis of serological and genetic properties (Lai and Cavanagh 1997; Stephensen et al. 

1999). Grouping of newly discovered SARS-CoV has been of controversy. Phylogenetic 

analysis of different SARS-CoV proteins using unrooted trees showed that SARS-CoV 

does not segregate into any of the three established coronavirus groups and it was 

suggested that SARS-CoV may be classified as the prototype of a novel, fourth group of 

coronaviruses (Marra et al. 2003; Rota et al. 2003). However, phylogenetic analysis of 

coronavirus replicase genes using a rooted tree (the equine torovirus was used as an 

outgroup for coronaviruses) indicated that the SARS-CoV lineage was an early split-off 

from the coronavirus group 2 branch and it was suggested that SARS-CoV could be 

classified as the prototype of subgroup 2b if the established group 2 coronaviruses would 

be referred to as subgroup 2a (Snijder et al. 2003). Four torovirus species have been 

recognized: equine torovirus (Berne virus), bovine torovirus (Breda virus), human 

torovirus, and porcine torovirus (Koopmans and Horzinek 1994; Kroneman et al. 1998). 

The recently discovered okaviruses that infect prawns comprise two members thus far: 

gill-associated virus and yellow head virus (Cowley et al. 2002a; Cowley and Walker 

2002b; Sittidilokratna et al. 2002).  

Nidoviruses have in common a characteristic genome organization: the most 5’ end 

open reading frames (ORF), 1a and 1b, encode the viral replicase polyproteins that are 

subsequently proteolytically processed; the 3’-terminals of the genome encode structural 

proteins (Snijder and Meulenberg 1998). Nidoviruses have a unique mechanism to 

regulate structural protein gene expression. The structural protein genes are not directly 

expressed from the genome, but from a nested set of 3’-coterminal subgenomic mRNAs 

(sg mRNAs). In the case of arteriviruses and coronaviruses, subgenomic mRNAs also 

contain a common 5’ leader sequence derived from the 5’ end of the genome (Lai and 

Cavanagh 1997; Snijder and Meulenberg 1998). On the other hand, subgenomic mRNAs 
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of okaviruses do not have a common 5’ leader sequence (Cowley et al. 2002c), neither do 

torovirus sg mRNAs with exception of sg mRNA2 (Snijder et al. 1990). 

The EAV genome is a single-stranded, positive-sense RNA molecule of 12,704 

nucleotides [sizes excluding the 3’ poly(A) tail] in length. The 3’ end of the genome is 

polyadenylated (van Berlo et al. 1982) and the 5’ end is believed to be capped (Snijder 

and Meulenberg 1998). Its genomic organization is depicted in Fig 1.1 and Table 1.2. The 

coding regions of the EAV genome are flanked by 5’ and 3’ non-translated regions 

(NTRs) of 224 nucleotides (nt) and 59 nt, respectively (Table 1.2). Nucleotides (1-211) 

are often referred to as the 5’ leader sequence which is present in genomic RNA and in 

all sg mRNAs. An intraleader ORF (nt 14-127, encoding a hypothetical 37 aa peptide) 

was suggested by Kheyar et al. (1996). However, the expression of this ORF has never 

been observed and the role of this putative intraleader ORF has yet to be determined. The 

EAV genome includes nine functional ORFs. The replicase gene comprises the 5’-

terminal three-quarters of the genome and includes two large ORFs (1a and 1b), which 

are both expressed directly from the genomic RNA. The translation of ORF1a generates a 

multi-domain precursor polyprotein: the 1727-amino-acid ORF1a polyprotein (187 kD). 

Following ORF1a translation, a -1 ribosome frameshift into ORF1b occurs with an 

estimated efficiency of 15 to 20% (den Boon et al. 1991). This results in the generation of 

a 3175-amino-acid ORF1ab polyprotein (345 kD). Two large replicase polyproteins 

(polyprotein 1a and polyprotein 1ab) are proteolytically processed by three ORF1a-

encoded proteases (Snijder et al. 1992; 1995; 1996) and produce 12 nonstructural 

proteins (nsp1-12; Table 1.2) and multiple processing intermediates (den Boon et al. 

1995a; Snijder et al. 1993, 1994; van Dinten et al. 1996; 1999; Wassenaar et al. 1997). 

The 3’ one-quarter of the genome is composed of seven ORFs (2a, 2b, 3-7), which 

encode structural proteins E, GP2b (Gs), GP3, GP4, GP5 (GL), M, and N, respectively. 

Most of these ORFs that encode structural proteins have both 5’- and 3’- terminal 

sequences that overlap with neighboring genes (Fig 1.1A and Table 1.2; de Vries et al. 

1992; Snijder and Meulenberg 1998; Snijder et al. 1999). These structural proteins are 

expressed from a 3’-coterminal nested set of six subgenomic mRNAs that also contain a 

common 5’ leader sequence, which is derived from the 5’ end of the viral genome (Fig 

1.1A; de Vries et al. 1990; van Berlo et al. 1982). The following 13, 3.2, 2.7, 2.2, 1.9, 1.2, 
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and 0.8 kb [including a poly(A) tail] were estimated for EAV genomic RNA and sg 

mRNAs 2-7, respectively (den Boon et al. 1991). In sg mRNAs, the leader sequence is 

linked to different sequences derived from the 3’ region of the genome, which are 

referred to as “mRNA bodies”. The leader sequences are connected to the mRNA bodies 

by a short, conserved transcription-regulating sequence (TRS) which is present both at 

the 3’ end of the leader sequence and at the 5’ end of the mRNA bodies (Fig 1.1A).  

2. Virion architecture and properties 

Equine arteritis virus is a small, spherical, enveloped, positive-strand RNA virus. 

The virus particles are 40-60 nm in diameter (Horzinek et al. 1971) and have a buoyant 

density of 1.17 to 1.20 g/ml in sucrose, 1.18 to 1.22 g/ml in cesium chloride (Hyllseth 

1970). The sedimentation coefficient of EAV particles has been reported to be between 

216S and 232S (van der Zeijst and Horzinek 1975). The stability of EAV is influenced by 

temperature and pH and EAV can be stored at -70ºC for years without significant loss of 

the infectivity (Burki 1966; Harry and McCollum 1981; McCollum et al. 1961). Equine 

arteritis virus can be inactivated by lipid solvents (ether and chloroform) and by 

disinfectants and detergents (Burki 1965; Zeegers et al. 1976). 

A schematic representation of the EAV virion architecture is shown in Fig 1.1B. 

Virions consist of an icosahedral nucleocapsid (25-35 nm in diameter) which is 

surrounded by a lipid-containing envelope with tiny surface projections (Horzinek et al. 

1971). The viral nucleocapsid is composed of the linear viral genomic RNA (12.7 kb) and 

a 14-kDa phosphorylated nucleocapsid (N) protein (de Vries et al. 1992; Hyllseth 1973; 

Zeegers et al. 1976). The virion envelope contains six envelope proteins. The two major 

envelope proteins are 16-kDa nonglycosylated membrane protein (M) and the relatively 

large envelope glycoprotein GP5 (previously named GL) of 30 to 42 kDa (de Vries et al. 

1992). The M and GP5 proteins occur in the virion as disulfide-linked heterodimers (de 

Vries et al. 1995b). The unglycosylated envelope protein E of 8 kDa is of intermediate 

abundance in the virion (Snijder et al. 1999). The three minor envelope proteins of EAV 

are 25-kDa glycoprotein GP2b (previously named Gs), the heterogeneously N-

glycosylated GP3 glycoprotein of 36 to 42 kDa, and the 28-kDa GP4 glycoprotein, 

respectively (de Vries et al. 1992; 1995a; Hedges et al. 1999b; Wieringa et al. 2002). The 

GP2b, GP3, and GP4 proteins occur in the virion as heterotrimers (Wieringa et al. 2003a).  
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The EAV nucleocapsid protein, encoded by ORF7, is a small protein with a high 

content of basic amino acids and a hydrophilic nature (de Vries et al. 1992). The N 

protein is expressed abundantly in infected cells and constitutes about 35 to 40% of the 

protein moiety in the virion (de Vries et al. 1992). The N protein was shown to be 

phosphorylated and present in the virion as a monomer (Snijder and Meulenberg 1998). 

The N protein is necessary for virus assembly and the production of infectious virus 

particles (Molenkamp et al. 2000; Wieringa et al. 2004). It is predicted that the N protein 

plays an important role in encapsidating viral genomic RNA and in the interactions with 

envelope proteins during virus assembly. However, the regions of the N protein 

responsible for RNA encapsidation and interactions with envelope proteins have not yet 

been determined. The EAV virion biogenesis is assumed to be a strictly cytoplasmic 

event, however, besides existing in the cytoplasm, small quantities of the N protein have 

also been observed in the nucleus (Molenkamp et al. 2000; Tijms et al. 2002). The 

mechanism and significance of the nuclear translocation of EAV N protein remain 

unknown. 

The GP5 and M proteins are the two major envelope proteins and are encoded by 

ORF5 and 6, respectively (de Vries et al. 1992). The M and GP5 proteins are present in 

virions in equimolar amounts and appear as disulfide-linked heterodimers which 

constitute the basic protein matrix of the envelope (de Vries et al. 1992; 1995b). In cells 

infected with EAV, disulfide-linked M protein homodimers were also observed but these 

were not incorporated into virions (Snijder and Meulenberg 1998). The M protein, like 

the N protein, lacks potential N-glycosylation sites and lacks a potential amino-terminal 

signal sequence (de Vries et al. 1992). The M protein is assumed to span the viral 

envelope three times with its internal transmembrane segments, leaving a short stretch of 

10-18-amino-acid N-terminal domain (ectodomain) exposed at the outside of the virion 

and an approximately 72-residue C-terminal domain buried at the inside (de Vries et al. 

1992; 1995b; Snijder and Meulenberg 1998). The single Cys residue (Cys-8) in the M 

ectodomain is crucial for the formation of both the GP5-M heterodimer and the M-M 

homodimer (Snijder et al. 2003). The GP5 protein (255 aa) is a heterogeneously 

glycosylated protein that contains an N-terminal signal sequence (aa 1-18) which is 

cleaved off during transport through the endoplasmic reticulum (ER). The hydropathy 
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profile of the GP5 protein would suggest that amino acid residues 19-116 constitute the 

hydrophilic ectodomain of the protein, while the C-terminal half consists of three 

membrane-spanning domains followed by an endodomain of about 64 amino acids 

(Balasuriya and MacLachlan 2004c; de Vries et al. 1992; Snijder et al. 2003). The 

ectodomain of the GP5 protein possesses one or two N-glycosylation sites (Asn-56 is a 

N-glycosylation site which is conserved amongst all strains of EAV and Asn-81 is 

another potential N-glycosylation site occurring in some field and laboratory strains of 

EAV) to which variable numbers of lactosamine side chains were added (Balasuriya et al. 

1995a; de Vries et al. 1992). The ectodomain of the GP5 protein also contains five 

conserved Cys residues: Cys-34, Cys-57, Cys-63, Cys-66, and Cys-80. The Cys-34 in the 

GP5 ectodomain and the Cys-8 in the M ectodomain form a disulfide bond which 

mediates GP5-M heterodimerization (Snijder et al. 2003). The GP5 and M proteins are 

indispensable for both virus assembly (Wieringa et al. 2004) and the production of 

infectious virus particles (Molenkamp et al. 2000; Snijder et al. 2003; Wieringa et al. 

2004). The GP5 protein expresses neutralization determinants of the virus. All of the 

neutralization determinants of EAV identified to date are located on the ectodomain of 

the GP5 protein (Balasuriya et al. 1993; 1995b; 1997; 2004b; Chirnside et al. 1995; 

Deregt et al. 1994; Glaser et al. 1995).  

Besides the three major structural proteins, the EAV virion contains four other 

envelope proteins: small hydrophobic envelope protein E, and minor envelope proteins 

GP2b, GP3, and GP4 which occur as heterotrimers (Snijder et al. 2003; Wieringa et al. 

2002). Also, it has been recently demonstrated that incorporation of the E protein is 

somehow linked to that of GP2b/GP4/GP3, suggesting the existence of a 

GP2b/GP4/GP3/(E) complex (Wieringa et al. 2004). The small envelope protein E (67 

aa), encoded by EAV ORF2a, is an integral membrane protein with a central hydrophobic 

domain of 40 residues and a cluster of basic amino acid residues in the hydrophilic C-

terminal domain (Snijder et al. 1999). The EAV E protein does not have a N-terminal 

signal sequence and lacks potential N-glycosylation sites (Snijder et al. 1999). The E 

protein proved to be stable and did not form covalently linked multimers (Snijder et al. 

1999). The E protein was found to associate with intracellular membranes (both the ER 

and Golgi complex) in EAV-infected cells or upon independent expression(Snijder et al. 



 

 7 

1999). Minor envelope proteins GP2b, GP3, and GP4, encoded by EAV ORF2b, 3, 4, 

respectively, are abundantly expressed in EAV-infected cells, but only a small fraction of 

them is assembled into the virion. In the virion, the molar ratio of GP2b to GP5 and M is 

approximately 1:25 (de Vries et al. 1992; 1995a; Wieringa et al. 2003a). Both GP2b and 

GP4 proteins are type I integral membrane proteins, containing one and three functional 

N-glycosylation sites, respectively (de Vries et al. 1995a; Wieringa et al. 2002). Both 

GP2b and GP4 proteins contain a 22-24 amino acid residue of an N-terminal signal 

sequence which is cleaved off during transport through the ER (de Vries et al. 1995a; 

Wieringa et al. 2002). The GP3 protein is a heavily glycosylated integral membrane 

protein with six N-glycosylation sites. It contains an uncleaved hydrophobic amino-

terminal signal sequence and a hydrophobic C-terminus (Hedges et al. 1999b; Wieringa 

et al. 2002). The GP3 protein is anchored to the membrane by either one or both of its 

hydrophobic terminal domains; no part of its structure is detectably exposed 

cytoplasmically (Hedges et al. 1999b; Wieringa et al. 2002). It has been shown that the 

EAV E, GP2b, GP3, and GP4 proteins are dispensable for the formation of virus-like 

particles (Wieringa et al. 2004) while they are essential for the production of infectious 

virus particles (Molenkamp et al. 2000). It implies that the GP2b/GP4/GP3/(E) complex 

may be involved in the virus attachment and cell entry process.  

3. The replication cycle of equine arteritis virus 

Equine arteritis virus can be propagated in a variety of primary cultures such as 

equine macrophages (Moore et al. 2003a), equine endothelial cells (Moore et al. 2003b), 

equine kidney cells (McCollum et al. 1961), hamster kidney cells (Wilson et al. 1962), 

and so on. The virus can also replicate efficiently in several continuous cell lines such as 

rabbit kidney (RK-13; McCollum et al. 1962), baby hamster kidney (BHK-21; Hyllseth 

1969), African green monkey kidney (Vero; Konishi et al. 1975) and so on. EAV 

infection of primary cells and continuous cell lines is highly cytocidal. The appearance of 

cytopathic effect (CPE) and the titer of infectious virus produced in different cell lines 

vary. The cytopathic effect exhibited in EAV-infected cells is characterized by rounding 

of cells and cell detachment from the culture plate surface (Hyllseth 1969; McCollum et 

al. 1962). Like other viruses, EAV infection of cells involves virus attachment and entry, 



 

 8 

biosynthesis (viral genome replication, mRNA transcription, and viral protein synthesis), 

virus assembly, budding, and release.  

(1) Virus attachment and entry 

The first step of virus infection is viral attachment to a specific receptor on a 

susceptible cell. In the case of EAV, neither a virus attachment molecule nor a specific 

cell receptor has yet been identified. By analogy with many other animal RNA viruses 

and in view of its recognition by neutralizing antibodies, the EAV GP5 protein had been 

postulated to serve as the virus attachment protein and to mediate receptor recognition. 

However, exchange of the ectodomain of the EAV GP5 protein with that of PRRSV or 

LDV in the context of an infectious EAV cDNA clone did not alter the cell tropism of the 

virus (Dobbe et al. 2001). In that study, the EAV GP5 ectodomain (aa 1-114) in a full-

length EAV cDNA clone was replaced by the GP5 ectodomain (aa 1-64) of PRRSV or 

LDV to yield chimeric EAV. It was found that these chimeric viruses were still able to 

infect BHK-21 and RK-13 cells. It is well known that these cells can be infected by EAV, 

but not by either PRRSV or LDV (Dobbe et al. 2001). The authors concluded that the 

ectodomain of GP5 is not the main determinant of EAV tropism in cell culture. Similarly, 

PRRSV mutants in which the ectodomain of the M protein was replaced by that of EAV 

or LDV still retained their ability to infect porcine alveolar macrophages and did not 

acquire tropism to cells susceptible to the respective viruses (e.g. BHK-21 cells for EAV 

and mouse macrophages fro LDV) from which the foreign ectodomains were derived 

(Verheije et al. 2002). This would suggest that, in the case of arteriviruses, the M protein 

is not responsible for receptor binding either. Recently, Wieringa et al. (2003a) have 

shown that minor structural proteins are present in EAV virions as disulfide-linked 

GP2b/GP4/GP3 heterotrimeric complexes. Also, there are indications that the E protein is 

noncovalently associated with the GP2b/GP4/GP3 trimers (Wieringa et al. 2004). It has 

also been demonstrated that the E, GP2b, GP3, and GP4 proteins are not required for the 

formation of EAV particles, although these proteins are believed essential for ensuring 

that the virus particles are infectious (Molenkamp et al. 2000; Wieringa et al. 2004). 

These findings would suggest that the GP2b/GP4/GP3/(E) complex might be involved in 

the EAV attachment/entry process. However, it must be realized that it is possible that a 

virus utilizes more than one attachment molecule for binding to cells. For example, 
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Delputte et al. (2002) showed that the PRRSV M protein alone or in a complex with GP5 

were involved in virus attachment to the receptor heparan sulfate on porcine alveolar 

macrophages; it has also been found that sialic acids on the PRRS virion can mediate 

virus attachment to another receptor sialoadhesin on porcine alveolar macrophages 

(Delputte and Nauwynck 2004). Sialic acids may be present on one or more viral 

glycoproteins. Moreover, viruses do not necessarily utilize the same attachment molecule 

to attach to different cells, e.g. PRRSV uses some unidentified molecules other than sialic 

acids to attach to Marc-145 cells (Delputte and Nauwynck 2004). 

The cell receptor for EAV has not been identified either. Asagoe et al. (1997) 

showed that heparin can reduce EAV infection of RK-13 cells and that this inhibition was 

due to the direct interaction between heparin and EAV rather than the interaction between 

heparin and RK-13 cells. Furthermore, treatment of RK-13 cells with heparinase before 

virus inoculation decreased EAV infection of the cells (Asagoe et al. 1997). The data 

suggested that a heparin-like molecule on the surface of RK-13 cells might serve as a cell 

receptor for EAV. Similar studies have shown that a heparin-like molecule on Marc-145 

cells and porcine alveolar macrophages serves as the cell receptor for PRRSV (Delputte 

et al. 2002; Jusa et al. 1997). However, heparinase treatment of RK-13 cells could not 

completely block EAV infection (Asagoe et al. 1997). Furthermore, EAV infection could 

not be reduced below 13% even in the presence of a very high concentration of heparin 

(Asagoe et al. 1997). This implied that other molecules on the cell surface might serve as 

EAV receptors as well. In fact, for PRRSV, another arterivirus, two receptors have been 

identified on porcine macrophages: heparan sulfate and porcine sialoadhesin (Delputte et 

al. 2002; Vanderheijden et al. 2003). Both heparan sulfate and sialoadhesin mediate 

PRRSV attachment to porcine macrophages, and early attachment is mediated mainly via 

an interaction with heparan sulfate, followed by gradual increase of attachment via the 

interaction with sialoadhesin (Delputte et al. 2005). It was observed that PRRSV can 

attach to but not be internalized into wild-type CHO K1 cells, which express heparan 

sulfate but not sialoadhesin, suggesting that heparan sulfate alone is sufficient to mediate 

virus attachment but not entry (Delputte et al. 2005). Upon transfection and expression of 

recombinant sialoadhesin, CHO A745 and D667 cells which are naturally deficient in 

both heparan sulfate and sialoadhesin expression are capable of binding and internalizing 
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PRRSV, indicating that sialoadhesin expression is sufficient for both PRRSV attachment 

and internalization and heparan sulfate is not essential for internalization (Delputte et al. 

2005). However, heparan sulfate may enhance PRRSV binding to porcine sialoadhesin 

(Delputte et al. 2005).  

EAV is assumed to enter cells through a process of receptor-mediated endocytosis, 

since the same family member PRRSV has been shown to enter cells through a 

mechanism of clathrin-dependent, receptor-mediated endocytosis in which low pH is 

necessary for the fusion between the endosomal membrane and the viral envelope and 

subsequent virus uncoating (Kreutz and Ackermann 1996; Nauwynck et al. 1999). It was 

observed that PK-15 cells expressing recombinant sialoadhesin can bind and internalize 

PRRSV but they are not productively infected (Vanderheijden et al. 2003). It was also 

reported that Vero cells, which are non-permissive to PRRSV infection but can support 

PRRSV replication after transfection with viral RNA, were able to bind and internalize 

the virus almost as efficiently as the permissive cell line Marc-145 (Kreutz 1998). This 

may possibly be due to the fact that the fusion of viral and endosomal membranes does 

not occur after virus internalization, and virus remains in the endosome and the viral 

genome is not released into the cytoplasm. If this should prove to be true, it would 

indicate that some cellular factor(s), which are essential for viral and endosomal 

membrane fusion and virus uncoating, are lacking in these cells. 

EAV attachment and the entry process still need further study. Firstly, the virus 

attachment molecule(s) need to be determined. Secondly, EAV specific cell receptor(s) 

wait to be defined. Thirdly, mechanism of fusion between EAV envelope and endosomal 

membrane need to be studied. It is still unknown how many receptors or coreceptors are 

needed for EAV attachment and entry. Also, it is not clear whether EAV utilizes the same 

receptor(s) in different cells and whether different EAV strains use the same receptor(s).   

(2) Biosynthesis: viral genome replication, mRNA transcription, and viral 

protein synthesis 

Once the viral RNA is released into the cytoplasm, arteriviruses start their 

replication cycle in the cell. The EAV replication cycle commences with translation of 

the replicase polyproteins from the genome, followed by genome replication, subgenomic 
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RNA transcription, and translation of structural proteins from sg mRNAs (Fig 1.2; 

Snijder and Meulenberg 1998).  

A. Genome translation and post-translational processing of replicase 

polyproteins  

There are two general mechanisms for translation initiation: classical cap-dependent 

initiation followed by linear ribosome scanning and initiation via internal ribosome entry 

site (IRES) element. The EAV genome is assumed to be 5’ capped based on two findings: 

another arterivirus SHFV has been shown to contain a type I cap structure (Sagripanti et 

al. 1986) and a cap analogue is known to be essential to make in vitro transcribed full-

length infectious RNA (Meulenberg et al. 1998; van Dinten et al. 1997). Therefore, it 

was suggested that EAV genome translation is initiated via a cap-dependent mechanism. 

van den Born et al. (2005) has further demonstrated that EAV genome translation is not 

IRES mediated. The EAV replicase polyprotein 1a is translated directly from ORF1a. 

However, ORF1b translation requires a -1 ribosomal frameshift just before ORF1a 

translation is terminated (den Boon et al. 1991). The ribosomal frameshift is assumed to 

be directed by two signals in the ORF1a/ORF1b overlap region: a ‘shifty’ 

heptanucleotide sequence 5’ GUUAAAC 3’, and a downstream RNA pseudoknot 

structure (Fig 1.3; Snijder and Meulenberg 1998).  

Translation of the EAV replicase gene yields two polyproteins: the polyprotein 1a 

and the polyprotein 1ab. The EAV polyprotein 1a is cleaved seven times and the 

polyprotein 1ab is cleaved ten times by three different viral proteases, which in total, 

generates 12 end-products, named nonstructural protein (nsp) 1-12, and multiple 

processing intermediates (Fig 1.4A; Table 1.2). Three EAV proteases are located in nsp1, 

nsp2, and nsp4. The nsp1 protease has been characterized as a papain-like cysteine 

protease (PCP) (Snijder et al. 1992). The nsp1 of PRRSV and LDV contains two active 

proteases: PCP1a and PCP1ß (Ziebuhr et al. 2000). However, in the case of EAV, PCP1a 

is inactive and only PCP1ß is active (Ziebuhr et al. 2000). The catalytic dyad of the EAV 

PCP has been identified as Cys-164 and His-230 (den Boon et al. 1991; Snijder et al. 

1992). The EAV PCP has been found to direct an autoproteolytic cleavage at its C 

terminus (Gly-260 | Gly-261 site) and to result in the rapid release of nsp1 (aa 1-260) 

from the polyprotein (Fig 1.4A and Table 1.2; Snijder et al. 1992). It was observed that 
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the EAV PCP mediates probably exclusively in cis cleavage, and attempts to achieve 

cleavage in trans were unsuccessful (den Boon et al. 1995a; Snijder et al. 1992). The 

second protease of EAV is the cysteine protease of nsp2 (CP2), which mediates the single 

cleavage at Gly-831 | Gly-832 to release nsp2 (Snijder et al. 1995). The putative catalytic 

residues of the EAV CP2 are Cys-270 and His-332, though the entire nsp2 protein 

appears to be essential for the nsp2|3 cleavage (Snijder et al. 1995). The nsp2|3 cleavage 

can be performed by the EAV CP2 in cis or in trans, though trans-cleavage activity is 

relatively low (Snijder et al. 1995; Ziebuhr et al. 2000). The EAV nsp4 protease has 

some unique characteristics. On one hand, the nsp4 protease utilizes the His-Asp-Ser 

(His-1103, Asp-1129, and Ser-1184 in EAV) catalytic triad, a typical characteristic of 

classical chymotrypsin-like proteases (Snijder et al. 1996). On the other hand, the 

putative substrate-binding region of the EAV nsp4 protease contains Thr and His residues 

(Thr-1179 and His-1198 in EAV), which are conserved in viral 3C-like cysteine 

proteases and determine their specificity for cleavage sites containing a (Glu/Gln) | 

(Gly/Ser) dipeptide (Snijder et al. 1996). Based on these characteristics, the EAV nsp4 

protease was classified as the prototype of a novel group of chymotrypsin-like enzymes,  

the 3C-like serine proteases (3CLSP) (Snijder et al. 1996). The EAV 3CLSP was shown 

to mediate eight cleavages in the EAV replicase proteins: five in the polyprotein 1a and 

three in the ORF1b-encoded polypeptide (Snijder et al. 1996; van Dinten et al. 1999; 

Wassenaar et al. 1997). Four of the known EAV 3CLSP cleavages occur at Glu | Gly 

sites (nsp3|4, nsp5|6, nsp7|8/9, and nsp11|12), three at Glu | Ser sites (nsp4|5, nsp6|7, and 

nsp9|10), and one at Gln | Ser site (nsp10|11) (Fig 1.4A and Table 1.2; Snijder et al. 1996; 

van Dinten et al. 1999; Wassenaar et al. 1997; Ziebuhr et al. 2000). Whether EAV 

3CLSP cleaves each site in cis or in trans has not yet been studied in detail. However, it 

is clear that EAV 3CLSP has in trans cleavage activity, since a nsp4 expression product 

has been shown to efficiently cleave the nsp9|10 and nsp10|11 sites in a separately 

expressed, ORF1b-encoded polypeptide (van Dinten et al. 1999).  

As mentioned above, the nsp1|2 and nsp2|3 cleavages are mediated by EAV PCP 

and EAV CP2, respectively; the other sites in the EAV polyproteins 1a and 1ab are 

cleaved by EAV 3CLSP. But these sites are not equally sensitive to processing by EAV 

3CLSP. In fact, two alternative pathways have been reported to process the carboxyl-
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terminal part of the EAV polyprotein 1a (Fig 1.4B; Wassenaar et al. 1997). In the major 

processing pathway, the EAV 3CLSP first cleaves at the nsp4|5 site, followed by 

cleavage of the nsp3|4 and nsp7|8 junctions, and the nsp5-7 remained uncleaved (Fig 

1.4B; Snijder et al. 1994; 1996). But it was found that cleavage at the nsp4|5 site requires 

the association of cleaved nsp2 with the nsp3-8 precursor (Wassenaar et al. 1997). If the 

nsp2 is absent, the nsp4|5 site cannot be processed and an alternative minor processing 

pathway is utilized (Wassenaar et al. 1997). In the minor processing pathway, the nsp4|5 

site is not cleaved; instead, the nsp5|6 and nsp6|7 sites are cleaved. Subsequently, 

cleavages at the nsp3|4 and nsp7|8 sites occur (Fig 1.4B; Wassenaar et al. 1997). It 

appears that the two pathways are mutually exclusive (Wassenaar et al. 1997). In either 

processing pathway, multiple processing intermediates are generated. In the major 

processing pathway, the nsp2 is required for the cleavage at the nsp4|5 site. But nsp2 

protease activity is not involved, since it has been demonstrated that the nsp2 mutants in 

which the nsp2 cysteine protease is inactivated can still induce the nsp4|5 cleavage 

(Wassenaar et al. 1997). Consequently, it was suggested that the association of nsp2 with 

nsp3-8 may affect conformation of the nsp2/nsp3-8 complex which allows the cleavage 

of the nsp4|5 site by EAV 3CLSP (Wassenaar et al. 1997).   

B. Genome replication 

The RNA synthesis (including genome replication and mRNA transcription) of 

RNA viruses (except retroviruses) relies on viral-encoded RNA-dependent RNA 

polymerase (RdRp). Equine arteritis virus replicase proteins are processed into 12 end 

products (nsp1-12) and multiple processing intermediates. The nsp1, nsp2, and nsp4 

contain viral proteases (Snijder et al. 1992; 1995; 1996). The nsp9 contains the putative 

RNA-dependent RNA polymerase activity, the nsp10 comprises a zinc-binding domain 

and the nucleoside triphosphate-binding/helicase activity, and the nsp11 harbors a 

conserved nidovirus-specific domain with unknown function (Fig 1.4A and Table 1.2; 

van Dinten et al. 1996). Immunofluorescence studies have revealed that the nsp9, nsp10 

and the majority of replicase polyprotein 1a cleavage products (nsp2, nsp4, nsp7-8, and 

nsp8) colocalize in the perinuclear region of EAV-infected cells and the distribution 

pattern of these proteins suggest that they are associated with intracellular membranes 

(van der Meer et al. 1998; van Dinten et al. 1996). Colocalization of these proteins 
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suggests that they might assemble into a large complex which is likely involved in viral 

RNA synthesis. In situ labeling of nascent viral RNA with bromouridine triphosphate 

(BrUTP) further revealed that viral RNA synthesis colocalizes with the membrane-bound 

complex in which the replicase subunits accumulate, demonstrating that the membrane-

bound complex is indeed the site of viral RNA synthesis (van der Meer et al. 1998). A 

typical feature of EAV and other arterivirus infections is the formation of paired 

membranes and double-membrane vesicles (DMVs) observed under electron microscope 

(Breese and McCollum 1970; Pol et al. 1997; Stueckemann et al. 1982; Wood et al. 

1970). These double-membrane vesicles appear to be derived from paired endoplasmic 

reticulum membranes and they are most likely formed by protrusion and detachment of 

vesicular structures with a double membrane (Pedersen et al. 1999). Using replicase-

specific antibodies, BrUTP-specific monoclonal antibody, and cryoimmunoelectron 

microscopy, Pedersen et al. (1999) have shown that the EAV replicase subunits and RNA 

synthesis localize to double-membrane vesicles. This indicates that the EAV replicase 

subunits, including nsp9 which contains the putative RNA polymerase function, assemble 

into a viral replication complex, which is membrane-associated with DMVs where the 

viral RNA synthesis occurs. How are the ORF1b-encoded replicase subunits (nsp9, nsp10, 

etc), which do not contain any transmembrane hydrophobic domains, membrane-

associated with DMVs? Hydrophobic domains located in nsp2, nsp3, and nsp5 were 

postulated to mediate the membrane association of the EAV replication complex (van der 

Meer et al. 1998). This also suggests the presence of multiple protein-protein interactions 

between replicase subunits in the replication complex. Interestingly, it was observed that 

double-membrane vesicles could be induced, in the absence of EAV infection, upon 

expression of ORF1a-encoded replicase subunits nsp2 to nsp7 from an alphavirus-based 

expression system (Pedersen et al. 1999). Snijder et al. (2001) further demonstrated that 

the co-expression of nsp2 and nsp3 is both necessary and sufficient to induce the 

formation of double-membrane vesicles. Taken together, these data indicate that EAV 

ORF1a replicase proteins play an important role in the formation of a membrane-bound 

scaffold for the viral replication/transcription complex (Snijder et al. 2001). 

As described above, the EAV replication complex, assembled on the membrane of 

virus-induced and host cell-derived DMVs, directs the viral RNA synthesis. The RNA 
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polymerase copies (+) genomic strands into full-length (-) genomic strands and then 

utilizes (-) genomic strands as templates to synthesize (+) genomic strands. But the cis-

acting elements essentially involved in EAV replication and transcription have not been 

defined. Also, the exact components of the EAV replication complex need to be 

elucidated. It has been shown that the EAV replicase is the only viral protein required for 

genome replication and none of the structural proteins (E, GP2b, GP3, GP4, GP5, M, and 

N) are essential for genomic replication (Molenkamp et al. 2000). Among EAV replicase 

proteins, nsp1 was also shown to be dispensable for genome replication (Tijms et al. 

2001). However, it is still uncertain whether any host cell proteins are involved in 

genomic replication. Recently, four MA-104 cell proteins have been shown to bind to in 

vitro-generated transcripts representing the 3’ noncoding region of the genomic negative 

strand of several arteriviruses, including EAV (Hwang and Brinton 1998). This region, 

which is complementary to the (+) strand genomic leader sequence, is assumed to be 

important for the initiation of (+) strand RNA synthesis. Archambault et al. (2005) have 

also shown that some proteins in Vero cell cytoplasmic extracts can bind to the (+) and (-) 

strands of the EAV leader sequence. These suggest that host cell proteins may be utilized 

as components of the EAV replication complex. However, this topic definitely needs 

further study. Construction of an EAV replicon may be a solution to resolve these issues 

concerning EAV replication. 

C. Subgenomic RNA transcription 

One striking characteristic of the nidovirus replication cycle is the generation of a 

nested set of 3’-coterminal sg mRNAs from which the structural proteins are expressed 

(Snijder and Meulenberg 1998). For coronaviruses and arteriviruses, these sg mRNAs 

also contain a common 5’ leader sequence, which is derived from the 5’ end of the viral 

genome (Fig 1.1A and Fig 1.2; Snijder and Meulenberg 1998). These sg mRNAs 

comprise leader and body sequences that are not contiguous on the viral genome. It was 

observed that coronaviruses and arteriviruses use transcription-regulating sequences to 

join the leader and the body of sg mRNAs (Chen et al. 1993; de Vries et al. 1990; den 

Boon et al. 1996; Godeny et al. 1998; Makino et al. 1991; Meulenberg et al. 1993; Spaan 

et al. 1983; Zeng et al. 1995).  
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How is the 5’ leader sequence joined to the sg mRNA bodies? Studies for both 

coronaviruses and arteriviruses have ruled out conventional cis-splicing as the major 

mechanism for the production of sg mRNAs (den Boon et al. 1995b; Jacobs et al. 1981; 

Yokomori et al. 1992). Moreover, nidoviruses replicate in the cytoplasm, while 

conventional splicing mainly occurs in the nucleus. Thus, it is generally accepted that 

nidovirus sg mRNAs are generated via a discontinuous transcription process. The first 

model proposed to explain this discontinuous process was the so-called ‘leader-primed 

transcription’ model (Fig 1.5A; Baric et al. 1983; Spaan et al. 1983). In this model, 

discontinuous transcription was assumed to occur during positive-strand RNA synthesis 

using the full-length negative genomic strand as a template. The sense TRS at the 3’ end 

of the leader transcript base pairs with the antisense body TRS in the negative-strand 

template, after which the leader transcript is extended to generate a sg mRNA. In this 

model, the genome-length negative strand serves as the template for the synthesis of 

genomic RNA as well as sg mRNAs. However, the discovery of sg negative-strand 

RNAs and the fact that these sg negative-strand RNAs appear to be transcriptionally 

active argued against the above model (Baric and Schaad 1995; Brian et al. 1994; den 

Boon et al. 1996; Sawicki and Sawicki 1990; Schaad and Baric 1994; Sethna et al. 1989, 

1990; 1991). Subsequently, several models were put forward to explain the presence of 

sg negative strands. Sethna et al. (1989; 1990) hypothesized that sg mRNAs could be 

amplified as independent replicons. According to their hypothesis, leader-primed 

transcription could produce the first generation of sg mRNAs and these sg mRNAs could 

subsequently function as templates for the synthesis of sg negative strands, which could 

in turn be used to generate the second generation of sg mRNAs. In Sethna’s model, sg 

mRNAs are generated from two templates: genome-length negative strands and sg 

negative strands. However, direct evidence for replication of sg mRNAs has never been 

obtained. When sg-length RNA was transfected into coronavirus-infected cells, 

amplification of sg RNA was not observed (Chang et al. 1994; Makino et al. 1991). 

Sawicki and Sawicki (1990; 1995) proposed another model called ‘discontinuous 

negative strand extension’ model (Fig1.5B,C). In their model, discontinuous transcription 

was proposed to occur during negative-strand RNA synthesis using the full-length 

positive genomic strand as a template. The antisense body TRS at the 3’ end of the 
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nascent (-) strand base pairs with the sense leader TRS in the positive genomic template, 

thereby allowing the addition of the anti-leader sequence. The sg negative-strand RNAs 

further function as templates for sg mRNAs synthesis. In this model, sg negative strands 

are produced directly from genome-length positive strand and are the only templates for 

sg mRNAs synthesis. More and more studies of arterivirus and coronavirus sg mRNAs 

synthesis have provided convincing evidence which is consistent with the discontinuous 

negative strand extension model (Baric and Yount 2000; Pasternak et al. 2001; Sawicki et 

al. 2001; van Marle et al. 1999a).  

The availability of full-length infectious cDNA clones of arteriviruses has provided 

a powerful tool to investigate sg mRNAs synthesis. Through genetic manipulation of the 

body and leader TRS of an infectious EAV clone, van Marle et al. (1999a) has 

experimentally demonstrated that EAV discontinuous mRNA transcription is guided by a 

direct base pairing interaction between the sense leader TRS and the antisense body TRS. 

Using a number of TRS mutants with partial transcriptional activity, they also showed 

that the TRS sequence at the leader-body junction of the sg mRNA is derived exclusively 

from the body TRS rather than from the leader TRS, supporting the theory that sg 

mRNAs are generated by a ‘discontinuous negative strand extension’ mechanism rather 

than by a ‘leader-primed transcription’ mechanism (van Marle et al. 1999a). For 

discontinuous transcription, viral RNA polymerase has to stop transcription at one site 

and reinitiate transcription at another site. Therefore, it has been proposed that nidovirus 

discontinuous negative strand extension resembles similarity-assisted, copy-choice RNA 

recombination (Fig 1.5C; Brian and Spaan 1997; Nagy and Simon 1997; van Marle et al. 

1999a). During this process, the RdRp complex and nascent (-) strand transcript are 

released from the primary site (a body TRS) in the positive-strand genomic template and 

translocated to the secondary site (the leader region) of the template where transcription 

is reinitiated. Base pairing between the sense leader TRS and the antisense body TRS at 

the 3’ end of the nascent (-) strand plays a crucial role in guiding this RNA strand transfer 

(Pasternak et al. 2003; van Marle et al. 1999a). Recent studies have shown that, besides 

base pairing between sense leader TRS and antisense body TRS, the secondary structure 

of the leader is also essential for efficient sg RNAs synthesis (van den Born et al. 2004; 

2005). According to the predicted secondary structure of the leader sequence of 
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arteriviruses (in the case of EAV, leader sequence is nt 1-211), the leader TRS is located 

in the loop of a hairpin structure and this hairpin is named as leader TRS hairpin (LTH) 

(Fig 1.5C; van den Born et al. 2004; van Marle et al. 1999a). By mutagenesis studies of 

the leader sequence using an infectious EAV clone, it has been demonstrated that the 

leader TRS hairpin and its immediate flanking sequences are essential for efficient sg 

RNA synthesis (van den Born et al. 2004; 2005). It is predicated that proably the 

antisense body TRS at the 3’ end of the nascent (-) strand can base pair with the sense 

leader TRS only when the latter is present in the loop of a hairpin structure (van den Born 

et al. 2004; 2005; van Marle et al. 1999a).  

Another open question is about the functionality of body TRSs and the 

heterogeneity of sg mRNAs. In addition to the leader TRS (5’UCAAC3’), the EAV 

genome contains 17 other 5’UCAAC3’ motifs, of which only 6 function as body TRSs 

participating in leader-body junction to generate major sg mRNAs2-7 (den Boon et al. 

1991) from which structural proteins E/GP2b, GP3, GP4, GP5, M, and N are expressed, 

respectively. The proteins E and GP2b are expressed from the same sg mRNA2. Using sg 

mRNA-specific RT-PCR approach, studies have shown that there exist subspecies for sg 

mRNAs 3, 4, and 5: namely sg mRNA3.1, -3.2, -3.3, sg mRNA4.1, -4.2, sg mRNA5.1, 

and -5.2 (den Boon et al. 1996; Pasternak et al. 2000). This heterogeneity of sg mRNAs 

originates from the use of alternative body TRSs for the joining of leader and body (den 

Boon et al. 1996; Pasternak et al. 2000). The reason that sg mRNA3.3, -4.1, and -5.2 

subspecies went unnoticed in previous studies may be due to two facts: a) these 

subspecies are minor mRNA subspecies and are in low abundance in infected cells. For 

example, sg mRNA5.2 is 125- to 625-fold less abundant than the major sg mRNA5.1 

subspecies; body TRS4.1 is 40 times less active than body TRS4.2. b) The size 

differences of subspecies for respective mRNA are very small. For example, sg 

mRNA3.1 is 32 nt larger than sg mRNA3.2 which is 42 nt larger than sg mRNA3.3; sg 

mRNA4.1 is 17 nt larger than sg mRNA4.2. These small size differences can hardly be 

detected by northern hybridization assay used in previous studies. Taken together, it must 

be realized that the same sequence motif 5’UCAAC3’ can be actively, less actively, or 

not used for leader-body junction to generate sg mRNAs. Thus, the primary sequence 

5’UCAAC3’ itself is clearly not sufficient to determine whether it is used for sg mRNA 
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transcription or not. Other factors, such as flanking sequences and/or RNA secondary 

structure, are likely to contribute to determining the functionality of the sequence motif 

5’UCAAC3’. Probably the sequences 5’UCAAC3’ at certain positions are more active 

and at other positions are less active or not active.  

Just as in viral genomic replication, synthesis of sg mRNAs is also directed by the 

RdRp complex. So, it can be assumed that sg mRNA transcription of EAV also occurs on 

the membrane of virus-induced and host cell-derived double membrane vesicles. Similar 

to viral replication, none of the structural proteins is required for EAV sg mRNA 

transcription (Molenkamp et al. 2000). However, the EAV nsp1, which is dispensable for 

viral replication, has been found to be essential for sg mRNA transcription (Tijms et al. 

2001). How the nsp1 is involved in sg RNA synthesis is still unclear. Interestingly, it has 

been found that the EAV nsp1 is able to interact with the cellular transcription co-factor 

p100 (Tijms and Snijder 2003). It remains to be determined whether the interaction 

between the nsp1 and p100 plays any role in sg mRNA transcription.  

EAV structural proteins are expressed from respective sg mRNAs. Since all of the 

EAV sg mRNAs are 5’ and 3’ co-terminal as the viral genome, it is reasonable to assume 

that translational machinery for genomic RNA and sg mRNAs are the same. With 

exception of the sg mRNA7, the EAV sg mRNAs are structurally polycistronic (Fig 1.2). 

However, in each of these sg mRNAs, only the most 5’-proximal gene positioned 

immediately downstream of the leader sequence is translated, with exception of sg 

mRNA2, from which both E and GP2b proteins are translated (Snijder et al. 1999). As 

mentioned afore, there exist subspecies for sg mRNAs 3, -4, and -5. But, since all TRSs 

used to generate sg mRNA subspecies are located upstream of the translation initiation 

codons in respective ORFs (Fig 1.6), sg mRNA subspecies can be used to express the 

same corresponding structural protein.    

D. The link among translation, replication, and transcription 

The EAV replicase is expressed directly from the viral genome as two polyproteins 

which subsequently are extensively processed by three viral proteases to generate 12 end-

products and multiple processing intermediates which direct viral replication and sg 

mRNA transcription. Equine arteritis virus genomic replication and sg mRNA 

transcription are both based on viral replicase proteins and occur at the same intracellular 
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location, following the same principles of RNA synthesis. The only difference is that 

genomic replication is a continous process and sg mRNA transcription involves a 

discontinuous mechanism. The continuity or discontinuity may be directed by some viral 

or cellular proteins which are associated with the transcription complex but not the 

replication complex. 

(3) Virus assembly, budding, and release  

Equine arteritis virus acquires its envelope from internal membranes of the infected 

cell rather than from the plasma membrane. The assembly of EAV takes place at the 

cytoplasmic faces of the endplasmic reticulum (ER), and/or the Golgi complex 

(Magnusson et al. 1970).  

It has been shown that all seven EAV structural proteins (E, GP2b, GP3, GP4, GP5, 

M, and N proteins) are indispensable for the production of infectious progeny virus 

(Molenkamp et al. 2000; Snijder et al. 1999; Snijder et al. 2003). However, only the 

structural proteins GP5, M, and N are essential for the formation of virus-like particles 

(VLPs) (Wieringa et al. 2004). None of the other structural proteins, E, GP2b, GP3, and 

GP4, is required to generate virus-like particles (Wieringa et al. 2004). When any one of 

GP5, M, and N genes was disrupted in the infectious cDNA clone, the virus particle 

formation was abrogated (Wieringa et al. 2004). In contrast, following inactivation of any 

of E, GP2b, GP3, and GP4 genes, virus particles were still generated although these 

particles were noninfectious (Wieringa et al. 2004). Strangely, all attempts to produce 

virus-like particles by the cotransfection of cells with expression plasmids encoding the 

EAV GP5, M, and N proteins were unsuccessful (Snijder et al. 1999; Wieringa et al. 

2004). This suggests that, besides the GP5, M, and N proteins, there must be additional 

factors involved in EAV particle formation. For instance, EAV particle formation may 

depend on pre-formation of the nucleocapsid which constitutes of the N protein and the 

viral genomic RNA; if the icosahedral nucleocapsid containing viral genomic RNA is not 

formed, the subsequent steps of EAV assembly will not take place.  

How the EAV N protein interacts with viral genomic RNA to form the icosahedral 

nucleocapsid remains unknown. Is the EAV N protein the sole protein required to form 

the icosahedral nuclocapsid or does the formation of icosahedral nucleocapsids need the 

assistance of other viral or cellular proteins? How many copies of the EAV N protein are 
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needed to form the nucleocapsid? Is the EAV nucleocapsid assembly a concerted 

assembly or a sequential assembly? In a concerted assembly, the structural units of the 

protein shell assemble productively only in association with the viral genome. In the 

alternative sequential assembly, the viral genome is inserted into a preformed protein 

shell. In EAV-infected cells, there are many forms of RNAs, e.g. full-length (+) and (-) 

viral genomic RNAs, (+) and (-) viral sg mRNAs, and cellular RNAs.  But only full-

length (+) viral genomic RNA is selectively packaged into the EAV virion (Molenkamp 

et al. 2000). How does the EAV N protein distinguish (+) viral genomic RNA from other 

forms of RNAs? The RNA sequences required for encapsidation of the EAV genome 

have not yet been determined. What parts of the EAV N protein recognize the RNA-

packaging sequences? All of these questions remain to be answered. 

How does the EAV nucleocapsid acquire an envelope? As mentioned above, the 

EAV N, GP5, and M proteins are the only structural proteins required for the production 

of viral particles (Wieringa et al. 2004).  It is generally thought that the disulfide-linked 

GP5/M heterodimers constitute the basic protein matrix of the envelope (de Vries et al. 

1995b) and are a prerequisite for virus assembly (Snijder et al. 2003). When expressed 

individually, EAV GP5 and M proteins were observed to be retained only in the 

endoplasmic reticulum (ER); in contrast, when co-expressed, the M protein localized 

both in ER and the Golgi complex and the GP5 protein consistently colocalized with the 

M protein in the Golgi complex (Balasuriya et al. 2000). The authors concluded that 

transport of EAV GP5 and M proteins from ER to the Golgi complex is dependent upon 

the formation of a GP5-M heterodimer (Balasuriya et al. 2000). Snijder et al. (2003) 

further confirmed this conclusion with their observation that mutations of Cys residues in 

GP5 or M, which would block GP5-M heterodimer formation, abrogated the transport of 

both GP5 and M to the Golgi complex and resulted in the accumulation of both proteins 

in the ER with no infectious virus produced. The authors assumed that the GP5/M 

heterodimers are a prerequisite for virus assembly, which obviously needs to be 

confirmed. Actually this can be easily affirmed by investigating whether mutations 

blocking GP5-M heterodimerization will also abrogate the virus particle formation. The 

above data also suggested that the heterodimerization of GP5 and M proteins occur in the 

ER. The luminal (ecto-) domains of GP5 and M proteins form a disulfide linkage 
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between GP5 Cys-34 and M Cys-8 (Snijder et al. 2003). The cytoplasmically exposed 

domains of the disulfide-bonded GP5/M heterodimers may interact with the synthesized 

nucleocapsid. Thus, the EAV nucleocapsids bud into the lumen of ER or Golgi network 

and acquire lipid membrane carrying viral envelope proteins. Since the EAV E, GP2b, 

GP3, and GP4 proteins are also integral membrane proteins and are anchored to the lipid 

membrane of ER or Golgi complex, the EAV nucleocapsids also acquire these envelope 

proteins when budding into the lumen. However, the formation of GP2b/GP4/GP3 

heterotrimers is not simple. In EAV-infected cells, the GP2b protein occurs in four 

monomeric conformations due to the formation of different intrachain disulfide bonds 

between the cysteine residues (Cys 48, 102, 137), and a disulfide-linked dimer (de Vries 

et al. 1995a; Wieringa et al. 2003a; 2003b). The disulfide-linked dimer, previously 

identified as homodimer of the GP2b protein (de Vries et al. 1995a), has been redefined 

as a covalently linked heterodimer of GP2b and GP4 (Wieringa et al. 2003a). In EAV-

infected cells, no disulfide-bonded GP2b/GP3/GP4 heterotrimers could be detected, 

despite the fact that such heterotrimers occur in the EAV virion (Wieringa et al. 2003a). 

It is speculated that the formation of disulfide-bonded GP2b/GP3/GP4 heterotrimers 

involves two disulfide-bond linkages: the disulfide bond between GP2b and GP4 and the 

disulfide bond between GP4 and GP3. It is known that GP2b Cys-102 is responsible for 

the disulfide bond linkage with GP4 (Wieringa et al. 2003b). However, it is still unknown 

which cysteine residue in GP4 interacts with Cys-102 of GP2b. Likewise, the cysteine 

residues that are involved in the disulfide bond formation between GP4 and GP3 remain 

undefined. So, what is the process of the formation of disulfide-bonded GP2b/GP4/GP3 

heterotrimers in the virion? It has been postulated that the GP2b protein and the GP4 

protein first form a covalently linked heterodimer, then GP3 protein interacts 

noncovalently with the disulfide-bonded GP2b/GP4 heterodimer and the complex is 

finally assembled into the virion, but disulfide bond linkage between GP2b/GP4 and GP3 

takes place only after virus particles have been released (Wieringa et al. 2003a; 2003b). 

Also, it has been recently found that, when one of the GP2b, GP3, or GP4 proteins was 

missing, incorporation of the remaining two minor envelope proteins was completely 

blocked and incorporation of the E protein was greatly reduced (Wieringa et al. 2004). 

The absence of E protein entirely prevented incorporation of the GP2b, GP3, and GP4 
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proteins into the virion (Wieringa et al. 2004). The detailed molecular interactions 

between EAV structural proteins are unclear. Wieringa et al. (2004) proposed a model to 

describe the interactions between EAV structural proteins. In this model, the E protein is 

thought to be the component which, on the one hand interacts with the GP2b/GP4/GP3 

heterotrimer, and on the other hand interacts with the GP5/M heterodimer and/or the 

nucleocaspid. It is through these interactions that the E protein draws the GP2b/GP4/GP3 

complex into nascent particles.  

After the EAV nucleocapsids bud into the lumen of ER or Golgi complex and 

acquire a lipid membrane carrying viral envelope proteins, virus particles are formed. 

Then the virus particles are transported from the intracellular compartments to the plasma 

membrane where the virus particles are released via exocytosis. After the virus particles 

are released, the noncovalent linkage between the GP3 protein and the GP2b/GP4 

heterodimer become covalently linked; thus, the disulfide-bonded GP2b/GP4/GP3 

heterotrimers are formed.  

4. Neutralization determinants of equine arteritis virus 

Long-lived EAV-neutralizing antibodies are induced following natural infection, 

experimental infection or vaccination (with the modified live virus vaccine) of horses 

(Timoney and McCollum 1993), and neutralizing antibodies can protect horses from 

subsequent challenge with EAV (Doll et al. 1968; McCollum 1970, 1976, 1986; 

McCollum et al. 1988). Identification and characterization of immunogenic epitopes has 

important implications for disease diagnosis and development of improved vaccines. 

Neutralizing monoclonal antibodies to EAV have been developed by several laboratories, 

and all of them have been shown to recognize the GP5 protein using Western blot and/or 

immunoprecipitation assays (Balasuriya et al. 1993; 1995b; 1997; Deregt  et al. 1994; 

Glaser et al. 1995). The hydropathy profile of the GP5 protein predicts that amino acid 

residues 1-18 constitute the putative signal sequence, 19-116 constitute the hydrophilic 

ectodomain of the protein, while the C-terminal half consists of three membrane-

spanning domains followed by an endodomain of about 64 amino acids (de Vries et al. 

1992; Snijder et al. 2003).  Chirnside et al. (1995) have shown that horses developed 

EAV-neutralizing antibodies after they were inoculated with either a fusion protein 

covering GP5 aa 55-98 or a synthetic peptide corresponding to GP5 aa 75-97. It was 
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further demonstrated that an E. coli-expressed recombinant protein comprising the entire 

ectodomain (aa 18-122) of EAV GP5 protein induced high levels of neutralizing 

antibodies in ponies (Castillo-Olivares et al. 2001). These support the hypothesis that the 

ectodomain (aa 19-116) of EAV GP5 protein is immunodominant. By comparing the 

sequences of neutralization-sensitive EAV and neutralization-resistant viruses (escape 

mutants, EM), Glaser et al. (1995) identified that amino acid residues at 99 and 100 are 

critical for virus neutralization. After extensive comparison of GP5 amino acid sequences 

and neutralization phenotypes of a large number of field and laboratory EAV strains 

using both neutralizing MAbs and EAV strain-specific polyclonal equine antisera, 

Balasuriya et al. (1993; 1995b; 1997) have identified four distinct neutralization sites. 

These sites include amino acids 49 (site A), 61 (site B), 67-90 (site C), and 99-106 (site D) 

in the GP5 protein. In a recent study, the ORF5 of an infectious EAV clone was replaced 

with that of different laboratory, field, and vaccine strains of EAV, thus generating 

various chimeric viruses (Balasuriya et al. 2004b). The comparative characterization of 

neutralization phenotypes of chimeric viruses and parental viruses has further confirmed 

the importance of the aforementioned four neutralization sites in the GP5 protein. Taken 

together, these studies demonstrated that the ectodomain of the GP5 protein contains 

EAV neutralization determinants. Site D includes several overlapping linear epitopes. 

The four neutralization sites (A-D) are conformationally interactive (Balasuriya et al. 

1997; 2004b). However, it was also observed that a monoclonal antibody (1H7) failed to 

neutralize some chimeric viruses but was able to neutralize their respective parental 

viruses, though chimeric viruses and parental viruses have the same ORF5 sequences 

(Balasuriya et al. 2004b). This suggests that some of the neutralization epitopes are 

conformationally dependent and may interact with other structural proteins. Moreover, it 

remains to be determined whether there exist additional neutralization determinants in the 

EAV GP5 protein. The ectodomain of the EAV GP5 protein possesses one or two N-

glycosylation sites: Asn-56 is the conserved N-glycosylation site amongst all strains of 

EAV and Asn-81 is another potential N-glycosylation site occurring in some field and 

laboratory strains of EAV. There is no evidence that the presence of a second 

glycosylation site on EAV GP5 protein interferes with virus neutralization. In the case of 

EAV, all of the neutralization determinants identified thus far are located in the GP5 
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protein; however, neutralization determinants have been found in both the GP4 and GP5 

proteins of PRRSV. Monoclonal antibodies against the GP4 protein of the Lelystad strain 

of PRRSV have been reported to be neutralizing (Meulenberg et al. 1997), although 

MAbs against the GP5 protein of PRRSV are more effective in virus neutralization than 

MAbs against the GP4 protein (Weiland et al. 1999). The primary neutralization 

determinants of PRRSV are located in the middle of the GP5 ectodomain (Pirzadeh and 

Dea 1997; Plagemann et al. 2002; Zhang et al. 1998), but a neutralization epitope (aa 24) 

has also been observed in the predicted signal sequence of the GP5 protein of PRRSV 

(Wissink et al. 2003).  

5. Genetic and phenotypic diversity of equine arteritis virus 

The virus-encoded RNA-dependent RNA polymerases (RdRp) are low fidelity 

enzymes with mutation rates as high as the order of 10-3 to 10-5 errors per nucleotide per 

replication cycle (Domingo and Holland 1997; Drake 1993). In addition, RNA viruses 

have very short replication times and generate very large populations during replication. 

Therefore, RNA viruses exist not as a single genotype but rather as a heterogeneous 

mixture of related genomes known as a viral quasi-species (Holland et al. 1992). The 

quasi-species nature of RNA viruses allows viruses to adapt to environmental changes 

more rapidly and facilitates the emergence of viral variants (Castro et al. 2005). Genetic 

and phenotypic variation among equine arteritis virus isolates have been demonstrated, 

although only one neutralization serotype of EAV has been identified so far (Fukunaga 

and McCollum 1977; Golnik et al. 1986). Murphy et al. (1988; 1992) first demonstrated 

that genomic variation exists among EAV isolates using RNase T1 oligonucleotide 

fingerprinting. Nucelotide sequence comparison of ten EAV isolates revealed that the 

leader sequence identity between different isolates and the Bucyrus reference strain 

ranged from 94.2 to 98.5% (Kheyar et al. 1998). In the case of the replicase gene, the 

nsp2 is highly variable among field isolates of EAV (Balasuriya et al. 2004a). Most 

studies of genetic variation of EAV have focused on structural proteins. Nucleotide and 

amino acid comparison of various EAV isolates in ORFs 2-7 have been performed 

(Archambault et al. 1997; Balasuriya et al. 1995a; 2004a; Chirnside et al. 1994; Hedges 

et al. 1996; 2001; Larsen et al. 2001; Lepage et al. 1996; St-Laurent et al. 1997; Stadejek 

et al. 1999). These studies revealed that the EAV M and N proteins are more conserved 
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than other structural proteins, the ORF4 and ORF2 protein sequences are moderately 

conserved, and the ORF3 and ORF5 protein sequences are most variable. Phylogenetic 

analysis of EAV ORF5 sequences have suggested classification of various EAV isolates 

into two large groups: North American group (group I) and European group (group II) 

(Balasuriya et al. 1995a; Stadejek et al. 1999). The geographic origin of the viruses 

(where the viruses were isolated) may be different from phylogenetically predicted 

relationships. For example, some of the EAV strains were isolated from horses in North 

America, but are grouped with European isolates according to phylogenetic analysis, 

suggesting dispersal of the virus between continents by movement of horeses. Therefore, 

phylogenetic analyses of ORF5 sequences between strains are a useful molecular 

epidemiological tool for tracing the origin of an EAV isolate. 

As mentioned above, there is only one serotype of EAV (Fukunaga and McCollum 

1977; Golnik et al. 1986) and all strains evaluated thus far are neutralized by polyclonal 

equine sera raised against the virulent Bucyrus strain of EAV (Balasuriya and 

MacLachlan 2004c). However, EAV strains frequently exhibit neutralization phenotypic 

differences; e.g., different EAV strains are neutralized to various degrees with different 

polyclonal antisera and monoclonal antibodies (Balasuriya et al. 1997; 2004a; 2004b; 

Hedges et al. 1999a). In addition, geographically and temporally distinct EAV isolates 

vary markedly in the severity of the clinical disease they induce and in their abortigenic 

potentials (Balasuriya et al. 1998; 1999b; Balasuriya and MacLachlan 2004c; McCollum 

and Timoney 1999; Timoney and McCollum 1993). For example, the virulence of some 

EAV strains for horses have been defined: severely virulent (VBS53 and ATCC EAV), 

moderately virulent (KY84, CAN86, AZ87, and IL93), mildly virulent (SWZ64, AUT68, 

IL94, and CA97), and putatively avirulent (KY63, PA76, KY77, CA95G, and ARVAC 

vaccine) strains of EAV (MacLachlan et al. 1996; McCollum 1981; McCollum and 

Timoney 1984; McCollum et al. 1995; McCollum and Timoney 1999; Moore et al. 

2003b; Patton et al. 1999; Timoney and McCollum 1993). However, the genetic 

determinants of viral virulence have not yet been defined. 
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III. EAV INFECTION AND PERSISTENTLY INFECTED STALLIONS 

Natural EAV infection occurs in both horses and donkeys, and the virus is 

distributed in many equid populations throughout the world (McCollum et al. 1995; 

Timoney and McCollum 1993). Most EAV infections are subclinical in nature; 

occasionally, infection results in a respiratory type syndrome, abortion in pregnant mares, 

and interstitial pneumonia or pneumonoenteritis in young foals (Timoney and McCollum 

1993; 1996). Up to 30% to 70% of stallions infected with EAV can subsequently become 

persistently infected and constantly shed the virus in semen. On the other hand, neither 

mares, geldings, nor foals have been shown to become carriers of the virus (Timoney and 

McCollum 1993). 

1. Modes of transmission  

The two major routes of EAV transmission between horses are the respiratory and 

venereal routes (Timoney and McCollum 1993). During the acute phase of the infection, 

virus is shed significant amounts in the respiratory tract secretions and transmission to 

other susceptible horses occurs through aerosolized respiratory tract secretions (Timoney 

and McCollum 1993). Acutely infected horses also shed virus in their urine, feces, 

vaginal and other body secretions, although in smaller amounts than via the respiratory 

tract (McCollum et al. 1971; Timoney and McCollum 1993).  EAV can also be found in 

aborted fetuses, placenta, and their membranes and fluids from a mare that has aborted as 

a result of EAV infection (Timoney and McCollum 1993). These sources of virus may 

also contribute to aerosol transmission of EAV to other horses. Aerosol transmission of 

infectious particles is the most important and primary route of EAV dissemination during 

outbreak of the disease. However, it should be emphasized that direct and close contact 

appears to be necessary for aerosol transmission of EAV (Collins et al. 1987; Timoney 

1988). Venereal transmission is another important route of dissemination of EAV. The 

virus can be transmitted venereally not only by the acutely infected mare and stallion, but 

also by persistently infected stallions (Timoney et al. 1986; 1987). Approximately 85 to 

100% of seronegative mares become infected when they are bred to persistenlty infected 

stallions or artificially inseminated with infective semen from these carrier animals 

(Timoney and McCollum 1993). The infected mares can in turn transmit the virus to 

susceptible horses via the respiratory route. Reciprocal venereal transmission from an 
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acutely infected mare to a seronegative stallion, though plausible, has not been 

documented. Carrier stallions are believed to be the natural reservoir of EAV and are 

responsible for perpetuation and dissemination of EAV in equine populations (Timoney 

et al. 1987; Timoney and McCollum 1993).   

Besides the two aforementioned major routes of transmission, EAV can also be 

transmitted less commonly by other means. For example, the foal can congenitally 

acquire EAV infection through transplacental transmission when a pregnant mare is 

exposed to the virus in late gestation (Vaala et al. 1992). In this case, infected foals may 

develop rapidly progressive fulminating interstitial pneumonia and in some cases, also a 

fibronecrotic enteritis (Carman et al. 1988; Del Piero et al. 1997; Vaala et al. 1992; 

Wilkins et al. 1995). Transmission of EAV through indirect contact with virus- 

contaminated fomites or by an infected teaser stallion or nurse mare may also occur 

infrequently (Timoney and McCollum 1996). 

2. Carrier state 

A. General information 

As early as the latter half of the nineteeth century, it had been observed that healthy 

stallions could transmit so called pink-eye or influenza disease, which very likely was 

equine viral arteritis, to mares at breeding (Clark 1892; Pottie 1888). At that time, it was 

postulated that the causative agent is shed in the semen of those healthy stallions (Clark 

1892; Pottie 1888). These are the earliest reports of occurrence of an ‘EAV’ carrier state. 

However, not until the 1984 epizootic of equine viral arteritis in Kentucky was the EAV 

carrier state extensively studied by Timoney and McCollum (Timoney et al. 1986; 1987). 

After natural infection with EAV, up to 30% to 70% of stallions can become persistently 

infected with the virus (Timoney and McCollum 1993). Persistently infected stallions 

shed EAV constantly in their semen; virus has not been detected in their urine, blood, or 

nasopharyngeal secretions (Timoney and McCollum 1993). Equine arteritis virus appears 

to be restricted to the reproductive tract of carrier stallions, and the ampulla of the vas 

deferens seems to be the primary site of EAV persistence (Neu et al. 1987; Timoney and 

McCollum 1993). Virus is present in the sperm-rich fraction of the ejaculate and is not 

detected in the preejaculatory fluids (Timoney et al. 1987). There appears to be little 

variation of virus titer among semen samples sequentially collected from the same 
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stallion over time. Duration of the carrier state varies and it has been arbitrarily divided 

into three categories: short-term or convalescent carrier state lasting several weeks; 

intermediate carrier state lasting 3 to 7 months; and the long-term or chronic carrier state 

lasting for years and even the lifetime of particular stallions (Timoney et al. 1986; 

Timoney and McCollum 1993). It has also been observed that some carrier stallions 

spontaneously cease to shed virus after years of persistent infection, with no indication of 

reversion to a shedding state later on (Timoney and McCollum 1993). A longitudinal 

field study provided no evidence that carrier stallions are or can become intermittent 

shedders of the virus (Timoney et al. 1991) .  

B. The mechanisms of EAV persistence in carrier stallions 

The detailed mechanisms of virus persistence in the host have not been clearly 

understood. It has been proposed that viral persistence maybe involves two essential 

ingredients: an ineffectual immune response, and a unique component or strategy of viral 

replication (de la Torre et al. 1991; Oldstone 1989, 1991). EAV persistence in carrier 

stallions may also involve the factors in these two aspects.  

In carrier stallions, EAV persists exclusively in the reproductive tract and not in 

other sites. It seems unlikely that the EAV has obtained a restricted tropism to the 

reproductive tract of stallions, since EAV in the reproductive tract of carrier stallions can 

be venereally transmitted to susceptible mares in which the virus has an apparent wide 

tissue distribution (McCollum et al. 1988; Timoney et al. 1987). It seems more likely that 

the immune effectors have eliminated EAV from other sites but have failed to eliminate 

the virus from reproductive tract of carrier stallions. The observation that carrier stallions 

usually have moderate to high titers of serum neutralizing antibody to EAV (Timoney 

and McCollum 1993) further support the conclusion that humoral immunity does not 

prevent establishment or maintenance of persistent EAV infection in the reproductive 

tract of stallions. How the virus in the reproductive tract of carrier stallions evades 

immune clearance by neutralizing antibodies is unknown. It seems unlikely that immune 

escape mutants of virus play a significant role, because the emerging virus variants in 

carrier stallions can still be neutralized by polyclonal neutralizing antibodies (Balasuriya 

and MacLachlan 2004c). Virus persistence may be related to the fact that the 

reproductive tract of mature male is an immunologically priviledged site (Johnson 1973). 
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The physiologic mechanisms responsible for this privileged site are multifactorial, 

develop at puberty, and in some species depend on androgens (Pelletier 1986). Maybe the 

virus in the reproductive tract of stallions is inaccessible to circulating neutralizing 

antibodies or that neutralizing antibodies can only partially downregulate virus 

replication but are inadequate to completely prevent ongoing virus replication. Also, the 

role of cellular immune responses in persistent EAV infection is not known.  

There is convincing evidence that establishment and maintenance of the carrier state 

in the stallion is testosterone-dependent (Little et al. 1991; McCollum et al. 1994). When 

persistently infected stallions were castrated and administered testosterone, they 

continued to shed virus in semen, whereas castrated stallions given a placebo ceased 

shedding virus (Little et al. 1991). Investigation of the persistence of EAV in prepubertal 

and peripubertal colts showed that EAV can replicate in the reproductive tract of a 

significant proportion of colts for a variable period of time after clinical recovery in the 

absence of circulating concentrations of testosterone equivalent to those found in sexually 

mature stallions. However, long-term persistent EAV infection does not appear to occur 

in colts exposed to the virus before the onset of peripubertal development (Holyoak et al. 

1993). The mechanism by which testosterone contributes to the establishment and 

maintenance of the persistent EAV infection in stallions remains undetermined. It is 

speculated that testosterone may be involved in (i) the development of mature 

reproductive tract and (ii) the replication of androgen-dependent cells in the reproductive 

tract of stallions to maintain EAV persistence.   

It remains to be determined whether other host factor(s) or viral factor(s) contribute 

to the establishment and maintenance of persistent EAV infection in stallions. Frequency 

of the carrier state varies between different groups of stallions; however, extensive 

epidemiological study involving Standardbred and Thoroughbred horses failed to 

demonstrate any breed predilection for establishment of persistent EAV infection 

(Timoney et al. 1986; 1987). Analysis of two carrier stallions and a number of their male 

offspring did not demonstrate a significant association between inherited MHC haplotype 

and the carrier state (Albright-Fraser 1998). Moreover, the mechanism accounting for the 

spontaneous clearance of EAV from some carrier stallions is not clear. So far, no fully 

validated therapy (except castration) has been available to eliminate the EAV carrier state 
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in stallions. One group of researchers have investigated the effects of a GnRH antagonist 

on testosterone secretion, spermatogenesis, and viral excretion in EAV carrier stallions, 

but the results were not conclusive (Fortier et al. 2002).  

C. The significance of EAV carrier stallions 

Carrier stallions occupy a significant niche in the epidemiology of EAV infection. 

Carrier stallions are not only a natural reservoir of EAV responsible for maintenance and 

dissemination of EAV in equine populations (Timoney et al. 1987; Timoney and 

McCollum 1993), but also a natural source of genetic and phenotypic diversity of EAV 

(Balasuriya et al. 2004a; Balasuriya and MacLachlan 2004c; Hedges et al. 1999a). 

Equine arteritis virus exists as a quasi-species. It has been observed that EAV 

quasispecies was relatively limited and the virus remained relatively genetically stable 

during horizontal and vertical transmission in the course of an outbreak of EVA  

(Balasuriya et al. 1999a); in contrast, virus quasi-species expanded and genetic and 

phenotypic variants of EAV emerged during persistent infection of stallions (Balasuriya 

et al. 2004a; Hedges et al. 1999a). Therefore, carrier stallions are probably the major 

source of EAV evolution. Some new virus variants generated during the course of 

persistent infection may have significant pathogenic potential and give rise to 

occurrences of EVA.  

 

IV. PERSISTENT INFECTION OF CELL CULTURES WITH RNA VIRUSES 

Viral infection of various hosts result in an acute infection, which is characterized 

by rapid production of infectious virus followed by rapid resolution and clearance of the 

infection by the host, or persistent infection, in which viral particles or viral products 

continue to be produced for long periods of time. The mechanisms employed by different 

viruses for their persistence in vivo vary. One common feature is that the host defense 

systems fail to clear the virus from the host. It is generally thought that both host and 

viral factors may contribute to the establishment and maintenance of persistent infection. 

Persistent viral infections in cell culture are valuable in studying virus-host cell 

interactions and in providing insights into how virus persistence is established and 

maintained. The following is an attempt to summarize persistent infection in cell culture 

by RNA viruses.  
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1. Properties of persistent infection 

Many RNA viruses have been found capable of establishing persistent infection in 

tissue culture cells (Rima and Martin 1976). One virus may establish persistent infections 

in a number of cell lines, e.g. poliovirus is able to establish persistent infections in human 

neuroblastoma cells (Colbere-Garapin et al. 1989), human erythroblastoid K562 cells 

(Lloyd and Bovee 1993), Hep-2 cells (Calvez et al. 1993), and Hela cells. Persistent 

infection in Hela cells was established by cotransfecting the cells with poliovirion type 2 

RNA and R1, an in vitro-synthesized poliovirus subgenomic replicon which contains a 

deletion of nearly all the capsid region (Kaplan et al. 1989). Sindbis virus is able to 

initiate persistent infections in BHK-21 cells (Schwobel and Ahl 1972; Weiss et al. 1980) 

and mouse L cells (Inglot et al. 1973). Persistently infected cell cultures may have 

common properties in some respects, as well as distinct properties in other respects. 

A. Cytopathic effect, virus-positive cells, and production of virus 

Persistently infected cells may or may not exhibit virus-specific cytopathic effect 

despite the fact that they continuously produce infectious virus. For example, CV-1 cells 

persistently infected with human parainfluenza virus-3 (Moscona and Galinski 1990) and 

rhabdomyosarcoma cells persistently infected with coxsackievirus B4 (Frisk et al. 1999) 

continuously produced infectious virus without cellular destruction; however, Hela cells 

persistently infected with human rhinovirus-2 and Hela cells persistently infected with 

poliovirus continually produced low levels of infectious virus and cell cultures underwent 

multiple episodes of partial destruction and subsequent recovery (Gercel et al. 1985; 

Kaplan et al. 1989). The percentage of virus-positive cells varies from one persistent 

system to another. In some persistent systems, the percentage of virus-positive cells even 

undergoes cyclic variation. For instance, in rabies virus/BHK21 cells, the percentage of 

cells showing positive immunofluorescence varied from 5% to 100% in cycles of 6-8 

subcultures (Wiktor and Clark 1972); in human rhinovirus-2/Hela cells, the percentage of 

cells producing infectious centers varied from 0.03% to 23% (Gercel et al. 1985). Most 

of the persistently infected cells continuously produce small amounts of infectious virus. 

In measles virus/Hela cells, the yield of cell-associated virus was high and similar to that 

in lytic infections, whereas the yield of released (extracellular) virus was very small 

(Rustigian 1966a). In mumps virus/conjunctiva cells, the yield of cell-associated virus 
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was consistently about one log unit lower than that of released virus (Walker and Hinze 

1962). The amount of released virus may show cyclic variation coinciding with variation 

in the appearance of CPE and cell destruction in some persistent systems such as Sindbis 

virus/BHK-21 cells (Schwobel and Ahl 1972), Sindbis virus/mouse L cells (Inglot et al. 

1973), lymphocytic choriomeningitis virus (LCMV)/BHK-21 cells (Staneck et al. 1972), 

rabies virus/BHK-21 cells (Kawai et al. 1975; Wiktor and Clark 1972) and so on. 

Occasionally persistently infected cells may stop producing infectious virus after long-

term subculturing. For example, during routine subcultivation of Hela cells persistently 

infected with human rhinovirus-2, some spontaneous cures were observed (Gercel et al. 

1985). In spontaneously cured cells, no extracellular virus or infectious centers could be 

detected and no viral antigen could be detected by immunofluorescence (Gercel et al. 

1985). Whether these cells were free of viral RNA was not reported.     

B. Effect of antibodies and anti-viral compounds 

Addition of virus-specific antibodies or anti-viral compounds to the media of 

persistently infected cells may result in distinct outcomes: non-cured or cured. It has been 

shown that cloning or subculture of measles virus/Hela cells in the presence of anti-

measles serum in the culture medium led to a state in which no infectious virus was 

released (non-yielder state), whereas the large majority of these cells were still 

immunofluorescence positive (Rustigian 1966b), indicating the existence of viral antigen. 

When human influenza C virus/MDCK cells (Goshima and Maeno 1989) or 

poliovirus/human erythroblastoid K562 cells (Lloyd and Bovee 1993) were subcultured 

with growth medium containing virus-neutralizing antibodies for several continuous 

passages, extracellular virus became undetectable. However, further passage in the 

absence of antiserum resulted in the return of infectious virus yield. Similarly, addition of 

the antiviral compound disoxaril did not cure rhabdomyosarcoma cells persistently 

infected with coxsackievirus B4 (Frisk et al. 1999). In contrast, it was observed that three 

serial subcultivations of human rhinovirus-2/Hela cells in the presence of antiserum 

resulted in a cure (no extracellular virus or infectious centers or viral antigens could be 

detected) (Gercel et al. 1985). In addition, after removal of antiserum, no renewed virus 

production or viral antigen expression could be detected upon 12 further passages (Gercel 

et al. 1985), indicating that the persistently infected cells were cured. Similarly, it has 
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been reported that mouse L cells persistently infected with reovirus can be cured by 

antireovirus serum (Ahmed et al. 1981). It was also found that anti-viral compound 

ribavirin was able to eliminate foot-and-mouth disease virus (FMDV) from persistently 

infected BHK-21 cells (de la Torre et al. 1987). In ribavirin-cured cultures, no FMDV 

RNA or antigens were detected by dot-blot hybridization to cDNA probes or by indirect 

immunofluorescence, respectively. No renewed FMDV production occurred after the 

cells underwent at least 20 serial passages in the absence of ribavirin (de la Torre et al. 

1987). Curing of FMDV from persistently infected cells by ribavirin involves ribavirin’s 

ability to enhance mutagenesis (Airaksinen et al. 2003). RNA viruses replicate with a 

high spontaneous mutation frequency which is near the error threshold for maintenance 

of genetic information. When the mutation rate of the viral genome increases and exceeds 

this error threshold, the viral fitness decreases significantly and the virus may fall into 

error catastrophe or lethal mutagenesis leading to virus extinction (Castro et al. 2005; 

Domingo et al. 2005; Manrubia et al. 2005). Ribavirin is an RNA virus mutagen which 

can increase mutation frequency during virus replication and increase in mutation 

frequency may drive RNA viruses to error catastrophe leading to extinction of viruses 

(Crotty et al. 2000; 2001; 2002; Pariente et al. 2003).  

C. Resistance to superinfection 

Another interesting property of persistently infected cells is that they are immune to 

superinfection with homologous virus but are still susceptible to infection with 

heterologous viruses. In an investigation of human rhinovirus-2 (HRV-2)/Hela cells to 

superinfection, normal Hela cells infected with homologous viruses (HRV-2, HRV-2 TS-

1 mutant, and HRV-4) or heterologous viruses (poliovirus type 2 and vesicular stomatitis 

virus (VSV)), HRV-2/Hela cells superinfected with the same homologous or 

heterologous viruses, and HRV-2/Hela cells not superinfected with any virus were 

compared (Gercel et al. 1985). It was found that the cytopathic effects and virus yields in 

HRV-2/Hela cells superinfected with HRV-2, TS-1 mutant, and HRV-4 were similar to 

those produced in HRV-2/Hela cells alone (not superinfected) but were less pronounced 

than those produced in normal Hela cells infected with the respective virus. In contrast, 

virus yields in HRV-2/Hela cells superinfected with poliovirus type 2 or VSV were 

comparable to those obtained in normal Hela cells infected with respective virus (Gercel 
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et al. 1985). Both yielder (with production of infectious virus) and non-yielder (with no 

production of infectious virus but with existence of viral antigen) measles virus/Hela cells 

were shown to be resistant to superinfection with measles virus, but these cells supported 

normal growth of vaccinia virus, herpes virus and poliovirus (Rustigian 1966a). Similarly, 

Sindbis virus/mouse L cells were found to be resistant to superinfection with Sindbis 

virus but not with VSV or encephalomyocarditis virus (Inglot et al. 1973). LCMV/BHK-

21 cells were resistant to superinfection with homologous arenaviruses but not with 

dengue virus, rubella virus, Sindbis virus, and VSV (Staneck et al. 1972). Rabies 

virus/BHK-21 cells were resistant to superinfection with rabies virus but not with VSV 

(Kawai et al.  1975). FMDV/BHK-21 cells were resistant to superinfection with FMDV 

but not with encephalomyocarditis virus, VSV, and Semliki Forest virus (de la Torre et al. 

1985). Poliovirus/human neuroblastoma IMR-32 cells were resistant to superinfection 

with Sabin 1, 2, and 3 poliovirus but sensitive to another enterovirus coxsackievirus B3 

(Colbere-Garapin et al. 1989). Above examples uniformly demonstrated that all 

persistently infected cells are resistant to superinfection with the same virus that was used 

to initiate the persistent infection. The mechanism by which persistently infected cells are 

resistant to superinfection with homologous viruses but are sensitive to heterologous 

virus infection is not clear. It is speculated that it may be associated with virus-specific 

cell receptors or the production level of interferon: i) interference at one of the early steps 

of virus growth cycle (e.g. attachment, penetration, or uncoating) is probably involved in 

the resistance of persistently infected cells to superinfection by the homologous virus; ii) 

in contrast, cell receptors of ‘heterologous’ viruses are distinctly different from that of 

homologous virus, thus there are no such interferences with heterologous virus infection; 

lack or low levels of interferon produced in these persistently infected cells may also 

contribute to the growth of heterologous virus in carrier cultures. 

D. Evolution of viruses and cells 

A number of studies have shown that the viruses recovered from persistently 

infected cells are genetically and phenotypically different from the parental viruses which 

were used to establish the persistent infections. Temperature-sensitive (ts) virus mutants 

were isolated from mouse L cells persistently infected with Newcastle disease virus 

(Preble and Youngner 1972, 1973a, 1973b) and mouse L cells persistently infected with 
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VSV (Youngner et al. 1976). The production of defective interfering (DI) viral particles 

was reported in mouse L cells persistently infected with LCMV (Lehmann-Grube et al. 

1969; Welsh et al. 1972) and BHK-21 cells persistently infected with Parana virus 

(Staneck and Peau 1974). Defective interfering viral RNA has also been detected in Vero 

cells persistently infected with Murray Valley encephalitis (MVE) virus (Lancaster et al. 

1998). Small plaque virus mutants were observed in BHK-21 cells persistently infected 

with rabies virus (Kawai et al. 1975) and in mouse neuroblastoma cells persistently 

infected with yellow fever 17D virus (Vlaycheva and Chambers 2002). Fusion-defective 

mutants of mouse hepatitis virus A59 were produced in persistently infected primary 

mouse glial cells and the phenotype was probably due to a mutation at the viral spike 

(fusion) protein cleavage signal (Gombold et al. 1993). Genetic and antigenic changes 

have been demonstrated in hepatitis A virus (HAV) variants arising during persistent 

infection of BS-C-1 cells (Lemon et al. 1991). FMDV is able to initiate persistent 

infection in BHK-21 cells (de la Torre et al. 1985) and the virus isolated from persistently 

infected culture (carrier culture) was more cytolytic than parental FMDV for BHK-21 

cells (de la Torre et al. 1988a). Further studies showed that nine amino acid substitutions 

were fixed on the viral capsid protein during persistence and these amino acid 

substitutions resulted in altered antigenicity, as revealed by reactivity with monoclonal 

antibodies (Diez et al. 1990a). Moreover, FMDV became progressively less virulent for 

mice and cattle during the course of persistence in BHK-21 cells (Diez et al. 1990b). 

Virus evolution was also observed in carrier cultures of poliovirus. The poliovirus 

mutants selected from human neuroblastoma IMR-32 cells persistently infected with the 

Sabin strains could reach 1-3 log10 units higher titer in IMR-32 cells than that in non-

neural Hep-2 cells, while parental viruses had similar titers in both cell lines (Colbere-

Garapin et al. 1989). Correlated with this modified cell tropism, the poliovirus mutants 

recovered from carrier culture could establish secondary persistent infection in non-

neural Hep-2 cells (Pelletier et al. 1991). Interestingly, these poliovirus mutants harbor 

major mutations at capsid proteins VP1 and VP2 which are known to be involved in 

interactions between poliovirus and its receptor (Borzakian et al. 1993; Calvez et al. 1993; 

Colbere-Garapin et al. 1989; Duncan et al. 1998; Pavio et al. 1996; Pelletier et al. 1991; 

1998a). Poliovirus type 1 mutants selected from human neuroblastoma cells persistently 
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infected with the wild-type Mahoney strain exhibited neurovirulent phenotype in mice, 

while the wild-type Mahoney strain is avirulent in mice (Couderc et al. 1994). And this 

conversion of mouse-neurovirulent phenotype is caused by several amino acid 

substitutions on the viral capsid protein (Couderc et al. 1993; 1994). 

Coevolution of viruses and the host cells have been observed in mouse L cells 

persistently infected with reovirus (Ahmed et al. 1981), BHK-21 cells persistently 

infected with FMDV (de la Torre et al. 1988a), and Hela cells and human neuroblastoma 

cells persistently infected with poliovirus (Kaplan et al. 1989; Pavio et al. 2000). In the 

study performed by Ahmed et al (1981), persistent infection was established in mouse L 

cells with a reovirus stock, more than 90% of which was made up of defective interfering 

particles. Mutant mouse L cells and reovirus were isolated from carrier cultures. Reovirus 

isolated from carrier culture grew more efficiently than cloned wild-type reovirus in 

mutant L cells, indicating the evolution of viruses during persistent infection. On the 

other hand, infection of mutant L cells with either wild-type reovirus or reovirus isolated 

from carrier cultures led to establishment of persistent infections, while infection of the 

original L cells with either wild-type reovirus or reovirus isolated from carrier cultures 

resulted in a lytic infection with no surviving cells, demonstrating the evolution of the 

host cells during persistent infection. Virus evolution during persistent FMDV infection 

of BHK-21 cells has been discussed above. It has also been observed that BHK-21 cell 

mutants selected during serial passage of the carrier culture were constitutively more 

resistant to the parental FMDV infection than the parental BHK-21 cells (de la Torre et al. 

1988a), indicating the evolution of the host cells during persistent infection. The 

increased resistance of BHK-21 cell mutants to parental FMDV was not due to an 

impairment of attachment, internalization, or uncoating of the viral particles but was 

because of some intracellular block that downregulated FMDV RNA synthesis (de la 

Torre et al. 1988a). Further studies showed that BHK-21 cells evolved and exhibited 

extensive heterogeneity during persistent infection with FMDV (de la Torre et al. 1989). 

Analysis of 248 stable cell clones isolated from FMDV carrier culture revealed that at 

least six distinct cell phenotypes could be distinguished with regard to cell morphology, 

susceptibility to parental FMDV infection, and cell growth characteristics (de la Torre et 

al. 1989). These altered phenotypes were maintained as stable genetic traits. Genetic and 
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phenotypic variation of the host cells enables the selection of cells with increased 

resistance to FMDV and thus contributes to the maintenance of viral persistence (Martin 

Hernandez et al. 1994). During persistent poliovirus infection in Hep-2 cells, the 

evolution and heterogeneity of the host cells have also been reported (Borzakian et al. 

1992). Cell evolution was also observed in other persistent poliovirus infections. After 

passage of poliovirus/Hela cells for 6 months, a stable cell line termed SOFIA emerged 

that no longer produced infectious virus and did not contain viral proteins or viral RNA 

(Kaplan et al. 1989). In SOFIA cells, the poliovirus receptor (PVR) gene did not contain 

gross alteration at DNA level; however, the transcription of PVR-specific RNA was 

reduced. Therefore, it was suggested that resistance of SOFIA cells to poliovirus 

infection appears to result from down-regulation of PVR RNA which leads to lack of 

PVR protein expression at the cell surface (Kaplan and Racaniello 1991). During 

persistent poliovirus infection in human neuroblastoma IMR-32 cells, cells expressing 

mutated poliovirus receptor emerged and the mutations at the N-terminal domain of PVR 

increased the resistance of cells to poliovirus-induced lysis (Pavio et al. 2000). Moreover, 

when the wild-type PVR and mutated PVR were expressed independently in murine LM 

cells which lack the poliovirus receptor gene, it was found that the level of poliovirus-

induced apoptosis was lower in cells expressing mutated PVR which was selected during 

persistent poliovirus infection in IMR-32 cells than in cells expressing the wild-type 

receptor (Gosselin et al. 2003).       

2. Virus-specific factors involved in persistent infection 

Various viral factors could be involved in the establishment and maintenance of 

persistent infection, e.g. temperature-sensitive (ts) viral mutants, defective interfering (DI) 

viral particles, alteration of viral RNA or protein synthesis, and so on.  

A few studies have shown that viruses released from persistently infected cells 

contain ts mutants (Preble and Youngner 1972, 1973a, 1973b; Youngner et al. 1976). 

However, there has been no convincing evidence to demonstrate the role of ts mutants in 

the establishment or maintenance of persistent infection. 

The possible involvement of defective interfering viral particles in some persistent 

infections is based upon: i) the presence of DI particles in the viral preparation used to 

initiate persistent infection; or ii) the presence of DI particles in the medium of 
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persistently infected cells. A number of viruses are usually highly cytolytic in permissive 

cells and within a few days after infection all of the cells die. However, when infected 

with the viral preparation containing DI particles, cells can survive the infection and 

eventually became persistently infected. In 1970s, it was reported that noncytocidal 

persistent infection of BHK-21 cells (Holland and Villarreal 1974) or mouse L cells 

(Youngner et al. 1976) with wild-type VSV particles could be established only in the 

presence of large number of DI particles. During persistent infection, wild-type and DI 

VSV particles were continuously produced accompanied with viral protein changes and 

RNA sequence alterations (Holland and Villarreal 1974; Holland et al. 1976; 1979; 

Rowlands et al. 1980; Semler and Holland 1979; Villarreal and Holland 1976). Similarly, 

in the presence of their respective DI particles, wild-type reovirus, Sindbis virus, and 

Ebola virus establish persistent infections in mouse L cells, BHK-21 cells, and Vero cells, 

respectively (Ahmed et al. 1981; Calain et al. 1999; Weiss et al. 1980). Interestingly, 

when Hela cells were cotransfected with poliovirus type 2 RNA plus R1, an in vitro-

synthesized poliovirus subgenomic replicon which contains a deletion of nearly all the 

capsid region, persistent infection was established, whereas Hela cells transfected only 

with poliovirion RNA all died (Kaplan et al. 1989). The detailed mechanism by which DI 

particles change a lytic infection to a persistent infection is unclear. DI genomes are 

truncated and their replication depends on the replicative enzymes encoded by the helper 

virus. Since DI genomes are usually much smaller than the helper virus genome, they are 

replicated more efficiently. Because of competition of DI RNAs, synthesis of the helper 

virus genome is decreased. It is speculated that the decrease of the helper virus genome 

may result in downregulation of determinants of cell killing which have yet to be 

identified.  

The foregoing discussion of virus evolution during persistent infection would 

suggest that viral factors play an important role in establishment and maintenance of 

persistent infection. The following are several additional examples supporting the 

hypothesis that alteration of viral gene products is involved in persistent infections. It was 

observed that persistence of Japanese encephalitis virus (JEV) in several cell lines 

(murine neuroblastoma N18 cells, Vero cells, and murine astrocytoma DBT cells) was 

associated with expression of truncated viral nonstructural protein 1 (NS1) in host cells 
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(Chen et al. 1996). Sindbis virus is highly cytopathic in BHK-21 cells and establishment 

of persistent infection with wild-type Sindbis virus needed the presence of high 

concentration of DI particles (Weiss et al. 1980). However, Sindbis virus mutants (free of 

DI particles) isolated from the carrier culture were able to establish secondary persistent 

infection in BHK-21 cells. Through reverse genetics studies, it was found that a single 

coding mutation in the nsP2 gene (a predicted change of Pro-726? Ser) was responsible 

for the ability of mutated virus to establish persistent infection in BHK-21 cells (Dryga et 

al. 1997). It has been suggested that persistence of VSV mutants on fibroblast cells is 

associated with shutoff levels of cellular gene expression which may be determined by 

the VSV matrix protein (Desforges et al. 2001). Poliovirus mutants selected in the 

persistently infected human neuroblastoma cells initiated by either the Sabin 1 strain or 

the type 3 wild-type Leon strain can establish secondary persistent infection in non-neural 

Hep-2 cells, while both the Sabin 1 strain and the type 3 wild-type Leon strain cause a 

lytic infection in Hep-2 cells (Duncan et al. 1998; Pelletier et al. 1991). Further studies 

have shown that several amino acid residues in capsid proteins VP1 and VP2 are the viral 

determinants which control whether the outcome of an infection in Hep-2 cells is a lytic 

infection or a persistent infection (Borzakian et al. 1993; Calvez et al. 1993; Duncan et al. 

1998; Pelletier et al. 1998a). It was proposed (Duncan et al. 1998) that these viral 

determinants may affect the early steps of the virus life cycle such as virus attachment 

and the receptor-mediated conformational changes which are believed to be necessary for 

viral penetration and uncoating. Modification of these steps could be the mechanism by 

which poliovirus mutants are able to establish persistent infection in Hep-2 cells. It has 

also been reported that a single amino acid change (Phe-260? Leu) in viral glycoprotein 

markedly increased the capacity of lymphocytic choriomeningitis virus to persist in adult 

mice (Matloubian et al. 1990).    

3. Host-specific factors involved in persistent infection 

Various host factors such as host cell type, host cell mutants, host cell 

differentiation stage, production level of interferon and so on may be involved in the 

establishment and maintenance of persistent viral infection.  

Many viruses show marked differences in interaction with various types of host 

cells. For example, Newcastle disease virus (NDV) infection in BHK-21 cells led to large 
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amounts of fusion of the cells with production of infectious virus; in NDV-infected Hep-

2 cells, less cell fusion was observed; while in NDV-inoculated mouse L cells, no 

apparent cell fusion was observed and a persistent infection was established (Hecht and 

Summers 1974; Poste et al. 1972). Mouse cells are not susceptible to echovirus 1 (EV-1) 

infection since they lack the viral receptor, human VLA-2. By transforming mouse L 

cells and 3T3 cells with cDNAs of human VLA-2, stable mouse L cell and 3T3 cell 

transformants that express human VLA-2 were obtained. Upon infection with EV-1, 

cytopathic effect developed on mouse L cell transformants but not on 3T3 cell 

transformants and a persistent infection was established on 3T3 cell transformants (Zhang 

and Racaniello 1997). The study also revealed that receptor down-regulation is not 

involved in the establishment of persistent infection (Zhang and Racaniello 1997).  

 The contribution of host cell mutants to the maintenance of persistent infection has 

been addressed in discussion of cell evolution during persistent infection. 

Effects of the state of cell differentiation on viral infection have been documented. 

Human erythroleukemia K562 cells can differentiate into several cell lineages. Four cell 

strains were analyzed for their responses to poliovirus infection (Benton et al. 1995). 

Poliovirus readily establishes persistent infections in K562-Mu cells and K562-ATCC 

cells, while the majority of K562-KI cells and K562-We cells were killed after poliovirus 

infection (Benton et al. 1995). Surface poliovirus receptor levels are similar in all K562 

cell strains and there are no significant differences in viral RNA and protein synthesis 

between these cell strains. It was proposed that some host factors related to virus-

mediated cytopathology may be responsible for the observed phenomenon (Benton et al. 

1995). Further studies showed that after hemin-induced differentiation, poliovirus 

infection of K562-Mu cells became cytolytic rather than leading to persistent infection 

(Benton et al. 1996), demonstrating the influence of cell differentiation on the outcome of 

virus infection. It is speculated that hemin treatment alters the expression of specific host 

proteins in K562-Mu cells, which changes their response to poliovirus infection from 

persistent to lytic (Benton et al. 1996). In addition, it has been observed that upon 

poliovirus infection, well differentiated human blood cell lines develop CPE more rapidly 

than less differentiated cell lines (Okada et al. 1987).  
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In some persistent infections, such as Newcastle disease virus/mouse L cells 

(Thacore and Youngner 1969) and human influenza C virus/MDCK cells (Goshima and 

Maeno 1989), low levels of interferon were detected. However it is unclear whether 

interferon plays a role in the maintenance of persistent infection in these cells. In most 

persistent viral infections, such as measles virus/Hela cells (Rustigian 1966a), mumps 

virus/conjunctiva cells (Walker and Hinze 1962), human rhinovirus-2/Hela cells (Gercel 

et al. 1985), and poliovirus/human neuroblastoma IMR-32 cells (Colbere-Garapin et al. 

1989), interferon was below detectable levels. It would appear therefore, that interferon 

does not play a significant role in establishment and maintenance of persistent infection.   

 

V. RESEARCH OBJECTIVES OF THIS DISSERTATION  

As discussed previously, neither a virus attachment molecule nor a specific cell 

receptor has been identified for EAV. The early steps (e.g. attachment, penetration, and 

uncoating) of the EAV infection cycle have not been elucidated. A major goal of this 

study is to identify and characterize the cell receptor(s) involved in EAV attachment to 

and entry into cells. However, identification of the cellular receptor(s) used by EAV for 

attachment and entry has been hampered by the unavailability of a cell line that lacks the 

appropriate EAV receptor(s). Identification of EAV non-permissive cell lines in which 

EAV infection is restricted at different steps in its replication and comparison of these 

non-permissive cell lines with permissive cell lines should help to identify the cellular 

factor(s) that are involved in EAV infection. The specific objective of this research is to 

evaluate a variety of cell lines for their permissiveness to EAV infection and then identify 

the mechanism that restricts EAV infection. To achieve this objective, two hypotheses 

and aims are proposed.  

Hypothesis 1: Within selected cell lines (RK-13, BHK-21, C2C12, Hela, Hep-2, 

and L-M), some cell lines are permissive to VBS53 EAV infection and some cell lines 

are non-permissive to VBS53 EAV infection. 

Aim 1: to test the permissiveness of various cell lines to EAV infection by one-step 

growth of the virus in these cell lines as well as by indirect immunofluorescence assay 

using EAV-specific monoclonal antibodies.  
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Hypothesis 2: In non-permissive cell lines, EAV infection is restricted at certain 

step(s) of the virus life cycle.  

Aim 2: to determine whether restriction of EAV infection in non-permissive cell 

lines is due to a block at the virus attachment step, a block at the cell entry step, or an 

intracellular block.  

After EAV infection, up to 30% to 70% of stallions can subsequently become 

persistently infected. The detailed mechanism by which EAV establishes persistent 

infection in stallions is unknown. Carrier stallions are not only a natural reservoir of EAV 

responsible for maintenance and dissemination of EAV in equine populations, but also a 

natural source of genetic and phenotypic diversity of EAV. Persistent viral infections in 

cell culture have been demonstrated as a valuable tool to study virus-host cell interactions, 

virus and host cell evolutions, and to elucidate the mechanisms of viral persistence. In 

fact, genetic and phenotypic characterization of virus mutants and host cell mutants 

during persistent infection has already greatly helped study virus-receptor interactions, 

define virus virulence gene, and identify viral and host cell determinants involved in 

persistent viral infection. The second major goal of this study is to establish persistent 

EAV infection in cell cultures and then use the persistently infected cultures as a tool to 

study virus-host cell interactions, virus and host cell evolutions, and to identify viral and 

host cell determinants involved in EAV persistence. Specific hypotheses and objectives 

relating to this goal are as follows.  

Hypothesis 1: Persistent EAV infection can be established in certain cell lines. 

Aim 1: to test a variety of cell lines and determine in which cell lines persistent 

EAV infection can be established. 

Hypothesis 2: During persistent infection of cell cultures, EAV undergoes genetic 

and phenotypic evolution; genetic variations result in phenotypic changes.  

Aim 2: to investigate genetic and phenotypic (such as growth characteristics, 

neutralization phenotypes, and pathogenicity) variations of the viruses recovered from 

different passages of the persistently infected culture; to define genetic variations that are 

responsible for corresponding phenotypic changes.   
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Table 1.1. The order of Nidovirales 

 
Order Nidovirales 
Family Arteriviridae Coronaviridae Roniviridae 
Genus Arterivirus Coronavirus Torovirus Okavirus 

Canine coronavirus (CCV) 
 
Feline coronavirus (FCoV) 
 
Human coronavirus 229E (HCoV-229E) 
 
Porcine epidemic diarrhea virus (PEDV) 
 
Transmissible gastroenteritis virus (TGEV) 

 
 
 
 
Group 1 
species 

Bovine coronavirus (BCoV) 
 
Human coronavirus OC43 (HCoV-OC43) 
 
Mouse hepatitis virus (MHV) 
 
Porcine hemagglutinating encephalomyelitis 
virus (HEV) 
 
Rat coronavirus (RCV) 

 
 
 
 
Group 2 
species 

Infectious bronchitis virus (IBV) 
 
Turkey coronavirus (TCoV) 

Group 3 
species 

Species Equine arteritis virus (EAV) 
 
Porcine respiratory and 
reproductive syndrome virus 
(PRRSV) 
 
Lactate dehydrogenase-elevating 
virus (LDV) 
 
Simian hemorrhagic fever virus 
(SHFV) 
 
 
 
 
 

Severe acute respiratory syndrome 
coronavirus (SARS-CoV) 

Not 
grouped 

Equine torovirus (EqTV) 
 
Bovine torovirus (BoTV) 
 
Human torovirus (HuTV) 
 
Porcine torovirus (PoTV) 
 
 
 
 
 
 

Gill-associated virus 
(GAV) 
 
Yellow head virus 
(YHV) 
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Table 1.2. The ORFs of the EAV genome  
    

Leader or ORFs                            
(nt location)* 

Protein (aa length† and molecular 
weight§ kDa) 

Putative functional domain‡ 

5' NTR (1-224) N/A  
5' Leader (1-211) N/A  
 Nonstructural proteins (nsp)  
ORF1a (225-5408) 1a polyprotein (1727 aa; 187 kDa)  
ORF1ab (225-5405, 
5405-9751) 1ab polyprotein (3175 aa; 345 kDa)  

 nsp1: Met1-Gly260 (260 aa; 29 kDa) Zinc finger, PCP1ß 
 nsp2: Gly261-Gly831 (571 aa; 61 kDa) CP2 

 nsp3: Gly832-Glu1064 (233 aa) HD 
 nsp4: Gly1065-Glu1268 (204 aa) 3CLSP 

 nsp5: Ser1269-Glu1430 (162 aa) HD 
 nsp6: Gly1431-Glu1452 (22 aa) ? 
 nsp7: Ser1453-Glu1677 (225 aa) ? 
 nsp8: Gly1678-Asn1727 (50 aa) ? 
 nsp 9: Gly1678-Glu2370 (693 aa; 80 kDa) RdRp 
 nsp10: Ser2371-Gln2837 (467 aa; 50 kDa) MB, NTPase, HEL 
 nsp11: Ser2838-Glu3056 (219 aa; 26 kDa) ? 
 nsp12: Gly3057-Val3175 (119 aa; 12 kDa) ? 

   
 Structural proteins  

ORF2a (9751-9954) E (67 aa; 8 kDa) intermediate envelope protein 

ORF2b (9824-10507) GP2b (227 aa; 25 kDa) minor envelope protein; 
 1 N-glycosylation 

ORF3 (10306-10797) GP3 (163 aa; 36-42 kDa) minor envelope protein;  
6 N-glycosylation 

ORF4 (10700-11158) GP4 (152 aa; 28 kDa) minor envelope protein;  
3 N-glycosylation 

ORF5 (11146-11913) GP5 (255 aa; 30-42 kDa) 
major envelope protein;  

1 N glycosylation; expressing 
neutralization determinants 

ORF6 (11901-12389) M (162 aa; 16 kDa) major envelope protein 

ORF7 (12313-12645) N (110 aa; 14 kDa) nucleocapsid protein;  
3 phosphorylation 

3' NTR (12646-12704) N/A   
 * Nucleotides are numbered according to the published sequence of EAV030 virus (van Dinten et al., 
1997). 
 † Amino acids of non-structural proteins are numbered according to their locations in polyprotein 1ab. 
Amino acids of structural proteins are numbered according to their locations in individual structural 
protein. N/A: Not Applicable. 
§ Molecular weight (kDa) of structural proteins shown here was the size after modification, e.g. 
glycosylation. 
‡ PCP1ß: papain-like cysteine proteinase 1ß; CP2: cysteine proteinase of nsp2; HD: hydrophobic 
domain; 3CLSP: 3C-like serine proteinase; RdRp: RNA-dependent RNA polymerase; MB: metal ion-
binding domain; NTPase: NTPase domain; HEL: helicase domain; ?: function unknown.   
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Fig. 1.1. (A) Schematic diagram of the genome organization and expression of EAV. The 
regions of the genome specifying the leader (L) sequence, the replicase gene (ORFs 1a 
and 1b), and the structural protein genes are indicated. The nested set of EAV mRNAs 
(genome and sg mRNAs 2 to 7) is depicted below. The black boxes in the genomic RNA 
indicate the position of leader and major body TRSs. The figure A is reprinted from van 
den Born et al. (2005). (B) Schematic representation of EAV virion, showing an 
icosahedral nucleocapsid and an envelope containing six viral membrane proteins which 
include a GP5-M heterodimer, an E protein, and a GP2b/GP3/GP4 heterotrimer. The E 
protein is proposed to be the component which, on the one hand interacts with the 
GP2b/GP4/GP3 heterotrimer, and on the other hand interacts with the GP5/M 
heterodimer and/or the nucleocaspid. It is through these interactions that the E protein 
draws the GP2b/GP4/GP3 complex into nascent virus particles (Wieringa et al. 2004). 

(A)  
 

(B)  
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Fig 1.2. Overview of the replication cycle of EAV. The viral genome and the nested set 
of subgenomic mRNAs are indicated, with the small black boxes representing the 
common 5’ leader sequence. The white boxes in sg mRNAs represent the translationally 
active ORF(s) for each mRNA. The figure is reprinted from Snijder et al. (1999). 
 
 
 
 
 
 

       
 
 
Fig 1.3. Schematic diagram of the EAV ORF1a/1b frameshift-directing signals: the 
‘shifty’ codons (5’ GUUAAAC 3’) and RNA pseudoknot structure. The codons of the 
reading frames 1a including its termination codon and 1b are indicated. The figure is 
reprinted from Snijder and Meulenberg (1998) with permission.  
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Fig 1.4. Overview of the proteolytic processing of the EAV replicase polyproteins. (A) 
The processing schemes for the EAV polyproteins 1a and 1ab are depicted. The three 
EAV proteases and their corresponding cleavage sites are shown: PCP1ß, nsp1 papain-
like cysteine protease 1ß; CP2, nsp2 cysteine protease; 3CLSP, nsp4 3C-like serine 
protease; the a* domain represents the inactive PCP1a domain. Hydrophobic domains 
(HD) in nsp2, nsp3, and nsp5 are indicated. In the ORF1b-encoded polypeptide, the four 
major conserved domains are depicted: RdRp, RNA-dependent RNA polymerase; Z, 
putative zinc-binding domain; HEL, helicase domain; C, conserved, nidovirus-specific C-
terminal domain. (B) Two alternative processing pathways of the EAV ORF1a protein. 
The association of cleaved nsp2 with nsp3-8 was shown to direct cleavage at the nsp4|5 
site by the nsp4 3CLSP (major pathway). Alternatively, in the absence of nsp2, the nsp5|6 
and 6|7 sites were cleaved and the nsp4|5 junction remained uncleaved. The diagrams are 
reprinted from Ziebuhr et al. (2000) with permission. 

1a 

1ab 

A 

B 
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Fig 1.5. Transcription models illustrating the discontinuous step during nidoviral 
subgenomic mRNA synthesis. (A) ‘Leader-primed transcription’ model. Discontinuous 
transcription was proposed to occur during positive-strand RNA synthesis using the full-
length negative genomic strand as a template. The sense TRS at the 3’ end of the leader 
transcript base pairs with the antisense body TRS in the negative-strand template, after 
which the leader transcript is extended to produce a sg mRNA. (B, C) ‘Discontinuous 
negative strand extension’ model. In C, EAV is used as an example. Discontinuous 
transcription was proposed to occur during negative-strand RNA synthesis using the full-
length positive genomic strand as a template. After attenuation of the RdRp complex at a 
body TRS in the positive-strand genomic template, the nascent (-) strand is translocated 
to the leader TRS region. Following base pairing between the antisense body TRS and 
sense leader TRS, negative strand RNA synthesis resumes to add the anti-leader sequence. 
Subsequently, the sg (-) strand RNA serves as a template for sg mRNA synthesis. The 
positive- (white) and negative- (black) strand RNAs are shown. The sense leader and 
body TRS (black boxes) in positive strand RNA and antisense leader and body TRS 
(white boxes) in negative strand RNA are indicated. The diagrams A and B are modified 
from Snijder and Meulenberg (1998) and the diagram C is reprinted from van den Born et 
al. (2005) with permission.  

A 

B 

C 
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Fig 1.6. EAV sg mRNA3, -4, and -5 body TRS regions. The sequences are aligned with 
respect to the translation initiation for the corresponding structural protein. The body 
TRSs and translation initiation codon are shown in bold. The figure is reprinted from 
Pasternak et al. (2000).  
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Chapter Two 

Determination of the Permissiveness of Various Cell Lines to Equine Arteritis Virus 

Infection and Demonstration That Equine Arteritis Virus Infection Is Restricted at 

the Entry Step in Non-Permissive Cell Lines 

 

ABSTRACT 

Neither the virus attachment molecule nor the specific cell receptor has been 

identified for EAV. The early cell-EAV interactions (e.g. attachment, penetration, and 

uncoating) have not been elucidated. Although several permissive cell lines have been 

identified which support productive EAV infection, it is unknown which cell lines are 

non-permissive to EAV infection and at which steps EAV infection is blocked in these 

cell lines. In this study, a variety of cell lines of different species and tissue origin were 

tested for their permissiveness to infection with EAV strain VBS53, and the mechanisms 

that restrict EAV infection in non-permissive cell lines were investigated. The cell lines 

baby hamster kidney (BHK-21; ATCC CCL-10), rabbit kidney (RK-13; KY & ATCC 

CCL-37) and mouse muscle (C2C12; ATCC CRL-1772) were found to support 

productive infection with EAV strain VBS53 as demonstrated by infectious virus yield 

and indirect immunofluorescence assay using EAV-specific monoclonal antibodies. On 

the other hand, human cervix (Hela; ATCC CCL-2), human epidermoid larynx (Hep-2; 

ATCC CCL-23), and mouse connective tissue (L-M; ATCC CCL-1.2) cell lines exhibited 

limited susceptibility to infection with EAV strain VBS53. Interestingly, Hela cells 

became more susceptible to the virus infection after extended serial passage. The 

respective cell lines were referred to as Hela ‘High’ (passage 170-221) and Hela ‘Low’ 

(passage 95-115). While Hela ‘High’ cell line was more susceptible than Hela ‘Low’ cell 

line, it was still considerably less susceptible than BHK-21 cell line to EAV infection. 

Karyotypic analysis of Hela ‘High’ and Hela ‘Low’ cell lines using G-banding technique 

revealed chromosomal differences. Transfection of Hela ‘High’, Hela ‘Low’, Hep-2, and 

L-M cell lines with viral RNA in vitro-transcribed from a full-length EAV cDNA clone 

induced virus replication, assembly, and release. Virus levels were comparable to those in 

transfected BHK-21 cells 24 h post transfection, indicating that these cells fully support 

EAV replication when the attachment and entry steps are bypassed. Thus, interference 
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with the attachment or entry steps might account for resistance of these cells to infection 

with EAV. Attachment of EAV strain VBS53 to the cells was determined by directly 

titrating the virus bound to the cells.  It was found that EAV was able to bind to Hela 

‘High’, Hela ‘Low’, Hep-2, and L-M cell lines almost as efficiently as it did to the fully 

permissive cell line BHK-21. Attachment of EAV strain VBS53 to each cell line was 

further confirmed using a fluorescence-activated cell sorter (FACS) assay in which 

binding of biotinylated EAV was detected with streptavidin-FITC. All of the cell lines 

under study bound EAV in a dose-dependent manner and nonbiotinylated EAV 

competitively inhibited binding, indicating that the binding was specific. Virus entry 

studies showed that the efficiency of EAV strain VBS53 entry into Hela ‘High’, Hela 

‘Low’, Hep-2, and L-M cell lines was significantly lower than that of entry into BHK-21 

cells. In addition, it was observed that the entry of EAV into Hela ‘High’ cell line was 

more efficient than virus entry into Hela ‘Low’, Hep-2, and L-M cell lines. In conclusion, 

we have identified several cell lines that exhibit varying susceptibility to infection with 

EAV strain VBS53 and have found that permissiveness of a cell line to EAV is 

determined at the entry step. Results of this study would suggest that interaction of EAV 

with its attachment receptor on the cell surface may be necessary, but of itself not 

sufficient to initiate a productive infection. 

 

 

 

 

 

 

 

 

 

 



 

 53 

INTRODUCTION 

Equine arteritis virus (EAV) is the prototype member of the family Arteriviridae 

which also contains porcine respiratory and reproductive syndrome virus (PRRSV), 

lactate dehydrogenase-elevating virus (LDV), and simian hemorrhagic fever virus (SHFV) 

(Snijder and Meulenberg 1998). The EAV genome is a single-stranded, positive-sense 

RNA molecule of 12.7 kb, which includes nine functional open reading frames (ORFs) 

(Snijder and Meulenberg 1998; Snijder et al. 1999). The replicase gene comprises the 5’-

terminal three-quarters of the genome and includes two ORFs (1a and 1b). ORFs 1a and 

1b are expressed directly from the genomic RNA and encode replicase proteins involved 

in viral replication and transcription (den Boon et al. 1991; 1995a; Snijder et al. 1992, 

1994; 1995; 1996; van Dinten et al. 1996; 1999; Wassenaar et al. 1997). The 3’ terminal 

one-quarter length of the genome is composed of seven ORFs (2a, 2b, and 3-7), which 

encode structural proteins E, GP2b (Gs), GP3, GP4, GP5 (GL), M, and N, respectively 

(den Boon et al. 1991; Snijder and Meulenberg 1998; Snijder et al. 1999). These 

structural proteins are expressed from 5’- and 3’-coterminal nested set of six subgenomic 

mRNAs.  

EAV virions consist of an icosahedral nucleocapsid which is surrounded by a lipid-

containing envelope with tiny surface projections (Horzinek et al. 1971). The viral 

nucleocapsid is composed of the linear viral genomic RNA and a phosphorylated 

nucleocapsid (N) protein (de Vries et al. 1992; Hyllseth 1973; Zeegers et al. 1976). The 

virion envelope contains six envelope proteins. The two major envelope proteins include 

the nonglycosylated membrane protein (M) and the relatively large envelope glycoprotein 

GP5 (de Vries et al. 1992). The M and GP5 proteins occur as disulfide-linked 

heterodimers (de Vries et al. 1995b). The unglycosylated envelope protein E is of 

intermediate abundance in the virion (Snijder et al. 1999). The three minor envelope 

proteins of EAV are glycoproteins GP2b, GP3, and GP4, which occur as heterotrimers in 

the virion (de Vries et al. 1992; 1995a; Hedges et al. 1999b; Wieringa et al. 2002; 2003a).  

The first step in virus infection is viral attachment to a specific receptor on a 

susceptible cell. In the case of EAV, neither the virus attachment molecule nor a specific 

cell receptor has yet been clearly identified. By analogy with many other animal RNA 

viruses and in view of its recognition by neutralizing antibodies, the EAV GP5 protein 
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had been postulated to serve as the virus attachment protein and to mediate receptor 

recognition. However, exchange of the ectodomain of the EAV GP5 protein with that of 

PRRSV or LDV in the context of an infectious EAV cDNA clone did not alter the cell 

tropism of the virus, suggesting that the ectodomain of GP5 is not the main determinant 

of EAV tropism in cell culture (Dobbe et al., 2001). Similarly, PRRSV mutants in which 

the ectodomain of the M protein was replaced by that of EAV or LDV still retained their 

ability to infect porcine alveolar macrophages and did not acquire tropism for cells 

susceptible to the respective viruses (e.g. BHK-21 cells for EAV and mouse macrophages 

for LDV) from which the foreign ectodomains were derived (Verheije et al. 2002). This 

would suggest that, in the case of arteriviruses, the M protein is not responsible for 

receptor binding either. Recently, Wieringa et al. (2003a) have shown that minor 

structural proteins are present in EAV virions as disulfide-bonded GP2b/GP4/GP3 

heterotrimeric complexes. Also, there are indications that the E protein is noncovalently 

associated with the GP2b/GP4/GP3 trimers (Wieringa et al. 2004). It has also been 

demonstrated that the E, GP2b, GP3, and GP4 proteins are not required for the formation 

of EAV particles, although these proteins are believed essential for ensuring that the virus 

particles are infectious (Molenkamp et al. 2000; Wieringa et al. 2004). These findings 

would suggest that the GP2b/GP4/GP3/(E) complex might be involved in the EAV 

attachment/entry process. 

The cell receptor for EAV has not been identified either. Asagoe et al. (1997) 

showed that heparin can reduce EAV infection of RK-13 cells and that this inhibition was 

due to the direct interaction between heparin and EAV rather than the interaction between 

heparin and RK-13 cells. Furthermore, treatment of RK-13 cells with heparinase before 

virus inoculation decreased EAV infection of the cells (Asagoe et al. 1997). The data 

suggested that a heparin-like molecule on the surface of RK-13 cells might serve as cell 

receptor for EAV. However, heparinase treatment of cells could not completely block 

EAV infection and EAV infection could not be reduced below 13% even in the presence 

of a very high concentration of heparin (Asagoe et al. 1997), implying that other 

molecules on the cell surface might serve as EAV receptors as well. 

Identification of the receptor used by EAV for cell attachment and entry has been 

hampered by the unavailability of a known cell line that lacks the appropriate EAV 
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receptor(s). Identification of EAV non-permissive cell lines in which EAV infection is 

restricted at different steps and comparison of these non-permissive cell lines with 

permissive cell lines should help to identify the cellular factor(s) that are involved in each 

step of EAV infection. In this study, a variety of cell lines of different species and tissue 

origin were assessed for their permissiveness to infection with the strain VBS53 of EAV 

and the mechanism that restricts EAV infection in the non-permissive cell lines was 

investigated. 

 

MATERIALS AND METHODS 

Cells and viruses. The origin and morphological description of the cell lines used 

in this study are listed in Table 2.1. The RK-13 (ATCC CCL37) cell line is routinely used 

in our laboratory between passage level 192 and 204. An additional RK-13 cell line, RK-

13 (KY), is also available in the laboratory and it is routinely used between passage level 

397 and 409. The RK-13 (ATCC CCL-37) and RK-13 (KY) cell lines are 

morphologically and karyotypically distinct. Hela cells were obtained from the American 

Type Culture Collection (ATCC CCL-2) at passage level 95. Since it was found that Hela 

cells had different susceptibilities to EAV strain VBS53 infection after extensive serial 

passage, it was decided to categorize Hela cells from passage 95 to 115 as Hela ‘Low’ 

cells and these are not susceptible to EAV strain VBS53 infection. On the other hand, 

Hela cells from passage 170 to 221 were referred to as Hela ‘High’ cells and these were 

found to be partly susceptible to EAV strain VBS53 infection. All the cell lines were 

grown in Eagle’s minimum essential medium (EMEM) with 10% ferritin supplemented 

calf serum (FSCS), penicillin, streptomycin, fungizone, and sodium bicarbonate. The 

RK-13, BHK-21, Hela, Hep-2, and L-M cell lines were grown at 37ºC in an aerobic 

incubator. The C2C12 cell line was grown at 37ºC in the presence of 5% CO2. The RK-

13 cell lines were subcultured once weekly (1:5 split), whereas BHK-21, L-M, and Hep-2 

cell lines were subcultured twice weekly (1:6 split), and the C2C12 and Hela cell lines 

were subcultured once every 4 days (1:4 split) in accordance with  routine procedures. 

The origin, passage history and horse-pathogenicity of the virulent Bucyrus strain 

(VBS53) of EAV are summarized in Fig 2.1. The original isolate of EAV in 1953 was 

passaged 15 times in horses and the pleural fluid collected from the 15th inoculated horse 
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was named as the VBS53 strain of EAV, which was highly virulent for horses. The EAV 

strain VBS53 was propagated twice in BHK-21 cells to produce virus stocks which were 

used in this study. Viral infectivity was determined by plaque assay on RK-13 (KY) cells 

as previously described (McCollum et al. 1962). 

Antibodies. The development and characterization of monoclonal antibodies to the 

nucleocapsid protein (N; MAb 3E2) and the non-structural protein 1 (nsp1; MAb 12A4) 

of EAV have been previously described (MacLachlan et al. 1998; Wagner et al. 2003). 

Both MAbs 3E2 and 12A4 were kindly provided by Drs. Udeni Balasuriya and James 

MacLachlan at University of California, Davis. 

Growth of EAV in various cell lines. Growth of EAV strain VBS53 in RK-13, 

BHK-21, C2C12, Hela, Hep-2, and L-M cell lines was compared. Subconfluent 

monolayers of each cell line grown in T-25 flasks (approximately 2.2 × 106 cells/T-25 

flask) were inoculated with EAV strain VBS53 at a multiplicity of infection (m.o.i.) of 3. 

Flasks were incubated at 37°C for 1 h. The inoculum was aspirated, and cell sheets 

washed three times with PBS to remove unbound virus and the sheets overlaid with 10 ml 

of EMEM medium. This was designated time zero with respect to infection. Inoculated 

cultures were incubated at 37°C.  At 0, 12, 24, 36, 48, 60, and 72 h post infection (p.i.), 

both supernatants and cells were harvested and sonicated three times (20V, 15 sec/time) 

to fully disrupt the cells to release virus particles. Viral infectivity was determined by 

plaque assay on RK-13 (KY) cells as previously described (McCollum et al. 1962). 

Mock-infected cultures of each cell line were included in the experiment. Cell lines were 

also grown in 8-chamber slides and infected with EAV strain VBS53. At 24 h and 72 h 

post infection, cell sheets were examined by indirect immunofluorescence assay for 

expression of the viral nucleocapsid (N) protein and non-structural protein 1 (NSP1). To 

determine the effect of m.o.i. on the outcome of infection, RK-13 (KY), Hela, Hep-2, and 

L-M cell lines were infected with EAV strain VBS53 at m.o.i. of 1, 3, 10, and 50. At 0 h 

and 40 h after infection, extracellular virus (represented by culture supernatants) and cell-

associated virus (represented by cell-lysates) were titrated separately by plaque assays. 

Serial amplification of EAV in Hela ‘High’ and Hela ‘Low’ cell lines. 

Subconfluent monolayers of Hela cells (low passage P109 and high passage P200) were 

inoculated with EAV strain VBS53 at an m.o.i of 3 (using an inoculum of 0.3 ml). Mock-
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inoculated Hela cells (P109 and P200) were included. The same volume of EAV infective 

inoculum was added to 10% EMEM medium without cells and included as an additional 

control. After 1 h of incubation at 37ºC, without washing, 10 ml medium was added to 

each culture. After 4 days of incubation at 37ºC, the supernatant (P1) (10 ml) was 

harvested and centrifuged at 1900 rpm for 10 min to remove cell debris. The supernatant 

was then filtered through a 0.45 µm membrane to ensure removal of cell debris. Filtered 

supernatant (0.3 ml) from mock-inoculated Hela cells (P1 mock), EAV-inoculated Hela 

cells (P1 EAV-Hela), and EAV-inoculated medium (P1 EAV-medium) were added to 

uninfected Hela cell cultures (P110 or P201) or medium without cells, respectively, and 

incubated at 37ºC for 1 h. A 10 ml volume of medium was added and the cultures 

incubated for 4 days at 37ºC to provide ‘P2 mock’, 'P2 EAV-Hela', and 'P2 EAV-

medium', respectively. The same procedure was followed in attempting to amplify the 

virus up to P7. 

Chromosomal analysis. Karyotypic analysis of low (P98) and high (P202) passage 

Hela cells was performed using the conventional G-banding technique (ISCN 1985; 

Yunis 1976) at Department of Cytogenetics, University of Kentucky. Twenty giemsa-

banded metaphase cells from passage 98 and passage 202 Hela cells were analyzed, 

respectively. 

In vitro transcription and transfection of cells with in vitro transcribed EAV 

RNA. Viral RNA transcripts were in vitro-transcribed from the full-length infectious 

EAV cDNA clone pEAV2421/211EB which was derived from EAV strain VBS53 

(Balasuriya et al., unpublished). The in vitro transcription was carried out as previously 

described (van Dinten et al. 1997) with minor modifications. Briefly, the plasmid DNA 

was linearized with XhoI, digested with proteinase K, purified by phenol-chloroform 

extraction, precipitated with ethanol, and dissolved in water. The in vitro transcription 

was conducted in a reaction mixture of 50.0 µl: linear DNA 15.0 µl, rNTPs mix (10mM 

each, Amersham) 5.0 µl, acetylated BSA (1 mg/ml, Promega) 5.0 µl, DTT (100 mM, 

Promega) 2.5 µl, 5’ cap analog M7G(ppp)G (10 mM, New England Biolabs) 5.0 µl, RNA 

guard RNase inhibitor (Pharmacia) 2.5 µl, T7 RNA polymerase (Promega) 2.5 µl, 5x T7 

transcription buffer 10.0 µl, nuclease free water 2.5 µl. After 2 h of incubation at 37ºC, 

the RNA quality and yield were assessed by agarose gel electrophoresis and 
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spectrophotometry. RNA transcripts were introduced into BHK-21, Hela ‘High’, Hela 

‘Low’, Hep-2, and L-M cell lines by means of electroporation following previously 

described protocols (van Dinten et al. 1997) with minor modifications. Briefly, cells were 

grown to subconfluence, trypsinized, washed with PBS, and resuspended in PBS at a 

concentration of 1 x 107 cells per ml. A 15 µl aliquot of the transcripts mixture was added 

to 500 µl of the cell suspension, which was then transferred into electroporation cuvettes 

(0.4 cm electrode gap; Bio-Rad). Using a Gene Pulser II system (Bio-Rad), the cells were 

pulsed twice at 850V and 25 µF, with the pulse controller set at ‘infinite’ ohms. The cells 

were incubated at room temperature for a 10 min ‘recovery period’ after electroporation 

and then resuspended in 15 ml of culture medium which was previously warmed to room 

temperature. The cells were seeded into 8-chamber slides for immunofluorescence assays 

or into a T-25 flask to monitor virus yield at 12, 24, 48, 72, and 96 h post transfection.  

Indirect immunofluorescence assay (IFA). Mock-, EAV-infected, or EAV RNA-

transfected cells grown in 8-chamber slides were fixed with cold acetone for 10 min, and 

washed three times with PBS containing 10mM glycine. Slides were then incubated with 

MAb 3E2 (ascitic fluid) specific for EAV nucleocapsid protein, or MAb 12A4 (ascitic 

fluid) specific for EAV NSP1, followed by fluorescein-conjugated goat antimouse 

immunoglobulin (Pierce). The cell sheets were counterstained with Evans blue. The 

images were recorded using a LEICA confocal microscope.  

Measurement of virus binding to and entry into cells. EAV binding to and etnry 

into various cell lines were determined by modifying previously described asssays (de la 

Torre et al. 1988a; Vlaycheva and Chambers 2002). Subconfluent monolayers of BHK-

21, Hela ‘High’, Hela ‘Low’, Hep-2, and L-M cell lines were trypsinized and 

resuspended in culture medium at a concentration of 2 x 106 cells per ml, and cooled 

down at 4ºC for at least 30 min. In the case of each cell line, 2 x 106 PFU of EAV strain 

VBS53 (in 200 µl) was added to four replicates of 1 x 106 cells (500 µl) and held at 4ºC 

for 1 h. The cells were then washed three times with cold PBS to remove unbound virus. 

Two of the cell replicates were resuspended in 1 ml of cold culture medium. Cell 

suspensions were subjected to three cycles of freezing and thawing to release attached 

viruses, and then centrifuged for 10 min at 1900 rpm at 4ºC. Clarified supernatants were 

titrated by plaque assay on RK-13 (KY) cells as previously described (McCollum et al. 
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1962). The amount of virus attached to Hela ‘High’, Hela ‘Low’, Hep-2, and L-M cells 

was calculated as a percentage of the virus attached to BHK-21 cells. The other duplicate 

of the cells were resuspended in 1 ml of pre-warmed culture medium and incubated at 

37ºC for 1 h with agitation. After incubation for 1 h at 37ºC, the cells were treated with 

1.0 ml acid glycine (pH 3.0) to inactivate non-internalized virus. The cells were then 

washed four times with PBS and resuspended in 1 ml of culture medium. The last wash 

was saved for infectivity titration to confirm that no residual extracellular virus was 

detectable in the cell suspensions. Serial decimal dilutions of the cell suspensions were 

made in culture medium and then inoculated onto monolayers of RK-13 (KY) cells in 6-

well plates. Inoculated cultures were incubated at 37ºC for 1 h. Cell monolayers were 

overlaid with culture medium containing 0.75% carboxymethyl cellulose and incubated 

at 37ºC for 4 days. Infectious centers were counted after staining of plates with 10% 

formalin buffered crystal violet. Efficiency of virus entry into Hela ‘High’, Hela ‘Low’, 

Hep-2, and L-M cell lines was calculated as a ratio of infectious center counts in each cell 

line being evaluated to infectious center counts in BHK-21 cell line.   

Virus purification and biotinylation. Purification and biotinylation of EAV were 

carried out according to previously described assay with minor modifications (Nauwynck 

et al. 1999). The stocks of EAV strain VBS53 were pelleted by ultracentrifugation 

through a 20% (wt/wt) sucrose cushion in TNE buffer (20 mM Tris-HCl (pH 7.6), 100 

mM NaCl, 1 mM EDTA) for 5 h at 25,000 rpm (SW28 rotor) at 4°C. Virus pellets were 

resuspended in TNE buffer and further purified by ultracentrifugation using a 

discontinuous 20%-50% sucrose gradient for 16 h at 32,000 rpm (SW41 rotor) at 4ºC. 

Visible virus bands were harvested and rinsed with bicarbonate buffer (pH 8.6) by 

centrifugation for 5 h at 34,000 rpm (SW41 rotor) at 4ºC. In the final step, the purified 

virus particles were resuspended in sodium bicarbonate buffer. The infectivity titer of the 

resulting virus particles was approximately 5 × 109 pfu/ml, as determined by plaque assay 

in RK13 (KY) cells. The protein concentration was 2.0 mg/ml, as determined by the 

Bradford assay (Bio-Rad) with bovine serum albumin (BSA) as a standard. Purified EAV 

particles in suspension were biotin labeled using a protein biotinylation kit (Amersham). 

Briefly, virus particles were diluted to a concentration of 1 mg/ml in sodium bicarbonate 

buffer and 40 µl of biotinylation reagents were added per mg of virus protein. The 
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mixture was shaken for 1 h at 4°C. Biotinylated virus was collected after purification on a 

Sephadex G25 column, aliquoted (0.5 ml/tube, 0.4 mg/ml), and stored at -70°C. The 

infectivity titer of the biotinylated virus was 4 × 109 pfu/ml. 

Analysis of biotinylated EAV attachment to cells by flow cytometry. 

Attachment of biotinylated EAV to various cell lines were carried out by modifying 

previously described procedures (Borrow and Oldstone 1992; Nauwynck et al. 1999). 

Subconfluent monolayers of RK-13 (KY), RK-13 (ATCC), BHK-21, Hela ‘High’, Hela 

‘Low’, Hep-2, and L-M cell lines were washed three times with cold PBS and then 

treated with non-enzymatic cell dissociation solution (Sigma) for cell detachment. 

Various amounts of biotinylated EAV [0, 2.5 µg (2.5 × 107 pfu), 5.0 µg (5.0 × 107 pfu), 

7.5 µg (7.5 × 107 pfu), 10.0 µg (1.0 × 108 pfu), 12.5 µg (1.25 × 108 pfu)] were added to 

aliquots of a suspension of each cell line containing 5 ×105 cells in a total volume of 500 

µl of PBS containing 0.2% bovine serum albumin (PBSA) and incubated at 4ºC for 1 h. 

The cells were washed three times with cold PBSA and incubated with 200 µl of a 1:100-

dilution of streptavidin-fluorescein conjugate in PBSA for 1 h at 4ºC. The cells were then 

washed three times in PBS containing 2% fetal bovine serum (FBS), followed by 

resuspension in 1.0 ml of PBS containing 2% FBS. Propidium iodide was added to the 

cell suspensions (1 µg propidium iodide per ml of cell suspension) just before analysis by 

flow cytometry. The relative fluorescence intensity of each sample was determined by 

flow cytometry and 30,000 cells were counted in each sample. Dead cells labeled with 

propidium iodide were excluded.   

The specificity of the attachment of biotinylated EAV to cells was demonstrated by 

two methods: (i) a competitive inhibition test with nonbiotinylated EAV; and (ii) binding 

experiments with biotinylated BHK-21 cellular proteins. In the first case, 5 ×105 cells 

were first incubated at 4ºC for 1 h with different amounts of nonbiotinylated EAV (0, 1 × 

108 pfu, 2.5 × 108 pfu, 5 × 108 pfu, 7.5 × 108 pfu) in a final volume of 300 µl of PBSA. 

Then, 1 × 108 pfu of biotinylated EAV was added and the total volume was increased to 

500 µl with PBSA. The cells were incubated at 4ºC for a further hour, and fluorescence 

intensities were determined in accordance with previously described protocols. Inhibition 

of attachment was calculated as follows: % inhibition = [Mean fluorescence intensity of 

cells without nonbiotinylated EAV -  Mean fluorescence intensity of cells with different 



 

 61 

amounts of nonbiotinylated EAV]/[Mean fluorescence intensity of cells without 

nonbiotinylated EAV] × 100%. In the case of the second method used to confirm the 

specificity of virus attachment, biotinylated BHK-21 cellular proteins (0, 2.5 µg, 5.0 µg, 

7.5 µg, 10.0 µg, and 12.5 µg) were incubated with 5 ×105 cells of each cell line at 4ºC for 

1 h, and the fluorescence intensities determined as already described. 

 

RESULTS 

Determination of the permissiveness of various cell lines to infection with the 

VBS53 strain of EAV. In order to identify a cell line that lacks the receptor(s) for EAV 

attachment and entry, a variety of cell lines of different species and tissue origin (Table 

2.1) were tested for their permissiveness to infection with the VBS53 strain of EAV (Fig 

2.1). The first approach used to achieve this objective was to determine whether each of 

the selected cell lines supported efficient growth of the virus. In EAV-inoculated BHK-

21, RK-13 (ATCC), RK-13 (KY), and C2C12 cell lines, virus-specific cytopathic effects 

(CPE) were first visualized from 24 h p.i. with all the cell monolayers destroyed by 48 h 

p.i., confirming that EAV is very cytolytic in each of these cell lines. In contrast, virus-

specific CPE were not observed in EAV-inoculated Hela, Hep-2, and L-M cell lines even 

at 96 h after inoculation. Replication of EAV in BHK-21, RK-13 (ATCC), RK-13 (KY), 

and C2C12 cells exhibted a typical growth kinetic curve, with 4-5 log10 increases in 

infectivity titers within 24 h, followed by a gradual decline in titers after 48 h (Fig 2.2). In 

contrast, virus infectivity titers in Hela (ATCC), Hep-2, and L-M cells did not increase 

markedly (less than 2 log10 increase) during the entire observation period (Fig 2.2), 

indicating that growth of this strain of EAV in these cell lines was restricted and not 

efficient. 

To determine whether virus antigens were synthesized during infection, indirect 

immunofluorescence assays were performed. In EAV-infected BHK-21 (Fig 2.3A and B), 

RK-13 (ATCC), RK-13 (KY), and C2C12 cells (data not shown), almost 100% cells were 

positive for the structural protein N (Fig 2.3A) and for the non-structural protein nsp1 

(Fig 2.3B) by 24 h post inoculation, confirming that EAV efficiently replicated in each of 

these cell lines. However, in EAV-inoculated Hela (ATCC) and L-M cells, only a small 

number of cells were fluorescent positive for N- (Fig 2.3C and K) or nsp1 protein (Fig 
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2.3D and I) by 24 h after inoculation. The number of EAV fluorescent-positive cells in 

Hela (ATCC) and L-M cell lines was less than 2% and 6%, respectively. Even by 72 h 

post inoculation, the percentage of EAV-positive cells in Hela (ATCC) and L-M cell 

lines had not increased (Fig 2.3E, F, M, and N), indicating that the spread of virus from 

the initially infected cells to uninfected cells had not occurred. No EAV-positive cells 

were observed in the EAV-inoculated Hep-2 cell line throughout the period of 

observation (Fig 2.3O, P, Q, and R). Failure to detect expression of selected non-

structural and structural viral proteins in the majority of cells of the EAV-inoculated Hela 

(ATCC), Hep-2, and L-M cell lines would suggest that EAV infection of these cell lines 

might be restricted at steps that precede viral replication, e.g. viral attachment or entry 

steps. 

In order to determine whether increase of m.o.i. can result in productive infection of 

EAV in Hela (ATCC), Hep-2, and L-M cells, various cell lines were inoculated with 

VBS53 EAV at m.o.i. of 1, 3, 10, and 50, respectively. As shown in Table 2.2, with an 

increase of m.o.i., there was a concomitant increase in residual virus in each cell line at 0 

h post inoculation. However, with the increase in m.o.i., virus yields in RK-13 (KY) cells 

had declined by 40 h post inoculation. In Hela (ATCC), Hep-2, and L-M cell lines, on the 

other hand, an increase in m.o.i. resulted in increase in virus titer by 40 h post inoculation. 

This increase probably reflected the increase amount of virus in the inoculum. Even at a 

high m.o.i. (e.g. m.o.i. = 50), virus replication in Hela (ATCC), Hep-2, and L-M cell lines 

was not as efficient as in the fully permissive RK-13 cell line. It should be pointed out 

that in EAV-inoculated RK-13, Hep-2, and L-M cells, the percentage of extracellular 

virus to the total virus present (the sum of extracellular virus and cell-associated virus) 

was greater than 80%, while it was only around 50% in Hela (ATCC) cells (Table 2.2).  

Taken collectively, these findings confirm that RK-13, BHK-21, and C2C12 cell 

lines are fully susceptible to infection with the VBS53 strain of EAV, whereas Hela 

(ATCC), Hep-2, and L-M cell lines only have limited susceptibility to infection with this 

virus.            

Enhancement of susceptibility of Hela cells to EAV infection after extended 

serial passages. In the course of this study, it was found that the Hela cell line became 

more susceptible to infection with EAV strain VBS53 after extended serial passage. Hela 
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cells which were obtained from ATCC at passage level 95 were serially passed up to 

passage 221 as described in Materials and Methods. As indicated in Fig 2.2, the virus 

infectivity titer in EAV-inoculated Hela P176 cells was 1.5-2 log10s higher than that in 

Hela P98 cells. Using the IFA test, it was found that at 24 h post inoculation, EAV-

positive cells were approximately 12% in EAV-inoculated Hela P176 cells but less than 

2% in Hela P98 cells (Fig 2.3C, D, G, and H). Moreover, spread of the virus from the 

initially infected cells to uninfected cells was observed in Hela P176 cells as reflected by 

the increase in percentage of EAV fluorescent-positive cells from 12% at 24 h post 

inoculation to approximately 19% at 72 h post inoculation (Fig 2.3G, H, I, and J). This 

was not observed in Hela P98 cells (Fig 2.3C, D, E, and F). Furthermore, it was shown 

that Hela cells between passage level 170 and 221 have higher susceptibility to EAV 

infection than Hela cells between passage level 95 and 115, which were found to be non-

susceptible to infection. Hela cells from passage 95 to 115 were referred to as Hela ‘Low’ 

cell line and Hela cells from passage 170 to 221 as Hela ‘High’ cell line. It should be 

pointed out that the morphology and growth rate of the Hela ‘High’ cell line were 

indistinguishable from those of the Hela ‘Low’ cell line. While Hela ‘High’ cell line was 

more susceptible than Hela ‘Low’ cell line to infection with EAV strain VBS53, 

susceptibility of Hela ‘High’ cell line to infection was remarkably less than that of RK-13, 

BHK-21, and C2C12 cell lines (Fig 2.2 and Fig 2.3). Also, no apparent EAV-induced 

CPE was observed during one-step growth curve experiment of EAV in the Hela ‘High’ 

cell line. 

In order to further confirm that Hela ‘High’ cell line is more susceptible than Hela 

‘Low’ cell line to EAV infection, serial passage of EAV strain VBS53 in low (P109) and 

high (P200) passage Hela cells were carried out. As shown in Table 2.3, the VBS53 strain 

of EAV was efficiently amplified in Hela ‘High’ cell line but not in Hela ‘Low’ cell line. 

Furthermore, this strain of EAV was able to initiate persistent infection in Hela ‘High’ 

cell line but not in Hela ‘Low’ cell line (see Chapter 3), confirming that Hela cells 

evolved and acquired some new characteristics during extended subculturing. 

Chromosomal analysis of Hela ‘High’ and Hela ‘Low’ cell lines. To investigate 

the possible changes between Hela ‘High’ and Hela ‘Low’ cell lines and also to rule out 

the possibility that Hela ‘High’ cell line was contaminated by other cells during the serial 
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subculturing of Hela ‘Low’ cell line, karyotypic analyses of low (P98) and high (P202) 

passage Hela cells were performed using the conventional G-banding technique. 

Analyses of 20 Giemsa-banded metaphase cells from passage 98 and passage 202 Hela 

cells are presented in Table 2.4. It has been established that Hela cells have four typical 

marker chromosomes: one copy of marker M1, one copy of marker M2, four to five 

copies of marker M3, and two copies of marker M4. Marker M1 is the der(1;3)(q10;q10), 

marker M2 is the der(3;5)(p10;q10), marker M3 is the i(5)(p10), and marker M4 consists 

of the long arm of chromosome 11 and an arm of chromosome 19 

(http://www.atcc.org/common/catalog/numSearch/numResults.cfm?atccNum=CCL-2). 

Both Hela ‘High’ and Hela ‘Low’ cell lines were observed to contain one copy of marker 

M1, one copy of marker M2, and 3-5 copies of marker M3 (Table 2.4). Marker M4 may 

be present, because a derivative chromosome consisting of the long arm of chromosome 

11 and an arm of an unidentified chromosome was observed in both Hela ‘High’ and 

Hela ‘Low’ cell lines. This unidentified chromosome resembles the long arm of 

chromosome 20 more closely than either arm of chromosome 19 [?der(11;20)(q10;q10)] 

(Table 2.4). The fact that Hela ‘High’ cells analyzed contained typical marker 

chromosomes of Hela cells confirms that they had not been contaminated with other cells. 

Karyotypic analyses also revealed some differences between Hela ‘High’ and Hela ‘Low’ 

cell lines at chromosomal level. Hela cells at passage level 202 are karyotypically more 

heterogenous than those at passage level 98. Cells at both passage levels have a 

hyperdiploid count with modal number of 81-82 chromosomes, but the hyperdiploid 

count ranges from 78 to 94 chromosomes in passage 202 cells and from 81 to 82 in 

passage 98 cells (Table 2.4). In comparing the cells at passage level 202 to those at 

passage level 98, both gain and loss of chromosomal material appear to have occurred. 

For example, cells at passage level 202 acquired the following materials: an 

isochromosome for the short arm of chromosome 2, i(2)(p10); an isochromosome for the 

long arm of chromosome 2, i(2)(q10); an additional copy of chromosome 6 (Table 2.4). 

In contrast, a derivative chromosome der(15;15)(q10;q10) which exists in passage 98 

cells was absent in passage 202 cells (Table 2.4). In summary, karyotypical analyses 

revealed that cells at both passage level 98 and passage level 202 contain typical Hela 
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marker chromosomes. However, chromosomal changes were demonstrated in Hela cells 

between passage levels 98 and 202. 

Transfection of cells with viral RNA in vitro transcribed from an infectious 

EAV cDNA clone. As has been shown, RK-13, BHK-21, and C2C12 cell lines are fully 

susceptible to infection with EAV strain VBS53, whereas Hela ‘High’, Hela ‘Low’, Hep-

2, and L-M cell lines are of limited susceptibility to infection. In order to determine 

whether restriction of EAV infection is due to an intracellular block, viral RNA in vitro 

transcribed from an infectious EAV cDNA clone pEAV2421/211EB which was derived 

from EAV strain VBS53 (Balasuriya et al., unpublished) was transfected into BHK-21, 

Hela ‘High’, Hela ‘Low’, Hep-2, and L-M cell lines. Cytopathic effects appeared and 

progressed in BHK-21 cells 72 h after transfection. No CPE was observed in the 

transfected Hela ‘High’, Hela ‘Low’, Hep-2, and L-M cell lines even at 96 h post 

transfection. However, based on the results of virus titration and IFA testing, EAV in fact 

replicated in all of the transfected cell lines (Fig 2.4 and Fig 2.5). At 24 h post 

transfection, the percentage of EAV nsp1- and N-protein positive cells was 

approximately 20% in all transfected cell lines (Fig 2.5A, C, E, G, I and data not shown). 

Consistently, at 24 h post transfection, virus yields in transfected Hela ‘High’, Hela 

‘Low’, Hep-2, and L-M cell lines were similar (approximately 1.4 × 105 pfu/ml); these 

were even higher than the corresponding titer in transfected BHK-21 cells (approximately 

2.4 × 104 pfu/ml) (Fig 2.4). This indicated that Hela ‘High’, Hela ‘Low’, Hep-2, and L-M 

cell lines support EAV replication as efficiently as the permissive BHK-21 cell line once 

the viral RNA is released into the cytoplasm. After 24 h post transfection, virus yields in 

transfected BHK-21 cells increased to markedly higher levels than those in transfected 

Hela ‘High’, Hela ‘Low’, Hep-2, and L-M cells (Fig 2.4). This probably reflects the 

inefficiency of the released virus to initiate secondary rounds of infection in Hela, Hep-2, 

and L-M cell lines. This was corroborated by the IFA results. In transfected BHK-21 cells, 

efficient spread of the infection to nontransfected cells was observed by 48 h post 

transfection (Fig 2.5A and B), followed by the development of CPE and cell death by 72 

h post transfection. In transfected Hela ‘Low’, Hep-2, and L-M cell lines, however, 

spread of the infection from transfected cells to nontransfected cells was not observed at 

48 h (Fig 2.5C and D; G and H; I and J) or even up to 72 h (data not shown) post 
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transfection. In transfected Hela ‘High’ cells, spread of infection from transfected cells to 

nontransfected cells was not apparent (Fig 2.5E and F). Differences of virus yields in 

transfected Hela ‘High’ and Hela ‘Low’ cell lines are not as marked as those in infected 

Hela ‘High’ and Hela ‘Low’ cell lines (Fig 2.4 and Fig 2.2). Taken together, the 

transfection experiments demonstrated that Hela ‘High’, Hela ‘Low’, Hep-2, and L-M 

cell lines support EAV replication when the attachment and entry steps are bypassed, 

suggesting the absence of an intracellular block later in the virus replication cycle. Thus, 

EAV infection of these cell lines appears to be restricted at the attachment or entry steps.   

Binding assays. In order to determine whether EAV infection of Hela ‘High’, Hela 

‘Low’, Hep-2, and L-M cell lines is restricted at virus attachment step, virus binding to 

these cell lines was carried out. The first approach used to study virus attachment was to 

incubate cells with EAV strain VBS53 for 1 h at 4ºC and then the virus bound to cells 

was titrated after unattached viruses were removed through extensive washing. As shown 

in Fig 2.6, Hela ‘Low’, Hela ‘High’, and Hep-2 cell lines were able to bind EAV strain 

VBS53 almost as efficiently as the fully susceptible BHK-21 cell line. The amount of 

virus attached to L-M cell line was 25% greater than that attached to BHK-21 cell line 

(Fig 2.6).  

In order to confirm the attachment of EAV to these cell lines, another approach was 

taken using flow cytometry to examine the binding of biotinylated EAV strain VBS53 to 

each cell line. RK-13 (KY), RK-13 (ATCC), BHK-21, Hela ‘Low’, Hela ‘High’, Hep-2, 

and L-M cell lines were incubated with various amounts (0, 2.5 µg, 5.0 µg, 7.5 µg, 10.0 

µg, and 12.5 µg) of biotinylated EAV, respectively. The biotinylated EAV was found to 

bind to all of the cell lines under study and the binding level (fluorescence intensity) 

increased with the increase in the amount of biotinylated virus (Fig 2.7A, C, D, E, F, G 

and H), suggesting that EAV binds to these cells in a dose-dependent manner. However, 

using the same amount of virus, binding differences were observed between these cell 

lines. RK-13 (Fig 2.7C), BHK-21 (Fig 2.7D), Hela ‘Low’ (Fig 2.7E), Hela ‘High’ (Fig 

2.7F), and Hep-2 (Fig 2.7G) cells had similar levels of virus binding (fluorescence 

intensities), while L-M cells had a significantly higher level of virus binding (Fig 2.7H). 

Since EAV strain VBS53 was amplified in BHK-21 cells, the purified virus particles used 

for biotinylation may still have contained some BHK-21 cellular proteins. In order to 
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exclude the possibility that the binding observed was caused by BHK-21 cellular proteins, 

mock-infected BHK-21 cell supernatants which underwent the same purification 

procedure as used for EAV particles was biotinylated and various amounts of biotinylated 

BHK-21 cellular proteins (0, 2.5 µg, 5.0 µg, 7.5 µg, 10.0 µg, and 12.5 µg) equivalent to 

those of biotinylated EAV were used to perform binding assays. As shown in Fig 2.7, in 

the case of each cell line, the fluorescence intensities resulting from biotinylated BHK-21 

cellular proteins were significantly lower than those caused by biotinylated EAV. 

Moreover, unlike biotinylated EAV, an increase in the amount of biotinylated BHK-21 

cellular proteins did not remarkably increase the binding levels (fluorescence intensities). 

This indicated that fluorescence intensities observed in binding experiments mainly 

resulted from the biotinylated EAV rather than from biotinylated BHK-21 cellular 

proteins. The specificity of biotinylated EAV attachment to cells was also confirmed by 

the fact that the binding of biotinylated EAV to the various cell lines was competitively 

inhibited by nonbiotinylated EAV (Fig 2.8).  

These findings demonstrate that EAV strain VBS53 attaches to Hela ‘Low’, Hela 

‘High’, Hep-2, and L-M cell lines as efficiently as it attaches to RK-13 and BHK-21 cell 

lines, suggesting that virus attachment is not the major step in restricting EAV infection 

in Hela, Hep-2, and L-M cell lines. 

Entry assay. To determine whether infection of Hela ‘Low’, Hela ‘High’, Hep-2, 

and L-M cell lines with EAV strain VBS53 is restricted at the entry step, the virus entry 

into these cell lines was investigated. In attempting to use confocal microscopy to follow 

the attachment and entry of biotinylated EAV into BHK-21, Hela, Hep-2, and L-M cell 

lines, it was difficult to clearly distinguish attached virus from internalized virus (data not 

shown). An alternative approach was taken using a modified conventional infectious 

center assay to study EAV entry. A standardized amount of cells were incubated with a 

standardized amount of EAV strain VBS53 for 1 h at 4ºC for virus attachment. After 

extensive washing to remove unbound virus, cells were incubated at 37ºC for 1 h to allow 

for virus entry. Then, cells were treated with acid glycine (pH 3.0) to inactivate non-

internalized viruses. Subsequently, serial decimal dilutions of the cells were made and 

respective dilutions were plated onto monolayers of RK-13 (KY) cells for quantitation of 

infectious foci by plaque formation. Since it has been shown that Hela ‘High’, Hela 
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‘Low’, Hep-2, and L-M cell lines support EAV replication as efficiently as BHK-21 cells 

(Fig 2.4 and Fig 2.5) once viral RNA is introduced into the cell cytoplasm, it is 

reasonable to propose that counts of infectious centers reflect the efficiency of EAV entry 

into each cell line. As shown in Fig 2.9, the efficiency of VBS53 EAV entry into Hela 

‘Low’, Hela ‘High’, Hep-2, and L-M cell lines was significantly lower than that of virus 

entry into BHK-21 cells. In addition, it was observed that the efficiency of EAV entry 

into Hela ‘High’ cell line was approximately five-fold higher than those of virus etnry 

into Hela ‘Low’, Hep-2, and L-M cell lines (Fig 2.9). These findings indicate that 

infection with EAV strain VBS53 is restricted at the entry step in Hela, Hep-2, and L-M 

cell lines.                          

 

DISCUSSION 

Neither viral molecules nor cellular factors involved in the early events (e.g. 

attachment, penetration, uncoating) of the replication cycle of EAV have been elucidated. 

One approach to studying host requirements for EAV infection is to identify cell lines 

that are defective in their ability to support viral infection. In this study, we first 

investigated the permissiveness of various cell lines to infection with EAV strain VBS53 

and then attempted to establish the mechanism that restricts infection in non-permissive 

cell lines. It had been previously demonstrated that RK-13, BHK-21, and Vero cell lines 

are permissive to EAV infection and infection of these cell lines is highly cytocidal 

(Snijder and Meulenberg 1998). In this study the cell line C2C12, derived from the 

mouse muscle, was also found to be permissive to EAV infection with the development 

of typical EAV-induced cytopathic effects. Furthermore, it was found that EAV infection 

was restricted in Hela, Hep-2, and L-M cell lines in which no apparent CPE was observed 

during one-step growth of EAV nor was efficient virus replication demonstrated. The 

mechanism that restricts EAV infection in these cell lines was further investigated. When 

attachment and entry steps are bypassed by transfection of Hela, Hep-2, and L-M cell 

lines with viral RNA, these cell lines support EAV replication as efficiently as the 

permissive BHK-21 cell line, suggesting the absence of an intracellular block later in the 

virus replication cycle. Binding studies revealed that Hela, Hep-2, and L-M cell lines 

were able to bind the VBS53 strain of EAV efficiently. Although it has been reported to 
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use confocal microscopy to study the attachment and entry of biotinylated PRRSV into 

alveolar macrophages (Nauwynck et al. 1999), it was difficult to clearly distinguish 

attached virus from internalized virus when similar approach was used to study EAV 

entry into BHK-21, Hela, Hep-2, and L-M cell lines (data not shown). Thus, a modified 

infectious center assay was used in this study to investigate EAV entry into cells. After 

one hour incubation of virus with cells at 4ºC for virus attachment, the temperature was 

increased to 37ºC to allow for virus entry. Treatment of the cell suspensions with acid 

glycine (pH 3.0) inactivates non-internalized virus and thus only the virus that has 

successfully entered the cells can initiate subsequent replication. Since Hela, Hep-2, and 

L-M cell lines support EAV replication as efficiently as BHK-21 cells, the plaque number 

should reflect the efficiency of the virus entry into these cell lines. However, since no 

apparent CPE was observed in EAV-inoculated Hela, Hep-2, and L-M cell lines, a plaque 

assay cannot be directly performed in these cell lines. Therefore, after virus entry, the 

serial decimal dilutions of suspensions of Hela, Hep-2, L-M, and BHK-21 cells are plated 

onto monolayers of RK-13 (KY) cells which are overlaid with carboxymethyl cellulose. 

With this assay, EAV infection of Hela, Hep-2, and L-M cell lines was shown to be 

restricted at the entry step. However, there are shortcomings to this entry assay. It is 

predicated on the fact that virus entering cells must first complete a single round of 

infection in BHK-21, Hela, Hep-2, and L-M cells before infecting RK-13 cells and 

forming infectious foci. Essentially, this assay does not establish virus entry directly 

although it logically can reflect the entry efficiency. Furthermore, this assay cannot 

distinguish defects at penetration step from those at the fusion/uncoating step. A more 

direct virus entry assay will be performed to confirm these findings. For example, radio-

labeled EAV particles can be used in a virus entry assay in which radioactivity of the cell 

suspensions is measured to reflect entry efficiency after non-internalized viruses are 

inactivated by acid glycine (pH 3.0) treatment.   

In EAV-inoculated RK-13, Hep-2, and L-M cells, the percentage of extracellular 

virus to the total virus present (the sum of extracellular virus and cell-associated virus) 

was greater than 80%, while it was only around 50% in Hela cells. This would suggest 

that virus release from Hela cells might be less efficient than that from RK-13, Hep-2, 

and L-M cells.  
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Another interesting finding from this study is that Hela cells become more 

susceptible to EAV infection after extended serial passage. Hela ‘Low’ cells (P95 to P115) 

are not susceptible to infection with EAV strain VBS53 whereas Hela ‘High’ cells (P170 

to P221) are partly susceptible to infection. Increased susceptibility of Hela ‘High’ cells 

to EAV infection appears to be a stable genetic trait since 51 subsequent serial passages 

(from 170 to 221) did not result in any apparent alteration in the degree of susceptibility 

of the cells to EAV (data not shown). This would suggest that in serially subculturing of 

Hela cells up to passage 170, Hela cells acquire certain characteristics which would 

appear stable. Furthermore, EAV strain VBS53 was able to initiate persistent infection in 

Hela ‘High’ cell line but not in Hela ‘Low’ cell line (see Chapter 3), confirming that the 

Hela cell line evolved during long-term serial passage. The results of karyotypic analysis 

did not support the possibility that Hela ‘High’ cell line was contaminated by other cells. 

The Hela ‘High’ cell line still contained the marker chromosomes characteristic of the 

Hela cell line. Karyotypic analysis also revealed changes between Hela ‘Low’ and Hela 

‘High’ cell lines at chromosomal level. However, the molecular changes that are 

responsible for susceptibility differences of Hela ‘Low’ and Hela ‘High’ cell lines to 

EAV infection are not yet determined. Based on the following i) virus yields in EAV-

inoculated Hela ‘High’ cell line are significantly lower than those in EAV-inoculated 

BHK-21, RK-13, and C2C12 cell lines, ii) less than 100% of Hela ‘High’ cells are 

infected with EAV, and iii) the efficiency of EAV entry into Hela ‘High’ cell line is only 

about 10% of that with respect to BHK-21 cell line, it is postulated that Hela ‘High’ cell 

line comprises a heterogenous population of cells of which only a certain percentage of 

cells are fully permissive to EAV infection. 

The evolution of cells and emergence of cell diversity is not an unusual event. 

Normal tissues and cultured cells can exhibit a degree of heterogeneity (Ingram et al. 

1985; Schafer et al. 1987). It has been reported that BHK(TK-) cells on subculture 

spontaneously give rise to cells that are highly resistant to herpes simplex virus type-1 

infection (Roller and Roizman 1994). Clonal selections of cell lines resistant to Theiler’s 

murine encephalomyelitis virus or herpes simplex virus types 1 and 2 infections have 

been reported as well (Hertzler et al. 2000; Roller and Herold 1997). The extent of 

cellular heterogeneity is greatly increased in tumors and tumor cell heterogeneity appears 
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to result from an enhanced genetic instability of transformed cells (Cifone and Fidler 

1981; Crouch et al. 1987; Fidler et al. 1981; Lichtner et al. 1987; Nicolson 1987a, 1987b). 

Hela cells were originally derived from a cervical adenocarcinoma and perhaps retain the 

potential to evolve if they undergo extended serial passage. Cell evolution has also been 

frequently observed in cell cultures persistently infected with a virus such as mouse L cell 

evolution during persistent infection with reovirus (Ahmed et al. 1981), BHK-21 cell 

evolution during persistent infection with foot-and-mouth disease virus (de la Torre et al. 

1988a; 1989), and Hela cell and human neuroblastoma cell evolution during persistent 

infection with poliovirus (Kaplan et al. 1989; Pavio et al. 2000).       

In recent years it has become evident that viral attachment to and entry into the cell 

are frequently more complex than previously thought. A number of viruses have been 

shown to enter cells via receptor complexes rather than by an individual cell surface 

molecule. For example, human immunodeficiency virus attaches to CD4 molecule 

(Maddon et al. 1986) but requires the presence of chemokine receptors as its coreceptor 

for virus entry (Choe et al. 1996; Deng et al. 1996; Doranz et al. 1996; Dragic  et al. 1996; 

Feng et al. 1996). Adenovirus subgroups A, C, D, E, and F bind to molecule CAR 

(coxsackievirus and adenovirus receptor) (Roelvink et al. 1998) and adenovirus types 2 

and 5 bind to heparan sulfate glycosaminoglycans (Dechecchi et al. 2001), however, 

these binding molecules are insufficient for adenovirus entry which needs the 

involvement of coreceptor αv–integrins (Wickham et al. 1993). Coxsackievirus A21 

(CAV21) has been shown to bind to both decay-accelerating factor (DAF) and 

intercellular adhesion molecule 1 (ICAM-1) (Shafren et al. 1997). However, DAF just 

functions as a low-affinity attachment receptor and does not initiate a productive 

infection; high-affinity binding molecule ICAM-1 is required for virus entry into cells 

(Shafren et al. 1997). Similarly, PRRSV, another arterivirus, has been shown to attach to 

heparan sulfate and porcine sialoadhesin on porcine macrophages (Delputte et al. 2002; 

Vanderheijden et al. 2003). Heparan sulfate alone is sufficient to mediate PRRSV 

attachment but not entry, whereas sialoadhesin alone is sufficient for both virus 

attachment and virus entry (Delputte et al. 2005).          

Cell receptors mediating EAV attachment and entry have not been identified. One 

previous study suggested that a heparin-like molecule on the surface of RK-13 cells 
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might serve as cell receptor for EAV (Asagoe et al. 1997). However, heparinase 

treatment of RK-13 cells could not completely block EAV infection (Asagoe et al. 1997), 

implying that other molecules on the cell might serve as EAV receptors as well. Data 

from this study indicate that Hela, Hep-2, and L-M cell lines are able to bind EAV strain 

VBS53 efficiently but cannot provide mechanism for virus entry. This would suggest that 

cell receptor(s) for attachment of EAV strain VBS53 are present on the surface of these 

cell lines, but these attachment receptor(s) are not sufficient to enable efficient virus entry. 

Additional cellular factor(s) are therefore likely to be required for entry of EAV strain 

VBS53 and these cellular factor(s) are probably absent or expressed at very low levels on 

Hela ‘Low’, Hep-2, and L-M cell lines. Compared to Hela ‘Low’ cell line, Hela ‘High’ 

cell line is more susceptible to infection with EAV strain VBS53, and this increased 

susceptibility appears to be due to increased virus entry efficiency. It would appear that 

some Hela ‘High’ cells probably have acquired the ability to express the cellular factor(s) 

which are necessary for EAV entry. RK-13, BHK-21, and C2C12 cell lines being fully 

susceptible to EAV infection presumably constitutively express the cellular factor(s) 

essential for both EAV attachment and entry. The availability of cell lines with varying 

susceptibility to EAV infection should be useful for studying post-attachment events 

involved in EAV entry. 
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Table 2.1 Source and passage level of cell lines used in study 
 

Cell line Species Tissue Morphology Source 

BHK-21 (ATCC CCL-10)  Hamster Kidney Fibroblast Dr. George Allen, University of Kentucky  

RK-13 (ATCC CCL-37) 
(passage 192-204) Rabbit Kidney Epithelial Dr. William McCollum, University of Kentucky 

RK-13 (KY) 
(passage 397-409) Rabbit Kidney Epithelial Dr. William McCollum, University of Kentucky 

C2C12 (ATCC CRL-1772)  Mouse Muscle, myoblast Fibroblast Dr. Carole Moncman, University of Kentucky 

Hela ‘Low’ (ATCC CCL-2) 
(passage 95-115) 

Human Cervical Carcinoma Epithelial American Type Culture Collection 

Hela ‘High’  
(passage 170-221) Human Cervical Carcinoma Epithelial Derived from Hela ‘Low’ cell line by the author 

Hep-2 (ATCC CCL-23)  Human Epidermoid Laryngal 
Carcinoma Epithelial Dr. William McCollum, University of Kentucky 

L-M (ATCC CCL-1.2) Mouse Connective tissue Fibroblast Dr. George Allen, University of Kentucky 
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Table 2.2 Effect of multiplicity of infection on outcome of infection of selected cell 
lines with EAV strain VBS53 

          

Virus Titer (pfu/ml) Virus Titer (pfu/ml) 
(0 h p.i.) (40 h p.i.) cells and 

m.o.ia cell-associated                                                                     
virusb 

extracellular                                                                                                                                         
virus 

cell-associated                                                                                                
virus 

extracellular                                                                                                                                              
virus 

RK-13 (KY) 
P406     
   m.o.i. = 1 1.3×101  1.1×102  1.5×106  6.1×107 (97.6)c 

   m.o.i. = 3 5.0×101 3.0×102  2.1×106 4.5×107 (95.5) 

   m.o.i. = 10 1.4×102 1.6×103  5.2×105 3.0×107 (98.3) 

   m.o.i. = 50 1.8×103 5.0×104  4.4×105 1.7×107 (97.5) 

Hela P100     
   m.o.i. = 1 3.2×101 1.6×102  1.4×103 1.7×103 (54.8) 

   m.o.i. = 3 8.0×101 6.1×102  6.3×103 7.6×103 (54.7) 

   m.o.i. = 10 5.2×102 3.1×103  2.4×104 2.3×104 (48.9) 

   m.o.i. = 50 2.2×103 3.8×104  6.5×104 7.8×104 (54.5) 

Hep-2 P454     
   m.o.i. = 1 6.7×101 1.8×102  1.6×102 6.6×102 (80.5) 

   m.o.i. = 3 1.4×102 3.3×102  8.6×102 3.2×103 (78.8) 

   m.o.i. = 10 8.7×102 1.7×104  2.3×103 1.1×104 (82.7) 

   m.o.i. = 50 3.5×103 6.7×104  8.0×103 3.9×104 (83.0) 

L-M P305     
   m.o.i. = 1 7.0×100 2.7×102  6.9×101 3.6×103 (98.1) 

   m.o.i. = 3 2.7×101 1.9×102  3.8×102 1.7×104 (97.8) 

   m.o.i. = 10 1.4×102 1.2×103  1.8×103 8.3×104 (97.9) 

   m.o.i. = 50 2.2×103 4.3×104  3.6×103 3.6×105 (99.0) 
     
a Various cells were inoculated with EAV strain VBS53 at an m.o.i. of 1, 3, 10, 50 at 37ºC for 
1 h. The inoculum was removed and the cells were washed three times with PBS. The cells 
were supplemented with 10 ml culture medium and incubated at 37ºC. This was designated 
time zero of infection. At 0 h and 40 h after infection, the extracellular virus (the supernatants) 
and cell-associated virus (the cell lysate) were harvested and titrated on RK-13 (KY) cells. 
b For harvesting cell-associated viruses, the cells were resuspended in 10 ml culture medium, 
sonicated three times (20V, 15 sec/time), and centrifuged at 1900 rpm for 10 min to remove 
cell debris. 
c The numbers in parentheses represent percentage of extracellular virus titer to the total virus 
titer. (total virus = extracellular virus + cell-associated virus)    
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Table 2.3 The outcome of serial passaging of EAV strain VBS53  
in Hela ‘Low’ and Hela ‘High’ cell lines* 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
* Hela ‘Low’ (P109) and Hela ‘High’ (P200) cell lines were inoculated with EAV strain 
VBS53 at an m.o.i of 3 (using an inoculum of 0.3 ml). Mock-inoculated Hela cells were 
included. The same volume of EAV infective inoculum was added to 10% EMEM 
medium without cells and included as an additional control. After 1 h of incubation at 
37ºC, no washing, 10 ml medium was added to each culture. After 4 days of incubation at 
37ºC, the supernatant (P1) (10 ml) was harvested, centrifuged at 1900 rpm for 10 min to 
remove cell debris. The clarified supernatant was then filtered through a 0.45 µm 
membrane to ensure removal of cell debris. Filtered supernatant (0.3 ml) from mock-
inoculated Hela cells (P1 mock-Hela), EAV-inoculated Hela cells (P1 EAV-Hela), and 
EAV-inoculated medium (P1 EAV-medium) were added to uninfected Hela cell cultures 
(P110 or P201) or medium without cells, respectively, and incubated at 37ºC for 1 h. A 
10 ml volume of medium was added and the cultures incubated for 4 days at 37ºC to 
provide ‘P2 mock-Hela’, 'P2 EAV-Hela', and 'P2 EAV-medium', respectively. The same 
procedure was followed in attempting to amplify the virus up to P7. 
 
 
 
 
 
 

EAV titer (pfu/ml) Hela ‘Low’ 
P109 Mock-Hela EAV-Hela EAV-medium 

1 h p.i. 
P1 
P2 
P3 
P4 
P5 
P6 
P7 

0 
0 
0 
0 
0 
0 
0 
0 

1.55 × 105 
9.4 × 102 

0.5 
0 
0 
0 
0 
0 

1.12 ×105 
0 
0 
0 
0 
0 
0 
0 

EAV titer (pfu/ml) Hela ‘High’ 
P200 Mock-Hela EAV-Hela EAV-medium 

1 h p.i. 
P1 
P2 
P3 
P4 
P5 
P6 
P7 

0 
0 
0 
0 
0 
0 
0 
0 

1.14 × 105 
2.05 × 105 
1.65 × 104 
1.70 × 104 
3.5 × 105 
1.5 × 106 
7.2 × 106 
2.1 × 107 

1.12 × 105 
0 
0 
0 
0 
0 
0 
0 
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Table 2.4 The results of karyotypic analyses of Hela ‘Low’ (P98) and Hela ‘High’ (P202) 
cell lines using G-banding technique 

 

Hela ‘Low’ (P98) 

81-82, XXX, +der(1;3)(q10;q10), der(1;9)(p10;q10), 
add(2)(q37), add(3)(q12)×1-2, +der(3;5)(p10;q10), 
add(5)(p10), +i(5)(p10)×3-5, +add(7)(p11.2), +9, +i(9)(p10), 
+10, der(10)t(10;?)(p13;?), ?der(11;20)(q10;q10), 
+der(12)t(3;12)(q21;q21.2), -13, +der(15;15)(q10;q10), +17, 
add(19)(p13.1), +20, add(22)(q13.3), +1-4mar[cp] 
chromosome pattern.  

Hela ‘High’ (P202) 

78-94, XXX, +der(1;3)(q10;q10), der(1;9)(p10;q10), 
add(2)(q37), i(2)(p10), i(2)(q10), add(3)(q12)×1-2, 
+der(3;5)(p10;q10), add(5)(p10), +i(5)(p10)×3-5, +6, 
+add(7)(p11.2), +9, +i(9)(p10), +10, 
der(10)t(10;?)(p13;?), ?der(11;20)(q10;q10), 
+der(12)t(3;12)(q21;q21.2), +17,   add(19)(p13.1), +20, 
add(22)(q13.3), +1-14mar, 0-4dmin[cp] chromosome 
pattern. 
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Fig 2.1 Passage history of the original Bucyrus virus to produce the ATCC and MLV 
vaccine strains of EAV. The EAV strain VBS53 that was used in this study is highlighted. 
 

ORIGINAL 
ISOLATE (1953) 

EAV ATCC STRAIN 
HISOTRY 

Bucyrus strain of EAV 
from the lung of an 
aborted fetus in Ohio, 
1953 

Passaged in horses 15 times 
(H15). Highly virulent in horses. 
[The EAV isolated from the 
pregnant mare (H9 EAV) was 
further passaged in horses for 6 
times. Totally 15 times in 
horses.] 

Pleural fluid of 15th horse. Also 
called Pleural Fluid of Virulent 
Bucyrus Strain (VBS53) 

Submitted to ATCC and ATCC 
made its stock by passaging in 
RK-13 cells for unknown times 

Virulent EAV ATCC strain 
(ATCC VR-796) 

MLV VACCINE 
HISTORY 
Passaged in horses 9 times 
(H9). Highly virulent in 
horses. 
[The EAV strain isolated in 
1953 was passaged in horses 8 
times (H8). H8 EAV was used 
to inoculate a pregnant mare 

The EAV from aborted fetal 
lung tissue 

Passaged in Horse Kidney 
(HK) cells 131 times and in 
Rabbit Kidney (RK-13) 
cells 111 times 

Passaged in Equine 
Dermis (ED) cells 24 
times 

ARVAC® MLV vaccine 
266 serial passages in 
cell culture (HK 131/RK 
111/ED 24) 
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Fig 2.2 Growth of the VBS53 strain of EAV in eight cell lines. Subconfluent monolayers 
of BHK-21, RK-13 (ATCC), RK-13 (KY), Hela ‘High’, Hela ‘Low’, Hep-2, and L-M 
cell lines were inoculated with EAV strain VBS53 at an m.o.i. of 3 at 37°C for 1 h and 
then washed three times with PBS to remove unbound virus. The cultures were then 
supplemented with 10 ml EMEM medium and incubated at 37°C to allow virus growth. 
This was designated time zero with respect to infection. At 0, 12, 24, 36, 48, 60, and 72 h 
p.i., both the supernatants and cells were harvested and sonicated three times (20V, 15 
sec/time) to fully disrupt the cells and release virus particles. Virus (supernatants and 
cells together) was titrated by plaque assay on RK-13 (KY) cells as previously described 
(McCollum et al. 1962). These results were confirmed in three separate experiments. 
 
 
 
 
 
 
 
 
 



 

 79 

 
 
Fig 2.3 Indirect immunofluorescence assays on cells infected with the VBS53 strain of 
EAV. At 24 and 72 h post infection, EAV-infected cells grown in 8-chamber slides were 
fixed with cold acetone for 10 min, and then washed three times with PBS plus 10mM 
glycine. Slides were incubated with MAb 3E2 against EAV nucleocapsid protein (A, C, 
G, K, O for 24 h p.i., and E, I, M, Q for 72 h p.i.) or MAb 12A4 against EAV NSP1 (B, D, 
H, L, P for 24 h p.i., and F, J, N, R for 72 h p.i.) followed by FITC-conjugated goat 
antimouse immunoglobulin. The cells were counterstained by Evans blue. The images 
were recorded with a LEICA confocal microscope.       
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Fig 2.4 Virus yield in cells transfected with viral RNA in vitro transcribed from an 
infectious EAV cDNA clone pEAV2421/211EB. BHK-21, Hela ‘Low’, Hela ‘High’, 
Hep-2, and L-M cell lines were transfected with in vitro-transcribed viral RNA by means 
of electroporation (see Materials and Methods). At 12, 24, 48, 72, and 96 h post 
transfection, the supernatants were harvested and titrated by plaque assay on RK-13 (KY) 
cells.    
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Fig 2.5 Indirect immunofluorescence assays on cells transfected with in vitro-transcribed viral RNA. At 24 and 48 h post transfection, 
viral RNA-transfected cells grown in 8-chamber slides were fixed with cold acetone for 10 min, and then washed three times with 
PBS plus 10mM glycine. Slides were incubated with MAb 12A4 against EAV NSP1 (A-J) or MAb 3E2 against EAV nucleocapsid 
protein (data not shown) followed by FITC-conjugated goat antimouse immunoglobulin. The cells were counterstained by Evans blue. 
The images were recorded with a LEICA confocal microscope.      
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Fig 2.6 Binding of the VBS53 strain of EAV to various cell lines. Subconfluent 
monolayers of BHK-21, Hela ‘High’, Hela ‘Low’, Hep-2, and L-M cell lines were 
trypsinized and resuspended in culture medium at a concentration of 2 x 106 cells per ml, 
and cooled down at 4ºC for at least 30 min. For each cell line, 2 x 106 PFU of EAV (in 
200 µl) were added to duplicates of 1 x 106 cells (500 µl) and maintained at 4ºC for 1 h. 
The cells were washed three times with cold PBS to remove unbound virus and then 
resuspended in 1 ml of cold culture medium. The cell suspensions were subjected to three 
cycles of freezing and thawing to release attached viruses, and centrifuged for 10 min at 
1900 rpm at 4ºC. The clarified supernatants were titrated by plaque assay on RK-13 (KY) 
cells. The amount of virus attached to Hela ‘High’, Hela ‘Low’, Hep-2, and L-M cells 
was calculated as percentage of the virus attached to BHK-21 cells. Mean ± Standard 
Deviation is shown. 
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Fig 2.7 Binding of biotinylated EAV strain VBS53 to various cell lines as determined by 
flow cytometry. Suspensions of RK-13 (KY), RK-13 (ATCC), BHK-21, Hela ‘High’, 
Hela ‘Low’, Hep-2, and L-M cells were inoculated with different amounts (0, 2.5 µg, 5.0 
µg, 7.5 µg, 10.0 µg, and 12.5 µg) of biotinylated EAV or biotinylated BHK-21 cellular 
proteins (control). Following 1 h of adsorption at 4ºC, cells were washed with PBSA and 
incubated with streptavidin-fluorescein conjugate for 1 h at 4ºC. The cells were washed 
and fluorescence intensity of each sample was analyzed by flow cytometry. In the case of 
each sample, 30,000 cells were counted and dead cells were excluded through propidium 
iodide staining. Binding of biotinylated EAV or biotinylated BHK-21 cellular proteins to 
RK-13 (KY) cells were shown in (A) and (B), respectively. The binding of biotinylated 
EAV or biotinylated BHK-21 cellular proteins to other cell lines were converted to 
another format as shown in (C-H): RK-13 (ATCC) (C), BHK-21 (D), Hela ‘Low’ (E), 
Hela ‘High’ (F), Hep-2 (G), and L-M (H). In (C-H), Mean ± Standard Deviation is shown. 
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Fig 2.8 Binding of biotinylated EAV strain VBS53 to various cell lines was competitively 
inhibited by nonbiotinylated EAV. Suspensions of RK-13 (KY), Hela ‘High’, Hela ‘Low’, 
Hep-2, and L-M cells were first incubated at 4ºC for 1 h with different amounts of 
nonbiotinylated EAV (0, 1 × 108 pfu, 2.5 × 108 pfu, 5 × 108 pfu, 7.5 × 108 pfu) and then 
incubated with 1 × 108 pfu biotinylated EAV for another 1 h at 4ºC. The amount of 
biotinylated virus attached to cells was determined by flow cytometry as described above.  
 

 N a m e  P a r a m e t e r  G a t e  

C e l l s  F L 1 - H  G 1  

C e l l s  +  0  E A V  +  1 x 1 0 p f u  B i o E A V   F L 1 - H  G 1  

C e l l s  +  1 x 1 0 8  p f u  E A V  +  1 x 1 0 8  p f u  B i o E A V  F L 1 - H  G 1  

C e l l s  +  2 . 5 x 1 0 8  p f u  E A V  +  1 x 1 0 8  p f u  B i o E A V  F L 1 - H  G 1  

C e l l s  +  5 x 1 0 8  p f u  E A V  +  1 x 1 0 8  p f u  B i o E A V  F L 1 - H  G 1  

C e l l s  +  7 . 5 x 1 0 8  p f u  E A V  +  1 x 1 0 8  p f u  B i o E A V  F L 1 - H  G 1  

RK-13 (KY) Hela ‘Low’ 

Hep-2 L-M 

Hela ‘High’ 



 

 86 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

BHK-21  Hela 'Low'  Hela 'High'  L-M  Hep-2

%
 o

f e
nt

ry
 r

el
at

iv
e 

to
 B

H
K

-2
1 

ce
lls

 
 
Fig 2.9 Entry of EAV strain VBS53 into various cell lines. Subconfluent monolayers of 
BHK-21, Hela ‘High’, Hela ‘Low’, Hep-2, and L-M cells were trypsinized and 
resuspended in culture medium at a concentration of 2 x 106 cells per ml, and cooled 
down at 4ºC for at least 30 min. For each cell line, 2 x 106 PFU of EAV (in 200 µl) were 
added to duplicates of 1 x 106 cells (500 µl) and maintained at 4ºC for 1 h to allow for 
virus attachment. The cells were washed three times with cold PBS to remove unbound 
virus and then resuspended in 1 ml of pre-warmed culture medium and incubated at 37ºC 
for 1 h with agitation to allow for virus entry. After 1 h of incubation at 37ºC, the cells 
were treated with 1.0 ml acid glycine (pH 3.0) to inactivate non-internalized virus. Then 
cells were washed four times with PBS and resuspended in 1 ml of culture medium. The 
last wash was saved for titration. Serial decimal dilutions of the cell suspensions were 
made in culture medium and plated onto monolayers of RK-13 (KY) cells. Inoculated 
cultures were incubated at 37ºC for 1 h. Cell monolayers were overlaid with culture 
medium containing 0.75% carboxymethyl cellulose and incubated at 37ºC for 4 days. 
Infectious centers were counted after staining of plates with 10% formalin buffered 
crystal violet. Efficiency of virus entry into Hela ‘High’, Hela ‘Low’, Hep-2, and L-M 
cells was calculated as a ratio of infectious center counts in each cell line being evaluated 
to infectious center counts in BHK-21 cells. Mean ± Standard Deviation is shown.   
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Chapter Three 

Establishment and Characterization of Persistent Equine Arteritis 

 Virus Infection in Hela Cells 

 

ABSTRACT 

It has been previously demonstrated that BHK-21, RK-13, and C2C12 cell lines are 

fully susceptible, Hela ‘High’ cell line (P170-221) is partly susceptible, and Hep-2, L-M, 

and Hela ‘Low’ (P95-115) cell lines are non-susceptible, to infection with the VBS53 

strain of EAV (Chapter 2). Furthermore, it was shown that the VBS53 strain of EAV was 

able to establish persistent infection in Hela ‘High’ cell line, but unable to establish 

persistent infection in either BHK-21, RK-13, or C2C12 cell lines in which EAV 

infection was highly cytolytic, with all the cells dead by 48 h post infection. Persistent 

infection also could not be established in Hep-2, L-M, or Hela ‘Low’ cell lines in which 

virus could no longer be detected after two passages. Similarly, transfection with in vitro-

transcribed viral RNA was capable of initiating persistent infection only in the Hela 

‘High’ cell line but not in BHK-21, Hep-2, L-M, or the Hela ‘Low’ cell lines. Persistently 

infected Hela ‘High’ cell line had the following characteristics: i) The persistently 

infected cells had been subcultured and maintained for over 3 years. ii) Persistently 

infected cell monolayers underwent recurrent episodes of partial destruction and 

subsequent recovery over the period under study. iii) Over the course of the study, the 

percentage of EAV fluorescent-positive cells in the persistently infected monolayers 

varied from 1% to 37%. In most passage levels, the percentage of virus-positive cells 

ranged between 15% and 25%. iv) Infectious virus was continuously produced 

throughout the course of persistent infection. Virus infectivity titers varied from 102 to 

106 plaque forming units (pfu) per ml but in most passage levels tested, the titer ranged 

from 104 to 106 pfu per ml. In all cases, the yield of cell-associated virus was comparable 

to that of extracellular virus. v) After cryopreservation for 3 years in liquid nitrogen, 

revived cultures still could produce infectious virus. Virus infectivity titers were similar 

before and after freezing of the cell line. vi) An attempt to clone a single cell that could 

continuously produce infectious virus was unsuccessful. vii) Addition of EAV 

neutralizing antibody-positive equine serum to the medium in which the persistently 
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infected cell line was cultivated resulted in the elimination of the persistent infection. The 

viruses recovered from the 35th passage (Hela-EAVP35) and the 80th passage (Hela-

EAVP80) of the persistently infected Hela ‘High’ cell line grew more efficiently than the 

VBS53 strain of EAV in Hela ‘Low’ and Hela ‘High’ cells. EAV strains VBS53, Hela-

EAVP35, and Hela-EAVP80 grew with the similar efficiency in BHK-21 cells. No 

significant differences were observed in the growth of EAV strains VBS53, Hela-

EAVP35, and Hela-EAVP80 in Hep-2 and L-M cell lines, respectively. Notwithstanding 

the fact that the VBS53 strain of EAV can only establish persistent infection in the Hela 

‘High’ cell line but not in the Hela ‘Low’ cell line, Hela-EAVP35 and Hela-EAVP80 

virus strains were able to establish persistent infection in both Hela ‘High’ and Hela 

‘Low’ cell lines. Neither of these strains, however, was able to establish persistent 

infection in BHK-21, Hep-2, and L-M cell lines. Entire genome sequencing of EAV 

strains VBS53, Hela-EAVP35, and Hela-EAVP80 revealed nucleotide and deduced 

amino acid changes during the course of persistent infection. The entire genome of each 

of these three EAV strains was 12,704 nucleotide (nt) in length. The nucleotide 

differences between EAV strains VBS53 and Hela-EAVP35, VBS53 and Hela-EAVP80, 

Hela-EAVP35 and Hela-EAVP80 totaled 26 nt, 34 nt, and 16 nt, respectively. The 

replicase polyprotein and the structural proteins had 15 aa, 17 aa, and 6 aa differences, 

respectively, between EAV strains VBS53 and Hela-EAVP35, VBS53 and Hela-

EAVP80, and Hela-EAVP35 and Hela-EAVP80. The majority of deduced amino acid 

changes involved EAV structural proteins E, GP2b, GP3-5 encoded by ORFs2a, 2b, and 

3-5, respectively. In conclusion, an in vitro model of EAV persistence in cell culture was 

established for the first time. Properties of the model system were characterized. The 

strain of EAV that evolved during establishment and maintenance of persistent infection 

in Hela cells was phenotypically and genetically analyzed.   

 

 

 

 

 

 



 

 89 

INTRODUCTION 

Equine arteritis virus (EAV) is the prototype member of the family Arteriviridae in 

the order Nidovirales (Cavanagh 1997). The genome of equine arteritis virus is a single-

stranded, positive-sense RNA molecule of 12.7 kb, which includes nine functional open 

reading frames (ORFs) (Snijder and Meulenberg 1998; Snijder et al. 1999). The first two 

ORFs (1a and 1b) are located at the 5’-terminal three-quarters of the genome and encode 

viral replicases; the other seven ORFs (2a, 2b, and 3-7) are located at the 3’ one-quarter 

of the genome and encode structural proteins E, GP2b (Gs), GP3, GP4, GP5 (GL), M, and 

N, respectively (den Boon et al. 1991; Snijder et al. 1999). The ORF1a and ORF1b are 

translated from the genomic RNA into two replicase polyproteins which are 

proteolytically processed into 12 nonstructural proteins (nsp1-12) and multiple 

processing intermediates required for viral replication and transcription (den Boon et al. 

1991; Snijder and Meulenberg 1998; Ziebuhr et al. 2000). The structural proteins are 

expressed from 5’- and 3’-coterminal nested set of six subgenomic mRNAs (de Vries et 

al. 1990).  

EAV is the causative agent of equine viral arteritis (EVA), a globally distributed 

infectious disease of equids. Most EAV infections are subclinical in nature; occasionally 

infection results in respiratory or systemic illness, abortion/stillbirths in pregnant mares, 

and interstitial pneumonia, enteritis, or pneumonoenteritis in young foals (Glaser et al. 

1997; Timoney and McCollum 1993; 1996). After natural infection with EAV, up to 30% 

to 70% of stallions can subsequently become carriers and these constantly shed the virus 

in their semen (Timoney and McCollum 1993). Persistently infected stallions are the 

principal reservoir of EAV and are responsible for perpetuation and dissemination of 

EAV in equine populations (Balasuriya and MacLachlan 2004c; Timoney and McCollum 

1993). Carrier stallions are also thought to be a significant natural source of genetic and 

phenotypic diversity of EAV (Balasuriya et al. 1999a; 2004a; Hedges et al. 1999a). There 

is convincing evidence that establishment and maintenance of the carrier state in the 

stallion is testosterone-dependent with the detailed mechanism as yet unknown (Little et 

al. 1991; McCollum et al. 1994). What host factor(s) (except testosterone) or viral 

factor(s) contribute to the establishment and maintenance of persistent EAV infection in 

stallions remain to be determined. Geographically and temporally distinct EAV isolates 



 

 90 

can vary markedly in the incidence and severity of the clinical disease they induce and in 

their abortigenic potentials (Balasuriya et al. 1998; 1999b; Balasuriya and MacLachlan 

2004c; McCollum and Timoney 1999; Timoney and McCollum 1993). The genetic 

determinants of virulence have not yet been defined for EAV. 

The ability of many viruses to establish persistent infection in cell culture has been 

documented. Such infections have been used to study virus-host cell interactions. Also, 

they are a useful tool for investigating virus and cell evolution (Ahmed et al. 1981; 

Colbere-Garapin et al. 1989; de la Torre et al. 1988a; 1989; Kaplan et al. 1989). 

Persistent infection in cell culture could possibly serve as a model system for elucidating 

mechanisms of viral persistence in vivo. In fact, genetic and phenotypic characterizations 

of virus mutants and host cell mutants during persistent infection have already greatly 

helped in the study of virus-receptor interactions (Borzakian et al. 1993; Calvez et al. 

1993; Colbere-Garapin et al. 1989; de la Torre et al. 1989; Duncan et al. 1998; Gosselin 

et al. 2003; Pavio et al. 1996; 2000; Pelletier et al. 1991; 1998a). Such studies have also 

served to define virus virulence gene (Couderc et al. 1993; 1994; Diez et al. 1990a; 

1990b), and to identify viral and host cell determinants involved in persistent viral 

infection (Benton et al. 1996; Borzakian et al. 1993; Calvez et al. 1993; Chen et al. 1996; 

Desforges et al. 2001; Dryga et al. 1997; Duncan et al. 1998; Okada et al. 1987; Pelletier 

et al. 1998a).  

EAV infection is usually highly cytolytic in cell culture, e.g. BHK-21, RK-13, and 

C2C12 (Snijder and Meulenberg 1998 and Chapter 2). Recently, it has been found that a 

Hela ‘High’ cell line (P170-221) is partly susceptible to infection with the VBS53 strain 

of EAV, whereas Hep-2, L-M, and Hela ‘Low’ (P95-115) cell lines are non-susceptible to 

this virus strain (Chapter 2). The present study further demonstrated that the VBS53 

strain of EAV was able to establish persistent infection in Hela ‘High’ cell line but not in 

Hela ‘Low’, Hep-2, or L-M cell lines. Properties of the persistent EAV infection in Hela 

‘High’ cell line were characterized. Genetic and phenotypic variations in the virus during 

the course of persistent infection were investigated. The mechanism and significance of 

persistent EAV infection in Hela cells are discussed.  
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MATERIALS AND METHODS 

Cells and viruses. The origin and conditions for the cultivation of BHK-21, RK-13, 

C2C12, Hep-2, L-M, Hela ‘Low’, and Hela ‘High’ cell lines have been described in 

Chapter 2. The origin and passage history of the VBS53 strain of EAV have been 

described in Chapter 2. The VBS53 strain of EAV was propagated twice in BHK-21 cells 

to produce virus stocks which were used in an attempt to establish persistent infection in 

vitro. Hela-EAVP35 and Hela-EAVP80 are the virus strains obtained from the 35th and 

80th passage of the persistently infected Hela ‘High’ cell line, respectively. 

Antibodies. The development and characterization of monoclonal antibodies to the 

nucleocapsid protein (N; MAb 3E2) and the non-structural protein 1 (nsp1; MAb 12A4) 

of EAV have been previously described (MacLachlan et al. 1998; Wagner et al. 2003). 

Both MAbs 3E2 and 12A4 were kindly provided by Drs. Udeni Balasuriya and James 

MacLachlan at University of California, Davis. 

Cell counting and cell viability. Before serially passaging cells, cell culture 

supernatants containing detached cells were transferred to a tube. Cells were trypsinized 

and the detached cells pooled together to provide a cell suspension. A 100 µl volume of 

cell suspension was mixed with 100 µl of 0.4% trypan blue and loaded onto a 

hemocytometer. Dead cells are stained by trypan blue. Cells were counted and cell 

viability was calculated.    

Attempt to establish persistent EAV infection. Subconfluent monolayers of 

BHK-21, RK-13 (KY), C2C12, Hela ‘High’ (P171), Hela ‘Low’ (P98), Hep-2, and L-M 

cell lines grown in T-25 flasks were inoculated with the VBS53 strain of EAV at an m.o.i. 

of 3. Following one-hour absorption at 37ºC, the cells were washed three times with PBS 

and 10 ml of fresh culture medium was added. Inoculated cultures were incubated at 37ºC. 

Cultures were microscopically monitored daily for the development of cytopathic effect 

and subcultured once every four days (1:4 split) if any cells survived. Extracellular and 

cell-associated viruses were harvested separately, and titrated by routine plaque assay in 

the RK-13 (KY) cell line. Expression of the viral nucleocapsid (N) protein and non-

structural protein 1 (NSP1) was examined using an indirect immunofluorescence assay. 

Attempts to establish persistent infection in Hela ‘Low’ (P98), Hep-2, and L-M cell lines 

with EAV strain VBS53 was repeated once. The attempt to establish persistent infection 
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in the Hela ‘High’ (P196) cell line was repeated twice. Attempts to establish persistent 

infection in BHK-21, Hela ‘Low’ (P98), Hela ‘High’ (P196), Hep-2, and L-M cell lines 

with Hela-EAVP35 or Hela-EAVP80 viruses were performed in accordance with 

protocols described above.    

RT-PCR detection of viral RNA. The aim of the study was to establish persistent 

infection in the Hela ‘High’ (P171) and Hela ‘Low’ (P98) cell lines with EAV strain 

VBS53. At selected cell culture passages, supernatants and cells were harvested and 

sonicated three times (20V, 15 sec/time) to fully disrupt the cells and release virus 

particles. Cell debris was removed by centrifugation and 140 µl of clarified supernatants 

were used for viral RNA extraction using the QIAamp viral RNA mini kit (Qiagen). The 

primers used for one-step RT-PCR were based on amplification of a conserved region of 

ORF1b (Gilbert et al. 1997): forward primer 9299P (nt position 9299-9318: 

5’CCTGAGACACTGAGTCGCGT3’) and reverse primer 9464N (nt position 9483-9464: 

5’CCTGATGCCACATGGAATGA3’). A 10 µl volume of extracted RNA was used for 

the one-step RT-PCR in a total volume of 50 µl following the instructions of the one-step 

RT-PCR kit (Qiagen). The reaction mixtures were incubated at 50ºC for 30 min and at 

95ºC for 15 min and then were cycled for 40 times as follows: 94ºC for 30 sec, 53ºC for 

30 sec, and 72ºC for 1 min. The reaction was terminated by a single extension step at 

72ºC for 10 min. A 10 µl volume of the one-step RT-PCR products were analyzed on a 

1.8% agarose gel. The predicted PCR products are 185 bp long. After addition of anti-

EAV equine serum to the medium of persistently infected cells, RT-PCR analysis of viral 

RNA at each cell passage level was carried out in accordance with the protocols 

previously described.    

Transfection of cells with in vitro transcribed EAV RNA. In vitro transcription 

of viral RNA from the full-length infectious EAV cDNA clone pEAV2421/211EB and 

transfection of BHK-21, Hela ‘High’ (P200), Hela ‘Low’ (P102), Hep-2, and L-M cell 

lines with viral RNA have been described previously (Chapter 2). After transfection, the 

cultures were microscopically monitored daily for the development of cytopathic effect 

and subcultured once every four days (1:4 split) if any cells survived. Extracellular 

viruses were harvested and titrated by routine plaque assay in RK-13 (KY) cells. 
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Expression of the viral nucleocapsid (N) protein and non-structural protein 1 (NSP1) 

were determined using an indirect immunofluorescence assay. 

Cloning of cells. Subconfluent monolayers of the 26th passage of the persistently 

infected Hela ‘High’ cell line initiated with the VBS53 strain of EAV were washed, 

trypisinized, and resuspended in fresh culture medium. After counting, the cells were 

diluted to a concentration of 10 cells per ml and then distributed into two 96-well plates 

in the amount of 0.1 ml per well. Plates were incubated at 37ºC in the presence of 5% 

CO2. Individual wells were inspected and culture medium was supplemented until the 

cell monolayer reached confluence. Supernatants from those wells which initially 

contained a single cell were titrated by plaque assay in RK-13 (KY) cells.  

Effect of anti-EAV equine serum on persistent EAV infection. EAV neutralizing 

Ab-positive equine serum used in the study was the O.I.E affirmed ‘medium positive 

reference serum standard (BL394080, produced in 1993)’. On multiple repeat testing, the 

reference serum standard had a neutralizing antibody titer of 1:32 when titrated against 

the attenuated vaccine strain of equine arteritis virus (ARVAC®, FDAH). The 81st serial 

passage of the persistently infected Hela ‘High’ cell line initiated with the VBS53 strain 

of EAV was subcultured (1:4 split ratio) and grown in Eagle’s minimum essential 

medium (EMEM) with 10% ferritin supplemented calf serum (FSCS), and EMEM with 

10% EAV-neutralizing antibody-positive equine serum, respectively. Serial 

subcultivation of the persistently infected Hela cells grown in each medium was carried 

out once every four days (1:4 split ratio). From the 88th passage, EAV Ab-positive equine 

serum was removed from the medium of one replicate of the culture which was further 

serially passed up to the 94th passage. The other replicate of the cell culture continued to 

be passed in the presence of EAV Ab-positive equine serum up to the 94th passage. At 

each passage level, extracellular and cell-associated virus containing materials were 

harvested and titrated by plaque assay. Expression of the viral nucleocapsid (N) protein 

was investigated using an indirect immunofluorescence assay. Also, RT-PCR analysis of 

viral RNA was also carried out at each passage level.  

Indirect immunofluorescence assay (IFA). The indirect immunofluorescence 

assay was performed as previously described (Chapter 2). 
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Growth of different EAV strains in various cells. Growth of EAV strains VBS53, 

Hela-EAVP35, and Hela-EAVP80 in BHK-21, Hela ‘High’ (P198), Hela ‘Low’ (P100), 

Hep-2, and L-M cell lines was compared. Subconfluent monolayers of each cell line 

grown in T-25 flasks were inoculated with the respective viruses at an m.o.i. of 3. Flasks 

were incubated at 37°C for 1 h. The inoculum was aspirated off, and cell sheets washed 

three times with PBS to remove unbound virus and the sheets then overlaid with 10 ml of 

EMEM medium. This was designated time zero with respect to infection. Inoculated 

cultures were incubated at 37°C.  At 0, 24, 48, 72, and 96 h post infection (p.i.), 

supernatants were harvested and viral infectivity was determined by plaque assay on 

cultures of the RK-13 (KY) cell line as previously described (McCollum et al. 1962).  

Isolation of viral RNA, RT-PCR amplification and sequencing. Viral RNA was 

directly isolated from EAV strains VBS53, Hela-EAVP35, and Hela-EAVP80 using the 

QIAamp viral RNA mini kit (Qiagen). The complete genomes of these three viruses were 

amplified in nine overlapping fragments (Appendix 1). Viral RNA was first reverse 

transcribed with Superscript II (Invitrogen) into cDNA following the manufacture’s 

instructions. Then, PCR amplification was performed with high-fidelity proof-reading 

PfuTurbo DNA polymerase (Stratagene) following optimized thermocycling protocols 

(Appendix 2). The PCR products were gel-purified using QIAquick gel extraction kit 

(QIAGEN). Both sense and anti-sense strands were sequenced with a total of 76 primers 

(Appendix 3) using BigDye Terminator v1.1 Cycle Sequencing Kit (Applied Biosystems) 

and Half-Dye Mix (Bioline) following the optimized cycle sequencing protocols 

(Appendix 4). After cycle sequencing, extension products were purified using the 

ethanol/EDTA precipitation method and then resuspended in template suppression 

reagent (TSR). The samples were then loaded onto ABI PRISM 310 Genetic Analyzer. 

Sequence data were analyzed with Vector NTI Suite V.7 software and summarized in 

Appendices 5 to 13.     

 

RESULTS 

The VBS53 strain of EAV is capable of establishing persistent infection in Hela 

‘High’ cell line but not in BHK-21, RK-13, C2C12, Hela ‘Low’, Hep-2 and L-M cell 

lines. It has been previously demonstrated that BHK-21, RK-13, and C2C12 cell lines are 
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fully susceptible, the Hela ‘High’ cell line (P170-221) is partly susceptible, and Hep-2, L-

M, and Hela ‘Low’ (P95-115) cell lines are non-susceptible, to infection with the VBS53 

strain of EAV (Chapter 2). EAV infection of BHK-21, RK-13, and C2C12 cell lines is 

highly cytolytic leading to the death of all cells by 48 h post infection. However, 

inoculation of Hela ‘High’, Hela ‘Low’, Hep-2, and L-M cell lines with the VBS53 strain 

of EAV did not result in any apparent cytopathic effects (CPE) throughout the course of a 

one-step growth curve up to 96 h post infection (Chapter 2). In the case of each cell line, 

inoculated cells appeared to be morphologically indistinguishable from mock-inoculated 

cells. Surprisingly, it was possible to initiate persistent infection with the VBS53 strain of 

EAV in Hela ‘High’ (P171) cells and these continuously produced infectious virus even 

after 94 serial passages (Fig 3.1). The ability of EAV strain VBS53 to establish persistent 

infection in the Hela ‘High’ cell line was confirmed in two further experiments in Hela 

P196 cells (data not shown). In contrast, after two serial passages, no infectious virus 

could be detected in Hela ‘Low’ (P98), Hep-2, and L-M cell lines inoculated with EAV 

strain VBS53 (Table 3.1), indicating that persistent infection was not established in these 

cell lines. In order to determine whether any noninfectious virus was present, the Hela 

‘Low’ (P98) cell line inoculated with EAV strain VBS53 and subsequent passages 

derived from it were examined for the presence of viral proteins and viral RNA. On IFA, 

few cells were positive for the nucleocapsid protein (Fig 3.2) and non-structural protein 1 

(nsp1) (data not shown) at the 1st passage level of EAV-inoculated Hela ‘Low’ cell line. 

No viral specific fluorescence was detected from the 2nd to 20th passage of EAV-

inoculated Hela ‘Low’ cell line. In contrast, expression of viral proteins was detected by 

IFA throughout the course of persistent infection in the Hela ‘High’ cell line (Fig 3.2), 

although the percentage of EAV fluorescent-positive cells fluctuated. On RT-PCR 

analysis for viral RNA, EAV RNA was detected throughout the course of persistent 

infection in the Hela ‘High’ cell line (Fig 3.3A), whereas viral RNA was only detected at 

the 1st and 2nd passages, and not from the 3rd to 20th passages, of the EAV-inoculated 

Hela ‘Low’ cell line (Fig 3.3B). Collectively, these findings confirm that the VBS53 

strain of EAV is able to establish persistent infection in the Hela ‘High’ cell line, but 

unable to do so either in BHK-21, RK-13, C2C12 cell lines in which all the cells 



 

 96 

eventually die due to the cytolytic effects of the virus, or in the Hela ‘Low’, Hep-2, and 

L-M cell lines in which cells survive without continuous production of virus. 

Transfection with viral RNA is capable of initiating persistent infection in the 

Hela ‘High’ cell line but not in BHK-21, Hep-2, L-M, and Hela ‘Low’ cell lines. In 

order to determine whether failure to establish persistent EAV infection in Hela ‘Low’, 

Hep-2, and L-M cell lines was due to the fact that the virus cannot achieve cell entry, 

various cell lines were transfected with viral RNA in vitro-transcribed from an infectious 

EAV cDNA clone pEAV2421/211EB (Balasuriya et al., unpublished). In the case of 

transfected BHK-21 cells, cytopathic effects appeared and progressed from 72 h post 

transfection with all the cells had died by 96 h after transfection. In contrast, no CPE was 

observed in transfected Hela ‘High’, Hela ‘Low’, Hep-2, and L-M cell lines up to 96 h 

post transfection, although infectious virus production was detected in these transfected 

cells as shown in Table 3.2. Serial passaging of these transfected cell lines resulted in two 

distinct outcomes. Serial subculture of transfected Hela ‘High’ cells led to establishment 

of persistent infection in which infectious virus was produced throughout the observation 

period (from passage 1 to passage 10) (Table 3.2). Whereas no apparent CPE was 

observed from passage 1 to passage 5 in this line, cell destruction of limited extent was 

observed from passage 6 to passage 10. On the other hand, one or two more 

subcultivations of transfected Hep-2, L-M, and Hela ‘Low’ cells resulted in loss of 

infectious virus production (Table 3.2), indicating that persistent infection was not 

established in these cell lines. No cell destruction was observed in transfected Hep-2, L-

M, and Hela ‘Low’ cell lines throughout the observation period (from passage 1 to 

passage 10).  

Characterization of persistently infected Hela ‘High’ cells. Persistently infected 

Hela ‘High’ cells initiated with the VBS53 strain of EAV were characterized by the 

following properties. i) The persistently infected cells had been subcultured and 

maintained for over 3 years. ii) Persistently infected cultures underwent recurrent 

episodes of partial destruction and subsequent recovery (Table 3.3). For example, in 

passages 1 and 2, no apparent cell destruction was observed; from passage 3 to passage 5, 

a degree of cell destruction was observed; from passage 6 to passage 9, cells gradually 

recovered and the extent of cell destruction decreased compared to that observed in 
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passages 4 and 5; some cell destruction was observed again from passage 10 to passage 

14; cells again gradually recovered from passage 15 to passage 18; such recurrences of 

partial destruction and subsequent recovery of cells continued throughout the observation 

period. The percentage of dead cells (as determined by trypan blue staining) during 

periods of cell destruction was higher than that during periods of cell recovery. iii) 

During the course of persistent infection, the percentage of EAV fluorescent-positive 

cells varied from 1% to 37%. But in most passages of the persistently infected culture, 

the percentage of virus-positive cells ranged between 15% and 25% (Table 3.3). IFA 

images of persistently infected Hela ‘High’ cells at randomly selected passages are shown 

in Fig 3.2. It should be pointed out that cell death and EAV fluorescent-positive cells 

were determined randomly for some passages but not every passage of the persistently 

infected Hela ‘High’ cell line. iv) Infectious virus was continuously produced throughout 

the course of persistent infection with virus infectivity titers varying from 102 to 106 pfu 

per ml. The virus infectivity titers ranged from 104 to 106 pfu per ml in most passages of 

the persistently infected culture (Table 3.3; Fig 3.1). The yield of cell-associated virus 

was comparable (at the same log level) to that of extracellular virus at every passage level 

tested (Table 3.4). The ratio of extracellular virus to cell-associated virus fluctuated from 

30:70 to 55:45 (Table 3.4). v) After storage for 3 years in liquid nitrogen, the revived cell 

culture was still able to produce infectious virus with the virus titer similar to what it was 

prior to freezing. vi) An attempt to clone a single cell that could continuously produce 

infectious virus was unsuccessful. Cells were cloned from the 26th passage of the 

persistently infected Hela ‘High’ cell line by distributing an appropriately diluted cell 

suspension into 96-well plates. Wells were visually examined and only those wells that 

received a single cell were used. Eventually, 46 clones were obtained. However, none of 

them were found to produce infectious virus. vii) The effect of EAV neutralizing 

antibody-positive equine serum on persistently infected cells is shown in Table 3.5. The 

persistently infected Hela ‘High’ cells were treated with EAV neutralizing antibody-

positive equine serum from the 82nd passage. Before treatment with antiserum, the 

extracellular and cell-associated virus in the persistently infected Hela ‘High’ cell line 

was 5.7 × 105 pfu/ml and 9.5 × 105 pfu/ml, respectively. After two serial passages in the 

presence of antiserum, no infectious virus was detectable in either the supernatants or the 
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lysates of the culture. The cell culture treated with antiserum was maintained up to the 

94th passage during which no infectious virus could be detected. Interestingly, in the case 

of antiserum-treated cell cultures, expression of viral nucelocapsid protein was 

undetectable by the IFA test from the 83rd to the 94th cell culture passage, although viral 

RNA was still detectable by the RT-PCR from the 83rd to the 85th cell culture passage. 

This indicated that viral RNA could be present for several additional passages even when 

infectious virus and viral protein expression were no longer detectable. Following 

removal of the antiserum from the culture medium at the 88th serial passage, no renewed 

virus replication, viral antigen expression, or EAV RNA production was detected upon 7 

additional passages of Hela ‘High’ cells. This is evidence that persistently infected Hela 

‘High’ cells could be cured of EAV infection by culturing the cells in the presence of 

EAV neutralizing antibody-positive equine serum. In contrast, infectious virus, viral 

protein expression, and viral RNA were consistently detected in the mock-treated cell 

culture throughout the observation period.    

Growth kinetics of persistent viruses in various cell cultures. To determine 

whether the growth properties of the challenge strain of EAV had changed during the 

course of persistent infection, growth kinetics of the parental EAV strain VBS53 and 

viruses recovered from the 35th (Hela-EAVP35) and the 80th (Hela-EAVP80) passage of 

the persistently infected Hela ‘High’ cell line were compared in BHK-21, Hela ‘High’ 

(P198), Hela ‘Low’ (P100), Hep-2, and L-M cell lines. In BHK-21 cells (Fig 3.4A), EAV 

strains VBS53, Hela-EAVP35, and Hela-EAVP80 all caused a cytolytic infection. 

Replication of each virus strain followed a similar growth kinetic curve, with 3-4 log10 

increase in infectivity titers within 24-48 h, followed by a gradual decline in titers after 

48 h. This indicated that these three EAV strains can cause productive infections and 

grow with similar efficiency in BHK-21 cells. In both Hep-2 (Fig 3.4B) and L-M (Fig 

3.4C) cell lines, the growth of EAV strains VBS53, Hela-EAVP35, and Hela-EAVP80 

was not efficient, having similar growth kinetics for all three strains. On the other hand, 

in both Hela ‘High’ (Fig 3.4D) and Hela ‘Low’ (Fig 3.4E) cell lines, Hela-EAVP35 and 

Hela-EAVP80 strains grew better and replicated more efficiently than the VBS53 strain 

of EAV. Hela-EAVP35 and Hela-EAVP80 strains had almost the same replication 

efficiency in either Hela ‘High’ (Fig 3.4D) or Hela ‘Low’ (Fig 3.4E) cells.      
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Ability of Hela-EAVP35 and Hela-EAVP80 to establish persistent infection in 

both Hela ‘Low’ and Hela ‘High’ cell lines but not in BHK-21, Hep-2, and L-M cell 

lines. To determine whether virus recovered from persistently infected cells has acquired 

any new features in establishing persistent infection, an attempt was made to establish 

persistent infection in BHK-21, Hela ‘Low’, Hela ‘High’, Hep-2, and L-M cell lines with 

Hela-EAVP35 and Hela-EAVP80, respectively. As was the experience with the VBS53 

strain of EAV, Hela-EAVP35 and Hela-EAVP80 caused cytolytic infection in BHK-21 

cells with all the cells dead by 48 h post inoculation without the establishment of 

persistent infection. Similar to EAV strains VBS53, Hela-EAVP35 and Hela-EAVP80 

were not able to establish persistent infection in Hep-2 and L-M cell lines in which three 

serial passages led to the loss of virus production (Fig 3.5A). In contrast to the VBS53 

strain of EAV, which can only establish persistent infection in the Hela ‘High’ but not in 

the Hela ‘Low’ cell line, Hela-EAVP35 and Hela-EAVP80 were able to establish 

persistent infections in both Hela ‘High’ and Hela ‘Low’ cell lines (Fig 3.5 B and C). 

This was confirmed by IFA studies (Fig 3.6). In the persistently infected Hela ‘High’ cell 

line in which infection was initiated with Hela-EAVP35 or Hela-EAVP80, the virus 

infectivity titer on 1st passage reached 2 × 106 pfu/ml (Fig 3.5B and C). In contrast, when 

infection in persistently infected Hela ‘High’ cell line was initiated with EAV strain 

VBS53, the virus infectivity titer on 1st passage was less, only reaching 104 pfu/ml. It 

took two or three serial passages for the virus titer to reach 106 pfu/ml (Fig 3.1). This 

confirmed that Hela-EAVP35 and Hela-EAVP80 viruses grow better than EAV strain 

VBS53 in the Hela ‘High’ cell line in the course of the initial few passages in cell culture. 

In Hela ‘High’ cells persistently infected with Hela-EAVP35 or Hela-EAVP80, apparent 

cell destruction was observed from the initial passage, whereas cell destruction was not 

observed until the 6th serial passage in persistently infected Hela ‘Low’ cells. During the 

initial number of passages (1st to 5th), virus yields in Hela ‘Low’ cells were consistently 

lower than those in Hela ‘High’ cells persistently infected with the same virus strains (Fig 

3.5B and C). Virus strains Hela-EAVP35 and Hela-EAVP80 evidently grow better in 

Hela ‘High’ cells than in Hela ‘Low’ cells over the course of the initial several passages 

of infection. However, from the 6th and subsequent passages, the level of cell destruction 
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and virus yields in persistently infected Hela ‘Low’ cells approximated to those in Hela 

‘High’ cells (Fig 3.5B and C).  

Comparative nucleotide and amino acid sequence analysis of the viruses 

capable of establishing persistent infection in Hela cells. To investigate genetic 

variation of EAV during persistent infection of Hela cells, the entire genomes of EAV 

strains VBS53, Hela-EAVP35, and Hela-EAVP80 were sequenced. Sequences were 

determined by direct sequencing of RT-PCR fragments and could thus be assumed to 

reflect the consensus sequence of the virus population at the time of RNA extraction. The 

full-length nucleotide sequences and the deduced amino acid sequences of EAV strains 

VBS53, Hela-EAVP35, and Hela-EAVP80 were compared and the findings summarized 

in Table 3.6. The entire genomes of EAV strains VBS53, Hela-EAVP35, and Hela-

EAVP80 were all 12,704 nt in length, namely the same length as the published sequence 

of EAV030. The complete nucleotide (nt) differences between EAV strains VBS53 and 

Hela-EAVP35, VBS53 and Hela-EAVP80, Hela-EAVP35 and Hela-EAVP80 were 26 nt, 

34 nt, and 16 nt, respectively. All of these nucleotide changes occurred at ORFs1a, 1b, 2a, 

2b, and 3-5; no nucleotide changes were observed at the 5’ non-translated region (NTR 1-

224 including 5’ leader 1-211), nor in ORFs 6-7 and the 3’ NTR (12646-12704). The 

total number of amino acid differences in the replicase polyprotein and structural proteins 

between EAV strains VBS53 and Hela-EAVP35, VBS53 and Hela-EAVP80, Hela-

EAVP35 and Hela-EAVP80 were 15 aa, 17 aa, and 6 aa, respectively. There were 14 nt, 

20 nt, and 10 nt differences in the replicase gene, most of which were silent mutations 

which only resulted in 3 aa, 4 aa, and 1 aa changes, between EAV strains VBS53 and 

Hela-EAVP35, VBS53 and Hela-EAVP80, Hela-EAVP35 and Hela-EAVP80, 

respectively. There were 12 nt, 14 nt, and 6 nt differences in the structural protein genes 

(ORFs2a, 2b, and 3-5), respectively. Most of these were non-synonymous mutations 

which resulted in 12 aa, 13 aa, and 5 aa changes between EAV strains VBS53 and Hela-

EAVP35, VBS53 and Hela-EAVP80, Hela-EAVP35 and Hela-EAVP80, respectively. 

The majority of deduced amino acid changes involved EAV structural proteins E, GP2b, 

GP3-5 which are encoded by ORFs2a, 2b, and 3-5, respectively.  

The catalytic dyad (Cys-164 and His-230) of the nsp1 protease, the critical residues 

(Cys-270, His-332, Cys-319, Cys-349, Cys-354, Cys-344, and Cys-356) of the nsp2 
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protease, the catalytic triad (His-1103, Asp-1129 and Ser-1184) of the nsp4 protease, the 

putative substrate-binding region (Thr-1179 and His-1198) of the nsp4 protease, and 11 

cleavage sites on the replicase polyprotein 1ab were all conserved in three EAV strains 

VBS53, Hela-EAVP35, and Hela-EAVP80 (Table 3.6; Snijder and Meulenberg 1998; 

Ziebuhr et al. 2000). No potential N-glycosylation site changes were observed with 

respect to the structural proteins of these three EAV strains. 

Five ambiguous nucleotides were observed in EAV strain VBS53: 3707Y, 7021R, 

8260Y, 8290Y, and 10722Y (Y is T or C; R is A or G). Because of the existence of 

degenerate codons, however, the ambiguity of nucleotide at 3707, 7021, 8260, and 8290 

did not cause any change to the respective amino acids encoded by them. The ambiguity 

of nucleotide T or C at 10722 resulted in the ambiguity of amino acid Leu or Ser at 

position 8 of the GP4 protein. No ambiguous nucleotides were observed in either Hela-

EAVP35 or Hela-EAVP80. The degree of homology between Hela-EAVP35 and Hela-

EAVP80 (6 aa differences) was higher than that between either of these strains and the 

VBS53 strain of EAV (15 aa differences between VBS53 and Hela-EAVP35; 17 aa 

differences between VBS53 and Hela-EAVP80). This would indicate that EAV evolved 

during the course of persistent infection in the Hela ‘High’ cell line. Most of the 

mutations would appear stable. However, reversion of mutations was occasionally 

observed. For example, the amino acid at position 88 of the GP2b protein of EAV strains 

VBS53, Hela-EAVP35, and Hela-EAVP80 was Met, Val, and Met, respectively; the 

amino acid at position 246 of the GP5 protein was Arg, Lys, and Arg, respectively.   

 

DISCUSSION 

Equine arteritis virus infection is usually highly cytolytic in cultured cells, e.g. 

BHK-21, RK-13, and C2C12 ((Snijder and Meulenberg 1998 and Chapter 2). It has 

recently been found, however, that Hela ‘High’ cell line (P170-221) is partly susceptible 

to infection with the VBS53 strain of EAV, whereas Hep-2, L-M, and Hela ‘Low’ (P95-

115) cell lines are non-susceptible to this virus strain (Chapter 2). In this study the 

VBS53 strain of EAV was shown to be able to establish persistent infection in a Hela 

‘High’ cell line. To the authors’ knowledge, it is the first report of establishment of 

persistent EAV infection in cell culture.  
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Characterization of persistent viral infection in cell culture. Persistently infected 

cell cultures may or may not exhibit virus-specific cytopathic effects despite the fact that 

they continuously produce infectious virus (Frisk et al. 1999; Gercel et al. 1985; Kaplan 

et al. 1989; Moscona and Galinski 1990). In this study, it was shown that persistently 

infected Hela ‘High’ cells in which infection was initiated with EAV strain VBS53, 

underwent multiple episodes of partial destruction and subsequent recovery. During the 

course of persistent infection in the Hela ‘High’ cell line, the percentage of EAV 

fluorescent-positive cells varied from 1% to 37% but with the range falling between 15% 

and 25% in most passages. The observation that the percentage of virus-positive cells can 

show cyclic variation has also been reported for other persistent systems. For instance, in 

BHK-21 cells persistently infected with rabies virus, the percentage of cells exhibiting 

positive immunofluorescence varied from 5% to 100% in cycles of 6-8 subcultures 

(Wiktor and Clark 1972); in Hela cells persistently infected with human rhinovirus-2, the 

percentage of cells producing infectious centers varied from 0.03% to 23% (Gercel et al. 

1985). In contrast to persistent poliovirus infection in Hela cells in which freezing down 

of cells in liquid nitrogen resulted in the cells losing the ability to produce infectious 

virus (Kaplan et al. 1989), Hela cells persistently infected with EAV were still able to 

produce infectious virus after being frozen down in liquid nitrogen for 3 years, with the 

virus titer similar to what it had been prior to freezing (data not shown).  

Addition of virus-specific antibodies or anti-viral compounds to the media of 

persistently infected cells may or may not result in elimination of the persistent infection. 

It has been shown that cloning or subculture of measles virus/Hela cells in the presence 

of anti-measles serum in the culture medium led to a state in which no infectious virus 

was released, whereas the vast majority of these cells were still immunofluorescence 

positive (Rustigian 1966b), indicating the existence of viral antigen. When human 

influenza C virus/MDCK cells (Goshima and Maeno 1989) or poliovirus/human 

erythroblastoid K562 cells (Lloyd and Bovee 1993) were subcultured for several serial 

passages with growth medium containing homologous virus-neutralizing antibodies, 

extracellular virus became undetectable. However, upon further passage in the absence of 

antiserum there was a return of infectious virus yield. In contrast, it was observed that 

three serial subcultivations of human rhinovirus-2/Hela cells in the presence of antiserum 
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resulted in a cure (no extracellular virus or infectious centers or viral antigens could be 

detected) (Gercel et al. 1985). In addition, after removal of antiserum, no renewed virus 

production or viral antigen expression could be detected upon 12 further passages (Gercel 

et al. 1985), indicating that the formerly persistently infected cells were permanently 

cleared of infection. It was also found that the anti-viral compound ribavirin was able to 

eliminate foot-and-mouth disease virus (FMDV) from persistently infected BHK-21 cells 

(de la Torre et al. 1987). Addition of EAV neutralizing antibody-positive equine serum to 

the medium of persistently infected Hela ‘High’ cells resulted in the elimination of 

persistent infection. No renewed virus production or viral antigen expression or EAV 

RNA replication occurred upon 7 further passages in the absence of anti-EAV serum.  

Characteristically, persistently infected cells are resistant to superinfection with 

homologous viruses but are still susceptible to infection with heterologous viruses. For 

example, Hela cells persistently infected with human rhinovirus-2 (HRV-2) were 

resistant to superinfection with homologous viruses (HRV-2, HRV-2 TS-1 mutant, and 

HRV-4) but were susceptible to poliovirus type 2 and vesicular stomatitis virus (VSV) 

infection (Gercel et al. 1985). The virus yields in HRV-2/Hela cells superinfected with 

HRV-2, TS-1 mutant, or HRV-4 were similar to those produced in HRV-2/Hela cells 

alone (mock-superinfected) but were less than those produced in normal Hela cells 

infected with the respective virus. In contrast, virus yields in HRV-2/Hela cells 

superinfected with poliovirus type 2 or VSV were comparable to those obtained in 

normal Hela cells infected with the respective virus (Gercel et al. 1985). The question 

whether Hela ‘High’ cells persistently infected with EAV are resistant to superinfection 

with EAV was investigated in this study (Table 3.7). Virus yields in persistently infected 

Hela ‘High’ cell line which was superinfected with EAV strain VBS53 were comparable 

to those obtained in persistently infected Hela ‘High’ cells which were mock-

superinfected, but were not less than those produced in normal Hela ‘High’ cells which 

were infected with EAV strain VBS53. On the basis of this observation, it was not certain 

whether persistently infected Hela ‘High’ cells were resistant to superinfection with EAV. 

The difference between HRV-2/Hela cells and EAV/Hela ‘High’ cells is probably caused 

by the fact that normal Hela cells are fully susceptible to HRV-2 infection, whereas 

normal Hela ‘High’ cells are only partly susceptible to infection with EAV strain VBS53.  
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Virus and cell evolution during persistent infection of cell culture. Equine 

arteritis virus evolution during persistent infection of the Hela ‘High’ cell line was 

observed in this study. Hela-EAVP35 and Hela-EAVP80, isolated from the 35th and 80th 

passage of persistently infected Hela ‘High’ cell line, respectively, grew more efficiently 

than the parental EAV strain VBS53 in Hela ‘Low’ and Hela ‘High’ cell lines. Hela-

EAVP35 and Hela-EAVP80 were able to establish persistent infections in Hela ‘Low’ 

cells, whereas the parental EAV strain VBS53 was unable to do so (Table 3.8). 

Furthermore, compared to the parental EAV strain VBS53, Hela-EAVP35 and Hela-

EAVP80 had different neutralization phenotypes (Chapter 4) and exhibited potential 

changes in pathogenicity (Chapter 5). Besides these phenotypic changes, direct 

sequencing of the entire genomes of EAV strains VBS53, Hela-EAVP35, and Hela-

EAVP80 provides clearcut evidence of viral genetic evolution during persistent infection 

of Hela ‘High’ cells. It should be pointed out that the entire genome sequences of these 

three viruses are actually the predominant sequences within the viral quasispecies. In the 

replicase, amino acid mutations were only observed in nsp1, nsp2, nsp7, and nsp9. In the 

structural proteins, amino acid changes were found in E, GP2b, GP3, GP4, and GP5 

proteins but not in either M or N proteins.    

Further studies are needed to determine which amino acid(s) mutations are 

responsible for the corresponding phenotypic changes. Special attention should be paid to 

nsp2 Asp-577? Gly, nsp9 Pro-1933? Ser, E Ser-53? Cys, GP2b Leu-15? Ser, GP2b 

Trp-31? Arg, GP3 Leu-135? Pro, and GP5 Pro-98? Leu. 

It is interesting that, compared to the VBS53 strain of EAV, neither Hela-EAVP35 

nor Hela-EAVP80 exhibited apparent phenotypic differences (e.g. growth kinetics and 

the ability to establish persistent infection) in BHK-21, Hep-2, or L-M cell lines (Fig 3.4 

and Table 3.8). 

The virus-encoded RNA-dependent RNA polymerases (RdRp) are low fidelity 

enzymes with mutation rates as high as the order of 10-3 to 10-5 errors per nucleotide per 

replication cycle (Domingo and Holland 1997; Drake 1993). In addition, RNA viruses 

have very short replication times and generate very large populations during replication. 

Therefore, RNA viruses exist not as a single genotype but rather as a heterogeneous 

mixture of related genomes known as a viral quasi-species (Holland et al. 1992). The 
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quasi-species nature of RNA viruses allows viruses to adapt to environmental changes 

more rapidly and facilitates the emergence of viral variants (Castro et al. 2005). 

Therefore, it is not surprising that EAV has evolved after long-term persistence in Hela 

cells. In fact, EAV may also evolve after many passages of cytolytic infection in cell 

cultures. For example, the parent EAV strain isolated from horses did not infect primary 

hamster kidney cells; however, when the same parent EAV strain underwent 82 passages 

of cytolytic infection in horse kidney cells, the obtained virus could be able to infect 

primary hamster kidney cells (Wilson et al. 1962). Also, after many passages of cytolytic 

EAV infection in cell cultures, the virus had been observed to get attenuated (McCollum 

1969). 

Cell evolution during persistent EAV infection of Hela cells was not investigated in 

this study. Previously, it has been demonstrated that the Hela cell line becomes more 

susceptible to infection with EAV strain VBS53 after extended serial passage (Chapter 2). 

It is reasonable to postulate that cells would evolve during persistent infection of the Hela 

‘Low’ cell line initiated with Hela-EAVP35 or Hela-EAVP80. The question whether 

Hela cells cured of persistent infection with anti-EAV serum have different susceptibility 

from the corresponding passage level of normal Hela cells to EAV infection also needs to 

be investigated.    

Virus and cell evolution have also been observed in other persistent viral infection 

systems. Genetic and antigenic changes have been demonstrated in hepatitis A virus 

(HAV) variants arising during persistent infection of BS-C-1 cells (Lemon et al. 1991). 

Foot-and-mouth disease virus isolated from persistently infected BHK-21 cells was more 

cytolytic than parental FMDV for BHK-21 cells (de la Torre et al. 1988a). Further studies 

revealed amino acid substitutions of the viral capsid protein and antigenicity alteration of 

FMDV during persistence (Diez et al. 1990a). Moreover, FMDV became progressively 

less virulent for mice and cattle during the course of persistence in BHK-21 cells (Diez et 

al. 1990b). The poliovirus mutants selected from human neuroblastoma IMR-32 cells 

persistently infected with the Sabin strains could reach 1-3 log10 units higher titer in IMR-

32 cells than that in non-neural Hep-2 cells, while parental viruses had similar titers in 

both cell lines (Colbere-Garapin et al. 1989). Correlated with this modified cell tropism, 

the poliovirus mutants recovered from carrier culture could establish secondary persistent 
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infection in non-neural Hep-2 cells (Pelletier et al. 1991). Cell evolution has been 

documented in mouse L cells persistently infected with reovirus (Ahmed et al. 1981), 

BHK-21 cells persistently infected with FMDV (de la Torre et al. 1988a; 1989; Martin 

Hernandez et al. 1994), and Hela cells (Kaplan et al. 1989; Kaplan and Racaniello 1991), 

human neuroblastoma cells (Pavio et al. 2000), and Hep-2 cells (Borzakian et al. 1992) 

persistently infected with poliovirus.  

Mechanisms of persistent viral infection in cell culture. A number of studies 

have shown that various viral and host cell factors could be involved in the establishment 

and maintenance of persistent infection in cell cultures. For example, temperature-

sensitive viral mutants (Preble and Youngner 1972, 1973a, 1973b; Youngner et al. 1976), 

defective interfering viral particles (Ahmed et al. 1981; Calain et al. 1999; Holland and 

Villarreal 1974; Holland et al. 1976; Kaplan et al. 1989; Weiss et al. 1980), alteration of 

viral RNA or protein synthesis (Chen et al. 1996; Desforges et al. 2001; Dryga et al. 

1997), and specific amino acid substitutions (Borzakian et al. 1993; Calvez et al. 1993; 

Duncan et al. 1998; Matloubian et al. 1990; Pelletier et al. 1991; 1998a; 1998b) have 

been shown to be involved in different persistent infection systems. Various host factors 

such as host cell type (Hecht and Summers 1974; Poste et al. 1972; Zhang and Racaniello 

1997), host cell mutants (Kaplan et al. 1989; Kaplan and Racaniello 1991), host cell 

differentiation stage (Benton et al. 1995; 1996; Okada et al. 1987) and so on may also be 

involved in the establishment and maintenance of persistent viral infection. However, the 

detailed molecular mechanisms of persistent viral infection in cell cultures are not yet 

well understood and furthermore, the mechanisms may be unique in each system. 

The VBS53 strain of EAV is able to establish persistent infection in the Hela ‘High’ 

but not Hela ‘Low’ cell line, suggesting that some unidentified host cell factors are 

involved in persistent EAV infection. On the other hand, Hela-EAVP35 and Hela-

EAVP80 are able to establish persistent infection in the Hela ‘Low’ cell line, whereas 

EAV strain VBS53 is unable to do so. This suggests that unidentified viral factors are 

also involved in the establishment of persistent EAV infection. The fact that EAV strain 

VBS53 is able to establish persistent infection in the Hela ‘High’ cell line but not in Hela 

‘Low’ cell line is consistent with the observation that Hela ‘High’ cells are more 

susceptible than Hela ‘Low’ cells to the virus infection (Chapter 2). Correlated with the 
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observation that Hela-EAVP35 and Hela-EAVP80 are able to, whereas EAV strain 

VBS53 is unable to, establish persistent infection in the Hela ‘Low’ cell line, is the fact 

that Hela-EAVP35 and Hela-EAVP80 grow more efficiently than EAV strain VBS53 in 

the Hela ‘Low’ cell line. Based on these findings, it is speculated that establishment and 

maintenance of persistent EAV infection in Hela cells is related to the susceptibility of 

the cells to EAV infection. It has been previously suggested that higher susceptibility of 

the Hela ‘High’ cell line than the Hela ‘Low’ cell line to infection with the VBS53 strain 

of EAV is because of higher efficiency of virus entry into Hela ‘High’ cells than into 

Hela ‘Low’ cells (Chapter 2). It would be interesting to investigate whether growth 

efficiencies of Hela-EAVP35 and Hela-EAVP80 in Hela ‘High’ and Hela ‘Low’ cell 

lines can be correlated with corresponding virus attachment and entry levels. Should this 

prove to be true, it would suggest that Hela-EAVP35 and Hela-EAVP80 recognize some 

new cell receptors on Hela cells. It may, thus, be postulated that establishment and 

maintenance of persistent EAV infection in Hela cells would be predicated on virus-cell 

receptor interactions. In fact, it has been suggested that interactions between poliovirus 

and its receptor may be involved in establishment and maintenance of persistent 

poliovirus infection in host cells (Borzakian et al. 1993; Calvez et al. 1993; Colbere-

Garapin et al. 1989; Duncan et al. 1998; Pavio et al. 1996; 2000; Pelletier et al. 1991; 

1998a).    

In above proposed model, cell heterogeneity is another key factor. If all of the cells 

in a cell line, such as BHK-21, RK-13, and C2C12, are susceptible to EAV infection, 

virus infection kills all of the cells and persistent infection cannot be established. If too 

few cells in a cell line, such as Hep-2 and L-M, are susceptible to EAV infection, the 

virus is not able to initiate and maintain a persistent infection. Failure to establish 

persistent infection in the Hela ‘Low’ cell line with EAV strain VBS53 may be such a 

case. However, in the case of the Hela ‘High’ cell line, a certain percentage but not 100% 

of the cells are susceptible to infection with EAV strain VBS53 or Hela-EAVP35 or 

Hela-EAVP80; infection of the Hela ‘High’ cell line with these viruses is not able to kill 

all of the cells, instead, a persistent infection may be initiated and maintained. 

Establishment of persistent infection in the Hela ‘Low’ cell line with either Hela-

EAVP35 or Hela-EAVP80 may be due to the same reason. The finding that persistently 
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infected Hela cells can be cured by treatment with anti-EAV serum would suggest that 

the persistent EAV infection is maintained by horizontal transmission of the virus 

released from infected cells to uninfected susceptible cells. It would appear that virus 

spread from cell to cell through cell fusion or virus spread from parent cells to daughter 

cells through cell division is not very likely. Failure to establish persistent infection in 

Hela ‘Low’, Hep-2, and L-M cell lines upon transfection with EAV RNA (Table 3.2) and 

failure to obtain a single clone that can continuously produce infectious EAV would 

support this hypothesis. It has been demonstrated that more than 103 cells derived from 

persistently infected BHK-21 cells are needed to reinitiate a stable, FMDV-producing 

carrier culture (de la Torre and Domingo 1988b), which would suggest that the persistent 

infection of cell culture is the result of complex interactions acting at the population level.    

In either a one-step growth curve of EAV in Hela cells (Chapter 2) or in persistently 

infected Hela cells, the percentage of extracellular virus to the total virus present (the sum 

of extracellular virus and cell-associated virus) was around or below 50%, whereas it was 

greater than 80% in a one-step growth curve of EAV in BHK-21, Hep-2, or L-M cells. 

Whether this factor is implicated to the establishment and maintenance of persistent EAV 

infection in Hela cells remains to be determined. 

Whether defective interfering particles of equine arteritis virus are involved in 

establishment and maintenance of persistent EAV infection in Hela cells also remains to 

be determined. Whether EAV infection induces production of interferon in Hela cells, 

and if yes, whether interferon plays a role in the establishment and maintenance of 

persistent EAV infection in Hela cells is unclear. 

 Significance of persistent viral infection in cell culture. Persistent viral 

infections of cell culture have been used to study virus-host cell interactions. They have 

also been shown to be a useful tool for investigating virus and cell evolutions (Ahmed et 

al. 1981; Colbere-Garapin  et al. 1989; de la Torre et al. 1988a; Kaplan et al. 1989). 

Persistent EAV infection of Hela cells provides a model system to study viral and host 

cell factors involved in viral persistence. It also provides a tool for elucidating virus-host 

cell interactions, e.g. EAV-cell receptor interactions. Furthermore, such a system can be 

used to investigate virus evolution and to study phenotypic (such as neutralization and 
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virulence) changes. Persistent EAV infection in cell culture may also assist in elucidating 

the mechanisms of EAV persistence in the carrier stallions. 
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Table 3.1 The outcome of serial passaging Hela ‘Low’ (P98), Hep-2, and L-M cell lines inoculated with EAV strain VBS53* 
 

Hela ‘Low’ cells (P98) 
Passage No. Extracellular virus  

(pfu/ml) 
Cell-associated virus  

(pfu/ml) 

L-M cells (P302) 
Extracellular virus  

(pfu/ml) 

Hep-2 cells (P460) 
Extracellular virus  

(pfu/ml) 
1 h p.i. 

P1 
P2 
P3 
P4 

P5 – P20 

3.0 × 102 
5.7 × 102 

5.0  
0 
0 
0 

5.0 × 101 
2.3 × 102 

2.0  
0 
0 
0 

5.4 × 102 
2.9 × 103 
1.2 × 101 

0 
0 
0 

4.7 × 102 
5.5 × 102 

8.0  
0 
0 
0 

 
* Selected cell lines were inoculated with the VBS53 strain of EAV at an m.o.i. of 3. Inoculated cultures were incubated at 
37ºC and subcultured once every four days (1:4 split). Extracellular and cell-associated virus was harvested and titrated by 
plaque assay on RK-13 (KY) cells. These results were confirmed in two separate experiments. 
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Table 3.2 Transfection with viral RNA established persistent infection in the Hela ‘High’ cell line 
              but not in Hela ‘Low’, Hep-2, and L-M cell lines* 

 

Passage No. 
Hela ‘Low’ cells (P102) 

Extracellular virus  
(pfu/ml) 

Hela ‘High’ cells (P200) 
Extracellular virus  

(pfu/ml) 

L-M cells (P306) 
Extracellular virus  

(pfu/ml) 

Hep-2 cells (P455) 
Extracellular virus  

(pfu/ml) 

P1 
P2 
P3 
P4 
P5 
P6 
P7 
P8 
P9 
P10 

5.2 × 104 
1.3 × 103 
1.0 × 101 

0 
0 
0 
0 
0 
0 
0 

2.1 × 105 
6.6 × 103 
4.0 × 103 
4.4 × 104 
1.2 × 105 
3.9 × 105 
1.3 × 106 
3.6 × 106 
8.6 × 105 
2.6 × 105 

6.4 × 104 
2.3 × 102 

0 
0 
0 
0 
0 
0 
0 
0 

1.4 × 104 
1.1 × 102 

0 
0 
0 
0 
0 
0 
0 
0 

 
* Selected cell lines were transfected with viral RNA in vitro-transcribed from a full-length infectious EAV cDNA 
clone. Transfected cells were incubated at 37ºC and subcultured once every four days (1:4 split). Extracellular virus 
was harvested and titrated by plaque assay on RK-13 (KY) cells. 
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Table 3.3 Some properties of persistently infected Hela ‘High’ cell line1 initiated with the VBS53 strain of EAV 
             

Passage 
level 

Extracellular 
virus titer 
(pfu/ml) 

Cell destruction 
cell 

death2  
(%)                                                                        

IFA                                           
aN3 

positive 

IFA 
aNSP14 
positive  

Passage 
Extracellular 

virus titer 
(pfu/ml) 

Cell destruction 
cell 

death2 
(%)                                                                                              

IFA                                                                                                
aN3 

positive 

IFA 
aNSP14 
positive 

1 h p.i. 4.7×102 no     P27 1.2×106 cell destuction    
P1 6.0×104 no 12.5 7.8% 8.2%  P28 8.2×105 cell destuction    
P2 6.3×104 no 13.2    P29 2.0×106 cell destuction  17.8% 17.2% 
P3 2.90×105 partial destuction 16.4    P30 9.6×105 partial recovery 15.4   
P4 1.79×106 cell destuction 35.3 22.2% 24.7%  P31 2.1×104 recovery    
P5 6.00×105 cell destuction 31.2    P32 2.4×105 recovery    
P6 1.95×105 partial recovery 17.8    P33 1.5×106 partial destuction    
P7 1.0×105 partial recovery 16.2    P34 2.4×106 cell destuction 29.3 35.8% 37.4% 
P8 4.5×105 recovery 15.8    P35 4.0×106 cell destuction    
P9 5.7×105 recovery     P36 7.9×105 partial recovery    
P10 1.5×106 partial destuction     P37 7.7×105 recovery    
P11 6.8×105 partial destuction     P38 9.0×104 recovery  1.4% 2.7% 
P12 1.4×106 cell destuction     P39 1.3×105 recovery    
P13 9.1×105 cell destuction     P40 6.5×105 partial destuction    
P14 9.9×105 cell destuction     P41 1.2×106 cell destuction 37.8   
P15 2.9×105 partial recovery     P42 4.5×105 partial recovery    
P16 3.0×105 recovery     P43 6.2×105 partial recovery    
P17 1.8×105 recovery     P44 1.8×105 recovery  5.2%  
P18 1.5×105 recovery 18.1    P45 1.7×105 recovery    
P19 1.0×106 partial destuction     P46 5.1×105 recovery    
P20 6.3×105 partial destuction  11.6% 11.0%  P47 1.1×106 cell destuction    
P21 4.4×105 cell destuction     P48 1.1×104 partial recovery   2.7% 
P22 1.2×106 cell destuction     P49 1.2×104 partial recovery    
P23 2.1×104 recovery 12.3    P50 6.8×105 partial recovery    
P24 3.9×105 recovery     P51 3.1×106 cell destuction  38.4% 37.1% 
P25 1.1×106 partial destuction  17.5% 20.7%  P52 4.4×104 partial recovery    
P26 1.4×106 cell destuction     P53 2.1×104 partial recovery    
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(Table 3.3 continued) 
             

Passage 
Extracellular 

virus titer 
(pfu/ml) 

Cell destruction 
cell 

death2 
(%)                                                                                                                                                                                 

IFA                        
aN3 

positive 

IFA 
aNSP14 
positive  

Passage 
Extracellular 

virus titer 
(pfu/ml) 

Cell destruction 
cell 

death2 
(%)                                                                           

IFA                                                                                                
aN3 

positive 

IFA 
aNSP14 
positive 

P54 9.3×103 partial recovery     P75 5.7×105 partial destuction    
P55 2.6×102 partial recovery  0.4% 0.9%  P76 3.8×105 recovery    
P56 5.1×102 partial recovery     P77 9.7×104 recovery    
P57 3.0×104 recovery     P78 5.0×105 recovery 12.5% 15.6% 16.8% 
P58 1.1×106 partial destuction     P79 6.9×105 recovery    
P59 2.8×106 cell destuction     P80 2.4×105 recovery    
P60 2.9×104 partial recovery     P81 5.7 ×105 partial destuction    
P61 1.4×105 recovery     P82 5.5 × 105 partial destuction    
P62 4.4×105 recovery     P83 1.4 × 105 recovery    
P63 4.9×105 partial destuction     P84 1.6 × 105 recovery    
P64 6.2×105 cell destuction     P85 2.9 × 105 recovery    
P65 6.0×105 cell destuction     P86 1.7 × 105 recovery    
P66 7.5×105 cell destuction     P87 3.7 × 105 recovery    
P67 3.5×105 partial recovery     P88 5.2 × 105 partial destuction    
P68 2.7×105 partial recovery     P89 2.8 × 105 recovery    
P69 1.8×105 partial recovery     P90 1.1 × 105 recovery    
P70 3.1×105 partial recovery     P91 1.1 × 105 recovery    
P71 1.9×105 partial recovery     P92 1.8 × 105 recovery    
P72 1.4×105 recovery     P93 7.3 × 104 recovery    
P73 3.1×105 partial destuction     P94 1.9 × 105 recovery    
P74 5.5×105 partial destuction           

 
Note: 1 Persistent infection was initiated in Hela ‘High’ (P171) cell line with the VBS53 strain of EAV.  
          2 Cell death was determined by trypan blue staining as described in Materials and Methods. 
          3 aN - monoclonal antibody 3E2 against EAV nucleocapsid protein.   
          4 aNSP1 – monoclonal antibody 12A4 against EAV non-structural protein 1.  
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Table 3.4 Ratio of extracellular to cell-associated virus at selected passage levels of the persistently infected 
 Hela ‘High’ cell line initiated with the VBS53 strain of EAV 

 
Virus titer (pfu/ml) Passage number of 

persistently infected 
Hela ‘High’ cells Extracellular virus Cell-associated virus 

Ratio of extracellular to cell- 
associated virus*  

P1 
P24 
P50 
P51 
P68 
P74 
P80 
P81 
P82 
P83 
P86 
P88 

6.0 × 104 
3.9 × 105 
6.8 × 105 
3.1 × 106 
2.7 × 105 
5.5 × 105 
2.4 × 105 
5.7 × 105 
5.5 × 105 
1.4 × 105 
1.7 × 105 
5.2 × 105 

5.0 × 104 
7.3 × 105 
9.6 × 105 
4.2 × 106 
5.3 × 105 
8.1 × 105 
5.2 × 105 
9.0 × 105 
7.6 × 105 
2.4 × 105 
2.3 × 105 
7.1 × 105 

54.5 : 45.5 
34.8 : 65.2 
41.5 : 58.5 
42.5 : 57.5 
33.8 : 66.2 
40.4 : 59.6 
31.6 : 68.4 
38.8 : 61.2 
42.0 : 58.0 
36.8 : 63.2 
42.5 : 57.5 
42.3 : 57.7 

 
* Determined 4 days after cells were subcultured. 
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Table 3.5 Effect of EAV neutralizing antibody-positive equine serum on the persistently infected  
Hela ‘High’ cell line initiated with the VBS53 strain of EAV* 

 

In EMEM with 10% FSCS  In EMEM with 10% EAV Ab-positive 
equine serum 

In EMEM with 10% FSCS (previously in 
EMEM with 10% EAV Ab-positive 

equine serum)     
Passage 
number 

Extracellular 
Virus 

(pfu/ml) 

Cell-
associated 

Virus 
(pfu/ml) 

IFA 
 

RT-
PCR 
result 

Extracellular 
Virus 

(pfu/ml) 

Cell-
associated 

Virus 
(pfu/ml) 

IFA 
 

RT-
PCR 
result 

Extracellular 
Virus 

(pfu/ml) 

Cell-
associated 

Virus 
(pfu/ml) 

IFA 
 

RT-
PCR 
result 

PI 81 5.7 × 105 9.0 × 105  + + 5.7 × 105 9.0 × 105 + + NA† NA NA NA 

PI 82 5.5 × 105 7.6 × 105 + + 4.0 × 100 1.2 × 103 + + NA NA NA NA 

PI 83 1.4 × 105 2.4 × 105 + + 0 2.5 × 100 -  + NA NA NA NA 

PI 84 1.6 × 105 5.6 × 105 + + 0 0 -  + NA NA NA NA 

PI 85 2.9 × 105 6.9 × 105 + + 0 0 -  + NA NA NA NA 

PI 86 1.7 × 105 2.3 × 105 ND‡ + 0 0 ND -  NA NA NA NA 

PI 87 3.7 × 105 1.2 × 106 + + 0 0 -  -  NA NA NA NA 

PI 88 5.2 × 105 7.1 × 105 + + 0 0 -  -  0 0 -  -  

PI 89 2.8 × 105 7.6 × 105 ND + 0 0 ND -  0 0 -  -  

PI 90 1.1 × 105 2.5 × 105 + + 0 0 -  -  0 0 -  -  

PI 91 1.1 × 105 2.3 × 105 ND + 0 0 ND -  0 0 -  -  

PI 92 1.8 × 105 3.4 × 105 + + 0 0 -  -  0 0 -  -  

PI 93 7.3 × 104 2.8 × 105 ND + 0 0 ND -  0 0 -  -  

PI 94 1.9 × 105 6.5 × 105 + + 0 0 -  -  0 0 -  -  
* The 81st passage of persistently infected Hela ‘High’ cells were subcultured and grown in EMEM with 10% ferritin supplemented calf serum (FSCS), and 

EMEM with 10% EAV-neutralizing Ab-positive equine serum, respectively. Serial subcultivation of the cultures grown in each kind of medium was carried 
out once every four days (1:4 split ratio). From the 88th passage, EAV Ab-positive equine serum was removed from the medium of one replicate of the culture 
which was further passed up to the 94th passage. The other replicate of the culture was passed still in the presence of EAV Ab-positive equine serum up to the 
94th passage. At each passage, extracellular and cell-associated virus was harvested and titrated by plaque assay. Expression of the viral nucleocapsid (N) 
protein was examined using IFA. RT-PCR detection of viral RNA at each passage was also carried out. 

† NA—Not applicable. ‡ ND—Not done. 
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Table 3.6.  Comparison of nucleotide and amino acid sequences of VBS53 EAV, Hela-EAVP35, and Hela-EAVP80 
Nucleotide1 Modified Amino Acid2 

Leader or ORF Protein (aa length) 
Position VBS53 

EAV 
Hela-

EAVP35 
Hela-

EAVP80 Position VBS53 
EAV 

Hela-
EAVP35 

Hela-
EAVP80 

5' NTR (1-224) N/A3 - 4 -  -  -      
5' Leader (1-211) N/A -  -  -  -      
ORF1ab (225-9751) Nonstructural proteins (nsp)         
 1ab polyprotein (3175)         
 nsp1: Met1-Gly260 (260) 658 C T T 145 Ala Val Val 

  695 C C T     
 nsp2: Gly261-Gly831 (571) 1280 C C T     

  1889 T C C     
  1954 A G G 577 Asp Gly Gly 

  1979 C T T     
  2057 C T T     
  2483 A A T     
 nsp3: Gly832-Glu1064 (233) 2898 C C T     
  3011 G G A     
 nsp4: Gly1065-Glu1268 (204) 3707 Y5 C C     
  3797 T T C     

 nsp5: Ser1269-Glu1430 (162) 4349 G A A     
 nsp6: Gly1431-Glu1452 (22) -  -  -  -  -  -  -  -  
 nsp7: Ser1453-Glu1677 (225) 4900 A G G 1559 Lys Arg Arg 
  4913 T C T     

 
nsp8/9: Gly1678-Asn1727 
(50)/Glu2370(693) 6020 C C T 1933 Pro Pro Ser 

  6752 T C C     
  7021 R5 A A     
 nsp10: Ser2371-Gln2837 (467) 8260 Y C C     
  8290 Y C C     
  8398 T T C     
 nsp11: Ser2838-Glu3056 (219) -  -  -  -  -  -  -  -  

  nsp12: Gly3057-Val3175 (119) 9727 T C T         
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(Table 3.6 continued) 
Nucleotide1 Modified Amino Acid2 

Leader or ORF Protein (aa length) 
Position VBS53 

EAV 
Hela-

EAVP35 
Hela-

EAVP80 Position VBS53 
EAV 

Hela-
EAVP35 

Hela-
EAVP80 

 Structure proteins         
ORF2a (9751-9954) E (67) 9867 T C C     

  9907 A A T 53 Ser Ser Cys 
  9914 T C C 55 Val Ala Ala 

ORF2b (9824-10507) GP2b (227) 9867 T C C 15 Leu Ser Ser 
  9907 A A T     
  9914 T C C 31 Trp Arg Arg 

  10082 G G C 87 Val Val Leu 
  10085 A G A 88 Met Val Met 
  10157 G A A 112 Ala Thr Thr 

  10189 T C C     
ORF3 (10306-10797) GP3 (163) 10648 A G G 115 Ser Gly Gly 

  10709 T C C 135 Leu Pro Pro 
  10722 Y T T     

ORF4 10700-11158) GP4 (152) 10709 T C C 4 Tyr His His 
  10722 Y T T 8 Leu/Ser6 Leu Leu 
  11024 A A T 109 Ile Ile Phe 
ORF5 (11146-11913) GP5 (255) 11171 T C C 9 Phe Ser Ser 
  11438 C T T 98 Pro Leu Leu 
  11475 T T C     
  11704 T C C     
  11882 G A G 246 Arg Lys Arg 
ORF6 (11901-12389) M (162) -  -  -  -  -  -  -  -  
ORF7 (12313-12645) N (110) -  -  -  -  -  -  -  -  

3' NTR (12646-12704) N/A -  -  -  -            
Note:   1 Nucleotides are numbered according to the published sequence of EAV030 virus (van Dinten et. al., 1997). 
           2  Only missense mutations are shown and silent mutations are not shown. Amino acids of non-structural proteins are numbered according to their location 
              in ORF1ab polyprotein. Amino acids of structural proteins are numbered according to their locations in individual structural protein. 
            3 N/A: Not Applicable.  4 -  No nucleotide and amino acid changes occurred.  5 Y = T or C; R = A or G.  6 Leu/Ser means leucine or serine. 



 

 118 

Table 3.7 Superinfection experiments with the persistently infected Hela ‘High’ (P171) 
cell line initiated with the VBS53 strain of EAV 

 
EAV Titer (pfu/ml)* 

Cell Line Infection 
1 h p.i. 48 h p.i. 96 h p.i. 

Hela P243 Mock-infection 0 0 0 

Hela P243 Infection with EAV strain 
VBS53 (moi = 3) 4.5 × 103 2.35 × 104 6.4 × 104 

PI 73 Mock-superinfection 4.65 × 103 3.55 × 105 1.65 × 105 

PI 73 Superinfection with EAV 
strain VBS53 (moi = 3) 1.6 × 104 4.45 × 105 1.4 × 105 

* Equine arteritis virus titer was determined by plaque assay on RK-13 (KY) cells. 
   pfu/ml – plaque forming unit per ml. 

 
 
 

Table 3.8 Summary of the ability of VBS53 EAV, Hela-EAVP35, and Hela-EAVP80 to 
establish persistent infection in various cell lines 

 
Cell Lines VBS53 

EAV 
Hela-EAV 

P35 
Hela-EAV 

P80 
Hela ‘High’ + + + 

Hela ‘Low’ - + + 

Hep-2 - - - 

L-M - - - 

BHK-21 - - - 

 
               Note: + Able to establish persistent infection 
                         - Unable to establish persistent infection 
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Fig 3.1 Extracellular virus produced in the persistently infected Hela ‘High’ cell line 
initiated with the VBS53 strain of EAV. Subconfluent monolayers of Hela ‘High’ (P171) 
cells grown in T-25 flasks were inoculated with EAV strain VBS53 at an m.o.i. of 3. 
Following one-hour absorption at 37ºC, the cells were washed three times with PBS and 
10 ml fresh culture medium was added. Inoculated cultures were incubated at 37ºC and 
subcultured once every four days (1:4 split ratio). Extracellular virus was harvested 
before subculturing each cell passage. Virus infectivity was titrated by plaque assay on 
RK-13 (KY) cells. Establishment of persistent infection in Hela ‘High’ cells with the 
VBS53 strain of EAV was confirmed in three separate experiments.    
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Fig 3.2 Indirect immunofluorescence assay on VBS53 EAV-inoculated Hela ‘Low’ and 
persistently infected Hela ‘High’ cell lines. At indicated passages, cells were fixed with 
cold acetone for 10 min, and then washed three times with PBS containing 10mM glycine. 
Slides were incubated with MAb 3E2 against EAV nucleocapsid protein or MAb 12A4 
against EAV NSP1 followed by FITC-conjugated goat antimouse immunoglobulin. The 
cells were counterstained by Evans blue. The images were recorded with a LEICA 
confocal microscope. The VBS53 strain of EAV failed to establish persistent infection in 
Hela ‘Low’ (P98) cells. Passage 1 and passage 2 were shown. The VBS53 strain of EAV 
initiated persistent infection in Hela ‘High’ (P171) cells. The persistently infected cells at 
the 25th (PI 25), 29th (PI 29), 44th (PI 44) and 48th (PI 48) passage were shown.     
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VBS53 EAV 

aN 

Hela High 
VBS53 EAV 

aN 

Hela High 
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Fig 3.3 RT-PCR detection of viral RNA in persistently infected Hela ‘High’ cells (A) and 
VBS53 EAV-inoculated Hela ‘Low’ cells (B). In (A), the VBS53 strain of EAV 
established persistent infection in Hela ‘High’ (P171) cells. Lanes 1-9 correspond to the 
1st, 10th, 20th, 30th, 40th, 50th, 60th, 70th, and 80th passage of persistently infected Hela 
‘High’ cells, respectively. In (B), Hela ‘Low’ (P98) cells inoculated with the VBS53 
strain of EAV underwent serial subculturing. Lanes 1-8 correspond to the 1st, 2nd, 3rd, 4th, 
5th, 10th, 15th, and 20th passage, respectively. Lane 10 in (A) and lane 9 in (B) are the 
positive controls with RT-PCR amplification of the parental virus VBS53 EAV. Lane 11 
in (A) and lane 10 in (B) are the negative controls of mock-infected Hela ‘High’ and Hela 
‘Low’ cells. Lane 12 in (A) and lane 11 in (B) are negative controls with water as the 
template for RT-PCR.     
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E Fig 3.4 Growth kinetics of VBS53 EAV, 
Hela-EAVP35, and Hela-EAVP80 in 
BHK-21, Hela ‘Low’ (P100), Hela High 
(P198), Hep-2, and L-M cell lines. Each 
cell line was inoculated with respective 
virus at an m.o.i. of 3. At indicated time 
points, virus infectivity in the culture 
supernatant was titrated by plaque assay 
in RK-13 (KY) cells. 
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Fig 3.5 Attempts to establish persistent infection in Hela ‘Low’ (P98), Hela ‘High’ 
(P196), Hep-2, and L-M cell lines with Hela-EAVP35 and Hela-EAVP80. In (A), attempt 
to establish persistent infection in Hep-2 and L-M cells with Hela-EAVP35 and Hela-
EAVP80 was performed. In (B), attempt to establish persistent infection in Hela ‘Low’ 
and Hela ‘High’ cells with Hela-EAVP35 was carried out. The infectivity titers of both 
extracellular and cell-associated viruses at each passage were shown. In (C), attempt to 
establish persistent infection in Hela ‘Low’ and Hela ‘High’ cells with Hela-EAVP80 
was conducted.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C Hela-EAVP80 
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Fig 3.6 Indirect immunofluorescence assay on persistently infected Hela ‘Low’ and Hela 
‘High’ cell lines initiated with Hela-EAVP35. At indicated passages, cells were fixed 
with cold acetone for 10 min, and then washed three times with PBS containing 10mM 
glycine. Slides were incubated with MAb 12A4 against EAV NSP1 followed by FITC-
conjugated goat antimouse immunoglobulin. The cells were counterstained by Evans blue. 
The images were recorded with a LEICA confocal microscope.  
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Chapter Four 

Genetic Characterization of Equine Arteritis Virus during Persistent Infection of 

Hela Cells and Identification of a New Neutralization Determinant 

 

ABSTRACT 

Persistent EAV infection in Hela cells has been recently established (Chapter 3). It 

has also been shown that EAV evolves during persistent infection with respect to its 

growth properties and its ability to initiate secondary persistent infection (Chapter 3). In 

this study, the viruses recovered from the persistently infected Hela cells were 

characterized for their neutralization phenotypes using EAV-specific monoclonal 

antibodies and EAV strain-specific polyclonal equine antisera. Neutralization phenotypic 

differences were observed between these viruses, indicating that viral variants with novel 

neutralization phenotypes have emerged during persistent infection in Hela cells. 

Sequencing of the entire structural protein genes (ORFs2a, 2b, and 3-7) revealed 

nucleotide and deduced amino acid changes among these viruses. In the case of EAV, 

four neutralization determinant sites have been previously identified within the 

ectodomain of the GP5 protein (site A: aa 49; site B: aa 61; site C: aa 67-90; and site D: 

aa 99-106). All of these previously identified neutralization determinants were conserved 

among the viruses recovered from persistently infected Hela cells, in spite of the fact that 

neutralization phenotypic differences were found between these viruses. This suggested 

that some as yet unidentified neutralization determinant(s) exists. An infectious EAV 

cDNA clone and reverse genetics technology were used to identify additional potential 

neutralization epitope(s). Five chimeric viruses were generated each of which contained 

the corresponding ORF5 (which encodes GP5) of the aforementioned viruses recovered 

from persistently infected Hela cells. The neutralization phenotype of each chimeric virus 

was compared to that of its parental virus from which the substituted ORF5 was derived. 

The replacement of ORF5 correlated with the neutralization phenotypic differences 

determined by most of the EAV-specific monoclonal antibodies, suggesting that the 

unidentified neutralization determinant(s) recognized by these monoclonal antibodies is 

located on the EAV GP5 protein. Site-directed mutagenesis further identified that amino 

acid 98 in the EAV GP5 protein was critical for virus neutralization. Amino acid 98 in 
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the EAV GP5 protein is a previously unrecognized and undescribed neutralization 

determinant. It is suggested that amino acid 98 be classified in neutralization site D which 

is redefined to cover amino acids 98-106. 

  

INTRODUCTION 

Equine arteritis virus (EAV) is the prototype virus in the family Arteriviridae, genus 

Arterivirus in the order Nidovirales (Cavanagh 1997). The family Arteriviridae also 

contains porcine respiratory and reproductive syndrome virus (PRRSV), lactate 

dehydrogenase-elevating virus (LDV), and simian hemorrhagic fever virus (SHFV) 

(Snijder and Meulenberg 1998). The EAV genome is a single-stranded, positive-sense 

RNA molecule of 12.7 kb, which includes nine functional open reading frames (ORFs) 

(Snijder and Meulenberg 1998; Snijder et al. 1999). The two ORFs most proximal to the 

5’ end of the virus (1a and 1b) are approximately 9.5 kb in length and encode two 

replicase polyproteins (1a and 1ab) (de Vries et al. 1997; Snijder and Meulenberg 1998). 

The remaining seven ORFs (2a, 2b, and 3-7) located at the 3’ end of the genome are 

approximately 2.9 kb in length and encode structural proteins E, GP2b, GP3, GP4, GP5, 

M, and N, respectively (den Boon et al. 1991; Snijder and Meulenberg 1998; Snijder et al. 

1999).  

There is only one serotype of EAV (Fukunaga and McCollum 1977; Golnik et al. 

1986), and all strains evaluated thus far are neutralized by polyclonal equine sera raised 

against the virulent Bucyrus strain of EAV (Balasuriya and MacLachlan 2004c). 

However, EAV strains frequently exhibit neutralization phenotypic differences; e.g., 

different EAV strains are neutralized to various degrees with different polyclonal antisera 

and monoclonal antibodies (Balasuriya et al. 1997; 2004a; 2004b; Hedges et al. 1999a). 

The EAV GP5 protein has been shown to express neutralization determinants of the virus 

(Balasuriya et al. 1993; 1995b; 1997; 2004b; Chirnside et al. 1995; Deregt et al. 1994; 

Glaser et al. 1995). The hydropathy profile of the GP5 protein predicts that amino acid 

residues 1-18 constitute the putative signal sequence, 19-116 constitute the hydrophilic 

ectodomain of the protein, while the C-terminal half consists of three membrane-

spanning domains followed by an endodomain of about 64 amino acids (de Vries et al. 

1992; Snijder et al. 2003).  Chirnside et al. (1995) has shown that horses developed 
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EAV-neutralizing antibodies after they were inoculated with either a fusion protein 

including GP5 aa 55-98 or a synthetic peptide corresponding to GP5 aa 75-97. It was 

further demonstrated that an E. coli-expressed recombinant protein comprising the entire 

ectodomain (aa 18-122) of EAV GP5 protein induced high neutralizing antibodies in 

ponies (Castillo-Olivares et al. 2001). These data support the hypothesis that the 

ectodomain (aa 19-116) of EAV GP5 protein is immunodominant. By comparing the 

sequences of neutralization-sensitive EAV and neutralization-resistant viruses (escape 

mutants, EM), Glaser et al. (1995) identified that amino acid residues at 99 and 100 are 

critical for virus neutralization. After extensive comparison of GP5 amino acid sequences 

and neutralization phenotypes of a large number of field and laboratory EAV strains 

using both neutralizing monoclonal antibodies and EAV strain-specific polyclonal equine 

antisera, Balasuriya et al. (1993; 1995b; 1997) identified four distinct neutralization sites. 

These sites include amino acids 49 (site A), 61 (site B), 67-90 (site C), and 99-106 (site D) 

in the GP5 protein. In a recent study, the ORF5 of an infectious EAV clone was replaced 

with that of different laboratory, field, and vaccine strains of EAV, thus generating 

various chimeric viruses (Balasuriya et al. 2004b). The comparative characterization of 

the neutralization phenotypes of chimeric viruses and parental viruses has further 

confirmed the importance of the aforementioned four neutralization sites in the GP5 

protein. Taken together, these studies demonstrated that the ectodomain of the GP5 

protein contains EAV neutralization determinants. Site D includes several overlapping 

linear epitopes. The four neutralization sites (A-D) are conformationally interactive 

(Balasuriya et al. 1997; 2004b). 

An in vitro model of viral persistence involving Hela cell cultures infected with 

EAV has been recently developed (Chapter 3). In this study, it was shown that viral 

variants with novel neutralization phenotypes emerged during persistent infection of Hela 

cells. Sequencing of the entire structural protein genes (ORFs2a, 2b, and 3-7) revealed 

nucleotide and deduced amino acid changes among these viruses. However, all of the 

previously identified neutralization determinants (sites A to D) were conserved among 

the viruses recovered from persistently infected Hela cells, in spite of the fact that 

neutralization phenotypic differences were found between these viruses. This suggested 

that some as yet unidentified neutralization determinant(s) exists. An infectious EAV 
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cDNA clone and reverse genetics technology were used to identify additional potential 

neutralization epitope(s).  

 

MATERIALS AND METHODS 

Cells and viruses. Rabbit kidney (RK-13, KY) and baby hamster kidney (BHK-21) 

cells were maintained in Eagle’s medium (EMEM) with 10% ferritin supplemented calf 

serum (FSCS), penicillin, streptomycin, fungizone, and sodium bicarbonate. The VBS53 

strain of EAV was propagated twice in BHK-21 cells to produce virus stocks which were 

used to establish persistent infection in the Hela ‘High’ cell line. Hela-EAVP10, Hela-

EAVP35, Hela-EAVP60, and Hela-EAVP80 are the viruses isolated from the 10th, 35th, 

60th, and 80th passage levels of the persistently infected Hela ‘High’ cell line, respectively.  

Monoclonal antibodies and polyclonal anti-sera. The development and 

characterization of a panel of 12 neutralizing monoclonal antibodies to GP5 (MAbs 5G11, 

6D10, 7E5, 9F2, 10F11, 10H4, 1H7, 1H9, 5E8, 6A2, 7D4, and 10B4) and non-

neutralizing monoclonal antibodies to the nucleocapsid protein (N; MAb 3E2) and 

nonstructural protein 1 (nsp1; MAb 12A4) of EAV have been previously described 

(Table 4.1; Balasuriya et al. 1993; 1995b; 1997; 2004b; MacLachlan et al. 1998; Wagner 

et al. 2003). The source of EAV strain-specific polyclonal equine antisera (anti-GP5/M, 

anti-KY53, anti-KY84, anti-KY53+KY84, anti-CA95, anti-ARVAC, anti-NVSL, and 

anti-EAV030H) and negative control sera (control sera NVSL and OAT PB) have also 

been previously described (Table 4.1; Balasuriya et al. 2002; 2004b; MacLachlan et al. 

1998; Wagner et al. 2003).  

Sequencing of structural protein genes of Hela-EAVP10 and Hela-EAVP60. 

The entire genomes of EAV strain VBS53, Hela-EAVP35, and Hela-EAVP80 have been 

sequenced (Chapter 3). The structural protein genes (ORFs2a, 2b, and 3-7) of Hela-

EAVP10 and Hela-EAVP60 were sequenced following the procedures described for 

sequencing Hela-EAVP35 and Hela-EAVP80 (Chapter 2). The sequence data and 

alignments results are summarized in Appendices 5, and 7 to 13.  

Construction of chimeric full-length EAV cDNA clones containing ORF5 from 

EAV strains VBS53, Hela-EAVP10, Hela-EAVP35, Hela-EAVP60, and Hela-

EAVP80. EAV infectious cDNA clone pA45 (de Vries et al. 2000; Dobbe et al. 2001) 
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served as the backbone for all chimeric constructs used in this study. In the construct 

pA45, the naturally overlapping ORFs 4 and 5 were separated by a newly introduced 24-

nucleotide sequence containing a unique AflII restriction site (Fig 4.1B). The separation 

did not change the amino acids encoded by ORFs 4 and 5, and did not interfere with virus 

replication. The progeny viruses stably maintained the mutations that were introduced (de 

Vries et al. 2000). A shuttle vector (pS45) containing a BglII (10704)- XhoI (12869) 

fragment of the pA45 plasmid was used for cloning of ORF5 from individual EAV 

strains. To facilitate cloning, a NotI restriction site was inserted downstream of the AflII 

site in the sequence separating ORFs 4 and 5 (Fig 4.1A; Dobbe et al. 2001). Both the 

infectious cDNA clone pA45 and the shuttle vector pS45 were kindly provided by Dr. 

Eric Snijder, Leiden University, the Netherlands. 

The ORF5 sequences were RT-PCR-amplified from EAV strains VBS53, Hela-

EAVP10, Hela-EAVP35, Hela-EAVP60, and Hela-EAVP80 using a forward primer 

11152SD which contains a NotI site upstream of the ORF5 translation initiation codon 

and a reverse primer 11960N which contains a natural XbaI site just downstream of the 

ORF5 sequence (Table 4.5). The PCR products were digested with restriction enzymes 

(NotI and XbaI), and ligated into the pS45 shuttle vector which had been digested with 

the same restriction enzymes (Fig 4.1). The ligation mixture was transformed into Ecoli 

DH5a cells. The colonies were digested with restriction enzymes for screening positive 

clones. The RT-PCR-derived insert was sequenced to confirm that recombinant shuttles 

(pS45VBS53, pS45Hela-EAVP10, pS45Hela-EAVP35, pS45Hela-EAVP60, and 

pS45Hela-EAVP80) contained the correct insert sequences. The BglII-XhoI fragments 

corresponding to ORFs 4-7 and the genomic 3’ end were subcloned from recombinant 

shuttle vectors into the pA45 plasmid to obtain full-length chimeric EAV cDNA clones 

containing ORF5 from individual EAV strains (Fig 4.1). The authenticity of the ORF5 

inserts in full-length chimeric EAV cDNA clones (5rVBS53, 5rHela-EAVP10, 5rHela-

EAVP35, 5rHela-EAVP60, and 5rHela-EAVP80 clones) was confirmed by sequencing. 

Site-directed mutagenesis. The site-specific nucleotide substitution of ORF5 

11438C? T (which results in GP5 98Pro? Leu) in EAV strain VBS53 was carried out at 

the PCR step (Fig 4.2). The first-step PCR was performed with positive primer 

C211156P and negative mutagenic primer 11443N (Table 4.5) using the recombinant 
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shuttle pS45VBS53 as template. The second-step PCR was performed using the mixture 

of the 1st mutagenesis PCR product and the template pS45VBS53 together with negative 

primer 11515N in which the 1st mutagenesis PCR product acted as the positive primer. 

The 2nd mutagenesis PCR product was the desired fragment containing the site-specific 

nucleotide substitution (Fig 4.2). The thermacycling conditions for site-directed 

mutagenesis PCR reactions are shown in Appendix 14. The 2nd mutagenesis PCR 

products were digested with restriction enzymes (NotI and EcoRI) and cloned into the 

shuttle pS45VBS53 to obtain site-mutated shuttle pS45VBS53P98L from which the 

BglII-XhoI fragment was subcloned into the plasmid pA45, thus generating the site-

mutated chimeric EAV cDNA clone 5rVBS53P98L. On completion of each cloning step, 

authenticity of the inserts was confirmed by sequencing. 

In vitro transcription and generation of chimeric viruses. Viral RNA transcripts 

were generated in vitro from each chimeric/mutant infectious cDNA clone as previously 

described (Chapter 2; van Dinten et al. 1997). Full-length RNA transcripts were 

transfected into BHK-21 cells by electroporation in accordance with previously described 

protocols (Chapter 2; Balasuriya et al. 2004b; van Dinten et al. 1997). The cells were 

incubated at room temperature for a 10 min ‘recovery period’ after electroporation and 

then resuspended in 15 ml of culture medium which was previously warmed to room 

temperature. The cells were seeded into T-25 flasks and incubated at 37ºC until 

cytopathic effects were evident. Meanwhile, an aliquot of electroporated cells was seeded 

into 8-chamber slides, incubated at 37ºC for 24 h, and then examined by indirect 

immunofluorescence assay (IFA). Monoclonal antibodies 12A4 and 3E2 specific for 

EAV nonstructural protein 1 and the nucleocapsid protein (N), respectively, were used to 

detect virus replication and protein expression according to previously described 

protocols (Chapter 2). When cytopathic effects were evident (usually 72 h post 

transfection), tissue culture fluids were harvested from T-25 flasks and centrifuged at 

1900 rpm for 10 min at 4ºC.  Infectivity titers of chimeric/mutant viruses (5rVBS53, 

5rVBS53P98L, 5rHela-EAVP10, 5rHela-EAVP35, 5rHela-EAVP60, and 5rHela-

EAVP80) were determined as tissue culture infectious doses (TCID50) using RK-13 (KY) 

cells as the indicator cells. The infectivity titers of these viruses ranged from 104.5 to 105 

TCID50 units per 50 µl. The authenticity of the ORF5 insert in each chimeric/mutant virus 
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was confirmed by RT-PCR amplification and sequencing as previously described 

(Chapter 3).  

Microneutralization assay. Neutralization titers of various monoclonal antibodies 

and polyclonal antisera (Table 4.1) against each virus strain were determined by 

microneutralization assay as previously described (Balasuriya et al. 1995b; 1997; 2004b). 

Briefly, two-fold dilutions of heat-inactivated monoclonal antibodies and polyclonal 

equine antisera were made in EMEM, with the lowest dilution of 1:32 and 1:8, 

respectively. Serially diluted monoclonal antibodies (from 1:32 to 1:4096) and polyclonal 

antisera (from 1:8 to 1:1024) were added to 96-well plates in duplicate for each antibody. 

Then approximately 200 TCID50 of each virus strain was added and mixed with 

monoclonal antibodies or polyclonal antisera. The plates were incubated at 37ºC for 30 

min. A suspension of RK-13 (KY) cells was then added, and cultures were incubated at 

37ºC for 60-72 h until cytopathic effect had fully developed in the control wells. 

Neutralization titers of each antibody against each virus were recorded as the reciprocal 

of the highest final dilution that provided at least 50% protection of the RK-13 (KY) cell 

monolayers. 

 

RESULTS AND DISCUSSION 

Emergence of viral variants with novel neutralization phenotypes during 

persistent EAV infection of Hela cells. Persistent EAV infection in Hela cells has been 

recently established (Chapter 3). It has been shown that EAV evolves during persistent 

infection of cultured cells with respect to its growth properties and its ability to initiate 

secondary persistent infection (Chapter 3). In order to determine whether EAV had 

undergone neutralization phenotypic changes during persistent infection of Hela cells, the 

parental EAV strain VBS53 and the viruses recovered from the 10th (Hela-EAVP10), 35th 

(Hela-EAVP35), 60th (Hela-EAVP60), and 80th (Hela-EAVP80) passage levels of the 

persistently infected Hela ‘High’ cell line were characterized in term of their 

neutralization phenotypes using EAV-specific monoclonal antibodies and EAV strain-

specific polyclonal equine antisera (Table 4.1). Neutralization phenotypic differences 

were observed in these viruses. For example, EAV strains VBS53 and Hela-EAVP10 

were neutralized by monoclonal antibodies (MAbs) 5G11, 6D10, 7E5, 9F2, 10F11, 10H4, 
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and 6A2, whereas Hela-EAVP35, Hela-EAVP60, and Hela-EAVP80 were not 

neutralized by any of these MAbs (Table 4.2). On the other hand, EAV strains VBS53 

and Hela-EAVP10 were resistant to neutralization by MAb 1H7, whereas Hela-EAVP35, 

Hela-EAVP60, and Hela-EAVP80 were neutralized by this MAb (Table 4.2). Similarly, 

some of the EAV strain-specific polyclonal equine antisera (e.g. anti-GP5/M and anti-

EAV030H) neutralized Hela-EAVP80 to a significantly higher titer than EAV strain 

VBS53 (Table 4.3). These findings indicate that viral variants with novel neutralization 

phenotypes emerged during persistent EAV infection in Hela cells. In vivo, it has also 

been repeatedly demonstrated that viruses of different neutralization phenotypes emerge 

during persistent EAV infection of stallions (Balasuriya et al. 1999a; 2001; 2004a; 

Hedges et al. 1999a).  

Comparison of the structural protein genes of EAV strains VBS53, Hela-

EAVP10, Hela-EAVP35, Hela-EAVP60, and Hela-EAVP80. In order to further 

characterize the relationship between EAV structural protein sequences and 

neutralization phenotypes, EAV strains VBS53, Hela-EAVP10, Hela-EAVP35, Hela-

EAVP60, and Hela-EAVP80 were compared for their nucleotide and deduced amino acid 

sequences of the structural protein genes (ORFs 2a, 2b, and 3-7). The entire genomes of 

EAV strains VBS53, Hela-EAVP35, and Hela-EAVP80 have been sequenced previously 

(Chapter 3). In this study, the structural protein genes (ORFs 2a, 2b, and 3-7) of Hela-

EAVP10 and Hela-EAVP60 were sequenced. As shown in Table 4.4, nucleotide and 

amino acid changes were observed in the structural proteins E, GP2b, GP3, GP4, and 

GP5, but not in M and N proteins. The amino acid sequences of structural proteins were 

100% identical between EAV strains VBS53 and Hela-EAVP10 except that the amino 

acid at position 8 of the GP4 protein was Leucine or Serine for VBS53 while Leucine for 

Hela-EAVP10 (Table 4.4). The degree of amino acid identity among Hela-EAVP35, 

Hela-EAVP60, and Hela-EAVP80 was higher than that between any of these strains and 

VBS53 or Hela-EAVP10 (Table 4.4).  

The EAV GP5 protein has been shown to express neutralization determinants of the 

virus (Balasuriya et al. 1993; 1995b; 1997; 2004b; Chirnside et al. 1995; Deregt et al. 

1994; Glaser et al. 1995). To date, four neutralization sites  have been identified for EAV 

and all of them are located within the N-terminal ectodomain of the GP5 protein (site A: 
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amino acid 49; site B: amino acid 61; site C: amino acids 67-90; and site D: amino acids 

99-106) (Balasuriya et al. 1993; 1995b; 1997; 2004b). All of these four neutralization 

sites were conserved among EAV strains VBS53, Hela-EAVP10, Hela-EAVP35, Hela-

EAVP60, and Hela-EAVP80 (Table 4.4), although neutralization phenotypic differences 

were observed among these viruses (Table 4.2). This suggested that some as yet 

unidentified neutralization determinant(s) exists. Since all of the EAV-neutralizing 

monoclonal antibodies that have been characterized thus far recognize the GP5 protein as 

shown by Western blot and/or immunoprecipitation assays (Balasuriya et al. 1993; 1995b; 

1997; Deregt et al. 1994; Glaser et al. 1995), it is suspected that the potential 

neutralization determinant(s) responsible for the neutralization phenotypic differences 

among EAV strains VBS53, Hela-EAVP10, Hela-EAVP35, Hela-EAVP60, and Hela-

EAVP80 is also located on the GP5 protein.   

Generation of GP5 chimeric viruses and neutralization phenotypes of these 

chimeric viruses. To confirm that the potential neutralization determinant(s) responsible 

for the neutralization phenotypic differences among viruses recovered from persistently 

infected Hela cells is located on the GP5 protein, the ORF5 of the infectious EAV cDNA 

clone pA45 was replaced with the respective ORF5 of EAV strains VBS53, Hela-

EAVP10, Hela-EAVP35, Hela-EAVP60, and Hela-EAVP80 (Fig 4.2). The neutralization 

phenotypes of chimeric viruses (5rVBS53, 5rHela-EAVP10, 5rHela-EAVP35, 5rHela-

EAVP60, and 5rHela-EAVP80) were determined with EAV-specific MAbs and EAV-

strain specific polyclonal equine antisera, and compared to those of the parental viruses 

from which the substituted ORF5 was derived (Table 4.2 and 4.3). As shown in Table 4.2, 

chimeric viruses 5rVBS53 and 5rHela-EAVP10 were neutralized by MAbs 5G11, 6D10, 

7E5, 9F2, 10F11, 10H4, and 6A2, whereas none of 5rHela-EAVP35, 5rHela-EAVP60, 

and 5rHela-EAVP80 viruses was neutralized by any of these MAbs. This is consistent 

with the neutralization results of their respective parental viruses with the same MAbs 

(Table 4.2). All of the chimeric viruses 5rVBS53, 5rHela-EAVP10, 5rHela-EAVP35, 

5rHela-EAVP60, and 5rHela-EAVP80 shared the same backbone as the pA45 virus and 

the only differences among them were ORF5 sequences. This would suggest that the 

neutralization phenotypic differences among chimeric viruses detected by above MAbs 

result from differences in the GP5 proteins. The potential neutralization determinant(s) 
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recognized by MAbs 5G11, 6D10, 7E5, 9F2, 10F11, 10H4, and 6A2 are located on the 

EAV GP5 proteins. On the other hand, it was observed that chimeric viruses 5rHela-

EAVP35, 5rHela-EAVP60, and 5rHela-EAVP80 were resistant to neutralization by MAb 

1H7, whereas their parental viruses Hela-EAVP35, Hela-EAVP60, and Hela-EAVP80 

were neutralized by this MAb (Table 4.2). These three chimeric viruses have the same 

ORF5 sequences as their respective parental viruses. This would suggest that 

neutralization of Hela-EAVP35, Hela-EAVP60, and Hela-EAVP80 by MAb 1H7 may 

involve some other structural proteins. Since the M and N proteins of these viruses did 

not show any sequence differences (Table 4.4), it is probable that one or some of 

structural proteins E, GP2b, GP3, and GP4 are involved in neutralization by MAb 1H7. It 

has been previously demonstrated that MAb 1H7 recognizes amino acid 49 of EAV GP5 

protein (Balasuriya et al. 1997; 2004b). Furthermore, individual neutralization sites (A-D) 

interact with one another to form conformation-dependent epitopes (Balasuriya et al. 

1995b; 1997; 2004b). Therefore, it would appear that the neutralization sites are 

conformationally dependent and they not only interact with each other but also may 

interact with other structural proteins.  

Generation of mutant virus with site-specific substitution in the GP5 protein 

and its neutralization phenotype. As has been shown, the potential neutralization 

determinant(s) recognized by MAbs 5G11, 6D10, 7E5, 9F2, 10F11, 10H4, and 6A2 are 

located on the EAV GP5 proteins. Comparison of the GP5 protein sequences revealed 

that there were four amino acid changes (amino acids 9, 98, 202, and 246) among these 

viruses (Fig 4.3). At position 202, only Hela-EAVP60 and 5rHela-EAVP60 were 

different from the other viruses; at position 246, only Hela-EAVP35 and 5rHela-EAVP35 

were different from the other viruses. Based on the fact that EAV strains VBS53, Hela-

EAVP10 and their respective GP5 chimeric viruses were neutralized by MAbs 5G11, 

6D10, 7E5, 9F2, 10F11, 10H4, and 6A2, whereas Hela-EAVP35, Hela-EAVP60, Hela-

EAVP80 and their respective GP5 chimeric viruses were not neutralized by these MAbs, 

amino acids 202 and 246 do not appear to be the potential neutralization determinant(s) 

responsible for neutralization phenotypic differences detected by these MAbs. In contrast, 

amino acids 9 and 98 would appear to be the possible potential neutralization 

determinant(s). Since amino acids 1-18 of the GP5 protein are the putative signal 
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sequence which is cleaved off during transport through the endoplasmic reticulum (de 

Vries et al. 1992; Snijder et al. 2003), amino acid 9 is unlikely to be the potential 

neutralization determinant(s). By exclusion, therefore, amino acid 98 would appear to be 

the potential neutralization determinant. To unequivocally demonstrate this, amino acid 

98 on the GP5 protein of the virus 5rVBS53 was site-specifically mutated from Proline to 

Leucine (Fig 4.2). The neutralization phenotypes of the mutant virus 5rVBS53P98L were 

determined and compared to those of the other viruses (Table 4.2 and 4.3). It was shown 

that 5rVBS53 EAV was neutralized by MAbs 5G11, 6D10, 7E5, 9F2, 10F11, 10H4, and 

6A2, whereas the mutant virus 5rVBS53P98L was resistant to neutralization by these 

MAbs (Table 4.2). This clearly demonstrated that the neutralization phenotypic 

differences were caused by the exchange of Proline to Leucine in amino acid 98. The 

neutralization phenotypes of parental EAV strains and chimeric viruses and their 

respective amino acids at 98 of the GP5 protein are consistent with this finding (Table 4.2 

and Fig 4.3). It has been previously demonstrated that MAb 6A2 recognizes amino acid 

69 of the EAV GP5 protein (Balasuriya et al. 1997; 2004b). This study showed that MAb 

6A2 may also recognize amino acid 98 of the EAV GP5 protein, confirming that 

neutralization epitopes may interact with each other and are conformationally dependent. 

On the other hand, exchange of Proline to Leucine in amino acid 98 did not result in 

VBS53 EAV becoming susceptible to neutralization by MAb 1H7, confirming that the 

neutralization phenotypic differences detected by MAb 1H7 among EAV strains VBS53, 

Hela-EAVP10, Hela-EAVP35, Hela-EAVP60, and Hela-EAVP80 were not caused by 

this site-specific substitution.  

In summary, this study demonstrated that viral variants with novel neutralization 

phenotypes emerged during persistent EAV infection in Hela cells. Previously identified 

four neutralization sites (A-D) were all conserved among viruses recovered from 

persistently infected Hela cells, suggesting the existence of some as yet unidentified 

neutralization determinant(s). Using an infectious EAV cDNA clone and reverse genetics 

technology, it was identified that amino acid 98 on the EAV GP5 protein is a new 

neutralization determinant. It is suggested that amino acid 98 be classified in 

neutralization site D which covers amino acids 98-106.  
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Table 4.1 Monoclonal antibodies and polyclonal antisera to equine arteritis virus 

Antibody Antibody specificity/epitope location (amino acid position and [site])                               
recognized by the antibody Reference 

Monoclonal antibodies 
5G11 GP5/99 and 102; [D] Balasuriya et al. 1993; 1995b 
6D10 GP5/99 and 102; [D] Balasuriya et al. 1993; 1995b 
7E5 GP5/99 and 102; [D] Balasuriya et al. 1993; 1995b 
9F2 GP5/99 and 102; [D] Balasuriya et al. 1993; 1995b 
10F11 GP5/99 and 102; [D] Balasuriya et al. 1993; 1995b 
10H4 GP5/99, 102, and 103; [D] Balasuriya et al. 1993; 1995b 
1H7 GP5/49; [A] Balasuriya et al. 1997 
1H9 GP5/69; [C] Balasuriya et al. 1997 
5E8 GP5/61; [B] Balasuriya et al. 1997 
6A2 GP5/69; [C] Balasuriya et al. 1997 
7D4 GP5/69; [C] Balasuriya et al. 1997 
10B4 GP5/99, 102, and 103; [D] Balasuriya et al. 1997 
3E2 N MacLachlan et al. 1998 
12A4 nsp1 Wagner et al. 2003 
   
polyclonal equine antisera  
anti-GP5/M GP5 and M proteins Balasuriya et al. 2002 
anti-KY53 polyclonal MacLachlan et al. 1998 
anti-KY84 polyclonal MacLachlan et al. 1998 
anti-KY53+KY84 polyclonal  
anti-CA95 polyclonal  
anti-ARVAC polyclonal MacLachlan et al. 1998 
anti-NVSL polyclonal Wagner et al. 2003 

anti-EAV030H polyclonal Commercial serum from National 
Veterinary Services Laboratory 

control serum NVSL Not applicable Commercial serum from National 
Veterinary Services Laboratory 

control serum  
OAT PB Not applicable  
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Table 4.2 Neutralization titersa of monoclonal antibodies against parental and chimeric equine arteritis viruses 

Monoclonal antibodies  
Virus strain 

  5G11 6D10 7E5 9F2 10F11 10H4 1H7 1H9 5E8 6A2 7D4 10B4 3E2c 12A4d 
VBS53 EAV  4096 >4096 1024 512 >4096 >4096 <32 <32 <32 64 <32 <32 <32 <32 

5rVBS53 EAV >4096 >4096 >4096 >4096 >4096 >4096 32 <32 <32 128 <32 <32 <32 <32 
5rVBS53P98L <32 <32 <32 <32 <32 <32 <32 <32 <32 <32 <32 <32 <32 <32 

Hela-EAVP10 4096 >4096 2048 1024 >4096 >4096 <32 <32 <32 512 <32 <32 <32 <32 
5rHela-EAVP10 4096 >4096 2048 2048 >4096 >4096 <32 <32 <32 512 <32 <32 <32 <32 

Hela-EAVP35  <32 <32 <32 <32 <32 <32 2048 <32 <32 <32 <32 <32 <32 <32 
5rHela-EAVP35  <32 <32 <32 <32 <32 <32 <32 <32 <32 <32 <32 <32 <32 <32 

Hela-EAVP60b <32 <32 <32 <32 <32 <32 2048 <32 <32 <32 <32 <32 <32 <32 
5rHela-EAVP60b <32 <32 <32 <32 <32 <32 <32 <32 <32 <32 <32 <32 <32 <32 

Hela-EAVP80  <32 <32 <32 <32 <32 <32 >4096 <32 <32 <32 <32 <32 <32 <32 
5rHela-EAVP80  <32 <32 <32 <32 <32 <32 <32 <32 <32 <32 <32 <32 <32 <32 

a Neutralization titers are expressed as the inverse of the antibody dilution providing 50% protection of RK-13 (KY) cell monolayers against 200 TCID50 of virus 
b Neutralization titers are expressed as the inverse of the antibody dilution providing 50% protection of RK-13 (KY) cell monolayers against 100 TCID50 of virus 
c control MAb to N protein of EAV 
d control Mab to nsp1 of EAV 
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Table 4.3 Neutralization titersa of polyclonal equine antisera against parental and chimeric equine arteritis viruses 
Polyclonal equine antisera 

Virus strain 
 Anti-

GP5/M 
Anti-

KY53+KY84 
Anti-
KY84 

Anti-
CA95 

Anti-
ARVAC 

Anti-
EAVNVSL 

Anti-
EAV030H 

Anti-
KY53 

NVSL 
NEGc OAT PBd 

VBS53 EAV  8 >1024 256 512 8 64 64 256 <8 <8 
5rVBS53 EAV 64 >1024 1024 >1024 32 256 512 >1024 <8 <8 
5rVBS53P98L 128 >1024 >1024 >1024 32 256 1024 >1024 <8 <8 

Hela-EAVP10 16 >1024 256 512 <8 128 256 1024 <8 <8 
5rHela-EAVP10 128 >1024 1024 1024 64 128 256 1024 <8 <8 

Hela-EAVP35  64 >1024 512 1024 16 256 128 512 <8 <8 
5rHela-EAVP35  256 >1024 1024 1024 16 512 256 1024 <8 <8 

Hela-EAVP60b 128 >1024 512 1024 16 512 256 512 <8 <8 
5rHela-EAVP60b 256 >1024 >1024 >1024 32 256 512 >1024 <8 <8 

Hela-EAVP80  1024 >1024 >1024 >1024 32 512 1024 1024 <8 <8 
5rHela-EAVP80 128 >1024 >1024 >1024 32 128 1024 1024 <8 <8 

a Neutralization titers are expressed as the inverse of the antibody dilution providing 50% protection of RK-13 (KY) cell monolayers against 200 TCID50 of virus 
b Neutralization titers are expressed as the inverse of the antibody dilution providing 50% protection of RK-13 (KY) cell monolayers against 100 TCID50 of virus 
c,d Negative control equine serum 

 
 
 
 
 
 
 
 
 
 
 
 



 

 

140

Table 4.4 Comparison of structural protein genes of EAV strains VBS53, Hela-EAVP10, -P35, -P60, and -P80 

Leader or ORF Protein (aa length) Nucleotide 
location1 

Amino acid 
location2 VBS53 EAV Hela-

EAVP10 
Hela-

EAVP35 
Hela-

EAVP60 
Hela-

EAVP80 
ORF2a (9751-9954) E (67) 9867 39 T (Val)3 C (Val) C (Val) C (Val) C(Val) 

  9907 53 A (Ser) A (Ser) A (Ser) T (Cys) T (Cys) 
  9914 55 T (Val) T (Val) C (Ala) C (Ala) C (Ala) 
         

ORF2b (9824-10507) GP2b (227) 9867 15 T (Leu) T (Leu) C (Ser) C (Ser) C (Ser) 
  9907 28 A (Ala) A (Ala) A (Ala) T (Ala) T (Ala) 
  9914 31 T (Trp) T (Trp) C (Arg) C (Arg) C (Arg) 
  10082 87 G (Val) G (Val) G (Val) C (Leu) C (Leu) 
  10085 88 A (Met) A (Met) G (Val) A (Met) A (Met) 
  10157 112 G (Ala) G (Ala) A (Thr) A (Thr) A (Thr) 
  10189 122 T (Ile) C (Ile) C (Ile) C (Ile) C (Ile) 
  10267 148 T (Tyr) T (Tyr) T (Tyr) C (Tyr) T (Tyr) 

         
ORF3 (10306-10797) GP3 (163) 10648 115 A (Ser) A (Ser) G (Gly) G (Gly) G (Gly) 

  10709 135 T (Leu) T (Leu) C (Pro) C (Pro) C (Pro) 
  10722 139 Y (Ile) T (Ile) T (Ile) T (Ile) T (Ile) 

         
ORF4 (10700-11158) GP4 (152) 10709 4 T (Tyr) T (Tyr) C (His) C (His) C (His) 

  10722 8 Y (Leu/Ser)4 T (Leu) T (Leu) T (Leu) T (Leu) 
  11024 109 A (Ile) A (Ile) A (Ile) T (Phe) T (Phe) 
         

ORF5 (11146-11913) GP5 (255) 11171 9 T (Phe) T (Phe) C (Ser) C (Ser) C (Ser) 
  11438 98 C (Pro) C (Pro) T (Leu) T (Leu) T (Leu) 
  11475 110 T (Ile) T (Ile) T (Ile) C (Ile) C (Ile) 
  11704 187 T (Leu) T (Leu) C (Leu) C (Leu) C (Leu) 
  11749 202 A (Ile) A (Ile) A (Ile) G (Val) A (Ile) 
  11882 246 G (Arg) G (Arg) A (Lys) G (Arg) G (Arg) 
         

ORF6 (11901-12389) M (162) - 5 -  -  -  -  -  -  
ORF7 (12313-12645) N (110) -  -  -  -  -  -  -  
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Notes to Table 4.4:    
1 Nucleotides are numbered according to the published sequence of EAV030 virus (van Dinten et al. 1997). 
2 Amino acids of structural proteins are numbered according to their locations in individual structural protein. 
3 Nucleotide and amino acid changes are shown. Amino acid is shown by three-letter symbols in parenthesis. Missense mutations are shown in bold. 
4 Leu/Ser means leucine or serine. 
5 -  No nucleotide and amino acid changes occurred. 

 
 

Table 4.5 Oligonucleotide primers used for RT-PCR amplification 
Primer ID Polarity Sequence (5'-3') Position (nt) 

Primers for cloning entire ORF5 from EAV strains VBS53, Hela-EAVP10, -P35, -P60, and -P80                                                  
into the shuttle vector pS45  

11152SD Positive TCT GTG AAC TTA AGG CGG CCG CAG CAT GTT ATC TAT GAT TG 11152-11176a/11146-11161b 

11960N Negative AAA GTA ATC TAG ATA CTC ACC TAA AAT CCC GTC ACC ACA AAA TGA ATC TA 11960-11911b 

    

Primers for site-directed mutagenesis  

C211156P Positive GGC TCA ACG CTG TTA TCT GTG AAC 11137-11160a 

11443Nc Negative TGT ACA GTC CAT GCG CCT GTT CCA 

11443-11420b                                                     

(nt change at positive sense 
strand: 11438 C? T; aa 
change GP5 98 Pro? Leu);  
mutagenesis of ORF5 from 
VBS53 EAV  

11515N Negative ACA CAT CCA ACA CAA CTA TGC C 11515-11494b 
a Nucleotide sequence from the plasmid pS45 and numbered accordingly.                                                                                                                                                                                     
b EAV sequence numbered according to the pEAV030 sequence and the NotI site in the primer 11152SD is underlined; natural XbaI site in the primer 11960N 
is underlined and italicized.                                                                                                                                                                                                                                                        
c Mutagenesis primer and the mutated nucleotide is underlined and in bold. 
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XhoI 
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▲ 

ORF5 start codon 

5� 

pA45 plasmid 

A 

B 

AflII 
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Fig 4.1 Flow diagram outlining construction of the full-length chimeric clone which contains ORF5 from different strains of EAV 
using the backbone of the infectious cDNA clone pA45 (de Vries et al. 2000; Dobbe et al. 2001) and generation of chimeric viruses. 
In A and B, the nucleotides that were inserted to separate ORFs 4 and 5 are shown in lowercase. See Materials and Methods for details. 
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Fig 4.2 Flow diagram outlining the site-directed mutagenesis of EAV ORF5 11438C? T 
in plasmid pS45VBS53. In step 1, the mutation was introduced to the DNA by 
performing PCR with positive primer C211156P and negative mutagenic primer 11443N 
using the template pS45VBS53. In step 2, the 1st mutagenesis PCR product was mixed 
with the template pS45VBS53 and PCR was performed with positive primer (the 1st 
mutagenesis PCR product acting as positive primer) and negative primer 11515N. The 
2nd mutagenesis PCR product is the desired fragment containing site-specific nucleotide 
substitution.  
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                1                                               50                                               100 
VBS53EAV        MLSMIVLLFLLWGAPSHAYFSYYTAQRFTDFTLCMLTDRGVIANLLRYDEHTALYNCSASKTCWYCTFLDEQIITFGTDCNDTYAVPVAEVLEQAHGPYS 
5rVBS53         ........F........................................................................................P.. 
5rVBS53P98L     ........F........................................................................................L.. 
Hela-EAVP10     ........F........................................................................................P.. 
5rHela-EAVP10   ........F........................................................................................P.. 
Hela-EAVP35     ........S........................................................................................L.. 
5rHela-EAVP35   ........S........................................................................................L.. 
Hela-EAVP60     ........S........................................................................................L.. 
5rHela-EAVP60   ........S........................................................................................L.. 
Hela-EAVP80     ........S........................................................................................L.. 
5rHela-EAVP80   ........S........................................................................................L.. 
                
                101                                            150                                               200 
VBS53EAV        VLFDDMPPFIYYGREFGIVVLDVFMFYPVLVLFFLSVLPYATLILEMCVSILFIIYGIYSGAYLAMGIFAATLAIHSIVVLRQLLWLCLAWRYRCTLHAS 
5rVBS53         .................................................................................................... 
5rVBS53P98L     .................................................................................................... 
Hela-EAVP10     .................................................................................................... 
5rHela-EAVP10   .................................................................................................... 
Hela-EAVP35     .................................................................................................... 
5rHela-EAVP35   .................................................................................................... 
Hela-EAVP60     .................................................................................................... 
5rHela-EAVP60   .................................................................................................... 
Hela-EAVP80     .................................................................................................... 
5rHela-EAVP80   .................................................................................................... 
                
                201                                            250 
VBS53EAV        FISAEGKVYPVDPGLPVAAAGNRLLVPGRPTIDYAVAYGSKVNLVRLGAAEVWEP- 
5rVBS53         .I...........................................R.........- 
5rVBS53P98L     .I...........................................R.........- 
Hela-EAVP10     .I...........................................R.........- 
5rHela-EAVP10   .I...........................................R.........- 
Hela-EAVP35     .I...........................................K.........- 
5rHela-EAVP35   .I...........................................K.........- 
Hela-EAVP60     .V...........................................R.........- 
5rHela-EAVP60   .V...........................................R.........- 
Hela-EAVP80     .I...........................................R.........- 
5rHelaEAVP80    .I...........................................R.........-                
 
Fig 4.3 Aligned deduced amino acid sequence of the GP5 proteins of parental and chimeric equine arteritis viruses. 
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Chapter Five 

Potential Changes in Pathogenicity of Equine Arteritis Virus 

During Persistent Infection of Hela Cells 

 

ABSTRACT 

A previously described in vitro assay has shown that the growth characteristics of 

different EAV strains in equine endothelial cells can generally be related to the 

pathogenicity of individual strains of the virus for horses [Moore et al. (2002) Virology 

298, 39-44; Moore et al. (2003) Am J Vet Res 64, 779-84]. Virulent strains of EAV 

usually replicated more quickly, caused larger plaques, and gave rise to more rapid cell 

lysis in equine endothelial cells than did avirulent strains of the virus. In the present study, 

this in vitro assay was used to investigate whether virus recovered from Hela cells 

persistently infected with EAV differed in characteristics from the original strain of EAV 

used to initiate infection. It was found that viruses recovered from persistently infected 

Hela cells over time progressively caused smaller and smaller plaques in equine 

endothelial cells, suggesting that EAV probably became less virulent during the course of 

persistent infection in Hela cells. Since the actual virulence of different EAV strains can 

only be definitely determined in horses, the potential changes in pathogenicity of EAV 

during persistent infection of Hela cells need to be verified by challenge studies in horses. 

 

INTRODUCTION 

Equine arteritis virus (EAV) is the causative agent of equine viral arteritis (EVA), a 

globally distributed infectious disease of equids (Timoney and McCollum 1993). EAV is 

a single-stranded, positive sense RNA virus and the prototype member of the family 

Arteriviridae in the order Nidovirales (Cavanagh 1997). Only one serotype of EAV has 

been recognized (Fukunaga and McCollum 1977; Golnik et al. 1986), and all strains 

evaluated thus far are neutralized by polyclonal equine sera raised against the virulent 

Bucyrus strain of EAV (Balasuriya and MacLachlan 2004c). However, geographically 

and temporally distinct EAV isolates vary not only antigenically but also in the severity 

of the clinical disease they induce and in their abortigenic potential (Balasuriya et al. 

1998; 1999b; Balasuriya and MacLachlan 2004c; McCollum and Timoney 1999; 
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Timoney and McCollum 1993). While the majority of field strains of EAV cause 

subclinical infection in horses, some strains can cause the clinical manifestations of EVA. 

For example, the virulence of certain EAV strains for horses has been defined: highly 

virulent (VBS53 and ATCC EAV), moderately virulent (KY84, CAN86, AZ87, and 

IL93), mildly virulent (SWZ64, AUT68, IL94, and CA97), and putatively avirulent 

(KY63, PA76, KY77, CA95G, and ARVAC vaccine) strains of EAV (MacLachlan et al. 

1996; McCollum 1981; McCollum and Timoney 1984; McCollum et al. 1995; McCollum 

and Timoney 1999; Moore et al. 2003b; Patton et al. 1999; Timoney and McCollum 

1993).  

EAV has a particular tropism for macrophages and vascular endothelium in infected 

horses, and the clinical manifestations of EVA reflect endothelial injury (Crawford and 

Henson 1973; Del Piero 2000; Estes and Cheville 1970; MacLachlan et al. 1996; 

McCollum 1981). An in vitro assay has recently been developed (Moore et al. 2002; 

2003b) which has been used to investigate the virulence of various strains of EAV in 

horses. Comparison of growth characteristics in equine endothelial cells (EECs) of 

various EAV strains whose virulence had been previously determined in horses revealed 

that virulent strains of EAV generally replicated more quickly, caused larger plaques, and 

led to more rapid cell lysis in cultured EECs than the avirulent strains did. However, 

there was one notable exception. The highly attenuated modified live vaccine strain of 

EAV caused larger plaques in equine endothelial cells than known virulent strains of the 

virus (Moore et al. 2003b). Based on the findings of the studies, it was concluded that 

primary equine endothelial cells can serve as a very useful in vitro model for 

characterizing the virulence of EAV (Moore et al. 2002; 2003b). It was found that 

virulent and avirulent strains of EAV induced different quantities of proinflammatory 

cytokines in alveolar and blood-derived equine macrophages (Moore et al. 2003a). 

Persistent infection of Hela cells with EAV has been recently established (Chapter 

3). It has been shown that EAV evolves during persistent infection with respect to its 

growth properties, ability to initiate secondary persistent infection (Chapter 3), and its 

genetic and neutralization phenotypic characteristics (Chapter 4). The objective of the 

present study was to investigate whether the pathogenicity of EAV had changed in the 

course of persistent infection in Hela cells. To achieve this goal, the in vitro assay 
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described by Moore et al. (2002; 2003b) was used to investigate and estimate the 

virulence of viruses recovered from persistently infected Hela cells. The actual 

pathogenicity of these viruses will require challenge studies in horses.   

 

MATERIALS AND METHODS 

Cells and viruses. Rabbit kidney (RK-13, KY) cells and baby hamster kidney 

(BHK-21) cells were maintained in Eagle’s medium (EMEM) with 10% ferritin 

supplemented calf serum (FSCS), penicillin, streptomycin, fungizone, and sodium 

bicarbonate. The isolation and purification of primary equine endothelial cells (EEC) has 

been previously described in detail (Hedges et al. 2001; Moore et al. 2003b). Equine 

endothelial cells were kindly provided by Drs. Udeni Balasuriya and James MacLachlan 

at University of California, Davis. Equine endothelial cells were maintained in 

Dulbecco’s modified essential medium (DMEM) with sodium pyruvate, 10% fetal bovine 

serum, penicillin, streptomycin, non-essential amino acids, and L-glutamine. All 

experiments were performed on EECs between passages 10 and 15. The VBS53 strain of 

EAV was propagated twice in BHK-21 cells to produce virus stocks which were used to 

establish persistent infection in the Hela ‘High’ cell line. Hela-EAVP10, Hela-EAVP20, 

Hela-EAVP35, Hela-EAVP50, Hela-EAVP60, and Hela-EAVP80 are the viruses isolated 

from the 10th, 20th, 35th, 50th, 60th, and 80th passage levels of the persistently infected Hela 

‘High’ cell line, respectively.  

Growth of various EAV strains in EECs and RK-13 cells. Each virus (VBS53, 

Hela-EAVP10, Hela-EAVP20, Hela-EAVP35, Hela-EAVP50, Hela-EAVP60, and Hela-

EAVP80) was diluted to approximately 100 pfu per ml and inoculated onto confluent 

monolayers of EECs or RK-13 cells. Each virus strain was inoculated into six T-25 flasks 

with an inoculum of 1 ml of diluted virus per flask. After one hour’s incubation at 37ºC, 

cell monolayers were overlaid with EMEM containing 0.75% carboxymethyl cellulose. 

Inoculated cultures were incubated at 37ºC, and cytopathic effects were checked daily. At 

each of the following time points, 48, 72, and 87 h post inoculation, duplicates of the 

inoculated cell cultures were stained with 10% formalin buffered crystal violet. Of the 

cultures stained at 87 h post inoculation, at least 50 plaques were measured to determine 

mean plaque size. 
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RESULTS AND DISCUSSION 

Genetic variation and divergent phenotypic properties (e.g. neutralization and 

virulence) have been repeatedly demonstrated among field isolates and laboratory 

adapted strains of EAV. Persistently infected stallions (carrier stallions) are thought to be 

a natural source of genetic and phenotypic diversity of EAV (Balasuriya et al. 2004a; 

Balasuriya and MacLachlan 2004c; Hedges et al. 1999a). An in vitro model of EAV 

persistence in Hela cells has been recently established (Chapter 3) to help characterize 

virus evolution during persistent infection. It has been shown that EAV evolves during 

persistent infection in cell culture with respect to its growth properties, ability to initiate 

secondary persistent infection (Chapter 3), and genetic and neutralization phenotypic 

characteristics (Chapter 4). In order to determine whether the pathogenicity of EAV had 

changed during persistent infection of Hela cells, an in vitro assay described by Moore et 

al. (2002; 2003b) was used to investigate the virulence of viruses recovered from 

persistently infected Hela cells. All of the EAV strains (VBS53, Hela-EAVP10, Hela-

EAVP20, Hela-EAVP35, Hela-EAVP50, Hela-EAVP60, and Hela-EAVP80) caused lytic 

infections in both RK-13 and primary equine endothelial cells. However, the onset of 

cytopathic effect (CPE) differed in RK-13 and EECs. In EEC cells, CPE became evident 

at 48 h post inoculation, and typical plaques could be observed after cells were stained. 

However, in RK-13 cells, CPE was not apparent even at 72 h post inoculation, and 

plaques were not clear after cells were stained at either 48 h or 72 h post inoculation. At 

87 h post inoculation, CPE in both EECs and RK-13 cells was evident and plaques were 

clearcut and readily measurable after staining. Therefore, it was decided to determine and 

compare plaque size of each virus in RK-13 and EECs at 87 h post inoculation. 

As shown in Table 5.1 and Fig 5.1, EAV strain VBS53 produced significantly 

larger plaques in EECs than all of the other EAV strains evaluated (Hela-EAVP10, -P20, 

-P35, -P50, -P60, and -P80; P < 0.002 between VBS53 EAV and Hela-EAVP10; P < 

0.001 between VBS53 EAV and any other EAV strains); Hela-EAVP10 produced 

significantly larger plaques in EECs than Hela-EAVP20, -P35, -P50, -P60, and -P80 did 

(P < 0.001); Hela-EAVP20 produced significantly larger plaques in EECs than Hela-

EAVP35, -P50, -P60, and -P80 did (P < 0.001); Hela-EAVP35 produced significantly 

larger plaques in EECs than did Hela-EAVP50 (P < 0.001), -P60 (P < 0.002), and -P80 (P 
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<0.001); there was no significant difference in plaque size among Hela-EAVP50, -P60, 

and -P80 strains (P > 0.1). In contrast, there was no significant difference in the size of 

plaques produced by all seven of these EAV strains in RK-13 cells. If the size of plaques 

produced by EAV in EECs truly reflects the virulence of a virus strain for horses, these 

findings would suggest that EAV became progressively less virulent during the course of 

persistent infection in Hela cells up to the 50th passage in cell culture after which there 

did not appear to be any further reduction in viral virulence.  

However, the actual pathogenicity of these EAV strains needs to be definitively 

determined by challenge studies in horses. Determination of the pathogenicity of these 

viruses recovered from persistently infected Hela cells for horses is currently in progress. 

If EAV, by serial passage in persistently infected Hela cells, should prove to become 

progressively less virulent for the horse, that is not without precedent. It has been 

previously demonstrated that foot-and-mouth disease virus became progressively less 

virulent for mice and cattle during the course of persistence in BHK-21 cells (Diez et al. 

1990b). So far, the genetic determinants of EAV virulence have not been defined. 

Alignment of available nucleotide and amino acid sequences of a variety of EAV strains 

with varying virulence (e.g. EAV strains VBS53, KY84, CAN86, AZ87, IL93, SWZ64, 

AUT68, IL94, CA97, KY63, PA76, KY77, CA95G, and ARVAC vaccine) failed to 

identify a unique mutation that could possibly distinguish virulent strains from avirulent 

strains (data not shown). It would suggest that virulence differences between EAV strains 

are probably determined by a combination of multiple mutations or by mutation(s) 

present in the fragment of the genome whose sequences are not available yet for most of 

the aforementioned EAV strains. Therefore, comparison of the entire genomes of EAV 

strains that differ in virulence for horses may be the appropriate way to identify the target 

gene(s) responsible for EAV virulence. At this time, entire genome sequences are only 

available for a few EAV strains, e.g. the VBS53 strain (Chapter 3), ARVAC vaccine 

strain (Balasuriya et al., unpublished), EAV030 virus generated from the infectious 

cDNA clone EAV030 (Balasuriya et al. 1999b; van Dinten et al. 1997), Hela-EAVP35 

and Hela-EAVP80 (Chapter 3). Among these strains, VBS53 EAV has demonstrated 

virulent properties (MacLachlan et al. 1996; McCollum et al. 1971); the ARVAC vaccine 

strain and EAV030 virus have been demonstrated avirulent (Balasuriya et al. 1999b; 
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McCollum 1986); the virulence of Hela-EAVP35 and Hela-EAVP80 for horses has not 

been established. Determination of the in vivo virulence of Hela-EAVP35 and Hela-

EAVP80 should help to identify the genetic determinants of EAV virulence. 
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Table 5.1 Plaque size of different EAV strains in RK-13 (KY) and EEC cells 
          

 
Virus Number of  plaques measured Plaque diameter (mm) 

Mean ± SE 
  RK-13 (KY) EEC RK-13 (KY) EEC 
     

VBS53 EAV 81 59 2.12 ± 0.06 6.17 ± 0.13 
     

Hela-EAVP10 79 63 2.03 ± 0.06 5.67 ± 0.09  
     
Hela-EAVP20 85 60 1.99 ± 0.04 4.88 ± 0.12  

     
Hela-EAVP35  95 98 2.07 ± 0.04 3.92 ± 0.07  

     
Hela-EAVP50 85 83 2.16 ± 0.04 3.33 ± 0.08 

     
Hela-EAVP60 90 55 2.05 ± 0.04 3.53 ± 0.09 

     
Hela-EAVP80 90 58 2.00 ± 0.04 3.36 ± 0.11 

     
  RK-13 (KY) = Rabbit Kidney cells (KY); EEC = Equine endothelial cells;                 

SE = Standard error of the Mean.    
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Fig 5.1 Size of plaques produced by EAV strains VBS53, Hela-EAVP10, Hela-EAVP20, 
Hela-EAVP35, Hela-EAVP50, Hela-EAVP60, and Hela-EAVP80 in equine endothelial 
cells (EECs) and rabbit kidney (RK-13 KY) cells. Mean ± Standard Error is shown in (A). 
In (B), pictures of plaques formed by three EAV strains VBS53, Hela-EAVP35, and 
Hela-EAVP80 in EECs and RK-13 cells are shown.    
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SUMMARY 
 

Chapter 1 of this dissertation presents an overview of current knowledge of the 

molecular biology of equine arteritis virus; EAV infection and persistently infected 

stallions were briefly described; and persistent infection of cell cultures with RNA 

viruses were reviewed.  

Neither a virus attachment molecule nor a specific cell receptor has yet been 

identified for equine arteritis virus. Identification of the receptor used by EAV for cell 

attachment and entry has been hampered by the unavailability of a known cell line that 

lacks the appropriate EAV receptor(s). In Chapter 2, a variety of cell lines of different 

species and tissue origin were assessed for their permissiveness to infection with the 

strain VBS53 of EAV and the mechanism that restricts EAV infection in the non-

permissive cell lines was investigated. The cell lines BHK-21, RK-13, and C2C12 were 

found to support productive infection with EAV strain VBS53, whereas Hela, Hep-2, and 

L-M cell lines exhibited limited susceptibility to infection with the virus. In the course of 

the study, it was found that the Hela cell line became more susceptible to infection with 

EAV strain VBS53 after extended serial passage. The respective cell lines were referred 

to as Hela ‘High’ (passage 170-221) and Hela ‘Low’ (passage 95-115) lines. While the 

Hela ‘High’ cell line was more susceptible than the Hela ‘Low’ cell line, it was still 

considerably less susceptible than the BHK-21 cell line to EAV infection. Subsequent 

studies demonstrated that infection with EAV strain VBS53 was restricted at the entry 

step in Hela, Hep-2, and L-M cell lines. The availability of cells with varying 

susceptibility to EAV infection should help to identify the cellular factor(s) involved in 

EAV attachment and entry. 

Up to 30% to 70% of stallions can subsequently become persistently infected 

following natural infection with EAV. The detailed mechanism by which EAV 

establishes persistent infection in stallions is unknown. Carrier stallions are not only a 

natural reservoir of EAV responsible for maintenance and dissemination of EAV in 

equine populations, but also a natural source of genetic and phenotypic diversity of EAV. 

Persistent viral infections in cell culture have been demonstrated as a valuable tool to 

study virus-host cell interactions, virus and host cell evolutions, and to elucidate the 

mechanisms of viral persistence. In Chapter 3, an in vitro model of EAV persistence, 
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namely persistently infected cultures of Hela cells, was established and characterized. 

Virus evolution with respect to virus growth characteristics, ability of the virus to initiate 

secondary persistent infection, and genetic changes during persistent EAV infection in 

Hela cells was investigated. In Chapter 4, neutralization phenotypic changes of viruses 

were observed during the course of persistent EAV infection in Hela cells. Subsequent 

reverse genetics studies identified that amino acid 98 of the GP5 protein is a new 

neutralization determinant of EAV. In Chapter 5, using an in vitro assay, it was found 

that EAV probably became progressively less virulent during the course of persistent 

infection in Hela cells. The potential changes in pathogenicity of EAV during persistent 

infection of Hela cells need to be verified by inoculation of horses. The results in 

Chapters 3, 4, and 5 have demonstrated that persistent EAV infection of Hela cells 

provides a system to characterize genetic and phenotypic evolution of the virus. 

Persistent EAV infection of Hela cells may also be a useful tool for investigating viral 

and host cell factors involved in viral persistence and for elucidating virus-host cell 

interactions, e.g. EAV-cell receptor interactions.   
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Appendix 1. Primers used for RT-PCR amplification of the genome of EAV 
      

Fragment Primer ID Polarity Nt position Nucleotide sequence (5' to 3') Primer Size  (bp) 
      

1P + 1-30 GCT CGA AGT GTG TAT GGT GCC ATA TAC GGC 30 Frag 1 
(1559 bp) 1540N - 1540-1559 TTG AAG TCG CGT GCG CGG TG 20 

      
947P + 947-966 CTA CGT TTG TGA CAT CTC TG 20 Frag 2 

(2191 bp) 3118N - 3118-3137 GAA CAG ATT CAC AAA AAG CG 20 
      

2610P + 2610-2629 GAC CAT GCT CTT TAC AAC CG 20 Frag 3 
(2010 bp) 4600N - 4600-4619 GTC ATC ATC AGT GAG GGC AG 20 

      
4357P + 4357-4376 TCC TAG TGT ACC AGT TCC CC 20 Frag 4 

(2240 bp) 6577N - 6577-6596 TCT CCA GGT CTG TTT CAA GG 20 
      

5802P + 5802-5821 ACG CTT TTC AAG GGT TCC AC 20 Frag 5 
(949 bp) 6731N - 6731-6750 CCC CCG CGT TTG GTG AAT GC 20 

      
6587P + 6587-6606 GAC CTG GAG AGT TGT GAT CG 20 Frag 6 

(3284 bp) 9850N - 9850-9870 AGT AAC AAC AGC CAA TGC AAG 21 
      

7391P + 7391-7411 TGG TTC TGT GGC AAT TGT GTC 21 Frag 7 
(2480 bp) 9850N - 9850-9870 AGT AAC AAC AGC CAA TGC AAG 21 

      
9745P + 9745-9767 CGT GTG ATG GGC TTA GTG TGG TC 23 Frag 8 

(1718 bp) 11442N - 11442-11462 ATG TCA TCA AAC AGC GCA CTG 21 
      

11097P + 11097-11117 TTG TGG CTA TAG TTT ATG TTC 21 Frag 9 
(1608 bp) 12681N - 12681-12704 GGT TCC TGG GTG GCT AAT AAC TAC 24 

      
Note: Nucleotides are numbered according to the published sequence of EAV030 virus (van Dinten et al., 1997).   
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Appendix 2. Optimized thermacycling protocols for PCR amplification of EAV 
genome 

          
Thermacycling Conditions 

Fragment Primer 
VBS53 EAV Hela-EAVP35 Hela-EAVP80 

     
 1P 95ºC  30 sec 95ºC  30 sec 95ºC  30 sec 

Frag 1  55ºC  30 sec 55ºC  30 sec 55ºC  30 sec 
 1540N 72ºC   2 min 72ºC   2 min 72ºC   2 min 
     

 947P 95ºC  30 sec 95ºC  30 sec 95ºC  30 sec 
Frag 2  42ºC  30 sec 42ºC  30 sec 40ºC  30 sec 

 3118N 72ºC   3 min 72ºC   3 min 72ºC   3 min 
     

 2610P 95ºC  30 sec 95ºC  30 sec 95ºC  30 sec 
Frag 3  46ºC  30 sec 46ºC  30 sec 46ºC  30 sec 

 4600N 72ºC   3 min 72ºC   3 min 72ºC   3 min 
     

 4357P 95ºC  30 sec 95ºC  30 sec 95ºC  30 sec 
Frag 4  46ºC  30 sec 46ºC  30 sec 46ºC  30 sec 

 6577N 72ºC   3 min 72ºC   3 min 72ºC   3 min 
     

 5802P 95ºC  30 sec 95ºC  30 sec 95ºC  30 sec 
Frag 5  49ºC  30 sec 49ºC  30 sec 47ºC  30 sec 

 6731N 72ºC   2 min 72ºC   2 min 72ºC   2 min 
     

 6587P 95ºC  30 sec 95ºC  30 sec 95ºC  30 sec 
Frag 6  46ºC  30 sec 46ºC  30 sec 46ºC  30 sec 

 9850N 72ºC   3 min 72ºC   3 min 72ºC   3 min 
     

 7391P 95ºC  30 sec 95ºC  30 sec 95ºC  30 sec 
Frag 7  46ºC  30 sec 46ºC  30 sec 46ºC  30 sec 

 9850N 72ºC   3 min 72ºC   3 min 72ºC   3 min 
     

 9745P 95ºC  30 sec 95ºC  30 sec 95ºC  30 sec 
Frag 8  47ºC  30 sec 45ºC  30 sec 45ºC  30 sec 

 11442N 72ºC   3 min 72ºC   3 min 72ºC   3 min 
     

 11097P 95ºC  30 sec 95ºC  30 sec 95ºC  30 sec 
Frag 9  42ºC  30 sec 45ºC  30 sec 45ºC  30 sec 

  12681N 72ºC   3 min 72ºC   3 min 72ºC   3 min 

     
Note:  
1. PCR amplification of each fragment of each strain follows: 95ºC 2 min; 35 cycles 
of amplification; 72ºC 10 min; 4ºC forever. Above table only shows the 
thermacycling conditions for 35 cycles of amplification.  
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Appendix 3. EAV sequencing primers list 
    
Note: Nucleotides are numbered according to the published sequence of EAV030 virus 
(van Dinten et al., 1997) 

     
     

Fragment 1 Positve                      Sequence (5'-3') Nt Position Size (bp) 

(1-1559) 1P 
GCT CGA AGT GTG TAT GGT GCC ATA 
TAC GGC  1--30 30 

 457P GGT ATC GAG CTG CCA AAG TC 457--476 20 
 833P AGA CCT GGG TTT GGG CAT CA 833--852 20 
 947P CTA CGT TTG TGA CAT CTC TG 947--966 20 
     
 Negative                      Sequence (5'-3') Nt Position Size (bp) 
 233N CAA ATC CAG TAG CGG AGA AG 233--252 20 
 548N CTT GCC TCT TCA ATG GCT AAC 548--568 21 
 880N AGG CGA ACC CCT CAT AAT GT 880-899 20 
 1270N ATT GCA GAT GCC CCT GAA AC 1270--1289 20 
 1540N TTG AAG TCG CGT GCG CGG TG 1540--1559 20 

     
     

Fragment 2 Positive                      Sequence (5'-3') Nt Position Size (bp) 
(947-3137) 1524P CAG GCG CCC ATC CCA GCA CC 1524--1543 20 

 1891P TGG GCA ATA ATG TTG TTC TG 1891--1910 20 
 2296P TCG ATG TTG TGG GCA TGG C 2296--2314 19 
 2610P GAC CAT GCT CTT TAC AAC CG 2610--2629 20 
     
 Negative                      Sequence (5'-3') Nt Position Size (bp) 
 1540N TTG AAG TCG CGT GCG CGG TG 1540--1559 20 
 1836N AAA GCA AGA GAT GGC CAT AT 1836--1855 20 
 2106N ACA GTG CAA GGA ACA TAA GC 2106--2125 20 
 2508N TCA CAA CAG CTC CTG TTT GTT C 2508--2529 22 
 3118N GAA CAG ATT CAC AAA AAG CG 3118-3137 20 

     
     

Fragment 3 Positive                      Sequence (5'-3') Nt Position Size (bp) 
(2610-4619) 2963P GAT CTT GTT GGT CTG CCA CC  2963--2982 20 

 3331P ATT CAC TGC TTG GAG TGG CT 3331-3350 20 
 3668P TTT CGC CCA ACC AAC AAC CG 3668--3687 20 
 4002P CTG ATT GAT GGC TTA TCC AA 4002--4021 20 
 4357P TCC TAG TGT ACC AGT TCC CC 4357--4376 20 
     
 Negative                      Sequence (5'-3') Nt Position Size (bp) 
 3485N TGT TCC TGG TCC ACA CTG AC 3485--3504 20 
 3832N CAC GTA GGC AAC ACC ACT TG 3832--3851 20 
 4472N AAG TCC TGT CAA AGC GAC CT  4472--4491 20 
 4600N GTC ATC ATC AGT GAG GGC AG 4600--4619 20 
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Fragment 4 Positive                      Sequence (5'-3') Nt Position Size (bp) 
(4357-6596) 4357P TCC TAG TGT ACC AGT TCC CC 4357--4376 20 

 4718P CAT CCT TAA TGC ATC CTT GC 4718--4737 20 
 5072P TGC GGT CTC GAA TGA TTA TG  5072--5091 20 
 5436P TGG GGC GTC GGA CCT TTG CT  5436--5455 20 
 5802P ACG CTT TTC AAG GGT TCC AC 5802--5821 20 
 6198P GGG CGT ACT TAA AAG AGG AG 6198--6217 20 
     
 Negative                      Sequence (5'-3') Nt Position Size (bp) 
 4828N CAG ACC GTC GAT AAC CAC AA  4828--4847 20 
 5198N CTT CCT GAT GCT CCA CGT AA  5198--5217 20 
 5569N ACC CAA GCA GTG TGT CTT TT  5569--5588 20 
 5969N GTA ACG GCC TCA CAT CCA GC  5969--5988 20 
 6363N CAT GGT GGC GGT TTG TAG AT 6363--6382 20 
 6577N TCT CCA GGT CTG TTT CAA GG 6577--6596 20 
     
     

Fragment 5 Positive                      Sequence (5'-3') Nt Position Size (bp) 
(5802-6750) 6449P ATT GGC CTA GGT TTG CGT GCC TGC 6449--6472 24 

     
 Negative                      Sequence (5'-3') Nt Position Size (bp) 
 6731N CCC CCG CGT TTG GTG AAT GC 6731--6750 20 

     
     

Fragment 6 Positive                      Sequence (5'-3') Nt Position Size (bp) 
(6587-9870) 6587P GAC CTG GAG AGT TGT GAT CG 6587--6606 20 

 6950P ACA CCC AAC CAG CAT TAC GC  6950--6969 20 
 7391P TGG TTC TGT GGC AAT TGT GT 7391--7411 21 
     
 Negative                      Sequence (5'-3') Nt Position Size (bp) 
 7111N GTG TAA CGC GGT CCT GAA GA  7111--7130 20 
 7468N AAG TGG AGC GGT ACA TGA TG 7468--7487 20 
     
     

Fragment 7 Positive                      Sequence (5'-3') Nt Position Size (bp) 
(7391-9870) 7720P CAT CGC AGT ACC ACT TCA GG 7720--7739 20 

 8107P AGT CAA GGG TTA CGG TGA TT  8107--8126 20 
 8493P ACA TCT ACG ACC CCT TTG AT 8493--8512 20 
 8842P GCC CGT AGT GTC CAA TGA TA 8842--8861 20 
 9206P GCC CTG GTA GGT GCT TCA TT  9206--9225 20 
 9570P CAC CTG CTG GTT ATG CGA TC 9570--9589 20 
     
 Negative                      Sequence (5'-3') Nt Position Size (bp) 
 7831N GCA CAT CTT TGA CCA GGT GA  7831--7850 20 
 8177N AGG CTG ACA AAA TGT CGG AG  8177--8196 20 
 8543N AAG TCC TGC GCC TCT GCT TC 8543--8562 20 
 8907N CGC TGA GCA CGG TTT ACT GA  8907--8926 20 
 9299N ACG CGA CTC AGT GTC TCA GG 9299--9318 20 
 9614N ACT TCT GTT GAG CTG AGG AG 9614--9633 20 
 9850N AGT AAC AAC AGC CAA TGC AAG 9850--9870 21 
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Fragment 8 Positive                      Sequence (5'-3') Nt Position Size (bp) 
9745P-11442N 9745P CGT GTG ATG GGC TTA GTG TGG TC 9745--9767 23 

 10142P GAG TCT TCT AGC TAT GCT CC 10142--10161 20 
 10511P ACA CGG GTT ATG AAT ATG CC 10511--10530 20 
 10845P GGT GTA GGA ATT TTA TTA ATG 10845--10865 21 
 11097P TTG TGG CTA TAG TTT ATG TTC 11097--11117 21 
     
 Negative                      Sequence (5'-3') Nt Position Size (bp) 
 10128N AAG ACT CCA GAT GGT CAA AGC 10128--10148 21 
 10517N GAC CCC GGC ATA TTC ATA AC 10517--10536 20 
 10780N TAA AAT TAC GAG CCT CTG CAG CG 10780--10802 23 
 11235N CGT CAG CAT ACA CAA GGT GAA G 11235--11256 22 

     
     

Fragment 9 Positive                      Sequence (5'-3') Nt Position Size (bp) 
11097P-12681N 11272P GCC AAT TTG CTG CGA TAT GAT G 11272--11293 22 
 11557P CTA CCC TAT GCT ACG CTT ATT C 11557--11578 22 

 11850P AGT GGC CTA CGG CAG CAA AGT C  11850--11871 22 
 12069P TTT GTT ATA GTT GGA AGA GC 12069--12088 20 
 12481P GAT TTA AAT CAA CAG GAG CG 12481--12500 20 
     
 Negative                      Sequence (5'-3') Nt Position Size (bp) 
 11442N ATG TCA TCA AAC AGC GCA CTG 11442--11462 21 
 11691N CAG GCA TAA CCA CAG TAA TTG G 11691--11712 22 
 11995N CTA ACC CAG ATG CTA CAT ACC 11995--12015 21 
 12370N TCA TTG TAG CTT GTA GGC TG 12370--12389 20 
 12681N GGT TCC TGG GTG GCT AAT AAC TAC 12681--12704 24 
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Appendix 4. Protocols of cycle sequencing 
 

Reagent Volume Needed 
BigDye Ready Reaction Mix (2.5X) 1.5 µl 
Half-Dye mix 1.5 µl 
EAV Sequencing Primer 
 (3.2 pmol/µl) 

1 µl 

Template Variable, depends on template size 
Nuclease-free water Variable 
Final Volume 15 µl 

 
 

Note:  Perform cycle sequencing following the program below:  
(1) Place the tubes in a thermal cycler and set to the correct volume. 
(2) Perform an initial denaturation. 

a. Rapid thermal ramp (1°C/second)  to 96°C 
b. 96°C for 1 min 

(3) Repeat the following for 25 cycles: 
• Rapid thermal ramp to 96°C 
• 96°C for 10 seconds. 
• Rapid thermal ramp to 50°C 
• 50°C for 5 seconds. 
• Rapid thermal ramp to 60°C 
• 60°C for 4 minutes. 

(4) Rapid thermal ramp to 4°C and hold until ready to purify. 
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Appendix 5. Alignment of nucleotide sequences of VBS53 EAV (entire genome), Hela-EAVP10 (ORFs 2-7), 
 Hela-EAVP35 (entire genome), Hela-EAVP60 (ORFs 2-7) and Hela-EAVP80 (entire genome) 

 
             1                                               50                                               100 
VBS53 EAV    GCTCGAAGTGTGTATGGTGCCATATACGGCTCACCACCATATACACTGCAAGAATTACTATTCTTGTGGGCCCCTCTCGGTAAATCCTAGAGGGCTTTCC 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             101                                            150                                               200 
VBS53 EAV    TCTCGTTATTGCGAGATTCGTCGTTAGATAACGGCAAGTTCCCTTTCTTACTATCCTATTTTCATCTTGTGGCTTGACGGGTCACTGCCATCGTCGTCGA 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
 
             201                                            250                                               300 
VBS53 EAV    TCTCTATCAACTACCCTTGCGACTATGGCAACCTTCTCCGCTACTGGATTTGGAGGGAGTTTTGTTAGGGACTGGTCCCTGGACTTACCCGACGCTTGTG 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             301                                            350                                               400 
VBS53 EAV    AGCATGGCGCGGGATTGTGCTGTGAAGTGGACGGCTCCACCTTATGCGCCGAGTGTTTTCGCGGTTGCGAAGGAGTGGAGCAATGTCCTGGCTTGTTCAT 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             401                                            450                                               500 
VBS53 EAV    GGGACTGTTAAAACTGGCTTCGCCAGTTCCAGTGGGACATAAGTTCCTGATTGGTTGGTATCGAGCTGCCAAAGTCACCGGGCGTTACAATTTCCTTGAG 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
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             501                                            550                                               600 
VBS53 EAV    CTGTTGCAACACCCTGCTTTCGCCCAGCTGCGTGTGGTTGATGCTAGGTTAGCCATTGAAGAGGCAAGTGTGTTTATTTCCACTGACCACGCGTCTGCTA 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             601                                            650                                               700 
VBS53 EAV    AGCGTTTCCCTGGCGCTAGATTTGCGCTGACACCGGTGTATGCTAGCGCTTGGGTTGCGAGCCCGGCTGCTAACAGTTTGATAGTGACCATTGACCAGGA 
Hela-EAVP10  
Hela-EAVP35  .........................................................T....................................C..... 
Hela-EAVP60  
Hela-EAVP80  .........................................................T....................................T..... 
            
             701                                            750                                               800 
VBS53 EAV    ACAAGATGGGTTCTGCTGGTTAAAACTTTTGCCACCTGACCGCCGTGAGGCTGGTTTGCGGTTGTATTACAACCATTACCGCGAACAAAGGACCGGGTGG 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             801                                            850                                               900 
VBS53 EAV    CTGTCTAAAACAGGACTTCGCTTATGGCTTGGAGACCTGGGTTTGGGCATCAATGCGAGCTCTGGAGGGCTGAAATTCCACATTATGAGGGGTTCGCCTC 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
                             
             901                                            950                                              1000 
VBS53 EAV    AGCGAGCTTGGCATATCACAACACGCAGCTGCAAGCTGAAGAGCTACTACGTTTGTGACATCTCTGAAGCAGACTGGTCCTGTTTGCCTGCTGGCAACTA 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
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1001 1050                                              1100 
VBS53 EAV    CGGCGGCTACAATCCACCAGGGGACGGAGCTTGCGGTTACAGGTGCTTGGCCTTCATGAATGGCGCCACTGTTGTGTCGGCTGGTTGCAGTTCTGACTTG 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             1101                                          1150                                              1200 
VBS53 EAV    TGGTGTGATGATGAGTTGGCTTATCGAGTCTTTCAATTGTCACCCACGTTCACGGTTACCATCCCAGGTGGGCGAGTTTGTCCGAATGCCAAGTACGCAA 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             1201                                          1250                                              1300 
VBS53 EAV    TGATTTGTGACAAGCAGCACTGGCGCGTCAAACGTGCAAAGGGCGTCGGCCTGTGTCTCGATGAAAGCTGTTTCAGGGGCACCTGCAATTGCCAACGCAT 
Hela-EAVP10  
Hela-EAVP35  ...............................................................................C.................... 
Hela-EAVP60  
Hela-EAVP80  ...............................................................................T.................... 
            
             1301                                          1350                                              1400 
VBS53 EAV    GAGTGGACCACCACCTGCACCCGTGTCAGCCGCCGTGTTAGATCACATACTGGAGGCGGCGACGTTTGGCAACGTTCGCGTGGTTACACCTGAAGGGCAG 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             1401                                          1450                                              1500 
VBS53 EAV    CCACGCCCCGTACCAGCGCCGCGAGTTCGTCCCAGCGCCAACTCTTCTGGAGATGTCAAAGATCCGGCGCCCGTTCCGCCAGTACCAAAACCAAGGACCA 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
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             1501                                          1550                                              1600 
VBS53 EAV    AGCTTGCCAAACCGAACCCAACTCAGGCGCCCATCCCAGCACCGCGCACGCGACTTCAAGGGGCCTCAACACAGGAGCCACTGGCGAGTGCAGGAGTTGC 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             1601                                          1650                                              1700 
VBS53 EAV    TTCTGACTCGGCACCTAAATGGCGTGTGGCCAAAACTGTGTACAGCTCCGCGGAGCGCTTTCGGACCGAACTGGTACAACGTGCTCGGTCCGTTGGGGAC 
Hela-EAVP10  
Hela-EAVP35 .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             1701                                          1750                                              1800 
VBS53 EAV    GTTCTTGTTCAAGCGCTACCGCTCAAAACCCCAGCAGTGCAGCGGTATACCATGACTCTGAAGATGATGCGTTCACGCTTCAGTTGGCACTGCGACGTGT 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             1801                                          1850                                              1900 
VBS53 EAV    GGTACCCTTTGGCTGTAATCGCTTGTTTGCTCCCTATATGGCCATCTCTTGCTTTGCTCCTTAGCTTTGCCATTGGGTTGATACCCAGTGTGGGCAATAA 
Hela-EAVP10  
Hela-EAVP35  ........................................................................................C........... 
Hela-EAVP60  
Hela-EAVP80  ........................................................................................C........... 
 
             1901                                          1950                                              2000 
VBS53 EAV    TGTTGTTCTGACAGCGCTTCTGGTTTCATCAGCTAATTATGTTGCGTCAATGGACCATCAATGTGAAGGTGCGGCTTGCTTAGCCTTGCTGGAAGAAGAA 
Hela-EAVP10  
Hela-EAVP35  .....................................................G........................T..................... 
Hela-EAVP60  
Hela-EAVP80  .....................................................G........................T..................... 
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             2001                                          2050                                              2100 
VBS53 EAV    CACTATTATAGAGCGGTCCGTTGGCGCCCGATTACAGGCGCGCTGTCGCTTGTGCTCAATTTACTGGGGCAGGTAGGCTATGTAGCTCGTTCCACCTTTG 
Hela-EAVP10  
Hela-EAVP35  ........................................................T........................................... 
Hela-EAVP60  
Hela-EAVP80  ........................................................T........................................... 
            
             2101                                          2150                                              2200 
VBS53 EAV    ATGCAGCTTATGTTCCTTGCACTGTGTTCGATCTTTGCAGCTTTGCTATTCTGTACCTCTGCCGCAATCGTTGCTGGAGATGCTTCGGACGCTGTGTGCG 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             2201                                          2250                                              2300 
VBS53 EAV    AGTTGGGCCTGCCACGCATGTTTTGGGTTCCACCGGGCAACGAGTTTCCAAACTGGCGCTCATTGATTTGTGTGACCACTTTTCAAAGCCCACCATCGAT 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             2301                                          2350                                              2400 
VBS53 EAV    GTTGTGGGCATGGCAACTGGTTGGAGCGGATGTTACACAGGAACCGCCGCAATGGAGCGTCAGTGTGCCTCTACGGTGGACCCTCACTCGTTCGACCAGA 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             2401                                          2450                                              2500 
VBS53 EAV    AGAAGGCAGGAGCGATTGTTTACCTCACCCCCCCTGTCAACAGCGGGTCAGCGCTGCAGTGCCTCAATGTCATGTGGAAGCGACCAATTGGGTCCACTGT 
Hela-EAVP10  
Hela-EAVP35  ..................................................................................A................. 
Hela-EAVP60  
Hela-EAVP80  ..................................................................................T................. 
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             2501                                          2550                                              2600 
VBS53 EAV    CCTTGGGGAACAAACAGGAGCTGTTGTGACGGCGGTCAAGAGTATCTCTTTCTCACCTCCCTGCTGCGTCTCTACCACTTTGCCCACCCGACCCGGTGTG 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             2601                                          2650                                              2700 
VBS53 EAV    ACCGTTGTCGACCATGCTCTTTACAACCGGTTGACTGCTTCAGGGGTCGATCCCGCTTTATTGCGTGTTGGGCAAGGTGATTTTCTAAAACTTAATCCGG 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             2701                                          2750                                              2800 
VBS53 EAV    GGTTCCGGCTGATAGGTGGATGGATTTATGGGATATGCTATTTTGTGTTGGTGGTTGTGTCAACTTTTACCTGCTTACCTATCAAATGTGGCATTGGCAC 
Hela-EAVP10  
Hela-EAVP35 .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80 .................................................................................................... 
            
             2801                                          2850                                              2900 
VBS53 EAV    CCGCGACCCTTTCTGCCGCAGAGTGTTTTCTGTACCCGTCACCAAGACCCAAGAGCACTGCCATGCTGGAATGTGTGCTAGCGCTGAAGGCATCTCTCTG 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................C.. 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................T.. 
            
             2901                                          2950                                              3000 
VBS53 EAV    GACTCTCTGGGGTTAACTCAGTTACAAAGTTACTGGATCGCTGCCGTCACTAGCGGATTAGTGATCTTGTTGGTCTGCCACCGCCTGGCCATCAGCGCCT 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
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             3001                                          3050                                              3100 
VBS53 EAV    TGGACTTGTTGACTCTAGCTTCCCCTTTAGTGTTGCTTGTGTTCCCTTGGGCATCTGTGGGGCTTTTACTTGCTTGCAGTCTCGCTGGTGCTGCTGTGAA 
Hela-EAVP10  
Hela-EAVP35  ..........G......................................................................................... 
Hela-EAVP60  
Hela-EAVP80  ..........A......................................................................................... 
            
             3101                                          3150                                              3200 
VBS53 EAV    AATACAGTTGTTGGCGACGCTTTTTGTGAATCTGTTCTTTCCCCAAGCTACCCTTGTCACTATGGGATACTGGGCGTGCGTGGCGGCTTTGGCCGTTTAC 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             3201                                          3250                                              3300 
VBS53 EAV    AGTTTGATGGGCTTGCGAGTGAAAGTGAATGTGCCCATGTGTGTGACACCTGCCCATTTTCTGCTGCTGGCGAGGTCAGCTGGACAGTCAAGAGAGCAGA 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             3301                                          3350                                              3400 
VBS53 EAV    TGCTCCGGGTCAGCGCTGCTGCCCCCACCAATTCACTGCTTGGAGTGGCTCGTGATTGTTATGTCACAGGCACAACTCGGCTGTACATACCCAAGGAAGG 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             3401                                          3450                                              3500 
VBS53 EAV    CGGGATGGTGTTTGAAGGGCTATTCAGGTCACCGAAGGCGCGCGGCAACGTCGGCTTCGTGGCTGGTAGCAGCTACGGCACAGGGTCAGTGTGGACCAGG 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
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             3501                                          3550                                              3600 
VBS53 EAV    AACAACGAGGTCGTCGTACTGACAGCGTCACACGTGGTTGGCCGCGCTAACATGGCCACTCTGAAGATCGGTGACGCAATGCTGACTCTGACTTTCAAAA 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             3601                                          3650                                              3700 
VBS53 EAV    AGAATGGCGACTTCGCCGAGGCAGTGACGACACAGTCCGAGCTCCCAGGCAATTGGCCACAGTTGCATTTCGCCCAACCAACAACCGGGCCCGCTTCATG 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             3701                                          3750                                              3800 
VBS53 EAV    GTGCACYGCCACAGGAGATGAAGAAGGCTTGCTCAGTGGCGAGGTTTGTCTGGCGTGGACTACTAGTGGCGACTCTGGATCAGCAGTGGTTCAGGGTGAC 
Hela-EAVP10  
Hela-EAVP35  ......C.........................................................................................T... 
Hela-EAVP60  
Hela-EAVP80  ......C.........................................................................................C... 
            
             3801                                          3850                                              3900 
VBS53 EAV    GCTGTGGTAGGGGTCCACACCGGTTCGAACACAAGTGGTGTTGCCTACGTGACCACCCCAAGCGGAAAACTCCTTGGCGCCGACACCGTGACTTTGTCAT 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             3901                                          3950                                              4000 
VBS53 EAV    CACTGTCAAAGCATTTCACAGGCCCTTTGACATCAATCCCGAAGGACATCCCTGACAACATCATTGCCGATGTTGATGCTGTTCCTCGTTCTCTGGCCAT 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
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             4001                                          4050                                              4100 
VBS53 EAV    GCTGATTGATGGCTTATCCAATAGAGAGAGCAGCCTTTCTGGACCTCAGTTGTTGTTAATTGCTTGTTTTATGTGGTCTTATCTTAACCAACCTGCTTAC 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
  
             4101                                          4150                                              4200 
VBS53 EAV    TTGCCTTATGTGCTGGGCTTCTTTGCCGCTAACTTCTTCCTGCCAAAAAGTGTTGGCCGCCCTGTGGTCACTGGGCTTCTATGGTTGTGCTGCCTCTTCA 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             4201                                          4250                                              4300 
VBS53 EAV    CACCGCTTTCCATGCGCTTGTGCTTGTTCCATCTGGTCTGTGCTACCGTCACGGGAAACGTGATATCTTTGTGGTTCTACATCACTGCCGCTGGCACGTC 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             4301                                          4350                                              4400 
VBS53 EAV    TTACCTTTCTGAGATGTGGTTCGGAGGCTATCCCACCATGTTGTTTGTGCCACGGTTCCTAGTGTACCAGTTCCCCGGCTGGGCTATTGGCACAGTACTA 
Hela-EAVP10  
Hela-EAVP35  ................................................A................................................... 
Hela-EAVP60  
Hela-EAVP80  ................................................A................................................... 
            
             4401                                          4450                                              4500 
VBS53 EAV    GCGGTATGCAGCATCACCATGCTGGCTGCTGCCCTCGGTCACACCCTGTTACTGGATGTGTTCTCCGCCTCAGGTCGCTTTGACAGGACTTTCATGATGA 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
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             4501                                          4550                                              4600 
VBS53 EAV    AATACTTCCTGGAGGGAGGAGTGAAAGAGAGTGTCACCGCCTCAGTCACCCGCGCTTATGGCAAACCAATTACCCAGGAGAGTCTCACTGCAACATTGGC 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             4601                                          4650                                              4700 
VBS53 EAV    TGCCCTCACTGATGATGACTTCCAATTCCTCTCTGATGTGCTTGACTGTCGGGCCGTCCGATCGGCAATGAATCTGCGTGCCGCTCTCACAAGTTTTCAA 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             4701                                          4750                                              4800 
VBS53 EAV    GTGGCGCAGTATCGTAACATCCTTAATGCATCCTTGCAAGTCGATCGTGACGCTGCTCGTAGTCGCAGACTAATGGCAAAACTGGCTGATTTTGCGGTTG 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             4801                                          4850                                              4900 
VBS53 EAV    AACAAGAAGTAACAGCTGGAGACCGTGTTGTGGTTATCGACGGTCTGGACCGCATGGCTCACTTCAAAGACGATTTGGTGCTGGTTCCTTTGACCACCAA 
Hela-EAVP10  
Hela-EAVP35  ...................................................................................................G 
Hela-EAVP60  
Hela-EAVP80  ...................................................................................................G 
            
             4901                                          4950                                              5000 
VBS53 EAV    AGTAGTAGGCGGTTCTAGGTGCACCATTTGTGACGTCGTTAAGGAAGAAGCCAATGACACCCCAGTTAAGCCAATGCCCAGCAGGAGACGCCGCAAGGGC 
Hela-EAVP10  
Hela-EAVP35  ............C....................................................................................... 
Hela-EAVP60  
Hela-EAVP80  ............T....................................................................................... 
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             5001                                          5050                                              5100 
VBS53 EAV    CTGCCTAAAGGTGCTCAGTTGGAGTGGGACCGTCACCAGGAAGAGAAGAGGAACGCCGGTGATGATGATTTTGCGGTCTCGAATGATTATGTCAAGAGAG 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             5101                                          5150                                              5200 
VBS53 EAV    TGCCAAAGTACTGGGATCCCAGCGACACCCGAGGCACGACAGTGAAAATCGCCGGCACTACCTATCAGAAAGTGGTTGACTATTCAGGCAATGTGCATTA 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
 
             5201                                          5250                                              5300 
VBS53 EAV    CGTGGAGCATCAGGAAGATCTGCTAGACTACGTGCTGGGCAAGGGGAGCTATGAAGGCCTAGATCAGGACAAAGTGTTGGACCTCACAAACATGCTTAAA 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             5301                                          5350                                              5400 
VBS53 EAV    GTGGACCCCACGGAGCTCTCCTCCAAAGACAAAGCCAAGGCGCGTCAGCTTGCTCATCTGCTGTTGGATCTGGCTAACCCAGTTGAGGCAGTGAATCAGT 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             5401                                          5450                                              5500 
VBS53 EAV    TAAACTGAGAGCGCCCCACATCTTTCCCGGCGATGTGGGGCGTCGGACCTTTGCTGACTCTAAAGACAAGGGTTTCGTGGCTCTACACAGTCGCACAATG 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
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             5501                                          5550                                              5600 
VBS53 EAV    TTTTTAGCTGCCCGGGACTTTTTATTTAACATCAAATTTGTGTGCGACGAAGAGTTCACAAAGACCCCAAAAGACACACTGCTTGGGTACGTACGCGCCT 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             5601                                          5650                                              5700 
VBS53 EAV    GCCCTGGTTACTGGTTTATTTTCCGTCGTACGCACCGGTCGCTGATTGATGCATACTGGGACAGTATGGAGTGCGTTTACGCGCTTCCCACCATATCTGA 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             5701                                          5750                                              5800 
VBS53 EAV    TTTTGATGTGAGCCCAGGTGACGTCGCAGTGACGGGTGAGCGATGGGATTTTGAATCTCCCGGAGGAGGCCGTGCAAAACGTCTCACAGCTGATCTGGTG 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             5801                                          5850                                              5900 
VBS53 EAV    CACGCTTTTCAAGGGTTCCACGGAGCCTCTTATTCCTATGATGACAAGGTGGCAGCTGCTGTCAGTGGTGACCCGTATCGGTCGGACGGCGTCTTGTATA 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             5901                                          5950                                              6000 
VBS53 EAV    ACACCCGTTGGGGCAACATTCCATATTCTGTCCCAACCAATGCTTTGGAAGCCACAGCTTGCTACCGTGCTGGATGTGAGGCCGTTACCGACGGGACCAA 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
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             6001                                          6050                                              6100 
VBS53 EAV    CGTCATCGCAACAATTGGGCCCTTCCCGGAGCAACAACCCATACCGGACATCCCAAAAAGCGTGCTTGACAACTGCGCTGACATCAGCTGTGACGCTTTC 
Hela-EAVP10  
Hela-EAVP35  ...................C................................................................................ 
Hela-EAVP60  
Hela-EAVP80  ...................T................................................................................ 
            
             6101                                          6150                                              6200 
VBS53 EAV    ATAGCGCCCGCTGCAGAGACAGCCCTGTGTGATGATTTAGAGAAATACAACCTATCCACGCAGGGTTTTGTGTTGCCTAGTGTTTTCTCCATGGTGCGGG 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
              
             6201                                          6250                                              6300 
VBS53 EAV    CGTACTTAAAAGAGGAGATTGGAGACGCTCCACCACTCTACTTGCCATCTACTGTACCATCTAAAAATTCACAAGCCGGAATTAACGGCGCTGAGTTTCC 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             6301                                          6350                                              6400 
VBS53 EAV    TACAAAGTCTTTACAGAGCTACTGTTTGATTGATGACATGGTGTCACAGTCCATGAAAAGCAATCTACAAACCGCCACCATGGCGACTTGTAAACGGCAG 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             6401                                          6450                                              6500 
VBS53 EAV    TACTGTTCCAAATACAAGATTAGGAGCATTCTGGGCACCAACAATTACATTGGCCTAGGTTTGCGTGCCTGCCTTTCGGGGGTTACGGCCGCATTCCAAA 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
 
 
 
 
 



 

 

175

             6501                                          6550                                              6600 
VBS53 EAV    AAGCTGGAAAGGATGGGTCACCGATTTATTTGGGCAAGTCAAAATTCGACCCGATACCAGCTCCTGACAAGTACTGCCTTGAAACAGACCTGGAGAGTTG 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             6601                                          6650                                              6700 
VBS53 EAV    TGATCGCTCCACCCCGGCTTTGGTGCGTTGGTTCGCTACTAATCTTATTTTTGAGCTAGCTGGCCAGCCCGAGTTGGTGCACAGCTACGTGTTGAATTGC 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             6701                                          6750                                              6800 
VBS53 EAV    TGTCACGATCTAGTTGTGGCGGGTAGTGTAGCATTCACCAAACGCGGGGGTTTGTCATCTGGAGACCCTATCACTTCCATTTCCAATACCATCTATTCAT 
Hela-EAVP10  
Hela-EAVP35  ...................................................C................................................ 
Hela-EAVP60  
Hela-EAVP80  ...................................................C................................................ 
            
             6801                                          6850                                              6900 
VBS53 EAV    TGGTGCTGTACACCCAGCACATGTTGCTATGTGGACTTGAAGGCTATTTCCCAGAGATTGCAGAAAAATATCTTGATGGCAGCCTGGAGCTGCGGGACAT 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             6901                                          6950                                              7000 
VBS53 EAV    GTTCAAGTACGTTCGAGTGTACATCTACTCGGACGATGTGGTTCTAACCACACCCAACCAGCATTACGCGGCCAGCTTTGACCGCTGGGTCCCCCACCTG 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
 
 
 
 
 



 

 

176

             7001                                          7050                                              7100 
VBS53 EAV    CAGGCGCTGCTAGGTTTCAARGTTGACCCAAAGAAAACTGTGAACACCAGCTCCCCTTCCTTTTTGGGCTGCCGGTTCAAGCAAGTGGACGGCAAGTGTT 
Hela-EAVP10  
Hela-EAVP35  ....................A............................................................................... 
Hela-EAVP60  
Hela-EAVP80  ....................A............................................................................... 
            
             7101                                          7150                                              7200 
VBS53 EAV    ATCTAGCCAGTCTTCAGGACCGTGTTACACGCTCTCTGTTATACCACATTGGTGCAAAGAATCCCTCAGAGTACTATGAAGCTGCTGTTTCCATCTTTAA 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             7201                                          7250                                              7300 
VBS53 EAV    GGACTCCATTATCTGCTGTGATGAAGACTGGTGGACGGACCTCCATCGACGTATCAGTGGCGCTGCGCGTACTGACGGAGTTGAGTTCCCCACCATTGAA 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             7301                                          7350                                              7400 
VBS53 EAV    ATGTTAACATCCTTCCGCACCAAGCAGTATGAGAGTGCCGTGTGCACAGTTTGTGGGGCCGCCCCCGTGGCCAAGTCTGCTTGTGGAGGGTGGTTCTGTG 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
 
             7401                                          7450                                              7500 
VBS53 EAV    GCAATTGTGTCCCGTACCACGTGGGTCATTGTCACACAACCTCGCTCTTCGCCAACTGCGGGCACGACATCATGTACCGCTCCACTTACTGCACAATGTG 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
 
 
 
 
 



 

 

177

             7501                                          7550                                              7600 
VBS53 EAV    TGAGGGTTCCCCAAAACAGATGGTACCAAAAGTGCCTCACCCGATCCTGGATCATTTGCTGTGCCACATTGATTACGGCAGTAAAGAGGAACTAACTCTG 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             7601                                          7650                                              7700 
VBS53 EAV    GTAGTGGCGGATGGTCGAACAACATCACCGCCCGGGCGCTACAAAGTGGGTCACAAGGTAGTCGCCGTGGTTGCAGATGTGGGAGGCAACATTGTGTTTG 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
 
             7701                                          7750                                              7800 
VBS53 EAV    GGTGCGGTCCTGGATCACACATCGCAGTACCACTTCAGGATACGCTCAAGGGCGTGGTGGTGAATAAAGCTCTGAAGAACGCCGCCGCCTCTGAGTACGT 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             7801                                          7850                                              7900 
VBS53 EAV    GGAAGGACCCCCTGGGAGTGGGAAGACTTTTCACCTGGTCAAAGATGTGCTAGCCGTGGTCGGTAGCGCGACCTTGGTTGTGCCCACCCACGCGTCCATG 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             7901                                          7950                                              8000 
VBS53 EAV    CTGGACTGCATCAACAAGCTCAAACAAGCGGGCGCCGATCCATACTTTGTGGTGCCCAAGTATACAGTTCTTGACTTTCCCCGGCCTGGCAGTGGAAACA 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
 
 
 
 
 



 

 

178

             8001                                          8050                                              8100 
VBS53 EAV    TCACAGTGCGACTGCCACAGGTCGGAACCAGTGAGGGAGAAACCTTTGTGGATGAGGTGGCCTACTTCTCACCAGTGGATCTGGCGCGCATTTTAACCCA 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             8101                                          8150                                              8200 
VBS53 EAV    GGGTCGAGTCAAGGGTTACGGTGATTTAAATCAGCTCGGGTGTGTCGGACCCGCGAGCGTGCCACGTAACCTTTGGCTCCGACATTTTGTCAGCCTGGAG 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             8201                                          8250                                              8300 
VBS53 EAV    CCCTTGCGAGTGTGCCATCGATTCGGCGCTGCTGTGTGTGATTTGATCAAGGGCATTTAYCCTTATTATGAGCCAGCTCCACATACCACYAAAGTGGTGT 
Hela-EAVP10  
Hela-EAVP35  ...........................................................C.............................C.......... 
Hela-EAVP60  
Hela-EAVP80  ...........................................................C.............................C.......... 
            
             8301                                          8350                                              8400 
VBS53 EAV    TTGTGCCAAATCCAGACTTTGAGAAAGGTGTAGTCATCACCGCCTACCACAAAGATCGCGGTCTTGGTCACCGCACAATTGATTCAATTCAAGGCTGTAC 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................T.. 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................C.. 
            
             8401                                          8450                                              8500 
VBS53 EAV    ATTCCCTGTTGTGACTCTTCGACTGCCCACACCCCAATCACTGACGCGCCCGCGCGCAGTTGTGGCGGTTACTAGGGCGTCTCAGGAATTATACATCTAC 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
 
 
 
 
 



 

 

179

             8501                                          8550                                              8600 
VBS53 EAV    GACCCCTTTGATCAGCTTAGCGGGTTGTTGAAGTTCACCAAGGAAGCAGAGGCGCAGGACTTGATCCATGGCCCACCTACAGCATGCCACCTGGGCCAAG 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             8601                                          8650                                              8700 
VBS53 EAV    AAATTGACCTTTGGTCCAATGAGGGCCTCGAATATTACAAGGAAGTCAACCTGCTGTACACACACGTCCCCATCAAGGATGGTGTAATACACAGTTACCC 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             8701                                          8750                                              8800 
VBS53 EAV    TAATTGTGGCCCTGCCTGTGGCTGGGAAAAGCAATCCAACAAAATTTCGTGCCTCCCGAGAGTGGCACAAAATTTGGGCTACCACTATTCCCCAGACTTA 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             8801                                          8850                                              8900 
VBS53 EAV    CCAGGATTTTGCCCCATACCAAAAGAACTCGCTGAGCATTGGCCCGTAGTGTCCAATGATAGGTACCCGAATTGCTTGCAAATCACCTTACAGCAAGTAT 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             8901                                          8950                                              9000 
VBS53 EAV    GTGAACTCAGTAAACCGTGCTCAGCGGGCTATATGGTTGGACAATCTGTTTTCGTGCAGACGCCTGGTGTGACATCTTACTGGCTTACTGAATGGGTCGA 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
 
 
 
 
 



 

 

180

             9001                                          9050                                              9100 
VBS53 EAV    CGGCAAAGCGCGTGCTCTACCAGATTCCTTATTCTCGTCCGGTAGGTTCGAGACTAACAGCCGCGCTTTCCTCGATGAAGCCGAGGAAAAGTTTGCCGCC 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             9101                                          9150                                              9200 
VBS53 EAV    GCTCACCCTCATGCCTGTTTGGGAGAAATTAATAAGTCCACCGTGGGAGGATCCCACTTCATCTTTTCCCAATATTTACCACCATTGCTACCCGCAGACG 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             9201                                          9250                                              9300 
VBS53 EAV    CTGTTGCCCTGGTAGGTGCTTCATTGGCTGGGAAAGCTGCTAAAGCTGCTTGCAGCGTCGTTGACGTCTATGCTCCATCATTTGAACCTTATCTGCACCC 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             9301                                          9350                                              9400 
VBS53 EAV    TGAGACACTGAGTCGCGTGTACAAGATTATGATCGATTTCAAGCCGTGTAGGCTTATGGTGTGGAGAAACGCGACCTTTTATGTCCAAGAGGGTGTTGAT 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             9401                                          9450                                              9500 
VBS53 EAV    GCAGTTACATCAGCACTAGCAGCTGTGTCCAAACTCATCAAAGTGCCGGCCAATGAGCCTGTTTCATTCCATGTGGCATCAGGGTACAGAACCAACGCGC 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
 
 
 
 
 



 

 

181

             9501                                          9550                                              9600 
VBS53 EAV    TGGTAGCGCCCCAGGCTAAAATTTCGATTGGAGCCTACGCCGCCGAGTGGGCACTGTCAACTGAACCGCCACCGGCTGGTTATGCGATCGTGCGGCGATA 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             9601                                          9650                                              9700 
VBS53 EAV    TATTGTAAAGAGGCTCCTCAGCTCAACAGAAGTGTTCTTGTGCCGCAGGGGTGTTGTGTCTTCCACCTCAGTGCAGACCATTTGTGCACTAGAGGGATGT 
Hela-EAVP10  
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  
Hela-EAVP80  .................................................................................................... 
            
             9701                                          9750                                              9800 
VBS53 EAV    AAACCTCTGTTCAACTTCTTACAAATTGGTTCAGTCATTGGGCCCGTGTGATGGGCTTAGTGTGGTCACTGATTTCAAATTCTATTCAGACTATTATTGC 
Hela-EAVP10                                                   .................................................. 
Hela-EAVP35  ..........................C......................................................................... 
Hela-EAVP60                                                   .................................................. 
Hela-EAVP80  ..........................T......................................................................... 
            
             9801                                          9850                                              9900 
VBS53 EAV    TGATTTTGCTATTTCTGTGATTGATGCAGCGCTTTTCTTTCTCATGCTACTTGCATTGGCTGTTGTTACTGTGTTTCTTTTCTGGCTCATTGTTGCCATC 
Hela-EAVP10  ..................................................................T................................. 
Hela-EAVP35  ..................................................................C................................. 
Hela-EAVP60  ..................................................................C................................. 
Hela-EAVP80  ..................................................................C................................. 
 
             9901                                          9950                                             10000 
VBS53 EAV    GGCCGCAGCTTGGTGGCGCGGTGTTCACGAGGTGCGCGTTACAGACCTGTTTAAGGATTTGCAGTGCGACAACCTGCGCGCGAAAGATGCCTTCCCGAGT 
Hela-EAVP10  ......A......T...................................................................................... 
Hela-EAVP35  ......A......C...................................................................................... 
Hela-EAVP60  ......T......C...................................................................................... 
Hela-EAVP80  ......T......C...................................................................................... 
            
 
 
 
 
 



 

 

182

             10001                                        10050                                             10100 
VBS53 EAV    CTGGGATATGCTCTGTCGATTGGCCAGTCGAGGCTATCGTATATGCTGCAGGATTGGTTGCTTGCTGCGCACCGCAAGGAAGTTATGCCCTCCAATATCA 
Hela-EAVP10  .................................................................................G..A............... 
Hela-EAVP35  .................................................................................G..G............... 
Hela-EAVP60  .................................................................................C..A............... 
Hela-EAVP80  .................................................................................C..A............... 
            
             10101                                        10150                                             10200 
VBS53 EAV    TGCCTATGCCCGGTCTTACTCCTGATTGCTTTGACCATCTGGAGTCTTCTAGCTATGCTCCATTTATCAATGCCTATCGGCAGGCAATTTTGAGTCAATA 
Hela-EAVP10  ........................................................G...............................C........... 
Hela-EAVP35  ........................................................A...............................C........... 
Hela-EAVP60  ........................................................A...............................C........... 
Hela-EAVP80  ........................................................A...............................C........... 
            
             10201                                        10250                                             10300 
VBS53 EAV    CTCACAAGAGCTCCTGCTCGAAGCCATCAACTGTAAATTGCTTGCTGTGGTTGCACCGGCATTGTATCATAATTACCATCTAGCCAATTTGACCGGACCG 
Hela-EAVP10  ..................................................................T................................. 
Hela-EAVP35  ..................................................................T................................. 
Hela-EAVP60  ..................................................................C................................. 
Hela-EAVP80  ..................................................................T................................. 
 
             10301                                        10350                                             10400 
VBS53 EAV    GCCACATGGGTCGTGCCTACAGTGGGCCAGTTGCACTATTATGCTTCTTCCTCTATTTTTGCTTCATCTGTGGAAGTGTTGGCAGCAATAATACTACTAT 
Hela-EAVP10  .................................................................................................... 
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  .................................................................................................... 
Hela-EAVP80  .................................................................................................... 
 
             10401                                        10450                                             10500 
VBS53 EAV    TTGCATGCATACCACTAGTGACACGAGTGTACATCTCTTTTACGCGGCTAATGTCACCTTCCCGTCGCACTTCCAGCGGCACTTTGCCGCGGCGCAAGAT 
Hela-EAVP10  .................................................................................................... 
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  .................................................................................................... 
Hela-EAVP80  .................................................................................................... 
 
 
 
 
 
 



 

 

183

             10501                                        10550                                             10600 
VBS53 EAV    TTTGTAGTGCACACGGGTTATGAATATGCCGGGGTCACTATGTTAGTGCACTTGTTTGCCAACTTGGTTCTGACATTTCCGAGCTTAGTTAATTGTTCCC 
Hela-EAVP10  .................................................................................................... 
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  .................................................................................................... 
Hela-EAVP80  .................................................................................................... 
            
             10601                                        10650                                             10700 
VBS53 EAV    GCCCTGTGAATGTCTTTGCTAATGCTTCTTGCGTGCAAGTGGTTTGTAGTCATACCAACTCAACTACTGGCTTGGGTCAACTTTCTTTTTCCTTTGTAGA 
Hela-EAVP10  ...............................................A.................................................... 
Hela-EAVP35  ...............................................G.................................................... 
Hela-EAVP60  ...............................................G.................................................... 
Hela-EAVP80  ...............................................G....................................................           
               
             10701                                        10750                                             10800 
VBS53 EAV    TGAAGATCTACGGCTGCATATYAGGCCTACTCTTATTTGTTGGTTTGCCTTGTTGTTGGTGCACTTTCTACCCATGCCACGCTGCAGAGGCTCGTAATTT 
Hela-EAVP10  ........T............T.............................................................................. 
Hela-EAVP35  ........C............T.............................................................................. 
Hela-EAVP60  ........C............T.............................................................................. 
Hela-EAVP80  ........C............T.............................................................................. 
            
             10801                                        10850                                             10900 
VBS53 EAV    TACTTACATTAGTCATGGATTGGGCCACGTGCACGGTCATGAGGGGTGTAGGAATTTTATTAATGTCACTCATTCTGCATTTCTTTATCTTAATCCCACC 
Hela-EAVP10  .................................................................................................... 
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  .................................................................................................... 
Hela-EAVP80  .................................................................................................... 
            
             10901                                        10950                                             11000 
VBS53 EAV    ACTCTCACTGCGCCGGCTATAACTCATTGTTTACTTCTGGTTCTGGCAGCCAAAATGGAACACCCAAACGCTACTATCTGGCTGCAGCTGCAGCCGTTTG 
Hela-EAVP10  .................................................................................................... 
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  .................................................................................................... 
Hela-EAVP80  .................................................................................................... 
 
 
 
 
 
 



 

 

184

             11001                                        11050                                             11100 
VBS53 EAV    GGTATCATGTGGCTGGCGATGTCATTGTCAACTTGGAAGAGAATAAGAGGCATCCTTACTTTAAACTTTTGAGAGCGCCGGCTTTACCGCTTGGTTTTGT 
Hela-EAVP10  .......................A............................................................................ 
Hela-EAVP35  .......................A............................................................................ 
Hela-EAVP60  .......................T............................................................................ 
Hela-EAVP80  .......................T............................................................................ 
 
             11101                                        11150                                             11200 
VBS53 EAV    GGCTATAGTTTATGTTCTTTTACGACTGGTACGTTGGGCTCAACAATGTTATCTATGATTGTATTGCTATTCTTGCTTTGGGGTGCGCCATCACATGCTT 
Hela-EAVP10  ......................................................................T............................. 
Hela-EAVP35  ......................................................................C............................. 
Hela-EAVP60  ......................................................................C............................. 
Hela-EAVP80  ......................................................................C............................. 
            
             11201                                        11250                                             11300 
VBS53 EAV    ACTTCTCATACTACACCGCTCAGCGCTTCACAGACTTCACCTTGTGTATGCTGACGGATCGCGGCGTTATTGCCAATTTGCTGCGATATGATGAGCACAC 
Hela-EAVP10  .................................................................................................... 
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  .................................................................................................... 
Hela-EAVP80  .................................................................................................... 
            
             11301                                        11350                                             11400 
VBS53 EAV    TGCTTTGTACAATTGTTCCGCCAGTAAAACCTGTTGGTATTGCACATTCCTGGACGAACAGATTATCACGTTTGGAACCGATTGTAATGACACCTACGCG 
Hela-EAVP10  .................................................................................................... 
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  .................................................................................................... 
Hela-EAVP80  .................................................................................................... 
            
             11401                                        11450                                             11500 
VBS53 EAV    GTCCCAGTTGCTGAGGTCCTGGAACAGGCGCATGGACCGTACAGTGTGCTGTTTGATGACATGCCCCCTTTTATTTACTATGGCCGTGAATTCGGCATAG 
Hela-EAVP10  .....................................C....................................T......................... 
Hela-EAVP35  .....................................T....................................T......................... 
Hela-EAVP60  .....................................T....................................C......................... 
Hela-EAVP80  .....................................T....................................C......................... 
            
 
 
 
 
 



 

 

185

             11501                                        11550                                             11600 
VBS53 EAV    TTGTGTTGGATGTGTTTATGTTCTATCCCGTTTTAGTTCTGTTTTTCTTATCAGTACTACCCTATGCTACGCTTATTCTTGAAATGTGTGTATCTATTCT 
Hela-EAVP10  .................................................................................................... 
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  .................................................................................................... 
Hela-EAVP80  .................................................................................................... 
            
             11601                                        11650                                             11700 
VBS53 EAV    GTTTATAATCTATGGCATTTACAGCGGGGCCTACTTGGCCATGGGCATATTTGCGGCCACGCTTGCTATACATTCAATTGTGGTCCTCCGCCAATTACTG 
Hela-EAVP10  .................................................................................................... 
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  .................................................................................................... 
Hela-EAVP80  .................................................................................................... 
            
             11701                                        11750                                             11800 
VBS53 EAV    TGGTTATGCCTGGCTTGGCGATACCGCTGTACGCTTCACGCGTCCTTTATATCAGCTGAGGGGAAAGTGTACCCCGTAGACCCCGGACTCCCGGTTGCCG 
Hela-EAVP10  ...T............................................A................................................... 
Hela-EAVP35  ...C............................................A................................................... 
Hela-EAVP60  ...C............................................G................................................... 
Hela-EAVP80  ...C............................................A................................................... 
 
             11801                                        11850                                             11900 
VBS53 EAV    CCGCGGGCAATCGGTTGTTAGTCCCAGGTAGGCCCACTATCGATTATGCAGTGGCCTACGGCAGCAAAGTCAACCTTGTGAGGTTGGGGGCAGCTGAGGT 
Hela-EAVP10  .................................................................................G.................. 
Hela-EAVP35  .................................................................................A.................. 
Hela-EAVP60  .................................................................................G.................. 
Hela-EAVP80  .................................................................................G.................. 
            
             11901                                        11950                                             12000 
VBS53 EAV    ATGGGAGCCATAGATTCATTTTGTGGTGACGGGATTTTAGGTGAGTATCTAGATTACTTTATTCTGTCCGTCCCACTCTTGCTGTTGCTTACTAGGTATG 
Hela-EAVP10  .................................................................................................... 
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  .................................................................................................... 
Hela-EAVP80  .................................................................................................... 
            
 
 
 
 
 



 

 

186

             12001                                        12050                                             12100 
VBS53 EAV    TAGCATCTGGGTTAGTGTATGTTTTGACTGCCTTGTTCTATTCCTTTGTATTAGCAGCTTATATTTGGTTTGTTATAGTTGGAAGAGCCTTTTCTACTGC 
Hela-EAVP10  .................................................................................................... 
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  .................................................................................................... 
Hela-EAVP80  .................................................................................................... 
            
             12101                                        12150                                             12200 
VBS53 EAV    TTATGCTTTTGTGCTTTTGGCTGCTTTTCTGTTATTAGTAATGAGGATGATTGTAGGTATGATGCCTCGTCTTCGGTCCATTTTCAACCATCGCCAACTG 
Hela-EAVP10  .................................................................................................... 
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  .................................................................................................... 
Hela-EAVP80  .................................................................................................... 
            
             12201                                        12250                                             12300 
VBS53 EAV    GTGGTAGCTGATTTTGTGGACACACCTAGTGGACCTGTTCCCATCCCCCGCTCAACTACTCAGATAGTGGTTCGCGGCAACGGGTACACCGCAGTTGGTA 
Hela-EAVP10  .................................................................................................... 
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  .................................................................................................... 
Hela-EAVP80  .................................................................................................... 
            
             12301                                        12350                                             12400 
VBS53 EAV    ACAAGCTTGTCGATGGCGTCAAGACGATCACGTCCGCAGGCCGCCTCTTTTCGAAACGGGCGGCGGCGACAGCCTACAAGCTACAATGACCTACTGCGTA 
Hela-EAVP10  .................................................................................................... 
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  .................................................................................................... 
Hela-EAVP80  .................................................................................................... 
            
             12401                                        12450                                             12500 
VBS53 EAV    TGTTTGGTCAGATGCGGGTCCGCAAACCGCCCGCGCAACCCACTCAGGCTATCATTGCAGAGCCTGGAGACCTTAGGCATGATTTAAATCAACAGGAGCG 
Hela-EAVP10  .................................................................................................... 
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  .................................................................................................... 
Hela-EAVP80  .................................................................................................... 
 
 
 
 
 
 



 

 

187

             12501                                        12550                                             12600 
VBS53 EAV    CGCCACCCTTTCGTCGAACGTACAACGGTTCTTCATGATTGGGCATGGTTCACTCACTGCAGATGCCGGAGGACTCACGTACACCGTCAGTTGGGTTCCT 
Hela-EAVP10  .................................................................................................... 
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  .................................................................................................... 
Hela-EAVP80  .................................................................................................... 
            
             12601                                        12650                                             12700 
VBS53 EAV    ACCAAACAAATCCAGCGCAAAGTTGCGCCTCCAGCAGGGCCGTAAGACGTGGATATTCTCCTGTGTGGCGTCATGTTGAAGTAGTTATTAGCCACCCAGG 
Hela-EAVP10  .................................................................................................... 
Hela-EAVP35  .................................................................................................... 
Hela-EAVP60  .................................................................................................... 
Hela-EAVP80  .................................................................................................... 
    
             12701 
VBS53 EAV    AACC 
Hela-EAVP10  .... 
Hela-EAVP35  .... 
Hela-EAVP60  .... 
Hela-EAVP80  .... 

 
 

Note:  
1. The entire genome sequences (1-12704) of VBS53 EAV, Hela-EAVP35, and Hela-EAVP80 were shown. The nucleotide 

sequences (9751-12704, corresponding to ORFs 2-7 plus 3’ non-translated region) of Hela-EAVP10 and Hela-EAVP60 were 
shown. 

2.  Y = T or C; R = A or G. 
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Appendix 6. Alignment of amino acid sequences of polyprotein 1ab of VBS53 EAV, Hela-EAVP35, and Hela-EAVP80 
 

             1                                               50                                               100 
VBS53 EAV    MATFSATGFGGSFVRDWSLDLPDACEHGAGLCCEVDGSTLCAECFRGCEGVEQCPGLFMGLLKLASPVPVGHKFLIGWYRAAKVTGRYNFLELLQHPAFA 
Hela-EAVP35  .................................................................................................... 
Hela-EAVP80  .................................................................................................... 
    
             101                                            150                                               200 
VBS53 EAV    QLRVVDARLAIEEASVFISTDHASAKRFPGARFALTPVYASAWVASPAANSLIVTIDQEQDGFCWLKLLPPDRREAGLRLYYNHYREQRTGWLSKTGLRL 
Hela-EAVP35  ............................................V....................................................... 
Hela-EAVP80  ............................................V....................................................... 
    
             201                                            250                                               300 
VBS53 EAV    WLGDLGLGINASSGGLKFHIMRGSPQRAWHITTRSCKLKSYYVCDISEADWSCLPAGNYGGYNPPGDGACGYRCLAFMNGATVVSAGCSSDLWCDDELAY 
Hela-EAVP35  .................................................................................................... 
Hela-EAVP80  .................................................................................................... 
    
             301                                            350                                               400 
VBS53 EAV    RVFQLSPTFTVTIPGGRVCPNAKYAMICDKQHWRVKRAKGVGLCLDESCFRGTCNCQRMSGPPPAPVSAAVLDHILEAATFGNVRVVTPEGQPRPVPAPR 
Hela-EAVP35  .................................................................................................... 
Hela-EAVP80  .................................................................................................... 
    
             401                                            450                                               500 
VBS53 EAV    VRPSANSSGDVKDPAPVPPVPKPRTKLAKPNPTQAPIPAPRTRLQGASTQEPLASAGVASDSAPKWRVAKTVYSSAERFRTELVQRARSVGDVLVQALPL 
Hela-EAVP35  .................................................................................................... 
Hela-EAVP80  .................................................................................................... 
    
             501                                            550                                               600 
VBS53 EAV    KTPAVQRYTMTLKMMRSRFSWHCDVWYPLAVIACLLPIWPSLALLLSFAIGLIPSVGNNVVLTALLVSSANYVASMDHQCEGAACLALLEEEHYYRAVRW 
Hela-EAVP35  ............................................................................G....................... 
Hela-EAVP80  ............................................................................G....................... 
    
             601                                            650                                               700 
VBS53 EAV    RPITGALSLVLNLLGQVGYVARSTFDAAYVPCTVFDLCSFAILYLCRNRCWRCFGRCVRVGPATHVLGSTGQRVSKLALIDLCDHFSKPTIDVVGMATGW 
Hela-EAVP35  .................................................................................................... 
Hela-EAVP80  .................................................................................................... 
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             701                                            750                                               800 
VBS53 EAV    SGCYTGTAAMERQCASTVDPHSFDQKKAGAIVYLTPPVNSGSALQCLNVMWKRPIGSTVLGEQTGAVVTAVKSISFSPPCCVSTTLPTRPGVTVVDHALY 
Hela-EAVP35  .................................................................................................... 
Hela-EAVP80  .................................................................................................... 
    
             801                                            850                                               900 
VBS53 EAV    NRLTASGVDPALLRVGQGDFLKLNPGFRLIGGWIYGICYFVLVVVSTFTCLPIKCGIGTRDPFCRRVFSVPVTKTQEHCHAGMCASAEGISLDSLGLTQL 
Hela-EAVP35  .................................................................................................... 
Hela-EAVP80  .................................................................................................... 
    
             901                                            950                                              1000 
VBS53 EAV    QSYWIAAVTSGLVILLVCHRLAISALDLLTLASPLVLLVFPWASVGLLLACSLAGAAVKIQLLATLFVNLFFPQATLVTMGYWACVAALAVYSLMGLRVK 
Hela-EAVP35  .................................................................................................... 
Hela-EAVP80  .................................................................................................... 
    
             1001                                          1050                                              1100 
VBS53 EAV    VNVPMCVTPAHFLLLARSAGQSREQMLRVSAAAPTNSLLGVARDCYVTGTTRLYIPKEGGMVFEGLFRSPKARGNVGFVAGSSYGTGSVWTRNNEVVVLT 
Hela-EAVP35  .................................................................................................... 
Hela-EAVP80  .................................................................................................... 
    
             1101                                          1150                                              1200 
VBS53 EAV    ASHVVGRANMATLKIGDAMLTLTFKKNGDFAEAVTTQSELPGNWPQLHFAQPTTGPASWCTATGDEEGLLSGEVCLAWTTSGDSGSAVVQGDAVVGVHTG 
Hela-EAVP35  .................................................................................................... 
Hela-EAVP80  .................................................................................................... 
    
             1201                                          1250                                              1300 
VBS53 EAV    SNTSGVAYVTTPSGKLLGADTVTLSSLSKHFTGPLTSIPKDIPDNIIADVDAVPRSLAMLIDGLSNRESSLSGPQLLLIACFMWSYLNQPAYLPYVLGFF 
Hela-EAVP35  .................................................................................................... 
Hela-EAVP80  .................................................................................................... 
    
             1301                                          1350                                              1400 
VBS53 EAV    AANFFLPKSVGRPVVTGLLWLCCLFTPLSMRLCLFHLVCATVTGNVISLWFYITAAGTSYLSEMWFGGYPTMLFVPRFLVYQFPGWAIGTVLAVCSITML 
Hela-EAVP35  .................................................................................................... 
Hela-EAVP80  .................................................................................................... 
    
             1401                                          1450                                              1500 
VBS53 EAV    AAALGHTLLLDVFSASGRFDRTFMMKYFLEGGVKESVTASVTRAYGKPITQESLTATLAALTDDDFQFLSDVLDCRAVRSAMNLRAALTSFQVAQYRNIL 
Hela-EAVP35  .................................................................................................... 
Hela-EAVP80  .................................................................................................... 
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             1501                                          1550                                              1600 
VBS53 EAV    NASLQVDRDAARSRRLMAKLADFAVEQEVTAGDRVVVIDGLDRMAHFKDDLVLVPLTTKVVGGSRCTICDVVKEEANDTPVKPMPSRRRRKGLPKGAQLE 
Hela-EAVP35  ..........................................................R......................................... 
Hela-EAVP80  ..........................................................R......................................... 
    
             1601                                          1650                                              1700 
VBS53 EAV    WDRHQEEKRNAGDDDFAVSNDYVKRVPKYWDPSDTRGTTVKIAGTTYQKVVDYSGNVHYVEHQEDLLDYVLGKGSYEGLDQDKVLDLTNMLKVDPTELSS 
Hela-EAVP35  .................................................................................................... 
Hela-EAVP80  .................................................................................................... 
    
             1701                                          1750                                              1800 
VBS53 EAV    KDKAKARQLAHLLLDLANPVEAVNQLNLRAPHIFPGDVGRRTFADSKDKGFVALHSRTMFLAARDFLFNIKFVCDEEFTKTPKDTLLGYVRACPGYWFIF 
Hela-EAVP35  .................................................................................................... 
Hela-EAVP80  .................................................................................................... 
    
             1801                                          1850                                              1900 
VBS53 EAV    RRTHRSLIDAYWDSMECVYALPTISDFDVSPGDVAVTGERWDFESPGGGRAKRLTADLVHAFQGFHGASYSYDDKVAAAVSGDPYRSDGVLYNTRWGNIP 
Hela-EAVP35  .................................................................................................... 
Hela-EAVP80  .................................................................................................... 
    
             1901                                          1950                                              2000 
VBS53 EAV    YSVPTNALEATACYRAGCEAVTDGTNVIATIGPFPEQQPIPDIPKSVLDNCADISCDAFIAPAAETALCDDLEKYNLSTQGFVLPSVFSMVRAYLKEEIG 
Hela-EAVP35  ................................P................................................................... 
Hela-EAVP80  ................................S................................................................... 
    
             2001                                          2050                                              2100 
VBS53 EAV    DAPPLYLPSTVPSKNSQAGINGAEFPTKSLQSYCLIDDMVSQSMKSNLQTATMATCKRQYCSKYKIRSILGTNNYIGLGLRACLSGVTAAFQKAGKDGSP 
Hela-EAVP35  .................................................................................................... 
Hela-EAVP80  .................................................................................................... 
    
             2101                                          2150                                              2200 
VBS53 EAV    IYLGKSKFDPIPAPDKYCLETDLESCDRSTPALVRWFATNLIFELAGQPELVHSYVLNCCHDLVVAGSVAFTKRGGLSSGDPITSISNTIYSLVLYTQHM 
Hela-EAVP35  .................................................................................................... 
Hela-EAVP80  .................................................................................................... 
    
             2201                                          2250                                              2300 
VBS53 EAV    LLCGLEGYFPEIAEKYLDGSLELRDMFKYVRVYIYSDDVVLTTPNQHYAASFDRWVPHLQALLGFKVDPKKTVNTSSPSFLGCRFKQVDGKCYLASLQDR 
Hela-EAVP35  .................................................................................................... 
Hela-EAVP80  .................................................................................................... 
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             2301                                          2350                                              2400 
VBS53 EAV    VTRSLLYHIGAKNPSEYYEAAVSIFKDSIICCDEDWWTDLHRRISGAARTDGVEFPTIEMLTSFRTKQYESAVCTVCGAAPVAKSACGGWFCGNCVPYHV 
Hela-EAVP35  .................................................................................................... 
Hela-EAVP80  .................................................................................................... 
 
             2401                                          2450                                              2500 
VBS53 EAV    GHCHTTSLFANCGHDIMYRSTYCTMCEGSPKQMVPKVPHPILDHLLCHIDYGSKEELTLVVADGRTTSPPGRYKVGHKVVAVVADVGGNIVFGCGPGSHI 
Hela-EAVP35  .................................................................................................... 
Hela-EAVP80  .................................................................................................... 
    
             2501                                          2550                                              2600 
VBS53 EAV    AVPLQDTLKGVVVNKALKNAAASEYVEGPPGSGKTFHLVKDVLAVVGSATLVVPTHASMLDCINKLKQAGADPYFVVPKYTVLDFPRPGSGNITVRLPQV 
Hela-EAVP35  .................................................................................................... 
Hela-EAVP80  .................................................................................................... 
    
             2601                                          2650                                              2700 
VBS53 EAV    GTSEGETFVDEVAYFSPVDLARILTQGRVKGYGDLNQLGCVGPASVPRNLWLRHFVSLEPLRVCHRFGAAVCDLIKGIYPYYEPAPHTTKVVFVPNPDFE 
Hela-EAVP35  .................................................................................................... 
Hela-EAVP80  .................................................................................................... 
 
             2701                                          2750                                              2800 
VBS53 EAV    KGVVITAYHKDRGLGHRTIDSIQGCTFPVVTLRLPTPQSLTRPRAVVAVTRASQELYIYDPFDQLSGLLKFTKEAEAQDLIHGPPTACHLGQEIDLWSNE 
Hela-EAVP35  .................................................................................................... 
Hela-EAVP80  .................................................................................................... 
    
             2801                                          2850                                              2900 
VBS53 EAV    GLEYYKEVNLLYTHVPIKDGVIHSYPNCGPACGWEKQSNKISCLPRVAQNLGYHYSPDLPGFCPIPKELAEHWPVVSNDRYPNCLQITLQQVCELSKPCS 
Hela-EAVP35  .................................................................................................... 
Hela-EAVP80  .................................................................................................... 
    
             2901                                          2950                                              3000 
VBS53 EAV    AGYMVGQSVFVQTPGVTSYWLTEWVDGKARALPDSLFSSGRFETNSRAFLDEAEEKFAAAHPHACLGEINKSTVGGSHFIFSQYLPPLLPADAVALVGAS 
Hela-EAVP35  .................................................................................................... 
Hela-EAVP80  .................................................................................................... 
    
             3001                                          3050                                              3100 
VBS53 EAV    LAGKAAKAACSVVDVYAPSFEPYLHPETLSRVYKIMIDFKPCRLMVWRNATFYVQEGVDAVTSALAAVSKLIKVPANEPVSFHVASGYRTNALVAPQAKI 
Hela-EAVP35  .................................................................................................... 
Hela-EAVP80  .................................................................................................... 
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             3101                                          3150                      3176 
VBS53 EAV    SIGAYAAEWALSTEPPPAGYAIVRRYIVKRLLSSTEVFLCRRGVVSSTSVQTICALEGCKPLFNFLQIGSVIGPV- 
Hela-EAVP35  ...........................................................................- 
Hela-EAVP80  ...........................................................................- 
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Appendix 7. Alignment of amino acid sequences of E protein of VBS53 EAV,  
Hela-EAVP10, Hela-EAVP35, Hela-EAVP60, and Hela-EAVP80 

 
                     1                                               50 
E of VBS53 EAV       MGLVWSLISNSIQTIIADFAISVIDAALFFLMLLALAVVTVFLFWLIVAI 
E of Hela-EAVP10     .................................................. 
E of Hela-EAVP35     .................................................. 
E of Hela-EAVP60     .................................................. 
E of Hela-EAVP80     .................................................. 
 
                     51              68 
E of VBS53 EAV       GRSLVARCSRGARYRPV- 
E of Hela-EAVP10     ..S.V............- 
E of Hela-EAVP35     ..S.A............- 
E of Hela-EAVP60     ..C.A............- 
E of Hela-EAVP80     ..C.A............- 
         
 
 

 
Appendix 8. Alignment of amino acid sequences of GP2b protein of VBS53 EAV,  

Hela-EAVP10, Hela-EAVP35, Hela-EAVP60, and Hela-EAVP80 
                    
                     1                                               50 
GP2b of VBS53 EAV    MQRFSFSCYLHWLLLLCFFSGSLLPSAAAWWRGVHEVRVTDLFKDLQCDN 
GP2b of Hela-EAVP10  ..............L...............W................... 
GP2b of Hela-EAVP35  ..............S...............R................... 
GP2b of Hela-EAVP60  ..............S...............R................... 
GP2b of Hela-EAVP80  ..............S...............R................... 
                       
                     51                                             100 
GP2b of VBS53 EAV    LRAKDAFPSLGYALSIGQSRLSYMLQDWLLAAHRKEVMPSNIMPMPGLTP 
GP2b of Hela-EAVP10  ....................................VM............ 
GP2b of Hela-EAVP35  ....................................VV............ 
GP2b of Hela-EAVP60  ....................................LM............ 
GP2b of Hela-EAVP80  ....................................LM............ 
                               
                     101                                            150 
GP2b of VBS53 EAV    DCFDHLESSSYAPFINAYRQAILSQYSQELLLEAINCKLLAVVAPALYHN 
GP2b of Hela-EAVP10  ...........A...................................... 
GP2b of Hela-EAVP35  ...........T...................................... 
GP2b of Hela-EAVP60  ...........T...................................... 
GP2b of Hela-EAVP80  ...........T...................................... 
            
                     151                                            200 
GP2b of VBS53 EAV    YHLANLTGPATWVVPTVGQLHYYASSSIFASSVEVLAAIILLFACIPLVT 
GP2b of Hela-EAVP10  .................................................. 
GP2b of Hela-EAVP35  .................................................. 
GP2b of Hela-EAVP60  .................................................. 
GP2b of Hela-EAVP80  .................................................. 
            
                     201                      228 
GP2b of VBS53 EAV    RVYISFTRLMSPSRRTSSGTLPRRKIL- 
GP2b of Hela-EAVP10  ...........................- 
GP2b of Hela-EAVP35  ...........................- 
GP2b of Hela-EAVP60  ...........................- 
GP2b of Hela-EAVP80  ...........................- 
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Appendix 9. Alignment of amino acid sequences of GP3 protein of VBS53 EAV,  
Hela-EAVP10, Hela-EAVP35, Hela-EAVP60, and Hela-EAVP80 

 
                    1                                               50 
GP3 of VBS53 EAV    MGRAYSGPVALLCFFLYFCFICGSVGSNNTTICMHTTSDTSVHLFYAANV 
GP3 of Hela-EAVP10  .................................................. 
GP3 of Hela-EAVP35  .................................................. 
GP3 of Hela-EAVP60  .................................................. 
GP3 of Hela-EAVP80  .................................................. 
           
                    51                                             100 
GP3 of VBS53 EAV    TFPSHFQRHFAAAQDFVVHTGYEYAGVTMLVHLFANLVLTFPSLVNCSRP 
GP3 of Hela-EAVP10  .................................................. 
GP3 of Hela-EAVP35  .................................................. 
GP3 of Hela-EAVP60  .................................................. 
GP3 of Hela-EAVP80  .................................................. 
                     
                    101                                            150 
GP3 of VBS53 EAV    VNVFANASCVQVVCSHTNSTTGLGQLSFSFVDEDLRLHIRPTLICWFALL 
GP3 of Hela-EAVP10  ..............S...................L............... 
GP3 of Hela-EAVP35  ..............G...................P............... 
GP3 of Hela-EAVP60  ..............G...................P............... 
GP3 of Hela-EAVP80  ..............G...................P............... 
           
                    151        164 
GP3 of VBS53 EAV    LVHFLPMPRCRGS- 
GP3 of Hela-EAVP10  .............- 
GP3 of Hela-EAVP35  .............- 
GP3 of Hela-EAVP60  .............- 
GP3 of Hela-EAVP80  .............- 
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Appendix 10. Alignment of amino acid sequences of GP4 protein of VBS53 EAV,  
Hela-EAVP10, Hela-EAVP35, Hela-EAVP60, and Hela-EAVP80 

 
                    1                                               50 
GP4 of VBS53 EAV    MKIYGCIXGLLLFVGLPCCWCTFYPCHAAEARNFTYISHGLGHVHGHEGC 
GP4 of Hela-EAVP10  ...Y...L.......................................... 
GP4 of Hela-EAVP35  ...H...L.......................................... 
GP4 of Hela-EAVP60  ...H...L.......................................... 
GP4 of Hela-EAVP80  ...H...L.......................................... 
           
                    51                                             100 
GP4 of VBS53 EAV    RNFINVTHSAFLYLNPTTLTAPAITHCLLLVLAAKMEHPNATIWLQLQPF 
GP4 of Hela-EAVP10  .................................................. 
GP4 of Hela-EAVP35  .................................................. 
GP4 of Hela-EAVP60  .................................................. 
GP4 of Hela-EAVP80  .................................................. 
           
                    101                                            150 
GP4 of VBS53 EAV    GYHVAGDVIVNLEENKRHPYFKLLRAPALPLGFVAIVYVLLRLVRWAQQC 
GP4 of Hela-EAVP10  ........I......................................... 
GP4 of Hela-EAVP35  ........I......................................... 
GP4 of Hela-EAVP60  ........F......................................... 
GP4 of Hela-EAVP80  ........F......................................... 
           
                    151 
GP4 of VBS53 EAV    YL- 
GP4 of Hela-EAVP10  ..- 
GP4 of Hela-EAVP35  ..- 
GP4 of Hela-EAVP60  ..- 
GP4 of Hela-EAVP80  ..- 
           
 
 
Note: At position 8, X represents amino acid L (Leucine) or S (Serine). 
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Appendix 11. Alignment of amino acid sequences of GP5 protein of VBS53 EAV,  
Hela-EAVP10, Hela-EAVP35, Hela-EAVP60, and Hela-EAVP80 

 
                    1                                               50 
GP5 of VBS53 EAV    MLSMIVLLFLLWGAPSHAYFSYYTAQRFTDFTLCMLTDRGVIANLLRYDE 
GP5 of Hela-EAVP10  ........F......................................... 
GP5 of Hela-EAVP35  ........S......................................... 
GP5 of Hela-EAVP60  ........S......................................... 
GP5 of Hela-EAVP80  ........S......................................... 
                     
                    51                                             100 
GP5 of VBS53 EAV    HTALYNCSASKTCWYCTFLDEQIITFGTDCNDTYAVPVAEVLEQAHGPYS 
GP5 of Hela-EAVP10  ...............................................P.. 
GP5 of Hela-EAVP35  ...............................................L.. 
GP5 of Hela-EAVP60  ...............................................L.. 
GP5 of Hela-EAVP80  ...............................................L.. 
           
                    101                                            150 
GP5 of VBS53 EAV    VLFDDMPPFIYYGREFGIVVLDVFMFYPVLVLFFLSVLPYATLILEMCVS 
GP5 of Hela-EAVP10  .................................................. 
GP5 of Hela-EAVP35  .................................................. 
GP5 of Hela-EAVP60  .................................................. 
GP5 of Hela-EAVP80  .................................................. 
           
                    151                                            200 
GP5 of VBS53 EAV    ILFIIYGIYSGAYLAMGIFAATLAIHSIVVLRQLLWLCLAWRYRCTLHAS 
GP5 of Hela-EAVP10  .................................................. 
GP5 of Hela-EAVP35  .................................................. 
GP5 of Hela-EAVP60  .................................................. 
GP5 of Hela-EAVP80  .................................................. 
           
                    201                                            250 
GP5 of VBS53 EAV    FISAEGKVYPVDPGLPVAAAGNRLLVPGRPTIDYAVAYGSKVNLVRLGAA 
GP5 of Hela-EAVP10  .I...........................................R.... 
GP5 of Hela-EAVP35  .I...........................................K.... 
GP5 of Hela-EAVP60  .V...........................................R.... 
GP5 of Hela-EAVP80  .I...........................................R.... 
           
                    251 
GP5 of VBS53 EAV    EVWEP- 
GP5 of Hela-EAVP10  .....- 
GP5 of Hela-EAVP35  .....- 
GP5 of Hela-EAVP60  .....- 
GP5 of Hela-EAVP80  .....- 
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Appendix 12. Alignment of amino acid sequences of M protein of VBS53 EAV,  
Hela-EAVP10, Hela-EAVP35, Hela-EAVP60, and Hela-EAVP80 

 
                  1                                               50 
M of VBS53 EAV    MGAIDSFCGDGILGEYLDYFILSVPLLLLLTRYVASGLVYVLTALFYSFV 
M of Hela-EAVP10  .................................................. 
M of Hela-EAVP35  .................................................. 
M of Hela-EAVP60  .................................................. 
M of Hela-EAVP80  .................................................. 
         
                  51                                             100 
M of VBS53 EAV    LAAYIWFVIVGRAFSTAYAFVLLAAFLLLVMRMIVGMMPRLRSIFNHRQL 
M of Hela-EAVP10  .................................................. 
M of Hela-EAVP35  .................................................. 
M of Hela-EAVP60  .................................................. 
M of Hela-EAVP80  .................................................. 
         
                  101                                            150 
M of VBS53 EAV    VVADFVDTPSGPVPIPRSTTQIVVRGNGYTAVGNKLVDGVKTITSAGRLF 
M of Hela-EAVP10  .................................................. 
M of Hela-EAVP35  .................................................. 
M of Hela-EAVP60  .................................................. 
M of Hela-EAVP80  .................................................. 
         
                  151       163 
M of VBS53 EAV    SKRAAATAYKLQ- 
M of Hela-EAVP10  ............- 
M of Hela-EAVP35  ............- 
M of Hela-EAVP60  ............- 
M of Hela-EAVP80  ............- 
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Appendix 13. Alignment of amino acid sequences of N protein of VBS53 EAV,  
Hela-EAVP10, Hela-EAVP35, Hela-EAVP60, and Hela-EAVP80 

 
                  1                                               50 
N of VBS53 EAV    MASRRSRPQAASFRNGRRRQPTSYNDLLRMFGQMRVRKPPAQPTQAIIAE 
N of Hela-EAVP10  .................................................. 
N of Hela-EAVP35  .................................................. 
N of Hela-EAVP60  .................................................. 
N of Hela-EAVP80  .................................................. 
         
                  51                                             100 
N of VBS53 EAV    PGDLRHDLNQQERATLSSNVQRFFMIGHGSLTADAGGLTYTVSWVPTKQI 
N of Hela-EAVP10  .................................................. 
N of Hela-EAVP35  .................................................. 
N of Hela-EAVP60  .................................................. 
N of Hela-EAVP80  .................................................. 
         
                  101     111 
N of VBS53 EAV    QRKVAPPAGP- 
N of Hela-EAVP10  ..........- 
N of Hela-EAVP35  ..........- 
N of Hela-EAVP60  ..........- 
N of Hela-EAVP80  ..........- 
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Appendix 14. Thermacycling conditions for site-directed mutagenesis PCR reactions 
 

 
1st mutagenesis PCR reaction 

 
Component Amount per reaction 
Nuclease free water  40.6 µl 
10 × cloned Pfu reaction buffer 5.0 µl 
dNTPs (25 mM each dNTP) 0.4 µl 
pS45VBS53 DNA (1:20 dilution) 1.0 µl 
Positive primer C211156P (20 µM) 1.0 µl 
Negative mutagenic primer 11443N (20 µM) 1.0 µl 
Pfu Turbo DNA polymerase (2.5 U/µl) 1.0 µl 
Total reaction volume 50 µl 
 

 2nd mutagenesis PCR reaction 
 
Component Amount per reaction 
Nuclease free water  36.6 µl 
10 × cloned Pfu reaction buffer 5.0 µl 
dNTPs (25 mM each dNTP) 0.4 µl 
pS45VBS53 DNA (1:20 dilution) 1.0 µl 
1st mutagenesis PCR mixture 5.0 µl 
Reverse primer 11515N (20 µM) 1.0 µl 
Pfu Turbo DNA polymerase (2.5 U/µl) 1.0 µl 
Total reaction volume 50 µl 
 

  
Thermacycling conditions for both 1st and 2nd mutagenesis PCR 

        

Seg 1 
95ºC 
40ºC 
72ºC 

2 min 
1.5 min 
6 min 

 
1 cycle 

Seg 2 
95ºC 
40ºC 
72ºC 

45 sec 
1.5 min 
6 min 

 
5 cycles 

Seg 3 
95ºC 
50ºC 
72ºC 

45 sec 
45 sec 
6 min 

 
34 cycles 

Seg 4 72ºC 10 min  
Seg 5 4ºC 8   
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