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ABSTRACT OF DISSERTATION

ROBUST GENERIC MODEL CONTROL FOR
PARAMETER INTERVAL SYSTEMS

A multivariable control technique is proposed for a type of nonlinear
system with parameter intervals. The control is based upon the feedback
linearization scheme called Generic Model Control, and alters the control
calculation by utilizing parameter intervals, employing an adaptive step,
averaging control predictions, and applying an interval problem solution. The
proposed approach is applied in controlling both a linear and a nonlinear arc

welding system as well in other simulations of scalar and multivariable systems.
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CHAPTER1

INTRODUCTION

1.1 Objectives

The objectives of this research will be to develop a multi-input multi-output
(MIMO), nonlinear control that can handle parameter uncertainties, and then implement
the algorithm by controlling an arc welding manufacturing process. Generic model
control (GMC) has been selected to improve because the control law has the ability to
incorporate a nonlinear model, the controller design parameters are intuitive and have a
definable affect on the closed loop output, and the controller is already suitable for
MIMO systems. A disadvantage with GMC is that the control signal for certain systems
can frequently oscillate, which may make it impossible to implement in real control
hardware. It is this aspect of GMC that will be improved first. Then improvements will
be made on the ability of GMC to handle process uncertainties. The application of the
developed controller will be in controlling arc-welding processes.

Therefore, the GMC controller will be studied and modified to develop a MIMO,
nonlinear, robust controller. The initial, primary modification will be to reduce the
control signal variation associated with a GMC controller by averaging control
predictions. GMC control is already MIMO, and therefore extension to a new type of
MIMO controller should be straightforward. The robustness of GMC has been studied

and will be altered to handle parameter interval systems by changing the control law to



incorporate parameter intervals. After modifying GMC, the new controller design will be

used to control an arc welding process.

1.2 Proposed Nonlinear Control Applications

The proposed research applications involve arc welding processes. Many arc
welding processes have been shown to be nonlinear. Furthermore, the benefits of
controlled arc welding in comparison with the cost of equipment have also been
established, making it a worthwhile research project. These benefits include the
guaranteed full penetration or fusion, higher energy density and efficiency, deep
penetration, improved mechanical properties of the weld, improved arc stability, higher
welding speed, and fewer requirements for joint preparation. Thus, by improving the
control of the nonlinear processes involved in arc welding by incorporating a newly
developed nonlinear control algorithm, the project not only becomes suitable for doctoral

research but also has the potential to make a rewarding and marketable product.

1.3 Outline of Dissertation

Chapter two reviews the previous and current methods of nonlinear modeling and
control. Chapter three reviews in depth the theoretical background of GMC and
associated recent development as well as implementation issues encountered in research.
Chapter four begins the control contribution of the author by analyzing control smoothing
in GMC by the use of control predictions. Then the contribution is furthered in Chapter

five and six by first studying the use of parameter interval systems within the GMC



control technique and then developing the final version of the proposed control algorithm

and extending its use to multivariable systems.



CHAPTER 2

REVIEW OF NONLINEAR MODELING &
CONTROL

There is now a greater need for high performance control systems in industry.
This is due to economic pressures requiring increased throughput, a rise in the demand
for higher quality products that are produced more consistently and a demand for greater
material and energy utilization. Moreover, environmental and safety issues have
increased the performance requirements of modern control systems. Studies have shown
that nonlinear high performance controllers are not only possible to implement but also
affordable, [1].

The mathematical reason that the modelling and control of nonlinear, high
performance systems exists is the inability of linear systems to sufficiently characterize
all of the various processes. Nonlinear systems are predominant in the processes and
systems in the manufacturing setting. Moreover, even when the system behaves linearly
at a certain time, the system dynamics are continuously changing so that there are
uncertainties in the linear mathematical model developed to characterize the particular
manufacturing process to be controlled. Often the processes are assumed to be linear in
order to simplify the analysis and design of the controller, and this is frequently
sufficient. However, to capture the behavior in the large or the local subtleties of the
nonlinear system dynamics and control them with greater accuracy and/or some other
performance criteria, a controller designed to incorporate a nonlinear model is required.

However, some digital controllers for nonlinear systems, in the past, have often had the



disadvantage that they were difficult to implement in real systems because of the number
of calculations performed to determine the optimum process input. Therefore, a MIMO,
robust controller for nonlinear systems that can be easily designed by engineers, can be
used for real uncertain systems, and can be implemented on-line is not only an interesting
topic of research but also could have an extensive application in the manufacturing
setting.

A review of nonlinear modelling and control is necessary in evaluating the
performance of any developed nonlinear control technique. There are several nonlinear
modelling and control techniques that have been created. In comparing the different
methods, the primary considerations are model accuracy, complexity, method of system

identification, and the ability to be implemented on-line.

2.1 Nonlinear Modelling

Nonlinear modeling is an interesting research topic. There are several different
types of modeling with varying complexity. This section briefly overviews the most
extensively used techniques, beginning with the most general of the dynamic models
through the more specific and ending with other modeling types such as neural network,
fuzzy, and others.

The nonlinear autoregressive moving average with exogenous input (NARMAX),
[2], model is the nonlinear version of its linear counterpart ARMAX and is generally

described by function f as in Equation 2-1.
y(ky= flolk =10,...,ylk —n, Lulk - d),...,ulk —d —n, 1)+ e(k)
Equation 2-1
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For ARMAX models, prior to parameterization, the dominant system time-constants are

used to select the sampling time, and then the model order can be selected. The moving

average part of the model is selected based upon the assumed structure of the disturbance.
For NARMAX models, system identification is more complex unless the structure

of f is known. Because the function, f, is usually unknown, the system must be

estimated as /. However, because there are numerous possibilities of the number of
model terms and combination of terms, it is best to use a model that is a set of general
basis functions. These basis functions can simply be a combination of ARMAX models
or for greater accuracy a NARMAX model with a model class that provides a suitable set
of regressors to fit the data generally over the domain of interest. Generally, the number
of estimated parameters required to accurately characterize the nonlinear dynamics can
be exceedingly large. However, recent studies have shown that the use of wavelets as the
basis function have resulted in high accuracy with limited parameters, [3].

A subclass of NARMAX models is the Volterra series. The Volterra series [4] describes a
large class of nonlinear systems and can be characterized by Equation 2-2 or in discrete
time by Equation 2-3.

YO =hy + 3 [ hy(5y.t )5~ 7)d, ... dT,
i=1

n=1pgn

Equation 2-2

N| K, K, n
y(k)=h0+z Z'“Zhn(kla'--akn)nx(k_ki)
=1 k=0 k,=0 =l

n

Equation 2-3



The disadvantage with a Volterra series is also that there are a large number of
parameters required in describing a system. Constraining the architecture of the series to
reduce its complexity simplifies the model but also reduces its generality. Moreover
because of the complexity of the Volterra series model, the control may not be online
calculable and if the structure is not known, the parameter estimation is not
straightforward [5,6].

The Wiener and Hammerstein models are special cases of a Volterra series [7,8].
The discrete Hammerstein model is described as a memoryless, nonlinear system as is

given by Equation 2-4 followed by a linear system described by Equation 2-5.

m .
_ i
U nonlinear = Zaiuinput
i=1

Equation 2-4

,Blz_l +,B22_2 +-+pz"

2

G(2) = - - -
l-ayz -tz " ——a,z

n

Equation 2-5

The Weiner model is described as the reverse of the Hammerstein model such that it is a
linear system followed by memoryless, nonlinear system. Also, the Hammerstein and
Weiner models can be cascaded to combine either a Hammerstein-Weiner model or
Weiner-Hammerstein model. There are a number of ways of model identification for
each of these types [9-11].

Other nonlinear models that have had extensive use are neural networks, which
belong to a class of statistical models, and fuzzy systems, [12-19]. Neural networks are
universal approximators and offer reduced ideal approximation error for only a linear

increase in the number of parameters. Fuzzy systems have the distinct advantage of

7



incorporating heuristics in the design of the model’s nonlinearitites. Moreover, for each
of these models the parameter identification is well established, and they provide the
capability of on-line implementation. However for these models, the particular
mechanistic reasons for the nonlinear system’s dynamics are not as apparent as they are

with some of the previous models.

2.2 Nonlinear Control

2.2.1 Overview

Although the computational demands for nonlinear control implementation are
significantly greater than for a linear control system, advances in control system software
and hardware have improved the applicability of nonlinear control. There is a wide range
of techniques used to control nonlinear processes.

Previously the common approach in controlling nonlinear processes was to design
the controller with a series of linear models that were valid for certain operating
conditions. It was a type of gain scheduling approach whereby a certain linear controller
was selected based upon the specific operating point that the process was running in at
that time. However, recent interest in the control of nonlinear processes using nonlinear
models has stimulated greater theoretical and practical developments.

Some issues that are encountered in nonlinear control are that of state estimation
and disturbance modelling. In linear systems, the state estimation has, in general, been
solved so that certainty equivalence between estimation and reality can be assumed, [20].
However, for nonlinear systems state estimation is not as straightforward and requires

enhancements or learning mechanisms that can predict the states from the control and

8



output signal. Moreover unlike linear systems, process stability can not even be
guaranteed by ensuring that the state estimators and state feedback control laws are
stable. Then the modelling of disturbances is more complex, in that the nature and point
of injection of the disturbance must be considered because the superposition position
principle is not valid in nonlinear systems.

The typical type of nonlinearities that occur in practice can be categorized into
smooth and non-smooth groups, [20]. Smooth nonlinearities occur frequently and
include products, exponentials or power type functions, and nonlinear continuous
functions such as trigonometric functions. Non-smooth functions are also common in
practice and these include things like specific mechanical properties such as hardstops or
gear backlash and also more general process related things such as process limits or
constraints. An important difference between non-smooth nonlinearities and smooth
nonlinearities is that nonsmooth nonlinearities do not have definable inverse functions.
This difference causes a distinct division in the way that these two process groups can be
controlled. For example, there is no inverse function for a process hard stop that can be
used to manipulate the control to cancel the effect of the hard stop. The smooth nonlinear
functions do have inverse functions, and thus by the use of this inverse function, the
nonlinearity can, in effect, be cancelled. However, because the non-smooth nonlinearities
cannot be cancelled, the control action must be manipulated by addressing them in
another way in the control calculation. Three primary ways have been proposed of
manipulating the control action to address these non-smooth nonlinearities. First, it may
be possible to lower the process performance requirements so that the non-smooth

nonlinearities are completely avoided. Second, the controller could be enhanced with



types of process dependent embellishments that manage the control action based upon the
known nonlinearities. This is commonly done in controllers called anti-windup
controllers. Lastly, the controller type itself could be designed with the capability of
including the nonlinearities within the control law.

Anti-windup controllers are commonly used for situations involving actuator
constraints or other similar limitations, [21]. The anti-windup schemes involve
mechanisms for notifying the controller when it is operating within a region that has
certain constraints or limitations, and then the controller makes the predetermined
modification to the control action.

In the following sections specific types of nonlinear control will be reviewed
starting with feedback linearization, which addresses smooth nonlinearities by canceling
them via a definable inverse. Then Model Predictive control will be reviewed, which can
handle nonsmooth nonlinearities and uses non-linear programming to calculate the
control action. Also, mentioned will be adaptive backstepping, which has recently been

proposed. Lastly, H infinity nonlinear control and others will be discussed.

2.2.2 Feedback Linearization [20]

Feedback Linearization is a conceptually simple technique for the control of
nonlinear systems with smooth nonlinearities and stable process inversion. However, if
the process has unstable zero dynamics (i.e. nonminimum phase), Feedback Linearization
fails to ensure stability. Thus, when using Feedback Linearization there are two ways of
dealing with processes with unstable zero dynamics. First, it is possible to extend

Feedback Linearization to nonminimum phase systems by selecting another output of the

10



system with respect to which the system has minimum phase characteristics. Second, it is
might be possible to just construct a minimum phase approximation of the original model
using an inner-outer factorization.

A brief review of Feedback Linearization is presented below. Consider the single-

input single-output nonlinear state space system

x(t) = f(x) + g(x)u(?)
y(#) = h(x)

Equation 2-6

Assume that x = 0 is an equilibrium point of Equation 2-18 i.e. f{0) = 0, and that
the nonlinear system has relative degree » defined in a certain neighborhood U of x = 0.

Next, consider a stable linear differential operator p(p) of degree r

p(P)=p,p +p.p +...+1
Equation 2-7

Then p(p), applied to the system output y(¢) can be written as

p(P)y(t) = b(x) +a(x)u(t)
Equation 2-8

where b(x) and a(x) are suitable nonlinear functions of the system states. Also, it is given
that a(x) # 0Vx e U, since the nonlinear system has relative degree » in U. From

Equation 2-20 it is clear that applying the control law,

30 -b)
A

Equation 2-9

then the original nonlinear system can be transformed into a linear system of the form
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p(Py(@)=y*()
Equation 2-10

where y*(#) can be any external signal.

The control law defined in Equation 2-9 is known as Input-Output Feedback
Linearization. One advantage of Feedback Linearization is that it is simple and it allows a
straightforward design of the differential operator p(p), since the roots of p(p) determine
the dynamic behavior of the output of the closed-loop system.

Another control method related to Feedback Linearization that retains its desirable
simplicity but without some of its restrictions is Generalized Feedback Linearization.
However, these improvements have the undesirable tradeoff that the closed-loop
properties lose their linear behavior.

Previously, the order of the linear differential operator p(p) was r i.e., the relative

degree of the nonlinear system.

Allowing the degree of p(p) to be n, > r and if the input is made to satisfy a linear

dynamic model of the form

[(p)u(t) =u*(2)
Equation 2-11

where [(p) is a differential operator of degree n, =n, —r
(py=1,p" +1, . p"" +..+1
Equation 2-12

And u*(¢) is the steady state input signal which makes the steady state value of the output

¥(?) to be equal to y*(?)
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Combining of Equations 2-10 and 2-11, yielding, with A< [0,1].

(1= Dlp(p)y(®) =y * O]+ All(p)u(t) =u* ()] =0
Equation 2-13

constitutes the Genralized Feedback Linearization (GFL) control law, which can also be
written as

z(1) = p'(P)y(1) + [(p)u(r) = 2(1)
Equation 2-14

where

1-4
p'(p)= TP(P)
20 =120+t
Equation 2-15

Notice that Equation 2-15 implicitly defines an improper linear control law which
becomes a nonlinear proper control law when the state space model is used to evaluate
p’(p)y(?). This strategy reverts to the usual Feedback Linearization strategy; by taking
A=0 in Equation 2-13. The strategy can handle all stable systems, whether or not they are
stably invertible, by taking A=1. By continuity, various combinations of stable and stably
invertible dynamics will also be able to be stabilized by this class of control law,
depending upon the design of the differential operators p(p) and /(p), as well as the value
of the parameter A.

To develop the control law implicitly defined in Equation 2-26 we introduce a dummy

variable u(?)is introduced as follows:

u(t) = 1(p)u(r)

13



Equation 2-16

Substituting Equations 2-15 and 2-16 into expression 2-14, which defines the GFL

control strategy, the following nonlinear control law is finally obtained:
_2Z()-b(&)

1+a($)
Equation 2-17

u(t)

In generalized feedback linearization the linear form is used to define a variable z.
The key point in GFL is that p and /” are designed such that the zero dynamics associated

with z are locally stable.

2.2.3 Model Predictive Control [22-24]

A well-known class of nonlinear controllers that directly uses the nonlinear model
is model predictive controllers (MPC), [22]. Linear MPC is a discrete time controller that
calculates the present control, at each sampling time, by predicting over a horizon p the
process response to changes in control. The change in control that is within specified
constraints and that gave the most desirable process response is then implemented.

Nonlinear MPC (NMPC) is similar and is constructed as solving on-line finite
horizon open-loop optimal control problem at each sampling time using the system model
and predetermined state, input, and output constraints. Based on measurement samples
obtained at time ¢, the controller predicts the future dynamic behavior of the system over

a prediction horizon T, and determines (over a control horizon 7, < T, ) the input such

that a predetermined open-loop performance objective function is optimized.
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Because there are disturbances and the model of the process is likely not identical
to the process, the process behavior will be different from the predicted behavior. Thus,
only the first step of the system inputs calculated by the controller will be implemented,
and after the measurement at the next sampling time, the controller’s online
prediction/optimization calculation will be completed again. However, if the model of the
process was completely accurate and if the optimization problem could be solved for the
duration of the experiment, then one could apply the controller’s predicted inputs open
loop for the duration of the experiment. However, this is not generally possible.

Consider the stabilization problem for a class of systems described by the
following nonlinear set of differential equations.

x(1) = f(x(),u(®), x(0)=x,
Equation 2-18

Subject to input and state constraints of the form:

u()eU,Vt20 x(t)e X,Vt=>0,
Equation 2-19

U= {ue R
X::{xe R

u_sus umax},

max }'

x <x<x
min

Equation 2-20
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Assumption 1: U < R’ is compact, X < R"is connected and (0,0)e X xU .

Assumption 2: The vector field f: R} X R" — R"is continuous and satisfies (0,0) = 0. In
addition, it is locally Lipschitz continuous in x.

Assumption 3: The system (Equation 2-18) has an unique continuous solution for any
initial condition in the region of interest and any piecewise continuous and right

continuous input function u(-): [O,T p J —-U.

Usually, the finite horizon open-loop optimal control problem described above is
mathematically formulated as follows: (internal controller variables are denoted by a bar)
Find minJ(x(0),u(-%;7.7,)

Equation 2-21

t+Tp

with Jx(),u()T.T,) = [F(X(2),u(z))dr

Equation 2-22

X(7) =f((X(7),u(7)), X(t) = x(¢)
u(r)eU, Vrelt,t+T ]
u()=u(+T7), Vre[t+TC,t+Tp]
X(f)e X, Vrel,i+T)]

subject to:

Equation 2-23

where T, and T. are the prediction and control horizon with T. < T, and internal
controller variables are denoted by a bar.

The function F in Equation 2-24, called stage cost, specifies the desired control
performance that can arise, for example, from economical and ecological considerations.

The standard quadratic form is the simplest and most often used one:
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F(X,ll) = (X_XS)TQ(X —Xy) +(ll —llS)TR(ll _us)’

Equation 2-24

Where x,and u, denote given setpoints: O and R denote positive definite, symmetric

weighting matrices.
The closed-loop control is defined by the optimal solution of Equation 2-20 at the
sampling instants:
u*(7)=u*(;x(t),7,T,),7e[t,0]
Equation 2-25
The optimal value of the NMPC open-loop optimal control problem as a function of the
state will be denoted in the following as value function:
VT, T,) =J (5 0*GXO)T,T,).
Equation 2-26
The value function plays an important role in the proof of the stability of various NMPC
schemes, as it serves as a Lyapunov function candidate.

The disadvantages of nonlinear MPC are primarily due to the finite horizon
optimal control problem being non-convex. Non-convexity introduces the questions of
how long will the optimization take, whether it will terminate, and is a suboptimal
solution acceptable. The finite horizon optimal control problem associated with nonlinear
MPC is not guaranteed to be convex and it is difficult to obtain the global optimal
solution. Therefore, because of the non-convexity NMPC formulations need to be derived
that guarantee solution feasibility, robustness, and performance despite the solution being
sub-optimal. Moreover, for further development of NMPC algorithms, faster optimization

solvers need to exploit the inherent structure of the process. For it is possible that in
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solving the finite horizon optimal control problem one can exploit the specific system
dynamics, e.g. Lipschitz continuous, static nonlinearity, input-affine, bilinear, hybrid,

piecewise affine, non-holonomic or homogeneous.

2.2.4 Backstepping [25]

Backstepping is a method that can be used on nonlinear systems of special
structure to find an output having a passivity property, including the relative degree one
and stable zero dynamics. Finding an “output” z having stable zero dynamics plays a key
role in this design. A recently developed control technique called adaptive backstepping,
[25], does not require stable zero dynamics; however, it does require that the unknown
parameters of the system are constant.

Consider the class of pure-feedback systems with unknown parameters is well
represented by the third order system

X =X, + @ (x1,x,)0
Xy = X3+ 95 (x),%,,%;)0
X3 =u+ @5 (X;,%,,x3)0
Equation 2-27
where the p x 1 vector 6 is constant and unknown.

When the parameter vector 6 is known, the pure-feedback system given in
Equation 2-27 under backstepping control can be formed to essentially mimic feedback
linearization. However, feedback linearization linearizes the output and thus may cancel
useful nonlinearities. Adaptive backstepping designs are more flexible and do not force

the designed system to appear linear. In fact, they can not only avoid the cancellations of
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useful nonlinearities but can often introduce additional nonlinear terms to improve
transient performance.

“The idea of adaptive backstepping is to design a controller for Equation 2-27
recursively by considering some of the state variables as “virtual controls” and designing

for them intermediate control laws. In Equation 2-27 the first virtual control is x,. It is

used to stabilize the first equation as a separate system. Since 6 is unknown, this task is

solved with an adaptive controller consisting of the control law a; (x;) and the update law

0= 7(x,), as in the Lyapunov-based design.”
“Adaptive backstepping treats the parameter 0 in the second equation of Equation
2-27 as a new parameter and assigns to it a new estimate with a new update law. As a

result, there are several estimates for the same parameter. This overparameterization is
avoided by considering that in the first step 0= 7(x,) is not an update law but only a

tuning function 7(x,). This “tuning function” is used in subsequent recursive steps and

the discrepancy 60— 7(x,) is compensated with additional terms in the controller.
Both adaptive backstepping and tuning functions achieve the goals of stabilization and
tracking.”

“The tuning functions’ approach is an advanced form of adaptive backstepping. It
has the advantage that the dynamic order of the adaptive controller is minimal. The
dimension of the set to which the states and parameter estimates converge is also
minimal,” [25].

“Certain drawbacks of tuning functions are that they do not offer freedom of
choice of parameter update laws and for systems with many unknown parameters the

dynamic order of its overparameterized controller is high. The order of the tuning
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functions controller is minimal, but for high-order systems its nonlinear expressions
become increasingly complex due to the built-in interaction between the identifier and the
control law.”

“There is a new controller that was developed with strong parametric robustness
properties: It achieves boundedness without adaptation. Furthermore, the new controller,
called the ISS-controller, guarantees boundedness not only in the presence of constant
parameter errors, but also in the presence of time-varying parameter estimates. These
input-to-state stability (ISS) properties make the ISS-controller suitable for modular
adaptive nonlinear designs,” [25].

“Backstepping design of output-feedback controllers is performed on systems
enlarged by filters, and the filter states are used for feedback. The output-feedback
modular designs result in separation of three design modules: the control law, the
identifier, and the state estimator.”

Transient performance bounds of the closed loop systems designed using adaptive
backstepping techniques can be computed and therefore the controller can be designed to
meet certain transient requirements.

Adaptive backstepping and its use in nonlinear control theory is new and is still
focused on the development of the basic schemes. Its robust analysis is yet to be

developed. [25]

2.2.5 H, Nonlinear Control [26]
An approach that originates back to the beginning of the eighties is called Hy,

optimization. This method can be viewed as a worst-case design methodology in the
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frequency domain. In fact Hy, stands for the space of complex functions which are

bounded and analytic in the closed right half of the complex plane, [26].

“The Hy, norm from the exogenous disturbance inputs to the to-be-controlled

variables in the frequency domain, used to describe the control objectives, is equal to the
L,-induced norm for the time-domain versions, under the constraint of internal stability.
The property of finite L,-induced norm of a stable system, also called finite L,-gain, can
be characterized as the dissipativity of the system with respect to a certain supply rate.”

“The suboptimal H, problem can also be formulated as a two player, zero sum
linear quadratic differential game, where the disturbances are considered as the
maximizing player whose goal it is to maximize a certain cost criterium, while the
controls denote the minimizing player whose goal it is to minimize the same cost
criterion,” [26].

These Hy, solutions for linear systems have been extended for nonlinear systems
by using Hamilton-Jacobi equations which extend the Riccati equations used in the linear

theory. “The solution of the nonlinear state feedback H,, problem was described using a
Hamilton-Jacobi inequality. The nonlinear measurement feedback Hy, problem is up to

now not completely understood. Nevertheless, sufficient conditions for the existence of

controllers of a specific form solving the regular measurement feedback H, problem

have been derived. Also, necessary conditions for solvability of the problem have been
given,” [26].
“Most of the results are concerned with the regular H,, problem for non-linear

systems that are affine in the inputs and the disturbances. Recently an extension of some

21



of these results to general nonlinear systems have been made. The regularity of the Hy,

problem is concerned with certain rank conditions on the feed through matrices. The

singular Hy, problem occurs when these regularity assumptions are violated. Singular Hy,

problems naturally arise when considering certain robustness problems such as parameter

uncertainty and multiplicative uncertainty.” [26]

2.2.6 Other Nonlinear Controllers

Neural networks and fuzzy controllers are suitably designed to control nonlinear
systems [27-33]. Neural networks are parameterized nonlinear functions. Their
parameters are, for instance, the weights and biases of the network. Adjustment of these
parameters results in different shaped nonlinearitites. The neural network control is
trained by adjusting the neural network parameters as a function of the error between the
network output and a series of training data. Fuzzy controllers, which have the unique
advantage of including the designer’s heuristics, can sometimes lead to better
convergence properties for the actual input-output map. Fuzzy controllers are simply
nonlinear functions that are parameterized by, for example, the membership function and
consequence parameters. For both neural network and fuzzy controller models, adaptive
schemes have been studied and developed.

Other nonlinear control examples include combined linear or constrained
nonlinear controllers. Combinations of polynomial linear ARMA models have been used
to develop a predictive control strategy for nonlinear systems [34]. Sliding-mode
techniques operated by switching between two nonlinear feedback control rules [35]. A

nonlinear controller based on normal form theory was designed to drive simple nonlinear
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systems with polynomial vector fields derived around singularities [36]. The min-max
optimization controllers were developed to find the optimal control for discrete, nonlinear
processes [37]. The procedure found the best control for the worst-case plant, based on
parameter bounds. Another unique nonlinear controller based on game theories was
developed as a robust control to achieve the best bound on the worst close-loop
performance [38]. Much work has also been accomplished on many MIMO nonlinear
systems, especially a class of nonlinear systems called bilinear systems [39-41].

Nonlinear adaptive controllers have seen extensive use to reduce the effects of
plant parameter variations by adjusting the controller online [42]. In nonlinear control
applications, the compensation of deadtimes is important and has been studied [43]. In
addition, the handling of the control and output constraints is also relevant to nonlinear
control implementation and has been studied [44].

In 1988, Lee and Sullivan [45], presented a nonlinear control structure that they
called generic model control (GMC) that permits the direct use of the nonlinear
multivariable process model. There is not only the usual requirement that each of the
controlled variables reach a defined setpoint but also the rate of approach to the setpoint
is specified. Similar differential geometric approaches were also developed, [46,47] and
are each based upon an earlier work, [48]. However, they differ in the performance

definition.
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CHAPTER 3

GENERIC MODEL CONTROL

The essential idea of Generic Model Control (GMC) is to find the values of the
manipulated variables that force a model of the system to follow a desired reference
trajectory. It is related to the subset of mathematical knowledge known as differential
geometry that involves linearization of nonlinear mappings between the input and output

variables.

3.1 A Review of Generic Model Control

Consider the process model that can be described by a set of differential equations
as:
y =f(y,u,d,z,6)
Equation 3-1
where y is a vector of process outputs of dimension m, u is a vector of process inputs of
dimension m, d is a vector of process disturbances of dimension 1, t is time and 6 is a
vector of model parameters of dimension q. In general f is a vector of nonlinear known
functional relationships. In determining the control at a particular step, the GMC

algorithm specifies a rate of change of the output variables as:

yDesired :Kl(yref _y)+K2.[(yref _y)dt
0

Equation 3-2
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In Equation 3-2, two process desires are expressed. First, when the system is at a
greater distance from the setpoint, then the system should travel towards the setpoint
more quickly. Moreover, the longer that the system has remained offset from the setpoint,
then the system should also travel towards the setpoint more quickly. The values of K
and K are what determine the speeds. Lastly, to solve for the control, the actual output

rate is set equal to the desired output rate, y, .., =¥, in other words setting Equation 3-1

equal to Equation 3-2, giving the following equation from which the control, u, can be

solved:

f(y,u,d,z,0) = Kl(yref -y)+ K2,|.(yref —y)dt
0

Equation 3-3

Therefore, GMC is a type of process control for linear or nonlinear systems that
uses proportional and integral error terms, similar to PI control, to adjust the control input
to achieve a desired closed loop output trajectory. For GMC, the specified closed loop
output trajectory is directly determined using Equation 3-2 and then the control to
achieve that trajectory is indirectly solved for by using an inverse of the process model
(linear or nonlinear), [45].

The system in Equation 3-2 is the key element in the GMC control law. The
parameters K, and K, are diagonal matrices with elements chosen independently for each
controlled output. These choices should be made reasonably and with an understanding
of the natural system’s response characteristics. For the simple single-input single-output

system, assuming y, . =Y, the Laplace transformation of the closed loop output in

Equation 3-2 gives:
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y _ 2tés+1

Yy T8 +2t8s5+1

Equation 3-4

where =L &= il

Vi T 24k,

Equation 3-5

The transfer function given in Equation 3-4 does not behave identically to a classic
second-order system due to presence of the zero in the transfer function. However,

similar plots to the second-order system can be made with the plot of a normalized

response of the system % vs. normalized time % where & is a parameter as is
ref

shown in Figure 3-1.

t/t
Figure 3-1 GMC Profile Specification

As & is increased the process has less overshoot and eventually after & > 4, the
process due to pole-zero cancellation resembles a first order response. The settling time is
predominantly determined by the value of 7, and increases directly with 7 . Thus, the
design of the reference can be accomplished by the first determining the shape of the

desired response by selecting & and then specifying the timing of the response in
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appropriate selection of 7 in relation to the natural process’s response time.
Alternatively, the designer can also choose the closed loop reference system by setting
the poles of the transfer function given in Equation 3-4.

Insight can be gained into the nature of the GMC control technique by examining
the GMC control of linear systems. Assuming the process can be modeled as:

Y=G-U+d’
Equation 3-6

and if G is the approximate model of the process, then the GMC control is given as:

A 1
Uae = (Gl)(mj ((SKI +K2)'(yref _d)_SEd)
1 2

Equation 3-7

Furthermore, Equation 3-6 and 3-7 can be used to construct the closed loop block

diagram for linear systems given in Figure 3-2.

v

yref @—P F'l _'® I GA_I H G _'g I

7 L6 e
1 d
F - Kis+K, F, - sE

- 2
s+ Kis+ K, s+ Kis+ K,

Figure 3-2 GMC Block Diagram for Linear Systems

27



The control parameter, E, is a diagonal matrix that is used in rejecting disturbances, and
should be properly set according to the assumed nature of the disturbance.

Alternatively if the process can be modeled as a nonlinear system given as:

x=f(x,u,d,t)
y=g(x)
Equation 3-8

where x,d,t, and y are the state, disturbance, time, and output, respectively. The GMC

control input, u , can then be solved for by calculating:

y= g—gf(x,u,d,t) =K, (x,,, —x)+ Kzf(xref — Xx)dt
X
Equation 3-9
to obtain u as a function of a number of variables as given below.
u=h(x,u,d,t,K\(x,,, —x),K, f(xref —x)dt)
Equation 3-10

Furthermore, if there are constraints on the input or process variables, then the control u
should be chosen to minimize the instantaneous value of Equation 3-11 (in other words
V=¥ poins ) SUch that all constraints are satisfied. This minimization may be solved for

algebraically but will likely be accomplished via nonlinear programming optimization

routines.

d,
J(x,ud,t) = d—if(x,u,d,t) =K, (x,,r —x) —Kzf(xref —x)dt
Equation 3-11
Another GMC closed loop control example is given as follows, if the system can be

described by the state space linear system:
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f(x,u,d,t)=x=Ax+ Bu+ Dd
y=x
Equation 3-12

then the GMC control without any variable constraints would be given by
Ugye =B K\(Duy =)+ B K, [ (0, — »)dt = B~'Dd — B™' Ax
Equation 3-13

GMC can also be used for discrete systems. Using discrete approximations for the
time derivative and time integration operators, the following digital GMC desired closed

loop trajectory is given as:

. _yk+1_yk_K* K*k
yDesired,k - T - 1 (yre/’,kfyk)-i_ 2 Z=1:

s

Tr %k

> ((yre/’,i =V )+ (yre/',i—l — Vi ))

Equation 3-14

The digital control can be solved for in the same way as the continuous control so that:

xka"'axladka'”adlatka
uk = hk Kl(yre/’,kfyk)ﬁ
k
KZZI:TL ) (yre/',i _yl)

Equation 3-15
Despite the control precision achieved by including the model of the process in
the derivation of the control, a disadvantage with the GMC method is that there is no
limitation on control signal variation. The implementation of a maximum control
variation, Au,,. , can be imposed upon the control; however, this constraint degrades the

closed loop performance, [45]. An example of the control oscillations required by the
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GMC method is shown in Figure 3-3, for the linear system given in Equation 3-16 and

using £=6, 1=0.5.

1.5
G(s)= or
(<) s? +14s +40.02
G(z)= 00015 for T, =0.01 sec.

1.144z> =214z +1
Equation 3-16
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Figure 3-3 Output and Control

3.1.1 A Nonlinear Modeling Approach for GMC

The core of the GMC algorithm that has been just previously discussed has also
been extended to cope with other important aspects of nonlinear control. These include
the use of steady-state models and systems with dead time. For the GMC algorithm, the
nonlinear dynamic model as given in Equation 3-1 is assumed to be available. However,
steady-state models of the form given in Equation 3-17 are much more readily available.

f (y,u,d,8)=0
Equation 3-17
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Thus, if a dynamic nonlinear model of the form in Equation 3-1 is not available, it has
been shown that an appropriate approximation of it, for GMC control, is to use the
nonlinear steady-state model of Equation 3-17 in tandem with a linear model that models
the process transients. The approximate transient modelling is accomplished by forming a
first or second order linear model by estimating the primary time constants of the process,
which are available through step response tests. Although these estimates of the transient
behavior are going to be inaccurate at different operating conditions, the total result of the
linear transient model coupled with the nonlinear steady-state model are usually
sufficiently accurate for control performance, [1].
An example of the transient first order linear modelling could be given as:

y=T'(y,-y)

Equation 3-18
where T is a diagonal matrix of the estimated open-loop time constants of a step change
in all input variables and y, is the steady-state values of the outputs with no further
control action. Therefore, if control designer has the nonlinear steady-state model as
given in Equation 3-17, and if the transient behavior of the model can be approximated
by Equation 3-18, then a control action can be determined through the use of the
combination of the two. This is done by solving the nonlinear steady-state model for the
control action that achieves the output y, given via the GMC derived requirement in
Equation 3-19.

Y. =Y+ T(K (¥, —¥)+K,[(y,, —y)dt)
Equation 3-19

31



3.2 A Numerical Method in Applying GMC

In application of the GMC control law, it is not always suitable to algebraically
manipulate all the equations in obtaining an explicit expression for the control. The
solution to this problem is to solve them numerically, and this will also allow for there to
be process and input constraints, [1]. Thus, there are two things to consider. First,
whether the GMC algorithm together with the process model can be solved for to obtain
the control u, and secondly how to minimize the difference between the reference system
and the process outputs when there are process constraints. Constrained optimization
approaches have been formed to answer both of these questions for several nonlinear
chemical processes, [49]. The control optimization uses slack variables that define a
process variable’s or constraint variable’s departure form the chosen reference trajectory.
The selection of the weighting factor for each of these slack variables provides
customization to emphasize certain constraints or certain tracking of the output
references.

The constraints for the optimization problem can be written using a nonlinear
function, ¥;, as:

C,<C =vy, (y,udt,0)<C,; i=l.gq
Equation 3-20
Moreover, it is sensible that the trajectory of the violated constraints follow a reference

using the GMC rule and slack variables A such that:
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dc, . :
Tt’—l <K, .(C,-C); i=l..gq

ci

£+/I;,SK

— (C.—C,); i=l.q

2Ci

Equation 3-21

Similarly to the simplifying approach taken in Section 3.1.2 of modeling the nonlinear
dynamic model by using a nonlinear steady-state model and a linear transient model, the
solution to Equation 3-21 can either use the nonlinear dynamic models, ., or can make
use of the following approximate models:
dac,
dt

C™ =y, (y",u,d,1,0); i=l..q
fs.v (yAIM b u’ d’ t’ 6) = 0

=T (C™-C); i=1l..q

Equation 3-22

Finally, the solution of the multivariable constrained control problem can be solved as a
nonlinear optimization problem, which minimizes a function of the slack variables. The
formulation of this optimization is as follows:

Choose:

wiA A, A, A i=l.gq

Equation 3-23

To minimize:

J=20,(L,) +w, (L) + o, (L) + (L) + @,
i=1

(Au) +3 @) (4) + @ (%))

Equation 3-24

where ®; and ; are weights such that @ 20 and @, 20.
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Subject to:

%f(x,u,d,t) F 2 =2 =K (3, ¥ )+ K [y, —y s i=1m
]

dc,

A <K, (C,~C,); j=l.g

g — 1Cj

dC
dt
C =y (yudt); j=l.g
u,<u <u,; i=l.m

Au,, Su(t+Af), —u(t), <Au;
A.20,4,20,420,4 20, i=1l..m, j=1..4q

L4+ 4 <K,(C,—C,); j=l.q

i=1l...m

Equation 3-25

The variables 4, , 4,, 4., A, are the upper and lower output performance slack

variables and the upper and lower constraint slack variables, respectively. The gains
K,, K, are the diagonal matrices that have the PI gains setting the closed loop output
reference, which are selected using Figure 3-1. The soft process constraints are described

in C-C, for the upper bound and C—C, for the lower bound. The gains K- K,

specify the speed the constrained process variables approach their bounds. Higher gains
avoid constraint violation but sacrifice closed loop output performance. The values of the
matrices are also selected using the method in Figure 3-1. Finally, there are also hard

constraints as those given for the maximum and minimum control u, <u <wu, and
maximum and minimum change in control Au; <u(¢+A¢) < Au,,. The nonlinear

optimization that arises is well structured since a slack variable is added to each control
law equation to ensure that a solution exists. The solution of the nonlinear programming
(NLP) optimization is reasonably fast since the current control settings and slack

variables provide a good estimate for the solution vector. For Ansari and Tade’s
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processes using NLP techniques such as sequential quadratic programming (SQP) usually
converged in 3 to 4 iterations, [49].
They also found that for the dynamic nonlinear model a multivariable first order model of

the type in Equation 3-26, provided sufficiently accurate control.

U, U,
Yl 6_91 1 e—glzs
kll 12
-6y —0y)s
Y. e o e 2
2
ky, k

22
Ty +1 Tys+1

Equation 3-26

3.3 GMC Robustness and Stability

3.3.1 GMC Robustness Properties

A different approach to the Generic Model Control (GMC) design for uncertain

nonlinear processes is robust GMC. The approach is developed by integrating H,,—loop

shaping controller within the GMC framework. This new design framework provides not
only the ability to optimally tune the GMC parameters, but also to enjoy the guaranteed
robust stability and performance properties in terms of the v-gap. [50]

The design methods are derived from the application of the v-gap metric and the

Ho,—loop shaping method within the GMC design framework. It should be noted that the

robust GMC (RGMC) concept is not limited to a class of nonlinear processes with
relative degree one. Simple and iterative approaches to robust Generic Model Control
(RGMC) design have been developed extending Samyudia and Lee’s method. A simple
procedure to design a robust GMC controller has been derived by analyzing the bounds
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on the loop shapes at different frequency ranges. To achieve an improved closed-loop
performance of the simplified robust GMC controller, a data-driven optimizer has been
proposed to iteratively adjust the B-parameterized robust GMC controller using a set of

closed-loop data, [51].

3.3.2 GMC Stability Analysis

Considering the closed loop system using GMC given by the equation:

v =f(y, T ¥ K, (-y) + K, (-2),d,0),d,0) = K, (-y) + K, (-2)
z=Yy
yO) =y, z(0)=0

Equation 3-27

It has been shown that under the GMC explicit control law, if the model is
perfect, there are no unmeasured disturbances, the sampling time of the controller is
insignificant, and no process constraints exist, then the closed-loop system is always
asymptotically stable for any choice of positive & and ..

For any initial condition y,of system Equation 3-27, there exist M>0 and 6>0

such that if

Hf(x, u,d,?) - f(x,u,d,?)

‘ <0
Equation 3-28
for all x and u, all possible disturbances d and all £>0, then the solution of Equation 3-27

satisfies:

Iy <M, Jz@|<m V=0
Equation 3-29
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Moreover, for any £ >0 there exist positive numbers J( € ) and ¢, (&, 0) such that if
Equation 3-28 is true for all x and u, all possible disturbances d and all £~0, then the

solution of Equation 3-27 satisfies Equation 3-29 and:

Iv)|<e,  |z@)|<e  Vizt(e,0)
Equation 3-30
Thus, if the process/model mismatch is appropriately limited, the process outputs
of the closed-loop system are bounded, which means that the closed-loop system is
stable. The unmeasured disturbances can be considered as a special kind of

process/model mismatch.

3.4 Further GMC Theoretical Developments

In this section, several theoretical developments will be briefly reviewed that have
extended the basic GMC technique.

Lee and Zhou, [53], designed a new multivariable dead-time compensator under
the GMC framework by decomposing an n x n MIMO dead-time problem into a series of
n SISO feedback controllers, each with a feedforward compensation term.

Dunia et al., [54], implemented the Sliding Mode Control (SMC) for the GMC
reference trajectory, and showed that SMC allows one to incorporate the effect of the
uncertainty bounds in the controller structure, making GMC robust to processes with

bounded uncertainties.
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A new approach to Adaptive Generic Model Control (AGMC) was proposed
order to further improve the performance of GMAC, [52]. Two AGMC schemes were
developed.

The first scheme is based on estimation of time-varying parameters on-line in the
embedded nonlinear model of GMC. The use of a new filter was proposed, called a
Strong Tracking Filter (STF) to estimate time-varying parameters on-line. The negative
influence of time-varying parameters on the control performance is effectively overcome,
by updating them in every control period. This constitutes a parameter-estimation-based
AGMC scheme.

The second scheme is based on the implementation of a new concept of Input
Equivalent Disturbance (IED). When there are structural process/model mismatches,
GMC cannot reject the influence of such disturbances quickly. A new concept of Input
Equivalent Disturbance (IED) is introduced and the process/model mismatches are

lumped into IED. This constitutes an IED-estimations-based AGMC scheme.
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3.4.1 Relative Degree Considerations of GMC

It has been previously stated that GMC is only useful for systems where the
relative order of all outputs is one. This is because the time derivatives of the outputs
Y must be directly dependent on the inputs U. In high relative order systems, this
condition is not satisfied. The relative degree of a system is measured by the Lie
derivative.

The Lie Derivative of a scalar function g,(.X)in the direction of a vector function

X, U,D) is defined as:

og.
L.g(X,U,D)=—=
/'gz( ) aXTf

Equation 3-31

Note that this is a scalar function of X, U, and D. The Lie derivative is a linear derivative

operator and its extended use is denoted by:

o o AL 'g,
/'gi - aXT f
Lg =g

Equation 3-32

39



The order of a dynamic system is generally the highest order of time derivative,
which appears in the differential description of the system. Conventionally, the system
order is the highest exponent of s appearing in the denominator of the transfer function.

The relative order, however, is the order of the output, y,, relative to the input vector, U.

In mathematical terms, the output y, has relative order 7, if:

M:[o...o], k=0,...,r, -1
U’ ’
a(L—;'(‘f");e[O...O]
oU

Equation 3-33
For single-input single-output (SISO) systems in the Laplace domain, the relative
order is the difference between the order of the denominator and the order of the

numerator. In well-defined problems, every output y, has a finite relative order. If this

condition is not met, then the output is not dependent on the inputs and the system is not
output-controllable.

Effectively, GMC solves the following equation:

L/.g1
(V= Ki(r *=Y)+ K2 [ (Y *=Y)dt =

L/"gm
Equation 3-34

It is easy to see that if the relative order of any output y. is greater than 1, the
L, g, will not be dependent on U and the above equation has no solution.

High relative order systems are common in the process industries and there are

two modelling techniques for such systems so that, under a GMC framework, the closed
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loop control is both stable and of satisfactory performance. The first group of techniques
focuses on incorporating the detailed high relative order model into the GMC framework,
[56]. This involves “difficulties” from an implementation point of view. The other group
of techniques focuses on modelling high relative order systems as relative order one, and
then applying them in the standard GMC framework, [57]. There are “imperfections” in
both groups of techniques. Consequently, perfect control of high relative order systems
via any of these methods is not possible. However, perfect control has never been
possible via imperfect models.

Also, Robust Generic Model Control has been developed which expands the

utitlity of GMC to higher relative order RD>1 systems, [51].

3.4.2 Nonminimum Phase Systems

GMC can also be extended to address nonminimum phase systems.A method for
the design of input-output linearizing feedback laws for nonlinear systems with unstable
zero-dynamics has been proposed [58]. The approach is based on a suitable stable-
antistable factorization of the zero-dynamics and guarantees internal stability of the
compensated system.

“The method of approximated I/O-linearization of nonminimum phase nonlinear
systems crucially depends on the existence and computability of suitable coordinates for
the driven zero-dynamics. The requirement for (approximate) I/O-linearizability (of order
k) is that the driven zero-dynamics can be transformed into a form, where the antistable
part of the driven zero-dynamics (when expanded in a Taylor series up to order k) is

firstly linear and secondly not influenced by the stable part of the driven zero-dynamics.
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A systematic and general method for the transformation of the driven zero-dynamics into
various forms was given. The method described is motivated by corresponding results
from normal form theory of dynamical systems and contains the transformation into
(approximately) antistable decoupled and (approximately) antistable linear form (of order
k) is a special case.” [58]

Also, a decoupling strategy has been integrated into the Generic Model Control
(GMC) framework to compensate for dynamic mismatch. The Multi-Model Decoupler
(MMD) approach is based upon using a separate model inverse for the calculation of each
manipulated variable. The use of separate model inverses allows the extra degrees-of-
freedom required for the dynamic compensation. MMD-GMC is shown to offer
significant control performance advantages over conventional GMC and PI control.

“From an overall point of view, MMD-GMC significantly improves the
performance of GMC applied using steady-state models for distributed parameter
processes in which there exists significant dynamic mismatch in the process. Compared
to linear controllers, such as model predictive control, MMD-GMC has the advantage
that it can provide nonlinear decoupling and nonlinear feed-forward compensation for

measured disturbances.” [59]

3.5 Further GMC Implementation Issues

Another GMC implementation concern is integrator windup. It has been shown

that integrator windup can be mitigated by restricting the absolute value of the integral
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error to a user-set maximum value. However, the integral term is not required when the
process model is adapted in order to eliminate any process / model mismatch, [60].
“Also, there are difficulties with the standard GMC structure in that it forces the
same closed-loop time constant on the controlled variable, no matter what the current
process dynamics are. If the closed loop time constant is given by Equation 3-35, then a
way to overcome this problem is by modifying the normal GMC control law to Equation

3-36.

_ _dy
(ys,, )i, &

Equation 3-35

T

f(y’x’u’t’d): (ys;;_y)+y

2
T

c

Equation 3-36

Equation 3-36 shows that the control moves made by the modified GMC controller are

dependent on the ratio of 7,to 7,. The closed-loop time constant, 7, in Equation 3-36

was replaced with:

Equation 3-37

Here, a is a tuning constant relating the closed-loop time constant to the open-loop time
constant.” [60]
Also, process model selection is a key issue. One must strike a balance between

detail and accuracy in the model and the quality of instrumentation that will provide the
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inputs into the model. In order to capture important effects in the process, the
instrumentation measuring the effects must be good.

Improvements can be made in collecting any process / model mismatch in an
adjustable model parameter rather than letting the error accumulate in a controller
integral term. Adapting a model parameter permits constant monitoring of the model
performance, and can suggest areas in which the model may be improved, [61].

“GMC system identification is also an important issue. System identification
methods build mathematical models of dynamical systems based on observed data. The
intended use of the model should always be reflected in the methods and techniques used
for identification. An identification scheme was derived for the case where the model was
going to be used for GMC controller design. The aim of GMC control is to make the
output approach a setpoint along a given desired trajectory. The identification
emphasizes the output trajectories of the model. GMC control was improved by using an

identification scheme based on a trajectory oriented predictor.” [62]

3.6 Comparing GMC to Other Controllers

GMC has been theoretically and experimentally compared with other linear and
nonlinear controllers, [63,64].

For linear systems the GMC controller is equivalent to the reduced Internal Model
Control (IMC) with the addition of two second order filters, [63].

Linear Multivariable Regulator (LMR) can be equivalent to the GMC approach

control law with the a certain selection of K; and K that are abnormal for the GMC
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approach because they are not diagonal. However, these selections make the approach
identical to the LMR.

The GMC approach is claimed to be much simpler than the Global Linearizing
Control (GLC) structure although the two methods are essentially equivalent for relative
degree one systems, [65]. Unlike most differential geometric techniques, GMC has been
modified to accommodate time delays.

Babu, [66], found that GMC is well suited for a system when there is not a large
rate of change of the setpoint and GLC for the system when the setpoint changes
exponentially. In the former case there might be a chance of reaction temperature
overshoot if the controller constants are changed to track.

Henson and Seborg, [67], proposed a unique unifying differential geometric
approach (UDGA). “A new static state feedback control law that linearizes and decouples
the closed-loop input-output response was developed. Since the approach is applicable to
MIMO systems of any finite relative order in which the control variables enter linearly or
nonlinearly, it unifies the GLC and GMC/Internal Decoupling methods. Additionally, the
unified approach addresses controller synthesis for processes with measurable
disturbances and implicit output equations.”[67]

“The GMC approach is better than the UDGA structure for the regulatory control
problem with a non-zero constant setpoint. However, for relative degree one systems, the
two methods are basically equivalent in the sense that a PI controller is applied for the
derivative of the output, the control action is solved from the nonlinear model, and the
measured disturbances can be compensated by the feedforward control action through the

model.”
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Linear Model Predictive Control is a discrete control method based on the
convolution model. The GMC control law is based on the present and historic output

measurements. The control movement (Au,) based on these measurements and the

process model provide the necessary control action to achieve the predefined GMC
reference trajectories of the outputs.

The linear MPC control law is based on the present output measurements and the
predicted future outputs. The predictions are made through the convolution model using
the historic control action. The control movement provides the necessary control action to
achieve the MPC reference trajectories of the outputs.

Assuming that the convolution model is perfect and there is no change in the
disturbances, then it can be shown that the GMC approach control law is equivalent to the
linear MPC control law with a specific selection of K; and K.

In conclusion, there are several developed methods for nonlinear control each
with their own advantages and disadvantages. Generic model control has been selected to

be improved, and the creation of those improvements begins in the next chapter.
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CHAPTER 4

PREDICTIVE GENERIC MODEL CONTROL

For this research project, the GMC controller will be studied and modified to
develop a MIMO, nonlinear, robust controller. The initial, primary modification will be
to reduce the control signal variation associated with a GMC controller. GMC control is
already MIMO, and therefore extension to a new type of MIMO controller should be
straightforward. After modifying GMC, the new controller design will be used to control

an arc welding process.

4.1 GMC Control Variation

4.1.1 Introduction

Generic model control is a nonlinear control that incorporates the model of the
process into the control law. However, the direct use of GMC can produce a control
signal that frequently oscillates, which in a real system may not be implementable. A
process constraint upon the change in the control could be given, but the calculation of
the GMC control with process constraints becomes much more complex requiring
nonlinear programming optimization, [49].

For example, an online optimization program could be run at each step k, so that
the optimum K; and K, of the GMC control law would be determined that satisfies:

min(/ll (= Fee ) + A4, —u, ) )
Equation 4-1
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where A; and A, are relative weights to emphasize either the reference trajectory accuracy
or control variation reduction. However, this research is not focused on nonlinear
optimization, and therefore other strategies for control variation reduction will be
pursued.

In this chapter then, an approach is developed to smooth the control signal by the
use of control predictions. The Predictive GMC (PGMC) method that is developed in this
chapter reduces this control variation by influencing the control at a particular time with
predicted future control inputs. Moreover, a method is presented for the selection of the
controller parameters and the number of control predictions to be made. Simulations are
then performed on linear and nonlinear systems, and compared with the original GMC

method.

4.1.2 Offline Optimizer

Before choosing to smooth the control by use of control predictions, it was
thought that an offline optimizer could be employed to select a particular K; and K, of
the GMC control law to find the particular desired closed loop trajectory that would
minimize the control oscillation. This optimizer was created and employed genetic
algorithms to determine the optimum K; and K,. Genetic algorithms have shown to be
useful in complicated function minimization and identification. The optimization routine
was constructed as follows.

A response to a typical step input for the process could be simulated for a given
K, and K3, and then the resulting response was used by the optimizer to adjust K; and K,

to search for better results. The optimization is made up of a fitness function that you
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would like to minimize by varying a design variable, in this case K; and K,. The fitness

function in this case is given below:

oo oo

ca ~ tor
OLG
Equation 4-2

Fitness = —Z|AU|+K,

where the output trajectory is subject to the following limitations:

SS oo
Y, c Y, CL
end
YCL
Y® -y ’
CL ref 2 2%
K‘e/’

>2%
Fitness =0, if

Equation 4-3
where
Z|AU | is the sum of the absolute value of the changes in the GMC from one step to

another.

OLG is the open loop gain of the process.
SS . . .
Y/, is the closed loop system’s output upon entering the steady-state region.
Y/, 1s the closed loop system’s eventual output, if the last Ugmc remains constant.

Y/, 1is the open loop system’s eventual output, if there is zero input.

For a genetic optimization, the design variable is controlled by the genetic algorithm
using the following steps, [68]:
1. Take the two most “fit” numbers from a population of numbers, where fitness is

defined by the function evaluation of the defined cost function.
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2. Convert these numbers to binary format.
3. “Mate” the two best fit numbers by swapping their bits several times to create various

“children” numbers.

4. Mutate the “children” numbers by flipping one or more of their bits.

5. Now a new population has been created and go back to step 1, unless the maximum
number of generations has been reached.

6. Output the “most fit” number as the optimum.

The oftline, genetic optimization was run on two different linear models and one
nonlinear model. Insights for a method of directly selecting an optimum K; and K, were
gained from the comparison of each of these optimizations.

The optimization of the nonlinear model in Equation 4-4 that is taken from a plasma
welding process resulted in the optimization shown in Figure 4-1.

ye=a,va u,  ta,u -y, ta,u 0y,

Equation 4-4

Optimurn: Tau Multiple=0.99375, Zeta=3 4526

- 0.8
0.7

3
Zeta 0.5 Fraction of Tau OL

Figure 4-1 3D Optimization
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The top-view of the optimization given in Figure 4-2 shows that an optimized region
exists for &=4 and T = tmax, Moreover, there are constant optimization lines within {, t}
space. If the points on one of these lines, for example the yellow region, can be converted
into a diagram of the resulting poles and zeros of the GMC reference transfer function
(Equation 3-4), the Figure 4-3 is created.

Optimurn: Tau Multiple=0.92875, Feta=3.4526
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Figure 4-2 Top-View of Optimization

4 T
+ paolet
pole2
2r o zeros ||
D |-
b ]
+
A S < >
o . .
o Region shown in
e .
: Fig. 4-1 & 4-2
-8
A0k
12 1 1 1 L 1 1 1 L
01 0z 03 0.4 045 06 o7 R 09 1
tau multiple

Figure 4-3 Pole & Zeros of GMC Transfer Function from Yellow Optimization Line

Figure 4-3 shows that for £>4, there is pole-zero cancellation and that the constant

optimization lines converge to this cancellation and a remaining constant pole. Therefore,
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what seems to be a whole region in {, 1} space is only a small variation of the GMC
reference transfer function. It is thought then that this nonlinear example and other linear
examples with similar results could be used to make the case that a /ikely optimum K;
and K, can be selected using § = 4 and T = Ty for all processes. There is, however, no
guarantee of this, and so to further ensure the control smoothness control predictions will

be made.

4.2 Introduction to PGMC

Predictive GMC (PGMC) reduces the control signal variation associated with the
original GMC by averaging predicted future controls that are each calculated using the
original GMC method.

To illustrate, PGMC uses the original GMC method and the nonlinear process

model in a “for” loop to calculate, p, predicted controls and outputs as:

PG NG NG e fre
N / ¥ N\ / NS

ﬁk a{)A}kH aﬁk+l }a {,j}k+2 > uAk+2 }a o {)A}k+p ’uAk+p}

Equation 4-5

The control and output predictions are made using the digital model process, process

inverse, and GMC control law with the past inputs and outputs as shown in Equation 4-6.
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)’ek+n’“.’xl’dk+n’“.’dl’tk+n’
Uppn =h K, (xref,k+(n _)Ack+n)9) (n=0,L---p)
k+nTs Xref i _)’ei
B2 -2
i-12 |+ xref,i—l —Xi
Xns™" "o X1
dg ﬁk+n""’u1’
yk+n :_f (n:1727' p)

dx dk+n""’d1’
tk+n

Equation 4-6

The actual control implemented, «,, is set equal to a weighted average of the predicted

controls:
Mk = OKOMk +0(1le+1 +"'+0(puk+p
k+p
= D ol
i=k
Equation 4-7
where

Equation 4-8
The choice of a’s at this point in the control design is subjective and was simply selected
to weight the control predictions the heaviest that are nearest to the present time.
PGMC offers two improvements over the original GMC method. First, the control
signal variation associated with the original method is decreased. Moreover, because the
predicted future control inputs exert influence on the present control, the present control

steers the system’s response to the desired future reference. Therefore, the PGMC method
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is more applicable to a real system due to the control stability, and the control decision at
a particular time is “smarter” because it considers the future reference.

Moreover, the original GMC control is an instantaneous prediction-based control
for continuous systems or a one-step prediction-based control for discrete-time systems,
and thus, can produce control variations. Its “nearsighted” nature is not suitable for the
control of non-minimum phase systems. The PGMC method proposed in this paper is a
long-range prediction-based control. It reduces the control variation and thus, can better

control non-minimum phase systems.

4.3 Analyzing PGMC

In the original GMC method, the closed loop performance was determined by
selecting the parameters & and 1. For PGMC, not only do & and 7 need to be selected but
the prediction level, p, should be selected as well.

Consider the GMC closed loop transfer function where x is the system state:

x 21+l
Xpp TS +2785+1

Equation 4-9

The closed loop poles and zero are given by

54



—E+qJE2 1

pole 1=
T
pole2= "8V L
T
-1
zero = 2Er

Equation 4-10

However, for £>4, pole 1 = zero, and there is approximate pole/zero cancellation,
which reduces the GMC closed loop transfer function to a first order response with a pole
equal to pole 2. The settling time, using T = 1, for the GMC transfer function and the first
order response are plotted versus &, in Figure 4-4, where the first order response’s settling

time is given by

4
pole 2

sett
Equation 4-11
The plot not only validates that the first order approximation is accurate for £>4,

but also reveals the specific pairs of § and 1, that will produce a particular desired closed

loop settling time. By selecting a particular £>4, then:

Tvett, desired — CT 5 C = constant

Equation 4-12

The selection of the &,T pair was the smallest pole 2 in order to minimize the
strength of the closed loop response and, subsequently, the control signal variation.

Therefore, for PGMC,  and T are given by the following equations:
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£=4
T= Tvett,desired /043

Equation 4-13
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Figure 4-4 First Order Approximation

The ability of the PGMC method to minimize the control variation primarily
stems from the averaging of the predicted future controls. The optimum number of steps
that the control is predicted, p, is related to both the GMC closed loop performance curve,
Figure 3-1, and the dynamics of the process. Although a quantitative solution for p has
not been developed, the following qualitative analysis has revealed a sensible method for
its selection.

For PGMC, the greatest advantage in influencing the present control with the
predicted future controls, occurs when the change in the future control is large. The
change in the future control decreases as closed-loop system approaches steady state.
Thus, as the number of control predictions is increased towards the closed loop system’s
steady state, the rate of reduction in the control variation achieved by the predictions also

decreases. Moreover, the number of control predictions can also affect the closed loop
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settling time. For example, because the GMC method uses the process model to calculate
the control action, if the process model has overshoot then the control predictions made
are actually forcing the control energy to overcompensate and the settling time is
reduced. Moreover, if enough control predictions are made during the overshoot period,
then the control energy can be overly compensated such that the closed loop system
overshoots the reference and the settling time is increased. These concepts are illustrated
in Figure 4-5 for an underdamped system. The control variation multiple (CVM) was
calculated using Equation 4-14.

> |AU pguic|

CVM =0OLG
e -3

Equation 4-14

where

Z|AU PGMC| is the sum of the absolute value of the changes in the PGMC from one step

to another.

OLG is the open loop gain of the process.

Y/, is the closed loop system’s eventual output, if the last Upgmc remains constant.

Y5, is the open loop system’s eventual output, if there is zero input.
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Underdamped System
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Figure 4-5 Prediction Level Improving Control Oscillations

From Figure 4-5, it can be seen that an optimum prediction level, p, could be
described as the prediction level where most of the reduction in the control variation has
occurred and yet the settling time is not significantly altered. In other words, the optimum
p should be less than the closed loop rise time but as large as possible. Because the
PGMC control predictions are based upon the GMC closed loop response, a sensible
choice for the optimum p would be the dominant time constant of the GMC closed loop
transfer function. Using the values of & and T from Equation 4-13 to force pole/zero
cancellation, the dominant time constant is equal to 1/pole 2, Equation 4-11, and the

optimum prediction level can be written as

0'65 : T;ett,desired
T
sample

Equation 4-15

poptimum = round{
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Depending upon the dynamics of the open loop system slight adjustments to
Dopiimum may improve the closed loop results. For example, if the open loop system is
overdamped, then a slightly higher p would further reduce the control variation without
affecting the settling time. This is evident when the GMC control law is organized for
linear, minimum phase, zero disturbance, and no process/model mismatch as is assumed
in predicting control values for linear systems. Using Equation 4-9 and 4-13, the control

simplifies to

18'61'Tve ,desireds+1 _
u =( - jG(s) ey =)

N

Equation 4-16

The control signal behaves different for different plants due to G(s)™"'; however,
for all plants the change in the signal is a function of the error (y,,, — ») . This is the

reason that the dominant time constant of the closed loop output can be used to determine
a proper amount of the control predictions to calculate.

Another consideration in selecting the prediction level, p, is that the number of
computations per sampling time is limited. Therefore, there may be a practical constraint
to the number of control predictions that can be made. Moreover, it should be noted for
the controller designer that because control predictions are used to calculate the present
control, the closed loop output will lead the reference. Also, as the number of control

predictions is increased, the lead amount will also increase.
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4.4 Examples

To demonstrate the advantages associated with PGMC, an underdamped linear
system, an overdamped linear system, and a nonlinear system are selected to simulate the
closed loop performance of both the original GMC and the developed PGMC. Moreover,
to more fully compare the PGMC control, a nonlinear control algorithm called Interval
Control, [69], is simulated for the nonlinear system.

The first linear system, which is an underdamped system, is given by Equation 4-

17.
200
G S)=——— Or
() 52 +9s5+200
02
G(z)= for T, =0.01 sec.

1.11z2 =2.09z +1
Equation 4-17

For this system the open loop settling time is equal to 0.8 seconds and the open loop gain
is equal to 1. It is desired to reduce the settling time by /2. Thus, using Equation 4-13 and

Equation 4-15 the controller parameters are:

£=4
7=.4/0.43
p=14

Equation 4-18

The closed loop output and control for both GMC and PGMC are plotted in Figure 4-6.
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Figure 4-6 Closed Loop of GMC and PGMC

The PGMC achieved a 75% reduction in the control variation with respect to the
GMC control. However, the actual PGMC settling time of the closed loop system equals
0.33, which is slightly faster than designed. This is because the open loop system is
underdamped. If the p is reduced to 11, to obtain a slower settling time, the PGMC
settling time decreases to 0.36, but the control variation reduction also decreases to 70%.

The second linear system, which is an overdamped system, is given by Equation

4-19.
1.5
G(s)=
(<) s? +14s +40.02
G(z)= 00013 for Ts =0.01

1.144z> —2.14z +1
Equation 4-19
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Figure 4-7 Linear System. 2: Closed Loop Output and Control for GMC and PGMC

For this system the open loop settling time is equal to 1.16 seconds and the open
loop gain is equal to 0.0375. It is desired to reduce the settling time by */s. Thus, using

Equation 4-13 and Equation 4-15 the controller parameters are:

g=4
7=.232/0.43
p=7

Equation 4-20

The closed loop output and control for both GMC and PGMC are plotted in Figure 4-7.
The PGMC achieved a 69% reduction in the control variation with respect to the GMC
control. The actual PGMC settling time of the closed loop system equals 0.275 sec.,
which is slightly slower than designed. This is because the open loop system is
overdamped. If the p is increased to 11, to obtain a faster settling time, the PGMC
settling time decreases to 0.26 sec, but the control variation reduction also decreases to
60%.

In order to judge Predictive GMC’s nonlinear control capability, it has also been

compared with another nonlinear control method called Interval Control, [69]. Interval

62



control uses the model of the process to solve for the control at each sampling time such
that if the control were kept constant for a number of steps, n, the closed loop output at
that time n, would equal the reference. The nonlinear system, which is used in a plasma
arc welding process developed at the University of Kentucky, is given by Equation 4-21.

Yi=agtau_ tauy Yy tasuy 3y o

Equation 4-21

where a,=1949, a,=-09, a,=-99-10", a;=-5-10"°
For this system the open loop settling time is equal to 0.005 seconds. It is desired

to maintain the settling time and to track a reference trajectory. Thus, using Equation 4-

13 and Equation 4-15 the controller parameters are:

=4
7=0.005/0.43
p=3

Equation 4-22

The closed loop output and control for both GMC and PGMC are plotted in Figure 4-8.
For this system the original GMC, not displayed, resulted in an unstable closed-
loop response. However, the PGMC closed-loop output was not only stable, but the
control also had less control variation than the interval model control. This demonstrates
the advantage of PGMC over the original GMC method, and that PGMC control can be

compared with other long range based prediction controllers.
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Figure 4-8 Nonlinear System: Closed Loop Output and Control for Interval and PGMC

To further test capabilities of the PGMC technique, a MIMO system is selected to

control. The MIMO system is linear with the following parameters:

-1 -2 -1 211
A=|-1 -2 -3| B=|[3 1 1|, C=I,,;, D=[0]
-1 -2 -5 21 2

Equation 4-23

The system is fully controllable with eigen values, 1 =-0.9967, -0.4372,1.1338 . The
solution for the GMC control signal is given by Equation 3-13. The desired settling time

for each output was selected to be T, gosrica =1-5 . The GMC control law, and therefore

PGMC as well, already contains some degree of robustness due to the inclusion of the

integral gain.
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Figure 4-9 PGMC Control and Output for MIMO System

For example, if the previous MIMO system was incorrectly modeled so that the
parameters of A were given as in Equation 4-24 then the resulting control and output is
shown in Figure 4-9. Also, if the parameters of A were reduced or enlarged as in
Equation 4-25 by 50%, the resulting control and output would be given by Figure 4-10.

Over a longer period of time, the integral action to reduce the modelling error can be

observed.
-1 2 -1
A=|-1 2 -3|, B=B, C=C, D=[0]
-1 -2 5
Equation 4-24
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Figure 4-10 PGMC Control and Output for MIMO Uncertain System
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Figure 4-11 PGMC Control and Output for MIMO Uncertain System

The PGMC technique has proven valuable in efficiently controlling both linear
and nonlinear systems. The important parameters the control designer specifies in using
Predictive GMC are the desired closed loop settling time and the prediction level.
However, under a certain amount of parameter or model structure mismatch the PGMC
control does not perform entirely as desired. Therefore, further testing needs to be
completed to form a methodology in achieving a more robust PGMC control algorithm.
Moreover, for MIMO systems the proper application and use of the prediction level is not
fully understood. If, for example, different states are required to reach their settling points
at different times, because the PGMC controller prediction level is based upon the desired

settling time, then the actual proper prediction level to implement is not known.
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Therefore, further work also needs to be accomplished in generalizing the algorithm for
MIMO systems.

A likely possibility in improving the controller robustness will be a PGMC
controller that uses parameter intervals instead of the parameters themselves in solving
for the particular process input. Then a more intelligent control action could be taken in
consideration of the process states and process parameter intervals. For example, if
altering Equation 3-10 so that the control calculation can include the parameter interval,

A8, then the control would be

u=h(x,u,d,t,K (x, —x),Kz.[(xm, —x)dt,AB)

Equation 4-26

Then a control could be calculated in consideration of the parameter interval that
would minimize the output error. This could also be used to guarantee the stability of the

closed loop process. This approach is what is accomplished in the following chapters.
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CHAPTER 5

PARAMETER INTERVAL ADAPTIVE PGMC

In this chapter, the robustness of GMC will be improved by changing the control
law to incorporate parameter intervals and adapting the process model used in the

controller to move smoothly within those intervals.

5.1 GMC Parameter Interval System Model

A parameter interval system model assumes a model structure for a process and
then embeds the uncertainty of the process into the parameter intervals. It may not even
be completely necessary to fully have the correct model structure for during system
identification, the inaccuracies of the model structure can simply be absorbed into the
parameter intervals. The parameter intervals can be used on structural components
involving all observable and unobservable states that have state estimation. This includes

disturbance model components, which are a type of process state variable.

5.2 Identification of Parameter Intervals

The identification of the parameter intervals can be accomplished either
heuristically or by experimentation. If done by experimentation, a series of experiments
can be used in conjunction with a least-squares parameter identification routine to inform

the designer of the nature of the parameter intervals. Experimental data can also be used
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with routines that determine the parameter intervals directly according to a selected
probable certainty condition, [71]. Once the parameter intervals are identified, the

following designed method can make use of the intervals in closed loop control.

5.3 PGMC with Interval Factor

If the real process is given by:

Vi = f(xk’uk’dk’tk’e)
Equation 5-1

And the estimation of the process is given by:

);k+1 :f(‘xk’uk’dk’tk’ek)
Equation 5-2

If all states are known and all variables in Equation 5-2 are measured such that they are
positive, then a maximum and minimum prediction of the output can be made as:
J;min,kﬂ = f(‘xk > uk > dk > tk > gmin )

);max,kﬂ = f(‘xk > uk > dk > tk > emax )
where

gmin S é S emax

Equation 5-3
If the real output, y, moves smoothly with respect to the sampling time between v, and
Vmin, then an estimation of y can be made by estimating the real parameters, 6, as:

ék = emin +Fk : (emax _emin ); Fk = yk71 _ymin)lFl

- ~ ~
Y maxi—t ™ Y min-1

Equation 5-4
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The assumption embedded in Equation 5-4 can be graphically pictured in Figure 5-1. If
the control signal is smooth, then the output and output predictions should be relatively
smooth in comparison to the sampling time. More importantly however is that the real
output travels smoothly between . and ., and thus an estimation of the position of y

in relation to Y. and yu,i, could be based upon the previous sample.

- Y max
/_/\\/_yreai

y min
;

Figure 5-1 Depiction of Parameter Interval Factor

It is, however, pivotal to the soundness of this assumption that the control is smooth
because the interval factor parameter, Fy, in Equation 5-4 is obviously influenced by the

control as is shown in the following equation:

OF, 9 i—Pu) 0 fl,u,.d.1,,6-6,)

ot ot (»)’}max,k—l - j}min,k—l ) ot f(xk sUps dk > tk > emax - emin )

Equation 5-5
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The Equation 5-4 is used in conjunction with the PGMC method of control so that
given a F}.;, a series of outputs and controls are predicted using the same F.;. Then the
actual control that is implemented is equal to a weighted average of the predicted
controls. The control smoothness is then improved by averaging the predicted controls,
which consequently should also improve the validity of the assumption that the parameter
interval factor changes only slightly between sampling times.

The conditions for which the above assumption is valid and how much the
variation of F between sample points affects the output and control are extremely
important issues. However, from experimental results, with an additional constraint on
AF} between sampling times, the closed loop results were promising. Moreover, the
control algorithm is further modified, in Chapter 6, to improve the closed loop stability
properties and control smoothness. The constraint upon AF; was implemented by filtering
F through the use of a moving average of previous F’s. The reasoning behind this
constraint is that it is assumed that there is noise in the output signal, which if not

recognized, actually changes F} at a different rate than the actual process is changing F .

5.4 Experimental Results

For the plasma keyhole welding process, developed at the University of
Kentucky, the control algorithm discussed in the previous section was implemented. The

plasma keyhole process is illustrated in Figure 5-2.
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Figure 5-2 Description of Keyhole-Plasma Welding Process

The phenomenological model structure that was developed by consideration of the

energy input into the system is given by:

+ad, . T ,  +tal T

p-k=27 p.k-1 p.k=37 p,k=2

T ,=a,+al

ps pk-1

Equation 5-6
System identification was completed using random inputs within the likely process
operating range, and a least squares algorithm was employed for determining the process
parameters. This was completed four times to enable the construction of the probable
max and min of each of the four model parameters. The range of each parameter is given
as follows:

=-14.10"
=—4.10"

=-496, a
=-4.53, a

=07-10°, a,,,
=-13-10", a

1,max 2,max

ay ... =134.66, a
a, .. =707.15, a

1,max 2,max 3,max

Equation 5-7

After system identification, closed loop control was possible. In using the PGMC control
methodology and the parameter interval factor, the filter and the tunable control

parameters were selected as follows:
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sett ,desired

=3, p=2,

Equation 5-8

Filter —

4
3 2
z2+z +z+1

The results of two different closed loop control experiments are illustrated in Figure 5-

3,4.
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Figure 5-3 Experiment 1: Closed Loop Results
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Figure 5-4 Experiment 2: Closed Loop Results

The goal of the keyhole plasma process is to obtain slightly overlapping keyhole

penetration spots. This can be particularly seen in the zoomed backside view of the weld

in the images given in Figure 5-5 and Figure 5-6. The goal of these overlapping

penetration spots is to minimize the energy input that will achieve a quality weld.
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Figure 5-5 Weld Image of Keyhole Plasma Process
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Figure 5-6 Weld Image 2 of Keyhole Plasma Process

The illustrations in Figures 5-3 and 5-4, show that after 5 to 10 cycles the output
has reached the reference peak time. Although the parameter interval factor has varied
widely throughout the entire process, variation between cycles is relatively small. The
control signal is also relatively smooth because of the Factor filter. However, it is thought
that an improvement on the control algorithm could better restrict the oscillation of the
output about its reference. Also, because there is no methodology on the design of the
Factor filter, it is thought a further improvement to the control algorithm could be
accomplished to strive for control smoothness while maintaining closed loop stability.

These are the goals that are attempted in the controller design in the next chapter.
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CHAPTER 6

ROBUST PARAMETER INTERVAL PGMC

6.1 Introduction

The previous chapter made use of the parameter interval models by simply
assuming the real model moved smoothly relative to the sampling time between the
maximum and minimum models. This section attempts to determine an optimum solution
using the parameter intervals as uncertainty without the restricting assumption that the
model move smoothly between the maximum and minimum. The algorithm makes use of

interval mathematics, which is reviewed below.

6.2 Interval Mathematics [72, 73]

An interval [x]e R or real interval is a closed, connected, and bounded subset of

R, such that
[x]z [x’,x*]z {x | x <x< x*}.
Equation 6-1
Interval arithmetic generalizes addition, subtraction, multiplication, and division to
intervals. If, for instance, x” <x<x", " <y <y andz =x +y, then
x +y <z<x"+y" so that the addition of two intervals is defined as
]+ ]={x+y | xex]and ye [yl=[x +y x +°]
Equation 6-2
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Similarly,

~[l=tof xe =[x, -x]
[x]-[]={x -y xelxland ye yli=l -y, x = y7]
1£0 ¢ [x] then 1/ [x]={l/x xe [x[}=[1/ x",1/x7]
[x]* [p] = Iminxy 27y, x"y7 oy hmax(x y 7,27y x "y, xy))
[} ={efee [x]}
Equation 6-3
Using the relations above and the parameter intervals of the model, at each sampling time

an optimum control and a control interval that makes the output stable will be calculated.

6.3 The SISO Control Algorithm

6.3.1 Finding the Optimum Control and Stability Interval

Before explaining the entire control algorithm, a few principles must first be

reviewed. Given the interval mathematics problem below:
lv-v'|=|B B x| U |+|H H]
Equation 6-4
Where the intervals [B], [U], and [H] are known, the interval [Y] is found using the

Equations 6-1,2,3 to be:

Y =min (BU,BU",BU ,BU )+H"
Y*=max (BU ,BU",B'U,BU")+H"
Equation 6-5

If, however, it is known that the entire interval for both [B] and [U] are greater than zero,

then the interval [ Y] can be found directly using:
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Y =B U +H"
Y"=BU"+H"
Equation 6-6
Moreover, if given a feasible [Y] interval for which it is known there is a
corresponding [U] that satisfies [U] =0 then the inverse problem can be solved whereby

for the given feasible [ Y] interval, the [U] interval that satisfies Equation 6-6 is

determined to be:

Y -H
U =
B
g Y -H
B*

Equation 6-7

It is known that in general, the solution to this linear inverse interval problem
simply described as [A4] [x] = [b] or [4] [x] £[b] can only be solved through nonlinear
programming methods. This is why there needs to be a restriction on the nature of some
if the intervals to construct a closed form solution.

However, if the interval [U] and the interval [ Y] have no restriction on their sign
(i.e. U, U", Y, Y can be above or below zero with constraint U" > U, Y > Y), then the
solution for the inversion problem to solve for [U] given a [ Y] becomes more

complicated. Assuming [B] > 0, the following equations show all the possibilities.
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For [B] 20 and [Y] is feasible given [B] and [H]

If U120
Y =BU' +H =U =B") -(rv' -H")
Y =BU +H =U =(B7)"
U <0, U 20
Y'=BU +H =»U =B")" (Y -H")
Y =BU +H =U =(B")"-(y -H")
If[UI<0
Y =BU +H =U =B")" (v -H")
Y =BU +H =>U =B -(r -H")
Equation 6-8

Therefore, the method by which to calculate [U] given [Y] is not as
straightforward as that given in Equation 6-7. However, it can be shown that the proper

method to calculate [U] given a feasible [Y] is by the following equation.

U™ =max Yﬁ_H?,Yi_Hi
B B
. (Y"-H" Y'—H"
U+:mln( T j

Equation 6-9
The method given by Equation 6-9 is found using the following analysis. If Y~ is
chosen such that (Y~ - H ")<0, then given Equation 6-8, the correct and incorrect U ~ are
given by:
Uspr =B ) (v —t7)

correct _ (Bi )71 (Yﬁ —H" )

U-
Equation 6-10

incorrect
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However, because [B] 20, U, <U_ forall (Y - H")<0. Also, if Y is chosen such

incorrect correct

that (Y~ - H") > 0, then given Equation 6-8, the correct and incorrect U ~ are given by:

v, =B)r-H)

U, =B ) (r-H)

incorrect

Equation 6-11

However, again because [B] =0, U, <U_  forall (Y - H)=0. A similar analysis

can be done for U™ with the resulting generalization given in Equation 6-9.

Moreover, if there are stability constraints on the interval [ Y] given by:

[Y]e[Y.

min max ]

Equation 6-12

Then Equation 6-9 can be used to find the stable interval [ Ul to satisfy the [¥]

constraints by:

Y -H Y. —-H (Y -H" Y —-H"
[U]Smb,e =| max mmBi , min , min maxBi , max

B
Equation 6-13
These developed relations will be used in the derivation of the control algorithm
in the following sections. Note that the derivation of Equation 6-13 assumes existence of
the solution to the inverse interval problem of Equation 6-7,8 with the constraints of
Equation 6-12. If there is no solution, the equation obviously does not apply.
Consider the nonlinear scalar model:

Yk =@ 'f1(x1k)+¢2 '/fz(xzk)+"'+¢n .fn(‘xnk)-i_ﬂ.g(‘xk).uk—l
Equation 6-14
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Where @™ <@ < @™ and ™ < < ™ which are found by system identification.

Note that this model structure is capable of being controlled by the GMC control
technique. Also, although this model structure assumes that the model is control affine, if
the real model is not control affine (i.e. U?), then an in-between temporary calculation
can make use of the model in Equation 6-14 (i.e. Uepp=U 7). Moreover, note that linear
systems with state feedback fall within this structure. A case of output feedback is
discussed later.

Assuming all of the states of equation 6-14 are known fully at each time k

(e fi(x, ), f5(%5)se 05 f,(x, ), €(x,) are known), then the model can be simplified to an

interval problem, for [B,]>0, given by:

o v )=lu; B (B By o U]
where

H =Y minlg!™ - £,(x,). 0™ £(x,))

H =Y max(p! - f(x,). 0™ £(x,)

B;; :ﬂi 'g(xk)
BI: :ﬂ+ 'g(xk)

Equation 6-15

The utility of Equation 6-14 is that the nonlinear model is reduced to an interval
equation of the form given in Equation 6-4. If [ B,]>0, then a closed form optimal and
stable solution for the inverse interval problem can be found.

If there is a desired scalar output for the system in Equation 6-4,15 called ¥,

then a sensible choice for the desired interval [¥;] would be centered upon Y, such

that:
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(rr+v,)2=7x

ref .

Equation 6-16
Assuming that the system moves within the parameter intervals with equal likelihood,
this choice of the desired interval [ Y;] will maximize the probability of actually achieving

Yo, - Thus, the choice at the center of [ Y] is known; however, the actual values of
Y and Y are not determined except that there is a restriction that [ Y] >[Hy].

The selection of the desired [ Y] is really a function of the system states and

parameter intervals as well as the desired scalar output Y, . Thus, let [Y;] be given as:

Y, =Y, —C,

ref .k
Y=Y, 6 +C,

ref .k

Equation 6-17

such that Equation 6-16 is satisfied. Also, choosing the interval restrictions:

1. Y <Y
2. Y 2Y.
3. Y 2y

4. U 2U;
5. U 2U,,
6. U'<U__

Equation 6-18

Where Umin » Umax » Ymin and Ymax are assigned by the control designer from knowledge of
the process. Then, if there exists a desired interval [ Y;] as well as the interval [ U] to
achieve it within the interval restrictions in Equation 6-18, the solution is found using the

following method constructed below.
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The smallest interval [Uj] to satisfy Equation 6-16 is for the elements of [ U] to be
equal, in other words, not an interval at all. Thus the optimum Cj value can be solved for

the cases [U>0 or [U]<O using U, =U,, Y, =Y, +C, ,and ¥ =Y

ref .k ref .k

— C, by solving
)" O, —Co- )= 8] (1, +C-117)
Equation 6-19

To obtain;

1

_\ B” .
Ck :—+'{(Yre/’,k _Hk {Bj'i_Hk _Yre/’,k}
[+5)

B

>

Equation 6-20

Then the optimum output interval is equal to:

1, =, +c.v, -]

ref k> “ref i

Equation 6-21
And the optimum Uy is given by:

Y, +C,—-H Y, —C,—H,

ref g ref g

k B B-
Equation 6-22

It will now be shown that if ¥

.r., 18 calculated using generic model control, the

optimum Uy given in Equation 6-22 is equal to the control calculated using generic model

control, U,,,. . If generic model control were used then Y,, ~would be calculated,

GMC

assuming digital control by:
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= T {Kl (Ysetk,l _Yk 1)+ Kzzk IT ( ret, Yz)}+ Yk—l

ref s

Equation 6-23

Then assuming that each parameter of the process model is given by the center of its

interval, the generic model control, U would be calculated by:

GMC

U _ e _Hk
GMC — Y

B
where H =(H;+H)/2 and B=(B +B")/2

Equation 6-24

— +
Uopt k>

Because the optimum Uy is not an interval, in other words U then only the

opt .k

interval problem for [U]>0 or [U]<0 need be considered (i.e. if U, =U,, then it cannot

be that U < 0 and U" > 0). Then using Equation 6-17 and the cases from Equation 6-8
for [U]>0, [U]<0, with U=U" the following derivation can be made:

If[U] 20, then

Y, +C, =BU +H,
-C,=BU,+H,

re/ k

Equation 6-25

Adding the two equations and multiplying both sides by 2

Produces = Y = (B++B)U (H++H)

ref k.

Equation 6-26

Then solving for Uy

Y —(H +H )2
Produces = U, =% ( X ’“) =

U
(B+ + B )/ 2 e
Equation 6-27
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Simlarly if [U] <0, then

Y, +C,=BU +H;

Yref,k _Ck :B+Uk +H1:

Equation 6-28

Adding the two equations and multiplying both sides by 2

Produces = Y

1 1
ref k :E(B+ +B*)Uk +E(H; +H1:)

Equation 6-29

Then solving for Uy

Y —\H +H )2
Produces = U, = ’ef’k(B+(+’}g+)/2k) =U e

Equation 6-30

Thus, to calculate the optimum U, of Equation 6-22, one need only to calculate

the generic model control, U, ., with the model parameters set equal to their interval
center.

However this, U . ,calculated control may violate the constraints given in

Equation 6-18. Thus, the optimum input U, , must be constrained so that Equation 6-18

opt

is satisfied. For example assuming [B] =0, the constraints upon U, from Equation 6-18

opt

upon Uy with Y nin=0 and Up,;,=0 are given as:
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U, U 20U, 20

H
Y, 20=>U, 2—

+

H
Y)20=>U, 2——+=

+

+ Yma _HI:
VSY,, U, S

Equation 6-31

Then the control U, that is implemented is given by

opt

H H Y,-H)\Y -H
U(m — min | max | — —* — k ’0’ /k_ k , max k
vk B~ B° B B*

Equation 6-32

or more generally as:

: Y —-H Y -H Y, -H Y —-H’
U{”t = min | max min k , min k ,Umin, /k_ k , max k ,Umax
Pt fc B— B+ B

Equation 6-33

The control interval at time k that ensure process stability defined by Equation 6-18,

called [Ug]stable , 1S given as:

Y -H Y -H (Y. —H
[Uk ]Stable =| max mmB, 9 = ’Umin ’mln maxT’Umax

B
Equation 6-34

Therefore at this point in the control algorithm, an optimum control is known and a

control interval that makes the process stable is known. However aside from the stability

guarantee, the control will not be greatly improved over the normal generic model

control. Thus, a further improvement is required.
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6.3.2 Inducing Control Smoothness

From the previous chapter, predictive generic model control (PGMC) was found
to be helpful in inducing control smoothness. Thus, if PGMC can be combined with the
stability guarantees of the previous section, a truly robust/smooth control could be
determined. The following analysis derives this profitable combination.

If during the control calculation at time k, the model of the process is simulated p

steps ahead such that the following control predictions are determined using Equations 6-

A A

33 and 6-34: [U k] ,where U_ denotes a prediction

stable ° opt 2 opt j41° optj4n? O pkyp opt ;

during the simulation. Then a new control called U , could actually be implemented,

A A A

LU to induce control

Optk+p

which is a weighted average of U, ,, U

opt 2 opt j4+1° optp4n2 "

smoothness with the following stability constraint:

U, elU,]

stable

Equation 6-35

A

The method by which the predictions U U are made is by updating

opt412° T2 T optpyp
the model of Equation 6-14 and the corresponding interval problem (Equation 6-15) and

interval problem solution (Equation 6-33) with the new states H, ., H,, calculated

k+i?

using:

Uk+i = Uopt k+i
5 AL A A
Yk+i_}/k+i+Fk.}/k+i_}/k+i fOr Uk+i_U

opt feti

Equation 6-36

where F} can become an adaptive factor as given in Section 5.3, and can be either set to a

worst case scenario or to its likely value according to previous history.
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For example, as in Section 5.3, a prediction can be made for ¥,™,¥,™" using the

control calculated at time &-/. Then a sensible choice for F} would be equal to:

min
-,
kT max min
Y=Y

Equation 6-37

Moreover, for calculating the predictions U U,., asensible choice for

k+29°0 9 Y ktp

F

k+12°°

., F, ,would be:

F.,=F_ 6 +AF,

kel T T kil

Equation 6-38

Where AFy can then become a control parameter to either find a worst case design by

alternating its sign or by simulating the system’s likely change in F. Then again, after the

predictions are made, the actual control implemented, U . » 1s equal to

min( N max(U - U . ))

kstable ° kstable °

where

U =wU_+WU +WU,_ .. WU

k+1*°° p - k+p

Equation 6-39

Then tunable parameters of the control then become: Yax, Yiin, Unax, Unin, p, AFy, W.
The first four parameters change the allowable output and input and can be relaxed or
lessened to suit stability and performance criteria. They could be static or they could
change with time or alternatively the designer could make them a function of Y. «. The
AF parameter is used in calculating the predictions at each sampling time to simulate the
likely movement of the process throughout its parameter interval and can be used to

simulate the worst case scenario or something less stringent. The prediction level, p, and
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the control weights, W, affect control smoothness. As referenced in the previous chapter,
increasing p to thirty percent of the dominant time constant of the GMC reference
trajectory will significantly reduce the control oscillation.

To review the final control algorithm, the following steps are stated:
, (Equation 6-34)

1. Calculate the control interval that ensure process stability, [U k]

stable

m_y |
2. Calculate interval factor, F, = {M} where Y™ Y™ are calculated

Ymax min predi_1 > = predj_
predj—| predj—|

in the previous sampling time.
3. Ina for loop (i=0...p-1) where p = prediction level:
Using the process model (Equation 6-15) and optimum control Equation 6-33,

calculate [H,. ], U

k+i k+iopt ©

Then for next iteration’s states, [H ], calculate:

k+i+i

Yk+i+l = Y{);tk+i+1 + (Fk+i + AF‘k+i+1) ’ (K);tk+,‘+1 - Y{);tk+i+1 )
k+i+1 = optf i+l
. ~ j2
4. Then implement u=>w-U,
i=k-1
with constraint {U e SUL S Uk*mb[e}
pm;k = min (B’ ljk, b ljk )+ H;
5. Finally, calculate - - for the next sampling time.
Y™ =max (8 -U,.b"-U,)+H;

One further comment is that if the parameter interval of a particular parameter of
Equation 6-14,15 is thought to be too large, then assuming that the probability density
function of the actual process parameter lying within its interval is given by a normal

distribution such that:
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(2 :N(l[li,Gi) where M = ¢~ , 0. = b 9

ﬂ:N(ﬂﬂacﬂ) Whel’e ﬂﬂ:%’cﬂ:#

Equation 6-40

then a new interval can be chosen based upon the parameter’s ¢ with a knowledge of the
probability that the new interval will contain that the real process parameter. However, if
the new interval is smaller than the real process interval then process stability is no longer

guaranteed.

6.4 SISO Experimental Results

6.4.1 Linear Scalar Example with Implementation

A first order system describing a soft plasma arc welding process, developed at
the University of Kentucky, was controlled using the parameter interval PGMC
algorithm. The first order parameter interval model is given by

Yk+1 =a: Yk + CUk
where

05<a<0.75
1.SE-5<c<3.75E-4

Equation 6-41
For this process, the plasma arc oscillates between a high current called a peak
current and a low current called a base current. The value of the peak and base current are
predetermined, and only the amount of peak current duration is altered. With a longer

peak current duration, a greater amount of energy is released into the workpiece and the
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weld penetration is increased. The process model describes a relation between the peak
current duration, U, and the output of a sensor measuring weld penetration, Y. The first
order model was first simulated to obtain reasonable control parameter values for Tgesired,
p (prediction level), W, and AF}. The open loop step responses are graphed in Figure 6-1
for a constant input of 700 to show the varying time constants and open loop gains of the

process.

T T
— Ymax

— ¥min

nafr

04F

03f

n2r

IRNS

0

Figure 6-1 Open Loop Step Responses for Ymin, Ymax, Ymean

The closed loop system was simulated for both the normal GMC technique and

the parameter interval PGMC using:

desired 4
p=3
w=1
AF, =0.5
Ymax =0.9
Y min =0

The control is shown in Figure 6-2 and the closed loop output is shown in Figure 6-3.
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Figure 6-2 Control Signal of Linear Simulation
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Figure 6-3 Output Signal of Linear Simulation

From Figure 6-3 it is apparent that parameter interval PGMC not only has the
benefit of a stability criteria included in the control law, but the closed loop output is
more accurate due to the parameter adaptation and the control smoothness, which is
generated by the averaging of the control predictions. After determining the region of the

control parameter values via simulation, the parameter interval PGMC was implemented
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in the real arc welding process. Six experimental data sets are shown in Figure 6-4 and

Figure 6-6 with the following set of output setpoint and controller parameters:

}ISEt T p W AF
expl 045 4 3 1 03
exp2 050 3 2 1 03
exp3 050 3 2 0 0S5
exp4 020 3 2 0 0.2
expS 040 3 1 0 0.1
exp6 040 3 1 0 0.1
U1 Y1
1000 0E [
[ A Al N
0.4 i
500 r( [
0.2 ]
0 : : : : 0 : :
0 5 10 15 20 0 5 10 15 20
L2 Y2
1000 |
0.5 o ,[[
0.4 ]
EDDW
0.2
0 - - - - 0 - - -
0 5 0 15 20 0 5 0 15 20
U3 Y3
1000 06 1
n M 1l

0.4 (

a00
0.2

o . ol—2L
0 5 10 15 20 0 5 10 15 20

Figure 6-4 First Set of Linear Experiments
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The images of the first three experiments are given in Figure 6-5. For these
experiments the closed loop output is not filtered and retains the noise in the signal.
However, one can see from Figure 6-4 that the control is adjusting to have the output
track the setpoint. The linear model structure for this arc welding process is actually only
valid for a narrow operating range of peak times and torch speed. The torch speed for the
last three experiments was increased and therefore the peak times were much higher to
appropriately heat the workpiece. However, the parameter intervals and the linear model
assumption of the process become less valid with the higher torch speed. From the results
in the last three experiments one can begin to see that the parameter intervals found
during system identification are becoming less valid. In the first experiment the closed
loop output experiences oscillation because the process has a faster time constant than the
controller. The aggressive controllers in experiments 3, 5, and 6 with W=0 and p=2 or 1

obtain the highest closed loop performance.

Soft Plasma Backside

Figure 6-5 Soft Plasma Experiments 1-3
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Figure 6-6 Second Set of Linear Experiments

In addition to the linear example above, in the next section an implementation of
the proposed algorithm employing the stabilizing control interval was completed for a

nonlinear system.
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6.4.2 Nonlinear Scalar Example with Implementation

The quasi-keyhole plasma process that was controlled in Section 5.2 was again
used for the implementation of the nonlinear control using the stabilizing control interval.

The data from the experimental results is given in Figure 6-7,8,9.
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Figure 6-7 Keyhole Plasma Process (Experiment 1)
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Figure 6-8 Keyhole Plasma Process (Experiment 2)
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Figure 6-9 Keyhole Plasma Process (Experiment 3)

For the first experiment the parameter intervals that were found from system
identification were used in the process control, and the closed loop results achieve what is
expected. However, for the second and third set of experiments the parameter intervals
were significantly narrowed about each of their mean with the expectation that the
process could operate outside of the process intervals. Also, the adaptive factor was
constrained to remain between zero and one for experiment 2 and between zero and 1.2
for experiment 3. From the results shown in Figure 6-8 and Figure 6-9, one can see that
the process began to operated above the process intervals and because the adaptive factor
was saturated, the control could not properly adjust to achieve the desired closed loop

reference. An interesting conclusion of these experiments is that movement of the
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adaptive factor can tell the control designer something about the accuracy of the

parameters intervals. The images each of the welds are given in Figure 6-10.
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Figure 6-10  Keyhole Plasma Process with New Interval Control
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6.5 Multivariable Parameter Interval GMC

The approach for the multivariable case is similar to the scalar development.
Consider a model given by

Yk =@ 'f1(x1k)+¢2 '/fz(xzk)+"'+¢n 'fn(xnk)"'ﬂ'g(xk)'UIH
Equation 6-42

Y, and @, - f(x, ) are nxl vectors
where B-g(x,)is a nxm matrix

and U, is a mxl1 vector

Because the states fi(x;) and g(xx) are known, then if the following intervals are known:

wimin S wi S wimax
ﬂmin S ﬂ S ﬂmax
Equation 6-43

then the problem can once again be constructed as an interval problem but with this time
the intervals being multivariable.
[Y,1=[#,1+[B]U,]
Equation 6-44

Where [Y;] is a nx1 interval, [H] is a nx1 interval, [B] is a nxm, interval, and [Uj] is a
mx1 interval.

The solution to the multivariable interval problem is similar in nature to the scalar
case, but requires a few extra steps. The reason for the extra steps is that in solving for
either Uy ot U,ax, the boundary solution that is sought for is actually not the control that

causes all the outputs to be equal to their output boundary, but rather the offset from the
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generic model control solution that causes at least one output to be set equal to its output

boundary. For example, the multivariable solution to:

Uy =(87) (Yo —H")

max

Equation 6-45

solves for the exact control that sets all outputs equal to their maximum allowed.

However, this solution will likely result in some elements of U, calculated to be much

greater than their GMC counterpart and others much less.
Thus, an alternative approach is required which solves the interval inverse
problem and also provides useful boundaries for the control variable. The approach

proposed uses the following equation:

Y=H+BU,,.+L)

GMC

Equation 6-46

where L is the control offset from the GMC calculated control which sets at least one
element of the output, Y, to its boundary either Y., for Uiy or Yy for Uppgy.

Similar to the scalar case, because [Y] or [U] can be either above or below zero,
the solution to Equation 6-47 is accomplished in two steps. For example, for determining

U nax calculate:

max

Lmax, 1=min({Y,, +H; ~B'Uq., )./R")

max

Lmax, 2=min(Y,, +H; -BU,,., )./R)

Equation 6-47

And then the maximum control boundary is:
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+ .
Uk stable — mln(UGMCk + L max 1k > UGMCk + L max 2k )

Equation 6-48
Where U g, is the control calculated using generic model control, ( ./ ) is element-wise
division and R and R are the gains of B calculated using the equations below:

w =l

1]mxl vector

R+ = [B+ ] [l]mxl vector

Equation 6-49

Also for determining U . calculate

+H, ~B Uy )./R)
+H, -BU,,.)./R")

Lmin, 1= max((Y

Lmin, 2 = max((Y

min

Equation 6-50

And then the minimum control boundary control is given by:

Uk sapte = max(U omc, TLming 1, Ugye +Lming 2)

Equation 6-51

Finally, then the final control implemented is equal to

U U

min )

= max(min(U 4,0, U s s

opt |
Equation 6-52
U U

Moreover, similar to the scalar case, predictions can be made for U and

k+12 k+2%°°°> k+p

then averaged giving U with the restriction that

U <U, <U;}
Equation 6-53
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In addition, also similar to the scalar case, during the control predictions, the modeling of
the states can be updated using an adaptive factor based upon the sampled output and
maximum and minimum predictions from the previous sampling time.

Therefore, the control is calculated by using the following steps:

1. Calculate F from output sample and Y} , Y, from the previous iteration.

2. Calculate U, = (E )71 : (Y ~-H )

ref .k
3. Determine the possible offsets that set the control boundary Lminl, Lmin2,
Lmax1, Lmax2
4. Calculate [ Uy]swble using Equations 6-49-53
5. Calculate U, using Equation 6-54

6. In a for loop predict U U using the adaptive factor, F}, and control

opli+1 " opltp

parameter AF to update states.

7. Then implement U, = Y*?W, .U, with U, €[U,]

stable

8. Predict Y™ Y™ using U, and the maximum and minimum models
pred jy1° pred j 1 k

6.5.1 Linear Multivariable Case

Given a discrete, observable linear system with parameter intervals for A and B only (i.e.

not C) so that the states xi can be solved for:

X = Agys Xy + By Uy

sys
Y, k= Csys X

Equation 6-54
Then the output feedback system can be reorganized to
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Yk+1:C A xk+C

sys “tsys

sys B sys Uk

Equation 6-55

So that in relation to the interval problem:

H; =C, A..x,, Hi =C, A" x,

sys “rsys sys “Tsys

B =C.,B,, B"=C, B!

Sys 7 sys sys = sys

- - + +
R = CsysB sys '[1](mx1vector)’ R™ = CsysB sys '[1](mx1 vector)

Equation 6-56

See the example in the following section.

6.5.2 Linear Multivariable Simulation

For the coupled (2 input — 2 output) continuous linear system given by:

-5 0 0 0 5 0
0O -1 0 0 A25 0 S 0 16 0 0
A= B = C = D=
0 0 -.33 0 0 125 0 .064 0 .133 0
0 0 0 -.083 0 25

Equation 6-57

where each parameter of A & B of the system varies by + 50% resulting in the models
with the following minimum and maximum model step responses in Figures 6-11,12. The
system in Equation 6-57 can be discretized and then Equations 6-54,55, and 56 can be

used with the PGMC control methodology to form a closed loop system.
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Figure 6-12 Maximum Open Loop Step Response
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If the maximum and minimum discrete model that can be formed from the + 50%
variation of the parameters of the continuous model in Equation 6-57 are used in the
closed loop simulation, the actual process could be simulated as varying between the

maximum and minimum according to:

Y

Actual

=Y +F-(Y_ -Y

max min )

Equation 6-58

where because there are two outputs, then F' is composed of two factors, F; and F». If the
adaptive factors change smoothly or are approximately constant, the adaptation of the
PGMC control performs optimally in comparison with the regular GMC method. If the
change in F; and F> is prescribed as is given in Figure 6-13, then the resulting closed loop
GMC control is given in Figures 6-14,15 and the resulting Interval PGMC control is

given in Figures 6-16,17.
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Figure 6-13 Case 1: Change of F thru Time

108



GhC Control

n

— Caontral 1
—— Contral 2

-l - - = =

r-----

1 1
1 1
1 1
1 1
1 1
R T ST B s b LT B + -
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
= = = = = = =
- = = = = =
=+ o (] — - _.lu

Figure 6-14 Case 1: GMC Control
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Figure 6-15 Case 1: GMC Output
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Figure 6-17 Case 1: Interval PGMC Output
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From the previous figures, it can be seen that the parameter interval PGMC
performance is far superior to the regular GMC method. However, this was under ideal
circumstances in that the simulated process varied according Equation 6-58 which is
essentially the same equation that is used in the adaptation part of the control algorithm.
Thus, the adaptation part of the control algorithm could identify the actual process model.
If, however, the actual process varied between its maximum and minimum models such
that each individual parameter of Equation 6-57 varies uniformly and randomly between
its maximum and minimum, then this would be the worst case scenario. For the process
model does not vary smoothly but completely randomly between sampling times from its
maximum to minimum model, and thus the adaptive part of the control algorithm does
not improve the control. In fact, if the oscillation is about the mean of the parameters, the
normal GMC algorithm can perform better than newly designed algorithm. In this case, it
would behoove the control designer to restrict the change of F' between sampling times
by the use of a filter or by directly filtering the output signal. Moreover, the prediction
level p should be small if not equal to 1 because valid predictions can only be made if the
change in the model between sampling times is smooth.

However, to demonstrate this worst case scenario the following simulation is
given for the system where each individual parameter of Equation 6-57 varies uniformly
and randomly between its maximum and minimum. Figure 6-18,19 show the closed loop
behavior for GMC and Figures 6-20,21 show the closed loop behavior of the Interval

PGMC method.
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Figure 6-21 Case 2: Interval PGMC Output
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From the previous Figures 6-18 thru 6-21 it can be seen that if the parameters
change completely uniformly and randomly between their maximum and minimum, and
there is no filter on either the adaptive factor or the sampled output, then GMC algorithm
can actually perform better than the newly designed algorithm.

Now the most likely scenario for a real process is that each of the parameters
varies smoothly between its maximum and minimum between sampling times and that
some vary more smoothly than others do. Thus, this next simulation will make the real
process equal to the process given in Equation 6-57 where each of the eight parameters
varies between its maximum and minimum according to its particular plot given in Figure
6-22. This produces the GMC closed loop results in Figure 6-23,24 and Interval PGMC

closed loop results in Figure 6-25, 26.
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Figure 6-22 Case 3: Change of Parameters thru Time
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From the previous Figures 6-23 thru 6-26, it can be seen that the Interval PGMC’s
performance is vastly superior to the original GMC method due to the adaptive factor and
control smoothing. One additional simulation will be done to show the stability
performance of Interval PGMC using the same process as in the last case where each of
the model parameters changes smoothly, but with a restriction on the outputs given as:

Ylmax =7 and Y2max = 10

Y Iimin = -5 and Y2pin = -5.
The closed loop performance with the tighter stability restrictions is given in Figures 6-
27,28. The first thing to note is that output restrictions are achieved, which is expected.
However, because the inputs and outputs of the model are coupled, the control that is
found to satisfy the stability requirements, forces the output Y2 to swing drastically. This
is not desirable. Moreover, upon inspection there are possibilities of a more optimal
control that could have been implemented. For example, instead of having Y1 be set to its
maximum output boundary and then forcing Y2 to swing drastically, a more appropriate
control should be implemented that would have set both Y1 and Y2 less than their output
boundary and forcing only a minimum swing in each variable. Unfortunately, the method

by which this could be done has not been developed.
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6.5.3 Nonlinear Multivariable Simulation
In addition to a linear multivariable system, a nonlinear multivariable example
can demonstrate the utility of the proposed algorithm. Consider the following nonlinear
multivariable system:
Y1, =a,+a,(Y1, ) sin(Y1,_)+a, Yl _,Y2, , +aUl, +a,U2,

Y2, =b,+b(Y2, )sin(Y2, )+bYl Y2, , +bUl +bU2,
Equation 6-59

with parameter intervals given by:

100  <a,< 120 85  <h < 95

~.00006 <a < —.000001 -.00009 <h< 0
0002 <a, < .00035 + , 4 0001 <b < .0004

5 <a< 6 1  <bh< 2

1  <a < 2 4  <ph < 5

Equation 6-60

Then the multivariable system can be reduced to the interval problem by:

min(a; ’ ag )+ min(a (Ylk—l )2 Sin(Ylk—l )’ a1+ (Ylk—l )2 Sin(Ylk—l ))+ min(a; Ylk—z szfz > a; Ylk—z szfz)
(r1,,) sin(r1, )67 (¥1, ) sin(Y1, , )+ min(b, Y1, ,Y2, ,,b'Y1,,72,,)

k=22

max(a’ a’ )+ max(a (r2,.,)sin(r2,.) a; (r2,, ) sin(r2,, ))+ max(a;YlH Y2, ,,a)Yl, Y2, )
)+max(b, Y1, Y2, ,,b¥1,,¥2, )

k-1

R7 = 37 . [1] R+ = B+ ! [1](mx1 vector)

(mx1vector) >

Equation 6-61
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A step response for the system given in Equation 6-59,60 is given in Figure 6-29.

Open Loop Step Response
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Figure 6-29 Open Loop Step Response

The closed loop system output and control using the normal GMC algorithm is given in
Figure 6-30, 31. The closed loop system output and control using the interval algorithm is
given in Figures 6-32, 33. In comparing these Figures one can again see the utility of the
interval algorithm in coping with the parametric uncertainties for even nonlinear systems.
Lastly, in Figures 6-34, 35, the closed loop results are shown for the interval algorithm

used in conjunction with a Yy restriction equal to 1000 for both outputs.
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Interval Controls, Ymax=1000
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One other item should be noted for multivariable systems. It is possible in certain
circumstances that there may not be a solution to the interval problem when the minimum
control boundary is greater than the maximum control boundary. In this case, the order in
which the max or min functions in Equation 6-52 becomes the deciding factor for which
control boundary will be chosen. Thus, if one stability constraint is more important than
the other (i.e. Ymax 1s more important than Ymin) then this specifies the order in which the
max and min functions should be taken. Moreover because the max and min functions are
taken across the rows of each control vector, then if necessary the order of the max and
min function could be different for each element of the control vector to emphasize the

most important stability constraints.

6.6 Discussion

This chapter concludes the creation of the proposed algorithm, which includes
control predictions, the use of parameter interval, an adaptive factor, and a stabilizing
control interval. The algorithm use of parameter intervals and a corresponding interval
problem solution greatly improved the usefulness of the original Generic Model Control

method.
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CHAPTER 7

CONCLUSION

A multivariable control technique was created for a certain type of nonlinear

system with parameter intervals. The control is based upon the feedback linearization

scheme called Generic Model Control, and alters the control calculation by including

parameter intervals, solving a series of linear inequalities called an interval problem, and

also making control predictions. Implementations of the algorithm are done using

various arc-welding systems. Also included are several simulations of controlled scalar

and multivariable systems. Generally, the contribution of this dissertation in improving

the GMC control technique is as follows:

1.

2.

Emending the GMC control oscillation through the use of control predictions
Determining a method by which suitable gains K; and K, and the prediction
level p can be selected.

Expanding the GMC technique to incorporate parameter intervals through the
use of an adaptive factor.

Ensuring the GMC closed loop stability by the use of parameter intervals and
reforming the control calculation into an interval problem.

Deriving the closed form solution to the interval problem for [B]>0 for scalar

and multivariable systems.
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7.1 Future Work

The first area for future work is in solving for the particular control in
multivariable systems, which will more appropriately satisfy the minimum and maximum
output constraints, without forcing one or more outputs to drastically swing through its
allowable region, as discussed in the previous section.

The other primary area of future work to be accomplished is in regards to
loosening the developed algorithm’s model restriction for the interval problem. The
closed form solution to the interval problem is only known for [B]>0, which for scalar
equations is acceptable since [U] can be negative or positive. However, for multivariable
systems this is a real restriction because all the elements of [B] have to be greater than or
equal to zero, and this thereby excludes processes where a particular input affects one
state variable in an inverse manner to any other state variable. Another area for future
work is in expanding the interval problem solution for the multivariable linear processes
in which the C matrix can also have parameter intervals, because at this time it cannot in
order to determine the state variables from the output. Lastly, it is possible that the
interval problem and its proposed solution could also be applied to another control
techniques besides GMC, and therefore it is possible that the interval problem could be

more appropriate according to some criteria with that other control technique.
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