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proposed approach is applied in controlling both a linear and a nonlinear arc 

welding system as well in other simulations of scalar and multivariable systems.  

 
 

KEYWORDS: Generic Model Control, Predictive Control, Arc Welding, 
Parameter Interval, Robust Control 

 
 

_____________________________________ Joseph Michael Istre 
 
 

_____________________________________ July 6, 2004 



 
 

 

 

 

ROBUST GENERIC MODEL CONTROL FOR 
PARAMETER INTERVAL SYSTEMS 

 

By 

Joseph Michael Istre 

 

 

 

 

________________________________ 
Director of Dissertation   

YuMing Zhang 

 
 

________________________________ YuMing Zhang 
Director of Graduate Studies 

 
 

________________________________ July 6, 2004 
 

 

 

 



 

 

RULES FOR THE USE OF DISSERTATIONS 

Unpublished dissertations submitted for the Doctor’s degree and deposited in the 
University of Kentucky Library are as a rule open for inspection, but are to be 
used only with due regard to the rights of the authors. Bibliographical references 
may be noted, but quotations or summaries of parts may be published only with 
the permission of the author, and with the usual scholarly acknowledgements. 
 
Extensive copying or publication of the dissertation in whole or in part also 
requires the consent of the Dean of the Graduate School of the University of 
Kentucky. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 

 

 

 

DISSERTATION 

 

 

 

Joseph Michael Istre 

 

 

 

The Graduate School 

University of Kentucky 

2004 

 

 

 

 

 



 

 

 

 

ROBUST GENERIC MODEL CONTROL OR  F
PARAMETER INTERVAL SYSTEMS 

 

 

 

DISSERTATION 

 

A dissertation submitted in partial fulfillment of the 
requirements for the degree of Doctor of Philosophy in the 

College of Engineering 
at the University of Kentucky 

 

By 
Joseph Michael Istre 

 
Lexington, Kentucky 

 
Director: Dr. YuMing Zhang, Associate Professor of Electrical Engineering 

 
Lexington, Kentucky 

 
2004 

 
Copyright © Joseph Michael Istre, 2004 

 

 

 

 



 

 

 

 

 

 

 

 

To Gabi for walking with me past this milestone and to God for 

showing me the way. 

 

 

 

 

 

 

 

 



ACKNOWLEDGEMENTS 

 

 This research is funded by the National Science Foundation under Grant 

DMI-0114982 and the University of Kentucky Center for Manufacturing. I would 

like to thank Dr. YuMing Zhang for his guidance, encouragement and support. I 

am also grateful to Drs. Bruce L. Walcott, Alan T. Male, and Larry Holloway for 

their helpful insight and supervision. I would also like to thank Wei Lu and Yuchi 

Lui for their helpful advice throughout my experiments. In addition, I want to 

thank my parents Bob and Cheryl for their prayer and support and lastly my wife, 

Gabi, for being the most wonderful person in my life. Lastly, I want to give my 

ultimate gratitude to Jesus Christ for making this possible. 

 

 

 

 

 

 

iii 



TABLE OF CONTENTS 
ACNOWLEDGEMENTS......................................................................... iii 

LIST OF FIGURES ................................................................................. vii 

LIST OF FILES ..........................................................................................x 

CHAPTER 1   INTRODUCTION............................................................. 1 

1.1 OBJECTIVES..........................................................................................................1 

1.2 PROPOSED NONLINEAR CONTROL APPLICATIONS...................................................2 

1.3 OUTLINE OF DISSERTATION...................................................................................2 

CHAPTER 2   REVIEW OF NONLINEAR MODELLING AND 

CONTROL................................................................................................. 4 

2.1 NONLINEAR MODELLING ......................................................................................5 

2.2 NONLINEAR CONTROL ..........................................................................................8 

2.2.1   Overview............................................................................................................................... 8 

2.2.2   Feedback Linearization [20] ............................................................................................... 10 

2.2.3   Model Predictive Control [22-24] ....................................................................................... 14 

2.2.4   Backstepping [25] ............................................................................................................... 18 

2.2.5   H∞  Nonlinear Control [26].................................................................................................. 20 

2.2.6  Other Nonlinear Controllers................................................................................................. 22 

CHAPTER 3   GENERIC MODEL CONTROL ....................................24 

3.1 A REVIEW OF GENERIC MODEL CONTROL ...........................................................24 

3.1.1 A Nonlinear Modeling Approach for GMC ....................................................................... 30 

iv 



3.2 A NUMERICAL METHOD IN APPLYING GMC........................................................32 

3.3 GMC ROBUSTNESS AND STABILITY ....................................................................35 

3.3.1   GMC Robustness Properties................................................................................................ 35 

3.3.2   GMC Stability Analysis ....................................................................................................... 36 

3.4 FURTHER GMC THEORETICAL DEVELOPMENTS...................................................37 

3.4.1   Relative Degree Considerations of GMC ............................................................................. 39 

3.4.2   Nonminimum Phase Systems................................................................................................ 41 

3.5 FURTHER GMC IMPLEMENTATION ISSUES...........................................................42 

3.6 COMPARING GMC TO OTHER CONTROLLERS ......................................................44 

CHAPTER 4   PREDICTIVE GENERIC MODEL CONTROL...........47 

4.1 GMC CONTROL VARIATION................................................................................47 

4.1.1   Introduction ........................................................................................................................ 47 

4.1.2   Offline Optimizer................................................................................................................. 48 

4.2 INTRODUCTION TO PGMC...................................................................................52 

4.3 ANALYZING PGMC ............................................................................................54 

4.4 EXAMPLES..........................................................................................................60 

CHAPTER 5   PARAMETER INTERVAL ADAPTIVE PGMC..........68 

5.1 GMC PARAMETER INTERVAL SYSTEM MODEL....................................................68 

5.2 IDENTIFICATION OF PARAMETER INTERVALS........................................................68 

5.3 PGMC WITH INTERVAL FACTOR .........................................................................69 

5.4 EXPERIMENTAL RESULTS ....................................................................................71 

CHAPTER 6   ROBUST PARAMETER INTERVAL PGMC ..............77 

6.1 INTRODUCTION ...................................................................................................77 

v 



6.2 INTERVAL MATHEMATICS  [72, 73] .....................................................................77 

6.3 THE SISO CONTROL ALGORITHM .......................................................................78 

6.3.1 Finding the Optimum Control and Stability Interval ......................................................... 78 

6.3.2 Inducing Control Smoothness........................................................................................... 88 

6.4 SISO EXPERIMENTAL RESULTS...........................................................................91 

6.4.1 Linear Scalar Example with Implementation..................................................................... 91 

6.4.2   Nonlinear Scalar Example with Implementation................................................................... 97 

6.5 MULTIVARIABLE PARAMETER INTERVAL GMC .................................................102 

6.5.1 Linear Multivariable Case.............................................................................................. 105 

6.5.2   Linear Multivariable Simulation................................................................................... 106 

6.5.3 Nonlinear Multivariable Simulation ............................................................................... 119 

6.6 DISCUSSION......................................................................................................124 

CHAPTER 7   CONCLUSION ..............................................................125 

7.1 FUTURE WORK .................................................................................................126 

APPENDICES.........................................................................................127 

LINEAR EXAMPLE.....................................................................................................127 

LINEAR MULTIVARIABLE EXAMPLE ..........................................................................131 

NONLINEAR  MULTIVARIABLE EXAMPLE ..................................................................139 

REFERENCES .......................................................................................146 

VITA........................................................................................................155 

 

  

vi 



LIST OF FIGURES 
 

Figure 3-1   GMC Profile Specification .........................................................................26 

Figure 3-2   GMC Block Diagram for Linear Systems ...................................................27 

Figure 3-3   Output and Control .....................................................................................30 

Figure 4-1   3D Optimization.........................................................................................50 

Figure 4-2  Top-View of Optimization...........................................................................51 

Figure 4-3   Pole & Zeros of GMC Transfer Function from Yellow Optimization Line ..51 

Figure 4-4   First Order Approximation .........................................................................56 

Figure 4-5   Prediction Level Improving Control Oscillations ........................................58 

Figure 4-6   Closed Loop of GMC and PGMC...............................................................61 

Figure 4-7   Linear System. 2: Closed Loop Output and Control for GMC and PGMC...62 

Figure 4-8   Nonlinear System: Closed Loop Output and Control for Interval and PGMC

..............................................................................................................................64 

Figure 4-9   PGMC Control and Output for MIMO System............................................65 

Figure 4-10 PGMC Control and Output for MIMO Uncertain System ...........................65 

Figure 4-11 PGMC Control and Output for MIMO Uncertain System ...........................66 

Figure 5-1   Depiction of Parameter Interval Factor .......................................................70 

Figure 5-2   Description of Keyhole-Plasma Welding Process........................................72 

Figure 5-3   Experiment 1: Closed Loop Results ............................................................73 

Figure 5-4   Experiment 2: Closed Loop Results ............................................................74 

Figure 5-5   Weld Image of Keyhole Plasma Process .....................................................75 

Figure 5-6   Weld Image 2 of Keyhole Plasma Process ..................................................76 

Figure 6-1   Open Loop Step Responses for Ymin, Ymax, Ymean.................................92 

vii 



Figure 6-2   Control Signal of Linear Simulation ...........................................................93 

Figure 6-3   Output Signal of Linear Simulation ............................................................93 

Figure 6-4   First Set of Linear Experiments ..................................................................94 

Figure 6-5   Soft Plasma Experiments 1-3......................................................................95 

Figure 6-6   Second Set of Linear Experiments ..............................................................96 

Figure 6-7   Keyhole Plasma Process (Experiment 1).....................................................97 

Figure 6-8   Keyhole Plasma Process (Experiment 2).....................................................98 

Figure 6-9   Keyhole Plasma Process (Experiment 3).....................................................99 

Figure 6-10  Keyhole Plasma Process with New Interval Control ................................101 

Figure 6-11  Minimum Open Loop Step Response.......................................................107 

Figure 6-12  Maximum Open Loop Step Response ......................................................107 

Figure 6-13  Case 1: Change of F thru Time ................................................................108 

Figure 6-14  Case 1: GMC Control ..............................................................................109 

Figure 6-15  Case 1: GMC Output ...............................................................................109 

Figure 6-16  Case 1: Interval PGMC Control ...............................................................110 

Figure 6-17  Case 1: Interval PGMC Output ................................................................110 

Figure 6-18  Case 2: GMC Control ..............................................................................112 

Figure 6-19  Case 2: GMC Output ...............................................................................112 

Figure 6-20  Case 2: Interval PGMC Control ...............................................................113 

Figure 6-21  Case 2: Interval PGMC Output ................................................................113 

Figure 6-22  Case 3: Change of Parameters thru Time .................................................114 

Figure 6-23  Case 3: GMC Control ..............................................................................115 

Figure 6-24  Case 3: GMC Output ...............................................................................115 

viii 



Figure 6-25  Case 3: Interval PGMC Control ...............................................................116 

Figure 6-26  Case 3: Interval PGMC Output ................................................................116 

Figure 6-27  Case 4: Interval PGMC Control ...............................................................118 

Figure 6-28  Case 4: Interval PGMC Output ................................................................118 

Figure 6-29  Open Loop Step Response .......................................................................120 

Figure 6-30  GMC Control of Nonlinear Multivariable System....................................121 

Figure 6-31  GMC Output of Nonlinear Multivariable System.....................................121 

Figure 6-32  Interval Control of Nonlinear Multivariable System.................................122 

Figure 6-33  Interval Output of Nonlinear Multivariable System..................................122 

Figure 6-34  Interval Control with Ymax = 1000............................................................123 

Figure 6-35  Interval Output with Ymax = 1000.............................................................123 

 

 

ix 



LIST OF FILES 
 

Istre.pdf……….…………………………………………….……………………. 2.96 MB 

 

 

x 



CHAPTER 1 

INTRODUCTION 
 

1.1 Objectives 
 

 The objectives of this research will be to develop a multi-input multi-output 

(MIMO), nonlinear control that can handle parameter uncertainties, and then implement 

the algorithm by controlling an arc welding manufacturing process. Generic model 

control (GMC) has been selected to improve because the control law has the ability to 

incorporate a nonlinear model, the controller design parameters are intuitive and have a 

definable affect on the closed loop output, and the controller is already suitable for 

MIMO systems. A disadvantage with GMC is that the control signal for certain systems 

can frequently oscillate, which may make it impossible to implement in real control 

hardware. It is this aspect of GMC that will be improved first. Then improvements will 

be made on the ability of GMC to handle process uncertainties. The application of the 

developed controller will be in controlling arc-welding processes. 

Therefore, the GMC controller will be studied and modified to develop a MIMO, 

nonlinear, robust controller. The initial, primary modification will be to reduce the 

control signal variation associated with a GMC controller by averaging control 

predictions. GMC control is already MIMO, and therefore extension to a new type of 

MIMO controller should be straightforward. The robustness of GMC has been studied 

and will be altered to handle parameter interval systems by changing the control law to 
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incorporate parameter intervals. After modifying GMC, the new controller design will be 

used to control an arc welding process. 

 

1.2 Proposed Nonlinear Control Applications 
 

The proposed research applications involve arc welding processes. Many arc 

welding processes have been shown to be nonlinear. Furthermore, the benefits of 

controlled arc welding in comparison with the cost of equipment have also been 

established, making it a worthwhile research project. These benefits include the 

guaranteed full penetration or fusion, higher energy density and efficiency, deep 

penetration, improved mechanical properties of the weld, improved arc stability, higher 

welding speed, and fewer requirements for joint preparation. Thus, by improving the 

control of the nonlinear processes involved in arc welding by incorporating a newly 

developed nonlinear control algorithm, the project not only becomes suitable for doctoral 

research but also has the potential to make a rewarding and marketable product. 

1.3 Outline of Dissertation 
 

Chapter two reviews the previous and current methods of nonlinear modeling and 

control. Chapter three reviews in depth the theoretical background of GMC and 

associated recent development as well as implementation issues encountered in research. 

Chapter four begins the control contribution of the author by analyzing control smoothing 

in GMC by the use of control predictions. Then the contribution is furthered in Chapter 

five and six by first studying the use of parameter interval systems within the GMC 
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control technique and then developing the final version of the proposed control algorithm 

and extending its use to multivariable systems. 
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CHAPTER 2 

REVIEW OF NONLINEAR MODELING & 
CONTROL 

 

There is now a greater need for high performance control systems in industry. 

This is due to economic pressures requiring increased throughput, a rise in the demand 

for higher quality products that are produced more consistently and a demand for greater 

material and energy utilization. Moreover, environmental and safety issues have 

increased the performance requirements of modern control systems. Studies have shown 

that nonlinear high performance controllers are not only possible to implement but also 

affordable, [1]. 

The mathematical reason that the modelling and control of nonlinear, high 

performance systems exists is the inability of linear systems to sufficiently characterize 

all of the various processes. Nonlinear systems are predominant in the processes and 

systems in the manufacturing setting. Moreover, even when the system behaves linearly 

at a certain time, the system dynamics are continuously changing so that there are 

uncertainties in the linear mathematical model developed to characterize the particular 

manufacturing process to be controlled. Often the processes are assumed to be linear in 

order to simplify the analysis and design of the controller, and this is frequently 

sufficient. However, to capture the behavior in the large or the local subtleties of the 

nonlinear system dynamics and control them with greater accuracy and/or some other 

performance criteria, a controller designed to incorporate a nonlinear model is required. 

However, some digital controllers for nonlinear systems, in the past, have often had the 
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disadvantage that they were difficult to implement in real systems because of the number 

of calculations performed to determine the optimum process input. Therefore, a MIMO, 

robust controller for nonlinear systems that can be easily designed by engineers, can be 

used for real uncertain systems, and can be implemented on-line is not only an interesting 

topic of research but also could have an extensive application in the manufacturing 

setting.  

A review of nonlinear modelling and control is necessary in evaluating the 

performance of any developed nonlinear control technique. There are several nonlinear 

modelling and control techniques that have been created. In comparing the different 

methods, the primary considerations are model accuracy, complexity, method of system 

identification, and the ability to be implemented on-line. 

 
2.1 Nonlinear Modelling 
 

Nonlinear modeling is an interesting research topic. There are several different 

types of modeling with varying complexity. This section briefly overviews the most 

extensively used techniques, beginning with the most general of the dynamic models 

through the more specific and ending with other modeling types such as neural network, 

fuzzy, and others. 

The nonlinear autoregressive moving average with exogenous input (NARMAX), 

[2], model is the nonlinear version of its linear counterpart ARMAX and is generally 

described by function  as in Equation 2-1. f

( ) )(][,],[],[,],1[)( kendkudkunkykyfky uy +−−−−−= KK  

Equation 2-1 
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For ARMAX models, prior to parameterization, the dominant system time-constants are 

used to select the sampling time, and then the model order can be selected. The moving 

average part of the model is selected based upon the assumed structure of the disturbance.  

 For NARMAX models, system identification is more complex unless the structure 

of  is known. Because the function, , is usually unknown, the system must be 

estimated as . However, because there are numerous possibilities of the number of 

model terms and combination of terms, it is best to use a model that is a set of general 

basis functions. These basis functions can simply be a combination of ARMAX models 

or for greater accuracy a NARMAX model with a model class that provides a suitable set 

of regressors to fit the data generally over the domain of interest. Generally, the number 

of estimated parameters required to accurately characterize the nonlinear dynamics can 

be exceedingly large. However, recent studies have shown that the use of wavelets as the 

basis function have resulted in high accuracy with limited parameters, [3]. 

f f

f̂

A subclass of NARMAX models is the Volterra series. The Volterra series [4] describes a 

large class of nonlinear systems and can be characterized by Equation 2-2 or in discrete 

time by Equation 2-3. 

∑ ∫ ∏
∞
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The disadvantage with a Volterra series is also that there are a large number of 

parameters required in describing a system. Constraining the architecture of the series to 

reduce its complexity simplifies the model but also reduces its generality. Moreover 

because of the complexity of the Volterra series model, the control may not be online 

calculable and if the structure is not known, the parameter estimation is not 

straightforward [5,6].  

The Wiener and Hammerstein models are special cases of a Volterra series [7,8]. 

The discrete Hammerstein model is described as a memoryless, nonlinear system as is 

given by Equation 2-4 followed by a linear system described by Equation 2-5.  

∑
=

=
m

i

i
inputinonlinear uau

1
 

Equation 2-4 

n
n

n
n

zzz
zzz

zG −−−

−−−

−−−−
+++

=
ααα

βββ
L

L
2

2
1

1

2
2

1
1

1
)(  

Equation 2-5 

The Weiner model is described as the reverse of the Hammerstein model such that it is a 

linear system followed by memoryless, nonlinear system. Also, the Hammerstein and 

Weiner models can be cascaded to combine either a Hammerstein-Weiner model or 

Weiner-Hammerstein model. There are a number of ways of model identification for 

each of these types [9-11]. 

Other nonlinear models that have had extensive use are neural networks, which 

belong to a class of statistical models, and fuzzy systems, [12-19]. Neural networks are 

universal approximators and offer reduced ideal approximation error for only a linear 

increase in the number of parameters. Fuzzy systems have the distinct advantage of 
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incorporating heuristics in the design of the model’s nonlinearitites. Moreover, for each 

of these models the parameter identification is well established, and they provide the 

capability of on-line implementation. However for these models, the particular 

mechanistic reasons for the nonlinear system’s dynamics are not as apparent as they are 

with some of the previous models. 

 

2.2 Nonlinear Control 
 

2.2.1   Overview 

Although the computational demands for nonlinear control implementation are 

significantly greater than for a linear control system, advances in control system software 

and hardware have improved the applicability of nonlinear control. There is a wide range 

of techniques used to control nonlinear processes.  

Previously the common approach in controlling nonlinear processes was to design 

the controller with a series of linear models that were valid for certain operating 

conditions. It was a type of gain scheduling approach whereby a certain linear controller 

was selected based upon the specific operating point that the process was running in at 

that time. However, recent interest in the control of nonlinear processes using nonlinear 

models has stimulated greater theoretical and practical developments. 

Some issues that are encountered in nonlinear control are that of state estimation 

and disturbance modelling. In linear systems, the state estimation has, in general, been 

solved so that certainty equivalence between estimation and reality can be assumed, [20]. 

However, for nonlinear systems state estimation is not as straightforward and requires 

enhancements or learning mechanisms that can predict the states from the control and 
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output signal. Moreover unlike linear systems, process stability can not even be 

guaranteed by ensuring that the state estimators and state feedback control laws are 

stable. Then the modelling of disturbances is more complex, in that the nature and point 

of injection of the disturbance must be considered because the superposition position 

principle is not valid in nonlinear systems. 

The typical type of nonlinearities that occur in practice can be categorized into 

smooth and non-smooth groups, [20].  Smooth nonlinearities occur frequently and 

include products, exponentials or power type functions, and nonlinear continuous 

functions such as trigonometric functions. Non-smooth functions are also common in 

practice and these include things like specific mechanical properties such as hardstops or 

gear backlash and also more general process related things such as process limits or 

constraints. An important difference between non-smooth nonlinearities and smooth 

nonlinearities is that nonsmooth nonlinearities do not have definable inverse functions. 

This difference causes a distinct division in the way that these two process groups can be 

controlled. For example, there is no inverse function for a process hard stop that can be 

used to manipulate the control to cancel the effect of the hard stop. The smooth nonlinear 

functions do have inverse functions, and thus by the use of this inverse function, the 

nonlinearity can, in effect, be cancelled. However, because the non-smooth nonlinearities 

cannot be cancelled, the control action must be manipulated by addressing them in 

another way in the control calculation. Three primary ways have been proposed of 

manipulating the control action to address these non-smooth nonlinearities. First, it may 

be possible to lower the process performance requirements so that the non-smooth 

nonlinearities are completely avoided. Second, the controller could be enhanced with 
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types of process dependent embellishments that manage the control action based upon the 

known nonlinearities. This is commonly done in controllers called anti-windup 

controllers. Lastly, the controller type itself could be designed with the capability of 

including the nonlinearities within the control law. 

Anti-windup controllers are commonly used for situations involving actuator 

constraints or other similar limitations, [21]. The anti-windup schemes involve 

mechanisms for notifying the controller when it is operating within a region that has 

certain constraints or limitations, and then the controller makes the predetermined 

modification to the control action.  

In the following sections specific types of nonlinear control will be reviewed 

starting with feedback linearization, which addresses smooth nonlinearities by canceling 

them via a definable inverse. Then Model Predictive control will be reviewed, which can 

handle nonsmooth nonlinearities and uses non-linear programming to calculate the 

control action. Also, mentioned will be adaptive backstepping, which has recently been 

proposed. Lastly, H infinity nonlinear control and others will be discussed. 

 

2.2.2   Feedback Linearization [20] 

Feedback Linearization is a conceptually simple technique for the control of 

nonlinear systems with smooth nonlinearities and stable process inversion. However, if 

the process has unstable zero dynamics (i.e. nonminimum phase), Feedback Linearization 

fails to ensure stability. Thus, when using Feedback Linearization there are two ways of 

dealing with processes with unstable zero dynamics. First, it is possible to extend 

Feedback Linearization to nonminimum phase systems by selecting another output of the 
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system with respect to which the system has minimum phase characteristics. Second, it is 

might be possible to just construct a minimum phase approximation of the original model 

using an inner-outer factorization. 

A brief review of Feedback Linearization is presented below. Consider the single-

input single-output nonlinear state space system 

)()(
)()()()(

xhty
tuxgxftx

=
+=&

 

Equation 2-6 

Assume that x = 0 is an equilibrium point of Equation 2-18 i.e. f(0) = 0, and that 

the nonlinear system has relative degree r defined in a certain neighborhood U of x = 0. 

Next, consider a stable linear differential operator p(ρ) of degree r 

1)( 1
1 +++= −

− Kr
r

r
r ppp ρρρ  

Equation 2-7 

Then p(ρ), applied to the system output y(t) can be written as  

)()()()()( tuxaxbtyp +=ρ  

Equation 2-8 

where b(x) and a(x) are suitable nonlinear functions of the system states. Also, it is given 

that a , since the nonlinear system has relative degree r in U. From 

Equation 2-20 it is clear that applying the control law, 

Uxx ∈∀≠ 0)(

)(
)()(*)(

xa
xbtytu −=  

Equation 2-9 

then the original nonlinear system can be transformed into a linear system of the form 
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)(*)()( tytyp =ρ  

Equation 2-10 

where y*(t) can be any external signal. 

The control law defined in Equation 2-9 is known as Input-Output Feedback 

Linearization. One advantage of Feedback Linearization is that it is simple and it allows a 

straightforward design of the differential operator p(ρ), since the roots of p(ρ) determine 

the dynamic behavior of the output of the closed-loop system.  

Another control method related to Feedback Linearization that retains its desirable 

simplicity but without some of its restrictions is Generalized Feedback Linearization. 

However, these improvements have the undesirable tradeoff that the closed-loop 

properties lose their linear behavior.  

Previously, the order of the linear differential operator p(ρ) was r i.e., the relative 

degree of the nonlinear system.  

Allowing the degree of p(ρ) to be  and if the input is made to satisfy a linear 

dynamic model of the form 

rnp ≥

)(*)()( tutul =ρ  

Equation 2-11 

where l(ρ) is a differential operator of degree  rnn pl −=

1)( 1
1 +++= −

− Kln

ln
ln

ln lll ρρρ  

Equation 2-12 

And u*(t) is the steady state input signal which makes the steady state value of the output 

y(t) to be equal to y*(t) 
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Combining of Equations 2-10 and 2-11, yielding, with . [ ]1,0∈λ

[ ] [ 0)(*)()()(*)()()1( ==+=− tutultytyp ρλρλ ]  

Equation 2-13 

constitutes the Genralized Feedback Linearization (GFL) control law, which can also be 

written as 

)()()()()(')( tztultyptz =+= ρρ  

Equation 2-14 

where 

)(*)(*1)(

)(1)('

tutytz

pp

+−=

−=

λ
λ

ρ
λ

λρ
 

Equation 2-15 

Notice that Equation 2-15 implicitly defines an improper linear control law which 

becomes a nonlinear proper control law when the state space model is used to evaluate 

p’(ρ)y(t). This strategy reverts to the usual Feedback Linearization strategy; by taking 

λ=0 in Equation 2-13. The strategy can handle all stable systems, whether or not they are 

stably invertible, by taking λ=1. By continuity, various combinations of stable and stably 

invertible dynamics will also be able to be stabilized by this class of control law, 

depending upon the design of the differential operators p(ρ) and l(ρ), as well as the value 

of the parameter λ. 

To develop the control law implicitly defined in Equation 2-26 we introduce a dummy 

variable )(tu is introduced as follows: 

)()()( tultu ρ=  
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Equation 2-16 

Substituting Equations 2-15 and 2-16 into expression 2-14, which defines the GFL 

control strategy, the following nonlinear control law is finally obtained: 

)(1
)()()(

ξ
ξ

a
btztu

+
−=  

Equation 2-17 

In generalized feedback linearization the linear form is used to define a variable z. 

The key point in GFL is that p and l’ are designed such that the zero dynamics associated 

with z are locally stable. 

 

2.2.3   Model Predictive Control [22-24] 

A well-known class of nonlinear controllers that directly uses the nonlinear model 

is model predictive controllers (MPC), [22]. Linear MPC is a discrete time controller that 

calculates the present control, at each sampling time, by predicting over a horizon p the 

process response to changes in control. The change in control that is within specified 

constraints and that gave the most desirable process response is then implemented.  

Nonlinear MPC (NMPC) is similar and is constructed as solving on-line finite 

horizon open-loop optimal control problem at each sampling time using the system model 

and predetermined state, input, and output constraints. Based on measurement samples 

obtained at time t, the controller predicts the future dynamic behavior of the system over 

a prediction horizon T and determines (over a control horizon  T ) the input such 

that a predetermined open-loop performance objective function is optimized. 

p pc T≤
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Because there are disturbances and the model of the process is likely not identical 

to the process, the process behavior will be different from the predicted behavior. Thus, 

only the first step of the system inputs calculated by the controller will be implemented, 

and after the measurement at the next sampling time, the controller’s online 

prediction/optimization calculation will be completed again. However, if the model of the 

process was completely accurate and if the optimization problem could be solved for the 

duration of the experiment, then one could apply the controller’s predicted inputs open 

loop for the duration of the experiment. However, this is not generally possible.  

Consider the stabilization problem for a class of systems described by the 

following nonlinear set of differential equations. 

0)0()),(),(()( xxuxfx == ttt&  

Equation 2-18 

 

Subject to input and state constraints of the form: 

,0,)(0,)( ≥∀∈≥∀∈ tXttUt xu  

Equation 2-19 
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,:

maxmin

maxmin

xxxx
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m

X

U
 

Equation 2-20 
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Assumption 1:  U is compact, is connected and  pℜ⊂ nX ℜ⊆ UX ×∈)0,0( .

Assumption 2:  The vector field f: ℜ is continuous and satisfies f(0,0) = 0. In 

addition, it is locally Lipschitz continuous in x. 

nm ℜ→ℜ×

Assumption 3: The system (Equation 2-18) has an unique continuous solution for any 

initial condition in the region of interest and any piecewise continuous and right 

continuous input function [ ] UTp →⋅ ,0:)(u . 

Usually, the finite horizon open-loop optimal control problem described above is 

mathematically formulated as follows: (internal controller variables are denoted by a bar) 

Find          ));(),((
)( pcu

TTt ⋅
⋅

uxmin J  

Equation 2-21 

with                   ( )∫
+

=⋅
pTt

t
pc dFTTtJ τττ )(),(:));(),(( uxux  

Equation 2-22 

subject to:   
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Equation 2-23 

where Tp and Tc are the prediction and control horizon with Tc ≤ Tp and internal 

controller variables are denoted by a bar. 

The function F in Equation 2-24, called stage cost, specifies the desired control 

performance that can arise, for example, from economical and ecological considerations. 

The standard quadratic form is the simplest and most often used one: 

16 



),()(()(),( ) s
T

ss
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s RQF uuuuxxxxux −−+−−=  

Equation 2-24 

Where and denote given setpoints: Q and R denote positive definite, symmetric 

weighting matrices. 

sx su

The closed-loop control is defined by the optimal solution of Equation 2-20 at the 

sampling instants:  

[ ].,),),(;(*:)(* , δτττ tTTtx cp ∈= uu  

Equation 2-25 

The optimal value of the NMPC open-loop optimal control problem as a function of the 

state will be denoted in the following as value function: 

).));(;(*,();( ,, cpcp TTtJTTV xuxx ⋅=  

Equation 2-26 

The value function plays an important role in the proof of the stability of various NMPC 

schemes, as it serves as a Lyapunov function candidate. 

 The disadvantages of nonlinear MPC are primarily due to the finite horizon 

optimal control problem being non-convex. Non-convexity introduces the questions of 

how long will the optimization take, whether it will terminate, and is a suboptimal 

solution acceptable. The finite horizon optimal control problem associated with nonlinear 

MPC is not guaranteed to be convex and it is difficult to obtain the global optimal 

solution. Therefore, because of the non-convexity NMPC formulations need to be derived 

that guarantee solution feasibility, robustness, and performance despite the solution being 

sub-optimal. Moreover, for further development of NMPC algorithms, faster optimization 

solvers need to exploit the inherent structure of the process. For it is possible that in 
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solving the finite horizon optimal control problem one can exploit the specific system 

dynamics, e.g. Lipschitz continuous, static nonlinearity, input-affine, bilinear, hybrid, 

piecewise affine, non-holonomic or homogeneous.  

 

2.2.4   Backstepping [25] 

Backstepping is a method that can be used on nonlinear systems of special 

structure to find an output having a passivity property, including the relative degree one 

and stable zero dynamics. Finding an “output” z having stable zero dynamics plays a key 

role in this design. A recently developed control technique called adaptive backstepping, 

[25], does not require stable zero dynamics; however, it does require that the unknown 

parameters of the system are constant. 

 Consider the class of pure-feedback systems with unknown parameters is well 

represented by the third order system 

θϕ
θϕ

θϕ
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Equation 2-27 

where the p x 1 vector θ is constant and unknown. 

 When the parameter vector θ is known, the pure-feedback system given in 

Equation 2-27 under backstepping control can be formed to essentially mimic feedback 

linearization. However, feedback linearization linearizes the output and thus may cancel 

useful nonlinearities. Adaptive backstepping designs are more flexible and do not force 

the designed system to appear linear. In fact, they can not only avoid the cancellations of 
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useful nonlinearities but can often introduce additional nonlinear terms to improve 

transient performance.  

 “The idea of adaptive backstepping is to design a controller for Equation 2-27 

recursively by considering some of the state variables as “virtual controls” and designing 

for them intermediate control laws. In Equation 2-27 the first virtual control is x2. It is 

used to stabilize the first equation as a separate system. Since θ is unknown, this task is 

solved with an adaptive controller consisting of the control law α1 (x1) and the update law 

, as in the Lyapunov-based design.” )(ˆ
1xτθ =

“Adaptive backstepping treats the parameter θ in the second equation of Equation 

2-27 as a new parameter and assigns to it a new estimate with a new update law. As a 

result, there are several estimates for the same parameter. This overparameterization is 

avoided by considering that in the first step  is not an update law but only a 

tuning function . This “tuning function” is used in subsequent recursive steps and 

the discrepancy is compensated with additional terms in the controller. 

)(ˆ
1xτθ =

)( 1xτ

(ˆ τθ − )1x

Both adaptive backstepping and tuning functions achieve the goals of stabilization and 

tracking.”  

 “The tuning functions’ approach is an advanced form of adaptive backstepping. It 

has the advantage that the dynamic order of the adaptive controller is minimal. The 

dimension of the set to which the states and parameter estimates converge is also 

minimal,” [25]. 

 “Certain drawbacks of tuning functions are that they do not offer freedom of 

choice of parameter update laws and for systems with many unknown parameters the 

dynamic order of its overparameterized controller is high. The order of the tuning 
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functions controller is minimal, but for high-order systems its nonlinear expressions 

become increasingly complex due to the built-in interaction between the identifier and the 

control law.” 

 “There is a new controller that was developed with strong parametric robustness 

properties: It achieves boundedness without adaptation. Furthermore, the new controller, 

called the ISS-controller, guarantees boundedness not only in the presence of constant 

parameter errors, but also in the presence of time-varying parameter estimates. These 

input-to-state stability (ISS) properties make the ISS-controller suitable for modular 

adaptive nonlinear designs,” [25]. 

 “Backstepping design of output-feedback controllers is performed on systems 

enlarged by filters, and the filter states are used for feedback. The output-feedback 

modular designs result in separation of three design modules: the control law, the 

identifier, and the state estimator.”  

Transient performance bounds of the closed loop systems designed using adaptive 

backstepping techniques can be computed and therefore the controller can be designed to 

meet certain transient requirements.  

 Adaptive backstepping and its use in nonlinear control theory is new and is still 

focused on the development of the basic schemes. Its robust analysis is yet to be 

developed. [25] 

 

2.2.5   H∞  Nonlinear Control [26] 

An approach that originates back to the beginning of the eighties is called H∞ 

optimization. This method can be viewed as a worst-case design methodology in the 
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frequency domain. In fact H∞ stands for the space of complex functions which are 

bounded and analytic in the closed right half of the complex plane, [26].  

“The H∞ norm from the exogenous disturbance inputs to the to-be-controlled 

variables in the frequency domain, used to describe the control objectives, is equal to the 

L2-induced norm for the time-domain versions, under the constraint of internal stability. 

The property of finite L2-induced norm of a stable system, also called finite L2-gain, can 

be characterized as the dissipativity of the system with respect to a certain supply rate.” 

“The suboptimal H∞ problem can also be formulated as a two player, zero sum 

linear quadratic differential game, where the disturbances are considered as the 

maximizing player whose goal it is to maximize a certain cost criterium, while the 

controls denote the minimizing player whose goal it is to minimize the same cost 

criterion,” [26]. 

These H∞ solutions for linear systems have been extended for nonlinear systems 

by using Hamilton-Jacobi equations which extend the Riccati equations used in the linear 

theory. “The solution of the nonlinear state feedback H∞ problem was described using a 

Hamilton-Jacobi inequality. The nonlinear measurement feedback H∞ problem is up to 

now not completely understood. Nevertheless, sufficient conditions for the existence of 

controllers of a specific form solving the regular measurement feedback H∞ problem 

have been derived. Also, necessary conditions for solvability of the problem have been 

given,” [26]. 

“Most of the results are concerned with the regular H∞ problem for non-linear 

systems that are affine in the inputs and the disturbances. Recently an extension of some 
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of these results to general nonlinear systems have been made. The regularity of the H∞ 

problem is concerned with certain rank conditions on the feed through matrices. The 

singular H∞ problem occurs when these regularity assumptions are violated. Singular H∞ 

problems naturally arise when considering certain robustness problems such as parameter 

uncertainty and multiplicative uncertainty.” [26] 

 

2.2.6  Other Nonlinear Controllers 

Neural networks and fuzzy controllers are suitably designed to control nonlinear 

systems [27-33].  Neural networks are parameterized nonlinear functions. Their 

parameters are, for instance, the weights and biases of the network. Adjustment of these 

parameters results in different shaped nonlinearitites. The neural network control is 

trained by adjusting the neural network parameters as a function of the error between the 

network output and a series of training data. Fuzzy controllers, which have the unique 

advantage of including the designer’s heuristics, can sometimes lead to better 

convergence properties for the actual input-output map. Fuzzy controllers are simply 

nonlinear functions that are parameterized by, for example, the membership function and 

consequence parameters. For both neural network and fuzzy controller models, adaptive 

schemes have been studied and developed. 

Other nonlinear control examples include combined linear or constrained 

nonlinear controllers. Combinations of polynomial linear ARMA models have been used 

to develop a predictive control strategy for nonlinear systems [34]. Sliding-mode 

techniques operated by switching between two nonlinear feedback control rules [35]. A 

nonlinear controller based on normal form theory was designed to drive simple nonlinear 
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systems with polynomial vector fields derived around singularities [36]. The min-max 

optimization controllers were developed to find the optimal control for discrete, nonlinear 

processes [37]. The procedure found the best control for the worst-case plant, based on 

parameter bounds.  Another unique nonlinear controller based on game theories was 

developed as a robust control to achieve the best bound on the worst close-loop 

performance [38]. Much work has also been accomplished on many MIMO nonlinear 

systems, especially a class of nonlinear systems called bilinear systems [39-41].  

Nonlinear adaptive controllers have seen extensive use to reduce the effects of 

plant parameter variations by adjusting the controller online [42]. In nonlinear control 

applications, the compensation of deadtimes is important and has been studied [43]. In 

addition, the handling of the control and output constraints is also relevant to nonlinear 

control implementation and has been studied [44]. 

In 1988, Lee and Sullivan [45], presented a nonlinear control structure that they 

called generic model control (GMC) that permits the direct use of the nonlinear 

multivariable process model. There is not only the usual requirement that each of the 

controlled variables reach a defined setpoint but also the rate of approach to the setpoint 

is specified. Similar differential geometric approaches were also developed, [46,47] and 

are each based upon an earlier work, [48]. However, they differ in the performance 

definition. 
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CHAPTER 3 

GENERIC MODEL CONTROL 
 

The essential idea of Generic Model Control (GMC) is to find the values of the 

manipulated variables that force a model of the system to follow a desired reference 

trajectory. It is related to the subset of mathematical knowledge known as differential 

geometry that involves linearization of nonlinear mappings between the input and output 

variables. 

3.1 A Review of Generic Model Control 
 

Consider the process model that can be described by a set of differential equations 

as: 

),,,,( θtduyfy =&  

Equation 3-1 

where y is a vector of process outputs of dimension m, u is a vector of process inputs of 

dimension m, d is a vector of process disturbances of dimension l, t is time and θ is a 

vector of model parameters of dimension q. In general f is a vector of nonlinear known 

functional relationships. In determining the control at a particular step, the GMC 

algorithm specifies a rate of change of the output variables as: 

∫ −+−=
t

refrefDesired dt
0

21 )()( yyKyyKy&  

Equation 3-2 
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In Equation 3-2, two process desires are expressed. First, when the system is at a 

greater distance from the setpoint, then the system should travel towards the setpoint 

more quickly. Moreover, the longer that the system has remained offset from the setpoint, 

then the system should also travel towards the setpoint more quickly. The values of K1 

and K2 are what determine the speeds. Lastly, to solve for the control, the actual output 

rate is set equal to the desired output rate, , in other words setting Equation 3-1 

equal to Equation 3-2, giving the following equation from which the control, u, can be 

solved: 

yy && =Desired

∫ −+−=
t

refref dtt
0

21 )()(),,,,( yyKyyKduyf θ  

Equation 3-3 

Therefore, GMC is a type of process control for linear or nonlinear systems that 

uses proportional and integral error terms, similar to PI control, to adjust the control input 

to achieve a desired closed loop output trajectory.  For GMC, the specified closed loop 

output trajectory is directly determined using Equation 3-2 and then the control to 

achieve that trajectory is indirectly solved for by using an inverse of the process model 

(linear or nonlinear), [45].  

The system in Equation 3-2 is the key element in the GMC control law. The 

parameters K1 and K2 are diagonal matrices with elements chosen independently for each 

controlled output. These choices should be made reasonably and with an understanding 

of the natural system’s response characteristics. For the simple single-input single-output 

system, assuming , the Laplace transformation of the closed loop output in 

Equation 3-2 gives: 

yy && =Desired
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where                      
2
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== ξτ  

Equation 3-5 

The transfer function given in Equation 3-4 does not behave identically to a classic 

second-order system due to presence of the zero in the transfer function. However, 

similar plots to the second-order system can be made with the plot of a normalized 

response of the system 
refy

y  vs. normalized time τ
t  where ξ  is a parameter as is 

shown in Figure 3-1.  

 t/τ
Figure 3-1   GMC Profile Specification 

As ξ  is increased the process has less overshoot and eventually after 4≥ξ , the 

process due to pole-zero cancellation resembles a first order response. The settling time is 

predominantly determined by the value of τ , and increases directly with τ . Thus, the 

design of the reference can be accomplished by the first determining the shape of the 

desired response by selecting ξ  and then specifying the timing of the response in 
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appropriate selection of τ  in relation to the natural process’s response time. 

Alternatively, the designer can also choose the closed loop reference system by setting 

the poles of the transfer function given in Equation 3-4. 

G −1ˆ

Insight can be gained into the nature of the GMC control technique by examining 

the GMC control of linear systems.  Assuming the process can be modeled as: 

dUGY ′+⋅=  

Equation 3-6 

and if  is the approximate model of the process, then the GMC control is given as: Ĝ

( ) ( ) ( )( )sEddyKsK
KsKs

U refGMC −−⋅+⋅







++

⋅= 21
21

2

1  

Equation 3-7 

Furthermore, Equation 3-6 and 3-7 can be used to construct the closed loop block 

diagram for linear systems given in Figure 3-2. 

 

- 

Figure 3-2   GMC Block Diagram for Linear Systems 
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The control parameter, E, is a diagonal matrix that is used in rejecting disturbances, and 

should be properly set according to the assumed nature of the disturbance. 

Alternatively if the process can be modeled as a nonlinear system given as: 

)(
),,,(

xgy
tduxfx

=
=&

 

Equation 3-8 

where are the state, disturbance, time, and output, respectively. The GMC 

control input, u , can then be solved for by calculating: 

yandtdx ,,,

∫ −+−=
∂
∂= dtxxKxxKtduxf

x
gy refref )()(),,,( 21&  

Equation 3-9 

to obtain  as a function of a number of variables as given below. u

))(),(,,,,( 21 ∫ −−= dtxxKxxKtduxhu refref  

Equation 3-10 

Furthermore, if there are constraints on the input or process variables, then the control  

should be chosen to minimize the instantaneous value of Equation 3-11 (in other words 

) such that all constraints are satisfied. This minimization may be solved for 

algebraically but will likely be accomplished via nonlinear programming optimization 

routines. 

u

Desiredyy && −

∫ −−−−= dtxxKxxKtduxf
dx
dgtudxJ refref )()(),,,(),,( 21  

Equation 3-11 

Another GMC closed loop control example is given as follows, if the system can be 

described by the state space linear system: 
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Equation 3-12 

then the GMC control without any variable constraints would be given by 

AxBDdBdtyyKByyKBu refrefGMC
11

2
1

1
1 )()( −−−− −−−+−= ∫  

Equation 3-13 

GMC can also be used for discrete systems. Using discrete approximations for the 

time derivative and time integration operators, the following digital GMC desired closed 

loop trajectory is given as: 
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Equation 3-14 

 The digital control can be solved for in the same way as the continuous control so that: 
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Equation 3-15 

Despite the control precision achieved by including the model of the process in 

the derivation of the control, a disadvantage with the GMC method is that there is no 

limitation on control signal variation. The implementation of a maximum control 

variation, , can be imposed upon the control; however, this constraint degrades the 

closed loop performance, [45]. An example of the control oscillations required by the 

maxu∆
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GMC method is shown in Figure 3-3, for the linear system given in Equation 3-16 and 

using ξ=6, τ=0.5.   
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Equation 3-16 

 
Figure 3-3   Output and Control 

3.1.1 A Nonlinear Modeling Approach for GMC  

The core of the GMC algorithm that has been just previously discussed has also 

been extended to cope with other important aspects of nonlinear control. These include 

the use of steady-state models and systems with dead time. For the GMC algorithm, the 

nonlinear dynamic model as given in Equation 3-1 is assumed to be available. However, 

steady-state models of the form given in Equation 3-17 are much more readily available. 

0),,,( =θduyfss  

Equation 3-17 
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Thus, if a dynamic nonlinear model of the form in Equation 3-1 is not available, it has 

been shown that an appropriate approximation of it, for GMC control, is to use the 

nonlinear steady-state model of Equation 3-17 in tandem with a linear model that models 

the process transients. The approximate transient modelling is accomplished by forming a 

first or second order linear model by estimating the primary time constants of the process, 

which are available through step response tests. Although these estimates of the transient 

behavior are going to be inaccurate at different operating conditions, the total result of the 

linear transient model coupled with the nonlinear steady-state model are usually 

sufficiently accurate for control performance, [1].  

 An example of the transient first order linear modelling could be given as: 

)(1 yyTy u −≈ −&  

Equation 3-18 

where T is a diagonal matrix of the estimated open-loop time constants of a step change 

in all input variables and yu is the steady-state values of the outputs with no further 

control action. Therefore, if control designer has the nonlinear steady-state model as 

given in Equation 3-17, and if the transient behavior of the model can be approximated 

by Equation 3-18, then a control action can be determined through the use of the 

combination of the two.  This is done by solving the nonlinear steady-state model for the 

control action that achieves the output yu given via the GMC derived requirement in 

Equation 3-19. 

∫ −+−+= ))()(( 1 dtyyKyyKTyy ref2refu  

Equation 3-19 
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3.2 A Numerical Method in Applying GMC 
   

In application of the GMC control law, it is not always suitable to algebraically 

manipulate all the equations in obtaining an explicit expression for the control. The 

solution to this problem is to solve them numerically, and this will also allow for there to 

be process and input constraints, [1]. Thus, there are two things to consider. First, 

whether the GMC algorithm together with the process model can be solved for to obtain 

the control , and secondly how to minimize the difference between the reference system 

and the process outputs when there are process constraints. Constrained optimization 

approaches have been formed to answer both of these questions for several nonlinear 

chemical processes, [49]. The control optimization uses slack variables that define a 

process variable’s or constraint variable’s departure form the chosen reference trajectory. 

The selection of the weighting factor for each of these slack variables provides 

customization to emphasize certain constraints or certain tracking of the output 

references.  

u

The constraints for the optimization problem can be written using a nonlinear 

function, Ψi , as: 

qit UiiiLi K1;),,,,( =≤=≤ CduyψCC θ  

Equation 3-20 

Moreover, it is sensible that the trajectory of the violated constraints follow a reference 

using the GMC rule and slack variables λ such that: 
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Similarly to the simplifying approach taken in Section 3.1.2 of modeling the nonlinear 

dynamic model by using a nonlinear steady-state model and a linear transient model, the 

solution to Equation 3-21 can either use the nonlinear dynamic models, i , or can make 

use of the following approximate models: 
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Equation 3-22 

Finally, the solution of the multivariable constrained control problem can be solved as a 

nonlinear optimization problem, which minimizes a function of the slack variables. The 

formulation of this optimization is as follows: 

Choose: 

qicjcjpipi K1;,,,, =+−+− λλλλu  

Equation 3-23 

To minimize: 
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Equation 3-24 

where ωi and ωj are weights such that  and . 0≥iω 0≥jω
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Equation 3-25 

The variables are the upper and lower output performance slack 

variables and the upper and lower constraint slack variables, respectively. The gains 

 are the diagonal matrices that have the PI gains setting the closed loop output 

reference, which are selected using Figure 3-1. The soft process constraints are described 

in  for the upper bound and  for the lower bound. The gains  

specify the speed the constrained process variables approach their bounds. Higher gains 

avoid constraint violation but sacrifice closed loop output performance. The values of the 

matrices are also selected using the method in Figure 3-1. Finally, there are also hard 

constraints as those given for the maximum and minimum control u and 

maximum and minimum change in control . The nonlinear 

optimization that arises is well structured since a slack variable is added to each control 

law equation to ensure that a solution exists. The solution of the nonlinear programming 

(NLP) optimization is reasonably fast since the current control settings and slack 

variables provide a good estimate for the solution vector. For Ansari and Tade’s 
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processes using NLP techniques such as sequential quadratic programming (SQP) usually 

converged in 3 to 4 iterations, [49]. 

They also found that for the dynamic nonlinear model a multivariable first order model of 

the type in Equation 3-26, provided sufficiently accurate control. 
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Equation 3-26 

  

3.3 GMC Robustness and Stability 
 

3.3.1   GMC Robustness Properties 

 A different approach to the Generic Model Control (GMC) design for uncertain 

nonlinear processes is robust GMC. The approach is developed by integrating H∞–loop 

shaping controller within the GMC framework. This new design framework provides not 

only the ability to optimally tune the GMC parameters, but also to enjoy the guaranteed 

robust stability and performance properties in terms of the v-gap. [50] 

The design methods are derived from the application of the v-gap metric and the 

H∞–loop shaping method within the GMC design framework. It should be noted that the 

robust GMC (RGMC) concept is not limited to a class of nonlinear processes with 

relative degree one. Simple and iterative approaches to robust Generic Model Control 

(RGMC) design have been developed extending Samyudia and Lee’s method. A simple 

procedure to design a robust GMC controller has been derived by analyzing the bounds 
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on the loop shapes at different frequency ranges. To achieve an improved closed-loop 

performance of the simplified robust GMC controller, a data-driven optimizer has been 

proposed to iteratively adjust the β-parameterized robust GMC controller using a set of 

closed-loop data, [51]. 

 

3.3.2   GMC Stability Analysis 

Considering the closed loop system using GMC given by the equation: 
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Equation 3-27 

It has been shown that under the GMC explicit control law, if the model is 

perfect, there are no unmeasured disturbances, the sampling time of the controller is 

insignificant, and no process constraints exist, then the closed-loop system is always 

asymptotically stable for any choice of positive and . iξ iτ

For any initial condition of system Equation 3-27, there exist M>0 and δ>0 

such that if: 

0y

δ<− )ˆ),,,( tt d,u,(x,fduxf  

Equation 3-28 

for all x and u, all possible disturbances d and all t>0, then the solution of Equation 3-27 

satisfies: 

0)(,)( ≥∀<< tMtMt zy  

Equation 3-29 
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Moreover, for any ε >0 there exist positive numbers δ(ε ) and such that if 

Equation 3-28 is true for all x and u, all possible disturbances d and all t>0, then the 

solution of Equation 3-27 satisfies Equation 3-29 and: 

),(1 δεt

),()(,)( 1 δεεε tttt ≥∀<< zy  

Equation 3-30 

 Thus, if the process/model mismatch is appropriately limited, the process outputs 

of the closed-loop system are bounded, which means that the closed-loop system is 

stable. The unmeasured disturbances can be considered as a special kind of 

process/model mismatch.  

  

3.4 Further GMC Theoretical Developments  
 

In this section, several theoretical developments will be briefly reviewed that have 

extended the basic GMC technique. 

Lee and Zhou, [53], designed a new multivariable dead-time compensator under 

the GMC framework by decomposing an n x n MIMO dead-time problem into a series of 

n SISO feedback controllers, each with a feedforward compensation term.  

Dunia et al., [54], implemented the Sliding Mode Control (SMC) for the GMC 

reference trajectory, and showed that SMC allows one to incorporate the effect of the 

uncertainty bounds in the controller structure, making GMC robust to processes with 

bounded uncertainties.  
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A new approach to Adaptive Generic Model Control (AGMC) was proposed 

order to further improve the performance of GMAC, [52]. Two AGMC schemes were 

developed. 

 The first scheme is based on estimation of time-varying parameters on-line in the 

embedded nonlinear model of GMC. The use of a new filter was proposed, called a 

Strong Tracking Filter (STF) to estimate time-varying parameters on-line. The negative 

influence of time-varying parameters on the control performance is effectively overcome, 

by updating them in every control period. This constitutes a parameter-estimation-based 

AGMC scheme. 

 The second scheme is based on the implementation of a new concept of Input 

Equivalent Disturbance (IED). When there are structural process/model mismatches, 

GMC cannot reject the influence of such disturbances quickly. A new concept of Input 

Equivalent Disturbance (IED) is introduced and the process/model mismatches are 

lumped into IED. This constitutes an IED-estimations-based AGMC scheme. 
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3.4.1   Relative Degree Considerations of GMC 

It has been previously stated that GMC is only useful for systems where the 

relative order of all outputs is one. This is because the time derivatives of the outputs 

Y& must be directly dependent on the inputs U. In high relative order systems, this 

condition is not satisfied. The relative degree of a system is measured by the Lie 

derivative. 

The Lie Derivative of a scalar function in the direction of a vector function 

f(X,U,D) is defined as: 
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Equation 3-31 

Note that this is a scalar function of X, U, and D. The Lie derivative is a linear derivative 

operator and its extended use is denoted by: 

iif

T
i

k
f

i
k
f

ggL

f
X

gL
gL

=
∂

∂
=

−

0

1 )(
 

Equation 3-32 
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The order of a dynamic system is generally the highest order of time derivative, 

which appears in the differential description of the system. Conventionally, the system 

order is the highest exponent of s appearing in the denominator of the transfer function. 

The relative order, however, is the order of the output, , relative to the input vector, U. 

In mathematical terms, the output has relative order r if: 
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Equation 3-33 

For single-input single-output (SISO) systems in the Laplace domain, the relative 

order is the difference between the order of the denominator and the order of the 

numerator. In well-defined problems, every output has a finite relative order. If this 

condition is not met, then the output is not dependent on the inputs and the system is not 

output-controllable. 

iy

Effectively, GMC solves the following equation: 
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Equation 3-34 

It is easy to see that if the relative order of any output is greater than 1, the 

will not be dependent on U and the above equation has no solution. 

iy

if gL

 High relative order systems are common in the process industries and there are 

two modelling techniques for such systems so that, under a GMC framework, the closed 
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loop control is both stable and of satisfactory performance. The first group of techniques 

focuses on incorporating the detailed high relative order model into the GMC framework, 

[56]. This involves “difficulties” from an implementation point of view. The other group 

of techniques focuses on modelling high relative order systems as relative order one, and 

then applying them in the standard GMC framework, [57]. There are “imperfections” in 

both groups of techniques. Consequently, perfect control of high relative order systems 

via any of these methods is not possible. However, perfect control has never been 

possible via imperfect models. 

Also, Robust Generic Model Control has been developed which expands the 

utitlity of GMC to higher relative order RD>1 systems, [51]. 

 

3.4.2   Nonminimum Phase Systems 

 GMC can also be extended to address nonminimum phase systems.A method for 

the design of input-output linearizing feedback laws for nonlinear systems with unstable 

zero-dynamics has been proposed [58]. The approach is based on a suitable stable-

antistable factorization of the zero-dynamics and guarantees internal stability of the 

compensated system. 

 “The method of approximated I/O-linearization of nonminimum phase nonlinear 

systems crucially depends on the existence and computability of suitable coordinates for 

the driven zero-dynamics. The requirement for (approximate) I/O-linearizability (of order 

k) is that the driven zero-dynamics can be transformed into a form, where the antistable 

part of the driven zero-dynamics (when expanded in a Taylor series up to order k) is 

firstly linear and secondly not influenced by the stable part of the driven zero-dynamics. 
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A systematic and general method for the transformation of the driven zero-dynamics into 

various forms was given. The method described is motivated by corresponding results 

from normal form theory of dynamical systems and contains the transformation into 

(approximately) antistable decoupled and (approximately) antistable linear form (of order 

k) is a special case.” [58] 

Also, a decoupling strategy has been integrated into the Generic Model Control 

(GMC) framework to compensate for dynamic mismatch. The Multi-Model Decoupler 

(MMD) approach is based upon using a separate model inverse for the calculation of each 

manipulated variable. The use of separate model inverses allows the extra degrees-of-

freedom required for the dynamic compensation. MMD-GMC is shown to offer 

significant control performance advantages over conventional GMC and PI control. 

“From an overall point of view, MMD-GMC significantly improves the 

performance of GMC applied using steady-state models for distributed parameter 

processes in which there exists significant dynamic mismatch in the process. Compared 

to linear controllers, such as model predictive control, MMD-GMC has the advantage 

that it can provide nonlinear decoupling and nonlinear feed-forward compensation for 

measured disturbances.” [59] 

 

 

3.5 Further GMC Implementation Issues  
 

Another GMC implementation concern is integrator windup. It has been shown 

that integrator windup can be mitigated by restricting the absolute value of the integral 
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error to a user-set maximum value. However, the integral term is not required when the 

process model is adapted in order to eliminate any process / model mismatch, [60].  

“Also, there are difficulties with the standard GMC structure in that it forces the 

same closed-loop time constant on the controlled variable, no matter what the current 

process dynamics are. If the closed loop time constant is given by Equation 3-35, then a 

way to overcome this problem is by modifying the normal GMC control law to Equation 

3-36. 

( )
dt
dyyy csp =− τ/  

Equation 3-35 

( ) yyydtuxyf sp
c

p +−=
τ
τ

),,,,(  

Equation 3-36 

Equation 3-36 shows that the control moves made by the modified GMC controller are 

dependent on the ratio of to . The closed-loop time constant, , in Equation 3-36 

was replaced with: 

pτ cτ cτ

pc τατ *=  

Equation 3-37 
 

Here, α is a tuning constant relating the closed-loop time constant to the open-loop time 

constant.” [60] 

Also, process model selection is a key issue. One must strike a balance between 

detail and accuracy in the model and the quality of instrumentation that will provide the 
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inputs into the model. In order to capture important effects in the process, the 

instrumentation measuring the effects must be good. 

Improvements can be made in collecting any process / model mismatch in an 

adjustable model parameter rather than letting the error accumulate in a controller 

integral term. Adapting a model parameter permits constant monitoring of the model 

performance, and can suggest areas in which the model may be improved, [61]. 

 “GMC system identification is also an important issue. System identification 

methods build mathematical models of dynamical systems based on observed data. The 

intended use of the model should always be reflected in the methods and techniques used 

for identification. An identification scheme was derived for the case where the model was 

going to be used for GMC controller design. The aim of GMC control is to make the 

output approach a setpoint along a given desired trajectory.  The identification 

emphasizes the output trajectories of the model. GMC control was improved by using an 

identification scheme based on a trajectory oriented predictor.” [62] 

 

3.6 Comparing GMC to Other Controllers 
 

GMC has been theoretically and experimentally compared with other linear and 

nonlinear controllers, [63,64]. 

For linear systems the GMC controller is equivalent to the reduced Internal Model 

Control (IMC) with the addition of two second order filters, [63]. 

Linear Multivariable Regulator (LMR) can be equivalent to the GMC approach 

control law with the a certain selection of K1 and K2 that are abnormal for the GMC 
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approach because they are not diagonal. However, these selections make the approach 

identical to the LMR. 

The GMC approach is claimed to be much simpler than the Global Linearizing 

Control (GLC) structure although the two methods are essentially equivalent for relative 

degree one systems, [65]. Unlike most differential geometric techniques, GMC has been 

modified to accommodate time delays.  

Babu, [66], found that GMC is well suited for a system when there is not a large 

rate of change of the setpoint and GLC for the system when the setpoint changes 

exponentially. In the former case there might be a chance of reaction temperature 

overshoot if the controller constants are changed to track. 

Henson and Seborg, [67], proposed a unique unifying differential geometric 

approach (UDGA). “A new static state feedback control law that linearizes and decouples 

the closed-loop input-output response was developed. Since the approach is applicable to 

MIMO systems of any finite relative order in which the control variables enter linearly or 

nonlinearly, it unifies the GLC and GMC/Internal Decoupling methods. Additionally, the 

unified approach addresses controller synthesis for processes with measurable 

disturbances and implicit output equations.”[67] 

 “The GMC approach is better than the UDGA structure for the regulatory control 

problem with a non-zero constant setpoint. However, for relative degree one systems, the 

two methods are basically equivalent in the sense that a PI controller is applied for the 

derivative of the output, the control action is solved from the nonlinear model, and the 

measured disturbances can be compensated by the feedforward control action through the 

model.” 
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 Linear Model Predictive Control is a discrete control method based on the 

convolution model. The GMC control law is based on the present and historic output 

measurements. The control movement (∆uk) based on these measurements and the 

process model provide the necessary control action to achieve the predefined GMC 

reference trajectories of the outputs. 

 The linear MPC control law is based on the present output measurements and the 

predicted future outputs. The predictions are made through the convolution model using 

the historic control action. The control movement provides the necessary control action to 

achieve the MPC reference trajectories of the outputs. 

 Assuming that the convolution model is perfect and there is no change in the 

disturbances, then it can be shown that the GMC approach control law is equivalent to the 

linear MPC control law with a specific selection of K1 and K2.  

 In conclusion, there are several developed methods for nonlinear control each 

with their own advantages and disadvantages. Generic model control has been selected to 

be improved, and the creation of those improvements begins in the next chapter. 
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CHAPTER 4 

PREDICTIVE GENERIC MODEL CONTROL 
 

For this research project, the GMC controller will be studied and modified to 

develop a MIMO, nonlinear, robust controller. The initial, primary modification will be 

to reduce the control signal variation associated with a GMC controller. GMC control is 

already MIMO, and therefore extension to a new type of MIMO controller should be 

straightforward. After modifying GMC, the new controller design will be used to control 

an arc welding process. 

 

4.1 GMC Control Variation 
 

4.1.1   Introduction 

Generic model control is a nonlinear control that incorporates the model of the 

process into the control law. However, the direct use of GMC can produce a control 

signal that frequently oscillates, which in a real system may not be implementable. A 

process constraint upon the change in the control could be given, but the calculation of 

the GMC control with process constraints becomes much more complex requiring 

nonlinear programming optimization, [49].  

For example, an online optimization program could be run at each step k, so that 

the optimum K1 and K2 of the GMC control law would be determined that satisfies:  

( ) (( )2
12

2
1min −−+− kkGMC uuyy λλ && )  

Equation 4-1 
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where λ1 and λ2 are relative weights to emphasize either the reference trajectory accuracy 

or control variation reduction. However, this research is not focused on nonlinear 

optimization, and therefore other strategies for control variation reduction will be 

pursued. 

In this chapter then, an approach is developed to smooth the control signal by the 

use of control predictions. The Predictive GMC (PGMC) method that is developed in this 

chapter reduces this control variation by influencing the control at a particular time with 

predicted future control inputs. Moreover, a method is presented for the selection of the 

controller parameters and the number of control predictions to be made. Simulations are 

then performed on linear and nonlinear systems, and compared with the original GMC 

method. 

 4.1.2   Offline Optimizer 

Before choosing to smooth the control by use of control predictions, it was 

thought that an offline optimizer could be employed to select a particular K1 and K2 of 

the GMC control law to find the particular desired closed loop trajectory that would 

minimize the control oscillation. This optimizer was created and employed genetic 

algorithms to determine the optimum K1 and K2. Genetic algorithms have shown to be 

useful in complicated function minimization and identification. The optimization routine 

was constructed as follows. 

A response to a typical step input for the process could be simulated for a given 

K1 and K2, and then the resulting response was used by the optimizer to adjust K1 and K2 

to search for better results. The optimization is made up of a fitness function that you 
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would like to minimize by varying a design variable, in this case K1 and K2. The fitness 

function in this case is given below: 

∑ +∆−
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Equation 4-2 

where the output trajectory is subject to the following limitations: 
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Equation 4-3   

where 

∑ ∆U  is the sum of the absolute value of the changes in the GMC from one step to 

another. 

OLG is the open loop gain of the process. 

SS
CLY  is the closed loop system’s output upon entering the steady-state region. 

∞
CLY  is the closed loop system’s eventual output, if the last UGMC remains constant. 

∞
OLY  is the open loop system’s eventual output, if there is zero input. 

 

For a genetic optimization, the design variable is controlled by the genetic algorithm 

using the following steps, [68]: 

1. Take the two most “fit” numbers from a population of numbers, where fitness is 

defined by the function evaluation of the defined cost function. 
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2. Convert these numbers to binary format. 

3. “Mate” the two best fit numbers by swapping their bits several times to create various 

“children” numbers. 

4. Mutate the “children” numbers by flipping one or more of their bits. 

5. Now a new population has been created and go back to step 1, unless the maximum 

number of generations has been reached. 

6. Output the “most fit” number as the optimum. 

The offline, genetic optimization was run on two different linear models and one 

nonlinear model. Insights for a method of directly selecting an optimum K1 and K2 were 

gained from the comparison of each of these optimizations.  

The optimization of the nonlinear model in Equation 4-4 that is taken from a plasma 

welding process resulted in the optimization shown in Figure 4-1. 

23312211 −−−−− ⋅⋅+⋅⋅+⋅+= kkkkkak yuayuauaay  

Equation 4-4 

 
Figure 4-1   3D Optimization 
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The top-view of the optimization given in Figure 4-2 shows that an optimized region 

exists for ξ≈4 and τ = τmax. Moreover, there are constant optimization lines within {ξ, τ} 

space. If the points on one of these lines, for example the yellow region, can be converted 

into a diagram of the resulting poles and zeros of the GMC reference transfer function 

(Equation 3-4), the Figure 4-3 is created. 

 
Figure 4-2  Top-View of Optimization 

        

Region shown in 
Fig. 4-1 & 4-2 

Figure 4-3   Pole & Zeros of GMC Transfer Function from Yellow Optimization Line 

Figure 4-3 shows that for ξ≥4, there is pole-zero cancellation and that the constant 

optimization lines converge to this cancellation and a remaining constant pole. Therefore, 
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what seems to be a whole region in {ξ, τ} space is only a small variation of the GMC 

reference transfer function. It is thought then that this nonlinear example and other linear 

examples with similar results could be used to make the case that a likely optimum K1 

and K2 can be selected using ξ = 4 and τ = τmax for all processes. There is, however, no 

guarantee of this, and so to further ensure the control smoothness control predictions will 

be made. 

4.2 Introduction to PGMC 
 

Predictive GMC (PGMC) reduces the control signal variation associated with the 

original GMC by averaging predicted future controls that are each calculated using the 

original GMC method.  

To illustrate, PGMC uses the original GMC method and the nonlinear process 

model in a “for” loop to calculate, p, predicted controls and outputs as:  

 
ku Ĝ 1ˆ −G1ˆ +ky 2ˆ +ky1ˆ +ku pku +ˆĜ LLLL

{ } { } { }pkpkkkkkk uyuyuyu ++++++ ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ 2211 L  

Equation 4-5 

The control and output predictions are made using the digital model process, process 

inverse, and GMC control law with the past inputs and outputs as shown in Equation 4-6. 

52 



( )
( )

),2,1(

ˆ
,,,ˆ
,,,ˆ
,,,ˆ

),1,0(

ˆ

ˆ

2

),ˆ(
,,,,ˆ,,,ˆ

ˆ

1

1

1

1 11,

,
2

,1

11

pn

t
dd

uu
xx

f
dx
dg

y

pn

xx

xxTsK

xxK
tddxx

hu

nk

nk

nk

nk

nk

nk

i iiref

iiref

nknkref

nknknk

nk

L
L

L

L

L

LL

=





















=

=




































−+

−
−=

+

+

+

+

+

+

= −−

++

+++

+

∑
 

Equation 4-6 

   
The actual control implemented, u , is set equal to a weighted average of the predicted 

controls: 
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Equation 4-7 

where   
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Equation 4-8 

The choice of α’s at this point in the control design is subjective and was simply selected 

to weight the control predictions the heaviest that are nearest to the present time. 

PGMC offers two improvements over the original GMC method. First, the control 

signal variation associated with the original method is decreased. Moreover, because the 

predicted future control inputs exert influence on the present control, the present control 

steers the system’s response to the desired future reference. Therefore, the PGMC method 
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is more applicable to a real system due to the control stability, and the control decision at 

a particular time is “smarter” because it considers the future reference. 

Moreover, the original GMC control is an instantaneous prediction-based control 

for continuous systems or a one-step prediction-based control for discrete-time systems, 

and thus, can produce control variations. Its “nearsighted” nature is not suitable for the 

control of non-minimum phase systems. The PGMC method proposed in this paper is a 

long-range prediction-based control. It reduces the control variation and thus, can better 

control non-minimum phase systems.  

 

4.3 Analyzing PGMC 
 

In the original GMC method, the closed loop performance was determined by 

selecting the parameters ξ and τ. For PGMC, not only do ξ and τ need to be selected but 

the prediction level, p, should be selected as well.  

Consider the GMC closed loop transfer function where x is the system state: 

12
12

22 ++
+=

ss
s

x
x

ref τξτ
τξ  

Equation 4-9 

The closed loop poles and zero are given by 
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Equation 4-10 

However, for ξ≥4, pole 1 ≅ zero, and there is approximate pole/zero cancellation, 

which reduces the GMC closed loop transfer function to a first order response with a pole 

equal to pole 2. The settling time, using τ = 1, for the GMC transfer function and the first 

order response are plotted versus ξ, in Figure 4-4, where the first order response’s settling 

time is given by 

2pole
Tsett

4=  

Equation 4-11 

 The plot not only validates that the first order approximation is accurate for ξ≥4, 

but also reveals the specific pairs of ξ and τ, that will produce a particular desired closed 

loop settling time. By selecting a particular ξ≥4, then: 

constant,, =⋅= CCT desiredsett τ  

Equation 4-12 

The selection of the ξ,τ pair was the smallest pole 2 in order to minimize the 

strength of the closed loop response and, subsequently, the control signal variation.  

 Therefore, for PGMC, ξ and τ are given by the following equations: 
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Equation 4-13 

 
Figure 4-4 First Order Approximation 

The ability of the PGMC method to minimize the control variation primarily 

stems from the averaging of the predicted future controls. The optimum number of steps 

that the control is predicted, p, is related to both the GMC closed loop performance curve, 

Figure 3-1, and the dynamics of the process. Although a quantitative solution for p has 

not been developed, the following qualitative analysis has revealed a sensible method for 

its selection.  

For PGMC, the greatest advantage in influencing the present control with the 

predicted future controls, occurs when the change in the future control is large. The 

change in the future control decreases as closed-loop system approaches steady state. 

Thus, as the number of control predictions is increased towards the closed loop system’s 

steady state, the rate of reduction in the control variation achieved by the predictions also 

decreases. Moreover, the number of control predictions can also affect the closed loop 
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settling time. For example, because the GMC method uses the process model to calculate 

the control action, if the process model has overshoot then the control predictions made 

are actually forcing the control energy to overcompensate and the settling time is 

reduced. Moreover, if enough control predictions are made during the overshoot period, 

then the control energy can be overly compensated such that the closed loop system 

overshoots the reference and the settling time is increased. These concepts are illustrated 

in Figure 4-5 for an underdamped system. The control variation multiple (CVM) was 

calculated using Equation 4-14. 

∞∞ −

∆
= ∑

OLCL

PGMC

YY

U
OLGCVM  

Equation 4-14 

 where 

∑ ∆ PGMCU  is the sum of the absolute value of the changes in the PGMC from one step 

to another. 

OLG is the open loop gain of the process. 

∞
CLY is the closed loop system’s eventual output, if the last UPGMC remains constant. 

∞
OLY is the open loop system’s eventual output, if there is zero input. 
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 Prediction Level % wrt Tsett,desired

Figure 4-5 Prediction Level Improving Control Oscillations 

From Figure 4-5, it can be seen that an optimum prediction level, p, could be 

described as the prediction level where most of the reduction in the control variation has 

occurred and yet the settling time is not significantly altered. In other words, the optimum 

p should be less than the closed loop rise time but as large as possible. Because the 

PGMC control predictions are based upon the GMC closed loop response, a sensible 

choice for the optimum p would be the dominant time constant of the GMC closed loop 

transfer function. Using the values of ξ and τ from Equation 4-13 to force pole/zero 

cancellation, the dominant time constant is equal to 1/pole 2, Equation 4-11, and the 

optimum prediction level can be written as 










 ⋅
≈

sample

desiredsett
optimum T

T
roundp ,65.0

 

Equation 4-15 
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Depending upon the dynamics of the open loop system slight adjustments to 

poptimum may improve the closed loop results. For example, if the open loop system is 

overdamped, then a slightly higher p would further reduce the control variation without 

affecting the settling time. This is evident when the GMC control law is organized for 

linear, minimum phase, zero disturbance, and no process/model mismatch as is assumed 

in predicting control values for linear systems. Using Equation 4-9 and 4-13, the control 

simplifies to 

)()(
161.18 1

2
, yysG

s

sT
u ref

desiredsett −






 +⋅
= −  

Equation 4-16 

  The control signal behaves different for different plants due to G ; however, 

for all plants the change in the signal is a function of the error ( . This is the 

reason that the dominant time constant of the closed loop output can be used to determine 

a proper amount of the control predictions to calculate. 

1)( −s

)yyref −

Another consideration in selecting the prediction level, p, is that the number of 

computations per sampling time is limited. Therefore, there may be a practical constraint 

to the number of control predictions that can be made. Moreover, it should be noted for 

the controller designer that because control predictions are used to calculate the present 

control, the closed loop output will lead the reference. Also, as the number of control 

predictions is increased, the lead amount will also increase. 
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4.4 Examples 
 

To demonstrate the advantages associated with PGMC, an underdamped linear 

system, an overdamped linear system, and a nonlinear system are selected to simulate the 

closed loop performance of both the original GMC and the developed PGMC. Moreover, 

to more fully compare the PGMC control, a nonlinear control algorithm called Interval 

Control, [69], is simulated for the nonlinear system. 

The first linear system, which is an underdamped system, is given by Equation 4-

17. 

.sec01.0
109.211.1

02.)(

2009
200)(

2

2

=
+−

=

++
=

sTfor
zz

zG

or
ss

sG
 

Equation 4-17 

For this system the open loop settling time is equal to 0.8 seconds and the open loop gain 

is equal to 1. It is desired to reduce the settling time by ½. Thus, using Equation 4-13 and 

Equation 4-15 the controller parameters are: 

















=
=
=

14
43.0/4.

4

p
τ
ξ

 

Equation 4-18 

The closed loop output and control for both GMC and PGMC are plotted in Figure 4-6.  
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Figure 4-6   Closed Loop of GMC and PGMC 

 

The PGMC achieved a 75% reduction in the control variation with respect to the 

GMC control. However, the actual PGMC settling time of the closed loop system equals 

0.33, which is slightly faster than designed. This is because the open loop system is 

underdamped.  If the p is reduced to 11, to obtain a slower settling time, the PGMC 

settling time decreases to 0.36, but the control variation reduction also decreases to 70%.  

The second linear system, which is an overdamped system, is given by Equation 

4-19. 

01.0
114.2144.1

00015.)(

02.4014
5.1)(

2

2

=
+−

=

++
=

Tsfor
zz

zG

ss
sG

 

Equation 4-19 
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Figure 4-7 Linear System. 2: Closed Loop Output and Control for GMC and PGMC 

For this system the open loop settling time is equal to 1.16 seconds and the open 

loop gain is equal to 0.0375. It is desired to reduce the settling time by 4/5. Thus, using 

Equation 4-13 and Equation 4-15 the controller parameters are: 

















=
=
=

7
43.0/232.

4

p
τ
ξ

 

Equation 4-20 

   The closed loop output and control for both GMC and PGMC are plotted in Figure 4-7. 

The PGMC achieved a 69% reduction in the control variation with respect to the GMC 

control. The actual PGMC settling time of the closed loop system equals 0.275 sec., 

which is slightly slower than designed. This is because the open loop system is 

overdamped.  If the p is increased to 11, to obtain a faster settling time, the PGMC 

settling time decreases to 0.26 sec, but the control variation reduction also decreases to 

60%.    

In order to judge Predictive GMC’s nonlinear control capability, it has also been 

compared with another nonlinear control method called Interval Control, [69]. Interval 
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control uses the model of the process to solve for the control at each sampling time such 

that if the control were kept constant for a number of steps, n, the closed loop output at 

that time n, would equal the reference. The nonlinear system, which is used in a plasma 

arc welding process developed at the University of Kentucky, is given by Equation 4-21. 

233121110 −−−−− +++= kkkkkk yuayuauaay  

Equation 4-21 

  
where    6

3
4

220 105,109.9,9.0,1949 −− ⋅−=⋅−=−== aaaa

For this system the open loop settling time is equal to 0.005 seconds. It is desired 

to maintain the settling time and to track a reference trajectory. Thus, using Equation 4-

13 and Equation 4-15 the controller parameters are: 

















=
=
=

3
43.0/005.0

4

p
τ
ξ

 

Equation 4-22 

The closed loop output and control for both GMC and PGMC are plotted in Figure 4-8. 

For this system the original GMC, not displayed, resulted in an unstable closed-

loop response. However, the PGMC closed-loop output was not only stable, but the 

control also had less control variation than the interval model control. This demonstrates 

the advantage of PGMC over the original GMC method, and that PGMC control can be 

compared with other long range based prediction controllers. 
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Figure 4-8 Nonlinear System: Closed Loop Output and Control for Interval and PGMC 

 To further test capabilities of the PGMC technique, a MIMO system is selected to 

control. The MIMO system is linear with the following parameters: 

]0[,,
212
113
112

,
5.21.
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33 ==
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

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






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





−−−
−−−
−−−

= DICBA X  

Equation 4-23 

  
 The system is fully controllable with eigen values, 1338.1,4372.0,9967.0 −−=λ . The 

solution for the GMC control signal is given by Equation 3-13.  The desired settling time 

for each output was selected to be . The GMC control law, and therefore 

PGMC as well, already contains some degree of robustness due to the inclusion of the 

integral gain. 

5.1, =desriedsettT
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Figure 4-9  PGMC Control and Output for MIMO System 

For example, if the previous MIMO system was incorrectly modeled so that the 

parameters of A were given as in Equation 4-24 then the resulting control and output is 

shown in Figure 4-9. Also, if the parameters of A were reduced or enlarged as in 

Equation 4-25 by 50%, the resulting control and output would be given by Figure 4-10. 

Over a longer period of time, the integral action to reduce the modelling error can be 

observed. 
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= DCCBBA  

Equation 4-24 

 
Figure 4-10 PGMC Control and Output for MIMO Uncertain System 
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Equation 4-25 

 
Figure 4-11 PGMC Control and Output for MIMO Uncertain System 

 

The PGMC technique has proven valuable in efficiently controlling both linear 

and nonlinear systems. The important parameters the control designer specifies in using 

Predictive GMC are the desired closed loop settling time and the prediction level. 

However, under a certain amount of parameter or model structure mismatch the PGMC 

control does not perform entirely as desired. Therefore, further testing needs to be 

completed to form a methodology in achieving a more robust PGMC control algorithm. 

Moreover, for MIMO systems the proper application and use of the prediction level is not 

fully understood. If, for example, different states are required to reach their settling points 

at different times, because the PGMC controller prediction level is based upon the desired 

settling time, then the actual proper prediction level to implement is not known. 
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Therefore, further work also needs to be accomplished in generalizing the algorithm for 

MIMO systems.  

A likely possibility in improving the controller robustness will be a PGMC 

controller that uses parameter intervals instead of the parameters themselves in solving 

for the particular process input. Then a more intelligent control action could be taken in 

consideration of the process states and process parameter intervals. For example, if 

altering Equation 3-10 so that the control calculation can include the parameter interval, 

θ∆ , then the control would be 

),)(),(,,,,( 21 ∫ ∆−−= θdtxxKxxKtduxhu refref  

Equation 4-26 

Then a control could be calculated in consideration of the parameter interval that 

would minimize the output error. This could also be used to guarantee the stability of the 

closed loop process. This approach is what is accomplished in the following chapters. 
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CHAPTER 5 

PARAMETER INTERVAL ADAPTIVE PGMC 
 

In this chapter, the robustness of GMC will be improved by changing the control 

law to incorporate parameter intervals and adapting the process model used in the 

controller to move smoothly within those intervals.  

 

5.1 GMC Parameter Interval System Model 
 

A parameter interval system model assumes a model structure for a process and 

then embeds the uncertainty of the process into the parameter intervals. It may not even 

be completely necessary to fully have the correct model structure for during system 

identification, the inaccuracies of the model structure can simply be absorbed into the 

parameter intervals. The parameter intervals can be used on structural components 

involving all observable and unobservable states that have state estimation. This includes 

disturbance model components, which are a type of process state variable.  

 

5.2 Identification of Parameter Intervals 
 

 The identification of the parameter intervals can be accomplished either 

heuristically or by experimentation. If done by experimentation, a series of experiments 

can be used in conjunction with a least-squares parameter identification routine to inform 

the designer of the nature of the parameter intervals. Experimental data can also be used 
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with routines that determine the parameter intervals directly according to a selected 

probable certainty condition, [71]. Once the parameter intervals are identified, the 

following designed method can make use of the intervals in closed loop control. 

 

5.3 PGMC with Interval Factor 
 

If the real process is given by: 

),,,,(1 θkkkkk tduxfy =+  

Equation 5-1 

And the estimation of the process is given by: 

)ˆ,,,,(ˆ 1 kkkkkk tduxfy θ=+  

Equation 5-2 

If all states are known and all variables in Equation 5-2 are measured such that they are 

positive, then a maximum and minimum prediction of the output can be made as: 

maxmin

max1max,

min1min,

ˆ
where

),,,,(ˆ
),,,,(ˆ
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=
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tduxfy
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Equation 5-3 

If the real output, y, moves smoothly with respect to the sampling time between ymax and 

ymin, then an estimation of y can be made by estimating the real parameters, θk, as: 

( )
1min,1max,

1min,1
minmaxmin ˆˆ

ˆ
;ˆ

−−

−−

−
−

=−⋅+=
kk

kk
kkk yy

yy
FF θθθθ  

Equation 5-4 
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The assumption embedded in Equation 5-4 can be graphically pictured in Figure 5-1. If 

the control signal is smooth, then the output and output predictions should be relatively 

smooth in comparison to the sampling time. More importantly however is that the real 

output travels smoothly between ymax and ymin and thus an estimation of the position of y 

in relation to ymax and ymin could be based upon the previous sample. 

 
Figure 5-1   Depiction of Parameter Interval Factor 

It is, however, pivotal to the soundness of this assumption that the control is smooth 

because the interval factor parameter, Fk, in Equation 5-4 is obviously influenced by the 

control as is shown in the following equation: 
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Equation 5-5 
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The Equation 5-4 is used in conjunction with the PGMC method of control so that 

given a Fk-1, a series of outputs and controls are predicted using the same Fk-1. Then the 

actual control that is implemented is equal to a weighted average of the predicted 

controls. The control smoothness is then improved by averaging the predicted controls, 

which consequently should also improve the validity of the assumption that the parameter 

interval factor changes only slightly between sampling times. 

The conditions for which the above assumption is valid and how much the 

variation of Fk between sample points affects the output and control are extremely 

important issues. However, from experimental results, with an additional constraint on 

∆Fk between sampling times, the closed loop results were promising. Moreover, the 

control algorithm is further modified, in Chapter 6, to improve the closed loop stability 

properties and control smoothness. The constraint upon ∆Fk was implemented by filtering 

Fk through the use of a moving average of previous Fk’s. The reasoning behind this 

constraint is that it is assumed that there is noise in the output signal, which if not 

recognized, actually changes Fk at a different rate than the actual process is changing Fk . 

 

5.4 Experimental Results 
 

For the plasma keyhole welding process, developed at the University of 

Kentucky, the control algorithm discussed in the previous section was implemented. The 

plasma keyhole process is illustrated in Figure 5-2.  
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Figure 5-2   Description of Keyhole-Plasma Welding Process 

The phenomenological model structure that was developed by consideration of the 

energy input into the system is given by: 

2,3,31,2,21,10, −−−−− +++= kpkpkpkpkpkp TIaTIaIaaT  

Equation 5-6 

System identification was completed using random inputs within the likely process 

operating range, and a least squares algorithm was employed for determining the process 

parameters. This was completed four times to enable the construction of the probable 

max and min of each of the four model parameters. The range of each parameter is given 

as follows: 

4
max,3

3
max,2max,1min,0

4
max,3

3
max,2max,1max,0

104,103.1,53.4,15.707

1014,107.0,96.4,66.734
−−

−−

⋅−=⋅−=−==

⋅−=⋅=−==

aaaa

aaaa
 

Equation 5-7 

After system identification, closed loop control was possible. In using the PGMC control 

methodology and the parameter interval factor, the filter and the tunable control 

parameters were selected as follows: 
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1
4,2,3,1
23, +++

====
zzz

FpTT Filterdesiredsetts  

Equation 5-8 

The results of two different closed loop control experiments are illustrated in Figure 5-

3,4. 

 
Figure 5-3   Experiment 1: Closed Loop Results 
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Figure 5-4   Experiment 2: Closed Loop Results 

The goal of the keyhole plasma process is to obtain slightly overlapping keyhole 

penetration spots. This can be particularly seen in the zoomed backside view of the weld 

in the images given in Figure 5-5 and Figure 5-6. The goal of these overlapping 

penetration spots is to minimize the energy input that will achieve a quality weld. 
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Figure 5-5 Weld Image of Keyhole Plasma Process 
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Figure 5-6   Weld Image 2 of Keyhole Plasma Process 

The illustrations in Figures 5-3 and 5-4, show that after 5 to 10 cycles the output 

has reached the reference peak time. Although the parameter interval factor has varied 

widely throughout the entire process, variation between cycles is relatively small. The 

control signal is also relatively smooth because of the Factor filter. However, it is thought 

that an improvement on the control algorithm could better restrict the oscillation of the 

output about its reference. Also, because there is no methodology on the design of the 

Factor filter, it is thought a further improvement to the control algorithm could be 

accomplished to strive for control smoothness while maintaining closed loop stability. 

These are the goals that are attempted in the controller design in the next chapter. 
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CHAPTER 6 

ROBUST PARAMETER INTERVAL PGMC 
 
6.1 Introduction 
 

 The previous chapter made use of the parameter interval models by simply 

assuming the real model moved smoothly relative to the sampling time between the 

maximum and minimum models. This section attempts to determine an optimum solution 

using the parameter intervals as uncertainty without the restricting assumption that the 

model move smoothly between the maximum and minimum. The algorithm makes use of 

interval mathematics, which is reviewed below. 

 

6.2 Interval Mathematics  [72, 73] 
 

An interval [ ]  or real interval is a closed, connected, and bounded subset of  

, such that 

ℜ∈x

ℜ

 [ ] [ ] { }., +−+− ≤≤== xxxxxxx  

Equation 6-1 

Interval arithmetic generalizes addition, subtraction, multiplication, and division to 

intervals. If, for instance,  and z = x + y, then 

 so that the addition of two intervals is defined as 

+−+− ≤≤≤≤ yyyxxx ,

++−− +≤≤+ yxzyx

[ ] [ ] [ ] [ ]{ } [ ],, ++−− ++=∈∈+=+ yxyxyyandxxyxyx   

Equation 6-2 

77 



Similarly, 

[ ] [ ]{ } [ ],, −+ −−=∈−=− xxxxxx  

[ ] [ ] [ ] [ ]{ } [ ],, −++− −−=∈∈−=− yxyxyyandxxyxyx  

If 0 ∉ then [ ],x [ ] [ ]{ } [ ],/1,/1/1/ −+=∈= xxxxxx1  

[ ] [ ] ( ) ( )[ ],,,,max,,,,min* ++−++−−−++−++−−−= yxyxyxyxyxyxyxyxyx  

[ ] [ ]{ }.22 xxxx ∈=  

Equation 6-3 

Using the relations above and the parameter intervals of the model, at each sampling time 

an optimum control and a control interval that makes the output stable will be calculated. 

6.3 The SISO Control Algorithm 
 

6.3.1 Finding the Optimum Control and Stability Interval 

Before explaining the entire control algorithm, a few principles must first be 

reviewed. Given the interval mathematics problem below: 

[ ] [ ] [ ] [ ]+−+−+−+− +×= HHUUBBYY  

Equation 6-4 

Where the intervals [B], [U], and [H] are known, the interval [Y] is found using the 

Equations 6-1,2,3 to be: 

( )
( ) +++−++−−−+

−++−++−−−−

+=
+=

HUBUBUBUBY
HUBUBUBUBY

,,,max
,,,min

 

Equation 6-5 

If, however, it is known that the entire interval for both [B] and [U] are greater than zero, 

then the interval [Y] can be found directly using: 
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Equation 6-6 

 Moreover, if given a feasible [Y] interval for which it is known there is a 

corresponding [U] that satisfies [U] 0 then the inverse problem can be solved whereby 

for the given feasible [Y] interval, the [U] interval that satisfies Equation 6-6 is 

determined to be: 

≥

+

++
+

−

−−
−

−=

−=

B
HYU

B
HYU

 

Equation 6-7 

 It is known that in general, the solution to this linear inverse interval problem 

simply described as [A] [x] = [b] or [A] [x] [b] can only be solved through nonlinear 

programming methods. This is why there needs to be a restriction on the nature of some 

if the intervals to construct a closed form solution.   

≤

However, if the interval [U] and the interval [Y] have no restriction on their sign 

(i.e. U-, U+, Y-, Y+ can be above or below zero with constraint U+  U≥ -, Y+ ≥  Y-), then the 

solution for the inversion problem to solve for [U] given a [Y] becomes more 

complicated. Assuming [B] > 0, the following equations show all the possibilities. 
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For [B] 0 and [Y] is feasible given [B] and [H] ≥

( ) (
( ) (

( ) (
( ) (

( ) (
( ) ( −−−+−−−+−

++−−+++−+

−−−+−−−+−

++−++++++

+−

−−−−−−−−−

++−++++++

−⋅=⇒+=

−⋅=⇒+=

≤
−⋅=⇒+=

−⋅=⇒+=

≥≤
−⋅=⇒+=

−⋅=⇒+=

≥

HYBUHUBY

HYBUHUBY

UIf
HYBUHUBY

HYBUHUBY

UUIf
HYBUHUBY

HYBUHUBY

UIf

1

1

1

1

1

1

0][

0,0

0][

)
)

)
)

)
)

 

Equation 6-8 

 Therefore, the method by which to calculate [U] given [Y] is not as 

straightforward as that given in Equation 6-7. However, it can be shown that the proper 

method to calculate [U] given a feasible [Y] is by the following equation. 
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Equation 6-9 

 The method given by Equation 6-9 is found using the following analysis. If Y - is 

chosen such that (Y - - H -)<0, then given Equation 6-8, the correct and incorrect U - are 

given by: 

( ) ( )
( ) ( −−−−−
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Equation 6-10 
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However, because [B] ≥ 0, U for all (Y −− ≤ correctincorrect U - - H -) ≤ 0. Also, if Y - is chosen such 

that (Y - - H -) > 0, then given Equation 6-8, the correct and incorrect U - are given by: 

( ) ( )
( ) ( −−−+−

−−−−−

−=

−=

HYBU

HYBU

incorrect

correct

1

1

)
 

Equation 6-11 

However, again because [B] ≥ 0, U for all (Y−− ≤ correctincorrect U - - H-) 0. A similar analysis 

can be done for U

≥

+ with the resulting generalization given in Equation 6-9. 

 Moreover, if there are stability constraints on the interval [Y] given by: 

][][ maxmin YYY ∈  

Equation 6-12 

Then Equation 6-9 can be used to find the stable interval [U]stable to satisfy the [Y] 

constraints by: 
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Equation 6-13 

 These developed relations will be used in the derivation of the control algorithm 

in the following sections. Note that the derivation of Equation 6-13 assumes existence of 

the solution to the inverse interval problem of Equation 6-7,8 with the constraints of 

Equation 6-12. If there is no solution, the equation obviously does not apply. 

Consider the nonlinear scalar model: 

1222111 )()()()( −⋅⋅+⋅++⋅+⋅= kkknnnkkk uxgxfxfxfY βϕϕϕ L  

Equation 6-14 
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Where  and  which are found by system identification.  maxmin
iii ϕϕϕ ≤≤ maxmin βββ ≤≤

Note that this model structure is capable of being controlled by the GMC control 

technique. Also, although this model structure assumes that the model is control affine, if 

the real model is not control affine (i.e. U 2), then an in-between temporary calculation 

can make use of the model in Equation 6-14 (i.e. Utemp=U 2). Moreover, note that linear 

systems with state feedback fall within this structure. A case of output feedback is 

discussed later.  

Assuming all of the states of equation 6-14 are known fully at each time k 

(i.e.  are known), then the model can be simplified to an 

interval problem, for [B

)(),(,),(),( 2211 kknnkk
xgxfxfxf K

k]>0, given by: 
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Equation 6-15 

The utility of Equation 6-14 is that the nonlinear model is reduced to an interval 

equation of the form given in Equation 6-4. If [Bk]≥0, then a closed form optimal and 

stable solution for the inverse interval problem can be found.   

If there is a desired scalar output for the system in Equation 6-4,15 called Y , 

then a sensible choice for the desired interval [Y

kref ,

k] would be centered upon Y  such 

that: 

kref ,
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( )
krefkk YYY ,2/ =+ −+  

Equation 6-16 

Assuming that the system moves within the parameter intervals with equal likelihood, 

this choice of the desired interval [Yk] will maximize the probability of actually achieving 

. Thus, the choice at the center of [Y
krefY ,

+
kY

k] is known; however, the actual values of 

and Y  are not determined except that there is a restriction that [Y−
k k] ≥[Hk]. 

 The selection of the desired [Yk] is really a function of the system states and 

parameter intervals as well as the desired scalar output Y . Thus, let [Y
kref , k] be given as: 

kkrefk

kkrefk

CYY

CYY

+=

−=
+

−

,

,  

Equation 6-17 

such that Equation 6-16 is satisfied. Also, choosing the interval restrictions: 

max

min

min

max
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UU
UU
UU
YY
YY
YY

k

k

kk

kk

k

k
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≥
≤

+

−

−+

−+

−

+

 

Equation 6-18  

Where Umin , Umax , Ymin and Ymax are assigned by the control designer from knowledge of 

the process. Then, if there exists a desired interval [Yk] as well as the interval [Uk] to 

achieve it within the interval restrictions in Equation 6-18, the solution is found using the 

following method constructed below. 
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 The smallest interval [Uk] to satisfy Equation 6-16 is for the elements of [Uk] to be 

equal, in other words, not an interval at all. Thus the optimum Ck value can be solved for 

the cases [U]>0 or [U]<0 using U , Y , and Y by solving −+ = kk U kkrefk CY +=+
, kkrefk CY −=−

,

( ) ( ) ( ) ( +−+−−− −+⋅=−−⋅ kkrefkkref HCYBHCYB
kk ,

1
,

1 ) 
Equation 6-19 

To obtain: 

( )








−+






−⋅







 +
= +

−

+
−

−

+ krefkkkrefk YH
B
BHY

B
B

C ,,

1

1  

Equation 6-20 

Then the optimum output interval is equal to: 

[ ]kkrefkkrefopt CYCYY −+= ,,
,][  

Equation 6-21 

And the optimum Uk is given by: 

−

−

+

+ −−
=

−+
=

B
HCY

B
HCY

U kkkrefkkkref
k

,,  

Equation 6-22 

 It will now be shown that if Y  is calculated using generic model control, the 

optimum U

kref ,

k given in Equation 6-22 is equal to the control calculated using generic model 

control, U . If generic model control were used then Y  would be calculated, 

assuming digital control by: 

GMC kref ,
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( ) ( ){ } 1
1

12111, −
−

=−−
+−⋅+−= ∑ kiiset

k
i skksetskref YYYTKYYKTY  

Equation 6-23 

Then assuming that each parameter of the process model is given by the center of its 

interval, the generic model control, U , would be calculated by: GMC

( ) ( ) 2/2/where

,

+−+− +=+=

−
=

BBBandHHH
B

HY
U

kkk

kkref
GMC  

Equation 6-24 

Because the optimum Uk is not an interval, in other words U , then only the 

interval problem for [U]>0 or [U]<0 need be considered (i.e. if U , then it cannot 

be that U 

+− = koptkopt U ,,

+− = kk U

- < 0 and U+ > 0). Then using Equation 6-17 and the cases from Equation 6-8 

for [U]>0, [U]<0, with U-=U+ the following derivation can be made: 

If [U] 0, then ≥

−−

++

+=−

+=+

kkkkref

kkkkref

HUBCY

HUBCY

,

,  

Equation 6-25 

 Adding the two equations and multiplying both sides by ½ 

Produces ( ) ( )−+−+ +++=⇒ kkkkref HHUBBY
2
1

2
1

,  

Equation 6-26 

 Then solving for Uk 

Produces 
( )

( ) GMC

kkkref

k U
BB

HHY
U =

+

+−
=⇒ −+

−+

2/

2/
,  

Equation 6-27 
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Simlarly if [U] 0, then ≤

−+

+−

+=−

+=+

kkkkref

kkkkref

HUBCY

HUBCY

,

,  

Equation 6-28 

 Adding the two equations and multiplying both sides by ½ 

Produces ( ) ( )−+−+ +++=⇒ kkkkref HHUBBY
2
1

2
1

,  

Equation 6-29 

 Then solving for Uk 

Produces 
( )

( ) GMC
kkkref

k U
BB

HHY
U =

+
+−

= −+

−+

2/
2/,⇒  

Equation 6-30 

Thus, to calculate the optimum U of Equation 6-22, one need only to calculate 

the generic model control, U , with the model parameters set equal to their interval 

center.  

kopt

GMC

However this, U ,calculated control may violate the constraints given in 

Equation 6-18. Thus, the optimum input U must be constrained so that Equation 6-18 

is satisfied. For example assuming [B] ≥ 0, the constraints upon U  from Equation 6-18 

upon U

GMC

kopt

kopt

k with Ymin=0 and Umin=0 are given as: 
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Equation 6-31 

Then the control U  that is implemented is given by 
kopt




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
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U kkkrefkk
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Equation 6-32 

or more generally as: 
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

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HY
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Equation 6-33 

The control interval at time k that ensure process stability defined by Equation 6-18, 

called [Uk]stable , is given as: 

[ ] 














 −




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

 −−
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+

+

+

−

−

max
max

min
minmin ,min,,,max U

B
HY

U
B

HY
B

HY
U kkk

stablek  

Equation 6-34    

Therefore at this point in the control algorithm, an optimum control is known and a 

control interval that makes the process stable is known. However aside from the stability 

guarantee, the control will not be greatly improved over the normal generic model 

control. Thus, a further improvement is required. 
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 6.3.2 Inducing Control Smoothness 

 From the previous chapter, predictive generic model control (PGMC) was found 

to be helpful in inducing control smoothness. Thus, if PGMC can be combined with the 

stability guarantees of the previous section, a truly robust/smooth control could be 

determined. The following analysis derives this profitable combination. 

 If during the control calculation at time k, the model of the process is simulated p 

steps ahead such that the following control predictions are determined using Equations 6-

33 and 6-34: [ ] , where denotes a prediction 

during the simulation. Then a new control called U

pkoptkoptkoptkoptstablek UUUUU
+++

ˆ,,ˆ,ˆ,ˆ,
21
K

k

ioptÛ

~  could actually be implemented, 

which is a weighted average of U to induce control 

smoothness with the following stability constraint: 

pkoptU
+

ˆ
k +

,,
2
Koptkoptkoptk UUU

+−
ˆ,ˆ,ˆ,

11

[ ]stablekk UU ∈~  

Equation 6-35 

The method by which the predictions are made is by updating 

the model of Equation 6-14 and the corresponding interval problem (Equation 6-15) and 

interval problem solution (Equation 6-33) with the new states  calculated 

using: 

pkoptkopt UU
++

ˆ,,ˆ
1
K

+
+

−
+ ikik HH ,

ikoptikikikkikik

ikoptik

UUforYYFYY

UU

++
−
+

+
+

−
++

++

=−⋅+=

=
ˆˆˆˆ

ˆ
 

Equation 6-36 

where Fk can become an adaptive factor as given in Section 5.3, and can be either set to a 

worst case scenario or to its likely value according to previous history.  
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For example, as in Section 5.3, a prediction can be made for Y  using the 

control calculated at time k-1. Then a sensible choice for F

minmax , kk Y

k would be equal to: 

minmax

min

kk

kk
k YY

YY
F

−
−

=  

Equation 6-37 

Moreover, for calculating the predictions a sensible choice for 

would be: 

pkk UU ++ ,,2 K

pkk FF ++ ,,1 K

kikk FFF ∆+= −++ 11  

Equation 6-38 

Where ∆Fk can then become a control parameter to either find a worst case design by 

alternating its sign or by simulating the system’s likely change in F. Then again, after the 

predictions are made, the actual control implemented, U k

~ , is equal to 

 where

( )( )

pkpkkkk

kstablekstablek

UWUWUWUWU

UUU

++−

−+

++= K12110

~

~,max,min

 

Equation 6-39 

Then tunable parameters of the control then become: Ymax, Ymin, Umax, Umin, p, ∆Fk, W. 

The first four parameters change the allowable output and input and can be relaxed or 

lessened to suit stability and performance criteria. They could be static or they could 

change with time or alternatively the designer could make them a function of Yref,,k. The 

∆Fk parameter is used in calculating the predictions at each sampling time to simulate the 

likely movement of the process throughout its parameter interval and can be used to 

simulate the worst case scenario or something less stringent. The prediction level, p, and 
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the control weights, Wi, affect control smoothness. As referenced in the previous chapter, 

increasing p to thirty percent of the dominant time constant of the GMC reference 

trajectory will significantly reduce the control oscillation.  

To review the final control algorithm, the following steps are stated: 

1. Calculate the control interval that ensure process stability,  [ ] , (Equation 6-34) stablekU

2. Calculate interval factor, 












−
−

=
−−

−
min

1
max

1

min
1

kpredkpred

kkpred
k YY

YY
F   where Y  are calculated 

in the previous sampling time. 

max

1

min

1
,

−− kpredkpred Y

3. In a for loop (i=0…p-1) where p = prediction level: 

Using the process model (Equation 6-15) and optimum control Equation 6-33, 

calculate . [ ] optikik UH ++ ,

Then for next iteration’s states, [ , calculate:  ]iikH ++

                    
11

11111 )()(

++++

−
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+++++
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++++

=

−⋅∆++=
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UU
YYFFYY

4.  Then implement                            U                                   ∑
−=

⋅=
p

ki
iik UW

1

~

with constraint                     { }+− ≤≤
stablekkstablek UUU  

5.  Finally, calculate     
( )
( ) ++−

−+−

+⋅⋅=

+⋅⋅=

kkkkpred

kkkkpred

HUbUBY

HUbUBY
~,~max

~,~min
max

min

    for the next sampling time. 

One further comment is that if the parameter interval of a particular parameter of 

Equation 6-14,15 is thought to be too large, then assuming that the probability density 

function of the actual process parameter lying within its interval is given by a normal 

distribution such that: 
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Equation 6-40 

then a new interval can be chosen based upon the parameter’s σ with a knowledge of the 

probability that the new interval will contain that the real process parameter. However, if 

the new interval is smaller than the real process interval then process stability is no longer 

guaranteed. 

 

6.4 SISO Experimental Results 
 

 6.4.1 Linear Scalar Example with Implementation 

A first order system describing a soft plasma arc welding process, developed at 

the University of Kentucky, was controlled using the parameter interval PGMC 

algorithm. The first order parameter interval model is given by  

            
where

 

475.355.1
75.05.0

1

−≤≤−
≤≤

+⋅=+

EcE
a

cUYaY kkk

Equation 6-41 

For this process, the plasma arc oscillates between a high current called a peak 

current and a low current called a base current. The value of the peak and base current are 

predetermined, and only the amount of peak current duration is altered. With a longer 

peak current duration, a greater amount of energy is released into the workpiece and the 
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weld penetration is increased. The process model describes a relation between the peak 

current duration, U, and the output of a sensor measuring weld penetration, Y. The first 

order model was first simulated to obtain reasonable control parameter values for τdesired, 

p (prediction level), W, and ∆Fk. The open loop step responses are graphed in Figure 6-1 

for a constant input of 700 to show the varying time constants and open loop gains of the 

process. 

 
Figure 6-1 Open Loop Step Responses for Ymin, Ymax, Ymean 

The closed loop system was simulated for both the normal GMC technique and 

the parameter interval PGMC using: 

0min
9.0max

5.0
1
3

4

=
=

=∆
=
=

=

Y
Y

F
W
p

k

desiredτ

 

The control is shown in Figure 6-2 and the closed loop output is shown in Figure 6-3. 
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Figure 6-2   Control Signal of Linear Simulation 

 
Figure 6-3    Output Signal of Linear Simulation 

From Figure 6-3 it is apparent that parameter interval PGMC not only has the 

benefit of a stability criteria included in the control law, but the closed loop output is 

more accurate due to the parameter adaptation and the control smoothness, which is 

generated by the averaging of the control predictions. After determining the region of the 

control parameter values via simulation, the parameter interval PGMC was implemented 
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in the real arc welding process. Six experimental data sets are shown in Figure 6-4 and 

Figure 6-6 with the following set of output setpoint and controller parameters: 

1.001340.06exp
1.001340.05exp
2.002320.04exp
5.002350.03exp
3.012350.02exp
3.013445.01exp
FWpYset ∆τ

 

 
Figure 6-4 First Set of Linear Experiments 
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The images of the first three experiments are given in Figure 6-5. For these 

experiments the closed loop output is not filtered and retains the noise in the signal. 

However, one can see from Figure 6-4 that the control is adjusting to have the output 

track the setpoint. The linear model structure for this arc welding process is actually only 

valid for a narrow operating range of peak times and torch speed. The torch speed for the 

last three experiments was increased and therefore the peak times were much higher to 

appropriately heat the workpiece. However, the parameter intervals and the linear model 

assumption of the process become less valid with the higher torch speed. From the results 

in the last three experiments one can begin to see that the parameter intervals found 

during system identification are becoming less valid. In the first experiment the closed 

loop output experiences oscillation because the process has a faster time constant than the 

controller. The aggressive controllers in experiments 3, 5, and 6 with W=0 and p=2 or 1 

obtain the highest closed loop performance.   

 
Figure 6-5   Soft Plasma Experiments 1-3 

95 



 
Figure 6-6   Second Set of Linear Experiments 

 In addition to the linear example above, in the next section an implementation of 

the proposed algorithm employing the stabilizing control interval was completed for a 

nonlinear system.  
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6.4.2   Nonlinear Scalar Example with Implementation 

The quasi-keyhole plasma process that was controlled in Section 5.2 was again 

used for the implementation of the nonlinear control using the stabilizing control interval. 

The data from the experimental results is given in Figure 6-7,8,9. 

 
Figure 6-7   Keyhole Plasma Process (Experiment 1) 
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Figure 6-8 Keyhole Plasma Process (Experiment 2) 
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Figure 6-9 Keyhole Plasma Process (Experiment 3) 

For the first experiment the parameter intervals that were found from system 

identification were used in the process control, and the closed loop results achieve what is 

expected. However, for the second and third set of experiments the parameter intervals 

were significantly narrowed about each of their mean with the expectation that the 

process could operate outside of the process intervals. Also, the adaptive factor was 

constrained to remain between zero and one for experiment 2 and between zero and 1.2 

for experiment 3. From the results shown in Figure 6-8 and Figure 6-9, one can see that 

the process began to operated above the process intervals and because the adaptive factor 

was saturated, the control could not properly adjust to achieve the desired closed loop 

reference. An interesting conclusion of these experiments is that movement of the 
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adaptive factor can tell the control designer something about the accuracy of the 

parameters intervals. The images each of the welds are given in Figure 6-10. 
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Figure 6-10 Keyhole Plasma Process with New Interval Control 
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6.5 Multivariable Parameter Interval GMC 
  

The approach for the multivariable case is similar to the scalar development. 

Consider a model given by 

1222111 )()()()( −⋅⋅+⋅++⋅+⋅= kkknnnkkk UxgxfxfxfY βϕϕϕ L  

Equation 6-42 

where                          
( )

( )
vectoraisUand

matrixaisxg
vectorsarexfandY

k

k

ikiik

1mx
nxm

1nx
⋅

⋅
β

ϕ
 

 

Because the states fi(xik) and g(xk) are known, then if the following intervals are known: 

maxmin

maxmin

βββ
ϕϕϕ

≤≤
≤≤ iii  

Equation 6-43 

then the problem can once again be constructed as an interval problem but with this time 

the intervals being multivariable. 

]][[][][ kkkk UBHY +=  

Equation 6-44 

Where [Yk] is a nx1 interval, [Hk] is a nx1 interval, [Bk] is a nxm, interval, and [Uk] is a 

mx1 interval.  

The solution to the multivariable interval problem is similar in nature to the scalar 

case, but requires a few extra steps. The reason for the extra steps is that in solving for 

either Umin or Umax, the boundary solution that is sought for is actually not the control that 

causes all the outputs to be equal to their output boundary, but rather the offset from the 
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generic model control solution that causes at least one output to be set equal to its output 

boundary. For example, the multivariable solution to: 

( ) ( +−+ −= HYBU max

1

max )  

Equation 6-45 

solves for the exact control that sets all outputs equal to their maximum allowed. 

However, this solution will likely result in some elements of U  calculated to be much 

greater than their GMC counterpart and others much less. 

max

 Thus, an alternative approach is required which solves the interval inverse 

problem and also provides useful boundaries for the control variable. The approach 

proposed uses the following equation: 

( )LUBHY GMC ++=  

Equation 6-46 

where L is the control offset from the GMC calculated control which sets at least one 

element of the output, Y, to its boundary either Ymin for Umin or Ymax for Umax. 

 Similar to the scalar case, because [Y] or [U] can be either above or below zero, 

the solution to Equation 6-47 is accomplished in two steps. For example, for determining 

 calculate: kU max

( )( )
( )( )−−+

+++

−+=

−+=

RUBHYL

RUBHYL

kGMCkk

kGMCkk

/.min2max

/.min1max

max

max  

Equation 6-47 

And then the maximum control boundary is: 
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( )kGMCkGMCstablek LULUU
kk

2max,1maxmin ++=+  

Equation 6-48 

Where U  is the control calculated using generic model control, ( ./ ) is element-wise 

division and R

kGMC

+ and R- are the gains of B calculated using the equations below: 

[ ] [ ]
[ ] [ ] vectormx

vectormx

BR

BR

1

1

1

1

⋅=

⋅=
++

−−

 

Equation 6-49 

Also for determining U calculate kmin

( )( )
( )( )++−

−−−

−+=

−+=

RUBHYL

RUBHYL

kGMCkk

kGMCkk

/.max2min

/.max1min

min

min  

Equation 6-50 

And then the minimum control boundary control is given by: 

( )2min,1minmax kGMCkGMCstablek LULUU
kk

++=−  

Equation 6-51 

Finally, then the final control implemented is equal to 

( )( )minmax ,,minmax UUUU GMCkopt =  

Equation 6-52 

Moreover, similar to the scalar case, predictions can be made for U and 

then averaged giving U

pkkk UU +++
ˆ,,ˆ,ˆ

21 K

k with the restriction that 

+− << kkk UUU ~  

Equation 6-53 
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In addition, also similar to the scalar case, during the control predictions, the modeling of 

the states can be updated using an adaptive factor based upon the sampled output and 

maximum and minimum predictions from the previous sampling time. 

 Therefore, the control is calculated by using the following steps: 

1. Calculate Fk from output sample and Y  from the previous iteration. 
kpredkpred Y maxmin ,

2. Calculate ( ) ( )HYB
krefGMC −⋅= −

,

1U  

3. Determine the possible offsets that set the control boundary Lmin1, Lmin2, 

Lmax1, Lmax2 

4. Calculate [Uk]stable using Equations 6-49-53 

5. Calculate Uopt k using Equation 6-54 

6. In a for loop predict U using the adaptive factor, F
pkoptkopt U

++
K

1 k, and control 

parameter ∆Fk to update states. 

7. Then implement U stablekk
pk

ki iik UUUW ][with~ ∈⋅∑ +
==  

8. Predict min
k

Y using U
1

max
1
,

++ kpredpred Y k
~

 and the maximum and minimum models 

 

 6.5.1 Linear Multivariable Case 

Given a discrete, observable linear system with parameter intervals for A and B only (i.e. 

not C) so that the states xk can be solved for: 

ksysk

ksysksysk

xCY

UBxAx

=

+=+1  

Equation 6-54 

Then the output feedback system can be reorganized to 
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ksyssysksyssysk UBCxACY +=+1  

Equation 6-55 

So that in relation to the interval problem: 

[ ] [ ] )1()1( 1,1

,

,

vectormxsyssysvectormxsyssys

syssyssyssys

ksyssyskksyssysk

BCRBCR

BCBBCB

xACHxACH
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==

==

++−−

++−−

++−−

 

Equation 6-56 

See the example in the following section. 

 

  6.5.2   Linear Multivariable Simulation 

For the coupled (2 input – 2 output) continuous linear system given by: 
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Equation 6-57 

where each parameter of A & B of the system varies by ± 50% resulting in the models 

with the following minimum and maximum model step responses in Figures 6-11,12. The 

system in Equation 6-57 can be discretized and then Equations 6-54,55, and 56 can be 

used with the PGMC control methodology to form a closed loop system. 
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Figure 6-11 Minimum Open Loop Step Response 

 

 
Figure 6-12 Maximum Open Loop Step Response 
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If the maximum and minimum discrete model that can be formed from the ± 50% 

variation of the parameters of the continuous model in Equation 6-57 are used in the 

closed loop simulation, the actual process could be simulated as varying between the 

maximum and minimum according to: 

)( minmaxmin YYFYYActual −⋅+=  

Equation 6-58 

where because there are two outputs, then F is composed of two factors, F1 and F2. If the 

adaptive factors change smoothly or are approximately constant, the adaptation of the 

PGMC control performs optimally in comparison with the regular GMC method. If the 

change in F1 and F2 is prescribed as is given in Figure 6-13, then the resulting closed loop 

GMC control is given in Figures 6-14,15 and the resulting Interval PGMC control is 

given in Figures 6-16,17. 

 
Figure 6-13   Case 1: Change of F thru Time 
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Figure 6-14   Case 1: GMC Control 

 
Figure 6-15   Case 1: GMC Output 
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Figure 6-16   Case 1: Interval PGMC Control 

 
Figure 6-17   Case 1: Interval PGMC Output 
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From the previous figures, it can be seen that the parameter interval PGMC 

performance is far superior to the regular GMC method. However, this was under ideal 

circumstances in that the simulated process varied according Equation 6-58 which is 

essentially the same equation that is used in the adaptation part of the control algorithm. 

Thus, the adaptation part of the control algorithm could identify the actual process model. 

If, however, the actual process varied between its maximum and minimum models such 

that each individual parameter of Equation 6-57 varies uniformly and randomly between 

its maximum and minimum, then this would be the worst case scenario. For the process 

model does not vary smoothly but completely randomly between sampling times from its 

maximum to minimum model, and thus the adaptive part of the control algorithm does 

not improve the control. In fact, if the oscillation is about the mean of the parameters, the 

normal GMC algorithm can perform better than newly designed algorithm. In this case, it 

would behoove the control designer to restrict the change of F between sampling times 

by the use of a filter or by directly filtering the output signal. Moreover, the prediction 

level p should be small if not equal to 1 because valid predictions can only be made if the 

change in the model between sampling times is smooth. 

However, to demonstrate this worst case scenario the following simulation is 

given for the system where each individual parameter of Equation 6-57 varies uniformly 

and randomly between its maximum and minimum. Figure 6-18,19 show the closed loop 

behavior for GMC and Figures 6-20,21 show the closed loop behavior of the Interval 

PGMC method. 
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Figure 6-18   Case 2: GMC Control 

 
Figure 6-19   Case 2: GMC Output 
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Figure 6-20   Case 2: Interval PGMC Control 

 
Figure 6-21   Case 2: Interval PGMC Output 
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 From the previous Figures 6-18 thru 6-21 it can be seen that if the parameters 

change completely uniformly and randomly between their maximum and minimum, and 

there is no filter on either the adaptive factor or the sampled output, then GMC algorithm 

can actually perform better than the newly designed algorithm.  

 Now the most likely scenario for a real process is that each of the parameters 

varies smoothly between its maximum and minimum between sampling times and that 

some vary more smoothly than others do. Thus, this next simulation will make the real 

process equal to the process given in Equation 6-57 where each of the eight parameters 

varies between its maximum and minimum according to its particular plot given in Figure 

6-22. This produces the GMC closed loop results in Figure 6-23,24 and Interval PGMC 

closed loop results in Figure 6-25, 26. 

 
Figure 6-22 Case 3: Change of Parameters thru Time 
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Figure 6-23   Case 3: GMC Control 

 
Figure 6-24   Case 3: GMC Output 
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Figure 6-25   Case 3: Interval PGMC Control 

 
Figure 6-26   Case 3: Interval PGMC Output 
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From the previous Figures 6-23 thru 6-26, it can be seen that the Interval PGMC’s 

performance is vastly superior to the original GMC method due to the adaptive factor and 

control smoothing. One additional simulation will be done to show the stability 

performance of Interval PGMC using the same process as in the last case where each of 

the model parameters changes smoothly, but with a restriction on the outputs given as: 

Y1max = 7 and Y2max = 10  

Y1min = -5 and Y2min = -5. 

The closed loop performance with the tighter stability restrictions is given in Figures 6-

27,28. The first thing to note is that output restrictions are achieved, which is expected. 

However, because the inputs and outputs of the model are coupled, the control that is 

found to satisfy the stability requirements, forces the output Y2 to swing drastically. This 

is not desirable. Moreover, upon inspection there are possibilities of a more optimal 

control that could have been implemented. For example, instead of having Y1 be set to its 

maximum output boundary and then forcing Y2 to swing drastically, a more appropriate 

control should be implemented that would have set both Y1 and Y2 less than their output 

boundary and forcing only a minimum swing in each variable. Unfortunately, the method 

by which this could be done has not been developed.  
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Figure 6-27   Case 4: Interval PGMC Control 

 
Figure 6-28   Case 4: Interval PGMC Output 
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6.5.3 Nonlinear Multivariable Simulation 

In addition to a linear multivariable system, a nonlinear multivariable example 

can demonstrate the utility of the proposed algorithm. Consider the following nonlinear 

multivariable system: 
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with parameter intervals given by: 
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Equation 6-60 

Then the multivariable system can be reduced to the interval problem by: 

( ) ( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( )( ) ( )

[ ] [ ] )1()1(

43

43

43

43

2222221
2

111
2

1100

2222221
2

111
2

1100

2222221
2

111
2

1100

2222221
2

111
2

1100

1,1

,

21,21max2sin2,2sin2max,max
21,21max2sin2,2sin2max,max

21,21min1sin1,1sin1min,min
21,21min1sin1,1sin1min,min

vectormxvectormx

kkkkkkkk

kkkkkkkk

k

kkkkkkkk

kkkkkkkk

k

BRBR

bb
aa

B
bb
aa

B

YYbYYbYYbYYbbb
YYaYYaYYaYYaaa

H

YYbYYbYYbYYbbb
YYaYYaYYaYYaaa

H

⋅=⋅=









=








=













++
++

=













++
++

=

++−−

++

++
+

−−

−−
−

−−
+

−−
−

−−
+

−−
−+−

−−
+

−−
−

−−
+

−−
−+−

+

−−
+

−−
−

−−
+

−−
−+−

−−
+

−−
−

−−
+

−−
−+−

−

 

Equation 6-61 
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A step response for the system given in Equation 6-59,60 is given in Figure 6-29. 

 
Figure 6-29 Open Loop Step Response 

The closed loop system output and control using the normal GMC algorithm is given in 

Figure 6-30, 31. The closed loop system output and control using the interval algorithm is 

given in Figures 6-32, 33. In comparing these Figures one can again see the utility of the 

interval algorithm in coping with the parametric uncertainties for even nonlinear systems. 

Lastly, in Figures 6-34, 35, the closed loop results are shown for the interval algorithm 

used in conjunction with a Ymax restriction equal to 1000 for both outputs.  

 

120 



 
Figure 6-30 GMC Control of Nonlinear Multivariable System 

 
Figure 6-31 GMC Output of Nonlinear Multivariable System 
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Figure 6-32 Interval Control of Nonlinear Multivariable System 

 
Figure 6-33 Interval Output of Nonlinear Multivariable System 

122 



 
Figure 6-34 Interval Control with Ymax = 1000 

 
Figure 6-35 Interval Output with Ymax = 1000 
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One other item should be noted for multivariable systems. It is possible in certain 

circumstances that there may not be a solution to the interval problem when the minimum 

control boundary is greater than the maximum control boundary. In this case, the order in 

which the max or min functions in Equation 6-52 becomes the deciding factor for which 

control boundary will be chosen. Thus, if one stability constraint is more important than 

the other (i.e. Ymax  is more important than Ymin) then this specifies the order in which the 

max and min functions should be taken. Moreover because the max and min functions are 

taken across the rows of each control vector, then if necessary the order of the max and 

min function could be different for each element of the control vector to emphasize the 

most important stability constraints. 

6.6 Discussion 
 

This chapter concludes the creation of the proposed algorithm, which includes 

control predictions, the use of parameter interval, an adaptive factor, and a stabilizing 

control interval. The algorithm use of parameter intervals and a corresponding interval 

problem solution greatly improved the usefulness of the original Generic Model Control 

method.  
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CHAPTER 7 

CONCLUSION 
 

A multivariable control technique was created for a certain type of nonlinear 

system with parameter intervals. The control is based upon the feedback linearization 

scheme called Generic Model Control, and alters the control calculation by including 

parameter intervals, solving a series of linear inequalities called an interval problem, and 

also making control predictions.  Implementations of the algorithm are done using 

various arc-welding systems. Also included are several simulations of controlled scalar 

and multivariable systems. Generally, the contribution of this dissertation in improving 

the GMC control technique is as follows: 

1. Emending the GMC control oscillation through the use of control predictions 

2. Determining a method by which suitable gains K1 and K2 and the prediction 

level p can be selected.  

3. Expanding the GMC technique to incorporate parameter intervals through the 

use of an adaptive factor. 

4. Ensuring the GMC closed loop stability by the use of parameter intervals and 

reforming the control calculation into an interval problem. 

5. Deriving the closed form solution to the interval problem for [B]≥0 for scalar 

and multivariable systems. 
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7.1 Future Work 
 

The first area for future work is in solving for the particular control in 

multivariable systems, which will more appropriately satisfy the minimum and maximum 

output constraints, without forcing one or more outputs to drastically swing through its 

allowable region, as discussed in the previous section. 

The other primary area of future work to be accomplished is in regards to 

loosening the developed algorithm’s model restriction for the interval problem. The 

closed form solution to the interval problem is only known for [B]≥0, which for scalar 

equations is acceptable since [U] can be negative or positive. However, for multivariable 

systems this is a real restriction because all the elements of  [B] have to be greater than or 

equal to zero, and this thereby excludes processes where a particular input affects one 

state variable in an inverse manner to any other state variable. Another area for future 

work is in expanding the interval problem solution for the multivariable linear processes 

in which the C matrix can also have parameter intervals, because at this time it cannot in 

order to determine the state variables from the output. Lastly, it is possible that the 

interval problem and its proposed solution could also be applied to another control 

techniques besides GMC, and therefore it is possible that the interval problem could be 

more appropriate according to some criteria with that other control technique. 
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 fo
r t

he
 N

ex
t S

am
pl

e  
 

ym
ax

_p
re

d 
= 

hm
ax

*Y
(1

,k
) +

 a
m

ax
*U

(1
,k

+1
); 

 
ym

in
_p

re
d 

= 
hm

in
*Y

(1
,k

) +
 a

m
in

*U
(1

,k
+1

); 
 

en
d 

 %
 P

lo
t R

es
ul

ts
 

fig
ur

e,
 p

lo
t([

1:
N

],U
,[1

:N
],U

m
in

,[1
:N

],U
m

ax
,[1

:N
],U

gm
c)

, g
rid

, l
eg

en
d(

'U
','U

m
in

','U
m

ax
', 

'U
_G

_M
_C

') 
fig

ur
e,

 p
lo

t([
1:

N
], 

Y
se

t, 
[1

:N
], 

Y
, [

1:
N

], 
Y

gm
c)

, g
rid

, l
eg

en
d(

'Y
se

t',
 'Y

', 
'Y

_G
_M

_C
') 
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L
IN

E
A

R
 M

U
L

T
IV

A
R

IA
B

L
E

 E
X

A
M

PL
E

 
 %

 S
im

ul
at

io
ns

 fo
r t

he
 sy

st
em

 g
iv

en
 in

  E
qu

at
io

n 
6-

57
 

 t1
=2

; t
2=

3;
 t3

=1
0;

 t4
=1

2;
 K

1=
.5

; K
2=

.0
6;

 K
3=

.0
8;

 K
4=

.4
; 

nu
m

s=
{K

1 
K

2;
 K

3 
K

4}
; d

en
s=

{[
t1

 1
] [

t2
 1

]; 
[t3

 1
] [

t4
 1

]}
; 

sy
s_

ol
=t

f(n
um

s,d
en

s)
; 

%
fig

ur
e 

%
st

ep
(s

ys
_o

l) 
%

co
nt

=S
S(

sy
s_

ol
,'m

in
') 

Ts
=.

1;
 

 A
c=

[-
.5

 0
 0

 0
; 0

 -.
1 

0 
0;

 0
 0

 -.
33

3 
0;

 0
 0

 0
 -.

08
33

]; 
B

c=
[.5

 0
; .

12
5 

0;
 0

 .1
25

; 0
 .2

5]
; 

C
c=

[.5
 0

 .1
6 

0;
 0

 .0
64

 0
 .1

33
33

]; 
 [A

,B
,C

,D
] =

 C
2D

M
(A

c,
B

c,
C

c,
[0

 0
;0

 0
],T

s,'
zo

h'
) 

[r
,m

]=
si

ze
(B

); 
[p

,n
]=

si
ze

(C
); 

s1
=.

5;
 s2

=.
5;

 s3
=.

5;
 s4

=.
5;

 s5
=.

5;
 s6

=.
5;

 s7
=.

5;
 s8

=.
5;

 
A

=[
.9

50
0 

0 
0 

0;
 0

 .9
9 

0 
0;

 0
 0

 .9
66

7 
0;

 0
 0

 0
 .9

91
7]

; 
A

m
ax

=[
1+

Ts
*A

c(
1,

1)
*(

1-
s1

) 0
 0

 0
; 0

 1
+T

s*
A

c(
2,

2)
*(

1-
s2

) 0
 0

; 0
 0

 1
+T

s*
A

c(
3,

3)
*(

1-
s3

) 0
; 0

 0
 0

 1
+T

s*
A

c(
4,

4)
*(

1-
s4

)]
; 

A
m

in
=[

1+
Ts

*A
c(

1,
1)

*(
1+

s1
) 0

 0
 0

; 0
 1

+T
s*

A
c(

2,
2)

*(
1+

s2
) 0

 0
; 0

 0
 1

+T
s*

A
c(

3,
3)

*(
1+

s3
) 0

; 0
 0

 0
 1

+T
s*

A
c(

4,
4)

*(
1+

s4
)]

; 
 B

m
ax

=[
B

(1
,1

)*
(1

+s
5)

 0
; B

(2
,1

)*
(1

+s
6)

 0
; 0

 B
(3

,2
)*

(1
+s

7)
; 0

 B
(4

,2
)*

(1
+s

8)
]; 

B
m

in
=[

B
(1

,1
)*

(1
-s

5)
 0

; B
(2

,1
)*

(1
-s

6)
 0

; 0
 B

(3
,2

)*
(1

-s
7)

; 0
 B

(4
,2

)*
(1

-s
8)

]; 
 %

 O
pe

n 
Lo

op
 S

te
p 

Re
sp

on
se

 
 sy

sd
1=

ss
(A

m
ax

,B
m

ax
,C

,D
,T

s)
; 

fig
ur

e,
st

ep
(s

ys
d1

), 
tit

le
('M

ax
im

um
 P

ro
ce

ss
') 
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sy
sd

2=
ss

(A
m

in
,B

m
in

,C
,D

,T
s)

; 
fig

ur
e,

st
ep

(s
ys

d2
), 

tit
le

('M
in

im
um

 P
ro

ce
ss

') 
  B

m
ax

i=
in

v(
C

*B
m

ax
); 

B
m

in
i=

in
v(

C
*B

m
in

); 
B

i=
in

v(
C

*B
); 

 
hm

ax
=C

*A
m

ax
; h

m
in

=C
*A

m
in

; h
=C

*A
; 

C
r=

C
; 

C
i=

pi
nv

(C
); 

R
m

ax
=(

C
*B

m
ax

)*
[1

;1
]; 

R
m

in
=(

C
*B

m
in

)*
[1

;1
]; 

  %
 B

ui
ld

 h
ist

or
y 

of
 p

ar
am

et
er

s v
ar

ia
tio

ns
 (s

1 
th

ru
 s

8 
ar

e 
th

e 
m

ag
ni

tu
de

s o
f t

he
 v

ar
ia

tio
ns

)  
Ts

=.
1;

 T
en

d=
20

0;
 

N
=r

ou
nd

(T
en

d/
Ts

); 
f1

=.
5*

on
es

(1
,N

); 
f2

=.
5*

on
es

(1
,N

); 
f3

=.
5*

on
es

(1
,N

); 
f4

=.
5*

on
es

(1
,N

); 
f5

=.
5*

on
es

(1
,N

); 
f6

=.
5*

on
es

(1
,N

); 
f7

=.
5*

on
es

(1
,N

); 
f8

=.
5*

on
es

(1
,N

); 
 

fo
r i

i=
2:

N
, 

 
f1

(1
,ii

)=
m

ax
(m

in
(1

,.5
+s

1*
(2

*r
an

d-
1)

),0
); 

 
f2

(1
,ii

)=
m

ax
(m

in
(1

,.5
+s

2*
(2

*r
an

d-
1)

),0
); 

 
f3

(1
,ii

)=
m

ax
(m

in
(1

,.5
+s

3*
(2

*r
an

d-
1)

),0
); 

 
f4

(1
,ii

)=
m

ax
(m

in
(1

,.5
+s

4*
(2

*r
an

d-
1)

),0
); 

 
f5

(1
,ii

)=
m

ax
(m

in
(1

,.5
+s

5*
(2

*r
an

d-
1)

),0
); 

 
f6

(1
,ii

)=
m

ax
(m

in
(1

,.5
+s

6*
(2

*r
an

d-
1)

),0
); 

 
f7

(1
,ii

)=
m

ax
(m

in
(1

,.5
+s

7*
(2

*r
an

d-
1)

),0
); 

 
f8

(1
,ii

)=
m

ax
(m

in
(1

,.5
+s

8*
(2

*r
an

d-
1)

),0
); 

  
 

 
%

f1
(1

,ii
)=

.5
+.

5*
si

n(
.0

1*
ii)

; 
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%

f2
(1

,ii
)=

.5
+.

5*
co

s(
.0

3*
ii)

; 
 

%
f3

(1
,ii

)=
m

ax
(m

in
(1

,f3
(ii

-1
)+

s3
*(

2*
ra

nd
-1

))
,0

); 
 

%
f4

(1
,ii

)=
m

ax
(m

in
(1

,f4
(ii

-1
)+

s4
*(

2*
ra

nd
-1

))
,0

); 
 

%
f5

(1
,ii

)=
.5

+.
1*

co
s(

.0
1*

ii)
; 

 
%

f6
(1

,ii
)=

.5
+.

5*
co

s(
.0

1*
ii)

; 
 

%
f7

(1
,ii

)=
m

ax
(m

in
(1

,f7
(ii

-1
)+

s7
*(

2*
ra

nd
-1

))
,0

); 
 

%
f8

(1
,ii

)=
m

ax
(m

in
(1

,f8
(ii

-1
)+

s8
*(

2*
ra

nd
-1

))
,0

); 
en

d 
fig

ur
e,

 p
lo

t(T
s*

[1
:N

],f
1,

Ts
*[

1:
N

],f
2)

, l
eg

en
d(

'F
ac

to
r f

or
 Y

1'
, '

Fa
ct

or
 Y

2'
) 

   %
 C

on
tr

ol
 P

ar
am

et
er

s:
 I 

wa
nt

 it
 to

 se
ttl

e 
wi

th
in

 2
0 

sa
m

pl
in

g 
tim

es
(ta

u=
20

/.4
3)

 a
nd

 I 
am

 g
oi

ng
 to

 p
re

di
ct

 o
ut

 4
 st

ep
s a

he
ad

 (P
=

4)
.  

 
%

 A
ls

o 
du

ri
ng

 si
m

ul
at

io
n 

I w
ill

 %
 v

ar
y 

th
e 

F 
by

 5
0%

 (d
ev

=
.1

). 
Ts

et
t_

d1
=2

0;
 T

se
tt_

d2
=2

0;
 

ta
u1

=T
se

tt_
d1

/.4
3;

 ta
u2

=T
se

tt_
d2

/.4
3;

 
K

1=
di

ag
([

(8
/ta

u1
) (

8/
ta

u2
)]

); 
K

2=
di

ag
([

(1
/ta

u1
^2

) (
1/

ta
u2

^2
)]

); 
P=

4;
 

de
v=

[.1
 .1

]; 
 %

 V
ec

to
r I

ni
tia

liz
at

io
ns

 
x1

=z
er

os
(n

,N
); 

y1
=z

er
os

(m
,N

); 
w

1=
ze

ro
s(

m
,N

); 
e1

=z
er

os
(p

,N
); 

E1
=z

er
os

(p
,1

); 
x=

ze
ro

s(
n,

N
); 

 y
=z

er
os

(m
,N

); 
w

=z
er

os
(m

,N
); 

 e
=z

er
os

(p
,N

); 
 E

=z
er

os
(p

,1
); 

w
m

in
=z

er
os

(m
,N

); 
w

m
ax

=z
er

os
(m

,N
); 

xp
_m

in
=z

er
os

(n
,P

); 
xp

_m
ax

=z
er

os
(n

,P
); 

yp
=z

er
os

(m
,P

); 
w

p=
ze

ro
s(

m
,P

); 
ep

=z
er

os
(p

,P
); 

Ep
=z

er
os

(p
,1

); 
xp

=z
er

os
(n

,p
); 

F=
ze

ro
s(

N
,2

); 
yp

re
d_

m
in

=z
er

os
(p

,N
); 

yp
re

d_
m

ax
=z

er
os

(p
,N

); 
w

G
M

C
=z

er
os

(m
,N

); 
T=

[1
:N

].*
Ts

;  
 %

 S
et

 th
e 

D
es

ir
ed

 O
ut

pu
t y

r a
nd

 th
e 

M
ax

im
um

 O
ut

pu
t y

m
ax

 
yr

=[
2*

[S
Q

U
A

R
E(

2*
pi

*(
1/

90
)*

(T
s.*

[1
:N

+P
])

)]
+5

; 2
*[

SQ
U

A
R

E(
2*

pi
*(

1/
90

)*
(T

s.*
[1

:N
+P

])
)]

+8
]; 

ym
ax

=[
18

*o
ne

s(
1,

N
+P

); 
18

*o
ne

s(
1,

N
+P

)]
; y

m
in

=[
-5

*o
ne

s(
1,

N
+P

); 
-5

*o
ne

s(
1,

N
+P

)]
; 
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 %
 G

M
C

 C
on

tr
ol

 a
nd

 O
ut

pu
t  

fo
r k

k=
2:

N
, 

 
A

r=
[A

m
in

(1
,1

)+
f1

(1
,k

k)
*(

A
m

ax
(1

,1
)-

A
m

in
(1

,1
))

 0
 0

 0
; 0

 A
m

in
(2

,2
)+

f2
(1

,k
k)

*(
A

m
ax

(2
,2

)-
A

m
in

(2
,2

))
 0

 0
;…

 
 0

 0
 A

m
in

(3
,3

)+
f3

(1
,k

k)
*(

A
m

ax
(3

,3
)-

A
m

in
(3

,3
))

 0
; 0

 0
 0

 A
m

in
(4

,4
)+

f4
(1

,k
k)

*(
A

m
ax

(4
,4

)-
A

m
in

(4
,4

))
]; 

 
B

r=
[B

m
in

(1
,1

)+
f5

(1
,k

k)
*(

B
m

ax
(1

,1
)-

B
m

in
(1

,1
))

 0
; B

m
in

(2
,1

)+
f6

(1
,k

k)
*(

B
m

ax
(2

,1
)-

B
m

in
(2

,1
))

 0
;…

 
 0

 B
m

in
(3

,2
)+

f7
(1

,k
k)

*(
B

m
ax

(3
,2

)-
B

m
in

(3
,2

))
; 0

 B
m

in
(4

,2
)+

f8
(1

,k
k)

*(
B

m
ax

(4
,2

)-
B

m
in

(4
,2

))
]; 

 
 

 
x1

(:,
kk

)=
A

r*
x1

(:,
kk

-1
)+

B
r*

w
1(

:,k
k-

1)
; 

 
y1

(:,
kk

)=
C

r*
x1

(:,
kk

); 
 

e1
(:,

kk
)=

yr
(:,

kk
)-

y1
(:,

kk
); 

 
E1

=E
1+

e1
(:,

kk
)*

Ts
; 

 
w

1(
:,k

k)
=B

i*
((

K
1*

e1
(:,

kk
)+

K
2*

E1
)*

Ts
 +

 y
1(

:,k
k)

 - 
h*

x1
(:,

kk
))

; 
en

d 
fig

ur
e,

 p
lo

t(T
,w

1(
1,

:),
T,

w
1(

2,
:))

, g
rid

, l
eg

en
d(

'C
on

tro
l 1

', 
'C

on
tro

l 2
'),

 ti
tle

('G
M

C
 C

on
tro

l')
 

fig
ur

e,
 p

lo
t(T

,y
r(

1,
[1

:N
])

,T
,y

1(
1,

:),
T,

yr
(2

,[1
:N

])
,T

,y
1(

2,
:))

, g
rid

, l
eg

en
d(

'R
ef

er
en

ce
 1

', 
'O

ut
pu

t 1
', 

'R
ef

er
en

ce
 2

', 
'O

ut
pu

t 2
'),

 …
 

tit
le

('G
M

C
 O

ut
pu

t')
 

  %
 In

iti
al

 F
ac

to
r, 

F,
 is

 e
qu

al
 to

 .5
 

F(
1,

:)=
[.5

 .5
]; 

  %
 S

im
ul

at
e 

In
te

rv
al

 P
G

M
C

 C
on

tr
ol

 a
nd

 O
ut

pu
t  

fo
r k

k=
2:

N
, 

 %
 F

ou
nd

 b
y 

ch
an

gi
ng

 e
ac

h 
pa

ra
m

et
er

 b
y 

a 
Fa

ct
or

 
 

A
r=

[A
m

in
(1

,1
)+

f1
(1

,k
k)

*(
A

m
ax

(1
,1

)-
A

m
in

(1
,1

))
 0

 0
 0

; 0
 A

m
in

(2
,2

)+
f2

(1
,k

k)
*(

A
m

ax
(2

,2
)-

A
m

in
(2

,2
))

 0
 0

;…
 

 0
 0

 A
m

in
(3

,3
)+

f3
(1

,k
k)

*(
A

m
ax

(3
,3

)-
A

m
in

(3
,3

))
 0

; 0
 0

 0
 A

m
in

(4
,4

)+
f4

(1
,k

k)
*(

A
m

ax
(4

,4
)-

A
m

in
(4

,4
))

]; 
 

B
r=

[B
m

in
(1

,1
)+

f5
(1

,k
k)

*(
B

m
ax

(1
,1

)-
B

m
in

(1
,1

))
 0

; B
m

in
(2

,1
)+

f6
(1

,k
k)

*(
B

m
ax

(2
,1

)-
B

m
in

(2
,1

))
 0

;…
 

 0
 B

m
in

(3
,2

)+
f7

(1
,k

k)
*(

B
m

ax
(3

,2
)-

B
m

in
(3

,2
))

; 0
 B

m
in

(4
,2

)+
f8

(1
,k

k)
*(

B
m

ax
(4

,2
)-

B
m

in
(4

,2
))

]; 
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x(
:,k

k)
=A

r*
x(

:,k
k-

1)
+B

r*
w

(:,
kk

-1
); 

 
y(

:,k
k)

=C
r*

x(
:,k

k)
; 

 
 

%
 C

al
cu

la
te

 A
da

pt
iv

e 
Fa

ct
or

 
 

if 
kk

==
2,

 
 

 
F(

kk
,1

)=
.5

; F
(k

k,
2)

=.
5;

 
 

el
se

 
 

 
F(

kk
,:)

=[
(y

(1
,k

k)
-Y

pr
ed

_m
in

(1
,1

))
/(Y

pr
ed

_m
ax

(1
,1

)-
Y

pr
ed

_m
in

(1
,1

))
…

 
   

(y
(2

,k
k)

-Y
pr

ed
_m

in
(2

,1
))

/(Y
pr

ed
_m

ax
(2

,1
)-

Y
pr

ed
_m

in
(2

,1
))

]; 
 

en
d 

 
 

 
 

e(
:,k

k)
=y

r(
:,k

k)
-y

(:,
kk

); 
 

E=
E+

e(
:,k

k)
*T

s; 
 

Y
re

fk
=(

K
1*

e(
:,k

k)
+K

2*
E)

*T
s +

 y
(:,

kk
); 

 
Y

re
fk

=m
ax

([
m

in
([

Y
re

fk
,y

m
ax

(:,
kk

)]
,[]

,2
),y

m
in

(:,
kk

)]
,[]

,2
); 

 
w

_g
m

c=
in

v(
C

*B
m

in
+[

F(
kk

,1
) 0

; 0
 F

(k
k,

2)
]*

(C
*B

m
ax

-C
*B

m
in

))
*(

Y
re

fk
 - 

(h
m

in
+[

F(
kk

,1
) 0

; 0
 F

(k
k,

2)
]*

…
 

(h
m

ax
- h

m
in

))
*x

(:,
kk

))
; 

 
w

G
M

C
(:,

kk
)=

w
_g

m
c;

 
 

 
 

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
 

 %
 D

et
er

m
in

e 
M

ax
im

um
 a

nd
 M

in
im

um
 In

pu
ts

 
 

Lm
ax

1=
m

in
((

(y
m

ax
(:,

kk
)-

hm
ax

*x
(:,

kk
)-

C
*B

m
ax

*w
_g

m
c)

./R
m

ax
))

; 
 

w
_m

ax
1=

[w
_g

m
c(

1,
1)

+L
m

ax
1;

 w
_g

m
c(

2,
1)

+L
m

ax
1]

; 
 

Lm
ax

2=
m

in
((

(y
m

ax
(:,

kk
)-

hm
ax

*x
(:,

kk
)-

C
*B

m
in

*w
_g

m
c)

./R
m

in
))

; 
 

w
_m

ax
2=

[w
_g

m
c(

1,
1)

+L
m

ax
2;

 w
_g

m
c(

2,
1)

+L
m

ax
2]

; 
 

w
_m

ax
=m

in
([

w
_m

ax
1,

w
_m

ax
2]

,[]
,2

); 
 

 
 

Lm
in

1=
m

ax
((

(y
m

in
(:,

kk
)-

hm
in

*x
(:,

kk
)-

C
*B

m
in

*w
_g

m
c)

./R
m

in
))

; 
 

w
_m

in
1=

[w
_g

m
c(

1,
1)

+L
m

in
1;

 w
_g

m
c(

2,
1)

+L
m

in
1]

; 

13
5 



 
Lm

in
2=

m
ax

((
(y

m
in

(:,
kk

)-
hm

in
*x

(:,
kk

)-
C

*B
m

ax
*w

_g
m

c)
./R

m
ax

))
; 

 
w

_m
in

2=
[w

_g
m

c(
1,

1)
+L

m
in

2;
 w

_g
m

c(
2,

1)
+L

m
in

2]
; 

 
w

_m
in

=m
ax

([
w

_m
in

1,
w

_m
in

2]
,[]

,2
); 

  
w

m
ax

(:,
kk

)=
w

_m
ax

; w
m

in
(:,

kk
)=

w
_m

in
; 

 
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

 
 %

 In
su

re
 th

at
 U

k+
1 i

s W
ith

in
 S

ta
bi

liz
in

g 
C

on
tr

ol
 In

te
rv

al
 

 
w

(:,
kk

)=
m

ax
([

m
in

([
w

_m
ax

,w
_g

m
c]

,[]
,2

),w
_m

in
],[

],2
); 

 
 

%
 In

te
rv

al
 C

on
tr

ol
 a

nd
 O

ut
pu

t P
re

di
ct

io
ns

 
 

xp
(:,

1)
=x

(:,
kk

); 
w

p(
:,1

)=
w

(:,
kk

); 
Ep

=E
; e

p=
e;

 y
p(

:,1
)=

y(
:,k

k)
; 

 
if 

P=
=1

, 
 

el
se

 
 

 
fo

r i
i=

2:
P,

 
 

 
 

if 
ii=

=2
, 

 
 

 
el

se
if 

(ii
>2

 &
 re

m
(ii

,2
)=

=0
), 

 
 

 
 

F(
kk

,1
)=

m
in

(m
ax

(F
(k

k,
1)

+d
ev

(1
,1

),0
),1

); 
F(

kk
,2

)=
m

in
(m

ax
(F

(k
k,

2)
+d

ev
(1

,2
),0

),1
); 

 
 

 
el

se
 

 
 

 
 

F(
kk

,1
)=

m
in

(m
ax

(F
(k

k,
1)

-d
ev

(1
,1

),0
),1

); 
F(

kk
,2

)=
m

in
(m

ax
(F

(k
k,

2)
-d

ev
(1

,2
),0

),1
); 

 
 

 
en

d 
 

 
 

 
 

 
xp

_m
in

(:,
ii)

=A
m

in
*x

p(
:,i

i-1
)+

B
m

in
*w

p(
:,i

i-1
); 

 
 

 
 

xp
_m

ax
(:,

ii)
=A

m
ax

*x
p(

:,i
i-1

)+
B

m
ax

*w
p(

:,i
i-1

); 
 

 
 

 
 

yp
(:,

ii)
=C

r*
xp

_m
in

(:,
ii)

 +
 F

(k
k,

:)*
(C

r*
xp

_m
in

(:,
ii)

-C
r*

xp
_m

in
(:,

ii)
); 

 
 

 
 

xp
(:,

ii)
=C

i*
yp

(:,
ii)

; 
 

 
 

 
ep

(:,
ii)

=y
r(

:,k
k+

ii)
-y

p(
:,i

i);
 

 
 

 
 

Ep
=E

p+
ep

(:,
ii)

*T
s;

 
 

 
 

 
Y

re
fk

=(
K

1*
ep

(:,
ii)

+K
2*

Ep
)*

Ts
 +

 y
p(

:,i
i);

 
 

 
 

 
Y

re
fk

=m
ax

([
m

in
([

Y
re

fk
,y

m
ax

(:,
kk

+i
i)]

,[]
,2

),y
m

in
(:,

kk
+i

i)]
,[]

,2
); 

 
 

 
 

w
p_

gm
c=

in
v(

C
*B

m
in

+[
F(

kk
,1

) 0
; 0

 F
(k

k,
2)

]*
(C

*B
m

ax
-C

*B
m

in
))

*(
Y

re
fk

 - 
(h

m
in

+[
F(

kk
,1

) 0
;…
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 0
 F

(k
k,

2)
]*

(h
m

ax
-h

m
in

))
*x

p(
:,i

i))
; 

 
 

 
 

 
 

 
 

 
 

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
 

 %
 D

et
er

m
in

e 
M

ax
im

um
 a

nd
 M

in
im

um
 In

pu
ts

 
 

 
 

 
Lm

ax
1=

m
in

((
(y

m
ax

(:,
kk

+i
i)-

hm
ax

*x
p(

:,i
i)-

C
*B

m
ax

*w
p_

gm
c)

./R
m

ax
))

; 
 

 
 

 
w

p_
m

ax
1=

[w
p_

gm
c(

1,
1)

+L
m

ax
1;

 w
p_

gm
c(

2,
1)

+L
m

ax
1]

; 
 

 
 

 
Lm

ax
2=

m
in

((
(y

m
ax

(:,
kk

+i
i)-

hm
ax

*x
p(

:,i
i)-

C
*B

m
in

*w
p_

gm
c)

./R
m

in
))

; 
 

 
 

 
w

p_
m

ax
2=

[w
p_

gm
c(

1,
1)

+L
m

ax
2;

 w
p_

gm
c(

2,
1)

+L
m

ax
2]

; 
 

 
 

 
w

p_
m

ax
=m

in
([

w
p_

m
ax

1,
w

p_
m

ax
2]

,[]
,2

); 
 

 
 

 
 

 
Lm

in
1=

m
ax

((
(y

m
in

(:,
kk

+i
i)-

hm
in

*x
p(

:,i
i)-

C
*B

m
in

*w
p_

gm
c)

./R
m

in
))

; 
 

 
 

 
w

p_
m

in
1=

[w
p_

gm
c(

1,
1)

+L
m

in
1;

 w
p_

gm
c(

2,
1)

+L
m

in
1]

; 
 

 
 

 
Lm

in
2=

m
ax

((
(y

m
in

(:,
kk

+i
i)-

hm
in

*x
p(

:,i
i)-

C
*B

m
ax

*w
p_

gm
c)

./R
m

ax
))

; 
 

 
 

 
w

p_
m

in
2=

[w
p_

gm
c(

1,
1)

+L
m

in
2;

 w
p_

gm
c(

2,
1)

+L
m

in
2]

; 
 

 
 

 
w

p_
m

in
=m

ax
([

w
p_

m
in

1,
w

p_
m

in
2]

,[]
,2

); 
  

 
 

 
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

 
 %

 In
su

re
 th

at
 U

k+
i i

s W
ith

in
 S

ta
bi

liz
in

g 
C

on
tr

ol
 In

te
rv

al
 

 
 

 
 

w
p(

:,i
i)=

m
ax

([
m

in
([

w
p_

m
ax

,w
p_

gm
c]

,[]
,2

),w
p_

m
in

],[
],2

); 
 

 
 

 
en

d 
 

en
d 

 
 

%
 A

ve
ra

ge
 C

on
tro

l P
re

di
ct

io
ns

 
w

(:,
kk

)=
[[

P:
-1

:1
]/s

um
([

P:
-1

:1
])

*w
p(

1,
:)'

; [
P:

-1
:1

]/s
um

([
P:

-1
:1

])
*w

p(
2,

:)'
]; 
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 %
 In

su
re

 th
at

 U
k+

i i
s W

ith
in

 S
ta

bi
liz

in
g 

C
on

tr
ol

 In
te

rv
al

 
 

w
(:,

kk
)=

m
ax

([
m

in
([

w
_m

ax
,w

_g
m

c]
,[]

,2
),w

_m
in

],[
],2

); 
 %

 M
ak

e 
C

on
tro

l P
re

di
ct

io
ns

 fo
r U

se
 in

 A
da

pt
iv

e 
Fa

ct
or

 fo
r t

he
 N

ex
t S

am
pl

e  
 

Y
pr

ed
_m

ax
=C

*(
B

m
ax

*w
(:,

kk
) +

 A
m

ax
*x

(:,
kk

))
; Y

pr
ed

_m
in

=C
*(

B
m

in
*w

(:,
kk

) +
 A

m
in

*x
(:,

kk
))

; 
 

yp
re

d_
m

ax
(:,

kk
)=

Y
pr

ed
_m

ax
; y

pr
ed

_m
in

(:,
kk

)=
Y

pr
ed

_m
in

; 
en

d 
 %

 P
lo

t R
es

ul
ts

 
fig

ur
e,

 p
lo

t(T
,w

m
ax

(1
,:)

,T
,w

(1
,:)

,T
,w

m
in

(1
,:)

,T
,w

m
ax

(2
,:)

,T
,w

(2
,:)

,T
,w

m
in

(2
,:)

), 
le

ge
nd

('C
on

tro
l 1

 m
ax

', 
'C

on
tro

l 1
', 

…
 

'C
on

tro
l 1

 m
in

', 
'C

on
tro

l 2
 m

ax
', 

'C
on

tro
l 2

', 
'C

on
tro

l 2
 m

in
'),

 ti
tle

('I
nt

er
va

l P
G

M
C

 C
on

tro
l')

 
fig

ur
e,

 
su

bp
lo

t(2
,1

,1
),p

lo
t(T

s*
[1

:N
],F

(:,
1)

), 
gr

id
, t

itl
e(

'F
1'

) 
su

bp
lo

t(2
,1

,2
),p

lo
t(T

s*
[1

:N
],F

(:,
2)

), 
gr

id
, t

itl
e(

'F
2'

) 
fig

ur
e,

 p
lo

t(T
,y

r(
1,

[1
:N

])
,T

,y
(1

,:)
,T

,y
r(

2,
[1

:N
])

,T
,y

(2
,:)

), 
gr

id
, l

eg
en

d(
'R

ef
er

en
ce

 1
', 

'O
ut

pu
t 1

','R
ef

er
en

ce
 2

', 
'O

ut
pu

t 2
'),

 …
 

tit
le

('I
nt

er
va

l P
G

M
C

 O
ut

pu
t')
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  N
O

N
L

IN
E

A
R

 M
U

L
T

IV
A

R
IA

B
L

E
 E

X
A

M
PL

E
 

 %
 F

or
 th

e 
Sy

st
em

 G
iv

en
 in

 E
qu

at
io

n 
6-

59
,6

0  
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
 

a1
0_

m
in

=1
00

; a
11

_m
in

=-
.0

00
06

;  
a1

2_
m

in
=.

00
02

;  
a1

3_
m

in
=5

;  
 a

14
_m

in
=.

1;
 

a1
0_

m
ax

=1
20

; a
11

_m
ax

=-
.0

00
00

1;
 a

12
_m

ax
=.

00
03

5;
 a

13
_m

ax
=6

;  
 a

14
_m

ax
=.

1;
 

 a2
0_

m
in

=8
5;

  a
21

_m
in

=-
.0

00
09

;  
a2

2_
m

in
=.

00
01

;  
a2

3_
m

in
=.

1;
  a

24
_m

in
=4

; 
a2

0_
m

ax
=9

5;
  a

21
_m

ax
=0

;  
   

   
 a

22
_m

ax
=.

00
04

; a
23

_m
ax

=.
1;

 a
24

_m
ax

=5
; 

 a1
0=

(a
10

_m
in

+a
10

_m
ax

)/2
; a

11
=(

a1
1_

m
in

+a
11

_m
ax

)/2
; a

12
=(

a1
2_

m
in

+a
12

_m
ax

)/2
; a

13
=(

a1
3_

m
in

+a
13

_m
ax

)/2
; 

a1
4=

(a
14

_m
in

+a
14

_m
ax

)/2
; 

a2
0=

(a
20

_m
in

+a
20

_m
ax

)/2
; a

21
=(

a2
1_

m
in

+a
21

_m
ax

)/2
; a

22
=(

a2
2_

m
in

+a
22

_m
ax

)/2
; a

23
=(

a2
3_

m
in

+a
23

_m
ax

)/2
; 

a2
4=

(a
24

_m
in

+a
24

_m
ax

)/2
; 

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

 
B

gm
c=

[a
13

 a
14

; a
23

 a
24

]; 
B

gm
ci

=i
nv

(B
gm

c)
; 

B
m

ax
=[

a1
3_

m
ax

 a
14

_m
ax

; a
23

_m
ax

 a
24

_m
ax

]; 
B

m
in

=[
a1

3_
m

in
 a

14
_m

in
; a

23
_m

in
 a

24
_m

in
]; 

R
m

ax
=(

B
m

ax
)*

[1
;1

]; 
R

m
in

=(
B

m
in

)*
[1

;1
]; 

 %
 O

pe
n 

Lo
op

 S
te

p 
Re

sp
on

se
 

N
=2

50
; U

1=
10

0*
on

es
(1

,N
); 

U
2=

10
0*

on
es

(1
,N

); 
Y

1m
in

=z
er

os
(1

,N
); 

Y
2m

in
=z

er
os

(1
,N

); 
Y

1m
ax

=z
er

os
(1

,N
); 

Y
2m

ax
=z

er
os

(1
,N

); 
Y

1m
ea

n=
ze

ro
s(

1,
N

); 
Y

2m
ea

n=
ze

ro
s(

1,
N

); 
 fo

r k
=2

:N
-1

, 
 

Y
1m

in
(1

,k
+1

) =
 a

10
_m

in
 +

 a
11

_m
in

*(
Y

1m
in

(1
,k

)^
2)

*s
in

(1
*Y

1m
in

(1
,k

))
 +

 a
12

_m
in

*Y
1m

in
(1

,k
-1

)*
Y

2m
in

(1
,k

-1
) +

 …
 

a1
3_

m
in

*U
1(

1,
k)

 +
 a

14
_m

in
*U

2(
1,

k)
; 

 
Y

2m
in

(1
,k

+1
) =

 a
20

_m
in

 +
 a

21
_m

in
*(

Y
2m

in
(1

,k
)^

2)
*s

in
(1

*Y
2m

in
(1

,k
))

 +
 a

22
_m

in
*Y

1m
in

(1
,k

-1
)*

Y
2m

in
(1

,k
-1

) +
 …
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a2
3_

m
in

*U
1(

1,
k)

 +
 a

24
_m

in
*U

2(
1,

k)
; 

 
Y

1m
ax

(1
,k

+1
) =

 a
10

_m
ax

 +
 a

11
_m

ax
*(

Y
1m

ax
(1

,k
)^

2)
*s

in
(1

*Y
1m

ax
(1

,k
))

 +
 a

12
_m

ax
*Y

1m
ax

(1
,k

-1
)*

Y
2m

ax
(1

,k
-1

) +
 …

 
a1

3_
m

ax
*U

1(
1,

k)
 +

 a
14

_m
ax

*U
2(

1,
k)

; 
 

Y
2m

ax
(1

,k
+1

) =
 a

20
_m

ax
 +

 a
21

_m
ax

*(
Y

2m
ax

(1
,k

)^
2)

*s
in

(1
*Y

2m
ax

(1
,k

))
 +

 a
22

_m
ax

*Y
1m

ax
(1

,k
-1

)*
Y

2m
ax

(1
,k

-1
) +

 …
 

a2
3_

m
ax

*U
1(

1,
k)

 +
 a

24
_m

ax
*U

2(
1,

k)
; 

 
Y

1m
ea

n(
1,

k+
1)

= 
a1

0 
 +

 a
11

*(
Y

1m
ea

n(
1,

k)
^2

)*
si

n(
1*

Y
1m

ea
n(

1,
k)

)+
 a

12
*Y

1m
ea

n(
1,

k-
1)

*Y
2m

ea
n(

1,
k-

1)
 +

 a
13

*U
1(

1,
k)

 …
 

+ 
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