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ABSTRACT OF DISSERTATION 
 
 
 
 

STRUCTURAL AND FUNCTIONAL STUDIES OF SYNAPTIC ENZYMES 
 
 
 

Thimet oligopeptidase (TOP, EC 3.4.24.15) and neurolysin (EC 3.4.24.16) are zinc 
dependent metallopeptidases that metabolize small bioactive peptides. The two enzymes share 
60 % sequence identity and their crystal structures demonstrate that they adopt nearly identical 
folds. They generally cleave at the same sites, but they recognize different positions on some 
peptides, including neurotensin, a 13-residue peptide involved in modulation of dopaminergic 
circuits, pain perception, and thermoregulation.  

 
On the basis of crystal structures and previous mapping studies, four residues 

(E469/R470, M490/R491, H495/N496, and R498/T499, TOP residues listed first) in the 
substrate-binding channel appear positioned to account for differences in specificity. TOP 
mutated to the neurolysin residues at all four position cleaves neurotensin at the neurolysin site 
and neurolysin mutated to the TOP residues at all four sites cleaves at the TOP position. Using a 
series of constructs mutated at only three sites, it was determined that only two of the mutations, 
E469/R470 and R498/T499, are required to swap the specificity of TOP and neurolysin. These 
results were confirmed by testing the two mutation constructs, and either single mutant of TOP 
shown an intermediate specificity, cleaving at both sites.  

 
Crystal structures of the two mutation constructs of TOP and neurolysin unliganded 

forms, the mutations do not perturb local structure, but side chain conformations at the 
R498/T499 position differ from those of the mimicked enzyme. A model for differential 
recognition of neurotensin based on differences in surface charge distribution in the substrate 
binding sites is proposed. The model is supported by finding that reducing the positive charge on 
the peptide results in cleavage at both hydrolysis sites.  

 
 



 

This dissertation also includes a description of the production and crystallization trials of 
human neprilysin (E.C. 3.4.24.11), which will be used as another model system for studying 
specificity in metallopeptidases. In addition, the production and crystallization, and crystal 
characterization of human choline acetyltransferase (EC 2.3.1.6) is described.  
 
KEYWORDS: Thimet oligopeptidase, neurolysin, crystallography, neurotensin, specificity 
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Chapter 1: Introduction 

 

Neuropeptides and neuropeptidases 

Neuropeptides play important roles in cell communication by regulating signal pathways 

in the nervous and endocrine systems. To date, more than 100 biologically active neuropeptides 

have been identified. Neuropeptides are generally 2-40 residues in length and are involved in 

regulating a number of processes, including blood pressure, analgesia, and thermoregulation 

(Konkoy and Davis, 1996; Brown et al., 2001). Changes in their levels in vivo are associated 

with various diseases such as hypertension, schizophrenia, and neurodegenerative diseases 

(Nemeroff et al., 1982; Bauer, 1990; Genden and Molineaux, 1991; Koike et al., 1999; Yamin et 

al., 1999; Shrimpton et al., 2000; Smith et al., 2000; Shrimpton et al., 2002).  

Neuropeptides are usually synthesized as inactive precursor pro-peptides which are 

processed into active forms by peptidases known as pro-protein convertases that are present in 

the secretory system (Czyzyk et al., 2003). The processed active neuropeptides are transported to 

the synaptic terminal via secretory vesicles (Zhou et al., 1999) and released into the synaptic 

cleft (Figure 1.1). After release from a presynaptic neuron, they bind to cell surface receptors on 

a postsynaptic neuron and modulate cellular signaling pathways (Checler, 1993; Csuhai et al., 

1998; Brown et al., 2001). The surface receptors are mostly G protein-coupled receptors, and 

activation of the receptors can affect a variety of pathways (Endoh, 2004). Released peptides are 

metabolized by hydrolytic enzymes known as neuropeptidases, which are almost exclusively 

metallopeptidases containing a zinc ion cofactor (Rawlings and Barrett, 1995). Many 

neuropeptidases exist in soluble form (Shrimpton et al., 2002), so they inactivate neuropeptides 

in the extracellular medium or neuropeptides internalized by surface receptors (Konkoy and 

Davis, 1996). The remainder of the enzymes are associated with the plasma membrane and 

hydrolyze peptides present in the extracellular medium (Checler et al., 1985; Molineaux and 

Ayala, 1990; Barnes et al., 1992; Checler et al., 1993; Konkoy et al., 1996).  

 Neuropeptidases are restricted to peptide substrates generally less than 30 residues in 

length, and the restriction on size can be even more severe for particular enzymes (Camargo et 

al., 1994; Barrett et al., 1995; Jacchieri et al., 1998). The crystal structures of a number of 
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neuropeptidases, including TOP (Ray et al., 2004), neurolysin (Brown et al., 2001), and 

neprilysin (Oefner et al., 2000), have been determined and their overall folds explain why they 

hydrolyze the only short peptides. Their active sites are located in a deep substrate binding 

channel, which limits the access to only unstructured peptides (Oefner et al., 2000; Brown et al., 

2001; Ray et al., 2004). Inhibition of neuropeptidases has been shown to increase the levels of 

the neuropeptides they metabolize (Lasdun et al., 1989; Lasdun and Orlowski, 1990; Wu et al., 

1997), making them attractive targets for therapeutic intervention in many diseases. Since nearly 

all the neuropeptidases have very similar active site regions, often with the same fold as the well-

characterized bacterial protease thermolysin (Matthews et al., 1974; Juers et al., 2005), it is a 

challenge to design inhibitors with sufficient specificity that also have appropriate drug-like 

properties. Recent difficulties in developing specific inhibitors of matrix metalloproteinases 

illustrate this point (Peterson, 2006). 

 

Substrate specificity in neuropeptidases (fuzzy specificity) 

 

Most neuropeptidases can hydrolyze a broad range of neuropeptides in vitro. Neprilysin 

(NEP, E.C. 3.4.24.11), for example, is an ectoenzyme capable of hydrolyzing many different 

peptides, including enkephalins, substance P, endothelin, bradykinin, and atrial natriuretic factor 

(Ishimaru et al., 1997). Aminopeptidase N (APN), another neuropeptidase that functions as an 

exopeptidase, can cleave most N-terminal residues from peptides. Substrates of APN include 

vasoactive peptides such as somatostatin and angiotensin as well as opioid peptides such as 

enkephalins, bradykinin, and endorphins (Konkoy and Davis, 1995; Konkoy and Davis, 1996; 

Konkoy et al., 1996).  A key aspect of many neuropeptidases is, therefore, their ability to 

recognize a wide variety of peptide substrates.  

 

Importantly, the sequences near known cleavage sites (which typically determine 

substrate preferences) vary widely and are not highly enriched for particular residues or residue 

types at any position. In the case of neprilysin, the only mild preference that has been established 

is for a hydrophobic residue at the P1’ position (By convention, residue positions in peptidase 

substrates are indicated by position relative to the scissile bond (Schechter and Berger, 1967). 

Positions N terminal to the cleavage site are named, beginning at the adjacent residue, P1-Pn, 
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and positions C terminal to the cleavage site are named P1’-Pn’.). But even at this position, many 

other residue types can be found in known cleavage sequences. Yet despite their ability to 

recognize seemingly unrelated sequences, these peptidases are not completely nonspecific. They 

show a high degree of selectivity for one or a small number of cleavage sites on any given 

peptide, hydrolyzing these positions much more rapidly than other possible sites. We refer to this 

ability to recognize specifically a variety of sequences as fuzzy specificity (Moodie et al., 1996), 

and it is a property shared by a number of neuropeptidases. This broad level of recognition 

allows neuropeptidases to be used for different purposes in different tissues and subcellular 

locations, where the main substrates hydrolyzed depends on availability. 

 

While many neuropeptidases show fuzzy specificity, some have a much higher degree of 

specificity, with easily defined preferences at particular positions. For example pyroglutamyl 

aminopeptidase II has a strong preference for the pyroglutamate residue at the P1 position 

(Charli et al., 1989; Charli et al., 1998). This enzyme is thought to be relatively specific for 

thyrotropin-releasing hormone (pGlu-His-ProNH2). Other neuropeptidases with high levels of 

specificity include aminopeptidase P (Orawski et al., 1987), carboxypeptidase M (Skidgel et al., 

1989), and prolyl oligopeptidase (Barrett and Rawlings, 1992; Fülöp et al., 1998). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

4 
 

Thimet oligopeptidase (TOP) and neurolysin 

 

Thimet oligopeptidase (TOP, EC 3.4.24.15) and neurolysin (EC 3.4.24.16), are closely 

related neuropeptidases that share 60% sequences identity, and their crystal structures 

demonstrate that they adopt nearly identical folds (Brown et al., 2001; Ray et al., 2002; Ray et 

al., 2004) (Figure 1.3). They hydrolyze several bioactive or synthetic peptides such as 

gonadotrophin-releasing hormone (GnRH), opioid peptides, bradykinin, angiotensin І, 

somatostatin, and neurotensin (NT) (Orlowski et al., 1983; Chu and Orlowski, 1985; Orlowski et 

al., 1989; Barrett and Brown, 1990; Dahms and Mentlein, 1992; Dando et al., 1993; Mentlein 

and Dahms, 1994; Yang et al., 1994; Dendorfer et al., 1997; Lew et al., 1997; Wu et al., 1997; 

Vincent et al., 1997b) (Figure 1.2A). These two enzymes exemplify the fuzzy specificity 

exhibited by some neuropeptidases. They recognize a wide variety of cleavage sites, but it has 

not been possible to define strong sequence preferences at any particular position relative to the 

scissile bond (Dahms and Mentlein, 1992; Checler, 1993; Mentlein and Dahms, 1994; Barrett et 

al., 1995; Checler et al., 1995) (Figure 1.2B and C). Our group is using these two enzymes as 

model systems to investigate substrate recognition in neuropeptidases. 

 

Not surprisingly, given the high level of sequence identity and structural similarity of 

TOP and neurolysin (Figure 1.3), they hydrolyze most bioactive peptides at the same cleavage 

site (Rioli et al., 1998) (Figure 1.2A). Sometimes, however, they recognize different sites 

(Dahms and Mentlein, 1992; Mentlein and Dahms, 1994; Barrett et al., 1995; Checler et al., 

1995). For example, TOP cleaves NT between Arg8 and Arg9, pELYENKPR↓RPYIL, whereas 

neurolysin cleaves the peptide between Pro10 and Tyr11, pELYENKPRRP↓YIL (Figure 1.2A). 

In addition, studies with synthetic peptides show that the weak sequence preferences that do exist 

at some positions differ for the two enzymes (Oliveira et al., 2001; Oliveira et al., 2001). The 

differences in cleavage site positions between TOP and neurolysin represent an opportunity to 

begin understanding substrate targeting in these enzymes. Defining what mediates the 

differences between the two in cleavage site selection will be a first step in understanding and 

being able to manipulate substrate specificity. 
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Thimet oligopeptidase was first isolated from the soluble form of rat brain homogenates 

(Orlowski et al., 1983). TOP is highly expressed in brain, pituitary gland, and testis, but is 

expressed at lower levels in many cell types (Chu and Orlowski, 1985; Acker et al., 1987; 

Pierotti et al., 1990; Healy and Orlowski, 1992). TOP exists mainly as a soluble, cytosolic form 

(Orlowski et al., 1983; Chu and Orlowski, 1985; Acker et al., 1987; Pierotti et al., 1990; Healy 

and Orlowski, 1992; Ferro et al., 1995; Wu et al., 1997; Ferro et al., 1999; Garrido et al., 1999; 

Massarelli et al., 1999; Oliveira et al., 2000; Fontenele-Neto et al., 2001), but over 20% of TOP 

activity associates with membranes (Chu and Orlowski, 1985; Acker et al., 1987; Healy and 

Orlowski, 1992) and nuclei in rat brain homogenates (Healy and Orlowski, 1992; Massarelli et 

al., 1999; Fontenele-Neto et al., 2001).  

 

Neurolysin was first detected and purified from rat brain synaptic membranes (Checler et 

al., 1983; Checler et al., 1986) and initially called neurotensin-degrading enzyme for its ability to 

inactivate the 13 residue peptide NT. Like TOP, neurolysin is also distributed widely in 

mammalian tissues (Checler et al., 1995; Shrimpton et al., 2002) and exists in both soluble and 

membrane-associated forms (Vincent et al., 1996). The soluble form is predominant. In addition 

to a cytosolic and plasma membrane location, neurolysin is also present in the mitochondrial 

compartment (Serizawa et al., 1995; Vincent et al., 1996). The gene for the enzyme contains a 

mitochondrial targeting sequence at an alternate initiation site for transcription (Kato et al., 

1997). It has been estimated that approximately 17 % of the transcripts contain this targeting 

sequence based on alternative usage of promoters, initiation sites and untranslated exons.  

 

In the brain, TOP predominates in the striatum and the hypothalamus, both of which 

contain high levels of opioid peptides (Healy and Orlowski, 1992; Massarelli et al., 1999), and 

neurolysin is highly expressed in NT rich areas of the brain including the ventral midbrain, the 

olfactory bulb and tubercule, the cingulated cortex, the neostriatum and the globus pallidus 

(Woulfe et al., 1992; Checler et al., 1995). TOP and neurolysin are present in both neurons and 

glia (Healy and Orlowski, 1992; Woulfe et al., 1992; Vincent et al., 1996; Massarelli et al., 

1999; Fontenele-Neto et al., 2001). In rat brain neurons, a significant proportion of TOP is found 

in the nucleus (Massarelli et al., 1999; Fontenele-Neto et al., 2001), which has been ascribed to 

the putative nuclear localization sequences (234 PETRRKV240) found in the enzyme (Pierotti et 
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al., 1990), whereas neurolysin is not present in nucleus. Outside the nucleus, TOP and neurolysin 

are comparably distributed in the nerve cell bodies and dendrites as well as within axons and 

axon terminals (Fontenele-Neto et al., 2001). They are also associated with vesicular membranes 

but are differently distributed with respect to the surface (Fontenele-Neto et al., 2001). TOP is 

present only on the cytoplasmic side of Golgi and vesicular membranes, whereas neurolysin 

exists on both luminal and cytoplasmic sides of Golgi and vesicular membranes. Both TOP and 

neurolysin are thought to be secreted to some extent in certain cell types. Both lack classical 

signal sequences, however, and the mechanisms of secretion are currently under investigation 

(Pierotti et al., 1990; Dauch et al., 1995; McCool and Pierotti, 2000). 

 

TOP and neurolysin are zinc metallopeptidases belonging to the M3 family. Members of 

this family, like those of a number of other metallopeptidase families, contain a His-Glu-Xaa-

Xaa-His active site sequence motif (HEXXH) (Dando et al., 1993; Barrett et al., 1995; Rawlings 

and Barrett, 1995; Shrimpton et al., 2002) (Figure 1.4A). The zinc ion cofactor is coordinated by 

the side chains of the two histidines. A glutamate residue, located 25 residues carboxyl terminal 

to the second active site histidine, serves as the third zinc ligand (Cummins et al., 1999; Brown 

et al., 2001; Ray et al., 2004). The glutamate residue from the active site sequence motif makes 

hydrogen bonds with a zinc-coordinating water molecule that acts as the attacking nucleophile 

(Vallee and Auld, 1990) (Figure 1.4B). 

 

Like other metallopeptidases, TOP and neurolysin are inhibited by metal ion chelators 

and can be reactivated by divalent cations such as zinc ion or manganese ions (Orlowski et al., 

1983). Both enzymes are inactivated by thiol reactive agents, and TOP, in particular, has been 

shown to be unusually sensitive to the level of reducing agent present. It is actually activated by 

low levels of reducing agents such as dithiothreitol (< 0.5 mM), and this process involves 

conversion from inactive multimers to active monomer (Orlowski et al., 1983; Orlowski et al., 

1989; Lew et al., 1995; Shrimpton et al., 1997; Shrimpton et al., 2003). The multimeric form 

may be inactive because substrate is blocked from the active site or conformational changes 

associated with catalysis are inhibited. At least three cysteine residues (Cys246, Cys248, and 

Cys253) are involved in the formation of the multimers (Shrimpton et al., 1997; Shrimpton et al., 

2003). On the other hand, high levels of reducing compounds (>5 mM DTT, for example) inhibit 
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TOP (Orlowski et al., 1983; Orlowski et al., 1989; Lew et al., 1995; Shrimpton et al., 1997), 

presumably because they promote loss of the catalytic metal ion. TOP, but not neurolysin, has 

been shown to be phosphorylated in vivo, a possible regulatory mechanism (Tullai et al., 2000). 

TOP is phosphorylated at Ser644 by cAMP-dependent protein kinase (PKA),  producing effects 

on activity for certain substrates, such as gonadotrophin-releasing hormone (GnRH) (Tullai et al., 

2000; Portaro et al., 2001). 

 

As noted above, TOP and neurolysin are distributed widely in mammalian tissues and 

cell types (Checler et al., 1995; Shrimpton et al., 2002), suggesting they are involved in various 

physiological roles. They have been implicated in the inactivation of neuropeptides such as 

somatostatin, dynorphin, bradykinin, gonadotrophin-releasing hormone (GnRH), and luteinizing 

hormone-releasing hormone (LHRH) (Chu and Orlowski, 1985; Orlowski et al., 1989; Barrett 

and Brown, 1990; Dahms and Mentlein, 1992; Dando et al., 1993; Mentlein and Dahms, 1994; 

Yang et al., 1994; Dendorfer et al., 1997; Lew et al., 1997; Wu et al., 1997; Vincent et al., 

1997a; Kim et al., 2003). The significance of their roles in metabolizing these peptides remains 

to be firmly established, however. The ability of TOP and neurolysin to process opioid 

precursors such as dynorphin A suggests a possible role for the enzymes in the modulation of 

pain perception (Molineaux and Ayala, 1990; Gomes et al., 1993). There is some suggestion that 

TOP in particular may be at least partly responsible for the metabolism of bradykinin, which 

stimulates vascular smooth muscle contraction and increases vascular permeability (Orlowski et 

al., 1983; Dendorfer et al., 1997). In addition, TOP also converts angiotensin I to the 

biologically active angiotensin (1-7) fragment, which decreases blood pressure (Chappell et al., 

1998). Recent studies suggest that TOP participates in the metabolism of the Aβ peptide 

associated with Alzheimer’s disease (Koike et al., 1999; Yamin et al., 1999; Lew, 2004). In 

recent years, it has been suggested that TOP plays a role in processing potentially antigenic 

peptides. Peptides of 3-25 residues released into the cytosol by the proteasome are further 

hydrolyzed by TOP, in many cases preventing their transport to the endoplasmic reticulum and 

presentation on the cell surface by MHC class I molecules (Saric et al., 2001; Kim et al., 2003; 

York et al., 2003).  
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Despite evidence for other roles of TOP and neurolysin, their most established role is in 

the metabolism of the 13 residue peptide NT (Figure 1.2A). Neurolysin specific inhibitors 

protected NT from degradation by primary cultured neuron from mouse embryos (Vincent et al., 

1997a). Hydrolysis of NT by neurolysin was completely and dose-dependently inhibited by a 

relatively specific phosphonamide inhibitor. In addition, this inhibitor prevented the hydrolysis 

of NT by TOP with lower potency (Barelli et al., 1992). Neurolysin inhibitors potentiated the 

recovery of intact NT and inhibited the formation of NT1-10 fragment, the product of NT 

hydrolysis by neurolysin, in the dog intestine (Barelli et al., 1994). NT-induced antinociception 

of mice in a hot plate test was greatly potentiated when the animals were injected with 

neurolysin and TOP specific inhibitors (Vincent et al., 1997a; Vincent et al., 1997b). These 

results demonstrated that TOP and neurolysin are the main enzymes responsible for NT 

inactivation. 

 

Neurotensin  

 

NT is an endogenous 13 amino acid bioactive peptide discovered initially in brain 

(Carraway and Leeman, 1973). It is found in many locations, including the central nervous 

system and gastrointestinal tract, and is believed to be involved in a number of effects, including 

modulation of central dopaminergic and cholinergic neurotransmission, thermoregulation, 

intestinal motility, antinociception, and blood pressure regulation (Tyler-McMahon et al., 2000). 

It has also been suggested that NT plays a role in the growth of normal and cancerous cells 

(Moody et al., 2003; St-Gelais et al., 2006). NT mediates its effects through interaction with 

three cell surface receptors known as NTR1, 2, and 3 (Le et al., 1996; Vincent et al., 1999). 

NTR1 and NTR2 are seven transmembrane helix G-protein coupled receptors, and activation of 

these two receptors increases intracellular inositol phosphates and Ca2+ (Watson et al., 1993; 

Chalon et al., 1996). NTR3 has a single transmembrane domain and is identical with human 

gp95/sortilin (Mazella et al., 1998), a protein that plays a role in cargo sorting in the secretory 

system. NTR3 at the plasma membrane seems to act in reinternalizing released NT, a possible 

mechanism for intracellular degradation or recycling, but it also is essential for proNGF 

mediated neuronal cell death (Nykjaer et al., 2004). 
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It has been shown that CNS levels of NT are decreased in patients with schizophrenia 

(Boules et al., 2005; Richelson et al., 2005), and neuroleptic antipsychotics increase NT levels 

(Dobner et al., 2003; Boules et al., 2005; Fredrickson et al., 2005). Levels of CNS NT are also 

lowered in Parkinson's disease (Boules et al., 2005; St-Gelais et al., 2006) and in patients with 

substance addictions (Hanson et al., 1992). As noted above, levels of NT can be increased by 

inhibition of TOP and neurolysin, making them attractive targets for treatment of a number of 

CNS related disorders as well as acute and chronic pain. 

 

The present study 

 

Prior work in our group showed that of the 224 residue differences between TOP and 

neurolysin, only a relatively small number map to the interior of the substrate binding channel 

(Ray et al., 2002). A model of NT binding allowed four of these residue positions (E469/R470, 

M490/R491, H495/N496, and R498/T499, the TOP residues listed first) to be identified as the 

most likely to be affecting the relative substrate specificity of the two enzymes (Ray et al., 2002; 

Ray et al., 2004) (Figure 1.5). In the present study, I determine the role of these residues in 

mediating differential substrate specificity using site directed mutagenesis. Both the cleavage site 

position on NT and the steady state kinetic parameters were measured. I also determine the 

crystal structures of substituted residues in the TOP and neurolysin mutants to confirm that the 

mutations do not cause changes in the local structure of the altered enzymes that would 

complicate interpretation of the results.  

 

In the model of the bound NT to TOP, the Glu469 of TOP (arginine in neurolysin) 

potentially could form a salt bridge with Arg9 of NT (Ray et al., 2004). In order to determine 

whether there is a direct interaction between Arg9 of NT and Glu469 of TOP that might play a 

role in mediating differential substrate recognition, I performed a swap experiment, replacing 

Arg9 of NT with a glutamate and Glu469 of TOP with an arginine to see if the cleavage site 

position remains undisturbed. 
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Significance 

 

The major long term goal of our work is to understand how TOP and neurolysin, as 

model neuropeptidases, can recognize a variety of seemingly unrelated peptide sequences while 

still maintaining specificity for those sites. This is a basic question in molecular recognition and 

has implications for general protein-peptide interactions and even for protein-protein recognition. 

In addition, neuropeptidases are potential therapeutic targets, and all reported metallopeptidase 

inhibitors mimic substrates by binding at the active site (Vincent et al., 1997a; Vincent et al., 

1997b; Kim et al., 2003; Natesh et al., 2003). Understanding how neuropeptidases recognize 

their substrates will undoubtedly help in the development of more specific and potent inhibitors 

of these enzymes. Neuropeptidases are also good candidates for gene therapy approaches to 

disease treatment. For example, neuropeptidases metabolize peptides that act as growth factors 

for lung cancer (Seufferlein and Rozengurt, 1996), and increasing the expression of one of the 

metabolizing enzymes would potentially slow the progression of the disease (Moody et al., 

1998). Neuropeptidases also metabolize the Aβ peptide associated with Alzheimer’s disease 

(Waters and Davis, 1997; Koike et al., 1999; Yamin et al., 1999; Saito et al., 2003; Lew, 2004), 

and it has been proposed that adding additional metabolizing capacity may treat or prevent the 

disease. The problem with these approaches, however, is that the broad specificity of the 

enzymes will necessarily lead to metabolism of peptides other than the one or ones targeted, 

likely producing side effects. If we can reengineer the peptidases to be more specific for 

particular cleavage site sequences, they may make better therapeutics. The work reported here 

represents a first step in understanding the nature of substrate specificity in the neuropeptidases 

TOP and neurolysin. I establish that the basis for recognizing different sites in the NT peptide 

resides in just two residue positions that differ in the two enzymes. This result suggests that 

general retargeting of the enzymes may be possible with only a limited number of amino acid 

changes in the binding site region. 
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Introduction to other studies included in this thesis 

 

Neprilysin 

 

Neprilysin (NEP, EC 3.4.24.11) is type Ⅱ integral membrane, zinc dependent 

metallopeptidase and a member of M13 subfamily. It was originally purified from the rabbit 

kidney and was initially implicated in the metabolism of insulin (Kerr and Kenny, 1974). But, 

further studies have demonstrated that NEP does not play a large role in insulin metabolism, with 

another zinc metallopeptidase, insulysin (insulin-degrading enzyme, IDE), being primarily 

responsible for initial insulin hydrolysis (Authier et al., 1996). NEP is widely distributed in 

mammalian tissues (Sato et al., 1996; Papandreou et al., 1998; Takaki et al., 2000), particularly 

kidneys and lungs (Kerr and Kenny, 1974; Cohen et al., 1996). It consists of a short N-terminal 

cytoplasmic domain, a single transmembrane helix, and a large C-terminal extracellular domain 

containing the active site (Devault et al., 1987; Barnes et al., 1992). Hydrophobic sequences near 

the N-terminus function as a signal sequence to target the protein into the cisternae of the rough 

endoplasmic reticulum and as a membrane-spanning segment to anchor to the plasma membrane 

(Konkoy and Davis, 1996). The bulk of NEP is located at the cell surface where it functions as 

an ectoenzyme, degrading peptides at the extracellular face of the plasma membrane.  

 

The crystal structure of extracellular domain (residues 52-749) of human NEP (hNEP) 

was determined complexed with phosphoramidon, a general metallopeptidase inhibitor, at 2.1 Å 

resolution (Oefner et al., 2000) (Figure 1.6A). Like other zinc metallopeptidases, NEP contains 

the HEXXH zinc-binding motif. In addition, it has an EXA/GD sequence, in which the glutamate 

serves as the third zinc ligand (Figure 1.6B). The extracellular domain of NEP contains 12 

cysteine residues, making six disulfide bonds, and the domain also has three established N-linked 

glycosylation sites (N144, N324, and N627). The extracellular domain of hNEP is composed of 

the larger N-terminal domain (domain 1) and a smaller domain (domain 2), which together 

embrace a large central cavity containing the active site (Figure 1.6A and B). Various natural 

substrates of hNEP are limited to about 25 residues since access to the active site is greatly 

restricted. Only a narrow opening leads to the bowl-shaped active site cavity. Several crystal 

structures of hNEP with various bound inhibitors, including the classic inhibitor phosphoramidon 
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(Figure 1.6C and D), are available, providing some information on likely substrate interactions 

(Robl et al., 1997; Chen et al., 1998; Robl et al., 1999; Oefner et al., 2004).  

 

NEP has been implicated in the degradation of a variety of signalling peptides. First, it 

hydrolyzes the opioid peptides such as enkephalins, regulating opioid peptide action (Malfroy et 

al., 1978; Matsas et al., 1983). Second, NEP plays a role in control of blood pressure by 

hydrolyzing the peptides atrial natriuretic peptide (ANP), bradykinin, and endothelin (Kenny and 

Stephenson, 1988; Roques et al., 1993; Turner and Tanzawa, 1997). Therefore, potent inhibitors 

of NEP have been pursued as novel analgesics or antihypertensive agents because they increase 

opioid or vasoactive peptide levels (Roques and Beaumont, 1990; Robl et al., 1997; Chen et al., 

1998; Burnett, 1999; Robl et al., 1999). More recently, significant elevations of amyloid β 

peptide (Aβ1-42), the primary pathogenic agent in Alzheimer’s disease, has been observed in 

mice lacking NEP (Carson and Turner, 2002). This result suggests that NEP is involved in 

removal of Aβ peptide and that selective re-expression of NEP in cells may provide a novel 

approach to the treatment of Alzheimer’s disease (Marr et al., 2004; Mohajeri et al., 2004). NEP 

is dramatically down regulated in a number of cancer cells (Papandreou et al., 1998), including 

forms of brain cancer (Harding, 2001), renal cancer (Gohring et al., 1998), invasive bladder 

cancer (Koiso et al., 1994), stomach cancer (Sato et al., 1996), endometrial cancer (Suzuki et al., 

2001), and prostate cancer (Papandreou et al., 1998; Shen et al., 2000). Overall, then, 

manipulation of NEP levels, if attempted in therapies, must be done selectively, and it seem 

likely that inhibitors that can be targeted to specific tissues and cell types will be required. A 

better understanding of NEP substrate specificity will aid in developing novel inhibitors and 

reengineering the enzyme for therapeutic purposes. 

 

Like TOP and neurolysin, NEP also recognizes a wide variety of sequences, but it does 

not have any strong sequence preference at any particular position relative to the cleaved peptide 

bond. Interestingly, NEP as well as TOP and neurolysin is involved in inactivation of the 13 

residue neuropeptide NT even though it may be partially responsible for metabolism of the 

peptide in vivo (Oliveira et al., 2001). TOP hydrolyzes NT between Arg8 and Arg9, while 

neurolysin cleaves the peptide between Pro10 and Tyr11. NEP also hydrolyzes NT at between 

Pro10 and Tyr11, cleavage site of neurolysin on NT. Therefore, as with TOP and neurolysin, 
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defining the determinants of recognition on the NT substrate will help understand the substrate 

specificity of NEP.  

 

Human choline acetyltransferase (hChAT) 

 

Acetylcholine (ACh) was the first neurotransmitter to be identified (Loewi, 1921). It 

stimulates muscle contraction in the peripheral nervous system and helps formation of learning 

and short-term memory in the central nervous system (Karczmar, 1993). ACh is synthesized by 

choline acetyltransferase (ChAT, EC 2.3.1.6), which catalyzes the transfer of an acetyl group 

from the acetyl-coenzyme A (AcCoA) to choline (Nachmansohn and Machado, 1943). ChAT 

belongs to the choline/carnitine acyltransferase family and functions in the axon termini of 

cholinergic neurons, which are distributed throughout the central and peripheral nervous system 

(Karczmar, 1993). The single ChAT gene produces six different isoforms of ChAT mRNA 

(termed R, N1, N2, H, S and M)(Misawa et al., 1992; Oda et al., 1992; Misawa et al., 1997; 

Robert and Quirin-Stricker, 2001). All transcripts translate into a 69 kDa form, but the M and S 

transcripts also can make 82 kDa and 74 kDa, respectively. The 69 kDa form exists in the 

cytoplasm, while the 82 kDa form is translocated to the nucleus because of the 118 amino acid 

extension on the N terminal of the enzyme containing a nuclear localization signal (Kong et al., 

1989; Oda et al., 1995; Resendes et al., 1999; Gill et al., 2003). Most ChAT is present in a 

soluble form but a small portion of the total cellular enzyme is associated with membrane 

(Martinez-Murillo et al., 1989; Carroll, 1994; Gabrielle et al., 2003). The significance of the 

differential cellular localization and membrane binding of the isoforms of the enzyme is 

unknown. The 69 kDa ChAT is phosphorylated by protein kinase C (PKC), protein kinase CK2, 

α-Ca2+/calmodulin-dependent protein kinase П (CaM kinase), whereas the 82 kDa form is 

phosphorylated by PKC and CaM kinase (Dobransky et al., 2001; Dobransky et al., 2003; 

Dobransky and Rylett, 2003; Dobransky et al., 2004; Dobransky and Rylett, 2005). Recently, it 

has been demonstrated that phosphorylation of ChAT can alter its catalytic activity and 

membrane binding (Sha et al., 2004). 

 

The crystal structure of rat ChAT (rChAT) was determined at 2.5 Å resolution (Cai et al., 

2004) by molecular replacement with carnitine acetyltransferase (CrAT) (Jogl and Tong, 2003) 
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(Figure 1.7A). It showed the enzyme is divided into two domains with the active site located at 

the domain interface. The catalytic residue of the rChAT, histidine 334, extracts the proton from 

the hydroxyl group of choline or the thiol group of CoA, depending on the direction of the 

readily reversible reaction. Subsequent structural studies have shown that CoA substrate binds to 

ChAT in a long solvent accessible tunnel at the domain interface, placing its terminal thiol in a 

position to hydrogen bond with H334. ChAT uses choline reabsorbed from the synaptic cleft into 

the presynaptic nerve terminal by the high-affinity sodium-dependent choline transporter (Okuda 

et al., 2000). Transport of choline may to be rate-limiting in ACh synthesis (Guyenet et al., 

1973; Yamamura and Snyder, 1973). Newly synthesized ACh is accumulated in synaptic 

vesicles by a vesicular acetylcholine transporter (Parsons et al., 1993; Erickson and Varoqui, 

2000) for stimulated release into the synaptic cleft. 

 

Decreases in ChAT activity and the number of cholinergic neurons are associated with 

Alzheimer’s disease, Huntington’s disease, amyotrophic lateral sclerosis, schizophrenia, sudden 

death syndrome, and Rett’s syndrome (Oda, 1999; Dunn and MacLeod, 2001). Recessive loss of 

function mutations in ChAT are a cause of a motor disorder known as congenital myasthenic 

syndrome associated with episodic apnea (CMS-EA) (Figure 1.7B), resulting in severe muscular 

weakness and respiratory insufficiency (Ohno et al., 2001; Kraner et al., 2003; Maselli et al., 

2003; Schmidt et al., 2003). Some of these mutations are close to the active site, but many of the 

mutations occur at considerable distances from the catalytic histidine. Despite their varied 

locations, nearly all the mutants substantially affect the Km value for CoA/AcCoA (Ohno et al., 

2001). We need to understand why these mutations can affect ChAT activity in a similar way 

despite their varied locations. Thus far only the rat homolog has been determined, but the human 

form would be more relevant to the congenital disease caused by ChAT mutations. A detailed 

understanding of the structural effects of the mutations will help us design therapies for this 

disorder. Therefore, I overexpressed human ChAT and determined crystallization conditions. 

This work and subsequent characterization of the human ChAT crystals is described in this thesis. 

 

 

 



 

15 
 

 

 

 
 
 
 
 
 

         
 
 
 
 
Figure 1. 1. Neuropeptide metabolism. Neuropeptides synthesized in a presynaptic neuron are 
transported to synaptic terminal via secretory vesicles and released into the synaptic cleft. After 
release from a presynaptic neuron, they bind to surface neuropeptide receptors on a postsynaptic 
neuron and modulate cellular signaling pathways. Neuropeptides released from presynaptic 
neurons or transported into postsynaptic neurons are metabolized by hydrolytic enzymes known 
as neuropeptidases. 
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Figure 1. 2. Cleavage specificity of neuropeptidases.  A, Cleavage sites in a few thimet 
oligopeptidase (TOP) and neurolysin substrates. Arrows indicate cleavage positions. B, 
Alignment of TOP cleavage site sequences. The green line indicates the position of the scissile 
bond, and amino acids N-terminal and C-terminal to the cleavage sites are labeled P1-3 and P1’-
3’, respectively. Colors indicate basic (blue), polar (red), gly and pro (green), and 
hydrophobic/aromatic amino acids (black). C, Alignment of neurolysin cleavage site sequences. 
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                                     A                                                   

                                            
                                         
                                     B 

                                         
 
Figure 1. 3. The overview of crystal structures of TOP and neurolysin. Ribbons views of the 
human TOP (A) and rat neurolysin (B) crystal structures (Brown et al., 2001; Ray et al., 2004) 
are shown. The zinc ion cofactors, located deep in the substrate binding channel, are shown as 
blue spheres. 
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                             A 
 

                                 
 
                            B 
 

                                 
 
 
Figure 1. 4. The active site of TOP. A, The electron density of active site of TOP. Density (2Fo-
Fc) is shown in wire-frame representation (green) contoured at 1.0 times the r.m.s density of the 
map. The side chains of active residues are well defined by electron density. The zinc ion 
cofactor and the catalytic water are shown as spheres colored blue and red, respectively. B, A 
schematic representation of the active site showing the zinc cofactor and coordinating residues, 
the activating glutamate residue, the water that serves as the attacking nucleophile, and the 
peptide substrate. The hydrogen bonds and metal coordinating interactions are indicated by red 
dashed lines. 
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Figure 1. 5. Key residue differences in the substrate binding channels of TOP and 
neurolysin. Cutaway molecular surface views of TOP (A) and neurolysin (B) showing the 
positions of sequence differences that might affect cleavage site selection on NT. The one letter 
codes before the residue number represent wild type amino acids. All four positions are located 
near the floor of the substrate binding channel.  
 
 



 

20 
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    C                                                                      D 

               
 
 
 
Figure 1. 6. Overview of crystal structures of human neprilysin (hNEP). A and B, Crystal 
structure of hNEP (Oefner et al., 2000). The active site and zinc ion, shown in blue, are located 
in the central cavity and three glycosylation sites are indicated by red arrows. C and D, 
Phosphoramidon inhibitor binding to the active site. The recognition sites of phosphoramidon are 
labeled with red letters.  
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                                             A                                                                              

                                                      
 
                                            B      

                                                
 
 
Figure 1. 7. Overview of the rat choline acetyltransferase (rChAT) crystal structure. A, 
Ribbons representation of rChAT (Cai et al., 2004). The side chain of the of the catalytic 
histidine residue (His334) is shown in red. B, Side chains of residues mutated in patients with the 
motor disorder congenital myasthenic syndrome with episodic apnea  (Engel et al., 2003) are 
shown in a space filling representation. 
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Chapter 2: Materials and methods 

 

Preparation of TOP and neurolysin mutant constructs 

 

The modified human TOP sequence inserted into a pET32 vector (Invitrogen) was 

available in the lab (Ray et al., 2004). The first mutant constructed, the TOP 4 mutant, had all 

four positions identified as likely mediating differential specificity (E469, M490, H495, and 

R498) changed to the corresponding residues in neurolysin (Figure 1.5A; Table 2.1). The TOP 4 

mutant coding sequence was prepared by sequential site directed mutagenesis using the 

QuikChange site-directed mutagenesis system (Stratagene). The mutagenesis was performed 

with 5 μl of 5× reaction buffer, 1 μl of 50 ng/μl of double strand DNA template, 1.25 μl of 100 

ng/μl of forward mutant primer, 1.25 μl of 100 ng/μl of reverse mutant primer, 1 μl of 100 mM 

dNTP mixture, 1 μl of Pfuturbo DNA polymerase (2.5 U/μl), and 39.5 μl of H2O to a final 

volume of 50 μl. Each was cycled according to the parameters: 1 cycle at 95 °C for 30 seconds 

and 18 cycles at 95 °C for 30 seconds, 53 °C for 1 minute, and 68 °C for 16 minutes (Eppendorf 

personal master cycler). After 18 cycles of PCR, 1 μl of the Dpn І restriction enzyme (10 U/μl) 

was added directly to each amplification reaction and the sample was immediately incubated at 

37 °C for 1 hour to digest the parental DNA. After 1 hour of incubation, 1 μl of the Dpn І treated 

DNA from sample reaction was transformed into 50 μl of the XL1-Blue competent cells by heat 

shock at 42°C for 1 minute. The mutant and wild type sequences were confirmed by automated 

sequencing (Davis sequencing, www.davissequencing.com) using 8 μl of 300 ng/μl plasmid 

DNA prepared with the Promega midiprep system. The plasmid was mixed with 3 μM of 3 

pmol/μl sequencing primer. TOP 3 mutants (Figure 2.1) and the TOP 2 mutant (Figure 2.2A), 

which had subsets of the four mutations, were prepared using the same protocol as used for the 

TOP 4 mutant.  

 

The wild type neurolysin coding sequence in a pBAD (Invitrogen) vector was available 

in the laboratory (Brown et al., 2001). The neurolysin 4 mutant was made by substitution of 

residues R470, R491, N496, and T499 to the corresponding ones in TOP using the QuikChange 

site-directed mutagenesis system as described for the TOP mutants (Figure 1.5B; Table 2.2). The 
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neurolysin 2 mutant was substituted at positions R470 and T499 using the same approach (Figure 

2.2B). 

 

Expression and purification of wild type TOP and mutants 

 

All wild type and mutant TOP constructs were expressed in Escherichia coli 

BL21(DE3)RP cells (Stratagene), which overproduce arginine and proline transfer RNAs that 

recognize codons for these amino acids common in mammals but rare in E. coli. Cells containing 

TOP constructs were cultured in Terrific Broth (TB) containing 50 mg/ml ampicillin and 34 

mg/ml chloramphenicol at 37°C for overnight. Then 300 ml of cultured cells were inoculated 

into 7 L of TB media containing 7 ml of antifoam, 50 mg/ml ampicillin, and 34 mg/ml 

chloramphenicol and grown in a New Brunswick BioFlo 3000 cell culture device at 37°C until 

the A600 had reached 0.6. 1 mM of isopropyl-β-D-thiogalactopyranoside (IPTG) was added to 

induce overexpression of the TOP proteins, and the cells were grown at 16°C for an additional 5 

hours. Cells were collected by centrifugation at 8,000 rpm for 10 minutes, and the pellets were 

stored at -20°C. 

 

Cell pellets were resuspended in cold lysis buffer (3 ml per gram of cells) containing 50 

mM NaH2PO4 (pH 8.0), 4% Glycerol, 5 mM 2-mercaptoethanol, 50 mM NaCl, and protease 

inhibitor cocktail III (Sigma; 100 μl/1L of culture). Lysozyme (1 mg per ml of lysis buffer) was 

added and the cells incubated on ice for 30 minutes. Cells were lysed by passing them twice 

through a French press. The resulting mixture was centrifuged at 23,000 rpm for 60 minutes at 

4°C to remove cell debris. The crude lysate was then mixed with the 50% Ni-NTA agarose resin 

(Qiagen; 1 ml of resin per 4 ml of crude lysate) equilibrated in 50 mM NaH2PO4 (pH 8.0), 4% 

Glycerol, 5 mM 2-mercaptoethanol and incubated on a shaker for 2-3 hours at 4°C. The resin 

was washed with 40 ml cold wash buffer (50 mM NaH2PO4 (pH 8.0), 4% Glycerol, 5 mM 2-

mercaptoethanol, and 500 mM NaCl) on a shaker for 20 minutes and centrifuged at 4,000 rpm 

for 5 minutes at 4°C to pellet the resin. The resin was washed two times more with cold buffer 

containing 1 M NaCl and 1.5 M NaCl.  

 



 

24 
 

The resin was washed with 3 ml of digestion buffer containing 50 mM Tris-HCl (pH 8.0), 

1 mM CaCl2, 0.1 % Tween-20, 2% glycerol, and 5 mM 2-mercaptoethanol before centrifuging at 

4,000 rpm for 5 minutes. Then 20 units of enterokinase (EK; Invitrogen) were added and 

incubated for 2-3 days at 4°C to cleave the polyhistidine tag from the TOP protein, releasing it 

from the resin. To remove the EK from the digestion, prewashed EK-away resin (Invitrogen) was 

added and the sample and incubated for 15 minutes with gently rocking. TOP protein was 

dialyzed against 1 liter of buffer containing 20 mM Tris-HCl (pH 8.0), 10 mM NaCl, 5 % 

glycerol and 5 mM 2-mercaptoethanol overnight at 4°C, loaded onto an anion exchange column 

(Poros HQ resin, GE Healthcare), and eluted with salt gradient. Finally, the purified protein was 

dialyzed against 1 liter of buffer containing 20 mM Tris-HCl (pH 8.0), 5 % glycerol and 5 mM 

2-mercaptoethanol overnight at 4°C and concentrated to 5-10 mg/ml using a Centricon-50 

(Amicon, cutoff 50 kDa). The concentrated protein was stored at 4°C. 

 

Expression and purification of wild type neurolysin and mutants 

 

Neurolysin variants were overexpressed in the Escherichia coli TOP10 cells (Invitrogen). 

Cells were transformed with neurolysin variants and grown at 37°C overnight. 300 ml of 

cultured cells were used to inoculate 7 L of Luria Bertani (LB) media containing 7 ml of 

antifoam and 50 mg/ml ampicillin in a New Brunswick BioFlo 3000 cell culture device, and the 

culture was grown at 37°C until the A600 had reached 0.9-1.0. Then arabinose was added to a 

final concentration of 0.01 % to induce overexpression of neurolysin. Cells were further grown at 

37°C for 4-5 hours and harvested by centrifugation at 8,000 rpm for 10 minutes. Cell pellets 

were stored at -20°C. The purification of neurolysin variants was similar to that of TOP as 

mentioned above. The purified protein was dialyzed against 1 liter of buffer containing 20 mM 

Tris-HCl (pH 7.4) and 100 mM NaCl overnight at 4°C and concentrated to 10-15 mg/ml in a 

Centricon-50 (Amicon; cutoff 50 kDa). The concentrated protein was stored at 4°C. 
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Assay for cleavage position on NT 

 

Cleavage positions were determined using 600 μM of NT or NT(R9E), 0.5 μM of 

purified enzyme (TOP or neurolysin), and 10 mM HEPES (pH 7.0). Reactions were incubated at 

37 ℃ for 10 minutes and then stopped by 0.25% TFA. The hydrolyzed peptides were analyzed 

by HPLC using a Waters system with a C18 5 μM 4.6 x 150 mm column (Waters) and eluted 

with a linear gradient of 10 %-50 % acetonitrile in 0.1 % TFA for 40 min at a flow rate of 1 

ml/min.  Absorbance was monitored at a wavelength of 214 nm. The products were collected and 

dried on a centrifugal vacuum evaporator. The molecular weight of peptides was measured by 

using ESI-TOF mass spectrometry (Scripps Research Institute Center for Mass Spectrometry). 

 

Kinetic assay of TOP and neurolysin 

 

Kinetic assays were performed with 5-6 nM enzyme (TOP or neurolysin), 1-6 μM of 

fluorogenic substrate NT, the NT sequence flanked with N-terminal fluorescent 2-aminobenzoyl 

(Abz) and a C-terminal quencher ethylenediaminodinitrophenol (EDDnp) group (Peptides 

International), 25 mM HEPES (pH 7.5), 10 mM NaCl, and 2 mM 2-mercaptoethanol. The 

fluorescence of hydrolyzed NT was measured at λem = 420 nm and λex = 320 nm in a 

luminescence spectrometer LS55 (Perkin Elmer).The change in fluorescence intensity over time 

was converted into rate of product formation at each substrate concentration. The conversion 

factor was 200 U / μM, which was determined by observation of the output level after the 

completed reaction, using sufficient enzyme concentration to reach completion within a short 

time. The kinetic parameters were calculated using a hyperbolic fit to the plot of substrate 

concentration versus rate of product formation. All the data were fit to the equation, V = V max 

[S] / (Km + [S]), using Prism version 4 from GraphPad. 
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Swap experiment between TOP E469R mutant and NT(R9E) 

 

The TOP E469R mutant was prepared using the QuikChange site-directed mutagenesis 

system (Stratagene) (Figure 2.3B; Table 2.1). The altered NT peptide, named NT(R9E), in which 

Arg9 was replaced by Glu9 was obtained from AnaSpec, Inc (Figure 2.3C). To determine the 

cleavage site on NT(R9E), a standard cleavage assay was performed using the TOP E469R 

mutant and NT(R9E). The samples were incubated at 37 ℃ for 10 min and hydrolyzed NT(R9E) 

fragments were analyzed on a C18 column using a Waters HPLC system. The masses of the 

isolated fragments were checked by ESI-TOF mass spectrometry (Scripps Research Institute 

Center for Mass Spectrometry). The details of the procedures are the same as noted above. 

 

Crystallization of TOP 2 and neurolysin 2 mutants 

 

The TOP 2 mutant was crystallized by hanging drop vapor diffusion at 4°C. The crystals 

were grown by mixing 1 μl of 10 mg/ml protein with 1 μl of well solution containing 100 mM 

Na-Cacodylate (pH 6.5), 100 mM magnesium acetate, 2 mM 2-mercaptoethanol, and 12-14 % 

(w/v) polyethylene glycol 6000. For data collection, crystals were transferred briefly (a few 

seconds) into a solution containing 25 % glycerol, 100 mM Na-Cacodylate (pH 6.5), 100 mM 

magnesium acetate, 2 mM 2-mercaptoethanol, and 12-14 % (w/v) polyethylene glycol 6000, 

mounted in a nylon loop, and flash cooled by plunging into liquid nitrogen (Rodgers, 1997).  

 

Neurolysin 2 mutant crystals were also obtained by hanging drop vapor diffusion at 4 °C. 

The well solution for neurolysin was 100 mM Na-Cacodylate (pH 6.5), 100 mM magnesium 

chloride, 0.1 mM zinc chloride, 1 mM 2-mercaptoethanol, and 10-12 % (w/v) polyethylene 

glycol 8000. The crystals were grown by mixing 1-2 μL of 15 mg/ml protein with an equal 

volume of well solution. In preparation for data collection, they were exposed briefly (a few 

seconds) to 20 % polyethylene glycol 400 in the crystallization well solution, mounted in a nylon 

loop, and plunged into liquid nitrogen (Rodgers, 1997). 
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Data collection and structure determination of TOP 2 and neurolysin 2 mutants 

 

X-ray data were collected at the Advanced Photon Source beamline 22-ID (Southeast 

Regional Collaborative Access Team), Argonne National Laboratory. Data were reduced with 

HKL2000 (Otwinowski and Minor, 1997), and initial structures of TOP 2 mutant and neurolysin 

2 mutant were determined by molecular replacement with the CNS software package using wild 

type TOP and neurolysin coordinates, respectively (Protein Data Bank accession codes 1S4B and 

1I1I). Model building and analysis were performed by using the program O and structures were 

refined by CNS. The space group of the TOP 2 mutant crystals was P212121 and cell dimensions 

were a=77.1 Å, b=99.3 Å, c=105.7 Å. The space group of the neurolysin 2 mutant crystals was 

P21212 with unit cell dimension of a=159.6 Å, b=87.7 Å, c=58.4 Å. 

 

Preparation of human neprilysin (hNEP) constructs 

 

The gene for the extracellular domain of human neprilysin (hNEP, residues 52-749) was 

obtained from Dr. Hersh’s laboratory and subcloned into pPICZα vector (Invitrogen) for 

expression in the yeast Pichia pastoris. Recombinant hNEP protein was expressed as a fusion 

with the Saccharomyces cerevisiae α–factor secretion signal to direct the protein into the 

secretory system and subsequently into the external media. A polyhistidine tag was also included 

at the N-terminus of the construct, and transcription was placed under control of the alcohol 

oxidase (AOX1) promoter, which allows for tight suppression until induced by the additional 

methanol to the medium. The construct was transformed into Escherichia coli TOP10 cells for 

amplification, and the sequence was confirmed (Davis sequencing, www.davissequencing.com). 

In later expression attempts, the hNEP construct in the pPICZα vector was mutated at the three 

established N-linked glycosylation sites (N144, N324, and N627) (Figure 1.6) using the 

QuikChange site-directed mutagenesis system (Stratagene) in order to prevent glycosylation, 

which is known to inhibit formation of highly ordered crystals (Kalisz et al., 1990; Kalisz et al., 

1991). 
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Expression and purification of hNEP 

 

The pPICZα-hNEP construct was introduced into Pichia pastoris GS115 cells by 

electroporation. A yeast colony was used to inoculate a 5 mL culture of YPD media (EasySelect 

Pichia expression kit, version F from Invitrogen) and grown at 30°C on a rotating shaker. The 

cultured cells were used to inoculate 50 ml of additional media once they reached a density of 

5x106 cells/mL and then further cultured to an OD600 of 0.6. The cells were harvested by 

spinning at 5,000 rpm for 5 min, resuspended in 50 ml of water, and spun down twice at 5,000 

rpm for 5 min. Cells were resuspended in 2ml of 1M cold sorbitol and spun down at 5,000 rpm 

for 5 min. They were then treated with 2 mL LiTE made up to 25 mM DTT, and the cells were 

centrifuged at 5,000 rpm for 5 min. Cells were then resuspended in 2 ml of 1 M cold sorbitol and 

centrifuged at 5,000 rpm for 5 min. Finally, the cells were resuspended in 250 μl of 1 M cold 

sorbitol. Approximately 30 μg of hNEP DNA was linearized with Sac . The linearized DNA Ⅰ

was mixed with 50 μl of competent cells, and mixtures were pulsed at 1.5 kV in the 0.2 mm 

cuvette with Bio-RAD Micropulser. Immediately after pulsing, 1 mL of cold 1 M sorbitol was 

added, and the sample was incubated at 30 °C without shaking for 1 hour. After 1 hour, 1 ml 

YPD medium was added to each tube and the culture grown at 30 °C for three more hours on a 

rotating shaker. The cells were centrifuged at 5,000 rpm, resuspended in 100 μL 1M sorbitol, and 

plated on YPDS media plates (EasySelect Pichia expression kit, version F from Invitrogen) 

containing 100 μg/ml, 200 μg/ml, and 500 μg/ml Zeocin (Invitrogen). Colonies formed in 2 to 4 

days at 30 °C. A large number of colonies grown in small scale cultures and screened with an 

activity assay ((Li and Hersh, 1995); see below for a description) to identify the colony that 

produced the highest level activity. Stocks of cells were made from the colony having the highest 

activity and used for all future experiments. 

 

For large scale culture, stock cells were inoculated into 500 ml of YPD medium 

containing 25 μg/ml zeocin and cultured at 30 °C to OD600 = 8-10. The cells were centrifuged at 

9,000 rpm for 10 min at room temperature, resuspended with 0.5 liter YP medium and poured 

into 6.5 liters of YP medium containing 25 μg/ml zeocin. 210 ml of 100 % methanol and 7 ml of 

3 % antifoam were added to 7 liter of YP medium and the cells were grown at 30 °C for 4 days. 
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At the end of the expression period, the media was harvested and the cells spun down at 7,000 

rpm for 15 minutes at 4 °C. The resulting supernatant was brought to 55 % (w/v) ammonium 

sulfate and stored at 4 °C for 30 minutes. Precipitated material was spun down at 7,000 rpm for 

30-60 minutes and the resulting supernatant was transferred into new beakers while the pellets 

were resuspended in 20-30 ml of resuspension buffer (20 mM Tris-HCl (pH 7.4), 100 mM NaCl, 

5 % glycerol, and 2 mM MgCl2). The supernatant was then brought to 75 % ammonium sulfate 

and stored at 4 °C for 30 minutes. Precipitated material was spun down at 7,000 rpm for 30-60 

minutes and the pellet was resuspended in a total of 20-30 ml of resuspension buffer. The 

resuspended proteins were dialyzed against 4 liter of buffer containing 20 mM Tris-HCl (pH 7.4), 

5 % glycerol, and 2 mM MgCl2 at 4 °C for approximately 16 hours. The proteins were mixed 

with 10 ml of the equilibrated Ni-NTA agarose resin (Qiagen) by inverting at 4 °C for 3-5 hours, 

and the resin was pelleted by centrifuging at 4,000 rpm for 5 minutes. The resin was washed with 

50 ml of 20 mM Tris-HCl (pH 7.4) and pelleted at 4,000 rpm for 5 minutes. The protein was 

eluted in 10 ml of elution buffer (150 mM imidazole, 20 mM Tris-HCl (pH 7.0), 150 mM NaCl, 

5 % glycerol, and 2 mM MgCl2) at 4 °C for 1 hour and dialyzed overnight against 1 liter of 

buffer containing 20 mM Tris-HCl (pH 8.5), 5 % glycerol, and 2 mM MgCl2. The protein was 

loaded onto an anion exchange column (Poros HQ resin, GE Healthcare) and eluted with a linear 

salt gradient from 0 to 1 M NaCl. The protein was further purified by passing it over a Superdex 

200 column (GE Healthcare) using buffer containing 20 mM Tris-HCl (pH 7.0), 150 mM NaCl, 

5 % glycerol, and 2 mM MgCl2. The protein was concentrated in a Centricon-50 (Amicon) to 7-

10 mg/ml and stored at 4 °C for crystallization (Figure 2.4). 
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Enzyme activity assay for hNEP 

 

Enzyme activity was determined with a coupled assay (Li and Hersh, 1995) by 

monitoring the cleavage of a fluorogenic substrate at λex = 340 nm and λem = 425 nm in a 96-well 

ELISA fluorescence plate reader (SpectraMAX Genomics, Molecular Devices). Reactions were 

performed with 50 μM of glutaryl-Ala-Ala-Phe-4-4-methoxy-2-naphthylamide, 1-10 μl of 

secreted or purified hNEP proteins, 1 μg of puromycin sensitive aminopeptidase (PSA), and 20 

mM MES (pH 6.5) in the 200 μl of total volume. The substrate is first hydrolyzed by hNEP to 

Phe-4-4-methoxy-2-naphthylamide which is converted to the fluorescent 4-methoxy-2-

naphthylamide by PSA.  

 

Preparation of human choline acetyltransferase (hChAT) constructs 

 

The full length gene of ChAT (hChAT) in a pCRT7 vector was obtained from the 

laboratory of Dr. Louis Hersh at the University of Kentucky (Kong et al., 1989) and inserted into 

a pTrcHis2A vector (Invitrogen) by PCR. The reaction was performed with 5 μl of 5× reaction 

buffer, 1 μl of 100 ng/μl of double strand DNA template, 1 μl of 100 pmol/μl of forward primer, 

1 μl of 100 pmol/μl of reverse primer, 1 μl of 100 mM dNTP mixture, 1 μl of Pfuturbo DNA 

polymerase (2.5 U/μl), and 40 μl of H2O to a final volume of 50 μl. Each was cycled according 

to the parameters: 1 cycle at 95 °C for 45 seconds and 35 cycles at 95 °C for 30 seconds, 53 °C 

for 1 minute, and 72 °C for 2 minutes (Eppendorf personal master cycler). A stop codon was 

added to the 3’ end of the gene to prevent expression of a C-terminal hexahistidine sequence 

present in the vector (Table 2.3). Both the full length hChAT and a truncated construct were 

expressed. The truncated hChAT lacked the N-terminal 10 residues and the C-terminal 23 

residues, which are disordered in the crystal structure of the rat enzyme and therefore might 

inhibit crystallization. The constructs were transformed into Escherichia coli TOP cells by 

electroporation and the sequences of full length and truncated hChAT inserts were confirmed by 

sequencing (Davis sequencing, www.davissequencing.com). 

 

 



 

31 
 

Expression and purification of hChAT 

 

Constructs of hChAT were expressed in Escherichia coli BL21(DE3)RP cells 

(Stratagene). Cells containing the hChAT constructs were cultured overnight at 37°C in Luria 

Bertani (LB) media containing 50 mg/ml ampicillin and 34 mg/ml chloramphenicol. 300 ml of 

overnight culture were used to inoculate 7 L of LB media containing 7 ml of antifoam, 50 mg/ml 

ampicillin, and 34 mg/ml chloramphenicol. The cells were cultured at 37°C until the A600 of the 

culture had reached 0.7-0.9. Isopropyl-β-D-thiogalactopyranoside (IPTG) was added to a final 

concentration of 1 mM to induce overexpression of the protein, and the cells were grown at 16°C 

for an additional 5 hours. Cells were centrifuged at 8,000 rpm for 10 minutes and the pellets 

stored at -20°C. 

 

Cell pellets were resuspended in cold lysis buffer (3 ml per gram of cells) containing 20 

mM Tris-HCl (pH 8.0), 5% Glycerol, 5 mM 2-mercaptoethanol, 100 mM NaCl, and protease 

inhibitor cocktail III (100 μl/1L of culture). Cells were lysed by twice passing them through a 

French press, and the insoluble material was removed by centrifugation at 23,000 rpm for 60 

minutes at 4°C. The crude lysate was mixed with 50% Ni-NTA agarose resin (Qiagen) that had 

been equilibrated with 20 mM Tris-HCl (pH 8.0), 5% Glycerol, 5 mM 2-mercaptoethanol on a 

shaker for 2-3 hours at 4°C. The resin was washed with 40 ml cold wash buffer (20 mM Tris-

HCl (pH 8.0), 5% Glycerol, 5 mM 2-mercaptoethanol, and 500 mM NaCl) on a shaker for 20 

minutes and centrifuged at 4,000 rpm for 5 minutes at 4 °C. The resin was washed with cold 

buffer containing 1 M NaCl and then again with cold buffer containing 1.5 M NaCl. The protein 

was eluted with 10 ml of elution buffer (150 mM imidazole, 20 mM Tris-HCl (pH 8.0), 5% 

Glycerol, 5 mM 2-mercaptoethanol, and 500 mM NaCl) on a shaker for 30 minutes. 

 

The hChAT protein was dialyzed against 1 liter of buffer containing 20 mM MES (pH 

6.0), 10 mM NaCl, 5 % glycerol and 5 mM 2-mercaptoethanol overnight at 4°C prior to loading 

onto a cation exchange column (HS resin, GE Healthcare). The protein was eluted with a salt 

gradient (0 M to 1 M).The eluted hChAT protein was loaded into a Superdex200 column (GE 

Healthcare) using buffer containing Tris-HCl (pH 7.4) and 50 mM NaCl. The eluted protein was 
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pooled and dialyzed against 1 liter of buffer containing 20 mM Tris-HCl (pH 8.0), 20 mM NaCl, 

5 % glycerol and 5 mM 2-mercaptoethanol overnight at 4°C and concentrated to 5-10 mg/ml in a 

Centricon-50 (Amicon). The concentrated protein was stored at 4°C for crystallization trials and 

assays (Figure 2.5A). 

 

Assay for hChAT activity 

 

The activity of hChAT samples was determined by monitoring the reverse ChAT reaction 

in which an acetyl group is transferred from acetylcholine to CoA (Hersh et al., 1978; Wu et al., 

1995; Wu and Hersh, 1995). The reaction is coupled to the production of NADH, which was 

monitored λem = 450 nm and λex = 340 nm in an Optical Technologies fluorometer, by the 

sequential action of citrate synthase and malate dehydrogenase. The assay was performed in a 

buffer containing 10 mM potassium phosphate (pH 7.4), 250 mM NaCl, 0.125 mM NAD+, 0.5 

mM L-malate, 0.1 mM DL-dithiothreitol, 25 mM acetylcholine chloride, 0.1 mM CoA, 1.5 U of 

pig heart citrate synthase (Sigma), and 4 U of pig heart malate dehydrogenase (Sigma). The 

reaction was initiated by the addition of acetylcholine chloride (Sigma).  

 

Crystallization of hChAT 

 

Full length and truncated hChAT was crystallized by hanging drop vapor diffusion at 4°C. 

The crystals were grown by mixing 1 μl of 10-15 mg/ml protein with 1 μl of well solution 

containing 100 mM Tris-HCl (pH 8.5), 200 mM magnesium chloride, and 2-3 M 1, 6- 

hexanediol. Crystals typically grew to 0.15 x 0.3 x 0.01 mm (Figure 2.5B). For data collection, 

crystals were transferred briefly (a few seconds) into a solution containing 25 % glycerol, 100 

mM Tris-HCl (pH 8.5), 200 mM magnesium chloride, and 2-3 M 1, 6- hexanediol, mounted in a 

nylon loop, and plunged in liquid nitrogen (Rodgers, 1997).  
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Table 2. 1: Sequences of primers for TOP mutagenesis 
 

Primers Sequences 

TOP 4 mutant H495N F† 5’-GCCATGTTCAGCGGGACCAACGTGGAGCGGGACTTTGTG-3’ 

TOP 4 mutant H495N R‡ 5’-CACAAAGTCCCGCTCCACGTTGGTCCCGCTGAACATGGC-3’ 

TOP 4 mutant R498T F 5’-GCGGGACCAACGTGGAGACGGACTTTGTGGAGGCGCC-3’ 

TOP 4 mutant R498T R 5’-GGCGCCTCCACAAAGTCCGTCTCCACGTTGGTCCCGC-3’ 

TOP 4 mutant M490R F 5’-CCCAGGCGGAGTTCGCCAGGTTCAGCGGGACCAACGTG-3’ 

TOP 4 mutant M490R R 5’-CACGTTGGTCCCGCTGAACCTGGCGAACTCCGCCTGGG-3’ 

TOP 4 mutant E469R F 5’-CTGCAGCATGACGAGGTGCGGACCTACTTCCATGAGTTTG-3’ 

TOP 4 mutant E469R R 5’-CAAACTCATGGAAGTAGGTCCGCACCTCGTCATGCTGCAG-3’ 

TOP 3 mutant N495H F 5’-CAGGTTCAGCGGGACCCACGTGGAGACGGACTTTG-3’ 

TOP 3 mutant N495H R 5’-CAAAGTCCGTCTCCACGTGGGTCCCGCTGAACCTG-3’ 

TOP 3 mutant T498R F 5’-GGGACCAACGTGGAGCGGGACTTTGTGGAGGCG-3’ 

TOP 3 mutant T498R R 5’-CGCCTCCACAAAGTCCCGCTCCACGTTGGTCCC-3’ 

TOP 2 mutant R498T F 5’-GGGACCCACGTGGAGACGGACTTTGTGGAGGCG-3’ 

TOP 2 mutant R498T R 5’-CGCCTCCACAAAGTCCGTCTCCACGTGGGTCCC-3’ 

 
† Forward 
‡ Reverse 
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Table 2. 2: Sequences of mutation primers for neurolysin mutagenesis 
 

 
† Forward 
‡ Reverse 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Primers Sequences 

Neurolysin 4 mutant 
N496H F† 

5’- CGATTCAGTGGAACACACGTGGAAACTGACTTTG-3’ 

Neurolysin 4 mutant 
N496H R‡ 

5’- CAAAGTCAGTTTCCACGTGTGTTCCACTGAATCG-3’ 

Neurolysin 4 mutant 
T499R F 

5’-CAGTGGAACACACGTGGAAAGAGACTTTGTAGAGGTGCCATC-3’ 

Neurolysin 4 mutant 
T499R R 

5’-GATGGCACCTCTACAAAGTCTCTTTCCACGTGTGTTCCACTG-3’ 

Neurolysin 4 mutant 
R491M F 

5’-CTGTGCGCAGACTGACTTTGCAATGTTCAGTGGAACACACGTGGAAAG-3’ 

Neurolysin 4 mutant 
R491M R 

5’-CTTTCCACGTGTGTTCCACTGAACATTGCAAAGTCAGTCTGCGCACAG-3’ 

Neurolysin 4 mutant 
R470E F 

5’-CTGAGACATGATGAAGTGGAGACTTACTTCCACGAGTTC-3’ 

Neurolysin 4 mutant 
R470E R 

5’-GAACTCGTGGAAGTAAGTCTCCACTTCATCATGTCTCAG-3’ 

Neurolysin 3 mutant 
H496N F 

5’-CAATGTTCAGTGGAACAAACGTGGAAAGAGACTTTG-3’ 

Neurolysin 3 mutant 
H496N R 

5’-CAAAGTCTCTTTCCACGTTTGTTCCACTGAACATTG-3’ 

Neurolysin 3 mutant 
R499T F 

5’-GGAACACACGTGGAAACTGACTTTGTAGAGGTG-3’ 

Neurolysin 3 mutant 
R499T R 

5’-CACCTCTACAAAGTCAGTTTCCACGTGTGTTCC-3’ 

Neurolysin 2 mutant 
T499R F 

5’-GGAACAAACGTGGAAAGAGACTTTGTAGAGGTG-3’ 

Neurolysin 2 mutant 
T499R R 

5’-CACCTCTACAAAGTCTCTTTCCACGTTTGTTCC-3’ 
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Table 2. 3: Sequences of primers for human choline acetyltransferase cloning 
 

 
 
 
 
 
 
 
 
 

 
† Forward 
‡ Reverse 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Primers Sequences 

Full length ChAT BamH F† 5’- CGGGATCCAGCAGCAAAAACTCCCAGCAG-3’ 

Full length ChAT EcoR R‡ 5’- GGAATTCTTATCAAGGTTGGTGTCCCTGGCTGG-3’ 

Truncated ChAT BamH F  5’- CGGGATCCACTGCCCAAACTGCCCGTGCC-3’ 

Truncated ChAT EcoR R 5’- GGAATTCTTATCACAGCAGACTGCAGAGGTCTCTC-3’ 
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Figure 2. 1. Overview of mutation positions in the TOP 3 mutants. Blue labels indicate the 
residues that retained the wild type sequence in each of the TOP 3 mutants. The zinc ion cofactor 
is indicated by the blue sphere.  
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                               A                                                                          

                                          
 
                               B   

                                   
 
 
Figure 2. 2. Overview of mutation positions in the TOP 2 mutant and neurolysin 2 mutant. 
The mutation positions of TOP 2 mutant (A) and neurolysin 2 mutant (B). The substituted 
residues of TOP 2 mutant and neurolysin 2 mutant are indicated. 
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    A                                                         B 
 

           
 
 
   C 
 

        
 
 
 
 
Figure 2. 3. Residue swap to test a direct interaction between Glu469 of TOP and Arg9 of 
NT. A, Salt interaction between Glu469 of TOP and Arg9 of NT in the model for NT binding to 
TOP. TOP (residues 468-498) is indicated by cyan and yellow represents NT. B, Site mutated in 
TOP to swap arginine for the wild type glutamate. C, Sequence change in NT for the swap 
experiment. The arginine of NT is replaced by glutamate giving the NT(R9E) peptide. 
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Figure 2. 4. Overexpression of hNEP 3 mutant in Pichia pastoris yeast cells. Coomassie 
stained SDS polyacrylamide gel showing purified recombinant hNEP. Molecular weight markers 
are in the left land and hNEP is in the right lane. The molecular weight of hNEP 3 mutant is 
about 80 kDa. 
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                                    A                                                                              
 

                                          
 
 
                                 B 
               

                                          
 
 
 

Figure 2. 5. Overexpression and crystals of hChAT. A, Coomassie stained SDS 
polyacrylamide gel. Molecular weight markers are in lane 1, purified full length hChAT in lane 2 
and truncated hChAT in lane 3. B, Crystals of hChAT. The longest dimension of the crystals is 
approximately 0.2 mm. 
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Chapter 3: Reengineering of substrate specificity in thimet oligopeptidase (TOP) and 

neurolysin 

 

TOP and neurolysin are closely related neuropeptidases that hydrolyze most peptides at 

same cleavage site (Rioli et al., 1998) (Figure 1.2A). One exception is the 13 residue peptide NT. 

TOP cleaves NT between Arg8 and Arg9 while neurolysin hydrolyzes the peptide between 

Pro10 and Tyr11 (Mentlein and Dahms, 1994) (Figure 1.2A). Very few of the 224 sequence 

differences between the two enzymes are located in the substrate binding channel (Ray et al., 

2002). On the basis of modeling studies, it was determined that four changes (E469/R470, 

M490/R491, H495/N496, and R498/T499, the TOP residues listed first) are likely to cause 

differences in substrate specificity (Figure 1.5). We have substituted these four residues in TOP 

and neurolysin with the corresponding ones the other enzyme in order to test the role of these 

residues in mediating differential substrate specificity.  

 

One of the identified sequences changes, Glu469 in TOP to Arg470 in neurolysin, is 

responsible for a strong difference in surface electrostatic potential at one end of the substrate 

binding channel floor (Ray et al., 2004). In previous studies, it was suggested that the Arg9 of 

NT may make a salt bridge with the Glu469 of TOP (Figure 2.3A), and that this interaction may 

help determine the difference in cleavage site compared with neurolysin. In order to determine 

whether a direct interaction between TOP and NT may be involved in differential substrate 

specificity, I swapped the two residues, placing the enzyme residue in the peptide and the peptide 

residue in the enzyme (Figure 2.3B and C). If there is a direct interaction, it should still be made 

when the altered peptide binds to the altered enzyme. If Glu469 plays another role, however, this 

swap will likely alter the substrate interaction. Arg9 of NT was replaced to Glu9, resulting in a 

peptide named NT(R9E) (Figure 2.3C), and TOP was substituted at Glu469 with an arginine 

(Figure 2.3B). The preferred cleavage site of this altered substrate and enzyme was then 

determined to see if the position was maintained relative to the corresponding wild type 

molecules. 
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Cleavage pattern of NT by TOP 4 and neurolysin 4 mutants 

 

To determine if substituting all four residues can convert the TOP cleavage site on NT to 

that of neurolysin, the cleavage site was determined using reverse phase HPLC separation of 

cleavage products and subsequent identification by mass spectrometry. Wild type TOP 

hydrolyzed NT between Arg8 and Arg9, producing NT1-8 and NT9-13 fragments (Figure 3.1C 

and E), while wild type neurolysin cleaved the peptide between Pro10 and Tyr11, producing 

NT1-10 and NT11-13 fragments (Figure 3.1A and E). These are the products expected based on 

the literature (Mentlein and Dahms, 1994). NT1-8 and NT1-10 fragments were separated well 

with specific retention times, but NT9-13 and NT11-13 fragments had similar retention times 

when using the C18 column. The molecular masses of NT fragments and full length of NT were 

determined by ESI-TOF to confirm the cleavage sites on NT by both enzymes. The masses of 

NT1-8 and NT9-13 fragments were 1030 ± 0.37 and 661 ± 0.59 Daltons, respectively, while 

those of NT1-10 and NT11-13 fragments were 1283 ± 0.21 and 408 ± 0.73 Daltons, respectively 

(Table 3.1). These values compare well with the calculated molecular masses of the expected NT 

fragments. 

 

Like wild type neurolysin, products produced by the TOP 4 mutant (E469R, M490R, 

H495N, and R498T) showed the same retention times as those of NT1-10 and NT11-13 

fragments produced by wild type neurolysin (Figure 3.1B and E). The masses of NT1-10 and 

NT11-13 fragments were 1283 ± 0.21 and 408 ± 0.74 Daltons, respectively (Table 3.1), same as 

those of wild type neurolysin. These results suggest that substitution of four residues in TOP can 

convert the TOP cleavage site on NT to that of neurolysin. In the opposite experiment, 

substitution of the corresponding four residues in neurolysin (R470E, R491M, N496H, and 

T499R) produced a similar exchange of cleavage sites. The neurolysin 4 mutant also showed the 

same retention times as those of NT1-8 and NT8-13 fragments produced by wild type TOP 

(Figure 3.1D and E), suggesting that neurolysin 4 mutant cleaved NT at the same cleavage site as 

wild type TOP. It is clear, then that these four residues or a subset of the four are responsible for 

the observed differences in NT cleavage site selection between TOP and neurolysin. 
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Cleavage pattern of NT by TOP 3 mutants 

 

In order to determine if all four changes are needed to swap cleavage sites, I examined a 

series of TOP mutants each carrying only three of the four mutations tested previously. Each of 

the four mutants retained the wild type amino acid at a different one of the four residue positions. 

The TOP 3a and 3b mutants, which retain the wild type residues Met490 and His495 (Figure 2.1), 

respectively, both produced peptide products of NT hydrolysis consistent with cleavage at the 

neurolysin site (Figure 3.2A, B, and C; Table 3.2). In contrast, the TOP 3c and 3d mutants, 

which retain the wild type residues Glu469 and Arg498 respectively (Figure 2.1), each cleaved 

NT at both the TOP and neurolysin sites, suggesting a mixed specificity (Figure 3.2A, D, E, and 

F; Table 3.2). These results, taken together, suggest that both the E469R and the R498T 

mutations are required for swapping the cleavage site position. The M490R and H495N 

mutations have no effect on differential specificity. 

 

Cleavage pattern of NT by TOP 2 and neurolysin 2 mutants 

 

In order to further test the possibility that just the two mutations are sufficient to swap 

specificity, I made constructs of TOP and neurolysin that were mutated at only those two 

positions (Figure 2.2A and B). The TOP 2 mutant (E469R and R498T) and neurolysin two 

mutant (R470E and T499R) were produced and used in cleavage site assays. As expected, TOP 2 

mutant hydrolyzed NT at the wild type neurolysin site (Pro10-Tyr11) (Figure 3.3A and B) and 

the neurolysin 2 mutant hydrolyzed the NT at the wild type TOP site (Arg8-Arg9) (Figure 3.3C 

and D). These studies therefore show that only two residue positions are responsible for 

differences in NT cleavage between TOP and neurolysin. 
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Comparison of kinetic parameters for wild type TOP and neurolysin with the two mutant 

constructs 

 

Results described so far demonstrate that it is possible to swap the cleavage sites on NT 

of TOP and neurolysin by mutating two residue positions. In order to determine if these 

mutations not only swap cleavage sites but also reproduce the kinetic parameters of the enzyme 

being mimicked, I determined the steady state kinetic parameters for the wild type and mutant 

constructs. These studies were carried out using a fluorogenic version of NT, in which cleavage 

can be monitored by the increase in fluorescence resulting from separating the N-terminal 

fluorescent and C-terminal quenching groups. The neurolysin 2 mutant has similar kcat and Km 

values to those of wild type TOP (Figure 3.4A and D; Table 3.3). The TOP 2 mutant also has a 

similar kcat to that of wild type neurolysin, but the Km of TOP 2 mutant is significantly higher 

than that of wild type neurolysin (Figure 3.4B and C; Table 3.3). Energetically, however, the 

effect on Km is small, and overall the mutants show similar kinetics to the wild type enzyme 

being mimicked.  

 

Cleavage pattern of NT(R9E) by TOP E469R mutant 

 

In the published model of NT binding to TOP, it was suggested that the Glu469 of TOP 

may form a salt bridge with the Arg9 of NT (Figure 2.1A) (Ray et al., 2004). If such a direct 

interaction occurs, it seems likely that the interacting residues could be swapped between peptide 

and enzyme without affecting the salt bridge contact. Therefore, Arg9 of NT was changed to 

Glu9 to produce a peptide named NT(R9E) (Figure 2.3C), and TOP Glu469 was replaced with 

an arginine (Figure 2.3B). Cleavage site analysis was performed with the altered peptide and 

enzyme. Analysis of NT(R9E) cleavage by wild type TOP and neurolysin was also done for 

comparison. 

 

Wild type TOP cleaved NT(R9E) at two positions that correspond to the TOP and 

neurolysin cleavage sites on NT (positions 8-9 and 10-11) (Figure 3.5B and E; Table 3.4). The 

probability of cleavage at the Pro10-Tyr11 site may have been slightly higher. On the basis of 

modeling studies and previous results, we expected that NT(R9E) would be cleaved by the TOP 
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E469R mutant at between Arg8 and Glu9, the wild type TOP cleavage site. But like the wild 

type enzyme, TOP E469R cleaved NT(R9E) at two sites, between Arg8 and Glu9 and between 

Pro10 and Tyr11 (Figure 3.5C and E; Table 3.4). This result suggests that Glu469 does not 

simply make a salt bridge with Arg9.  

 

Somewhat unexpectedly, wild type neurolysin cleaved the NT(R9E) peptide exclusively 

between Arg8 and Glu9, the site equivalent to the TOP NT cleavage site (Figure 3.5D and E; 

Table 3.4). Since both wild type TOP and neurolysin show altered activity toward the modified 

peptide, it seems clear that Arg9 of NT does play some role recognition of NT by both enzymes. 
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Table 3. 1: Molecular masses of NT fragments produced by wild type TOP, wild type 
neurolysin, and TOP 4 mutant 
 
Enzyme Fragment masses 

 NT1-8 
 (expected 

mass) 

NT1-10  
(expected 

mass) 

NT9-13 
 (expected 

mass) 

NT11-13 
(expected 

mass) 

NT 
(expected 

mass) 
 

Wild type  

TOP 

1030.5306 

(1030.16) 

- 661.4042 

(660.81) 

- 1672 

(1672.96) 

 

Wild type 

Neurolysin 

- 1283.6833 

(1283.47) 

- 408.2416 

(407.51) 

1672 

(1672.96) 

 

TOP 4 

mutant 

- 1283.6830 

(1283.47) 

- 408.2507 

(407.51) 

- 
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Table 3. 2: Summary of mutation sites and NT hydrolysis by the TOP 3 mutants 
 

 TOP 3a 

mutant  

TOP 3b 

mutant  

TOP 3c 

mutant  

TOP 3d 

mutant  

M490R - ✔ ✔ ✔ 

H495N ✔ - ✔ ✔ 

R498T ✔ ✔ - ✔ 

E469R ✔ ✔ ✔ - 

Cleavage 

pattern of NT 

Neurolysin site 

¶ 

Neurolysin site Neurolysin and 

TOP sites§ 

Neurolysin and 

TOP sites 

 
¶ Pro10 and Tyr11  
§ Arg8 and Arg9, Pro10 and Tyr11 
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Table 3. 3: Kinetics parameters for hydrolysis of fluorogenic NT by wild type TOP, TOP 2 
mutant, wild type neurolysin, and neurolysin 2 mutant 
 

Enzymes kcat (sec-1) Km (μM) 

Wild type TOP 2.3 ± 0.2 2.6 ± 0.3 

Neurolysin 2 mutant 2.79 ± 0.42  2.95 ± 0.45  

Wild type Neurolysin 5.0 ± 0.4 2.0 ± 0.2 

TOP 2 mutant 4.2 ± 0.65 3.3 ± 0.5 
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Table 3. 4: Molecular masses of NT(R9E) fragments and full length of NT(R9E) by TOP 
E469R mutant 
 
Enzyme Fragment masses 

 NT(R9E) 
1-8 

 (expected 
mass) 

NT(R9E) 
1-10  

(expected 
mass) 

NT(R9E) 
9-13 

 (expected 
mass) 

NT(R9E) 
11-13 

(expected 
mass) 

NT(R9E) 
1-13 

(expected 
mass) 

 

TOP E469R 

mutant 

1030.5311 

(1030.16)  

1256.6256 

(1256.4) 

408.2492 

(407.51) 

634.3452 

(633.74) 

1646 

(1646.8) 
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                        E 
 

                           
 
Figure 3. 1. Cleavage of NT by the TOP 4 and neurolysin 4 mutants. A, Reverse phase 
HPLC separation of cleavage products generated by wild type neurolysin. It hydrolyzes NT 
between Pro10 and Tyr11, producing a NT1-10 fragment (2) and a NT11-13 fragment (4). Full 
length NT is indicated by the number 5. B, Cleavage products generated by the TOP 4 mutant. It 
cleaves NT at the same cleavage site as wild type neurolysin. C, Cleavage products generated by 
wild type TOP. It cleaves NT between Arg8 and Arg9, producing the NT1-8 (1) and NT9-13 (3) 
fragments. D, Cleavage products generated by the neurolysin 4 mutant. NT is hydrolyzed by the 
neurolysin 4 mutant at the TOP cleavage site. The retention times of product peaks are 
normalized based on the migration of full length NT. E, Diagram indicating NT fragment sizes. 
NT1-8 and NT1-10 fragments are represented by numbers 1 and 2, respectively. Numbers 3, 4, 
and 5 indicate NT9-13, NT11-13, and NT1-13, respectively. 
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Figure 3. 2. The cleavage pattern of NT by the TOP 3 mutants. A, Cleavage pattern of NT by 
wild type neurolysin. It hydrolyzes the NT between Pro10 and Tyr11, producing NT1-10 
fragment (2) and NT11-13 fragment (4). Number 5 indicates full length NT. B and C, Cleavage 
pattern of NT by the TOP 3a and 3b mutants. They cleave NT at the same cleavage site as wild 
type neurolysin. D and E, Cleavage pattern of NT by the TOP 3c and 3d mutants. NT is 
hydrolyzed by TOP 3c mutant and 3d mutant at both TOP cleavage site and neurolysin cleavage 
site. F, Cleavage fragments produced by wild type TOP. It cleaves the NT between Arg8 and 
Arg9, producing NT1-8 fragment (1) and NT9-13 fragment (3). 
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Figure 3. 3. Cleavage of NT by the TOP 2 and neurolysin 2 mutants. A, Reverse phase 
HPLC separation of products produced by wild type neurolysin. It hydrolyzes NT between Pro10 
and Tyr11, producing the NT1-10 (2) and NT11-13 (4) fragments. Full length NT is indicated by 
the number 5. B, Cleavage products produced by the TOP 2 mutant. It hydrolyzes NT at the 
neurolysin cleavage site. C, Cleavage products produced by wild type TOP. Wild type TOP 
cleaves NT at between Arg8 and Arg9, producing the NT1-8 (1) and NT9-13 (3) fragments. D, 
Cleavage pattern of NT by the neurolysin 2 mutant. It hydrolyzes the peptide at the TOP 
cleavage site. 
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              A                                                                B     
 

               
 
 
             C                                                                D 
  

                
 
 
 

Figure 3. 4. Kinetics of fluorogenic NT hydrolysis by TOP, TOP 2 mutant, wild type 
neurolysin and neurolysin 2 mutant. Initial velocity versus substrate concentration plots for 
hydrolysis by: A, wild type TOP; B, the TOP 2 mutant; C, wild type neurolysin; and D, the 
neurolysin 2 mutant. Curves show the fit to the data using the equation V = V max [S] / (Km + [S]) 
in Prism version 4 from GraphPad. 
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                         E 
 

                            
 
 
 
Figure 3. 5. Cleavage of NT(R9E) by the TOP E469R mutant.  A, Reverse phase HPLC 
separation a synthetic NT(R9E) 9-13 fragment and full length of NT(R9E) to determine retention 
times of the peptides. B, Cleavage products produced by wild type TOP. C, Cleavage products 
produced by the TOP E469R mutant. D, Cleavage products produced by wild type neurolysin. E, 
Diagram showing the various cleavage products produced on hydrolysis of the NT(R9E) 
fragment. 
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Chapter 4: Crystal structures of TOP 2 and neurolysin 2 mutants 

 

Introduction 

 

The crystal structure of wild type neurolysin was determined by our group at 2.3 Å 

resolution (Brown et al., 2001) (Figure 1.3B). The unit cell of the neurolysin crystals belongs to 

the P21212 space group with dimensions of a=157.8 Å, b=88 Å, c=58.4 Å. The crystal structure 

revealed that neurolysin has a prolate elipsoid shape with a high proportion (53 %) of α helix and 

only a small β sheet content (5.9 %). The molecule is divided by two distinct domains (I and II) 

by a deep narrow channel that runs its length, and the active site is located in domain I near the 

floor of the channel. In this position, the active site is accessible only to small, unstructured 

peptide substrates.  

 

Our group also determined the crystal structure of human TOP at 2.0 Å resolution (Ray et 

al., 2004) (Figure 1.3A) . In order to crystallize TOP, the N terminal 15 residues were removed 

and two cysteine residues (Cys246 and Cys253) were mutated to serines to prevent covalent 

oligomerization of enzyme. The TOP structure is very similar to neurolysin, with an overall root 

mean square deviation on Cα positions of only 1.19 Å. Recently, another M3 family member, 

dipeptidyl carboxypeptidase (Comellas-Bigler et al., 2005), has been shown to have a very 

similar structure to TOP and neurolysin. 

 

Work of other groups has shown that the neurolysin/TOP fold is found in other families 

of metallopeptidases. Angiotensin-converting enzyme (ACE), a M2 family member targeted in 

antihypertensive therapy (Kim et al., 2003; Natesh et al., 2004), shares the fold as does the 

enzyme angiotensin converting enzyme related carboxypeptidase (ACE2), a member of the M2 

family (Guy et al., 2003; Towler et al., 2004). Also, Pyrococcus furiosus carboxypeptidase 

(Arndt et al., 2002) from the M32 family adopts the neurolysin/TOP fold. 
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Crystal structures of the TOP 2 and neurolysin 2 mutants 

 

The TOP 2 mutant and neurolysin 2 mutant proteins were crystallized under similar 

conditions to those used for wild type TOP and neurolysin, and the crystal structures were 

determined at 1.94 Å and 2.2 Å respectively by molecular replacement with the structures of the 

wild type enzymes (Figure 4.1 and 4.4). The structures have been fully refined. The crystal 

structure of TOP 2 mutant has 654 residues and 471 waters. Rwork and Rfree of TOP 2 mutant are 

0.2022 and 0.2375, respectively. The neurolysin 2 mutant structure has 665 residues, 209 waters, 

and the values of Rwork and Rfree are 0.2189 and 0.2682, respectively (Table 4.1). Difference 

electron density maps show clearly the mutant side chains at positions Arg469/Glu470 and 

Thr498/Arg499 (Figure 4.2 and 4.5). In both enzymes, the side chains are well defined by phase 

improved Fo electron density.  

 

Superimposing the wild type TOP structure on TOP 2 mutant demonstrates that the 

introduction of the two point mutations does not cause any change in either global or local 

backbone conformation (Figure 4.1). Similarly, no backbone changes in main chain 

conformation relative to the wild type enzyme are caused by introducing the two mutations in the 

neurolysin 2 mutant (Figure 4.4). The absence of any substantial conformational changes 

accompanying mutation indicates that the changes in specificity for NT cleavage sites are caused 

by the identities of the substituted side chains rather than any larger scale changes in structure. 

 

In order to compare the conformations of  side chains in the mutant enzymes with the 

wild type enzymes they are intended to mimic, the TOP wild type structure was superimposed on 

the neurolysin 2 mutant, and the neurolysin wild type structure was superimposed on the TOP 2 

mutant. In the TOP 2 mutant, the side chain of introduced Arg469 had very similar 

conformations to the corresponding residues in wild type neurolysin (Figure 4.3A; Table 4.2). 

But, the side chain of Thr498 adopted a different Chi1 rotamer from Thr499 in wild type 

neurolysin (Figure 4.3B; Table 4.2). It seems likely that this difference in rotamer conformation 

is due to a structural difference in an adjacent loop segment between TOP and neurolysin (Figure 

4.3C). The loops (residues 599-611 in TOP and residues 600-612 in neurolysin) differ in 

sequence in the two enzymes at a single position, Ala607 in TOP and Gly608 in neurolysin. In 
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neurolysin, the loop passes close to Thr499, and Tyr606 may be steric contact with the gamma 

methyl of that residue, influencing its conformation. In contrast, the loop in TOP 2 mutant, 

which has the same conformation found in wild type TOP, is shifted too far away from Thr498 to 

make any contacts. Instead, the side chain of Thr498 reorients, making hydrogen bond with 

Asn283 and Gln608.  

 

For neurolysin 2 mutant, the comparison with the enzyme being mimicked follows the 

same pattern. The side chains of the substituted Glu470 in the neurolysin 2 mutant also showed 

similar conformations to Glu469 in wild type TOP (Figure 4.6A; Table 4.2). However, Arg499 

adopted a different Chi2 rotamer from Arg498 in wild type TOP (Figure 4.6B; Table 4.2). Again, 

it seems likely that the differences at position 498/499 are due to differences in the adjacent loop 

segment (599-611/600-612) (Figure 4.6C; Table 4.2). In wild type TOP, the side chain of 

Arg498 is oriented toward the loop, and in fact makes a hydrogen bond contact with the main 

chain carbonyl oxygen at Gly604. This orientation of the arginine side chain would clash with 

the side chain of Tyr606 in the shifted loop of neurolysin 2 mutant, which adopts the same 

conformation as wild type neurolysin. 
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Table 4. 1: Summary of crystallographic data and refinement for TOP 2 and neurolysin 2 
mutants 
 
 TOP 2 mutant Neurolysin 2 

mutant 

Crystallographic data   
Wavelength (Å)  0.9997 0.9997 
Resolution (Å)  30-1.94 50-2.2 
Last shell (Å)  2.01-1.94 2.28-2.2 
Average redundancy (last shell) (%)  4.8 (4.4) 4.3 (4.2) 
Rsym† (last shell) (%)  0.075 (0.299) 0.088 (0.412) 
I/ I (last shell) (%)  20.06 (4.68) 14.96 (3.98) 
Completeness (last shell) (%)  98.2 (90.5) 98.7 (99.6) 
   
Refinement    
Resolution (Å)  30-1.94 50-2.2 
Number of reflections included in refinement  59,387 41,630 
Rwork/Rfree‡ 0.2022/0.2375 0.2189/0.2682 
r.m.s.d.* bond lengths (Å)  0.004963 0.006470 
r.m.s.d. bond angles (°)  1.11288 1.20223 
r.m.s.d. improper angles (°) 0.73355 0.78865 
r.m.s.d. dihedral angles (°) 19.43866 20.20443 
B§ r.m.s.d. bonded atoms (main/side)  1.35/2.341 1.311/2.215 
Average B for all protein atoms (Å2)  25.19 39.10 
Average B for ordered solvent (Å2)  30.77 38.18 
Number of solvent molecules  471 209 
Number of metal ions  1 2 

 
† Rsym = ∑∑j|Ij − I |/ ∑Ij 
‡ Rwork,free = ∑║Fobs│ − │Fcalc║/ Fobs│ for the reflections used in refinement (work) and the 10% 
of reflections held aside (free) 
* root mean square deviation  
§ Isotropic thermal factor 
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Table 4. 2: The main chain and side chain torsion angles (in degrees) for the wild type 
TOP , wild type neurolysin, TOP 2 mutant and neurolysin 2 mutant residues at the 
mutated positions 
 
 Main chain Side chain 

 PSI PHI CHI1 CHI2 CHI3 CHI4 

Wild type neurolysin (Arg470) -33 -69 -173 157 60 77 

TOP 2 mutant (Arg469) -47 -62 -174 170 64 167 

Wild type neurolysin (Thr499) -38 -51 -55    

TOP 2 mutant (Thr498) -30 -56 63    

Wild type TOP (Glu469) -46 -63 -179 172 57  

Neurolysin 2 mutant (Glu470) -41 -63 -174 175 58  

Wild type TOP (Arg498) -29 -60 -81 -167 62 176 

Neurolysin 2 mutant (Arg499) -31 -59 -72 -52 82 179 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

61 
 

                                     A                                                                           

                                                        
                                     B 

                                         
 
 
Figure 4. 1. The TOP 2 mutant crystal structure. A, Ribbons view of the structure. B, Active 
site and side chains at positions 469 and 498. Side chains are shown in a stick representation. 
Active site residue side chains are also shown. The zinc cofactor is shown as a blue sphere in 
both panels. 
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                                  A                                                                           
 

                                       
 
                                  B 
 

                                    
 
 
 
Figure 4. 2. Electron density for side chains of Arg469 and Thr498 in the TOP 2 mutant 
crystal structure. A, Electron density for Arg469. The 2Fo-Fc density is shown in a wireframe 
representation (green) along with a combined ribbons and stick representation of the protein. B, 
View as in panel A of Thr498 from the crystal structure. In both panels A and B, the electron 
density is shown with a cutoff contour of 1.0 times the r.m.s deviation of the maps. 
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       A                                                                          B 

             
 
  
       C 
 

             
 
 
Figure 4. 3. Superposition of Arg469 and Thr498 in TOP 2 mutant with the corresponding 
residues in wild type neurolysin. A, Superposition of the side chain of Arg469 (gray) from the 
TOP 2 mutant structure with Arg470 (green) from wild type neurolysin. B, Superposition of the 
side chain of Thr498 (gray) from the TOP 2 mutant with Thr499 (green) from wild type 
neurolysin. C, The conformations of active site loop in TOP 2 mutant (599-611, cyan) and wild 
type neurolysin (600-612, green). The side chains of Tyr605/606 in active site loop and 
Thr498/499 are shown in a stick representation. 
 
 



 

64 
 

 
                                     A                                                                          

                                                            
                                      B 

                                         
 
 
Figure 4. 4.Crystal structure of the neurolysin 2 mutant. A, Ribbons view of the structure. B, 
Active site and side chains at positions 470 and 499. Side chains are shown in a stick 
representation. Active site residue side chains are also shown. The zinc cofactor is shown as a 
blue sphere in both panels. 
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                               A  
                                                                          

                                          
 
 
                                 B 
 

                                    
 
 
Figure 4. 5. Electron density for the side chains of Glu470 and Arg499 in the neurolysin 2 
mutant crystal structure. A, Electron density for Glu470. The 2Fo-Fc density is shown in a 
wireframe representation (green) along with a combined ribbons and stick representation of the 
protein. B, View as in panel A of Arg499 from the crystal structure. In both panels A and B, the 
electron density is shown with a cutoff contour of 1.0 times the r.m.s deviation of the maps. 
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        A                                                                           B 
 

                 
 
 
       C 
 

               
 
 
 
Figure 4. 6. The superposition of Glu470 and Arg499 in the neurolysin 2 mutant with the 
corresponding residues in wild type TOP. A, Superposition of the side chain of Glu470 (gray) 
from the neurolysin 2 mutant structure with Glu469 (cyan) from wild type TOP. B, 
Superposition of the side chain of Arg499 (gray) from the neurolysin 2 mutant with Arg498 
(cyan) from wild type TOP. C, The conformations of active site loop in wild type TOP (599-611, 
cyan) and neurolysin 2 mutant (600-612, green). The side chains of Tyr605/606 in active site 
loop and Thr498/499 are shown in a stick representation. 
 
 

Copyright © Eun Jeong Lim, 2006 



 

67 
 

Chapter 5: Human neprilysin (hNEP) 

 

Introduction 

 

Neprilysin, TOP, and neurolysin are zinc metallopeptidases within the MA clan, all 

having thermolysin-like active sites (Barrett et al., 2003). The common features of substrate 

selectivity by these metallopeptidases are a restriction to small peptides and the ability to 

recognize a variety of cleavage-site sequences. TOP and neurolysin have active sites that are 

located in a deep substrate binding channel, which limits the access to unstructured peptides 

(Brown et al., 2001; Ray et al., 2004). NEP also has structural elements that limit access to the 

active site (Oefner et al., 2000), but in this enzyme these elements create a bowl-shaped cavity 

with a narrow, roughly circular opening (Figure 1.6). The structural components of the shielding 

walls of the bowl have no resemblance to those in neurolysin and TOP, making NEP a good 

additional system to consider when testing the generality of recognition mechanisms. In this 

regard, NEP shows the same sort of fuzzy specificity found in TOP and neurolysin. It recognizes 

a wide variety of sequences, without any strong sequence preference at any particular position 

relative to the cleaved peptide bond. 

 

 Interestingly, NEP, like TOP and neurolysin, hydrolyzes the 13 residue neuropeptide NT, 

and it may even be partially responsible for metabolism of this peptide in vivo (Oliveira et al., 

2001). TOP hydrolyzes NT between Arg8 and Arg9, producing NT1-8 and NT9-13 fragments, 

while neurolysin cleaves the peptide between Pro10 and Tyr11, producing NT1-10 and NT11-13 

fragments (Figure 1.2A). NEP also hydrolyzes NT at between Pro10 and Tyr11, the same 

position recognized by neurolysin. Thus, as with TOP and neurolysin, examining the 

determinants of recognition using the NT substrate will be especially informative. 
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Production of recombinant human neprilysin 

 

The pPICZα-hNEP construct was overexpressed in Pichia pastoris GS115 cells roughly 

following the protocol established by the group that initially crystallized the enzyme (Dale et al., 

2000). The overexpression and purification steps were modified, resulting in a much shorter time 

required for purification of the enzyme. The other group used BMMY medium to overexpress 

the enzyme, which prevents degradation of the secreted enzyme, since the peptidases do not act 

at this low pH medium (EasySelect Pichia expression kit, version F from Invitrogen). But, to 

overexpress the enzyme in this medium, they needed a very large amount of pre-cultured cells 

expressing protein at 30°C for 3 days. We overexpressed the enzyme in rich YP medium, using 

pre-cultured cells at 30°C for only 1 day. And we also add a hexahistidine to the N terminus of 

the enzyme, resulting in rapid isolation of the secreted protein from the 7 liters of media. The 

other group concentrated their 10 liters of media to 300 ml by crossflow ultrafilteration using a 3 

kDa microfiltration module (Skan AG), a time consuming approach (Dale et al., 2000). The final 

yield of purified protein was about 1 mg / l, which compared favorably with that achieved by the 

other group. 

 

Crystallization of neprilysin 

 

Initially, wild type, glycosylated human neprilysin was used for crystallization trials 

utilizing the hanging drop vapor diffusion method at room temperature. Crystal screening kits 

(Hampton Research, Molecular Dimensions, and Emerald Biosystems) were used as well as 

trials with gradients of different precipitants, particularly different sizes of PEG. Buffers and pH, 

salts, as well as the concentration of the protein (3-12 mg/ml) were also varied systematically. 

The material did not crystallize in these trials, however.  

 

Since glycosylation hinders the crystallization (Kalisz et al., 1990; Kalisz et al., 1991), 

we mutated the known N-linked glycosylation sites N144, N324, and N627 to glutamine (hNEP 

3 mutant) in order to prevent carbohydrate addition (Figure 1.6A). An approach where the sites 

are mutated to prevent glycosylation was attempted because of the prohibitive cost of purchasing 

sufficient glycosylase to remove the carbohydrate from the large quantities of enzyme required 
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for crystallographic work. The resulting protein retained full activity, and a high level of 

overexpression was achieved by careful selection of the best clone. Unfortunately, even hNEP 3 

mutant did not crystallize despite extensive trials. Treatment of the hNEP 3 mutant with Endo F1 

glycosylase (QAbio), increased its mobility on SDS PAGE gels, suggesting that there are 

additional glycosylation sites in hNEP. Using sequence analysis software (ExPASy proteomics 

tools, NetNGlyc 1.0 server; http://www.cbs.dtu.dk/services/NetNGlyc/), we found three more 

predicted glycosylation sites in hNEP (N284, N310, and N334), and future work should focus on 

preventing modification at these sites as well in efforts to reproduce the crystals reported in the 

literature.  
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Chapter 6: Human choline acetyltransferase 

 

Introduction 

 

 Cholinergic neurons communicate with target cells using the neurotransmitter 

acetylcholine (ACh) that is synthesized by choline acetyltransferase (Loewi, 1921). ACh has 

been shown to play critical roles in skeletal muscle contraction, learning, and short-term memory 

formation (Karczmar, 1993). But in several studies, decreases in ChAT activity are implicated in 

the pathology of the number of neurologic and psychiatric disorders, including Alzheimer’s 

disease, Huntington’s disease, and schizophrenia (Oda, 1999; Dunn and MacLeod, 2001). A 

motor disorder known as congenital myasthenic syndrome associated with episodic apnea (CMS-

EA) is affected by recessive loss of function mutations in ChAT (Ohno et al., 2001; Kraner et al., 

2003; Maselli et al., 2003; Schmidt et al., 2003) (Figure 1.7B). Unexpectedly, many of these 

mutations occur at considerable distances from the catalytic residue histidine, even though some 

mutations are close to active site. We need to understand why these mutations can affect ChAT 

activity. Our group has determined the crystal structure of rat ChAT (Cai et al., 2004), but we 

would prefer to work with human ChAT, since it is more relevant to the congenital disease 

caused by ChAT mutations. Therefore, detailed understanding about the structural effects of 

human ChAT mutations will help us design therapies for this disorder. 
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Data collection and structure determination of hChAT 

 

Expression of recombinant hChAT and crystallization are described in Chapter 2. X-ray 

data from the hChAT crystals were collected at the Advanced Photon Source beamline 22-ID 

(Southeast Regional Collaborative Access Team), Argonne National Laboratory (Figure 6.1A 

and B). Data were processed with HKL2000, yielding a data set to a resolution of 3.2 Å and two 

space group. One of two space groups of hChAT crystal was P21 and cell dimension was 

a=285.71 Å, b=136.66 Å, c=534.98 Å. Another was C222 with unit cell dimensions of a=316.55 

Å, b=475.38 Å, c=136.56 Å. Extensive attempts to find a molecular replacement solution using 

the coordinates of rat ChAT (Protein Data Bank code 1Q6X) as a search object failed. The large 

unit cell of the hChAT crystal suggests that over 20 ChAT molecules are present in the 

asymmetric unit, making structure determination difficult. Ultimately, even if a molecular 

replacement solution could be found, it is unlikely that this form would be suitable for continued 

studies of ChAT because of the difficulties of working such a large number of molecules in the 

asymmetric unit. Future work should focus on finding a different crystal form using modified 

constructs of hChAT. 
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                                        A                                                                          
   

                                                               
 
                                       B 
 

                                          
 
 
Figure 6. 1. Diffraction pattern from a hChAT crystal. A, Pattern from a 1° oscillation 
exposure taken at the 22ID beamline of the Advanced Photon Source, Argonne National 
Laboratory. The exposure  time was 3 seconds. B, Close up of the diffraction lattice from the 
pattern in panel A. 
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Chapter 7: Discussion and Conclusions 

 

Specificity in TOP and neurolysin 

 

Our study is one of a relatively few examples of reengineering of substrate specificity in 

peptidases (DeSantis et al., 1999; Varadarajan et al., 2005). Mapping sequence differences 

between enzymes on their structural models (Brown et al., 2001; Ray et al., 2002) proved a 

relatively successful way of identifying residues that determine differences in specificity 

between these two closely related enzymes.  

Other examples of reengineering substrate specificity in peptidases include alteration of 

subtilisin by site-directed mutagenesis and chemical modification (DeSantis et al., 1999). A 

serine residue in the S1 subsite of the enzyme (interaction site for the P1 residue) was replaced 

with a cysteine, allowing covalent linking of branching or charged chemical groups. In this way, 

the original preference of the enzyme for large hydrophobic residues at P1 could be altered to 

favor either small nonpolar or charged residues. In another example, in vitro selection techniques 

were used to alter the specificity of the Escherichia coli endopeptidase OmpT (Varadarajan et al., 

2005). A variant with a single change from arginine to serine near the active site cleaved 

substrate at a Ala-Arg bond instead of the Arg-Arg bond preferred by the wild type enzyme. The 

change in catalytic efficiency at the two sites between the wild type and mutant enzyme was over 

a million fold as a result of the single amino acid change. 

In some cases, however, it has not been possible to completely swap specificities between 

related enzymes despite extensive structural knowledge and considerable effort (Perona et al., 

1995). Several studies have demonstrated that converting the specificity between trypsin and 

chymotrypsin requires substitutions of amino acids in multiple positions of the protein, including 

exchange of four residues in the S1 site and six residues mutations in two surface loops which do 

not directly contact the substrate (Graf et al., 1988; Hedstrom et al., 1992; Perona et al., 1995). 

The best reengineered trypsin mutant hydrolyzes substrates containing large hydrophobic 

residues at P1 position, like chymotrypsin, but its substrate affinity is highly impaired (Hedstrom 

et al., 1992).  
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Only two of the four identified residue differences between TOP and neurolysin proved 

to actually mediate differential specificity with respect to NT. The two residue positions that did 

not affect specificity (Met490/Arg491 and His495/Asn496) are located at one end of the channel 

far from the active site (Figure 1.5). Models of NT binding (Brown et al., 2001; Ray et al., 2004) 

suggested that the N terminus of the peptide would bind at this end of the channel. The results of 

this study suggest that either this model is incorrect, or that the peptide does not interact strongly 

with these residues despite binding nearby.  

 

The two residue positions that were shown to mediate substrate specificity 

(Glu469/Arg470 and Arg498/Thr499) may exert their effects through their influence on the 

surface electrostatic potential in the binding site. Clearly, NT has two sites that make good 

cleavage sequences (unlike many other peptides that only have one). TOP selects one of these 

sites and neurolysin the other. NT has three basic residues (Lys6, Arg8, and Arg9) in the middle 

of its sequence, creating a strongly electropositive region. In neurolysin, Arg470 helps to create a 

slightly electropositive region in the open end of the substrate binding channel, and the 

electropositive region of NT shifts away giving preferential cleavage site at Pro10-Tyr11 (Figure 

7.1A). In contrast, substitution with Glu469 in TOP results in a strongly electronegative region at 

the open end of its binding channel. The electropositive portion of NT shifts toward this region, 

giving cleavage at the Arg8-Arg9 site (Figure 7.1A). Mutating Arg9 to Glu9 in NT, making the 

NT(R9E) substrate, reduces the magnitude the charge on the central region and effectively shifts 

it toward the N-terminus. The loss of the charge concentration on NT means that the gradients in 

the binding site no longer strongly influence which of the two sites is chosen, and cleavage occur 

at both sites (Figure 7.1B). In the same way, decreasing the charge gradient in the binding site, in 

this case with the TOP E469R mutant, also causes loss of site preference. Thus, the TOP E469R 

mutant cleaves NT at both sites (Figure 7.1C). The distribution of cleavage sites doesn’t change 

when both the NT(R9E) and the TOP E469R mutant are combined, indicating that losing the 

charge on either the substrate or enzyme is sufficient to remove specificity for one site. The 

surface electrostatic potential for the floor of the binding channel is shown for both enzymes in 

Figure 7.2. 
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Interestingly, recent work by others in our group suggests that initial recognition of 

peptide substrates by TOP and neurolysin is mediated by an unusual surface located across the 

channel from the active site (Figure 7.3A). The surface interacts with residues C terminal to the 

scissile bond in a number of crystal structures with TOP that have been determined using 

enzyme variants with no or greatly reduced activity. In the TOP-NT complex crystal structure, 

the residues from P2 to the N terminus are disordered, suggesting that they do not play a 

significant role in initial binding of the peptide. This possibility is consistent with the lack of a 

role for the distant residues in differential specificity. The surface that interacts with the C 

terminal peptide residues is unusual in the sense that it is relatively flat, not having the usual 

specificity pockets of peptidases/proteases, and it is highly enriched in aromatic and hydrophobic 

residues. Overall, it is similar to protein-protein interaction surfaces, and the different peptides 

interact with it in very different ways, accounting, we believe, for the fuzzy specificity shown by 

the enzymes. 

 

The qualification of “initial” binding is important. There is evidence that enzymes with 

the neurolysin/TOP fold undergo a hinge-like conformational change upon binding substrate or 

transition state analog inhibitors. The two large domains rotate to substantially narrow the central 

channel, closing down on the bound ligands. This motion has been shown directly for the 

structurally related enzyme ACE2 from crystal structures determined in both the unliganded and 

inhibitor bound states (Towler et al., 2004). In this case the relative rotation of the two domains 

is approximately 16° with a maximum shift in Cα positions of over 20 Å when the two structures 

are aligned on their catalytic domains. The inhibitor-bound dipeptidyl carboxypeptidase, which 

belongs to the same metallopeptidase family as TOP and neurolysin, also is in a closed 

conformation relative to unliganded TOP and neurolysin in the recently determined crystal 

structure (Comellas-Bigler et al., 2005). In the TOP and neurolysin crystal structures, however, 

packing contacts prevent this hinge motion when peptides are soaked into preexisting crystals 

(although very tightly binding inhibitors disorder the crystals, suggesting that their binding 

energy is sufficient to overcome the lattice packing forces). Therefore, what is seen in the TOP-

peptide complexes is likely a snapshot of the peptide binding process prior to the hinge-like 

conformational change in the enzyme. This view is consistent with the positions of the bound 

peptides themselves, which are placed 4-5 Å too far from the zinc ion cofactor to adopt the 
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correct coordination geometry for hydrolysis. Modeling the expected hinge motion brings the 

peptides, as well as a tyrosine residue from the enzyme shown to be involved in catalysis 

(Oliveira et al., 2003), into correct alignment.  

 

The hinge-like motion of the enzymes also has implications for interpretation of the 

results of this study. Based on the peptide positions in the TOP complexes, Arg498, one of the 

two residues mediating differential specificity, is in a position to interact with NT around the P1 

position as it binds in the open enzyme conformation. The other determining residue, however, 

Glu469/Arg470, is not in a position to interact with the peptide in the initial binding 

conformation. The distance to the nearest atom of bound NT is about 10 Å in the case of Glu469 

from the TOP-NT complex. Thus, as an alternative to the electrostatic model described, position 

469/470 may play a role in determining specificity in the closed conformation of the enzyme-

substrate complex (Figure 7.3B). The hinge motion would place the C-terminal residues of 

bound NT much closer to the 469/470 position. 

 

At the other residue position that affects specificity, Arg498 from TOP would be close to 

Arg8 or Pro7 of the peptide, unlikely to make a specificity increasing interaction with the side 

chains of these residues (Figure 7.4). A geometry dependent interaction with the main chain is a 

possibility, however. In contrast, Thr499 from neurolysin would be near Arg9 of NT, and 

hydrogen bond interaction between the two side chains is possible. In terms of fuzzy specificity, 

this model would suggest that the two positions that mediate differential specificity on NT do not 

play a significant role in maintaining the broad specificity characteristic of neuropeptidases. 

Instead, as noted above, we believe fuzzy specificity is largely to the surface that binds the C-

terminal peptide residues. The two residue positions identified here, likely only modulate the 

specificity to result in the occasional differences seen in TOP and neurolysin cleavage sites. 
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Neprilysin 

 

We believe that neprilysin is another good model system in which to study cleavage site 

recognition in metallopeptidases, since it shows the same sort of fuzzy specificity found in TOP 

and neurolysin. It recognizes a wide variety of sequences, without any strong sequence 

preference at any particular position close to the scissile bond. Since the crystal structure has 

already been determined (Oefner et al., 2000), NEP is also attractive because we know it can 

form well ordered crystals. 

 

Despite the published protocols for crystallizing hNEP, initial trials with the recombinant 

protein we produced were not successful. One possible reason for the lack of crystals is the 

carbohydrate still present on our hNEP despite mutation of three known glycosylation positions. 

The group that determined the original crystal structure was able to crystallize the enzyme 

despite extensive glycosylation, but the crystals were not well ordered (Dale et al., 2000). Our 

construct differed from the one employed by the other group in that it contained a polyhistidine 

affinity purification tag, which may make it behave somewhat differently. Thus future work 

should focus on eliminating remaining potential modification sites (N284, N310, and N334) and 

in creating a construct as close as possible to the one that was successfully crystallized. We are 

encouraged by the successful overexpression of the construct mutated at three positions, which 

clearly prevents most of the carbohydrate addition. It is important to know that this modified 

enzyme still folds correctly and is active, encouraging us to pursue the approach of mutating the 

modification sites. 
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Human ChAT  

 

The crystal structure of rat ChAT was determined by our group (Cai et al., 2004), but we 

would prefer to switch to the human ortholog, which is more relevant to our studies of the 

disease caused by mutations in the enzyme. We were able to overexpress and purify hChAT 

protein. A similar protocol has been published recently by another group (Kim et al., 2005). The 

N-terminal 10 residues and the C-terminal 23 residues of the rat enzyme are disordered, so we 

made both a full length construct and a truncated at both ends. Both constructs crystallized in the 

same conditions and gave the same crystal form, but this form is not suitable for analysis because 

of the large number of molecules in the asymmetric unit. It is possible that further truncations at 

the N or C terminus will give a different crystal form, and the approach should be pursued. It 

may be possible using new software that has become available to attempt molecular replacement 

with the existing data set. Determining the packing in these crystals should allow the construct to 

be altered by mutagenesis to prevent formation of this lattice, increasing the probability of 

obtaining a new form in screens. 
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Figure 7. 1. Model for differential specificity of TOP and neurolysin with respect to 
primary NT cleavage sites. A, Schematic NT representations with the key residues mediating 
differential specificity shown along with their contribution to surface electrostatic potential in the 
substrate binding site. B and C, Similar representation of the NT(R9E) peptide with the key 
residues in wild type TOP (B) and the TOP E469R mutant (C). 
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Figure 7. 2. Surface electrostatic potential in the substrate binding channels of TOP and 
neurolysin. Cut away molecular surface views of the TOP (A) and neurolysin (B) binding sites 
colored according to surface electrostatic potential (red, negative; blue, positive). The active site 
zinc ion is shown as a blue sphere. Schematic representations of the NT peptide in two binding 
registrations emphasizing the positively charged region in the center of the peptide are also 
shown. 
. 
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Figure 7. 3. Initial binding sites of substrates and mutation residues in TOP. A, Two 
mutation residues are colored by blue and the red color represents the initial binding site for the 
C-terminal residues of substrates. B, Model for hinge motion of TOP. Red star indicates E469 
residue. 
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Figure 7. 4. Model for NT binding in TOP and neurolysin. The sequence of NT is shown 
twice, top and bottom, with the two representations shifted to represent the relative positions 
when bound to TOP and neurolysin, respectively. The positions of the two sites mediating 
differential specificity are shown in the center along with a vertical bar representing the position 
of the hydrolyzed peptide bond. 
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