
University of Kentucky University of Kentucky

UKnowledge UKnowledge

University of Kentucky Doctoral Dissertations Graduate School

2005

HIERARCHICAL HYBRID-MODEL BASED DESIGN, VERIFICATION, HIERARCHICAL HYBRID-MODEL BASED DESIGN, VERIFICATION,

SIMULATION, AND SYNTHESIS OF MISSION CONTROL FOR SIMULATION, AND SYNTHESIS OF MISSION CONTROL FOR

AUTONOMOUS UNDERWATER VEHICLES AUTONOMOUS UNDERWATER VEHICLES

Siddhartha Bhattacharyya
University of Kentucky, sidhib@yahoo.com

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Bhattacharyya, Siddhartha, "HIERARCHICAL HYBRID-MODEL BASED DESIGN, VERIFICATION,
SIMULATION, AND SYNTHESIS OF MISSION CONTROL FOR AUTONOMOUS UNDERWATER VEHICLES"
(2005). University of Kentucky Doctoral Dissertations. 344.
https://uknowledge.uky.edu/gradschool_diss/344

This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been
accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Kentucky

https://core.ac.uk/display/232559339?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/gradschool_diss
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

ABSTRACT OF DISSERTATION

Siddhartha Bhattacharyya

The Graduate School
University of Kentucky

2005

HIERARCHICAL HYBRID-MODEL BASED DESIGN, VERIFICATION,

SIMULATION, AND SYNTHESIS OF MISSION CONTROL FOR AUTONOMOUS
UNDERWATER VEHICLES

A dissertation submitted in partial fulfillment
of the requirements for the degree of Doctor of Philosophy in the

College of Engineering
at University of Kentucky

By
Siddhartha Bhattacharyya

Lexington, Kentucky

 Co-Director: Dr. Ratnesh Kumar, Professor of Electrical Engineering

and Dr. L.E. Holloway, Professor of Electrical Engineering

Ames, Iowa

Lexington, Kentucky

2005

Copyright © Siddhartha Bhattacharyya 2005

ABSTRACT OF DISSERTATION

ABSTRACT OF DISSERTATION

HIERARCHICAL HYBRID-MODEL BASED DESIGN, VERIFICATION,
SIMULATION, AND SYNTHESIS OF MISSION CONTROL FOR AUTONOMOUS

UNDERWATER VEHICLES

The objective of modeling, verification, and synthesis of hierarchical hybrid mission
control for underwater vehicle is to (i) propose a hierarchical architecture for mission
control for an autonomous system, (ii) develop extended hybrid state machine models for
the mission control, (iii) use these models to verify for logical correctness, (iv) check the
feasibility of a simulation software to model the mission executed by an autonomous
underwater vehicle (AUV) (v) perform synthesis of high-level mission coordinators for
coordinating lower-level mission controllers in accordance with the given mission, and
(vi) suggest further design changes for improvement.
The dissertation describes a hierarchical architecture in which mission level controllers
based on hybrid systems theory have been, and are being developed using a hybrid
systems design tool that allows graphical design, iterative redesign, and code generation
for rapid deployment onto the target platform. The goal is to support current and future
autonomous underwater vehicle (AUV) programs to meet evolving requirements and
capabilities. While the tool facilitates rapid redesign and deployment, it is crucial to
include safety and performance verification into each step of the (re)design process. To
this end, the modeling of the hierarchical hybrid mission controller is formalized to
facilitate the use of available tools and newly developed methods for formal verification
of safety and performance specifications. A hierarchical hybrid architecture for mission
control of autonomous systems with application to AUVs is proposed and a theoretical
framework for the models that make up the architecture is outlined..
An underwater vehicle like any other autonomous system is a hybrid system, as the
dynamics of the vehicle as well as it’s vehicle level control is continuous whereas the
mission level control is discrete, making the overall system a hybrid system i.e., one
possessing both continuous and discrete states. The hybrid state machine models of the
mission controller modules is derived from their implementation done using TEJA, a
software for representing hybrid systems with support for auto code generation. The
verification of their logical correctness properties has been done using UPPAAL, a
software tool for verification of timed automata a special kind of hybrid system. A Teja
to Uppaal converter, called dem2xml, has been created at Applied Reserarch Lab that
converts a hybrid (timed) autonomous system description in Teja to an Uppaal system
description. Verification work involved developing abstract models for the lower level

vehicle controllers with which the mission controller modules interact and follow a
hierarchical approach: Assuming the correctness of level-zero or vehicle controllers, we
establish the correctness of level-one mission controller modules, and then the
correctness of level-two modules, etc. The goal of verification is to show that any “valid”
meaning for a mission formalized in our research verifies the safe and correct execution
of actions. Simulation of the sequence of actions executed for each of the operations give
a better view of the combined working of the mission coordinators and the low level
controllers. So we next looked into the feasibility of simulating the operations executed
during a mission. A Perl program has been developed to convert the UPPAAL files in
.xml format to OpenGL graphic files. The graphic files simulate the steps involved in the
execution of a sequence of operations executed by an AUV. The highest level
coordinators send mission orders to be executed by the lower level controllers. So a more
generalized design of the highest level controllers would help to incorporate the
execution of a variety of missions for a vast field of applications. Initially, we consider
manually synthesized mission coordinator modules. Later we design automated synthesis
of coordinators. This method synthesizes mission coordinators which coordinate the
lower level controllers for the execution of the missions ordered and can be used for any
autonomous system.

KEYWORDS: Autonomous Systems, Hybrid Systems, Verification, Hierarchical

Architecture, Coordinator Synthesis

 Siddhartha Bhattacharyya

09/15/05

HIERARCHICAL HYBRID-MODEL BASED DESIGN, VERIFICATION,
SIMULATION, AND SYNTHESIS OF MISSION CONTROL FOR AUTONOMOUS

UNDERWATER VEHICLES

By

Siddhartha Bhattacharyya

 Dr. Ratnesh Kumar

 Director of Dissertation

Dr. YuMing Zhang

 Director of Graduate Studies

 09/15/2005

RULES FOR THE USE OF DISSERTATIONS

Unpublished dissertations submitted for the Doctor's degree and deposited
in the University of Kentucky Library are as a rule open for inspection, but
are to be used only with due regard to the rights of the authors.
Bibliographical references may be noted, but quotations or summaries of
parts may be published only with the permission of the author, and with the
usual scholarly acknowledgments.

Extensive copying or publication of the dissertation in whole or in part also
requires the consent of the Dean of the Graduate School of the University
of Kentucky.

A library that borrows this dissertation for use by its patrons is expected to
secure the signature of each user.

Name Date

DISSERTATION

Siddhartha Bhattacharyya

The Graduate School

University of Kentucky

2005

HIERARCHICAL HYBRID-MODEL BASED DESIGN, VERIFICATION,
SIMULATION, AND SYNTHESIS OF MISSION CONTROL FOR AUTONOMOUS

UNDERWATER VEHICLES

A dissertation submitted in partial fulfillment
of the requirements for the degree of Doctor of Philosophy in the

College of Engineering
at University of Kentucky

By
Siddhartha Bhattacharyya

Lexington, Kentucky

 Co-Director: Dr. Ratnesh Kumar, Professor of Electrical Engineering

and Dr. L.E. Holloway, Professor of Electrical Engineering

Ames, Iowa

Lexington, Kentucky

2005

Copyright © Siddhartha Bhattacharyya 2005

DISSERTATION

 iii

ACKNOWLEDGMENTS

The following dissertation, while an individual work, benefited from the
insights and direction of several people. First, my Dissertation Co-Chairs,
Dr. Ratnesh Kumar and Dr.L.E.Holloway, exemplifies the high quality
scholarship to which I aspire. In addition, they provided timely and
instructive comments and evaluation at every stage of the dissertation
process, allowing me to complete this project on schedule. Next, I wish to
thank the complete Dissertation Committee, and outside reader,
respectively: Dr. Zhang, Dr. Manivannan and Dr. Baxter. Each individual
provided insights that guided and challenged my thinking, substantially
improving the finished product.

In addition to the technical and instrumental assistance above, I received
equally important assistance from family and friend (Ganesh). My wife,
Srabosti, provided on-going support throughout the dissertation process,
as well as technical assistance critical for completing the project in a timely
manner. My father, (Dr. S.K. Bhattacharyya), mother (Purabi
Bhattacharyya), sister (Suparna chatterjee) and brother in law (Debasish
chatterjee) instilled in me, from an early age, the desire and skills to obtain
the Ph.D. Finally, I wish to thank the respondents of my study (who remain
anonymous for confidentiality purposes). Their comments and insights
created an informative and interesting project with opportunities for future
work.

 iv

Table of contents

Table of Figures………………………………………………………………………......vi
1 Introduction... 1
2 Hierarchical Hybrid Model-based Architecture.. 5

2.1 Proposed Hierarchical Hybrid Mission Control Architecture 11
2.2 Hybrid Mission Controller for a Survey AUV ... 15
2.3 Hybrid system model .. 18

2.3.1 Controlled hybrid automaton .. 18
2.3.2 Interacting Controlled Hybrid Automata .. 21

2.4 Teja: Tool for Modeling.. 21
2.4.1 Basic structure of Mission Controller Modules .. 23

2.5 Hybrid Automaton Model of Mission Controller Modules 24
2.5.1 Description of Mission Controller Commands/Responses 24
2.5.2 Description of Mission Controller Data Structures 25
2.5.3 Description of the functionalities of mission controller modules............. 27

2.5.3.1 Sequential coordinator (SC).. 28
2.5.3.2 Timed Coordinator (TC) ... 30
2.5.3.3 Safety coordinator ... 32
2.5.3.4 GPSFixer... 33
2.5.3.5 Launch controller .. 34
2.5.3.6 Waypointnavigator.. 35
2.5.3.7 Rendezvous ... 37
2.5.3.8 DeviceCommander ... 38
2.5.3.9 PayloadDelivery.. 39
2.5.3.10 Loiter... 40
2.5.3.11 Steering ... 41

3 Bottom up verification approach .. 42
3.1 Verification of Hybrid systems... 42
3.2 Bottom up approach to verification .. 43

3.2.1 Properties satisfied by the algorithm... 45
3.3 Uppaal: Tool for Verification ... 48
3.4 Illustration of Logical correctness – Survey AUV ... 50

3.4.1 Verification of Steering module.. 50
3.4.2 Verification of Loiter module ... 51
3.4.3 Verification of GPSFixer module ... 54
3.4.4 Verification of Waypointnavigator module .. 57
3.4.5 Verification of Rendezvous module ... 62
3.4.6 Verification of Launcher module.. 64
3.4.7 Verification of PayloadDelivery module .. 65
3.4.8 Verification of DeviceCommander module.. 67
3.4.9 Verification of Pause module.. 68
3.4.10 Verification of Sequential coordinator module... 69
3.4.11 Verification of Timed Coordinator module .. 74
3.4.12 Verification of Safety Coordinator module .. 79

4 Model-based Animation/Simulation... 81

 v

4.1 OpenGL: Tool for Animation/Simulation .. 81
4.2 Proposed Approach for Animation/Simulation .. 85
4.3 The Converter code for Steering module.. 88

5 Coordinator synthesis.. 99
5.1 Proposed Approach for coordinator synthesis .. 100
5.2 Sequential coordinator .. 100
5.3 Timed coordinator synthesis ... 105
5.4 Safety Coordinator synthesis .. 108

6 Conclusion and future work.. 115
7 References... 117
Appendix A: Commands for the underwater vehicle for search..................................... 124
Appendix B : Hybrid models in Teja.. 126

Sequential coordinator .. 126
Timed Action (Timed Coordinator).. 128
Safeties (Safety Coordinator).. 131
ReplayMission .. 132
GPSFixer... 133
Launcher ... 135
WayPointnavigator ... 138
Rendezvous ... 141
DeviceCommander ... 142
PayloadDelivery.. 144
Loiter... 146

Appendix C: OpenGL Code for Animation/Simulation ... 149
Steering ... 149
Loiter... 157
DeviceCommander ... 166

Device module to raise AUV to water surface ... 166
Device module to lower AUV from water surface ... 173
Device module to raise mast ... 180
Device module to lower mast ... 184

GPSFixer... 189
Pause ... 200
PayloadDelivery module... 207
Launch... 215
WaypointNavigator... 223
Rendezvous ... 238

Vita.. 248

 vi

Table of Figures

Figure 1: Subsumption architecture .. 7
Figure 2: Schema based architecture .. 7
Figure 3: Process description language architecture... 8
Figure 4: Action selection dynamics architecture... 8
Figure 5: Decoupled distributed AUV control architecture.. 10
Figure 6: Behavior based intelligent control architecture... 10
Figure 7: Hybrid Mission Control Architecture.. 14
Figure 8: Survey AUV Mission Controller... 16
Figure 9: The input/output signals wihtin the controllers... 25
Figure 10: FSM for Sequential coordinator in TEJA.. 30
Figure 11: FSM of Timed coordinator in TEJA ... 32
Figure 12: FSM of Safety coordinator in TEJA.. 33
Figure 13: FSM for GPSFixer module in TEJA ... 34
Figure 14: Launch operation controller in TEJA.. 35
Figure 15: FSM of Waypointnavigator in TEJA .. 37
Figure 16: FSM of Rendezvous module in TEJA... 38
Figure 17: FSM for DeviceCommander in TEJA... 39
Figure 18: FSM of Payload module in TEJA ... 39
Figure 19: FSM of Loiter module in TEJA .. 40
Figure 20: Steering behavior controller in TEJA.. 41
Figure 21: Steering module in UPPAAL.. 50
Figure 22: Driver for steering module in UPPAAL.. 50
Figure 23: Loiter module module in UPPAAL... 51
Figure 24: Driver for loiter module module in UPPAAL... 51
Figure 25: Stub for loiter module module in UPPAAL.. 51
Figure 26: GPSFixer module in UPPAAL.. 55
Figure 27: Driver for GPSFixer module in UPPAAL .. 55
Figure 28: Stub for GPSFixer module in UPPAAL.. 55
Figure 29: Waypointnavigator module in UPPAAL .. 58
Figure 30: Driver for Waypointnavigator module in UPPAAL 58
Figure 31: Stub for Waypointnavigator module in UPPAAL .. 58
Figure 32: Rendezvous module in UPPAAL.. 62
Figure 33: Driver for Rendezvous module in UPPAAL... 63
Figure 34: Stub for Rendezvous module in UPPAAL.. 63
Figure 35: Launcher module in UPPAAL .. 64
Figure 36: Driver for Launcher module in UPPAAL ... 65
Figure 37: PayloadDelivery module in UPPAAL .. 66
Figure 38: Driver for PayloadDelivery module in UPPAAL ... 66
Figure 39: Stub for PayloadDelivery module in UPPAAL .. 66
Figure 40: DeviceCommader module... 67
Figure 41: Driver for DeviceCommander module in UPPAAL 67
Figure 42: Pause module in UPPAAL.. 68

 vii

Figure 43: Driver for pause module in UPPAAL ... 68
Figure 44: Sequential coordinator module in UPPAAL... 69
Figure 45: Driver for sequential coordinator module in UPPAAL................................... 70
Figure 46: Stub for Sequential coordinator module in UPPAAL..................................... 70
Figure 47: Timed coordinator module in UPPAAL ... 75
Figure 48: Stub for timed coordinator module in UPPAAL... 75
Figure 49: Safety coordinator module in UPPAAL.. 79
Figure 50: AUV (green) with mast (yellow) underwater.. 88
Figure 51: AUV raising mast at surface of water while executing GPSFix 88
Figure 52: Structure of sequential coordinator ... 101
Figure 53: Basic structure for Sequential Coordinator ... 103
Figure 54 : Sequential coordinator.. 105
Figure 55 : Timed coordinator .. 109
Figure 56: The complete structure .. 110
Figure 57: FSM for Sequential coordinator .. 127
Figure 58: FSM of Timed coordinator.. 129
Figure 59: FSM of Safety coordinator .. 131
Figure 60: FSM for GPSFixer module.. 133
Figure 61: FSM of Launcher module.. 136
Figure 62: FSM of Waypointnavigator... 138
Figure 63: FSM of Rendezvous module ... 141
Figure 64: FSM for DeviceCommander ... 143
Figure 65: FSM of Payload module.. 144
Figure 66: FSM of Loiter module... 146

 1

1 Introduction

In this research, our goal has been to develop hierarchical hybrid mission control

architecture for autonomous systems illustrating its application to autonomous

underwater vehicle (AUV), verify the logical correctness of the controller designed, look

into the feasibility of simulating the operations executed by the AUV, and automate

controller synthesis. The correct operation of a system we design is a requirement. The

challenge to develop a hierarchical hybrid mission controller for underwater vehicle

which facilitates modeling, verification, simulation and automated synthesis of

coordinators has lead to research in this area. We have worked and are working on these

issues with Applied Research Laboratory (ARL) at Pennsylvania State University (PSU)

who have designed autonomous underwater vehicles for over 50 years primarily under

the support of the U.S. Navy through the Office of Naval Research (ONR).

The control tasks for an underwater vehicle or for an autonomous system can be divided

into lower level control, concerned with continuous dynamics and a higher-level mission

coordinator/coordinators, which is discrete, either event-driven, or time-driven. The

mission coordinators contain both sequence coordinator and timed coordinator for

sequential execution and timed execution of various operations of the mission. Thus the

overall system is a hybrid system containing both continuous and discrete states. (See

chapter 2 for an introduction on hybrid systems.) Design and verification of hybrid

systems is highly challenging task, owing to the sophistication and complexity of design

and verification. To simplify the complexity of design, researchers at ARL worked with

us to formulate a hierarchical control architecture upon which the mission controller

design is based. Similar hierarchical architectures built earlier didn’t facilitate the

development of a model which can be easily put to verification. Our hierarchical hybrid

mission control architecture not only facilitates the design of a complex mission

controller, it also facilitates verification (done hierarchically in a bottom-up fashion

chapter 3), simulation and also the automated synthesis of the highest level mission

coordinators.

Our method can be used for other autonomous systems. The basic idea is to hierarchically

decompose missions into sequence of operations, and operations into sequence of

 2

behaviors, and behaviors into sequence of vehicle maneuvers. Then we need to design a

behavior-controller for each behavior that does appropriate coordination of appropriate

vehicle-manuever controllers, an operation-controller for each operation that does

appropriate coordination of appropriate behavior controllers, and a coordinator for each

mission specification (untimed, timed, and safety) that does appropriate coordination of

appropriate operations controllers. We have illustrated our approach through a specific

example of mission, namely, a search mission. The same philosophy can be utilized in

designing mission controller for other types of missions, such as surveillence and attack.

So although the behavior/operation/coordinator controllers that will be designed will vary

from mission type to mission type, the approach of the whole of the mission-controller

remains the same for all autonomous vehicles for all missions. The generalized approach

to automate the synthesis of mission coordinators can be used to any kind of application

for any kind of AUV.

Control of autonomous underwater vehicles (AUVs) present specific issues related to

automatic control but also classic concerns of real time and high level programming.

Several approaches to the design of controllers for AUVs have missed the classical

concerns which are a necessity because of the environment in which the AUV needs to

operate. Control systems for AUVs have several communicating subsystems/modules.

These subsystems/modules need to interact among themselves to successfully execute a

mission within satisfactory real time bounds. They constantly react with the environment

so they must react in real time to sensory information, thus the need for considering

classical issues. Our hierarchical hybrid mission control architecture takes into

consideration the real time and high level programming concerns as well. Each of the

subsystems developed is a hybrid system which takes care of real time issues by

including continuous variables which implement real time or time bounded constraints.

The subsystems have been implemented using a high level programming environment

provided by Teja.

Verification of a mission control architecture developed for an AUV or for any

autonomous system has been neglected because of the lack of such a simplified model.

Our hierarchical hybrid mission control architecture supports verification with ease

because of the simplified hybrid model on which it is based. For formal verification we

 3

use a graphic tool called Uppaal as opposed to Esterel. This is because Esterel does

formal verification of control laws with a complicated method of verification and requires

very careful coding in Esterel whereas Uppaal, a graphical tool, models a hybrid

automaton easily and gives diagnostic traces efficiently. The verification method used

abstracts the subsystem models. This method of using abstractions might miss upon some

situations which can be caught in an environment in which all the coordinators and the

controllers work together. Such a combined approach can be developed if we can

simulate the working of the hierarchical hybrid mission control architecture as a whole.

Thus the simulation built simulated the combined working of the subsystems to execute

an operation which involves the execution of a sequence of actions.

Mission coordinators at the highest level of the hierarchical hybrid mission control

architecture pass control to the lower level controllers for the execution of mission orders.

A general design of the mission coordinators will help in using the same mission

coordinators for different kind of applications for AUVs other than that illustrated in this

dissertation. So we finally automated the design of the mission coordinators.

 The objective of this PhD was to develop a control architecture for an autonomous

system which is a hybrid system, illustrating it with an autonomous underwater vehicle.

Then, we develop a method to verify the logical correctness of the controller designed for

the AUV. Then simulate the execution of missions by the AUV. Finally, to automate

coordinator synthesis for AUV and enhance the architecture.

In our approach the initial mission controller modules have been developed using TEJA

NP networking software platform [22] by the ARL researchers. TEJA supports the design

of interacting hybrid controller modules, and offers the autocode generation capability.

For verification purposes, these modules can be converted to modules of the UPPAAL

[23] verifier. UPPAAL is hybrid system verification software which can be used to verify

the safety and correctness of mission controller. In order to proceed with the verification,

the first task is to develop an extended hybrid state machine based model of the mission

controller, which we have accomplished (see chapter 2). Then we formalized the notion

of correctness that demonstrated that any mission can be correctly executed by the

mission controller. Also, abstract models of the lower level vehicle controllers (and

possibly the underwater sea vehicle) were developed. This we did in consultation with

 4

ARL researchers. Next, a bottom-up approach to verification of logical correctness was

formulated and implemented. Verification can be done for something that is already

designed, so we use our hierarchical mission controller architecture for search as the

model to verify the correctness of the existing design. We simulated the operations

executed by the hierarchical hybrid mission control architecture, and we finally

accomplished the task of automating the synthesis of a general mission coordinator. As

an example the coordinator synthesis works correctly to synthesize the current

coordinators built at ARL, by the experience gained we suggest further modifications in

the controller design approach within future work. In chapter 2 we discuss hierarchical

hybrid mission control architecture and the hybrid system model, in chapter 3 we discuss

the approach used for verification, then in chapter 4 we discuss the simulation of the

missions and in chapter 5 we discuss the automated synthesis of coordinators. In chapter

6 we conclude with future work.

 5

2 Hierarchical Hybrid Model-based Architecture
Our goal is to develop a mission control architecture for autonomous underwater vehicles

(AUVs) that facilitates the modeling and subsequently, verification of the logical

correctness of the mission controller/AUV. The mission controller has been under

development at the Applied Research Laboratory at the Pennsylvania State University.

The design of the architecture in which the mission controller is being developed has

benefited from the discussions with the collaborators from Iowa State University and

University of Kentucky.

Many of the dynamical systems that need to be controlled, called plants, are complex,

large-scale, highly nonlinear, time-varying, stochastic, and operate in an uncertain and

unpredictable environment. As a result of these characteristics, these dynamical systems

are not amenable to accurate modeling. Hence, conventional control techniques that are

model-based, i.e., rely on the plant model, are not suitable for the controller design for

such systems. Also, the control requirements for complex systems are far beyond those

for conventional control and include additional requirements such as reconfigurability,

learning capability, safety, failure, and exception handling, capability to manage

dynamically changing mission goals, multi-system coordination, and increased

autonomy. The inadequacy of conventional control techniques for the reasons described

above has led to research into the “nonconventional” control techniques, also called

intelligent control. Intelligent control offers an alternative to conventional control for

designing controllers whose structure and consequent outputs in response to external

commands and environmental conditions are determined by empirical evidence, i.e.,

observed input/output behavior of the plant, rather than by reference to a mathematical or

model-based description of the plant. For an exposure to intelligent control techniques

readers are referred to the edited volumes [32] [33] [34] [35]. There is little to be gained by

intelligent control when the plant model is well known and control requirements fall

within the scope of conventional control. For this reason, the control is generally

hierarchically structured, where at the lower level, conventional control is exercised,

whereas at the higher level intelligent control is used, which is usually inherently

nonlinear. Several techniques for such nonlinear controller design have been proposed in

 6

literature, which include expert systems, fuzzy logic systems, artificial neural networks,

genetic algorithms, a survey of which has been done in [84].

Although various alternative techniques for intelligent control are being actively

researched, there is little research effort directed toward the design of intelligent control

architectures. One such architecture by Saridis [36] is hierarchical with three layers: the

execution layer at the bottom, the coordination layer in the middle, and the organization

layer at the top. Meystel [37]has proposed a nested hierarchical control architecture for

the design of intelligent controllers. A model-based autonomous systems architecture by

Zeigler–Chi [38] consists of models of planning, operations, perceptions, diagnostics, and

recovery. An architecture consisting of a network of intelligent nodes is proposed by

Levis [44] as a model for distributed intelligent system. Intelligence in each node is the

consequence of its five-stage model, namely, 1) situation assessment, 2) information

fusion, 3) task processing, 4) command interpretation, and 5) response selection. Another

architecture, called real-time control system (RCS) reference model architecture is by

Albus [4]. RCS is also arranged in a hierarchy, where each node in the hierarchy

performs sensor processing, value judgment, world modeling, and behavior generation at

a level of abstraction and resolution appropriate for the position of the node in the

intelligent control hierarchy. Other control computation architecture, called cerebellar

model articulation controller (CMAC), was also proposed by Albus [40], [41] to model

control computations in intelligent biological systems. A structure-based hierarchical

architecture is proposed by Acar–Ozguner [39]. It embeds intelligence in control via a

special hierarchical organization based on the physical structure of the system. Another

architecture, called subsumption architecture (Figure 1), is by Brooks [26]. This

architecture is based on the idea of levels of increasing competence of an intelligent

system, which need to be identified in the beginning of the design phase. Subsumption is

a method of transforming a robot’s control architecture into a set of task-achievement

behaviors or competences represented as separate layers. Individual layers work on

individual goals concurrently and asynchronously. Layers are organized hierarchically

allowing higher layers to inhibit inputs or suppress outputs of lower layers. This

constitutes the coordination method. The architecture can be built incrementally adding

layers in different phases. Each layer is composed of one or more Augmented Finite State

 7

Machines (AFSM), and depending on sensory information the layer can be active or not.

When a layer is active, its output suppresses all outputs from the layers below taking the

control of the vehicle. The layer can remain active for a period after the activation

conditions finishes.

Figure 1: Subsumption architecture

A Schema-based approach by Arkin [46], and Warren [47] contains a Motor schema as

the basic unit from which complex actions are constructed. Each schema operates as a

concurrent, asynchronous process initiating a behavior. Motor schemas react

proportionally to sensory information perceived from the environment. In order to give

more priority to some schemas the output vector is multiplied by a gain value. Critical

behaviors are prioritized by assigning them higher gain values. The coordination method

consists of vector summation of all motor schema outputs and normalization shown in

Figure 2.

Figure 2: Schema based architecture

Another architecture called the Process Description Language (PDL) (Figure 3) proposed

by Steels [48] is a cooperative dynamics architecture where many active processes

operate in parallel. Processes represent behaviors taking information from sensors to

generate a control action if needed. No control mechanism gives precedence over

processes. Instead, each process has a certain influence on some variables, typically the

motor speeds. At each time, fixed quantities, of each behavior, are added or subtracted to

 8

the previous output value. All behaviors are always operational. The merged output taken

depends on which behavior process influences more over the others. Emergent behaviors

appear by the effect of this merging. PDL works by manipulating derivatives of the

variables; this implies that a very fast control loop must be used to prevent the system

from becoming unstable.

Figure 3: Process description language architecture

Action-selection dynamics, (Figure 4) by Maes [49] uses a dynamic mechanism for

behavior selection. Coordination is achieved by competition. There is a set of competence

modules that represent behaviors and behaviors are executed when conditions within a

condition list is satisfied. Modules have a level of energy that is modified by different

sources. Firstly, the sensor signals provide energy to the modules depending on the

environment perceived. If the module has in its add list one of the goals of the

architecture, more energy is transferred. Finally, the energy of the modules is spread

positively along predecessor modules and successor modules, and negatively along

conflictors. The module that will be executed is the one that accomplishes the condition

list, has the maximum activation energy and this is above a threshold.

Figure 4: Action selection dynamics architecture

 9

Ridao [59] uses a three layer hybrid architecture for a mobile robot. The deliberative

layer at the top based on planning (reasoning and prediction take place here), then the

control execution layer (switches behaviors on/off), and the function reactive layer (uses

fuzzy logic for behavior description). The paper by Carreras [50] proposes a Hybrid

Coordination method for Behavior-based Control Architectures.

Many of the architectures used the high capability of Reinforcement Learning (RL) [51]

for robot learning to implement behaviors using this technique. RL has been applied to

various Behavior-based systems, most of them using Q_learning [52]. In some cases, the

RL algorithm was used to adapt the coordination system [53] [54]. On the other hand,

some researchers have used RL to learn the internal structure of a behavior, mapping the

perceived states to robot actions [55], [56], [57]. The work presented by Mahadevan [55]

demonstrated that the decomposition of the whole agent learning policy in a set of

behaviors, as Behavior-based robotics proposes, simplified and increased the learning

speed. The approach taken in [50] is a continuous implementation of the Q_learning

algorithm. The behaviors were learnt online by means of Reinforcement Learning.

Generalization between states and actions was achieved by a feed-forward neural

network which approximates the Q_function. Direct Q_learning [50] (backpropagation)

was used to train the network. A decoupled, distributed AUV control architecture (Figure

5) explained in [58] consists of high level process and behaviors that run the vehicle. The

sensor data is pre-processed to produce virtual sensor information available to the

behaviors. The behaviors receive the virtual sensor information and send votes to the

arbiters who send control signals to the low level controllers. The diagram below shows

the control architecture

By decoupling the control problem, individual controller design is greatly simplified. In

the case of the Oberon vehicle, vertical motion is controlled independently of its lateral

motion using two separate PID controllers. These controllers are then tuned to provide

the required performance in each case.

 10

Figure 5: Decoupled distributed AUV control architecture

A behavior based intelligent control architecture (Figure 6), for intelligent controllers is

by Kumar-Stover [45]. Behaviors determine the manner in which the system reacts to

changing external/environmental conditions and thereby executes subtasks of the given

mission tasks. The intelligent control architecture is a cascade of subsystems: 1) the

perceptor, and 2) the responder. The perceptor extracts the relevant symbolic information

from the incoming continuous sensor signals, while the responder is a discrete event

system [45]that computes discrete control actions in response to the discrete inputs from

the preceptor.

Figure 6: Behavior based intelligent control architecture

Control of autonomous underwater vehicles presents specific issues related to

automatic control but also classic concerns of real time and high level programming.

 11

Vehicle control systems for AUVs have several communicating subsystems/modules

which need to interact amongst themselves and the environment via sensors to

successfully execute a mission within satisfactory real time bounds. Several

programming and control architecture have been developed for control of AUVs.

Traditionally, artificial intelligence methods are encountered in literature to deal with

high level programming; real time and automatic control issues are however, not of first

concern in those approaches resulting in unsatisfactory real time performance. The

hierarchical approach given in [25] is very rigid and promotes supremacy of a higher

level controller restricting low level communications. The Layered reactive approach

introduced in [27] lacks a top level supervisor and is organized as a set of communicating

software modules. A fruitful adaptation of this approach is State Configured Layer

Control [26]. The method used in [28] is to model Robot actions using a robot task

concept merging a control law and a logical reactive behavior. At a mission management

level, these elementary actions are scheduled using the synchronous programming

language Esterel. The method of handling missions however, is not very structured and

also while Esterel allows formal verification, the methodology is complicated.

2.1 Proposed Hierarchical Hybrid Mission Control
Architecture

While the focus of intelligent control architectures has been the use of “intelligent”

technologies such as adaptation, learning, etc., to facilitate safe execution of missions in

complex environments, our focus is additionally on real-time operations, automatic code-

generation, and semi-automatic verification of safety and progress. To this end, the

architecture proposed here is model-based and hierarchical. The models we use are

general hybrid dynamical systems, where the enabling conditions and output actions

associated with state transitions can be general functions, and real-time constraints are

explicitly accounted for.

In our approach the control tasks for an AUV can broadly be divided into lower level

control, concerned with continuous dynamics and high-level control, which is typically

discrete, and event/time-driven. In this paper, we refer to the lower level of control as the

Vehicle Control (VC) and to the higher level of control as Mission Control (MC). The

overall system is therefore, a hybrid system containing both continuous and discrete

 12

states. In an attempt to manage the complexity of design, we formulate a hierarchical

control architecture upon which the mission controller design is based. This architecture

not only facilitates the design of a complex mission controller, it also facilitates the

verification and potentially, the automated synthesis of the highest level mission

coordinator(s).

The basic idea is to hierarchically decompose AUV missions into sequences of

operations, operations into sequences of behaviors, and behaviors into sequences of

vehicle maneuvers. A mission/operation can also contain commands for vehicle

maneuvers. Then, each level of the hierarchy coordinates the level below it to accomplish

specific tasks. The MC design is then accomplished in a bottom up fashion, starting with

the design of behavior controllers which coordinate vehicle controllers, moving up to

operation controllers which coordinate the behavior controllers; and finally, a coordinator

for each type of mission specification (e.g., safety and progress---untimed/timed) which

coordinates the operation controllers.

The mission controller modules are developed using TEJA NP networking software

tool [22]. TEJA supports the design of interacting hybrid state machines and includes

automatic real-time code generation which allows for rapid deployment on the target

platform. For verification purposes, the Teja modules specifications are first represented

formally and then transformed into a format readable by UPPAAL [23], a hybrid system

modeling, simulation, and verification tool. Abstract models of the lower level vehicle

controllers (and possibly a underwater vehicle) are developed and also represented in

TEJA and UPPAAL. Section 2.2 outlines the hybrid systems model framework that is

used to formalize the mission controller modules, section 2.3 describes our hybrid

mission control architecture, and section 2.4 describes the tool and procedure for formal

verification of safety and performance of a specific mission control system.

Our mission control architecture is designed with semi-automatic (safety and progress)

verification in mind. All the levels and modules that make up the hierarchy conform to

the interacting controlled hybrid systems model described in Section 2.2; and the tool

used to implement the hierarchy allows the conversion of the representation of the hybrid

automata into a format that is readable by available verification tools such as HyTech

[31] and Uppaal [32]. Following a hybrid system description, Teja facilitates

 13

communication between hybrid subsystems via shared data and event synchronization.

Each Teja system must contain a user-defined event dependency table that specifies

which subsystems may receive events that are sent from another subsystem. When a Teja

subsystem initiates an event, it is passed to all subsystems listed within the event

dependency table, causing synchronization. The logic within individual automatons is

restricted to use clocks as the only continuous variables and all the continuous dynamics

are encapsulated in functions allowing the verification problem to be decomposed into

safety verification – the verification of the logic of the mission controller; and progress

verification which is further decomposed into two steps – the verification of the steps

leading to the successful completion of each module’s goal, and algorithmic verification.

(In this dissertation we focus only on the verification of logical correctness.) While

existing mission control architectures of AUVs have been deployed successfully, none of

them were designed to be used with modern verification tools and techniques without

considerable overhead.

 The hybrid mission controller is organized hierarchically as shown in Figure 7 below.

Modules within a level may communicate with each other and each level in the hierarchy

is restricted to command the level immediately below it and send responses to the level

immediately above it. All levels in the mission controller hierarchy may assign vehicle

commands directly by placing appropriate vehicle commands in the shared database. At

the lowest level of the hierarchy is the underwater vehicle (plant) along with the vehicle

controllers (VCs). The vehicle and the vehicle controllers have a hybrid state-space

(which might, in some vehicles, be a purely continuous state space), and serve as the

plant for the higher level mission controller (MC), which is also hybrid in nature.

The vehicle controller and the mission controller communicate through an interface

layer symbolically represented by MC2VC (mission controller to vehicle controller) and

VC2MC (vehicle controller to mission controller). The MC2VC block also includes a

Command Conflict Manager which is responsible for selecting a specific vehicle level

command (when more than one exists) according to a static or dynamic priority list or

using other methods (such as optimization). This module is included since all modules in

the mission controller hierarchy are allowed to assign vehicle commands directly, and so

there is a distinct possibility that multiple vehicle commands can coexist.

 14

Figure 7: Hybrid Mission Control Architecture

As shown in Figure 8 the mission controller is organized in a three-tier hierarchy,

where commands/directives flow down the hierarchy and responses/reports flow the other

way. For each command the concerned controller receives a response which makes sure

that the subsystems at a lower level are at a ready state to receive the next event and

synchronize with the event. The lowest level of the mission controller is comprised of

Behavior Controllers, where a behavior may be thought of as a skill or ability that an

autonomous system possesses which enables it to perform specific mission tasks (thrive)

while remaining safe (survive). Behaviors directly interface with the vehicle controllers

and are therefore vehicle-centric. They require executions of sequences of vehicle

maneuvers. The middle level of the mission control hierarchy consists of Operation

Controllers, where an operation represents a mission segment or phase that is integral to

the completion of the overall AUV mission, and are user/mission-centric. They are

directly commanded by the user via mission orders and, in turn, command/sequence the

behavior controllers to achieve their objectives. The highest level of the mission

controller consists of the Mission Coordinators which are responsible for sequencing and

scheduling operations in order to complete the mission while ensuring the safety of the

vehicle. Mission coordinators are typically of two types, safety and progress. Progress

coordinator may be separated into untimed and timed.

A mission is defined as a coordinated sequence of operations, each of which is a

 15

sequence of behaviors, and possibly vehicle controller commands. Each behavior is, in

turn, a sequence of commands to the vehicle subsystem controllers via the MC2VC

interface. Mission termination is defined as aborting a mission due to device, component

or vehicle failure. Mission expiration is defined as the timeout on a timed mission as a

result of which a timed mission could not be executed. AUV state information is

collected by the sensors and transferred by the VC2MC interface periodically to the

shared database. This state information is made available to all modules in all levels of

the mission controller hierarchy. Similarly, vehicle commands, assigned and

manipulated by all levels in the mission controller are stored in the shared database and

sent to the AUV by the MC2VC interface.

Command events propagate down the mission controller hierarchy and response events

propagate up the mission controller hierarchy via event synchronization. An event is

initiated by a particular module and its recipients are controlled by an event dependency

table which may be static or dynamic. An event may also initialize parameters within

modules in the hierarchy. Command events take the general form

()paramscommand
n
m

do , where m is the requesting controller module, n is the receiving

controller module, command is the task to be performed and may take on values such as

initialize, abort, etc., and params are parameters and initial states for the receiving

module. Similarly, response events are in the general form ()resultsresponse
m
n

done , ,

where response is an indication of the completion of the commanded task and may take

on values such as normal, abnormal, etc., and results are parameters returned to the

requesting module on task completion. Referring again to Figure 7, let B denote the set of

behaviors, O denote the set of operations, and V denote the set of vehicle subsystem

controllers. A mission, m is defined as m ∈ M ⊂ (O+V)*, where (O+V) * is the set of all

sequences containing elements of O and V, and M is the set of all possible missions.

Similarly, each operation oj ∈ (B+V)*, and each behavior bk ∈ V*.

2.2 Hybrid Mission Controller for a Survey AUV

 16

Figure 8 shows the details of a specific application of the general AUV mission control

architecture to a generic survey AUV. The primary mission of a survey AUV is to transit

to a user specified location and conduct a survey following a specific pattern in 3D, at a

specified speed and depth/altitude. In this example, there are three vehicle controllers

(VCs), the Autopilot which accepts commands to control the attitude, speed and depth of

the AUV; the Variable Buoyancy System (VBS) Controller which accepts commands to

control the trim and buoyancy of the AUV; and the Device Controller which accepts

commands to control the various sensors and other devices on board the AUV.

Correspondingly, the vehicle state is comprised of the position of the AUV in three

dimensions along with the velocity vector, the state of the buoyancy system, and the

states of the various sensors and other devices on board.

The lowest level of this mission controller is comprised of four behavior controllers:

Steering which is responsible for steering the vehicle to a specified location in space and

interacts with the Autopilot; Loiter which controls the vehicle to loiter at a specific

location in space for a specified duration and interacts with the Autopilot and VBS

Controller; Surface/Dive which commands the vehicle to go to or come off of the surface

and interacts with the Autopilot and the VBS Controller; and Pause which is used under

certain situations to let the vehicle remain at it’s current state for a specified duration.

These behavior controllers issue appropriate commands for vehicle controllers and

monitor their responses, via the vehicle state vector, to achieve their control objectives.

Figure 8: Survey AUV Mission Controller

 17

The behavior controllers are, in turn, commanded by the operation controllers which

correspond directly to mission orders that are specified by the user and are described

next. The Launch operation controller is responsible for bringing the vehicle off of the

surface and running at depth with enough forward speed to achieve controllability. This

controller interacts with the Autopilot, the VBS Controller, the Device Commander, and

the Surface/Dive behavior controller. The GPSFix operational controller sequentially

commands the AUV to shut off propulsion, rise to the surface, raise the GPS mast, obtain

a GPS-aided position fix, retract the GPS mast, and re-launch the AUV. This controller

interacts with the Autopilot, the Surface/Dive behavior controller, the Device

Commander, the Device Controllers, and the Launch operation controller. The

WaypointNavigator operation controller controls the AUV to transit to waypoints

specified by the mission specification. This controller interacts with Steering, Loiter, and

the Device Controller. The Device Commander is used to control sensors and devices on

the AUV in response to mission orders; this controller interacts with the Device

Controllers.

 Finally, at the highest level of the AUV mission controller are the mission coordinators

of which there are two types: Progress and Safety, where the progress coordinator is

divide into two parts: Sequential, and Timed. The sequential coordinator is responsible

for executing a mission consisting of a sequence of operations; a timed coordinator is

responsible for executing a timed sequence of operations; and a safety coordinator

ensures safe operation of the vehicle. Timed operations have priority over sequential

ones: When a timed operation is due, if necessary, the currently executed sequential

operation is suspended until the timed operation has been executed this is taken care of in

the model by synchronizing the Timed coordinator with the Sequential coordinator

through the Suspend signal. Sequential operation is then resumed until the next (if any)

timed order is due. Safety coordinator has priority over all other coordinators. When an

unsafe condition is detected, the commands from the safety coordinator supercede all

other commands and seek to move the vehicle into a safe region or abort the mission if

necessary. The architecture has been implemented using the tool Teja.

 18

2.3 Hybrid system model

Hybrid systems are systems which include continuous as well as discrete signals and

components. Hybrid systems [24] have been used as mathematical models for many

important applications, such as automated highway systems [1], [2], [3], air-traffic

management systems [4], [5], [6], embedded automotive controllers [7], [8],

manufacturing systems [9], chemical processes [10], robotics [11], [12], real-time

communication networks, and real-time circuits [13]. Their wide applicability has

inspired a great deal of research from both control theory and theoretical computer

science [14 - 21], [10].

Hybrid modeling framework has evolved from the existing modeling ideas of a purely

discrete or continuous system in directions such as: Extending the discrete system

modeling techniques to develop hybrid automata [72] and hybrid Petri nets [73];

extending the continuous modeling techniques to obtain switched continuous systems

[74]; decomposition of a hybrid system into a continuous and discrete subsystem [75];

and the composition of continuous system with a discrete system through compatible

interfaces. Some of these modeling concepts are implemented within commercial tools

like Simulink/Stateflow. These approaches are developed with the objective to describe

dynamical system which exhibit hybrid phenomena and to support their analysis using

mathematical methods. The actual modeling approach used depends on the underlying

application.

An autonomous system such as AUV, aerial vehicle, is a hybrid dynamical system with

both discrete and continuous states. Hybrid systems can be modeled as hybrid automata.

A hybrid automaton model captures the evolution of variables over time. The variables

will either evolve continuously or in instantaneous jumps. A hybrid automaton is as

shown below. This type of modeling formalism will be used to develop underwater

vehicle modules.

2.3.1 Controlled hybrid automaton

A controlled hybrid automaton is a tuple H ()RGEIHFYUQ ,,,,,,,,, Σ= consisting of the

following components:

 19

State space: XLQ ×= is the state space of the hybrid automaton, where L is a finite set

of locations and n
X ℜ= is the continuous state space. Each state Q can be described

by Qxl ∈),(, where Ll ∈ and n
x ℜ∈ .

Events: Σ is the finite alphabet or event set of H.

Continuous Controls and Parameters: m
U ℜ= is the continuous control space

consisting of control signals and exogenous continuous-time parameters. [) Uu →∞,0:

denotes a control vector comprised of these parameters.

Outputs: Y is the output space of H, which may consist of both continuous and discrete

elements.

Continuous Dynamics: F is a function on UL × assigning a vector field or differential

inclusion to each location and continuous control vector. We use the

notation)(),(ufulF
l

= .

Output Functions: H is a set of output functions, one for each location Ll ∈ . We use

the notation
l

hlH =)(, where YUXh
l

→×: is the output function associated with

location Ll ∈ .

Invariant conditions: UXI ×⊂ 2 is a set of invariant conditions on the continuous states,

one for each location Ll ∈ . We use the notation UXilI l ×⊆=)(. If no
l

i is specified

for some Ll ∈ , then it's default value is taken to be Xil = , indicating the condition will

always be satisfied for any continuous state.

Edges: LLE ×Σ×⊂ is a set of directed edges. Elle ∈′=),,(σ is a directed edge between

a source location Ll ∈ and a target location Ll ∈′ with event label Σ∈σ . In

addition, Φ∪= EEE
c

, where
c

E and ΦE represent the controlled and uncontrolled edges,

respectively.

Guard conditions: UX
G

×⊂ 2 is the set of guard conditions on the continuous states, one

for each edge Ee∈ . We use the notation UXgG ee ×⊆= . If no
e

g is explicitly

specified for some edge Ee∈ , then it’s default value is taken to be Xg e = , indicating the

guard will be satisfied for any continuous state.

Proaction: Proactions are edges fired when the guard condition is true, i.e.

)',,(lgle e= no requirement for the occurrence of an event.

 20

Response: Responses are transitions on edges fired as synchronization events from

another hybrid automaton expressed as)',,(lle σ= .

Reset conditions: R is the set of reset conditions, one for each edge Ee∈ . We use the

notation
e

reR =)(, where X

e
Xr 2: → is a set-valued map. If no

e
r is explicitly specified

for some edge Ee∈ , then the default value is taken to be the identity function.

Events can be input or output events. Input events can be local events or events received

from other hybrid systems. Local events are events which do not need to synchronize

with other hybrid systems for transition to occur.

Definition 1: For Σ∈σ , a σ -step is a binary relation QQ ×⊂→
σ

 and we write

),(),(xlxl ′′→
σ

 if and only if (a) Elle ∈′=),,(σ , (b) le igx ∩∈ and (c) le ixrx ∩∈′)(. A σ

-step need not be taken even if egx ∈ , but some σ -step must be taken before it holds that

lix ∉ .

Definition 2: Let),(ux
l

tϕ be a trajectory of)(ufl starting from x and evolving for time t.

For +ℜ∈t , a t-step is a binary relation QQ
t

×⊂→ and we write),(),(xlxl
t

′′→ if and

only if (a) ll ′= , (b) xx =′ for 0=t and (c)),(' uxx
l

tϕ= for 0>t where for []tT ,0∈ ,

)),((),(uxfux
l

tl

l

T ϕϕ ∈& and (d) for all []tT ,0∈ , litx ∈)(.

Definition 3: A trajectory π of H is a finite or infinite sequence:
1

1

1

1

0

0 i

i

i
qqqq

−

− →→→
θθθ

π

where Qqi ∈ and +ℜ∪Σ∈
i

θ . A trajectory is accepted by H if each 1+→ ii qq
iθ

 is a t -step

or σ -step of H , and we denote the space of all such trajectories by Tr . A step of a

trajectory refers to a t-step followed by a σ -step.

Associated with the kth step of a trajectory is (a) the time interval of the step, []10 ,0 tI = or

[]1, += kkk ttI for 1≥k , (b) its duration, kkk
tt −= +1τ , (c) the associated edge,

),,(1+= kkkk lle σ , and (d) the state, ())(, txlq kkk = , where k
l is fixed over kI ,

1+<≤ kk
ttt and)(txk satisfies ())(),()(tutxFtx

kk

l

k =& . Thus, the step can be represented

as () () ())(,)(,)(, 1111 +→−→+ ++++ kkkkkkkkk txltxltxl

kk στ
 satisfying ke

kk
gtx ∈+)(1 ,

 21

kl

kk
itx ∈−+)(1 and ())()(111 +++ ∈+ kk

e

kk
txrtx k . Note that we do not exclude the possibility

that 0=kτ , in which case there is only a σ-step.

Definition 4: A run of a hybrid automaton H is the projection to the discrete part of a

trajectory in Tr; namely, a finite or infinite sequence ,...,, 210 lll of admissible locations.

We also refer to ∑
∞

=

ΙΙ=
0

)()()(
k

I

k
ttxtx k where)(t

kI
ΙΙ is the indicator function of the

interval kI , as the continuous part of the trajectory. Note that it is not in general true that

)()(+=+ kkk
txtx . For instance, if 0=kτ and 01 >+kτ then)()(1 +=+ + kkk

txtx which is not

necessarily equal to)(+kk
tx .

2.3.2 Interacting Controlled Hybrid Automata

In order to cope with complexity of real-life applications it is often convenient to model a

hybrid system in a modular fashion as a set of interacting hybrid automata, {H
j}. Each

hybrid automaton in the set is a tuple as before, H= { H
j
 = (Q

j
, ∑

j
, U

j
, Y

j
, F

j
, H

j
, I

j
,

E
j
, G

j
, R

j
)}

The interaction among various hybrid autonomous modules takes place through event

synchronization and sharing of variables in invariant and guard conditions, as follows.

Invariant Conditions: For each j

j

jjj
UXlILl ∪×⊆∈)(, .

Guard Conditions: For each j

j

jjj
UXegEe ∪×⊆∈)(, .

The other components of the tuple are analogous to those of the single hybrid automaton

defined above.

For an event U j

jΣ=Σ∈σ , let { }jjIn Σ∈= σσ |)(be the set of indices of the event sets

that contain the eventσ . Then each σ -step must be taken synchronously by each of the

hybrid automata H
j such that)(σInj ∈ . In other words, for each)(σInj ∈ ,

),(),(
2211

jjjj
xlxl

σ

→ if and only if (a) jjjj
Elle ∈=),,(

21
σ (b)

j
l

j
e

j
igx ∩∈

1
 and (c)

jj l
jj

e
jj ixrx

1
)(12 ∩∈ .

2.4 Teja: Tool for Modeling

Teja NP, is an embedded networking and communications software platform, it includes

an Application Development Environment (ADE), a Network Processing Operating

 22

System (NPOS) runtime system and an extensible library of embedded network

application building blocks. Teja thus helps model modules which can communicate with

each other as is required for the modules in our application to interact.

Teja is a tool that facilitates the graphical design of interacting hybrid automata and

includes real-time code generation utilities and supports modularity. TEJA supports two

types of models, the data model (input events, states, output actions), and the process

model for systems (hybrid automaton).

The data model has five sections: the class name, the superclass, the outputs, the inputs

and the constructor/destructor. The superclass section consists of features to add a new

superclass and a list for selecting an existing superclass. The output section consists of

variables, links and functions. It also consists of facility to either add a new kind of

output or select an output from an existing list. The same is available for input and

constructor/destructor sections. In addition to that editing capability is available for

destructor.

The process model has features to generate code, model continuous state, model discrete

state, and transitions. The discrete state models the flow of the continuous state and it

does computations that occur at that state. The transitions show the initial state, the final

states, the event, the guard condition, and the action that it takes. The drawing part has a

list of continuous states and a drawing of the component’s hybrid state machine.

The TEJA NP graphical application development environment allows designing finite

state machines. This method is used with ease to model a hybrid system such as

underwater vehicle. This graphical application helps model common functions in a

complex environment: generating and passing information between sender and a receiver.

This function applies to complex environment of an underwater vehicle with

communicating controller modules at different levels. Example: - The sequence

controller sends commands to lower order module Launcher which further sends

commands to its lower level modules to get the command executed. This application of

TEJA helps to generate, send and receive such a signal.

State machine is used with ease to describe algorithms especially in a real time driven

system. Although design is done at very high level, existing design can be easily merged

into a design. This is accomplished by direct function calls, message passing and similar

 23

means. TEJA NP applications are designed to run over any operating system. TEJA NP

systems automatically outputs codes (C, C++, assembly) and links with existing systems.

Thus using this tool gives us the flexibility to use some other tool to veriy the time driven

operations as the code generated can be used state diagrams in another verification tool.

Teja allows the creation of a system architecture where all the modules required for a

particular mission controller are instantiated and initialized, and their interactions are

specified via an event dependency table which may be dynamically reset. Automatic

code generation ensures that the real-time scheduling needs are met to tolerances far

exceeding the mission control application.

Teja allows for abstract class definitions and inheritance so that, when appropriate,

generic controller classes may be defined and subclasses may be used to refine and

customize the generic controllers to specific applications. Utilities are provided to handle

useful functionality such as communications and data handling and parsing. Libraries

and utilities are provided for a variety of commonly used platforms and operating

systems including Window, Linux, and Solaris. All of these features make Teja an ideal

tool for rapid prototyping, testing, and deployment of mission controllers on target

vehicle platforms.

2.4.1 Basic structure of Mission Controller Modules

Each controller module is a hybrid automaton whose description in TEJA involves the

following items:

Superclass describes the class in Teja the module belongs to which can be any of the

following: TejaAux, Teja component, TejaMutex, TejaString, TejaEvent, TejaAlert,

TejaFifoQueue

Variables are the local variables of a module. These represent the variables directly

accessed by a module which might be its input or output.

Links are the pointer to classes of data structures or finite state machine. In the

description the object name is followed by the class name (Object Name (Class Name)).

Link is used by one module to access the local variables of another module. It is the input

or output of a model based on the application.

 24

Functions are the actions performed by a module based on the guard condition and the

event satisfied. Different transitions have different functions depending upon the action it

performs.

Constructors are used to initialize the variables used in a module.

Destructors are used to clear the variables so as to free memory but are not used in the

application we are using it for.

Hybrid automaton in TEJA contains the description of the discrete state followed by the

continuous state flow {state, flow}. Edges are defined by events and guard conditions.

For proactions the event is a local event. For responses event is a synchronization event.

The syntax in which the states are described is as shown here {state name, (flow),

invariant}. The transitions are given by the description: {initial state, final state, event,

guard condition, reset, and action (is the execution of a function or activity in response to

an event and guard condition that is satisfied.)}.

A Brief description of all the modules implemented in Teja is explained in section 2.6.2

and a detailed description of all the modules is given in Appendix B.

2.5 Hybrid Automaton Model of Mission Controller Modules

2.5.1 Description of Mission Controller Commands/Responses

In hybrid automaton model, transition from one discrete state to the other takes place on

the command/response shown on the edge connecting the states. In the following we

describe the commands/responses that appear as transition labels in the various hybrid

automata models. In the language of TEJA, commands are known as proaction and

responses are known as reaction. Some of the common commands that can be executed

by any such underwater vehicles are shown below.

Init: It initializes the module to the Start or Idle state. This signal makes the module

ready to receive signal and start functioning.

Abort: This signal terminates the operation executed by a module.

GoTo…, Take…, Process…, Set…: It represents the command sent by higher level

controller to lower level controllers to perform a task such as to go to a desired location.

 25

…Done: It represents the response sent by lower level controller to higher level

controller when a task is executed to completion.

The other commands/responses are application specific. The commands for the under

water vehicle for the application of search is given in Appendix A.

Figure 9: The input/output signals wihtin the controllers

2.5.2 Description of Mission Controller Data Structures

The data structures used for representing states, commands, and responses of a AUV are

described here. The following data structures are important for any kind of underwater

vehicle. These are general information required by AUV to function correctly and

execute all the missions successfully.

VehicleState is a data structure which belongs to the superclass TejaMutex. It contains

the status of the vehicle. The required data are: CurrentTime, Shutdown, LaunchDone,

and RangeHeartbeat.

BatteryState is a data structure which belongs to the superclass TejaMutex. It contains

the status of the battery. The required data are: Volatge, Current, Switches.

NavState is a data structure which belongs to the superclass TejaMutex. It contains data

required for navigation. The required coordinates are Latitude, Longitude, Depth,

Altitude, Roll, Pitch, Yaw, and Speed.

DeviceState is a data structure which belongs to the superclass TejaMutex. It contains the

status of the device. The required data are: MastState, Xvelbtm, Yvelbtm, Zvelbtm,

 26

CTDTemperature, CTDDepth, ADCPBottomLock, VBSFwdPrimed, VBSAftPrimed,

VBSFwdMass, VBSAftMass, VBSFwdPressure, VBSAftPressure, and ADCPState.

VehicleCmd is a data structure which belongs to the superclass TejaMutex. It contains

commands for a vehicle. The required data are: Behavior and Shutdown.

AutoPilotCommand is a data structure which belongs to the superclass TejaMutex. It

contains data required for the autopilot to operate successfully. The datas required are:

HeadingMode, HeadingCommand, HeadngRateCmd, DepthMode, DepthCmd,

AltitudeCmd, SpeedMode and SpeedCmd.

BatteryCmd is a data structure which belongs to the superclass TejaMutex. It contains

commands for a battery. The required data are: Switches.

DeviceCmd is a data structure which belongs to the superclass TejaMutex. It contains

commands for a device. The required data are: MastCmd, CTDCmd, SSSCmd, VBSCmd,

VBSDepthCmd, VBSFwdCmd, VBSAftCmd, PayloadCmd, and ADCPCmd.

ActionRequest is a data structure which belongs to the superclass TejaMutex. It contains

data requests made by modules higher in hierarchy to the ones at lower level. The

required data are: GPSRequest, LaunchRequest, WaypointRequest, ControllerRequest,

RendezvousRequest, LoiterRequest, PayloadRequest, SteeringRequest,

DeviceCommanderRequest and PauseRequest.

TimedOrder is a data structure which belongs to the superclass TejaMutex. It contains

data required for timed operations. The required data are: Time, Name, Period and

TimingType. OrderPtr is a Link.

ComponentList is a data structure which belongs to the superclass TejaMutex. It

contains functions GetComponentName and AddComponent to get the component names

wit their ID as assigned internally by Teja. The variables used are: ComponetID,

NumComponents and Componentname.

SeqOrd is a data structure which belongs to the superclass TejaMutex. It gives the

sequence of the order to be executed. The data required are: Name.

DeviceOrd is a data structure which belongs to the superclass TejaMutex. It gives the

orders to be executed by the device. The data required are: Device, Duration and

TimimgType. The links are DevCmd and AutCmd.

 27

GPSOrder is a data structure which checks for order to be executed by the GPSFix

module. The variables are: CollectSVP and ReturnToStart.

WaitOrder is a data structure which belongs to the superclass TejaMutex. It gives the

time of wait for a device or module. The variables are: WaitingTime and TimingType.

LaunchOrder is a data structure which belongs to the superclass TejaMutex. It initiates

order. The variables are: ADCPInit and TrimInit.

Files is a data structure which belongs to the superclass TejaMutex. It contains a function

CreateLogs to create log files for operations either executed completely or with error. The

variables used are errorlogs and execlogs.

Queues is a data structure which belongs to the superclass TejaMutex. It contains the

timed and sequenced order. The variables are: TimedOrderQueue and SeqOrderQueue.

2.5.3 Description of the functionalities of mission controller
modules

The mission controller modules have been modeled as hybrid automata using Teja NP

tool [22]. Transitions between states may be proactions, where the transition fires when

the guard condition is true, or responses which fire on event synchronization from

another hybrid automaton. In Teja, the first portion of an event label is either a local label

in the case of a proaction, or a synchronization label in the case of a response. The second

portion, after the /, represents an output event label that is used to fire enabled response

transitions in other modules that are specified in a (static or dynamic) event dependency

table for that particular event label. Resets and other initializations may be performed on

transitions between states. The hybrid automata modules that make up a particular

application therefore interact through event synchronization. Continuous state variables

are specified and their flows are defined for each discrete state. An initial state is

specified and the Teja tool allows constructors and destructors to initialize and finalize

the state variables, and parameters of each automaton. Vehicle state values, on receipt

from the interface level, are used to populate Teja data structures which are available to

all modules that require access to them. Links to other automata are provided so that

public data within them may be accessed and set. These links are used to pass parameters

and initial conditions, and retrieve results on event transitions. A brief description of the

 28

mission controller modules follows. A detailed description of the transitions, reset

conditions, guards etc. are given in Appendix B

2.5.3.1 Sequential coordinator (SC)

Figure 10 shows the hybrid representation of the Sequential coordinator. The SC module

is a sequence coordinator which controls the execution of sequential missions. SC passes

control to the operational and behavioral level controllers according to the mission to be

executed. The SC consists of the initialization phase, the ready phase and the running

phase.

The initialization phase consists of rebooting the system at start up and establishing

contact with the vehicle. SC is initially at the Idle state. It is marked with two concentric

circles indicating initial state. When event Init occurs at time t>=1 the SC transitions to

the state WaitForVCComms (The inequality condition given by the transition function is

the guard condition.). At WaitForVCComms SC establishes contact with the vehicle.

During the ready phase the SC becomes ready to receive mission orders. On the event

NewVCData SC transitions to the run state. The SC check for orders in the queue at the

run state every 1 second.

During the running phase the SC executes the mission ordered by passing control to the

lower controllers in the hierarchy. The SC passes control to the DeviceCommander

controller by outputting the event SetDevice and transitions to DeviceOrder state. The

DeviceCommander performs the ordered mission and sends DeviceDone event to the SC

on completion. The SC goes to the run state.

The SC passes control to the Waypointnavigator controller by outputting the event

ProcessWP and transitions to the WayPointNavigator state. When the AUV reaches the

desired location it sends WPDone event to the SC and resets t to 0. The SC goes to the

run state.

The SC passes control to the Rendezvous controller by outputting the event

GoToRendezvous and transitions to the Rendezvous state. When the AUV reaches the

rendezvous point it sends RendezvousDone event to the controller. The SC transitions to

the run state.

 29

The SC passes control to the Payload controller by outputting the event ProcessPayload

and transitions to the Payload state. When the AUV reaches the point where it delivers

the payload it sends PayloadDone event to the SC. The SC then transitions to the run

state.

The SC passes control to the Launch controller by outputting the order Launch and

transitions to the Launch state. When the AUV completes executing launch operation

like lowering the mast, lowering the AUV below the surface of the water etc. the Launch

controller sends LaunchDone event to the SC. The SC transitions to the run state.

The SC passes control to the GPSFixer controller by outputting the event GPSFix and

transitions to the GPSFixer state. When the AUV completes the GPSFix operation by

updating the navigation system with the present location it sends the GPSFixDone event

to the SC. The SC transitions to the run state.

The SC passes control to the Pause controller by outputting the event Wait and transitions

to the Pause state. When the AUV completes the wait operation the Pause controller

sends the WaitDone event to the SC. The SC then transitions to the run state.

The SC outputs the event Suspend to the controllers which can be suspended and

transitions to the Suspend state. The suspendable controllers in the present structure are:

Waypointnavigator, Payload, and Rendezvous. SC remains at the Suspend state by

outputting the event Abort and transitions to the run state on receiving the event Resume.

All the states transition to the EndMission state on the event Abort. The run state can

also transitions to the EndMission state on the event GoToEndMission. The SC executes

local events MastUp and OnSurface at EndMission state to end the execution of missions

by bringing the AUV to the surface and raising the mast. This is how the whole of SC

module works.

 30

Figure 10: FSM for Sequential coordinator in TEJA

2.5.3.2 Timed Coordinator (TC)

Timed coordinator controls the timed execution of mission operations. It keeps track of

the execution time of each operation. It prioritizes the orders according to the time

requirement to be met. TC belongs to the topmost level of the mission controller and

passes control to the lower level controllers to execute timed sequence of operations.

Initially the TC is in the state Start. On the event Init at time t>=1 the TC transitions to

the state FirstTime. On the event NewVCData the TC transitions to the CheckOrders

state. The TC keeps checking for the request of a timed order at the CheckOrders state

every 1 second on the local event NewVCData. The TC transitions to Decide state on the

event NewOrder. The TC transitions to Wait4Suspend state by outputting the event

Suspend and keeps checking whether the SC is suspended or not. TC transitions from

Wait4Suspend to CheckOrders on Timeout. Time out occurs when the time for the timed

 31

mission expires before suspending the SC. After suspending the SC the TC transitions to

Decide state from the Wait4Suspend state on the event NewOrder.

The TC passes control to the DeviceCommander controller by outputting the event

SetDevice and transitions to the state Device. Once the operation on the device is

completed the DeviceCommander controller sends DeviceDone event to the TC. The TC

then transitions to Check4Resume.

The TC passes control to the Launcher controller by outputting the event Launch and

transitions to the Launch state. When the AUV completes executing launch events like

lowering mast, bringing the AUV below surface of water etc. the Launcher controller

sends LaunchDone event to the TC. The TC then transitions to Check4Resume.

The TC passes control to the GPSFix controller by outputting the event GPSFix and

transitions to the GPSFix state. When the AUV completes the operation to be executed

by the GPSFixer it sends the GPSFixDone event to the controller. The TC then

transitions to Check4Resume.

The TC passes control to the Pause controller by outputting the event Wait and

transitions to the Wait state. When the AUV completes waiting the pause controller sends

WaitDone event to the TC. The TC then transitions to Check4Resume.

TC checks whether the SC needs to be resumed or not. If TC needs to resume SC, TC

transitions to CheckOrders state by outputting the Resume event or else it doesn’t output

any event.

At each of the states on receiving an Abort event the TC outputs an Abort event to all the

controllers. The TC then transitions to the End state.

 32

Figure 11: FSM of Timed coordinator in TEJA

2.5.3.3 Safety coordinator

The safeties coordinator is used to check whether the given order can be safely executed

or not. The safety coordinator is initially at the Start state. At t>=1 when the safety

coordinator receives the signal Init Safety coordinator transitions to the Idle state. On the

event NewVCData Safety coordinator transitions to the state CheckSafeties and executes

function to check safe operation. Safety coordinator aborts the mission by outputting

Abort! event and transitions to the SafetyAbort state. Safety coordinator tries to correct

the altitude if it becomes unsafe by transitioning to LowAltitude state on the event

AltitudeSafety. If safety coordinator finds the altitude has been corrected on the event

AltitudeOK Safety coordinator transitions to the CheckSafeties state. Safety coordinator

transitions to the SafetyAbort state by outputting the mission Abort from the LowAltitude

state if the altitude cannot be corrected to a safe value.

 33

Figure 12: FSM of Safety coordinator in TEJA

2.5.3.4 GPSFixer

Figure 13 shows hybrid representation of GPSFixer operation controller. The GPSFixer

controller is used to update the navigation system of the AUV with the present location.

The steps involved are to bring the AUV to the surface of the water, raise the vehicle

mast and find out the AUVs location. Then to pass control to the Launch controller to

lower the mast, lower the AUV from the surface of water and then either return to the

original location or to just go to a depth.

The GPSFixer module is initially in the state Start. After initialization GPSFixer

controller transitions to the Idle state on the event Init. When the GPSFixer controller

receives the event TakeGPSFix it starts to execute the sequence of actions involved in the

GPSFix mission. GPSFixer transitions to GoToSurface state on the event TakeGPSFix.

If the AUV fails to reach the surface in time the GPSFixer controller transitions to

ReportTO state on the event TimeOut. On reaching the surface the GPSFixer controller

transitions to the RaiseMast state on the event OnSurface!. If the mast is not raised in

time on the event TimeOut the GPSFixer controller transitions to the ReportTO state.

When the mast is raised the GPSFixer controller transitions to the TakeFix state on the

event MastUp. The GPSfixer controller passes control to the Launch controller on the

event Launch and transitions to the ComeOffSurface state. The Launch controller lowers

the mast and brings the AUV below the surface of water. Then the Launch controller

passes control to the GPSFixer controller on the event LaunchDone. The GPSFixer

transitions to the Decide state where it decides whether to return back to the original

location before starting GPSFix mission or to just go to a particular depth. If the AUV

 34

needs to return to the original location the GPSFixer passes control to the Steer controller

on the event Steer. Once the AUV reaches the destined location the Steer controller

passes control to the GPSFixer controller on the event SteeringDone. The GPSFixer

transitions to Decide state. The GPSFixer controller finally ends the mission by

transitioning to the Idle state by sending the output GPSFixDone to the concerned

controller which can be TC or SC.

Figure 13: FSM for GPSFixer module in TEJA

2.5.3.5 Launch controller

Figure 14 shows the hybrid automaton representation of the Launch operation controller

modeled using the Teja NP tool [22]. The operation executed by the launch operation

controller is to lower the mast of the AUV, and lower the AUV from the surface of the

water.

Launch operation controller has the initial state as Idle. The Launch controller transitions

 35

to RetractMast state when it receives the event Launch and lowers the mast. If the mast is

not lowered within a given time a TimeOut event occurs and the Launch controller

outputs Abort event and transitions to the Idle state. On the local event Abort the launch

operation controller also transitions to the Idle state from RetractMast state. When the

mast is lowered a local event MastDown occurs and the Launch operation controller

transitions to the ComeOffSurface state. The AUV is then lowered below the surface of

water. If the AUV is lowered successfully the Launch operation controller outputs the

event LaunchDone and transitions to Idle state. If the AUV is not lowered within a given

time a TimeOut event occurs and the launch operation controller outputs the Abort event

and transitions to the Idle state. On the local event Abort the launch operation controller

also transitions to the Idle state from the ComeOffSurface state.

Figure 14: Launch operation controller in TEJA

2.5.3.6 Waypointnavigator

Figure 15 shows the hybrid representation of the Waypointnavigator operation controller.

The operation executed by the Waypointnavigator is to navigate the vehicle to a desired

point involving timed as well as untimed waypoint navigation. While the AUV is

navigating through the water the Waypointnavigator keeps checking the depth of the

AUV. If the depth becomes unsafe the waypoitnavigator corrects the depth to a safer

value. For a timed waypoint the AUV can loiter if enough time is left between the present

location and the desired location.

The initial state of the Waypointnavigator is the Start state. The Waypointnavigator

transitions to the Idle state on the local event Init. On receiving the event ProcessWP the

 36

Waypointnavigator transitions to the Decide state. For an untimed waypoint the

Waypointnavigator module passes control to the Steer module by outputting the Steer

event and transitions to GoToWaypoint state. At this state every second the location of

the AUV is checked and if there is any depth trouble the Waypointnavigator transitions to

the WPDepthProblem state. The depth is corrected at this state. If there is failure to

correct depth the Waypointnavigator terminates the mission by outputting the Abort

event. If the depth is corrected the Waypointnavigator transitions to the GoToWaypoint

state on the local event DepthOK. When the AUV reaches the desired location the

Waypointnavigator transitions to the ReportTO state by outputting the SteeringDone

event. Finally the Waypointnavigator transitions to the Idle state by outputting the

WPDone event.

For a timed waypoint the Waypointnavigator transitions to the TimedWP from the

Decide state on the local event ProcessWP. The Waypointnavigator transitions to

GoToLP from the TimeWP state by passing control to the Steer module by outputting the

Steer event. At the GoToLP the Waypointnavigator module keeps updating the present

location of the vehicle. In case of a depth trouble the depth is corrected by transitioning to

the LPDepthProblem state on the local event DepthProblem. If the depth problem is not

corrected Waypointnavigator transitions to the Idle state by outputting the Abort event.

When the depth problem is settled the Waypointnavigator transitions to the GoToLP state

on the local event DepthOK. When the AUV has reached the destined location the Steer

module passes control to the Waypointnavigator module on the event SteeringDone and

the Waypointnavigator transitions to the AtWP state. If the AUV reaches the destined

location before time the AUV loiters around the desired location. The Waypointnavigator

passes control to the Loiter module by outputting the Loiter event and transitions to the

Loiter state. When loitering determined by time left to go to destined location is over the

Loiter module passes control to the Waypointnavigator by outputting the LoiterDone

event. The Waypointnavigator transitions to the LoiterDone state. The

Waypointnavigator transitions to the LoiterDone state from the AtWP state if enough

time is not left for loitering. Then the Waypointnavigator transitions to the ReportTO

state on the local event WPDone. Finally the Waypointnavigator transitions to the Idle

state by outputting the WPDone event.

 37

Figure 15: FSM of Waypointnavigator in TEJA

2.5.3.7 Rendezvous

Figure 16 shows the hybrid representation of the Rendezvous module. The rendezvous

module is used to guide the vehicle to go to rendezvous point.

The initial state is the Start state. On the local event Init the Rendezvous module

transitions to the Idle state. On receiving the Rendezvous event the Rendezvous module

transitions to the Decide state. If the rendezvous point is not specified the Rendezvous

module passes control to the Loiter module by outputting the Loiter event. After loitering

for specified time the Rendezvous module transitions to the LoiterDone state on the

event LoiterDone. The Rendezvous module finally goes to the Idle state by outputting the

event RendezvousDone.

If the rendezvous point is specified the Rendezvous module transitions to the

GoToRendezvous state by passing control to the Waypointnavigator by outputting the

event ProcessWP. Once the rendezvous point is reached the control is passed over to the

Rendezvous module by the Waypointnavigator module on the WPDone event. The

 38

Rendezvous module then transitions to the AtRendezvous state. If there is no time left for

loitering the Rendezvous module transitions to the Idle state by outputting the event

RendezvousDone. If there is enough time left the AUV loiters and the sequence is as

mentioned in the previous paragraph by passing control to the loiter module. In order to

terminate the mission anytime there is a transition from each of the states to the Idle state

on the event Abort.

Figure 16: FSM of Rendezvous module in TEJA

2.5.3.8 DeviceCommander

Figure 17 represents the hybrid model of the DeviceCommander. The DeviceCommander sets

different devices like the mast. The DeviceCommander transitions to SetCommand state on

receiving the event SetDevice. At SetCommand state the DeviceCommander keeps updating the

present condition of the device being set. After the device is set the DeviceCommander

transitions to the Idle state by outputting the event DeviceDone. If the device is not set within a

specified time (required for a timed mission) a TimeOut event occurs and the DeviceCommander

transitions to the Idle state by outputting the Abort event. To terminate the mission at anytime if

needed there is a transition from any state to the Idle state on the Abort event.

 39

Figure 17: FSM for DeviceCommander in TEJA

2.5.3.9 PayloadDelivery

Figure 18 shows the hybrid representation of the Payload module. This module is used to

deliver payload at desired locations. The initial state is Start state and on the local event

Init the Payload module transitions to the Idle state. On receiving the event

ProcessPayload the Payload module transitions to the Run state. Then the Payload

module passes control to the Waypointnavigator module to go the destined location by

outputting the ProcessWP event and transitioning to the GoToPoint state. On reaching

the desired point the control is passed to the Payload module by the Waypointnavigator.

The Payload module transitions to the Deliver state either on receiving the event

WPDone from the Waypoitnnavigator or on receiving the DeliverPayload event and

outputting the Abort event (if the payload needs to be delivered at the present location

and mission aborted).

Figure 18: FSM of Payload module in TEJA

 40

2.5.3.10 Loiter

Figure 19 shows the hybrid representation of the Loiter module. The initial state is Start

state. The Loiter module transitions to the Idle state on the local event Init. On receiving

the Loiter event the Loiter module transitions to the ChooseLoiterMode. If the loiter

mode is not specified the Loiter module transitions to the Idle state by outputting the

LoiterDone event. If the loitering mode specified is Hover the Loiter module goes to the

Hover state on the local event Loiter. The Loiter module then passes control to the Steer

module by outputting the Steer event and transitioning to the GoToLoiterPt. If the loiter

mode is circle then the Loiter module transitions to the Circle state on the local event

Loiter. Then control is passed over to the Steer module to circle the desired location and

the Loiter module transitions to the GoToCircleWP. When the distance to point becomes

less than a specified number loiter operation is aborted by transitioning to the Circle state

on the event WPDone by outputting the Abort event. At GoToCircleWP if the time for

circular loitering is over a TimeOut event occurs and the loiter module transitions to the

StopCircle state. Then the Loiter module passes control to the Steer module by outputting

the Steer event to go to the desired location. At GoToLoiterPt every 2 seconds the Loiter

module updates the present location until the desired location is reached. The Loiter

module then transitions to the ReportTO state either on TimeOut event for a timed

mission or on WPDone event on reaching the desired location. Finally the Loiter module

ends loiter mission by transitioning to the Idle state by outputting the LoiterDone event.

Figure 19: FSM of Loiter module in TEJA

 41

2.5.3.11 Steering

Figure 20 shows the hybrid representation of the Steering module. The Steering module

is used to steer the vehicle to the desired location. The initial state is the Start state. On

the local event Init the Steering module transitions to the Idle state. The Steering module

transitions to the SteerToPoint state on receiving the Steer event. At SteerToPoint the

Steering module keeps updating the present location to find out whether the desired

location is reached or not. When the AUV reaches the desired location the Steering

module transition to the Idle state on the event SteeringDone. To terminate the mission

when needed the Steering module reacts to the Abort event to end the steering operation.

Figure 20: Steering behavior controller in TEJA

 42

3 Bottom up verification approach
Many of these applications are safety critical and require guarantees of safe operation

together with correctness or progress. Informally, safety refers to the requirement that

nothing bad should ever occur (such as the underwater vehicle should never enter a

shallow region and collide with it) whereas correctness requires that something good

should eventually happen (such as the underwater vehicle should eventually accomplish

the mission task). Consequently, much research focuses on formal modeling and

verification/synthesis of hybrid systems, including [19], [20], [10], [21], [28], [70], [24],

[30].

In section 3.1 we discuss modeling and verification of hybrid systems. In section 3.2

we explain our own approach. In section 3.3 we discuss our algorithm and demonstrate

its working, and finally we conclude and propose future work in section 3.4.

3.1 Verification of Hybrid systems

Formal verification is defined as an organized exhaustive method to check the correctness

of a system. Verification of a hybrid system involves complex issues related to both the

discrete and continuous domain and proper formulation of correctness. Several

techniques and tools have been developed for hybrid system verification.

Two different approaches to formal verification are algorithmic and deductive

verification. For algorithmic verification to be possible the corresponding algorithms

should terminate. This is not the case for general hybrid systems for the simplest of

problems such as reachability. Algorithmic verification is thus restricted to few classes of

hybrid systems possessing a finite abstraction [24]. Deductive verification is the method

of verification to reduce the verification task into establishment of premises in a set of

proof rules. Deductive approach is more powerful and least restrictive as it can be used

for verification of anything. The disadvantage of deductive verification is that it needs

more human interaction and requires more expertise.

Model checking developed independently by Clarke and Emerson, and by Queille and

Sifakis in 1980’s, is an algorithmic approach to verification, in which a model of the

system together with the specification/query defining the desired requirement/property is

provided as the inputs to a model checker, which checks whether the requirements hold

 43

for all the behaviors of the system. For model checking, different ways to model a

system are as Discrete Automaton, Timed Automaton, and Hybrid Automaton. The

queries can be a formula in LTL (Linear Time Temporal Logics), CTL (Computation

Tree Logic), TCTL (extends CTL with timing constraints) [76], ICTL (Integrator

Computation Tree Logic) [76], or another temporal logic to suit the application. There are

several tools available implementing the model checking methods. Discrete Automaton

and logics like CTL or LTL are supported in SMV and SPIN. Timed automata with real

time logics are supported in UPPAAL [23], KRONOS [77], and extensions of SPIN [36].

For linear hybrid automata HyTech checks reachability of given set of states. d/dt is

another tool also for reachability analysis of a hybrid systems with linear differential

inclusions.

Theorem proving is a deductive approach. In order to prove whether a property is

satisfied by the implemented system, a proof is created based on mathematical reasoning.

Several theorem proving systems have been developed such as, Boyer-Moore (First order

logic) [71], HOL (Higher order logic) [79], PVS (higher order logic) [80], Lambda

(higher order logic) [81], TPS (first- and higher-order logic) [82] to semi-automate or to

make theorem proving interactive. Theorem proving has its limitation that its complete

automation is generally impossible, and can mostly be used by the experts.

Our work involves use of algorithmic methods for verification of hybrid system that are

hierarchically structured, in a certain way that helps reduce the computational complexity

of verification.

3.2 Bottom up approach to verification

Our mission control architecture is designed with semi-automatic verification in mind.

All the levels and modules that make up the hierarchy are interacting controlled hybrid

system described in chapter 2. The tool used to implement the hierarchy allows the

conversion into a format that is readable by available verification tools such as HyTech

[79] and Uppaal [23]as discussed in 2.6. Interactions among modules occur through event

synchronizations and sharing of data. The continuous dynamics within individual

automata only uses clocks. While designed within existing mission control architectures

have been deployed successfully, none of them were designed to be used with modern

 44

verification tools and techniques without considerable overhead. The architecture is

discussed in details in chapter 2.

A bottom up approach to verification aims to simplify the verification of a complex,

hierarchically structured system, initiating verification from the lowest level. The lowest

level is verified as a single entity interacting with an “abstract” model of its environment

comprising of the lateral and higher level modules. Recursively, the next higher level

subsystems are verified, and added to the lower levels that have all been verified. This

recursive addition of level continues until all the levels are verified. Each level constitutes

of several controller modules (behavioral or operational or coordinator in our case).

Similar kind of approach was used in discrete domain for controller synthesis in

manufacturing systems [83].

The sequence of steps each controller module executes depends on the mission or other

types of orders and responses received from modules at higher or lateral or lower levels.

The issues involved in this method of verification are:

1. identifying discrete logic

2. identifying properties to be checked

3. modeling the abstract model of the environment

We can verify the discrete logic separately from the continuous dynamics associated with

each step. Logical correctness of the whole system requires checking the discrete logical

sequence of steps executed in response to orders and responses by the interacting

modules based on the invariants, guards, events, reset values and the state transitions,

computed with each discrete logical step.

In this work we are concerned with correctness of logic part that ensures correct

execution of discrete steps, verified algorithmically using the model checker UPPAL.

The correctness of output assignments involving functions associated with each discrete

step is not treated here, but can be achieved using a theorem prover such as PVS. The

properties to be checked for logical correctness have been formulated based on the

mission/task the system needs to execute. When verifying a certain module, the other

interacting modules which constitute its environment are optionally abstracted as simpler

modules. The “commanding” modules are abstracted as drivers, whereas the

 45

“commanded” modules are abstracted as stubs. The abstraction preserve the essential

features needed for adequate interaction with the module being verified.

Following the above bottom-up approach, the process of checking progress for a

hierarchical interacting hybrid system, H = H H = H H = H H = H
1

1 ||… H … H … H … H
j
i… … … … ||H H H H

m
n, where

H H H H
j
i { }j

i
j

i
j

i
j

i
j

i
j

i
j

i
j

i
j
i

j
i RGEIHFYUQ ,,,,,,,,,Σ= , is the hybrid automaton model of the jth module

(j=1…mi) on the ith level (i=1…n), the following algorithm describes the verification

approach.

For i = 1 to n

 For j = 1 to mi

- Select subsystem H H H H
j
i for verification

- Find all subsystems H H H H l
k, k=1 to n, l=1 to mk,),(),(jilk ≠ that interact

with subsystem H H H H
j
i

- Abstract all subsystems H H H H l
k, for k,l as found above, whose internal

states are not relevant to verification, as drivers or stubs, and replace

the original subsystems with the abstracted subsystems

- Compose the system as H ’= H H ’= H H ’= H H ’= H
j
i ||H H H H

l
k for k,l as found above

- Formulate queries using temporal logic formulas based on the progress

requirements of the system, check queries on composed system H ’H ’H ’H ’, and

decide on progress

- Correct any correctness problems found for module H H H H
j
i

 Next j

Next i

3.2.1 Properties satisfied by the algorithm

Property 3.1: No hybrid module is left without consideration for verification

If),(&)|)1()1((TrueiTruejTrueHHmjjnii
j

ii =∆=∆=∃≤≤∀≤≤∀ then we can say

that none of the hybrid modules are left without verification, where i represents the ith

level, j represents the jth module, i∆ indicates going to next level by incrementing i and

j∆ indicates selecting the next module by incrementing j.

 46

The statement above states that for each of the levels and each of the subsystems at that

level there exist a subsystem which is selected for verification and there is a method to

select the next subsystem at a level and to select the next higher level within the

hierarchical structure. This statement indicates that all the subsystems are considered for

verification one by one. Considering the statements from the algorithm as shown below.

For i = 1 to n can be expressed as))1((nii ≤≤∀ which indicates that the algorithm starts

by considering the lowest level i = 1. --- 1

For j = 1 to mi can be expressed as))1((imjj ≤≤∀ which indicates that the algorithm

looks to select for a subsystem at the level i, where mi indicates the total number of

susbsystems at level i. --- 2

The two for loops one after the other as shown in the algorithm can be expressed as

))1()1((imjjnii ≤≤∀≤≤∀ which indicates that the algorithm first selects a level and

then selects a subsystem at that level. --- 3

The statement Select subsystem H H H H
j
i for verification within the algorithm can be expressed

as)|)1()1((TrueHHmjjnii
j

ii =∃≤≤∀≤≤∀ which indicates that at level i a subsytem

is selected. --- 4

The updation statement Next j indicates that the algorithm next searches for the

subsystem at the present level i which can be expressed as

)(&)|)1()1((TruejTrueHHmjjnii
j

ii =∆=∃≤≤∀≤≤∀ . --- 5

The updation statement Next i indicates that the algorithm next searches to select the next

higher level which can be expressed as

)(&)|)1()1((TrueiTrueHHmjjnii
j

ii =∆=∃≤≤∀≤≤∀ . --- 6

The updation statements one after the other as shown in the algorithm can be expressed

as),(&)|)1()1((TrueiTruejTrueHHmjjnii
j

ii =∆=∆=∃≤≤∀≤≤∀ . --- 7

Equations 1-7 show that each and every susbsystem is selected one by one so the

Property 3.1 holds.

Property 3.2: The subsystem alongwith the abstracted environment interacts the same

way as without abstraction.

Assumption: There is no dependency of the abstracted environment on any other module

other than the concerned module for execution of actions.

 47

If),(&)|||)1()1((TrueiTruejDeadlockHHHmjjnii
l

k

j

ii =∆=∆≠∃≤≤∀≤≤∀ holds

the above property holds

Equations 1-4 show that a subsystem is selected for verification. According to the

algorithm next we need to Abstract all subsystems H H H H l
k, for k,l as found above, whose

internal states are not relevant to verification, as drivers or stubs, and replace the

original subsystems with the abstracted subsystems. The abstracted subsystem H H H H
l
k

contains guard conditions ge, and syhnchronization events σ, using which the selected

subsystem H H H H
j
i interacts with its environment.

The next step is to Compose the system as H ’= H H ’= H H ’= H H ’= H
j
i ||H H H H

l
k for k,l as found above. The above

abstraction method results in no deadlock as the events and guards on which the selected

subsystem reacts to are still present. This can be expressed as

)|||)1()1((DeadlockHHHmjjnii
l

k

j

ii ≠∃≤≤∀≤≤∀ --- 8

Equations 5-7 prove the next part of the equation as expressed in the proof. Thus

),(&)|||)1()1((TrueiTruejDeadlockHHHmjjnii
l

k

j

ii =∆=∆≠∃≤≤∀≤≤∀ holds

which indicates that Property 3.2 holds.

Property 3.3: Properties satisfied by each of the hybrid susbsystems are verified

If),(&)|)||(|)(1()1((TrueiTruejHHHmjjnii
l

k

j

ii =∆=∆Φ=Φ∃∃≤≤∀≤≤∀ Property

3.3 holds.

Equations 1-8 show that a subsystem is selected at a level, its environment is abstracted

and finally the subsystem interacts with the abstracted environment without any

deadlocks. The composed subsystem obtained is a semantical model H and the property

to be checked is a logical formula Φ . Here the property Φ is expressed as a temporal

logic formula. The temporal logic formula checks the satisfaction of the property Φ

based on the reachablity of the state or path at which the property is satisfied. Thus it

proves that using the method of model checking we can verify the satisfaction of

properties by the hybrid subsystem. Thus

),(&)|)||(|)(1()1((TrueiTruejHHHmjjnii
l

k

j

ii =∆=∆Φ=Φ∃∃≤≤∀≤≤∀ --- 9

holds which proves the truth of Property 3.3.

Property 3.4: The logical correctenes of all the hybrid susbsytems involved in a

hierarchical architecture can be verified using this algorithm if

 48

(a) No hybrid module is left without consideration for verification

(b) The subsystem alongwith the abstracted environment interacts the same way as

without abstraction

(c) Properties satisfied by each of the hybrid susbsystems are verified

Equations 1-9 validate Property 3.4

3.3 Uppaal: Tool for Verification

As described, the hybrid mission controller has been designed using Teja NP. Teja is a

tool that facilitates the graphical design of interacting hybrid automata and includes real-

time code generation utilities. Teja, however, does not contain functionality for formal

verification; thus we use Uppaal for verification. In order to facilitate rapid (re)design and

verification, a Teja to Uppaal converter, called dem2xml, was created at ARL PSU that

converts a hybrid (timed) autonomous system description in Teja to an Uppaal system

description.

Uppaal is an integrated tool environment for modeling, validation and verification of

real-time systems modeled as networks of timed automata, extended with data types. The

tool is designed to verify systems that can be modelled as networks of timed automata

extended with integer variables, structured data types, and channel synchronisation. It

contains two parts a graphical user interface and a model check engine. The user interface

is implemented in java and executed on users work station. The model-checker Uppaal is

based on the theory of timed automata and its modelling language offers additional

features such as bounded integer variables and urgency. A timed automaton is a finite-

state machine extended with clock variables. It uses a dense-time model where a clock

variable evaluates to a real number. The query language of Uppaal, used to specify

properties to be checked, is a subset of CTL (computation tree logic). The query language

consists of a path formula and state formula. State formula describes individual states,

whereas path formulae quantify over paths or traces of the model. Path formula can be

classified into reachablity (given state formula will be satisfied by a given state), safety

(nothing bad will ever happen) and liveness (something will eventually happen). The tool

consists of an editor, a simulator and a verifier. The editor is divided into two parts: a tree

pane to access the different templates and declarations and a drawing canvas/text editor.

A timed automaton is modeled in the drawing canvas. A state of the system is defined by

 49

the locations of all automata, the clock constraints, and the values of the discrete

variables. A timed automaton contains locations and the behavior of timed automata is

modeled by the transitions between the locations. A system is defined as a network of

timed automata, called processes in the tool, put in parallel. A process is instantiated from

a parameterized template. The simulator can be used in three ways: the user can run the

system manually and choose which transitions to take, the random mode can be toggled

to let the system run on its own, or the user can go through a trace (saved or imported

from the verifier) to see how certain states are reachable. The Verifier is used to give

queries to be verified. Properties are selectable in the Overview list. The verifier checks

for simple invariants and reachability properties i.e. a certain state is reachable or not.

The queries are in the form of temporal logic formulas. The user may model-check one or

several properties, insert or remove properties, and toggle the view to see the properties

or the comments in the list. Satisfied properties are marked green and violated ones red.

For running large verification tasks, it is often cumbersome to execute these from inside

the GUI. For such situations, the stand-alone command line verifier called verifyta can be

used. It also makes it easy to run the verification on a remote UNIX machine with

memory to spare.

Two, and only two, Uppaal subsystems may synchronize on two enabled edges over a

normal channel if one edge is commanding and one edge is accepting. Any one Uppaal

subsystem with an enabled edge may synchronize with the commanding subsystem, and

if no synchronizing edge is available, no transition will take place; whereas in Teja, the

transition will take place in the commanding subsystem regardless of how many systems,

including zero, are synchronizing on the event.

To overcome this problem, we declare all channels in Uppaal as broadcast channels.

Zero, one, or multiple Uppaal subsystems may synchronize on a single event over a

broadcast channel. We are however restricted in that a certain subsystem, not listed to

receive an event in the Teja event dependency table, may still synchronize on that event

in Uppaal. This restriction must be overcome by examining the Teja event dependency

table during Uppaal verification. These are some of the issues to be noted between Teja

and Uppaal. Now that we know how the modules are modeled using Teja lets look into

the verification of the modules using Uppaal next.

 50

3.4 Illustration of Logical correctness – Survey AUV

We start with the lowest level (i=1), and pick the Steering module first as it receives

orders from the others, and only responds to those orders. We develop abstract models of

the commanding and commanded environment, called drivers and stubs. The steering

module is shown in Figure 21, whereas the abstraction of commanding environment the

driver module is shown in Figure 22. There is no module that the steering module

commands.

3.4.1 Verification of Steering module

Figure 21: Steering module in UPPAAL

Figure 22: Driver for steering module in UPPAAL

Queries

The following queries were formulated as temporal logic formulae in order to perform

verification of logical correcteness of the steering module.

E[] Steering_P.Idle_ds

/*Eventually in future there always is a path, which goes to the final state (here Idle_ds)*/

A[] Steering_P.SteerToPoint_ds imply Steering_P.timer<=2

/*The steering module always updates the present location of the AUV every 2 seconds

when at state SteerToPoint_ds */

A<> Steering_P.SteerToPoint_ds imply Steering_P.Idle_ds

/* Always eventually the vehicle is steered to the desired point */

 51

3.4.2 Verification of Loiter module

Figure 23: Loiter module module in UPPAAL

The next module selected is the Loiter module at level 1, then its environment is

abstracted. The Loiter module is shown in Figure 23, the abstracted commanding

environment is shown in Figure 24 and the abstracted commanded environment is shown

in Figure 25.

Figure 24: Driver for loiter module module in UPPAAL

Figure 25: Stub for loiter module module in UPPAAL

Queries formulated as temporal formulas are as shown below.

A<> Loiter_P.Idle_ds

 52

/* All paths eventually lead to the final or end state (here Idle_ds), indicating progress i.e.

order is completed as final state is reached or it might be that the mission is aborted but

that too signifies progress indicating the detection of failure and no deadlock. */

A<> Loiter_P.ChooseLoiterMode_ds imply (Loiter_P.Hover_ds||Loiter_P.Circle_ds)

/* All paths from the state ChooseLoiterMode eventually either leads to hovering or

circling (indicating progress as it should select a mode to loiter). */

A[] Loiter_P.Circle_ds imply (Loiter_P.LoiterTO>0 && Loiter_P.NumPoints>2)&&

WPNav__ToWP__LoiterType==Loiter_P.CIRCLE

/* For all paths if "Circling" is selected the guard conditions are LoiterTO>0 and

NumPoints>2 (this indicates that the guard conditions required for circling like number

of points are taken care of) Changes: numpoints>2 and LoiterTO>0 in global declaration

*/

A[] Loiter_P.Hover_ds imply (Loiter_P.LoiterTO>0 && Loiter_P.NumPoints>2)||

WPNav__ToWP__LoiterType==Loiter_P.HOVER

/* For all paths always if "Hovering" is selected then the required guard conditions are

satisfied. Changes: NumPoints<2 and LoiterTO>0 */

A[] Loiter_P.Circle_ds imply Loiter_P.NumPoints>2

/* For all paths always circling means number of points >2 Changes: NumPoints>=2 */

E<> not Loiter_P.NumPoints>2 and Loiter_P.Hover_ds

/* This statement proves that there doesnt exist a path where eventually NumPoints>2

hold after Hover mode */

E<> (Loiter_P.NumPoints<2 && WPNav__ToWP__LoiterType==Loiter_P.HOVER)

imply Loiter_P.Hover_ds

/* Is it possible to reach Hover mode with all parameters for HOVERING mode */

 53

E<> (Loiter_P.NumPoints>2 && WPNav__ToWP__LoiterType==Loiter_P.CIRCLE)

and Loiter_P.Hover_ds

/* Is it possible to reach Hover mode with all parameters for Circling mode */

E<> Loiter_P.NumPoints>2 imply Loiter_P.GoToCircleWP_ds

/* Does there exist a path where NumPoints>2 leads to GoToCircleWP_ds (indicating

progress of Circle type order being executed correctly) */

E<> (Loiter_P.NumPoints>2 && WPNav__ToWP__LoiterType==Loiter_P.CIRCLE)

imply Loiter_P.Circle_ds

/* Is it possible to reach CIRCLE mode with circling mode type input (indicating that

logic of guards for progress of executing orders correctly)*/

E<> (Loiter_P.NumPoints<2 && WPNav__ToWP__LoiterType==Loiter_P.HOVER)

and Loiter_P.Circle_ds

/* Is it possible to reach CIRCLE mode with hovering mode type input (indicating that

guards for progress are given correctly)*/

E<> Loiter_P.TimeInState<=Loiter_P.LoiterTO-Loiter_P.Loiter_TimeToLoiterPt_FCN

imply not Loiter_P.StopCircle_ds

/*Is it possible to reach StopCircle_ds when the guard condition leading to that state is

satisfied */

E<> (Loiter_P.GoToCircleWP_ds and Helm__DistanceToPoint<=20) imply

Loiter_P.Circle_ds

/* Check correct execution: Is it possible to reach to Circle_ds when at

GoToCircleWP_ds and guard Helm__DistanceToPoint<=20 is satisfied */

E<> (Loiter_P.Hover_ds || Loiter_P.Circle_ds) imply Loiter_P.GoToLoiterPt_ds

/*Is it possible to reach the GoToLoiterPt_ds state after choosing the mode of loitering */

 54

A<> Loiter_P.ChooseLoiterMode_ds imply Loiter_P.Idle_ds

/* All paths eventually lead to final state from the present state indicating either

successful completion or termination of a mission*/

A<> Loiter_P.Hover_ds imply Loiter_P.Idle_ds

/* All paths eventually lead to final state from the present state */

A<> Loiter_P.Circle_ds imply Loiter_P.Idle_ds

/* All paths eventually lead to final state from the present state */

A<> Loiter_P.GoToCircleWP_ds imply Loiter_P.Idle_ds

/*All paths eventually lead to final state from the present state*/

A<> Loiter_P.StopCircle_ds imply Loiter_P.Idle_ds

/*All paths eventually lead to final state from the present state*/

A<> Loiter_P.GoToLoiterPt_ds imply Loiter_P.Idle_ds

/*All paths eventually lead to final state from the present state */

A<> Loiter_P.ReportTO_ds imply Loiter_P.Idle_ds

/*All paths eventually lead to final state from the present state*/

E<> Loiter_P. GoToLoiterPt_ds and Loiter_P.Timer<=2

/*Is the information regarding reaching the loiter point updated every 2 seconds*/

3.4.3 Verification of GPSFixer module

All the subsystems at level 1 are now verified. So the value of i changes to the next level

which is 2. The next module selected is the GPSFixer subsystem at level 2. The

environment for GPSFixer susbsystem is now abstracted. The GPSFixer subsystem is

shown inFigure 26, the abstracted commanding environment is shown in Figure 27 and

the abstracted commanded environment is shown in Figure 28.

 55

Figure 26: GPSFixer module in UPPAAL

Figure 27: Driver for GPSFixer module in UPPAAL

Figure 28: Stub for GPSFixer module in UPPAAL

Queries:

A<> GPSFixer_P.Idle_ds

/* All paths eventually lead to the final state (All paths not always lead to final state as

ReportTO_ds doesnt connect to the final state but it eventually goes to the final state).*/

E<> (GPSFixer_P.GoToSurface_ds and Nav__Depth<=GPSFixer_P.SurfaceThreshold)

imply GPSFixer_P.RaiseMast_ds

/*Is it possible to reach the next state (RaiseMast_ds) when its at present state

GoToSurface_ds and guard condition is Nav__Depth<=SurfaceThreshold */

 56

E<> DevState__MastState==GPSFixer_P.UP and GPSFixer_P.RaiseMast_ds imply

GPSFixer_P.TakeFix_ds

/*Is it possible to reach the next state (TakeFix_ds) when its at present state

RaiseMast_ds and the guard condition checking whether the mast is raised is satisfied */

E<> DevState__GPSFixState==GPSFixer_P.DONE and GPSFixer_P.TakeFix_ds imply

GPSFixer_P.ComeOffSurface_ds

/*Is it possible to reach the next state (ComeOffSurface_ds) when its at present state

TakeFix_ds and the guard condition checking whether the GPSFix is done is satisfied*/

A[] not deadlock

/*Does there exist a deadlock*/

E<> GPSFixer_P.ComeOffSurface_ds imply GPSFixer_P.Decide_ds ||

GPSFixer_P.Idle_ds

/*Is it possible to reach the next state (Decide_ds or Idle_ds) when its at present state

ComeOffSurface_ds */

E<> GPSFixer_P.Decide_ds and GPSOrd__ReturnToStart and

GPSFixer_P.ReturnToStart_ds

/* Is it possible to reach the next state (ReturnToStart_ds) when its at present state

Decide_ds and the guard conditon checking whether to return to start stae is satisfied*/

E<> GPSFixer_P.Decide_ds and !GPSOrd__ReturnToStart imply GPSFixer_P.Idle_ds

/* Is it possible to reach the next state (Idle_ds) when its at present state Decide_ds and

the guard conditon checking whether not to return to start state is satisfied */

E<> GPSFixer_P.Decide_ds and GPSOrd__ReturnToStart and

Steering_P.SteerToPoint_ds

 57

/* Is it possible to reach SteerToPoint_ds in Steering when the guard condition is satisfied

when in the Decide_ds state in GPSFixer */

E<> GPSFixer_P.Decide_ds and !GPSOrd__ReturnToStart and

Steering_P.SteerToPoint_ds

/* is it possible to reach from Decide_ds in GPSFixer to Steering (SteerToPoint_ds) when

the guard condition is not satisfied */

E<> GPSFixer_P.Decide_ds and !GPSOrd__ReturnToStart and Steering_P.Idle_ds

E<> GPSFixer_P.TakeFix_ds and DevState__GPSFixState==GPSFixer_P.DONE and

Launcher_P.RetractMast_ds

/*is it possible to reach from TakeFix_ds in GPSFixer to Launcher (RetractMast_ds)

when the guard condition is not satisfied and the synchronous event occurs */

3.4.4 Verification of Waypointnavigator module

The value of level i remains 2. The next module selected is the Waypointnavigator

subsystem at level 2. The environment for Waypointnavigator susbsystem is now

abstracted. The Waypointnavigator subsystem is shown in Figure 29, the abstracted

commanding environment is shown in Figure 30 and the abstracted commanded

environment is shown in Figure 31.

Queries for the verification of Waypointnavigator is shown belo.

A[] not deadlock

/*Does there exist a deadlock*/

A<> WaypointNavigator_P.Idle_ds

/* All paths eventually lead to the final state (inidicating progress or diagnosis of failure

if aborted) */

 58

Figure 29: Waypointnavigator module in UPPAAL

Figure 30: Driver for Waypointnavigator module in UPPAAL

Figure 31: Stub for Waypointnavigator module in UPPAAL

E<> ToWP__Timed && WaypointNavigator_P.TimeToWaypoint >

WaypointNavigator_P.DistanceToWaypoint / WaypointNavigator_P.MinSpeed and

WaypointNavigator_P.TimedWP_ds

/* Is it possible to do a timed waypoint if the guard conditions are satisfied (Yes indicates

correct implementation) Change: TimeToWaypoint DistanceToWaypoint MinSpeed to

check the various situations with the guard condition */

 59

E[] (WaypointNavigator_P.TimeToWaypoint >

WaypointNavigator_P.DistanceToWaypoint /WaypointNavigator_P.MinSpeed) imply \

WaypointNavigator_P.TimedWP_ds

/* Whenever the guard signifying time is satisfied does it do timed waypoint */

E<> !ToWP__Timed || WaypointNavigator_P.TimeToWaypoint <=

WaypointNavigator_P.DistanceToWaypoint/WaypointNavigator_P.MinSpeed and

WaypointNavigator_P.GoToWaypoint_ds

/* Is it possible to do an untimed waypoint if the guard conditions are satisfied (Yes

indicates correct implementation) Change: TimeToWaypoint DistanceToWaypoint

MinSpeed to check the various situations with the guard condition */

E[] (WaypointNavigator_P.TimeToWaypoint <

WaypointNavigator_P.DistanceToWaypoint / WaypointNavigator_P.MinSpeed) imply

WaypointNavigator_P.GoToWaypoint_ds

/*Is it possible to do untimed waypoint when time to reach the point by the vehicle is

more than desired time*/

WaypointNavigator_P.TimedWP_ds --> WaypointNavigator_P.GoToLP_ds

/*Is it possible to reach go to loiter point state once timed waypoint is started (as the next

step is to go to loiter point indicating progress)*/

A<> (WaypointNavigator_P.GoToWaypoint_ds and

WaypointNavigator_P.WaypointNavigator_DepthTrouble_FCN) imply

 WaypointNavigator_P.WPDepthProblem_ds

/* For all paths at state GoToWaypoint_ds if depth trouble occurs it goes to rectify it.*/

E<> (WaypointNavigator_P.WaypointNavigator_DepthOK_FCN and

WaypointNavigator_P.WaypointNavigator_DepthTrouble_FCN) imply

WaypointNavigator_P.GoToWaypoint_ds

/*Is it possible to get depth rectified and move on to normal state*/

 60

E[] WaypointNavigator_P.GoToWaypoint_ds imply Stub.Steer_State

/*There exists a path where always steering needs to be done whenever waypoint needs

to go to a point*/

E<> (!ToWP__Timed&&Helm__DistanceToPoint<=

WaypointNavigator_P.ThresholdDistance) || (

ToWP__Timed&&Helm__DistanceToPoint <= 5) imply Stub.Run

/* The guard conditions being satisfied steering is done, the point is reached*/

E<> (WaypointNavigator_P.GoToWaypoint_ds ||

WaypointNavigator_P.WPDepthProblem_ds)&&(!ToWP__Timed&&Helm__DistanceTo

Point <= WaypointNavigator_P.ThresholdDistance

)||(ToWP__Timed&&Helm__DistanceToPoint<=5) imply Stub.Run &&

WaypointNavigator_P.ReportTO_ds

/* Is it possible to go to the Idle state in steering and ReportTO state in Waypoint from go

to waypoint or depth problem rectifying state in waypoint when the guard conditions are

satisfied*/

E<> WaypointNavigator_P.GoToLP_ds imply Stub.Steer_State

/* Is it possible to steer to desired point when doing timed waypoint */

E<> (WaypointNavigator_P.GoToLP_ds and

WaypointNavigator_P.WaypointNavigator_DepthTrouble_FCN) imply

WaypointNavigator_P.LPDepthProblem_ds

/* Is it possible to go to depth correction state when the guard indicating depth trouble is

TRUE (yes indicates correct performance) */

E<> WaypointNavigator_P.LPDepthProblem_ds and WaypointNavigator_P.timer>=2

/*Is it possible to be at state LPDepthProblem_ds with timer greater than 2 (if yes

indicating wrong model) couldnt find result as taking lot of time need to check for long */

 61

E<> WaypointNavigator_P.LPDepthProblem_ds and WaypointNavigator_P.timer<=1

/* Is it possible to be at state LPDepthProblem_ds with timer less than equal to 1 (if yes

indicating correct model) couldnt find result as taking lot of time need to check for long

*/

E<> WaypointNavigator_P.GoToLP_ds and WaypointNavigator_P.timer>=2

/* Is it possible to be at state GoToLP_ds with timer greater than 2 (if yes indicating

wrong model) couldnt find result as taking lot of time need to check for long*/

E<> WaypointNavigator_P.GoToLP_ds and WaypointNavigator_P.timer<=1

/* Is it possible to be at state GoToLP_ds with timer less than equal to 1 */

E<> WaypointNavigator_P.GoToWaypoint_ds and WaypointNavigator_P.timer>=3

/* Is it possible to be at state GoToWaypoint_ds with timer greater than 3 */

E<> WaypointNavigator_P.GoToWaypoint_ds and WaypointNavigator_P.timer<=2

/*Is it possible to be at state GoToWaypoint_ds with timer less than equal to 2 */

E<> WaypointNavigator_P.WPDepthProblem_ds and WaypointNavigator_P.timer>=2

/*Is it possible to be at state GoToWaypoint_ds with timer greater than 2 */

E<> WaypointNavigator_P.WPDepthProblem_ds and WaypointNavigator_P.timer<=1

/* Is it possible to be at state GoToWaypoint_ds with timer less than equal to 1 */

E<> WaypointNavigator_P.TimedWP_ds imply (WaypointNavigator_P.Loiter_ds ||

WaypointNavigator_P.LoiterDone_ds)

/*Is it possible to loiter if executing a timed waypoint */

E<> WaypointNavigator_P.AtWP_ds and ToWP__LoiterDuration<=0 imply

WaypointNavigator_P.LoiterDone_ds

 62

/* Is it possible to reach the desired region when no time is left for loitering while doing a

timed waypoint */

E<> WaypointNavigator_P.AtWP_ds and ToWP__LoiterDuration>0 imply

WaypointNavigator_P.Loiter_ds

/* Is it possible to loiter when time is left to reach the desired region while doing a timed

waypoint */

E<> WaypointNavigator_P.LoiterDone_ds and (WaypointNavigator_P.t

>=WaypointNavigator_P.TimeToWaypoint) imply WaypointNavigator_P.ReportTO_ds

/* Is it possible to reach the data reporting state after loitering is done */

E<> WaypointNavigator_P.ReportTO_ds imply WaypointNavigator_P.Idle_ds

/* Is it possible to reach the final state when the desired point is reached */

3.4.5 Verification of Rendezvous module

The value of level i remains 2. The next module selected is the Rendezvous subsystem at

level 2. The environment for Rendezvous susbsystem is now abstracted. The Rendezvous

subsystem is shown in Figure 32, the abstracted commanding environment is shown in

Figure 33 and the abstracted commanded environment is shown in Figure 34.

Figure 32: Rendezvous module in UPPAAL

 63

Figure 33: Driver for Rendezvous module in UPPAAL

Figure 34: Stub for Rendezvous module in UPPAAL

Queries as temporal logic formulas to verify properties for the Rendezvous susbsystem.

A[] not deadlock

/*Does there exist a deadlock*/

E<> ToWP__Latitude==0&&ToWP__Longitude == 0 && ToWP__Depth == 0 &&

ToWP__Speed == 0 imply Rendezvous_P.Loiter_ds

/* Is it possible to loiter when rendezvous is not specified*/

E<> ToWP__LoiterType==Rendezvous_P.NONE ||ToWP__LoiterDuration==0 imply

Rendezvous_P.Idle_ds

/* Is it possible to be idle when no loiter type is given and no loiter duration is specified*/

E<> Rendezvous_P.GoToRendezvous_ds and Stub.Waypoint_State

/*Is it possible to start waypoint navigation by the rendezvous controller */

E<> Rendezvous_P.AtRendezvous_ds and Stub.Run

/* Is it possible for rendezvous to synchronize with waypointNavigator to process way

point navigation */

E<> Rendezvous_P.Loiter_ds and Stub.Loiter_State

 64

/* Is it possible to synchronize Rendezvous with Loiter for loitering*/

E<> Rendezvous_P.LoiterDone_ds and Stub.Run

/* Is it possible to synchronize rendezvous with loiter to get loitering done */

Rendezvous_P.LoiterDone_ds --> Stub.Run

/*Is it possible by the rendezvous controller to execute loiter successfully*/

E<> Rendezvous_P.LoiterDone_ds and Stub.Run

/*Checking on synchronization of rendezvous with loiter*/

3.4.6 Verification of Launcher module

The value of level i remains 2. The next module selected is the Launcher subsystem at

level 2. The environment for Launcher susbsystem is now abstracted. The Launcher

subsystem is shown in Figure 35, and the abstracted commanding environment is shown

in Figure 36.

Queries as temporal logic formulas to verify the properties satisfied by the Launcher

subsystem.

A[] not deadlock

/*Does there exist a deadlock*/

E<> Launcher_P.Idle_ds imply Launcher_P.RetractMast_ds

/* Is it possible to retract mast using the launcher */

Figure 35: Launcher module in UPPAAL

 65

Figure 36: Driver for Launcher module in UPPAAL

E<> Launcher_P.RetractMast_ds and Launcher_P.TimeInState >=

Launcher_P.RetractMastTO imply Launcher_P.Idle_ds

/*Is it possible to abort launcher operation when time at that state is greater than time to

retract mast indicating some failure */

E<> Launcher_P.RetractMast_ds imply Launcher_P.ComeOffSurface_ds

/* Is it possible to dive down using the launcher */

E<> Launcher_P.ComeOffSurface_ds imply Launcher_P.Idle_ds

/*Is it possible to reach the final state once diving of the surface is done */

3.4.7 Verification of PayloadDelivery module

The value of level i remains 2. The next module selected is the PayloadDelivery

subsystem at level 2. The environment for PayloadDelivery susbsystem is now

abstracted. The PayloadDelivery subsystem is shown in Figure 37, the abstracted

commanding environment is shown in Figure 38 and the abstracted commanded

environment is shown in Figure 39.

 66

Figure 37: PayloadDelivery module in UPPAAL

Figure 38: Driver for PayloadDelivery module in UPPAAL

Figure 39: Stub for PayloadDelivery module in UPPAAL

Queries to verify properties satisfied by the PayloadDelivery subsystem

A[] not deadlock

/*Does there exist a deadlock*/

E<> PayloadDelivery_P.Idle_ds

/* Is it possible to reach the final state from any other state */

E<> PayloadDelivery_P.GoToPoint_ds and Stub.Waypoint_State

/*Is it that Payload module passes control to waypointnavigator to go to the desired

location*/

 67

E<> PayloadDelivery_P.Deliver_ds and Stub.Run

/*Synchronizes with waypointnavigator to go to the desired location successfully*/

E<> PayloadDelivery_P.GoToPoint_ds and WPNav__TimeToWaypoint <=

PayloadDelivery_P.DeliveryDelay imply PayloadDelivery_P.Deliver_ds and Stub.Run

/*With the guard conditions being satisfied does the payloaddelivery synchronize with

waypointnavigator successfully */

3.4.8 Verification of DeviceCommander module

The value of level i remains 2. The next module selected is the DeviceCommander

subsystem at level 2. The environment for DeviceCommander susbsystem is now

abstracted. The DeviceCommander subsystem is shown in Figure 40, and the abstracted

commanding environment is shown in Figure 41.

Figure 40: DeviceCommader module

Figure 41: Driver for DeviceCommander module in UPPAAL

Queries for DeviceCommander module is as given below.

A[] not deadlock

/*Does there exist a deadlock*/

E<> DeviceCommander_P.SetCommand_ds and DeviceCommander_P.timer<1

/* s it possible for time to be greater than 1 at state setcommand*/

E<> DeviceCommander_P.DeviceCommander_DeviceCmdDone_FCN &&

DeviceCommander_P.CmdSet imply DeviceCommander_P.Idle_ds

 68

/*Is device set successfully*/

E<> DeviceCommander_P.DeviceCommander_TimeOut_FCN &&

DeviceCommander_P.SetCommand_ds imply DeviceCommander_P.Idle_ds

/* Is it possible to time out when going to set a device*/

E<> DeviceCommander_P.SetCommand_ds and DeviceCommander_P.timer>1

/* Is it possible to remain at state SetCommand without updation for more than 1

second*/

3.4.9 Verification of Pause module

The value of level i remains 2. The next module selected is the PayloadDelivery

subsystem at level 2. The environment for PayloadDelivery susbsystem is now

abstracted. The PayloadDelivery subsystem is shown in Figure 42, and the abstracted

commanding environment is shown in Figure 43.

Figure 42: Pause module in UPPAAL

Figure 43: Driver for pause module in UPPAAL

Queries to verify properties satisfied by the Pause subsystem

A[] not deadlock

/*Does there exist a deadlock*/

Pause_P.Idle_ds and WaitOrd__WaitTime>0 --> Pause_P.Wait_ds

/* Is it possible to go to wait state to keep the coordinator waiting */

 69

E<> Pause_P.Wait_ds and Pause_P.TimeInState>=WaitOrd__WaitTime imply

Pause_P.Idle_ds

/* Is it possible to successfully complete pause operation*/

3.4.10 Verification of Sequential coordinator module

The value of level i changes to level 3. The next module selected is the Sequential

Coordinator subsystem at level 2. The environment for sequential coordinator susbsystem

is now abstracted. The Sequential Coordinator subsystem is shown in Figure 44, the

abstracted commanding environment is shown in Figure 45 and the abstracted

commanded environment is shown in Figure 46.

Figure 44: Sequential coordinator module in UPPAAL

 70

Figure 45: Driver for sequential coordinator module in UPPAAL

Figure 46: Stub for Sequential coordinator module in UPPAAL

Queries to verify properties satisfied by the Sequential Coordinator subsystem

A[] not deadlock

/*Does there exist a deadlock*/

E<> Controller_P.EndMission_ds

/*Is it possible to finally reach the end state*/

E<> Controller_P.WaitForVCComms_ds and Controller_P.t>10

/*Does the sequential controller wait for 10 seconds before it goes to run state*/

E<> Controller_P.run_ds and Controller_P.t<=1

/*Does the controller check the missionqueue every 1 second to check for pending

requests*/

E<> Controller_P.GPSFixer_ds and Stub.GPSFix_State

/*Does the controller pass control to GPSfixer operation controller when the order is to

perfom GPSFix*/

E<> Controller_P.GPSFixer_ds and Controller_P.Suspendable==0

 71

/*Is it that GPSFixer is non suspendable(Yes indicating the design is correct as it should

not be suspendable)*/

E<> Controller_P.GPSFixer_ds and SeqController__Idle==0

/*Is it possible for sequential coordinator to transfer control to waypoint navigator and

wait*/

E<> Controller_P.run_ds imply Stub.Run

/*Is it possible that when controller is in run state GPSFixer is in idle state indicating that

GPSFix has been done*/

E<> Controller_P.WaypointNavigator_ds and Stub.Waypoint_State

/*Does the controller pass control to WaypointNavigator operation controller when the

order is to perform Waypoint navigation*/

E<> Controller_P.WaypointNavigator_ds and Stub.Run

/*Does the WaypointNavigator perform the operation successfully*/

E<> Controller_P.WaypointNavigator_ds and Controller_P.Suspendable==1

/*Is it that WaypointNavigator is suspendable(Yes indicating the design is correct as it

should be suspendable)*/

E<> Controller_P.WaypointNavigator_ds and SeqController__Idle==0

/*Is it possible for sequential coordinator to transfer control to waypoint navigator and

wait*/

E<> Controller_P.Pause_ds and Stub.Pause_State

/*Does the sequential controller pass control to pause*/

E<> Controller_P.Pause_ds and SeqController__Idle==0

/*Is the Secontroller idle when it passes control to Pause*/

 72

E<> Controller_P.Pause_ds and Controller_P.Suspendable==0

/*Is the pause operation suspendable*/

E<> Controller_P.Launcher_ds and Stub.Launch_State

/*Does the controller pass control to Launcher module */

E<> Controller_P.run_ds and Stub.Run

/*Is Launch command completed successfully*/

E<> Controller_P.Launcher_ds and SeqController__Idle==0

/*Is the Seqcontroller idle when it passes control to Launcher*/

E<> Controller_P.Launcher_ds and Controller_P.Suspendable==0

/*Is the Launch operation suspendable*/

E<> Controller_P.Rendezvous_ds and Stub.Rendezvous_State

/*Is it possible to pass control to Rendezvous*/

E<> Controller_P.run_ds and Stub.Run

/*Is the Rendezvous mission completed successfully */

E<> Controller_P.Rendezvous_ds and SeqController__Idle==0

/*Is the Seqcontroller idle when it passes control to Rendezvous*/

E<> Controller_P.Rendezvous_ds and Controller_P.Suspendable==1

/*Is the Launch operation suspendable*/

E<> Controller_P.DeviceOrder_ds and Stub.Device_State

/*Is it possible to pass control to DeviceCommander module*/

 73

E<> Controller_P.DeviceOrder_ds and SeqController__Idle==0

/*Is the Seqcontroller idle when it passes control to Devicecommander*/

E<> Controller_P.DeviceOrder_ds and Controller_P.Suspendable==0

/*Is the DeviceCommander operation suspendable*/

E<> Controller_P.Payload_ds and SeqController__Idle==0

/*Is the Seqcontroller idle when it passes control to Payload*/

E<> Controller_P.Payload_ds and Controller_P.Suspendable==0

/*Is the Payload operation suspendable*/

E<> Controller_P.Suspend_ds and SeqController__Suspended==1

/*Is there a method to test whether the seq.Controller is suspended*/

E<> Controller_P.Suspend_ds imply Controller_P.run_ds or

Controller_P.EndMission_ds

/*Is it possible to return back to normal operation or end the mission after suspension*/

E<> Nav__Depth<=Controller_P.SurfaceThreshold && DevCmd__MastCmd !=

Controller_P.UP

/*Is it possible to come to surface of water and raise mast to indicate end of mission*/

E<> Controller_P.EndMission_ds and DevState__MastState==Controller_P.UP

/*Is it possible to raise mast at end of state*/

E<> Controller_P.run_ds && NonSeqController__Idle==0 && NoMission==0 imply

Controller_P.EndMission_ds

/*Does the Seq. Controller check for the status of other controllers before ending the

mission*/

 74

E<> Controller_P.EndMission_ds and Controller_P.Suspendable==0

/*Is the end mission state suspendable*/

E<> Controller_P.EndMission_ds and SeqController__Idle==0

/*Is the Seq. Controller idle at end mission state*/

E<> Driver.Suspend_State imply Controller_P.Suspend_ds

/*Is it possible to suspend Seq. Controller by Non Seq. Controller*/

E<> Driver.Run and Controller_P.run_ds

/*Is it possible for both the Seq. and Non Seq. Controller to be ready at the same time*/

3.4.11 Verification of Timed Coordinator module

The value of level i remains at level 3. The next module selected is the Timed

Coordinator subsystem at level 2. The environment for Timed coordinator susbsystem is

now abstracted. The Timed Coordinator subsystem is shown in Figure 47, and the

abstracted commanded environment is shown in Figure 48.

 75

Figure 47: Timed coordinator module in UPPAAL

Figure 48: Stub for timed coordinator module in UPPAAL

Queries to verify the the properties satisfied by the Timed coordinator

A[] not deadlock

/*Does there exist a deadlock*/

E<> TimedActions_P.End_ds

/*Is it possible to reach the final state*/

E<> TimedActions_P.Device_ds imply Stub.Device_State

/*Does the Timed action pass the control to Device commander when it needs to set or

start a device*/

E<> TimedActions_P.Launch_ds and Stub.Launcher_State

/*Does the Timed action pass the control to launcher when it needs to comeoffsurface or

act with the mast*/

E<> TimedActions_P.Wait_ds imply Stub.Pause_State

/*Does the Timed action pass the control to pause when it needs to wait*/

 76

E<> TimedActions_P.GPSFix_ds imply Stub.GPSFix_State

/*Is it possible to execute a timed GPSFix*/

E<> TimedActions_P.Wait4Suspend_ds and TimedActions_P.t ==

TimedActions_P.TimedOrderTO/3+1

/*Does the timed actions try to suspend the seq. coordinator every desired time*/

E<> TimedActions_P.Wait4Suspend_ds imply TimedActions_P.t <=

TimedActions_P.TimedOrderTO/3+1

/*Does the timed actions try to suspend the seq. coordinator every desired time*/

E<> TimedActions_P.CheckOrders_ds && TimedActions_P.MissionTime >=

CurrTimedOrd__Time&&(TimedActions_P.InterruptCoordinator_CheckSuspend_FCN&

&SeqCoordinator__Suspendable&&!SeqCoordinator__Idle)&&

!SeqCoordinator__Suspended imply TimedActions_P.Wait4Suspend_ds

/*Is it possible to suspend the seq. controller*/

E<> TimedActions_P.MissionTime>=CurrTimedOrd__Time &&

TimedActions_P.TimedActions_CheckSuspend_FCN && !NonSeqController__Idle imply

TimedActions_P.CheckOrders_ds

/*Does the Timed action check for orders when the mission time is greater than the

current time (indicating timed mission

can be accomplished) and does Timed action check the need to suspend seq controller or

not and timed actions is not idle*/

E<> TimedActions_P.Check4Resume_ds and !SeqController__Suspended imply

TimedActions_P.CheckOrders_ds

/*Is it possible for the timed action to chekc for orders when the sequential controller

doesnt need to be suspended*/

 77

E<> TimedActions_P.Check4Resume_ds and SeqController__Suspended and

TimedActions_P.MissionTime<CurrTimedOrd__Time imply

TimedActions_P.CheckOrders_ds

/*Does the Timed action controller check timed orders when Seq. Controller is suspended

and Mission time is greater than

current time for timed order*/

E<> TimedActions_P.Check4Resume_ds and SeqController__Suspended && not

TimedActions_P.TimedActions_CheckSuspend_FCN ||

NonSeqController__Idle imply TimedActions_P.CheckOrders_ds

/*Does the Time action controller check timed orders when seq. controller is suspended

and timed action doesn’t need suspension or timed controller is idle*/

E<>TimedActions_P.CheckOrders_ds and !NonSeqController__Idle &&

TimedActions_P.MissionTime>=CurrTimedOrd__Time && (not

TimedActions_P.TimedActions_CheckSuspend_FCN || SeqController__Idle ||

SeqController__Suspended) imply TimedActions_P.Decide_ds

/*Does the timed action become ready to execute orders when the timed controller is not

idle and mission time is greater than current timed order time and timed action doesnt

need suspension or sequential controller is idle or sequential controller is already

suspended*/

E<> TimedActions_P.Wait_ds imply not Stub.Pause_State

/*Is it possible to transfer control to Pause moduel*/

E<> TimedActions_P.Decide_ds imply TimedActions_P.End_ds

/*Is it possible to go to the final state from the decide state*/

E<> TimedActions_P.Wait_ds imply TimedActions_P.End_ds

/*Is it possible to go to the final state from the situation where control is passed to the

pause controller*/

 78

E<> TimedActions_P.Launch_ds imply TimedActions_P.End_ds

/*Is it possible to go to the final state from the situation where control is passed to the

launch controller*/

E<> TimedActions_P.GPSFix_ds imply TimedActions_P.End_ds

/*Is it possible to go to the final state from the situation where control is passed to the

GPSFix controller*/

E<> TimedActions_P.Device_ds imply TimedActions_P.End_ds

/*Is it possible to go to the final state from the situation where control is passed to the

Device controller*/

E<> TimedActions_P.CheckOrders_ds imply TimedActions_P.End_ds and

TimedActions_P.Idle==1

/*Is it possible to go to the final state from state to check orders*/

A<> TimedActions_P.Decide_ds imply (TimedActions_P.End_ds ||

TimedActions_P.Wait_ds || TimedActions_P.Launch_ds || TimedActions_P.GPSFix_ds ||

TimedActions_P.Device_ds)

/*All paths eventually lead to final state or pause or launcher or GPSFixer or Device from

the decide state in timed actions*/

E<> TimedActions_P.End_ds imply TimedActions_P.Idle==1

/*Is it possible for Non Seq. Controller to be idle at end of mission*/

E<> TimedActions_P.CheckOrders_ds imply TimedActions_P.Idle==0 &&

TimedActions_P.Done

/*Is it possible for Non Seq.Controller to be idle at CO state*/

E<> TimedActions_P.CheckOrders_ds imply TimedActions_P.MissionTime==0

 79

/*Is the mission time zero at CO state*/

3.4.12 Verification of Safety Coordinator module

The value of level i remains at level 3. The next module selected is the Safety

Coordinator subsystem at level 2. The Safety Coordinator checks the voltage, depth of

water and the functioning of other devices from the common database. The Safety

Coordinator is as shown in Figure 49.

Figure 49: Safety coordinator module in UPPAAL

Queries to verify the properties of the safety module

A[] not deadlock

/*Does there exist a deadlock*/

E<> Safeties_P.CheckSafeties_ds && Nav__Altitude < Safeties_P.MinimumAltitude

imply Safeties_P.LowAltitude_ds

/*Is there method a to check water depth safety*/

E<> Safeties_P.CheckSafeties_ds && Safeties_P.Safeties_VoltageAbort_FCN ||

Safeties_P.Safeties_WaterDepthAbort_FCN) imply Safeties_P.SafetyAbort_ds

/*Is tehr method to check voltage safety*/

E<> Safeties_P.LowAltitude_ds && Nav__Altitude >= Safeties_P.MinimumAltitude

imply Safeties_P.CheckSafeties_ds

/*Is it possible to correct the altitude*/

 80

E<> Safeties_P.LowAltitude_ds && Safeties_P.Safeties_VoltageAbort_FCN

||Safeties_P.Safeties_WaterDepthAbort_FCN || Nav__Altitude >=

Safeties_P.LowAltitudeTO imply Safeties_P.SafetyAbort_ds

/*Is there a method to abort mission if safety is violated*/

 81

4 Model-based Animation/Simulation
Animation/Simulation is the imitation of the reality for studying the effect of changing

parameters in a model as a means of taking a decision. Animation/Simulation imitates or

estimates how events might occur in a real situation. It can involve complex

mathematical modeling, role playing without the aid of technology, or combinations. The

value lies in placing one under realistic condition, that change as a result of behavior of

other variables involved so one cannot anticipate the sequence of events or the final

outcome. An animation/simulation tool aids in the creation of the realistic environment

using mathematical formulas and algorithms. Usage of a simulation tool gives one the

advantage of checking the accuracy of algorithms involved in the experiment without

incurring damage to the vehicle or equipments involved. Due to which we looked into

the feasibility of creating an animation/simulation tool for a mission driven AUV which

we discuss in this section.

A simulation tool had been implemented for the automated highway system in the PATH

project at Berkley [67] [68]. The use of such a simulation tool proved to be advantageous

because of the beneficial outcomes. It helped to prove the correctness of the mathematical

modeling before actual implementation. A simulation in addition to verification further

strengthens the correctness of a modeled system. This is because mostly verification of a

hybrid system is carried out by abstracting the system and it might miss out on faulty

situation which might occur for the combined system. Animation/Simulation involves

both the continuous and discrete dynamics combined together to successfully execute a

mission. So a simulation would catch some interactions which might be missed while

carrying out verification as described by Godbole, Lygeros and Sastry in [69].

We looked into the feasibility of creating a simulation environment to model the actions

executed by the AUV under given mission orders. The preliminary tool developed is a

very basic tool which proves the possibility of having a very advanced simulation tool in

future. The simulation tool is very specific to the survey missions for an AUV. OpenGL

is used to simulate/animate the missions executed by the AUV.

4.1 OpenGL: Tool for Animation/Simulation

OpenGL is a software interface to the graphics hardware (GL stands for Graphics

library). OpenGL is a hardware independent interface to be implemented on many

 82

different hardware platforms. OpenGL contains commands to draw geometric primitives

like points, lines, and polygons to build the desired model. The desired model can be any

complicated shape like that of an automobile, aeroplane etc. It allows the creation of

interactive programs with colored images of moving three-dimensional objects. It can be

used to control advanced graphics technology to create realistic images. OpenGL

provides a set of commands that allow the specification of geometric objects in two or

three dimensions, using the provided primitives, together with commands that control

how these objects are rendered into the frame buffer and also to create interactive

applications with these commands.

OpenGL is like a state machine, the state being defined by color, current viewing,

projection transformation, polygon drawing mode, characteristics of light etc. The state

remains the same until changed by changing the parameters within the functions used to

design the desired model. OpenGL also supports animation of graphical models drawn.

Thus using OpenGL we can move or rotate or involve translation of an object the way we

want.

GLUT (OpenGL Utility Toolkit) is a library of utilities for OpenGL programs, which

primarily perform system-level I/O with the host operating system and provides many

modeling features. Functions performed include window definition, window control, and

monitoring of keyboard and mouse input. Routines for drawing a number of geometric

primitives (both in solid and wireframe mode) are also provided, including cubes,

spheres. GLUT even has some limited support for creating pop-up windows.

A typical program that uses OpenGL begins with calls to open a window into the frame

buffer into which the program will draw. Then, calls are made to allocate a GL context

and associate it with the window. Once a GL context is allocated, OpenGL commands

can be issued. Some calls are used to draw simple geometric objects (i.e. points, line

segments, and polygons), while others affect the rendering of these primitives including

how they are lit or colored and how they are mapped from the user's two- or three-

dimensional model space to the two-dimensional screen.

The major graphics operations which OpenGL performs to render (render is the process

by which a computer creates images from models) an image on the screen are as given

next. Construct shapes from geometric primitives, thereby creating mathematical

 83

descriptions of objects. (OpenGL considers points, lines, polygons, images, and bitmaps

to be primitives.). Arrange the objects in three-dimensional space and select the desired

vantage point for viewing the composed scene. Calculate the color of all the objects. The

color might be explicitly assigned by the application, determined from specified lighting

conditions, obtained by pasting a texture onto the objects, or some combination of these

three actions. Convert the mathematical description of objects and their associated color

information to pixels on the screen. This process is called rasterization. During these

stages, OpenGL might perform other operations, such as eliminating parts of objects that

are hidden by other objects. In addition, after the scene is rasterized but before it's drawn

on the screen, one can perform some operations on the pixel data.

The final rendered image consists of pixels drawn on the screen. A pixel is the smallest

visible element the display hardware can put on the screen. Information about the pixels

(for instance, what color they're supposed to be) is organized in memory into bitplanes. A

bitplane is an area of memory that holds one bit of information for every pixel on the

screen. For example the bit might indicate how red a particular pixel is supposed to be.

The bitplanes are themselves organized into a framebuffer, which holds all the

information that the graphics display needs to control the color and intensity of all the

pixels on the screen.

Most implementations of OpenGL have a similar order of operations, a series of

processing stages called the OpenGL rendering pipeline.

Display lists all data, whether it describes geometry or pixels, can be saved in a display

list for current or later use. (The alternative to retaining data in a display list is processing

the data immediately - also known as immediate mode.) When a display list is xecuted,

the retained data is sent from the display list just as if it were sent by the application in

immediate mode.

All geometric primitives are eventually described by vertices. Parametric curves and

surfaces may be initially described by control points and polynomial functions called

basis functions. Evaluators provide a method to derive the vertices used to represent the

surface from the control points. The method is a polynomial mapping, which can produce

surface normal, texture coordinates, colors, and spatial coordinate values from the control

points.

 84

For vertex data, next is the "per-vertex operations" stage, which converts the vertices into

primitives. Some vertex data (for example, spatial coordinates) are transformed by 4 x 4

floating-point matrices. Spatial coordinates are projected from a position in the 3D world

to a position on your screen. If advanced features are enabled, this stage is even busier. If

texturing is used, texture coordinates may be generated and transformed here. If lighting

is enabled, the lighting calculations are performed using the transformed vertex, surface

normal, light source position, material properties, and other lighting information to

produce a color value.

Clipping, a major part of primitive assembly, is the elimination of portions of geometry

which fall outside a half-space, defined by a plane. Point clipping simply passes or rejects

vertices; line or polygon clipping can add additional vertices depending upon how the

line or polygon is clipped. In some cases, this is followed by perspective division, which

makes distant geometric objects appear smaller than closer objects. Then viewport and

depth (z coordinate) operations are applied. If culling is enabled and the primitive is a

polygon, it then may be rejected by a culling test. Depending upon the polygon mode, a

polygon may be drawn as points or lines. The results of this stage are complete geometric

primitives, which are the transformed and clipped vertices with related color, depth, and

sometimes texture-coordinate values and guidelines for the rasterization step.

While geometric data takes one path through the OpenGL rendering pipeline, pixel data

takes a different route. Pixels from an array in system memory are first unpacked from

one of a variety of formats into the proper number of components. Next the data is scaled,

biased, and processed by a pixel map. The results are clamped and then either written into

texture emory or sent to the rasterization step. If pixel data is read from the frame buffer,

pixel-transfer operations (scale, bias, mapping, and clamping) are performed. Then these

results are packed into an appropriate format and returned to an array in system memory.

There are special pixel copy operations to copy data in the framebuffer to other parts of

the framebuffer or to the texture memory. A single pass is made through the pixel transfer

operations before the data is written to the texture memory or back to the framebuffer.

An OpenGL application may wish to apply texture images onto geometric objects to

make them look more realistic. If several texture images are used, it's wise to put them

into texture objects so that you can easily switch among them. Some OpenGL

 85

implementations may have special resources to accelerate texture performance. There

may be specialized, high-performance texture memory. If this memory is available, the

texture objects may be prioritized to control the use of this limited and valuable resource.

Rasterization is the conversion of both geometric and pixel data into fragments. Each

fragment square corresponds to a pixel in the framebuffer. Line and polygon stipples, line

width, point size, shading model, and coverage calculations to support antialiasing are

taken into consideration as vertices are connected into lines or the interior pixels are

calculated for a filled polygon. Color and depth values are assigned for each fragment

square. Before values are actually stored into the framebuffer, a series of operations are

performed that may alter or even throw out fragments. All these operations can be

enabled or disabled.

The first operation which may be encountered is texturing, where a texel (texture

element) is generated from texture memory for each fragment and applied to the

fragment. Then fog calculations may be applied, followed by the scissor test, the alpha

test, the stencil test, and the depth-buffer test (the depth buffer is for hidden-surface

removal). Failing an enabled test may end the continued processing of a fragment's

square. Then, blending, dithering, logical operation, and masking by a bitmask may be

performed. Finally, the thoroughly processedfragment is drawn into the appropriate

buffer, where it has finally advanced to be a pixel and achieved its final resting place.

4.2 Proposed Approach for Animation/Simulation

We created a converter written in Perl. The converter takes the coordinator modules

involved in a specific mission as its input. The coordinator modules are modeled using

real time verification tool Uppaal which are .xml files. After opening the coordinator

modules the converter extracts important information from the UPPAAL files and

generates a graphics file in OpenGL. The information extracted are the different events

received or sent, and the variables used.

The converter searches the sequential/timed coordinator file, extracts the mission name

which is an event on a transition within the sequential/timed coordinator. Then the

converter searches the file among the set of input files which models a transition on the

same event. The converter then keeps extracting and expanding the sequence of events.

 86

The expansions model the sequence of actions (algorithms) executed by the concerned

controller modules.

The code that is generated can then be run using the commands used to run an OpenGL

program. The parameters required for a mission can be changed within the files which

changes certain actions executed by the AUV. A brief description of OpenGL, converter

code and explanation for one mission is explained next. The OpenGL modules are

attached in appendix C.

We use a bottom up approach for simulation. We first simulate the actions implemented

by the lower level controllers. Once the lower level controllers are simulated we combine

the higher level controllers with the lower ones. We used this approach because the parts

of mission executed by the lower level controllers are called for by the higher level ones.

So this gives us an organized way to build up the simulation of the model.

The OpenGL modules contain codes which expand each of the sequences to be executed

to successfully complete a mission. In the present simulation model sensor values are

stored in common files. The modules collect the sensor information and other parameter

changes from within the common files accessed. The modules then execute the sequence

of actions according to the inputs received. After completing the mission the changed

parameters are then written back to the common files like time, position etc. this way the

information gets updated. The next operation or mission to be executed gathers

information from the common files before starting to execute the sequence of actions.

The algorithm used for the conversion of the Uppaal modules to the OpenGL code is as

given below. Then follows a flowchart which shows the way the converter works and

then follows a few screen shots like the AUV with the mast underwater (Figure 50)

raising mast after reaching surface of water (Figure 51) and the OpenGL code for steering

module.

• For i = n to 1 (where n is the lowest level)

o For k = 1 to m (where m is the total number of modules within a level)

§ Input the hybrid model H at the Leveli to the converter

§ The converter extract events σ, guard ge and variables Vars

§ Generate OpenGL code to model the events, guards using the

variables involved.

 87

o Next k

• Next i

.

Flowchart 1: Method involved in simulation

No

No

Start

Select module at the
lowest level

Extract and expand
events, guards,

variables

Generate OpenGL
code

All modules
selected at

present level?

Select next module
at present level

All modules
selected at all

levels?

Select the next level

Stop

Yes

Yes

 88

Figure 50: AUV (green) with mast (yellow) underwater

Figure 51: AUV raising mast at surface of water while executing GPSFix

The code for the Steer module follows next.

4.3 The Converter code for Steering module

#Initialization
#!/usr/bin/perl -w
$in = '';
$input = '';
$i = 0;
$SteeringFunctionDone = 0;
$getvariable = 0;#Variable used to get the number of variables declared in the controller modules
$first = 0; #Variable to constrain the number of times the initialization code is generated
$Iterationnumber = 0;
$Iterationnumber1 = 0;
$numbertimesdecl = 0;
$abortNumber = 0;
$numberint = 0;
$stringofdecl = '';
@arrayofdecl = ();
$stringid = '';

 89

%sepvalue =();
@actualvar = ();
@stringofvar = ();
$SteeringSteerNumber = 0; #Variable to note down the number of times event Steer occurs
$InSteer = '';
open(OUTFILE, ">Steering.c");
open(SF, "Steering.xml") or die "Can't find file. Name it as Steering.xml\n";
open(STEERFILE, "Steering.xml");

Finding the number of times the event Steer occurs

while ($InSteer = <SF>)
{
 if ($InSteer =~ />Steer\W</) # Checking for the event Steer
 {
 $SteeringSteerNumber++;
 print "Number of time Steering $SteeringSteerNumber \n";
 }

}

Input the Steering controller module and generate the initalization code
while($in = <>) # Opening the Steer controller module
{
 if($first == 0) # Checking whether this code is generated once or not
 {
 print OUTFILE "\n/********* Steering module sequence animation**************/";
 print OUTFILE "\n#include <GL/glut.h>";
 print OUTFILE "\n#include <stdlib.h>";
 print OUTFILE "\n#include<stdio.h>";
 print OUTFILE "\n#include<time.h>";
 print OUTFILE "\n#include<math.h>";

 print OUTFILE "\n#define VMR 0.001 //Rate to move up depeding";
 print OUTFILE "\n#define HMR 0.001 //Rate to move up depeding";
 print OUTFILE "\n#define SurfaceThreshold 1 //To assign the boundary for water surface";
 print OUTFILE "\n#define MaxAngle 90 //To assign the mast the maximum angle";
 print OUTFILE "\n#define MastRate 0.05// Rate at which mast is raised";
 print OUTFILE "\n#define UP 1// To check whether mast is raised or not";
 $first++;
 }

Check for the number of declaration of variables
 while($input = <STEERFILE>)
 {
 if ($input =~ /\sint\s/)
 {
 $numbertimesint++; # Keeps track of iterations
 print"Integers = $numbertimesint\n";
 }
 }
Check for patterns as within declaration

 if($in =~ /int\s\S+:=\d/)
 {
 $stringofdecl = $&; # Store the pattern in a string
 @arrayofdecl = split(' ', $stringofdecl); # Get rid of int

 90

 $stringofvar = $arrayofdecl[1]; # Get the element of the array which contains the string of
variables
 @actualvar = split(',',$stringofvar); # split it based on commas to get the total no of variables

 for ($count = 0; $count<=$#actualvar; $count++) # Iterate for all the variables
 {
 $stringid = $actualvar[$count]; # Store each variable in a string
 %sepvalue = split(':',$stringid); # Split variables based on colon
 print OUTFILE "static GLfloat "; print OUTFILE %sepvalue; print OUTFILE ";"; print
OUTFILE "\n";

 }
 $getvariable++;
 }

 # Generate all the variables extracted and the initialization modules

 if ($Iterationnumber == 0 && $getvariable == $numbertimesint)
 {
 print OUTFILE "\nstatic GLfloat MastAngle;";
 print OUTFILE "\nstatic GLfloat MastMotion = 0.0;";
 print OUTFILE "\nstatic GLfloat Slope; // To get the slope of the line in direct
steeringmode";
 print OUTFILE "\nstatic GLfloat LatLongDiff; /*The constant in the equation of a line
for direct steermode*/";
 print OUTFILE "\nstatic GLfloat timer = 0;";

 print OUTFILE "\nfloat TimeOfOperation, TotalTime;";
 print OUTFILE "\nint SteerMode;";
 print OUTFILE "\nint z=0;";
 print OUTFILE "\nint Steering, count;";
 print OUTFILE "\nint i = 0 ; //Used for abort signal";
 print OUTFILE "\nint j =0, k =0, n =0, l =1;//j for lat loop, k for long loop, l for LINE
loop";
 print OUTFILE "\nint Lat = 0, begin, o = 0, m = 0, DevState__MastState;";
 print OUTFILE "\nint MastUp = 0;";
 print OUTFILE "\nfloat temp1, temp2, square;";
 print OUTFILE "\nfloat temp3, number, ExitTime,squareroot;";
 print OUTFILE "\ntime_t start, start1, start2, start3, start4;";
 print OUTFILE "\ntime_t end, end1, end2, end3, end4;";
 print OUTFILE "\ndouble elapsed;";
 print OUTFILE "\nFILE *STOutput, *SOutput, *SteerOutput, *StAngle;";
 print OUTFILE "\nvoid init(void)";
 print OUTFILE "\n{";
 print OUTFILE "\n glClearColor (0.0, 0.0, 0.0, 0.0);";
 print OUTFILE "\n glShadeModel (GL_FLAT);";
 print OUTFILE "\n}";
 print OUTFILE "\nvoid display(void)";
 print OUTFILE "\n{";
 print OUTFILE "\n glClear (GL_COLOR_BUFFER_BIT);";
 print OUTFILE "\n glColor3f(0.0, 0.4, 0.8);";
 print OUTFILE "\n glRectf(-8.0, -4.0, 8.0, 2.0);";
 print OUTFILE "\n glPushMatrix();";
 print OUTFILE "\n glTranslatef (-1.0, 0.0, 0.0);";
 print OUTFILE "\n glTranslatef (1.0, 0.0, 0.0);";
 print OUTFILE "\n glTranslatef(FromLongitude, FromLatitude, 0.0);";
 print OUTFILE "\n glTranslatef(FromLongitude, FromLatitude, 0.0);";

 91

 print OUTFILE "\n glPushMatrix();";
 print OUTFILE "\n glScalef (2.0, 0.4, 1.0);";
 print OUTFILE "\n glColor3f(0.0, 0.7, 0.4);";
 print OUTFILE "\n glutSolidCube (1.0);";
 print OUTFILE "\n glPopMatrix();";
 print OUTFILE "\n glTranslatef (0.0, 0.1, 0.0);";
 print OUTFILE "\n glTranslatef(0.08*FromLongitude, MastMotion, 0.0);";
 print OUTFILE "\n glRotatef(0.0, 0.0, 0.0, 1.0);";
 print OUTFILE "\n glTranslatef(0.5, MastMotion, 0.0);";
 print OUTFILE "\n glPushMatrix();";
 print OUTFILE "\n glScalef (0.8, 0.2, 0.5);";
 print OUTFILE "\n glColor3f(1.0, 1.0, 0.0);";
 print OUTFILE "\n glutSolidCube(1.0);";
 print OUTFILE "\n glPopMatrix();";
 print OUTFILE "\n glPopMatrix();";
 print OUTFILE "\n glutSwapBuffers();";
 print OUTFILE "\n}";
 $Iterationnumber++;

 }
Extract all the information for the Steer mission
 if($in =~ />Steer\W</)
 {
 print OUTFILE "\n/*Module to Steer the AUV*/";
 print OUTFILE "\nvoid Steer(void)";
 print OUTFILE "\n{";
 print OUTFILE "\n if(begin == 0)";
 print OUTFILE "\n {";
 print OUTFILE "\n time(&start);";
 print OUTFILE "\n time(&start1);";
 print OUTFILE "\n time(&start2);";
 print OUTFILE "\n time(&start3);";
 print OUTFILE "\n time(&start4);";
 print OUTFILE "\n begin++;";
 print OUTFILE "\n }";
 print OUTFILE "\n if (Steering == 1)";
 print OUTFILE "\n {";
 print OUTFILE "\n /*AUV moving horizontally when FromLongitude is lesser
than ToLongitude*/";
 print OUTFILE "\n if ((FromLongitude < ToLongitude) && (k == 0))";
 print OUTFILE "\n {";
 print OUTFILE "\n /*AUV for LINE steering mode to get slope*/";
 print OUTFILE "\n if ((SteerMode == 1) && (n == 0))";
 print OUTFILE "\n {";
 print OUTFILE "\n Slope = (ToLatitude-
FromLatitude)/(ToLongitude-
FromLongitude);";
 print OUTFILE "\n LatLongDiff = FromLatitude -
Slope*FromLongitude;";
 print OUTFILE "\n n++; l--;";
 print OUTFILE "\n }";
 print OUTFILE "\n /*AUV for LINE steering mode */";
 print OUTFILE "\n if (SteerMode == 1 && l ==0)";
 print OUTFILE "\n {";
 print OUTFILE "\n FromLongitude = FromLongitude
+ HMR;";

 92

 print OUTFILE "\n FromLatitude =
Slope*FromLongitude + LatLongDiff;";
 print OUTFILE "\n MastMotion =
0.008*FromLongitude;";
 print OUTFILE "\n j = 1;";
 print OUTFILE "\n if(difftime(end,start1) == 2)";
 print OUTFILE "\n {";
 print OUTFILE "\n";
 print OUTFILE ' printf("Time = %f, Steermode
LINE %f,
 %f\n",difftime(end,start1),
FromLatitude, FromLongitude);';
 print OUTFILE "\n time(&start1);";
 print OUTFILE "\n }";
 print OUTFILE "\n if(ToLongitude <= FromLongitude)";
 print OUTFILE "\n {";
 print OUTFILE "\n glutIdleFunc(NULL);";
 print OUTFILE "\n k =1;";
 print OUTFILE "\n l = 1;";
 print OUTFILE "\n";
 print OUTFILE ' printf("Time = %f Steermode LINE %f,

%f\n",difftime(end,start), FromLatitude, FromLongitude);';
 print OUTFILE "\n }";
 print OUTFILE "\n glutPostRedisplay();";
 print OUTFILE "\n }";
 print OUTFILE "\n}";
 print OUTFILE "\n/*AUV moving horizontally when FromLongitude is greater than
ToLongitude*/";
 print OUTFILE "\n if ((ToLongitude < FromLongitude) && (k == 0))";
 print OUTFILE "\n {";
 print OUTFILE "\n /*AUV for LINE steering mode to get slope*/";

 print OUTFILE "\n if (SteerMode == 1 && n == 0)";
 print OUTFILE "\n {";
 print OUTFILE "\n Slope = (ToLatitude-
FromLatitude)/(ToLongitude-FromLongitude);";
 print OUTFILE "\n LatLongDiff = FromLatitude -
Slope*FromLongitude;";
 print OUTFILE "\n n++; l--;";
 print OUTFILE "\n }";
 print OUTFILE "\n /*AUV for LINE steering mode*/ ";
 print OUTFILE "\n if (SteerMode == 1 && l == 0)";
 print OUTFILE "\n {";
 print OUTFILE "\n FromLongitude = FromLongitude - HMR;";
 print OUTFILE "\n FromLatitude = Slope*FromLongitude +
LatLongDiff;";
 print OUTFILE "\n MastMotion = 0.008*FromLongitude;";
 print OUTFILE "\n j = 1;";
 print OUTFILE "\n if((difftime(end,start2)) == 2)";
 print OUTFILE "\n {";
 print OUTFILE "\n";
 print OUTFILE ' printf("Time = %f, Steermode LINE Lat =
%f,
 Long = %f\n",difftime(end,start2),
FromLatitude,
 FromLongitude);';

 93

 print OUTFILE "\n time(&start2);";
 print OUTFILE "\n }";
 print OUTFILE "\n if(ToLongitude >= FromLongitude)";
 print OUTFILE "\n {";
 print OUTFILE "\n glutIdleFunc(NULL);";
 print OUTFILE "\n k =1;";
 print OUTFILE "\n l = 1;";
 print OUTFILE "\n";
 print OUTFILE ' printf("Time = %f, Steermode LINE %f,
 %f\n",difftime(end,start), FromLatitude,
FromLongitude);';
 print OUTFILE "\n }";
 print OUTFILE "\n glutPostRedisplay();";
 print OUTFILE "\n }";
 print OUTFILE "\n}";
 print OUTFILE "\n /*AUV moving Vertically when FromLatitude is lesser than
ToLatitude */";

 print OUTFILE "\n if (FromLatitude < ToLatitude && j == 0) ";
 print OUTFILE "\n {";
 print OUTFILE "\n FromLatitude = FromLatitude + VMR;";
 print OUTFILE "\n MastMotion = 0.008*FromLatitude;";
 print OUTFILE "\n if(difftime(end,start3) == 2)";
 print OUTFILE "\n {";
 print OUTFILE "\n if (SteerMode == 1)";
 print OUTFILE "\n";
 print OUTFILE ' printf("Time = %f Steermode LINE
Lat:%f
 Long = %f\n", difftime(end,start3),
FromLatitude, FromLongitude);';
 print OUTFILE "\n time(&start3);";
 print OUTFILE "\n }";

 print OUTFILE "\n if((FromLatitude >= ToLatitude) &&
(FromLongitude == ToLongitude))";
 print OUTFILE "\n {";
 print OUTFILE "\n glutIdleFunc(NULL);";
 print OUTFILE "\n j = 1; ";
 print OUTFILE "\n k = 1;";
 print OUTFILE "\n";
 print OUTFILE ' printf("Time = %f, Steermode LINE %f,
%f\n",difftime(end,start), FromLatitude, FromLongitude);';
 print OUTFILE "\n }";
 print OUTFILE "\n glutPostRedisplay();";
 print OUTFILE "\n }";
 print OUTFILE "\n /*AUV moving vertically when FromLatitude is greater than
ToLatitude */";
 print OUTFILE "\n if (FromLatitude > ToLatitude && j == 0) ";
 print OUTFILE "\n {";
 print OUTFILE "\n FromLatitude = FromLatitude - VMR;";
 print OUTFILE "\n MastMotion = 0.008*FromLatitude;";
 print OUTFILE "\n if(difftime(end,start4)== 2)";
 print OUTFILE "\n {";
 print OUTFILE "\n if (SteerMode == 1)";
 print OUTFILE "\n";

print OUTFILE ' printf("Time = %f Steermode LINE Lat:%f Long =

 94

 %f\n",difftime(end,start4), FromLatitude,
FromLongitude);';
 print OUTFILE " time(&start4);";
 print OUTFILE "\n }";
 print OUTFILE "\n if((FromLatitude <= ToLatitude) &&
(FromLongitude ==ToLongitude))";
 print OUTFILE "\n {";
 print OUTFILE "\n glutIdleFunc(NULL);";
 print OUTFILE "\n j = 1; ";
 print OUTFILE "\n k = 1;";
 print OUTFILE "\n";

 print OUTFILE ' printf("Time = %f, Steermode LINE %f, %f\n" ,
 difftime(end,start), FromLatitude,
FromLongitude);';
 print OUTFILE "\n }";

 print OUTFILE "\n glutPostRedisplay();";
 print OUTFILE "\n }";
 print OUTFILE "\n}";
 print OUTFILE "\n time(&end);";
 print OUTFILE "\n if(k == 1 && j == 1)";
 print OUTFILE "\n{";
 print OUTFILE "\n if(count == 0)";
 print OUTFILE "\n {";
 print OUTFILE "\n";

 print OUTFILE ' SOutput = fopen("C:\\Research\\ Animation \\ Temp
\\ Mission \\
 Position.txt", "w");';
 print OUTFILE "\n";
 print OUTFILE ' fprintf(SOutput, "%f\n", FromLatitude);';
 print OUTFILE "\n";
 print OUTFILE ' fprintf(SOutput, "%f\n", FromLongitude);';
 print OUTFILE "\n";
 print OUTFILE "\n fclose(SOutput);";

 print OUTFILE "\n";
 print OUTFILE ' SteerOutput = fopen(
"C:\\Research\\Animation\\Temp\\Mission\\SteerOutput.txt
 ", "w");';
 print OUTFILE "\n";
 print OUTFILE ' fprintf(SteerOutput, "%f\n", FromLatitude);';
 print OUTFILE "\n";
 print OUTFILE ' fprintf(SteerOutput, "%f\n", FromLongitude);';
 print OUTFILE "\n";
 print OUTFILE ' fprintf(SteerOutput, "%f\n", difftime(end, start));';
 print OUTFILE "\n";
 print OUTFILE "\n fclose(SteerOutput);";

 print OUTFILE "\n";
 print OUTFILE ' STOutput =
fopen("C:\\Research\\Animation\\Temp\\Mission\\Time.txt", "r");';
 print OUTFILE "\n";
 print OUTFILE ' fscanf(STOutput,"%f\n", &TotalTime);';
 print OUTFILE "\n fclose(STOutput);";

 95

 print OUTFILE "\n TotalTime = TotalTime + difftime(end, start);";

 print OUTFILE "\n";
 print OUTFILE ' STOutput =
fopen("C:\\Research\\Animation\\Temp\\Mission\\Time.txt", "w");';
 print OUTFILE "\n";
 print OUTFILE ' fprintf(STOutput, "%f\n", TotalTime);';
 print OUTFILE "\n fclose(STOutput);";
 print OUTFILE "\n count = 1;";
 print OUTFILE "\n exit(0);";
 print OUTFILE "\n }";
 print OUTFILE "\n}";
 print OUTFILE "\n}";

 $SteeringFunctionDone++;
 }

Sequence of action implemented during abort

 if($in =~ />Abort\W</ && $abortNumber == 0)
 {
 print OUTFILE "\nvoid Abort(void)";
 print OUTFILE "\n{";
 print OUTFILE "\n /*AUV moving up to take GPSFix (Control within GPSFix
module)*/";
 print OUTFILE "\n /*Take value of SurfaceThreshold from Uppaal file */";
 print OUTFILE "\n if (FromLatitude < SurfaceThreshold && o ==0)";
 print OUTFILE "\n {";
 print OUTFILE "\n FromLatitude = FromLatitude + VMR;";
 print OUTFILE "\n MastMotion = 0.008*FromLatitude;";

 print OUTFILE "\n if(FromLatitude == SurfaceThreshold)";
 print OUTFILE "\n {";
 print OUTFILE "\n glutIdleFunc(NULL);";
 print OUTFILE "\n o = 1;";
 print OUTFILE "\n }";
 print OUTFILE "\n glutPostRedisplay();";
 print OUTFILE "\n }";

 print OUTFILE "\n if (FromLatitude >= SurfaceThreshold && m == 0)";
 print OUTFILE "\n {";
 print OUTFILE "\n MastAngle = MastAngle + MastRate; ";
 print OUTFILE "\n /*Rate to raise mast when AUV is on water surface rate valur
from Uppaaal*/";
 print OUTFILE "\n while (MastAngle>MaxAngle) /*Take value of
MastAngle from Uppaal*/";
 print OUTFILE "\n {";
 print OUTFILE "\n DevState__MastState = UP;";
 print OUTFILE "\n MastUp = 1;";
 print OUTFILE "\n }";
 print OUTFILE "\n glutPostRedisplay();";
 print OUTFILE "\n }";

 print OUTFILE "\n}";
 $abortNumber++;

 96

 }
Generate the graphics of the AUV and undersea environment
 if ($Iterationnumber1 == 0 && $SteeringFunctionDone == 1 && $abortNumber == 1)
 {
 print OUTFILE "\nvoid reshape (int w, int h)";
 print OUTFILE "\n{";
 print OUTFILE "\n glViewport (0, 0, (GLsizei) w, (GLsizei) h);";
 print OUTFILE "\n glMatrixMode (GL_PROJECTION);";
 print OUTFILE "\n glLoadIdentity ();";
 print OUTFILE "\n gluPerspective(70.0, (GLfloat) w/(GLfloat) h, 10.0, 4.0);";
 print OUTFILE "\n glMatrixMode(GL_MODELVIEW);";
 print OUTFILE "\n glLoadIdentity();";
 print OUTFILE "\n glTranslatef (0.0, 0.0, -5.0);";
 print OUTFILE "\n}";
#Associating mouse and keyboard related actions
 print OUTFILE "\nvoid keyboard (unsigned char key, int x, int y)";
 print OUTFILE "\n{";
 print OUTFILE "\nswitch (key) {";

 print OUTFILE "\n case 'a':";
 print OUTFILE "\n {";
 print OUTFILE "\n i = 1;";
 print OUTFILE "\n glutIdleFunc(NULL);";
 print OUTFILE "\n }";
 print OUTFILE "\n break;";

 print OUTFILE "\n case 27:";
 print OUTFILE "\n exit(0);";
 print OUTFILE "\n break;";
 print OUTFILE "\n default:";
 print OUTFILE "\n break;";
 print OUTFILE "\n }";
 print OUTFILE "\n}";
 print OUTFILE "\nvoid mouse(int button, int state, int x, int y)";

 print OUTFILE "\n{";
 print OUTFILE "\n switch(button)";
 print OUTFILE "\n {";
 print OUTFILE "\n case GLUT_LEFT_BUTTON:";
 print OUTFILE "\n if (state == GLUT_DOWN && i == 0.0)";
 print OUTFILE "\n {";
 print OUTFILE "\n glutIdleFunc(ProcessPayload);";

 print OUTFILE "\n } ";
 print OUTFILE "\n break;";

 print OUTFILE "\n }";
 print OUTFILE "\n}";

 print OUTFILE "\nFILE *SInput, *StInput, *SAngle;";
 print OUTFILE "\nint main(int argc, char** argv)";
 print OUTFILE "\n{";
 print OUTFILE "\n glutInit(&argc, argv);";

 print OUTFILE "\n/*Open file for reading input*/";

 97

 print OUTFILE ' SInput =
fopen("C:\\Research\\Animation\\Temp\\Mission\\SteerInput.txt", "r");';
 print OUTFILE "\n if(SInput == NULL)";
 print OUTFILE ' printf("The file SteerInput.txt was not opened\n");// File
failed to open';
 print OUTFILE "\n";
 print OUTFILE "\n else";
 print OUTFILE ' printf("The file SteerInput.txt was opened\n");// File opened';
 print OUTFILE "\n";
 print OUTFILE "\n fseek(SInput, 0L, SEEK_SET);";
 print OUTFILE "\n";
 print OUTFILE ' fscanf(SInput, "%d\n", &Steering);//Get the order is Steering
or not';
 print OUTFILE "\n";
 print OUTFILE ' fscanf(SInput, "%d\n", &SteerMode);//Mode of Steering';
 print OUTFILE "\n";
 print OUTFILE ' fscanf(SInput, "%f\n", &ToLatitude);//Get the destined
Latitude';
 print OUTFILE "\n";
 print OUTFILE ' fscanf(SInput, "%f\n", &ToLongitude);//Get the destned
Longitude';
 print OUTFILE "\n";
 print OUTFILE "\n fclose(SInput);";
 print OUTFILE "\n";
 print OUTFILE ' printf("ToLat = %f, ToLong = %f\n",ToLatitude,
ToLongitude);';
 print OUTFILE "\n /*Safety modules check for depth safety*/";
 print OUTFILE "\n if (ToLatitude < -1.5)";
 print OUTFILE "\n {";
 print OUTFILE "\n ToLatitude = -1.5;";
 print OUTFILE "\n";
 print OUTFILE ' printf("ToLatitude value change to -1.5 as depth below that is
dangerous\n");';
 print OUTFILE "\n }";
 print OUTFILE "\n if (ToLatitude > 1.0)";
 print OUTFILE "\n {";
 print OUTFILE "\n ToLatitude = 1.0;";
 print OUTFILE "\n";
 print OUTFILE ' printf("ToLatitude value cannot be more than 1.0 the
surface\n");';
 print OUTFILE "\n }";

 print OUTFILE "\n";
 print OUTFILE ' StInput =
fopen("C:\\Research\\Animation\\Temp\\Mission\\Position.txt", "r");';
 print OUTFILE "\n";
 print OUTFILE ' fscanf(SInput, "%f\n", &FromLatitude);//Get the current
Latitude';
 print OUTFILE "\n";
 print OUTFILE ' fscanf(SInput, "%f\n", &FromLongitude);//Get the current
Longitude';
 print OUTFILE "\n";
 print OUTFILE ' printf("Lat = %f, Long = %f\n",FromLatitude,
FromLongitude);';

 98

 print OUTFILE "\n if (FromLatitude < -1.5)";
 print OUTFILE "\n {";
 print OUTFILE "\n FromLatitude = -1.5;";
 print OUTFILE "\n";
 print OUTFILE '\n printf("FromLatitude value change to -1.5 as depth
below that is dangerous\n");';
 print OUTFILE "\n }";

 print OUTFILE "\n if (FromLatitude > 1.0)";
 print OUTFILE "\n {";
 print OUTFILE "\n FromLatitude = 1.0;";
 print OUTFILE ' printf("FromLatitude value cannot be more than 1.0 the
surface\n");';
 print OUTFILE "\n }";
 print OUTFILE "\n temp1 = FromLatitude - ToLatitude; ";
 print OUTFILE "\n temp2 = FromLongitude - ToLongitude;";
 print OUTFILE "\n temp3 = temp1*temp1 + temp2*temp2;";
 print OUTFILE "\n squareroot = sqrt(temp3); ";
 print OUTFILE "\n";
 print OUTFILE ' printf("%f\n", squareroot);';
 print OUTFILE "\n";
 print OUTFILE ' SAngle =
fopen("C:\\Research\\Animation\\Temp\\Mission\\Position.txt", "r");';
 print OUTFILE "\n";
 print OUTFILE ' fscanf(SAngle, "%f\n", &MastAngle);';
 print OUTFILE "\n if (MastAngle > 0 && FromLatitude < 1.0)";
 print OUTFILE "\n {";
 print OUTFILE "\n MastAngle = 0.0;";
 print OUTFILE ' printf("Mast is not raised as not on surface\n");';
 print OUTFILE "\n }";
 print OUTFILE "\n fclose(SAngle);";
 print OUTFILE "\n if (MastAngle > 0 && FromLatitude == 1.0)";
 print OUTFILE "\n {";
 print OUTFILE "\n MastAngle = 0.0;";
 print OUTFILE "\n";
 print OUTFILE ' printf("Lower Mast before going below surface of water\n");';
 print OUTFILE "\n }";
 print OUTFILE "\n glutInit(&argc, argv);";
 print OUTFILE "\n glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB);";
 print OUTFILE "\n glutInitWindowSize (500, 500); ";
 print OUTFILE "\n glutInitWindowPosition (100, 100);";
 print OUTFILE "\n glutCreateWindow (argv[0]);";
 print OUTFILE "\n init ();";
 print OUTFILE "\n glutDisplayFunc(display); ";
 print OUTFILE "\n glutReshapeFunc(reshape);";
 print OUTFILE "\n glutKeyboardFunc(keyboard);";
 print OUTFILE "\n glutMouseFunc(mouse);";
 print OUTFILE "\n glutMainLoop();";
 print OUTFILE "\n return 0;";
 print OUTFILE "\n}";
 $Iterationnumber1++;
 }
}

 99

5 Coordinator synthesis
Our goal is to automate the synthesis of mission coordinators (i.e. controllers at the

topmost layer) for hierarchy based intelligent control architecture for AUVs. The

interactions within the modules in hierarchical intelligent control architecture are

complex. Synthesis of a coordinator for such a system is a challenging task as it requires

careful monitoring of the inputs received and the outputs sent. The controller is a hybrid

system with discrete states and continuous dynamics. The continuous dynamics are

implemented as functions. The coordinators are a special case of hybrid system which

only involve timing constraints known as timed automata.

Many systems belong to the group of hybrid systems such as logic based switching

control systems, intelligent vehicle/ highway systems and chemical batch processes. A

growing need for modeling, analysis and design of hybrid systems in practice has

increased the efforts put in by researchers. Next we look into the different approaches to

controller synthesis before we look into the details of our method.

Several approaches like game theory, supervisory control, and optimal control have been

used to synthesize a controller. The supervisory control of discrete event system

approach of Ramagde and Wonham [65] can also be said as the event feedback scheme.

The plant generates events. The supervisor observes the events and then generates a

control pattern based on a legal set of specifications. Other approaches have used state

feedback control scheme [66] as shown in figure. The supervisor observes the plant

states. At each step the supervisor generates a control pattern based on a given set of legal

states to ensure no illegal state are reached.

The approach by Lygeros in [2], [62], [63], [64] is to design a hybrid controller by

determining continuous control laws and conditions under which they satisfy the closed

loop requirements. Then, a discrete design is constructed to ensure that these conditions

are satisfied. Controller synthesis for a real time system is proposed by Asarin in [60].

The controller in [60] is synthesized based on a winning strategy for certain games

defined by automata or timed automata. Another game theoretic approach proposed in

[61] is used for constructing reliable controllers for arbitrarily large discrete systems. The

controller is synthesized by finding a winning strategy for specific games defined by

contracts. The discrete system model is an action system, and the requirement is a

 100

temporal property. The game reduces to a competition between, the controller, and the

plant, which try to prevent each other from achieving their respective goals. If the

synthesis is possible, that is, if the controller has a way to enforce the required property,

the process ends with finding the winning strategy of the controller, by propagating

backwards the computed precondition of the plant, with respect to that property. This

technique guarantees the correctness of the derived program.

5.1 Proposed Approach for coordinator synthesis

Automated synthesis of the coordinators promises reduction in time to develop and

implement coordinators for underwater and aerial vehicles. It also improves modification

and debugging capability.

Our goal in the automation of coordinators is to translate the higher level specifications

and user inputs into sequence of actions to successfully execute the mission. The

coordinators we synthesize are timed automata with timing constraints. The definitions

of the automata built are as discussed in section.

We consider the requirement of three coordinators at the topmost level. The three

coordinators are a sequential coordinator (implementing sequential control to execute a

sequence of actions for a mission), a timed coordinator (implementing time critical

missions) and a safety coordinator (implements safe execution of mission). These

coordinators are synthesized based on user input and high level specification. The

coordinators consist of a basic structure and a synthesized part. The basic structure

implements control common to any kind of mission coordinator built. For example each

and every coordinator needs to establish connection with the vehicle before requesting a

mission. The synthesized part is developed based on the specific mission to be executed.

For example a mission can be find the present location using a GPS or fire a missile.

5.2 Sequential coordinator

Sequential coordinator is used to coordinate the execution of sequence of actions

involved in the successful execution of an untimed mission. The sequential coordinator is

synthesized based on the inputs received and its response. Inputs received by the

sequential coordinator can be requests made by the user i.e. the mission order or other

coordinators at the same level or responses received from lower level or same level

 101

coordinators. The algorithm consists of two parts the first part implements the basic

structure and the second part implements the augmentation of new edges, guards, reset

values and locations to the sequential coordinator. The simplest structure of the

sequential coordinator is shown in Figure 52. The basic structure is the same for all the

sequential coordinators which involves two different phases: Initialization phase, and

Communication establishment phase. The mission specific structure contains mission

order phase, and response phase.

Figure 52: Structure of sequential coordinator

Algorithm:

Create five locations l L and name them as Idle, WaitforVCComms, Run, Suspend and

Endmission. (control for any AUV needs all these states)

• Create an edge e0 from Idle to WaitforVCComms (indicating transition to a state

to wait to establish communication with the Vehicle)

o Set event σin = Init

Input

Do Done

Sequential coordinator

Mission specific structure

… …

Basic

Structure

MN1 MN1 MN1

Lower level coordinators

Same level

coordinators

 102

o Set guard condition Gi
(e0) = t>=T where T is a constant time to initialize

the system (for our case T = 1)

o Set reset condition R(e0) = {t=0}

• Create an edge e1 to Run state from WaitforVCComms if a connection with

vehicle is established

o Set event σin = NewVCData

o Set guard condition Gi
(e1) = t>=10

o Set reset condition R(e1) = {t = 0, MissionTime = 0, Suspendable = 0}

• Create an edge e2 from Run state to EndMission state

o Set event σi = Endmission

o For each Controlleri Levelj where i= 1…n, j = 1 only

§ Set the guard condition on the edge Gi
(e2) = (Controllerk->Idle)

where k = 1,2…n, k != i checking the status of other controllers (0

meaning idle)

o Set reset condition R(e2) = {t = 0, Suspendable = 0, Idle = 0} to indicate

that all the coordinators are idle

• At EndMission state

o Draw a self loop edge e3

§ Set event σin = OnSurface

§ Set guard condition G
i
(e3) = (Vark < = SurfaceThreshold) where

Vark is k
th

 variable mapped to set of real numbers (indicating

sensor value of depth) SurfaceThreshold indicates a constant value

 103

Figure 53: Basic structure for Sequential Coordinator

• Start: Get Mission order name Orn(<MissionName>, Prm).

• If mission name is obtained for the first time

o Create a location l L and name it <MissionName>

o Draw an edge ei from the Run state to <MissionName> state where i =

j+1… n, where j is the number for the last edge that was drawn

§ Set the events as σin/σo = <MissionName> /Do<MissionName>

command sent to the lower order controllers

o Set the guard condition Gj
(ei) = {Vark = “<MissionName>”}

o Set the reset condition R(ei) ={Suspendable = (0 or 1), Idle = 0, t = 0}

o If Suspendable = 1

§ Create an edge ei from <Mission Name> state to Suspend state

• Set event σin = Suspend

• Set guard condition G(ei) = {True}

• Set reset condition R(ei) = {t = 0, Suspendable = 0}

§ If connecting to the Suspend state for the first time

Abort/Abort

G(.) = {True}
R(.) = {t = 0}

EndMission/-

G (.) = Controller k -> Idle
R(.) = {t = 0, Suspendable =
0 ,Idle = 0 }

NewVCData/-

G(.) = t>=10

R(.)={t=0,
MissionTime = 0,
Suspendable = 0}

Init/-

G(.)= {t<
τ
}

R(.) = {t=0}

W

I

R

E

OnSurface/-

G(.) = Vark < = SurfaceThreshold
R(.) = {Φ}

 104

• Create a self loop ei at the Suspend state

o Set the event σin / σo = Abort / Abort

o Set guard condition G(ei) = {Vark = !Suspended }

o Set reset condition R(ei) = {Suspended = 1}

• Create an edge ei from Suspend state to Run state

o Set event σin = Resume

o Set guard condition G(ei) = {True}

o Set reset condition R(ei) = {Suspended = 0,

Suspendable = 0, t = 0}

o Draw an edge ei from the <Mission Name> state to EndMission State

§ Set the σin/σo = Abort / Abort

§ Set guard condition G(ei) = {True}

§ Set reset condition R(ei) = {t = 0}

o Create an edge ei from <Mission Name> state to Run State

§ Set event σin = <MissionName>Done

§ Set guard condition G(ei) = {True}

§ Set reset condition R(ei) = {t = 0, Suspendable = 0}

• Else if mission name is already there

o Go to Start to get the name of the next mission

• End

 105

Figure 54 : Sequential coordinator

5.3 Timed coordinator synthesis

Timed coordinator is used to coordinate the execution of time critical mission. Timed

critical mission involves execution of sequence of actions with timing constraints. The

timed coordinator is synthesized based on the inputs received and its response. Inputs

received by the sequential coordinator can be requests made by the user i.e. the mission

order or other coordinators at the same level or responses received from lower level or

same level coordinators. The algorithm till the label Start implements the basic structure

and the remaining part implements the augmentation of new edges, guards, reset values

and locations to the sequential coordinator.

Algorithm:

Abort/Abort

G (.) ={Vark = !Suspended}

R(.) = {Suspended = 1}

<MissionNamej> / <DoMissionNamej>

G(.) = {Vark =<MissionName1>}

R(.) = {t = 0, suspendable =1, Idle = 0} <MissionName1> / <DoMissionName1>

G(.) = {Vark =<MissionName1>}

R(.) = {t = 0, suspendable =0, Idle = 0}

<MissionNamenDone>/-

G(.) = {True}
R(.) = {Suspendable = 0,
t = 0}

<MissionName1Done>/-

G(.) = {True}
R(.) = {Suspendable = 0,
t = 0}

Abort/Abort

G(.) = {True}
R(.) = {t = 0}

Abort/Abort

G(.) = {True}
R(.) = {t = 0}

EndMission/-

G (.) = Controller k -> Idle
R(.) = {t = 0, Suspendable =
0 ,Idle = 0 }

Resume/-

G(.) = {True}

R(.) = {Suspendable = 0,

Suspended = 0, t = 0}

Suspend/-

Suspendable = 0

NewVCData/-

G(.) = t>=10

R(.)={t=0,
MissionTime = 0,
Suspendable = 0}

Init/-

G(.)= {t<
τ
}

R(.) = {t=0}

W

S
I

R

E

OnSurface/-

G(.) = Vark < = SurfaceThreshold
R(.) = {Φ}

MN1 MNn

Abort/Abort

G(.) = {True}
R(.) = {t = 0}

Abort/Abort

G(.) = {True}
R(.) = {t = 0}

…

 106

• Create seven locations l L and name them as Idle, WaitForFirstTO,

CheckOrders, Wait4Suspend, Check4Resume, Decide and End.

• Draw an edge e0 from Idle state to WaitForFirstTO state

o Set event σin = Init/-

o Set guard condition G(e0) = {t>= τ } where τ is a constant

o Set reset condition R(e0) = {
Φ

}

• Draw an edge e1 from WaitForFirstTO to CheckOrders

o Set event σin = NewVCData/-

o Set guard condition G(e1) = {True}

o Set reset condition R(e1) = {MissionTime = 0, t = 0, Done = 1}

• Draw an edge e2 from CheckOrders state to End state

o Set event σin = EndMission

o Set guard condition G(e2) = {True}

o Set reset condition R(e2) = {Idle = 0}

• Draw an edge e3 from CheckOrders state to Decide state

o Set event σin = NewOrder

o Set guard condition Gi
(e) = strcmp(this->CurrTimedOrd->Name,"None")

&& TimedActions_get_MissionTime() >= this->CurrTimedOrd->Time

&& (!TimedActions_CheckSuspend(this)||this->SeqController->Idle||this-

>SeqController->Suspended)

o Set reset condition R(e3) = {Idle = 0}

• Draw an edge e4 from CheckOrders to Wait4Suspend (indicating that the mission

requires suspension of the other coordinators)

o Set σin = Suspend/ Suspend

o Set guard condition G(e4) = { strcmp(this->CurrTimedOrd-

>Name,"None") && TimedActions_get_MissionTime() >= this-

>CurrTimedOrd->Time && (TimedActions_CheckSuspend(this)&&this-

>SeqController->Suspendable && !this->SeqController->Idle) &&!this-

>SeqController->Suspended}

o Set reset condition R(e4) = {t = 0, Idle = 0, Time2Suspend = 0 }

 107

• Create a loop e5 at Wait4Suspend state

o Set σin = Suspend/ Suspend (suspend the Sequential Coordinator)

o Set guard condition Gi
(e5) = !this->SeqController->Suspended

o Set reset condition R(e5) = {t = 0}

• Draw an edge e6 from Wait4Suspend to Decide state

o Set σin = NewOrder

o Set Gi
(e6) = this->SeqController->Suspended

o Set reset condition R(e6) = {
Φ

}

• Draw an edge e7 from Check4Resume to CheckOrders without Resume event

o Set σin = OrderComplete/-

o Set the G
i
(e7) = !this->SeqController->Suspended ||

(TimedActions_get_MissionTime() >= this->CurrTimedOrd->Time &&

strcmp(this->CurrTimedOrd->Name,"None"))

o Set the reset condition R(e7) = {
Φ

}

• Draw an edge e8 from Check4Resume to CheckOrders

o Set σin = OrderComplete /Resume

o Set G
i
(e8) = this->SeqController->Suspended &&

(TimedActions_get_MissionTime() < this->CurrTimedOrd->Time ||

!strcmp(this->CurrTimedOrd->Name,"None"))

o Set the reset condition R(e8) = {
Φ

}

• Draw an edge e9 from each of the states (excepting Idle and WaitForFirstTO) to

End state

o Set event σin / σo = Abort/Abort

o Set guard condition Gi
(e9) = {True}

o Set reset condition R(e9) = {
Φ

}

• Start: Get Mission order name Orn(<MissionName>, Prm).

• If mission name is obtained for the first time

o Create a location l L and name it <MissionName>

o Draw an edge ei from the Decide state to <MissionName> state where i =

j+1…n where j is the number for the last edge drawn

 108

§ Set σin / σo = <MissionName>/ Do<MissionName> sent to lower

level controllers

§ Set guard condition G(ei) = {CurrentOrder = <MissionName>}

§ Set reset condition R(ei) = {
Φ

}

o Draw an edge ei from the <MissionName> state to End State

§ Set σin / σo = Abort

§ Set guard condition G(ei) = {True}

§ Set reset condition R(ei) = {
Φ

}

o Create an edge ei from <MissionName> state to Check4Resume State

§ Set σin = <MissionName>Done signal

§ Set guard condition G(ei) = {True}

§ Set reset condition R(ei) = {
Φ

}

• Else if mission name is already there

o Go to Start to look for the next order

• End

5.4 Safety Coordinator synthesis

Safety by definition is the freedom from danger, damage or risk. Thus the goal of a safety

coordinator is to prevent the vehicle from taking actions which might damage the vehicle.

The safety coordinator monitors the different parameters involved in the missions ordered

by mission coordinators, the proper functioning of the components of the vehicle and the

environment surrounding the vehicle. So a safety coordinator basically is an observer

which acts only when the operations lead to unsafe state. When the safety coordinator

finds that a mission prompts execution of an unsafe action it tries to correct the action and

make it safe. If the safety coordinator is not able to make the mission safe it aborts the

mission. For example if a mission commands the vehicle to go to a depth of 500ft and the

present safe depth is only 200ft the safety coordinator changes the depth to 200ft. If the

safety coordinator is able to correct it the mission is carried out or else it aborts the

mission. We here list a set of safety issues a safety coordinator should satisfy.

 109

Figure 55 : Timed coordinator

The safety issues which a safety coordinator for an AUV should take care of are as listed

below.

1. Water depth safety monitoring should check the altitude of the vehicle from the bottom

of the sea and thus prevent the vehicle from hitting the bottom of the sea.

Abort/Abort

G(.)={True}

R(.)= { Φ }

…

<MissionName1Done>/-
G(.)={True}

R(.)= { Φ }

Abort/Abort

<MissionName1>/ <DoMissionName1>

G(.) = {CurrentOrder = “<MissionName>”}

R(.) = {
Φ

 }

NewOrder/-

G
i
(e3)

R(.) = {Idle = 0}

Neworder/-

G(.) = {SeqController->

Suspended}

R(.) = {
Φ

 }

Suspend/Suspend

G(.) = {!this->SeqController ->Suspended}
R(.) = {t = 0}

Suspend/Suspend

G
i
(e4)

R(.) = {t = 0, Idle = 0, Time2Suspend = 0 }

<MissionNamen>/ <DoMissionNamen>

G(.) = {CurrentOrder = “<MissionName>”}

R(.) = {
Φ

 }

<MissionName1Done>/-
G(.)={True}

R(.)= { Φ }

OrderComplete/-

G
i
(e7)

R(.) = {
Φ

 }

Abort/Abort

G(.)={True}

R(.)= { Φ }

Abort/Abort

G(.)={True}

R(.)= { Φ }

Abort/Abort

G(.)={True}

R(.)= { Φ }

Abort/Abort

G(.)={True}

R(.)= { Φ }

EndMission/-

G(.) = {True}

R(.) = {Idle = 0}

NewVCData/-

G(.) = {True}

R(e1) ={ MissionTime = 0, t = 0,

Done = 1}

Init/-

G(.) = {t>= τ }

R(.) = { Φ }

CO

WF

I

WS

D

CR

E

OrderCompleter/Resume

G
i
(e8)

R(.) = {
Φ

 }

MN1
MNn

 110

2. Obstacle avoidance safety should monitor the presence of obstacles which might be

other vehicles, or mountains under sea and prevent collision of the AUV with the

obstacle.

3. Device functioning safety should monitor the functioning of the different critical

components which constitute an AUV. Critical components are those components

malfunctioning of which might lead to damage of vehicle or undesirable situation like

AUV stuck at the bottom of the sea due to battery failure.

All these safety issues can be modeled as constraints within a hybrid system as has been

done for the survey AUV built at ARL. The constraints are the guard conditions which

prompt the transition from one state to other depending upon the situation.

The coordinators synthesized here work together to successfully execute a mission. It is

shown next. Given a mission the coordinators communicate among each other to

successfully complete a mission.

Figure 56: The complete structure

DoMissionName

MissionNameDone

DoMissionName

MissionNameDone

Sequential

coordinator

Timed

Coordinator

Safety

Coordinator

Vehicle

Lower level controller

Database

 111

Here we are concerned with the successful execution of the mission as ordered by the

highest level controllers which we have automatically synthesized.

The analysis is provided based on the interactions between the modules shown in Figure

56 and the detailed modules of the sequential (Figure 54) and timed coordinator (Figure

55).

Both the coordinators are initialized first. During initialization the sequential coordinator

establishes contact with the vehicle and the terminal from which mission orders are

received.

When new order is received both the coordinators transition to the state at which they

become ready to execute a mission. If it’s an untimed mission the sequential coordinator

accepts the input and sends <DoMissionName> (Figure 56) to the lower level

controllers. Once the mission is successfully executed the sequential coordinator receives

<MissionNameDone> (Figure 56) from the lower level controllers. Then the SC

considers the next order in queue and passes control to the concerned lower level

controller. If due to some malfunctioning the mission needs to be terminated an abort

signal is received by the sequential coordinator from the lower level controllers involved

in the mission. The sequential coordinator then broadcasts the abort signal (Figure 54)

and terminates the execution of all other missions. If there are no more orders in the

queue the SC checks for the status of the TC. If the TC is idle SC sends EndMission and

transitions to the EndMission state (Figure 54).

If a timed mission is received then the timed coordinator checks whether the execution of

the present mission needs the suspension of the sequential coordinator or not (these

constraints are guard conditions on edges). If TC needs to suspend SC, TC sends the

suspend signal to SC (Figure 55). If the mission which SC is executing is suspendable

then SC synchronizes with the event suspend and transitions to the Suspend state (Figure

54). When SC is suspended TC sends the order as <DoMissionName> to the lower level

controllers (Figure 56). The lower level controllers respond back with the

<MissionNameDone> event to the TC when the mission is completed (Figure 56). TC

then finds the next order in queue and either resumes the SC or keeps it suspended or

keeps it unsuspended (Figure 55).

 112

The safety coordinator keeps checking the parameters from the mission and sensor values

of the AUV from the common database to safely execute a mission (Figure 56).

This way all the coordinators interact with each other and complete the execution of a

mission order successfully.

Lemma 5.1: (Given no Abort event) for all the orders there exist a response from the

lower level controller which completes the mission successfully.

Proof: Lemma 5.1 can be reduced to the expression

))|(&)|((j

i

p

kk

p

k

j

ii HHHHMm ki →∃→∃∈∀ σσ σσ --- 5.1

Equation 5.1 states that for all missions there exist an event to pass control to the

concerned commanded controllers as well as there exist an event to let the commanding

controller know the completion of the mission.

From the coordinator synthesis algorithms we find that for the missions there exist a

method to pass control from the higher level coordinator i.e. S.C or T.C. to the lower

level coordinator which is to synchronize on common events <DoMissionName>. Thus

we can express it as

)|(p

k

ameDoMissionNj

ii HHMm i →∃∈∀ >=<σσ where i indicates the subsystem at level j, k

indicates the subsystem at level p, j>p indicating that level j is at a higher level than level

k --- 5.2

From the algorithms we find that each of the lower level coordinators respond back to a

<DoMissionName> by a <MissionNameDone> event sent to the higher level controller.

)|(j

i

eDoneMissionNamp

kk HHMm k →∃∈∀ >=<σσ --- 5.3

Equation 5.2 and 5.3 together state that for each and every mission to be executed there

exist an event to pass the control to the concerned controller as well as there exist a

response which tells the higher level coordinator that the mission has been successfully

executed. Thus equation 5.1 holds so does Lemma 5.1.

Lemma 5.2: If the order is an Abort event it terminates the mission.

Proof: The above Lemma can be reduced to the expression

final

Abort
llEAbortLl →∃=∀∈∀ =σσ | --- 5.4

 113

The expression states that for all locations belonging to a set of locations and for all

events which are Abort events there exist an edge in which a transition occurs from the

present location, the source to the target location, the final state. If the above expression

holds for the coordinators synthesized by the algorithm then Lemma 5.2 holds.

From the coordinator synthesis algorithm we find that there are statements which

implement edges with Abort events from the <MissionName> locations to the

Endmission location.

<MissionName> → =Abortσ Endmission

Thus equation 5.4 holds and so does Lemma 5.2.

Lemma 5.3: Timed as well as untimed missions can be successfully executed by the

timely coordination between the Timed and Sequential coordinator.

Proof: The above Lemma 5.3 can be reduced to the expression

)(| SCTCMm →∃∈∀ σσ ---5.5.

The expression states that for all missions there exist a coordination event between the

Timed Coordinator and the Sequential Coordinator for succesfull completion of both

timed and untimed missions. If the above expression is satisfied by the coordinator

synthesis algorithm then Lemma 5.3 holds.

In the Sequential Coordinator synthesis algorithm we find statements dealing with

creation of edges on value of Suspendable =1 and σ = Suspend. In the Timed Coordinator

synthesis we find the implementation of edge e4 which implements sending σ = Suspend

to the Sequential Coordinator.

The above statements reduce to SCTCSuspend
Suspend →=∃ =σσ | --- 5.6

The above expression states that there exist an event which aids TC to Suspend SC for

execution of timed events.

From both the TC and SC synthesis algorithms we find statements implementing σ =

Resume which helps in resuming the suspended SC. This statement reduces to the

expression.

SCTCsume
sume →=∃ =Re|Re σσ --- 5.7

 114

From equations 5.6 and 5.7 we find that there exist methods of coordination between both

the TC and the SC to execute timed as well as untimed missions. Thus equation 5.5

holds, so does the Lemma 5.3.

Lemma 5.4: Given a mission

(a) If no abort occurs during mission operation, then the mission will be

successfully completed.

(b) If an Abort occurs during the mission, then the mission is terminated

(c) Timed and Sequential coordinator can coordinate among each other by

suspending the other if required for execution of a mission.

Proof: Lemma 5.1-5.3 prove Lemma 5.4.

 115

6 Conclusion and future work

We have proposed hierarchical hybrid mission control architecture for AUVs. The

architecture has been successfully implemented at ARL. The modular approach to

execute a mission breaks down complex missions into simple modules which aids in easy

design and implementation of the architecture. The present architecture is also not strictly

priority driven. A priority driven architecture with timed and untimed missions strictly

separated would lead to lesser missions being expired and give efficient performance. A

priority driven system with higher priority for timed missions would look into all the

timed and untimed missions in a queue and execute timed missions before the untimed

ones if there is a possibility of missing the successful completion of timed missions.

A real-life, complex, and hierarchically structured hybrid control system has been

verified using our bottom up approach. The advantage of bottom-up approach is

reduction of complexity, and also if an error is detected in a certain module, the lower

level modules do not need to be revised. The current approaches typically consider

reachability properties for verification, but through our modular bottom up approach we

are able to analyze the correctness of the entire controller. As far as logical correctness is

concerned, we verified 12 different modules against a total of 148 queries; the table

shows the number of queries and the name of the module. The verification confirms the

correctness of designed modules for progress.

S.No. Name of the subsystem No. Of

Queries

1 Steering 3

2 Loiter 22

3 Rendezvous 8

4 Payload 4

5 Pause 2

6 Launcher 4

7 GPSFixer 12

8 DeviceCommander 4

 116

9 WaypointNavigator 26

10 Sequential Coordinator 34

11 Timed Coordinator 25

12 Safety Coordinator 4

The problem of complexity still exists if a modular design is not performed, and

properties to be verified are not dependent on behaviors of small sub-collection of

modules, rather the entire set of modules. In this present work we verified logical

correctness of the missions executed. The correctness of function-calls is another issue

not addressed here. Function-call verification will include the verification of the whole

hybrid system. The present architecture can be extended to multiple underwater-vehicles.

We have simulated a hierarchically organized mission controller architecture using a

bottom up approach to conversion from coordinator modules to OpenGL code. The

simulation involved all the coordinators involved in a specific operation and thus

strengthened the correctness of the model. The simulation proved the feasibility of

building a simulation tool for a mission driven AUV. The simulation tool can be further

developed and generalized to be used for any kind of mission (other than just survey) for

an AUV. The simulation tool can also be enhanced to get real time sensor information as

feedback and then take actions accordingly. The simulation tool can be further advanced

so as to implement the complex mathematical models involved and give a much more

accurate and attractive result.

Finally we have designed automated synthesis of coordinators. These synthesis

algorithms need to be implemented. The coordinators synthesized (with modification of

safety coordinator) can be used in future for hierarchical hybrid mission control

architecture for aerial vehicles as well.

 117

7 References

[1] R. Horowitz and P. Varaiya, “Control design of an automated highway system,” Proc.

IEEE, vol. 88, pp. 913–925, July 2000.

[2] J. Lygeros, D. N. Godbole, and S. Sastry, “Verified hybrid controllers for automated

vehicles,” IEEE Trans. Automat. Contr., vol. 43, pp. 522–539, Apr. 1998.

[3] P. Varaiya, “Smart cars on smart roads: Problems of control,” IEEE Trans. Automat.

Contr., vol. 38, no. 2, pp. 195–207, 1993.

[4] C. Livadas, J. Lygeros, and N. Lynch, “High-level modeling and analysis of the

traffic alert and collision avoidance system (TCAS),” Proc. IEEE, vol. 88, pp. 926–

948, July 2000.

[5] J. Lygeros, G. J. Pappas, and S. Sastry, “An approach to the verification of the

Center-TRACON Automation System,” in Hybrid Systems: Computation and

Control, T. Henzinger and S. Sastry, Eds. Berlin, Germany: Springer-Verlag, 1998,

vol. 1386, Lecture Notes in Computer Science, pp. 289–304.

[6] C. Tomlin, G. J. Pappas, and S. Sastry, “Conflict resolution for air traffic

management: A study in muti-agent hybrid systems,” IEEE Trans. Automat. Contr.,

vol. 43, no. 4, pp. 509–521, April 1998.

[7] A. Balluchi, L. Benvenuti, M. DiBenedetto, C. Pinello, and A. Sangiovanni-

Vincentelli, “Automotive engine control and hybrid systems: Challenges and

opportunities,” Proc. IEEE, vol. 88, pp. 888–912, July 2000.

[8] K. R. Butts, “Analysis needs for automotive powertrain control,” presented at the 7th

Mechatronics Forum Int. Conf., Atlanta, GA, Sept 2000.

[9] D. Pepyne and C. Cassandras, “Optimal control of hybrid systems in manufacturing,”

Proc. IEEE, vol. 88, pp. 1108–1123, July 2000.

[10] S. Engell, S.Kowalewski, C. Schulz, and O. Stursberg, “Continuous discrete

interactions in chemical processing plants,” Proc. IEEE, vol. 88, pp. 1050–1068, July

2000.

[11] R. Alur, R. Grosu, Y. Hur, V. Kumar, and I. Lee, “Modular specification of

hybrid systems in CHARON,” in Hybrid Systems: Computation and Control, N.

 118

Lynch and B. H. Krogh, Eds. New York: Springer-Verlag, 2000, vol. 1790, Lecture

Notes in Computer Science.

[12] M. Song, T.-J. Tarn, and N. Xi, “Integration of task scheduling, action planning,

and control in robotic manufacturing,” Proc. IEEE, vol. 88, pp. 1097–1107, July

2000.

[13] O. Maler and S. Yovine, “Hardware timing verification using KRONOS,” in Proc.

7th Conf. Computer-Based Systems and Software Engineering, 1996.

[14] IEEE Trans. Automat. Contr., vol. 43, no. 4, Apr. 1998. Special Issue on Hybrid

Systems.

[15] Automatica, vol. 35, no. 3, Mar. 1999. Special Issue on Hybrid Systems.

[16] R. Alur, T. A. Henzinger, and E. D. Sontag, Eds., Hybrid Systems III. New York:

Springer-Verlag, 1996, vol. 1066, Lecture Notes in Computer Science.

[17] P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, Eds., Hybrid Systems II. New

York: Springer-Verlag, 1995, vol. 999, Lecture Notes in Computer Science.

[18] R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, Eds., Hybrid Systems.

New York: Springer-Verlag, 1993, vol. 736, Lecture Notes in Computer Science.

[19] T. Henzinger and S. Sastry, Eds., Hybrid Systems: Computation and Control.

New York: Springer-Verlag, 1998, vol. 1386, Lecture Notes in Computer Science.

[20] O. Maler, Ed., Hybrid and Real-Time Systems. New York: Springer-Verlag,

1997, vol. 1201, Lecture Notes in Computer Science.

[21] F. W. Vaandrager and J. H. van Schuppen, Eds., Hybrid Systems:Computation

and Control. New York: Springer-Verlag, 1999, vol. 1569, Lecture Notes in

Computer Science.

[22] www.teja.com

[23] www.uppaal.com

[24] Rajeev Alur, Thomas A. Henzinger, Gerardo Lafferriere, And George J. Pappas

Discrete Abstractions of Hybrid Systems. Proceedings of the IEEE, 88, July 2000.

[25] J.Albus and R. Quintero, toward a refernce model architecture for real-time

intelligent control systems (artics.), ASME Press series, 3, 1990.

[26] R.A.Brooks A robust layered control system for mobile robot. IEEE Journal Of

Robotics And Automation 2(1):14-23, March 1986.

 119

[27] Daniel Simon, Eve-Coste Maniere, Roger Pissard (INRIA BP93), Vincent

Rigaud, Michel Perrier, Alexis Peuch (IFREMER BP 330) France, A reactive

approach to underwater vehicle control: the Mixed ORRCAD/PIRAT programming

of the VORTEX vehicle.

[28] J.Lygeros, Hierarchical hybrid control of large scale systems. PhD Thesis

department of Electrical Engineering, University Of California Berkeley, 1996.

[29] Dov M. Gabbay, et al Temporal Logic: Mathematical Foundations and

Computational Aspects: Volume 2.

[30] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi, 1995, “A user guide

to HyTech”, Proceedings of the First International Workshop on Tools and

Algorithms for the Construction and Analysis of Systems (TACAS '95), Lecture Notes

in Computer Science 1019, Springer-Verlag, 41-71.

[31] Kim G. Larsen and Paul Pettersson, 2000, “Timed and Hybrid Systems in

UPPAAL2k”, MOVEP'2k : Modeling and Verification of Parallel Processes, Nantes,

France.

[32] M. M. Gupta and N. K. Sinha, Eds., Intelligent Control: Theory and

Applications. Piscataway, NJ: IEEE, 1996.

[33] C. J. Harris, Ed., Advances in Intelligent Control. New York: Taylor & Francis,

1994.

[34] P. J. Antsaklis and K. M. Passino, Eds., An Introduction to Intelligent

Autonomous Control. Norwell, MA: Kluwer, 1993.

[35] D. A. White and D. A. Sofge, Eds., Handbook of Intelligent Control.New York:

Van Nostrant Reinhold, 1992.

[36] G. N. Saridis, “Analytical formulation of the principle of increasing precision

with decreasing intelligence for intelligent machines,” Automatica, vol. 25, no. 3, pp.

461–467, 1989

[37] A. Meystel, “Nested hierarchical control,” in An Introduction to Intelligent and

Autonomous Control. Norwell, MA: Kluwer, 1993, pp. 129–161.

[38] B. P. Zeigler and S. Chi, “Model-based architecture concepts for autonomous

systems design and implementation,” in An Introduction to Intelligent and

Autonomous Control. Norwell, MA: Kluwer, 1993, pp. 57–78.

 120

[39] L. Acar and U. Ozguner, “Design of structure-based hierarchies for distributed

intelligent control,” in An Introduction to Intelligent and Autonomous Control.

Norwell, MA: Kluwer, 1993, pp. 79–108.

[40] J. S. Albus, “Data storage in the cerebellar model articulation controller

(CMAC),” J. Dyn. Syst., Meas. Contr., vol. 93, pp. 228–233, 1975.

[41] J. S. Albus “A new approach to manipulator control: The cerebellar model

articulation controller (CMAC),” J. Dyn. Syst., Meas. Contr., vol. 93, pp. 220–227,

1975.

[42] “A reference model architecture for intelligent systems design,” in An

Introduction to Intelligent and Autonomous Control. Norwell, MA: Kluwer, 1993, pp.

27–56.

[43] R. Kumar and V. K. Garg, Modeling and Control of Logical Discrete Event

Systems. Norwell, MA: Kluwer, 1995.

[44] A. H. Levis, “Modeling and design of distributed intelligence systems,” in An

Introduction to Intelligent and Autonomous Control. Norwell, MA: Kluwer, 1993, pp.

109–128.

[45] Ratnesh Kumar and James A. Stover, A Behavior-Based Intelligent Control

Architecture with Application to Coordination of Multiple Underwater Vehicles,

IEEE transactions on systems, man, and cybernetics—part a: systems and humans,

vol. 30, no. 6, november 2000.

[46] Arkin, R. C. Behavior-Based Robot Navigation for Extended Domains.

Adaptative Behavior, 1992, 1 (9),pp. 201-225.

[47] Warren, C. W. A technique for autonomous underwater vehicle route planning.

In: IEEE Journal of Oceanic Engineering, 1990 15 (3), 199-204.

[48] Steels, L. The PDL reference manual. VUBAI Lab, Memo 92-5. Brussels,

Belgium 1992.

[49] Maes, P. Situated Agents Can Have Goals. In: Robotics and Automation Systems,

6 p. 49-70, 1990.

[50] M. Carreras, J. Batlle and P. Ridao Hybrid Coordination of Reinforcement

Learning-based Behaviors for AUV Control

 121

[51] Sutton, R. and Barto, A. Reinforcement Learning, anintroduction. MIT Press,

1998.

[52] Watkins, C.J.C.H., and Dayan, P. Q-learning. MachineLearning, 8:279-292, 1992.

[53] Maes, P. and Brooks, R. Learning to coordinate behaviors. In Proceedings of the

Eighth AAAI, pages 796-802. Morgan Kaufmann, 1990.

[54] Gachet, D., Salichs, M., Moreno, L. and Pimental, J. Learning Emergent tasks for

an Autonomous Mobile Robot, Proceedings of the International Conference on

Intelligent Robots and Systems (IROS ‘94), Munich, Germany, September, pp. 290-

97, 1994.

[55] Mahadevan, S. and Connell, J. Automatic programming of behavior-based robots

using reinforcement learning. Artificial Intelligence, 55:311- 365, 1992.

[56] Shackleton, J. and Gini, M. Measuring the Effectiveness of Reinforcement

Learning for Behavior-based Robots. Adaptive Behavior, 1997.

[57] Touzet, C. Neural reinforcement learning for behavior synthesis. In: Robotics and

Autonomous Systems, 22, 251-281, 1997.

[58] Stefan B. Williams, Paul Newman, Gamini Dissanayake, Julio Rosenblatt, Hugh

Durrant-Whyte, A decoupled, distributed AUV control architecture, Australian

Centre for Field Robotics University of Sydney NSW 2006, Australia.

[59] Pere Ridao, Josep Forest, Jordi Freixenet, and Joan batlle, Towards a distributed

object oriented control architecture for autonomy.

[60] P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, editors, Hybrid System II,

volume 999 of Lecture Notes in Computer Science. Springer-Verlag, 1995

[61] Ralph-Johan Back, Cristina Cerschi Seceleanu, Contracts and Games in

Controller Synthesis for Discrete Systems, 11th IEEE International Conference and

Workshop on the Engineering of Computer-Based Systems (ECBS'04) 05 24 - 05,

2004 Brno, Czech Republic

[62] Lygeros, J.; Godbole, D.N.; Sastry, S. "A game-theoretic approach to hybrid

system design", IN: Hybrid Systems III. Verification and Control, New Brunswick,

NJ, USA, 22-25 Oct. 1995). Edited by: Alur, R.; Henzinger, T.A.; Sontag, E.D.

Berlin, Germany: Springer-Verlag, 1996. p. 1-12.

 122

[63] C. Tomlin, G. Pappas, and S. Sastry, ``Conflict resolution for air traffic

management: A case study in multi-agent hybrid systems,'' tech. rep., UCB/ERL

M97/33, Electronics Research Laboratory, University of California, Berkeley, 1997.

To appear in the IEEE Transactions on Automatic Control, Special Issue on Hybrid

Systems, April 1998.

[64] Lygeros, J.; Tomlin, C.; Sastry, S. "Multiobjective hybrid controller synthesis",

IN: Hybrid and Real- Time Systems. International Workshop, HART'97. Proceedings,

Grenoble, France, 26-28 March 1997). Edited by: Maler, O. Berlin, Germany:

Springer-Verlag, 1997. p. 109-23.

[65] Ramagde, P.J., Wonham W.M..“The control of Discrete Event Systems”,

Proceedings IEEE, 1989, Vol. 77, No. 1, pp. 81-98.

[66] Holloway, L.E., Krogh, B.H., Giua, A.. “A survey of Petri Net Methods for

Controlled Discrete Event Systems,” Journal of Discrete Event Systems, 1997, Vol. 7,

No. 2, pp. 151-190.

[67] Intellimotion, “Keeping up with California PATH research in Intelligent

Transportation Systems”, Vol. 5 No. 1, 1996.

[68] Daniel Wiesmann, Duke Lee, Carmma user guide California PATH research in

Intelligent Transportation Systems.

[69] Datta N. Godbole, John Lygeros, and Shankar Sastry, “Hierarchical Hybrid

Control: a Case Study”, LNCS 999, June 1995.

[70] Jean Della Dorat, Aude Maignant, Mihaela Mirica-Ruse, Sergio Yovine# Hybrid

Computation, *LMC-IMAG, 51 rue des Mathématiques, 38041 Grenoble Cedex9,

France, #VERIMAG, Centre Equation, 2, Ave de Vignate, 38610 Gieres, France.

[71] http://www.cs.utexas.edu/users/moore/best-ideas/nqthm/

[72] R. Alur, C. Courcoubetis, T.A. Henzinger, P.-H. Ho. “Hybrid Automata: An

algorithmic approach to the specification and verification of hybrid systems”. In

Hybrid Systems, LNCS 736, pp. 209-229, 1993.

[73] R. David, "Modeling of Hybrid Systems Using Continuous and Hybrid Petri

Nets," Proc. of Conf. on Petri Nets and Performances Evaluation (Saint Malo,

France), pp. 47-58, June, 1997.

 123

[74] D. Liberzon, and A.S. Morse, “Basic problems in stability and design of switched

systems”, IEEE Control Systems Magazine, 19(5):59-70, October 1999.

[75] Jan Lunze, “What is a hybrid system”, Lecture Notes in Control and Information

Sciences 279, 2002.

[76] Rajeev Alur, Thomas A. Henzinger, Pei-Hsin Ho, Automatic Symbolic

Verification of Embedded Systems, IEEE Transactions on Software Engineering

Volume 22 , Issue 3 (March 1996) Pages: 181 – 201, 1996.

[77] http://www-vrimag.imag.fr/TEMPORISE/kronos/

[78] http://spinroot.com/spin/whatispin.html

[79] http://hol.sourceforge.net/

[80] http://pvs.csl.sri.com/

[81] http://www.cis.ksu.edu/~allen/lambda.html

[82] http://gtps.math.cmu.edu/tps.html

[83] L.E.Holloway, Xiaoyi Guan, Ranganathan Sundaravadivelu, and Jeff Ashley,Jr.

Automated Synthesis and Composition of Taskblocks for control of manufacturing

systems, IEEE Trans. on Systems, Man, and Cybernetics, Vol30, No.5, October 2000.

[84] Marc Carreras i Pérez, Joan Batlle I Grabulosa An overview of Behavioural-based

Robotics with simulated implementations on an Underwater Vehicle.

[85]

 124

Appendix A: Commands for the underwater vehicle for
search
Abort: This command is given to terminate an operation or procedure before completion,
if some other higher priority operation needs to be taken care of or the present job doesn’t
need to be done.
DeviceDone: This response is sent by the Device Commander when a device required for
an operation has been set.
GoToEndMission: This command is sent to indicate that a mission has been
accomplished so all the operations are terminated.
GoToRendezvous: This command is sent to go to the desired meeting point.
GPSFixDone: This is response sent by the GPSFixer once the global positioning system
finds the position.
Init: This command is sent by all the modules as an initializing command after which it
transitions to the Idle state from the Start state and becomes ready for operation.
Launch: This command is sent to activate the Launcher module.
LaunchDone: This is response to the command launch sent once the function of the
launcher is done with.
MastDown: This command is sent to the vehicle controller mast to lower the mast.
MastUp: This command is sent to rise the mast.
NewVCData: This is the data obtained by the Vehicle controller sensors.
OnSurface: This command is sent to indicate that the underwater sea vehicle has reached
the water surface.
PayLoadDone: This is response given by the PayLoad module to indicate that payload
has been delivered.
ProcessPayLoad: This command is sent to start the processing of the payload.
ProcessWP: This command is sent to process the direction of the vehicle based on the
way point (it gives the coordinates of a point) it needs to go to.
RendezvousDone: This is response given to indicate that the rendezvous with other
underwater vehicles has been done.
Resume: This command is given to resume operation after suspension.
SetDevice: This command is given to the Device commander to set a concerned device
for a certain operation.
SuspendBehavior: This command is given to suspend a behavior.
TakeGPSFix: This command is given to find the global position of the vehicle.
Update: This command updates the present location of the vehicle.
Wait: This command is given to wait for sometime before staring on or resuming some
operation.
WaitDone: This response is sent to indicate that waiting period is over now operation
can be resumed.
WPDone: This response indicates that way point or location has been found.
AltitudeOK: This respone says that the depth to which the vehicle needs to go to is safe.
AltitudeSafety: This command checks whether the altitude level to go to is safe or not.
DeliverPayLoad: This command tells to deliver the payload.
GoToLoiter: This command tells the vehicle to go to start loitering.
LightOff: This command checks whether light is switched off
Loiter: This command is given to the vehicle to loiter in its surrounding area.

 125

LoiterDone: This response indicates that loitering is done.
Steer: This command is sent to steer the vehicle to the desired location.
SurfaceCaptured: This command tells that the surface of interest has been captured.
TimeInState: This command indicates the time duration spent in a state.
TimeOut: This command indicates the time within which an event has to be conducted
otherwise it is not executed.
Trim: This command is issued to increase speed of the vehicle.

 126

Appendix B : Hybrid models in Teja

Sequential coordinator

Superclass: TejaComponent

Variables: NumWP, SurfaceThreshold, WPNum, Suspended, StartUTCTime,
Suspendable, Idle.

Links: DevCmd (DeviceCmd), Actreq (ActionRequest), VehCmd (VehicleCmd),
AutCmd (AutopilotCmd), Nav (NavState), Logs (Files), WPNav (WaypointNavigator),
NonSeqController (TimedActions), Payload (PayloadDelivery), Components
(ComponentList), Missionqueues (Queues), CurrOder (SeqOrder), DevCmdr
(DeviceCommander), GPSFix (GPSFixer), Devstate (DeviceState), Waiter (Pause).

Functions:
ReadParams() is a function to read the parameters needed by the steer module to get
executed successfully.
EndMission() is a function used to end a mission.
getMissionTime() is a function which returns the duration for which a mission is being
executed till the current time.

Input: No input

Constructors:
DevCmd=p_devicecmd (initialzed to point to DeviceCmd)
ActReq=p_actionrequest (initialzed to point to ActionRequest)
VehCmd=p_vehiclecmd (initialzed to point to VehicleCmd)
AutCmd=p_autopilotcmd (initialzed to point to AutopilotCmd)
Nav=p_navstate (initialzed to point to NavState)
Logs=p_files (initialzed to point to Files)
WPNav=p_waypointnavigator (initialzed to point to Waypoint Navigator)
NonSeqController=p_timedactions (initialzed to point to TimedActions)
Payload=p_payloaddelivery (initialzed to point to PayloadDelivery)
Components=p_componentlist (initialzed to point to ComponentList)
MissionQueues=p_queues (initialzed to point to Queues)
DevCmdr=p_devicecommander (initialzed to point to DeviceCommander)
GPSFix=p_gpsfixer (initialzed to point to GPSFixer)
DevState=p_devicestate (initialzed to point to DeviceState)
Waiter=p_pause (initialzed to point to Pause)
WPNum=0 (initialzed to zero)

 127

Figure 57: FSM for Sequential coordinator

Destructors: No destructors
Continuous states: t, MissionTime
Discrete states:
State1{ Idle,t’,MissionTime’}
State2{ DeviceOrder, t’,MissionTime’}
State3{ WaitForVCComms, t’,MissionTime’}
State4{ Suspend, t’,MissionTime’}
State5{ Pause, t’,MissionTime’}
State6{ GPSFixer, t’,MissionTime’}
State7{ run, t’,MissionTime’}
State8{ WaypointNavigator, t’,MissionTime’}
State9{ Launcher, t’,MissionTime’}
State10{ EndMission, t’,MissionTime’}
State11{ Rendezvous, t’,MissionTime’}
State12{Payload, t’,MissionTime’}

Transitions:
Transition 1 {Idle, WaitForVCComms, Init, t>=1, None, (CreateLogs(), ReadParams(),
ReadOrderSpecs(), ReadMissionOrders() (and performs the actions as per need))}
Transition 2 {WaitForVCComms, run, NewVCData, True, (t=0, MissionTime=0,
Suspendable=0, Idle=1), starts mission}
Transition 3 {run, DeviceOrder, SetDevice, True, (t=0, Suspendable=0, Idle=0), signal
sent to device for execution}
Transition 4 {DeviceOrder, run, DeviceDone, True, (t=0, Suspendable=0, Idle=1),
device command executed returns}
Transition 5 {run, run, update, t>=1, t=0, looks for new data or order availability}

 128

Transition 6 {Suspend, run, Resume, True, (t=0, Suspended=0, Suspendable=0, Idle=1),
resuming sequential execution}
Transition 7 {Suspend, Suspend, Abort, Suspended=True, Suspended=1}
Transition 8 {WaypointNavigator, Suspend, Suspend, True, (t=0, Suspendable=0,
Idle=1), suspending waypoint}
Transition 9 {Payload, Suspend, Suspend, True, (t=0, Suspendable=0, Idle=1),
suspending payload}
Transition 10 {Rendezvous, Suspend, Suspend, True, (t=0, Suspendable=0, Idle=1),
suspending rendezvous}
Transition 11 {Suspend, EndMission, Abort, True, aborting from Suspend to
endmission}
Transition 12 {run, WaypointNavigator, ProcessWP, True, (t=0, Suspendable=1,
Idle=0), sending the datas to evaluate waypoint and perform actions accordingly}
Transition 13 {WaypointNavigator, run, WPDone, True, (t=0, Suspendable=0, Idle=1),
mission to evaluate waypoint is executed}
Transition 14 {run, Payload, ProcessPayload, (CurrorderName=Payload), (t=0,
Suspendable=1, Idle=0), evaluates waypoint to process payload}
Transition 15 {Payload, run, PayloadDone, True, (t=0, Suspendable=0, Idle=1), it states
payload is done}
Transition 16 {run, Launcher, Launch, (CurrOrder=Launch), (Suspendable=0, Idle=0),
launching vehicle }
Transition 17 {Launcher, run, LaunchDone, True, (t=0, Suspendable=0, Idle=1), launch
has been done }
Transition 18 {run, Pause, Wait, (CurrOrder=Wait), (t=0, Suspendable=0, Idle=0),
turning SSS and waiting }
Transition 19 {Pause,run, WaitDone, True, (t=0, Suspendable=0, Idle=1), sequential
orders paused to wait to complete timed orders}
Transition 20 {run, EndMission, EndMission, (CurrOrder=EndMission and
NonSeqController->Idle), end mission stopping prop and surfacing}
Transition 21 { EndMission, EndMission, OnSurface, (Depth<=SurfaceThreshold and
MastCmd!=Up), None, Comes on surface and mast is raised up}
Transition 22 { EndMission, EndMission, MastUp, (MastState=Up), None, mast up and
exiting mission}
Transition 23 {Suspend, EndMission, Abort, True, t=0, aborting from suspend }
Transition 24 {WaypointNavigator, EndMission, Abort, True, t=0, aborting from
WaypointNavigator }
Transition 25 {Payload, EndMission, Abort, True, t=0, aborting from Payload}
Transition 26 {Rendezvous, EndMission, Abort, True, t=0, aborting from Rendezvous}
Transition 27 {run, EndMission, Abort, True, t=0, aborting from run}
Transition 28 {Pause, EndMission, Abort, True, t=0, aborting from Pause}
Transition 29 {GPSFixer, EndMission, Abort, True, t=0, aborting from GPSFixer}
Transition 30 {Launcher, EndMission, Abort, True, t=0, aborting from Launcher}

Timed Action (Timed Coordinator)

 129

Figure 58: FSM of Timed coordinator

Superclass: TejaComponent

Variables: Token, TimedOrderTo, Suspend, Idle

Links: CurrTimeOrd (TimedOrder), Nav (NavState), NavMemory (NavState),
SequenceController (Controller), Logs (Files), Components (ComponentList),
MissionQueues (Queues), SeqOrdMemory (SeqOrder), CurrOrder (GPSOrder), GPSFix
(GPSFixer), DevCmdr (DeviceCommander), Diver (Launcher), Waiter (Pause).

Functions:
ReadParams() is a function to read the parameters needed by the steer module to get
executed successfully.
GetEarliestOrder() is used to retrieve the timed order with the earliest time requirement
CheckOrderTimes() is used to convert UTC times to mission times and check if > 0

Constructors:
MissionQueues=p_queues (initialzed to point to order Queue)
Nav=p_navstate (initialzed to point to NavState)
SeqController=p_controller (initialzed to point to Controller)
Logs=p_files (initialzed to point to Files)
Components=p_componentlist (initialzed to point to ComponentList)
GPSFix=p_gpsfixer (initialzed to point to GPSFixer)
DevCmdr=p_devicecommander (initialzed to point to DeviceCommander)
Diver=p_launcher (initialzed to point to Launcher)
Waiter=p_pause (initialzed to point to Pause)

 130

NavMemory=NavState_new(teja_default_memory_space_id) (initialzed memory for
NavState)

Desctructors: None

Continuous state: t, MissionTime

Discrete State:
State1{Start,t’,MissionTime’}

State2{FirstTime,t’,MissionTime’}

State3{Decide,t’,MissionTime’}

State4{CheckOrders,t’,MissionTime’}

State5{GPSFix,t’,MissionTime’}

State6{Device,t’,MissionTime’}

State7{Wait,t’,MissionTime’}

State8{Launch,t’,MissionTime’}

State9{Wait4Suspend, t’, MissionTime’}

State10{Check4Resume, t’, MissionTime’}
State11{End, t’, MissionTime’}

Transitions:
Transition 1 {Start, FirstTime, Init, t>=1, None, Checks for availability of data}
Transition 2 { FirstTime, CheckOrders, NewVCData, MissionQueue>0,
(MissionTime=0, Idle=0, t=0, Token=1), CheckOrderTimes and Loading Timed Order}
Transition 3 {CheckOrders, End, Abort, True, None, Aborting}
Transition 4 {Decide, End, Abort, True, None, Aborting Decide}
Transition 5 {Check4Resume, CheckOrders, OrderComplete, (Token and
TimedOrderQueue=0),(Idle=1, t=0, Token=1), No more Timed Orders so going to Idle
state waiting for more tied orders}
Transition 6 {Launch, End, Abort, True, None, Aborting Launch state}
Transition 7 {Wait, End, Abort, True, None, Aborting Wait state}
Transition 8 {Device, End, Abort, True, None, Aborting Device state}
Transition 9 {GPSFix, End, Abort, True, None, Aborting GPSFix state}
Transition 10 {Launch, Check4Resume, LaunchDone, ! (suspend and
MissionQueue)=0, (Idle=1, t=0, Token=1), (teja_get_time(),
TimedActions_get_MissionTime())}
Transition 11 {Wait, Check4Resume, WaitDone, ! (suspend and MissionQueue)=0,
(Idle=1, t=0, Token=1), (teja_get_time(),TimedActions_get_MissionTime())}
Transition 12 {Device, Check4Resume, DeviceDone, ! (suspend and MissionQueue)=0,
(Idle=0, t=0, Token=1), (teja_get_time(),TimedActions_get_MissionTime())}
Transition 13 {GPSFix, Check4Resume, GPSFixDone, ! (suspend and
MissionQueue)=0, (Idle=1, t=0, Token=0),
(teja_get_time(),TimedActions_get_MissionTime())}

 131

Transition 14 {Wait4Suspend, Decide, NewOrder, (TimedOrderQueue)>0, (t=0),
(teja_get_time(),TimedActions_get_MissionTime(),CurrTimedOrd())}
Transition 15 {CheckOrders, Wait4Suspend, Suspend,
(TimedActions_get_MissionTime() >= CurrTimedOrd && Suspend), (Token=0,t=0),
Store Current Nav State and Store Current sequential order }

Safeties (Safety Coordinator)

Figure 59: FSM of Safety coordinator

Superclass: TejaComponent

Variables: WaterDepthSafety, LowBatteryVoltage, MinimumAltitude, LowAltitudeTo.

Links: Bat(BatteryState), Nav(NavState), Logs(Files), Components(ComponentList).

Functions:
VoltageAbort() is a function which checks whether the average voltage is less than a
threshold and accordingly returns a value.
WaterDepthAbort() is a function which checks whether the depth to which the vehicle
can go to is safe or not and returns a value accordingly.
ReadParams() is a function to read the parameters needed by the safety module to get
executed successfully.

Constructors:
Bat=p_batterystate; (initialzed to point to BatteryState)
Nav=p_navstate; (initialzed to point to NavState)
Logs=p_files; (initialzed to point to Files)
Components=p_componentlist; (initialzed to point to ComponentList)

Destructor: No destructors.

Continuous state: t, LowAltitudeTimer

Discrete States:

 132

State 1 {Start, t’=1, LowAltitudeTimer’=1}
State 2 {Idle, t’=1, LowAltitudeTimer’=1}
State 3 {CheckSafeties, t’=1, LowAltitudeTimer’=1}
State 4 {SafetyAbort, t’=1, LowAltitudeTimer’=1}
State 5 {LowAltitude, t’=1, LowAltitudeTimer’=1}
State 6 {Error, t’=1, LowAltitudeTimer’=1}
State 7 {Stop, none}

Transitions:
Transition 1 {Start, Idle, Init, t>=1, none, ReadParams}
Transition 2 {Idle, CheckSafeties, NewVCData, True, t=0, (prints teja_get_time(),
Safeties_get_t() in execlog and flushes execlog)}
Transition 3 {CheckSafeties, LowAltitude, AltitudeSafety, (Altitude< MinimumAltitude)
, LowAltitudeTimer=0, None}
Transition 4 {CheckSafeties, SafetyAbort, Abort, (VoltageAbort or WaterDepthAbort),
None, (VoltageAbort or WaterDepthAbort (print teja_get_time(),Safeties_get_t() into
errorlog, flushes errorrlog))}
Transition 5 {LowAltitude, SafetyAbort, Abort, (Safeties_VoltageAbort() or
Safeties_WaterDepthAbort() or Safeties_get_LowAltitudeTimer() >LowAltitudeTO),
(Safeties_VoltageAbort or Safeties_WaterDepthAbort or
Safeties_get_LowAltitudeTimer() > LowAltitudeTO) (print teja_get_time(),
Safeties_get_t() to errorlog , flush errorlog finally) }
Transition 6 {LowAltitude, Checksafeties, AltitudeOk, Altitude>MinimumAltitude,
None, None}
Transition 7 {Error, Stop, Error, True, None, None}

ReplayMission

The ReplayMission module is used to write a human readable commands file. It takes in
the input commands and writes out them in formatted output file.

Superclass: TejaComponent

Variables: None

Links: Bat, Dev, Nav, Veh

Functions:
Quicklook() is a function which writes the commands in human readable form.

Constructors:
Bat=BatteryState_new(teja_default_memory_space_id,NUMBEROFBATTERYSWITC
HES); (Initializes space to Bat of type BatteryState)
Dev=DeviceState_new(teja_default_memory_space_id); (Initializes space to Dev of type
DeviceState)

 133

Nav=NavState_new(teja_default_memory_space_id); (Initializes space to Nav of type
NavState)
Veh=VehicleState_new(teja_default_memory_space_id); (Initializes space to Veh of type
VehicleState)

Destructor: No destructors.

Continuous state: t

Discrete States:
State 1 {Idle, tâ€™=1}
State 2 {Error, tâ€™=1}
State 3 {Stop, None}

Transitions:
Transition 1 {Idle, Idle, Init, t>=1, None, (ReplayMission_Quicklook() print "Quicklook
files created, ending Replay") }
Transition 2 {Error, Stop, Error, True, None, None}

GPSFixer

Superclass: TejaComponent

Variables: GoToSurfaceTo, RaiseMastTo, TakeMastTo, SurfaceThreshold, NumFailed,
WPThresholdDistance.

Links: Nav (NavState), DevState (DeviceState), AutCmd(AutopilotCmd), DevCmd
(DeviceCmd), VehCmd (VehicleCmd), ActReq (ActionRequest), Logs (Files),
Components (ComponentList), NavMemory (NavState), Helm (Steering), GPSOrd
(GPSOrder).

Figure 60: FSM for GPSFixer module

 134

Functions:
ReadParams() is a function to read the parameters needed by the GPSFixer module to
get executed successfully.

Constructor:
Nav=p_navstate; (initialzed to point to NavState)
DevState=p_devicestate; (initialzed to point to DeviceState)
AutCmd=p_autopilotcmd; (initialzed to point to AutopilotCmd)
DevCmd=p_devicecmd; (initialzed to point to DeviceCmd)
VehCmd=p_vehiclecmd; (initialzed to point to VehicleCmd)
ActReq=p_actionrequest; (initialzed to point to ActionRequest)
Logs=p_files; (initialzed to point to Files)
Components=p_componentlist; (initialzed to point to ComponentList)
Helm=p_steering; (initialzed to point to Steering)
NavMemory=NavState_new(teja_default_memory_space_id); (initialzed to point to
NavState)
NumFailed=0; (initialzed to 0)

Destructor: No destructors.

Continuous state: t, TimeInState

Discrete States:
State 1 {Start, t’=1, TimeInState’=1}
State 2 {Idle, t’=1, TimeInState’=1}
State 3 {GoToSurface, t’=1, TimeInState’=1}
State 4 {RaiseMast, t’=1, TimeInState’=1}
State 5 {ReportTo, t’=1, TimeInState’=1}
State 6 {TakeFix, t’=1, TimeInState’=1}
State 7 {ComeOffSurface, t’=1, TimeInState’=1}
State 8 {ReturnToStart, t’=1, TimeInState’=1}
State 9 {Decide, t’=1, TimeInState’=1}
State 10 {Error, t’=1, TimeInState’=1}
State 11 {Stop, t’=1, TimeInState’=1}

Tranisitions:
Transition 1 {Start, Idle, Init, t>=1, none, ReadParams}
Transition 2 {Idle, GoToSurface, TakeGPSFix, True, (t=0, TimeInState=0), (Turning off
prop and blowing tanks and performing operation according to VehCmd, DevCmd,
AutCmd, ActReq)}
Transition 3 {GoToSurface, Idle, Abort, True, none, (Aborting and going to surface and
print to errorlog (teja_get_time(),GPSFixer_get_t()), finally flush errorlog) }
Transition 4 {RaiseMast, Idle, Abort, True, none, (Aborting raising mast and print to
errorlog (teja_get_time(),GPSFixer_get_t()), finally flush errorlog) }

 135

Transition 5 {TakeFix, Idle, Abort, True, none, (Aborting TakeFix and print to errorlog
(teja_get_time(),GPSFixer_get_t()), finally flush errorlog) }
Transition 6 {ComeOffSurface, Idle, Abort, True, none, (Aborting ComeOffSurface and
print to errorlog (teja_get_time(),GPSFixer_get_t()), finally flush errorlog) }
Transition 7 {Decide, Idle, Abort, True, TimeInState=0, (Aborting Decide and print to
errorlog (teja_get_time(),GPSFixer_get_t()), finally flush errorlog) }
Transition 8 {ReturnToStart, Idle, Abort, True, none, (Aborting ReturnToStart and print
to errorlog (teja_get_time(),GPSFixer_get_t()), finally flush errorlog) }
Transition 9 {Decide, Idle, GPSFixDone, GPSOrd=!ReturnToStart,TimeInState=0, (
GPSFixDone and print to execlog (teja_get_time(),GPSFixer_get_t()), finally flush
execlog) }
Transition 10 {GoToSurface, ReportTo, Timeout, TimeInState> GoToSurface,
TimeInState=0, Print to file errorlog GoToSurface Timed Out teja_get_time(),
GPSFixer_get_t()}
Transition 11 {GoToSurface, RaiseMast, OnSurface, Depth <= SurfaceThreshold,
TimeInState=0, Print to execlog teja_get_time(),GPSFixer_get_t() and finally fflush
Execlog and excute VehCmd, DevCmd, ActReq)}
Transition 12 {RaiseMast, ReportTo, TimeOut, TimeInState>= RaiseMastTo,
TimeInState=0, Print to file errorlog RaiseMast Timed out teja_get_time(),
GPSFixer_get_t()) and finally fflush errorlog}
Transition 13 {RaiseMast, TakeFix, MastUp, MastState=Up, TimeInState=0, execute
VehCmd, ActReq and print to the file execlog GPSFixer - Mast up, waiting for GPS Fix,
teja_get_time(),GPSFixer_get_t() and fflush execlog)}
Transition 14 {TakeFix, ReportTo, TimeOut, (TimeInState>= TakeFixTo),
TimeInState=0, Print TakeFix Timed Out, teja_get_time(),GPSFixer_get_t() in file
errorlog finally fflush errorlog }
Transition 15 {TakeFix, ComeOffsurface, Launch, DevState->GPSFixState == DONE,
TimeInState=0, Print Got GPS Fix, teja_get_time(),GPSFixer_get_t() into file execlog
and finally fflush execlog) }
Transition 16 {ReportTo, ComeOfsurface, Launch, True, None, (Print Time out, GPS
Fix Done, teja_get_time(),GPSFixer_get_t() in file errorlog and finally fflush errorlog)}
Transition 17 {ComeOfSurface, Decide, LaunchDone, True, TimeInState=0, None}
Transition 18 {Decide, ReturnToStart, Steer, GPSOrd->ReturnToStart, TimeInState=0,
Print ReturningToStartPt, teja_get_time(),GPSFixer_get_t() into file execlog and finally
fflush execlog and executes VehCmd, AutCmd,DevCmd, ActReq commands) }
Transition 19 {ReturnToStart, Decide, WPDone, DistanceToPoint<=
WPThresholdDistance, TimeInState=0, (Print at Start Point, teja_get_time(),
GPSFixer_get_t() in file execlog, finally fflush execlog and GPSOrd->ReturnToStart =
FALSE)}
Transition 20 {Error, Stop, Error, True, None, None}

Launcher

 136

Figure 61: FSM of Launcher module

Superclass: TejaComponent

Variables: RetractMastTo, ComeOffSurfaceTo, LightOfDepth, FwdLaunchMast,
AftlaunchMast.

Links: DevState (DeviceState), VehState(VehicleState), DevCmd(DeviceCmd),
VehCmd(VehicleCmd), AutCmd(AutopilotCmd), ActReq(Actionreq), Logs(Files),
Components(ComponentList), LaunchOrd(LaunchOrder), Nav(NavState).

Functions:
ReadParams() is a function to read the parameters needed by the Launcher module to
get executed successfully.

Constructors: The data structures are initialized to point to their respective data
structures.
DevState=p_devicestate; (initialzed to point to DeviceState)
VehState=p_vehiclestate; (initialzed to point to VehicleState)
DevCmd=p_devicecmd; (initialzed to point to DeviceCmd)
VehCmd=p_vehiclecmd; (initialzed to point to VehicleCmd)
AutCmd=p_autopilotcmd; (initialzed to point to AutopilotCmd)
ActReq=p_actionrequest; (initialzed to point to ActionReq)
Logs=p_files; (initialzed to point to Files)
Components=p_componentlist; (initialzed to point to ComponentList)
Nav=p_navstate; (initialzed to point to NavState)

Destructor: No destructors.

Continuous state: t, TimeInState.

Discrete States:
State 1 {Start, t’=1, TimeInState’=1}
State 2 {Idle, t’=1, TimeInState’=1}
State 3 {RetractMast, t’=1, TimeInState’=1}

 137

State 4 {ComOffSurface, t’=1, TimeInState’=1}
State 5 {StartProp, t’=1, TimeInState’=1}
State 6 {TryTrim, t’=1, TimeInState’=1}
State 7 {Error, t’=1, TimeInState’=1}
State 8 {Stop, t’=1, TimeInState’=1}

Transitions:
Transition 1 {Start, Idle, Init, t>=1, none, ReadParams}
Transition 2 {RetractMast, Idle, TimeOut, TimeInState >=RetractMastTo, none, (Print in
file errorlog Launch - Retract Mast Timed Out - Aborting Mission, teja_get_time(),
Launcher_get_t() and finally fflush errorlog)}
Transition 3 {Idle, RetractMast, Launch, True, (t=0, TimeInstate=0), (Print in file
execlog Launch - Retracting Mast, teja_get_time(), Launcher_get_t() and finally
fflush execlog and execute commands by VehCmd, DevCmd, DevState, ActReq)}
Transition 4 {ComeOffSurface, Idle, Abort, True, (Print in file errorlog Launch -
Aborting ComeOffSurface on signal, teja_get_time(), Launcher_get_t() and finally
fflush errorlog)}
Transition 5 {RetractMast, Idle, Abort, True, (Print in file errorlog Launch - Aborting
RetractMast on signal, teja_get_time(), Launcher_get_t() and finally fflush errorlog)}
Transition 6 {ComeOffSurface, Idle, TimeOut, TimeInState>=ComeOffSurfaceTo,
(Print in file errorlog Launch - ComeOffSurface Timed Out - Aborting Mission,
teja_get_time(), Launcher_get_t() fflush errorlog)}
Transition 7 {TryTrim, Idle, LaunchDone, (Speed > 1.5 &&
Launcher_get_TimeInState() > 60.0), None, (Print in file execlog Launch - LaunchDone,
teja_get_time(),Launcher_get_t() and finally fflush execlog)}
Transition 8 {RetractMast, ComeOffSurface, MastDown, True, TimeInState=0, (Print
to file execlog Launch - Mast Down, coming off surface, teja_get_time(),
Launcher_get_t() and finally fflush execlog and (Altitude >20 LightOffdepth= 10 or
Altitude >10 LightOffDepth=5 or LightOffDepth=5) and executes VehCmd, DevCmd
and ActReq)}
Transition 9 {ComeOffSurface, StartProp, LightOff, Depth >= LightOffDepth, (Print in
file execlog Launch - Lighting-off prop, teja_get_time(), Launcher_get_t() and finally
fflush execlog and execute commands from VehCmd, AutCmd, ActReq) }
Transition 10 {StartProp, ComeOffSurface, SurfaceCaptured, Depth<1.5,
TimeInState=0, (Print to file execlog Launch - Surface Captured - trying to come off
surface, teja_get_time(), Launcher_get_t() and finally fflush execlog and (Altitude >20
LightOffdepth= 10 or Altitude >10 LightOffDepth=5 or LightOffDepth=5) and executes
VehCmd, DevCmd and ActReq)}
Transition 11 {TryTrim, ComeOffSurface, SurfaceCaptured, Depth<1.5, TimeInState=0,
(Print to file execlog Launch - Surface Captured - trying to come off surface,
teja_get_time(), Launcher_get_t() and finally fflush execlog and (Altitude >20
LightOffdepth= 10 or Altitude >10 LightOffDepth=5 or LightOffDepth=5) and executes
VehCmd, DevCmd and ActReq)}
Transition 12 {StartProp, TryTrim, TryTrim, Speed>1, TimeInState=0, (Print in file
execlog Launch - Trying VBS Trim to get fin authority, teja_get_time(),

 138

Launcher_get_t() and finally fflush execlog and execute commands from VehCmd,
DevCmd, ActReq)}
Transition 13 {Error, Stop, Error, True, None, None}

WayPointnavigator

Figure 62: FSM of Waypointnavigator

Superclass: TejaComponent

Variables: WayPointPctOverrun, WayPointTo, ThresholdDistance, MinSpeed,
MaxSpeed, TimeToWayPoint, DistanceToWayPoint, LoiterDistance,
LoiterAwayDistance, Requestor.

Links: Nav (NavState), ToWP (WayPoints), AutCmd (AutopilotCmd), ActReq
(ActionReq), DevCmd (DeviceCmd), VehCmd (VehicleCmd), FromWP (Wayoints),
Logs (Files), Helm (Steering), MC (Controller), Vagabond (Loiter), Components
(ComponentList)

Functions:
ReadParams() is a function to read the parameters needed by the WayPointNavigator
module to get executed successfully.

Constructors: The data structures are initialized to point to their respective data
structures.

Nav=p_navstate; (initialzed to point to NavState)

 139

AutCmd=p_autopilotcmd; (initialzed to point to AutopilotCmd)
ActReq=p_actionrequest; (initialzed to point to ActionReq)
DevCmd=p_devicecmd; (initialzed to point to DevCmd)
VehCmd=p_vehiclecmd; (initialzed to point to VehicleCmd)
Helm=p_steering; (initialzed to point to Steering)
MC=p_controller; (initialzed to point to Controller)
Logs=p_files; (initialzed to point to Files)
Vagabond=p_loiter; (initialzed to point to Loiter)
Components=p_componentlist; (initialzed to point to ComponetList)
ToWP=Waypoints_new(teja_default_memory_space_id); (initialzed to point to
WayPoint)
FromWP=Waypoints_new(teja_default_memory_space_id); (initialzed to point to
WayPoint)

Destructor: No destructors.

Continuous state: t, TimeInState, timer

Discrete States:
State 1 {Start, t’=1, TimeInState’=1, timer’=1}
State 2 {Idle, t’=1, TimeInState’=1, timer’=1}
State 3 {Decide, t’=1, TimeInState’=1, timer’=1}
State 4 {TimedWP, t’=1, TimeInState’=1, timer’=1}
State 5 {GoToWayPoint, t’=1, TimeInState’=1, timer’=1}
State 6 {GoToWP, t’=1, TimeInState’=1, timer’=1}
State 7 {Loiter, t’=1, TimeInState’=1, timer’=1}
State 8 {AtWP, t’=1, TimeInState’=1, timer’=1}
State 9 {LoiterDone, t’=1, TimeInState’=1, timer’=1}
State 10 { ReportTo, t’=1, TimeInState’=1, timer’=1}
State 11 {Error, t’=1, TimeInState’=1, timer’=1}
State 12 {Stop, none}

Transitions:
Transition 1 {Start, Idle, Init, t>=1, none, (ReadParams, LoiterAwayDistance < 500.0) {
LoiterAwayDistance=500.0, Print in file errorlog WaypointNavigator -
LoiterAwayDistance too small, resetting to 500 m, teja_get_time(),
WaypointNavigator_get_t() and finally fflush errorlog)}
Transition 2 {Idle, Decide, ProcessWP, True, t=0, Calculate the distance to cover}
Transition 3 {ReportTo, Idle, WPDone, True, TimeInState=0, None (Output)}
Transition 4 {Decide, Idle, Abort, True, None, (Print in file errorlog WaypointNavigator
- Aborting on signal, teja_get_time(), WaypointNavigator_get_t() finally fflush
errorlog)}
Transition 5 {TimedWP, Idle, Abort, True, None, (Print in file errorlog
WaypointNavigator - Aborting on signal, teja_get_time(), WaypointNavigator_get_t()
finally fflush errorlog)}

 140

Transition 6 {GoToWayPoint, Idle, Abort, True, None, (Print in file errorlog
WaypointNavigator - Aborting on signal, teja_get_time(), WaypointNavigator_get_t()
finally fflush errorlog)}
Transition 7 {GoToWP, Idle, Abort, True, None, (Print in file errorlog
WaypointNavigator - Aborting on signal, teja_get_time(), WaypointNavigator_get_t()
finally fflush errorlog)}
Transition 8 {AtWP, Idle, Abort, True, None, (Print in file errorlog WaypointNavigator -
Aborting on signal, teja_get_time(), WaypointNavigator_get_t() finally fflush errorlog)}
Transition 9 {Loiter, Idle, Abort, True, None, (Print in file errorlog WaypointNavigator -
Aborting on signal, teja_get_time(), WaypointNavigator_get_t() finally fflush errorlog)}
Transition 10 {LoiterDone, Idle, Abort, True, None, (Print in file errorlog
WaypointNavigator - Aborting on signal, teja_get_time(), WaypointNavigator_get_t()
finally fflush errorlog)}
Transition 11 {Decide, TimedWP, ProcessWP, (ToWP->Timed && TimeToWaypoint >
DistanceToWaypoint/MinSpeed), None, Loiters to desired point with desired Loiter
type}
Transition 12 {Decide, GoToWayPoint, Steer, (!ToWP->Timed || TimeToWaypoint <=
DistanceToWaypoint/MinSpeed), (TimeInState=0, timer=0), Goes to desired latitude and
longitude with desired steer mode}
Transition 13 {TimedWP, GoToWP, True, timer=0, (Goes to desired latitude and
longitude with desired SteerMode, HeadingMode, DepthMode)}
Transition 14 {GoToWP, GoToWP, Update, timer>=1, timer=0, Calculate the distance to
desired waypoint}
Transition 15 {GoToWP, AtWP, Abort, (Helm->DistanceToPoint <= LoiterDistance) ||
(TimeToWaypoint-WaypointNavigator_get_t() <= DistanceToWaypoint/MinSpeed),
None, Calculates by how much the vehicle loiters away from the desired waypoint }
Transition 16 {AtWP, Loiter, Loiter, ToWP->LoiterDuration>0, None, (Print in file
execlog WaypointNavigator - Going to loiter, teja_get_time(),
WaypointNavigator_get_t() fflush execlog) }
Transition 17 {AtWP, LoiterDone, LoiterDone, ToWP->LoiterDuration<=0, None, (
Print in file errorlog WaypointNavigator - No time to loiter , teja_get_time(),
WaypointNavigator_get_t() fflush errorlog)}
Transition 18 {Loiter, LoiterDone, LoiterDone, True, None, None}
Transition 19 {LoiterDone,GoToWayPoint, Steer, (!ToWP->LoiterAtWP &&
TimeToWaypoint >= WaypointNavigator_get_t()), (TimeInState=0, timer=0), Calculate
the distance to desired latitude and longitude with desired speedmode}
Transition 20 {LoiterDone, ReportTo, WPDone, (ToWP->LoiterAtWP ||
(TimeToWaypoint <= WaypointNavigator_get_t())), None, None}
Transition 21 {GoToWayPoint, GoToWayPoint, Update, timer>=2, timer=0, Calculates
the time to go to the desired location with the desired speedmode}
Transition 22 { GoToWayPoint, ReportTo, WPDone, ((!ToWP->Timed && Helm-
>DistanceToPoint <= ThresholdDistance) || (ToWP->Timed && Helm-
>DistanceToPoint <= 5.0)), TimeInState=0, (Print in file execlog WaypointNavigator -
WP Done, teja_get_time(), WaypointNavigator_get_t() and finally fflush execlog)}

 141

Transition 23 { GoToWayPoint, ReportTo, TimeOut, TimeInState>=WayPointTo, (Print
in file errorlog WaypointNavigator - Waypoint Timed Out, teja_get_time(),
WaypointNavigator_get_t() and finally fflush errorlog)}
Transition 24 {ReportTo, Idle, WPDone, True, TimeInstate=0, None}
Transition 25 {Error, Stop, Error, True, None, None}

Rendezvous

Figure 63: FSM of Rendezvous module

Superclass: TejaComponent

Variables: WPThreshDistMemory

Links: ActReq, Logs, Vagabond, WPNav, DevCmd, VehCmd, Components

Functions: None

Constructors:
ActReq=p_actionrequest; (initialzed to point to Actionreq)
Logs=p_files; (initialzed to point to Files)
Vagabond=p_loiter; (initialzed to point to Loiter)
WPNav=p_waypointnavigator; (initialzed to point to WayPointNavigator)
DevCmd=p_devicecmd; (initialzed to point to DeviceCmd)
VehCmd=p_vehiclecmd; (initialzed to point to VehicleCmd)
Components=p_componentlist; (initialzed to point to ComponentList)

Destructor: No destructors.

Continuous state: t, TimeInState
Discrete States:
State 1 {Start, t’=1, TimeInState’=1}
State 2 {Idle, t’=1, TimeInState’=1}
State 3 {LoiterDone, t’=1, TimeInState’=1}
State 4 {Decide, t’=1, TimeInState’=1}

 142

State 5 {GoToRendezvous, t’=1, TimeInState’=1}
State 6 {AtRendouzvous, t’=1, TimeInState’=1}
State 7 {Loiter, t’=1, TimeInState’=1}
State 8 {Error, t’=1, TimeInState’=1}
State 9 {Stop, none}

Transitions:
Transition 1 {Start, Idle, Init, t>=1, None, None}
Transition 2 {Decide, Idle, Abort, True, None, (Print in file errorlog Rendezvous -
Aborting, teja_get_time(),Rendezvous_get_t() and finally fflush errorlog)}
Transition 3 {Idle, Decide, Rendezvous, True, (t=0, TimeInState=0), Calculates the Way
point threshold distance depending upon the loiter type used for movement}
Transition 4 {GoToRendezvous, Idle, Abort, True, None, (WPNav-
>ThresholdDistance=WPThreshDistMemory, Print in file errorlog,Rendezvous -
Aborting, teja_get_time(), Rendezvous_get_t(), and finally fflush errorlog)}
Transition 5 {AtRendezvous, Idle, RendezvousDone, (WPNav->ToWP-
>LoiterType==NONE || WPNav->ToWP->LoiterDuration==0.0), None, (WPNav-
>ThresholdDistance= WPThreshDistMemory, Print in file execlog Rendezvous - No
loiter specified, leaving rendezvous, teja_get_time(), Rendezvous_get_t() and finally
fflush execlog)}
Transition 6 {AtRendezvous, Idle, Abort, True, None, (WPNav->ThresholdDistance=
WPThreshDistMemory, Print to file errorlog: Rendezvous â€“ Aborting, teja_get_time(),
Rendezvous_get_t() and finally fflush errorlog)}
Transition 7 {Loiter, Idle, Abort, True, None, (WPNav->ThresholdDistance=
WPThreshDistMemory, Print to file errorlog: Rendezvous â€“ Aborting, teja_get_time(),
Rendezvous_get_t() and finally fflush errorlog)}
Transition 8 {LoiterDone, Idle, RendezvousDone, True, TimeInState=0, (WPNav-
>ThresholdDistance= WPThreshDistMemory, Print to file execlog: Rendezvous -
Leaving rendezvous, teja_get_time(), Rendezvous_get_t() and finally fflush execlog)}
Transition 9 {Decide, GoToRendezvous, ProcessWP, True, None, executes commands
given by VehCmd, DevCmd, ActReq}
Transition 10 {Decide, Loiter, Loiter, (WPNav->ToWP->Latitude==0 && WPNav-
>ToWP->Longitude==0 && WPNav->ToWP->Depth==0 && WPNav->ToWP-
>Speed==0), TimeInState=0, Updates various loiter variables and goes of to loiter when
specified rendezvous point is not given}
Transition 11 {GoToRendezvous, AtRendezvous, WPDone, True, None, None}
Transition 12 {AtRendezvous, Loiter, Loiter, True, TimeInState=0, (Print in file excelog
Rendezvous - Going to Loiter, teja_get_time(),Rendezvous_get_t(), and finally fflush
execlog and loiter to different locations)}
Transition 13 {Loiter, LoiterDone, LoiterDone, True, None, None}
Transition 14 {Error, Stop, Error, True, None, None}

DeviceCommander

 143

Figure 64: FSM for DeviceCommander

Superclass: TejaComponent
Variables: CmdSet, GoSurfaceTo, RaiseMastTo, SurfaceThreshold, ComeOffSurfaceTo,
RetractMastTo, SetSwitchTo

Links: Components (ComponentList), Logs (Files), DevOrd (DeviceOrd),DevCmd
(DeviceCmd), DevState (DeviceState), ActReq (ActionReq), VehCmd (VehicleCmd),
Nav (NavState), InitDevState (DeviceState), AutCmd (AutopilotCmd), InitNav
(NavState)

Functions:
SetDeviceCmd() is a function to set the device command specified in the current device
command order.
DeviceCmdDone() is a function to check if the current device command is completed
CheckDeviceCmd() is a function which checks if it is safe to apply current device
command
ReadParams() is a function to read the parameters needed by the DeviceCommander
module to get executed successfully.
TimeOut() is a function to check if a time out for the current device has occurred

Constructors:
Components=p_componentlist; (initialzed to point to ComponentList)
Logs=p_files; (initialzed to point to Files)
DevCmd=p_devicecmd; (initialzed to point to DeviceCmd)
DevState=p_devicestate; (initialzed to point to DeviceState)
VehCmd=p_vehiclecmd; (initialzed to point to VehicleCmd)
ActReq=p_actionrequest; (initialzed to point to ActionReq)
Nav=p_navstate; (initialzed to point to NavState)
AutCmd=p_autopilotcmd; (initialzed to point to AutopilotCmd)
SetSwitchTO=5.0;
InitDevState=DeviceState_new(teja_default_memory_space_id); (initializing memory
space for DeviceState)
InitNav=NavState_new(teja_default_memory_space_id); (initializing memory space for
NavState)

Destructor: No destructors.

Continuous state: t, TimeInState, timer

 144

Discrete States:
State 1 {Start, t’=1, TimeInState’=1, timer’=1}
State 2 {Idle, t’=1, TimeInState’=1, timer’=1}
State 3 {SetCommand, t’=1, TimeInState’=1, timer’=1}
State 4 {Error, t’=1, timer’=1}
State 5 {Stop, none}

Transitions:
Transition 1 {Start, Idle, Init, t>=1, none, ReadParams}
Transition 2 {Idle, SetCommand, SetDevice, True, t=0, TimeInState=0, timer=0, (Saves
initial device states,saves initial nav state, (CmdSet=True, Device Commander - Setting
Device Commands) (CmdSet= False, Device Commander - Waiting to set Device
Commands))}
Transition 3 {SetCommand, Idle, DeviceDone, (DeviceCommander_DeviceCmdDone()
&& CmdSet), TimeInState=0, (Print Commander - Device command done,
teja_get_time(),DeviceCommander_get_t())}
Transition 4 {SetCommand, Idle, TimeOut, DeviceCommander_TimeOut(this), None,
None)
Transition 5 {SetCommand, Idle, Abort, True, None,(Print to file errorlog
DeviceCommander - Aborting set device command, teja_get_time(),
DeviceCommander_get_t() and finally fflush errorlog)
Transition 6 {SetCommand, SetCommand, SetDevice, (DeviceCommander_get_timer()
>=1 && !CmdSet), timer=0, (DeviceCommander_CheckDeviceCmd
DeviceCommander_SetDeviceCmd() CmdSet=TRUE, Print to file execlog Device
Commander - Setting Device Commands, teja_get_time(), DeviceCommander_get_t())}
Transition 7 {Error, Stop, Error, True, None, None}

PayloadDelivery

Figure 65: FSM of Payload module

Superclass: TejaComponent

Variables: DeliveryDelay, PayloadDescription, WPDistThreshMemory

 145

Links: Logs, WPNav, VehCmd, ActReq, DevCmd, AutCmd, Components

Functions:
ReadParams() is a function to read the parameters needed by the PayloadDelivery
module to get executed successfully.

Constructors:
AutCmd=p_autopilotcmd; (initialzed to point to AutopilotCmd)
WPNav=p_waypointnavigator; (initialzed to point to WayPointNavigator)
VehCmd=p_vehiclecmd; (initialzed to point to VehicleCmd)
ActReq=p_actionrequest; (initialzed to point to ActionReq)
DevCmd=p_devicecommand; (initialzed to point to DeviceCommand)
Logs=p_files; (initialzed to point to Files)
Components=p_componentlist; (initialzed to point to ComoponentList)

Destructor: No destructors.

Continuous state: t, TimeInState

Discrete states:
State 1 {Start, t’=1, TimeInState’=1}
State 2 {Idle, t’=1, TimeInState’=1}
State 3 {Run, t’=1, TimeInState’=1}
State 4 {Deliver, t’=1, TimeInState’=1}
State 5 {GoToPoint, t’=1, TimeInState’=1}
State 6 {Error, t’=1, timer’=1}
State 7 {Stop, none}

Transitions:
Transition 1 {Start, Idle, Init, t>=1, none, ReadParams}
Transition 2 {Deliver, Idle, PayloadDone, TimeInState>=DeliveryDelay, TimeInState=0,
(WPNav->ThresholdDistance=WPDistThreshMemory and executes commands
DevCmd, Acteq and prints to file execlog Payload - Payload Delivery Done,
teja_get_time(), PayloadDelivery_get_t() and finally fflush execlog)}
Transition 3 {Idle, Run, ProcessPayload, True, (t=0, TimeInState=0),
(WPDistThreshMemory=WPNav->ThresholdDistance)}
Transition 4 {Run, Idle, True, None, (Print to file errorlog PayloadDelivery - Aborting,
teja_get_time(), PayloadDelivery_get_t(), and finally fflush errorlog)}
Transition 5 {GoToPoint, Idle, Abort, True, None, (print to errorlog PayloadDelivery -
Aborting, teja_get_time(), PayloadDelivery_get_t() and finally fflush errorlog)}
Transition 6 {Deliver, Idle, Abort, True, (print to errorlog PayloadDelivery - Aborting,
teja_get_time(), PayloadDelivery_get_t() and finally fflush errorlog)}
Transition 7 {Run, GoToPoint, ProcessWP, True, None, (WPNav-
>ThresholdDistance=5.0 print to file execlog Payload - Proceeding to Payload Delivery

 146

Point, teja_get_time(), PayloadDelivery_get_t() and finally fflush execlog and commands
in VehCmd, DevCmd, ActReq are operated)}
Transition 8 {GoToPoint, Deliver, DeliverPayload, (WPNav->TimeToWaypoint <=
DeliveryDelay), TimeInState=0, (execute commands VehCmd, DevCmd, ActReq,
PayloadDescription==PORT print to file execlog Payload - Deliver port payload,
teja_get_time(),PayloadDelivery_get_t() or PayloadDescription==STBD print to file
execlog Payload - Deliver port payload, teja_get_time(),PayloadDelivery_get_t() or
PayloadDescription==BOTH print to file execlog Payload - Deliver port payload,
teja_get_time(),PayloadDelivery_get_t() and finally fflush execlog)}
Transition 9 {GoToPoint, Deliver, WPDone, True, TimeInState=0, (execute commands
VehCmd, DevCmd, ActReq, PayloadDescription==PORT print to file execlog Payload -
Deliver port payload, teja_get_time(),PayloadDelivery_get_t() or
PayloadDescription==STBD print to file execlog Payload - Deliver port payload,
teja_get_time(),PayloadDelivery_get_t() or PayloadDescription==BOTH print to file
execlog Payload - Deliver port payload, teja_get_time(),PayloadDelivery_get_t() and
finally fflush execlog)}
Transition 10 {Error, Stop, Error, True, None, None}

Loiter

Figure 66: FSM of Loiter module

Superclass: TejaComponent

Variables: LoiterTo, Radius, LoiterLat, LoiterLon, LoiterDepth, LoiterSpeed, CircleLats,
CircleLons, NumPoints, CurrentWP, LoiterSpeedMode, MinSpeed, MaxSpeed,
Requestor

Links: Logs, Nav, WPNav, ActReq, VehCmd, AutCmd, DevCmd, Helm, Components

 147

Functions:
ReadParams() is a function to read the parameters needed by the Loiter module to get
executed successfully.
PlotCircle() is the function which finds the latitudes and longitudes of points that define
a circle about the Loiter Point.
TimeToLoiterPoint() is a function that calculates time to loiter point.

Constructors:
Logs=p_files; (initialzed to point to Files)
Nav=p_navstate; (initialzed to point to NavState)
WPNav=p_waypointnavigator; (initialized to point to WayPointNavigator)
ActReq=p_actionrequest; (initialzed to point to ActionRequest)
VehCmd=p_vehiclecmd; (initialzed to point to VehicleCmd)
AutCmd=p_autopilotcmd; (initialzed to point to AutopilotCmd)
DevCmd=p_devicecmd; (initialzed to point to DeviceCmd)
Helm=p_steering; (initialzed to point to Steering)
Components=p_componentlist; (initialzed to point to ComponentList)
LoiterSpeedMode=OPENLOOP;
CurrentWP=0;

Destructor: No destructors.

Continuous state: t, TimeInState, timer

Discrete states:
State 1 {Start, t’=1, TimeInState’=1, timer’=1}
State 2 {Idle, t’=1, TimeInState’=1, timer’=1}
State 3 {ReportTo, t’=1, TimeInState’=1, timer’=1}
State 4 {CooseLoiterMode, t’=1, TimeInState’=1, timer’=1}
State 5 {Hover, t’=1, TimeInState’=1, timer’=1}
State 6 {Circle, t’=1, TimeInState’=1, timer’=1}
State 7 {GoToCircleWP, t’=1, TimeInState’=1, timer’=1}
State 8 {StopCircle, t’=1, TimeInState’=1, timer’=1}
State 9 {GoToLoiterPt, t’=1, TimeInState’=1, timer’=1}
State 10 {Error, t’=1, TimeInState’=1, timer’=1}
State 11 {Stop, none}

Transitions:
Transition 1 {Start, Idle, Init, t>=1, none, ReadParams}
Transition 2 {Idle,ChooseLoiterMode, Loiter, True, t=0, None}
Transition 3 {ChooseLoiteMode, Idle, LoiterMode, (NumPoints<2 && LoiterTO==0) ||
WPNav->ToWP->LoiterType==NONE), None, (Print to file execlog Loiter - No loiter
required....Ending Loiter, teja_get_time(), Loiter_get_t() and finally fflush execlog)}
Transition 4 {ChooseLoiteMode, Idle, Abort, True, None, (Print to file execlog Loiter -
Aborting from Loiter on abort signal, teja_get_time(), Loiter_get_t() and finally

 148

fflush execlog)}
Transition 5 {Hover, Idle, Abort, True, (t=0, TimeInState=0), (Print to file execlog Loiter
- Aborting from Loiter on abort signal, teja_get_time(), Loiter_get_t() and finally
fflush execlog)}
Transition 6 {Circle, Idle, Abort, True, (t=0, TimeInState=0), (Print to file execlog Loiter
- Aborting from Loiter on abort signal, teja_get_time(), Loiter_get_t() and finally
fflush execlog)}
Transition 7 {GoToCircleWP, Idle, Abort, True, None, (Print to file execlog Loiter -
Aborting from Loiter on abort signal, teja_get_time(), Loiter_get_t() and finally
fflush execlog)}
Transition 8 {StopCircle, Idle, Abort, True, (t=0, TimeInState=0), (Print to file execlog
Loiter - Aborting from Loiter on abort signal, teja_get_time(), Loiter_get_t() and finally
fflush execlog)}
Transition 9 {GoToLoiterPt, Idle, Abort, True, (t=0, TimeInState=0), (Print to file
execlog Loiter - Aborting from Loiter on abort signal, teja_get_time(), Loiter_get_t() and
finally fflush execlog)}
Transition 10 {ReportTo, Idle, LoiterDone, True, None, None}
Transition 11 {ChooseLoiterMode, Hover, Loiter, (NumPoints<2 && LoiterTO>0) ||
WPNav->ToWP->LoiterType==HOVER), TimeInState=0, (Print to file execlog Loiter -
Setting VBS in Hover mode, teja_get_time(),Loiter_get_t() and finally fflush execlog and
execute commands in VehCmd, AutCmd, DevCmd, ActReq)}
Transition 12 {ChooseLoiterMode, Circle, Loiter, (NumPoints>=2 && LoiterTO>0 &&
WPNav->ToWP->LoiterType==CIRCLE), TimeInState=0, (Print to file execlog Loiter -
Computing Loiter Circle and going to first point, teja_get_time(),Loiter_get_t() and
finally fflush execlog and execute commands in VehCmd, AutCmd, ActReq and
Loiter_PlotCircle)
Transition 13 {Circle, GoToCircleWP, Steer, NumPoints>=2, (WPNav->ToWP-
>UseSSS) (Print to execlog Loiter - Turning On SSS, teja_get_time(),Loiter_get_t()
fflush execlog, DevCmd->SSSCmd=ON) or (DevCmd->SSSCmd=OFF
DevCmd->VBSCmd=TRIM, DevCmd->VBSDepthCmd=WPNav->ToWP->Depth)}
Transition 14 {GoToCircleWP, Circle, WPDone, Helm->DistanceToPoint<=20.0, None,
Loiter - Processing loiter waypoint}
Transition 15 {Hover, GoToLoiterpt, (TimeInState>= LoiterTO-
Loiter_TimeToLoiterPt() â€“ 20), Timer=0, (Loiter - Turning On SSS or Loiter â€“
returningToLoiterPt)}
Transition 16 {GoToCircleWP, StopCircle, TimeOut, (TimeInState >= LoiterTO-
Loiter_TimeToLoiterPt(), None, None}
Transition 17 {StopCircle, GoToLoiterpt, Steer, True, None, Loiter â€“ Returning

 149

Appendix C: OpenGL Code for Animation/Simulation

Steering

/*Steering module execution sequence animation*/
#include <GL/glut.h>
#include <stdlib.h>
#include<stdio.h>
#include<time.h>
#include<math.h>
#define VMR 0.0005// Vertical motion rate
#define HMR 0.0005// Horizontal moition rate
#define SurfaceThreshold 1
#define MaxAngle 90
#define MastRate 0.05
#define UP 1
static GLfloat MastAngle;
static GLfloat FromLatitude; // The begining latitude
static GLfloat FromLongitude; //The beginning longitude
static GLfloat MastMotion = 0.0; // Motion of the mast
static GLfloat Slope; // To get the slope of the line in LINE steeringmode
static GLfloat LatLongDiff; // The constant in the equation of a line for LINE steermode
static GLfloat ToLatitude;
static GLfloat ToLongitude;
float TimeOfOperation, TotalTime;
int SteerMode;
int z=0;
int Steering, count;
float temp1, temp2, square;
float temp3, number, ExitTime,squareroot;
int i = 0 ; //Used for abort signal
int j =0, k =0, n =0, l =1;//j for lat loop, k for long loop, l for LINE loop
int Lat = 0, begin, o = 0, m = 0, DevState__MastState;
time_t start, start1, start2, start3, start4;
time_t end, end1, end2, end3, end4;
double elapsed;
FILE *STOutput, *SOutput, *SteerOutput, *StAngle;

/*Initialization module*/
void init(void)
{

 glClearColor (0.0, 0.0, 0.0, 0.0);
 glShadeModel (GL_FLAT);
}

/*Display module*/

void display(void)
{
 glClear (GL_COLOR_BUFFER_BIT);
 glColor3f(0.0, 0.4, 0.8);
 glRectf(-8.0, -4.0, 8.0, 2.0);
 glPushMatrix();
 glTranslatef (-1.0, 0.0, 0.0);
 glTranslatef (1.0, 0.0, 0.0);

 150

 glTranslatef(FromLongitude, FromLatitude, 0.0);
 glTranslatef(FromLongitude, FromLatitude, 0.0);
 glPushMatrix();
 glScalef (2.0, 0.4, 1.0);
 glColor3f(0.0, 0.7, 0.4);
 glutSolidCube (1.0);
 glPopMatrix();
 glTranslatef (0.0, 0.1, 0.0);
 glTranslatef(0.08*FromLongitude, MastMotion, 0.0);
 glRotatef(0.0, 0.0, 0.0, 1.0);
 glRotatef(MastAngle, 0.0, 0.0, 1.0);
 glTranslatef(0.5, MastMotion, 0.0);
 glPushMatrix();
 glScalef (0.8, 0.2, 0.5);
 glColor3f(1.0, 1.0, 0.0);
 glutSolidCube(1.0);
 glPopMatrix();
 glPopMatrix();
 glutSwapBuffers();
}

/*Module to Steer the AUV*/
void Steer(void)
{
 if(begin == 0)
 {
 time(&start);
 time(&start1);
 time(&start2);
 time(&start3);
 time(&start4);
 begin++;
 }

 if (Steering == 1)
 {

 /*AUV moving horizontally when FromLongitude is lesser than ToLongitude*/

 if ((FromLongitude < ToLongitude) && (k == 0))
 {

 /*AUV for LINE steering mode to get slope*/
 if ((SteerMode == 1) && (n == 0))
 {
 Slope =(ToLatitude-FromLatitude)/(ToLongitude-FromLongitude);
 LatLongDiff = FromLatitude - Slope*FromLongitude;
 n++; l--;
 }

 /*AUV for LINE steering mode */

 if (SteerMode == 1 && l ==0)
 {
 FromLongitude = FromLongitude + HMR;
 FromLatitude = Slope*FromLongitude + LatLongDiff;

 151

 MastMotion = 0.008*FromLongitude;
 j = 1;

 if(difftime(end,start1) == 2)

 {
 printf("Time = %f, Steermode LINE %f,
%f\n",difftime(end,start1), FromLatitude, FromLongitude);
 time(&start1);
 }

 if(ToLongitude <= FromLongitude)
 {
 glutIdleFunc(NULL);
 k =1;
 l = 1;
 printf("Time = %f Steermode LINE %f,
%f\n",difftime(end,start), FromLatitude, FromLongitude);
 }
 glutPostRedisplay();
 }

 }

 /*AUV moving horizontally when FromLongitude is greater than ToLongitude*/

 if ((ToLongitude < FromLongitude) && (k == 0))
 {
 /*AUV for LINE steering mode to get slope*/

 if (SteerMode == 1 && n == 0)
 {
 Slope =(ToLatitude-FromLatitude)/(ToLongitude-FromLongitude);
 LatLongDiff = FromLatitude - Slope*FromLongitude;
 n++; l--;
 }

 /*AUV for LINE steering mode*/

 if (SteerMode == 1 && l == 0)
 {
 FromLongitude = FromLongitude - HMR;
 FromLatitude = Slope*FromLongitude + LatLongDiff;
 MastMotion = 0.008*FromLongitude;
 j = 1;

 if((difftime(end,start2)) == 2)
 {
 printf("Time = %f, Steermode LINE Lat = %f, Long =
%f\n",difftime(end,start2), FromLatitude, FromLongitude);
 time(&start2);
 }

 if(ToLongitude >= FromLongitude)
 {
 glutIdleFunc(NULL);

 152

 k =1;
 l = 1;
 printf("Time = %f, Steermode LINE %f,
%f\n",difftime(end,start), FromLatitude, FromLongitude);

 }
 glutPostRedisplay();
 }

 }

 /*AUV moving Vertically when FromLatitude is lesser than ToLatitude */

 if (FromLatitude < ToLatitude && j == 0)
 {
 FromLatitude = FromLatitude + VMR;
 MastMotion = 0.008*FromLatitude;

 if(difftime(end,start3) == 2)
 {
 if (SteerMode == 1)
 printf("Time = %f Steermode LINE Lat:%f Long =
%f\n", difftime(end,start3), FromLatitude, FromLongitude);
 time(&start3);
 }

 if((FromLatitude >= ToLatitude) && (FromLongitude ==
ToLongitude))
 {

 glutIdleFunc(NULL);
 j = 1;
 k = 1;
 printf("Time = %f, Steermode LINE %f,
%f\n",difftime(end,start), FromLatitude, FromLongitude);
 }

 glutPostRedisplay();

 }

 /*AUV moving Vertically when FromLatitude is greater than ToLatitude */

 if (FromLatitude > ToLatitude && j == 0)
 {

 FromLatitude = FromLatitude - VMR;
 MastMotion = 0.008*FromLatitude;

 if(difftime(end,start4)== 2)
 {
 if (SteerMode == 1)

 153

 printf("Time = %f Steermode LINE Lat:%f Long =
%f\n",difftime(end,start4), FromLatitude, FromLongitude);
 time(&start4);;

 }

 if((FromLatitude <= ToLatitude) && (FromLongitude == ToLongitude))
 {
 glutIdleFunc(NULL);
 j = 1;
 k = 1;
 printf("Time = %f, Steermode LINE %f, %f\n",difftime(end,start),
FromLatitude, FromLongitude);
 }

 glutPostRedisplay();
 }

 }

 time(&end);
 if(k == 1 && j == 1)
 {
 if(count == 0)
 {
 SOutput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Position.txt", "w"
);
 fprintf(SOutput, "%f\n", FromLatitude);
 fprintf(SOutput, "%f\n", FromLongitude);
 fclose(SOutput);
 SteerOutput = fopen(
"C:\\Research\\Animation\\Temp\\Mission\\SteerOutput.txt", "w");
 fprintf(SteerOutput, "%f\n", FromLatitude);
 fprintf(SteerOutput, "%f\n", FromLongitude);
 fprintf(SteerOutput, "%f\n", difftime(end, start));
 fclose(SteerOutput);

 STOutput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Time.txt", "r");
 fscanf(STOutput,"%f\n", &TotalTime);
 fclose(STOutput);

 TotalTime = TotalTime + difftime(end, start);

 STOutput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Time.txt", "w");
 fprintf(STOutput, "%f\n", TotalTime);
 fclose(STOutput);
 count = 1;
 exit(0);
 }
 }

}

void Abort(void)
{
/*AUV moving up to take GPSFix (Control within GPSFix module)*/

 154

 /*Take value of SurfaceThreshold from Uppaal file */
 if (FromLatitude < SurfaceThreshold && o ==0)
 {
 FromLatitude = FromLatitude + VMR;
 MastMotion = 0.008*FromLatitude;

 if(FromLatitude == SurfaceThreshold)
 {
 glutIdleFunc(NULL);
 o = 1;
 }
 glutPostRedisplay();
 }

 if (FromLatitude >= SurfaceThreshold && m == 0)
 {

 MastAngle = MastAngle + MastRate;

 /*Rate to raise mast when AUV is on water surface rate valur from Uppaaal*/
 while (MastAngle>MaxAngle) /*Take value of MastAngle from Uppaal*/
 {
 DevState__MastState = UP;
 m = 1;
 }

 glutPostRedisplay();
 }

}

/*Projection module*/

void reshape (int w, int h)
{
 glViewport (0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode (GL_PROJECTION);
 glLoadIdentity ();
 gluPerspective(70.0, (GLfloat) w/(GLfloat) h, 10.0, 4.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glTranslatef (0.0, 0.0, -5.0);
}

/*Keyboard function*/

void keyboard (unsigned char key, int x, int y)
{
 switch (key) {

 case 'a':
 {
 i = 1;
 glutIdleFunc(Abort);
 printf("MISSION ABORTED\n");

 155

 }
 break;

 case 27:
 {

 exit(0);
 }
 break;
 default:
 break;
 }
}

/*Mouse action*/

void mouse(int button, int state, int x, int y)

{
 switch(button)
 {
 case GLUT_LEFT_BUTTON:

 if (state == GLUT_DOWN && i == 0.0)
 {
 glutIdleFunc(Steer);
 }
 break;
 }
}

FILE *SInput, *StInput, *SAngle;
int main(int argc, char** argv)
{
 glutInit(&argc, argv);

 /*Open file for reading input*/

 SInput = fopen("C:\\Research\\Animation\\Temp\\Mission\\SteerInput.txt", "r");
 if(SInput == NULL)
 printf("The file 'SteerInput.txt' was not opened\n");// File failed to open
 else
 printf("The file 'SteerInput.txt' was opened\n");// File opened

 fseek(SInput, 0L, SEEK_SET);
 fscanf(SInput, "%d\n", &Steering);//Get the order is Steering or not
 fscanf(SInput, "%d\n", &SteerMode);//Mode of Steering
 fscanf(SInput, "%f\n", &ToLatitude);//Get the destined Latitude
 fscanf(SInput, "%f\n", &ToLongitude);//Get the destned Longitude
 fclose(SInput);
 printf("ToLat = %f, ToLong = %f\n",ToLatitude, ToLongitude);

 if (ToLatitude < -1.5)
 {
 ToLatitude = -1.5;
 printf("ToLatitude value change to -1.5 as depth below that is dangerous\n");

 156

 }
 if (ToLatitude > 1.0)
 {
 ToLatitude = 1.0;
 printf("ToLatitude value cannot be more than 1.0 the surface\n");
 }

 StInput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Position.txt", "r");
 fscanf(SInput, "%f\n", &FromLatitude);//Get the current Latitude
 fscanf(SInput, "%f\n", &FromLongitude);//Get the current Longitude
 printf("Lat = %f, Long = %f\n",FromLatitude, FromLongitude);

 if (FromLatitude < -1.5)
 {
 FromLatitude = -1.5;
 printf("FromLatitude value change to -1.5 as depth below that is dangerous\n");
 }

 if (FromLatitude > 1.0)
 {
 FromLatitude = 1.0;
 printf("FromLatitude value cannot be more than 1.0 the surface\n");
 }

 temp1 = FromLatitude - ToLatitude;
 temp2 = FromLongitude - ToLongitude;
 temp3 = temp1*temp1 + temp2*temp2;
 squareroot = sqrt(temp3);
 printf("%f\n", squareroot);

 SAngle = fopen("C:\\Research\\Animation\\Temp\\Mission\\Position.txt", "r");
 fscanf(SAngle, "%f\n", &MastAngle);
 if (MastAngle > 0 && FromLatitude < 1.0)
 {
 MastAngle = 0.0;
 printf("Mast is not raised as not on surface\n");
 }
 fclose(SAngle);
 if (MastAngle > 0 && FromLatitude == 1.0)
 {
 MastAngle = 0.0;
 printf("Lower Mast before going below surface of water\n");
 }

 glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB);
 glutInitWindowSize (500, 500);
 glutInitWindowPosition (100, 100);
 glutCreateWindow (argv[0]);
 init ();
 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutKeyboardFunc(keyboard);
 glutMouseFunc(mouse);

 glutMainLoop();

 157

 return 0;
}

Loiter

/*Loiter module execution sequence animation*/

#include <GL/glut.h>
#include <stdlib.h>
#include<stdio.h>
#include<math.h>
#include<time.h>

#define VMR 0.001//Rate to move up depeding
#define HMR 0.001 //Rate to move horizontally
#define MastRate 0.02
#define DriftRate 0.001 //To assign a value to water current given as drift
#define StartPoint -1.0 //Keeping a record of start point
#define Steering 1//Checks whether steering mode received or not
#define LINE 1 //Steering mode direct to go straight to the point following a line
#define HOVER 1
#define CIRCLE 2
#define NONE 0
#define PI 3.14
#define Steering 1
#define LoiterTO 50
#define Loiter_TimeToLoiterPt_FCN 10
#define SurfaceThreshold 1
#define MaxAngle 90
#define DOWN 0
#define UP 1

static GLfloat Helm__DistanceToPoint;
static GLfloat FromLatitude , ToLatitude; // The begining latitude
static GLfloat FromLongitude, ToLongitude; //The beginning longitude
static GLfloat MastMotion = 0.0; // Motion of the mast
static GLfloat i = 0; //Used for abort signal
static GLfloat Slope; // To get the slope of the line in direct steeringmode
static GLfloat SteerMode = LINE;//Assigning mode to steering
static GLfloat LatLongDiff; // The constant in the equation of a line for direct steermode
static GLfloat Step;
static GLfloat ToWP__LoiterType = 1;
static GLfloat Loitering = 0;
static GLfloat First = 0;
static GLfloat r;
static GLfloat Theta;
static GLfloat base;
static LoiterDone = 0, MastAngle = 0;
static GLfloat m = 0;
static GLfloat Side;
static GLfloat TimeInState;
static GLfloat Helm =0;
static GLfloat HoverPoint;
int j =0, k =0, n =0, l =1, p=0, o = 0;//j for lat loop, k for long loop, l for direct loop, p for indirect
int NumPoints = 1, count = 0, Hove = 0, begin = 0, DevState__MastState = DOWN, numCount = 0;
float TotalTime;

 158

float Time, Timer;
float TimeIncr;
time_t start, start1, start2, start3, start4;
time_t end, end1, end2, end3;
FILE *LOutput, *LoOutput, *LTOutput;
void init(void)
{

 glClearColor (0.0, 0.0, 0.0, 0.0);
 glShadeModel (GL_FLAT);
}

void display(void)
{
 glClear (GL_COLOR_BUFFER_BIT);
 glColor3f(0.0, 0.4, 0.8);
 glRectf(-8.0, -4.0, 8.0, 2.0);
 glPushMatrix();
 glTranslatef (-1.0, 0.0, 0.0);
 glTranslatef (1.0, 0.0, 0.0);
 glTranslatef(FromLongitude, FromLatitude, 0.0);
 glTranslatef(FromLongitude, FromLatitude, 0.0);
 glPushMatrix();
 glScalef (2.0, 0.4, 1.0);
 glColor3f(0.0, 0.7, 0.4);
 glutSolidCube (1.0);
 glPopMatrix();
 glTranslatef (0.0, 0.1, 0.0);
 glTranslatef(0.08*FromLongitude, MastMotion, 0.0);
 glRotatef(0.0, 0.0, 0.0, 1.0);
 glTranslatef(0.5, MastMotion, 0.0);
 glPushMatrix();
 glScalef (0.8, 0.2, 0.5);
 glColor3f(1.0, 1.0, 0.0);
 glutSolidCube(1.0);
 glPopMatrix();
 glPopMatrix();
 glutSwapBuffers();
}

void Loiter(void)
{
 if(begin == 0)
 {
 time(&start);
 time(&start1);
 begin++;
 }

 if ((NumPoints<2 && LoiterTO == 0 || ToWP__LoiterType == NONE) && Loitering == 0)
 {
 Loitering = 1;
 glutIdleFunc(NULL);
 printf("No time to Loiter \n");

 159

 }

 if ((NumPoints<2 && LoiterTO>0) || ToWP__LoiterType == HOVER && LoiterDone == 0)
 {
 if (count == 0)
 {
 HoverPoint = FromLongitude;
 printf("HOVERING, HoverPoint = %f, Hove \n", HoverPoint);
 count++;
 }

 if (FromLongitude < (HoverPoint + 1.0) && Hove == 0 && LoiterDone == 0)
 {
 FromLongitude = FromLongitude + 0.001;

 if (FromLongitude >= HoverPoint + 1.0)
 {
 ++Hove;
 printf("Hove in fwd= %d, Time Hovering = %f\n", Hove,
difftime(end1, start));

 }
 if ((difftime(end1, start) >= (LoiterTO-Loiter_TimeToLoiterPt_FCN-20)))
 {
 LoiterDone = 1;

 }
 }

 if (FromLongitude > HoverPoint && Hove == 1 && LoiterDone == 0)
 {
 FromLongitude = FromLongitude - 0.001;

 if (FromLongitude <= HoverPoint)
 {
 Hove = 0;
 printf("Hove in bwd= %d Time Hovering = %f \n",Hove,
difftime(end1, start));
 }
 if ((difftime(end1, start) >= (LoiterTO-Loiter_TimeToLoiterPt_FCN-20)))
 {
 LoiterDone = 1;

 }
 }

 glutPostRedisplay();
 }
 time(&end1);

 if (NumPoints>=2 && LoiterTO>0 && ToWP__LoiterType == CIRCLE && (difftime(end2,
start)<=LoiterTO-Loiter_TimeToLoiterPt_FCN) && Helm ==0)
 {
 Step = 360/NumPoints;
 for (m=0; m<Step; m=m+1)
 {

 160

 if (First == 0)
 {

 First = 1;
 r = pow(pow((FromLatitude-ToLatitude),2) + pow((FromLongitude-
ToLongitude),2), 0.5);
 Helm__DistanceToPoint = r;
 if (Helm__DistanceToPoint <= 0.25)
 {
 glutIdleFunc(NULL);
 printf("Distance to point is less than 20 m\n");
 Helm++;
 }
 Side = pow(pow((FromLatitude-ToLatitude-r),2) +
pow((FromLongitude-ToLongitude),2), 0.5);
 Theta = 2*asin(Side/(2*r));
 printf("r=%f, Theta = %f\n",r, Theta);
 FromLongitude = -r * cos(Theta) + ToLongitude;
 FromLatitude = -r * sin(Theta) + ToLatitude;

 glutPostRedisplay();
 m++;
 printf("FromLat = %f, FromLong = %f, m = %f\n", FromLatitude,
FromLongitude, m);
 }

 if (m>0 && LoiterDone == 0)
 {

 Theta = Theta + 0.00001;
 FromLongitude = -r * cos(Theta)+ ToLongitude;
 FromLatitude = -r * sin(Theta)+ ToLatitude;

 if (difftime(end2, start1) == 2)
 {

 printf("TimeInState = %f, FromLat = %f, FromLong = %f\n",
difftime(end2, start), FromLatitude, FromLongitude);
 time(&start1);
 }

 if (difftime(end2, start)>=LoiterTO-Loiter_TimeToLoiterPt_FCN)

 {
 LoiterDone = 1;
 }

 if(FromLatitude > 1.0)
 {
 FromLatitude = 1;

 }
 if(FromLatitude < -1.5)
 {

 161

 FromLatitude = -1.5;

 }

 glutPostRedisplay();
 }

 }

 }
 time(&end2);

 if (Steering == 1 && LoiterDone == 1 && Helm == 0)
 {
 if(begin == 0)
 {
 time(&start);
 time(&start1);
 time(&start2);
 time(&start3);
 time(&start4);
 begin++;
 }

 /*AUV moving horizontally when FromLongitude is lesser than ToLongitude*/

 if ((FromLongitude < ToLongitude) && (k == 0))
 {

 /*AUV for LINE steering mode to get slope*/
 if ((SteerMode == LINE) && (n == 0))
 {
 Slope =(ToLatitude-FromLatitude)/(ToLongitude-FromLongitude);
 LatLongDiff = FromLatitude - Slope*FromLongitude;
 n++; l--;
 }

 /*AUV for LINE steering mode */

 if (SteerMode == LINE && l ==0)
 {
 FromLongitude = FromLongitude + HMR;
 FromLatitude = Slope*FromLongitude + LatLongDiff;
 MastMotion = 0.008*FromLongitude;
 j = 1;

 if(difftime(end,start1) == 2)

 {
 printf("Time = %f, Steermode LINE %f,
%f\n",difftime(end,start1), FromLatitude, FromLongitude);
 time(&start1);
 }

 if(ToLongitude <= FromLongitude)

 162

 {
 glutIdleFunc(NULL);
 k =1;
 l = 1;
 printf("Time = %f Steermode LINE %f,
%f\n",difftime(end,start), FromLatitude, FromLongitude);
 }
 glutPostRedisplay();
 }

 }

 /*AUV moving horizontally when FromLongitude is greater than ToLongitude*/

 if ((ToLongitude < FromLongitude) && (k == 0))
 {
 /*AUV for LINE steering mode to get slope*/

 if (SteerMode == LINE && n == 0)
 {
 Slope =(ToLatitude-FromLatitude)/(ToLongitude-FromLongitude);
 LatLongDiff = FromLatitude - Slope*FromLongitude;
 n++; l--;
 }

 /*AUV for LINE steering mode*/

 if (SteerMode == LINE && l == 0)
 {
 FromLongitude = FromLongitude - HMR;
 FromLatitude = Slope*FromLongitude + LatLongDiff;
 MastMotion = 0.008*FromLongitude;
 j = 1;

 if((difftime(end,start2)) == 2)
 {
 printf("Time = %f, Steermode LINE Lat = %f, Long =
%f\n",difftime(end,start2), FromLatitude, FromLongitude);
 time(&start2);
 }

 if(ToLongitude >= FromLongitude)
 {
 glutIdleFunc(NULL);
 k =1;
 l = 1;
 printf("Time = %f, Steermode LINE %f,
%f\n",difftime(end,start), FromLatitude, FromLongitude);

 }
 glutPostRedisplay();

 }

 }

 163

 /*AUV moving Vertically when FromLatitude is lesser than ToLatitude */

 if (FromLatitude < ToLatitude && j == 0)
 {
 FromLatitude = FromLatitude + VMR;
 MastMotion = 0.008*FromLatitude;

 if(difftime(end,start3) == 2)
 {
 if (SteerMode == LINE)
 printf("Time = %f Steermode LINE Lat:%f Long =
%f\n", difftime(end,start3), FromLatitude, FromLongitude);
 time(&start3);
 }

 if((FromLatitude >= ToLatitude) && (FromLongitude ==
ToLongitude))
 {

 glutIdleFunc(NULL);
 j = 1;
 k = 1;
 printf("Time = %f, Steermode LINE %f,
%f\n",difftime(end,start), FromLatitude, FromLongitude);
 }

 glutPostRedisplay();

 }

 /*AUV moving Vertically when FromLatitude is greater than ToLatitude */

 if (FromLatitude > ToLatitude && j == 0)
 {

 FromLatitude = FromLatitude - VMR;
 MastMotion = 0.008*FromLatitude;

 if(difftime(end,start4)== 2)
 {
 if (SteerMode == LINE)
 printf("Time = %f Steermode LINE Lat:%f Long =
%f\n",difftime(end,start4), FromLatitude, FromLongitude);
 time(&start4);;

 }

 if((FromLatitude <= ToLatitude) && (FromLongitude == ToLongitude))
 {
 glutIdleFunc(NULL);
 j = 1;
 k = 1;
 printf("Time = %f, Steermode LINE %f, %f\n",difftime(end,start),
FromLatitude, FromLongitude);
 }

 164

 glutPostRedisplay();

 }

}

 time(&end);
 if(k == 1 && j == 1)
 {
 if(numCount == 0)
 {
 LOutput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Position.txt", "w"
);
 fprintf(LOutput, "%f\n", FromLatitude);
 fprintf(LOutput, "%f\n", FromLongitude);
 fclose(LOutput);

 LoOutput = fopen("C:\\Research\\Animation\\Temp\\Mission\\SteerOutput.txt",
"w");
 fprintf(LoOutput, "%f\n", FromLatitude);
 fprintf(LoOutput, "%f\n", FromLongitude);
 fprintf(LoOutput, "%f\n", difftime(end, start));
 fclose(LoOutput);

 LTOutput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Time.txt", "r");
 fscanf(LTOutput,"%f\n", &TotalTime);
 fclose(LTOutput);

 TotalTime = TotalTime + difftime(end, start);

 LTOutput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Time.txt", "w");
 fprintf(LTOutput, "%f\n", TotalTime);
 fclose(LTOutput);
 count = 1;
 exit(0);
 }
 }

}

void Abort(void)
{
/*AUV moving up to take GPSFix (Control within GPSFix module)*/
 /*Take value of SurfaceThreshold from Uppaal file */
 if (FromLatitude < SurfaceThreshold && o ==0)
 {
 FromLatitude = FromLatitude + VMR;
 MastMotion = 0.008*FromLatitude;

 if(FromLatitude == SurfaceThreshold)
 {
 glutIdleFunc(NULL);
 o = 1;
 }
 glutPostRedisplay();

 165

 }

 if (FromLatitude >= SurfaceThreshold && m == 0)
 {

 MastAngle = MastAngle + MastRate;
 /*Rate to raise mast when AUV is on water surface rate valur from Uppaaal*/
 while (MastAngle>MaxAngle) /*Take value of MastAngle from Uppaal*/
 {
 DevState__MastState = UP;
 m = 1;
 }
 glutPostRedisplay();
 }
}

void reshape (int w, int h)
{
 glViewport (0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode (GL_PROJECTION);
 glLoadIdentity ();
 gluPerspective(70.0, (GLfloat) w/(GLfloat) h, 10.0, 4.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glTranslatef (0.0, 0.0, -5.0);
}

void keyboard (unsigned char key, int x, int y)
{
 switch (key) {

 case 'a':
 {
 i = 1;
 glutIdleFunc(Abort);
 printf("Mission Aborted\n");
 }
 break;

 case 27:
 exit(0);
 break;
 default:
 break;
 }
}
void mouse(int button, int state, int x, int y)

{
 switch(button)
 {
 case GLUT_LEFT_BUTTON:
 if (state == GLUT_DOWN && i == 0.0)
 {
 glutIdleFunc(Loiter);

 166

 }
 break;
 }
}

FILE *LInput, *LoInput;

int main(int argc, char** argv)
{
 glutInit(&argc, argv);

 LInput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Position.txt", "r");
 if(LInput == NULL)
 printf("The file 'Position.txt' was not opened\n");// File failed to open
 else
 printf("The file 'Position.txt' was opened\n");// File opened

 fseek(LInput, 0L, SEEK_SET);
 fscanf(LInput, "%f\n", &FromLatitude);//Get the destined Latitude
 fscanf(LInput, "%f\n", &FromLongitude);//Get the destned Longitude
 fclose(LInput);

 LoInput = fopen("C:\\Research\\Animation\\Temp\\Mission\\LoiterInput.txt", "r");
 if(LoInput == NULL)
 printf("The file 'LoiterInput.txt' was not opened\n");// File failed to open
 else
 printf("The file 'LoiterInput.txt' was opened\n");// File opened

 fseek(LoInput, 0L, SEEK_SET);
 fscanf(LoInput, "%f\n", &ToLatitude);//Get the destined Latitude
 fscanf(LoInput, "%f\n", &ToLongitude);//Get the destned Longitude
 fclose(LoInput);
 glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB);
 glutInitWindowSize (500, 500);
 glutInitWindowPosition (100, 100);
 glutCreateWindow (argv[0]);
 init ();
 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutKeyboardFunc(keyboard);
 glutMouseFunc(mouse);
 glutMainLoop();
 return 0;
}

DeviceCommander

Device module to raise AUV to water surface

/*Device commander module used to raise AUV to surface sequence execution animation*/
#include <GL/glut.h>
#include <stdlib.h>
#include<stdio.h>
#include<time.h>

 167

static GLfloat FromLatitude; // The begining latitude
static GLfloat FromLongitude; //The beginning longitude
static GLfloat MastMotion = 0.0; // Motion of the mast
static GLfloat Slope; // To get the slope of the line in direct steeringmode
static GLfloat LatLongDiff; // The constant in the equation of a line for direct steermode
static GLfloat ToLatitude = 1.0;
static GLfloat ToLongitude;
static GLfloat VMR;
static GLfloat HMR;
int SteerMode;
int z=0, begin = 0;
int Steering, count;
int i = 0; //Used for abort signal
int j =0, k =0, n =0, l =1, p=0;//j for lat loop, k for long loop, l for direct loop, p for indirect
int Lat = 0;
float Timed, TimeOfOperation;
float Time, Timer;
float temp1, temp2;
float temp3, number, TotalTime;
FILE *DCGOutput, *DCGOut, *DCGTOutput;
time_t start, start1, start2, start3, start4;
time_t end;

/*Initialization module*/

void init(void)
{

 glClearColor (0.0, 0.0, 0.0, 0.0);
 glShadeModel (GL_FLAT);
}

/*Display module*/

void display(void)
{
 glClear (GL_COLOR_BUFFER_BIT);
 glColor3f(0.0, 0.4, 0.8);
 glRectf(-8.0, -4.0, 8.0, 2.0);
 glPushMatrix();
 glTranslatef (-1.0, 0.0, 0.0);
 glTranslatef (1.0, 0.0, 0.0);
 glTranslatef(FromLongitude, FromLatitude, 0.0);
 glTranslatef(FromLongitude, FromLatitude, 0.0);
 glPushMatrix();
 glScalef (2.0, 0.4, 1.0);
 glColor3f(0.0, 0.7, 0.4);
 glutSolidCube (1.0);
 glPopMatrix();
 glTranslatef (0.0, 0.1, 0.0);
 glTranslatef(0.08*FromLongitude, MastMotion, 0.0);
 glRotatef(0.0, 0.0, 0.0, 1.0);
 glTranslatef(0.5, MastMotion, 0.0);
 glPushMatrix();
 glScalef (0.8, 0.2, 0.5);
 glColor3f(1.0, 1.0, 0.0);

 168

 glutSolidCube(1.0);
 glPopMatrix();
 glPopMatrix();
 glutSwapBuffers();
}

/*Module to Steer the AUV*/
void Steer(void)
{

 if (Steering == 1)
 {
 if(FromLatitude == 1)
 {
 glutIdleFunc(NULL);
 printf("Already at surface\n");
 j=1;
 k=1;
 exit(0);
 }
 if(begin == 0)
 {
 time(&start);
 time(&start1);
 time(&start2);
 time(&start3);
 begin++;
 }

 /*AUV moving horizontally when FromLongitude is lesser than ToLongitude*/

 if ((FromLongitude < ToLongitude) && (k == 0))
 {

 /*AUV for LINE steering mode to get slope*/

 if ((SteerMode == 1) && (n == 0))
 {
 Slope =(ToLatitude-FromLatitude)/(ToLongitude-FromLongitude);
 LatLongDiff = FromLatitude - Slope*FromLongitude;
 n++; l--;
 }

 /*AUV for LINE steering mode */

 if (SteerMode == 1 && l ==0)
 {
 FromLongitude = FromLongitude + HMR;
 FromLatitude = Slope*FromLongitude + LatLongDiff;
 MastMotion = 0.008*FromLongitude;
 j = 1;
 if (difftime(end, start1) == 2)

 {
 printf("Time = %f, Steermode LINE %f, %f\n",difftime(end,
start1), FromLatitude, FromLongitude);

 169

 time(&start1);
 }

 if(ToLongitude <= FromLongitude)
 {
 glutIdleFunc(NULL);
 k =1;
 l = 1;
 printf("Time = %f Steermode LINE %f, %f\n",difftime(end,
start),FromLatitude, FromLongitude);
 }
 glutPostRedisplay();
 }

 }

 /*AUV moving horizontally when FromLongitude is greater than ToLongitude*/
 if ((ToLongitude < FromLongitude) && (k == 0))
 {

 /*AUV for LINE steering mode to get slope*/

 if (SteerMode == 1 && n == 0)
 {
 Slope =(ToLatitude-FromLatitude)/(ToLongitude-FromLongitude);
 LatLongDiff = FromLatitude - Slope*FromLongitude;
 n++; l--;
 }

 /*AUV for LINE steering mode*/

 if (SteerMode == 1 && l == 0)
 {
 FromLongitude = FromLongitude - HMR;
 FromLatitude = Slope*FromLongitude + LatLongDiff;
 MastMotion = 0.008*FromLongitude;
 j = 1;
 if (difftime(end, start2) == 2)

 {
 printf("Time = %f, Steermode LINE Lat = %f, Long =
%f\n",difftime(end, start), FromLatitude, FromLongitude);
 time(&start2);
 }

 if(ToLongitude >= FromLongitude)
 {
 glutIdleFunc(NULL);
 k =1;
 l = 1;
 printf("Time = %f, Steermode LINE %f, %f\n",difftime(end,
start), FromLatitude, FromLongitude);

 }
 glutPostRedisplay();
 }

 170

 }

 /*AUV moving Vertically when FromLatitude is lesser than ToLatitude */

 if (FromLatitude < ToLatitude && j == 0)
 {
 FromLatitude = FromLatitude + VMR;
 MastMotion = 0.008*FromLatitude;

 if(difftime(end, start3) == 2)
 {
 printf("Time = %f Steermode LINE Lat:%f Long = %f\n",
difftime(end, start), FromLatitude, FromLongitude);
 time(&start3);
 }

 if((FromLatitude >= ToLatitude) && (FromLongitude ==
ToLongitude))
 {
 glutIdleFunc(NULL);
 j = 1;
 printf("Time = %f, Steermode LINE %f, %f\n",difftime(end,
start), FromLatitude, FromLongitude);
 }
 else if (FromLatitude>= ToLatitude)
 {
 j = 1;
 printf("Stop Lat Time = %f, Steermode LINE %f,
%f\n",difftime(end, start), FromLatitude, FromLongitude);
 }
 glutPostRedisplay();
 }

 /*AUV moving Vertically when FromLatitude is greater than ToLatitude */

 if (FromLatitude > ToLatitude && j == 0)
 {
 FromLatitude = FromLatitude - VMR;
 MastMotion = 0.008*FromLatitude;

 if (difftime(end, start4) == 2)
 {
 printf("Time = %f Steermode LINE Lat:%f Long = %f\n",difftime(end,
start), FromLatitude, FromLongitude);
 time(&start4);

 }

 if((FromLatitude <= ToLatitude) && (FromLongitude == ToLongitude))
 {
 glutIdleFunc(NULL);
 j = 1;
 printf("Time = %f, Steermode LINE %f, %f\n",difftime(end, start),
FromLatitude, FromLongitude);
 }

 171

 else if (FromLatitude <= ToLatitude)
 {
 j = 1;
 printf("Stop Lat motion Time = %f, Steermode LINE %f,
%f\n",difftime(end, start), FromLatitude, FromLongitude);
 }
 glutPostRedisplay();

 }

 }

 if(k == 1 && j == 1)
 {
 if(count == 0)
 {
 DCGOutput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Position.txt",
"w");
 fprintf(DCGOutput, "%f\n", FromLatitude);
 fprintf(DCGOutput, "%f\n", FromLongitude);
 fclose(DCGOutput);

 DCGOut = fopen("C:\\Research\\Animation\\Temp\\Mission\\DCGOutput.txt",
"w");
 fprintf(DCGOut, "%f\n", FromLatitude);
 fprintf(DCGOut, "%f\n", FromLongitude);
 fprintf(DCGOut, "%f\n", difftime(end, start));
 fclose(DCGOut);

 DCGTOutput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Time.txt",
"r");
 fscanf(DCGTOutput,"%f\n", &TotalTime);
 fclose(DCGTOutput);

 TotalTime = TotalTime + difftime(end, start);

 DCGTOutput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Time.txt",
"w");
 fprintf(DCGTOutput, "%f\n", TotalTime);
 fclose(DCGTOutput);
 count = 1;
 exit(0);
 }

 }
 time(&end);
}

/*Projection module*/

void reshape (int w, int h)
{
 glViewport (0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode (GL_PROJECTION);
 glLoadIdentity ();
 gluPerspective(70.0, (GLfloat) w/(GLfloat) h, 10.0, 4.0);

 172

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glTranslatef (0.0, 0.0, -5.0);
}

/*Keyboard function*/

void keyboard (unsigned char key, int x, int y)
{
 switch (key) {

 case 'a':
 {
 i = 1;
 glutIdleFunc(NULL);
 printf("MISSION ABORTED\n");
 }
 break;

 case 27:
 {

 exit(0);
 }
 break;
 default:
 break;
 }
}

/*Mouse action*/

void mouse(int button, int state, int x, int y)

{
 switch(button)
 {
 case GLUT_LEFT_BUTTON:
 if (state == GLUT_DOWN && i == 0.0)
 {
 glutIdleFunc(Steer);

 }
 break;

 }
}
FILE *DCGInput, *DCGOutput, *DCGIn;
int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 /*Open file for reading input*/
 DCGInput = fopen("C:\\Research\\Animation\\Temp\\DC_Gen_GoToSurface\\DCGInput.txt",
"r");
 if(DCGInput == NULL)
 printf("The file 'DCGInput.txt' was not opened\n");// File failed to open

 173

 else
 printf("The file 'DCGInput.txt' was opened\n");// File opened
 fseek(DCGInput, 0L, SEEK_SET);
 fscanf(DCGInput, "%f\n", &Timed);//Check whether Timed operation or not (0 (untimed) or 1
(Timed))
 fscanf(DCGInput, "%f\n", &TimeOfOperation);//Time of operation
 fscanf(DCGInput, "%d\n", &Steering);//Get the order is Steering or not
 fscanf(DCGInput, "%d\n", &SteerMode);//Get the mode of Steering
 //fscanf(SInput, "%f\n", &ToLatitude);//Get the destined Latitude
 fscanf(DCGInput, "%f\n", &ToLongitude);//Get the destned Longitude
 fclose(DCGInput);
 if (Timed == 0)
 {
 VMR = 0.001;
 HMR = 0.001;
 }
 DCGIn = fopen("C:\\Research\\Animation\\Temp\\Mission\\Position.txt", "r");
 fseek(DCGIn, 0L, SEEK_SET);
 fscanf(DCGIn, "%f\n", &FromLatitude);
 fscanf(DCGIn, "%f\n", &FromLongitude);
 fclose(DCGIn);
 printf("Lat = %f, Long = %f\n",FromLatitude, FromLongitude);

 glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB);
 glutInitWindowSize (500, 500);
 glutInitWindowPosition (100, 100);
 glutCreateWindow (argv[0]);
 init ();
 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutKeyboardFunc(keyboard);
 glutMouseFunc(mouse);
 DCGOutput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Position.txt", "w");
 fprintf(DCGOutput, "%f\n", ToLatitude);
 fprintf(DCGOutput, "%f\n", ToLongitude);
 fclose(DCGOutput);
 glutMainLoop();
 return 0;
}

Device module to lower AUV from water surface

/*Device commander module to bring AUV below surface of water sequence execution animation*/

#include <GL/glut.h>
#include <stdlib.h>
#include<stdio.h>
#include<time.h>
#define DriftRate 0.001 //To assign a value to water current given as drift
static GLfloat FromLatitude; // The begining latitude
static GLfloat FromLongitude; //The beginning longitude
static GLfloat MastMotion = 0.0; // Motion of the mast
int i = 0; //Used for abort signal
int j =0, k =0, n =0, l =1, p=0;//j for lat loop, k for long loop, l for direct loop, p for indirect
int Lat = 0;
static GLfloat Slope; // To get the slope of the line in direct steeringmode

 174

static GLfloat LatLongDiff; // The constant in the equation of a line for direct steermode
static GLfloat ToLatitude;
static GLfloat ToLongitude;
static GLfloat VMR;
static GLfloat HMR;
float Timed, TimeOfOperation;
int SteerMode;
int z=0;
int Steering, count, begin = 0;
float Time, Timer;
float temp1, temp2;
float temp3, number, TotalTime;
time_t start, start1, start2, start3, start4;
time_t end, end1, end2, end3;
FILE *DCSOutput, *DCSOut, *DCSTOutput;
/*Initialization module*/

void init(void)
{

 glClearColor (0.0, 0.0, 0.0, 0.0);
 glShadeModel (GL_FLAT);
}

/*Display module*/

void display(void)
{
 glClear (GL_COLOR_BUFFER_BIT);
 glColor3f(0.0, 0.4, 0.8);
 glRectf(-8.0, -4.0, 8.0, 2.0);
 glPushMatrix();
 glTranslatef (-1.0, 0.0, 0.0);
 glTranslatef (1.0, 0.0, 0.0);
 glTranslatef(FromLongitude, FromLatitude, 0.0);
 glTranslatef(FromLongitude, FromLatitude, 0.0);
 glPushMatrix();
 glScalef (2.0, 0.4, 1.0);
 glColor3f(0.0, 0.7, 0.4);
 glutSolidCube (1.0);
 glPopMatrix();
 glTranslatef (0.0, 0.1, 0.0);
 glTranslatef(0.08*FromLongitude, MastMotion, 0.0);
 glRotatef(0.0, 0.0, 0.0, 1.0);
 glTranslatef(0.5, MastMotion, 0.0);
 glPushMatrix();
 glScalef (0.8, 0.2, 0.5);
 glColor3f(1.0, 1.0, 0.0);
 glutSolidCube(1.0);
 glPopMatrix();
 glPopMatrix();
 glutSwapBuffers();
}

/*Module to Steer the AUV*/
void Steer(void)

 175

{

 if (FromLatitude < 1 && j == 0 && p == 0)
 {
 printf("Already under water\n");
 glutIdleFunc(NULL);
 p++;
 exit(0);

 }

 if(begin == 0)
 {
 time(&start);
 time(&start1);
 time(&start2);
 time(&start3);
 time(&start4);
 begin++;
 }

 if (Steering == 1 && p == 0)
 {

 /*AUV moving horizontally when FromLongitude is lesser than ToLongitude*/

 if ((FromLongitude < ToLongitude) && (k == 0))
 {

 /*AUV for LINE steering mode to get slope*/
 if ((SteerMode == 1) && (n == 0))
 {
 Slope =(ToLatitude-FromLatitude)/(ToLongitude-FromLongitude);
 LatLongDiff = FromLatitude - Slope*FromLongitude;
 n++; l--;
 }

 /*AUV for LINE steering mode */

 if (SteerMode == 1 && l ==0)
 {
 FromLongitude = FromLongitude + HMR;
 FromLatitude = Slope*FromLongitude + LatLongDiff;
 MastMotion = 0.008*FromLongitude;
 j = 1;

 if(difftime(end,start1) == 2)

 {
 printf("Time = %f, Steermode LINE %f,
%f\n",difftime(end,start1), FromLatitude, FromLongitude);
 time(&start1);
 }

 if(ToLongitude <= FromLongitude)
 {

 176

 glutIdleFunc(NULL);
 k =1;
 l = 1;
 printf("Time = %f Steermode LINE %f,
%f\n",difftime(end,start), FromLatitude, FromLongitude);
 }
 glutPostRedisplay();
 }

 }

 /*AUV moving horizontally when FromLongitude is greater than ToLongitude*/
 if ((ToLongitude < FromLongitude) && (k == 0))
 {
 /*AUV for LINE steering mode to get slope*/
 if (SteerMode == 1 && n == 0)
 {
 Slope =(ToLatitude-FromLatitude)/(ToLongitude-FromLongitude);
 LatLongDiff = FromLatitude - Slope*FromLongitude;
 n++; l--;
 }

 /*AUV for LINE steering mode*/

 if (SteerMode == 1 && l == 0)
 {
 FromLongitude = FromLongitude - HMR;
 FromLatitude = Slope*FromLongitude + LatLongDiff;
 MastMotion = 0.008*FromLongitude;
 j = 1;

 if((difftime(end,start2)) == 2)
 {
 printf("Time = %f, Steermode LINE Lat = %f, Long =
%f\n",difftime(end,start2), FromLatitude, FromLongitude);
 time(&start2);
 }

 if(ToLongitude >= FromLongitude)
 {
 glutIdleFunc(NULL);
 k =1;
 l = 1;
 printf("Time = %f, Steermode LINE %f,
%f\n",difftime(end,start), FromLatitude, FromLongitude);

 }
 glutPostRedisplay();

 }

 }

 /*AUV moving Vertically when FromLatitude is lesser than ToLatitude */

 177

 if (FromLatitude < ToLatitude && j == 0)
 {
 FromLatitude = FromLatitude + VMR;
 MastMotion = 0.008*FromLatitude;
 if(difftime(end,start3) == 2)
 {
 if (SteerMode == 1)
 printf("Time = %f Steermode LINE Lat:%f Long =
%f\n", difftime(end,start3), FromLatitude, FromLongitude);
 time(&start3);
 }

 if((FromLatitude >= ToLatitude) && (FromLongitude ==
ToLongitude))
 {
 glutIdleFunc(NULL);
 j = 1;
 k = 1;
 printf("Time = %f, Steermode LINE %f,
%f\n",difftime(end,start), FromLatitude, FromLongitude);
 }

 glutPostRedisplay();

 }

 /*AUV moving Vertically when FromLatitude is greater than ToLatitude */

 if (FromLatitude > ToLatitude && j == 0)
 {

 FromLatitude = FromLatitude - VMR;
 MastMotion = 0.008*FromLatitude;
 if(difftime(end,start4)== 2)
 {
 if (SteerMode == 1)
 printf("Time = %f Steermode LINE Lat:%f Long =
%f\n",difftime(end,start4), FromLatitude, FromLongitude);
 time(&start4);;
 }

 if((FromLatitude <= ToLatitude) && (FromLongitude == ToLongitude))
 {
 glutIdleFunc(NULL);
 j = 1;
 k = 1;
 printf("Time = %f, Steermode LINE %f, %f\n",difftime(end,start),
FromLatitude, FromLongitude);
 }

 glutPostRedisplay();
 }

 }

 178

 time(&end);
 if(k == 1 && j == 1)
 {
 if(count == 0)
 {
 DCSOutput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Position.txt",
"w");
 fprintf(DCSOutput, "%f\n", FromLatitude);
 fprintf(DCSOutput, "%f\n", FromLongitude);
 fclose(DCSOutput);

 DCSOut = fopen("C:\\Research\\Animation\\Temp\\Mission\\DCSOutput.txt",
"w");
 fprintf(DCSOut, "%f\n", FromLatitude);
 fprintf(DCSOut, "%f\n", FromLongitude);
 fprintf(DCSOut, "%f\n", difftime(end, start));
 fclose(DCSOut);

 DCSTOutput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Time.txt",
"r");
 fscanf(DCSTOutput,"%f\n", &TotalTime);
 fclose(DCSTOutput);

 TotalTime = TotalTime + difftime(end, start);

 DCSTOutput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Time.txt",
"w");
 fprintf(DCSTOutput, "%f\n", TotalTime);
 fclose(DCSTOutput);
 count = 1;
 exit(0);
 }
 }
}

/*Projection module*/

void reshape (int w, int h)
{
 glViewport (0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode (GL_PROJECTION);
 glLoadIdentity ();
 gluPerspective(70.0, (GLfloat) w/(GLfloat) h, 10.0, 4.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glTranslatef (0.0, 0.0, -5.0);
}

/*Keyboard function*/

void keyboard (unsigned char key, int x, int y)
{
 switch (key) {

 case 'a':
 {

 179

 i = 1;
 glutIdleFunc(NULL);
 printf("MISSION ABORTED\n");
 }
 break;

 case 27:
 {

 exit(0);
 }
 break;
 default:
 break;
 }
}

/*Mouse action*/

void mouse(int button, int state, int x, int y)

{
 switch(button)
 {
 case GLUT_LEFT_BUTTON:
 if (state == GLUT_DOWN && i == 0.0)
 {
 glutIdleFunc(Steer);

 }
 break;

 }
}
FILE *DCCPInput, *DCCInput;
int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 /*Open file for reading input*/

DCCInput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Position.txt", "r");
 if(DCCInput == NULL)
 printf("The file 'Position.txt' was not opened\n");// File failed to open
 else
 printf("The file 'Position.txt' was opened\n");// File opened
 fseek(DCCInput, 0L, SEEK_SET);
 fscanf(DCCInput, "%f\n", &FromLatitude);//Get the destined Latitude
 fscanf(DCCInput, "%f\n", &FromLongitude);//Get the destned Longitude
 printf("FromLat = % f, FromLong = %f\n",FromLatitude, FromLongitude);
 fclose(DCCInput);
 DCCPInput =
fopen("C:\\Research\\Animation\\Temp\\DC_Gen_ComeOffSurface\\DCCPInput.txt", "r");
 if(DCCPInput == NULL)
 printf("The file 'DCCPInput.txt' was not opened\n");// File failed to open
 else
 printf("The file 'DCCPInput.txt' was opened\n");// File opened

 180

 fseek(DCCPInput, 0L, SEEK_SET);
 fscanf(DCCPInput, "%f\n", &Timed);//Check whether Timed operation or not (0 (untimed) or 1
(Timed))
 fscanf(DCCPInput, "%f\n", &TimeOfOperation);//Time of operation
 fscanf(DCCPInput, "%d\n", &Steering);//Get the order is Steering or not
 fscanf(DCCPInput, "%d\n", &SteerMode);//Get the mode of Steering
 fscanf(DCCPInput, "%f\n", &ToLatitude);//Get the destined Latitude
 fscanf(DCCPInput, "%f\n", &ToLongitude);//Get the destned Longitude
 fclose(DCCPInput);
 if (Timed == 0)
 {
 VMR = 0.001;
 HMR = 0.001;
 }

 glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB);
 glutInitWindowSize (500, 500);
 glutInitWindowPosition (100, 100);
 glutCreateWindow (argv[0]);
 init ();
 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutKeyboardFunc(keyboard);
 glutMouseFunc(mouse);
 glutMainLoop();
 return 0;
}

Device module to raise mast

/*Device commander module to raise mast sequence execution animation*/

#include <GL/glut.h>
#include <stdlib.h>
#include <stdio.h>
#include <time.h>

#define MastRate 0.02 /*Rate to raise mast*/
#define UP 0.0 /*To check is mast raised*/
#define DONE 1.0 /*To check is GPSFix taken*/
#define DOWN 1.0 /*To check is mast lowered*/
#define Yes 1.0 /*If need to return to starting point after GPSFix is taken*/
#define No 0.0 /*If not to return to starting point*/
#define MaxAngle 90.0 /*The angle mast needs to be raised to take GPSFix*/
#define WaitToTakeGPSFix 25.0 /*Time to wait till GPSFix is taken*/
#define FAILED 1.0 /*Indicating GPSFix failed*/
static GLfloat Slope; // To get the slope of the line in direct steeringmode
static GLfloat LatLongDiff; // The constant in the equation of a line for direct steermode
static GLfloat FromLatitude ;
static GLfloat StartLongitude;
static GLfloat StartLatitude;
static GLfloat DevState__MastState=DOWN;
static GLfloat DevState__GPSFixState=0;
static GLfloat GPSOrd__ReturnToStart=1;
static GLfloat Helm__DistanceToPoint=-1;

 181

static GLfloat GoToSurfaceTO=2500;
static GLfloat RaiseMastTO=50;
static GLfloat TakeFixTO=0;
static GLfloat NumFailed=0;
static GLfloat MastAngle = 0.0, MastDown =0.0, Angle=0.0;
static GLfloat MastMotion = 0.0;
static int shoulder = 0.0, elbow = 0.0;
static GLfloat Wait = 0.0;
static GLfloat TotalTimeLowerMast = 0.0, TotalTimeDown =0.0,
TotalTimeUp = 0.0, TotalTimeMastUp = 0.0;
static GLfloat SurfaceThreshold = 1;
static GLfloat Drift;
static GLfloat FromLongitude;
static GLfloat TimeInState = 0.0;
static GLfloat GPSFix = 0.0;
static GLfloat ReachSurface = 0.0;
static GLfloat TimeToChangeDirection = 0.0;
int DisplayOnce = 0;
int j =0, k =0, n =0, l =1, p=0;//j for lat loop, k for long loop, l for direct loop, p for indirect
int count = 0, numCount = 0, begin = 0;
int i =0.0, m = 0, o = 0, MastLowered = 0.0;
int MastRaised = 0, MastIsRaised = 0 ;
float Time, Timer, MissionTime, RaiseMastTime, LowerMast;
float TotalTime;
time_t start, start1;
time_t end;
FILE *DCROutput, *DCRPOutput, *DCRPTOutput;

void init(void)
{
 glClearColor (0.0, 0.0, 0.0, 0.0);
 glShadeModel (GL_FLAT);
}
void display(void)
{
 glClear (GL_COLOR_BUFFER_BIT);
 glColor3f(0.0, 0.4, 0.8);
 glRectf(-8.0, -4.0, 8.0, 2.0);
 glPushMatrix();
 glTranslatef (-1.0, 0.0, 0.0);
 glRotatef ((GLfloat) shoulder, 0.0, 0.0, 1.0);
 glTranslatef (1.0, 0.0, 0.0);
 glTranslatef(FromLongitude, FromLatitude, 0.0);
 glTranslatef(FromLongitude, FromLatitude, 0.0);
 glPushMatrix();
 glScalef (2.0, 0.4, 1.0);
 glColor3f(0.0, 0.7, 0.4);
 glutSolidCube (1.0);
 glPopMatrix();
 glTranslatef (0.0, 0.1, 0.0);
 glTranslatef(0.08*FromLongitude, MastMotion, 0.0);
 glRotatef(0.0, 0.0, 0.0, 1.0);
 glRotatef(MastAngle, 0.0, 0.0, 1.0);
 glTranslatef(0.5, MastMotion, 0.0);
 glPushMatrix();
 glScalef (0.8, 0.2, 0.5);

 182

 glColor3f(1.0, 1.0, 0.0);
 glutSolidCube(1.0);
 glPopMatrix();
 glPopMatrix();
 glutSwapBuffers();
}
void MoveUp(void)
{
 if(begin == 0)
 {
 time(&start);
 begin++;
 }
 if(FromLatitude < 1 && numCount == 0)
 {
 printf("AUV is not at surface mast cannot be raised\n");
 numCount++;
 }

/*Once AUV is at the surface of water module to raise mast*/
 if (FromLatitude >= SurfaceThreshold)
 {

 if(begin == 1)
 {
 time(&start1);
 begin++;
 }

 MastAngle = MastAngle + MastRate;

 if(difftime(end, start1) == 2)
 {
 RaiseMastTime = RaiseMastTime + difftime(end, start1);
 printf("MissionTime = %f, RaiseMastTime = %f, MastAngle = %f\n",
difftime(end, start), RaiseMastTime, MastAngle);
 time(&start1);
 }

 /*Rate to raise mast when AUV is on water surface rate valur from Uppaaal*/
 if (MastAngle>MaxAngle) /*Take value of MastAngle from Uppaal*/
 {
 DevState__MastState = UP;

 glutIdleFunc(NULL);

 }
 glutPostRedisplay();
 }
 time(&end);
 if(DisplayOnce == 0 && DevState__MastState == UP)
 {
 printf("MissionTime = %f, RaiseMastTime = %f, MastAngle = %f\n",
difftime(end, start), RaiseMastTime, MastAngle);

 183

 DCROutput = fopen(
"C:\\Research\\Animation\\Temp\\Mission\\Angle.txt", "w");
 fprintf(DCROutput, "%f\n", MastAngle);
 fclose(DCROutput);

 DCRPOutput =
fopen("C:\\Research\\Animation\\Temp\\Mission\\Position.txt", "w");
 fprintf(DCRPOutput, "%f\n", FromLatitude);
 fprintf(DCRPOutput, "%f\n", FromLongitude);
 fclose(DCRPOutput);

 DCRPTOutput =
fopen("C:\\Research\\Animation\\Temp\\Mission\\Time.txt", "r");
 fscanf(DCRPTOutput, "%f\n", &TotalTime);
 fclose(DCRPTOutput);
 TotalTime = TotalTime + difftime(end, start);

 DCRPTOutput =
fopen("C:\\Research\\Animation\\Temp\\Mission\\Time.txt", "w");
 fprintf(DCRPTOutput, "%f\n", TotalTime);
 fclose(DCRPTOutput);

 DisplayOnce++;
 exit(0);
 }
}

void reshape (int w, int h)
{
 glViewport (0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
gluPerspective(70.0, (GLfloat) w/(GLfloat) h, 10.0, 4.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
 glRotatef(MastAngle, 0.0, 0.0, 1.0);
 glTranslatef (0.0, 0.0, -5.0);
}
void keyboard (unsigned char key, int x, int y)
{
 switch (key)
{
 case 's':
 shoulder = (shoulder + 5) % 360;
 glutPostRedisplay();
 break;
 case 'S':
 shoulder = (shoulder - 5) % 360;
 glutPostRedisplay();
 break;
case 'a':
 {
 i = 1;
 glutIdleFunc(NULL);
 }
 break;

 184

 case 27:
 exit(0);
 break;
 default:
 break;
 }
}
void mouse(int button, int state, int x, int y)
{
switch(button)
{
case GLUT_LEFT_BUTTON:
if (state == GLUT_DOWN && i == 0.0)
{
glutIdleFunc(MoveUp);
}
break;
}
}

FILE *DCRInput;
int main(int argc, char** argv)
{
glutInit(&argc, argv);
DCRInput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Position.txt", "r");
if(DCRInput == NULL)
 printf("The file 'Position.txt' was not opened\n");// File failed to open
 else
 printf("The file 'Position.txt' was opened\n");// File opened

 fseek(DCRInput, 0L, SEEK_SET);
 fscanf(DCRInput, "%f\n", &FromLatitude);//Get the destined Latitude
 fscanf(DCRInput, "%f\n", &FromLongitude);//Get the destned Longitude
 printf("FromLat = %f FromLong = %f\n", FromLatitude, FromLongitude);

glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB);
 glutInitWindowSize (500, 500);
glutInitWindowPosition (100, 100);
glutCreateWindow (argv[0]);
init ();
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutKeyboardFunc(keyboard);
glutMouseFunc(mouse);
glutMainLoop();
return 0;
}

Device module to lower mast

/*Device commander module to lower mast sequence execution animation*/

#include <GL/glut.h>
#include <stdlib.h>
#include <stdio.h>
#include <time.h>

 185

#define VMR 0.001 /*Rate to move up depeding upon time*/
#define MastRate 0.02 /*Rate to raise mast*/
#define UP 0.0 /*To check is mast raised*/
#define DONE 1.0 /*To check is GPSFix taken*/
#define DOWN 1.0 /*To check is mast lowered*/
#define DriftRate 0.001 /*To assign a value to water current given as drift*/
#define Yes 1.0 /*If need to return to starting point after GPSFix is taken*/
#define No 0.0 /*If not to return to starting point*/
#define MaxAngle 90.0 /*The angle mast needs to be raised to take GPSFix*/
#define Depth 0.0 /*The depth at which the AUV dives to*/
#define WaitToTakeGPSFix 25.0 /*Time to wait till GPSFix is taken*/
#define FAILED 1.0 /*Indicating GPSFix failed*/
#define NotInTime 1.0
#define HMR 0.001 //Rate to move horizontally
#define Steering 1//Checks whether steering mode received or not
#define Direct 1 //Steering mode direct to go straight to the point following a line
#define NotDirect 2 //Steering mode indirect
#define SurfaceThreshold 1
static GLfloat ToLongitude; // The begining latitude
static GLfloat Slope; // To get the slope of the line in direct steeringmode
static GLfloat SteerMode = Direct;//Assigning mode to steering
static GLfloat LatLongDiff; // The constant in the equation of a line for direct steermode
static GLfloat FromLatitude = 1;
static GLfloat FromLongitude = 0;
static GLfloat StartLongitude;
static GLfloat StartLatitude;
static GLfloat DevState__MastState=DOWN;
static GLfloat DevState__GPSFixState=0;
static GLfloat GPSOrd__ReturnToStart=1;
static GLfloat Helm__DistanceToPoint=-1;
static GLfloat GoToSurfaceTO=2500;
static GLfloat RaiseMastTO=50;
static GLfloat TakeFixTO=0;
static GLfloat NumFailed=0;
static GLfloat MastAngle = 90.0, MastDown =0.0, Angle=0.0;
static GLfloat MastMotion = 0.0;
static int shoulder = 0.0, elbow = 0.0;
static GLfloat Wait = 0.0;
static GLfloat TotalTimeLowerMast = 0.0, TotalTimeDown =0.0,
TotalTimeUp = 0.0, TotalTimeMastUp = 0.0;
static GLfloat ToLatitude = SurfaceThreshold;
static GLfloat Drift;
static GLfloat TimeInState = 0.0;
static GLfloat GPSFix = 0.0;
static GLfloat ReachSurface = 0.0;
static GLfloat TimeToChangeDirection = 0.0;
int MastRaised = 0, MastIsRaised = 0, numCount = 0;
int begin = 0;
int j =0, k =0, n =0, l =1, p=0;//j for lat loop, k for long loop, l for direct loop, p for indirect
int i =0.0, m = 0, o = 0, MastLowered = 0.0;
float Time, Timer, MissionTime, RaiseMastTime ;
float TotalTime;
double LowerMast;
time_t start, start1;
time_t end;
FILE *DCLPOutput, *DCLMOutput;

 186

void init(void)
{
 glClearColor (0.0, 0.0, 0.0, 0.0);
 glShadeModel (GL_FLAT);
}
void display(void)
{
 glClear (GL_COLOR_BUFFER_BIT);
 glColor3f(0.0, 0.4, 0.8);
 glRectf(-8.0, -4.0, 8.0, 2.0);
 glPushMatrix();
 glTranslatef (-1.0, 0.0, 0.0);
 glRotatef ((GLfloat) shoulder, 0.0, 0.0, 1.0);
 glTranslatef (1.0, 0.0, 0.0);
 glTranslatef(FromLongitude, FromLatitude, 0.0);
 glTranslatef(FromLongitude, FromLatitude, 0.0);
 glPushMatrix();
 glScalef (2.0, 0.4, 1.0);
 glColor3f(0.0, 0.7, 0.4);
 glutSolidCube (1.0);
 glPopMatrix();
 glTranslatef (0.0, 0.1, 0.0);
 glTranslatef(0.08*FromLongitude, MastMotion, 0.0);
 glRotatef(0.0, 0.0, 0.0, 1.0);
 glRotatef(MastAngle, 0.0, 0.0, 1.0);
 glTranslatef(0.5, MastMotion, 0.0);
 glPushMatrix();
 glScalef (0.8, 0.2, 0.5);
 glColor3f(1.0, 1.0, 0.0);
 glutSolidCube(1.0);
 glPopMatrix();
 glPopMatrix();
 glutSwapBuffers();
}
void MoveUp(void)
{
 if(begin == 0)
 {
 time(&start);
 begin++;
 }

 if(MastAngle < 0 && numCount == 0)
 {
 printf("Mast not raised\n");
 numCount++;
 }
 /***Lower mast when GPSFix is taken (Control passed to Launch module)***/
 if ((FromLatitude >= 1 && MastAngle > 0))
 {
 if(begin == 1)
 {
 time(&start1);
 begin++;
 }

 187

 MastAngle = MastAngle - 1.5*MastRate;/*Lowering mast rate specified in
uppaal*/

 if (difftime(end, start1) == 1)
 {
 LowerMast = LowerMast + difftime(end, start1);
 printf ("MissionTime = %f, LowerMast = %f, MastAngle =
%f\n",difftime(end, start), LowerMast, MastAngle);
 time(&start1);
 }
 if (MastAngle < 0.0)
 {
 DevState__MastState = DOWN;
 glutIdleFunc(NULL);
 m =1;
 }
 glutPostRedisplay();

 }
 time(&end);

 if (m == 1)
 {

 DCLPOutput =
fopen("C:\\Research\\Animation\\Temp\\Mission\\Angle.txt", "w");
 fprintf(DCLPOutput, "%f\n", MastAngle);
 fclose(DCLPOutput);
 DCLMOutput =
fopen("C:\\Research\\Animation\\Temp\\Mission\\Time.txt", "r");
 fseek(DCLMOutput, 0L, SEEK_SET);
 fscanf(DCLMOutput, "%f\n", &TotalTime);
 fclose(DCLMOutput);
 TotalTime = TotalTime + difftime(end, start);

 DCLMOutput =
fopen("C:\\Research\\Animation\\Temp\\Mission\\Time.txt", "w");
 fseek(DCLMOutput, 0L, SEEK_SET);
 fprintf(DCLMOutput, "%f\n", TotalTime);
 fclose(DCLMOutput);
 exit(0);
 }
}
void reshape (int w, int h)
{
 glViewport (0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
gluPerspective(70.0, (GLfloat) w/(GLfloat) h, 10.0, 4.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef (0.0, 0.0, -5.0);
}
void keyboard (unsigned char key, int x, int y)
{
 switch (key)

 188

{
 case 's':
 shoulder = (shoulder + 5) % 360;
 glutPostRedisplay();
 break;
 case 'S':
 shoulder = (shoulder - 5) % 360;
 glutPostRedisplay();
 break;
case 'a':
 {
 i = 1;
 glutIdleFunc(NULL);
 }
 break;
 case 27:
 exit(0);
 break;
 default:
 break;
 }
}
void mouse(int button, int state, int x, int y)
{
switch(button)
{
case GLUT_LEFT_BUTTON:
if (state == GLUT_DOWN && i == 0.0)
{
glutIdleFunc(MoveUp);
}
break;
}
}

FILE *DCLPInput, *DCLAInput;
int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 DCLPInput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Position.txt", "r");
 if(DCLPInput == NULL)
 printf("The file 'Position.txt' was not opened\n");// File failed to open
 else
 printf("The file 'Position.txt' was opened\n");// File opened

 fseek(DCLPInput, 0L, SEEK_SET);
 fscanf(DCLPInput, "%f\n", &FromLatitude);//Get the destined Latitude
 fscanf(DCLPInput, "%f\n", &FromLongitude);//Get the destned Longitude
 printf("FromLat = %f FromLong = %f\n", FromLatitude, FromLongitude);
 fclose(DCLPInput);
 DCLAInput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Angle.txt", "r");
 fseek(DCLAInput, 0L, SEEK_SET);
 fscanf(DCLAInput, "%f\n", &MastAngle);
 fclose(DCLAInput);

 glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB);

 189

 glutInitWindowSize (500, 500);
 glutInitWindowPosition (100, 100);
 glutCreateWindow (argv[0]);
 init ();
 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutKeyboardFunc(keyboard);
 glutMouseFunc(mouse);
 glutMainLoop();
 return 0;
}

GPSFixer

/*GPSFixer module sequence execution animation*/

#include <GL/glut.h>
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#define VMR 0.001 /*Rate to move up depeding upon time*/
#define MastRate 0.05 /*Rate to raise mast*/
#define UP 0.0 /*To check is mast raised*/
#define NOTDONE 0.0
#define DONE 1.0 /*To check is GPSFix taken*/
#define DOWN 1.0 /*To check is mast lowered*/
#define DriftRate 0.001 /*To assign a value to water current given as drift*/
#define Yes 1.0 /*If need to return to starting point after GPSFix is taken*/
#define No 0.0 /*If not to return to starting point*/
#define MaxAngle 90.0 /*The angle mast needs to be raised to take GPSFix*/
#define Depth 0.0 /*The depth at which the AUV dives to*/
#define WaitToTakeGPSFix 25.0 /*Time to wait till GPSFix is taken*/
#define FAILED 1.0 /*Indicating GPSFix failed*/
#define NotInTime 1.0
#define HMR 0.001 //Rate to move horizontally
#define Steering 1//Checks whether steering mode received or not
#define LINE 1 //Steering mode direct to go straight to the point following a line
#define SurfaceThreshold 1
static GLfloat Slope; // To get the slope of the line in direct steeringmode
static GLfloat SteerMode = LINE;//Assigning mode to steering
static GLfloat LatLongDiff; // The constant in the equation of a line for direct steermode
static GLfloat FromLatitude;
static GLfloat FromLongitude;
static GLfloat ToLatitude = SurfaceThreshold;
static GLfloat ToLongitude;
static GLfloat StartLongitude;
static GLfloat StartLatitude;
static GLfloat DevState__MastState=DOWN;
static GLfloat GPSOrd__ReturnToStart = 0;
static GLfloat Helm__DistanceToPoint=-1;
static GLfloat GoToSurfaceTO=500;
static GLfloat RaiseMastTO=50;
static GLfloat TakeFixTO=0;
static GLfloat NumFailed=0;
static GLfloat MastAngle = 0.0, MastDown =0.0, Angle=0.0;
static GLfloat MastMotion = 0.0;

 190

static int shoulder = 0.0, elbow = 0.0;
static GLfloat TotalTimeLowerMast = 0.0, TotalTimeDown =0.0,
TotalTimeUp = 0.0, TotalTimeMastUp = 0.0;
static GLfloat TimeInState = 0.0;
static GLfloat GPSFix = 0.0;
static GLfloat ReachSurface = 0.0;
static GLfloat TimeToChangeDirection = 0.0;
int MastRaised = 0, MastIsRaised = 0, AUVDown = 0 ;
int j =0, k =0, n =0, l =1, CountNumber = 0; p=0, iteration = 0;//j for lat loop, k for long loop, l for direct
loop, p for indirect
int i =0.0, m = 0, o = 0, MastLowered = 0.0, count = 0, begin = 0, numCount;
int DevState__GPSFixState = NOTDONE;
float Time, Timer, MissionTime;
float TimeOfMission, TotalTime, Timed;
double TimeToRise = 0,RaiseMastTime =0, Wait = 0, LowerMast = 0;
time_t start, start1, start2, start3, start4, start5, start6, start7, start8, start9, start10;
time_t end, end1, end2, end3, end4, end5, end6;
FILE *GOutput, *GPSOutput, *GTOutput;

/*Initialization module*/
void init(void)
{
 glClearColor (0.0, 0.0, 0.0, 0.0);
 glShadeModel (GL_FLAT);
}

/*Display module*/
void display(void)
{
 glClear (GL_COLOR_BUFFER_BIT);
 glColor3f(0.0, 0.4, 0.8);
 glRectf(-8.0, -4.0, 8.0, 2.0);
 glPushMatrix();
 glTranslatef (-1.0, 0.0, 0.0);
 glRotatef ((GLfloat) shoulder, 0.0, 0.0, 1.0);
 glTranslatef (1.0, 0.0, 0.0);
 glTranslatef(FromLongitude, FromLatitude, 0.0);

/*AUV moving down when mast is lowered after GPSFix is taken (Control within Launch module)*/
 if((DevState__MastState == DOWN && FromLatitude > Depth && AUVDown == 0 &&
MastRaised == 1) || ReachSurface == NotInTime && AUVDown == 0)
 {
 if(begin == 3)
 {
 time(&start5);
 begin++;
 }

 FromLatitude = FromLatitude - VMR;
 MastMotion = 0.008*MastMotion;
 if (difftime(end5, start5) == 2)
 {
 printf("Time = %f, Lat = %f, Long = %f\n", difftime(end5, start5),
FromLatitude, FromLongitude);
 time(&start5);
 }

 191

 glutPostRedisplay();
 }
 time(&end5);

 if (FromLatitude <= Depth && AUVDown == 0)
 {
 AUVDown = 1;
 }

 if (DevState__MastState == DOWN && MastRaised == 1 && GPSOrd__ReturnToStart == No
&& FromLatitude <= Depth)
 {
 glutIdleFunc(NULL);
 if(count == 0)
 {
 GOutput = fopen(
"C:\\Research\\Animation\\Temp\\Mission\\Position.txt", "w");
 fprintf(GOutput, "%f\n", FromLatitude);
 fprintf(GOutput, "%f\n", FromLongitude);
 fclose(GOutput);

 GPSOutput = fopen(
"C:\\Research\\Animation\\Temp\\Mission\\GPSFixOutput.txt", "w");
 fprintf(GPSOutput, "%f\n", FromLatitude);
 fprintf(GPSOutput, "%f\n", FromLongitude);
 fprintf(GPSOutput, "%f\n", difftime(end5, start));
 fprintf(GPSOutput, "Time to Rise to water %f\n", TimeToRise);
 fprintf(GPSOutput, "Time to raise mast%f\n", RaiseMastTime);
 fprintf(GPSOutput, "Time to lower mast%f\n",LowerMast);
 fclose(GPSOutput);

 GTOutput =
fopen("C:\\Research\\Animation\\Temp\\Mission\\Time.txt", "r");
 fscanf(GTOutput,"%f\n", &TotalTime);
 fclose(GTOutput);

 TotalTime = TotalTime + difftime(end5, start);

 GTOutput =
fopen("C:\\Research\\Animation\\Temp\\Mission\\Time.txt", "w");
 fprintf(GTOutput, "%f\n", TotalTime);
 fclose(GTOutput);
 count = 1;
 exit(0);
 }
 }

if(DevState__MastState == DOWN && AUVDown == 1 && MastRaised == 1 &&
GPSOrd__ReturnToStart == Yes)
{
 ToLongitude = StartLongitude;
 ToLatitude = StartLatitude;
 /*Check whether to Return back to the starting point (Control wihtin GPSFix)
 If need to return to starting point control is passed to Steering
module*/

 192

 if(begin == 4)
 {
 time(&start6);
 begin++;
 }
 if (Steering == 1)
 {

 /*AUV moving horizontally when FromLongitude is lesser than ToLongitude*/

 if ((FromLongitude < ToLongitude) && (k == 0))
 {

 /*AUV for Direct steering mode to get slope*/

 if ((SteerMode == 1) && (n == 0))
 {
 Slope =(ToLatitude-FromLatitude)/(ToLongitude-FromLongitude);
 LatLongDiff = FromLatitude - Slope*FromLongitude;
 n++; l--;
 }

 /*AUV for Direct steering mode */

 if (SteerMode == 1 && l ==0)
 {
 FromLongitude = FromLongitude + HMR ;
 FromLatitude = Slope*FromLongitude + LatLongDiff;
 MastMotion = 0.008*FromLongitude;
 j = 1;

 if (difftime(end, start6) == 2)
 {
 printf("Time = %f, Steermode Direct Lat= %f Long: %f\n",
difftime(end6, start6),FromLatitude, FromLongitude);
 time(&start6);
 }

 if(FromLongitude >= ToLongitude)
 {
 glutIdleFunc(NULL);
 k =1;
 l = 1;
 o = 1;
 printf("Time = %f, Steermode Direct Lat= %f Long: %f\n",
difftime(end6, start6),FromLatitude, FromLongitude);

 }
 glutPostRedisplay();
 }

 }

 /*AUV moving horizontally when FromLongitude is greater than ToLongitude*/

 193

 if ((FromLongitude > ToLongitude) && (k == 0))
 {

 /*AUV for Direct steering mode to get slope*/

 if ((SteerMode == 1) && (n == 0))
 {
 Slope =(ToLatitude-FromLatitude)/(ToLongitude-FromLongitude);
 LatLongDiff = FromLatitude - Slope*FromLongitude;
 n++; l--;
 }

 /*AUV for Direct steering mode*/

 if (SteerMode == 1 && l == 0)
 {
 FromLongitude = FromLongitude - HMR ;
 FromLatitude = Slope*FromLongitude + LatLongDiff;
 MastMotion = 0.008*FromLongitude;
 j = 1;

 if (difftime(end, start6) == 2)
 {
 printf("Time = %f, Steermode Direct Lat= %f Long:
%f\n",difftime(end, start6),FromLatitude, FromLongitude);
 time(&start6);
 }
 if(FromLongitude <= ToLongitude)
 {
 glutIdleFunc(NULL);
 k =1;
 l = 1;
 o = 1;
 printf("MissionTime = %f, Steermode Direct Lat= %f Long:
%f\n", difftime(end, start),FromLatitude, FromLongitude);

 }
 glutPostRedisplay();
 }

 }

 /*AUV moving Vertically when FromLatitude is lesser than ToLatitude */

 if (FromLatitude < ToLatitude && j == 0)
 {

 FromLatitude = FromLatitude + VMR;
 MastMotion = 0.008*FromLatitude;

 if (difftime(end, start6) == 2)
 {
 if (SteerMode == 1)
 {

 194

 printf("Time = %f Steermode Direct Lat:%f Long =
%f\n", difftime(end, start6), FromLatitude, FromLongitude);
 time(&start6);
 }

 }
 if((FromLatitude >= ToLatitude))
 {
 glutIdleFunc(NULL);
 j = 1;
 o = 1;
 k = 1;
 printf("MissionTime = %f, Steermode Direct Lat = %f, Long
= %f\n",difftime(end, start), FromLatitude, FromLongitude);
 }
 glutPostRedisplay();

 }

 /*AUV moving Vertically when FromLatitude is greater than ToLatitude */

 if (FromLatitude > ToLatitude && j == 0)
 {

 FromLatitude = FromLatitude - VMR;
 MastMotion = 0.008*FromLatitude;

 if (difftime(end, start6) == 2)
 {
 if (SteerMode == 1)
 {
 printf("MissionTime = %f Steermode Direct Lat:%f
Long = %f\n", difftime(end, start6), FromLatitude, FromLongitude);
 time(&start6);
 }

 }
 if(FromLatitude <= ToLatitude && ToLongitude == FromLongitude)
 {
 glutIdleFunc(NULL);
 j = 1;
 o = 1;
 k = 1;
 printf("MissionTime = %f, Steermode NotDirect Lat:%f Long = %f\n",
difftime(end, start), FromLatitude, FromLongitude);
 }

 glutPostRedisplay();
 }
 time(&end);

 195

 if(k == 1 && j == 1)
 {
 if(count == 0)
 {

 GOutput = fopen(
"C:\\Research\\Animation\\Temp\\Mission\\Position.txt", "w");
 fprintf(GOutput, "%f\n", ToLatitude);
 fprintf(GOutput, "%f\n", ToLongitude);
 fclose(GOutput);

 GPSOutput = fopen(
"C:\\Research\\Animation\\Temp\\Mission\\GPSFixOutput.txt", "w");
 fprintf(GPSOutput, "%f\n", ToLatitude);
 fprintf(GPSOutput, "%f\n", ToLongitude);
 fprintf(GPSOutput, "%f\n", difftime(end, start));
 fprintf(GPSOutput, "Time to Rise to water %f\n", TimeToRise);
 fprintf(GPSOutput, "Time to raise mast%f\n", RaiseMastTime);
 fprintf(GPSOutput, "Time to lower mast%f\n",LowerMast);
 fprintf(GPSOutput, "%f\n",difftime(end, start));
 fclose(GPSOutput);

 GTOutput =
fopen("C:\\Research\\Animation\\Temp\\Mission\\Time.txt", "r");
 fscanf(GTOutput,"%f\n", &TotalTime);
 fclose(GTOutput);

 TotalTime = TotalTime + difftime(end, start);

 GTOutput =
fopen("C:\\Research\\Animation\\Temp\\Mission\\Time.txt", "w");
 fprintf(GTOutput, "%f\n", TotalTime);
 fclose(GTOutput);
 count = 1;
 exit(0);
 }
 }
 }
}

 glTranslatef(FromLongitude, FromLatitude, 0.0);
 glPushMatrix();
 glScalef (2.0, 0.4, 1.0);
 glColor3f(0.0, 0.7, 0.4);
 glutSolidCube (1.0);
 glPopMatrix();
 glTranslatef (0.0, 0.1, 0.0);
 glTranslatef(0.08*FromLongitude, MastMotion, 0.0);
 glRotatef(0.0, 0.0, 0.0, 1.0);
 glRotatef(MastAngle, 0.0, 0.0, 1.0);
 glTranslatef(0.5, MastMotion, 0.0);
 glPushMatrix();
 glScalef (0.8, 0.2, 0.5);
 glColor3f(1.0, 1.0, 0.0);
 glutSolidCube(1.0);
 glPopMatrix();

 196

 glPopMatrix();
 glutSwapBuffers();
}

void MoveUp(void)
{
/*AUV moving up to take GPSFix (Control within GPSFix module)*/
 /*Take value of SurfaceThreshold from Uppaal file */
 if(Timed == 1)
 {
 if(TotalTime > TimeOfMission)
 {

 printf("Time has elapsed\n");
 glutIdleFunc(NULL);
 exit(0);
 }
 }

 if(begin == 0)
 {
 time(&start);
 time(&start1);

 begin++;
 }

 if (FromLatitude < SurfaceThreshold && o ==0)
 {
 FromLatitude = FromLatitude + VMR;
 MastMotion = 0.008*FromLatitude;

 if(FromLatitude == SurfaceThreshold)
 {

 o = 1;
 glutIdleFunc(NULL);
 }

 glutPostRedisplay();

 if(difftime(end1, start1) == 2)
 {
 TimeToRise = TimeToRise + difftime(end1, start1);
 printf("Time = %f, RiseTime = %f, FromLat = %f, FromLong = %f
\n",difftime(end1, start1), TimeToRise, FromLatitude, FromLongitude);
 time(&start1);
 }

 if (GoToSurfaceTO < TimeToRise)
 {
 printf("GPSFix failed as couldnt reach surface in time\n");
 glutIdleFunc(NULL);
 }
 }

 197

 time(&end1);
 /*Once AUV is at the surface of water module to raise mast*/
 if (FromLatitude >= SurfaceThreshold && m == 0 && DevState__MastState == DOWN)
 {
 if(begin == 1)
 {
 time(&start2);
 begin++;
 }

 MastAngle = MastAngle + MastRate;
 if(difftime(end2, start2) == 1 && Wait == 0)
 {
 RaiseMastTime = RaiseMastTime + difftime(end2, start2);
 printf("Time = %f, RaiseMastTime = %f, MastAngle = %f\n", difftime(end2,
start2), RaiseMastTime, MastAngle);
 time(&start2);
 }
 /*Rate to raise mast when AUV is on water surface rate valur from Uppaaal*/
 if (MastAngle>MaxAngle && iteration == 0 && Wait == 0) /*Take value of MastAngle
from Uppaal*/
 {
 DevState__MastState = UP;
 printf("Time = %f, RaiseMastTime = %f, MastAngle = %f\n", difftime(end2,
start2), RaiseMastTime, MastAngle);
 iteration++;
 }
 /*To check whether time to actuall raie mast is more than given*/
 if (RaiseMastTime>= RaiseMastTO)
 {
 GPSFix = FAILED;
 glutIdleFunc(NULL);
 }
 glutPostRedisplay();
 }
 time(&end2);

 if (GPSFix == FAILED)
 {
 while(MastAngle > 0.0)
 MastAngle = MastAngle -0.00005*MastRate;/*Lowering mast rate specified in uppaal*/
 if (MastAngle < 0.0)
 {
 DevState__MastState = DOWN;
 glutIdleFunc(NULL);
 }
 printf("GPSFix FAILED\n");
 glutPostRedisplay();

 }
 /****Wait till GPSFix is taken***/

 if(DevState__MastState == UP && iteration == 1)
 {
 time(&start3);
 printf("Wait for 5 seconds to takeGPSFix\n");

 198

 do
 {
 time(&end3);

 } while(difftime(end3, start3) < 5);

 DevState__GPSFixState = DONE;

 iteration++;
 }
/***Lower mast when GPSFix is taken (Control passed to Launch module)***/
 if (DevState__GPSFixState == DONE)
 {
 if (MastAngle > 0.0 && iteration == 2)
 {
 if(begin == 2)
 {
 time(&start4);
 begin++;
 }

 MastAngle = MastAngle - MastRate;

 if(difftime(end4, start4) == 1)
 {
 LowerMast = LowerMast + difftime(end4, start4);
 printf ("Time = %f, LowerMast = %f, MastAngle =
%f\n",difftime(end4, start4), LowerMast, MastAngle);
 time(&start4);
 }
 if (MastAngle < 0.0)
 {
 DevState__MastState = DOWN;
 MastRaised = 1;
 AUVDown = 0;
 if(Wait > WaitToTakeGPSFix)
 printf("GPSFix failed as time exceeded\n");
 else
 printf("GPSFix is successful, AUVDown = %d,
DevState__MastState = %d MastRaised = %d\n", AUVDown,DevState__MastState, MastRaised);

 glutIdleFunc(NULL);
 m =1;
 }
 glutPostRedisplay();
 }
 time(&end4);
 }

}

void reshape (int w, int h)
{
 glViewport (0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode (GL_PROJECTION);
glLoadIdentity ();

 199

gluPerspective(70.0, (GLfloat) w/(GLfloat) h, 10.0, 4.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
 glRotatef(MastAngle, 0.0, 0.0, 1.0);
 glTranslatef (0.0, 0.0, -5.0);
}
void keyboard (unsigned char key, int x, int y)
{
 switch (key)
{
 case 's':
 shoulder = (shoulder + 5) % 360;
 glutPostRedisplay();
 break;
 case 'S':
 shoulder = (shoulder - 5) % 360;
 glutPostRedisplay();
 break;
case 'a':
 {
 i = 1;
 glutIdleFunc(NULL);
 }
 break;
 case 27:
 exit(0);
 break;
 default:
 break;
 }
}
void mouse(int button, int state, int x, int y)
{
switch(button)
{
case GLUT_LEFT_BUTTON:
if (state == GLUT_DOWN && i == 0.0)
{
glutIdleFunc(MoveUp);
}
break;
}
}

FILE *GInput, *GPSFInput, *GPSFixInput;
int main(int argc, char** argv)
{
glutInit(&argc, argv);
GInput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Position.txt", "r");
if(GInput == NULL)
 printf("The file 'Position.txt' was not opened\n");// File failed to open
 else
 printf("The file 'Position.txt' was opened\n");// File opened
 fseek(GInput, 0L, SEEK_SET);
 fscanf(GInput, "%f\n", &FromLatitude);//Get the destined Latitude
 fscanf(GInput, "%f\n", &FromLongitude);//Get the destned Longitude

 200

 StartLatitude = FromLatitude;
 StartLongitude = FromLongitude;
 GPSFixInput = fopen("C:\\Research\\Animation\\Temp\\Mission\\GPSInput.txt", "r");
 fscanf(GPSFixInput, "%f\n", &Timed);
 fscanf(GPSFixInput, "%f\n", &TimeOfMission);
 fclose(GPSFixInput);
 GPSFInput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Time.txt", "r");
 if (GPSFInput == NULL)
 printf("Time not opened\n");
 else
 printf("Time opened\n");
 fscanf(GPSFInput, "%f\n", &TotalTime);
 fclose(GPSFInput);
 printf("Timed = %f Total time = %f Time of mission = %f\n",Timed, TotalTime,
TimeOfMission);
 glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB);

glutInitWindowSize (500, 500);
glutInitWindowPosition (100, 100);
glutCreateWindow (argv[0]);
init ();
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutKeyboardFunc(keyboard);
glutMouseFunc(mouse);
glutMainLoop();
return 0;

}

Pause

/*Pause module execution sequence animation*/

#include <GL/glut.h>
#include <stdlib.h>
#include<stdio.h>
#include<time.h>
static GLfloat FromLatitude; // The begining latitude
static GLfloat FromLongitude; //The beginning longitude
static GLfloat MastMotion = 0.0; // Motion of the mast
static GLfloat Slope; // To get the slope of the line in direct steeringmode
static GLfloat LatLongDiff; // The constant in the equation of a line for direct steermode
static GLfloat ToLatitude = 1.0;
static GLfloat ToLongitude;
static GLfloat VMR;
static GLfloat HMR;
int i = 0; //Used for abort signal
int j =0, k =0, n =0, l =1, p=0;//j for lat loop, k for long loop, l for direct loop, p for indirect
int Lat = 0;
int SteerMode;
int z=0, begin = 0;
int Steering, count;
float Timed, TimeOfOperation;
float Time, Timer;
float temp1, temp2;
float temp3, number, TotalTime;
time_t start, start1, start2, start3, start4;

 201

time_t end, time1, time2;
FILE *DCGOutput, *DCGOut, *DCGTOutput;
/*Initialization module*/
void init(void)
{

 glClearColor (0.0, 0.0, 0.0, 0.0);
 glShadeModel (GL_FLAT);
}

/*Display module*/

void display(void)
{
 glClear (GL_COLOR_BUFFER_BIT);
 glColor3f(0.0, 0.4, 0.8);
 glRectf(-8.0, -4.0, 8.0, 2.0);
 glPushMatrix();
 glTranslatef (-1.0, 0.0, 0.0);
 glTranslatef (1.0, 0.0, 0.0);
 glTranslatef(FromLongitude, FromLatitude, 0.0);
 glTranslatef(FromLongitude, FromLatitude, 0.0);
 glPushMatrix();
 glScalef (2.0, 0.4, 1.0);
 glColor3f(0.0, 0.7, 0.4);
 glutSolidCube (1.0);
 glPopMatrix();
 glTranslatef (0.0, 0.1, 0.0);
 glTranslatef(0.08*FromLongitude, MastMotion, 0.0);
 glRotatef(0.0, 0.0, 0.0, 1.0);
 glTranslatef(0.5, MastMotion, 0.0);
 glPushMatrix();
 glScalef (0.8, 0.2, 0.5);
 glColor3f(1.0, 1.0, 0.0);
 glutSolidCube(1.0);
 glPopMatrix();
 glPopMatrix();
 glutSwapBuffers();
}

/*Module to Steer the AUV*/
void Steer(void)
{

 if (Steering == 1)
 {

 if(FromLatitude == 1)
 {
 glutIdleFunc(NULL);
 printf("Already at surface\n");
 j=1;
 k=1;
 exit(0);
 }
 if(begin == 0)

 202

 {
 time(&start);
 time(&start1);
 time(&start2);
 time(&start3);
 begin++;
 }

 /*AUV moving horizontally when FromLongitude is lesser than ToLongitude*/

 if ((FromLongitude < ToLongitude) && (k == 0))
 {

 /*AUV for LINE steering mode to get slope*/

 if ((SteerMode == 1) && (n == 0))
 {
 Slope =(ToLatitude-FromLatitude)/(ToLongitude-FromLongitude);
 LatLongDiff = FromLatitude - Slope*FromLongitude;
 n++; l--;
 }

 /*AUV for LINE steering mode */

 if (SteerMode == 1 && l ==0)
 {
 FromLongitude = FromLongitude + HMR;
 FromLatitude = Slope*FromLongitude + LatLongDiff;
 MastMotion = 0.008*FromLongitude;
 j = 1;
 if (difftime(end, start1) == 2)

 {
 printf("Time = %f, Steermode LINE %f, %f\n",difftime(end,
start1), FromLatitude, FromLongitude);
 time(&start1);
 }

 if(ToLongitude <= FromLongitude)
 {
 glutIdleFunc(NULL);
 k =1;
 l = 1;
 printf("Time = %f Steermode LINE %f, %f\n",difftime(end,
start),FromLatitude, FromLongitude);
 }
 glutPostRedisplay();
 }

 }

 /*AUV moving horizontally when FromLongitude is greater than ToLongitude*/

 if ((ToLongitude < FromLongitude) && (k == 0))
 {

 203

 /*AUV for LINE steering mode to get slope*/
 if (SteerMode == 1 && n == 0)
 {
 Slope =(ToLatitude-FromLatitude)/(ToLongitude-FromLongitude);
 LatLongDiff = FromLatitude - Slope*FromLongitude;
 n++; l--;
 }

 /*AUV for LINE steering mode*/

 if (SteerMode == 1 && l == 0)
 {
 FromLongitude = FromLongitude - HMR;
 FromLatitude = Slope*FromLongitude + LatLongDiff;
 MastMotion = 0.008*FromLongitude;
 j = 1;
 if (difftime(end, start2) == 2)

 {
 printf("Time = %f, Steermode LINE Lat = %f, Long =
%f\n",difftime(end, start), FromLatitude, FromLongitude);
 time(&start2);
 }

 if(ToLongitude >= FromLongitude)
 {
 glutIdleFunc(NULL);
 k =1;
 l = 1;
 printf("Time = %f, Steermode LINE %f, %f\n",difftime(end,
start), FromLatitude, FromLongitude);

 }
 glutPostRedisplay();
 }

 }

 /*AUV moving Vertically when FromLatitude is lesser than ToLatitude */

 if (FromLatitude < ToLatitude && j == 0)
 {

 FromLatitude = FromLatitude + VMR;
 MastMotion = 0.008*FromLatitude;

 if(difftime(end, start3) == 2)
 {
 printf("Time = %f Steermode LINE Lat:%f Long = %f\n",
difftime(end, start), FromLatitude, FromLongitude);
 time(&start3);
 }

 if((FromLatitude >= ToLatitude) && (FromLongitude ==
ToLongitude))
 {

 204

 glutIdleFunc(NULL);
 j = 1;
 printf("Time = %f, Steermode LINE %f, %f\n",difftime(end,
start), FromLatitude, FromLongitude);
 }
 else if (FromLatitude>= ToLatitude)
 {
 j = 1;
 printf("Stop Lat Time = %f, Steermode LINE %f,
%f\n",difftime(end, start), FromLatitude, FromLongitude);
 }
 glutPostRedisplay();
 }

 /*AUV moving Vertically when FromLatitude is greater than ToLatitude */

 if (FromLatitude > ToLatitude && j == 0)
 {
 FromLatitude = FromLatitude - VMR;
 MastMotion = 0.008*FromLatitude;

 if (difftime(end, start4) == 2)
 {
 printf("Time = %f Steermode LINE Lat:%f Long = %f\n",difftime(end,
start), FromLatitude, FromLongitude);
 time(&start4);

 }
 if((FromLatitude <= ToLatitude) && (FromLongitude == ToLongitude))
 {
 glutIdleFunc(NULL);
 j = 1;
 printf("Time = %f, Steermode LINE %f, %f\n",difftime(end, start),
FromLatitude, FromLongitude);
 }
 else if (FromLatitude <= ToLatitude)
 {
 j = 1;
 printf("Stop Lat motion Time = %f, Steermode LINE %f,
%f\n",difftime(end, start), FromLatitude, FromLongitude);
 }
 glutPostRedisplay();

 }

 }

 if(k == 1 && j == 1)
 {
 if(count == 0)
 {
 DCGOutput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Position.txt",
"w");
 fprintf(DCGOutput, "%f\n", FromLatitude);
 fprintf(DCGOutput, "%f\n", FromLongitude);

 205

 fclose(DCGOutput);
 DCGOut = fopen("C:\\Research\\Animation\\Temp\\Mission\\PauseOutput.txt",
"w");
 fprintf(DCGOut, "%f\n", FromLatitude);
 fprintf(DCGOut, "%f\n", FromLongitude);
 fprintf(DCGOut, "%f\n", difftime(end, start));
 fclose(DCGOut);
 DCGTOutput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Time.txt",
"r");
 fscanf(DCGTOutput,"%f\n", &TotalTime);
 fclose(DCGTOutput);
 TotalTime = TotalTime + difftime(end, start);
 DCGTOutput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Time.txt",
"w");
 fprintf(DCGTOutput, "%f\n", TotalTime);
 fclose(DCGTOutput);
 count = 1;
 time(&time1);
 do
 {
 time(&time2);
 }while(difftime(time2, time1) <5);
 printf("Wait for 5 seconds\n");
 exit(0);
 }

 }
 time(&end);
}

/*Projection module*/

void reshape (int w, int h)
{
 glViewport (0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode (GL_PROJECTION);
 glLoadIdentity ();
 gluPerspective(70.0, (GLfloat) w/(GLfloat) h, 10.0, 4.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glTranslatef (0.0, 0.0, -5.0);
}

/*Keyboard function*/

void keyboard (unsigned char key, int x, int y)
{
 switch (key) {

 case 'a':
 {
 i = 1;
 glutIdleFunc(NULL);
 printf("MISSION ABORTED\n");
 }
 break;

 206

 case 27:
 {

 exit(0);
 }
 break;
 default:
 break;
 }
}

/*Mouse action*/

void mouse(int button, int state, int x, int y)

{
 switch(button)
 {
 case GLUT_LEFT_BUTTON:
 if (state == GLUT_DOWN && i == 0.0)
 {
 glutIdleFunc(Steer);

 }
 break;

 }
}
FILE *DCGInput, *DCGOutput, *DCGIn;
int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 /*Open file for reading input*/
 DCGInput = fopen("C:\\Research\\Animation\\Temp\\DC_Gen_GoToSurface\\DCGInput.txt",
"r");
 if(DCGInput == NULL)
 printf("The file 'DCGInput.txt' was not opened\n");// File failed to open
 else
 printf("The file 'DCGInput.txt' was opened\n");// File opened

 fseek(DCGInput, 0L, SEEK_SET);
 fscanf(DCGInput, "%f\n", &Timed);//Check whether Timed operation or not (0 (untimed) or 1
(Timed))
 fscanf(DCGInput, "%f\n", &TimeOfOperation);//Time of operation
 fscanf(DCGInput, "%d\n", &Steering);//Get the order is Steering or not
 fscanf(DCGInput, "%d\n", &SteerMode);//Get the mode of Steering
 //fscanf(SInput, "%f\n", &ToLatitude);//Get the destined Latitude
 fscanf(DCGInput, "%f\n", &ToLongitude);//Get the destned Longitude
 fclose(DCGInput);
 if (Timed == 0)
 {
 VMR = 0.001;
 HMR = 0.001;
 }
 DCGIn = fopen("C:\\Research\\Animation\\Temp\\Mission\\Position.txt", "r");

 207

 fseek(DCGIn, 0L, SEEK_SET);
 fscanf(DCGIn, "%f\n", &FromLatitude);
 fscanf(DCGIn, "%f\n", &FromLongitude);
 fclose(DCGIn);
 printf("Lat = %f, Long = %f\n",FromLatitude, FromLongitude);
 glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB);
 glutInitWindowSize (500, 500);
 glutInitWindowPosition (100, 100);
 glutCreateWindow (argv[0]);
 init ();
 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutKeyboardFunc(keyboard);
 glutMouseFunc(mouse);
 DCGOutput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Position.txt", "w");
 fprintf(DCGOutput, "%f\n", ToLatitude);
 fprintf(DCGOutput, "%f\n", ToLongitude);
 fclose(DCGOutput);
 glutMainLoop();
 return 0;
}

PayloadDelivery module

/*Payload module execution sequence animation*/

#include <GL/glut.h>
#include <stdlib.h>
#include<stdio.h>
#include<time.h>
#include<math.h>
#define VMR 0.0005// Vertical motion rate
#define HMR 0.0005// Horizontal moition rate
#define SurfaceThreshold 1
#define MaxAngle 90
#define MastRate 0.05
#define UP 1
static GLfloat MastAngle;
static GLfloat FromLatitude; // The begining latitude
static GLfloat FromLongitude; //The beginning longitude
static GLfloat MastMotion = 0.0; // Motion of the mast
static GLfloat Slope; // To get the slope of the line in LINE steeringmode
static GLfloat LatLongDiff; // The constant in the equation of a line for LINE steermode
static GLfloat ToLatitude;
static GLfloat ToLongitude;
int SteerMode;
int z=0;
int Steering, count;
int i = 0 ; //Used for abort signal
int j =0, k =0, n =0, l =1;//j for lat loop, k for long loop, l for LINE loop
int Lat = 0, begin, o = 0, m = 0, DevState__MastState;
float TimeOfOperation, TotalTime;
float temp1, temp2, square;
float temp3, number, ExitTime,squareroot;
double elapsed;
time_t start, start1, start2, start3, start4;

 208

time_t end, end1, end2, end3, end4;
FILE *STOutput, *SOutput, *SteerOutput, *StAngle;

/*Initialization module*/

void init(void)
{

 glClearColor (0.0, 0.0, 0.0, 0.0);
 glShadeModel (GL_FLAT);
}

/*Display module*/

void display(void)
{
 glClear (GL_COLOR_BUFFER_BIT);
 glColor3f(0.0, 0.4, 0.8);
 glRectf(-8.0, -4.0, 8.0, 2.0);
 glPushMatrix();
 glTranslatef (-1.0, 0.0, 0.0);
 glTranslatef (1.0, 0.0, 0.0);
 glTranslatef(FromLongitude, FromLatitude, 0.0);
 glTranslatef(FromLongitude, FromLatitude, 0.0);
 glPushMatrix();
 glScalef (2.0, 0.4, 1.0);
 glColor3f(0.0, 0.7, 0.4);
 glutSolidCube (1.0);
 glPopMatrix();
 glTranslatef (0.0, 0.1, 0.0);
 glTranslatef(0.08*FromLongitude, MastMotion, 0.0);
 glRotatef(0.0, 0.0, 0.0, 1.0);
 glRotatef(MastAngle, 0.0, 0.0, 1.0);
 glTranslatef(0.5, MastMotion, 0.0);
 glPushMatrix();
 glScalef (0.8, 0.2, 0.5);
 glColor3f(1.0, 1.0, 0.0);
 glutSolidCube(1.0);
 glPopMatrix();
 glPopMatrix();
 glutSwapBuffers();
}

/*Module to Steer the AUV*/
void Steer(void)
{
 if(begin == 0)
 {
 time(&start);
 time(&start1);
 time(&start2);
 time(&start3);
 time(&start4);
 begin++;
 }

 209

 if (Steering == 1)
 {

 /*AUV moving horizontally when FromLongitude is lesser than ToLongitude*/

 if ((FromLongitude < ToLongitude) && (k == 0))
 {

 /*AUV for LINE steering mode to get slope*/
 if ((SteerMode == 1) && (n == 0))
 {
 Slope =(ToLatitude-FromLatitude)/(ToLongitude-FromLongitude);
 LatLongDiff = FromLatitude - Slope*FromLongitude;
 n++; l--;
 }

 /*AUV for LINE steering mode */

 if (SteerMode == 1 && l ==0)
 {
 FromLongitude = FromLongitude + HMR;
 FromLatitude = Slope*FromLongitude + LatLongDiff;
 MastMotion = 0.008*FromLongitude;
 j = 1;

 if(difftime(end,start1) == 2)

 {
 printf("Time = %f, Steermode LINE %f,
%f\n",difftime(end,start1), FromLatitude, FromLongitude);
 time(&start1);
 }

 if(ToLongitude <= FromLongitude)
 {
 glutIdleFunc(NULL);
 k =1;
 l = 1;
 printf("Time = %f Steermode LINE %f,
%f\n",difftime(end,start), FromLatitude, FromLongitude);
 }
 glutPostRedisplay();
 }

 }

 /*AUV moving horizontally when FromLongitude is greater than ToLongitude*/

 if ((ToLongitude < FromLongitude) && (k == 0))
 {

 /*AUV for LINE steering mode to get slope*/

 if (SteerMode == 1 && n == 0)
 {

 210

 Slope =(ToLatitude-FromLatitude)/(ToLongitude-FromLongitude);
 LatLongDiff = FromLatitude - Slope*FromLongitude;
 n++; l--;
 }

 /*AUV for LINE steering mode*/

 if (SteerMode == 1 && l == 0)
 {
 FromLongitude = FromLongitude - HMR;
 FromLatitude = Slope*FromLongitude + LatLongDiff;
 MastMotion = 0.008*FromLongitude;
 j = 1;

 if((difftime(end,start2)) == 2)
 {
 printf("Time = %f, Steermode LINE Lat = %f, Long =
%f\n",difftime(end,start2), FromLatitude, FromLongitude);
 time(&start2);
 }

 if(ToLongitude >= FromLongitude)
 {
 glutIdleFunc(NULL);
 k =1;
 l = 1;
 printf("Time = %f, Steermode LINE %f,
%f\n",difftime(end,start), FromLatitude, FromLongitude);

 }
 glutPostRedisplay();

 }

 }

 /*AUV moving Vertically when FromLatitude is lesser than ToLatitude */

 if (FromLatitude < ToLatitude && j == 0)
 {
 FromLatitude = FromLatitude + VMR;
 MastMotion = 0.008*FromLatitude;

 if(difftime(end,start3) == 2)
 {
 if (SteerMode == 1)
 printf("Time = %f Steermode LINE Lat:%f Long =
%f\n", difftime(end,start3), FromLatitude, FromLongitude);
 time(&start3);
 }

 if((FromLatitude >= ToLatitude) && (FromLongitude ==
ToLongitude))
 {

 211

 glutIdleFunc(NULL);
 j = 1;
 k = 1;
 printf("Time = %f, Steermode LINE %f,
%f\n",difftime(end,start), FromLatitude, FromLongitude);
 }

 glutPostRedisplay();

 }

 /*AUV moving Vertically when FromLatitude is greater than ToLatitude */

 if (FromLatitude > ToLatitude && j == 0)
 {

 FromLatitude = FromLatitude - VMR;
 MastMotion = 0.008*FromLatitude;

 if(difftime(end,start4)== 2)
 {
 if (SteerMode == 1)
 printf("Time = %f Steermode LINE Lat:%f Long =
%f\n",difftime(end,start4), FromLatitude, FromLongitude);
 time(&start4);;

 }

 if((FromLatitude <= ToLatitude) && (FromLongitude == ToLongitude))
 {
 glutIdleFunc(NULL);
 j = 1;
 k = 1;
 printf("Time = %f, Steermode LINE %f, %f\n",difftime(end,start),
FromLatitude, FromLongitude);
 }

 glutPostRedisplay();
 }

 }

 time(&end);
 if(k == 1 && j == 1)
 {
 if(count == 0)
 {
 SOutput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Position.txt", "w"
);
 fprintf(SOutput, "%f\n", FromLatitude);
 fprintf(SOutput, "%f\n", FromLongitude);
 fclose(SOutput);

 SteerOutput = fopen(
"C:\\Research\\Animation\\Temp\\Mission\\PayloadOutput.txt", "w");

 212

 fprintf(SteerOutput, "Payload delivered at the given location\n");
 fprintf(SteerOutput, "%f\n", FromLatitude);
 fprintf(SteerOutput, "%f\n", FromLongitude);
 fprintf(SteerOutput, "%f\n", difftime(end, start));
 fclose(SteerOutput);
 STOutput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Time.txt", "r");
 fscanf(STOutput,"%f\n", &TotalTime);
 fclose(STOutput);
 TotalTime = TotalTime + difftime(end, start);
 STOutput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Time.txt", "w");
 fprintf(STOutput, "%f\n", TotalTime);
 fclose(STOutput);
 count = 1;
 exit(0);
 }
 }
}

void Abort(void)
{
/*AUV moving up to take GPSFix (Control within GPSFix module)*/
 /*Take value of SurfaceThreshold from Uppaal file */
 if (FromLatitude < SurfaceThreshold && o ==0)
 {
 FromLatitude = FromLatitude + VMR;
 MastMotion = 0.008*FromLatitude;

 if(FromLatitude == SurfaceThreshold)
 {
 glutIdleFunc(NULL);
 o = 1;
 }
 glutPostRedisplay();
 }

 if (FromLatitude >= SurfaceThreshold && m == 0)
 {
 MastAngle = MastAngle + MastRate;
 /*Rate to raise mast when AUV is on water surface rate valur from Uppaaal*/
 while (MastAngle>MaxAngle) /*Take value of MastAngle from Uppaal*/
 {
 DevState__MastState = UP;
 m = 1;
 }

 glutPostRedisplay();
 }

}

/*Projection module*/

void reshape (int w, int h)
{
 glViewport (0, 0, (GLsizei) w, (GLsizei) h);

 213

 glMatrixMode (GL_PROJECTION);
 glLoadIdentity ();
 gluPerspective(70.0, (GLfloat) w/(GLfloat) h, 10.0, 4.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glTranslatef (0.0, 0.0, -5.0);
}

/*Keyboard function*/

void keyboard (unsigned char key, int x, int y)
{
 switch (key) {

 case 'a':
 {
 i = 1;
 glutIdleFunc(Abort);
 printf("MISSION ABORTED\n");
 }
 break;

 case 27:
 {

 exit(0);
 }
 break;
 default:
 break;
 }
}

/*Mouse action*/

void mouse(int button, int state, int x, int y)

{

 switch(button)
 {

 case GLUT_LEFT_BUTTON:

 if (state == GLUT_DOWN && i == 0.0)
 {

 glutIdleFunc(Steer);

 }
 break;

 }
}

FILE *SInput, *StInput, *SAngle;

 214

int main(int argc, char** argv)
{
 glutInit(&argc, argv);

 /*Open file for reading input*/

 SInput = fopen("C:\\Research\\Animation\\Temp\\Mission\\SteerInput.txt", "r");
 if(SInput == NULL)
 printf("The file 'SteerInput.txt' was not opened\n");// File failed to open
 else
 printf("The file 'SteerInput.txt' was opened\n");// File opened

 fseek(SInput, 0L, SEEK_SET);
 fscanf(SInput, "%d\n", &Steering);//Get the order is Steering or not
 fscanf(SInput, "%d\n", &SteerMode);//Mode of Steering
 fscanf(SInput, "%f\n", &ToLatitude);//Get the destined Latitude
 fscanf(SInput, "%f\n", &ToLongitude);//Get the destned Longitude
 fclose(SInput);
 printf("ToLat = %f, ToLong = %f\n",ToLatitude, ToLongitude);

 if (ToLatitude < -1.5)
 {
 ToLatitude = -1.5;
 printf("ToLatitude value change to -1.5 as depth below that is dangerous\n");
 }
 if (ToLatitude > 1.0)
 {
 ToLatitude = 1.0;
 printf("ToLatitude value cannot be more than 1.0 the surface\n");
 }

 StInput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Position.txt", "r");
 fscanf(SInput, "%f\n", &FromLatitude);//Get the current Latitude
 fscanf(SInput, "%f\n", &FromLongitude);//Get the current Longitude
 printf("Lat = %f, Long = %f\n",FromLatitude, FromLongitude);

 if (FromLatitude < -1.5)
 {
 FromLatitude = -1.5;
 printf("FromLatitude value change to -1.5 as depth below that is dangerous\n");
 }

 if (FromLatitude > 1.0)
 {
 FromLatitude = 1.0;
 printf("FromLatitude value cannot be more than 1.0 the surface\n");
 }

 temp1 = FromLatitude - ToLatitude;
 temp2 = FromLongitude - ToLongitude;
 temp3 = temp1*temp1 + temp2*temp2;
 squareroot = sqrt(temp3);
 printf("%f\n", squareroot);

 SAngle = fopen("C:\\Research\\Animation\\Temp\\Mission\\Position.txt", "r");
 fscanf(SAngle, "%f\n", &MastAngle);

 215

 if (MastAngle > 0 && FromLatitude < 1.0)
 {
 MastAngle = 0.0;
 printf("Mast is not raised as not on surface\n");
 }
 fclose(SAngle);
 if (MastAngle > 0 && FromLatitude == 1.0)
 {
 MastAngle = 0.0;
 printf("Lower Mast before going below surface of water\n");
 }

 glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB);
 glutInitWindowSize (500, 500);
 glutInitWindowPosition (100, 100);
 glutCreateWindow (argv[0]);
 init ();
 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutKeyboardFunc(keyboard);
 glutMouseFunc(mouse);
 glutMainLoop();
 return 0;
}

Launch

/*Loiter module execution sequence animation*/

#include <GL/glut.h>
#include <stdlib.h>
#include<stdio.h>
#include<math.h>
#include <time.h>
#define VMR 0.001//Rate to move up depeding
#define HMR 0.001 //Rate to move horizontally
#define StartPoint -1.0 //Keeping a record of start point
#define Steering 1//Checks whether steering mode received or not
#define Direct 1 //Steering mode direct to go straight to the point following a line
#define HOVER 1
#define CIRCLE 2
#define NONE 0
#define PI 3.14
#define Steering 1
#define LoiterTO 10000
#define Loiter_TimeToLoiterPt_FCN 10
#define ToWP__Timed 1 // Timed waypoint if 1
#define TimeToWaypoint 10000
#define MinSpeed 0.001
#define ThresholdDistance 20
#define MastRate 0.02
#define DOWN 1
static GLfloat MastAngle = 90.0;
static GLfloat DevState__MastState = 0;
static GLfloat Helm__DistanceToPoint;
static GLfloat FromLatitude = 1.0; // The begining latitude

 216

static GLfloat FromLongitude = -1.0; //The beginning longitude
static GLfloat MastMotion = 0.0; // Motion of the mast
static GLfloat i = 0; //Used for abort signal
static GLfloat Slope; // To get the slope of the line in direct steeringmode
static GLfloat SteerMode = Direct;//Assigning mode to steering
static GLfloat LatLongDiff; // The constant in the equation of a line for direct steermode
static GLfloat Step;
static GLfloat ToWP__LoiterType = 2;
static GLfloat Loiter = 0;
static GLfloat x, y;
static GLfloat First = 0;
static GLfloat r;
static GLfloat Theta;
static GLfloat base;
static LoiterDone = 0;
static GLfloat m = 0;
static GLfloat Side, Long =0;
static GLfloat TimeInState;
static GLfloat Helm =0;
static GLfloat DistanceToWaypoint;
static GLfloat t;
static GLfloat ToLatitude = 0.5;
static GLfloat ToLongitude = 1.0;
static GLfloat ToWP__LoiterDuration = 5;
static GLfloat ActualTimeToWP;
static GLfloat RemainingTime;
static GLfloat DecideLoiter = 0;
int ToWP__LoiterAtWP = 1;
int WaypointNavigator_DepthTrouble_FCN;
int MastRaised = 0;
int Initial = 0;
int j =0, k =0, n =0, l =1, p=0;//j for lat loop, k for long loop, l for direct loop, p for indirect
int MastLowered = 0;
int NumPoints = 2, numCount;
int begin = 0;
double LowerMast, TotalTime;
time_t start, start1, start2, start3, start4, start5;
time_t end, end1, end2, end3;
FILE *LaunchPOutput, *LaunchTime, *LaunchAOutput;

void init(void)
{

 glClearColor (0.0, 0.0, 0.0, 0.0);
 glShadeModel (GL_FLAT);
}

void display(void)
{
 glClear (GL_COLOR_BUFFER_BIT);
 glColor3f(0.0, 0.4, 0.8);
 glRectf(-4.0, -4.0, 4.0, 2.0);
 glPushMatrix();
 glTranslatef (-1.0, 0.0, 0.0);
 glTranslatef (1.0, 0.0, 0.0);
 glTranslatef(FromLongitude, FromLatitude, 0.0);

 217

 glTranslatef(FromLongitude, FromLatitude, 0.0);
 glPushMatrix();
 glScalef (2.0, 0.4, 1.0);
 glColor3f(0.0, 0.7, 0.4);
 glutSolidCube (1.0);
 glPopMatrix();
 glTranslatef (0.0, 0.1, 0.0);
 glTranslatef(0.08*FromLongitude, MastMotion, 0.0);
 glRotatef(MastAngle, 0.0, 0.0, 1.0);
 glTranslatef(0.5, MastMotion, 0.0);
 glPushMatrix();
 glScalef (0.8, 0.2, 0.5);
 glColor3f(1.0, 1.0, 0.0);
 glutSolidCube(1.0);
 glPopMatrix();
 glPopMatrix();
 glutSwapBuffers();
}
void MastLower(void)
{
 if(begin == 0)
 {
 time(&start);
 begin++;
 }

 if(MastAngle <= 0 && numCount == 0 && MastLowered == 0)
 {
 printf("Mast is already lowered\n");
 MastLowered++;
 numCount++;
 begin = 2;
 }
 /***Lower mast when GPSFix is taken (Control passed to Launch module)***/
 if (FromLatitude >= 1 && MastAngle > 0 && MastLowered == 0)
 {
 if(begin == 1)
 {
 time(&start1);
 begin++;
 }
 MastAngle = MastAngle - MastRate;/*Lowering mast rate specified in uppaal*/

 if (difftime(end1, start1) == 1)
 {
 LowerMast = LowerMast + difftime(end1, start1);
 printf ("MissionTime = %f, LowerMast = %f, MastAngle =
%f\n",difftime(end1, start), LowerMast, MastAngle);
 time(&start1);
 }
 if (MastAngle < 0.0)
 {
 DevState__MastState = DOWN;
 MastLowered = 1;

 218

 }
 glutPostRedisplay();

 }
 time(&end1);

if (MastLowered == 1)
{

 /***Lower mast when GPSFix is taken (Control passed to Launch module)***/

 if (Steering == 1)
 {
 if(begin == 2)
 {
 time(&start2);
 time(&start3);
 time(&start4);
 time(&start5);
 //printf("Begin = %d\n", begin);
 begin++;
 }
 if((FromLongitude == ToLongitude) && (FromLatitude == ToLatitude))
 {
 k = 1;
 j = 1;
 exit(0);
 }

 /*AUV moving horizontally when FromLongitude is lesser than ToLongitude*/

 if ((FromLongitude < ToLongitude) && (k == 0))
 {

 /*AUV for LINE steering mode to get slope*/

 if ((SteerMode == 1) && (n == 0))
 {
 Slope =(ToLatitude-FromLatitude)/(ToLongitude-FromLongitude);
 LatLongDiff = FromLatitude - Slope*FromLongitude;
 n++; l--;
 }

 /*AUV for LINE steering mode */

 if (SteerMode == 1 && l ==0)
 {
 FromLongitude = FromLongitude + HMR;
 FromLatitude = Slope*FromLongitude + LatLongDiff;
 MastMotion = 0.008*FromLongitude;
 j = 1;

 219

 if(difftime(end2,start2) == 1)

 {
 printf("Time = %f, Steermode LINE %f,
%f\n",difftime(end,start), FromLatitude, FromLongitude);
 time(&start2);
 }

 if(ToLongitude <= FromLongitude)
 {
 glutIdleFunc(NULL);
 k =1;
 l = 1;
 printf("Time = %f Steermode LINE %f,
%f\n",difftime(end,start), FromLatitude, FromLongitude);
 }
 glutPostRedisplay();
 }

 } time(&end2);

 /*AUV moving horizontally when FromLongitude is greater than ToLongitude*/

 if ((ToLongitude < FromLongitude) && (k == 0))
 {

 /*AUV for LINE steering mode to get slope*/

 if (SteerMode == 1 && n == 0)
 {
 Slope =(ToLatitude-FromLatitude)/(ToLongitude-FromLongitude);
 LatLongDiff = FromLatitude - Slope*FromLongitude;
 n++; l--;
 }

 /*AUV for LINE steering mode*/

 if (SteerMode == 1 && l == 0)
 {
 FromLongitude = FromLongitude - HMR;
 FromLatitude = Slope*FromLongitude + LatLongDiff;
 MastMotion = 0.008*FromLongitude;
 j = 1;

 if((difftime(end3,start3)) == 1)
 {
 printf("Time = %f, Steermode LINE Lat = %f, Long =
%f\n",difftime(end,start), FromLatitude, FromLongitude);
 time(&start3);
 }

 if(ToLongitude >= FromLongitude)
 {
 glutIdleFunc(NULL);

 220

 k =1;
 l = 1;
 printf("Time = %f, Steermode LINE %f,
%f\n",difftime(end,start), FromLatitude, FromLongitude);

 }
 glutPostRedisplay();

 }

 } time(&end3);

 /*AUV moving Vertically when FromLatitude is lesser than ToLatitude */

 if (FromLatitude < ToLatitude && j == 0)
 {
 FromLatitude = FromLatitude + VMR;
 MastMotion = 0.008*FromLatitude;

 if(difftime(end,start4) == 2)
 {
 if (SteerMode == 1)
 printf("Time = %f Steermode LINE Lat:%f Long =
%f\n", difftime(end,start), FromLatitude, FromLongitude);
 time(&start4);
 }

 if((FromLatitude >= ToLatitude) && (FromLongitude ==
ToLongitude))
 {

 glutIdleFunc(NULL);
 j = 1;
 k = 1;
 printf("Time = %f, Steermode LINE %f,
%f\n",difftime(end,start), FromLatitude, FromLongitude);
 }

 glutPostRedisplay();

 }

 /*AUV moving Vertically when FromLatitude is greater than ToLatitude */
 if (FromLatitude > ToLatitude && j == 0)
 {
 FromLatitude = FromLatitude - VMR;
 MastMotion = 0.008*FromLatitude;

 if(difftime(end,start5)== 2)
 {
 if (SteerMode == 1)

 221

 printf("Time = %f Steermode LINE Lat:%f Long =
%f\n",difftime(end,start), FromLatitude, FromLongitude);
 time(&start5);;

 }

 if((FromLatitude <= ToLatitude) && (FromLongitude == ToLongitude))
 {
 glutIdleFunc(NULL);
 j = 1;
 k = 1;
 printf("Time = %f, Steermode LINE %f, %f\n",difftime(end,start),
FromLatitude, FromLongitude);
 }

 glutPostRedisplay();

 }

 }

 time(&end);
 }
 if (k == 1 && j == 1)
 {

 LaunchAOutput =
fopen("C:\\Research\\Animation\\Temp\\Mission\\Angle.txt", "w");
 fprintf(LaunchAOutput, "%f\n", MastAngle);
 fclose(LaunchAOutput);

 LaunchPOutput =
fopen("C:\\Research\\Animation\\Temp\\Mission\\Position.txt", "w");
 fprintf(LaunchPOutput, "%f\n", FromLatitude);
 fprintf(LaunchPOutput, "%f\n", FromLongitude);
 fclose(LaunchPOutput);

 LaunchTime =
fopen("C:\\Research\\Animation\\Temp\\Mission\\Time.txt", "r");
 fseek(LaunchTime, 0L, SEEK_SET);
 fscanf(LaunchTime, "%f\n", &TotalTime);
 fclose(LaunchTime);
 printf("TotalTime = %f\n", TotalTime);
 TotalTime = TotalTime + difftime(end, start);

 LaunchTime =
fopen("C:\\Research\\Animation\\Temp\\Mission\\Time.txt", "w");
 fseek(LaunchTime, 0L, SEEK_SET);
 fprintf(LaunchTime, "%f\n", TotalTime);
 fclose(LaunchTime);
 //exit(0);
 k++; j++;
 }

 222

}
void reshape (int w, int h)
{
 glViewport (0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode (GL_PROJECTION);
 glLoadIdentity ();
 gluPerspective(70.0, (GLfloat) w/(GLfloat) h, 10.0, 4.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glTranslatef (0.0, 0.0, -5.0);
}

void keyboard (unsigned char key, int x, int y)
{
 switch (key) {

 case 'a':
 {
 i = 1;
 glutIdleFunc(NULL);
 }
 break;

 case 27:
 exit(0);
 break;
 default:
 break;
 }
}
void mouse(int button, int state, int x, int y)

{
 switch(button)
 {
 case GLUT_LEFT_BUTTON:
 if (state == GLUT_DOWN && i == 0.0)
 {
 glutIdleFunc(MastLower);

 }
 break;

 }
}

FILE *LaunchInput, *LaInput;
int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 LaunchInput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Position.txt", "r");

 if(LaunchInput == NULL)
 printf("The file 'Position.txt' was not opened\n");// File failed to open
 else

 223

 printf("The file 'Position.txt' was opened\n");// File opened
 fseek(LaunchInput, 0L, SEEK_SET);
 fscanf(LaunchInput, "%f\n", &FromLatitude);//Get the destined Latitude
 fscanf(LaunchInput, "%f\n", &FromLongitude);//Get the destned Longitude
 printf("FromLat = %f FromLong = %f\n", FromLatitude, FromLongitude);
 fclose(LaunchInput);
 LaInput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Angle.txt", "r");
 fseek(LaInput, 0L, SEEK_SET);
 fscanf(LaInput, "%f\n", &MastAngle);
 fclose(LaInput);
 if(MastAngle > 0 && FromLatitude < 1 && MastLowered == 0)
 {
 MastAngle = 0;
 MastLowered = 1;
 printf("Below surface so mast is already lowered\n");
 }

 glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB);
 glutInitWindowSize (500, 500);
 glutInitWindowPosition (100, 100);
 glutCreateWindow (argv[0]);
 init ();
 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutKeyboardFunc(keyboard);
 glutMouseFunc(mouse);
 glutMainLoop();
 return 0;
}

WaypointNavigator

/*Waypoint module execution sequence animation*/

#include <GL/glut.h>
#include <stdlib.h>
#include<stdio.h>
#include<math.h>
#include<time.h>
#define VerticalMotionRate 0.001//Rate to move up depeding
#define HorzMotionRate 0.001 //Rate to move horizontally
#define DriftRate 0.001 //To assign a value to water current given as drift
#define StartPoint -1.0 //Keeping a record of start point
#define Steering 1//Checks whether steering mode received or not
#define Direct 1 //Steering mode direct to go straight to the point following a line
#define NotDirect 2 //Steering mode indirect
#define HOVER 1
#define CIRCLE 2
#define NONE 0
#define PI 3.14
#define Steering 1
#define LoiterTO 50
#define Loiter_TimeToLoiterPt_FCN 25
#define ToWP__Timed 0 // Timed waypoint if 1
#define TimeToWaypoint 25
#define Speed 0.35

 224

#define ThresholdDistance 0.1
#define HMR 0.001
#define VMR 0.001
static GLfloat Helm__DistanceToPoint;
static GLfloat FromLatitude ; // The begining latitude
static GLfloat FromLongitude ; //The beginning longitude
static GLfloat MastMotion = 0.0; // Motion of the mast
static GLfloat i = 0; //Used for abort signal
static GLfloat Slope; // To get the slope of the line in direct steeringmode
static GLfloat SteerMode = Direct;//Assigning mode to steering
static GLfloat LatLongDiff; // The constant in the equation of a line for direct steermode
static GLfloat Step;
static GLfloat ToWP__LoiterType = 1;
static GLfloat Loiter = 0;
static GLfloat x, y;
static GLfloat First = 0;
static GLfloat r;
static GLfloat Theta;
static GLfloat base;
static LoiterDone = 0;
static GLfloat MTime = 0;
static GLfloat m = 0;
static GLfloat Side, Long =0;
static GLfloat TimeInState;
static GLfloat Helm =0;
static GLfloat DistanceToWaypoint;
static GLfloat MastAngle;
static GLfloat ToLatitude ;
static GLfloat ToLongitude ;
static GLfloat ToWP__LoiterDuration = 5;
static GLfloat ActualTimeToWP;
static GLfloat RemainingTime;
static GLfloat DecideLoiter = 0;
static GLfloat TimeInLoiter = 0;
static GLfloat HoverPoint;
int j =0, k =0, n =0, l =1, p=0;//j for lat loop, k for long loop, l for direct loop, p for indirect
int NumPoints = 2;
int Initial = 0, intCount;
int WaypointNavigator_DepthTrouble_FCN;
int ToWP__LoiterAtWP = 1;
int begin = 0, Loitering = 0, count = 0;
int Hove = 0;
int iteration = 0;
float TotalTime;
time_t start, start1, start2, start3, start4, start5, startn, startm;
time_t end, end1, end2, end3, endn, endn1, startn1;
FILE *WOutput, *WptOutput, *WTOutput;
void init(void)
{

 glClearColor (0.0, 0.0, 0.0, 0.0);
 glShadeModel (GL_FLAT);
}

void display(void)
{

 225

 glClear (GL_COLOR_BUFFER_BIT);
 glColor3f(0.0, 0.4, 0.8);
 glRectf(8.0, -4.0, -8.0, 2.0);
 glPushMatrix();
 glTranslatef (-1.0, 0.0, 0.0);
 glTranslatef (1.0, 0.0, 0.0);
 glTranslatef(FromLongitude, FromLatitude, 0.0);
 glTranslatef(FromLongitude, FromLatitude, 0.0);
 glPushMatrix();
 glScalef (2.0, 0.4, 1.0);
 glColor3f(0.0, 0.7, 0.4);
 glutSolidCube (1.0);
 glPopMatrix();
 glTranslatef (0.0, 0.1, 0.0);
 glTranslatef(0.08*FromLongitude, MastMotion, 0.0);
 glRotatef(0.0, 0.0, 0.0, 1.0);
 glTranslatef(0.5, MastMotion, 0.0);
 glPushMatrix();
 glScalef (0.8, 0.2, 0.5);
 glColor3f(1.0, 1.0, 0.0);
 glutSolidCube(1.0);
 glPopMatrix();
 glPopMatrix();
 glutSwapBuffers();
}

void MoveUp(void)
{
 if (Initial == 0)
 {
 DistanceToWaypoint = pow(pow((FromLatitude-ToLatitude),2) + pow((FromLongitude-
ToLongitude),2), 0.5);
 ActualTimeToWP = DistanceToWaypoint/Speed;
 RemainingTime = TimeToWaypoint-ActualTimeToWP;
 Initial = 1;
 printf("DTW = %f ActualTimeToWP = %f\n",DistanceToWaypoint, ActualTimeToWP);
 }

 if (ToWP__Timed == 1 && (TimeToWaypoint>ActualTimeToWP) && (TimeToWaypoint-
difftime(endn1, startn) >= ActualTimeToWP))
 {

 if(begin == 0)
 {
 time(&startn);
 time(&startn1);
 begin++;
 }
 if (ToLatitude <= -2.0)
 {
 WaypointNavigator_DepthTrouble_FCN = 1;
 }

 if (WaypointNavigator_DepthTrouble_FCN == 1)
 {
 ToLatitude = - 1.8;

 226

 printf("Depth trouble corrected\n");
 }

 STEER();
 if(difftime(endn1, startn1) == 2)
 {
 printf("Time = %f, FromLatitude = %f, FromLongitude\n", difftime(endn1,
startn), FromLatitude, FromLongitude);
 time(&startn1);
 }
 }
 time(&endn1);

 if (ToWP__Timed == 1 && ToWP__LoiterDuration > 0 && (TimeToWaypoint-
difftime(endn1, startn) <= ActualTimeToWP))
 {

 if(begin == 1)
 {
 printf("Time to reach WP = %f, Lat = %f, Long = %f\n",
difftime(endn1, startn), FromLatitude, FromLongitude);
 time(&start);
 time(&start1);
 begin++;
 }

 if ((NumPoints<2 && LoiterTO == 0 || ToWP__LoiterType == NONE) &&
LoiterDone == 0)
 {
 LoiterDone = 1;
 glutIdleFunc(NULL);
 printf("No time to Loiter \n");
 }

 if ((NumPoints<2 && LoiterTO>0) || ToWP__LoiterType == HOVER &&
LoiterDone == 0)
 {

 if (count == 0)
 {
 HoverPoint = FromLongitude;
 printf("HOVERING, HoverPoint = %f, Hove \n",
HoverPoint);
 count++;
 }

 if (FromLongitude < (HoverPoint + 1.0) && Hove == 0 && LoiterDone == 0)
 {
 FromLongitude = FromLongitude + 0.001;

 if (FromLongitude >= HoverPoint + 1.0)
 {
 ++Hove;
 printf("Hove in fwd= %d, Time Hovering = %f\n", Hove,
difftime(end1, start));

 227

 }
 if ((difftime(end1, start) >= (LoiterTO-Loiter_TimeToLoiterPt_FCN-
20)))
 {
 LoiterDone = 1;

 printf("LoiterDone\n");
 }
 }

 if (FromLongitude > HoverPoint && Hove == 1 && LoiterDone == 0)
 {
 FromLongitude = FromLongitude - 0.001;
 if (FromLongitude <= HoverPoint)
 {
 --Hove;
 printf("Hove in bwd= %d Time Hovering = %f \n",Hove,
difftime(end1, start));
 }
 if ((difftime(end1, start) >= (LoiterTO-Loiter_TimeToLoiterPt_FCN-
20)))
 {
 LoiterDone = 1;

 }
 }

 glutPostRedisplay();
 }
 time(&end1);

 if (NumPoints>=2 && LoiterTO>0 && ToWP__LoiterType == CIRCLE &&
(difftime(end2, start)<=LoiterTO-Loiter_TimeToLoiterPt_FCN) && Helm ==0)
 {
 Step = 360/NumPoints;
 for (m=0; m<Step; m=m+1)
 {
 if (First == 0)
 {
 First = 1;
 r = pow(pow((FromLatitude-ToLatitude),2) +
pow((FromLongitude-ToLongitude),2), 0.5);
 Helm__DistanceToPoint = r;
 if (Helm__DistanceToPoint <= 0.25)
 {
 glutIdleFunc(NULL);
 printf("Distance to point is less than 20 m\n");
 Helm++;
 }
 Side = pow(pow((FromLatitude-ToLatitude-r),2) +
pow((FromLongitude-ToLongitude),2), 0.5);
 Theta = 2*asin(Side/(2*r));
 printf("r=%f, Theta = %f\n",r, Theta);
 FromLongitude = -r * cos(Theta) + ToLongitude;
 FromLatitude = -r * sin(Theta) + ToLatitude;
 glutPostRedisplay();

 228

 m++;
 printf("FromLat = %f, FromLong = %f, m = %f\n",
FromLatitude, FromLongitude, m);
 }

 if (m>0 && LoiterDone == 0)
 {
 Theta = Theta + 0.00001;
 FromLongitude = -r * cos(Theta)+ ToLongitude;
 FromLatitude = -r * sin(Theta)+ ToLatitude;

 if (difftime(end2, start1) == 2)
 {
 printf("TimeInState = %f, FromLat = %f, FromLong
= %f\n", difftime(end2, start), FromLatitude, FromLongitude);
 time(&start1);
 }

 if (difftime(end2, start)>=LoiterTO-
Loiter_TimeToLoiterPt_FCN)
 {
 LoiterDone = 1;
 }

 if(FromLatitude > 1.0)
 {
 FromLatitude = 1;
 }
 if(FromLatitude < -1.5)
 {
 FromLatitude = -1.5;
 }

 glutPostRedisplay();
 }
 }

 }

 time(&end2);

 if (ToWP__LoiterDuration <= 0)
 {
 LoiterDone = 1;
 }

 if (difftime(end2, startn) >= TimeToWaypoint && LoiterDone ==1 && iteration == 0)
 {
 printf("Time for WP = %f\n",difftime(end2, startn));
 printf("No time to reach waypoint\n");
 iteration++;

 }

 if (ToWP__LoiterAtWP == 1 && (difftime(end2, startn) <= TimeToWaypoint) &&
LoiterDone == 1)

 229

 {
 Helm__DistanceToPoint = pow(pow((FromLatitude-ToLatitude),2) +
pow((FromLongitude-ToLongitude),2), 0.5);

 //printf("Helm = %f\n",Helm__DistanceToPoint);
 if ((ToWP__Timed == 0 && Helm__DistanceToPoint <= ThresholdDistance)
||(ToWP__Timed == 1 && Helm__DistanceToPoint<=5))
 {
 if(begin == 2)
 {

 time(&startm);
 time(&start5);
 printf("Helm = %f\n",Helm__DistanceToPoint);
 Slope =(ToLatitude-FromLatitude)/(ToLongitude-
FromLongitude);
 LatLongDiff = FromLatitude - Slope*FromLongitude;
 begin++;
 }

 if (FromLongitude > ToLongitude && k == 0)
 {
 FromLongitude = FromLongitude - 0.001;
 FromLatitude = Slope*FromLongitude + LatLongDiff;
 MastMotion = 0.008*FromLongitude;
 j = 1;
 if(difftime(endn,start5) == 2)

 {
 printf("Hey Time = %f, Steermode LINE %f,
%f\n",difftime(endn,start5), FromLatitude, FromLongitude);
 time(&start5);
 }
 if(ToLongitude >= FromLongitude)
 {
 glutIdleFunc(NULL);
 k =1;
 l = 1;
 printf("Hello Time = %f Steermode LINE %f,
%f\n",difftime(endn,startm), FromLatitude, FromLongitude);
 }
 glutPostRedisplay();
 }

 if(FromLongitude < ToLongitude)
 {
 FromLongitude = FromLongitude + 0.001;
 FromLatitude = Slope*FromLongitude + LatLongDiff;
 MastMotion = 0.008*FromLongitude;
 j = 1;

 if(difftime(endn,start5) == 2)

 {

 230

 printf("Time = %f, Steermode LINE %f,
%f\n",difftime(endn,start5), FromLatitude, FromLongitude);
 time(&start5);
 }
 if(ToLongitude <= FromLongitude)
 {
 glutIdleFunc(NULL);
 k =1;
 l = 1;
 printf("LoiterDone = %d\n", LoiterDone);
 printf("Time = %f Steermode LINE %f,
%f\n",difftime(endn,startm), FromLatitude, FromLongitude);
 }
 glutPostRedisplay();
 }

 if(FromLongitude == ToLongitude && k == 0)
 {
 if(FromLatitude < ToLatitude && j == 0)
 {
 FromLatitude = FromLatitude + VMR;
 MastMotion = 0.008*FromLatitude;

 if(difftime(endn,start5) == 2)
 {
 printf("Time = %f Steermode LINE Lat:%f
Long = %f\n", difftime(endn,start5), FromLatitude, FromLongitude);
 time(&start5);
 }

 if(FromLatitude >= ToLatitude)

 {
 glutIdleFunc(NULL);
 j = 1;
 k = 1;
 printf("Time = %f, Steermode LINE %f,
%f\n",difftime(endn,startm), FromLatitude, FromLongitude);
 }

 glutPostRedisplay();
 }

 if(FromLatitude > ToLatitude && j == 0)
 {
 FromLatitude = FromLatitude + VMR;
 MastMotion = 0.008*FromLatitude;

 if(difftime(endn,start5) == 2)
 {
 printf("Time = %f Steermode LINE Lat:%f
Long = %f\n", difftime(endn,start5), FromLatitude, FromLongitude);
 time(&start5);
 }

 231

 if(FromLatitude <= ToLatitude)

 {
 glutIdleFunc(NULL);
 j = 1;
 k = 1;
 printf("Time = %f, Steermode LINE %f,
%f\n",difftime(endn,start5), FromLatitude, FromLongitude);
 }

 glutPostRedisplay();
 }
 }

 }
 }

 }
 time(&endn);

 if(k == 1 && j == 1 && LoiterDone == 1)
 {

 if(intCount == 0)
 {
 printf("Jai he\n");
 WOutput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Position.txt", "w"
);
 fprintf(WOutput, "%f\n", FromLatitude);
 fprintf(WOutput, "%f\n", FromLongitude);
 fclose(WOutput);

 WptOutput = fopen(
"C:\\Research\\Animation\\Temp\\Mission\\WptOutput.txt", "w");
 fprintf(WptOutput, "%f\n", FromLatitude);
 fprintf(WptOutput, "%f\n", FromLongitude);
 fprintf(WptOutput, "%f\n", difftime(end, start));
 fclose(WptOutput);

 WTOutput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Time.txt", "r");
 fscanf(WTOutput,"%f\n", &TotalTime);
 fclose(WTOutput);

 TotalTime = TotalTime + difftime(endn, startn);

 WTOutput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Time.txt", "w");
 fprintf(WTOutput, "%f\n", TotalTime);
 fclose(WTOutput);
 intCount++;
 exit(0);
 }
 }

 if (ToWP__Timed == 0 || TimeToWaypoint <= DistanceToWaypoint/Speed)
 {

 232

 if(begin == 0)
 {
 time(&startn);
 begin++;
 }

 STEER();

 if (ToLongitude <= -2.0)
 {
 WaypointNavigator_DepthTrouble_FCN = 1;
 }

 if (WaypointNavigator_DepthTrouble_FCN ==1)
 {
 while(ToLongitude < -2.0)
 {
 ToLongitude = ToLongitude - 0.2;
 }
 printf("Depth trouble corrected\n");
 }

 Helm__DistanceToPoint = pow(pow((FromLatitude-ToLatitude),2) +
pow((FromLongitude-ToLongitude),2), 0.5);
 if ((ToWP__Timed == 0 &&
Helm__DistanceToPoint<=ThresholdDistance)||(ToWP__Timed == 1
&&Helm__DistanceToPoint<=0.55))
 {

 glutIdleFunc(NULL);
 printf("Time = %f\n", difftime(endn, startn));
 WOutput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Position.txt", "w"
);
 fprintf(WOutput, "%f\n", FromLatitude);
 fprintf(WOutput, "%f\n", FromLongitude);
 fclose(WOutput);

 WptOutput = fopen(
"C:\\Research\\Animation\\Temp\\Mission\\WptOutput.txt", "w");
 fprintf(WptOutput, "%f\n", FromLatitude);
 fprintf(WptOutput, "%f\n", FromLongitude);
 fprintf(WptOutput, "%f\n", difftime(endn, startn));
 fclose(WptOutput);

 WTOutput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Time.txt", "r");
 fscanf(WTOutput,"%f\n", &TotalTime);
 fclose(WTOutput);

 TotalTime = TotalTime + difftime(endn, startn);

 WTOutput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Time.txt", "w");
 fprintf(WTOutput, "%f\n", TotalTime);
 fclose(WTOutput);
 count = 1;
 exit(0);

 233

 }
 }
 time(&endn);

 if(k == 1 && j == 1 || LoiterDone == 1)
 {
 if(count == 0)
 {
 WOutput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Position.txt", "w"
);
 fprintf(WOutput, "%f\n", FromLatitude);
 fprintf(WOutput, "%f\n", FromLongitude);
 fclose(WOutput);

 WptOutput = fopen(
"C:\\Research\\Animation\\Temp\\Mission\\WptOutput.txt", "w");
 fprintf(WptOutput, "%f\n", FromLatitude);
 fprintf(WptOutput, "%f\n", FromLongitude);
 fprintf(WptOutput, "%f\n", difftime(end, start));
 fclose(WptOutput);

 WTOutput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Time.txt", "r");
 fscanf(WTOutput,"%f\n", &TotalTime);
 fclose(WTOutput);

 TotalTime = TotalTime + difftime(endn, start);

 WTOutput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Time.txt", "w");
 fprintf(WTOutput, "%f\n", TotalTime);
 fclose(WTOutput);
 count = 1;
 exit(0);
 }
 }
}

STEER()
{
 if(begin == 0)
 {
 time(&start);
 time(&start1);
 time(&start2);
 time(&start3);
 time(&start4);
 begin++;
 }

 if (Steering == 1 && Helm == 0)
 {

 /*AUV moving horizontally when FromLongitude is lesser than ToLongitude*/

 if ((FromLongitude < ToLongitude) && (k == 0))
 {

 234

 /*AUV for LINE steering mode to get slope*/

 if ((SteerMode == 1) && (n == 0))
 {
 Slope =(ToLatitude-FromLatitude)/(ToLongitude-FromLongitude);
 LatLongDiff = FromLatitude - Slope*FromLongitude;
 n++; l--;
 }

 /*AUV for LINE steering mode */

 if (SteerMode == 1 && l ==0)
 {
 FromLongitude = FromLongitude + HMR;
 FromLatitude = Slope*FromLongitude + LatLongDiff;
 MastMotion = 0.008*FromLongitude;
 j = 1;

 if(difftime(end,start1) == 2)

 {
 printf("Time = %f, Steermode LINE %f,
%f\n",difftime(end,start1), FromLatitude, FromLongitude);
 time(&start1);
 }

 if(ToLongitude <= FromLongitude)
 {
 glutIdleFunc(NULL);
 k =1;
 l = 1;
 printf("Time = %f Steermode LINE %f,
%f\n",difftime(end,start), FromLatitude, FromLongitude);
 }
 glutPostRedisplay();
 }

 }

 /*AUV moving horizontally when FromLongitude is greater than ToLongitude*/

 if ((ToLongitude < FromLongitude) && (k == 0))
 {

 /*AUV for LINE steering mode to get slope*/

 if (SteerMode == 1 && n == 0)
 {
 Slope =(ToLatitude-FromLatitude)/(ToLongitude-FromLongitude);
 LatLongDiff = FromLatitude - Slope*FromLongitude;
 n++; l--;
 }

 235

 /*AUV for LINE steering mode*/

 if (SteerMode == 1 && l == 0)
 {
 FromLongitude = FromLongitude - HMR;
 FromLatitude = Slope*FromLongitude + LatLongDiff;
 MastMotion = 0.008*FromLongitude;
 j = 1;

 if((difftime(end,start2)) == 2)
 {
 printf("Time = %f, Steermode LINE Lat = %f, Long =
%f\n",difftime(end,start2), FromLatitude, FromLongitude);
 time(&start2);
 }

 if(ToLongitude >= FromLongitude)
 {
 glutIdleFunc(NULL);
 k =1;
 l = 1;
 printf("Time = %f, Steermode LINE %f,
%f\n",difftime(end,start), FromLatitude, FromLongitude);

 }
 glutPostRedisplay();

 }

 }

 /*AUV moving Vertically when FromLatitude is lesser than ToLatitude */

 if (FromLatitude < ToLatitude && j == 0)
 {
 FromLatitude = FromLatitude + VMR;
 MastMotion = 0.008*FromLatitude;

 if(difftime(end,start3) == 2)
 {
 if (SteerMode == 1)
 printf("Time = %f Steermode LINE Lat:%f Long =
%f\n", difftime(end,start3), FromLatitude, FromLongitude);
 time(&start3);
 }

 if((FromLatitude >= ToLatitude) && (FromLongitude ==
ToLongitude))
 {

 glutIdleFunc(NULL);

 236

 j = 1;
 k = 1;
 printf("Time = %f, Steermode LINE %f,
%f\n",difftime(end,start), FromLatitude, FromLongitude);
 }

 glutPostRedisplay();

 }

 /*AUV moving Vertically when FromLatitude is greater than ToLatitude */
 if (FromLatitude > ToLatitude && j == 0)
 {

 FromLatitude = FromLatitude - VMR;
 MastMotion = 0.008*FromLatitude;

 if(difftime(end,start4)== 2)
 {
 if (SteerMode == 1)
 printf("Time = %f Steermode LINE Lat:%f Long =
%f\n",difftime(end,start4), FromLatitude, FromLongitude);
 time(&start4);;

 }

 if((FromLatitude <= ToLatitude) && (FromLongitude == ToLongitude))
 {
 glutIdleFunc(NULL);
 j = 1;
 k = 1;
 printf("Time = %f, Steermode LINE %f, %f\n",difftime(end,start),
FromLatitude, FromLongitude);
 }

 glutPostRedisplay();

 }

 }
}
void reshape (int w, int h)
{
 glViewport (0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode (GL_PROJECTION);
 glLoadIdentity ();
 gluPerspective(70.0, (GLfloat) w/(GLfloat) h, 10.0, 4.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glTranslatef (0.0, 0.0, -5.0);
}

void keyboard (unsigned char key, int x, int y)

 237

{
 switch (key) {

 case 'a':
 {
 i = 1;
 glutIdleFunc(NULL);
 }
 break;

 case 27:
 exit(0);
 break;
 default:
 break;
 }
}
void mouse(int button, int state, int x, int y)

{
 switch(button)
 {
 case GLUT_LEFT_BUTTON:
 if (state == GLUT_DOWN && i == 0.0)
 {
 glutIdleFunc(MoveUp);

 }
 break;

 }
}

FILE *WInput, *WptInput, *WAngle;
int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 WInput = fopen("C:\\Research\\Animation\\Temp\\Mission\\WaypointInput.txt", "r");
 if(WInput == NULL)
 printf("The file 'WaypointInput.txt' was not opened\n");// File failed to open
 else
 printf("The file 'WaypointInput.txt' was opened\n");// File opened

 fseek(WInput, 0L, SEEK_SET);
 fscanf(WInput, "%f\n", &ToLatitude);//Get the destined Latitude
 fscanf(WInput, "%f\n", &ToLongitude);//Get the destned Longitude
 fclose(WInput);
 printf("ToLat = %f, ToLong = %f\n",ToLatitude, ToLongitude);

 if (ToLatitude < -1.5)
 {
 ToLatitude = -1.5;
 printf("ToLatitude value change to -1.5 as depth below that is dangerous\n");
 }
 if (ToLatitude > 1.0)
 {

 238

 ToLatitude = 1.0;
 printf("ToLatitude value cannot be more than 1.0 the surface\n");
 }

 WptInput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Position.txt", "r");
 fscanf(WptInput, "%f\n", &FromLatitude);//Get the current Latitude
 fscanf(WptInput, "%f\n", &FromLongitude);//Get the current Longitude
 fclose(WptInput);
 printf("Lat = %f, Long = %f\n",FromLatitude, FromLongitude);

 if (FromLatitude < -1.5)
 {
 FromLatitude = -1.5;
 printf("FromLatitude value change to -1.5 as depth below that is dangerous\n");
 }

 if (FromLatitude > 1.0)
 {
 FromLatitude = 1.0;
 printf("FromLatitude value cannot be more than 1.0 the surface\n");
 }

 WAngle = fopen("C:\\Research\\Animation\\Temp\\Mission\\Position.txt", "r");
 fscanf(WAngle, "%f\n", &MastAngle);
 if (MastAngle > 0 && FromLatitude < 1.0)
 {
 MastAngle = 0.0;
 printf("Mast is not raised as not on surface\n");
 }
 fclose(WAngle);
 if (MastAngle > 0 && FromLatitude == 1.0)
 {
 MastAngle = 0.0;
 printf("Lower Mast before going below surface of water\n");
 }
 glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB);
 glutInitWindowSize (500, 500);
 glutInitWindowPosition (100, 100);
 glutCreateWindow (argv[0]);
 init ();
 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutKeyboardFunc(keyboard);
 glutMouseFunc(mouse);
 glutMainLoop();
 return 0;
}

Rendezvous

/*Rendezvous module execution sequence animation*/

#include <GL/glut.h>
#include <stdlib.h>
#include<stdio.h>

 239

#include<math.h>
#include<time.h>
#define VerticalMotionRate 0.001//Rate to move up depeding
#define HorzMotionRate 0.001 //Rate to move horizontally
#define DriftRate 0.001 //To assign a value to water current given as drift
#define StartPoint -1.0 //Keeping a record of start point
#define Steering 1//Checks whether steering mode received or not
#define Direct 1 //Steering mode direct to go straight to the point following a line
#define NotDirect 2 //Steering mode indirect
#define HOVER 1
#define CIRCLE 2
#define NONE 0
#define PI 3.14
#define Steering 1
#define LoiterTO 50
#define Loiter_TimeToLoiterPt_FCN 10
#define ToWP__Timed 1 // Timed waypoint if 1
#define TimeToWaypoint 15
#define Speed 0.35
#define ThresholdDistance 0.1
#define HMR 0.001
#define VMR 0.001
static GLfloat Helm__DistanceToPoint;
static GLfloat FromLatitude ; // The begining latitude
static GLfloat FromLongitude ; //The beginning longitude
static GLfloat MastMotion = 0.0; // Motion of the mast
static GLfloat i = 0; //Used for abort signal
static GLfloat Slope; // To get the slope of the line in direct steeringmode
static GLfloat SteerMode = Direct;//Assigning mode to steering
static GLfloat LatLongDiff; // The constant in the equation of a line for direct steermode
static GLfloat Step;
static GLfloat ToWP__LoiterType = 1;
static GLfloat Loiter = 0;
static GLfloat x, y;
static GLfloat First = 0;
static GLfloat r;
static GLfloat Theta;
static GLfloat base;
static LoiterDone = 0;
static GLfloat MTime = 0;
static GLfloat m = 0;
static GLfloat Side, Long =0;
static GLfloat TimeInState;
static GLfloat Helm =0;
static GLfloat DistanceToWaypoint;
static GLfloat ToLatitude ;
static GLfloat ToLongitude ;
static GLfloat ToWP__LoiterDuration = 5;
static GLfloat ActualTimeToWP;
static GLfloat RemainingTime;
static GLfloat DecideLoiter = 0;
static GLfloat TimeInLoiter = 0;
static GLfloat HoverPoint;
int ToWP__LoiterAtWP = 1;
int WaypointNavigator_DepthTrouble_FCN;
int Initial = 0;

 240

int NumPoints = 2;
int j =0, k =0, n =0, l =1, p=0, q = 0;//j for lat loop, k for long loop, l for direct loop, p for indirect
int begin = 0, count = 0;
int Hove = 0;
int iteration = 0;
int Loitering = 1;
int numIteration = 0;
float TotalTime;
double t;
time_t start, start1, start2, start3, start4, start5, start6;
time_t end, end1, end2, end3, endn, endn1;
FILE *ROutput, *ReOutput, *RTOutput;
void init(void)
{

 glClearColor (0.0, 0.0, 0.0, 0.0);
 glShadeModel (GL_FLAT);
}

void display(void)
{
 glClear (GL_COLOR_BUFFER_BIT);
 glColor3f(0.0, 0.4, 0.8);
 glRectf(8.0, -4.0, -8.0, 2.0);
 glPushMatrix();
 glTranslatef (-1.0, 0.0, 0.0);
 glTranslatef (1.0, 0.0, 0.0);
 glTranslatef(FromLongitude, FromLatitude, 0.0);
 glTranslatef(FromLongitude, FromLatitude, 0.0);
 glPushMatrix();
 glScalef (2.0, 0.4, 1.0);
 glColor3f(0.0, 0.7, 0.4);
 glutSolidCube (1.0);
 glPopMatrix();
 glTranslatef (0.0, 0.1, 0.0);
 glTranslatef(0.08*FromLongitude, MastMotion, 0.0);
 glRotatef(0.0, 0.0, 0.0, 1.0);
 glTranslatef(0.5, MastMotion, 0.0);
 glPushMatrix();
 glScalef (0.8, 0.2, 0.5);
 glColor3f(1.0, 1.0, 0.0);
 glutSolidCube(1.0);
 glPopMatrix();
 glPopMatrix();
 glutSwapBuffers();
}

void MoveUp(void)
{
 if ((FromLongitude != ToLongitude || FromLatitude != ToLatitude) && (q == 0 || p == 0))
 {

 if(begin == 0)
 {
 time(&start);

 241

 time(&start1);
 time(&start2);
 time(&start3);
 time(&start4);
 Slope =(ToLatitude-FromLatitude)/(ToLongitude-FromLongitude);
 LatLongDiff = FromLatitude - Slope*FromLongitude;
 begin++;
 }

 if (ToLatitude <= -2.0)
 {
 ToLatitude = -1.5;
 }

 if(ToLatitude > 1)
 {
 ToLatitude = 1.0;
 }

 if (FromLongitude > ToLongitude)
 {
 FromLongitude = FromLongitude + 0.001;
 FromLatitude = Slope*FromLongitude + LatLongDiff;
 MastMotion = 0.008*FromLongitude;
 q = 1;
 if(difftime(end,start1) == 2)
 {
 printf("Time = %f, Steermode LINE %f, %f\n",difftime(end,start),
FromLatitude, FromLongitude);
 time(&start1);
 }
 if(ToLongitude >= FromLongitude)
 {
 //glutIdleFunc(NULL);
 l = 1;
 p = 1;
 printf("Hello Time = %f Steermode LINE %f,
%f\n",difftime(end,start), FromLatitude, FromLongitude);
 }
 glutPostRedisplay();
 }

 if(FromLongitude < ToLongitude)
 {
 FromLongitude = FromLongitude + 0.001;
 FromLatitude = Slope*FromLongitude + LatLongDiff;
 MastMotion = 0.008*FromLongitude;
 q = 1;
 if(difftime(end,start2) == 2)
 {
 printf("Time = %f, Steermode LINE %f, %f\n",difftime(end,start),
FromLatitude, FromLongitude);
 time(&start2);
 }
 if(ToLongitude <= FromLongitude)
 {

 242

 // glutIdleFunc(NULL);
 p = 1;
 l = 1;
 printf("Time = %f Steermode LINE %f, %f\n",difftime(end,start),
FromLatitude, FromLongitude);
 }
 glutPostRedisplay();
 }
 if((FromLongitude == ToLongitude))
 {
 if(FromLatitude < ToLatitude && q == 0)
 {
 FromLatitude = FromLatitude + VMR;
 MastMotion = 0.008*FromLatitude;
 if(difftime(end,start3) == 2)
 {
 printf("Time = %f Steermode LINE Lat:%f Long = %f\n",
difftime(end,start), FromLatitude, FromLongitude);
 time(&start3);
 }
 if(FromLatitude >= ToLatitude)

 {
 p = 1;
 q = 1;
 printf("Time = %f, Steermode LINE %f,
%f\n",difftime(end,start), FromLatitude, FromLongitude);
 }
 glutPostRedisplay();
 }

 if(FromLatitude > ToLatitude && q == 0)
 {
 FromLatitude = FromLatitude + VMR;
 MastMotion = 0.008*FromLatitude;
 if(difftime(endn,start4) == 2)
 {
 printf("Time = %f Steermode LINE Lat:%f Long = %f\n",
difftime(end,start), FromLatitude, FromLongitude);
 time(&start4);
 }
 if(FromLatitude <= ToLatitude)

 {
 p = 1;
 q = 1;
 printf("Time = %f, Steermode LINE %f,
%f\n",difftime(end,start), FromLatitude, FromLongitude);
 }
 glutPostRedisplay();
 }
 }
 }

 if (FromLongitude == 0 && ToLatitude == 0 && ToLongitude == 0 && FromLatitude
== 0)

 243

 {
 begin = 1;

 }

 if (Loitering == 1 && ((FromLongitude == 0 && ToLatitude == 0 && ToLongitude ==
0 && FromLatitude == 0) || (q == 1 && p == 1)) && LoiterDone == 0)
 {
 //printf("Hello\n");
 if(begin == 1)
 {
 printf("Time to Loiter = %f, Lat = %f, Long = %f\n", difftime(end,
start), FromLatitude, FromLongitude);
 time(&start5);
 time(&start6);
 begin++;
 }

 if ((NumPoints<2 && LoiterTO == 0 || ToWP__LoiterType == NONE) &&
LoiterDone == 0)
 {
 LoiterDone = 1;

 printf("No time to Loiter \n");
 }

 if ((NumPoints<2 && LoiterTO>0) || ToWP__LoiterType == HOVER &&
LoiterDone == 0)
 {

 if (count == 0)
 {
 HoverPoint = FromLongitude;
 printf("HOVERING, HoverPoint = %f, Hove = %d \n",
HoverPoint, Hove);
 count++;
 }

 if (FromLongitude < (HoverPoint + 1.0) && Hove == 0 && LoiterDone == 0)
 {

 FromLongitude = FromLongitude + 0.001;

 if (FromLongitude >= HoverPoint + 1.0)
 {
 ++Hove;

 printf("Hove in fwd= %d, Time Hovering = %f\n", Hove,
difftime(end1, start5));
 }
 if ((difftime(end1, start5) >= (LoiterTO-Loiter_TimeToLoiterPt_FCN-
20)))
 {
 LoiterDone = 1;

 244

 printf("LoiterDone\n");
 }
 }
 if (FromLongitude > HoverPoint && Hove == 1 && LoiterDone == 0)
 {
 FromLongitude = FromLongitude - 0.001;
 if (FromLongitude <= HoverPoint)
 {
 --Hove;

 printf("Hove in bwd= %d Time Hovering = %f \n",Hove,
difftime(end1, start5));
 }
 if ((difftime(end1, start5) >= (LoiterTO-Loiter_TimeToLoiterPt_FCN-
20)))
 {
 LoiterDone = 1;

 }
 }

 glutPostRedisplay();
 }
 time(&end1);

 if (NumPoints>=2 && LoiterTO>0 && ToWP__LoiterType == CIRCLE &&
(difftime(end2, start5)<=LoiterTO-Loiter_TimeToLoiterPt_FCN) && Helm ==0)
 {
 Step = 360/NumPoints;
 for (m=0; m<Step; m=m+1)
 {
 if (First == 0)
 {
 First = 1;
 r = pow(pow((FromLatitude-ToLatitude),2) +
pow((FromLongitude-ToLongitude),2), 0.5);
 Helm__DistanceToPoint = r;
 if (Helm__DistanceToPoint <= 0.25)
 {
 glutIdleFunc(NULL);
 printf("Distance to point is less than 20 m\n");
 Helm++;
 }
 Side = pow(pow((FromLatitude-ToLatitude-r),2) +
pow((FromLongitude-ToLongitude),2), 0.5);
 Theta = 2*asin(Side/(2*r));
 printf("r=%f, Theta = %f\n",r, Theta);
 FromLongitude = -r * cos(Theta) + ToLongitude;
 FromLatitude = -r * sin(Theta) + ToLatitude;
 glutPostRedisplay();
 m++;
 printf("FromLat = %f, FromLong = %f, m = %f\n",
FromLatitude, FromLongitude, m);
 }

 if (m>0 && LoiterDone == 0)

 245

 {
 Theta = Theta + 0.00001;
 FromLongitude = -r * cos(Theta)+ ToLongitude;
 FromLatitude = -r * sin(Theta)+ ToLatitude;

 if (difftime(end2, start1) == 2)
 {
 printf("TimeInState = %f, FromLat = %f, FromLong
= %f\n", difftime(end2, start), FromLatitude, FromLongitude);
 time(&start1);
 }

if (difftime(end2, start)>=LoiterTO-
Loiter_TimeToLoiterPt_FCN)

 {
 LoiterDone = 1;
 }

 if(FromLatitude > 1.0)
 {
 FromLatitude = 1;
 }
 if(FromLatitude < -1.5)
 {
 FromLatitude = -1.5;
 }

 glutPostRedisplay();
 }

 }
 time(&end2);

 }
 }
 time(&end);
 if((Loitering == 0 && p == 1 && q == 1) || (LoiterDone == 1))
 {
 if(numIteration == 0)
 {
 ROutput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Position.txt", "w"
);
 fprintf(ROutput, "%f\n", FromLatitude);
 fprintf(ROutput, "%f\n", FromLongitude);
 fclose(ROutput);

ReOutput = fopen("C:\\Research\\Animation\\Temp\\Mission\\RendezvousOutput.txt", "w");
 fprintf(ReOutput, "%f\n", FromLatitude);
 fprintf(ReOutput, "%f\n", FromLongitude);
 fprintf(ReOutput, "%f\n", difftime(end, start));
 fclose(ReOutput);
 RTOutput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Time.txt", "r");
 fscanf(RTOutput,"%f\n", &TotalTime);
 fclose(RTOutput);

 246

 TotalTime = TotalTime + difftime(end, start);

 RTOutput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Time.txt", "w");
 fprintf(RTOutput, "%f\n", TotalTime);
 fclose(RTOutput);
 numIteration++;
 exit(0);
 }
 }
}

void reshape (int w, int h)
{
 glViewport (0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode (GL_PROJECTION);
 glLoadIdentity ();
 gluPerspective(70.0, (GLfloat) w/(GLfloat) h, 10.0, 4.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glTranslatef (0.0, 0.0, -5.0);
}

void keyboard (unsigned char key, int x, int y)
{
 switch (key) {

 case 'a':
 {
 i = 1;
 glutIdleFunc(NULL);
 }
 break;

 case 27:
 exit(0);
 break;
 default:
 break;
 }
}
void mouse(int button, int state, int x, int y)

{
 switch(button)
 {
 case GLUT_LEFT_BUTTON:
 if (state == GLUT_DOWN && i == 0.0)
 {
 glutIdleFunc(MoveUp);

 }
 break;
 }
}

 247

FILE *RInput, *ReInput, *RTInput;
int main(int argc, char** argv)
{
 glutInit(&argc, argv);

 RInput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Position.txt", "r");
 if(RInput == NULL)
 printf("The file 'Position.txt' was not opened\n");// File failed to open
 else
 printf("The file 'Position.txt' was opened\n");// File opened

 fseek(RInput, 0L, SEEK_SET);
 fscanf(RInput, "%f\n", &FromLatitude);//Get the destined Latitude
 fscanf(RInput, "%f\n", &FromLongitude);//Get the destned Longitude
 fclose(RInput);

 ReInput = fopen("C:\\Research\\Animation\\Temp\\Mission\\RendezvousInput.txt", "r");
 if(ReInput == NULL)
 printf("The file 'RendezvousInput.txt' was not opened\n");// File failed to open
 else
 printf("The file 'RendezvousInput.txt' was opened\n");// File opened

 fseek(ReInput, 0L, SEEK_SET);
 fscanf(ReInput, "%f\n", &ToLatitude);//Get the destined Latitude
 fscanf(ReInput, "%f\n", &ToLongitude);//Get the destned Longitude
 fclose(ReInput);
 RTInput = fopen("C:\\Research\\Animation\\Temp\\Mission\\Time.txt", "r");
 fscanf(RTInput,"%f\n", &TotalTime);
 fclose(RTInput);
 printf("Mission Time = %f\n", TotalTime);
 glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB);
 glutInitWindowSize (500, 500);
 glutInitWindowPosition (100, 100);
 glutCreateWindow (argv[0]);
 init ();
 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutKeyboardFunc(keyboard);
 glutMouseFunc(mouse);
 glutMainLoop();
 return 0;
}

 248

Vita

• Date and place of birth: 08/ 14/ 1978, City: Calcutta, State: West Bengal,
Country: India

• Educational institutions attended and degrees already awarded

Master of Science, Electrical Engineering Iowa State University, Ames, Iowa,
May2003

Bachelor Of Engineering, Electrical and Electronics Engineering, Birla Institue
Of Technology, India, May2001

• Professional positions held

Assistant Professor Kentucky State University Fall2005 – Present

Visiting Assistant Professor Kentucky State University Spring 2005 (Jan 18 –
May15)

Applied Research Lab, Penn State University, State College, Pennsylvania,
Summer 2004, Research assistant

Discrete Event System Lab, University of Kentucky, Lexington, Kentucky, Fall
2001 –Spring 2002, Summer 2003 – Spring 2004, Fall 2004, Research assistant

Iowa State University, Ames, Iowa, Fall 2002 –Spring 2003
Teaching assistant

• Scholastic and professional honors

Awarded best presenter in session of Discrete Event System at American
Control Conference (ACC), July 2004, Boston, Massachusetts

Awarded Student travel grant of $600 to attend American Control Conference
(ACC), July2004, Boston, Massachusetts

Awarded Kentucky graduate scholarship by University of Kentucky

Funded by University Of Kentucky Electrical Engineering Department for Ph.D
as research assistant.

 249

Funded by Iowa State University Electrical Engineering Department for Masters
as teaching assistant

Awarded scholarship under National Scholarship Scheme for securing 100%
marks in mathematics in the All India Secondary School Examination 1995

Awarded certificate for securing 91% in the National Mathematics Olympiad
(India), 1995.

Awarded certificate for securing above 80% marks in The Indian
Association Of Physics Teachers National Standard Examination in 1997

• Professional publications

“Adaptive Supervisory Control of Discrete Event Systems", V. Chandra and S.
Bhattacharyya, Instrumentation, Systems and Automation, Chicago, Oct 2005.

“On the Rapid Reconfiguration of Modular Manufacturing Systems”, V.
Chandra, S. Bhattacharyya and S. Mohanty, Intelligent Processing and
Manufacturing of Materials, Montererey (IPMM) July 2005.

“A Systematic Methodology for Actuator Augmentation in the Supervisory
Control of Discrete Event Systems”,V.Chandra and S. Bhattacharyya, 11th
International Conference on Information Systems Analysis and Synthesis:
ISAS´05 and 2nd International Conference on Cybernetics and Information
Technologies, Systems and Applications: CITSA'05, Orlando, USA , July 14-17,
2005

“The Design of Adaptive Supervisors for Discrete Event Systems", has been
accepted for presentation at the 9th World Multiconference on Systemics,
Cybernetics and Informatics (WMSCI 2005) Orlando, USA, July 10-13, 2005

“Hybrid-Model based Hierarchical Mission Control Architecture for
Autonomous Undersea Vehicles”, S. Tangirala, R. Kumar, S. Bhattacharyya, M.
O’Connor, and L. E. Holloway, American Control Conference (ACC), June
2005

 “A Discrete Event Approach to Network Fault Management”, S.Bhattacharyya,
 Z.Huang, V.Chandra and R.Kumar. American Control Conference (ACC),
 Boston, July 2004.

 “Diagnosis of Discrete Event Systems in Rule-Based Model Using First order
 Linear Temporal Logic” Z.Huang, S.Bhattacharyya, V.Chandra and R.Kumar.
 American Control Conference (ACC), Boston, July 2004.

 250

 "Automatic Extraction of Discrete Event System Controllers". V. Chandra and
S. Bhattacharyya. The 8th World Multiconference on Systemics, Cybernetics
and Informatics (SCI), Orlando, FL, July 2004.

	HIERARCHICAL HYBRID-MODEL BASED DESIGN, VERIFICATION, SIMULATION, AND SYNTHESIS OF MISSION CONTROL FOR AUTONOMOUS UNDERWATER VEHICLES
	Recommended Citation

	Title of Abstract
	Title for Dissertation
	Table of contents
	Table of Figures
	Introduction
	Hierarchical Hybrid Model-based Architecture
	Proposed Hierarchical Hybrid Mission Control
	Hybrid Mission Controller for a Survey AUV
	Hybrid system model
	Controlled hybrid automaton
	Interacting Controlled Hybrid Automata
	Teja: Tool for Modeling
	Basic structure of Mission Controller Modules
	Hybrid Automaton Model of Mission Controller Modules
	Description of Mission Controller Commands/Responses
	Description of Mission Controller Data Structures
	Description of the functionalities of mission controller
	Sequential coordinator (SC)
	Timed Coordinator (TC)
	Safety coordinator
	GPSFixer
	Launch controller
	Waypointnavigator
	Rendezvous
	DeviceCommander
	PayloadDelivery
	Loiter
	Steering
	Bottom up verification approach
	Verification of Hybrid systems
	Bottom up approach to verification
	Properties satisfied by the algorithm
	Uppaal: Tool for Verification
	Illustration of Logical correctness – Survey AUV
	Verification of Steering m
	Verification of Loiter module
	Verification of GPSFixer module
	Verification of Waypointnavigator module
	Verification of Rendezvous module
	Verification of Launcher module
	Verification of PayloadDelivery modu
	Verification of Sequential coordinator module
	Verification of Timed Coordinator module
	Verification of Safety Coordinator module
	Model-based Animation/Simulation
	OpenGL: Tool for Animation/Simulation
	Proposed Approach for Animation/Simulation
	The Converter code for Steering module
	Coordinator synthesis
	Proposed Approach for coordinator synthesis
	Sequential coordinator
	Timed coordinator synthesis
	Safety Coordinator synthesis
	Conclusion and future work
	References
	Appendix A: Commands for the underwater vehicle for
	Appendix B : Hybrid models in Teja
	Appendix C: OpenGL Code for Animation/Simulation
	Vita

