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ABSTRACT OF DISSERTATION

SIMULATION AND OPTIMIZATION OF A CROSSDOCKING OPERATION IN A
JUST-IN-TIME ENVIRONMENT

In an ideal Just-in-Time (JIT) production environment, parts should be delivered to the work-
stations at the exact time they are needed and in the exact quantity required. In reality, for
most components/subassemblies this is neither practical nor economical. In this study, the
material flow of the crossdocking operation at the Toyota Motor Manufacturing plant in
Georgetown, KY (TMMK) is simulated and analyzed.

At the Georgetown plant between 80 and 120 trucks are unloaded every day, with approxi-
mately 1300 different parts being handled in the crossdocking area. The crossdocking area
consists of 12 lanes, each lane corresponding to one section of the assembly line. Whereas
some pallets contain parts designated for only one lane, other parts are delivered in such small
quantities that they arrive as mixed pallets. These pallets have to be sorted/crossdocked into
the proper lanes before they can be delivered to the workstations at the assembly line. This
procedure is both time consuming and costly.

In this study, the present layout of the crossdocking area at Toyota and a layout proposed by
Toyota are compared via simulation with three newly designed layouts. The simulation mod-
els will test the influence of two different volumes of incoming quantities, the actual volume
as it is now and one of 50% reduced volume. The models will also examine the effects of
crossdocking on the performance of the system, simulating three different percentage levels
of pallets that have to be crossdocked.

The objectives of the initial study are twofold. First, simulations of the current system,
based on data provided by Toyota, will give insight into the dynamic behavior and the mate-
rial flow of the existing arrangement. These simulations will simultaneously serve to validate
our modeling techniques. The second objective is to reduce the travel distances in the cross-
docking area; this will reduce the workload of the team members and decrease the lead time
from unloading of the truck to delivery to the assembly line. In the second phase of the



project, the design will be further optimized. Starting with the best layouts from the simu-
lation results, the lanes will be rearranged using a genetic algorithm to allow the lanes with
the most crossdocking traffic to be closest together.

The different crossdocking quantities and percentages of crossdocking pallets in the simu-
lations allow a generalization of the study and the development of guidelines for layouts of
other types of crossdocking operations. The simulation and optimization can be used as a
basis for further studies of material flow in JIT and/or crossdocking environments.

KEYWORDS: Crossdocking, Simulation, Optimization, Genetic Algorithms
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Chapter 1

Introduction

The pressure to produce a wide variety of models has made mixed-model assembly lines an
integral part of the Just-in-Time (JIT) production system. On a mixed-model assembly line,
several different models of a basic end product are produced at the same time, for example,
Camrys with and without moon-roof, with right or left steering. This leads to the problem
of balancing and sequencing the different models on the assembly line. One of the goals
of sequencing is to keep the usage of every part in the assembly line constant to ensure a
smooth production. Many algorithms have been developed to help with the sequencing of
mixed-model assembly lines, but little attention has been paid to the challenges that frequent
deliveries pose for the support people in the logistics area. The goal to keep inventory low
leads to frequent deliveries and the need for innovative storage and transportation solutions.
In an ideal situation, the suppliers would deliver the needed parts directly to the workstation
at the assembly line in the exact quantity at the exact time and in the sequence needed. In
this ideal case, the inventory level at and between all workstations would be zero. In reality,
only a few parts are delivered directly in sequence to the assembly line, for example, car
seats, thus different intermediate storage solutions have been developed:

Flowracks or floor staging area:Depending on their size, the incoming parts are stored in
flowracks or in a designated storage area on the floor. If parts are needed at the assem-
bly line, they are replenished out of the inventory in this area. Either internal kanban
cards, or call buttons, a type of electronic kanban, are used as a signal for the internal
replenishment; external kanban cards are used for replenishment from the suppliers.
A kanban card is a piece of paper/cardboard that has all vital information on it for the
parts that are in the box it belongs to, such as part number, part description, quantity,
supplier etc. In a JIT system, a kanban card has three main functions: identification
tag, job instruction tag and transfer tag [Shingo, 1981].
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Internal Sequencing: If parts are needed in a special sequence at the line, they are stored in
a sequence area and sequenced before delivery to the line.

Lane storage:Here the incoming parts are sorted by line and then are immediately delivered
to the line. This sorting process is called crossdocking. Traditionally, crossdocking is
defined as “a logistic technique that eliminates the storage and order picking functions
of a warehouse while still allowing it to serve its receiving and shipping functions”
[Bartholdi III and Gue, 2001] and it is used in the less-than-truckload freight industry.
In this study, the shipping function is replaced by the consumption of the parts at the
assembly line.

1.1 Statement of the Problem

The project will be performed in cooperation with Toyota Motor Manufacturing Kentucky
(TMMK). Personnel planning in the lane storage area poses a problem for TMMKs inter-
nal logistic manager. Team members complain about the unbalanced workload; some team
members are unable to handle their workload, whereas others have too little work. In addi-
tion, this workload imbalance varies during a typical work day. Team members support each
other, but they would prefer a solution equalizing workloads overall and during the whole
day. An evenly distributed workload not only establishes a sense of equity among workers
but, more importantly, increases the output.

The part requirement schedule and the delivery schedule of the incoming parts are the two
factors that directly influence the workload balance in the crossdocking area. Studying the
influence of these two factors is beyond the scope of this dissertation. The other factor that
influences the workload balance is the workload itself. By reducing the overall workload,
the remaining workload is easier to balance; so this study concentrates on minimizing the
workload in the crossdocking area.

The logistics manager also would appreciate a tool to better understand the factors leading
to this imbalance. For example, how changes in the volume of incoming parts, influence the
behavior of the material flow in the logistics area.

1.2 Description of the Lane Storage Area at Toyota

A layout of the lane storage area and adjacent areas is illustrated in Figure 1.1. Trucks get
unloaded in 4 pits, which are designed so that the forklifts have access on ground level, elim-
inating unnecessary up and down movement of the pallets and therefore increasing safety for

2



the team members in that area. The trucks have retractable sides which allow unloading from
both sides simultaneously. Two forklift drivers, dedicated to unloading, are able to unload
the whole truck within 5 minutes.

Between 20 and 30 trucks per pit are unloaded every day, which totals between 80 and 120
trucks per day. The truck schedule generally remains constant, although some trucks do not
come in on a daily basis. Once a month the sequence schedule for the assembly line changes,
and the truck schedule changes accordingly. These schedule changes also take into account
the mileage per carrier and attempt to equalize it. In addition to the parts that are handled in
the lane storage area, the trucks carry parts for other storage areas, such as sequencing parts
and flowrack parts.

Figure 1.1: Layout of the unloading/lane storage/assembly line area

Each incoming box is accompanied by a kanban card designating the lane and line to which
the parts ultimately belong. Approximately 1300 different parts are handled in the lane stor-
age area. A limited number of parts are used at more than one workstation. For these parts
with multiple destinations, the kanbans for each destination are printed with the different

3



lineside/lane addresses. Therefore, in this study, parts with multiple uses and destinations
can be considered as different parts. The flow of the kanban cards is shown in Figure 1.2.

Each part has a cycle time

Cycle time information:

- daily/weekly

- deliveries per day

- number of trucks between the

  same kanban card (delay time)

example: cycle time 11015

1 = daily

10 = 10 times per day

15 = if a certain kanban card goes

        to the supplier it comes back

        in on the 15th truck from that

        supplier

Information on Kanban card:

- Part Number

- Part Description

- Supplier

- Qty/Container

- Lane Storage Address

- Kanban No

Kanban Card

created Supplier receives

Kanban Card

Parts come in with

Kanban Card

Parts/Kanban

brought into lane

storage area

Parts/Kanban

brought to assembly

line

Kanban pulled if 1st

part in container is

used

Kanban Cards

collected

Kanban sorted by

supplier

Kanban sent to

supplier

Figure 1.2: Flow kanban cards

The number of team members is currently fixed at 8 working in the delivery area and 3 team
members working in the sorting area. Every two hours, team members in the lane storage
area rotate between crossdocking and delivery to line. Forklift drivers rotate jobs on a daily
basis.

The lane storage area consists of 14 lanes, with two sets of lanes (P/L and J/N, as shown
in Figure 1.1) sharing the same physical space; thus for this study they are considered one
lane, so overall there are 12 lanes. The lanes and lines have corresponding labels, e.g., all
dollies/parts from lane E go to a part of the assembly line that is also labeled E. For the
remainder of this study, the lanes are labeled according to their position in the layout, e.g.,
lane P/L will be labeled lane 1, lane J/N will be labeled lane 2, etc. Each lane is separated
into 3 sections, as shown in Figure 1.3.

• Lane Section 1: Unloading area
5 dollies
Parts are unloaded from the truck and brought into the unloading area of the designated
lane via forklift.
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• Lane Section 2: Crossdocking area
5 dollies
The crossdocking area is separated from the waiting area by a red line; only electric
cars, called tuggers, operate behind the red line, no forklifts are allowed. A team
member pulls all full dollies from the loading area into the crossdocking area, removes
the packaging material and sorts out parts (crossdocking) that do not belong to that
lane. If the lane is close by, the team members bring the boxes there directly; if not,
the parts are stored on a dolly that stands between the lanes. When the team member
has time, the mixed dolly is unloaded at the proper lanes .

• Lane Section 3: Line delivery area
5 dollies
After crossdocking, the team member pulls the dollies into the ready area where they
wait until a team member from the delivery team is able to bring them to the assembly
line.

Line

Loading Area Crossdocking Area Unloading Area

Figure 1.3: Lane layout

At the line, the parts are unloaded into a designated row in a flowrack. If the flowrack is full,
the parts go into the overflow area for that workstation.

1.3 Research Goals and Contribution

In 1985, US manufacturers purchased material valued at 60% of total sales revenue
[Gunasekaran, 1999]. All this material not only had to be purchased, but also shipped, stored
and delivered to the workstations where it was needed. Most of the JIT literature agrees that
zero inventory is one of the goals in JIT because inventory is costly. The costs include not
only the cost of procurement, storage, insurance, and handling, but also the risk of the in-
ventory becoming obsolete or stolen. High inventory also presents quality issues because a
large quantity of defective parts may unknowingly be stored. JIT purchasing considers this
issue and attempts to eliminate raw material inventory by using a small, reliable supplier
base located close to the buyer’s plant to ensure frequent deliveries. Because handling and
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transportation are viewed as non-value adding elements of a manufacturing operation, they
have to be kept to a minimum.

De Haan and Yamamoto [de Haan and Yamamoto, 1999] showed in their case study that zero
inventory is, for the moment, more fiction than fact. In a study of inventory methods of eight
Japanese companies’, seven out of the eight companies inventory methods for raw material,
depended on the distance between the supplier and the buyer. Suppliers that are located in
close proximity to the buyers’ plant deliver daily, whereas the other suppliers have a weekly
or even monthly delivery interval. Of the eight surveyed companies, only one, a make-to-
order company, found the goal of zero inventory more disruptive to their production process
than helpful and had its material delivered on a weekly basis.

The research in this study acknowledges that zero inventory is in reality not possible and
that solutions have to be found to handle the incoming material efficiently. The overall goal
of this research to identify the factors that can lead to an improvement in the workload of
the team members in the crossdocking operation. This will be done through analyzing and
optimizing the material flow from the unloading of the material from trucks to the unloading
of the material at the workstations where it is used.

The first objective of the simulation is the analysis of the material flow and the identification
of all parameters that are involved. After identification of the parameters, the influence of
these parameters on the workload of the team members is analyzed. This will lead to a
better understanding of the whole system and the identification of potential bottlenecks and
problems.

The objective of the optimization is to rearrange the lanes, so that lanes that have the most
crossdocking activity are closest together, and that the workload balance among the team
members can be further improved. The workload balance is directly influenced by the sched-
ule of part requirements (i.e. production schedule) and the delivery schedule of the incoming
material resulting from it. Studying the influence of these parameters is beyond the scope of
this dissertation. This work concentrates on minimizing the overall workload for the team
members in the crossdocking area. An overall lower workload will simplify the task of
workload balancing.

Therefore the overall objective is to reduce the traveling distance of the team members in
the crossdocking area. The reduced traveling distance will lead to lower handling cost as
well as decreased lead time between unloading of the truck and unloading of the parts at the
assembly line. The reduced lead time has two effects: first, it will reduce the workload of
the team members, and second, it will reduce the inventory level of raw material.

The remainder of this dissertation is structured as follows. In chapter 2 an overview is given
of the related existing literature. Chapter 3 describes the simulation study in detail, followed
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by the analysis and results in chapter 4. In chapter 5 the optimization approach is discussed.
The results of the optimization are reported in chapter 6. Finally, concluding remarks and
suggestions for future research are given in chapter 7
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Chapter 2

Literature Review

This chapter starts with a review of the existing JIT literature related to the delivery/logistics
process of the supply chain management, followed by a brief overview of mixed-model as-
sembly line literature, which covers the front end and the back end of the crossdocking
operation. Then the existing crossdocking literature is summarized, and finally, an exami-
nation of facility layout studies, especially those using the Quadratic Assignment Problem
approach, is made.

2.1 Review of JIT Delivery Literature

In JIT delivery, the materials are provided to the production plant just as they are required
for use. JIT delivery is part of the larger concept of JIT purchasing, which includes a
small, reliable supplier base close to the buyer’s plant and frequent deliveries. Schonberger
[Schonberger, 1984] describes a smooth flow of materials between suppliers and buyers as
one of the key elements needed to ensure a continuous process from receipt of raw mate-
rial/components through to the shipment of the finished goods.

Tan [Tan, 2001] developed a framework of supply chain management (SCM) literature. He
shows that the current holistic approach of SCM literature evolved from two separate paths:
The purchasing and supply perspective of SCM, and the transportation and logistics per-
spective of SCM. The purchasing and supply perspective mainly covers the issue of the
buyer-supplier relationship and integration, whereas the transportation and logistics perspec-
tive focuses, as the name suggests, on transportation and logistic issues of the buyer-supplier
relationship. Our literature review of JIT delivery concentrates on papers that are concerned
with transportation and logistic issues.
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Hale [Hale, 1999] points out some of the challenges and opportunities awaiting logistics
in the new millennium. With more people shopping via the Internet and home shopping
channels, he expects a substantial increase in home deliveries. These small order deliveries
present new logistical challenges for all partners, including more non-stop logistic move-
ment, such as:

1. crossdocking

2. consolidation of products from multiple manufacturers by third-party logistics providers
in a single delivery

3. increased emphasis on point-of- sale driven, pull inventory replenishment systems

4. increased demand for customized deliveries of multi-tier pallets with electronic pallet
content identification

5. advanced electronic data interchange (EDI) capabilities

Real time information flow will be an essential component in the logistic chain. These chal-
lenges can only be handled by providing logistics managers with new tools such as: high
speed networks, satellites for location of transportation vehicles, easier to use activity-based
costing systems, and user friendly modeling, simulation and optimization techniques that
support managers in their decision.

Fisher [Fisher, 1997] found that the logistic approach should depend on the type of products.
He distinguished two different product types:functional products, which are characterized
by a predictable demand, a high forecast accuracy, low stockout rate and low product variety,
andinnovative products, which are characterized by an unpredictable demand, low forecast
accuracy, high stockout rate and high product variety. To handle functional products, he
suggests concentrating on minimizing the physical costs that appear in the supply chain,
such as cost of transportation and handling. To handle innovative products, he suggests
concentrating on the market mediation costs, which occur when the supply is greater than
the demand and force prices to drop, or when demand exceeds supply, resulting in lost sales
opportunities and dissatisfied customers.

2.2 Review of Mixed-Model Assembly Line Literature

A mixed-model assembly line is a single line capable of making several different models
at the same time. While such lines can quickly respond to changes in market conditions,
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they also present two challenges. The first challenge is the design and balancing of the
assembly line, which includes determination of cycle times and number of workstations. The
second challenge is the sequencing of the different models on the assembly line, which can
be divided into smoothing and leveling. In smoothing, the goal is to assign each workstation
in the assembly line an equal amount of work so that the operation time is the same at all
workstations. The goal of leveling is to sequence the models so that all subassemblies and
components are withdrawn equally and so that the overall variability is minimized, which at
the end leads to a minimized overall inventory. Sequencing mixed-model assembly lines has
gotten a lot of attention in the literature.

Leu et al. [Leu et al., 1996] give an excellent illustration of the difficulties faced while se-
quencing a mixed-model assembly line. They developed a genetic algorithm that improves
upon Toyota’s Goal Chasing Algorithm and gets results within seconds. The algorithm was
tested on 80 problems with the result of improved sequence in 50 of the problems. Using
Toyota’s variability of part consumption criterion, the algorithm achieved a performance ad-
vantage of 2% across all 80 problems. Korkmazel and Meral [Korkmazel and Meral, 2001]
first compare the performance of some well-known approaches [Inman and Buffin, 1991]
[Miltenburg, 1989][Ding and Cheng, 1993a][Ding and Cheng, 1993b] for solving the level-
ing problem to the optimal solution obtained by using the shortest path algorithm of Burkard
and Derigs [Burkard and Derigs, 1980]. The approaches found to be performing better are
extended to incorporate the goal of smoothing the workload. In addition, the conditions
under which it is important to take the workload-smoothing goal into consideration are an-
alyzed. They found that high variance in model processing and/or shorter lines makes con-
sidering the workload-smoothing goal worthwhile.

Matanachai and Yano [Matanachai and Yano, 2001] propose a new line balancing approach
with the emphasis on providing a stable workload on the assembly line while also achieving
reasonable workload balance among all workstations. They first compare their heuristic fil-
tered beam search algorithm with a commercial mixed-integer optimizer for a small problem
and report improvements of 22% to 41%, depending on the average utilization of the line
and the variability of the task processing time. They then used their approach on a set of
larger problems and also found substantial improvements in 90% of the problems.

Baykoc and Erol [Baykoc and Erol, 1998] used simulation to study the performance of a
multi-item, multi-line, multi-stage JIT system and showed how this system reacted under
different factor settings. They tested the effects of four factors, namely, number of kanbans,
coefficient of variation of processing times, degree of imbalance, and degree of demand
uncertainty, on system performance measures such as total output rate, waiting time on work-
in-process (WIP) points, WIP length, and station utilization. For all experiments, output rate
and station utilization improves as the number of kanbans increases to two, but no further
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improvements occur after that. Increasing the number of kanbans also results in an increase
in waiting times and WIP length. On the contrary, an increase in the coefficient of variation
of processing time or degree of imbalance leads to a decrease in output rate and utilization.

2.3 Review of Crossdocking Literature

The success story of Wal-Mart [Stalk et al., 1992] and its improvement in lead time has
brought attention to crossdocking operations. Wal-Mart achieved its goal of providing cus-
tomers access to quality goods when and where they want them by making the way the
company replenished inventory the centerpiece of its competitive strategy. Due to cross-
docking, goods cross from one loading dock to another within 48 hours or less. By running
85% of its goods through its warehouse system, Wal-Mart reduced costs of sales by 2% to
3% compared to the industry average.

Gue [Gue, 1999] defines terminal layout as the arrangement of receiving/strip doors and
shipping/stack doors, and the assignment of destinations to stack doors. Since the mate-
rial flow in a crossdocking terminal and the travel distance for workers transporting freight
largely depends on the layout of the terminal, the crossdocking literature is mainly concerned
with layout studies.

Bartholdi and Gue [Bartholdi III and Gue, 2001] ran a series of computational experiments
to determine which shapes of crossdocks have the lowest flow cost and the least traffic con-
gestion. They found that for small to mid-sized crossdocks (up to 150 doors), a rectangle
or I-shaped crossdock performed best. For larger docks (150 to 250 doors), the T-shape
performed best; for crossdocks that exceed 250 doors, the H-shape performed best.

In an earlier paper, Bartholdi and Gue [Bartholdi III and Gue, 2000] created several models
that guided a local search routine in assigning destination trailers to terminal doors. The
goal was to minimize total labor cost, which was defined as the cost of moving freight from
incoming trailers to outgoing trailers weighted against the cost of delays due to different
types of congestion - in other words, worker travel time and worker waiting time. They
found that the improved layouts tend to concentrate activity in the center of the dock. The
highest-flow regions on either side in the center are slightly offset so that congestion in the
center of the dock is reduced. A typical layout of their model is shown in Figure 2.1 .
The improved layout was implemented at a Viking terminal in Stockton and led not only
to an improvement in productivity by 11.7 % but also to a noticeable reduction in freight
processing time and other unexpected benefits.

Gue [Gue, 1999] investigates the effects of trailer scheduling on the layout of freight termi-
nals. He developed a model of the material flow when a look ahead scheduling strategy is
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Figure 2.1: A typical layout produced by the models of Bartholdi and Gue
[Bartholdi III and Gue, 2000] (Filled squares represent receiving doors and empty squares
represent shipping doors. Lines extending from the shipping doors represent the relative
flows to those doors. )

used. In a look ahead strategy, to minimize worker travel, incoming trailers are assigned to
the door closest the shipping door with the most outgoing freight. Gue first used linear pro-
gramming to assign trailers to doors and then ran a set of simulations to determine the layout
with the lowest expected cost. The look ahead scheduling strategy reduced traveling cost
by 15 to 20% compared to a first-come, first-serve policy. The new layout provides further
savings of 3 to 30% depending on the mix of freight on incoming trailers.

Tsui and Chang [Tsui and Chang, 1990, Tsui and Chang, 1992] developed a microcomputer
based decision support tool for assigning dock doors in freight yards. They used a bilinear
algorithm to recognize shipping patterns. Recognizing these patterns leads to an improved
assignment of incoming trucks to the receiving doors, minimizing travel distance for the
forklift drivers and avoiding congestion.

2.4 Review of Facility Layout Studies

Crossdocking and facility layout studies are closely related. Their common goal is to mini-
mize material handling costs, and they both do so by arranging activities in an optimal way.

The efficiency of a certain layout is typically measured in terms of material handling costs,
which increase with the distance between the departments. The two most commonly used
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measurements for the distance are between I/O points of the department and the centroid-to-
centroid method. The two most popular metrics to measure the distance between two points
are the rectilinear distance and the Euclidean distance.

Meller and Gau [Meller and Gau, 1996] analyze recent and emerging trends in the facility
layout literature from 1986 to 1996. They developed a classification scheme to distinguish
three different types of layout studies: Facility layout models and heuristics for block layout,
facility layout model extensions, and special cases. Whereas the first two types are concerned
with the overall facility layout, the special cases consider the layout of specific areas, for
example, flowlines, machine layout and cellular layout design. One emerging trend is the
application of genetic algorithms and tabu search to the facility layout problem.

2.4.1 The Facility Layout Problem and the Quadratic Assignment Prob-
lem Approach

In the classical facility layout problem, a set of facilities has to be allocated to a set of
locations with the objective to minimize cost. Cost is a function of the amount of interde-
partmental flow,fij (the flow from departmenti to departmentj); the distance between the
departments,dij; and the unit-cost value,cij (the cost to move one unit load one distance
unit from departmenti to departmentj).

minΣi(fijcij)dij

The two traditional approaches to solve the problem are the graph-theoretic approach, which
assumes that the desirability of locating each pair of facilities adjacent to each other is known,
and the quadratic assignment problem approach, which assumes that all departments have
equal areas and that all locations are known. In our study, the lanes all have the same size
and the locations are known; therefore, the rest of the literature review will concentrate on
the quadratic assignment approach.

The quadratic assignment problem was introduced by Koopmans and Beckman
[Koopmans and Beckman, 1957] in the late 50’s. The quadratic assignment problem be-
longs to the class of NP-hard (Nondeterministic Polynomial) problems, as shown by Sahni
and Gonzalez [Sahni and Gongzalez, 1976], meaning that not even an approximate solution
within some constant factor from the optimal solution can be found within polynomial time.
Even with the increased computational capabilities, especially the development of parallel
computers, over the last several years, only problems with a number of facilities/locations
lower than 20 are solvable with exact solution methods, like branch and bound, cutting plane
or branch and cut. A number of different heuristic methods which can provide good quality
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solutions in a reasonable amount of time have been used to solve larger problems. Burkard et
al. [Burkard et al., 1998] give a good overview about exact and heuristic methods. Because
we choose to use genetic algorithms to find a solution to our problem, the remainder of the
literature review will concentrate on papers that use this approach.

Fleurent and Ferland [Fleurent and Ferland, 1994] used a hybrid procedure that combined a
genetic algorithm with existing heuristic procedures, namely, local search and tabu search.
The genetic hybrid algorithm is used to overcome the problem of stopping at the first local
minimum it reaches that is associated with local search procedure. To verify their approach,
they used two sets of quadratic assignment problems with large size (n=100) found in earlier
literature [Skorin-Kapov, 1990] [Taillard, 1991]. They found that in almost every case, the
hybridized local search and tabu search method significantly enhanced the search methods
and that they could improve on the already existing best known solutions for most of the
larger test problems.

Tate and Smith [Tate and Smith, 1995] showed that their genetic algorithms performed con-
sistently equal to or better than previously known heuristic methods without undue computa-
tional overhead. They used character encoding to allow reproduction and mutation functions
that work directly on the solution sequence. Mutation took place by selecting two sites
at random and reversing the order of all sites within the subsequence bounded by the two
selected elements. The reproduction scheme used produced only feasible solutions to mini-
mize computing time. The experimental design consisted of eight different examples defined
by Nugent et al. with a range of numbers of facilities from 5 to 30 and a symmetric traf-
fic matrix, meaning that the flow from facility A to B is the same as from B to A, etc. .
Multiple runs for each problem were performed with 25%, 50% and 75% of reproduction,
meaning % of children created each generation, and 75%, 50% and 25% of probability of
mutation during a generation. The best results were obtained using the most stochastic mix
of reproduction and mutation, with 25% children and 75% probability of mutation.

Ahuja et al. [Ahuja et al., 1995] suggest a genetic algorithm that incorporates many greedy
principles in its design. They created their initial population by using a randomized con-
struction heuristic, developed a new crossover scheme, used a special purpose immigration
scheme that promotes diversity, performed periodic local optimization of a sunset of the
population, used tournamenting among different populations, and created an overall design
that attempts to strike a balance between diversity and a bias toward fitter individuals. The
instances in QAPLIB were used as benchmarks for the greedy genetic algorithm which ob-
tained the best known solution for 103 out of the 132 instances, and for the remaining in-
stances(except one) found solutions within 1% of the best known solution.

Huntley and Brown [Huntley and Brown, 1991] developed SAGA, a combined approach of
Simulated Annealing and a Genetic Algorithm to solve the quadratic assignment problem.
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In their approach, they use a genetic algorithm for finding good initial solutions and then use
simulated annealing for a refined local search. They use a crossover operation which splices
a portion of the structure of one parent directly into that of the other parent and then resolves
conflicts with a simple resolution scheme. One parent is selected at random from among the
best structures, the other one is selected completely at random, which increases the greedi-
ness of the algorithm. Two test problems are used to evaluate the algorithm; one from Nugent
[Nugent et al., 1968] with low flow dominance, and another one from Scriabin and Vergin
[Scriabin and Vergin, 1975] with a high flow dominance. Flow dominance is the tendency
of items to flow through a bottleneck area; the higher the flow dominance, the harder it is
to find good heuristic solutions. Ten runs are made for each problem, and the solutions are
compared with solutions found by CRAFT, with the result that SAGA outperformed CRAFT
in all twenty trials.

A comparison of the important parameters used in those studies is given in Tables 2.1 and
2.2. There seems to be no predominant set of parameters used in all the studies. Only the
coding scheme is the same in all cases; facilities/locations are always represented by real
numbers. Because all the studies use different test cases, a direct comparison/evaluation of
the parameters is difficult to perform.

2.4.2 Special Layout Cases

Rosa and Feiring [Rosa and Feiring, 1995] simulate a tool room in an aircraft maintenance
company with 400 in-out transactions a day. The racks for the tools are arranged in four
different layouts, and the traveling distance is measured and compared. In addition, the tool
allocation is changed according to the tools request probability. The new tool allocation
achieved the biggest improvement, but the rearrangement of the racks also reduced the travel
distance by 12%.
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Table 2.1: Genetic Algorithm parameters part 1
Initial population Selection Method Crossover Method

Ahuja et al.

Greedy GA

construction phase

of GRASP

both parents random path crossover

optimized crossover

Version one

construction phase

of GRASP

both parents random

path crossover

Version two

same as 1 except:

construction phase

of GRASP

both parents random

path crossover

Version three

same as 2 except:

construction phase

of GRASP

both parents random

path crossover

Tate and Smith randomly generated bias toward better solutions

genes are randomly 

chosen from both parents

Version 1

25% children 75% 

prob.of mutation randomly generated bias toward better solutions

genes are randomly 

chosen from both parents

Version 2

50% children 50% 

prob.of mutation randomly generated bias toward better solutions

genes are randomly 

chosen from both parents

Version 3

75% children 25% 

prob.of mutation randomly generated bias toward better solutions

genes are randomly 

chosen from both parents

Fleurent and 

Ferland

produced by other

heuristic methods:

local search and 

tabu search bias toward better solutions

genes are randomly 

chosen from both parents

Huntley and Brown NA

first parent selected at random

amon the best structures;

second parent selected at 

random

splicing a portion of the 

structure of one parent 

directly into that of the other

parent, then resolving

conflicts
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Table 2.2: Genetic Algorithm parameters part 2
Mutation/Immigration Local Optimization Tournamenting

Ahuja et al.

Greedy GA

immigration of individuals from 

underexplored search spaces

10%, 20% and variable immigration

rate 

after 200 trials,

first 20%

after 400 trials, 

next 20% 

after 100 trials

50% of union of two 

populations

50% of each population

one to one competition

Version one 10% after every 200 trials 20% none

Version two

same as 1 except:

variable, starts with 10%,

increased by 2% after every 200 trials 20% with four teams

Version three

same as 2 except:

variable, starts with 10%,

increased by 2% after every 200 trials 20% with eight teams

Tate and Smith

selection of two sites at random

and reversing the order of all sites

within the subsequence none none

Version 1

25% children 75% 

prob.of mutation 25% children, 75% prob. of mutation none none

Version 2

50% children 50% 

prob.of mutation 50% children, 50% prob. of mutation none none

Version 3

75% children 25% 

prob.of mutation 75% children, 25% prob. of mutation none none

Fleurent and 

Ferland

none, individuals generated by

heuristic mehod none none

Huntley and Brown NA simulated annealing none
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Table 2.3: Genetic Algorithm parameters part 3
Test cases Runs Results

Ahuja et al.

Greedy GA

QAPLIB

132 instances 1

obtained best known solutions for 103 problems

remaining (except one) within 1% of best known

solution

algorithm applied only once 

Version one

QAPLIB

132 instances 1 used as benchmark algorithm

Version two

same as 1 except:

QAPLIB

132 instances 1 better overall performance

Version three

same as 2 except:

QAPLIB

132 instances 1 very robust performance

Tate and Smith

8 Nugent

1 Cohoon

1 Steinberg

1 Tate 10

Version 1

25% children 75% 

prob.of mutation

9 Nugent

1 Cohoon

1 Steinberg

1 Tate 10

best mix

robust with respect to solution quality

generally found existing optimum or better, 

except for one (0/1 flow matrix)

Version 2

50% children 50% 

prob.of mutation

10 Nugent

1 Cohoon

1 Steinberg

1 Tate 10 not dramatically different from best mix

Version 3

75% children 25% 

prob.of mutation

11 Nugent

1 Cohoon

1 Steinberg

1 Tate 10 worst

Fleurent and 

Ferland

larger cases from 

Chakrapani

for initial testing

8 Skorin-Kapov

5 Taillard

5 initial

testing

10 after-

wards

genetic operators are found to improve the 

performance of both local search and tabu search

improvements on most of the test cases

Huntley and Brown

1 Nugent

1 Sciabin and Vergin 10

comparison with CRAFT

better results than CRAFT in all 20 trials
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Chapter 3

The Simulation Study

This chapter provides the research questions and details of the simulation model, including
the layouts, parameters and performance measures. In addition, the actual data provided by
Toyota are analyzed and summarized.

3.1 Definitions

For the remainder of this dissertation, pallets that contain boxes for more than one lane will
be abbreviated as CP for Crossdocking Pallets and pallets that contain boxes for only one
lane will be abbreviated as NCP for Non Crossdocking Pallets.

3.2 Layouts Simulated

A simulation model is developed to observe the influence of different layouts of the lane
storage area on the workload of the team members. A good layout reduces travel distances
without creating congestion. In the design of the new layouts, special consideration has
been given to minimizing the interference between forklifts and tuggers to insure the safety
of the team members. The first two designs (I-shaped and T-shaped) were inspired by the
findings of Bartholdi [Bartholdi III and Gue, 2001]who showed that these layouts performed
best for crossdocks up to 250 doors. The third new layout was modelled after the U-shaped
workstation arrangement found in cellular manufacturing [Miltenburg, 2001]. Since an U-
shape would lead to interference while transporting the dollies from the crossdocking area
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to the line delivery area the shape was adjusted to an open V. Using simulation, the original
layout, (shown on page 3 in Figure 1.1) where CP and NCP are unloaded in the same area,
and four new layouts are compared. The four new layouts are described in detail below:

1. A three line layout, one for the NCP and two for the CP. The NCP are transported
directly from the truck to the dollies in the line delivery area. The CP are pulled
between the two lanes in the crossdocking areas, and the parts are distributed from
there to the designated dollies. The sorted dollies are then pulled into the line delivery
area. The number of dollies in each area depends on the number of pallets that have to
be distributed and the ratio of NCP to CP. The first new layout is shown in Figure 3.1.

Figure 3.1: New layout 1

2. A layout consisting of two completely separate areas, one for CP and one for NCP.
The dollies are pulled from both of these areas directly to the line delivery area. The
V-shape design of the line delivery area allows forklifts to work outside the V and
tuggers inside the V so interference is minimized. Figure 3.2 presents the second new
layout.
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Figure 3.2: New layout 2

3. A layout consisting of two V shaped areas, one for lanes 1-6 and one for lanes 7-12.
In the middle of each area, a lane for the CP is created. The third new layout assumes
that the supplier will divide the CP into boxes with destination 1-6 and 7-12 to make
crossdocking easier. The layout is shown in Figure 3.3.

Figure 3.3: New layout 3

4. The fourth new layout was developed by Toyota. The assembly line people suggested
reducing the material on their workstations would lead to the reduction of unneces-
sary movement/walking and therefore workload. Currently, material is stored in up
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to three rows of parts in a flowrack, with an overflow area to accept excess material
in case all rows are occupied. In a proposed new layout, the material at the line will
be reduced to only one row of parts per flowrack and there will be no overflow area.
The assembly line team members will request additional material by internal Kanban
cards. In the future layout, material with a low volume of containers per truckload and
a high quantity of parts per container will be handled in the lane area; material with a
high volume of containers per truckload and a low quantity per container will be stored
intermittently in either flowracks or a designated floor space. Depending on container
size, about 50% of the parts will be stored in flowracks/floor space . The parts will be
picked from this area using dollies, which will then wait for the line delivery. The lane
storage area will handle the remaining 50% and will be rearranged. Each lane will ini-
tially handle the material for two lines, and the final separation will take place during
the crossdocking process. After crossdocking, the dollies will go to the same area as
the dollies with the parts picked from the flowracks/floorspace, and they will be de-
livered to the lane together. Toyota’s proposed new layout is illustrated in Figure 3.4.
The terms future layout and Toyota’s proposed new layout are used interchangeably
for the remainder of the dissertation.

3.3 Research Questions

The research question that will be answered in the simulation portion of this study are:

• Research Question 1: Do differences in the percentage of pallets that have to be cross-
docked have a significant effect on the workload of the team members?

• Research Question 2: Do differences in lane layout organization have a significant
effect on the workload of the team members?

• Research Question 3: Do differences in the volume of incoming parts have a significant
effect on the workload of the team members?

3.4 Parameters

All simulation runs will test the impact of the layouts, the volume of incoming parts and
percentage of pallets to be crossdocked on the workload of the team members:
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1. Percentage of crossdocking pallets
An analysis of the current and future truck schedule will determine both the current
and future average percentage level of pallets to be crossdocked. If there is a practical
significant difference (more than 5%) in the two percentage levels both will be used for
the simulation runs. In addition, after calculating the current and future percentages,
one additional percentage level of crossdocking activity will be determined. This will
allow a generalization of the results of the study to a wider variety of JIT companies.

2. Layouts
The existing layout, the three newly designed layouts and the proposed future layout
as described earlier will be simulated and compared.

3. Volume of incoming parts
The data available at TMMK for the incoming parts is divided into 20 minute time
intervals. Each time interval contains information about the number of boxes per sup-
plier in this interval. The information on how many pallets these parts come in is
not available, but Toyota requires suppliers to group parts by lane when building the
pallets. From that requirement, an algorithm was developed to “arrange” the existing
data into pallets. A flowchart of the algorithm is illustrated in Figure 3.5. This algo-
rithm does not give the optimal arrangement of boxes on the pallets, which is itself an
NP-complete problem, but it mimics the behavior of the logistic people at the supplier
plant, who most likely are not using a sophisticated optimization technique to build the
pallets. A distribution function will be fitted to the current and future (50% reduced)
volume of incoming pallets and then used for the simulation runs.

A total of 30 simulations ( 3 levels of CP x 5 layouts x 2 volumes of incoming parts) will
be run and analyzed. Table 3.1 provides an overview about all possible combinations of the
three parameters.

Table 3.1: Possible combinations of the three simulation parameters
% CD Quantity Original Layout New Layout 1 New Layout 2 New Layout 3 Future Layout

Current Current 

Future Current  

New Current 

Current Future

Future Future

New Future
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# = number of incoming boxes;
each pallet has on average 12.5 boxes;
** loop1 read all records, write all full pal-
lets into new file, delete the records out of the old file
do until end of file;
start loop1;

if # > 11.5 and < 12.5 --> 1 pallet;
if # > 12.5 x = # / 12.5 --

> x pallets, remainder --> new #;
end loop1;
** loop2 “build” pallets
do until supplier changes;
start loop2;
sort all records by quantity;

if first # > 6.5
loop 3 ** read first # and find an-

other pal-
let so that the sum is closest to 12.5

add first # and last #;
if sum < 12.5 --> 1 pallet;
if sum > 12.5 --> sub 1 last, goto loop3;

end loop3
if first # < 6.5

loop 4
add first # and next #;
if sum > 12.5 --> sub next #, first # -->

1 pallet;
if sum < 12.5 --> add next, goto loop 4;

end loop4;
end loop2;

Figure 3.5: Algorithm to build pallets
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3.5 Performance Measures

The workload for the truck drivers is defined as the sum of the driving distances between
the pits and the lanes. Because the main objective of this study is the optimization of the
crossdocking area, the workload of the truck drivers is not considered. The workload for
the crossdocking team members is defined as the distance they have to walk to transport
the boxes from one lane to another. The main workload of the line delivery people is the
unloading of the boxes at the workstations. Because the unloading process is not influenced
by the new layouts, it will not be considered as a performance measure.

3.6 The Simulation Model

Experimentation with a real world system is expensive and, in most cases, not practical. In
our case, it would mean changing the layout of the lane, observing its performance for a
week or month, and risking a shut down of the assembly line should the crossdocking not be
done effectively and parts unable to be delivered to the workstation on time. In addition, only
the current volume of incoming parts and percentage of CP could be tested. In simulations,
on the other hand, testing different scenarios requires only an adjustment of the simulation
model, and it is a lot faster since only the actual events are simulated. Therefore, simulation
is a much more economical solution.

A discrete event simulation model will be created using ARENA. ARENA uses a graphical
user interface (GUI) for SIMAN, a general purpose simulation language providing subrou-
tines for event timing, file handling, and statistical calculations. The GUI speeds up the
development of the model and the animation makes it easy for end users, such as the logis-
tics manager, to understand. The simulation model is described in the next section.

3.6.1 Details of the Simulation Model

A general overview of the main program is shown in Figure 3.6. The main program starts
with reading the incoming data from a file. Later, the file will be be used to fit a distribution
function to the data; this function, in turn, will be used as input for the simulation. For
validation of the model, the original data file from Toyota was used. This data contained
fixed quantities of incoming parts; therefore, the results, such as quantities per lane, transfer
quantities, etc., could be calculated and compared to the simulation output. Each record
in the file represents either one pallet, if the parts do not need to be crossdocked, or part
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of a pallet if the parts have to be crossdocked. The record contains 3 fields: DelayTime,
FromLaneToLane and Quantity. The DelayTime field mimics the 20 minute time intervals,
with the first record starting with time 0 and each subsequent record in the same time interval
containing 1 second. The next time interval starts at 20 minutes minus the number of seconds
used for the preceding time interval. The field FromLaneToLane contains the information
on the lane to which the parts belong and, if they have to be crossdocked, to which lane the
parts should ultimately go. An entry of 0204 would mean the parts first go to lane 02 and
from there they are crossdocked to lane 04. The quantity field contains the number of boxes
on the pallet.

After reading the file, the next step is to determine in which lane the parts belong and to
separate the parts into the lanes. A submodel is used to model the unwrapping process.
One challenge in the modeling process was to realistically simulate the behavior of the team
members in the crossdocking area. In reality, the team member would determine the lane that
has the most pallets in it and unwrap all pallets for that lane, independent of the fact that in
the meanwhile, another lane has more waiting pallets. The simulation software, on the other
hand would change the allocation of the resource (i.e., the team member) as soon as another
lane has more parts waiting to be unwrapped. To solve this dilemma, two counters were
needed; the moment a resource starts working on a particular lane, the number of waiting
parts in that lane is recorded. Another counter adds the number of parts processed, and the
resource does not get released until both numbers match. The submodel used to simulate
the unwrapping part is shown in Figure 3.7. To determine which lane has to be processed
next, another submodel, shown in Figure 3.8, was created to find the lane with the most parts
waiting.

After the pallets are unwrapped, a decision is made as to whether the parts stay in the lane or
have to be crossdocked. The crossdocking process takes place in another submodel, shown
in Figure 3.9. This submodel uses the same logic to assure the transfer of all parts before the
team member switches to another lane. One counter is used to store the sum of parts waiting
to be transferred, and another counter is used to sum the transferred parts. If both match, the
resource/team member is released and is able to work on the next lane. After all parts in one
lane are transferred, the lane with the most parts waiting for transfer is determined, as shown
in Figure 3.10, and processed.

Different counters keep track of (1) the number of pallets and quantities of parts coming
into each lane; (2) parts being transferred from/to each lane; and (3) parts finally leaving the
lane storage area. Histograms show the number of parts waiting to be unwrapped and parts
waiting to be transferred. These histograms indicate the number of dollies that should be
used. Each dolly can hold one pallet, so the number of parts waiting divided by the number
of parts per pallet gives the number of dollies needed.
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Figure 3.6: Main model
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Besides the main model, two additional models are used. After 10 minutes of simulated
time, the first model sets the lane that has to be unwrapped first. The other model is used to
simulate the end of the shift when no more parts are coming in. The two models are shown
in Figures 3.11 and 3.12.

Create 7 which unwrap firs t

S toredUW01>=StoredUW02 .and. S toredUW01>=StoredUW03
S toredUW02>=StoredUW01 .and. S toredUW02>=StoredUW03

S toredUW03>=StoredUW01 .and. S toredUW03>=StoredUW02
E lse

F irst Unwrap01

happen
should not
F irst unwrap

NextUnwrap02
F irst

totaluw01
storeduw01 to

F irst

to totaluw02
F irst stored02

NextUnwrap03
F irst

totaluw03
storeduw03 to

F irst

Start: After 10 minutes determine which lane to unwrap first

0

0

Figure 3.11: Model: Which lane to unwrap first

3.7 Current Toyota Data

The original data, provided by Toyota’s logistics department, contained the number of in-
coming boxes per supplier per line segment (overall 35) divided into 20 minute intervals.
Because this study is interested in the number of boxes per lane per time interval, the differ-
ent line segments and suppliers are added up to the number of containers per lane, as shown
in Table 3.2 and Figure 3.13. There is no obvious pattern in the data; three time buckets
have no incoming parts at all, whereas two time buckets have over 1260 incoming parts.
On average, 508.26 parts come in during a 20 minute time period, with a high variance of
106568.

In addition, the cumulative number of boxes and percentage per lane are shown in Table 3.3.
The number of boxes per lane is also graphically illustrated in Figure 3.14. The percentage
of incoming volume ranges from 3.72 % for lane 1 up to 11.39 % for lane 4.
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Figure 3.12: Model: End of simulation

Table 3.2: Number of boxes per 20 minute interval for current data
Interval 21 45 3 28 33 9 41 19 17 4 35 5 29 43 12 16

# of Boxes 1266.47 1266.47 1053.87 1045.64 946.91 898.86 867.55 829.65 828.44 722.57 689.54 683.62 683.62 676.88 671.71 671.39

cum 1266.47 2532.94 3586.81 4632.45 5579.36 6478.22 7345.77 8175.42 9003.86 9726.43 10415.97 11099.59 11783.21 12460.09 13131.80 13803.18

% 5.19 5.19 4.32 4.29 3.88 3.68 3.56 3.40 3.40 2.96 2.83 2.80 2.80 2.77 2.75 2.75

cum % 5.19 10.38 14.70 18.99 22.87 26.55 30.11 33.51 36.91 39.87 42.69 45.50 48.30 51.07 53.83 56.58

Interval 37 2 27 11 25 44 40 13 7 31 10 26 34 46 22 23

# of Boxes 645.75 635.98 627.66 627.04 546.28 541.83 527.88 520.44 514.33 514.33 453.82 423.24 418.27 408.80 400.55 358.10

cum 14448.94 15084.92 15712.58 16339.61 16885.89 17427.72 17955.60 18476.04 18990.37 19504.71 19958.52 20381.76 20800.03 21208.83 21609.37 21967.47

% 2.65 2.61 2.57 2.57 2.24 2.22 2.16 2.13 2.11 2.11 1.86 1.73 1.71 1.68 1.64 1.47

cum % 59.23 61.83 64.41 66.98 69.21 71.44 73.60 75.73 77.84 79.95 81.81 83.54 85.26 86.93 88.58 90.04

Interval 36 1 8 15 39 47 30 24 48 32 14 20 38 6 18 42

# of Boxes 346.08 303.84 303.63 277.67 277.67 215.37 125.31 112.94 110.42 90.88 88.36 88.36 88.36 0.00 0.00 0.00

cum 22313.55 22617.39 22921.02 23198.68 23476.35 23691.72 23817.03 23929.97 24040.39 24131.27 24219.63 24307.98 24396.34 24396.34 24396.34 24396.34

% 1.42 1.25 1.24 1.14 1.14 0.88 0.51 0.46 0.45 0.37 0.36 0.36 0.36 0.00 0.00 0.00

cum % 91.46 92.71 93.95 95.09 96.23 97.11 97.63 98.09 98.54 98.91 99.28 99.64 100.00 100.00 100.00 100.00
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Figure 3.13: Number of boxes per 20 minute interval for current data

Table 3.3: Cumulative data per lane for current data
Lane # of Boxes % cum cum%

04 2779.77 11.39 2779.77 11.39

05 2639.16 10.82 5418.93 22.21

12 2377.67 9.75 7796.60 31.96

10 2241.34 9.19 10037.94 41.15

03 2128.93 8.73 12166.87 49.87

07 2125.36 8.71 14292.23 58.58

08 2109.15 8.65 16401.38 67.23

11 2041.64 8.37 18443.02 75.60

06 1879.33 7.70 20322.35 83.30

02 1612.53 6.61 21934.88 89.91

09 1552.88 6.37 23487.76 96.28

01 908.59 3.72 24396.35 100.00
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A matrix with all possible lane combination for the crossdocking parts and the number of
boxes that flow between them is shown in Table 3.4. From the 24396 parts 1784 or 7.31%
have to be crossdocked.

Table 3.4: Flowmatrix for current data

exit 01 02 03 04 05 06 07 08 09 10 11 12

01 785.21 56.40 4.76 7.92

02 40.01 1502.77 13.20 7.52 31.57 3.13 48.66 45.75 19.79 40.49

03 1877.12 14.30 25.00 12.74 50.44

04 5.30 2547.58 8.40 61.53 43.01 2.48

05 20.50 2460.22 80.00 16.30 7.86

06 19.77 47.33 1867.84 30.51 8.52 80.92 1.58

07 4.36 24.80 2.42 2096.50 39.73

08 16.70 12.22 1861.89

09 20.54 4.94 15.99 13.53 29.09 1487.58 31.83 9.16 35.07

10 26.99 35.33 42.28 13.26 68.48 5.94 7.72 66.56 2028.25 28.70 2.12

11 26.75 14.87 53.89 89.33 14.59 27.95 1882.44 33.00

12 9.09 32.62 13.20 42.16 2.79 10.29 2214.97

3.8 Toyota Data for the Proposed Changes

The proposed changes lead to a reduction of roughly 50% in the number of boxes that are
handled in the crossdocking area, the other 50% are stored into the newly created flowracks.
The new quantities per 20 minute bucket are shown in Table 3.5 and Figure 3.15.

Table 3.5: Number of boxes per 20 minute interval for data from Toyota’s proposed changes
Interval 3 19 27 43 35 21 45 11 37 16 41 33 17 28 2 10

# of Boxes 522.98 380.72 356.76 355.16 354.59 341.15 341.15 336.48 331.34 321.01 308.10 301.88 298.68 283.38 279.73 277.36

cum 522.98 903.70 1260.46 1615.62 1970.21 2311.36 2652.51 2988.99 3320.33 3641.34 3949.43 4251.31 4549.98 4833.36 5113.09 5390.45

% 4.99 3.63 3.40 3.39 3.38 3.25 3.25 3.21 3.16 3.06 2.94 2.88 2.85 2.70 2.67 2.65

cum % 4.99 8.62 12.02 15.41 18.79 22.05 25.30 28.51 31.67 34.74 37.68 40.56 43.40 46.11 48.78 51.42

Interval 25 13 4 46 34 40 5 29 9 22 7 31 8 23 15 39

# of Boxes 274.70 272.70 263.54 262.56 261.61 257.37 255.08 255.08 254.49 254.31 234.77 234.77 194.88 193.39 173.10 173.10

cum 5665.15 5937.85 6201.39 6463.94 6725.55 6982.92 7238.00 7493.09 7747.58 8001.89 8236.66 8471.43 8666.31 8859.70 9032.80 9205.91

% 2.62 2.60 2.51 2.50 2.50 2.46 2.43 2.43 2.43 2.43 2.24 2.24 1.86 1.84 1.65 1.65

cum % 54.04 56.64 59.16 61.66 64.16 66.61 69.05 71.48 73.91 76.33 78.57 80.81 82.67 84.52 86.17 87.82

Interval 26 44 1 12 47 36 32 14 20 38 30 24 48 6 18 42

# of Boxes 167.21 163.39 162.18 121.96 117.33 99.57 82.36 79.83 79.83 79.83 58.64 33.59 31.06 0.00 0.00 0.00

cum 9373.12 9536.51 9698.69 9820.65 9937.98 10037.55 10119.91 10199.74 10279.57 10359.40 10418.04 10451.63 10482.69 10482.69 10482.69 10482.69

% 1.60 1.56 1.55 1.16 1.12 0.95 0.79 0.76 0.76 0.76 0.56 0.32 0.30 0.00 0.00 0.00

cum % 89.42 90.97 92.52 93.68 94.80 95.75 96.54 97.30 98.06 98.82 99.38 99.70 100.00 100.00 100.00 100.00

The quantities per lane are shown in cumulative form in Table 3.6 . Figure 3.16 pictures
the boxes per lane in graphical form, and Figure 3.17 compares the current quantities to
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Figure 3.15: Number of boxes per 20 minute interval for data from Toyota’s proposed
changes
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the reduced quantities per lane as of the proposed changes. The reduction is not distributed
equally over all lanes, lane 1 has only a 4 % reduction whereas lane 4 has nearly a 75 %
reduction.

Table 3.6: Cumulative data boxes per lane for data from Toyota’s proposed changes
Lane # of Boxes % cum cum%

05 1232.62 11.76 1232.62 11.76

11 1181.45 11.27 2414.07 23.03

03 1094.59 10.44 3508.66 33.47

07 1072.37 10.23 4581.03 43.70

08 1059.30 10.11 5640.33 53.81

10 913.01 8.71 6553.34 62.52

01 871.97 8.32 7425.31 70.83

04 703.42 6.71 8128.73 77.54

12 669.89 6.39 8798.62 83.93

06 665.60 6.35 9464.22 90.28

02 627.66 5.99 10091.88 96.27

09 390.81 3.73 10482.69 100.00

The quantities that have to be crossdocked between the lanes are illustrated in Table 3.7.
From the 10482 parts 1577 or 15.04% have to be crossdocked.

Table 3.7: Flowmatrix for data from Toyota’s proposed changes
       to

from 01 02 03 04 05 06 07 08 09 10 11 12

01 684.20 24.14 33.00 5.54 14.87 13.20 27.29

02 488.68 20.91 16.05 6.09

03 7.86 879.10 13.20 10.42 8.73 18.18

04 1.13 61.80 603.69 45.63 51.33 12.60 29.64

05 22.30 1160.78 21.60 6.82 52.69

06 4.16 29.25 20.36 495.25 0.73 6.37 15.18 10.92

07 32.57 50.44 11.13 868.77 27.28 27.20

08 1.58 30.78 47.33 63.56 989.78 8.52

09 16.08 9.41 40.49 20.69 17.16 323.17 29.48 35.53 19.79

10 105.14 42.48 7.27 58.59 17.49 9.35 14.03 794.85 1.90 5.30

11 16.50 9.57 38.97 19.80 12.41 7.90 1053.02 21.82

12 38.03 2.79 0.24 46.57 564.24
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Figure 3.16: Number of boxes per lane for data from Toyota’s proposed changes
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3.9 Calculation of the Distances

The distances were measured at the Toyota plant and some minor adjustments made. Ob-
stacles such as steel beams and other structures specific to the Toyota plant were taken out
of the distance calculation. The dollies are 4 feet wide and 7 feet long. The lanes are 5 feet
wide; the distance between 2 lanes is 14 feet, and the distance between areas is also 14 feet.
If there is a row of dollies, the midpoint of the row is used to calculate the travel distance.
Because in the new layouts, dollies partially transport the parts, the distance measurement is
split into walking distance for the team members and driving distance for the dollies. The
following section provides an overview of the measurements of each layout, the walking and
driving distances, and an example on how the travel distances are calculated.

3.9.1 Assumptions for all Layouts

• With the exception of the new layout proposed by Toyota, there are always 5 dollies
for each line in the crossdocking area.

• Each box is transported separately (worst case scenario).

• Only the travel distances from/to the lane are calculated. Switching lanes is not in-
cluded in the travel distance (for example, when crossdocking 5 boxes from lane 3 to
7 and after that crossdocking 2 boxes from 1 to 4, the calculation would assume that
the team member walks back to lane 3 after delivering the last box to lane 7, and then
the next calculation would start with delivering the first box from lane 1 to 4)

• The distance from the unloading area, where the forklift unloads the pallets onto the
dollies, to the first unloading point is not included in the calculations of any of the
layouts.

3.9.2 Original Layout

The original layout with measurements is shown in Figure 3.18. In this layout it is assumed
that the team members walk to transport the boxes from one lane to the other. Table 3.8
shows the walking distances between the lanes for the original layout.
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Figure 3.18: Crossdocking area original layout with measurements
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Table 3.8: Travel distances original layout

           to 

from    01 02 03 04 05 06 07 08 09 10 11 12

01 90 118 138 166 186 214 234 262 282 310 330

02 90 28 118 138 166 186 214 234 262 282 310

03 118 28 90 118 138 166 186 214 234 262 282

04 138 118 90 28 118 138 166 186 214 234 262

05 166 138 118 28 90 118 138 166 186 214 234

06 186 166 138 118 90 28 118 138 166 186 214

07 214 186 166 138 118 28 90 118 138 166 186

08 234 214 186 166 138 118 90 28 118 138 166

09 262 234 214 186 166 138 118 28 90 118 138

10 282 262 234 214 186 166 138 118 90 28 118

11 310 282 262 234 214 186 166 138 118 28 90

12 330 310 282 262 234 214 186 166 138 118 90

Example: 5 boxes have to be crossdocked from lane 3 to 7

• team member walks from midpoint of lane 3 to end of lane: 17.5 feet

• from end of lane to beginning of lane 7: 10 (lane 3 to 4) + 14 (lane 4 to 5) + 10 (lane
5 to 6) + 14 (lane 6 to 7) = 48 feet

• from beginning of lane 7 to midpoint of lane 7= 17.5 feet

• distance one way: 17.5 + 10 + 14 + 10 + 14 + 17.5= 83 feet

• distance for one box: 83 x 2 (walk back to lane 3) = 166 feet

• total distance for five boxes: 5 x 166 feet = 830 feet

3.9.3 New Layout 1

Figure 3.19 shows the measurements of the crossdocking area for the first new layout. In
this layout, the pallets that do not need to be crossdocked are transported from the truck
directly to the lane delivery area, and team members handle only the crossdocking pallets.
The dollies with the crossdocking pallets are driven to the unloading points, and from there
a team member carries the boxes to the dollies for the specific lanes. Table 3.9 shows the
travel distances of the dollies for all lane combinations. The walking distances for the team
members are always 63 feet: 31.5 feet from the unloading point to the dolly and 31.5 feet
back.
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Table 3.9: Travel distances new layout 1
           to 

from    01 02 03 04 05 06 07 08 09 10 11 12

01  24 24 48 48 48 48 24 24   

02  24 24 48 48 48 48 24 24   

03 24 24  24 24 24 24   24 24

04 24 24  24 24 24 24   24 24

05 48 48 24 24    24 24 48 48

06 48 48 24 24       24 24 48 48

07 48 48 24 24    24 24 48 48

08 48 48 24 24    24 24 48 48

09 24 24   24 24 24 24 24 24

10 24 24   24 24 24 24 24 24

11   24 24 48 48 48 48 24 24  

12   24 24 48 48 48 48 24 24  

Example: 5 boxes have to be crossdocked from lane 3 to 7

• team member drives dollies from unloading point of lane 3 to unloading point of lane
7: 24 feet driving distance

• walking distance for one box: 63 feet

• total distance for five boxes: 5 x 63 feet walking distance + 5 x 24 feet driving distance
= 315 feet walking distance + 120 feet driving distance

3.9.4 New Layout 2

The crossdocking area with measurements for the second new layout is shown in Figure
3.20. The travel distances for the dollies are shown in Table 3.10. The walking distance for
unloading the dollies is 63 feet for all lane combinations except from all lanes to lanes 5 and
9, where the walking distance is 33.

Example: 5 boxes have to be crossdocked from lane 3 to 7

• team member drives dollies from unloading point of lane 3 to unloading point of lane
7: 55 feet driving distance

• walking distance for one box: 63 feet
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Figure 3.20: Crossdocking area of new layout 2, with measurements

Table 3.10: Travel distances new layout 2
           to 

from    01 02 03 04 05 06 07 08 09 10 11 12

01   24 24 31 55 55 24 31 55 55

02   24 24  31 55 55 24 31 55 55

03 24 24 24 31 55 55  31 55 55

04 24 24 24 31 55 55  31 55 55

05  24 24  31 55 55 24 31 55 55

06 31 31 31 31 31  24 24   24 24

07 55 55 55 55 55 24   24 24   

08 55 55 55 55 55 24   24 24   

09 24 24   24  24 24  31 55 55

10 31 31 31 31 31  24 24 31  24 24

11 55 55 55 55 55 24   55 24   

12 55 55 55 55 55 24   55 24   
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• total distance for five boxes: 5 x 63 feet walking distance + 5 x 55 feet driving distance
= 315 feet walking distance + 275 feet driving distance

3.9.5 New Layout 3

The measurements for the crossdocking area for the third new layout are shown in Figure
3.21.

The driving distances for the dollies are shown in Table 3.11. The walking distances are 19
feet from all lanes to lanes 3/4/9 and 10, 29 feet from all lanes to lanes 2,5,8 and 11, and 39
feet from all lanes to lanes 1/6/7/12, respectively.

Table 3.11: Travel distances new layout 3
           to

from 01 02 03 04 05 06 07 08 09 10 11 12

01  35 70 70 35  241 206 171 171 206 241

02 35  35 35  35 276 241 206 206 241 241

03 70 35   35 70 311 276 241 241 276 311

04 70 35   35 70 311 276 241 241 276 311

05 35  35 35  35 276 241 206 206 241 241

06  35 70 70 35   241 206 171 171 206 241

07 241 206 171 171 206 241  35 70 70 35  

08 276 241 206 206 241 241 35  35 35  35

09 311 276 241 241 276 311 70 35   35 70

10 311 276 241 241 276 311 70 35   35 70

11 276 241 206 206 241 241 35  35 35  35

12 241 206 171 171 206 241  35 70 70 35   

Example: 5 boxes have to be crossdocked from lane 3 to 7

• team member drives dollies from unloading point of lane 3 to unloading point of lane
7: 276 feet driving distance

• walking distance for one box: 39 feet

• total distance for five boxes: 5 * 39 feet walking distance + 5 * 276 feet driving
distance = 195 feet walking distance + 1380 feet driving distance
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3.9.6 New Layout Proposed by Toyota

The crossdocking area with measurements for the proposed new layout is shown in Figure
3.22.

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2 Line

Delivery
Area

Cross-
docking
Area

14
35

10

Unloading
Area

1
/
2

3
/
4

5
/
6

7
/
8

9
/
1
0

1
1
/
1
2

Figure 3.22: Crossdocking area of layout proposed by Toyota with measurements

The walking distances for the dollies are shown in Table 3.12. Since only 3 dollies are used,
they are the same as for the original layout minus 24 feet.

Example: 5 boxes have to be crossdocked from lane 3 to 7

• team member walks from midpoint of lane 3 to end of lane: 10.5 feet
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Table 3.12: Travel distances for layout proposed by Toyota
           to 

from    01 02 03 04 05 06 07 08 09 10 11 12

01 62 90 110 138 158 186 206 234 254 282 302

02 62 28 90 110 138 158 186 206 234 254 282

03 90 28 62 90 110 138 158 186 206 234 254

04 110 90 62 28 90 110 138 158 186 206 234

05 138 110 90 28 62 90 110 138 158 186 206

06 158 138 110 90 62 28 90 110 138 158 186

07 186 158 138 110 90 28 62 90 110 138 158

08 206 186 158 138 110 90 62 28 90 110 138

09 234 206 186 158 138 110 90 28 62 90 110

10 254 234 206 186 158 138 110 90 62 28 90

11 282 254 234 206 186 158 138 110 90 28 62

12 302 282 254 234 206 186 158 138 110 90 62

• from end of lane to beginning of lane 7: 10 (lane 3 to 4) + 14 (lane 4 to 5) + 10 (lane
5 to 6) + 14 (lane 6 to 7) = 48 feet

• from beginning of lane 7 to midpoint of lane 7= 10.5 feet

• distance one way: 10.5 + 10 + 14 + 10 + 14 + 10.5= 69 feet

• distance for one box: 69 x 2 (walk back to lane 3) = 138 feet

• total distance for five boxes: 5 x 138 feet = 690 feet
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Chapter 4

Analysis and Results of Simulations

This chapter presents the details of analysis and the results of the simulations. The analysis
of the simulation results was split into two sets: the current volume of incoming parts, and
the future new volume that would go into the crossdocking area. Overall, 15 simulations
were run and analyzed using the current data and 15 using the future data. Since in the three
newly designed layouts the parts are partially transported by dollies, the initial measurement
of travel distance was divided into two measurements: walking distance and dolly/driving
distance. The data provided by Toyota was used to fit distribution functions to the incoming
quantities using the Input Analyzer included in the simulation software. The distribution
functions were then used to create the incoming quantities in the simulation. The quantities
were then distributed into the lanes using the existing percentages of crossdocking activities.
The analysis of the data revealed that the current data had a 7.31 % level of crossdocking
activity and the future data had a level 15.04 %; thus 25 % was chosen as the third percentage
of crossdocking activity. Each replication was run for 16 work hours, reflecting the two 8
hour shifts at Toyota. 1000 replications were run for each simulation.

4.1 Results from the Current Data

The input analyzer found that a Weibull distribution with a scale parameter of 8.2 and a shape
parameter of 0.82222 showed the best fit for the current volume of incoming parts.

The percentages of crossdocking activity between the lanes is shown in Table 4.1. Overall
for the current data, only 7.31% of all boxes have to be crossdocked, with no predominant
lane combination and no lane combination having more than 0.37% of crossdocking activity.
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Table 4.1: Crossdocking activity between lanes in percentages for current data
       to

from 01 02 03 04 05 06 07 08 09 10 11 12

01 3.22 0.23 0.02 0.03

02 0.16 6.16 0.05 0.03 0.13 0.01 0.20 0.19 0.08 0.17

03 7.69 0.06 0.10 0.05 0.21

04 0.02 10.44 0.03 0.25 0.18 0.01

05 0.08 10.08 0.33 0.07 0.03

06 0.08 0.19 7.66 0.13 0.03 0.33 0.01

07 0.02 0.10 0.01 8.59 0.16

08 0.07 0.05 7.63

09 0.08 0.02 0.07 0.06 0.12 6.10 0.13 0.04 0.14

10 0.11 0.14 0.17 0.05 0.28 0.02 0.03 0.27 8.31 0.12 0.01

11 0.11 0.06 0.22 0.37 0.06 0.11 7.72 0.14

12 0.04 0.13 0.05 0.17 0.01 0.04 9.08

Of the possible 132 lane combinations, roughly half (64 NCP vs. 68 CP) have no crossdock-
ing activity at all. For the additional crossdocking levels, the percentages per lane were
adjusted to reflect the original distribution; in other words, a lane combination with 0.2% of
crossdocking activity at 7.31% will have approximately 0.4% at 15.04%.

4.1.1 Results for Crossdocking Activity Levels

The initial assumption/speculation that the ideal layout depends on the level of crossdocking
activity did not hold. For all layouts, the travel distance doubled as the crossdocking level
doubled; there seems to be a linear dependency between the two factors. This may be largely
due to the fact that the differences in the crossdocking activities between the lanes are not
very large, (between 0.01% and 0.37%) and because the percentage distribution for the lanes
also increased linearly.

A future research project could study the influence of different percentage distributions on
the layouts.

4.1.2 Results for Different Layouts

Because the distance measurements had to be separated into walking distance and driving
distance, two different sets of analyses were performed. In the first set, the two measurements
are added up to a total distance, making no distinction between walking and dolly distance.
This measurement is worse than the actual performance of the system because dollies usually
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travel faster than people. In the second set of analyses, the assumption was made that dollies
travel 3x as fast as the team members can walk.

Results for total distance = walking distance + dolly distance First, an overall analysis
of variance (ANOVA) was performed at an alpha level of 0.01 to confirm that the null hy-
pothesis (no difference between the layouts) could be rejected. The result of the ANOVA
and some summary data for all four layouts are provided in Table 4.2.

Table 4.2: ANOVA total distance for current data
SUMMARY

Groups Count Sum Average Variance Difference

Original Layout 1000 306892990 306893 1371536008

New Layout 1 1000 135740538 135741 249775884 171152

New Layout 2 1000 144083423 144083 297435069 162810

New Layout 3 1000 321062858.1 321063 1659724978 -14170

Future Layout 1000 262072580 262073 1037334960 44820

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 31421307347345 4 7855326836836 8509.16 0.00000 3.32

Within Groups 4611191092880 4995 923161380

Total 36032498440224 4999

The analysis shows that there is a statistically significant difference between the average total
distance of at least two of the four layouts.

A set of planned, simple comparisons was then performed using the original layout as a
control group. Table 4.3 presents the results of the individual t-test. Because the number of
planned comparisons is equal to the degrees of freedom between groups, and most sources
recommend an adjustment of alpha when the number of comparisons exceeds the degrees
of freedom between groups [Sheshkin, 2000], the alpha level was reduced to 0.0025 for the
individual t-tests. All tests show a statistically significant difference between the total travel
distance of the original layout and the total travel distances of the other layouts. In addition,
the minimum required difference for the Scheffé test ( designatedCDS) at an alpha level of
0.05 for two means to be significantly different was computed using equation 4.1.

CDS =
√

(k − 1(F
(dfBG,dfWG)

√
2MSWG

n
(4.1)

where the valueF(dfBG,dfWG) is the tabled critical value that is used for the omnibusF test;
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Table 4.3: Individual t-tests for current data
Original Layout New Layout 1 New Layout 2 New Layout 3 Future Layout

Mean 306893 135741 144083 321063 262073

Variance 1371536008 249775884 297435069 1659724978 1037334960

Observations 1000 1000 1000 1000 1000

df 1998

t Stat 134.42 126.02 -8.14 28.88

P-value <0.0001 <0.0001 <0.0001 <0.0001

k is the number of groups,k=5 in our case;

dfBG are the degrees of freedom between groups,

dfWG are the degrees of freedom within groups,

andMSWG is the mean square value within groups from the ANOVA Table.

The critical difference for two mean to be significantly different is 4184. Comparing this
difference to the differences from Table 4.2 confirms the results of the t-test that statistically
all layouts are significantly different regarding the total travel distance.

New layout 1 resulted in the lowest overall travel distance, with a reduction of 55.77%.
New layout 2 also shows a significant improvement, with a reduction of 53.05%. Layout 3
performed the worst, with an increase of 4.62% in total travel distance. The use of only three
dollies in the future layout accounts for the decrease in travel distance between the original
layout and the future layout.

Results for total distance = walking distance + dolly distance/3 The second analysis
assumed that dollies drive 3 times faster than team members are able to walk; thus dolly
distances were divided by 3.

Table 4.4 furnishes the data for the overall ANOVA.

Since the distances are all lower than they were before individual tests were only necessary
for the new layout 3, which resulted in an increase in travel distance for the first test but
now also shows an improvement over the original layout. The result of the t-test between the
original layout and layout 3 using the faster dolly time is shown in Table 4.5 .

Using the new, more realistic travel distances, layout 2 performed best, with a reduction of
64.52%; layout 1 showed an improvement of 62.43%, and layout 3 now also has a 56.01%
reduced overall travel distance.

53



Table 4.4: ANOVA total distance = walking distance + dolly distance/3 for current data
SUMMARY

Groups Count Sum Average Variance

Original Layout 1000 306892990 306893 1371536008

New Layout 1 1000 115287671 115288 176886569

New Layout 2 1000 108890834 108891 167291204

New Layout 3 1000 134988125 134988 276760924

Future Layout 1000 262072580 262073 1037334960

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 33949723195870 4 8487430798968 14006.54 0.00000 3.32

Within Groups 3026779855899 4995 605961933

Total 36976503051769 4999

Table 4.5: T-test results: Original layout vs. new layout 3 for current data
Original Layout New Layout 3

Mean 306893 134988

Variance 1371536008 276760924

Observations 1000 1000

df 1998

t Stat 133.90

P-vlaue  <0.0001

54



To better determine the source of the reduction in total travel distance, the walking distance
and dolly distances of the new layouts were compared. The results are given in Tables 4.6
and 4.7.

Table 4.6: Comparison of walking distance for current data
SUMMARY

Groups Count Sum Average Variance

New Layout 1 1000 105061237 105061 146920593

New Layout 2 1000 91294539 91295 118363864

New Layout 3 1000 41950758 41951 25677752

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 2202421074691 2 1101210537346 11354.16 0.00000 4.61

Within Groups 290671246916 2997 96987403

Total 2493092321607 2999

Table 4.7: Comparison of dolly distance for current data
SUMMARY

Groups Count Sum Average Variance

New Layout 1 1000 30679301 30679 19436043

New Layout 2 1000 52788884 52789 48433778

New Layout 3 1000 279112100 279112 1321196567

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 37809962459997 2 18904981229999 40829.54 0.00000 4.61

Within Groups 1387677321631 2997 463022129

Total 39197639781628 2999

A Scheffé test was used to compute the critical difference for two means. The critical differ-
ence for the walking distances 2357 and for the dolly distance, 1079. Looking at the average
distances from Table 4.6 and 4.7, all distances show a statistically significant difference at an
alpha level of 0.05. The third new layout outperformed the other layouts in walking distance
by over 50%, but it has a very high dolly distance, largely because the distances are very
large when a pallet must be transported from one V to the other (see layout Figure 3.3 page
21). If the suppliers were to pack the containers according to the two areas, the performance
of this layout could be improved dramatically.
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Figure 4.1: Influence of dolly speed on layout performance

Figure 4.1 illustrates how the speed of driving influences the layouts. Four different total
distances were calculated for each layout. In the first series, the total distance (TD) equals
the walking distance (WD) plus the driving distance (DD); in the second series, the DD is
divided by two, which would mean that the dollies drive twice as fast as people walk. In
the third series, the DD is divided by three, and in the forth series by four. Whereas the
improvements in total speed, shown in Table 4.8, are only between 11.3 % and 16.95% for
the first layout, layout 3 already has an improvement of 43.47 % when the speed is doubled
and 65.2 % when the speed is four times the speed of walking.

Table 4.8: Improvements of layouts by speed of dollies
TD=WD+DD TD=WD+DD/2 Impr. % TD=WD+DD/3 Impr. % TD=WD+DD/4 Impr. %

135740 120401 11.30 115287 15.07 112731 16.95

144084 117689 18.32 108891 24.43 104492 27.48

321063 181507 43.47 134988 57.96 111729 65.20

The next section contains the results of the analyses for the future data.
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4.2 Results from the Data of Toyota’s Proposed Changes

The input analyzer found that an exponential distribution with a mean of 5.27 resulted in the
best fit of the future volume of parts handled in the crossdocking area.

The percentages per lane for the future data are shown in Table 4.9 Although the incoming

Table 4.9: Crossdocking activity between lanes in percentages for data from Toyota’s pro-
posed changes
       to

from 01 02 03 04 05 06 07 08 09 10 11 12

01 6.53 0.23 0.31 0.05 0.14 0.13 0.26

02 4.66 0.20 0.15 0.06

03 0.07 8.39 0.13 0.10 0.08 0.17

04 0.01 0.59 5.76 0.44 0.49 0.12 0.28

05 0.21 11.07 0.21 0.07 0.50

06 0.04 0.28 0.19 4.72 0.01 0.06 0.14 0.10

07 0.31 0.48 0.11 8.29 0.26 0.26

08 0.02 0.29 0.45 0.61 9.44 0.08

09 0.15 0.09 0.39 0.20 0.16 3.08 0.28 0.34 0.19

10 1.00 0.41 0.07 0.56 0.17 0.09 0.13 7.58 0.02 0.05

11 0.16 0.09 0.37 0.19 0.12 0.08 10.05 0.21

12 0.36 0.03 0.44 5.38

volume was reduced by over 50% (24396 current vs. 10483 parts future), the percentage of
parts that need crossdocking doubled (7.31% vs. 15.04%). The number of lane combinations
with crossdocking activities stayed the same with 68, but the highest percentage of boxes one
lane combinations has gone up from 0.37% to 1%.

The same statistical test as for the current data were performed for the future data, starting
with an overall ANOVA to ensure that there is a difference between the total travel distances
of the layouts, and then performing individual t-tests, this time using the future layout as the
control group.

4.2.1 Results for Crossdocking Activity Levels

Because the analyses of the different crossdocking levels for the current data revealed a linear
relationship, no further analysis was done for the future data.
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4.2.2 Results for Different Layouts

Just as was done for the current incoming volume of parts, two sets of analyses were per-
formed for the future incoming volume of parts. First, the total distance was calculated by
simply adding walking distance and dolly distance; second, assuming a faster travel time for
dollies the dolly distance was divided by 3 .

Results for total distance = walking distance + dolly distance From the results of the
ANOVA (Table 4.10) it is inferred that there is a statistically significant difference at the
0.01 level between the average total distances for at least two of the four layouts.

Table 4.10: ANOVA total distance for data from Toyota’s proposed changes
SUMMARY

Groups Count Sum Average Variance Difference

Future Layout 1000 291640620 291641 577799668

New Layout 1 1000 118850826 118851 107970952 172790

New Layout 2 1000 125382299 125382 106949508 166258

New Layout 3 1000 363713718 363714 920333710 -72073

Original Layout 1000 345543430 345543 769019977 -53903

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 56518233454042 4 14129558363510 28463.21 0.00000 3.32

Within Groups 2479591742316 4995 496414763

Total 58997825196357 4999

The results of the individual t-tests (Table 4.11) show that statistically all layouts are signif-
icantly different from the future layout. Also, the critical difference for the Scheffé test, at
2760, was much lower than the actual differences.

Table 4.11: Individual t-tests for data from Toyota’s proposed changes
Future Layout New Layout 1 New Layout 2 New Layout 3 Original Layout

Mean 291641 118851 125382 363714 345543

Variance 577799668 107970952 106949508 920333710 769019977

Observations 1000 1000 1000 1000 1000

df 1998

t Stat 208.65 200.92 -58.88 -46.45

P-value <0.0001 <0.0001 <0.0001 <0.0001

For the future volume of incoming parts, layouts 1 and 2 resulted in an improvement, whereas
the total distance for layout 3 and for the original layout are greater than the total distances
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in the future layout. Since the only difference in the crossdocking area of the future and the
original layout is the number of dollies used, this result was expected.

Results for total distance = walking distance + dolly distance Next, the driving distances
for the dollies were divided by three to give a more realistic result for the overall travel
distance. Table 4.12 gives the results of the overall ANOVA, which shows that there is a
statistically significant difference between the average total distance of at least 2 of the 4
layouts. The result of the t-test between Toyota’s proposed new layout and new Layout 3 are

Table 4.12: ANOVA total distance = walking distance + dolly distance/3 for data from Toy-
ota’s proposed changes
SUMMARY

Groups Count Sum Average Variance

Future Layout 1000 291640620 291641 577799668

New Layout 1 1000 94093139 94093 92346244

New Layout 2 1000 88756866 88757 77837686

New Layout 3 1000 149205078 149205 131882193

Original Layout 1000 345543430 345543 769019977

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 55563069152369 4 13890767288092 42121.68 0.00000 3.32

Within Groups 1647236882181 4995 329777154

Total 57210306034549 4999

given in Table 4.13. A comparison of the walking distances (Table 4.14) and dolly distances

Table 4.13: T-test results: Toyota’s proposed new layout vs. new layout 3
Future Layout New Layout 3

Mean 291641 149205

Variance 577799668 131882193

Observations 1000 1000

df 1998

t Stat 169.08

P-value  <0.0001

(Table 4.15) give similar results to the comparison of the current data. Layout 3 performs
best regarding walking distance and worst in dolly distance.

A comparison of the improvements between the control layout and the new layouts is given
in Table 4.16.
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Table 4.14: Comparison of walking distance for data from Toyota’s proposed changes
SUMMARY

Groups Count Sum Average Variance

New Layout 1 1000 81714295 81714 88877890

New Layout 2 1000 70444150 70444 71334149

New Layout 3 1000 41950758 41951 25677752

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 840009484894 2 420004742447 6778.29 0.00000 4.61

Within Groups 185703901072 2997 61963264

Total 1025713385966 2999

Table 4.15: Comparison of dolly distances for data from Toyota’s proposed changes
SUMMARY

Groups Count Sum Average Variance

New Layout 1 1000 37136531 37137 13031998

New Layout 2 1000 54938149 54938 24157124

New Layout 3 1000 321762960 321763 864063955

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 50841527151299 2 25420763575649 84618.06 0.00000 4.61

Within Groups 900351823528 2997 300417692

Total 51741878974827 2999

Table 4.16: Comparison of improvement percentages control layouts vs. new layouts
Improvements over Current Layout Improvements over Future Layout

TD=WD+DD TD=WD+DD/3 TD=WD+DD TD=WD+DD/3

New Layout 1 55.77 62.43 New Layout 1 59.25 67.74

New Layout 2 53.05 64.52 New Layout 2 57.01 69.57

New Layout 3 -4.62 56.01 New Layout 3 -24.71 48.84

Future Layout 14.60 14.60 Original Layout -18.48 -18.48
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4.3 Conclusions from the Simulation Results

This section gives the findings of the simulation experiments in regard to the three research
questions addressed in this study.

• Research Question 1: Do differences in the percentage of pallets that have to be cross-
docked have a significant effect on the workload of the team members?
The simulations show that there is a linear relationship between the level of crossdock-
ing and the workload of the team member when the percentage of boxes for each lane
combination is kept proportional to increase/decrease in percentage of crossdocking
activity. Future studies are needed to determine whether this finding holds when the
percentages of boxes for the lane combinations fluctuate.

• Research Question 2: Do differences in lane layout organization have a significant
effect on the workload of the team members?
Via simulation, four layouts were compared to a control layout; for the current data, the
current layout at Toyota was used as a control; for the data from the proposed changes,
the new layout proposed by Toyota was used. Layout 1 performed best when the total
distance was calculated as walking distance plus driving distance, with a decrease in
overall travel distance of over 55% for the current data and over 59% for the data
from the proposed changes in layout. When the driving distance was adjusted to a
more realistic speed, layout 2 gave slightly better results than new layout 1, with an
improvement of over 64% and over 69%, respectively.
New layout 3 showed an increase in overall travel distance when the travel speed for
the dollies was not adjusted.

• Research Question 3: Do differences in volume of incoming parts have a significant
effect on the workload of the team members?
The first instinct would be to think that a reduction in volume will lead to an equal
reduction of workload for the team members in the crossdocking area. The analysis
of the original Toyota data led to further investigation. A comparison of the current
data and the data from the proposed changes revealed that the number of parts that had
to be crossdocked was only slightly reduced, from 1784 or 7.31% for the current data
to 1577 or 15.04% for the data from the proposed changes, whereas the volume was
reduced by more than half, from 24396 to 10482. A direct statistical comparison of
the two sets of data was not possible because the reduction was not distributed evenly
for all suppliers and parts.
Eight examples (see Table 4.17) were constructed to illustrate the possible relationship
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between the incoming quantities, part mix and crossdocking activity. The pallet size in
all examples is 10 boxes per pallet. Parts labeled part A belong in lane A, parts labeled
part B belong in lane B, etc. All parts come from the same supplier in the same truck.
In example 1, the original quantity of 80 parts is reduced by 50%, but since each part
still fits on exactly 1 pallet, no crossdocking activity is needed.
In example 2, the original quantity of 80 parts is again reduced by 50%, but in this
case, 10 parts or 25% have to be crossdocked.
In example 3, the original quantity was 40 parts; here a reduction by 50% will lead to
10 parts, or 50% of crossdocking activity.
In example 4, 10, or 25%, of the original 40 parts had to be crossdocked. In this sce-
nario, a reduction of 50% will eliminate the crossdocking activity since all parts for
lane A fit on the first pallet and all parts for lane B fit on the second pallet.
Example 5 shows that the same quantity could result in drastically different cross-
docking levels; an incoming quantity of 10 parts could either result in no crossdocking
activity at all, when all parts belong to the same lane, or, result in 7 parts or 70% that
have to be crossdocked.
Examples 6 to 8 illustrate that an increase in quantity has the same effects as a reduc-
tion in quantity; either no change in crossdocking activity (example 6), an increase in
crossdocking activity (example 7) or a reduction in crossdocking activity (example 8).
In all these examples, the parts came from one supplier on one truck. The complexity
of the problem increases when more suppliers are involved and the incoming quantities
are split up into time intervals/trucks, making prediction of the relationship between
the incoming parts and the workload of the team members even more complicated.
Due to the complexity of the problem, this dissertation is limited to the identification
of the factors involved, namely, pallet size, incoming quantity, part mix, number of
suppliers, and delivery interval/number of trucks. The analysis of the relationships
among these factors and their influence on the workload is left to future research.
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Table 4.17: Examples of different Quantities and Crossdocking %
Example 1 Quantity Part A Part B Part C Part D Pallets CD Parts CD %

80 20 20 20 20 8 0 0.00

Reduction by 50 % 40 10 10 10 10 4 0 0.00

Example 2 Quantity Part A Part B Part C Part D Pallets CD Parts CD %

80 20 20 20 20 8 0 0.00

Reduction by 50 % 40 15 15 5 5 4 10 25.00

Example 3 Quantity Part A Part B Part C Part D Pallets CD Parts CD %

40 10 10 10 10 4 0 0.00

Reduction by 50 % 20 5 5 5 5 2 10 50.00

Example 4 Quantity Part A Part B Part C Part D Pallets CD Parts CD %

40 15 15 5 5 4 10 25.00

Reduction by 50 % 20 10 10 0 0 2 0 0.00

Example 5 Quantity Part A Part B Part C Part D Pallets CD Parts CD %

10 10 0 0 0 1 0 0.00
same quantity 10 3 3 2 2 1 7 70.00

Example 6 Quantity Part A Part B Part C Part D Pallets CD Parts CD %

5 5 0 0 0 1 0 0.00

Increase by 100% 10 10 0 0 0 0 0 0.00

Example 7 Quantity Part A Part B Part C Part D Pallets CD Parts CD %

5 5 0 0 0 1 0 0.00

Increase by 100% 10 5 2 2 1 1 5 50.00

Example 8 Quantity Part A Part B Part C Part D Pallets CD Parts CD %

10 5 2 2 1 1 5 50.00

Increase by 100% 20 10 10 0 0 2 0 0.00
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Chapter 5

Optimization of Lane Arrangement for
Each Layout Type

5.1 Introduction

Having found the best design through simulation, we further seek optimization for the lay-
outs by rearranging the lanes. Lanes that have a high level of crossdocking activity should
be close together to minimize unnecessary material movement. A genetic algorithm (GA),
a stochastic search technique, will be used for the optimization. In recent years, GAs
have become very popular as tools for optimization in the operations management field.
They are used for machine layout problems [Cheng et al., 1996, Cheng and Gen, 1998], as-
sembly line balancing [Falkenauer and Delchambre, 2000][Rubinovitz and Levitin, 1995],
workload smoothing [Kim et al., 1998] and many other optimizations problems. Using more
conventional methods, such as linear programming, these kind of problems often result in
exponential growth of computing time and require increased memory resources when the
data set gets large. Additionally, genetic algorithms are very flexible, able to include multi-
ple constraints as well as non-linear and non-convex objective functions. Genetic Algorithms
are only one of a variety of stochastic search methods; others are simulated annealing and
tabu search. A comparison of the different methods applied to optimization of crossdocking
layouts is left for future research.
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5.2 The Genetic Algorithm Logic

Genetic algorithms mimic the biological evolutionary process of genetic inheritance and
survival of the fittest. When working with a GA, five important criteria have to be chosen: the
genetic representation, the evaluation or objective function, the genetic operator or genetic
operators, the selection criteria and the stopping point.

5.2.1 Genetic Representation

The first step in designing a GA is to create a genetic representation of potential solutions
to the problem. The choice of a genetic representation is tightly related to the nature of the
problem. In our case, the lines will simply be represented by their number. The position
of the number will equal the position of the lane in the layout. For example, a potential
solution would be to arrange the lines as follows: 12,10,4,5,3,11,8,9,7,1,2,6, meaning line
12 is the left-most line, line 10 the second left-most line, and so forth. Because there are
12 lines, the number of possible arrangements is 12! or 479,001,600 different possibilities.
Each of these candidate solutions is called an individual or chromosome, all individuals
together are called a population. The single elements (lanes) in the individuals are called
genes. In this study, each individual consists of 12 genes. In this first step, the size of
the population and the initial population are the two parameters that have to be chosen.
The initial population can either be created at random, or, when good solutions are already
available, specific individuals can be chosen.

5.2.2 Evaluation Function

In the second step, each individual will be evaluated for fitness. This evaluation is intimately
related to the objective of the problem being solved. Since the objective of this study is to
reduce the workload of the team members, the evaluation function in this study will be the
travel distance of the team member. The shorter the travel distance, the better the candidate
solution. The average number of boxes per lane per trailer during one day will be used to
determine the travel distance. Since the daily variance in the number of boxes is minimal, it
will not be considered.
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5.2.3 Selection Criteria

After evaluating each individual, the fittest individuals are selected. The selection method
must take into account the population diversity. If the population diversity decreases too fast,
the algorithm may converge prematurely. If the population diversity does not decrease fast
enough, the algorithm may run longer than necessary. These fittest individuals will be used
as parents for the next generation. The important parameters in this step are the selection
criterion, the number of individuals that are considered for reproduction and the number of
individuals that will be replaced. The number of individuals in the population can either
stay the same with each iteration or it can increase or decrease. If redundant solutions are
detected, they are removed decreasing the population size.

5.2.4 Genetic Operators

The fourth step is the mutation and/or crossover of the fittest individuals selected in step
three. When mutation is used, a portion of the number of individual parent genes will be
randomly altered to construct the new individual, called child or offspring. In crossover, the
genes of two parents are separated at one or more crossover points and then re-combined,
mixing the strings from the parent chromosomes to create two new individuals. In crossover,
the important parameters are the crossover method and the number/percentage of the popu-
lation to which the crossover operator is applied. In mutation, the important parameter is the
mutation operator and the number/percentage of individuals that are mutated.

Each iteration of steps two to four produces a new generation.

5.2.5 Stopping Point

The last parameter that has to be selected is a stopping parameter. This could be either a
certain number of generations, the level to which the objective function is satisfied or some
other criteria.

All the different parameters mentioned above must be carefully chosen to find a balance
between the exploitation of good individuals and the exploration of the search space. In
addition, exploration of the search space has to be done very carefully to prevent premature
convergence to local optima. The multitude of parameters has led to studies on how to
determine the proper values of these parameters [Grefenstette, 1986], but finding the proper
values still seems to be more an art than a science [Michalewicz, 1994].

66



In our case, the GA parameters will be determined by preliminary experiments using the
current data and original layout as input.

5.3 Example of a Genetic Algorithm

The following section uses an 8 lane layout to provide a simple, detailed example of the
different steps a genetic algorithm goes through during one iteration.

5.3.1 Random Creation of a Start Population

One important issue in GAs is the size of the start population. In our example,we start with
a population of 10 individuals. The genetic encoding of the first arrangement of lanes is:
Individual 1: 2-4-5-7-1-3-8-6. This means that line 2 is the most left lane in the layout, line
4 is the next ..., and lane 6 is the furthest right lane in the layout.
The complete start population is shown in Table 5.1

Table 5.1: Start population for example
Lane position/Gene 1 2 3 4 5 6 7 8

Individual 1 2 4 5 7 1 3 8 6

Individual 2 1 6 3 4 7 5 2 8

Individual 3 5 7 1 3 4 8 6 2

Individual 4 1 7 8 2 4 6 3 5

Individual 5 4 8 7 1 3 2 6 5

Individual 6 7 5 4 2 1 3 8 6

Individual 7 1 4 5 7 2 3 6 8

Individual 8 2 4 6 8 1 3 5 7

Individual 9 5 6 7 1 3 2 4 8

Individual 10 1 2 3 4 6 7 8 5

5.3.2 Evaluation Function

In this study, our objective is to minimize the travel distance for the team members. To test
the objective function, we use the arrival of one pallet as an example. The number of boxes
and their lane designations are presented in Table 5.2.

The distances between the unloading point and the lanes are shown in Table 5.3.
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Table 5.2: Example pallet
Number of Boxes Lane

2 1

3 2

1 3

5 4

7 5

6 6

3 7

11 8

Table 5.3: Distances between unloading point and the lanes
Lane Position 1 2 3 4 5 6 7 8

Travel distance 4 5 3 2 2 3 5 4

Individual 1 2 4 5 7 1 3 8 6

From these two tables, the travel distance (td) in meters (m) for the individuals can be calcu-
lated as follows:

Individual 1: 2-4-5-7-1-3-8-6

td1 : 2 ∗ 2m + 3 ∗ 4m + 1 ∗ 3m + 5 ∗ 5m + 7 ∗ 3m + 6 ∗ 4m + 3 ∗ 2m + 11 ∗ 5m = 150m

td2 : 2 ∗ 4m + 3 ∗ 5m + 1 ∗ 3m + 5 ∗ 2m + 7 ∗ 3m + 6 ∗ 5m + 3 ∗ 2m + 11 ∗ 4m = 137m

td3 : 136m

td4 : 129m

td5 : 157m

td6 : 154m

td7 : 143m

td8 : 131m

td9 : 151m

td10 : 140m

5.3.3 Selection of the Individuals with the Best Fitness Function

Many different selection algorithms exist, ranging from those selecting none of the individ-
uals and creating a new population every time, so called non-overlapping populations, to
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steady-state genetic algorithms that use overlapping populations. For our example, we use
an overlapping algorithm with an elitist strategy where the two best individuals are chosen as
parents for the next generation and 8 new individuals are created from them. The two fittest
individuals are individual 4, with a travel distance of 129 meters, and individual 8, with a
travel distance of 131 meters.

5.3.4 Reproduction

Assumption: We want our population size to stay the same with each iteration.
From the wide variety of genetic operators, we have chosen a mutation that swaps genes at
random. Each parent will be used to create 4 new children.

Parent 1 = 1-7-8-2-4-6-3-5

First, randomly chosen genes 2 and 6 are swapped.

Child 1 = 1-6-8-2-4-7-3-5

Second, randomly chosen genes 4 and 5 are swapped.

Child 2 = 1-7-8-4-2-6-3-5

Third, randomly chosen genes 1 and 6 are swapped.

Child 3 = 6-7-8-2-4-1-3-5

Forth, randomly chosen genes 7 and 8 are swapped.

Child 4 = 1-7-8-2-4-6-5-3
Genes that are swapped are the same for both parents

Parent 2 = 2-4-6-8-1-3-5-7

Child 5 = 2-3-6-8-1-4-5-7

Child 6 = 2-4-6-1-8-3-5-7

Child 7 = 3-4-6-8-1-2-5-7

Child 8 = 2-4-6-8-1-3-7-5

5.3.5 Evaluation Function for the New Generation

The iteration starts again at point 5.2.2, with each new generation being evaluated until the
stopping point is not reached.
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5.4 Research Question

The research question that will be answered in this part of the dissertation is:

• Research Question 4: Does the arrangement of the lanes have a significant effect on
the workload of the team members?

5.5 GAlib

In this study, an existing software package, GAlib, is used for the optimization of the lane
arrangements. GAlib is a genetic algorithm software package developed by Matthew Wall
at the Massachusetts Institute of Technology [Wall, 1995]. It contains a set of C++ tools to
solve optimization problems with the help of GAs. Besides including documentation and
examples of how to implement GAs, GAlib includes a wide variety of representation types,
genetic operators, selection methods and stopping criteria. The source code is freely avail-
able; therefore, should the existing parameters not be sufficient, modifications to all these
parameters can be made. Because the objective function depends largely on the problem,
it must be written by the user. In addition, the BLITZ++ [Veldhuizen, 1998] library was
used to simplify the array handling. As discussed earlier, selecting parameters in a GA is a
difficult process and few guidelines have been developed. GAlib makes it possible to try a
variety of genetic operators so that a nearly optimal solution can be found.

5.6 Experiments for Choosing the GA Parameters

As mentioned earlier, the performance of a GA is largely influenced by the following param-
eters: representation of the individuals, crossover method, mutation method, population size
and number of generations. For this study, the representation of the individuals did not pose
a problem: the line are represented by their position in the layout. Two crossover methods
were compared: The edge recombination crossover (ERX) and the partial match crossover
(PMX), both described in detail in sections 5.6.1 and 5.6.2. The population size (pSize) and
the number of generation (nGen) was varied between 100 and 1000. Two levels (10% and
50%) of the percentages of individuals were chosen for mutation (pMut, and three levels
(10%, 50% and 100%) of the percentage of individuals selected for crossover (pRep) were
tested. For each parameter combination, 100 runs were carried out using random seed points
(i.e. randomly created individuals in the initial population). The results are presented in
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Table 5.4. In addition to the GA parameters, Table 72 also reports the number of runs that
found the best result and the CPU time used by the program.

The partial match crossover method with a population size of 1000, number of generations,
50% mutation rate and 50% crossover rate found the best solution in 96 of the 100 run with
a CPU time of only 19.23 minutes. Even if this parameter combination is not the overall best
combination, it provides a good balance between processing time and the number of runs
that found the best solution. This parameter combination was chosen for the optimization of
the layouts. The partial match crossover methods showed both better performance, in most
of the cases, and also smaller processing times, but the results also demonstrate that there is
no visible relationship between the parameters.

5.6.1 The Edge Recombination Crossover

In the edge recombination crossover (ERX) a table is created which contains each gene and
the gene it is connected to; the head and tail gene are connected to each other.

For example:

Parent 1: 1-5-8-4-2-7-3-6

Parent 2: 2-4-7-1-6-8-3-5

would result in the connection table shown in step 1 of Table 5.5.

The first gene of the child is selected by choosing the gene with the smallest number of
connected genes/edges. In this example, gene 1 is connected to only two other genes; thus it
will be chosen as the first gene of the new offspring. After that, the selected gene is removed
from the table, resulting in the new connection table as presented in step 2 of Table 5.5. This
process is repeated until all genes are selected, steps 3 to 8 in Table 5.5. The child resulting
from this procedure would be:

Child: 1-6-4-7-2-5-8-3

5.6.2 The Partial Match Crossover

The partial match crossover was first described by Goldberg [Goldberg, 1989]. It creates
children by transforming genes from one parent and preserving the order and position of as
many genes as possible from the other parent.

For example:
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Table 5.4: Results of GA parameter selection experiments
pSize nGen pMut pRep Crossover # best sec min hours

100 100 10 10 ERX 0 31 0.52

100 100 10 50 ERX 49 129 2.15

100 100 10 100 ERX 2 245 4.08

100 100 50 10 ERX 2 252 4.20

100 100 50 50 ERX 2 131 2.18

100 100 50 100 ERX 3 254 4.23

100 100 10 10 ERX 0 31 0.52

100 1000 10 50 ERX 52 1209 20.15

100 1000 10 100 ERX 5 2402 40.03

100 1000 50 10 ERX 7 2423 40.38

100 1000 50 50 ERX 8 1228 20.47

100 1000 50 100 ERX 4 2421 40.35

1000 100 10 10 ERX 4 546 9.10

1000 100 10 50 ERX 15 1484 24.73

1000 100 10 100 ERX 16 2673 44.55

1000 100 50 10 ERX 71 2769 46.15

1000 100 50 50 ERX 13 1568 26.13

1000 100 50 100 ERX 76 2778 46.30

1000 1000 10 10 ERX 19 3635 60.58

1000 1000 10 50 ERX 19 12808 213.47 3.56

1000 1000 10 100 ERX 24 25138 418.97 6.98

1000 1000 50 10 ERX 86 25623 427.05 7.12

1000 1000 50 50 ERX 32 11536 192.27 3.20

1000 1000 50 100 ERX 81 25839 430.65 7.18

100 100 10 10 PMX 2 24

100 100 10 50 PMX 14 99

100 100 10 100 PMX 15 194

100 100 50 10 PMX 0 26

100 100 50 50 PMX 21 103

100 100 50 100 PMX 71 202

100 1000 10 10 PMX 13 206

100 1000 10 50 PMX 18 958 15.97

100 1000 10 100 PMX 13 1925 32.08

100 1000 50 10 PMX 13 215 3.58

100 1000 50 50 PMX 32 1004 16.73

100 1000 50 100 PMX 75 1990 33.17

1000 100 10 10 PMX 54 388 6.47

1000 100 10 50 PMX 89 1349 22.48

1000 100 10 100 PMX 89 2123 35.38

1000 100 50 10 PMX 5 450 7.50

1000 100 50 50 PMX 96 1154 19.23

1000 100 50 100 PMX 92 2122 35.37

1000 1000 10 10 PMX 35 1470 24.50

1000 1000 10 50 PMX 85 9955 165.92 2.77

1000 1000 10 100 PMX 92 19824 330.40 5.51

1000 1000 50 10 PMX 92 2601 43.35

1000 1000 50 50 PMX 94 10379 172.98 2.88

1000 1000 50 100 PMX 97 10701 178.35 2.97
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Table 5.5: Connection Table and selection of genes to create offspring

Gene Gene

1 6 7 2 4 7 5

2 4 7 5 3 6 7 5 8

3 6 7 5 8 4 8 2 7

4 8 2 7 5 8 3 2

5 1 8 3 2 6 3 8

6 3 1 8 7 2 3 4

7 2 3 4 1 8 5 4 6 3

8 5 4 6 3

Gene Gene

2 4 7 5 2 7 5  

3 7 5 8  3 7 5 8  

4 8 2 7 5 8 3 2

5 8 3 2 7 2 3  

7 2 3 4 8 5 3   

8 5 4 3  

Gene Gene

2 5   3 5 8   

3 5 8   5 8 3  

5 8 3 2 8 5 3   

8 5 3   

Step 7: Selection of gene 5 Step 8: Selection of gene 8

Gene Connected to Gene Connected to

3 8    3 8    

8 3    

Child: 1,6,4,7,2,5,8,3

Child: 1,6,4,7,2,5,8

Step 4: Selection of gene 4

Child: 1,6,4

Child: 1,6,4,7

Connected to

Step 5: Selection of gene 7 Step 6: Selection of gene 2

Child: 1,6,4,7,2

Connected to

Connected to

Child: 1,6,

Step 2: Selection of gene 1Step 1: Create connection table

Connected to Connected to

Connected to

Step 3: Selection of  gene 6
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Parent 1: 1-5-8-4-2-7-3-6

Parent 2: 2-4-7-1-6-8-3-5

First a matching section is defined (bold), and from that an interchange mapping table is
developed:

{8 ⇔ 7, 4 ⇔ 1, 2 ⇔ 6} ,

which is then used to create the offspring. Each gene of the first parent is compared with
the elements in the interchange mapping table. If the table has an entry for the gene, it is
exchanged with the corresponding element. If there is more than one corresponding entry in
the table, one entry is chosen at random. If the gene has no entry in the table, it is simply
copied over to the child.

Parent 1: 1-5-8-4-2-7-3-6

Child 1 : 4-5-7-1-6-8-3-2

The procedure is then repeated for the second parent

Parent 2: 2-4-7-1-6-8-3-5

Child 2 : 6-1-8-4-2-7-3-5

5.7 The Optimized Lane Arrangements

Using the parameter combination found earlier, the GA was run for all quantities/layout com-
binations. See Appendix 7.3 for a printout of the program showing the objective function.
The original Toyota data were used for the incoming quantities. The distances were calcu-
lated as total distance equals driving distance plus walking distance. Table 5.6 presents he
best layouts found by the GA. In most cases, more than one layout gave the lowest distance;
only the layout used in the simulation runs is shown.

The simulation models were changed to use the optimized arrangement of lanes for the
distance calculation, and all 8 simulations were run again. The results are presented in
Chapter 6.

5.8 Validation of the GA

As mentioned earlier, the number of possible line combinations is 12! or 479,001,600 dif-
ferent possibilities. To validate the results of the GA, an exhaustive search algorithm was
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Table 5.6: Optimized layouts
Quantity Layout Optimized Arrangement of Lanes

Current Original Layout 7 0 2 11 1 4 8 9 3 10 5 6

Current New Layout 1 4 12 9 2 3 1 7 8 5 10 11 6

Current New Layout 2 1 8 5 7 3 10 12 4 9 2 11 6

Current New Layout 3 6 4 5 9 10 11 8 12 1 3 2 7

Proposed Changes Toyota's proposed layout 2 1 10 4 3 9 12 7 11 6 8 5

Proposed Changes New Layout 1 12 1 4 7 11 5 8 6 3 9 2 10

Proposed Changes New Layout 2 7 8 2 6 5 1 12 9 11 10 3 4

Proposed Changes New Layout 3 4 1 2 3 10 9 5 7 11 6 12 8

applied to one parameter combination of incoming quantities and layouts, namely, the cur-
rent data and the original layout. Because the run time of such a program would be too
lengthy for normal workstations, the problem was divided into smaller subproblems and
distributed onto several computers. Each machine independently computes the solution for
its subproblems and the minimum from all of the solutions will be the overall minimum
distance. This exhaustive search utilized 132 out of 968 processors of the Platinum clus-
ter supercomputer at the National Center for Supercomputing Applications (NCSA) at the
University of Illinois. The line layout problem is an ideal candidate for parallel processing
because all subsearches are independent of each other. The first processor computes all the
possible lane combinations starting with lane 1 in position 1 and lane 2 in position 2. The
second processor computes all the possibilities starting with lane 1 in position 1 and lane 3 in
position 2, ... and the 132nd processor computes all the possibilities starting with lane 12 in
position 1 and lane 11 in position 2. The program was written in C++ and the parallel com-
munication was implemented using the parallel programming library MPI [ref]. A listing of
the program can be found in Appendix 7.3.

The CPU time was 55:23 minutes on each 1 GHz Intel Pentium III which means it would
have taken 132x55 minutes or over 5 days to run the program serial on one computer. Such
an exhaustive search is not feasible in a production environment, where time and cost are an
issue, and requires, other, faster solutions, such as a GA.

The exhaustive search found that layout 7-0-2-11-1-4-8-9-3-1-5-6 resulted in the lowest
travel distance, which is the same lane combination found by the GA.
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Chapter 6

Results and Analysis of Optimized Lane
Arrangements

The following chapter gives the results and analysis of the simulations performed for the
optimized lane arrangement. As in the analysis of the original simulations, it is split into
current data and the data from the proposed changes.

6.1 Results from the Current Data

First an overview over the overall improvements is given. Table 6.1 reveals that all layouts
can be further improved by rearranging the lanes. For the current layout and the new layout
3, the improvement would be substantial at nearly 34%.

Table 6.1: Overview improvements for current data

before GA after GA Improvement

Original Layout 306893 202751 33.93%

New Layout 1 135741 131485 3.13%

New Layout 2 144083 123679 14.16%

New Layout 3 321063 212194 33.91%

Current Data

Travel Distance

To better understand the improvements, the data were analyzed using the two different mea-
surements, driving distance and walking distance.
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In the original layout (Figure 3.18, page 41) all the parts are carried and no driving takes
place so only one t-test was performed, resulting in an overall improvement of nearly 34%.
In the new layout 1 (Figure 3.19, page 43), the walking distance is the same regardless of the
arrangement of the lanes. The improvement in the driving distance is close to 14%, but since
the driving distance accounts only for 1/3 of the overall distance the overall improvement
is a much smaller 3.13%. The second new layout (Figure 3.20, page 45) shows a total
improvement of 14.16% after rearranging the lanes, mainly because of the high improvement
in the driving distances. New layout 3 (Figure 3.21, page 47) also shows also a substantial
improvement of nearly 34%. Nearly all of the improvement is gained in the driving distance,
which is not surprising considering the large distance between the two areas. As mentioned
earlier, the performance of this layout is largely influenced by the amount of material that
flows between the two areas, and a separation of material into the two areas by the supplier
would be worth investigating. The results of the t-test are summarized in Table 6.2. The
mean distances before and after the GA are statistically all significantly different at an alpha
level of 0.01 with P-values <0.0001 for all cases except for the walking distance in new
layout 3, which has a P-value of 0.35604.

6.2 Results from the Data of Toyota’s Proposed Changes

The improvements due to the rearrangement of the lanes for the data from the proposed
changes are similar to those for the current data. All distances can be reduced. An overview
for the improvements is given in Table 78. The greatest reduction in overall travel distance
is gained for the layout proposed by Toyota and the new layout 3.

A more detailed analysis reveals that the improvements are mainly in the driving distance,
as observed earlier in the current data. The results of the t-tests are summarized in Table
79.Statistically all distances are significantly different except the walking distance for the
new layout 2. The alpha level used in this analysis was 0.01.

6.3 Conclusions from the Optimization Results

The research question the optimization part of this dissertation is trying to answer is:

• Research Question 4: Does the arrangement of the lanes have a significant effect on
the workload of the team members?
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Table 6.2: Results analysis for current data

Mean %

Mean Variance Mean Variance Difference Difference T-Stat P-value

Original Layout 

Total Distance 306893 37034 202751 27293 104142 33.93 71.59 <0.0001

New Layout 1 

Total Distance 135741 15804 131485 15546 4255 3.13 21.62 <0.0001

New Layout 1 

Driving Distance 30679 4409 26424 4395 4255 13.87 6.07 <0.0001

New Layout 2 

Total Distance 144083 17246 123679 15016 20405 14.16 28.22 <0.0001

New Layout 2 

Driving Distance 52789 6959 34315 5498 18473 35.00 65.87 <0.0001

New Layout 2 

Walking Distance 91295 10880 89363 10693 1931 2.12 4.00 <0.0001

New Layout 3 

Total Distance 321063 40740 212194 31639 108869 33.91 66.74 <0.0001

New Layout 3 

Driving Distance 279112 36348 170326 28009 108786 38.98 74.97 <0.0001

New Layout 3 

Walking Distance 41951 5067 41868 4981 83 0.20 0.37 0.35604

before GA after GA

Current Data

Table 6.3: Overview improvements for data from Toyota’s proposed changes

before GA after GA Improvement

Toyota's Proposed Layout 291641 216057 25.92%

New Layout 1 162783 159228 2.18%

New Layout 2 172705 162052 6.17%

New Layout 3 380836 261713 31.28%

Data from Proposed Changes

Travel Distance
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Table 6.4: Results analysis for data from Toyota’s proposed changes

Mean %

Mean Variance Mean Variance Difference Difference T-Stat P-value

Toyota's Proposed 

Layout Total Dist. 291641 24037 216057 17671 75584 25.92 80.12 <0.0001

New Layout 1 

Total Distance 162783 11977 159228 11657 3555 2.18 6.73 <0.0001

New Layout 1 

Driving Distance 37137 3610 33582 3351 3555 9.57 22.82 <0.0001

New Layout 2 

Total Distance 172705 12965 162052 12127 10652 6.17 18.97 <0.0001

New Layout 2 

Driving Distance 54938 4915 43973 4326 10965 19.96 52.96 <0.0001

New Layout 2 

Walking Distance 117767 8673 118079 8714 -0.80 0.21102

New Layout 3 

Total Distance 380836 33180 261713 23713 119123 31.28 92.37 <0.0001

New Layout 3 

Driving Distance 321763 29395 208303 20753 113460 35.26 99.71 <0.0001

New Layout 3 

Walking Distance 59073 4453 53410 4043 5663 9.59 29.78 0.35604

before GA after GA

Data from Toyota's Proposed Changes
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Overall, the arrangement of the lanes has a significant effect on the workload of the team
members. The computational results demonstrate that GAs comprise a promising approach
for crossdocking layout problems. The eight comparisons made demonstrate that the travel
distances for all 8 layouts could be reduced by using a GA to find an optimal, or nearly
optimal layout. The decreases in travel distance were between 2.18% and 33.93%, which
would reduce the workload of the team members in the crossdocking area by over 1/3.
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Chapter 7

Conclusion

7.1 Introduction

Crossdocking has been studied before only in the context of the airline industry and distri-
bution industry. This is the first research, known to the author, that studies crossdocking in
the manufacturing industry.

This dissertation is concerned with the workload of the team members in a crossdocking
operation in a JIT environment. The layout and data of an existing crossdocking operation of
a particular JIT company, namely Toyota, was chosen to test the influence of different factors
on the workload:

• percentage of incoming pallets that have to be crossdocked

• layout of the crossdocking area

• volume of incoming quantities

Workload was measured as total travel distance; in layouts where parts are carried and also
traveled by dolly, the measurement was split into walking distance and driving distance.
Simulation studies were used to test the three factors.

As a further step, the arrangement of lanes in the layout was optimized. Lanes that have
a high level of crossdocking activity should be close together. Since an exhaustive search
would be too costly, a Genetic Algorithm was used to optimize the lane arrangement.
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7.2 Conclusions about research questions

For the first research question we found a linear relationship between the percentage of
pallets that have to be crossdocked and the workload of the team member. Keeping all
the other factors constant and adjusting he percentage of quantities each lane combination
receives, the workload doubled when the percentages of crossdocking pallets doubled.

For the volume of incoming quantities and the layout aspect of the study, the analysis of
the simulation results was split into two sets: the first set of analyses used the current data,
observed at Toyota, the second set of analyses used data resulting from a proposed change
suggested by Toyota. For the current data the current layout was used as a control group
for the comparison with three newly designed layouts. For the analysis of data from the
proposed changes, the proposed changed layout was used as the control group. In both cases
the control group performed worse than two of the new layouts. The reduction of work-
load was substantial, over 50% for the best layout. Whereas the best shape in the study
of Bartholdi and Gue [Bartholdi III and Gue, 2001] was related to the number of receiv-
ing/outgoing doors, the performance of the layouts test in this dissertation depended on how
the travel distance was calculated. Two different measurements were used to calculate the
total travel distance. First, the total distance was calculated as walking distance plus driv-
ing distance, which is the worst case scenario. In this case, the first newly designed layout
performed best. Second, the driving distance was divided by three, assuming that dollies
travel three times faster than people walk. In this case, the second newly designed layout
performed best.

But workload is not the only parameter that has to be taken into account when designing a
new layout. Other things, like overall workload, floorspace and safety of the team members
also have to be considered.

The third research question was more challenging than originally thought. An increase in
volume of incoming parts does not necessarily lead to an increase in the workload of the
team members. The same is true for a decrease in volume of incoming parts, as shown in the
examples of Table 4.17. This research had to be limited to the identification of the factors
involved: pallet size, number of incoming parts, number of suppliers, part mix and delivery
interval/number of trucks.

The last research question was concerned with the arrangement of lanes in the layouts. Be-
cause calculating all the possibilities would require either a large number of computers or a
very long time (see section 5.8 for more detail), a GA was used for the optimization of the
arrangement of the lane. Wheres a GA does not necessarily give the overall best solution, it
will find a good solution in a very short time. All the layouts could be improved by rearrang-
ing the lanes. The results of the GA were very encouraging; it found the optimal layout in 95
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of 100 test runs and it did it in only seconds. This would make it a good tool for practitioners
since it provides a good relationship between the goodness of the solution and computational
cost/time.

Overall, this study shows that a reduction of the workload of the team members in the cross-
docking area is possible, which would allow companies not only to reduce handling cost but
also to achieve a decrease in lead time between unloading of the truck and unloading of the
parts at the assembly line.

7.3 Limitations and Future Research

Because this is the first study of crossdocking in a JIT environment, assumptions had to be
made to define the proper scope of the research questions. Increasing the complexity of the
research questions opens a wide range of research possibilities.

One of the research questions in this study found that there is a linear relationship between
the percentage level of crossdocking activity and the workload of the team members when the
percentage of quantities each lane combination (from lane/to lane) receives is kept the same.
An extension of this study could investigate the influence of changes in the percentage of
quantities each lane combination receives. This factor could not only influence the workload
of the team members but also the choice of the best layout design or lane arrangement.

Further, in this dissertation the design of the different crossdocking layout is restricted to 12
lanes. Bartholdi and Gue [Bartholdi III and Gue, 2001] have shown in their study about the
shape of a crossdock in the distribution industry that the best layout varies with the size of
the crossdocking operation. A similar study with different numbers of lanes would be worth
exploring.

The relationship between the volume of incoming parts and the workload of the team mem-
bers is another area that needs further investigation. Not only should the direct relationship
of the factors identified in this study on the workload be examined in more detail, but also
their relationship to each other.

Another possible research area would be to extend the existing studies of the sequencing and
balancing of mixed model assembly lines to include as one of its objectives a minimized
and/or balanced workload on the crossdocking area.

The results found in this study could also be applied to other crossdocking operations, for
example, at large warehouses such as Walmart.

One limitation of this study is that there is no direct data exchange between the simulation
and the Genetic Algorithm. The GA uses the original data from Toyota as input whereas
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the simulation study used a distribution data developed from the original data as input. Thus
there is a slight chance that the best layout found by the GA is not the best layout for the
data from the simulation but since all layouts showed improvements the additional work of
creating an interface between the two application might not be necessary.

Another limitation of the study is that the travel distance is the only workload that is consid-
ered for the team members in the crossdocking area. The work resulting from unwrapping
the pallets, and picking up and setting down the boxes is not considered. Additionally, the
workloads for the forklift drivers and the team member that unload the boxes at the assembly
line are not included in the study. The inclusion of all of this factors in further studies would
give a better insight into the overall work in a crossdocking operation.
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Appendix A
Parallel Exhaustive Search Program

#include <iostream>
#include <string>
#include <sstream>
#include <fstream>
#include <iomanip>

#include "blitz/array.h"
#include "mpi.h"

using namespace std;

// reading from argv[1] the distance between lanes
// reading from argv[2] the boxes between lanes
// writing to argv[3]best.txt argv[3]worst.txt the solution
int main(int argc, char** argv)
{

const int NLANES = 12;

// MPI start
int ierr = MPI_Init(&argc, &argv); if (ierr != MPI_SUCCESS) exit(1);
int myRank, totalSize;
ierr = MPI_Comm_rank(MPI_COMM_WORLD, &myRank);
if (ierr != MPI_SUCCESS) exit(3);
ierr = MPI_Comm_size(MPI_COMM_WORLD, &totalSize);
if (ierr != MPI_SUCCESS) exit(4);
//
if (argc != 4) {

cerr < < argv[0] < < "dist.txt boxes.txt outfile\n";
exit(5);

}
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blitz::Array<int, 2> distLanes(NLANES,NLANES);
blitz::Array<double, 2> nboxesLanes(NLANES,NLANES);
//
// read the distances between the lanes from file
ifstream inDist(argv[1]);
if(!inDist) {

cerr < < "could not read data file" < < argv[1] < < "\n";
exit(1);

}
cout < < "reading distance file " < < argv[1] < < endl;
int ii = 0;
blitz::Array<int, 1> d(NLANES);
while (inDist > >

d(0) > > d(1) > > d(2) > > d(3) > > d(4) > > d(5) > >
d(6) > > d(7) > > d(8) > > d(9) > > d(10)> > d(11)) {

for (int j=0; j < NLANES; ++j) {
distLanes(ii,j) = d(j);

}
++ii;

}
if (myRank == 0) {

cout < < "distLanes array" < < endl;
cout < < distLanes < < endl;

}

//
// read the number of boxes between each lane from file
ifstream inBoxes(argv[2]);
if(!inBoxes) {

cerr < < "could not read data file" < < argv[2] < < "\n";
exit(1);

}
cout < < "reading nboxes file " < < argv[2] < < endl;
ii = 0;
blitz::Array<double, 1> b(NLANES);
while (inBoxes > >

b(0) > > b(1) > > b(2) > > b(3) > > b(4) > > b(5) > >
b(6) > > b(7) > > b(8) > > b(9) > > b(10)> > b(11)) {

for (int j=0; j < NLANES; ++j) {
nboxesLanes(ii,j) = b(j);

}
++ii;

}
if (myRank == 0) {

cout < < "nboxesLanes array" < < endl;
cout < < nboxesLanes < < endl;
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}
// now computer what each of the processors has to do
blitz::Array<int, 1> iwork(NLANES*NLANES-NLANES);
blitz::Array<int, 1> jwork(NLANES*NLANES-NLANES);
int pn = 0;
for (int i=0; i < NLANES; ++i)

for (int j=0; j < NLANES; ++j) {
if (i!=j) {

iwork(pn) = i;
jwork(pn) = j;
++pn;

}
}

// now do the work
blitz::Array<int, 1> cl(NLANES); // current lay-

out
blitz::Array<int, 1> bl(NLANES); // best layout
double bd; // best distance
double cd; // current distance
blitz::Array<double, 2> dl(NLANES,NLANES); // distance ma-

trix for current layout
int distance;
double boxes;
bd = 1.e30;

int i = iwork(myRank);
int j = jwork(myRank);
cout < < myRank < < ": " < < i < < ", " < < j < < endl;
for(int k=0; k<NLANES; k++)

for(int l=0; l<NLANES; l++)
for(int m=0; m<NLANES; m++)

for(int n=0; n<NLANES; n++)
for(int o=0; o<NLANES; o++)

for(int p=0; p<NLANES; p++)
for(int q=0; q<NLANES; q++)

for(int r=0; r<NLANES; r++)
for(int s=0; s<NLANES; s++)

for(int t=0; t<NLANES; t++)
{

if (i!=t && i!=s && i!=r && i!=q && i!=p && i!= o
&& i!= n && i!=m && i!=l && i!=k && i!=j &&

j!=t && j!=s && j!=r && j!=q && j!=p && j!= o
&& j!= n && j!=m && j!=l && j!=k &&

k!=t && k!=s && k!=r && k!=q && k!=p && k!= o
&& k!= n && k!=m && k!=l &&
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l!=t && l!=s && l!=r && l!=q && l!=p && l!= o
&& l!= n && l!=m &&

m!=t && m!=s && m!=r && m!=q && m!=p && m!= o
&& m!= n &&

n!=t && n!=s && n!=r && n!=q && n!=p && n!= o &&
o!=t && o!=s && o!=r && o!=q && o!=p &&
p!=t && p!=s && p!=r && p!=q &&
q!=t && q!=s && q!=r &&
r!=t && r!=s &&
s!=t)

{
cl(0 )=i;
cl(1 )=j;
cl(2 )=k;
cl(3 )=l;
cl(4 )=m;
cl(5 )=n;
cl(6 )=o;
cl(7 )=p;
cl(8 )=q;
cl(9 )=r;
cl(10)=s;
cl(11)=t;
// calculate distance
for(int ii=0; ii < NLANES; ii++) {

int icl = cl(ii);

for(int jj=0; jj < NLANES; jj++) {
int jcl = cl(jj);

distance=distLanes(ii, jj);
boxes=nboxesLanes(icl,jcl);
dl(ii, jj)=distance*boxes;

}
}

cd = 0.;
for(int ii=0; ii < NLANES; ii++)

for (int jj=0; jj < NLANES; jj++) {
cd += dl(ii, jj);
}

if (cd < bd) {
bd = cd;
bl(0 ) = cl(0 );
bl(1 ) = cl(1 );
bl(2 ) = cl(2 );

88



bl(3 ) = cl(3 );
bl(4 ) = cl(4 );
bl(5 ) = cl(5 );
bl(6 ) = cl(6 );
bl(7 ) = cl(7 );
bl(8 ) = cl(8 );
bl(9 ) = cl(9 );
bl(10) = cl(10);
bl(11) = cl(11);
}

}
}

// output to screen
cout < < "Best Layout for processor " < < myRank < < endl;
cout < < bl < < endl;
cout < < "Distance: " < < bd < < endl;

// output to file
ostringstream myos;
myos < < argv[3] < < myRank < < ".txt";
string fileName(myos.str());
ofstream outFile(fileName.c_str());
outFile < < "Best Layout for processor " < < myRank < < endl;
outFile < < bl < < endl;
outFile < < "Distance: " < < bd < < endl;
ierr = MPI_Finalize();
if (ierr != MPI_SUCCESS) exit(7);

exit(0);
}
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Appendix B
Evaluation function of GA

#include <math.h>
#include <ga/GASStateGA.h>
#include <ga/GAListGenome.h>
#include <ga/garandom.h>

#include <iostream>
#include <fstream>
#include <iomanip>
#include "blitz/array.h" // array library

using namespace std;

#define lanes 12
#define Dist_FILE "distances.txt"
#define Quantities_FILE "quantities.txt"

float DISTANCE[lanes][lanes];
double x[lanes],y[lanes];
int nlanes = 0;

blitz::Array<int, 2> distLanes(lanes,lanes);
blitz::Array<double, 2> nboxesLanes(lanes,lanes);
blitz::Array<double, 2> dl(lanes,lanes);
blitz::Array<int, 1> cl(lanes);
blitz::Array<int, 1> layout(lanes);

// You can use either edge recombination crossover or par-
tial match crossover.
// Which one you select makes a HUGE difference in the perfor-
mance of the
// genetic algorithm. Only one of the two follow-
ing lines should be commented.
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#define XOVER PMXover // (Partial Match Crossover)
// #define XOVER ERXover // (Edge Recombina-
tion Crossover)

float Objective(GAGenome&);
int Mutator(GAGenome&, float);
void Initializer(GAGenome&);
float Comparator(const GAGenome&, const GAGenome&);
int ERX-
over(const GAGenome&, const GAGenome&, GAGenome*, GAGenome*);
int PMX-
over(const GAGenome&, const GAGenome&, GAGenome*, GAGenome*);
void ERXOneChild(const GAGenome&, const GAGenome&, GAGenome*);

int
main(int argc, char** argv) {

// cout < < "Lane Optimization Program.\n" < < endl;

// See if we’ve been given a seed to use (for testing pur-
poses). When you
// specify a random seed, the evolution will be ex-
actly the same each time
// you use that seed number.

unsigned int seed=0;
for(int ii=1; ii<argc; ii++) {

if(strcmp(argv[ii++],"seed") == 0) {
seed = atoi(argv[ii]);

}
}

// read file with distances between lanes

ifstream inDist(Dist_FILE);
if(!inDist) {

cerr < < "could not read data file " < < Dist_FILE < < "\n";
exit(1);

}

int ii=0;
blitz::Array<int, 1> d(lanes);

while(ii!=12) {
inDist > > d(0)> > d(1) > > d(2) > > d(3) > > d(4) > > d(5) > >
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d(6) > > d(7) > > d(8) > > d(9) > > d(10)> > d(11) ;
for (int j=0; j < lanes; ++j) {

distLanes(ii,j) = d(j);
}
ii++;

}

// read the number of boxes between each lane from file
ifstream inBoxes(Quantities_FILE);
if(!inBoxes) {

cerr < < "could not read data file" < < Quanti-
ties_FILE < < "\n";

exit(1);
}
cout < < "reading nboxes file " < < Quantities_FILE < < endl;
ii = 0;
blitz::Array<double, 1> b(lanes);

while (ii!=12) {
in-

Boxes > > b(0) > > b(1) > > b(2) > > b(3) > > b(4) > > b(5) > >
b(6) > > b(7) > > b(8) > > b(9) > > b(10)> > b(11) ;

for (int j=0; j < lanes; ++j) {
nboxesLanes(ii,j) = b(j);

}
++ii;

}

GAListGenome<int> genome(Objective);
genome.initializer(::Initializer);
genome.mutator(::Mutator);
genome.comparator(::Comparator);
genome.crossover(XOVER);

GASteadyStateGA ga(genome);
ga.minimize();
ga.pReplacement(0.5);
ga.populationSize(1000);
ga.nGenerations(100);
ga.pMutation(0.5);
ga.pCrossover(1.0);
ga.selectScores(GAStatistics::AllScores);
ga.parameters(argc, argv);

// cout < < "initializing..."; cout.flush();
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ga.initialize(seed);
// cout < < "evolving..."; cout.flush();

while(!ga.done()) {
ga.step();

// if(ga.generation() % 10 == 0) {
// cout < < ga.generation() < < " "; cout.flush();
// }

}

genome = ga.statistics().bestIndividual();
cout < < "shortest distance " < < genome.score() < <" " ;
cout < < "layout" < < genome < < "\n";

// cout < < ga.statistics() < < "\n";

return 0;
}

// Here are the genome opera-
tors that we want to use for this problem.

float
Objective(GAGenome& g) {

GAListGenome<int> & genome = (GAListGenome<int> &)g;
float dist = 0;

// calculate distance

int distance;
double boxes;

GAListIter<int> titer(genome);
if(titer.head()){

for(int i=0; i<lanes; i++) {
cl(i) = *titer.current();

*titer.next();
}

}

float testdist=0.00;

for(int ii=0; ii < lanes; ii++) {
int icl = cl(ii);

for(int jj=0; jj < lanes; jj++) {

93



int jcl = cl(jj);

distance=distLanes(ii, jj);
boxes=nboxesLanes(icl,jcl);
dl(ii, jj)=distance*boxes;
testdist = dl(ii, jj);

}
}

dist = 0.;
for(int ii=0; ii < lanes; ii++)

for (int jj=0; jj < lanes; jj++) {
testdist = dl(ii, jj);
dist += dl(ii, jj);

}

return dist;
}

void
Initializer(GAGenome& g) {

GAListGenome<int> &child=(GAListGenome<int> &)g;
while(child.head()) child.destroy(); // destroy any pre-

existing list

int i,currentlane;
static int visit[lanes];

memset(visit, 0, lanes*sizeof(int));
currentlane=GARandomInt(0,lanes-1);
visit[currentlane]=1;
child.insert(currentlane,GAListBASE::HEAD); // the head node

for( i=1; i<lanes; i++) {
do {

currentlane=GARandomInt(0,lanes-1);
} while (visit[currentlane]);
visit[currentlane]=1;
child.insert(currentlane);

} // each subsequent node
}

int
Mutator(GAGenome& g, float pmut) {

GAListGenome<int> &child=(GAListGenome<int> &)g;
register int n, i;
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if ((GARandomFloat() >= pmut) || (pmut <= 0)) return 0;

n = child.size();

float f1=GARandomFloat();
if (f1<0.5) {

int r1=GARandomInt(0,n-1);
int r2=GARandomInt(0,n-1);

child.swap(r1,r2); // swap only one time
}
else {

int r3= GARandomInt(1,((int)(n/2-1)));
int nNodes = r3; // displace nNodes
int r4= GARandomInt(0,n-1);

child.warp(r4); // with or without

GAList<int> TmpList; // inver-
sion

for(i=0;i<nNodes;i++) {
int *iptr = child.remove();
TmpList.insert(*iptr,GAListBASE::AFTER);
delete iptr;
child.next();

}

int invert;
int r5 = GARandomInt(0,n-nNodes);
child.warp(r5);
float f5 = GARandomFloat();
invert =(f5<0.5) ? 0 : 1;
if (invert) TmpList.tail(); else TmpList.head();

for(i=0;i<nNodes;i++) {

int *iptr = TmpList.remove();
child.insert(*iptr,GAListBASE::AFTER);

delete iptr;
if (invert) ; else TmpList.next();

}
}
child.head(); // set iterator to root node
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return (1);
}

int
ERXover(const GAGenome& g1, const GAGenome& g2, GAGenome* c1,
GAGenome* c2) {

int nc=0;
if(c1) { ERXOneChild(g1,g2,c1); nc+=1; }
if(c2) { ERXOneChild(g1,g2,c2); nc+=1; }
return nc;

}

void
ERXOneChild(const GAGenome& g1, const GAGenome& g2,
GAGenome* c1) {

GAListGenome<int> &mate1=(GAListGenome<int> &)g1;
GAListGenome<int> &mate2=(GAListGenome<int> &)g2;
GAListGenome<int> &sis=(GAListGenome<int> &)*c1;

int i,j,k,t1,t2,currentlane;

static char CM[lanes][lanes],visit[lanes];
memset(CM, 0, lanes*lanes*sizeof(char));
memset(visit, 0, lanes*sizeof(char));

while (sis.head()) sis.destroy();

// create connection matrix
mate1.head();
for(j=0; j<lanes; j++) {

t1 = *mate1.current(); t2 = *mate1.next();
CM[t1][t2]=1; CM[t2][t1]=1;

}
mate2.head();
for(j=0; j<lanes; j++) {

t1 = *mate2.current(); t2 = *mate2.next();
CM[t1][t2]=1; CM[t2][t1]=1;

}

// select 1st currentlane randomly
int r6=GARandomInt(0,lanes-1);
currentlane=r6 ;
visit[currentlane]=1; mem-

set(CM[currentlane], 0, lanes*sizeof(char));
sis.insert(currentlane); // the head node

96



GAList<int> PossFollowList;
GAList<int> FollowersList[5];
while (PossFollowList.head()) PossFollowList.destroy();
for(k=0; k<5; k++) {

while (FollowersList[k].head()) FollowersList[k].destroy();
}

// select the following currentlane with the mini-
mal no of next folling currentlanes

int nPoss,nFollow;
for(i=1; i<lanes; i++) {

nPoss = 0;
for(j=0; j<lanes; j++) { // no of poss. follow-

ing currentlanes
if (CM[j][currentlane]) {

nPoss += 1;
PossFollowList.insert(j);}

}
// nPoss = 0;
if (nPoss == 0) {

do {currentlane=GARandomInt(0,lanes-
1);} while (visit[currentlane]); // no follower

visit[currentlane]=1; mem-
set(CM[currentlane], 0, lanes*sizeof(char));

sis.insert(currentlane);
}
else {

PossFollowList.head();
for(j=0; j<nPoss; j++) {

nFollow = 0;
currentlane = (*PossFollowList.current());
for(k=0; k<lanes; k++) {

if (CM[k][currentlane]) nFollow++;
}
FollowersList[nFollow].insert(currentlane);
PossFollowList.next();

}
k=0;
while (FollowersList[k].size() == 0) k++;

// Follower-
sList[k].warp(GARandomInt(0,FollowersList[k].size()));

currentlane = (*FollowersList[k].current());
visit[currentlane]=1; mem-

set(CM[currentlane], 0, lanes*sizeof(char));
sis.insert(currentlane);
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titer(sis);
if(titer.head()){

for(int i=0; i<lanes; i++) {
layout3[i] = *titer.current();
*titer.next();

}
}

}
while (PossFollowList.head()) PossFollowList.destroy();
for(k=0; k<5; k++) {

while (FollowersList[k].head()) Follower-
sList[k].destroy();

}
}
sis.head(); // set iterator to head of list

titer(sis);
if(titer.head()){

for(int i=0; i<lanes; i++) {
layout3[i] = *titer.current();
*titer.next();

}
}

}

int
PMXover(const GAGenome& g1, const GAGenome& g2, GAGenome* c1,
GAGenome* c2) {

GAListGenome<int> &mom=(GAListGenome<int> &)g1;
GAListGenome<int> &dad=(GAListGenome<int> &)g2;

int a = GARandomInt(0, mom.size());
int b = GARandomInt(0, dad.size());
int h;
if (b<a) { h=a; a=b; b=h; }

int* index;
int i,j,nc=0;

if(c1) {
GAListGenome<int> &sis=(GAListGenome<int> &)*c1;
sis.GAList<int>::copy(mom);
GAListIter<int> diter(dad);
index = diter.warp(a);
for(i=a; i<b; i++, index=diter.next()){
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if(*sis.head() == *index){
sis.swap(i,0);

}
else{

for(j=1; (j<sis.size()) && (*sis.next() != *in-
dex); j++);

sis.swap(i,j); // no op if j>size
}

}
sis.head(); // set iterator to head of list
nc += 1;

}
if(c2) {

GAListGenome<int> &sis=(GAListGenome<int> &)*c2;
sis.GAList<int>::copy(mom);
GAListIter<int> diter(dad);
index = diter.warp(a);
for(i=a; i<b; i++, index=diter.next()){

if(*sis.head() == *index){
sis.swap(i,0);

}
else{

for(j=1; (j<sis.size()) && (*sis.next() != *in-
dex); j++);

sis.swap(i,j); // no op if j>size
}

}
sis.head(); // set iterator to head of list
nc += 1;

}

return nc;
}

float
Comparator(const GAGenome& g1, const GAGenome& g2) {

GAListGenome<int> &a = (GAListGenome<int> &)g1;
GAListGenome<int> &b = (GAListGenome<int> &)g2;

int i,j,t1,t2;
float dist=lanes;

static char CM1[lanes][lanes],CM2[lanes][lanes];
memset(CM1, 0, lanes*lanes*sizeof(char));
memset(CM2, 0, lanes*lanes*sizeof(char));
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// create connection matrix CM1
a.head();
for(i=0; i<lanes; i++) {

t1 = *a.current(); t2 = *a.next();
CM1[t1][t2]=1; CM1[t2][t1]=1;

}
// create connection matrix CM2
b.head();
for(i=0; i<lanes; i++) {

t1 = *b.current(); t2 = *b.next();
CM2[t1][t2]=1; CM2[t2][t1]=1;

}
//calc distance = how many edges are different
for (i=0; i<lanes; i++) {

for (j=i; j<lanes; j++) {
if (CM1[i][j]&CM2[i][j]) dist--;

}
}
return (dist);

}

// Here we over-
ride the _write method for the List class. This lets us see
// exactly what we want (the de-
fault _write method dumps out pointers to the
// data rather than the data contents).
// This routine prints out the contents of each ele-
ment of the lis // sepa-
rated by a space. It does not put a new-
line at the end of the list.
// Notice that you can override ANY function of a tem-
plate class. This is
// called "specialization" in C++ and it lets you tai-
lor the behaviour of a
// template class to better fit the type.
int
GAListGenome<int>::write(ostream & os) const
{

int *cur, *head;
GAListIter<int> tmpiter(*this);
if((head=tmpiter.head()) != 0) {

os < < *head < < " ";
for(cur=tmpiter.next(); cur && cur != head; cur=tmpiter.next())
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os < < *cur < < " ";
}

return os.fail() ? 1 : 0;
}

#ifdef NO_AUTO_INST
#include <ga/GAList.C>
#include <ga/GAListGenome.C>
#if defined(__GNUG__)
template class GAList<int>;
template class GAListGenome<int>;
#else
GAList<int>;
GAListGenome<int>;
#endif
#endif
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