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ABSTRACT OF DISSERTATION 
 

AN EXAMINATION OF DIETARY AMENDMENTS TO AFFECT PHOSPHORUS 
UTILIZATION IN GROWING PIGS 

 
For economical and ecological reasons, efficiency and profitability of 

swine production relies heavily on the way pigs utilize key nutrients such as P, 

which is considered a potential pollutant of water ecosystems. Although cereal 

grains and oilseed meals contain enough P to fulfill the biological needs of pigs, 

most of this P is tightly bound as phytate. As pigs do not have enough phytase 

(PHY) to cleave P from phytate, it is excreted in the feces. To prevent a 

deficiency, diets have traditionally been supplemented with highly available 

inorganic sources of P. Today, an environmentally-friendly alternative is to 

supplement diets with PHY. 

Growth promoting antibiotics are also used to enhance the utilization of 

dietary components such as energy and N. It has been suggested that the 

antibiotic virginiamycin (VIR) could also improve phytate-P utilization by pigs. 

Eight experiments evaluated the effects of VIR and/or PHY amendments 

on digestibility, retention, excretion, growth, bone characteristics, meat traits, and 

ileal microflora populations of growing pigs fed corn–soybean meal (SBM) diets 

(seven experiments) or corn-SBM-rice bran diets (one experiment). Additionally, 

a comparison between two digestibility procedures was conducted for two of the 

experiments. 

On average, VIR improved P digestibility and total P excretion by 5.0%, 

and P retention as a percent of absorption by 1.0%. Phytase amendments 

improved P digestibility between 14 and 27%, and P retention (as a % of 

absorption) between 0.7 and 2.5%. In the growth trial, VIR supplementation was 

associated with numerical differences favoring bone mineralization and ileal 

phytate-utilizing bacteria populations. These observations demonstrate additional 



 
 

research is warranted with this antibiotic under conditions of higher stress and 

bacterial load in the environment. 

According to the comparisons between digestibility methods, a single grab 

fecal collection was not reliable. Further, a cumulative grab collection for five 

days was not as good an option as the total collection method. 

It is concluded that VIR does improve P utilization in pigs fed corn-SBM 

diets not supplemented with inorganic P. Similar effects, but of greater 

magnitude, were confirmed for PHY-amended diets with either normal or high 

levels of phytate P. 

 
KEYWORDS: Pigs, Virginiamycin, Phytase, Phosphorus utilization, 
Phosphorus excretion 
 
 
 
 
 
 
 
 
 

Jorge H. Agudelo-Trujillo 

    September 6, 2005 



 
 

AN EXAMINATION OF DIETARY AMENDMENTS TO AFFECT PHOSPHORUS 
UTILIZATION IN GROWING PIGS 

 

By 

Jorge Hernan Agudelo-Trujillo 

 

 

 

 

 

              Merlin D. Lindemann 
Director of Dissertation 

 

David L. Harmon 
Director of Graduate Studies 

 
September 6, 2005 

 



 
 

RULES FOR THE USE OF DISSERTATIONS 

 
Unpublished dissertations submitted for the Doctor’s degree and deposited in the 
University of Kentucky Library are as a rule open for inspection, but are to be 
used only with due regard to the rights of the authors. Bibliographical references 
may be noted, but quotations or summaries of parts may be published only with 
permission of the author, and with the usual scholarly acknowledgements. 
 

Extensive copying of publication of the dissertation in whole or in part also 
requires the consent of the Dean of the Graduate School of the University of 
Kentucky. 

 

 
 



 
 

DISSERTATION 

 

 

 

 

Jorge Hernan Agudelo-Trujillo 

 

 

 

 

The Graduate School 

University of Kentucky 

2005 



 
 

AN EXAMINATION OF DIETARY AMENDMENTS TO AFFECT PHOSPHORUS 
UTILIZATION IN GROWING PIGS 

 
 
 
 
 
 

DISSERTATION 
 

A dissertation submitted in partial fulfillment of the 
requirements for the degree of Doctor of Philosophy in the 

College of Agriculture 
at the University of Kentucky 

 
 
 

By 

Jorge Hernan Agudelo-Trujillo 

Lexington, Kentucky 

Director: Dr. Merlin D. Lindemann, Professor of Animal Science 

Lexington, Kentucky 

 

2005 

 

Copyright© Jorge Hernan Agudelo-Trujillo 2005 



 iii

ACKNOWLEDGMENTS 
 
 

I want to express my sentiment of gratitude, respect, and appreciation to 

my major professor, Dr. Merlin D. Lindemann for his permanent support, advice 

and patience during my studies. Special thanks also to my committee members: 

Dr. Gary Cromwell, Dr. Richard Coffey, Dr. John Grove, and also to Dr. Steve 

Workman for serving as the Outside Examiner. Their recommendations and 

support are gratefully acknowledged. 

Thanks to Dr. Melissa Newman and her graduate students Ericka Pettey 

and Suzana Portocarrero for their help with the microbiology work. Special 

thanks to my fellow student Beob Gyun Kim for his valuable help with the animals 

in one of the experiments, and to Dr. Noel Inocencio for his assistance with the 

slaughter and lab work. Thanks to the graduate students Aitor Balfagon, Curt 

Elmore, Eduardo Xavier, Ana de Souza, Terry Meyer, Allen Pettey and Tuoying 

Ao for the long hours helping with the processing of the pigs. 

Thanks to Mr. Jim Monegue, Mr. William ‘Billy’ Patton and all the guys 

from the university farm who punctually delivered uniform and healthy pigs for the 

experiments. Thanks also to David Higginbotham for his assistance in the mixing 

of the experimental diets, and to Mr. Jim May for his help with the slaughter 

process.



 iv

 Thanks also to Mr. Jim Crutchfield and Ms. Tami Smith from the Analytical 

Service Laboratory at the University of Kentucky for their help with the atomic 

absorption equipment during many occasions. Thanks also to Dr. Austin Cantor, 

Dr. Herbert Strobel, and Dr. Eric Vanzant for allowing me to use their 

laboratories. 

Thanks to Dr. Ron Nimmo from Phibro Co. for the financial assistance to 

carry out most of the experiments, and to Ricex Company for donating the 

product used in the last digestibility study. 

My studies would have not been possible without the economic support 

received from The Fulbright Commission, the Instituto Colombiano Para el 

Desarrollo de la Ciencia (Colciencias), and both the Universidad de Antioquia 

and the University of Kentucky. 

Last, but not least, I want to thank my wife Astrid for her constant support 

and encouragement. 
 
 
 
 



 v

TABLE OF CONTENTS 
 

ACKNOWLEDGMENTS------------------------------------------------------------------------- iii 

 

LIST OF TABLES -------------------------------------------------------------------------------- x 

 

LIST OF FIGURES ---------------------------------------------------------------------------- xiii 

 

Chapter 1, Introduction ------------------------------------------------------------------------  1 

 

Chapter 2, Literature Review 

Feed Utilization by Swine ------------------------------------------------------------  3 

Digestion and balance assessments -------------------------------------  4 

Digestibility methods ----------------------------------------------------------  6 

The total collection method ----------------------------------------  7 

The index method ----------------------------------------------------  9 

Total collection versus the index method ---------------------- 11 

Advantages and disadvantages ------------------------ 11 

Coprophagy in regular pens ----------------------------- 12 

Metabolism crates versus regular pens for balance 

trials ------------------------------------------------------------ 12 

Physical exercise in regular pens ---------------------- 13 

Collection length -------------------------------------------- 13 

Digestibility results by both methods ------------------ 15 

Indirect methods ----------------------------------------------------- 16 

Utilization of Alternative Feedstuffs in Modern Swine Nutrition ------------ 18 

Justification for using alternative feedstuffs in swine production - 19 

Alternative energy feedstuffs ---------------------------------------------- 21 

Availability of alternative energy feedstuffs ---------------------------- 24 

Rice bran -------------------------------------------------------------- 24 



 vi

TABLE OF CONTENTS (continued) 
 

Phosphorus, a Nutrient under Scrutiny ------------------------------------------ 26 

Biological importance of phosphorus ------------------------------------ 26 

Phosphorus distribution in the body ------------------------------------- 27 

Phosphorus absorption and excretion ---------------------------------- 28 

Phosphorus bioavailability and bone mineralization ----------------- 30 

Phosphorus dietary requirements and supplementation ----------- 32 

Phytate phosphorus --------------------------------------------------------- 34 

Endogenous phytases ------------------------------------------------------ 35 

Phosphorus and the environment ---------------------------------------- 37 

Minerals other than phosphorus as potential pollutants --- 38 

Targeting phosphorus excretion ------------------------------------------ 41 

Exogenous phytases ----------------------------------------------- 42 

Low phytate grains -------------------------------------------------- 44 

Genetically modified pigs ------------------------------------------ 44 

Growth Promoting Antibiotics ------------------------------------------------------ 45 

Modes of action and effects of antibiotics ------------------------------ 46 

Antibiotics and metabolism --------------------------------------- 47 

Antibiotics effects on energy metabolism ------------- 47 

Antibiotics effects on nitrogen metabolism ----------- 48 

Antibiotics effects on mineral metabolism ------------ 49 

Antibiotics and the gastrointestinal flora ----------------------- 50 

Antibiotics and carcass composition ---------------------------- 54 

The antibiotic virginiamycin ------------------------------------------------ 54 

Description and mode of action of virginiamycin ------------ 54 

Virginiamycin regulation by the FDA --------------------------- 55 

Effects of virginiamycin on growth ------------------------------ 56 

Effects of virginiamycin on DM, N, and mineral nutrition -- 59 

Effects of virginiamycin on carcass composition ------------ 60 

Effects of virginiamycin on the gastrointestinal flora -------- 60 



 vii

TABLE OF CONTENTS (continued) 
 

Effects of virginiamycin on rate of passage ------------------- 61 

Growth-promoting antibiotics and human health --------------------- 62 

Conclusions ----------------------------------------------------------------------------- 65 

 

Chapter 3, General Methodology 

General Objectives ------------------------------------------------------------------- 73 

Specific Objectives -------------------------------------------------------------------- 73 

Methods --------------------------------------------------------------------------------- 74 

Animals ------------------------------------------------------------------------- 74 

General management and facilities -------------------------------------- 75 

Common methods for the balance trials -------------------------------- 75 

Housing conditions for the balance trials ---------------------- 75 

Adaptation and collection procedures for the balance trials - 76 

Digestibility and retention calculations ------------------------- 77 

Dietary ingredients ----------------------------------------------------------- 78 

Ingredients common to all experiments ------------------------ 78 

Ingredients used in particular experiments -------------------- 79 

Summary of the Experiments ------------------------------------------------------ 80 

Statistical Analysis -------------------------------------------------------------------- 81 

 

Chapter 4, Phosphorus Utilization by Growing-Finishing Pigs Fed a P-Deficient 

Corn-Soybean Meal Diet Amended with Virginiamycin and/or Phytase  

– Experiments 1, 2, 3, and 4  

Introduction ----------------------------------------------------------------------------- 85 

Objectives ------------------------------------------------------------------------------- 86 

Experimental Procedures -------------------------------------------------------------87 

Animals and housing conditions ------------------------------------------ 87 

Dietary treatments ------------------------------------------------------------ 87 



 viii

TABLE OF CONTENTS (continued) 
 

Adaptation and collection procedures ----------------------------------- 89 

Sample preparation ---------------------------------------------------------- 90 

Laboratory analysis ---------------------------------------------------------- 91 

Experimental design and statistical analysis -------------------------- 93 

Results and Discussion -------------------------------------------------------------- 94 

Total collection ---------------------------------------------------------------- 94 

Experiment 1 --------------------------------------------------------- 95 

Experiments 2, 3, and 4 ------------------------------------------- 97 

Virginiamycin effects --------------------------------------- 97 

Phytase effects ---------------------------------------------- 99 

Index method ----------------------------------------------------------------  102 

Experiment 1 -------------------------------------------------------  102 

Experiment 2 -------------------------------------------------------  104 

Implications ---------------------------------------------------------------------------  105 

 

Chapter 5, Effects of Partial Deletion of Dicalcium Phosphate in Conjunction with 

Supplementation of Virginiamycin on Growth, Bone and Carcass Traits, Pork 

Quality, and Ileal Bacterial Populations in Growing-Finishing Pigs – Experiment 5 

Introduction ---------------------------------------------------------------------------  134 

Objectives -----------------------------------------------------------------------------  135 

Experimental Procedures -----------------------------------------------------------135 

Animals and housing conditions ----------------------------------------  135 

Dietary treatments ----------------------------------------------------------  136 

Sampling, laboratory analysis, and calculations --------------------  136 

Experimental design and statistical analysis ------------------------  139 

Results and Discussion ------------------------------------------------------------  139 

Growth performance -------------------------------------------------------  139 

Bone traits --------------------------------------------------------------------  141 



 ix

TABLE OF CONTENTS (continued) 

 
Carcass and meat traits --------------------------------------------------  142 

Ileal bacterial populations ------------------------------------------------  143 

Implications ---------------------------------------------------------------------------  144 

 

Chapter 6, Phosphorus Utilization in Growing Pigs Fed a Phosphorus Deficient 

Diet Supplemented With a Rice Bran Product and Amended With Phytase – 

Experiment 6 

Introduction ---------------------------------------------------------------------------  151 

Objectives -----------------------------------------------------------------------------  152 

Experimental Procedures -----------------------------------------------------------152 

Animals and housing conditions ----------------------------------------  152 

Dietary treatments ----------------------------------------------------------  152 

Adaptation and collection procedures ---------------------------------  153 

Sample preparation --------------------------------------------------------  153 

Laboratory analysis --------------------------------------------------------  154 

Experimental design and statistical analysis ------------------------  156 

Results and Discussion ------------------------------------------------------------  157 

Increasing levels of inclusion of Ricex-1000™ in the diet --------  158 

Nutrient digestibility in Ricex-1000™ ----------------------------------  162 

Phytase amendment on the diet containing 30% Ricex-1000™ -  163 

Implications ---------------------------------------------------------------------------  163 

 

Chapter 7, Summary of Dissertation ----------------------------------------------------  176 

 

APPENDICES ---------------------------------------------------------------------------------  180 

 

REFERENCES -------------------------------------------------------------------------------  208 

 

VITA ---------------------------------------------------------------------------------------------  235 



 x

LIST OF TABLES 
 

Table 2.1. Nutrient composition of corn and some alternative feedstuffs  
(adapted from Myer and Brendemuhl, 2001) -------------------------------------------- 67 
 
Table 2.2. Digestible energy and protein for pigs in selected feedstuffs  
(as fed basis) (adapted from Ensminger et al., 1990) --------------------------------- 68 
 
Table 2.3. Colombian production of several potential alternative feedstuffs  
during 2003 (FAO, 2004) --------------------------------------------------------------------- 69 
 
Table 2.4. Energy feed sources and their unavailable phosphorus contents 
(Adapted from NRC, 1998) ------------------------------------------------------------------ 70 
 
Table 3.1. List of abbreviations ------------------------------------------------------------- 82 
 
Table 3.2. General description of the experiments ------------------------------------ 84 
 
Table 4.1. Basal diet used in Exp. 1, 2, 3, and 4 -------------------------------------  107 
 
Table 4.2. Dietary treatments in Exp. 1, 2, 3, and 4  --------------------------------108 
 
Table 4.3. Expected and analyzed phytase (PHY) and virginiamycin (VIR) levels  
in the diets -------------------------------------------------------------------------------------  109 
 
Table 4.4. Total tract apparent digestibility coefficients (%) by the total  
collection method. Exp. 1 ------------------------------------------------------------------  110 
 
Table 4.5. Nutrient retention as a percent of absorption. Exp. 1 -----------------  111 
 
Table 4.6. Phosphorus and nitrogen balance. Exp. 1 -------------------------------  112 
 
Table 4.7. Total tract apparent digestibility coefficients (LS Means, %) by  
the total collection method. Exp. 2 -------------------------------------------------------  113 
 
Table 4.8. Total tract apparent digestibility coefficients (%) by the total 
collection method. Exp. 3 ------------------------------------------------------------------  114 
 
Table 4.9. Total tract apparent digestibility coefficients (%) by the total  
Collection method. Exp. 4 ------------------------------------------------------------------  115 
 
Table 4.10. Nutrient retention as a percent of absorption (LSMeans, %). Exp. 2 --- 116 
 
Table 4.11. Nutrient retention as a percent of absorption (%). Exp. 3 ----------  117 



 xi

LIST OF TABLES (continued) 
 

Table 4.12. Nutrient retention as a percent of absorption (%). Exp. 4 ----------  118 
 
Table 4.13. Phosphorus and nitrogen balance (LS Means). Exp. 2 -------------  119 
 
Table 4.14. Phosphorus and nitrogen balance. Exp. 3 -----------------------------  120 
 
Table 4.15. Phosphorus and nitrogen balance. Exp. 4 -----------------------------  121 
 
Table 4.16. Apparent nutrient digestibility LS Means (%) by the total 
collection method and by the index method. Exp. 1 ---------------------------------  122 

 
Table 4.17. Apparent nutrient digestibility LS Means (%) by the total  
collection method and by the index (CCP5) method. Exp. 2 ----------------------  123 
 
Table 5.1. Composition of experimental diets (%, as fed basis). Exp. 5 --------  145 
 
Table 5.2. Calculated chemical composition of experimental diets. Exp. 5 ----  146 
 
Table 5.3. Virginiamycin (VIR) levels found by analysis of diets. Exp. 5 -------  147 
 
Table 5.4. Overall growth performance and bone responses. Exp. 5 -----------  148 
 
Table 5.5. Carcass and meat traits. Exp. 5 --------------------------------------------  149 
 
Table 5.6. Ileal bacterial counts (Log10 CFU/g) and pH. Exp. 5 -----------------  150 
 
Table 6.1. Basal diet composition. Exp. 6 ----------------------------------------------  165 
 
Table 6.2. Calculated composition of the experimental diets. Exp. 6 -----------  166 

 
Table 6.3. Analyzed nutrient composition of the experimental diets, the basal  
diet, and the feedstuffs used. Exp. 6 ----------------------------------------------------  167 
 
Table 6.4. Analyzed phytase levels. Exp. 6 --------------------------------------------  168 
 
Table 6.5. Nutrients (%) contributed by RX to each experimental diet. Exp. 6  169 
 
Table 6.6. Apparent (%) digestibility of nutrients at increasing levels of RX  
and apparent digestibility in the RX product. Exp. 6 ---------------------------------  170 
 



 xii

LIST OF TABLES (continued) 
 
Table 6.7. Retention of nutrients (as a % of absorption) at increasing levels 
of RX inclusion. Exp. 6 ----------------------------------------------------------------------  171 
 
Table 6.8. Phosphorus and nitrogen balance at increasing levels of RX  
inclusion. Exp. 6 ------------------------------------------------------------------------------  172 
 
Table 6.9. Apparent (%) digestibility of nutrients when supplementing PHY  
to low and high RX diets. Exp. 6 ----------------------------------------------------------  173 
 
Table 6.10. Retention of nutrients (as a % of absorption) when  
supplementing phytase (PHY) to low and high RX diets. Exp. 6 -----------------  174 
 
Table 6.11. Phosphorus and nitrogen balance when supplementing phytase  
(PHY) to low and high RX diets. Exp. 6 -------------------------------------------------  175 
 
Table 7.1. Improvements in apparent digestibility (total collection) and  
retention resulting from subtracting control diet from amended diet in  
Exp. 1, 2, 3, and 4 ----------------------------------------------------------------------------  179  
 



 xiii

LIST OF FIGURES 
 

Figure 2.1. Colombian imports of yellow corn (adapted from Martinez and 
Acevedo, 2004) --------------------------------------------------------------------------------- 70 
 
Figure 2.2. Model of phytate complex (phytin) chelating different nutrients  
(Sutton et al., 2004) ---------------------------------------------------------------------------- 71 
 
Figure 2.3. Virginiamycin structures M and S (Adapted from Lee et al., 1996) - 71 
 
Figure 4.1. Schedule of events. Exp. 1 -------------------------------------------------  124 
 
Figure 4.2. Schedule of events. Exp. 2 and 4 -----------------------------------------  125 
 
Figure 4.3. Schedule of events. Exp. 3 -------------------------------------------------  126 
 
Figure 4.4. Change in P digestibility to VIR in Exp. 1, 2, 3, and 4 based on  
the digestibility level of the control diets  -----------------------------------------------  127 
 
Figure 4.5. Apparent phosphorus digestibility and retention as a % of absorption 
(Ret. Absorption) by amending Diet 1 with VIR in all the experiments ----------  128  
 
Figure 4.6. Changes in P digestibility and retention by PHY and VIR  
amendments in all the experiments (the diets compared from the  
respective experiments are listed below the experiments on the X-axis) ------  129 
 
Figure 4.7. Apparent nutrient digestibility by total collection method and 
index method, and the difference between the methods. Exp. 1 -----------------  130 
 
Figure 4.8. Changes in nutrient digestibility patterns with increasing cumulative 
collection period as measured by the index method. Experiment 2 -------------  131 
 
Figure 4.9. Chromium fecal excretion concentration from cumulative period 1 
through cumulative period 5. Exp. 2 -----------------------------------------------------  132 
 
Figure 4.10. Apparent nutrient digestibility by the total collection method  
and the index method (cumulative collection period 5). Exp. 2 -------------------  133 
 



 1

CHAPTER 1 
 

INTRODUCTION 
 
 

The increasing demand for feedstuffs by the swine industry, along with 

various environmental issues resulting from high density swine operations, are 

situations addressed by swine nutritionists worldwide. Feed resources have to be 

used in the most efficient way in order to keep the industry competitive and also 

to decrease the excretion of potential environmental pollutants. Feed efficiency 

and economic profitability depend heavily on how well pigs (Sus scrofa) digest, 

absorb and transform feed nutrients into pork. Profitability and success of pig 

production are tied to the digestibility of costly and potentially polluting nutrients. 

The digestibility value of a nutrient is the percent apparently absorbed 

from the gastrointestinal tract. Those digestibility values can be assessed 

through different methods during a digestion trial. Some of the methods can be 

applied only under specific conditions and each has its advantages and 

disadvantages. 

Among the nutrients commonly investigated in digestibility studies, P has 

been at the center of attention for some time, both from a biological and also 

from an environmental perspective. Although it is recognized as a key nutrient 

required for important physiologic and metabolic processes, including a 

significant role as a structural element in bone, it is also considered a potential 

pollutant of water ecosystems. 

Common cereal grains (e.g., corn – Zea maiz) and oilseed meals (e.g., 

soybean - Glycine max) contain enough P to fulfill the requirements of pigs, but 

most of it is incorporated in phytic acid, which is poorly available to monogastric 

animals. For this reason, swine feeds are usually supplemented with highly 

available inorganic sources of P such as monocalcium phosphate. As pigs can 

not use most of the organic P in the feed, it is excreted and may end up polluting 

bodies of water, producing eutrophication. The swine industry has attempted  
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different approaches to prevent this risk. The most effective solution currently 

available is adding microbial phytases to the diet in order to increase the 

availability of phytic P to the pig, thus decreasing its excretion. Another 

alternative, currently under research, is to feed genetically modified (GM) grains 

low in phytate. A more futuristic approach would be having GM pigs that secrete 

high amounts of phytase in saliva. 

The industry faces yet another challenge, which is the possible phasing 

out or banning of antibiotics as growth promoters. Fed at subtherapeutic levels, 

they have played a major role in swine production since the early 1950s. 

Although their mode of action is not totally understood, it is known that they 

increase protein and energy utilization in several species and improve mineral 

utilization in some of them. The limited research available on this latter topic 

indicates that the antibiotic virginiamycin may improve the digestibility of P for 

pigs. The effects of antibiotics on P digestibility and excretion deserve attention in 

modern times, when the industry simultaneously faces increasing pressure for 

antibiotic banning and for decreasing P pollution. 

During recent years, when the opening of markets and the globalization of 

formerly closed economies seems to be irreversibly increasing, many countries, 

including Colombia in South America, face not only the challenge of increasing 

the feed efficiency of their swine industries, but also the need to research 

potential alternative local feedstuffs as cheaper sources of nutrients. The effects 

of diet amendments intended to increase nutrient utilization should be addressed 

not only in traditional corn-soybean meal diets but also in alternative feed 

materials. 

The experiments presented in this dissertation examine several aspects of 

nutrient utilization in growing pigs fed practical diets amended with virginiamycin 

and/or phytase. They also assess the methodology of digestibility measures. The 

research covers a variety of macro and micronutrients, focusing on phosphorus 

as one of the elements representing the most common pollution issues in 

modern swine production. 
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CHAPTER 2 
 

LITERATURE REVIEW 
 

 

Feed Utilization by Swine 
 

Pork is the meat of choice worldwide, with a 40 to 43% share of the global 

meat protein market (Hollis and Curtis, 2001; Pond and Lei, 2001). Swine 

production has to keep pace with human population growth and the resultant 

increased demand for pork. As a result of this ever-growing demand, the modern 

swine industry is facing important challenges in several areas. Most of those 

issues are related to inputs such as feed as well as outputs such as manure. In 

economic terms, feed is considered the major input to the swine production 

system, representing over 65% of all production expenses (Hollis and Curtis, 

2001). For the growing-finishing stage of swine production, generally 

encompassing the weight range from 30 to 120 kg, or the time between removal 

from the nursery until market, feed represents 50 to 60% of the total cost of pork 

production (Cline and Richert, 2001). The impact of this figure on business 

sustainability depends, in part, on the efficiency by which feed is used, and on 

the cost of the feedstuffs utilized. Although improving the efficiency of feed 

utilization by the pig is not a new issue for nutritionists, it becomes more relevant 

in times when the human population increasingly competes with animal 

production for the use of cereals such as corn (Close, 1993). As described by 

Pinstrup-Andersen et al. (1997), “Humanity is entering an era of volatility in the 

world food situation” due to diverse factors including low grain stocks, growing 

scarcity of water, and drastic weather fluctuations.  Furthermore, feed is not the 

only resource becoming compromised as the human population grows and 

expands into rural areas. Clean water and even clean air in the areas influenced 

by densely populated swine farms are also central issues. Swine nutritionists 

face the challenge of increasing the fraction of nutrients that are effectively  



 4

digested and metabolized into pork, in order to gain efficiency of feed utilization 

and to decrease the excretion of potential pollutants. For many countries this 

goes along with the necessity of including locally available nontraditional 

materials as alternative feedstuffs. 

The efficiency of feed utilization, expressed as the Feed Conversion Ratio 

(FCR), measures the ratio of amount of feed consumed to the body weight (BW) 

gained by the animal during a limited period of time. FCR is one of the most 

important  traits measured in commercial farms for growing pigs at the various 

stages from weaning to market weight and is usually highly correlated with the 

profitability of a given lot of animals. It gives a general idea of how well feed was 

utilized and transformed into pork. But the FCR calculation assumes that all the 

feed delivered to the feeders was ingested by the pigs. It does not account for 

the portion of feed actually wasted by the pigs. The wasted feed ends up mixed 

with the feces and urine excreted. So, FCR is just a general reference on feed 

utilization. It does not tell how well particular nutrients of interest (i.e., potential 

environmental pollutants such as phosphorus or nitrogen) were used by the 

animal. 

 

Digestion and balance assessments 

A more precise way to account for feed utilization is to measure the 

digestibility of each nutrient in the whole diet or in each of the feedstuffs used. 

Digestion may be defined as the preparation of food for absorption into the body 

from the GI tract, while digestibility is taken to mean disappearance of food from 

the GI tract. This broader definition of digestibility includes digestion as well as 

absorption (Schneider and Flatt, 1975). The expression ‘apparent digestibility’ (or 

‘apparent absorption’) represents the difference between intake and excretion of 

a nutrient in the feces, or its disappearance from the gastrointestinal tract (or 

percent digested and absorbed out of the total intake). This result is not corrected 

for the endogenous portion resulting either from sloughed mucosal cells or from 

excretion of the element back into the gastrointestinal tract (Ammerman, 1995). 

Digestibility is generally reported as ‘apparent’, since it is difficult to devise  
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appropriate corrections for the amount of digestive secretions, sloughed cells, 

and other waste products mixed in the undigested feed. ‘True’ digestibility (or 

true absorption), on the other hand, involves the correction for the amount of 

nutrient excreted back in the gastrointestinal tract (as digestive secretions) and 

sloughed intestinal cells that end up excreted with the feces (Kidder and 

Manners, 1978; McDowell, 2003). For that reason, true digestibility is a more 

valid estimate of the amount that is available for physiological purposes. 

McDowell (2003) points out that absorption studies measuring intake and 

fecal excretion have been carried out with Ca, P, and Mg, but very few studies 

have been done with micro-elements due to the large errors resulting from the 

slightest sample contamination and unknown endogenous sources. Cole and 

Haresign (1985) agree that mineral balance experiments are notoriously difficult, 

because pigs confined in metabolism crates can go into negative mineral balance 

because of lack of exercise which can be associated with demineralization of the 

skeleton. 

Digestibility data are extensively used in nutrition research to evaluate 

feedstuffs or study nutrient utilization. Nevertheless, once calculated it does not 

become a constant value. Several factors may alter digestibility values, including: 

the level of feed intake, digestive disturbances, feeding frequency, feed 

processing, and possible associative and interactive effects between feedstuffs 

(Pond et al., 1995). Furthermore, Whittemore (1998) indicates that the 

digestibility of some nutrients can be negatively affected by the level of fiber in 

the diet and also by the particle size (a matter of amount of surface area exposed 

to enzymatic attack). 
While the digestibility result, also called the digestibility index or digestion 

coefficient, shows how much of the ingested nutrient was apparently digested 

and absorbed, the subtraction of this number from 100 tells how much of it was 

excreted in the feces without being used. It is noteworthy that, in some cases, a 

relatively small improvement in digestibility can signify an important reduction in 

nutrient excretion. For instance, when increasing N digestibility from 90 to 92%, 

the excretion of fecal N will be reduced 20% (from 10 to 8%). Obviously, the  
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impact on excretion will be more significant the more digestible the nutrient is 

(e.g., if we assume normal P digestibility is as low as 30%, another 2 percentage 

point increase, from 30 to 32%, represents a 2.85% decrease in fecal P 

excretion, a number much lower than that of the N example). 

Digestibility of nutrients in complete diets or in specific feedstuffs is usually 

assessed through digestion studies which may involve quantifying nutrient intake, 

collecting and quantifying fecal nutrient output, and calculating the difference 

between intake and output expressed as a percent of the total input. The output 

can also be measured at the end of the small intestine (ileum), by means of a 

surgically fitted canula. Results are then referred to as ileal digestibility. A more 

complete study, the balance trial, involves not only collecting feces but also 

quantifying nutrient concentration in urine, gases, milk, or conception products 

(Adeola, 2001). 

Apparent digestibility can be assessed in vivo by several methods. In all 

cases the animals should spend a previous period of time consuming the diet of 

interest in order to adapt the gastrointestinal system to it. During this pre-

experimental period, animals are expected to adapt not only to the composition 

and amount of feed that will be provided, but also to the confinement conditions 

of the trial (i.e., digestion or metabolism crates). All the digestibility methods 

involve the assessment of the nutrient concentration in feed and feces. According 

to McDowell (2003), the apparent digestibility is of limited value for those 

elements excreted mostly via feces (e.g., Ca, P, Zn, Mn, and Cu). 

 

Digestibility methods 

Adeola (2001) explains that the digestibility of a nutrient can be assessed 

by using either ‘direct’ or ‘indirect’ approaches. Accordingly, he classifies two 

digestibility methods, the so called total collection and the index methods as 

direct approaches, and three others as indirect or ‘digestibility by difference’ 

methods. Either of the direct methods can be used when the diet is formulated in 

such a way that all the nutrient of interest is supplied only by the feedstuff under 

test. Both methods can also be used to find the digestibility of the nutrient in the  
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total diet when several dietary feedstuffs provide the nutrient. On the other hand, 

the difference approaches are used only when the diet includes other feedstuffs 

that supply the nutrient in addition to the feedstuff under test. The ‘digestibility by 

difference’ methods assume that there are not associative effects among the 

feedstuffs supplying the nutrient under analysis. 

In regard to the results, it should be mentioned that for any type of 

digestion trial it is possible to obtain negative digestibility coefficients. This is true 

particularly for low digestible nutrients (Schneider and Flatt, 1975). In their review 

of digestibility methods, the authors state that this can also happen when the 

nutrient concentration is very low in the feedstuff researched. They explain: “in 

the study of the variation of digestion coefficients that are close to zero, it is only 

to be expected that some might be negative”. This can happen when the 

variation in the nutrient contents among samples is in excess of the mean 

concentration of the nutrient. 

 

The total collection method 

Different researchers have named the total collection method differently. 

Years ago, it was referred to as the ‘bag’ method (Barnicoat, 1945). It has also 

been called the ‘direct’ method, ‘quantitative collection’, ‘classic’, ‘conventional’, 

or ‘marker to marker’ collection (Schurch et al., 1950; Irwin and Crampton, 1951; 

Schurch et al., 1952; Clawson et al., 1955; Kohler et al., 1990; Bakker and 

Jongbloed, 1994). Some researchers still refer to this as the ‘direct’ method 

because the calculations are based directly on the total amounts of the nutrient 

present in feed and feces (Schneider and Flatt, 1975). 

This method involves the meticulous collection of the total amount of feces 

produced during the digestion trial. It also requires keeping accurate records on 

the total amount of feed actually ingested by the animals (feed offered minus 

feed rejected). In modern times, to facilitate the collection of feces, animals are 

individually confined in a special crate were they can lie down and get up, but not 

turn around. This crate is designed to prevent coprophagy and to separate feces 

from urine. According to Schneider and Flatt (1975), the early digestibility  
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experiments were conducted having attendants or watchmen on duty, by shifts, 

24 hours per day, behind the animals in the field to catch the feces. The same 

author credits Dr. W. P. Garrigus from the University of Kentucky as the designer 

of one of the first feces bag and harness ever attached to a steer to collect the 

feces without the need of watchmen. 

To visually separate the feces resulting from the feed consumed during 

the collection period, easily distinguishable substances or markers are added to 

the feed. The most widely used substances for this purpose are Indigo carmine 

(a blue substance), ferric oxide and chromic oxide. Other substances have also 

been tried (purple, green, and yellow cellophane; barium sulfate; copper sulfate; 

bismuth subcarbonate; lampblack (soot, carbon); methylene blue). Schneider 

and Flatt (1975) described the ideal substance as one that sharply demarcates 

the feces without diffusing and does not have any physiological effects on the 

animal. The low diffusion is a characteristic of very insoluble substances. 

Carmine (a red substance) is commonly used, although Schneider and Flatt 

(1975) argue that it does not sharply demarcate the feces because it is very 

soluble, and tends to be laxative with some individuals. 

To calculate apparent digestibility by the total collection method, the 

formula by Adeola (2001) can be used: 

 

 

Digestibility, % = 

 

 100 x   Amount of component consumed – Amount of component in feces 

    Amount of component consumed 
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 The index method 

The index method is sometimes referred to as the ‘indicator’, ‘indirect’, 

‘marker’, ‘clue’, ‘reference’, ‘inert reference substance’, ‘tracer’ method, or the 

‘ratio technique’ (Kane et al.,1952; Balch et al., 1957; Moore, 1957; Kotb and 

Luckey, 1972; McCarthy et al., 1974; Schneider and Flat, 1975; Miller et al., 

1978). Sometimes researchers refer to this method as the ‘indirect’ method when 

they want to compare it to the total collection method (Ly et al., 2002). As pointed 

out by Schneider and Flat (1975), the index method has been named the indirect 

method, although this last term has also been applied to a totally different 

methodology known as ‘digestibility by difference’. 

The basic difference between the total collection method and the index 

method is that the total collection method calculates the digestibility coefficients 

based on the total amount of the nutrient measured in feed and feces, while the 

index method calculates them based on the relative concentrations of the nutrient 

and an indicator or marker substance in both feed and feces. 

The method uses an indigestible indicator such as a metal oxide (e.g., 

chromic oxide, ferric oxide, titanium oxide, etc), a dye (e.g., anthraquinone violet, 

monastral blue, sudan III, etc), a mineral salt (e.g., barium sulfate, cuprous 

thiocyanate, etc), or even a water-soluble indicator (e.g., polyethylene glycol, Cr-

EDTA, etc). The indicator is added to the feed and then its concentration in feed 

and feces is determined in order to calculate the percent of the nutrients digested 

and absorbed.  In order to calculate the digestibility of a nutrient by the index 

method, the indicator:nutrient ratio is determined in feed and in feces. So, to 

determine the apparent digestibility of a nutrient by this method it is only required 

to know the concentrations of the indicator and the nutrient in both the diet and in 

the feces (Kotb and Luckey, 1972). 

The following example, adapted from Barnicoat (1945), explains the logic 

behind the calculations: 

Fed: 100 parts dry matter (DM):1 part of inert reference substance. 

Recovered in feces: 10 parts DM:1 part of indicator. 
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1 part of indicator accompanies 100 parts of the DM fed, and since it is insoluble 

and indigested, all of it should be excreted. As there are only 10 parts of DM for 1 

part of indicator in feces, 90 of the total 100 parts of the DM fed have been 

digested – i.e., the apparent digestibility of the DM is 90%. 

According to Kidder and Manners (1978), digestibility can be calculated by 

the index method as: 

 

Digestibility, % = 

Ratio of indicator to nutrient in feces - Ratio of indicator to nutrient in feed   x 100 

Ratio of indicator to nutrient in feces 

 

 

Or as expressed by Adeola (2001): 

 

Digestibility, % = 100 –  100  x  % indicator in feed  x  % nutrient in feces 

       % indicator in feces    % nutrient in feed 
 

 

When the indicator is a substance that is added to the feed, as in the 

examples already mentioned, the substance is referred to as an external 

indicator. Other type of indicators can be used instead of external indicators. 

These are the indigestible substances naturally present in feeds. Examples of 

these are: lignin, acid insoluble ash, silica, and chromogen - a naturally occurring 

plant pigment (Kotb and Luckey, 1972; Schneider and Flatt, 1975). As the 

substance is not added to the diet but rather is a component of it, these are 

regarded as internal indicators (Kotb and Luckey, 1972). According to Schneider 

and Flatt (1975), the index method was first used in 1874 when silica naturally 

present in roughages was used as an internal indicator. 

According to Kotb and Luckey (1972), an effective nutritional indicator 

should meet all the following criteria: be inert, non-toxic, not having physiological 

or psychological effects, non-absorbed (therefore, be fully recovered in feces),  
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have no appreciable bulk, mix well with the feed and remain uniformly distributed 

in the digesta, and have no influence on digestive secretions, absorption or 

motility of the gastrointestinal tract, or in its microflora. The characteristics of 

major concern in the search for ideal indicators are its lack of digestibility, its 

complete recovery and ease of measurement. Adeola (2001) adds other 

attributes to the indicator: it should be non-essential for the animal and regularly 

and completely voided in the feces. 

Chromic oxide (chromium sesquioxide: Cr2O3), sometimes called chrome 

green (Schneider and Flatt, 1975), is regarded as the most frequently used index 

material (McCarthy et al., 1974; Fenton and Fenton, 1979; Saha and Gilbreath, 

1991). According to Barnicoat (1945), it is one of the least soluble substances 

known. It is a light to dark-green substance insoluble in water, alcohol or 

acetone, but slightly soluble in acids and alkalis. It has been widely used in 

studies of feed and food utilization. According to Kotb and Luckey (1972), it was 

first used as an indicator in 1918. In studies with pigs, Cr2O3 has been added to 

the feed at levels as low as 0.05% (Kohler et al., 1990; Apgar and Kornegay, 

1996) and as high as 1% of the diet (Barnicoat, 1945; Schurch et al., 1952; 

Everts and Smits, 1987). 

 

Total collection versus the index method 

Before choosing to use one or the other method, it is important to consider 

their advantages, disadvantages and any particular factors relative to the method 

that can impact the digestibility results. 

 
Advantages and disadvantages. The main advantage of the index method 

over the total collection method is that there is no need to collect and process all 

the feces produced during the trial, thus reducing the time, labor and costs of the 

digestion trial. Besides this, it also avoids the need for keeping quantitative 

records of feed consumption, and the housing of pigs in digestion crates is not 

required, so trials can be conducted in ordinary, less expensive pens. In the 

index method the total quantitative collection is replaced by the random sampling  
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of feces, which is sometimes referred to as ‘grab’ sampling (Kane et al., 1952; 

Kotb and Luckey, 1972; Schneider and Flatt, 1975; Adeola, 2001; Kavanagh et 

al., 2001). Grab sampling is a technique where a sample is taken directly from 

the rectum or from a recent fecal pat (Kotb and Luckey, 1972). There is not a 

unique procedure for grab sampling, nor agreement on the minimum number of 

grab samples or collection days required to obtain a representative composited 

sample. The length of the collection period used by researchers to obtain a 

composited sample for the index method (Cr2O3) fluctuates widely (Barnicoat, 

1945; Schurch et al., 1950; Schurch et al., 1952; Everts and Smits, 1987; 

Dellaert et al., 1990; Moughan et al., 1991; Kavanagh et al., 2001). 

 
Coprophagy in regular pens.  One of the problems observed with the 

index method, when done in regular pens instead of metabolism crates, is that 

pigs could eat some feces. This would change the concentration of the indicator 

excreted, affecting the digestibility results. 

Kemme et al. (1997) investigated the effects of coprophagy and 

digestibility calculation method (Cr2O3 vs. total collection for 10 days) on DM, P, 

and Ca apparent total tract digestibility in finishing barrows (95 to 120 kg BW). 

They offered pigs 40 g of fresh pig feces daily/kg of diet. The feces fed to one of 

the groups contained Cr from Cr2O3. Even though no significant effects on Ca (P 

= 0.217), and total P (P = 0.103) digestibility were found by the feces 

consumption, numerical improvements of 1.7 and 4.1 percentage units were 

seen in Ca and total P digestibility, respectively, when feces were supplemented 

to the diet. The authors concluded that coprophagy may have improved Ca and 

total P digestibility, primarily because feces are a material that has highly 

available Ca and P. According to their calculations, the altered nutrient to 

indicator ratio was of minor importance for the change observed in digestibility. 

 
Metabolism crates versus regular pens for balance trials. Besides the 

problem of coprophagy found in regular pens, it is more difficult to collect the 

urine excreted using this type of confinement. Urine collection is facilitated by the  
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use of metabolism crates. Collecting urine is required in order to assess the 

extent of nutrient retention after absorption. In this case the study is referred to 

as a balance study. This implies collecting and measuring the total volume of 

urine excreted during the period of the trial and keeping a representative sample 

of that volume for nutrient concentration analysis.  Nutrient retention results from 

subtracting the total intake minus the total fecal and urinary excretion of the 

nutrient. 

 

Physical exercise in regular pens. The type of housing might also 

influence the estimation of nutrient digestibility. In the previously cited study by 

Kemme et al. (1997), the effect of pig movement on apparent total tract 

digestibility of DM, P, and Ca was also investigated.  Pigs housed in pens, and 

thereby having free movement, had higher Ca and total P digestibility, but lower 

DM digestibility, than pigs housed in metabolism crates. Nevertheless, results 

were inconclusive because it was not possible to separate the effects of 

coprophagy from the effects of housing. The researchers indicate that both free 

movement in ordinary pens as well as coprophagy play a role in increasing the 

digestibility of Ca and total P of animals housed in pens, even though the 

particular effect of movement on the enhancement of Ca and P digestibility could 

not be demonstrated in their study. 

 

Collection length. Several factors determine the optimum length of time 

pigs can be scheduled for the total collection method. Having the pig restrained 

in a digestion crate or in a metabolism crate for a long collection period increases 

the risk of accidents, animal sickness, feed refusal or other circumstances that 

may affect results. On the other hand, a very short collection period may give rise 

to inaccuracies due to the inability to collect material representative in quantity 

and chemical composition. Adeola (2001) recommends an adaptation period of 3 

to 7 days followed by a collection period of 4 to 6 days. 
In testing the suitability of Cr2O3 as an indicator in pig trials, researchers 

have compared different grab sampling procedures to the total collection method. 
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In some of those experiments grab sampling consisted in collecting feces once or 

twice daily during a period of four to seven days, and then compositing all the 

collected samples prior to assessing nutrients and Cr concentration (Schurch et 

al., 1952; McCarthy et al., 1974; Moughan et al., 1991; Bakker and Jongbloed, 

1994). In the search for a more practical (shorter) grab sampling method for 

group-housed pigs, Kavanagh et al. (2001) reported no difference for DM and 

energy digestibility between total collection (5 days collection using individually 

penned pigs) and a 1-day grab sampling for the index method (Cr2O3). The grab 

sampling procedure consisted of collecting feces from at least eight pigs out of 

13/14 total pigs housed per pen, and then compositing them into a single sample 

prior to analysis. To facilitate the fecal collection, this was done by taking the pigs 

out of the pens to be individually weighed in a scale. It is not clear for how long 

researchers fed Cr2O3 before collection. 

One of the first studies that reported the use of Cr2O3 in pigs was done by 

Barnicoat in 1945. He found, in agreement with previous research in other 

species, that the rate of fecal elimination of Cr2O3 was uneven or irregular 

through the collection period, being more irregular at the beginning and at the 

end of the period. He noticed that Cr2O3 excretion became approximately 

constant - i.e., in equilibrium with the intake - between two to four days after 

Cr2O3 started to be fed. Taking into account these variations, the researcher 

concluded that a considerable number of samples of excreta should be taken in 

order to obtain a truly representative sample for analysis. His comparison of 

protein digestibility by this method with the total collection gave similar results 

(87.1 vs. 86.8%, respectively). Nevertheless, it should be noted that he used two 

different diets and only one pig per diet for the Cr2O3 method, repeating the 

collection twice. Despite the poor replication of this early experiment, it brought 

some light to the question of when to start collecting. Obviously, the appropriate 

time to start collecting should be once the fecal indicator comes to equilibrium 

with the indicator in the feed consumed. At that point in time, total fecal recovery 

of the Cr fed is assumed. An experiment by Clawson et al. (1955) indicated that 

Cr equilibrium comes one day later than what Barnicoat (1945) suggested. The  
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data by Clawson et al. (1955) showed that equilibrium was reached between the 

third and fourth days counted after the initial feeding of the indicator. 
 

Digestibility results by both methods. Clawson et al. (1955) found that 

digestion coefficients for DM, crude protein (CP), ether extract (EE), crude fiber 

(CF), and nitrogen-free extract (NFE) calculated from the mean concentrations of 

Cr in compounded fecal samples taken rectally twice a day (6:00 a.m. and 5:00 

p.m.) during three or four consecutive days were lower than those obtained by a 

total collection method over seven days. Averaging the data for the ten lots (8 

pigs each) used by these researchers, the digestibility results obtained for the 

index method vs. the total collection were, respectively, DM: 73.8 vs. 75.7, CP: 

72.6 vs. 74.8, EE: 46.9 vs. 50.1, CF: 18.3 vs. 24.9, and NFE: 86.0 vs. 87.3. 
Other researchers have also found a tendency for lower digestibility 

results using the index method as compared to the total collection method, which 

is usually explained by the Cr recovery in feces, which is generally lower than 

100%. Mroz et al. (1996) found that the overall mean total tract digestibility 

calculated by the index method (Cr2O3) was lower than that calculated by total 

collection, regardless of the nutrient assayed. The difference was equal to three 

percentage units for organic matter (OM) (P < 0.05), nine percentage units for 

ash (P < 0.001), three percentage units for CP (P < 0.01), five percentage units 

for EE (P < 0.001), and nine percentage units for CF. 

Everts and Smits (1987), working with sows, also reported lower 

digestibility for DM and CP using Cr2O3, compared with the total collection 

method (79.0 vs. 80.2, and 82.4 vs. 83.1, respectively). Kavanagh et al. (2001) 

obtained lower digestibility coefficients for energy and DM in growing pigs for the 

Cr2O3 method as compared to the total collection method (84.8 vs. 85.8, and 85.9 

vs. 86.5, respectively). Apgar and Kornegay (1996) also found DM digestibility in 

finishing pigs to be slightly lower for the indirect method (87.0% by the indirect 

method vs. 87.6% by total collection). 

Although some research has been reported comparing the digestibility of 

DM, OM, energy, CP, EE, NFE, CF, and macro-minerals between the total  
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collection and the Cr2O3 method, the literature is very scarce in regard to 

comparing the digestibility of micro-minerals by both methods. 

The study by Apgar and Kornegay (1996) consisted of evaluating the 

mineral balance and DM digestibility in finishing pigs fed elevated levels of Cu in 

the presence of excess amounts of otherwise ‘trace’ minerals (Fe, Cu, Mn, and I) 

and measuring the digestibility coefficients by both methods. After correcting for 

Cr recovery by utilizing Cr absorption values to correct fecal Cr concentrations for 

zero absorptive loss, the researchers found that the percent estimates of Cu, Zn, 

and Fe absorption by the index method were lower and within one percentage 

unit of the estimates obtained using the total collection method (11.3 vs. 11.9 for 

Cu; 18.6 vs. 19.4 for Zn; and 4.4 vs. 4.9 for Fe, respectively). The authors agreed 

that estimating DM digestibility by the index method resulted in values relatively 

similar to those obtained by the total collection method. However, they concluded 

that the index determination of Cu, Fe, and Zn absorption was not feasible for 

estimating their availability. The researchers concluded that the use of chromic 

oxide did not seem to be a reliable method with which to estimate trace mineral 

absorption. 

 
Indirect methods 

In many instances it is desirable to evaluate the digestibility of a 

feedstuff when it is fed in a mixture with one or more other feeds. Examples 

include protein supplements or feedstuffs that are normally not used as a 

complete diet by themselves. 

This requires first to measure nutrient digestibility (by either the total 

collection or the index method) in two or more related diets, and then digestibility 

is calculated indirectly for one of the feedstuffs by using those results. The diets 

are said to be related in the sense that one of them is a basal or ‘balancer’ diet, 

while the other(s) consist of the basal replaced with known proportions of the 

feedstuff under test. Digestibility in the test feedstuff is calculated by difference, 

considering the amount of the nutrient present in both the basal and the other 

diet. The difference between the two estimates gives the contribution of the test  
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ingredient. It seems logical to name these ‘indirect’ methods because they 

require a further step after having assayed the nutrient digested by either the 

total collection or the index method. As mentioned before, the indirect methods 

are used when the nutrient of interest is supplied by more than one feedstuff in 

the diet and we are interested in finding the digestibility in only one of the 

feedstuffs used (Schneider and Flatt, 1975; Whittemore, 1998; Adeola, 2001). 

 This method of calculating ‘digestibility by difference’ sometimes yields 

digestion coefficients greater than 100, and sometimes even negative values are 

obtained. Some researchers consider these as absurd coefficients, while others 

argue that such values represent phenomena observable in nature and should 

be treated as reasonable possibilities (Schneider and Flatt, 1975). According to 

Whittemore (1998), this method is more prone to error the lower the proportion of 

the nutrient contributed by the test ingredient. This means that a small error in 

the determination of the nutrient digestibility in the basal or balancer diet, or in 

the mixed diet, can have a large effect upon the digestibility result calculated for 

the nutrient in the test ingredient. 
According to Adeola (2001), one variation of the indirect method consists 

of feeding a basal diet to one group of pigs and determine nutrient digestibility in 

the whole diet (by either the total collection or index method). Simultaneously, a 

different group of pigs is fed the basal diet added with a known amount of the 

feedstuff under test, and the nutrient digestibility of this mixture is determined. To 

calculate the digestibility in the test ingredient, the formula used is: 

 

Digestibility, % = 100 x [ (T x t) - (B x b) ] / a 

Where: 

T = Digestibility (%) of the nutrient in the total diet (basal plus the test 

feedstuff), calculated by either the total collection or the index method. 

t = Amount of the nutrient ingested in the total diet. 

B = Digestibility (%) of the nutrient in the basal diet, calculated by either 

total collection or index method. 

b = Amount of the nutrient ingested in the basal diet. 
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a = Amount of the nutrient in the test feedstuff added to the basal diet 

t = b + a 

 

Another indirect method is the regression method. It consists in feeding a 

basal diet to a group of pigs and simultaneously feeding different groups of pigs 

diets that have at least two proportions of the nutrient in the basal diet replaced 

by the test feedstuff. The digestibility of the nutrient in the test feedstuff is 

determined by regressing the digestibility of the nutrient against the proportions 

of the nutrient replaced, and extrapolating to 100% replacement. Again, this 

method requires feeding more than two diets; a basal diet and at least two other 

diets with different proportions of the basal replaced by the test feedstuff. To 

estimate digestibility of the nutrient in the test feedstuff, the digestibility of the 

nutrient in the different diets is linearly regressed against the proportions of the 

test nutrient replaced. Then extrapolation to 100% replacement is done to 

estimate the digestibility of the nutrient in the feedstuff by itself. When doing 

digestibility by regression it is important to plot the proper variables: percent of 

digestibility (Y axis) observed at the different levels of inclusion of the tested 

feedstuff, versus the percent of the nutrient (X axis) that comes from the tested 

feedstuff in each diet. The regression equation is different and has a different 

coefficient of correlation (R2) if the X axis is mistakenly assumed as the percent 

of the tested feedstuff in each diet. It is also important, for any type of digestibility 

trial, that while changing the levels of the nutrient under test, the levels of the rest 

of nutrients are kept constant in order to avoid changes in digestibility that could 

be due to the fluctuation of other nutrients instead of the nutrient under test. 

 

 
Utilization of Alternative Feedstuffs in Modern Swine Nutrition 

 

Alternative feedstuffs are the crop residues or food industry byproducts 

not consumed by humans but which are suitable for feeding pigs, which 

transform them into pork - a human-edible product. These are edible waste  
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products or co-products from agriculture or the food processing, food preparation 

or food service industries. Example industries include grain milling, brewing and 

distillation; baking; fruit and vegetable processing; meat, milk and egg 

processing; seafood processing; prepared food manufacturing; and retail food 

outlets. Other alternative feedstuffs include those not regularly fed to pigs but fed 

during times of low prices and/or surpluses, or during shortages of traditional 

feedstuffs. Alternative feedstuffs may include materials available locally that can 

be economical substitutes for expensive or not readily available traditional 

feedstuffs (Myer and Hall, 2004). Miller et al. (1994) group some potential 

byproducts for swine according to their primary product origin: animal (milk, meat 

and egg byproducts), grain (milling, baking, brewing, and distilling byproducts), 

sugar and starch production (cane, beet and corn molasses, and salvage candy), 

and vegetable materials (cull beans, roots and potato byproducts). 

The suitability of an alternative feedstuff for a particular age or 

physiological stage of the pig depends, among many factors, on its legality of 

use, availability in the local market, cost (including transportation, storage, 

processing and labor), palatability, consistency, nutrient composition and 

availability, presence of potential health hazards (toxic or disease factors) or anti-

nutritional factors, and potential effects on pork quality and perishability – 

including spoilage and rancidity (Miller et al., 1994; Myer and Brendemuhl, 2001; 

Myer and Hall, 2004). 

 
Justification for using alternative feedstuffs in swine production 

According to FAO (2004), global cereal production has been stagnating 

since 1996. Global cereal utilization, on the other hand, has been continuing on 

an upward trend and has been exceeding production by significant amounts 

continuously since 2000. 

Several reports affirm that swine production will compete in the future 

directly with humans for cereal grains and high quality protein supplements 

(Pond, 1987; Dierick et al., 1989; Close, 1993). This is already a reality in most 

countries of the developing world (Oke, 1990) where the human population  
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obtain 58% of their total caloric intake from cereal grains as compared to 28% for 

the developed world (Ensminger et al., 1990). 

Among cereals, corn is an important food for the fast-growing human 

population. Currently in the western hemisphere only four countries (U.S., 

Argentina, Paraguay and Bolivia) produce enough corn to fulfill their needs and 

export the excess, while nineteen other American countries show a permanent 

deficit in corn production (Ministerio de Agricultura y Desarrollo Rural de 

Colombia, 2004). Among those is Colombia, a tropical country located in the 

north of South America, where the demand for corn for both human and swine 

populations during the last decade chronically exceeded local production of the 

cereal. Colombian imports of corn started to climb in 1993 when the country 

opened its markets to free global trade. Since that year, the country has been 

steadily increasing its imports of yellow corn (Figure 2.1), which is used for 

animal production, particularly to feed poultry and swine. 

Corn imports by Colombia now account for 50.1% of the total corn 

consumed in the country. Since 1996, among all the commodities imported by 

this country, corn ranks first in terms of total cost and volume. During 2002, 

Colombia imported 2,098,679 metric tons of corn (yellow and white) for a total 

cost of 250,166,000 U.S.D., turning the country from a no-net importer ten years 

before, into the 9th largest world importer of the cereal (FAO, 2004). This is 

interesting, taking into account that the country ranks 28th in terms of human 

population (42 million), has a low consumption of animal protein, and is not a 

meat or egg exporter. In this country, which is not particularly strong in animal 

production, the figure reflects a total dependency on foreign corn prices. The 

reason for the decline in local production and subsequent dependency on foreign 

corn is that local production is not competitive under the new global trade 

scheme. The magnitude of the corn deficit is similar for most Andean countries. 

In most Central American countries this deficit is even greater, exceeding 90% 

(FAO, 2004; Ministerio de Agricultura y Desarrollo Rural de Colombia, 2004). 

This situation calls swine nutritionists to consider partial replacement alternatives  
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such as grain derivatives and other materials that are in poor demand as direct 

food sources by the human population. 

In general, another reason for using the alternative feedstuffs that are 

locally available is the need for proper disposal of these materials. In many 

countries alternative feedstuffs for pigs represent not only an economic option to 

lower production costs, but also an environmentally-friendly approach to the 

disposal of the enormous amounts of these organic materials in times of 

increasing byproduct generation and landfill shortages. According to Fadel 

(1999), during 1993 the calculated total world dry matter tonnage for about 

twenty types of by-product feedstuffs was almost 1 billion metric tons of which 

about 65% were crop residues. These per capita tonnage will likely increase in 

developed countries and remain the same or increase slightly in developing 

countries over the next 20 years, suggesting that by-products will become an 

increasing waste problem. Thus, the role of pigs in recycling and "adding value" 

to many of these byproducts and wastes is becoming increasingly interesting as 

a viable waste management option. 
 
Alternative energy feedstuffs 

In most swine diet formulations, those ingredients that provide most of the 

diet’s energy (i.e., corn) usually represent the highest cost among all the 

ingredients. This is because of the high proportion accounted for by energy 

ingredients. In a typical corn-soybean meal (corn-SBM) diet for growing-finishing 

pigs, the total cost of corn is about 50% higher than the total cost of the soybean 

meal used. To illustrate this, a typical corn-SBM diet for growing-finishing pigs 

contains between 70 to 85% corn (ave. 77.5%) and 14 to 25% soybean meal 

(ave. 19.5%). Using the U.S. prices reported on July 22-2004 (Feedstuffs, 2004) 

for both feedstuffs: $2.24/bushel of corn (1 bushel: 54 lb for U.S. No.2 grade 

corn, equivalent to $0.042/lb), and $239/ton of soybean meal ($0.12/lb), we have 

the corn component cost at 3.3 cents/lb of the corn-SBM mix, while the SBM 

costs 2.3 cents/lb of the mix. So, for reasons of total cost, alternative energy 

feedstuffs should be considered first when thinking about partially replacing  
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swine diets. Table 2.1 presents the nutrient composition of corn, compared to 

several alternative feedstuffs commonly available in tropical countries. According 

to Myer and Brendemuhl (2001), the main disadvantages of the byproducts listed 

in Table 2.1 are: 

 Rice (Oryza sativa) byproducts: rice bran is a bulky, fibrous material with 

high potential for rancidity depending on the fat level. Rice polishings are 

not as bulky and fibrous as rice bran, but also have the problem of 

potential rancidity. Broken rice has a high energy contents, but is low in 

lysine. Paddy rice is highly fibrous and has a higher risk of aflatoxins 

contamination. 

 Bananas have high moisture content. Whole, green bananas have large 

concentration of tannins, which lower its palatability for pigs. 

 Fresh cassava also has high moisture content, while some varieties of the 

root may contain large residual concentrations of toxic HCN in the meal. 

 The juice of sugar cane has high moisture content. The stalks have the 

same problem and are also a bulky material. 

 Raw potatoes are high in moisture. In general, cooking improves potato 

byproducts utilization. 

 Restaurant food waste is not only high in moisture, but also highly variable 

in nutritional value. 

 

As can be seen in Table 2.1, the main limitations presented by these 

materials, in the form generated by the industry, are either high water content or 

high fiber content, or both. 

In general, most of the common energy feedstuffs available in tropical 

countries make no significant protein contribution to the diet and require further 

processing to increase their dry matter content, which increases their cost. Many 

of these materials, in their non-processed form, are inexpensive because they 

are basically waste byproducts. It is usually the cost of transport and drying 

which limits their potential as economical alternatives. Drying is sometimes 

recommended to facilitate handling and incorporation in dry diets. It also  
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concentrates the nutrients, which is necessary when dealing with animals having 

limited gastrointestinal capacity. 

As mentioned, digestibility of the dietary nutrients present in feedstuffs 

varies according to different factors, including the amount and type of fiber 

present in the diet (Wisemann and Cole, 1985; Noblet and Le Goff, 2001). Crude 

fiber is comprised of three major fractions: cellulose, hemicellulose and lignin. 

These components are measured by detergent fiber analysis, which determines 

neutral detergent fiber (NDF) and acid detergent fiber (ADF). The NDF is the 

residue insoluble in a neutral detergent solution after eliminating the plant cell 

contents. It represents the cell wall constituents or cellulose, hemicellulose and 

lignin. The ADF is the residue comprised of cellulose and lignin. The difference 

obtained when subtracting NDF and ADF is the hemicellulose fraction of fiber. 

The NDF is partially fermented in the large intestine to volatile fatty acids 

(VFA) such as acetic, propionic and butyric, also producing CO2, H2, CH4, urea 

and heat. It is known that regardless of its source, an increase in NDF decreases 

energy availability and may increase fecal loss of nitrogen (Sauber and Owens, 

2001). Both the old CF analysis, as well as the newer detergent methods of 

analysis, underestimate the amount of total fiber due to their inability to recover 

soluble fiber components such as pectin, mucilage, gums and B-glucans 

(Grieshop et al., 2001). 

In growing pigs, digestibility coefficients for dietary fiber are lower than 

coefficients for other nutrients. According to Noblet and Le Goff (2001), average 

fiber digestibility is 40 to 50%, ranging from around zero in high lignin sources 

(e.g., wheat straw) to between 80 and 90% in high pectin sources (e.g., sugar 

beet pulp and soybean hulls). This shows how the different fractions vary in 

digestibility: lignin is indigestible, while pectin is almost completely digested. Also, 

hemicellulose is more digestible than cellulose, but both are just partially 

digested. It is also known that digestibility increases with body weight, so adult 

sows can utilize fiber better, but this also depends on the botanical origin of the 

fiber (Noblet and Le Goff, 2001). 
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Thus, for a more complete understanding of the nutritional value of 

feedstuffs, the information obtained by the proximate analysis is complemented 

with digestion and balance trials to assess how well those nutrients are utilized 

by the pig. In Table 2.2, digestible and metabolizable energy, as well as 

digestible protein results, are shown for several of the feedstuffs listed in Table 

2.1. 

 
Availability of alternative energy feedstuffs 

Continuing with the Colombian situation; despite a lack of corn, it is 

interesting to notice that the country is an important producer and net exporter of 

several potential alternative feedstuffs or derivatives. In 2003, Colombia was 

ranked 1st in the world as an exporter of plantains and sugar cane, 4th in the 

world as exporter of bananas, among the top 10 exporters of fresh fruits, roots 

and tubers; and among the top 20 exporters of paddy rice (FAO, 2004). This 

means not only that the country produces more of these staples than required to 

fulfill its internal demand, but also that there is a competitive production 

infrastructure that is generating important amounts of materials potentially 

suitable for feeding swine. Table 2.3 illustrates Colombian production and world 

rank among the top 20 producers of several feedstuffs. 

From the feedstuffs listed in Table 2.3, all but coffee are generally 

considered energy sources. Nutritional information is available for most of the 

feedstuffs listed. ‘Coffee grounds’ is a material for which limited information is 

available. According to Ensminger et al. (1990), on as fed basis, it has 10.2% 

CP, equivalent to 6.1% digestible protein for pigs. It also has 74% DM, 9.3% EE, 

1.2% ash, 0.09% Ca, 0.06% P, and 21.5% CF. 

 
Rice bran  

Rice bran is an alternative feedstuff that could be used to partially 

substitute for corn in temperate as well as tropical zones. It is abundant and 

inexpensive in the USA and many other countries. According to the NRC (1998), 

It contains 13.0% EE, 13.3% CP, 1.61% total P, and 2,040 kcal/kg of net energy,  
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which is not too different from corn, which has a net energy value of 2,395 

kcal/kg. 

Although richer in fat (13%) compared to corn (3.9%), it is also richer in 

fiber (23.7% NDF and 13.9% ADF for rice bran versus 9.6% NDF and 2.8% ADF 

for corn) which makes it poorly digestible by the young pig. Because of the high 

fat content, it often turns rancid during storage. According to Cunha (1977), it has 

about 90 to 95% the feeding value of corn if used at a level of not more than 20 

to 30% of the diet. When used at higher levels, its relative feeding value 

decreases and it tends to produce ‘soft pork’ (soft carcass fat due to high 

concentration of unsaturated fat) which negatively affects pig market price. 

Cunha (1977) also indicates that the material should be used fresh in order to 

prevent rancidity because this rancidity decreases palatability. As a substitute, he 

proposes the use of de-fatted or solvent–extracted rice bran, which has about the 

same feeding value as corn when fed at levels no higher than 30% of the diet, 

and does not produce soft pork. 

Besides of its low cost, rice bran is also interesting because of its high 

concentration of total P. Total P in rice bran is about five times higher than in 

corn, and three times higher than in soybean meal, but most of it is present in the 

form of phytic P. About 75% of the P in rice bran is bound as phytic acid 

(Cromwell and Coffey, 1991). That form of P is not available and is almost 

completely excreted by the pig, creating an environmental concern. The low 

availability of P in rice bran is due to its low digestibility. In a series of trials 

Jongbloed et al. (1999a) reported 14% P digestibility for rice bran (range: 9 to 

20%), 19% for corn (range: 12 to 26%), and 39% for soybean meal (range: 33 to 

46%). Table 2.4 shows rice bran and several traditional energy feedstuffs and 

byproducts ranked by phytate P concentration. Among these feedstuffs, rice bran 

has the highest content of unavailable P, thus it has the greatest pollution 

potential. 
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Phosphorus, a Nutrient under Scrutiny 
 

The digestibility and excretion of several nutrients is of key importance for 

swine producers not only from nutritional but also from environmental points of 

view. Excretion of nutrients such as N and P raise concerns with regard to their 

role in eutrophication of water resources. Both Cu and Zn are toxic to plants 

when present in high concentrations in the soil solution (Sterritt and Lester, 1980; 

Agarwal et al., 1999; Athar and Ahmad, 2002). Among all these nutrients, P 

captures most of the attention because of its paramount biological importance 

and increasing concern about its polluting potential in modern swine production 

(Jongbloed et al., 1999a). 

 
Biological importance of phosphorus 

Of the 118 elements in the periodic table, only a small number seem to 

play some role in biological systems. Life, as we know it, is based on carbon 

which combined with hydrogen, oxygen and nitrogen, creates complex nutrients 

such as carbohydrates, lipids, amino acids and vitamins. Besides those 

compounds, and often as an active part of them, cell processes require a few 

mineral elements. Only seven minerals (Ca, P, K, Na, Cl, Mg, and S) are 

required in the diet of swine at levels greater than 100 mg/kg (ppm) of diet. They 

are referred to as essential macro-minerals. Eight other minerals (Zn, Fe, Cu, 

Mn, Se, I, Co and Cr) are required in smaller amounts, and are referred to as 

essential micro-minerals or trace minerals (NRC, 1998). Some other elements 

(including As, B, Br, F, Mo, Ni, Si, Sn and V) are required by other species and 

may also be required by swine in very small amounts, but this has not yet been 

established (Underwood, 1977). 

Among the minerals, calcium and phosphorus are the most abundant in 

the body.  Phosphorus is the second most abundant mineral and is required for a 

variety of physiological functions (Underwood and Suttle, 1999; McDowell, 2003). 

The word ‘phosphorus’ means ‘carrier of light’, because the element 

ignites when exposed to air, and also glows in the dark in a process known as  
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chemiluminescence. It was first discovered in urine around 1677 and in bones in 

1770 (Matheja and Degens, 1971). 

Phosphorus plays a key role in vital biochemical reactions such as in 

energy-dependent processes and also in the regulation of acid-base equilibrium. 

It is the major intracellular buffer in the body. Furthermore, P is an important 

component of nucleic acids and membrane lipids (Zubay, 1998). Phosphorus 

also plays an important role as a structural element in bone, were it is stored 

along with Ca in the form of hard and poorly soluble hydroxyapatite crystals. In 

this chemical form Ca and P give bones strength and rigidity (McDowell, 2003). 

The reason for its activity in many biological processes is that the P atom has an 

electron configuration where there is one electron in excess for its various 

functional or structural work assignments, so P can not form very rigid networks. 

Instead, phosphates can readily adapt to changes in the biological environment 

simply by shifting the fifth electron around. This flexibility in functional and 

structural behavior makes P a key element in living processes (Matheja and 

Degens, 1971). 

 
Phosphorus distribution in the body 

Approximately 1% of the mature body weight of the pig is P (Peo, 1991). 

Also, approximately 80% of the total body P and 99% of the total Ca is located in 

the skeleton and teeth (Cromwell and Coffey, 1991). Both minerals are present in 

bone, mostly in the form of an apatite salt composed of calcium phosphate 

[Ca3(PO4)2] and hydroxyapatite [Ca10(PO4)6(OH)2] (Hays, 1976; McDowell, 2003). 

The Ca:P ratio in bone  is very constant, being close to 2:1 (Lloyd et al., 

1978; McDowell, 2003). This ratio does not change during dietary deficiency of 

Ca, P, vitamin D, or during significant changes in nutrient intake. The same can 

not be said for the total amount of ash accumulated in bones, which varies 

according to the animal’s nutrient status (Hays, 1976). 

Crenshaw (2001) points out that there is a large variation in the P 

percentage of skeletal tissue (60 to 80%) in pigs, which is due to the change in 

proportions of skeletal and soft tissues as pigs grow. According to Georgievskii et  
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al. (1982), these differences seem to be caused by different amounts of fat 

deposition because only small differences are found when the P contents are 

calculated on defatted tissue. 

 

Phosphorus absorption and excretion 

Phosphorus enters the digestive tract of the pig in organic and inorganic 

forms. Its absorption occurs after it is hydrolyzed by brush border phosphatases 

in the enterocytes. It is also absorbed as a part of phospholipids (Crenshaw, 

2001). In general, mineral elements in the intestine must become available in 

ionic form (cations and anions) in order to be absorbed. Monovalent elements 

(e.g., Na, K, Cl) are very soluble at neutral pH, so they are more readily absorbed 

and transported than the polyvalent minerals. Phosphorus valence is 3 or 5. In 

general, mineral absorption in pigs has been studied by intestinal cannulation 

and perfusion of mineral solutions and markers into surgically isolated loops of 

intestine. The marker is used as an indicator of net water movement (Partridge, 

1979). Although net absorption of several minerals has been demonstrated in 

both the distal small intestine and in the large intestine, the small intestine is 

recognized as the principal site of Ca and P absorption (McDowell, 2003). The 

poor role of the large intestine in exogenous P absorption was found by Fan et al. 

(2001). During assessment of true P digestibility in pigs, Fan et al. (2001) found 

no difference between true ileal and fecal P digestibility values, concluding that 

most P absorption occurs in the small intestine. According to Crenshaw (2001), 

the major site of Ca and P absorption is the upper part of the small intestine. In 

the case of P, the absorption is four times higher in jejunum, as compared with 

the duodenum, and very little absorption occurs in the ileum. 

In regard to the absorption process, both Ca and P absorption have active 

and passive components. In general, the active transport system is saturable, 

and is enhanced by dietary insufficiency. This active transport occurs in the 

duodenum and jejunum, while the passive transport system is nonsaturable and 

occurs mostly in the ileum.  Passive Ca absorption includes unregulated  
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paracellular transport, which becomes more important in Ca rich diets 

(Crenshaw, 2001). 

Absorption of both minerals is closely related to their demand, according 

to the physiological state of the animal (McDowell, 2003). The amount of P 

absorbed is dependent upon several conditions; including the level of P in the 

diet, the source of P, the amount of Ca, the Ca:P ratio, the intestinal pH, and the 

presence of other minerals that are antagonistic to the absorption and utilization 

of P (Peo, 1991). Jongbloed (1999) points out that dietary Ca content should be 

standardized when assessing P digestibility in feeds, due to the interactions 

occurring between Ca and P in the digestive tract. In regard to the level of P, it is 

known that a deficient dietary intake of the mineral stimulates absorptive 

processes, particularly the active absorption, and also renal reabsorption which 

minimizes excretion of P in urine (Combs, 1998; Crenshaw, 2001). 

The active absorption of Ca and P is stimulated by vitamin D, which is 

activated from 25–OHD3 into 1,25–(OH)2D3  by the enzyme 1α – hydroxylase in 

the kidneys, and targets the enterocytes to increase the synthesis of calcium 

binding proteins (or calbindins).  The 1α–hydroxylase activity is stimulated by 

parathyroid hormone (PTH), which is released into circulation from the 

parathyroid gland immediately after Ca plasma concentration decreases. Besides 

that indirect role of PTH on the stimulation of mineral absorption, this hormone 

directly increases plasma Ca concentration by inhibiting bone osteoblasts activity 

while promoting osteoclastic resorption. It also inhibits renal P reabsorption, 

increasing its urinary loss (Georgievskii et al., 1982; Crenshaw, 2001; McDowell, 

2003). When serum Ca is elevated, the thyroid gland secretes the hormone 

calcitonin which enhances uptake of Ca by tissues, increases Ca renal excretion 

and inhibits bone resorption (Georgievskii et al., 1982; Combs, 1998; Crenshaw, 

2001). Summarizing, P homeostasis depends on several factors, including 

intestinal absorption, bone catabolism and regulation of excretion through the 

kidneys (Combs, 1998; Crenshaw, 2001). 

In regard to the excretion pathway, it is known that feces are the primary 

path for P excretion in herbivores, while urine is the principal path of P excretion  
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for humans and carnivores (McDowell, 2003). During periods of P depletion, the 

kidneys respond by reducing excretion virtually to zero, thus conserving body 

phosphate (McDowell, 2003). In all species, feces are the primary path for Ca 

excretion. Urinary loss of Ca is minimal, owing to efficient reabsorption by the 

kidneys (McDowell, 2003). 

 

Phosphorus bioavailability and bone mineralization 

It is known that growing and finishing pigs do not require maximal bone 

mineralization in order to reach maximum growth performance. Higher dietary Ca 

and P levels may be desirable over prolonged reproduction periods, but it is not 

necessary for swine destined to market (Cromwell et al., 1972; McDowell, 2003). 

According to Peo (1991), adequate Ca and P nutrition for all classes of 

swine depends upon three main factors: (1) adequate provision of each element 

in available form in the diet; (2) a suitable ratio of available Ca and P in the diet; 

and (3) the presence of adequate levels of vitamin D. Given those conditions, 

proper nutrition is expected to be reflected in adequate bone mineralization. 

A way to assess the degree of mineralization of the skeleton is by 

measuring the ash content in the dry defatted bone (Georgievskii et al., 1982). It 

is known that bone mineralization is an accurate estimate of the biological 

availability of P, provided there are adequate levels of all other nutrients (Hays, 

1976). Bioavailability of a mineral can be defined as the amount of the mineral 

that is absorbed and later utilized by an animal, or the fraction that is retained in 

the body (feed – (feces+urine)) (Cromwell, 1999b; Jongbloed et al., 1999a). The 

term is also defined as the degree to which an element ingested from a particular 

feed source is available for use in metabolism by the animal in question 

(Ammerman et al., 1986). The value for availability is usually expressed as a 

percentage. 

McDowell (2003) defines net retention for a given mineral as the total 

intake minus the total excretion (fecal plus urinary) of the mineral. The same 

author indicates that net retention may be useful in interpreting results, but in 

many situations it probably has limited value in determining the bioavailability of  
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minerals. This is because urinary excretion represents a portion of the minerals 

that were potentially effective from a nutritional stand point, and that were either 

involved or available for use in metabolism. 

The bioavailability of Ca and P from a particular source or feedstuff can be 

assessed by measuring the total body retention of the mineral, or also by the 

assessment of their incorporation into bone. Bone characteristics, such as its ash 

percentage and its breaking strength, are good criteria to evaluate the 

bioavailability of those minerals. Bone breaking strength or shear strength is 

regarded as one of the most dependable and sensitive tests in determining bone 

mineralization in pigs (Underwood and Suttle, 1999). Bone breaking strength, 

which is a more sensitive indicator of bioavailability than percent of ash, is the 

measure of the amount of force, applied to the center of the bone, required to 

break the bone when it is horizontally placed on two supports (Cromwell, 1999b). 

In regard to the methods used for determining bioavailability of minerals 

for pigs, much of the early research was done through digestibility trials and 

balance trials. True digestibility, which could be interpreted as a measure of 

bioavailability, can be obtained in the mentioned types of trials by correcting the 

observed apparent digestibility for the endogenous excretion of the mineral under 

study. In this case, the amount of available mineral is the difference between the 

amounts consumed and excreted, corrected for the endogenous portion. 

Cromwell (1999) indicates that this procedure is not generally accepted for 

measuring the availability of minerals because the corrected retention obtained in 

balance trials, which also considers urinary excretion, does not necessarily 

represents the bioavailability of the mineral in terms of its digestibility and 

absorbability from the tract. Besides this, McDowell (2003) argues that digestion 

and balance trials have the disadvantage that bioavailability of minerals can not 

be obtained for specific feedstuffs or mineral supplements, but only for the entire 

diet. Taking this into account, this author indicates that a more accurate and 

acceptable method for estimating bioavailability of a specific mineral is by 

obtaining a relative bioavailability value. This value expresses the availability of 

the mineral in the test source relative to its availability in a standard form of the  
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mineral, which is given a score of 100. Currently, the most commonly used 

method for determining relative mineral bioavailability in a particular feedstuff for 

growing pigs is the slope-ratio procedure. In this method, graded levels of the 

feedstuff under test are added to a basal diet which does not contain the mineral 

of interest. As an example, if the mineral is P, and the feedstuff under test is rich 

in protein, then the basal diet can have starch, sucrose or dextrose as a source 

of energy (to balance energy and protein). It can also have casein as a source of 

protein when the test feedstuff is high in energy (although casein contains P, it is 

considered 100% available). The responses obtained (e.g., bone breaking 

strength or bone ash) are regressed on the dietary level of the mineral or on its 

absolute intake. Similarly, graded levels of the mineral in a highly available form 

(a standard, e.g., monosodium phosphate) are added to the basal diet in order to 

produce a linear response which is also regressed in the same way done for the 

test diets. The slope ratio is the slope of the regression line calculated for the test 

feedstuff divided by the slope of the standard line and multiplied by 100. This 

ratio represents the bioavailability of the mineral in the test feedstuff relative to 

the standard used (Cromwell, 1999b). 

 

Phosphorus dietary requirements and supplementation 

Being abundant in the body, Ca and P are required in relatively high 

amounts in swine diets. A phosphorus deficiency causes a reduction in bone 

mineralization and thereby impairs calcium metabolism which can lead to rickets 

in the young animal or osteomalacia in the adult. Some signs of these conditions 

are stiffness of the gait, enlarged and painful joints, deformities of the long bones 

(bent, bowed, broken), humped back or the camel back syndrome, and posterior 

paralysis or downer sow syndrome (Peo, 1991; Soares, 1995). 

Calcium requirements are between 0.45 and 0.90% of the diet, while total 

P requirements are between 0.40 and 0.70% (NRC, 1998). The requirement 

varies according to body weight and physiological stage of the pig. These 

proportions indicate that the Ca requirement is approximately 1.2 times that for 

total P. The term ‘total P’ refers to all the P present in the diet, including the  
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unavailable fraction that is bound within the phytate complex or myo-inositol 

1,2,3,5/4,6-hexakis (dihydrogen phosphate). This unavailable fraction is called 

phytic P, and has the structure of a fully phosphorylated myo-inositol ring 

(Maenz, 2000). Figure 2.2 depicts a model of the phytin complex, represented by 

a phytate molecule chelating various cations, protein, and starch residues. 

Due to the fact that the proportion of phytic P varies greatly in different 

feedstuffs (Coehlo, 1999; Harland and Overleas, 1999; Nys et al., 1999; 

Ravindran, 1999), P requirements for pigs are better expressed in terms of 

available P rather than in terms of total P. Availability is defined as that proportion 

of the nutrient provided that can be extracted, absorbed and utilized by the 

animal to meet its net requirements at a stated level of inclusion and level of 

feeding (Mudd and Stranks, 1985). The net requirement for P comprises the 

inevitable losses of the mineral via feces and urine, its retention in the form of 

both body weight gain and conception products, and its secretion via milk 

(Rodehutscord et al., 1998). 

Current requirements for available P are estimated to be between 0.15 

and 0.55% of the diet (NRC, 1998). Research has shown that the requirement for 

Ca and P should be considered not only in terms of the ideal proportion of each 

in the diet, but also in terms of the best ratio between dietary Ca and P. For 

grain-soybean meal diets, the Ca:total P ratio should be between 1:1 and 1.25:1. 

The currently accepted Ca:available P ratio is between 2:1 to 3:1.  Wider Ca:P 

ratios tend to lower P absorption, resulting in reduced growth and bone 

calcification, particularly when the diet is low in P (NRC, 1998). 

Regular grains and oilseeds provide pigs with the total amount of P they 

require. However, as an important portion of this P is not available to the animals, 

common diets have to be supplemented with highly available inorganic sources 

of P, such as defluorinated rock phosphate, and mono and dicalcium 

phosphates. Phosphorus bioavailability from monosodium and monocalcium 

phosphate is close to 100%, while P availability from dicalcium phosphate is 

about 95% (NRC, 1998; Cromwell, 1999a). Feed grade dicalcium phosphate, 

which consists of about two-thirds dicalcium phosphate and one-third  
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monocalcium phosphate, is the most commonly used phosphorus supplement in 

pig feeds (Cromwell and Lindemann, 2002). Most modern swine operations 

supplement diets with one of these sources to fulfill the pig’s requirement for 

available P. 

 
Phytate phosphorus 

Although phytic acid is the acid form of the phytate anion, both terms are 

used interchangeably in most of the literature and also in this dissertation. 

The phytic acid complex is the most important form of P storage in plants, 

serving different functions during seed dormancy and germination such as 

initiation of dormancy, antioxidant protection during dormancy and storage of P, 

high energy phosphoril groups and cations for use during germination (Gibson 

and Ullah, 1990; Ravindran, 1999). 

Phytic acid biosynthesis starts with D-Glucose 6-P, which undergoes 

irreversible cyclization to myo-inositol-3-P and posterior phosphorylations into the 

six phosphate-containing phytate molecule, which is deposited in the cells in the 

form of phytin granules (Loewus and Murphy, 2000). Phytin is the name given to 

phytate when it is chelated to cations, proteins and/or starch (Angel et al., 2002). 

Phytin is a complex salt with counterions that include K+, Mg2+, Ca2+, the protein 

matrix in which it is embedded, and several minor cations (Loewus, 1990). Phytin 

is capable of strongly binding divalent and trivalent cations at all pH values 

normally encountered in feeds, because it carries a strong negative charge 

(Angel et al., 2002). According to Maenz et al. (1999), among all the cations, Zn 

has the highest affinity for chelating with phytin, followed by Fe, Mn, Ca and Mg. 

Phytate is hydrolyzed by endogenous phytases during seed germination 

and early seedling growth, providing the seedling with myo-inositol, P, and 

several mineral cations (Hegeman et al., 2001; Raboy et al., 2001; Raboy, 2001). 

Phytate concentration varies among the different seeds. Phytic acid comprises 

from 55 to 85% of the total P present in grains such as corn and oilseeds such as 

soybean (Nelson et al., 1968; Raboy, 1990; Raboy et al., 2001). According to the 

review by Ravindran (1999), phytate P, as a percentage of the total P, is slightly  
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higher in corn (68%; Range: 61 to 85%) than it is in soybean meal (60%; Range: 

46 to 65%). 

The amount of phytate varies not only among seeds, but also in the 

different parts of the kernel. In corn, about 90% of the phytate is concentrated in 

the germ portion of the kernel. The rest is mostly located in the aleurone tissues 

(O’Dell et al., 1972). In soybean and other dicotyledonous seeds, phytate is 

distributed throughout the kernel including cotyledon, endosperm, and embryonic 

axis (Raboy, 1990). In rice, it is mostly concentrated in the aleurone layers. This 

makes rice bran a feedstuff particularly rich in phytate P. Rice bran contains 

about 1.38% (1.02 to 1.81%) phytate P, which corresponds to about 85% of the 

total P present in this byproduct (O’Dell et al., 1972; DeBoland et al., 1975; 

Raboy, 1990; Ravindran, 1999). Additionally, phytate is present in other plant 

tissues, such as roots, tubers, pollen and vegetative tissues (Graf and Eaton, 

1990; Raboy, 2001). 

Besides binding P, phytate has also been reported to bind Ca, Zn, Mg, 

Mn, Cu, Fe, Ni, Se and Co (Harland and Overleas, 1999; Overleas and Harland, 

1999; Ravindran, 1999). Minor amounts of minerals such as sodium and barium 

have also been reported to be bound by phytate (Gibson and Ullah, 1990). The 

binding of cations by the negatively charged phytate molecule in the intestinal 

lumen of monogastrics renders them unavailable to the animal (O’Dell et al., 

1972; Hegeman et al., 2001). Phytate also binds feed proteins and decreases 

their solubility, affecting the functionality of pepsins (Kornegay et al., 1999; 

McKnight, 1999; Ravindran et al., 1999). 

 

Endogenous phytases 

As stated by Kornegay and Yi (1999), the presence of endogenous 

phytase activity is negligible for improving the availability of phytate P in 

nonruminants. Phytate P is not available to pigs, because they do not have 

enough phytase enzyme in the digestive tract to cleave P from the phytate 

complex. Cromwell (1999b) further explains that although hind gut microbes  
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produce phytase, this phytate degradation is of little value because of the poor 

absorption of the liberated P that occurs in the large intestine. 

The phytase activity observed in the digestive tract of pigs not 

supplemented with the enzyme in the diet has four possible sources: intestinal 

phytase present in digestive secretions, endogenous phytase present in some 

feed ingredients, phytase originated from resident bacteria, and phytase 

produced by exogenous microorganisms (Kornegay and Yi, 1999). The activity 

present in the extract of small intestinal mucosa of pigs is minimal (Pointillart et 

al., 1987; Nys et al., 1999). The phytase activity from resident bacteria is 

probably negligible (Kornegay and Yi, 1999). There is higher activity in the hind 

gut, compared to the small intestine, but it is of little use to the host, because, as 

already mentioned, most P absorption occurs in the small intestine. 

In regard to feed ingredients, there is variable amount of phytase present 

in seeds (Gibson and Ullah, 1990). Its function is to convert P from the stored 

form as phytate P into readily available inorganic phosphate during seed 

germination (Maenz, 2000). Phytase activity of seeds differs greatly among 

species of plants (Reddy et al., 1982; Maenz, 2000). With the exception of wheat, 

rye, and their hybrid triticale, most seeds contain very low levels of phytase 

activity. Activity is low in corn, sorghum, oil meals and legume seeds (Kornegay 

and Yi, 1999; Nys et al., 1999). Phytase activity is somewhat higher in rice bran 

(122 U/kg) than soybean meal (40 U/kg) and corn (15 U/kg). But phytase 

concentration in rice bran is much lower than it is in wheat (1193 U/kg), wheat 

bran (2857 U/kg), rye (5130 U/kg), barley (582 U/kg), or triticale (1688 U/kg), 

according to a review by Eeckhout and De Paepe (1994). 

The phytase activity present in wheat bran is so high that the inclusion of 

10 to 20% of this feedstuff in growing and finishing diets, respectively, can 

completely replace inorganic P supplementation in Landrace x Hampshire x 

Meishan crossbreds (Han et al., 1997). Nevertheless, it has to be noted that 

these are not commercial crosses of pigs and they have low genetic growth 

potential. The inability of pigs to digest phytate P means that an important 

fraction of dietary P is not used, and is excreted in the feces. 
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Phosphorus and the environment 

Providing animals with the required amounts of nutrients for growth and 

production is an important objective of animal nutritionists. But modern animal 

production also demands serious consideration of the environment. 

Phosphates are natural, nonrenewable and highly valued resources 

(Abelson, 1999; Vance et al., 2003). Not surprisingly, P is the most expensive 

mineral supplemented to swine (McDowell, 2003). Its cost per kilogram of diet 

exceeds the cost of the rest of the supplemented minerals altogether. According 

to Stevermer et al. (1994), the supplemental phosphorus source is the third major 

contributing factor to the total cost of the diet. 

Even more important than the cost factor are the growing concerns 

regarding P excretion. It is well known that although the number of swine farms in 

the U.S. has been decreasing constantly during the last decades, the inventory of 

pigs per farm is vigorously increasing. The magnitude of these changes can be 

easily illustrated. Swine operations with more than 5,000 head accounted for 

75% of the pig crop in 2001 as compared with only 27% in 1994. Conversely, 

operations with less than 5,000 head accounted for 73% of the U.S. pig crop in 

1994 and only 25% in 2001. Meanwhile, the number of hog operations with more 

than 5,000 head has grown from just under 1,000 in 1993 to slightly over 2,200 in 

2001. The number of operations with less than 5,000 head has declined from 

217,000 to less than 79,000 during the same period (National Agricultural 

Statistics Service, NASS 2004). 

As the density of pigs in an operation increases, the amount of manure P 

to be spread in the field increases.  If there is not a corresponding increase in the 

rate of P extraction by crops grown in these fields, the mineral may result in a 

threat to the bodies of water in the farm’s areas of influence (Hollis and Curtis, 

2001; Strak, 2003; Cheeke, 2004). According to Miner (1999), application of P in 

excess of crop utilization is common in much of the United States. DeLaune et al. 

(2000) agree, explaining that the reason for this excessive application of P is that 

manure is usually applied according to the crop’s need for N, and animal 

manures generally exhibit a low N:P ratio. 
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Water pollution from P may lead to eutrophication. This is a process 

whereby water bodies, such as lakes, estuaries, or slow-moving streams receive 

excess nutrients that stimulate excessive plant growth (algae, periphyton 

attached algae, and nuisance weeds). This enhanced plant growth, also called 

algal bloom, reduces the concentration of dissolved oxygen in the water when 

dead plant material decomposes, causing fish and other organisms to die 

(Sweeten, 1991; Henry, 1996; Jongbloed and Lenis, 1998). In most fresh water 

ecosystems P is the nutrient limiting eutrophication (Sharpley et al., 1994; 

Correll, 1998; Correll, 1999; McDowell, 2003). According to Correll (1999), an 

excessive concentration of P is the most common cause of eutrophication in 

freshwater lakes, reservoirs, streams, and in the headwaters of estuaries. The 

same author indicated that for most of those bodies of water, concentrations of 

100 µg total P/L were unacceptably high, and even concentrations as low as 20 

µg P/L were often a problem. Van Horn et al. (1996) added that in regions near 

critical lakes and streams where P in surface runoff is believed to accelerate 

excessive algae growth, total farm P balance is considered more critical than that 

for N. 

The potential for pollution derived from the increasing animal densities in 

modern pig farming is leading to rising governmental interventions that tend to 

control and restrict the growth of the swine business in the U.S. and in many 

other countries (Jongbloed and Lenis, 1998). 

The arguments regarding dietary cost and environmental concerns are 

both good reasons to search for suitable alternatives to inorganic P 

supplementation. 

 

Minerals other than phosphorus as potential pollutants 

Besides P, dietary minerals such as Cu and Zn raise concerns in regard to 

environmental pollution. Essential trace minerals for plants, including Cu and Zn, 

are generally considered to be toxic when accumulated in high concentrations in 

the soil, and many environmental researchers refer to these two minerals as 

‘heavy metals’ (Athar and Ahmad, 2002; Stoyanova and Doncheva, 2002). 
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According to some modeling scenarios, at the present rate of manure derived Cu 

and Zn application, agricultural land use may not be sustainable due to 

accumulation of these elements (Keller et al., 2002). Nevertheless, studies 

disagree with regard to the polluting potential of specific minerals, such as Cu 

(Martens et al., 1993). 

 It is noteworthy to mention that the expression ‘heavy metal’, frequently 

used to categorize all metals having densities above 5 g/cm3 can be misleading 

(e.g., silver is not recognized as a toxic ‘heavy metal’ despite its high density). 

According to Hawkes (1997), however, the ‘heavy metal’ designation has little to 

do with density. It is concerned more with the particular chemical properties of 

these elements. Thus, the use of this term with recognized nutrients like Cu and 

Zn can be misleading and should be avoided. 

Copper, a relevant mineral found in pig feces, is also an essential element 

for plants. The role of Cu in many physiological processes is well known, 

especially photosynthesis, respiration, carbohydrate distribution, N reduction and 

fixation, protein metabolism, reproduction and disease resistance (Bussler, 

1981). Nevertheless, according to Alloway (1990), Cu is considered to be one of 

the most important pollutants of the air and is also a very significant pollutant of 

agricultural soils. Morphological and physiological alterations in chloroplasts are 

among the observed toxic effects of excessive Bioavailable soil Cu (Panou-

Filotheou et al., 2001). 

Zinc, another essential mineral nutrient for plants, plays an important role 

in several metabolic processes, including activation of enzymes and participation 

in protein synthesis and carbohydrate, nucleic acid and lipid metabolism 

(Marschner, 1986; Pahlsson, 1989). When Zn is accumulated in excess in plant 

tissues, it causes alterations of vital growth processes such as photosynthesis 

and chlorophyll biosynthesis (Doncheva et al., 2001), affects membrane integrity 

(De Vos et al., 1991) and has been reported to have negative effects on mineral 

nutrition (Chaoui et al., 1997). 

Copper is commonly added at levels of 10 to 20 ppm in most diets, but 

can be at 100 to 250 ppm in pig starter diets in order to stimulate feed intake and  
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growth rate after weaning, and some times is also included at 100 to 150 ppm in 

grower and finisher diets (Coffey et al., 1994; Cromwell, 1999a; McDowell, 2003). 

Zinc, as Zn oxide, is sometimes fed at 2,000 to 3,000 ppm to pigs during the first 

7 to 10 days after weaning to prevent post weaning diarrhea and to improve feed 

intake and growth (Cromwell, 1999a). When these minerals are fed at high doses 

(about 50 to 100 times the requirement), they also exert pharmacological effects, 

especially in piglets, such as prevention of diarrhea (McDowell, 2003). The Zn 

and Cu fed at these high levels is almost completely excreted in the feces 

(Cromwell, 1999a). Because the mobility of Zn and Cu in the soil is extremely 

low, these minerals may progressively accumulate in areas heavily fertilized with 

pig manure (Cromwell, 1999a). 

It is known that some metals can be transferred and biomagnified in plants 

grown on contaminated soil. These metals have damaging effects on plants and 

may represent a health hazard to man and animals. Above certain 

concentrations, they also adversely affect natural soil microbial populations, 

leading to disruption of vital ecological processes (Sterritt and Lester, 1980). 

Stress originated from the accumulation of these metals negatively affects 

processes associated with biomass production and grain yield in almost all major 

crops (Agarwal et al., 1999). Athar and Ahmad (2002) illustrate the negative 

effects of toxic metals, concluding that soils contaminated with them exhibit a 

marked depletion of non-symbiotic nitrogen fixing bacteria and interference with 

nitrogen uptake mechanisms in plants, which probably leads to substantial losses 

in dry matter and grain yield. These researchers studied the effects of high levels 

of several metals, including Cu and Zn, on growth and grain yield of wheat plants 

in pots. They added 368 to 1,461 mg Cu/kg soil and 2,559 to 10,235 mg Zn/kg 

soil. They found that plants treated once with Cu, Zn and other metals added to 

the soil singly and in combination as chloride salts, exhibited decreased dry 

matter and grain yield, reduced plant tissue nitrogen content, and lowered protein 

content in grains. The order of toxicity found was: Cadmium > Copper > Nickel > 

Zinc > Lead > Chromium. Nevertheless, it has to be noted that metals are not 

normally present in animal manure as chloride salts. Thus, their solubility in the  
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soil and potential for absorption could be different than that in the experiment by 

Athar and Ahmad (2002). 

On the other hand, a series of short-term field studies by Martens et al. 

(1993) at the Virginia Polytechnic Institute and State University evaluating the 

response of corn to the application of large amounts of Cu, did not find 

decreased corn yields nor increased Cu concentration in grains after 15 years of 

continuous manure application. Those studies were conducted on three soils 

having wide differences in texture and cation exchange capacity. The 15 annual 

applications of manure from pigs fed high levels of Cu supplied from 380 to 390 

kg Cu per hectare (ha). The total amount of copper-enriched wet manure added 

was 1300 metric ton/ha over the 15 years, obtained from pigs fed an average of 

260 mg Cu/kg of feed. The manure contained 1320 mg Cu/kg on a dry weight 

basis. Soil from these field studies was later used in greenhouse experiments to 

evaluate soybean and wheat response to high levels of Cu application. The 

researchers did not find negative effects of these high levels of Cu on the growth 

of the plants. One more study by the same group evaluated the application of 

excessive amounts of Cu and/or Zn (540 kg Cu/ha and 1180 kg Zn/ha) as 

sulfates, over a period of 26 years. Corn yield was relatively high during the last 

season (26th year) and was not affected by the mineral additions. Also, the Cu 

concentration in grain was not increased by the Cu treatment. No toxicity was 

reported from the Cu or Zn additions. 

 
Targeting phosphorus excretion 

Different approaches have been proposed to diminish P excretion by 

swine. In general, those approaches are intended to increase P digestibility and 

utilization by the pig. It is known that digestibility of nutrients varies according to 

different factors, including level of the nutrient fed, presence of other constituents 

in the diet, age of the animal and genetics of the pigs used (Kidder and Manners 

1978). In regards to the level of the nutrient fed, it is important not to over-feed P, 

in order to limit its excretion. High levels of P in the diet should be avoided, 

allowing only a moderate amount of excess for nutritional safety purposes  
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(Cromwell, 1999a). To reduce P excretion, diets should also be formulated on an 

available P basis, instead of on a total P basis, using highly available sources of 

the mineral (Cromwell and Coffey, 1994; Cromwell, 1999b). The moderate 

amount of overage mentioned before, intended for proper bone development, 

should only be about 0.05% in excess of the available P requirement. The 

excess should not be more than 0.10% (Cromwell and Lindemann, 2002). 

When moderately low P diets (0.1% below the requirement) are offered 

during the last two weeks before slaughtering of terminal-cross pigs destined to 

market, a reduction in the dietary Ca level is also recommended. This is to avoid 

depressed performance, because a high Ca:P ratio negatively affects growth 

even in diets moderately deficient in P (Cromwell et al., 1995b). In regard to age, 

it is known that the ability of pigs to digest phytic P increases as the animals grow 

(Calvert et al., 1978). This should be considered when deciding the feedstuffs to 

be used during the different stages of growth. 

 

Exogenous phytases 

Currently, the most effective method for increasing the digestibility of P 

from plant feedstuffs at the commercial level is the addition of microbial phytases 

(myo-inositol hexaphosphate phosphohydrolases) to the feed (Henry, 1996; 

Sheppy, 2000; Cline and Richert, 2001). Two classes of phytases (3-phytase and 

6-phytase) have been identified. The 3-phytase initially removes orthophosphate 

from the 3-position of phytic acid, whereas 6-phytase catalyzes the removal of 

orthophosphate from the 6-position of phytic acid. Successive 

dephosphorylations result in intermediates from inositol mono to tetra 

phosphates and free myo-inositol. The seeds of higher plants typically contain 6-

phytases, while 3-phytases are found in microorganisms and filamentous fungi 

(Gibson and Ullah, 1990). 

Although it was demonstrated three decades ago that phytase improved P 

utilization in chicks (Nelson et al., 1971), microbial phytase was not commercially 

available until recent years. Microbial phytase research in pigs increased in the 

late 1980s and early 1990s when enzyme production systems were optimized to  
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make it an economically sound alternative (Cromwell, 2002). Different 

microorganisms are currently used to produce phytases: recombinant Aspergillus 

niger (Natuphos® G from BASF), non recombinant Aspergillus niger, (Allzyme 

PhytaseTM, by Alltech Inc), Peniophora lycii   (Ronozyme® P, by DSM Nutritional 

Products) and even bacteria such as Escherichia coli (EcoPhosTM, by Phytex, not 

yet approved for commercial use). 

The product from BASF is a 3-phytase, and it has two pH optima: one at 

pH 2.5 and the other at pH 5.5. Natuphos® G is produced by recombinant DNA 

techniques involving the cloning and isolation of a specific complimentary DNA 

(cDNA) encoding for phytase from Aspergillus niger var Van Tieghem. Then, the 

cDNA is transferred into the production organism, which is Aspergillus ficuum, 

also called Aspergillus niger (Kies, 1999; Nys et al., 1999). BASF defines one 

phytase unit (PU) as the amount of enzyme which liberates 1 micromole 

inorganic phosphorus per minute from 0.0051 mol/L sodium phytate at 37.0°C 

and at pH 5.50 (BASF, 2005). 

In general, 250 to 750 phytase units/kg (i.e. U/kg) of diet DM can fully 

replace inorganic P supplements at all stages of pig production, from nursery 

through growing to finishing, feeding diverse cereals such as corn, sorghum and 

pearl millet (Underwood and Suttle, 1999). 

In a review of 82 experiments using pigs since 1990 to 2002, Johansen 

and Poulsen (2003) concluded that phytase supplementation to corn-based diets 

can increase P digestibility to a maximum of 65 to 70%. The experiments they 

reviewed tested the effects of different addition levels (250, 500, 750, 1000, 1250 

and 1500 U/kg diet). Based on their review, they predicted a mean increase in 

digestible P of 0.65 g/kg of diet when 500 U/kg of diet are added. 

 Phytase not only improves P digestion and absorption, but also increases 

its bioavailability to the animal tissues. Cromwell et al. (1993) demonstrated that 

phytase can increase threefold P bioavailability for growing-finishing pigs, from 

15% to 45%, measured at the bone level. In a series of experiments with growing 

pigs, Xavier (2003) observed a 34 to 63% increase in P availability when normal 

corn-soybean meal diets were supplemented with 750 U/kg. 
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It is known that phytate-P digestibility depends not only on the amount of 

phytase but also on the amount of dietary Ca. It is presumed that increasing the 

concentration of a multivalent cation such as Ca will increase the formation of 

insoluble mineral-bound phytin crystals, which may be resistant to hydrolysis by 

phytase. Described in several species, including swine, this negative effect of 

cations on phytate hydrolysis is consistent with the model of pH-dependent 

mineral-phytate interaction. In this model the protonation of weak acid phosphate 

groups displaces minerals, turning phytase-resistant mineral bonds into phytase-

susceptible forms (Maenz, 2000). 

 
Low phytate grains 

Biotechnology makes possible yet another strategy to tackle the problem 

of P excretion. Genetically modified low phytate grains and oil seeds have been 

developed, tested in pigs, and may be commercially released soon. Growing pigs 

fed low phytate corn and low phytate soybean meal at the University of Kentucky 

have shown an increase of about 35% in P digestibility (from 58.2 to 78.6%) and 

about 32% reduction in P excretion. Simultaneous use of phytase and low 

phytate feedstuffs has decreased total P excretion in pigs by about 70%, when 

compared to regular grain diets with no added phytase (Xavier, 2003). 

 

Genetically modified pigs 

A different approach to tackle the problem of P excretion was attempted 

by Golovan et al. (2001). They developed a genetically modified (GM) transgenic 

pig carrying a phytase-coding gene from Escherichia coli, that expresses 

abundantly in the salivary glands. According to the authors, these pigs produced 

between 2,000 and 3,000 U/mL of saliva, which would represent the delivery of 

about 200,000 PU during the consumption of one kg of feed. These first 

‘phytase-pigs’ – both weanling and growing-finishing - showed a true P 

digestibility close to 100%, compared to 50% for non-transgenic animals. The 

fecal P excretion was reduced by as much as 75% when compared to non-GM  
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pigs. According to Ward (2001), this is a significant step toward improved 

agricultural productivity and enhanced environmental protection. 

 
Growth Promoting Antibiotics 
 

Taking into account that the antibiotics commonly used as growth 

promoters may also have a role on mineral excretion, this section focuses on that 

subject, describing their modes of action and their effects on the digestibility of 

several nutrients, including minerals such as P. Then, it continues with a specific 

review of virginiamycin as a growth promoting antibiotic commonly used in the 

swine industry, and finishes with some comments on the future availability of 

antibiotics as growth promoters. 

Antibiotics can be defined as chemical substances produced or derived 

from various microorganisms which exert an inhibitory effect, when used in small 

concentrations, on the growth of other microorganisms (Joklik et al., 1980). 

The use of low levels of antibiotics as feed additives has been an effective 

approach to improve growth promotion, feed utilization, mortality and 

reproductive efficiency in farm animals.  Not long ago, the subtherapeutic usage 

of antibiotics accounted for about 88% of the total amount of antibiotics used in 

animals (Hays, 1969; Whittemore, 1998; Cromwell, 2001; Gaskins et al., 2002). 

Aureomycin, which was the first of the tetracyclines discovered (Jukes, 1977), 

was the first antibiotic found to have growth promoting effects in animals. This 

happened one year after aureomycin was discovered when Stokstad et al. (1949) 

reported that chickens fed a fermented “mash” produced with Streptomyces 

aureofaciens showed increased gain compared with the control diet. The mash 

contained vitamin B12, which was expected to increase the growth rate of the 

chicks, but the results were much higher than what could be expected from the 

vitamin alone. The fermentation product was found to contain aureomycin which 

produced the response in growth. 

A variety of antibiotics have been fed to pigs at subtherapeutic levels for 

the last five decades, showing consistent improvement in growth parameters,  
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particularly in younger pigs (Cline and Richert, 2001; Gaskins et al., 2002). 

Cromwell (2001) pointed out that hundreds of experiments, involving thousands 

of pigs, at universities and other research stations have used subtherapeutic 

levels of antibiotics, improving average daily gain about 16.4% in weanling pigs, 

10.6% in growing pigs and 4.2% during the whole growing-finishing stage. 

Feed/gain improvements have been about 6.9% in weanling pigs, 4.5% in 

growing pigs, and 2.2% in growing-finishing pigs. At the farm level, where stress 

is higher due to greater microbial loads, the improvements obtained in gain and 

feed efficiency are even more remarkable. Under farm conditions, antibiotics may 

improve growth in weanling pigs by as much as 25 to 30%, and feed efficiency by 

12 to 15% (Cromwell, 2001). 

Another review by Baynes and Varley (2001) summarized the typical 

responses of growing pigs to antibiotics as 3 to 8% improvement in average daily 

gain and 2 to 4% improvement in the feed conversion ratio.  For finishing pigs, 

the improvement is generally reduced to 0 to 3% in average daily gain, and 0 to 

2% in feed conversion ratio. Cromwell (2001) gives similar figures for the whole 

growing-finishing stage, mentioning that improvements in growth rate and feed 

efficiency are around 8 to 10%, and 4 to 5%, respectively. 

The higher stress at the farm level, due to buildup of microorganisms in 

the facilities, seems to be responsible for a sub-clinical disease level in the pig. It 

is very difficult, and sometimes impossible, to duplicate in the university labs 

those stress conditions which occur in the field (Cunha, 1977). 

 

Modes of action and effects of antibiotics 

The mechanism of growth promotion by antibiotics is still speculative 

(Francois, 1961; Hays, 1969; Corpet, 2000; Mathew and Ebner, 2004). Francois 

(1961) and Hays (1969) reviewed several possible modes of action that have 

been postulated to explain the growth promoting effect of feeding low levels of 

antibiotics. Among those, three mechanisms have received most of the attention: 

the metabolic effect, the nutrient-sparing effect, and the disease control effect. 

Besides those, various steps in the nutrition process, such as digestion and  



 47

absorption, appear to be affected by antibiotics. These different hypothesis are 

not incompatible with each other, and may even be complementary (Francois, 

1961). Currently it is believed that growth promotion is more likely due to 

modifications of the gut flora, since antibiotics do not promote the growth of 

germfree animals (Corpet, 2000). 

 

Antibiotics and metabolism 

The ‘metabolic effect’ hypothesis suggests that antibiotics directly 

influence the metabolism rate of the animal, affecting energy, nitrogen, nucleic 

acid, fat, carbohydrate, vitamin and mineral metabolism. There is also evidence 

that antibiotics have an effect on the metabolism of gastrointestinal flora. 

 

Antibiotic effects on energy metabolism. The effects of antibiotics on 

energy metabolism have been studied in pigs and other animal species. 

According to the review by Francois (1961), pigs fed antibiotics have higher 

carbon retention, consume less oxygen, and have less loss of energy in the form 

of heat. Catron et al. (1953) reported an increased rate of glucose absorption in 

pigs fed antibiotics, providing evidence for the improved nutrient utilization 

resulting from feeding antibiotics. Similar results have been observed in other 

animal species. In sheep fed chlortetracycline, Tillman and MacVicar (1953) 

found lower rectal temperature, which would indicate reduced heat loss. In rats, 

Knoebel and Black (1952) also found that several antibiotics (aureomycin, 

terramycin and streptomycin) lowered heat production and improved energy 

utilization. Brody et al. (1954) reported that tetracycline inhibited fatty acid 

oxidation in the mitochondria of rat liver homogenates. 

Based on these and similar results by other researchers, it has been 

concluded that antibiotics have an ”energy sparing effect” that is reflected in a 

reduced feed consumption index or feed conversion ratio (Francois, 1961). It is 

also known that this effect is enhanced when energy requirements are increased, 

for instance when there is a decrease in the environmental temperature (King, 

1960). 
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Antibiotic effects on nitrogen metabolism. It is known that antibiotics not 

only affect energy metabolism, but also nitrogen metabolism in different ways. 

Tetracyclines, for instance, inhibit protein synthesis in bacteria cells (Hash et al., 

1964; Cocito et al., 1997), while carbadox increases protein synthesis in pig 

muscle cells (Moser et al., 1980). According to some researchers, the growth 

responses observed in pigs are associated with improved nitrogen metabolism, 

including an increase in apparent nitrogen digestibility (3.0%), increased nitrogen 

retention (5.8%), and reduced nitrogen excretion (10%) in animals fed the 

antibiotic tylosin (Gaskins et al, 2002). 

It has been shown that feeding chlortetracycline affects water and nitrogen 

excretion in pigs, suggesting that it may affect the metabolic rate (Braude and 

Johnson, 1953). By means of nitrogen balance trials, several researchers have 

found improvements in nitrogen retention by feeding antibiotics, particularly when 

pigs are fed low protein diets (Catron et al., 1952; Burnside et al., 1954; Russo et 

al., 1954). It is known that the inclusion of antibiotics in the feed of pigs, rats, 

chickens and turkeys generally permits to lower the protein level of the diet. This 

has been referred to as the protein sparing effect of antibiotics (Francois, 1961). 

More recent experiments have shown that antibiotics inhibit the 

deaminating and decarboxylating actions of intestinal flora. In an in vitro 

experiment by Dierick et al. (1986a), ileal contents from donor pigs were 

incubated with several free amino acids, observing 20 to 30% degradation of the 

amino acids by the flora. This degradation occurred either by deamination with 

formation of ammonia, or by decarboxylation with formation of amines. The most 

important amine found was cadaverine, the decarboxylation product of lysine.  

Researchers found both processes were severely reduced when antibiotics, 

including virginiamycin (50 ppm), were present in the ileal contents. They also 

reported that E. coli was the main producer of amines in the small intestine of 

pigs. These results were confirmed in vivo (Dierick et al., 1986b). They found that 

low levels (20 ppm) of virginiamycin and spiramycin greatly reduced deamination 

and decarboxylation processes in the small and large intestines of pigs. From the 

analysis of the N and urea contents of the urine they concluded that both  
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antibiotics enhanced N retention. Their digestibility experiments with cannulated 

pigs revealed that virginiamycin (50 ppm) increased the apparent ileal digestibility 

of N (+2.1%), lysine (+1.4%), glycine (+4.8%), valine (+2.2%) and methionine 

(+3.3%). Their absorption experiments, based on perfusion of an isolated loop of 

the terminal small intestine, demonstrated that virginiamycin enhanced net 

absorption of free amino acids by about 9%. These researchers concluded that 

growth promotion by antibiotics can be explained, in part, by the altered 

digestion, absorption and retention of N in pigs. 

 
Antibiotic effects on mineral metabolism. Although less studied, it is also 

known that, at least for some animal species, there is an effect of some 

antibiotics on mineral metabolism. Hartsook (1956) pointed out that there are 

species differences with regard to their growth response to antibiotics. 

Most of the research on the effects of antibiotics on mineral metabolism 

has been done with Ca in poultry. Migicovsky et al. (1951) demonstrated that 1-

day old chicks supplemented with penicillin for two weeks had increased 

absorption of 45Ca, measured at the tibia level. Ross and Yacowitz (1954) also 

found that dietary penicillin significantly increased the bone ash of chicks fed the 

antibiotic during a three week study. Nevertheless, the same researchers also 

reported no increase in bone ash for chicks fed diets with no or very low levels of 

vitamin D. Lindblad et al. (1954) found that the positive growth effect of 

aureomycin in chicks and poults is greater when the diet is more inadequate 

(deficient) in Ca and P. Brown (1957) also found that penicillin increased Ca 

retention between 4.5 and 7.7% in chicks fed low Ca rations. The same 

researcher suggested that the increased retention was probably the result of 

increased absorption, instead of increased utilization, supported by the fact that 

parenterally administered penicillin did not have any effect on calcium 

metabolism in pullets. On the other hand, Pepper et al. (1952) found reduced 

bone ash in aureomycin-fed chicks. Nevertheless, they also reported that this 

antibiotic reduced the incidence of perosis in Mn-deficient diets, suggesting that 

aureomycin may have a Mn-sparing effect. In research on laying hens, Gabuten  
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and Schaffner (1954) found better shell strength in the eggs of pullets fed 

penicillin during a three week study. They also found higher Ca levels in the 

blood of the antibiotic treated animals. This same antibiotic, as well as 

tetracycline and bacitracin, increased Ca levels in the blood of male chicks fed a 

diet containing 2.6% Ca. In Ca-deficient diets for chicks, penicillin also increased 

plasma Ca, but did not have any effect on plasma P (Bogdonoff and Shaffner, 

1954). 

Balance experiments in rats have given mixed results with regard to the 

effect of specific antibiotics on Ca absorption and retention. Researching in rats, 

Hartsook (1956) did not find any effect of aureomycin on Ca retention after 

supplementing the animals with the antibiotic for 35 days. Heggeness (1959) 

reported that neomycin improved Ca and Mg absorption in rats, although the 

increased Ca absorption did not persist for extended periods of time. This 

investigator reported that the antibiotic effect on Ca was only observed for the 

first period (7 days) of several successive balance trials. There was no effect for 

the following two to three week-long balance periods and there was no significant 

increase in the femur ash of the rats fed neomycin. 

 

Antibiotics and the gastrointestinal flora 

The gastrointestinal tract of the pig harbors a numerically dense and 

metabolically active microbiota comprised mostly by bacteria (Gaskins, 2001). It 

is known that antibiotic growth promoters exert no benefits on the performance of 

germ-free animals, which suggests that their effects on growth are due to their 

antimicrobial function rather than being caused by direct interaction with the 

physiology of the animal (Muramatsu et al., 1994). 

An important mode of action of antibiotics in nonruminant animals is to 

reduce the numbers of potentially harmful microorganisms in the digestive tract, 

which not only reduces the amount of disease, but also reduces the amount of 

toxins, ammonia and amines normally produced in the gut (Buttery, 1993). 

The nutrient sparing effect theory, in which antibiotics reduce the dietary 

requirement for certain nutrients by modifying the intestinal flora, has also  
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considerable research support. This mode of action implies that antibiotics 

stimulate the growth of desirable organisms (e.g., coliforms) that synthesize 

essential nutrients for the host, while depressing the populations of bacteria that 

compete with the host for nutrients (e.g., lactobacilli). This nutrient sparing effect 

also suggests that those changes in the intestinal flora lead to increased 

availability of nutrients via chelation mechanisms, and improved absorptive 

capacity of the intestine (Hays, 1969). 

It appears that feeding low levels of antibiotics mostly affects the flora in 

the small intestine, having little or no effect on the flora of the rest of the digestive 

tract (Sieburth et al., 1954). Nevertheless, determining precisely how the flora is 

affected by antibiotics is not an easy task. Gaskins (2002) indicated that 

traditional methods for quantifying and typifying intestinal bacteria may not be 

reliable because the selective media used for different types of bacteria impose a 

bias on the types of bacteria that can be enumerated. Further, only 20 to 40% of 

bacterial species from the mammalian gastro-intestinal tract can be cultured and 

identified using current cultivation techniques. In other words, we may be 

overlooking 60 to 80% of intestinal bacterial species. 

Although probably not very accurately typified, it is generally accepted that 

the small intestinal microflora consists predominantly of gram-positive bacteria 

(Stewart, 1997).  It is also known that most growth promoting antibiotics target 

gram-positive organisms. This explains the fact that, in several species, including 

the pig, antibiotics decrease the number of lactobacilli, which favors the growth of 

coliform bacteria, and sometimes also increase the number of Shigella, Proteus 

and staphylococci (Rhodes et al., 1954; Scaletti et al., 1955). 

As the small intestine is the principal site of nutrient and energy 

absorption, bacterial activity in this region is likely to have the greatest influence 

on growth efficiency. The proximal small intestine has a high rate of digesta flow. 

Because of this, the rate of bacterial washout exceeds the maximal growth rate 

of most bacterial species, which explains why this area is usually colonized by 

bacteria that adhere to the mucus layer or to the epithelial cell surface. As 

lactobacilli and streptococci are acid tolerant, they predominate in this area. On  
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the other hand, the ileum has a more diverse microflora and higher bacterial 

numbers than the upper intestine (Gaskins, 2002). 

Small intestinal bacteria compete with the host for energy and amino 

acids. As much as 6% of the net energy in pig diets can be lost due to bacterial 

utilization of glucose in this organ (Vervaeke  et al., 1979), producing lactic acid, 

which also enhances peristalsis, thus increasing the passage rate of nutrients 

through the intestine (Saunders and Sillery, 1982). Bacteria also degrade amino 

acids, which not only decreases their availability to the pig, but also generates 

toxic metabolites such as amines, ammonia, phenols and indoles (Macfarlane 

and Macfarlane, 1995). 

Intestinal bacteria also have mucolytic activities that compromise the 

mucosal barrier. This mucolytic activity indirectly affects growth efficiency via 

stimulation of additional mucus production, which requires energy, negatively 

affecting animal growth (Gaskins, 2002). 

It is interesting to note that lactobacillus and enterococcus, which 

apparently have a negative effect on growth, are also used as probiotic 

organisms for enhancing health and promoting growth in livestock. But the 

growth-promoting effect of probiotics is less consistent than that observed with 

antibiotic supplementation (Johnsson and Conway, 1992). According to Gaskins 

(2002), probiotics apparently promote growth under situations in which certain 

pathogens are present. However, the same organisms used on animals growing 

in a cleaner facility may suppress growth via the mechanisms mentioned. 

The study by Vervaeke et al. (1979) found increased pH in incubated ileal 

contents (5.5 to 7.13) four hours after having added 50 ppm of virginiamycin. 

That change in pH was correlated with the observed reduction in volatile fatty 

acids (VFA) and lactic acid production, which was probably caused by the 

observed decrease in lactobacilli counts. When comparing the amount of energy 

lost from the fermentation flask during the period previous to adding the 

antibiotics with the post-antibiotic period, the authors found that virginiamycin 

addition produced a saving in dietary energy equivalent to 2.68% of the net 

energy for growth. They concluded that this saving was the result of an 80%  
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inhibition in lactic acid production and 47% reduction in CO2 production, which 

resulted from a decrease in carbohydrate fermentation. 

Besides the effect on the bacterial populations in the intestine, antibiotics 

in general may also affect the metabolism of microorganisms. It has been 

reported that antibiotics decrease the energy and nitrogen metabolism of 

bacteria. Some researchers have suggested that the change in the carbohydrate 

metabolism observed in the intestinal bacteria of growing pigs fed antibiotics was 

nutritionally more important for the animal than the observed change in bacterial 

numbers (Visek, 1978; Vervaeke et al., 1979). Intestinal bacteria partially 

deaminate and decarboxylate dietary amino acids (e.g., arginine, cystine and 

methionine), rendering them unavailable for the host animal (Carrol et al., 1953). 

It is known that growth promoting antibiotics inhibit in vitro and in vivo amino acid 

deamination and decarboxylation, and decrease the fermentation of 

carbohydrates and the decomposition of bile salts. This  produces a double 

positive effect for the host by increasing the available energy and nutrients for 

absorption (sparing effect), and at the same time diminishing the formation of 

toxic molecules like ammonia or amines in the gut, leading to a reduced turnover 

in the gut epithelium (Francois, 1961; Corpet, 2000). 

Antibiotics may also affect, in different ways, the rate of passage of 

digesta through the gastrointestinal tract. Penicillin and aureomycin were found 

to speed up digestive transit in chickens and turkeys, probably by stimulating 

intestinal peristalsis (Hillermann et al., 1953; Jukes et al., 1956). On the other 

hand, the antibiotic virginiamycin seems to produce the contrary effect, by 

decreasing lactic acid producing bacteria in the gut (Hedde et al., 1981). 

Besides the effects mentioned,  a relatively recent study showed that 

feeding an antibiotic ‘cocktail’ containing chlortetracycline, sulfamethazine and 

penicillin (22.7, 22.7, and 11.4 ppm, respectively) to weaning pigs for five weeks 

increased the serum levels of insulin-like growth factor I (IGF-I), which is a potent 

mitogen for myogenic cells. It was suggested that assumed changes in the 

gastrointestinal flora (not specified in that study) would be responsible for the 

increased production of this positive growth factor (Hathaway et al., 1996). 
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In regard to the environmental conditions where experiments take place, it 

is important to mention that the effect of antibiotics on growth depends on the 

bacterial load in the environment. In general, the more ‘infected’ or ‘dirty’ the 

environment, the bigger the effect of antibiotics on growth (Lillie et al., 1953). 

 

Antibiotics and carcass composition 

With regard to the possible effects of antibiotics on meat quality and 

carcass composition of animals, it appears that those characteristics are not 

affected by these substances. According to Francois (1961), at equal weights the 

body composition of control and antibiotic treated animals was found to be 

identical. A later review by Buttery (1993) also concluded that carcass 

characteristics such as back-fat thickness and dressing percentage were not 

affected by pigs fed tylosin, olaquindox, salinomycin or virginiamycin at growth 

promoting levels. 

 
The antibiotic virginiamycin 

Virginiamycin is produced by Streptomyces virginiae. It is used both in 

topical preparations for human and veterinary medicine and as a growth 

promoter in animal feed. It was first approved for use in feed for food-producing 

animals in the U.S. in 1975, and it is currently approved for use in chickens, 

turkeys, swine, and cattle (Claycamp and Hooberman, 2004). 

 

Description and mode of action of virginiamycin 

Virginiamycin belongs to the class of the streptogramins. This antibiotic is 

insoluble in water and is poorly absorbed because of its large molecular weight 

(Vervaeke et al., 1979). 

Streptogramin antibiotics have a narrow spectrum of activity which 

includes mostly gram-positive bacteria (mainly staphylococci, streptococci, and 

enterococci) and some gram-negative cocci. Most gram-negative bacteria are 

naturally resistant to virginiamycin due to the impermeability of their cell wall 

(Cocito et al., 1997; Butaye et al., 2003). 
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Streptogramins always consist of two components which work 

synergistically. Because of this, streptogramins are included in a class called 

synergistines. The two components of virginiamycin are named factors M and S. 

Factor M is a polyunsaturated cyclic peptolide (C28H35N3O7. Molecular weight: 

525), while factor S is a cyclic hexadepsipeptide (C43H19N7O10. Molecular weight: 

823). Both factors M and S pass through the cell membrane of gram-positive 

bacteria (gram-negative bacteria are generally impermeable to factor M). Once in 

the cytoplasm, one molecule of M and one of S bind to the bacterial 23S rRNA of 

the 50S ribosomal subunit to form a stable virginiamycin M-ribosome- 

virginiamycin S complex, which interferes with  peptidyltransferase activity 

irreversibly inhibiting protein synthesis, resulting in bacterial cell death (Parfait 

and Cocito, 1980; Cocito et al., 1997). 

Despite the different structure of both factors (Figure 2.3), they act 

synergistically to provide greatly enhanced levels of antibacterial activity.  It is 

known that individually the M and S components have a bacteriostatic effect 

while a mixture of the two components is usually bactericidal (Cocito, 1979). 

According to Claycamp and Hooberman (2004), factor M comprises about 75% 

of Stafac® (the commercial product), while factor S comprises about 5% of the 

product. 

 

Virginiamycin regulation by the FDA 

The FDA permits the use of virginiamycin at therapeutic levels in the feed 

for the treatment of swine dysentery (100 g/ton for 14 days followed by 50 g/ton 

up to 120-pound pigs and 100 g/ton for 14 days for non-breeding stock larger 

than 120 pounds). For stimulating growth and feed efficiency, it is permitted to be 

continuously fed from weaning to 120 lb at 10 ppm, or at 5 to 10 ppm from 

weaning to market weight (Food and Drug Administration’s Center for Veterinary 

Medicine, 2004). This antibiotic requires no withdrawal period as it does not 

leave residues in edible animal products, because it is not absorbed from the 

alimentary tract (NRC, 1999). 
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Effects of virginiamycin on growth 

The first study published in the Journal of Animal Science that 

demonstrated the growth promoting effects of virginiamycin on pigs was done by 

University of Kentucky researchers. The study, published as an abstract, 

consisted of four growth trials involving 195 weanling pigs fed a corn-soybean 

meal diet supplemented with either aureomycin or virginiamycin at 10, 20, 40 and 

80 g/ton (Barnhart et al., 1960). 

One year later, a team of researchers at the Tennessee Agricultural 

Experimental Station published an abstract in the same journal comparing 

virginiamycin with aureomycin and other growth promoting antibiotics, such as 

tylosin and bacitracin, as well as the antimicrobial thiofuradene. This trial found a 

significant difference in growth of pigs fed virginiamycin between 44 and 100 lb 

body weight. No difference was found from 44 to 200 lb (Griffin et al., 1961). 

The first full manuscript in the Journal of Animal science evaluating 

virginiamycin as a growth promoter for weanling pigs was published in 1963. In 

that study researchers compared the effect of several levels of the antibiotic 

and/or lysine singly or in combination in a corn-soybean meal diet. The study, 

consisting of four growth trials, found that added at 44 ppm, virginiamycin 

significantly improved the average daily gain of the pigs (Jones and Pond, 1963). 

In a study by Miller et al. (1972), virginiamycin improved ADG in both 

sexes of Hampshire, Yorkshire and crossbred weaned pigs fed a corn-soybean 

meal diet. After eleven weeks on trial, researchers found a similar response at 11 

mg virginiamycin/kg of diet as at 44 mg/kg. 

A later analysis of four studies conducted in different geographical 

locations in the U.S. by Miller and Landis (1973) showed that either 10 or 40 g of 

virginiamycin/ton of diet significantly improved weight gain and feed efficiency in 

young growing swine. The combined analysis of these studies when the pigs 

reached slaughter weight showed a statistically significant improvement over 

controls in weight gain and feed conversion at both 10 and 40 g/ton levels. In this 

analysis the response to 40 g/ton was significantly better than to 10 g/ton. These  
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researchers also stated that because virginiamycin was not used in human 

medicine, it should be a safe drug that did not pose any danger to humans. 

Cromwell et al. (1976) found that virginiamycin, added at 40 g/ton to 

growing-finishing pigs resulted in better gains (784 vs. 734 g/d) and feed/gain 

(2.86 vs. 3.00) than control pigs. Results were better at the end of the first 6 

weeks, and at the end of the first 11 weeks of the trial. 

Evaluating the rate of inclusion in the diet, researchers at the University of 

Kentucky (Hays et al., 1973) conducted three experiments to test the effects of 

virginiamycin on growth performance of pigs. In their first trial they found that 

daily gain and feed/gain from 19 to 57 kg body weight were significantly improved 

by increasing levels of the antibiotic (0, 22 or 88 mg of virginiamycin/kg of diet). 

The response for rate of gain was maintained to market weight, although there 

was no difference in feed/gain at slaughter weight.  The second trial tested the 

antibiotic at a level of 88 mg/kg of diet from 19 to 95 kg of body weight, finding 

not a significant but only a numerical difference in gain favoring virginiamycin. 

The feed/gain was significantly reduced by the antibiotic. 

Krider et al. (1975) conducted a large study involving 288 weanling 

crossbred pigs to test different levels of virginiamycin (0, 5.5 and 11 ppm) fed in 

different combinations during two growth phases: Phase I (from 11.4 to 54.6 kg), 

and Phase II (from 54.6 to 91 kg). During Phase I, levels of 0 or 11 ppm were 

compared, resulting in better daily gain for the pigs fed virginiamycin (0.65 vs. 

0.70 kg, respectively), and also better feed/gain (2.56 vs. 2.39, respectively). 

During Phase II, ADG was 0.75, 0.77 and 0.78, for 0, 5.5 and 11ppm 

virginiamycin, respectively.  The feed/gain ratios in this second stage were 3.51, 

3.52 and 3.46, respectively. Given that during the second phase the three levels 

of virginiamycin were fed to both groups in Phase I (0 and 11 ppm), some pigs 

consumed the antibiotic during both phases, while other pigs were fed the drug 

during Phase II only. It was not clear if the pigs that consumed virginiamycin only 

during Phase II performed differently from the ones that consumed the antibiotic 

during both phases. 
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It is worth noting that the positive effect of virginiamycin on growth is lost if 

the antibiotic is withdrawn from the diet. This was demonstrated in two 

experiments by Pelura III et al. (1980) who found improved gains by 

supplementing virginiamycin to a starter diet fed for 42 days. When virginiamycin 

feeding was stopped at day 42, and pigs continued without antibiotic for the next 

35 days, it resulted in pig performance similar to that of the control pigs fed no 

antibiotic. In one of those experiments the main effect of virginiamycin was 

significant for feed/gain both at 42 and 77 days. 

Veum et al. (1980), reported a significant positive effect of virginiamycin in 

the ADG of pigs fed moderately low protein diets, particularly during the starting 

phase. Other researchers found improved gain for protein-deficient pigs treated 

with virginiamycin during all the period from weaning to finishing (Kennedy et al., 

1980). 

Stahly et al. (1980) reported that the growth-promoting effects of 

virginiamycin and high levels of dietary Cu are additive in nature.  These 

researchers investigated the effects of 0 or 250 ppm dietary additions of Cu (as 

copper sulfate) with and without 27.5 ppm virginiamycin on growth traits of 

weaned pigs for four weeks. They found that virginiamycin alone improved the 

daily gain 17%, and feed/gain 8.2% as compared to the unsupplemented diets. 

The inclusion of both Cu and virginiamycin further improved daily gains between 

9 and 10%, and feed/gain between 1 and 4% as compared to single additions of 

either of the two antimicrobial agents. On the other hand, a study by Riveiro et al 

(1981) did not find additivity between the effects of 27 ppm virginiamycin and 250 

ppm Cu (as copper sulfate) when fed to growing-finishing swine. 

Moser et al (1985) reported that the addition of 11 mg of virginiamycin/kg 

of diet was not effective at overcoming the decrease in performance of growing-

finishing pigs caused by crowded conditions. In their studies they allowed 0.37, 

0.33 or 0.28 m2/pig during the growing phase, and 0.74, 0.66, or 0.56 m2/pig 

during the finishing phase. This was done by varying the pen size and keeping 

the feeder space per pig constant. Daily gain and feed conversion deteriorated  
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during both stages of growth as floor space allowance was decreased. The 

addition of virginiamycin to the diet had no effect on pig performance. 

 

Effects of virginiamycin on DM, N, and mineral nutrition 

According to the calculations by Vervaeke et al. (1979), using in vivo and 

in vitro data, virginiamycin increases the net energy for the small intestinal 

digestion by 2.68%, which could explain the commonly observed growth 

promoting effects of this antibiotic in pigs. 

Buresh et al. (1985) reported that virginiamycin not only increased gain 

and feed efficiency but also improved P utilization in one day old chicks fed a 

corn-soybean meal diet supplemented with different levels of dicalcium 

phosphate. In their 3 week-long trial, four diets with graded levels of total P (0.40, 

0.47, 0.54, and 0.61%) without and with virginiamycin (22 ppm) were compared 

for their response in terms of bone ash and bone P. The greatest response from 

virginiamycin in both characteristics was obtained for the diet containing 0.47% 

total phosphorus. At this P level, the virginiamycin-added diet resulted in a 4.6% 

increase (P < 0.05) in tibia ash, and a 3.3% increase in tibia P compared to the 

same diet without virginiamycin. 

It is known that high fiber diets decrease mineral absorption. This effect 

could have several causes, including an increased rate of passage, a greater 

volume of digesta (which reduces mineral concentration at the mucosa level), an 

increase in the intestinal secretion of minerals, and reduced availability of the 

minerals present in fiber (Jongbloed, 1987). Ravindran et al. (1984) studied the 

effects of two levels of dietary fiber (13.5 and 20.2%) and virginiamycin (11 ppm) 

on mineral absorption and retention in growing pigs (35 kg BW). In the high fiber 

diet, virginiamycin improved DM, energy and fiber digestibility. It also decreased 

fecal N excretion and improved the absorption and retention of P, Ca, Mg, Cu, 

Fe, Zn and Mn when added to the high fiber diet, but had little or no effect when 

added to the low fiber diet. 
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Effects of virginiamycin on carcass composition 

According to some studies, virginiamycin may have an effect on some 

carcass traits. Kennedy et al. (1981) reported that purebred Yorkshire barrows 

fed 10 ppm virginiamycin for 84 days exhibited an increase (P < 0.05) in hot 

carcass percent muscle (4.4%) compared with the non-antibiotic fed controls. 

Virginiamycin-fed pigs in the study also had less back fat than the control pigs 

(13.6%; P < 0.05). Other researchers (Veum et al., 1980) fed growing-finishing 

pigs (28 to 105 kg) virginiamycin (27.5 mg/kg of diet) and two levels of dietary 

protein (14 or 16%). They found that virginiamycin increased (P < 0.05) the 

longissimus muscle area of the pigs in the 14% protein diet, but decreased it (P < 

0.05) in the 16% protein diet. 

 

Effects of virginiamycin on the gastrointestinal flora 

Studies using pigs have shown that virginiamycin effectively reduces the 

populations of organisms that compete with the pig for nutrients (e.g., 

streptococci), although the growth stimulating effect on coliforms, which are 

regarded as desirable organisms (Hays, 1969), is not always found. 

Hays et al. (1973) conducted an experiment in which growing pigs were 

fed 88 mg of virginiamycin/kg of diet to study the effects on fecal flora patterns. 

These researchers found reduced streptococcal counts (amounts not reported) 

during the time the pigs were fed the antibiotic. The counts returned to normal 

after withdrawal of the drug. No other bacterial types were affected by 

virginiamycin. In agreement with those findings, in their in vitro evaluation of 

virginiamycin influences on the metabolism of ileal bacteria, Vervaeke et al. 

(1979) demonstrated that this antibiotic reduced lactic acid bacteria numbers, 

particularly streptococci, without influencing coliforms. After two hours of 

anaerobic in vitro incubation of ileal contents from growing pigs fed no antibiotics, 

the researchers found increased populations of coliforms, streptococci and 

lactobacilli (7.10 to 7.80, 6.95 to 7.90, and 7.85 to 8.10 log/g, respectively) which 

corresponded with a drastic drop in the pH of the cultured media (7.74 to 6.37)  
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caused by the intense metabolic activity of these bacteria. These cultures  

with 50 ppm virginiamycin added and incubated for the same length of time, 

showed no significant change in coliforms when compared with the non-treated 

media (7.80 vs. 7.75 log/g, respectively), but a decrease was observed in 

streptococci (7.90 vs. 6.03 log/g, respectively) and lactobacilli (8.10 vs. 7.38 

log/g, respectively), and an increase in pH (6.37 to 7.23) probably due to the 

negative effect of virginiamycin on the acid-producing bacterial populations. 

On the other hand, Cromwell et al. (1976) did find a significant increase in 

the log counts of fecal coliforms (6.74 vs. 6.06, P < 0.01) for growing pigs fed 40 

g/ton of virginiamycin. Nevertheless, it should be noted that their results were not 

based on ileal contents. There is now evidence that the bacterial populations in 

pigs vary across the gastrointestinal tract (Simpson et al., 1999), so that fecal 

samples do not necessarily reflect other parts of the tract (Zoetental et al., 2004). 

 

Effects of virginiamycin on rate of passage 

It is known that lactic acid exerts a stimulatory effect on intestinal motility 

(Yokokura, 1977). Lactic acid and other short chain acids raise the osmolality, 

delay fluid reabsorption and decrease transit time (increase passage rate) of the 

contents of the colon. As lactic acid has been found to comprise about 80% of 

the total fermentation products at the ileum level (Hedde et al., 1981), it would 

not be surprising if virginiamycin could decrease the rate of feed passage 

through the alimentary canal, considering that it decreases the populations of 

lactic acid producing bacteria. In the study by Hedde et al. (1981), growing-

finishing pigs (30 to 120 kg) fed 10 ppm virginiamycin took longer (P < 0.05) to 

excrete feces marked with chromic oxide during both the growing and finishing 

stages. During the grower stage, the mean 50% excretion times (time at which 

50% of the indicator was excreted) for virginiamycin and control were 29.6 and 

28.0 hr, respectively. During the finishing stage, the means were 34.0 and 33.2 

hr for virginiamycin and control, respectively. This is equivalent to a decrease in 

passage rate of 5.7 and 2.4%, respectively. 
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In the experiments by Ravindran et al. (1984) on the effects of 

virginiamycin (11 ppm) on two levels of dietary fiber (13.5 and 20.2%) in growing 

pigs (35 kg BW), they also measured the rate of passage by observing the time 

required for a change in feces color after the addition of 0.5% Cr2O3 to the diet. 

The difference found was even greater than that reported by Hedde et al. (1981). 

Virginiamycin supplementation slowed the rate of passage at both levels of fiber 

from 20.6 to 26.7 hr, equivalent to a 29.6% decrease. 

 

Growth-promoting antibiotics and human health 

The future availability of antibiotics for growth promoting purposes is under 

question (Acar et al., 2000). Sectors of public opinion have been advocating the 

phasing out or even banning the use of antibiotics as growth promoters (Jukes, 

1977; Lyons, 1988), fearing that bacterial resistance developed to an 

antimicrobial used for growth promotion could result in cross-resistance to other 

antimicrobials of the same chemical group that are used in human medicine. 

Succumbing to this pressure, Sweden banned all food animal growth-promoting 

antibiotics in 1986. Following Sweden, the European Union banned avoparcin in 

1997 and then virginiamycin, tylosin, bacitracin, and spiramycin in 1999 (Acar et 

al., 2000; Casewell et al., 2003). Currently, the American Medical Association 

and several other health, consumer, environmental, agricultural, and humane 

organizations are promoting the “Preservation of Antibiotics for Medical 

Treatment Act” (S. 1460/H.R. 2932) that, if approved, would phase out the 

practice of feeding growth-promoting antibiotics to farm animals in the U.S. 

(Union of Concerned Scientists, 2000). 

It is not clear if feed grade antibiotics are an important factor contributing 

to the increased resistance to therapeutic antibiotics observed in certain human 

pathogenic bacteria. Major reports issued on antibiotic drug use in food 

production over the last 35 years have been inconclusive. For one or another 

reason, the question of the health consequences of antibiotic use in food animal 

production is still not answered with certainty (NRC, 1999). 
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These concerns are not new. They started long ago, soon after growth-

promoting antibiotics were discovered. Microbial resistance to feed grade 

antibiotics was observed in farm animals as early as 1951 (Starr and Reynolds, 

1951). 

It has been argued that feeding antibiotics at low doses might increase the 

levels of resistant bacteria in the animal population and subsequently increase 

the probability of resistant bacteria being consumed by humans. Virginiamycin is 

at the center of this debate. Dissemination of genes encoding virginiamycin 

acetyltransferases, enzymes that confer resistance to streptogramins, threatens 

to limit the medical utility of the related drug Synercid®, a new semi-synthetic 

streptogramin-derived antibiotic containing quinupristin and dalfopristin (QD). 

Synercid, approved in 1999, is used as a last resource therapy in the treatment 

of life-threatening infections caused by glycopeptide-resistant Enterococcus 

faecium and some other bacterial pathogens (Aarestrup et al., 2000; Witte, 2001; 

Kehoe, 2003; Claycamp and Hooberman, 2004). The structural similarity 

between the components of virginiamycin and Sinercid relates to similarities in 

their bactericidal activity and a high degree of cross-resistance between both 

drugs (Claycamp and Hooberman, 2004). The medical relevance of Synercid is 

in the fact that enterococci are the second to third most important bacterial genus 

involved in hospital infections and especially as E. faecium possesses a broad 

spectrum of natural and acquired antibiotic resistance (Klare et al., 2003). 

Recent research has found chickens testing positive for QD-resistant E. 

faecium, raising concerns that virginiamycin use in chickens might compromise 

QD effectiveness against virginiamycin resistant E. faecium infections by 

promoting the development of QD-resistant strains that can be transferred to 

human patients (Butaye et al., 2000; Cox and Popken, 2004). Pointing to the fact 

that resistance to Synercid is rare in isolates of staphylococci and E. faecium 

from humans, but is found in isolates recovered from food animals, some 

researchers think that the use of virginiamycin as a feed additive is responsible 

for the resistance transmission (Zervos, 2004). This is supported by studies 

showing a significant decline in resistance to virginiamycin observed among  
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E. faecium from broilers and broiler meat in Denmark after the banning of 

antimicrobial growth promoters in 1998 (Aarestrup et al., 2001; Emborg et al., 

2003). Some risk assessment models support this idea (Smith et al., 2003). 

The concern that on-farm use of virginiamycin could cause the 

development of resistance to Synercid in humans and the required science-

based decision making regarding a possible ban of virginiamycin prompted the 

Center for Veterinary Medicine to start a virginiamycin risk assessment in 2000. 

A first draft on this assessment was released for comments in November 2004 

(Claycamp and Hooberman, 2004). The assessment concluded that the 

prevalence of streptogramin-resistant E. faecium appears to be related to the 

usage of virginiamycin on poultry and swine farms, with poultry studies showing a 

greater extent of resistance than swine studies. Nevertheless, because of the 

current incomplete knowledge of the genetic basis of streptogramin resistance, 

the authors did not conclude to what extent, if any, the use of streptogramins in 

food animals contributes to the occurrence of streptogramin-resistant E. faecium 

infections in humans via a food-borne pathway. They emphasize that the transfer 

of streptogramin resistance determinants from animal E. faecium to human E. 

faecium through the food-borne pathway is biologically plausible, but the extent 

of such transfer in vivo cannot be currently determined. Their draft provides two 

scenarios. The first one assumes that 10% of the risk of acquiring resistant 

streptogramin-resistant E. faecium in hospitals is due to a food pathway. In this 

case, they estimate that the risk to a hospitalized American patient ranges from 6 

to 120 chances in 100 million per year, which is equivalent to 0.7 to 14 chances 

in 100 million per year for a member of the general US population. The second 

scenario assumes that all existing resistance among the human population 

originates from food animal uses of virginiamycin. In this case, the risk is 10-fold 

greater than under the previous scenario, or 60 to 1,200 chances in 100 million 

persons per year among the hospitalized population and 7 to 140 chances in 100 

million persons per year for the general US population. Just to put those risk 

numbers in a more familiar context, the risk of drowning in a bathtub is 125 in 

100 million, according to Ropeik and Gray (2002) using data from the National 
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Safety Council and from the National Center for Health Statistics. 

As a conclusion of recent research (Donabediana  et al., 2003; Claycamp 

and Hooberman, 2004), at the present time there is no agreement among 

scientists whether the transfer of antibiotic resistance from animal to human 

bacteria, assuming it exists, is as important as other factors not related to animal 

production. In the case of virginiamycin, there is no agreement in regard to the 

potential this antibiotic has, fed as growth promoter to pigs and chicks, to 

contribute to the development of QD resistant bacteria. 

Besides the old struggles over banning the growth promoting antibiotics, 

or probably as a result of them, another element has recently appeared. Strong 

market forces have started to demand pork produced without growth promoting 

antibiotics. This is exemplified by the McDonald’s corporation, one of the world’s 

biggest purchasers of meat, which asked its meat suppliers to phase out the use 

of growth promoting antibiotics. The company announced that its “Global Policy 

on Antibiotic Use in Food Animals” became effective as of January 1, 2005. The 

program requires covered suppliers to certify that they are “not using, for growth 

promoting purposes, antibiotics that belong to classes of compounds approved 

for use in human medicine” (Gill and Best, 2004; www.mcdonalds.com. 2005). 

 

Conclusions 

 

The development of the modern swine production system has been the 

direct answer to the demand for high quality protein to satisfy an ever growing 

human population. To meet the always increasing demand for pork, the swine 

industry has been constantly developing ways to optimize the use of the costly 

resources required, particularly feed and construction space. 

To optimize the utilization of feed, an understanding of the flow of nutrients 

through the animal is required. This flow is measured in digestibility and balance 

trials. These methods allow researchers to determine how much of the ingested 

nutrient was apparently absorbed, retained, and excreted. Different  
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methodologies have been used to determine digestibility in feedstuffs. Each 

method has advantages and disadvantages, and even though the methods 

themselves have been both used and examined for a long time, there is still no 

agreement among researchers on sample collection procedures, which raises 

questions about the reliability of some of the methodological variations still in 

use. More research is required for establishing practical, but at the same time 

reliable, collection procedures to be used in digestibility assessments. 

Another way to approach the issue of feed cost in local markets is to 

include alternative feedstuffs in the diets. There are many suitable materials and 

byproducts all around the world that can be supplemented to pigs in order to 

lower production costs. Nevertheless, most of the cheapest and more readily 

available byproducts have disadvantages in terms of nutrient composition or 

digestibility that limit their level of inclusion in the diet. Among many byproducts 

rice bran is an interesting option. It is cheap and high in energy, but it is also 

particularly high in phosphorus, a key biological nutrient that is usually 

supplemented to pigs in expensive inorganic compounds due to its low 

digestibility in plant feedstuffs. As P is considered an important pollutant of water 

ecosystems, its increased excretion by pigs fed rice bran is an undesirable 

outcome that has not been addressed. 

Supplementing diets with phytase is the most practical solution currently 

available to the problem of low digestibility and consequent excretion of P from 

plant materials. Phytase supplementation has proven to be an effective way to 

increase P digestibility in conventional diets, and it could be an interesting 

solution for rice bran-based diets. 

A related subject that also requires understanding is the possible effect of 

antibiotics used as growth promoters on P utilization. It is recognized that the 

dietary inclusion of low levels of antibiotics has facilitated the industry’s ability to 

cope with pork demand by improving pig gain and feed utilization under 

conditions of heavy bacterial loads, common in densely populated farms. 

Antibiotic effects on growth have been related to increased nutrient utilization,  



 67

particularly energy and protein, but effects on mineral nutrition have not been 

sufficiently addressed in swine. For the aforementioned reasons, the study of the 

effects of dietary amendments such as antibiotics and phytase on P utilization in 

common and non-traditional diets for pigs is of interest. 

 

Table 2.1. Nutrient composition of corn and some alternative feedstuffs (adapted 

from Myer and Brendemuhl, 2001) 

 

 

 
 
                                                           
a RFV (relative feed value): nutritional value relative to corn. 
bMetabolizable energy. 
 

  Nutritional value for pigs (as fed basis) RFVa 

           vs. 

   DM MEb Protein Lysine Fat Fiber Ca P Corn 

Feedstuff Description (%) (kcal/kg) (%) (%) (%) (%) (%) (%) (%) 

Corn Grain 89 3400 8.3 0.26 3.9 2.2 0.03 0.25 100 

Rice  Bran, full fat 90 3000 12.5 0.60 12.0 11 0.05 1.70 70-100 

  
Bran, fat 
extracted 91 2600 14.0 0.65 1.5 13 0.10 1.40 60-80 

  Polishings 90 3300 13.0 0.50 13.0 2 0.10 1.20 95-100 

  Broken 89 3300 8.0 0.30 0.6 0.6 0.04 0.18 95-100 

  Paddy 89 2800 9.0 0.30 2.0 10 0.05 0.25 70-80 

Bananas Ripe, whole 25 750 1.0 <0.10 0.1 0.5 0.01 0.03 20-25 

  Green, whole 26 700 1.0 <0.10 0.1 0.5 0.01 0.03 15-20 

Cassava Meal 89 3300 3.0 0.10 0.5 5 0.12 0.15 95-100 

  Fresh 35 1200 1.0 <0.10 0.2 1.5 0.04 0.05 30-40 
Sugar 
cane Molasses 80 2200 3.0 <0.10 0.1 0 0.70 0.08 60-70 

  Juice 18 700 <1.0 <0.10 <0.1 2 0.20 0.05 15-25 

  Stalks 25 500 1.0 <0.10 0.5 8 0.10 0.05 10-20 

Potatoes  Chips or fries 90 4400 6.0 0.20 30.0 1 0.10 0.20 120-150 

  Cooked flakes 92 3500 8.0 0.40 0.5 2 0.10 0.20 100 

  Pulp, dried 88 2200 6.0 0.20 0.3 9 0.10 0.20 60-70 

  Boiled 22 700 2.4 0.10 0.1 0.5 0.02 0.05 15-25 

  Raw 20 500 2.0 0.10 0.1 0.5 0.02 0.05 10-15 
Resturant 
food 
waste Non-dried 20 800 5.0 0.20 5.0 1 0.10 0.10 15-25 
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Table 2.2. Digestible energy and protein for pigs in selected feedstuffs (as fed 

basis) (adapted from Ensminger et al., 1990) 

    Digestible Metabolizable Crude Digestible 

   Energy Energy Protein Protein 

Feedstuff Description (kcal/kg) (kcal/kg) (%) (%) 

Corn Grain, yellow 3338 3246 9.9 7.3 

Rice  Bran, with germs 3250 2971 13 9.5 

  Polishings 3713 3428 12 10.1 

  Paddy, ground 3290 3107 7.5 5.1 

Bananas Fruit, dehydrated 3535 3355 3.5 1.6 

  
Peelings, 
dehydrated 3425 3240 8.6 6 

Cassava Meal, dehydrated 2923 2748 2.2 1.6 

  Fresh 1127 1063 1.2 0.5 
Sugarcane 
 

Molasses, 
dehydrated 2663 2485 9.7 7 

Potatoes  Tubers, fresh 878 830 2.2 0.7 

  Tubers, boiled 918 869 2.2 1.5 

  Tubers, dehydrated 3450 3261 8.1 5.6 

  Peelings, fresh 882 835 2.1 1.5 

Restaurant Boiled, wet 1105 1053 3.6 2.8 
food waste   
 

Boiled, dehydrated, 
ground 4293 4090 16.1 12.8 
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Table 2.3. Colombian production of several potential alternative feedstuffs during 

2003 (FAO, 2004) 

 Colombian  
 production World 
Product (Metric ton/year) Rank 

Coffee, green 695,000  2 

Plantains 2,925,000  2 

Avocados 141,638  5 

Tropical fruits 1,120,000  5 

Palm kernels 125,000  5 

Sugar cane 36,600,000  7 

Bananas 1,450,000 11 

Cocoa beans 47,000 11 

Pineapples 353,000 11 

Papayas 105,000 12 

Roots and tubers 75,000 12 

Cassava 1,850,000 18 

Potatoes 2,850,000 20 
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Table 2.4. Energy feed sources and their unavailable phosphorus contents 

(Adapted from NRC, 1998) 

 Phosphorus, % 

Feedstuff Total Bioavailable 

Non  

available 

Total  

unavailable 

Rice bran 1.61 25 75 1.21 

Wheat bran 1.20 29 71 0.85 

Wheat middlings, < 9.5%fiber 0.93 41 59 0.55 

Corn grits (hominy Feed) 0.43 14 86 0.37 

Oat groats 0.41 13 87 0.36 

Barley, six row 0.36 30 70 0.25 

Oats  0.31 22 78 0.24 

Corn  0.28 14 86 0.24 

Sorghum 0.29 20 80 0.23 

Wheat, soft red winter 0.39 50 50 0.20 

Wheat, hard red winter 0.37 50 50 0.19 

Whey, dried 0.72 97  30 0.02 

 

 

Figure 2.1. Colombian imports of yellow corn (adapted from Martinez and 

Acevedo, 2004) 
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Figure 2.2. Model of phytate complex (phytin) chelating different nutrients (Sutton 

et al., 2004) 

 
 

 

Figure 2.3. Virginiamycin structures M and S (Adapted from Lee et al., 1996) 
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CHAPTER 3 
 

GENERAL METHODOLOGY 
 
 
General Objectives 
  

The primary objective of the research presented here was to evaluate the 

effects of virginiamycin (VIR) and phytase (PHY) amendments on the 

digestibility, retention, and excretion of nutrients, particularly P, by growing pigs 

fed a P-deficient corn-soybean meal diet. An additional objective was to make a 

preliminary nutritional assessment of a high phytate feedstuff with and without 

phytase supplementation in a balance study. 

 

 

Specific Objectives 
 

The first experiment (Experiment 1 or UK0201) was conducted to 

determine possible differences on mineral digestibility, retention, and excretion 

when VIR was included in a P-deficient diet. A secondary objective was to test 

the reliability of a digestibility assessment based on a single grab collection of 

fecal samples analyzed by the index method (chromic oxide) in comparison to 

the standard total collection method. 

Subsequently, three experiments (Experiment 2 or UK0301, Experiment 3 

or UK0309, and Experiment 4 or UK0402) were conducted to compare the 

effects of VIR and PHY on P digestibility, retention, and excretion by pigs fed the 

same diets. One of these experiments (Experiment 2) was also intended to 

assess nutrient digestibility by the index method, using a different fecal grab 

sampling strategy than the one used in the first experiment (Experiment 1). 
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The effects of VIR on growth performance, bone traits, and ileal microbial 

populations were assessed in two nursery (short-term growth) experiments 

(Experiment 7 or UK0210, and Experiment 8 or UK0311). 

Based on results from the first experiment (Experiment 1) and on one of 

the short-term growth experiments (Experiment 7), a full-term growing-finishing 

experiment (Experiment 5 or UK0312) was conducted to assess the effect of a 

partial dietary P deletion in VIR-supplemented diets upon growth performance, 

bone traits, ileal microflora populations, carcass traits, and meat characteristics. 

A final balance experiment (Experiment 6 or UK0407) was conducted to 

assess nutrient digestibility, retention and excretion in a commercial rice bran 

product using the regression method, to evaluate the effect of different levels of 

inclusion of the product, and also to assess the effect of PHY on the same traits. 

 
 
Methods 
 

Methodologies common to all the experiments or to a particular set of 

them are described next. A list of abbreviations is provided in Table 3.1. 

 

Animals 

All the animals used were either nursery or growing-finishing crossbred 

pigs (Hampsire or Duroc by Yorkshire x Landrace) born and raised in University 

of Kentucky swine facilities, either in the Coldstream Swine Research Farm at 

Fayette County or in the Swine Unit of the Animal Research Center (ARC) at 

Woodford County. 

Animals were selected according to several criteria in order to decrease 

the variation in each experimental group. Only barrows were used in the balance 

experiments - to facilitate urine and feces separation during collection - and in the 

nursery experiments – to reduce the problem of urination into the feeders.  Each 

group of pigs used in the experiments was selected from intermediate sized 

animals taken from larger groups. When possible, litters with at least as many  
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full-siblings as the number of dietary treatments to be tested were chosen. When 

the number of full-siblings available was not enough to cover all the treatments, 

half-siblings by sire were preferred over totally unrelated pigs. Animals with 

health problems or visible conformation conditions (e.g., leg problems) were not 

used. The selected pigs were assigned to replicate groups by ancestry, then 

randomly allotted to the dietary treatments and then to the pens or crates. After 

having started the experiments, the few animals that presented health or feed 

intake problems were removed from the experiments. All the experiments were 

conducted under protocols approved by the University of Kentucky Institutional 

Animal Care and Use Committee (IACUC). 

 

General management and facilities 

All the experiments were conducted in totally confined conditions in 

temperature-controlled rooms at the Animal Laboratory of the Animal and Food 

Sciences building (W. P. Garrigus Building) located on the University of Kentucky 

Campus. During the experiments, the rooms were cleaned daily. Room 

temperature, water availability, and animal well being were checked at least twice 

per day. 

 

Common methods for the balance trials 

All the balance experiments were conducted under similar environmental 

and animal handling conditions. Most lab methods were common as well. The 

common methods are described next. Particularities of each experiment are 

reported in the corresponding, appropriate, chapter. 

 

Housing conditions for the balance trials 

For these experiments, described in Chapters 4 and 6, pigs were 

individually confined in metabolism crates. Crates were made of stainless steel 

and had plastic-coated expanded-metal flooring and stainless steel feeders. 

Crates also had a window in each side panel, near the feeder, to allow visual 

contact between pigs in adjacent crates. Underneath the floor of the crates a  
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sliding aluminum screen was set as a feces/urine separator, along with a 

stainless steel funneled-pan used to direct the urine into a 10 L plastic bucket. 

The interior space of the crates was adjusted to restrain pigs from turning 

around, preventing defecation into the feeder but leaving enough room for the pig 

to stand up and lie down. Room temperature was kept in the thermo-neutral 

range at all times. 

 
Adaptation and collection procedures for the balance trials 

Pigs were fed a basal, low-P diet ad libitum for 5 to 10 days before starting 

the adaptation periods in each experiment in order to standardize gastrointestinal 

(GI) tract conditions among the animals. Then, pigs were weighed, allotted to the 

experimental diets and confined in the crates for 7 days to adapt to the crates 

and the level of feed offered, which corresponded to 3% of body weight. 

Movement was restricted during the first 24 h by adjusting the sides and top of 

the crates, preventing pigs from turning around. As pigs became accustomed to 

the crates, they were gradually allowed more space. At the end of each 

adaptation period pigs were weighed again to determine the feed allowance for 

the collection period. 

During the collection periods, pigs were also fed at the equivalent of 3% of 

their body weight per day. The daily feed allowance was split into two equal 

meals, fed at 8:00 am and 4:00 pm. At meal times, feed was added with a 

volume of water equivalent to the feed weight (e.g., 1 L water was added per 

1000 g of feed). Rejected feed was dried in a forced-air oven at 55ºC, air-

equilibrated, weighed, and discounted from the amount initially offered. Water 

was supplied ad libitum in the feeder during non-feeding times. Indigo carmine 

(Aldrich Chemical Company Inc, Milwaukee, WI), a blue dye, was mixed with two 

meals of the experimental diets at a 0.5% inclusion rate. Indigo-marked meals 

were given at the beginning and at the end of the collection periods. All the feces 

produced during the period between excretion of the initial and final marker were 

collected daily and kept frozen in labeled plastic bags. Care was taken to include  
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in the collected material all marked feces at the beginning of the collection 

period, as well as to exclude any marked feces at the end of the period. 

Feed intake during the 5-day collection periods was recorded as feed 

allowance minus feed rejection. Urine collections were simultaneous with feces 

collections. For each pig, the total amount of urine excreted was measured and 

individual urine samples were collected. Urine collection started at 9:00 am after 

pigs were fed the indigo dye, and finished when five 24-h collections were 

completed. Fiber-glass wool was placed in the stainless steel funneled-pans 

during urine collections to prevent urine contamination with feed or fecal 

particles. Urine was collected in 10 L plastic buckets containing 150 mL of 3 N 

HCl to limit microbial growth and reduce loss of ammonia. Every day, after 

measuring the total amount excreted, urine was stirred, and a 100 mL urine 

sample was taken and stored frozen in labeled, capped, plastic containers, while 

the rest of the collected urine was discarded. 

 
Digestibility and retention calculations 

Nutrient digestibility and retention (DM basis) by total collection were 

calculated using the formulae: 

 

Apparent digestibility, % = 

 

 Amount of component consumed – Amount of component in feces  x 100 

  Amount of component consumed 

 

 

Apparent retention per day, g = 

Nutrient intake/d – Total nutrient excretion (fecal + urinary)/d 
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Retention as a percent of intake, % = 

 

Nutrient retained per day  x 100 

Nutrient intake per day 

 

Retention as a percent of absorption, % = 

 

Nutrient retained per day   x 100 

Nutrient intake per day – Nutrient in feces per day 

 
 

 

For the index method, apparent digestibility was calculated using the formula: 

 

Digestibility, % = 100 –  100 x % Cr in feed x % Nutrient in feces 

% Cr in feces  % Nutrient in feed 

 
 
 
Dietary ingredients 

Conventional yellow corn and soybean meal (dehulled) were used in all 

the experiments. 

 
Ingredients common to all experiments 

Ground corn and soybean meal (SBM) were provided for the experiments 

by the University of Kentucky Feed Mill. The limestone used was Franklin High 

Calcium Limestone (Franklin Industrial Minerals, Nashville, TN) containing 

approximately 38.5% Ca (approximately 97% CaCO3).  

The vitamin and mineral mixes were also provided by the University of 

Kentucky Feed Mill. In regard to the vitamins, 0.075% of the vitamin premix in the 

diet supplied: 4,950 IU vitamin A, 660 IU vitamin D3, 33 IU vitamin E, 4.8 mg  
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vitamin K (as menadione sodium bisulfite complex), 6.6 mg riboflavin, 16.5 mg 

pantothenic acid, 33.0 mg niacin, 0.99 mg folic acid, 0.165 mg d-biotin, 24.5 µg 

vitamin B12, and 3.3 mg vitamin B6 per kilogram of diet (calculated). 

For the minerals, 0.075% of the mineral premix in the diet supplied,: 135 

mg Fe (iron sulfate monohydrate), 135 mg Zn (zinc oxide), 45 mg Mn 

(manganous oxide), 13 mg Cu (copper sulfate pentahydrate), 1.5 mg I (calcium 

iodate), 0.3 mg Se (selenium mix), and 0.23 mg Co (cobalt sulfate monohydrate) 

per kilogram of diet (calculated). 

 
Ingredients used in particular experiments 

For all the balance experiments (Experiments 1, 2, 3, 4, and 6) a blue non-

toxic food colorant was added to the feed in order to visually mark the feces at 

the beginning and end of the collection periods as required for the total collection 

methodology. The dye was Indigo Carmine (certified F. W. 466.36 (860 to 22-0), 

Aldrich Chemical Company Inc, Milwaukee, WI). 

Experiments 1, 2 and 4 assessed digestibility by both total collection and 

index methods. The external marker added to the diets for the index method was 

Chromium Sesquioxide, Cr2O3 (Fisher Chemicals, Fair Lawn, NJ). 

Virginiamycin was supplemented in one or more diets of all the 

experiments except for the last balance study (Experiment 6). The source of VIR 

used was Stafac® 20 (Stafac; Phibro Animal Health Co., Fairfield, NJ), which is 

guaranteed to contain 20 g VIR/lb of product. Phytase was supplemented in 

Experiments 2, 3, 4, and 6. The source of PHY was Natuphos® 1200G 

(Natuphos; BASF Corporation, Mount Olive, NJ) guaranteed to contain at least 

1200 PU/g of product. Both products (Stafac and Natuphos) were kept under 

refrigeration (4 to 8°C) at all times. 

In Experiment 6, a commercial product rich in phytate P was used. “Ricex-

1000™ Stabilized Rice Bran-1000” (Ricex Company, El Dorado Hills, CA) 

consisted of a mix of stable whole rice bran and germ. The manufacturer claims it 

provides energy in the form of vegetable fat (5,500 kcal/kg), soluble and insoluble 

fiber, and high levels of natural vitamin E, and guarantees one year of shelf life. 
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Monosodium phosphate was used in the short-term growth experiments 

(Experiments 7 and 8). The monosodium phosphate (MSP) used was Monobasic 

Sodium Phosphate, NaH2PO4.H2O (Fisher Chemicals, Fair Lawn, NJ) containing 

22.44% P. 

Dicalcium phosphate (DICAL) was used in the long-term growth 

experiment (Experiment 5). The DICAL product used was Dynafos® (The Mosaic 

Co., Plymouth, MN), calculated to contain 24% Ca, and 18.5% total P (18.5% 

available P). 

 
 
Summary of the Experiments 
 

In the series of experiments presented in this dissertation a total of 166 

crossbred pigs were used in eight experiments: five balance experiments 

(Experiments 1, 2, 3, 4, and 6) were conducted using a total of 94 growing pigs, 

while two short-term growth experiments (Experiments 7 and 8) used 40 nursery 

pigs, and one full-term growing-finishing experiment (Experiment 5) used 32 pigs. 

Table 3.2 presents a general description of the experiments. 

The first four balance experiments (Experiments 1, 2, 3, and 4) shared 

similar objectives. They are presented jointly in Chapter 4. The long-term 

growing-finishing experiment is presented in Chapter 5.  Experiment 6 was the 

only experiment not related to VIR, and is presented separately in Chapter 6. The 

nursery model tested did not work as expected, according to the objectives, so a 

summary of both short-term growth experiments is presented separately from the 

body of the dissertation, as Appendix 1. 

Experiment 1 assessed nutrient digestibility and balance by total collection 

in two collection periods, followed by an assessment of digestibility using an 

index (Cr2O3) method (also two collections). A total of 10 pigs were used in this 

experiment. Experiments 2 and 4 assessed nutrient digestibility and balance by 

total collection in two collections. In Experiment 2 each total collection was 

followed by an index methodology (Cr2O3) with a different fecal grab sampling  
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strategy than the one used in Experiment 1. A total of 24 pigs were used in each 

of the experiments. Experiment 3 assessed nutrient digestibility and balance by 

the total collection method using the same group of pigs (12 in total) for the two 

collections conducted. 

Experiment 5 measured growth performance characteristics such as feed 

intake, weight gain and feed conversion ratio over the entire growing-finishing 

period (3.8 months). Other characteristics assessed in this experiment were: 

metacarpal and metatarsal breaking strength, ash, ileal microflora populations, 

and also carcass and meat traits such as dressing percentage, carcass shrink, 

back fat depth, meat drip losses, loin eye area, and meat color scores. 

Experiment 6 assessed nutrient digestibility and balance by the total 

collection method using a different group of pigs for each of the two collections 

conducted. In this experiment, nutrient digestibility was assessed on a phytate-

rich diet corresponding to a basal corn-SBM diet with graded levels of the rice 

bran product (0, 7.5, 15 and 30% Ricex-1000™). The effects of PHY (750 U/kg) 

in the 0 and 30% Ricex-1000™ amended diets were also tested. 

Experiments 7 and 8 measured growth performance (feed intake, weight 

gain and feed conversion ratio) over six weeks. Bone mineral deposition was 

also assessed by measuring bone breaking strength (femur, metacarpal and 

metatarsal) and bone ash (metacarpal and metatarsal). 

 
 
Statistical Analysis 

 

The General Linear Model (GLM) procedure of SAS was used for the 

analysis of variance in all the experiments in order to test for differences among 

treatment means. Designed comparisons between means (planned single-

degree-of-freedom F tests) were also performed according to the treatment 

structure of each experiment. Detailed information on experimental design is 

given in each chapter. 
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Table 3.1. List of abbreviations 

 
AA---------------------------------------------------- Atomic Absorption Spectrophotometry 

ADF--------------------------------------------------------------------------  Acid detergent fiber 

ADL-------------------------------------------------------------------------  Acid detergent lignin 

AOAC ------------------------------------------ Association of Official Analytical Chemists 

App ---------------------------------------------------------------------------------------- Appendix 

aP -------------------------------------------------------------------------  Available phosphorus 

aCa -----------------------------------------------------------------------------  Available calcium 

ADFI-----------------------------------------------------------------  Average daily feed intake 

ADG --------------------------------------------------------------------------  Average daily gain 

BBS---------------------------------------------------------------------  Bone breaking strength 

BW(i) ------------------------------------------------------------------------  Body weight (initial) 

BW(f) -------------------------------------------------------------------------  Body weight (final) 

CFU/g ---------------------------------------------------------  Colony forming units per gram 

CF---------------------------------------------------------------------------------------  Crude fiber 

CP -----------------------------------------------------------------------------------  Crude protein 

CCP -------------------------------------------------------------- Cumulative collection period 

EDTA--------------------------------------------------------  Ethylenediaminetetraacetic acid 

EE-------------------------------------------------------------------------------------  Ether extract 

FDA---------------------------------------------------------------  Federal Drug Administration 

F/G---------------------------------------------------------  Feed conversion ratio (feed/gain) 

DD -------------------------------------------------------------------------------- Deionized water 

DE ------------------------------------------------------------------------------  Digestible energy 

DICAL---------------------------------------------------------------------  Dicalcium phosphate 

DM ---------------------------------------------------------------------------------------  Dry matter 

EE-------------------------------------------------------------------------------------  Ether extract 

Exp -------------------------------------------------------------------------------------  Experiment 

GLM -----------------------------------------------------------------------  General linear model 

LSM-------------------------------------------------------------------------  Least square means 

Lig----------------------------------------------------------------------------------------------  Lignin 
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Table 3.1. (Continued) 

 

LEA ----------------------------------------------------------------------------------  Loin eye area 

PHY-----------------------------------------------------------------------------------------  Phytase 

PU -----------------------------------------------------------------------------------  Phytase units 

NA ------------------------------------------------------------------------------------ Not analyzed 

NDF----------------------------------------------------------------------  Neutral detergent fiber 

NFE-------------------------------------------------------------------------  Nitrogen-free extract 

ND ------------------------------------------------------------------------------------  Not detected 

No-------------------------------------------------------------------------------------------  Number 

ME ------------------------------------------------------------------------- Metabolizable energy 

MC ------------------------------------------------------------------------------------- Metacarpals 

MT -------------------------------------------------------------------------------------- Metatarsals 

Mt -----------------------------------------------------------------------------------------  Metric ton 

MSP -------------------------------------------------------------------  Monosodium phosphate 

RA -----------------------------------------------------  Retention as a percent of absorption 

Rep -------------------------------------------------------------------------------------  Replication 

RFV--------------------------------------------------------------------------- Relative feed value 

RI-------------------------------------------------------------  Retention as a percent of intake 

RMSE -----------------------------------------------------------------  Root mean square error 

RX -----------------------------------------------------------------------------------  Ricex-1000™ 

SAS----------------------------------------------------------------  Statistical Analysis System 

SEM ---------------------------------------------------------------  Standard error of the mean 

SBM --------------------------------------------------------------------------------  Soybean meal 

tCa -----------------------------------------------------------------------------------  Total calcium 

tP--------------------------------------------------------------------------------  Total phosphorus 

Trt ----------------------------------------------------------------------------------------  Treatment 

UK -----------------------------------------------------------------------  University of Kentucky 

W---------------------------------------------------------------------------------------------- Weight 

VIR-----------------------------------------------------------------------------------  Virginiamycin 
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Table 3.2. General description of the experiments 

UK 

codea 

Exp. 

No.b 
Chapterc 

Exp.  

typed 

Digest. 

methode 

Additive 

testedf 

Trt. 

No.g 

Rep. 

No.h 

Pig 

No. 
Sexi  Groupsj 

Length 

daysk 

Initial  

Wt, kgl 

Final   

Wt, kgm 

0201 1 4 Bal T/I VIR 2 10 10 M 1 32 68.1 77.3 

0301 2 4 Bal T/I VIR/PHY 4 6 24 M 2 43 66.2 73.4 

0309 3 4 Bal T VIR/PHY 4 6 12 M 1 37 53.3 58.2 

0402 4 4 Bal T VIR/PHY 4 6 24 M 2 51 54.4 60.6 

0312 5 5 Growth 
(long) - VIR 4 4 32 M/F 1 116 29.1 113.2 

0407 6 6 Bal T/R PHY 6 4 24 M 2 31 87.5 95.5 

0210 7 App. 1 Growth 
(short) - VIR 5 4 20 M 1 44 15.8 50.0 

0311 8 App. 1 Growth 
(short) - VIR 5 4 20 M 1 42 16.5 47.2 

                                                           
a Experiment number assigned by the University of Kentucky. 
b Experiment number assigned for this dissertation. 
c Chapter number in the dissertation (App: Appendix). 
d Experiment type: Bal: Balance experiment; Growth: Growth experiment. 
e T: digestibility by the total collection method; T/I: digestibility by total collection and index method; T/R: digestibility by total collection using regression. 
f VIR: Virginiamycin (11ppm); PHY: Phytase (750 or 300 Phytase Units). 
g Number of dietary treatments. 
h Number of replications. 
i Sex: M: castrated male; F: female. 
j Groups: number of groups of pigs used. 
k Duration of the experiments for the balance experiments includes adaptation and collection periods. Duration for the growth experiments is counted as the first to 
the last day of feeding experimental diets. 
l Average body weight (BW): initial BW for the growth experiments; Ave initial BW of all pigs at starting total collection for the balance experiments. 
m Average body weight: final BW for the growth experiments; Ave BW of all pigs at finishing total collection for the balance experiments. 
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CHAPTER 4 
 

PHOSPHORUS UTILIZATION BY GROWING-FINISHING PIGS FED A P-
DEFICIENT CORN-SOYBEAN MEAL DIET AMENDED WITH VIRGINIAMYCIN 

AND/OR PHYTASE – Experiments 1, 2, 3, and 4 
 
 
Introduction 
 

Farm animals have been fed low doses of antibiotics as growth promoters 

for half a century. Although the mode of action of antibiotics on growth is not well 

understood, their positive effect on energy and nitrogen utilization has been 

observed in several animal species, including swine (Vervaeke et al., 1979; Dierick 

et al., 1986b). Some studies have addressed the effects of penicillin, aureomycin 

and virginiamycin on mineral utilization in poultry (Migicovsky et al., 1951; Ross 

and Yacowitz, 1954; Lindblad et al., 1954; Brown, 1957; Buresh et al., 1985), but 

this type of research is scarcer in swine (Ravindran et al., 1984). Rising concerns 

regarding pollution of aquatic ecosystems with phosphorus from animal excreta, 

along with the possible phasing out of antibiotics used at growth promoting levels, 

justify studying the effects of commonly used antibiotics such as virginiamycin 

(VIR) on P utilization by swine. 

Positive effects of phytase (PHY) amendments on P and Ca utilization by 

pigs have been profusely described since Natuphos G®, the first recombinant PHY, 

was approved for commercial use in the U.S. ten years ago. Nevertheless, studies 

on P utilization by pigs fed diets amended with both PHY and VIR have not been 

found in the literature. 

Nutrient digestibility has been traditionally assessed by either total 

collection, which is the accepted standard, or by the index method. Digestibility 

assessment by the latter method is intended to save labor, considering that it does 

not require quantitative collection of feces - it only requires measuring the 

concentration of an indigestible indicator (e.g., Cr2O3) in feed and feces. 
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Digestibility results for several nutrients assayed by this method have been 

regarded as comparable to results obtained by total collection (Schurch et al., 

1952). The index method involves a ‘grab sampling’ procedure for fecal collection. 

In order to obtain a representative composited sample of feces from individually-

penned pigs, researchers have tried collection periods of different lengths, from as 

short as one day, up to seven consecutive days (Barnicoat, 1945; Clawson et al., 

1955; McCarthy et al., 1976; Aherne et al., 1997; Mougham et al., 1991). Clawson 

et al. (1955) reported that a 1-day collection period consisting of two grab samples 

was comparable with a 7-day total collection for several characteristics (DM, CP, 

and EE). As digestibility results are affected by the variation in nutrient 

concentration in the sample, and as variation is expected to be higher for shorter 

collection periods, it is possible that a 1-day period may only be valid for those 

nutrients that are present in high concentrations. No research was found on how 

samples composited from cumulative periods of different length compare with the 

total collection method. From a practical point of view, it would be useful to 

determine how reliable a cumulative collection strategy is in comparison to the total 

collection method, and which particular nutrient digestibility results, if any, could be 

trusted. 

 

 

Objectives 
 

The primary objective of these experiments was to evaluate VIR and PHY 

amendment effects on digestibility, retention and excretion of nutrients, particularly 

P, by growing pigs fed a P-deficient diet. This was accomplished in four balance 

experiments (Experiments 1, 2, 3, and 4) by means of the total collection method. 

For this purpose, VIR was supplemented alone or along with PHY to corn-soybean 

meal diets lacking any inorganic source of P. 

A secondary objective was to compare the digestibility coefficients obtained 

by total collection (5 days), as the standard methodology, with the results by the 

index method (Cr2O3) in the first two experiments. The specific  
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purpose was to establish the reliability of two grab sampling strategies in 

assessing digestibility of specific nutrients. The strategies were a single-day grab 

fecal collection (Experiment 1), and a cumulative composite grab collection 

extending from 1 to 5 days (Experiment 2). 

 
 
Experimental Procedures 
 
Animals and housing conditions 

A total of 70 growing-finishing barrows, crossbreds of (Yorkshire x 

Landrace) x Hampshire, were used in the four experiments. The average weight to 

start total collection was 68.1, 66.2, 53.3 and 55.4 kg, respectively, for 

Experiments 1, 2, 3, and 4 (Appendix 2 presents average starting and finishing 

weights of treatment groups during adaptation and collection). In each experiment, 

sibling pigs of similar weight within a replicate were allocated to treatments and 

randomly assigned to crates. Pigs were individually confined in metabolism crates, 

as described in Chapter 3. Half-siblings (i.e., a common sire) were used when 

enough full-siblings were not available. Experiment 1 used ten pigs, Experiment 3 

used 12 pigs, and 24 pigs were used in each of the other two experiments. With 

the 70 animals used 92 observations were obtained for the total collection method, 

while 68 observations for the index method were obtained with 34 of the pigs, for a 

total of 162 observations. 

 
Dietary treatments 

A basal (B) corn-soybean meal diet not supplemented with any inorganic 

source of P was prepared separately for each experiment at the feed mill facilities 

of the University of Kentucky. Conventional corn and dehulled soybean meal 

(SBM) were used. The limestone was Franklin High Calcium Limestone (Franklin 

Industrial Minerals, Nashville, TN) which contained 38.5% Ca. Vitamin and trace 

mineral premixes were provided by the University of Kentucky Feed  
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Mill. Table 4.1 presents the composition of the basal diet used in all the 

experiments. 

In Experiment 1 two diets were tested: the basal P–deficient diet (B) versus 

the same diet supplemented with VIR from Stafac® 20 (Phibro Animal Health Co., 

Fairfield, NJ). Virginiamycin was fed at 11 ppm, corresponding with the level 

indicated by the FDA-Center for Veterinary Medicine (2004) for growth promotion 

purposes in swine. For Experiment 2, besides VIR, phytase (PHY) from Natuphos® 

1200G (BASF Corp., Mount Olive, NJ) was also used. Four diets were tested: the 

basal diet, the basal supplemented with 11 ppm VIR, the basal supplemented with 

750 phytase units per kg of diet (PU/kg), and the basal plus both additives at the 

same levels (10 g VIR/ton, and 750 PU/kg diet). The only difference between 

Experiments 2 and 3 was that the PHY level was reduced from 750 PU/kg to 300 

PU/kg for Experiment 3. Both VIR and PHY premixes used in all the experiments 

came from the same bag of commercial product. Experiment 4 was a repetition of 

Experiment 3 (supplementing 10 g VIR/ton, and 300 PU/kg diet). The Natuphos® 

1200G premix was analyzed before Experiment 4, and the result was 1326 PU/g, 

which was the value used to calculate PHY concentration in this last experiment, 

instead of 1200 PU/g. Table 4.2 presents a summary of the dietary treatments 

tested in the four experiments. 

The basal diets were mixed in a 1000-kg capacity horizontal paddle mixer at 

the University of Kentucky Feed Mill. The experimental diets were prepared in 

horizontal paddle mixers (either 150-kg or 1000-kg capacity) by blending VIR 

and/or PHY with the basal diet. 

In Experiment 1, two batches of basal diet were prepared. Half of the basal 

diet was saved for the control treatment (Diet 1), while Stafac® 20 was blended 

with the other half to make Diet 2. 

Two batches of basal diet were prepared for Experiment 2, and one batch 

was prepared for Experiment 3. Each additive, VIR and/or PHY, was blended with 

separated fractions of the basal diet to make the experimental diets used in these 

two experiments. 
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In Experiment 4, one single batch of basal diet was prepared and then 

divided into four fractions. One of the quarter fractions was blended with VIR and 

another one was blended with PHY. The blending of both additives (VIR or PHY) 

was done in a proportion equivalent to twice the concentration desired for the final 

experimental diets. To make experimental diets 2 and 3, a part of each 

concentrated portion was blended with an equal amount of the unblended basal. 

Diet 4 was prepared by blending together the same amounts of both concentrated 

fractions. Once the pigs were allotted to start each experiment, diets were weighed 

as individual meals into labeled plastic bags, and were kept separated by 

treatment. 

 
Adaptation and collection procedures 

As described in detail in Chapter 3, pigs were fed at 3% of body weight 

during the trials, in a gruel (feed plus water) form, and divided in two daily meals. 

In Experiment 1, each pig was used for both sets of collections. When the 

first set of total and index collections finished, pigs were switched to the alternate 

diet, provided with a 3-d respite from the crates in 1.22 x 2.44 m pens, and then 

the adaptation and collection procedures were repeated. Similarly to Experiment 1, 

a single group of pigs was used in Experiment 3. Two separate groups of pigs 

were used in each of the other two experiments (Experiments 2 and 4). 

In Experiments 1, 2, and 4, fecal collections for the index method (‘grab’ 

collections) were conducted after each total collection was completed. Chromic 

oxide (Fisher Chemicals, Fair Lawn, NJ) was used as the indicator, added to the 

experimental diets at a rate of 0.25%. The fecal collection procedure for the index 

method differed among experiments according to their particular objectives. 

Figures 4.1, 4.2 and 4.3 depict the general flow of events in the experiments, 

including the number of days between weighings of the pig groups. In Experiment 

1 pigs were fed chromic oxide for two consecutive days, starting two days after the 

second feed marked with Indigo was offered. Collection of fecal samples for the 

index method was done on one single day for each pig by grabbing a stool when 

its color appeared bright green, assuming that at this point the indicator 
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concentration had already stabilized between feed and feces, which occurred most 

usually on the third day after the initial offering of marked feed. 

On the other hand, in Experiment 2 pigs were fed chromic oxide for seven 

consecutive days. Collection for the index method was conducted for five 

consecutive days. Collection started when bright green feces were first detected, 

which generally occurred on the third day after the indicator was initially fed. 

During the collection period, similar amounts of feces (by approximate size) were 

grabbed and composited into five cumulative samples labeled: ‘CCP1’ 

(corresponding to the first day only), ‘CCP2’ (composited from days 1 and 2), 

‘CCP3’ (from days 1, 2, and 3), ‘CCP4’ (from days 1, 2, 3, and 4), and ‘CCP5’ 

(from days 1, 2, 3, 4, and 5). Similar to Experiment 1, the Cr indicator was fed 

during the entire index collection period. 

 
Sample preparation 

To obtain a representative sample of urine for nutrient analysis, the 

collected samples were thawed at room temperature and proportionally 

composited by weight for each pig according to the recorded daily excretion. 

Composited samples were kept frozen at all times until analysis. 

All frozen feces were dried in a forced-air oven (Tru-Temp, Hotpack Corp., 

Philadelphia, PA) at 55oC for one week, then air equilibrated, weighed, and ground 

using a Wiley Laboratory Mill (Model 3, Arthur H. Thomas Co., Philadelphia, PA) 

through a 1 mm screen. After grinding, feces were composited according to 

digestibility method. For the total collection method, all ground feces from each 

collection period were thoroughly mixed in a single bag for each pig. From this 

bag, a sample for chemical analysis was obtained and re-ground using a smaller, 

high speed grinder (Type 4041, Model KSM 2-4, Braun Inc., Woburn, MA). The 

same procedure was used with the fecal samples for the index method, but this 

time collected feces were mixed according to the objectives of each experiment. In 

Experiment 1 fecal material collected for the index method (one single stool per 

pig) was analyzed separately. In Experiment 2, fecal samples taken from each day 

were composited as previously explained. After being composited, materials 
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collected for both total collection and index methods were kept in a cold room at 4 

to 8°C until chemical analysis. 

 
Laboratory analysis 

Feces and feed were analyzed for DM contents. Feces, feed and urine were 

analyzed for energy, N, P, and Ca concentration. Concentrations of Mg, K, Mn, Zn, 

Fe, Cu, and Na were assessed in all experiments, except in Experiment 3. 

Chromium, for the index method, was assessed in feces and feed. Total contents 

of nutrients in feces, urine, and feed were calculated as the product of nutrient 

concentration by the total amount of material. Samples were analyzed at least in 

duplicate, and analysis was repeated when abnormal variation was observed. 

Dry matter in feed and feces was assessed according to an adaptation of 

the AOAC (1995) method, involving overnight drying (105ºC) of the samples in a 

convection oven (Precision Scientific Co., Chicago, IL) and then calculating 

moisture contents as the difference between weighings. 

Gross energy content was assessed by bomb calorimetry, consisting of the 

ignition of samples in a pressurized-oxygen environment, and measuring the heat 

of combustion as the amount of energy transferred to a known mass of water 

contained in the calorimeter (Model 1261 Isoperibol Bomb Calorimeter, Parr 

Instruments Company, Moline, IL). Benzoic acid pellets with known combustion 

heat were ignited at the beginning and end of each set of samples to verify 

calorimeter measures. Feed and feces samples were assessed in duplicate by a 

procedure adapted from AOAC (1995). To measure urine energy, samples were 

oven dried for two days at 55ºC into polyethylene flat bags (Jeb Plastics Inc., 

Wilmington, DE) prior to combustion. The known heat of combustion per gram of 

bag material was subtracted from the total heat observed to obtain the sample 

energy contents (Appendix 3 describes the procedures used to determine gross 

energy). 

Nitrogen was measured using Dumas methodology in an automatic N 

analyzer (Model FP-2000, LECO Corp., Saint Joseph, MI). Ignition of blanks and  
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EDTA samples with known N contents was done daily in order to calibrate the 

equipment and to check for drift in the readings. 

Phosphorus in feed and feces was assessed by a gravimetric method 

(modification of method 968.08 from AOAC, 1990) in which samples were 

weighed, ashed, acid digested, diluted to 250 mL, and then 50 mL of the liquid was 

reacted with Quimociac solution, filtered, and the precipitate obtained was weighed 

to calculate P concentration (Appendix 4 describes the P determination method 

and the Quimociac preparation procedure). 

Phosphorus concentration in urine was assessed as inorganic P by a 

colorimetric procedure (Procedure No. 360-UVP. Sigma Diagnostics, St. Louis, 

MO) using a spectrophotometer (Model Ultrospec IIE, 4057 UV/visible, LKB 

Biochrom Ltd., Cambridge, England). Concentration was measured under 

ultraviolet light at 340 nm. A commercial reagent was used (Ammonium 

molybdate, 0.40 mmol/L in sulfuric acid with surfactant) (Catalog No. 360-3, Sigma 

Diagnostics, St. Louis, MO) along with a set of 3 standards containing 1, 5, and 15 

mg/dL P (Calcium /Phosphorus Standard, catalog No. 360-5, Sigma Diagnostics, 

St. Louis, MO). A blank (DD water plus reagent) and the three standards were 

used to create calibration curves for the spectrophotometer to test for linearity 

before urine samples were read in the equipment. 

Except for P, all other mineral elements were assessed by Flame Atomic 

Absorption Spectrophotometry (AA) (Thermoelemental, SOLAAR M5, Thermo 

Electron Corp., Verona, WI), according to a modification of the procedure from 

AOAC (1995b) (method 927.02), as described in Appendix 5. 

Chromium concentration in feed and feces for the index method was 

assessed by a modification of the method reported by Williams et al. (1962), 

involving weighing the samples, ashing and digesting them with potassium 

bromate and acid manganese sulfate, heating at low temperature, then adding 

calcium chloride, and finally aspirating them into the AA equipment 

(Thermoelemental, SOLAAR M5, Thermo Electron Corp., Verona, WI). The Cr 

stock standard used was from Fisher Scientific (No. SC192). Appendix 6 describes 

the method and the preparation of the solutions used. 
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Apparent digestibility coefficients were calculated on a DM basis for both 

total collection and index methods. Additionally, nutrient retention as well as 

excretion via feces and urine was calculated for the total collection method. The 

formulae used are provided in Chapter 3. 

 

Experimental design and statistical analysis 

Experiment 1 challenged the null hypothesis of no effect of VIR on mineral 

digestibility, using 10 replications. It had a crossover design structure in which a 

single group of ten pigs was used in two collections - each pig receiving a different 

treatment in each collection. Pigs were matched in five pairs by ancestry. To 

prevent possible carry-over effects of the first treatment on the second collection, 

pigs had nine consecutive days between collections to adapt the gastrointestinal 

tract from the previous diet. The treatment structure was a 1-way treatment 

classification, and the experimental unit was each pig. The analysis of variance 

(ANOVA) was done using the General Linear Model (GLM) procedure of the 

Statistical Analysis System (SAS, 1998). The model for analysis included the 

effects of collection, pair (collection), diet, and diet by collection interaction. 

Experiments 2, 3, and 4 utilized a randomized complete block design with 

pigs blocked by weight. In order to decrease weight variation between the two 

collection groups, in Experiments 2 and 4 the heaviest group of pigs selected was 

tested first, leaving the lighter group for the second collection. The treatment 

structure was a 2-way treatment classification (2 x 2 factorial) with six replicates 

per treatment, and the experimental unit was the pig. The ANOVA was also 

obtained using the GLM procedure of SAS. The model included the effects of 

collection, diet, the diet by collection interaction, and replicate (collection). Several 

one-degree-of-freedom pre-planned comparisons were performed. Comparisons 

evaluated the basal diet vs. each additive (VIR or PHY). The error term reported is 

the standard error of the mean (SEM), except for Experiments 1 (index method 

analysis) and 2, where unequal numbers of observations were used. In those 

cases, the root mean square error (RMSE) is reported. It can be converted into 
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SEM by dividing its value by the square root of the number of observations 

associated with each specific mean. 

 
 
Results and Discussion 
 
Total collection 

All the animals in Experiments 1, 3, and 4 successfully completed the 

scheduled time in the metabolism crates for the total collections. All pigs in 

Experiment 2 finished the trial but one pig did not gain weight. In general, pigs 

were in good health and condition during the experiments. No intestinal disorders 

such as diarrhea or constipation were observed either during the adaptation or 

collection periods. In some experiments a few pigs developed minor bruises in rear 

feet during confinement, but no abnormal behavior, feed consumption or 

defecation patterns were observed. 

An important condition in any digestion or balance experiment is that the 

animals be in a positive balance of nutrients, otherwise, results could be biased by 

the greater tissue catabolism expected for animals losing weight. All but one pig 

gained weight during collection in Experiment 2, so that one animal was not 

included in the analysis. Growth performance during collections is not reported as 

the reliability of differences in growth resulting from such short periods is 

questionable due to the possible effect of differences in gut fill at weighing times. 

Samples of the experimental diets were analyzed for VIR and PHY 

concentration by Phibro and BASF laboratories, respectively.  The assays for the 

concentration of the additives in the diets found that VIR was close to the target in 

all experiments. As expected, the diets not amended with the antibiotic were low in 

VIR (< 2.0 g/ton), while the others, with the exception of Diet 4 in Experiment 3, 

were close to 10 g/ton (Table 4.3). On the other hand, the assays for PHY 

concentration were different than expected, particularly for Diets 3 and 4 in 

Experiment 2. It is not clear whether the differences reflect an issue with the 

blending of the diets (the blending procedure in Experiment 4 was thought to be  
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better than the others, which is probably the reason PHY values were closer to 

expected levels in Diets 3 and 4), or with the lab analysis. In Experiment 2, 

although the PHY levels in Diets 3 and 4 were different, both were higher than their 

target levels (Table 4.3). In Experiment 3 the assay for Diets 3 and 4 were 

considered problematic because differences in results at these relatively low levels 

of PHY could cause important differences in digestibility due to the enzyme 

(Cromwell et al., 1995a), possibly interfering with an action of VIR on the remaining 

substrate. For this reason, the results for Diets 3 and 4 were disregarded in this 

experiment, the data from Diets 1 and 2 were re-analyzed and only those diet 

results are presented. In Experiment 4 the assays results were closer to those 

planned. 

 

Experiment 1 

In Experiment 1, the addition of VIR improved the apparent digestibility of 

several nutrients including DM, Energy, P, Ca, Mg and Zn. Dry matter digestibility 

increased 0.94% (P = 0.05). A similar improvement (0.85%, P = 0.06) was 

observed for energy digestibility. Nitrogen digestibility was numerically but not 

statistically improved. In this experiment, the greatest improvement in digestibility 

was observed for P (8.4%, P < 0.01), followed by Ca (5.8%, P < 0.01), Zn (3.9%), 

and Mg (3.1%, P = 0.02). The apparent digestibility of other minerals tested (K, Fe, 

Cu, Mn and Na) was not affected by VIR addition (P > 0.10). Table 4.4 presents 

the digestibility results obtained. The observed improvement of 8.4 percent points 

in P digestibility in Experiment 1 is equivalent to a 0.031% increase in P in the diet 

calculated to contain 0.37% total P. 

No reports of increased P digestibility in pigs due to VIR or any other 

antibiotic were found in the literature, except for the experiment by Ravindran et al. 

(1984). They used lighter pigs (35 kg BW) in three balance trials to test the effects 

of the same level of VIR (11ppm) on nutrient digestibility, mineral absorption, 

retention, and rate of passage in diets supplemented with P. In a 2 x 2 factorial 

arrangement, they supplemented VIR to a low fiber corn-SBM meal diet (NDF:  
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13.5%) and to a high fiber corn-SBM–oats diet (NDF: 20.2%). They tested if VIR 

would decrease the greater rate of passage expected for the high fiber diet, thus 

improving nutrient utilization. In agreement with previous reports on the effects of 

fiber, they found that the high fiber diet decreased DM, energy, CP, and ash 

digestibility. Interestingly, they also found that VIR increased P digestibility in the 

high fiber diet (57.7 vs. 63.0%), although it did not affect P digestibility in the low 

fiber diet (55.2 vs. 55.4%). Similarly, VIR increased Ca digestibility in the high fiber 

diet (56.5 vs. 66.1%), but not in the low fiber diet (63.5 vs. 62.0). Digestibility of 

Mg, Cu, Zn, and Mn was increased by VIR in both high and low fiber diets (P < 

0.09). Phosphorus and Ca retention as a percent of absorption was also increased 

by VIR in the high fiber diet (53.7 vs. 58.3%; and 54.4 vs. 64.5%, respectively), but 

not in the low fiber diet. Interestingly, although VIR slowed the rate of passage (P < 

0.01) in both diets (from 20.6 to 26.7 h), the improvement in P digestibility and 

retention was only observed in the high fiber diet. 

Ravindran et al. (1984) did not observe any effect of VIR on P digestibility in 

their corn-SBM diet, while Experiment 1 did show an important improvement. The 

reason for the difference could be that their diet had more available P (it was 

supplemented with 0.90% defluorinated phosphate) while Experiment 1 was P-

deficient, so both may not be comparable. This comment is further substantiated 

later in the discussion of digestibility results of the other experiments. 

In Experiment 1, besides the improvement in P digestibility, VIR increased P 

retained as a % of absorption. Among all the nutrients measured, P was the only 

one that showed an improvement in retention (as a percent of absorbed) with VIR 

supplementation (Table 4.5). 

In agreement with the improvements in P digestibility and retention 

observed, total excretion of the mineral (fecal plus urinary) decreased (P < 0.01) 

from 6.11 g/d to 5.49 g/d, a 10.2% reduction (Table 4.6). As expected, of the total 

P excreted, fecal P accounted for most of the excretion in both control and VIR 

diets (5.9 vs. 5.3 g, respectively), as compared to urinary P (0.21 vs. 0.19 g,  
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respectively). Virginiamycin decreased P excretion in both feces and urine by a 

similar proportion (10.2% in feces and 9.5% in urine). 

According to the apparent retention observed in the Experiment 1 

(calculated as intake minus fecal and urinary losses), VIR-treated pigs retained 

0.78 more grams of P per day (3.9 g total for the 5 d) as compared with the 

controls. 

In Experiment 1, numerical differences in N absorption, retention, and 

excretion were observed with the addition of VIR (Table 4.6). 

 

Experiments 2, 3, and 4 

Virginiamycin effects. In these experiments VIR did not have a main effect 

on P digestibility. Nevertheless, a VIR x PHY interaction was observed in 

Experiment 2 (P = 0.06). Considering that differences due to VIR were observed 

previously in Experiment 1, single-degree-of-freedom comparisons were made 

between Diets 1 and 2 in Experiments 2, 3, and 4. The comparisons found 

significant differences in P digestibility favoring VIR in Experiment 2 (34.61 vs. 

39.25, P < 0.03). Similar improvement was found in Experiment 3 (32.45 vs. 37.66, 

P = 0.08), but no difference was observed in Experiment 4 (33.40 vs. 35.18, P > 

0.10) (Tables 4.7, 4.8, and 4.9). 

The positive effect of VIR on P digestibility observed in Experiments 2 and 

3, along with the stronger results initially observed in Experiment 1, agree with 

Ravindran et al. (1984). It is interesting to note that they reported an effect of VIR 

only on their high fiber diet, while Experiments 1, 2, and 3 showed a VIR effect in a 

corn-SBM diet, where most P is unavailable. This observation could imply that the 

effect of the antibiotic depends on the digestibility level of the diet. This is further 

substantiated when results of the four experiments are put together showing that 

the magnitude of increase in P digestibility due to VIR tended to be inversely 

related to the P digestibility level of the control diet (Figure 4.4). 
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Lindblad et al. (1954) arrived at a similar conclusion for chicks and poults 

fed Ca and P deficient diets supplemented with aureomycin. They found that in the 

absence of the antibiotic, maximum weight gain was obtained with a diet 

containing 1.0% Ca and 0.6% inorganic P. On the other hand, in the presence of 

aureomycin maximum gain and feed efficiency resulted when P was decreased to 

0.4%. Increasing P above 0.4% in the diet containing antibiotic did not increase the 

gain. Researchers concluded that the more inadequate the Ca and P in the ration, 

the greater the percentage increase in weight due to the antibiotic. 

The inverse relationship observed between the level of improvement in P 

digestibility and the digestibility level of the basal diet is in agreement with Braude 

et al. (1953). These researchers summarized a number of experiments with 

different antibiotics to conclude that the relative improvement in growth resulting 

from antibiotic amendments was inversely related to the growth rate of the control 

pigs. 

In contrast to Experiment 1, where the digestibilities of DM, Energy, P, Ca, 

Mg and Zn were significantly increased by the inclusion of VIR, significant 

differences were less prominent for these nutrients in the three following 

experiments. Tendencies for main effect improvements were observed only for N 

digestibility in Experiment 2 (P = 0.10) and also for Zn and Cu digestibility in 

Experiment 4 (P < 0.10) (Tables 4.7, 4.8, and 4.9). 

With regard to P retention expressed as a percent of the absorption, there 

was a main effect of VIR in Experiment 2 (P = 0.03), and numerical differences in 

Experiments 3 and 4 (Tables 4.10, 4.11, and 4.12). Virginiamycin also tended (P = 

0.08) to increase P retention, expressed as a percent of the intake, in Experiment 

3 (P = 0.08), and numerical differences were observed in Experiments 2 and 4 (P 

= 0.14). The relevance of this last response in P-deficient diets is addressed in the 

discussion of the effects of PHY. 
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Phosphorus digestibility and retention data (as a % of absorption) for Diets 

1 and 2 in the 4 experiments are summarized in Figure 4.5. Across experiments, 

the average improvement in P digestibility by amending the basal diet with VIR 

was 5.0% (range: 1.78 to 8.44%), while the average improvement in P retention 

(as a % of absorption) was 1.0% (range: 0.07 to 2.36%). 

When Diets 1 vs. 2 were compared, numerical improvements by VIR were 

observed in total excretion of P (fecal plus urinary, g/d), equivalent to 2.3% in 

Experiment 2, 4.2% in Experiment 3, and 2.8% in Experiment 4 (Tables 4.13, 4.14, 

and 4.15). Averaging the four experiments, the decrease in total P excreted due to 

VIR amendment was 4.9%. 

 

Phytase effects. The addition of 750 PU/kg diet had a strong positive effect 

on the digestibility of several minerals, particularly P and Ca (Tables 4.7 and 4.9). 

Results from Experiment 2 indicate that this level of PHY inclusion increased P 

digestibility 78.9% (from 34.6 to 61.9%), for the basal diet, and 55.4% (from 39.3 to 

61.0%) for the VIR-added diet (P < 0.01). As expected, a smaller effect on P 

digestibility was observed when PHY level was reduced to 300 PU in subsequent 

experiments, which agrees with earlier reports of linear responses to different 

levels of PHY (Lei et al., 1993; Veum et al., 1994; Cromwell et al., 1995; Liu et al., 

1995). In Experiment 4, digestibility increased 41.3% (from 33.4 to 47.2%) for the 

non-VIR diet, and 43.0% (from 35.2 to 50.3%) for the VIR-added diet (P < 0.01). 

In Experiment 2, no effect of PHY on DM, energy or N digestibility was 

observed (P > 0.31), but it improved Ca digestibility in Experiments 2, 3, and 4 (P < 

0.01), which is in agreement with other reports (Lei et al.,1993; Pallauf et al., 1992; 

Pallauf et al., 1994; Jongbloed et al., 1999c; Pallauf and Rimbach, 1999). In regard 

to micro-minerals, it was interesting to note that PHY decreased Fe and Cu 

apparent digestibility (P < 0.05) in Experiment 2, while Mn digestibility was 

decreased in both Experiments 2 and 4 (P < 0.01). Adeola (1999) did not observe 

any effect of PHY on Mn absorption. 
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In Experiment 2, the tendency for an interaction between PHY and VIR for P 

and Ca digestibility (P < 0.10), along with the lack of significant difference between 

Diets 3 and 4 suggested that the level of inclusion of PHY was probably high 

enough to release all the phytate-P present in the diet, not leaving any room for 

further VIR effect. This observation motivated reduction of the PHY level in 

Experiments 3 and 4 which followed, in order to be able to detect any possible 

additive effects of VIR. 

As expected, a smaller response in digestibility was observed when the 

level of PHY was lowered in these following experiments. It was known that there 

is a dose-response relationship between the level of PHY and the apparent total 

tract P digestibility in pigs fed corn-SBM diets (Cromwell et al., 1995a; Harper et 

al., 1997; Jongbloed et al., 1999b). In Experiment 2, comparisons between Diets 1 

and 3 showed that PHY increased P digestibility 79%  (from 34.6 to 61.9%, P < 

0.01),  but it was only 41% (from 33.4 to 47.2%, P < 0.01) in Experiment 4. 

Phosphorus retention was also increased by PHY additions. The 

percentages increases resemble the changes observed in P digestibility. In 

Experiment 2, the high level of PHY used increased P retention (RI) of the basal 

diet by 83.7% (from 32.9 to 60.5%), and 57.6% (from 37.9 to 59.7%) for the VIR-

added diet (P < 0.01). Smaller increases in P retention due to PHY were observed 

when the PHY level was reduced to 300 PU. In Experiment 4, P retention (RI) 

increased 42.7% (from 32.3 to 46.0%) for the non-VIR diet, and 44.5% (from 34.0 

to 49.2%) for the VIR-added diet (P < 0.01). 

The change in nutrient retention, expressed as a percent of intake, was 

closely related in magnitude to the change in digestibility (Figure 4.6). In all 

experiments, P retention (RI) varies according to either positive or negative 

changes in P digestibility due to VIR and PHY amendment. These changes tend to 

be very similar in magnitude to the changes seen for P digestibility, which was 

probably reflecting dietary P availability. As available P in these diets was deficient, 

urine P should represent a minimum fraction of the total P (fecal plus urinary) 

excreted. Low urinary P would reflect the increased net retention  
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expected in a P-deprived animal trying to satisfy P demand during this fast growing 

stage. It is known that a deficient dietary intake of P stimulates not only active 

absorption but also renal reabsorption, minimizing urinary losses (Combs, 1998; 

Crenshaw, 2001; McDowell, 2003). In the study by Rodehutscord et al (1998), it 

was estimated that the daily inevitable losses of P via urine in growing pigs (50 kg) 

fed P deficient diets accounted for only about 6% of the total inevitable losses, 

corresponding to 0.35 mg/kg BW. They concluded that under P deficiency 

conditions, pigs can completely utilize digestible P without further losses, which 

also agrees with the findings of Nasi and Helander (1994). 

Under these conditions, it would be expected that the coefficient of P 

digestibility approaches P retention (% intake). Moreover, in the hypothetical case 

of zero urinary excretion, digestibility and retention (% intake) would be expected 

to be close or even the same in value. According to this, PHY and VIR are 

probably not directly causing an increase in P retention (% intake). This retention 

could be just a reflection of the dietary deficiency and the response of the animal to 

retain phosphate. As expressed by several researchers (Cromwell, 1999; 

Underwood and Suttle, 1999; McDowell, 2003) bone assessments, as well as 

growth performance over longer periods, would probably better help to verify 

suspected benefits in bioavailability. 

In Experiment 4, retention of micronutrients (Fe, Cu, Mn, and Zn) expressed 

as a percent of absorption was greater than 100% for some of the treatment 

means (Table 4.12). The reason for these apparently odd results is that digestibility 

was negative and greater than net retention (which in turn was also negative). In 

other words, always when digestibility is negative, net retention will also be 

negative (because some urinary excretion is always expected, regardless of the 

amount already excreted via feces), and the ratio will be greater than 100%. The 

urinary excretion level will determine how much greater than 100% retention as a 

percent of absorption would be in those cases. 

Reflecting the increase in digestibility and retention observed with the PHY 

amendments, total P excretion was notably reduced by PHY. In Experiment 2,  
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PHY decreased total P excretion of the basal diet by 36.6 % (from 4.8 to 3.1 g/d),  

and by 34.9% (from 4.7 to 3.1 g/d) in the VIR-added diet (P < 0.01). Smaller 

decreases in P excretion were observed when the PHY level was reduced to 300 

PU in Experiment 4. In Experiment 4, P excretion decreased 20.1% (from 4.3 to 

3.4 g/d) for the non-VIR diet, and 21.2% (from 4.2 to 3.3 g/d) for the VIR-added 

diet (P < 0.01). (Tables 4.13, 4.14, and 4.15). 

From the discussion of the total collection method for the four experiments, 

it can be concluded that VIR amendment improved apparent P digestibility and 

total P excretion by 5.0%.  In addition, the PHY amendment results confirmed the 

positive effects of the enzyme on digestibility, retention, and excretion. 

 
 
Index method 

Probably because of the long time in the crates, not all the pigs completed 

the scheduled collections for the index method in Experiment 1 in good condition. 

Two pigs in that experiment had low appetite and one of them showed signs of 

rear legs paralysis and fever during index collection. Because of this, data from 

those pigs were not included. Although index collections in Experiment 2 took 

longer no problems were detected, probably because pigs were given a respite 

from the crates between collections for the total and index methods. 

In Experiments 1 and 2 feces usually appeared bright green on the third day 

after chromic oxide was initially fed. A single fecal sample per pig was collected at 

that time in Experiment 1. In Experiment 2, grab samples of similar size were 

collected for 5 consecutive days, starting when bright green feces were first 

observed. 

 

Experiment 1 

In Experiment 1, nutrient digestibility results were generally lower by the 

index than by the total collection method, which agrees with several reports  
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(Barnicoat, 1945; Clawson et al., 1955; Mroz et al., 1996). The only exception was 

Na, which exhibited higher digestibility by the index method than by the total 

collection method (Table 4.16). No reports of higher digestibility by the index 

method in comparison to the total collection method, for any nutrient, were found in 

the literature. 

As shown in Figure 4.7, the difference between digestibility methods 

observed in Experiment 1, was smaller for highly digestible, highly concentrated 

nutrients. Nutrients having low digestibility (below 60%) and low concentrations 

exhibited a bigger difference between methods. Micronutrients with very low 

digestibility (below 25%) by the total collection, such as Zn, Fe, and Cu, had 

negative digestibility coefficients by the index method. Three out of four of the 

micro-minerals tested were poorly digestible according to the total collection, and 

showed nearly zero to negative digestibility by the index method. As pointed out by 

Schneider and Flatt (1975), it can be expected that the normal variation about the 

mean may result in negative values for poorly digestible nutrients or for nutrients 

having a very low concentration in the feed. The negative results might be 

obtained when the variation in the nutrient concentrations among samples is in 

excess of the mean concentration of the nutrient. Apgar and Kornegay (1996) did 

not find such big differences between total collection and index method when they 

compared mineral balance by both methods in finishing pigs. In their results, the 

Index method was lower than the total collection method by about one percentage 

unit. A possible reason for the lower variation observed by these researchers is 

that they fed elevated levels of Cu in the presence of excess amounts of otherwise 

‘trace’ minerals (Fe, Cu, Mn, and I). They concluded that Cr2O3 did not seem to be 

a reliable marker for estimating trace mineral absorption. 

Although digestibility coefficients for highly digestible macronutrients such 

as N, K, and Na, as well as DM and energy for the two methods appeared quite 

similar (Figure 4.7), treatment comparisons gave different results. The index 

method was not able to detect the statistical differences between treatments that 

were found by the total collection method (Table 4.16). The index method was  
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not able to detect even strong treatment differences in digestibility for 

macronutrients such as P and Ca found by the total collection method (P < 0.01). 

In conclusion, the color of the feces marked with Cr2O3 may not be a 

reliable indicator of Cr concentration. Relying solely on feces color to determine 

when to collect a single grab sample may lead to wrong conclusions in digestibility 

assessments. 

 
Experiment 2 

In Experiment 2, a separate statistical analysis was conducted using each 

of the five cumulative composited sample collection periods. This was done in 

order to observe any trends in digestibility coefficients among the cumulative 

collection periods (CCP). Separate analysis of each CCP, regardless of diet, 

showed that digestibility coefficients for all the nutrients were increasing from CCP 

1 to CCP 5 (Figure 4.8). 

At CCP 4, all micro-minerals but Zn had apparently reached their 

digestibility plateaus. At CCP 5, the rest of the nutrient digestibility curves 

apparently reached their plateaus. The increasing trend in digestibility values can 

be explained by the observed gradual increase in Cr excretion with increasing 

CCP (Figure 4.9). Chromium fecal excretion also seems to reach its plateau at the 

last CCP. 

Digestibility coefficient values below the plateau (for CCP 1, 2, 3, and 4) do 

not reflect the real values because Cr concentration was not yet stabilized between 

feed and feces until CCP 5. Accordingly, CCP 5 was the only period from the index 

method that could be compared with the total collection method. 

 In general, the total collection and the index method at CCP5 gave similar 

results for macronutrients and very dissimilar results for micronutrients (Figure 

4.10). As already observed in Experiment 1, some micronutrients (Mn and Cu) had 

negative digestibility coefficients by the index method. 

As all P-values for the main effect of VIR amendment on digestibility were 

greater than 0.10 by both methods, the conclusions regarding VIR would be the 

same, regardless of method. Nevertheless, there are big differences in P-values  
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with the two methods for several nutrients (DM, energy, N, P, and Na), and in all 

those cases the P-value was greater with the index method. This implies that this 

method could be less able to detect significant differences among treatments with 

low expected impact on digestibility values (Table 4.17). 

Some of the comparisons regarding the main effect of PHY amendment on 

macronutrient digestibility (e.g., DM and Mg) found different P-values with the 

different methods, which would lead to different conclusions according to which 

method was used. Nevertheless, for nutrients highly impacted by the PHY 

amendment, such as P and Ca, P-values were both statistically significant (P < 

0.01) and numerically similar by both methods. With micronutrients, the index 

method failed to detect significant differences found by the total collection method 

for the effect of PHY on Fe (P = 0.02), Cu (P = 0.01), and Mn (P < 0.01) 

digestibility (Table 4.17). 

In conclusion, a 5-day CCP for the index method was not appropriate for 

measuring micronutrients digestibility. The 5-day CCP method would be 

appropriate to measure digestibilities of macronutrients only when important 

differences between treatments are expected. This conclusion does not extend to 

a single grab collection at day 5, because the Cr concentration of the single grab 

sample would be different than for CCP5 due to the effect of the low Cr 

concentration in the first days of cumulative collection. 

 
 
 
Implications 
 
 

According to these results, the amendment of a P-deficient corn-SBM 

diet with VIR or PHY for growing pigs can be expected to increase P digestibility 

and retention, decreasing excretion, with the expected benefits to the environment. 

These experiments confirm the well known advantages of PHY in P nutrition for 

pigs. The experiments also provide new evidence on the positive effects of VIR on 

P utilization, showing that the antibiotic increases P digestibility by about 5%, on  
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average. The improvements in P utilization observed in these experiments could 

represent not only an economic advantage to the producer in terms of inorganic 

dietary P savings, but also a potential benefit to the environment due to lower P 

excretion. Further studies are required in order to observe to what extend these 

improvements in P digestibility and retention transfer into bone mineralization, and 

to understand the mechanism by which the antibiotic impacts P nutrition. 

As regards the issue of methodology, the evaluation of nutrient 

digestibility by the index (Cr2O3) method, the collection of a single fecal grab 

sample according to its color, although simple, cheap and easy, does not seem to 

be a reliable alternative to the total collection method. Using a cumulative sample 

composited over five days was much more accurate than a 1-day collection. This 

version of the index method might provide acceptable approximative results in 

cases where it is desirable to have some idea of macronutrient digestibility. 

Nevertheless, the index method was not suitable for detecting statistical 

differences in micro-mineral digestibility. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright© Jorge Hernan Agudelo-Trujillo 2005 
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Table 4.1. Basal diet used in Experiments 1, 2, 3, and 4 

Ingredienta % 
Corn, ground 74.800

Soybean meal (48% CP) 23.300

UK vitamin mixb 0.075

UK trace mineral mixc 0.075

Limestone 1.400

Phosphate source 0

Salt 0.350

Total: 100.000

 NRC (1998) requirement 
estimates 

Calculated composition 20-50 kg 50-80 kg 

Crude protein (%) 17.28 18.00 15.50 

Lysine (%) 0.90 0.95 0.75 

ME (kcal/kg)d 3346 3265 3265 

Calcium (%) 0.60 0.60 0.50 

Phosphorus, total (%) 0.37 0.50 0.45 

Phosphorus, available (%) 0.07 0.23 0.19 

                                                           
a Vitamin premix and trace mineral premix supply nutrients to meet or exceed NRC 
(1998) requirement estimates. 
b Diet was calculated to provide (per kg): 4,950 IU vitamin A, 660 IU vitamin D3, 33 
IU vitamin E, 4.8 mg vitamin K (as menadione sodium bisulfite complex), 6.6 mg 
riboflavin, 16.5 mg pantothenic acid, 33.0 mg niacin, 0.99 mg folic acid, 0.165 mg 
d-biotin, 24.5 µg vitamin B12, and 3.3 mg vitamin B6. 
c The mineral premix in the diet supplies, per kilogram of diet: 135 mg Fe (iron 
sulfate monohydrate), 135 mg Zn (zinc oxide), 45 mg Mn (manganous oxide), 13 
mg Cu (copper sulfate pentahydrate), 1.5 mg I (calcium iodate), 0.3 mg Se 
(sodium selenite), and 0.23 mg Co (cobalt sulfate monohydrate). 
d ME: Metabolizable energy. 
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Table 4.2. Dietary treatments in Experiments 1, 2, 3, and 4 

 Treatments 

Experiment 

number 

1 2 3 4 

1  Ba  VIRb - - 

2 B VIR PHY(1)c PHY(1)+VIR

3 B VIR PHY(2)d PHY(2)+VIR

4 B VIR PHY(2) PHY(2)+VIR

                                                           
a B: Basal diet. 
b VIR: 10 g virginiamycin/ton of diet (calculated level of inclusion). 
c PHY(1): 750 phytase units/kg diet (calculated level of inclusion). 
d PHY(2): 300 phytase units/kg diet (calculated level of inclusion). 
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Table 4.3. Expected and analyzed phytase (PHY) and virginiamycin (VIR) levels in 
the diets 

 Phytase (PHY) 

U/kg 

 Virginiamycin (VIR) 

g/ton 

Exp.a Trt.b Expected Analyzedc Expected Analyzed

1 1 - - 0 <2.0

 2 - - 10 9.7

2 1 0 NDd 0 <2.0

 2 0 ND 10 12.45

 3 750 962  NAe NA

 4 750 1410 10 8.95

3 1 0 ND 0 <2.0

 2 0 ND 10 8.1

 3 300 420 0 <2.0

 4 300 286 10 6.7

4 1 0 ND 0 <2.2

 2 0 ND 10 8.5

 3 300 448 0 <2.2

 4 300 407 10 8.8

All Natuphos 
1200 G 
Premix, 

PU/g 

1,200 1,326f - -

                                                           
a Experiment number. 
b Treatment number. 
c Average values (units/kg) of samples analyzed for both collections into each  experiment. 
d ND: Not detected. 
e NA: Not analyzed. 
f Value used to calculate PHY addition in Experiment 4. Phytase contents in premix was 
considered 1200 PU for Experiments 2 and 3. 
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Table 4.4. Total tract apparent digestibility coefficients (%) by the total collection 

method. Experiment 1 

 Treatment   

Response Control VIR SEMb P-value 

DM 88.99 89.93 0.29 0.05 

Energy 88.28 89.12 0.27 0.06 
N 88.69 89.35 0.35 0.21 
P 30.37 38.81 1.11 0.001 
Ca 51.51 57.32 0.96 0.003 
Mg 55.09 58.15 0.75 0.02 
K 85.48 85.38 1.18 0.96 
Na 71.98 73.89 2.48 0.60 
Fe 23.22 23.38 1.26 0.93 
Cu 16.27 17.87 1.01 0.30 
Mn 47.79 46.24 2.14 0.62 
Zn 21.87 25.77 0.70 0.004 
aEach mean represents 10 individually penned pigs. Control: Control diet; VIR: 10 
g virginiamycin/ton diet. 
bSEM: Standard error of the mean. 
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Table 4.5. Nutrient retention as a percent of absorption. Experiment 1 

 Treatmenta   

Response Control VIR SEMb P-value 

Energy 96.98 97.04 0.22 0.86 
N 57.25 59.86 1.86 0.35 
P 91.90 94.26 0.51 0.01 
Ca 66.07 70.24 3.07 0.37 
Mg 68.47 71.60 1.77 0.25 
K 24.29 20.65 7.17 0.73 
Na 38.33 43.00 2.96 0.30 
Fe 98.61 98.64 0.10 0.84 
Cu 94.64 95.44 0.76 0.48 
Mn 99.53 99.48 0.05 0.57 
Zn 97.37 97.83 0.23 0.19 
                                                           
a Each mean represents 10 individually penned pigs. Control: Control diet. VIR: 10 
g virginiamycin/ton diet. 
b SEM: Standard error of the mean. 
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Table 4.6. Phosphorus and nitrogen balance. Experiment 1 

 
                                                           
a Each mean represents 10 individually penned pigs. Control: Control diet. VIR: 10 g 
virginiamycin/ton diet. 
b SEM: Standard error of the mean. 
 
 
 
 
 
 
 
 
 
 

 Treatmenta   
Response Control VIR SEMb P-value 

P   
   Intake, g/d 8.49 8.65 0.09 0.23 

Excreted (feces), g/d 5.90 5.30 0.09 0.001 
Excreted (urine), g/d 0.21 0.19 0.01 0.25 
Total excreted, g/d 6.11 5.49 0.09 0.001 
Absorption, g/d 2.59 3.35 0.12 0.002 
Retention, g/d 2.38 3.16 0.12 0.001 
Digestibility (apparent), % 30.37 38.81 1.11 < 0.001 
Retention (as a % of intake) 27.95 36.61 1.11 0.001 
Retention (as a % of absorption) 91.90 94.26 0.51 0.01 

   
N   
   Intake, g/d 57.5 58.7 0.61 0.22 

Excreted (feces), g/d 6.5 6.2 0.20 0.37 
Excreted (urine), g/d 22.0 21.5 0.91 0.72 
Total excreted, g/d 28.5 27.7 0.80 0.53 
Absorption, g/d 51.0 52.5 0.66 0.16 
Retention, g/d 29.1 31.0 1.08 0.24 
Digestibility (apparent), % 88.69 89.35 0.35 0.21 
Retention (as a % of intake) 50.75 53.45 1.57 0.26 
Retention (as a % of absorption) 57.25 59.86 1.86 0.35 
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Table 4.7. Total tract apparent digestibility coefficients (LS Means, %) by the total 
collection method. Experiment 2 

Treatmenta  

 B VIR PHY 
VIR+ 

PHY 
 P-valuesb 

Response 1 2 3 4 RMSEc VIR PHY VIRxPHY 

DM 91.61 92.14 91.82 92.28 0.74 0.15 0.59 0.91 

Energy 90.85 91.38 90.52 91.04 0.74 0.13 0.32 0.99 

N 89.83 90.81 89.43 90.22 1.17 0.10 0.35 0.85 

P 34.61 39.25 61.91 60.98 3.15 0.19 <.0001 0.06 

Ca 59.49 61.69 71.27 68.74 3.09 0.90 <.0001 0.10 

Mg 39.79 41.41 41.24 39.30 5.03 0.94 0.88 0.42 

K 90.62 90.88 91.34 90.33 2.28 0.70 0.93 0.53 

Na 80.95 83.69 81.41 81.23 2.93 0.32 0.44 0.26 

Fe 18.76 17.71 12.26 11.37 5.74 0.70 0.02 0.97 

Cu 25.17 25.68 22.08 20.44 3.14 0.68 0.01 0.44 

Mn 49.01 41.88 11.01   9.95 10.03 0.36 <.0001 0.49 

Zn 15.11 14.74 14.19 12.38 3.82 0.51 0.33 0.67 
                                                           
a B: Basal diet; VIR: Basal + 10 g virginiamycin/ton; PHY: Basal + 750 PU/kg diet; VIR+PHY: Basal 
+ 10 g virginiamycin/ton + 750 PU/kg diet. 
b VIR: Virginiamycin effect; PHY: Phytase effect; VIRxPHY: Virginiamycin by phytase interaction. 
c RMSE: Root mean square error (number of pigs: 6, 6, 5, and 6 pigs for treatments 1, 2, 3, and 4, 
respectively). 
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Table 4.8. Total tract apparent digestibility coefficients (%) by the total collection 
method. Experiment 3 

 Treatmenta   

 B VIR   

Response 1 2 SEMb P-values 

DM 90.54 90.32 0.31 0.64 
Energy 90.41 89.99 0.34 0.43 
N 89.63 89.43 0.62 0.83 

P 32.45 37.66 1.60 0.08 
Ca 57.93 61.22 1.79 0.26 
                                                           
a Each mean represents 6 individually penned pigs; B: Basal diet; VIR: Basal + 10 
g virginiamycin/ton. 
b SEM: Standard error of the mean. 
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Table 4.9. Total tract apparent digestibility coefficients (%) by the total collection 
method. Experiment 4 

 Treatmenta     

 B VIR PHY 
VIR+ 

PHY 
 P-valuesb 

Response 1 2 3 4 SEMc VIR PHY VIRxPHY 

DM 90.08 89.69 90.01 90.33 0.27 0.91 0.31 0.21 

Energy 89.52 88.96 88.95 89.23 0.30 0.65 0.64 0.19 
N 89.74 89.84 89.52 89.92 0.49 0.61 0.89 0.76 

P 33.40 35.18 47.18 50.31 1.56 0.14 < 0.0001 0.67 

Ca 51.02 52.97 60.91 63.20 1.54 0.19 <0.0001 0.91 
Mg 37.91 38.66 36.66 40.45 1.59 0.18 0.87 0.36 

K 83.66 82.33 83.19 84.78 1.17 0.92 0.42 0.24 

Na 67.00 69.27 68.84 70.67 2.20 0.37 0.48 0.92 
Fe -8.16 -8.18 -10.95 -7.61 2.19 0.46 0.62 0.46 

Cu 0.92 1.15 -3.42 1.66 1.42 0.09 0.20 0.12 

Mn 2.46 0.15 -10.14 -4.89 2.43 0.56 0.004 0.15 
Zn -2.02 -1.77 -10.96 -1.23 2.59 0.08 0.13 0.09 

                                                           
a Each mean represents 6 individually penned pigs. B: Basal diet; VIR: Basal + 10 g 
virginiamycin/ton; PHY: Basal + 300 PU/kg diet; VIR+PHY: Basal + 10 g virginiamycin/ton + 300 
PU/kg diet. 
b VIR: Virginiamycin effect; PHY: Phytase effect; VIRxPHY: Virginiamycin by phytase interaction. 
c SEM: Standard error of the mean. 
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Table 4.10. Nutrient retention as a percent of absorption (LSMeans, %). 

Experiment 2 

 Treatmenta     

 B VIR PHY 
VIR+ 

PHY 
 P-valuesb 

Response 1 2 3 4 RMSEc VIR PHY VIRxPHY 

Energy 95.81 95.95 95.85 96.34 0.61 0.25 0.44 0.52 

N 51.43 49.65 52.77 54.44 4.92 0.98 0.17 0.43 

P 95.17 96.53 97.66 97.96 0.76 0.03 <0.0001 0.13 

Ca 77.82 72.47 81.48 84.17 5.62 0.59 0.01 0.12 

Mg 32.65 30.72 13.78 25.73 14.07 0.42 0.07 0.27 

K 38.68 33.28 32.95 36.32 6.82 0.73 0.65 0.16 

Na 40.10 41.57 41.59 45.91 8.28 0.43 0.42 0.69 

Fe 97.99 98.50 97.31 98.16 1.38 0.27 0.41 0.77 

Cu 97.39 97.45 97.39 97.51 0.44 0.63 0.88 0.85 

Mn 99.72 99.66 98.50 98.18 0.85 0.62 0.003 0.72 

Zn 96.60 96.53 95.04 95.59 1.70 0.75 0.11 0.67 

                                                           
a B: Basal diet; VIR: Basal + 10 g virginiamycin/ton; PHY: Basal + 750 PU/kg diet; VIR+PHY: Basal 
+ 10 g virginiamycin/ton + 750 PU/kg diet. 
b VIR: Virginiamycin effect; PHY: Phytase effect; VIRxPHY: Virginiamycin by phytase interaction. 
c RMSE: Root mean square error (number of pigs: 6, 6, 5, and 6 pigs for treatments 1, 2, 3, and 4, 
respectively). 
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Table 4.11. Nutrient retention as a percent of absorption. Experiment 3 
 

 Treatmenta   

 B VIR   

Response 1 2 SEMb P-values 

Energy 77.74 79.11 3.58 0.80 

N 47.29 50.83 1.62 0.20 

P 98.81 99.1 0.18 0.32 

Ca 50.33 61.48 2.64 0.04 
                                                           
a Each mean represents 6 individually penned pigs. B: Basal diet; VIR: Basal + 10 g 
virginiamycin/ton. 
b Standard error of the mean. 
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Table 4.12. Nutrient retention as a percent of absorption. Experiment 4 

 Treatmenta     

 B VIR PHY 
VIR+ 

PHY 
 P-valuesb 

Response 1 2 3 4 SEMc VIR PHY VIRxPHY 

Energy 97.93 97.95 97.91 97.93 0.14 0.92 0.87 0.99 

N 61.25 61.83 63.63 64.27 2.10 0.78 0.27 0.99 

P 96.54 96.61 97.59 97.71 0.23 0.68 0.0005 0.90 

Ca 55.26 53.13 67.39 68.33 2.60 0.82 0.0002 0.57 

Mg 60.47 59.95 57.70 60.91 2.53 0.60 0.72 0.48 

K 35.57 31.26 33.46 31.53 2.83 0.29 0.75 0.68 

Na 28.48 33.93 31.76 46.43 2.45 0.002 0.007 0.08 

Fe 98.22 98.68 101.10 102.11 2.09 0.73 0.16 0.90 

Cu 138.14 170.11 27.59 61.42 50.91 0.53 0.05 0.99 

Mn 96.43 130.57 97.19 94.53 17.24 0.38 0.33 0.31 

Zn 105.34 95.10 95.97 112.49 9.49 0.75 0.68 0.18 

                                                           
a Each mean represents 6 individually penned pigs. B: Basal diet; VIR: Basal + 10 g 
virginiamycin/ton; PHY: Basal + 300 PU/kg diet; VIR+PHY: Basal + 10 g virginiamycin/ton + 300 
PU/kg diet. 
b VIR: Virginiamycin effect; PHY: Phytase effect; VIRxPHY: Virginiamycin by phytase interaction. 
c SEM: Standard error of the mean. 
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Table 4.13. Phosphorus and nitrogen balance (LS Means). Experiment 2 

 Treatmenta     

 B VIR PHY 
VIR+ 

PHY 
 P-valuesb 

Response 1 2 3 4 RMSEc VIR PHY 
VIRx 

PHY 

P         

   Intake, g/d 7.24 7.57 7.72 7.61 0.35 0.46 0.11 0.17 

Excreted (feces), g/d 4.72 4.63 2.96 2.98 0.29 0.80 <.0001 0.65 

Excreted (urine), g/d 0.12 0.10 0.11 0.10 0.03 0.17 0.36 0.75 

Total excreted, g/d 4.84 4.73 3.07 3.08 0.31 0.71 <.0001 0.65 

Absorption, g/d 2.52 2.94 4.76 4.63 0.31 0.28 <.0001 0.06 

Retention, g/d 2.39 2.84 4.65 4.53 0.30 0.23 <.0001 0.05 

Digestibility (ap.), % 34.61 39.25 61.91 60.98 3.15 0.19 <.0001 0.06 
Retention (as a % of 
intake) 32.94 37.91 60.52 59.74 3.10 0.14 <.0001 0.05 
Retention (as a % of 
absorption) 95.17 96.53 97.66 97.96 0.76 0.03 <.0001 0.13 

         

N         

   Intake, g/d 55.02 57.56 58.66 57.89 2.70 0.46 0.11 0.18 

Excreted (feces), g/d 5.57 5.28 6.14 5.62 0.76 0.24 0.19 0.74 

Excreted (urine), g/d 23.79 26.62 24.63 24.01 3.15 0.43 0.52 0.22 

Total excreted, g/d 29.36 31.89 30.77 29.64 3.27 0.62 0.77 0.21 

Absorption, g/d 49.45 52.29 52.52 52.26 2.37 0.23 0.16 0.15 

Retention, g/d 25.66 25.67 27.88 28.25 2.59 0.87 0.05 0.88 
Digestibility 
(apparent), % 89.83 90.81 89.43 90.22 1.17 0.10 0.35 0.85 
Retention (as a % of 
intake) 46.20 45.09 47.17 49.14 4.38 0.82 0.21 0.43 
Retention (as a % of 
absorption) 51.43 49.65 52.77 54.44 4.92 0.98 0.17 0.43 

                                                           
a B: Basal diet; VIR: Basal + 10 g virginiamycin/ton; PHY: Basal + 750 PU/kg diet; VIR+PHY: Basal 
+ 10 g virginiamycin/ton + 750 PU/kg diet. 
b VIR: Virginiamycin effect; PHY: Phytase effect; VIRxPHY: Virginiamycin by phytase interaction. 
c RMSE: Root mean square error (# pigs: 6, 6, 5, and 6 pigs for treat. 1, 2, 3, and 4, respectively). 
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Table 4.14. Phosphorus and nitrogen balance. Experiment 3 

 

                                                           
a Each mean represents 6 individually penned pigs. B: Basal diet; VIR: Basal + 10 g 
virginiamycin/ton. 
b SEM: Standard error of the mean. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Treatmenta   
Response Control VIR SEMb P-value 

P   

   Intake, g/d 6.03 6.28 0.10 0.15

Excreted (feces), g/d 4.06 3.89 0.08 0.22

Excreted (urine), g/d 0.020 0.019 0.002 0.57

Total excreted, g/d 4.08 3.91 0.08 0.21

Absorption, g/d 1.98 2.39 0.13 0.09

Retention, g/d 1.96 2.37 0.13 0.09

Digestibility (apparent), % 32.45 37.66 1.60 0.08

Retention (as a % of intake) 32.08 37.33 1.61 0.08

Retention (as a % of absorption) 98.81 99.1 0.18 0.32

N   

   Intake, g/d 46.04 47.95 0.75 0.15

Excreted (feces), g/d 4.70 4.99 0.32 0.54

Excreted (urine), g/d 22.00 21.22 0.45 0.29

Total excreted, g/d 26.69 26.21 0.41 0.45

Absorption, g/d 41.35 42.95 0.74 0.20

Retention, g/d 19.34 21.73 0.89 0.13

Digestibility (apparent), % 89.63 89.43 0.62 0.83

Retention (as a % of intake) 42.30 45.44 1.47 0.21

Retention (as a % of absorption) 47.29 50.83 1.62 0.20
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Table 4.15. Phosphorus and nitrogen balance. Experiment 4 

 Treatmenta     

 B VIR PHY VIR+ 

PHY
 P-valuesb 

 Response 1 2 3 4 SEMc VIR PHY VIRx 

PHY 

   P         

   Intake, g/d 6.28 6.28 6.34 6.47 0.21 0.76 0.56 0.75 

Excreted (feces), g/d 4.21 4.09 3.35 3.21 0.20 0.54 0.001 0.97 

Excreted (urine), g/d 0.07 0.07 0.07 0.07 0.005 0.76 0.87 0.94 

Total excreted, g/d 4.28 4.16 3.42 3.28 0.20 0.55 0.001 0.97 

Absorption, g/d 2.07 2.19 2.99 3.26 0.11 0.100 <0.0001 0.49 

Retention, g/d 2.00 2.12 2.92 3.19 0.11 0.10 <0.0001 0.50 
Digestibility 
(apparent), % 33.40 35.18 47.18 50.31 1.56 0.14 <0.0001 0.67 
Retention (as a % of 
intake) 32.26 34.02 46.05 49.17 1.55 0.14 <0.0001 0.67 
Retention (as a % of 
absorption) 96.54 96.61 97.59 97.71 0.23 0.68 0.0005 0.90 

   N         

   Intake, g/d 45.75 45.74 46.17 47.14 1.53 0.76 0.56 0.75 

Excreted (feces), g/d 4.67 4.73 4.80 4.76 0.32 0.98 0.81 0.88 

Excreted (urine), g/d 15.79 15.85 15.16 15.06 1.17 0.99 0.55 0.95 

Total excreted, g/d 20.46 20.58 19.96 19.82 1.28 0.99 0.63 0.92 

Absorption, g/d 41.08 41.01 41.38 42.38 1.32 0.73 0.54 0.69 

Retention, g/d 25.29 25.15 26.22 27.32 1.16 0.68 0.21 0.60 
Digestibility 
(apparent), % 89.74 89.84 89.52 89.92 0.49 0.61 0.89 0.76 
Retention (as a % of 
intake) 55.00 55.58 59.94 57.81 1.88 0.71 0.29 0.94 
Retention (as a % of 
absorption) 61.25 61.83 63.63 64.27 2.10 0.78 0.27 0.99 

                                                                                                                                                                                
 
a Each mean represents 6 individually penned pigs. B: Basal diet; VIR: Basal + 10 g 
virginiamycin/ton; PHY: Basal + 300 PU/kg diet; VIR+PHY: Basal + 10 g virginiamycin/ton + 300 
PU/kg diet. 
b VIR: Virginiamycin effect; PHY: Phytase effect; VIRxPHY: Virginiamycin by phytase interaction. 
c SEM: Standard error of the mean. 
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Table 4.16. Apparent nutrient digestibility LS Means (%) by the total collection 
method and by the index method. Experiment 1 
 

 Treatmenta      

 Total collection  Index method  Total Index  P-valuesb 

Response B VIR  B VIR  SEMc RMSEd  Total Index 

DM 88.99 89.93  87.02 87.29  0.29 0.94  0.05 0.59 

Energy 88.28 89.12  86.31 86.53  0.27 0.90  0.06 0.33 

N 88.69 89.35  87.05 87.39  0.35 1.20  0.21 0.61 

P 30.37 38.81  13.82 19.62  1.11 6.83  0.001 0.15 

Ca 51.51 57.32  39.19 41.65  0.96 5.30  0.003 0.40 

Mg 55.09 58.15  23.05 22.48  0.75 3.10  0.02 0.74 

K 85.48 85.38  78.74 80.10  1.18 3.94  0.96 0.53 

Na 71.98 73.89  74.3 75.73  2.48 6.78  0.60 0.70 

Fe 23.22 23.38  -9.13 -18.22  1.26 3.39  0.93 0.002 

Cu 16.27 17.87  -12.93 -15.77  1.01 7.30  0.30 0.48 

Mn 47.79 46.24  5.19 -5.01  2.14 15.55  0.62 0.25 

Zn 21.87 25.77  -12.58 -13.41  0.70 7.46  0.004 0.84 

                                                           
a B: Basal diet; VIR: Basal + 10 g virginiamycin/ton. 
b Represents the P-value for the dietary treatment comparison within each collection method. 
c SEM: Standard error of the mean. 
d RMSE: Root mean square error (number of pigs: 10 and 8 pigs for the Control and VIR diets, 
respectively). 
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Table 4.17. Apparent nutrient digestibility LS Means (%) by the total collection method and by the index (CCP5) method. 
Experiment 2 
 

 Treatmenta     P-valuesb 

 Total collection  Index method (CCP5)c  Total Index  PHY  VIR 

Response 1 2 3  1 2 3  RMSEd SEMe  Total Index  Total Index 

DM 91.61 92.14 91.82  91.13 91.43 91.60  0.74 0.19 0.59 0.08  0.15 0.34 

Energy 90.85 91.38 90.52  90.89 90.95 90.62  0.074 0.20 0.32 0.29  0.13 0.62 

N 89.83 90.81 89.43  90.16 90.24 89.96  1.17 0.32 0.35 0.29  0.10 0.82 

P 34.61 39.25 61.91  25.90 31.02 58.18  3.15 1.98 <0.0001 <0.0001  0.19 0.70 

Ca 59.49 61.69 71.27  59.99 63.28 71.66  3.09 1.12 <0.0001 <0.0001  0.90 0.88 

Mg 39.79 41.41 41.24  24.59 26.40 33.83  5.03 2.28 0.88 0.01  0.94 0.77 

K 90.62 90.88 91.34  87.60 88.68 88.90  2.28 0.91 0.93 0.64  0.70 0.82 

Na 80.95 83.69 81.41  84.17 86.59 87.46  2.93 1.28 0.44 0.76  0.32 0.72 

Fe 18.76 17.71 12.26  3.93 1.47 1.05  5.74 3.31 0.02 0.29  0.70 0.35 

Cu 25.17 25.68 22.08  -5.72 -8.32 -5.08  3.14 3.39 0.01 0.70  0.68 0.58 

Mn 49.01 41.88 11.01  -1.70 -12.21 -
15.97  10.03 6.35 <0.0001 0.11  0.36 0.29 

Zn 15.11 14.74 14.19  76.31 76.44 77.81  3.82 0.74 0.33 0.15  0.51 0.74 

                                                           
a 1: Basal diet; 2: Basal + 10 g virginiamycin/ton; 3: Basal + 300 PU/kg diet. 
b Represents the P-values for the main effect of PHY and VIR within each collection method. 
c CCP5: Cumulative collection period 5. 
d RMSE: Root mean square error (number of pigs: 6, 6, 5, and 6 pigs for treatments 1, 2, 3, and 4, respectively). 
e SEM: Standard error of the mean. 
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Figure 4.1. Schedule of events. Experiment 1 
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Figure 4.2. Schedule of events. Experiments 2 and 4 
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Figure 4.3. Schedule of events. Experiment 3 
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Figure 4.4. Change in P digestibility to VIR in Experiments 1, 2, 3, and 4 based on the digestibility level of the control diets  
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Figure 4.5. Apparent phosphorus digestibility and retention as a % of absorption 

(Ret. Absorption) by amending Diet 1 with VIR in the experiments 
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Figure 4.6. Changes in P digestibility and retention by PHY and VIR amendments in all the experiments (the diets 
compared from the respective experiments are listed below the experiments on the X-axis) 
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Figure 4.7. Apparent nutrient digestibility by the total collection method and 

index method, and differences between the methods. Experiment 1 
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Figure 4.8. Changes in nutrient digestibility patterns with increasing 

cumulative collection period as measured by the index method. Experiment 
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Figure 4.9. Chromium fecal excretion concentration from cumulative period 

1 through cumulative period 5. Experiment 2 
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Figure 4.10. Apparent nutrient digestibility by the total collection method and the index method (cumulative collection 
period 5). Experiment 2 
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CHAPTER 5 
 

EFFECTS OF PARTIAL DELETION OF DICALCIUM PHOSPHATE IN 
CONJUNCTION WITH SUPPLEMENTATION OF VIRGINIAMYCIN ON 

GROWTH, BONE AND CARCASS TRAITS, PORK QUALITY, AND ILEAL 
BACTERIAL POPULATIONS IN GROWING-FINISHING PIGS – Experiment 5 

 
 
Introduction 
 

Phosphorus is regarded as the most limiting nutrient in the eutrophication 

of water resources (Correll, 1998; 1999). Improperly used, swine manure 

represents a potential environmental risk because of its P content (Sweeten, 

1991). The manure P level depends mostly on the fecal P concentration, which is 

relatively high in pigs fed traditional corn and soybean meal diets. Most of the P 

in these feedstuffs is present in the form of phytate, which is not digested by the 

pig, thus most phytate-P is not available and is excreted via feces. The poor 

digestibility of phytate-P is due to the minimal levels of phytase activity in the 

mucosa of the small intestine of pigs (Pointillart et al., 1987; Nys et al., 1999), 

and the negligible phytase activity from resident bacteria in this organ (Kornegay 

and Yi, 1999). 

It is known that antibiotics fed at low levels generally have a growth 

promoting effect on animals, although their mode of action is not totally 

understood. It has been suggested that antibiotics such as virginiamycin (VIR) 

depress the growth of bacteria that compete with the host for nutrients (e.g., 

lactobacilli and streptococci) while increasing the populations of organisms that 

synthesize nutrients for the host (e. g. coliforms) (Hays et al., 1973; Cromwell et 

al., 1976; Vervaeke et al., 1979). It has also been reported that VIR increases 

absorption and retention of P in young chicks fed corn-soybean meal diets 

moderately deficient in P (Buresh et al., 1985) and in growing pigs fed high fiber 

diets (Ravindran et al., 1984). 
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Experiment 1 results suggested that feeding growing-finishing pigs a P-

deficient corn-SBM diet supplemented with growth-promoting levels of VIR 

improved digestibility and retention of several nutrients, particularly P. The 

absolute increase in P digestibility with VIR was 8.4% (from 30.4 to 38.8%). This 

improvement is equivalent to the P contained in 3 lb of dicalcium phosphate 

(DICAL)/ton of diet (i.e. 0.15% DICAL). It is of interest to determine whether the 

observed increase in P digestibility is related to an increase in phytate utilizing 

bacteria populations in the small intestine of pigs fed the antibiotic. It is also of 

interest to determine if the increased P absorption and retention corresponds 

with an expected increment in bone mineralization. 

 

 

Objectives 
 

The main objective of this experiment was to evaluate the effects of 

removing 0.15% DICAL (0.028% total P) from a common corn-SBM diet 

supplemented with VIR (11 mg/kg) during the growing-finishing stage of pigs. 

The response variables evaluated were growth, bone breaking strength (BS), 

bone ash, carcass traits, and ileal bacterial populations. 

 
 
Experimental Procedures 
 
Animals and housing conditions 

A total of 32 pigs were used (24 gilts and 8 barrows). The pigs were 

crossbreds of (Yorkshire x Landrace) x Hampshire. The average initial weight 

was 29.1 ± 0.50 SEM  kg. Pigs of similar weight were selected from a larger 

group and then half-siblings (i.e., a common sire) were allocated to treatments. 

Same-sex pigs were penned by pairs, resulting in three replications of females 

and one of males. 
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The experiment was conducted in a temperature-controlled room (B-6 of 

the Garrigus Building) at the University of Kentucky campus. A total of 16 pens 

(1.22 x 2.44 m) were used. Each pen was equipped with a single-hole stainless 

steel self-feeder and two nipple waterers for ad libitum access to feed and water. 

The diets were fed in meal form. Temperature in the rooms was kept in the 

thermo-neutral range at all times. Pens were cleaned on a daily basis using 

water under pressure. The duration of the experiment was 16 weeks. 

 
Dietary treatments 

Four experimental diets were fed. Diets were prepared at the University of 

Kentucky feed mill. Diets were separately mixed for each stage of growth 

(growing, developing, and finishing). Diets were based on corn and SBM with or 

without VIR supplementation (11 ppm), and with or without a partial deletion of 

DICAL (0.15%). The DICAL product used was Dynafos® (The Mosaic Co., 

Plymouth, MN), guaranteed to contain 18.5% P and 20 to 24% Ca. 

Diet 1 was a common corn-SBM diet with enough DICAL added to meet 

all NRC (1998) nutrient requirement estimates, including P. Diet 2 consisted of 

Diet 1 amended with 11 ppm VIR (Stafac® 20, Phibro Animal Health Co., 

Fairfield, NJ). Diets 3 and 4 met NRC (1998) nutrient requirement estimates, 

except for P. Both diets were made slightly P-deficient by deleting 0.15% DICAL. 

Diet 4 was amended with VIR (11 ppm). The treatments were, thus, arranged as 

a 2 x 2 factorial in level of DICAL and VIR. 

A similar ratio of dietary Ca:available P (Ca:aP) among diets was intended 

for each stage of growth (0.60/0.23, 0.50/0.19, and 0.45/0.15 for the growing, 

developing, and finishing stages, respectively). Tables 5.1 and 5.2 present the 

composition of the diets used and the nutrients provided. 

 

Sampling, laboratory analysis, and calculations 

Pigs and feed left in the feeders were weighed every two weeks to 

calculate growth performance (gain, feed intake and feed conversion ratio). At  
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the end of the experiment, pigs were humanely killed by exsanguination following 

electrical stunning. 

Ileal samples were taken immediately after slaughtering each pig to 

assess the bacterial profile and digesta pH. Samples consisted of a 20 cm 

section of the distal ileum and its contents. Sampling involved tying up both ends 

of the ileal section with a sterilized cotton thread, cutting the ileum portion, and 

transporting it over ice to the laboratory for pH determination and bacteria 

culturing. The quantification of phytate-utilizing bacteria populations, as colony 

forming units per gram of ileal contents (CFU/g), was conducted according to the 

procedure described by Bae et al. (1999). 

The day before slaughtering, pig weight was taken for growth performance 

and dressing percentage calculations. Hot carcass weight was taken at 

slaughter. Dressing percentage was calculated using the formula: 

 

Dressing, % = (hot carcass wt / live wt) x 100 

 

At slaughter, front feet were cut at the knee level. The feet were kept 

frozen in labeled plastic bags for later metacarpal bone breaking strength and 

bone ash analysis. Cold carcass weight was taken after three days of 

refrigeration. The carcass weight loss (shrink) during refrigeration was calculated 

as: 

 

Shrink, % = 100 – (cold carcass wt / hot carcass wt) x 100 

 

After measuring cold carcass weight, back feet were cut at the hock joint 

for determination of metatarsal bone breaking strength and ash. At this time, a 

2.52 cm-thick chop was cut from the right side of each carcass at the 10th rib, 

and back fat depth was measured on the chops using a ruler. Loin eye area 

(LEA) was measured on the chops with a plastic grid ruler. Meat color scores 

were taken on the chops using a Chroma-Meter CR-310 colorimeter (Konica-

Minolta, Tokyo, Japan). The colorimeter was calibrated against a white plate  
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before taking the readings. Chops were then weighed, individually placed into 

plastic bags, and hung from a cord under refrigeration for drip loss evaluation by 

weight difference. Six days later, color scores were measured again on the same 

chops to measure color change. The chops were weighed again to determine 

drip loss as: 

 

Drip loss, % = 100 – (chop wt at day 6 / chop wt at day 1) x 100 

 

Collecting the third and fourth metacarpal and metatarsal bones for 

breaking strength assessment required thawing and then autoclaving the feet 

(AMSCO, American Sterilizer, Erie, Pennsylvania) at 120º C for 3 minutes (using 

fast-exhaust at the end of the process). Before autoclaving, feet skin was 

longitudinally cut to allow faster heat penetration, preventing the risk of over-

cooking and undesirable bone softening. Once autoclaved, soft tissue was 

removed and bones were collected and stored frozen in plastic bags. To assess 

breaking strength, bones were thawed and broken using an Instron machine 

(Model TM 1123, Instron Corp., Canton, MA). In the machine, each bone was 

horizontally held over two supports separated 3.2 cm. from each other. Once 

broken, bones were kept frozen for later ash determination. 

Prior to ash assessment, bones were thawed, cleaned of remaining soft 

tissues, and defatted. Defatting included cutting bones in half to remove the bone 

marrow by scooping. Bones were oven-dried overnight at 105ºC to extract 

additional fat , then wrapped in pairs with cheese cloth, labeled with a metal tag 

(poultry wing band), and placed in a metal container with petroleum ether to 

extract the remaining fat. Bones remained submerged in ether for at least three 

days, changing ether daily until the liquid remained clear of fat for 24 hours.  

Once defatted, bones were placed overnight in an exhaust hood to evaporate the 

ether, oven-dried overnight at 105ºC, taken out of the cheese cloth, weighed into 

pre-weighed porcelain crucibles and ashed overnight at 600ºC in a muffle 

furnace. Ash content was calculated as a percentage of the dry, defatted bones: 
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Ash, % = (ash wt / defatted bone wt) x 100 

 

Experimental design and statistical analysis 

The treatment structure consisted of a 2 x 2 factorial arrangement of the 

four treatments with four replicate pens per treatment (pen was the experimental 

unit). The analysis of variance was done using the General Linear Model (GLM) 

procedure of the Statistical Analysis System (SAS, 1998). The statistical model 

included the effects of diet and replication. 
 
 
Results and Discussion 
 

Samples of the experimental diets were analyzed for VIR concentration by 

Phibro Co. The results are presented in Table 5.3. As expected, the VIR 

concentration of the diets not amended with the antibiotic (Diets 1 and 3) was 

below the detection limit of the assay (< 2.2 ppm). Concentrations in Diets 2 and 

4 were similar (7.0 and 9.0 ppm, respectively), although somewhat lower than 

expected (11.0 ppm), particularly for Diet 2. 

 
Growth performance 

Although all the animals completed the experiment, one pig lost weight 

during the finishing period. At slaughter, its lungs revealed pneumonia. The data 

from this pig were not included in the analysis, and the feed consumption of its 

pen was adjusted according to the method of Lindemann and Kim (2005). Also, 

as pigs in one pen exhibited repetitive feed wasting behavior during the 

experiment, feed consumption and conversion ratio calculations did not include 

that pen. 

 Growth was analyzed for the overall experiment and also for the growing, 

developing and finishing periods separately. No main effects of treatment on 

growth were found (Table 5.4). The partial deletion of DICAL did not have any  
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effect on gain, feed intake, or feed conversion (F/G) for the overall growing-

finishing period or for any of the separate growth periods. 

Similarly, no main effects of VIR on gain, feed intake or F/G were 

observed. No interactions were observed either between DICAL deletion and VIR 

supplementation (P > 0.20). Nevertheless, the comparison between Diets 1 and 

2 showed that VIR had a tendency to improve F/G (2.92 vs. 2.83, respectively, P 

< 0.08). Although nonsignificant, there was also a numerical difference for daily 

gain between Diets 1 and 2, equivalent to 35 g/d (0.751 vs. 0.786). Cromwell 

(1976) reported that pigs fed VIR for a similar period (16 weeks) gained 50 g/d 

more than the control group (784 vs. 734 g/d, P < 0.01) and more efficiently (2.86 

vs. 3.00, P < 0.05). It should be noted that Cromwell (1976) supplemented the 

pigs with 40 g VIR/ton VIR, while in Diet 2 of this experiment the target 

concentration was 10 g VIR/ton (11 ppm) and the assayed dietary concentration 

was 7 ppm. 

Although the literature commonly reports experimental results where 

antibiotics have positively affected growth, some researchers have reported no 

effects of antibiotic supplementation.  Hvidsten and Homb (1961) reported the 

results of 13 experiments using two levels (12 and 100 mg/kg feed) of 

aureomycin and terramycin fed to growing-finishing pigs in two different farms. 

On one farm, only the high level of antibiotic resulted in significant increase in 

gain, and a nearly significant increase in feed efficiency, while the low level of 

antibiotic did not. Researchers hypothesized that differences in hygienic 

conditions could explain the results. A similar result of no growth response was 

reported by Van Lunen (2003). 

It is recognized that antibiotic benefits are more difficult to observe in pigs 

confined in clean, not overcrowded, facilities, due to the low bacterial load in the 

environment (Cunha, 1977; Hays, 1978). It is also known that antibiotics have a 

greater effect on younger pigs (i.e., nursery) than on growing-finishing pigs. The 

improvement in average daily gain generally observed with the addition of 

antibiotics to the diet for the whole growing-finishing stage is about 4.2% at 

research stations (Cromwell, 2001), which are considered cleaner than  
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commercial facilities. For finishing pigs, the improvement generally observed is 

reduced to 0 to 3% (Baynes and Varley, 2001). 

 Regarding the health condition, it has been reported that ‘runt’ or ‘bad 

doer’ pigs respond much better than healthy pigs to antibiotic amendments 

(Sainsbury, 1975). Also, Speer et al. (1950) reported that healthy, well nourished 

pigs did not respond to antibiotic supplementation when they were housed in 

clean and disinfected facilities that had not housed other pigs before. Braude et 

al. (1953) agreed, reporting that slow-growing pigs fed antibiotics responded 

better than fast-growing pigs over a series of trials. 

In summary, considering that the growth response due to antibiotics 

appears to be attributed to their action against subclinical disease, which in turn 

depends heavily on the quality of the environment (Cunha, 1977), the minimal 

effect of VIR on growth in this experiment could be explained by a combination of 

good environmental confinement conditions, along with the good health of the 

pigs used in the trial. 

With regard to the P content of the diet, the deletion of 0.15% DICAL/ton 

of diet was not enough to negatively and significantly affect growth, even though 

the deletion covered the whole growing-finishing period. These results agree with 

O’Quinn et al. (1997) who did not find differences in the performance of pigs 

(from 25 to 118 kg) fed a diet with 25% total P deleted. Other researchers have 

also reported no differences in growth when more radical P deletions were 

conducted for shorter periods of time.  In some of those studies, either two thirds 

or 100% of the inorganic P was deleted for the last part of the finishing period 

without negatively affecting growth (Mavromichalis, 1999; McGlone, 2000; Shaw 

et al., 2002). A longer deletion of all the inorganic P was reported by Lindemann 

et al. (1995), who did not find adverse effects on growth after removing 100% of 

the DICAL for the entire finishing stage (50 to 104 kg BW). 

 
Bone traits 

The partial deletion of DICAL negatively affected bone traits (Table 5.4). It 

decreased both bone ash (P < 0.01) and breaking strength (P < 0.05) in  
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metacarpals and metatarsals. On the other hand, VIR addition did not have an 

effect on bone traits (P > 0.10). Although breaking strength was numerically 

improved by the addition of VIR to both normal and P-deleted diets, the 

diminished bone strength associated with the partial DICAL removal was not fully 

restored with VIR supplementation. No DICAL deletion by VIR supplementation 

interactions on bone characteristics were observed. 

Classic studies have demonstrated that bone responses are associated 

with dietary levels of Ca and P, between certain limits of intake of these minerals 

Cromwell et al., 1970; Cromwell et al., 1972). In this experiment, bone 

characteristics showed consistent responses to DICAL deletion. Lindemann et al. 

(1995) reported reduced bone strength in finishing pigs when 100% of the DICAL 

was removed from the diet for the entire developing-finishing stage (50 to 104 kg 

BW). Nevertheless, they did not observe adverse effects on bone strength when 

the total DICAL deletion started at 63 kg BW. It would appear that the length of 

the deletion period could have a greater impact on bone demineralization than 

the amount of P deleted, especially for a moderate deletion such as the one 

tested in this experiment. On the other hand, VIR amendment did not show any 

effect on bone traits, either as main effect or for the DICAL-depleted diet (P > 

0.10). 

 
Carcass and meat traits 

Among the carcass and meat characteristics evaluated, neither VIR 

addition nor DICAL deletion had any independent or combined effects on LEA, 

back fat depth, dressing percent, drip loss percent or color scores at days 1 and 

6 (Table 5.5). These results agree with those of Hvidsten and Homb (1961) who 

did not find any differences in the quality of pork from pigs fed different 

antibiotics. 

The lack of response to the DICAL deletion agrees with results reported 

by O’Quinn et al. (1997), who did not find differences in dressing percentage, 

backfat depth, longissimus muscle area or color scores for pigs fed a 25% total  
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P-deleted diet for the complete growing-finishing period. These results also agree 

with those of Lindemann et al. (1995), who reported no differences in back fat 

depth after removing all the DICAL for the finishing stage, although these 

researchers also reported a trend for reduced LEA as the length of the DICAL-

removal period increased. 

A tendency for decreased carcass water holding capacity was observed in 

the DICAL-deleted diet with added VIR, evidenced by an increase in carcass 

shrink percent from 3.52 to 4.05% when comparing Diets 3 and 4, respectively (P 

=  0.08). Nevertheless, the accuracy of the carcass shrink measurement can be 

questioned because the front limbs, cut and removed at slaughter, were not 

weighed and added back to the corresponding carcass cold weight three days 

later. As a result, carcass shrink was overestimated for all the pigs by the amount 

corresponding to the cut limbs. 

 
Ileal bacterial populations 

Phytate-utilizing bacteria were the intestinal organisms of greatest interest. 

A positive numerical increment in the number of these bacteria was observed in 

both the normal and P-deleted diets when VIR was added, although the 

differences were not statistically significant (P = 0.13) (Table 5.6). This numerical 

difference represents increments of 12.4% and 17.2% over the controls. No 

literature reports were found on the effects of antibiotics on phytate utilizing 

bacteria. 

The addition of VIR also tended to affect lactobacilli populations (P = 

0.11). Virginiamycin strongly decreased lactobacilli in the normal-P diet (P < 

0.01), but it did not affect this bacterial population in the P-deleted diet (P = 0.41). 

The observed results on changes in lactobacilli numbers in the normal P 

diet amended with VIR agree with the results of Collier et al. (2003) who reported 

a decrease in lactobacilli counts in pigs fed a rotating sequence of antibiotics, 

including VIR. Other researchers have found decreasing numbers of lactobacilli 

in the feces and incubated ileal contents of pigs fed different antibiotics 

(Andersen, 1954; Vervaeke et al., 1979). As lactobacilli are abundant populations  
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of acid-producing bacteria, an increase in ileal pH would also be expected to 

coincide with a lactobacilli population decrease. Nevertheless, no difference in 

pH was observed in this experiment. Collier et al. (2003) did not provide data on 

pH changes. On the other hand, Vervaeke et al. (1979) reported a decrease in 

lactobacilli numbers, along with a corresponding increase in pH for ileal contents 

of pigs fed VIR. 

Due to known differences in populations of dominant bacterial species in 

the different segments of the small intestine (Fewins, 1957), and taking into 

account that the major site of Ca and P absorption is the jejunum (Crenshaw, 

2001), it might be important for future research to also assess microbial 

populations and pH differences at the jejunum level. 

 

 

Implications 
 

The deletion of 0.15% DICAL had negative effects on bone traits but 

the magnitude of the deficiency was not enough to affect growth. The VIR 

amendment was not able to restore the bone de-mineralization caused by the 

partial DICAL deletion, although numerical improvements were observed. These 

numerical improvements in bone traits and phytate utilizing organisms merit 

additional research under the environmental conditions usually seen in 

commercial farms. 
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Table 5.1. Composition of experimental diets (%, as fed basis). Experiment 5 

 
Growing (20 to 50 kg) Developing (50 to 80 kg) Finishing (80 to 120 kg) 

Diet: 1 2 3 4 1 2 3 4 1 2 3 4 

VIR:a - + - + - + - + - + - + 

DICAL deletion: - - + + - - + + - - + + 
Ingredientb             

Corn  72.26 72.26 72.26 72.26 79.06 79.06 79.06 79.06 84.22 84.22 84.22 84.22 

SBM (48%CP)c 25.50 25.50 25.50 25.50 19.00 19.00 19.00 19.00 14.00 14.00 14.00 14.00 

Limestone  0.76 0.76 0.76 0.76 0.66 0.66 0.66 0.66 0.69 0.69 0.69 0.69 

Salt  0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 

UK vitamin mixd 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100
UK trace min. 
mixe 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075
Dicalcium 
phosphate 0.930 0.930 0.780 0.780 0.735 0.735 0.585 0.585 0.540 0.540 0.390 0.390

Stafac® 20  - 0.025 - 0.025 - 0.025 - 0.025 - 0.025 - 0.025

Corn starch  0.025 - 0.175 0.150 0.025 - 0.175 0.150 0.025 - 0.175 0.150

Total: 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
                                                           
a VIR: Virginiamycin, 11 mg/kg. 
b Percent ingredients on as-fed basis. 
c SBM: Soybean meal. 
d Supplied per kg of diet: 6,608 IU vitamin A, 881 IU vitamin D3, 22.03 IU vitamin E, 19.76 mg vitamin K, 22.03 mg pantothenic acid, 44.05 mg 
niacin, 4.00 mg thiamin, 8.81 mg riboflavin, 6.00 mg vitamin B6, 22.03 mcg vitamin B12, 1.10 mg folic acid,  and 0.22 mg biotin. 
e Supplied per kg of diet: 135 mg Fe (iron sulfate monohydrate), 135 mg Zn (zinc oxide), 45 mg Mn (manganous oxide), 13 mg Cu (copper sulfate 
pentahydrate), 1.5 mg I (calcium iodate), 0.3 mg Se (sodium selenite), and 0.23 mg Co (cobalt sulfate monohydrate). 
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Table 5.2. Calculated chemical composition of the experimental diets. Experiment 5 
 

Growing (20 to 50 kg) Developing (50 to 80 kg) Finishing (80 to 120 kg) 

Diet: 1 2 3 4 1 2 3 4 1 2 3 4 

VIR:a - + - + - + - + - + - + 

DICAL deletion: - - + + - - + + - - + + 

Item             

CP, % 18.11 18.11 18.11 18.11 15.59 15.59 15.59 15.59 13.64 13.64 13.64 13.64 

Lysine, % 0.96 0.96 0.96 0.96 0.78 0.78 0.78 0.78 0.64 0.64 0.64 0.64 

ME, kcal/kg  3334 3333 3340 3339 3347 3346 3353 3352 3355 3354 3360 3360

EE, % 3.58 3.58 3.58 3.58 3.65 3.65 3.65 3.65 3.70 3.70 3.70 3.70

CF, % 3.56 3.56 3.56 3.56 3.31 3.31 3.31 3.31 3.11 3.11 3.11 3.11

tCa, %b 0.61 0.61 0.57 0.57 0.50 0.50 0.47 0.47 0.45 0.45 0.41 0.41

aCa, %c 0.50 0.50 0.46 0.46 0.41 0.41 0.38 0.38 0.38 0.38 0.34 0.34

tP, %d 0.55 0.55 0.52 0.52 0.49 0.49 0.46 0.46 0.43 0.43 0.40 0.40

aP, %e 0.23 0.23 0.21 0.21 0.19 0.19 0.16 0.16 0.15 0.15 0.12 0.12

tCa:tP  1.10 1.10 1.09 1.09 1.03 1.03 1.01 1.01 1.04 1.04 1.03 1.03

aCa:aP  2.13 2.13 2.23 2.23 2.17 2.17 2.30 2.30 2.51 2.51 2.75 2.75
                                                           
a VIR: Virginiamycin, 11 mg/kg. 
b tCa: Total Ca. 
c aCa: Available Ca, calculated assuming 35.84% total Ca in limestone, assumed 100% available (NRC, 1998). 
d tP: Total P. 
e aP: Available P, calculated assuming 18.50% tP, and 17.58% aP in DICAL; 0.69%tP, and 0.159 aP in SBM; 0.28% tP, and 0.039% aP in corn 
(NRC, 1998). 
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Table 5.3. Virginiamycin (VIR) levels found by analysis of diets. Experiment 5 

 VIR, ppm 

Treatment  Expected Analyzed 

1  0 NDa 

2  11 7.0 

3  0 ND 

4  11 9.0 

                                                           
a ND: Not detected (the limit of detection was 2.2 ppm). 
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Table 5.4. Overall growth performance and bone responses. Experiment 5  
 P-Values Diet:a 

VIR:b 
DICAL 

deletion:

1 
- 
- 

2 
+ 
- 

3 
- 
+ 

4 
+ 
+ SEMc VIR DICALd VIR x 

DICAL 

Response 
 
Growth performance 
 BW (initial), 
kge 28.86 29.03 28.75 29.43 0.50 0.42 0.78 0.62 

 BW (final), kg 112.39 116.53 117.50 111.59 4.00 0.83 0.98 0.24 
 ADG, kgf 0.751 0.786 0.797 0.738 0.03 0.75 0.97 0.20 
 ADFI, kgg 2.195 2.227 2.29 2.142 0.04 0.50 0.95 0.30 
 F/Gh 2.92 2.83 2.88 2.88 0.02 0.34 0.90 0.37 
 
Bone response 
 Metacarpal  
BS, kgi 148.8 151.3 138.8 139.8 4.41 0.71 0.04 0.86 

 Metatarsal BS, 
kg  127.7 139.0 118.9 122.7 6.31 0.26 0.08 0.57 

 Mean BS, kg  138.2 145.1 128.8 131.2 5.07 0.39 0.05 0.67 
 Metacarpal 
ash, % 59.5 59.7 59.2 59.1 0.12 0.54 0.002 0.17 

 Metatarsal 
ash, %  57.5 57.2 56.5 56.4 0.29 0.54 0.01 0.84 

 Mean bone     
ash, % 58.5 58.5 57.8 57.7 0.19 0.78 0.005 0.77 

                                                           
a Means for Diets 1, 2, and 3 represent 4 pens - averaging both pigs per pen (except all trait 
means for Diet 3, which disregarded a pneumonic pig in pen 13). Means for Diet 4 related to 
ADFI and F/G represent the average of 3 pens (pen 14 wasted feed, so it was disregarded for 
those two traits). 
b VIR: Virginiamycin, 11 mg/kg. 
c SEM: Standard error of the mean. 
d DICAL: Dicalcium phosphate. 
e BW: Body weight. 
f ADG: Average daily gain. 
g ADFI: Average daily feed intake. 
h F/G: Feed/gain. 
i BS: Bone breaking strength. 
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Table 5.5. Carcass and meat traits. Experiment 5 
 P-Values Diet:a 

VIR:b 
DICAL deletion: 

1 
- 
- 

2 
+ 
- 

3 
- 
+ 

4 
+ 
+ SEMc VIR DICALd VIR x 

DICAL 
Response 
 
Carcass traits 
    LEA, cm2e 44.03 46.37 44.68 43.55 1.41 0.68 0.46 0.25 
    Back fat, cm 2.21 2.08 2.16 2.11 0.21 0.68 0.97 0.85 
    Dressing, % 74.47 74.75 73.67 74.65 0.46 0.20 0.35 0.46 
    Shrink, % 3.57 3.48 3.52 4.05 0.19 0.28 0.21 0.14 

 
Meat traits         
    Drip loss, % 6.08 6.69 6.84 7.86 0.58 0.19 0.13 0.73 
    Color scores         

Day 1         
Lf 57.83 58.21 59.57 64.78 2.67 0.32 0.15 0.39 
ag 16.95 17.31 15.72 15.09 1.18 0.92 0.18 0.69 
bh 7.87 8.07 7.76 7.9 0.54 0.76 0.79 0.95 

Day 6         
L 59.61 59.9 61.03 61.48 0.85 0.67 0.11 0.93 
a 14.38 13.73 13.91 13.86 0.88 0.70 0.85 0.74 
b 10.38 10.49 10.64 10.54 0.19 0.93 0.40 0.63 

                                                           
a Means represent 4 pens - averaging both pigs per pen (except all trait means for Diet 3, which 
disregarded a pneumonic pig in pen 13). 
b VIR: Virginiamycin, 11 mg/kg. 
c SEM: Standard error of the mean. 
d DICAL: Dicalcium phosphate. 
e LEA: Loin eye area. 
f L: Lightness (whiter: higher number; darker: lower number). 
g a: Red to green color (red: higher number; green: lower number). 
h b: Yellow to blue color (yellow: higher number; blue: lower number). 
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Table 5.6. Ileal bacterial counts (Log10 CFU/ga) and pH. Experiment 5 
 P-Values Diet:b 

VIR:c 
DICAL deletion:d 

1 
- 
- 

2 
+ 
- 

3 
- 
+ 

4 
+ 
+ SEMe VIR DICAL VIR x 

DICAL 
Response 
Phytate utilizing 7.35 8.26 7.03 8.24 0.62 0.13 0.79 0.82 
Lactobacilli 9.58 7.84 8.25 8.69 0.37 0.11 0.53 0.02 
Total coliforms 8.11 8.34 7.93 8.34 0.60 0.60 0.88 0.88 
Total anaerobes 10.00 8.61 8.95 9.38 0.68 0.50 0.84 0.21 
E. coli 7.63 8.04 7.62 7.78 0.60 0.65 0.83 0.84 
Bifido 9.70 8.90 9.02 9.24 0.54 0.61 0.72 0.37 
pH   6.9  6.9   6.8   6.8 0.11 0.89 0.32 0.58 

                                                           
a CFU/g: Colony forming units per gram of ileal contents. 
b Means represent 4 pens - averaging both pigs per pen (except all trait means for Diet 3, which 
disregarded a pneumonic pig). 
c VIR: Virginiamycin, 11 mg/kg. 
d DICAL: Dicalcium phosphate. 
e SEM: Standard error of the mean. 
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CHAPTER 6 
 

PHOSPHORUS UTILIZATION IN GROWING PIGS FED A PHOSPHORUS 
DEFICIENT DIET SUPPLEMENTED WITH A RICE BRAN PRODUCT AND 

AMENDED WITH PHYTASE – Experiment 6 
 
 

Introduction 
 

Rice bran is a non-traditional, widely available feed ingredient regarded as 

a source of energy. It has been reported that up to 30% inclusion of rice bran in 

diets of growing-finishing pigs does not depress growth performance and 

increases profit margin (Lekule et al., 2001). The energy content of rice bran is 

equivalent to about 85% of the net energy in corn (2,040 vs. 2,395 kcal/kg, 

respectively -NRC, 1998). Rice bran also has high levels of P. Among the 

commonly used feedstuffs for swine listed by the NRC (1998) rice bran has the 

highest level of total P (1.61%), equivalent to almost six times the amount 

present in corn (0.28%). Nevertheless, 75% of the P in rice bran is bound as 

phytic acid, which makes that P unavailable and excreted in pig feces. For this 

reason, this feedstuff has a greater P polluting potential than does corn. 

Phosphorus can potentially become an environmental pollutant where 

inadequate manure fertilization practices are used (Sweeten, 1991; DeLaune et 

al. 2000; Hollis and Curtis, 2001; Strak, 2003; Cheeke, 2004). Swine diets can be 

supplemented with exogenous phytases in order to improve phytate P utilization, 

thus reducing P excretion. Most studies using phytase have evaluated the effects 

of the enzyme on traditional feed ingredients such as corn and SBM. However, 

there is little research on its effects on nutrient utilization in pigs fed alternative 

feedstuffs. Concerns regarding pollution of water ecosystems with P from animal 

manure justify a determination of the nutrient digestibilities in rice bran and of 

studying the effects of phytase on P utilization in pigs fed rice bran. 
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Objectives  
 

This experiment was intended to establish the digestibility of P and other 

nutrients in a commercial rice bran product, and to evaluate the effects of 

increasing levels of inclusion of the product in a P-deficient corn-soybean meal 

basal diet on nutrient utilization in growing pigs. 

Another objective was to evaluate the effects of phytase on nutrient 

utilization with rice bran at the highest inclusion level in the diet. 

 
 
Experimental Procedures 
 
Animals and housing conditions 

A total of 24 barrows (87.5 ± 2.51kg) were used in the experiment. The 

pigs were crossbreds of (Yorkshire x Landrace) x Hampshire. Pigs were 

individually confined in metabolism crates as described in Chapter 3. Two groups 

of 12 pigs each were used. Half-sibling pigs (i.e., a common sire) of similar 

weight within a replicate were allocated to treatments and randomly assigned to 

crates. 

 
Dietary treatments 

Six dietary treatments were used. A basal (B) corn-soybean meal diet not 

supplemented with any inorganic source of P was developed. This diet was 

similar to the basal used in the previous digestibility studies. To prepare the 

experimental diets, 0, 7.5, 15, and 30% of the basal was replaced with Ricex-

1000™ (RX; Ricex Company, El Dorado Hills, CA) obtaining Diets 1, 2, 3, and 4, 

respectively. Then, fractions of Diets 1 (0% RX) and 4 (30% RX) were blended 

with 750 phytase units (PU)/kg diet from Natuphos® 1200G (BASF Corp., Mount 

Olive, NJ) to obtain Diets 5 and 6 , respectively. 

Treatments 1, 2, 3, and 4 were used to test the effects of increasing levels 

of RX additions on digestibility, retention and excretion of nutrients, and also to  
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calculate the specific RX nutrient digestibility by regression. Treatments 1, 4, 5, 

and 6 were used to test the effects of phytase (PHY) on the diets containing 0 

and 30% RX, having Diets 1 and 4 as controls. 

Ricex-1000™ consists of a mix of stable whole rice bran and germ. The 

manufacturer claims it includes energy in the form of vegetable fat (5,500 

kcal/kg) plus soluble and insoluble fiber. The product is guaranteed to have one 

year of shelf life, based on its high content of natural vitamin E. 

The diets were prepared at the University of Kentucky feed mill. A single 

batch of basal diet was mixed in a 4000-lb capacity vertical mixer. Each 

experimental diet was prepared as a single batch in a 2000-lb capacity horizontal 

paddle mixer by blending RX and/or PHY with different proportions of the basal 

diet. Once the pigs were weighed to start the experiment, diets were weighed as 

individual meals into labeled plastic bags, and kept separated by treatment. 

Samples of the experimental diets were analyzed for phytase concentration by a 

BASF Corporation laboratory. Tables 6.1, 6.2 and 6.3 present the composition of 

the ingredients and diets. 

 

Adaptation and collection procedures 

Nutrient digestibility was assessed by the total collection method. During 

the trial pigs were provided feed at 3% of body weight, in a gruel form, divided in 

two daily meals. The procedures followed are described in detail in Chapter 3. 

 
Sample preparation 

To obtain representative samples of urine for nutrient analysis, the daily 

samples were thawed at room temperature and proportionally composited by 

weight for each pig according to the daily excretion recorded. Composited 

samples were kept frozen at all times until analysis. 

All frozen feces were dried in a forced-air oven (Tru-Temp, Hotpack Corp., 

Philadelphia, PA) at 55oC for one week, then air equilibrated, weighed, and 

ground using a Wiley Laboratory Mill (Model 3, Arthur H. Thomas Co., 

Philadelphia, PA) to pass a 1 mm screen. Ground feces were then thoroughly  
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mixed in a single bag per pig. From this bag, a sample was obtained, re-ground 

using a high speed grinder (Braun, Type 4041. Model KSM 2(4). Braun Inc., 

Woburn, MA) and kept in a cold room at 4 to 8 °C until chemical analysis. 

 

Laboratory analysis 

Feces, experimental diets and feedstuffs (corn, SBM, and RX) were 

analyzed for DM, energy, fat, N, NDF, ADF, ADL, P, Ca, Mg, K, Mn, Zn, Fe, Cu, 

and Na. Urine was analyzed for the concentration of energy, N, P, Ca, Mg, K, 

Mn, Zn, Fe, Cu, and Na. Samples were analyzed at least in duplicate, and 

analysis was repeated when abnormal variation was observed. 

Dry matter in feed and feces was assessed according to an adaptation of 

the AOAC (1995) method involving overnight drying (105ºC) the samples in a 

convection oven (Precision Scientific Co., Chicago, IL) and then calculating 

moisture contents as the difference between weighings. 

Gross energy content was assessed by bomb calorimetry (Parr 1261 

Isoperibol Bomb Calorimeter, Parr Instruments Company, Moline, IL). Benzoic 

acid pellets with known combustion heat were ignited at the beginning and end of 

each set of samples to verify calorimeter measurements. Feed and feces 

samples were assessed in duplicate by a procedure adapted from AOAC (1995). 

To measure urine energy, samples were oven dried for two days at 55ºC in 

polyethylene bags (Jeb Plastics Inc., Wilmington, DE) prior to combustion. The 

known heat of combustion per gram of bag material was subtracted from the total 

heat observed to obtain the sample energy content (Appendix 3 describes the 

procedures used to determine gross energy). 

Nitrogen was measured using Dumas methodology in an automatic N 

analyzer (Model FP-2000, LECO Corp., Saint Joseph, MI). Ignition of blanks and 

EDTA samples with known N contents was done daily in order to calibrate the 

equipment and to check for drif in the readings. 

Phosphorus in feed and feces was assessed by a gravimetric method 

(modification of method 968.08 from AOAC, 1990) in which samples were 

weighed, ashed, acid digested, diluted to 250 mL, and then 50 mL of the liquid  
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was reacted with Quimociac solution, filtered, and the precipitate obtained was 

weighed to calculate P concentration (Appendix 4 describes the P determination 

method used and Quimociac preparation procedure). 

Phosphorus concentration in urine was assessed as inorganic P, initially 

by a colorimetric procedure using a commercial kit (Procedure No. 360-UVP. 

Sigma Diagnostics, St. Louis, MO) and then by a modified microscale method for 

soluble P developed at the University of Kentucky by D’Angelo et al. (2001), and 

described in Appendix 13. 

All other minerals were assessed by Flame Atomic Absorption 

Spectrophotometry (AA) (Thermoelemental SOLAAR M5, Thermo Electron 

Corp., Verona, WI) according to a modification of the procedure from AOAC 

(1995b) (method 927.02), described in Appendix 5. 

Fiber fractions (NDF, ADF, and ADL) were sequentially analyzed using 

gravimetric procedures for detergent fiber described by Harmon (2003) 

(Appendices 7, 8, 9, and 10). A fiber digester (Ankom 200 Fiber Analyzer, Ankom 

Techonology Corp., Fairport, NY) was used to separate the NDF and ADF 

fractions from defatted samples. Defatting of the samples prior to fiber analysis 

was conducted to avoid clogging of the filtration device (polymer filter bags) 

during the detergent procedures. 

Total fat was assessed by a gravimetric method using a Soxtec Tekator 

fat extractor (Soxtec System HT 1043 Extraction Unit, Tecator Inc., Herndon, 

VA). Defatting involved weighing the sample on a filter paper (Catalog # 09-

795E, Fisher Scientific, Pittsburgh, PA), placing it in a cotton thimble and 

immersing the thimble in re-circulating hot petroleum ether contained in the pre-

weighed metal cup. 

Apparent total tract digestibility and retention were calculated using the 

formulae in Chapter 3. 
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Experimental design and statistical analysis  

Two sets of treatments were separately analyzed according to the 

objectives. Each set consisted of four diets. 

The first set of treatments consisted of treatments 1, 2, 3, and 4, which 

had increasing levels of RX (0, 7.5, 15, and 30%, respectively) and was used to 

indirectly calculate the digestibility of nutrients in the RX product. For each 

nutrient, the estimation of digestibility in RX was done by regressing the percent 

of digestibility in these experimental diets on the percent of the nutrient provided 

by RX to each diet. The formula used to calculate the percent of the nutrient 

provided by RX was: 

 

Nutrient provided by RX to each experimental diet, % = 

 

100 (%Nut. BD  x  %BD)     x 100 

(%Nut. BD  x  %BD) + (%Nut. RX  x  %RX) 

 

%Nut. BD: percent nutrient in the basal diet. 

%BD: percent basal diet included in the experimental diet. 

%Nut. RX: percent nutrient in RX. 

%RX: percent RX included in the experimental diet. 

 

 

The composition of the basal diet was calculated as the average of Diets 1 

and 5. The nutrient contents in the basal diet as well as in RX were analyzed 

values. The numbers obtained with this formula were plotted against the 

coefficients of digestibility observed in each diet, in order to obtain regression 

equations to calculate digestibility in a hypothetical diet consisting of 100% RX 

product. 

The digestibility responses observed in Diets 1, 2, 3, and 4, and the 

corresponding fraction of nutrients provided by RX in those diets, were also 

tested for linearity (linear and quadratic trends) using the GLM regression  
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procedure of SAS. As the fractions of nutrients provided were not in a regular 

scale across the diets (Table 6.5), procedure IML of SAS was conducted to 

generate the set of contrast coefficients to be used in the regression of each 

nutrient. 

The second set of treatments was: 1) Basal; 4) Basal + 30% RX; 5) Basal 

+ PHY; and 6) Basal + 30% RX + PHY. This group was analyzed as a 2 x 2 

factorial for the main effects of RX (0 or 30%), PHY (0 or 750 PU/kg diet), and 

the interaction between RX and PHY. The analysis of variance was obtained 

using the GLM procedure of SAS (SAS, 1998). 

 

 

Results and Discussion 
 
 

All the animals successfully completed the experiment. All pigs gained 

weight during collections, suggesting that all of them were in positive nutrient 

balance during the experiment (Appendix 11 presents the average starting and 

finishing weights of treatment groups during the adaptation and collection 

periods). Pigs were in good health and condition during the experiment. No 

intestinal disorders such as diarrhea or constipation were observed either during 

the adaptation or collection periods. Some pigs exhibited minor bruises on rear 

feet during the confinement, but no abnormal behavior, feed consumption or 

defecation patterns were observed. Growth performance during collections is not 

reported as the reliability of differences in growth resulting from such short 

periods is questionable due to the possible effect of differences in gut fill at 

weighing times. 

According to the lab assay, PHY concentrations in diets not amended with 

the enzyme (Diets 1, 2, 3, and 4) was below the detection limit of the assay. The 

PHY concentration of Diet 5 was about 17% lower than that of Diet 6, and both 

were not far from the 750 PU/kg target (Table 6.4). 
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Increasing levels of inclusion of Ricex-1000™ in the diet 

The increasing levels of several nutrients in Diets 1 through 4 (i.e., gross 

energy, fat, fiber, and P) were the result of the increasing levels of added RX. As 

expected, Diets 1 and 5 had a very similar composition. Similarly, Diets 4 and 6 

were very close in composition (Table 6.3). 

Table 6.5 presents the calculated nutrient contribution of RX to Diets 1, 2, 

3, and 4. According to the analysis, RX contains 21.0% fat, 2.46% N (15.4% CP), 

19.2% NDF, and 1.75% P. The NRC (1998) estimates that rice bran contains 

13.0% fat,  2.13% N (13.3% CP),  23.7% NDF,  and 1.61% P. Comparing the RX 

product with the NRC (1998) estimate, the major difference is that the RX 

product contains about 82% more fat, while the levels of fiber, N and P are 

somewhat similar. The primary reason for the difference is that RX contains 

some of the rice germ. From Table 6.5, it was calculated that at 30% inclusion of 

RX (Diet 4), this product contributes about 78% of the total fat, 66% of the total P, 

and about half of the fiber in the diet. 

Table 6.6 presents the digestibility coefficients obtained for Diets 1, 2, 3, 

and 4. The digestibility of several dietary components, including DM, energy, N, 

fiber, Ca, and P tended to decrease as the proportion of RX in the diet increased 

from 0 to 30%. The degree of depresion in digestibility was much more marked 

for DM, energy, N, fiber, and Ca (P < 0.001). Phosphorus digestibility also tended 

to decrease linearly with increasing amounts of RX (P < 0.05). The quadratic 

trend for this nutrient was non sigificant (P = 0.80). 

The results agreed with those of Campabadal et al. (1976) who reported 

an almost linear reduction in DM and CP digestibility when increasing levels of 

rice bran (0, 20, 25, 30, 35, 40, and 45%) were included in a corn-SBM diet for 

finishing pigs. 

These results are in general agreement with most research, which 

demonstrated an inverse relationship between the level of dietary crude fiber and 

digestibility coefficients for various nutrients in growing pigs (Schulze et al., 1994;  
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Lenis et al., 1996; Phuc et al., 2000; Le Goff and Noblet, 2001; Souffrant, 2001;  

Wenk, 2001). Ranhan et al. (1971) reported that growing pigs fed increasing 

levels of crude fiber (4.0, 6.8, 8,6, and 11.0%) exhibited an indirect relationship 

between DM digestibility and the crude fiber content of the diet. The DM 

digestibility started to be negatively influenced at a dietary level of 6.8% crude 

fiber. Other researchers have reported similar findings when the dietary level of 

cellulose was increased. Farrel and Johnson (1970) reported a decrease in DM 

and energy digestibility in growing pigs fed diets containing 8 and 26% cellulose. 

Gargallo and Zimmerman (1981) also reported decreased DM, N, and cellulose 

digestibility with increasing levels of cellulose in the diet. Kornegay (1978) 

substituted a basal corn-oats-alfalfa meal-SBM diet with 15 and 30% soybean 

hulls for growing pigs, finding that as the hulls were substituted for the basal diet, 

digestibility coefficients for DM, energy, CP, and fat were decreased, while ADF 

digestibility increased. Lindemann et al. (1986) also reported decreased DM, N, 

energy, ash, and fiber digestibility with graded levels of peanut hulls (0, 7.5, 15, 

and 30%) included in the diet of finishing pigs. 

Several possible modes of action have been proposed to explain the 

decreased digestibility caused by fiber. Some researchers have explained it as a 

physical entrapment of the nutrient in the bulk of the bolus, with consequent 

inaccessibility to enzyme action (Bailey, 1974 ; Bursch et al., 1986). It has also 

been reported that high fiber diets tend to increase the rate of passage through 

the alimentary canal, decreasing the opportunity for enzymatic digestion and 

absorption (Gargallo and Zimmerman, 1981; Wenk, 2001). Nevertheless, the 

increased rate of passage is not always observed (Lindemann et al., 1986). 

Apparently, fiber can reduce the digestibility of DM and energy because of its 

resistance to digestion by the endogenous enzymes secreted into the small 

intestine (Bach-Knudsen et al., 1991), or probably because of the increased 

viscosity of the intestinal contents produced by certain fiber components, such as 

gums (Rainbird et al., 1984). There is conflicting evidence in the literature 

regarding the modes of action of fiber in the digestive tract. Bach-Knudsen  
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(2001) explains some of the disagreements between experiments as due to the  

several different fractions that constitute dietary fiber, the different proportions of 

these fractions present in the feed ingredients used, and the different 

physiological effects of these fractions. 

In regards to the magnitude of the impact of fiber on energy digestibility; in 

a series of digestibility studies using a variety of fiber sources, including rice bran 

substituted at 25% in the diet, Le Goff and Noblet (2001) found that the energy 

digestibility in growing pigs is reduced by one percentage point for each one 

percent additional NDF in the diet. In this experiment, although depressed, 

energy digestibility was not affected by RX addition to the extent estimated by Le 

Goff and Noblet (2001). 

Contrary to the trend in energy digestibility, fat digestibility increased 

linearly (P < 0.01) with increasing levels of RX. These results agree with 

Campabadal et al. (1976), who reported increased digestibility of EE when 

increasing levels of rice bran were added to the diet. The effect of increased fat 

digestibility probably reflects the increasing level of fat intake. In a recent review 

of  experiments with horses, where various feeds were tested, Kronfeld et al. 

(2004) reported an exponential increase in apparent digestibility of fat as fat 

content of the diet increased. They also reported a linear (P < 0.001) relationship 

between fat absorbed (g/d), and fat intake (g/d) for 23 different feeds. 

In this experiment, the lignin content of Diets 1 through 4 increased (Table 

6.3), reflecting the RX substitution levels. The apparent digestibility coefficients of 

lignin decreased as the lignin contents increased, but the values were relatively 

high for all the diets, ranging from 68.5 to 37.3%. Although lignin is generally 

considered an indigestible material (Kotb and Luckey, 1972; Schneider and Flatt, 

1975), other researchers have observed relatively high digestibility coefficients 

for lignin. Kornegay (1978) reported 44.1 to 51.2% digestibility coefficients for 

lignin in his diets containing 15 and 30% SBM hulls, respectively. Lindemann et 

al. (1986) reported 42.2, 32.4, 30.7, and 21.3% digestibility coefficients for lignin 

in a basal corn-SBM diet substituted with 0, 7.5, 15, and 30% peanut hulls for 

finishing pigs. 
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Table 6.7 presents retention data (as a % of absorption) for all nutrients 

assayed. Calcium and Mg were the only nutrients that exhibited a significant 

trend (P < 0.01), with increased retention as the proportion of RX increased in the 

diet. The increase in Ca retention was likely the response of the pig to the 

observed decrease in apparent digestibility of the mineral (Table 6.6). The intake 

of this mineral decreased linearly with increasing levels of RX (P < 0.01), due to 

the fact that the whole basal diet, which included the limestone supplementation, 

was substituted with RX. As a result, the level of Ca inclusion was reduced from 

0.60% in Diet 1 to 0.43% in Diet 4. Total Ca intake per day dropped linearly (P < 

0.01) from 16.5 g in Diet 1 to 13.0 g in Diet 4. Nevertheless, this 21% difference 

in Ca intake is less than half the difference observed in the amount of Ca 

absorbed, which dropped 45%, in a linear manner (P < 0.01), from 7.7 to 4.2 g/d 

for Diets 1 and 4, respectively. It can be assumed that the decrease in absolute 

absorption of Ca was not only due to a decrease in absolute intake, but also to a 

concomitant decrease in Ca digestibility, which dropped linearly (P < 0.01) from 

46.8 to 32.7% for Diets 1 and 4, respectively. The decrease in Ca intake and 

absorption apparently led to an increase in retention, as evidenced in urinary Ca 

excretion, which decreased from 2.8 to 0.6 g/d for Diets 1 and 4, respectively. 

Complete balance data are provided for N and P, the two nutrient 

elements of primary interest from an environmental stand point (Table 6.8). As 

expected, total P intake/day increased as RX increased. Because most of this P 

was phytate P, and no phytase was supplemented to these diets, a simultaneous 

linear increase in fecal excretion was also observed. Fecal P excretion was 

118% higher for Diet 4 than for Diet 1 (P < 0.01), raising questions on its potential 

environmental impact. Phosphorus retention (% of intake) decreased linearly (P < 

0.5) with greater RX, reflecting the same trend observed in the digestibility for 

this nutrient (P < 0.05). The retention (% of intake) and digestibility data were 

closely related across these diets, which is related to the tight control of urinary P 

excretion by pigs eating P-deficient diets. This is further supported by the 

observed lack of increase in urinary P (P = 0.97) with increasing RX 

supplementation. It is interesting to note that P digestibility is not always  
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depressed with fiber supplementation. Kornegay et al. (1995) reported a linear 

increase in apparent P digestibility by weanling pigs fed increasing levels (0, 8, or 

16%) of peanut hulls added to a corn-SBM diet. 

The N intake decreased as RX supplementation increased (P < 0.05), 

reflecting the lower CP content of RX, in comparison to SBM. The amount of 

fecal N linearly increased (P < 0.01), but the urinary N did not change (P = 0.36). 

Fecal N was 24% higher for Diet 4 than for Diet 1, which raises concerns 

regarding greater environmental N problems with high levels of RX in pig diets. 

The higher fecal N excretion observed agrees with the findings of Lenis et al. 

(1996), who reported an increase in N excretion in the feces of growing pigs fed 

semi-purified diets with 15% added NDF. The urinary excretion of N reportedly 

decreased with the NDF-added diet, which was not observed in this experiment. 

 
Nutrient digestibility in Ricex-1000™ 

Table 6.6 also presents the estimated digestibility coefficients for nutrients 

contained in RX. The coefficients used in the regression analysis, as well as the 

variables used to calculate these coefficients are presented in Appendix 12. 

Compared to the basal diet, RX was estimated to have lower digestibility values 

for most nutrients, including P. Digestibility of Ca and Na in RX were estimated to 

be negative. Several methods of excluding portions of the data were attempted 

(in the event that these results were dependent on a single treatment or 

individual pig), but both values were negative for all combinations of data from 

the four diets used to calculate digestibility in the RX product. A possible reason 

for the observed negative values for these two nutrients could be the low 

amounts provided by RX in these experimental diets (Table 6.5), which is in 

agreement with observations by Schneider and Flatt (1975). Additionally, the 

Ca:P ratio in the diets may have contributed to the low Ca digestibility observed. 

It is possible that osmotic imbalances in the gut, derived from the increased fiber 

intake, may explain the negative digestibility observed for Na (Lindemann et al., 

1986). 
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Digestible and metabolizable energy (DE, and ME, respectively) in the RX 

product were estimated by regressing the energy contents (DE or ME, in kcal/kg) 

on the percent of RX substituted in each of the first four diets (Diets 1, 2, 3, and 

4). The linear regression estimates were 3967 and 3869  kcal/kg of RX for DE 

and ME, respectively (on ‘as fed’ basis). 

 

Phytase amendment of the diet containing 30% Ricex-1000™  

Table 6.9 presents the digestibility coefficients for the lowest and highest 

levels of RX substitution (0 and 30%), amended with 0 and 750 PU, and the 

corresponding main effects of RX and PHY, and their interaction effect (if any). 

Phytase amendment increased the digestibility of P, Ca, and fat at both low and 

high levels of RX substitution. The PHY main effect was strongly significant (P < 

0.01) for P and fat digestibility, and moderately significant (P < 0.05) for Ca 

digestibility. The relative increase in P digestibility due to the PHY amendment of 

the 0% RX diet was 87% (from 25.5 to 47.4), and was 81% (from 20.4 to 37.0) in 

the 30% RX diet. It is possible that the comparatively lower improvement 

observed in the 30% RX diet was due to an insufficient level of PHY for cleaving 

all the phytic P present in this diet.  Nevertheless, on a grams/day basis, P 

absorption in the 30% RX diet amended with PHY almost doubled (4.73 to 8.04 

g/d) the increase observed in the 0% RX diet amended with the enzyme (2.49 to 

4.12 g/d) (Table 6.11). 

The magnitude of increase in Ca digestibility due to PHY amendment was 

4.1% for the 0% RX diet, and 10.9% for the 30% RX diet. The magnitude of 

increase in fat digestibility due to PHY amendment was 6.3% for the 0% RX diet, 

and 3.3% for the 30% RX diet. 

Several researchers have reported increased P digestibility in common 

diets amended with PHY (Jongbloed et al., 1992; Cromwell et al., 1993; Lei et al., 

1993; Mroz et al., 1994; Cromwell et al., 1995a; Yi et al., 1996; Han et al., 1997), 

but the literature is scarce on research using rice bran and the enzyme. 

No research reports were found regarding total tract apparent digestibility 

of fat when PHY was supplemented to pigs. Akyurek et al. (2005) reported that  
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broiler chicks fed corn-soybean meal diet supplemented with PHY had improved 

ileal crude fat digestibility. Ravindran et al. (2001) reported that mineral-phytate 

complexes may contribute to the formation of insoluble metallic soaps in the 

gastrointestinal tract, which is a constraint on lipid utilization. By preventing the 

formation of mineral-phytate complexes, PHY may reduce the degree of soap 

formation in the gut, enhancing fat utilization (Ravindran et al., 2001). 

In this experiment, PHY did not have any effect on the apparent total tract 

digestibility of N (P = 0.44) or on N retention as a percent of absorption (P = 

0.40), which agrees several reports (Yi et al., 1996; Han et al., 1997). Ketaren et 

al. (1993) reported that PHY addition to diets of growing pigs did not have any 

effect on the apparent digestibility of protein, altough they observed an increase 

in N retained as a percent of intake. On the other hand, other researchers have 

reported a positive effect of PHY on N digestibility (Mroz et al., 1994; Kemme et 

al., 1999; Zhang and Kornegay, 1999) and retention (Ketaren et al., 1993; Mroz 

et al., 1994; Li et al. 1998) in pigs. 

In regard to P retention, PHY did not increase retention as a percent of 

absorption (P = 0.17), although there was a numerical difference between Diets 1 

and 4, favoring PHY. The enzyme amendment improved absolute retention of P, 

and decreased P excretion in both diets (P < 0.01) (Table 6.11). 

 

 

Implications 
 

According to these results, the estimated digestibility coefficients for most 

RX-derived nutrients in growing pigs were lower than those for a basal low-P 

corn-SBM diet. Compared to the basal diet, digestibility of the RX product was 

very low for DM, energy, CP, and P (relative differences of: 80, 88, 83, and 59%, 

respectively). Digestibility was particularly low for Ca (negative coefficient). For 

this reason, the inclusion of increasing levels of RX in a basal corn-SBM diet for 

growing pigs would be expected to linearly decrease the digestibility of nutrients. 

The exception is the digestibility of the fat fraction, which is expected to increase  
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with increasing levels of the product in the diet. The amendment of a corn-SBM 

low P diet containing 30% RX with 750 PU/kg will increase P digestibility. Further 

research is required to define the optimum level of PHY amendment to such diets 

in order to release the maximum amount of phytic P. 

 

 

 

Table 6.1. Basal diet composition. Experiment 6 

Ingredient % 
 

Corn, ground 76.925  

Soybean meal (48% CP) 21.00  

UK vitamin mixa 0.100  

UK trace mineral mixb 0.075  

Limestone 1.400  

Phosphate source 0.0  

Salt 0.500  

Total: 100.000  

 NRC (1998) requirement 
estimates 

Calculated composition 50 to 80 kg 80 to 120 kg

Crude protein (%) 16.36 15.5 13.2 

Lysine (%) 0.83 0.75 0.60 

ME (kcal/kg)c 3341 3265 3265 

Calcium (%) 0.60 0.50 0.45 

Phosphorus, total (%) 0.36 0.45 0.40 

Phosphorus, available (%) 0.06 0.19 0.15 

                                                           
a Supplied per kg of diet: 6,608 IU vitamin A, 881 IU vitamin D3, 22.03 IU vitamin E, 
19.76 mg vitamin K, 22.03 mg pantothenic acid, 44.05 mg niacin, 4.00 mg thiamin, 8.81 
mg riboflavin, 6.00 mg vitamin B6, 22.03 mcg vitamin B12, 1.10 mg folic acid,  and 0.22 
mg biotin. 
b Supplied per kg of diet: 135 mg Fe (iron sulfate monohydrate), 135 mg Zn (zinc oxide), 
45 mg Mn (manganous oxide), 13 mg Cu (copper sulfate pentahydrate), 1.5 mg I 
(calcium iodate), 0.3 mg Se (sodium selenite), and 0.23 mg Co (cobalt sulfate 
monohydrate). 
c Metabolizable energy. 
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Table 6.2. Calculated composition of the experimental dietsa. Experiment 6 

Trt: 1 2 3 4 5 6
Rice bran, %: 0 7.5 15 30 0 30

PHY, U/kg:b - - - - 750 750
Item   
CP, %c 16.36 16.22 16.08 15.80 16.35 15.80
Lysine, % 0.83 0.81 0.79 0.75 0.83 0.75
ME, kcal/kgd 3340 3303 3266 3193 3338 3191
EE, %e 3.63 4.89 6.16 8.69 3.63 8.69
CF, %f 3.39 5.31 7.23 11.07 3.38 11.07
tCa, %g 0.60 0.56 0.51 0.43 0.60 0.43
aCa, %h 0.50 0.46 0.43 0.35 0.50 0.35
tP, %i 0.36 0.45 0.54 0.73 0.36 0.73
aP, %j 0.06 0.09 0.11 0.17 0.06 0.17
tCa : tP 1.66 1.23 0.94 0.59 1.66 0.59
aCa : aP 7.90 5.22 3.73 2.13 7.91 2.13
Na, % 0.22 0.20 0.19 0.15 0.22 0.15
Cl, % 0.34 0.32 0.30 0.26 0.34 0.26
K, % 0.70 0.77 0.83 0.96 0.70 0.96
Mg,  % 0.18 0.22 0.27 0.35 0.18 0.35
Fe, mg/kg 194 185 177 159 194 159
Cu, mg/kg 19.5 18.3 17.0 14.5 19.5 14.5
Mn, mg/kg 57.9 72.8 87.7 117.4 57.9 117.4
Zn, mg/kg 160 149 137 114 160 114
                                                           
a Based on rice bran calculated composition (NRC, 1998). 
b PHY: Phytase from Natuphos® 1200G. 
c CP: Crude protein. 
d ME: Metabolizable energy. 
e EE: Ether extract. 
f CF: Crude fiber. 
g tCa: Total Ca. 
h aCa: Available Ca. 
i tP: Total P. 
j aP: Available P. 
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Table 6.3. Analyzed nutrient composition of the experimental diets, the basal diet, and the feedstuffs used. Experiment 6 
 Experimental diets Basala Feedstuffs 

Trt: 1 2 3 4 5 6 diet Corn SBM RX 
RX, %:b 0 7.5 15 30 0 30 - - - - 

PHY:c - - - - + + - - - - 
Item           
DM, %d 87.9 88.3 88.9 90.2 87.8 90.3 87.9 86.5 89.2 95.0 
Gross energy, 
kcal/kg 3915 3988 4082 4237 3926 4269 3920 3916 4162 5051 
Fat, % 2.5 4.0 5.4 8.3 2.7 8.7 2.6 3.2 0.7 21.0 
N, % 2.9 2.8 2.7 2.7 2.9 2.8 2.9 1.5 8.4 2.5 
NDF, %e 9.2 9.9 10.7 12.6 8.6 13.0 8.9 12.4 15.4 19.2 
ADF, %f 2.7 3.2 3.8 4.6 2.6 4.7 2.7 3.1 6.1 8.3 
ADL, %g 0.3 0.4 0.5 0.8 0.3 0.8 0.3 1.3 4.7 5.0 
P, % 0.38 0.48 0.56 0.80 0.38 0.83 0.38 0.29 0.69 1.75 
Ca, % 0.64 0.62 0.57 0.52 0.64 0.53 0.64 0.01 1.09 0.05 
Mg, % 0.14 0.18 0.22 0.28 0.13 0.29 0.14 0.09 1.09 0.51 
K, % 0.67 0.73 0.78 0.91 0.68 0.94 0.67 0.32 2.10 1.53 
Na, % 0.16 0.16 0.14 0.11 0.15 0.11 0.15 0.001 0.002 0.011 
Fe, ppm 200 200 180 200 160 200 181 20 100 220 
Cu, ppm 12 14 13 10 14 13 13 0.4 12.6 5.7 
Mn, ppm 50 70 70 80 50 90 52 3 37 133 
Zn, ppm 130 130 120 120 140 140 100 20 40 60 

                                                           
a Calculated as the average between Diets 1 and 5. 
b RX: Ricex-1000™. 
c PHY: Calculated phytase level supplemented was 750 PU/kg diet. 
d DM: Dry matter. 
e NDF: Neutral detergent fiber. 
f ADF: Acid detergent fiber. 
g ADL: Acid detergent lignin. 
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Table 6.4. Analyzed phytase levels. Experiment 6 

 PU/kga 

Treatment  Expected Analyzed 

1  0 NDb 

2  0 ND 

3  0 ND 

4  0 ND 

5  750 614 

6  750 738 

                                                           
a PU/kg: Phytase, units/kg of diet. 
b ND: Not detected. 
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Table 6.5. Nutrients (%) contributed by RX to each experimental dieta. 
Experiment 6 

Trt:b 1 2 3 4 
RX, %:c 0 7.5 15 30 

Item     

DMd  0 8.1 16.0 31.7 
Energy 0 9.5 18.5 35.6 

Fat 0 39.5 58.7 77.6 
N 0 6.5 13.1 26.8 
NDFe 0 14.9 27.5 48.0 

ADFf 0 20.1 35.4 57.1 
ADLg 0 61.2 77.5 89.3 
P 0 27.3 44.9 66.5 

Ca 0 0.7 1.4 3.3 
Mg 0 23.5 40.1 61.9 
K 0 15.6 28.6 49.3 
Na 0 0.6 1.2 2.9 

Fe 0 9.0 17.8 34.4 
Cu 0 3.4 7.2 15.8 
Mn 0 17.2 31.1 52.3 
Zn 0 3.2 6.6 14.7 
                                                           
a Analyzed values used to calculate regression coefficients by PROC IML of SAS. 
b Each mean represents 4 individually penned pigs. 
c RX: Ricex-1000™. 
d DM: Dry matter. 
e NDF: Neutral detergent fiber. 
f ADF: Acid detergent fiber. 
g ADL: Acid detergent lignin. 
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Table 6.6. Apparent (%) digestibility of nutrients at increasing levels of RX and 

apparent digestibility in the RX product. Experiment 6 

Trt:a 1 2 3 4     P-value 

RX, %:b 0 7.5 15 30 

 

RX Dig.c SEMd (Linear) 
Response         
DMe 90.12 89.23 87.28 84.58  72.25 0.29 < 0.0001 
Energy 89.81 89.33 87.73 86.01  78.79 0.28 < 0.0001 
Fat 78.51 78.83 81.07 83.72  84.12 0.93 0.003 
N 89.72 89.28 87.28 85.81  74.38 0.37 < 0.0001 
NDFf 68.16 67.69 64.00 56.92  45.30 1.90 0.0014 
ADFg 72.81 70.22 65.24 52.32  39.35 1.62 < 0.0001 
ADLh 68.45 56.81 38.47 37.29  35.07 3.67 < 0.0001 
P 25.49 27.05 16.24 20.43  14.94 2.3 0.028 
Ca 46.78 48.17 38.93 32.73  -420 1.80 < 0.0001 
Mg 29.26 33.41 29.56 26.80  26.24 1.94 0.26 
K 89.47 85.30 85.37 82.90  78.96 0.78 0.0003 
Na 78.22 73.61 57.92 51.51  -850 3.54 0.0003 
Fe 20.80 35.83 22.17 24.02  21.83 1.73 0.52 
Cu 3.98 20.90 11.95 12.50  32.08 1.45 0.12 
Mn 4.60 24.74 13.09 17.96  27.99 1.87 0.006 
Zn 3.98 9.06 0.27 17.62  86.08 1.36 < 0.0001 
                                                           
a Each mean represents 4 individually penned pigs. 
b Ricex-1000™. 
c RX Dig: Regressed digestibility of Ricex-1000™. 
d SEM: Standard error of the mean. 
e DM: Dry matter. 
f NDF: Neutral detergent fiber. 
g ADF: Acid detergent fiber. 
h ADL: Acid detergent lignin. 
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Table 6.7. Retention of nutrients (as a % of absorption) at increasing levels of RX 

inclusion. Experiment 6 

Trt:a 1 2 3 4  P-value 
RX, %:b 0 7.5 15 30 SEMc (Linear) 

Response   
Energy 96.22 96.57 96.67 96.67 0.15 0.07 
N 66.46 62.60 66.33 64.70 2.78 0.90 
P 96.00 99.29 97.87 97.78 1.21 0.41 
Ca 63.94 65.82 67.26 84.95 2.78 < 0.001 
Mg 50.53 67.98 72.79 81.42 4.28 < 0.001 
K 69.72 57.51 51.69 60.48 8.76 0.47 
Na 45.80 48.55 47.48 46.32 3.86 0.94 
Fe 98.98 99.49 99.27 99.40 0.12 0.09 
Cu 78.12 98.20 96.80 96.73 6.95 0.18 
Mn 102.97 99.59 99.42 99.41 3.45 0.51 
Zn 89.62 95.23 101.35 98.07 5.28 0.31 
                                                           
a Each mean represents 4 individually penned pigs. 
b RX: Ricex-1000™. 
c SEM: Standard error of the mean. 
 



 

 172

Table 6.8. Phosphorus and nitrogen balance at increasing levels of RX inclusion. 
Experiment 6 

Trt:a 1 2 3 4  P-value

RX, %:b 0 7.5 15 30 SEMc (Linear)

Response      

  P            

   Intake, g/d 9.84 11.77 14.38 20.18 0.31 < 0.01

Excreted (feces), g/d 7.36 8.57 12.05 16.05 0.19 < 0.01

Excreted (urine), g/d 0.09 0.02 0.05 0.09 0.03 0.97

Absorption, g/d 2.49 3.20 2.33 4.12 0.30 < 0.05

Retention, g/d 2.39 3.18 2.28 4.03 0.30 < 0.05

Digestibility (apparent), % 25.49 27.05 16.24 20.43 2.10 < 0.05
Retention (as a % of 
intake) 24.53 26.87 15.88 19.97 2.14 < 0.05
Retention (as a % of 
absorption) 96.00 99.29 97.87 97.78 1.21 0.41

   

   N      

   Intake, g/d 74.47 68.72 70.03 67.22 1.68 < 0.05

Excreted (feces), g/d 7.69 7.39 8.91 9.54 0.30 < 0.01

Excreted (urine), g/d 22.53 23.04 20.63 20.36 2.02 0.36

Absorption, g/d 66.78 61.33 61.12 57.68 1.52 < 0.01

Retention, g/d 44.25 38.29 40.49 37.32 1.61 < 0.05

Digestibility (apparent), % 89.72 89.28 87.28 85.81 0.37 < 0.01
Retention (as a % of 
intake) 59.66 55.90 57.88 55.50 2.35 0.34
Retention (as a % of 
absorption) 66.46 62.60 66.33 64.70 2.78 0.90

                                                           
a Each mean represents 4 individually penned pigs. 
b RX: Ricex-1000™. 
c SEM: Standard error of the mean. 
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Table 6.9. Apparent (%) digestibility of nutrients when supplementing phytase 

(PHY) to low and high RX diets. Experiment 6 

 Experimental diets     

Trt:a 1 4 5 6     

RX, %:b 0 30 0 30  P-value 

PHY:c - - + + SEMd PHY RX PHYxRX 

Response         

DMe 90.12 84.58 90.70 85.00 0.36 0.20 < 0.01 0.82 

Energy 89.81 86.01 90.00 85.76 0.33 0.92 < 0.01 0.53 

Fat 78.51 83.72 84.83 87.00 1.14 < 0.01 0.01 0.22 

N 89.72 85.81 90.12 86.01 0.38 0.44 < 0.01 0.80 

NDFf 68.16 56.92 70.29 56.74 2.35 0.69 < 0.01 0.64 

ADFg 72.81 52.32 74.95 51.82 2.27 0.73 < 0.01 0.57 

ADLh 68.45 37.29 69.26 26.59 4.06 0.25 < 0.01 0.19 

P 25.49 20.43 47.44 37.03 2.12 < 0.01 < 0.01 0.24 

Ca 46.78 32.73 50.86 43.65 3.07 < 0.05 < 0.01 0.29 

Mg 29.26 26.80 33.25 24.47 1.93 0.68 < 0.05 0.14 

K 89.47 82.90 91.79 82.48 0.78 0.26 < 0.01 0.11 

Na 78.22 51.51 79.96 55.43 2.27 0.24 < 0.01 0.64 

Fe 20.80 24.02 24.09 27.58 2.00 0.13 0.13 0.95 

Cu 3.98 12.50 5.28 10.35 1.69 0.81 < 0.01 0.32 

Mn 4.60 17.96 0.79 12.13 2.16 0.05 < 0.01 0.65 

Zn 3.98 17.62 1.87 17.70 3.08 0.75 < 0.01 0.73 
                                                           
a Each mean represents 4 individually penned pigs. 
b RX: Ricex-1000™. 
c PHY: Calculated phytase (PHY) level supplemented was 750 PU/kg diet. 
d SEM: Standard error of the mean. 
e DM: Dry matter. 
f NDF: Neutral detergent fiber.  
g ADF: Acid detergent fiber. 
h ADL: Acid detergent lignin. 
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Table 6.10. Retention of nutrients (as a % of absorption) when supplementing 

phytase (PHY) to low and high RX diets. Experiment 6 

 Experimental diets     

Trt:a 1 4 5 6     

RX, %:b 0 30 0 30  P-values 

PHY:c - - + + SEMd PHY RX PHYxRX

Response         

Energy 96.22 96.67 96.57 96.78 0.16 0.18 0.07 0.46 

N 66.46 64.70 68.19 69.03 3.45 0.40 0.89 0.71 

P 96.00 97.78 98.74 90.64 1.46 0.17 0.06 < 0.01 

Ca 63.94 84.95 78.41 89.18 2.78 
< 

0.01 < 0.01 0.10 

Mg 50.53 81.42 57.47 80.11 4.79 0.57 < 0.01 0.41 

K 69.72 60.48 64.37 56.61 6.90 0.52 0.25 0.92 

Na 45.80 46.32 44.77 52.39 6.89 0.72 0.57 0.62 

Fe 98.98 99.40 99.21 99.46 0.13 0.29 0.03 0.56 

Cu 78.12 96.73 88.92 96.55 6.71 0.45 0.08 0.43 

Mn 102.97 99.41 111.72 99.13 5.38 0.45 0.17 0.42 

Zn 89.62 98.07 92.60 98.45 2.49 0.52 0.02 0.62 
                                                           
a Each mean represents 4 individually penned pigs. 
b RX: Ricex-1000™. 
c PHY: Calculated phytase level supplemented was 750 PU/kg diet. 
d SEM: Standard error of the mean. 
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Table 6.11. Phosphorus and nitrogen balance when supplementing phytase 

(PHY) to low and high RX diets. Experiment 6  

Trt:a 1 4 5 6     

RX, %:b 0 30 0 30  P-values 

PHY:c - - + + SEMd PHY Ricex PHYxRX 

Response         

P         

   Intake, g/d 9.84 20.18 10.03 21.82 0.34 < 0.05 < 0.01 < 0.10 
Excreted (feces), 
g/d 7.36 16.05 5.30 13.79 0.38 < 0.01 < 0.01 0.78 
Excreted (urine), 
g/d 0.09 0.09 0.06 0.76 0.09 < 0.01 < 0.01 < 0.01 
Total excreted, 
g/d 7.45 16.15 5.36 14.55 0.30 < 0.01 < 0.01 0.44 

Absorption, g/d 2.49 4.12 4.73 8.04 0.27 < 0.01 < 0.01 0.01 

Retention, g/d 2.39 4.03 4.67 7.28 0.26 < 0.01 < 0.01 < 0.10 
Digestibility 
(apparent), % 25.49 20.43 47.44 37.03 2.12 < 0.01 < 0.01 0.24 
Retention (as a 
% of intake) 24.53 19.97 46.88 33.48 2.08 < 0.01 < 0.01 0.06 
Retention (as a 
% of absorption) 96.00 97.78 98.74 90.64 1.46 0.17 0.06 < 0.01 

    

   N        

   Intake, g/d 74.47 67.22 75.89 72.70 1.76 < 0.10 < 0.05 0.28 
Excreted (feces), 
g/d 7.69 9.54 7.52 10.15 0.35 0.55 < 0.01 0.29 
Excreted (urine), 
g/d 22.53 20.36 22.06 19.59 2.41 0.80 0.36 0.95 
Total excreted, 
g/d 30.22 29.89 29.58 29.74 2.45 0.88 0.97 0.92 

Absorption, g/d 66.78 57.68 68.37 62.55 1.52 < 0.10 < 0.01 0.30 

Retention, g/d 44.25 37.32 46.31 42.96 1.98 < 0.10 < 0.05 0.39 
Digestibility 
(apparent), % 89.72 85.81 90.12 86.01 0.38 0.44 < 0.01 0.80 
Retention (as a 
% of intake) 59.66 55.50 61.46 59.34 2.99 0.37 0.32 0.74 
Retention (as a 
% of absorption) 66.46 64.70 68.19 69.03 3.45 0.40 0.89 0.71 

                                                           
a Each mean represents 4 individually penned pigs. 
b RX: Ricex-1000™. 
c PHY: Calculated phytase level supplemented was 750 PU/kg diet. 
d SEM: Standard error of the mean. 
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CHAPTER 7 
 

SUMMARY OF DISSERTATION 
 
 

Concerns regarding pollution of water ecosystems with phosphorus from 

animal excreta, along with the possible phasing out of antibiotics used at growth 

promoting levels, motivated these studies on the effects of the antibiotic 

virginiamycin (VIR) and an exogenous phytase (PHY) on the utilization of P and 

other nutrients by growing swine. 

Experiments 1 through 4 evaluated VIR and PHY amendments on 

digestibility, retention and excretion of nutrients, particularly P, by pigs fed a corn-

SBM diet without an inorganic source of P. The main objective was to evaluate a 

possible effect of VIR on P utilization. 

Experiment 1 compared VIR with the basal diet, finding that VIR increased 

P digestibility by 8.4%, and also increased retention (as a % of absorption) by 

2.4%. 

Experiments 2, 3, and 4 included PHY amendments at two different levels. 

Phytase was initially included at 750 PU/kg of diet (Experiment 2) to test for 

possible additive effects between VIR and PHY on P digestibility. As no additive 

effects were observed, and considering that 750 PU were probably enough to 

cleave most of the dietary phytic P, not leaving room for observing further 

possible VIR effects, the level of the enzyme was later reduced to 300 PU/kg 

(Experiments 3 and 4). In agreement with profuse findings reported over the last 

two decades, PHY amendments improved P digestibility and retention. 

Improvements of P digestibility due to PHY amendments were between 14 and 

27%. Retention, as a percent of absorption, was improved between 0.7 and 

2.5%. As expected, improvements were greater at the higher level of PHY 

inclusion. On the other hand, VIR effects were not as strong as initially observed 

in Experiment 1, but differences favoring the antibiotic were still observed when 

the basal diet was compared with the VIR-amended diet. On average, dietary  



 

 177

addition of VIR improved P digestibility and total excretion by 5.0%, and P 

retention (as a % of absorption) by 1.0% in the four experiments. Table 7.1 

presents a summary of the results. 

Parallel to the work on the amendments, a comparison of methodologies 

was conducted. Interested in testing the reliability of simple grab sampling 

procedures to assay digestibility by the index method (Cr2O3), two different 

sampling procedures were compared to the standard total collection 

methodology in the first two experiments. The procedures were a single-day grab 

fecal collection (Experiment 1), and a cumulative composite grab collection 

extending from 1 to 5 days (Experiment 2). In Experiment 1, it was found that a 

single-day fecal sample - grabbed according to the color of the feces - although 

cheap and simple, is not a reliable alternative compared to the total collection 

method. In Experiment 2, the index method using a cumulative composited 

sample during five days proved to be more accurate than the 1-day collection 

and could provide approximate results when it is desired to have a general idea 

on the digestibility of macronutrients. Nevertheless, the procedure did not fully 

match the capabilities of the standard method. It was not able to detect statistical 

differences between treatments for several of the nutrients assayed. 

Interested in further evaluating the impact of VIR on P utilization, a full 

term growing-finishing trial was conducted.  It was designed to test the effects of 

partial dietary P deletion (0.028% P, or 0.15% DICAL) in VIR-supplemented diets 

upon growth performance, bone traits, ileal flora populations, carcass, and meat 

characteristics. The amount of P deleted was calculated from the results 

observed in the first digestibility experiment. The P deletion did not affect growth, 

but had negative effects on bone traits. The VIR amendment was not able to 

restore the bone de-mineralization caused by the partial DICAL deletion, 

although numerical improvements were observed. The observed improvements 

in bone traits and phytate utilizing bacteria indicated a possible mode of action 

that merits further research under different environmental conditions. 

A final balance trial assessed nutrient digestibility of a commercial rice 

bran-containing product (RX) rich in phytate P, by the regression method. 
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Simultaneously, the effects of phytase were assessed on nutrient digestion, 

retention and excretion in a basal corn-soy diet supplemented with a high level of 

RX and these results were compared with those of a non-supplemented diet. The 

estimated digestibility of most nutrients in the RX product was lower than in the 

basal diet. Compared to the basal diet, digestibility of the RX product was very 

low for DM, energy, CP, and P (relative difference: 80, 88, 83, and 59%, 

respectively). Digestibility was particularly low for Ca. Diets substituted with 

increasing levels of RX for growing pigs were found generally to have a linear 

decrease in nutrient digestibility, with the only exception being fat, where 

digestibility was increased. Additionally, the amendment of the 30%RX diet with 

750 PU/kg increased P digestibility. Further research is required to define the 

optimum level of PHY amendment to this feedstuff in order to release the 

maximum amount of phytic P. 

In summary, the antibiotic VIR improved P digestibility in pigs fed diets not 

amended with inorganic P. This improvement, around 5.0%, although much 

lower than the improvements obtained with PHY, is still significant. The 

mechanism of action appears to be related with an increase in phytate-utilizing 

bacteria in the small intestin, but more research is required. Additionally, 

byproduct feeds such as rice bran, represent opportunities as partial substitutes 

for traditional feedstuffs, but the levels of rice bran inclusion should be carefully 

considered because of negative effects on digestibility. 
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Table 7.1. Improvements in apparent digestibility (total collection) and retention 
resulting from subtracting control diet from amended diet in Experiments 1, 2, 3, 
and 4  

  Improvement by VIR, % 
 

Improvement by PHY, % 

Exp Digestibility 

Retention    
As a % of  
absorption 

 

Digestibility 

Retention    
As a % of  
absorption 

1a 8.44 2.36  - - 

2b 4.64 1.37  27.31 2.49 

3c 5.21 0.29  16.25 0.68 

4d 1.78 0.07  13.78 1.05 

Ave.e 5.02 1.02  19.11 1.41 

                                                           
a Virginiamycin included at 11 ppm; Phytase not used in Experiment 1. 
b bVirginiamycin included at 11 ppm and phytase at 750 U/kg. 
c Virginiamycin included at 11 ppm and phytase at 300 U/kg. 
d Virginiamycin included at 11 ppm and phytase at 300 U/kg. 
e Average of the four experiments. 
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Appendix 1, Effects of Virginiamycin on Growth, Ileal Bacterial Populations 
And Bone Traits Evaluated in a Nursery Model With Pigs Fed a Phosphorus 

Deficient Corn-Soybean Meal Diet – Summary of Experiments 7 and 8 
 

Introduction 
It is known that subtherapeutic dietary levels of antibiotics generally 

improve growth and feed utilization in pigs. Although their modes of action are 

not well understood, it is believed that antibiotics depress growth of bacteria that 

compete with the host for nutrients and increase organisms that synthesize 

nutrients for the host. Some antibiotics also increase Ca utiliation in poultry 

(Buresh et al., 1985). In previous experiments (Experiments 1, 2, 3, and 4) the 

antibiotic virginiamycin (VIR) improved P digestibility in growing-finishing pigs. A 

logical step following this finding would be to determine its effects on bone traits 

associated with mineral deposition, and its possible impact on ileal microbial 

populations that liberate P from the phytate molecule. 

 

Objectives 
To evaluate the effects of VIR on growth performance and bone traits in 

nursery pigs fed ad libitum a basal, low-P corn-SBM diet supplemented with two 

levels of the antibiotic. Further, to evaluate VIR effects on ileal microbial 

populations, particularly phytate utilizing organisms. 
 
Experimental Procedures 
Animals and housing conditions 

Twenty growing barrows (crossbreds of Hampsire or Duroc x (Yorkshire x 

Landrace)) were used in each experiment. The average starting weight was 15.8 

and 16.6 kg for Experiments 7 and 8, respectively. Each experiment tested five 

dietary treatments with four replicates per treatment. In each experiment, sibling 

pigs of similar weight within a replicate were allocated to treatments and 

randomly assigned to crates. Half-siblings (i.e., a common sire) were used when 

inadequate full-siblings were available. Pigs were individually confined in raised-

deck pens with welded-wire floors in two rooms at the Univerity of Kentucky  



 

 181

Appendix 1. (Continued) 
 

campus (Garrigus building). Pens were equipped with a four-hole stainless steel 

self-feeder. Water was supplied ad libitum. Room temperature was kept in the 

thermo-neutral range. Rooms and pens were cleaned daily with water under 

pressure. 
 

Dietary treatments 

Diet composition is outlined in Appendix 1, Table 1.1. In both experiments, 

Diets 1, 2, and 3 had graded levels of added P from MSP (0, 0.1, and 0.2% 

added P, respectively). In Experiment 7, Diets 4 and 5 consisted in Diet 1 

supplemented with VIR (5.5 and 11 ppm, respectively). In Experiment 8, Diets 4 

and 5 consisted of Diet 2 supplemented with VIR (5.5 and 11 ppm, respectively). 

All diets met NRC (1998) nutrient estimates, except for P (Appendix 1, Table 

1.2). 

 

Sampling and laboratory analysis 

Pigs were weighed and feed intake determined every ten days in both 

experiments. Each experiment lasted 40 days. Pigs were humanely killed by 

exsanguination following electrical stunning, and samples were collected. The 

femurs, front and back feet were removed. Feet and femurs were collected for 

bone strength and ash assessment, following the procedures outlined in Chapter 

5. In Experiment 7, immediately after slaughtering each pig, a sample (approx. 

20 cm long) of the distal portion of the ileum with its contents was collected and 

transported over ice to the lab for pH reading and microbial culture, including 

phytate utilizing bacteria, according to the procedure by Bae et al. (1999). 

 
Experimental design and statistical analysis 

Each experiment was analyzed separately. The effects of incremental 

dietary aditions of MSP in Diets 1, 2, and 3 were analyzed as linear and 

quadratic contrasts using procedure GLM (SAS, 1998). 
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Appendix 1. (Continued) 
 

In Experiment 7, contrasts were also made between Diets 1 and 4 (basal 

vs. basal plus 5.5 ppm VIR), and also between Diets 1 and 5 (basal vs. basal 

plus 11 ppm VIR) to test for the effects of the low and high levels of VIR 

supplementation, respectively. The two levels of VIR supplementation were also 

contrasted with each other. In Experiment 8 similar comparisons were made, but 

Diet 2 was used instead of Diet 1as control diet. Contrasts were made between 

Diets 2 and 4 (basal vs. basal plus 5.5 ppm VIR), Diets 2 and 5 (basal vs. basal 

plus 11 ppm VIR), and Diets 4 and 5. In Experiment 8, LSMeans were calculated 

to account for a limping pig not included in the analysis. 
 

Results and Discussion 
Experiment 7 

The diet assay for VIR was close to the target (<2.0 g/ton for Diet 1, 5.9 

g/ton for Diet 4, and 9.2 g/ton for Diet 5). All pigs finished the trial. Results are 

presented in Appendix 1, Table 1.3. As expected, linear effects in Diets 1, 2 and 

3 were highly significant (P < 0.0001) for P intake, ADG, and both bone traits, 

indicating an increase in growth and bone response to graded levels of P intake. 

A linear effect (P = 0.016) was found for ADFI, probably reflecting an 

improvement in appetite with graded levels of dietary P. The linear effect for F/G 

was not significant (P = 0.12), which could be a result of differences in orts 

recovery. Apparently, addition of MSP did not affect microbial populations (P > 

0.20). When comparing VIR diets (Diets 4 and 5) with their control (Diet 1), no 

effect on gain was observed at either level of VIR (P > 0.10). Similarly, no effects  

of VIR were found on bone breaking strength or ash (P > 0.20). Differences 

observed in bacterial counts (Coliforms, E. coli, and phytate utilizing bacteria), 

are difficult to explain, because the direction of the changes do not correspond 

with the increasing levels of VIR fed in Diets 1, 4 and 5. 
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Appendix 1. (Continued) 
 
Experiment 8 

The diet assay for VIR was close to the target (< 2.0 g/ton for Diets 1, 2, 

and 3; 6.1 g/ton for Diet 4; and 9.6 g/ton for Diet 5). A limping pig fed Diet 1 was 

excluded from the analysis. Similar to Experiment 7, the expected linear effects 

in Diets 1, 2 and 3 were highly significant (P < 0.0001) for P intake, growth and 

bone traits, indicating an increase in growth and bone response to graded levels 

of P intake. No significant difference was observed between Diet 4 and the 

control (Diet 2) for daily gain. Virginiamycin tended to increase (P = 0.07) daily 

gain in the group fed 11 ppm of the antibiotic. Similarly to Experiment 1, no 

effects of VIR were found on either bone breaking strength or ash (P > 0.10), 

except for a tendency to lower MC strength (P = 0.09) in Diet 5, which is difficult 

to explain considering that pigs on Diet 5 grew faster than the control pigs 

(Appendix 1, Table 1.4). 
 

Implications 
The nursery model did not work as expected to establish the post-

absorptive effects of the increased P digestibility observed with growing-finishing 

pigs in previous experiments. The model also failed to detect a suspected 

increase of phytate utilizing bacteria in the small intestine of pigs fed VIR. 

Although it is not clear why the expected treatment effects were not observed, a 

difference in stress level may explain it. Pigs in the digestibility trials probably 

endured higher levels of stress because of the restricted feeding, the 

confinement conditions, and the lack of excercise. The lower level of stress in the 

nursery trials could have limited the response to the antibiotic. Irrespective of the 

reasons, the nursery model did not contribute to an understanding of the VIR 

effect on P digestibility. 
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Appendix 1. (Continued) 
Table 1.1. Composition of Experimental Diets. Experiments 7 and 8  

Exp:  7  8
Trt: 1 2 3 4 5  1 2 3 4 5 

Ingredient            

Corn  71.765 71.765 71.765 71.765 71.765  71.765 71.765 71.765 71.765 71.765 
Corn starch  1.000 0.555 0.110 0.988 0.975  1.000 0.555 0.110 0.988 0.975 
Stafac® 20 - - - 0.0125 0.025  - - - 0.0125 0.025 
Corn oil 1.30 1.30 1.30 1.30 1.30  1.30 1.30 1.30 1.30 1.30 
SBM (48%CP) 23.5 23.5 23.5 23.5 23.5  23.5 23.5 23.5 23.5 23.5 
Calcium carbonate 1.48 1.48 1.48 1.48 1.48  1.48 1.48 1.48 1.48 1.48 
Monosodium 

phosphate - 0.445 0.89 - - 
 

- 0.445 0.89 0.445 0.445 

Salt (non iodized) 0.50 0.50 0.50 0.50 0.50  0.50 0.50 0.50 0.50 0.50 
UK trace min. mixa 0.075 0.075 0.075 0.075 0.075  0.075 0.075 0.075 0.075 0.075 
UK vitamin mixb 0.10 0.10 0.10 0.10 0.10  0.10 0.10 0.10 0.10 0.10 
Santoquin  0.02 0.02 0.02 0.02 0.02  0.02 0.02 0.02 0.02 0.02 
Lysine HCl  0.19 0.19 0.19 0.19 0.19  0.19 0.19 0.19 0.19 0.19 
DL-Methionine  0.02 0.02 0.02 0.02 0.02  0.02 0.02 0.02 0.02 0.02 
L-Threonine  0.05 0.05 0.05 0.05 0.05  0.05 0.05 0.05 0.05 0.05 

Total: 100 100 100 100 100  100 100 100 100 100 

                                                           
a Supplied per kg of diet: 135 mg Fe (iron sulfate monohydrate), 135 mg Zn (zinc oxide), 45 mg Mn (manganous oxide), 13 mg Cu (copper sulfate 
pentahydrate), 1.5 mg I (calcium iodate), 0.3 mg Se (selenium mix), and 0.23 mg Co (cobalt sulfate monohydrate). 
b Supplied per kg of diet: 6,608 IU vitamin A, 881 IU vitamin D3, 22.03 IU vitamin E, 19.76 mg vitamin K, 22.03 mg pantothenic acid, 44.05 mg 
niacin, 4.00 mg thiamin, 8.81 mg riboflavin, 6.00 mg vitamin B6, 22.03 mcg vitamin B12, 1.10 mg folic acid,  and 0.22 mg biotin. 
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Appendix 1. (Continued) 
Table 1.2. Calculated chemical composition of experimental diets. Experiments 7 and 8 

Exp:a   7      8   

Trt:b 1 2 3 4 5  1 2 3 4 5 

Item    
CP, %c 17.12 17.12 17.12 17.12 17.12 17.12 17.12 17.12 17.12 17.12 

Lysine, % 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 

ME, kcal/kgd  3398 3380 3362 3397 3397 3398 3380 3362 3380 3379 

EE, %e 3.51 3.51 3.50 3.51 3.51 3.51 3.51 3.50 3.51 3.51 

CF, %f 3.42 3.42 3.42 3.42 3.42 3.42 3.42 3.42 3.42 3.42 

Ca, % 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 

tP, %g 0.36 0.47 0.59 0.36 0.36 0.36 0.47 0.59 0.47 0.47 

aP, %h 0.07 0.18 0.29 0.07 0.07 0.07 0.18 0.29 0.18 0.18 

Ca:P 1.85 1.42 1.15 1.85 1.85 1.85 1.42 1.15 1.42 1.42 

                                                           
a Exp: Experiment. 
b Trt: Dietary treatment. 
c CP: Crude protein. 
d ME: Metabolizable energy. 
e EE: Ether extract. 
f CF: Crude fiber. 
g tP: Total P. 
h aP: Available P. 
 



 

 186

Appendix 1. (Continued). Table 1.3. Summary of performance, bone, and bacteria results (LSMeans). Experiment 7 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

                                                           
a Linear contrasts for diets 1, 2, and 3. Each mean represents 4 individually penned pigs. 
 

      P- values
Trt: 1 2 3 4 5 CV Lineara 1 vs. 4 1 vs. 5 4 vs. 5 

Response           
P intake, g           

Total 211 306 395 233 207 7.6  <.0001 0.16 0.80 0.10 
Added 0 64.75 134.5 0 0 11.6  <.0001 1.00 1.00 1.00 

Performance           
ADFI, kg 1.38 1.54 1.61 1.52 1.36 7.6 0.016 0.10 0.76 0.06 
ADG, kg 0.766 0.865 0.979 0.756 0.705 5.9 <.0001 0.77 0.10 0.16 

FG 1.81 1.78 1.64 2.02 1.93 7.6 0.12 0.05 0.24 0.38 
Bone strength, kg           

MC  39.40 62.00 92.50 45.00 39.60 15.5 <.0001 0.38 0.97 0.40 
MT 31.80 64.90 90.00 40.30 36.10 18.1 <.0001 0.23 0.53 0.55 

Ave MC + MT 35.59 63.47 91.23 42.63 37.85 15.6 <.0001 0.26 0.71 0.44 
Femur 88.13 207.63 274.75 97.88 99.13 19.8 <.0001 0.66 0.62 0.95 

Bone ash, %           
MC  50.76 55.86 57.10 51.06 50.76 2.8 <.0001 0.78 1.00 0.78 
MT 50.28 55.53 57.39 50.64 50.36 3.0 <.0001 0.76 0.94 0.81 

Ave MC + MT 50.52 55.69 57.25 50.85 50.56 2.9 <.0001 0.77 0.97 0.80 
Bacteria, CFU/g           

Coliforms 5.88 5.90 5.99 5.16 6.77 10.7 0.80 0.14 0.07 0.004 
E. coli 5.40 4.47 5.67 5.03 6.36 12.0 0.56 0.43 0.06 0.01 

Lactobac 7.71 7.56 7.92 6.77 6.90 11.0 0.72 0.13 0.18 0.83 
T. Anaerobes 8.96 8.80 9.45 8.30 8.31 10.9 0.48 0.35 0.35 0.99 

Bifido 8.85 9.02 9.11 8.43 8.20 10.2 0.69 0.51 0.32 0.72 
Phytate 6.67 5.53 5.91 4.47 5.87 23.5 0.44 0.04 0.41 0.17 

Ileal pH 6.87 6.93 6.49 6.90 6.81 4.9 0.14 0.89 0.80 0.70 
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Appendix 1. (Continued). Table 1.4. Summary of performance and bone results (LSMeans). Experiment 8 

 
                                                           
a Linear contrasts for diets 1, 2, and 3. Each mean represents 4 individually penned pigs. 
 

      P- values
Trt: 1 2 3 4 5 CV Lineara 1 vs. 4 1 vs. 5 4 vs. 5 

Response           
P intake, g            

Total 176 271 329 265 286 5.5  <.0001 0.61 0.18 0.08 
Added -1.1 58.4 117.0 57.3 61.7 7.8 <.0001 0.74 0.37 0.22 

Performance            
ADFI, kg 1.189 1.426 1.427 1.397 1.504 5.0 0.001 0.58 0.14 0.05 
ADG, kg 0.552 0.782 0.815 0.754 0.843 5.7 <.0001 0.38 0.07 0.01 

FG 2.16 1.83 1.75 1.86 1.79 4.4 <.0001 0.62 0.50 0.25 
Bone strength, kg            

MC  26.35 55.63 66.56 44.63 43.69 18.6 <.0001 0.12 0.09 0.89 
MT 23.32 52.06 59.50 44.44 47.88 17.8 0.0002 0.22 0.49 0.57 

Ave MC + MT 24.84 53.84 63.03 44.53 45.78 16.9 <.0001 0.13 0.18 0.83 
Femur 78.91 176.38 201.50 159.50 180.75 12.7 <.0001 0.28 0.77 0.18 

Bone ash, %         
MC  49.49 55.15 56.07 54.08 54.21 2.3 <.0001 0.25 0.31 0.89 
MT 50.25 55.95 57.05 54.66 55.32 2.0 <.0001 0.13 0.44 0.42 

Ave MC + MT 49.87 55.55 56.56 54.37 54.76 2.0 <.0001 0.16 0.34 0.63 
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Appendix 2. Pig Weights by Treatment. Experiments 1, 2, 3, and 4 

 Adaptation Collection 

Exp. No 
Digest.  
method a  Trt BW (i), kg b BW (f), kg c  BW (i), kg d BW (f), kg e 

1 Total 1 Control 58.0 59.2  59.2 68.2 
  VIR 56.5 58.5   58.5 69.0 
 Total 2 Control 72.2 75.9  75.9 84.4 
  VIR 76.6 78.7   78.7 87.9 
2 Total 1 B 55.3 56.1 56.1 60.6
  VIR 55.3 57.3  57.3 63.8 
  PHY 55.6 59.2  59.2 64.5 
  VIR+PHY 55.2 57.6   57.6 63.5 
 Index 1 B - -  60.6 67.7 
  VIR - -  63.8 70.3 
  PHY - -  64.5 74.8 
  VIR+PHY - -   63.5 71.7 
 Total 2 B 71.4 72.4  72.4 79.1 
  VIR 72.1 75.2  75.2 83.5 
  PHY 72.3 75.6  75.6 83.2 
  VIR+PHY 72.4 75.9   75.9 85.3 
 Index 2 B - -  79.1 87.1 
  VIR - -  83.5 89.2 
  PHY - -  83.2 89.5 
  VIR+PHY - -   85.3 90.5 
3 Total 1 B 45.5 45.9 45.9 49.4
  VIR 45.6 48.6  48.6 50.9 
  PHY 45.0 46.7  46.7 50.9 
  VIR+PHY 44.5 45.2   45.2 50.0 
 Total 2 B 57.3 59.1  59.1 65.0 
  VIR 58.2 61.1  61.1 67.9 
  PHY 57.3 59.8  59.8 65.5 
  VIR+PHY 57.3 60.3   60.3 66.1 
4 Total 1 B 45.8 46.7 46.7 51.1
  VIR 46.2 48.2  48.2 53.2 
  PHY 46.8 49.1  49.1 55.9 
  VIR+PHY 46.8 49.1   49.1 55.9 
 Index 1 B - -  51.1 55.3 
  VIR - -  53.2 59.4 
  PHY - -  55.9 60.8 
  VIR+PHY - -   55.9 60.8 
 Total 2 B 60.6 63.0  63.0 69.2 
  VIR 58.3 62.0  62.0 66.8 
  PHY 58.3 61.7  61.7 69.7 
  VIR+PHY 58.3 63.6   63.6 71.7 
 Index 2 B - -  69.2 79.5 
  VIR - -  66.8 75.9 
  PHY - -  69.7 79.4 
  VIR+PHY - -   71.7 79.2 

                                                           
a Digest. method: Total 1: Digestibility assessment by total collection, 1st collection; Total 2: 
Digestibility assessment by total collection, 2nd collection; Index 1: Digestibility assessment by 
index method, 1st collection; Index 2: Digestibility assessment by index method, 2nd collection. 
b Ave weight at the start of the adaptation period. 
c Ave weight at the end of the adaptation period. 
d Ave weight at the start of the collection period. 
e Ave weight at the end of the collection period. 
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Appendix 3. Gross Energy Determination 
 

Feed, feces, and urine gross energy (cal/g) were assessed by bomb 

calorimetry, using a Parr 1261 Isoperibol Bomb Calorimeter (Parr Instruments 

Company, Moline, IL). This is an adaptation of the method by the AOAC (1995). 

It includes running a couple of benzoic acid pellets (6318 cal/g) at the beginning 

and at the end of every set of samples to test for precision and accuracy of the 

equipment. The calorimeter used has two bombs and two metal buckets. Each 

one has been calibrated to be used with a particular bucket. 

 
Feed and feces samples 

Feces and feed samples were ground, weighed (1 g), and pelleted in 

duplicate prior to combustion in the calorimeter. 

 
Urine samples 

Prior to assess urine gross energy, samples were dried into plastic 

bags. The bags used were: flat 1.5” x 3” clear 2 mil product No. 01-0103-2, 47.60 

for 1000 (Jeb Plastics, Inc., Wilmington, DE). The average bag energy content 

(cal/g) was established by conducting 20 individual bag combustions. Urine 

samples were centrifuged at 1,500 rpm for 10 minutes prior to gross energy 

assessment. Each bag was cut and sealed to generate 3 smaller bags able to 

hold about 3 g of urine each. Bags were weighed, opened and placed in tared 

metal crucibles over a scale. Then the urine sample was pipetted into the bag, 

and the bag plus urine weight was recorded. Then bags were placed in a draft 

oven at 40 ºC until dry - 48 to 72 hours. Once bags were dry they were 

combusted in the bomb calorimeter. Urine energy was calculated as: 

 

Gross energy, cal/ml = 

(Total energy released – (bag wt, g. x plastic energy factor))/wet urine wt 
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Appendix 4. Phosphorus Determination in Feed, Feedstuffs, and Feces 
 

This gravimetric procedure is a modification of method 968.08 from 

AOAC, 1990. 

Feed (4.0 g) and feces (1.0 g) were weighed in quartz crucibles and 

dry-ashed overnight in a muffle furnace at 600°C. After cooling down in a 

desiccator, samples were digested with 40 mL 3N HCl on a hot plate at high 

temperature, and let boiling (15 min).  Digested solutions were then quantitatively 

transferred into 250 mL volumetric flasks and diluted to volume with DD water. 

Flasks were shaken, sealed with parafilm paper, and left overnight to settle. 

Then, 50 mL aliquots of the solutions were transferred into Erlenmeyer flasks, 

heated to boiling on hot plates,  50 mL of Quimociac reagent added, and left 

some minutes on the hot plates until the color changed from ‘milky’ yellow to 

clear yellow. Then solutions were vacuum-filtered in pre-weighed porcelain 

gooch crucibles using fiberglass filter paper circles. Crucibles with the filtered 

precipitate were then oven-dried overnight at 105oC, then cooled down in a 

desiccator and weighed. 

 

Total phosphorus concentration was calculated as: 

 

 

(Precipitate wt., g  x  V1)  (0.013997 x 100) 

Total P, % =       x 

     V2    Sample wt, g 

 

 

V1: Initial volume after quantitative transferring HCl-digested sample (250 cc). 

V2: Aliquot of V1 to be reacted with Quimociac (50 cc). 
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Appendix 4. (Continued) 
 

Quimociac reagent preparation procedure 
To prepare 1 L of Quimociac reagent: 

1. Dissolve 70 g sodium molybdate dehydrate (Na2MoO4 · 2H2O) into 150 

mL DD water. 

2. Dissolve 63.8 g citric acid dehydrate [HOCCOOH(CH2COOH)2 · H20] into 

150 mL deionized (DD) water, add 85 mL concentrated nitric acid (HNO3) 

and allow to cool. 

3. Add the molybdate solution to the citric-nitric solution while stirring. 

4. Add 5 mL synthetic quinoline (C6H4N:CHCH:CH) to a mixture of 100 mL 

DD water and 35 mL concentrated nitric acid. 

5. Slowly add the quinoline mixture to the molybdate-citric-nitric solution, 

while stirring. 

6. Let solution stand overnight. 

7. Filter solution through a No. 2 Whatman filter. 

8. Add 280 mL of acetone (CH3COCH3) and dilute to 1 L with DD water. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 192

Appendix 5. Mineral Determination by Atomic Absorption 
Spectrophotometry 

 
Except for P, all the minerals in feed, feces and urine were assessed by 

Flame Atomic Absorption Spectrophotometry (AA) (Thermoelemental SOLAAR 

M5, Thermo Electron Corp., Verona, WI), according to a modification of the 

procedure from AOAC (1995b) (method 927.02). 

Samples of the volumes (250 mL) obtained during the gravimetric 

assessment of P were aspirated in the AA equipment. Before aspiration, samples 

were re-diluted according to the concentration expected for each mineral. The 

dilution factors used in each case were multiplied by the AA result to calculate 

concentration in the original sample. 

The assessment by AA included the reading of a blank and five working 

standards at the beginning of each set of samples (typically 40 to 70) to generate 

a regression curve used to calculate concentration according to the amount of 

light absorbed by the mineral during atomization. 

The flame used was air/C2H2 for all the minerals, except for Ca and Cr, 

which used N2O/C2H2. The wave lengths used were: 769.9, 589.6, 428.9, 422.7, 

324.8, 285.2, 279.5, 248.3, and 213.9 nm for K, Na, Cr, Ca, Cu, Mg, Mn, Fe, and 

Zn, respectively. 

The working standards chosen were the optimum sets of concentrations 

that provided the best linear response for each mineral under test. As part of the 

quality control, blank and standards were aspirated after each set of samples to 

check for drifting of the values during the suction process. Samples were re-

analyzed when drift was observed. Samples were re-diluted (Hamilton Digital 

Diluter, Reno, NV) and re-analyzed when sample concentration was above the 

highest standard used. The re-dilution for the macro-minerals was aimed to 

obtain readings distributed around the middle of the set of standards. The 

concentration of all the stock solutions used to prepare the working standards 

was 1000 ppm (Fisher Scientific, Pittsburg, PA.). 
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Appendix 6. Chromium Determination 
 

This is a modification of the method reported by Williams et al. (1962). 

Feed and feces samples were weighed (0.5 g) in porcelain crucibles, dry-ashed 

overnight at 600°C in a muffle furnace, then digested by adding 4 mL potassium 

bromate solution and 3 mL acid manganese sulfate solution. After adding both 

solutions, samples were heated at low temperature on a hot plate until simmering 

stopped and a golden-brown color developed. Samples were then quantitatively 

transferred into tared 100 mL plastic containers with 12.5 mL calcium chloride 

solution added, and the volume was brought to 100 mL with DD water. Then, 

samples were thoroughly mixed by shaking the containers and allowed to settle 

overnight. Next day, aliquots of the non-disturbed solutions were carefully 

transferred to test tubes for subsequent aspiration into the AA equipment. 

 
 
Reagents Preparation for chromium analysis 
 

Potassium bromate solution: 

Dissolve 45 g potassium bromate (KBrO3) in 1 L DD water. 

 

Acid manganese sulfate solution: 

Dissolve 2.27 g manganese sulfate (MnSO4 · 1 H2O) in 30 mL DD water and 

carefully add to 970 mL of 85% phosphoric acid (H3PO4). 

 

Calcium chloride solution: 

Dissolve 14.65 g calcium chloride (CaCl2 · 2 H2O) to 1 L DD water. 
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Appendix 7. Ankom Procedure for NDF Determination 
 

Reagents 
Neutral Detergent solution (ND): 

Add 30.0 g sodium lauryl sulfate, USP; 18.61 g ethylenediaminetetraacetic 

disodium salt, dehydrate;  6.81 g sodium tetraborate decahydrate; 4.56 g 

sodium phosphate dibasic, anhydrous; 10.0 mL triethylene glycol, in 1 L distilled 

H2O; Agitate and heat to facilitate solubility. Check pH range to 6.9 to 7.1. 

Alpha-amylase: 

Heat-stable bacterial alpha-amylase: activity = 340,000 Modified Wohlgemuth 

Units / mL. One Modified Wohlgemuth Unit is that activity which will dextrinize 1.0 

mg of soluble starch to a defined size dextrin in 30 minutes. 

Acetone: 

Use grade that is free from color and leaves no residue upon evaporation. 

 
Apparatus 
Digestion apparatus (ANKOM200/220 Fiber Analyzer), filtration device (ANKOM 

Technology, F57 Filter Bags), Impulse bag sealer - Requires high enough 

temperature to melt and seal polymer in filter bags (ANKOM Technology - 

1915/1920), desiccator (ANKOM Tech. MoistureStop weigh pouch-F39). 

 

Procedure 
Prepare Sample. Label filter bag with black permanent pen and weigh filter 

bag record weight, and tare balance. Weigh 0.5 g (±0.05 g) of air-dried sample, 

ground to pass through a 1mm screen, directly into filter bag. Weigh one blank 

bag and include in digestion to determine blank bag correction. Seal the bags 

closed within 0.5cm from the open edge using the heat sealer. 
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Appendix 7. (Continued) 
 

Spread sample uniformly inside the filter bag by shaking and lightly flicking the 

bag to eliminate clumping. 

 A maximum of 24 bags may be placed in the bag suspender. All nine trays 

are used regardless of the number of bags being processed. Place three bags 

per tray and then stack trays on center post with each level rotated 120 degrees. 

The weight is placed on top of the empty 9th tray to keep the bag suspender 

submerged. 

Samples Containing soy-product or >5% Fat: 

 Extract fat from samples by placing 24 bags with samples into a 500 mL 

bottle with a top. Pour enough acetone into bottle to cover bags and secure top. 

Shake the container 10 times and allow bags to soak for 10 minutes. Repeat with 

fresh acetone. Pour out acetone and place bags on a wire screen to air-dry 

(approximately 5 minutes).  

Exception: Roasted soy -  Due to special properties of roasted soy a 

modification to the fat extraction is required. Place roasted soy samples into a 

500 mL bottle with a top. Pour enough acetone into bottle to cover bags and 

secure top. Shake the container 10 times and pour off acetone. Add fresh 

acetone and allow samples to soak for twelve hours. After soak time, drain off 

acetone as stated above and allow to air-dry before next step. 

 When processing 24 sample bags add 2000 mL of detergent solution at 

ambient temperature into ANKOM Fiber Analyzer vessel. If processing less than 

20 bags add 100 mL/bag of detergent solution (minimum of 1500 mL (ensure bag 

suspender is covered)) and 4.0 mL of heat stable alpha-amylase if samples 

contain starch. 

 Place bag suspender with samples into the solution in vessel. 

Turn agitate and heat on (set to 100ºC) and confirm that bag suspender is 

agitating properly. Set timer for 75 minutes and push Start. Close and seal lid of 

vessel. 
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Appendix 7. (Continued) 
 
 After 75 minutes (timer will beep) have elapsed turn agitate and heat off, 

open the drain valve and exhaust hot solution before opening lid. Warning: The 

solution in vessel is under pressure. The valve should be opened first to remove 

pressure before lid can be opened. Ensure exhaust hose is securely positioned 

for safe disposal of effluent. After the solution has been exhausted close valve 

and open the lid. Add approximately 2000 mL of hot H2O and lower lid but do not 

tighten. With starch containing samples add 4 mL heat stable amylase to each of 

the first 2 rinses. Set heat at 95ºC, turn agitate and heat on and rinse for 7 

minutes. Exhaust water and repeat rinses for a total of three times or until water 

is at neutral pH. After final rinse remove filter bags from bag suspender and 

gently press out excess water. Place in beaker and cover with acetone. Allow 

bags to soak 3 minutes, then remove and lightly press out excess acetone. 

Spread bags out and allow acetone to evaporate. Complete drying in oven at 

105ºC for at least 2 hours. Warning: Do not place bags in the oven until acetone 

has completely evaporated. Longer drying period may be required depending 

oven and frequency of sample introduction. Remove bags from oven, place 

directly into a desiccator and flatten    pouch to remove air. Cool to ambient 

temperature and weigh bags. 
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Appendix 8. Ankom Procedure for ADF Determination 
 

Reagents 
Acid Detergent solution (AD): 

Add 20 g cetyl trimethylammonium bromide (CTAB) to 1 L 1.00N H2SO4 

previously standardized. Agitate and heat to dissolve. 

Acetone – same as for NDF procedure. 

 

Apparatus 
Same as for NDF procedure. 

 

Procedure 
The procedure is conducted with the samples in the bags already processed for 

NDF. The procedure follows the same steps as performed for NDF, except that 

the solution to be used is AD instead of ND solution. 
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Appendix 9. Ankom Procedure for ADL Determination Using Beakers 
 

Reagents 
Sulfuric acid (72% by weight) mix manually by standardizing reagent grade 

H2SO4 to specific gravity 1634 g/L at 20 ºC or 24.00N. 

Add 1200 g H2SO4 to 440 mL H2O in 1 L volumetric flask with cooling. 

Standardize to 1634 g/L at 20ºC by removing solution and adding H2O or H2SO4 

as required. 

 
Apparatus 
3 L beakers. 

 

Procedure 
The procedure is conducted with the samples in the bags already processed for 

ADF. After performing ADF determinations, place dried bags/samples into 3L 

beaker IN HOOD and add sufficient quantity (approximately 250 mL) of 72% 

H2SO4 to cover bags. 

Important: Bags must completely dry and at ambient temperature before adding 

concentrated acid. If moisture is present in the bags, heat generated by the 

H2SO4 and H20 reaction will affect the results (sample inside bag will char). 

Place 2L beaker inside 3L beaker to keep bags submerged. 

Agitate bags at start and at 30-minute intervals by pushing and lifting 2 L beaker 

up and down approximately 30 times. 

After 3 hours pour off H2SO4 and rinse with hot (90 to 100ºC) H2O to remove all 

acid. 

Repeat rinses until pH is neutral. 

Rinse with approximately 250 mL of acetone for 3 minutes to remove water. 

(Warning: bags should not be placed in the oven until acetone is completely 

evaporated). 
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Appendix 9. (Continued) 
 
Complete drying in oven at 105ºC for at least 2 hours. Longer drying period may 

be required depending on oven and frequency of sample introduction into the 

oven. 

Remove bags from oven and place directly into a desiccator and flatten to 

remove air. 

Cool to ambient temperature and weigh bags. 

Ash entire bag in pre-weighed crucible (30 or 50 mL) at 525ºC for 3 hours or until 

C-free, cool and calculate weight loss. 

Calculate blank bag ash correction using weight loss upon ignition of a blank bag 

sequentially run through ADF and lignin steps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 200

Appendix 10. Calculations for Sequential NDF/ADF Analyses 
 
 
 

Values to record: 
 

Weight Convention Notes 
Blank bags:   
  Initial (tare) weight B1  
  Weight following NDF extraction B2  
  Weight following ADF extraction B3  
  Weight following ADL extraction B4  
  Weight following ASH B5 = (pan + ash) – 

(pan tare) 
   
Sample bags:   
  Sample weight WT  
  Sample dry matter DM  
  Bag tare weight S1  
  Weight following NDF extraction S2 Includes bag wt 
  Weight following ADF extraction S3 Includes bag wt 
  Weight following ADL extraction S4 Includes bag wt 
  Weight following ASH S5 Includes bag wt 

 
 

Calculations: 
 

Correction factors:  
  C1 =B2/B1 
  C2 =B3/B1 
  C3 =B4/B1 
  C4 =B5/B1 

  
Ash-free NDF,ADF, ADL, on DM basis: 

  NDF =[S2-(S1*C1)-S5+(S1*C4)]/[WT*DM] 
  ADF =[S3-(S1*C2)-S5+(S1*C4)]/[WT*DM] 
  ADL =[S4-(S1*C3)-S5+(S1*C4)]/[WT*DM] 
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Appendix 11. Pig weights (kg) by Treatment. Experiment 6 
 
 

Treatment Adap. (i) a Adap. (f) b Coll. (i) c Coll. (f) d 

1 86.1 89.1 89.1 97.4 

2 81.9 84.7 84.7 93.5 

3 81.8 86.3 86.3 93.9 

4 84.2 84.8 84.8 93.9 

5 83.5 88.9 88.9 95.6 

6 85.7 91.5 91.5 98.9 
                                                           
a Average weight at the start of the adaptation period. 
b Average weight at the end of the adaptation period. 
c Average weight at the start of the collection period. 
d Average weight at the end of the collection period. 
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Appendix 12. Variables for Regression Coefficients, and Regression 
Coefficients Obtained 

 
The variables used to calculate regression coefficients were the analyzed 

nutrient concentration in the diet, and the percent nutrient contributed by Ricex-

1000™ (from analyzed values). Coefficients were calculated using procedure 

IML (SAS, 1998). Only linear and quadratic coefficients were considered. 
 

RX inclusion level, %:a 0 7.5 15 30
  
DM in diet, % 87.87 88.28 88.87 90.25
DM from RX, %  0 8.06 16.02 31.65
Regression coef. (Linear)  -0.5958 -0.2511 0.0893 0.7576
Regression coef. (Quadratic) 0.5620 -0.3303 -0.6394 0.4078
  
  
Energy in diet % 3920 3988 4082 4253
Energy from RX, %  0 9.46 18.52 35.57
Regression coef. (Linear)  -0.6057 -0.2450 0.1004 0.7504
Regression coef. (Quadratic) 0.5567 -0.3493 -0.6264 0.4191
  
  
Fat in diet % 2.61 3.96 5.35 8.50
Fat from RX, %  0 39.52 58.71 77.55
Regression coef. (Linear)  -0.7652 -0.0771 0.2571 0.5852
Regression coef. (Quadratic) 0.3953 -0.6525 -0.3101 0.5673
  
  
N in diet % 2.87 2.78 2.74 2.72
N from RX, %  0 6.49 13.12 26.83
Regression coef. (Linear)  -0.5842 -0.2577 0.0760 0.7659
Regression coef. (Quadratic) 0.5677 -0.3083 -0.6536 0.3942

                                                           
a Ricex-1000™. 
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Appendix 12. (Continued) 
 

   RX inclusion level, %:a 0 7.5 15 30
  
NDF in diet % 8.91 9.91 10.73 12.78
NDF from RX, %  0 14.85 27.51 47.96
Regression coef. (Linear)  -0.6417 -0.2197 0.1401 0.7213
Regression coef. (Quadratic) 0.5339 -0.4193 -0.5733 0.4587
  
  
ADF in diet % 2.69 3.19 3.82 4.66
ADF from RX, %  0 20.10 35.39 57.08
Regression coef. (Linear)  -0.6734 -0.1924 0.1734 0.6924
Regression coef. (Quadratic) 0.5088 -0.4813 -0.5183 0.4908
  
  
ADL in diet % 0.26 0.39 0.50 0.83
ADL from RX, %  0 61.22 77.46 89.30
Regression coef. (Linear)  -0.8288 0.0614 0.2976 0.4698
Regression coef. (Quadratic) 0.2495 -0.7491 -0.1051 0.6047

                                                           
a Ricex-1000™. 
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Appendix 12. (Continued) 
 
 

RX inclusion level, %:a 0 7.5 15 30
  
P in diet % 0.38 0.48 0.56 0.82
P from RX, %  0 27.26 44.92 66.45
Regression coef. (Linear)  -0.7116 -0.1519 0.2107 0.6528
Regression coef. (Quadratic) 0.4702 -0.5550 -0.4410 0.5258
  
  
Ca in diet % 0.64 0.62 0.57 0.53
Ca from RX, %  0 0.65 1.40 3.34
Regression coef. (Linear)  -0.5379 -0.2784 0.0210 0.7954
Regression coef. (Quadratic) 0.5872 -0.2234 -0.7011 0.3374
  
  
Mg in diet % 0.14 0.18 0.22 0.28
Mg from RX, %  0 23.49 40.06 61.87
Regression coef. (Linear)  -0.6922 -0.1736 0.1922 0.6736
Regression coef. (Quadratic) 0.4911 -0.5178 -0.4818 0.5085
  
  
K in diet % 0.67 0.73 0.78 0.92
K from RX, %  0 15.55 28.61 49.32
Regression coef. (Linear)  -0.6461 -0.2162 0.1449 0.7175
Regression coef. (Quadratic) 0.5307 -0.4280 -0.5661 0.4633
  
  
Na in diet % 0.15 0.16 0.14 0.11
Na from RX, %  0 0.57 1.23 2.93
Regression coef. (Linear)  -0.5381 -0.2787 0.0216 0.7952
Regression coef. (Quadratic) 0.5867 -0.2232 -0.7014 0.3378

                                                           
a Ricex-1000™. 
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Appendix 12. (Continued) 
 

RX inclusion level, %:a 0 7.5 15 30
  
Zn in diet %  0.014 0.013 0.012 0.013
Zn from RX, %  0 3.15 6.62 14.68
Regression coef. (Linear)  -0.5585 -0.2707 0.0464 0.7828
Regression coef. (Quadratic) 0.5787 -0.2598 -0.6823 0.3634
  
  
Fe in diet %  0.018 0.020 0.018 0.020
Fe from RX, %  0 9.03 17.77 34.41
Regression coef. (Linear)  -0.6027 -0.2470 0.0972 0.7525
Regression coef. (Quadratic) 0.5582 -0.3435 -0.6305 0.4157
  
  
Cu in diet %  0.0013 0.0014 0.0013 0.0011
Cu from RX, %  0 3.43 7.17 15.80
Regression coef. (Linear)  -0.5607 -0.2693 0.0484 0.7815
Regression coef. (Quadratic) 0.5782 -0.2644 -0.6797 0.3658
  
  
Mn in diet %  0.005 0.006 0.007 0.008
Mn from RX, %  0 17.18 31.10 52.29
Regression coef. (Linear)  -0.6562 -0.2078 0.1555 0.7085
Regression coef. (Quadratic) 0.5231 -0.4477 -0.5492 0.4737

                                                           
a Ricex-1000™. 
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Appendix 13. Phosphorus Determination in Urine (Micro scale Method) 
 

This unpublished method is a modification of the method for analysis of 

soluble P developed at the University of Kentucky by D’Angelo et al. (2001). It is 

commonly used to assess total P in water and soil samples by reducing all P 

compounds to orthophosphate (it is also a total Kjeldahl method to assess total 

N). The method has the advantage of controlling - by dehydration - the acid 

concentration in the sample, leaving the sample in a homogeneous acidic matrix 

(1.26 N). 

The procedure was done in duplicate. For digestion, 1ml of undiluted 

urine samples were pipetted into 25x200 mm Pyrex ignition tubes (Fisher 

Scientific, Pittsburgh, PA). Then, samples were added with 2.44 mL of 13.25 N 

sulfuric acid (a prediluted specialty product from LabChem Inc, Fisher Scientific, 

Pittsburgh, PA). After this, 0.3 g of K2SO4 was added to increase the boiling 

temperature. Two Hengar granules (Selenium coated Hengar granules, 

Troemner Inc, Thorofare, NJ.) were also added to promote smooth boiling 

(prevent overheating) and to catalyze the decomposition of organic compounds 

during the high temperature digestion stage. Then tubes were placed in a 

programmable aluminum block digester for 1 hour at 220 ºC, wrapping them in 

aluminum foil to speed-up water evaporation. When water was fully evaporated 

(no droplets observed in the tube walls, about 1.5 hours later), each tube was 

topped with a Teflon ball (to control the acid evaporation) and temperature was 

increased to 360 ºC for one hour (second boiling stage). Then tubes were added 

with 24.2 mL of deionized distilled water, vortexed, and samples were poured 

into cluster cups. 

The entire digestion procedure was also conducted for 2 blanks (1.0 mL 

deionized water). Solutions were then ready for P determination by the modified 

molybdate reagent. This last part included the preparation of eight working 

standards from 0 to 1.0 ppm P in 1.26 N sulfuric acid. 
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Appendix 13. (Continued) 
 

One mL aliquots of standards, digested blanks and samples were 

pipetted from the cluster cups into a deep well microplate, then added with 40 µl 

of the modified molybdate reagent (containing no acid) and shook for 10 minutes. 

Finally, samples in the microplate were added with 40 µl of the Malachite Green 

reagent (preparation instructions for molybdate and Malachite Green reagents 

are at the end). Microplates were then shook for 20 minutes on an orbital titer 

plate shaker (Lab Line, Model 4625, Melrose park, IL) and absorbance was read 

in a multi-channel optical system (microplate reader) at 630 nm  (Biotech, Model 

EL 311, Winoosky, VT). The equipment calculates P concentration from the 

standard curve. 

 

Modified Molybdate reagent preparation: a 1.75% (w/v) molybdate solution is 

made by dissolving 8.75 g of ammonium molybdate•4H2O and diluting to 500 mL 

with deionized water. Reagent should be stored in plastic bottle, and is stable for 

a long time at room temperature. 

 

Malachite Green solution: a 0.035% (w/v) solution of Malachite Green carbinol 

hydrochloride (Aldrich Chemical Company Inc, Milwaukee, WI) in 0.35% (w/v) 

aqueous polyvinyl alcohol (Mol. Wt. 30,000 to 50,000; Aldrich) is prepared by 

dissolving 1.75 g PVA in 450 mL of deionized water which has been preheated to 

80 ºC. When cooled down, 0.175 g Malachite Green is dissolved in the PVA 

solution and diluted to 500 mL with deionized water. The reagent should be 

stored in plastic bottle. It is stable for a long time at room temperature. 
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