
University of Kentucky University of Kentucky

UKnowledge UKnowledge

University of Kentucky Doctoral Dissertations Graduate School

2003

Multigrid with Cache Optimizations on Adaptive Mesh Refinement Multigrid with Cache Optimizations on Adaptive Mesh Refinement

Hierarchies Hierarchies

Daniel Thomas Thorne Jr.
University of Kentucky, thorne@css.uky.edu

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Thorne Jr., Daniel Thomas, "Multigrid with Cache Optimizations on Adaptive Mesh Refinement
Hierarchies" (2003). University of Kentucky Doctoral Dissertations. 325.
https://uknowledge.uky.edu/gradschool_diss/325

This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been
accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Kentucky

https://core.ac.uk/display/232559329?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/gradschool_diss
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

ABSTRACT OF DISSERTATION

Daniel Thomas Thorne Jr.

The Graduate School

University of Kentucky

2003

Multigrid with Cache Optimizations on Adaptive Mesh Refinement
Hierarchies

ABSTRACT OF DISSERTATION

A dissertation submitted in partial fulfillment of the
requirements of the degree of Ph.D.

at the University of Kentucky

By

Daniel Thomas Thorne Jr.

Lexington, Kentucky

Director: Craig C. Douglas, Computer Science Department

Lexington, Kentucky

2003

Copyright c© Daniel Thomas Thorne Jr. 2003

ABSTRACT OF DISSERTATION

Multigrid with Cache Optimizations on Adaptive Mesh Refinement
Hierarchies

This dissertation presents a multilevel algorithm to solve constant and variable coefficient el-
liptic boundary value problems on adaptively refined structured meshes in 2D and 3D. Cache
aware algorithms for optimizing the operations to exploit the cache memory subsystem are
shown. Keywords: Multigrid, Cache Aware, Adaptive Mesh Refinement, Partial Differential
Equations, Numerical Solution.

Daniel Thomas Thorne Jr.

Dec 02, 2003

Multigrid with Cache Optimizations on Adaptive Mesh Refinement
Hierarchies

By

Daniel Thomas Thorne Jr.

Craig C. Douglas
(Dissertation Director)

Grzegorz W. Wasilkowski
(Director of Graduate Studies)

Dec 02, 2003
(Date)

RULES FOR THE USE OF DISSERTATIONS

Unpublished dissertations submitted for the Doctor’s degree and deposited in the Univer-
sity of Kentucky Library are as a rule open for inspection, but are to be used only with due
regard to the rights of the authors. Bibliographical references may be noted, but quotations
or summaries of parts may be published only with the permission of the author, and with
the usual scholarly acknowledgments.

Extensive copying or publication of the dissertation in whole or in part requires also the
consent of the Dean of the Graduate School of the University of Kentucky.

DISSERTATION

Daniel Thomas Thorne Jr.

The Graduate School

University of Kentucky

2003

Multigrid with Cache Optimizations on Adaptive Mesh Refinement
Hierarchies

DISSERTATION

A dissertation submitted in partial fulfillment of the
requirements of the degree of Ph.D.

at the University of Kentucky

By

Daniel Thomas Thorne Jr.

Lexington, Kentucky

Director: Craig C. Douglas, Computer Science Department

Lexington, Kentucky

2003

Copyright c© Daniel Thomas Thorne Jr. 2003

ACKNOWLEDGMENTS

Thanks to my advisor, professor Craig C. Douglas, for persistence tempered with patience.
Thanks to my committee members, professors George Huang, Jerzy Jaromczyk, Qiang

Ye, and Jun Zhang, for questions and comments.
Thanks to my parents, Daniel and Jackie, sister, Bekki, and the rest of my family for

acceptance and support.
Thanks to my friends for engaging in cappuccino confabulation events and other inter-

mittent recreation with me that provided respite from work.
Thanks to God and His Word for perspective and sanity.

iii

Contents

Acknowledgments iii

List of Tables vii

List of Figures viii

List of Files xii

1 Introduction 1

2 Background 4
2.1 Grids . 4
2.2 Discretization of Elliptic PDEs . 4

2.2.1 1D . 5
2.2.2 2D . 6
2.2.3 3D . 6

2.3 Iterative Solvers . 7
2.4 Multigrid . 7

2.4.1 Gauss-Seidel as Smoother . 8
2.4.2 Transfer Operators . 8
2.4.3 The V-Cycle . 8

2.5 AMR . 9

3 Tools for 2D AMRMG 12
3.1 Tools For Constant Coefficient Problems . 12

3.1.1 2D Stencils . 12
3.1.2 Interpolation of Ghost Points in 2D 14
3.1.3 Flux Matching in 2D . 17

3.2 Tools For Variable Coefficient Problems . 19
3.2.1 Stencils . 19
3.2.2 Interpolation of Ghost Points in 2D 21
3.2.3 Flux Matching . 21

4 Analysis of Flux Matching 24
4.1 Stencil Version, Using Ghost Coarse Grid Point. 24
4.2 Stencil Version, Averaging Two Coarse Grid Sized Fluxes 27

iv

4.3 Flux Matching Version . 28
4.4 Computing Flux Across Interface Directly Via Taylor’s Series 29

4.4.1 Taylor Series Expansion With Three Points 29
4.4.2 Taylor Series Expansion With Five Points 30
4.4.3 Taylor Series Expansion With Seven Points 32
4.4.4 Example . 33

5 Tools for 3D AMRMG 39
5.1 Tools For Constant Coefficient Problems . 39

5.1.1 3D Stencils . 39
5.1.2 Interpolation of Ghost Points in 3D 40
5.1.3 Flux Matching in 3D . 41

5.2 Tools For Variable Coefficient Problems . 42
5.2.1 3D Stencils . 42
5.2.2 Interpolation of Ghost Points in 3D 46
5.2.3 Flux Matching in 3D . 46

6 Ghost Point Interpolation Revisited 54
6.1 2D . 54

6.1.1 Phase One (Intermediate) Ghost Points 54
6.1.2 Phase Two Ghost Points . 56

6.2 3D . 57
6.2.1 Phase One and Phase Two (Intermediate) Ghost Points 57
6.2.2 Phase Three Ghost Points . 62

7 AMRMG 65
7.1 Review of Notation . 65
7.2 Comparison With Standard Multigrid Algorithm 65
7.3 The AMR Multigrid Algorithm . 66
7.4 Post-Smoothing Only . 72

8 Cache Optimizations 74
8.1 Cache Aware Gauss-Seidel . 74
8.2 Cache-Aware V-Cycle . 75

8.2.1 Combined smoother . 75
8.2.2 Effects of the coefficient matrix . 75

8.3 Details . 76
8.3.1 2D . 76
8.3.2 3D . 77
8.3.3 Update Pattern for Combined Smoother 79

9 Numerical Results 82
9.1 Constant . 82
9.2 Variable . 85

10 Conclusions and Future Directions 88

v

Appendix A 90
A.1 Introduction . 90
A.2 Interior Damping Factor . 90
A.3 Edge Damping Factor . 90
A.4 Corner Damping Factor . 91
A.5 Comments . 91

Appendix B 92
B.1 Grids . 92

B.1.1 Grid Class . 93
B.1.2 Grid Level Class . 95
B.1.3 Grid Hierarchy Class . 97

B.2 Grid Functions . 98
B.2.1 Grid Function Class . 98
B.2.2 Grid Function Array Class . 100
B.2.3 Grid Function Level Class . 114
B.2.4 Grid Function Composite Class . 116

B.3 AMRMG Class . 118
B.4 Supporting Classes . 120

B.4.1 Coords Class . 120
B.4.2 Array Class . 121

Bibliography 126

Vita 135

vi

List of Tables

Table 1.1 List of Symbols . 3

Table 4.1 Combinations for expansions of points in Fig. 4.3 31

Table 6.1 Coarse grid point weights for the first phase two ghost point. 60
Table 6.2 Coarse grid point weights for the second phase two ghost point. . . . 60
Table 6.3 Coarse grid point weights for the third phase two ghost point. 62
Table 6.4 Coarse grid point weights for the fourth phase two ghost point. 62

Table 9.1 Itanium 1 Speedups, Standard(0,4) Versus CA(0,4) and CAMG(0,4) . 82
Table 9.2 Itanium 2 Speedups, Standard(0,4) Versus CA(0,4) and CAMG(0,4) . 83
Table 9.3 Pentium III Speedups, Standard(0,4) Versus CA(0,4) and CAMG(0,4) 83
Table 9.4 Pentium IV Speedups, Standard(0,4) Versus CA(0,4) and CAMG(0,4) 83
Table 9.5 Speedups, Standard(2,2) Versus CAMG(0,4) 84
Table 9.6 Speedups, CA(2,2) Versus CA(0,4) . 84
Table 9.7 Itanium 1 Speedups, Standard(0,4) Versus CA(0,4) and CAMG(0,4) . 86
Table 9.8 Itanium 2 Speedups, Standard(0,4) Versus CA(0,4) and CAMG(0,4) . 86
Table 9.9 Pentium III Speedups, Standard(0,4) Versus CA(0,4) and CAMG(0,4) 87
Table 9.10 Pentium IV Speedups, Standard(0,4) Versus CA(0,4) and CAMG(0,4) 87
Table 9.11 Speedups for the cache aware smoother alone. 87

vii

List of Figures

Figure 2.1 Grids. 5

Figure 2.2 Transfer Operators, P` and R`. 8

Figure 2.3 V-Cycle. 9

Figure 2.4 A simple patch based grid hierarchy. 11

Figure 2.5 Composite grid hierarchy corresponding to the patch hierarchy in
Fig 2.4. 11

Figure 3.1 A sample 2D grid hierarchy. The dark lines denote the boundary. . . 13

Figure 3.2 Stencils. The dark lines in (b) and (c) represent boundaries. 13

Figure 3.3 Interpolation of Ghost Points. The dark edge in (c) indicates a boundary. 15

Figure 3.4 2D flux matching with one coarse-fine interface. 17

Figure 3.5 2D flux matching with two coarse-fine interfaces. 18

Figure 3.6 2D flux matching adjacent to a boundary. 18

Figure 3.7 A sample 2D grid hierarchy. The dark lines denote the boundary. . . 19

Figure 3.8 Stencils. The dark lines in (b) and (c) represent boundaries. 20

Figure 3.9 Flux Matching. The dark edge in (c) represents a boundary. 22

Figure 4.1 Flux matching . 25

Figure 4.2 Interface, Small . 29

Figure 4.3 Interface, Medium . 30

Figure 4.4 Interface, Large . 32

Figure 4.5 Error in the ghost point interpolation. 34

Figure 4.6 Error in the fluxes. The red (solid) line is for the flux matching pro-
cedure, and the green (dashed) line is for the small Taylor series expansion.
The top two frames show errors. The error in the flux matching procedure
is close to zero, whereas the error in the Taylor series expansion varies wildly
from zero. The bottom two plots show the values of the fluxes. To the eye
they appear nearly identical, but the Taylor series approximation is different
and it oscillates a little bit on the fine grid side. The true fluxes are plotted
in black in the two lower plots, but it is mostly covered by the flux matching
approximation. 35

viii

Figure 4.7 Error in the operator. The red (solid) line is for the flux matching
based approximation to the operator, and the green (dashed) line is for the
small Taylor series expansion based approximation to the operator. The top
two frames show errors. The error in the flux matching based approximation
is close to zero, whereas the error in the Taylor series based approximation
varies wildly from zero. The bottom two plots show the values of the fluxes.
The Taylor series based approximation oscillates a lot on the fine grid side
and is noticeably inaccurate even to the eye on the coarse grid side. The true
values of the operator are plotted in black in the two lower plots, but they
coincides closely with the flux matching approximation. 36

Figure 4.8 Error in the fluxes as grid size increases. The horizontal axis is the
grid size measured on the coarse grid and ranges over coarse grids of size 8×8
to 210 × 210 with the dimensions doubling at each step. 37

Figure 4.9 Error in the operator as grid size increases. The horizontal axis is the
grid size measured on the coarse grid and ranges over coarse grids of size 8×8
to 210 × 210 with the dimensions doubling at each step. 38

Figure 5.1 3D Interpolation of Ghost Points, Step 1. 40

Figure 5.2 3D Interpolation of Ghost Points, Step 2. 41

Figure 5.3 Flux Matching in 3D. The coarse grid point where the operator is being
applied is shown for reference. 42

Figure 5.4 Integration regions for variable coefficient stencil compution for interior
cells. These are the boundaries of the control volume. 43

Figure 5.5 Integration regions for variable coefficient stencil compution for cells
on the east face. These are the boundaries of the control volume. 44

Figure 5.6 Integration regions for variable coefficient stencil compution for cells
on the UE edge. These are the boundaries of the control volume. 45

Figure 5.7 Integration regions for variable coefficient stencil compution for cells
on the UNE corner. These are the boundaries of the control volume. 46

Figure 5.8 Integration regions for an interior cell with one coarse-fine interface
(at the “west” cell wall) where flux matching is required. The little circles
indicate the locations of the variable coefficient values. The labels α, β, γ,
and δ are used to specify the corresponding ghost points used in the flux
matching formula. 47

Figure 5.9 Integration regions for an interior cell with two coarse-fine interfaces
(at the “west” and “south” cell walls) where flux matching is required. The
little circles indicate the locations of the variable coefficient values. The labels
α, β, γ, and δ are used to specify the corresponding ghost points used in the
flux matching formula. 48

Figure 5.10 Integration regions for an interior cell with three coarse-fine interfaces
(at the“west”, “south”, and“down”cell walls) where flux matching is required.
The little circles indicate the locations of the variable coefficient values. The
labels α, β, γ, and δ are used to specify the corresponding ghost points used
in the flux matching formula. 49

ix

Figure 5.11 Integration regions at one boundary (the “north” boundary) with one
coarse-fine interface (at the “west” cell wall) where flux matching is required.
The dashed lines indicate the location of the boundary. The little circles
indicate the locations of the variable coefficient values. The labels α, β, γ,
and δ are used to specify the corresponding ghost points used in the flux
matching formula. 50

Figure 5.12 Integration regions at one boundary (the “north” boundary) with two
coarse-fine interfaces (at the “west” cell wall and the “up” cell wall) where flux
matching is required. The dashed lines indicate the location of the boundary.
The little circles indicate the locations of the variable coefficient values. The
labels α, β, γ, and δ are used to specify the corresponding ghost points used
in the flux matching formula. 51

Figure 5.13 Integration regions at two boundaries (the “up” boundary and the
“north”boundary) with one coarse-fine interface (at the“west”cell wall) where
flux matching is required. The dashed lines indicate the location of the bound-
ary. The little circles indicate the locations of the variable coefficient values.
The labels α, β, γ, and δ are used to specify the corresponding ghost points
used in the flux matching formula. 52

Figure 6.1 Phase one ghost points . 55

Figure 6.2 Phase two ghost points . 56

Figure 6.3 Phase one ghost points. 58

Figure 6.4 Phase two ghost points. 59

Figure 6.5 Template for interpolation of phase one ghost points. 60

Figure 6.6 Interpolation of the first phase two ghost point. 61

Figure 6.7 Template for interpolation of phase three ghost points, i = 1..4. Same
as in Fig. 6.2 of the 2D case. 62

Figure 7.1 Illustration of Λ m̀ax
c − P(Λ`+1). 68

Figure 7.2 Situation on Λ3
c before computation of the composite grid residual on

Λ2
c . The rest of the composite grids from Fig. 2.5 are shown for reference. . 69

Figure 7.3 The L` operator shown for 1 ≤ ` ≤ 3. The shading indicates the
computational domain Λ` − P(Λ`+1). The hash marks denote the boundary. 69

Figure 7.4 The Lnf,` operator shown for 1 ≤ ` ≤ 3. The shading indicates the
computational domain Λ`. The hash marks denote the boundary. 70

Figure 7.5 Illustration of Λ` − P(Λ`+1). 71

Figure 8.1 2D Cache Block . 77

Figure 8.2 2D cache block seam with the number of updates shown. This illus-
trates the rows that were not completely updated in the first pass of the wiper
and need to be completed in the second pass, at which time the data for those
points will be brought into cache a second time. 78

x

Figure 8.3 2D cache block seams, full 20 × 20 patch picture with representative
cache block. The dotted lines represent cache seams which is where the grid
points need to be brought through cache twice. The proportion of seam points
is very large. 78

Figure 8.4 2D Tall Cache Block . 79
Figure 8.5 2D tall cache block seams, full 20×20 patch picture with representative

cache block. The dotted lines represent cache seams which is where the grid
points need to be brought through cache twice. The proportion of seam points
is much smaller here. 80

Figure 8.6 3D Cache Block . 80
Figure 8.7 3D Cache Block Update Pattern. This shows xy-slices of the 3D cache

block, starting in the negative direction (bottom of the cache block) and going
toward positive (top of the cache block). 81

Figure 8.8 Template for interleaving ghost point interpolation and residual com-
putation with cache aware smoother in 2D. The residual updates are denoted
by the dark circles. The potential ghost points are denoted by the dashed boxes. 81

Figure 9.1 Refinement patterns: (a) One refinement per patch. (b) Two refine-
ments per patch. (c) Four refinements per patch. 83

Figure 9.2 (a) One refinement per patch. (b) Two refinements per patch. (c) Four
refinements per patch. 85

xi

List of Files

dtetd.pdf . 675 K

xii

Chapter 1

Introduction

This document presents a combination of adaptive refinement [11, 12, 86, 91] and multilevel
[21, 69, 72] procedures to solve variable coefficient elliptic boundary value problems of the
form

{

L(φ) = ρ in Ω,
B(φ) = γ on ∂Ω,

(1.1)

subject to standard conditions that ensure ellipticity and well posedness [3]. The solution
procedure is derived from the adaptive mesh refinement process, not from the multigrid pro-
cedure. Hence, notation is borrowed from the adaptive mesh refinement (AMR) community.
For some related work in multigrid and adaptive mesh refinement, see [14, 5, 6, 7, 8, 9, 10,
16, 15, 17, 18, 19, 20, 22, 25, 38, 40, 41, 42, 44, 45, 46, 47, 48, 51, 53, 63, 62, 64, 65, 66, 67,
68, 70, 71, 73, 74, 75, 76, 77, 84, 85, 87, 88, 94].

Since the early 1980’s, processors have sped up 5 times faster per year than memory.
Multilevel memories, using memory caches, were developed to compensate for the uneven
speedups in hardware. Essentially all computers today, from laptops to distributed memory
supercomputers, use cache memories in an attempt to keep the processors busy. By the
term cache, we mean a fast memory unit closely coupled to the processor [43, 80]. In the
interesting cases, the cache is further divided into many cache lines. Each cache line holds
copies of contiguous locations of main memory. Any given pair of cache lines may hold data
from entirely separate regions of main memory. A good cache primer for solving PDEs can
be found in [28, 30].

The focus of this research is on the effects of optimizations designed to minimize the
number of times data goes through cache. Algorithms optimized in this way are called cache
aware. Cache aware algorithms should be more efficient because cache memory is much
faster than main memory, so the CPU can be kept more busy when it is getting data from
cache memories. For some related work in cache aware algorithms, see [33, 35, 49, 89, 92,
93, 90, 34, 98, 37, 32, 29, 31, 52, 81, 59, 97, 96, 61, 57, 101, 102] .

Chapter 2 provides some background material about grids, discretization of PDEs, iter-
ative solvers, multigrid (MG), and adaptive mesh refinement (AMR).

Chapter 3 presents the basic tools used in the 2D version of the algorithm: stencils, ghost
point computation, and flux matching.

Chapter 4 compares the flux matching approach from Chapter 3 with other ways of
approximating the fluxes across the interface. In addition, a single formula (bypassing the
ghost point interpolation and averaging of fluxes) is derived. This is done first by expanding
and simplifying the ghost point interpolation and avereaging computations. Then a Taylor
series based derivation is also shown.

Chapter 5 presents the basic tools used in the 3D version of the algorithm: stencils, ghost
point computation, and flux matching.

1

Chapter 7 describes the multilevel adaptive mesh refinement algorithm. It starts by
stating a traditional (non-AMR) formulation of multigrid and then outlines the modification
that need to be made in order to formulate the AMR version of multigrid.

Chapter 8 discusses cache optimizations. Processors are much faster than memory. Multi-
level memory hierarchies, using cache memory, were developed to compensate for this. Cache
optimizations modify the code to take better advantage of the cache memory mechanism.
We refer to an algorithm that has been modified for cache in this way as cache aware.

Chapter 6 revisites the ghost point interpolation process. The process is introduced in
Chapters 3 and 5 in a way that is useful for describing how the ghost points are computed.
That is not efficient for the implementation, though, especially in 3D. This chapter derives
a single, simple and efficient formula for computing the ghost points in both 2D and 3D.

Chapter 9 presents numerical results showing speedups associated with cache aware
smoothers, integration of the residual computation with the cache aware smoother. and
modifying the algorithm to do post-smoothing only.

See Table 1.1 for a list of symbols used in this dissertation.

Copyright c© Daniel Thomas Thorne Jr. 2003

2

` . Level index
` = 1 .Coarsest level index

m̀ax .Finest level index

m̀ax + 1 . Null, fake level index

Λ . Patch
Λ`,j . j th Patch on level `
` . Patch covering all Λ`,j’s
Λ` . Union of patches Λ`,j on level `
Ω . Domain
Ω` . Domain for level ` minimally covering Λ`

Λ`
c .Composite grid for levels 1− `

Λ m̀ax
c . Composite grid for solution to (1.1)

φ, u . Solution

φ` . Solution on Λ`

φ`c . Solution on Λ`
c

ρ .Right hand side

ρ` .Right hand side on Λ`

ρ`c .Right hand side on Λ`
c

r . Residual

r` . Residual on Λ`

r`c . Residual on Λ`
c

e . Correction

e` . Correction on Λ`

e`c . Correction on Λ`
c

Lc . Composite linear operator

Lc
` . Composite linear operator on level `
L . Patch based linear operator

L` .Patch based linear operator on level `
Sc . Composite smoother

S`c .Composite smoother on level `
S . Patch based smoother

S` . Patch based smoother on level `
P . Projection from a fine level to a coarser one

P` .Projection from level to level `− 1
R . Projection from a coarse level to a finer one

R` .Projection from level ` to level `+ 1

Table 1.1: List of Symbols

3

Chapter 2

Background

This chapter briefly introduces background concepts: grids, discretization of PDEs, iterative
solvers, multigrid (MG), and adaptive mesh refinement (AMR). See [21, 55, 23] and the
references given in §1 for more detail.

2.1 Grids

A grid is a partitioning of a region. It specifies a finite set of points, called grid points, in
the region. The partitioning is usually illustrated with a set of grid lines. Intersections of
grid lines are called vertices, and the interiors of individual partitions are called cells.

In the context of PDEs, a grid is chosen to specify a subset of points in the domain of
the solution function of a PDE. There are different types of grids:

• Structured grids can be computed from a set of parameters like the dimensions of the
grid and the mesh spacing. The simplest structured grid is a rectilinear grid of equally
spaced, orthogonal grid lines, as illustrated in Fig. 2.1(a). More complicated structured
grids (e.g., curvalinear grids [56, 95] can be defined as transformations of rectilinear
grids.

• Unstructured grids [95, 79] are defined point-wise (or cell-wise). The coordinates of
every grid point (or vertex) must be stored separately and explicitly. There is no
regular relationship to corellate the locations of grid points in an unstructured grid.
See Fig. 2.1(b)

• Vertex-centered grids [54, 95] are characterized by the coincidence of grid points with
the intersections (vertices) of the grid lines, as illustrated in Fig. 2.1(c).

• Cell-centered grids [54, 95] are characterized by having grid points in the interior of
partitions (cells) formed by the grid lines, as illustrated in Fig. 2.1(d).

The focus in the present work is on structured grids with cell-centered grid points.

2.2 Discretization of Elliptic PDEs

Usually, elliptic PDEs cannot be solved analytically. They are too complicated, and a clas-
sical analytical solution might not exist at all. Instead, they are solved numerically on a
grid using a discrete version of the equations. The discrete equations determine approximate
values of the solution function at the grid points. This section shows how to derive the
discrete equations on 1-, 2- and 3-dimensional cell-centered structured grids.

4

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
......

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
..

..
.......
.......
.......
.......
.......
.......
.......
.......
.......
.....................

......................
......................

......................
......................

.......................
...........
...........
...........
...........
...........
...........
...........
...........
...........
.......

...
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
..

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.

........
........
........
........
........
........
........
........
........
........
........
........
...

...
...

.....................................

...
........
........
........
........
........
........
........
........
...

...
....................................

....................................
..

........
........
........
........
........
........
........
........
........
........
.

..........
..........
..........
..........
..........
..........
..........
..

...............
...............

...............
...............

...............
...............

.......

(a) Structured grid (b) Unstructured grid

x x x

x x

xx

x

xxx

xx x x x

x

xx

xx

x

x x x
xxx

xx

xxxx

x

x

xxxx

x

(c) Vertex-centered grid (d) Cell-centered grid

Figure 2.1: Grids.

2.2.1 1D

It is useful to convey the discretization process initially with 1D equations.
A simple 1D elliptic PDE looks like

−u′′ = f on [a, b]

with boundary conditions like, for example,

u(a) = u(b) = K,

where u = u(x) is the solution function and f = f(x) is a given right hand side, commonly
called a forcing function. When f = 0, this is the Laplace equation. When f 6= 0, this is the
Poisson equation.

The domain [a, b] is partitioned into a grid with n grid points. For cell-centered grids,
the mesh spacing is defined by h = b−a

n
. Let ui = u(xi).

Then approximating u′′ by

u′′(xi) ≈
1

h2
(ui−1 − 2ui + ui+1) ,

5

at the interior points gives a system of n− 2 linear equations:

−ui−1 + 2ui − ui+1 = h2fi,

for 2 ≤ i ≤ n− 1. The boundary points give two more equations

2u1 − u2 = h2f1 +K,

and
−un−1 + 2un = h2fn +K,

for a total of n equations which can be written in matrix form:

Au = f,

where f(xi) = h2fi for 2 ≤ i ≤ n− 1, and f(x1,n) = h2f1,n+K. This example uses Dirichlet
boundary conditions, meaning the solution values at the boundaries are constant. There
exist other more complicated boundary conditions [78].

2.2.2 2D

Let Ω = [a, b]× [c, d], and ∂Ω is the boundary of Ω. A 2D elliptic PDE like

−uxx − uyy = f on Ω,

with boundary conditions on ∂Ω, is discretized by approximating the derivatives

uxx ≈
1

h2
(ui−1,j − 2uij + ui+1,j)

uyy ≈
1

h2
(ui,j−1 − 2uij + ui,j+1)

in the equation at interior grid points and applying boundary conditions at boundary points
to build a linear system Ax = b. The equations at the interior points (i, j) are

4uij − ui−1,j − ui+1,j − ui,j−1 − ui,j+1 = h2fi,

and the equations at the boundary points depend on the boundary conditions. See [78] for
more details.

2.2.3 3D

Let Ω = [a1, b1]× [a2, b2]× [a3, b3], and ∂Ω is the boundary of Ω. A 3D elliptic PDE like

−uxx − uyy − uzz = f on Ω,

with boundary conditions on ∂Ω, is discretized by approximating the derivatives

uxx ≈
1

h2
(ui−1,j,k − 2uijk + ui+1,j,k)

uyy ≈
1

h2
(ui,j−1,k − 2uijk + ui,j+1,k)

uzz ≈
1

h2
(ui,j,k−1 − 2uijk + ui,j,k+1)

6

in the equation at interior grid points and applying boundary conditions at boundary points
to build a linear system Ax = b. The equations at the interior points (i, j, k) are

6uijk − ui−1,j,k − ui+1,j,k − ui,j−1,k − ui,j+1,k − ui,j,k−1 − ui,j,k+1 = h2fi,

and the equations at the boundary points depend on the boundary conditions.

2.3 Iterative Solvers

Iterative solvers solve Ax = b by constructing a sequence of vectors x0, x1, x2, . . . that con-
verges to the solution vector x. There are two main classes of iterative solvers: splitting
methods and projection methods. The type that is relevant here is splitting methods. The
general form of a splitting method is

x(k+1) ← Rx(k) + c,

where A = Q − K (which can be viewed as a splitting of A), R = Q−1K, and c = Q−1b.
Note that Q must be non-singular. Then

e(k+1) = x(k+1) − x = Rx(k) + c− x

= Q−1Kx(k) +Q−1b− x

= Q−1(Q− A)x(k) +Q−1Ax− x

= (I −Q−1A)x(k) − (I −Q−1A)x

= (I −Q−1A)e(k),

which shows that the x(k) converge to x as long as I −Q−1A is small (i.e., Q is a sufficiently
close approximation of A).

The particular splitting method that we are concerned with is Gauss-Seidel. Let A =
D−CL−CU , where D is the diagonal of A, CL is the strictly lower triangular part of A and
CU is the strictly upper triangular part of A. In Gauss-Seidel, Q = D−CL and K = CU , so

x(k+1) ← RGSx
(k) + cGS,

where RGS = (D−CU)
−1CU and cGS = (D−CL)

−1b. In a computer code, we update x(k+1)

one element at a time. The element-wise form of the Gauss-Seidel iteration is

x
(k+1)
i ←

1

aii



bi −
i−1
∑

j=1

aijx
k+1
j −

n
∑

j=i+1

aijx
k
j



 ,

for 1 ≤ i ≤ n, where x = (xi)n×1, A = (aij)n×n and b = (bi)n×1. In practice, we use just one
vector x and overwrite it with the updated values during each iteration.

2.4 Multigrid

This section presents the two main pieces of a multigrid algorithm and then the algorithm
itself. It is this algorithm that we adapt to work on complicated hierarchies of adaptively
refined meshes in Ch. 7.

7

2.4.1 Gauss-Seidel as Smoother

Multigrid coordinates the application of an iterative method on a hierarchy of grids. A
splitting method like Gauss-Seidel is referred to as a smoother in this context, because it
damps high frequency error very quickly. This smoothing property is exploited by applying
the smoother on a hierarchy of grids of different resolutions.

2.4.2 Transfer Operators

Multigrid involves moving data between grids. This movement of data is achieved with
transfer operators. An interpolation operator moves data from a coarse grid to a fine grid,
and a projection operator moves data from a find grid to a coarse grid. Fig. 2.2 illustrates
the transfer operators, with P` denoting projection from level ` to level `−1 and R` denoting
interpolation from level `− 1 to level `.

Level 0

Level 1

Level 2

Level 3

P2

P3

P1

R2

R3

R1

6

?

?

?

6

6

x

x x

x x

x x xx

x x

x x x x

Figure 2.2: Transfer Operators, P` and R`.

2.4.3 The V-Cycle

The basic multigrid V-Cycle is illustrated in Fig. 2.3. A standard multigrid V-Cycle begins
on the finest level with an application of the smoother, and then the residual, ri = fi−Aiui,
is computed and projected as the right hand side of a correction problem on the next coarsest
grid. The decrease in resolution exposes new high frequency modes which an application of
the smoother on this level will quickly damp. This process is repeated recursively down to
the coarsest grid. On the coarsest grid the correction problem is solved directly, and then
the correction is recursively interpolated and applied to the finer levels, usually with an
additional application of the smoother on each level. See [21] for more detailed background
on multigrid.

8

B
B
B
B
B
BBN

Project f3 = P3r4

B
B
B
B
B
BBN

Project f2 = P2r3

B
B
B
B
B
BBN

Project f1 = P1r2

£
£
£
£
£
££±

Correct u2 = u2 +R1u1

£
£
£
£
£
££±

Correct u3 = u3 +R2u2

£
£
£
£
£
££±

Correct u4 = u4 +R3u3

vSmooth A4u4 = f4

vSmooth A3u3 = f3

vSmooth A2u2 = f2

vSolve A1u1 = f1

v Smooth A2u2 = f2

v Smooth A3u3 = f3

v Smooth A4u4 = f4

Figure 2.3: V-Cycle.

2.5 AMR

Assume that Ω is overlaid by a union of tensor product meshes Λ1,j, j = 1, . . . , n1 that forms
a grid in Ω:

Λ1 =
n1
⋃

j=1

Λ1,j , where Λ1 ⊂ Ω.

Normally n1 = 1. However, the method works for n1 > 1, too. This is referred to as the
level 1, or coarsest grid.

An adaptive mesh refinement procedure is used to define many patches. The set of local
grid patches corresponding to `− 1 refinements (1 < ` ≤ m̀ax) is denoted

Λ` =
n
⋃̀

j=1

Λ`,j and Λ m̀ax+1 = ∅.

The Λ`,j are tensor product meshes that have been obtained by adaptively refining the
Λ`−1,j meshes. The definition of Λ m̀ax+1 is just for convenience in presenting algorithms
later. The domains Ω` and Ω`,j are defined as the minimum domains that include Λ` and
Λ`,j, respectively. Normally, Ω` is a union of disconnected subdomains (one subdomain
corresponding to each level ` patch). Note that within an adaptive grid refinement code `max
can change (increase or decrease) during the course of solving an actual problem.

The AMR procedure defines a composite grid Λ m̀ax
c and, more generally, a composite grid

hierarchy, 1 < ` ≤ m̀ax, by

Λ`
c =

⋃̀

i=1

(Λi − P(Λi+1)), (2.1)

where P is the projection operator discussed below. The `th composite grid Λ`
c contains all

points from the `th level patches Λ` as well as additional points from regions not covered by

9

the patches. The new grid points correspond to mesh points from patches on lower levels,
always taking from patches on the closest possible level.

Projection and refinement operators are denoted by P and R, respectively. This notation
is standard adaptive mesh refinement notation but is different from multigrid notation (where
the symbols are unfortunately reversed). The operators are used interchangeably with either
domains Ω` or grids Λ`. In terms of domain and grid superscripts, P projects from “fine to
coarse,” i.e., `→`− 1 and R refines from “coarse to fine,” i.e., `→`+ 1.

For the current work, domains must be properly nested

Ω m̀ax⊆Ω m̀ax−1⊆ · · ·⊆· · ·Ω1 ≡ Ω.

This can also be written as

R(P(Ω`+1)) ⊆ Ω`+1 and P(Ω`+1) ⊆ Ω`

and

Ω =
m̀ax
⋃

`=1

(Ω` − P(Ω`+1)), where Ω m̀ax+1 = ∅.

The use of tensor product meshes allows for fairly straightforward finite difference and
finite volume stencils to define the discrete operator. At internal patch boundaries, however,
some care must be taken. Ghost points are stored near internal patch boundaries, and
quadratic interpolation is used to acquire values at these points so that locally equispaced
unknowns are available for use with regular stencils within most of the computations. When
computing composite grid residuals, however, more complicated stencils are needed for coarse
points adjacent to finer grid patches. This is formally covered in detail in following chapters.
The main idea is to use the same interpolated values for the stencils on both the fine grid side
and the coarse grid side when updating points that are adjacent to a coarse-fine interface.
Hence, the fluxes used to approximate the operator across the coarse-fine interfaces are
matched and continuity of the first derivate (i.e., C1 continuity) is enforced. This is referred to
as flux matching. The C1 continuity at the boundary between the coarse and fine subdomains
can be precisely defined in terms of the derivatives of the quadratic functions that interpolate
the ghost points. See Chs. 3, 5, and 6, for details of the ghost point interpolation procedure.
The key point is that enforcing C1 continuity preserves the second order convergence of the
method. Especially for problems with severe fronts or near discontinuities, C0 continuity
alone is not always sufficient. The boundaries of the domains, {∂Ω`}, are required to meet
the condition

∂Ω`+1 ∩ ∂Ω` ⊆ ∂Ω

which ensures that the flux matching procedure is well defined and of the right approximation
order near patch boundaries in the interior of Ω [69].

The solution to (1.1) is approximated using a multigrid algorithm to numerically solve
the finite dimensional problem

L m̀ax
c φ m̀ax

c = ρ m̀ax
c , (2.2)

where L m̀ax
c is a matrix representing the discretization on Λ m̀ax

c , φ m̀ax
c are the unknowns,

and ρ m̀ax
c is the right hand side. Conceptually, the grid hierarchy used within the multigrid

10

Λ4

Λ3

Λ2

Λ1

s
s s s ss

ss s s s

s
sssss s
sssss

Figure 2.4: A simple patch based grid hierarchy.

ss sss s s sΛ4
c

Λ3
c

Λ2
c

Λ1
c

s
ss s sssss s s s

s
s s s

ss s s s

s
ssss

s
sss

Figure 2.5: Composite grid hierarchy corresponding to the patch hierarchy in Fig 2.4.

procedure is the composite grid hierarchy defined above. In practice, the implementation is
patch based (see Ch. 7). This is an important distinction. A simple 1D AMR patch hierarchy
is illustrated in Fig. 2.4. In the figure, dots represent grid points and vertical lines represent
either physical boundaries or patch boundaries. A patch is a maximal set of contiguous grid
points on a given level of the grid hierarchy. There are usually multiple patches per level,
although the example hierarchy in Fig. 2.4 has only one patch per level. Fig. 2.5 illustrates
the corresponding composite grid hierarchy for the simple 1D example. Each level in this
composite grid hierarchy is a composite grid defined in (2.1). Equation (2.2) is defined on
the highest level composite grid, namely Λ m̀ax

c . Operators L`c are matrices representing the
discretizations on composite grids Λ`

c for all `. In Ch. 7, we define patch based versions of
the discrete operators.

Copyright c© Daniel Thomas Thorne Jr. 2003

11

Chapter 3

Tools for 2D AMRMG

This chapter outlines the machinery needed to implement the AMRMG algorithm in 2D for
both constant and variable coefficient.

3.1 Tools For Constant Coefficient Problems

This section details the tools needed for the 2D AMRMG algorithm using an example of a
constant coefficient Poisson problem

∆φ = ρ

on a square domain
Ω = [0, 1]2

with Dirichlet boundary conditions

φ = γ on ∂Ω.

A sample hierarchy for this example is illustrated in Figure 3.1. We derive the stencils,
the ghost point interpolation, and the flux matching procedure. Each of these operations
comes in a variety of forms depending on its location in the grid relative to boundaries and
coarse-fine interfaces.

The purpose of this example is to nurture intuition that is useful for understanding the
algorithms in Ch. 7. It shows, for a specific example, the details of the patch based operators
that are used to implement multigrid on adaptive mesh hierarchies.

3.1.1 2D Stencils

Fig. 3.2 shows representatives of the three types of stencils that are required in 2D: inte-
rior, edge, and corner stencils. The formulae for these stencils are shown in the following
subsections. The derivations of the edge and corner stencils are shown.

Interior

The interior stencil is

(∆u)ij = (ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4uij)h
−2,

and is illustrated in Figure 3.2(a). The discrete equation is

4uij − ui+1,j − ui−1,j − ui,j+1 − ui,j−1 = h2ρ.

12

Λ1

Λ2

Λ3

Figure 3.1: A sample 2D grid hierarchy. The dark lines denote the boundary.

u

u

u

u

u

j+1

j

j−1

i−1 i i+1

u

u

uue

i i+1

u u

u

e
e

i i+1

(a) (b) (c)

Figure 3.2: Stencils. The dark lines in (b) and (c) represent boundaries.

Edge Boundary

The edge stencil, corresponding to Figure 3.2(b), is derived by combining expansions in x
and y. We write the expansions in x as

ui+1 ≈ ui + hu′i +
1
2
h2u′′i

ui− 1

2
≈ ui −

1
2
hu′i +

1
8
h2u′′i







⇒ ui+1 + 2ui− 1

2
≈ 3ui +

3

4
h2u′′i

using ui, u
′
i, and u′′i for the value of the function, its derivative in the x-direction, and its

second derivative in the x-direction at the ith grid point in the x-direction. We write the
expansions in y as

uj+1 ≈ uj + hu′j +
1
2
h2u′′j

uj−1 ≈ uj − hu′j +
1
2
h2u′′j







⇒ uj+1 + uj−1 ≈ 2uj + h2u′′j

13

using uj, u
′
j, and u′′j for the value of the function, its derivative in the y-direction, and its

second derivative in the y-direction at the jth grid point in the y-direction. Combine these
to obtain

(∆u)ij ≈ u′′i + u′′j ≈
(

4

3
ui+1,j +

8

3
ui− 1

2
,j + ui,j+1 + ui,j−1 − 6uij

)

h−2.

The corresponding discrete equation is

6uij −
4

3
ui+1,j −

8

3
ui− 1

2
,j − ui,j+1 − ui,j−1 = h2ρ.

Corner Boundary

The corner stencil, corresponding to Figure 3.2(c), is derived by combining expansions in x
and y. Using the same notation as in §3.1.1, we write the expansions in x as

ui+1 ≈ ui + hu′i +
1
2
h2u′′i

ui− 1

2
≈ ui −

1
2
hu′i +

1
8
h2u′′i







⇒ ui+1 + 2ui− 1

2
≈ 3ui +

3

4
h2u′′i

and the expansions in y as

uj+ 1

2
≈ uj +

1
2
hu′j +

1
8
h2u′′j

uj−1 ≈ uj − hu′j +
1
2
h2u′′j







⇒ 2uj+ 1

2
+ uj−1 ≈ 3uj +

3

4
h2u′′j .

We combine them to obtain

(∆u)ij ≈ u′′i + u′′j ≈
(

4

3
ui+1,j +

8

3
ui− 1

2
,j +

8

3
ui,j+ 1

2
+

4

3
ui,j−1 − 8uij

)

h−2.

The corresponding discrete equation is

8uij −
4

3
ui+1,j −

8

3
ui− 1

2
,j −

8

3
ui,j+ 1

2
−

4

3
ui,j−1 = h2ρ.

3.1.2 Interpolation of Ghost Points in 2D

In order to apply regular stencils at the boundary points of patches and enforce flux matching
at the coarse-fine interfaces, we need to interpolate values at ghost points around the edges
of the patches. This section explains how to do these interpolations.

One Coarse-Fine Interface

Values are needed at the ⊗ ghost points for the one-sided coarse-fine interface illustrated
in Figure 3.3(a). There are two steps. Step 1: Compute values for the the ® points. Let
a = u(uA), b = u(uB) and c = u(uC), and let h be the mesh spacing on the finer grid. We
derive a C1 quadratic interpolation formula using

c0 + c1x+ c2x
2 = u(x),

14

®
2

®
1

C

B

A

α β

⊗

⊗
γ

r
rr
r

t

t

t

⊗
α

⊗
β

⊗
γ

®
1

®
2
®
3

r
r

r
r
r
r t

t

t

t

t

B

A

1

2

⊗

⊗ ®

®r r
r r dt

t

(a) (b) (c)

Figure 3.3: Interpolation of Ghost Points. The dark edge in (c) indicates a boundary.

where






1 0 0
1 2h (2h)2

1 4h (4h)2













c0
c1
c2





 =







a
b
c





⇒







c0
c1
c2





 =









a
1
h
(b− 1

4
c− 3

4
a)

1
h2 (

1
8
c− 1

4
b+ 1

8
a)









.

Then

u(®1) = c0 + c1(
3

2
h) + c2(

3

2
h)2,

and

u(®2) = c0 + c1(
5

2
h) + c2(

5

2
h)2.

Step 2: Compute values for the ⊗ points. Let a = u(•α), b = u(•β) and c = u(®1), and
let h be the mesh spacing on the finer grid. Again, we derive a C1 quadratic interpolation
formula using

c0 + c1x+ c2x
2 = u(x),

where







1 0 0
1 h h2

1 5
2
h (5

2
h)2













c0
c1
c2





 =







a
b
c





⇒







c0
c1
c2





 =









a

− 1
15h

(21a− 25b+ 4c)
2

15h2 (3a− 5b+ 2c)









.

Then
u(⊗γ) = c0 + c1(2h) + c2(2h)

2.

The procedure is analogous for the other ⊗ point.

Two Coarse-Fine Interfaces

Ghost point interpolation at a two-sided coarse-fine interface is illustrated in Figure 3.3(b).
Again, values are needed at the ⊗ points, and there are two steps. We use the notation

15

c{0,1,2} generically here to refer to the coefficients associated with each interpolation. The
values of the coefficients are not the same for every interpolation.
Step 1: Use the same system as in Step 1 of §3.1.2, once in each direction, to get the

coefficents c{0,1,2} needed to compute values for the ® points. In the y-direction,

u(®1) = c0 + c1

(

7

2
h
)

+ c2

(

7

2
h
)2

and

u(®2) = c0 + c1

(

9

2
h
)

+ c2

(

9

2
h
)2

.

In the x-direction,

u(®3) = c0 + c1

(

1

2
h
)

+ c2

(

1

2
h
)2

.

Step 2: Use the same system as in Step 2 of §3.1.2, twice in the x-direction and once in the
y-direction, to get the coefficents c{0,1,2} needed to compute values for the ⊗ points. In the
x-direction,

u(⊗{α,β}) = c0 + c1(2h) + c2(2h)
2,

and in the y-direction,

u(⊗γ) = c0 + c1(2h) + c2(2h)
2.

At a Boundary

Ghost point interpolation at a coarse-fine interface adjacent to a boundary is illustrated in
Figure 3.3(c). Once again, values are needed at the ⊗ points, and there are two steps.
Step 1: Compute values for the ® points. Let a = u(uA), b = u(uB) and c = u(e), and

let h be the mesh spacing on the finer grid. We want

c0 + c1x+ c2x
2 = u(x),

where






1 0 0
1 2h (2h)2

1 3h (3h)2













c0
c1
c2





 =







a
b
c





⇒







c0
c1
c2





 =









a

− 1
24h

(5a− 9b+ 4c)

− 1
24h2 (a+ 3b− 4c)









.

Then

u(®1) = c0 + c1(
3

2
h) + c2(

3

2
h)2,

and

u(®2) = c0 + c1(
5

2
h) + c2(

5

2
h)2.

Step 2: Compute values for the ⊗ points by the same system as in Step 2 of §3.1.2.
See Ch. 6 for a more detailed look at the ghost point interpolation procedure and a

derivation of a one step single formula for the ⊗ points.

16

t

t

t

t⊗2

⊗1
s
s

Figure 3.4: 2D flux matching with one coarse-fine interface.

3.1.3 Flux Matching in 2D

This section introduces the flux-matching computations. Flux matching is used to avoid one-
sided derivatives at grid points adjacent to refinement patches and preserve C1 continuity
across the interface between refinement levels.

The computations in this section involve values interpolated at the ghost points ⊗ from
§3.1.2. The value of the solution at points ⊗{1,2,3} is represented by u`+1

⊗{1,2,3}
.

One Coarse-Fine Interface

Flux matching at a one-sided coarse-fine interface is illustrated in Figure 3.4. Notice that
the fluxes used here are the same as, i.e.,match, the fluxes computed by the stencils on the
boundary of the next finer grid. We use

(∆u`)ij ≈
1

h`

(

f `i+ 1

2
,j − f `i− 1

2
,j + f `i,j+ 1

2

− f `i,j− 1

2

)

,

where

f `
i+ 1

2
,j
= 1

h`

(

u`i+1,j − u`i,j
)

,

f `
i− 1

2
,j
= 1

2

(

1
h`+1

(u`+1
⊗1
− u`+1

2(i−1),2j−1) +
1

h`+1
(u`+1
⊗2
− u`+1

2(i−1),2j)
)

f `
i,j+ 1

2

= 1
h`

(

u`i,j+1 − u`ij
)

,

f `
i,j− 1

2

= 1
h`

(

u`ij − u`i,j−1

)

.

Two Coarse-Fine Interfaces

Flux matching at a two-sided coarse-fine interface is illustrated in Figure 3.5. We use

(∆u`)ij ≈
1

h`

(

f `i+ 1

2
,j − f `i− 1

2
,j + f `i,j+ 1

2

− f `i,j− 1

2

)

,

17

t t

t

ss

s
s ⊗1

⊗2

⊗3

Figure 3.5: 2D flux matching with two coarse-fine interfaces.

⊗2

⊗1

d
s
s

t

tt

Figure 3.6: 2D flux matching adjacent to a boundary.

where

f `
i+ 1

2
,j
= 1

h`

(

u`i+1,j − u`ij
)

,

f `
i− 1

2
,j
= 1

2

(

1
h`+1

(u`+1
⊗1
− u`+1

2(i−1),2j−1) +
1

h`+1
(u`+1
⊗2
− u`+1

2(i−1),2j)
)

,

f `
i,j+ 1

2

= 1
2

(

1
h`+1

(u`+1
2i−1,2(j+1)−1 − u`+1

⊗2
) + 1

h`+1
(u`+1

2i,2(j+1)−1 − u`+1
⊗3

)
)

,

f `
i,j− 1

2

= 1
h`

(

u`ij − u`i,j−1

)

.

At a Boundary

Flux matching at a coarse-fine interface that is adjacent to a boundary is illustrated in Figure
3.6. The differences are not obvious, so we show the derivation:

(uxx)ij ≈
1
h`

(

fi+ 1

2
,j − fi− 1

2
,j

)

(uyy)ij ≈
1
h2

`

(

8
3
ui,j+ 1

2
+ 4

3
ui,j−1 − 4uij

)











⇒

(∆u)ij ≈
1

h`

(

fi+ 1

2
,j − fi− 1

2
,j +

1

h`

(

8

3
ui,j+ 1

2
+

4

3
ui,j−1 − 4uij

))

,

where fi± 1

2
is as in §3.1.3

18

Λ1

Λ2

Λ3

Figure 3.7: A sample 2D grid hierarchy. The dark lines denote the boundary.

3.2 Tools For Variable Coefficient Problems

This section details the tools needed for the 2D AMRMG algorithm using an example of a
variable coefficient problem

−∇ · (a∇u) = ρ.

on a rectangular domain

Ω = [a, b]× [c, d]

with Dirichlet boundary conditions

φ = γ on ∂Ω.

We will use a control volume approach [78] to discretize this problem.

A sample hierarchy for this example is illustrated in Figure 3.7. We derive the stencils,
the ghost point interpolation, and the flux matching procedure. Each of these operations
comes in a variety of forms depending on its location in the grid relative to boundaries and
coarse-fine interfaces.

The purpose of this example is to nurture intuition that is useful for understanding the
algorithms in Ch. 7. It shows, for a specific example, the details of the patch based operators
that are used to implement multigrid on adaptive mesh hierarchies.

3.2.1 Stencils

Figure 3.8 shows representatives of the three types of stencils that are required in 2D: in-
terior, edge, and corner stencils. The formulae for these stencils are shown in the following
subsections.

19

o

n

n

s

s

eeww
tb

b
t

t

t

t

b
b

o

n

n

s

s

e ew w
b
b

b
bt

t

dt

t

n
n

s

s

eew w o
t db
d

t

t

b
b
b

(a) (b) (c)

Figure 3.8: Stencils. The dark lines in (b) and (c) represent boundaries.

Interior

See Fig. 3.8(a) for an illustration of an interior stencil. The region within the dashed lines
is the control volume, denoted by V . The boundary of the control volume, represented by
the dashed lines, is denoted by ∂V .

Discretizing the integral form

−
∫

∂V
a
∂u

∂n
=
∫

V
ρ

gives

an(un − uo)

∆y
·∆x −

aw(uo − uw)

∆x
·∆y +

ae(ue − uo)

∆x
·∆y −

as(uo − us)

∆y
·∆x = −∆x∆yρo,

which reduces to

(an + as + ae + aw)uo − anun − asus − awuw − aeue = h2ρo,

when h = ∆x = ∆y.

Edge Boundary

See Fig. 3.8(b) for an illustration of an edge stencil. The region within the dashed lines is
the control volume, denoted by V . The boundary of the control volume, represented by the
dashed lines, is denoted by ∂V .

Discretizing the integral form

−
∫

∂V
a
∂u

∂n
=
∫

V
ρ

gives

an(un − uo)

∆y
·
3

4
∆x −

as(uo − us)

∆y
·
3

4
∆x+

ae(ue − uo)
1
2
∆x

·∆y −
aw(uo − uw)

∆x
·∆y = −

3

4
∆x∆yρo,

20

which reduces to

(an + as +
8

3
ae +

4

3
aw)uo − anun − asus −

4

3
awuw −

8

3
aeue = h2ρo,

when h = ∆x = ∆y.

Corner Boundary

See Fig. 3.8(c) for an illustration of a corner stencil. The region within the dashed lines is
the control volume, denoted by V . The boundary of the control volume, represented by the
dashed lines, is denoted by ∂V .

Discretizing the integral form

−
∫

∂V
a
∂u

∂n
=
∫

V
ρ

gives

an(un − uo)
1
2
∆y

·
3

4
∆x −

as(uo − us)

∆y
·
3

4
∆x+

ae(ue − uo)
1
2
∆x

·
3

4
∆y −

aw(uo − uw)

∆x
·
3

4
∆y = −

9

16
∆x∆yρo,

which reduces to

(
8

3
an +

4

3
as +

8

3
ae +

4

3
aw)uo −

8

3
anun −

4

3
asus −

4

3
awuw −

8

3
aeue = h2ρo,

when h = ∆x = ∆y.

3.2.2 Interpolation of Ghost Points in 2D

The ghost point interpolation process for the variable coefficient case is the same as for the
constant coefficient case discussed in §3.2.2.

3.2.3 Flux Matching

This section introduces the flux-matching computations. Flux matching is used to avoid one-
sided derivatives and preserve C1 continuity. It is necessary for the patch based operator L`

defined in Ch. 7.

See Fig. 3.9 for illustrations. The regions with the dashed lines are the control volumes
and is denoted by V . The boundaries of the control volumes, represented by dashed lines, is
denoted by ∂V .

The grid points on edges represent coefficient values. The grid points in cells represent
solution values, as usual. For example, an = a(bn) and un = u(un).

21

s

o

α

β

s

n

n

e e

w1w1

w2w2

⊗

⊗

r
b b b
b
t

t

t

t

b
r

s1

w2w2

w1w1

s1

n

eeo

s2

s2

n

⊗
α

γ
⊗

β
⊗

t

t

trr
rr

b b

b
b
b

b
n

o e e

s

s

⊗
α

⊗
β

w1w1

w2w2

r
r
b
bb
bb

n
d
t t

t

(a) (b) (c)

Figure 3.9: Flux Matching. The dark edge in (c) represents a boundary.

One Coarse-Fine Interface

See Fig. 3.9(a) for labels. The region within the dashed lines is the control volume, denoted
by V . The boundary of the control volume, represented by the dashed lines, is denoted by
∂V .

Discretizing the integral form

−
∫

∂V
a
∂u

∂n
=
∫

V
ρ

gives
−(fn − fs + fe − fw) = h2ρo,

where

fn = an(un − uo)

fs = as(uo − us)

fe = ae(ue − uo)

fw = aw1
(uα − uw1

) + aw2
(uβ − uw2

)

where h = ∆x = ∆y.

Two Coarse-Fine Interfaces

See Fig. 3.9(b) for labels. The region within the dashed lines is the control volume, denoted
by V . The boundary of the control volume, represented by the dashed lines, is denoted by
∂V .

Discretizing the integral form

−
∫

∂V
a
∂u

∂n
=
∫

V
ρ

gives
−(fn − fs + fe − fw) = h2ρo,

22

where

fn = an(un − uo)

fs = as1(uα − us1) + as2(uβ − us2)

fe = ae(ue − uo)

fw = aw1
(uα − uw1

) + aw2
(uγ − uw2

)

where h = ∆x = ∆y.

At a Boundary

See Fig. 3.9(c) for labels. The region within the dashed lines is the control volume, denoted
by V . The boundary of the control volume, represented by the dashed lines, is denoted by
∂V .

Discretizing the integral form

−
∫

∂V
a
∂u

∂n
=
∫

V
ρ

gives

−(fn − fs + fe − fw) =
3

4
h2ρo,

where

fn =
an(un − uo)

1
2
h

· h = 2an(0− uo) = −2anuo

fs = as(uo − us)

fe =
ae(ue − uo)

h
·
3

4
h =

3

4
ae(ue − uo)

fw =
aw1

(uα − uw1
)

1
2
h

·
1

2
h+

aw2
(uβ − uw2

)
1
2
h

·
1

4
h

= aw1
(uα − uw1

) +
1

2
aw2

(uβ − uw2
)

where h = ∆x = ∆y.

Copyright c© Daniel Thomas Thorne Jr. 2003

23

Chapter 4

Analysis of Flux Matching

This chapter shows an analysis of the flux matching procedure and a comparison with an
alternate method using Taylor series expansion to approximate the fluxes across interfaces.
Also shown is a Taylor series derivation of the flux matching formula itself.

We compare the flux matching style operator with alternative stencil based operators
and with Taylor series based formulae. We would like to see what alternative formulations
are equivalent to the flux matching procedure, and we would like to see how the error of
alternative approaches compares with flux matching.

Note that in this chapter, the notation for grid points (e.g., t1) is used also as shorthand
for representing the value of the function there. This simplifies the notation and is more
readable.

The computations in the section are done in Matlab.

4.1 Stencil Version, Using Ghost Coarse Grid Point.

One obvious alternative to the flux matching approach that we implemented is to use ghost
points on the fine grid side of the interface. These are located on the fine grid side where
coarse grid points would be, and so they are referred to as ghost coarse grid points here.
The notation here is based on the illustration in Fig. 4.1. Let ta be the reference point,t
a = (0, 0). The ghost coarse grid point is illustrated by the big

⊗

. It is computed by

⊗

=
1

2

(

ϕS

(

1

2
h,

1

2
h
)

+ ϕN

(

1

2
h,

1

2
h
))

where ϕS is the 2D quadratic polynomial that interpolates the points ta, tb, tc, td, vS, vP ,
and ϕN is the 2D quadratic polynomial that interpolates ta, tb, tc, td, vN , vP . Quadratic
interpolation in 2D requires six coefficients, so the grid points used in the interpolation
are chosen as the closest six points to the interpolation point. We derive C1 quadratic
interpolation formula ϕS using

c0 + c1x+ c2y + c3xy + c4x
2 + c5y

2 = u(x, y),

where
























1 0 0 0 0 0
1 h 0 0 h2 0
1 0 h 0 0 h2

1 h h h2 h2 h2

1 5
2
h −3

2
h −15

4
h2

(

5
2
h
)2 (

3
2
h
)2

1 5
2
h 1

2
h 5

4
h2

(

5
2
h
)2 (

1
2
h
)2













































c0
c1
c2
c3
c4
c5





















=





















t
at
bt
ct
dv
Sv
P





















=⇒

24

x
a

x
c

¾ h -

x
b

e
1

x
d

e
2

~
S

~
P

h
1⊗1

h
2⊗2×2

×

×1

~
N

~
E

⊗

Figure 4.1: Flux matching





















c0
c1
c2
c3
c4
c5





















=





















t
a

−1
60h

(75 ta − 15 td + vS − 85 tb + 9 tc + 15 vP)
−1
4h
(7 ta + 5 td + vS − 5 tb − 7 tc − vP)

1
h2 (− tc + td − tb + ta)

1
60h2 (−15 td + vS − 25 tb + 9 tc + 15 ta + 15 vP)

1
4h2 (3 ta + 5 td + vS − 5 tb − 3 tc − vP)





















.

We derive C1 quadratic interpolation formula ϕN using

c0 + c1x+ c2y + c3xy + c4x
2 + c5y

2 = u(x, y),

where
























1 0 0 0 0 0
1 h 0 0 h2 0
1 0 h 0 0 h2

1 h h h2 h2 h2

1 5
2
h 5

2
h 25

4
h2

(

5
2
h
)2 (

5
2
h
)2

1 5
2
h 1

2
h 5

4
h2

(

5
2
h
)2 (

1
2
h
)2













































c0
c1
c2
c3
c4
c5





















=





















t
at
bt
ct
dv
Nv
P





















=⇒

25





















c0
c1
c2
c3
c4
c5





















=





















t
a

−1
60h

(69 ta − 25 td + vN − 75 tb + 15 tc + 15 vP)
−1
4h
(ta − 5 td + vN + 5 tb − tc − vP)

1
h2 (− tc + td − tb + ta)

1
60h2 (9 ta − 25 td + vN − 15 tb + 15 tc + 15 vP)

−1
4h2 (3 ta + 5 td − vN − 5 tb − 3 tc + vP)





















.

So

ϕS

(

1

2
h,

1

2
h
)

= c0 + c1(
1

2
h) + c2(

1

2
h) + c3(

1

2
h)(

1

2
h) + c4(

1

2
h)2 + c5(

1

2
h)2

= −
1

15
v
P +

2

3
t
b +

2

5
t
c

and

ϕN

(

1

2
h,

1

2
h
)

= c0 + c1(
1

2
h) + c2(

1

2
h) + c3(

1

2
h)(

1

2
h) + c4(

1

2
h)2 + c5(

1

2
h)2

=
2

5
t
a +

2

3
t
d −

1

15
v
P .

Then take the average

⊗

=
1

2

(

ϕS

(

1

2
h,

1

2
h
)

+ ϕN

(

1

2
h,

1

2
h
))

=
1

5
t
a +

1

3
t
d −

1

15
v
P +

1

3
t
b +

1

5
t
c.

And

ux
(

⊗

)

=
1

2h

(v
P −

(

1

5
t
a +

1

3
t
d −

1

15
v
P +

1

3
t
b +

1

5
t
c

))

=
32

15
v
P −

2

5
t
a −

2

3
t
d −

2

3
t
b −

2

5
t
c.

This is very dissimilar to the flux matching formula (§4.3).
Alternatively, the ghost coarse grid point could be computed in stages by 1D interpola-

tion. In particular, compute

⊗

=
1

2
(d1 + d2)

=
1

2

(

1

30
(12 ta + 20 tb − 2 f1) + 1

30
(12 tc + 20 td − 2 f2)

)

=
1

2

(

2

5
t
a +

2

3
t
b +

2

5
t
c +

2

3
t
d +
−1

15

(

5

32
v
S +
−3

32
v
N +

15

16
v
P

)

+
−1

15

(

−3

32
v
S +

5

32
v
N +

15

16
v
P

))

=
1

5
t
a +

1

3
t
b +

1

5
t
c +

1

3
t
d +
−1

480
v
N +
−1

16
v
P +
−1

480
v
S

and then

ux (×) =
1

2h

(v
P −

⊗

)

=
1

h

(

−1

10
t
a +
−1

6
t
b +
−1

10
t
c +
−1

6
t
d +

1

960
v
N +

17

32
v
P +

1

960
v
S

)

,

26

but that is not quite the same as the flux matching formula (§4.3). Notice that 15
960

ths of
the weight from vN and vS has been shifted to vP when compared with the flux matching
formula.

4.2 Stencil Version, Averaging Two Coarse Grid Sized

Fluxes

Another alternative to the flux matching procedure that we implemented is to average two
coarse grid sized fluxes instead of two fine grid sized fluxes. That is, compute the flux ux (×)
as the average of

ux (×1) =
1

2h
(f1 − d1)

and

ux (×2) =
1

2h
(f2 − d2)

where

u (f1) = 5

32
v
S −

3

32
v
N +

15

16
v
P

and

u (f2) = −3
32
v
S +

5

32
v
N +

15

16
v
P

and

u (d1) = 1

30
(12 ta + 20 tb − 2 f1)

and

u (d2) = 1

30
(12 tc + 20 td − 2 f2) .

So

ux (×) =
1

2
(ux (×1) + ux (×2))

=
1

4h

((f
1 −

1

30
(12 ta + 20 tb − 2 f1)

)

+
(f

2 −
1

30
(12 tc + 20 td − 2 f2)

))

=
1

h

(

4

15
f
1 −

1

10
t
a −

1

6
t
b +

4

15
f
2 −

1

10
t
c −

1

6
t
d

)

=
1

h

(

−1

10
t
a +
−1

6
t
b +
−1

10
t
c +
−1

6
t
d +

4

15

(

5

32
v
S −

3

32
v
N +

15

16
v
P

)

+
4

15

(

−3

32
v
S +

5

32
v
N +

15

16
v
P

))

=
1

h

(

−1

10
t
a +
−1

6
t
b +
−1

10
t
c +
−1

6
t
d +

1

60
v
N +

1

2
v
P +

1

60
v
S

)

,

which is identical to the flux matching formula (see the next section, §4.3). It is not as useful
in the implementation, though, because it does not address the operator on the fine grid side.
The ghost points that are computed for the original flux matching procedure are still needed
in order to apply the stencil on the fine grid side, and those grid points constitue a large
part of what is involved in computing the flux matching formula, so it would be absurdly
inefficient to recompute the fluxes from scratch.

27

4.3 Flux Matching Version

Let ta be the reference point, ta = (0, 0). We need to compute ⊗1 and ⊗2. For the f1
points, we derive a C1 quadratic interpolation formula using

c0 + c1x+ c2x
2 = u(x),

where






1 0 0

1 2h (2h)2

1 4h (4h)2













c0
c1
c2





 =







v
Sv
Pv
N





⇒







c0
c1
c2





 =









v
S

1
h

(v
P −

1
4
v
N −

3
4
v
S

)

1
h2

(

1
8
v
N −

1
4
v
P + 1

8
v
S

)









.

Then

u (f1) = c0 + c1

(

3

2
h
)

+ c2

(

3

2
h
)2

=
5

32
v
S −

3

32
v
N +

15

16
v
P ,

and

u (f2) = c0 + c1

(

5

2
h
)

+ c2

(

5

2
h
)2

=
−3

32
v
S +

5

32
v
N +

15

16
v
P ,

For the ⊗ points, we derive a C1 quadratic interpolation formula using

c0 + c1x+ c2x
2 = u(x),

where








1 0 0
1 h h2

1 5
2
h

(

5
2
h
)2















c0
c1
c2





 =







t
at
bf
i





⇒







c0
c1
c2





 =









t
a

− 1
15h

(21 ta − 25 tb + 4 fi)
2

15h2 (3 ta − 5 tb + 2 fi)









,

so

u(⊗1) = c0 + c1 (2h) + c2 (2h)
2

=
−1

5
t
a +

8

15
f
1 +

2

3
t
b

= −
1

5
t
a +

2

3
t
b +

1

12
v
S −

1

20
v
N +

1

2
v
P

and

u(⊗2) = c0 + c1 (2h) + c2 (2h)
2

=
−1

5
t
c +

8

15
f
2 +

2

3
t
d

= −
1

5
t
c +

2

3
t
d −

1

20
v
S +

1

12
v
N +

1

2
v
P .

so

ux (×) =
1

2h
(u(⊗1)− tb + u(⊗2)− td)

=
1

h

(

−1

10
t
a +
−1

6
t
b +

1

24
v
S +
−1

40
v
N +

1

4
v
P

+
−1

10
t
c +
−1

6
t
d +
−1

40
v
S +

1

24
v
N +

1

4
v
P

)

=
1

h

(

−1

10
t
a +
−1

6
t
b +
−1

10
t
c +
−1

6
t
d +

1

60
v
N +

1

2
v
P +

1

60
v
S

)

28

This is a single simple expression for computing the approximation of the flux that the flux
matching process gives. It is not used in the code, though, for the same reason as in §4.2.
The ghost points that are needed in order to apply the stencil on the fine grid side constitue
a large part of what is involved in computing this flux matching formula, so it would be
absurdly inefficient to recompute the fluxes from scratch.

4.4 Computing Flux Across Interface Directly Via Tay-

lor’s Series

There are a variety of ways to compute the fluxes using Taylor series. This section examines
three ways. The main difference is in the number of grid points that are used. We begin with
a case using only a few grid points and end up uith an example that uses all of the same grid
points that are used in the flux matching formula (including those used in the ghost point
computation) and show how the flux matching formula can be derived from Taylor series
expansions. We assume, throughout this section, the boundedness of all relevant derivatives
when using the big-O notation to express the order of the truncation error.

Note that, in this section, we more use rigorous notation than in the other sections,
because it is helpful for clarity when writing out the Taylor series expansions. There are
new illustrations to facilitate this, with the grid points labelled with indices. After each
derivation, the corresponding expression in the notation from Fig. 4.1 is be given.

4.4.1 Taylor Series Expansion With Three Points

The most natural method for computing the flux across the interface is to use Taylor series
expansions with respect to the two adjacent fine grid points and the one adjacent coarse grid
point as illustrated in Fig. 4.2. For the south flux,

x
i− 1

2
,j

x
i− 1

2
,j+1

~
i+1,j+ 1

2

⊗
i,j+1

⊗

i,j+ 1

2

⊗
ij

¾ h -

Figure 4.2: Interface, Small

ui− 1

2
,j = uij −

1
2
hux + 0 + 1

8
h2uxx + 0 + · · ·

ui+1,j+ 1

2
= uij + hux +

1
2
huy +

1
2
h2uxx +

1
8
h2uyy + · · ·

ui− 1

2
,j+1 = uij −

1
2
hux + huy +

1
8
h2uxx +

1
2
h2uyy + · · ·















=⇒

2ui+1,j+ 1

2
− ui− 1

2
,j − ui− 1

2
,j+1 = 3hux(⊗ij) +

3

4
h2uxx −

1

4
h2uyy

29

so

ux(⊗ij) =
2ui+1,j+ 1

2
− ui− 1

2
,j − ui− 1

2
,j+1

3h
+O(h2).

For the north flux,

ui− 1

2
,j = ui,j+1 −

1
2
hux − huy +

1
8
h2uxx +

1
2
h2uyy + · · ·

ui+1,j+ 1

2
= ui,j+1 + hux −

1
2
huy +

1
2
h2uxx +

1
8
h2uyy + · · ·

ui− 1

2
,j+1 = ui,j+1 −

1
2
hux + 0 + 1

8
h2uxx + 0 + · · ·















=⇒

2ui+1,j+ 1

2
− ui− 1

2
,j − ui− 1

2
,j+1 = 3hux(⊗i,j+1) +

3

4
h2uxx −

1

4
h2uyy

so

ux(⊗i,j+1) =
2ui+1,j+ 1

2
− ui− 1

2
,j − ui− 1

2
,j+1

3h
+O(h).

Symmetry gives the same formula for both of the fine fluxes. The error is very large because
of this, as illustrated in 4.6. There is nothing to do about it, though. Both fine grid points
are needed in order to cancel out the uy term, so there is no way to obtain asymmetric
expansions for the two fine fluxes. The next section explores possibilities with a couple more
grid points worth of information to work with.

4.4.2 Taylor Series Expansion With Five Points

In this section, a little more information from the fine grid is added, as shown in Fig. 4.3. If

x
i− 3

2
,j

x
i− 3

2
,j+1

x
i− 1

2
,j

x
i− 1

2
,j+1

~
i+1,j+ 1

2

⊗
i,j+1

⊗

i,j+ 1

2

⊗
ij

¾ h -

Figure 4.3: Interface, Medium

we use all the points as in the last section, symmetry gives the same formula for both of the
fine fluxes, ux(⊗ij) and ux(⊗i,j+1) . Consider the ux(⊗ij) case. The expansions are

ui− 3

2
,j = uij −

3
2
hux + huy +

9
8
h2uxx +

1
2
h2uyy + · · ·

ui− 1

2
,j = uij −

1
2
hux + huy +

1
8
h2uxx +

1
2
h2uyy + · · ·

ui+1,j+ 1

2
= uij + hux +

1
2
huy +

1
2
h2uxx +

1
8
h2uyy + · · ·

ui− 3

2
,j+1 = uij −

1
2
hux + 0 + 1

8
h2uxx + 0 + · · ·

ui− 1

2
,j+1 = uij −

3
2
hux + 0 + 9

8
h2uxx + 0 + · · ·



































.

There are several ways to combine these to get a valid formula. Table 4.1 shows the different
combinations up to the second order terms. The second one has the smallest error:

30

t
i− 3

2
,j+1
t
i− 1

2
,j+1
v
i+ 1

2
,j+ 1

2

t
i− 1

2
,j
t
i− 3

2
,j ux uxx uyy

−1 −1 4 −1 −1 8h − 1
2
h2 −1

2
h2

−1
2

−1 3 −1 −1
2

11
2
h 1

8
h2 −3

8
h2

−1 −1
2

3 −1
2

−1 13
2
h −7

8
h2 −3

8
h2

−1 −1
2

3 −1 −1
2

6h −3
8
h2 −3

8
h2

−1
2

−1 3 −1
2

−1 6h −3
8
h2 −3

8
h2

Table 4.1: Combinations for expansions of points in Fig. 4.3

−
1

2
ui− 3

2
,j+1 − ui− 1

2
,j+13ui+1,j+ 1

2
− ui− 1

2
,j −

1

2
ui− 3

2
,j =

11

2
hux +

1

8
h2uxx −

3

8
h2uyy =⇒

ux (⊗ij) =
2

11h

(

−
1

2
ui− 3

2
,j+1 − ui− 1

2
,j+1 + 3ui+1,j+ 1

2
− ui− 1

2
,j −

1

2
ui− 3

2
,j

)

+O(h).

The error terms are smaller than in the last section, but still of the same order.
We do not have to use all of the points to approximate each flux, now, though. We can

choose a different set of points for the different fluxes. For the south flux, we could use

ui− 1

2
,j = uij −

1
2
hux + 0 + 1

8
h2uxx + 0 + · · ·

ui+1,j+ 1

2
= uij + hux +

1
2
huy +

1
2
h2uxx +

1
8
h2uyy + · · ·

ui− 3

2
,j+1 = uij −

3
2
hux + huy +

9
8
h2uxx+ 1

2
h2uyy + · · ·















=⇒

2ui+1,j+ 1

2
− ui− 1

2
,j − ui− 3

2
,j+1 = 4hux −

1

4
h2uxx −

1

4
h2uyy =⇒

ux(⊗ij) =
2ui+1,j+ 1

2
− ui− 1

2
,j − ui− 3

2
,j+1

4h
+O(h).

And then for the north flux, we could use

ui− 3

2
,j = ui,j+1 −

3
2
hux − huy +

9
8
h2uxx +

1
2
h2uyy + · · ·

ui+1,j+ 1

2
= ui,j+1 + hux −

1
2
huy +

1
2
h2uxx +

1
8
h2uyy + · · ·

ui− 1

2
,j+1 = ui,j+1 −

1
2
hux + 0 + 1

8
h2uxx + 0 + · · ·















=⇒

2ui+1,j+ 1

2
− ui− 3

2
,j − ui− 1

2
,j+1 = 4hux −

1

4
h2uxx −

1

4
h2uyy =⇒

ux(⊗i,j+1) =
2ui+1,j+ 1

2
− ui− 3

2
,j − ui− 1

2
,j+1

4h
+O(h).

Then the average is

1

2
(ux (⊗i,j) + ux (⊗i,j+1)) =

1

8h

(

4ui+1,j+ 1

2
− ui− 3

2
,j+1 − ui− 1

2
,j+1 − ui− 3

2
,j − ui− 1

2
,j

)

.

This can be rewritten in the notation from Fig. 4.1 as

ux(×) =
1

8h
(4 vP − ta − tb − tc − td) .

This gives unique approximations for both fine fluxes, but the error is still comparable to
the previous approximations. We will have to go ahead and include expansions of all of the
points from the flux matching formulation in order to see substantial improvement of the
truncation error.

31

4.4.3 Taylor Series Expansion With Seven Points

In this section, we use additional coarse grid data, as shown in Fig. 4.4, and we choose

x
i− 3

2
,j

x
i− 3

2
,j+1

¾ h -

x
i− 1

2
,j

x
i− 1

2
,j+1

~
i+1,j− 3

2

~
i+1,j+ 1

2

⊗
i,j+1

⊗

i,j+ 1

2

⊗
ij

~
i+1,j+ 5

2

Figure 4.4: Interface, Large

the weighting for the expansions specifically for the purpose of obtaining exactly the flux
matching formula. For the south flux, ux(⊗ij),

ui− 3

2
,j = uij −

3
2
hux + 0 + 27

8
h2uxx + 0− 9

48
h3uxxx + 0 + · · ·

ui− 1

2
,j = uij −

1
2
hux + 0 + 1

8
h2uxx + 0− 1

48
h3uxxx + 0 + · · ·

ui+1,j+ 5

2
= uij + hux +

5
2
huy +

1
2
h2uxx +

25
8
uyy +

1
6
h3uxxx +

125
48
h3uyyy + · · ·

ui+1,j+ 1

2
= uij + hux +

1
2
huy +

1
2
h2uxx +

1
8
h2uyy +

1
6
h3uxxx +

1
48
h3uyyy + · · ·

ui+1,j− 3

2
= uij + hux −

3
2
huy +

1
2
h2uxx +

9
8
h2uyy +

1
6
h3uxxx −

27
48
h3uyyy + · · ·



































=⇒

−12ui− 3

2
,j−20ui− 1

2
,j−3ui+1,j+ 5

2
+30ui+1,j+ 1

2
+5ui+1,j− 3

2
= 60hux+

25

2
h3uxxx−10h3uyyy =⇒

ux (⊗ij) =
1

60h

(

−12ui− 3

2
,j − 20ui− 1

2
,j − 3ui+1,j+ 5

2
+ 30ui+1,j+ 1

2
+ 5ui+1,j− 3

2

)

+O(h2) =⇒

32

ux (⊗ij) =
1

h

(

−1

5
ui− 3

2
,j +
−1

3
ui− 1

2
,j +
−1

20
ui+1,j+ 5

2
+

1

2
ui+1,j+ 1

2
+

1

12
ui+1,j− 3

2

)

+O(h2).

For the north flux, ux(⊗i,j+1),

ui+1,j+ 5

2
= ui,j+1 + hux +

3
2
huy +

1
2
h2uxx +

9
8
h2uyy +

1
6
h3uxxx +

27
48
h3uyyy + · · ·

ui+1,j+ 1

2
= ui,j+1 + hux −

1
2
huy +

1
2
h2uxx +

1
8
h2uyy +

1
6
h3uxxx −

1
48
h3uyyy + · · ·

ui+1,j− 3

2
= ui,j+1 + hux −

5
2
huy +

1
2
h2uxx +

25
8
h2uyy +

1
6
h3uxxx −

125
48
h3uyyy + · · ·

ui− 3

2
,j+1 = ui,j+1 −

3
2
hux + 0 + 9

8
h2uxx + 0− 27

48
h3uxxx + 0 + · · ·

ui− 1

2
,j+1 = ui,j+1 −

1
2
hux + 0 + 1

8
h2uxx + 0− 1

48
h3uxxx + 0 + · · ·



































=⇒

+5ui+1,j+ 5

2
+30ui+1,j+ 1

2
−3ui+1,j− 3

2
−12ui− 3

2
,j+1−20ui− 1

2
,j+1 = 60hux+

25

2
h3uxxx+10h3uyyy =⇒

ux (⊗i,j+1) =
1

60h

(

+5ui+1,j+ 5

2
+ 30ui+1,j+ 1

2
− 3ui+1,j− 3

2
− 12ui− 3

2
,j+1 − 20ui− 1

2
,j+1

)

+O(h2) =⇒

ux (⊗i,j+1) =
1

h

(

1

12
ui+1,j+ 5

2
+

1

2
ui+1,j+ 1

2
+
−1

20
ui+1,j− 3

2
+
−1

5
ui− 3

2
,j+1 +

−1

3
ui− 1

2
,j+1

)

+O(h2).

Then the average is

1

2
(ux (⊗i,j) + ux (⊗i,j+1)) =

1

2h

(

−1

5
ui− 3

2
,j +
−1

3
ui− 1

2
,j +
−1

20
ui+1,j+ 5

2
+

1

2
ui+1,j+ 1

2
+

1

12
ui+1,j− 3

2

)

+
1

2h

(

1

12
ui+1,j+ 5

2
+

1

2
ui+1,j+ 1

2
+
−1

20
ui+1,j− 3

2
+
−1

5
ui− 3

2
,j+1 +

−1

3
ui− 1

2
,j+1

)

=
1

h

(

−1

10
ui− 3

2
,j +
−1

6
ui− 1

2
,j +
−1

40
ui+1,j+ 5

2
+

1

4
ui+1,j+ 1

2
+

1

24
ui+1,j− 3

2

+
1

24
ui+1,j+ 5

2
+

1

4
ui+1,j+ 1

2
+
−1

40
ui+1,j− 3

2
+
−1

10
ui− 3

2
,j+1 +

−1

6
ui− 1

2
,j+1

)

=
1

h

(

−1

10
ui− 3

2
,j +
−1

6
ui− 1

2
,j +
−1

10
ui− 3

2
,j+1 +

−1

6
ui− 1

2
,j+1

+
1

60
ui+1,j+ 5

2
+

1

2
ui+1,j+ 1

2
+

1

60
ui+1,j− 3

2

)

.

This can be rewritten in the notation from Fig. 4.1 as

ux(×) =
1

h

(

−1

10
t
a +
−1

6
t
b +
−1

10
t
c +
−1

6
t
d +

1

60
v
N +

1

2
v
P +

1

60
v
S

)

which is exactly the flux matching formula as derived in §4.3. Notice how the second or-
der terms cancel, thus improving the truncation error substantially over that of the other
approximations.

4.4.4 Example

Here we compute the approximation of the fluxes across an interface and compare the results
from the small Taylor series expasion from §4.4.1 and the flux matching formula of §4.3.

The coarse grid is 64 × 64 and the fine grid is 64 × 128. The fine grid is located all the
way to one side of the coarse grid, so the interface runs down the entire length of the middle

33

0 20 40 60 80 100 120

−3

−2

−1

0

1

2

3

x 10
−5

x

y

Error in ghost points

Figure 4.5: Error in the ghost point interpolation.

of the composite grid. The solutions function is sin(1.5πx) sin(2πy) so the true flux across
the interface (at x = .5) is 1.5π cos(.75π) sin(2πy).

First, Fig. 4.5 shows the error in the ghost point interpolation process which is the first
step in the flux matching process.

The top frames in Fig. 4.6 show the error in the fluxes as approximated by the two
procedures. The error is shown for the fine side fluxes and the coarse side fluxes. The red
line is flux matching procedure, and the green line is the small Taylor series expansion. The
bottom frames show the actual approximated fluxes. The true fluxes are plotted here in
black, but it is mostly covered by the flux matching approximation.

We expect the error for the small Taylor series approach to be larger than flux matching
based on the analysis of the previous sections, and the plots show that it is. In fact, the error
in the approximation by the small Taylor series expansion is not only very large compared
to the error in the flux matching approximation but is very oscillatory also, in the case of
the fine side fluxes.

This oscillation is exposed even more dramatically in the error for the operator using these
flux approximations. The error in the operator is shown in the upper frames of Fig. 4.7. The
true values of the operator are plotted in black in the lower frames. Again, it coincides very
closely with the flux matching based approximation.

Fig. 4.8 shows the behavior of the error in the approximate fluxes as the grid resolution

34

0 50 100 150
−0.1

−0.05

0

0.05

0.1

x

y

Error in fine fluxes

0 20 40 60 80
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

x

y

Error in coarse fluxes

0 50 100
−4

−2

0

2

4

x

y

Fine fluxes

0 20 40 60
−4

−2

0

2

4

x

y

Coarse fluxes

Figure 4.6: Error in the fluxes. The red (solid) line is for the flux matching procedure, and
the green (dashed) line is for the small Taylor series expansion. The top two frames show
errors. The error in the flux matching procedure is close to zero, whereas the error in the
Taylor series expansion varies wildly from zero. The bottom two plots show the values of
the fluxes. To the eye they appear nearly identical, but the Taylor series approximation is
different and it oscillates a little bit on the fine grid side. The true fluxes are plotted in black
in the two lower plots, but it is mostly covered by the flux matching approximation.

35

0 50 100 150
−15

−10

−5

0

5

10

15

x

y

Error in fine side operators

0 20 40 60 80
−1

−0.5

0

0.5

1

x

y

Error in coarse side operators

0 20 40 60 80
−50

0

50

x

y

Coarse side operators at interface

0 50 100 150
−50

0

50

x

y

Fine side operators at interface

Figure 4.7: Error in the operator. The red (solid) line is for the flux matching based approx-
imation to the operator, and the green (dashed) line is for the small Taylor series expansion
based approximation to the operator. The top two frames show errors. The error in the
flux matching based approximation is close to zero, whereas the error in the Taylor series
based approximation varies wildly from zero. The bottom two plots show the values of the
fluxes. The Taylor series based approximation oscillates a lot on the fine grid side and is
noticeably inaccurate even to the eye on the coarse grid side. The true values of the operator
are plotted in black in the two lower plots, but they coincides closely with the flux matching
approximation.

36

1 2 3 4 5 6 7 8
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Flux Matching versus Taylor Series −− Error in the fluxes

||t
ru

e
−

 a
pp

ro
x|

| 2

log
2
(nj) − 2

Taylor across fine cell walls.

Taylor across coarse cell walls.

Flux maching across coarse cell walls.

Flux maching across fine cell walls.

Figure 4.8: Error in the fluxes as grid size increases. The horizontal axis is the grid size
measured on the coarse grid and ranges over coarse grids of size 8× 8 to 210 × 210 with the
dimensions doubling at each step.

increases. The error decreases in all cases, and the error in the flux matching version decreases
faster, as expected. The horizontal axis is the grid size measured on the coarse grid and ranges
over coarse grids of size 8× 8 to 210 × 210 with the dimensions doubling at each step.

Fig. 4.9 shows the behavior of the error in the approximate operator values as the grid
resolution increases. The grid resolutions are the same as in Fig. 4.8. The flux matching base
approximations decrease nicely. Surprisingly, the small Taylor series based approximations
do not decrease. This dispels any doubt about the merit of the more complicated flux
matching procedure over the simple approach.

Copyright c© Daniel Thomas Thorne Jr. 2003

37

1 2 3 4 5 6 7 8
10

−1

10
0

10
1

10
2

10
3

Flux Matching versus Taylor Series −− Error in the operator

||t
ru

e−
ap

pr
ox

|| 2

log
2
(nj)−2

Figure 4.9: Error in the operator as grid size increases. The horizontal axis is the grid size
measured on the coarse grid and ranges over coarse grids of size 8× 8 to 210 × 210 with the
dimensions doubling at each step.

38

Chapter 5

Tools for 3D AMRMG

This chapter outlines the machinery needed to implement the AMRMG algorithm in 3D for
both constant and variable coefficient.

5.1 Tools For Constant Coefficient Problems

This section illustrates the tools needed for the 3D AMRMG algorithm using an example of
a constant coefficient Poisson problem

∆φ = ρ

on a cubic domain
Ω = [0, 1]3

with Dirichlet boundary conditions

φ = γ on ∂Ω.

This material is analogous to the tools presented for the 2D example in Ch. 3.

5.1.1 3D Stencils

In the interior of Ω`, we have the standard seven point stencil:

(∆φ)ijk = (φi+1 + φi−1 + φj+1 + φj−1 + φk+1 + φk−1 − 6φijk)h
−2.

On the physical boundaries, we must incorporate boundary values. For instance, on the
side boundary in the negative x-direction (i = 0), we have

(∆φ)0jk =
(

4

3
φ1 +

8

3
φ− 1

2
+ φj+1 + φj−1 + φk+1 + φk−1 − 8φ0jk

)

h−2,

at the edge boundary in the negative x-direction (i = 0) and positive y-direction (j = N)
we have

(∆φ)0Nk =
(

4

3
φ1 +

8

3
φ− 1

2
+

8

3
φN+ 1

2
+

4

3
φN−1 + φk+1 + φk−1 − 10φ0Nk

)

h−2,

and at the corner boundary where (i, j, k) = (0, N,N), we have

(∆φ)0NN =
(

4

3
φ1 +

8

3
φ− 1

2
+

8

3
φN+ 1

2
+

4

3
φN−1 +

8

3
φN+ 1

2
+

4

3
φN−1 − 12φ0NN

)

h−2.

Symmetry gives the rest of the boundary stencils trivially.

39

h

hh

h

h

®

®

®

®

h

hh h

h

h h

~

~~~

~ ~

~ ~~
Figure 5.1: 3D Interpolation of Ghost Points, Step 1.

5.1.2 Interpolation of Ghost Points in 3D

Consider Figs. 5.1 and 5.2. Only one dimensional, quadratic interpolation and extrapolation
is used. First (Fig. 5.1), coarse grid points are used to calculate values at the epoints, which
are used in turn to calculate the values at the ® points. The formula for these interpolations
is the same as in Step 1 of §3.1.2 for the 2D case of one coarse-fine interface. Second (Fig. 5.2),
we use these ® points and two existing fine grid points to get ghost point values at the ⊗
points, which correspond to where fine grid points would be if the fine grid extended that
far. The formula for the interpolation of the ⊗ points is the same as in Step 2 of §3.1.2 for
the 2D case. Fig. 5.2 shows the stencil for the interpolation of just one of the four ⊗ points.
The amount of illustration on the coarse grid side has been kept to a minimum with the
intention of clarifying the context of the illustration without obfuscating its main purpose in
conveying the ⊗ point interpolation stencil.

This procedure can be modified easily, in ways analogous to the 2D case, to accomodate
cells that abut physical boundaries and cells that are adjacent to more than one coarse-fine
interface.

See Ch. 6 for a more detailed look at the ghost point interpolation procedure and a
derivation of a one step single formula for the ⊗ points.

40



................

................

................

................

....

...

....
...
...
...
...
.

...
...
...
..

...
...
...
..

......

.....

......

..................

..................

...................

........................

........................

........................

........................

⊗ ®

¡
¡¡
¡
¡¡

¡
¡
¡
¡¡

¡
¡

¡
¡¡

d

d

d

dt t

z

zz

z

z

z

z

z

z

Figure 5.2: 3D Interpolation of Ghost Points, Step 2.

5.1.3 Flux Matching in 3D

Flux matching is used to avoid one-sided derivatives at grid points adjacent to refinement
patches and preserve C1 continuity across the interface between refinement levels. The
computations in this section involve values interpolated at the ghost points ⊗ from §5.1.2.
For the purposes of flux matching, the general form of the operator is written in terms of
the fluxes across each of the six cell walls

(∆φ`)ijk =
1

h`

(

f `i+ 1

2

− f `i− 1

2

+ f `j+ 1

2

− f `j− 1

2

+ f `k+ 1

2

− f `k− 1

2

)

where
f `
i+ 1

2
,j,k

= (φ`i+1,j,k − φ`ijk)h
−1
` ,

f `
i− 1

2
,j,k

= (φ`ijk − φ`i−1,j,k)h
−1
` ,

f `
i,j+ 1

2
,k
= (φ`i,j+1,k − φ`ijk)h

−1
` ,

f `
i,j− 1

2
,k
= (φ`ijk − φ`i,j−1,k)h

−1
` ,

f `
i,j,k+ 1

2

= (φ`i,j,k+1 − φ`ijk)h
−1
` ,

f `
i,j,k− 1

2

= (φ`ijk − φ`i,j,k−1)h
−1
` .

Suppose the coarse-fine interface is in the negative x-direction from the coarse grid point at
which the operator is being applied. This is illustrated in Fig. 5.3. Then the flux across the
interface is computed by

f `
i− 1

2
,j,k

= 1
4

(

1
h`+1 (δ1 + δ2 + δ3 + δ4)

)

41



¡
¡
¡
¡¡

¡
¡
¡
¡¡

¡
¡

¡
¡¡

z
t

t
t

t

⊗1

⊗2

⊗3

⊗4

Figure 5.3: Flux Matching in 3D. The coarse grid point where the operator is being applied
is shown for reference.

where
δ1 = φ`+1

⊗1
− φ`+1

2(i−1),2j−1,2k−1

δ2 = φ`+1
⊗2
− φ`+1

2(i−1),2j,2k−1

δ3 = φ`+1
⊗3
− φ`+1

2(i−1),2j−1,2k

δ4 = φ`+1
⊗4
− φ`+1

2(i−1),2j,2k.

Application of the operator at cells that abut physical boundaries and cells that are adjacent
to more than one coarse-fine interface are achieved by simple modifications analogous to
those in the 2D case.

5.2 Tools For Variable Coefficient Problems

Here we show the tools needed for the 3D variable coefficient problem. This section uses the
directions east, west, north, south, up, and down as the basis for subscripts in the stencils
and formulae. East and west are the positive and negative x-directions. North and south
are the positive and negative y-directions. Up and down are the positive and negative z-
directions. The abbreviations e, w, n, s, u, and d are used as subscripts. The abbreviations
E, W , N , S, U , and D are used as references to the faces of a cell and can be combined to
refer to edges and corners (e.g., NW edge and DSW corner).

5.2.1 3D Stencils

This section gives a representative stencil for each case: interior, face, edge, and corner. The
formulae for the other orientations of each case are symmetric.

The illustrations show the boundary regions of the control volume in each case. The axes
are positioned to correspond to the DSW corner of the cell (see the above introduction to
§5.2 for an explanation of the notation).

Each term on the left hand side of the discretizations comes from approximating the
integral of the normal over one of the regions. The term on the right hand side comes from
approximating the integral over the entire control volume.

42



Interior

See Fig. 5.4 for the integration regions corresponding to a control volume of an interior cell.

W

-6
y

z
S

-6
x

z
D

-6
x

y

E

-6
y

z
N

-6
x

z
U

-6
x

y

Figure 5.4: Integration regions for variable coefficient stencil compution for interior cells.
These are the boundaries of the control volume.

Discretizing the integral form

−
∫

∂V
a
∂φ

∂n
=
∫

V
ρ

gives

an(φn − φo)

∆y
·∆x∆z −

as(φo − φs)

∆y
·∆x∆z +

ae(φe − φo)

∆x
·∆y∆z −

aw(φo − φw)

∆x
·∆y∆z +

au(φu − φo)

∆z
·∆x∆y −

ad(φo − φd)

∆z
·∆x∆y +

= −∆x∆y∆zρo,

which reduces to

(an + as + ae + aw + au + ad)φo − anφn − asφs − awφw − aeφe − auφu − adφd = h2ρo,

when h = ∆x = ∆y.

Face

See Fig. 5.5 for the integration regions corresponding to a control volume for a representative
face cell.

Discretizing the integral form

−
∫

∂V
a
∂φ

∂n
=
∫

V
ρ

43



W

-6
y

z
S

-6
x

z
D

-6
x

y

E

-6
y

z
N

-6
x

z
U

-6
x

y

Figure 5.5: Integration regions for variable coefficient stencil compution for cells on the east
face. These are the boundaries of the control volume.

gives

an(φn − φo)

∆y
·
3

4
∆x∆z −

as(φo − φs)

∆y
·
3

4
∆x∆z +

ae(φe − φo)
1
2
∆x

·∆y∆z −
aw(φo − φw)

∆x
·∆y∆z +

au(φu − φo)

∆z
·
3

4
∆x∆y −

ad(φo − φd)

∆z
·
3

4
∆x∆y +

= −
3

4
∆x∆y∆zρo,

which reduces to
(

an + as +
8

3
ae +

4

3
aw + au + ad

)

φo − anφn − asφs

−
4

3
awφw −

8

3
aeφe

− auφu − adφd = h2ρo,

when h = ∆x = ∆y.

Edge

See Fig. 5.6 for the integration regions corresponding to a control volume for a representative
edge cell.

Discretizing the integral form

−
∫

∂V
a
∂φ

∂n
=
∫

V
ρ

gives

an(φn − φo)

∆y
·
3

4
∆x

3

4
∆z −

as(φo − φs)

∆y
·
3

4
∆x

3

4
∆z +

44



W

-6
y

z S

-6
x

z
D

-6
x

y

E

-6
y

z N

-6
x

z
U

-6
x

y

Figure 5.6: Integration regions for variable coefficient stencil compution for cells on the UE
edge. These are the boundaries of the control volume.

ae(φe − φo)
1
2
∆x

·∆y
3

4
∆z −

aw(φo − φw)

∆x
·∆y

3

4
∆z +

au(φu − φo)
1
2
∆z

·
3

4
∆x∆y −

ad(φo − φd)

∆z
·
3

4
∆x∆y +

= −
(

3

4

)2

∆x∆y∆zρo,

which reduces to

(

an + as +
8

3
ae +

4

3
aw +

8

3
au +

4

3
ad

)

φo − anφn − asφs

−
3

4
awφw −

3

8
aeφe

−
3

8
auφu −

3

4
adφd = h2ρo,

when h = ∆x = ∆y.

Corner

See Fig. 5.7 for the integration regions corresponding to a control volume for a representative
corner cell.

Discretizing the integral form

−
∫

∂V
a
∂φ

∂n
=
∫

V
ρ

gives

an(φn − φo)
1
2
∆y

·
3

4
∆x

3

4
∆z −

as(φo − φs)

∆y
·
3

4
∆x

3

4
∆z +

45



W

-6
y

z S

-6
x

z

D

-6
x

y

E

-6
y

z N

-6
x

z

U

-6
x

y

Figure 5.7: Integration regions for variable coefficient stencil compution for cells on the UNE
corner. These are the boundaries of the control volume.

ae(φe − φo)
1
2
∆x

·
3

4
∆y

3

4
∆z −

aw(φo − φw)

∆x
·
3

4
∆y

3

4
∆z +

au(φu − φo)
1
2
∆z

·
3

4
∆x

3

4
∆y −

ad(φo − φd)

∆z
·
3

4
∆x

3

4
∆y +

= −
(

3

4

)3

∆x∆y∆zρo,

which reduces to

(

8

3
an +

4

3
as +

8

3
ae +

4

3
aw +

8

3
au +

4

3
ad

)

φo −
8

3
anφn −

3

4
asφs

−
3

4
awφw −

3

8
aeφe

−
3

8
auφu −

3

4
adφd = h2ρo,

when h = ∆x = ∆y.

5.2.2 Interpolation of Ghost Points in 3D

The ghost point interpolation procedure for the variable coefficient case is identical to the
one shown in §5.1.2 for the constant coefficient case.

5.2.3 Flux Matching in 3D

This section introduces the flux-matching computations. Flux matching is used to avoid
one-sided derivatives and preserve C1 continuity.

The following examples in this section are representative of the basic types of configura-
tion. For each example there are several other symmetric orientations for that configuration.

46



bα
w1
bβ
w2

bγ
w3
bδ
w4

W-6
y

z

b
s

S-6
x

z

b
d

D-6
x

y

b
e

E-6
y

z

b
n

N-6
x

z

b
U

U-6
x

y

Figure 5.8: Integration regions for an interior cell with one coarse-fine interface (at the
“west” cell wall) where flux matching is required. The little circles indicate the locations of
the variable coefficient values. The labels α, β, γ, and δ are used to specify the corresponding
ghost points used in the flux matching formula.

One Coarse-Fine Interface

Discretizing the integral form

−
∫

∂V
a
∂φ

∂n
=
∫

V
ρ

gives

−(fn − fs + fe − fw + fu − fd) = h3ρo,

where

fn =
an(φn − φo)

h
h2 = han(φn − φo)

fs =
as(φo − φs)

h
h2 = has(φo − φs)

fe =
ae(φe − φo)

h
h2 = hae(φe − φo)

fw =
aw1

(φα − φw1
)

1
2
h

1

4
h2 +

aw2
(φβ − φw2

)
1
2
h

1

4
h2 +

aw3
(φγ − φw3

)
1
2
h

1

4
h2 +

aw4
(φδ − φw4

)
1
2
h

1

4
h2

=
1

2
h (aw1

(φα − φw1
) + aw2

(φβ − φw2
) + aw3

(φγ − φw3
) + aw4

(φδ − φw4
))

fu =
au(φu − φo)

h
h2 = hau(φu − φo)

fd =
ad(φo − φd)

h
h2 = had(φo − φd)

and h = ∆x = ∆y.

47



bαw

w1
bβw

w2

bγw

w3
bδw
w4

W-6
y

z bαs

s1
bβs

s2

bγs

s3
bδs
s4

S-6
x

z

b
d

D-6
x

y

b
e

E-6
y

z

b
n

N-6
x

z

b
U

U-6
x

y

Figure 5.9: Integration regions for an interior cell with two coarse-fine interfaces (at the
“west” and “south” cell walls) where flux matching is required. The little circles indicate the
locations of the variable coefficient values. The labels α, β, γ, and δ are used to specify the
corresponding ghost points used in the flux matching formula.

Two Coarse-Fine Interfaces

Discretizing the integral form

−
∫

∂V
a
∂φ

∂n
=
∫

V
ρ

gives

−(fn − fs + fe − fw + fu − fd) = h3ρo,

where

fn =
an(φn − φo)

h
h2 = han(φn − φo)

fs =
as1(φαs

− φs1)
1
2
h

1

4
h2 +

as2(φβs
− φs2)

1
2
h

1

4
h2 +

as3(φγs
− φs3)

1
2
h

1

4
h2 +

as4(φδs − φs4)
1
2
h

1

4
h2

=
1

2
h (as1(φαs

− φs1) + as2(φβs
− φs2) + as3(φγs

− φs3) + as4(φδs − φs4))

fe =
ae(φe − φo)

h
h2 = hae(φe − φo)

fw =
aw1

(φαw
− φw1

)
1
2
h

1

4
h2 +

aw2
(φβw

− φw2
)

1
2
h

1

4
h2 +

aw3
(φγw

− φw3
)

1
2
h

1

4
h2 +

aw4
(φδw − φw4

)
1
2
h

1

4
h2

=
1

2
h (aw1

(φαw
− φw1

) + aw2
(φβw

− φw2
) + aw3

(φγw
− φw3

) + aw4
(φδw − φw4

))

fu =
au(φu − φo)

h
h2 = hau(φu − φo)

fd =
ad(φo − φd)

h
h2 = had(φo − φd),

and h = ∆x = ∆y.

48



Three Coarse-Fine Interfaces

bαw

w1
bβw

w2

bγw

w3
bδw
w4

W-6
y

z bαs

s1
bβs

s2

bγs

s3
bδs
s4

S-6
x

z bαd

d1
bβd

d2

bγd

d3
bδd
d4

D-6
x

y

b
e

E-6
y

z

b
n

N-6
x

z

b
U

U-6
x

y

Figure 5.10: Integration regions for an interior cell with three coarse-fine interfaces (at the
“west”, “south”, and “down” cell walls) where flux matching is required. The little circles
indicate the locations of the variable coefficient values. The labels α, β, γ, and δ are used
to specify the corresponding ghost points used in the flux matching formula.

Discretizing the integral form

−
∫

∂V
a
∂φ

∂n
=
∫

V
ρ

gives
−(fn − fs + fe − fw + fu − fd) = h3ρo,

where

fn =
an(φn − φo)

h
h2 = han(φn − φo)

fs =
as1(φαs

− φs1)
1
2
h

1

4
h2 +

as2(φβs
− φs2)

1
2
h

1

4
h2 +

as3(φγs
− φs3)

1
2
h

1

4
h2 +

as4(φδs − φs4)
1
2
h

1

4
h2

=
1

2
h (as1(φαs

− φs1) + as2(φβs
− φs2) + as3(φγs

− φs3) + as4(φδs − φs4))

fe =
ae(φe − φo)

h
h2 = hae(φe − φo)

fw =
aw1

(φαw
− φw1

)
1
2
h

1

4
h2 +

aw2
(φβw

− φw2
)

1
2
h

1

4
h2 +

aw3
(φγw

− φw3
)

1
2
h

1

4
h2 +

aw4
(φδw − φw4

)
1
2
h

1

4
h2

=
1

2
h (aw1

(φαw
− φw1

) + aw2
(φβw

− φw2
) + aw3

(φγw
− φw3

) + aw4
(φδw − φw4

))

fu =
au(φu − φo)

h
h2 = hau(φu − φo)

fd =
ad1(φαd

− φd1)
1
2
h

1

4
h2 +

ad2(φβd
− φd2)

1
2
h

1

4
h2 +

ad3(φγd
− φd3)

1
2
h

1

4
h2 +

ad4(φδd − φd4)
1
2
h

1

4
h2

=
1

2
h (ad1(φαd

− φd1) + ad2(φβd
− φd2) + ad3(φγd

− φd3) + ad4(φδd − φd4)) ,

49



and h = ∆x = ∆y.

One Coarse-Fine Interface At a Boundary

See Fig. 5.11 for the control volume regions with labels. The dashed lines indicate the
location of the boundary. The little circles indicate the locations of the variable coefficient
values. The labels α, β, γ, and δ are used to specify the corresponding ghost points used in
the flux matching formula.

bα
w1
bβ
w2

bγ
w3
bδ
w4

W-6
y

z

b
s

S-6
x

z

b
d

D-6
x

y

b
e

E-6
y

z

b
n

N-6
x

z

b
U

U-6
x

y

Figure 5.11: Integration regions at one boundary (the “north” boundary) with one coarse-
fine interface (at the “west” cell wall) where flux matching is required. The dashed lines
indicate the location of the boundary. The little circles indicate the locations of the variable
coefficient values. The labels α, β, γ, and δ are used to specify the corresponding ghost
points used in the flux matching formula.

Discretizing the integral form

−
∫

∂V
a
∂φ

∂n
=
∫

V
ρ

gives

−(fn − fs + fe − fw + fu − fd) =
3

4
h3ρo,

where

fn =
an(φn − φo)

1
2
h

h2 = 2han(0− φo) = −2hanφo

fs =
as(φo − φs)

h
h2 = has(φo − φs)

fe =
ae(φe − φo)

h

3

4
h2 =

3

4
hae(φe − φo)

fw =
aw1

(φα − φw1
)

1
2
h

1

4
h2 +

aw2
(φβ − φw2

)
1
2
h

1

4
h2 +

aw3
(φγ − φw3

)
1
2
h

1

8
h2 +

aw4
(φδ − φw4

)
1
2
h

1

8
h2

50



=
1

2
h (aw1

(φα − φw1
) + aw2

(φβ − φw2
)) +

1

4
h (aw3

(φγ − φw3
) + aw4

(φδ − φw4
))

fu =
au(φu − φo)

h

3

4
h2 =

3

4
hau(φu − φo)

fd =
ad(φo − φd)

h

3

4
h2 =

3

4
had(φo − φd),

and h = ∆x = ∆y.

Two Coarse-Fine Interfaces At a Boundary

See Fig. 5.12 for the control volume regions with labels. The dashed lines indicate the
location of the boundary. The little circles indicate the locations of the variable coefficient
values. The labels α, β, γ, and δ are used to specify the corresponding ghost points used in
the flux matching formula.

bαw

w1
bβw

w2

bγw

w3
bδw
w4

W-6
y

z

b
s

S-6
x

z

b
d

D-6
x

y

b
e

E-6
y

z

b
n

N-6
x

z bαu

φ1
bβu

φ2

bγu

φ3
bδu
φ4

U-6
x

y

Figure 5.12: Integration regions at one boundary (the“north”boundary) with two coarse-fine
interfaces (at the“west” cell wall and the“up”cell wall) where flux matching is required. The
dashed lines indicate the location of the boundary. The little circles indicate the locations of
the variable coefficient values. The labels α, β, γ, and δ are used to specify the corresponding
ghost points used in the flux matching formula.

Discretizing the integral form

−
∫

∂V
a
∂φ

∂n
=
∫

V
ρ

gives

−(fn − fs + fe − fw + fu − fd) =
3

4
h3ρo,

where

fn =
an(φn − φo)

1
2
h

h2 = 2han(0− φo) = −2hanφo

51



fs =
as(φo − φs)

h
h2 = has(φo − φs)

fe =
ae(φe − φo)

h

3

4
h2 =

3

4
hae(φe − φo)

fw =
aw1

(φαw
− φw1

)
1
2
h

1

4
h2 +

aw2
(φβw

− φw2
)

1
2
h

1

4
h2 +

aw3
(φγw

− φw3
)

1
2
h

1

8
h2 +

aw4
(φδw − φw4

)
1
2
h

1

8
h2

=
1

2
h (aw1

(φαw
− φw1

) + aw2
(φβw

− φw2
)) +

1

4
h (aw3

(φγw
− φw3

) + aw4
(φδw − φw4

))

fu =
aφ1

(φφ1
− φαu

)
1
2
h

1

4
h2 +

aφ2
(φφ2
− φβu

)
1
2
h

1

4
h2 +

aφ3
(φφ3
− φγu

)
1
2
h

1

8
h2 +

aφ4
(φφ4
− φδu)

1
2
h

1

8
h2

=
1

2
h (aφ1

(φφ1
− φαu

) + aφ2
(φφ2
− φβu

)) +
1

4
h (aφ3

(φφ3
− φγu

) + aφ4
(φφ4
− φδu))

fd =
ad(φo − φd)

h

3

4
h2 =

3

4
had(φo − φd),

and h = ∆x = ∆y.

One Coarse-Fine Interface At Two Boundaries

See Fig. 5.13 for the control volume regions with labels. The dashed lines indicate the
location of the boundary. The little circles indicate the locations of the variable coefficient
values. The labels α, β, γ, and δ are used to specify the corresponding ghost points used in
the flux matching formula.

bα
w1
bβ
w2

bγ
w3
bδ
w4

W-6
y

z

b
s

S-6
x

z

b
d

D-6
x

y

b
e

E-6
y

z

b
n

N-6
x

z

b
U

U-6
x

y

Figure 5.13: Integration regions at two boundaries (the “up” boundary and the “north”
boundary) with one coarse-fine interface (at the “west” cell wall) where flux matching is
required. The dashed lines indicate the location of the boundary. The little circles indicate
the locations of the variable coefficient values. The labels α, β, γ, and δ are used to specify
the corresponding ghost points used in the flux matching formula.

Discretizing the integral form

−
∫

∂V
a
∂φ

∂n
=
∫

V
ρ

52



gives

−(fn − fs + fe − fw + fu − fd) =
9

16
h3ρo,

where

fn =
an(φn − φo)

1
2
h

3

4
h2 =

3

2
han(0− φo) = −

3

2
hanφo

fs =
as(φo − φs)

h

3

4
h2 =

3

4
has(φo − φs)

fe =
ae(φe − φo)

h

9

16
h2 =

9

16
hae(φe − φo)

fw =
aw1

(φα − φw1
)

1
2
h

1

4
h2 +

aw2
(φβ − φw2

)
1
2
h

1

4
h2 +

aw3
(φγ − φw3

)
1
2
h

1

8
h2 +

aw4
(φδ − φw4

)
1
2
h

1

16
h2

=
1

4
h (aw1

(φα − φw1
) + aw2

(φβ − φw2
)) +

1

8
haw3

(φγ − φw3
) +

1

16
haw4

(φδ − φw4
)

fu =
au(φu − φo)

1
2
h

3

4
h2 =

3

2
hau(0− φo) = −

3

2
hauφo

fd =
ad(φo − φd)

h

3

4
h2 =

3

4
had(φo − φd),

and h = ∆x = ∆y.

Copyright c© Daniel Thomas Thorne Jr. 2003

53



Chapter 6

Ghost Point Interpolation Revisited

Ghost point interpolation was presented in §3 and §5 in a way that is useful for conveying
the process. It is not efficient for the implementation, though, especially in 3D. In the code,
we want one single simple expression for each ghost point without bothering with multiple
steps and intermediate values. This chapter derives single expressions for the ghost point
interpolation in both 2D and 3D. The systems of equations for the interpolation coefficients
in this chapter were all solved with Matlab.

Before continuing with the following sections, it is important to note some shorthand that
is employed to make the notation more readable. The notation for grid points, e.g., ta, is
used not only to denote a grid point but also to represent the value of the function at that grid
point. There is never any ambiguity regarding what function value is represented, because
this section deals specifically with interpolation of function values for a single function, the
function for which ghost points are required. In the code, this is usually the solution function,
although in the post-smoothing only case §7.4 it can also be the correction function. For
this discussion, the particular function involved is immaterial, because the derivation and
formulae are the same in either case.

6.1 2D

This section derives the ghost point interpolation in 2D. Ghost point interpolation in 2D is
derived in two phases. Phase one is described in §6.1.1. Phase two is described in §6.1.2.
It is the phase two ghost points that are required by the algorithm to apply the discrete
operator at interface points. In the final implementation, only phase two ghost points will
be stored. The intermediate ghost points are used only in the derivation of the final formula.

6.1.1 Phase One (Intermediate) Ghost Points

The intermediate ghost points are illustrated in Fig. 6.1.

We want a quadratic interpolation formula of the form

u(x) = c0 + c1x+ c2x
2,

where







1 0 0
1 2h (2h)2

1 4h (4h)2













c0
c1
c2





 =







v
1v
2v
3





⇒







c0
c1
c2





 =









v
1

1
h

(

−3
4
v
1 + v2 + −1

4
v
3

)

1
h2

(

1
8
v
1 −

1
4
v
2 +

1
8
v
3

)









.

54



x
a

x
c

¾ h -

x
b

x
d

~
1

~
2

h
1

h
2

~
3

Figure 6.1: Phase one ghost points

So

u( d1) = u
(

3

2
h
)

= c0 + c1

(

3

2
h
)

+ c2

(

3

2
h
)2

=
5

32
v
1 +

15

16
v
2 −

3

32
v
3.

and

u( d2) = u
(

5

2
h
)

= c0 + c1

(

5

2
h
)

+ c2

(

5

2
h
)2

=
−3

32
v
1 +

15

16
v
2 +

5

32
v
3.

55



6.1.2 Phase Two Ghost Points

The phase two ghost points are illustrated in Fig. 6.2. These are the ghost points used by

x
a

x
c

¾ h -

x
b

x
d

~
1

~
2

h
1

h
2

⊗

1

⊗

2

~
3

Figure 6.2: Phase two ghost points

the AMRMG algorithm for the discrete operator at coarse-fine interfaces.
We want a quadratic interpolation formula of the form

u(x) = c0 + c1x+ c2x
2,

where









1 0 0
1 h h2

1 5
2
h

(

5
2
h
)2















c0
c1
c2





 =







t
at
bd
1





⇒







c0
c1
c2





 =









t
a

1
h

(

−7
5
t
a −

−5
3
t
b +

−4
15
d
1

)

1
h2

(

2
5
t
a −

2
3
t
b +

4
15
d
1

)









.

So

u(⊗1) = u (2h)

56



= c0 + c1 (2h) + c2 (2h)
2

=
−1

5
t
a +

2

3
t
b +

8

15
d
1.

Likewise,

u(⊗2) =
−1

5
t
c +

2

3
t
d +

8

15
d
2.

Then substituting for d1 and d2 gives

u(⊗1) =
−1

5
t
a +

2

3
t
b +

1

12
v
1 +

1

2
v
2 +
−1

20
v
3

and

u(⊗2) =
−1

5
t
c +

2

3
t
d +
−1

20
v
1 +

1

2
v
2 +

1

12
v
3.

These final formulae are the ones used to implement the ghost point computations in the
code.

6.2 3D

This section derives the ghost point interpolation in 3D. Ghost point interpolation in 3D is
derived in three phases. Phase one and phase two are described in §6.2.1. Phase three is
described in §6.2.2 It is the phase three ghost points that are required by the algorithm to
apply the discrete operator at interface points. In the final implementation, only phase three
ghost points will be stored. The intermediate ghost points are used only in the derivation of
the final formula.

6.2.1 Phase One and Phase Two (Intermediate) Ghost Points

See Fig. 6.3 for the locations of phase one ghost points. The phase one ghost points are used
to interpolate the phase two ghost points. See Fig. 6.4 for the locations of phase two ghost
points. The phase two ghost points d1, d2, d3, and d4 are used in the §6.2.2, along with fine
grid points, to interpolate phase three ghost points. Phase three ghost points are the only
ghost points needed by the AMRMG algorithm. The intermediate ghost points are used in
the process of deriving the final formula for the phase three ghost points.

First interpolate phase one ghost points ta, tb, tc, td, te, and tf using the template in
Fig. 6.5. The formula for t in Fig. 6.5 is of the form

u(x) = c0 + c1x+ c2x
2,

where







1 0 0
1 h h2

1 2h (2h)2













c0
c1
c2





 =







v
1v
2v
3





⇒







c0
c1
c2





 =









v
1

1
h

(

−3
2
v
1 + 2 v2 + −1

2
v
3

)

1
h2

(

1
2
v
1 − v2 + 1

2
v
3

)









.

57



~ ~ ~

~ ~ ~

~ ~ ~

w
a1

w
b1

w
c1

w
d1

w
e1

w
f1

w
a2

w
b2

w
c2

w
d2

w
e2

w
f2

Figure 6.3: Phase one ghost points.

So

u( t) = u
(

3

4
h
)

= c0 + c1

(

3

4
h
)

+ c2

(

3

4
h
)2

=
5

32
v
1 +

15

16
v
2 −

3

32
v
3.

This formula can be used to compute all the phase one ghost points. Just substitute the
corresponding coarse grid points in place of v1, v2, and v3.

Then interpolate the phase two ghost points. The interpolation formulas for the phase
two ghost points d1, d2, d3, and d4, are derived in the following separate subsections.

58



~ ~ ~

~ ~ ~

~ ~ ~

g
1

g
2

g
3

g
4

Figure 6.4: Phase two ghost points.

Phase two ghost point number one

Interpolate the phase two ghost point d1 shown in Fig. 6.6. We will use the average of two
quadratic interpolation formulas: one that interpolates the phase one ghost points ta, tb,
and tc, and one that interpolates the phase one ghost points td, te, and tf . Individually,
these conform to the same template as the phase one interpolation. So

d
1 =

1

2

((

5

32
t
a +

15

16
t
b −

3

32
t
c

)

+
(

5

32
t
d +

15

16
t
e −

3

32
t
f

))

=
25

1024
v
1 +

75

512
v
2 −

15

1024
v
3 +

75

512
v
4 +

225

256
v
5 −

45

512
v
6 −

15

1024
v
7 −

45

512
v
8 +

9

1024
v
9

This motivates Table 6.1 which shows the weights of the coarse grid points in this formula.
The table will be convenient for determining the formulas for the other three phase two ghost
points by symmetry instead of deriving them all from scratch.

59



¾ h -

¾ 3
4
h -

~
1

~
2

~
3

w

Figure 6.5: Template for interpolation of phase one ghost points.

−15
1024

−45
512

9
1024

75
512

225
256

−45
512

25
1024

75
512

−15
1024

Table 6.1: Coarse grid point weights for the first phase two ghost point.

Phase two ghost point number two

The symmetry associated with the phase two ghost points is radial symmetry with respect
to the center coarse grid point v5. The second phase two ghost point d2 is positioned 90
degrees counter-clockwise from d1 with respect to v5, so the weights for the second phase two
ghost point interpolation are given by rotating Table 6.1 90 degrees counter-clockwise with
respect to v5. The resulting weights are shown in Table 6.2. The corresponding interpolation
formula for d2, then, is
−15

1024
v
1 +

75

512
v
2 +

25

1024
v
3 +
−45

512
v
4 +

225

256
v
5 +

75

512
v
6 +

9

1024
v
7 +
−45

512
v
8 +
−15

1024
v
9.

9
1024

−45
512

−15
1024

−45
512

225
256

75
512

−15
1024

75
512

25
1024

Table 6.2: Coarse grid point weights for the second phase two ghost point.

60



¾ h -

~
1

~
2

~
3

~
4

~
5

~
6

~
7

~
8

~
9

w
a

w
b

w
c

w
d

w
e

w
f

g
1

Figure 6.6: Interpolation of the first phase two ghost point.

Phase two ghost point number three

Following the same procedure as in §6.2.1 rotate Table 6.2 90 degrees counter-clockwise to
get Table 6.3, the weights for ghost point d3. The corresponding interpolation formula ford

3, then, is

9

1024
v
1 +
−45

512
v
2 +
−15

1024
v
3 +
−45

512
v
4 +

225

256
v
5 +

75

512
v
6 +
−15

1024
v
7 +

75

512
v
8 +

25

1024
v
9.

Phase two ghost point number four

Following the same procedure as in §6.2.1 rotate Table 6.3 90 degrees counter-clockwise to
get Table 6.4, the weights for ghost point d4. The corresponding interpolation formula ford

4, then, is

−15

1024
v
1 +
−45

512
v
2 +

9

1024
v
3 +

75

512
v
4 +

225

256
v
5 +
−45

512
v
6 +

25

1024
v
7 +

75

512
v
8 +
−15

1024
v
9.

61



−15
1024

75
512

25
1024

−45
512

225
256

75
512

9
1024

−45
512

−15
1024

Table 6.3: Coarse grid point weights for the third phase two ghost point.

25
1024

75
512

−15
1024

75
512

225
256

−45
512

−15
1024

−45
512

9
1024

Table 6.4: Coarse grid point weights for the fourth phase two ghost point.

6.2.2 Phase Three Ghost Points

These are the main ghost points used by the AMRMG algorithm for the discrete operator
at coarse-fine interfaces.

With the phase two ghost points from §6.2.1, interpolate ghost points ⊗1, ⊗2, ⊗3, and
⊗4 using the template in Fig. 6.7. This is the same as for the phase two ghost points in the
2D case, Fig. 6.2, except there are four ⊗ ghost points to interpolate here instead of only
two. Notice that h is the mesh spacing on the fine grid side, in this section. We want a

w
i1

w
i2

g
i

⊗

i

Figure 6.7: Template for interpolation of phase three ghost points, i = 1..4. Same as in
Fig. 6.2 of the 2D case.

quadratic interpolation formula of the form

u(x) = c0 + c1x+ c2x
2,

62



where









1 0 0
1 h h2

1 5
2
h

(

5
2
h
)2















c0
c1
c2





 =







t
11t
12d
1





⇒







c0
c1
c2





 =









t
a

1
h

(

−7
5
t
a −

−5
3
t
b +

−4
15
d
1

)

1
h2

(

2
5
t
a −

2
3
t
b +

4
15
d
1

)









.

So

u(⊗1) = u (2h)

= c0 + c1 (2h) + c2 (2h)
2

=
−1

5
t
11 +

2

3
t
12 +

8

15
d
1.

Likewise,

u(⊗2) =
−1

5
t
21 +

2

3
t
22 +

8

15
d
2

and

u(⊗3) =
−1

5
t
31 +

2

3
t
32 +

8

15
d
3

and

u(⊗4) =
−1

5
t
41 +

2

3
t
42 +

8

15
d
4.

Then substituting for d1, d2, d3, and d4 gives

⊗1 =
−1

5
t
11 +

2

3
t
12

+
5

384
v
1 +

5

64
v
2 +
−1

128
v
3

+
5

64
v
4 +

15

32
v
5 +
−3

64
v
6

+
−1

128
v
7 +
−3

64
v
8 +

3

640
v
9

and

⊗2 =
−1

5
t
21 +

2

3
t
22

+
−1

128
v
1 +

5

64
v
2 +

5

384
v
3

+
−3

64
v
4 +

15

32
v
5 +

5

64
v
6

+
3

640
v
7 +
−3

64
v
8 +
−1

128
v
9

63



⊗3 =
−1

5
t
31 +

2

3
t
32

+
3

640
v
1 +
−3

64
v
2 +
−1

128
v
3

+
−3

64
v
4 +

15

32
v
5 +

5

64
v
6

+
−1

128
v
7 +

5

64
v
8 +

5

384
v
9

⊗4 =
−1

5
t
41 +

2

3
t
42

+
−1

128
v
1 +
−3

64
v
2 +

3

640
v
3

+
5

64
v
4 +

15

32
v
5 +
−3

64
v
6

+
5

384
v
7 +

5

64
v
8 +
−1

128
v
9

These final four formulae are the ones used to implement the ghost point computations in
the code.

Copyright c© Daniel Thomas Thorne Jr. 2003

64



Chapter 7

AMRMG

In this section, we define the operators, vectors, and algorithms needed to solve (1.1) nu-
merically on an adaptive mesh hierarchy using a multilevel method.Much of the material is
motivated by [69].

7.1 Review of Notation

As in §2.5, the ith single patch on grid level ` is denoted by Λ`,i and the union of all patches
on grid level ` is denoted by Λ`. Review the example illustrated in Fig. 2.4.

Composite grid variables are denoted by a subscript c. The `th level composite grid is
denoted by Λ`

c. The top level (most refined) composite grid is denoted by Λ m̀ax
c . Review the

example illustrated in Fig. 2.5.
The solution, φc, and right hand side, ρc, are ultimately needed only on Λ m̀ax

c (e.g., the
top level in the example illustrated by Fig. 2.5). The residual, rc, and correction, ec, are
needed on the entire composite grid hierarchy, although they only need to be stored on

m̀ax
⋃

`=1

Λ`,

which is the patch based grid hierarchy as shown for a small example in Fig. 2.4. This patch
based grid hierarchy versus the composite grid hierarchy is an important distinction, and it
motivates definitions of new patch based versions of the operator L in §7.3.

7.2 Comparison With Standard Multigrid Algorithm

Alg. 7.1 gives a standard multigrid algorithm to solve (2.2). Multigrid methods always have
at least one solver, called a smoother or rougher [26, 27] and sometimes more than one of each
(for pre- and post-processing). For the multilevel algorithms that we define in the following
sections, we define a smoother on each Λ` in terms of the new patch based discrete operators
that are introduced. For now, we use the notion of a composite grid smoother S `

c(u
`
c,f

`
c ).

To define the composite grid smoother, let u`c,ij and f `c,ij be the solution and right hand side

values at the grid point indexed by (i, j), and let L`c,ij denote the row of matrix L`c that

corresponds to the grid point indexed by (i, j). Then the composite grid smoother S `
c(u

`
c,f

`
c )

is defined pointwise by
u`c,ij ← u`c,ij + λij

(

f `c,ij − L
`
c,iju

`
c

)

,

where, the damping factor λij is the reciprocoal of the diagonal entry of the operator at the
grid point indexed by (i, j). The damping factor is discussed in more detail below.

65



Algorithm 7.1 Standard multigrid V cycle

MG( `, φ`c, ρ
`
c )

1: if ` == 1 then

2: φ`c ← S`c(φ
`
c, ρ

`
c) on Λ`

3: return

4: end if

5: φ`c ← S`c(φ
`
c, ρ

`
c) on Λ`

6: ρ`−1
c ← P`(ρ`c − L

`
cφ

`
c)

7: φ`−1
c ← 0

8: MG( `− 1, φ`−1
c , ρ`−1

c )

9: φ`c ← φ`c +R
`φ`−1

c

10: φ`c ← S`c(φ
`
c, ρ

`
c) on Λ`

The main difference between Alg. 7.1 and typical multigrid algorithms is that the smooth-
ing, S`c, is only employed on Λ`. This means that only values within the composite grid
corresponding to the `th level patches are updated.

Algorithmically, the final method (see Alg. 7.2) is equivalent to Alg. 7.1.
However, a number of re-formulations are made to improve the efficiency and practicality

of the scheme. These modifications are based on the observation that most of the time we
only work on patches within a given level of the composite grid. In fact, many unknowns
within other parts of the composite grid level are zero. Thus, we can avoid storing all
unknowns from all composite grids within the grid hierarchy. Additionally, we do not want
to work directly with L`c. Instead, it is preferable to use only operators defined on patches
at the different levels. These operators are defined in §7.3.

For reasons described below, it is convenient to maintain both the `th level multigrid
correction and the `th-level composite grid solution on Λ m̀ax

c − P(Λ`+1) (see Fig. 7.1). To
do this, we introduce new notation. Specifically, define e`c as a correction computed to the
current solution. Notice that e`c is identical to φ

`
c except on the finest level. The composite

grid solution on Λ m̀ax
c −P(Λ`+1) is kept in the values of φ m̀ax

c corresponding to Λ m̀ax
c −P(Λ`+1).

So, we replace all φ`c on coarse grids with e`c. On the finest grid we retain φ m̀ax
c and also use

e m̀ax
c for the finest grid correction.

We now rewrite the multigrid algorithm with the new notation in Alg. 7.3. Notice that
during the multigrid V cycle on the `th level, φ m̀ax

c is the current `th-level composite grid
solution on Λ m̀ax

c − P(Λ`+1).

7.3 The AMR Multigrid Algorithm

The main difference between Alg. 7.3 and the AMR version, Alg. 7.2, is the treatment of the
residual

ρ`−1
c ← P`(r`c − L

`
ce
`
c). (7.1)

66



Algorithm 7.2 AMR Multigrid V cycle.

MG( `, e`, r`, ρ`, φ m̀ax )

1: if ` == 1 then

2: e` ← S`(e`, r`) on Λ`

3: φ m̀ax ← φ m̀ax + e` on Λ` − P(Λ`+1)

4: return

5: end if

6: if ` == `max then

7: r` = ρ` − Lnf,`(φ`, φ`−1)

8: end if

9: e` ← 0; e`−1 ← 0

10: e` ← S`(e`, r`) on Λ`

11: φ`,temp ← e` + φ m̀ax on Λ` − P(Λ`+1)

12: r̂` ← r` − Lnf,`(e`, e`−1) on Λ`

13: r`−1 ← P`r̂` on P(Λ`)

14: r`−1 ← ρ`−1 − L`−1(φ`,temp, φ`−1, φ`−2) on Λ`−1 − P(Λ`)

15: MG( `− 1, e`−1, r`−1, ρ`−1, φ m̀ax )

16: e` ← e` +R`−1e`−1

17: r` ← r` − Lnf,`(e`, e`−1) on Λ`

18: ē` ← 0

19: ē` ← S`(ē`, r`) on Λ`

20: e` ← e` + ē` on Λ`

21: φ m̀ax ← φ m̀ax + e` on Λ` − P(Λ`+1)

We want to avoid updating the entire composite grid residual r`c. The term in parentheses,
r`c−L

`
ce
`
c, is the residual of the current approximation on composite grid level `. This residual

is used in level ` − 1 computations and then propagated to computations on coarser levels.
If we have the current solution φ`c on composite grid `, then we can calculate (7.1) by

ρ`−1
c ← P`(ρ`c − L

`
cφ

`
c), (7.2)

thus avoiding the need for an updated r`c. The solution φ
`
c is part of φ

m̀ax
c and is available on

Λ m̀ax
c − P(Λ`+1), so we can use this shortcut on Λ m̀ax

c − Λ`. In fact, since we also have φ`−1
c

on Λ m̀ax
c − Λ`, we can compute the residual

ρ`−1
c ← ρ`−1

c − L`−1
c φ`−1

c (7.3)

directly on Λ m̀ax
c − P(Λ`). Applying L`−1

c on Λ m̀ax
c − P(Λ`) does not require any data from

Λ`+1, because Λ m̀ax
c −Λ` and P(Λ`+1) are disjoint (i.e., refinement patches are properly nested

67



Algorithm 7.3 Multigrid V cycle with new notation

MG( `, e`c, ρ
`
c, φ

m̀ax
c )

1: if ` == 1 then

2: e`c ← S`c(e
`
c, ρ

`
c) on Λ`

3: return

4: end if

5: if ` == `max then

6: r`c = ρ`c − L
`
cφ

m̀ax
c

7: else

8: r`c = ρ`c
9: end if

10: e`c ← 0; e`−1
c ← 0

11: e`c ← S`c(e
`
c, r

`
c) on Λ`

12: ρ`−1
c ← P`(r`c − L

`
ce
`
c)

13: MG( `− 1, e`−1
c , ρ`−1

c , φ m̀ax
c )

14: e`c ← e`c +R
`e`−1
c

15: e`c ← S`c(e
`
c, r

`
c) on Λ`

16: φ m̀ax
c ← φ m̀ax

c + e`c on Λ` − P(Λ`+1)

within their parent patch), as discussed in §2.5. So, on Λ` we use (7.1) and project it onto
P(Λ`), and on Λ m̀ax

c − Λ` we use (7.3) directly. This is illustrated in Fig. 7.2 for computing
the composite residual on levels ` = 3 and ` = 2 before ρ2

c is computed. The part of ρ2
c

on Λ m̀ax
c − P(Λ3) can be computed directly, and the part of ρ2

c on Λ2 is projected from an
updated residual r3

c on Λ3.
So far in the section we have defined things in terms of the composite grid. We want to

view the algorithm in terms of patches. So we define two new versions of L for patches: one
that is defined on Λ` − P (Λ`+1) and another that is defined on all of Λ`.

• We first define L`(u`+1, u`, u`−1) on Λ`−P(Λ`+1) as illustrated in Figure 7.3. We think
of L` as the restriction of L`c to the region Λ` − P(Λ`+1). In the interior of Λ` away
from P(Λ`+1) this is the standard discretization on Λ`

c. Near the coarse-fine interface

ss sss s s sΛ m̀ax
c − P(Λ5)

Λ m̀ax
c − P(Λ4)

Λ m̀ax
c − P(Λ3)

Λ m̀ax
c − P(Λ2)

s
ssssssss
ss s s s

ss
sssss

Figure 7.1: Illustration of Λ m̀ax
c − P(Λ`+1).

68



Up-to-date φ2 (stored in φ m̀ax)
on Λ m̀ax

c − P(Λ3).
Up-to-date e3 on Λ3,
r3 is the residual
before smoothing.

Λ1
c

Λ2
c

Λ3
c

Λ4
c

.........................................................................................................................................................................................................

s

.........................................................................................................................................................................................................

ss
º ·

¹ ¸

s s s s sss s s s s

s

s s s s ss

ss
sss

ss

ss
s s

ss s s s s

Figure 7.2: Situation on Λ3
c before computation of the composite grid residual on Λ2

c . The
rest of the composite grids from Fig. 2.5 are shown for reference.

Λ3

Λ1

Λ2

Λ3
Λ2

Figure 7.3: The L` operator shown for 1 ≤ ` ≤ 3. The shading indicates the computational
domain Λ` − P(Λ`+1). The hash marks denote the boundary.

69



Λ1

Λ2

Λ3

Figure 7.4: The Lnf,` operator shown for 1 ≤ ` ≤ 3. The shading indicates the computational
domain Λ`. The hash marks denote the boundary.

between Λ`−1 and Λ` we interpolate ghost points for u` using u`−1 as described in
§3.1.2. Near the coarse-fine interface between Λ` and Λ`+1 we do flux matching using
information from u`+1 to compute the operator as described in §3.1.3.

• We next define Lnf,`(u`, u`−1) on Λ`, illustrated in Figure 7.4. We think of Lnf,` as the
restriction of L`c to the region Λ`. In the interior of Λ` this is the standard discretization
on Λ`

c without any regard for the existence of finer levels. On Λ1
c we use the standard

discretization in all of Λ1. On Λ`
c, ` > 1, we use data from the coarse grid, Λ`−1

c , to
interpolate ghost point information as we did for L`, but we do not use fine grid data
to do flux matching.

It is worth repeating that the motivation for these two new versions of the operator is the
fact that the solution and right hand side are stored only on Λ m̀ax

c whereas the residual and
correction are stored on the union of all patches,

m̀ax
⋃

`=1

Λ`.

Notice that in the AMR-based multigrid algorithms we present, nothing is stored on the
entire composite grid hierarchy

m̀ax
⋃

`=1

Λ`
c.

The composite grid hierarchy is a conceptual mechanism used to facilitate the presentation
of the algorithms. Hence, in the new definitions of L, we dropped the subscript c and assume
the patch based domain restrictions on the variables. This marks the shift from a composite
grid based discussion to a patch based discussion. The former was to provide intuition
starting from a conventional form multigrid algorithm. The latter is to convey the true form
of the implementation of multigrid on an AMR hierarchy.

The split residual computation that was discussed in terms of composite grids above can
now be rewritten in terms of patches:

r`−1 ← r`−1 −
(

r` − L`(e`, e`−1)
)

on P(Λ`) (7.4)

and
r`−1 ← ρ`−1 − Lnf,`−1(φ`, φ`−1, φ`−2) on Λ`−1 − P(Λ`). (7.5)

70



Λ4 − P(Λ5)

Λ3 − P(Λ4)

Λ2 − P(Λ3)

Λ1 − P(Λ2) s s
s ss

sss
ssssss

Figure 7.5: Illustration of Λ` − P(Λ`+1).

In the algorithm, we use r̂` to denote the residual r` −L`(e`, e`−1) computed on Λ` which is
projected onto P(Λ`−1). We have introduced the term φ`,temp, a temporary variable to store
the `th-level solution on Λ` − P(Λ`+1) after the pre-smoothing correction. It is used in the
application of (7.5). See Fig. 7.5 for an illustration of Λ` − P(Λ`+1). Note that in (7.4) and
(7.5) we assign the residuals to separate residual vectors instead of assigning them to the
right hand side. That is necessary in the patch based version because the original right hand
side is needed on all of the levels, and because the right hand side is stored in only a subset
of the hierarchy, whereas the residual is stored on the entire (but not composite) hierarchy,
as emphasized above.

Now we define a patch based smoother S`(u`,f `) using the new patch based operator Lnf,`.
The smoother S` is typically a damped Gauss-Seidel iteration using either the natural, red-
black, or a multi-color ordering. For a one sided multilevel algorithm, one side uses the
identity operator which implies no smoothing. An alternative not investigated here is to use
a Krylov subspace rougher.

When smoothing to get the solution to (1.1), we compute S` pointwise on level `:

φ`ij ← φ`ij + λ
(

ρ`ij − L
nf,`
ij (φ`, φ`−1)

)

.

When smoothing to get a correction, we compute S` pointwise on level ` without regard for
any other level:

e`ij ← e`ij + λ
(

r`ij − L
nf,`
ij (e`, 0)

)

,

where the damping factor λ is different depending on whether the grid point indexed by (i, j)
is on the interior, an edge boundary, or a corner boundary. For a Gauss-Seidel smoother S `,
we use the following damping factors:

λinterior =
1

4
h2, λedge =

1

6
h2, and λcorner =

1

8
h2.

These damping factors are the reciprocals of the corresponding diagonal entries of the discrete
operator.

Another mechanism that we introduce in the AMR version of the algorithm is an inter-
mediate correction step. This is for convenience and efficiency. In the first smoothing step
of Alg. 7.3, the initial guess for e` is always zero. This implies that smoothing on Λ` does
not involve data on patches other than Λ`. This is not the case for the second smoothing
step which normally has a nonzero initial guess. In this case, it is necessary to use data
from Λ`−1 in order to update the ghost points around the Λ` patches before updating points
on the boundary of the Λ` patches. To avoid this within the smoother, we reformulate the

71



second smoothing step as a correction. This is a correction ē to the correction e. Now the
smoother can be written so that no data is needed from other patches.

The AMR version of the algorithm is shown in Alg. 7.2.

7.4 Post-Smoothing Only

Alg. 7.2 can be sped up considerably by only doing post-smoothing. This is illustrated in
Alg. 7.4. The advantages are three-fold:

1. The initial guess on most coarse patches does not have to be set (and is 0).

2. The residual on most patches is just the right hand side.

3. Interpolation and add of a correction on a fine patch is replaced by just interpolation.

Each of these improvements seems trivial. However, each forces a large amount of data to
pass through cache, which takes a considerable percentage of the total run time. In addition,
nearly half of the computation is eliminated:

1. There is no need for a temporary correction φ`,temp on the projection side of the V
cycle.

2. r̂c does not need to be computed.

3. The residual is only computed on one side of the V cycle.

4. There is no correction after interpolation and no need for an intermediate correction
step before updating φ m̀ax .

5. The residual is not updated on the interpolation side of the V cycle.

Doing post-smoothing only is a substantial change over [69] and Alg. 7.2. It is especially
useful when implementing cache aware algorithms as discussed in Ch. 8, because there should
be better cache effects when more smoothing iterations are done consecutively.

Except for the projection side of the first V cycle and the correction side of the last V
cycle, the case of doing post-smoothing only can be viewed as the usual pre-/post-smoothing
case but with the post-smoothing iterations of one V cycle combined with the pre-smoothing
iterations of the following V cycle. Hence, if we choose to have the same number of smoothing
iterations per level in the post-smoothing only case as in the pre-/post-smoothing case, then
there are twice as many contiguous smoothing iterations per level in the post-smoothing only
case (albeit the same total number of smoothing iterations per level). That leads to better
cache effects.

Copyright c© Daniel Thomas Thorne Jr. 2003

72



Algorithm 7.4 Multigrid V cycle with post-smoothing only

MG (`, e`, r`, ρ`, φ m̀ax )

1: if ` == `max then

2: r` = ρ` − Lnf,`(φ`, φ`−1)

3: end if

4: if ` == 1 then

5: e` ← 0

6: e` ← S`(e`, r`) on Λ`

7: else

8: r`−1 ← P`r` on P(Λ`)

9: r`−1 ← ρ`−1 − L`−1(φ`, φ`−1, φ`−2) on Λ`−1 − P(Λ`)

10: MG (`− 1, e`−1, r`−1, ρ`−1, φ m̀ax )

11: e` ← R`e`−1 {Includes interpolation of ghost points.}

12: e` ← S`(e`, r`) on Λ`

13: end if

14: φ m̀ax ← φ m̀ax + e` on Λ` − P(Λ`+1)

73



Chapter 8

Cache Optimizations

Since the early 1980’s, processors have sped up 5 times faster per year than memory. Multi-
level memories, using memory caches, were developed to compensate for the uneven speedups
in hardware. Essentially all computers today, from laptops to distributed memory supercom-
puters, use cache memories in an attempt to keep the processors busy. By the term cache,
we mean a fast memory unit closely coupled to the processor [43, 80]. In the interesting
cases, the cache is further divided into many cache lines. Each cache line holds copies of
contiguous locations of main memory. Any given pair of cache lines may hold data from
entirely separate regions of main memory. A good cache primer for solving PDEs can be
found in [28, 30, 60]. Also, see [24, 1, 2, 39, 50, 100] for similar work and related topics.

Tiling is the process of decomposing a computation into smaller blocks and doing all of
the computing in each block one at a time. Tiling is an attractive method for improving
data locality. In some cases, compilers can do this automatically [103, 83, 104, 4]. However,
this is rarely the case for realistic scientific codes. In fact, even for simple examples, manual
help from the programmers is necessary [24].

Language standards interfere with compiler optimizations. Due to requirements about
loop variable values during computation, compilers are not allowed to fuse nested loops into
a single loop. In part, it is due to coding styles that make very high level code optimization
(nearly) impossible [82].

8.1 Cache Aware Gauss-Seidel

Consider naturally ordered Gauss-Seidel restricted to matrices Aj which are based on dis-
cretization methods which are local to only 3 neighboring rows of the grid. Partition the
grid into blocks of ` rows, and let m be the number of smoothing iterations required. It is
necessary that `+m− 1 rows of an N×N grid G fit entirely into cache simultaneously and
that m < `.

There are two special cases to the cache aware algorithm: the first block of rows and the
rest of the blocks.

The first case is for the first ` rows of the grid. The data associated with rows 1 to ` is
brought into cache. The data in rows 1 to `−m+ 1 are updated m times, and the data in
rows j, `−m+ 2≤j≤`, are updated `− j + 1 times.

The second case is for the rest of the blocks of ` rows of the grid. Once the first block
of grid rows is partially updated, we have a second block to update and must also finish
updating the first block of grid rows. After the ith update in the second block, we can go
back and update rows ` down to ` − i + 1 in the first block of rows, always performing
the updates in the order that preserves the dependencies in the standard iteration (so that

74



the cache aware iteration achieves bitwise the same answer as the standard iteration). This
procedure is repeated in the remaining blocks of rows until all the blocks are updated. In
effect, this is a domain decomposition methodology applied to the standard iteration. The
result is that m updates are done while bringing all the data through cache only one time.

8.2 Cache-Aware V-Cycle

The cache aware smoother discussed above is just one component of multigrid. The smoother
can be made cache aware and plugged into the multigrid algorithm without changing other
parts of the algorithm. This section describes how three components of the algorithm (the
smoother, the residual computation, and the ghost point interpolation) can be combined and
interleaved in a cache aware manner to give even better performance.

8.2.1 Combined smoother

Integrating the residual computation with the cache-aware smoother can give better cache-
effects in multigrid. Call this the combined smoother. The combined smoother is imple-
mented for the post-smoothing only version of the algorithm. The combined smoother must
also interleave the ghost point interpolation so that the residual computation at patch bound-
aries has up-to-date ghost points based on the latest smoothing updates.

The combined smoother computes the residual to be used in the next V cycle. It can
only compute the part of the residual that is not covered by finer patches. On the projection
side of the V cycle, the projection of the part of the residual that is from finer patches must
now include the application of the flux matching procedure because information needed for
the flux matching is not available when the combined smoother is called.

A complication to interleaving the residual computation with the cache aware smoother
is that, in the V cycle, the residual is updated and concurrently used as the right hand side
for the Gauss-Seidel updates. So the residual updates need to be postponed long enough to
avoid changing the right hand side for a subsequent Gauss-Seidel update.

8.2.2 Effects of the coefficient matrix

The coefficient matrix has an effect on the cache optimizations since it has to go through
cache along with the solution and right hand side. In an attempt to minimize the effect, we
tried storing the right hand side in the coefficient matrix in an interleaved manner. Hence,
for a given grid point, the coefficients and the right hand side needed to update that point are
contiguous in memory. However, the split residual computation complicates this approach.
On every level, there are parts of the domain where the residual has to be computed from the
right hand side, and there are parts of the domain where the residual is projected from finer
levels. Depending on the context, the right hand side entries in the coefficient matrix might
need to be either the original right hand side or the current residual. Updating the state for
a given context involves copies which slow the algorithm. Results in the AMR context are
better when the right hand side and residual are separate from the coefficient matrix.

75



Algorithm 8.1 Multigrid V cycle with integrated interpolation and residual computation.

MG( `, e`, r`, ρ`, φ m̀ax )

1: if ` == `max then

2: r` = ρ` − Lnf,`(φ`, φ`−1)

3: end if

4: if ` == 1 then

5: e` ← 0

6: e` ← S`(e`, r`) on Λ`

7: φ m̀ax ← φ m̀ax + e` on Λ` − P(Λ`+1)

8: else

9: r`−1 ← P`r` on P(Λ`) {Includes flux matching at the interfaces.}

10: MG( `− 1, e`−1, r`−1, ρ`−1, φ m̀ax )

11: CombinedSmoother(`, e`−1, e`, ρ`, r`, r`−1)

12: end if

Algorithm 8.2 Combined Smoother.

CombinedSmoother( `, e`−1, e`, ρ`, r`, r`−1 )

1: {The following operations are blocked and interleaved in a cache aware manner.}

2: e` ← R`e`−1 {Includes interpolation of ghost points.}

3: e` ← S`(e`, r`) on Λ`

4: r` ← ρ`−L`(φ`+1, φ`, φ`−1) on Λ`−P(Λ`+1) {With the flux matching procedure omitted.}

5: φ m̀ax ← φ m̀ax + e` on Λ` − P(Λ`+1)

8.3 Details

This section presents the cache optimization technique in more detail. The focus here is
to analyse the more sophisticated multidimensional blocking approach. This approach is
necessary in 2D, as opposed to the simple row-based blocking discussed above, when patches
are large enough that a few rows, or even one row, does not fit into cache. Multidimensional
blocking is almost always needed in 3D, as opposed to layer-based blocking, because realistic
problems are rarely small enough that several layers of a 3D patch fit into cache. Note
that the skewed 3D blocking approach described in the 3D section below has never been
formulated before, to the knowledge of the author.

8.3.1 2D

In 2D, row based partitioning as discussed in §8.1 is sometimes sufficient. For very large
patches, however, even one single row might not fit into cache. Then partitioning in both

76



dimensions is necessary. We use a skewed block partitioning as illustrated in Fig. 8.1 [36,
58, 99].

6

6

6

y

x

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

6- clines -¾

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

.

510

10

11

15

14

8

4

3

2

1

9

6

7

13

12

(a) Stagger the vertical (b) Cache block of (c) Update pattern.
slices of a square. width clines = 4.

Figure 8.1: 2D Cache Block

Notice that this is less efficient for small patches because some grid points have to be
fetched into cache twice. In particular, the NumIts − 1 rows between sweeps of the cache
block are fetched into cache twice. Call these rows a cache seam. A cache seam is illustrated
in Fig. 8.2 by the cells with dotted boundaries. The cache block shown in this illustration
is designed to produce four updates. It is shown toward the beginning of a sweep across
the grid in the x-direction. The numbers printed in the cells in Fig. 8.2 specify how many
updates have occured prior to the application of updates in the current cache block. Only
the seam associated with the current rows being updated is shown in Fig. 8.2. The full set
of seams for a 20× 20 patch is shown in Fig. 8.3. The seam is denoted by the dotted cells.
The seam points have to be fetched into cache twice, versus the other points which only have
to be fetched into cache once. We want to minimize the number of seam points. This can
be done by making the cache block taller as in Fig. 8.4. We maintain the staggered shape
of the cache block. The width of the seams is constant at NumIts− 1. Taller cache blocks
have a smaller proportion of seam points to total points, so the total number of seam points
in the patch is less. Fig. 8.5 shows the full pattern of seams in the case of a cache block with
5 non-seam rows. The ratio of seam points to non-seam points is much lower. Most points
have to be fetched into cache only one time in this case.

8.3.2 3D

In 3D, layer based partitioning (analogous to row based partitioning in 2D) usually requires
cache blocks that are too large to fit into cache. Even one layer is often too large to fit into
cache. Therefore, it is necessary to partition in more than one dimension. This gives cache
blocks that are small chunks of the domain. A proper update schedule can be accomplished
with a cache block like the one illustrated in Fig. 8.6. The illustration shows how the cache
block is formed starting from a cube. The slices of the cube are staggered to correspond
to the staggering of the updates. The order that the points in the cache block are updated
is illustrated, slice by slice, in Fig. 8.7. The cache block sweeps the patch in the directions
corresponding to a natural ordering of the grid points. Notice that there are grid points in

77



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1

1

1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2

2

2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

3

3

3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

4

4 4

4 44

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

-6 x

y

Figure 8.2: 2D cache block seam with the number of updates shown. This illustrates the rows
that were not completely updated in the first pass of the wiper and need to be completed in
the second pass, at which time the data for those points will be brought into cache a second
time.

6-

y

x

Figure 8.3: 2D cache block seams, full 20×20 patch picture with representative cache block.
The dotted lines represent cache seams which is where the grid points need to be brought
through cache twice. The proportion of seam points is very large.

78



6

6

6

¾ clines -

6

6

6

6

-6 x

y ..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

6

7

32

28

29

30

31

27 9

16

12

13

14

15

11

10

26 17

1

2

3

4

5

8

18

25

24

20

21

22

23

19

y

x-6

(a) Stagger the vertical (b) Cache block of width clines = 8
slices of a rectangle. with update pattern shown.

Figure 8.4: 2D Tall Cache Block

the seams that are fetched into cache three times. In order to minimize the number of seam
points, we allow the dimensions of the cache block to be non-isotropic. Assume that the
natural ordering is the x-direction first followed by the y-direction and then the z-direction.
There are no seams between successive cache blocks in the x-direction, so the span of the
cache block in the x-direction clinesx does not matter, in terms of cache misses. Hence,
clinesx should be as small as possible. That leaves as much space as possible to extend the
cache block in the other directions where there are seams. A greater span in the y- and
z-directions, clinesy and clinesz, leads to fewer seams and, thus, fewer grid points that get
fetched into cache multiple times.

8.3.3 Update Pattern for Combined Smoother

The update pattern for the combined smoother is shown in Fig. 8.8. It is illustrated only
for the 2D case. Ghost points need to be interpolated when there is a residual computation
that depends on them but only after all the smoothing updates have been applied to the fine
grid points that are used in the interpolation. The residual updates are denoted by the dark
circles vin the illustration, and the potential ghost points are denoted by the dashed boxes
. The template traverses a patch applying updates as it goes, and, depending on where it

is in the domain, the actual ghost points that need to be computed vary. In particular, it
is only when the template is at a patch boundary that ghost points need to be computed,
and then only for residual updates that are on the boundary. This pattern of inserting ghost
point computations just prior to residual computations is trivial to extend to 3D.

Copyright c© Daniel Thomas Thorne Jr. 2003

79



x

y

-6

Figure 8.5: 2D tall cache block seams, full 20 × 20 patch picture with representative cache
block. The dotted lines represent cache seams which is where the grid points need to be
brought through cache twice. The proportion of seam points is much smaller here.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

...
....

....
...
..
..
..
.....

....
....
..
..
..
.....

....
....
..
..
..
.....

....
..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

...
....

....
...
..
..
..
.....

....
....
..
..
..
.....

....
....
..
..
..
.....

....
..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

...
....

....
...
..
..
..
.....

....
....
..
..
..
.....

....
....
..
..
..
.....

....
..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

....
....

....
....

....
....

....
....

....
..

....
....

....
....

....
....

....
....

....
..

....
....

....
....

....
....

....
....

....
..

HH©
©HH

HH

©©HH
HH©
©

©©HH©
©HH
HH ©©

©©

HH

HH©
©HH©©

HH

©©HH©©

©©©©

©©

©©

©©

©©

©©
©©

©©

HH©
©HH
HH©©

©©
©©

©©©©¼
©©©¼ ©©¼

HH
HH©
©HH

©©

©©

©©

©©

HH
HH©
©HH

HH
HH©
©HH

©©

HH©
©HH
HH

HH
©©

HHHHH

HHHHH©©

©©

HHHHH

©©

©©

©©

HHHHH©©

HHHHH

HHHHH©©
©©
©

HHHHH

HHHHH

HHHHH©©
©©
©

©©
©©
© HHHHH

©©HHHHH

©©

HHHHH

©©

©©

©©

HH©
©HH©©

HH

6
6

6

©©

©©

©©HH

HH

HH

HH©
©

Figure 8.6: 3D Cache Block

80



- x
?
y

z0 − 3 z0 − 2 z0 − 1 z0 z0 + 1 z0 + 2 z0 + 3

45

2546

52647

6

61

22 1

214263

62 41

27

30 9

29 13

14

15

16

10

48

28 7

8

31

1132

12

43

3455

3556

36 20

40

54

52

51

50

49

53

33

19

4

24 3

44 23 2

64

57

60 39 18

59

58 37

1738

Figure 8.7: 3D Cache Block Update Pattern. This shows xy-slices of the 3D cache block,
starting in the negative direction (bottom of the cache block) and going toward positive (top
of the cache block).

~
~
~
~

-
6

x

y

Figure 8.8: Template for interleaving ghost point interpolation and residual computation
with cache aware smoother in 2D. The residual updates are denoted by the dark circles. The
potential ghost points are denoted by the dashed boxes.

81



Chapter 9

Numerical Results

This chapter gives numerical results. Results are shown for both constant and variable
coefficient problems. The example hierarchies used to gather these results were chosen for
simplicity and variety as discussed below. The code has been run on other types of grid
hierarchies, including examples given by Jaideep Ray in the Combustion Research Facility
at Sandia National Laboratories.

9.1 Constant

Results are shown for the hierarchies illustrated in Fig. 9.1 and also on a full domain re-
finement hierarchy (i.e., regular, non-AMR multigrid). The refinement patterns are not
meaningful to the nature of the problem being solved here. They are contrived merely to
demonstrate the behavior of the algorithm. They have been chosen because they are simple
to construct and illustrate and they represent a variety of configurations of patches. In the
one-refinement-per-patch case, the size of the patches in terms of grid points is the same on
all levels. In the two-refinements-per-patch case, the size of the patches decreases on each
level and the number of patches per level increases. In the four-refinements-per-patch case,
the size of the patches decreases on each level and the number of patches per level increases
even more dramatically. These different cases test hierarchies consisting of a small number
of large patches and hierarchies consisting of variable sized patches and increasing numbers
of patches per level.

For the adaptive refinement cases, we do full domain refinements from a coarse grid for a
few levels before applying the adaptive refinement. The coarse grid is 8×32, in our example.
The first adaptive refinement is on level 6 which is a 512×2048 grid in our example. Another
way of explaining this is that we do adaptive refinement on a 512× 2048 base grid and then
use geometric multigrid as the solver on that base grid.

The base grid discretizes the unit square [0, 1]2. We solve the Poisson equation with the
right hand side chosen so that the solution is

u(x, y) = sin(πx) sin(πy/4)xex
2+(y/4)2 .

Speedups CA(0,4) CAMG(0,4)

Full 1.1554 1.3350
One 1.1032 1.4807
Two 1.0981 1.5501
Four 1.0807 1.4226

Table 9.1: Itanium 1 Speedups, Standard(0,4) Versus CA(0,4) and CAMG(0,4)

82



Speedups CA(0,4) CAMG(0,4)

Full 1.1123 1.2754
One 1.0788 1.4564
Two 1.0766 1.5346
Four 1.0578 1.4246

Table 9.2: Itanium 2 Speedups, Standard(0,4) Versus CA(0,4) and CAMG(0,4)

Speedups CA(0,4) CAMG(0,4)

Full 1.3574 1.6344
One 1.2399 1.7575
Two 1.2221 1.8417
Four 1.2031 1.7002

Table 9.3: Pentium III Speedups, Standard(0,4) Versus CA(0,4) and CAMG(0,4)

Speedups CA(0,4) CAMG(0,4)

Full 1.1432 1.3355
One 1.1310 1.3907
Two 1.1040 1.4356
Four 1.0849 1.2824

Table 9.4: Pentium IV Speedups, Standard(0,4) Versus CA(0,4) and CAMG(0,4)

(a) (c)(b)

Figure 9.1: Refinement patterns: (a) One refinement per patch. (b) Two refinements per
patch. (c) Four refinements per patch.

83



Speedups IA1 IA2 PIII PIV

Full 2.1824 2.1442 2.8288 2.3216
One 2.1038 2.1615 2.6543 1.9278
Two 2.2170 2.2448 2.7539 2.0469
Four 2.0226 2.0887 2.5493 1.7878

Table 9.5: Speedups, Standard(2,2) Versus CAMG(0,4)

Speedups IA1 IA2 PIII PIV

Full 1.7606 1.7797 2.0714 1.8841
One 1.4810 1.5388 1.6885 1.4752
Two 1.4933 1.5111 1.6513 1.4808
Four 1.4715 1.4956 1.6367 1.4409

Table 9.6: Speedups, CA(2,2) Versus CA(0,4)

The initial guess on the base grid is u = 0, and we iterate until the composite residual is
smaller than 10−6 times the norm of the composite right hand side:

||rc|| < 10−6||ρc||.

The tables show results for the AMR multilevel method employing the cache aware
smoother, labeled CA, and the combined smoother, labeled CAMG, compared with a stan-
dard implementation of the smoother. Speedups are based on elapsed wall clock time. The
timings include only the solution procedure. They do not include initialization of the hier-
archy and right hand sides.

The main speedups we are interested in are shown in Table 9.5. This table shows the
speedups of the original standard AMR multigrid V-Cycle, Standard(2,2), compared to the
cache aware post-smoothing only version with integrated residual computation, CAMG(0,4).
We see speedups consistently over a factor of 2 and even close to a factor of 3 in some cases.

The contribution from just the cache optimizations alone is shown for the Itanium 1, Ita-
nium 2, Pentium III and Pentium IV in Tables 9.1, 9.2, 9.3 and 9.4. These experiments show
the speedups associated with the cache optimizations for the V(0,4) cycle. The CA(0,4) cycle
uses just the cache aware smoother plugged into the multigrid algorithm. Those speedups are
fairly insignificant in most cases. The CAMG(0,4) cycle shows the speedups associated with
interleaving the residual computation with the smoother in a cache aware manner. These
speedups are more substantial, up to nearly a factor of 2.

The contribution from merging the smoothing steps on each level that is accomplished by
the post-smoothing only algorithm is shown in Table 9.6. This shows the speedup associated
with doing post-smoothing only, CA(0,4), versus doing pre-smoothing and post-smoothing,
CA(2,2). Note that we do the same total number of smoothing iterations per level in both
cases. In particular, the pre-/post-smoothing case uses 2 smoothing iterations on each side.
The post-smoothing only case uses 4 smoothing iterations only on the correction side of the
V-Cycle. These examples were run with the cache aware smoothers. The average time per
V-Cycle is about 1.4 to 2 times faster in the post-smoothing only runs.

84



(a) (c)(b)

Figure 9.2: (a) One refinement per patch. (b) Two refinements per patch. (c) Four refine-
ments per patch.

9.2 Variable

This section shows results on the hierarchies illustrated in Fig. 9.2 and also on a full domain
refinement hierarchy (i.e., regular, non-AMR multigrid). The refinement patterns are not
meaningful to the nature of the problem being solved here. They are contrived merely to
demonstrate the behavior of the algorithm. They have been chosen because they are simple
to construct and illustrate and they represent a variety of configurations of patches. In the
one-refinement-per-patch case, the size of the patches in terms of grid points is the same on
all levels. In the two-refinements-per-patch case, the size of the patches decreases on each
level and the number of patches per level increases. In the four-refinements-per-patch case,
the size of the patches decreases on each level and the number of patches per level increases
even more dramatically. These different cases test hierarchies consisting of a small number
of large patches and hierarchies consisting of variable sized patches and increasing numbers
of patches per level. The AMR base grid in 9.2(a) is 128 × 512 grid points, and there are
three levels of refinement above that (although only two are illustrated). The AMR base
grid in 9.2(b) and 9.2(c) is 256 × 1024 grid points, and there are four levels of refinement
above that (although only two are illustrated). Geometric multigrid is used as the solver on
the AMR base grid. The full domain refinement case starts on an 8× 32 base grid and has
a total of 7 grid levels.

The tables show results for the AMR multilevel method employing the cache-aware (CA)
smoother and the combined smoother (as described in §8.2.1) compared with a standard
implementation of the smoother. We call the combined smoother case cache aware multigrid
(CAMG).

The base grid discretizes the rectangle [0, 1] × [0, 4]. The right hand side of the Poisson
equation is chosen so that the solution is u(x, y) = sin(πx) sin(πy/4)xex

2+(y/4)2 and the
coefficient is a(x, y) = 1 + sin(πx) sin(πy/4)xex

2+(y/4)2 . The initial guess on the base grid is
u = 0, and the convergence criteria is ||rc|| < 10−6||ρc||.

Table 9.7 shows the results of the set of experiments run on an Itanium 1. Table 9.8
shows the results of the set of experiments run on a Itanium 2. Table 9.9 shows the results
of the set of experiments run on a Pentium III. Table 9.10 shows the results of the set of
experiments run on a Pentium IV. These experiments show the speedups associated with the

85



Speedups CA(0,4) CAMG(0,4)

Full 1.3530 1.6335
One 1.2522 1.7120
Two 1.2550 1.8221
Four 1.2415 1.6780

Table 9.7: Itanium 1 Speedups, Standard(0,4) Versus CA(0,4) and CAMG(0,4)

Speedups CA(0,4) CAMG(0,4)

Full 1.2080 1.4057
One 1.1697 1.5791
Two 1.1519 1.6245
Four 1.1352 1.5176

Table 9.8: Itanium 2 Speedups, Standard(0,4) Versus CA(0,4) and CAMG(0,4)

cache optimizations. The timings measure only the solution procedure. They do not include
initialization of the hierarchy, coefficient matrix and right hand side. The total speedups are
up to about a factor of two.

The main speedups we are interested in are shown in Table 9.11. This table shows the
speedups of the original standard AMR multigrid V-Cycle, Standard(2,2), compared to the
cache aware post-smoothing only version with integrated residual computation, CAMG(0,4).
We see speedups consistently over a factor of 2.

The contribution from merging the smoothing steps on each level that is accomplished by
the post-smoothing only algorithm is shown in Table 9.12. This shows the speedup associated
with doing post-smoothing only, CA(0,4), versus doing pre-smoothing and post-smoothing,
CA(2,2). Note that we do the same total number of smoothing iterations per level in both
cases. In particular, the pre-/post-smoothing case uses 2 smoothing iterations on each side.
The post-smoothing only case uses 4 smoothing iterations only on the correction side of the
V-Cycle. These examples were run with the cache aware smoothers. The average time per
V-Cycle is about 1.4 to 2 times faster in the post-smoothing only runs.

Copyright c© Daniel Thomas Thorne Jr. 2003

86



Speedups CA(0,4) CAMG(0,4)

Full 1.4339 1.6402
One 1.3500 1.8728
Two 1.3161 1.8257
Four 1.1478 2.1175

Table 9.9: Pentium III Speedups, Standard(0,4) Versus CA(0,4) and CAMG(0,4)

Speedups CA(0,4) CAMG(0,4)

Full 1.1434 1.3000
One 1.0675 1.3379
Two 1.0713 1.4019
Four 1.0548 1.2758

Table 9.10: Pentium IV Speedups, Standard(0,4) Versus CA(0,4) and CAMG(0,4)

Speedups IA1 IA2 PIII PIV

Full 2.3059 2.1305 2.3192 1.9568
One 2.2444 2.1879 2.4949 1.8579
Two 2.3567 2.2207 2.4044 1.9057
Four 2.1777 2.0920 N/A 1.7269

Table 9.11: Speedups, Standard(2,2) Versus CAMG(0,4)

Speedups IA1 IA2 PIII PIV

Full 1.7657 1.7003 1.8337 1.6827
One 1.5187 1.5438 1.6428 1.4485
Two 1.5099 1.4957 1.5901 1.4299
Four 1.5153 1.4978 N/A 1.4155

Table 9.12: Speedups, CA(2,2) Versus CA(0,4)

87



Chapter 10

Conclusions and Future Directions

This document presented a combination of adaptive refinement [11, 12, 86, 91] and multilevel
[21, 69, 72] procedures to solve variable coefficient elliptic boundary value problems of the
form

{

L(φ) = ρ in Ω,
B(φ) = γ on ∂Ω.

The focus of this research is on the effects of cache aware algorithms, i.e., algorithms
designed to minimize the number of times data goes through cache. Cache aware algorithms
should be more efficient because cache memory is much faster than main memory, so the
CPU can be kept more busy when it is getting data from cache memories.

Chapter 2 provided some background material about grids, discretization of PDEs, iter-
ative solvers, multigrid (MG), and adaptive mesh refinement (AMR).

Chapter 3 presented the basic tools used in the 2D version of the algorithm: stencils,
ghost point computation, and flux matching.

Chapter 4 compared the flux matching approach from Chapter 3 with other ways of
approximating the fluxes across the interface. In addition, a single formula (bypassing the
ghost point interpolation and averaging of fluxes) is derived. This is done first by expanding
and simplifying the ghost point interpolation and avereaging computations. Then a Taylor
series based derivation is also shown.

Chapter 5 presented the basic tools used in the 3D version of the algorithm: stencils,
ghost point computation, and flux matching.

Chapter 7 described the multilevel adaptive mesh refinement algorithm. It started by
stating a traditional (non-AMR) formulation of multigrid and then outlined the modification
that need to be made in order to formulate the AMR version of multigrid.

Chapter 8 discussed cache optimizations. Processors are much faster than memory. Mul-
tilevel memory hierarchies, using cache memory, were developed to compensate for this.
Cache aware algorithms modify the code to take better advantage of the cache memory
mechanism.

Chapter 6 revisited the ghost point interpolation process. The process was introduced in
Chapters 3 and 5 in a way that is useful for describing how the ghost points are computed.
That is not efficient for the implementation, though, especially in 3D. This chapter derives
a single, simple and efficient formula for computing the ghost points in both 2D and 3D.

Chapter 9 presents numerical results showing speedups associated with cache aware
smoothers, integration of the residual computation with the cache aware smoother. and
modifying the algorithm to do post-smoothing only. Both the cache aware smoothers and
the integration of the residual computation give good speedups in many cases. The inte-
gration of the residual computation is especially useful for getting good speedups on AMR
hierarchies. Modifying the algorithm to do post-smoothing only is also key to realizing good

88



performance in the AMR context. It takes better advantage of the cache aware smoother
since the smoothing iterations on each level are all contiguous.

Future plans for this research include 3D optimizations, parallelization, clustering algo-
rithms and load balancing, and support for more general types of grids.

A lot of work has been done on a 3D version of the code, as shown in previous chapters.
Getting speedups from the cache optimizations will require considerably more work beyond
the time frame of this thesis.

Parallelization is a high priority, after the 3D code is ready. There are already some
simple parallel mechanisms in the code, and Zoltan [13] has been incorporated and tested
for a trivial problem. More sophisticated and general parallel support will be the next big
phase of this project.

One topic that has not been considered at all in this project, but which we would like to
consider in the future, is the process of erecting a hierarchy of adaptively refined grids in the
first place. To date, we are assuming that the hierarchy exists and are concerned with the
solution procedure on that hierarchy. To develop a more comprehensive package, we may
incorporate clustering algorithms and mechanisms for building a hierarchy from scratch and
modifying the hierarchy during the solution procedure based on the convergence properties
of the solution.

We would also like to extend the notions described in this dissertation to support non-
orthogonal grid lines (e.g. skewed or rotated patches) and curvalinear grids.

Copyright c© Daniel Thomas Thorne Jr. 2003

89



Appendix A

A.1 Introduction

In the following sections, the smoother is derived from the discretizations for the interior,
edge, and corner points, and the corresponding damping factors are shown. The edge and
corner damping factors differ a little bit from [69].

The equation being discretized is −∆u = f , and L represents the discrete operator.

A.2 Interior Damping Factor

In the interior,
1

h2
(4uij − ui−1,j − ui+1,j − ui,j−1 − ui,j+1) = fij,

so a Gauss-Seidel update looks like this:

uij ←
1

4

(

h2fij + ui−1,j + ui+1,j + ui,j−1 + ui,j+1

)

= uij +
1

4

(

h2fij + ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4uij
)

= uij +
1

4
h2
(

fij +
1

h2
(ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4uij)

)

= uij + λinterior (fij − Lu) ,

where the damping factor λinterior =
1
4
h2.

A.3 Edge Damping Factor

At an edge,
1

h2

(

6uij −
4

3
ui+1,j −

8

3
ui− 1

2
,j − ui,j+1 + ui,j−1

)

= fij,

so a Gauss-Seidel update looks like this:

uij ←
1

6

(

h2fij +
4

3
ui+1,j +

8

3
ui− 1

2
,j + ui,j+1 + ui,j−1

)

= uij +
1

6

(

h2fij +
4

3
ui+1,j +

8

3
ui− 1

2
,j + ui,j+1 + ui,j−1 − 6uij

)

= uij +
1

6
h2
(

fij +
1

h2

(

4

3
ui+1,j +

8

3
ui− 1

2
,j + ui,j+1 + ui,j−1 − 6uij

))

= uij + λedge(fij − Lu),

where the damping factor λedge =
1
6
h2.

90



A.4 Corner Damping Factor

At a corner,
1

h2

(

8uij −
4

3
ui+1,j −

8

3
ui− 1

2
,j −

8

3
ui,j+ 1

2
−

4

3
ui,j−1

)

= fij,

so a Gauss-Seidel update looks like this:

uij ←
1

8

(

h2fij +
4

3
ui+1,j +

8

3
ui− 1

2
,j +

8

3
ui,j+ 1

2
+

4

3
ui,j−1

)

= uij +
1

8

(

h2fij +
4

3
ui+1,j +

8

3
ui− 1

2
,j +

8

3
ui,j+ 1

2
+

4

3
ui,j−1 − 8uij

)

= uij +
1

8
h2
(

fij +
1

h2

(

+
4

3
ui+1,j +

8

3
ui− 1

2
,j +

8

3
ui,j+ 1

2
+

4

3
ui,j−1 − 8uij

))

= uij + λcorner(fij − Lu),

where the damping factor λcorner =
1
8
h2.

A.5 Comments

So the damping factors are

λinterior =
1

4
h2,

λedge =
1

6
h2,

and

λcorner =
1

8
h2.

The interior damping factor here matches the interior damping factor stated in [69]. The
boundary damping factors do not, although the boundary damping factor

λboundary =
3

4
λinterior =

3

16
h2 = 0.1875h2

stated in [69] is close to the edge damping factor λedge ≈ 0.1667h2 computed here.

Copyright c© Daniel Thomas Thorne Jr. 2003

91



Appendix B

The code is written in C++. There is a hierarchy of C++ classes corresponding to the AMR
hierarchy

Grids Grid Functions

GridFunctionClass
GridClass GridFunctionArrayClass
GridLevelClass GridFunctionLevelClass
GridHierarchyClass GridFunctionCompositeClass

and there is a interface class, AMRMGClass.

The relationships between the classes are outlined in Fig. B.1. This chapter describes the

6

..............................................................................................................................................

..............................................................................................................................................

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

AMRMGClass

GridClass

GridFunctionCompositeClass

GridFunctionLevelClass

GridFunctionArrayClass

GridFunctionClass

ArrayClass

GridLevelClass

GridHierarchyClass

¾

NumLevels NumLevels

NumGridsNumGrids

NumGridFunctions

¾

¾

t

t

t

t

t

t

t

r
rn

A

A

A

A

B

B

B

B B has pointer(s) to A

A derives from B

A contains n copies of B

A contains B

Figure B.1: C++ Class Hierarchy

grids and grid functions and the methods that are defined for each. Note the parallel between
grid classes and grid function classes. Grid classes store specifications about the hierarchy
and grid functions store the corresponding function values. The methods for the discrete
operators, iterative solvers, residual computations, and composite multilevel algorithm are
defined in the grid functions. The interface class, AMRMGClass, stores the grid hierarchy
and composite grid function and defines methods for initializing a problem and coordinating
the solution procedure.

B.1 Grids

Information about the AMR hierarchy is managed by grid classes.

92



B.1.1 Grid Class

A grid is, first of all, a bounding box. The grid class contains the beginning and ending
coordinates of a rectangular grid stored as the integer coordinates of the beginning and ending
grid points from the discretization. We also store the real coordinates of the corresponding
region from the domain. In addition, the grid class includes the mesh spacing in each
direction and the number of grid points in each direction. The local indexing on a grid is
always (0, 0, 0)..(ni − 1, nj − 1, nk − 1), where ni, nj and nk are the number of grid points
in the x, y and z directions. Global indexing is computed based on the real coordinates and
mesh spacings.

The Uniform Modeling Language (UML) diagram for this class is

+---------------------------------------------------------------+

GridClass

+---------------------------------------------------------------+

- si, ei, ni: GridCoordsClass

- GridLevelPtr: GridLevelClass*

- LevelIndex: int

- NumLevels: int

- RefinementFactor: int

- ChildPtrArray: ArrayClass<GridClass*>

- ParentPtr: GridClass*

- GridFunctionArrayPtr: GridFunctionArrayClass*

- Index: int

- ShadowGrid: ArrayClass<int>

- TooBigForCache: int

- clinesx, clinesy: int

- OnlyPostSmoothing: int

- NumSmootherStepsPerLevel: int

- NumSmootherSteps: int

+---------------------------------------------------------------+

+ GridClass()

+ GridClass(

inout arg_name: char*)

+ GridClass(

inout arg_name: char*

in arg_sx: const RealCoordsClass&

in arg_ex: const RealCoordsClass&

in arg_si: const GridCoordsClass&

in arg_ei: const GridCoordsClass&

in arg_LevelIndex: const int

in arg_NumLevels: const int )

+ GridClass(

inout arg_name: char*

in arg_sx: const RealCoordsClass&

in arg_ex: const RealCoordsClass&

93



in arg_si: const GridCoordsClass&

in arg_ei: const GridCoordsClass&

in arg_ni: const GridCoordsClass&

in arg_LevelIndex: const int

in arg_NumLevels: const int )

+ ~GridClass()

+ GridClass(

in arg_GridClass: GridClass&)

+ operator=(

in arg_GridClass: GridClass&): GridClass&

+ operator<<(

in o: ostream&

in arg_GridClass: GridClass&): friend ostream&

+ AddChildPtr(

inout arg_GridPtr: GridClass*): void

+ isLeaf(): int

+ HasChildren(): int

+ InitShadowGrid(): void

+ get_sx(): RealCoordsClass&

+ get_ex(): RealCoordsClass&

+ get_dx(): RealCoordsClass&

+ get_sx(

in i: int ): real

+ get_ex(

in i: int ): real

+ get_dx(

in i: int ): real

+ get_si(): GridCoordsClass&

+ get_ei(): GridCoordsClass&

+ get_ni(): GridCoordsClass&

+ get_si(

in i: int ): int

+ get_ei(

in i: int ): int

+ get_ni(

in i: int ): int

+ get_n(): int

+ set_GridLevelPtr(

inout arg_GridLevelPtr: GridLevelClass*): void

+ get_GridLevelPtr(): GridLevelClass*

+ get_NumChildren(): int

+ get_ChildPtr(

in i: int ): GridClass*

+ get_ChildPtrArray(): ArrayClass<GridClass*>&

+ set_ParentPtr(

94



inout arg_ParentPtr: GridClass*): void

+ get_ParentPtr(): GridClass*

+ set_GridFunctionArrayPtr(

inout arg_GridFunctionArrayPtr: GridFunctionArrayClass*): void

+ get_GridFunctionArrayPtr(): GridFunctionArrayClass*

+ set_LevelIndex(

in arg_LevelIndex: int ): void

+ get_LevelIndex(): int

+ set_NumLevels(

in arg_NumLevels: int ): void

+ get_NumLevels(): int

+ set_RefinementFactor(

in arg_RefinementFactor: int ): void

+ get_RefinementFactor(): int

+ set_Index(

in arg_Index: int ): void

+ get_Index(): int

+ get_ShadowGrid(): ArrayClass<int>&

+ get_TooBigForCache(): int

+ get_clinesx(): int

+ get_clinesy(): int

+ get_OnlyPostSmoothing(): int

+ get_NumSmootherStepsPerLevel(): int

+---------------------------------------------------------------+

B.1.2 Grid Level Class

Multiple grid classes are combined to form a grid level class. A grid level is characterized
by the mesh spacing of the grids on that level. The mesh spacings between adjacent levels
differ by a factor, usually two or four, called the refinement factor.

The Uniform Modeling Language (UML) diagram for this class is

+---------------------------------------------------------------+

GridLevelClass

+---------------------------------------------------------------+

- n: int

- GridPtrArray: ArrayClass<GridClass*>

- LevelIndex: int

- NumLevels: int

- RefinementFactor: int

- GridHierarchyPtr: GridHierarchyClass*

+---------------------------------------------------------------+

+ GridLevelClass()

+ GridLevelClass(

inout arg_name: char*)

95



+ GridLevelClass(

in arg_NumGrids: int )

+ GridLevelClass(

inout arg_name: char*

in arg_NumGrids: int )

+ GridLevelClass(

inout arg_GridPtr: GridClass*)

+ GridLevelClass(

inout arg_name: char*

inout arg_GridPtr: GridClass*)

+ GridLevelClass(

inout arg_GridPtrs: ArrayClass<GridClass*>&)

+ GridLevelClass(

inout arg_name: char*

inout arg_GridPtrs: ArrayClass<GridClass*>&)

+ GridLevelClass(

in arg_GridLevel: GridLevelClass&)

+ operator=(

in arg_GridLevel: GridLevelClass&): GridLevelClass&

+ operator()(

in i: int): GridClass*

+ operator()(

in i: int) const: const GridClass*

+ ~GridLevelClass()

+ operator<<(

in o: ostream&

in arg_GridLevel: GridLevelClass&): friend ostream&

+ InitBaseGrid(

inout arg_BaseGridPtr: GridClass*): void

+ AddGrid(

inout arg_GridPtr: GridClass*

inout arg_ParentGridPtr: GridClass*): void

+ InitShadowGrid(): void

+ get_NumGrids(): int

+ get_n(): int

+ get_GridLevel(): ArrayClass<GridClass*>&

+ set_LevelIndex(

in arg_LevelIndex: int ): void

+ get_LevelIndex(): int

+ set_NumLevels(

in arg_NumLevels: int ): void

+ get_NumLevels(): int

+ set_RefinementFactor(

in arg_RefinementFactor: int ): void

+ get_RefinementFactor(): int

96



+ set_GridHierarchyPtr(

inout arg_GridPtrHierarchyPtr: GridHierarchyClass*): void

+ get_GridHierarchyPtr(): GridHierarchyClass*

+---------------------------------------------------------------+

B.1.3 Grid Hierarchy Class

Multiple grid level classes are combined to form a grid hierarchy class. Finer grids can be
thought of as either nested within or hovering above a coarser grid. See Fig. 3.1 for an
illustration of the former and Fig. 2.4 for an illustration of the latter. In either case, the
finer grids can be called child grids of a coarse grid (or parent grid). Grids maintain pointers
to their children and parent. A grid has at most one parent.

The Uniform Modeling Language (UML) diagram for this class is

+---------------------------------------------------------------+

GridHierarchyClass

+---------------------------------------------------------------+

- n: int

- RefinementFactor, RefinementFactor2: int

- GridLevelPtrArray: ArrayClass<GridLevelClass*>

+---------------------------------------------------------------+

+ GridHierarchyClass()

+ GridHierarchyClass(

inout arg_name: char*)

+ GridHierarchyClass(

in arg_NumLevels: int )

+ GridHierarchyClass(

inout arg_name: char*

in arg_NumLevels: int )

+ GridHierarchyClass(

inout arg_GridLevelPtr: GridLevelClass*)

+ GridHierarchyClass(

inout arg_name: char*

inout arg_GridLevelPtr: GridLevelClass*)

+ GridHierarchyClass(

inout arg_GridHierarchy: ArrayClass<GridLevelClass*>&)

+ GridHierarchyClass(

inout arg_name: char*

in:

inout arg_GridHierarchy: ArrayClass<GridLevelClass*>&)

+ ~GridHierarchyClass()

+ GridHierarchyClass(

in arg_GridHierarchy: GridHierarchyClass&)

+ operator=(

in arg_GridHierarchy: GridHierarchyClass&): GridHierarchyClass&

97



+ operator<<(

in o: ostream&

in:

in arg_GridHierarchyClass: GridHierarchyClass&): friend ostream&

+ InitBaseGrid(

inout arg_BaseGrid: GridClass*): void

+ AddLevel(): void

+ AddGrid(

in arg_LevelIndex: int

in:

inout arg_GridPtr: GridClass*

in:

inout arg_ParentGridPtr: GridClass*): void

+ InitShadowGrid(): void

+ get_NumLevels(): int

+ set_NumLevels(

in arg_NumLevels: int ): void

+ get_n(): int

+ set_n(

in arg_n: int ): void

+ get_RefinementFactor(): int

+ get_RefinementFactor2(): int

+ set_RefinementFactor(

in arg_RefinementFactor: int ): void

+ get_GridHierarchy(): ArrayClass<GridLevelClass*>&

+ get_GridLevel(

in i: int ): GridLevelClass&

+ get_GridLevelPtr(

in i: int ): GridLevelClass*

+---------------------------------------------------------------+

B.2 Grid Functions

Grid functions and operations on grid functions are managed by grid function classes.

B.2.1 Grid Function Class

Grid functions store the values associated with each grid point on a grid. A grid function is
initialized with a pointer to the corresponding grid. The grid function class is derived from
an array class allowing easy access to the data either by an overloaded Fortran-style indexing
operator or by a conventional C-style pointer.

The Uniform Modeling Language (UML) diagram for this class is

+---------------------------------------------------------------+

98



GridFunctionClass

+---------------------------------------------------------------+

- GridPtr: GridClass*

- BaseGridPtr: GridClass*

- GridFunctionIndex: int

+---------------------------------------------------------------+

+ GridFunctionClass(

in arg_GridFunctionIndex = 0: int )

+ GridFunctionClass(

inout arg_name: char*

in arg_GridFunctionIndex = 0: int )

+ GridFunctionClass(

inout arg_GridPtr: GridClass*

inout arg_BaseGridPtr: GridClass*

in arg_GridFunctionIndex = 0: int )

+ GridFunctionClass(

inout arg_name: char*

inout arg_GridPtr: GridClass*

inout arg_BaseGridPtr: GridClass*

in arg_GridFunctionIndex = 0: int )

+ GridFunctionClass(

in arg_GridFunction: GridFunctionClass&)

+ operator*(

in arg_GridFunction: GridFunctionClass& ): real

+ operator*(

in arg: real ): GridFunctionClass

+ operator*=(

in arg: real ): GridFunctionClass&

+ operator*(

in arg: real

in arg_GridFunction: GridFunctionClass& ): friend const GridFunctionClass

+ operator=(

in arg_GridFunction: GridFunctionClass&): GridFunctionClass&

+ operator=(

in ArrayClass<real> arg_Array: const&): GridFunctionClass&

+ operator<<(

in o: ostream&

in arg_GridFunctionClass: GridFunctionClass&): friend ostream&

+ ~GridFunctionClass()

+ Init(

inout arg_GridPtr: GridClass*

inout arg_BaseGridPtr: GridClass*

in arg_myProcID: int ): void

+ SubtractPComplement(): void

+ SubtractP(): void

99



+ ComputeChildSumOfAbsoluteValues(): real

+ get_myProcID(): int

+ set_myProcID(

in arg_myProcID: int ): void

+ get_GridPtr(): GridClass*

+ set_GridPtr(

inout arg_GridPtr: GridClass*): void

+ get_BaseGridPtr(): GridClass*

+ set_BaseGridPtr(

inout arg_BaseGridPtr: GridClass*): void

+ get_GridFunctionIndex(): int

+ set_GridFunctionIndex(

in arg_GridFunctionIndex: int ): void

+---------------------------------------------------------------+

B.2.2 Grid Function Array Class

Each grid generally has many functions associated with it, e.g., the solution, right hand side,
residual, and correction. The grid function array class stores an array of those grid functions.
This is where most of the work is done. Most of the tools for implementing multigrid on the
AMR hierarchy are defined here. However, operations are coordinated from the grid function
level class and the grid function composite class.

The Uniform Modeling Language (UML) diagram for this class is

+---------------------------------------------------------------+

GridFunctionArrayClass

+---------------------------------------------------------------+

- BaseGridPtr: GridClass*

- NumGridFunctions: int

- GridFunctionPtrArray: ArrayClass<GridFunctionClass*>

- CoefficientMatrixPtr: CoefficientMatrixClass*

- gpn, gps, gpe, gpw: ArrayClass<real>

- gpn_flag, gps_flag, gpe_flag, gpw_flag: ArrayClass<real>

- gpsw, gpse, gpnw, gpne: real

- gpsw_flag, gpse_flag, gpnw_flag, gpne_flag: real

- OnlyPostSmoothing: int

- NumSmootherStepsPerLevel: int

- NumSmootherSteps: int

- UseStandardSmoother: int

- NumCacheLines: int

- NumGridPointsInCache: int

- UseCacheAwareSmoother: int

- UseCacheAwareSmootherXY: int

- ComputeResidualInSmoother: int

- ParentPtr: GridFunctionArrayClass*

100



- ChildPtrArray: ArrayClass<GridFunctionArrayClass*>

- phisavePtr: GridFunctionClass*

- LePtr: GridFunctionClass*

- eTempPtr: GridFunctionClass*

- interpd_red_east: ArrayClass<real>

- interpd_red_west: ArrayClass<real>

- interpd_red_north: ArrayClass<real>

- interpd_red_south: ArrayClass<real>

+---------------------------------------------------------------+

+ GridFunctionArrayClass(

in arg_myProcID: int

in arg_NumGridFunctions: int )

+ GridFunctionArrayClass(

inout arg_name: char*

in arg_myProcID: int

in arg_NumGridFunctions: int )

+ GridFunctionArrayClass(

inout arg_GridPtr: GridClass*

inout arg_BaseGridPtr: GridClass*

in arg_myProcID: int

in arg_NumGridFunctions: int )

+ GridFunctionArrayClass(

inout arg_name: char*

inout arg_GridPtr: GridClass*

inout arg_BaseGridPtr: GridClass*

in arg_myProcID: int

in arg_NumGridFunctions: int )

+ GridFunctionArrayClass(

in arg_GridFunctionArrayClass: GridFunctionArrayClass&)

+ operator=(

in arg_GridFunctionArrayClass: GridFunctionArrayClass&):&

GridFunctionArrayClass

+ operator()( in i: int ): GridFunctionClass*

+ operator()( in i: int ) const: const GridFunctionClass*

+ operator<<(

in o: ostream&

in arg_GridFunctionArrayClass: GridFunctionArrayClass&): friend ostream&

+ ~GridFunctionArrayClass()

+ Init(

inout arg_GridPtr: GridClass*

inout arg_BaseGridPtr: GridClass*

in arg_myProcID: int

in arg_NumGridFunctions: int ): void

+ AddChildPtr(

inout arg_GridFunctionArrayPtr: GridFunctionArrayClass*): void

101



+ isLeaf(): int

+ HasChildren(): int

+ SolutionFunction(

in x: real

in y: real

in z: real ): real

+ CoefficientFunction(

in x: real

in y: real

in z: real ): real

+ InitPoisson(): void

+ InitPoissonCoeffs(): void

+ InitPoissonRHS(): void

+ InitRandom(): void

+ Smooth(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

inout arg_resPtr: GridFunctionClass*

in arg_NumIts: int ): void

+ SmoothStandard(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

inout arg_resPtr: GridFunctionClass*

in arg_NumIts: int ): void

+ oid GridFunctionArrayClass: : SmoothStandard_WithResidualUpdate(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

in arg_NumIts: int )

+ SmoothCacheAware(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

inout arg_resPtr: GridFunctionClass*

in arg_NumIts: int ): void

+ SmoothCacheAwareXY(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

inout arg_resPtr: GridFunctionClass*

in arg_NumIts: int ): void

+ SmoothNSEWCacheAware(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

in arg_NumIts: int ): void

+ SmoothNSEWCacheAwareXY(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

102



in arg_NumIts: int ): void

+ SmoothSEWCacheAware(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

inout arg_resPtr: GridFunctionClass*

in arg_NumIts: int ): void

+ SmoothNEWCacheAware(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

inout arg_resPtr: GridFunctionClass*

in arg_NumIts: int ): void

+ SmoothNSECacheAware(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

inout arg_resPtr: GridFunctionClass*

in arg_NumIts: int ): void

+ SmoothNSWCacheAware(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

inout arg_resPtr: GridFunctionClass*

in arg_NumIts: int ): void

+ SmoothNWCacheAware(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

inout arg_resPtr: GridFunctionClass*

in arg_NumIts: int ): void

+ SmoothNECacheAware(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

inout arg_resPtr: GridFunctionClass*

in arg_NumIts: int ): void

+ SmoothSWCacheAware(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

inout arg_resPtr: GridFunctionClass*

in arg_NumIts: int ): void

+ SmoothSECacheAware(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

inout arg_resPtr: GridFunctionClass*

in arg_NumIts: int ): void

+ SmoothNorthCacheAware(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

inout arg_resPtr: GridFunctionClass*

103



in arg_NumIts: int ): void

+ SmoothSouthCacheAware(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

inout arg_resPtr: GridFunctionClass*

in arg_NumIts: int ): void

+ SmoothEastCacheAware(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

inout arg_resPtr: GridFunctionClass*

in arg_NumIts: int ): void

+ SmoothWestCacheAware(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

inout arg_resPtr: GridFunctionClass*

in arg_NumIts: int ): void

+ SmoothInteriorCacheAware(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

inout arg_resPtr: GridFunctionClass*

in arg_NumIts: int ): void

+ SmoothInteriorCacheAwareXY(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

inout arg_resPtr: GridFunctionClass*

in arg_NumIts: int ): void

+ SmoothInteriorCacheAwareXYxy(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

inout arg_resPtr: GridFunctionClass*

in arg_NumIts: int ): void

+ SmoothCacheAware(

in arg_SOL: int

in arg_RHS: int

in arg_NumIts: int ): void

+ SmoothCacheAwareXY(

in arg_SOL: int

in arg_RHS: int

in arg_NumIts: int ): void

+ SmoothStandard(

in arg_SOL: int

in arg_RHS: int

in arg_NumIts: int ): void

+ Smooth(

in arg_SOL: int

104



in arg_RHS: int

in arg_NumIts: int ): void

+ SmoothNSEW(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

in arg_NumIts: int ): void

+ SmoothSW(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

in arg_NumIts: int ): void

+ SmoothSE(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

in arg_NumIts: int ): void

+ SmoothNE(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

in arg_NumIts: int ): void

+ SmoothNW(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

in arg_NumIts: int ): void

+ SmoothN(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

in arg_NumIts: int ): void

+ SmoothS(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

in arg_NumIts: int ): void

+ SmoothE(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

in arg_NumIts: int ): void

+ SmoothW(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

in arg_NumIts: int ): void

+ SmoothInterior(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

in arg_NumIts: int ): void

+ SmoothNSEW_WithIntegratedInterpolation(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

105



inout arg_cvecPtr: GridFunctionClass*): void

+ SmoothNSEW_WithIntegratedInterpolationAndFullResidualComputation(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

inout arg_cvecPtr: GridFunctionClass*

inout arg_resPtr: GridFunctionClass*): void

+ SmoothNSEW_WithIntegratedInterpolationAndResidualUpdate(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

inout arg_cvecPtr: GridFunctionClass*): void

+ Smooth_WithFullResidualComputation(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

inout arg_resPtr: GridFunctionClass*

in arg_NumIts: int ): void

+ SmoothNSEW_WithFullResidualComputation(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

inout arg_resPtr: GridFunctionClass*

in arg_NumIts: int ): void

+ SmoothInterior_WithFullResidualComputation(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

inout arg_resPtr: GridFunctionClass*

in arg_NumIts: int ): void

+ Smooth_WithResidualUpdate(

inout arg_solPtr: GridFunctionClass*

inout arg_resPtr: GridFunctionClass*

in arg_NumIts: int ): void

+ SmoothNSEW_WithResidualUpdate(

inout arg_solPtr: GridFunctionClass*

inout arg_resPtr: GridFunctionClass*

in arg_NumIts: int ): void

+ SmoothInterior_WithResidualUpdate(

inout arg_solPtr: GridFunctionClass*

inout arg_resPtr: GridFunctionClass*

in arg_NumIts: int ): void

+ SmoothCacheAware_WithResidualUpdate(

inout arg_solPtr: GridFunctionClass*

inout arg_resPtr: GridFunctionClass*

in arg_NumIts: int ): void

+ SmoothNSEWCacheAware_WithFullResidualComputation(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

inout arg_resPtr: GridFunctionClass*

106



in arg_NumIts: int ): void

+ SmoothInteriorCacheAware_WithFullResidualComputation(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

inout arg_resPtr: GridFunctionClass*

in arg_NumIts: int ): void

+ SmoothNSEWCacheAware_WithResidualUpdate(

inout arg_solPtr: GridFunctionClass*

inout arg_resPtr: GridFunctionClass*

in arg_NumIts: int ): void

+ SmoothInteriorCacheAware_WithResidualUpdate(

inout arg_solPtr: GridFunctionClass*

inout arg_resPtr: GridFunctionClass*

in arg_NumIts: int ): void

+ SmoothCacheAware_WithResidualUpdateXY(

inout arg_solPtr: GridFunctionClass*

inout arg_resPtr: GridFunctionClass*

in arg_NumIts: int ): void

+ SmoothNSEWCacheAware_WithFullResidualComputationXY(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

inout arg_resPtr: GridFunctionClass*

in arg_NumIts: int ): void

+ SmoothInteriorCacheAware_WithFullResidualComputationXY(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

inout arg_resPtr: GridFunctionClass*

in arg_NumIts: int ): void

+ SmoothNSEWCacheAware_WithResidualUpdateXY(

inout arg_solPtr: GridFunctionClass*

inout arg_resPtr: GridFunctionClass*

in arg_NumIts: int ): void

+ SmoothInteriorCacheAware_WithResidualUpdateXY(

inout arg_solPtr: GridFunctionClass*

inout arg_resPtr: GridFunctionClass*

in arg_NumIts: int ): void

+ ComputeResidual(

in arg_SOL: int

in arg_RHS: int

in arg_lfinest: int ): void

+ ComputeResidualInterior(

in arg_SOL: int

in arg_RHS: int

in arg_lfinest: int ): void

+ ComputeResidualNSEW(

107



in arg_SOL: int

in arg_RHS: int

in arg_lfinest: int ): void

+ ComputeResidualNSEW(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

in arg_lfinest: int ): void

+ ComputeResidualSW(

in arg_SOL: int

in arg_RHS: int

in arg_lfinest: int ): void

+ ComputeResidualSW(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

in arg_lfinest: int ): void

+ ComputeResidualSE(

in arg_SOL: int

in arg_RHS: int

in arg_lfinest: int ): void

+ ComputeResidualSE(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

in arg_lfinest: int ): void

+ ComputeResidualNE(

in arg_SOL: int

in arg_RHS: int

in arg_lfinest: int ): void

+ ComputeResidualNE(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

in arg_lfinest: int ): void

+ ComputeResidualNW(

in arg_SOL: int

in arg_RHS: int

in arg_lfinest: int ): void

+ ComputeResidualNW(

inout arg_solPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

in arg_lfinest: int ): void

+ Vcycle_Project_Stage00(): void

+ Vcycle_Project_Stage01a(): void

+ Vcycle_Project_Stage01b(): void

+ Vcycle_Project_Stage02(): void

+ Vcycle_CoarseGridSolve(

in arg_RHS: int ): void

108



+ Vcycle_Correct_Stage01(): void

+ Vcycle_Correct_Stage02(): void

+ Lpatch(

inout arg_lopPtr: GridFunctionClass*

in arg_SOL: int ): void

+ Lpatch(

inout arg_lopPtr: GridFunctionClass*

inout arg_solPtr: GridFunctionClass*): void

+ LpatchInterior(

inout arg_lopPtr: GridFunctionClass*

inout arg_solPtr: GridFunctionClass*): void

+ LpatchNSEW(

inout arg_lopPtr: GridFunctionClass*

inout arg_solPtr: GridFunctionClass*): void

+ LpatchSW(

inout arg_lopPtr: GridFunctionClass*

inout arg_solPtr: GridFunctionClass*): void

+ LpatchSE(

inout arg_lopPtr: GridFunctionClass*

inout arg_solPtr: GridFunctionClass*): void

+ LpatchNE(

inout arg_lopPtr: GridFunctionClass*

inout arg_solPtr: GridFunctionClass*): void

+ LpatchNW(

inout arg_lopPtr: GridFunctionClass*

inout arg_solPtr: GridFunctionClass*): void

+ Lsuball(

inout arg_lopPtr: GridFunctionClass*

in arg_lfinest: int

in arg_SOL: int ): void

+ FluxMatch(

inout arg_lopPtr: GridFunctionClass*

in arg_lfinest: int

in arg_SOL: int ): void

+ FluxMatchResidual(

inout arg_resPtr: GridFunctionClass*

inout arg_rhsPtr: GridFunctionClass*

in arg_lfinest: int

in arg_SOL: int ): void

+ InterpolateGhostPoints(

inout arg_lopPtr: GridFunctionClass*

in arg_lfinest: int

in arg_SOL: int ): void

+ ComputeTrueSolution(

in arg_IND: int ): void

109



+ ComputeError(): void

+ quad_interp(

in a: double

in b: double

in c: double ): double

+ quad_interp_blue01(

in a: double

in b: double

in c: double ): double

+ quad_interp_blue02(

in a: double

in b: double

in c: double ): double

+ quad_interp_red(

in fleft: double

in fmiddle: double

in cright: double ): double

+ quad_interp_blue01_backward(

in a: double

in b: double

in c: double ): double

+ quad_interp_blue02_backward(

in a: double

in b: double

in c: double ): double

+ quad_interp_blue01_forward(

in a: double

in b: double

in c: double ): double

+ quad_interp_blue02_forward(

in a: double

in b: double

in c: double ): double

+ get_interpd_red_east(): ArrayClass<real>&

+ get_interpd_red_west(): ArrayClass<real>&

+ get_interpd_red_north(): ArrayClass<real>&

+ get_interpd_red_south(): ArrayClass<real>&

+ Interpolate(

in arg_FVEC: int

in arg_CVEC: int ): void

+ InterpInterior(

in fvec: GridFunctionClass&

in cvec: GridFunctionClass&

inout ChildGridPtr: GridClass*): void

+ InterpNSEW(

110



in fvec: GridFunctionClass&

in cvec: GridFunctionClass&

inout ChildGridPtr: GridClass*): void

+ InterpSW(

in fvec: GridFunctionClass&

in cvec: GridFunctionClass&

inout ChildGridPtr: GridClass*): void

+ InterpSE(

in fvec: GridFunctionClass&

in cvec: GridFunctionClass&

inout ChildGridPtr: GridClass*): void

+ InterpNW(

in fvec: GridFunctionClass&

in cvec: GridFunctionClass&

inout ChildGridPtr: GridClass*): void

+ InterpNE(

in fvec: GridFunctionClass&

in cvec: GridFunctionClass&

inout ChildGridPtr: GridClass*): void

+ InterpolateAndCorrect(

in arg_FVEC: int

in arg_CVEC: int ): void

+ InterpAndCorrectInterior(

in fvec: GridFunctionClass&

in cvec: GridFunctionClass&

inout ChildGridPtr: GridClass*): void

+ InterpAndCorrectNSEW(

in fvec: GridFunctionClass&

in cvec: GridFunctionClass&

inout ChildGridPtr: GridClass*): void

+ InterpAndCorrectSW(

in fvec: GridFunctionClass&

in cvec: GridFunctionClass&

inout ChildGridPtr: GridClass*): void

+ InterpAndCorrectSE(

in fvec: GridFunctionClass&

in cvec: GridFunctionClass&

inout ChildGridPtr: GridClass*): void

+ InterpAndCorrectNW(

in fvec: GridFunctionClass&

in cvec: GridFunctionClass&

inout ChildGridPtr: GridClass*): void

+ InterpAndCorrectNE(

in fvec: GridFunctionClass&

in cvec: GridFunctionClass&

111



inout ChildGridPtr: GridClass*): void

+ Project(

inout arg_FinePtr: GridFunctionClass*

inout arg_CoarsePtr: GridFunctionClass*): void

+ Project(

in arg_FVEC: int

in arg_CVEC: int ): void

+ ProjectResidual(): void

+ InitGPN(): void

+ InitGPS(): void

+ InitGPE(): void

+ InitGPW(): void

+ InterpGPN(

inout arg_fvecPtr: GridFunctionClass*

inout arg_cvecPtr: GridFunctionClass*

in i: int ): void

+ InterpGPS(

inout arg_fvecPtr: GridFunctionClass*

inout arg_cvecPtr: GridFunctionClass*

in i: int ): void

+ InterpGPE(

inout arg_fvecPtr: GridFunctionClass*

inout arg_cvecPtr: GridFunctionClass*

in j: int ): void

+ InterpGPW(

inout arg_fvecPtr: GridFunctionClass*

inout arg_cvecPtr: GridFunctionClass*

in j: int ): void

+ InitGPsWithTrueSoln(): void

+ ComputeSumOfAbsoluteValues(

in arg_VEC: int ): real

+ ComputeSumOfAbsoluteValues(

inout arg_vecPtr: GridFunctionClass*): real

+ ComputeSumOfSquares(

in arg_VEC: int ): real

+ ClearGhostPoints(): void

+ ResetCOERHS(): void

+ get_myProcID(): int

+ set_myProcID(

in arg_myProcID: int ): void

+ get_GridPtr(): GridClass*

+ get_BaseGridPtr(): GridClass*

+ set_GridPtr(

inout arg_GridPtr: GridClass*): void

+ set_BaseGridPtr(

112



inout arg_BaseGridPtr: GridClass*): void

+ get_NumGridFunctions(): int

+ get_GridFunctionPtrArray(): ArrayClass<GridFunctionClass*>&

+ get_GridFunctionPtrArray(

in i: int ): GridFunctionClass*

+ CoefficientMatrixClass get_CoefficientMatrixPtr()*

+ get_gpn(): ArrayClass<real>&

+ get_gps(): ArrayClass<real>&

+ get_gpe(): ArrayClass<real>&

+ get_gpw(): ArrayClass<real>&

+ get_gpn_ptr(): ArrayClass<real>*

+ get_gps_ptr(): ArrayClass<real>*

+ get_gpe_ptr(): ArrayClass<real>*

+ get_gpw_ptr(): ArrayClass<real>*

+ get_gpn_flag(): ArrayClass<real>&

+ get_gps_flag(): ArrayClass<real>&

+ get_gpe_flag(): ArrayClass<real>&

+ get_gpw_flag(): ArrayClass<real>&

+ get_gpn_flag_ptr(): ArrayClass<real>*

+ get_gps_flag_ptr(): ArrayClass<real>*

+ get_gpe_flag_ptr(): ArrayClass<real>*

+ get_gpw_flag_ptr(): ArrayClass<real>*

+ get_gpsw(): real

+ get_gpse(): real

+ get_gpnw(): real

+ get_gpne(): real

+ get_gpsw_flag(): real

+ get_gpse_flag(): real

+ get_gpnw_flag(): real

+ get_gpne_flag(): real

+ set_GridFunctionLevelPtr(

inout arg_GridFunctionLevelPtr: GridFunctionLevelClass*): void

+ get_GridFunctionLevelPtr(): GridFunctionLevelClass*

+ get_NumChildren(): int

+ get_ChildPtr(

in i: int ): GridFunctionArrayClass*

+ get_ChildPtrArray(): ArrayClass<GridFunctionArrayClass*>&

+ set_ParentPtr(

inout arg_ParentPtr: GridFunctionArrayClass*): void

+ get_ParentPtr(): GridFunctionArrayClass*

+ get_phisavePtr(): GridFunctionClass*

+ get_LePtr(): GridFunctionClass*

+ get_eTempPtr(): GridFunctionClass*

+ get_OnlyPostSmoothing(): int

+ get_NumSmootherStepsPerLevel(): int

113



+ get_UseStandardSmoother(): int

+ get_NumCacheLines(): int

+ get_NumGridPointsInCache(): int

+ get_UseCacheAwareSmoother(): int

+ get_UseCacheAwareSmootherXY(): int

+ get_ComputeResidualInSmoother(): int

+---------------------------------------------------------------+

B.2.3 Grid Function Level Class

A union of grid function classes are combined to form a grid level function class. This class
has methods for coordinating operations applied to an entire level.

The Uniform Modeling Language (UML) diagram for this class is

+---------------------------------------------------------------+

GridFunctionLevelClass

+---------------------------------------------------------------+

- NumFunctionArrays: int

- NumGridFunctions: int

- UseStandardSmoother: int

- UseCacheAwareSmoother: int

- OnlyPostSmoothing: int

- NumSmootherStepsPerLevel: int

- NumSmootherSteps: int

- GridFunctionLevelPtrArray: ArrayClass<GridFunctionArrayClass*>

- GridFunctionLevelParentPtr: GridFunctionLevelClass*

- GridFunctionCompositePtr: GridFunctionCompositeClass*

- e_rms: double

+---------------------------------------------------------------+

+ GridFunctionLevelClass(

in arg_NumGridFunctions=NUM_GF: int )

+ GridFunctionLevelClass(

inout arg_name: char*

in arg_NumGridFunctions=NUM_GF: int )

+ GridFunctionLevelClass(

in arg_GridFunctionLevel: ArrayClass<GridFunctionArrayClass*>&)

+ GridFunctionLevelClass(

inout arg_name: char*

in arg_GridFunctionLevel: ArrayClass<GridFunctionArrayClass*>&)

+ GridFunctionLevelClass(

in arg_GridFunctionLevel: GridFunctionLevelClass&)

+ operator=(

in arg_GridFunctionLevel: GridFunctionLevelClass&): GridFunctionLevelClass&

+ operator()(

in i: int): GridFunctionArrayClass*

114



+ operator()(

in i: int) const: const GridFunctionArrayClass*

+ operator<<(

in o: ostream&

in arg_GridFunctionLevel: GridFunctionLevelClass&): friend ostream&

+ ~GridFunctionLevelClass()

+ InitBaseGridFunctionArray(

inout arg_BaseGridPtr: GridClass*

in arg_myProcID=0: int

in arg_NumGridFunctions=NUM_GF: int ): void

+ AddGridFunctionArray(

inout arg_GridPtr: GridClass*

inout arg_BaseGridPtr: GridClass*

inout arg_ParentGridPtr: GridClass*

in arg_myProcID=0: int ): void

+ Vcycle_Project_Stage00(): void

+ Vcycle_Project_Stage01(): void

+ Vcycle_Project_Stage02(): void

+ Vcycle_CoarseGridSolve(

in arg_RHS = RES: int ): void

+ Vcycle_Correct_Stage01(): void

+ Vcycle_Correct_Stage02(): void

+ Lnfl(): void

+ Lsuball(

in lfinest = -1: int ): void

+ FluxMatch(): void

+ FluxMatchResidual(): void

+ InitGPFlags(): void

+ InitNeighborGPs(

in arg_IND = SOL: int

in arg_RHS = RHS: int ): void

+ InitGPs(): void

+ ComputeResidual(

in arg_SOL = SOL: int

in arg_RHS = RHS: int

in arg_lfinest = -1: int ): void

+ InitGPsWithTrueSoln(): void

+ ComputeTrueSolution(

in arg_SOL = SOL: int ): void

+ Interpolate(): void

+ Project(): void

+ Smooth(

in arg_NumIts = -1: int ): void

+ SmoothNSEW_WithIntegratedInterpolation(): void

+ SmoothNSEW_WithIntegratedInterpolationAndFullResidualComputation(): void

115



+ Smooth_WithFullResidualComputation(): void

+ ComputeError(): void

+ ComputeSumOfAbsoluteValues(

in arg_VEC: int ): real

+ ComputeSumOfSquares(

in arg_VEC: int ): real

+ InterpolateGhostPoints(

in arg_lfinest = -1: int

in arg_SOL = SOL: int ): void

+ ClearGhostPoints(): void

+ ResetCOERHS(): void

+ get_BaseGridPtr(): GridClass*

+ get_NumFunctionArrays(): int

+ get_GridFunctionLevelPtrArray(): ArrayClass<GridFunctionArrayClass*>&

+ get_GridFunctionLevelPtrArray(

in arg: int ): GridFunctionArrayClass*

+ get_NumGridFunctions(): int

+ set_NumGridFunctions(

in arg_NumGridFunctions: int ): void

+ get_GridFunctionLevelParentPtr(): GridFunctionLevelClass*

+ set_GridFunctionLevelParentPtr(

inout arg_GridFunctionLevelParentPtr: GridFunctionLevelClass*): void

+ get_GridFunctionCompositePtr(): GridFunctionCompositeClass*

+ set_GridFunctionCompositePtr(

inout arg_GridFunctionCompositePtr: GridFunctionCompositeClass*): void

+ get_e_rms(): double

+ set_e_rms(

in arg_e_rms: double ): void

+ get_UseStandardSmoother(): int

+ get_UseCacheAwareSmoother(): int

+ get_OnlyPostSmoothing(): int

+ get_NumSmootherStepsPerLevel(): int

+---------------------------------------------------------------+

B.2.4 Grid Function Composite Class

The union of grid level function classes are combined into a composite grid function class.
This class has methods for applying operations over all the grid level functions of the grid
hierarchy as a whole.

The Uniform Modeling Language (UML) diagram for this class is

+---------------------------------------------------------------+

GridFunctionCompositeClass

+---------------------------------------------------------------+

- NumGridFunctions: int

116



- GridFunctionLevelPtrArray: ArrayClass<GridFunctionLevelClass*>

- AMRMGPtr: AMRMGClass*

- OnlyPostSmoothing: int

- ComputeResidualInSmoother: int

+---------------------------------------------------------------+

+ GridFunctionCompositeClass()

+ GridFunctionCompositeClass(

inout arg_name: char*

in arg_NumLevels=1: int )

+ GridFunctionCompositeClass(

inout: ArrayClass<GridFunctionLevelClass*>

in rg_GridFunctionLevelPtrArray: a&)

+ GridFunctionCompositeClass(

inout arg_name: char*

inout: ArrayClass<GridFunctionLevelClass*>

in rg_GridFunctionLevelPtrArray: a&)

+ GridFunctionCompositeClass(

in: GridFunctionCompositeClass

in rg_GridFunctionComposite: a&)

+ operator=(

in: GridFunctionCompositeClass

in rg_GridFunctionComposite: a&): GridFunctionCompositeClass&

+ operator()(

in i: int): GridFunctionLevelClass*

+ operator()(

in i: int) const: const GridFunctionLevelClass*

+ operator<<(

in o: ostream&

in arg_GridFunctionComposite: GridFunctionCompositeClass&): friend ostream&

+ ~GridFunctionCompositeClass()

+ InitBaseGridFunctionArray(

inout arg_BaseGridPtr: GridClass*

in arg_myProcID=0: int

in arg_NumGridFunctions=NUM_GF: int ): void

+ AddLevel(

inout arg_BaseGridPtr: GridClass*): void

+ AddGridFunctionArray(

inout arg_GridPtr: GridClass*

inout arg_BaseGridPtr: GridClass*

inout arg_ParentGridPtr: GridClass*

in arg_myProcID=0: int ): void

+ Vcycle(

in arg_FineLevelIndex = -1: int ): void

+ Lsuball(

in lfinest = -1: int ): void

117



+ InitGPFlags(): void

+ InitNeighborGPs(

in arg_IND = SOL: int ): void

+ Interpolate(): void

+ Project(): void

+ ComputeResidual(

in arg_SOL = SOL: int

in arg_RHS = RHS: int

in arg_lfinest = -1: int ): void

+ ComputeError(): void

+ ComputeNorm(

in arg_VEC: int

in arg = 2: int ): real

+ Smooth(

in arg_NumIts = -1: int ): void

+ ResetCOERHS(): void

+ get_NumLevels(): int

+ set_NumLevels(

in arg_NumLevels: int ): void

+ get_GridFunctionLevelPtrArray(): ArrayClass<GridFunctionLevelClass*>&

+ get_GridFunctionLevelPtrArray(

in i: int ): GridFunctionLevelClass*

+ set_NumGridFunctions(

in arg_NumGridFunctions: int ): void

+ get_NumGridFunctions(): int

+ get_AMRMGPtr(): AMRMGClass*

+ set_AMRMGPtr(

inout arg_AMRMGPtr: AMRMGClass*): void

+ get_OnlyPostSmoothing(): int

+ get_ComputeResidualInSmoother(): int

+---------------------------------------------------------------+

B.3 AMRMG Class

There is an interface class, AMRMGClass, that is composed of the grid hierarchy class and
the composite grid function class. This class has methods for initializing the grid hierarchy
and grid function(s) and for coordinating a solution method (e.g., multigrid V-Cycle).

The Uniform Modeling Language (UML) diagram for this class is

+---------------------------------------------------------------+

AMRMGClass

+---------------------------------------------------------------+

- NumGrids: int

- GridHierarchy: GridHierarchyClass*

118



- GridFunctionComposite: GridFunctionCompositeClass*

- NumGridFunctions: int

- RefinementFactor: int

- MinPatchSize: int

- ProcID: int

- ProcX: int

- ProcY: int

- OnlyPostSmoothing: int

- NumSmootherStepsPerLevel: int

- NumSmootherSteps: int

- ComputeResidualInSmoother: int

- private_create(): void

+---------------------------------------------------------------+

+ AMRMGClass()

+ AMRMGClass(

in argc: int

inout argv: char**)

+ AMRMGClass(

inout arg_name: char*)

+ AMRMGClass(

inout arg_name: char*

in arg_ProcID: int )

+ ~AMRMGClass()

+ AMRMGClass(

in arg_AMRMGClass: AMRMGClass&)

+ operator=(

in arg_AMRMGClass: AMRMGClass&): AMRMGClass&

+ operator<<(

in o: ostream&

in arg_AMRMG: AMRMGClass&): friend ostream&

+ Bing(): void

+ InitBaseGrid(): void

+ Refine(): void

+ Vcycle(): int

+ Lsuball(): void

+ Init(): void

+ ComputeError(): void

+ Vcycle_CoarseGridSolve(

in arg_RHS = RES: int ): void

+ ComputeNorm(

in arg_VEC: int

in arg = 2: int ): real

+ AddGrid(

inout GridPtr: GridClass*

in ParentIndex: int

119



in arg_procID: int

in arg_procX: int

in arg_procY: int

in arg_sx: RealCoordsClass&

in arg_ex: RealCoordsClass&

in arg_si: GridCoordsClass&

in arg_ei: GridCoordsClass&

in arg_ni: GridCoordsClass&): void

+ Smooth(

in arg_NumIts: int ): void

+ get_GridArray(): ArrayClass<GridClass*>&

+ set_GridArray(

inout arg_GridArray: ArrayClass<GridClass*>&): void

+ get_NumGrids(): int

+ set_NumGrids(

in arg_NumGrids: int ): void

+ get_GridHierarchy(): GridHierarchyClass*

+ get_GridFunctionComposite(): GridFunctionCompositeClass*

+ get_NumGridFunctions(): int

+ set_NumGridFunctions(

in arg_NumGridFunctions: int ): void

+ get_RefinementFactor(): int

+ set_RefinementFactor(

in arg_RefinementFactor: int ): void

+ get_MinPatchSize(): int

+ set_MinPatchSize(

in arg_MinPatchSize: int ): void

+ get_OnlyPostSmoothing(): int

+ get_NumSmootherStepsPerLevel(): int

+ get_ComputeResidualInSmoother(): int

+---------------------------------------------------------------+

B.4 Supporting Classes

B.4.1 Coords Class

+---------------------------------------------------------------+

CoordsClass

+---------------------------------------------------------------+

# NumDims: int

+---------------------------------------------------------------+

+ CoordsClass()

+ CoordsClass(

inout arg_name: char*)

120



+ CoordsClass(

in arg_NumDims: int )

+ CoordsClass(

inout arg_name: char*

in arg_NumDims: int )

+ ~CoordsClass()

+ CoordsClass(

in arg_CoordsClass: CoordsClass&)

+ CoordsClass(

in CoordsClass arg_CoordsClass: const&)

+ operator=(

in CoordsClass arg_CoordsClass: const&): CoordsClass&

+ operator<<(

in o: ostream&

in arg_CoordsClass: CoordsClass&): friend ostream&

+ get_NumDims(): int

+ NumDims(): int get_const

+ set_NumDims(

in arg_NumDims: int ): void

+---------------------------------------------------------------+

B.4.2 Array Class

+---------------------------------------------------------------+

ArrayClass

+---------------------------------------------------------------+

# v1d: Type*

# v2d: Type**

# v3d: Type***

# v4d: Type****

# nx, ny, nz, nw, n: int

# bx, by, bz, bw: int

# numDimns: int

# isEmptyFlag: int

# isPtr: int

# isShell: int

# isFlat: int

# FortranIndexingFlag: int

# private_create(): void

# private_copy(

in A: ArrayClass<Type> const&): void

# private_destroy(): void

+---------------------------------------------------------------+

+ ArrayClass(

in nx_=0: int

121



in ny_=0: int

in nz_=0: int

in nw_=0: int )

+ ArrayClass(

inout name_: char*

in nx_=0: int

in ny_=0: int

in nz_=0: int

in nw_=0: int )

+ ArrayClass(

inout v_: Type*

in nx_: int

in ny_=0: int

in nz_=0: int

in nw_=0: int )

+ ArrayClass(

inout name_: char*

inout v_: Type*

in nx_: int

in ny_=0: int

in nz_=0: int

in nw_=0: int )

+ ArrayClass(

in A: ArrayClass<Type>&)

+ operator=(

in A: ArrayClass<Type> const&): ArrayClass&

+ operator=(

in Type a: const&): ArrayClass&

+ ~ArrayClass()

+ allocate(

in nx_=0: int

in ny_=0: int

in nz_=0: int

in nw_=0: int ): void

+ allocate(

inout v_: Type*

in nx_: int

in ny_=0: int

in nz_=0: int

in nw_=0: int ): void

+ append(

in v_: Type ): void

+ append(): void

+ createPtr1d(

in A: ArrayClass<Type>&): void

122



+ createPtr2d(

in A: ArrayClass<Type>&): void

+ createPtr3d(

in A: ArrayClass<Type>&): void

+ createPtr4d(

in A: ArrayClass<Type>&): void

+ deallocate(): void

+ FortranIndexing(): void

+ CIndexing(): void

+ isFortranIndexing(): int

+ operator()(

in x: int ): Type&

+ operator()(

in x: int ) const: const Type&

+ operator()(

in x: int

in y: int ): Type&

+ operator()(

in x: int

in y: int

in z: int ): Type&

+ operator()(

in x: int

in y: int

in z: int

in w: int ): Type&

+ operator+(

in A_: ArrayClass<Type>&): ArrayClass<Type>

+ operator+(

in _A: const ArrayClass<Type>&): ArrayClass<Type>

+ operator+=(

in A_: ArrayClass<Type>&): ArrayClass<Type>&

+ operator+=(

in _A: const ArrayClass<Type>&): ArrayClass<Type>&

+ operator+(

in a: Type ): ArrayClass<Type>

+ operator+=(

in a: Type ): ArrayClass<Type>&

+ operator-(

in A_: ArrayClass<Type>&): ArrayClass<Type>

+ operator-(

in _A: const ArrayClass<Type>&): ArrayClass<Type>

+ operator-=(

in A_: ArrayClass<Type>&): ArrayClass<Type>&

+ operator-=(

123



in _A: const ArrayClass<Type>&): ArrayClass<Type>&

+ operator-(

in a: Type ): ArrayClass<Type>

+ operator-=(

in a: Type ): ArrayClass<Type>&

+ operator*( in a: Type ): ArrayClass<Type>

+ operator*=( in a: Type ): ArrayClass<Type>&

+ operator*(

in arg: T

in arg_Array: ArrayClass<T>&): template < class T> friend ArrayClass<T>&

+ norm(): Type

+ maxval(): Type

+ minval(): Type

+ zero(): void

+ randfill(): void

+ setall(

in a: Type ): void

+ incall(

in a: Type ): void

+ constMult(

in a: Type ): void

+ abs(): void

+ transpose(): void

+ printDimns(

inout msg=NULL: char*): void

+ printData(

in k0=0: int ): void

+ printData(

in o: ostream&

in k0=0: int ): void

+ friend ostream operator<<(

in o: ostream&

in arg_ArrayClass: ArrayClass<T>&): template < class T>&

+ fout(

in fio: fstream&): void

+ fout(

in fout: ofstream&): void

+ fin(

in fio: fstream&): void

+ fin(

in fin: ifstream&): void

+ ptr(

in nx_=0: int

in ny_=0: int

in nz_=0: int

124



in nw_=0: int ): Type*

+ ptr(

in nx_=0: int

in ny_=0: int

in nz_=0: int

int nw_=0): Type const*

+ ptr2d(

in nx_=0: int

in ny_=0: int

in nz_=0: int

in nw_=0: int ): Type**

+ get_nx(): int

+ get_ny(): int

+ get_nz(): int

+ get_nw(): int

+ get_nx(): const int

+ get_ny(): const int

+ get_nz(): const int

+ get_nw(): const int

+ get_bx(): int

+ get_by(): int

+ get_bz(): int

+ get_bw(): int

+ set_bx(

in b: int ): int

+ set_by(

in b: int ): int

+ set_bz(

in b: int ): int

+ set_bw(

in b: int ): int

+ get_n(): int

+ size(): int

+ isEmpty(): int

+ get_numDimns(): int

+ get_numDimns(): const int

+ extractDataPtr1d(): Type*

+ extractDataPtr2d(): Type**

+ extractDataPtr3d(): Type***

+ extractDataPtr4d(): Type****

+---------------------------------------------------------------+

Copyright c© Daniel Thomas Thorne Jr. 2003

125



Bibliography

[1] BLAS (basic linear algebra subprograms). In URL http://www.netlib.org/blas.

[2] Lapack (linear algebra package). http://www.netlib.org/lapack/.

[3] S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand Reinhold,
New York, 1965.

[4] D. F. Bacon, S. L. Graham, and O. J. Sharp, Compiler transformations for
high-performance computing, ACM Computing Surveys, 26 (1994), pp. 345–420.

[5] S. B. Baden, Structured Adaptive Mesh Refinement (Samr) Grid Methods, vol. 117 of
Ima Volumes in Mathematics and Its Applications, Springer– Verlag, New York, 1999.

[6] R. E. Bank and A. H. Sherman, The use of adaptive grid refinement for badly
behaved elliptic partial differential equations, in Mathematics and Computers in Simu-
lation, XXII, North-Holland, Amsterdam, 1980, pp. 18–24.

[7] , An adaptive multi–level method for elliptic boundary value problems, Computing,
26 (1981), pp. 91–105.

[8] P. Bastian and G. Wittum, On robust and adaptive multi–grid methods, in Multi-
grid Methods IV, Proceedings of the Fourth European Multigrid Conference, Amster-
dam, July 6-9, 1993, vol. 116 of ISNM, Basel, 1994, Birkhäuser, pp. 1–17.

[9] M. J. Berger, Data structures for adaptive mesh refinement, in Adaptive Computa-
tional Methods for Partial Differential Equations, I. Babuška, J. Chandra, and J. E.
Flaherty, eds., SIAM, Philadelphia, 1984.

[10] , Data structures for adaptive grid generation, SIAM J. Sci. Stat. Comp., 7 (1986),
pp. 904–916.

[11] M. J. Berger and P. Colella, Local adaptive mesh refinement for shock hydrody-
namics, J. Comput. Phys., 82 (1989), pp. 64–84.

[12] M. J. Berger and J. Oliger, An adaptive mesh refinement for hyperbolic partial
differential equations, J. Comput. Phys., 53 (1984), pp. 484–512.

[13] E. Boman, K. Devine, R. Heaphy, B. Hendrickson, W. F. Mitchell, M. S.

John, and C. Vaughan, Zoltan. In URL http://www.cs.sandia.gov/Zoltan.

126



[14] A. Brandt, Multi–level adaptive technique (MLAT) for fast numerical solution to
boundary value problems, in Proceedings of the Third International Conference on
Numerical Methods in Fluid Mechanics, H. Cabannes and R. Teman, eds., vol. 18 of
Lecture Notes in Physics, Berlin, 1973, Springer–Verlag, pp. 82–89.

[15] , Multi–level adaptive solutions to boundary–value problems, Math. Comp., 31
(1977), pp. 333–390.

[16] , Multi–level adaptive techniques (MLAT) for partial differential equations: ideas
and software, in Mathematical Software III, J. R. Rice, ed., Academic Press, New York,
1977, pp. 277–318.

[17] , Multi–level adaptive finite–element methods. I. Variational problems, in Special
Topics of Applied Mathematics, J. Frehse, D. Pallaschke, and U. Trotenberg, eds.,
North–Holland, Amsterdam, 1979, pp. 91–128.

[18] , Multi–level adaptive techniques (MLAT) for singular–perturbation problems, in
Numerical Analysis of Singular Perturbation Problems, P. W. Hemker and J. J. H.
Miller, eds., Academic Press, New York, 1979, pp. 53–142.

[19] , Multi–level adaptive computations in fluid dynamics, AIAA J., 18 (1980),
pp. 1165–1172.

[20] , Multi–level adaptive finite–element methods I: Variational problems, in Special
Topics of Applied Mathematics, North–Holland, Amsterdam, 1991, pp. 91–128.

[21] W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid Tutorial,
SIAM Books, Philadelphia, 2000. Second edition.

[22] H.-J. Bungartz, An adaptive Poisson solver using hierarchical bases and sparse grids,
in Proceedings of the IMACS International Symposium on Iterative Methods in Linear
Algebra, Brussels, April, 1991, Amsterdam, 1992, Elsevier.

[23] G. F. Carey, Grid Generation, Refinement, and Redistribution, Wiley, 1993.

[24] J. Dongarra and R. C. Whaley, Automatically tuned linear algebra software. In
URL http://www.netlib.org/atlas, 1999.

[25] W. Dörfler, A robust adaptive strategy for the non-linear Poisson equation, Com-
puting, 55 (1995), pp. 289–304.

[26] C. C. Douglas and J. Douglas, A unified convergence theory for abstract multigrid
or multilevel algorithms, serial and parallel, SIAM J. Numer. Anal., 30 (1993), pp. 136–
158.

[27] C. C. Douglas, J. Douglas, and D. E. Fyfe, A multigrid unified theory for
non-nested grids and/or quadrature, E. W. J. Numer. Math., 2 (1994), pp. 285–294.

127



[28] C. C. Douglas, G. Haase, J. Hu, M. Kowarschik, U. Rüde, and C. Weiss,
Portable memory hierarchy techniques for pde solvers, part i, SIAM News, 33 (2000),
pp. 1, 8–9.

[29] C. C. Douglas, G. Haase, J. Hu, M. Kowarschik, U. Rüde, and C. Weiß,
Portable Memory Hierarchy Techniques For PDE Solvers: Part I, Siam News, 33
(2000).

[30] C. C. Douglas, G. Haase, J. Hu, M. Kowarschik, U. Rüde, and C. Weiss,
Portable memory hierarchy techniques for pde solvers, part ii, SIAM News, 33 (2000),
pp. 1, 10–11, 16.

[31] C. C. Douglas, G. Haase, J. Hu, M. Kowarschik, U. Rüde, and C. Weiß,
Portable Memory Hierarchy Techniques For PDE Solvers: Part II, Siam News, 33
(2000).

[32] C. C. Douglas, J. Hu, M. Iskandarani, M. Kowarschik, U. Rüde, and

C. Weiß, Maximizing Cache Memory Usage for Multigrid Algorithms, in Numerical
Treatment of Multiphase Flows in Porous Media. Proc. of the Int. Workshop Held at
Beijing, China, 2-6 August, 1999, Z. Chen, R. Ewing, and Z.-C. Shi, eds., Lecture
Notes in Physics, Springer, Aug. 2000.

[33] C. C. Douglas, J. Hu, W. Karl, M. Kowarschik, U. Rüde, and C. Weiss,
Fixed and adaptive cache aware algorithms for multigrid methods, in Multigrid Methods
VI, vol. 14 of Lecture Notes in Computational Science and Engineering, Berlin, 2000,
Springer–Verlag, pp. 87–93.

[34] C. C. Douglas, J. Hu, W. Karl, M. Kowarschik, U. Rüde, and C. Weiß,
Fixed and Adaptive Cache Aware Algorithms for Multigrid Methods, in Multigrid Meth-
ods VI. Proc. of the Sixth European Multigrid Conference held in Gent, Belgium,
September 27-30, 1999, E. Dick, K. Riemslagh, and J. Vierendeels, eds., vol. 14 of
Lecture Notes in Computational Science and Engineering, Springer, July 2000.

[35] C. C. Douglas, J. Hu, M. Kowarschik, U. Rüde, and C. Weiss, Cache op-
timization for structured and unstructured grid multigrid, Elect. Trans. Numer. Anal.,
10 (2000), pp. 21–40.

[36] C. C. Douglas, J. Hu, M. Kowarschik, U. Rüde, and C. Weiß, Cache Opti-
mization for Structured and Unstructured Grid Multigrid, Electronic Transactions on
Numerical Analysis, 10 (2000), pp. 21–40.

[37] C. C. Douglas, U. Rüde, J. Hu, and M. Bittencourt, A Guide to Designing
Cache Aware Multigrid Algorithms, in Concepts of Numerical Software, W. Hackbusch
and G. Wittum, eds., Notes on Numerical Fluid Mechanics, Vieweg-Verlag, 2000. to
appear.

[38] R. E. Ewing, S. F. McCormick, and J. W. Thomas, The fast adaptive composite
grid method for solving differential boundary value problems, in Proc. Fifth ASCE–
EMD Speciality Conference, 1984, pp. 1453–1456.

128



[39] M. Frigo and S. G. Johnson, Fftw (fastest fourier transform in the west). In URL
http://www.fftw.org.

[40] S. R. Fulton, An adaptive multigrid model for hurricane track prediction, in Sixth
Copper Mountain Conference on Multigrid Methods, N. D. Melson, T. A. Manteuffel,
and S. F. McCormick, eds., vol. CP 3224, Hampton, VA, 1993, NASA, pp. 207–214.

[41] , A comparison of multilevel adaptive methods for hurricane track prediction, Elect.
Trans. Numer. Anal., 6 (1997), pp. 120–132.

[42] , An adaptive multigrid barotropic tropical cyclone track model, Mon. Wea. Rev.,
129 (2001), pp. 138–151.

[43] J. Handy, The Cache Memory Book, Academic Press, New York, 1998.

[44] L. Hart and S. F. McCormick, Asynchronous multilevel adaptive methods for
solving partial differential equations on multiprocessors: basic ideas, Parallel Comput.,
12 (1989), pp. 131–144.

[45] L. Hart, S. F. McCormick, A. O’Gallagher, and J. W. Thomas, The fast
adaptive composite grid method (FAC): Algorithms for advanced computers, Appl.
Math. Comput., 19 (1986), pp. 103–126.

[46] P. W. Hemker, On the structure of an adaptive multi–level algorithm, BIT, 20 (1980),
pp. 289–301.

[47] P. W. Hemker and J. Molenaar, An adaptive multigrid approach for the solu-
tion of the 2D semiconductor equations, in Multigrid Methods III, W. Hackbusch and
U. Trottenberg, eds., vol. 98 of International Series of Numerical Mathematics, Basel,
1991, Birkhäuser Verlag, pp. 41–60.

[48] M. A. Heroux, S. F. McCormick, S. McKay, and J. W. Thomas, Applications
of the fast adaptive composite grid method, in Multigrid Methods: Theory, Applica-
tions, and Supercomputing, S. F. McCormick, ed., vol. 110 of Lecture Notes in Pure
and Applied Mathematics, Marcel Dekker, New York, 1988, pp. 251–265.

[49] J. Hu, Cache Based Multigrid on Unstructured Grids in Two and Three Dimensions,
PhD thesis, University of Kentucky, Department of Mathematics, Lexington, KY, 2000.

[50] IBM, Essl (engineering and scientific subroutine library). http://www-
1.ibm.com/servers/eserver/pseries/library/sp books/essl.html.

[51] M. Jung, On adaptive grids in multilevel methods, in GAMM–Seminar on Multigrid–
Methods, Gosen, Germany, September 21-25, 1992, S. Hengst, ed., Berlin, 1993, IAAS,
pp. 67–80. Report No. 5.

[52] W. Karl, M. Kowarschik, U. Rüde, and C. Weiß, DiMEPACK — A Cache–
Aware Multigrid Library: User Manual, Tech. Rep. 01–1, Lehrstuhl für Informatik 10
(Systemsimulation), University of Erlangen–Nuremberg, Germany, 2001.

129



[53] K. Khadra, P. Angot, and J.-P. Caltagirone, Comparison of locally adaptive
multigrid methods: L.D.C. F.A.C. and F.I.C., in Sixth Copper Mountain Conference
on Multigrid Methods, N. D. Melson, T. A. Manteuffel, and S. F. McCormick, eds.,
vol. CP 3224, Hampton, VA, 1993, NASA, pp. 275–292.

[54] M. Khalil and P. Wesseling, Vertex-centered and cell-centered multigrid for in-
terface problems, J. Comp. Phys., 32 (1992), pp. 1–10.

[55] P. Knupp and S. Steinberg, Fundamentals of GRID GENERATION, CRC Press,
1993.

[56] P. M. Knupp and S. Steinburg, Fundamentals of Grid Generation, CRC Press,
1993.

[57] M. Kowarschik, U. Rüde, N. Thürey, and C. Weiß, Performance Optimiza-
tion of 3D Multigrid on Hierarchical Memory Architectures, in Proc. of the 6th Int.
Conference on Applied Parallel Computing (PARA 2002), vol. 2367 of Lecture Notes
in Computer Science, Espoo, Finland, June 2002, Springer, pp. 307–316.

[58] M. Kowarschik, U. Rüde, C. Weiß, and W. Karl, Cache-Aware Multigrid
Methods for Solving Poisson’s Equation in Two Dimensions, Computing, 64 (2000),
pp. 381–399.

[59] M. Kowarschik and C. Weiß, DiMEPACK — A Cache–Optimized Multigrid Li-
brary, in Proc. of the Int. Conference on Parallel and Distributed Processing Techniques
and Applications (PDPTA 2001), H. Arabnia, ed., vol. I, Las Vegas, NV, USA, 2001,
CSREA, CSREA Press.

[60] , An Overview of Cache Optimization Techniques and Cache–Aware Numerical
Algorithms, in Algorithms for Memory Hierarchies — Advanced Lectures, U. Meyer,
P. Sanders, and J. Sibeyn, eds., vol. 2625 of Lecture Notes in Computer Science,
Springer, Mar. 2003, pp. 213–232.

[61] M. Kowarschik, C. Weiß, and U. Rüde, Data Layout Optimizations for Variable
Coefficient Multigrid, in Proc. of the 2002 Int. Conference on Computational Science
(ICCS2002), Part III, vol. 2331 of Lecture Notes in Computer Science, Amsterdam,
The Netherlands, Apr. 2002, Springer, pp. 642–651.

[62] M. Lemke and D. Quinlan, Fast adaptive composite grid methods on distributed
parallel architectures, in Preliminary Proceedings of the Fifth Copper Mountain Con-
ference on Multigrid Methods, T. A. Manteuffel and S. F. McCormick, eds., vol. 2,
Denver, 1991, University of Colorado, pp. 61–75.

[63] , Local refinement based fast adaptive composite grid methods onSUPRENUM,
multigrid methods: special topics and applications II, in GMD Studien Nr. 189,
W. Hackbusch and U. Trottenberg, eds., GMD, Sankt Augustin, 1991, pp. 179–189.

[64] , Fast adaptive composite grid methods on distributed parallel architectures, Comm.
Appl. Num. Methods, 8 (1992), pp. 609–619.

130



[65] C. Liu, Z. Liu, and S. F. McCormick, Multilevel adaptive methods for incom-
pressible flow in grooved channels, J. Comput. Appl. Math., 38 (1991), pp. 283–295.

[66] , Multilevel adaptive methods for incompressible flow in grooved channels, in Pre-
liminary Proceedings of the Fifth Copper Mountain Conference on Multigrid Methods,
T. A. Manteuffel and S. F. McCormick, eds., vol. 2, Denver, 1991, University of Col-
orado, pp. 103–120.

[67] , Multilevel adaptive methods for laminar diffusion flames, J. Sci. Comput., 8
(1993), pp. 341–355.

[68] C. Liu and S. F. McCormick, Multigrid, elliptic grid generation and the fast adap-
tive composite grid method for solving transonic potential flow equations, in Multigrid
Methods: Theory, Applications, and Supercomputing, S. F. McCormick, ed., vol. 110
of Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, New York, 1988,
pp. 365–387.

[69] D. Martin and K. Cartwright, Solving Poisson’s equation using adaptive mesh
refinement. http://seesar.lbl.gov/anag/staff/martin/tar/AMR.ps, 1996.

[70] S. F. McCormick, Fast adaptive composite grid (FAC) methods: Theory for the
variational case, in Defect Correction Methods: Theory and Applications, K. Böhmer
and H. J. Stetter, eds., Computing Suppl. 5, Springer–Verlag, Vienna, 1984, pp. 115–
121.

[71] , A variational theory for multi–level adaptive techniques (MLAT), in Multigrid
Methods for Integral and Differential Equations, D. Paddon and H. Holstein, eds.,
The Institute for Integral and Differential Equations, Clarendon Press, Oxford, 1985,
pp. 225–230.

[72] , The fast adaptive composite (FAC) method for elliptic equations, Math. Comp.,
46 (1986), pp. 439–456.

[73] S. F. McCormick, S. M. McKay, and J. W. Thomas, Computational complexity
of the fast adaptive composite grid (fac) method, Appl. Numer. Math., 6 (1990).

[74] S. F. McCormick and D. Quinlan, Asynchronous multilevel adaptive methods for
solving partial differential equations on multiprocessors: performance results, Parallel
Comput., 12 (1989), pp. 145–156.

[75] S. F. McCormick and U. Rüde, A finite volume convergence theory for the fast
adaptive composite grid method, Appl. Numer. Math., 14 (1994), pp. 91–103.

[76] S. F. McCormick and J. W. Thomas, The fast adaptive composite grid (FAC)
method for elliptic equations, Math. Comp., 46 (1986), pp. 439–456.

[77] W. F. Mitchell, Optimal multilevel iterative methods for adaptive grids, SIAM J.
Sci. Stat. Comput., 13 (1992), pp. 146–167.

131



[78] K. W. Morton and D. F. Mayers, Numerical Solution of Partial Differential
Equations, Cambridge University Press, 1994.

[79] S. Owen, Meshing research corner. In URL http://www.andrew.cmu.edu/ user/
sowen/ mesh.html, 2003.

[80] D. A. Patterson and J. L. Hennessy, Computer Architecture: A Quantative
Approach, Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1996.

[81] H. Pfänder, Cache–optimierte Mehrgitterverfahren mit variablen Koeffizienten auf
strukturierten Gittern, Master’s thesis, Department of Computer Science, University
of Erlangen–Nuremberg, Germany, 2000.

[82] J. Philbin, J. Edler, O. J. Anshus, C. C. Douglas, and K. Li, Thread schedul-
ing for cache locality, in Proceedings of the Seventh ACM Conference on Architectural
Support for Programming Languages and Operating Systems, Cambridge, MA, 1996,
ACM, pp. 60–73.

[83] J. Ramanujam and P. Sadayappan, Nested loop tiling for distributed memory
machines, in dmcc90, Charleston, S.C., Apr 1990, pp. 1088–1096.

[84] J. R. Rosendale, Algorithms and data structures for adaptive multigrid elliptic
solvers, Appl. Math. Comput., 13 (1983), pp. 453–470.

[85] U. Rüde, Fully adaptive multigrid methods, SIAM J. Numer. Anal., 30 (1993), pp. 230–
248.

[86] , Mathematical and Computational Techniques for Multilevel Adaptive Methods,
vol. 13 of Frontiers in Applied Mathematics, SIAM, Philadelphia, 1993.

[87] , On the robustness and efficiency of the fully adaptive multigrid method, in Do-
main Decomposition Methods in Science and Engineering: The Sixth International
Conference on Domain Decomposition, vol. 157 of Contemporary Mathematics, Prov-
idence, Rhode Island, 1994, American Mathematical Society, pp. 121–126.

[88] , On the V–cycle of the fully adaptive multigrid method, in Adaptive Methods –
Algorithms, Theory and Applications, vol. 46 of Notes on Numerical Fluid Mechanics,
Braunschweig, 1994, Vieweg, pp. 251–260.

[89] U. Rüde, Iterative Algorithms on High Performance Architectures, in Proc. of the Eu-
roPar97 Conference, Lecture Notes in Computer Science, Springer, Aug. 1997, pp. 26–
29.

[90] , Technological Trends and their Impact on the Future of Supercomputing, in High
Performance Scientific and Engineering Computing, Proc. of the Int. FORTWIHR
Conference on HPSEC, H.-J. Bungartz, F. Durst, and C. Zenger, eds., vol. 8 of Lecture
Notes in Computer Science and Engineering, Springer, Mar. 1998, pp. 459–471.

132



[91] W. Skamarock, J. Oliger, and R. L. Street, Adaptive grid refinement for
numerical weather prediction, J. Comput. Phys., 80 (1989), p. 27.

[92] L. Stals and U. Rüde, Techniques for Improving The Data Locality of Iterative
Methods, Tech. Rep. MRR97–038, School of Mathematical Science, Australian National
University, Oct. 1997.

[93] L. Stals, U. Rüde, C. Weiß, and H. Hellwagner, Data Local Iterative Methods
for the Efficient Solution of Partial Differential Equations, in Proc. of the Eighth
Biennial Conference Computational Techniques and Applications: CTAC97, J. Noye,
M. Teubner, and A. Gill, eds., Adelaide, Australia, Sept. 1997, pp. 655–662.

[94] J. W. Thomas, R. Schweitzer, M. A. Heroux, S. F. McCormick, and A. M.

Thomas, Application of the fast adaptive composite grid method to computation fluid
dynamics, in Numerical Methods in Laminar and Turbulent Flow, C. Taylor, W. G.
Habashi, and M. M. Hafez, eds., Pineridge Press, Swansea, U.K., 1987, pp. 1071–1082.

[95] J. Thompson, B. Soni, and N. Weatherill, Handbook of Grid Generation, CRC
Press, 1999.

[96] N. Thürey, Cache Optimizations for Multigrid in 3D. Lehrstuhl für Informatik 10
(Systemsimulation), Institut für Informatik, University of Erlangen-Nuremberg, Ger-
many, June 2002.

[97] C. Weiß, Data Locality Optimizations for Multigrid Methods on Structured Grids,
PhD thesis, Lehrstuhl für Rechnertechnik und Rechnerorganisation, Institut für Infor-
matik, Technische Universität München, Munich, Germany, Dec. 2001.

[98] C. Weiß, H. Hellwagner, L. Stals, and U. Rüde, Data Locality Optimiza-
tions to Improve The Efficiency of Multigrid Methods, Tech. Rep. 02–1, Lehrstuhl für
Informatik 10 (Systemsimulation), University of Erlangen–Nuremberg, Germany, Jan.
2002.

[99] C. Weiß, W. Karl, M. Kowarschik, and U. Rüde, Memory Characteristics
of Iterative Methods, in Proc. of the ACM/IEEE SC99 Conference, Portland, Oregon,
Nov. 1999.

[100] C. Weiss et al, Dimepack. http://wwwbode.cs.tum.edu/Par/arch/cache.

[101] J. Wilke, Cache Optimizations for the Lattice Boltzmann Method in 2D. Lehrstuhl
für Informatik 10 (Systemsimulation), Institut für Informatik, University of Erlangen-
Nuremberg, Germany, Feb. 2003.

[102] J. Wilke, T. Pohl, M. Kowarschik, and U. Rüde, Cache Performance Opti-
mizations for Parallel Lattice Boltzmann Codes, in Proc. of the EuroPar03 Conference,
Lecture Notes in Computer Science, Springer. to appear.

[103] M. Wolfe,More iteration space tiling, in super89, Reno, Nev., nov 1989, pp. 655–664.

133



[104] M. Wolfe, High Performance Compilers for Parallel Computing, Addison Wesley,
1996.

134



Vita
1. Background

(a) Date of Birth: April 11, 1974

(b) Place of Birth: Fayetteville, NC

2. Academic Degrees

(a) H.S., May 1992, Madison Southern High School, Berea, KY.

(b) B.S., Mathematics/Computer Science (Teaching), Summa Cum Laude, GPA 3.901
(4.0 in Major), May 1997, Eastern Kentucky University, Richmond, KY.

(c) M.A., Mathematics, GPA 3.5, August 1999, University of Kentucky, Lexington,
KY.

3. Professional Experience

(a) Lab Instructor, Department of Mathematics, Computer Science, and Statistics,
Eastern Kentucky University, Richmond, KY, August 1993 to December 1993,
January 1994 to May 1994, August 1994 to December 1994, January 1995 to May
1995, August 1996 to December 1996.

(b) Peer Tutor, Student Support Services, Eastern Kentucky University, August 1993
to December 1993.

(c) Technical Support Representative, Lexmark International Incorporated, Lexing-
ton, KY, August 1995 to August 1996.

(d) Student Teacher, Madison Central High School, Richmond, KY, February 1997
to May 1997

(e) Teaching Assistant, Department of Mathematics, University of Kentucky, August
1997 to December 1997, January 1998 to May 1998, August 1998 to December
1998, June 1999 to August 1999.

(f) Research Assistant, Department of Mathematics, University of Kentucky, June
1998 to August 1998, January 1999 to May 1999.

(g) S&E/Technical Scholar, Center for Applied Scientific Computation, Lawrence Liv-
ermore National Laboratory (LLNL), Livermore, California, January 2000 to Au-
gust 2000.

(h) Research Assistant, Department of Computer Science, University of Kentucky,
August 2000 to May 2001.

(i) Student Intern, Computational Math/Algorithms Group, Sandia National Labo-
ratory, Livermore, CA, June 2001 to August 2001.

(j) Research Assistant, Department of Computer Science, University of Kentucky,
August 2001 to May 2002.

135



(k) Student Intern, Computational Math/Algorithms Group, Sandia National Labo-
ratory, Livermore, CA, May 2002 to July 2002.

(l) Part Time Instructor, Department of Computer Science, University of Kentucky,
Lexington, KY, August 2002 to December 2002.

(m) Research Assistant, Department of Computer Science, University of Kentucky,
August 2002 to Present.

(n) Postdoctoral Fellow, Department of Earth Science, Florida International Univer-
sity, Miami, FL, August 2003 to August 2004.

4. Presentations

(a) Random Dot Stereograms, Annual Mathematics, Statistics and Computer Science
Symposium, Eastern Kentucky University, Richmond, KY, March, 1995.

(b) Group Theory and Rubik’s Cube, Annual Mathematics, Statistics and Computer
Science Syposium, Eastern Kentucky University, Richmond, KY, March, 1996.

(c) Raytracing and Animation for the WWW, Annual Mathematics, Statistics and
Computer Science Symposium, Eastern Kentucky University, Richmond, KY,
March, 1997.

(d) Phigits, Annual Mathematics, Statistics and Computer Science Symposium, East-
ern Kentucky University, Richmond, KY, March, 1998.

(e) Modeling Mantle Convection in Terrestrial Planets, Seminar in Mathematical
Modeling of Physical Problems, University of Kentucky, Lexington, KY, Septem-
ber, 1998.

(f) B-Spline Wavelets I, Seminar in Wavelets and Image Processing, University of
Kentucky, Lexington, KY, March, 1999.

(g) B-Spline Wavelets II, Seminar in Wavelets and Image Processing, University of
Kentucky, Lexington, KY, March, 1999.

(h) High Performance Ocean Modeling, Center for Computational Sciences, Brownbag
Seminar, University of Kentucky, Lexington, KY, April, 1999.

(i) Ocean Circulation: Sink or Swim, Center for Computational Sciences, Brownbag
Seminar, University of Kentucky, Lexington, KY, April 17, 2001.

(j) Introduction to Parallel Programming, MPI, and OpenMP, Computational Sci-
ences, University of Kentucky, Lexington, KY, January 24, 2002.

(k) Adaptive Mesh Refinement, Multigrid Project, CSMR, Sandia National Labora-
tories/California, Livermore, CA, June 3, 2002.

(l) Oral Ph.D. Qualification Exam, University of Kentucky, Lexington, KY, October
1, 2002.

(m) Multigrid with Cache Optimizations on Adaptive Mesh Refinement Hierarchies,
LNCC, Petropolis, Brazil, October 25, 2002. [PPT with audio: http://www.ccs.uky.edu/ thorne/lncc.ppt.gz]

136



(n) Adaptive Mesh Refinement, Multigrid and Cache Optimizations with Numerical
Results, CCS Brownbag Seminar, University of Kentucky, Lexington, KY, Octo-
ber 29, 2002.

(o) Cache Aware Multigrid on AMR Hierarchies, ELEVENTH COPPER MOUN-
TAIN CONFERENCE ON MULTIGRID METHODS, Copper Mountain, Col-
orado, March 31, 2003.

(p) Cache Aware Multigrid on AMR Hierarchies, Center for Applied Scientific Com-
putation, Lawrence Livermore National Laboratories, Livermore, CA, May 27,
2003.

(q) Multigrid with Cache Optimizations on Adaptive Mesh Refinement Hierarchies,
Ph.D. Defense, University of Kentucky, Lexington, KY, December 2, 2003.

5. Publications

(a) Sierpinski and the TI-8x, December 1995, EKU Department of Mathematics,
Statistics and Computer Science Periodical for Secondary Mathematics Teachers
in Kentucky.

(b) C. C. Douglas, J. Hu, J. Ray, D. T. Thorne, and R. S. Tuminaro, Fast, Adap-
tively Refined Computational Elements in 3D, in Proceedings of the International
Conference on Computational Science, Amsterdam, 2002, Springer-Verlag, Berlin,
2002, pp. 774-783.

(c) C. C. Douglas and D. T. Thorne, A Note on Cache Memory Methods for Multi-
grid in Three Dimensions, to appear in 2003, American Mathematical Society,
Providence, 11 pages.

(d) Danny Thorne, Cache Aware Multigrid on AMR Hierarchies, ELEVENTH COP-
PER MOUNTAIN CONFERENCE ON MULTIGRID METHODS, Student Pa-
pers, 2003.

(e) C. C. Douglas, J. Hu, J. Ray, D. T. Thorne, and R. S. Tuminaro, Cache aware
multigrid for variable coefficient elliptic problems on adaptive mesh refinement
hierarchies. (To appear in Numerical Linear Algebra with Applications, 2004.)

6. Papers Submitted

(a) C. C. Douglas, J. Hu, J. Ray, D. T. Thorne, and R. S. Tuminaro, Cache Aware
Multigrid on Two Dimensional Adaptively Refined Structured Meshes. (Submit-
ted to Journal of Computational Physics.)

7. Corporate Awards

(a) Lexmark, Technical Support Services, Technical Excellence Award, 1996.

Daniel Thomas Thorne Jr.

Dec 02, 2003

137


	Multigrid with Cache Optimizations on Adaptive Mesh Refinement Hierarchies
	Recommended Citation

	tmp.1322491687.pdf.2DANd

