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ABSTRACT OF DISSERTATION 
 
 
 
 

AN ASSESSMENT AND ANALYSIS OF USING 
DEDICATED SHORT-RANGE COMMUNICATIONS (DSRC) TECHNOLOGY 

FOR INCIDENT DETECTION ON RURAL FREEWAYS 
 
 
 

This report describes an assessment of using dedicated short-range communications 
(DSRC) technology to perform travel time monitoring and automated incident detection 
on a segment of rural freeway.  The assessment used the CORSIM traffic simulation tool 
to simulate traffic and incidents on a segment of rural freeway.  Output data from the 
simulation was subjected to post-processing to produce the “probe and beacon” data that 
would be produced by a DSRC-based system.  An incident detection algorithm was 
developed, which used a travel time threshold and a counter.  Travel times exceeding the 
threshold incremented the counter, while travel times below the threshold decremented 
the counter (unless it was at zero).  An alarm was generated when the counter reached a 
pre-selected level.  This algorithm was tested on selected data files, and the results were 
used to identify the “best” values of the threshold and counter alarm level.  Using these 
“best” values, the algorithm was then applied to the “probe and beacon” data to 
determine how quickly the system could detect various traffic incidents.  The analysis 
showed that the system could provide rapid and reliable detection of incidents. 
 
During the simulation and analysis, several parameters were varied to observe their 
impacts on the system performance.  These parameters included traffic volume, incident 
severity, percentage of vehicles with transponders, spacing of roadside readers, and 
location of the incident relative to the next downstream reader.  Each parameter proved to 
have a significant effect on the detection time, and the observed impacts were consistent 
with logical expectations.  In general, the time to detect an incident was reduced in 
response to (1) an increase in traffic volume, (2) an increase in incident severity, (3) an 
increase in transponder population, (4) a reduction in reader spacing, and (5) a reduction 
in distance from incident location to next downstream reader.  
 

 



Preliminary estimates were developed of the costs associated with implementing a 
DSRC-based traffic monitoring system.  The relationship between system cost and 
system performance was explored and illustrated. 
 
Recommendations were developed and presented. These included further analysis based 
on traffic simulations, followed by a limited field deployment to validate the analysis 
results. 
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INTRODUCTION 
 

One of the fundamental requirements of a traffic management system is the ability to 

determine when an incident has occurred so that proper responses can be initiated.  Traffic 

incidents can result from a large variety of causes, including crashes, stalled vehicles, road 

maintenance or construction work, hazardous material spills, severe weather, rockslides, debris 

in the roadway, and many others.  Some incidents cause only minor delays, while others result in 

severe and prolonged traffic backups.  For any incident that affects traffic flow, it is essential that 

traffic management personnel become aware of the incident as quickly as possible after it occurs. 

Responses to a traffic incident may take many forms, including dispatching emergency 

services, rerouting traffic, and providing up-to-date traffic condition information to travelers.  

When these responses occur quickly, lives can be saved, traffic congestion and delays can be 

minimized, secondary crashes can be prevented, and traffic flow can be restored to normal in the 

quickest possible manner.  The crucial first step in any type of incident response is to detect the 

incident.  Obviously, without a prompt detection, there can be no prompt response. 

Many studies have documented the cost of traffic incidents and the value of rapid 

response.  Traffic congestion (from all causes) is estimated to cost approximately $63 billion 

annually in the United States.1  The National Highway Traffic Safety Administration (NHTSA) 

has reported that the cost of traveler delay due to traffic crashes in calendar year 2000 was $25.6 

billion, which is 11 percent of the total cost associated with traffic crashes.2  This NHTSA 

estimate does not include the direct cost of secondary crashes, nor does it include the cost of 

congestion and delay from other types of incidents (other than crashes).  It has been estimated 

that ten to twenty percent of all crashes on freeways are caused by preceding (primary) 

incidents.3  Obviously, there is a heavy cost associated with traffic incidents that generate 

congestion and delay.  This cost can be reduced through prompt detection and rapid response. 

                                                 
1 “2004 Annual Urban Mobility Report;” Texas Transportation Institute; Texas A&M University; September 2004; 
http://mobility.tamu.edu 
2 Blincoe. L.J. et al; “The Economic Impact of Traffic Cashes 2000;” National Highway Traffic Safety 
Administration; DOT HS 809 446; May 2002; http://www.nhtsa.dot.gov/people/economic/EconImpact2000/ 
3 Versavel, J.; “Sparing Lives, Saving Time: A Unified Approach to Automatic Incident Detection;” Traffic 
Technology International; Annual Review 2000; pg 189 
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Because of the importance of rapid detection of incidents, many different technologies 

and techniques for incident detection have been developed, implemented, and evaluated.  This 

study focuses on the use of dedicated short-range communications (DSRC) technology for 

travel-time monitoring and incident detection on rural freeways. 
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RESEARCH OBJECTIVES 
The objectives of this research were to: 

a) Assess the feasibility of using a DSRC-based system to perform continuous travel-

time monitoring and automated incident detection on a segment of rural freeway in 

Kentucky. 

b) Identify an appropriate decision algorithm for determining, based on travel time data, 

that an incident has occurred.  Apply this algorithm to data produced by traffic 

simulation, and refine the algorithm to achieve optimum performance. 

c) Determine how the effectiveness of a DSRC-based incident detection system would 

be affected by selected variables, including traffic volume, percentage of vehicles 

with transponders, incident severity, spacing of roadside readers, and location of the 

incident relative to the next downstream reader.  

d) Develop a rough estimate of the anticipated costs of such a system and describe the 

expected tradeoffs between cost and performance. 

e) Develop recommendations regarding operational testing and implementation of a 

DSRC-based incident detection system on a segment of rural freeway in Kentucky. 

 3



 4

LITERATURE REVIEW 
The first step of this research was to conduct a thorough literature review.  The review 

was designed to identify literature on the broad topic of incident detection, as well as on the 

narrower topic of using probe vehicles for incident detection.  Using the Transportation Research 

Information Services (TRIS) Database, numerous resources were identified.  Brief summaries of 

several directly related documents are presented in the Appendix.  The literature review was used 

to assess and describe the current state of incident management, highlight best practices, identify 

key questions, and define areas where the current research could contribute to the knowledge 

base.  The results of the literature review are discussed in the following sections. 

 

Available Approaches and Technologies for Incident Detection 

Methods of incident detection generally fall into four categories: 

1) Detection based on data from traffic sensors 

2) Detection based on images from cameras 

3) Detection based on data from probe vehicles 

4) Detection based on reports from the traveling public 

 
Traditionally, detection using traffic sensors has depended on sensors installed in or 

along the roadway to continuously measure vehicle flow rates and speeds.  Often, these sensors 

have been installed for the primary purpose of managing traffic operations, and they have a 

corollary value in incident detection.  However, there have also been instances where detectors 

have been installed with the primary purpose of incident detection.  Specific types of detectors 

that have been used for traffic monitoring and incident detection include the following: 

• Loop detectors in pavement 

• Roadside (or overhead) detectors using laser or radar 

• Acoustic detectors 

• Video cameras with video image processing 

Many traffic management systems, particularly in urban areas, have included the 

deployment of video cameras for traffic monitoring.  Because the images from these cameras are 

typically displayed in a traffic management center with continuous staffing, the images can be 

monitored by staff for any indication of an incident.  Thus, video cameras provide a valuable 



means for detecting incidents.  These cameras offer an advantage over other types of detectors, 

in that they allow traffic management personnel to perform some degree of remote diagnosis 

when an incident occurs.  This is particularly true when the ability exists to control cameras (i.e., 

pan, tilt, and zoom) from the traffic management center.  Thus, video cameras can be valuable 

not only in detecting and verifying the incident, but also in tailoring the response to fit the 

situation. 

The use of probe vehicles for incident detection can take many forms.  One example of 

this approach is to have designated travelers who periodically report their position to a traffic 

management center, using some form of wireless communications.4  Another approach is to have 

vehicles equipped with global positioning systems (GPS) and wireless communications, so that 

the vehicles themselves report their position (either periodically or continuously).  An alternative 

to the GPS-based approach is the use of cellular telephones as probes.5  Technology exists (and 

has been installed in some urban areas) that can determine the location of cellular telephones and 

track them as they move.  With this type of technology, any vehicle containing a cellular 

telephone can function as a probe vehicle, as long as the phone is turned on. 

A fourth type of probe-based detection is the “probe and beacon” approach.  Under this 

approach, the position of the vehicle is determined only when it passes certain locations on the 

roadway network (e.g., Mouskos et al6; Hallenbeck et al7).  This can be accomplished with a 

short-range communications device (such as a radio frequency transponder) on the vehicle and a 

corresponding reader on the roadside, or it can be accomplished using passive vehicle 

identification equipment on the roadside (such as automated license plate readers).  

Most of the technologies described above have been deployed primarily for traffic 

management purposes; hence, most installations have been in urban areas.  In general, the cost of 

deploying traffic sensors, video cameras, or cellular phone tracking systems has been prohibitive 

for rural areas.  Thus, incident detection in rural areas still depends primarily on reports from the 

traveling public.  The proliferation of mobile telephones has greatly enhanced the ability of 

                                                 
4 Balke, K.N. et al; “Benefits of Real-Time Travel Information in Houston, Texas;” Texas Transportation Institute, 
Texas A&M University; College Station, Texas; January 1995 
5 Mudge, R.R.; “Cell Phones as Data Probes: Background and Recent US Wireless Experience;” Presentation at ITS 
Mid-America Annual Meeting; Columbus, Ohio; September 2000. 
6 Mouskos, K.C. et al; “TRANSMIT System Evaluation;” Institute for Transportation; New Jersey Institute for 
Technology; June 1998. 
7 Hallenbeck, Boyle, and Ring; “Use of Automatic Vehicle Identification Techniques for Measuring Traffic 
Performance and Performing Incident Detection;” University of Washington, Seattle; October 1992. 
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travelers to report incidents.  However, this method has serious limitations as well.  Travelers 

often do not know what number to call to report an incident, so the incident report may be 

delayed in getting to the appropriate agency.  Reports are often sketchy, inaccurate, or 

incomplete.  This is particularly true with regard to the location of the incident, since many 

travelers in rural areas do not know how to determine and report their own location. 

 

Incident Detection using DSRC 

One technology that has great potential for use in travel time monitoring and incident 

detection is dedicated short-range communications, or DSRC.  The use of DSRC technology for 

transportation-related applications has grown rapidly in the last ten years.  This technology 

consists of vehicle-mounted transponders and roadside readers, which communicate with each 

other via radio frequency (RF) transmissions.  As the name implies, the communication range is 

short, usually less than 50 meters (for technology currently in use).  The most significant 

deployments of DSRC thus far have been for the purposes of electronic toll collection (ETC), 

commercial vehicle electronic screening, and international border crossings.  Other promising 

near-term applications include facilities access control, parking access and payment, and 

commercial fleet management.  Potential future applications of this technology are too numerous 

to list, but examples would include vehicle-to-vehicle safety systems (e.g., collision avoidance 

systems), in-vehicle signing, and data downloads to onboard navigational or entertainment 

systems.  As DSRC-based systems proliferate, the number of transponder-equipped vehicles can 

be expected to increase exponentially.  Currently, there are approximately fifteen to twenty 

million transponders on vehicles in the United States, and this number is growing daily.  The 

Federal Communications Commission (FCC) has allocated a frequency band in the 5.9 GHz 

range for transportation applications of DSRC, and a national standard8 has been adopted, so 

transponders may soon become standard equipment on all new cars and trucks. 

This increasing population of transponder-equipped trucks and automobiles offers the 

potential for developing effective, low-cost systems for traffic monitoring and incident detection.  

With a few, strategically-located roadside readers, it should be possible to continuously monitor 

travel times between selected points and rapidly detect incidents that cause delays.   

                                                 
8 See http://www.standards.its.dot.gov/Documents/dsrc_advisory.htm.  
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One of the inherent advantages of using DSRC for incident detection is that it measures 

actual travel times for individual vehicles in the traffic stream.  Since the primary concern of 

most travelers, other than safety, is travel time, then their primary means of judging the severity 

of an incident is the impact of that incident on their travel time.  Thus, with DSRC-based 

incident detection, the system is measuring something that is of direct interest and importance to 

the traveler.  Travel time data has value beyond its possible use for incident detection.  For 

example, travel time data collected by a DSRC-based system could be communicated to travelers 

(via Advanced Traveler Information Systems, or ATIS), thus allowing those travelers to be 

better-informed and make improved decisions. 

 

Kentucky’s Experience with DSRC 

Kentucky has been a national leader in deploying DSRC systems for commercial vehicle 

administration and enforcement.  As the lead state for the Advantage I-75 Operational Test 

Project, Kentucky began deploying DSRC at weigh stations along Interstate 75 in 1993.  The 

success of that program led to its expansion, and DSRC technology is now deployed at 14 weigh 

stations in Kentucky.  The 15th (and final) station is scheduled for installation in early 2005.  

Approximately 16.000 trucks are currently enrolled for electronic screening in Kentucky.  

Nationwide, there are approximately 275 weigh stations equipped with DSRC technology (which 

is about one-third of all weigh stations9), and approximately 300,000 trucks are enrolled in 

electronic screening programs. 

Kentucky is a member of the North American Preclearance and Safety System 

partnership, or NORPASS.10  NORPASS has ten member jurisdictions (nine states and one 

Canadian province), all of which have deployed (or are in the process of deploying) DSRC for 

commercial vehicle screening.  All of the major electronic screening programs in North America 

use the same transponder technology.  In fact, it is now possible for a trucker to participate in 

every electronic screening program and in the E-ZPassTM electronic toll collection system with a 

single transponder.  As might be expected, the spread of electronic toll collection and electronic 

screening systems has created a corresponding growth in the percentage of trucks with 

                                                 
9 In 1995, there were 862 fixed weigh stations in the United States.  See Stamatiadis, Graves, and Schmidt; “Best 
Practices for Commercial Vehicle Monitoring Facilities Design;” Report No. FHWA-SA-96-001; Federal Highway 
Administration; September 1995. 
10 See NORPASS web site at http://www.norpass.net.  
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transponders.  Observations at a Kentucky weigh station on Interstate 75 in calendar year 2001 

indicated that approximately 15 to 20 percent of the trucks were equipped with windshield-

mounted DSRC transponders.  

 

Prior Research on DSRC and Incident Detection 

The TRANSMIT System Evaluation by Mouskos, et al11, was one of the few studies that 

actually used DSRC technology for traffic surveillance and incident detection.  It is perhaps the 

most significant example of installing closely-spaced roadside DSRC technology specifically for 

those purposes.  The project installed 28 roadside DSRC readers along the Garden State Parkway 

and the New York State Thruway, at a spacing of 0.5 to 2.1 miles.  The system made use of 

existing transponders deployed for the E-ZPass electronic toll collection system.  The detection 

algorithm used was based on statistical comparisons of measured travel times with historical 

travel times for the same time period.  The evaluation assessed performance of the roadside 

technology in terms of its success in detecting transponder-equipped vehicles and 

communicating the data to the operations center.  It also assessed the performance of the incident 

detection system by comparing incidents detected by the system with incidents recorded by 

traffic operations personnel.  The key performance measures were a “probability of detection” 

(which ranged from 67 to 95 percent) and a “probability of false alarms” (which ranged from 10 

to 32 percent.  The “mean time to detect an incident” could not be determined, but was 

recognized as an important performance measure. 

A study by Hallenbeck, Boyle, and Ring12 was a very early project (1992) that examined 

the potential benefits of using DSRC for traffic monitoring and incident detection.  Since this 

study focused primarily on the use of transponder-equipped trucks as the probe vehicles, a 

secondary objective was to see whether trucks would provide an unbiased measure of traffic 

performance.  For this study, three DSRC readers were installed on northbound Interstate 5 in 

Washington State, with an approximate spacing of one mile between readers.  The project made 

use of the existing population of transponders that had been deployed for the HELP/Crescent 

project.  Possible methodologies for the incident detection algorithm were explored, using either 

                                                 
11 Mouskos, K.C. et al; “Transmit System Evaluation: Final Report;” Institute for Transportation; New Jersey 
Institute for Technology; June 1998 
12 Hallenbeck, Boyle, and Ring; “Use of Automated Vehicle Identification Techniques for Measuring Traffic 
Performance and Performing Incident Detection;” University of Washington, Seattle; October 1992. 
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vehicle headways (for a single roadside reader) or travel times (for more than one reader).   

Unfortunately, the volume of transponder-equipped vehicles was insufficient to perform real-

time traffic monitoring or incident detection.  This project was unique in that it examined the use 

of DSRC for traffic monitoring and incident detection in a region with no electronic toll 

collection.  It installed DSRC readers specifically for traffic monitoring, and it relied entirely on 

trucks to serve as probe vehicles. 

Parkany and Bernstein13 promoted DSRC as an attractive option for incident detection 

and offered three example, pattern-based algorithms for use with DSRC data.  A simulation was 

used to test the algorithms and to compare them against an existing algorithm that used loop 

detector data.  The algorithms were compared in terms of detection rate, false alarm rate, and 

time to detect.  The results showed that even simple DSRC-based algorithms performed at least 

as well as implemented algorithms using other sensors.  The report also included 

recommendations for further research, some of which have been incorporated into the objectives 

of the current project. 

A study by Fremont14 described the development and testing of a real-time, on-board, 

information system called ADAMS, originally developed by COFIROUTE and Renault, and 

then enhanced by an expanded partnership under the AIDA project, sponsored by the Ministry of 

Industry in France.  The purpose of the ADAMS and AIDA demonstrations was to introduce 

new information services in the vehicles, for the comfort and safety of the drivers.  The ADAMS 

system included vehicle-mounted DSRC transponders (5.8 GHz), onboard terminals (with smart-

card readers and LCD display), various onboard sensors, roadside DSRC readers, a 

communications network, and a traffic management center.  Communications between the 

vehicle-mounted transponders and the roadside readers was two-way.  The system was installed 

on a 90-km section of the A10 Paris-Poitiers motorway.  There were 26 roadside beacons (or 

readers) installed, with the spacing between beacons varying from 5 km to 10 km.  Incident 

detection was only a small part of this study, and it was not the primary emphasis.  Automated 

incident detection was anticipated to be a future addition to the system, and it noted that 

“algorithms will be developed and tested.”  No evaluation had been performed; however, the 

                                                 
13 Parkany and Bernstein; “Design of Incident Detection Algorithms Using Vehicle-to-Roadside Communication 
Sensors;” Transportation Research Record #1494; “Traffic Operations, Traffic Signal Systems, and Freeway 
Operations 1995;” Transportation Research Board; 1995 
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study determined that using DSRC for automated incident detection could be very cost effective, 

since “it is quite impossible to implement classic AID systems (like cameras and image 

processing systems) on large parts of interurban highways.”  The study was particularly 

significant in that it included a substantial deployment of roadside DSRC technology (26 

readers) along a single roadway with fairly close reader spacing.  A substantial portion of the 

roadway segment included in the study was in a non-urban area.  Unfortunately, no evaluation of 

the system was available. 

Balke15 provided an excellent overview of all available incident detection algorithms.  

His work included a summary and description of each available algorithm, along with an 

assessment of each algorithm based on previously published results.  He did not attempt to use 

actual field data to evaluate the algorithms.  The focus was on algorithms that used inductive 

loop detectors, and all existing (and known) incident detection algorithms were described and 

assessed.  No specific evaluation was performed; rather, the incident detection algorithms were 

assessed based on the available literature.  The report included a discussion of performance 

measures, including the relationship among detection rate, false alarm rate, and time to detect. 

Thus, it served as a useful compilation of information on existing incident detection algorithms 

and on the relationships that exist among the key performance measures. 

 

Research Needs Identified by the Literature Review 

The literature review was extremely helpful in identifying some apparent gaps in the 

current base of knowledge.  These gaps indicated areas where the current research study could 

make significant contributions.  These areas include: 

• Performance of a DSRC-based incident detection system 

o How is it affected by varying key system parameters? 

o What level of performance is possible? 

o What is the relationship (and trade-off) among the measures of effectiveness? 

• Using DSRC for incident detection in a rural freeway environment 

o How well can it work? 

                                                                                                                                                             
14 Fremont, Guy; “Using In-Vehicle Systems and 5.8 GHz DSRC for Incident Detection and Traffic Management;” 
Fourth World Congress on Intelligent Transportation Systems; Berlin, Germany; October 1997 
15 Balke, Kevin N.; “An Evaluation of Existing Incident Detection Algorithms;” Texas Transportation Institute; 
Research Report 1232-20; Texas A&M University; College Station, Texas; November 1993. 
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o Can a simple detection algorithm perform well? 

o How much would it cost to actually deploy such a system? 

o Is it feasible to deploy such a system? 

o What would be some guidelines and recommendations for deploying? 

 

These identified needs played a substantial role in defining the research objectives for the 

current study. 
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RESEARCH APPROACH AND METHODOLOGY 
To accomplish the objectives of this research project, the following tasks were 

performed.  With the exception of the Literature Review, which has already been discussed, 

specific details of each task are provided in the discussion that follows. 

1. Literature Review 

2. Study Design 

3. System Modeling and Simulation 

4. Post-Processing of Simulation Output 

5. Development of Detection Algorithm 

6. Application of Detection Algorithm to Data 

7. System Performance Assessment (and Regression Analysis) 

8. Cost Assessment 

9. Development of Recommendations 

 

Study Design 

Before proceeding with the study, it was necessary to develop a “study design,” i.e., to 

decide on the direction the study would take and the methodologies that would be used.  Some of 

the key decisions made during the study design phase are described in the following. 

It was determined that the incident detection system should be assessed using a traffic 

simulation tool rather than attempting a real-world installation and test.  This offered the 

advantages of lower initial cost and increased flexibility, while providing the opportunity to vary 

each parameter individually while holding all other parameters constant.  This highly controlled 

environment would be ideal for assessing the impact of each parameter on the performance of 

the incident detection system. 

When the study requirements were compared to the capabilities of commercially 

available traffic simulation packages, it became apparent that the simulation output data would 

require post-processing to convert it from vehicle position data to “probe and beacon” data.  This 

post-processing would require development of one or more computer programs to read the 

simulation output file and perform the necessary conversion. 

An important component of the study design was identifying the fixed parameters of the 

simulation, the parameters to be varied (so their effects could be studied), and the specific values 
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of those parameters that would be used for the analysis.  The parameters selected for the analysis 

(and their values) are shown in Table 1 (fixed parameters) and Table 2 (variable parameters). 

 

Table 1.  Fixed Parameters for Simulation and Analysis 

Category Parameter Value 
Total segment length 135,000 ft (25.57 mi) 
Number of Links 15 (at 9000 feet each) 
Number of lanes Two lanes (one direction) 
Terrain Flat 

Freeway Segment 
Characteristics 

Intervening interchanges None 
Incident location 81,840 ft (15.5 mi) from 

beginning of segment 
Time of occurrence 1800 seconds (30 minutes) after 

initialization 
Incident length 40 feet 
Location of warning sign 0 feet 

Incident 
Characteristics 

Duration of incident 900 seconds (15 minutes) 
Entry headways Normally distributed 
Lane split for entering vehicles 40/60 (left/right) 

Traffic 
Characteristics 

Truck percentage breakdown 20% single unit 
40% semi (med. load) 
35% semi (full load) 
5% double bottom trailer 

Total simulation time 3000 seconds (50 minutes) after 
initialization 

General 

Time frame included in analysis Chopped off and ignored first 
900 seconds after initialization 

 

Some of the parameters in Table 1 were chosen for simplicity.  Examples would be the 

flat grade and the lack of intervening interchanges.  Other factors, such as the segment length, 

incident location on the segment, and total simulation time, were chosen to allow adequate time 

and space for the incident to develop and be detected by the system.  Early trials of the 

simulation helped to refine the selected values.  The first 900 seconds of each simulation were 

“chopped off” (i.e., ignored) to ensure that the segment was completely filled with traffic before 

any analysis of travel times was conducted. 
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Table 2.  Variable Parameters for Simulation and Analysis 

Parameter Values Tested Where Varied 
Heavy (3000 vph, 30% trucks) Traffic Volume 
Light (1500 vph, 40% trucks) 

Simulation 

No incident 
Minor (Lane 1 blocked, lane 2 10% rubberneck 
factor) 

Incident Severity 

Moderate (both lanes blocked for three minutes, 
then lane 2 open with 50% rubberneck factor for 
duration of incident 

Simulation 

25% of trucks, 5% of cars (Case “a”) 
50% of trucks, 10% of cars (Case “b”) 
75% of trucks, 15% of cars (Case “c”) 

Percentage of 
Vehicles with 
Transponders 

100% of all vehicles (Case “d”) 

Post-processing 

Two miles apart 
Four miles apart 
Six miles apart 
Eight miles apart 

Spacing of 
Roadside Readers 

Ten miles apart 

Post-processing 

0.5 mile 
1.5 miles 
2.5 miles 
3.5 miles 
4.5 miles 
5.5 miles 
6.5 miles 
7.5 miles 
8.5 miles 

Distance from 
Incident Location 
to Next 
Downstream 
Reader 

9.5 miles 

Post-processing 

 

 
In selecting parameters to be varied, the primary consideration was to determine those 

factors most likely to affect the ability of the system to detect the incident (and the time it would 

take to do so).  In general, every factor that could be varied was varied, if there was a reasonable 

expectation that the factor would affect the system performance.  One exception was the 

presence of intervening interchanges.  This would theoretically impact the performance of the 

incident detection system, but it was determined to be beyond the scope of this initial analysis. 

Choosing the actual values to be tested for each parameter involved the application of 

real-world data coupled with engineering judgment.  Real-world values were obtained for the 
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traffic volume and percentage of trucks on Interstate 75 in southern Kentucky, as well as for the 

percentage of trucks with transponders on that same route.  The first scenario for the percentage 

of transponders (25% of trucks, 5% of cars) was selected to approximate the current condition, 

while the other scenarios represented possible future conditions.  The primary purpose here was 

to provide sufficient variability in each parameter so that its impact could be properly assessed. 

As shown in Table 2, five different parameters were selected to be varied in the 

simulation and analysis.  Only two of these parameters were varied in the simulation; the 

remaining parameters were varied in the post-processing of the simulation output. Six different 

simulations were required to cover the possible values of traffic volume and incident severity.  

Each simulation was run ten times, using a different set of random number seeds for each run.  

Thus, the simulations generated 60 output files.  These files were then subjected to post-

processing. 

In the course of post-processing the simulation output, the remaining three parameters 

were varied.  These parameters generated 120 possible valid combinations.  It should be noted 

that the last two parameters (i.e., the reader spacing and the distance to next downstream reader) 

were somewhat interrelated, in that not all combinations of these parameters were valid for 

consideration.  For example, the distance to the next downstream reader could not be 2.5 miles if 

the readers were spaced two miles apart.  This is illustrated in Figure 1.  There were 30 valid 

combinations of reader spacing and distance to next downstream reader.  So, when coupled with 

four possible values of the percentage of vehicles with transponders, this generated 120 unique 

combinations.  When each of these 120 combinations was applied to the 6 different simulations, 

the result was 720 unique combinations to be assessed.  Of course, as stated previously, each 

simulation was run ten times with different random number seeds, so there were actually 7,200 

individual scenarios to analyze. 

The overall study design is illustrated as a block diagram in Figure 2.  This figure shows 

how the five selected parameters were varied to create the 720 unique combinations to be 

analyzed.  
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Figure 1.  Relationship Between Reader Spacing and Incident Location 
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Figure 2.  Block Diagram of Overall Study Design 
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System Modeling and Simulation 

The freeway simulation tool selected for use in this study was the CORSIM software, 

which is part of the TSIS16 package, version 5.0.  Factors influencing this decision included prior 

experience with the software, its ready availability, its capabilities, and the ease of obtaining 

technical support.  The TSIS package proved to be reasonably straightforward to use, and the 

simulations were run with no major difficulties.  The primary output file produced by each 

execution of the simulation was a “time step data” file, or TSD file.  This binary file contained 

the position of every vehicle on the freeway segment for each one-second time increment (or 

time step) of the simulation. 

In accordance with the study design, the CORSIM simulation was run for each of the 

following six scenarios: 

• Heavy Traffic, No Incident (HTNI) 

• Heavy Traffic, Minor Incident (HT1B)17 

• Heavy Traffic, Moderate Incident (HTMO) 

• Light Traffic, No Incident (LTNI) 

• Light Traffic, Minor Incident (LT1B) 

• Light Traffic, Moderate Incident (LTMO) 

 

For each scenario, the simulation was run ten times, using different random number seeds 

for each run.  This generated 60 different time-step-data files. 

 

 
Post-Processing of Simulation Output 

In order to be useful for assessing a DSRC-based incident detection system, the data in 

the TSD file needed to be converted to “probe and beacon” data.  This “post processing” of the 

TSD file involved the following steps: 

• Read through the TSD file, strip off the header information, convert the data from binary 

to ASCII format, and carry forward only the data elements that will be needed for the 

analysis. 

                                                 
16 Traffic Software Integrated System; Federal Highway Administration; see www.fhwa-tsis.com 
17 “HT1B” was the author’s shorthand notation for “heavy traffic, one lane blocked.” 
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• Sort the data by vehicle ID, then by simulation time. 

• Convert the two variables representing the vehicle’s position (the LINKID and vehicle’s 

position on that link) to a single variable representing the position of the vehicle on the 

total segment.  (This simplifies future comparisons between vehicle positions and reader 

positions.) 

• Randomly assign transponders to vehicles using the appropriate percentages for the 

scenario being assessed.  Create a new data file with only the transponder-equipped 

vehicles included.  (This step must be performed four times for each input file, using the 

four different “cases” for the percentages of vehicles with transponders.) 

• Convert the vehicle position data to “probe and beacon” data by determining when a 

transponder-equipped vehicle will go past a roadside reader and creating a data record for 

each such event.  (This step must be performed 30 times for each input file, to account for 

all the valid combinations of reader spacing and distance to the next downstream reader.) 

 

The post-processing was accomplished using a series of Fortran programs written by the 

author.  Fortran was chosen due to the author’s prior experience and familiarity with that 

programming language.  The only problems encountered were the size of the files (a typical TSD 

file was in excess of 100 megabytes), which made sorting and similar functions unwieldy, and 

the sheer number of data files that required processing.  For example, the last step in the bulleted 

list above was carried out for 240 different input files, and generated 7,200 unique output files. 

The end result of the post-processing was a set of 7,200 text files containing “probe and 

beacon” data.  Figure 3 shows a portion (i.e., the first few records) of the resulting data file for 

one of the “heavy traffic, minor incident” scenarios.  This particular file is for random run 

number one, transponders on 25 percent of the trucks (i.e., case “a”), readers spaced two miles 

apart, and one-half mile from the incident to the next downstream reader. 
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Figure 3.  Portion of Typical Output File Resulting from Post-Processing 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reader   Time  VehID 
 126720    946    114 
 126720    926    190 
 126720    947    192 
 126720    949    195 
 126720    931    197 
 126720    927    201 
 126720    997    215 
 126720    990    218 
 126720    984    220 
 116160    930    225 
 126720   1046    225 
 126720    987    228 
 126720   1003    230 
 126720   1018    233 
 126720    995    246 
 116160    905    250 
 126720   1031    250 

 

 

  Once the post-processing was complete, an additional program was run to calculate travel 

times for those vehicles that passed more than one roadside reader during the simulation.  Plots 

of the travel times were then prepared.  These plots were used by the author for several purposes, 

including:  (1) verifying that the simulations and post-processing routines had worked properly; 

(2) gaining further understanding of the travel time distributions (both before and after the 

incident occurrence); and (3) identifying the best approach to use for the incident detection 

algorithm.   Samples of the travel time plots are shown in Figures 4, 5, and 6.  These figures 

represent the scenario with heavy traffic, random run number one, transponders on 25 percent of 

the trucks (i.e., case “a”), readers spaced two miles apart, and one-half mile from the incident to 

the next downstream reader.  Figure 4 is the “no incident” scenario, Figure 5 is the “minor 

incident” scenario, and Figure 6 is the “moderate incident” scenario. 
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Figure 4.  Sample Graph of Travel Times for “No Incident” Scenario 
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Figure 5.  Sample Graph of Travel Times for “Minor Incident” Scenario 
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Figure 6.  Sample Graph of Travel Times for “Moderate Incident” Scenario 
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Development of Detection Algorithm 

After the simulation output files had been post-processed to create the 7,200 “probe and 

beacon” data files, the next step was to apply the incident detection algorithm.  Development of 

the algorithm was one of the more intriguing components of the study.  Much of the available 

work on developing and evaluating incident detection algorithms has focused on two challenges.  

The first challenge is using data from fixed-point traffic sensors (e.g., loop detectors in the 

pavement) to estimate travel time or delay on a roadway segment.  The second challenge is 

distinguishing between recurring congestion and incident-related congestion.  For this study, 

which is focusing on a DSRC-based incident detection system on a segment of rural freeway, 

these challenges are not applicable.  A DSRC-based system measures travel time directly, so if 

travel time increases, then something has happened to reduce vehicle speeds and/or to create 

delay.  And, for most rural freeway settings, recurring congestion is not an issue.  So, when 

congestion and delay occur, they are due to an incident and they need to be detected. 

With this in mind, the original intent for this study was to develop an incident detection 

algorithm based on a statistical test (such as a t-test) using the mean travel time.  The logic 
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behind such an approach was as follows.  For normal circumstances (free from incident), travel 

times will follow some random distribution.  When the system observes a value (or several 

values) that differs from the mean, it could be the result of an incident or it could simply reflect 

the distribution of values.  So, how does the system know when an incident has occurred?  The 

most accurate answer is, it doesn’t know.  The system never actually knows (from the 

transponder data alone) that an incident has occurred.  However, it can determine the probability 

that an incident has occurred, based on what has been observed. 

One approach to this analysis would be to select a “null hypothesis” that no incident has 

occurred—that the “after” observations are drawn from the same population as the “before” 

observations.  The alternative hypothesis is that something has occurred to change the situation, 

so that the “after” observations are drawn from a population with a different (i.e., larger) mean 

than the “before” observations.  For a given confidence level (or a given “alpha”), the algorithm 

can either reject or fail to reject the null hypothesis.  If it rejects the null hypothesis, then it has 

concluded (with a confidence level of “one minus alpha”) that an incident has occurred. 

In this case, “alpha” represents the probability of a “type one” error, i.e., of rejecting the 

null hypothesis when it is actually true.  The designers should choose “alpha” based on their 

determination of an acceptable risk of a “false alarm” (concluding that an incident has occurred 

when it has not).  If they set “alpha” very low, they can virtually eliminate the possibility of a 

type one error, but in so doing they increase the chance of a type two error, which is failing to 

reject the null hypothesis when it is false.  This type of error would cause the system to fail to 

recognize an incident when one has occurred, or, in more practical terms, to require more data 

points (and hence more time) to recognize the incident.  So, setting “alpha” very low would 

make the system less likely to generate false alarms, but it would also make the system slower to 

detect incidents, since more data points would be required to reject the null hypothesis.  This is 

illustrated in Figure 7, which shows (for a given value of detection rate) the shape of the 

expected relationship among the other three parameters; namely the selected “alpha” value, the 

time to detect an incident, and the rate of false alarms.  It is reasonable to assume that for 

incidents causing significant delay, the detection rate should be 100 percent, given sufficient 

time and data points. 
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Figure 7.  Qualitative Relationship Among Alpha, Time to Detect, 
 and False Alarm Rate 

 

 

 

 

 

 

 

 

 

The statistical analysis of this problem is quite straightforward.  It consists of examining 

the means of two samples and trying to determine if they come from the same population (i.e., 

have the same mean) or from different populations (with different means).  This can be 

accomplished using a simple t-test.  However, when it comes to actually applying such a 

statistical test to incident detection, there are several issues that make the problem more 

interesting.  These include the following: 

1) Since the analysis logic will not know when (or if) an incident has occurred, it will 

need to keep a running mean of the “before” observations and treat each new 

observation as a potential “after.”  It will need to know when to start keeping a 

running mean of the “after” observations, based on some sort of clue that an incident 

may have occurred. 

2) Obviously, not all incidents are the same.  Some will result in longer delays than 

others, and thus will be easier to detect statistically.  Others may result in shorter 

delays and may require more data points to confirm. 

3) For serious incidents (e.g., where the roadway is completely blocked), the first 

indication may be that the system stops getting data from a specific roadside reader.  

The logic will need to identify such a condition and know when to declare that an 
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incident has occurred.  This raises interesting questions about what will happen if a 

reader ceases to function, since a reader failure could produce the same indications as 

a complete roadway blockage. 

4) Of course, in a real world application, the system will not just be looking at a single 

pair of readers.  It will be looking at multiple readers, and each two consecutive 

readers will constitute a pair, with their own analysis. 

 

Through the early stages of this research project, it was the author’s intention to develop 

a detection algorithm based on a statistical test of means, as described above.  Such a test is quite 

appropriate to the situation, and the challenge of programming the test for the travel-time data 

was quite appealing to the author.  However, when it came down to analyzing the actual data 

from simulated incidents, it quickly became apparent that such an approach, while quite 

appropriate, was not necessary.  For any incident severe enough to produce a significant increase 

in travel times (significant to the traveler, that is), the increase was of such a magnitude to be 

detectable with more straightforward tests.  So, the task of programming the t-test for the mean 

travel time was deferred, perhaps to be used in a future project. 

After plotting and assessing the travel time data, the approach (or algorithm) that was 

chosen for implementation was based on setting a “threshold” value for travel time.  The 

threshold value was selected to represent a significant increase over the normal travel time, i.e., 

an increase that would be regarded as a significant delay to a traveler.  Any travel time value that 

came in exceeding the threshold would increment a counter.  Any travel time that came in under 

the threshold would decrement the counter (unless the counter was at zero).  When the counter 

reached a pre-selected level, an alarm would be generated.  This approach is similar to 

techniques used for quality control applications, such as the Individual Observation Control 

Chart.  

An obvious question is:  “Why was a counter needed?”  Why not just generate an alarm 

for any travel time that exceeded the threshold?  The counter was necessary to account for the 

possible spurious behavior of individual vehicles/drivers.  A vehicle might stop by the side of the 

road to change drivers, make a phone call, or change a flat tire.  In the case of vehicles traveling 

together, several vehicles may stop by the side of the road.  Or, in the case of an intervening 

interchange or rest area, a percentage of all vehicles may experience “delay” that is not 
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associated with any incident.  Thus, the appropriate value for the counter “alarm level” could 

vary based on the characteristics of the segment being monitored. 

This same argument explains why it is necessary to decrement the counter for travel 

times that come in below the threshold.  If this were not done, then the occasional data points 

with high travel times would eventually drive the counter to the alarm point.  For a true incident 

situation, travel times should increase for all vehicles in the traffic stream, not just for an 

occasional vehicle. 

With this type of detection algorithm, there are two user-selected values that will impact 

the performance of the system:  the travel time threshold and the counter alarm level.  Obviously, 

in the selection of these values, there is a trade-off between detection time and false alarm rate.  

In general, the lower the threshold and counter alarm level, the more quickly the system will 

detect incidents, but the more false alarms will be generated.  Higher values for the threshold and 

counter alarm level will reduce the frequency of false alarms, but will also delay the detection of 

incidents.  The general shape of this relationship is shown in Figure 8.  The shape of this graph is 

identical to Figure 7; only the labels have been changed. 

 

Figure 8. Qualitative Relationship among Threshold, Counter 
Alarm Level, False Alarm Rate, and Time to Detect
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 Since the incident detection algorithm requires comparing individual travel times to the 

“normal” travel time, it was necessary to define the “normal” travel time.  For the sake of this 

analysis, it was decided to use the mean travel time for the appropriate “no incident” scenario as 

the normal travel time.  Any individual travel time that exceeded the mean travel time by an 

amount equal to (or exceeding) the threshold would increment the alarm counter.   

 One additional consideration in actually programming the incident detection algorithm 

was the necessity for the system to “infer” data.  In other words, when a vehicle was late arriving 

at a downstream reader (i.e., its travel time exceeded the mean travel time) by an amount equal to 

the alarm threshold, the system needed to create a data point as soon as this situation occurred.  It 

was not acceptable to wait until the vehicle actually arrived at the downstream reader, because 

doing so would delay detection of the abnormal travel time.  In fact, for a complete blockage of 

the roadway, vehicles would not arrive at the downstream reader until after the incident had been 

cleared.  So, the algorithm was programmed with the capability to determine an “overdue” time 

for each vehicle at the downstream reader, and to replace the actual arrival time with the overdue 

time when appropriate.  The effect of this “data inference” is illustrated in Figure 9, which plots 

travel time versus simulation time for the “HT1B-01a0201” scenario.  This plot uses the same 

data as Figure 5, except that arrivals at the downstream reader have been created whenever a 

vehicle is late arriving by an amount equal to the threshold (30 seconds in this case).  The net 

effect is to “chop off” all travel times at the threshold level, and, of course, these “inferred 

arrivals” occur earlier in the simulation, since the program does not wait for the actual arrival to 

create a data point.  This capability will lead to more rapid detection of incidents. 
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Figure 9.  Plot of Travel Times for Minor Incident Scenario (with inferred travel times) 
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Application of Detection Algorithm to Data 

The trade-off between detection time and false alarm rate was of some interest to the 

author, and so it was investigated for different values of the threshold and the counter alarm 

level.  It was desired to select a counter alarm level that was high enough to avoid spurious 

alarms (such as from two or three vehicles traveling together and stopping on the roadside), and 

yet was low enough to provide for quick incident detection.  So, the counter alarm level was 

initially set at five, and the detection algorithm was run using thresholds of 30, 45, and 60 

seconds.  For each of these values, the algorithm was run on 24 different scenarios (selected to 

represent a wide range of conditions), and the results were used to determine a detection rate, 

false alarm rate, and average time to detect for each scenario.  In order to gain some 

understanding of the effect of varying the counter alarm level, the algorithm was run again (on 

all 24 scenarios) using a threshold of 30 seconds and a counter alarm level of ten.  Again, the 
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results were used to determine a detection rate, false alarm rate, and average time to detect for 

each scenario. 

For the purposes of this study, the false alarm rate was calculated (and hence defined) as 

follows.  For a given scenario (e.g., heavy traffic, minor incident, 25 percent of trucks with 

transponders, two-mile reader spacing, one-half mile from incident to downstream reader), the 

false alarm rate was determined by applying the incident detection algorithm to the ten “no 

incident” files corresponding to this same scenario.  Since these files represented scenarios 

without incidents, then any alarm generated on these files would be a false alarm.  So, if no 

alarms were generated for any of these files, then the false alarm rate was zero.  If alarms were 

generated for three of the ten files, then the false alarm rate was 30 percent, and so on. 

The detection rate was defined as the percentage of files (for a given “minor incident” or 

“moderate incident” scenario) for which the algorithm successfully detected the incident before 

the end of the simulation.  The average time to detect was defined as the elapsed time (averaged 

over the ten files for each scenario) from the occurrence of the incident until the alarm was 

generated.  Files where the incident was not detected or where the detection occurred early (due 

to a false alarm) were excluded from the calculation of the average. 

 The ultimate purpose of this analysis was to identify the “best” values for the threshold 

and the counter limit, so that these “best” values could then be applied to all 480 incident 

scenarios.  Of course, it was recognized early in the analysis that there might not be a single 

“best” value for the threshold or for the counter limit.  Instead, different values might need to be 

selected for different scenarios.  In particular, it was recognized that the threshold might need to 

vary based on some measure of the amount of “spread” in the travel time distribution.  To 

implement this, the algorithm was modified to select a threshold for a particular scenario based 

on the standard deviation of the travel times for the corresponding “no incident” scenario.  This 

modified algorithm was then applied to the 24 selected scenarios in order to assess its 

performance. 

The results of the algorithm assessment are presented and discussed in the “FINDINGS” 

section of this report. 
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System Performance Assessment (and Regression Analysis) 

Using the “best” values of the threshold and the counter alarm value (based on the 

algorithm analysis), the detection algorithm was then run on all 4,800 output files18 (for the 

minor incident and moderate incident scenarios) generated by the simulation and post-

processing.  This generated 4,800 values of the amount of time required to detect an incident.19  

These values represented 480 scenarios, with ten independent runs (with different random 

number seeds) for each scenario.  An average time to detect was determined for each of the 480 

scenarios, and these values were organized into four tables.  The tables were analyzed for trends, 

so that the effects of varying key parameters could be identified and described.  To verify the 

trends that were observed in the tables, a regression analysis was conducted to assess the effect 

of each of the key parameters on the detection time.  The dependent variable in this analysis was 

the time to detect an incident.  The independent variables were the traffic volume, the incident 

severity, the percentage of vehicles with transponders, the reader spacing, and the distance from 

the incident to the next downstream reader.  The SAS statistical package was used for this 

analysis.20  The results of the analysis are presented in the “FINDINGS” section of this report. 

  

Cost Assessment 

Using the author’s prior experience with implementing DSRC-based systems for 

commercial vehicle electronic screening, a rough cost estimate was developed for implementing 

a travel-time monitoring and incident detection system on a segment of rural interstate.  The 

results are presented in the “FINDINGS” section of this report. 

 

Development of Recommendations 

Based on the results of the algorithm assessment, the regression analysis, and the cost 

assessment, the author developed recommendations for further testing and implementation of a 

DSRC-based incident detection system.  These recommendations are presented in the 

“RECOMMENDATIONS” section of this report. 

                                                 
18 As previously discussed, the simulation and post-processing generated 7,200 output files.  One-third of these files 
were for “no incident” scenarios.  The remaining 4,800 were for “minor incident” and “moderate incident” 
scenarios.  These are the files to which the incident detection algorithm was applied. 
19 There were some scenarios where the algorithm failed to detect the incident, so the actual number of values was 
less than 4,800.  This is discussed in the “FINDINGS” section. 
20 SAS Institute, Inc.; Cary, NC; See http://www.sas.com.  
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FINDINGS 
Application of Detection Algorithm to Data 

 As previously described, the post-processing of the simulation output data resulted in a 

set of 7,200 data files, each containing “probe and beacon” data.  Each record in such a file 

represents an event where a transponder-equipped vehicle passes a roadside reader.  In order to 

assess the performance of the incident detection algorithm, the algorithm was applied to 24 

different scenarios, selected to represent a wide range of conditions.  For each scenario, the 

results were used to determine a false alarm rate, a detection rate, and an average time to detect 

(as defined in the “METHODOLOGY” section).  This process was carried out using alarm 

thresholds of 30, 45, and 60 seconds (with a counter alarm level of 5), and then repeated with a 

threshold of 30 seconds and a counter alarm level of 10.  The results are presented in Tables 3 

through 6.  The following abbreviations are used in the tables to represent the selected scenarios. 

 
 HT1B = heavy traffic, minor incident 

 HTMO = heavy traffic, moderate incident 

 LT1B = light traffic, minor incident 

 LTMO = light traffic, moderate incident 

 0201 = reader spacing of two miles, one-half mile from incident to next reader. 

 0605 = reader spacing of six miles, 4.5 miles from incident to next reader. 

 1010 = reader spacing of ten miles, 9.5 miles from incident to next reader. 

 “a” = percentages of trucks and cars with transponders are 25% and 5% , respectively.  

 “c” = percentages of trucks and cars with transponders are 75% and 15% , respectively. 
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Table 3.  Algorithm Results (Threshold = 30 sec, Counter Alarm Level = 5) 

 Avg Time to Detect 
(seconds) 

 Detection Rate (%)  False Alarm Rate (%) 

HT1B a c  a c  a c 
0201 153 125  100% 100%  30% 30% 
0605 412 386  100% 100%  20% 50% 
1010 740 706  100% 100%  20% 30% 
HTMO a c  a c  a c 
0201 116 89  100% 100%  
0605 360 331  100% 100%  
1010 677 653  100% 100%  

Same 
as HT1B 

LT1B a c  a c  a c 
0201 365 288  60% 90%  0% 0% 
0605 542 483  56% 88%  0% 10% 
1010 842 753  56% 80%  10% 60% 
LTMO a c  a c  a c 
0201 154 102  100% 100%  
0605 382 329  100% 100%  
1010 669 611  100% 100%  

Same 
as LT1B 

 

 

Table 4.  Algorithm Results (Threshold = 45 sec, Counter Alarm Level = 5) 

 Avg Time to Detect 
(seconds) 

 Detection Rate (%)  False Alarm Rate (%) 

HT1B a c  a c  a c 
0201 174 149  100% 100%  0% 0% 
0605 452 407  100% 100%  0% 20% 
1010 774 739  100% 100%  10% 10% 
HTMO a c  a c  a c 
0201 132 103  100% 100%  
0605 383 350  100% 100%  
1010 697 672  100% 100%  

Same 
as HT1B 

LT1B a c  a c  a c 
0201 373 371  50% 70%  0% 0% 
0605 594 545  56% 67%  0% 0% 
1010 884 803  50% 50%  10% 30% 
LTMO a c  a c  a c 
0201 169 117  100% 100%  
0605 399 346  100% 100%  
1010 685 631  100% 100%  

Same 
as LT1B 
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Table 5.  Algorithm Results (Threshold = 60 sec, Counter Alarm Level = 5) 

 Avg Time to Detect 
(seconds) 

 Detection Rate (%)  False Alarm Rate (%) 

HT1B a c  a c  a c 
0201 199 171  100% 100%  0% 0% 
0605 470 435  100% 100%  0% 0% 
1010 815 772  100% 100%  0% 0% 
HTMO a c  a c  a c 
0201 147 118  100% 100%  
0605 398 370  100% 100%  
1010 712 685  100% 100%  

Same 
as HT1B 

LT1B a c  a c  a c 
0201 473 385  40% 50%  0% 0% 
0605 720 531  40% 40%  0% 0% 
1010 1015 816  30% 40%  0% 0% 
LTMO a c  a c  a c 
0201 184 132  100% 100%  
0605 414 361  100% 100%  
1010 702 650  100% 100%  

Same 
as LT1B 

 

 

Table 6.  Algorithm Results (Threshold = 30 sec, Counter Alarm Level = 10) 

 Avg Time to Detect 
(seconds) 

 Detection Rate (%)  False Alarm Rate (%) 

HT1B a c  a c  a c 
0201 225 149  100% 100%  10% 20% 
0605 486 409  100% 100%  10% 20% 
1010 820 740  100% 100%  0% 0% 
HTMO a c  a c  a c 
0201 161 111  100% 100%  
0605 413 355  100% 100%  
1010 718 672  100% 100%  

Same 
as HT1B 

LT1B a c  a c  a c 
0201 393 353  50% 70%  0% 0% 
0605 737 597  60% 70%  0% 0% 
1010 931 832  40% 44%  0% 20% 
LTMO a c  a c  a c 
0201 240 130  100% 100%  
0605 468 357  100% 100%  
1010 753 645  100% 100%  

Same 
as HT1B 
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 Using a threshold of 30 seconds with a counter alarm level of five (Table 3) results in a 

100 percent detection rate for most of the scenarios.  The exceptions are the “light traffic minor 

incident” cases (LT1B), where the detection rate ranges from 56 to 90 percent.  It should be 

noted here that the combination of light traffic and a minor incident often resulted in little or no 

delay to the vehicles in the traffic simulation.  Specifically, when light traffic allowed lane 

changes at will, the impact of a single lane closure was minimal.  Therefore, it is feasible that 

some of these scenarios will be difficult to detect, even with the best algorithm settings. 

Table 3 shows an apparent problem with using a threshold of 30 seconds with a counter 

alarm level of five.  There were significant percentages of false alarms in most of the scenarios.  

The only exceptions were for light traffic scenarios with close reader spacings.  

Increasing the threshold to 45 seconds (Table 4) reduced the number of false alarms, but 

false alarms were still observed for the scenarios with long reader spacings.  The higher 

threshold exacerbated the problem of failing to detect incidents for the “light traffic minor 

incident scenarios,” but all other scenarios remained at 100 percent.  And, as expected, 

increasing the threshold caused increases in the average time to detect.  These increases ranged 

from eight seconds to 83 seconds. 

When the threshold was further increased to 60 seconds (Table 5), the algorithm was able 

to eliminate all false alarms for the scenarios being studied.  The trade-off for this improvement 

was a further decline in the detection rate for the “light traffic minor incident” scenarios (still 100 

percent for all other scenarios) and a further increase in the average time to detect for most 

scenarios. 

Of course, there are actually two potential strategies for reducing the false alarm rate.  

One is to increase the threshold, as illustrated in Tables 3 through 5.  The other strategy is to 

increase the counter alarm level.  Table 6 shows the results for a threshold of 30 seconds and a 

counter alarm level of ten.  It can be seen that increasing the counter alarm level from five to ten 

did reduce the number of false alarms, but false alarms still occurred for a large number of 

scenarios.  And, of course, it resulted in a corresponding increase in the average time to detect, as 

well as a drop in detection percentage for the “light traffic minor incident” scenarios.  Since it 

was possible to eliminate all false alarms by simply increasing the threshold from 30 seconds to 

60 seconds, it was determined that the more effective way to eliminate false alarms is to select an 
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appropriate value for the threshold.  Therefore, the decision was made to set the counter alarm 

level back at five and to focus attention on selecting the “best” value for the threshold. 

This analysis demonstrated that there is no single setting for the threshold that is best for 

all scenarios.  Instead, it was apparent that the threshold should vary based on the characteristics 

of the scenario being analyzed.  The most critical characteristic would be the amount of “spread” 

in the distribution of travel times (for incident-free traffic flow).  Therefore, it was determined 

that the threshold should vary based on the standard deviation of travel times (calculated for the 

corresponding “no incident” scenario).  After assessing which threshold values worked best for 

each scenario and comparing the threshold values to the standard deviation for each scenario, it 

was determined that the threshold should be set at one-third the standard deviation.  In addition, 

it was determined that the minimum value for the threshold should be 20 seconds and the 

maximum value should be 60 seconds.  Since the analysis had already shown that a threshold of 

60 seconds would eliminate all false alarms, there was no reason to use higher values.  On the 

minimum side, extremely small threshold values could create false alarms and there was no 

practical need to detect extremely small increases in travel time. 

The incident detection algorithm was reprogrammed to calculate the threshold based on 

the standard deviation of travel times, as described above.  It was then applied to the 24 selected 

scenarios, and the results were used to calculate a detection rate, false alarm rate, and average 

time to detect for each scenario.  The results are shown in Table 7.   As can be seen in the table, 

this approach completely eliminated false alarms (for the selected scenarios), and it resulted in 

100-percent detection for all but the “light traffic minor incident” scenarios. 
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Table 7.  Algorithm Results (Threshold based on Std. Dev., Counter Alarm Level = 5) 

 Avg Time to Detect 
(seconds) 

 Detection Rate (%)  False Alarm Rate (%) 

HT1B a c  a c  a c 
0201 165 135  100% 100%  0% 0% 
0605 469 435  100% 100%  0% 0% 
1010 815 772  100% 100%  0% 0% 
HTMO a c  a c  a c 
0201 123 94  100% 100%  
0605 397 369  100% 100%  
1010 712 685  100% 100%  

Same 
as HT1B 

LT1B a c  a c  a c 
0201 335 265  90% 100%  0% 0% 
0605 720 531  40% 40%  0% 0% 
1010 1015 816  30% 40%  0% 0% 
LTMO a c  a c  a c 
0201 145 92  100% 100%  
0605 414 361  100% 100%  
1010 702 650  100% 100%  

Same 
as HT1B 

 
 

 

System Performance Assessment (and Regression Analysis) 

 To assess the performance of the incident detection system, and to determine the effects 

of varying key parameters, the incident detection algorithm was applied to all 4,800 output files 

(for the minor incident and moderate incident scenarios) generated by the simulation and post-

processing.  The end result of this process was a single data file with 4,800 records.  A printout 

of the first few records of that file is shown in Figure 10.  Each record in the data file contained 

the values of six variables.  Five of the variables were the parameters that were varied in the 

study design (i.e. traffic volume, incident severity, percentage of vehicles with transponders, 

roadside reader spacing, and distance from incident to next reader), while the sixth variable was 

the time that elapsed between incident occurrence and incident detection.  Of the 4,800 files 

processed, there were 612 where the algorithm failed to detect the incident before the end of the 

simulation.  All of these failures were for “light traffic, minor incident” scenarios).  There were 

also two cases where the algorithm generated a false alarm (i.e., it generated an alarm before the 

incident occurred).  For these situations, the detection time was left blank in the resulting data 

file, and these blank records were ignored in subsequent processing. 
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For each specific combination of parameters (i.e., for each unique scenario), there were 

ten values of the time to detect.  This resulted from the fact that each simulation was run ten 

times, with different random number seeds for each run.  As a result, it was possible to calculate 

an “average time to detect” for each scenario.  This calculation was carried out, and the results 

are shown in Tables 8 through 11.  Each individual table represents a specific combination of 

traffic volume and incident severity.  Each quadrant within a table represents a specific case of 

the percentage of transponders on vehicles (i.e., cases “a, b, c, and d” as they were defined in 

Table 2).  Each cell within a table shows the average detection time for a given combination of 

reader spacing and distance from the incident to the next downstream reader.  Obviously, any 

missing values (i.e., blank detection times) were not included when calculating the average 

detection time. 

 
Figure 10.  Portion of Data File Containing Incident Detection Times 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Volume IncSev TransPop    RdrSpac Dist  DetTim
1500 Minor  A     2  0.5 661 
1500 Minor  A     2  0.5 117 
1500 Minor  A     2  0.5 166 
1500 Minor  A     2  0.5  
1500 Minor  A     2  0.5 454 
1500 Minor  A     2  0.5 486 
1500 Minor  A     2  0.5 443 
1500 Minor  A     2  0.5 406 
1500 Minor  A     2  0.5 157 
1500 Minor  A     2  0.5 121 
1500 Minor  A     2  1.5 716 
1500 Minor  A     2  1.5 153 
1500 Minor  A     2  1.5 222 
1500 Minor  A     2  1.5 698 
1500 Minor  A     2  1.5 521 
1500 Minor  A     2  1.5 567 
1500 Minor  A     2  1.5 496 
1500 Minor  A     2  1.5 463 
1500 Minor  A     2  1.5 211 
1500 Minor  A     2  1.5 179 
1500 Minor  A     4  0.5 695 
1500 Minor  A     4  0.5  
1500 Minor  A     4  0.5 281 
1500 Minor A 4 0.5
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Tables 8 through 11 are extremely useful in looking for the effects of specific parameters 

on the detection time.  For example, it is quite easy to observe the effect of the distance from the 

incident to the next downstream reader.  This effect can be observed by scrutinizing any column 

of any table.  By moving down any column (within a given quadrant), the effect of varying the 

downstream distance, while holding all other parameters constant, can be observed.  It is 

apparent from all the tables that increasing the downstream distance causes a substantial increase 

in the average detection time. 

 

Table 8.  Average Detection Times for Light Traffic, Minor Incident 

Reader Spacing (miles) LT1B 2 4 6 8 10 2 4 6 8 10 
0.5 335 417 553 520 492 274 395 468 369 433 
1.5 423 474 509 504 500 304 453 479 425 404 
2.5   525 598 541 558   499 494 460 510 
3.5   599 661 636 619   562 536 523 527 
4.5     720 707 686     618 598 575 
5.5     779 854 769     684 665 687 
6.5       936 913       722 725 
7.5       919 932       834 837 
8.5         1025         897 

D
is

ta
nc

e 
to

 N
ex

t R
ea

de
r 

(m
ile

s)
 

9.5         1015         951 
0.5 265 367 369 403 356 219 353 394 463 465 
1.5 285 399 499 386 476 279 473 441 452 506 
2.5   492 463 442 535   517 464 503 585 
3.5   555 481 471 500   580 493 521 550 
4.5     531 529 550     623 582 610 
5.5     619 610 633     735 729 673 
6.5       672 692       822 812 
7.5       699 733       793 801 
8.5         778         769 

D
is

ta
nc

e 
to

 N
ex

t R
ea

de
r 

(m
ile

s)
 

9.5         816         849 

Case “a” Case “b” 

Case “c” Case “d” 
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Table 9.  Average Detection Times for Light Traffic, Moderate Incident 

Reader Spacing (miles) LTMO 2 4 6 8 10 2 4 6 8 10 
0.5 145 169 184 179 175 103 127 142 139 136 
1.5 203 227 241 239 235 161 186 199 198 194 
2.5   285 299 298 294   244 257 257 254 
3.5   343 357 356 354   302 314 314 312 
4.5     414 414 413     373 371 371 
5.5     472 472 471     430 429 429 
6.5       529 529       488 487 
7.5       587 587       546 545 
8.5         644         603 

D
is

ta
nc

e 
to

 N
ex

t R
ea

de
r 

(m
ile

s)
 

9.5         702         661 
0.5 92 117 131 128 128 73 103 110 108 104 
1.5 150 176 190 186 185 130 164 169 166 163 
2.5   233 248 245 243   221 227 225 223 
3.5   291 304 305 300   279 285 283 280 
4.5     361 362 360     343 342 339 
5.5     419 419 419     400 401 398 
6.5       477 477       459 456 
7.5       535 535       516 516 
8.5         592         573 

D
is

ta
nc

e 
to

 N
ex

t R
ea

de
r 

(m
ile

s)
 

9.5         650         630 

Case “a” Case “b” 

Case “c” Case “d” 

 

Another trend that can be observed is the effect of the roadside reader spacing.  By 

examining the rows in any table (from left to right, within a given quadrant), the effect of 

increasing the reader spacing, while holding all other parameters constant, can be observed.  The 

effect of increasing the reader spacing is not nearly as pronounced as that of the downstream 

distance.  It can be seen that for small values of reader spacing (i.e., two to four miles), an 

increase in the reader spacing causes a corresponding increase in the average detection time.  

However, for the larger values of reader spacing (six, eight, and ten miles), there seems to be 

little or no effect.  This pattern seems to hold true for all of the tables.  
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Table 10.  Average Detection Times for Heavy Traffic, Minor Incident 

Reader Spacing (miles) HT1B 2 4 6 8 10 2 4 6 8 10 
0.5 165 197 209 204 211 138 176 178 176 184 
1.5 227 267 271 267 268 214 242 249 238 246 
2.5   333 340 347 350   304 313 314 304 
3.5   397 403 414 413   369 375 387 371 
4.5     469 474 485     446 449 448 
5.5     528 542 557     508 526 530 
6.5       602 635       585 607 
7.5       666 696       654 673 
8.5         751         732 

D
is

ta
nc

e 
to

 N
ex

t R
ea

de
r 

(m
ile

s)
 

9.5         815         796 
0.5 135 170 167 162 172 110 154 158 151 153 
1.5 202 234 238 226 232 186 222 227 221 221 
2.5   297 302 306 293   284 294 289 280 
3.5   361 370 374 362   348 360 359 349 
4.5     435 436 437     420 423 424 
5.5     495 502 501     481 485 490 
6.5       565 579       555 566 
7.5       633 641       614 

Case “a” Case “b” 

621 
8.5         706         685 

D
is

ta
nc

e 
to

 N
ex
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ea
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r 

(m
ile

s)
 

9.5         772         754 

Case “c” Case “d” 

 

 In order to observe the effect of the percentage of vehicles with transponders, the 

observer must compare individual cells from quadrant to quadrant within a given table.  For 

example, comparing the same cell in the four quadrants of Table 10 (in the order “a, b, c, and d”) 

will show the effect of increasing the percentage of vehicles with transponders, while holding all 

other parameters constant.  The general pattern observed is that the average detection time 

decreases as the percentage of vehicles with transponders increases.  This pattern holds true 

consistently for all scenarios except the “light traffic minor incident” scenarios (Table 8).  It is 

noteworthy that these were also the only scenarios where some incidents were not detected, 

resulting in missing values.  These missing values could potentially skew the averages and 

prevent the expected patterns from being observed. 
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Table 11.  Average Detection Times for Heavy Traffic, Moderate Incident 

Reader Spacing (miles) HTMO 2 4 6 8 10 2 4 6 8 10 
0.5 123 148 150 148 149 112 135 136 133 137 
1.5 187 210 214 212 210 178 199 202 196 199 
2.5   270 277 277 274   259 265 263 259 
3.5   332 339 340 338   321 329 327 322 
4.5     397 401 401     387 390 387 
5.5     459 463 464     448 453 451 
6.5       524 527       513 515 
7.5       586 589       574 578 
8.5         648         637 

D
is

ta
nc

e 
to

 N
ex

t R
ea

de
r 

(m
ile

s)
 

9.5         712         703 
0.5 94 117 121 120 122 77 98 104 101 96 
1.5 164 180 185 183 184 150 160 167 165 162 
2.5   242 246 247 246   225 229 229 227 
3.5   308 309 310 309   292 291 292 289 
4.5     369 372 372     355 354 354 
5.5     434 433 434     420 415 415 
6.5       495 497       479 479 
7.5       560 559       545 540 
8.5         619         603 

D
is

ta
nc

e 
to

 N
ex

t R
ea

de
r 

(m
ile

s)
 

9.5         685         671 

Case “a” Case “b” 

Case “c” Case “d” 

 

Observing the effect of incident severity requires comparing a specific cell in one table 

with the same cell in another table.  For example, comparing a given cell in Table 10 with the 

same cell in Table 11 will show the effect of increasing incident severity while holding all other 

variables constant.  The general pattern observed here is that increasing the incident severity 

results in more rapid detection. 

The effect of varying the traffic volume can also be observed by comparing the same cell 

in two different tables.  An example would be to compare a specific cell in Table 8 with the same 

cell in Table 10.  The general pattern observed here (for minor incidents) is that a heavier volume 

of traffic results in more rapid detection.  However, when the same comparison is performed for 

moderate incidents (i.e., comparing Tables 9 and 11), the effect of traffic volume is much less 

consistent.  This would seem to indicate an interaction between traffic volume and incident 

severity with regard to their effects on the detection time. 
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In order to verify the relationships that are apparent in the tables, and to determine if the 

observed effects of the parameters are statistically significant, a regression analysis was 

performed on the detection time data.  The analysis used the “raw” data, with 4,800 individual 

detection times (less missing values), rather than the “reduced” data with 480 mean detection 

times.  The SAS statistical package, version 7, was used to perform the analysis.  The regression 

model set the detection time as the dependent variable.  The five independent variables were 

traffic volume, incident severity, percentage of vehicles with transponders, roadside reader 

spacing, and distance from incident to next reader.  Actual numerical values were used for the 

traffic volume, the reader spacing, and the distance to next reader (as shown in Table 2).  For the 

other variables, values were assigned as follows: 

• Incident severity  

o Minor = 1 

o Moderate = 2 

• Percentage of vehicles with transponders 

o Case “a” = 1 

o Case “b” = 2 

o Case “c” = 3 

o Case “d” = 4 

The regression analysis resulted in an R-squared value for the model of 0.829.  The 

parameter estimates for the independent variables were as follows: 

 Intercept  503.26209 

 Traffic Volume -0.04714 

 Incident Severity -138.11953 

 Transponder % -19.34680 

 Reader Spacing 3.03601 

 Distance to Reader 61.85608 

 

For each parameter estimate, the “t value” was of such a magnitude that the “Pr > |t|” was 

less than 0.0001.  So, each independent variable was determined to be a significant predictor of 

the detection time.  The largest “t value” was for the distance to the next reader, while the 

smallest was for the reader spacing. 
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It is interesting to note the signs (i.e., positive or negative) of each of the parameters 

listed above and see if they agree with the patterns observed in Tables 8 through 11.  The 

negative values of parameters above would indicate that increasing the traffic volume, the 

incident severity, or the percentage of vehicles with transponders should result in a reduced time 

to detect.  On the other hand, increasing the roadside reader spacing or the distance from the 

incident to the next reader should cause an increase in the time to detect.  These findings are 

reasonable, and they corroborate the trends observed in Tables 8 through 11. 

A second regression analysis was run to look for possible interactions between the 

independent variables.  This analysis showed several statistically significant interactions between 

variables, with the strongest interaction between traffic volume and incident severity.  This is 

consistent with the observations from Tables 8-11.  A major factor in creating and shaping this 

interaction was the way in which incidents were defined for the simulation (see Table 2).  

Specifically, for minor incidents, the traffic volume had a substantial impact on determining 

whether traffic backups occurred (or how long it took for a backup to occur).  However, for 

moderate incidents, where the roadway was completely blocked, traffic backups (and associated 

delays) would occur immediately, regardless of the traffic volume.  This is what was observed in 

the tables and verified by the regression results.  

 

With regard to overall system performance, the following can be observed: 

• For a roadside reader spacing of two miles, the average detection time ranged 

from 73 seconds to 423 seconds.  Excluding the “light traffic minor incident” (or 

LT1B) scenarios, which were inherently difficult to detect due to minimal traveler 

delay, the average detection time ranged from 73 seconds to 227 seconds.  So, for 

any incident causing significant traveler delay, the system detected the incident in 

one to four minutes. 

• When the roadside reader spacing was four miles, the average detection time 

ranged from 98 seconds to 599 seconds.  Excluding the “LT1B” scenarios, the 

largest average detection time was 397 seconds.  So, using a four-mile reader 

spacing, the system detected significant incidents in 1.5 to 6.5 minutes. 

• For a reader spacing of six miles, the smallest average detection time was 104 

seconds and the largest was 779 seconds.  Excluding the “LT1B” scenarios, the 
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largest average detection time was 528 seconds.  So, with this reader spacing, the 

system detected significant incidents in 1.5 to nine minutes. 

• When the reader spacing was eight miles, the average detection time ranged from 

a minimum of 101 seconds to a maximum of 936 seconds.  Excluding the “LT1B” 

scenarios, the largest average detection time was 666 seconds.  So, an eight-mile 

reader spacing generated detections (for significant incidents) in the range of 1.5 

to 11 minutes. 

• Finally, for a roadside reader spacing of ten miles, the smallest average detection 

time was 96 seconds, and the largest was 1025 seconds.  Excluding the “LT1B” 

scenarios, the largest average detection time was 815 seconds.  So, with a ten-mile 

reader spacing, the system was able to detect significant incidents in 1.5 to 14 

minutes. 

 

One question that may be raised is, “How well could a DSRC-based incident detection 

system perform today, with the current population of transponders on vehicles?”  In the 

experimental design, with regard to the percentage of transponders on vehicles, Case “a” was 

selected to approximate the current condition.  So, it is possible to assess how a system would 

perform today by examining the Case “a” quadrants of Tables 8 through 11.  If the intent is to 

exclude the “LT1B” scenarios, then Table 8 can be ignored.  Examining Tables 9, 10, and 11 

shows that, for a reader spacing of two miles, the average detection time (for Case “a”) ranges 

from two to four minutes.  When the reader spacing is four miles, the detection time is 2.5 to 6.5 

minutes.  For a six-mile reader spacing, the detection time is 2.5 to nine minutes.  When the 

reader spacing is eight miles, the average detection time ranges from 2.5 to 11 minutes.  And, for 

a reader spacing of ten miles, the detection times range from 2.5 to 14 minutes.   

In summary, for today’s transponder population levels, the “best case” scenario (where an 

incident occurs just upstream of a reader) could be detected within two minutes or so (regardless 

of the reader spacing).  For the “worst case” scenario (where the incident occurs far upstream of 

a reader) the incident could be detected in four minutes for a two-mile reader spacing, and this 

time increases by about 2.5 minutes for every two-mile increase in the reader spacing.  This 

relationship can be expressed by the formula: 

DTwc = 1.5 + (1.25) * RS 

 44



where DTwc is the detection time in minutes for the “worst case” scenario (as defined 

above), and RS is the reader spacing in miles. 

The relationship between roadside reader spacing and average time to detect (for the 

current population of transponders) is illustrated in Figure 11.  The three lines on this graph 

represent the “best case” detection time, the “worst case” detection time, and the calculated 

detection time using the formula above. 

This analysis demonstrates a relationship that was observed earlier when looking for 

patterns in Tables 8 through 11.  The reader spacing itself has very little impact on the average 

detection time (when all other parameters are held constant).  However, the reader spacing is 

extremely significant, because it defines the upper limit of the distance from the incident to the 

next downstream reader.  Obviously, the distance from the incident to the next reader cannot 

exceed the reader spacing. 

 

Figure 11.  Relationship Between Reader Spacing and Detection Time (for Current Levels 
of Transponders on Vehicles) 
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Cost Assessment 

The cost of deploying a DSRC-based system for traffic monitoring and incident detection 

can be divided into the following elements: 

• Cost of system hardware 

• Site preparation and installation costs 

• Software development and system integration 

• Ongoing operations and maintenance costs 

 
The cost of system hardware would include the DSRC readers, antennas, associated 

wiring, roadside equipment cabinets, poles, and mast arms.  It would also include a computer to 

receive the “probe and beacon” data, calculate travel times, and run the detection algorithm.  

Depending on the communications and electrical power options selected, the hardware costs 

could also include radio-frequency modems (for point-to-point communications), solar panels, 

and batteries. 

The cost of site preparation and installation would be greatly influenced by the 

communications and electrical power options selected.  The use of solar power and wireless 

communications could eliminate the need for substantial trenching, conduit, and cabling to bring 

electrical power and hardwire communications to each site.  In any case, site preparation would 

include concrete foundations for antenna poles.  Equipment cabinets can be pole-mounted or 

placed on separate foundations.  Initial installation of poles, mast arms, and antennas typically 

involves a lane closure, with associated costs for traffic control. 

Software development costs, while always difficult to predict, should not be excessive.  

The system functionality is straightforward and the algorithm has already been programmed and 

tested.  The primary task of software development will be converting the system from a post-

processing environment to a real-time operation.  The calculation of a “rolling mean” for travel 

time will also need to be included in the program. 

The ongoing operations and maintenance costs will include the cost of any utilities used 

(electrical power, phone connections, wireless communications, etc.), the cost of routine 

preventive maintenance, and the cost of troubleshooting and repairing system failures.  The 

Kentucky Transportation Cabinet has substantial experience in maintaining DSRC systems at 

weigh stations throughout the state, and these systems have not been expensive to maintain.  The 

 46



utilities cost will be driven primarily by the type of communications selected for the system.  

Communications is vital to the system functionality.  Each time a roadside reader reads a 

transponder, that information must get to the central processing computer21.  So, a 

communications network must be established which includes each reader and the central system. 

 

The following are preliminary cost estimates for developing and installing a DSRC-based 

incident detection system.  

 

Initial Per-Site Costs (for roadside equipment procurement and installation)22

• DSRC Reader, with antennas and associated connectors 

o $8,000 to $15,00023 

• Poles, mast arms, equipment cabinet, etc. 

o $5,000 

• Solar panels, RF modems, batteries, etc. 

o $2,000 

• Site preparation and installation 

o $8,000 

 
Initial System-Wide Costs 

• Software Development and System Integration 

o $50,000 

• Computer and Peripherals for Central Processing 

o $3,000 

• Miscellaneous (communications setup, etc.) 

o $2,000 

 

                                                 
21 There are also options involving distributed processing, which would require only reader-to-reader 
communications for normal operations.  For such a system, communications with a “traffic management center” 
would still be required whenever an alarm was generated by the system. 
22 These estimates assume a bi-directional installation, with one DSRC reader connected to two antennas (one for 
each direction).  They also assume the use of solar power, along with RF modems for reader-to-reader 
communications. 
23 The wide range in reader costs is due to the recent entrance of a new vendor, with prices about one-half of the 
historical norm. 
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On-Going Costs 

• High-Speed Wireless Communications Service 

o $1,200 per year 

• Maintenance of Central System Hardware and Software 

o $5,000 per year 

• Maintenance of Roadside Systems 

o $3,000 per site per year 

 

Costs of a “Typical” Deployment

Using the approximate unit costs listed above, deployment of a DSRC-based incident 

detection system with ten roadside installations would have a total initial cost in the range of 

$285,000 to $355,000.  The annual cost for operations and maintenance would be approximately 

$36,000. 

 

Performance versus Cost 

In designing an incident detection system, there will be a trade-off between performance 

and cost.  The primary factor impacting system cost will be the reader spacing.  This relationship 

is best illustrated by looking at an example.  If a system were being designed to cover 120 miles 

of rural Interstate (in both directions), using today’s population of transponders on vehicles, the 

following five options would be available.  (Of course, other options would be available as well, 

but these will serve for illustration.) 

 
• Option 1 – Deploy 13 roadside readers, spaced ten miles apart. 

o Estimated system cost (initial) -- $354,000 to $445,000 

o Estimated annual O&M cost -- $46,000 

o Detection Time – 2.5 to 14 minutes. 

 
• Option 2 – Deploy 16 roadside readers, spaced eight miles apart. 

o Estimated system cost (initial) -- $423,000 to $535,000 

o Estimated annual O&M cost -- $55,000  

o Detection time – 2.5 to eleven minutes. 
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• Option 3 – Deploy 21 roadside readers, spaced six miles apart. 

o Estimated system cost (initial) -- $538,000 to $685,000 

o Estimated annual O&M cost -- $70,000 

o Detection time – 2.5 to nine minutes. 

 
• Option 4 – Deploy 31 roadside readers, spaced four miles apart. 

o Estimated system cost (initial) -- $768,000 to $985,000 

o Estimated annual O&M cost -- $100,000 

o Detection time – 2.5 to 6.5 minutes. 

 
• Option 5 – Deploy 61 roadside readers, spaced two miles apart. 

o Estimated system cost (initial) -- $1,458,000 to $1,885,000 

o Estimated annual O&M cost -- $190,000 

o Detection time – two to four minutes. 

 

These five options are illustrated in Figure 12, which shows the time to detect an incident 

(“best case” and “worst case”) plotted against the system cost.  Figure 12 clearly shows the effect 

of changing the reader spacing.  A shorter distance between readers will reduce the time to detect 

the “worst case” incident, but it will also increase the system cost.  There is a “law of 

diminishing returns” evident in the figure.  At the left side of the graph, moderate increases in 

system cost result in large reductions in the “worst case” detection time.  Moving to the right of 

the graph, it becomes increasingly expensive to achieve further reductions in the detection time.  

While this analysis is for an extremely large deployment, covering 120 miles of freeway, it could 

easily be scaled down to any size deployment being considered.  The shape of the relationship 

should remain the same; only the numbers along the axes will change. 
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Figure 12.  Relationship Between System Cost and Detection Time (for a 120-mile 
Deployment) 
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  It may be of interest to know how the relationship between system performance and 

system cost will be affected by increasing numbers of transponders on vehicles.  Figure 13 shows 

the “worst case” detection time plotted against the system cost (as in Figure 12), but includes 

four curves.  Each curve represents a different percentage of transponders on vehicles, as defined 

in the study design.  It can be seen that increasing the number of transponders on vehicles will 

reduce the “worst case” detection time.  However, it is also apparent that the performance with 

current levels of transponders is reasonably close to the best performance that can be expected in 

the future, even with 100 percent of vehicles equipped with transponders. 

 
In designing and deploying a DSRC-based system, the relationship between performance 

and cost will need to be considered.  Specifically, decisions will need to be made regarding the 

speed of detection that is needed.  In other words, how quickly must the system detect incidents 

in order to be valuable?  And, of course, the amount of available funding will always be a factor 

in choosing among options. 
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Figure 13.  Relationship Between System Cost and “Worst Case” Detection Time for 
Varying Percentages of Vehicles with Transponders 
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CONCLUSIONS 
 

The findings of this study indicate that a DSRC-based incident detection system could 

provide rapid and reliable detection of incidents on a rural freeway.  This is true for current 

levels of transponders on vehicles, so such systems could be effective now, without waiting for 

the transponder population to increase.  A straightforward incident detection algorithm, based on 

Individual Observation Control Chart techniques (e.g., a threshold and a counter), can provide 

excellent results.  The specific algorithm used herein, with the threshold based on the standard 

deviation of travel times for the “no incident” condition, proved to be effective at producing 

timely detections while virtually eliminating false alarms. 

All of the variable parameters examined in this study proved to be significant predictors 

of the time to detect, and the observed relationships were in accord with expectations based on 

logical reasoning.  Of the five parameters studied, only the spacing between the roadside readers 

can be selected by the designer of an incident detection system.  The other four parameters are 

characteristics of the traffic or the incident itself.  For any incident severe enough to cause 

significant traveler delay (i.e., delay of 60 seconds or more), the primary determinant of the 

detection time was the location of the incident relative to the next downstream reader.  Of course, 

the incident location cannot be chosen, but the worst-case scenario (i.e., the maximum possible 

distance from the incident to the next downstream reader) can be constrained by choosing an 

appropriate value for the roadside reader spacing.  In choosing this value, the designer must 

consider the relationship between performance and cost.  This relationship shows diminishing 

returns as the reader spacing becomes shorter and shorter.  

Caution must be exercised in transferring the findings of this study directly to 

deployments in the real world.  As discussed previously in this report, situations will exist in 

real-world operations that do not occur in simulations.  Vehicles will stop along the roadside for 

driver changes or mechanical repairs.  Vehicles will exit at intervening interchanges, and they 

may or may not re-enter the freeway at a later time.  Travel times will be affected by snow, rain, 

fog, or other environmental conditions.  Readers and communication devices will experience 

failures.  All of these factors (as well as others not mentioned) have the potential to affect the 

performance of an incident detection system. 
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The selected detection algorithm has the capability to account for the behavior of 

individual vehicles and the possibility of intervening interchanges.  This is accomplished by use 

of a counter alarm level.  The counter alarm level can be adjusted to match the characteristics of 

a specific freeway segment.  Use of a “rolling mean” of travel times should provide the 

capability to adjust for gradual changes in travel times due to environmental conditions.  Finally, 

it will be important to provide equipment monitoring capabilities, so that equipment failures can 

be distinguished from roadway blockages. 
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RECOMMENDATIONS 

 
The findings of this study demonstrate that DSRC technology has significant potential for 

travel time monitoring and incident detection on rural freeways.  The technology offers the 

promise of providing rapid, reliable, and cost-effective detection of incidents.  These findings 

should provide sufficient justification to move toward the goal of deploying such a system.  

However, there are issues that merit further exploration before undertaking a full-scale 

operational deployment.  Therefore, the following recommendations are provided: 

 

1. The “probe and beacon” data produced by the simulations and post-processing should be 

subjected to further analysis.  In particular, the following areas of exploration are 

recommended. 

a. Experiment with other values of the threshold and the counter alarm level to gain a 

more complete understanding of these factors. 

b. Better define the relationship among detection rate, false alarm rate, and time to 

detect.  Replace the “generic” curves illustrating this relationship with actual curves 

based on plotted data. 

c. Experiment with other types of detection algorithms.  Explore the quality control 

literature for candidate approaches. 

2. Actual DSRC data should be collected on a rural freeway segment to validate the 

simulation results.  This could make use of currently installed DSRC readers (used for 

commercial vehicle screening), or it could involve a separate (perhaps temporary) 

installation. 

3. A pair of DSRC readers should be deployed on a rural freeway to collect actual travel 

time data for a specified time period.  This would assist in identifying differences in 

behavior between simulated and real traffic.  It could also be used to assess the impact of 

an intervening interchange.  This would provide the first opportunity to apply the incident 

detection algorithm to real-world data rather than simulation data. 

4. A more detailed simulation should be developed to replicate actual conditions on a 

selected section of rural Interstate.  These conditions would include terrain, intervening 

interchanges, and actual traffic patterns at those interchanges.  The data from this 

 54



simulation should be processed, analyzed, and used to develop more refined 

recommendations regarding the incident detection algorithm and a possible real-world 

deployment. 

5. A project steering committee should be created to oversee the process of creating 

functional requirements and specifications for a permanent field deployment of a DSRC-

based incident detection system.  These functional requirements and specifications should 

then be used to develop more accurate cost estimates for deploying. 

6. If deemed appropriate, based on the results of the previous recommendations, project 

funding should be sought to begin deploying DSRC-based traffic monitoring and incident 

detection on a selected segment of rural freeway.
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TRANSMIT SYSTEM EVALUATION:  FINAL REPORT 
 
Authors: Kyriacos C. Mouskos, Ph.D. 
 Edip Niver, Ph.D. 
 Louis J. Pignataro, Ph.D. 
 Stuart Lee 
 Nicholas Antoniou 
 Leonidas Papadopoulos 
 
Published by:  Institute for Transportation, NJIT 
 
Date:  June 30, 1998 
 
Summary: 

 This report presents evaluation results of TRANSCOM’s System for Managing Incidents 
and Traffic, otherwise known as TRANSMIT.  This system uses ETTM (electronic toll and 
traffic management) equipment for traffic surveillance and incident detection.  The evaluation 
had two goals: 
 

1) Assess the performance of the TRANSMIT system. 
2) Assess the costs, benefits, and institutional issues of the TRANSMIT system. 

 
The evaluation was conducted in 1996. 

 
Detection Technology:

 TRANSMIT uses DSRC technology (ETTM equipment) compatible with the E-ZPass 
system.  Technology was installed on a 21-mile stretch of the Garden State Parkway (GSP), from 
the Hillsdale Toll Plaza to the New York State Thruway (NYST), and along the NYST from the 
Tappan Zee Bridge to the Spring Valley Toll Plaza.  A total of 28 tag readers were installed at 
intervals of 0.5 to 2.1 miles. 
 
 Of course, the other “piece” of the technology puzzle is the transponder on the vehicle.  
Market penetration rates for the study varied from 1.59% to 16.5% on the GSP and from 5.29% 
to 73.84% on the NYST. 
 
Incident Detection Methodology/Algorithm: 
 The incident detection algorithm is based on statistical comparison of measured travel 
times with historical travel times for the same time period (i.e., time of day and day of week).  
When the number of vehicles arriving late at a downstream reader reaches a predetermined level, 
an alarm is generated to indicate a possible incident. 
 
 TRANSMIT used an incident detection algorithm developed by PB Farradyne, Inc.  The 
expected link travel times are estimated using the historical probability distribution (assumed 
normal) for specific time intervals.  When vehicles fail to arrive at the downstream reader at the 
expected time, the probability of an incident increases, while the probability of a false alarm 
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decreases.  These probabilities continue to change with each vehicle that doesn’t arrive when 
expected.  When the confidence level of the possible occurrence of an incident reaches its user-
set threshold, an alarm is triggered. 
 
 This is a probability-based algorithm.  The actual probability formulas are shown and 
described on pages 19-21 of the report. 
 
Evaluation of the Technology:

 The evaluation assessed the “detection rate,” i.e., the success rate of the roadside readers 
at recording the passage of transponder-equipped vehicles, and the “transmission rate,” i.e., the 
success rate of the system for transmitting the detection information back to the Operations 
Information Center.  For most roadside readers, the detection rate was near 100 percent, although 
a few readers experienced lower rates.  The transmission rate was near 100 percent (98.8 to 
100.0) for all reader locations except one.   That one location was the only one using a radio link. 
 
Evaluation of the Incident Detection System:

 Based on incident data for January through April, 1996. 
 
 The study included 136 major incidents on the NYST and 62 on the GSP. 
 
 Based on a comparative analysis of incidents recorded by the TRANSMIT system versus 
incident record data recorded by NYST and GSP personnel. 
 
 Performance was quantified in terms of: 
 

• Probability of detecting incidents 
o NYST was 91%  (worst case) to 95% (best case) 
o NJT was 67% to 79% 

• Probability of false alarms and false alarm rates 
o Percentage of total alarms that were false was 10% (best case) to 22% (worst 

case) on NYST 
o Percentage of total alarms that were false was 16% to 32% on NJT 

 
The TRANSMIT system compared very favorably with other incident detection 

algorithms reported in the literature. 
 

Note:  Mean time to detect an incident could not be estimated, but was recognized as an 
important parameter, which should be incorporated into a future, more comprehensive 
evaluation. 
 
 
Evaluation of Costs, Benefits, and Institutional Issues:

 The costs of installing and operating a TRANSMIT roadside detection site were 
compared with the costs of alternative detection technologies, i.e., inductive loops, video image 
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detection, and microwave radar.  The TRANSMIT cost ranged from 55% to 73% of the cost of 
the alternative technologies. 
 
 The TRANSMIT system offered several advantages over other technologies.  The 
principal advantage lies in its ability to identify vehicles at successive locations, thus providing 
the basis for determining space mean speed and link travel time, as well as for origin-destination 
studies, fleet management, transit management, volume estimation, etc. 
 
 Privacy of the identity of the vehicle was identified as a key institutional issue.  The 
TRANSMIT system was designed to ensure anonymity of all vehicles. 
 
Other Comments:

The TRANSMIT system can provide direct estimates of the link travel time and link space mean 
speed. 
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Use of Automatic Vehicle Identification Techniques for Measuring Traffic Performance 
and Performing Incident Detection 

 
 
Authors: Hallenbeck, ME; Washington State Transportation Center 
 Boyle, T (Graduate Research Assistant) 
 Ring, J  (Graduate Research Assistant) 
 
Published by:  University of Washington, Seattle 
 
Date:  October 1992 
 
Summary: 

 The primary objective of this study was to determine the possible benefits of using 
Automatic Vehicle Identification (AVI) systems for monitoring the performance of traffic and 
detecting incidents.  A secondary objective was to determine whether the truck fleet tagged as 
part of the HELP Project, or even the entire truck population, would provide an unbiased 
measure of traffic performance. 

 

Detection Technology: 

 DSRC (truck-mounted transponders and roadside readers).  Three AVI readers were 
purchased for the project and installed on Interstate 5, south of the Tacoma Central Business 
District.  They were installed on the northbound side, roughly one mile apart.  Data from the 
readers went to the HELP/Crescent database in Santa Clara, California, and then to the research 
team. 

 

Algorithm(s): 

 This report talked about two different ways to use DSRC data for monitoring traffic 
performance.  One method uses data from a single reader location to count the volume of tagged 
vehicles that pass and the headways between tagged vehicles.  The other way is to use the data 
from two or more locations to determine travel times (and hence average speeds) between the 
locations.  Both of these techniques can be used simultaneously.  The “single reader” method 
detects incidents more quickly if the incident occurs just downstream of the reader or if the 
roadway is completely blocked.  For all other situations, the two-or-more-reader approach is 
better. 

 There are four factors that interact to determine the detection times possible with the AVI 
travel time technique: 

• Headway between tagged vehicles 

• Distance between AVI readers 

• Speed of vehicles on the roadway 
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• Number of vehicles that must be monitored to detect a change in traffic conditions (and 
make it statistically significant) 

Some trade-offs can be made among these factors to maintain detection times within a 
desired range. 

 “Because of the complex interaction of these variables, it is not possible to provide a 
single table or figure that summarizes the time required for detecting changes in travel time 
(or vehicle speed) using the travel time technique.  The complexity of estimating detection 
times is further increased if statistical levels of confidence are associated with these 
variables.  (That is, vehicles do not always arrive at the rate indicated by the headway.  Their 
arrival rate is really a distribution, which will affect the actual response time of the AVI 
monitoring system. 

 There are tables in the report that present expected detection times for varying conditions.  
The authors indicate that any of the four factors can be a limiting factor in determining 
response time of the system.  It appears that each table presents detection times as a function 
of headway and number of vehicles needed, for given values of speed and reader spacing.  
By varying the speed and the reader spacing, and producing additional tables for each 
combination, the relationship among the variables was portrayed.  

The report stated that the mathematical algorithms needed to operate the AVI system are 
straightforward and easily programmed. 

 

Results: 

 The volume of tagged vehicles in the field test was insufficient to perform real-time 
traffic performance monitoring or incident detection.  They only had 40 to 45 tagged vehicles per 
day. 

 Nevertheless, the authors concluded that AVI-based systems can produce superior traffic 
performance data for use in both real-time control systems and more general transportation 
planning and engineering analyses.  The impediments to using AVI technology in this manner 
are not technical, but fiscal and political. 
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Using VRC Data for Incident Detection 
 
Authors: A. Emily Parkany (MIT) 
  David Bernstein (MIT) 
 
Published by: Proceedings:  Pacific Rim TransTech Conference (1993, Seattle, WA) 
 
Date: 1993 
 
Summary: 

 This is a preliminary and theoretical look at using Vehicle-Roadside Communications 
(VRC) technology for incident detection purposes.  It includes a discussion of the types of data 
that can be obtained from VRC and the general ways such data can be used for incident 
detection.  Several new algorithms are described, along with a preliminary evaluation of their 
performance (based on simulation). 
 
Detection Technology: DSRC 
 
Detection Methodology/Algorithms: 

 The report lists several ways that VRC data can be used to determine that an incident has 
occurred.  Incident detection algorithms will incorporate one or more of these indicators: 
 
1) Increased travel time between two readers 
2) Lower volumes or headways at one reader compared to an upstream reader 
3) Vehicles not reaching the downstream reader. 
4) Multiple reading of the same transponder at a reader 
5) Abnormal number of lane changes 
6) Few vehicles in certain lanes 
7) Variance in travel times 

 
 Algorithms are developed (and flow charts are provided for the decision process) for each 
of the following indicators: 
 
a) Travel time and travel time variance 
b) Upstream/downstream headway comparisons 
c) Density comparisons 
d) Lane-specific headways 
 
Results:

 A preliminary evaluation of the algorithms was conducted using a microsimulator 
developed at MIT.  Preliminary results were very promising.  For example, the travel time 
changes/variance algorithm yielded a one-minute time to detect for heavy flow and a three-
minute time to detect for light flow.  No false alarms were generated during a one-hour 
simulation period. 
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 For comparison, the same simulation was used to test the California #7 algorithm.  It 
failed to detect the incident during heavy flow and detected the light-flow incident in five 
minutes.  It also generated five false alarms during the one-hour simulation. 
 
Comments:

Of the “indicators” listed, four of them (1,3,4, and 7) seem applicable to rural freeway 
applications.  Determining volumes or headways requires an extremely high market penetration, 
so #2 is not likely to be applicable in the near future.  Also, a typical, single-antenna DSRC 
installation will not do lane discrimination, so #5 and #6 will not be applicable unless they are of 
sufficient value to justify the extra expense. 
 
 Much of the complexity of these algorithms seems targeted at distinguishing between 
incidents and recurring congestion.  If that is not an issue (which it may not be for a rural 
freeway), then the algorithm can be much simpler.  For a rural freeway application, it may be 
quite sufficient to look just at travel times.  However, the information in this report may be 
useful if there is a need to add complexity to the algorithm. 
 
 It is worth noting that this report (and the other Parkany/Bernstein report) is focused on 
toll applications of DSRC.  These systems typically have lane discrimination capabilities, and 
they typically have many more reader locations than a typical CVO application. 
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Design of Incident Detection Algorithms Using Vehicle-to-Roadside Communication 
Sensors 

 
Authors: Emily Parkany 
  David Bernstein 
 
Published by: Transportation Research Board 
 In Transportation Research Record #1494, “Traffic Operations, Traffic Signal 

Systems, and Freeway Operations 1995” 
 
Date: 1995 
 
Summary:

 This report is similar to the 1993 paper (describing the same research), but is more 
detailed and exhaustive, as it was prepared for publication by TRB.  It promotes Vehicle-
Roadside Communications (VRC) technology as an attractive option for incident detection and 
offers three example, pattern-based algorithms for use with VRC data.  A simulation was used to 
test these algorithms and to compare them against an existing (California #7) algorithm that uses 
loop detector data. 

 Included are discussions of categories of data that can be used for incident detection, 
numbers of sensors, read only versus read-write systems, and penetration rates. 

 Recommendations for future research are included. 
 
Detector Technology:   DSRC 

 
Detection Methodology and Algorithms:

 This report advocates using systems deployed for electronic toll collection (ETC) to also 
monitor traffic flow and detect incidents (perhaps with some additional reader sites).  It states 
that traditional algorithms, designed for point data collection, are probably not best for VRC 
systems, which collect point-to-point data. 

 Three example pattern-based algorithms are presented for consideration.  These include a 
Headways Algorithm (using travel times and headways), a Lane Switches Algorithm, and a Lane 
Monitoring Algorithm.  A verbal description and a flow chart are provided for each algorithm. 

 Using a microscopic traffic simulator, the algorithms were tested for 40 minutes 
(including a 20-minute warm-up) on a 12-mile section of 3-lane freeway (including six miles of 
warm-up.  A variety of incidents (minor to serious) were simulated.  The performance of the 
algorithms was measured in terms of detection rate, false alarm rate, and time to detect.  For 
comparison purposes, the same simulation was applied to the California #7 algorithm, using 
point data from loop detectors. 

 
Results:

 Even simple VRC-based algorithms perform at least as well as implemented algorithms 
using other sensors.  Additionally, compared with other simple VRC-based algorithms 
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developed, implemented, and tested during the course of this research, these specific algorithms 
and their corresponding logics seem to give the most promising results. 

 Performance measures used to evaluate these algorithms were detection rate, false alarm 
rate (per time and per algorithm repetition), and average time to detect.  For each algorithm, 
results were presented for the “best” threshold values; i.e., those that provided the best 
combination of detection rate, false alarm rate, and average time to detect.  The performance 
measures for the three VRC-based algorithms were compared with the corresponding measures 
for the California Algorithm #7. 

 In general, the performance of the VRC-based algorithms was superior to the California 
Algorithm #7.  All three of the VRC algorithms had a substantially higher detection rate, two of 
them had a lower time to detect, and one had a lower false alarm rate. 
 
Conclusions:

 All three of the pattern-based algorithms performed reasonably well, and demonstrated 
that VRC has significant potential for use as a stand-alone sensor for incident detection.  The 
algorithms performed much better than did the California algorithm.  They are applicable to a 
wide variety of conditions, which further increases their value. 
 
Recommendations for further research:

 The authors provided a number of ideas to spark future research.  These included the 
following possible extensions to the research: 
 

1. Testing the algorithms with field data. 
2. Use thresholds that are functions of the flow.  (Would require developing threshold-flow 

relationships). 
3. Developing threshold functions that incorporate other variables, such as the percentage of 

vehicles with tags. 
4. Further work in refining algorithm calibration. 
5. Investigating the relationship between detector spacing, time to detect, and false alarm 

rate.  
6. Investigate how different percentages of tagged vehicles and different types of tagged 

vehicles will affect algorithm performance.  
7. Combining VRC data with data from other detector types. 
8. Investigate other types of algorithms, other than pattern-based.  For example, statistical 

methods (including times series and filtering), catastrophe theory, artificial neural 
networks, and use of a traffic flow model. 

9. Cost-benefit analysis of VRC-based incident detection versus incident detection based on 
other sensors. 

 
Comments:

See comments on the previous Parkany and Bernstein paper, “Using VRC Data for Incident 
Detection.”  Those comments are applicable to this paper, as well. 
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Benefits of Real-Time Travel Information in Houston, Texas 
 
 
Authors: Balke, Kevin N. 
  Ullman, Gerald L. 
  McCasland, William R. 
  Mountain, Christopher E. 
  Dudek, Conrad L. 
 
Published by: Texas Transportation Institute 
  Texas A&M University 
  College Station, Texas 77843-3135 
 
Date: January 1995 
 
Summary: 

Describes some of the possible benefits and uses of real time travel time information in 
major cities in Texas.  Reports on an actual system in North Houston, which can be used to 
detect incidents.  Detection rates are comparable to loop-based systems, but false alarm rates are 
higher.  A survey of commuters (small sample) indicated that the information provided by the 
system was useful and credible.  Having accurate travel time information available led to 
increased usage of variable message signs by the Texas DOT.  Fuel savings benefits were 
estimated at 9,000 to 18,000 gallons per year. 

Technology Used: 

Phase 1:  Cell phones in probe vehicles.  Drivers called in at designated points. 

Phase 2:  Automatic Vehicle Identification (AVI -- transponders and roadside readers) 

 
System/Study Design:

Phase 1 – Approximately 200 probe vehicles.  Drivers call in on cell phones.  Stations 4-6 
miles apart. 

Phase 2 – Used transponder-equipped vehicles as probes, with roadside beacons.  No 
information provided on number of probe vehicles or beacon spacing. 

Real-Time Travel Information System – RTTIS 

 
Detection Algorithm: 

Standard Normal Deviate (SND) Incident Detection Algorithm, developed by Dudek and 
Messer.  Referenced “Incident Detection on Urban Freeways,” in Transportation Research 
Record #495 (1974).  

 66



s
xxSND −

=

 
 With x-bar values calculated for every 15 minutes of the peak period of every 

weekday. 
 
Detection Rate – comparable to loop-based systems 

False Alarm Rate – higher than loop-based systems 

Time to Detect – No information available. 

Used incident logs to identify probe vehicles that were traveling the facilities during 
incident conditions – then simulated the performance of the algorithm to detect actual incidents 
in the field. 

z-statistic:  Using SND = 2.0, 97.72% of travel times will fall within interval. 

 If SND = 4.0, 99.9968% will fall within interval. 

They tested travel times at SND = 2.0, 2.5, 3.0, 3.5, and 4.0.  If a probe-measured travel 
time exceeded the computed threshold, an alarm flag was set. 

Reviewer’s note:  If they set flag based on a single data point, that could explain their 
high false alarm rate.  An alternative is to use lower thresholds (if needed), but multiple data 
points.) 

False alarm rate was calculated as follows: 

 F.A. Rate = (false incident alarms / total probe-measured travel times) x 100% 

 
Results:

The authors included a comparison of this system and algorithm with other algorithms, 
based on reported performance of other algorithms. 

Algorithm Detection Rate False Alarm Rate 

SND—probe travel times 70% 5.2% 

California 82% 1.73% 

Modified California #8 68% 0.177% 

SND—loop detectors 92% 1.3% 

McMaster 68% 0.0018% 

 

 67



The authors were not able to assess average detection time. 

Reviewer’s note:  The validity of this type of direct comparison is questionable.  We 
need to account for differences in parameters, such as detector spacing, traffic volumes, 
percentage of vehicles equipped as probes, choice of algorithm thresholds, etc. 

 
Traveler Survey:

Most participants said the information provided by the system directly influenced their 
travel behavior. 

 
Other Benefits of System:

Use of changeable message signs by the Texas DOT went from approximately once per 
month to 12.3 times per month. 

 68



Method for Selecting Among Alternative Incident Detection Strategies 
 
Authors: Balke, Kevin N. 
  Ullman, Gerald L. 
 
Published by: Texas Transportation Institute 
  Texas A&M University 
  College Station, Texas  77843-3135 
 
Date: August 1992; Revised February 1993 
 
Summary:

 This report lists and describes a number of existing strategies for incident detection.  It 
then attempts to assess each strategy in terms of its cost and its effectiveness.  In addition, a 
method for selecting among alternative incident detection strategies is provided.  The method 
uses incremental benefit-cost analysis.  An illustration of this method is provided, using data 
from the motorist assistance patrol in Houston, Texas. 
 
Incident Detection Technologies:

 The report lists ten existing incident detection strategies. 
 

1. Motorist Assistance Patrols 
2. Electronic Surveillance Systems 
3. CCTV 
4. Stationary Observers 
5. Law Enforcement Patrols 
6. Aerial Surveillance 
7. Motorist Aid Call Boxes and Telephones 
8. CB Radio Monitoring Systems 
9. Cellular Telephone Call Numbers 
10. AVI Systems 

 
It is interesting to note that the report contains a description of each of these, with the lone 
exception of AVI systems. 

 
 
Comments:

 Focus of report is how to assess strategies using benefit-cost analysis, including 
incremental benefit-cost analysis. 
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Using In-Vehicle Systems and 5.8 GHz DSRC 
for Incident Detection and Traffic Management 

 
 
Authors: Guy Fremont 

R&D Manager, COFIROUTE 
  6-10, rue Troyon, 92310 Sevres, France 
  Tel: (33) 1 41 14 73 62 
  Fax: (33) 1 45 34 63 82 
  guy.fremont@cofiroute.fr
 
Published by: Fourth World Congress on Intelligent Transportation Systems 
  Berlin, Germany 
 
Date: October 1997 
 
Summary:
 
 This paper reports on the development and testing of a real-time, on-board, information 
system called ADAMS, originally developed by COFIROUTE and RENAULT, and then 
enhanced by an expanded partnership under the AIDA project, sponsored by the Ministry of 
Industry in France. 
 
 The system described in this report is fairly sophisticated and elaborate.  The purpose of 
the ADAMS and AIDA demonstrations was to introduce new information services in the 
vehicles, for the comfort and safety of the drivers. 
 
Technologies:
 
 The ADAMS system includes vehicle-mounted DSRC transponders (5.8 GHz), onboard 
terminals (with smart-card readers and LCD display), various onboard sensors, roadside DSRC 
readers, a communications network, and a traffic management center. 
 

Information flow between transponders and roadside readers is two-way.  When a vehicle 
enters the “capture zone” of a roadside reader, the following information is uploaded from the 
vehicle:  average speed since last beacon, rapid speed reductions encountered (along with 
location), fog encountered (with location—indicated by use of fog lamps), heavy rain 
encountered (with location—indicated by use of high-speed wipers), and incident information 
(with location—entered by driver using onboard terminal).  Information on safety alerts is 
downloaded from the roadside reader to the vehicle, where it is displayed for the driver. 

 
Information gathered from vehicles and from other sources is used to generate safety 

alerts.  These alerts are communicated to AIDA-equipped vehicles via the roadside readers and 
to other vehicles via changeable message signs and/or highway advisory radio. 
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In addition to safety alerts, the system can provide information on services available in 
the area (including restaurant availability and wait times), the price of petrol, and traffic 
conditions. 

 
The system was installed on a 90 km section of the A10 Paris-Poitiers motorway.  The 

section consisted of two parts:  the city of Orleans and the Orleans to Paris portion.  There were 
26 roadside beacons (or readers) installed, with the spacing between beacons varying from 5 km 
to 10 km. 

 
Incident Detection Algorithms:
 
 Incident detection was only a small part of this study, and it did not seem to be the 
primary emphasis.  Automated incident detection was anticipated to be a future addition to the 
system, and it said that “algorithms will be developed and tested.” 
 
Comments:
 

The report indicated that using DSRC for automated incident detection could be very cost 
effective, since “it is quite impossible to implement classic AID systems (like cameras and image 
processing systems) on large parts of interurban highways.”  Studies in Europe have shown that 
systems like AIDA could reduce accidents by 20%. 

 
This report was written at a preliminary phase of the AIDA project, and it indicated that 

an evaluation would be performed. 
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Travel Time Computation Using Vehicle Probe Tags 
 
 
Authors: Baumgartner, Joseph 210-522-2494 jbaumgartner@swri.org
  Dellenback, Steven W., Ph.D. 210-522-3914 sdellenback@swri.org
  Southwest Research Institute 
  PO Drawer 28510 
  San Antonio, TX  78228 
  Fax: 210-522-5499 
 
Published by: Fourth World Congress on Intelligent Transportation Systems 
  Berlin, Germany 
 
Date: October 1997 
 
Summary:
 

This paper describes the Automated Vehicle Identification (AVI) project of the 
TransGuide Model Deployment Initiative in San Antonio, Texas.  The AVI system consists of 53 
tag reader locations and 78,000 vehicle probe tags.  The system was designed to measure the 
traffic conditions along selected roadways within the San Antonio area by measuring travel times 
between selected locations.  The data collected by the AVI system is made available to the 
TransGuide Advanced Traffic Management System through the TransGuide data server. 

 
TransGuide is a collection of point speed detectors, closed circuit television cameras, and 

traveler advisory equipment.  One of its primary functions is to monitor current traffic 
conditions.  The AVI project of the MDI added a new traffic monitoring capability to the 
TransGuide system.  Installation of the AVI system was anticipated to be completed in the 
Spring of 1998. 

 
This system is unique in that the deployment of AVI technology for this project had 

travel time measuring, not toll collection, as its objective. 
 
Another unique aspect of this system is that it provided coverage not just for freeways (as 

is typical for toll collection systems), but also for arterial streets. 
 

Incident Detection Technology:
 
 The stated objective of this system is travel time measurement, not incident detection.  
The technology used for travel time measurement is Amtech DSRC readers and Amtech passive 
toll tags.  Readers were deployed at 53 locations, and 78,000 tags were distributed. 
 
Incident Detection Algorithm:
 
 The report did not mention specific algorithms for incident detection, but it did refer to 
software being custom-developed for the AVI system.  The software had the functions of 
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collecting the tag read data, calculating travel times, transmitting the data to the TransGuide data 
server, and archiving the data.  (Note that this does not mention incident detection.)  The report 
did talk about the software calculating average travel times.  If a single vehicle is significantly 
above or below the current average, its measurement is not included in the average.  However, 
the software can also recognize trends and start including differing values in the average to 
reflect those trends.   
 
Comments:
 
 This seems to be an impressive system.  This report was written before the system was 
deployed.  
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Comparative Performance Evaluation of 
Incident Detection Algorithms 

 
 
Authors: Stephanedes, Yorgos J. 
  Chassiakos, Athanasios P. 
  Michalopoulos, Panos G. 
 
Published by: Transportation Research Board 
  Transportation Research Record 1360:  Traffic Operations 
  National Research Council 
 
Date:  January 1992 
 
Summary:
 
 The objective of this study was to investigate the performance limitations of conventional 
automated incident detection systems and define the specifications for a new algorithmic logic 
that can lead to improved detection performance. 
 
 All tests employed a unified system of performance assessment, suitable for direct 
algorithm evaluation. 
 
Incident Detection Technology:
 
 This study used data collected by presence detectors embedded in the roadway.  The 
authors made the point that video detection systems could be used in place of the embedded 
loops. 
 
Incident Detection Algorithms:
 
 Comparative: 
  California 
  California #7 
 Time Series 
 McMaster 
 HIOCC 
 WILLSKY 
 CREMER 
 Proposed new algorithm 
 
 Detailed testing was performed for two types of existing algorithms:  Comparative 
(California-type) and Time Series, in addition to the proposed new algorithm. 
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 The authors stated that they were in the process of testing the McMaster algorithm and 
“plan to incorporate its most appealing features in more sophisticated algorithms under 
development.”   
 
 The proposed new algorithm used filtered detector output (values averaged over short 
time periods) to reduce the incidence of false alarms that are due to short-term traffic 
inhomogeneities.  It is simple to implement, requires no additional data, and is less sensitive to 
random fluctuations of traffic. 
 
 The primary factors used for the comparison were detection rate, false alarm rate, and 
mean time to detect.  To compare algorithms to one another, the authors developed an operating 
characteristics curve for each algorithm.  The curves showed detection rate plotted versus false 
alarm rate.  Mean time to detect was shown in a separate table.  
 
Results/Conclusions:
 
 The evaluation revealed that comparative evaluations, employing three test variables, can 
distinguish incidents from other traffic phenomena more effectively than single-variable time-
series algorithms that use statistical forecasting of traffic.  At all detection levels, the 
comparative algorithms produce 30 to 50 percent fewer false alarms than time-series algorithms. 
 
 Tests with the new algorithm indicate a decrease of 50 to 70 percent in false alarm rates 
compared to comparative algorithms and a 70 to 80 percent reduction compared to time-series 
algorithms.  The mean time to detect is comparable to existing algorithms. 
 
 Even though the proposed new algorithm produced superior results to the existing 
algorithms evaluated, the authors still questioned whether the false alarm rate was low enough to 
be acceptable for operational use.  For example, they projected that this false alarm rate would 
generate approximately 1.5 false alarms per hour at a 50 percent detection rate. 
 
Comments:
 
The preparation of operating characteristics curves appears to provide a good way to evaluate 
and compare algorithms.  It allows direct comparison of algorithms and provides information 
that is transferable.  This is much more valuable than coming up with a single value of detection 
rate, false alarm rate, and mean time to detect for each algorithm.  These values will vary based 
on your choice of threshold (and other factors), and there is usually a tradeoff among them. 
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An Evaluation of Existing Incident Detection Algorithms 
 
 
Authors: Balke, Kevin N. 
 
Published by: Texas Transportation Institute 
  Research Report 1232-20 
  Texas A&M University System 
  College Station, Texas 
 
Date: November 1993 
 
Summary:
 
 “The objectives of this research were as follows: 
 

1. Using the literature, assess the existing incident detection algorithms in terms of their 
reported operational performance, ease of calibration, ease of implementation, and data 
requirements; 

2. Determine which algorithms, if any, are currently being used in select freeway 
management systems in the United States and Canada; and 

3. Recommend which of he currently available incident detection algorithms should be 
considered by TxDOT for possible inclusion into the initial implementation ot their 
freeway surveillance and control systems.” 

 
This report provides a good overview of all available incident detection algorithms, as of 
1993.  It includes discussions of: 

 
 Incident traffic patterns 
 Situations that cause false alarms 
 Relationship between detection rate, false alarm rate, and time to detect. 
 Existing incident detection algorithms 
 Advanced incident detection techniques 

 
The report includes a summary and description of each available algorithm. 
 
The study included site visits to selected freeway management centers. 

 
 The assessment of existing algorithms included the following: 
 

 Reported performance 
o Detection rate 
o False alarm rate 
o Time to detect 

 Data requirements 
 Ease of Implementation 
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 Ease of Calibration 
 Operational Experience 
 Summary 

 
It should be noted (and it was noted by the author) that “the assessment of the 

performance of the incident detection algorithms was based on the results published in the 
available literature.  No attempt was made to use actual field data to compare the performance of 
the algorithms.  Since algorithm performance is very dependent on the design of the system and 
how well the algorithms is calibrated for the system, the research assumes that the results 
published in the literature by other authors are accurate and objective.” 
 
Incident Detection Technology:
 
 “The study was limited to a review of incident detection algorithms that use data from 
inductive loop detectors only.  Although the report does contain a section on other potential 
means of detecting incidents (such as video imaging or the use of automatic identification 
systems), a detailed assessment of these techniques was not performed.” 
 
Incident Detection Algorithms:
 

 Existing incident detection algorithms 
o Comparative 

 California 
 Modified California 
 All purpose 
 Pattern recognition 

o Statistical 
 Standard normal deviate 
 Bayesian 

o Time Series 
 ARIMA 
 High Occupancy 

o Smoothing or Filtering 
 Exponential Smoothing 
 Low-Pass Filtering 

o Modeling 
 Dynamic 
 McMaster 

o Low Volume Incident Detection Algorithms 
 

 Advanced Incident Detection Techniques 
o Artificial Intelligence 

 Fuzzy sets 
 Neural networks 

o Automatic Vehicle Identification (AVI) 
o Video Image Processing 
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Findings/Conclusions:
 

This report contains a brief discussion of the relationship among detection rate, false 
alarm rate, and time to detect.  A graphical representation of that relationship is presented. 

 
Most algorithms reported difficulty in detecting incidents in low volume conditions. 
 
Most evaluations of incident detection systems/algorithms have been off-line.  Very few 

have been tested in an operational setting.  “There is no single study that compares the 
performance of all the existing algorithms using the same set of data.  Further, very few of the 
algorithms have actually been evaluated in an on-line study.”  “Unfortunately, the algorithms are 
seldom evaluated under similar operating conditions. 

 
A table presents the best detection rate, false alarm rate, and detection time for each of 

the existing algorithms.  Readers are cautioned against using the table for direct comparisons. 
 
All in all, there is very little difference in the performance of the existing algorithms.  The 

detection rate ranged from 70 to 100 percent, with most in the 85 to 95 percent range.  False 
alarm rates were reported to be below 1.5 percent for most algorithms. 

 
The California #7, California #8, and McMaster algorithms reported detection rates lower 

than some of the other algorithms, but their false alarm rates were significantly lower.  In 
general, the algorithms with the higher detection times also tend to have lower false alarm rates.  
This makes sense, since the additional tests required to confirm an incident (and thus avoid a 
false alarm) add to the time required to detect. 

 
Most of the algorithms require the same amount and type of data.  Most use occupancy 

(or a derivative of occupancy) as the control measure.  Some also use volume and/or speed.  
 

 In summary, no single algorithm appears to be superior.  The California #7, California 
#8, and McMaster algorithms were recommended as the most logical choices for the Texas DOT 
to consider. 
 
Findings/Conclusions from Site Visits:
 

Of the seven locations visited, only four are actively using an algorithm to detect 
incidents.  Three of these are using a California algorithm.  Toronto recently switched to the 
McMaster algorithm.  As a rule, the systems did not have quantitative data on the performance of 
their algorithms. 

 
System operators reported being pleased with the perforance of their algorithms.  

However, on-site observations revealed that they did not rely heavily on the algorithm to alert 
them to an incident.  (Toronto was an exception.)  They usually relied on other mechanisms, 
such as radio reports or CCTV systems, to alert them to incidents on the freeway. 
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The other three locations had previously been using a California algorithms, but had 
discontinued use due to the high number of false alarms.  These problems may have been related 
to poor calibration. 
 
 
Recommendations:
 
 As stated above, the California #7, California #8, and McMaster algorithms were 
recommended as the most logical choices for the Texas DOT to consider. 
 
 
My Comments:
 
 This report includes useful information, as highlighted above.  Limitations include the 
fact that it is not a direct comparison of algorithms; it only echoes what previous authors have 
claimed about the algorithms.  Also, it does not provide any useful information on detection 
using DSRC.  All of the algorithms evaluated are based on loop detector data. 
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Traffic Monitoring and Incident Detection (1995-1997) 
 
 
Author: Crowthorne & Berkshire 
 
Published by: Current Topics in Transport, No. 120 
 
Date: December 1997 
 
Summary:
 
 This is a collection of abstracts for research that was conducted in the area of Traffic 
Monitoring and Incident Detection in the years of 1995-1997.  Some of these abstracts are of 
interest for my work, and some of them are not.  The ones that appear to be of interest are listed 
below: 
 

 ODISSEY Freeway Control, Lopez and Peck, Traffic Technology International, 1997, pp 
110-112. 

ODISSEY is a motorway management and control system developed in Spain.  It 
uses various algorithms (including HIOCC and California) to detect any unusual 
disturbances of the traffic. 

 
 Incident Detection with Probe Vehicles:  Performance, Infrastructure Requirements, and 

Feasibility; Papageorgiou, Pouliezos, Petty, and Skabardonis; Transportation Systems, 
Preprints of the 8th Symposium, International Federation of Automatic Control; Chania, 
Crete, Greece; June 1997. 

The authors develop an incident detection algorithm based on information 
received in real-time from probe vehicles.  They present a model that allows them to 
estimate the upper bound detection rate for a given density of probe vehicles.  They 
demonstrate their algorithm using data from I-880 in California.  They conclude that a 
probe-vehicle-based algorithm is feasible and avoids some of the infrastructure problems 
facing loop-based algorithms. 

 
 Image Processing Oriented Incident Detection Algorithms Using Artificial Neural 

Networks: Papageorgiou, Pouliezos, and Hsu; Transportation Systems, Preprints of the 
8th Symposium, International Federation of Automatic Control; Chania, Crete, Greece; 
June 1997. 

This paper developed a new traffic parameter, lane-changing rate (LCR) to 
recognize the possible use of new technologies, such as image processing, for traffic 
sensing.  Using the artificial neural networks, the authors developed a new incident 
detection algorithm, LCR-algorithm by combining conventional traffic parameters with 
lane changing rate.  The performance of the new algorithm was found to be superior to 
other well-known detection algorithms. 

 

 80



 BEATRICS Radar System for Automatic Incident/Congestion Detection; Nuttall, 
Roussel, Petrucci, and Lion; Traffic Technology International, Annual Review Issue, 
1996; pages 121-124. 

This article describes the BEATRICS traffic management radar sensor, which was 
developed to provide automatic detection of traffic incidents and congestion.  
BEATRICS was installed in France in 1994.  It can rapidly and directly detect incidents 
up to 1000m away. 

 
 Multiple Zone Radar Detection by RTMS; Nuttall and Manor; Traffic Technology 

International, Annual Review Issue, 1996; pages 126-130. 
This article reports tests of the Remote Traffic Microwave Sensor (RTMS) with 

encouraging results.  This is a low-cost general purpose, all weather traffic sensor.  It 
provides information on presence, volume, occupancy, and speed, from up to 60m away.  
Incident detection is just one of the applications described for which this technology is 
suitable. 

 
 Laser Sensors for Traffic Monitoring and Control; Nuttall and Myers; Traffic Technology 

International, Annual Review Issue, 1996; pages 137-138 
This article reviews the development and operation of two laser-based sensors 

that are applicable to vehicle detection and classification. 
 

 Advanced Video-Based Incident Detection; Nuttall and Lebre; Traffic Technology 
International, Annual Review Issue, 1996; pages 147-148. 

This article describes the Advanced Real-Time Imaging System (ARTIS), which 
is being used to monitor traffic on sections of roadways in France.  ARTIS is a video-
based incident detection system. 

 
 Video-Based Solutions for Data Collection and Incident Detection; Nuttall, Bogaert, and 

Lemaire; Traffic Technology International, Annual Review Issue, 1996; pages 150-156. 
This article describes the range of video-based technologies developed by 

Traficon.  More than 1,000 of these sensors are in use worldwide. 
 

 Applying Neural Networks to Automatic Incident Detection; Ito, Namai, and Kojima; 
Traffic Technology International, August/September 1996; pp. 32-35. 

This article shows how the application of neural network decision processes to 
video-based detection will significantly increase the accuracy of AID systems in Japan. 

 
 Development of Artificial Neural Network Models for Automated Detection of Freeway 

Incidents; Hensher, King, Oum, and Dia; World Transport Research: Proceedings of the 
7th World Conference, Volume 2; Modeling Transport Systems; 1996; pp. 107-122. 

This paper describes the development of new incident detection techniques based 
on artificial neural networks.  These models have the potential to provide faster and more 
fault-tolerant operation. 

 
 The Use of Electronic Toll and Traffic Management Systems for Freeway Incident 

Detection; Kelly; Texas A&M University; August 1998. 
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This paper discusses the use of ETTM technologies for incident detection.  The 
cost of such systems compares favorably with loop-based systems and offers the 
advantage of lower indirect cost to the motorists. 

 
 Arterial Incident Detection Using Fixed Detector and Probe Vehicle Data; Sethi, 

Bhandari, Koppelman, and Schofer; Transportation Research, Part C; Elsevier Science 
Ltd., Oxford, Great Britain; April 1995. 

This paper describes incident detection algorithms using two distinct data sources: 
fixed traffic detectors and probe vehicles.  The algorithms were developed and calibrated 
using simulated data for the ADVANCE ITS Operational Test. 

 
 Autoalert: Automated Acoustic Detection of Incidents; Whitney and Pisano; ITS-IDEA 

Program Final Report; Transportation Research Board; December 1995. 
This project included the design, preliminary evaluation, and feasibility 

demonstration of an acoustic traffic sensor system that applies new signal processing 
algorithms to passive acoustic data to achieve incident detection. 

 
 A Simple Detection Scheme for Delay-Inducing Freeway Incidents; Lin and Daganzo; 

Transportation Research, Part A; Elsevier Science Ltd., Exeter; 1995; pp. 141-155. 
This paper describes a freeway incident detection scheme that does not rely on 

complicated theories.  It compares the occupancy information for two neighboring loop 
detectors.  It can also detect the termination of a detected incident.  It can be applied to 
any homogeneous site with little calibration.  Default parameters can be used, with 
degraded performance.  Tests were encouraging.  The scheme was effective in 
distinguishing non-recurrent from recurrent congestion. 
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Cell Phones as Data Probes: 
Background and Recent US Wireless Experience 

(Presentation at ITS Mid-America Annual Meeting) 
September 7, 2000 

 
Richard R. Mudge, Ph.D. 
US Wireless 
 
 

1. Regulatory:  FCC Rule 

a. Mandated wireless carriers to locate E911 calls by October 2001 

b. Sets standards (within 100 meters 67% of time) 

c. Choice of technology (network or handset based) 

2. Electromagnetic Noise degrades the accuracy of all position location techniques 

a. Gaussian noise 

i. Affects all forms of communications 

ii. Mitigation:  provide enough transmission power 

b. Multipath noise 

i. Cannot be mitigated as such 

3. Pattern recognition makes use of Multipath rather then trying to mitigate it 

a. “Map” the actual multipath signatures and then match transmissions to their 
known patterns. 

b. Identifies locations based on their unique multi-path signature. 

4. Characteristics 

a. Low technology cost (compared to alternatives) 

b. Passive—uses cell phones as anonymous data probes 

c. Great flexibility in defining links and/or time periods 

d. Scalable 

e. Digital 
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f. Adaptable 

g. Covers all roads and locations 

h. Can track vehicles and other mobile assets for management purposes. 

i. Variety of reporting formats available 

5. Planned or current deployments 

a. Washington, DC 

b. Baltimore, MD 

c. Hampton Roads, VA 

d. Oakland, CA 

e. Billings, MT 

f. San Diego, CA 

g. San Francisco and San Jose, CA 

h. New Hampshire, Vermont, Maine 
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Implementation of Incident Detection Algorithms 
(Reviewed Abstract Only) 

Authors: Al-Deek, H.M. 
  Ishak, S. 
 
Published by:  University of Central Florida, Orlando 

Dept of Civil and Environmental Engineering 
 
Date:  May 1999 
 
Summary: 

 Report focused on implementation of an online incident detection (I.D.) system that was 
added to an existing traffic surveillance system on Interstate 4.  The I.D. system was developed 
at the ITS Lab at the University of Central Florida (UCF), and it operated over a dial-up 
connection to the I-4 Surveillance and Motorist Information System (SMIS). 

 Real-time data from loop detectors was fed to the I.D. system every 30 seconds.  Two 
I.D. algorithms were tested:  California Version 7 and Speed-Based Incident Detection 
Algorithm (SBIDA). 

 System was operated and tested for almost one year. 

 

Detection Technology: 

 In-pavement loop detectors. 

 

Algorithm(s): 

 California version 7 

 SBIDA 

 

Results: 

 Both algorithms performed better in peak periods than in off-peak. 

 Overall performance was low in terms of detection rate and false alarm rate. 

 Overall, SBIDA had slightly higher detection rate, but much higher false alarm rate. 
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Performance of Automatic ANN-Based Incident Detection on Freeways 
(Reviewed Abstract Only) 

Authors: Ishak, S. 
  Al-Deek, H. 
 
Published by:  American Society of Civil Engineers 

Journal of Transportation Engineering 
 
Date:  July 1999 
 
Summary: 

 This study explored the application of artificial neural networks (ANNs) to automatic 
incident detection on freeways.  It used real-world traffic data collected by the traffic 
surveillance system on Interstate 4 in Orlando, Florida. 

 

Detection Technology: 

 Not specified in abstract.  Probably in-pavement loop detectors. 

 

Algorithm(s): 

 Two ANN models were explored:  Multi-Layer Feed Forward and Fuzzy Adaptive 
Resonance Theory (ART).  These models were compared to each other and to California 
algorithms #7 and #8. 

 

Results: 

 Fuzzy ART algorithm generally outperformed the Multi-Layer Feed Forward and both 
California algorithms. 
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AIDDS: A System for Developing and Testing Incident Detection Algorithms 
(Reviewed Abstract Only) 

Authors: Papageorgiou, M. (Tech University, Crete) 
  Pouliezos, A. (Tech University, Crete) 
  Hourdakis, J. (Minnesota University) 
 
Published by:  International Federation of Automatic Control (Austria) 

 
 
Date:  June 1997 
 
Summary: 
 Paper presents a computer program designed to assist researchers in testing incident 
detection algorithms.  The program allows the user to assign individual threshold sets in every 
section and use multiple algorithms simultaneously.  Three algorithms are included in the version 
presented in this paper. 

 Some unique features of the program include the ability to combine measurements from 
the field to create “pseudo” detectors, the ability to automatically judge if a detection is valid, 
and the ability to combine incident detection algorithms to improve detection performance. 

 

Detection Technology: 

 Not specified. 

 

Algorithm(s): 

 Includes DELOS, California #7, and California #8 

 

Results: 

 Not specified. 
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Detection of Incidents and Compression Waves in Freeways 
(Reviewed Abstract Only) 

Authors: Papageorgiou, M. (Tech University, Crete) 
  Pouliezos, A. (Tech University, Crete) 
  Chassiakos, A.P. (Patras University, Greece) 
  Stephanedes, Y.J. (Minnesota University) 
 
Published by:  International Federation of Automatic Control (Austria) 
 
Date:  June 1997 
 
Summary: 
 This report presents a method (implemented in a computer algorithm) to distinguish 
between incidents and compression waves in freeway traffic.  It is based on shock wave 
propagation characteristics.  It is used to improve the performance of an existing incident 
detection algorithm (DELOS). 

 

Detection Technology: 

 Not specified.  Abstract mentions using occupancy data from adjacent sensors along the 
freeway. 

 

Algorithm(s): 

 DELOS (augmented by the subject computer algorithm) 

 

Results: 

 The computer algorithm resulted in superior performance to DELOS in terms of detection 
and false alarm rates. 
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Using Probe-Measured Travel Times to Detect Major Freeway Incidents in Houston, Texas 
(Reviewed Abstract Only) 

 
 
Authors: Balke, K. 
  Dudek, C.L. 
  Mountain, C.E. 
 
Published by:  Transportation Research Board 

In Transportation Research Record No. 1554, “Advanced Traffic Management Systems 
and High-Occupancy Vehicle Systems” 

 
Date:  1996 
 
Summary: 
 This was a pilot study to test the feasibility of using probe-provided travel time 
information to detect freeway incidents.  It was considered to be a prelude to installing an AVI 
system for collecting traffic and travel time information from probe vehicles. 

 200 commuters equipped with cellular phones were used to collect travel time and 
incident information from three facilities on the north side of Houston.  Historical travel time 
patterns were developed for known incident-free conditions. 

 11 months of data were analyzed to determine when a probe travel time exceeded the 
expected travel time for incident-free conditions, using the statistical principle of standard 
normal deviates. 

 

Detection Technology: 

 Commuters with cell-phones reporting travel times and incidents. 

 

Algorithm(s): 

 Statistical analysis; standard normal deviates 

 

Results: 

 Detection rates and false alarm rates were worse than reported for other incident 
detection algorithms. 

 Study indicated that some level of incident detection could be achieved using travel time 
information provided by probe vehicles. 
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Transferability of Freeway Incident Detection Algorithms 
(Reviewed Abstract Only) 

 

Authors: Stephanedes, Y.J. 
  Hourdakis, J. 
 
Published by:  Transportation Research Board 

In Transportation Research Record No. 1554, “Advanced Traffic Management Systems 
and High-Occupancy Vehicle Systems” 

 
Date:  1996 
 
Summary: 
 This paper focused on evaluating a new incident detection algorithm that distinguishes 
incidents from recurrent congestion and other traffic disturbances using exponential smoothing.  
The algorithm was tested using loop detector data from Interstate 35 in Minnesota and Interstate 
880 in California. 

 

Detection Technology: 

 In-pavement loop detectors. 

 

Algorithm(s): 

 New algorithm.  No name given.  Uses exponential smoothing. 

 

Results: 

 The new algorithm was compared with major algorithms of comparable type (not 
specified in abstract), and was found to be superior at all times.  The strong performance at the 
two different sites indicated a strong transferability potential. 
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Survey of Advanced Technology Deployment in Traffic Management Centers with an 
Emphasis on New Sensor Technologies and Incident Detection 

(Reviewed Abstract Only) 

Authors: Parkany, E. 
  Shiffer, G. 
 
Published by:  University of California-Irvine 

Institute of Transportation Studies 
 
Date:  July 1996 
 
Summary: 

 This report describes a survey that was conducted of various traffic management centers 
(TMCs) throughout the U.S..  The purpose of the survey was to identify the current traffic 
sensors and incident detection algorithms used by those centers, as well as their interest in 
various research areas and topics under development. 

 

Detection Technology: 

 Not specified in abstract. 

  

Algorithm(s): 

 Not specified in abstract. 

 

Results: 

 Not specified in abstract. 
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Techniques for Detection of Incidents and Traffic Disturbances 
(Reviewed Abstract Only) 

Authors: Stephanedes, Y.J. 
  Chassiakos, A. 
  Vassilakis, G. 
 
Published by:  Minnesota University 
  Center for Transportation Studies 
 
Date:  April 1994 
 
Summary: 
 The first phase of this research project had two objectives:  (1) evaluate the performance 
of major existing incident detection algorithms; and (2) develop an improved algorithm.  This 
research developed and tested algorithms that efficiently detect incidents at low levels of false 
alarms. 

 The second phase of the project focused on: (1) describing, classifying, and analyzing 
major types of traffic disturbances and their characteristics; (2) developing strategies for 
detecting major traffic disturbances based on their distinctive features; and (3) developing 
strategies for modeling the propagation of detected traffic disturbances and predicting the traffic 
conditions in the area of the disturbance. 

 

Detection Technology: 

 Not specified in abstract. 

 

Algorithm(s): 

 Not specified in abstract.  New algorithm developed. 

 

Results: 

 New algorithm is reported to efficiently detect incidents at low levels of false alarms.  No 
specifics are given in the abstract. 
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Simulation of Freeway Incident Detection Using Artificial Neural Networks 
(Reviewed Abstract Only) 

Authors: Ritchie, S.G. 
  Cheu, R.L. 
 
Published by:  Pergamon Press Incorporated, Tarrytown, NY 

In “Transportation Research, Part C: Emerging Technologies” 
 
Date:  September 1993 
 
Summary: 

 The authors hypothesize that spatial and temporal traffic patterns can be recognized and 
classified by an artificial neural network (ANN).  They investigate the application of such 
models for the automated detection of lane-blocking incidents on a one-mile section of urban 
freeway. 

 Data for training the ANN came from a microscopic freeway traffic simulation model, 
which was calibrated for the actual freeway test section. 

 

Detection Technology: 

 Not specified. 

 

Algorithm(s): 

 ANN-based model 

 

Results: 

 Not specified. 
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On-Line Testing of the McMaster Incident Detection Algorithm Under Recurrent 
Congestion 

(Reviewed Abstract Only) 
 

Authors: Hall, F.L. 
  Shi, Y. 
  Atala, G. 
 
Published by:  Transportation Research Board 

In Transportation Research Record No. 1394, “Freeway Operations and High-Occupancy 
Vehicle Systems” 

 
Date:  1993 
 
Summary: 

 This report documents the development and testing of improved logic for the McMaster 
incident detection algorithm.  The logic was subjected to three levels of testing: an off-line test 
(using 39 days of data from the Freeway Management System on the Queen Elizabeth Way in 
Ontario); an on-line test with the results reported to a file; and a full on-line test with results 
reported to the system operator (covering 64 weekdays).  The results of the testing are presented. 

 

Detection Technology: 

 Not specified in abstract. 

 

Algorithm(s): 

 McMaster 

 

Results: 

 For the on-line test, the system detected 19 of 28 incidents (68%).  Average and median 
time to detect were 2.1 minutes and 1.0 minute, respectively, after the time recorded in the 
operator’s log.  False alarm rate was one false alarm in every 6.4 operator shifts (i.e., 20 in 64 
days). 

 

 

 94



 Congestion Identification Aspects of the McMaster Incident Detection Algorithm 
(Reviewed Abstract Only) 

 

Authors: Persaud, B.N. 
  Hall, F.L. 
  Hall, L.M. 
 
Published by:  Transportation Research Board 

In Transportation Research Record No. 1287, “Traffic Flow, Capacity, Roadway 
Lighting, and Urban Traffic Systems” 

 
Date:  1990 
 
Summary: 

 This report presents an incident detection algorithm that can provide a determination of 
whether congestion is recurrent or caused by an incident.  The logic uses flow, occupancy, and 
speed (if available) from a single station to automatically detect congestion near that station.  The 
logic was tested off-line and on-line. 

 

Detection Technology: 

 Not specified in abstract. 

 

Algorithm(s): 

 McMaster 

 

Results: 

 Testing showed a good false alarm rate and a high detection rate (exact values not 
specified in abstract).  Some incidents were detected earlier than system operators identified 
them. 
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