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ABSTRACT OF DISSERTATION 

 

 

POST-TRANSCRIPTIONAL REGULATION 
OF MAMMALIAN HEAT SHOCK FACTORS 

 

 Heat shock transcription factors (HSFs) function to regulate the expression of heat 

shock proteins (hsps) or molecular chaperones in the cell.  Mammalian cells have two 

well-characterized HSFs, HSF1 and HSF2.  HSF1 functions to regulate the stress-induced 

expression of hsps. The function of HSF2 appears to be in regulating hsp expression 

during development and differentiation. 

 In this work, I describe two distinct HSF1 mRNA isoforms (HSF1-α and HSF1-β) 

that are generated by alternative splicing of the HSF1 pre-mRNA.  The two HSF1 mRNA 

isoforms result from the inclusion (HSF1-α), or omission (HSF1-β), of a 66 nucleotide 

exon of the HSF1 gene, which encodes a 22 amino acid sequence.  These results show 

that the levels of the HSF1-α and HSF1-β mRNA isoforms are regulated in a tissue-

dependent manner, with testis expressing predominantly the HSF1-β isoform while heart 

and brain express primarily the HSF1-α isoform. 

 In addition, I describe two distinct HSF2 mRNA isoforms (HSF2-α and HSF2-β) 

that are generated by alternative splicing of the HSF2 pre-mRNA.  The two HSF2 mRNA 

isoforms result from the inclusion (HSF2-α), or omission (HSF2-β), of a 54 nucleotide 



exon of the HSF2 gene, which encodes a 18 amino acid sequence.  These results show 

that the levels of the HSF2-α and HSF2-β mRNA isoforms are regulated in a tissue-

dependent manner, with testis and brain expressing predominantly the HSF2-α isoform 

while heart, liver, and kidney express primarily the HSF2-β isoform.  Furthermore, HSF2 

isoform levels are regulated both in a developmental and cell type dependent manner in 

the testis.  In a reporter assay, HSF2-α is a 2.6-fold better transcriptional activator than 

the HSF2-β isoform. 

 We have demonstrated also that HSF2, but not HSF1 is a substrate for SUMO-1 

and SUMO-2 modification in vitro.  Consistent with this, we have demonstrated that 

HSF2 can interact with a portion of Ubc9, the SUMO-1 conjugating enzyme, in a two-

hybrid assay.  We have also shown that GFP-HSF2 colocalizes with SUMO-1 in discrete 

nuclear domain structures in 7% of GFP-HSF2 expressing HeLa cells.  Finally, we have 

shown that lysine 82 of HSF2 is the primary site of SUMO-1 modification in vitro. 
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Chapter 1 

Background and Introduction 

 

TRANSCRIPTION FACTORS, REGULATORS OF EUKARYOTIC RNA SYNTHESIS 

 

 Each cell in a multicellular organism has DNA with exactly the same sequence as 

every other cell in that organism, yet the cells of that organism are highly diverse both in 

function and morphology.  With only a few small exceptions, such as gene rearrangement 

in immune cells, germ cells, transposons, and random mutations, this is true for every 

metazoan.  How then does an organism generate this cellular diversity from identical 

genetic material?  The answer to this lies in the pattern of gene expression.  Different 

cells express different genes at different levels.  Therefore, an organism must carefully 

regulate the expression of its genes.  One major mechanism for controlling gene 

expression is by regulating transcription of DNA into RNA (Maniatis et al., 1987). 

 Eukaryotic genes are transcribed by one of three RNA polymerases.  RNA 

polymerase I transcribes ribosomal RNA.  RNA polymerase III transcribes small RNA 

molecules such as the 5S ribosomal RNA and transfer RNA.  RNA polymerase II 

transcribes RNA from genes that will be translated into protein, called messenger RNA 

(Chambon, 1975; Geiduschek and Tocchini-Valentini, 1988; Sentenac, 1985; Sollner-

Webb and Tower, 1986).  In eukaryotes, RNA polymerases are large multi-subunit 

protein complexes with masses of 500 kDa or more. Unlike in prokaryotes and viruses, 

the eukaryotic RNA polymerases do not directly recognize DNA sequences.  Rather 
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DNA binding proteins, called transcription factors, bind to specific sequences in the 

promoter regions of genes and thereby recruit the RNA polymerase complexes (Brown, 

1984; Workman and Roeder, 1987). 

 Promoter regions are transcriptional regulatory sequences of genes that can be 

divided into two categories proximal promoter elements and distal enhancer elements.  

The basal promoter elements contain sequences such as GAGA elements, the TATA box, 

or the initiator (Inr) motif.  Basal promoter elements are highly context sensitive and 

must be located near the transcription start site (Atchison, 1988; Maniatis et al., 1987; 

McKnight and Kingsbury, 1982).  For example, in genes that contain one, the TATA box 

is always located approximately 30 bp upstream of the start site.  In contrast, enhancer 

elements are often found several kb upstream of the transcription start site.  They can also 

be found several kilobases upstream of the gene, downstream of the gene, or within the 

transcribed region of the gene.  Enhancer regions usually contain binding sites for 

multiple regulatory proteins and are normally modular.  This modular quality means that 

enhancers can often be moved to different locations within the promoter region of a gene, 

or within the context of a completely different basal promoter and gene (as in the case of 

a reporter gene assay) (Atchison, 1988; Emerson et al., 1987; Evans et al., 1988; Jones et 

al., 1988; Nomiyama et al., 1987). 

 Similarly transcription factors can be divided into two categories: i) general 

transcription factors, which bind to basal promoter elements in nearly all genes and to the 

RNA polymerase complex, and ii) transcription enhancers and repressors which bind to 

enhancer elements.  For the purpose of this introduction, I will specifically refer to 

general transcription factors and will often refer to transcription enhancers and repressors 
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as transcription factors.  All three RNA polymerases have general transcription factors 

(TFI, TFII, and TFIII) for binding to promoters and regulating transcription of their 

respective genes.  In this introduction, I will limit discussion to RNA polymerase II 

transcription factors. 

 General transcription factors bind to the basal promoter region of most genes 

forming a stable complex on the DNA and recruiting the RNA polymerase.  Examples of 

general transcription factors include TFIIA, TFIIB, TFIID (which includes the TATA 

binding protein, TBP), TFIIE, and TFIIH and GAGA factors (Burley and Roeder, 1996; 

Orphanides et al., 1996; Roeder, 1996).  These factors are expressed in all tissues, and 

therefore cannot account for the diverse patterns of gene expression found in the body. 

 Transcription enhancers and repressors, which bind to sequences in the enhancer 

region, are much more diverse in composition, function, and expression than the general 

transcription factors.  Heat shock factors (HSFs) are considered transcription enhancers.  

Transcription enhancers (or repressors) bind to DNA and modulate transcription by 

several mechanisms.  Some function by bending DNA and changing the proximity to 

other elements (Ogbourne and Antalis, 1998).  Others function by interacting with the 

general transcription factors or the RNA polymerase and modulating the function of these 

components.  Still others interact with other transcription enhancers or repressors to 

modulate an effect synergistically (Evans, 1988; Schulman et al., 1995).  Transcription 

enhancers and repressors are particularly interesting because they are often functionally 

regulated (Verrijzer and Tjian, 1996).  Regulation of transcription factors may occur by 

regulation of transcription factor expression, by interaction with a cellular factor or 

ligand, as in the steroid hormone receptors, or by modification by a receptor or receptor 
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mediated signal transduction cascade, as in STATs, fos, or jun.  To this already complex 

paradigm of multiple transcription factors, each regulated in its own unique fashion, we 

can add that most transcription factors bind as multimers (Ap-1, RXR, T3R, VDR).  The 

composition of these multimeric transcription factor complexes often dictates DNA 

binding specificity and the functional consequence of binding—whether the complex 

activates or represses transcription (Evans, 1988; Umesono and Evans, 1989; Umesono et 

al., 1991).  Also, many transcription factors interact in a regulated fashion with other 

cellular factors that can modulate transcriptional activity.  Such layers of regulation can 

create the tremendous diversity of gene expression necessary for a multicellular organism 

(Chen, 1999). 

 

RNA SPLICING—REMOVING GARBAGE OR CREATING DIVERSITY? 

 

 As described previously, eukaryotic genes are transcribed by one of three RNA 

polymerases.  Of these, only RNA polymerase II transcribes genes that will be translated 

into proteins.  The mRNA transcribed from RNA polymerase II is modified at the 5’ end 

by the addition of a unique cap structure—7-methyl-guanosine in a 5’ to 5’ triphosphate 

linkage—called the 5’ cap (Shatkin, 1987).  The 3’ end of the RNA is also modified by 

the addition of a series of non-encoded adenosine residues called the poly-A tail.  Only 

messenger RNA contains a 5’ cap and a ploy-A tail (Sisodia et al., 1987; Smale and 

Tjian, 1985). 

 In addition to 5’capping and poly-A tailing, eukaryotic mRNA, particularly 

mRNA from metazoans, requires further processing.  The genes encoding proteins in 
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higher eukaryotes contain both coding sequences referred to as exons and intervening 

sequences referred to as introns.  The process of removing the introns in pre-mRNA and 

joining the exons to form mature mRNA is called RNA splicing (Chambon, 1981; Crick, 

1979; Perry, 1981).  A large macromolecular complex called the spliceosome, which 

contains four small nuclear ribonuceoproteins (snRNPs) U1, U2, U5, and U4/U6, usually 

carries out the splicing reaction (Figure 1.1) (Dreyfuss et al., 1988; Guthrie and Patterson, 

1988; Osheim et al., 1985; Samarina et al., 1966; Steitz, 1988).   
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Figure 1.1:  Schematic representation of the RNA splicing reaction. 

 

U1 and U2 snRNPs bind to the 5’ donor and branch point adenosine sites within the 

intron of a pre-mRNA, causing assembly of the spliceosome and bendingof the pre-

mRNA.  Reciprocal nucleophilic attacks by the branch point adenosine and then the 5’ 

donor site result in the joining of the exonic sequences and liberation of the intron as a 

branched lariat structure.  Figure adapted from Molecular Biology of the Cell 2nd ed. 

(Alberts et al., 1989). 
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Figure 1.1:  Schematic representation of the RNA splicing reaction. 
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The U1 snRNP binds to the 5’ donor site at the 5’ end of an intron.  The U2 snRNP binds 

to an adenosine residue near the 3’ end of the exon called the branchpoint adenosine.  

The U5 and the U4/U6 snRNPs then assemble around the other two snRNPs to form the 

spliceosome complex, which holds the pre-mRNA in an appropriate conformation to 

allow the splicing reactions to occur.  The first splicing reaction is a nucleophilic attack 

on the phosphoester bond of the 5’ donor site by the 2’ hydroxyl group of the branchpoint 

adenosine.  This reaction leaves a free 3’ hydroxyl group on the 5’ donor site and creates 

a branched 5’-3’ and 5’-2’ phosphodiester bonded structure on the branchpoint adenosine 

called a lariat structure.  The second splicing reaction is a nucleophilic attack on the 

phosphoester bond of the 3’ acceptor site by the 3’ hydroxyl group of the 5’ donor site.  

This reaction joins the 5’ donor site to the 3’ acceptor site in a phosphodiester bond 

excising the intron as a free lariat structure (Edmonds, 1987; Maniatis and Reed, 1987; 

Padgett et al., 1986; Reed and Maniatis, 1988; Rio, 1992b).  Both the 5’ donor site and 3’ 

acceptor sites have consensus sequences that are recognized by the spliceosome and help 

to confer specificity on the splicing reaction.  The consensus sequence for the 5’ donor 

site is 5’-C/A A G * G U A/G A G U.-3’ and the 3’ acceptor consensus sequence is 5’-

(U/C)n N C/U A G * G/A-3’ (where the G U and A G are nearly invariant residues, N is 

any nucleotide, n is number usually greater that 10, and * represents the boundary 

between exonic and intronic sequences).   

 The spliceosome appears to function by binding to the pre-mRNA and holding it 

in a conformation that favors the splicing reaction.  Evidence for this comes from mRNA 

molecules that can automatically carry out the splicing reactions in the absence of the 
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spliceosome snRNPs or other protein factors.  These mRNA molecules contain regions 

that are called self-splicing introns.  There are two classes of autocatalytic introns 

referred to as Group I and Group II self-splicing introns, which differ subtly in the 

splicing reaction mechanism.  Group II self-splicing exons carry out chemical reactions 

identical to those observed for spliceosome mediated RNA splicing.  Thus the 

spliceosome likely evolved from self splicing RNA (Cech, 1986). 

 The spliceosome is capable of catalyzing the excision of an intron between any 5’ 

donor site and any other 3’ acceptor site, even between to separate RNA molecules.  

Thus, the issue of specificity, as mammalian genes often have a number of introns and 

exons, is an important question.  Failure to appropriately splice the exonic sequences 

together could easily result in a nonfunctional protein.  The consensus sequence 

addresses the issue of exactness in excision nucleotide selection (Padgett et al., 1986; 

Rio, 1992b).  One likely explanation for the accuracy in overall splice site selection is 

that splicing occurs simultaneously with transcription.  Thus, adjacent splice sites would 

usually be selected because they would have been synthesized at approximately the same 

time, thereby removing many of the other choices in possible splice sites.  Visualization 

of the spliceosomes on the elongating mRNA by electron microscopy supports this 

mechanism (Osheim et al., 1985). 

 Often in eukaryotes pre-mRNA from a single gene may be spliced in multiple 

patterns (Rio, 1992a).  This alternative splicing can occur from the use of alternative 

5’donor sites, alternative 3’ acceptor sites, or the inclusion or exclusion of entire exons, 

called exon skipping (Figure 1.2).   
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Figure 1.2:  Schematic representation of alternative splicing. 

 

Alternative splicing can arise from the use of alternative 5’ donor sites, alternative 3’ 

acceptor sites, or the inclusion or omission of entire exons.  The gray lines represent 

alternatively spliced regions of mRNA and the thin bent lines represent joined regions of 

the RNA molecule. 
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Figure 1.2:  Schematic representation of alternative splicing. 
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This alternative splicing often occurs in a tissue dependent or other regulated manner.  

Alternative RNA splicing presumably functions to provide even greater genetic diversity 

to an organism.  Multiple proteins with differing functions can be made from a single 

gene. 

 

THE CELLULAR STRESS RESPONSE. 

 

One fundamental requirement of all cells from bacteria to humans is the ability to 

respond and adapt to stresses.  Stress comes in a wide variety of forms from 

environmental toxins, pathogens, metabolic products, to simple increases in temperature.  

In order for cells and organisms to remain viable, they must have mechanisms for sensing 

and responding to these conditions.   

One of the common deleterious effects of all of these stresses is protein 

denaturation.  Therefore, organisms express a family of proteins called heat shock 

proteins (hsps) or molecular chaperones, which bind to malfolded proteins allowing them 

to refold to their native structure.  Hsps accomplish this by repeatedly binding and 

releasing stretches of hydrophobic amino acids in malfolded proteins (Becker and Craig, 

1994; Craig, 1993; Craig et al., 1993; Gilbert, 1994; Hendrick and Hartl, 1993; Hendrick 

and Hartl, 1995).  By binding these hydrophobic stretches, hsps are thought to function to 

prevent malfolded proteins from becoming aggregating, a situation that requires the 

degradation of the protein aggregates (Craig et al., 1994).   
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Eukaryotic cells express a number of different classes of hsps.  Certain hsp family 

members (hsc70 and hsp90) are expressed constitutively in order to assist with de novo 

protein folding (Freeman and Morimoto, 1996).  Other family members (BiP and mt 

hsp70) are expressed in specific organelles such as the endoplasmic reticulum and 

mitochondria to assist with protein translocation and folding in these organelles 

(Bhattacharyya et al., 1995; Pfanner et al., 1994; Stuart et al., 1994).  The expression of 

other hsps, such as hsp70, is upregulated in response to cellular stress.  These stress-

induced hsps were the first identified, and still receive a great deal of study (Schiller et 

al., 1988). 

A family of transcription factors called heat shock factors (HSFs) controls the 

stress-induced upregulation of hsp gene expression in eukaryotic cells.  In metazoan cells, 

HSFs function by sensing stress, trimerizing, translocating to the nucleus, and binding to 

DNA to activate transcription.  HSFs bind to promoters that contain a heat shock element 

(HSE), inverted repeats of the DNA sequence NGAAN (Amin et al., 1988; Amin et al., 

1994; Morimoto, 1998; Mosser et al., 1988; Perisic et al., 1989).   Heat shock protein 

genes are among the genes that contain HSEs in their promoters (Figure 1.3). 
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Figure 1.3:  Schematic diagram of the cellular stress response. 

 

Stressful conditions such as heat shock, heavy metals, oxidative stress, or ischemia, or 

conditions such as early embryonic development act on the cell to activate HSF1.  

Develomental and differentiation states such as spermatogenesis influence the cell and 

cause the activation of HSF2.  During late embryogenesis, both HSF1 and HSF2 are 

activated.  Activation of HSF results in its trimerization, nuclear localization, acquisition 

of DNA binding, and activation of transcription.  HSF activation results ultimately in  the 

upregulation of hsps, which provides a cytoprotective function through protein 

chaperoning activity. 
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Figure 1.3:  Schematic diagram of the cellular stress response. 
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 How heat shock factors sense stress is still unclear.  One popular hypothesis is 

that heat shock factors can directly sense denatured proteins in the cell.  This model 

explains how a wide variety of compounds and stresses could activate HSFs.  This model 

also explains the observation that an HSF from the same organism can have different 

activation temperatures in different tissues or when ectopically expressed in a different 

organism (Brown, 1995; Voellmy, 1996).   

In mammalian cells there are at least four HSF genes with multiple alternative 

mRNA splicing isoforms arising from at least two of the HSFs (Nakai et al., 1995; Nakai 

et al., 1997; Rabindran et al., 1991; Sarge et al., 1991; Schuetz et al., 1991).  The best 

characterized of these are HSF1 and HSF2.  HSF1 is the HSF that is responsible for 

sensing stress and activating expression of hsp genes as described previously (Morimoto 

et al., 1992).  HSF2, on the other hand, has traditionally been thought to regulate hsp 

genes during development and differentiation, although the data for this are not as strong 

as for the role of HSF1 (Alastalo et al., 1998; Mezger et al., 1994; Murphy et al., 1994; 

Pirkkala et al., 1999; Sarge et al., 1994; Sistonen et al., 1992).  Recently, HSF2 has also 

been shown to interact with a regulatory subunit of protein phosphatase 2A (PP2A), 

suggesting that it may also have a role in regulating phosphatase activity in the cell 

(Hong and Sarge, 1999).  So, to date, the role (or roles) for HSF2 in the cell remains 

unclear. 

 The cellular function of HSF1 has been well characterized.  HSF1 exists as a 

phosphorylated non-DNA binding monomer in unstressed cells.  Upon exposure to stress, 

HSF1 trimerizes, becomes hyperphosphorylated, translocates to the nucleus, binds to 

specific DNA elements called HSEs, and activates transcription (Baler et al., 1993; Sarge 
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et al., 1993; Westwood and Wu, 1993).  Many stressful stimuli that activate HSF1 have 

been characterized. Chemical and environmental stresses such as heavy metals, amino 

acid analogs, metabolic inhibitors, and elevated temperature all activate HSF1.  In 

addition, certain pathophysiological conditions such as fever, inflammation, ischemia, 

and oxidative damage also activate HSF1 (Morano and Thiele, 1999; Morimoto et al., 

1996). 

 HSF1 does not require phosphorylation for activity, but phosphorylation does 

modulate its activity.   Phosphorylation in the basal inactive state at Ser 303 and Ser 307 

represses transcriptional activity (Chu et al., 1996; Farkas et al., 1998; Kim et al., 1997; 

Kline and Morimoto, 1997; Knauf et al., 1996; Mivechi and Giaccia, 1995; Shi et al., 

1995).  Activation of HSF1 produces changes in phosphorylation pattern.  The active 

state phosphorylation functions to increase the transcriptional activity of HSF1 (Cotto et 

al., 1996; Xia et al., 1998; Xia and Voellmy, 1997).  Not all stimuli that activate HSF1 

DNA binding also induce hyperphosphorylation (Cullen and Sarge, 1997; Jurivich et al., 

1995).  Activation by these stimuli is associated with lower levels of transcriptional 

activity.  Sodium salicylate, for example, activates HSF1 DNA binding, but does induce 

that hyperphosphorylation observed with heat, and appears to actually inhibit HSF1 from 

activating transcription (Giardina and Lis, 1995; Jurivich et al., 1995; Jurivich et al., 

1992). 

 HSF2 mRNA and protein is expressed in every tissue examined.  Regulation of 

HSF2 occurs during development and differentiation.  Both mRNA and protein 

expression are tightly regulated during spermatogenesis.  HSF2 mRNA is expressed at 

very high levels in pachytene spermatocytes and round spermatids (Alastalo et al., 1998; 
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Sarge et al., 1994).  HSF2 mRNA levels are undetectable in early spermatogenic stages 

(spermatogonia and leptotene spermatocytes) and in later stages of spermatogenesis 

(elongated spermatids and mature spermatozoa).  Consistent with this, germ cell 

expressed mRNA only begins to appear twenty-one days postpartum, coincident with 

onset of spermatogenesis (Sarge et al., 1994).  

 HSF2 activation appears to be coincident with HSF2 protein level.  In tissues 

where HSF2 is expressed at high levels (brain and testis) HSF2 appears to be active 

((Sarge et al., 1994); data not shown).  In most situations, HSF2 activity does not appear 

to be inducible in the same sense as HSF1.  The only exception to this is in the 

immortalized erythroid cell line K562 in which treatment with hemin causes K562 cells 

to differentiate into erythrocytes and causes HSF2 activation  (Pirkkala et al., 1999; 

Sistonen et al., 1992; Theodorakis et al., 1989).  However, K562 cells are the only cells 

that exhibit HSF2 activation by hemin treatment.  Treatment of K562 cells with hemin 

also causes an increase in HSF2 protein levels.  Recently, HSF2 has also been shown to 

be activated by drugs that block 26S proteosome function, causing and increase in HSF2 

protein levels.  These observations are consistent with the model that HSF2 activity is 

regulated by protein level (Mathew et al., 1998). 

 

SPERMATOGENESIS, THE PROCESS OF GERM CELL MATURATION 

 

 Spermatogenesis is the process of formation for male gametes or germ cells.  The 

entire process of spermatogenesis occurs the testis.  The testis is organized into two 

compartments, the interstitium and the seminiferous tubules (Russell et al., 1990).  The 
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interstitial compartment contains blood vessels, testicular macrophages, lymphatic ducts, 

and Leydig cells. The purpose of the interstitial compartment is to provide the circulatory 

architecture required to provide nutrients and other required factors to the developing 

germ cells in the seminiferous tubules (Russell et al., 1990).   

 The seminiferous tubules are convoluted tubules that contain the developing germ 

cells.  Each tubule is connected at each end to the effluent duct, the rete testis, by a short 

straight tubule (Clermont and Huckins, 1961).  While each seminiferous tubule is highly 

convoluted, the tubule runs primarily longitudinally through the testis, allowing for cross 

sectioning of the tubules through the testis.  The actually tubule is comprised of collagen 

layers bracketing two basement membranes which are separated by myoid cells.  Within 

the tubule, there are germ cells and nurse cells called Sertoli cells (Clermont, 1958; Dym 

and Fawcett, 1970).  As the developing sperm cells do not come into contact with the 

lymph or blood system, they must receive all of the nutrients and growth factors they 

need for development from the Sertoli cells (Clermont, 1958; Dym and Fawcett, 1970).  

 Spermatogenesis, or the process of maturation of spermatozoa from proliferative 

progenitor cells, can be divided into three overall phases.  The proliferative phase, or 

spermatogonia, the meiotic phase, or spermatocytes, and the differentiation phase, or 

spermatids.  Mammals are required to produce millions of mature sperm cells every day.  

This necessitates continuous production of large numbers of germ cells, which is the role 

of spermatogonia (Russell et al., 1990).  Spermatogonia can be further subdivided into 

three classes, stem cells, proliferative cells, and differentiating cells.  The stem cell 

spermatogonia are referred to as type Aisolated (Ais) spermatogonia, and are the most 

primitive of the germ cell types (Huckins, 1971).  Ais are the most insult resistant germ 
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cell type due to their relatively infrequent division.  For this reason, Ais spermatogonia 

often survive when other germ cells are killed off, leading to temporary infertility, and 

why complete loss of Ais spermatogonia would result in irreversible infertility (Dym and 

Clermont, 1970; Huckins and Oakberg, 1978).  Ais divide to regenerate Ais cells and to 

form Apaired (Apr) spermatogonia, the first of the two proliferative spermatogonial cell 

types (Figure 1.4). 
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Figure 1.4:  Schematic diagram of spermatogenesis. 

 

Germ cells develop from a single self-regenerating stem cell (a type Aisolated 

spermatogonia) into mature spermatozoa through a series of mitotic and meiotic (M-I and 

M-II) divisions and differentiation steps.  Spermatogonia are the proliferative germ cells, 

spermatocytes are the meiotic germ cells, and spermatids are the differentiating germ 

cells.  Branched arrows represent a cell division.  Straight arrows represent a 

differentiation step.  See text for a description of cell type abbreviations. Figure adapted 

from Histological and Histopathological Evaluation of the Testis (Russell et al., 1990) 
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Figure 1.4:  Schematic diagram of spermatogenesis. 
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Apr divide to form Aaligned (Aal) spermatogonia. The terms paired and aligned refer to their 

connections to other spermatogonia through intercellular bridges, open cytoplasmic 

junctions that connect germ cells and are thought to promote synchronous growth of 

spermatogonia and other germ cell types (Weber and Russell, 1987).  Aal divide to form 

more Aal cells (Huckins, 1978a; Huckins, 1978b; Roosen-Runge, 1973).  Though the 

signal is not known, when a sufficient number of Aal spermatogonia are generated, they 

differentiate in mass to the first differentiating type of spermatogonia, A1.  A1 

spermatogonia then divide three more times, forming A2, A3 and A4 spermatogonia.   A4 

spermatogonia divide to form intermediate (Int) spermatogonia, which then divide to 

form type B spermatogonia (Huckins and Oakberg, 1978).  A, Int, and B spermatogonia 

differ morphologically by the amount of chromatin, or packaged chromosomal DNA, 

located near the inner face of the nuclear envelope.  Type A have almost no chromatin at 

the periphery of the nucleus, while Type Int and B spermatogonia have progressively 

more.  Spermatogonia reside at the basal membrane of the seminiferous tubule.  They 

have a flat surface that is in contact with the wall of the tubule and a rounded surface that 

is in contact with the Sertoli cell (Russell, 1977).   

 Type B spermatogonia divide and differentiate into preleptotene (PL) 

spermatocytes, the first of the primary spermatocyte lineages.  This is the first of the 

meiotic cell types.  PL are the last germ cell type to undergo S-phase (DNA replication) 

(Moses, 1969; Russell and Frank, 1978).  PL differentiate to form leptotene (L) 

spermatocytes.  L can be distinguished from PL mostly on the basis of morphology.  L 

spermatocytes begin to round up, detach from the wall, and migrate away from the basal 

lamina of the seminiferous tubule.  L spermatocytes loose their peripheral chromatin and 
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begin forming chromosomal threads, but chromosomes are not yet paired (Russell, 1977; 

Russell, 1978).  L differentiate into zygotene (Z) spermatocytes as their chromosomes 

begin to pair (Moses, 1969).  When homologous chromosomes have paired, Z 

spermatocytes have differentiated into pachytene (P) spermatocytes.  Germ cells remain 

as P spermatocytes for a very long time.  The prophase of meiosis lasts approximately 

three weeks, and of that time, germ cells are P spermatocytes for 1.5 –2 weeks.  During 

this phase genetic recombination, or crossing over, occurs.  During the last half of the P 

spermatocyte development, cells become highly synthetic, producing the large amount of 

cytosolic and nuclear components required for meiosis, and increase greatly in volume 

(Monesi, 1965; Russell and Frank, 1978).  As P spermatocytes differentiate to form 

diplotene (D) spermatocytes, the chromosomes have separated except at regions called 

chiasmata.  While D spermatocytes, the cells undergo the metaphase, anaphase, and 

telophase of the first meiotic division (MI) (Russell and Frank, 1978).  Once the cells 

have divided, they are referred to as secondary (2º) spermatocytes.  The second meiotic 

division (MII) follows rapidly to form spermatids, and the meiotic phase of 

spermatogenesis is completed (Russell and Frank, 1978).   

 The process of differentiation from the immature postmeiotic germ cells to mature 

spermatozoa is referred to as spermiogenesis and occurs through approximately nineteen 

morphologically distinct phases (Russell et al., 1990).  During spermiogenesis the round 

spermatids produced from meiosis begin to elongate with the formation of a flagellum.  

The elongated spermatids then compact their chromosomal DNA and reduce their size by 

75% by eliminating water from the cytosol and nucleus and by eliminating cytosol 

through tubular complexes.  Finally the sperm cell reduces its volume by releasing a 
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residual body when the mature sperm cell is released from the Sertoli cell into the lumen 

of the seminiferous tubule and is excreted (Russell et al., 1990). 

 The process of spermatogenesis is highly synchronized and proceeds cyclically 

through the seminiferous tubule.  When tubules are cross-sectioned only certain types of 

germ cells are found together in a given region of the seminiferous tubule.  In mice, the 

spermatogenic process can therefore be divided into 12 stages based on which cell types 

are found together in sections of the seminiferous tubule (Figure 1.5) (Leblond and 

Clermont, 1952; Oakberg, 1956). 
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Figure 1.5:  Diagram of one cycle of spermatogenic stages. 

 

Spermatogenic development is highly synchronized with only certain types of germ cells 

found together in the seminiferous tubule (called stages).  The stages are also ordered 

with respect to each other within the tubes.  Spermatogenesis proceeds through the 

seminiferous tubule like a wave in a temporally cyclic fashion.  Figure adapted from 

Histological and Histopathological Evaluation of the Testis (Russell et al., 1990). 
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Figure 1.5:  Diagram of one cycle of spermatogenic stages. 

RETE 

II 

III 

IV 

V 

VI 

VI
I 

VII
I 

IX 

X 

XI 

XI
I 

I 

II 

XI
I 

I 

V 

XI 

II
I 

IV 

One Cycle of  
Spermatogenic 

Stages 



 

 

28

For example, in stage V, only type B spermatogonia, pachytene spermatocytes, Type 5 

round spermatids and type 15 elongated spermatocytes are found.  In contrast, at stage X, 

only leptotene and pachytene spermatocytes and type 10 early elongating spermatids are 

found.   One never finds, for example, zygotene spermatocytes and round spermatids 

together in the same region of a seminiferous tubule (Russell et al., 1990).   
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Chapter 2 

Alternative Splicing Isoforms of HSF1 and HSF2  

 

INTRODUCTION 

 

 As described previously, heat shock transcription factors (HSFs) function to 

regulate the expression of heat shock proteins (hsps) or molecular chaperones in the cell 

(Craig et al., 1993; Hendrick and Hartl, 1995; Morimoto et al., 1996).  Mammalian cells 

have two well-characterized HSFs, HSF1 and HSF2 (Clos et al., 1990; Rabindran et al., 

1991; Sarge et al., 1991; Schuetz et al., 1991).  HSF1 is ubiquitously expressed in all cell 

types examined and functions to regulate the stress-induced expression of hsps.  HSF2 is 

also ubiquitously expressed in cells, though levels vary widely among cell types.  The 

function of HSF2 appears to be in regulating hsp expression during development and 

differentiation (Alastalo et al., 1998; Mezger et al., 1994; Murphy et al., 1994; Pirkkala et 

al., 1999; Sarge et al., 1994; Sistonen et al., 1992).  Our lab has previously shown that 

HSF2 mRNA expression in subject to developmental, spermatogenic stage-specific, and 

cell-type specific regulation in the testis (Sarge et al., 1994). The highest levels of HSF2 

are found in pachytene spermatocytes and round spermatids.  The DNA binding activity 

of HSF2 is also regulated in the testis.  In most cell types, HSF2 is found in a non-DNA 

binding form.  Testis expressed HSF2, alternatively, is found in a constitutively DNA 

binding state (Sarge et al., 1994).  Furthermore, the DNA binding form of HSF2 found in 

the testis is capable of binding to promoter sequences from the hsp70.2 gene, a testis-
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specific hsp70 family member.  This indicates that one function of HSF2 is to regulate 

hsp gene expression during spermatogenesis (Sarge et al., 1994). 

 Previous results have suggested the existence of two distinct protein isoforms of 

both HSF1 and HSF2 in mammalian cell (Sarge et al., 1993).  In addition, sequence 

comparison between the mouse and human homologues of HSF1 and HSF2 suggests that 

these isoforms likely arise from alternative mRNA splicing (Figure 2.1).  In order to 

establish the mechanism by which these HSF protein isoforms arise, and to explore their 

biological significance, we have characterized the expression of these HSF1 and HSF2 

isoforms in cells of different mouse tissues. 
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Figure 2.1:  Human and mouse HSF DNA and protein sequence alignments.  

 

(A) DNA sequence alignment between the human HSF1 (hHSF1) and mouse HSF1(β) 

(mHSF1) homologues.  The potential alternative mRNA processing region has been 

bolded. 

 

(B) Predicted protein sequence alignment between the human HSF1 (hHSF1) and mouse 

HSF1(β) (mHSF1) homologues.  The potential alternative mRNA processing region has 

been bolded. 

 

(C) DNA sequence alignment between the human HSF2 (hHSF2) and mouse HSF2(β) 

(mHSF2) homologues.  The potential alternative mRNA processing region has been 

bolded. 

 

(D) Predicted protein sequence alignment between the human HSF2 (hHSF2) and mouse 

HSF2(β) (mHSF2) homologues.  The potential alternative mRNA processing region has 

been bolded. 
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Figure 2.1 (A)  Alignment of the DNA sequences of the human and mouse HSF1 open 
reading frames. 
 
 
hHSF1  ATGGATCTGC CCGTGGGCCC CGGCGCGGCG GGGCCCAGCA ACGTCCCGGC 
mHSF1  ATGGATCTGG CCGTGGGCCC CGGTGCAGCG GGGCCCAGCA ACGTCCCGGC 
 
hHSF1  CTTCCTGACC AAGCTGTGGA CCCTCGTGAG CGACCCGGAC ACCGACGCGC 
mHSF1  CTTCCTAACC AAGCTGTGGA CCCTCGTGAG CGACCCGGAC ACAGACGCGC 
 
hHSF1  TCATCTGCTG GAGCCCGAGC GGGAACAGCT TCCACGTGTT CGACCAGGGC 
mHSF1  TCATCTGCTG GAGCCCGAGT GGGAACAGCT TCCACGTGTT TGACCAGGGC 
 
hHSF1  CAGTTTGCCA AGGAGGTGCT GCCCAAGTAC TTCAAGCACA ACAACATGGC 
mHSF1  CAGTTTGCCA AGGAGGTGCT GCCCAAGTAC TTCAAGCACA ACAACATGGC 
 
hHSF1  CAGCTTCGTG CGGCAGCTCA ACATGTATGG CTTCCGGAAA GTGGTCCACA 
mHSF1  TAGCTTCGTG CGGCAGCTCA ACATGTATGG CTTCCGAAAA GTAGTCCACA 
 
hHSF1  TCGAGCAGGG CGGCCTGGTC AAGCCAGAGA GAGACGACAC GGAGTTCCAG 
mHSF1  TTGAGCAGGG TGGCCTGGTC AAGCCTGAGA GAGATGACAC CGAGTTCCAG 
 
hHSF1  CACCCATGCT TCCTGCGTGG CCAGGAGCAG CTCCTTGAGA ACATCAAGAG 
mHSF1  CATCCTTGTT TCTTGCGTGG ACAGGAACAG CTCCTTGAGA ACATCAAGAG 
 
hHSF1  GAAAGTGACC AGTGTGTCCA CCCTGAAGAG TGAAGACATA AAGATCCGCC 
mHSF1  GAAAGTGACC AGCGTGTCCA CCCTGAAGAG TGAGGACATA AAAATACGCC 
 
hHSF1  AGGACAGCGT CACCAAGCTG CTGACGGACG TGCAGCTGAT GAAGGGGAAG 
mHSF1  AGGACAGTGT CACCCGGCTG TTGACAGATG TGCAGCTGAT GAAGGGGAAA 
 
hHSF1  CAGGAGTGCA TGGACTCCAA GCTCCTGGCC ATGAAGCATG AGAATGAGGC 
mHSF1  CAGGAGTGTA TGGACTCCAA GCTCCTGGCC ATGAAGCACG AGAACGAGGC 
 
hHSF1  TCTGTGGCGG GAGGTGGCCA GCCTTCGGCA GAAGCATGCC CAGCAACAGA 
mHSF1  CCTGTGGCGG GAGGTGGCCA GCCTTCGGCA GAAGCATGCC CAGCAGCAAA 
 
hHSF1  AAGTCGTCAA CAAGCTCATT CAGTTCCTGA TCTCACTGGT GCAGTCAAAC 
mHSF1  AAGTTGTCAA CAAGCTCATT CAGTTCCTGA TCTCACTGGT GCAGTCGAAC 
 
hHSF1  CGGATCCTGG GGGTGAAGAG AAAGATCCCC CTGATGCTGA ACGACAGTGG 
mHSF1  CGGATCCTGG GGGTGAAGAG AAAGATCCCT CTGATGTTGA GTGACAGCAA 
 
hHSF1  CTCAGCACAT TCCATGCCCA AGTATAGCCG GCAGTTCTCC CTGGAGCACG 
mHSF1  CTCAGCACAC TCTGTGCCCA AGTATGGTCG ACAGTACTCC CTGGAGCATG 
 
hHSF1  TCCACGGCTC GGGCCCCTAC TCGGCCCCCT CCCCAGCCTA CAGCAGCTCC 
mHSF1  TCCATGGTCC TGGCCCATAC TCAGCTCCAT CTCCAGCCTA CAGCAGCTCT 
 
hHSF1  AGCCTCTACG CCCCTGATGC TGTGGCCAGC TCTGGACCCA TCATCTCCGA 
mHSF1  AGCCTTTACT CCTCTGATGC TGTCACCAGC TCTGGACCCA TAATCTCCGA 
 
hHSF1  CATCACCGAG CTGGCTCCTG CCAGCCCCAT GGCCTCCCCC GGCGGGAGCA 
mHSF1  TATCACTGAG CTGGCTCCCA CCAGCCCTTT GGCCTCCCCA GGCAGGAGCA 
 
hHSF1  TAGACGAGAG GCCCCTATCC AGCAGCCCCC TGGTGCGTGT CAAGGAGGAG 
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mHSF1  TAGATGAGAG GCCTCTGTCC AGCAGCACTC TGGTCCGTGT CAAGCAAGAG 
 
hHSF1  CCCCCCAGCC CGCCTCAGAG CCCCCGGGTA GAGGAGGCGA GTCCCGGGCG 
mHSF1  CCCCCCAGCC CACCTCACAG CCCTCGGGTA CTGGAGGCGA GCCCTGGGCG 
 
hHSF1  CCCATCTTCC GTGGACACCC TCTTGTCCCC GACCGCCCTC ATTGACTCCA 
mHSF1  CCCATCCTCC ATGGATACCC CTTTGTCCCC AACTGCCTTC ATTGACTCCA 
 
hHSF1  TCCTGCGGGA GAGTGAACCT GCCCCCGC-- -CTCCGTCAC AGCCCTCACG 
mHSF1  TCCTTCGAGA GAGCGAGCCT ACCCCTGCTG CCTCAAACAC AGCCCCTATG 
 
hHSF1  GACGCCAGGG GCCACACGGA CACCGAGGGC CGGCCTCCCT CCCCCCCGCC 
mHSF1  GACAC----- ---AACCGGA GCCCAAG--- ----CCCCCG CACTCCCGAC 
 
hHSF1  CACCTCCACC CCTGAAAAGT GCCTCAGCGT AGCCTGCCTG GACAAGAATG 
mHSF1  CCCCTCCACC CCTGAGAAGT GCCTCAGCGT AGCCTGCCTA GACAAGAACG 
 
hHSF1  AGCTCAGTGA CCACTTGGAT GCTATGGACT CCAACCTGGA TAACCTGCAG 
mHSF1  AGCTAAGTGA TCACCTGGAT GCCATGGACT CCAACCTGGA CAACCTGCAG 
 
hHSF1  ACCATGCTGA GCAGCCACGG CTTCAGCGTG GACACCAGTG CCCTGCTGGA 
mHSF1  ACCATGCTGA CAAGCCACGG CTTCAGTGTG GACACCAGTG CCCTGCTGGA 
 
hHSF1  CCTGTTCAGC CCCTCGGTGA CCGTGCCCGA CATGAGCCTG CCTGACCTTG 
mHSF1  C--------- ---------- ---------- ---------- ---------- 
 
hHSF1  ACAGCAGCCT GGCCAGTATC CAAGAGCTCC TGTCTCCCCA GGAGCCCCCC 
mHSF1  ---------- -------ATT CAGGAGCTTC TGTCTCCACA AGAGCCTCCC 
 
hHSF1  AGGCCTCCCG AGGCAGAGAA CAGCAGCCCG GATTCAGGGA AGCAGCTGGT 
mHSF1  AGGCCTATTG AGGCAGAGAA CAGTAACCCC GACTCAGGAA AGCAGCTGGT 
 
hHSF1  GCACTACACA GCGCAGCCGC TGTTCCTGCT GGACCCCGGC TCCGTGGACA 
mHSF1  GCACTACACG GCTCAGCCTC TGTTCCTGCT GGATCCTGAT GCTGTGGACA 
 
hHSF1  CCGGGAGCAA CGACCTGCCG GTGCTGTTTG AGCTGGGAGA GGGCTCCTAC 
mHSF1  CAGGGAGCAG TGAGCTGCCT GTGCTCTTTG AGCTGGGGGA GAGCTCCTAC 
 
hHSF1  TTCTCCGAAG GGGACGGCTT CGCCGAGGAC CCCACCATCT CCCTGCTGAC 
mHSF1  TTCTCTGAGG GGGATGACTA CACGGATGAT CCCACCATCT CTCTTCTGAC 
 
hHSF1  AGGCTCGGAG CCTCCCAAAG CCAAGGACCC CACTGTCTCC TAG 
mHSF1  AGGCACTGAA CCCCATAAAG CCAAGGACCC CACTGTCTCC TAG 
 



 

 

34

Figure 2.1 (B)  Alignment of the protein sequences of the human and mouse HSF1.  
 
 
mHSF1  MDLAVGPGAA GPSNVPAFLT KLWTLVSDPD TDALICWSPS GNSFHVFDQG 
hHSF1  MDLPVGPGAA GPSNVPAFLT KLWTLVSDPD TDALICWSPS GNSFHVFDQG 
 
mHSF1  QFAKEVLPKY FKHNNMASFV RQLNMYGFRK VVHIEQGGLV KPERDDTEFQ 
hHSF1  QFAKEVLPKY FKHNNMASFV RQLNMYGFRK VVHIEQGGLV KPERDDTEFQ 
 
mHSF1  HPCFLRGQEQ LLENIKRKVT SVSTLKSEDI KIRQDSVTRL LTDVQLMKGK 
hHSF1  HPCFLRGQEQ LLENIKRKVT SVSTLKSEDI KIRQDSVTKL LTDVQLMKGK 
 
mHSF1  QECMDSKLLA MKHENEALWR EVASLRQKHA QQQKVVNKLI QFLISLVQSN 
hHSF1  QECMDSKLLA MKHENEALWR EVASLRQKHA QQQKVVNKLI QFLISLVQSN 
 
mHSF1  RILGVKRKIP LMLSDSNSAH SVPKYGRQYS LEHVHGPGPY SAPSPAYSSS 
hHSF1  RILGVKRKIP LMLNDSGSAH SMPKYSRQFS LEHVHGSGPY SAPSPAYSSS 
 
mHSF1  SLYSSDAVTS SGPIISDITE LAPTSPLASP GRSIDERPLS SSTLVRVKQE 
hHSF1  SLYAPDAVAS SGPIISDITE LAPASPMASP GGSIDERPLS SSPLVRVKEE 
 
mHSF1  PPSPPHSPRV LEASPGRPSS MDTPLSPTAF IDSILRESEP TPAASNTAPM 
hHSF1  PPSPPQSPRV EEASPGRPSS VDTLLSPTAL IDSILRESEP APA-SVTALT 
 
mHSF1  DTTG-----A QAPALPTPST PEKCLSVACL DKNELSDHLD AMDSNLDNLQ 
hHSF1  DARGHTDTEG RPPSPPPTST PEKCLSVACL DKNELSDHLD AMDSNLDNLQ 
 
mHSF1  TMLTSHGFSV DTSALLD--- ---------- ---------I QELLSPQEPP 
hHSF1  TMLSSHGFSV DTSALLDLFS PSVTVPDMSL PDLDSSLASI QELLSPQEPP 
 
mHSF1  RPIEAENSNP DSGKQLVHYT AQPLFLLDPD AVDTGSSELP VLFELGESSY 
hHSF1  RPPEAENSSP DSGKQLVHYT AQPLFLLDPG SVDTGSNDLP VLFELGEGSY 
 
mHSF1  FSEGDDYTDD PTISLLTGTE PHKAKDPTVS 
hHSF1  FSEGDGFAED PTISLLTGSE PPKAKDPTVS 
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Figure 2.1 (C) Alignment of the DNA sequences of the human and mouse HSF2 open 
reading frames. 
 
 
hHSF2  ATGAAGCAGA GTTCGAACGT GCCGGCTTTC CTCAGCAAGC TGTGGACGCT 
mHSF2  ATGAAGCAGA GTTCCAACGT GCCGGCTTTC CTCAGCAAGC TGTGGACGCT 
 
hHSF2  TGTGGAGGAA ACCCACACTA ACGAGTTCAT CACCTGGAGC CAGAATGGCC 
mHSF2  TGTGGAGGAA ACCCACACCA ACGAGTTCAT CACCTGGAGT CAGAATGGAC 
 
hHSF2  AAAGTTTTCT GGTCTTGGAT GAGCAACGAT TTGCAAAAGA AATTCTTCCC 
mHSF2  AAAGTTTTCT GGTCTTGGAT GAGCAAAGAT TTGCAAAGGA AATTCTTCCT 
 
hHSF2  AAATATTTCA AGCACAATAA TATGGCAAGC TTTGTGAGGC AACTGAATAT 
mHSF2  AAGTACTTCA AACACAATAA CATGGCGAGC TTTGTGAGAC AACTAAATAT 
 
hHSF2  GTATGGTTTC CGTAAAGTAG TACATATCGA CTCTGGAATT GTAAAGCAAG 
mHSF2  GTATGGCTTC CGAAAAGTAG TGCATATCGA ATCTGGAATT ATCAAACAGG 
 
hHSF2  AAAGAGATGG TCCTGTAGAA TTTCAGCATC CTTACTTCAA ACAAGGACAG 
mHSF2  AAAGAGATGG CCCTGTTGAA TTTCAGCATC CTTATTTCAA GCAAGGCCAG 
 
hHSF2  GATGACTTGT TGGAGAACAT TAAAAGGAAG GTTTCATCTT CAAAACCAGA 
mHSF2  GATGACCTGT TGGAGAACAT TAAAAGGAAG GTTTCATCTT CAAAACCAGA 
 
hHSF2  AGAAAATAAA ATTCGTCAGG AAGATTTAAC AAAAATTATA AGTAGTGCTC 
mHSF2  GGAAAATAAA ATTCGTCAGG AAGATTTAAC AAAAATTATT AGTAGTGCTC 
 
hHSF2  AGAAGGTTCA GATAAAACAG GAAACTATTG AGTCCAGGCT TTCTGAATTA 
mHSF2  AGAAGGTTCA AATAAAACAA GAAACTATTG AGTCCAGGCT TTCAGAATTA 
 
hHSF2  AAAAGTGAGA ATGAGTCCCT TTGGAAGGAG GTGTCAGAAT TACGAGCAAA 
mHSF2  AAAAGTGAGA ATGAATCCCT TTGGAAGGAG GTGTCAGAAC TAAGAGCAAA 
 
hHSF2  GCATGCACAA CAGCAACAAG TTATTCGAAA GATTGTCCAG TTTATTGTTA 
mHSF2  GCATGCCCAG CAGCAACAAG TTATTCGGAA GATTGTCCAG TTTATTGTTA 
 
hHSF2  CATTGGTTCA AAATAACCAA CTTGTGAGTT TAAAACGTAA AAGGCCTCTA 
mHSF2  CATTGGTTCA GAATAATCAA CTTGTGAGTT TAAAACGTAA AAGGCCTCTA 
 
hHSF2  CTTCTAAACA CTAATGGAGC CCAAAAGAAG AACCTGTTTC AGCACATAGT 
mHSF2  CTTCTAAACA CAAATGGAGC CCCAAAGAAG AATCTATATC AGCACATAGT 
 
hHSF2  CAAAGAACCA ACTGATAATC ATCATCATAA AGTTCCACAC AGTAGGACTG 
mHSF2  CAAAGAACCA ACTGATAATC ACCATCATAA AGTTCCACAC AGCAGGACTG 
 
hHSF2  AAGGTTTAAA GCCAAGGGAG AGGATTTCAG ATGACATCAT TATTTATGAT 
mHSF2  AAGGTTTAAA GTCAAGAGAA CGGATTTCAG ATGACATAAT TATTTATGAT 
 
hHSF2  GTTACTGATG ATAATGCAGA TGAAGAAAAT ATCCCAGTTA TTCCAGAAAC 
mHSF2  GTTACTGACG ATAATGTGGA TGAAGAAAAT ATTCCAGTTA TTCCAGAAAC 
 
hHSF2  TAATGAGGAT GTTATATCTG ATCCCTCCAA CTGTAGCCAG TACCCTGATA 
mHSF2  AAATGAGGAT GTTGTAGTGG ATTCCTCCAA C------CAG TATCCTGACA 
 
hHSF2  TTGTCATCGT TGAAGATGAC AATGAAGATG AGTATGCACC TGTCATTCAG 
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mHSF2  TTGTCATTGT TGAAGATGAC AACGAGGATG AGTATGCTCC TGTCATTCAG 
 
hHSF2  AGTGGAGAGC AGAATGAACC AGCCAGAGAA TCCCTAAGTT CAGGCAGTGA 
mHSF2  AGTGGAGAGC AGAGTGAACC AGCCAGAGAA CCCTTACGTG TGGGGAGTGC 
 
hHSF2  TGGCAGCAGC ---CCTCTCA TGTCTAGTGC TGTCCAGCTA AATGGCTCAT 
mHSF2  TGGCAGCAGC AGCCCTCTCA TGTCTAGTGC TGTCCAGCTA AACGGCTCCT 
 
hHSF2  CCAGTCTGAC CTCAGAAGAT CCAGTGACCA TGATGGATTC CATTTTGAAT 
mHSF2  CCAGTCTGAC CTCAGAAGAC CCTGTGACCA TGATGGACTC CATTCTGAAT 
 
hHSF2  GATAACATCA ATCTTTTGGG AAAGGTTGAG CTGTTGGATT ATCTTGACAG 
mHSF2  GACAACATTA ACCTGTTAGG AAAGGTTGAG CTGTTGGATT ACCTTGACAG 
 
hHSF2  TATTGACTGC AGTTTAGAGG ACTTCCAGGC CATGCTATCA GGAAGACAAT 
mHSF2  TATTGATTGC AGTTTAGAGG ACTTCCAAGC TATGCTCTCA GGAAGACAGT 
 
hHSF2  TTAGCATAGA CCCAGATCTC CTGGTTGATC TTTTCACTAG TTCTGTGCAG 
mHSF2  TTAGCATAGA CCCAGATCTT CTGGTTGAT- ---------- ---------- 
 
hHSF2  ATGAATCCCA CAGATTACAT CAATAATACA AAATCTGAGA ATAAAGGATT 
mHSF2  ---------- ---------- ---------- ---TCTGAGA ATAAGGGACT 
 
hHSF2  AGAAACTACC AAGAACAATG TAGTTCAGCC AGTTTCGGAA GAGGGAAGAA 
mHSF2  AGAAGCTACC AAGAGCAGTG TTGTTCAACA TGTGTCAGAA GAGGGAAGAA 
 
hHSF2  AATCTAAATC CAAACCAGAT AAGCAGCTTA TCCAGTATAC CGCCTTTCCA 
mHSF2  AATCTAAATC CAAGCCAGAC AAACAACTTA TCCAGTATAC TGCCTTTCCA 
 
hHSF2  CTTCTTGCAT TCCTCGATGG GAACCCTGCT TCTTCTGTTG AACAGGCGAG 
mHSF2  CTTCTTGCAT TCCTGGATGG GAACTCTGCA TCTGCTATTG AACAGGGGAG 
 
hHSF2  TACAACAGCA TCATCAGAAG TTTTGTCCTC TGTAGATAAA CCCATAGAAG 
mHSF2  TACAACTGCA TCGTCAGAAG TTGTGCCTTC TGTAGATAAA CCCATAGAAG 
 
hHSF2  TTGATGAGCT TCTGGATAGC AGCCTAGACC CAGAACCAAC CCAAAGTAAG 
mHSF2  TCGATGAGCT CCTGGATAGC AGCCTGGATC CAGAACCGAC CCAGAGTAAG 
 
hHSF2  CTTGTTCGCC TGGAGCCATT GACTGAAGCT GAAGCTAGTG AAGCTACACT 
mHSF2  CTTGTCCGCC TGGAACCATT GACTGAAGCG GAAGCTAGTG AAGCCACACT 
 
hHSF2  GTTTTATTTA TGTGAACTTG CTCCTGCACC TCTGGATAGT GATATGCCAC 
mHSF2  CTTCTATTTA TGTGAACTTG CTCCTGCACC TCTGGATAGT GATATGCCGC 
 
hHSF2  TTTTAGATAG CTAA 
mHSF2  TTTTAGATAG TTAA 
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Figure 2.1 (D) Alignment of the protein sequences of the human and mouse HSF1. 
 
mHSF2  MKQSSNVPAF LSKLWTLVEE THTNEFITWS QNGQSFLVLD EQRFAKEILP 
hHSF2  MKQSSNVPAF LSKLWTLVEE THTNEFITWS QNGQSFLVLD EQRFAKEILP 
 
mHSF2  KYFKHNNMAS FVRQLNMYGF RKVVHIESGI IKQERDGPVE FQHPYFKQGQ 
hHSF2  KYFKHNNMAS FVRQLNMYGF RKVVHIDSGI VKQERDGPVE FQHPYFKQGQ 
 
mHSF2  DDLLENIKRK VSSSKPEENK IRQEDLTKII SSAQKVQIKQ ETIESRLSEL 
hHSF2  DDLLENIKRK VSSSKPEENK IRQEDLTKII SSAQKVQIKQ ETIESRLSEL 
 
mHSF2  KSENESLWKE VSELRAKHAQ QQQVIRKIVQ FIVTLVQNNQ LVSLKRKRPL 
hHSF2  KSENESLWKE VSELRAKHAQ QQQVIRKIVQ FIVTLVQNNQ LVSLKRKRPL 
 
mHSF2  LLNTNGAPKK NLYQHIVKEP TDNHHHKVPH SRTEGLKSRE RISDDIIIYD 
hHSF2  LLNTNGAQKK NLFQHIVKEP TDNHHHKVPH SRTEGLKPRE RISDDIIIYD 
 
mHSF2  VTDDNVDEEN IPVIPETNED VVVDSSN--Q YPDIVIVEDD NEDEYAPVIQ 
hHSF2  VTDDNADEEN IPVIPETNED VISDPSNCSQ YPDIVIVEDD NEDEYAPVIQ 
 
mHSF2  SGEQSEPARE PLRVGSAGSS SPLMSSAVQL NGSSSLTSED PVTMMDSILN 
hHSF2  SGEQNEPARE SLSSGSDGSS -PLMSSAVQL NGSSSLTSED PVTMMDSILN 
 
mHSF2  DNINLLGKVE LLDYLDSIDC SLEDFQAMLS GRQFSIDPDL LVD------- 
hHSF2  DNINLLGKVE LLDYLDSIDC SLEDFQAMLS GRQFSIDPDL LVDLFTSSVQ 
 
mHSF2  ---------- -SENKGLEAT KSSVVQHVSE EGRKSKSKPD KQLIQYTAFP 
hHSF2  MNPTDYINNT KSENKGLETT KNNVVQPVSE EGRKSKSKPD KQLIQYTAFP 
 
mHSF2  LLAFLDGNSA SAIEQGSTTA SSEVVPSVDK PIEVDELLDS SLDPEPTQSK 
hHSF2  LLAFLDGNPA SSVEQASTTA SSEVLSSVDK PIEVDELLDS SLDPEPTQSK 
 
mHSF2  LVRLEPLTEA EASEATLFYL CELAPAPLDS DMPLLDS 
hHSF2  LVRLEPLTEA EASEATLFYL CELAPAPLDS DMPLLDS 
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 We found that mouse cells express two distinct HSF1 mRNA isoforms (HSF1-α 

and HSF1-β) that are generated by alternative splicing of the HSF1 pre-mRNA.  The two 

HSF1 mRNA isoforms result from the inclusion (HSF1-α), or omission (HSF1-β), of a 66 

nucleotide exon of the HSF1 gene, which encodes a 22 amino acid sequence.  The 

insertion site of this 22 amino acid sequence in the HSF1-α isoform is located 

immediately adjacent to a C-terminal leucine zipper motif shown by other studies to be 

involved in maintenance of HSF1 in the non-DNA-binding control form (Rabindran et 

al., 1993; Zuo et al., 1994).  Our results also show that the levels of the HSF1-α and 

HSF1-β mRNA isoforms are regulated in a tissue-dependent manner, with testis 

expressing predominantly the HSF1-β isoform while heart and brain express primarily the 

HSF1-α isoform. 

 In addition, we found that mouse cells also express two distinct HSF2 mRNA 

isoforms (HSF2-α and HSF2-β) that are generated by alternative splicing of the HSF2 

pre-mRNA.  The two HSF2 mRNA isoforms result from the inclusion (HSF2-α), or 

omission (HSF2-β), of a 54 nucleotide exon of the HSF2 gene, which encodes a 18 amino 

acid sequence.  Like HSF1, the insertion site of this 18 amino acid sequence in the HSF2-

α isoform is located immediately adjacent to a C-terminal leucine zipper motif 

(Rabindran et al., 1993; Zuo et al., 1994).  Our results also show that the levels of the 

HSF2-α and HSF2-β mRNA isoforms are regulated in a tissue-dependent manner, with 

testis and brain expressing predominantly the HSF2-α isoform while heart, liver, and 

kidney express primarily the HSF2-β isoform.  Furthermore, HSF2 isoform levels are 

regulated both in a developmental and cell type dependent manner in the testis.  Newborn 



 

 

39

mice express predominantly the HSF2-β isoform in the testis through day 14.  Beginning 

around day 21 and in the adult mouse, the HSF2-α isoform is the predominant HSF2 

isoform expressed in the testis.  During spermatogenesis, pachytene spermatocytes and 

round spermatids express predominantly the HSF2-α isoform.  We have also 

characterized both HSF2 isoforms with respect to transcriptional activity.  In a luciferase 

reporter gene assay, HSF2-α is a 2.6-fold better transcriptional activator than the HSF2-β 

isoform.  These data suggest that the HSF2 isoforms may have functionally distinct 

biological roles. 

 

MATERIALS AND METHODS 

 

Experimental Animals 

 

 CBA/J mice were obtained from Jackson Laboratory (Bar Harbor, ME) and 

maintained under a controlled light cycle (14 hrs.  light:10 hrs.  dark).  Heart, brain, and 

testes were removed from mice at the age of 6-8 weeks, rapidly frozen on dry ice, and 

then stored at -80°C until use.  These studies were conducted in accordance with the 

procedures described in the NIH Guide for the Care and Use of Laboratory Animals. 

 

RT-PCR Analysis 

 

 Total RNA was prepared from adult mouse tissues by homogenization in 

guanidine isothiocyanate and centrifugation through cesium chloride, as described 
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previously (Sarge et al., 1994).  For RT-PCR, reverse transcription coupled with 

polymerase chain reaction, total RNA (2-5 µg) was reverse-transcribed at 42°C using 

random hexamer primers and AMV reverse transcriptase (6 U) in a 20 µl reaction.  Two 

oligonucleotide primers, which hybridize to nucleotides 1272-1293 (5’-GCTAA GTGAT 

CACCT GGATG CC-3’) and 1730-1751 (5’-TCCCC TGGAC TACCC ACCTG TT-3’) 

of the mouse HSF1 cDNA, were used to amplify 479 bp and 545 bp isoform products 

from the HSF1 cDNA.  Two oligonucleotide primers, which hybridize to nucleotides 

1171-1192 (5’- ACCCT GTGAC CATGA TGGAC TC-3’) and 1623-1644 (5’-TGGCT 

TCACT AGCTT CCGCT TC-3’) of the mouse HSF2 cDNA, were used to amplify 473 

bp and  527 bp isoform products from the HSF2 cDNA.  For both HSF1 and HSF2, an 

internal control 104 bp fragment was amplified from the mouse ribosomal protein S16 

mRNA (5’-TCCAA GGGTC CGCTG CAGTC-3’ and 5’-CGTTC ACCTT GATGA 

GCCCA TT-3’) (14).  A reaction cocktail containing oligonucleotide primers (200 ng 

each), [α-32P]-dCTP (2 µCi at 3000 Ci/mmole), 10 X PCR buffer (10 mM Tris, pH 8.3, 

50 mM KCl, 1.5 mM MgCl2, 0.01% gelatin--Perkin Elmer) and AmpliTaq DNA 

polymerase (2.5 U, Perkin Elmer) was added to each reaction.  The total volume was 

brought to 100 µl with distilled water, and the sample overlaid with mineral oil.  

Amplification was carried out for 20 cycles using an annealing temperature of 65°C in a 

Perkin-Elmer Cetus thermal cycler.  The amplified products were separated by 

electrophoresis on 5% polyacrylamide gels and visualized by film autoradiography.  

Intensity of bands in the RT-PCR analysis were quantified with a Molecular Dynamics 

Phosphorimager using the ImageQuant program (version 3.3), and the levels of the 

isoform bands were calculated after normalization to the S16 mRNA internal control. 
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Isolation and Cloning of HSF1 cDNA and Genomic DNA Sequences 

 

 The fragments of the HSF1 and HSF2 cDNAs spanning the alternative splice sites 

were obtained by RT-PCR methods from total RNA of mouse testis.  Following reverse 

transcription of total RNA, cDNA fragments were amplified by PCR as described above 

with the exception that radioactivity was not incorporated and 30 cycles of PCR were 

used to amplify the DNA. HSF1 cDNA fragments were digested using the restriction 

endonucleases NcoI (1296 nt) and SacI (1549 nt) on opposite sides of the splice variant 

junctions and were subcloned into the pGEM-5Z (Promega, Madison, WI) plasmid 

vector.  HSF2 cDNA fragments were subcloned into the plasmid vector pSP72 (Promega, 

Madison, WI) using the restriction endonucleases BglII (1315 nt) and HindIII (1595 nt) 

which are located on opposite sides of the splice variant region of the HSF2 cDNA.  The 

sequences were determined by the Sanger dideoxy method according to the protocol from 

the Sequenase DNA sequencing kit (USB, Cleveland, OH). 

 The genomic DNA sequences of the HSF1 and HSF2 genes that comprise the 

alternative splice junctions were isolated from HSF1 and HSF2 genomic DNA phage 

clones obtained from a mouse genomic DNA library.  The fragments containing the 

alternative splice junctions of HSF1 and HSF2 were subcloned into pGEM-5Z and pSP72 

plasmids respectively using the restriction endonuclease sites indicated above.  The 

sequences were determined by the Sanger dideoxy method according to the protocol from 

the Sequenase DNA sequencing kit (USB, Cleveland, OH). 
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Western Blot (Immunoblot) and Gel Mobility Shift Analysis 

 

 Mouse tissues and isolated spermatogenic cells (pachytene spermatocytes and 

round spermatids) were resuspended and boiled for 5 min in 2x Laemmli SDS-PAGE 

buffer [125 mM TrisHCl, pH 6.8, 20% glycerol, 4% sodium dodecylsulfate (SDS) and 

200 mM dithiothreitol (DTT)] (Laemmli, 1970).  Samples were electrophoresed on an 

8% SDS-polyacrylamide gel (Laemmli, 1970) and transferred to nitrocellulose using a 

BIORAD Semidry transfer apparatus (BIORAD, Hercules, CA) according to the 

manufacturer’s protocol.  The blot was probed with the HSF2 polyclonal antiserum as 

previously described (Sarge et al., 1993).  The native gel mobility 47shift assay was 

performed as described previoulsly (Sarge et al., 1993) with a self-complementary 

consensus heat shock-element-containing oligonucleotide (5’-

CTAGAAGCTTCTAGAAGCTTCTAG-3’), which contains four perfect inverted 5’-

NGAAN-3’ repeats. 

 

HSF2 Transfection of NIH 3T3 Cells and Luciferase Assays 

 

 NIH 3T3 Cells were transfected with plasmid vectors which contained either the 

HSF2-α or HSF2-β cDNA under the control of the β-actin promoter and a reporter 

plasmid with the firefly luciferase gene under the control of the hsp promoter (Sarge et 

al., 1993).  The β-actin-HSF2-α vector was made by subcloning the splice variant region 

of the HSF2-α cDNA from the pSP-HSF2-α vector described above into the β-actin-

HSF2-β vector described previously using BglII and HindIII.  NIH 3T3 cells were 
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transfected using calcium phosphate described previously (Espeseth et al., 1989).  In 

short, cells were seeded at 5x105 cells per 10 cm tissue culture plate in DMEM containing 

10% fetal bovine serum and 50µg/ml gentamycin.  The following day cells were 

transfected with 10 µg of DNA and incubated at 37º C overnight.  Fresh medium was 

added the next morning. After 24h cells were harvested and whole cell extracts were 

made as previously described (Sarge et al., 1993).  Luciferase assays were performed as 

previously described and the results were normalized to transfection efficiency as 

previously described (de Wet et al., 1987).  Western blot and gel mobility shift assays 

were performed as described above. 

 

RESULTS 

 

Tissue distribution of HSF1 mRNA isoforms. 

 

 Previous western blot analysis of the HSF1 protein in NIH-3T3 cell extracts 

treated with potato acid phosphatase revealed the existence of two major HSF1 protein 

isoforms of approximately 69 and 71 kDa molecular weight (Sarge et al., 1993).  We will 

refer to the 71 kDa protein as the HSF1-α isoform and the 69 kDa protein as the HSF1-β 

isoform.  Phosphatase treatment was necessary to reveal these HSF1 protein isoforms 

because the HSF1 protein in unstressed cells exhibits multiple phosphorylation states, 

which results in a heterogeneous migration of the HSF1 protein on SDS-PAGE gel 

(Sarge et al., 1993).  In order to determine whether the HSF1-α and HSF1-β protein 

isoforms arise via alternative splicing of the HSF1 pre-mRNA, we performed RT-PCR 
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analysis of HSF1 mRNA in various mouse tissues.  For this analysis, we used primer 

pairs that amplify a region in the HSF1 mRNA that was suggested by previous sequence 

analysis to be subject to alternative splicing events.  This sequence comparison of 

previously cloned human and mouse cDNAs revealed a 22 amino acid gap in homology 

between the mouse and human HSF1 (Figure 2.1, (Rabindran et al., 1991; Sarge et al., 

1991)).  The results of the RT-PCR analysis, shown in Figure 2.2 A, demonstrate the 

existence of two distinct HSF1 mRNA variants (HSF1-α and HSF1-β) in these tissues.  

This analysis also revealed that the levels of these two HSF1 mRNA isoforms are 

regulated in a tissue-dependent manner.  Quantification of the results of the RT-PCR 

analysis revealed that heart and brain express 2.0 and 1.6-fold higher levels of the HSF1-

α mRNA isoform, respectively, while testis expresses 2.2-fold higher levels of the HSF1-

β mRNA isoform (Figure 2.2B). 

 

Tissue distribution of HSF2 mRNA isoforms. 

 

 Similarly, western blot analysis of the HSF2 protein in mouse tissue extracts from 

heart, brain, testes, and isolated spermatogenic cell types (pachytene spermatocytes and 

round spermatids) revealed the existence of two major HSF2 protein isoforms of 

approximately 69 and 71 kDa molecular weight (Figure 2.3).  Again, we will refer to the 

71 kDa protein as the HSF2-α isoform and the 69 kDa protein as the HSF2-β isoform.  In 

is unnecessary to treat extracts with potato acid phosphatase prior to analysis for HSF2 

protein, as HSF2 does not contain the same phosphorylation-induced heterogeneous 

SDS-PAGE migration as does HSF1 (Sarge et al., 1993).  In order to determine whether 
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the HSF2-α and HSF2-β protein isoforms arise via alternative splicing of the HSF2 pre-

mRNA, we performed RT-PCR analysis of HSF2 mRNA in various mouse tissues.  For 

this analysis, we used primer pairs that amplify a region in the HSF2 mRNA that was 

suggested by previous sequence analysis to be subject to alternative splicing events.  This 

sequence comparison of previously cloned human and mouse cDNAs revealed a 18 

amino acid gap in homology between the mouse and human HSF2 (Figure 2.1, (Sarge et 

al., 1991; Schuetz et al., 1991)).  The results of the RT-PCR analysis, shown in Figure 

2.4A, demonstrate the existence of two distinct HSF2 mRNA variants (HSF2-α and 

HSF2-β) in these tissues.  This analysis also revealed that the levels of these two HSF2 

mRNA isoforms are regulated in a tissue-dependent manner.  Quantification of the results 

of the RT-PCR analysis revealed that heart and brain express 2.8 and 5.3-fold higher 

levels of the HSF2-β mRNA isoform, respectively, while testis overall expresses 1.9-fold 

higher levels of the HSF1-α mRNA isoform.  Pachytene spermatocytes and round 

spermatids each express 2.6 and 2.1-fold higher levels of the HSF2-β mRNA isoform, 

respectively (Figure 2.4B). 

 

Cloning of HSF1 cDNA isoforms. 

 

 In order to verify the identity of the HSF1 mRNA variants, the PCR products 

amplified from testis total RNA (as seen in Figure 2.2A) were cloned and sequenced.  

The sequence analysis, shown in Figure 2.5, reveals that the HSF1-β mRNA isoform 

corresponds to a previously cloned HSF1 cDNA (Sarge et al., 1991).  The larger HSF1-α 

mRNA isoform differs from the HSF1-β isoform by the insertion of an additional 66 
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nucleotides, which encode a 22 amino acid sequence.  The theoretical molecular weight 

of the additional 22 amino acids is 2.3 kDa, which is consistent with the difference in size 

between the HSF1-α and HSF1-β protein isoforms (71 and 69 kDa, respectively) (Sarge 

et al., 1993). 

 

Cloning of HSF2 cDNA isoforms. 

 

 In order to verify the identity of the HSF2 mRNA variants, the PCR products 

amplified from testis total RNA (as seen in Figure 5A) were cloned and sequenced.  The 

sequence analysis, shown in Figure 2.6, reveals that the HSF2-β mRNA isoform 

corresponds to a previously cloned HSF2 cDNA (Sarge et al., 1991).  The larger HSF2-α 

mRNA isoform differs from the HSF2-β isoform by the insertion of an additional 54 

nucleotides, which encode a 18 amino acid sequence.  The theoretical molecular weight 

of the additional 18 amino acids is 2.0 kDa, which is consistent with the difference in size 

between the HSF2-α and HSF2-β protein isoforms (71 and 69 kDa, respectively) (Sarge 

et al., 1993). 

 

Cloning of the HSF1 genomic DNA from the splice variant region. 

 

 In order to obtain definitive evidence that the HSF1-α and HSF1-β mRNA 

isoforms arise via an alternative splicing mechanism, the regions of the HSF1 gene 

corresponding to the putative alternative splice junctions were isolated from a genomic 

library and sequenced.  This sequence analysis, shown in Figure 2.7, reveals the existence 
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of a 66 bp exon in the HSF1 gene that corresponds to the extra nucleotide sequence in the 

HSF1-α mRNA isoform.  This exon is bounded by intronic sequences of 76 and 68 bp, 

both of which exhibit mammalian splice site consensus sequences.  These results show 

that the HSF1-α and HSF1-β mRNA isoforms are generated by alternative splicing of the 

HSF1 pre-mRNA.   

 Shown in Figure 2.8 is a schematic representation of the alternative splicing 

events by which the HSF1-α and HSF1-β isoforms are generated.  The additional 22 

amino acid sequence (denoted SV) is inserted in the C-terminal region of the HSF1 

protein, immediately adjacent to a previously identified leucine zipper motif (Leucine 

Zipper 4).  

 

HSF1-αα  splicing creates a fifth potential leucine zipper. 

 

 Figure 2.9 shows that the addition of the extra 22 amino acid sequence in the 

HSF1-α protein results in the appearance of a new, previously unidentified leucine zipper 

motif in this HSF1 isoform, which we will refer to as Leucine Zipper 5 (LZ-5).  

Comparison of the mouse HSF1-α sequence with the orthologous human and Drosophila 

HSF sequences shows that the heptad repeats of hydrophobic amino acids that comprise 

Leucine Zipper 5 (indicated by open and closed diamonds) have been evolutionarily 

conserved (17,15), suggesting that this leucine zipper motif may be important for HSF 

function.  This figure also shows the proximity of this new Leucine Zipper 5 motif to the 

hydrophobic amino acid heptad repeats of the previously identified Leucine Zipper 4 

(indicated by open and closed triangles).  Leucine Zipper 4 has been shown to be 
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important for maintenance of HSF1 in the non-DNA binding state, presumably via its 

interaction with leucine zipper sequences in the N-terminal oligomerization domain 

(Rabindran et al., 1993; Zuo et al., 1994).  The close spatial relationship of these two 

leucine zipper motifs suggests that Leucine Zipper 5 may also be involved in interactions 

important for the HSF1 non-DNA-binding state.  The HSF1-β protein isoform, since it 

lacks the additional 22 amino acid sequence, does not contain the Leucine Zipper 5 motif. 

 

Cloning of the HSF2 genomic DNA from the splice variant region. 

 

 In order to obtain definitive evidence that the HSF2-α and HSF2-β mRNA 

isoforms arise via an alternative splicing mechanism, the region of the HSF2 gene 

corresponding to the putative alternative splice junctions was isolated from a genomic 

library and partially sequenced.  This sequence analysis, shown in Figure 2.10, reveals 

the existence of a 54 bp exon in the HSF2 gene that corresponds to the extra nucleotide 

sequence in the HSF2-α mRNA isoform.  This exon is bounded by intronic sequences of 

approximately 1.8 kb and 2.3 kb, both of which exhibit mammalian splice site consensus 

sequences.  These results show that the HSF2-α and HSF2-β mRNA isoforms are 

generated by alternative splicing of the HSF2 pre-mRNA.  

 Shown in Figure 2.11 is a schematic representation of the alternative splicing 

events by which the HSF1-α and HSF1-β isoforms are generated.  The additional 18 

amino acid sequence (denoted SV) is inserted in the C-terminal region of the HSF2 

protein, immediately adjacent to a previously identified leucine zipper motif (Leucine 

Zipper 4). 
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Developmental Regulation of HSF2 mRNA Splicing. 

 

HSF2 mRNA and protein levels are highly regulated during development and 

spermatogenesis (Sarge et al., 1994).  Also, pachytene spermatocytes and round 

spermatids express high levels of HSF2-α, more than whole testes (Figure 2.4). Based on 

these facts, we sought to determine if the expression of the HSF2 isoforms was regulated 

during development.  To this end, we performed RT-PCR on mRNA from testes 

harvested from mice at various stages of postnatal development.  At seven days 

postpartum, testes contain only somatic cells.  At this stage HSF2-β is the predominant 

isoform of HSF2 expressed in the testis.  From days 14 and 21 through adulthood (six 

weeks), levels of the HSF2-α isoform increase (Figure 2.12a).  Quantification of the RT-

PCR analysis after normalization to the S-16 internal standard reveals that the change 

from HSF2-β to HSF2-α over the course of postnatal development is primarily due to 

increased levels of HSF2-α expression (Figure 2.12b).  This result is consistent with the 

increase in germ cells relative to somatic cells with the onset of spermatogenesis. 

 

Increased transcriptional activity of the HSF2-αα  isoform. 

 

Finally, we sought to determine if there were functional differences between the HSF2 

isoforms.  To assess differences in transcriptional activity, the two isoforms were 

analyzed using a reporter gene assay.  NIH 3T3 cells were cotransfected with an HSF2-α 

or HSF2-β expression plasmid and a reporter plasmid with the firefly luciferase gene 
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under the control of the mammalian hsp70 promoter.  Transcriptional activity was 

measured as changes in luciferase activity relative to cells transfected with parental β-

actin-1-neo parental vector the reporter plasmid.  Luciferase activity was determined by 

measuring the amount of light given off from cell extracts when luciferin and ATP were 

added.  These results were normalized to total protein in the cell extracts. 

 From this analysis, we determined that HSF2-β and HSF2-α were capable of 

activating transcription of the reporter gene 3.6-fold and 9.6-fold respectively (Figure 

2.13a).  Analysis of the HSF2 protein levels of the transfected cell extracts used for the 

luciferase assays by western blotting indicates that differences in the transcriptional 

activity were not to due to differences in transfection efficiency, expression levels, or 

overall protein stability.  Both HSF2-α and HSF2-β transfected cells had relatively 

similar protein levels (Figure 2.13b).  Also, levels of HSF2-α and HSF2-β were each 

significantly increased in the respective cotransfected cell extracts over the cells 

transfected with the reporter plasmid alone.  Furthermore, gel mobility shift analysis 

revealed that both the HSF2-α and HSF2-β transfected cells had similar levels of HSE 

DNA binding activity (Figure 2.13c).  Thus inclusion of the 18 amino acid peptide 

confers a 2.6 fold greater transcriptional potency on the HSF2-α isoform over HSF2-β.  

These data suggest that HSF2-α may be playing a functionally distinct role from HSF2-β, 

by providing increased levels of transcription of hsp genes in cells expressing 

predominantly the HSF2-α isoform.  This may particularly relevant to the process of 

spermatogenesis, as pachytene spermatocytes and round spermatids express 

predominantly the HSF2-α isoform in the DNA binding form. 
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Figure 2.2:  RT-PCR analysis of HSF1 mRNA isoforms in mouse tissues.  

 

(A) Total RNA from mouse heart (H), brain (B), testis (T), was subjected to RT-PCR 

analysis using an oligonucleotide primer pair that amplifies the region corresponding to 

nucleotides 1272 to 1751 of the full-length mouse HSF1 cDNA (16).  (B)  Quantification 

of HSF1-α and HSF1-β mRNA isoform levels in mouse tissues.  The HSF1-α and HSF1-

β RT-PCR bands in panel A were quantified and normalized to values of S16 mRNA 

internal control bands. 
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Figure 2.2:  RT-PCR analysis of HSF1 mRNA isoforms in mouse tissues.  
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Figure 2.3: Western blot analysis of HSF2 protein from mouse tissues. 

 

Western blot analysis of HSF2 protein in mouse tissue extracts from heart (H), brain (B), 

testes, and the isolated spermatogenic cell types pachytene spermatocytes (PS) and round 

spermatids (RS) reveals the existence of two major HSF2 protein isoforms of 

approximately 69 and 71 kDa molecular weight.  
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Figure 2.3: Western blot analysis of HSF2 protein from mouse tissues. 
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Figure 2.4: RT-PCR analysis of HSF2 mRNA isoforms in mouse tissues.  

 

(A) Total RNA from mouse heart (H), brain (B), testis (T), pachytene spermatocytes 

(PS), and round spermatids (RS) was subjected to RT-PCR analysis using an 

oligonucleotide primer pair that amplifies the region corresponding to nucleotides 1171 

to 1643 of the full-length mouse HSF2 cDNA (16).  (B) Quantification of HSF2-α and 

HSF2-β mRNA isoform levels in mouse tissues.  The HSF1-α and HSF1-β RT-PCR 

bands in panel A were quantified and normalized to values of S16 mRNA internal control 

bands. 
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Figure 2.4: RT-PCR analysis of HSF2 mRNA isoforms in mouse tissues.  
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Figure 2.5: Nucleotide and deduced amino acid sequences of HSF1 mRNA isoform 

cDNAs. 

 

RT-PCR products corresponding to HSF1-α and HSF1-β mRNA isoforms (as shown in 

Figure 3A) were isolated, subcloned, and sequenced.  The nucleotide and deduced amino 

acid sequences shown correspond to the region of variation between the HSF1-α and 

HSF1-β mRNA isoforms.  Numbers refer to nucleotide position relative to the previously 

cloned full-length mouse HSF1 cDNA (Sarge et al., 1991). 
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Figure 2.5: Nucleotide and deduced amino acid sequences of HSF1 mRNA isoform 

cDNAs. 

 
 
  ser ala leu leu asp leu phe ser pro ser val thr met pro asp met ser leu  
 -//- AGT GCC CTG CTG GAC CTA TTC AGC CCC TCG GTG ACC ATG CCC GAC ATG AGC CTG  
 -//- AGT GCC CTG CTG GAC - - - - - - - - - - - - - - - - - - - - - - - - - - 
 | 
 1361 
 
 
 
pro asp leu asp cys ser leu ala ser ile gln glu leu leu 
CCT GAC CTG GAC TGC AGC CTG GCC AGC ATT CAG GAG CTT CTG-//- mHSF1-α 
- - - - - - - - - - - - - - - - - - ATT CAG GAG CTT CTG-//- mHSF1-β 
 | 
 1390 
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Figure 2.6: Nucleotide and deduced amino acid sequences of HSF2 mRNA isoform 

cDNAs. 

 

RT-PCR products corresponding to HSF2-α and HSF2-β mRNA isoforms (as shown in 

Figure 5A) were isolated, subcloned, and sequenced.  The nucleotide and deduced amino 

acid sequences shown correspond to the region of variation between the HSF2-α and 

HSF2-β mRNA isoforms.  Numbers refer to nucleotide position relative to the previously 

cloned full-length mouse HSF2 cDNA (Sarge et al., 1991). 
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Figure 2.6: Nucleotide and deduced amino acid sequences of HSF2 mRNA isoform 

cDNAs. 

 
 
  asp leu leu val asp leu phe thr ser ser val gln met asn pro thr  
  [--//-- GAT CTT CTG GTT GAT CTT TTC ACT AGT TCT GTG CAG ATG AAT CCC ACA  
  [--//-- GAT CTT CTG GTT GAT - - - - - - - - - - - - - - - - - - - - - -  
 | 
 1317 

 
asp asn ile asn asn thr lys ser glu asn lys gly 
GAT AAC ATC AAT AAT ACA AAA TCT GAG AAT AAG GGA --//--] mHSF2-α cDNA 
- - - - - - - - - - - - - - TCT GAG AAT AAG GGA --//--] mHSF2-β cDNA 

 | 
 1347 
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Figure 2.7: Sequence of HSF1 gene regions corresponding to alternative splice 

junctions. 

 

An HSF1 genomic fragment containing the exon-intron boundaries of interest was 

isolated from a mouse genomic library, subcloned, and sequenced.  Exons are shown as 

bold capital type while introns are shown as normal lower-case type.  Numbers at the 

beginning and end of the genomic sequences are nucleotide positions relative to the full-

length mouse HSF1 cDNA (Sarge et al., 1991), which are the same as those indicated in 

Figure 6 in order to allow easy comparison of the corresponding HSF1 mRNA isoform 

and gene sequences. 
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Figure 2.7: Sequence of HSF1 gene regions corresponding to alternative splice 

junctions. 

 
 

 
 1361 AGTGCCCTGC TGGACgtgag tctggtcatc cctacccacc ctgctccatc ctgcccacaa 

TCACGGGACG ACCTGcactc agaccagtag ggatgggtgg gacgaggtag gacgggtgtt 
 
gccagccctg actccctccc tcctcctgca gCTATTCAGC CCCTCGGTGA CCATGCCCGA 
cggtcgggac tgagggaggg aggaggacgt cGATAAGTCG GGGAGCCACT GGTACGGGCT 
 
CATGAGCCTG CCTGACCTGG ACTGCAGCCT GGCCAGCgtg cgtaggcggg cagggtgggg 

GTACTCGGAC GGACTGGACC TGACGTCGGA CCGGTCGcac gcatccgccc gtcccacccc 
 

ggggcagagg ggggccatca acaacctatg tgttcctgtc cacagATTCA GGAGCTTCGT  1390 
ccccgtctcc ccccggtagt tgttggatac acaaggacag gtgtcTAAGT CCTCGAAGAC 
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Figure 2.8: Schematic representation of HSF1 mRNA alternative splicing. 

 

Schematic representation of HSF1 mRNA alternative splicing pathways and functional 

domains of HSF1-α and HSF1-β protein isoforms.  The HSF1 exon encoding the 22 

amino acid sequence which differs in the HSF1 isoforms is indicated (SV), along with the 

conserved DNA-binding domain, oligomerization domain (LZ's 1, 2, 3), and carboxy-

terminal leucine zipper motif (LZ-4). 
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Figure 2.8: Schematic representation of HSF1 mRNA alternative splicing. 
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Figure 2.9:  Novel leucine zipper motif in HSF1-αα . 

 

Regions of the amino acid sequences of the mouse HSF1-α, human HSF1 and Drosophila 

HSF homologs corresponding to leucine zipper 4 (LZ-4) and the alternative splice 

junction of the mouse HSF1 protein were aligned.  The sequences were then analyzed to 

identify potential heptad hydrophobic amino acid repeats characteristic of leucine zipper 

motifs.  Open (∆) and closed (s) triangles correspond to the two registers of the 

previously identified LZ-4 (15).  Open (�) and closed (u) diamonds indicate the 

hydrophobic amino acids which comprise the newly identified leucine zipper 5 (LZ-5).  

Numbers at the beginning and end of the sequences refer to positions relative to the 

published full-length amino acid sequences. 
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Figure 2.9:  Novel leucine zipper motif in HSF1-αα . 
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Figure 2.10:  Sequence of HSF2 gene regions corresponding to alternative splice 

junctions. 

 

An HSF2 genomic fragment containing the exon-intron boundaries of interest was 

isolated from a mouse genomic library, subcloned, and partially sequenced.  Exons are 

shown as bold capital type while introns are shown as normal lower-case type.  Numbers 

at the beginning and end of the genomic sequences are nucleotide positions relative to the 

full-length mouse HSF2 cDNA (Sarge et al., 1991), which are the same as those indicated 

in Figure 7 in order to allow easy comparison of the corresponding HSF1 mRNA isoform 

and gene sequences. 
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Figure 2.10:  Sequence of HSF2 gene regions corresponding to alternative splice 

junctions. 
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Figure 2.11: Schematic representation of HSF2 mRNA alternative splicing. 

 

Schematic representation of HSF2 mRNA alternative splicing pathways and functional 

domains of HSF2-α and HSF2-β protein isoforms.  The HSF2 exon encoding the 18 

amino acid sequence which differs in the HSF2 isoforms is indicated (SV), along with the 

conserved DNA-binding domain, oligomerization domain (LZ's 1, 2, 3), and carboxy-

terminal leucine zipper motif (LZ-4). 



 

 

70

Figure 2.11: Schematic representation of HSF2 mRNA alternative splicing. 
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Figure 2.12:  RT-PCR analysis of HSF2 isoforms during testis development. 

 

RT-PCR analysis of testis expressed HSF2 isoforms during postnatal development.  (A) 

Total RNA isolated from testes of mice at 7, 14, and 21 days of postnatal development 

and from adult mice (6 wk) was analyzed by RT-PCR.  (B) The RT-PCR bands from 

panel A were quantified and normalized to the S-16 internal control.  A refers to adult 

mice. 
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Figure 2.12:  RT-PCR analysis of HSF2 isoforms during testis development. 
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Figure 2.13:  Reporter gene analysis of HSF2-αα  and HSF2-ββ  isoforms. 

 

(A) HSF2-α and HSF2-β expression plasmids were cotransfected with an hsp70 

promoter-luciferase reporter plasmid into NIH 3T3 cells.  Cells were assayed for 

luciferase activity and normalized to total protein and luciferase activity from NIH3T3 

cells transfected with the reporter gene and parental expression vector.   Cell transfected 

with HSF2β and HSF2α express 3.6 (±0.5) and 9.6 (±1.1) fold more luciferase 

(respectively) than control transfected NIH 3T3 cells.  (B) An immunoblot of extracts 

from NIH 3T3 cells transfected with the reporter plasmid alone (lane 1), HSF2-β (lane 2), 

or HSF2-α (lane 3) was probed with an antibody against HSF2.  Relative molecular 

weight marker positions are indicated on the left (size in kDa).  (C) Gel mobility shift 

analysis of extracts from NIH 3T3 cells transfected with the reporter plasmid alone (lane 

1), HSF2-β (lane 2), or HSF2-α (lane 3) using an idealized-HSE containing 

oligonucleotide as a probe.  The position of the HSF2-specific mobility shift (HSF2), a 

nonspecific mobility shift (NS) and the free probe (F) are indicated on the left.  Calcium 

phosphate transfections performed by Dr. Kevin Sarge. 
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Figure 2.13:  Reporter gene analysis of HSF2-αα  and HSF2-ββ  isoforms. 
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DISCUSSION 
 

HSF1 alternative splicing—implications for differential stress response activation. 

 

 These results reveal the existence of a new mechanism for the regulation of HSF1 

in mammalian cells.  Mouse cells express two distinct HSF1 isoforms, HSF1-α and 

HSF1-β, which arise via alternative splicing of the HSF1 pre-mRNA. This alternative 

splicing results in the inclusion of a 66 bp exonic sequence which encodes 22 amino 

acids not found the in shorter HSF1-β isoform of the protein.  This splicing event occurs 

immediately carboxy-terminal to the predicted leucine zipper (LZ-4), and inclusion of 

this 22 amino acid sequence creates a fifth predicted leucine zipper motif. In addition, the 

expression of these two HSF1 isoforms is regulated in a tissue-dependent manner. 

 We can postulate two possible functions for the regulated expression of the two 

HSF1 isoforms.  The first possibility is that the additional 22 amino acid sequence 

present in the HSF1-α isoform may function to increase the transcriptional activity of the 

HSF1 protein, similar to the effect observed for with HSF2 isoforms.  Therefore, we 

hypothesize that the levels of the HSF1 protein isoforms may be regulated in order to 

modulate the potency of the cellular stress response in cells of different tissues. 

 A second possibility is that the extra 22 amino acids in the HSF1-α protein 

functions to modulate the stability of the non-DNA binding form of this HSF1 protein 

isoform.  As shown above (Figure 10), the insertion of the extra 22 amino acid sequence 

in the HSF1-α protein isoform creates a potential fifth leucine zipper motif which 

immediately follows the previously identified leucine zipper 4 (Rabindran et al., 1991).  



 

 

76

Leucine zipper 4 has been implicated in the maintenance of HSF1 in the monomeric non-

DNA binding form, presumably via interactions with leucine zipper sequences in the N-

terminal oligomerization domain.  We hypothesize that this fifth leucine zipper may act 

in concert with leucine zipper 4 to further stabilize the monomeric non-DNA binding 

form of the HSF1-α protein isoform.  We further hypothesize that the HSF1-α isoform, 

due to the inclusion of this fifth leucine zipper motif, may have an activation temperature 

setpoint that is slightly higher than the HSF1-β isoform, which lacks this motif.  

Consistent with this, testis, which has an HSF1 activation temperature of 35ºC expresses 

predominantly HSF1-β while heart and brain, which have and HSF1 activation 

temperature of 42ºC, express predominantly HSF1-α (Sarge et al., 1995a, Sarge et a.l).  It 

is unlikely, however, that differences in HSF1 isoform expression explain this difference 

in HSF1 activation temperature.  Cellular environment likely dictates the activation 

temperature for HSF1.  When drosophila HSF, which is normally activated at 30ºC, is 

added to human cell extracts, its set point is reprogrammed to 42ºC, that of the human 

HSF1 (Clos et al, 1993 ).  Therefore, it is possible that cells express both HSF1-α and 

HSF1-β isoforms because together they provide a larger temperature range over which 

the cellular stress response can be induced, thus conferring an increased ability to respond 

to environmental stresses of differing severity. 

 

HSF2 alternative splicing—implications for spermatogenic gene regulation. 

 

 The results in this work have shown that mice express two distinct protein 

isoforms of HSF2 and that these isoforms arise from alternative mRNA splicing.  This 
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alternative splicing event results in the inclusion of a 54 bp exon, which encodes an 18 

amino acid sequence not found in the HSF2-β isoform.  We have shown that this splicing 

event is tissue-dependent as well as germ cell type-dependent in the testis.  We have also 

shown that there is a regulated switch from HSF2-β to HSF2-α during postnatal 

development in the mouse testis.  Furthermore, we have shown that the inclusion of this 

18 amino acid sequence immediately following the carboxy-terminal leucine zipper 

(LZ4) has the functional consequence of making the HSF2-α isoform a 2.6 fold more 

potent transcriptional activator than the HSF2-β isoform.  As both isoforms have similar 

DNA binding properties, this effect is likely due to increased transactivating potential.  

The most probable explanation for this is that inclusion of the 18 amino acid sequence 

causes a more favorable interaction with the transcriptional machinery.  This could be by 

the addition of a transactivation domain or by favorably affecting the position of an 

existing transactivation domain.  Previous studies have demonstrated that the 

transcription factor cyclic-AMP response element modulator (CREM) is regulated by 

alternative splicing during spermatogenesis (Delmas et al., 1993; Foulkes et al., 1992). 

CREM switches from transcriptional repressor forms (CREM-α, -β, -γ) to a testis specific 

transcriptional activator form (CREM-τ) with the inclusion of two glutamine-rich 

transactivation domains (Foulkes et al., 1992). 

 Previous data from our lab has shown that HSF2 is subject to complex regulation 

during spermatogenesis.  In the testis, HSF2 expression is upregulated in a cell type, 

spermatogenic stage, and developmentally-dependent manner.  Additionally, our lab has 

shown that unlike in somatic tissues, HSF2 is found in the DNA binding form in the testis 

(Sarge et al., 1994).  To these complex regulatory regiments, we can now add attenuation 
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of HSF2 transcriptional activity by alternative mRNA splicing.  HSF2 expressed in testis 

cell extracts is capable of binding sequences in the promoter of the hsp70.2 gene, a testis-

specific hsp70 family member (Sarge et al., 1994).  We, therefore, hypothesize that the 

switch from HSF2-β to HSF2-α during spermatogenesis functions to upregulate one or 

more hsp genes required to facilitate the unique pattern of protein expression found in 

male germ cells.  Future studies will be required to identify the cis- and trans-acting 

factors involved in the overall upregulation of HSF2 as well as those involved in the 

switch in mRNA splicing.  Based on the complexity of HSF2 regulation in the testis, 

however, these studies are likely to provide insights into the mechanisms of gene 

regulation used during spermatogenesis. 
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Chapter 3  

SUMO-1 Modification of HSF2 

 

 

INTRODUCTION 

 

 Biology’s central dogma states that the genetic information of a cell is stored as 

DNA.  This information is first transcribed or copied to a transient RNA intermediate and 

then is translated from RNA into proteins that make up the functional components of the 

cell (Alberts et al., 1989).  While the concepts imbedded in this central dogma are 

inherently correct, they are also greatly over simplified.  There are many other levels of 

regulation that impinge on the ultimate function of a gene product.  One mechanism of 

regulation that researchers are finding increasingly important is that of post-translational 

protein modification.  Examples of this include phosphorylation, proteolytic processing, 

glycosylation, covalent lipid modification, and protein coupling (Alberts et al., 1989).   

 Of interest to this work is post-translational protein coupling, or the covalent 

attachment of a polypeptide chain to another protein.  The most common example of this 

is ubiquitination.  Ubiquitin is a 7 kDa polypeptide that is covalently bonded to the ε-

amino group of a lysine residue in the target protein by a multi-enzyme ligase complex 

(Hershko and Ciechanover, 1998; Hochstrasser, 1996).  The first step involves the 

proteolytic processing of ubiquitin to expose a diglycine motif at the C-terminus.  The 

processed ubiquitin is then covalently attached to a cysteine residue in the E1 or ubiquitin 

activating enzyme (Uba1 in S. cerevisiae) in an ATP dependent fashion (Figure 3.1). 
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Figure 3.1: Schematic representation of the ubiquitination cycle. 

 

Ubiquitin (Ub) is conjugated to a ubiquitin activating enzyme (E1) in an ATP dependent 

fashion.  E1 transfers the ubiquitin to one of several ubiquitin conjugating enzymes (E2).  

E2 then transfers ubiquitin to a target protein with the assistance of one of many ubiquitin 

ligases (E3).  This cycle of ubiquitin attachment to a target protein can be repeated 

multiple times leading to polyubiquitination and ultimately protein degradation by the 

26S proteosome.  Degradation of the target protein leads to release of free ubiquitin 

which can then be reused in the ubiquitination cycle.  (Adapted from Varshavsky, 1997). 
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Figure 3.1: Schematic representation of the ubiquitination cycle. 
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  An E2 or ubiquitin conjugation enzyme then receives the ubiquitin from the E1 in a 

transthioesterification reaction.  The E2 in conjunction with an E3 or ubiquitin ligase 

(often for specificity) catalyzes the transfer of ubiquitin to the target protein in an 

amidation reaction.  Interestingly, ubiquitin contain several lysine residues 

(predominantly Lys-48) which can serve as target residues for further ubiquitination, thus 

allowing formation of ubiquitin polymers.  This polyubiquitination serves as a targeting 

signal for the 26S proteosome and ultimately degradation of the target protein (Hershko 

and Ciechanover, 1998; Hochstrasser, 1996; Varshavsky, 1997). 

 In the past several years, a number of reports have described several proteins with 

similarity to ubiquitin.  These proteins include Rub1, UCRP, FAU, and SUMO-1 

(Mahajan et al., 1997; Matunis et al., 1996; Rao-Naik et al., 1998; Vierstra and Callis, 

1999).  At least in the cases of Rub1, or its mammalian homolog Nedd8, and SUMO-1, 

these seem to be similar but functionally distinct homologs, both with respect to ubiquitin 

and each other.  Both use ligase complexes discrete from ubiquitin and discrete from each 

other (Desterro et al., 1999; Desterro et al., 1997; Gong and Yeh, 1999; Okuma et al., 

1999).  In addition, they modify different proteins. 

 SUMO-1 is a 97 amino acid, 17 kDa polypeptide which shares 18% amino acid 

sequence identity with ubiquitin.  Originally SUMO-1 was identified as a modifier of the 

Ran GTPase activating protein, RanGAP1.  It was subsequently and independently 

discovered by a number of different laboratories and given an assortment of names—

SUMO-1, UBL1, GMP1, PIC1, Sentrin, Smt3 in S. cerevisiae, and Pmt3P in S. pombe.  

SUMO-1 is required for viability (Hodges et al., 1998; Kretz-Remy and Tanguay, 1999; 
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Mahajan et al., 1997; Matunis et al., 1996; Saitoh et al., 1997).  In S. cerevisiae, Smt3 is 

required for entry into the mitotic phase of the cell cycle (Li and Hochstrasser, 1999), and 

in S. pombe, PmtP3 is required for control of telomere length and chromosomal 

segregation (Tanaka et al., 1999).   

 SUMO-1 is a member of a family of at least three SUMO proteins in mammalian 

cells, named SUMO-1, SUMO-2 and SUMO-3 (Kamitani et al., 1998a; Saitoh and 

Hinchey, 2000).  SUMO-1 is 48% identical to SUMO-2 and 46% identical to SUMO-3, 

while SUMO-2 and SUMO-3 are 95% identical to each other.  SUMO-2/3 represent a 

larger portion of the SUMO modified proteins in cells than does SUMO-1.  In addition, a 

large pool of unconjugated SUMO-2/3 exists in cells (Saitoh and Hinchey, 2000).  

Interestingly the relative amount of conjugated SUMO-2/3 increases when cells are 

exposed to protein damaging stresses such as heat shock, oxidative stress, or the protease 

inhibitor MG132 (Saitoh and Hinchey, 2000).  SUMO-1 and SUMO-2/3 appear to 

colocalize to the same nuclear domain structures, but SUMO 2/3 does not appear to be 

conjugated to the predominant SUMO-1 target, RanGAP1 (Saitoh and Hinchey, 2000).  

Thus, SUMO-1 and SUMO 2/3 may have some overlap in function, but do represent 

functionally distinct members within the SUMO protein family. I will focus on SUMO-1 

except where noted. 

 The tertiary structure for SUMO-1 has been solved and appears to be virtually 

superimposable with the structure of ubiquitin.  Both ubiquitin and SUMO-1 have a five 

β-sheet, two α-helix, ββαββαβ fold (Bayer et al., 1998). A key difference, however, is that 

the surface of SUMO-1 contains a groove region that is highly acidic, which ubiquitin 

lacks (Bayer et al., 1998).  Strikingly, the SUMO-1 binding surface of Ubc9, the SUMO-
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1 conjugating enzyme (E1), has two pockets of highly basic residues that receive the 

acidic residues of SUMO-1.  Thus this difference in surface charge likely explains how 

the conjugating enzymes for SUMO-1 and ubiquitin can discriminate between the two 

(Liu et al., 1999). 

 In addition to structural similarities, SUMO-1 shares other similarities with 

ubiquitin.  Like ubiquitin, SUMO-1 is translated as a protein that requires proteolytic 

processing.  SUMO-1 is initially a 101 amino acid peptide that must have four amino 

acids at the C-terminus removed to expose a diglycine motif (Matunis et al., 1996; 

Matunis et al., 1998). The protease that is responsible for processing SUMO-1 in vivo has 

not been definitively identified.  One candidate activity has been described in bovine 

brain extracts.  In an in vitro assay, this 30 kDa activity is capable of processing SUMO-1 

to the 97 amino acid form (Suzuki et al., 1999). 

 SUMO-1 also uses a multi-enzyme ligase complex to attach to target proteins.  

The processed SUMO-1 is a substrate for the SUMO E1, which is a heterodimer of two 

proteins called SAE1 and SAE2 (for SUMO-1 Activating Enzyme) (Figure 3.2) (Desterro 

et al., 1999; Okuma et al., 1999).   
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Figure 3.2: Schematic representation of the SUMO-1 modification cycle. 

 

SUMO-1 is covalently attached to the SUMO-1 activating enzyme heterodimer (E1).  E1 

transfers SUMO-1 to the SUMO-1 conjugating enzyme, Ubc9 (E2).  Ubc9 transfers 

SUMO-1 directly onto the target protein.    Notice how simplified the SUMO-1 

modification cycle is relative to the ubiquitination cycle.  SUMO-1 uses only one E2 and 

no E3.  Also, proteins can only be mono-SUMO-1 modified. SUMO-1 modification 

functions to alter the function of the target protein rather than to target it for degradation.  

Several SUMO-1 specific proteases indicate that the process of SUMO-1 modification is 

reversible and that SUMO-1 can be reutilized like ubiquitin.  (Adapted from Varshavsky, 

1997). 
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Figure 3.2: Schematic representation of the SUMO-1 modification cycle. 
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 SAE1 is homologous to the N-terminus of the ubiquitin E1 and SAE2 shares 

homology with the C-terminus of the ubiquitin E1.  Cys-173 of SAE2 serves as the 

acceptor residue for SUMO-1.  Ubc9 is the E2 for SUMO-1.  It receives the SUMO-1 

from SAE1/2 and transfers it to the target protein (Desterro et al., 1997; Okuma et al., 

1999).  All SUMO-1 modified proteins characterized to date interact with Ubc9 directly, 

arguing that SUMO-1 may not require a separate E3 ligase for specificity (Duprez et al., 

1999; Kim et al., 1999; Lee et al., 1998; Poukka et al., 1999).  Supporting this idea is the 

fact that SUMO-1 modification can be reconstituted in vitro with only ATP, SUMO-1, 

SAE1, SAE2, Ubc9, and a target protein such as PML or RanGAP1 (Duprez et al., 1999; 

Lee et al., 1998). 

 Initial characterization of SUMO-1 modified proteins was hindered by an activity 

that hydrolyzed the SUMO-1 from the modified proteins, suggesting that like ubiquitin 

SUMO-1 is a reversible modification.  Several proteins with SUMO-1 specific protease 

activity have been described. The first sumo-1 specific protease, Ulp1, was identified 

from the budding yeast S. cerevisiae and is unrelated to any ubiquitin specific protease.  

Ulp1 is capable of hydrolyzing the isopeptide bond from Smt3 (the yeast homolog of 

SUMO-1) modified proteins but not from those modified by ubiquitin.  Mutations in 

Ulp1 cause an accumulation of Smt3 modified proteins and an arrest in the G2/M phase 

of the cell cycle (Li and Hochstrasser, 1999).  Recently, the human SENP1 was identified 

as a protease that is capable of removing SUMO-1 from modified proteins.  SENP1 

specifically hydrolyzes the isopeptide bond of SUMO-1 modified proteins, but not 

NEDD8 or ubiquitin (Gong et al., 2000).  SENP1 is homologous to Ulp1, but not to 

ubiquitin specific proteases.  Interestingly, SENP1 in vivo appears to selectively remove 
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SUMO-1 from nuclear domain proteins like PML and not from RanGAP1 which is 

located at the nuclear pore.  Presumably this is due to SENP1’s localization within the 

nucleus (Gong et al., 2000).  Additionally the 30 kDa activity from bovine brain extracts 

which is capable of processing SUMO-1 also appears to be a SUMO-1 specific protease 

(Suzuki et al., 1999).  

 SUMO-1 modification of proteins does not appear to target proteins for 

degradation.  In SUMO-1, the homologous residue to Lys-48 in ubiquitin (required for 

polyubiquitination) is a glutamine.  No evidence to date has been found for the formation 

of SUMO-1 polymers.  Consistent with this, SUMO-1 appears to have a number of other 

functions in the cell (Hodges et al., 1998; Kretz-Remy and Tanguay, 1999; Saitoh et al., 

1997).  For RanGAP-1, SUMO-1 modification is required for localization to the nuclear 

pore complex.  RanGAP1 is the GTPase activating protein for Ran, a protein involved in 

nuclear import.  Two species of RanGAP1 exist in the cell, a 70 kDa form and a 90 kDa 

form.  The 90 kDa form is highly enriched in nuclear extracts and was found to be 

SUMO-1 modified (Matunis et al., 1996; Matunis et al., 1998).  SUMO-1 modification of 

RanGAP1 is required for its association with nup358—also called RanBP—a Ran 

binding protein in the nuclear pore complex.  Consistent with this finding, SUMO-1 

modification of RanGAP1 is required for its association with the nuclear pore complex 

(Mahajan et al., 1997; Mahajan et al., 1998; Matunis et al., 1996; Matunis et al., 1998). 

 For IκB and possibly p53, SUMO-1 modification appears to stabilize these 

proteins. NFκB and IκB form a latent or inactivate complex in cells.  IκB performs a dual 

function in this complex by binding to NFκB to mask its nuclear localization signal and 

to inhibit NFκB’s DNA binding and transactivating activity.  Upon stimulation (TNFα, 
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PMA, etc.) IκBα is phosphorylated on two serine residues (Jaffray et al., 1995; Kroll et 

al., 1997).  These phosphorylation events trigger and are required for polyubiquitination 

of IκB at two lysine residues that ultimately target it for degradation by the 26S 

proteosome, leaving NFκB free to dimerize and activate transcription (Jaffray et al., 

1995; Kroll et al., 1997).  Recent results have shown that IκBα can also be modified by 

SUMO-1 at Lys21, the primary site of ubiquitination.  SUMO-1 modification does not 

require phosphorylation of IκB.  In fact, the serine phosphorylation of IκB required for 

ubiquitination appears to inhibit SUMO-1 modification (Desterro et al., 1998).  SUMO-1 

modified IκB is resistant to TNFα signaling and degradation.  Furthermore, 

overexpression of Ubc9 or SUMO-1 results in reduced TNFα signaling through NFκB.  

Thus, SUMO-1 appears to create a pool of stabilized IκB/NFκB that is resistant to 

signaling and protease degradation of IκB (Desterro et al., 1998; Kretz-Remy and 

Tanguay, 1999).  Like NFκB, p53 is a transcription factor.  P53 is unique, however, in 

that is has tumor suppressive properties and is integrally tied to programmed cell death.  

Normally p53 is made in all cells but is rapidly ubiquitinated and degraded.  When cells 

are stressed, p53 ceases to be ubiquitinated and is, therefore, stabilized, and p53 

accumulates and activates transcription.  Recent studies have shown that p53 is also 

capable of being SUMO-1 modified (Gostissa et al., 1999; Rodriguez et al., 1999).  P53 

is SUMO-1 modified at Lys386.  Mutations in this residue do not affect the level of 

ubiquitination of p53.  Modification of p53 by SUMO-1 leads to increased levels of p53 

transcriptional activity.  Thus SUMO-1 may function to activate or enhance p53’s 

transactivating activity (Gostissa et al., 1999; Rodriguez et al., 1999). 
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 SUMO-1 modification of PML, Sp100, and HIPK-2 causes localization to nuclear 

bodies, discrete subdomains within the nucleus.  The protein PML was originally 

identified through its association with acute promeylocytic leukemia, which in 70-100% 

of cases is caused by a translocation event that creates a fusion protein of PML and the 

retinoic acid receptor-α (RAR-α).  The normal PML, but not the PML-RAR-α fusion 

protein is modified by SUMO-1 (Duprez et al., 1999; Kamitani et al., 1998b; Kamitani et 

al., 1998c; Muller et al., 1998).  PML is normally found in nuclear bodies or ND10, 

interchromosomal accumulations of protein.  Experiments have demonstrated that 

SUMO-1 modification of PML is required for its association into ND10 (Duprez et al., 

1999; Kamitani et al., 1998b; Kamitani et al., 1998c; Muller et al., 1998).   A number of 

the other ND10 proteins have been identified and include Daxx, BML, RecQ helicase, 

and Sp100 (Everett et al., 1999a; Ishov et al., 1999).  The ND10 component Sp100 is also 

SUMO-1 modified, and SUMO-1 modification is required for Sp100 localization to 

ND10 (Sternsdorf et al., 1999).  Interestingly, PML plays a critical role in ND10 

formation, as cells that lack PML or have a mutant form of PML that cannot be SUMO-1 

modified do not form ND10 and the other ND10 proteins localize elsewhere (Ishov et al., 

1999).  Thus PML and its SUMO-1 modification are critical for ND10 formation. 

 Unlike most SUMO-1 modified proteins, PML shows evidence of incrementally 

larger products suggesting that PML might be poly-SUMO-1 modified.  Experiments 

demonstrated, however, that PML is modified by SUMO-1 at three distinct sites, which 

explains the appearance of multiple SUMO-1 modified species of PML (Kamitani et al., 

1998b).  ND10 formation and both PML and Sp100 SUMO-1 modification appear to be 

cell cycle regulated (Everett et al., 1999b).  During interphase, both PML and Sp100 are 
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SUMO-1 modified and tightly colocalize to ND10.  However, during mitosis PML and 

Sp100 cease to form ND10 and are no longer SUMO-1 modified.  Also, during mitotic 

phase a labile, alternatively modified form of PML appears that is stabilized by the 

phosphatase inhibitor calyculin A (Everett et al., 1999b).  Furthermore, treatment of 

interphase cell extracts with calyculin A results in the formation of a PML species with 

similar gel mobility as the mitotic phase PML species, suggesting that phosphorylation 

may play a role in PML SUMO-1 modification (Everett et al., 1999b). 

 HIPK2, homeodomain interacting protein kinase 2, is a member of a recently 

identified family of nuclear kinases which act as corepressors of homeodomain 

transcription factors.  HIPK2 is modified at its very carboxy-terminus on lys1182 at a site 

that does not match the consensus SUMO-1 modification sequence ( [V/I/L]KX [E/D]) 

(Kim et al., 1999).  Ubc9 interacts with HIPK2 between amino acids 860 and 892.  Thus, 

HIPK2 has a Ubc9 interaction domain that is discrete from its SUMO-1 modification site.  

HIPK2 localizes to discrete nuclear domains.  Both the Ubc9 interaction domain and the 

SUMO-1 modification site are required for nuclear domain formation.  Curiously SUMO-

1 modified HIPK2 does not co-localize with PML suggesting that the HIPK2 nuclear dots 

represent nuclear domains distinct from ND10 (Kim et al., 1999). 

 In the yeast S. cerevisiae, four proteins known as septins have been shown to be 

Smt3 modified.  Septins are proteins that are part of the 10 nm fibers that encircle the bud 

neck during mitosis.  In S. cerevisiae Smt3 is essential for entry into mitosis (Li and 

Hochstrasser, 1999).  Smt3 conjugated septins appear just before the onset of anaphase 

and abruptly disappear during cytokinesis (Johnson and Blobel, 1999).  Curiously, only 

the septins on the maternal side of the bud neck are Smt3 modified.  Smt3 modification 



 

 

92

sites in all four septins have been identified and all conform to the SUMO-1 consensus 

sequence.  Mutation of these Smt3 sites eliminates almost all the Smt3 staining at the bud 

neck and results in a pheontype of defective septin ring disassembly (Johnson and Blobel, 

1999).  Thus SUMO-1 may play a role in the dynamics of the septin ring in S. cerevisiae. 

 Previous work has shown HSF1 is posttranslationally modified by 

phosphorylation.  A great deal of work has gone into characterizing the nature and 

function of both the basal and activation induced phosphorylation of HSF1 (Chu et al., 

1996; Cotto et al., 1996; Farkas et al., 1998; Hoj and Jakobsen, 1994; Kim et al., 1997; 

Kline and Morimoto, 1997; Knauf et al., 1996; Mivechi and Giaccia, 1995; Xia et al., 

1998; Xia and Voellmy, 1997).  In contrast, very little is known about posttranslational 

modification of HSF2.  Preliminary studies demonstrated that HSF2 did not have the 

western blot mobility changes caused by phosphorylation as seen for HSF1 (Sarge et al., 

1993).  HSF2 is known to have a relatively short half-life of 60-70 min, and drugs that 

inhibit 26S proteosome function such as MG132 and lactacystin lead to the accumulation 

and subsequent activation of HSF2.  Interestingly, HSF2 does not appear to be ubiquitin 

modified (Mathew et al., 1998). 

 Results from this work indicate that HSF2, but not HSF1 is modified by the 

covalent attachment of SUMO-1.  HSF2, but not HSF1, is a substrate for SUMO-1 

modification in an in vitro conjugation assay.  Consistent with these findings, HSF2 but 

not HSF1 appears to interact with a portion of Ubc9, the SUMO-1 conjugating enzyme, 

in yeast two hybrid assay.  The fusion protein GFP-HSF2 colocalizes with SUMO-1 in 

nuclear domain structures in approximately 7% of transfected HeLa cells.  These data 



 

 

93

would suggest that the function of SUMO-1 modification is to localize HSF2 to nuclear 

bodies in a regulated manner. 

 

MATERIALS AND METHODS 

 

Plasmid DNA Construction 

 

 The yeast two hybrid vectors pGBD-HSF1 and pGBD-HSF2 were cloned as 

previously described (Hong and Sarge, 1999). Polymerase chain reaction (PCR) to was 

used to generate BclI sites immediately before and after the open reading frame of the 

mouse HSF2β cDNA.  The BclI digested PCR fragment of HSF2β was cloned into the 

BamHI site of pQE9 (Qiagen, Hilden, Germany), thus generating pQE9-HSF2β. The 

pGEX-SUMO-1 plasmid was cloned as previously described, and was a generous gift of 

Dr. Joanna Desterro (Desterro et al., 1997).  

  PCR was used to generate a SalI site and a Kozak consensus sequence (5’-

CCACC-3’) immediately before and a ClaI site immediately after the open reading frame 

of the mouse HSF2β cDNA (Kozak, 1987).  This undigested PCR fragment of HSF2β 

was cloned into the SmaI site of the pGEM-7Z (Promega, Madison, WI) cloning vector in 

which the ClaI site had been destroyed, thus generating the plasmid pGEM-HSF2βSC.  

PCR was also used to add an XhoI site and a Kozak consensus sequence before and a 

HindIII site, a stop codon, and then a KpnI site immediately before the naturally 

occurring stop codon of the open reading frame of mouse HSF1β cDNA.  The XhoI and 

KpnI digested PCR fragment of HSF1β was cloned into pSP72 (Promega, Madison, WI) 
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cloning vector digested with the same restriction endonucleases to generate the plasmid 

pSP-HSF1β-XHK. 

 The plasmid pcDNA-HSF2β-MH6 was cloned by digesting pGEM-HSF2βSC with 

SalI and HindIII to liberate the majority of the HSF2 ORF, and cloning it into 

pcDNA3.1/MycHisA(-) (Invitrogen, Carlsbad, CA) digested with XhoI and HindIII.  The 

remaining portion of the HSF2β open reading frame was cloned by PCR using primers 

which spanned the endogenous HindIII site in HSF2 and added a HindIII site 

immediately 5’ to the endogenous stop codon.  The HindIII digested PCR fragment was 

cloned into the HindIII site of the previous construct and orientation of the insert was 

verified using PCR.  The insert for pEGFP-HSF2β was generated by digesting pGEM-

HSF2βSC with ClaI, filling the resulting ends in with Klenow DNA polymerase (New 

England Biolabs, Beverly, MA), and digesting with SalI.  The insert was then cloned into 

pEGFP-C1 (Clonetec, Palo Alto, CA) digested with SalI and SmaI to create pEGFP-

HSF2β.  pEGFP-HSF1β was cloned by digesting pSP-HSF1β-XHK with XhoI and KpnI 

and cloning it into pEGFP-C1 digested with XhoI and KpnI as well. 

 

SUMO-1 Consensus Site Pattern Matching 

 

 The SUMO-1 consensus sites were identified in the HSF2 predicted protein 

sequence using the PATTERNMATCH algorithm in the Biology Workbench 3.2 

program suite.  Biology Workbench is a internet based suite of sequence analysis tools 

developed by the National Center for Supercomputing Applications at the University of 

Illinois and maintained by the San Diego Supercomputer Center 
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(http://workbench.sdsc.edu/).  The mouse HSF2α protein sequence was analyzed for the 

expression [ILV]K. [ED], which searches for either an isoleucine, a leucine, or a valine in 

the first position followed by a lysine, any amino acid, and then a glutamate or an 

aspartate in last position (Johnson and Blobel, 1999). 

 

Site Directed Mutagenesis of HSF2.  

 

 Point mutants were generated in pcDNA-HSF2β-MH6 which change the three 

predicted SUMO-1 modified lysine residues to arginine.  The predicted residues are Lys 

82, Lys 139, and Lys 151.  Site directed mutagenesis was performed using the 

QuickChange mutagenesis kit (Stratagene, La Jolla, CA) according the manufacture’s 

protocol, using the following mutagenic oligonucleotides: HSF2K82R-top, GGAAT 

TATCA GACAG GAAAG AGATG G; HSF2K82R-btm, CCATC TCTTT CCTGT 

CTGAT AATTC C; HSF2K139R-top, GGTTC AAATA AGACA AGAAA CTATT 

GAG; HSF2K139R-btm, CTCAA TAGTT TCTTG TCTTATTTGA ACC; HSF2K151R-

top, GCTTT CAGAA TTAAG AAGTG AGAAT GAATC C; HSF2K151R-btm, 

GGATT CATTC TCACT TCTTA ATTCT GAAAG C.  The K82R mutant 

oligonucleotides were also used to make the K82R mutant in pGBD-HSF2 and pEGFP-

HSF2β.  Mutants were confirmed by DNA sequencing. 

 

Yeast Transformation and the Two-Hybrid Assay. 
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 A 100 ml culture of YPD medium (20 g/l Bacto peptone (Difco Laboratories, 

Livonia, MI), 10 g/l yeast extract (Difco Laboratories, Livonia, MI), 20g/l dextrose, pH 

5.8) was inoculated with the S. cerevisiae strain PJ 69-4A (MATa trp 1-901 leu2-3,112 

ura3-52 ade2-101 his3-200 gal4∆ gal80∆ LYS2::GAL1-HIS3 GAL2-ADE2 met2::GAL7-

lacZ) and grown at 30°C with agitation until culture reached OD600 = 1.0 (James et al., 

1996).  The yeast were harvested by centrifugation for 5 min at 5,000 x g (5,500 rpm in a 

GSA rotor).  The supernatant medium was discarded, and the yeast were washed twice in 

10 ml TE, pH 7.0 (10 mM Tris-HCl, pH 7.0 + 1 mM EDTA).  The yeast were resuspend 

in 1 ml of 100 mM LiOAC•TE (100 mM lithium acetate, 10 mM Tris-HCl, pH 7.0 + 1 

mM EDTA) and were incubate at 30°C for 1 hr.  Cells were then distributed into 100 µl 

aliquots. Aliquots were either used immediately or 50 µl of 50% glycerol was added to 

each aliquot, and the yeast were stored at -80°C for future transformations.  Yeast were 

transformed with 5 µg of each plasmid DNA and 50 µg of sheared salmon sperm DNA 

(Sigma, St. Louis, MO).  The yeast were gently vortexed and incubated at 30°C for 30 

min.  Four volumes of 40% PEG4000•LiOAC (40% polyethylene glycol (average 

molecular weight 3,350 Da—Sigma, St. Louis, MO), 100 mM lithium acetate, 10 mM 

Tris-HCl, pH 7.0 + 1 mM EDTA) was added, and the yeast were gently vortexed and 

incubated at 30°C for 1 hr.  The sample was heat shocked for 5 min at 42°C, and the 

yeast were harvested by centrifugation at 6,000 rpm for 1 min.  The supernatant was 

discarded and the yeast were washed with 1 ml of the appropriate yeast minimal selective 

medium (1.7 g/l yeast nitrogen base without amino acids or ammonium sulfate (Difco 

Laboratories, Livonia, MI), 5 g/l ammonium sulfate, and 20 g/l dextrose) containing the 

appropriate nutrient supplementation to complement the auxotrophies of PJ69-4A 
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(typically adenosine, histidine, uracil, and methionine at a concentration of 20 mg/l each), 

but lacking the nutrients complemented by the two plasmids of interest (typically leucine 

and tryptophan).  The yeast were resuspended in 200µl of the appropriate yeast minimal 

selective medium and grown on plates containing the same minimal selective medium 

(with 20g/l Bacto Agar (Difco Laboratories, Livonia, MI)) at 30ºC for 2-3 days.  Colonies 

were transferred onto plates that contained the yeast minimal selective medium and also 

onto plates that also lacked adenosine or histidine, which is complemented by the two-

hybrid assay reporter gene.  Yeast were again grown 3 days at 30ºC.  Growth on the 

reporter gene selective plates was interpreted to indicate an interaction between the two 

proteins that were expressed from the yeast plasmids. 

 

In vitro SUMO-1 Modification Assay 

 

All in vitro SUMO-1 modifications were done by Dr. Michael J. Matunis as previously 

described (Lee et al., 1998). 

 

Recombinant Protein Expression 

 

 The bacterial expression plasmid pQE9-HSF2β or pGEX-SUMO1 were 

transformed into the E. coli strain BL21 (F- ompT hsdSB (rB
- mB

- ) gal dcm—Novagen, 

Madison, WI) which had been previously transformed with the pREP4 plasmid (Qiagen, 

Hilden, Germany) and plated onto LB+Glc plates (10 g/l Bacto tryptone (Difco 

Laboratories, Livonia, MI), 5 g/l yeast extract (Difco Laboratories, Livonia, MI), 4 g/l 
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dextrose, pH 7.0) containing 100 µg/ml ampicillin and 25 µg/ml kanamycin.  Bacteria 

were grown overnight at 37ºC.  Five colonies were picked from the fresh transformation 

plate and pooled for growth overnight at 37ºC with vigorous (>400 rpm) shaking in 5 ml 

LB+Glc containing 200 µg/ml ampicillin and 25 µg/ml kanamycin. The overnight culture 

was harvested and resuspended in 250 ml fresh LB+Glc containing 200 µg/ml ampicillin 

and 25 µg/ml kanamycin. The culture was grown at 37ºC with vigorous shaking to OD595 

= 0.6-1.0.  The bacteria were harvested and washed once in 30-40 ml M-9 with lactose 

medium (48 mM Na2HPO4, 22 mM KH2PO4, 86 mM g/l NaCl, 187 mM NH4Cl, 100 µM 

CaCl2, 1mM MgSO4, 4 g/l D-lactose, 4 g/l casamino acids (Difco Laboratories, Livonia, 

MI), 1 mg/l thiamin, 100 µg/ml ampicillin, and 0.5 mM isopropyl-β-D-

thiogalactopyranoside).  The bacteria were resuspended in 1 l of M-9 with lactose 

medium and grown for 3 hr at 37ºC with vigorous shaking to induce protein expression. 

Bacteria were harvested by centrifugation and resuspended in 30 ml PBS.  The bacteria 

were then pelleted and the supernatant was discarded.  Bacterial pellets were rapidly 

frozen in a dry ice/ethanol bath and stored at –80ºC until needed for protein purification. 

 

Recombinant Protein Purification 

 

 Recombinant His6 affinity tagged HSF2 was purified from bacteria containing 

pQE9-HSF2β.  The bacterial pellet was resuspended in pQE Wash buffer (100 mM KCl, 

20 mM Tris-HCl, pH 7.9, 2 mM 2-mercaptoethanol, and 5 mM imidazole).  Lysozyme 

was added to a final concentration of 100 µg/ml, and the bacteria were incubated for 15 

min at room temperature before returning to ice.  The bacteria were lysed by sonication 
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with three 15 s pulses with a W-220 Sonicator (Mysonix, Farmingdale, NY) with a ½ 

inch horn at 70% output (~150 W) with cooling on ice for 1 min between pulses.  

Sarkosyl was added to 1% (w/v) final concentration and the lysate was cleared by 

centrifugation at 12,000 x g for 15 min at 4ºC.  The supernatant was applied to a 3 ml 

Ni/NTA resin column (Qiagen, Hilden, Germany) at a flow rate of 0.5 ml/min.  The 

column was washed in pQE wash buffer at a flow rate of 1.5 ml/min until the column 

effluent absorbance returned to baseline (measured using an inline 280 nm UV 

spectrophotometric detector on a Pharmacia GradiFrac low pressure liquid 

chromatography system).  The His6 -HSF2 was eluted with an imidazole gradient of 5 

mM to 400 mM.  The HSF2 protein eluted at 150-200 mM imidazole concentration.  

 Recombinant glutathione-S-transferase (GST) affinity tagged SUMO-1 was 

purified from bacteria containing pGEX-SUMO1.  Protein expression was induced as 

described in the previous section.  The bacterial pellet was resuspended in SUMO lysis 

buffer (50 mM Tris-HCl, pH 7.5, 500 mM NaCl, 1mM dithiothreitol).  Lysozyme was 

added to a final concentration of 100 µg/ml, and the bacteria were incubated for 15 min at 

room temperature before returning to ice.  The bacteria were lysed by sonication with 

three 15 s pulses with a W-220 Sonicator (Mysonix, Farmingdale, NY) with a ½ inch 

horn at 70% output (~150 W) with cooling on ice for 1 min between pulses.  Triton X-

100 was added to 1% (w/v) final concentration and the lysate was cleared by 

centrifugation at 12,000 x g for 15 min at 4ºC.  The supernatant was applied to 750 µl of a 

50% slurry of glutathione agarose resin (Sigma, St. Louis, MO) in SUMO lysis buffer.  

The slurry was incubated at 4ºC for 20 min with constant inversion mixing.  The resin 

was collected by centrifugation and the supernatant was discarded.  The resin was washed 
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five times with 1 ml SUMO lysis buffer.  The protein was eluted twice by incubation 

with 250 µl SUMO lysis buffer with 10 mM glutathione for 2 min.  It is necessary to 

adjust the pH to 7-7.5 with NaOH before using the elution buffer, as glutathione is 

supplied as a free acid and dramatically lowers the pH of the buffer (to around pH 3).  

The eluates were pooled.  More than 50% of the SUMO-1 remained bound to the resin.  

Incubation with elution buffer for more than 2 hr resulted in the elution of the majority of 

the bound SUMO-1. 

 Both His6-HSF2 and GST-SUMO-1 were dialyzed into a buffer containing 20 

mM Tris, pH 7.5, 100 mM KCl, 2 mM 2-mercaptoethanol, and 10% glycerol.  The 

concentration of the protein was determined using the BioRad Protein Assay Kit 

(BioRad, Hercules, CA).  All measurements were normalized to a BSA standard 

concentration curve.  The proteins were aliquotted and rapidly frozen in a dry ice/ethanol 

bath before storing at –80ºC until needed. 

 

Transient Transfection of HeLa Cells 

 

 HeLa cells were transfected with pEGFP-C1, pEGFP-HSF1β, or pEGFP-HSF2β 

independently using Lipofectamine 2000 (Life Technologies, Rockville, MD).  In brief, 

HeLa cells were seeded in a six-well tissue plate with a sterile nitric acid washed 22mm x 

22mm cover slip, such that the cells would be approximately 80% confluent by the 

following morning.  HeLa cells were grown in DMEM containing 10% fetal bovine 

serum (FBS) and 50 µg/ml gentamicin (Life Technologies, Rockville, MD) at 37ºC with 

5% CO2. For each transfection, 4 µg of DNA was mixed with 250 µl of DMEM without 
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FBS or antibiotics in one well of a 24 well tissue culture dish.  In a second well, 7.5 µl of 

Lipofectamine 2000 was mixed with 250 µl of DMEM and incubated for 3 min at room 

temperature.  The two mixtures were then combined and allowed to incubate for 20 min 

at room temperature.  The medium was removed from the HeLa cells.  The HeLa cells 

were washed once with 2.5 ml of DMEM without FBS or antibiotics and 500 µl of 

DMEM without FBS or antibiotics was added to cells.  The DNA/Lipofectamine mixture 

as then added to the HeLa cells and incubated for 6 hr at 37ºC with 5% CO2.  After six 

hours, the DNA containing DMEM was removed and the media was replaced with 3 ml 

DMEM containing 10% FBS and 50 µg/ml gentamicin.  HeLa cells were grown for 24 hr 

before analyzing by fluorescence microscopy. 

  

Immunofluorescent Microscopy 

 

 HeLa cells were plated on 22x22mm nitric acid washed coverslips in 6 well 

dishes 24h before transfecting or doing microscopy.  The coverslips were removed from 

6 well dish and fixed with cold (-80ºC) MeOH for 6 min.  The SUMO-1 primary 

monoclonal antibody 21C7 or the antibody and 250 µg of purified pGEX-SUMO1 protein 

for the preadsorbed control was diluted 1:1000 in phosphate buffered saline (PBS) [137 

mM NaCl, 2.7 mM KCl, 8 mM Na2HPO4, 1.5 mM KH2PO4] +2% bovine serum albumin 

(BSA—Fraction V, Sigma, St. Louis, MO).  The antibody dilutions were incubated 20 

min on ice and centrifuged for 10 min at 12,000 rpm at room temperature.  The 

supernatant of the antibody dilutions was retained. The coverslips were removed from the 

MeOH and cells were rehydrated for 30s in PBS.  The coverslips were washed three 
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times in PBS and 3 times in PBS+2%BSA.  The coverslips were incubated with the 

antibody dilution or the preadsorbed antibody for 20 min at room temperature. The 

coverslips were washed three times with PBS+2%BSA.  The coverslips were incubated 

20 min with a 1:200 dilution of a horse anti mouse IgG antibody conjugated to the Texas 

Red fluorochrome (Vector Labs, Burlingame, CA).  The coverslips were then washed 

three times PBS+2%BSA and three times with PBS.  The coverslips were incubated 5 

min with 50 ng/ml 4`,6-diamidino-2-phenylindole (DAPI).  Coverslips were washed three 

times briefly in distilled water and the excess moisture was removed.  Coverslips were 

mounted on a slide with Vectashield (Vector Labs, Burlingame, CA) mounting medium 

and sealed using blue fingernail polish.  Immunostaining was visualized using a Nikon 

fluorescent microscope with a 60x objective and a Nikon Spotcam digital-imaging 

camera. 

 

RESULTS 

 

Two Hybrid Analysis of the HSF2/Ubc9 interaction 

 

 The yeast two-hybrid system, developed by Fields and Song in 1989, is a 

sensitive method for identifying protein-protein interactions.  This system can be used to 

demonstrate interactions between known proteins or for identifying unknown factors that 

interact with a given protein (Fields and Song, 1989). The yeast two hybrid system relies 

on the observation that eukaryotic transcription factors are often modular.  The DNA 

binding domain is separate from the transactivation domain in many transcription factors 
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including the yeast GAL4 transcription factor.  Protein-protein interactions can be 

demonstrated by creating a fusion protein of one protein to the activation domain (the 

target) and a fusion protein of another protein to the DNA binding domain (the bait) 

(Figure 3.3).  By transforming these constructs into a yeast cell which contain a reporter 

gene under the control of the appropriate promoter element (as dictated by the DNA 

binding domain), interactions can be demonstrated by the activity of the reporter gene.  If 

the proteins of interest interact, the activation and DNA binding domain will be held in 

close enough proximity by the protein-protein interactions to activate transcription of the 

reporter gene.  If the proteins fail to interact, the reporter gene will remain silent, because 

the activation domain will not be in the proximity of the DNA binding domain(Reviewed 

in (Bartel et al., 1993; Bartel and Fields, 1995; Fields and Sternglanz, 1994; Mendelsohn 

and Brent, 1994)). 
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Figure 3.3: Schematic diagram of the yeast two hybrid assay.   

 

Plasmids that express a “bait” protein (HSF2) fused to a DNA binding domain and a 

“target” protein (Ubc9) fused to a transcriptional activation domain are transformed into a 

yeast strain with a reporter gene (typically a gene to compliment an amino acid 

auxotrophy) under the control of a promoter containing a binding element for the bait 

plasmid DNA binding domain.  If the bait and target proteins interact, the activation 

domain and DNA binding domain are held in close proximity, and transcription of the 

reporter gene is activated, allowing the yeast to grow on medium lacking the amino acid 

produced by the reporter gene.  If the bait and target proteins do not interact, the 

activation and DNA binding domains are not tethered and cannot activate transcription of 

the reporter gene.  The reporter gene remains silent and the yeast are unable to grow on 

reporter gene selective medium. 
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Figure 3.3: Schematic diagram of the yeast two hybrid assay. 
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 Initially Fields and Song used the yeast two-hybrid system to demonstrate the 

interaction between SNF1, a kinase, and SNF4, an SNF1 associated protein (Fields and 

Song, 1989).  Later this technique was used to identify unknown proteins that interact 

with a given protein by screening a cDNA library in which the cDNA clones were fused 

to an activation domain (Chien et al., 1991).   This library screening technique was how a 

large portion of Ubc9 (a region corresponding to amino acids 4-128 of Ubc9’s 160 amino 

acids) was identified as a rat estrogen receptor-β (ER-β) (In, Y., data not shown).  

Serendipitously (and erroneously) HSF2 was used a negative control for interaction with 

Ubc9.  To demonstrate that HSF2 interacted with Ubc9 specifically, we tested whether 

the partial Ubc9 protein (pVP16∆Ubc9) could interact with HSF1 (pGBD-HSF1) or the 

Gal4 DNA binding domain alone (pGBD-C2) as well as with HSF2 (pGBD-HSF2) 

(Figure 3.4).  Ubc9 interacts with HSF2 and perhaps only weakly with HSF1 in the yeast 

two-hybrid assay.   The interaction with HSF1 must be considered suspect because 

pGBD-HSF1 has demonstrated a certain inherent transcriptional activity which manifests 

itself as very weak growth under selective conditions without an appropriate activation 

domain partner.  Ubc9 is not capable of interacting with the Gal4 DNA binding domain 

alone, suggesting that Ubc9 does interact with HSF2 specifically. 

 

In vitro SUMO-1 modification of HSF2. 

 

All SUMO-1 modified proteins identified to date have also interacted with Ubc9. This 

observation prompted us speculate that HSF2 might be SUMO-1 modified.  To this end,  

in vitro transcribed and translated HSF2 was used as a substrate in an in vitro SUMO-1 
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modification assay. HSF2 was transcribed from a full-length cDNA (including 

untranslated regions) of the mouse HSF2-β gene (called c9) (Sarge et al., 1991).  The in 

vitro transcribed mRNA was translated in the presence of 35S-methionine to produce 

radiolabeled HSF2 protein.  The in vitro SUMO-1 modification system contains purified 

recombinant SUMO-1 and Ubc9, a HeLa cell extract, which contains the SUMO 

activating enzyme activity of the SAE1/2 heterodimer, ATP, and an ATP regenerating 

system.  When the HSF2 protein is incubated with the HeLa extracts alone, a faint higher 

molecular weight protein corresponding in size to the SUMO-1 modified form of HSF2 

appears (Figure 3.5).  This is presumably due to small amounts of endogenous SUMO-1 

and Ubc9 in the HeLa extracts.  When either SUMO-1 or Ubc9 are omitted from the 

reaction only the faint SUMO-1 modified HSF2 product is observed.  Interestingly the 

abundance of this product decreases when only Ubc9 is added to the reaction mix, 

presumably due to competition for the endogenous SUMO-1.  When SUMO-1 and Ubc9 

are added to the reaction mixture, a substantial increase in the higher molecular weight 

product is observed, corresponding to SUMO-1 modified HSF2 (Figure 3.5).  

Interestingly HSF2 also appears to be a substrate for SUMO-2 modification as well as 

SUMO-1 modification.   In contrast, HSF1 does not appear to be a substrate for SUMO-1 

modification (Figure 3.6).  When in vitro translated HSF1 is incubated in the presence of 

the HeLa cell lysate, several higher molecular weight products are observed.  However, 

when Ubc9 or SUMO-1 or both are added to the reaction, the abundance or mobility of 

these is not affected.  HSF1, therefore, does not appear to be a substrate for SUMO-1 

modification in vitro.  The higher molecular weight products observed in the presence of 
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the HeLa cell lysates are most likely hyperphosphorylation states commonly observed 

with HSF1 (Sarge et al., 1993). 

 

Nuclear colocalization of SUMO-1 and GFP-HSF2. 

 

One functional consequence of SUMO-1 modification often observed is localization to 

discrete nuclear domain structures.  This appears to be the case for the SUMO-1 modified 

forms of HIPK2, PML, and Sp100 (Kretz-Remy and Tanguay, 1999).  We were 

interested in determining if HSF2 was localized to nuclear domain structures with 

SUMO-1.  Initial attempts to use a rabbit polyclonal antiserum for colocalization 

experiments were unsuccessful due to high nonspecific background staining (data not 

shown).  To solve this problem, plasmids for expressing a fusion protein of the jellyfish 

Aequorea victoria green fluorescent protein (GFP) and either HSF1-β or HSF2-β were 

developed.  The human cervical carcinoma cell line HeLa was transfected with pEFGP-

HSF2β and then fixed and stained with a monoclonal antibody against SUMO-1 (21C7) 

as well as DAPI for visualization of the nucleus (Figure 3.7).  Only a few of the cells that 

were transfected with pEGFP-HSF2β had the punctate nuclear GFP-HSF2 staining 

observed with nuclear bodies.  The majority of the cells had cytosolic staining in which 

GFP-HSF2 was excluded from the nucleus.  Of those cells that did contain GFP-HSF2 

nuclear domain staining, the HSF2 nuclear domain structures did colocalize with SUMO-

1. 

 To verify that the punctate nuclear staining was specific to HSF2, HeLa cells were 

transfected with pEGFP-C1 (the parental GFP expression vector), pEGFP-HSF1β, or 
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pEGFP-HSF2β.  The staining pattern observed for GFP-HSF2 is distinct from either 

GFP-HSF1 or GFP alone (Figure 3.8).  GFP is expressed throughout the cytosol and the 

nucleus, whereas GFP-HSF1 is localized almost entirely within the nucleus.  Neither GFP 

nor GFP-HSF1 display the punctate nuclear staining or the predominantly cytosolic 

staining patterns observed with HSF2. 

 In order to establish that the protein staining by the SUMO-1 antibody was 

specific for SUMO-1, purified His6-HSF2β and GST-SUMO-1 were purified (Figure 

3.9).  The purified The SUMO-1 antibody was preincubated with 2% BSA or 2% BSA 

containing 250 µg of purified GST-SUMO-1 prior to staining pEGFP-HSF2β transfected 

HeLa cells.  Preadsorbing the SUMO-1 antibody with SUMO-1 prior to staining 

completely abolished the nuclear domain structure staining normally observed with 

SUMO-1 (Figure 3.10).   Preadsorbing the antibody with 250 µg of His6HSF2 protein had 

no effect on SUMO-1 antibody staining (data not shown). 

 Preliminary efforts at coimmunoprecipitating SUMO-1 with HSF2 were not 

successful.  In fact, observing an HSF2 immunoreactive species of the appropriate size 

for SUMO-1 modified HSF2 was not possible either (data not shown).  This is 

presumably due to the small percentage of cells that contain SUMO-1 modified HSF2 

and the small portion of HSF2 within those cells that is SUMO-1 modified.  We 

suspected that SUMO-1 modification of HSF2 might be cell cycle regulated.  To test this, 

we stained cells with the nonvital DNA stain Hoescht 33342 (bisbenzimide) and the 

calcium channel inhibitor Verapamil (to prevent the rapid efflux of the Hoescht stain 

from the cells), and sorted them according to cell cycle stage using a fluorescent-

activated cell sorter (FACS) (Krishan, 1987).  These sorted cells were used for HSF2 
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immunoblot analysis and for HSF2 immunoprecipitation followed by SUMO-1 

immunoblot analysis (data not shown).  Neither of these analyses was successful in 

detecting a SUMO-1 modified HSF2 product.  These results do not necessarily indicate 

that SUMO-1 modification of HSF2 is not cell cycle regulated.  If SUMO-1 modification 

of HSF2 is adversely affected by the drug Verapamil or only occurs in a small portion of 

the cells in one of the sorted populations, immunoblot analysis may still fail to detect the 

SUMO-1 modified HSF2 product. 

 As only a few cells seemed to contain punctate GFP-HSF2 nuclear staining, we 

were interested in quantifying the percentage of cells the HSF2 nuclear domain staining.  

The results from two experiments are shown in Table 1. 

 

Table 1.  Quantification of GFP-HSF2 nuclear domain staining 
 

GFP-HSF2 
Pos. Cells 

 
Nuclear Dots 

% 
Nuclear Dots 

422 27 6.4 % 
412 30 7.3 % 

 
Cells that were positive for GFP-HSF2 staining were 
simultaneously counted with GFP-HSF2 positive cells 
that contained punctate nuclear staining (Nuclear Dots). 

 

These data indicate that only 6.8% (±0.4) of the GFP-HSF2 positive HeLa cells contain 

punctate nuclear domain structures. 

 

Identification of the SUMO-1 modification site in HSF2. 
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 We were interested in determining which amino acid residue or residues were 

modified by SUMO-1 in HSF2.  The mouse HSF2-α protein contains 36 lysine 

residues—too many to mutate and analyze individually (Sarge et al., 1991).  However, of 

the SUMO-1 modified proteins described to date, all but HIPK2 conform to a consensus 

modification site of isoleucine, leucine, or valine followed by the SUMO-1 modified 

lysine, any amino acid and finally a glutamate or aspartate residue (Johnson and Blobel, 

1999).  We analyzed the mouse HSF2-α sequence to determine if there were consensus 

SUMO-1 modification stites.  This analysis was done using the PATTERNMATCH 

algorithm from the Biology Workbench 3.2 suite of sequence analysis tools.  HSF2 

contains three SUMO-1 consensus modification sites at lys82, lys139, and lys151 (Figure 

3.11) (Sarge et al., 1991). 

 Mutations were made in pcDNA-HSF2β-MH6 that changed each of these lysine 

residues to arginine—K82R, K139R, and K151R. The plasmid pcDNA-HSF2β-MH6 was 

chosen because in addition to being an epitope tagged mammalian expression vector, 

which could be useful in future research, it contains a T7 RNA polymerase promoter 

suitable for in vitro transcription and translation.  All three mutations and the wild type 

pcDNA-HSF2β-MH6 were used as substrates for in vitro SUMO-1 modification reactions 

(Figure 3.12).  The results of this clearly indicate that lysine 82 is the primary site of 

SUMO-1 modification on HSF2.  The consensus SUMO-1 modification site found at 

Lys82 in the mouse HSF2 is conserved in the chicken and human homologs HSF2, 

suggesting that SUMO-1 modification of HSF2 may be conserved among vertebrates 

(Schuetz et al., 1991).  
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Figure 3.4: Two-hybrid analysis of the HSF2/Ubc9 interaction. 

 

Ubc9 interacts with HSF2 (pGBD-HSF2+pVP16∆Ubc9) and only weakly with HSF1 

(pGBD-HSF2+pVP16∆Ubc9).  HSF1 and HSF2 do not interact with the VP16 activation 

domain alone (pGBD-HSF1+pVP16 and pGBD-HSF2+pVP16), and Ubc9 does not 

interact with the Gal4 DNA binding domain alone (pGBD-C2+ pVP16∆Ubc9).  PR65 is a 

positive control that is know to interact with HSF2 (pGBD-HSF2 + pGAD-PR65).  

Medium lacking tryptophan (-trp) and leucine (-leu) selects for both plasmids.  Media 

lacking adenosine (-ade) or histidine (-his) are selective for two reporter genes in the S. 

cerevisiae strain PJ69-4A. 
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Figure 3.4: Two-hybrid analysis of the HSF2/Ubc9 interaction. 



 

 

114

Figure 3.5:  In vitro SUMO-1 and SUMO-2 modification of HSF2. 

 

HSF2 is a substrate for both SUMO-1 and SUMO-2 modification.  Modification requires 

the addition of HeLa cytosol (SUMO activating enzyme activity), Ubc9, and SUMO-1 or 

SUMO-2.  Omission of any of these results in a dramatic diminution of the abundance of 

SUMO modified HSF2 (dark triangle).  The unmodified HSF2 is indicated by the light 

triangle.  In vitro modification reactions containing 35S-labeled HSF2 are analyzed by 

SDS-PAGE and visualized by autoradiography.  In vitro SUMO-1 modification assay 

performed by Dr. Michael J. Matunis. 
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Figure 3.5:  In vitro SUMO-1 and SUMO-2 modification of HSF2. 
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Figure 3.6:  In vitro SUMO-1 modification analysis of HSF1. 

 

In vitro translated HSF1 protein is used as substrate in an in vitro SUMO-1 modification 

reaction.   Addition of HeLa cytosol results in the appearance of several higher molecular 

weight products.  The addition of SUMO-1 or Ubc9 or both does not affect the 

abundance or migration of these products, indicating that HFS1 is not a substrate for 

SUMO-1 modification in vitro.   The higher molecular weight HSF1 products are likely 

the hyperphosphorylated states often observed with HSF1.  By comparison HSF2 is a 

substrate for SUMO-1 modification.  In vitro SUMO-1 modification assay performed by 

Dr. Michael J. Matunis. 

 



 

 

117

Figure 3.6:  In vitro SUMO-1 modification analysis of HSF1. 
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Figure 3.7:  Colocalization of GSP-HSF2 and SUMO-1. 

 

Transiently transfected HeLa cells expressing GFP-HSF2 were stained with an antibody 

against SUMO-1 and DAPI for nuclear staining.  Shown are the GFP-HSF2 (green), 

SUMO-1 (red), and DAPI (blue) staining from three representative fields of cells.  GFP-

HSF2 and SUMO-1 colocalize (GFP-HSF2 + SUMO-1) in discrete domains (seen as 

yellow dots) with the nucleus (GFP-HSF2 + DAPI).  
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Figure 3.7:  Colocalization of GSP-HSF2 and SUMO-1. 
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Figure 3.8:  Unique localization of GFP-HSF2. 

 

Transiently transfected HeLa cells expressing GFP, GFP-HSF1, or GFP-HSF2 were 

visualized by fluorescent microscopy.  Two fields of cells are shown for each.  GFP is 

expressed throughout the cytosol and nucleus.  GFP-HSF1 expression is almost entirely 

confined to the nucleus.  GFP-HSF2 is expressed predominantly in the cytosol with very 

little nuclear staining except for cells with nuclear domain staining. 
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Figure 3.8:  Unique localization of GFP-HSF2. 
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Figure 3.9: Purification of recombinant HSF2 and SUMO-1. 

 

Cleared bacterial lysates (Extract) from bacteria expressing either His6HSF2 or GST-

SUMO-1 and purified eluate from the Ni/NTA agarose or glutathione agarose resins 

respectively (Eluate) were analyzed by SDS-PAGE and visualized by Coomassie 

staining. 
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Figure 3.9: Purification of recombinant HSF2 and SUMO-1. 
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Figure 3.10:  Preadsorbed control for SUMO-1 Immunofluorescent Staining. 

 

HeLa cells transiently expressing GFP-HSF2 were stained with an antibody to SUMO-1 

or an antibody to SUMO-1 that had been preadsorbed to 250 µg of purified GST-SUMO-

1.  Preadsorbing the SUMO-1 antibody with GST-SUMO-1 completely abolishes 

SUMO-1 nuclear domain staining. 

 



 

 

125

Figure 3.10:  Preadsorbed control for SUMO-1 Immunofluorescent Staining. 
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Figure 3.11:  Consensus SUMO-1 modification site analysis of HSF2. 

 

The mouse HSF2-α protein sequences was analyzed for the consensus SUMO-1 

modification site sequence (isoleucine, leucine, or valine followed by lysine, any amino 

acid and finally a glutamate or aspartate residue).  The analysis was performed using the 

PATTERNMATCH algorithm from Biology Workbench 3.2.  HSF2 contains three 

consensus modification sites (indicated with bolded/underlined text) at lys82, lys139 and 

lys151.  The 18 amino acids of the HSF2-α specific exon (amino acids 391-409) are 

italicized.  
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Figure 3.11:  Consensus SUMO-1 modification site analysis of HSF2. 

 

PATTERNMATCH analysis of mHSF2α with [IVL]K. [ED] 

 

 
MKQSSNVPAF LSKLWTLVEE THTNEFITWS QNGQSFLVLD EQRFAKEILP 

KYFKHNNMAS FVRQLNMYGF RKVVHIESGI IKQERDGPVE FQHPYFKQGQ 

DDLLENIKRK VSSSKPEENK IRQEDLTKII SSAQKVQIKQ ETIESRLSEL 

KSENESLWKE VSELRAKHAQ QQQVIRKIVQ FIVTLVQNNQ LVSLKRKRPL 

LLNTNGAPKK NLYQHIVKEP TDNHHHKVPH SRTEGLKSRE RISDDIIIYD 

VTDDNVDEEN IPVIPETNED VVVDSSNQYP DIVIVEDDNE DEYAPVIQSG 

EQSEPAREPL RVGSAGSSSP LMSSAVQLNG SSSLTSEDPV TMMDSILNDN 

INLLGKVELL DYLDSIDCSL EDFQAMLSGR QFSIDPDLLV DLFTSSVQMN 

PTDNINNTKS ENKGLEATKS SVVQHVSEEG RKSKSKPDKQ LIQYTAFPLL 

AFLDGNSASA IEQGSTTASS EVVPSVDKPI EVDELLDSSL DPEPTQSKLV 

RLEPLTEAEA SEATLFYLCE LAPAPLDSDM PLLDS 
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Figure 3.12:  In vitro modification analysis of HSF2 mutants. 

 

In vitro translated pcDNA-HSF2β-MH6 (WT) and the SUMO-1 consensus site mutants 

K82R, K139R, and K151R were used as substrates in in vitro SUMO-1 modification 

reactions.  The K82R mutation abolishes the majority of the SUMO-1 modification on 

HSF2.  In vitro SUMO-1 modification assay performed by Dr. Michael J. Matunis. 
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Figure 3.12:  In vitro modification analysis of HSF2 mutants. 
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DISCUSSION 
 

 In this work we have demonstrated that in vitro translated HSF2, but not HSF1 is 

a substrate for SUMO-1 and SUMO-2 modification in vitro.  Consistent with this, we 

have demonstrated that HSF2 can interact with a portion of Ubc9, the SUMO-1 

conjugating enzyme, in a two-hybrid assay.  We have also shown that GFP-HSF2 

colocalizes with SUMO-1 in discrete nuclear domain structures in 7% of GFP-HSF2 

expressing HeLa cells.  Finally, we have shown that lysine 82 is the primary site of 

SUMO-1 modification in vitro.   

 These data suggest that the role of SUMO-1 modification of HSF2 is to target 

HSF2 to discrete nuclear domain structures.  HSF2 nuclear dots have been observed 

previously (Sarge et al., 1993).  These data provide a likely explanation for this 

observation.  Examination of the localization of the GFP-HSF2(K82R) mutant should 

demonstrate whether this is the case.  SUMO-1 modification causes several other proteins 

to become localized into nuclear domains.  PML and Sp100 both localize to the same 

nuclear domain, ND10, while HIPK2 appears to form a second class of SUMO-1 

containing nuclear domains (Duprez et al., 1999; Kim et al., 1999; Muller et al., 1998; 

Sternsdorf et al., 1999).  Determining whether HSF2  colocalizes to one of these two 

nuclear domains or a novel nuclear domain will be important for determining the function 

of HSF2/SUMO-1 modification. 

 Interestingly, HSF2 is able to interact with a portion of HSF2 that contains over 

75% of the full length Ubc9 protein, but cannot interact with full-length Ubc9 in the yeast 

two-hybrid assay.  This observation could be an artifact due to the nature of both 

constructs.  The partial Ubc9 construct is fused to the VP16 activation domain while full-
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length Ubc9 construct is fused to the Gal4 activation domain.  If, however, it is not an 

artifact, this would suggest that there are domains at either the very amino-terminus or 

the very carboxy-terminus of Ubc9 that regulate its interaction with HSF2.  Further 

characterization of the domains in HSF2 and Ubc9 required for interaction may lead to 

insights into how SUMO-1 modification of HSF2 is regulated. 

 Interestingly, in vivo very little of the total HSF2 is SUMO-1 modified, but in 

vitro a large portion of HSF2 can by modified by SUMO-1.  This would suggest that 

either a positive regulation event, such as phosphorylation of HSF2, occurs 

inappropriately in the in vitro modification assay, or a negative regulator of SUMO-1 

modification of HSF2 is not present in the in vitro assay system.  Negative regulators 

could include some modification of HSF2 itself or perhaps some protein that interacts 

with HSF2 to prevent SUMO-1 modification.   

 Understanding the events that regulate SUMO-1 modification will likely provide 

insights into the function of SUMO-1 modified HSF2 and ultimately into the general 

functions of both SUMO-1 and HSF2. 
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Chapter 4 
Discussion and Future Directions 

 

 The results in this work present two novel ways in which the activity of HSFs are 

regulated.  Both HSF1 and HSF2 undergo alternative splicing which gives rise to two 

protein isoforms for each.  These alternative slicing events are regulated in a tissue 

dependent manner.  In addition HSF2 alternative splicing within the testis is regulated in 

a germ cell type and developmental manner.  HSF2, and not HSF1, is modified by the 

conjugation of the SUMO-1 protein to lysine 82 in approximately 7% of HeLa cells 

transiently expressing GFP-HSF2.  The regulatory mechanism for SUMO-1 modification 

is not understood, though it appears as a consequence of SUMO-1 modification HSF2 

becomes localized to nuclear domain structures. 

 The overall question that arises from these results is what are the functions of 

these modifications.  What is the functional difference between HSF1-α and HSF1-β?  

What is the functional difference between HSF2-α and HSF2-β?  What is the function of 

HSF2 localization to nuclear domains?  What is the function of HSF2 in the cell? These 

are all important questions that will undoubtedly require a great deal of further research 

to understand.   A few experiments to begin addressing these questions readily come to 

mind, however. 

 

THE FUNCTIONAL DIFFERENCE BETWEEN HSF1-αα  AND HSF1-ββ . 
 

 Recently, we have obtained a full-length mouse HSF1-α expression plasmid.  This 

construct could be used to determine if there are differences in the ability of HSF1-α and 

HSF1-β to activate gene transcription similar to those observed from HSF2.  Also the 
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creation of an antibody specific to HSF1-α would make it possible to test if different 

stress conditions resulted in differential activation of HSF1-α verses HSF1-β.  This would 

address the hypothesis that the isoforms function either to modulate the activation 

temperature or to broaden the temperature range over which the stress response can be 

activated. 

 

THE POSSIBILITY OF STRESS INDUCED SUMO MODIFICATION OF HSF1. 
 

 The data from this work would suggest that HSF1 is not a substrate for SUMO-1 

modification.  Recent data however indicate that HSF1 forms nuclear granules upon 

activation by stress such as heat shock or cadmium treatment (Cotto et al., 1997).  In 

addition, overall SUMO-2/3 conjugation is induced upon exposure of cells to stress such 

as those that cause HSF1 to become activate and to form nuclear granules (Saitoh and 

Hinchey, 2000).  Taken together, these data suggest that HSF1 might be a substrate for 

SUMO modification under stress conditions.  HSF1 that is in vitro translated does not 

bind to DNA suggesting that it is not in the active state, and therefore would not likely be 

a substrate for SUMO modification in vitro unless it was first activated by heat shock or 

some other stressful treatment.  Further data indicates that HSF1 activated by treatment 

with 20 mM salycilate does not form nuclear granules even though it has been activated 

and can bind to DNA (Cotto et al., 1997).  Previous work has shown that salycilate 

treatment does not induce the phosphorylation changes seen in HSF1 activated by other 

stresses (Cotto et al., 1996; Jurivich et al., 1995; Jurivich et al., 1992).  This would 

suggest that a change in phosphorylation might be the regulatory event that is required for 

SUMO-1 or –2/3 modification of HSF1. 
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THE ROLE OF HSF2-αα  AND HSF2-ββ  IN SPERMATOGENESIS. 
 

 Recent conflicting data may require us to reexamine our thinking about the role of 

HSF2 and the HSF2 isoforms in spermatogenesis.  A recent paper indicates that HSF2 is 

not activated during spermatogenesis in rats, as it is for mice (Alastalo et al., 1998).  

Also, the data indicates that expression of hsp70 does not correlate with HSF2 expression 

during spermatogenesis (Alastalo et al., 1998).  At least preliminarily HSF2 does not 

appear to be functioning to regulate the expression of hsps during spermatogenesis.  

Interestingly, this same work showed that HSF2 is localized to intracellular bridges in 

germ cells from zygotene spermatocytes through mature spermatozoa (Alastalo et al., 

1998).  The function of this HSF2 is not known.  Initially we proposed that the increase 

in HSF2-α expression was to increase the amount of hsps and other HSF2 regulated 

proteins expressed during spermatogenesis.  More research will be needed to understand 

the function of HSF2 and the HSF2 isoforms in the testis. 

 

OTHER FUNCTIONS OF HSF2 
 

 Other than in testis, HSF2 is not found in the DNA binding form in any other 

tissue in adult mammals even though HSF2 is found in every tissue.  This begs the 

question of what is function of HSF2.  Recent data from our lab demonstrated that HSF2 

interacts stably with PR65, a regulatory subunit of protein phosphatase 2A (PP2A) (Hong 

and Sarge, 1999).  Interestingly HSF2 interacts with PR65 in the absence of the 

phosphatase catalytic subunit.  The function of this interaction is not clear.  Preliminary 
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efforts to determine if HSF2 functions to regulate PP2A activity by sequestering PR65 

were inconclusive (Hong and Sarge, 1999).  In preliminary experiments, however, PR65 

colocalizes with GFP-HSF2 in nuclear domain structures, suggesting that PR65 can 

interact with SUMO-1 modified HSF2 (Y. Hong, data not shown).  PR65 can, and clearly 

does, interact with unmodified HSF2 as well.  Perhaps the function of the HSF2/SUMO-1 

modification is to recruit PR65 to nuclear domains, though the functional consequence of 

this happening is not known. 

 

THE REGULATION OF THE SUMO-1 MODIFICATION OF HSF2. 
 

 It is clear that to understand the function of SUMO-1 modification of HSF2 we 

must first understand its regulation.  There are two regulatory events that need to be 

addressed.  First is the issue of only certain cells containing SUMO-1 modified HSF2 in 

GFP-HSF2 transfection assays, and the second is the issue of only some of the HSF2 in a 

cell being SUMO-1 modified.  Perhaps SUMO-1 modification of HSF2 is cells cycle 

regulated.  The most direct way of examining this would be using immunofluorescence 

microscopy to visualize the HSF2 domain structures.  Cell cycle regulation could be 

tested using synchronized cells harvested at different time points during the cell cycle or 

by using cell cycle sorted cells deposited onto slides.  These experiments would require 

an antibody against HSF2 that lacked nonspecific background staining. 

 Also, understanding the events within the cell that regulate SUMO-1 modification 

of HSF2 will be critical to our overall understanding of SUMO-1 modification of HSF2.  

It is likely that some modification of HSF2 could be the regulatory event required for 

SUMO-1 modification of HS2. Therefore, a basic understanding of how HSF2 is 
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modified is critical.  Previous data indicates that HFS2 may be modified by the covalent 

attachment of O-linked N-acetylglucosamine to serine and threonine residues (data not 

shown).  This modification is reciprocal with serine/threonine phosphorylation in certain 

cases (Hart, 1997; Jackson and Tjian, 1988; Kelly et al., 1993; Reason et al., 1992).  

Other modifications to examine might include methylation, acetylation, or even 

ubiquitination. 

 

THE 26S PROTEOSOME AND SUMO MODIFICATION OF HSF2. 
 

 Recent studies indicate that HSF2 can be activated in cells treated with the drugs 

MG132 or lactacystin, which function to inhibit 26S proteosome function, or in ts85 cells 

which have a temperature sensitive mutation in the ubiquitin conjugating enzyme (E1) 

gene (Mathew et al., 1998).  HSF2 has relatively short half-life of 60-70 minutes.  

Treatment of cells with proteosome inhibitors causes an increase in the levels of HSF2 as 

well as activation of HSF2 DNA binding and transcriptional activities.  This is in part due 

to increases in levels of HSF2 expression and in part due to decreased HSF2 degradation 

(Mathew et al., 1998).  No evidence has been seen for HSF2 ubiquitination, but due to the 

instability of ubiquitinated proteins, it can be difficult to observe them.  Interestingly, the 

drug MG132 which inhibits the proteosome activity and activates HSF2 also leads to 

increased conjugation of SUMO-2/3 (Saitoh and Hinchey, 2000).  Our data indicates that 

HSF2 is also a substrate for SUMO-2 modification in vitro.  Perhaps MG132 induces 

SUMO-2/3 modification of HSF2 that is consequently resistant to protein degradation.  

Protein stabilization by SUMO-1 modification has been observed for IκB as well as 
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possibly for p53.  This might suggest that SUMO has multiple functions with respect to 

HSF2. 

 Answers to the above questions can lead to greater understanding of the functions 

of HSF2 and SUMO-1 in the cell.  They can also lead to broader questions concerning 

the function of sub-domains and how the organization of nuclear activities leads to the 

appropriate gene regulation and protein expression in cell specific and developmental 

manners. 
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Appendix 
 
APPENDIX A:  LIST OF ABBREVIATIONS 
 
HSF, heat shock factor 

HSE, heat shock element 

hsp, heat shock protein, 

PML, promeylocytic leukemia protein 

SUMO-1, small ubiquitin-like modifier-1 

PCR, polymerase chain reaction 

RT-PCR, reverse transcriptase couple PCR 

DAPI, 4`,6-diamidino-2-phenylindole 

PBS, phosphate buffered saline 

BSA, bovine serum albumin 

FBS, fetal bovine serum 

SDS-PAGE, sodium dodecylsulfate polyacrylamide gel electrophoresis 

MeOH, methanol 

RanGAP1, Ran GTPase activating protein-1 

kb, kilobase 

nt, nucleotide 

kDa, kilodalton 
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