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ABSTRACT OF DISSERTATION 

 

 

POROSITY, PERCOLATION THRESHOLDS, AND WATER RETENTION 
BEHAVIOR OF RANDOM FRACTAL POROUS MEDIA  

 

Fractals are a relatively recent development in mathematics that show promise as a 

foundation for models of complex systems like natural porous media. One important 

issue that has not been thoroughly explored is the affect of different algorithms 

commonly used to generate random fractal porous media on their properties and 

processes within them. The heterogeneous method can lead to large, uncontrolled 

variations in porosity. It is proposed that use of the homogeneous algorithm might lead to 

more reproducible applications. Computer codes that will make it easier for researchers 

to experiment with fractal models are provided. 

 

In Chapter 2, the application of percolation theory and fractal modeling to porous media 

are combined to investigate percolation in prefractal porous media. Percolation thresholds 

are estimated for the pore space of homogeneous random 2-dimensional prefractals as a 

function of the fractal scale invariance ratio b and iteration level i. Percolation in 

prefractals occurs through large pores connected by small pores. The thresholds increased 

beyond the 0.5927… porosity expected in Bernoulli (uncorrelated) networks. The 



 

thresholds increase with both b (a finite size effect) and i. The results allow the prediction 

of the onset of percolation in models of prefractal porous media. Only a limited range of 

parameters has been explored, but extrapolations allow the critical fractal dimension to be 

estimated for many b and i values. Extrapolation to infinite iterations suggests there may 

be a critical fractal dimension of the solid at which the pore space percolates. The 

extrapolated value is close to 1.89 -- the well-known fractal dimension of percolation 

clusters in 2-dimensional Bernoulli networks. 

 

The results of Chapters 1 and 2 are synthesized in an application to soil water retention in 

Chapter 3. 
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Chapter 1. Homogeneous and Heterogeneous Fractal 
Algorithms for Pore-Scale Modeling of Porous Media  

1.0 Summary 

 

Fractal models of porous media are of interest in numerous scientific disciplines, 

including hydrology, petroleum engineering, and soil science. This interest arises from 

the ability of these models to parsimoniously produce highly complex and richly 

structured geometries. Examination of the soil hydrology literature suggests that there are 

at least two different ways these models are being constructed. One of these methods 

results in a type of multifractal behavior that can lead to large, uncontrolled variations in 

porosity. The methods are reviewed here and it is proposed that use of the  'homogeneous' 

algorithm might lead to more reproducible and fruitful applications. Computer codes that 

will make it easier for more researchers to experiment with fractal models are provided. 

1.1 Introduction  

 

Fractal models of porous media are enjoying considerable popularity (eg., Adler and 

Thovert, 1993; Perrier et al., 1995; Bird and Dexter, 1997; Rieu and Perrier, 1998; 

Crawford et al., 1999; Perrier et al., 1999; Rappoldt and Crawford, 1999].  This is due in 

part to the relatively small number of parameters that can define a random fractal porous 

medium of great complexity and rich structure. Also, fractal scaling of natural porous 

media has been widely anticipated on the basis of the observed power law form of soil 

water retention curves [Ahl and Niemeyer, 1989; Tyler and Wheatcraft, 1990; Rieu and 

Sposito, 1991a, b, c; Perrier et al., 1996; Perfect, 1999]. There has been considerable 

debate about the usefulness of the approaches presented in these papers because they 

generally neglect pore connectivity [Bird, et al., 1996; Rieu and Perrier, 1998]. One way 

that this limitation can be surmounted is to compute retention in simulated realizations of 

known fractal porous media [Perrier et al., 1995; Bird and Dexter, 1997; Stepanek et al., 

1999]. Similarly, other processes of interest, for example, gas transport in soils [Rappoldt 
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and Crawford, 1999; Crawford et al., 1993], solute transport [Adler and Thovert, 1993], 

and microbial dynamics [Crawford et al., 1993] can be usefully studied in simulated 

fractal porous media. As such simulations become more widespread, it is valuable to 

examine the methods used to generate the fractal porous media and the properties of the 

simulated media. 

 

Various modifications of basic fractal-generating algorithms, such as assemblages of 

fractal 'patches' or fractal cell arrays [Bird and Dexter, 1997; Rappoldt and Crawford, 

1999] and pore-solid fractals [Perrier et al., 1999] have been proposed and applied. 

Saucier and Muller [1993] and Muller [1996] have also applied multifractal approaches 

to porous media. The focus here however is on the most basic models, and these variants 

are not addressed further except in relation to the implications of the 'patch' approach for 

porosity and the multifractal artifacts that arise with a particular algorithm. Rieu and 

Perrier [1998] make the distinction between 'mass' and 'pore' fractal models. Only mass 

fractal models are considered here, though the issues addressed apply equally to random 

pore fractal models. Fundamental fractal scaling requirements are reviewed and different 

fractal-generating algorithms are contrasted.  In particular, problems that arise in the 

application of a particular algorithm are demonstrated. 

 

1.2 Basic Prefractal Porous Media 

 

The fractals we consider first are scale-invariant constructions that follow simple 

number-size relations. Porous fractals are often constructed from a solid starting mass by 

an iterative process of mass removal and re-scaling. As a concrete example, we consider 

the perhaps familiar Sierpiński carpet, which has E = 2 (the embedding or Euclidian 

dimension), b = 3 (a scale reduction factor), and p = 8/9 (the probability of a solid at any 

iteration level) (Figure 1).   
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Figure 1. Sierpiński Carpet constructed to fourth iteration level (Solids white, voids 

black). 

 

Construction begins with a solid square of size 1 x 1 from which 1 square area of size 1/3 

by 1/3 is removed from the center. N is the number of solids of the new size remaining at 

any iteration level (for our example, N = 8 for the first iteration) and r is the linear 

measure of a pore or solid.  Note that r depends on b as r = (1/b)i where i is the iteration 

level.  In a fractal of unit side length, N = r-D, and the ratio -log N/ log r gives the mass 

fractal dimension D.  As is generally true for such ratios, point estimates based on 

individual pairs of N and r or slope estimates based on numerous pairs can be computed.  

For the standard Sierpiński carpet, N = 8 and r = 1/3 at the first iteration level.  Hence, on 

the basis of this pair of N and r, D = -log (8) / log (1/3) = 1.89… . At the second iteration 

N = 64 and r = 1/9. Therefore, D = -log (64) / log (1/9) = 1.89… .  Computation of the 

double logarithmic slope between the points leads to  

 

 
...89.1

9/1log3/1log
64log8log

log
log

log
log =

−
−−=

∆
∆−=−=

r
N

rd
NdD  ( 1) 

 

We recover the exact fractal dimension from either procedure. 
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1.2.1 Porosity 

 

The porosity (φ) of a 'true' fractal (in which the generating process is iterated an infinite 

number of times) is always unity. Hence, such models are of little use as models of 

natural porous media such as soil, aquifer, or reservoir material. However, by introducing 

a lower 'cutoff' size, where the generating process ceases, we can maintain a realistic 

porosity. Thus, we can define such a 'prefractal' [Feder, 1988] in terms of any three of the 

following four parameters: D, b, i, and φ (or p). Equation ( 2) expresses the relationship 

between these parameters in terms of the total porosity for a prefractal embedded in E-

dimensional space: 

 

 
)(111 EDi

Ei

Di

Ei b
b
b

b
N −−=−=−=φ  ( 2) 

 

Depending on the iteration level, we also have:  

 

 ...)1()1()1( 2 +−+−+−= pppppφ  ( 3) 

 

In general, for i ≥ 2, 

 

 












+





−= ∑

−

=

1)1(
1

1

i

j

jppφ , ( 4) 

 

which can be simplified to  

 

 ip−=1φ . ( 5) 

 

Equation ( 5) works for any iteration level i > 0.   

1.2.2 Lacunarity 
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It is necessary to consider one additional parameter for completeness, though its effect is 

not expected to be significant for the randomized prefractals that we consider next. The 

additional parameter is related to the coalescence of pores. Figure 2 shows three 2-

dimensional porous structures that have identical mass fractal dimensions and porosities 

and yet exhibit extreme differences in their pore arrangements.  
 

(A) (B) (C)  

Figure 2. Three i = 3, b = 7, D = log 40/log 7 prefractals illustrating low (A), 

intermediate (B), and high (C) degrees of pore coalescence or lacunarity (Solids 

white, voids black). 

 

Figure 2A represents a condition in which the pores are maximally dispersed. The nine 

largest pores (and so on at each iteration level) of Figure 2A are coalesced into one large 

pore in Figure 2C. Figure 2B has an intermediate degree of pore coalescence. In the 

fractal literature, this phenomenon is described by the lacunarity.  Highly lacunar fractals 

have large gaps as a result of pore coalescence. Several measures of lacunarity have been 

proposed. Many of these relate to the degree of translational invariance that the fractal 

displays. For example, the structure in Figure 2A can be translated 2/7 units in the x or y 

directions and will exactly overlie its own pores. No such translation is possible for the 

structures in Figures Figure 2B and Figure 2C. 
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Here we apply spatial autocorrelation as a measure of lacunarity. The spatial 

autocorrelation is closely related to the translational invariance [Gouyet, 1996]. The 

semivariogram measures the spatial autocorrelation and is computed as 

 ( ) ( )2

2
1 ∑ +−= hxx zz
n

hγ  ( 6) 

γ is the semivariance, h is the separation distance or lag between points at x and x + h, n 

is the number of points separated by h, and z is the value of the property under study. The 

summation is taken over all n pairs of points separated by h. In our case, z is a single 

binary digit 0 or 1 representing a pore or solid respectively and hence the variogram is 

known as an indicator variogram. The semivariance can also be computed in specific 

directions, but all directions are treated equally here.  

 

The variogram plots the lag on the abscissa against the semivariance on the ordinate. At 

small lags (short separation distance), the values z are more likely to be close to one 

another and a small semivariance is often observed. At larger separation distances, the 

spatial autocorrelation decreases and the semivariance value increases to the variance of 

the entire data set. The separation distance or lag at which this occurs is known as the 

range of spatial autocorrelation. 

 

Figure 3 shows the semivariograms of the structures in Figure 2 and a randomized (see 

below) variant. The variograms are omnidirectional, 2-dimensional, indicator variograms 

for the entire image presented in Figures Figure 2A, Figure 2B, and Figure 2C. Lag is 

expressed relative to the image size. The interpretation proposed here for the significance 

of the ranges of the spatial autocorrelations observed for the known low, intermediate, 

and high lacunarity structures of Figure 2 (short, intermediate, and long range 

respectively) is exceedingly simple: there is a direct correspondence between the 

lacunarity and the range.  

 

The semivariogram for the intermediate lacunarity structure (Figure 2B) and the 

randomized variant are similar. These curves are much smoother and generally fall 

between the curves for the high- and low-lacunarity prefractals. Moreover, the range of 
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spatial autocorrelation (where the semivariograms first intersect the variance) is short for 

the low lacunarity prefractal, long for the high lacunarity prefractal, and intermediate and 

indistinguishable for the intermediate and random prefractals. It is very important to note 

that the irregular-looking curves for the high and low lacunarity cases are not the product 

of any random process but rather are the result of a well-defined measurement (the 

variogram) on completely deterministic structures. They are completely reproducible and 

exact: there is no variability about the variogram estimates.  

 

The similarity between the variograms for the intermediate lacunarity structure and the 

randomized structure suggests that potential difficulties associated with lacunarity as an 

additional variable as it is manifested in these contrived examples are eliminated by 

randomization. This shows (and this has not been expressed in the previous literature on 

fractal porous media models) that for the randomized models created here, we can safely 

disregard the lacunarity. Ultimately, it may be desirable to develop random prefractal 

models in which the lacunarity can be explicitly controlled. The work of Nauman [1993] 

might readily be adapted to such an effort. 
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Figure 3. Semivariograms for low, intermediate, and high lacunarity pre-fractals of 

Figure 2 and for the mean of 10 randomized variants (i = 3, b = 7, D = log 40/log 7). 

Error bars indicate +/- 1 standard deviation from mean. 
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1.3 Comparison of Algorithms for Generating Randomized 
Prefractal Porous Media 

1.3.1 Homogeneous Algorithm 

Clearly, the prefractals in Figure 1 and Figure 2 bear little resemblance to natural porous 

media like soils and aquifer or reservoir materials because of their regularity and lack of 

pore connectivity. Now the question arises, "How are we to construct a randomized 

version of a prefractal?". One method that maintains strict adherence to the fractal scaling 

law, N = r-D, and therefore returns the correct fractal dimension using both the individual 

point ratios, log(N)/log(1/r), and the slope measures, is to assign a random permutation of 

the integers 1 through bE to each site of a lattice and then make those with an integer 

value j ≤ p bE solids.  Iterating this algorithm produces prefractal porous media that can 

be classified as homogeneous [Gouyet, 1996]. This approach has also been called 

'constrained' [Mandelbrot, 1983] and 'microcanonical'  curdling [Mandelbrot, 1974].   

 

For the classical Sierpiński carpet, 1 ≤ j ≤ 9, p = 8/9, b = 3, and E = 2.  Hence, sites with 

j ≤ 8/9 32 (i.e., j ≤ 8) are retained as solids. For the second iteration, the same algorithm is 

applied independently to each of the 8 solids that remain, and so on for subsequent 

iterations.  Figure 4 shows the results of the application of this algorithm. If we neglect 

the coalescence of adjacent pores, there is exactly one large pore (and hence 8 solids) at 

the first iteration level and there are exactly 8 pores at the second iteration level. Pore 

coalescence does not affect the total porosity but may be of significance for example in 

the study of water retention.  
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Figure 4. Randomized Sierpiński Carpet constructed to fourth iteration level with 

homogeneous algorithm.  Note that the number of pores of each size class 

(neglecting coalescence) is in strict agreement with the number in the standard 

Sierpiński carpet (Figure 1). 

1.3.2 Heterogeneous Algorithm 

Bird and Dexter [1997] and Rappoldt and Crawford [1999] present random prefractal 

models of porous media.  In both cases, some of these prefractals were constructed using 

an algorithm that can be summarized as follows: 

• Choose a probability p that a site is a solid; 

• For each site in a space divided into bE sites (where E is the Euclidian embedding 

dimension 1, 2, or 3), generate a uniformly distributed random number in the 

interval [0,1]; 

• If the random number is greater than p, make the site a pore. 

Mandelbrot [1974, 1983] calls this canonical curdling while Gouyet [1996] identifies it as 

a random heterogeneous fractal. Let us consider the behavior of this algorithm.  Say that 

we wish to generate a randomized Sierpiński carpet.  Hence p = 8/9 (=0.888…). We 

generate 9 realizations of bE  = 9 random numbers and show them in Table 1. It is clear 

from Table 1 that the heterogeneous algorithm often fails to return the number of solids 

(8 for the Sierpiński carpet) needed to satisfy the simple fractal scaling law N = r-D.  For 
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the first realization on the first line, N = 7 and r =1/3.  Hence, the fractal dimension based 

on the point estimate is D = -log (7)/log (1/3) = 1.77… rather than D = 1.89… as is 

characteristic of the classical Sierpiński carpet (Figure 1).  

 

Table 1. Nine realizations of 9 random numbers in [0, 1]. Values greater than p = 8/9 

(pores) are underlined.  N denotes the number of solids created by heterogeneous 

algorithm. φ is the porosity of the first-iteration structure. 

Realization Random numbers in [0, 1] N φ 

1 0.8712 0.606 0.2482 0.4722 0.566 0.9357 0.3504 0.9946 0.0136 7 0.22... 

2 0.5845 0.8111 0.9886 0.7324 0.7607 0.6739 0.613 0.8774 0.7895 8 0.11... 

3 0.6026 0.4618 0.5643 0.9806 0.3452 0.4279 0.3377 0.6259 0.8996 7 0.22... 

4 0.4882 0.0937 0.2205 0.6668 0.4475 0.8328 0.636 0.2119 0.0022 9 0 

5 0.9426 0.1027 0.8775 0.6831 0.5158 0.1713 0.5166 0.9155 0.5163 7 0.22... 

6 0.3465 0.8745 0.7276 0.8754 0.1573 0.4406 0.5195 0.1343 0.6244 9 0 

7 0.1997 0.0608 0.8531 0.5077 0.9809 0.7524 0.6264 0.9681 0.2652 7 0.22... 

8 0.0981 0.8472 0.1777 0.4679 0.2988 0.6155 0.9492 0.6199 0.399 8 0.11... 

9 0.6521 0.4541 0.5403 0.2448 0.1546 0.2542 0.2235 0.6408 0.9776 8 0.11... 

 

Figure 5 shows a randomized Sierpiński carpet based on the heterogeneous algorithm. In 

this realization, there are no pores at the first iteration level (like Realization 4 of Table 

1), and only six (again ignoring pore coalescence) at the second level.  The point 

estimates of the fractal dimension are 2.000, 1.965, 1.945, and 1.933 for the first, second, 

third, and fourth iterations respectively.  The slope estimate of D is 1.9096 and is close to 

the true value; this is because double logarithmic slope estimates of D are typically 

relatively resistant to variations in the number of solids.  
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Figure 5. Randomized Sierpiński Carpet constructed to fourth iteration level with 

heterogeneous algorithm.  Note that the number of pores of each size class does not 

agree with the number in the standard Sierpiński carpet  (Figure 1) or the 

randomized carpet in Figure 4. 

The same behavior occurs in the 3-dimensional case. Figure 6 shows the Menger sponge, 

and homogeneous and heterogeneous random analogues. 

 

Figure 6. Menger sponge, homogeneous and heterogeneous randomized variants. 

 

It is interesting to note that several publications [Crawford, 1994; Crawford and Young, 

1998] appear to describe the approach used to generate prefractal Sierpiński carpet 

structures in terms of the heterogeneous algorithm and display figures that are almost 

certainly generated with a homogeneous algorithm. This fosters little appreciation for the 
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differences between the algorithms and the porosity implications that we demonstrate 

here. 

 

The implications for the porosity of structures generated using the heterogeneous 

algorithm are particularly significant. The areal porosity of the first iteration of a 

Sierpiński carpet is 1/9.  The areal porosities of the first iteration structures generated 

using the values in Table 1 can range from 0 to 2/9, or from non-porous to twice the 

expected porosity.  In only three of nine cases is the porosity equal to the expected value.  

 

As an expansion of the results in Table 1, Figure 7 shows the analytical distributions of 

the number of solids as a function of p. The reason for the asymmetry in Figure 7 (and for 

the fundamentally different character of the heterogeneous algorithm) is that the results 

follow binomial distributions. It appears that this has not be previously recognized. In 

Table 1, only p = 8/9 was considered. In Figure 7, p is variously set at 1/9, 2/9, …, 8/9. 

Similar distributions could be determined empirically (or possibly using the Gamma 

function generalization of the factorials in the binomial coefficient) for any real p, but the 

binomial distribution gives the probabilities for integer N and hence, only for p where pbE 

is integer.  
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Figure 7. Binomial, truncated binomial, uniform, and Dirac distributions of the 

number of solids as a function of p. 

These distributions are discrete and are shown as curves only for clarity. A Dirac Delta 

distribution (P = δ(8-N), corresponding to the homogeneous algorithm for p = 8/9) and a 

discrete uniform distribution (P = 1/10 for all N) are also shown for comparative 

purposes. Each p value has a similar Dirac Delta distribution when the homogeneous 

algorithm is applied. The labeled curves give the distributions of N for different values of 

p. These distributions are generally asymmetric and non-normal. The decision to retain 

individual squares in the construction of the fractal is based on independent Bernoulli 

trials. The problem is the same as asking "What is the probability of obtaining N heads in 

bE flips of an unbalanced coin?" We set the degree of imbalance as the cutoff p; that is, 

we decide that if a random number in [0,1] is greater than p, we have a 'head'. The 

probability of each possible outcome (N = 0, 1, …, bE) can be computed directly from the 

binomial distribution. Following Freund [1971], we have  

 
( ) NbN

E
E

pp
N
b

NB −−





= 1)(  ( 7) 

where B(N) is the probability of N successes in bE trials and (bE
N) is the binomial 

coefficient.  
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The use of the analytical form of these distributions allows computation of the exact 

probabilities of relatively infrequent conditions that cannot be readily determined from a 

sample of realizations. Indeed, focusing on the p = 8/9 case for example, the instances of 

3, 2, 1, or 0 solids have probabilities of 1.1 x 10-4, 5.9 x 10-6, 1.8 x10-7, and 2.6 x 10-9 

respectively. This attests to the near-impossibility of relying on multiple realizations to 

completely describe the variability of prefractal structures generated with the 

heterogeneous algorithm; more than 1 billion realizations would be required. 

 

The asymmetry has important effects on the porosity. For example, the probability 

density curve for p = 8/9 has a mean value equal to the desired value of 8 solids. 

Nevertheless, the asymmetry in the distribution means that the case in which there are 9 

solids will be realized much more frequently than the case in which there are 7 solids. 

Therefore, it is likely that the porosity this type of prefractal 'inherits' from its first 

iteration will be smaller than the expected value. Figure 5 is an example. When 3 or more 

random values fall above 8/9 (>5% probability) there will be 6 (or fewer) solids and a 

porosity much larger the expected porosity will result. Clearly, a significant number of 

realizations have to be averaged to provide a mean porosity within close tolerance of its 

true value. This is essentially the case when many 'fractal patches' or fractal cell arrays 

are assembled into a single porous structure as done in some of the simulations of Bird 

and Dexter [1997] and Rappoldt and Crawford [1999]. This method also imposes an 

upper bound smaller than the size of the domain on the fractal scaling.  

 

As examples of the impact of the heterogeneous algorithm on porosities, we consider 

some simple 2-dimensional porous media. The actual porosity φ in terms of the solid 

probability (p) at any iteration level and the iteration level (i) for prefractals generated 

using the homogeneous algorithm is always given by Equation ( 5). For example, for the 

homogeneous b = 3, i = 4, p = 8/9 porous structures in Figure 1 and Figure 4, Equation ( 

5) gives φ = 0.376. In contrast, the actual porosity of the structure in Figure 5, which has 

the same parameters but was generated with the heterogeneous algorithm, is 0.151. This 

value differs appreciably from the porosity computed with Equation ( 5). An equation 
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similar to Equation ( 3) can be developed to express the porosity of structures generated 

with the heterogeneous algorithm but it must keep track of what effective p is realized at 

each of the bE(i-1) sites for each iteration i, and quickly becomes unmanageably 

cumbersome. Moreover, the dependence of the porosity on the sequence of p realized 

means that it is not possible to have a general predictive expression other than perhaps 

one that makes broad probabilistic statements.  

 

Figure 8 compares the distributions of porosity observed for 1000 structure realizations 

generated with the heterogeneous algorithm to the same distributions for the 

homogeneous algorithm (actually the homogeneous results have only one value each).  
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Figure 8. Distributions of porosity for 1000 realizations of homogeneous and 

heterogeneous algorithms at p = 8/9 and p = 6/9 with b = 3, i = 5. 

Theoretically, the distributions of φ from the heterogeneous algorithm must cover the 

entire range of possible porosities (0 ≤ φ ≤ 1) because, as pointed out earlier, there is a 

finite probability of, for example, 0 solids when p = 8/9, or similarly, of 9 solids when p 

= 1/9. Clearly, the sample of 1000 realizations considered in Figure 8 does not explore 

the entire range.  
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For larger values of the fractal scaling parameter b, the magnitude of the porosity 

deviations that arise from the heterogeneous algorithm will be reduced. However, the 

range in b values that might be most applicable to soils remains an open question 

[Brakensiek and Rawls, 1992; Tyler and Wheatcraft, 1992; see also Chapter 2].  

 

Our ultimate concern is with the computationally intensive fluid and transport 

simulations in fractal porous media. It is not realistic that such simulations can be carried 

out on a statistically representative number of generated media. Using the homogeneous 

algorithm to generate the media completely eliminates the variability in total porosity and 

implies that results that can be meaningfully related to the fractal parameters can be 

obtained from fewer realizations. In one sense, we are comparing zero variability with 

potentially large variability that is a complex function of the fractal generating 

parameters. 

 

Much of the work of others that uses the heterogeneous algorithm does not involve 

multiple realizations, despite the great potential range in porosities. If a modeler were 

particularly unlucky, the porous medium would entirely disappear. This forces those who 

use such models to make subjective choices about which realizations are 'acceptable'. For 

example, neither Rapoldt and Crawford [1999] or Bird and Dexter [1997] would have 

computed diffusion or water retention in pure void spaces had these possible structures 

been generated. 

 

One way to avoid this difficulty is to constrain the possible values of N to exclude 0. This 

eliminates two other problems that arise when N = 0. First, D = log (0)/log (b) is 

undefined. Second, the term (N/bE)
-q

, which is needed for the multifractal computations 

below, is undefined for any positive q. This constraint on the binomial distribution has 

appeared in other contexts as the truncated binomial distribution [Patil, 1962]. The 

formula for the computation of the truncated binomial distribution is  
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The summation in the denominator excludes N = 0 and normalizes the probability density 

to 1. This distribution is also shown on Figure 7. The deviation from the binomial 

distribution is large for p = 1/9. The difference between the distributions gets smaller as p 

increases and is insignificant at p = 4/9. The multifractal considerations below use the 

truncated binomial distributions. Despite the simplicity of the required modifications, no 

implementations of the heterogeneous algorithm that use this approach are known to 

exist, other than the codes presented in Appendices A and B. 

 

A related issue is that, for relatively small values of b and i, probabilities that can actually 

be realized at low iteration levels are strongly discretized.  For example, in the 2-

dimensional, b=3 Sierpiński carpet prefractals presented by Bird and Dexter [1997], the 

actual proportions of solid blocks that can be converted to pores at the first iteration level 

is limited to the following ten possibilities: 0/9, 1/9, 2/9, 3/9, 4/9, 5/9, 6/9, 7/9, 8/9, or 

9/9. Note that ppore (= 1 - p) = 0.1 as used in Bird and Dexter [1997], which, while close 

to 1/9 (= 0.111…) cannot actually be realized during the early construction stages of this 

prefractal. 

 

Models generated with the heterogeneous algorithm represent a particular case of models 

that can be classified as heterogeneous [Gouyet, 1996] as opposed to the homogeneous 

model we present in Figure 4.  The defining characteristic of a heterogeneous model is 

that the mass ratio β = N/bE (the effective p) varies. Mandelbrot [1983] calls this method 

'cannonical curdling'. For use as models of porous media as implemented here, 

heterogeneous fractals have the undesirable feature of uncontrolled porosity. The 

distribution of the β can be explicitly defined for the construction of heterogeneous 

fractals [Gouyet, 1996]. The heterogeneous algorithm as considered here however results 

in heterogeneous fractals for which the distribution of β depends on the value of p in a 

complex way (Figure 7) that has not been recognized in previous literature.  
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Heterogeneous fractals have a multifractal nature [Gouyet, 1996]. This means that they 

no longer possess global scale-invariance and instead of being well characterized by a 

single fractal dimension, require a spectrum of dimensions for their description. Saucier 

and Muller [1993] applied multifractal methods to porous media but, unlike the methods 

we focus on here, treated the porosity as a measure on a Euclidian support. Following the 

approach of Benzi et al. [1984] and Paladin and Vulpiani [1987], who used a random β 

model for energy transfer in turbulent flows, the multifractal spectra for the 

heterogeneous algorithm are computed based on the probability distributions, P(β), in 

Figure 7.  

 

First we define the average {f(β)} (where f is an arbitrary function of β) of the probability 

distribution as 

 

 

 
( ){ } ( ) ( )∫≡ ββββ dfPf  ( 9) 

A set of exponents Φ(q) can be defined by a generalization of N = r-D as follows:  

 

 

 
( ) ( )qq rrnr

Φ∝→ 0lim  ( 10) 

 

where n(r) is a local density, q is an index, and < > denotes a spatial average. The Φ(q) 

are computed as 

 

 ( ) { }q
bEqq −−=Φ βlog  ( 11) 

 

where Equation ( 9) is used with f(β) = β-q. Because P(β) is discrete in this case, the 

integral in ( 9) is simply a summation of the form P(β1)β1
-q + P(β2)β2

-q + ….  
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The Φ(q) can be converted to generalized or Renyi dimensions according to Dq+1 = 

Φ(q)/q [Paladin and Vulpiani, 1987]. Next, the Dq can be converted to τ(q) with τ(q) = 

(1-q)Dq, and finally, α and f(α) can be calculated from τ(q) via [Gouyet, 1996] 

 

 ( ) ( )q
dq
dq τα −=  ( 12) 

and 

 

 
( ) ( ) )()( qqqqf ατα +=  

( 13) 

 

Equations ( 12) and ( 13) form the basis of the typical multifractal spectrum.  

 

The use of these equations for the calculation of the multifractal spectra is illustrated in 

detail for one example below. The following Tables give the probabilities and the 

calculations for p = 8/9. Table 2 lists the binomial probability values of different β = 

N/bE. For p = 8/9, the difference between the binomial and truncated binomial 

distributions is on the order of one part in 109.  

Table 2. Binomial Probabilities for p = 8/9. These are effectively equivalent to the 

truncated binomial probabilities for this p value. 

β P(β) 

1 0.346439 

0.888889 0.389744 

0.777778 0.194872 

0.666667 0.056838 

0.555556 0.010657 

0.444444 0.001332 

0.333333 0.000111 

0.222222 5.95E-06 

0.111111 1.86E-07 

0 2.58E-09 
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Table 3 illustrates the computation of the multifractal spectrum. q values are selected 

arbitrarily, though it is important that the asymptotic limits (where α and f(α) cease to 

change significantly) are reached. The example calculation here uses integer q in the 

range -10 ≤ q ≤ 10, but the spectra presented below use -50 ≤ q ≤ 50. Only 3 significant 

figures are included in the table values. Φ(q) were computed from ( 9) using the 

summation P(β1)β1
-q + P(β2)β2

-q + …. P(β10)β10
-q where the P(βi) are the exact 

probabilities (Table 2) from the binomial distribution, and the βi are the possible ratios of 

retained sites to total sites each time such a selection is made (i.e., 1/9, 2/9, …, 9/9). 

Given that the P(βi) are truly discrete in the problem at hand, the summation is the proper 

way (and perhaps the only way) to compute the integral in ( 9). 
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Table 3. Computation of Multifractal Spectrum for p = 8/9. 

q Φ(q) Dq τ(q) α(q) f(α) 

-10 -19.3     

-9 -17.4 1.93 19.3   

-8 -15.4 1.93 17.4 1.96 1.69 

-7 -13.5 1.93 15.4 1.96 1.72 

-6 -11.5 1.92 13.5 1.95 1.76 

-5 -9.57 1.92 11.5 1.94 1.79 

-4 -7.64 1.91 9.57 1.94 1.82 

-3 -5.71 1.91 7.64 1.93 1.85 

-2 -3.80 1.90 5.71 1.92 1.87 

-1 -1.89 1.90 3.80 1.91 1.89 

0 0.00 1.89 1.89 1.90 1.89 

1 1.88  0.00 1.89 1.89 

2 3.74 1.88 -1.88 1.87 1.86 

3 5.58 1.87 -3.74 1.85 1.81 

4 7.39 1.86 -5.58 1.83 1.73 

5 9.17 1.85 -7.39 1.79 1.58 

6 10.9 1.83 -9.17 1.74 1.29 

7 12.4 1.81 -10.9 1.62 0.47 

8 13.5 1.77 -12.4 1.30 -2.03 

9 13.9 1.68 -13.5 0.76 -6.67 

10 14.0 1.55 -13.9   

 

Next, the Φ(q) were converted to generalized dimensions according to Dq+1 = Φ(q)/q 

[Paladin and Vulpiani, 1987]. Then, the Dq were converted to τ(q) with τ(q) = (1-q)Dq. 

These conversions imply τ(q) =  -Φ(q-1) and this equivalence is clear in Table 3. Here 

however the notation has been retained in its original form to maintain close 

correspondence with the cited works that will enable interested readers to follow the 

application of the equations.  
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The α were calculated from τ(q) via Equation ( 12). This was carried out as a centered 

finite difference (i.e., α = [τ(q+1)- τ(q-1)]/2; see Table 3). 

Finally, f(α) were calculated with Equation ( 13).  

 

Figure 9 shows the multifractal spectra for 8 of the possible p values (p = 1/9, p = 2/9, …, 

p = 8/9) when the truncated distributions of the number of solids that arise from the 

heterogeneous algorithm (Figure 7) are taken into account. The peaks of these spectra 

correspond to the fractal dimension of the self-similar fractals that would be generated 

with the homogeneous algorithm, except that the use of the truncated distributions causes 

deviations at small p. Hence, the peaks decrease systematically from f(α) = 1.89… for p 

= 8/9 to f(α) ≈ 0.63… for p = 2/9. The peak for the truncated p = 1/9 case is 0.38… 

instead of the D = 0 that applies to the homogeneous case. The spectra for homogeneous 

fractals collapse to single points that correspond approximately to the peaks of the f(α) 

curves. Thus, the single Dirac spike representing the probability distribution for the 

homogeneous algorithm with p = 8/9 (Figure 7), corresponds to a single point at f(α) = 

1.89 … on the p = 8/9 spectrum. In contrast, the horizontal line corresponding to the 

truncated uniform distribution on Figure 7 (which has a mean of N = 5) translates to a 

broad multifractal spectrum with a peak at D = log(5)/log(3) = 1.465… 
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Figure 9. Multifractal spectra for 2-dimensional Sierpiński carpets with p = 1/9, 2/9, 

…, 8/9. Spectrum for uniform distribution also shown. 

The f(α) need not be positive according to Evertsz and Mandelbrot [1992], Mandelbrot 

[1990], and Mandelbrot [1991]. In fact, negative f(α) contain important information on 

the sampling variability [Mandelbrot, 1990].  

 

All of the complexity associated with the multifractal approach arises only as a result of 

the heterogeneous algorithm. The models generated using the heterogeneous algorithm 

are not necessarily improper models of porous media; However, there is a potential 

discrepancy between porous structures generated in this way and simple fractal scaling 

laws and porosity computations.  To control variability in porosity and pore size 

distributions in different realizations and in work by different scientists, it would seem 

that the homogeneous algorithm, which honors simple fractal scaling and has predictable 

porosity, should be preferred over the heterogeneous algorithm. 

1.4 Computer Codes 

To make models of prefractal 2- and 3-dimensional porous media more widely available 

to interested researchers, two MATLAB® codes are provided in Appendices A and B. 
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Non-random, random homogeneous, and both binomial and truncated binomial random 

heterogeneous algorithms have been implemented. These codes offer rudimentary 

graphics and provide ASCII output of the prefractal media for use in other applications or 

graphics packages. The 2-dimensional output is available in bmp or GRIDASCII format, 

or as lines containing triplets of x, y, and 0 or 1 corresponding to the absence or presence 

of a solid respectively. The third option is much slower and memory intensive. The 3-

dimensional ASCII output is in the form of x, y, z, and 0 or 1. Complete listings are 

provided in the Appendices and the codes are also available in electronic form from the 

author. Figure 6 shows examples of the graphical output from the 3-dimensional code. 

The fractal generating parameters are b = 3, i  = 3, and D = 2.72… (a randomized variant 

of the standard Menger sponge). Such models should prove useful for generation of 

random 2- and 3-dimensional porous media in which the retention and transport of fluids, 

solutes, particles, and organisms can be simulated. 

1.5 Conclusions 

The heterogeneous algorithm that has been used to generate prefractal models of porous 

media in a number of soil investigations leads to a type of multifractal structure that has 

several drawbacks. In particular, for smaller values of the b scaling factor, the porosity 

can vary widely from the expected value in individual realizations. This algorithmic 

artifact is eliminated with the homogeneous algorithm. Porosity variations are likely to 

affect most processes of interest in structures generated with the heterogeneous 

algorithm. The increased variability in computed soil water retention that results from 

application of the heterogeneous algorithm, as compared to results obtained with the 

homogeneous algorithm, is demonstrated in Chapter 3.  

 

Prefractal models offer a convenient means of generating complex porous media in a 

rigorous and reproducible manner. More applications to water retention and flow, 

fragmentation studies, soil biota, and gas/solute transport are expected. Computer codes 

for the homogeneous and binomial and truncated binomial algorithms are provided as a 

means for researchers to more easily create and experiment with prefractal porous media. 
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Chapter 2. Percolation Thresholds in 2-Dimensional 
Prefractal Models of Porous Media  

2.0 Summary  

 

Considerable effort has been directed towards the application of percolation theory and 

fractal modeling to porous media. Here, these research areas are combined to investigate 

percolation in prefractal porous media. Percolation thresholds are estimated for the pore 

space of homogeneous random 2-dimensional prefractals as a function of the fractal scale 

invariance ratio b and iteration level i. The percolation thresholds for these simulations 

increased beyond the 0.5927… porosity expected in Bernoulli (uncorrelated) percolation 

networks. Percolation in prefractals occurs through large pores connected by small pores. 

The thresholds increase with both b (a finite size effect) and i. The results allow the onset 

of percolation in models of prefractal porous media to be predicted and can be used to 

bound modeling efforts. More fundamental applications are also possible. Only a limited 

range of parameters has been explored empirically but extrapolations allow the critical 

fractal dimension for a large combination of b and i values to be estimated. Extrapolation 

to infinite iterations suggests that there may be a critical fractal dimension of the solid at 

which the pore space percolates. The extrapolated value is close to 1.89 -- the well-

known fractal dimension of percolation clusters in 2-dimensional Bernoulli networks. 

2.1 Introduction 

2.1.1 Percolation 

Percolation is an important research area in physics (e.g., Stanley et al., 1999; Stauffer 

and Aharony, 1992; Bunde and Havlin, 1996). Applications of this research are 

exceedingly broad and range from modeling forest fires to predicting human social 

phenomena [Solomon et al., 2000]. Berkowitz and Balberg [1993] and Berkowitz and 

Ewing [1998] have reviewed applications in groundwater hydrology and soil physics. 

Sahimi [1994] has discussed many other applications. A primary motivation for studying 
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percolation in porous media is the desire to predict macroscopic connectivity across the 

pore network. Transport can only occur in a connected medium. A benefit of studying 

percolation is that the first level of the complexity of the connected pore network is 

quantitatively elucidated. Basically, we can determine the onset of sample-spanning 

connectivity and the statistical form of the connected network quantitatively, even when 

the structure of the porous medium is completely disordered. 

 

Our focus here is on one of the simplest 2-dimensional percolation models -- site 

percolation -- and its application in fractal porous media. Site percolation can be 

described quite simply: on a lattice randomly populated with pores and solids, occupied 

or unoccupied lattices sites (squares in 2 dimensions) are considered connected if they 

share an edge. We refer to such a lattice as Bernoullian; its distribution of pores and 

solids lacks any spatial correlation. Percolation across the lattice occurs when a 

connected path exists from one side of the lattice to an opposite side. The upper right 

portion of Figure 10 illustrates the concept. Solids are shown in black, pores unconnected 

to the top boundary in white, and pores along the top boundary in red or gray. The 

connected percolation cluster in shown in red. Despite the small size of this lattice, the 

complex morphology of the percolating cluster -- including a convoluted boundary and 

'holes' of various sizes inside the cluster -- is apparent.  
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  p = 0.5      p= 0.59 

  

  p = 0.6      p = 0.7 

Figure 10. Connectivity to top boundary as a function of pore probability. Solids 

black, pores unconnected to top boundary white, pores connected to top boundary 

red or gray. 

 

One of the remarkable discoveries in such simple models is the existence of a persistent 

and, when the lattice is large enough, sharp 'percolation threshold'. For site percolation in 

a 2-dimensional Bernoullian lattice, this threshold is reached at a conducting site 

concentration of 0.5927…. This value, known as the critical concentration pc, has been 

determined empirically and has thus far eluded theoretical efforts to compute it, although 
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renormalization methods (e.g., Perreau et al, 1996; see below) come close. When the 

probability p of a conducting site (in our case a pore) is less than pc, percolation is highly 

unlikely, and, when p is greater than pc, percolation is nearly certain. The probabilistic 

notions of 'highly unlikely' and 'nearly certain' depend primarily on the lattice size. For 

increasing lattice size, the cumulative probability distribution of percolation frequency 

for multiple random lattice realizations approaches a Heavyside function.  

 

Figure 10 shows how site connectivity to the top boundary changes with increasing pore 

probability p for a 70 x 70 lattice and illustrates the onset of percolation through the 

lattice near pc. At p < pc, all pores that connect to the top boundary (red) are effectively 

isolated from the interior of the network and percolation does not occur. Increasing the 

porosity to p ≈ pc causes the network to percolate from top to bottom. Further increases in 

porosity cause more of the pore space to be connected. 

 

Obviously, the pore probability is equivalent to the porosity. That the 2-dimensional 

value of pc is greater than the porosity of many porous media that are known to be 

permeable (i.e., to percolate) points out one important limitation of these 2-dimensional 

models. The percolation threshold for site percolation in 3 dimensions -- where the sites 

are elementary cubes and connectivity occurs when a face is shared -- is 0.3116… 

[Stauffer and Aharony, 1992]. 

 

Of course, there are other significant limitations to the application of such simple models 

to real soils and aquifer or reservoir materials. There is no anisotropy or inhomogeniety 

and no secondary porosity. There is also no potential for film connectivity that may 

dominate soils and other un- or weakly-consolidated media.  

 

On the other hand, percolation models present highly tortuous paths and a significant 

'dead-end' pore system. This morphology can be quantified by another remarkable 

property of Bernoullian percolation lattices: the percolating cluster always has a 

particular fractal dimension.  

 



29 

 

Chapter 1 contains a brief introduction to fractal geometry. Randomization of porous 

fractal models consists of simply distributing the N remaining solids at each application 

of the fractal algorithm randomly about the bE sites in the sublattice being created. In this 

Chapter, we use a fixed value of N (corresponding to a homogeneous fractal). Sometimes 

N is varied according to probabilistic rules, leading to a heterogeneous fractal with 

uncontrolled porosity [Sukop et al., 2001a].  

 

There has been a preference for the use of heterogeneous fractal algorithms to construct 

porous media [Chayes, 1995; Raplodt and Crawford, 1999; Bird and Dexter, 1997]. 

Mandelbrot [1983] recommended the heterogeneous algorithm as simpler to program and 

to treat analytically than the homogeneous algorithm.  In contrast, Chayes [1995] 

suggested that homogeneous fractals were much easier to analyze. A serious limitation of 

the heterogeneous approach for modeling porous media is that the porosity of a given 

realization cannot be predicted. All of the percolation measurements here are conducted 

on homogeneous fractals. The homogeneous approach also avoids the complication in 

which the fractal 'disappears' when the realized value of N is 0 at the first iteration. 

 

This work is limited to fractals that exist in 2-dimensional space. It is expected however, 

that the results can be readily generalized to 3-dimensional space as most other 

phenomena related to fractal scaling can. Such generalization is only qualitative at this 

time. Direct computation of the 3-dimensional results will be possible as improved 

algorithms and greater computational power become available.  

2.1.3 Sierpiński Carpet as Percolation Cluster Model 

The number of elements N in a 2-dimensional percolating cluster near pc varies with the 

number of elements n in the array as N ~ n91/96 [Turcotte, 1992].  The basic fractal scaling 

law N = biD has the same form. For a lattice with bi sites on its edge, the number of 

elements n in the array equals b2i. Thus, N ~ b2i 91/96 =  biD. This implies that D = 2 x 

91/96 or D = 1.895…. This is very close to the fractal dimension of the Sierpiński carpet: 

D = log 8/log 3 = 1.892…, which suggests that the Sierpiński carpet is a reasonable 
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model of a Bernoullian percolation cluster. Figure 11 shows a comparison between a 

percolation cluster and a randomized Sierpiński carpet. 

     

Figure 11. Comparison between percolation cluster in Bernoullian lattice (1024 x 

1024) at pc with randomized Sierpiński carpet (b = 3, N = 8, i =6). Percolation 

cluster measured D = 1.839…, Randomized carpet D = 1.892… 

 

The qualitative similarities between these images are significant. First, both have 

complex boundaries. Second, both the cluster and the carpet have 'holes' with a broad 

range of sizes. More importantly, there is a quantitative agreement between the two 

structures that has lead to significant interest in fractals among the physics community 

involved in research on disordered systems. 

 

Similar results for the percolation threshold and fractal dimension are available for three-

dimensional lattices. The site percolation threshold is 0.3117 and the fractal dimension of 

the percolating cluster is D = 2.524… [Bunde and Havlin, 1996].  

 

Fractals are popular as models of percolation phenomena in solid materials (electrical 

conduction for example) because of these observations. The percolation thresholds and 

the critical behavior of fractals have been investigated in the physics literature [Geffen et 

al, 1983; Geffen et al, 1984a,b; Yu and Yao, 1988a,b; Machta, 1991; Perreau et al., 1996; 

Lin and Yang, 1997].  
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2.1.4 Another perspective: Fractal Porous Media 

The viewpoint adopted in the presentation of percolation in a random medium as 

discussed above rather naturally suggests a physical model -- perhaps a homogeneous 

sandstone -- into which a fluid might move along connected paths and lead to fractal 

patterns similar to those shown in Figure 11. 

 

However, probably as a result of observed power law behavior of moisture retention 

curves of natural porous media [Brooks and Corey, 1964; Campbell, 1985; see also 

Chapter 3], significant effort has been expended on a much different approach in the 

application of fractals to porous media [Ahl and Niemeyer, 1989; Tyler and Wheatcraft, 

1990; Adler and Thovert, 1993; Crawford and Matsui, 1996; Bird and Dexter, 1997; 

Perfect, 1999]. The porous medium itself is assumed to follow a fractal model in this 

approach. To a lesser extent, the pore space has been considered to follow fractal scaling 

by some authors. 

 

Exploring the fractal solid approach, we consider randomized Sierpiński carpets as 

models of physical structures, in which the solids are represented by the fractal set and 

the voids are represented by that set's complement. Crawford and Matsui [1996] have 

found that 'mass fractals' like those we consider here are likely to be most relevant to 

natural porous media, despite discussion in the soils literature regarding 'pore fractals' 

[Rieu and Perrier, 1998]. The apparent inability of either type of fractal model to simulate 

porous materials that simultaneously have broad ranges of pore sizes and solid particle 

sizes may limit their generality.  'Pore-solid fractals' [Bird et al., 2000] have been 

introduced as more general models to address this issue. This is one of the critical 

questions for the application of fractal models to natural porous materials but it is not 

considered further here. Adler and Thovert [1993] have reviewed the construction and 

transport properties of exactly self-similar deterministic fractal porous media while 

Dullien [1991] has reviewed the pore-level characterization of porous media. 

 

The porosity (φ) of a 'true' fractal (in which the generating process is iterated an infinite 

number of times) is always unity. Hence, such models are of little use as models of 
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natural porous media such as soil, aquifer, or reservoir material. However, by introducing 

a lower 'cutoff' size, where the generating process ceases, we can maintain a realistic 

porosity. Thus, we can define such a 'prefractal' [Feder, 1988] in terms of any three of the 

following four parameters: D, b, i, and φ (or equivalently p or N). Equation ( 2) expresses 

the relationship between these parameters in terms of the total porosity for a prefractal 

embedded in E-dimensional space. 

 

Rappoldt and Crawford [1999], and Bird and Dexter [1997] have presented a simple 

method of introducing an upper cutoff, beyond which fractal scaling does not apply and 

the medium becomes statistically translation-invariant (rather than scale-invariant), by 

assembling fractal 'patches' into a larger porous medium. The results obtained here can 

provide bounds for percolation in such media. 

2.1.5 Use of Fractal Dimension for Bernoulli Percolation 

Usually we reserve the terms fractal or prefractal for structures that exhibit fractal scaling 

over multiple scales (iteration levels). Thus, it initially seems improper to utilize the 

fractal dimension D as a surrogate for porosity and the fractal scale invariance ratio b for 

a lattice size parameter in the Bernoulli case. Nevertheless, we find that these quantities 

from the general fractal case extend to the Bernoulli or first iteration case without 

difficulty. At the very least, this extension saves us from having to treat the first iteration 

case separately. 

2.2 Literature Review  

There are three principal research areas that pertain to our problem. We consider two of 

these below. The third area is mathematical research that appears in a handful of papers 

[Chayes, et al., 1988; Chayes and Chayes, 1989; Chayes, 1995]. These papers illustrate 

the difficulty of an analytical approach to this problem. 

2.2.1 Percolation in Correlated Systems 

For more than one fractal iteration, fractal media clearly exhibit spatial correlation 

because large holes can be considered as a group of coalesced small holes. At the first 
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fractal iteration level however, these media are identical with standard percolation 

lattices. A number of studies examine percolation in spatially correlated systems.  

 

Mani and Mohanty [1999] summarized the work of five researchers and concluded that: 

"Bond and site percolation thresholds generally decrease in the presence of finite-range 

spatial correlation." Odagaki et al. [1999] used a unique method to impose correlation in 

which the number of nearest neighbors in a conducting cluster served as a correlation 

length. Overall, the percolation thresholds were observed to increase as the spatial 

correlation increased. These results conflict with those reported by Mani and Mohanty 

[1999]. A much earlier paper by Duckers and Ross [1974], and subsequent work by 

Duckers [1978] may resolve this conflict. These papers show, for 2- and 3-dimensional 

systems respectively, that increasing the strength of the correlation first decreases and 

then increases the percolation threshold. 

 

Nauman [1993] presented an algorithm for generating correlated media with a given 

conditional probability that an occupied site (pore or solid) is adjacent to another 

occupied site and used it to develop phase diagrams for percolation in 2 and 3 

dimensions.  

2.2.2 Percolation on Fractals 

Yu and Yao [1988a] investigated site percolation on triangular Sierpiński gasket 

networks. From simulations with random site occupations, they found that the percolation 

threshold increased as the number of fractal iterations increased such that pc = 1 - 1/i. By 

extrapolation, this leads to pc = 1 for infinite iterations. In a subsequent study, Yu and 

Yao [1988b] considered a random occupation of sites on the fractal set parts of 

deterministic Sierpiński carpets of extreme lacunarity. As the fractal dimension of the 

starting set decreased, the percolation thresholds increased. This work is essentially a 

network simulation rather than a model of a physical structure in the sense that we apply 

randomized carpets here.  
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In a very similar study, Lin and Yang [1997] considered site percolation on Sierpiński 

carpets of differing lacunarity. Figure 12 illustrates their approach to the percolation 

problem. Sites in the solid phase are randomly assigned either conductive or insulating 

properties according to the site occupation probability p being evaluated. The pores are 

always insulating obstacles.  The conclusions of this study are the same as those of Yu 

and Yao [1988b]. The fixed positions of the pores and the focus on percolation in the 

solid phase in this view of a percolating system cause it to have limited relevance for the 

randomized carpet porous media systems of primary interest to us.  

 

Figure 12. Lin and Yang [1997] approach to percolation on fractal set problem. 

Conducting solids black, non-conducting solids gray, and pores white. 

Perreau et al. [1996] used renormalization to investigate percolation of the fractal set part 

(the solids) of homogeneous randomized Sierpiński carpets. These results are discussed 

in detail below. 
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2.3 Methodology 

2.3.1 Hoshen-Kopelman Algorithm 

We use the Hoshen-Kopelman algorithm [Stauffer and Aharony, 1994; Bunde and 

Havlin, 1996] to determine connectivity of the lattice pore sites. All clusters are uniquely 

identified. The algorithm is demonstrated on a 5 × 5 lattice in Figure 13. The algorithm 

begins with the assignment of temporary labels to void sites at the upper left corner and 

ends at the lower right corner (Figure 13, center). The first void site is labeled 1 and the 

neighboring site gets the same label because it is connected to the same cluster. The third 

site is a solid and the fourth is labeled 2 because it is unknown if it is connected to cluster 

1. In the second row, the first site is connected to its neighbor at the top and is therefore 

labeled 1. The next void site does not have a neighbor void site at the top or left and is 

labeled 3. The next site is now the neighbor of sites labeled 2 and 3. All three sites belong 

to the same cluster. In this situation, the site gets the label of the left site, which is 3. The 

label 2 from the site above is put in an array to keep track that clusters 2 and 3 are 

connected. This method is continued until all the void sites in the lattice are labeled.  

     

     

     

     

     

1 1 2 

1 3 3 3 

4 3 3 

4 4 4 

5 4 6 

1 1  2 

1  2 2 2 

2  2 2 

2 2 2 

5  2  6  

Figure 13. Hoshen-Kopelman algorithm. 

The final step of the Hoshen-Kopelman algorithm is to change the initial labels into the 

final ones that represent the individual clusters (Figure 13, right). A single cluster that 

connects two opposite sides of the lattice (e.g., cluster 2 in Figure 13) is a 'sample-

spanning cluster' or simply a percolation cluster.  

2.3.2 Determination of Percolation Thresholds in Prefractals 
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The percolation thresholds 0.5927 and 0.3111 for 2- and 3-dimensional site percolation 

discussed above are values of pc at which an infinite cluster appears in an infinite 

network. Out of necessity, we work with finite lattices. In finite systems the percolation 

thresholds are not as sharply defined, which means that there are non-zero probabilities of 

finding percolation at concentrations of void sites lower than pc and of finding failure to 

percolate at concentrations higher than pc.  

 

Under these conditions, the percolation threshold can be defined as the porosity where the 

chance of percolation is 50%. The porosity of the network (the pore space of the fractal) 

depends on three fractal parameters according to Equation ( 2). The thresholds are 

determined for lattices with the same scale invariance ratio. To realize different porosities 

in the lattice, the iteration level or the probability is changed.  

 

To determine the percolation thresholds, 100 realizations of prefractal structures 

corresponding to a particular set of fractal parameters were constructed. Each structure 

was checked for horizontal and vertical percolation using the Hoshen-Koppelman 

algorithm. The empirical frequency of percolation is taken as an estimate of the 

probability of percolation and corresponds to a single point in a graph such as Figure 14. 

Incrementing the fractal generating parameters leads to a different porosity and a new 

point. The percolation threshold is then determined by fitting the cumulative normal 

distribution function to the estimated points with a least-squares method as done by Lin 

and Yang [1997]. The mean represents the threshold and the standard deviation gives an 

indication of the sharpness of the distribution function.  
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Figure 14. Fitted cumulative normal distributions for b = 3 and i = 1. Theoretical 

and empirical percolation probabilities. 

It is clear that the cumulative normal distribution can not exactly follow the results. The 

tails of the distribution are asymptotic at both ends while percolation is certain or 

impossible when the porosity is high or low enough (see the computation of bounds 

below) and the distribution approaches a Heavyside function as the lattice size increases.  

Nevertheless, it appears to provide a reasonable basis for evaluating the results. 

 

Figure 14 also shows theoretical points and a fitted cumulative normal distribution for the 

b = 3, i = 1 structures. The theoretical points were determined by identifying every 

possible configuration of pores and solids at each porosity and manually evaluating their 

frequency of percolation. This provided a good test of the code used to estimate the 

percolation frequency (the theoretical and empirical results are generally very similar) 

and a test of the robustness of the estimate of pc. The fitted models in Figure 14 clearly 

are not identical. Nevertheless, the estimates of pc are within 2% of each other. 

 

Figure 15 shows the estimates of pc computed with the Hoshen-Kopelman algorithm and 

the fitting procedure as implemented in this study for the Bernoulli case.  The estimated 

percolation threshold converges towards 0.593. This suggests that the Hoshen-Kopelman 

code and the fitting procedure are functioning properly. The decreasing standard 
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deviation of the estimates with increasing b (lattice size) is a common observation 

[Renault, 1991]. 
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Figure 15. Percolation thresholds plus or minus the standard deviations for the first 

iteration level. 

2.3.3 Lattice Size and Finite-Size Scaling 

In finite Bernoullian systems, the correlation length (ξ ∝  |p-pc|-ν) of clusters at percolation 

is approximately equal to the lattice size L. Thus, we can set L = ξ, and re-arrange to 

solve for pc*, the apparent percolation threshold, as a function of L, ν, and the true pc 

[Gouyet, 1996]. We have 

 

 ν/1* −−≅ CLpp cc  ( 14) 

 

with C a constant of proportionality and ν = 4/3 the standard exponent that relates the 

correlation length to the difference |p-pc|. Figure 16 shows the empirical results for the i = 

1 lattices investigated here and a best fitting model. The fitted value of C is 0.05180…. 
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Figure 16. Finite-size effect for i = 1 results. 

 

In what are believed to be the largest simulations of their kind, Jan [1999] investigated 

the percolation thresholds, scaling exponents, and cluster fractal dimensions in square 

and cubic Bernoullian site systems. For the 2-dimensional system, the lattice contained 4 

x 1012 sites. The cubic lattice consisted of more than 109 sites. Good agreement with 

previous results was observed, with the 2-dimensional percolation threshold equal to 

0.592746 and the fractal dimension of the clusters D = 91/48. 

 

Renault [1991] considered smaller networks ranging from 125 to 106 sites for the three 

dimensional cases.  

 

The empirical study of percolation in fractals is difficult because the number of lattice 

sites that must be considered increases very rapidly as a function of b and i. This limits 

the range of these parameters that is accessible with the computational approach utilized 

and the resources available. 
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Table 4 shows the maximum number of sites (and hence, the largest combinations of b 

and i) that were evaluated.  
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Table 4. Maximum Lattice Sizes 

i Maximum b Number of Lattice Sites 

1 100 10,000 

2 16 65,536 

3 10 1,000,000 

4 6 1,679,616 

5 4 1,048,576 

 

2.3.4 Real Space Renormalization 

 

Real space renormalization is a method frequently used in physics that has been applied 

to percolation in fractal structures [Perreau et al., 1996]. The possible configurations of 

occupied and unoccupied sites in a group of sites are identified. Figure 17 shows the 7 

possible configurations for 4 sites [Perreau et al., 1996]. This is the 'one-cell 

approximation'. There are four ways in which each of the configurations of 1 and 3 

occupied sites (Figure 17b and Figure 17f) can be realized, and two ways in which each 

of the configurations involving 2 occupied sites (Figure 17c, d, and e) can be realized. 

Configurations a and g have only one possible realization. In renormalization, 

configurations based on a through d lead to an empty site, while those based on 

configurations e through g give an occupied site. Note the distinction made between two 

occupied sites that are horizontally adjacent to one another (Figure 17d) and pairs that are 

vertically oriented (Figure 17e). This is related to a definition of percolation as 

connection between any two opposite sides of an array [Perreau et al., 1996].  
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Figure 17. Renormalization for square site network. Gray sites occupied. 

The renormalization function for a random 2-dimensional lattice can easily be derived. 

Since the independent probability of site occupation is p, the probability of two adjacent 

sites being occupied is p2, the probability of three adjacent sites is p3, and so on. The 

probability of an unoccupied site is 1-p. Hence, 2 adjacent unoccupied sites have the 

probability (1-p)2, three have the probability (1-p)3, and so on. Combining these 

probabilities, we can determine the probability of each case in Figure 17: 

 

Case a: (1-p)4 

Case b: p(1-p)3  

Cases c, d, and e: p2(1-p)2 

Case f: p3(1-p)  

Case g: p4  

 

If p is the occupation probability or concentration, then the renormalized probability or 

concentration φ, after one renormalization step, is 

 

 ( ) ( )( ) ( )( ) 4322 1412 pppppp +−+−=φ  ( 15) 

 

where the prefactors 2 and 4 are the number of possible arrangements of 2 and 3 occupied 

sites (Cases e and f) and only the three cases that lead to occupied (potentially 

percolating) sites in the renormalized lattice are considered.  
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Equation ( 15) can be simplified to 

 

 ( ) ( )22 2 ppp −=φ  ( 16) 

 

A fixed point of a function f(x) is defined as the value at which f(x) = x, or equivalently 

f(x) - x = 0. In renormalization, we want the renormalized concentration φ(p) to equal the 

original concentration p. So, we solve for the fixed point φ(p) = p.  If we apply this to ( 

16) we obtain 

 

 ( ) 02 22 =−− ppp  ( 17) 

 

This has the following solutions:  

 

 ( ) ( )
2

15,2
15,1,0 −−−  ( 18) 

 

Of these, 0 and 1 are trivial and only one of the remaining solutions is positive. This is an 

estimate of the percolation threshold and has the value 0.618…, which differs slightly 

from the value of 0.5927… estimated from numerical studies. If a similar procedure is 

carried out for a 3 x 3 array, the estimate of pc is 0.609… [Turcotte, 1992]. Exact 

percolation thresholds are obtained for 2-dimensional bond networks and for 2-

dimensional site networks on a triangular lattice [Stauffer and Aharony, 1992]. 

 

Perreau et al. [1996] used renormalization to investigate percolation of the fractal set part 

(the solids) of homogeneous randomized Sierpiński carpets. They investigated iteration 

levels from 2 through 11 explicitly and extrapolated to infinite iteration levels. Scale 

invariance ratios b between 4 and 64 were evaluated. Perreau et al. [1996] suggest that, 

because the concentration of lattice sites making up the fractal tends to 0 as the number of 



44 

 

fractal iterations increases, this concentration (given by [N/b2]i and analogous to the 

porosity in our case) is unacceptable as a 'control' parameter for percolation on fractals. In 

its place, they use N/b2, which is simply the site occupation ratio at the first iteration and 

which can be conveniently converted to a fractal dimension. The results of Perreau et al. 

[1996] are presented in Section 2.3.5. 

 

Renormalization can also be used to obtain estimates of the correlation length 

(ξ) exponent ν in ξ = |p-pc|-ν, for example. At the percolation threshold, the renormalized 

system must have the same correlation length ξ as the original system (i.e., the system is 

self-similar). However, the 'lattice constant' or spacing of the renormalized lattice is 

different and the new correlation length is measured in the new units. Thus, if we use c as 

the factor relating the lattice spacing, we have 

 

 ννφ −− −=− cc pppc  ( 19) 

 

Taking the logarithms of both sides yields 

 ( ) ( )cc pppc −−=−− logloglog νφν  ( 20) 

 

 ( ) ( )[ ] cppp cc logloglog =−−−φν  ( 21) 

 

 
ν

φ 1loglog =
−
−

c
pp
p

c

c  ( 22) 

 

Recognizing (φ - pc)/(p - pc) as the derivative dφ/dp at pc, we arrive finally at 

 

 
dp
dc φν loglog=  ( 23) 

 

The derivative dφ/dp at pc can be determined explicitly from ( 16) or its equivalent for 

other geometries. In this case it is dφ/dp = 4p - 4p3. At p = pc = 0.618… from above, the 
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value of the derivative is 1.527…, and, with c = 2 on the square lattice, ν = 1.635…. This 

differs appreciably from the theoretical value of 4/3. This renormalization procedure 

returns much better exponent values for 2-dimensional bond networks and for 2-

dimensional site networks on a triangular lattice [Stauffer and Aharony, 1992]. 

 

2.3.5 Bounds on Dc 

Mandelbrot [1983] has presented bounds on the fractal dimensions that are compatible 

with percolation of the fractal set. While this is not strictly applicable to our interest in 

pore percolation, we evaluate these bounds in relation to the renormalization results of 

Perreau et al. [1996] to provide a framework for the interpretation of our results.  

 

Mandelbrot [1983] offers two conditions for an upper bound on Dc, the critical fractal 

dimension for percolation through the fractal set. For  

 
1

2
1 1 −≥− −EE bNb  ( 24) 

it is certain that percolation occurs. Note that the iteration level i does not appear in ( 24).  

A weaker condition 

 1

2
1 −≥− EE bNb  ( 25) 

makes percolation 'almost' certain. 

 

Mandelbrot's [1983] lower bound is based on pc  applied to the solids. If the first iteration 

results in a large enough Bernoulli lattice with a solids concentration less that pc, then 

percolation is highly unlikely. Subsequent iterations remove more conducting solids and 

percolation becomes even less likely. In terms of fractal parameters, the solids 

concentration ps can be expressed as N/bE and, since ps = N/bE > pc, N > pc bE. For each 

b, we identify a value of N (which in general is non-integer) and take the next higher 

integer value for the computation of the lower bound for Dc. 
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Figure 18 shows the weak upper bound and the lower bound together with the 

renormalization results of Perreau et al. [1996] as a function of b, recast as fractal 

dimensions using Equation ( 2), for different iteration levels. The results of Perreau et al. 

[1996] lie well within the boundaries suggested by Mandelbrot. The same results also 

suggest that the critical fractal dimension Dc may approach the known fractal dimension 

of Bernoullian percolation clusters, D = 1.895…, as the scale invariance ratio becomes 

large and the number of fractal iterations approaches infinity.  
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Figure 18. Mandelbrot's [1983] bounds and Perreau et al's [1996] renormalization 

results for percolation of the solids.  

 

Our interest is in percolation of the complementary set. We can easily devise similar 

bounds on the fractal dimension (or porosity) that pertain to percolation in the pore space. 

As an upper bound on D we observe that the smallest number of pores that allow 

percolation to occur is b pores arranged in a linear fashion. No percolation is possible 

with b-1 pores. The critical value of N at which percolation cannot occur is therefore N > 

bE - b. Because N is an integer we can write N = bE - b + 1 as the smallest N at which 

percolation can not occur. The corresponding Dc value is log(bE - b + 1)/log(b).  

 



47 

 

The lower limit can be found in a similar way. As D, and hence, N, decrease, there is a 

point at which percolation in the pore space must occur. Figure 19 shows the maximum 

number of pores that can be present before the pore network percolates. Addition of one 

pore leads to percolation in each case. For b>3, it is clear that the maximum number of 

pores is (b-2)2 for the central pores, plus 4 for the corners, plus 2(b - 2 -1) for the edges. 

One more pore causes percolation. Hence N < bE - (b2 -2b + 2) gives a lower bound for 

D. Because E = 2 and N is integer, N = 2b - 3 can be related to the Dc at which 

percolation must occur. This lower bound applies at the first iteration level and holds for 

any higher iteration level.  

b = 2 
b = 3 b = 4 

b = 5 
 

Figure 19. Maximum number of pores without pore percolation; Solids black, pores 

white. 

 

An alternative bound accepts the known 2-dimensional percolation threshold for the 

Bernoullian lattice (0.5927…) and uses it to compute the critical fractal dimension (for i 

= 1) via rearrangement of ( 2). These bounds are plotted on Figure 21. 

 

2.4 Results 

2.4.1 Percolation Thresholds for Pore Space of Prefractals 

In this work, it has generally been observed that it is the smaller pores that appear at 

higher iteration levels that are responsible for the onset of percolation in the pore space of 
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fractal media (Figure 20). This results in percolation clusters in which large pores are 

connected by small pore necks. 

 

Figure 20. Percolation in the pore space of a randomized Sierpiński carpet with b = 

10, N = 63, and i = 3 (D = 1.799…). Note that percolation in the large pores depends 

on the small pores. Solids black, pores connected to upper boundary that form a 

sample spanning cluster red, other pores white. 

  

Figure 21 shows the bounds derived above in terms of fractal dimension.  The alternative 

bound rapidly approaches the standard percolation threshold (all departures from this 
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value are due to the finite size effect, and result from the discrete nature of achievable 

porosities). Figure 21 also shows the empirical results generated in this study. The results 

are listed in Appendix C. All of the empirical results fall within the derived bounds. As 

the iteration level increases, the porosity increases and percolation is possible at higher 

fractal dimensions.  
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Figure 21. Upper and Lower Bounds on Dc for percolation as a function of the scale 

invariance ratio b and empirical results. 

 

These results are the principal findings of this work and show a number of important 

behaviors. First, finite size effects appear to have a very strong impact on the critical 

fractal dimension for percolation until b is quite large, say 25 or perhaps 50. The utility of 

such large values of b in models of natural porous media is questionable. With b = 25, 

pores created at any fractal iteration have a length 1/25 that of those created at the 

previous iteration. This rate of change in pore size may be excessive for many natural 

porous media. In my opinion, these questions have not been adequately addressed in the 

existing literature (see however Brakensiek and Rawls, 1992 and Tyler and Wheatcraft, 

1992, which suggest b values as high as 65). For some simple fractals like the Menger 

sponge shown in Figure 6, it is possible to estimate the b scaling parameter by inspection. 
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As the value of b increases, this becomes considerably more difficult.  In addition, 

lacunarity can obscure the relationship. In this same context, it has been proposed that the 

size of the largest pore relative to the size of the fractal medium be taken as a measure of 

b, with b = L/rmax, where L is a linear measure of the medium size and rmax is the linear 

size of the largest pore.  

 

It is not difficult to investigate the parameter space for randomized sponges. The porosity 

φ of most natural soils varies between a relatively narrow range from 0.4 to 0.6 [Hillel, 

1982]. Equation ( 2) allows computation of the fractal dimension D from φ, b, and i. 

Accepting 0.5 as a reasonable average for φ allows the D to be evaluated as a function of 

b and i only.  The dependence of D on φ is logarithmic and hence quite small.  Figure 22 

shows the relationship for 2 ≤ b ≤ 10 and 1 ≤ i ≤ 10.  
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Figure 22.  Fractal Dimension D as a function of b and i for 50% porosity Menger 

sponge. 

The most important feature of this graph is that, for fixed φ, D rapidly approaches 3 as b 

and i increase. Also, it is clear that there are a number of combinations of b and i that lead 

to any particular D value. 
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If further research indicates that smaller b values are appropriate, finite size effects may 

have considerable importance. In addition, any models of porous media we are likely to 

construct using fractals in the near future will need to consider these finite size effects 

because of computational constraints.  

 

The empirical results are strictly confined to the finite-size range. One approach to 

extrapolation of these results is presented in Figure 23. Here the critical fractal 

dimensions are plotted against the inverse iteration level so that extrapolation to zero 

corresponds to infinite iterations. Table 5 contains the linear regression coefficients and 

the coefficients of determination r2 for different b values.   
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Figure 23. Relationship between Dc and inverse iteration level for different scale 

invariance ratios. 
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Table 5. Regression equations, number of points regressed (n) and coefficients of 

determination (r2) for extrapolations to infinite iteration levels (Figure 23). 

b Regression Equation n r2 

3 Dc = -0.6329/i + 1.8482 4 0.9966 

4 Dc = -0.4719/i + 1.8668 5 0.9967 

5 Dc = -0.4160/i + 1.8797 4 0.9995 

6 Dc = -0.3680/i + 1.8802 4 0.9983 

7 Dc = -0.3254/i + 1.8814 3 0.9989 

8 Dc = -0.3005/i + 1.8832 3 0.9989 

9 Dc = -0.2921/i + 1.8919 3 0.9998 

10 Dc = -0.2803/i + 1.8956 3 0.9994 

16 Dc = -0.2270/i + 1.9057 2 -- 

 

A related approach is to plot Dc against 1/b and extrapolate to infinite scale invariance 

ratio. Results similar to those in Table 5 are obtained (not shown). The remarkable aspect 

of these results is that all of the extrapolations indicate that for b →∞ or i →∞, Dc is near 

1.9 -- the fractal dimension of percolating clusters on a Bernoulli lattice. As discussed 

above, the results here are for percolation in the pores of fractal models of porous media 

of dimension D while the 'universal' D of 1.89… for Bernoulli percolation clusters 

pertains to the percolation cluster itself.  

 

The results in Figure 23 and Table 5 can be used to predict the fractal dimension at the 

percolation threshold for any iteration level for b up to 16. Recasting the results as 1/b vs. 

Dc allows prediction for any b and for i up to 4. 

 

From Table 5, the mean intercept (Dc) is 1.88 and its coefficient of variation is 0.8%. The 

intercept values show an increasing trend with increasing b. Nevertheless, the 95% 

confidence intervals for the intercepts always contain the established fractal dimension of 

2-dimensional Bernoulli percolation clusters. Thus, based on these results we can not 
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reject the hypothesis that the fractal dimension of the media in which percolating clusters 

form at large b and i values is the same as the fractal dimension of percolating clusters in 

Bernoulli media. Further research is needed to determine if this conclusion holds when 

larger systems are incorporated into the empirical database and if it is applicable to the 3-

dimensional case. 

 

The second important feature of the empirical results in Figure 21 is the effect of iteration 

level. In a sense, this can also be thought of as a finite-size effect. The size of the lattice 

increases as bEi with increasing iteration level. Probably more significant however, is the 

fact that, in general, large pores generated at small iteration levels are connected by 

smaller pores generated at higher iteration levels, which allows percolation to occur at 

higher fractal dimensions. 

2.4.2 Comparison with Uncorrelated Networks 

It is instructive to compare these results to what is expected for uncorrelated networks. 

To do this we fix the porosity to the Bernoullian percolation threshold pc and use ( 2) re-

arranged to give D as a function of i, b, E, and pc: 

 ( ) E
bi
pD c +−=

log
1log  ( 26) 

This entails the assumption that the spatial structure of a fractal has no influence on its 

percolation behavior. For i = 1, this assumption is met and the equation provides a very 

good fit to the empirical results. For higher fractal iteration levels however, the fractal 

dimension predicted with ( 26) significantly overestimates the D at which percolation 

occurs (Figure 24). There is a close similarity between ( 26) and the regression 

relationships in Table 5, which can be written as D = m 1/i + Do, where m is the slope 

and Do is the extrapolated y-intercept. Equation ( 26) has the same form with m = log(1 - 

pc)/log b and Do = E. The empirical Do are significantly different from E (= 2, in this 

case) however. Equation ( 26) is based on the assumption that φ = pc in ( 2). The limit of ( 

2) as i → ∞ is φ = 1. Hence, the apparent limit of Equation ( 26), D = E, may not be 

appropriate.  
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Figure 24. Empirical results (circles) and computation assuming no effect of 

network spatial correlation (solid lines and crosses). 

We expect that similar behavior will be observed for pore percolation in 3 dimensions. 

Finite-scale effects will dominate the change in Dc with b until b is relatively large. The 

form of the dependence for the first iteration can be closely computed by simply 

assuming that percolation occurs at pc as we have done for the 2-dimensional case in 

Figure 21 and Figure 24. Similarly, Equation ( 26) can also be used to compute curves 

like those in Figure 24, and a similar departure of the actual critical D values from them 

is expected as a result of the prefractal's correlation structure. It is expected that large 

pores generated at low iteration levels will be connected by smaller pores generated at 

higher iteration levels.  

2.4.3 Comparison with Dye Staining Images and Pore Networks from 
Thin Sections 

A number of scientists have contributed to the understanding of the movement of 

chemicals in porous media by capturing the spatial distribution of surface-applied dye in 

the profile following infiltration [Flury et al., 1994; Perillo et al., 1999; Schwartz et al., 
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1999]. In general, complex patterns reminiscent of percolation clusters are obtained, 

especially under drier initial conditions. Perillo et al. [1999] refer to such staining 

patterns as 'intricately dyed zones' and were not able to attribute them to soil features they 

could observe.  

 

The direct description of pore space by thin section preparation is also an important area 

of endeavor and provides insight into the spatial organization and connectivity of pores.  

 

The results of such studies give us an opportunity to qualitatively evaluate which types of 

percolation clusters -- standard Bernoullian fractal clusters (Figure 11) or those that arise 

in fractal porous media (Figure 20) -- may be more appropriate models, at least for 

certain types of pore space and for the combined phenomena that lead to the actual dye 

staining patterns in a particular soil. To this end, a portion of a dye-staining image 

[Schwartz et al., 1999] and a binary soil photomicrograph [Ringrose-Voase, 1987] are 

compared with each type of cluster in Figure 25. Clearly, the two types of artificial 

percolation clusters are significantly different. In addition, the dye-staining image 

distinctly reveals the 3-dimensional nature of the process that generated it as there is a 

significant disconnection between dyed areas. In fact, many stained areas are completely 

isolated from other stained areas in this 2-dimensional section.  Similarly, there is no 

need for the pore space to be connected in the plane of the thin section. This is a 

significant limitation for the comparison of the clusters generated in 2-dimensional media 

with the dye-staining patterns and the pore space image, which are 2-dimensional 

sections of 3-dimensional systems. It can only be resolved by extending the work 

described here to 3 dimensions. Nevertheless, my impression is that the pore cluster 

model (lower right) is superior to the Bernoulli cluster model for the simulation of the 

particular dye staining and pore space images in Figure 25. This is in agreement with the 

findings of Crawford and Matsui [1996] that it is the solids rather than the pores of 

natural porous media that follow fractal scaling.  
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Figure 25. Comparison of a portion of a soil dye-staining image (top left; 

approximately 40x40 cm, Costa Rican ultisol ; Schwartz et al., 1999; D = 1.79),  thin 

section image  (top right) [Ringrose-Voase, 1987],  Bernoullian percolation cluster 

(bottom left; D = 1.839…), and percolation cluster in fractal porous medium 

(bottom right; porous medium D = 1.799…). 

 

2.5 Conclusions 

Bernoullian site percolation clusters are known to be fractal and can be approximated by 

prefractal models. However, percolation in the pore space of mass prefractal porous 

medium models has not been previously investigated. Such media are popular as models 

of porous media. Empirical simulation of 2-dimensional prefractal porous media and 

determination of their percolation thresholds reveals strong finite size effects and 

important fractal iteration level effects; at the percolation thresholds, larger pores 

generated by lower iteration levels are generally connected by smaller pores generated at 
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higher iteration levels. This results in a network of large pore bodies connected by small 

pore necks.  

 

These results should prove valuable for the prediction of the onset of percolation in 

models of prefractal porous media. The results can be used to bound modeling efforts. 

Percolation phenomena have application to a number of research areas relevant to porous 

media [Sahimi, 1994]. The results here may also have more fundamental application in 

fluid flow problems and other areas. Although only a limited range of parameters has 

been explored empirically, extrapolations allow estimates of the critical fractal dimension 

to be made for a larger number of combinations of iteration level and scale invariance 

ratio. It is also likely that results similar to those observed here will apply to the 3-

dimensional case. 

 

Extrapolation of the empirical results to infinite iterations suggests that there may be a 

unique fractal dimension of the solid matrix at which the pore space first percolates. The 

fractal dimension at which this occurs appears to be around 1.9 -- close to the universal 

fractal dimension of Bernoullian site percolation clusters.  Similar behavior might be 

found for the 3-dimensional case. 

 

Percolation clusters that form in prefractal porous media are considerably different from 

those that form in a Bernoulli lattice. The clusters formed within prefractal media appear 

to be better models of clusters that exist in many real pore spaces because they have large 

pore bodies connected by small pore necks. Comparison of the percolation clusters in the 

pores of prefractal porous media with thin section images of natural porous media and 

soil dye-staining images suggests that these models may be appropriate for the simulation 

of pore space and transport phenomena. 

 

This work should be extended, both in the range of parameters evaluated for the 2-

dimensional case and into 3 dimensions. A 3-dimensional model is necessary for 

comparison with real processes in porous media. 
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Chapter 3. Application to Soil Water Retention 

3.0 Summary 

This chapter synthesizes the results of Chapters 1 and 2 in an application to soil water 

retention in random fractal porous media models. Previous applications of fractal scaling 

to soil water retention are reviewed and problems with models that do not consider a 

minimum pore size are exposed. An application to soil water retention that was originally 

computed with the less desirable algorithm is re-calculated and compared with the 

original. This re-calculation resulted in a unique pore size distribution and more uniform 

water retention curves. It is demonstrated that constructing fractal porous media with the 

heterogeneous algorithm leads to substantially greater variability in water retention than 

is observed in media constructed with the homogeneous algorithm. Findings on the 

percolation thresholds for pore percolation in the random fractal models from Chapter 2 

are shown to differentiate between well-connected systems where existing simple models 

of water retention in fractal porous media give reasonable predictions, and poorly 

connected systems where these models fail. 

3.1 Previous Applications of Fractal Scaling to Soil Moisture 
Retention 

Perhaps the first paper that made use of a fractal approach to quantifying the soil 

moisture retention is that of Ahl and Niemeyer [1989].  They arrived at Vp ∝  ψD-3 where 

Vp is the cumulative pore volume.  This is equivalent to the Campbell model [Campbell, 

1985] 

 

 
b
1

0

−







=

ψ
ψ

φ
θ  ( 27) 

 

with D-3 = -1/b or D = 3 - 1/b, where θ is the volumetric water content, ψ is the matric 

potential, and ψ0 is the air-entry matric potential. Ahl and Niemeyer [1989] computed D 
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in the range 2.1 to 2.84 for 11 soils. They found the highest D values in surface horizons.  

They also pointed out an intuitive reason why D approaches 3 in some soils; the pore 

volume 'penetrates' the sample space completely and is nearly space-filling. 

 

Tyler and Wheatcraft [1989] used parameters determined from a fractal interpretation of 

particle size data to estimate a parameter in a previously empirical model of soil water 

retention. 

 

In 1990, the same authors published the first paper that explicitly used a fractal model of 

pore space. They used Sierpiński carpet-type constructions and related the carpets' water 

retention properties to the parameters of Brooks and Corey and the Campbell empirical 

water retention models. They showed that, relative to their planar carpet model, clayey 

soils had fractal dimensions approaching 2 while sandy soils had fractal dimensions 

closer to 1. 

 

Rieu and Sposito [1991a,b,c] followed with papers that arrive at the following equation 

for a fragmented fractal porous medium: 

 

 ( )[ ] 3
1

0 1 −+−= Dθφψψ  ( 28) 

 

For 6 soils, D was found to range between 2.758 and 2.968, with finer textured soils 

yielding higher values.  

 

 

3.2 Alternative Derivation of Fractal Water Retention Model  

The equation developed by Al and Niemeyer [1989] and its relationship to the Campbell 

[1985] model demonstrated by Tyler and Wheatcraft [1989] suffer from a failure to 

include both upper and lower scaling limits. Without a lower scaling limit, Menger 

sponge-type models ultimately reach 100% porosity as fractal iterations continue 

indefinitely.  
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The relationship between the Campbell [1985] model and the model of Ahl and 

Niemeyer [1989] is demonstrated by an alternative approach here. This derivation makes 

the principal shortcoming of the Ahl and Niemeyer [1989] model (lack of lower scaling 

limit) plain. The next section presents a model that explicitly incorporates a lower scaling 

limit.  

 

The Campbell [1985] model for soil water retention can be written as 

 
b
1

0

−







=

ψ
ψφθ  ( 29) 

Because ψo and φ are constants, they can be combined into a constant k: 

 ( ) bk
1

−= ψθ  ( 30) 

Assuming capillary behavior, the matric potential is given by the Young-Laplace 

equation 

 
rwρ

ασψ cos2−=  ( 31) 

where r is the radius of a cylindrical pore, and α is the wetting contact angle. Assuming 

perfect wetting (α = 0 and cos α = 1), substituting ( 31) into ( 30), and combining the 

factor -2, the surface tension σ, the density of water ρw,  and the previous constant k into 

k', gives 

 
b

r
k

1

1 −






′=θ  ( 32) 

The volumetric water content is defined as the volume of water Vw divided by the total 

volume Vt 
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t

w

V
V

=θ  ( 33) 

Equating the right hand sides of ( 32) and ( 33) and incorporating the constant Vt into k'' 

yields 

 
b

w r
kV

1

1 −






′′=  ( 34) 

In the pore space of a fractal, there are essentially three ways the numbers of pores and 

solids can be counted. The most familiar counting of the fractal set, or the 'solids' as used 

here, is N = r-D, where N is the number of cubes of size r needed to cover the set. For 

example, for the Menger sponge (Figure 6), there are N = 20 'solids' of size 1/3 and N = 

400 'solids' of size 1/9. These 'solids' are fictitious however in that they are 'full of holes' 

and do not directly account for the volume or mass of the fractal porous medium. The 

number Np of pores or gaps also follows a scaling rule of the form Np ∝  r-D. So for 

example, the Menger sponge has 7 pores of size 1/3 and 140 pores of size 1/9. Because 

Np is not cumulative, it is not useful in the current context. The third way of counting the 

pores is to take the difference between the number of solids that would occupy the total 

volume of the porous medium (NT) and the number of quasi-solids N. This number Np' = 

NT - N = r-E - N (or Np' = r-3 - N in 3-dimensional space), has the properties that it gives 

the total number of pores (including those of larger size) measured in units of size r. For 

example, the Menger sponge has 7 pores of size 1/3, but it has a total number of Np' = 

729 - 400 = 329 'pores' (i.e., pore space) measured in cubes of size 1/9.  

 

The volume of water contained in Np' cubical pores of size r is  

 3rNV p
′=  ( 35) 

Cylindrical pores of radius r and height r would contain V = Np' π r3. Thus, the constant π 

(or other shape-dependent factor) is immaterial.  
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Vw in Equation ( 34) represents the total volume of fluid retained in a porous medium in 

all pore sizes from r to some minimum r. It can be written as Vw = VwT - V, where VwT is 

the volume of water contained in the porous medium at saturation. VwT can also be 

evaluated using Equation ( 35) in the limit of the minimum r: V = Np' r3 = (r-3 - N)r3 = 1 -  

Nr3 = 1 - r-Dr3 = 1 - r3-D. Because 3 - D > 0, the limit of V = 1 - r3-D as r  0 is V = VwT = 

1. This indicates that the porosity is 100% and should not be a surprising result. The 

entire volume of the unit volume porous medium is pore space because a minimum r > 0 

is not specified in this model. This shows a significant flaw in any similar fractal model 

that does not incorporate a minimum pore size. 

 

Now we can proceed with the derivation. Using Vw = VwT - V, Equation ( 35), and the 

result VwT = 1, we have Vw = 1 - Np'r3 = 1 - (r-3 +N)r3 = Nr3. 

 

Substitution into ( 34) gives 
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Rearranging as 
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and 
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Finally,  
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 




 −−

′′= brkN
13

 ( 39) 

This is equivalent to the fundamental fractal power law N ∝  r-D with D = 3 - 1/b. Based 

on this relation, D - 3 = -1/b and substitution into ( 29) yields 
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0

−







=

D

s ψ
ψθθ  ( 40) 

This result is the same as that of Ahl and Neimeyer [1989] and related to that of Perfect 

[1999] (see below). 

3.3 Three Parameter Model 

Perfect [1999] proposed a 3-parameter model that included the fractal dimension, an 

upper scaling limit (related to the air entry tension), and a lower scaling limit (related to 

the tension at complete dryness.   

 

Perfect [1999] makes a number of important assumptions to apply a Menger sponge-like 

model to soil water retention curves. First, all pores are hydraulically connected to the 

atmosphere by larger pores. This ensures that progressively smaller pores can desaturate 

as the soil moisture tension increases. This appears to be the case for the non-random 

Menger sponge (Figure 6). However, it is easy to imagine randomized sponges that will 

violate this assumption and the results presented in Chapters 1 and 2 demonstrate the lack 

of connectivity and its impact. A second important assumption is that pores completely 

dewater when the tension needed to drain cylindrical pores of 'equivalent' radii is 

reached. This neglects the existence of wetting films and fluid 'wedges' that can be held 

in pore corners. 

 

Following Rieu and Sposito [1991a, b, c] and Perfect [1999], the volumetric water 

content of a sponge constructed to the ith level as the jth iteration level pores drain is given 

by  
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 )3()3(
,

−− −= DiDj
ij bbθ  ( 41) 

Because we already know the water content at saturation (equal to the porosity) from ( 2), 

we can compute the relative saturation Sw = θj,i/φ as  
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b
bbSw  ( 42) 

 

Now, from the capillary equation, the tension is inversely proportional to the pore size r.  

Because r1 = (1/b)1 at the first iteration level (where the largest pores appear), the air-

entry tension ψ0 is proportional to 1/r1 or b1.  Generalizing to other tensions and sizes, we 

can write  

 

 i
i b∝−1ψ  ( 43) 

 

Next, we determine the ratio of the tension to the tension at air-entry as 
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Finally, we insert ( 44) into ( 42) and, after a small amount of re-arrangement, arrive at 

[Perfect, 1999] 
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which applies for ψ0 ≤  ψj  ≤ ψi. Here ψi is a constant equal to the tension that drains the 

smallest pores.  ψ0 is the tension that drains the largest pores.  ψj is the tension applied to 

the porous medium.  For application of this equation to real soils, Perfect [1999] 

considers ψj a continuous variable. For our immediate purposes working with known 

fractal models however, it suffices to retain ψj in its original form.  Figure 26 shows the 
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water retention function for a range of fractal dimensions when the largest and smallest 

pore sizes remain the same (ψo = 0.1 kPa and ψi  = 100 kPa, respectively). 
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Figure 26.  Perfect [1999] model for soil water retention in fractal pore space. 

Like other models of soil water retention in prefractal pore spaces, this model assumes all 

water is held by capillary forces in accordance with the Young-Laplace equation.  

Comparison of the predictions of this model with network and lattice gas simulations of 

retention in non-random prefractals like the Menger sponge that meet its other 

assumptions (particularly the assumptions about connectivity and coalescence of pores) 

may allow the impact of the strictly capillary assumption to be isolated and identified. 

 

3.4 Previous Work on Pore Connectivity and Coalescence in 
Fractal Water Retention Models 

In perhaps the first paper to explicitly consider the effects of pore connectivity on water 

retention in a prefractal model of porous media, Bird and Dexter [1997] computed 

moisture-tension relations in 2-dimensional prefractal pore networks.  They simulated 

drainage in b = 3, i = 5 randomized Sierpiński carpets (generated with the heterogeneous 

algorithm with p = 0.7, 0.8, and 0.9) by allowing three sides of the prefractal structure to 

be open to the atmosphere while the bottom was connected to a water sink.  At a given 
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tension, all pores of size greater than r that are filled with water and are connected to the 

atmosphere by at least one path consisting of pores no smaller than r, drain.  Note that 

this approach also neglects the coalescence of pores that in reality can lead to pores larger 

than any particular size r computed from the fractal scaling equations. For example, 

consider the largest pore of Figure 4, which is enlarged relative to the 1/3 x 1/3 size 

produced by the fractal generating process as a result of its connection to other pores.  

 

The tension at which a pore drains completely is taken as inversely proportional to the 

size r, as it is in the Young-Laplace equation. This approach is therefore similar to most 

others in its assumption of purely capillary behavior.  The approach is different from 

most others however, in that it considers the pore connectivity. 

 

Bird and Dexter [1997] used the heterogeneous algorithm and presented simulated water 

retention curves for a number of different porosities ranging from 0.41 to 0.97. These are 

theoretical porosity values according to Equation ( 5). The actual porosities vary as 

demonstrated above. As an introduction to the impact of the different algorithms, we 

focus our attention on structures similar to their first three examples (p = 0.7, 0.8, and 

0.9) where porosity ranges from 0.41 to 0.83. The computer code used by Bird and 

Dexter [1997] was modified to generate homogeneous porous media for comparison. 

Later, we compare the results of water retention simulations in 1000 realizations of 

heterogeneous and homogeneous for each of 3 values of p. 

 

Figure 27 through Figure 29 compare water retention simulations on prefractal media 

generated using the homogeneous algorithm with those on media built with the 

heterogeneous algorithm.  The solid probability p decreases in the sequence of figures. S 

is the relative saturation and logb ψ is the scaled log of tension derived as follows: As 

noted above, r depends on b as r = (1/b)i  where i is the iteration. Because ψ ∝  1/r ∝  bi in 

the Young-Laplace equation (Equation ( 31)), taking logarithms yields log ψ ∝  i log b, or 

logb ψ ∝  i. Hence, logb ψ can be represented by the prefractal's iteration i. 'Pore Size 

Curves' shown on the figures indicate water retention and drainage in all pores, 
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irrespective of their connectivity. For the homogeneous algorithm, these are equivalent to 

the Perfect [1999] water retention model, which is described in detail in Section 3.3. 
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Figure 27. Impact of different algorithms on simulated water retention: (A) 

homogeneous, p=8/9, (B) Heterogeneous, p=0.9. Heterogeneous results from Bird 

and Dexter [1997], Figure 3. 
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Clearly, the impact of incomplete pore connectivity is to inhibit complete drainage. This 

causes the water retention curves to deviate from the 'pore size' curves. The deviation is 

more pronounced at higher p values (lower porosities) because connectivity increases as 

porosity increases. Chapter 2 considers the connectivity as a function of fractal 

dimension, b value, and iteration level in detail.  

 

The single homogeneous realization that differs significantly from the others in Figure 

27A is due to the case where the large pore generated during the first iteration occupies 

the center of the carpet and is not connected to a path that permits it to drain at higher 

tensions. The same phenomenon could also occur with the heterogeneous algorithm. 

However, despite the similarity of the retention curve in Figure 27B, Realization 3, it is 

clear from the 'pore size' curve that no large pore was formed by the heterogeneous 

algorithm in that realization (Figure 27B, Pore Size Curve 3). In contrast, Realization 1 of 

the heterogeneous results in Figure 28B is due to isolation of a large pore. This pore is 

connected to the atmosphere via smaller pores and ultimately drains. 
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Figure 28. Impact of different algorithms on simulated water retention: (A) 

homogeneous, p=7/9, (B) heterogeneous, p=0.8. Heterogeneous results from Bird 

and Dexter [1997], Figure 3. 
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Figure 29. Impact of different algorithms on simulated water retention: (A) 

homogeneous, p=6/9, (B) heterogeneous, p=0.7. Heterogeneous results from Bird 

and Dexter [1997], Figure 3. 

 

These figures reveal two important distinctions between the fractal algorithms. First, 

there is only one pore size distribution (when the coalescence of pores is neglected) and 

hence, only one porosity associated with the homogeneous algorithm for a particular set 
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of prefractal parameters. As a result of the heterogeneous algorithm, each realization of 

the porous prefractal has a different pore size curve and porosity.  Second, there is in 

general less variability in the computed drainage curves for the homogeneous algorithm. 

This means that the effect of pore connectivity, for a particular set of prefractal 

parameters, is better elucidated by the simulated water retention on the structures 

generated with the homogeneous algorithm. 

 

Figure 30 through Figure 32 compare water retention simulations on prefractal media 

generated with the homogeneous and heterogeneous algorithms at three different p values 

using the method of Bird and Dexter [1997].  The p values, 6/9, 7/9, and 8/9, were 

selected to maintain a reasonable range of porosities. The Equation ( 5) porosities range 

from 45 to 87%. 
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Figure 30. Impact of homogeneous and heterogeneous fractal-generating algorithms 

on simulated water retention for 1000 realizations of 2-dimensional b = 3, i = 5 

prefractal porous media with p=8/9. 
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Figure 31. Impact of homogeneous and heterogeneous fractal-generating algorithms 

on simulated water retention for 1000 realizations of 2-dimensional b = 3, i = 5 

prefractal porous media with p=7/9. 
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Figure 32. Impact of homogeneous and heterogeneous fractal-generating algorithms 

on simulated water retention for 1000 realizations of 2-dimensional b = 3, i = 5 

prefractal porous media with p=6/9. 
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Figure 30 through Figure 32 emphasize the important distinctions in the behavior of 

media generated with the different fractal algorithms; there is in general less variability in 

the computed drainage curves for the structures generated with the homogeneous 

algorithm. This must be the case because all homogeneous structures belong to a subset 

of the possible heterogeneous structures.  

 

The distributions of simulated water saturations around their median value as a function 

of applied tension were highly non-normal for both homogeneous and heterogeneous 

prefractals. Therefore, we use non-parametric statistics to summarize the results. The 

principal findings are that the range of saturations between the first and third quartiles for 

water retention in heterogeneous prefractal structures was on average more than twice as 

large as that for homogeneous prefractals (Table 6). Thus, the effects of pore connectivity 

on water retention for a particular set of prefractal parameters can be better elucidated by 

the less-variable structures generated with the homogeneous algorithm.  

 

Table 6. Ratio of interquartile ranges of saturation for heterogeneous and homogeneous 

algorithms at each tension for varying p. (3rd-1st quartiles heterogeneous/3rd-1st quartiles 

homogeneous). 

logb ψ p=8/9 7/9 6/9 

1 ∞1 1.76 ∞1 

2 3.52 5.33 2.90 

3 3.53 2.98 1.75 

4 3.43 2.33 2.01 

5 3.39 1.58 1.96 
1Interquartile range of homogeneous results = 0 

 

The deviation in the median saturations for the homogeneous and heterogeneous 

algorithms when p = 7/9 (Figure 31) can likely be attributed to the percolation properties 

of the pore networks in the fractal media [Chapter 2 and Sukop et al., 2001b]. When p = 

8/9, percolation cannot readily occur in either the heterogeneous or homogeneous 
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networks and saturation remains high over all tensions. When p = 6/9, percolation occurs 

easily. For the intermediate p (= 7/9), percolation is hindered in the homogeneous case, 

which always maintains its fractal dimension D = 1.77…, but occurs frequently in the 

heterogeneous case where more than 20% of the time the realized dimension of the first 

iteration structure is D = 1.63…, lower than the critical fractal dimension for percolation 

in these structures (D = 1.716…) [Chapter 2 and Sukop et al., 2001b]. 

 

Figure 30 through Figure 32 also show the results of the Perfect [1999] model (Equation ( 

45)). At high p values, the computed saturations considering pore connectivity differ 

significantly from those predicted by this model. This model is based on the assumptions 

of purely capillary behavior and complete connectivity. If these assumptions are met, ψi 

in Equation ( 45) is determined by the smallest pore size. In randomized prefractal media 

however, pore connectivity is usually incomplete and dryness cannot be achieved at any 

tension if pores containing water are isolated. This is most significant when the 

connectivity of the pore network is low (i.e., when the fractal dimension of the medium is 

high and the porosity is low). Figure 30 shows that, due to pore isolation, little and 

eventually no reduction in saturation occurs when tension is increased. The optimal ψd is 

therefore infinite. At lower p values (higher porosity, Figure 32), the Perfect model works 

significantly better. 

3.4 Conclusions 

Bird and Dexter [1997] conclude that, within certain parameter ranges, pore connectivity 

can make it impossible to accurately measure the pore size distribution from the water 

retention curve. The algorithmic differences in assigning pores do not have a substantial 

impact on this conclusion, but it is shown here that the reduced variability associated with 

the homogeneous random fractal algorithm seems preferable for the investigation of 

hydrologic processes in fractal porous media. It is also shown here that the parameter 

ranges where pore size distributions can be measured can be predicted based on the 

percolation thresholds determined in Chapter 2.  
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Appendix A: Random Sierpiński Carpet Generator 



76 

 

% M. Sukop, 2001. MATLAB V. 5.3 

% Program computes, displays, and stores randomized Sierpinski Carpets. 

% The homogeneous or heterogeneous (binomial/truncated binomial) algorithms  

% can be specified.  

% b is fractal scaling parameter (3 for standard Sierpinski Carpet). 

% p is the probability of a pore at each iteration level (1/9 for standard carpet). 

% Output is to file Junk.bmp ('truecolor') or to Junk.dat,  

% which is either ARCINFO-compatible Grid ASCII file  

% or ASCII file of x and y coordinates and 1's (solids) or 0's (pores) 

% in the following order: 

% row 1, column 1;  

% row 1, column 2; ... 

 

clear 

rand('state',sum(100*clock)) 

 

typemode=input('Select fractal type: 0 = homogeneous; 1 = heterogeneous; 2 = non-random ') 

 

if typemode < 2 

 

b=input('b value ? ') 

p=input('p (pore probability) value ? ') 

 

end 

 

maxit=input('Maximum number of iterations ? ') 

 

if typemode == 1 

 

 hettypemode=input('Select heterogeneous mode: 0 = regular binomial; 1 = truncated binomial ') 

 

elseif typemode == 2 

       

   a=input('Specify generator; e.g., [0 0 0, 0 1 0, 0 0 0] for standard Sierpinski carpet: ') 

   b=sqrt(length(a)) 

   p=sum(a)/length(a) 
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end 

 

n=round(b^2-p*b^2) 

D=log(n)/log(b) 

 

outmode=input('Select output mode:...0 = GRIDASCII; 1 = X,Y ASCII; 2 = BMP(truecolor) ') 

 

it=1 

if typemode==0 %Homogeneous Algorithm 

    

 a=randperm(b^2); 

 for i = 1:b^2; 

  if a(i)<=n  

    c(i)=uint8(0);%solid - black  

  else  

   c(i)=uint8(255);%pore - white 

  end 

   end 

    

elseif typemode==1 %Heterogeneous Algorithm 

    

   if hettypemode==0 %Regular binomial 

       

    a=rand(b^2,1); 

  for i = 1:b^2; 

   if a(i)<=1-p  

     c(i)=uint8(0); 

   else  

        c(i)=uint8(255); 

       end 

      end 

       

   else %Truncated binomial 

      a=2; 

      while min(a)>1-p 

       a=rand(b^2,1); 

      end 
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  for i = 1:b^2; 

   if a(i)<=1-p  

     c(i)=uint8(0); 

   else  

        c(i)=uint8(255); 

       end 

    end 

   end 

    

else %non-random 

   c=uint8(255*a); 

end %end algorithm selection 

 

for row=1:b; 

 for col=1:b; 

  d(row,col)=c(row*b-(b-col)); 

 end; 

end; 

 

oldcol=1 

while it<maxit 

for oldrow=1:b^it; 

 disp(100*oldrow*oldcol/b^(2*it)) 

 disp('% done current iteration') 

 for oldcol=1:b^it; 

  if d(oldrow,oldcol)==uint8(255)%if pore  

   for newrow=oldrow*b-(b-1):oldrow*b; 

    for newcol=oldcol*b-(b-1):oldcol*b; 

     e(newrow,newcol)=uint8(d(oldrow, oldcol)); 

    end 

   end 

  else     

          

         if typemode==0 %Homogeneous Algorithm 

             

    a=randperm(b^2); 

    for i = 1:b^2; 
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     if a(i)<=n  

       c(i)=uint8(0);%solid - black  

     else  

      c(i)=uint8(255);%pore - white 

     end 

      end 

    

   elseif typemode==1 %Heterogeneous Algorithm 

    

      if hettypemode==0 %Regular binomial 

       

       a=rand(b^2,1); 

     for i = 1:b^2; 

      if a(i)<=1-p  

        c(i)=uint8(0); 

      else  

           c(i)=uint8(255); 

          end 

         end 

       

      else %Truncated binomial 

         a=2; 

         while min(a)>1-p 

          a=rand(b^2,1); 

         end 

     for i = 1:b^2; 

      if a(i)<=1-p  

        c(i)=uint8(0); 

      else  

           c(i)=uint8(255); 

          end 

       end 

            end 

         else %non-random 

            c=uint8(255*a); 

   end %end algorithm selection 
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   newrow=oldrow*b-(b-1); 

   newcol=oldcol*b-(b-1); 

   for row=1:b; 

    for col=1:b; 

     e(newrow+row-1,newcol+col-1)=uint8(c(row*b-(b-col))); 

    end 

   end 

  end 

 end 

end 

it=it+1 

d=uint8(e); 

end 

clear e; 

 

if outmode==1 

 %generate output arrays 

 for i=1:(b^it); 

  disp(100*i/b^it) 

  disp('% done building x and y vectors') 

  for j=1:(b^it); 

   x((i-1)*b^it+j)=(2*i-1)/(2*b^it); 

   y((i-1)*b^it+j)=1-(2*j-1)/(2*b^it); 

  end 

 end 

 disp('Reshaping and transposing') 

   z=double(reshape(d,b^(2*it),1)); 

   z=z/255; 

   z=1-z; %exchange 1 and 0 ('solids' = 1) 

 x=x'; 

 y=y'; 

 out=[x y z]; 

 disp('writing file') 

   save junk.dat out -ascii; 

    

elseif outmode==0 

 %generate gridascii output 



81 

 

   z=double(d); 

   z=z/255; 

   z=1-z; %exchange 1 and 0 ('solids' = 1) 

 

fid=fopen('junk.dat','w'); 

fprintf(fid,'NCOLS %g',b^it); 

fprintf(fid,'\rNROWS %g',b^it); 

fprintf(fid,'\rXLLCORNER %g',0); 

fprintf(fid,'\rYLLCORNER %g',0); 

fprintf(fid,'\rCELLSIZE %g',1/b^it); 

fprintf(fid,'\rNODATA_VALUE %g',9999); 

for i=1:b^it; 

 fprintf(fid,'\r'); 

  fprintf(fid,'%2.0g',z(i,:)); 

end 

status=fclose(fid); 

 

elseif outmode==2 

%bmp1 output 

e(:,:,1)=d; 

e(:,:,2)=d; 

e(:,:,3)=d;    

imwrite(e,'junk.bmp') 

 

viewmode=input('View bmp file?: 0 = No; 1 = Yes ') 

 

 if viewmode==1 

  image(imread('junk.bmp')) 

     axis('equal') 

 end 

end 
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Appendix B: Random Menger Sponge Generator 
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% M. Sukop, 2001. MATLAB V. 5.3 

% Program computes, displays, and stores randomized Menger Sponges.  

% The homogeneous or heterogeneous (binomial/truncated binomial) algorithms  

% can be specified.  

% b is fractal scaling parameter (3 for standard Menger Sponge). 

% p is the probability of a pore at each iteration level (7/27 for standard sponge). 

% Output to Junk.dat is ASCII file of x,y, and z coordinates and 1's (solids) or 0's (pores) 

% in the following order: 

% row 1, column 1, layer 1;  

% row 1, column 1, layer 2; ... 

 

clear 

rand('state',sum(100*clock)) 

 

b=input('b value ? ') 

p=input('p value ? ') 

n=round(b^3-p*b^3) 

 

D=log(n)/log(b) 

 

maxit=input('Maximum number of iterations ? ') 

typemode=input('Select fractal type: 0 = homogeneous; 1 = heterogeneous; 2 = non-random ') 

 

if typemode == 1 

 

 hettypemode=input('Select heterogeneous mode: 0 = regular binomial; 1 = truncated 

binomial ') 

 

elseif typemode == 2 

       

a=input('Specify generator;    e.g., [1 1 1, 1 0 1, 1 1 1, 1 0 1, 0 0 0, 1 0 1, 1 1 1, 1 0 1, 1 1 1] for 

standard Menger sponge') 

end 

it=1 

if typemode==0 %Homogeneous Algorithm 

a=randperm(b^3); 

for i = 1:b^3; 
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  if a(i)<=n  

    c(i)=1;%solid 

  else  

   c(i)=0;%pore 

  end 

end 

elseif typemode==1 %Heterogeneous Algorithm 

if hettypemode==0 %Regular binomial 

           a=rand(b^3,1); 

  for i = 1:b^3; 

   if a(i)<=1-p  

     c(i)=1; 

   else  

          c(i)=0; 

         end 

        end 

       

    else %Truncated binomial 

        a=2; 

        while min(a)>1-p 

         a=rand(b^3,1); 

        end 

  for i = 1:b^3; 

   if a(i)<=1-p  

     c(i)=1; 

   else  

          c(i)=0; 

         end 

     end 

end 

else %non-random 

c=a; 

end %end algorithm selection 

for row=1:b; 

 for col=1:b; 

        for lay=1:b; 

            d(row,col,lay)=c(row*b^2-(b^2-b*col)-(b-lay)); 
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        end; 

 end; 

end; 

oldcol=1 

while it<maxit 

 for oldrow=1:b^it; 

  disp(100*oldrow*oldcol/b^(2*it)) 

  disp('% done current iteration') 

  for oldcol=1:b^it; 

       for oldlay=1:b^it; 

    if d(oldrow,oldcol,oldlay)==0  

     for newrow=oldrow*b-(b-1):oldrow*b; 

                  for newcol=oldcol*b-(b-1):oldcol*b; 

                     for newlay=oldlay*b-(b-

1):oldlay*b; 

                   

 e(newrow,newcol,newlay)=d(oldrow,oldcol,oldlay); 

                     end    

      end 

            end   

                else  

                   if typemode==0 %Homogeneous Algorithm 

      a=randperm(b^3); 

      for i = 1:b^3; 

       if a(i)<=n  

         c(i)=1; 

       else  

        c(i)=0; 

       end 

                       end 

          elseif typemode==1 %Heterogeneous Algorithm 

          if hettypemode==0 %Regular binomial 

                a=rand(b^3,1); 

        for i = 1:b^3; 

         if a(i)<=1-p  

           c(i)=1; 

         else  
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               c(i)=0; 

               end 

              end 

               else %Truncated binomial 

             a=2; 

             while min(a)>1-p 

              a=rand(b^3,1); 

             end 

       for i = 1:b^3; 

        if a(i)<=1-p  

         c(i)=1; 

        else  

              c(i)=0; 

              end 

       end 

    end 

              else %non-random 

      c=a; 

     end %end algorithm selection 

 

     newrow=oldrow*b-(b-1); 

              newcol=oldcol*b-(b-1); 

              newlay=oldlay*b-(b-1); 

     for row=1:b; 

                  for col=1:b; 

                   for lay=1:b; 

              e(newrow+row-1,newcol+col-1,newlay+lay-1)=c(row*b^2-(b^2-b*col)-(b-lay)); 

              end    

      end 

     end 

             end 

         end    

  end 

 end 

 it=it+1 

 d=e; 

end 
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close 

figure(1) 

hold on 

fid = fopen('junk.dat','w'); 

col=0; 

for row=1:b^maxit; 

   disp(100*row*col/b^(2*it)) 

 disp('% done generating plot') 

  for col=1:b^maxit; 

     for lay=1:b^maxit; 

      if d(row,col,lay)==1; 

       xmin=(row-1)/b^maxit; 

       xmax=row/b^maxit; 

       ymin=(col-1)/b^maxit; 

       ymax=col/b^maxit; 

       zmin=lay/b^maxit; 

       zmax=(lay-1)/b^maxit;  

fprintf(fid,'%6.5f %6.5f %6.5f \n',xmin+(xmax-xmin)/2,ymin+(ymax-ymin)/2,zmin+(zmax-

zmin)/2); vert=[xmin,ymin,zmin;xmax,ymin,zmin; xmax,ymax,zmin; xmin,ymax,zmin; xmin,ymin,zmax; 

xmax,ymin,zmax; xmax,ymax,zmax; xmin,ymax,zmax]; 

fac=[1 2 6 5; 2 3 7 6; 3 4 8 7; 4 1 5 8; 1 2 3 4; 5 6 7 8]; 

rgbcolors=[1 1 0; 0 1 0; 1 1 0; 0 1 0; 0 0 1; 0 0 1]; 

patch('faces',fac,'vertices',vert,'FaceVertexCData',rgbcolors,'FaceColor','flat','EdgeColor',[1 1 

1],'BackFaceLighting', 'reverselit'); 

view(3) 

   end;    

     end; 

 end; 

end; 

fclose(fid) 

light('Position',[-1,0,0]); 

%light('Position',[0,-1,0]); 

%light('Position',[0,0,1]); 

 hold off



88 

 

Appendix C: Porosity (φφφφ), Standard Deviation of Porosity (σσσσ), and 
Fractal Dimension (D) at the Percolation Threshold for Different 
Iteration Levels and Scale Invariance Ratios 
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i b φ σ D 

     

1 2 - - - 

1 3 0.576 0.113 1.220 

1 4 0.564 0.108 1.400 

1 5 0.577 0.109 1.465 

1 6 0.581 0.096 1.514 

1 7 0.578 0.087 1.557 

1 8 0.579 0.081 1.584 

1 9 0.585 0.078 1.600 

1 10 0.587 0.071 1.616 

1 16 0.590 0.056 1.679 

1 32 0.591 0.036 1.742 

1 64 0.592 0.022 1.785 

1 100 0.593 0.016 1.805 

     

2 3 0.650 0.084 1.523 

2 4 0.655 0.076 1.616 

2 5 0.657 0.069 1.667 

2 6 0.672 0.067 1.689 

2 7 0.671 0.063 1.715 

2 8 0.676 0.055 1.729 

2 9 0.675 0.052 1.744 

2 10 0.680 0.054 1.753 

2 16 0.684 0.048 1.792 

     

3 3 0.708 0.060 1.626 

3 4 0.702 0.059 1.709 

3 5 0.711 0.049 1.743 
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3 6 0.725 0.046 1.760 

3 7 0.729 0.041 1.776 

3 8 0.737 0.034 1.786 

3 9 0.740 0.033 1.796 

3 10 0.742 0.033 1.804 

     

4 3 0.726 0.047 1.706 

4 4 0.747 0.045 1.752 

4 5 0.762 0.032 1.777 

4 6 0.776 0.031 1.791 

     

5 4 0.784 0.024 1.779 
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