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ABSTRACT OF THESIS 

 
 

 
 

EFFECTS OF LIVESTOCK ANTIBIOTICS ON NITRIFICATION, 
DENITRIFICATION, AND MICROBIAL COMMUNITY COMPOSITON IN SOILS 

ALONG A TOPOGRAPHIC GRADIENT 
 

Several types of antibiotics (roxarsone, virginiamycin, and bacitracin) are widely 

included in poultry feed to improve animal growth yields. Most of the antibiotics are 

excreted in manure which is subsequently applied to soils. One concern with this practice 

is that antibiotics may affect several microbially-mediated nutrient cycling reactions in 

soils that influence crop productivity and water quality. The main objectives of this study 

were to determine the effects of livestock antibiotics on nitrification, denitrification, and 

microbial community composition in soils along a topographic gradient. These objectives 

were addressed in a series of lab experiments by monitoring changes in inorganic N 

species and ester-linked fatty acid methyl ester profiles after exposing soil 

microorganisms collected from different topographic positions to increasing levels of 

antibiotics. It was discovered that roxarsone and virginiamycin inhibited nitrification and 

soil microbial growth and also influenced microbial community composition, but only at 

levels that were much higher than expected in poultry litter-applied soils. Bacitracin did 

not affect nitrification, microbial growth, or microbial community composition at any 

concentration tested. None of the antibiotics had a strong affect on denitrification. Thus, 
it is unlikely that soil, water, or air quality would be significantly impacted by the 

antibiotics contained in poultry litter. 
 

KEYWORDS: Bacitracin, Roxarsone, Virginiamycin, Ester-Linked Fatty Acid Methyl 
Ester, Sorption. 
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Chapter 1 

Introduction 

Overview of the Problem 

 Antibiotics are compounds produced at low concentrations by one microorganism 

to inhibit the growth of other organisms (Thomashow et al., 2002). Several types of 

antibiotics, such as bacitracin, virginiamycin, and roxarsone, are commonly included in 

poultry feed at commercial broiler operations to improve the growth and to reduce 

disease outbreaks of the birds. Most of the antibiotics fed to birds are excreted in manure, 

which is subsequently amended to soils to improve soil fertility and dispose of the waste 

product. As a consequence, considerable amounts of antibiotics are dispersed in the 

environment where they can undergo a variety of fate processes and potentially affect 

microbial community composition and processes in soils. The purpose of this study is to 

evaluate the effects of antibiotics on microbial community structure and selected 

biogeochemical reactions in soils. 

Antibiotic Use in the Broiler Production Industry 

 Antibiotics were first discovered in the early 1900’s, and since then, have been 

used to treat a variety of human and animal diseases (Kumar et al., 2005b). One of the 

earliest discovered antibiotics, penicillin, was widely used to treat infections in World 

War II casualties. Penicillin was later found to be effective at treating animal infections, 

including bovine mastitis (Gustafson and Bowen, 1997).  

 Worldwide use of antibiotics is estimated to be between 101 × 10
6
 kg to 203 × 10

6
 

kg (Kőmmerer, 2003). In the U.S.A., 9 to 16 × 10
6
 kg of antibiotics per year are used by 

1



livestock operations. Significant fractions (30% to 80%) of these livestock antibiotics are 

added to animal feed to improve growth and prevent diseases (Chu et al., 2010). 

 Subtherapeutic use of antibiotics refers to incorporation of antibiotics into feed at 

dosage levels lower than that required to treat diseases, which is typically <50 mg 

antibiotic kg
-1

 feed. At these levels, antibiotics are believed to increase animal growth 

yields (i.e. rate of growth at a specified point in time) by controlling microbial 

populations in the gut that produce toxins and/or compete with animals for essential 

nutrients and growth factors (Butaye et al., 2003). The Food and Drug Administration has 

approved seventeen antibiotics for subtherapeutic use in the poultry industry (Chapman 

and Johnson, 2002; Oldfield, 2003). It has been estimated that about 4.7×10
6 

kg of 

antibiotics were used by the poultry industry in the late 1990’s (Mellon et al., 2001). 

Approved antibiotics in the poultry industry include bacitracin, bambermycin, 

chlortetracycline, lincomycin, oleandomycin, penicillin, roxarsone, tylosin and 

virginiamycin (Table 1.1). Among these antibiotics bacitracin, roxarsone and 

virginiamycin are most commonly used (Chapman and Johnson, 2002; Oldfield, 2003).  

In a recent global workshop (2004), the World Health Organization, Food and 

Agriculture Organization of the United Nations and the Oficina Internacional de 

Epizootias had a discussion on nonhuman antimicrobial usage and antimicrobial 

resistance. In their report they recommended that antimicrobial growth promoters (AGP) 

that are also used to treat human diseases be withdrawn from animal food (World Health 

Organization, 2004). The report also suggested that national level risk assessment be 

studied and that proper programs be established to examine AGP use and antimicrobial 

resistance in bacteria (World Health Organization, 2004). The concern about 

2



Table 1.1 Antibiotics approved by FDA for use in poultry feed at subtherapeutic level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FDA Approved Antibiotic 

 

Level in Feed (g ton
-1

) 

Bacitracin 

 

4 – 55 

 

Bambermycin 

 

1 – 2 

 

Chlortetracycline 

 

10 – 50 

 

Lincomycin 

 

2 – 4 

 

Oleandomycin 

 

1 – 2 

 

Penicillin 

 

2 – 50 

 

Roxarsone 

 

25 – 50 

 

Tylosin 

 

4 – 50 

 

Virginiamycin 

 

5 – 22 
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antimicrobial additives in animal feed has stimulated attention on potential alternatives. 

According to Dibner and Richards (2005), organic acids are gaining importance at this 

time. Other alternatives include probiotics, aspartate biopolymers and 

mannanoligosaccharides derived from yeast (Harper and Estienne, 2002).  

Bacitracins refer to a group of related high molecular weight cyclic polypeptides 

with antibiotic properties (Figure 1.1). Bacitracins are highly soluble in water, but are 

insoluble in ether, acetone and chloroform (Phillips, 1999). Bacitracins are produced 

mainly by Bacillus licheniformis. Bacitracins are commonly used in animal husbandry to 

promote growth and treat infectious diseases in cattle, swine and poultry (Kumar et al., 

2005b). In poultry, bacitracin is used at a rate of 4-55 mg kg
-1

of feed to improve growth 

and weight gain (Furtula et al., 2010). It is mainly active against Gram-positive bacteria 

(Butaye et al., 2003). The primary way that bacitracin interrupts growth is by forming a 

complex with C55-isoprenyl pyrophosphate, a lipid carrier required for biosynthesis of the 

cell wall biopolymer peptidoglycan (Stone and Strominger, 1971; Butaye et al., 2003; 

Manson et al., 2004a).  

 The lowest concentration that inhibits the visible growth of an organism under 

defined conditions is referred to as the minimum inhibitory concentration (MIC). For 

bacitracin, MIC ranges from 0.21 to 130 ppm for Streptococcus and Staphylococcus, 250-

500 ppm for E. coli and 500 ppm for Bacillus (US FDA, 1998). When bacitracins were 

added to chicken feed at doses of 55 to 110 ppm, decreases in enterococci growth and 

necrotic enteritis caused by C. perfringens were observed (Butaye et al., 2003).  

Roxarsone is a man-made organic arsenic compound (4-hydroxy-3-

nitrobenzenearsonic acid) (Figure 1.2). It is a yellow to brown crystalline powder and is  

4



 

 

 

 

 

 

Figure 1.1. Chemical structure of bacitracin. 
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Figure 1.2. Chemical structure of roxarsone. 
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soluble in alcohol. It is extensively used in animal feed to promote growth and control 

diseases. In poultry, roxarsone is used at a level of 25-50 mg kg
-1 

of feed to improve 

growth, better feathering, increase egg production, pigmentation and prevent diseases 

caused by coccidial intestinal parasites (Garbarino et al., 2001; Chapman and Johnson, 

2002). The minimum inhibitory concentration of roxarsone ranges from 8 to 256 µg mL
-1

 

for Campylobacter jejuni (Wang et al., 2009). Not much is known about how roxarsone 

and related compounds affect microrganisms, however it is speculated that they may 

catalyze energy transfer reactions in the cells by a direct metabolic effect (Clark et al., 

2003). Another mechanism is the replacement of phosphate by arsenate, which may lead 

to the rapid hydrolysis of high-energy bonds in ATP that impairs gluconeogenesis and 

oxidative phosphorylation (Vahidnia et al., 2007).  

Virginiamycin belongs to the streptogramin class of antibiotics, which consists of 

cyclic polypeptides that are made up of two sub-units with synergistic activities, 

Virginiamycin M and Virginiamycin S (Figure 1.3). Virginiamycin is produced by 

Streptomyces virginiae. Virginiamycin is an amorphous, white powder that is barely 

soluble in water, but quite soluble in methanol. These compounds are mainly added to the 

feed of broilers, turkeys, cattle and pigs at a rate of 5-22 mg kg 
-1 

of animal feed to 

increase body weight, improve feed efficiency, and prevent diseases (Mellon et al., 

2001). In poultry, virginiamycin is used as a prophylactic agent to prevent necrotic 

enteritis, and has been reported to protect chickens against an S. enterica serotype 

Typhimurium infection (Butaye et al., 2003). Virginiamycin at concentrations greater 

than 4 ppm is effective against most Gram-positive bacteria (mainly staphylococci,  

7



 

 

 

Figure 1.3. Chemical structures of virginiamycin S and virginiamycin M. 
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streptococci and enterococci) and some Gram-negative cocci. The primary mode of 

action is binding of virginiamycin components to the bacterial 23S rRNA of the 50S-

ribosomal subunit, which inhibits protein synthesis and bacterial growth (Cocito et al., 

1997). Most Gram Negative bacteria are resistant to antibiotics because of their 

impermeable cell-wall (Butaye et al., 2003). Virginiamycin is active against 

Enterococcus faecium at 4 ppm but not against Enterococcus faeclis at > 32 ppm, which 

is considered to be intrinsically resistant (Aarestrup et al., 1998; Eliopoulos, 2003). When 

virginiamycin is added to feed at rate of 55 ppm, it reduces the number of C. perfringens 

in the intestine of chicken (van den Bogaard et al., 1997).  

Poultry and Manure Production in the US 

In 2007, the most important poultry and manure producing states in the US were 

Georgia, Arkansas, Alabama, Mississippi, North Carolina, Texas, Kentucky, and 

Maryland (Table 1.2) (USDA, 2007). At the present time, poultry production is the 

second largest agricultural commodity in KY. There are 850 poultry farms and 2800 

poultry houses in 42 Kentucky counties, which produce about 305 ×10
6 

birds each year 

(USDA, 2007; Kentucky Poultry Federation, 2010).  

Over 13 billion kg of manure are produced annually in the US, and 0.5 billion kg 

of manure are produced each year in KY (Table 1.2) (USDA, 1997). This material 

contains high concentrations of essential nutrients required for plant growth (e.g. 

nitrogen, phosphorus, and potassium) (van-Faassen and Dijk H, 1987; Kumar et al., 

2005a). Therefore, animal manure is commonly used as a soil amendment to improve soil 

fertility, maintain soil moisture, and control erosion. The main factors that determine the 

amount of manure to apply to a field are crop N requirement, manure 

9



 

Table 1.2. Broiler and manure production in the United Sates (USDA, 2007). 

  

 

 

 

 

 

 

 

 

 

State # of Birds 

(*10
6
 year 

-1
) 

% of total Manure Production 

(* 10
6
 kg year 

-1
) 

Georgia 1400    16% 2100 

Arkansas 1200    13% 1800 

Alabama 1000    11% 1500 

Mississippi  824 9% 1236 

North Carolina  781  9% 1172 

Texas  616     7%  924 

Kentucky  305     3%  458 

Maryland  295     3%  443 

US Total 8900    100  13350 
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history of the field, and the nutrient content of the manure (Beegle, 1997). Poultry litter is 

typically applied to the field at a rate of 5000 kg ha
-1

 (Garbarino et al., 2003). 

Levels of Antibiotics in Manure and Amounts Dispersed to the Environment 

 In addition to containing essential plant nutrients, manure from many commercial 

poultry producers contains antibiotics that were included in feed to improve growth 

and/or treat diseases in the flock. Most antibiotics fed to animals are excreted in the urine 

and feces of the animal rather than being absorbed or metabolized by the animal. Thus, 

confined areas where antibiotic-fed animals live and where manure has been dispersed 

into the environment can contain elevated levels of antibiotics. For example, the manure 

of swine fed chlortetracycline and tylosin contained 7.73 mg L
-1 

and 4.03 mg L
-1

 of these 

antibiotics, respectively (Kumar et al., 2005b). The manure of swine fed sulfonamides 

contained about 3.5 mg antibiotics kg
-1

 manure (Thiele-Bruhn, 2003). According to 

Furtula et al. (2010), poultry litter contains bacitracin at a rate of 1.91 mg kg
-1

. Roxarsone 

added to poultry feed contains arsenic (As) at a range of 10-50 mg kg
-1

 in poultry litter 

(Brown et al., 2005). According to Furtula et al. (2010), poultry litter contains 

virginiamycin at a range of 0.22 to 0.33 mg kg
1
.  

 Since manure contains antibiotics, and since large amounts of manure are widely 

dispersed to soils, considerable amounts of antibiotics are also dispersed to the 

environment. For example, Kumar et al. (2005b) estimated that 387 g of chlortetracyline 

and 202 g of tylosin are added per ha when soils are amended with 50,000 L manure ha
-1

. 

 The amounts of other antibiotics added to soils can be calculated from the 

concentration of antibiotics in manure and the amount of manure applied to soils. 

According to Garbarino et al. (2003), poultry litter is applied at a rate of 5000 kg ha
-1

 to 

11



agricultural land. Assuming that 5000 kg litter containing 10-50 mg roxarsone kg
-1

 is 

broadcast-applied to soils, then the roxarsone concentration to the top 5 cm of soil would 

be expected to be in a range of 0.08 to 0.4 mg kg
-1

. Cumulatively, it has been estimated 

that approximately 1×10
6 

kg of roxarsone and its degradation products are added to soils 

each year (Wershaw et al., 1999; Brown, 2003). The various concentrations of three 

different livestock antibiotics in litter and expected in soil are shown in the Table 1.3. 

Fate of Antibiotics in the Environment 

Once antibiotics are deposited to soils, they may undergo a variety of processes 

that determine their fate and transport in the environment (Figure 1.4). One of the most 

important processes in soils is sorption, in which antibiotics interact with soil surfaces by 

a variety of processes (e.g. hydrogen bonding, van der Waals forces, hydrophobic 

bonding, ion exchange, etc) (Thiele Bruhn et al., 2004). The extent of these processes 

depends on the characteristics of (i) the soil solid phase (e.g. organic matter and types of 

clay minerals) (Thiele-Bruhn, 2003), (ii) the solution phase (e.g. pH and ion composition) 

(Boxall et al., 2003), and (iii) the antibiotic (water solubility and functional groups) 

(Boxall et al., 2003). Sorption is an essential process because it controls the amount of 

chemical that can be mobilized to surface water and groundwater, and the amount that 

can be degraded by a variety of chemical and biological processes. The extent of sorption 

is commonly described by the distribution coefficient Kd of a compound, which is 

commonly determined in sorption isotherm experiments. Distribution coefficients for 

many antibiotics range between 0.2 L kg
-1

 to 6,000 L kg
-1

 (Tolls, 2001). Antibiotics with 

low distribution coefficients tend to be highly mobile and bioavailable compared to 

antibiotics with high coefficients. 

12



 

Table 1.3. Amount of bacitracin, roxarsone and virginiamycin in poultry feed, poultry 

litter and poultry-litter amended soil. Assuming 5000 kg litter applied per hectare land at 

a depth of 5 cm. 

 †Furtula et al., 2010; ‡Brown et al., 2005 

 

 

 

 

 

 

 

 

 

 

 

 

Antibiotic FDA approved 

antibiotic 

concentration in feed 

(mg kg
-1

) 

 

Antibiotic 

concentration in 

manure  

(mg kg
-1

) 

Antibiotic 

concentration in 

soil  

(mg kg
-1

) 

Bacitracin 4-55 (55)† 

  

 

1.91† 0.02  

Roxarsone 25-50 (45.5 -50) ‡ 

 

10 – 50 ‡ 0.08 – 0.4  

Virginiamycin 5-22 (11-22)† 

 

0.22 – 0.33†  0.002 – 0.003  
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Figure 1.4. Pathways for livestock antibiotics in the environment. 
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For example, the aqueous concentration of an antibiotic with a distribution coefficient of 

100 L kg
-1

, a total antibiotic concentration of 5 mg kg
-1

 soil, and a water content of 250 g 

kg
-1

 would be only about 0.05 mg L
-1

. At this concentration, antibiotics may not have an 

adverse effect. However, even antibiotics with high distribution coefficients can be 

transported to other environments in the form of aerosols and dusts and eventually return 

to the bioavailable pool (Hamscher et al., 2003; Gibbs et al., 2006).  

 Bacitracin is highly water soluble and loses its antimicrobial activity at room 

temperature (Sarmah et al., 2006). The Kd value for this group of antibiotics is not 

available in the literature. Bacitracin, being a polypeptide and amphoteric compound 

(isoelectric point 8.8), exists as a cation in acidic solution and as an anion in basic 

solution (Johnson et al. 1945; Robinson, 1952; Pinck et al., 1961). Since the pH of soils 

are usually lower than the isoelectric point, bacitracin exists mostly as a cation in most 

soils (Pramer, 1958; Kang et al., 2001). As a result, bacitracin is expected to be sorbed to 

cation exchange sites of clay minerals and organic matter in soils.  

 The extent of roxarsone sorption depends strongly on soil properties such as 

organic matter content, amounts and types of clay minerals, and pH (Brown, 2003). 

Roxarsone sorption to soil organic matter is relatively weak, so it can rapidly leach from 

soil surface to lower depths (Brown, 2003). Once roxarsone reaches the Bt horizon, it is 

strongly retained by sorption to Fe oxides and clays. It has been found that organic matter 

blocks the sorption sites of mineral surfaces, which can decrease roxarsone sorption. 

Furthermore, roxarsone sorption is pH dependent, with greater sorption occurring at 

lower pH values (Brown 2003). According to Brown (2003), roxarsone sorption 
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coefficients range between 0.001 and 0.005 L g
 1

, depending on the organic matter 

content and types and amounts of clay in soil in the Ap layer.  

The Kd value for virginiamycin is not available in literature. However, the 

precursor ions of virginiamycin carry positive charges and therefore behave as a cations 

in solution (Alwis and Heller, 2010). In addition, the low water solubility of 

virginiamycin suggests that it is a hydrophobic compound. As a result, virginiamycin is 

expected to be sorbed to negatively charged clay mineral surfaces and organic matter by 

cation exchange and also to soil organic matter by hydrophobic bonding.  

 In addition to sorption, antibiotics may be degraded to simpler compounds by 

abiotic processes (e.g. hydrolysis, photodegradation) or by biotic processes (e.g. 

enzymatic degradation). Degradation of antibiotics is important because once broken 

down they often pose less of an adverse affect on microorganisms (Gavalchin and Katz., 

1994). The rate of degradation of an antibiotic is mainly described by its half-life, which 

is defined as the amount of time it takes to reduce the concentration of the compound by 

one half of its original amount. For many antibiotics, half lives can range from less than a 

day (e.g. penicillin) to more than a year (e.g. tetracycline) (Zuccato et al., 2001). For 

antibiotics with long half lives, adverse affects on soil microbes and other organisms may 

persist for long periods after soil amendments (Halling-Sørensen et al., 2005; Furtula et 

al., 2010). 

 Abiotic hydrolysis refers to the disruption of chemical bonds in the presence of 

water. The most important factor that determines hydrolysis rates is pH. For example, ß-

lactam hydrolysis is rapid under mildly acidic and basic conditions (Hou and Poole, 
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1969; Huang et al., 2001). Macrolide and sulfonamide hydrolysis is slow under 

circumneutral pH conditions (Volmer and Hui, 1998). 

Some types of antibiotics can be photodegraded when exposed to light 

(Kümmerer, 2008). According to Bednar et al (2003), light reactions with roxarsone 

result in arsenite cleavage, which increases with pH from 4 to 8. When arsenite is 

exposed to light, it is rapidly oxidized to arsenate (Budinoff and Hollibaugh, 2008). Other 

light sensitive antibiotics include quinolones and sulfonamides. Phototransformations are 

expected to be greatest in light-exposed environments such as surface waters and soils.  

Many antibiotics can be degraded to simpler compounds by microbial enzymes. 

For example, Halling-Sørensen et al. (2003) found that oxytetracycline, sulfadiazine and 

tylosin, but not streptomycin or ciprofloxacin, lost their antimicrobial activity under 

aerobic conditions. They also found that olaquindox and tylosin, but not oxytetracycline, 

lost their activity under anaerobic conditions. From these experiments it was concluded 

that the degradation products were less inhibitory than the parent compounds.  

 Bacitracin is a simple polypeptide compound that lacks halogens and unbreakable 

chemical bonds, so it is easily biodegraded by deamination or dealkylation reactions by 

many types of soil bacteria and fungi (US-FDA, 1998). The half-life of bacitracin under 

normal moisture, temperature and pH conditions is about 10 days in soil (US-FDA, 

1998). The half-life of bacitracin in poultry litter is about 4 to 6 days (US-FDA, 1979). 

 A considerable amount of roxarsone in poultry litter and soils may be transformed 

to other As species (Garbarino et al., 2003). The most likely transformation pathways are 

oxidation and methylation/demethylation (Brown, 2003). Under anaerobic and high 

temperature conditions, roxarsone transformation rates increase (Garbarino et al., 2001). 
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The rate also increased in the presence of nitrate and natural organic matter (Brown, 

2003), which suggests that denitrifiers may play a role in the transformation process. 

According to Wershaw et al. (1999), the aromatic portion undergoes microbial 

biodegradation. Some bacteria can demethylate methanearsonic acid to arsenate and 

carbon dioxide (Brown, 2003). There is not much information about the half-life of 

roxarsone, but some studies suggested that arsenic concentration was reduced to half in 

water treatment residual-amended poultry litter samples within 13 days (Makris et al., 

2008). 

According to Weerasinghe and Towner (1997), the half-life of virginiamycin in 

sandy silt and silty sand soils under aerobic conditions is 83 to 173 days. However, 

degradation rates of virginiamycin and other antibiotics will likely vary depending on soil 

type, climate, and chemical nature of the antibiotic compounds (Chander et al., 2005).  

Antibiotics that are not sorbed or degraded can remain in the dissolved pool and 

be taken up by plants. Kumar et al. (2005a) evaluated chlortetracycline and tylosin uptake 

by cabbage, corn, and green onion from manure-amended soil. They found 

chlortetracycline in the range 0.002 to 0.017 mg kg
-1

 in the plants, but tylosin was not 

taken up by these crops, presumably due to its larger molecular size. The major concern 

about plant uptake of antibiotics is health risk, including allergic reactions, chronic toxic 

effects, development of antibiotic resistant bacteria, and improper functioning of the 

digestive system. The acceptable intake value for most of the antibiotics is less than 50 

µg kg
-1

 body weights per day (JECFA, 2006).  

A large number of different types of antibiotics have been detected in 

groundwater and surface water by leaching and runoff. For example, the U.S. Geological 
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Survey (USGS) detected 21 antibiotics in 139 streams across the U.S. (Sarmah et al., 

2006). Some studies have suggested that antibiotic transport could be reduced by planting 

vegetative buffers like trees, shrubs, grasses, combination of trees and grasses along the 

fields or within the fields, and the riparian zones helps to trap harmful agrichemicals. The 

mechanisms by which vegetative buffer strips remove pollutants are as follows: (i) 

decreasing the flow of surface water thereby, facilitating the deposition of sediments and 

sediments bound pollutants, (ii) enhanced infiltration rate and greater solute-soil 

interaction, (iii) plant uptake of agrichemicals or pollutants, (iv) microbial degradation of 

pollutants, and (v) increased pollutant sorption and retention capacity (Krutz et al., 2005). 

Effects of Antibiotic Dispersal in the Environment 

Wide dispersal of antibiotics in the environment can have deleterious effects on 

non-target organisms and environmental quality. For example, increased levels of 

antibiotics in soils can increase the number of antibiotic resistant bacteria in the 

environment, including many pathogens (Mazel and Davies, 1999). This is of concern 

because human and animal diseases caused by antibiotic resistant bacteria are difficult to 

treat with existing drugs. Bacteria can develop antibiotic resistance by various 

mechanisms including (i) active efflux of the antibiotics out of the microbial cell, (ii) 

target site alteration of the antibitotics, and (iii) enzymatic inactivation of the antibiotic 

(Mazel and Davies, 1999).  

An organism is considered resistant to bacitracin when its growth is not inhibited 

at concentrations up to 256 µg mL
-1 

(Manson et al., 2004b). Bacitracin resistance has 

mostly been observed in Gram-positive bacteria. In E.coli, resistance is conferred by the 

chromosomal bacA gene, which codes for a kinase that phosphorylates undecaprenol, 
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thus raising the level of C55-isoprenyl pyrophosphate required for peptidoglycan synthesis 

(Butaye et al., 2003). A second mode of bacitracin resistance occurs upon expression of 

bcrABC genes, which encode the ATP-binding cassette (ABC) transporter involved in 

antibiotic efflux out of the cell. A third bacitracin resistance mechanism is due to a 

membrane-associated
 
phospholipid phosphatase in B. subtilis (Manson et al., 2004a).  

 Several genes in the ars operon may confer resistance to arsenic (Carlin et al., 

1995; Cai et al., 1998). These genes are located in the chromosome or in the plasmid of 

many Gram-positive and Gram-negative organisms (Branco et al., 2008). The operon 

consists of three to five genes that code for different detoxification enzymes/processes. 

The set of genes that confer arsenic resistance include ars-RBC, which codes for a 

transcriptional regulator (ars R), a trans-membrane pump (ars B) and, As (V) reductase 

(ars C). Some other genes of ars operons are arsT, arsO and ars H (Baker-Austin et al., 

2007). A newly identified arsenic resistance gene arsM in non-sulfur phototrophic 

bacteria has been found that methylates arsenite
 
to volatile trimethylarsine (Wang et al., 

2009). According to Yang et al. (2005), Sinorhizobium meliloti (a nitrogen fixing 

bacterium) lacks ArsB but uses an aquaglyceroporin channel to efflux As (III) generated 

internally by As (V) reduction. Arsenic resistance is also given by a small number of ‘F. 

acidarmanus’ Fer1 genes from an arsenic tolerant acidophilic archeon found in the Iron 

Mountain Mine, California (Baker-Austin et al., 2007). 

Resistance to virginiamycin is commonly due to (i) target site alteration mediated 

by erm genes that affect binding of the streptogramin B component (i.e. Virginiamycin S) 

to the bacterial ribosome (Leclercq and Courvalin, 1991; Roberts et al., 1999), (ii) 

inactivation of the streptogramin A component (Virginiamycin M) mediated by an 
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acetyltransferase encoded by the vat(D) (previously known as satA) gene (Rende-

Fournier et al., 1993) or vat(E) (Werner and White, 1999), and (iii) the active efflux of 

the antibiotic via ATP-binding cassette proteins encoded by the vga(A) and vga(B) genes 

( Allignet et al., 1992; Allignet et al., 1993; Allignet and Sohl, 1997). 

Importantly, bacteria with antibiotic resistance can transfer this phenotype to 

other bacteria by horizontal gene transfer processes, in which genetic material that codes 

for resistance is transferred by conjugation, transformation or transduction (Davison, 

1999). This may be more prevalent in environments where antibiotic concentrations are 

below levels that kill bacteria, such as areas where soils are amended with manure 

containing antibiotics (Kőmmerer, 2003). Onan and LaPara (2003), for example, found 

that the number of antibiotic resistant bacteria was 5-10 times higher in soils amended 

with manure than those without manure. Increased numbers of antibiotic resistant 

Pseudomonas and Bacillus have been isolated from pig manure applied to the fields 

(Jensen et al., 2001). According to Wegener et al. (1999), the use of avoparcin, which is 

closely related to vancomycin, caused an increased number of vanomycin–resistant 

Enterococcus faecium in hospitals. Exposure to antibiotic resistant bacteria greatly 

increases the chances of infection by these bacteria. For example, many E. coli O157:H7 

infections are associated with crops and water located near fields where cattle manure is 

being used as fertilizer (Gansheroff and O’Brien, 2000). Ghosh and La Para (2007) 

observed that antibiotics used for subtherapeutic purposes can lead to the propagation of 

antibiotic resistance bacteria in soil if excessive animal manure is applied to land and 

resistance among soil bacteria is mainly developed by lateral gene exchange mechanism.  
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 In addition to affecting human and animal health, antibiotics in soil and water can 

affect invertebrates, algae, plants, microbial populations, as well as key biochemical 

processes that the microorganisms conduct in the environment. For example, Boxall et al. 

(2003) found that macrocyclic lactones at very low concentrations (0.036 mg kg
-1

) 

reduced feeding, decreased growth rate, interfered with moulting, inhibited pupation 

stage, prevented coming out of adults, and interrupted mating of dung invertebrates. 

Researchers found 10% inhibition in reproductive parameters of collembola, springtails 

and enchytraeidae by antibiotics (tylosin, oxytetracycline, tiamulin, olaquindox and 

metronidazole) at concentrations between 61 and 149 mg kg
-1

 (Baguer et al., 2000; 

Jensen et al., 2003). Kőmmerer (2003) found that antibiotics (amoxicillin, furazolidone, 

flumequine, oxolinic acid, oxytetracycline hydrochloride, sulfadiazine and trimethoprim) 

at concentrations between 5 – 100 µg L
-1

 inhibited daphnids and algae. Holten et al. 

(1999) and Boxall et al. (2003) found that amoxicillin, benzyl penicillin, tetracycline and 

spiramycin at less than 100 µg L
-1 

inhibited blue green algae. 

 Several studies have shown that antibiotics have an adverse affect on plant 

growth. In a multispecies test system, antibiotics like the sulfonamide 

sulfachloropyridazine exerted plant toxicity at concentrations of 100 mg kg
-1

 due to its 

structural similarity with sulfonylurea herbicides ( Boleas et al., 2005). According to 

Norman (1955), root growth of several crops was inhibited by oxytetracylcine (5 – 10 mg 

L
-1

) in solution but not in soil due to its strong adsorption onto soil components. 

Batchelder (1982) observed that tetracycline increased radish yields, but reduced pinto 

beans yield, which was related to differences in soil characteristics and plant sensitivities.  
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 Westergaard et al. (2001) found that tylosin amended to agricultural soils at a rate 

of 3000 ppm influenced the abundance of bacteria, fungi, and protozoa. By affecting 

microbial populations, antibiotics in the environment can influence the sustainability and 

capacity of an ecosystem to protect water quality and to produce agricultural products. 

Bewick (1978) for example, reported that microbial respiration and organic nitrogen 

mineralization were depressed in soils amended with tylosin at 37 ppm. Patten et al. 

(1980) found that carbon mineralization was increased in soils amended with cattle 

manure containing chlortetracycline or oxytetracycline at 0.02 to 0.04 ppm. Costanzo et 

al. (2005) observed that denitrification was inhibited in aquatic environments containing 

erythromycin, clarithromycin and amoxicillin at 1 mg L
-1

. Thiele-Bruhn (2005) found 

that Fe (III) reduction was inhibited in soil when chlortetracycline was 27 µg g
-1

. In that 

study, inhibition was strongly governed by sorption of the antibiotic to soil surfaces. 

Hammesfahr et al. (2008) showed that sulfonamide inhibits dihydropteroate synthesis 

involved in the folic acid pathway, thus affecting bacterial growth, composition and 

enzyme activity. On the other hand, Thiele-Bruhn and Beck (2005) observed that 

sulfonamide and oxytetracycline at concentrations of 1000 µg g
-1

 did not affect microbial 

activity, as determined by basal respiration and dehydrogenase activity. Possible reasons 

for discrepancies between studies are different shifts in the microbial community 

structure (bacteria to fungi), lack of short-term toxicity effects on soil microorganisms, 

sorption to clay minerals and organic matter, and the presence of resistant bacteria.  

 To our knowledge, the effects of antibiotics commonly used in the poultry 

industry and applied to soils (i.e. bacitracin, roxarsone and virginiamycin) on microbial 
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community composition and activities such as nitrification and denitrification have not 

been evaluated.  

Nitrification 

Nitrification is the process carried out mostly by nitrifying bacteria (Gram-

negative) Nitrosomonas and Nitrobacter (Maliszewska-Kordybach et al., 2007) (Figure 

1.5). The autotrophic nitrifying bacteria oxidize ammonia to nitrite then to nitrate in two 

steps (Maliszewska-Kordybach et al., 2007). The optimal pH for nitrification is between 

7.3 to 8 and the optimal temperature ranges between 20°C to 30°C (Alleman and Preston, 

1991). Nitrification is an important process because it converts ammonium to nitrite and 

nitrate, which are the most bioavailable forms of N for plants and denitrifiers in soils. 

Pramer (1958) showed that streptomycin inhibited nitrification in soil, but only at a very 

high concentration of 10,000 ppm. One possible reason is that streptomycin was strongly 

adsorbed by clay minerals and organic matter in the soil. However, for antibiotics that are 

not as strongly sorbed, nitrification could be inhibited, which would be expected to 

decrease denitrification and nitrate and nitrite leaching to groundwater and surface water, 

and also decrease short-term N availability to plants (Hallberg and Keeney, 1993; Britto 

and Kronzucker, 2002). The opposite would be true if antibiotics promoted nitrification 

in soils.  

Denitrification 

 Denitrification involves the conversion of nitrite and nitrate to dinitrogen gas (N2) 

through several intermediate gaseous products (Figure 1.5). This is an anaerobic process 

carried out by denitrifiers (facultative anaerobes) such as Pseudomonas, Bacillus, 

Thiobacillus, Propionibacterium and others (Firestone, 1982). They use NO3
-
 as an 
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Figure 1.5. The nitrogen cycle. 
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electron acceptor instead of oxygen for respiration (Wrage et al., 2001). The optimum pH 

for denitrification is 7.0 to 8.0 (Knowles, 1982; Hiscock et al., 1991; Thomas et al., 1994; 

Almeida et al., 1995). The optimum temperature ranges between 20°C
 
and 30°C

 
(Jianping 

et al., 2003). Denitrification is an important process because it removes excess nitrite and 

nitrate from fertilizers, sewage system and municipal waste water. In addition, one of the 

intermediates in the denitrification process is N2O, which is considered to be a 

greenhouse gas. Costanzo et al. (2005) found that denitrification in aquatic environments 

was inhibited by erythromycin, clarithromycin and amoxicillin at 1 mg L
-1

. Under these 

conditions, NO3
- 

would tend to build up, thereby increasing losses by leaching and 

affecting groundwater and surface water quality (Hallberg and Keeney, 1993). On the 

other hand, if antibiotics promote denitrification, then NO3
-
 removal would increase, 

possibly affecting soil fertility by the loss of nutrients from the soil (Vellidis et al., 2003; 

Bierman and Rosen, 2005). 
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Chapter 2 

Effects of Livestock Antibiotics on Nitrification, Denitrification, and Microbial 

Community Composition in Soils Along a Topographic Gradient 

Introduction 

 Millions pounds of antibiotics are used in animal husbandry for therapeutic and 

sub-therapeutic uses (Kőmmerer, 2003). At sub-therapeutic levels, antibiotics are 

believed to increase animal growth yields by controlling microbial populations in the gut 

that produce toxins or that compete with animals for essential nutrients and growth 

factors (Butaye et al., 2003). The most commonly used antibiotics in poultry feed are 

bacitracin, roxarsone, and virginiamycin (Chapman and Johnson, 2002; Oldfield, 2003).  

 As much as 30%-90% of antibiotics fed to animals are excreted in animal feces 

and urine (Costanzo et al., 2005). When manure is applied to land, antibiotics can 

undergo numerous fate processes that affect water quality (Kőmmerer, 2003), promote 

the development of antibiotic-resistant bacteria (Onan and LaPara, 2003), alter soil 

microbial communities (Colinas et al., 1994; Westergaard et al., 2001), and influence 

nutrient cycles (Patten et al., 1980; Costanzo et al., 2005). According to Kőmmerer 

(2003), for example, several antibiotics (ciprofloxacin, sulphonamides, roxythromycin, 

erythromycin) were detected in municipal sewage, sewage treatment plant effluent, and 

in surface water and groundwater. Onan and LaPara (2003) found that the number of 

antibiotic resistant bacteria was 5-10 times higher in soils amended with manure than 

those without manure. Westergaard et al. (2001) found that tylosin amended to 

agricultural soils at a rate of 3000 ppm influenced the abundance of bacteria, fungi, and 

protozoa. Colinas et al. (1994) found that the antibiotics oxytetracycline and penicillin at 
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concentrations of 10 mg kg
-1 

forest soil decreased the total and active microbial cell 

counts by approximately 80%.  

 Most nutrient cycles are also microbial mediated processes and thus have a 

chance to be affected by antibiotics. Costanzo et al. (2005) observed that denitrification 

was inhibited in aquatic environments containing erythromycin, clarithromycin and 

amoxicillin at 1 mg L
-1

. Patten et al. (1980) found that carbon mineralization was 

increased in soils amended with cattle manure containing chlortetracycline or 

oxytetracycline at 0.02 to 0.04 ppm. Other studies have shown that sulfonamide and 

oxytetracycline at a concentration of 1000 µg g
-1

 did not affect microbial activity, which 

was measured as basal respiration and dehydrogenase activity. Possible reasons for this 

could be different shifts in the microbial community structure, lack of biotoxic effects on 

soil microorganisms, sorption of antibiotics to soil particles, and resistance to antibiotics 

by native soil bacteria (Thiele-Bruhn and Beck, 2005).  

 The effects of antibiotics in the environment depend largely on their interactions 

with soil constituents, such as clay mineralogy and organic matter content, and 

environmental factors such as soil pH, redox conditions, and ionic strength. Since many 

of these factors can vary along a topographic gradient, it is anticipated that livestock 

antibiotics will affect biogeochemical cycles (e.g. N-cycles) and the soil microbial profile 

to different degrees along the topographic gradient. The objectives of this project were to 

(i) determine the levels at which three livestock antibiotics have an adverse effect on  

nitrification and denitrification potential in soils along a topographic gradient, and (ii) 

determine the effect of three antibiotics on the soil microbial community structure and 
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(iii) determine the importance of sorption in protecting soil microorganisms from high 

antibiotic concentrations.   

Materials and Methods 

Study Area and Soil Collection 

The sampling area was located at the University of Kentucky Spindletop Farm in 

Fayette County, Kentucky (Figure 2.1). Samples were collected in triplicate at three 

topographic positions that represented the shoulder, backslope and toeslope. Each of the 

nine sites were spaced 10 meters apart, which gave a square grid pattern at the location. 

Soil samples from the nine sites were collected from the surface 0-5 cm with a hand 

trowel in March, 2009. Samples were placed in sealed labeled plastic bags and 

transported to the laboratory in an ice chest and stored at 4°C until used in experiments. 

 The soil series at the location was well-drained McAfee silty clay loam (Fine, 

mixed, active, mesic, Mollic Hapludalfs) (Web-soil survey, 2010). For the last two 

decades, the dominant vegetation at the location was tall fescue. The elevations at the 

toeslope, backslope and shoulder positions were 270, 271 and 272 meters above sea level 

respectively (GPS, Nextar). The area was chosen because the soils were expected to 

contain gradients in soil moisture, pH, and other characteristics that influence microbial 

growth and activity. 

Effects of Antibiotics on Nitrification 

The effect of antibiotics on nitrification at the nine soil sites (three topographic 

zones and three replications per zone) was determined by monitoring increases in nitrate 

and nitrite levels in aerobic soils amended with (NH4)2SO4 and increasing levels of 

antibiotics in laboratory microcosms. To remove background levels of nitrate and nitrite 
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from the soils, soils from each site (50 g) were shaken with deionized and distilled water 

(100 mL) for 30 s in a 250 mL centrifuge bottle and centrifuged at 2057 × g for 10 min. 

The supernatant was discarded and the soils were air-dried in a plastic weigh boat at 

room temperature before being used in nitrification experiments. The dried soil was 

passed through a 4 mm mesh, and 1 g sieved soil was added to a 20 mL scintillation vial, 

and mixed with antibiotic solutions (5 mL) at seven concentrations (0, 0.3, 1, 3, 10, 30, 

100 mg L
-1

). Antibiotic concentrations on a dry soil mass basis were 0, 1.5, 5, 15, 50, 

150, and 500 mg kg
-1

. The vials were covered with Breathe-Rite strips (to inhibit 

evaporation and allow oxygen diffusion), and incubated for 1 d at 24°C. After 1 d, 5 mL 

of 25 mg (NH4)2SO4-N L
-1

 was added to each vial and incubated on an orbital shaker 

(C25KC, New Brunswick Scientific, NJ) at 200 rpm for 5 d at 24°C. After 5 d, vials were 

centrifuged at 3214 × g for 10 min. The supernatant was filtered with a 0.45 µm 

membrane syringe filter and analyzed for NO3
-
 and NO2

-
 by the Greiss colorimetric 

method adapted to the microplate reader (Crutchfield and Burton, 1998). The experiment 

was repeated for each of the antibiotics bacitracin (SIGMA, St.Louis, MO), roxarsone 

(TCI America, Portland, OR) and virginiamycin (Bioworld, Dublin, OH).  

 The effect of antibiotics on nitrification at each concentration and soil site was 

determined using the following equation: 

Antibiotic Inhibition = (NO3
-
+NO2

-
 in antibiotic-treated soil) / (NO3

-
+NO2

-
 in non-treated 

soil) 

 Using this equation, values less than, equal to, or greater than one indicated that 

antibiotic inhibited, had no affect, or promoted nitrification, respectively.  
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Effects of Antibiotics on Denitrification 

The effect of antibiotics on denitrification at the nine soil sites was determined by 

monitoring increases in N2O gas in anaerobic soils amended with KNO3 and increasing 

levels of antibiotics using the acetylene blockage technique in laboratory microcosms 

(White and Reddy, 1999). Soil (3 g) was added to 30 mL serum bottles, and bottles were 

sealed with serum stoppers and purged with N2 gas to remove O2. Deoxygenated 

antibiotic solutions (3 mL) at seven concentrations (0, 1.5, 5, 15, 50, 150, and 500 mg L
-

1
) were mixed with soils in the bottles and incubated for 5 d at 24°C. Antibiotic 

concentrations on a dry soil mass basis were 0, 1.5, 5, 15, 50, 150, and 500 mg kg
-1

. After 

5 d, 1 mL of a 25 mM KNO3 (deoxygenated) solution and 3 mL acetylene gas (prepared 

with CaC2 and water) were mixed with the soils. The bottles were incubated on an orbital 

shaker at 140 rpm for 1 d at 24°C. After 1 d, gas samples from the bottles were analyzed 

for N2O gas on a Shimadzu 14 A gas chromatograph (Kyoto, Japan) equipped with an 

63
Ni electron capture detector (340°C), Porapak Q column (1.82 m and 3.175 mm) 

(35°C), and injector (45°C) with nitrogen carrier gas. Calibrations were made using a 

Scotty Specialty 448 N2O gas standard (Plumsteadville, PA). The experiment was 

repeated for each of the antibiotics (bacitracin, roxarsone and virginiamycin). 

 The effect of antibiotics on denitrification at each concentration and soil site was 

determined using the following equation: 

 Antibiotic Inhibition = (N2O in antibiotic-treated soil) / (N2O in non-treated soil)  

 Using this equation, values less than, equal to, or greater than one indicated that 

antibiotic inhibited, had no affect, or promoted denitrification, respectively. 
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Effects of Antibiotics on Microbial Community Composition 

The effect of antibiotics on microbial community composition at the nine soil 

sites was determined by analyzing changes in ester-linked fatty acid methyl esters (EL-

FAMEs) in soils exposed to increasing levels of antibiotics in lab microcosms. Soil (25 g) 

was passed through a 4 mm mesh and mixed with antibiotic solution (2 mL) at various 

antibiotic concentrations (0, 10, and 100 mg antibiotic kg
-1

 soil) in a 50 mL beaker. The 

beakers were covered with parafilm to reduce evaporation, and were incubated in the 

dark for up to 4 weeks. After 1 and 4 weeks, 5 g of sample was removed from the beakers 

and stored at –80°C in plastic bags until EL-FAME analysis. The experiment was 

repeated for each of the antibiotics (bacitracin, roxarsone and virginiamycin). 

 Ester-linked fatty acid methyl esters were extracted using the alkaline 

methanolysis ester-linked extraction method (Sasser, 1990; Schutter and Dick, 2000). 

Soil (3 g) was vortexed with 15 mL of freshly prepared 0.2 M KOH in methanol for 20 s 

in a 35 mL glass centrifuge tube. The tubes were placed in a water bath for one h set at 

37°C, and vortexed every 10 minutes for 10 seconds during this period. After 1 hour, 2.5 

mL of 1 M acetic acid was added to each tube to neutralize the pH. Ten mL hexane was 

mixed with tube contents by vortexing. The tubes were centrifuged for 20 minutes at 329 

× g. Five mL of the top organic phase containing EL-FAMEs was transferred to a 16 mL 

tube and gently evaporated to almost dryness with N2 gas. The EL-FAMEs were 

dissolved in 0.2 mL of 1:1 hexane:methyl-tert butyl ether and transferred to an auto-

sampler gas chromatography vial with teflon lined cap. The EL-FAMEs were analyzed 

using a Shimadzu 14 A gas chromatograph (Kyoto, Japan) fitted with a flame ionization 
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detector (260°C), splitless injector (250°C) and Rtx®-1 fused silica column (100% 

dimethyl polysiloxane, 30 m length by 0.32 m id and 0.25µm thickness). Helium (He) 

was used as the carrier gas. The oven temperature program was 80°C held for 0.5 min, 

ramped up to 250°C at 3°C min
-1

, and then held at 250°C for 10 min. The identity and 

concentrations of individual EL-FAMES was determined using FAME standards 

obtained from Supelco (Belleforte, PA).  

EL-FAME Nomenclature 

Certain types of EL-FAMEs are associated with different microbial groups, thus 

making EL-FAME profile analysis a useful method for evaluating changes in microbial 

community structure in environmental samples. The standard fatty acid nomenclature 

was used in this study. For example, 18:1ω5 describes a fatty acid with 18 carbon chain 

length with 1 double bond located on the fifth carbon from the methyl end of the chain. In 

this paper, all double bonds are in the “cis” conformation, unless indicated otherwise 

indicated by a “t” suffix that denotes a “trans” conformation. Branching positions are 

represented by prefixes “a” (anteiso), “b” (branched), “i” (iso), “Me” (methyl group), 

“cy” (cyclopropane) and “OH” (hydroxy group) (Schutter and Dick, 2000; D’Angelo et 

al., 2005).  

Different EL-FAMEs represented various microbial groups as follows: (i) 

terminally branched FAMEs represent Gram-positive bacteria (Parkes and Taylor, 1983; 

O’Leary and Wilkinson, 1988; Kaneda, 1991), (ii) monounsaturated FAMEs represent 

aerobic eukaryotes and Gram-negative bacteria (Ratledge and Wilkinson, 1988; Vestal 

and White, 1989; Findlay et al., 1990), (iii) mid-chain branched, saturated and branched 

and monounsaturated represent sulfate-reducing and other anaerobic bacteria, as well as 
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actinomycetes (Boon et al., 1977; Boe and Gjerda, 1980; Guckert et al., 1985; Federle, 

1986), (iv) polyunsaturated FAMEs and FAMEs with larger than 20 C chain long are 

indicators of fungi and some micro-eukaryotes (Federle 1986; Vestal and White, 1989; 

Findlay et al., 1990). A typical gas chromatogram of EL-FAMEs obtained in this study is 

shown in Figure 2.2. 

Effect of Sorption on Antibiotic Bioavailability and Microbial Growth 

The role of sorption in protecting microbes from antibiotic effects was determined 

by comparing the growth of soil microorganisms in cultures exposed to (i) antibiotic 

solutions before treatment with soil (BT) and (ii) antibiotic solutions after treatment with 

soil (AT).  

 Microbes for the bioassay test were extracted from a bulk soil by combining soil 

(1 g) from each of the nine sites (total 9 g) with 90 mL LB broth nutrient solution (Fisher 

Scientific, Fairlawn, NJ) in a 250 mL centrifuge bottle. The bottle was shaken on a 

horizontal shaker for 2 h and centrifuged at 100 × g for 15 min. The supernatant 

containing the microorganisms was passed through 20 micron pore filter paper (Fisher 

brand, PT) to remove silt particles, and was stored in the refrigerator until used in 

bioassays. 

As indicated before, two types of antibiotic solutions were used to evaluate the 

effects of sorption on antibiotic bioavailability to the extracted microorganisms. The 

before treatment (BT) antibiotic solutions consisted of antibiotics prepared at 0, 1.5, 5, 

15, 50, 150, and 500 mg L
-1

. The after treatment (AT) solutions were the same as the BT 

solutions, except that antibiotics were first equilibrated with soil to allow sorption to take 

place before exposing organisms to the antibiotics. To prepare 
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Figure 2.2. A typical gas chromatogram of EL-FAMEs. Each peak represents a different 

lipid biomarker. 
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the AT antibiotic solutions, oven dried (37°C) and sieved (2 mm) soil (0.5 g) was added 

to each of 21, 2-mL microtubes. The tubes with soil were amended with antibiotic 

solutions (1.5 mL) prepared at seven levels (0, 1.5, 5, 15, 50, 150, and 500 mg L
-1

) and 

equilibrated on horizontal shaker at low speed for 4 h. Each antibiotic type and level was 

evaluated in triplicate. The 4 h equilibration time was selected to allow sorption to take 

place, but not allow significant amounts of antibiotic degradation to occur. After this 

period, microtubes were centrifuged at 9300 × g for 5 min. A subsample of the 

supernatant (0.75 mL) containing the non-sorbed (bioavailable) antibiotics was 

transferred to an empty microtube for use in the bioassay tests. This process was repeated 

for each of the three antibiotics (bacitracin, roxarsone, and virginiamycin).  

 The microbial growth bioassay was conducted using the BT and AT antibiotic 

solutions as follows. Antibiotic solution (0.75 mL) in 2 mL microtubes were amended 

with 0.25 mL of LB broth and 0.25 mL of bacterial stock solution. The final antibiotic 

concentrations in the BT microtubes were 0, 0.9, 3.0, 9, 30, 90, 300 mg L
-1

, but 

concentrations were probably lower in the AT microtubes due to sorption by the soil. The 

mixture was incubated overnight on an orbital shaker at 250 rpm for at 28°C. After 1 d, 

the tubes were vortexed, and 200 µL of solution were pipetted into the wells of a 

microplate. The cell density in the wells was measured at 600 nm using a microplate 

reader (BioTek, Horshman, PA) (Park et al., 2005). The cell density was checked for 

three consecutive days.  

 It was hypothesized that antibiotics would inhibit microbial cell growth relative to 

the zero level control, and that inhibition would be greater in the BT solutions than the 

AT solutions.  An index to show inhibition by the antibiotics was calculated as follows:  
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Growth Inhibition = cell growth with antibiotic/cell growth without antibiotic, where 

values less than one indicate growth inhibition by the BT or AT antibiotic solutions.  

 The effect of sorption on the reduction in antibiotic bioavailability was calculated 

by the equation: 

Reduction in antibiotic bioavailability = cell growth in AT solution/cell growth in BT 

solution, where values greater than one indicate that antibiotic bioavailability was 

reduced by sorption.  

Soil Property Characterization 

Soil pH was determined in a soil-water paste prepared by adding 10 mL water to 

10 cm
3
 soil (oven-dried at 38°C and ground to pass a 2 mm screen). The paste was stirred 

and allowed to stand for 15 minutes. Soil pH was determined using a calibrated glass 

electrode and meter.  

The amount of bioavailable P, K, Ca, Mg, Zn in soils was estimated using the 

Mehlich III extraction test (Mehlich, 1984). Briefly, soil (2 cm
3
) was mixed with 20 mL 

Mehlich III extract (0.2 N acetic acid, 0.25 N NH4NO3, 0.015 N NH4F, 0.013 N HNO3, 

and 0.001 N EDTA), shaken for 5 minutes, and passed through a Whatman #2 filter 

paper. The elements in the filtrate were measured by Inductively Coupled Plasma 

Spectroscopy (ICP) Varion Vista Pro (Palo Alto, California). 

Soil organic carbon was determined by an Elemental Vario Max CNS analyzer 

(Mt. Laurel, New Jersey). Organic matter was calculated from the amount of organic 

carbon (%) in the sample using the equation % organic carbon = % organic matter/1.72. 

The cation exchange capacity (CEC) was determined by equilibrating oven-dried 

(38
°
C) sieved soil (10 g) overnight with 25 mL of 1 N ammonium acetate solution (pH = 
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7). The mixture was vacuum-filtered through Whatman #42 filter paper and washed with 

additional ammonium acetate solution. The filtrate was analyzed for cations Ca, Mg, K, 

and Na by ICP which provides the quantification of bases in soil. The residual soil was 

leached with 200 mL of 10% NaCl at pH 3. The leachate was brought to volume 250 mL 

by adding 10% NaCl. The ammonium was converted to ammonia by adding 1 mL of 

concentrated NaOH and was measured by an electrode. The CEC was calculated from the 

sum of cations in the soil and expressed in units of meq/100 g soil (equals to cmol kg
-1

). 

Percent base saturation was determined as total bases/CEC × 100.  

The percentage of sand, silt, clay in the soils was determined by treating oven 

dried sieved (38°C, 2 mm screen) soil (4 g) with 10 mL water and 10 mL Na-

hexametaphosphate in a 50 mL centrifuge tube. The tube was shaken for 2 h and an 

additional 20 mL water was added to the tube. The sand and silt particles in the mixture 

were allowed to settle for 1 h and 50 min, after which time 5 mL of supernatant 

containing clay particles was removed, dried, and weighed to determine clay content. The 

remaining mixture in the tube was passed through # 270 sieve and the particles on the 

sieve were oven-dried to determine the sand content. The silt content was determined by 

the difference between the total clay and sand content in the sample. 

Statistical Analysis 

The effects of antibiotic levels on nitrification, denitrification, microbial 

community composition, and microbial growth were determined by ANOVA and 

Tukey’s Honestly Significant Difference test (HSD), at a significance level of p = 0.05, 

after testing for normal distribution of the data. All the statistical analyzes were 
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performed using STAGRAPHICS Plus Version 5.0 software (Manugistics, Rockville, 

MD). 

Results 

Effects of Antibiotics on Nitrification and Denitrification 

 Bacitracin did not have a significant impact on nitrification at any topographic 

positions or antibiotic concentrations up to 500 mg kg
-1 

(Figure 2.3A and Table 2.1). 

Roxarsone significantly inhibited nitrification at >150 mg kg
-1 

at all topographic positions 

compared to the zero level treatment (Figure 2.3B and Table 2.2). Virginiamycin 

significantly inhibited nitrification at >15 mg kg
-1 

in the shoulder and backslope, and at 

>150 mg kg
-1

 in the toeslope compared to the zero level treatment (Figure 2.3C and Table 

2.3). Bacitracin inhibited denitrification at 500 mg kg
-1 

however roxarsone and 

virginiamycin did not significantly affect denitrification at any concentration tested 

(Figure 2.4 and Tables 2.4-2.6).  

Effects of Antibiotics on Microbial Community Composition  

 Bacitracin exposure of 1 and 100 mg kg
-1 

for one and four weeks did not 

significantly affect the abundance of any EL-FAME in the soil (Table 2.7). One week 

exposure of soils to roxarsone at 100 mg kg
-1 

caused a significant increase in two 

monounsaturated EL-FAMEs (16:1ω7 and 18:1ω7), and a significant decrease in 16: 1ω9 

(Table 2.8). There was also a significant increase in lipid 18:1ω7 in week four but not in 

any other lipids.  

 One and four weeks exposure of soils to virginiamycin at 100 mg kg
-1 

caused a 

significant increase in two monounsaturated EL-FAMEs (16:1ω7 and 18:1ω7), a 
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Figure 2.3. Effect of three livestock antibiotics on nitrification in soils at three positions 

along a topographic gradient (shoulder, backslope, and toeslope). A. Bacitracin, B. 

Roxarsone, and C. Virginiamycin. Each value represents the mean of three replications ± 

one standard deviation. Values less than one means that antibiotic inhibited nitrification 

compared to the control. Different upper-case letters above markers indicate a significant 

difference between the antibiotic treated samples and zero level control at a p-value of 

0.05 in the shoulder (S), backslope (B) or toeslope (T) positions. 
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Table 2.1. Ratio of nitrification in bacitracin treated soil and untreated soil at three 

positions along a topographic gradient (shoulder, backslope and toeslope). Each value 

represents the mean of three replications. Bacitracin did not have a significant affect on 

nitrification in soils at any concentration or any topographic positions at a p-value of 

0.05. 

Antibiotic 

level  

(mg kg
-1

) 

 Shoulder  Backslope  Toeslope  p-value 

  Ratio of nitrification in antibiotic treated soil and 

untreated soil 

 

1.5   1.00    1.05    1.06   0.8865 

5   0.99    1.07    1.20   0.5997 

15   1.01    1.05    1.21   0.6317 

50   0.99    0.86    1.19   0.4487 

150   0.79    0.93    1.13   0.1944 

500   0.86    1.08    1.05   0.3983 

               

p-value  0.2536  0.4686  0.9670   
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Table 2.2. Ratio of nitrification in roxarsone treated soil and untreated soil at three 

positions along a topographic gradient (shoulder, backslope and toeslope). Each value 

represents the mean of three replications. Values within a column with a different prefix 

are significantly different at a p-value of 0.05. There was no significant difference in 

nitrification in soils by roxarsone along the row at a p-value of 0.05. 

Antibiotic 

level 

(mg kg
-1

) 

 Shoulder  Backslope  Toeslope  p-value 

  Ratio of nitrification in antibiotic treated soil and 

untreated soil 

   

1.5  A 0.77   A 0.92   AB 1.00   0.4621 

5  A 0.93   A 0.98   A 1.37   0.1064 

15  A 0.86   A 0.91   A 1.44   0.0830 

50  A 0.81   A 0.82   AB 1.05   0.1102 

150  B 0.24   B 0.34   BC 0.54   0.2452 

500  B 0.14   B 0.19   C 0.16   0.8825 

               

p-value  0.0000  0.0000  0.0003   
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Table 2.3. Ratio of nitrification in virginiamycin treated soil and untreated soil at three 

positions along a topographic gradient (shoulder, backslope and toeslope). Each value 

represents the mean of three replications. Values within a column with a different prefix 

are significantly different at a p-value of 0.05. There was no significant difference in 

nitrification in soils by virginiamycin along the row at a p-value of 0.05. 

Antibiotic 

Level  

(mg kg
-1

) 

 Shoulder  Backslope  Toeslope  p-value 

  Ratio of nitrification in antibiotic treated soil and 

untreated soil 

  

1.5  AB 0.86   A 0.95   AB 0.88   0.6208 

5  BC 0.77   AB 0.76   AB 0.77   0.9967 

15  CD 0.67   B 0.63   AB 0.78   0.1064 

50  D 0.54   BC 0.50   B 0.66   0.1511 

150  E 0.09   CD 0.20   C 0.12   0.5613 

500  E 0.09   D 0.16   C 0.06   0.3620 

               

p-value  0.0000  0.0000  0.0000   
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Figure 2.4. Effect of three livestock antibiotics on denitrification in soils at three 

positions along a topographic gradient (shoulder, backslope, and toeslope). A. Bacitracin, 

B. Roxarsone, and C. Virginiamycin. Each value represents the mean of three replications 

± one standard deviation. Values less than one means that antibiotic has an inhibitory 

effect on denitrification compared to the control. Different upper-case letters above the 

markers indicate a significant difference between the antibiotic (bacitracin) samples and 

zero level control at a p-value of 0.05.Bacitracin inhibited denitrification at 500 mg kg
-1

 

however, roxarsone and virginiamycin did not affect denitrification.  
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Table 2.4. Ratio of denitrification in bacitracin treated soil and untreated soil at three 

positions along a topographic gradient (shoulder, backslope and toeslope). Each value 

represents the mean of three replications. Values within a row followed by different 

suffix are significantly different at a p-value of 0.05. Values within a column with a 

different prefix are significantly different at a p-value of 0.05.  

Antibiotic  

Level  

(mg kg
-1

) 

 Shoulder  Backslope  Toeslope  p-value 

  Ratio of denitrification in antibiotic treated soil and 

untreated soil 

  

1.5   0.85 a   1.12 b  AB 0.95 ab  0.0397 

5   0.98    1.02   AB 0.84   0.6232 

15   1.00    0.90   A 0.98   0.8742 

50   0.60    0.98   AB 0.81   0.4735 

150   0.63    0.98   AB 0.59   0.7105 

500   0.82    0.85   B 0.45   0.1611 

               

p-value  0.7017  0.8566  0.0165   
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Table 2.5. Ratio of denitrification in roxarsone treated soil and untreated soil at three 

positions along a topographic gradient (shoulder, backslope and toeslope). Each value 

represents the mean of three replications. Roxarsone did not have a significant affect on 

denitrification in soils at any concentration or at any topographic positions at a p-value of 

0.05. 

 

 

 

 

 

 

 

Antibiotic 

Level  

(mg kg
-1

) 

 Shoulder  Backslope  Toeslope  p-value 

  Ratio of denitrification in antibiotic treated soil and 

untreated soil 

 

1.5   1.03    1.11    0.99   0.7938 

5   1.18    1.10    1.10   0.8875 

15   1.07    1.28    0.90   0.2430 

50   0.94    1.12    1.10   0.6763 

150   0.99    0.98    1.11   0.7560 

500   1.20    0.96    1.06   0.5296 

               

p-value  0.3803  0.4117  0.9755   
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Table 2.6. Ratio of denitrification in virginiamycin treated soil and untreated soil at three 

positions along a topographic gradient (shoulder, backslope and toeslope). Each value 

represents the mean of three replications. Virginiamycin did not have a significant affect 

on denitrification in soils at any concentration or topographic positions at a p-value of 

0.05. 

 

Antibiotic 

Level  

(mg kg
-1

) 

 Shoulder  Backslope  Toeslope  p-value 

  Ratio of denitrification in antibiotic treated soil and 

untreated soil 

  

1.5   1.08    1.07    1.22   0.8656 

5   1.08    1.24    1.14   0.8770 

15   3.93    1.21    1.40   0.4709 

50   1.11    1.28    1.24   0.8728 

150   1.32    1.24    1.40   0.9156 

500   1.05    1.08    1.27   0.7889 

               

p-value  0.4636  0.0588  0.9827   
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Table 2.7. Percent distribution of ester-linked fatty acid methyl esters in soil surface (0-5 

cm) treated with bacitracin at 0, 1 and 100 mg kg
-1

 for one and four weeks. Each value 

represents the mean of three replications. Bacitracin did not significantly affect any ester-

linked fatty acid methyl esters in soil at p = 0.05. 

 

    Bacitracin      

 week 1  week 4 

Lipids 0 mg kg-1 1 mg kg-1 100 mg kg-1 p-value  0  mg kg-1 1  mg kg-1 100  mg kg-1 p-value 

                                                      % of total    lipid  % of total lipid  

Terminally branched (Gram positive bacteria)      

i14 0.99 0.99 0.96  0.9774  0.89  0.93  0.98  0.7914 

i15 5.19  5.12  5.2 0 0.9732  4.95  5.32  5.41  0.2794 

a15 3.65
 
 3.58

 
 3.64

 
 0.9880  3.43

 
 3.61

 
 3.73

 
 0.7614 

i16 3.34
 
 3.33

 
 3.35

 
 0.9970  3.14

 
 3.27

 
 3.36

 
 0.5976 

i17 1.6 0 1.6 0 1.62  0.9751  1.77  1.76  1.77  0.9803 

a17 2.25
 
 2.32

 
 2.28

 
 0.8649  2.51

 
 2.12

 
 2.15

 
 0.3217 

Monounsaturated (aerobic, Gram negative bacteria)      

14:1ω5 0.16  0.15  0.15  0.1422  0.12  0.13  0.15  0.0751 

15:1ω6 0.03
 
 0.07

 
 0.07

 
 0.6295  0.1

 
 0.14

 
 0.1

 
 0.3463 

16:1ω9 0.58
 
 0.57

 
 0.58

 
 0.9538  0.52

 
 0.51

 
 0.45

 
 0.2934 

16:1ω7 3.97
 
 3.98

 
 4.05

 
 0.8779  3.46

 
 3.53

 
 3.62

 
 0.8956 

16:1ω7t 0.32
 
 0.32

 
 0.33

 
 0.9918  0.3

 
 0.33

 
 0.31

 
 0.7979 

16:1ω5 4.69  4.86  4.76  0.9606  4.68  4.9 0 4.92  0.9239 

18:1ω9 8.79
 
 9.06

 
 9.0

 
0 0.8089  9.43

 
 8.73

 
 8.68

 
 0.4142 

18:1ω7 6.95
 
 6.91  6.9

 
0 0.9639  5.87

 
 6.13

 
 6.16

 
 0.6989 

18:1ω7t 0.26
 
 0.21

 
 0.21

 
 0.6588  0.21

 
 0.23

 
 0.2

 
0 0.7763 

18:1ω5 1.11  1.09  1.1 0 0.9984  1.15  1.39  1.37  0.8703 

18:3ω6 0.26  0.22  0.21  0.9413  0.51  0.26  0.25  0.4176 

Branched, monounsaturated (sulfate reducing and other anaerobic bacteria)   

b15:0a 0.55
 
 0.54

 
 0.54

 
 0.9649  0.38

 
 0.44

 
 0.42

 
 0.5011 

b15:0b 0.55
 
 0.55

 
 0.56

 
 0.9970  0.38

 
 0.40

 
 0.37

 
 0.9139 

b16:1a 0.73
 
 0.72

 
 0.73

 
 0.9947  0.64

 
 0.72

 
 0.69

 
 0.8382 

b16:1b 0.39
 
 0.39

 
 0.39

 
 0.9828  0.39

 
 0.44

 
 0.40

 
 0.6913 

b17:1a 0.53  0.54  0.55  0.9911  0.53  0.54  0.51 0.9690 

i17:1ω7 1.53
 
 1.53

 
 1.57

 
 0.9438  1.26

 
 1.35

 
 1.31

 
 0.7677 

b18:1a 1.81
 
 1.77

 
 1.77

 
 0.9918  1.51

 
 1.54

 
 1.59

 
 0.9674 

b18:1b 0.32
 
 0.29

 
 0.25

 
 0.1818  0.33

 
 0.32

 
 0.28 0.8585 

b19:1a 0.55
 
 0.50

 
 0.51

 
 0.6738  0.46

 
 0.46

 
 0.51

 
 0.7358 

b20:1 1.01  0.93  0.9 0 0.9414  0.86  0.97  0.94  0.9147 

Mid-chain branched, saturated (sulfate reducing and other anaerobic; actinomycetes)  

10me16 3.77
 
 3.77

 
 3.76

 
 0.9997  3.57

 
 3.66

 
 3.72

 
 0.9456 

cy17 1.43
 
 1.44

 
 1.42

 
 0.9618  1.44

 
 1.44

 
 1.39

 
 0.939 

11me17 1.06  1 .00 1.01  0.6537  0.96  0.99  0.99  0.8719 

10me18 2.4 0 2.26  2.26  0.6984  2.08  2.16  2.16  0.8827 

cy19 3.51
 
 3.35

 
 3.37

 
 0.9402  3.3

 
0 3.52

 
 3.54

 
 0.8326 

Normal saturated (<20 C Chain length)       

14:0 1.29
 
 1.26

 
 1.28

 
 0.9395  1.53

 
 1.36

 
 1.37

 
 0.7095 

15:0 0.59  0.59  0.6 0 0.8491  1.37  0.76  0.72  0.460 

16:0 12.3  12.63  12.54  0.8470  13.4  13.16  13.24  0.9307 

17:0 0.53  0.53  0.5 0 0.4603  0.99  0.64  0.6 0 0.3947 
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18:0 3.16  3.07  3.04  0.7023  3.06  3.18  3.06  0.5105 

19:0 0.27  0.16  0.18  0.2452  0.42  0.28  0.19  0.5728 

Polyunsaturated plus>20 C chain length (eukaryotic organisms)     

18:2ω6 3.52  3.84  3.77  0.8563  3.86  4.0  3.74  0.8576 

18:3ω3/18:1ω12 0.22  0.16  0.22  0.7052  0.13  0.14  0.17  0.8861 

20:4ω6 0.57  0.51  0.53  0.6354  1.08  0.72  0.69  0.3304 

20:5ω3 0.39  0.28  0.31  0.6183  0.22  0.34  0.28  0.2100 

20:3ω6 0.25  0.17  0.17  0.7079  0.26  0.19  0.16  0.5599 

20:2ω6/20:1ω11 0.21  0.1 0 0.12  0.5481  0.16  0.22  0.15  0.5320 

20:3ω3 0.06 0.05 0.09 0.8628  0.17 0.13 0.14 0.7785 

20:1ω9 0.48  0.39  0.41  0.5107   0.51  0.42  0.39  0.4314 

20 1.58
 
 1.51

 
 1.53

 
 0.6486   1.52

 
 1.5

 
0 1.53

 
 0.9317 

21.1d 3.04  3.26  3.01  0.8320   2.86  3.26  3.12  0.5201 

22:5ω6 0.24
 
 0.21

 
 0.21

 
 0.5973   0.26

 
 0.28

 
 0.3

 
0 0.3832 

21/22:6ω3 0.75  0.72  0.72  0.8927   0.72  0.65  0.69  0.7366 

22:4ω6 0.28
 
 0.31

 
 0.27

 
 0.4995   0.27

 
 0.3

 
0 0.28

 
 0.3829 

22:2ω6 0.04  0.05  0.03  0.4884   0.04  0.06  0.07  0.6987 

22:1ω9 0.11
 
 0.12

 
 0.11

 
 0.4575   0.19

 
 0.13

 
 0.14

 
 0.4919 

22 1.79  1.79  1.77  0.9354   1.71  1.71  1.78  0.6633 

23 0.3
 
0 0.29

 
 0.28

 
 0.8192   0.38

 
 0.3

 
0 0.32

 
 0.4219 

24:1ω9 0.13  0.27  0.39  0.4027   0.38  0.47  0.46  0.9242 

24 1.82
 
 1.95

 
 2

 
 0.4259   1.73

 
 1.81

 
 2.05

 
 0.1084 

25 0.96  1.03  1.1  0.5991   0.92  1  1.08 \ 0.5094 

26 0.83
 
 0.8

 
0 0.82

 
 0.9170   0.75

 
 0.75

 
 0.81

 
 0.7396  
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Table 2.8. Percent distribution of ester-linked fatty acid methyl esters in soil surface (0-5 cm) 

treated with roxarsone at 0, 1 and 100 mg kg
-1

 for one and four weeks. Each value represents the 
mean of three replications. Values in a row followed by a different suffix are significantly 

different at p = 0.05. 

Roxarsone 

Lipids 

week 1  week 4 

0 mg kg-1 1  mg kg-1 100  mg kg-1 p-value  0  mg kg-1 1  mg kg-1 100  mg kg-1 p-value 

                                                       % of total lipid   % of total lipid  

Terminally branched (Gram-positive bacteria)       

i14 0.97  0.93  0.92  0.9028  1.0  1.1  1.1  0.8280 

i15 5.29  5.09  4.92  0.6537  5.56  5.63  5.09  0.2268 

15 3.67  3.55  3.43  0.8319  3.66  3.82  3.52  0.7609 

i16 3.38  3.37  3.39  0.9954  3.31  3.42  3.33  0.8942 

i17 1.64  1.66  1.53  0.3901  1.79  1.78  1.66  0.2691 

17 2.26  2.29  2.22  0.4275  2.16  2.26  2.12  0.1225 

Monounsaturated (aerobic, Gram-negative bacteria)       

14:1ω5 0.16  0.14  0.14  0.4209  0.13  0.13  0.13  0.9910 

15:1ω6 0.04  0.03  0.01  0.5768  0.07  0.09  0.07  0.1798 

16:1ω9 0.57a 0.57 a 0.51 b 0.0210  0.53  0.54  0.5 0 0.4300 

16:1ω7 4.09 a 4.04 a 5.65 b 0.0004  3.62  3.73  4.25  0.1066 

16:1ω7t 0.34  0.35  0.32  0.7622  0.32  0.33  0.32  0.9980 

16:1ω5 4.86  4.79  4.79  0.9938  5.29  4.95  4.69  0.7149 

18:1ω9 9.03  9.04  8.66  0.6674  8.72  8.83  8.42  0.4028 

18:1ω7 6.91 a 6.96 a 7.95 b 0.0164  6.59 a 6.52 a 7.72 b 0.0212 

18:1ω7t 0.19  0.24  0.2 0 0.2240  0.19  0.21  0.22  0.2468 

18:1ω5 1.14  1.33  1.42  0.7166  1.03  1.09  1.12  0.9467 

18:3ω6 0.22  0.27  0.22  0.9039  0.21  0.25  0.24  0.9132 

Branched, monounsaturated (sulfate reducing and other anaerobic bacteria)     

b15:0    0.56  0.5  0.47  0.2329  0.45  0.45  0.41  0.5220 

b15:0b    0.6  0.54  0.47  0.3737  0.39  0.39  0.37  0.9193 

b16:1    0.8  0.75  0.68  0.6828  0.71  0.71  0.66  0.9415 

b16:1b                     0.46  0.42  0.35  0.3272  0.33  0.32  0.31  0.8499 

b17:1 0.56  0.59  0.5  0.5430  0.53  0.58  0.49  0.8272 

i17:1ω7 1.56  1.59  1.4  0.0786  1.5  1.59  1.43  0.1168 

b18:1 1.76  1.8  1.67  0.9032  1.58  1.62  1.51  0.9167 

b18:1b 0.29  0.38  0.26  0.3250  0.29  0.27  0.26  0.8001 

b19:1 0.21  0.28  0.38  0.0791  0.53  0.54  0.6 0 0.2954 

b20:1 0.83  0.92  0.86  0.9413  0.94  0.93  0.97  0.9929 

Mid-chin branched, saturated (sulfate reducing and other anaerobic; actinomycetes)    

10me16 3.74  3.79  3.47  0.7514  3.85  3.85  3.5  0.6501 

cy17 1.43  1.49  1.45  0.5734  1.54  1.53  1.75  0.1117 

11me17 1  1.05  0.97  0.2844  0.96  1  0.99  0.8120 

10me18 2.22  2.2  2.09  0.8098  2.24  2.24  2.13  0.7975 

cy19 3.32  3.29  3.06  0.8844  3.67  3.57  3.45  0.8944 

Normal saturated (<20 C Chain length)        

14:0 1.31  1.25  1.31  0.7001  1.3  1.3  1.3  0.9870 

15:0 0.67  0.61  0.61  0.6511  0.66  0.7  0.67  0.6850 

16:0 12.88  12.64  13.26  0.5330  13.62  13.19  13.47  0.7978 

17:0 0.53  0.58  0.54  0.5443  0.58  0.63  0.58  0.3446 

18:0 2.96  2.99  2.8  0.4762  3.02  2.96  3.02  0.9500 

19:0 0.16  0.15  0.15  0.9283  0.15  0.22  0.22  0.6129 

Polyunsaturated plus>20 C chain length (eukaryotic organisms)       
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significant decrease in branched, monounsaturated EL-FAME (i17:1ω7) and a >20  

carbon length EL-FAME (26:0) in week four (Table 2.9). None of the other EL-FAMEs 

were significantly affected by virginiamycin.  

Effect of Sorption on Antibiotic Bioavailability and Microbial Growth 

 Bacitracin had a negligible impact on microbial growth in either the BT and AT 

antibiotic solutions at any concentration up to of 300 mg L
-1 

(Figures 2.5A and 2.6A and 

Table 2.10). Roxarsone and virginiamycin significantly inhibited microbial growth at 300 

mg L
-1

 in the BT solutions, but did not inhibit growth at any concentration in the AT 

solutions (Figures 2.5B, C and 2.6B, C and Table 2.10). 

Chemical Properties of Soils at the Different Topographic Positions 

Soil pH ranged between 5.85 and 6.68, and was significantly higher in the 

toeslope soils than in the shoulder and backslope soils (p = 0.001) (Table 2.11). Mehlich 

III phosphorus ranged between 194 mg kg
-1

 to 257 mg kg
-1

, and was not significantly 

different at the three landscape positions (p = 0.5998). The amount of Mehlich III 

potassium ranged between 139 mg kg
-1

 and 376 mg kg
-1

, and was significantly higher in 

the backslope soils than in the shoulder and toeslope soils (p = 0.0028). Mehlich III 

calcium ranged between 1650 mg kg
-1

 to 2940 mg kg
-1 

, and was significantly higher in 

the toeslope soils than in the shoulder and backslope soils (p = 0.0023). The amount of 

Mehlich III magnesium ranged between 129 mg kg
-1 

to 196 mg kg
-1

, and was not 

significantly different at the landscape three positions (p = 0.0652). The amount of 

Mehlich III zinc ranged between 2 mg kg
-1 

to 4 mg kg
-1

, and was not significantly 

different at the three landscape positions (p = 0.1998). The amount of Mehlich III  
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Table 2.9. Percent distribution of ester-linked fatty acid methyl esters in soil surface (0-5 cm) 

treated with virginiamycin at 0, 1 and 100 mg kg
-1
 for one and four weeks. Each value represents 

the mean of three replications. Values in a row followed by a different suffix are significantly 

different at p = 0.05. 
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Figure 2.5. Sorption effects on antibiotic inhibition of soil microbial growth. A. Bacitracin, B. Roxarsone, 

and C. Virginiamycin. The closed diamond markers are for treatments where microorganisms were exposed 

to antibiotics in solution (Before treatment: BT), and open square markers are for treatments where 

microorganisms were exposed to antibiotics remaining in solution after sorption by soil (After Treatment 

:AT)). Each value represents the mean of three replications ± one standard deviation. Values less than one 

means that antibiotic inhibited microbial growth. If the microbial growth in the AT is significantly greater 

than BT, then sorption reduced the antibiotic effects on microbial growth, which are indicated by asterisks 

above markers. Lower-case letters indicate a significant difference between the BT and zero level control at 

a p-value of 0.05. There was no significant difference in microbial growth in any AT level and the zero 

level control at a p-value of 0.05. 
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Figure 2.6. Ratio of growth of soil microbes exposed to soil-treated antibiotics (AT) 

versus untreated antibiotics (BT). A. Bacitracin, B. Roxarsone, and C. Virginiamycin. At 

high antibiotic concentrations, microbial growth was higher in the AT solutions than in 

BT solutions, due to antibiotic sorption to soil particles. 
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Table 2.10. Ratio of microbial growth in soil treated antibiotics (AT) and untreated 

antibiotics (BT). Each value represents the mean of three replications. Values within a 

column with a different prefix are significantly different at a p-value of 0.05, and values 

within a row with a different suffix are significantly different at a p-value of 0.05. 

Antibiotic level 

(mg L
-1

) 

 Bacitracin Untreated 

(BT) 

 Bacitracin-Soil Treated 

(AT) 

 p-value 

0.9  A 0.91 a   1.13 b  0.0082 

3  A 0.98    1.02   0.5618 

9  AB 0.99    1.45   0.1476 

30  AB 1.13    1.30   0.4728 

90  B 1.29    1.20   0.5878 

300  A 0.98    0.98   0.9743 

           

p-value  0.0151  0.1959   

 

Antibiotic level 

(mg L
-1

) 

 Roxarsone Untreated 

(BT) 

 Roxarsone-Soil 

Treated (AT) 

 p-value 

0.9  BA 0.92    1.12   0.2889 

3  BA 0.79    0.91   0.4969 

9  BA 0.82 a   1.22 b  0.0330 

30  BA 0.72 a   1.20 b  0.0475 

90  B 0.69    0.93   0.0576 

300  C 0.29 a   0.77 b  0.0308 

           

p-value  0.0000  0.1573   

 

Antibiotic level 

(mg L
-1

) 

 Virginiamycin Untreated 

(BT) 

 Virginiamycin-Soil 

Treated (AT) 

 p-value 

0.9  B 0.84    0.64   0.4376 

3  BC 0.91    0.91   0.9778 

9  BCD 0.95    0.75   0.0511 

30  D 1.07 a   0.72 b  0.0161 

90  B 0.83    0.71   0.1759 

300  E 0.08 a   0.70 b  0.0145 

           

p-value  0.0000  0.4760   
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Table 2.11. Chemical properties of soils at the shoulder, backslope and toeslope along a 

gradient. Each value represents the mean of three replicates. Values followed by different 

letters are significantly different at a p-value of 0.05.  

 

 

 

 

 

Soil Property Shoulder Backslope Toeslope p- value 

pH 5.85
a
 5.86

a
 6.68

b
 0.001 

Mehlich III P (mg/kg) 208 257 194 0.5998 

Mehlich III K (mg/kg) 204
a
 376

b
 139

a
 0.0028 

Mehlich III Ca (mg/kg) 1709
a
 1650

a
 2940

b
 0.0023 

Mehlich III Mg (mg/kg) 147 196 129 0.0652 

Mehlich III Zn (mg/kg) 2 4 4 0.1998 

Mehlich III Mn (mg/kg) 102 90 115 0.6549 

Mehlich III Al (mg/kg) 1054 1052 840 0.0679 

Organic Carbon (%) 3 4 4 0.3538 

Total N (%) 0.32 0.39 0.36 0.4320 

Sand (%) 14 15 16 0.7640 

Silt (%) 69 71 68 0.8273 

Clay (%) 17 14 17 0.7326 

Base Saturation (%) 59
a
 55

a
 80

b
 0.0124 

Cation Exchange Capacity(meq/100g) 20 23 24 0.0637 
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manganese ranged between 90 mg kg
-1 

to 115 mg kg
-1

, and was not significantly different 

at the three landscape positions (p = 0.6549). The amount of Mehlich III aluminum 

ranged between 840 mg kg
-1 

to 1052 mg kg
-1

, and was not significantly different at the 

three landscape positions (p = 0.0679). Soil carbon ranged between 3% to 4% and was 

not significantly different in the three landscape positions (p = 0.3538). Soil total nitrogen 

ranged between 0.32% to 0.39% and was not significantly different at the three positions 

(p = 0.4320). The amounts of sand, silt and clay ranged between 14%-16%, 68%-71%, 

and 14%-17%, respectively, and were not significantly different at the three positions (p 

> 0.73).  The cation exchange capacity ranged between 20 meq 100g
-1 

to 24 meq 100g
-1

, 

and was not significantly different at the three landscape positions (p = 0.0637). The base 

saturation ranged between 55% to 80% and was significantly higher in the toeslope soils 

than in the backslope and shoulder soils (p = 0.0124).  

Discussion 

The poultry industry routinely uses large amounts of bacitracin, roxarsone and 

virginiamycin in poultry feed, which is largely excreted in manure and widely used as a 

soil amendment. Since antibiotics inhibit many types of bacterial groups, it was 

hypothesized that they would affect soil microbial community composition, and aerobic, 

autotrophic and anaerobic, heterotrophic biochemical processes of nitrification and 

denitrification, respectively.  It was also hypothesized that antibiotic effects would be 

different at various landscape topographic positions, due to differences in soil properties 

that affect the interactions between antibiotics and soil particles and microbial 

communities. If these hypotheses are true, then application of antibiotics to soils could 

have major implications on the concentrations of several N species (i.e. NH4
+
, NO3

-
 and 
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NO2
-
, N2O), and therefore impact soil, water, and air quality (Hallberg and Keeney, 1993; 

Britto and Kronzucker, 2002; Vellidis et al., 2003; Bierman and Rosen, 2005). To test 

these hypotheses, a series of lab experiments were conducted in which antibiotics were 

added to soils at concentrations that covered and exceeded the range expected in poultry 

litter applied soils, and the resulting affects on nitrification, denitrification and microbial 

community composition (EL-FAMEs) were determined.  

As expected, roxarsone and virginiamycin significantly altered microbial 

community composition of soils, as indicated by significant differences in EL-FAME 

abundances compared to the zero level control.  For example, after one and four week 

exposure of soils to 100 mg kg
-1

 roxarsone or virginiamycin, there were significant 

increases in 16:1ω7 and 18:1ω7, and decreases in 16:1ω9 (in roxarsone treatment in week 

one only), i17:1ω7 and 26:0 (in virginiamycin treatment in week four only).  These 

results indicated that aerobic, Gram-negative bacteria were enriched and Gram-positive 

bacteria and fungi were depleted in the presence of these antibiotics. These results are 

consistent with the fact that these antibiotics primarily target Gram-positive bacteria. 

Although roxarsone and virginiamycin influenced microbial community composition at 

100 mg kg
-1

, they did not influence microbial community composition at 1 mg kg
-1

. 

Moreover, bacitracin did not affect microbial community composition at 1 or 100 mg kg
-

1
. Since these levels are much higher than expected in litter-amended soils (see Table 

1.3), it is unlikely that antibiotics associated poultry litter would significantly impact 

microbial community composition in these soils, even if they were amended more 

frequently and with greater amounts of litter than typically applied. The same results 

were found at all three topographic positions, even though soils at these positions varied 
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significantly in pH, bioavailable Ca, and base saturation, which was most likely due to 

increased weathering of exposed limestone parent material, decomposition of vegetation, 

and surface runoff and deposition of calcium ions from the high to low areas of the 

topographic gradient (Brady and Weil, 2002). 

Results from the nitrification and denitrification experiments were generally 

consistent with those of the microbial community composition experiment. Specifically, 

roxarsone and virginiamycin significantly inhibited nitrification in the soils. The 

concentrations that inhibited nitrification, however, were much higher than would be 

expected in litter-amended soils.  For example, roxarsone inhibited nitrification at >150 

mg kg
-1

, which is 375-1,875 times higher than expected in poultry litter-amended soil 

(Table 1.3). Similarly, virginiamycin inhibited nitrification at >15 to >150 mg kg
-1 

(depending on topographic position), which is 7,500-60,000 times higher than expected 

in poultry litter-amended soil (Table 1.3).  Bacitracin did not affect nitrification at any 

concentration up to 500 mg kg
-1

.  Bacitracin inhibited denitrification at 500 mg kg
-1

, 

however roxarsone and virginiamycin did not had a strong affect on denitrification at up 

to 500 mg kg
-1

. 

No other studies have determined the effects of bacitracin, virginiamycin, or 

roxarsone on microbial community composition, nitrification, or denitrification in soils;  

other studies, however, have evaluated the effects of other antibiotics in other 

environments with varying results. For example, Pedroso et al. (2006) found that 

bacitracin methylene disalicylate altered the microbiota composition in the small intestine 

of broilers at a concentration of 27.5 mg kg
-1

. Dumonceaux et al. (2006) and Wise and 

Seragusa (2007) found that virginiamycin influenced bacterial groups in broiler 
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gastrointestinal tract (Gram-positive organisms).  Quastel and Scholefield (1951), Pramer 

and Starkey (1952) and Hervey (1955) found that high levels of chloramphenicol, 

streptomycin, thiolutin and oxytetracycline were required to hindered nitrification in 

soils. Patten et al. (1980) and Warman (1980) found that amprolium, auromycin 

chlortetracycine, and oxytetracycline at various concentrations did not affect nitrification 

in soil, manure, or sewage sludge. Gomez et al. (1996) found that chloramphenicol, 

ampicillin, penicillin, and oxytetracycline had no significant affect on nitrification in a 

nitrifying sludge at up to 250 mg L
-1

.  Halling-Sørensen (2001), on the other hand, 

reported that low concentrations of chlortetracycline (0.4 mg L
-1

), oxytetracyline (1.2 mg 

L
-1

), tiamulin (14.3 mg L
-1

) and streptomycin (0.47 mg L
-1

) inhibited nitrification in 

sewage sludge. Costanzo et al. (2005) found that erythromycin, clarithromycin and 

amoxicillin at 1 mg L
-1 

inhibited denitrification in the aquatic environment, but that 

ciprofloxacin had no significant effect due to complexation with magnesium and sodium 

cations in the water.  

 Few studies have evaluated the mechanisms that could explain the differences in 

results between studies. Possible reasons could include different (i) sources/types of 

microorganisms (Muir, 1985; Swick, 1996), (ii) exposures and resistances of 

microorganisms to antibiotics (Pramer, 1958; Boon, 1992; Fujita et al., 1993; Halling-

Sørensen et al., 1998; Huys et al., 2000; Esiobu et al., 2002; Chelossi et al., 2003; 

Costanzo et al., 2005; Branco et al., 2008), (iii) degradation of antibiotics (Jagnow, 1977; 

Gavalchin and Katz, 1994; Weerasinghe and Towner, 1997; US-FDA, 1998; Ingerslev 

and Halling-Sørensen, 2001; Bednar et al., 2003; Thiele-Bruhn., 2003), and (iv) 

sorption/complexation of antibiotics to the soil, sludge, biofilm matrices used in various 
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studies (Urbain et al., 1993; da Gloria Britto de Oliveira et al., 1995; Gomez et al., 1996; 

Herron et al., 1998; Froehner et al., 2000; Brown 2003; Thiele-Bruhn., 2003). One or 

more of these factors could explain why bacitracin, virginiamycin, and roxarsone did not 

have large effects on microbial community composition, nitrification or denitrification in 

the soils of this study.    

  To explore the possible role of sorption in reducing antibiotic bioavailability and 

in protecting organisms against antibiotic effects, additional experiments were conducted 

in which soil microbial growth was compared in two cultures: one that was exposed to 

antibiotic solutions after being reacted with soil (AT), and the other that was exposed to 

antibiotic solutions that was not first exposed to soil (BT). It was hypothesized that 

microbial growth would be higher in the AT solutions, due to lower antibiotic 

concentrations in the solution.   

 Results from the experiment showed that bacitracin had negligible affects on soil 

microbial growth at approximately 300 mg L
-1

 compared to the zero level control in 

either the AT or BT solutions.  Roxarsone and virginiamycin were toxic to soil 

microorganisms at 300 mg L
-1

 in the BT solutions, but not at lower concentrations 

(assuming there were very less degradation during one day incubation). As expected, the 

toxicity effects of roxarsone and virginiamycin in the BT solutions were lost when 

antibiotics were first treated with soil in the AT solutions. Therefore, it appears that 

sorption played a role in protecting organisms against high antibiotic levels in these soils.  

 Probably more importantly, however, was that soil microbial growth was not 

inhibited at high antibiotic concentrations, which clearly showed that the native microbial 

populations were highly resistant to these antibiotics. This probably explains why the 
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antibiotics did not strongly affect the microbial community composition, nitrification, or 

denitrification in these soils. These results were somewhat surprising considering that 

soils were not previously exposed to antibiotics.  

 Although not evaluated in this study, possible mechanisms of antibiotic resistance 

held by the native microbial populations could include (i) low permeability of cell 

membrane to antibiotics (prevalent in Gram-negative bacteria) (Mazel and Davies, 1999), 

(ii) active efflux of the antibiotics out of the cell (Butaye et al., 2003), (iii) site alteration 

of antibitotic target sites (Butaye et al., 2003), and (iv) enzymatic inactivation of the 

antibiotic (Mazel and Davies, 1999).  In most cases, resistance by these mechanisms is 

due to proteins that are coded by genes located on chromosomes or plasmids (Rosander et 

al., 2008). Importantly, it is possible that these genes could be transferred between native 

soil bacteria and pathogens in poultry litter by various horizontal gene transfer processes, 

including conjugation, transforamation and transduction. To my knowledge, this 

possibility has not been explored, and is an area for future research.  

  Conclusions 

Results from this study clearly showed that bacitracin, roxarsone, and 

virginiamycin had very limited effects on microbial community composition, 

nitrification, and denitrification at concentrations expected in poultry litter-amended soils 

in the short term (< one month) time period.  Therefore, it is unlikely that soil, water, or 

air quality would be significantly impacted by the antibiotics contained in this 

amendment material.  It was found that sorption played a role in reducing antibiotic 

bioavailability; the limited affects of antibiotics on microbial processes, however, 

appeared to be mostly due to natural resistance of the native soil community to these 
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antibiotics.  These results could have important health implications. For example, it is 

possible that pathogens in poultry litter aggregate microbial “hot spot” could acquire 

antibiotic resistance from the native soil microorganisms by horizontal gene transfer 

processes.   Future studies should be conducted to evaluate the longer term importance of 

antibiotic amendments on biogeochemical processes and antibiotic resistant bacteria in 

soils.   
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