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ABSTRACT OF DISSERTATION

Real-time 3-D Reconstruction by Means of Structured Light Illumination

Structured light illumination (SLI) is the process of projecting a series of light striped
patterns such that, when viewed at an angle, a digital camera can reconstruct a 3-D
model of a target object’s surface. But by relying on a series of time multiplexed
patterns, SLI is not typically associated with video applications. For this purpose
of acquiring 3-D video, a common SLI technique is to drive the projector/camera
pair at very high frame rates such that any object’s motion is small over the pattern
set. But at these high frame rates, the speed at which the incoming video can be
processed becomes an issue. So much so that many video-based SLI systems record
camera frames to memory and then apply off-line processing. In order to overcome
this processing bottleneck and produce 3-D point clouds in real-time, we present a
lookup-table (LUT) based solution that in our experiments, using a 640 by 480 video
stream, can generate intermediate phase data at 1063.8 frames per second and full
3-D coordinate point clouds at 228.3 frames per second. These achievements are 25
and 10 times faster than previously reported studies. At the same time, a novel dual-
frequency pattern is developed which combines a high-frequency sinusoid component
with a unit-frequency sinusoid component, where the high-frequency component is
used to generate robust phase information and the unit-frequency component is used
to reduce phase unwrapping ambiguities. Finally, we developed a gamma model for
SLI, which can correct the non-linear distortion caused by the optical devices. For
three-step phase measuring profilometry (PMP), analysis of the root mean squared
error of the corrected phase showed a 60× reduction in phase error when the gamma
calibration is performed versus 33× reduction without calibration.

KEYWORDS: Real-time 3-D Reconstruction, Structured Light Illumination, Phase
Measuring Profilometry, Gamma Correction, Phase Channel Multiplexing Pat-
tern.
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Chapter 1 Introduction

Three dimensional (3-D) shape measurement is an very important topic covering

nearly all areas in science and industry including product inspection, 3-D model-

ing for stereo movie/TV, security surveillance, medical imaging, human-computer-

interfacing (HCI), and so forth. With this broad array of applications, numerous

methods of 3-D shape measurement have been developed as has been summarized by

Curless and Seitz [30] who made the taxonomy on 3-D shape acquisition techniques

shown in Figure 1.1.

The first of Curless and Seitz’s classifications is between contact and non-contact

techniques where, although contact approaches have advantages in directly measuring

rigid targets, they suffer from the distortion of soft objects such as a human finger and

are invasive. Within the array of non-contact methods, transmissive approaches need

the help of special and expensive hardware. By means of a non-optical signal source

such as a microwave or sonar transmitter, those methods are suitable for measuring

large scale scenes remotely. Within the array of non-contact optical methods, passive

algorithms (with the exception of stereo vision) employ only one information source,

which is not reasonable in determinant mathematics, so currently they are only in the

stage of research. Stereo-vision solves the theoretical issue of not having enough views

in order to reconstruct 3-D non-ambiguously but, as a passive approach, ambiguities

still arise depending on the scene. Of the non-contact optical active techniques,

triangulation-based methods are an easily understandable technology.
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Figure 1.1: A taxonomy of 3-D shape acquisition.
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Figure 1.2: Schematic diagram of structured light illumination.

1.1 Structured light illumination

According to the Curless and Seitz taxonomy, structured light illumination (SLI) [31,

32, 33, 34] falls within this category of non-contact, reflective, optical, active, and

triangulation-based. SLI is well-known for its simple implementation, low cost, high

speed and high accuracy [35,36,37,38,39,40], and has been studied for decades [41,42].

For example, the cover from the Dec. 1954 issue of LIFE magazine, as illustrated in

Fig. 1.3, shows SLI was being used to measure the size and shape of a pilot’s head

for the purpose of making custom fitting helmets. Figure 1.4 shows a 2-D image

of a gravestone and Fig. 1.5 shows the 3-D reconstruction of that gravestone. Dr.

Hassebrook, the leader of that research project, said “It should be noted that our team

thought that the date was 1818 until we performed the scan. The thin front line of

the four along with the angle of the primary groove differentiate the ‘4’ from the ‘1’

” (http://www.engr.uky.edu/˜ lgh/soft /softscannerdesigns RemoteScanner.htm).

In practice, the simplest SLI system is composed of one camera, one projector, and

a processing unit (computer). Controlled by the computer, a series of well-designed
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Figure 1.3: The cover of LIFE magazine published in 1954 showing an application of
SLI.

patterns are projected onto a target object while the camera captures the correspond-

ing images, which contain information of the projected patterns, that are sent back

to the computer. The computer then performs some kind of decoding algorithm to

extract coordinate information from the scanned object connecting camera and pro-

jector coordinates such that the 3-D shape of the object can be measured by the

triangulation. Figure 1.2 shows the triangulation relationship among the camera, the

projector and the scanned object.

With regards to accuracy, the most important issue is how to design the projected

patterns, i.e., how to design coding strategy and its corresponding decoding algorithm.

The coding and decoding algorithms will decide the final quality of reconstructed 3-D

data of the scanned object. As so far, there is no perfect pattern scheme satisfying
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Figure 1.4: 2-D picture of a gravestone (from http://www.engr.uky.edu/˜ lgh/soft/
softscannerdesigns RemoteScanner.htm).

all situations, and so many SLI pattern strategies have been proposed in the past

and are still being studied today. Numerous classifications have been proposed for

the many pattern coding strategies according to the features of the patterns [35].

Typically, the projected patterns are a set of well-designed 2-D images, while there

also exist two forms of patterns, i.e., dot pattern and line pattern, which are often

employed when the light source is a laser [43,44].

Figure 1.5: 3-D reconstruction of a gravestone (from
http://www.engr.uky.edu/˜ lgh/soft /softscannerdesigns RemoteScanner.htm).
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Figure 1.6: PMP system diagram.

If a digital light processing (DLP) or digital mircomirror device (DMD) projector

is involved as light source, 2-D image pattern strategies are always preferred for fast

scanning. Salvi et al. reviewed these pattern schemes in 2004 [35]. Although many

novel schemes have been designed since 2004, typically any 2-D pattern strategy

must fall into one of two kinds of classifications of 2-D pattern schemes, i.e., one-

shot and multi-shot schemes. One-shot patterns are robust to motion but suffer from

inaccuracy and high-cost computation [32]. Multi-shot pattern strategies, on the

other hand, are good at scanning a static objects and achieve very high accuracy.

Of the many SLI multi-shot pattern schemes, phase measuring profilometry (PMP)

is famous for its robust and depth accuracy [45, 46, 47, 48]. Figure 1.6 shows a basic

process of PMP scanning. In practice, either vertical or horizontal sinusoid patterns

are projected onto a target object so that the vertical or horizontal correspondence

information, between the camera and the projector, can be directly derived from the
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Figure 1.7: Projected PMP patterns with N = 4, f = 1, Ap = 127.5 and Bp = 127.5
(top), and the corresponding captured patterned images (bottom).

computed phase data. The PMP patterns are described as:

Ipn(xp, yp) = Ap(xp, yp) +Bp(xp, yp) cos
(

2πfyp − 2πn

N

)
, (1.1)

where (xp, yp) is the coordinates of a pixel in the projector, Ipn is the intensity of that

pixel, Ap and Bp are some constants, f is the frequency of the sine wave, n represents

the phase-shift index, and N is the total number of phase shift. Figure 1.7 (top)

shows a group of sine wave patterns with N = 4, f = 1, Ap = 127.5 and Bp = 127.5

for 8-bits color depth projector are projected.

For reconstruction, a camera captures each image where the sine wave pattern is

distorted by the scanned surface topology, resulting in the patterned images expressed

as:

Icn(xc, yc) = Ac(xc, yc) +Bc(xc, yc) cos
[
φ(xc, yc)− 2πn

N

]
, (1.2)

where (xc, yc) is the coordinates of a pixel in the camera while Icn(xc, yc) is the inten-

sity of that pixel. Figure 1.7 (bottom) shows a group of captured patterned images

corresponding to the patterns in Fig. 1.7 (top). To simplify the notation, the coor-
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Figure 1.8: Visualization of Ac.

dinates index both in the camera and projector will be removed from our equation

henceforth.

The term Ac is the averaged pixel intensity across the pattern set, which can be

derived according to:

Ac =
1

N

∑N−1

n=0
Icn (1.3)

such that the image Ac is equal to an intensity or texture photograph of the scene

and a visualization of Ac is shown in Fig. 1.8. Correspondingly, the term Bc is the

intensity modulation of a given pixel and is derived from Icn as:

Bc =
(
S2
N + C2

N

)0.5
, (1.4)

where

SN =
2

N

N−1∑
n=0

[
Icn sin

(
2πn

N

)]
(1.5)

and

CN =
2

N

N−1∑
n=0

[
Icn cos

(
2πn

N

)]
. (1.6)

The term Bc can be thought of as the amplitude of the sinusoid reflecting off of a

point on the target surface.
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Figure 1.9: Visualizations of Bc (left) and binarized Bc using intensity of 5 as a
threshold (right).

If Icn is constant or less affected by the projected sinusoid patterns, Bc will be

close to zero. Thus Bc is employed as a shadow noise detector/filter [49] such that the

shadow-noised regions, with small Bc values, are discarded from further processing.

Figure 1.7 (bottom) shows, an example scene with a background that includes a

fluorescent ceiling light, which over saturates the cameras pixel and, thereby, erases

any signal from the SLI projector. In Fig. 1.8, Ac looks like a standard video frame

absent any indication of the projected pattern sequence Ipn. In contrast, Bc, shown

in Fig. 1.9 (left), looks very similar to Ac except that it only shows texture in those

areas of the scene that significantly reflect the projected sequence Ipn. Given the

significance of Bc as an indicator of the projected signal strength, the binarized

image in Fig. 1.9 (right) shows only those pixels greater in magnitude to a user

defined threshold. It is these pixels that will ultimately be used to reconstruct our

3-D surface with ignored pixels being considered too noisy as to relay an reliable

depth information.

Of the reliable pixels with sufficiently large Bc, φ represents the phase value of
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Figure 1.10: Visualizations of the phase with shadow noise (left) and the phase
without shadow noise (right).

Figure 1.11: 3-D Reconstruction of the toy object: (left) front view and (right) side
view.

the captured sinusoid pattern derived as:

φ = arctan
(
SN
CN

)
. (1.7)

In Fig. 1.10 (right), we show the resulting phase image corresponding to the scene

from sine wave patterns. For reference, Fig. 1.10 (left) also shows the phase values

for all pixels, including those considered unreliable according to Bc.

Having derived the phase image φ, we likewise have derived a unique correspon-

dence value yp for every camera pixel (xc, yc) through the linear equation

φ = 2πfyp. (1.8)
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The 3-D world coordinates of the scanned object can, therefore, be derived through

triangulation with the projector [9] where, under the assumption that the camera

and projector are accurately modeled using the pinhole lens model such that their

perspective matrices, M c and Mp, are calibrated [50,51] and given by:

M c =

 mc
11 m

c
12 m

c
13 m

c
14

mc
21 m

c
22 m

c
23 m

c
24

mc
31 m

c
32 m

c
33 m

c
34

 (1.9)

and

Mp =

 mp
11 m

p
12 m

p
13 m

p
14

mp
21 m

p
22 m

p
23 m

p
24

mp
31 m

p
32 m

p
33 m

p
34

 . (1.10)

The map from 3-D world coordinates Xw, Y w, and Zw to 2-D camera coordinates xc

and yc are [50]

xc =
mc

11X
w +mc

12Y
w +mc

13Z
w +mc

14

mc
31X

w +mc
32Y

w +mc
33Z

w +mc
34

(1.11)

and

yc =
mc

21X
w +mc

22Y
w +mc

23Z
w +mc

24

mc
31X

w +mc
32Y

w +mc
33Z

w +mc
34

. (1.12)

In the same way, the map from 3-D world coordinates Xw, Y w, and Zw to 2-D

projector coordinates xp and yp are

xp =
mp

11X
w +mp

12Y
w +mp

13Z
w +mp

14

mp
31X

w +mp
32Y

w +mp
33Z

w +mp
34

(1.13)

and

yp =
mp

21X
w +mp

22Y
w +mp

23Z
w +mp

24

mp
31X

w +mp
32Y

w +mp
33Z

w +mp
34

. (1.14)

There are four equations, i.e., Eqs. 1.11, 1.12, 1.13, and 1.14, relating to the 3-D

coordinates, so three of the four equations are enough to solve Xw, Y w, and Zw. In
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this study, we choose Eqs. 1.11, 1.12, and 1.14, and the 3-D world coordinates Xw,

Y w, and Zw are derived as Xw

Y w

Zw

 =

 mc
11 −mc

31x
c, mc

12 −mc
32x

c, mc
13 −mc

33x
c

mc
21 −mc

31y
c, mc

22 −mc
32y

c, mc
23 −mc

33y
c

mp
21 −m

p
31y

p, mp
22 −m

p
32y

p, mp
23 −m

p
33y

p


−1 mc

14 −mc
34x

c

mc
24 −mc

34y
c

mp
24 −m

p
34y

p

 .
(1.15)

Figure 1.11 shows the 3-D reconstruction of the toy object with front view (left)

and side view (right). It is this matrix inversion as well as the actangent compu-

tation in Eq. (1.7) that will prove to be the bottleneck preventing real-time surface

reconstruction, as will be discussed later.

Single Pattern SLI

As an active range-sensing method, SLI is computationally simple and achieves high

precision [9], but it does so requiring a time-consuming scan procedure involving a

series of time-multiplexed patterns. To achieve real-time operation, researchers have

relied on one-shot methods while others have proposed employing a high-speed camera

and projector pair. As stated previously, one-shot SLI techniques are attractive for

their insensitiveness to object motion [32]. There are many one-shot SLI pattern

schemes and they are classified into several categories illustrated in Fig. 1.12. Pagès

et al. also made an overview on one-shot pattern strategy in [52] in 2005.

Typically, the SLI patterns are pre-designed and fixed during the scanning pe-

riod, but in order to achieve real time, Konickx et al. [1] proposed a dynamic single-

pattern strategy designed to be “self-adaptive” with the varying of the scenes or

circumstances. Their basic pattern is illustrated in Figure 1.13 where a weighted
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combination of different coding cues was employed to solve the correspondence is-

sue robustly according to pattern color, geometry, and tracking. For the pipeline

of “project structured light”, “video capture”, “segmentation and pattern identifi-

cation”, and “integrate and visualize”, the averaged frame rate was 14.5 frame per

second (fps) over 10,000 points/frame using a single desktop computer equipped with

a Pentium 4 CPU at 2.26 GHz.

Within the array of static one-shot SLI coding strategies, frequency multiplex-

ing methods have gained particular attention because they combine multiple time-

multiplexed and phase-shifted gray-scale patterns into a single pattern by applying

traditional modulating techniques with the captured patterned image demodulated to
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Frequency
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De Bruijin Sequences
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Figure 1.12: A taxonomy on one-shot SLI pattern scheme.
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Figure 1.13: Adaptive one-shot SLI pattern scheme presented by Koninckx et al. [1]:
(left) few coding lines with lower coding density, and (right) more coding lines with
higher coding density.

Figure 1.14: Frequency multiplexing one-shot SLI pattern scheme: FTP presented
by Takeda et al. (left) and CP presented by Guan et al. (right)

produce several regular multi-shot SLI patterned images. The most famous of these

is called Fourier transform profilometry (FTP) [53, 17, 54, 55] presented by Takeda

et al. in 1983 and shown in Fig. 1.14 (left). Guan et al. proposed another fre-

quency multiplexing pattern named composite pattern (CP) [32,56,42] in 2003 which

is shown in Fig. 1.14 (right). Yue et al. [57] proposed a one-shot scheme based on both

FTP and CP as illustrated in Fig. 1.15. Frequency multiplexing methods, like these,

can achieve a high-quality 3-D reconstruction in theory or simulation. However, in
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practice, suffering from band width or color depth of both the projector and camera

and the issue of quantization, it is difficult for frequency multiplexing methods to

perform as good as simulation. Another problem for frequency multiplexing methods

is that the computational cost is very high during the procedure of demodulation, so

typically this methods can only capture patterned images in real time and perform

post-processing to generate phase maps and reconstruct 3-D point clouds.

Another category of one-shot pattern multiplexing takes advantage of available

color channels, i.e., red, green, and blue, of a color projector (or light source) and

a color camera [58, 59, 60, 61, 62]. Once a patterned color image is captured, three

gray-scale images can be extracted from the RGB channels of the color image, and

then some kind of three-step phase-shift decoding algorithm can be performed to

generate phase data. This technique sounds better than frequency multiplexing but,

in practice, is easily affected by the surface color of scanned object [5], which affects

the color channels in non-uniform ways. Figure 1.16 shows the pattern schemes

Figure 1.15: Frequency multiplexing one-shot SLI pattern scheme presented by Yue
et al.
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Figure 1.16: Color channels multiplexing one-shot SLI pattern scheme: presented by
Wust et al. (left) and Huang et al. (right); projected 2-D color pattern (top) and the
cross-section of RGB channels (bottom).

presented by Wust et al. [58] and Huang et al. [60] respectively. The difference

between Wust and Huang is that the phase shift is π/2 in Wust’s scheme and 2π/3 in

Huang’s scheme. Figure 1.17 and 1.18 show the color multiplexing scheme of Mandava

Figure 1.17: Color channels multiplexing one-shot SLI pattern scheme presented by
Mandava et al.
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Figure 1.18: RGB schematic diagram of the scheme presented by Mandava et al. (top-
left) red channel, (top-middle) green Channel, (top-right) blue channel, (bottom-left)
cross-section of red channel, (bottom-middle) cross-section of green channel, (bottom-
right) cross-section of blue channel,

et al. [62]. In an effort to reduce the effects of surface color, Su [63] combined color

channel multiplexing with FTP, but the bottleneck issue remained unsolved with

regards to phase generation and 3-D reconstruction in real time.

Direct coding one-shot pattern strategies are based on the varying intensity of the

scanned object under a projected pattern. Obviously this kind of strategy suffers from

the textured surface of the object. For instance, Chen et al. proposed a sawtooth

Figure 1.19: Sawtooth one-shot SLI pattern presented by Chen et al..
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one-frame pattern [64] shown in Fig. 1.19. The phase was extracted through a linear

translation and the scanned object was required with uniform texture.

When a one-shot SLI pattern strategy is based on spatial neighborhood coding,

pre-defined codewords can identify a particular point of the pattern by extracting

the neighborhood points around it [35]. Such neighborhood coding patterns, typi-

cally, can be classified into three types: non-formal codification [65, 66, 2], De Bruijn

Sequences [67, 3, 52], and M-arrays [68, 69, 4]. According to Salvi et al., non-formal

codification means researchers generate the neighborhoods information intuitively

without involving any mathematical coding theory; De Bruijn sequences indicate the

neighborhoods are generated by means of pseudorandom sequences whose sort can

be derived through searching Eulerian circuits or Hamiltonian circuits over different

kinds of De Bruijn graphs [70]; and M-arrays extends the pseudorandom theory from

1-D to 2-D by folding a pseudorandom sequence. Figure 1.20 (left) shows the non-

formal one-shot SLI scheme presented by Chen et al. [2]. Figure 1.20 (right) shows the

De Bruijn sequences one-shot SLI scheme presented by Zhang et al. [3]. Figure 1.21

shows the M-array one-shot SLI scheme presented by Albitar et al. [4].

Fast Multi-Pattern SLI

Although one-shot SLI pattern strategies can solve the problem of motion, they

achieve poor resolution compared to multi-shot SLI methods [35] and suffer from

higher computational cost [32]. For this reason, various authors have attempted to

achieve the same high resolution typically associated with SLI where resilience to mo-

tion is achieved by driving the camera/projector pair at such high frame rates as to

18



Figure 1.20: Non-formal one-shot SLI pattern presented by Chen et al. [2] (left) and
De Bruijn Sequences one-shot SLI pattern presented by Zhang et al. [3] (right).

Figure 1.21: M-array one-shot SLI pattern presented by Albitar et al. [4].

minimize object motion. A study of particular importance has been led by Zhang and

Huang et al. [5,6] where Zhang et al. employed a novel, fast, three-step, phase-shifting

algorithm for phase generation instead of the traditional time-consuming arctangent

function [71].

For 3-D reconstruction of point clouds, a phase-to-height conversion algorithm was

involved by assuming that surface height was proportional to the difference between

the phase maps of the object and a reference plane [72]. Figure 1.22 shows the real-

time 3-D measurement system developed by Zhang et al. [5] in 2006. The resolution
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of the camera used in their real-time system was 532 × 500. Processing data with

a Pentium 4, 2.8-GHz CPU workstation, the speed of data acquisition was 120 fps;

the speed of phase generation was 163.93 fps, which was 3.4 times faster than the

traditional arctangent function; and the speed of 3-D reconstruction was 80 fps.

In [6], Zhang et al. modified the three-step phase-shifting algorithm, which is

called two plus one (2+1) and was originally proposed by Wizinowich et al. [73],

to attempt to further reduce the effects of motion. Figure 1.23 shows the real-time

3-D measurement system developed by Zhang et al. [6] in 2007. The resolution of

the camera used in that system was 640 × 480 with a frame rate of 180 fps. They

claimed that the speed of phase generation was 2 times faster than the arctangent

function, however, they could not reconstruct 3-D point clouds in real time because

the absolute 3-D coordinates [9,51] were involved instead of the phase-to-height rep-

resentation. And finally, they had to record the patterned images on hard disk and

then post-process the recorded data. The trouble for Zhang et al. on the absolute

3-D coordinates was that they employed a matrix inverse operation to compute 3-D

coordinates, and even with the assistance of GPU [74], the frame rate of 3-D recon-

struction was only sped up from 6 fps to 25.56 fps, which was still very slow compared

with the speed of data acquisition.

1.2 Pattern Robustness

With regards to reconstruction quality, fast SLI schemes which attempt to minimize

the number of component SLI patterns, in order to minimize the affects of motion,

do so at the cost of becoming increasingly sensitive to sensor noise and pattern dis-
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Figure 1.22: A real-time 3-D measurement system developed by Zhang et al. [5] in
2006.

Figure 1.23: A real-time 3-D measurement system developed by Zhang et al. [6] in
2007.
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tortion. We group any undesired, uncertain, and/or additive signal appearing in the

captured images into sensor noise, which is typically from thermal (Gaussian) and

shot (Poissonian) noise. Both of which are unavoidable in electrical circuits [75].

Distortion is typically constituted as Gamma distortion caused by the non-linear re-

sponse of the optical device, and it is a kind of certain and systematic error that can

be compensated for in the pattern demodulation.

Additive Noise

Looking specifically at the problem of sensor noise, many studies have been performed

on understanding and/or reducing its effects on the resulting phase reconstruction [9,

7,76,77,78]. Surrel investigated the additive noise effect in digital phase detection [79]

where characteristic polynomials [80] were employed to help defining a loss factor. The

loss factor described how the global Signal-to-Noise-Ratio (SNR) would influence

phase quality in a given phase-shifting based algorithm. After analyzed nineteen

phase-shift algorithms with the proposed loss factor, Surrel found that the variance of

the phase error depended mainly on the global SNR and some algorithms introduced

a modulation, whose amplitude depended on a single parameter, of the variance at

twice the signal frequency.

Rathjen studied statistical properties of phase-shift algorithms for the case of

additive Gaussian intensity noise [7]. Based on a vector representation and a bivariate

Gaussian distribution, the investigation of the random phase error was extended to a

more general description. With the new description, which was not restricted to large

SNR ratios, of phase error, new statistical properties, as well as the corresponding
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Figure 1.24: Vector representation of the phase error proposed by Rathjen [7]. The
abscissa is the denominator part and the ordinate is the numerator part of the phase-
shift algorithm respectively.

Figure 1.25: PDF of the phase error, proposed by Rathjen [7], for several values of
SNR: uncorrelated case (left) and correlated case (right).

probability density functions (PDF) of phase error, could be derived according to

different cases such as correlated or uncorrelated noise terms. Figure 1.24 shows

the vector representation of the phase error, and the abscissa is the denominator

part and the ordinate is the numerator part of the phase-shift algorithm respectively.

Figure 1.25 shows the PDF of the phase error for several values of SNR: uncorrelated

case (left) and correlated case (right).
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If we model the noise in PMP scanning as additive and Gaussian, the absolute

errors of phase and modulation are found they can be described by the PDFs used in

magnetic resonance imaging (MRI). Gudbjartsson and Patz built such error models

for phase and modulation distribution in MRI [8], as shown in Fig. 1.26 (left) and

(right) respectively.

Li et al. proposed an additive white-noise model for PMP and they then applied

the model to optimize a two-frequency PMP algorithm [9]. In Li et al.’s work, the

variance of phase error was described as

σ2
φ =

2σ2

NB2
, (1.16)

where σ2
φ is the variance of phase error, σ2 is the variance of the additive noise, N is the

number of PMP patterns, and B is the fringe modulation. So Eq. (1.16) indicates the

variance of phase error, σ2
φ, will be decreased if the number of patterns, N , and/or the

fringe modulation, B, are/is increased. Figure 1.27 shows The variance of phase error

Figure 1.26: The phase error distribution (left) and modulation error distribution
(right) in MRI proposed by Gudbjartsson and Patz [8].
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Figure 1.27: The variance of phase error versus the number of patterns (left) and the
fringe modulation (right) proposed by Li et al. [9].

versus the number of patterns (left) and the fringe modulation (right) respectively. If

high-frequency PMP patterns were involved, phase unwrapping needed to be taken.

Once phase unwrapping was performed successfully, the variance of phase error would

be reduced furthermore.

According to Li et al.’s noise model, typically there are three factors suppressing

noise in scanning. The first factor is the number of patterns where more patterns

lead to reduced noise. But for a real-time system, more patterns also means more

processing. The second factor is the Signal-to-Noise-Ratio (SNR) between the light

strength of the projected patterns versus the variance of sensor noise, where higher

SNRs leads to lesser noise in the 3-D reconstructions. But for a fixed system, the

projected signal strength is limited by the light source of the projector while sensor

noise is inherent to the selected camera. The last factor is the frequency of projected

pattern with higher pattern frequency leading to reduced noise in the 3-D reconstruc-

tion, but it also introduces ambiguities in the reconstruction process that needs to be

dealt with by means of phase unwrapping [81].
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Figure 1.28: Visualizations of wrapped phase (top-left) and unwrapped phase (top-
right) of a foam board, and curve plots of the cross-section of the wrapped phase
image (bottom-left) and the unwrapped phase image (bottom-right).

Phase unwrapping is widely used in most interferometry-based methods [82],

such as interferometric synthetic aperture radar and sonar (InSAR/InSAS) [83, 84],

MRI [85], and optical interferometry [86]. As described by Surrel [16], phase un-

wrapping means the 2π-jumps present in the data obtained after the phase detection

process should be removed and the adequate multiple of 2π where necessary should

be added. The mathematical description of phase unwrapping is [87]

φ = ψ + 2kπ, (1.17)

where φ is the unwrapped phase, ψ is the wrapped phase, and k is an integer counting

the number of 2π multiples. Figure 1.28 shows visualizations of wrapped phase (top-

left) and unwrapped phase (top-right) of a foam board, and curve plots of the cross-
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Figure 1.29: Taxonomy of phase unwrapping.

section of the wrapped phase image (bottom-left) and the unwrapped phase image

(bottom-right).

For unwrapping phase, typically there are two principal strategies [88]: spa-

tial [89,90,91,92] and temporal [9,93,94]. In spatial approaches, only a single wrapped

phase map is employed and the unwrapped phase of a subject pixel is derived ac-

cording to the phase values within a local neighborhood about the pixel. These

methods have a tendency to fail in regions surrounding discontinuities in depth (step

edges) [88]. Temporal methods use the intermediate phase values typically generated

by projecting several additional unit-frequency patterns and, therefore, are not effi-

cient for real-time operation. Based on the previous works of Judge and Bryanston-
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Figure 1.30: Schematic illustration of the phase fringe counting for spatial phase
unwrapping proposed by Nakadate [10].

Cross [81], Surrel [16], and Bioucas-Dias and Valadao [87], a taxonomy of phase

unwrapping is shown in Fig. 1.29.

A very simple idea for spatial phase unwrapping is phase fringe counting/scanning [81,

10]. First, the noise in phase data should be filtered; second, edge detecting is em-

ployed to find the phase jump; the number of multiples for unwrapping is obtained

by counting the jumps along a scanning line; and finally the number of multiples will

be applied to each point to unwrapped the wrapped phase into an absolute phase.

Figure 1.30 shows this idea proposed by Nakadate and Saito. This method strongly

relies on the quality of phase fringe edges and a good starting point.

Ghiglia et al. proposed a simple and mathematical cellular-automata method [11]

to unwrap consistent phase data in one-, two- and n-dimensions. Noise-induced in-

consistent phase data are taken care automatically through the automaton logic pre-

venting the propagation of phase discontinuities. Aliasing-induced or natural phase
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Figure 1.31: Graphical representation, checking for all 2 × 2 sample path inconsis-
tencies, of the spatial phase unwrapping method proposed by Ghiglia el al. [11].

dislocations can be dealt with by region partitioning with a priori knowledge or by

any partitioning which prevents phase unwrapping across inconsistent boundaries.

So the cellular-automata method is naturally parallel and is independent to path.

Figure 1.31 shows the graphical representation, checking for all 2 × 2 sample path

inconsistencies, of the cellular-automata method proposed by Ghiglia el al.

Figure 1.32: Graphical representation of the spatial phase unwrapping method pro-
posed by Huntley [12]: basic requirement (left) and a cut example (right).
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Figure 1.33: Work flow of the flood fill algorithm proposed by Bone.

Huntley proposed a noise-immune cut method for spatial phase unwrapping [12].

The goal of his algorithm is solving consistent phase maps with noise spikes. Huntley’s

algorithm requires that, given the phase at point (m0, n0) in Fig. 1.32 (left), there

is a unique definition of the phase at any other pixel (m1, n1) in Fig. 1.32 (right),

which is independent of the path for unwrapping, in the image. By placing cuts in

the phase image, that requirement can be achieved. The cuts act as barriers to phase

unwrapping. In the implement of the algorithm, two flag arrays, H(m,n) and V (m,n)

are involved with initial value of zero. Once the process is done, the cuts information

will be stored in the two arrays. A cut example is shown in Fig. 1.32 (right).

Bone proposed a flood fill algorithm for spatial phase unwrapping [95]. In that
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Figure 1.34: An example of circular field segmented into regions for the algorithm
proposed by Gierloff.

algorithm, local phase information is employed to mask out the parts of the pixel

which cause an inconsistent unwrapping. The flood fill algorithm is easy to implement

and works fast and efficient. For the discontinuities and noise in the phase, the

algorithm also is tolerant well. Figure 1.33 shows the work flow of the flood fill

algorithm. If the regions needing to be unwrapped contain non-integer fringe shift

across the discontinuity or the spatial frequencies either side of the discontinuity are

significantly different, the algorithm will not be immune.

Differing from the previous spatial phase unwrapping algorithms, Gierloff pro-

posed a regions based algorithm [96]. By dividing the fringe field into inconsistent

regions, as shown in Fig. 1.34, the algorithm builds the relationship among those

regions each other. For large scale discontinuities, the algorithm works well. Regions

are segmented by checking whether pixels are in a tolerance of adjacent pixels al-

ready included. If all pixels have been processed, the regions’ edges will be compared
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Figure 1.35: Labeled with weight, a minimum spanning tree of a planar graph (from
http://en.wikipedia.org/wiki/Minimum spanning tree)

in order to find whether there exists a discontinuity between them. Once all edges

between adjacent regions have been tested, the points of edge will be compared in

order to see whether a phase shift is needed. The shortcomings of this method are:

first, it can not guarantee path independence; second, it flaws the weighting criterion

for connecting regions together; and finally, as stated by Gierloff, it did not perform

perfectly.

Based on minimizing phase changes between pixels with minimum spanning tree

(MST), as shown in Fig. 1.35, Judge et al. proposed an algorithm which was claimed

to be tolerant of noise [97]. A MST is a minimal weighted subgraph connecting all

the vertices in a graph. There are two levels for phase unwrapping with MST: the low

level covers all the procedures which are required to perform phase unwrapping pixel

to pixel; and high level assembles each unwrapped phase component into an entire

phase field solution by means of some weighting strategies. The issue of discontinuities

is still a significant challenge for this kind of algorithm.
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Figure 1.36: Minimization of L0 (left) and L1 algorithms proposed by Chen and
Zebker [13].

Minimum norm approaches attempt to solve phase unwrapping by minimizing the

Lp norm of the difference between the wrapped phase differences and the absolute

phase differences. The value of p can be 0, 1, 2, and in the range of (0, 1) [87].

L2 norm is equivalent to a least squares method (LSM) [98, 99]. The drawback of

L2 norm-based methods is a tendency to smoothing discontinuities. Flynn solved

that problem with an L1 norm algorithm [100]. L0 norm is desirable in practice, but

minimizing it will lead to an NP-hard problem. An approximate solution for L0 norm

has been proposed by Chen and Zebker [13, 101]. If p ∈ (0, 1), highly complicated

algorithms should be employed to solve the minimization of Lp norm [101].

Taking advantage of the knowledge of the frequency band limits of a wrapped
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Figure 1.37: Bayesian algorithms proposed by Leitao and Figueiredo [14].

phase map, Green and Walker presented their spatial phase unwrapping algorithm

which was helpful to large scale phase discontinuities [102]. If a phase function is

wrapped, there is a modulo 2π or 2π-jump. When a frequency-band-limited phase

function is wrapped, the spectrum of the resulting function can be extended be-

yond the bandlimits. With rewriting the bandlimited phase function and taking

Fourier Transform as well as other corresponding operations, phase unwrapping can

be achieved and is noise-immune. Bayesian methods are another a priori knowledge

based phase unwrapping. Bayesian approach depends on a model of data-observation

mechanism of the phase. Leitao and Figueiredo employed a nonlinear filter to opti-

mize phase unwrapping [14]. Dias and Leitao proposed another InSAR observation

model by involving the image phase, the backscattering coefficient image and corre-

lation factor image [103].
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Figure 1.38: Parametric algorithms proposed by Friedlander and Francos [15].

Friedlander and Francos proposed a parametric algorithm for spatial phase un-

wrapping by constraining the unwrapped phase to a parametric suface [15]. In prac-

tice, a complete surface can not be modeled accurately with only one polynomial. To

solve such problem, the algorithm employs low-order polynomial surface and segments

phase image with different parametric models.

Contrast to spatial approaches, the advantages of temporal phase unwrapping

methods are [104]: first, the principle and implement is easy and simple; second,

phase errors are bounded within the high-noise regions and will not propagate to

other regions; and finally, discontinuities will not be an considerable issue anymore.

Some commercial SLI scanners employ gray code to achieve phase unwrapping

robustly [16]. In this method, the wrapped phase fringe order will be determined by

a serial gray code patterns. The total number of the gray code patterns is

Ngray = floor[log2 F ] + 1, (1.18)

where F is the number of fringes in the phase map, and floor is the function to
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Figure 1.39: Gray code temporal phase unwrapping algorithms proposed by Sur-
rel [16].

extract the integer part of a number. Figure 1.39 shows the procedure of gray code

based temporal phase unwrapping.

In multi-step temporal methods, typically high-frequency patterns differ low- or

unit-frequency patterns only from frequency [104, 9, 50]. The phase obtains from

low- or unit-frequency patterns is noised and acts as a reference information for

unwrapping the wrapped high-quality phase. The procedure of this kind of method

is shown in Fig. 1.40. The example of phase unwrapping in Fig. 1.28 was also based

multi-step approach.

Either gray code or multi-step temporal phase unwrapping algorithms need some

additional patterns to generate one or more intermediate phase helping phase unwrap-

ping, so in some situations such as real-time scanning requirement, those temporal

methods are not efficient. Many researchers attempted to solve that problem by

multiplexing.

Takeda [17] proposed a frequency-multiplex Fourier-transform profilometry (FMFTP)
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Figure 1.40: Multi-step temporal phase unwrapping [16].

which, based on the FTP method [53], modulated several different-frequency patterns

into to single pattern. After camera captured a patterned image, demodulation was

taken by spatial Fourier Transform method. Then several patterned images could

be extracted and dealt with multi-step method to achieve phase unwrapping. Fig-

ure 1.41 shows the multiplexed spectra in the spatial frequency domain of the FMFTP

algorithm.
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Figure 1.41: Multiplexed spectra in the spatial frequency domain of the algorithm
proposed by Takeda et al. [17].

Li et al. [105] proposed a two-frequency pattern strategy which integrates both

high-frequency and unit-frequency into one pattern, but 2N (N ≥ 3) patterns were

needed and the high frequency must be equal to N . Two equations are needed to

Figure 1.42: Composite multi-frequency sinusoidal fringe pattern proposed by Kim
et al. [18].
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Figure 1.43: Ideal and distorted (γ = 2.2) sine wave (left), and the magnitude of the
distorted sine wave in the frequency domain (right).

describe the two groups of coding strategy. Separately, Kim et al. [18] proposed

a composite multi-frequency sinusoidal fringe algorithm without phase unwrapping

but did so requiring 4N (N ≥ 2) patterns. Figure 1.42 shows Kim et al.’s pattern

strategy.

Gamma Distortion

While the effects of gamma distortion diminish with an increasing number of employed

phase-shifted patterns, gamma distortion may be unavoidable in real time systems

where the number of projected patterns is limited by the presence of target motion.

Gamma distortion [106,107,108] makes ideal sinusoidal waveforms non-sinusoidal, as

illustrated in Fig. 1.43 (left), such that the resulting distortion is phase dependent.

Figure 1.43 (right) shows the magnitude of the distorted sine wave in the frequency

domain where the highest pulse is the direct component (DC) while the second highest

pulse is the first-order harmonic, which is the phase component used in PMP.

Under ideal conditions, the DC and first-order harmonic are the only non-zero
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Figure 1.44: The visualization of magnitude of harmonics: (left) first order, (middle)
second order, and (right) third order.

Figure 1.45: The visualization of phase of harmonics: (left) first order, (middle)
second order, and (right) third order.

components, but if there exists gamma distortion, higher-order harmonics will appear.

In Fig. 1.43 (right), there are higher order harmonics including a fourth and fifth

components, that although not visible in the figure, are significant. Employing a

sufficiently large number of component patterns, one can disperse this error over the

many patterns such that its effects are minimized, but where only a few patterns

are employed, the effects of gamma distortion can be significant. Scanning of a white

foam board with three PMP unit-frequency patterns, Fig. 1.44 shows the visualization

of magnitude of harmonics of 1st, 2nd and 3rd order respectively and Fig. 1.45 shows

the visualization of phase of harmonics of 1st, 2nd and 3rd order respectively.
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Figure 1.46: pre-compensating non-linearity proposed by Huang et al. [19].

In order to address the effects of gamma on PMP, Huang et al. [19] corrected

for gamma distortion by applying tone correction to the SLI patterns before being

projected, and the pre-compensation of non-linearity proposed by Huang et al. is

shown in Fig. 1.46. But by doing so, as Zhang and Yau pointed out [26], the residual

error was still non-negligible. Alternatively, Su et al. [48] defocused their projector to

act as a low-pass filter to process square waveforms using the PMP algorithm. Baker

et al. [20] followed this technique to deal directly with gamma distortion by defocusing

his projector too. Both of these authors expressed the harmonic components by means

of an infinite Fourier Series, and filtered out the high order harmonic waveforms

directly using the defocus feature without additional computation for correction or

compensation, but the improvement was at the cost of diminishing Signal-to-Noise

Ratio (SNR) and, for three-step PMP with γ = 3, the improvement was only 2×.

The experiments results of Baker et al.’s method is shown in Fig. 1.47.

Alternatively, Hibino et al. [109] eliminated the effects of harmonic components of
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Figure 1.47: Eliminating gamma effects by defocusing projector proposed by Baker
et al. [20].

Figure 1.48: Eliminating gamma effects proposed by Huang et al. [21].
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Figure 1.49: Eliminating gamma effects proposed by Hu et al. [22].

the signal and a constant phase-shift error at a cost of requiring at least 5 projected

patterns. Similarly, Huang et al. [21] employed six patterns, called double three-

step phase-shifting, to obtain two distorted phases with contrary distortion direction

and averaged them to cancel the distortion. An experimental result of Huang et

al. is shown in Fig. 1.48. Hu et al. [22] applied lowpass filtering to remove high-

order harmonics in simulation but provided no experimental results, and a simulation

result is shown in Fig. 1.49. Hu et al. [23] also developed a gradient-based shift

estimation (GSE) method for gamma that included the second harmonic effect, and

an experimental result is shown in Fig. 1.50. Surrel [110] expressed harmonics in

polynomial form but needed at least 6 patterns to eliminate the effects of higher-order

harmonics. Baker et al. [24] took advantage of the generalization and interpolation

of neural network to achieve an improvement of 80% indicated by their simulation,

and an experimental result is shown in Fig. 1.51.

Zhang and Huang [25] proposed a LUT-based approach to compensate the phase

error directly without employing any mathematical gamma model, and an experi-
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Figure 1.50: Eliminating gamma effects proposed by Hu et al. [23].

mental result is shown in Fig. 1.52. While this method is greatly suitable for non-

analytical situations, Zhang employed the concept of gamma, which is an analytical

issue. The method of gamma calibration in that paper was traditional and unstable

because only the gamma at the center of the projected image was computed. The

accuracy of phase compensation depended on the length of LUT because the mea-
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Figure 1.51: Eliminating gamma effects proposed by Baker et al. [24].

sured phase was real-type data involving interpolation. Zhang and Yau [26] presented

another LUT-based phase compensation algorithm without pre-computing gamma

directly that was also suitable for other phase-shifting-based measuring, and an ex-

perimental result is shown in Fig. 1.53. However, Zhang’s second LUT algorithm

could not avoid acquiring reference information of gamma distortion before scanning,

and the results of phase correction was also dependent on the length of the LUT.

According to his paper, the improvement using the second method was only the half

that of the first. Jia et al. [111] was motivated by Zhang [25] and also proposed a

LUT-based compensation algorithm for their two-step, triangulation pattern, which
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Figure 1.52: Eliminating gamma effects proposed by Zhang et al. [25].

worked well when neither ambient light nor object texture were considered.

Guo et al. [27] employed statistical methods to analyze and correct for gamma

distortion by framing gamma distortion as an uncertainty problem. In Guo et al.’s

experiment, as shown in Fig. 1.54, high-frequency four-step PMP was adopted for

a gamma value of 1.4802, which was not a particularly challenging problem. Pan

et al. [28] proposed approach suffered from an inaccuracy gamma calibration and had

to employ an approximate and simplified one-order equation, and an experimental

results is shown in Fig. 1.55. This is the short-coming of many of these prior works to

rely on simple, second-order, gamma models or on complicated calibration procedures

46



Figure 1.53: Eliminating gamma effects proposed by Zhang et al. [26].

when, as will be shown in this dissertation, having an accurate model, for predicting

the effects of gamma distortion on PMP, allows one to avail themselves of the pre-

calibration procedure and to measure phase more accurately.
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Figure 1.54: Eliminating gamma effects proposed by Guo et al. [27].

1.3 Contributions of this Dissertation

Now although many approaches to 3-D reconstruction have been proposed that claim

to operate in real time, each study has proposed varying definitions of what con-

Figure 1.55: Eliminating gamma effects proposed by Pan et al. [28].
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stitutes real-time operation. Actually there are four stages to real-time 3-D recon-

struction. First, data should be acquired in real time; second, generating the phase

or finding the correspondence between camera and projector should be performed in

real time, which is very difficult for many pattern schemes such as frequency mul-

tiplexing and neighborhood coding one-shot SLI pattern schemes; third, 3-D point

clouds should be reconstructed in real time by using either phase-to-height conversion

or absolute 3-D coordinates computation, which is the bottle neck for most proposed

strategies; and finally, the reconstructed 3-D point clouds should be displayed in real

time. Because none of the methods reviewed so far achieve real-time operation for all

four stages of SLI, we classify them as, “Fast SLI,” but in this dissertation, a novel

SLI system satisfying all four of these real-time stages will be demonstrated [29].

Because our proposed real-time system relies, like similar multi-pattern tech-

niques, on minimizing the number of component patterns in order to minimize the

effects of target motion, we further introduce a novel pattern scheme that attempts

to limit the effects of sensor noise on the resulting 3-D point clouds, we further devel-

oped a novel strategy that employs a high-frequency sinusoidal grating that, during

modulation, produces an additive-noise-suppressed, high-quality, wrapped phase sig-

nal. Embedded with this high-frequency sinusoid is a unit-frequency sinusoid whose

coarse unit-frequency signal is used during demodulation to produce an instantly de-

codable, unwrapped-phase term temporally such that the process of unwrapping the

higher frequency phase spatially is avoided.

Finally in light of the effect of gamma distortion, this dissertation looks to in-

troduce a gamma model from which we can compensate the phase error caused by
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non-unitary gamma on PMP. At the same time, with such a detailed and accurate

gamma model, an accurate gamma calibration method is derived, and two strategies

for minimizing gamma’s effect on phase determination are presented. These phase

correction strategies include phase corrections with and without gamma calibration.

Real-time SLI

To achieve real-time 3-D video acquisition and reconstruction, Chapter 2 of this

dissertation introduces a lossless look-up table (LUT) method for real-time phase, in-

tensity/texture, and depth video that works in combination with a high-speed projec-

tor/camera pair employing the widely used SLI technique of PMP. While LUT-based

methods have been known for the low computational cost and have been employed

in many applications for various purposes [112, 113], we introduce a novel process-

ing method that extracts phase and intensity/texture information from the incoming

PMP video as a means of reducing the computational complexity of the arctangent

and square-root functions.

The intensity/texture information is used for the purpose of segmenting out back-

ground clutter as well as for texture encoding the final point cloud. Furthermore since

no LUT-based method has so far been introduced for inverting the camera’s calibra-

tion matrix in combination with the phase video to produce a 3-D point cloud in real

time, we introduce such a method that can also be applied to other triangulation-

based 3-D reconstruction techniques.

Divided across threads, the first thread is for grabbing images from the camera;

the second thread generates the phase map; the third thread computes the absolute
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Figure 1.56: A real-time 3-D measurement system developed by Liu et al. [29] in
2010.

3-D coordinates; and finally, the fourth threads displays the measured 3-D data in

real time. For deriving phase, we take advantage of the fixed bit depth of the camera

sensor by building a LUT instead of employing a time-consuming arctangent process.

For deriving the absolute 3-D coordinates from the phase information, we eliminated

the matrix inverse and multiplication by expanded them into a complex form that can

be divided into two separate parts containing static information about the camera

calibration, in one part, and dynamic phase information, in the second. As such, the

first part can be pre-computed to form seven LUTs and whose output is combined

with the phase information using 1 division, 4 multiplications and 4 additions to

produce absolute 3-D point clouds. At no point does the use of LUTs reduce the

accuracy of the calculations since we have one LUT entry for each and every possible

bit combination of input pixel values.
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As will be demonstrated in this dissertation, our experimental system achieves

a processing rate of 714.29 fps to generate phase+texture video and 228.83 fps to

produce 3-D point clouds using just one core of an Intel Core 2 Duo Quad Q9650

processor running at 3.0 GHz. No additional processing through added cores or even

GPU processing is needed, but using such resources would, of course, increase our

frame rate if necessary. Figure 1.56 shows our experimental setup.

Additive Noise

In order to limit the effects of sensor noise on the resulting 3-D point clouds, we

developed a novel strategy, in Chapter 3, that employs a high-frequency sinusoidal

grating that, during modulation, produces an additive-noise-suppressed, high-quality,

wrapped phase signal. Embedded with this high-frequency sinusoid is a unit-frequency

sinusoid whose coarse unit-frequency signal is used during demodulation to tempo-

rally produce an instantly decodable, unwrapped-phase term such that the process

of spatially unwrapping the higher frequency phase is avoided. Traditional phase-

unwrapping would make the differentiation of two discontinuous objects, in absolute

space, impossible [104].

According to Eq. (1.2), the minimum number of patterns is 3, because there are

three unknown parameters in the equation [114]. If we employ temporal method based

on PMP, at least 6 patterns should be involved, i.e., 3 high-frequency patterns and 3

unit-frequency patterns. Reported by Li et al., there two-frequency grating also need

6 patterns at least. In this dissertation, a group of novel pattern schemes are proposed

based on multiplexing phase channels according to the number of patterns, i.e., N = 3,

52



4, and 5 respectively. For N = 3, the DC channel is used to embedded a reference

signal; for N = 4, the half phase channel is utilized to contain the reference signal;

and for N = 5, the second full phase channel will be employed to contain the reference

signal. All these three coding strategies are called phase channel multiplexing pattern

(PCMP) strategy. Although the proposed algorithms are also suited for N > 5, we

only consider the cases, i.e., N = 3, 4, and 5, which can not be handled by traditional

3+3 two-frequency PMP or Li et al.’ two-frequency grating.

Before the proposed PCMP is introduced, traditional PMP equations are rewrit-

ten with new forms. The parameters in the new equations can clearly describe the

phenomena appeared a PMP scanning, and those parameters are analyzed carefully

as well as the solutions for them are provided. With the new equation forms, an

additive noise model is built for PMP. Each absolute errors of parameters are de-

rived. The original error equations look very complicated, so a group of simplified

error equations are proposed after the features of noise are analyzed. Then a serial of

similar noise analyzing method are applied to the proposed PCMP. The performance

of the each PCMP can be estimated by its corresponding noise analysis. Both sim-

ulation and lots of experiments were taken to test and prove the proposed PCMP.

Finally the PCMP are helpful to improve the quality of 3-D measurement.

Gamma Model

Due to the non-linear response of the optical devices, the captured images are dis-

torted by the gamma. While the effects of this distortion diminish with an increasing

number of employed phase-shifted patterns, gamma distortion may be unavoidable
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in real-time systems where the number of projected patterns is limited by the pres-

ence of target motion. In the previous works, researchers attempted to correct that

distortion but they suffered from their inaccurate gamma model and had to employ

approximate approaches to minimize the distortion.

As stated previously, this is the short-coming of a simple, second-order, gamma

model or on using complicated calibration procedures when, as will be shown in

Chapter 4, having an accurate model, for predicting the effects of gamma distortion on

PMP, allows one to avail themselves of the pre-calibration procedure and to measure

phase more accurately.

Chapter 4 proposes a detailed mathematical gamma model [115] to determine

the relationship between phase error and gamma, and with this relationship, we will

demonstrate that phase correction can be performed with or without an explicit

gamma calibration procedure based upon involving the higher-order harmonics from

the captured PMP sequence. Gamma calibration is performed by computing the

energy in the higher order harmonics on a pixel-by-pixel basis, from a set of PMP

patterns reflected off an arbitrary surface, instead of fitting a one-parameter gamma

model to the tone reproduction curve observed from a small center section of the pro-

jected pattern reflecting off a flat, textureless surface. Without explicit calibration,

gamma correction is achieved by deriving both a gamma parameter and a phase pa-

rameter, when processing the collected patterns of a PMP scan, such that the energy

in the higher order harmonics are driven toward zero. For those willing to perform

gamma calibration, the proposed gamma model greatly improves the resulting cali-

bration accuracy.
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In our experiments, the root mean squared (RMS) of phase error for 3-pattern

PMP can be reduced 60× when our gamma model is applied with gamma calibration

and by at least 33× without calibration. To this end, we propose two categories of

methods for minimizing the effects of gamma according to our model: (1) correction

without gamma calibration; and (2) correction with a calibrated gamma value. Fi-

nally using the proposed model, it will be shown that as the number of projected,

phase-shifted patterns, increases, the effects of gamma are lessened. Although this

feature of PMP has been observed previously, no quantitative analysis has been per-

formed to predict the relationship between the effects of gamma and the pattern

number.

1.4 Summation

To summarize the contributions of this research, the basic study aims at 3-D recon-

struction in real time where, in order to achieve a high-quality 3-D measurement, two

typical issues of pattern robustness need to be addressed. The first issue relates to

additive uncertainty and our strategy of a novel high-frequency stripe pattern that

is instantly decodable by means of temporal phase unwrapping. The issue of gamma

distortion and its affect on the reconstructed phase image is also addressed where

we claim that the gamma distortion in PMP is solved by building a detailed and

accurate gamma model. And from this model, we describe a means of measuring the

distortion parameters from the captured PMP images, which we then use to either

calibrate the system for subsequent scans or even correct the distortion without any

calibration. It is believed that these contributions will have a lasting impact on the
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SLI research community as a commercially viable real-time SLI system has finally

been achieved.
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Chapter 2 Real-time 3-D Reconstruction

As mentioned in the previous Introduction section, in order to conquer the two bot-

tlenecks, i. e., the arctangent function for phase generation and matrix computation

for 3-D coordinates reconstruction, we proposed LUT-based solutions to achieve 3-D

reconstruction in real time. By analyzing the original equations and rewriting the

equations into new forms, the involved LUTs are built accurately. In our experiments,

tested by our special software, the framerate of phase generation and 3-D coordinates

reconstruction can achieve more than 1000 fps and nearly 230 fps respectively, which

are, respectively, 25 and 10 times faster than traditional methods.

2.1 LUT-based processing

LUT-based programming is a well known and widely used technique [112] for min-

imizing processing latency. In this section, we implement LUT-based processing for

deriving the modulation, Bc, and phase, φ, terms for traditional PMP that is suit-

able for all triangulation-based 3-D measurement, such as 2+1 [6], fast three-step [71],

and our proposed PCMP. The proposed LUT-based processing takes advantage of the

need by real-time systems to use as few patterns as possible by using the 8-bits per

pixel, of the captured pattern set, as the indices into the LUT. By having LUTs

that account for every possible combination of captured pixel value over the pattern

set while storing double-precision results, the proposed scheme is completely lossless

compared to traditional processing.
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Modulation

As a first step in reducing the computational complexity associated with Eqs. (1.4),

(1.7), and (1.15), we simplify the determination of Bc by rewriting Eq. (1.4) as:

Bc =
1

3

√
3(Ic1 − Ic2)2 + (2Ic0 − Ic1 − Ic2)2 (2.1)

for N = 3,

Bc =
1

2

√
(Ic1 − Ic3)2 + (Ic0 − Ic2)2 (2.2)

for N = 4, or

Bc =
1

6

√
3(Ic1 + Ic2 − Ic4 − Ic5)2 + (2Ic0 − 2Ic3 + Ic1 − Ic2 − Ic4 + Ic5)2 (2.3)

for N = 6. Noting that we need only solve these equations for 8-bits per pixel Icn

images, we can implement a modulation look-up table, MLUT, that, for N = 3, is

defined according to

MLUT [U3, V3] =
1

3

√
3V 2

3 + U2
3 , (2.4)

where integer indices V3 and U3 are derived from

V3 = Ic1 − Ic2 (2.5)

and

U3 = 2Ic0 − Ic1 − Ic2; (2.6)

for N = 4, is defined according to

MLUT [U4, V4] =
1

2

√
V 2

4 + U2
4 , (2.7)

where integer indices V4 and U4 are derived from

V4 = Ic1 − Ic3 (2.8)
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and

U4 = Ic0 − Ic2; (2.9)

or for N = 6, is defined according to

MLUT [U6, V6] =
1

6

√
3V 2

6 + U2
6 , (2.10)

where integer indices V6 and U6 are derived from

V6 = Ic1 + Ic2 − Ic4 − Ic5 (2.11)

and

U6 = 2Ic0 − 2Ic3 + Ic1 − Ic2 − Ic4 + Ic5. (2.12)

The double-precision results of Eq. (2.4), (2.7) or (2.10) are stored in the MLUT. In

contrast to Eq. (1.4), MLUT reduces the run-time computation cost of modulation

without losing accuracy, where the size of the LUT is determined by the number of

bits per pixel of the camera sensor and the number of patterns being projected.

In practice, the term Bc is typically employed as a shadow noise filter [49], and

additionally, as discussed in later section on PCMP, we prefer to using it as texture

of the scanned object too. Figure 2.1 (left) shows the MLUTs for N = 3 (top), N = 4

(middle) and N = 6 (bottom) respectively. Because the valid and normalized value

in the MLUTs is in [0, 1] according to the discuss on PCMP later, the MLUTs look

like a ellipse for N = 3 and N = 6 or a circle for N = 4.

Phase

As our second step to producing real-time 3-D video with texture, we intend to

minimize the computational complexity associated with generating phase video where
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Figure 2.1: Visualizations of MLUT (left) and PLUT (right) for N = 3 (top), N = 4
(middle) and N = 6 (bottom) respectively.

the arctangent function has long been considered a significant obstacle for fringe

pattern analysis [116]. Previous approaches to this problem include Huang et al.’s

cross ratio algorithm [71] and Guo et al.’s approximation algorithm [116]. However,

these methods reduce computational cost at the expense of accuracy and are not

60



faster than our LUT-based algorithms.

As we did with Eq. (1.4) for Bc, we simplify Eq. (1.7) according to the number of

patterns N such that

φ = arctan

[ √
3(Ic1 − Ic2)

2Ic0 − Ic1 − Ic2

]
(2.13)

for N = 3,

φ = arctan

[
Ic1 − Ic3
Ic0 − Ic2

]
(2.14)

for N = 4, or

φ = arctan

[ √
3(Ic1 + Ic2 − Ic4 − Ic5)

2Ic0 − 2Ic3 + Ic1 − Ic2 − Ic4 + Ic5

]
(2.15)

for N = 6.

Again based on the fact that the intensity values of grabbed images are range-

limited integers, we can implement these calculations through a phase LUT (PLUT),

for N = 3, defined according to

PLUT [U3, V3] = arctan

[√
3V

U

]
, (2.16)

where V3 and U3 are defined in Eqs. (2.5) and (2.6) respectively; for N = 4, defined

according to

PLUT [U4, V4] = arctan
[
V

U

]
, (2.17)

where V4 and U4 are defined in Eqs. (2.8) and (2.9) respectively; or for N = 6, defined

according to

PLUT [U6, V6] = arctan

[√
3V

U

]
, (2.18)

where V6 and U6 are defined in Eqs. (2.11) and (2.12) respectively.
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The double-precision results are stored in the PLUT. Thus, the time-consuming

arctangent operation is pre-performed, and phase values are obtained by accessing the

pre-computed PLUT whose size is, again, determined by the number of bits per pixel

of the sensor as well as the number of patterns projected with no loss in accuracy.

Compared to Eqs. (1.7), PLUT avoids computing arctangent function at run-time

such that the computational cost of phase is greatly reduced without introducing

distortion. Figure 2.1 (right) shows the PLUTs for N = 3 (top), N = 4 (middle)

and N = 6 (bottom). The valid value in the PLUT is determined by its corresponding

MLUT.

3-D Point Cloud

Having obtained both the phase and modulation images by means of LUTs, we begin

our derivation of a LUT for the purpose of implementing Eq. (1.15). For a 3 × 3

matrix A which is defined as

A =

 a11, a12, a13

a21, a22, a23

a31, a32, a33

 , (2.19)

its inverse matrix is

A−1 =
1

|A|

 a22a33 − a23a32, a13a32 − a12a33, a12a23 − a13a22

a23a31 − a21a33, a11a33 − a13a31, a13a21 − a11a23

a21a32 − a22a31, a12a31 − a11a32, a11a22 − a12a21

 , (2.20)

where |.| is matrix determinant operation.

After matrix inverse and matrix multiplication operations are performed, Eq (1.15)

can be expanded into our first direct algebraic forms as

T1 = [C(xc, yc)yp + 1]−1, (2.21)
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Xw = [Ax(x
c, yc)yp +Bx(x

c, yc)]T1, (2.22)

Y w = [Ay(x
c, yc)yp +By(x

c, yc)]T1, (2.23)

and

Zw = [Az(x
c, yc)yp +Bz(x

c, yc)]T1, (2.24)

where

D(xc, yc) = [d1x
c + d2y

c + d3]−1,

Ax(x
c, yc) = [ax1x

c + ax2y
c + ax3]D,

Bx(x
c, yc) = [bx1x

c + bx2y
c + bx3]D,

Ay(x
c, yc) = [ay1x

c + ay2y
c + ay3]D,

By(x
c, yc) = [by1x

c + by2y
c + by3]D,

Az(x
c, yc) = [az1x

c + az2y
c + az3]D,

Bz(x
c, yc) = [bz1x

c + bz2y
c + bz3]D,

and

C(xc, yc) = [c1x
c + c2y

c + c3]D,

with

ax1 = mc
22m

c
34m

p
33 +mc

23m
c
32m

p
34 +mc

24m
c
33m

p
32 −mc

22m
c
33m

p
34 −mc

23m
c
34m

p
32 −mc

24m
c
32m

p
33,

ax2 = mc
12m

c
33m

p
34 +mc

13m
c
34m

p
32 +mc

14m
c
32m

p
33 −mc

12m
c
34m

p
33 −mc

13m
c
32m

p
34 −mc

14m
c
33m

p
32,

ax3 = mc
12m

c
24m

p
33 +mc

13m
c
22m

p
34 +mc

14m
c
23m

p
32 −mc

12m
c
23m

p
34 −mc

13m
c
24m

p
32 −mc

14m
c
22m

p
33,

ay1 = mc
21m

c
33m

p
34 +mc

23m
c
34m

p
31 +mc

24m
c
31m

p
33 −mc

21m
c
34m

p
33 −mc

23m
c
31m

p
34 −mc

24m
c
33m

p
31,
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ay2 = mc
11m

c
34m

p
33 +mc

13m
c
31m

p
34 +mc

14m
c
33m

p
31 −mc

11m
c
33m

p
34 −mc

13m
c
34m

p
31 −mc

14m
c
31m

p
33,

ay3 = mc
11m

c
23m

p
34 +mc

13m
c
24m

p
31 +mc

14m
c
21m

p
33 −mc

11m
c
24m

p
33 −mc

13m
c
21m

p
34 −mc

14m
c
23m

p
31,

az1 = mc
21m

c
34m

p
32 +mc

22m
c
31m

p
34 +mc

24m
c
32m

p
31 −mc

21m
c
32m

p
34 −mc

22m
c
34m

p
31 −mc

24m
c
31m

p
32,

az2 = mc
11m

c
32m

p
34 +mc

12m
c
34m

p
31 +mc

14m
c
31m

p
32 −mc

11m
c
34m

p
32 −mc

12m
c
31m

p
34 −mc

14m
c
32m

p
31,

az3 = mc
11m

c
24m

p
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12m
c
21m

p
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14m
c
22m

p
31 −mc

11m
c
22m
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12m
c
24m

p
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14m
c
21m

p
32,

bx1 = mc
22m
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33m

p
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23m
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34m

p
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24m
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32m

p
23 −mc
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34m
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32m
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p
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14m
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32m
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24m
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24m
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p
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14m
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and

d3 = mc
11m

c
23m

p
22 +mc

12m
c
21m

p
23 +mc

13m
c
22m

p
21 −mc

11m
c
22m

p
23 −mc

12m
c
23m

p
21 −mc

13m
c
21m

p
22.

Expressed by normalized homogeneous coordinates, Eqs. (2.21), (2.22), (2.23) and

(2.24) can be written as

s


Xw

Y w

Zw

1

 =


Ax(x

c, yc), Bx(x
c, yc)

Ay(x
c, yc), By(x

c, yc)
Az(x

c, yc), Bz(x
c, yc)

C(xc, yc), 1


(
yp

1

)
,

where s is a scalar. If the 3-D coordinates are computed by Eqs. (2.21), (2.22), (2.23)

and (2.24), there are 1 division, 7 multiplications and 4 additions involved.

Analyzing Eqs. (2.21), (2.22), (2.23) and (2.24) furthermore, our second forms of

3-D LUT can be obtained as

T2 = [C(xc, yc)yp + 1]−1, (2.25)

Xw = Mx(x
c, yc) +Nx(x

c, yc)T2, (2.26)

Y w = My(x
c, yc) +Ny(x

c, yc)T2, (2.27)

and

Zw = Mz(x
c, yc) +Nz(x

c, yc)T2, (2.28)

where

Mx(x
c, yc) = Ax(x

c, yc)C−1(xc, yc),

Nx(x
c, yc) = Bx(x

c, yc)−Mx(x
c, yc),

My(x
c, yc) = Ay(x

c, yc)C−1(xc, yc),

Ny(x
c, yc) = By(x

c, yc)−My(x
c, yc),

Mz(x
c, yc) = Az(x

c, yc)C−1(xc, yc),
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and

Nz(x
c, yc) = Bz(x

c, yc)−Mz(x
c, yc).

Note that C−1(xc, yc) is the reciprocal of C(xc, yc) other than its inverse matrix. If

the 3-D coordinates are computed by Eqs. (2.25), (2.26), (2.27) and (2.28), there are

1 division, 4 multiplications and 4 additions involved.

We then note that, based on the mapping of world coordinates to the camera

plane [9] by M c, if Zw is calculated according to

Zw = Mz(x
c, yc) +

Nz(x
c, yc)

C(xc, yc)yp + 1
, (2.29)

then Xw and Y w can be computed respectively as

Xw = Ex(x
c, yc)Zw + Fx(x

c, yc), (2.30)

and

Y w = Ey(x
c, yc)Zw + Fy(x

c, yc), (2.31)

where

Ex(x
c, yc) =

(mc
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c
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23m
c
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,
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c, yc) =
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,
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and

Fy(x
c, yc) =

(mc
21m

c
32 −mc

22m
c
31)xc + (mc

12m
c
31 −mc

11m
c
32)yc + (mc

11m
c
22 −mc

12m
c
21)

(mc
21m

c
32 −mc

22m
c
31)xc + (mc

12m
c
31 −mc

11m
c
32)yc + (mc

11m
c
22 −mc

12m
c
21)
.

This is the third forms of our 3-D LUT. If the 3-D coordinates are computed by

Eqs. (2.29), (2.30) and (2.31), there are 1 division, 3 multiplications and 4 additions

involved.

Table 2.1 shows number of operations involved in the proposed three kinds of

3-D reconstruction LUTs. So finally the method for computing 3-D coordinates is by

employing Eqs. (2.29), (2.30) and (2.31). Implementing the 7 parameters Mz, Nz, C,

Ex, Ey, Fx, and Fy by means of table look-up for indices (xc, yc) (camera column and

row indices), reduces the total computational complexity associated with deriving

the 3-D point cloud from the phase term to 7 look-ups, 4 additions, 3 multiplica-

tions, and 1 division, which is significantly less than what is involved in performing

matrix inversion and matrix multiplication, as required by Eq. (1.15). It should be

noted that the method presented in Eqs. (2.29), (2.30) and (2.31) can be applied

to all triangulation-based, 3-D coordinate, reconstruction techniques including stereo

vision.

Table 2.1: Comparison of three kinds of 3-D reconstruction LUTs

Multiplication division addition
Eqs (2.21), (2.22), (2.23) and (2.24) 7 1 4
Eqs (2.25), (2.26), (2.27) and (2.28) 4 1 4
Eqs (2.29), (2.30) and (2.31) 3 1 4
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Figure 2.2: Experimental setup.

2.2 Experiments

In order to test the performance of the proposed pattern scheme and LUT-based

processing, we programmed the experimental system of Fig. 2.2 using Microsoft Vi-

sual Studio 2005 with managed C++. The imaging sensor is an 8-bits per pixel,

monochrome, Prosilica GC640M, gigabit ethernet camera with a frame rate of 120

fps and 640×480 pixel resolution. The projector is composed of a Texas Instrument’s

Discovery 1100 board with ALP-1 controller and LED-OM with 225 ANSI lumens.

The projector has a maximum frame rate of 150 fps at a resolution of 1024×768 and

8-bits per pixel grayscale. The camera and projector are synchronized by an external

triggering circuit. As our processing unit, we used a Dell Optiplex 960 with an Intel

Core 2 Duo Quad Q9650 processor running at 3.0 GHz.
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Table 2.2: Processing time and rate, in milliseconds and frames per second (in paren-
theses), respectively, for various stages of PMP processing by means of the equations
and LUT described in this paper.

Process N = 3 N = 4 N = 6
Eq. (1.4) 58.88 (17.58) 67.34 (14.85) 127.72 (8.22)
Eq. (1.7) 71.40 (14.01) 79.53 (12.57) 135.31 (7.39)
∗1 Eq. (1.15) 45.00 (22.22) 44.85 (22.30) 45.16 (22.14)
∗2 Eq. (2.1), (2.2) and (2.3) 6.72 (148.81) 2.34 (427.35) 10.00 (100.00)
∗3 Eq. (2.13), (2.14) and (2.15) 17.97 (55.65) 18.90 (52.91) 18.75 (53.33)
MLUT: 0.94 (1063.83) 1.25 (800.00) 2.18 (458.72)
Eq. (2.4), (2.7) and (2.10)
PLUT: 0.94 (1063.83) 1.25 (800.00) 2.19 (456.62)
Eq. (2.16), (2.17) and (2.18)
MLUT and PLUT, combined 1.40 (714.29) 1.72 (581.40) 2.81 (355.87)
MLUT and PLUT 1.39 (719.81) - -
for 2 plus 1 [6]
3-D LUT: 4.37 (228.83) 4.37 (228.83) 4.38 (228.31)
Eq. (2.29), (2.30) and (2.31)
Traditional PMP: 65.97 (15.16) 65.0 (15.38) 68.75 (14.55)
∗2, ∗3, and then ∗1
MLUT and PLUT, 5.77 (173.31) 6.09 (164.20) 7.18 (139.28)
and then 3-D LUT

Our experiments include: (1) scanning static scene with the traditional PMP with

unit frequency for N = 3, 4 and 6 involving LUT-based processing and (2) scanning

a moving hand with dual-frequency patterns for N = 6 by means of LUT-based

processing.

In our first experiment, a static object was scanned using traditional PMP with

unit frequency with N = 3, 4, and 6 for the purpose of measuring the speed at

which our LUT-based algorithms perform without phase unwrapping. Although the

processor has four cores, our reported processing rates for each LUT algorithm are

based on using just a one core. And although Bc could be used as a shadow noise

filter, thus reducing the number of pixels that would need to be processed while
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deriving φ, we computed a phase value for the full set of 640 × 480 pixels such that

our observed processing times represent an upper limit. Under these conditions, the

average computation time over 1, 000 runs for modulation Bc and phase φ was then

reported in Table 2.2. Bc acts as texture in this experiment.

In an overview of Table 2.2 for the total processing time including texture gen-

eration, phase generation, and 3-D reconstruction, our LUT-based computations are

173.31 fps for N = 3, 164.20 fps for N = 4, and 139.28 for N = 6 versus, using tradi-

tional PMP, 15.16 fps for N = 3, 15.38 fps for N = 4, and 14.55 fps for N = 6, which

means our LUT-based algorithms is 10× faster than traditional PMP algorithms.

Using the general modulation equation, Eqs. (1.4), and the general phase equation,

(1.7), the processing time is increased with larger N , because larger N means more

sin(·), cos(·) and summation computations. The processing time and rates are listed

in Table 2.2.

With the simplified modulation equations of Eq. (2.1), (2.2), and (2.3), the pro-

cessing time decreases significantly for N = 4 (2.34 ms) compared with N = 3

(6.72 ms) because, before performing square-root computation, there are only 2 sub-

tractions, 1 addition, and 2 square computations for N = 4. There are 3 subtractions,

1 addition, 2 multiplications, and 2 square computations for N = 3. Using the sim-

plified phase equation, Eq. (2.13), (2.14), and (2.15), the processing time is almost

the same for different N because, although the processing time for the basic com-

putations, such as addition and subtraction, is still varied for different N . Such

basic processing time is negligible compared to the processing time for the processing

hungry arctangent function.
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Furthermore, it is found from Table 2.2 that the performance of MLUT and PLUT

is the same for different N because the computations for the integer indices, U and V ,

are the same for both MLUT and PLUT with the same N as is the time for accessing

MLUT and PLUT. However, the processing time for MLUT/PLUT is increased with

increasing N because the time for accessing the image buffer, Icn, increases; therefore,

accessing this buffer is the predominant factor in this case. In practice when we want

to access MLUT and PLUT, the computations of U and V need only be performed

once. So Table 2.2 also shows the processing time of the row marked as “MLUT and

PLUT, combined” is less than the summation time of the row marked as “MLUT:

Eq. (2.4), (2.7) and then (2.10)” and the row marked as “PLUT: Eq. (2.16), (2.17)

and then (2.18)” in which their U and V were computed respectively.

For testing 3-D reconstruction using a single processing core, we implemented

reconstruction by means of matrix-inversion (Eq. (1.15)) versus our LUT-based im-

plementation of Sec. 2.1. With our 3-D LUT algorithm, the frame rate of 3-D re-

construction is 228.83 fps for 640 × 480 image resolution, which is 10.3 times faster

than matrix inversion by means of Eq (1.15). For added comparison, Zhang et al.

reported a reconstruction frame rate of 25.56 fps with a resolution of 532× 500 when

performing matrix inversion by means of GPU processing on an nVidia Quadro FX

3450 [74]. For Zhang et al.’s 2 + 1 pattern strategy [6], our LUT analysis can be also

applied, and the performance is shown in Table 2.2.

In our second experiment, we scanned a human subject’s hand gestures with PMP

(N = 4) using LUT-based processing. Different from our first experiment, the most

recent N video frames are captured live and stored in a shared image buffer by a
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Figure 2.3: Sample video clips.

camera thread. At the same time, a second thread performs modulation and phase

generation from the shared buffer and stores the computed data into a modulation

and phase buffer. A third thread, simultaneously, performs 3-D reconstruction using

data from this modulation buffer, storing the 3-D point cloud results into a 3-D data

buffer. Finally, a fourth thread displays the data from the 3-D data buffer using

OpenGL. Because the speed of the camera/projector pair is 120 fps, the speed of

final 3-D reconstruction is also 120 fps while the display speed is limited by the LCD

Figure 2.4: Sample point clouds, using PMP with N = 4, live show of various hand
poses.
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Figure 2.5: Our latest real-time 3-D system.

display at 40− 50 fps.

Figure 2.3 shows a human subject’s hand gestures. In the case of Fig. 2.3 (left),

we show the entire system along with the subject’s hand as a way of demonstrating

that video is being acquired and displayed on screen and in real-time where there is

no noticeable delay between the gesture’s performed by the subject and displayed on

screen. On the LCD panel, you can see the XYZ axes labeled as blue, green, and red

lines, respectively, while the 3-D point cloud is also being reflected off the XZ plane

as a way of better illustrating the hand coming forward and away from the camera.

In the video clips of Fig. 2.3 (center) and (right), we show the subject’s hand held
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in front of a white cardboard box. The purpose of these clips is to show that we can

track multiple, disjoint objects, since there are no phase ambiguities when using dual-

frequency pattern scheme. For added inspection, the images in Fig. 2.4 show the live

frames of hand poses where, from visual inspection, one can see the texture/intensity

encoding of the points derived from Bc. Points with low modulation strength are not

displayed.

Differing from the previous experimental system, there is no external trigger cir-

cuit in our latest real-time 3-D SLI system. The projector is synchronized to the

camera directly, and is triggered by the signal sent from the camera. The previous

system suffers from the framerate of the external trigger circuit whose highest fram-

erate is 120 fps. With being triggered by the camera directly, the highest framerate

of the system can achieve 140–150 fps finally.
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Chapter 3 Phase Channel Multiplexing Pattern Strategy

When Eqs. (1.3), (1.4) and (1.4) are employed to compute Ac, Bc and φ respectively,

it is supposed under ideal condition. However, in practice, there are all kinds of

uncertain and certain factors, such as additive noise thermal, shot noise, non-linear

response/gamma distortion, flickering, quantization and so on, effecting the accuracy

of computation. In this chapter, we will focus on suppressing the additive thermal

noise, which is typically modeled as Gaussian, by phase channel multiplexing pattern

(PCMP) strategy.

According to Li et al. [9], there are three factors suppressing noise in a PMP

scan. The first factor is the number of patterns where more patterns lead to reduced

noise. But for a real-time system, more patterns also means more processing. The

second factor is the Signal-to-Noise-Ratio (SNR) between the light strength of the

projected patterns versus the variance of sensor noise, where higher SNRs leads to

lesser noise in the 3-D reconstructions. But for a fixed system, the projected signal

strength is limited by the light source of the projector while sensor noise is inherent

to the selected camera. The last factor is the frequency of projected pattern with

higher pattern frequency leading to reduced noise in the 3-D reconstruction, but it

also introduces ambiguities in the reconstruction process that needs to be dealt with

by means of phase unwrapping. In our proposed PCMP, a unit-frequency signal is

embedded into the high-frequency signal to achieve phase unwrapping effectively and

robustly.
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3.1 Parameters and noise analysis for PMP

In order to analyze problems associated with PMP, we can rewrite Eq. (1.1) as

Ipn = αp

[
1

2
+

1

2
cos

(
2πfyp − 2πn

N

)]
+ βp, (3.1)

where Ipn is the light intensity of that pixel; f is the frequency of the sine wave; n

represents the phase-shift index; N ≥ 3 is the total number of phase shifted patterns;

αp is the amplitude constant of the sine wave; and βp is the balance constant pre-

venting images captured by a camera from underflow. Here “underflow” means that

the intensity value in image captured by the camera becomes zero if the intensity of

scene is lower than some threshold. For optimal performance, the term αp should be

as large as possible within the bounds of the projector’s dynamic range. As such, αp

and βp are related through αp + βp = 2m − 1, where m is the bits-per-pixel of the

projector.

In the camera, the corresponding captured images are defined according to Eq. (1.2),

and the three unknown parameters in that equation Ac, Bc and φ are computed by

Eqs. (1.3), (1.4) and (1.4) respectively. For the purpose of analyzing issues conve-

niently, we rewrite Eq. (1.2) as

Icn = α
{
αp

[
1

2
+

1

2
cos

(
φ− 2πn

N

)]
+ βp + β

}
+ β, (3.2)

where α is the reflectivity of the scanned object for the camera with a value range of

[0, 1] and β is the ambient light intensity for the camera. The signal terms inside {·},

of Eq. (3.2), with the coefficient α represent the light reflected off the target object

originating from either the pattern projector or from any ambient light sources, while
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the term β, in Eq. (3.2), represents the ambient light directly entering the camera

without reflection [25]. Both α and β are functions of (xc, yc) in the camera.

From Eq. (3.2), the terms Ac and Bc can be expressed as

Ac = α
[
1

2
αp + βp + β

]
+ β (3.3)

and

Bc = 0.5ααp, (3.4)

such that the ambient light intensity, β, can be derived from Eq. (3.3) according to

β =
Ac − α(1

2
αp + βp)

α + 1
(3.5)

while the reflectivity, α, can be computed, from Eq. (3.4), according to

α =
2Bc

αp
. (3.6)

While the ambient light intensity is usually a positive value, there are some special

cases, depending on the features of camera, where it may be negative as we will be

show in the experimental section.

Now if β is positive, then the term, βp, will typically be set to zero in order to

make αp as large as possible; however, if β is negative, then it is necessary to choose

a suitable positive value for βp in order to keep Icn from an underflow condition. That

is, if we let αp = 0 and solve the inequality Icn > 0, then a suitable value for βp, in

Eq. (3.2), can be derived from

βp > −
(

1 +
1

α

)
β, (3.7)
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which is very sensitive to α since the derivative of βp is

dβp = − β

α2
dα, (3.8)

if we replace the inequality of Eq. (3.7) with an equality. So if we select βp with α1,

all the pixels with α ≤ α1 will no long be reliable. On the other hand, once the value

of βp is fixed, then reliable values of α will be determined according to

α > − β

βp + β
, (3.9)

if β is negative. If β is positive, then α can usually be any value in the range [0, 1]

with smaller α leading to lesser reliability in the phase measurement, which we will

analyze in a later section.

In previous studies [5], researchers employed Ac as a measure of the texture of

scanned objects with Bc [49] or Bc/Ac [90] as a phase quality indicator. In this

paper, we tend to use α as both the texture and the quality indicator where α, in the

normalized range of [0, 1], is the reflectivity of the scanned object at each pixel for

the common view of the camera and the projector. The term, Ac, depends on α, αp,

β, and βp, while α is the reflectivity and represents the texture more naturally. The

value range of Bc depends on the amplitude, αp, of the projected patterns while α

does not.

Noise analysis

Under ideal conditions, only three PMP patterns are needed according to the PMP

algorithm. But in practice, there exist various noise sources, such as camera noise,

projector noise, ambient light, shadowing, and so on [9], effecting the quality of 3-D
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reconstruction by means of PMP. We combine these various noises into one parameter,

wn, and add it to Eq. (1.2) which, here, is written as

Ĩcn = Icn + wn, (3.10)

where wn, with the same mean, µw, and variance, σ2
w, are the additive noise and

independent each other over n. When PMP algorithms including Eqs. (1.3), (1.4),

and (1.7) are performed to Eq. (1.2) which are noise free, the computed Ac, Bc, and

φ are treated as their true values and are Ac = α
[

1
2
αp + βp + β

]
+β, Bc = 1

2
ααp, and

φ = arctan [sin(φ)/ cos(φ)]. But if those PMP algorithms are applied to Eq. (3.10)

which are polluted by noise, the computed Ac, Bc, and φ are also corrupted by term

wn.

The noised Ac, notated by Ãc and computed by Eq. (1.3), is

Ãc = Ac +
1

N

N−1∑
n=0

(wn) , (3.11)

and its absolute error, defined as ∆Ac = Ac − Ãc, is

∆Ac = − 1

N

N−1∑
n=0

(wn) , (3.12)

which is a linear combination of wn. The mean and variance of ∆Ac are easily derived,

respectively, as

µ∆Ac = −µw (3.13)

and

σ2
∆Ac =

1

N
σ2
w. (3.14)

With such a simple form, the term ∆Ac is useful for measuring noise level, whatever

the distribution of the noise is, of a SLI system by taking advantage of the relationship
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Figure 3.1: With wn∼N(0, 2.0) and N1 = N2 = 3, the averaged σ2
w over 10 measure-

ments is 2.0026.

between σ2
∆Ac and σ2

w in Eq. (3.14). However, in practice, it is not easy to obtain

the true Ac, although a very good approximation can be found by averaging a large

collection of measurements.

In this chapter, a trade-off and low-cost solution is proposed as following. First,

we scan an object twice with the same or different number of patterns, N1 and N2

respectively; second, Ãc1 and Ãc2 are computed by Eq. (1.3) respectively as

Ãc1 = Ac +
1

N1

N1−1∑
n1=0

wn1 (3.15)

and

Ãc2 = Ac +
1

N2

N2−1∑
n2=0

wn2 ; (3.16)

third, the difference between Ãc1 and Ãc2 is computed as

∆Ac12 =
1

N1

N1−1∑
n1=0

wn1 −
1

N2

N2−1∑
n2=0

wn2 , (3.17)
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which indicates

σ2
∆Ac

12
=

1

N1

σ2
w +

1

N2

σ2
w, (3.18)

where σ2
∆Ac

12
is the variance of ∆Ac12; and finally, the variance of wn, σ2

w, can be solved

as

σ2
w =

(
N1N2

N1 +N2

)
σ2

∆Ac
12
. (3.19)

Nonlinear response or gamma distortion is not considered in this chapter, so if there

exists gamma distortion in a SLI system, to obtain the same certain distortion, N1

had better equal to N2, i.e., N1 = N2 = N , and Eq. (3.19) will become

σ2
w =

1

2
Nσ2

∆Ac
12
. (3.20)

In our simulation, with wn∼N(0, 2.0) and N1 = N2 = 3, the averaged σ2
w over 10

measurements is 2.0026 and each measurement is shown in Fig. 3.1.

If Eqs. (1.5) and (1.6) are applied to Eq. (3.10) respectively, we obtain

S̃N = Bc sin(φ) +
2

N

N−1∑
n=0

[
wn sin

(
2πn

N

)]
(3.21)

and

C̃N = Bc cos(φ) +
2

N

N−1∑
n=0

[
wn cos

(
2πn

N

)]
. (3.22)

Then the noise polluted Bc, notated as B̃c, is computed by

B̃c =
√
S̃2
N + C̃2

N (3.23)

=
1

2
αp

√
(α +X)2 + Y 2, (3.24)

where

X =
4

Nαp

N−1∑
n=0

[
wn cos

(
φ− 2πn

N

)]
(3.25)
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and

Y =
4

Nαp

N−1∑
n=0

[
wn sin

(
φ− 2πn

N

)]
. (3.26)

The means of X and Y are the same and equal to 0, i.e., µX = µY = 0. The variances

of X and Y are the same too and they are derived as

σ2
X = σ2

Y =
8

Nα2
p

σ2
w, (3.27)

which are decreased by increasing N and/or, especially, αp. For example, with N = 3

and αp = 255, the variance of X or Y is 24, 384 times less than the variance of wn.

The correlation coefficient of X and Y , notated as ρXY , is 0, which means X and

Y are uncorrelated; and furthermore, if wn is Gaussian, which makes X and Y be

Gaussian too, then X and Y are independent each other.

The noise polluted α, notated as α̃ and computed by Eq. (3.6) with B̃c, is

α̃ =
√

(α +X)2 + Y 2. (3.28)

Its absolute error, defined as ∆α = α− α̃, is expressed as

∆α = α−
√

(α +X)2 + Y 2. (3.29)

Correspondingly, the noisy φ, notated as φ̃, is computed by

φ̃ = arctan

(
S̃N

C̃N

)
(3.30)

and its absolute error, defined as ∆φ = φ− φ̃, is expressed as

∆φ = arctan
(

Y

α +X

)
. (3.31)
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Figure 3.2: With wn∼N(0, 2.0), N = 3, and αp = 255, the variances of ∆α versus α
varying from 0 to 1 by a step of 0.05, in log scale.

If X and Y are independent each other and are Gaussian respectively, the distribution

of α̃ or ∆α is Rician whose probability density function (PDF) is complicated [8].

The PDF of phase error ∆φ is complicated too and had been discussed in [8,7,117].

If we write a complex number as Z = (α + X) + jY , where j =
√
−1, obviously

α̃ is the magnitude of Z and ∆φ is the angle of Z. By means of α̃ and ∆φ, the real

part and imaginary part of Z can be expressed as

α̃ cos(∆φ) = α +X (3.32)

and

α̃ sin(∆φ) = Y. (3.33)

If ∆φ is small, there are approximations as cos(∆φ)≈1 and sin(∆φ)≈∆φ. Then

Eqs. (3.32) and (3.33) become

α̃ ≈ α +X (3.34)
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Figure 3.3: With wn∼N(0, 2.0), N = 3, and αp = 255, the variances of ∆φ versus α
varying from 0 to 1 by a step of 0.05, in log scale.

and

α̃∆φ ≈ Y. (3.35)

From Eq. (3.34), the absolute error of α is re-derived as

∆α = α− α̃ ≈ −X, (3.36)

which has the mean −µX and variance σ2
X . So α̃ can be employed to estimate α

robustly and it is α̃ ≈ α. With the simplified Eq. (3.34), we do not require that X

and Y should be independent each other and be Gaussian distributed. Figure 3.2

shows, with wn∼N(0, 2.0), N = 3, and αp = 255, the variances of ∆α versus α

varying from 0 to 1 by a step of 0.05. It is seen that σ2
∆α is very stable with the

change of α.

From Eqs. (3.34) and (3.35), the absolute error of φ is re-derived as

∆φ ≈ Y

α̃
≈ Y

α
=

4

Nααp

N−1∑
n=0

[
wn sin

(
φ− 2πn

N

)]
, (3.37)
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which is consistent with the result in [9]. The mean of ∆φ is 0 and the variance of

∆φ is given by

σ2
∆φ ≈

8

Nα2α2
p

σ2
w. (3.38)

The phase error is decreased by increasing N , αp and α. For a SLI system, if N and

αp are fixed, the phase quality will mostly depend on the reflectivity, α, of scanned

object. From this view, the phase quality is very sensitive to α. Figure 3.3 shows,

with wn∼N(0, 2.0), N = 3, and αp = 255, the variances of ∆φ versus α varying from

0 to 1 by a step of 0.05. It is seen that σ2
∆φ is very sensitive to change of α. The

higher the α, the smaller the σ2
∆φ;

To compute the 3-D coordinates of the scanned object, one direction of normalized

projector coordinates, yp, should be obtained by yp = φ/(2πf), so the absolute error

of yp, defined as ∆yp = yp − ỹp, is described as

∆yp ≈ 2

πNααpf

N−1∑
n=0

[
wn sin

(
φ− 2πn

N

)]
. (3.39)

The mean of ∆yp is 0 and the variance of ∆yp is given by

σ2
∆yp ≈

2

π2Nα2α2
pf

2
σ2
w. (3.40)

The error for the 3-D coordinates of the scanned object was presented in [9].

Finally when we compute the ambient light intensity with Eq. (3.5), the noised

β, notated as β̃, is β̃ = [Ãc − α̃(0.5αp + βp)]/(α̃ + 1) and its absolute error, defined

as ∆β = β − β̃, is expressed as

∆β ≈ 1

α + 1
∆Ac − 0.5αp + βp + β

α + 1
∆α (3.41)
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with mean µ∆β ≈ µw/(α + 1) and variance

σ2
∆β ≈

1

N(α + 1)2

2

[
1 +

2 (βp + β)

αp

]2

+ 1

σ2
w, (3.42)

which means we had better employ a large N and a target with high reflectivity, α,

to calibrate the ambient light intensity more accurately.

3.2 Phase channel multiplexing pattern strategy

In the previous section, we analyzed the basic parameters in PMP technique and the

effects of additive noise. In this section, we will discuss how to embed auxiliary signal

used for phase unwrapping into the main signal based on the analysis of sinusoid wave

harmonics [118]. The methods of noise analysis employed in this section is similar to

them in the previous section.

Suppose we have a group of phase-shifted sinusoid wave signals, mixed with har-

monics, defined as

In = A+B cos
(
φ− 2πn

N

)
+
∞∑
k=2

{
Bk cos

[
k
(
φk −

2πn

N

)]}
, (3.43)

where N is total number of the signals and ≥ 3, n is phase-shift index, A is the basic

direct component (DC) of the signals, cos (φ− 2πn/N) is the main signal with phase

φ and energy B, and cos [k (φ− 2πn/N)] are the harmonics with phase φk and energy

Bk. Depending on the number of the signals, N , one phase channel is shared by lots

of harmonics. The two basic phase channel are the DC channel and the main channel

in which the main signal lives.
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When we apply Eq (1.7) to Eq. (3.43) to compute the phase of main signal, φ, a

harmonics distorted phase will be obtained as

φ̃ = arctan

[
B sin(φ) +Hs

B cos(φ) +Hc

]
, (3.44)

where

Hs =
∞∑
k=1

{BkN+1 sin [(kN + 1)φkN+1]} −
∞∑
k=1

{BkN−1 sin [(kN − 1)φkN−1]} (3.45)

and

Hc =
∞∑
k=1

{BkN+1 cos [(kN + 1)φkN+1]}+
∞∑
k=1

{BkN−1 cos [(kN − 1)φkN−1]} . (3.46)

To get a distortion-free main signal φ, the harmonics, which share the main phase

channel with the main signal, must be suppressed to 0 through setting all the energy

BkN±1 (k ≥ 1) to zero.

By doing so, the signals described in Eq. (3.43) will be simplified as

In = A+B cos
(
φ− 2πn

3

)
+
∞∑
k=1

[B3k cos (3kφ3k)] (3.47)

for N = 3,

In = A+B cos
(
φ− πn

2

)
+
∞∑
k=0

{B2+4k cos [(2 + 4k)φ2+4k − πn]}+
∞∑
k=1

[B4k cos (4kφ4k)]

(3.48)

for N = 4, or

In = A+B cos
(
φ− 2πn

5

)
+

∞∑
k=2, k 6=5m±1

{
Bk cos

[
k
(
φk −

2πn

5

)]}
(3.49)

for N = 5. Obviously in some phase channels, many non-zero harmonics are still

remained, and if we only need one additional signal in the different phase channel
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from the main phase channel, we need to suppress harmonics furthermore according

to different cases of N . For N = 3, the only additional and available phase channel

is the DC channel, so after we keep the first signal and remove the others in the DC

channel, Eq. (3.43) becomes

In = A+B cos
(
φ− 2πn

3

)
+B3 cos (3φ3) . (3.50)

For N = 4, besides the DC channel, one more available phase channel is at the phase

shift π. Because cos(nπ) = ±1 and sin(nπ) = 0, we call this channel as half phase

channel. When only the main signal and the first harmonic signal in the half phase

channel are kept, Eq. (3.43) becomes

In = A+B cos
(
φ− πn

2

)
+B2 cos (2φ2 − πn) . (3.51)

Finally for N = 5, there is a full phase channel next to the main phase channel at

the phase shift 0.8π and we call that channel as second full phase channel. When

only the main signal and the first signal in the second full phase channel are kept,

Eq. (3.43) becomes

In = A+B cos
(
φ− 2πn

5

)
+B2 cos

(
2φ2 −

4πn

5

)
. (3.52)

In the paper, our proposed pattern strategies are based on Eqs. (3.50), (3.51) and

(3.52) according to the different cases of N and all of them are called phase channel

multiplexing pattern (PCMP).
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Figure 3.4: Proposed 3-pattern PCMP with fh = 3, αp = 200, βp = 55, c1 = 0.5,
c2 = 0.5, and R(yp) = 2yp − 1 (top) and the cross-section of each pattern (bottom).

N=3

When the number of patterns is 3, taking advantage of the features Eq. (3.50), we

design the projected patterns as

Ipn = αp

[
1

2
+

1

2
c1 cos

(
2πfhy

p − 2πn

3

)
+

1

2
c2R(yp)

]
+ βp, (3.53)

where yp is the normalized projector coordinates with range [0, 1], αp is the amplitude

of the pattern, βp is the minimum value of the pattern, and c1 and c2 are modulation

coefficients of main signal and reference signal respectively. The terms c1 and c2 are

related through c1 +c2 = 1. R(yp) is the reference signal and it can be any monotonic

function with the value range [−1, 1] over the domain of yp. Figure 3.4 shows a

cross-section of proposed PCMP for N = 3 with n = 0, fh = 3, αp = 200, βp = 55,

c1 = 0.5, c2 = 0.5, and R(yp) = 2yp − 1.

The captured patterned images by the camera are expressed by

Icn = Ac +Bc cos
(
φh −

2πn

3

)
, (3.54)
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where Ac, Bc and φh can be computed by Eq. (1.3), (1.4) and (1.7) respectively.

Equation. (3.54) also can be written as

Icn = α
{
αp

[
1

2
+

1

2
c1 cos

(
φh −

2πn

3

)
+

1

2
c2R(φu)

]
+ βp + β

}
+ β, (3.55)

where φh is the wrapped high-quality phase, and φu is the coarse unit-frequency phase

used for unwrapping. With the parameters in Eq. (3.55), Ac and Bc are expressed as

Ac = α
{
αp

[
1

2
+

1

2
c2R(φu)

]
+ βp + β

}
+ β (3.56)

and

Bc =
1

2
ααpc1. (3.57)

Then the reference signal, R(φu), containing the coarse unit-frequency phase φu can

be derived according to

R(φu) =
1

c2

[
2(Ac − β)

ααp
− 2(βp + β)

αp
− 1

]
, (3.58)

where

α =
2Bc

αpc1

(3.59)

and β is calibrated by traditional PMP patterns using Eq. (3.5). Once φu is solved

by the inverse function of R(.), phase unwrapping can be performed for φh.

If there exists additive noise, wn, in the scanning system, the patterned images

captured by the camera will be

Ĩcn = Icn + wn, (3.60)

where Icn is defined in Eq. (3.55) and, with the same mean µw and variance σ2
w, wn

are the additive noise and independent one anther. Similar to the noise analysis for
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PMP in the previous section, the absolute phase error for the wrapped high-frequency

phase, defined as ∆φh = φh − φ̃h, is expressed as

∆φh ≈
4

3ααpc1

2∑
n=0

[
wn sin

(
φ− 2πn

3

)]
(3.61)

and its corresponding error of yp is

∆yp ≈ 2

3πααpc1fh

2∑
n=0

[
wn sin

(
φ− 2πn

3

)]
, (3.62)

whose variance is given by

σ2
∆yp ≈

2

3π2α2α2
pc

2
1f

2
h

σ2
w. (3.63)

When we investigate Eq. (3.40), with f = 1 and N = 3, and Eq. (3.63), to achieve

better performance compared with unit-frequency 3-pattern PMP, the coefficient c1

in Eq. (3.53) should be satisfied with

1

fh
< c1 < 1, (3.64)

where fh is an integer and ≥ 2. It dose not mean the larger the c1, the better the

final result, because a larger c1 will cause a smaller c2, and a smaller c2 will make the

quality of φu worse, which finally increases the error of phase unwrapping. On the

other hand, c1 should not be too small, because the computation of α depends on c1

and the quality of α will effect the computation of R(φu).

The noise polluted reference signal R(φu), notated as R̃(φu), is

R̃(φu) =
1

c2

[
2(Ãc − β)

α̃αp
− 2(βp + β)

αp
− 1

]
, (3.65)

where Ãc is the noised Ac and the variance of its absolute error is σ2
∆Ac = σ2

w/3,

and α̃ is the noised α and the variance of its absolute error approximates to σ2
∆α ≈
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Figure 3.5: Normalized variance of the error of reference signal versus the coefficient
c1 for N = 3, in log scale.

8σ2
w/(3α

2
pc

2
1). Then the absolute error of R̃(φu), defined as ∆R(φu) = R(φu)− R̃(φu),

is

∆R(φu) ≈
2

ααpc2

∆Ac − 1

α

[
1

c2

+
2(βp + β)

αpc2

+R(φu)

]
∆α (3.66)

with a normalized variance as

σ2
∆R3

=
σ2

∆R(φu)

σ2
w

≈ 4

3α2α2
p

 1

c2
2

+
2

c2
1

[
1

c2

+
2(βp + β)

αpc2

+R(φu)

]2
 . (3.67)

There are so many parameters in Eq. (3.67) effect the value of σ2
∆R3

, but the most

important one is αp, because in some cases, the term αp is the only parameter under

our control. If we solve dσ2
∆R3

/dc1 = 0, then it is found σ2
∆R3

has a minimum value

at c1 ≈ 0.5. So the optimized values of c1 and c2 are c1 = c2 = 0.5 in this case,

i.e., N = 3, to extract the reference signal as good as possible. Figure 3.5 shows the

normalized variance, σ2
∆R3

, of the error of reference signal versus the coefficient c1

with αp = 200 and R(yp) = 2yp − 1. The minimum value is nearly at c1 = 0.5.
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Table 3.1: Percentage of pixels successfully phase unwrapped for N = 3 with different
fh and αp.

αp fh = 3 4 6
200 99.19 96.28 85.17
220 99.76 98.86 92.44
240 99.83 99.67 96.85

If we choose c1 = 0.5, then from the quality condition described in Eq. (3.64),

the high frequency fh should be larger than 2. The high frequency can not be much

high, because phase unwrapping will fail for the wavelength of high frequency be-

coming short compared with the noise in reference signal floor [9]. In our simulation,

supposing the additive noise wn are zero mean Gaussian with σ2
w = 1.55 and setting

other parameters as α = 0.5, β = −7, c1 = c2 = 0.5, R(yp) = 2yp − 1, αp = 200,

220, and 240 respectively, and fh = 3, 4, and 6 respectively, the percentage of pixels

successfully phase unwrapped is listed in Table 3.1. It shows that the lower the fh

and the higher the αp, the more successful the phase unwrapping.

N=4

In the previous subsection, the DC phase channel was employed to embed a reference

signal into the main signal. The shortcomings of that method is that we have to

calibrate ambient light intensity before scanning and the noise in DC channel in

relative heavier. While in the subsection, when the number of patterns is 4, by

employing the half phase channel described in Eq. (3.51), the issues arisen from

N = 3 can be controlled well and the projected patterns are designed as:

Ipn = αp

{
1

2
+

1

2
c1 cos

(
2πfhy

p − πn

2

)
+

1

2
c2S[R(yp), 2n, 4]

}
+ βp, (3.68)
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Figure 3.6: Proposed 4-pattern PCMP with fh = 6, αp = 200, βp = 55, c1 = 0.6,
c2 = 0.4, and R(yp) = cos(πyp) (top) and the cross-section of each pattern (bottom).

where R(yp) is an arbitrary monotonic reference signal, and S(t, n,N) is the phase-

shifting function for reference signal and has the same action as cos(2πft− 2πn/N).

Figure 3.6 shows a cross-section of proposed PCMP for N = 4 with n = 0, fh = 6,

αp = 200, βp = 55, c1 = 0.6, c2 = 0.4, and R(yp) = cos(πyp).

The captured patterned images by the camera are expressed by

Icn = Ac +Bc
1 cos

(
φh −

πn

2

)
+Bc

2S[R(yp), 2n, 4], (3.69)

where Ac, Bc
1 and φh can be computed by Eq. (1.3), (1.4) and (1.7) respectively. Bc

2 is

the modulation for the embedded auxiliary signal in the half phase channel and can

not be calculated directly, but in theory, it equals to Bc
2 = Bc

1c2/c1. The information

containing the reference signal in the half phase channel can be computed by

Bc
cos =

1

4

3∑
n=0

[Icn cos (πn)] . (3.70)

If we write Eq. (3.69) as

Icn = α
(
αp

{
1

2
+

1

2
c1 cos

(
φh −

πn

2

)
+

1

2
c2S[R(yp), 2n,N ]

}
+ βp + β

)
+ β, (3.71)

then Bc
1 and Bc

cos can be expressed as

Bc
1 =

1

2
ααpc1 (3.72)
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and

Bc
cos =

1

2
ααpc2R(φu), (3.73)

so the reference signal can be solved by

R(φu) =
2Bc

cos

ααpc2

, (3.74)

where α = 2Bc
1/(αpc1). Once φu is obtained by the inverse function of R(.), phase

unwrapping for φh can be achieved.

If there is additive noise in the SLI system, to achieve better performance com-

pared with the unit-frequency 4-pattern PMP, the relationship between fh and c1 is

the same as it in Eq. (3.64). The noised reference signal, computed by Eq. (3.70) with

noised Ĩcn, is R̃(φu) = 2B̃c
cos/(α̃αpc2), where B̃c

cos is the noised Bc
cos and the variance

of its absolute error is σ2
∆Bc

cos
= 0.25σ2

w, and α̃ is the noised α and the variance of its

absolute error approximates to σ2
∆α ≈ 2σ2

w/(α
2
pc

2
1). The absolute error of R̃(φu) is

∆R(φu) ≈
2

ααpc2

∆Bc
cos −

R(φu)

α
∆α, (3.75)

with a normalized variance as

σ2
∆R4

=
σ2

∆R(φu)

σ2
w

≈ 1

α2α2
p

[
1

c2
2

+
2R2(φu)

c2
1

]
, (3.76)

which is mostly effected by αp.

If we solve dσ2
∆R4

/dc1 = 0, then it is found σ2
∆R4

has a minimum value at c1 ≈ 0.5.

Figure 3.7 shows the normalized variance, σ2
∆R4

, of the error of reference signal versus

the coefficient c1 with αp = 200 and R(φu) = cos(πyp). The minimum value is nearly

at c1 = 0.5. Compared with Fig. 3.5, the term σ2
∆R4

is nearly 10× smaller than σ2
∆R3

,
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Figure 3.7: Normalized variance of the error of reference signal versus the coefficient
c1 for N = 4.

so we can employ a c1 larger than 0.5 to achieve a much better performance both

in phase quality and phase unwrapping. In our simulation, supposing the additive

noise wn are zero mean Gaussian with σ2
w = 1.55 and setting the other parameters

as α = 0.5, β = −7, αp = 200, c2 = 1 − c1, R(yp) = cos(πn), c1 = 0.5, 0.6, and 0.8

respectively, and fh = 6, 8, and 12 respectively, the percentage of pixels successfully

phase unwrapped is listed in Table 3.3.

If Eq. (3.70) is applied to conventional 4-pattern PMP, i.e., Eq. (3.10), both DC

Table 3.2: Percentage of pixels successfully phase unwrapped for N = 4 with different
fh and c1.

c1 fh = 4 6 8
0.5 99.79 98.65 96.37
0.6 99.80 98.63 96.30
0.7 99.71 98.15 95.22
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Figure 3.8: With wn∼N(0, 2.0) and N = 4, the averaged σ2
w over 10 measurements

is 1.9983.

and AC signal should be canceled and only noise will remain as

Bc
cos =

1

4
[(w0 + w2)− (w1 + w3)] , (3.77)

with zero mean and variance

σ2
Bc

cos
=

1

4
σ2
w, (3.78)

which can be taken advantage to compute the noise level of the system according to

σ2
w = 4σ2

Bc
cos
. (3.79)

In our simulation, with wn∼N(0, 2.0) and N = 4, the averaged σ2
w over 10 measure-

ments is 1.9983 and each measurement is shown in Fig. 3.8.

It should be noticed that the above method of noise measurement requires that

there is no gamma distortion, which will be discussed in the later chapter, in the SLI

system. Even a very small gamma distortion will cause an inaccurate measurement,

and the solution for this situation is similar to the approach of noise measurement
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by means of Ac in Eq. (3.20). If there are two measurement of Bc
cos, i. e., Bc

cos1 and

Bc
cos2, the difference of them is

∆Bc
cos = Bc

cos1 −Bc
cos2 =

1

4
[(w10 + w12)− (w11 + w13)− (w20 + w22) + (w21 + w23)] ,

(3.80)

with zero mean and variance

σ2
∆Bc

cos
=

1

2
σ2
w, (3.81)

which indicates the variance of system noise is

σ2
w = 2σ2

∆Bc
cos
. (3.82)

In the section of experiment, we will show Eq. (3.82) is a robust method, while

Eq. (3.79) is not.

N = 5

When the number of patterns is larger than or equal to 5, by taking advantage of

Eq. (3.52), we can design the projected patterns as

Ipn = αp

[
1

2
+

1

2
c1 cos

(
2πfhy

p − 2πn

5

)
+

1

2
c2 cos

(
2πyp − 4πn

5

)]
+ βp. (3.83)

Because the second full phase channel is employed, the reference signal is a unit-

frequency sinusoid wave which can be decoded by an arctangent function more reliably

compared to the reference signals employed in the previous subsections. Figure 3.9

shows a cross-section of proposed PCMP for N = 5 with n = 0, fh = 12, αp = 200,

βp = 55, c1 = 0.7, and c2 = 0.3.
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Figure 3.9: Proposed 5-pattern PCMP for with fh = 12, αp = 200, βp = 55, c1 = 0.7,
and c2 = 0.3 (top) and the cross-section of each pattern (bottom).

Then the captured patterned images in the camera are

Icn = Ac +Bc
1 cos

(
φh −

2πn

5

)
+Bc

2 cos
(
φu −

4πn

5

)
, (3.84)

where Ac, Bc
1 and φh can be computed by Eq. (1.3), (1.4) and (1.7) respectively. If

we let

S2,N =
2

5

4∑
n=0

[
Icn sin

(
4πn

5

)]
(3.85)

and

C2,N =
2

5

4∑
n=0

[
Icn cos

(
4πn

5

)]
, (3.86)

the term Bc
2, the intensity modulation corresponding to φu, can be derived from

Bc
2 =

√
S2

2,N + C2
2,N , (3.87)

and the phase of the reference signal, φu, is computed by:

φu = arctan

(
S2,N

C2,N

)
, (3.88)

which will be employed to unwrap φh. By means of α, αp, c1 and c2, the terms Bc
1

and Bc
2 can be respectively expressed as

Bc
1 =

1

2
ααpc1 (3.89)
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w = 1.6, σ2

∆α1
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∆α versus c1, in log scale.

and

Bc
2 =

1

2
ααpc2, (3.90)

which indicates Bc
1/B

c
2 should equal to c1/c2 in theory.

If there exists additive noise, wn, in the system, to achieve a better performance

compared to the unit-frequency 5-pattern PMP, the relationship of fh and c1 described

in Eq. (3.64) still holds on. Similar to Eq. (3.34), the noised α derived from Eq. (3.89)

and Eq. (3.90) respectively, notated as α̃1 and α̃2, are expressed as

α̃1 ≈ α +X1 (3.91)

and

α̃2 ≈ α +X2, (3.92)

where

X1 =
4

5αpc1

4∑
n=0

[
wn cos

(
φh −

2πn

5

)]
(3.93)
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and

X2 =
4

5αpc2

4∑
n=0

[
wn cos

(
φu −

4πn

5

)]
. (3.94)

The means of X1 and X2 are both zero, and the variances of them are

σ2
X1

=
8

5α2
pc

2
1

σ2
w (3.95)

and

σ2
X2

=
8

5α2
pc

2
2

σ2
w (3.96)

respectively. So the absolute error of α̃1 is ∆α1 ≈ α − α̃1 = −X1 with variance

σ2
∆α1
≈ σ2

X1
and the absolute error of α̃2 is ∆α2 ≈ α − α̃2 = −X2 with variance

σ2
∆α2
≈ σ2

X2
. As mentioned in the previous subsection, c1 can neither too large nor

too small, so by means of a linear combination of Eqs. (3.91) and (3.92), a weighted

and more robust estimation of α can be derived as

α̃ ≈ c1α̃1 + c2α̃2 = α + c1X1 + c2X2. (3.97)

Its absolute error is ∆α ≈ α− α̃ = −c1X1 − c2X2 with variance

σ2
∆α ≈

16

5α2
p

σ2
w. (3.98)

In Fig. 3.10, with σ2
w = 1.6 and c1 varying from 0.2 to 0.8, σ2

∆α1
, σ2

∆α2
and σ2

∆α are

shown. It is easy to see σ2
∆α is very stable when c1 is changing, which means the

estimation of α employing Eq. (3.97) is stable.

By the difference relationship of Eq. (3.91) and (3.92), we have ∆α12 ≈ α̃1− α̃2 =

X1 − X2 with variance σ2
∆α12

≈ 8(c2
1 + c2

2)σ2
w/(5α

2
pc

2
1c

2
2). So the variance of system

noise can be estimated by

σ2
w ≈

5

8
α2
p

(
c2

1c
2
2

c2
1 + c2

2

)
σ2

∆α12
. (3.99)
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Figure 3.11: For σ2
w = 1.6, the estimated σ2

w with c1 using 5-pattern PCMP.

The meaning of Eq. (3.99) is that, with 5-pattern PCMP, we do not need an additional

measurement of system noise and we can roughly estimate the variance of the system

noise directly. Figure 3.11 shows the estimated σ2
w with c1 varying from 0.5 to 0.8 for

σ2
w = 1.6 using Eq. (3.99).

Similar to Eq.(3.37), the absolute error of the phase of reference signal is

∆φu ≈
4

5ααpc2

4∑
n=0

[
wn sin

(
φ− 4πn

5

)]
, (3.100)

with variance

σ2
∆φu
≈ 8

5α2α2
pc

2
2

σ2
w, (3.101)

which is increased with decreasing c2 when α and αP are fixed. In our simulation,

supposing the additive noise wn are zero mean Gaussian with σ2
w = 1.55 and setting

the other parameters as α = 0.5, β = −7, αp = 200, c2 = 1−c1, c1 = 0.5, 0.6, and 0.8

respectively, and fh = 6, 8, and 12 respectively, the percentage of pixels successfully

phase unwrapped is listed in Table 3.3.
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Table 3.3: Percentage of pixels successfully phase unwrapped for N = 5 with different
fh and c1.

c1 fh = 6 8 12
0.5 99.61 99.61 99.61
0.6 99.50 99.50 99.49
0.8 98.99 98.95 98.83

3.3 Experiments

The first of two groups of experiments are on system parameter calibrations including

ambient intensity calibration and a noise level measurement. The second group of

experiments are on the 3-D reconstructions by means of our proposed three kinds of

PCMPs. The scanned objects include a white foam board for performance discussion

and a textured plastic angel, shown in Fig. 2.2, for effects demonstration.

System parameters calibrations

With Eq. (3.5), we employ classic PMP patterns to calibrate ambient light intensity.

The parameters for Eq. (3.1) are N = 240, f = 1, αp = 200 and βp = 55. The

calibration target is a white foam board with much higher α at each measurable

pixel. The large N and the high α allow us to reduce much measurement error

according to Eq. (3.42).

Figure 3.12 shows the histogram of computed β over 133, 644 pixels with α ≥ 0.5.

The mean, median and mode values of β over those pixels are −7.17, −7.22 and −7

respectively. The variance of β is 0.63, which means the ambient light intensity is

almost uniformly distributed. We will employ the mode number, −7, as the intensity

of the ambient light in the future. According to Eq. (3.9), with βp = 55 and β = −7,
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Figure 3.12: The histogram of computed β for the pixels with α ≥ 0.5

the reliable value of α should be larger than 0.1458. If we only scan an object with

uniform texture and high reflectivity, for example, α > 0.5, an optimized value of βp

can be 18 according to Eq. (3.7). But for an object with rich texture, such as our

angel model, a lot of phase data will be removed for those pixels with α ≤ 0.5. So

we still involved βp = 55 and use α = 0.15 as the quality indicator for phase in the

following experiments.

Taking advantage of Eq. (3.20), we employ 10 groups 3-pattern PMP to measure

the variance, σ2
w, of our SLI system. The parameters for the projected 3-pattern PMP

patterns in Eq. (3.1) are N = 3, f = 1, αp = 200 and βp = 55. A histogram of a

measured ∆Ac is shown in Fig. 3.13 (left). Figure 3.13 (right) shows the measured σ2
w

using any 2 groups of 3-pattern PMP among those 10 groups and there are
(

10
2

)
= 45

combinations. The averaged σ2
w over 45 measurements is 1.55.

When we employ Eq. (3.79) to measure the level of system noise, the measured
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Figure 3.13: Histogram of a measured ∆Ac (left) and all measured σ2
w using any 2

groups of 3-pattern PMP among 10 groups (right).

value is around 3.2, which shown in Fig. 3.14 (left). This result is nearly 2 times as

large as the result measured by Eq. (3.20). It is the gamma distortion who makes

the measuring error. The cross-section of the Bc
cos is shown in Fig. 3.14 (right).

Although the gamma distortion is very small, it is still seen the sinusoidal shape in

the cross-section curve.

Once Eq. (3.82) is involved to measure the system noise, the measured variance
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Figure 3.14: Measured σ2
w using Bc

cos over 10 group of 4-pattern PMP (left) and a
cross-section of Bc

cos.
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Figure 3.15: Histogram of a measured ∆Bc
cos (left) and all measured σ2

w using any 2
groups of 4-pattern PMP among 10 groups (right).

of the system is around 1.56 which is almost the same as the result measured by

Eq. (3.20). A histogram of a measured ∆Bc
cos is shown in Fig. 3.15 (left). Fig-

ure 3.15 (right) shows the measured σ2
w using any 2 groups of 4-pattern PMP among

those 10 groups and there are
(

10
2

)
= 45 combinations. When we use Eq. (3.99), the

estimated σ2
w is 1.95 with c1 = 0.5, 1.85 with c1 = 0.6 and 1.80 with c1 = 0.8.
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Figure 3.16: Scanned with 3-pattern PCMP, the visualization of unwrapped φh (left)
and the cross-section at 120th column of φh, φu, and unwrapped φh (right) of the
board.
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Figure 3.17: Scanned with 3-pattern PCMP and 3-pattern unit-frequency PMP, the
cross-section at 320th column of phase error of the board.

PCMP scanning

For 3-pattern PCMP described by Eq. (3.53), the parameters are set as fh = 3,

c1 = c2 = 0.5, αp = 200, βp = 55 and R(yp) = 2yp−1. When we compute R(φu) with

Eq. (3.58), the term β = −7 obtained from the previous subsection is applied. First

we scan the white foam board, and Fig. 3.16 shows the visualization of unwrapped φh

(left) and the cross-section at 120th column of φh, φu, and unwrapped φh (right) of

the board. The percentage of pixels successfully unwrapped in this case was 97.61%,

which is less than the prediction listed in Table. 3.1, because besides effected by noise,

the error of unwrapping is also caused by the non-uniform distributed ambient light

intensity which is supposed to be uniform, and such error typically occurs at the edge

of the phase image.

For the successfully unwrapped pixels, the variance of absolute error of 3-pattern

PCMP is 1.13 × 10−4, while the variance of the absolute error of 3-pattern PMP
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Figure 3.18: Scanned with 3-pattern PMP (left) and PCMP (right), the front view
(top) and side view (bottom) of 3-D reconstructed angel.

is 2.43 × 10−4. The ratio of 2.43 × 10−4 over 1.13 × 10−4 is 2.15, while the ratio

of Eq. (3.63) over Eq. (3.40) should be c2
1f

2
h = 0.52 × 32 = 2.25 in theory. So

with the percentage of pixels successfully unwrapped > 97%, the phase quality of 3-

pattern PCMP is twice better than 3-pattern unit-frequency PMP. Figure 3.17 shows,

scanned with 3-pattern PCMP and 3-pattern unit-frequency PMP, the cross-section

at 320th column of phase error of the board. Figure 3.18 shows 3-D point clouds of

angel scanned with 3-pattern unit-frequency PMP (left) and 3-pattern PCMP (right)

respectively.
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Figure 3.19: Scanned with 4-pattern PCMP, the visualization of unwrapped φh (left)
and the cross-section at 120th column of φh, φu, and unwrapped φh (right) of the
board.

For 4-pattern PCMP described by Eq. (3.68), the parameters are set as c2 = 1−c1,

αp = 200, βp = 55, R(yp) = cos(πyp), c1 = 0.5, 0.6, and 0.7 respectively, and fh = 4,

6, and 8 respectively. There are 9 groups of scans totally. The term R(φu) is computed

with Eq. (3.74), which has nothing to do with the ambient light intensity. First we

scan the white foam board, and Fig. 3.19 shows the visualization of unwrapped φh
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Figure 3.20: Scanned with 4-pattern PCMP and 4-pattern unit-frequency PMP, the
cross-section at 320th column of phase error of the board.
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Table 3.4: Percentage of pixels successfully unwrapped for 4-pattern PCMP with
different fh and c1.

c1 fh = 4 6 8
0.5 99.86 99.52 96.46
0.6 99.82 99.49 96.35
0.7 99.76 99.38 95.32

(left) and the cross-section at 120th column of φh, φu, and unwrapped φh (right) of

the board with fh = 4 and c1 = 0.5, and Fig. 3.20 shows, scanned with 4-pattern

PCMP and 4-pattern unit-frequency PMP, the cross-section at 320th column of phase

error of the board.

The percentage of pixels successfully phased unwrapped in this case are listed in

Table 3.4, which are a little higher than the predictions listed in Table. 3.2 because

the averaged α of the board was higher than the 0.5 employed in the simulation.

For the successfully unwrapped pixels, the ratios of the variance of absolute error of

4-pattern PCMP over 4-pattern unit-frequency PMP, which is 1.80× 10−4, are listed

in Table 3.5. Figure 3.21 shows the side views of the 3-D reconstructed point clouds

of the angel using 4-pattern unit-frequency PMP (top-1) and 4-pattern PCMP with

c1 = 0.5 and fh = 4 (top-2), c1 = 0.5 and fh = 6 (top-3), c1 = 0.5 and fh = 8 (top-4),

c1 = 0.6 and fh = 4 (top-5), c1 = 0.6 and fh = 6 (bottom-1), c1 = 0.6 and fh = 8

(bottom-2), c1 = 0.7 and fh = 4 (bottom-3), c1 = 0.7 and fh = 6 (bottom-4), and

Table 3.5: For successfully unwrapped pixels, the ratio of the variance of 4-pattern
PCMP over the variance of 4-pattern unit-frequency PMP (experimental measure-
ment/theoretical prediction).

c1 fh = 4 6 8
0.5 3.47/4.00 7.04/9.00 12.88/16.00
0.6 4.89/5.76 9.77/12.96 20.41/23.04
0.7 7.39/7.84 12.98/17.64 25.93/31.36
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Figure 3.21: Side views of the 3-D reconstructed angel using 4-pattern unit-frequency
PMP (top-1) and 4-pattern PCMP with c1 = 0.5 and fh = 4 (top-2), c1 = 0.5 and
fh = 6 (top-3), c1 = 0.5 and fh = 8 (top-4), c1 = 0.6 and fh = 4 (top-5), c1 = 0.6 and
fh = 6 (bottom-1), c1 = 0.6 and fh = 8 (bottom-2), c1 = 0.7 and fh = 4 (bottom-3),
c1 = 0.7 and fh = 6 (bottom-4), and c1 = 0.7 and fh = 8 (bottom-5).

c1 = 0.7 and fh = 8 (bottom-5).

For 5-pattern PCMP described by Eq. (3.83), the parameters are set as c2 = 1−c1,
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Figure 3.22: Scanned with 5-pattern PCMP, the visualization of unwrapped φh (left)
and the cross-section at 120th column of φh, φu, and unwrapped φh (right) of the
board.
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Figure 3.23: Scanned with 5-pattern PCMP and 5-pattern unit-frequency PMP, the
cross-section at 320th column of phase error of the board.

αp = 200, βp = 55, c1 = 0.5, 0.6, and 0.8 respectively, and fh = 6, 8, and 12

respectively. There are 9 groups of scans totally. First we scan the white foam board,

and Fig. 3.22 shows the visualization of unwrapped φh (left) and the cross-section

at 120th column of φh, φu, and unwrapped φh (right) of the board with fh = 6

and c1 = 0.5, and Fig. 3.23 shows, scanned with 5-pattern PCMP and 5-pattern

unit-frequency PMP, the cross-section at 320th column of phase error of the board.

The percentage of pixels successfully phase unwrapped, in this case, are listed

in Table 3.6, which are nearly the same as the predictions listed in Table. 3.3. For

the successfully unwrapped pixels, the ratios of the variance of absolute error of 5-

pattern PCMP over 5-pattern unit-frequency PMP, which is 1.53 × 10−4, are listed

Table 3.6: Percentage of pixels successfully phase unwrapped for 5-pattern PCMP
with different fh and c1.

c1 fh = 6 8 12
0.5 99.77 99.64 99.47
0.6 99.45 99.18 98.93
0.8 99.12 98.99 98.77
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Table 3.7: For the successfully unwrapped pixels, the ratio of the variance of 5-
pattern PCMP over the variance of 5-pattern unit-frequency PMP (experimental
measurement/theoretical prediction).

c1 fh = 6 8 12
0.5 8.35/9.00 15.27/16.00 32.87/36.00
0.6 12.01/12.96 20.61/23.04 41.94/51.84
0.8 21.33/23.04 36.86/40.96 73.70/92.16

in Table 3.7. Figure 3.24 shows the side views of the 3-D reconstructed point clouds

of the angel using 5-pattern unit-frequency PMP (top-1) and 5-pattern PCMP with

c1 = 0.5 and fh = 6 (top-2), c1 = 0.5 and fh = 8 (top-3), c1 = 0.5 and fh = 12

(top-4), c1 = 0.6 and fh = 6 (top-5), c1 = 0.6 and fh = 8 (bottom-1), c1 = 0.6 and

fh = 12 (bottom-2), c1 = 0.8 and fh = 6 (bottom-3), c1 = 0.8 and fh = 8 (bottom-4),

and c1 = 0.8 and fh = 12 (bottom-5).

Figure 3.24: Side views of the 3-D reconstructed angel using 5-pattern unit-frequency
PMP (top-1) and 5-pattern PCMP with c1 = 0.5 and fh = 6 (top-2), c1 = 0.5 and
fh = 8 (top-3), c1 = 0.5 and fh = 12 (top-4), c1 = 0.6 and fh = 6 (top-5), c1 = 0.6
and fh = 8 (bottom-1), c1 = 0.6 and fh = 12 (bottom-2), c1 = 0.8 and fh = 6
(bottom-3), c1 = 0.8 and fh = 8 (bottom-4), and c1 = 0.8 and fh = 12 (bottom-5).
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Chapter 4 Gamma Model and Its Analysis for Phase Measuring

Profilometry

Gamma distortion is the non-linear response of optical devices and follows power law.

Although the basic gamma model for SLI had been developed and has been studied,

the detailed equations describing the gamma issue have not been presented yet. In

this chapter, we will present a detailed gamma model which is employed to analyze

and address issues caused by gamma distortion, and finally that gamma model will

be applied to correct phase error raised from gamma distortion. The correcting can

be performed with and without gamma calibration. The RMS of phase error will be

reduced by more than 60× with gamma calibration and by more than 30× without

gamma calibration.

4.1 Gamma model for PMP

The projected PMP patterns are expressed as Eq. (1.1) and the ideal captured PMP-

patterned images are described by Eq. (1.2). If there exists gamma distortion in the

SLI system, the computation for A, B, and φ using Eqs. (1.3), (1.4), and (1.7) will not

be accurate. And in order to analyze the problem conveniently, we rewrite Eq. (1.1)

as

Ipn = αp

[
1

2
+

1

2
cos(2πfyp − 2πn

N
)
]

+ βp, (4.1)

where αp is a modulation constant controlling the intensity range of a sine wave, and

βp is a balance constant preventing underflow. Typically, αp equals to 255 for an
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8-bits per pixel and monochrome projector, and βp is set to zero.

In the camera, in order to simplify the gamma issue, the ambient light intensity

is not taken into account in this dissertation and the captured images distorted by

gamma are now described as

Icn = ααp

[
1

2
+

1

2
cos(φ− 2πn

N
)
]γ
, (4.2)

where Icn is the intensity of a pixel, α ∈ [0, 1] is the reflectivity of a scanned object,

φ ∈ [0, 2π) is the phase distortion of the sine wave, and γ is the combined gamma

value for the projector-camera pair and we consider γ ≥ 1. Note Icn, φ, α and γ are

functions of the coordinates of a pixel, (xc, yc), in the camera.

We note that, if the value of γ is unit, then there is no gamma distortion, and

Eq. (1.2) will be a normal PMP equation. But in practice, typically γ is larger than

one, and Eq. (1.2) is our original gamma model for PMP. We further note that,

regardless of whether γ is an integer or not, the binomial series

(1 + x)α =
∞∑
m=0

[(
α

m

)
xm
]

(4.3)

can be applied to Eq. (4.2) such that

Icn = αpαc

(
1

2

)γ ∞∑
m=0

[(
γ

m

)
cosm(φ− 2πn

N
)

]
. (4.4)

If we process the power of the cosine function in the Eq. (4.4) with

cos2n θ =
1

22n−1

n−1∑
k=0

{(
2n

k

)
cos[(2n− 2k)θ]

}
+

1

22n

(
2n

n

)
(4.5)

for even m and

cos2n+1 θ =
1

22n

n∑
k=0

{(
2n+ 1

k

)
cos[(2n− 2k + 1)θ]

}
(4.6)
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for odd m, then a final form of our gamma model can be expressed as

Icn = A+
∞∑
k=1

{
Bk cos[k(φ− 2πn

N
)]
}
, (4.7)

where

A =
1

2
B0 (4.8)

and

Bk = ααp

(
1

2

)γ−1 ∞∑
m=0

[bk,m] (4.9)

with

bk,m =
1

22m+k

(
γ

2m+ k

)(
2m+ k

m

)
(4.10)

for k a non-negative integer. So at last, there are three forms of our gamma model

expressed as Eqs. (4.2), (4.4), and (4.7) where Eq. (4.7) is consistent with the equation

derived from Fourier Series in [48] and [20]. While their analysis did not present details

of the coefficients A and Bk, we will analyze them next.

If γ is an integer ≥ 1, Bk = 0 for all k > γ. In Fig. 4.1, it is shown that B1 > 0

for all γ, B2 = 0 at γ = 1, B3 = 0 at γ = 1 and 2, and B4 = 0 at γ = 1, 2, and 3. If

γ is not an integer, Bk is a summation of infinite series but is absolutely convergent,

which can be proven by the Raabe’s test. For

∣∣∣∣∣bk,m+1

bk,m

∣∣∣∣∣ =

∣∣∣∣∣4m2 + (4k − 4γ + 2)m+ (k − γ + 1)(k − γ)

4m2 + (4k + 8)m+ 4(k + 1)

∣∣∣∣∣ , (4.11)

we find

lim
m→∞

∣∣∣∣∣bk,m+1

bk,m

∣∣∣∣∣ = 1 (4.12)

and

lim
m→∞

[
m

(
1−

∣∣∣∣∣bk,m+1

bk,m

∣∣∣∣∣
)]

= 1.5 + γ > 1, (4.13)
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Figure 4.1: Coefficients Bk.

which indicate that Bk converges absolutely.

Figure 4.1 shows computed B1, B2, B3, and B4 with αp = 1, α = 1 and γ ∈ [1, 5].

The values of Bk (k = 1, 2, 3, 4) are not divergent for non-integer γ value. Now

although Bk is a function of (α, γ), α only acts as a scale according to Eq. (4.9).

When we compute the ratio of Bk and Bk+1, not only can α be canceled, but the

relationship between Bk and Bk+1 can be derived as

Bk+1

Bk

=
γ − k

γ + (k + 1)
(4.14)

for Bk 6= 0. The procedure of derivation is as following. For Eq. (4.9), we only

consider the part inside the summation and have

B̂k =
∞∑
m=0

[bk,m] , (4.15)

with

bk,m =
1

22m+k

(
γ

2m+ k

)(
2m+ k

m

)
. (4.16)
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Bk
.

Then for

B̂k+1 =
∞∑
m=0

[bk+1,m] (4.17)

with

bk+1,m =
1

22m+k+1

(
γ

2m+ k + 1

)(
2m+ k + 1

m

)
=

(
γ − k − 2m

2m+ 2k + 2

)
bk,m. (4.18)

So we obtain

(γ − k)bk,m − 2(k + 1)bk+1,m = 2mbk,m + 2mbk+1,m. (4.19)

Sum the left and right part of the equal symbol above and we obtain

(γ − k)
∞∑
m=0

[bk,m]− 2(k + 1)
∞∑
m=0

[bk+1,m] = (γ − k)B̂k,m − 2(k + 1)B̂k+1. (4.20)

and

2
∞∑
m=0

[mbk,m] + 2
∞∑
m=0

[mbk+1,m] = (γ − k − 1)B̂k+1 − 2
∞∑
m=0

[mbk+1,m] + 2
∞∑
m=0

[mbk+1,m]

= (γ − k − 1)B̂k+1. (4.21)
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Figure 4.3: |Bk| in log scale.

Finally from Eq. (4.20) and (4.21), we have

(γ − k)B̂k − 2(k + 1)B̂k+1 = (γ − k − 1)B̂k+1, (4.22)

and then the ratio of Bk+1

Bk
is derived as Eq. (4.14). It is this relationship that is the

basis for this paper to calibrate the gamma model and even perform phase correction

with or without gamma calibration.

Ratios of B2

B1
, B3

B2
, B4

B3
and B5

B4
are shown in Fig. 4.2 where there are poles in the

figure at Bk = 0. From Eq. (4.14), we know

|Bk| > |Bk+1| (4.23)

by

∣∣∣∣Bk+1

Bk

∣∣∣∣ =

∣∣∣∣∣ γ − k
γ + (k + 1)

∣∣∣∣∣ < γ + k

γ + (k + 1)
< 1 (4.24)

and

Bk =

(
γ − k + 1

γ + k

)
Bk−1 =

[
Πk
n=2

(
γ − n+ 1

γ + n

)]
B1. (4.25)
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Because
∣∣∣γ−k+1
γ+k

∣∣∣ < 1, Bk decreases dramatically with the increase of k. Figure 4.3

shows that, with γ = 3.18 and k = 1, 2, . . ., 10, Bk decreases very quickly. Addition-

ally, there are some relationship as following

ααp = A+
∞∑
k=1

Bk (4.26)

and

ααp = 2
∞∑
k=1

B2k−1. (4.27)

between (A,Bk) and (αp, α).

When PMP algorithms including Eq. (1.3), (1.4), and (1.7) are performed to

Eq. (4.7) and if γ equals to 1, then the computed Ac, Bc, and φ are treated as their

true values without distortion according to

Ac =
1

2
ααp, (4.28)

Bc =
1

2
ααp, (4.29)

and

φ = arctan

[
sin(φ)

cos(φ)

]
. (4.30)

But if γ > 1, then the computed Ac, Bc, and φ are distorted by gamma where the

distorted Ac, notated by Ãc, is computed as

Ãc = A+
∞∑
m=1

[BmN cos(mNφ)] (4.31)

=
1

2
B0 +

∞∑
m=1

[BmN cos(mNφ)] , (4.32)
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which converges to A = 1
2
B0 with increasing N . Its absolute error, ∆Ac, is defined

as

∆Ac = Ac − Ãc

=
1

2
ααp

[
1−

(
1

2

)γ−1 ∞∑
m=0

(b0,m)

]
−
∞∑
m=1

[BmN cos(mNφ)] . (4.33)

If there is gamma distortion, i.e., γ > 1, even with a very lager N , then ∆Ac can not

be reduced to zero and is related to Bc with a constant scale 1−
(

1
2

)γ−1∑∞
m=0 (b0,m),

which is a function of γ.

If we let

SN =
2

N

N−1∑
n=0

[
Icn sin

(
2πn

N

)]

= B1 sin(φ) +
∞∑
k=1

{BkN+1 sin[(kN + 1)φ]}

−
∞∑
k=1

{BkN−1 sin[(kN − 1)φ]} (4.34)

and

CN =
2

N

N−1∑
n=0

[
Icn cos

(
2πn

N

)]

= B1 cos(φ) +
∞∑
k=1

{BkN+1 cos[(kN + 1)φ]}

+
∞∑
k=1

{BkN−1 cos[(kN − 1)φ]} , (4.35)

then the gamma distorted Bc, notated as B̃c, is computed as

B̃c =
[
(SN)2 + (CN)2

] 1
2

= B1D
1
2 (4.36)

where

D =

{ ∞∑
k=1

[
b−kN sin(kNφ)

]}2

+

{
1 +

∞∑
k=1

[
b+
kN cos(kNφ)

]}2

, (4.37)
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b−kN = GkN−1(γ)−GkN+1(γ), (4.38)

b+
kN = GkN−1(γ) +GkN+1(γ), (4.39)

and

Gm(γ) =
Bm

B1

= Πm
n=2

(
γ − n+ 1

γ + n

)
. (4.40)

The term, B̃c, converges to B1 with increasing N . Its absolute error, ∆Bc, is defined

according to

∆Bc = Bc − B̃c

=
1

2
ααp

(
1−

(
1

2

)γ−2 ∞∑
m=0

(b1,m)D
1
2

)
, (4.41)

which can not converge to zero with increasing N .

Finally, the distorted phase φ̃ is computed as

φ̃ = arctan
(
SN
CN

)
= arctan

{
sin(φ) +Hs(γ, φ)

cos(φ) +Hc(γ, φ)

}
, (4.42)

where

Hs(γ, φ) =
∞∑
k=1

GkN+1(γ) sin[(kN + 1)φ]−
∞∑
k=1

GkN−1(γ) sin[(kN − 1)φ] (4.43)

and

Hc(γ, φ) =
∞∑
k=1

GkN+1(γ) cos[(kN + 1)φ] +
∞∑
k=1

GkN−1(γ) cos[(kN − 1)φ]. (4.44)

The absolute phase error ∆φ is defined as

∆φ = φ− φ̃
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Figure 4.4: The absolute phase Error for different N.

= arctan

[
sin(φ)

cos(φ)

]
− arctan

(
SN
CN

)

= arctan


∑∞
k=1

[
b−kN sin(kNφ)

]
1 +

∑∞
k=1

[
b+
kN cos(kNφ)

]
 . (4.45)

Obviously, the phase error ∆φ is related to γ, the true phase φ, and the number of

patterns N . It independent of α and αp in Eq. (4.2). Phase error ∆φ will converge

to zero with increasing N because b−kN decreases dramatically with the increase of N .

The larger the N , the smaller the ∆φ and the less effect the γ.

At sin(Nφ) = 0 or φ = πn
N

(n = 0, 1, . . . , N − 1), ∆φ is zero, which means that

there is no phase error and φ̃ = φ = πn
N

. Phase errors for N = 3, 4, 5 and 6 with

γ = 3.18 are shown in Fig. 4.4 and the RMS of phase error for N = 3, 4, . . ., 40 are

shown in Fig. 4.5. It is seen that phase error decreases very quickly when pattern

number N increases. The RMS errors for N = 3, 4, 5 and 6 are shown in Fig. 4.6

with γ changed from 1 to 5. The RMS errors are zero at γ = 1 for all N , at γ = 2
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Figure 4.5: The RMS of phase error for different N in log scale.

for N = 4, 5 and 6, at γ = 3 for N = 5 and 6, and at γ = 4 for N = 6. The

RMS of phase error is not always increased when the gamma is increased. Actually

that is true when γ + 2≥N , while the RMS is bounded between any two zero points
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Figure 4.6: RMS of Phase Error for different N in log scale.
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according to the Rolle’s Theorem, if γ+ 2≤N . Figure 4.6 shows that situation where

it is found that, with some gamma value, the optimized number of patterns is at least

bγc+ 3.

In Eq. (4.34) and (4.35) when sin
(

2πn
N

)
and cos

(
2πn
N

)
are multiplied to Icn and sum-

mation operations are performed, the first order harmonic mixed with the (kN±1)-th

order harmonic can be extracted. More commonly when sin
(
m2πn

N

)
and cos

(
m2πn

N

)
are applied, the m-th order harmonic mixed with (kN±m)-th order harmonic will be

obtained according to

Sm,N =
2

N

N−1∑
n=0

[
Icn sin

(
m

2πn

N

)]

= Bm sin(mφ) +
∞∑
k=1

{BkN+m sin[(kN +m)φ]}

−
∞∑
k=1

{BkN−m sin[(kN −m)φ]} , (4.46)

and

Cm,N =
2

N

N−1∑
n=0

[
Icn cos

(
m

2πn

N

)]

= Bm cos(mφ) +
∞∑
k=1

{BkN+m cos[(kN +m)φ]}

+
∞∑
k=1

{BkN−m cos[(kN −m)φ]} , (4.47)

where m ∈ [1, N−1
2

] for odd N and m ∈ [1, N
2
− 1] for even N . We call the m-th order

harmonic the main harmonic and the mixed kN±m-th order harmonic as same-phase

harmonic. The effect of the same-phase harmonic to the main harmonic depends on

the number of patterns N . The larger the N , the smaller the effects of the same-

phase harmonics. If m � N
2

with the truth BkN±m�Bm, Eq. (4.46) and (4.47) can
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be treated as

2

N

N−1∑
n=0

[
Icn sin(m

2πn

N
)
]
≈Bm sin(mφ) (4.48)

and

2

N

N−1∑
n=0

[
Icn cos(m

2πn

N
)
]
≈Bm cos(mφ). (4.49)

So Bm will be computed by

Bm ≈
2

N


[
N−1∑
n=0

Icn sin
(
m

2πn

N

)]2

+

[
N−1∑
n=0

Icn cos
(
m

2πn

N

)]2


1
2

(4.50)

employing a large N . We will use this property to calculate the γ value later.

When N is even and m = N
2

, sin(m2πn
N

) = sin(nπ) is zero, and Eq. (4.46) is zero in

this case. But Eq. (4.47) is not zero for cos(m2πn
N

) = cos(nπ) = ±1 and is rewritten

as

Bcos =
2

N

N−1∑
n=0

[
Icn cos(m

2πn

N
)
]

= 2
∞∑
m=0

BN
2

+mN cos[(
N

2
+mN)φ], (4.51)

which is useful for phase correction later. Using Eq. (4.46) and (4.47), the phase of

m-th frequency can be derived as

φm = arctan

(
Sm,N
Cm,N

)
, (4.52)

which is also helpful for phase correction later.

4.2 Phase correction with gamma calibration

The relationship between the true phase, φ, and the measured and gamma distorted

phase, φ̃, is described in Eq. (4.42). It is certain that phase correction can be realized
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by solving the following function at f1(γ, φ) = 0

f1(γ, φ) = arctan

[
sin(φ) +Hs(γ, φ)

cos(φ) +Hc(γ, φ)

]
− φ̃, (4.53)

where Hs(γ, φ) and Hc(γ, φ) are defined in Eq. (4.43) and (4.44), and φ̃ is the distorted

phase measured by Eq. (1.7). There are two unknown parameters, γ and φ, in the

Eq. (4.53), so once an appropriate γ value is available, φ can be computed easily, and

phase correction is achieved.

Traditionally to measure the gamma of a particular SLI system [25], a series of

uniform patterns with different grayscale values are projected onto a white board,

and a camera records the intensities, corresponding to the patterns, of one pixel or

small set of pixels in a particular area of the screen. Then the gamma value can be

computed with those recorded intensity values by fitting a curve, and that gamma

value is applied for every pixel globally. In contrast by taking advantage of the

Eq. (4.14), γ can be computed by

γ =
kBk + (k + 1)Bk+1

Bk −Bk+1

(4.54)

with Bk 6=Bk+1. So if we know Bk and Bk+1, especially B1 and B2, then γ can be

calculated according to

γ =
B1 + 2B2

B1 −B2

, (4.55)

where B1 and B2 are computed by Eq. (4.50). Then the gamma values for each pixel

in the image can be obtained directly and locally without fitting any curves. To get

B2, at least 5 PMP patterns should be involved with more patterns leading to a more

accurate computation of B1, B2, and γ.
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Figure 4.7: Gamma computation versus the number of patterns, N , showing (left)
the computed gamma and (right) the RMS of error in log scale.

With γ = 3.18 and N = 5, 6, . . ., 40 respectively, B1 and B2 are computed

with m = 1 and m = 2 by Eq. (4.50), then γ is obtained easily through Eq. (4.55).

Figure 4.7 (left) shows the computed γ with different N and Fig. 4.7 (right) shows

the corresponding RMS of the computation error. With the increasing of the N , the

error decreases quickly, and the computed γ converges to the true γ.

Once an accurate gamma value for a pixel is obtained, then in Eq. (4.53), there is

only the one unknown parameter, φ, left to solve. The distorted phase at that pixel

can be accurately corrected according to

f2(φ) = arctan

[
sin(φ) +Hs(γ, φ)

cos(φ) +Hc(γ, φ)

]
− φ̃ (4.56)

at f2(φ) = 0. The upper limit of summations in Eq. (4.43) and (4.44) does not need

to be infinity and can be any number satisfying some accuracy requirement. The

accuracy depends on how many harmonics are involved with more harmonics leading

to higher accuracy. Suppose γ = 3.18 is known and N = 3, we employ Eq. (4.56)

to correct phase with the 2nd, 4th, 5th, 7th, and 8th harmonics, respectively. The
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Table 4.1: RMS of phase error ( the RMS of phase error is 0.3033 before correction )

2nd 4th 5th 7th 8th
0.004 3.7×10−4 2.9×10−5 6.2×10−6 1.8×10−6

RMS of the phase errors are listed in Table.4.1. The RMS of phase error decreases

dramatically with more harmonics.

In practice, the gamma value at each pixel is not always exactly the same, which

is shown experimentally later. So a trade-off solution is to apply an averaged gamma

value, γ̄, globally to Eq. (4.56) to become

f3(φ) = arctan

[
sin(φ) +Hs(γ̄, φ)

cos(φ) +Hc(γ̄, φ)

]
− φ̃. (4.57)

This solution is more useful in practice because gamma calibration needs to be per-

formed only once.

4.3 Phase correction without gamma calibration

In the Eq. (4.53), there are two unknown parameters, γ and φ, such that not having

an accurate estimation of γ, the true φ can not be solved directly at f1(γ, φ) = 0.

Obviously, one or more additional constraints/conditions are needed to help solve

the equation. In the previous section, we employed gamma calibration to obtain

the gamma value and reduce Eq. (4.53), a two-parameter function, to Eq. (4.56) or

(4.57), both one-parameter functions. In this section, we solve the problem without

directly performing gamma calibration but by solving Eq. (4.53) in terms of a series of

potential constraints, derived from our gamma model, for different pattern numbers.

We note that as an optimization procedure, it may be beneficial to constrain the

determination of γ and φ. So by applying determinant constraints, there are three
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Figure 4.8: The (left) distorted and corrected phase for γ = 3.18 and the (right)
corresponding distorted and corrected phase error using N = 3 constrained phase
optimization without gamma calibration.

cases one should consider depending on the number of projected PMP patterns.

For instance when N = 3 and when there is no ambient light or the intensity of

ambient light is much smaller than the minimum intensity of projected patterns, Ac

and Bc can be used to form the second condition function for Eq. (4.53) as

fc1(γ, φ) =
1
2
G0(γ) +

∑∞
k=1[G3k(γ) cos(3kφ)]

{[sin(φ) +Hs(γ, φ)]2 + [cos(φ) +Hc(γ, φ)]2}
1
2

− Ãc

B̃c
, (4.58)

with

G0(γ) =
B0

B1

=
γ + 1

γ
, (4.59)

where Hs, Hc, and Gm(γ) are defined in Eq. (4.43), (4.44), and (4.40) and Ãc and B̃c

are computed with Eq. (1.3) and (1.4). Figure 4.8 (left) shows the corrected phase

using the constraint above with γ = 3.18 and the error is shown in Fig. 4.8 (right).

With the added constraint, γ converged to 3.18 for all pixels.

For N = 4, by means of Eq. (4.51), we can obtain the second condition for
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Figure 4.9: The (left) distorted and corrected phase for γ = 6.36 and the (right)
corresponding distorted and corrected phase error using N = 4 constrained phase
optimization without gamma calibration.

Eq. (4.53) as

fc2(γ, φ) =
2
∑∞
m=0 {G2+4m(γ) cos[(2 + 4m)φ]}

{[sin(φ) +Hs(γ, φ)]2 + [cos(φ) +Hc(γ, φ)]2}
1
2

− B̃cos

B̃c
, (4.60)

where B̃cos is measured by Eq. (4.51). Figure 4.9 (left) shows the corrected phase

using the constraint above with γ = 6.36 and the error is shown in Fig. 4.9 (right).

The RMS of error is nearly zero and as before with the added constraint, γ converged

to simulated value (6.36) for all pixels.

For N ≥ 5, the second frequency can be obtained through Eq. (4.52) with m = 2,

and the second condition function for Eq. (4.53) becomes

fc3(γ, φ) = arctan

[
sin(2φ) +Hs2(γ, φ)

cos(2φ) +Hc2(γ, φ)

]
− φ̃2, (4.61)

with

Hs2(γ, φ) =
∞∑
k=1

GkN+2(γ) sin[(kN + 2)φ]−
∞∑
k=1

GkN−2(γ) sin[(kN − 2)φ], (4.62)

and

Hc2(γ, φ) =
∞∑
k=1

GkN+2(γ) cos[(kN + 2)φ] +
∞∑
k=1

GkN−2(γ) cos[(kN − 2)φ], (4.63)
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Figure 4.10: The (left) distorted and corrected phase for γ = 10.36 and the (right)
corresponding distorted and corrected phase error using N = 5 constrained phase
optimization without gamma calibration.

where φ̃2 is measured by Eq. (4.52). Figure 4.10 (left) shows the corrected phase

using the constraint above with γ = 10.36 and the error is shown in Fig. 4.10 (right).

The RMS of error is nearly zero and as before with the added constraint, γ converged

to simulated value (10.36) for all pixels.

4.4 Phase correction with phase matching

Phase matching was studied in [33] and [119] where it was shown that matching

phase, across two cameras, can be an effective means of reconstructing depth by

means of triangulating phase as opposed to matching between a single camera and

single projector. Although not explicitly stated, this mechanism is an effective way to

minimize the effects of gamma, assuming that both cameras are equally affected, such

that both cameras see the same distorted phase image. This section proves that, if a

SLI system, as shown in Fig. 4.11, is composed of a projector and two cameras, then

intensities of the same point, on the target surface, are typically viewed different in
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Figure 4.11: Gamma correction with phase matching.

the two cameras. But according to Eq. (4.42), the phases discovered by the cameras

are exactly the same, if the gamma values observed by the two cameras are the same.

The same distorted phase is then the basis for performing phase matching, and thus,

the phase can be corrected without knowing the value of gamma.

4.5 Experiment

In this section, several experiments are performed to verify the proposed phase cor-

rection algorithms for the proposed gamma model. The first experiment performs

phase calibration with gamma calibration while the second group of experiments per-

form phase correction without gamma calibration. For this purpose, our employed

SLI system is composed of an ordinary PC, an Infocus LP70+ DLP projector with

1280× 1024 pixel resolution and 1000 ANSI lumens output, and an 8-bits per pixel,

monochrome, Prosilica EC1280 camera with a maximum resolution of 1280 × 1024

133



Figure 4.12: Photos of the scanned objects used in our experiment showing (left) a
white board with uniform texture and (right) a plastic fish with varying texture.

pixels. The scanned objects in our experiments, whose photos are shown in Fig. 4.12,

are a flat, white, sheet of foam board with uniform texture and a plastic toy fish

with varying texture. The ground truth phases of the scanned objects were both

Figure 4.13: The ground truth of 3-D reconstructions of the textureless foam board
(left) and the textured plastic fish (right) viewed from the front (top) and from above
(bottom).
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Figure 4.14: The (left) best-fit curve for a pixel with a measured gamma value of
2.153 and (right) the histogram of the calibrated gamma in the entire image where
the mean is 2.2123 with variance 2.67×10−4.

generated using PMP with N = 48 and a frequency of f = 16, or 16 sinusoidal pe-

riods spanning the projector’s field of view. Figure 4.13 shows the ground truth of

3-D reconstructions of the textureless foam board (left) and the textured plastic fish

(right) viewed from the front (top) and from above (bottom). Because we are only

focusing on gamma distortion, the effects of measurement uncertainty (white-noise)

were reduced by averaging multiple PMP scans as suggested by Huang [21].

Phase correction with gamma calibration

As stated previously, traditional curve fitting involves measuring the gamma for a

small, central region of the projected pattern as demonstrated in Fig. 4.14 (left)

where we show the best-fit curve for a set of intensity measurements made over 160

images. The best-fit curve, in this case, corresponds to a gamma value of 2.153. But

as we know, this approach is not robust since we do not know if this particular gamma

value represents a minimum, maximum, or mean value the entire range of gamma
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Figure 4.15: The error of distorted phase and corrected phase (with gamma calibra-
tion) for γ = 2.21 of the 512th row of the board.

across the projected field of view.

As an alternative approach to measuring gamma, we note that, by taking ad-

vantage of the relationship between B1 and B2, we can compute gamma directly by

means of Eq. (4.55) for each pixel, across the entire image, such that B1 and B2 are

obtained by the Eq. (4.50) with m = 1 and m = 2. We can then calculate a gamma

matrix with a reliably estimated mean gamma value. To get even more accurate B1

and B2, we can average multiple estimates together. Figure 4.14 (right) shows the

histogram of the computed gamma for each valid pixel, averaged over 48 estimates,

in the image with a mean value of 2.2123 and variance 2.67×10−4. From observation,

the measured histogram follows a Gaussian distribution.

Now having a calibrated gamma estimate, we can now evaluate the effects of phase

correction when scanning our white board using N = 3 pattern PMP with pattern

frequency f = 8. Using Eq. (4.57) with the calibrated mean gamma value of 2.2123
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Figure 4.16: The 3-D reconstructions of the textureless foam board viewed from the
front and from above for the (left) uncorrected phase and (right) corrected phase with
gamma calibration.

for all phase pixels, the RMS of the error of the 512th row, in the corrected phase

image, is reduced from 0.0256 to 4.2×10−4 as shown in Fig. 4.15 versus 1.1×10−3 had

we employed the traditionally calibrated gamma value of 2.153. The corresponding,

Figure 4.17: The 3-D reconstructions of the textured plastic fish viewed from the
front and from above for the (left) uncorrected phase and (right) corrected phase
with gamma calibration.
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Figure 4.18: Employing a second constraint for N=3, the error of gamma distorted
phase and corrected phase for γ = 2.21 of the 512th row of the board.

reconstructed, 3-D point clouds for the foam board using the ground truth phase, the

gamma distorted phase, and the corrected phase are illustrated in Fig. 4.16.

Now when the same algorithm is applied to a an arbitrary surface (toy fish)

with varying texture, a similar improvement (4.9× 10−4 versus 1.5× 10−3) in phase

can be seen as illustrated in Fig. 4.17 where the calculated gamma, derived from

the relationship between B1 and B2, was 2.2079. This second result is especially

important because gamma calibration was performed using this arbitrary, textured,

toy fish surface. We did not carry over the calibration result from the textureless

foam board, as one might expect to have performed calibration.

Phase correction without gamma calibration

In the previous subsection, we demonstrated that, with gamma calibration, phase can

be greatly improved by means of gamma correction, but as we will show, a stand-
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Figure 4.19: The 3-D reconstructions of the textureless foam board viewed from the
front and from above for the (left) uncorrected phase and (right) corrected phase with
N = 3 constrained gamma and phase optimization.

alone calibration procedure is not necessary in order to perform this phase correction.

If the gamma value is not available or not easily measured, the distorted phase can be

corrected by minimizing the energy in the harmonic components by solving Eq. (4.53)

Figure 4.20: The 3-D reconstructions of the textured plastic fish viewed from the
front and from above for the (left) uncorrected phase and (right) corrected phase
with N = 3 constrained gamma and phase optimization.
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Figure 4.21: Employing a second constraint for N=4, the error of gamma distorted
phase and corrected phase for γ = 4.42 of the 512th row of the board.

versus both the phase angle, φ, and the gamma parameter, γ. As an optimization

problem though, the quality of the final solution depends upon any constraints that

might be applied.

In order to demonstrate constrained optimization, we perform N = 3 pattern

PMP with nearly zero ambient light such that Eq. (4.58) becomes a constraint for

Eq. (4.53). Figure 4.18 shows that RMS of the error of the 512th row of the board,

of the corrected phase image, is reduced to 7.5957 × 10−4 for a 33× improvement

compared to the 0.0256 RMS of the error of distorted phase. For completeness,

Fig. 4.19 shows the reconstructed 3-D point clouds for the textureless foam board

from the ground truth phase, gamma distorted phase, and corrected phase. Applying

the same constrained optimization to our plastic fish with varying texture (Fig. 4.20)

produces a similar improvement over uncorrected reconstruction.

Using N = 4 pattern PMP with frequency f = 8 and γ = 2.21, the phase
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Figure 4.22: The 3-D reconstructions of the textureless foam board viewed from the
front and from above for the (left) uncorrected phase and (right) corrected phase with
N = 4 constrained gamma and phase optimization.

error is very small. So in order to show our phase correction algorithm for N = 4, we

artificially adjusted our projector’s gamma to 4.42 in software, just as Baker et al. [20]

did. By doing so, Eq. (4.60) can act as the constraint on Eq. (4.53). Figure 4.21 shows

Figure 4.23: The 3-D reconstructions of the textured plastic fish viewed from the
front and from above for the (left) uncorrected phase and (right) corrected phase
with N = 4 constrained gamma and phase optimization.
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Figure 4.24: Employing a second constraint for N=5, the error of gamma distorted
phase and corrected phase for γ = 7.73 of the 512th row of the board.

that RMS of the error of the 512th row of the board, of the corrected phase image,

is reduced to 3.4803× 10−4 for a 43× improvement over the 0.0152 RMS of the error

of the uncorrected phase image. The corresponding 3-D points clouds for the foam

Figure 4.25: The 3-D reconstructions of the textureless foam board viewed from the
front and from above for the (left) uncorrected phase and (right) corrected phase with
N = 5 constrained gamma and phase optimization.
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Figure 4.26: The 3-D reconstructions of the textured plastic fish viewed from the
front and from above for the (left) uncorrected phase and (right) corrected phase
with N = 5 constrained gamma and phase optimization.

board are demonstrated in the Fig. 4.22. Figure 4.23 shows similar improvements for

the textured fish.

Using N = 5 pattern PMP with frequency f = 8 and γ = 2.21, phase error will

almost entirely erased. So for the same reason mentioned above, the gamma is set to

7.73 in software while Eq. (4.61) becomes the constraint on Eq. (4.53). Figure 4.24

shows that RMS of the error of the 512th row of the board, in the corrected phase

image, is reduced to 3.1519 × 10−4 for a 39× improvement over the 0.0123 RMS of

the error for uncorrected phase. The reconstructed 3-D points clouds for the foam

board are illustrated in Fig. 4.25. Figure 4.26 shows the 3-D reconstruction results

of the fish.
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Chapter 5 Conclusion

As a non-contact, active, triangulation-based 3-D reconstruction technique, SLI is

well-known for ease of use and high-accuracy. Numerous SLI pattern coding and

decoding strategies are readily available since there is no optimal encoding scheme

for all applications. These various pattern strategies can be divided into the two

categories of multi-shot and one-shot pattern schemes where, if the scanned object is

not moving, then time-multiplexed and stripe-shifted pattern schemes are always the

first choice. But in order to scan a moving object, the best methods typically employ

one-shot SLI pattern.

As shown in Fig. 1.12, researchers have proposed lots of one-shot SLI pattern

strategies in order to achieve real-time 3-D reconstruction. One-shot SLI scheme is

insensitive to the motion of object and it is not necessary to make synchronization

between the camera and the projector as multi-shot SLI pattern schemes. Except

Koninckx et al.’s adaptive pattern scheme [1], the other one-shot patterns are stati-

cally coded and never changed in scanning. Some researchers applied the multiplex-

ing techniques of electrical communication theory to SLI pattern design and proposed

one-shot schemes such as FTP [53] and CP [32]. Taking advantages of the color fea-

tures of the camera and projector, i. e., three RGB color channels, some researchers

developed color channel multiplexing SLI pattern schemes [58,59,60,61,62]. Chen et

al. [64] proposed sawtooth pattern which was a kind of direct coding method, and

scanned object was required with uniform texture. Then there are a large group
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of researchers who study one-shot pattern based on spatial neighborhood coding

such as non-formal codification [65, 66, 2], De Bruijn Sequences [67, 3, 52], and M-

arrays [68,69,4].

Because one-shot SLI pattern strategies suffer from low spatial resolution, poor

depth accuracy, and high computation cost, various researchers have attempted to

scan moving objects with high resolution and accuracy by using multi-shot SLI and

driving the camera/projector pair at such high frame rates as to minimize object

motion. Zhang and Huang [5] developed a real-time 3-D SLI system which employed

fast three-step phase-shifting pattern scheme. That system could capture image at

120 fps and with resolution of 532 × 500, generate phase map at 163.93 fps, and re-

construct 3-D point clouds with the phase-to-height representation at 80 fps. Zhang

and Yau realized a real-time 3-D SLI scanner with 2+1 pattern strategy [6]. That

scanner could capture image at 180 fps and with resolution of 640 × 480, and ac-

quired data had to be post-processed mainly for slow phase generation and slow 3-D

reconstruction of the absolute 3-D coordinates representation of point clouds. Later

Zhang and Yau sped up 3-D reconstruction to 25.56 fps by taking advantage of GPU

computation [74].

5.1 Real-Time SLI

In this dissertation, a novel real-time SLI 3-D system has been proposed and imple-

mented with much higher performance both in resolution and speed compared to the

system of Zhang and Huang [5]. The key to achieving real-time performance was

introducing LUT-based computation in order to eliminate the bottleneck presented
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by the arctangent function as well as the matrix inversion operations needed to map

phase to 3-D. For the arctangent function, Huang and Zhang [71] implemented a fast

three-step phase-shifting algorithm but required phase compensation. Separately,

Guo et al. [116] proposed an approximate arctangent algorithm at the cost of accu-

racy. So in an effort to calculate the arctangent function without sacrificing accuracy,

this dissertation analyzed the PMP equations carefully and found that LUTs could

be implemented for three special cases of having the number of PMP patterns equal

to 3, 4, and 6. Tested by a stand-alone program, the speed of the proposed LUT-

based algorithm achieved 1063.83 fps for N = 3, 800 fps for N = 4, and 456.62 fps

for N = 6 respectively, while, employing arctangent function directly, the speed of

phase generation was 55.65 fps for N = 3, 52.91 fps for N = 4 and 53.33 for N = 6.

With regards to the matrix operations for converting phase to 3-D coordiantes,

Zhang and Huang [5] employed a phase-to-height method instead generating abso-

lute 3-D coordinates in order to avoid the time-consuming matrix operations, but

phase-to-height mapping will not work if the scanned object is out of the range of the

reference plane. So Zhang et al. [74] attempted to compute the absolute 3-D coordi-

nates with matrix operations by means of GPU processing, but the improvement was

limited. So by expanding the matrix operations including matrix inverse and matrix

multiplication carefully, this dissertation rewrote the equations for 3-D reconstruction

with some corresponding LUTs built to replace the redundant processing. Tested by

a stand-alone program, the LUT-based absolute 3-D coordinates can achieve 228.83

fps, while that speed is only 22.22 fps with matrix operations. As a comparison,

the new approach speeds up the computation by 10 times, while the improvement
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of Zhang et al. was 6 times even with the assistance of GPU processing. This kind

of LUT for 3-D reconstruction is suited for all triangulation-based 3-D measurement

techniques including stereo vision.

5.2 Pattern Robustness

Given our approach to real-time SLI to use multiple patterns multiplexed in time,

the sensitivity of our system to object motion is reduced by minimizing the number

of component patterns, but by doing so, we also increase the sensitivity of our system

to noise and distortion. For the issue of additive noise, the proposed solution is to

employ high-frequency PMP patterns, but this typically requires phase unwrapping,

which increases the processing load for pattern demodulation and, thereby, precludes

real-time processing. So in order to preserve our real-time processing, we introduced

a low-frequency period cue into the projected pattern set such that pattern demodu-

lation involved extracting two phase terms with one serving as the phase unwrapping

parameter and the second serving as a noise-resilient phase term for building our

3-D point cloud. While traditional two-frequency PMP scanning involves at least 6

patterns (3 patterns low and 3 patterns high), this new pattern strategy, called Phase

Channel Multiplexing Pattern (PCMP), can involve as few as 3 patterns.

To introduce PCMP, the traditional PMP equations were rewritten with new pa-

rameters in order to analyze issues easily. The modulation and DC components of the

conventional PMP equation were expressed by object reflectivity, pattern modulation,

and intensity of ambient light. Then an additive noise model was made, and the abso-

lute errors of the phase, reflectivity, and intensity of ambient light were derived. The
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original equations describing these errors were very complicated and were simplified

later. With the simplified equations and the measured values of DC components, a

simple noise measurement for the SLI system was also proposed. Harmonic analysis

was then utilized to embed a unit-frequency signal into a high-frequency signal where

the high-frequency signal suppressed the additive noise efficiently and was used for

final 3-D reconstruction. The unit-frequency signal acted as reference information to

unwrap the high-frequency signal temporally.

Using only 3 patterns, the DC channel was employed to contain a reference signal

where the intensity of the ambient light had to be calibrated. In our experiments,

the intensity of the ambient light was a negative value related to the features of the

camera. Compared to 3-pattern unit-frequency PMP, the variance of phase error

could be reduced by 2.25 times when the high frequency is 3 in the 3-pattern PCMP.

Using 4 patterns, the half phase channel was used for embedding a reference signal

without ambient light calibration, because the intensity of ambient light canceled out

automatically for more than 3 patterns. With the percentage of phase unwrapping

successfully larger than 99% and the high frequency set to 6 periods across the pro-

jector field of view, the variance of phase error was reduced by more than 7 times

compared to 4-pattern unit-frequency PMP. Finally when the number of patterns

was 5, the second full-phase channel was stored as a reference signal. The intensity

of ambient light was then removed. With the percentage of phase unwrapping suc-

cessfully larger than 99% and the high frequency set to 6, the variance of phase error

was reduced by more than 21 times in the experiments compared to the 5-pattern

unit-frequency PMP.
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Separate from additive noise, another issue that had to be addressed in this dis-

sertation because of the low pattern number that we employed relates to projec-

tor/camera distortion caused by a non-linear response of the optical devices. This

gamma distortion issue was addressed previously by modeling the distortion by the

power law and expanding by Fourier series to extract a set of higher-order harmon-

ics. So the key to solve this non-linearity was removing the high-order harmonics

from the captured gamma-distorted images. However without a detailed expression

for the gamma model, it has been difficult to achieve gamma correction. So in this

dissertation, a mathematical and detailed gamma model for PMP was proposed such

that gamma correction was performed with or without calibration.

With the proposed gamma model, the ratio relationship between any two mag-

nitudes of harmonics was derived such that a novel gamma calibration method was

presented according to the ratio relationship. Where traditional gamma calibration

typically employed a white board as the target and lots of intensity-varied uniform

pattern are projected onto the board, the gamma calibration method proposed in this

dissertation computes all the gamma value for valid pixels in the image, and the mean

of all the computed gamma values was then chosen as the global gamma. According

to our experiments, the histogram of the gamma set was a Gaussian distribution with

very small variance. So it was a reliable estimate of the true gamma.

Two categories solutions to correct gamma distortion were also presented in this

dissertation. The first involved performing phase correction with gamma calibration

so that, once a global gamma value was determined, the distorted phase could be

corrected by some kind of numerical method such as by bisection. In our experiments,
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the RMS of phase error was reduced 66 times. A second category of phase correction

was performed without gamma calibration. This approach involved three separate

cases according to number of patterns employed, i. e., N = 3, 4, and 5. For N = 3,

the intensity of ambient light had to be calibrated or kept as small as possible, then

the information in the DC channel could be employed to correct phase error. For

N = 4, there was no constraint on the intensity of ambient light. For N ≥ 5, the

second phase was useful for gamma correction, and in our experiments, the RMS of

phase error was reduced more than 33 times without gamma calibration.

5.3 Broader Impact

Real-time SLI 3-D reconstruction has studied for numerous applications including

fast, non-contact, human-computer interfacing (HCI) for entertainment/control, fast

3-D modeling for compute-aided design, fast 3-D biometrics for security, and so on.

While many techniques exist, most can only acquire data in real-time but require non-

real-time post-processing. So in practice, the applications for these many techniques

limited. Even with the assistance of GPU, the improvement of processing speed is

still limited. The proposed LUT-based algorithms, in this dissertation, can achieve

the processes of (1) data acquisition, (2) phase generation, (3) 3-D reconstruction,

and (4) 3-D display all in real time.

The proposed framework is also not limited to specific pattern strategies and

could, for example, be used to implement the real-time pattern strategies of Zhang

et al to greatly increase the rate of phase generation over the rates so far reported.

Similarly, the 3-D reconstruction LUT-process is well suited to all triangulation-based
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3-D measurement techniques including stereo vision and, hence, could play a vital

role in those alternate systems. In fact, Yongchang Wang’s proposed period coded

phase shifting (PCPS) strategy [120] was demonstrated experimentally in real-time

using the LUT-based framework of this dissertation.

Now while introducing our LUT-based framework, we initially only considered

unit-frequency PMP patterns where the obtained phase was particular sensitive to

noisy, but that does not mean the reconstructed 3-D data was useless. In fact, if a

model of the scanned object, such as a moving sphere with some radius, were known,

the center of the sphere in the 3-D world coordinates could be measured by a fitting

method with statistical theory, and a perfect 3-D reconstructed moving sphere could

be shown according to the measured center location and the known radius. This is

an application for virtual reality (VR), and it the scanned object were a moving hand

with different gestures, the coarse 3-D data could still be helpful for recognition by

means of statistical methods or artificial intelligence (AI)/machine learning theory.

This is an application for fast HCI. A related research project led by Dr. Hassebrook

had been taken involving one-shot CP scheme. That project had been supported by

the National Aeronautics and Space Administration (NASA).

Moving beyond unit-frequency PMP, the PCMP scheme was developed in order

to achieve more accurate 3-D in real time. In this scheme, a unit-frequency signal,

acting as a reference for temporal phase unwrapping, was embedded with a high-

frequency signal by taking advantage of different phase channels according to the

particular number of patterns, i. e., N = 3, 4, and 5, respectively. The proposed

PCMP scheme inherited the advantages of temporal phase unwrapping without in-
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troducing additional intermediate patterns. And although PCMP’s time-multiplexed

high-frequency stripe patterns are sensitive to motion, PCMP is still useful in some

applications. For instance in human face or fingerprint scanning, scanned subjects

may not be able to hold still for very long, so it is necessary to acquire data as

accurately and as fast as possible during the time people can hold still.

For the issue of non-linear response in the optical devices, a complete and detailed

gamma model was built such that the phenomena of gamma distortion on SLI can

be explained theoretically; gamma in an SLI system can be calibrated robustly and

easily; and especially phase error caused by gamma can be corrected not only with

gamma calibration, but also without gamma calibration according to different number

of patterns. The goal of phase correction is to remove the harmonics caused by

gamma, while in my PCMP, harmonics are introduced in purpose to embed a reference

signal for phase unwrapping. This means a factor can play roles both in disadvantage

and advantage according to different applications. I believe the issue of one-parameter

gamma distortion in PMP is done with my gamma model and its corresponding

analysis. Gamma models for other pattern strategies can be built and analyzed by a

similar way.

So in summary, it is the goal of this dissertation to inspire a new generation of

SLI algorithms tailored to LUT-based processing such that those algorithms achieve

real-time processing using the system framework proposed here. And by introducing

a novel pattern scheme that includes a period cue, those new algorithms should follow

the lead set here to similarly offer a means of temporal phase unwrapping. And so

it is hoped that this dissertation represents a framework for all future, real-time,
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multi-pattern SLI methods.

Copyright c© Kai Liu, 2010.
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