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ABSTRACT OF THESIS 
 
 
 
 

NONLINEAR TRANSIENT FINITE ELEMENT SIMULATIONS OF BEAM  
 PARAMETRIC RESPONSE INCLUDING QUADRATIC DAMPING 

 
 
Nonlinear parametric response of a flexible cantilever beam is simulated.  In the simulations, 
lateral response of the beam due to an imposed axial harmonic base displacement excitation is 
calculated.  The response frequency is approximately half the input frequency. The transient 
simulations include the assumption of damping proportional to the square of the velocity along 
the beam.  “Velocity-squared” damping is realistic for situations in which fluid forces resisting 
the structural motion are significant.  The commercial finite element software, ANSYS, is used 
to perform the simulations. A flexible method is developed and implemented in this work, based 
on the ANSYS Parametric Design Language, for including the quadratic damping assumption in 
the analysis. Variation of steady state response amplitude is examined for a range of quadratic 
damping coefficients over a range of axial base excitation frequencies. Further, a definition of 
phase angle of the response with the respect to the input is proposed for these nonlinear cases in 
which the input frequency is an integer multiple of the response frequency.  The response phase 
with respect to excitation is studied over a range of damping coefficients and excitation 
frequencies. In addition, numerical solutions of nonlinear dynamic systems obtained from the 
implicit finite element method and the explicit dynamics finite element method are compared. 
The nonlinear dynamic systems considered are a flexible beam subjected to axial base excitation 
and also lateral excitations.  The studies comparing explicit and implicit method results include 
cases of stress-stiffening and large deflections. 
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CHAPTER 1 

INTRODUCTION 

 
 

1.1 Motivation 

Predicting nonlinear response of flexible structures is important in many fields. Engineers 

often first consider linear models to approximate response of the structures. But, as the 

flexibility of a structure increases, linear approximations often do not accurately predict 

the behavior. Hence nonlinear models are often necessary for predicting behavior of the 

flexible structures.  

 

Some responses of nonlinearities associated with highly flexible structures are multiple 

resonances and jump phenomena. Flexible structures might experience resonance at an 

excitation frequency other than predicted linear natural frequencies, which is a 

combination of the linear natural frequencies and this phenomenon is known as multiple 

resonances. Bifurcation in nonlinear systems is a qualitative change in system behavior 

due to small variations of parameters of the system [3]. Parametric excitation is a very 

important nonlinear phenomenon considered for highly flexible structures, such as cables 

used for cable-stayed bridges and solar arrays of the international space station.  

 

A beam is one of the basic elements of many structures. Beams are used in a wide variety 

of structural applications. Structures such as flexible solar arrays, long-span bridges, 

aircraft wings, and the rotor blades of a helicopter can be modeled as beam-like slender 
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members. Therefore, understanding nonlinear response of flexible beams for axial 

parametric excitation would be helpful in predicting response of more complex 

structures.  

 

Finite element analysis (FEA) is a very popular method for numerical simulation in both 

research and industry. With the advent of high speed computer processors and storage 

capacity, different numerical integration algorithms are implemented in finite element 

codes to solve dynamic problems. Among various numerical integration methods 

developed over the past few decades were the central difference method, Newmark’s 

numerical integration method, and Wilson method. These numerical methods are 

commonly referred to as either implicit methods or explicit methods. Every numerical 

integration algorithm has its own advantages and applicability for a particular application 

in terms of computational cost, stability and accuracy. The explicit method is useful for 

short transient problems, while the implicit method is useful for long transient problems. 

With the advances in the commercial finite element codes and numerical integration 

methods, now it is possible to predict geometrical nonlinearities and other nonlinear 

effects in structural behavior. An example of dynamic nonlinear structural behavior is 

lateral motion of a flexible beam in response to an axial excitation. This is typically a 

case of “parametric excitation”, where the excitation frequency is different from the 

response frequency, and often the excitation frequency is an integer multiple of the 

response frequency. 
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Usually the lateral response of a flexible beam due to axial parametric excitation is 

damped by resistance of the surrounding air, and also by additional structural damping 

and increased stiffness due to large deflection. Air resistance limits the system lateral 

motion to some steady state amplitude. The force due to fluid resistance (drag) on any 

component of the system is determined by the Reynolds number for that component [25]. 

The drag force is proportional to velocity for low Reynolds numbers and the drag 

coefficient is inversely proportional to Reynolds number. For high Reynolds numbers, 

the drag force is proportional to the square of the velocity, and the drag coefficient is 

constant [3]. The drag coefficient is a function of the geometry and fluid properties [24]. 

Therefore, in this research, the transient response of a thin cantilever beam is simulated 

for axial excitation by applying quadratic damping using the capabilities of the 

commercial finite element code, ANSYS. 

 

1.2 Scope of Thesis 

The primary focus of this thesis is simulation of parametric response of a flexible 

cantilever beam assuming quadratic damping due to fluid forces. A contribution of this 

work is an overview of the use of ANSYS to study this phenomenon. Response of a 

flexible cantilever beam is simulated for cases of first mode excitation assuming a 

damping force proportional to the square of the velocity with a range of axial base 

excitation frequencies and a range of quadratic damping coefficients.  Studies of phase 

difference between input and response are also performed for the transient responses for a 

range of excitation frequencies with quadratic damping. In addition,  the implicit method 
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and explicit method are compared for transient response of linear and nonlinear dynamic 

systems. 

 

1.3  Thesis Preview 

This thesis has six chapters. Chapter 1 provides the motivation for this research and 

introduction to parametric vibrations. Chapter 2 describes structures exhibiting 

nonlinearities, analytical solutions and numerical solutions for these systems, and also 

provides a literature survey. Chapter 3 covers numerical methods implemented in 

commercial finite element codes, along with examples. Chapter 4 compares the implicit 

and explicit method solutions for linear and nonlinear dynamic systems. Chapter 5 

presents nonlinear finite element transient simulations for cantilever beam response 

assuming velocity-squared damping for axial parametric excitation. Also, phase 

difference studies are performed where response phase with respect to input is 

considered. Finally, Chapter 6 summarizes this work and presents conclusions and 

suggestions for future work. 

 

1.4 Introduction to Parametric vibrations 

The nonlinear phenomena in which small parametric excitations can produce large 

response when the frequency of excitation is close to twice one of the natural frequencies 

of the system is know as principle parametric resonance[3]. Parametric resonance occurs 

in various structures. In forced vibration problems, energy is supplied into the system, 

and its response depends on various system parameters, including geometrical and 

material parameters [6]. Linear forced vibration problems do not lead to parameter 
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variation as a result of the imposed forcing function. But,  in a nonlinear parametrically 

excited system, system parameters vary with time. In mathematical terms, the 

inhomogeneous differential equation of motion with constant coefficients for linear 

forced systems is replaced by a homogeneous differential equation with time-varying 

periodic coefficients [6].                                                                  

                                                                 

                                                                        sin( )x X wt φ= +  

 
 
 
 
 
 
 
 
 
 
 
 
 
                         
 
 
 
                       Figure 1.1: A thin Cantilever beam with axial base excitation 
 
Figure 1.1 shows a schematic diagram of thin cantilever beam mounted on a mechanical 

shaker. For primary parametric resonance, the steady state motion of the beam, x(t), in 

the lateral direction (horizontal in the figure) is at a frequency near the beam’s first mode 

natural frequency (ω )and the axial displacement input (y) is at frequency of near  2ω .   

Over the last few decades, much research was performed on nonlinear parametric 

response of a thin cantilever beam for axial harmonic excitation. Among the researchers, 

Crespo da Silva and Glynn[8,9], developed governing partial differential equations of 

( )sin 2y Y wt=

V0 

Base X

Y
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motion describing the nonlinear dynamics,  where as Anderson T.J conducted analytical 

and experimental studies.  Kuiyin Mei and Suzanne Smith simulated the transient 

response of the beam using the explicit solver of ANSYS/LS-DYNA [4, 5]. Chapter 2 

provides a complete description of parametric vibration of an inverted cantilever beam. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Structures Exhibiting Nonlinear Dynamic Response 

Flexible structures can be found, for instance, in cable stayed bridges and space 

applications. Figure2.1 shows the cable stayed bridge (Fred Hartman Bridge) built at 

Houston, TX [27]. In long-span bridges, parametric vibration of large flexible cables 

might occur under the axial periodic load due to deck motion, or the bending vibration of 

the tower or wind loads [26]. Large space structures are the International Space Station 

and Hubble space telescope. Shown in Figure 2.2 is an artist’s model of the International 

space station [28]. Components of the international space station, such as solar arrays and 

also components of space telescopes, such as radiators and membrane structures, are 

large and flexible. Because of their large size, combined with relatively low weight and 

stiffness, these components may exhibit nonlinear behavior. The nonlinear response of 

these components may affect the performance of the entire structure.  
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Figure 2.1:  Cable Stayed Bridge (Fred Hartman Bridge at Houston, TX) 

Photo: With the permission from Dr. Suzanne W. Smith 

 

 

Figure 2.2: Artist’s Concept of International Space Station 

Photo Courtesy: NASA 
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Many researchers have performed beam studies to predict nonlinear behavior of 

components of large flexible structures. Over the last few decades, a lot of research has 

been carried out on nonlinear behavior of a cantilever beam with axial harmonic base 

excitation as shown in Figure 1.1. The following section gives a description of previous 

analytical and numerical studies performed on nonlinear behavior of thin cantilever 

beams. This thesis research builds on previous work on nonlinear beam analysis. Hence, 

previous beam studies are reviewed and presented in the following sections. 

 

2.2 Analytical Solutions for Nonlinear Dynamic Response 

In Nonlinear oscillations [3], Nayfeh and Mook provided examples of parametrically 

excited systems, and presented some analytical techniques for studying parametrically 

excited systems. Some of the analytical methods are Lindstedt-poincare technique, 

method of multiple scales, and Hill’s method. Nayfeh and Mook [7] introduced 

perturbation techniques into analysis of nonlinear vibrations, which includes the method 

of multiple scales for the solutions of nonlinear oscillations and parametric vibrations. 

Anderson [5] provided a complete review on nonlinear analysis of beams.  Anderson’s 

PhD dissertation can be consulted for a thorough literature review. 

  

Among the extensive studies on thin cantilever beams, Crespo Da Silva and Glynn [8, 9] 

developed a set of differential equations which includes nonlinearities due to inertia and 

curvature for three dimensional nonlinear flexural-flexural torsional motions of a long 

slender isotropic beam, and studied non planar, nonlinear forced oscillations for a fixed-

free beam by applying perturbation techniques. They assumed bending and twisting 
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moments at any point along the beam are proportional to the nonlinear expressions of the 

local bending and twisting curvatures, and neglected warping, shear deformation and 

Poisson effects. Nayfeh and Pai [10] included third order shear deformation along with 

inertia and geometric nonlinearities in the analysis of parametric response of a thin 

cantilever beam. Anderson [5] theoretically and experimentally investigated effects of 

nonlinear curvature and damping in the response of a thin cantilever beam for parametric 

excitation. For theoretical studies, he considered equation (2.2.1) developed by Crespo 

Da Silva and Glynn [7, 8], and assumed linear viscous damping and quadratic damping 

for his analysis. The right hand side terms of the equation (2.2.1) correspond to nonlinear 

curvature, nonlinear inertia, axial base excitation, gravity and quadratic damping. 

 

( ) ( )( )

22 4 2 2ˆ ˆ

2 4 2 2
0

2

2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1ˆ
ˆˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ2ˆ ˆ

ˆ ˆ ˆ ˆˆ ˆˆ ˆ ˆ ˆcos ˆ ˆˆˆ

s s

L

b

v v v v v v v vm EI EI m ds ds
t s s s s s s st s s t

v v v vm s L a t g c
s t ts

μ
⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞⎜ ⎟+ + = − − −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞∂ ∂ ∂ ∂
− + Ω + −⎜ ⎟

∂ ∂ ∂∂⎝ ⎠

∫ ∫                               

2.2.1  

Where 

m= Mass per unit length; v̂ = Displacement; t=time;  

ŝ =Position along undeformed beam length; L=Length of undeformed beam 

μ̂ =Coefficient of quadratic damping; I= Area moment of inertia; 

ˆba = Base acceleration of the beam along axis of the undeformed length 

Ω̂=Axial base excitation frequency 

ĉ = Quadratic damping Coefficient 
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Anderson [5] employed the method of multiple-scale to analyze solutions of nonlinear 

equations and focused on principle parametric resonance of the first two modes. The first 

four natural frequencies associated with his thin cantilever beam were 0.66 Hz, 5.69 Hz, 

16.22Hz, and 32.06 Hz. Anderson [5] provided comparisons of theoretical and 

experimental frequency response and forced response results. Frequency response curves 

show variation in the beam’s steady amplitude for a range of excitation frequencies.   

Anderson concluded that inclusion of quadratic damping in the analysis improved 

agreement between the theoretical and experimental frequency response results for the 

first mode. For the second mode, inclusion of quadratic damping did not improve 

agreement between theoretical and experimental results. He also concluded that for first 

mode excitation, the often neglected nonlinear curvature terms were stronger than 

nonlinear inertia terms, and lead to a nonlinear hardening effect. For the second mode of 

excitation, the nonlinear curvature effects dominate and lead to a nonlinear softening 

effect. 

 

Arafat, et al. [12], investigated non planar, nonlinear response of inextensible cantilever 

beam subjected to axial base principle parametric excitation for two flexural modes. They 

assumed inextensionality condition and neglected torsional inertia in the derivation of 

integropartial differential equations of motions using Hamilton’s extended principle from 

a Lagrangian and Virtual work, and applied the method of multiple scales to obtain 

modulation equations. Frequency response plots were generated using a pseudo arc 

length continuation scheme and stability was studied by calculating the Eigenvalues of 
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the Jacobian matrix. They presented detailed analysis for dynamic solutions of the 

modulation equations.  

 

Hamdan, et al. [13], compared solutions obtained using the harmonic balance method and 

the method of multiple scales, and they also compared solutions from these methods with 

solutions obtained from numerical integration of equations of motion. Their studies 

involved parameter values corresponding to the first four modes of a flexible cantilever 

beam subjected to vertical harmonic base excitation. They concluded that the solution 

obtained from two term harmonic method gives accurate results for strong nonlinearities 

and multiple scales method breaks down at low amplitude for strong nonlinear cases.  

 

Nayfeh, A.H, Yabuno, H. [14] investigated nonlinear normal modes of a flexible beam 

subjected to axial base parametric excitation by applying method of multiple scales and 

also by using a single mode Galerkin discretization. The nonlinear normal modes 

obtained from the multiple scale method were compared with results obtained from a 

single mode discretisation approach for different values of excitation frequencies. Their 

studies showed that nonlinear curvature and nonlinear damping were not influencing 

mode shapes obtained by a single discretization approach. As a result they concluded that 

a single-mode discretization approach might not give accurate mode shapes for the case 

of large amplitude oscillations. 
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2.3 Numerical Solutions for Nonlinear Dynamic Response 

The finite element method is a numerical simulation method applied in a wide variety of 

engineering applications. Its use has expanded greatly with improvements in computing 

technology. Because of its versatility, it is indispensable for engineering simulations. Its 

applicability is accepted for both linear and nonlinear structural dynamic analysis. As 

mentioned in Chapter 1, the numerical integration methods used in transient finite 

element simulations are classified as explicit method or implicit method. This section 

presents reviews on explicit FEA analysis of flexible cantilever beams and comparisons 

of implicit and explicit methods for dynamic systems 

 

Mei, K. [4, 16] simulated nonlinear transient response of a flexible cantilever beam.  He 

studied axial base parametric excitation using the explicit dynamics finite element 

analysis approach. The Beam161 element of the commercial finite element software, 

ANSYS/LS-DYNA, was used for simulation of steady-state, large deformation transient 

response. He performed modal analysis and determined the first four natural frequencies 

(0.637 Hz, 5.61 Hz, 16.10 Hz and 31.76 Hz), which were in close agreement with 

Anderson’s [5] experimental results. He assumed vertical sinusoidal base displacement 

excitation with amplitude appropriately scaled to match the base acceleration of 

Anderson experimental work. At the free end of the beam, a transverse velocity of 0.5 

in/sec was applied as an initial condition. A range of excitation frequencies, near twice 

the first natural frequency were considered. He considered damping directly proportional 

to velocity in his analysis and applied modal damping as 0.32 percent of critical. Mei 

compared frequency response results obtained from his finite element results with 
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Anderson’s experimental frequency response results. Mei concluded that his FEA results 

were consistent with Anderson’s experimental results. Figure 2.3 compares FEA results 

with experimental results. 

 

Figure 2.3: Comparison of Explicit Dynamics FEA results with experimental results [5] 

 

Other researchers have compared implicit and explicit finite element analysis for 

different linear and nonlinear dynamic systems.  Hu, et al. [17], compared explicit 

dynamic and implicit static finite element analysis results for sheet tensile tests and 

results showed that explicit method can be applied in simulation of quasistatic tensile 

tests only below critical test velocities.  Rebelo, et al. [18], studied the effectiveness of 

implicit and explicit finite element analysis for static and dynamic metal forming 

problems using ABAQUS. Their studies showed that the implicit method is effective and 

faster than the explicit method for small wave front problems, but the explicit method is 

more effective than the implicit method for large complex problems.  Sun, et al. [20], 

studied performance of implicit and explicit finite element methods for linear dynamic 

cases of (i) impact of elastic rod with rigid wall; (ii) impact of an elastic cylindrical disk 
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against a rigid wall; and (iii) slow contact between an elastic cylindrical disk and a rigid 

wall. The authors used ABAQUS for their comparisons. The results showed that the 

explicit method has advantages over the implicit method in terms of computational costs 

and accuracy for fast impact problems. For slow problems, the implicit method is better 

than the explicit method. 
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CHAPTER 3 

NUMERICAL INTEGRATION 
METHODS 

 

Finite element software employs numerical integration methods for the solution of linear 

equations. Among numerical integration methods, the Newmark time integration method 

and central difference method are implemented in many of the commercial finite element 

software packages. Also the Newton–Raphson method is a standard technique to update 

the stiffness matrix in nonlinear problems. The following sections give an overview of 

the Newmark method and central difference methods.  The response of a simple example 

system is calculated using both the Newmark Method and Central Difference Method.  It 

should be noted that the examples are provided to illustrate how the methods are 

implemented.  The integration parameters, such as selected time step, in the examples in 

this chapter, are not necessarily optimized for solution accuracy or computational 

efficiency.  The notations used in the following sections are consistent with Reference 

[1],  Reference [22], and Reference [23]. 

 

3.1 Newmark Time Integration Method 

As described in [1], the spatial discretisation of the structure leads to the governing 

equilibrium equation of structural dynamics, and can be expressed as 

                                                 }{}]{[}]{[}]{[ aFuKuCuM =++                              (3.1.1) 
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][M = Mass matrix 

][C = Damping Matrix 

][K = Stiffness Matrix 

}{u =Acceleration vector 

}{u  =Velocity vector 

}{u = Displacement vector 

}{ aF =Applied load vector 

The solution for this initial value problem is achieved numerically by discretising in time 

the continuous temporal derivatives that appear in Equation (3.1.1). Any one of the time 

integration procedures can be used for this purpose. The most widely used scheme among 

direct time integration methods for solving equation (3.1.1) is the Newmark time 

integration method.   

 

 

 

 

 

 

 

 

 

                                         Figure 3.1: Constant Average Acceleration 
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The Newmark method utilizes finite difference expansion for the time interval tΔ . As 

described in [1],  Newmark time integration method uses following assumptions 

tuuuu nnnn Δ+−+= ++ }]{}){1[(}{}{ 11 δδ                                                                      (3.1.2)                               

2
11 }]{}){2

1[(}{}{}{ tuutuuu nnnnn Δ+−+Δ+= ++ αα                                                  (3.1.3) 

Where 

α , δ = Numerical Integration parameters 

tΔ = nn tt −+1  

}{ nu =Displacement vector at time nt              

}{ nu =Velocity vector at time nt  

}{ nu =Velocity vector at time nt  

}{ nu =Acceleration vector at time nt  

}{ 1+nu =Displacement vector at time nt + tΔ  

}{ 1+nu =Velocity vector at time nt + tΔ  

}{ 1+nu =Acceleration vector at time nt + tΔ  

 

                            1 1 1[ ]{ } [ ]{ } [ ]{ } { }a
n n nM u C u K u F+ + ++ + =                                       (3.1.4) 

 

Equilibrium equation (3.1.4) at nt + tΔ  is used along with equations (3.1.2) and (3.1.3) 

for the solution of the displacements, velocities, and accelerations. The solution for the 

displacement at time nt + tΔ is obtained by deducing the equations (3.1.5) and (3.1.6) 

from equations (3.1.2) and (3.1.3) 
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1 0 1 2 3{ } ({ { }) { } { }n n n n nu a u u a u a u+ += − − −                                                                   (3.1.5) 

 1 6 7 0 1 2 3{ } { } { } { ({ { }) { } { }}n n n n n n nu u a u a a u u a u a u+ += + + − − −                                    (3.1.6)                               

Where 

0 2

1a
tα

=
Δ

   1a
t

δ
α

=
Δ

  3
1 1

2
a

α
= −   4 1a δ

α
= −   5 2

2
ta δ
α

Δ ⎛ ⎞= −⎜ ⎟
⎝ ⎠

     ( )6 1a t α= Δ −   

7a tδ= Δ  

Substituting equations (3.1.5) and (3.1.6) in equation (3.1.4) results in the following 

equation. 

0 1 1 0 2 3 1 4 5( [ ] [ ] [ ]){ } { } [ ]( { } { } { }) [ ]( { } { } { })a
n n n n n n na M a C K u F M a u a u a u C a u a u a u++ + = + + + + + +

                                                                                                                                     (3.1.7) 

From the above equation, the unknown quantity 1{ }nu + is calculated, and velocities and 

accelerations are updated by using equations (3.1.5) and equation (3.1.6). 

 

In structural mechanics, a problem is nonlinear if the stiffness matrix or the load vector 

depends on the displacements. As discussed in [23], matrix 0 1 1( [ ] [ ] [ ]){ }na M a C K u ++ + in 

equation (3.1.7) is generally referred to as the effective stiffness matrix[ ]effK . 

                                         [ ]effK = 0 1( [ ] [ ] [ ])a M a C K+ +                                              (3.1.8) 

For linear cases, the effective stiffness matrix remains constant in all the computational 

steps unless the time step is changed. For a nonlinear analysis, the effective stiffness 

changes at every time step and is displacement dependent. 

 

For a nonlinear analysis, the effective stiffness matrix can be written as 
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                                          [ ]effK = 0 1( [ ] [ ] [ ])T Ta M a C K+ +                                       (3.1.9) 

Where 

TK = Tangential stiffness matrix 

An iteration scheme such as Newton-Raphson, modified Newton-Raphson, or Quasi 

Newton methods can be employed to resolve the nonlinearity. The parameters,α  andδ , 

determine the stability and accuracy characteristics of Newmark’s method. As described 

in [30], the solution for equation (3.1.4) by means of Newmark equation (3.1.2) and 

equation (3.1.3) is unconditionally stable for 

21 1
4 2

α δ⎛ ⎞≥ +⎜ ⎟
⎝ ⎠

, 1
2

δ ≥ , 1 0
2

δ α+ + >  

When 1
2

δ =  and 1
4

α = , equation (3.1.2) and equation (3.1.3) correspond to constant 

average acceleration method [22]. The method is implicit, unconditionally stable, second-

order accurate, and one of the most effective and popular methods for structural dynamics 

problems. 

 

 

 

 

 

 

 



 21

3.1.1 Simple Example 

For a simple example, this section will show the solution for the unit step response of the 

single degree of freedom system shown in figure (3.2) using the Newmark time 

integration method. The values for mass, damping, and stiffness are 2M kg= , B=4 N-s/m 

and K=18 N/m .The input is a unit step function, so F=1 for t >0. The initial conditions 

for displacement, u, and velocity, u  , are (0) 0u =  and (0) 0u =  

 

 

       

 

 

 

 

 

Figure3.2: Single Degree of freedom system with unit step input 

The Newmark integration parameters assumed for this case are 0.25α =  and 0.5δ = .The 

time step is selected as 0.1tΔ = . The displacement, velocity, and acceleration for each 

time step are calculated using a MATLAB m-file. Seventy iterations are performed to get 

the steady state solution.  The table 3.1 shows the values of displacement, velocity and 

acceleration for first 2.0 seconds. This table also shows the exact solution for 

displacement for this case. Figure3.3 shows displacement response for a unit step input as 

a function of time.  The MATALAB m-file written to implement the numerical 

integration is shown in Appendix A 

u

M 

C

K 

F 
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 Table 3.1: Values for displacement, velocity and acceleration by Newmark method 

Time(t) 

(sec) 

Displacement 

 ( )u t  

Exact Solution 

 for ( )u t  

Velocity 

( )u t  

Acceleration 

( )u t  

0 .0000 

0.1000 

0.2000 

0.3000 

0.4000 

0.5000 

0.6000 

0.7000 

0.8000 

0.9000 

1.0000 

1.1000 

1.2000 

0.0000 

0.0011 

0.0053 

0.0127 

0.0223 

0.0328 

0.0433 

0.0529 

0.0610 

0.0672 

0.0714 

0.0735 

0.0739 

0.0000 

0.0023  

 0.0085  

 0.0174  

 0.0278  

 0.0385   

0.0487   

0.0576   

0.0647  

 0.0698  

 0.0728   

0.0738   

0.0732  

0 .0000 

0.0223 

0.0611 

0.0880 

0.1032 

0.1073 

0.1021 

0.0897 

0.0722 

0.0521 

0.0314 

0.0119 

-0.0051 

0 .0000 

0.4454 

0.3304 

0.2093 

0.0930 

-0.0100 

-0.0939 

-0.1552 

-0.1933 

-0.2090 

-0.2052 

-0.1856 

-0.1546 
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Table 3.1 Continued:  

1.3000 

1.4000 

1.5000 

1.6000 

1.7000 

1.8000 

1.9000 

2.0000 

0.0727 

0.0703 

0.0672 

0.0637 

0.0602 

0.0569 

0.0541 

0.0519 

0.0713   

0.0685   

0.0651   

0.0615   

0.0582   

0.0552   

0.0528   

0.0510   

-0.0187 

-0.0283 

-0.0340 

-0.0359 

-0.0346 

-0.0308 

-0.0252 

-0.0185 

-0.1167 

-0.0763 

-0.0369 

-0.0016 

0.0276 

0.0493 

0.0632 

0.0696 

 

 

 

Figure 3.3: comparison of Newmark’s method with exact solution for single degree of 

freedom system for unit step input  
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3.2 Central Difference method 

The central difference method can be used in what is commonly referred to an “explicit” 

method. The central difference method is based on finite difference expressions in time 

for velocity and acceleration. 

 

Figure 3.4: Linear displacement change 

As given in Bathe [22], the central difference method uses following assumptions 

                                     1 1{ } { }{ }
2

n n
n

u uu
t

+ −−
=

Δ
                                                              (3.2.1) 

                                     1 12

1{ } ({ } 2{ } { })n n n nu u u u
t + −= − +

Δ
                                         (3.2.2) 

}{ nu =Displacement vector at time nt  

}{ nu =Velocity vector at time nt  

}{ nu =Acceleration vector at time nt  

1{ }nu + = Displacement vector at time nt + tΔ  

u 

1nt − nt 1nt + t
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}{ 1+nu = Velocity vector at time nt + tΔ  

}{ 1+nu = Acceleration vector at time nt + tΔ  

1{ }nu − = Displacement vector at time  nt t−Δ  

1{ }nu − = Velocity vector at time nt t−Δ  

Equations (3.2.1) and equation (3.2.2) are obtained by expanding 1{ }nu +  and 1{ }nu − in a 

Taylor series about time n tΔ  

2 3

1{ } { } { } { } { }
2 6n n n n n
t tu u t u u u+

Δ Δ
= + Δ + + +                                           (3.2.3) 

2 3

1{ } { } { } { } { }
2 6n n n n n
t tu u t u u u−

Δ Δ
= −Δ + − +                                         (3.2.4) 

Equation (3.2.1) is obtained by subtracting equation (3.2.4) from equation (3.2.3), while 

adding equation (3.2.4) and equation (3.2.3) yields equation (3.2.2).  In both cases, terms 

containing 2tΔ  and higher powers are omitted from equation (3.2.1) and equation (3.2.2). 

So, the error in the expansion is of the order 2tΔ .The displacement solution for time nt + 

tΔ  is obtained by considering equation (3.1.1) at time t 

                                      [ ]{ } [ ]{ } [ ]{ } { }a
n n nM u C u K u F+ + =                                  (3.2.5) 

Substituting the relations for }{ nu  and }{ nu in (3.2.1) and (3.2.2), respectively into 

(3.2.5), we obtain  

1 12 2 2

1 1 2 1 1[ ] [ ] { } { } [ ] [ ] { } [ ] [ ] { }
2 2

a
n n nM C u F K M u M C u

t t t t t+ −
⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ = − − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟Δ Δ Δ Δ Δ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

                                                                                                                                  (3.2.6) 
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 In general, the smaller the value of the tΔ , the more accurate the solution, but the number 

of computations will then increase. There are errors with each iteration due to the 

truncation of the Taylor series. Central difference integration methods do not require a 

factorization of the effective stiffness matrix in the step by step solution. The 

effectiveness of the central difference method depends on efficient performance of the 

each time step solution. Because of the small step size, a large number of time steps 

usually are needed. Therefore, the method is typically applied only when a lumped mass 

matrix is considered. Considering a case with no damping, Equation (3.2.6) reduces to 

                                                       12

1 [ ] eff
nM u F

t +
⎛ ⎞ =⎜ ⎟Δ⎝ ⎠

                                           (3.2.7) 

Where 

12 2

2 1[ ] [ ] { } [ ] { }eff a
n nF F K M u M u

t t −
⎛ ⎞ ⎛ ⎞= − − −⎜ ⎟ ⎜ ⎟Δ Δ⎝ ⎠ ⎝ ⎠

 

If the mass matrix is diagonal, the system of equations in (3.1.1) can be solved without 

factorization of a matrix. Only matrix multiplications are required to obtain the right hand 

side effective load vector, after which the displacement components are obtained using 

                                                     
2

1 [ ]
eff

n
tu F

M+

⎛ ⎞Δ
= ⎜ ⎟

⎝ ⎠
                                                  (3.2.8) 

The advantage of using the central difference method in the form (3.2.8) is no stiffness 

matrix of complete assemblage needs to be calculated. As described in [22], by the 

central difference method, the solution is essentially carried out on the element level and 

relatively high speed storage is required. Using the central difference method, a system of 

very large order can be solved effectively. 
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3.2.1 Simple example 

For a simple example, this section will show the solution for the unit step response of the 

same system of section 3.1.2 shown in figure (3.2) using central difference method. The 

values of mass, damping, and stiffness are M=2kg, B=4 N-s/m and K=18 N/m and F=1. 

The time step taken for calculation of the solution is 0.1 seconds. Displacement, velocity, 

and acceleration for each time step are calculated using a MATLAB m-file((provided in 

Appendix B). Seventy iterations are performed to arrive at the steady state solution .The 

following table shows the values of displacement, velocity and acceleration for the first 

2.0 seconds. Figure 3.5 compares response obtained from central difference method with 

exact solution for single degree of the freedom system as a function of time as calculated 

by central difference method. 

 

Table3.2: Values for displacement, velocity and acceleration by central difference 

method  

Time(t) 

(sec) 

Exact solution 

for u(t) 

Displacement 

( )u t  

Velocity 

( )u t  

Acceleration 

( )u t  

0.0000 

0.1000 

0.2000 

0.3000 

0.4000 

0.5000 

0.6000 

0.7000 

0.8000 

0.0000 

0.0023  

 0.0085   

0.0174   

0.0278   

0.0385   

0.0487   

0.0576   

0.0647   

0.0000 

0.0001 

0.0051 

0.0127 

0.0221 

0.0323 

0.0423 

0.0516 

0.0595 

0.0000 

0.0024 

0.0997 

0.1012 

0.1124 

0.1094 

0.0999 

0.0846 

0.0660 

0.0000 

0.0000 

0.4945 

0.2547 

0.1836 

0.0764 

-0.0090 

-0.0808 

-0.1338 
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Table 3.2 Continued:  

0.9000 

1.0000 

1.1000 

1.2000 

1.3000 

1.4000 

1.5000 

1.6000 

1.7000 

1.8000 

1.9000 

2.0000 

0.0698   

0.0728   

0.0738   

0.0732   

0.0713   

0.0685   

0.0651   

0.0615   

0.0582   

0.0552   

0.0528   

0.0510   

0.0658 

0.0702 

0.0728 

0.0737 

0.0731 

0.0713 

0.0688 

0.0657 

0.0624 

0.0592 

0.0563 

0.0538 

0.0458 

0.0258 

0.0075 

-0.0082 

-0.0205 

-0.0292 

-0.0343 

-0.0360 

-0.0347 

-0.0312 

-0.0261 

-0.0199 

-0.1678 

-0.1838 

-0.1836 

-0.1702 

-0.1468 

-0.1168 

-0.0836 

-0.0502 

-0.0190 

0.0081 

0.0299 

0.0457 

 

 

Figure 3. 5: comparison of central difference method with exact solution for single degree 

of freedom system for unit step input  
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3.3 Newton-Raphson Method for Large Deflection Nonlinearities 
 
The Newton-Raphson is a most widely used numerical approximation method to solve 

nonlinear problems.  For large deflections, the effective stiffness matrix is function of 

deflection.  Therefore, most commercial finite element software employs the Newton-

Raphson method, along with implicit numerical integration methods to provide solution 

for nonlinear structural problems.  Since this is a well-known method, the details will not 

be provided here.  A complete description of Newton–Raphson method is available in 

References [22, 23]  
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CHAPTER 4 

SIMULATION STUDIES ON BEAMS: 
IMPLICIT VS EXPLICIT 

 
 

4.1 Implicit Method Vs Explicit Method 

Numerical solution schemes are often classified as being implicit or explicit. As defined 

in Reference [21] “When a direct computation of the dependent variables can be made in 

terms of known quantities, the computation is said to be explicit.  In contrast when the 

dependent variables are defined by coupled sets of equations, and either a matrix or 

iterative technique is needed to obtain the solution, the numerical method is said to be 

implicit”.  If  lumped mass and lumped damping matrixes are used,  the central difference 

method is an explicit method where as Newmark’s integration method is an implicit time 

integration method. Most of the material presented in this section is adopted form 

references [1], [2], [21], and [22]. 

 

The commercial finite element software, ANSYS, uses Newmark’s time integration 

method for the solution of transient problems, and for the nonlinear dynamics solutions, 

the Newton-Raphson method is employed along with Newmark’s method. The implicit 

method uses  Equation (4.1.1) to obtain the solution  

                                      { } { }1
1 1[ ] a

n nu K F−
+ +=                                                              (4.1.1) 

In the implicit time integration method, the inverse of the stiffness matrix [K] is 

calculated for each increment of time step tΔ  to solve for displacement {u}. This 
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approach is a CPU intensive operation and it is computationally expensive. For the 

nonlinearities, [K] is also a function of displacement {u}, so [K] is obtained by series of 

linear approximations (Newton – Raphson) as well. 

 

Some commercial finite element software like ANSYS/LS-DYNA, ABAQUS, and MSC 

Dytran also include the explicit time integration method (central difference time 

integration method). As given in reference [1], an explicit method uses the equation 

(4.1.2) to obtain the solution. 

                                      { } { } { }( )1[ ] Ext Int
n n nu M F F−= −                                               (4.1.2)  

Where 

Ext
nF = Applied external and body force 

Int
nF = Internal force vector 

From reference [1] 

                                     ( )Int T hg contact
nF B d F Fσ

Ω

= Ω+ +∑ ∫                                      (4.1.3) 

Where 

hgF       = Hour glass resistance force  

contactF   = Contact force 

 

The explicit method calculates the inverse of the mass matrix [M] to solve for 

acceleration }{u , and assumes a lumped mass matrix [M]. Because the mass matrix [M] is 

lumped (diagonal terms only), inversion of the mass matrix [M] is not CPU – intensive. 

For the nonlinearities, the equation are uncoupled, and can be solved for directly 
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(explicitly) and the stiffness matrix [K] does not need to be inverted. All the 

nonlinearities (including contact) are included in the internal force vector. The major 

computational expense is in calculating internal forces, and CPU cost is approximately 

proportional to the size of the finite element model and does not change as dramatically 

as it does in the implicit method. 

 

If the solution remains well behaved for arbitrarily large values of the time step, the 

method is said to be unconditionally stable. For linear problems, the implicit solution is 

unconditionally stable. For nonlinear problems, the time step may become small due to 

convergence difficulties. Though convergence checking is performed within the software, 

convergence is not guaranteed for highly nonlinear problems solved by the implicit 

method. For the explicit method, the very small steps are required to maintain stability. 

The stability limit for an explicit operator is that the maximum time increment must be 

less than a critical value of the smallest transition times for a dilatational wave to cross 

any element in the mesh.  

                                             Criticalt tΔ ≤ Δ =
max

2
ω

                                                      (4.1.4) 

maxω = Largest natural frequency 

Because of very small step size, the explicit method is useful for very short transient 

problems. Convergence checks are not need for explicit solutions because equations are 

uncoupled. The explicit method is ideally suited for wave propagation types of problems 

(structures subjected to impact and blast loads). For the beam and truss elements, the 

critical time step is calculated by equation (4.1.5) 
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                                           Critical Lt
c

Δ =                                                                       (4.1.5) 

                                           Ec
ρ

=                                                                             (4.1.6) 

Where  

C= Wave propagation velocity;  

E= Young’s Modulus;  

ρ = Mass Density;  

 

Therefore the implicit method and explicit method have their own applicability and 

advantages in terms of computational cost, accuracy and stability to a particular problem. 

Hence in Section 4.2, transient response of a cantilever beam subjected to a range of 

loading conditions were solved by using the commercial implicit finite element solver, 

ANSYS, and commercial explicit finite element solver, ANSYS/LS-DYNA. In Case 1, a 

lateral step input is applied to the beam.  In Case 2, a lateral harmonic load is applied 

with no axial load.  In Case 3, a lateral harmonic load is applied with a range of constant 

axial loads as a study on the effect of stress-stiffening.  The solutions obtained from both 

the methods for these three example cases are compared for computational costs, stability 

and accuracy. Then, in Section 4.3, a fourth set of example cases is provided, in which 

both methods are applied to nonlinear transient response of a flexible cantilever beam 

subjected to axial parametric base excitation. 
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4.2 Beam Response Studies for Lateral Input / Lateral Response: 
Implicit and Explicit methods 
 
A cantilever beam with various loading conditions was considered as a basis for 

comparison of explicit and implicit methods.  The beam has a rectangular cross-section of 

0.75 ×  0.128 inches and a length of 33.56 inches. Material properties assumed for the 

beam are: Young’s modulus (E) = 30×106 lb/in2; Density (ρ ) = 0.00073 lb.s2/in4; 

Possion’s ratio (γ ) =0.29.  The first natural frequency obtained from a modal analysis 

was 3.880 Hz.  For all the cases, The ANSYS 2D beam element, Beam3, was used for the 

implicit finite analysis, and the Beam161 element of ANSYS/LS-DYNA was used for the 

explicit finite analysis.  The cantilever beam was modeled using 40 nodes, with 39 

elements, for both implicit finite element and explicit finite element analysis. The 

ANSYS Beam3 element is 2-D elastic uniaxial beam with tension, compression and 

bending capabilities. It allows for stress stiffening and nonlinearities due to larger 

deflections. The 3-D beam element, Beam161 (Belytschko beam), employs standard co- 

rotational techniques for large deflection problems. In ANSYS/LS-DYNA, Key option 

(1) can be used to form the Belytschko beam. In ANSYS, proportional damping can be 

implemented by using a mass matrix multiplier (α ) and/or a stiffness matrix multiplier 

( β ). The effective damping ratio is linearly related to frequency for beta damping and 

consequently has a large effect on higher frequency content.  For Alpha damping, the 

effective damping ratio is inversely related to frequency, so alpha damping has large 

effect on low frequencies. For these cases, mass proportional damping is assumed, so that 

a damping matrix is formed as the product of the mass matrix, and a mass matrix 
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multiplier,α .  The mass matrix multiplier (α ) can be calculated to produce a desired 

effective damping ratio,ζ , for motion at some frequency,ω , based on the relationship  

                                                    2α ω ζ= × ×                                                            (4.2.1) 

  

4.2.1 CASE 1: Transient Dynamic analysis with Unit Step Load 

As a first comparison study, transient dynamic analysis was performed on a cantilever 

beam subjected to unit step load at its free end. Figure 4.1 shows a schematic diagram of 

the cantilever beam subjected to a unit step load.  

 

 

 

 

 

 

Figure 4.1: Schematic diagram of a cantilever beam with unit step load 

 
The “full” method option for transient dynamic analysis was selected for the implicit 

analysis. ANSYS also has options allowing for transient analysis using a reduced model 

or based on subsets of modes. An initial time step of 0.1 sec was assumed for the implicit 

analysis. After the initial time step, ANSYS used automating time stepping. For the 

explicit analysis, the default scale factor of 0.9 for computing the time step was used. 

This factor is multiplied by the critical time step. The critical time step is a function of 

minimum element size and material properties. Geometric nonlinearities and stress 

 ״ 0.128

F=1lb 

״0.75



 36

stiffening effects were included in the analysis. Gravity loading was also applied in the 

lateral direction of the beam, along with the step load.  Figure 4.2(a) shows the response 

of the lateral free end of the cantilever beam obtained from the implicit finite element 

method and Figure 4.2(b) shows the lateral free end response obtained from the explicit 

dynamics finite element method. 

   
                           (a)                                                                      (b) 
 

Figure4.2: Response at the free end of the beam for lateral unit loading obtained from a) 

implicit method b) explicit method. 

 
A damping ratio of 0.1 was assumed for the first mode natural frequency, and the 

corresponding alpha damping value was calculated by using equation 4.2.1. On a 

computer (Pentium IV (2.8GHz) Main memory 512MB), the implicit method took 123 

seconds of CPU time for solving, while the explicit method took 223 seconds of CPU 

time for the solution. Table (4.1) compares steady state values obtained with the implicit 

and explicit method. The steady state values are compared for the unit step load and 

gravity. Both the methods produced accurate results when compared with theoretical 



 37

results.  As noted above, since automatic time stepping was used in the implicit analysis, 

the efficiency of the implicit analysis considered here was determined to a large extent by 

internal programming in ANSYS.  The primary motivation for these examples was to 

gain some insight into how the results would compare for identical loading using the two 

different solution methods, and to make some observations on how the solution times 

would compare.  Certainly, a more in-depth study could be undertaken in which a range 

of settings could be considered and compared, such as selected time step in the implicit 

analysis, and selected time step scale factor in the explicit analysis.    The primary goal of 

this work was to determine a viable method for implementing quadratic damping in 

nonlinear studies of beam response, so an exhaustive study comparing efficiencies of the 

implicit and explicit methods was beyond the scope of this work.  

Table (4.1): steady state values obtained with the implicit and explicit method for a step 

load 

 Deflection (UY) Due force 
P=1lb At Free 
end(node40) inches  

Deflection (UY) Due 
force GRAVITY At 
free end(node 40) 
inches  

IMPLICIT  3.17472  1.09104  
EXPLICIT  3.15000  1.08574  
THEORETICAL 3.20414 1.10002 

 

Table 4.2 compares maximum overshoot obtained from explicit and implicit analysis 

with different damping ratios for the first mode natural frequency. From the table, we can 

conclude that maximum over shoot obtained from both the methods were identical. 
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Table 4.2: Comparison of maximum over shoot values for unit step load 

Damping ratio (Zeta)  Maximum Overshoot 
Implicit method 

 Maximum Overshoot 
Explicit method 

0.1  7.18585  7.17109  
0.075  7.42050  7.40238  
0.05  7.67184  7.66114  
0.025  7.94143  7.93340  
0.01  8.11270  8.10640  
 

4.2.2 CASE 2: Transient Dynamic analysis with Harmonic Load 

Transient dynamic analysis was performed on a cantilever beam subjected to a harmonic 

load at its free end. Figure4.3 shows a schematic diagram of a cantilever beam subjected 

to harmonic excitation at its free end. 

 

 

 

 

 
                           

Figure 4.3: Schematic diagram for Cantilever beam subjected to harmonic load 
 

The beam was excited with a frequency equal to half of its first natural frequency. So the 

excitation frequency was 1.860635 Hz. Alpha damping was applied, with mass matrix 

multiplier, α, equal to 0.46768. Geometric nonlinearities were included in the analysis. 

Gravity loading was applied in the direction lateral to the beam. Figure 4.4 shows 

response of the free end of the beam as a function of time for both the implicit and 

11 sin ( )F w t= ×

0.75 ״
 ״0.128
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explicit method for the first 40 seconds after the start of the application of the harmonic 

load.  

   
                       (a)                                                                                (b) 
Figure4.4: Amplitude response obtained from a) implicit method b) explicit method for 

lateral harmonic excitation 

 
To avoid convergence problems, a small initial time step of 0.01 was selected for the 

implicit analysis, while for the explicit analysis, the default scale factor of 0.9 for the 

computed time step was used. In this case, as in Case 1, again, automatic time stepping 

was used in the implicit analysis.  Apparently because a relatively small time step size 

was used in the implicit analysis, based on the preprogrammed automatic time stepping 

procedures, the implicit method took 9120 seconds (2 hours 32 minutes) of CPU time for 

solving on a computer (Pentium IV (2.8GHz) Main memory 512MB), while the explicit 

method took only 806 seconds of CPU time for solution.  In this case, clearly the explicit 

method was significantly faster, and the results from both cases are very close to the 

same. 
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4.2.3 CASE 3: Transient Dynamic analysis with Stress Stiffening effects 

As a third example, a transient dynamic analysis was performed on a cantilever beam 

subjected to a harmonic load in its lateral direction and step load in its axial direction 

simultaneously at its free end.  This case was used to determine if the effect of stress 

stiffening would produce significant differences between the two numerical integration 

methods.  In this case, three different values of step loads in the axial direction were 

considered for the same harmonic loading at the free end of the beam. Figure4.5 shows a 

schematic diagram of applying a harmonic load in the lateral direction and a step load in 

the axial direction at the free end of the cantilever beam. 

 

 

 

 
 
 
 
 
 

Figure 4.5: Schematic diagram for Cantilever beam subjected to harmonic excitation and 

step load (1 lb) 

 
The beam is excited harmonically at its free end, with an excitation frequency of 

fex=1.860635Hz. The beam was subjected to a load of FL= 1sin (w1t) in the lateral 

direction, and a step load of 1lb in axial direction at free end. Alpha damping was applied 

with a mass matrix multiplier of 1.1692. Geometric nonlinearities were included in the 

analysis. Gravity loading was applied in the direction lateral to the beam. An initial time 

11 sin( )LF w t= ×

FA = 1lb 
(Step load) 
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step of 0.01 was selected for the implicit analysis, and automatic time stepping was used. 

For the explicit analysis, the default scale factor of 0.9 for the computed time step was 

selected. Figure(4.6) shows the lateral free end response obtained from the explicit finite 

method and implicit finite method for this case. The implicit method only took 280 

seconds of CPU time for solving, while the explicit method took only 440 seconds of 

CPU time for solution.  

  

                      (a)                                                                      (b) 
Figure4.6: Amplitude response obtained from a) implicit method b) explicit method for 

lateral harmonic excitation and axial step load (1 lb) at free end  

 
 
 
 
 

 

 

Figure4.7: Schematic diagram for Cantilever beam subjected to harmonic excitation and 

step load (10 lb) 

 

11 sin( )LF w t= ×  

FA = 10lb 
(Step load) 
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Figure(4.8) shows lateral free end response obtained from explicit finite method and 

implicit finite method for vertical harmonic load of FL= 1 sin (w1t) and step load of step 

load of 10lb in axial direction. The implicit method only took 270 sec of CPU time for 

solving on a computer (Pentium IV (2.8GHz) Main memory 512MB), while the explicit 

method took 401 seconds of CPU time for solution. Implicit finite element method and 

explicit dynamics finite element method generated the same steady state response 

amplitude. The steady state values obtained by both methods was 1.6254 in. 

   

                      (a)                                                                      (b) 
 

Figure4.8: Amplitude response obtained from a) implicit method b) explicit method for 

lateral harmonic excitation and axial step load (10 lb) at free end 

Figure (4.9) shows lateral free end response obtained from explicit finite method and 

implicit finite method for vertical harmonic load of FL= 1 sin (w1t) and step load of step 

load of 25 lb in axial direction. Figure (4.10) shows lateral free end response obtained 

from explicit finite method and implicit finite method for vertical harmonic load of FL= 5 

sin (w1t) and step load of step load of 25lb in axial direction. 
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Figure 4.9: Schematic diagram for Cantilever beam subjected to harmonic excitation and 

step load (25 lb) 

The implicit method only took 248 of CPU time for solving on a computer (Pentium IV 

(2.8GHz) Main memory 512MB), while the explicit method took only 395 seconds of 

CPU time for solution. The steady amplitude obtained from the implicit method and 

explicit methods are equal, and its value was 0.8702 in.  

     
(a)                                                                      (b) 

Figure4.10: Amplitude response obtained from a) implicit method b) explicit method for 

lateral harmonic excitation and axial step load (25 lb) at free end 

11 sin( )LF w t= ×

FA = 25lb 
(Step load) 
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4.3 Nonlinear Beam Response Studies Using Implicit Finite Element 

Method 

Figure 4.11 shows a schematic diagram of a flexible carbon steel cantilever beam 

subjected to axial base parametric excitation, described in references [5, 4]. The flexible 

cantilever beam is mounted vertically on a mechanical shaker, which provides vertical 

harmonic axial excitation. The focus of this study is to relate Anderson’s experimental 

work and Kuiyin Mei’s finite element analysis 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                         

Figure 4.11: Schematic diagram of parametrically excited beam 
 
 
Kuiyin Mei simulated the transient response of a flexible cantilever beam for first mode 

excitation using the explicit solver of ANSYS/LS-DYNA. The dimensions of the flexible 

cantilever beam are 33.56 0.75 .032× ×  inches. The material properties of the beam are 

shown in the table (4.3). In this section, the beam response was simulated for principle 

parametric resonance of the first mode using the implicit solver of ANSYS.  

 

( )sin 2y Y wt=

V0 

Base

sin( )x X wt φ= +
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Table 4.3: Material properties and input amplitude of FEA model of reference [4] 

Young’s Modulus (E) 30×106 lb/in2 

Density (ρ ) 0.00073 lb.s2/in4 

Possion’s ratio (γ )   0.29 

Amplitude of input acceleration (a)          46.53 in / s2 

 

The first four natural frequencies of this flexible cantilever beam, available in the 

literature, are 0.637 Hz, 5.61 Hz, and 16.10 Hz.  A vertical axial harmonic excitation at 

the base is assumed.  The excitation is an imposed displacement, with amplitude that 

depends on excitation frequency, applied at the base. The acceleration imposed at the 

base is constant for any excitation frequency, and the assumed value for the constant 

acceleration is 46.53 in / s2. The beam is subjected to an initial condition of a small 

transverse velocity (0.5 in/sec) at its free end, as reported in reference [4].  

 

ANSYS version 7.1 was used to simulate the nonlinear transient response for this case. 

10 nodes and 9 elements of the ANSYS Beam3 element were used for modeling the 

beam. Geometric nonlinearities, stress stiffening and gravity effects were included in the 

analysis. The ANSYS command ‘nlgeom’ includes large deflections, and by default, it 

also includes stress stiffening effects in the analysis. An initial time step of 0.001 sec is 

selected for the analysis. Automatic time stepping is activated in the analysis to allow 

ANSYS to adjust the time step to avoid convergence problems. The ‘AUTOTS’ 

command activates automating stepping in the analysis. Damping of 0.32 percent of 

critical for the first mode of vibration is assumed in the analysis.  This value is reported in 
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Reference [4]. The corresponding values of mass matrix multiplier,α , and stiffness 

matrix multiplier,β , are α =0.0015 and β = 0.0015. Figure (4.12) shows vertical base 

axial excitation as a function of time for the first 10 seconds, with an input frequency of 

1.26 Hz .The excitation frequency is near twice the first natural frequency. Figure (4.13) 

shows lateral free end response obtained for axial base excitation frequency 1.26 Hz. 

 

Figure (4.12): Axial base excitation with f=1.26 Hz 

 
Figure (4.13): Lateral free end response for f=1.26 Hz by Implicit method 
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For a better understanding of this nonlinear beam response, the lateral free end response 

and axial base excitation results are plotted on the same graph in Figure 4.14 for the last 

10 seconds (390-400 seconds) of the 400 second transient simulation.                          

 

 
 

Figure 4.14: Lateral free end response for axial excitation frequency f=1.26 Hz 
 
 
Figure (4.14) clearly shows that there are approximately 12.6 cycles of axial base 

excitation displacement for 10 seconds (390- 400 seconds) and approximately 6.5 cycles 

of lateral free end response for 10 seconds. Therefore, the free end of the flexible 

cantilever beam is oscillating with a frequency which is half of the axial base excitation 

frequency. Hence, the response of the beam is “parametric”. Therefore, the ANSYS 

implicit solver has a capability to predict steady state parametric response for axial base 

excitations. Figure (4.15) presents the response of the free end of the beam for an axial 

excitation frequency of 1.3 Hz, with damping corresponding to α =0.0015 and 

β =0.0015. Figure (4.16) shows the lateral free end of the beam for axial base excitation 
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frequency 1.3 Hz with damping corresponding to α =0.0045 and β =0.0045. Comparison 

of Figure 4.15 and Figure 4.16 shows that increasing of damping not only decreases 

steady state amplitude, but also decreases the time taken for the beam to reach steady 

state. This increase in damping brings the response to steady state at 160 sec compared to 

about 300 sec for more lightly damped case. 

 
 

Figure 4.15: Lateral Free end response for f=1.30 with α =0.0015 and β =0.0015  
 

 
Figure 4.16: lateral Free end response for f=1.30 with α =0.0045 and β =0.0045 
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Figure (4.17) presents the response of the fee end of the beam for axial excitation 

frequency 1.24 Hz, with damping corresponding to α =0.0015 and β =0.0015. Figure 

(4.18) shows the response of the free end of the beam for axial excitation frequency 1.24 

Hz, with damping corresponding to α =0.0045 and β =0.0045. 

 

Figure 4.17: Lateral Free end response for f=1.24 with α =0.0015 and β =0.0015  

 
  

Figure 4.18: Lateral Free end response for f=1.24 withα =0.0045 and β =0.0045  
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4.4 Nonlinear Beam Response Studies Using Explicit Finite Element 

Method 

Explicit finite element analysis was also performed to predict nonlinear response of 

cantilever beam as shown in the Figure 4.11 for axial base excitation. ANSYS/ LS-

DYNA was used for the explicit finite element analysis. All the assumptions for the 

explicit dynamic analysis of the cantilever beam in the reference [4] were again 

considered here to make a comparison between implicit finite element analysis and 

explicit finite element analysis in terms of computational cost, accuracy, and stability. 

The cantilever beam was modeled with the Beam161 element. The finite element model 

has 10 nodes and 9 elements. The beam dimensions and material properties were given in 

the previous section  

Figure (4.19) shows the free end response of the beam for an axial excitation frequency 

of 1.3 Hz with damping (α =0.0015 and β =0.0015), based on the explicit finite element 

method.   

 

Figure 4.19: Lateral Free end response for axial frequency f=1.30 Hz by explicit method 
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Comparison of beam response by implicit finite element method and explicit finite 

method for excitation frequency f=1.30 Hz with modal damping of 0.32 percent of 

critical of the first excitation shows that the beam response obtained from the explicit 

method (Figure 4.19 ) has a comparable response amplitude to that obtained from the 

implicit method (Figure 4.15).  But, for the explicit solution, with the modeling 

assumptions used in this study, the explicit solution has not clearly reached a definite 

steady state, constant amplitude behavior.  It appears that near the end of the simulation, 

some fluctuations of the amplitude of the response are occurring.    

 

Figure (4.20) shows the free end response of the beam for an axial excitation frequency 

1.24 Hz, with damping (α =0.0015 and β =0.0015) 

 

Figure 4.20: Lateral response for axial frequency f=1.24 Hz by explicit method 
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By using the command ‘EDCTS’ in ANSYS/LS-DYNA, the scale factor for the 

computed time step for an explicit dynamics analysis can be altered. Therefore explicit 

dynamics finite element analysis can be performed with different time steps using the 

EDCTS command.  Hence, explicit dynamics finite element analysis was performed with 

different time steps, along with various damping levels, to attempt to generate a clear 

steady state solution.  

 

Different time steps and various damping values which were attempted, but did not 

generate a clear steady state response for an axial base excitation frequency 1.23 Hz can 

be summarized as: 

1. Changed time step from default of 0.9 to 0.1 with modal damping corresponding to 

α =0.0015 and β =0.0015. 

2. Increased modal damping corresponding fromα =0.0015 and β =0.0015 to α =0.0045 

and β =0.0045, and time step scaling factor was changed to 0.05 from default value of 

0.9. 

3. Applied alpha damping only, with mass matrix multiplier, α =0.0045, and time step 

scaling factor of 0.01. 

4. Applied alpha damping only, with mass matrix multiplier of α =0.123, and time step 

scaling factor of 0.01. 

5. Applied alpha damping only, with mass matrix multiplier of α =0.615, with time step 

scaling factor of 0.05. 
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Further, an additional study was carried out  for axial base excitation frequency 1.24 Hz, 

in which alpha damping only was assumed and three different mass matrix multipliers 

were assumed:α =0.08168, 0.20420, and 0.4084.  In all three of these cases, the time step 

scaling factor assumed was 0.01.  None of these three cases yielded clear steady-state 

response amplitude. 

 

4. 5 Summary of Example Studies 

There was good agreement obtained in the studies of Section 4.2 for beam response due 

to lateral loading between the explicit and implicit analysis methods.  An exhaustive 

study, involving extensive variations of time step parameters and other modeling 

parameters, to decisively conclude which method was most computationally efficient, 

was not undertaken.  But, from the results, it appears that both methods produce basically 

the same results in terms of beam response for a given set of loading and damping 

assumptions.  Agreement was obtained even for cases involving stress-stiffening and 

large deflections. 

 

However, in the case of nonlinear lateral parametric response due to axial base excitation, 

as outlined in Section 4.3, although the response results were comparable for an 

excitation frequency of 1.30 Hz, the results from the implicit simulation appeared to 

produce a clearer steady-state condition, which might be expected under the applied 

loading, than that produced by the explicit dynamics method.  For other excitation 

frequencies considered (1.23 Hz and 1.24 Hz), based on the modeling assumptions in this 

study, clear steady-state response amplitude was even more difficult to ascertain from the 
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explicit dynamics solutions.  Certainly, more study could be undertaken in an attempt to 

improve the results from the explicit dynamics solutions by modifying other modeling 

parameters.  But, the primary goal of this thesis was to determine procedures for 

implementing quadratic damping for cases with axial excitation like that in the 

simulations of Section 4.3.  The determination of better methods for using explicit 

dynamics in the study of parametric response of beams is left in this work as a suggested 

area for further study.   

 

Because the implicit analysis method seemed to more easily produce results with a clear 

steady-state lateral response amplitude for cases of axial excitation of the flexible beam 

being considered, it was decided that quadratic damping studies would be implemented in 

this work based on the implicit dynamics method.  
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CHAPTER 5 

TRANSIENT SIMULATIONS WITH 
QUADRATIC DAMPING 

 
 
 

 
 
 
5.1 INTRODUCTION  
 
Damping in any form results in energy loss in any dynamic system, which leads to decay 

of amplitudes of motion [29]. As mentioned in Chapter 1, when a body moves through a 

fluid (air), the damping force due to fluid resistance is proportional to the velocity of the 

moving body at low Reynolds numbers, whereas at high Reynolds numbers, the damping 

force is proportional to the square of the velocity. Anderson’s [5] theoretical and 

experimental studies on nonlinear response of a flexible cantilever beam for axial base 

excitation concluded that inclusion of quadratic damping along with linear structural 

damping in an analysis improved agreement between experimental and theoretical results 

for first mode response of the beam’s parametric vibration. Therefore, in this work the 

“velocity–squared” damping was applied, along with linear structural damping in the 

transient simulations of a flexible cantilever beam for first mode response to parametric 

axial excitation using the commercial finite element code, ANSYS. The different types of 

damping options preprogrammed in ANSYS are mass-proportional, stiffness-

proportional, and modal damping. There is also a user-option in ANSYS to implement a 

coefficient for “velocity-squared” damping using the ANSYS Combin14 element. 
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However, a different, more flexible approach is developed and implemented in this work. 

Based on ANSYS parametric design language (APDL), a method is developed for 

including the velocity squared damping assumption in the transient dynamic analysis of a 

flexible cantilever beam. This method allows for the damping force to remain normal to 

the beam for large deflections, and could be easily adapted for alternative damping 

assumptions. The following section describes implementation of velocity squared 

damping, and an overview of nonlinear transient simulation procedure using ANSYS. 

 

Based on the studies of Chapter 4, the implicit method appears to produce results with 

more stable steady-state solutions for lateral parametric response to axial excitation.  

While, as discussed in Chapter 4, further study may reveal modeling procedures that 

result in comparable results using the explicit method, it was decided in this work to 

implement the quadratic damping using the implicit method. 

 
 
5.2 Overview of Simulation Procedures using ANSYS 
 
Nonlinear response of a flexible cantilever beam [4, 5], corresponding to first mode 

motion, is simulated for axial base excitation with a frequency near twice the first natural 

frequency, including quadratic damping using ANSYS. The beam has dimensions 

33.56 0.75 .032× ×  inches, and its material properties are given in the Table (4.3). The 

Beam3 element of ANSYS is used to model the beam. The beam is subjected to an 

imposed axial base harmonic displacement with an excitation frequency equal to 

approximately twice the first natural frequency. Consistent with the work in Reference 

[4], the amplitude of input acceleration assumed is 43.56 in / s2. As an initial condition, 
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the free end of the beam is subjected to a transverse initial velocity of 0.5 in/sec. The 

“full” method option of transient dynamic analysis in ANSYS is selected for the transient 

simulations, and this is specified by using the command ‘ANTYPE, trans’. The 

command, ‘IC’, is used to input the initial transverse velocity at the free end of cantilever 

beam. The base of the cantilever beam is constrained to zero translation in the y-

direction, and zero rotation about the z-axis. The imposed harmonic displacement is in 

the x-direction (axial direction). 

 

Because the axial base parametric excitation of the flexible cantilever beam can lead to 

large deflections, geometric nonlinearities must be included in transient dynamic 

analysis. The ANSYS command ‘NLGEOM, on’ activates geometric nonlinearities, 

which includes large deflection, large strain, and large rotation. The ‘NLGEOM,on’ 

command, by default activates stress stiffening effects in the analysis. Gravity effects are 

included in the analysis using the command ‘ACEL’. 

 

Velocity-squared damping can be implemented in a transient analysis of a beam by 

retrieving values of displacements and rotations at each node at the end of the solution for 

successive small time intervals. Based on the displacements at the end of one time 

interval, and the displacements stored at the end of the previous time interval, 

corresponding velocities are calculated at each node. From the obtained velocities at each 

node, a damping force can be calculated at each node by assuming a constant quadratic 

damping coefficient and multiplying with the square of the velocity. Then the calculated 

damping force at each node is included in the analysis by explicitly defining forces at 
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each node for the next small time interval and the process is repeated for the duration of 

the analysis. During a given small time interval, the damping forces are assumed 

constant.  But, if the time interval utilized is sufficiently small, then the procedures 

should produce results that approximate the real-world situation of continuously varying 

damping forces.  

 

For a better understanding of implementation of quadratic damping in ANSYS, the lateral 

displacement of a cantilever beam due to axial excitation is considered. Figure (5.1) 

shows a schematic diagram for parametric response of a flexible cantilever beam with the 

x and y directions shown along with the normal, n, and tangential, t, directions. The angle 

between the x and t direction isθ  . Assume xv  and yv  are the components of nodal 

velocities in x and y directions, respectively, and tv  and nv  are the components of nodal 

velocities in the tangential and normal directions, respectively. Using a coordinate 

transformation, we can find the corresponding normal and tangential components of the 

nodal velocities from the nodal velocities in the x and y directions. 
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Figure 5.1: Schematic diagram of a beam with normal and tangential components of          

damping force 

                                                 

Equation (5.1.2) gives the relationship between nodal damping forces due to fluid 

resistance in the normal direction of the beam at some node along the beam:  

 

                                                         d n nf Dv v= −                                               (5.1.2) 

 

Where  

df = Nodal quadratic damping force 

nv = Normal component of nodal velocity.  
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D  = Quadratic Damping Coefficient;  

 

The quadratic damping force is positive when nv < 0 and negative when nv >0. As it 

seems reasonable that the fluid resistance acts in the direction normal to the beam’s 

lateral displacement in the parametric response of flexible cantilever beam, we will 

assume that the quadratic damping force df  acts in the normal direction. We can write, 

                                 
( ) 0cos sin
( ) sin cos

d x

d y d

f
f f

θ θ
θ θ

⎡ ⎤ − ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

                                     (5.1.3) 

 

Therefore using equations (5.1.3) we can calculate the x and y components of the 

quadratic damping force. Hence, if we know the instantaneous nodal velocities, the nodal 

quadratic damping forces are,                                             

                                                 ( ) ( sin )d x df fθ= −                                       (5.1.4) 

                                                  ( ) (cos )d y df fθ=                                         (5.1.5) 

 

The ANSYS Parametric Design Language command, “*get”, retrieves data from the 

database of calculated results, or data related to previous user input, either as a scalar 

parameter or in used-defined array parameters. The “* get” command can also be used to 

obtain values from preprocessing, solution, and post processing,  corresponding to  nodes, 

elements, keypoints, areas, volumes etc. Therefore, in the transient simulation of 

parametric response of a flexible cantilever beam, the * get command is used, along with 

a do-loop (implemented with the APDL ‘*do’ command) to obtain within the ANSYS 
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post processor the nodal displacements and rotations, with respect to the global x-axis, at 

each node of the beam, at the end of each small time interval  

 

At the start of the solution, the displacement in the x and y direction at each node is 

assumed zero, and stored in scalar parameters, ‘uxold’, and, ‘uyold’, respectively. The 

transient dynamic analysis is performed for an initial small time interval. After 

completion of the solution at the end of this initial time interval, from the general 

postprocessor of ANSYS, the ‘*get’ command is used, along with a do-loop to obtain 

components of nodal displacements in the x and y directions, and rotation about the 

global z-axis. The corresponding displacement and rotation values obtained from each 

node of the flexible cantilever beam are stored in new scalar parameters, ‘uxnew’, 

‘uynew’, and ‘phi’, respectively. Therefore, from the newly obtained nodal displacements 

after a small interval, along with previously calculated nodal displacements from the 

previous time interval, components of velocities in the  x and y directions at each node 

are calculated. Components of velocities at each node in the normal and tangential 

directions are obtained by coordinate transformation of components of nodal velocities in 

the global x and y directions using Equations (5.1.1). Then, the velocity-squared damping 

force at each node is calculated for a constant quadratic damping coefficient using 

equation (5.1.2), and transformed to corresponding velocity-squared damping forces in 

the  x -direction and  y -directions using  Equations (5.1.3). After completion of the 

solution for the initial time interval, damping forces corresponding to quadratic damping 

at each node are calculated using the general postprocessor, and included in the analysis 

for the next time step. 
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Restarting of a full transient analysis can be done from the previous analysis time interval 

using the ‘REST’ option of the ‘ANTYPE’ command. By default, the restart option will 

activate a multiframe restart for a full transient analysis. A multiframe restart writes 

different files to the database, which is time consuming. Therefore, a singleframe restart 

is used, after completion of the solution for each time interval. The ‘RESCONTROL’ 

command can also be used to restart a transient analysis without activating a multiframe 

restart from the last load step, or from the point where the previous analysis was stopped. 

The ‘RESCONTROL’ command controls the multiframe restart of the analysis in terms 

of writing files to the database. Therefore ‘ANTYPE, trans, rest’, along with the 

command ‘RESCONTROL, define, none, none’, is used to activate singleframe restarting 

of transient analysis of the flexible cantilever beam from saved information of the 

previous time interval.  

 

Hence, after finishing the solution for the initial time step, damping forces corresponding 

to nodal quadratic damping are calculated and applied in a restarted transient analysis. 

This process is repeated using a do-loop for the duration of the analysis. Alpha damping 

is included in the analysis, with a mass matrix multiplier, α, equal to 0.00001. Appendix 

C presents an ANSYS batch file corresponding to a transient finite element simulation of 

the cantilever beam subjected to axial base excitation including quadratic damping. The 

command ‘OUTRES’ writes the results from the solution to the database and the 

command ‘/CONFIG’ controls the number of results sets allowed on the result file. By 

default ‘/CONFIG’ allows for 1000 results sets to be written to the results file, and can be 
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increased to any required number. These two commands affect the solution time. 

Therefore, these commands must be used in accordance with user requirements. Hence, 

in the transient simulation of cantilever beam,  the ‘OUTRES’ command is used to write 

results corresponding base and  free end only, which is of interest in this analysis. 

 

Figure5.2 shows lateral free end response obtained from transient analysis of the beam 

for axial base excitation including quadratic damping.  The flexible beam is excited at a 

frequency of 1.27 Hz and the time interval selected for the solution is 0.001, with 

quadratic damping coefficient D=25e-7.  It takes 23 hours of CPU time on a Dell 1.6 

GHz, Pentium4 PC, with 1 GB RAM, to generate 125 seconds of transient response. 

Figure5.3 shows that lateral response has approximately 6.5 cycles for 10 seconds which 

is nearly half of the excitation frequency 1.27 Hz. Hence the response obtained is a 

parametric response. Figure 5.4 shows free end response of a 60 node beam model 

without any damping. Therefore, comparison of response obtained from no damping with 

quadratic damping shows quadratic damping is influencing the steady state response.  

Figure 5.5 shows free end response of a 60 node beam model with alpha damping only. 

Comparison of response obtained from no damping case with alpha damping (α= 

0.00001) shows that applied alpha damping with the very small alpha value used, has 

negligible effect.  
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Figure 5.2: Lateral free end response for f=1.27 Hz including quadratic damping  

 

Figure 5.3: Lateral free end response for f=1.27 Hz for time range (110-120 sec) 

including quadratic damping  
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Figure 5.4:  Free end response for f=1.28 Hz with Damping coefficient D=0.000 

 

 

Figure 5.5:  Free end response for f=1.28 Hz with alpha damping α=0.00001 
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5.2.1 A Study on Effect of Selected Time Interval 

Transient simulation results were generated with an excitation frequency f= 1.28 Hz with 

quadratic damping coefficients D=1e-6, with time intervals 0.001, 0.002 and 0.0005 

seconds, to determine a reasonable time interval for the analysis. The corresponding plots 

are shown in the Figures 5.7,  for a time range 92.5-94 seconds 

 

Figure 5.7: Lateral Free end response with excitation f=1.28 Hz with time intervals 0.001, 

0.002, 0.0005 seconds. 

 
Comparison of the lateral free end response obtained with time steps of 0.001, 0.002, and 

0.0005 seconds shows that a 0.001 second interval is likely a reasonable time interval for 

the cases being studied.  Clearly, there is approximately the same steady-state response 

amplitude for a 0.001 second interval as there is for a 0.0005 second interval.  A smaller 
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interval should be better for approximating a continuously changing damping force, but 

the smaller the interval, the longer the solution time.  In these studies, based on the results 

in this section, it was determined that a time interval of 0.001 seconds is probably 

sufficiently small to produce reasonable accuracy without excessive solution times.   

 

5.2.2 Mesh Density Analysis 

Additional nonlinear transient analyses were also performed with the beam using 20, 40, 

and 60 nodes, with a selected time interval of 0.001 seconds. Figure 5.8 compares lateral 

free end response for 20 nodes and 40 nodes for steady-state response in the time range of 

95-100 seconds. The steady-state amplitude value obtained from 20 nodes is 3.4% greater 

than the steady-state amplitude of the 40 node case.  Figure 5.10 compares lateral free 

end response for 20 nodes with that for 60 nodes, and Figure 5.9 compares the 40 nodes 

result with the 60 nodes result. The steady state amplitude value obtained from 20 node 

beam is 6.7% greater than the steady state amplitude of the 60 node model. The steady 

state amplitude value obtained from the 40 node model is 3.2 % greater than the steady 

state amplitude for the 60 node case. Figure 5.11 compares lateral free end response for 

60 nodes with the result for 80 nodes. The steady state amplitude value obtained from 60 

nodes is 2.34 % greater than the steady state value for 80 nodes. It appears that the results 

are likely nearly converged for a 60 node case, although further mesh refinement could 

produce somewhat better results at the expense of additional solution time.  
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Figure 5.8: Comparison of 20 node model result with 40 node model result.  
 

 
Figure 5.9: Comparison of 40 node model result with 60 node model result. 

 

 
 

Figure 5.10: Comparison of 20 node model result with 60 node model result 
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Figure 5.11: Comparison of 60 node model result with 80 node model result 
 
5.3 Confirmation of Simulation Procedures 
 
 Two simple cases are considered to verify the simulation procedure implemented in 

ANSYS for nonlinear response of a flexible cantilever beam which includes quadratic 

damping by the calculation of damping force proportional to the square of velocity. For 

the two cases, response is compared for damping applied by a dashpot (Using Combin14 

element) and by force calculations. The following sections give a complete description of 

the two cases. 

 

5.3.1CASE1: Spring-Mass System subjected Axial Harmonic Load 

As a first case, a simple Spring–Mass Damper systems is considered which is subjected 

to axial harmonic excitation, and the response is compared for damping applied by using 

a the ANSYS Combin14 element and by using force calculations, in which damping is 

implemented in a manner similar to that outlined above, in which the solution is broken 

into numerous small time intervals, and damping forces are explicitly defined and 

assumed constant throughout a small time interval. 
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             Figure 5.12: Single degree of freedom spring- Mass-Damper System  

Figure 5.12 shows a single degree of freedom spring –mass-damper system subjected to 

harmonic excitation at the support. The assumed values for mass, m, spring constant, k, 

and damping coefficient, c, for the system are m=1 lb, c=16.679 lb/in and k=0.81679 lb-

s/in. The spring is modeled using a Combin14 element, and the mass is modeled with 

Mass21 element.  The Combin14 element of ANSYS is a spring-damper element. 

Combin14 can also be used to model a spring element with zero damping, or a damper 

(dashpot), with zero stiffness. Therefore, for the case of damping applied by force 

calculations (implemented as constant explicitly defined forces within each small time 

interval), the Combin14 element is simply a spring element zero damping. Figure 5.13 

shows the response of the mass with damping applied by using a Combin14 element for 

20 seconds. Figure 5.14 shows the response of the mass in the axial direction with 

damping applied by using force calculation, as described above. But in this “force 

calculation” case, damping is proportional to velocity, and not proportional to velocity-

squared.  So, the results in Figure 5.13 should be in agreement with those in Figure 5.14. 

Comparison of figure 5.13 with figure 5.14 shows that the response obtained from 

damping applied by using force calculations are nearly identical to the response obtained 

from damping applied with the Combin14 element. 

K

0.5 sin( )wt×  
M

C
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Figure 5.13: Axial response of the mass with damping by applied using Combin14 
 
 

 
 
Figure 5.14: Axial response of the mass with damping by applied using force calculations 
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5.3.2CASE2: Flexible beam subjected to Lateral excitation 
 
As a second case of verification, a transient response is simulated for a flexible cantilever 

beam by subjecting one end of the beam to a lateral harmonic load. In this case, at first, 

damping is included in the transient analysis by using Combin 14 elements along the 

beam. If we assume zero stiffness for the Combin14 elements, the spring–damper 

element becomes simply a dashpot.  Again, for comparison, the same transient analysis is 

performed by including velocity-proportional damping by calculating damping forces as 

described in section 5.2. But in this case, the damping force is proportional to velocity, 

but not the square of the velocity. The free end lateral response obtained with application 

of damping by force calculations is compared with the response obtained with inclusion 

of damping by the Combin14 element, to verify the quadratic damping implementation in 

ANSYS for nonlinear transient simulations of the flexible cantilever beam. The 

dimensions and material properties are given in Chapter4, Section 4.2.  Figure 5.15 

shows a schematic diagram of the beam subjected to a transverse harmonic load with 

dampers at each node.  

 
 
 
 
 
 
 
 
 
 
 
                  

Figure 5.15: Flexible cantilever beam with damper at each node 
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The beam is subjected to harmonic load with an excitation frequency of 1 Hz, and the 

damping coefficient assumed for the analysis 0.00122, corresponding to a damping ratio 

of 0.1.  Beam3 element of ANSYS is used to model the beam. The full method transient 

analysis option is used to simulate the transient response at the free end of the beam. At 

the location where harmonic load is applied laterally, the beam is constrained in the axial 

direction and in rotation about the z-axis.  Geometric nonlinearities and gravity effects 

are included in the simulations. Figure 5.16 shows the lateral free end response obtained 

by including damping with Combin14 elements (dashpots).  Figure 5.17 shows the lateral 

free end response obtained with application of damping by force calculations. 

 

 
 

Figure 5.16: Lateral free end response by including damping with Combin14 elements 
 



 74

 

  
 Figure 5.17: Lateral free end response by including damping with force calculations 

 
 

 
Comparison of the lateral free end response in the figure 5.17 with the lateral free end 

response in Figure 5.16 verifies that the response obtained with both damping methods 

are in agreement. 

 

Therefore, from the cases of axial response due to axial input, and lateral response due to 

lateral excitations, we can conclude that the results generated by damping force 

calculations are accurate. Hence, the method used to implement nonlinear transient 

simulation generated with quadratic damping is likely a reasonable approach 
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5.4 Effect of Damping Coefficient on Steady-State Response 
 
 Nonlinear transient analysis is performed on the flexible cantilever beam with quadratic 

damping coefficients 750 10−× , 725 10−× , 875 10−× , and 825 10−× , for the axial base 

excitation frequencies 1.21 Hz, 1.23 Hz,1.25 Hz, 1.27 Hz, 1.29 Hz, 1.31Hz and 1.33 Hz 

for 150 seconds. The flexible cantilever beam is modeled with 60 nodes, and the analysis 

is performed with a time interval of 0.001 seconds. Each nonlinear transient analysis 

takes approximately 25 hours of clock time.  

 

In Figure 5.18, the lateral steady-state amplitude as function of excitation frequency is 

shown, for a range of damping coefficients over a range of excitation frequencies.  The 

range of frequencies shown does not include 1.21 Hz and 1.33 Hz, because at these 

frequencies, there was no parametric response, only a decaying oscillation due to the 

lateral initial velocity that was assumed.    

 

Figure 5.18 shows the expected result that steady-state amplitudes increase with 

decreasing assumed damping coefficient.  Also, the largest steady-state amplitudes occur 

at frequencies in the selected range that are nearest 2X the first mode natural frequency. 
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Figure 5.18:  Steady-State Amplitude vs. Excitation Frequency 

 

5.5 Observations on Response Phase with Respect to Input 

The steady-state response for an excitation frequency f=1.25 Hz is considered here to 

explain a procedure developed in this work for defining and calculating a “response 

phase” with respect to the axial base excitation for the flexible cantilever beam.  The 

phase in this case is different than the phase as usually defined in a linear harmonic 

response analysis.  In a linear case, the input frequency and response frequency are 

identical.  In these particular nonlinear parametric response cases, the input frequency is 

2X the response frequency.  It is not clear that there is any accepted definition of a 

“response phase with respect to input” in such a case. But, it does seem that, due to the 

fact that the input frequency is an integer multiple of the response frequency, a phase 
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angle can be defined, and perhaps study of this phase angle can lead to a better 

understanding of this nonlinear parametric response phenomenon. 

 

Figure5.19: Lateral free end response and axial base excitation with f=1.25 Hz. 

 

Let ( )x t  and ( )y t  harmonic functions represent axial base excitation and lateral free 

end response, respectively, for the response shown in the figure 5.19.  Equation 5.4.1 and 

5.4.2 represents corresponding steady-state response and excitation functions for the case 

of an excitation frequency f=1.25Hz: 

                                              ( ) 0.7542sin(2 )rx t w t=                                                (5.4.1) 

                                             ( ) 1.1719sin( )ry t w t φ= −                                              (5.4.2) 

 0.53tΔ =

 pxt  pyt

()yt

 

( )x t

Tr=1.59
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Where  

rw = Frequency of the response  

φ   =   “Phase Angle” 

                                                2r rw fπ=                                                                 (5.4.3) 

                                                 
1

r
r

f
T

=                                                                      (5.4.4) 

Where  

rT = Time period for the response 

 

 For this case, the response frequency can be calculated from the corresponding time 

period, which is 1.59 sec. Let pyt  be the time at which a peak occurs in the lateral 

response function, and let pxt  be the time corresponding to the most recent previous peak 

in the excitation function. Then,  tΔ  is given by the equation 

                                                         py pxt t tΔ = −                                                   (5.4.5) 

Now, the phase difference, as defined here, can be calculated by using the equation 

(5.4.8) obtained from equation (5.4.7)    

                                                   
1 2
2 r

t
T

φ π
⎡ ⎤⎛ ⎞Δ

= ⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

                                                 (5.4.7) 

                                                   ( ) rt fφ π= Δ                                                           (5.4.8)                               

For this case,  pyt  and pxt , are 140.73 sec and 14.20 sec, and corresponding phase 

difference calculated from equation (5.4.8) is 60 degrees, or 1.0471 radians.  
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The phase difference values are calculated for lateral steady-state response with respect to 

a range of axial base excitation frequencies, with four quadratic damping coefficients.  

Table5.1, Table5.2, Table5.3, and Table 5.4 present response phase results  for damping 

coefficients of D= 825 10−× , 875 10−× , 725 10−× , and 750 10−× . 

 

The results show that for a given assumed damping coefficient value, D, increasing the 

excitation frequency in the range of the parametric response increases the corresponding 

response phase angle.   Near the upper end of the parametric response region, it appears 

that for these cases, the phase angle, as defined in this work, approaches 90 degrees. 

Figure 5.20 shows a plot between base excitation frequency and response phase 

difference for quadratic damping coefficients D= 825 10−× , 875 10−× , 725 10−× , and 

750 10−× . 

Table5.1: Response phase values for quadratic damping coefficient D= 825 10−×  

 
Excitation Frequency 

Hz 

 
Response Phase 

Degrees(Radians) 
 

1.23 46.7243(0.8154) 

1.25 58.3128(1.0177) 

1.27 65.9808(1.1518) 

1.29 73.1430(1.2765) 

1.31 81.6987(1.4259) 
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Table5.2: Response phase values for quadratic damping coefficient D= 875 10−×  

 
Excitation Frequency 

Hz 

 
Response Phase 

Degrees(Radians) 
1.23 47.7777(0.8333) 

1.25 60.0000(1.0471) 

1.27 68.9060(1.2026) 

1.29 74.8000(1.3055) 

1.31 82.8900(1.4467) 

 

 

Table5.3: Response phase values for quadratic damping coefficient D= 725 10−×  

 
Excitation Frequency 

Hz 

 
Response Phase 

Degrees(Radians) 
1.23 47.777(0.8338) 

1.25 59.2546(1.0146) 

1.27 66.0759(1.1532) 

1.29 74.8000(1.3055) 

1.31 80.0004(1.3400) 
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Table5.4: Response phase values for quadratic damping coefficient D= 750 10−×  

 
Excitation Frequency 

Hz 

 
Response Phase 

Degrees(Radians) 
1.23 47.3535(0.8264) 

1.25 59.6250(1.0406) 

1.27 67.6430(1.18059) 

1.29 73.8400(1.2888) 

1.31 82.8900(1.4467) 

 

 

 

Figure5.20: Excitation frequency Vs Phase Difference for quadratic damping coefficients 
25e-8, 75e-8, 25e-7, 50e-7 
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CHAPTER 6 
SUMMARY, CONCLUSIONS, AND 

FUTURE WORK 
 

 
 
6.1 Summary and Conclusions 
 
The primary focus of this work was the development and implementation of procedures 

for performing transient analysis of nonlinear parametric response of a flexible cantilever 

beam assuming axial base excitation and quadratic damping using the commercial finite 

element code, ANSYS. The procedures were developed, and to illustrate their use, 

simulations were performed to calculate parametric response of a flexible beam, where 

the response was in the beam’s first mode. ANSYS does have a preprogrammed method 

to implement quadratic damping using combin14 elements. But, a different, more flexible 

approach for quadratic damping was successfully implemented in this work and included 

in the analysis of the beam.  

 

The implemented procedure for quadratic damping in ANSYS was confirmed by 

considering the case of velocity-proportional damping, and comparing results from 

application of damping by force calculations with results from application of damping by 

using Combin14 elements (dashpots) for two cases. The two cases considered were the 

lateral response of a beam due to lateral excitation, and the response of single degree 

freedom spring–mass system due to axial support excitation. The comparison showed 

essentially identical results for both confirmation cases. The quadratic damping 
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procedure that was developed was applied in a study of the  variation of the steady-state 

amplitude of beam parametric response for a range of quadratic damping coefficients, 

over a range of excitation frequencies.  

 

An additional contribution of this work was the definition and calculation of a “phase 

angle” for the nonlinear parametric response case.  The response phase with respect to 

input was studied for a range of excitation frequencies and a range of damping 

coefficients.  For the cases considered in this work, the response phase, as defined in this 

work, increases with increasing excitation frequency within the range of excitation 

frequencies in which parametric response is predicted.  Further, it appears that, for the 

cases considered, at the upper end of the excitation frequency range in which parametric 

response is predicted, this response phase approaches 90 degrees. There does not appear 

to be a dependence of phase angle on quadratic damping coefficients, D. 

 

In addition, the implicit finite element and explicit dynamic finite element methods were 

compared for the beam’s lateral response due to lateral excitations, and for the beam’s 

lateral response due to axial parametric excitation. Both the methods generated stable and 

accurate results for the beam’s lateral response due to lateral excitations. For the case of 

parametric response of the beam due to axial base excitation, the implicit finite element 

method generated the expected, steady-state response with constant amplitude.  But, for 

the modeling parameters assumed in this work, the explicit method produced results that, 

at least in some cases, did not have clear constant steady-state response amplitude. 
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6.2 Future Work 

In this thesis, a method for implementing quadratic damping in the analysis of parametric 

response of flexible beams due to axial excitation was successfully developed. Also, a 

definition of response phase with respect to input was developed.  Initial studies 

regarding effect of quadratic damping on response and the effect of excitation frequency 

on phase angle were completed.  This work could be used as a basis for a wide range of 

studies in the important field of nonlinear dynamic systems analysis.  A few suggestions 

for further studies building on this work are outlined below: 

1. The quadratic damping approach could be applied to study the conditions under 

which this type of damping (related to fluid forces) is significant as compared to 

the more standard assumption of structural velocity-proportional damping.    

2. The quadratic damping approach could be applied to study behavior of structures 

of perhaps more practical importance, such as cable stayed-bridge cables. 

3. The response phase over a wider range of excitation frequencies and damping 

coefficient values could be calculated, and the results may provide further insights 

into the parametric response phenomenon.  This phase angle calculation approach 

can be applied to cases with alternative damping assumptions.  It could also be 

applied to cases where higher modes are excited parametrically.   

4. The analysis procedures could be further refined to be made more efficient in 

terms of solution time. 
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Appendix A 

MATLAB m-file to Generate Newmark’s Numerical Integration 

Solution   
 

function [u,a,v]=nm(i) 
m=2; 
c=4; 
k=18; 
f=1; 
alpha=0.25; 
delta=0.5; 
dt=0.1 ;  
A0=1/(alpha*dt^2); 
A1=delta/(alpha*dt); 
A2=1/(alpha*dt); 
A3=(1/(2*alpha))-1; 
A4=(delta/alpha)-1; 
A5=(dt/2)*((delta/alpha)-2); 
A6=dt*(1-delta); 
A7=delta*dt; 
u(1)=0; 
v(1)=0; 
a(1)=0; 
n=70 
for i=1:n, 
u(i+1)=(f+m*(A0*u(i)+A2*v(i)+A3*a(i))+c*(A1*u(i)+A4*v(i)+A5*a(i)))/(A0*m+A1*c
+k); 
a(i+1)=(A0*(u(i+1)-u(i)))-A2*(v(i))-A3*(a(i)); 
v(i+1)=v(i)+A6*a(i)+A7*a(i+1); 
end 
t=0:0.1:7; 
plot(t,u) 
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Appendix B 

MATLAB m-file to Generate Newmark’s Numerical Integration 

Solution 

 
function [u,v,t]=centraldiff 
m=2; 
c=4; 
k=18; 
j=70; 
r=0.1; 
u(1)=0; 
v(1)=0; 
beta=1/(2+(0.6*r)+(3*(r^2))); 
a=beta*r; 
u(2)=(a*(r^2))/6; 
v(2)=(a*r)/2; 
t(1)=0; 
t(2)=r; 
fa=1; 
for i=2:j, 
    t(i+1)=i*j; 
    u(i+1)=2*u(i)-u(i-1)-((r^2)*k/m)*u(i)-((r^2)*c/m)*v(i)+(r^2/m)*fa; 
    v(i+1)=(1/r)*(u(i+1)-u(i))+((r/m)*(-k*u(i)-c*v(i)+fa)); 
end 
t=0:0.1:7; 
plot(t,u,'r') 
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Appendix C 
ANSYS – Batch file for simulating nonlinear response of a cantilever 

beam including Quadratic Damping 

 

/filnam,d25em7f1p27 
/config,nres,100001 
/prep7 
/title,Damping with force calculations 
/nerr,999999,999999 
f=1.27                                                                        ! Axial Base Excitation Frequency 
a=46.53/((2*3.14159265359*f)**2) 
et,1,3 
r,1,.75*.032,(1/12)*.75*(.032**3),.032,6/5 
ex,1,30e6 
nuxy,1,.29 
dens,1,.00073 
type,1 
real,1 
mat,1 
numnode=60                                                              ! Number of nodes 
dt=0.001                                                                     ! Initial Time Step 
d=0.0000025                                                              ! Damping Coefficient  
n,1 
n,numnode,33.56 
fill 
e,1,2 
*repeat,numnode-1,1,1 
*dim,disp,table,100001 
*dim,uyold,array,numnode 
*dim,uxold,array,numnode 
*dim,frcy,array,numnode 
*dim,frcx,array,numnode 
*do,i,1,100001 
    t=(i-1)/1000 
  disp(i,1)=a*sin(2*3.14159265359*f*t)          ! Axial base displacement function 
   disp(i,0)=t 
*enddo 
d,1,uy,0 
d,1,rotz,0 
d,1,ux,%disp% 
/solu 
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RESCONTROL,DEFINE,NONE,NONE                   ! Activating Single Frame Restart 
antype,trans 
trnopt,full 
nlgeom,on                                                                   !Geometric Nonlinearities 
sstif,on 
acel,386.5 
alphad,0.00001 
ic,numnode,uy,,0.5                                                     ! Initial Transverse Velocity 
nsel,s,node,,1 
nsel,a,node,,numnode 
cm,resnodes,node 
allsel 
outres,all,none 
outres,nsol,last,resnodes 
deltim,dt,dt,dt 
time,dt 
solve 
save 
finish 
 
!velocity-squared damping force calculations for initial time interval 
 
/post1 
*do,j,2,numnode 
   uyold(j)=0 

uxold(j)=0 
*get,uynew,node,j,u,y 
*get,uxnew,node,j,u,x 
vely=(uynew-uyold(j))/dt 
velx=(uxnew-uxold(j))/dt 
uyold(j)=uynew 
uxold(j)=uxnew 
*get,phi,node,j,rot,z 
vnorm=(vely*cos(phi))-(velx*sin(phi)) 
fnorm=-d*vnorm*abs(vnorm)                     ! Velocity Squared Damping 

Calculation 
frcx(j)=-fnorm*sin(phi) 
frcy(j)=fnorm*cos(phi) 

*enddo 
 
*do,i,1,100000 

 /solu 
RESCONTROL,DEFINE,NONE,NONE    ! Activating Single Frame Restart 
antype,trans,rest                                            ! Restarting Transient Analysis                                         
fdel,all 
*do,k,2,numnode-1 
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 f,k,fy,frcy(k)                                    ! Application of velocity –squared 
damping 

 f,k,fx,frcx(k) 
 *enddo 

    f,numnode,fy,frcy(numnode)/2 
  f,numnode,fx,frcx(numnode)/2   
  time,(i+1)*dt 

   solve 
   finish 
   /post1 
   *do,j,2,numnode 
         *get,uynew,node,j,u,y 
         *get,uxnew,node,j,u,x 
     vely=(uynew-uyold(j))/dt 
     velx=(uxnew-uxold(j))/dt 
     uyold(j)=uynew 
      uxold(j)=uxnew 
     *get,phi,node,j,rot,z 
    vnorm=(vely*cos(phi))-(velx*sin(phi)) 
    fnorm=-d*vnorm*abs(vnorm) 
     frcx(j)=-fnorm*sin(phi) 
     frcy(j)=fnorm*cos(phi) 

  *enddo 
*enddo 
save 
 
finish 
/post26 
lines,1000000 
/output,d25em7f1p27res,txt 
nsol,2,1,u,x,n1ux 
nsol,3,numnode,u,y,n60uy 
prvar,2,3 
/output 
timerang,90,100 
/output,d25em7f1p27last,txt 
prvar,2,3 
/output 
fini 
/eof 
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Appendix D 
ANSYS – Batch file for simulating lateral response of the beam  

            for lateral input including Damping by Combin14 

 
 
/filname, dampcombin14 
/config,nres,5000 
/title, damping using combin14 
/prep7 
/nerr,999999,999999 
et,1,3 
n,1 
n,10,33.56 
fill 
r,1,.75*.128,(1/12)*.75*(.128**3),.128,6/5 
ex,1,30e6 
nuxy,1,.29 
dens,1,.00073 
type,1 
real,1 
mat,1 
e,1,2 
*repeat,9,1,1 
et,2,combin14 
r,2,,0.00122                                                     ! Applying damping  by Combin14 element                    
n,11,3.72,1 
n,19,33.56,1 
fill 
type,2 
real,2 
*do,i,2,10,1 

e,i,i+9 
d,i+9,all 

*enddo 
type,2 
real,3 
e,10,40 
d,40,all 
*dim,disp,table,1001 
*do,i,1,1001 
   t=(i-1)/100 
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disp(i,1)=2*sin(2*3.14159*1*t) 
disp(i,0)=t 

*enddo 
d,1,ux,0 
d,1,rotz,0 
d,1,uy,%disp% 
/solu 
antype,trans 
trnopt,full 
nlgeom,on 
sstif,on 
acel,,386.4 
deltim,0.01 
time,3 
autots,on 
outres,all,all 
solve 
save 
finish 
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Appendix E 

MATLAB m-file to calculate Response phase with respect to input 
 
 
 
f=1.28                                               % Excitation frequency - input for running program  
[time,ux,uy]=textread('40node.m','%f %f %f ','headerlines',3);  
plot(time,uy)                                     % Transient Response of free end of cantilever Beam   
hold on;  
plot(time,ux,'r')                                 % Axial Base Excitation of cantilever Beam  
p=[time  uy];  
k=1;  
l=1;  
% Searching for Time values where deflection is maximum both in Excitation  
% and Response  
for i=1:10000 
  j=i;  
  u1=uy(i);  
  u2=uy(i+1);  
  u3=uy(i+2);  
  if (((u2>=u1)&(u2>u3)))     
   j=i+1;        
   peak=u2;  
                        pq(k)=time(j);                             %Time values for peaks in Response        
              k=k+1;  
  end  
y1=ux(i);  
y2=ux(i+1);  
y3=ux(i+2);  

if (((y2>=y1)&(y2>=y3)))    
j=i+1;  
peake=y2;         

             yt(l)=time(j);                               % Time values for peaks in excitation 
             l=l+1;  
  end  
end  
tpr=pq;     
tpe=yt;  
a=k-1;  
b=2*a;  
m=l-1;  
n=1;  
% Calculation of delta 't'(difference of peak times)  



 93

if (m==b)  
for i=1:a  
j=((2*i)-1);      

if (j<=m)  
delt(n)=tpr(i)-tpe(j);  
n=n+1;  
end  

end 
end  
if (m>b)  

for i=2:a  
j=2*i;      
if (j<=m) 
delt(n)=tpr(i)-tpe(j);  
n=n+1;  
end  

end  
end  
if (m<b)  
for i=2:a   

j=((2*i)-2);  
if (j<=m)          
delt(n)=tpr(i)-tpe(j);  
n=n+1;  
end  

end  
end  
dt=abs(delt);  
phase_diff=180*(dt)*f;                                     %Calculation of Phase Difference  
phase_diff_avg=sum(phase_diff)/(n-1)            %Calculation of Average Phase Difference 
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