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ABSTRACT OF THESIS

Privacy Protection for Life-log System

Tremendous advances in wearable computing and storage technologies enable us
to record not just snapshots of an event but the whole human experience for a long
period of time. Such a “life-log” system captures important events as they happen,
rather than an after-thought. Such a system has applications in many areas such as
law enforcement, personal archives, police questioning, and medicine. Much of the
existing efforts focus on the pattern recognition and information retrieval aspects of
the system. On the other hand, the privacy issues raised by such an intrusive system
have not received much attention from the research community. The objectives of this
research project are two-fold: first, to construct a wearable life-log video system, and
second, to provide a solution for protecting the identity of the subjects in the video
while keeping the video useful. In this thesis work, we designed a portable wearable
life-log system that implements audio distortion and face blocking in a real time to
protect the privacy of the subjects who are being recorded in life-log video. For audio,
our system automatically isolates the subject’s speech and distorts it using a pitch-
shifting algorithm to conceal the identity. For video, our system uses a real-time
face detection, tracking and blocking algorithm to obfuscate the faces of the subjects.
Extensive experiments have been conducted on interview videos to demonstrate the
ability of our system in protecting the identity of the subject while maintaining the
usability of the life-log video.

KEYWORDS: Video Analysis, Audio Analysis, Privacy Protection, Wearable Com-
puting, Life-log System
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Chapter 1

Introduction

In this chapter we present objectives of this thesis, discuss the motivation behind our

research, and also describe the major contributions of our work. First, we introduce

the “Life-log” system which can record every experience of a person’s life and discuss

some of its potential applications in different areas. We also identify the technical

challenges associated with the practical implementation of such system. Then we

discuss the main focus of this thesis, the importance of privacy protection in the life-

log system and how we can design and implement it for a wearable and practical unit.

At the end of the chapter, we present an outline of the thesis.

1.1 Background

1.1.1 Life-log Systems

Memories form an integral part of a person’s identity, therefore, every human being

has an innate desire to capture experiences and preserve them. To this end, humans

have successfully developed many technologies to record their memories permanently

- handwritten diaries, letters, film cameras, audio recordings, digital images, right up

to the most recent digital video. With the studies being made in wearable equipments

and storage technologies, a significant and dynamic market of digital media has grown.

The availability of portable multimedia recording devices allows us to record specific

moment of our life, which naturally leads to a question “is it possible to design a

device that can capture our experiences on the spot, and with details that a human
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subject would feel them?”. The concept of Life-log system is just that-, It is a system

that captures everything, at every moment and everywhere you go. The vision of being

able to record life time experiences has first been proposed by Vannevar Bush [1] more

than fifty years ago. The interest in realizing this vision is still strong, as indicated by

the amount of research conducted on the topic currently [2]. This wearable system

will help the user in recalling experiences with search indices and provide significant

details of the event just as the user experienced it. The technology is available now

to allow us to build such a wearable system which can continuously record almost

all human experience for days at a time. While there have been significant advances

in the availability of hardware to build such a practical life-log system, the software

needed to manage and analyze the huge amount of unstructured multimedia data that

is captured is still lacking. In the following section we discuss some of the applications

of life-log system and technical challenges associated with its implementation.

1.1.2 Applications of Life-log Systems

The Life-log system has applications in broad range of fields as shown in Figure

1.1. In this section we present a few of those applications.

Personal Archival System

The primary application of the life-log system is to record all memories of a

person and organize them with different kinds of context information such as

location, time, person’s mood, occasion or any other relevant information that

can help in retrieving an incident of interest. Life-log system can act as a

2



(a) (b)

(c) (d)

Figure 1.1: Applications of Life-log system (a) Personal Archival (b) Mili-
tary (c) Law Enforcement (d) Hospital (Images are downloaded from im-
ages.google.com) (a)http://www.spectrum.ieee.org/images/nov05/images/recf1.jpg
(b)http://www.openthefuture.com/images/853 web.jpg
(c)http://www.apogeonline.com/webzine/2006/04/13/04/20060413040101.jpg
(d)http://www.nist.gov/public affairs/baldrige2004/RWJU hospital hires.jpg

memory-aid device in which the user can navigate through by using an intuitive

interface and retrieve any event of his/her life with as much detail as possible.

Medicine

Another application is in medicine, where the stored personal records of a pa-

tient can provide multiple benefits. For example, the life-log system can provide

3



accurate details of each event that happened until a person fell ill (independent

from the patient’s memory which may not always be reliable). This will not

only help the doctor in diagnosing the cause of the illness but will also increase

the speed of the diagnosis. Learned life-patterns or habits can also provide clues

to a doctor to predict potential medical problems. On the other hand, doctor

also can wear the life-log system while examining a patient and the life-log sys-

tem will take care of all cataloguing work related to medical reports. Again the

system might provide past visits and all medical history of a patient very easily

which will speed up the process of diagnosis.

Police Questioning

Life-log system has many advantageous applications in areas such as, on the

(crime) spot police questioning and in events in which a crime witness/suspect

is interviewed by the police in a criminal trial. Some people may feel uncom-

fortable in being interviewed at the police headquarter because of the tense

milieu in the interrogation room, and would prefer to give their testimony in

their own home where they are more relaxed. The life-log system can be useful

in recording the testimony in such situations because it is inconspicuous and

extremely mobile [3].

Law Enforcement

Since the 1990’s submitting the evidence of a crime in court proceedings in video

format has been increasing and found to be extremely useful. In the past, videos

were captured in VHS format with the video capturing system installed in the

4



police patrol car. With many advances in digital technologies, nowadays the

evidence is recorded in digital format, which by itself offers many advantages

over the VHS format [4]. However, the system still has disadvantages due to

the fact that the the video capturing system is fixed in the car. This severely

restricts the area that can be captured and also requires that the system be

manually controlled. For example, during a police chase, one additional police

officer (besides the driver) will be needed to continuously focus the camera

on the suspect, and to adjust the zoom to capture the video with sufficient

detail. In such situations the life-log system can be very useful. When a police

officer mounts the camera on their body while he/she is on duty, the officer can

capture evidence at a crime scene, on their own, and without much interference

or restriction on their movements. Because the officer will be able to take the

camera everywhere, adjustments to the zoom are not needed (or are minor

at best) in recording quality video. This advantage can get rid of the manual

adjustments needed for a fixed camera and also the need for a dedicated person,

which can greatly increase the efficiency of the officers. The other advantage

is that as the life-log system is completely mobile, the capturing area is now

unrestricted and it is possible to record evidences in places where the current

on-patrol camera system is unable to reach [3].

Military

In the military, soldiers are often required to report all observations or incidents

with sufficient accuracy and depth after returning from patrol/combat. The life-

log system can be very useful in such cases, because it can improve the reporting

5



capability of soldiers by providing a record of the event with enough detail and

accuracy. The system would record information such as the location, audio,

video, motion and other data via body worn sensors, which would be then

used to help write the report. The vision for such a system, for example, has

been proposed in a DARPA research project called “Advanced Soldier Sensor

Information Systems Technology” (ASSIST) [5].

1.1.3 Technical Challenges

The design of a life-log system to store and manage a person’s life time experiences

poses many technical challenges in computing research. We discuss some of these

challenges in this section.

Information Management

How can we manage and store automatically the inordinate amount of data

that is being recorded in an effective way? What kind of supporting informa-

tion such as annotations or other contextual information be stored along with

raw data and what means should be used to collect those data? The challenge

is in identifying ways to integrate all the different modes of information cap-

tured through various sensors and effectively organize the collected data, and

to interconnect the related data.

Information Retrieval

Solely capturing and storing the memories is not sufficient. In order to be

useful, a system like the life-log should provide an environment which will fa-

cilitate browsing of stored experiences. The question of interest is, “How to

6



index/summarize the recorded data to be able to retrieve useful or relevant in-

formation easily and effectively?”. How to design an intelligent query processor

which can perform sophisticated interpretation of stored data? For example,

one may ask the query: “Search all vacation videos at Grand Canyon while

hiking down to the Colorado river”. Existing solutions such as manually cata-

loguing or annotating every segment of life-log video would not easily scale to

the large amount of data collected by a person over a life time.

Knowledge Discovery

Knowledge discovery concerns with developing methods to automatically ana-

lyze the collected information and discover important information. Our day-to-

day lives involve many repetitive events such as having breakfast in the morning,

driving to office, checking emails, coming back to home, play with kids, watch

TV, go to sleep, etc. From the analysis of the life-log video, a life-log system

should be able to learn the life-pattern or specific traits or habits of the user

of the system. Such analysis can be very useful in the medical diagnosis of

a person because it provides the doctor with important information regard-

ing the person’s lifestyle. Designing such an intelligent system would require

the combination of many aspects of artificial intelligence, such as speech pro-

cessing, context recognition by audio-video analysis, object recognition, natural

language processing, machine learning, etc.

Human Computer Interaction

Developing an effective user interface to be able to interact with the collected

7



information is crucial for the utility of such a system. It is also imperative

to learn how to present the collected information and associated knowledge

intuitively to make it useful to the user. Solution of these issues requires that

the system be capable of learning from the collected data.

Security and Privacy

Another aspect for the implementation of the life-log system are in ensuring

that the privacy of individuals captured in the video can be protected and that

the collected data is safely stored with necessary security provided. There are

many technical and legal policy issues needed to be addressed before the life-log

system can actually be deployed. For example, if a person(A) is present in other

person(B)’s video, what rights does person(A) holds on the video with respect

to its distribution or use? Can the system selectively block out those who do not

want to be filmed? Will such privacy protection scheme diminish the usefulness

of the video? Therefore, the challenge is in developing technological solutions

to protect the privacy of people according to their needs. The system should

also be able to provide a solid security mechanism so that if the collected data

falls into wrong hands, it should not be misused. The goal of this thesis is to

provide practical solutions to privacy issues of subjects who are being captured

in the life-log video. In the next section we further elaborate on the importance

of ensuring privacy in the life-log video.

8



1.2 Motivation

1.2.1 Importance of Privacy Protection

Privacy is one of the most important issues that need to be carefully handled in

a system that records everything, everywhere, and at every moment. Although every

new technology like the life-log can provide benefits to society with proper usage,

it can also prove harmful if misused. Therefore, people may feel reservations/fear

towards system like the life-log due to the possibility that the audio-video recording

of naive individuals could be misused. The recording of life-log videos also threatens

a fundamental right to privacy of every individual in the United States. The bill of

rights of the US constitution protects the right to privacy of citizens, although the

word “privacy” is not explicitly mentioned anywhere in it [6]. Recent advances in

technology seem to threaten this very basic right. For example, the prevalent video

surveillance and sensor networks in the country makes everyone feel like they are being

captured and observed every moment. This makes people more wary and their atti-

tude towards new technologies becomes more negative, which ultimately hampers the

progress in computing research [7]. Some of the emerging technologies with privacy

concerns are face recognition, biometrics, video surveillance, sensor network, semantic

web, bio-terrorism surveillance, etc. Despite the potential benefits that these tech-

nologies offer to the society, many citizens are concerned that their privacy will be

invaded and this forces people to choose between their own privacy or benefits of the

technology. For example, consider face recognition technology which was tested by

police during Super Bowl game at Tampa, Florida in January, 2001. To supervise all

9



the people coming to watch the game in the stadium, police installed face recognition

system to capture faces of people and compared them to the database of criminals.

The event was strongly criticized by many privacy advocating organizations such as

American Civil Liberties Union; who argued that the public was not made aware

of the system which invaded their privacy rights, and that the system could make

false recognition which makes it less reliable [8]. Due to the resistance to this privacy

threatening technology, in August 2001, Florida City Council passed a legislation to

ban the use of face recognition technology by police officers [9]. In another incident,

a famous DARPA project called Life-log was attacked in a similar way and was later

aborted [10].

Another obstacle in the implementation of these technologies arises from the prob-

lem that the term “privacy” is vague and subjective. Different people seem to have

different level of privacy concerns or even different concepts of privacy. Gathering

“private” information may consists of activities such as recording or listening what a

person is speaking, knowing his/her location, identifying his/her activity at any given

time. Intrusion of privacy also include the manipulation of any data (eg. audio or

video recording) belonging to another person. This gives rise to the question of what

exactly we should preserve to protect privacy. Also the rules and regulations about

multimedia capturing are not uniform across states in the United States. Every state

has different rules about what is legal to record and what is not, and also what rights

a person has over another person’s recordings if he/she is present in it. These are

some of the issues which illustrate that privacy is not well understood. The book

“Digital Person” [6] provides an excellent discourse of what constitutes “privacy”
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and how laws can be designed to balance the need to protect privacy in the current

information sharing age with the benefits that new technologies bring to individuals

and the society at large.

From the above discussion it is clear that it is extremely important to first provide

technological solutions which ensure that an individual’s privacy is protected. Only

after that the deployment of such technologies is possible. In this work we address the

privacy issue in the life-log system by providing reasonable solutions to hide/mask

the identity of subjects recorded in the life-log video. The next section explains the

major contributions of this work.

1.2.2 Contribution of the Thesis Work

Legal and privacy related issues in a life-log system called Total Recall, which

captures all experiences of a person has been previously discussed [11] but there was

no implementation. In addition, prototype systems for privacy protection in video

surveillance [12, 13] and in face recognition [14] are also available. However, to the

best of our knowledge, there has been no automatic solution that protects privacy

information in life-log video recordings.

In this work we present a practical real-time privacy protection mechanism for

subjects captured in a life-log video. Our work mainly focuses on interview scenarios

where producer (who is the user) of the life-log videos is interviewing one subject in

a relatively quite room. Such scenarios can occur in many applications such as police

questioning in police headquarters, a journalist interviewing a person, and doctors

examining a patient etc. We use real-time face blocking and voice distortion to conceal

11



the identity of the speaker. We have decided to block only face instead of removing the

person all together to keep the video useful to the producer, because body language

of the subject is conveyed through video with minimal disclosure of subject’s identity.

Voice identity of the subject is protected by voice distortion achieved by pitch shifting

of audio signal. There are two major contributions of this research work. First, we

have implemented real time subject’s face blocking and subject’s voice distortion to

protects his/her identity. Second, we perform detailed analysis on the audio distortion

algorithm for its performance in concealing the speakers identity, and also the degree

of ambiguity that ensures that no distinctive features remained in the distorted signal,

similar to k-anonymity [15]. To keep the recording useful after audio distortion, we

measured the subjective intelligibility of the distorted conversation. Neither the face

blocking algorithm and the pitch shifting algorithm are novel invention. While there

have been evaluation studies on visual privacy protection [16], we are not aware of

any studies on audio privacy protection. In Chapter 5, we provide a detailed study

on how well a pitch shifting algorithm can protect individual audio privacy while

maintaining the usefulness of the audio signal. This is a novel study, which, to the

best of our knowledge, has not been conducted before by any other group.

Our experiments show that a good balance between privacy protection and us-

ability can be obtained by implementing our scheme. The pitch-shifting algorithm

achieves 100% speaker identification error and thus allow perfect audio privacy pro-

tection. To determine if the recording is useful after distortion, we compare intelli-

gibility of the conversation before and after the distortions in terms of Word Error

Rate(WER). The average WER before and after distortion (with α = 1.40) are 14.2

12



and 14.4 respectively. Statistical analysis shows that the clarity of the recording for

pitch scaling factor α = 1.40 is same as that of the original audio clips. Analysis

of segmentation algorithm gives recall between 0.86 to 1 in detecting the subject

speaking portion of the audio.

1.3 Thesis Outline

The thesis is organized as follows. After providing the background and stating

the major contributions in this chapter, Chapter 2 gives a comprehensive summary

of the existing systems and research work related to personal experience capturing

and archival technologies. It provides a survey of the research efforts in fields such as

wearable computing, multimedia processing, and information retrieval. It also sum-

marizes the research work related to privacy protected information sharing and its

application toward the realization of life-log system. In Chapter 3, we discuss the

system architecture of our life-log system. We explain the hardware and software ar-

chitecture of the life-log system and give a detailed system overview. In Chapter 4, we

explain the privacy protection mechanism implemented for audio-visual information.

First the design objectives are discussed and then an explanation of the different al-

gorithmic components such as face detection and blocking, audio distortion by pitch

shifting and audio segmentation method are given. In Chapter 5, we present the

experimental results from the tests conducted on our privacy protection scheme and

also evaluate the scheme’s performance. In the final Chapter 6, we summarize the

conclusions from the research work and provide suggestions for future work in this

area.
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Chapter 2

Related Works

This chapter is divided into two sections. In Section 2.1 we present the existing

research work related to the life-log technologies, while Section 2.2 discusses the cur-

rent research efforts towards privacy protection mechanisms in various fields including

audio-video capturing.

2.1 Experience Capturing Systems

In the article “Capturing Experiences Anytime, Anywhere”, the authors present

an excellent overview of the chronological advancements in mobile-experience capture

technology [17]. The paper discusses how the present Web logging culture may be

supplanted tomorrow by a “Sensecam”, a wearable camera, which utilizes sensors

to detect interesting events and triggers the capturing of images [18]. In the past

few years, research in wearable computing, video retrieval and databases to record

a person’s life time experience has been steadily growing. A pioneer in wearable

computing, Steve Mann, has experimented with wearable cameras as a means for

recording personal events. But he did not give sufficient consideration to how the

abundant amount of collected data can be organized and utilized to extract informa-

tion [19]. An ongoing Microsoft research project “MyLifeBit” also attempts to realize

the Memex vision of V. Bush by digitizing a person’s life via exhaustively recording

his/her experiences through documents, emails, books, web pages the person visited,

and digital photos and videos [2]. Research Scientist, Gordon Bell, has been recording

14



his whole life into digital format and has been experimenting with the collected data.

Similarly, Lamming and Flynn, used the ParcTab system [20] to design a portable

episodic memory aid called the Forget-Me-Not system [21]. They used various sen-

sors that were implanted in a laboratory or badges worn by users to record contextual

information such as location, encounters with other individuals, personal activities,

file exchanges, and workstation activities to capture and retrieve different life experi-

ences. Clarkson developed a system with fisheye video cameras that can be mounted

on a chest strap from the front side. He used the system to continuously record his

day to day experience for 100 days [22], and experimented with the collected data.

Jennifer et al. has developed the “Startle Cam”, which records video data triggered

by the user’s physiological reactions such as skin conductivity, heart rate, respiration

rate and muscle activity [23]. Finally, in the wearable computing area, sensors such

as acceleration sensors, GPS, physiological sensors (brain wave analyzer), skin con-

ductivity and gyro sensors have also been used to trigger the capturing of an event

and retain its context [24].

Ubiquitous experience recording technologies is an emerging field that has grabbed

significant attention from the research community. From 2004 ACM has been con-

ducting a workshop on Continuous Archival and Retrieval of Personal Experiences

(CARPE), devoted to technological topics of capturing life-time personal experience,

sensors, and related research challenges [25]. Pervasive 2004, the second International

Conference on Pervasive Computing included a workshop on Memory and Sharing of

Experiences. The UKCRC (United Kingdom Computing Research Committee) has

identified Memories for Life [26] as a significant challenge in computing research [27].
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DARPA’s (Defence Advanced Research Projects Agency) ASSIST program [5] ac-

tively funds research for developing body sensor technology which the soldiers can

wear to improve their capability to recall and report observations and experiences

during ground duty.

The existing research work related to life-log technologies is focussed on informa-

tion summarization, indexing and retrieval issues, and to manage life-long collection

of personal information. By taking into account the fact that the human mind tends

to remember an experience by associating it with the context of the situation, most

of the research in Life-log video archival systems has centered around making use of

contextual information such as location, time etc. captured by the additional sensors

attached to the system. Previously Aizawa et al. and Hori et al. have shown how

a person’s brain wave and motion captured from sensors (which record human emo-

tions) can be used to summarize the life-log video [28,29]. In another paper, [30] the

authors have used both content and contextual information to extract keys/meta data

to annotate the video sequence. They discuss about detecting a conversation scene

by analyzing audio signal and face detection technology. Time-constrained K-mean

clustering technique has been demonstrated [31], in its ability to learn the underlying

structure of continuously recorded personal memory archives. Some studies have fo-

cused on using continuous audio-only recordings because it may offer advantages [32].

The authors used spectral clustering techniques [33] to segment and cluster the audio

recording into different ‘episodes’ that can be related to the context of the situation

experienced by the user. The author calls the user context as acoustic environments

which includes different locations, different user activities, etc. Each of the envi-
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ronment has their own acoustic characteristics which is useful for segmentation and

schematic labeling. The authors argue that making an audio recording requires min-

imal attention from the user because the sensitivity of the microphone is not affected

significantly by its positioning and angle, and it can be easily carried with little incon-

venience. In another paper, the same authors study various audio features that can

be used to represent one-minute audio window, and their effectiveness in segmenting

audio recording [34]. This has also triggered research work related to context recog-

nition through content i.e. audio, video information. In [35], continuous audio-video

recording obtained by a wearable camera and microphone mounted on chest strap

was classified into different events such as, entering office, leaving office etc. Hidden

Markov Model (HMM) was first trained by manually labeling the stream with event

names by the user as they occur. The trained HMM was successfully able to clas-

sify the recording into twelve different events. In [36], the authors describe object

and place recognition method which make use of context information extracted from

video frames captured by a head-mounted wearable camera. The paper describes an

algorithm using HMM to classify video segments by their background environment

into categories such as office, kitchen, etc.

These are the major research work in continuous personal archival systems. In

the next section we discuss research work related privacy protection, faced by these

experience capturing technologies.
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2.2 Privacy Protection

Despite the recent research efforts in indexing and summarizing life-log content,

we are still a long way from fully achieving a practical life-log archival system. Privacy

and legal issues related to it are largely neglected and need to be tackled carefully.

Here, we discuss some of works to address privacy challenge in different domain.

Public data Release

There has been significant research work regarding privacy protected data mining

in context of public data release [37] [38] [39] [40] [41]. Many public, and private

organizations, such as hospitals, banks, and government agencies constantly collect

personal information of people. They are required to release/share these microdata

which is generally in the form of relational tables, for different statistical studies

such as demographic analysis, public health research, etc. The challenge that these

organizations face is how such data can be released anonymously i.e. in such a way

that the subjects of the data can not be identified, thus ensuring their privacy; but

at the same time the released data should remain useful for practical purposes [42].

Anonymity and privacy in microdata release has received tremendous attention from

the research community, and there has been significant efforts towards making the

released information anonymous [43] [44] [41] [38] [39]. One of the approaches

discussed in the literature is to use perturbation techniques to obfuscate the actual

data [45] [40]. Another approach is to suppress or generalize some of the sensitive

information [41], [46].

Although released microdata is made anonymous by removing identity of a person,

it raises serious concerns about privacy of people, because a person can be re-identified
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by relating the information gathered from different sources [46]. Privacy protection

model called K-anonymity, has been proposed to reduce the risks of such correlation

attacks to re-identify the person [15] by combining information from different sources.

The authors explain the definition of k-anonymity as,

“A table satisfy k-anonymity if every record in the table is indistinguish-

able from at least k-1 other records with respect to every set of quasi-

identifier attributes; such a table is called a k-anonymous table”. The

quasi-identifiers are the collection of attributes in a table that can be

linked with external data to uniquely identify individuals in the popula-

tion.

K-anonymity model has shown good results in recent years and has been widely

used. In [47], the authors extend the definition of k-anonymity and propose a model

which can be applied to data mining algorithms i.e. data mining algorithm using the

proposed model will always generate k-anonymous data.

Image or Video Data (Video Surveillance)

While there are well established privacy models for microdata, there is yet no

formal privacy framework for multimedia data in the literature. Multi modal nature

of multimedia information makes it harder to achieve privacy protection in it. Due

to the richness of information carried by multimedia data, it becomes more difficult

to gain anonymity.

Algorithms have been presented to de-identify images in surveillance video to

address the privacy protection issue [48] [49] [50] [16]. Most of the techniques use

simple obfuscation methods to filter out any sensitive portion of an image. One
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common method is to pixelize or to blur sensitive areas such as a person’s face in the

image [48] [51]. Hudson and Smith [52] presents a shadow-view filter that compares

the static background image of a scene and the video frames block-by-block basis

of 8x8 pixels. If the difference exceeds a threshold, the block is replaced by the

average intensity pixel of the block in the background image. This gives rise to a

ghostly shadow like visual effect of foreground objects in the video. Dufaux et al. [50]

presents a method using transform domain scrambling of privacy-sensitive portions

in the video surveillance to address privacy protection. Discrete Wavelet Transform

(DWT) coefficients corresponding to the sensitive portion of the video, are scrambled

by randomly inverting their signs. The advantage of this method over the other

obfuscation methods is that it is reversible. Private encryption key is needed to

unscramble the video and thus it provides sufficient security. Some methods block

out the sensitive information in a video stream [53] [54]. privacy filters, defined by

privacy grammar, are used by privacy buffer that operate on incoming video signal

to filter out sensitive information [53].

A. Senior et al. [55] discuss the definition of video privacy in detail and how it dif-

fers in comparison to privacy in other data. Authors also describe privacy protection

model which is based on object oriented representation of a video scene. Depending

on access control level of an individual, the system re-renders the modified video with

privacy-sensitive portion blocked or replaced by computer graphics. The implemen-

tation of these concepts is called “PrivacyCam” by the authors, in essence it is a

smart camera that produces privacy protected video signal with sensitive information

removed. In another research article [56], the authors describe a distributed privacy
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paradigm for Visual Sensor Networks (VSN). The author defines VSN as a sensor

network in which visual data is captured along with sensor data, that can be useful

for improving the service provided by sensor networks when deployed in a hospital,

combat field, etc. The privacy and security concerns are high in VSN, which requires

captured visual data to be properly secured to prevent illegitimate attacks. The paper

describes TANGRAM algorithm based on Lyapunov stability theory, which enables

sharing of images among sensor nodes which modifies images in such a way that if

illegitimate attackers get access of images they cannot break the puzzle to get original

images, thus achieving security and privacy.

A more formal model of privacy called k-same that specifically targets face im-

ages is presented in [14]. A face de-identification algorithm is proposed in which

many facial characteristics are retained but face recognition software can not reliably

identify the face. The algorithm is based on defining similarity map between faces

and creating new faces by averaging out image features of most similar faces. This

algorithm implements k-anonymity protection model for face images. The excerption

of definition of k-same taken from the paper which succinctly explains it is as follows,

“Given a person-specific face set H; and, a face set Hd which is k-anonymized

over H using a preserving face de-identification function f:H → Hd, if f

is effective with respect to the claim:

Given any face image ΓdεHd, where Γd = f(Γ) for ΓεH, there cannot exist

any face recognition software for which the subject of Γd can be correctly

recognized as Γ with better than 1/k probability.

then f is a k-Same de-identification function and Hd is a k-Same
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de-identification. The goal is to determine the appropriate function f

with minimal information loss.”

Lack of Evaluation Techniques

Despite having a number of techniques for privacy protection, there is no formal

evaluation model which can be used to measure the degree of assurance of privacy

provided by each technique. One of the few research works in this area is a pa-

per by Boyle et al [48], in which the authors study the impact of filtering methods,

pixelation and blurring, on awareness and privacy in media spaces i.e. video sig-

nal. Media space application requires sharing of video across offices and rooms to

provide informal awareness to distant work-groups working in an organization [57].

The experiments involved two subjective studies with modified videos of varying de-

gree of filters applied to it. First, the test subjects were asked to extract awareness

information such as number of people in the scene, their activities, their gender,

and other visual information. In the second study, each filter level was tested for

its ability in preserving privacy by asking test subjects to identify a person in the

filtered video. In another paper [16], Zhao and Stasko evaluate various image filter-

ing based techniques in media space application for their performance in providing

enough awareness information while preserving privacy. The authors first describe

image filters such as blurring, pixelization, edge-detection, shadow-view, live-shadow

filters to hide sensitive regions in a video and ensure the privacy of people. They also

report experimental results that elucidate in a qualitative and quantitative manner

the degree of awareness achieved by these filtering methods.
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Audio data

Besides visual identity, a person also has an audio identity. Our speech signal

carries privacy sensitive information, such as a unique speech pattern that identifies

an individual and the meaning of the speech i.e. what is being said. There has been

lots of research work in the voice conversion domain [58] [59] [60] [61] to modify the

audio identity of a person by changing the voice pattern of one person to another

while preserving the speech content i.e. meaning of the speech. The methods dis-

cussed in literature involve changing physical properties such as voice track pattern

or pitch that encodes an identify of a person. In [62] the author describes different

methods, such as linear prediction, cepstral analysis, and pitch alteration, that are

used for voice transformation. In [58], the authors present a voice conversion method

based on vector quantization and spectrum mapping. The method produces a map-

ping codebook which shows correspondences between codebook of source and target

speaker. Another paper [59] describes a voice conversion method based on proba-

bilistic conversion between source and target spectral envelope modeled in Gaussian

Mixture Model. Most of the research work in voice transformation has focus on the

applications such as entertainment, in movies etc. But application of voice conversion

for privacy preserving technologies and security has not yet been explored very well.

Voice transformation can be used to address the threat to privacy brought by speaker

recognition techniques [63] [64].
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Chapter 3

Proposed Life-log System Design

In this chapter we describe the hardware and software architecture of the proposed

life-log system.

3.1 Hardware Design

Among the most important design criteria of wearable life log system from the

user’s point of view are that the system should be comfortable, light-weight, and

should not interfere with daily activities. The system should be able to capture

both audio and video data for long duration and provide an intuitive user interface

to review and edit the data. To apply this system in the law enforcement domain,

wireless connection capability is also important, as it allows the police to receive

critical updates about criminal activities from the central command.

Camera battery Micro-PC & Storage

Microphone

Camera

Camera battery Micro-PC & Storage

Microphone

Camera

Figure 3.1: Main components of the proposed wearable life-log system: a small camera
mounted on the shoulder, a microphone, and the processing, storage and browsing
unit in the small backpack.
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Based on the above criteria, we propose the design of a wearable life-log system

as shown in Figure 3.1. It consists of three main components:

Small Helmet Camera

The suitable camera should be of small-size, light-weight, and weather-proof. It

should have high spatial resolution, high frame rate, high low-light sensitivity

and flexible mounting options.

In order to obtain a clear, stable and unobstructed view of the scene, an ap-

propriate mounting position for the camera is crucial. Most of the existing

wearable systems have their cameras attached to a helmet or the spectacles,

or are directly mounted on a head-band [65]. Although this position captures

the scene most accurately as seen by the eyes, the camera requires a helmet or

special spectacles both of which are undesirable because they easily draw the

attention of the surrounding people. Also, due to the inadvertent movement of

the head, the video captured from this position is highly unstable. Therefore,

we propose to secure the camera on the shoulder. Our preliminary experiments

show that the video is far more stable than that obtained from a head-mounted

camera. A lens with a wide field of view (at least 70o) should be used in order

to capture most of the frontal scene. Based on our research, a good choice that

matches our criteria is the S.C.O.U.T. camera from Viotac shown in Figure 3.1.

This camera weighs 105 grams and captures NTSC resolution video with a field

of view of 72.5o and light sensitivity of 0.2 Lux.
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Omnidirectional Microphone

The primary function of the microphone is to capture the voice of the user of the

wearable system as well as those who have face-to-face conversations with the

user. This requires that the microphone not be too close to the mouth otherwise

the user’s own voice will be too loud. The omnidirectional microphone that

comes with the S.C.O.U.T. system is suitable for our purpose. We can secure

it to the middle of the front strap of a small backpack that holds the rest of the

wearable system. The microphone is then roughly at the heart position of the

user which is just far enough from the mouth.

Processing Unit (Viola Micro PC)

If the life-log system is only used to store the video without any form of analysis,

it is sufficient to use one of the many personal Digital Video Recorder (DVR)

devices in the market to store the captured content. The most popular model,

the Apple iPod, can store up to 150 hours of video and it weighs less than

6 ounces. Nonetheless, this kind of DVR (Digital Video Recorder) has very

limited user interface support and it is almost impossible to program such a

device. Even though we do not expect the user to constantly interact with the

system, an adequate user interface should at least support multiple windows

and point-and-click functionality. For example, the user may want to find all

the scenes that contain a particular object detected by the system.

On the other hand, a laptop is too heavy and bulky to be practical, and a

Personal Digital Assistant (PDA) usually does not have enough memory for

media storage. As a compromise and to keep the weight of the overall system
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minimum, we have chosen to use Sony’s VAIO Micro PC, which weighs just

1.2 pounds. It is small enough to fit in the palms of your hands with the size

of 6 x 3.74 x 1.27 - 1.5 inches, it has a WSVGA touch screen XBRite display,

and it runs Windows XP operating system with 1.2GHz processor speed and

30GB memory. It also has WiFi 802.11a/b/g, Bluetooth, 10/100 Ethernet

which is useful for wireless connectivity and can provide more localized position

tracking. Again it has biometric fingerprint scanner which is very useful to

provide security if in case the user looses the device. It does not have in-built

GPS unit, but can be added easily which can provide location information to

be used by the life-log analysis. This is important, as it allows us to process the

video in real time to run the privacy protection scheme in Micro PC. The fully

charged Micro PC can capture up to 5 hours of data continuously.

The processing unit will perform operations such as extracting key frames for

indexing and summarization, privacy protection, and provide a user-interface

to interact with the user. This processing unit serves three functions viz. it

provides an intuitive user interface for browsing, provides sufficient storage space

to store one day’s worth of video and finally it provides processing capability

for initial manipulation of incoming video.

The weight of the entire system is about 2.0lbs. The Micro PC, and other ac-

cessories are most easily carried in a small back pack strapped on the shoulder as

shown in the figure 3.1. Due to the constraints on weight and power consumption,

the wearable system can only perform some initial analysis tasks that provide a quick
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feedback to the user. More sophisticated processing needs to be done off-line after

the video has been transferred from the Micro PC to a desktop computer.

3.2 Software Design

In this section, we describe the software design of our proposed system which

includes the software architecture and the algorithmic design of its components.

3.2.1 Software Architecture and Basic Components

Figure 3.2 shows the software architecture of our proposed life-log system. It

consists of five main processing components and two databases. The processing com-

ponents are Raw Data Capturers, Feature Extractors, Change Detectors and Object

Detectors, Privacy Protectors, and View Generators. A processing component is a

high-level behavioral description of a particular kind of input/output processing. In

the sequel we will describe some of the specific algorithms grouped under each unit.

The two databases are Raw database, and Meta-data database. These databases

provide support for simple indexing and browser interface.

Raw Data Capturers

The Raw Data Capturers unit is the lowest layer of the software architecture and

is responsible for interacting with the hardware and obtaining the raw audio,

video, and location information.

Feature Extractors

The Feature Extractors unit removes noise from the audio and video and extract

various types of attributes that are amenable to analysis. Examples of audio
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Figure 3.2: Software architecture of our proposed system.

features include short-term loudness, frequency spectrum, pitch, and timbre.

For video, there are three types of features: global, local, and temporal. Global

features such as color and edge histograms are useful for characterizing the

physical environment. Local features such as various types of corner detectors

are useful for object identification. Temporal features like motion vectors are

useful for characterizing temporal events like walking or running. These features

are fed to various Change Detectors and Object Detectors.

Change Detectors and Object Detectors

A change detectors unit builds an online statistical model of various features

and reports the time instance when there is a significant change in the model. It

is useful for partitioning the video in temporal dimension into logical segments

which can be much more efficiently manipulated than individual video frames.

Recently, there have been tremendous successes in combining many simple fea-

tures in detecting specific objects such as faces and license plates [66]. Audio
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Figure 3.3: Privacy protected video frame.

features can also be combined to identify various physical locations [67] and

audio events, like conversations [24]. After appropriate training, these object

detectors are computationally efficient and thus are appropriate to be imple-

mented in the wearable system. The face detector will also be used for the

Privacy Protectors. When the privacy protection mode is on, the portions of

the audio that contain voices other than the user’s voice will be distorted and

all the faces detected in the video will be blocked as shown in Figure 3.3.

View Generators

The View Generators is used to generate various user-interface views in support

of various types of browsing. The main goal of view generator is to provide a
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quick and useful summary of the recently-captured video so that a user can

easily browse through a day’s worth of data

Privacy Protectors

The Privacy Protectors provides the real-time privacy protection mechanism

which filters the incoming video for identity information of subjects being cap-

tured. This thesis work mainly focuses on this module. We give a brief overview

of this module of the life-log system in section 3.2.2.

Raw Database

The raw database consists of raw data collected by the life-log system. The raw

data comprises of the unprocessed audio-video data recorded, location informa-

tion provided by the GPS system, time-stamp information and other data col-

lected from different sensors attached to the system. The collected raw database

is processed by Change Detectors and Object Detectors off-line and they extract

different annotations for life-log video summarization purposes.

Meta Database

The Meta database consists of annotation data such as key-frames to represent

fragments of the video, contextual labels such as location, time, etc. extracted

from Change Detector and Object Detector. This database is used by the View

Generators to provide meta data to create user interface.
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3.2.2 Privacy Protection Module

We introduce two terms here, Producer to describe the person who wears life-log

system, and Subject to describe any person besides producer who is being recorded

by the life-log system.

We propose a real time subject’s voice distortion and face blocking approach to

address the privacy issues. When the privacy protection mode is “On”, the face

detector will detect and block the subject’s face before it is stored in the life-log video

as shown in figure 3.3. Besides the face, the subject’s voice could also expose his/her

identity easily. Therefore, only face blocking does not guarantee privacy protection.

To disguise the subject’s voice, the proposed system distinguishes the subject’s voice

from the producer’s voice and distorts it so that the subject can not be identified.

Some of technical challenges while implementing the privacy protection scheme are

accuracy, speed, and selectivity. Accuracy: It is paramount to achieve 100% accuracy

in face detection because even a very small inaccuracy might disclose the person’s

identity. The problem is complicated by the fact that all the face detection algorithms

discussed in the literature thus far only work for front face view. Audio distortion

would require the analysis of the audio signal, and in the event of a noisy environment

the subject voice detection accuracy can be reduced. Speed: It is highly desirable that

the protection mechanism work in real time. This poses challenges in improving the

speed of face detection and voice distortion algorithm and in reducing its complexity.

Selectivity: Some people may mind being recorded by the life-log system. To handle

such cases, the system needs to be designed such that it can distinguish those two

groups of people. The selectivity problem will not be addressed in this thesis work. We
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are dealing with one specific scenario of one-on-one conversation between the producer

and a subject, and hence the issue of selectivity does not arise. For example, a case

in which a single crime witness/suspect is interviewed by the police officer. This

scenario is also applicable in situations such as in job interviews, or in hospitals when

a doctor is examining a patient etc.

A simple method to detect the subject’s voice by analyzing the power of the

incoming audio signal is proposed. Because the microphone of the life-log system

is closer to the producer as compared to other people around him/her, the signal

power is significantly larger when the voice comes from the producer as compared to

the subject. By using Adaptive thresholding, the method tries to classify the audio

sequence into three categories viz. ambient noise or silence, producer speaking, and

subject speaking. The subject speaking portion of the signal is then distorted before

it is stored in the raw database. Voice distortion is achieved by altering the pitch by

the Pitch-Scale Synchronous Overlap and Add (PitchScale SOLA) method discussed

in [68]. The distortion is accomplished in two steps, first by time stretching and then

again re-sampling it to make it of the original length. One problem with this method

is that it might work poorly in a noisy environment. Further improvement in the

method can be achieved by filtering out the noise and then applying the algorithm.

For face detection, we have decided to implement the algorithm discussed in [66].

The algorithm is based on image representation called “Integral Image” which allows

fast calculation of Haar like features that are used to detect faces. The method works

for frontal face views with good detection accuracy and can detect faces rapidly

and is therefore suitable for real time applications. Another algorithm [69] that

33



could potentially be suitable for rapid face detection. The algorithm from [66] is

further improved by combining face color tracker with face detector to deal with non-

frontal face view. Basically, once the detector has recognized a frontal face, the face

color tracker will ensure that the detector will continue to recognize the face even

after it is no longer a frontal view. A similar method is presented in [70] which

combines face detector and color based object tracker called PCI (Pixel Classification

and Integration). The next chapter 4 “Audio-Video Privacy Protection Scheme”,

explains the privacy protection mechanism that we have implemented for audio-visual

information.
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Chapter 4

Audio-Video Privacy Protection Scheme

In this chapter, we discuss our audio-video privacy protection scheme for life-log

videos. Our current design focuses primarily on the interview scenario, in which the

producer, i.e. the person who is wearing the life-log system, is speaking with a single

subject in a relatively quiet environment. Interview scenarios are very important, and

have its own specific characteristics which differentiate the interview video from the

other life-log videos. In an interview video, there are not many foreground objects and

the background stays almost always unchanged. Such interview scenarios appear in

many situations, such as in hospitals where doctors are examining patients, in a police

interrogation room where a witness/suspect is interviewed, or even a job interview

recording. Thus, the simplicity and wide applications of the interview scenario are

attractive for our research objectives and therefore we decided to implement it in this

work.

4.1 System Overview

This section discusses in detail the privacy protection module introduced in Chap-

ter 3. We first discuss the technical goals that are to be achieved and then explain

the design of the privacy protection scheme to achieve those goals.

4.1.1 Design Objectives

There are four main objectives in implementing our privacy protection mechanism.
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1. Privacy

The main and obvious goal of the scheme is to protect the privacy of subjects

who are being captured in a life-log video.

2. Accuracy verses Usefulness

The protection scheme should provide enough information to make the data

useful for review. For example, in Figure 4.1, the first image conveys all in-

formation but does not protect the person’s identity, while the second image

essentially removes all information but perfectly hides the identity, subsequently

losing its usefulness. The third image tries to keep the balance between privacy

and usefulness. Instead of removing all information, we can just block the

face, because by blocking the face we can achieve significant privacy protection

while maintaining the reasonable usefulness of recording. The other visual in-

formation such as body language of the person can be useful to relate to the

conversation, making it look more natural.

v Usefulness

× Privacy

× Usefulness

v Privacy
v Usefulness

v Privacy

v Usefulness

× Privacy

× Usefulness

v Privacy
v Usefulness

v Privacy

Figure 4.1: Accuracy Vs Usefulness
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3. Anonymity or Ambiguity

Another important criterion is called k-anonymity where k is an integer measur-

ing an ambiguity created in the data after privacy protection. The k-anonymity

is formally defined in [15]. For example, a n-anonymous (k=n) privacy pro-

tection scheme distorts the data set of n distinct records of n different persons,

in such a way that every individual will look and sound identical. Even if an

attacker knows the identity of the subject in one video, he/she will not be able

to gain any knowledge about other videos. In practice, it is difficult to achieve

n-anonymity especially in multimedia data and thus the goal is to make k as

large as possible and close to n.

4. Speed

It is highly desirable that the protection mechanism be fast enough to work in

real time. The small physical size of a life-log system limits its computational

power and thus it is imperative to design highly optimized algorithms.

4.1.2 Privacy Protection Scheme

Considering objectives described in the previous sub-section, we present the overall

design of the privacy protection scheme of our life-log system. The multi-modal nature

of the video signal makes it very rich in its content, and the subjects in the video

have multiple identities depending upon the mode. For example, subjects have a

visual identity, i.e. he/she can be identified by face, body language, gait, or clothes

captured through the video signal. Subjects also have an audio identity, as a person

can be identified by his/her voice. Our scheme tries to hide both visual and audio
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identity. Figure 4.2 shows a schematic of the privacy protection scheme. As shown

in figure 4.2, under the privacy protection mode of our system the Face Detection

and Blocking module detects and tracks the subject’s face continuously, and blocks

it with a solid-color box in real time. We chose not to block out the entire body

such as that in [71] as it will essentially remove all visual information in an interview

sequence. Face de-identification scheme described in [14] that repaints the face with a

generic face is too complicated to be implemented in real-time. To protect the audio

identity of the subject, the system identifies the subject’s voice by a segmentation

algorithm and then distorts it using the PitchScaleSOLA algorithm described in [68].

This part is achieved by Audio Segmentation and Audio Distortion modules. The

distortion is performed in such a way that it conceals the identity of the speaker, but

also maintains the intelligibility of the speech, and tries to make different distorted

voices sound as much alike as possible to create ambiguity in the distorted data.

Thus our scheme protects the privacy of subjects being captured in the life-log video

while keeping the recording useful for its review. The details of these algorithms are

described in the next two sections.

4.2 Audio Segmentation and Distortion

We propose a simple segmentation algorithm to detect the subject’s voice by using

the audio signal power. As discussed in the hardware section 3.1 of our life-log system,

the microphone in the system is closer to the producer than to the subject. As a

result, the audio signal power will generally be higher when the producer is speaking.

Therefore, we can separate the audio signal into the segments of the producer speaking
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Figure 4.2: Privacy Protection Scheme

and the subject speaking based on thresholding the signal power. Let si be the audio

sample at time i. We compute the power by first partitioning the audio signal into

equal-duration frames of size T and compute its power Pk as follows:

Pk =
1

T

kT+T∑

i=kT+1

si
2 (4.1)

where k is the frame index.

The classification is based on two thresholds: a silence-threshold TS to identify

the ambient noise and an producer-threshold TP to identify the producer’s voice.

The segmentation scheme is illustrated in Figure 4.3. The two threshold divides the

domain of power into three ranges corresponding to silence, subject speaking, and

producer speaking. If the power Pk of the audio frame is smaller than or equal to

TS, the frame indicates a pause or a silence in the audio signal. If the power Pk is

between TS and TP , it is more likely that the subject is speaking in the frame. The

corresponding audio frame is processed by Audio Distortion module to remove the

identity information of the subject in it. If the power exceeds producer threshold TP ,
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signifying the producer’s voice, the audio frame is not distorted. The frame signifying

silence is handled carefully, as it could signify two different things, the frame could

be true silence, or it could be a pause in a speech while the producer or the subject is

speaking. Thus, we consider the state of the previous frame while deciding whether

to distort the frame or not. It also smooths out the segmentation results by reducing

false detections of subject speaking when segmentation algorithm confuses the frame

as subject speaking because of sudden drop of power due to a pause in the speech of

the producer or the subject.
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Voice Distortion
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Figure 4.3: Audio Segmentation

The next step is to conceal the identity of the subject by distorting the sub-

ject’s speech while preserving the intelligibility of the conversation. First we need

to define what do we mean by an audio identity of a person. Every person’s voice

has a fundamental frequency i.e. pitch associated with it, which uniquely identifies

the person. We define the audio identity as the pitch of a person’s voice. Simple

scrambling of audio signal can protect the audio identity of a person perfectly, but

it will render the recording useless as one can not understand the conversation. The
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dual purpose of protecting the privacy and preserving the intelligibility is achieved by

shifting the pitch of the voice signal. We use the time-domain pitch shifting method

called PitchScaleSOLA as discussed in [68]. Compared with other pitch shifting algo-

rithms based on frequency domain analysis or delay line modulation, this time-domain

method is computationally less complex and thus more amenable to real-time imple-

mentation. This algorithm works by first time-stretching the audio signal followed by

a re-sampling process to maintain the same length. The time-stretching algorithm

expands the input signal from length N1 to N2. To preserve the speech structure, the

input signal is divided into overlapping blocks of size N with hop size Sa, then the

pitch of the overlapping blocks are shifted according to scaling factor α = N1/N2. α

lies between 0.25 and 2 with value 1 signifying no pitch shift. Discrete-time lag of

maximum similarity is calculated in the overlapping region. At the point of maxi-

mum similarity, the overlapping blocks are weighted by a window function and then

summed together. The re-sampling process is performed with an inverse sampling

ratio of N1/N2 so as to undo the changes in the number of samples. The next section

4.2.1 provides in detail explanation of operation of the pitch shifting algorithm. We

noticed that out of various parameters, such as the scaling factor α, block length

N , and hop size Sa; the parameter α affects the quality of the distortion and the

intelligibility of the distorted speech the most. In the next chapter 5 “Performance

Evaluation of Privacy Protection Module” sections 5.1.2 and 5.2.1, we discuss ex-

periments to study the effect of using different parameters in the audio distortion

algorithm.
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4.2.1 Pitch Shifting Algorithm

We decided to use the pitch shifting algorithm called PitchScale SOLA(Synchronous

Overlap and Add) discussed in [68] to implement subject voice distortion. Pitch-

ScaleSOLA algorithm involves two processes. The process first involves time stretch-

ing or time scaling and second process conducts re-sampling, as shown in Figure 4.4.

The order of the processes can be interchanged.

Input signal of 

length l

Re-sampling

(alpha=N1/N2)

Time-Scaling

(alpha=N2/N1)

Pitch shifted signal 
with length   alpha*l 

Pitch shifted signal 
with length l as 

original
I(n) I'(n) I''(n)

(1) (2)

Figure 4.4: Pitch Distortion Algorithm (two processes)

In the first process of Time stretching, a time scaling method expands or com-

presses the input signal from length N1 to N2. This process does not change the pitch

of the signal. Spectral envelop of the signal remains same. The time stretching of the

speech signal is achieved by a simple correlation based method called ”Synchronous

Overlap and Add(SOLA). Description of the algorithm is as follows:

Step (1): Input signal is divided into equal size windows of block length N with

time shift of Sa as shown in figure 4.5.

Step(2): The equal sized blocks are repositioned by shifting it with factor Ss which

is equal to α ∗ Sa as shown in figure 4.6, where α is time scaling factor.

Step(3): Cross-correlation between overlapping regions (IL1 and IL2) of two blocks

(I1(n) and I2(n)) respectively, is calculated as follows,
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Figure 4.6: Time Stretching algorithm, Step 2

rIL1IL2
(m) =

1

L

L−m−1∑
n=0

IL1(n).IL2(n + m), 0 ≤ m ≤ L (4.2)

In above equation, L is the length of the overlap interval as shown in figure 4.7.

Step(4): Discrete-time lag km is estimated at where the cross-correlation,

rIL1IL2
(km) = rmax (4.3)

has its maximum value, as shown in figure 4.8.

Step(5): The overlapping regions are again shifted at the point of maximum cross-

correlation lag, as shown in figure 4.9.

Step(6): Fade-in and Fade-out functions are calculated for the new overlapping

regions after shifting to the point of maximum correlation, as shown in figure 4.10.
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Figure 4.7: Time Stretching algorithm, Step 3
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Figure 4.8: Time Stretching algorithm, Step 4

Step(7): The overlapping regions of blocks, (IL1 and IL2) are weighted by fade-in

and fade-out functions in overlapping regions and finally added to get the final time

stretched output signal, as shown in figure 4.11.

The SOLA algorithm is relatively less complex and is based on three parameters

Sa, N and α. All of these parameters are independent of the pitch period of the input

signal.

In the second process involving Re-sampling, the expanded or compressed output

audio signal of the first process is re-sampled to make the length of signal from N2 to

the original N1. Re-sampling of the signal causes its pitch to shift. The spectrum of

44



N

Ss= alpha*Sa I2(n)IL2(n)

kmaxkmin km

Ss= alpha*Sa

km

I1(n) IL1(n)

NN

Ss= alpha*SaSs= alpha*Sa I2(n)I2(n)IL2(n)

kmaxkmin km

Ss= alpha*SaSs= alpha*Sa

km

I1(n) IL1(n)

Figure 4.9: Time Stretching algorithm, Step 5
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Figure 4.10: Time Stretching algorithm, Step 6

the sound is compressed or expanded over the frequency axis depending on α, which

results in pitch-shifting of the signal. Also harmonics are repositioned in the spectra,

while keeping relations between them unchanged. The relations between harmonics

are only scaled by the time scaling factor α.
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Figure 4.11: Time Stretching algorithm, Step 7

4.3 Face Blocking Module

The figure 4.12 shows the operation of our Face Detection and Blocking module.

Face detection is based on efficient implementation of the Adaboost face classifier by

Viola and Jones [66] in the OpenCV software package [72]. This implementation is

very efficient on our micro PC; it is capable of identifying most of the upright frontal

faces under good lighting condition at the rate of 15 frames per second for a frame

size of 352× 288. Applying this classifier on a frame-by-frame basis, however, is not

accurate enough for privacy protection. Whenever a person turns his/her head or

makes any hand gesture that partially occludes the face, the classifier fails to detect

the face. Furthermore, the performance of the classifier is adversely affected by the

movement of the camera, which is inevitable as the camera is mounted on the shoulder

of the producer. Such momentary relapse is usually sufficient for a viewer to identify

the subject. To further improve the performance, we have added a temporal tracking

component using the classifier’s outputs as observations. The tracking component

is based on tracking the skin color measured by the dominant hue color in the face

region identified by the classifier. If the classifier fails to provide any observation,

we search for all pixels that match the skin color in an area slightly larger than

the last-observed face region. The new face region is defined as the bounding box

46



containing these pixels. If no such bounding box is found, the face is declared to have

disappeared. Occasionally, there are background objects that resemble the skin color

and the proximity of these objects with a face may introduce false tracks. To limit

the lifetime of these false tracks, we mandate that all face tracks must be validated

by a true face observation from the classifier within a certain time limit, empirically

set to three seconds in our system. If there are multiple face observations in a scene,

we match these observations to existing tracks based on minimizing the sum of their

distances on the image plane.
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Figure 4.12: Face Detection and Blocking Module

The final step is to obfuscate the identified face region. We chose to color the entire

region using a single color as it reveals no information about the underlying face. In

order to provide a visual cue on whether the subject is speaking, we utilize the output

from the audio segmentation algorithm described in Section 4.2 to change the blocking
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color from black to red when the subject starts talking. This simple step provides

better visual feedback and indicates that the accompanied voice is being distorted.

In the figure 4.12, shows selective blocking of subject faces. But we currently do not

perform selective blocking if multiple faces are present. However, this could be done

quite easily by having the producer to select the particular subject of interest.
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Chapter 5

Performance Evaluations

There are three major components in our privacy protection scheme. The first compo-

nent is the audio segmentation algorithm which plays an important role of detecting

the audio segment when the subject is speaking. The second component is the pitch

shifting algorithm which distorts the subject speaking segment to hide the identity

of the subject and along with that it keeps the recording useful and intelligible. The

third component is the face detection and blocking module which detects and blocks

the subject’s face to provide privacy protection. The experiments focus on evaluating

the performance of audio distortion for privacy protection and usability. Neither the

face blocking algorithm nor the pitch shifting algorithm are novel inventions. While

there have been evaluation studies on visual privacy protection [16], we are not aware

of any studies on audio privacy protection. The goal of this chapter is to provide a

detailed study on how well a pitch shifting algorithm can protect individual audio

privacy while maintaining the usefulness of the audio signal.

We have conducted three different types of experiments. First, we evaluate the au-

dio segmentation algorithm for its accuracy in dividing the audio signal into subject-

voice segments and producer-voice segments. Along with that we also evaluate our

face detection and blocking module. Secondly, we evaluate the audio distortion al-

gorithm i.e. pitch shifting algorithm for its ability in protecting the voice identity

of a subject. In the third experiment, we evaluate the pitch shifting algorithm for

usability of the recording after distortion.
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Our experiments show that a good balance between privacy protection and us-

ability can be obtained by implementing our scheme. The pitch-shifting algorithm

achieves 100% speaker identification error and thus allow perfect audio privacy pro-

tection. To determine if the recording is useful after distortion, we compare intelli-

gibility of the conversation before and after the distortions in terms of Word Error

Rate(WER). The average WER before and after distortion (with α = 1.40) are 14.2

and 14.4 respectively. Statistical analysis shows that the clarity of the recording for

pitch scaling factor α = 1.40 is same as that of the original audio clips. Analysis

of segmentation algorithm gives recall between 0.86 to 1 in detecting the subject

speaking portion of the audio.

In the next section we discuss our initial results. In section 5.2 we describe in

detail the more elaborate experiments.

5.1 Initial Experiments

Our early experiments, which were conducted on a smaller scale, showed very good

results and have been published in our paper at IEEE SAFE 2007 workshop on the

Signal Processing Applications for Public Security and Forensics [73]. For the initial

experiments we used two different sets of data. We used our life-log system to capture

three interview video sequences with three different subjects in a relatively quiet

meeting room. The interview was scripted and the subject and the producer were

asked to get familiar with the script before capturing the video. All the interviews

had identical contents and each one is of about 1 minute and 30 seconds duration.

In Section 5.1.1, we use this data to qualitatively demonstrate the operations of the
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entire system, and to quantitatively measure the segmentation algorithm. These video

clips are available for download from our group web site http://www.vis.uky.edu/

mialab. We also collected voice samples of eleven people with two audio clips of each

person’s voice. This data was used to test the audio distortion algorithm. One of the

voice sample of each person is used to train the speaker identification software, and

the other one is used for testing purpose. The test results are discussed in Section

5.1.2. The same data set was also used to test the usability of the recording after

distortion as discussed in section 5.1.2.

5.1.1 Analysis of Segmentation Algorithm

First we evaluate the performance of the segmentation algorithm discussed in sec-

tion 4.2. The figure 5.1 shows a plot of the audio signal of one of the three interview

sequence that we captured by our life-log system. We use the precision and recall

measures to statistically analyze the segmentation output. In Figure 5.1, the transi-

tions are shown with the labels: P → Producer Speaking, and S → Subject Speaking.

It can be seen that the signal energy is significantly greater when the producer is

speaking than when the subject is speaking. The precision and recall metrics are

computed by counting the number of transitions between producer-voice segments

and subject-voice segments in the output and comparing them with those found in

the ground truth. The definition of recall and precision are given in Equations (5.1).

The ground truth is manually measured from the videos by noting down the time

stamps of transitions between producer-voice segment and subject-voice segment.
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Figure 5.1: Audio Segmentation showing transitions between Subject speaking and
Producer Speaking

Recall =
# correctly-identified transitions

# transitions in ground-truth

Precision =
# correctly-identified transitions

# identified transitions
(5.1)

To compare the performance of the segmentation algorithm, we used CMU au-

dio segmentation method discussed in the paper [74] as a benchmark. The paper

presents a system that automatically transcribes a broadcast video and consists of

audio segmentation as one of the step in the process. The segmentation is performed

by modeling number of speakers; authors call it as acoustic models. Sliding window

was used to extract the segmentation points in the audio stream where there are

changes in acoustic models. We used a software provided by NIST which is an im-

plementation of this algorithm for our experiments. The results of our segmentation

algorithm and CMU segmentation algorithm are shown in Table 5.1.

As shown in Table 5.1, our segmentation algorithm produces good recall perfor-

mance but rather poor precision values. Our algorithm generates extra transitions
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Table 5.1: Results of Segmentation Algorithm
Our Algo CMU Algo

Meeting# Precision Recall Precision Recall
1 0.375 0.8571 0.667 0.57
2 0.583 1 1 0.57
3 0.353 1 0.4 0.5

because it sometimes confuses pauses in a person’s speech as transitions. This prob-

lem can potentially be alleviated by adaptively adjusting the size of the window in

measuring the signal power. On the other hand, the CMU segmentation algorithm

gives better precision, as it has fewer false detections. But CMU algorithm gives poor

recall, which might not be good for the privacy protection, as the segment where the

subject is speaking might be undetected and can disclose the identity of the subject.

In terms of privacy protection, low precision has lower impact than lower recall, thus

we argue that our algorithm is better for this application. Again, CMU has greater

complexity than our algorithm which is less desirable for real time application like

the life-log system.

Our face detection and blocking module works reasonably well. Selected frames

are shown in Figure 5.2. In all three sequences, the faces are blocked at all time.

There are occasional false alarms that linger for a short period of time. This does not

have any adverse effect on privacy protection.

5.1.2 Analysis of Audio Distortion Algorithm

In this section we discuss and analyze the audio distortion algorithm.
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Figure 5.2: Top-left: a frame from the original sequence; Top-right: face blocked when
the subject is not speaking; Bottom-left: face blocked when the subject is speaking;
Bottom-right: false alarms on the background wall.

Privacy Experiments

We first analyze the performance of the audio distortion algorithm based on how

well a speaker can be identified after the distortion. We used a public domain text-

independent speaker recognition software [75]. We collected two voice samples from

eleven test subjects. The first sample was used to train the speaker identification

software, and the other one was used for testing. The results are shown in Table

5.2. We ran the speaker identification program on four sets of data: original test

data without distortion and three different sets of distorted data with parameters

as indicated in the Table 5.2. These three sets of parameters were chosen with the

intention that they would give vastly different distorted sounds. To measure their
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performances, we computed the error rate in identifying the correct speaker and the

number of distinct speakers found by the speaker identification software.

Table 5.2: Results from Speaker Recognition

Testing Ground Truth Without Distortion 1 Distortion 2 Distortion 3
(personId) (PersonId) Distortion N = 2048 N = 2048 N = 1024

Sa = 256 Sa = 300 Sa = 128
α = 1.5 α = 1.1 α = 1.5

1 1 1 5 8 5
2 2 2 6 8 6
3 3 3 5 3 5
4 4 4 6 6 5
5 5 5 3 10 6
6 6 6 8 6 5
7 7 7 5 2 5
8 8 8 10 11 5
9 9 9 5 8 5
10 10 10 5 2 5
11 11 11 4 8 5

Error Rate 0% 100% 90.9% 100%
# Distinct 11 6 6 2
identities

We find that setting α around 1.5 produces good error rate (column 4 and 6) and

maintains reasonable intelligibility of the conversation. The 100% error rate shows

that the voice-distortion algorithm works well in hiding the identity of the speaker.

Thus, we conclude that the parameters N = 1024, Sa = 128 and α = 1.5 produce

the best overall privacy protection results in our audio distortion algorithm. The last

row of the Table 5.2 shows the number of distinct identities recognized by the speaker

identification software. It measures the degree of ambiguity created by pitch shifting

algorithm in identities in the data set. Lesser the number of distinct identities better

the privacy protection as it increases the ambiguity.
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Usability Experiments

In our second experiment on the distortion algorithm, we evaluate the intelligibil-

ity of the conversation after the distortion. We have attempted to reproduce the

transcripts for both the original and distorted audio by using a speech recognition

software. However, we were unable to obtain any reasonably correct transcription on

the distorted speech due to its un-natural audio characteristics. As a result, we had

to resort to manual transcription. Using two different speech samples from eight test

subjects, we used the best distortion algorithm to distort one sample while keeping

the other unmodified. Five human testers were asked to transcribe the distorted and

non-distorted audio files of the eight subjects. We used the standard measure, called

Word Error Rate (WER), which commonly used to evaluate the speech recognition

system. In our experiments, WER is used to determine the degree of intelligibility of

the speech before and after the distortion. We used a tool called SCLITE which is

part of NIST’s Speech Recognition Scoring Toolkit (SCTK) [76], to calculate WER

of a transcription of an audio clip. In general correctly recognized words in a tran-

scription of an audio clip by a speech recognition software are first aligned with the

words in reference/correct sequence of words of the clip, and WER is calculated by

the formula in the equation 5.2.

WER =
S + D + I

N
(5.2)

In the above equation, S is the number of substitutions, D is the number of

deletions, I is the number of insertions, and N is the number of words in the reference

transcription.
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We calculate WER for each transcription by each tester to measure the intelli-

gibility of words before and after distortion. The average WER for each subject is

shown in Figure 5.3. WER of distorted speech range between 3% to 43%, which

shows that while the distortion has reduced the clarity of speech, it maintains certain

level of intelligibility. For certain subjects (4,5,7,8), the difference in WER between

undistorted and distorted voices is small. On the other hand, the difference is large

for other subjects (1,2,3). One possible reason for this large difference is that subjects

(1,2,3) have strong accents as none of them are native speakers of English. The effect

of accents on audio distortion is a subject that deserves further investigation.

1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

35

40

45
The effect on Word Error Rate(WER) by distortion algorithm

Test Subjects

W
or

d 
E

rr
or

 R
at

e 
P

er
ce

nt
ag

e

After Distortion
Before Distortion

Figure 5.3: The effect of Distortion on Word Error Rate
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5.2 Extended Experiments

Our initial small scale experiments showed promising results on the performance

of the privacy protection module. To validate the life-log system more robustly, we

decided to extend the data set for our next experiments. We conducted different

experiments on similar lines as the initial experiments, as discussed in section 5.1 but

with larger data set. For our privacy and usability experiments we decided to use

well known speech corpora called “(TIMIT) Texas Instruments and Massachusetts

Institute of Technology” data set [77]. The TIMIT speech corpora is commonly used

for speech recognition and speaker identification experiments by research communi-

ties, and consists of speech recordings of 630 speakers taken from eight major dialects

regions in the North America. For each speaker there are ten recording with phonet-

ically rich sentences spoken, thus the TIMIT data set has 6300 speech clips in total.

The following sections explain the experimental setup and the results.

5.2.1 Subjective Experiments

As explained in section 5.1.2, the usability experiments were conducted by man-

ually transcribing the non-distorted and distorted audio clips by testers (the par-

ticipants in the experiments). We again resort to manual transcriptions here. The

TIMIT data set has well documented transcriptions of all the audio recordings which

are required to calculated WER and were used as reference/correct transcriptions. In

addition to transcriptions of audio clips, we have expanded the scope of the experi-

ment, and we call it as Subjective Experiments. We sought the tester’s help to assess

the privacy protection in our system. We asked the testers if they can identify a
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person in an audio clip after the distortion. Given a set of distorted or non-distorted

audio clips, we asked testers to identify the distinct number of voices in that set. The

details of these experiments are given in the next section Experimental Setup.

Experimental Setup

As explained in section, 4.2.1, the pitch shifting ratio alpha, determines the degree

of distortion of the audio signal, i.e. the amount of the shift in the pitch. The value

of alpha varies between the allowable range 0.2 to 2, and alpha = 1 signifies no

pitch shift. In order to decide which alpha is required to keep the balance between

usability of recording and privacy protection capability, we decided to experiment

with five different alpha values distributed evenly in the allowable range of alpha.

The values are as follows; alpha = 1 (Original voice without any distortion), and

alpha = 0.5, alpha = 0.75, alpha = 1.25, and alpha = 1.40. For our experiments,

we chose 30 speakers from TIMIT data set taken evenly from all eight major dialect

regions with comparable number of male and female speakers from each region. We

considered five speech samples for each speaker and paired one speech sample with

one alpha value. For each alpha parameter, we created a distorted data set of 30

speech recordings by taking one speech sample of a speaker out of his/her five speech

samples. Therefore, we have five sets of speech samples corresponding to five alpha

values, and each set consisting of speech samples of the same 30 individuals, thus

total 30x5 = 150 speech samples. We name the collection of speech samples distorted

with pitch scaling parameter alpha = 1, alpha = 0.5, alpha = 0.75, alpha = 1.25,
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and alpha = 1.40 as set A, set B, set C, set D, and set E respectively as shown in

Table 5.3.

Table 5.3: Sets and their associated alpha values
Set Alpha value
A 1
B 0.5
C 0.75
D 1.25
E 1.40

The audio clips from all the data-sets i.e. set A, B, C, D and E, are then divided

into five different groups each containing randomly selected six audio clips from each

set, such that each group has 30 audio clips. Thus each group consist of five subsets

one for each alpha value. Each group was assigned to three testers to analyze it. We

have total 15 testers. All the experimental data and setup details can be found on

our web site http://vis.uky.edu/~jayashri/transcription_experiments.htm.

Each tester was asked to perform three different tasks.

1. Task 1: The tester was asked to transcribe all audio clips present in the assigned

group.

2. Task 2: The tester was asked to identify the number of distinct voices in each

subset included in the assigned group.

3. Task 3: For each clip from subset of Set A (which is the original un-distorted

speech set); the tester was asked to identify a clip in other subsets in which the

same speaker may be speaking.

The purpose of task 1 is to analyze the pitch shifting algorithm for its ability in

preserving clarity of a speech after the distortion. The usability experiments discussed
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in section 5.1.2 are extended by implementing this task. In this experiment, we

analyze how the degree of distortion varies with the alpha value and ultimately affects

the clarity of the speech in the audio. Next subsection explains the experimental

results for task 1. The task 2 and 3 results are discussed in section 5.2.1 and 5.2.1

respectively.

Results from Usability Experiments (Task 1)

We used WER as a measure of intelligibility in the usability experiments similar to

as discussed in section 5.1.2. The transcriptions collected from task 1 of subjective

experiments 5.2.1 are used to calculate WER for each audio clip. We used a tool

called NIST’s SCLITE [76] software, to calculate WER. In each group, every clip

has three WER associated with it corresponding to transcriptions by three different

testers. We calculate the average WER as effective WER for each clip. The Figure

1 explains this experimental step for the group 1. Similarly for groups 2, 3, 4 and 5,

results are as shown in Figures 2, 3, 4. and 5 respectively. All the tables are included

in Appendix A.

We combine the results from all groups and write down an average WER for audio

clips of each person. The Table 5.4 shows the results for each person and for all the

sets. The calculated average WER is associated with the corresponding person ID for

the respective set. The average WER for each set is shown in the last row of Table,

and is obtained by averaging the WER of each person for that alpha value. The bar

chart in Figure 5.4 shows the average WER for each person corresponding to different

alpha values.
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Table 5.4: Average WER for each Set

Person Alpha 1 Alpha 2 Alpha 3 Alpha 4 Alpha 5
Ids (Set A) (Set B) (Set C) (Set D) (Set E)

(α = 1) (α = 0.5) (α = 0.75) (α = 1.25) (α = 1.4)
1 23.83 100.00 18.90 23.83 28.23
2 17.80 100.00 36.13 13.33 16.20
3 15.27 100.00 14.53 22.23 18.50
4 9.53 100.00 0.00 9.53 3.70
5 0.00 100.00 9.53 9.53 14.30
6 16.67 100.00 23.10 21.23 7.40
7 8.33 100.00 0.00 20.53 6.37
8 28.60 100.00 20.00 30.50 33.33
9 8.03 100.00 22.23 25.73 0.00
10 12.23 100.00 15.17 26.30 18.53
11 22.23 100.00 4.77 0.00 25.00
12 20.83 100.00 26.67 22.23 6.67
13 19.70 100.00 33.37 25.00 16.20
14 14.30 100.00 7.70 0.00 16.67
15 14.30 100.00 19.17 11.13 22.23
16 11.63 100.00 50.00 22.23 0.00
17 10.43 100.00 52.77 5.57 0.00
18 19.47 100.00 25.00 20.63 5.40
19 2.23 100.00 38.13 3.33 9.53
20 9.37 100.00 27.77 16.70 16.67
21 7.40 100.00 50.00 14.07 14.30
22 7.13 100.00 20.00 0.00 10.00
23 24.57 100.00 44.43 14.30 22.20
24 13.07 100.00 12.73 9.10 16.67
25 15.17 100.00 13.33 17.83 9.10
26 11.13 100.00 14.13 33.33 14.30
27 21.43 100.00 5.57 6.67 6.67
28 25.00 100.00 20.00 6.67 33.33
29 4.17 100.00 19.03 0.00 22.23
30 11.10 100.00 27.77 26.67 16.67

Avg
WER 14.17 100 22.398 15.27 14.347
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From the bar chart in Figure 5.4 and Table 5.4, it can be seen that the alpha = 0.5

(Set B) distorts the speech extremely high as almost all the testers were not able to

decipher any of the words spoken in the distorted clips. Thus it gives the worst WER

i.e. 100%. The Figure 5.5 shows the same bar chart as in Figure 5.4 but the set B is

removed. It shows better comparative effects on WER among the other sets caused

by the distortion. It can be seen that the average WER for alpha = 1, alpha = 1.25

alpha = 1.40 ranges between 0% to 30-35%. For alpha = 0.75 it ranges from 0% to

60%. The bar chart figure 5.6 which plots average WER for each set A,B,C,D and

E, shows that the average WER for set A and E does not change significantly. Thus,

we conclude that Set E which corresponds to alpha = 1.40 has minimal impact on

usability of recording, and has almost same intelligibility as the undistorted speech

(Set A). Hence we chose alpha = 1.4 for the pitch shifting algorithm in our system.
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Statistical Analysis of the data by z-test:

As WER is a ratio, we conduct a z-test based on two population proportions to

validate the above results. We want to ascertain that, the differences in the average

WER shown in Figure 5.6 are valid, even after taking into consideration the standard

deviation in average WER for each set. Our null hypothesis is that the average

WER does not change (from Set A) after the distortion for a given value of α level,

as follows. Not to confuse with pitch shifting parameter alpha; here α level is the

probability of making the type I error in z-test. The type I error occurs when we

reject the null hypothesis H0 when it is actually true [78].

H0 : p1 − p2 = 0
Ha : p1 − p2 6= 0

Here p1 is population 1, and p2 is population 2. Population 1 (p1) is WER of

audio clips without distortion (Set A), while Population 2 (p2) is a set of WER of

corresponding audio clips after distortion (Set B, C, D, E). As we are considering the

difference in two populations in either direction, we calculate two tail z-test estimates.

Each set has 30 audio clips and on an average each audio clip has 12 words in

it. Thus population size for two population p1 and p2 is (12*30=360). The mean

WER for each set is as shown in last row of the table 5.4. Other parameters such as

α, or confidence level, needed to calculate the z-test are as shown in table 5.5. The

z-statistics is calculated by standard formula as explained in the book [78]. If the

calculated z value for two populations is less than the critical z value (shown in the

fourth row in Table 5.5), we say that our null hypothesis H0 is true. The critical z
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value is estimated from z table for confidence level 95%. The rule for rejecting the

null hypothesis is shown in last row of the table 5.5.

Table 5.5: Parameters for z-test
Name Value

Population Size 360
alpha (α) 0.05

Confidence level 95%
z-Test critical 1.96 (from z-table)

Rule for Rejection of H0 z > zα/2 or z 6 −zα/2

Table 5.6: Statistical Analysis with z-test, α = 0.05

Comparison z-Test statistics
Set A and B 46.705 > 1.96
Set A and C 2.873 > 1.96
Set A and D 0.419 6 1.96
Set A and E 0.0695 6 1.96

The Table 5.6 shows the z-test statistics for comparison of set A and all the other

sets. It is seen that the calculated z value for set D and E (with set A) is less that the

critical z value. Thus, the hypothesis H0 i.e. WER does not change after distortion

is true for Set D and Set E. On the other hand for set B and C, the hypothesis does

not hold. This again shows that the pitch shifting parameters alpha = 1.40 and

alpha = 1.25 are good parameters to keep balance of usability and privacy.
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Task 2 Experimental results

The purpose of Task 2, is to measure an ambiguity created by the audio distortion

algorithm. We asked all testers to identify number of distinct voices from each subsets

(made of set A, B, C, D and E) belonging to the corresponding assigned group. As

explained before in section 5.2.1, each group has 6 randomly selected audio clips from

each set A, B, C, D, and E. The average number of distinct voices recognized by

testers is shown in last but one row of in Table 5.7. The last row of the Table lists the

ambiguity corresponding to each alpha value. It is calculated by following formula,

A = 1−m/T (5.3)

Here, A is ambiguity, m is average number of distinct voices recognized in the set,

and T is actual total number of distinct voices in the set. The value of A equal to 0

signifies no ambiguity and increasing values of A denote increasing ambiguity.

Table 5.7: Task 2 Results (Average number of distinct voices recognized per subset
in each group)

Average # of distinct voices per subset
(Each subset consist of 6 audio clips)

Group# subset A subset B subset C subset D subset E
Group 1 6.00 3.33 4.33 4.00 3.33
Group 2 6.00 3.00 3.33 4.00 4.00
Group 3 6.00 2.00 4.00 3.00 4.00
Group 4 6.00 2.67 4.00 3.67 2.67
Group 5 6.00 3.00 3.00 3.67 4.00

Average # (m) 6.00 2.75 3.92 3.67 3.50
Ambiguity(A) 0 0.54 0.34 0.38 0.41

It can be seen from the results, for set A (without distortion) the distinct rec-

ognized voices are 6 out of 6. That means it has the least ambiguity. Set B, which
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distorts the audio signal with α = 0.5 has the most ambiguity (Average number of

distinct voices are 2.75 out of 6), which means that most of the voices sound similar

after distortion. But as explained in the usability experiments, it does not keep the

clarity of the conversation intact. Set D and E have almost same number of recog-

nized distinct voices 3.46 and 3.50 respectively. This again proves, that Set E gives

reasonable ambiguity, and is suitable to create anonymous distorted data set with

robust privacy protection.

Task 3 Experimental results

The task 3 is a subjective test for privacy protection experiments presented in section

5.1.2. For each clip from set A, we asked testers to identify one clip from subsets

B, C, D, and E, in which they think that the same person is speaking. The results

from testers showed that none of the speakers from set A was identified from other

distorted sets by testers. This again shows that our audio distortion gives 100%

recognition error rate in subjective privacy protection experiments. Thus, the pitch

shifting algorithm chosen for the privacy protection scheme in our system works well

in hiding the identity of the speaker.
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Chapter 6

Conclusions

In this work, we presented a practical wearable system, called “Life-log system” with

an in-built privacy protection scheme. The proposed life-log system is designed for

an interview scenario in which the producer is interviewing a single subject. Many

design issues, which would be important from a user’s point of view such as ease of

use, light-weight, etc were taken into consideration in designing the hardware of the

system. A simple privacy protection scheme is presented that protects the identity of

subjects being recorded in the life-log videos. In this work, we do not claim to provide

a full fledged system, but instead a novel framework with initial steps to build user

friendly privacy protection mechanism in life-log video is presented.

The major contributions of this work include a privacy protection scheme that

implements real time face tracking and blocking mechanism, as well as real time

audio distortion of a subject’s voice. This scheme was rigorously tested for its feature

detection and blocking abilities. We analyze the audio distortion algorithm for its

ability to hide the identity of a subject while keeping the speech/conversation clear

enough to be useful. Many experiments such as privacy experiments, intelligibility

experiments, and subjective experiments were conducted to this end. Our privacy

and intelligibility experiments show that the pitch shifting algorithm distorts the

speech sufficient enough to hide the identity of a person but retains enough clarity

of the speech to keep the recording useful. We also analyze the audio segmentation
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algorithm for its accuracy in detecting the subject’s voice by precision and recall

metrics.

In the future work, this system could be further developed in many ways. The

audio segmentation algorithm, which is currently based solely on the power feature

could be improved in significant ways. More robust audio features such mel-cepstral

coefficients can be used to identify the subject’s voice in audio segmentation algo-

rithm. Probabilistic models such as the Hidden Markov Model (HMM) could be used

to smooth out the false detections during segmentation. One of the disadvantages

of the current audio distortion algorithm in our system is that it is not a reversible

process. Therefore, the original recording can never be retrieved. An improvement

can be done by making the audio distortion reversible, and by providing a security

mechanism so that only an authorized person has access to information needed to

extract the original recording. To further improve visual identity protection of a per-

son, we would like to block the whole body by creating a silhouette effect instead

of just face blocking, which will keep body language also intact. In summary, this

prototype system has great potential and could be deployed into a product which will

be very useful to law enforcement, military, and other security and privacy protection

applications.
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Appendix A

The experimental data for usability experiments:

For Group 1

Set A (WER) (Avg WER)
AudioClip TS1 TS2 TS3

seta_1 28.6 28.6 14.3 23.83333333
seta_2 20 26.7 6.7 17.8

seta_3 20 9.1 16.7 15.26666667

seta_4 14.3 0 14.3 9.533333333
seta_5 0 0 0 0

seta_6 25 12.5 12.5 16.66666667

Set B (WER) (Avg WER)

AudioClip
TS1

TS2 TS3

setb_1 100 100 100 100

setb_9 100 100 100 100
setb_15 100 100 100 100

setb_19 100 100 100 100

setb_25 100 100 100 100

setb_30 100 100 100 100

Set C (WER) (Avg WER)

AudioClip TS1 TS2 TS3

setc_2 16.7 50 41.7 36.13333333

setc_6 15.4 38.5 15.4 23.1

setc_7 0 0 0 0

setc_14 0 23.1 0 7.7

setc_18 12.5 62.5 0 25

setc_23 33.3 100 0 44.43333333

Set D (WER) (Avg WER)

AudioClip TS1 TS2 TS3

setd_3 33.3 16.7 16.7 22.23333333

setd_5 0 28.6 0 9.533333333

setd_11 0 0 0 0

setd_14 0 0 0 0

setd_20 16.7 16.7 16.7 16.7

setd_27 20 0 0 6.666666667

Set E (WER) (Avg WER)

AudioClip TS1 TS2 TS3

sete_4 0 11.1 0 3.7

sete_8 33.3 50 16.7 33.33333333

sete_12 20 0 0 6.666666667

sete_17 0 0 0 0

sete_24 25 0 25 16.66666667

sete_29 16.7 33.3 16.7 22.23333333

Note: The audio clips are named as, set name followed by underscore and then person id.

Figure 1: The Group 1 Transcription Results
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For Group 2

Set A (WER) (Avg WER)

AudioClip TS1 TS2 TS3

seta_7 0 0 25 8.333333333

seta_8 28.6 42.9 14.3 28.6

seta_9 10 4.1 10 8.033333333

seta_10 16.7 20 0 12.23333333

seta_11 33.3 16.7 16.7 22.23333333

seta_12 25 12.5 25 20.83333333

Set B (WER) (Avg WER)

AudioClip TS1 TS2 TS3

setb_2 100 100 100 100

setb_7 100 100 100 100

setb_8 100 100 100 100

setb_16 100 100 100 100

setb_21 100 100 100 100

setb_27 100 100 100 100

Set C (WER) (Avg WER)

AudioClip TS1 TS2 TS3

setc_1 16.7 10 30 18.9

setc_9 16.7 33.3 16.7 22.23333333

setc_12 20 20 40 26.66666667

setc_22 20 20 20 20

setc_28 20 20 20 20

setc_29 21.4 21.4 14.3 19.03333333

Set D (WER) (Avg WER)

AudioClip TS1 TS2 TS3

setd_4 0 14.3 14.3 9.533333333

setd_6 18.2 27.3 18.2 21.23333333

setd_10 25 23.1 30.8 26.3

setd_13 25 25 25 25

setd_18 33.3 14.3 14.3 20.63333333

setd_30 20 40 20 26.66666667

Set E (WER) (Avg WER)

AudioClip TS1 TS2 TS3

sete_5 14.3 14.3 14.3 14.3

sete_11 25 25 25 25

sete_14 25 16.7 8.3 16.66666667

sete_15 16.7 33.3 16.7 22.23333333

sete_23 33.3 11.1 22.2 22.2

sete_26 14.3 14.3 14.3 14.3

Note: The audio clips are named as, set name followed by underscore and then person id.

Figure 2: The Group 2 Transcription Results
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For Group 3

Set A (WER) (Avg WER)

AudioClip TS1 TS2 TS3

seta_13 30 20 9.1 19.7

seta_14 0 28.6 14.3 14.3

seta_15 14.3 14.3 14.3 14.3

seta_16 9.1 16.7 9.1 11.63333333

seta_17 11.1 11.1 9.1 10.43333333

seta_18 16.7 16.7 25 19.46666667

Set B (WER) (Avg WER)

AudioClip TS1 TS2 TS3

setb_3 100 100 100 100

setb_10 100 100 100 100

setb_14 100 100 100 100

setb_20 100 100 100 100

setb_24 100 100 100 100

setb_29 100 100 100 100

Set C (WER) (Avg WER)

AudioClip TS1 TS2 TS3

setc_5 14.3 14.3 0 9.533333333

setc_11 0 14.3 0 4.766666667

setc_13 42.9 42.9 14.3 33.36666667

setc_17 41.7 58.3 58.3 52.76666667

setc_21 60 60 30 50

setc_30 16.7 33.3 33.3 27.76666667

Set D (WER) (Avg WER)

AudioClip TS1 TS2 TS3

setd_1 0 42.9 28.6 23.83333333

setd_7 7.7 46.2 7.7 20.53333333

setd_12 16.7 16.7 33.3 22.23333333

setd_15 0 16.7 16.7 11.13333333

setd_22 0 0 0 0

setd_26 0 33.3 66.7 33.33333333

Set E (WER) (Avg WER)

AudioClip TS1 TS2 TS3

sete_6 0 22.2 0 7.4

sete_9 0 0 0 0

sete_16 0 0 0 0

sete_19 14.3 0 14.3 9.533333333

sete_25 0 9.1 18.2 9.1

sete_28 50 33.3 16.7 33.33333333

Note: The audio clips are named as, set name followed by underscore and then person id.

Figure 3: The Group 3 Transcription Results
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For Group 4

Set A (WER) (Avg WER)

AudioClip TS1 TS2 TS3

seta_19 6.7 0 0 2.233333333

seta_20 8.3 16.7 3.1 9.366666667

seta_21 22.2 0 0 7.4

seta_22 4.1 9.1 8.2 7.133333333

seta_23 27.3 36.4 10 24.56666667

seta_24 10.1 9.1 20 13.06666667

Set B (WER) (Avg WER)

AudioClip TS1 TS2 TS3

setb_4 100 100 100 100

setb_6 100 100 100 100

setb_11 100 100 100 100

setb_13 100 100 100 100

setb_23 100 100 100 100

setb_28 100 100 100 100

Set C (WER) (Avg WER)

AudioClip TS1 TS2 TS3

setc_3 0 28.6 15 14.53333333

setc_8 0 40 20 20

setc_15 12.5 25 20 19.16666667

setc_20 33.3 16.7 33.3 27.76666667

setc_24 9.1 9.1 20 12.73333333

setc_26 11.1 22.2 9.1 14.13333333

Set D (WER) (Avg WER)

AudioClip TS1 TS2 TS3

setd_9 28.6 28.6 20 25.73333333

setd_16 16.7 16.7 33.3 22.23333333

setd_17 16.7 0 0 5.566666667

setd_19 0 0 10 3.333333333

setd_21 0 20 22.2 14.06666667

setd_25 22.2 22.2 9.1 17.83333333

Set E (WER) (Avg WER)

AudioClip TS1 TS2 TS3

sete_2 14.3 14.3 20 16.2

sete_7 0 9.1 10 6.366666667

sete_10 16.7 16.7 22.2 18.53333333

sete_18 0 7.1 9.1 5.4

sete_22 20 10 0 10

sete_27 0 0 20 6.666666667

Note: The audio clips are named as, set name followed by underscore and then person id.

Figure 4: The Group 4 Transcription Results
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For Group 5

Set A (WER) (Avg WER)

AudioClip TS1 TS2 TS3

seta_25 0 27.3 18.2 15.16666667

seta_26 0 16.7 16.7 11.13333333

seta_27 21.4 28.6 14.3 21.43333333

seta_28 25 25 25 25

seta_29 0 0 12.5 4.166666667

seta_30 0 0 33.3 11.1

Set B (WER) (Avg WER)

AudioClip TS1 TS2 TS3

setb_5 100 100 100 100

setb_12 100 100 100 100

setb_17 100 100 100 100

setb_18 100 100 100 100

setb_22 100 100 100 100

setb_26 100 100 100 100

Set C (WER) (Avg WER)

AudioClip TS1 TS2 TS3

setc_4 0 0 0 0

setc_10 27.3 9.1 9.1 15.16666667

setc_16 50 50 50 50

setc_19 42.9 42.9 28.6 38.13333333

setc_25 0 40 0 13.33333333

setc_27 0 0 16.7 5.566666667

Set D (WER) (Avg WER)

AudioClip TS1 TS2 TS3

setd_2 0 20 20 13.33333333

setd_8 25 25 41.5 30.5

setd_23 14.3 14.3 14.3 14.3

setd_24 9.1 0 18.2 9.1

setd_28 0 0 20 6.666666667

setd_29 0 0 0 0

Set E (WER) (Avg WER)

AudioClip TS1 TS2 TS3

sete_1 23.1 30.8 30.8 28.23333333

sete_3 22.2 22.2 11.1 18.5

sete_13 14.3 14.3 20 16.2

sete_20 20 20 10 16.66666667

sete_21 28.6 0
14.3

14.3

sete_30 21.4 14.3 14.3 16.66666667

Note: The audio clips are named as, set name followed by underscore and then person id.

Figure 5: The Group 5 Transcription Results
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