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AN INTELLIGENT SYSTEM FOR THE DEFECT INSPECTION 

OF SPECULAR PAINTED CERAMIC TILES 
 

 
Product visual inspection is still performed manually or semi automatically in most 
industries from simple ceramic tile grading to complicated automotive body panel 
paint defect and surface quality inspection. Moreover, specular surfaces present 
additional challenges to conventional vision systems due to specular reflections, 
which may mask the true location of objects and lead to incorrect measurements. 
Some sophisticated optical inspection methods have already been developed for high 
precision surface defect inspection in recent years. Unfortunately, most of them are 
highly computational. Systems built on those methods are either inapplicable or 
costly to achieve real-time inspection.  This thesis describes an integrated low-cost 
intelligent system developed to automatically capture and extract regular defects of 
the ceramic tiles with uniformly colored specular coatings. The proposed system is 
implemented on a group of smart cameras using its on-board processing ability to 
achieve real-time inspection. The results of this study will be used to facilitate the 
design of a robust, low-cost, closed-loop inspection system for a class of products 
with smooth specular coatings. The experimental results on real test panels 
demonstrate the effectiveness and robustness of proposed system. 
 
KEYWORDS: Specular Surface, Defect Inspection, Real-Time Inspection, Intelligent 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Motivation 

The inspection of a product's specular surface is important in many maintenance 

tasks, and also in many industrial production processes. There are industrial 

applications that range from simple ceramic tile grading to complicated automotive 

body panel defect detection and surface quality inspection. Such applications are 

important since, not only can a well coated finish enhance the durability by 

protecting the product surface for corrosion, but surface appearance is a key factor 

in the product's quality [1]. It has a direct impact on the customer’s initial buying 

decision. There is a long-standing desire in many industries to replace the current 

labor-based visual inspection of a product with machine-based inspection.  These 

types of inspection systems are generally implemented to facilitate a more robust 

and faster inspection, as well as to provide feedback to the coating process. For 

example, the ceramic tile industry has taken significant advantages of the advances 

in the world of automation in recent years. All production phases have been 

addressed through various technical innovations, with the exception of the final 

manufacturing stage concerned with the product's visual inspection, which is still 

performed manually. Expert inspectors are hired in the plant to inspect defects and 

assess the color, gloss etc. in order to monitor surface quality. Though such an 

inspection method is effective, it is costly and labor intensive. More importantly, the 

results presented by individual human inspectors can be subjective and inconsistent 

due to unavoidable human errors. For many years, researchers from both industrial 

and academic institutions have been conducting research on relevant topics [2]. 

However, the tasks of inspection on the specular surfaces are still challenging today. 

Several major problems are still under study:  

 First, it must be better understood how to efficiently extract and measure 

three-dimensional shapes from the specular surface. Such surfaces present a 
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challenge to conventional vision systems due to specular reflections, which may 

mask the true location of objects and lead to incorrect measurements. A primary 

goal of such measurements is to convert two-dimensional image data to a three 

dimensional shape measurement of an object, e.g. body panel paint defect and dent 

inspection. These all involve the analysis of images resulting from the reflection of 

light.  

 Another important problem is the actual industrial inspection system design and 

real-time implementation. Currently, a high precision surface inspection technology, 

such as phase reflectance [18], has already been able to extract and measure surface 

faults as small as a micrometer in depth. However, the complicated algorithms and 

strict experimental conditions that must generally be used to obtain the necessary 

data suggest that this technology is not yet applicable for industrial real time mass 

product inspection. Also available is a commercial on-line quality inspection 

system for real time surface inspections, as discussed in section 2.3. Not only is it 

expensive, but it is designed for only a specific industrial inspection task. So it 

focuses only on a certain aspect of the paint appearance.   

 The overall paint appearance is a function of multiple parameters. Defects are 

one aspect. It is also linked to gloss, color, texture, etc. Moreover, the link between 

the measured paint quality parameters and the customer’s initial impressions of the 

overall quality of the product is still not well understood. 

 

This thesis addresses a subset of the first two problems related to the specific 

application of real-time surface defect inspection of ceramic tiles. As opposed to the 

automobile industry, the ceramic tile industry is low-cost and low-profit. However, 

the quality of each ceramic tile still needs to meet certain guidelines as well as 

minimum surface quality performance levels established by the American National 

Standards Institute (ANSI) together with the American Society of Testing and 

Materials (ASTM) [3]. In order to replace the current labor-based surface quality 

visual inspection while controlling the production cost, an integrated low-cost 

intelligent system is developed to automatically capture images, detect regular 

geometric defects, and extract their features on specular coated ceramic tiles. The 
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results suggest that the performance of this integrated system is adequate to provide 

a basis for a viable commercial visual inspection system.  Furthermore, the results 

of this investigation can be easily extended to suggest effective designs for 

inspecting a class of smooth specular coatings, such as those often present on 

appliances and automobiles. 

 

1.2 Problem Statement 

Figure 1.1 provides a simple schematic of a proposed long term objective in the 

machine vision group at the Mechanical Engineering Department, University of 

Kentucky. This long-term research objective contributes to advancements in the 

design of robust low-cost intelligent systems for real-time inspection of smooth 

specular coatings. In this investigation, the primary defects studied are seed defects 

and spot defects. This is because they are the common surface defects found on real 

ceramic tiles and present as irregular shapes and different sizes. Image processing 

algorithms for defect detection and feature extraction are proposed and executed on a 

group of smart cameras using their on-board processing ability. Finally, an integrated 

small-scale low-cost experimental testbed is developed for the real-time 

implementation of proposed algorithms.  
 

 

 

 

 

 

 

         Figure 1.1 an automated Defect Detection system with feedback control 

 

1.3 Thesis Outline 

The remainder of this thesis is organized as follows: Chapter Two presents a 

Actual 
surface 
Quality - 

+ Painting 
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Adaptive 
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literature review on the theory of surface physical reflectance, available methods for 

the specular surface inspection, as well as several existing quality inspection systems. 

In Chapter Three, a Gaussian curve is used to model seed defects, with the support 

function representation. Then this defect model is used to analyze the surface 

specular reflection around the defect area in order to explain the defect inspection 

mechanisms via specular reflections in the experiment system. Chapter Four 

describes the experiment testbed structure and setup, which includes the experiment 

light source, camera selection and software design. Image processing algorithms used 

for defect detection and feature extraction in this experiment are addressed in 

Chapter Five. Chapter Six discusses the details of inspection implementation. 

Chapter Seven presents and discusses the experimental results. Chapter Eight 

contains the conclusion, and recommendations for future work. 
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CHAPTER 2 

THEORY BACKGROUND AND RELATED WORK 

 

Optical methods are used to analyze surface quality in this investigation; therefore, 

all the surface inspection technologies presented in this chapter analyze information 

gathered from the light rays reflected from the inspection product surface. Section 

2.1 first discusses some of the most important results related to the modeling of 

surface physical reflectance. Nayar’s unified reflectance framework is well 

recognized as one of most accurate surface physical reflection models and provides 

the scientific based for this study;, its details are introduced at the end of this section. 

Although information derived from specular highlights may be useful, specular 

painted ceramic tile surfaces may present highlights due to specular reflections that 

mask the true location of objects and lead to incorrect measurements. Section 2.2 

discusses some latest inspection methods on such specular surfaces. In Section 2.3, 

some current available on-line paint quality inspection systems are discussed and 

compared with the experiment system in this study.   

 

2.1 Surface physical reflection models 

Some earlier approaches to surface physical reflection models [4] [5] [6] have 

assumed that the surfaces are Lambertian [7], in which the incident light is scattered 

by the surface evenly around the surface normal direction. However, an ability to 

understand specular features is valuable for any vision system, which must interpret 

images of glossy surfaces; e.g. a specular highlight can yield additional information 

about the local curvature of the surface. So it can be used to resolve convex or 

concave ambiguities.  

 

Later representative research studies on this subject include Phong [8], who 

proposed a parameterized continuous function to represent specular reflectance and 
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used it to create images of the objects; Ikeuchi [9] and Sanderson [10] used the 

double-delta specular model to determine the shape of specular surfaces by a 

photometric stereo and structured highlight technique; Healey and Binford [11] used 

the Torrance-Sparrow model [12] to analyze monocular images to estimate local 

shape curvature. 

 

Based upon those earlier approaches, Nayar [13] proposes a more accurate unified 

reflectance framework for the machine vision that predicts the reflectance of 

monochromatic light from both smooth and rough surfaces. It is based on both 

geometrical and physical reflectance models. The new model consists of three 

primary reflectance components: the specular lobe, the specular spike, and the 

diffuse lobe as shown in Figure 2.1. The specular spike is dominant on smooth 

glossy surfaces. It is concentrated in a small region around the specular, or mirror, 

direction. The specular lobe is distributed around the specular direction and has an 

off-specular peak for rough surfaces. The magnitudes of both the specular lobe and 

the specular spike components are determined by surface properties, such as 

roughness. The specular spike is dominant on a highly smooth surface. As the 

surface roughness increases, the spike component shrinks rapidly and the specular 

lobe starts dominating. Moreover, away from the specular direction, both 

magnitudes decrease drastically and minimal light energy is reflected. Finally, the 

Lambertian model is used to represent the diffuse lobe component, for which the 

magnitude is distributed evenly for all the viewing directions. The radiance of the 

surface in the sensor direction may be expressed as the sum of all three components, 

as shown in Equation 2.1:  

spikespecularlobespeculardiffusion LLLL −− ++=                               (2.1) 
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Figure 2.1 Nayar’s unified surface reflectance model 

 

 

2.2 Specular surface inspection methods 

In the problem of inspection on uniformly colored specular surfaces, most past 

research falls into two major categories, based on the measured signals:  

1. Intensity pattern inspection: specular highlight reflection [14], diffuse 

reflection, double-pass retroreflection [15], and grid reflection [16] 

2. Phase shifting inspection: fringe projection [17] and phase reflection 

 

Phase shifting inspection technologies measure the spatial phase shifting on the 

three-dimensional range images from a projected fringe pattern. They not only yield 

qualitative measurements, but also a three-dimensional quantitative measurement on 

the surface faults as small as a micrometer in depth. However, compared with the 

intensity pattern inspection technologies, phase shifting evaluations are highly 

computationally intensive, especially in cases where a huge amount of the surface 

image data has been generated and must be analyzed and classified in a short period 

of time, which is a common requirement for some industrial inspection applications. 

Among those intensity-pattern inspection technologies, double-pass retroreflection 
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provides high sensitivity only on a highly specular surface that is provided by the 

application of a thin uniform fluid film. Similarly, a grid reflection technology is 

also only applied on highly specular surfaces because it treats the surface under 

inspection as a mirror. In contrast, specular highlight reflection inspects the surface 

curvature variation by observing the reflected specular light and can provide the 

necessary sensitivity. Diffuse illumination eliminates shadows, greatly reduces the 

effect of the specular reflections and yields images with optimal image intensity 

contrast for the later surface defect detection. So a combination of specular image 

and diffuse image information provides both the necessary sensitivity and the ability 

to measure quantitatively on the specular surfaces. 

 

2.3 Existing on-line paint quality inspection systems 

ABIS (Automatical Body Inspection System) [19] is a car body inspection system 

to automatically check the car-bodies on the production line for dents and ripples. 

Two components are integrated into the production: a sensor portal with range 

sensors that scan the whole surface of the body and a portal with robots that mark 

regions with detected defects. The processing chain can identify the car type, 

acquire data, as well as detect, analyze, and classify defects automatically. But it is 

only designed to detect defects on unreflective surfaces like unpainted sheet metals 

or plastic panels.  

 

The Diffracto system is commercialized with the trademark D-Sight. The D-Sight 

optical set-up consists of a light source, a camera, a retroreflective screen, and the 

specimen. An optical double-pass retroreflection surface inspection technique 

developed by Diffracto Ltd in Canada [20], it is a real-time technique for visualizing 

small out-of-plane surface distortions and is particularly applicable to the rapid and 

enhanced visual inspection of large surfaces. However, the D-Sight method only 

operates if the surface of the object to be inspected is specularly reflective at high 

levels. Also, the contrast in the D-Sight signature of surface defects is strongly 

reduced as a result of ambient environmental light. Shielding is therefore necessary 
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when a D-Sight inspection system is to be used in the field. Moreover, when 

inspecting curved surfaces, the D-Sight equipment should be orientated in such a 

way that the direction of curvature is perpendicular to the direction of observation 

of the D-Sight equipment. So the curvature of the target surface must be determined 

before the detection process can be performed.  

 

AutoSpect [36, 37] is another commercial on-line painting quality inspection system 

developed by Perceptron Inc. The system consists of an inspection arch, sensors, a 

control panel, and a paint process monitor. It is a non-contact, automated 

measurement system that checks the critical characteristics affecting the appearance 

quality of painted surfaces such as orange peel and distinctness of image and gloss. 

However, according to reports, the reliability and consistency of inspection results 

still need to be significantly improved.  
 

Over all, existing on-line paint quality inspection systems are currently insufficient 

to provide robust sensing of tile surface quality (or related surfaces). for the 

following reasons:. Some of these systems, such as ABIS, are very costly. Second, 

all of tlyhem focus only on a certain narrow aspect of paint appearance. Therefore, 

in this study, where the objective is to develop a robust, low-cost real-time system to 

assess the surface quality of ceramic tiles, Nayar’s reflectance model will be used.  

Although the testbed sample in this work is ceramic tiles, it is expected that the 

resulting design will be effective for a class of relatively smooth specular surfaces.  
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CHAPTER 3  

PAINT SURFACE DEFECTS AND THEIR 

MATHEMATICAL MODELING 

 

This Chapter presents suggested models to characterize common defects in smooth 

specular surfaces, based upon the reflectance model that was introduced as an 

appropriate rational basis in Chapter 2.  The chosen testbed for this investigation is 

ceramic tile surface defect inspection. So in Section 3.1, common paint defects on 

the surface of ceramic tiles are investigated and identified. In order to qualitatively 

analyze the surface specular reflection around the defect area, a standard Gaussian 

curve is shown to model one common defect, the seed defect, with the support 

function representation described in Section 3.2.. Furthermore, defect inspection 

mechanisms based upon specular reflectance information are explained in section 

3.3. 

  

3.1 Paint surface defects 

There are several factors that cause the appearance of flaws in the process of 

painting ceramic tiles. A main physical cause of paint defects is the variation of 

surface tension forces along the film surface while painting and drying. Other 

causes include environmental and human factors, such as airborne particles like dust 

and dirt being trapped in the paint coating while drying.  Also, liquid drops such as 

oils and silicon from the plant environment can penetrate the freshly painted surface 

to cause defects. According to a DU PONT report [21], there are fourteen types of 

typical paint defects in the booth area that affect the quality of surface appearance. 

The defects detected in this work are seed defects and spot defects. Their geometries 

have dimensions ranging from approximately a millimeter to several centimeters in 
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height and lateral extent; smaller defects are not consistently discernable by 

professional human inspectors. Seeds can be characterized as raised bumps with a 

discernable height which are present on paint surfaces. They can be caused by the 

thinness of the color coat; improper filtration, which may results in contaminents 

trapped in the coating; out of spec raw materials or the incorrect reducing solvent 

during the painting process. Spots are planar: spot-like, or linear faults such as 

scratches. They have little geometric variation, but a relatively intense contrast to 

the non-defective surrounding surface.  

 

Both defects affect the customers’ purchase decision negatively. Depending on the 

specific industrial application and product category, their effects on the surface 

quality evaluation may be different. 

 

3.2 Seed defect mathematical modeling and support function 

representation 

As discussed in Section 3.1, seed defects in ceramic tiles are caused by myriad 

factors. Their shapes are irregular and their sizes are various, ranging from 

millimeters to centimeters. So it is challenging to find a single mathematical model 

that can accurately and completely describe the shapes of all seed defects. However, 

a reasonably simplified mathematical model can still aid in characterizing a defect’s 

geometric properties by facilitating an understanding and qualitative analysis of the 

surface specular reflection around the defect areas; such a model can also aid in 

determining the defect inspection mechanism.  

 

In this work, the standard Gaussian curve is proposed to model regular seed defects. 

The two-dimensional standard Gaussian function has the mathematical 

representation of 

)
2

exp(
2
1)( 2

2

σπσ
xx −=Φ                                        (3.1) 
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Figure 3.1 illustrates the effect of the parameter σ in Equation 3.1; the Gaussian 

curves in this figure emulate typical real-world variations in seed defect profiles. 

Figure 3.2 further illustrates this by comparing a three-dimensional Gaussian model 

with simulated images of seed defects; the simulated images contain 3-D examples 

of the seed defect profiles modeled in two dimensions in Figure 3.1.  

   
 

Figure 3.1 A group of 2-D Gaussian models of seed defects 

 

   
Figure 3.2 A comparison between 3-D Gaussian model and a simulated image 

of seed defects 
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The Gaussian curve representation of equation 3.1 successfully models some 

regular shapes of seed defects in the Cartesian coordinates. However, this 

mathematical representation results in undesired complications when describing the 

geometry of specular reflection. The reason for such complications is that specular 

reflection depends not only on the spatial coordinates of the surface reflectance 

profile, but also on its local surface normal.  

 

To overcome such disadvantages, the proposed Gaussian curve function can be 

transformed into a representation based on the support function of a curve [22]. The 

support function representation of a curve has the form  

⎪⎩

⎪
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+=

−= −

nnn
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yx
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θ, ρ and the support function representation are shown in a Cartesian coordinate 

system in Figure 3.3. Equation 3.2 can be also transformed into a more efficient 

state-space support function representation:  
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This second support function representation has the advantage of depending 

explicitly on the slope of the curve so that, under a rotation of the coordinate system, 

nρ  remains unchanged and nθ  is only subjected to a simple linear shift. 

 

3.3 Specular reflection on the surface with seed defects 

The importance of specular reflectance information has been broadly recognized by 

researchers studying paint appearance over the years [23] [24]. A perfectly specular 

surface is defined as a surface that reflects a light ray in a single direction from any 

given point reflected on it, where the angle of the reflected ray with respect to the 

surface normal at the point is equal to the angle between the normal and the incident 

ray. The normal, incident, and reflected rays lie in the same plane. Specular 

reflectance models are widely used to describe mirror-like reflections from specular 

surfaces like glass, ceramic, polished metal, and some plastics; the reflected 

illumination from these real-world materials is concentrated in the specular 

direction. So for a defect free highly specular flat surface, a camera at an 

off-specular angle will capture essentially no light energy. This is illustrated in 

figure 3.4 where the camera angle βis significantly greater than the incident angle 

nθ  nθ  

nρ  

x 

y 

Figure 3.3 Representation of the support function of a 
curve
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α. 

 
Figure 3.4 Specular reflections on a defect free surface  

 

However, when any geometric imperfection exists, such as a seed defect present on 

the inspected surface, those incident rays that hit the seed surface will yield local 

specular reflection rays whose directions are significantly different from those 

produced by the background surface, as illustrated in Figure 3.5. Figure 3.6 shows 

more details for the surface specular reflections around the defect area. Because the 

curve of the seed defect surface is continuous, the resulting specular reflections will 

be distributed in a large range of angles as shown. In this situation, the camera, placed 

at a fixed off-specular angle, will capture some of those irregular reflections due to 

the presence of defects.  

 

A camera consists of an image plane and a lens, as presented in Figure 3.7 and 

provides a transformation between the object space and the image space shown in 

Figure 3.8. Thus, captured reflection light rays from a seed defect will be transformed 

into a group of high intensity pixels on the image plane; this group may be considered 

as a highlight blob. Here, a blob is defined as a group of connected pixels with similar 

intensity values. The presence of highlight blobs on the image captured by the camera 

Camera 

α
β 

Defect free smooth highly specular surface  
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at an off-specular angle indicates the presence of surface imperfections for an 

otherwise flat surface. The shapes and locations of the image blobs are closely related 

to the shapes and physical locations of the real defects.  

 

 

 
 

Seed defect 

Highly specular surface 

Figure 3.5 Specular reflections on a surface with seed defect 

Seed defect 

Figure 3.6 Specular reflections around the defect area 

 16



 

N1 

O 

I 

Camera lens 
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Figure 3.8 A geometric camera model 
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CHAPTER 4 

APPARATUS SELECTION AND EXPERIMENT 

TESTBED SETUP 

 
 

 Lighting and cameras are two important elements of any visual inspection system. To 

more accurately transfer information about the physical world, light acquired by the 

detectors, such as a camera, must provide sufficient contrast in order to distinguish 

the primary features of interest from others, including noise. This chapter discusses 

apparatus selections for the experiment testbed used in this study as well as the 

experiment testbed structure and its setup.  

 

4.1 Experiment Source illumination 

Two different light sources are selected in this experiment for different inspection 

purposes: an incandescent directional illumination system and a diffuse 

illumination system. Their detailed specifications and functions are discussed 

throughout the next few pages. 

 

4.1.1 The incandescent illumination system 

The incandescent directional illumination system is used for specular surface 

inspection at diffuse camera angles. A light source that emits visible light as a result 

of being heated is called an incandescent light source. In an incandescent light 

source, the colliding hot atoms emit photons that form the packets of light. Because 

of its steady light intensity output, easy light intensity control and low cost, the 

incandescent light source is the most commonly used light source in appearance 

measurement studies. Sunlight is the best example of an incandescent light source.  
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The incandescent illumination system used for this study is a Fostec DCR-II DC 

light source with a Fostec A08080 collimator and a Fostec A20650 light intensity 

controller. A collimator is a device capable of collimating radiation, and is a long 

narrow tube in which strongly absorbing or reflecting walls permit only radiation 

traveling parallel to the tube axis to traverse the entire length. The light is conducted 

through a fiber optic bundle. A collimating lens is then set at the end of the fiber 

bundle to implement the directional illumination. The variable-intensity light source 

is a 150-watt incandescent light source with a low voltage ripple that provides a 

stable light intensity output between 0 and 150 watts which can be held within 1%. 

Its intensity can be manually or digitally adjusted by the light intensity controller.    

 

4.1.2 The LED diffuse dome illumination system 

Another selected light source for this study is an LED diffuse dome light source. 

The diffuse dome light illumination provides intense uniform light for inspecting 

objects with highly reflective, specular, round or uneven surfaces. The diffuse dome 

light has a high level of diffuse illumination that eliminates shadows and greatly 

reduces the effect of the specular reflections. It also has a bigger illumination area 

compared with other light sources with similar functions, i.e. linear fluorescent 

illumination. Moreover, compared with a regular fluorescent light, LED 

illumination is more energy efficient, longer lasting and provides a consistent 

output.  

 

The diffuse illumination in this experiment testbed consists of the model DL7248, a 

diffuse dome light source with white light, and a separate Advanced Illumination 

CS300-IC constant current source with intensity control from the Advanced 

Illumination Inc, as shown in figure 4.1. Its LED standard product lifetime can be 

100,000 working hours with a projected light distribution less than 5% over the 

illuminated area. The current source can supply 30 watts output to provide the light 

source safe, consistent, optimized power levels with controllable intensity. The light 

is reflected off the interior of the dome, resulting in 360-degree diffuse and even 
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illumination that is illustrated in figure 4.2.  

 

 
Figure 4.1 Model DL7248 diffuse dome light source 

 

 
Figure 4.2 Diffuse dome light source illumination model  
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4.2 SmartImage intelligent sensor 

The camera used in the experiment testbed is the DVT Series 530 SmartImage 

sensor [33]. It consists of hardware that includes a digital camera with strobe 

illumination and an isolated breakout board, and software that includes the 

Framework graphic user interface. It is a self-contained intelligent machine vision 

system with on-board image acquisition, processing, digital I/O, and serial and 

Ethernet communications. It does not require a separate processor or frame grabber. 

All these functions are contained within its own small board. The camera has its 

own built-in central processing unit with registers and flash memory. So it can 

execute simultaneous image samples and analysis. The isolated breakout board not 

only provides a convenient method to connect digital I/O, power and strobe 

illumination lines; it also allows for the use of isolation modules. More details about 

this sensor are given in Appendix A.  

4.3 Experiment testbed setup and inspection flowchart 

The experiment testbed structure is schematically presented in figure 4.3. The 

system is integrated from three independent functional blocks, marked with A, B, 

and C respectively. Through a transportation belt, a ceramic tile is first inspected in 

block A by using a collimated incandescent light source, and the sensor is set at a 

large off-specular angle to capture the specular reflections due to the presence of 

defects. After the specular inspection process, the tile is transported to block B for 

diffuse inspection. The system inspects the surface planar faults such as spots under 

the diffuse dome light illumination. Meanwhile, selected images and data are 

transferred to a connected local computer terminal in block C for further processing 

and classification, if necessary. Details about each functional block are given below.  
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Figure 4.3 Experiment testbed 

 

• Block A: Specular inspection 

This stage consists of a collimated incandescent light source and a DVT 530 series 

SmartImage sensor. An optimum geometric setup has a fixed illumination angle, α, 

of 30 degrees and a fixed sensor angle, β, of 65 degrees. A top view of the 

experimental platform and its two dimensional schematic is illustrated in figure 4.4. 
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Figure 4.4 Experimental testbed - part A - two-dimensional schematic plot 
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• Block B: Diffuse inspection 

The components in block B consist of a diffuse dome light source and a DVT 530 

series SmartImage sensor. The diffuse dome light source is positioned 70 mm 

directly above the sample surface. Figure 4.5 shows two-dimensional side-view 

schematic.  

 

DVT Sensor 

Diffuse 
Dome light 
source 

Panel 

Support 
frame 

Figure 4.5 Experimental testbed - part B - two-dimensional schematic plot 
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• Block C: Computer terminal for advanced image processing  

A computer collects, displays and analyzes images and data from both SmartImage 

sensors though the DVT SmartLink. The computer is a Dell Dimension 4500 series 

desktop computer with Intel Pentium 4 processor at 1.8 GHz and 256 MB memory.  

 

Because each sensor functions as an independent machine vision system with image 

capturing, processing and communicating functions, compared with the traditional 

modular approaches, the designed system architecture described here significantly 

simplifies the inspection synchronization process between different sensors and with 

other terminals (e.g., a PC). Multi-camera image capture can be synchronized 

through simple SmartLink hardware. This significantly increases the system 

inspection rate by saving the image data transfer time and reduces the cost as well. 

 

Moreover, figure 4.6 gives the system inspection flowchart. Figure 4.7 further 

illustrates this inspection process in pseudo computer language. 
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Figure 4.6 Experiment Inspection system flowchart 
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Figure 4.7 Pseudo background script language for the inspection flowchart 

class Defect Inspection 

{ public static void main() 

{ 

// Initialization 

// Restore Product ID from DVT sensor flash memory 

Flash F = new Flash(); 

F.RestoreRegs(); 

Product P1, P2 

// P1, P2 define specular inspection and diffuse inspection 

P1 = GetProductById(RegisterReadByte(4010)); 

P2 = GetProductById(RegisterReadByte(4020)); 

 

// Variable to monitor success of operations 

int res = 0; 

// Variable to monitor desired outputs 

long Bit = 1; 

int inBit = 1; 

// Starting loop to execute indefinitely 

while (true) 

{ 

// Wait for input 24 as a trigger signal to start inspection 

res = WaitOnInput (24,-1); 

if (res == 0) 
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Figure 4.7 Pseudo background script language for the inspection flowchart 

 

} 

} 

} 

WaitOnAnyInput (0,inBit << 24,-1); 

// Wait until input is low again 

while ((GetOutPuts() & (Bit << 3)) != 0); 

Inspect(); 

P2.Select(); 

sleep (250); // Pause execution for 250 msec 

// Select another product and trigger the inspection 

// Send out inspection results via DateLink 

while ((GetOutPuts() & (Bit << 3)) != 0); 

// Wait for the inspection results by monitoring the busy output 

Inspect(); // Start product P1 inspection 

P1.Select(); // Set product P1 as active inspection product 

{ 

if (res == 0) 

res = WaitOnInput (24,-1); 

// Wait for input 24 as a trigger signal to start inspection 

{ 
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CHAPTER 5 

DEFECT DETECTION AND FEATURE EXTRACTION  

 

 Knowledge of the reflectance properties of specular surfaces (as described in Chapter 

3) is used to analyze seed defects which yield highlight blobs on a diffuse-angle image 

under the directional incandescent illumination conditions discussed in Chapter Four. 

Also, the defect plane contours are captured as dark or white blobs on the diffuse 

image under the diffuse illumination, as also discussed in Chapter Four. Image 

processing algorithms are proposed in this chapter to accurately detect such individual 

dark and white blobs and extract their shape features from both the specular images 

and the diffuse images.   

 

5.1 Defect detection 

1. Dark blob detection - intensity based Auto Bimodal threshold: An intensity based 

Auto Bimodal threshold detects the dark blobs on the image. It automatically 

calculates a single threshold value to use based on the entire image histogram (figure 

5.1). Since it uses all the pixel values in the area to calculate the threshold, the effects 

of noise and specular reflections are minimized. The threshold is recalculated for 

each image. 

 

 
 

Figure 5.1 Histogram of a specular surface image with defects  
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(T is Auto Bimodal threshold value) 

2. Light blob detection - gradient based edge detection: A Gaussian filter smoothes the 

image. Then the canny edge detector performs quick and simple edge detection. 

 

The canny edge detector [25] detects the edge feature of the individual defect. 

Edges in the image are curves where rapid changes occur in intensity or in the 

spatial derivatives of intensity. In this investigation, edges will generally be caused 

by the surface imperfection in that area. Edge detecting in an image then 

significantly reduces the amount of data and filters out useless information, while 

preserving the important structural properties of the defects that are used for later 

feature extraction.  

 

Generally, Canny edge detectors follow three criteria for optimal edge detection: 

(1) Good detection ability, that is, there should be low probabilities of failing to 

detect real edges and falsely detecting edges that do not exist 

(2) Good localization ability, that is, the position of the detected edge should be as 

close as possible to the true position of the edge 

(3) Uniqueness of detection, that is, a given edge should be detected only once. 

 

There are three parameters in the Canny edge detection algorithm: 

1. Sigma: this parameter is used to select the Gaussian filter. The Gaussian filter is 

used to filter out any noise in the original images before trying to locate and detect 

any edges. The larger the width of the Gaussian mask, the lower is the detector's 

sensitivity to the noise. The range for this parameter in this experiment is from 0.40 

to 2.40. 

2. tlow, thigh: they are used to eliminate the streaking in the hysteresis. Streaking is 

the breaking up of an edge contour caused by the operator output fluctuating above 

and below the threshold. For this experiment, parameter tlow is selected between 

0.40 and 0.80 and parameter thigh is from 0. 80 to 0.99. 

 

The processing steps are: 
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1. Convolve the image with a separable Gaussian filter. 

2. Take the first derivatives of dx and dy by using [-1, 0, 1] and [1, 0, -1]’. 

3. Compute the magnitude: sqrt (dx*dx+dy+dy). 

4. Perform non-maximal suppression to assign edges 

5. Perform hysteresis thresholding 

 

Once all the edges of the defects in the image have been retrieved by the Canny 

edge detector, the contour can be extracted by the image structure analysis 

algorithm such as the Run Length Encoding of chain codes, higher order Freeman 

codes, polygonal approximation, etc. The Rosenfeld-Johnston algorithm [26] is one 

of the earliest algorithms to determine the dominant points on the digital curves. 

The basic concept of the algorithm is to calculate the curvature of each point in the 

line, and then the points with the local maximum in curvature are designated as 

dominant points. However, the difficulty for this algorithm lies in the selection of 

the neighborhood radius parameter and its identity for all the points. Teh and Chin 

[27] introduce a parameter free algorithm. It is based on the use of the maximum 

and minimum curvature points to vectorize. However, the results appear to be 

sensitive to quantization and boundary noise. The Douglas-Peucker Approximation 

is used in this study to find the contour on the edge images. The idea is to apply 

some simple approximation techniques to the chain code with polylines, such as 

substituting ending points for horizontal, vertical, and diagonal segments, and then 

using the approximation algorithm on polylines. This preprocessing reduces the 

amount of data without any accuracy loss.  

 

After getting the defect contours on the image, the next task is to fit primitive 

models to the image data. The method used in this study is ellipse fitting [28] for the 

defects with near circular or elliptic planar contour and line fitting [29] for the linear 

defects such as scratches. Both models greatly reduce and simplify the data and also 

give an approximate description of those regular surface defects. 
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5.2 Defect feature extraction 

For the defects with irregular planar edge contours, two simple shape descriptors, 

compactness and convexity, are proposed for characterization [30].  

 

Compactness measures the “roundness” of the feature object and can also yield 

information on surface roughness. Relative compactness is defined as the ratio of the 

perimeter of a circle with the same area as the original feature object and the original 

perimeter. Here P  and  represent the perimeter and the area of the feature object 

respectively, as derived from the image.   

A

                                                                        

P
A

P
P

comp circle π2
==                                            (5.1)                 

 

Convexity measures the regularity of the feature object’s contour. It is defined as the 

ratio of the perimeter of the convex hull and the original perimeter. The convex hull is 

the minimum convex covering of the object.  

                                                                         

P
P

conv convexhull=                                                 (5.2)                 

 

Internal structure measures the distribution of gray levels in a featured object (defect). 

The average intensity of each defect feature in the original image is measured with 

the following equation.  

N

I
avg

N

i
i∑

== 1                                                     (5.3)
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CHAPTER 6  

INSPECTION IMPLEMENTATION  

 

This chapter discusses details of the experimental implementation. Based on the 

discussion of the experimental setup in Chapter Four, every ceramic tile undergoes 

two consecutive inspections: first, a diffuse angle inspection and then a diffuse 

illumination inspection, in order for its surface quality evaluation to be completed. 

Different algorithms from chapter five are used to analyze and process the captured 

image at each stage. Here the term "Product" is used to define such a specific 

inspection task in the SmartImage sensor system. The diffuse angle inspection task 

is named Product HighlightGrabber and the diffuse illumination inspection task is 

named Product DiffuseCatcher. Also, “a complete inspection” is defined as a series 

of consecutive inspection processes starting from image sampling, image analysis to 

finally result in the display and output. So, every single ceramic tile takes two 

complete inspections, first the Product HighlightGrabber and second the Product 

DiffuseCatcher. Moreover, a third Product AutoCalibration is used for the camera 

calibration. Calibration results such as camera focal length, translation vector, 

rotation matrix and distortion coefficient etc. are stored into the SmartImage sensor 

ROM so that they can be directly referred to by other inspection products during the 

inspection in order to transform the desired feature coordinates such as defect 

locations from the image space into the real world space. And Product 

AutoCalibration is only active when the testbed setup, i.e. the camera position, 

changes, in which case the system needs to be recalibrated.  

 

6.1 Camera calibration 

The camera is calibrated in order to transform the center positions and the area of 

defects from a camera image space into real world coordinates. Here the 

SmartImage sensor’s built-in calibration function is used to calibrate the camera 
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system so that other products can directly refer to the results during the inspection. 

 

The process of camera calibration in the Framework is: 

1.  Print a black and white checkboard pattern and paste it on a test panel 

2.  Place the panel on the testbed 

3.  Use Intensity Softsensors to extract the square centers of the check board 

image 

4.  Create a Coordinate System Softsensor with the parameter “global 

calibration” checked and use the output from the Intensity Softsensors from 

step 3 as the input calibration points  

5.  Run the calibration program 

6.  Store the calibration results into the SmartImage sensor ROM 

 

6.2 Diffuse Angle inspection 

The diffuse angle image is captured by the camera at an off-specular diffuse angle 

under the incandescent light illumination. Reflectance, which is caused by the 

presence of defects, is captured as the highlight blobs on the image (figure 6.1). The 

dynamic intensity based threshold method is used to extract those highlight blobs 

from the image. This dynamic threshold places the threshold at some location 

between the minimum and maximum intensity values, based on the value set by the 

user. The intensity-based dynamic threshold level I is determined by the 

user-defined parameter T, and is  

minminmax )( ITIII +×−=                                         (6.1) 

For this experiment, parameter T is 30%. 
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              Original specular image   Highlight image after thresholding 

Figure 6.1 Images from a specular inspection 

 

6.3 Diffuse Illumination inspection 

A diffuse illumination image is captured by the camera right above the inspected 

product under the diffuse illumination. Multi-grade image-processing algorithms are 

proposed to detect and extract both dark and white defect blobs on the diffuse images 

in order to discern and characterize many different kinds of defects. Here, to increase 

the inspection precision while still being robust with respect to the noise on different 

images, the Gaussian mask parameter of the edge detector is combined with a 

minimum defect feature size threshold. Each image is processed by three different 

approaches: one is Auto Bimodal; the other two are edge detectors using differently 

sized Gaussian masks. That is, a small Gaussian mask with a small minimum-size 

threshold cap is used to detect regular light blobs such as spots. A wider Gaussian 

mask with a large minimum size threshold is used to detect those defects with a lower 

image intensity contrast such as scratches. Parameters are pre-set for each batch of 

test samples with different coatings based on the rule from [29]. 

 

The defect features are then extracted and their shape information, such as their center 

location, area, compactness, and convexity are calculated. As an example, Figure 6.2 
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shows a group of inspection images captured for one test panel. Table 6.1 lists the 

corresponding system output. 

 
Figure 6.2 Diffuse image inspection 
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Table 6.1 Output from a diffuse inspection 

Defect 

index 

Center  

x 

position 

(mm) 

Center  

y 

position 

(mm) 

Area 

(pixel) 

Comp Convex Avg. 

intensity 

1 83.8 108.3 12 0.874 0.712 67.23 

2 73.6 101.2 569 0.813 0.551 70.02 

3 100.8 100.2 11 0.621 0.714 51.38 

4 92.0 95.4 40 0.449 0.211 52.44 

5 77.8 93.5 121 0.580 0.654 61.18 

6 74.0 85.5 15 0.901 0.342 53.24 

7 108.8 79.1 26 0.372 0.401 55.48 

8 72.8 77.0 24 0.662 0.613 60.21 

9 113.1 73.3 287 0.884 0.811 49.07 

10 52.2 72.4 41 0.815 0.372 58.27 

11 112.7 71.0 45 0.712 0.563 56.08 

12 102.0 71.3 14 0.842 0.752 37.29 

13 94.6 55.3 15 0.915 0.834 60.35 
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CHAPTER 7 

RESULTS AND DISCUSSION 

   

This chapter presents the results from the inspection system output on the real ceramic 

tiles. Also, the system inspection time is measured to illustrate that the designed 

system meets the ceramic tile real-time inspection requirement.    

 

7.1 Camera calibration verification 

The objective of this section is to verify the accuracy of the calibration method and 

give the absolute error between the calibrated and measured results. First, table 7.1 

shows the initial calibration verification results with test points randomly chosen 

from the central points of a standard black and white checkboard. From this table, 

calibration errors are less than 0.3 mm in the x direction and less than 0.2 mm in the 

y direction for a field of view of 152.4 millimeter by 152.4 millimeter. 

 

Table 7.1 Calibration verification results I 

Feature 

index 

Measured 

x position 

(mm) 

Measured 

y position 

(mm) 

Calibrated 

x position 

(mm) 

Calibrated 

y position 

(mm) 

Absolute 

error in x 

(mm) 

Absolute 

error in y 

(mm) 

1 91.9 76.2 92.2 76.0 0.3 0.2 

2 44.8 107.6 44.6 107.8 0.2 0.2 

3 60.5 60.5 60.4 60.3 0.1 0.2 

4 44.8 76.2 44.5 76.1 0.3 0.1 

avg     0.23 0.18 

 

Then in Table 7.2, the calibration method is further verified on a real ceramic tile 

from Figure 7.1. The center locations of seven seed defects on this panel are 

selected as the test points. The real positions are measured by a high precision 

 37



digital ruler. The results are shown in table 7.2. The average calibration error is 

below 1 mm in both x and y directions; given the measurement uncertainty present 

and accuracy necessary, these position error results are reasonable and acceptable. 

 

Table 7.2 Calibration verification results II 

Index 

Measure 

x 

position 

(mm) 

Measure 

y 

position 

(mm) 

Calibrate 

x 

position 

(mm) 

Calibrate 

y 

position 

(mm) 

Absolute 

error in x 

(mm) 

Absolute 

error in y

(mm) 

1 66.0 106.1 65.9 106.6 0.1 0.5 

2 101.6 106.0 101.9 106.6 0.3 0.6 

3 89.8 83.9 90.0 83.9 0.2 0.0 

4 46.1 69.2 45.4 69.4 0.7 0.2 

5 113.7 57.8 114.2 57.3 0.5 0.5 

6 71.9 57.1 71.3 56.9 0.6 0.2 

7 98.5 44.7 98.8 43.6 0.3 1.1 

avg     0.38 0.4.4 

 

7.2 Inspect system output and discussion 

The inspection system outputs both images and numbers that contain information 

such as the location, size, and shape of each individual defect. Together, that 

information is used for the product surface quality evaluation. It has been tested in 

the experiment system on more than fifty real ceramic tiles with different specular 

paint coatings. Some of them are defect free. Others may have defects, including 

spots and seeds with sizes in several to tens of millimeter scales. Inspection results 

from seven of them, panel A to panel G, are published in this thesis. Here, Figure7.1, 

Figure 7.2, and Table 7.3 show the experiment output of the test panel C. Test panel 

C is presented here because it is representative of a typical defective ceramic tile 

panel.  Results for all other six panels are listed in Appendix C.  
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To calculate the detection rate, 20 test panels are randomly selected to compare the 

results from the inspection system output with the human inspection following the 

standard quality management. The detection rate for this system is 92.4%. And the 

false positive detection rate is 4.4%. 

 

Table 7.3 Output from the diffuse inspection of test panel C 

Defect 

index 

Darkblob 

 Area 

(pixel) 

Bounding

box 

Width 

(pixel) 

Bounding

box 

Height 

(pixel) 

Conv. Comp. Peri. 

(pixel) 

Whiteblo

b 

Area 

(pixel) 

1 122 13 12 0.90 0.85 42 9 

2 106 12 12 0.84 0.82 40 8 

3 112 11 12 0.84 0.85 41 14 

4 133 13 13 0.95 0.87 44 13 

5 107 11 12 0.83 0.83 40 8 

6 111 12 12 0.93 0.83 41 12 

7 108 11 12 0.86 0.87 40 8 

8 122 13 12 0.90 0.85 42 9 
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Original diffuse image of test panel C 

         
Image with marked dark features       Image with marked white feature  

                  (Before filtering and thresholding)        

 

         
  Image with marked dark features     Image with marked white feature 

                     (After filtering and thresholding) 

Figure 7.1 Image from diffuse inspection of the test panel C 

 

Figure 7.2 gives the specular image with the highlights of test panel C. Generally 

speaking, each highlight corresponds to a physical defect. However, from the 

experiment, there is the possibility that two highlights map to the same seed defect, 

which may be caused by the paint pool of the seed or the mirror reflection of the 

real highlights. The group of two highlights is defined as twin highlights.  
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If the presence of twin highlights is due to the paint pool, as shown in Figure 7.2, 

both highlights are generated by the real specular reflection over the defect surface. 

So their distance should be smaller than the size of the defect image contour. 

According to this calculation, to avoid detecting those two highlights as two 

different defects, the distance is calculated between each pair of highlights in this 

system. If they are lower than a preset limit, they are considered to be twin 

highlights.  

 

Figure 7.3 shows another example of the twin highlights, which is caused by the 

mirror reflection of real highlights. It only happens on highly specular surfaces. 

Reference [31] gives a thorough investigation of this topic. The mirror highlight can 

be located out of the range of the defect image contour, depending on the shape of 

the defect. To reduce the error, the center position between the highlight and its 

mirror is calculated as the output position of the highlight in this case. 

 

Instead of using the SmartImage sensor built-in calibration function for the camera 

calibration, as in the product DiffuseCatcher, here for the product HighlightGrabber, 

Tsai’s camera calibration algorithm is used [32] in order to increase the calibration 

accuracy at a large camera angle. The detailed calibration is given in Appendix B. 

Table 7.4 gives the product HighlightGrabber specular inspection results of test 

panel C, which include the area and the real world position of the highlights. 

Moreover, the fourth column, the distance, in table 7.4 is calculated by the equation 

provided by 7.1. It compares the results of the defect physical location calibrated 

from Product DiffuseCatcher with the Product HighlightGrabber. 

 

22 )()( hshs YYXXdist −−−=                                   (7.1) 

 

where (Xs,Ys) is the output of the defect physical center location from the 

inspection product DiffuseCatcher. (Xh,Yh) is the output of the physical center 

location of highlights of the same defect from the inspection product 

HighlightGrabber. 
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Twin spots caused 
by paint pool on the 
base of the seed 

Figure 7.2 Image from specular inspection of the test panel C 

 

Twin highlight spots 
caused by the mirror 
of the highlight  

Figure 7.3 Image from specular inspection with twin highlights  
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Table 7.4 Output from specular inspection of test panel C 

 Image Area 

(pixel)  

Highlight Position 

(mm) 

Distance 

(mm) 

1 1 (68.0,104.7) 2.8 
2 1         2.7 
3 12 (92.0,83.0) 2.2 
4 1 (48.4,69.5) 3.0 
5 6 (113.9,58.8) 0.5 
6 6 (72.3,57.7) 1.3 
7 1 (100.4,46.1) 3.0 
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Based on the experiment results, greater measurement errors in the highlight 

detection can be caused if: 

(1) The highlight and its Mirror are regarded as two different seeds if their distance 

is larger than the preset limit, as in the Test panel F, G. 

(2) The two seeds are so close to each other in the x direction that their highlights 

cannot be differentiated, as in the Test panel D.  

 

The first error can be eliminated by increasing the preset limit. And for the second 

error, it makes sense to just consider those two seeds as one because their physical 

location is close.  

 

7.3 System real-time inspection and timing 

This results of this research will ultimately be used to design an on-line automated 

machine vision system for real-time defect inspection. So it is important to know 

how to measure and inspect time under this system’s performance.  

 

Real-time is defined as “of or relating to computer systems that update information 

at the same rate as they receive data, enabling them to direct or control a process 

such as an automatic pilot.” (The American Heritage® Dictionary of the English 

Language) For this experiment, “real-time” only requires to guarantee a response to 

an external event within a given time. This time includes camera exposure time, 

image digitalization time, data-transferring time, image-processing time, and 

decision-making time. More specifically, the SmartImage sensor is used to acquire 

the test panel image and then process that data with the sensor built-in processor. 

Results are transferred to a connected computer to make the final surface quality 

evaluation.  This last step is not necessary in an implemented on-line system; 

rather, it is used here to validate the appropriateness of the proposed rational basis. 

 

In the next section, background knowledge and definitions related to the system 

inspection timing will be discussed and then an analysis of how to calculate or 
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predict maximum system inspection rates will be performed. Not only because it 

will help us understand why this system is considered a real-time inspection system, 

but also it is critical for optimizing the system’s inspection rate, avoiding resource 

conflictions and missed inspection, and synchronizing system inspection processes.  

 

The SmartImage sensor system architecture is based on a CCD that is closely tied to 

a microprocessor. Images are exposed on the CCD, digitalized and then transferred 

directly to the microprocessor for analysis. During this process, image acquisition in 

the CCD and image processing in the microprocessor can occur simultaneously. 

Another important property is that the system executes single thread processing. 

The sampled image is stored in two buffers: the acquisition buffer, to store the 

acquired image, and the analysis buffer, to save the image under analysis. However, 

each buffer can only save one image at a time. So a new image cannot be acquired 

unless the last acquired image has been moved to the analysis buffer. Similarly, an 

image cannot be moved to the analysis buffer until the last image has been 

completely processed.  

 

Based on the above knowledge, the inspection system timing is divided into three 

parts: image acquisition time, image processing time, and output processing time. 

Each of them can then be subdivided into various tasks, which are explained below. 

 

The image acquisition time includes a delay after the trigger (this is a user-defined 

parameter to allow a fixed time delay after each inspection is triggered), an 

exposure time (another user-defined parameter) to yield acceptable image contrast, 

and a digitalization time, which is proportional to the size of the image being 

processed. A full image (640X480) digitalization takes about 40ms and can be 

reduced by partial acquisition.  

 

The image processing time, also called Softsensor processing time, depends on the 

selected inspection products and their individual Softsensor parameters.  
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The output processing time is also named the data transferring time. It includes 

transferring the data through the sensor Data Link or processing the output based on 

user-defined settings. There is a simple equation to calculate the total time required 

to send the data through Data Link. 

 

Total time = (# of char to be sent) * [(# of data bits) + (1 start bit) + (# of stop bits)]/ 

(transfer rate)                                            (7.2) 

 

All these parameters from equation 7.2 can be set and read from the Framework I/O 

parameters table. 

 

Considering the sensor’s single-thread processing technology, in general, the 

minimum time between system inspections or the minimum cycle time can be 

calculated with the following formula: 

 

Maximum (delay after trigger + exposure time + digitalization time, image 

inspection time)                                               (7.3)                  

 

Table 7.5 gives the time for a complete inspection of the three products in this 

system. 

 

Table 7.51 Results of system product inspection time 

Product Max time for one 

complete 

inspection 

Min time for 

one complete 

inspection 

Ave. inspect time 

(millisecond) 

AutoCalibration 104 97 98 

HighlightGrabber 22 37 29 

DiffuseCatcher 38 52 44 

                                                        
1 Remark: The maximum, minimum, and average inspection time is based on 50 continuous 
inspections under the same experiment conditions. The average inspection rate equals 1000 / 
average inspection time (part/sec). 
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 
 

8.1 Conclusions 

 In this research study, we have successfully designed a prototype for a low-cost 

integrated intelligent system for the defect inspection of the specular-coated ceramic 

tiles on a group of smart cameras. The developed system accurately locates and 

extracts most of the regular defects, seed defects, and spot defects on the ceramic 

tiles by the proposed image processing algorithms. The entire inspection process, 

from the image capture and the image processing to the defect analysis and display 

is synchronized automatically within the SmartImage cameras in real time. This not 

only reduces the cost but also saves significant inspection time compared with the 

traditional inspection systems, which must normally use a frame grabber to transfer 

digital image data from the camera to a connected PC before any processing takes 

place.  

 The experimental results on the real test panels demonstrate the effectiveness 

and robustness of this proposed system 

 The system is low-cost, especially compared to most existing commercial 

systems; costs for the entire inspection system (illumination and camera) are well 

under $6,000  

 The results suggest that the designed system is currently adequate to provide a 

basic substitution for some current simple labor-based surface quality grading and 

provides a good template for the design of an on-line real-time inspection system 

for discerning surface defects for many smooth, highly specular coatings. 

 

8.2 Recommendation for future work 

• This study has already successfully proposed a method to locate and extract regular 

defects on specular painted ceramic tiles. With all the information provided, an 

 47



effective classification method for those defect features will be a good topic for the 

next stage of research. A schematic plan is shown in Figure 8.1.  

Feature 
extraction   

Segmentation  Feature 
extraction  

Classification 

Segmentation phase Classification Phase 

Figure 8.1 A two-stage surface defect classification method  
 

Based upon the results obtained in this study and long-term research goals, the 

following topics are recommended for further investigation 

 

• Extension of findings presented here to design a suitable real-time automated 

machine vision system to inspect ceramic tiles with textured surfaces is a good area 

for future study.  

• This study limited its investigation to the inspection on smooth, specular solid 

paints (i.e., opaque, isotropic coatings that are well-represented by Nayar’s 

reflectance model). The investigation of other paint formulations, such as metallic 

paints, which are frequently used on automobile and appliance surfaces, is 

recommended as a key area for future study.   
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APPENDIX: A 

INTRODUCTION OF SMARTIMAGE INTELLIGENT 

SENSOR 
 

The purpose of this appendix is to give those readers who are not familiar with DVT 

SmartImage sensor systems a brief introduction to some of the terms that are 

mentioned in the contents of this thesis.  

  

A.1 Framework Graphical User Interface 

The Framework software is the Graphical User Interface (GUI) that sets up the 

communication between the user and SmartImage sensor. Firmware is the hardware 

residing in the SmartImage Sensor that is responsible for all the computations. The 

users have no direct control of the Firmware. They only program using the 

Framework, and it then translates all the user commands for the firmware to execute. 

Figure A-1 shows a simple relationship between the Framework and the firmware.  

SmartImage Sensor PC 

Firmware: 
 
- No user direct 

access 
- Programmable via 

framework 2.6.3 

Framework 2.6.3: 
 
- User interface to 

program 
SmartImage sensor 

- Hardware 
emulator 

 

 
Figure A-1 Relationship between the Framework and the 

By using the Framework (version 2.6.3), users set up the connection between a PC 
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and a SmartImage sensor and make changes to the inspection products and system 

files that are loaded in the SmartImage sensor. During this process, what the 

Framework user interface does is query the SmartImage sensor for the images and 

reproduces into the PC what the SmartImage sensor does in its built-in memory 

with those images. Every image from the SmartImage sensor can be considered as 

an array of pixels. The image consists of a total of over 300,000 pixels, with 640 

columns and 480 rows. As a grayscale system, every pixel provides an intensity 

value from 0 to 100. An intensity value of 0 corresponds to black, an intensity value 

of 100 corresponds to white, and others correspond to 99 different shades of gray. 

Every pixel in the image can be considered a source of information. The 

SmartImage sensors use this information to inspect the image and provide user 

feedback such as the presence or absence of a part, flaw detection, code reading, 

and verification, etc. 

 

Figure B-2 explains the functionality inside the SmartImage sensor. The top system 

level in figure B-2 controls the overall functionality of the SmartImage sensor such 

as the I/O configuration and communication setup. At the product level, the user can 

change the parameter that affects a specific inspection such as illumination and 

camera exposure time. The SmartImage sensor can be taking the image for the 

purpose of inspection or simply for the display in the user interface. When it is 

inspecting the images, it sends out the user-defined output indicating the results of 

the inspection. Essentially, a product is directly associated with an inspection, so the 

product parameter affects only one of the inspections that the SmartImage sensor is 

currently taking. At the bottom sensor level, the user can set some sensor parameters. 

Softsensors are the working class inside the SmartImage sensors. They are 

associated with the inspection tasks. Each sensor serves a specific purpose such as 

locating the part to be inspected or detecting and counting features that make up the 

part being inspected. The combination of the Softsensor results represents the 

overall results of each inspection.  

 

 50



A.2 Inspection product and script language 

A SmartImage sensor can take images for the purpose of inspection. In a 

SmartImage sensor system, every product defines a specific inspection. When a 

product is selected as the inspection product, the inspection mode is set to run an 

inspection in the framework and the SmartImage sensor is triggered; it acquires 

images and inspects them according to the sensors that the chosen inspection 

product contains.  

 

Sensor 1 

System 
Level  

Product 
Level  

SmartImage Sensor 

Inspection Product 1 Inspection Product 2 

Sensor 2 Sensor 1 

Sensor 2 
Sensor 3 

Sensor 
Level 

 
Figure A-2 Hierarchical organization within SmartImage sensor 

 

The DVT Script [34] is a set of programmable tools. It is used to design user 

customerized inspection products. It can be compiled and executed in the 

framework and loaded into SmartImage sensor memory to perform specific 

inspection tasks. A hierarchical organization within the SmartImage sensor with 

Script shows in figure A-3.  
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Two types of scripts are available: the background script and the foreground script. 

Background scripts are created at the system level. They have access to system and 

product parameters. Common tasks for background scripts are to alter product 

parameters, trigger inspections, establish communication with external devices, 

processing image, etc. They run every time the system is powered up. Foreground 

scripts are created at the product level. They are directly related to the specific 

inspections. Common tasks for the foreground scripts include gathering data from 

the Softsensors, performing mathematical and logical calculation, formatting strings 

to send out of the system via DataLink, etc. They run every time the inspection 

product that contains them is called to inspect an image.  

 

A.3 SmartLink communications module 

DVT’s SmartLink communications module, shown in figure A-4, helps us view and 

analyze multiple inspections from several cameras on the same screen. Using 

standard Ethernet TCP/IP communication technology, SmartLink was designed to 

transfer images from up to sixteen networked SmartImage sensors. So it can view 

multiple inspections at one time with a standard monitor, even without a PC, and 

transfer them for immediate analysis without any interruption and delay.  
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System 
Level  

Product 
Level  

SmartImage 
Sensor 

Sensor 
Level Sensor 1 

Inspection 
Product 1 

Inspection 
Product 2 

Sensor 2 Sensor 1 

Sensor 2 
Sensor 3 

Background 
script 

Foreground 
Script 1 

Foreground 
Script 2 

System 
Memory  

Foreground 
Script 1 

Figure A-3 Hierarchical organization within SmartImage Sensor with script 

 

 
Figure A-4 DVT SmartLink 
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APPENDIX: B 

CAMERA CALIBRATION AND TSAI’S ALGORITHM 

FOR CAMERA CALIBRATION 

 

The most commonly used camera calibration method is perhaps the DLT (direct 

linear transformation) method. But the main problem with the DLT method is that 

the parameters one obtains from the calibration are not mutually independent from 

each other. This jeopardizes the orthogonality of the rotation matrix. Actually, this 

transformation cannot be described perfectly by a perspective transformation 

because of the distortions that occur between the points on the object and the 

location of the images of those points. These distortions must be modeled before 

taking precise measurements. Camera calibration is often taken to include the 

recovery of the power series coefficients of these distortions. Furthermore, an 

unknown scale factor in the image sampling may also need to be recovered because 

the scan lines are typically resampled in the frame grabber, and so the picture cells 

do not correspond to the discrete sensing elements. Tsai's two-step method for the 

camera calibration can recover all the information that best fits the measured image 

coordinates corresponding to the known target point coordinates.  

 

Tsai's camera model is based on the pinhole model of the perspective projection. It 

relates dimensions in the image frame to the object frame in the Cartesian Space. 

The model has eleven parameters: five internal (also called intrinsic or interior) 

parameters,  

• f - effective focal length of the pin hole camera,  

• k1 - first order radial lens distortion coefficient,  

• Cx, Cy - coordinates of center of radial lens distortion -and- the piercing point 

of the camera coordinate frame's Z axis with the camera's sensor plane,  

• sx - scale factor to account for any uncertainty due to the frame grabber 

horizontal scan line resampling,  
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And six external (also called extrinsic or exterior) parameters,  

• Rx, Ry, Rz - rotation angles for shifting between the world and camera 

coordinate frames, and  

• Tx, Ty, Tz - translation components for shifting between the world and camera 

coordinate frames.  

A target of known geometry is imaged and correspondences between these target 

points and their images are obtained. These form the basic data on which the 

calibration is based. Tsai's method first tries to obtain estimates of as many 

parameters as possible, using linear least squares fitting methods. In this stage, all 

extrinsic parameters except  are estimated from an over-determined set of linear 

equations with five unknowns, using the method of Least Squares. In the 

subsequent step, the rest of the parameters are obtained using a nonlinear 

optimization method that finds the best fit between the observed image points and 

those predicted from the target model.  

zT

 

As for this application, Jean-Yves Bouquet’s Camera Calibration Toolbox for 

Matlab is used in the earlier stage and finally refers to a two-stage algorithm 

introduced from the reference [32] for the coplanar calibration   
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APPENDIX: C 

TEST PANEL IMAGES AND THEIR INSPECTION 

RESULTS 
 

This appendix includes all the experiment data collected from seven test ceramic 

tiles. The data of each panel is organized in such a way: 

1. Images: from the upper left to the lower right they are the original diffuse image, the 

diffuse image with marked dark blobs, the diffuse image with marked white blobs, 

the diffuse image with ellipse fitting, and the specular image with marked highlight 

spots 

2. Tables: Four different tables are used to completely describe the collected defect 

information of every single inspection product. The first table gives the real world 

physical location of defects extracted from the diffuse image. The data transformed 

from calibration and the data from the real measurement with high precision digital 

ruler are compared. The second table lists all the information on the defect feature 

shape such as the area, bounding box width and height, convexity, compactness, and 

perimeter from the same diffuse image. The third table gives the defect information 

extract from eclipse fitting algorithm as mentioned from the chapter Four. The last 

table gives the highlights information from the specular image such as physical 

location, area, etc.  
 

Results of the test panel C have been used as an example in chapter seven. So only the image 

results of the test panel C are listed in this appendix. The table data will not be repeated here 

again. Readers can refer to chapter seven to get that table data if necessary.  
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Test Panel A 

  

Figure C-A Images from inspection results of test panel A 
 

Table C-A1 Inspection results of test panel A I 

Feature 

index 

Measured 

x position 

(millimeter) 

Measured

y position

(millimeter)

Calibrated 

x position

(millimeter)

Calibrated 

y position

(millimeter)

Absolute 

error in x 

Absolute 

error in y.

1 70.8 87.2 70.8 87.3 0.0 0.1 

2 87.3 61.2 87.0 61.6 0.3 0.4 

Table C-A2 Inspection results of Test Panel A II 

Defect 

index 

Darkblob 

 Area 

(pixel) 

Boundingbox

Width 

(pixel) 

Boundingbox

Height 

(pixel) 

Convexity Compactness Peripheral Whiteblob

Area 

(pixel) 

1 44 8 7 0.84 0.76 27 12 

2 52 10 11 0.49 0.29 48 31 

Table C-A3 Inspection results of test panel A III  

Defect 

index 

Center x 

(pixel) 

Center y 

(pixel) 

Boundingb

ox height 

(pixel) 

Boundingb

ox width 

(pixel)  

angle Area 

(pixel) 

1 286 215 9 12 16.2 84.8 

2 374 351 13 14 330.2 143.0 
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Table C-A4 Inspection results of test panel A IV 

Highlight 
Area 

(pixel) 

Center x 

(millimeter) 

Center y 

(millimeter) 

Distance 

(millimeter) 

1 2 69.8 88.1 1.3 

2 3 85.6 63.2 2.1 

 

Test panel B 

      

Figure C-B Images from inspection results of test panel B 
 

Table C-B1 Inspection results of test panel B I 

Feature 

index 

Measured 

x position 

(millimeter) 

Measured

y position

(millimeter)

Calibrated 

x position

(millimeter)

Calibrated 

y position

(millimeter)

Absolute 

error in x 

Absolute 

error in y.

1 75.1 74.9 75.4 75.2 0.3 0.3 

Table C-B2 Inspection results of test panel B II 

Defect 

index 

Darkblob 

 Area 

(pixel) 

Boundingbox

Width 

(pixel) 

Boundingbox

Height 

(pixel) 

Convexity Compactness Peripheral Whiteblob

Area 

(pixel) 

1 365 27 21 0.64 0.35 115 68 
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Table C-B3 Inspection results of test panel B III 

Defect index 
Center x 

(pixel) 

Center y 

(pixel) 

Boundingbox 

height 

(pixel) 

Boundingbox 

width 

(pixel)  

angle Area 

(pixel) 

1 309 280 22 25 29.9 432.0 

Table C-B4 Inspection results of test panel B IV 

Highlight 
Area 

(pixel) 

Center x 

(millimeter) 

Center y 

(millimeter) 

Distance 

(millimeter) 

1 2 77.3 75.9 2.0 

 

Test panel C 

 

  

Figure C-C Images from inspection results of test panel C 
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Test panel D 

  

Figure C-D Images from inspection results of test panel D 
 

Table C-D1 Inspection results of test panel D I 

Feature 

index 

Measured 

x position 

(millimete

r) 

Measured

y position

(millimete

r) 

Calibrated 

x position

(millimete

r) 

Calibrated 

y position

(millimete

r) 

Absolute 

error in x 

Absolute 

error in y.

1 80.3 100.7 80.2 101.9 0.1 1.2 

2 104.7 88.2 105.0 88.5 0.3 0.3 

3 66.2 78.6 65.6 79.0 0.6 0.4 

4 83.4 77.6 83.1 78.1 0.3 0.5 

5 64.0 56.3 63.3 56.4 0.7 0.1 

6 68.1 56.1 67.5 56.1 0.6 0.0 

7 99.2 54.1 99.3 53.9 0.1 0.2 

 

 

 

 

 60



 

 

Table C-D2 Inspection results of test panel D II 

Defect 

index 

Darkblob 

 Area 

(pixel) 

Boundingbox

Width 

(pixel) 

Boundingbox

Height 

(pixel) 

Convexity Compactness Peripheral Whiteblob

Area 

(pixel) 

1 115 11 17 0.62 0.60 49 10 

2 105 11 12 0.86 0.84 40 10 

3 112 12 12 0.90 0.84 41 13 

4 111 11 12 0.86 0.87 40 14 

5 118 12 12 0.96 0.88 41 9 

6 120 12 13 0.90 0.84 42 11 

7 111 12 12 0.84 0.83 41 11 

Table C-D3 Inspection results of test panel D III 

Defect 

index 

Center x 

(pixel) 

Center y 

(pixel) 

Boundingb

ox height

(pixel) 

Boundingb

ox width 

(pixel)  

angle Area 

(pixel) 

1 335 138 13 13 329.4 132.7 

2 466 209 12 13 83.0 122.5 

3 259 260 12 13 87.3 122.5 

4 351 264 13 13 106.3 132.7 

5 248 378 13 13 333.8 132.7 

6 270 380 13 14 316.4 143.0 

7 436 389 13 13 26.7 132.7 

 

 

 

 

 

 

 

 61



Table C-D4 Inspection results of test panel D IV 

Highlight 
Area 

(pixel) 

Center x 

(millimeter) 

Center y 

(millimeter) 

Distance 

(millimeter) 

1 4 80.7 99.9 2.1 

2 15 104.3 87.4 1.3 

3 5 64.5 78.8 1.1 

4 16 82.1 77.8 1.0 

5 4 65.7 56.9 2.5 

5 4 65.7 56.9 2.0 

7 10 98.1 55.1 1.7 

 

Test Panel E 

 

Figure C-E Images from inspection results of test panel E 
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Table C-E1 Inspection results of test panel E I 

Feature 

index 

Measured 

x position 

(millimeter) 

Measured

y position

(millimeter)

Calibrated 

x position

(millimeter)

Calibrated 

y position

(millimeter)

Absolute 

error in x 

Absolute 

error in y.

1 90.2 91.0 90.4 91.4 0.2 0.4 

2 69.5 87.2 69.2 87.8 0.3 0.6 

3 90.0 80.3 90.0 80.6 0.0 0.3 

4 77.1 76.2 76.9 76.6 0.2 0.4 

5 83.9 67.3 83.9 67.4 0.0 0.1 

6 97.6 66.4 98.0 66.4 0.4 0.0 

7 68.9 63.2 68.5 63.5 0.4 0.3 

Table C-E2 Inspection results of test panel E II 

Defect 

index 

Darkblob 

 Area 

(pixel) 

Boundingbox

Width 

(pixel) 

Boundingbox

Height 

(pixel) 

Convexity Compactness Peripheral Whiteblob

Area 

(pixel) 

1 107 11 12 0.80 0.86 40 14 

2 115 11 13 0.80 0.84 42 14 

3 113 11 12 0.82 0.87 40 12 

4 114 11 12 0.86 0.89 40 14 

5 113 12 13 0.85 0.81 42 13 

6 109 11 12 0.82 0.83 41 11 

7 119 12 12 0.89 0.84 42 10 
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Table C-E3 Inspection results of test panel E III 

Defect 

index 

Center x 

(pixel) 

Center y

(pixel) 

Bounding

box height

(pixel) 

Boundingb

ox width 

(pixel)  

angle Area 

(pixel) 

1 389 194 13 13 34.3 132.7 

2 278 213 13 13 71.8 132.7 

3 388 251 13 13 88.2 132.7 

4 319 272 13 14 7.7 143.0 

5 356 321 13 13 68.0 132.7 

6 430 325 13 14 97.3 143.0 

7 274 341 13 13 125.7 132.7 

Table C-E4 Inspection results of test panel E IV 

Highlight 
Area 

(pixel) 

Center x 

(millimeter) 

Center y 

(millimeter) 

Distance 

(millimeter) 

1 8 91.9 89.9 2.1 

2 8 71.8 87.8 2.6 

3 12 91.5 79.8 1.7 

4 8 78.5 76.1 1.7 

5 10 85.6 67.4 1.7 

6 20 99.4 66.7 1.4 

7 4 70.4 63.7 1.9 
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Test Panel F  

  

Figure C-F Images from inspection results of test panel F 
 

Table C-F1 Inspection results of test panel F I 

Feature 

index 

Measured 

x position 

(millimeter) 

Measured

y position

(millimeter)

Calibrated 

x position

(millimeter)

Calibrated 

y position

(millimeter)

Absolute 

error in x 

Absolute 

error in y.

1 79.8 85.9 80.0 86.3 0.2 0.4 

2 64.8 77.6 64.6 77.8 0.2 0.2 

3 94.9 77.0 95.5 77.1 0.6 0.1 

4 71.7 67.7 71.7 67.7 0.0 0.0 

5 82.5 64.4 82.6 64.3 0.1 0.1 

 

 

 

 

 

 

 

 

 65



Table C-F2 Inspection results of test panel F II 

Defect 

index 

Darkblob 

 Area 

(pixel) 

Boundingbox

Width 

(pixel) 

Boundingbox

Height 

(pixel) 

Convexity Compactness Peripheral Whiteblob

Area 

(pixel) 

1 118 12 12 0.95 0.88 41 26 

2 97 11 11 0.82 0.81 39 15 

3 96 11 12 0.92 0.79 39 21 

4 79 12 11 0.78 0.31 57 26 

5 87 11 10 0.75 0.81 37 14 

Table C-F3 Inspection results of test panel F III 

Defect 

index 

Center x 

(pixel) 

Center y 

(pixel) 

Boundingb

ox height

(pixel) 

Boundingb

ox width 

(pixel)  

angle Area 

(pixel) 

1 335 221 13 14 328.2 143.0 

2 255 266 11 17 1.6 146.9 

3 416 269 12 14 2.6 132.0 

4 292 320 12 14 39.5 132.0 

5 349 337 11 13 319.6 112.3 

Table C-F4 Inspection results of test panel F IV 

Highlight 
Area 

(pixel) 

Center x 

(millimeter) 

Center y 

(millimeter) 

Distance 

(millimeter) 

1 2 77.8 86.9 2.3 

2 4 66.3 78.4 1.8 

3 1 101.1 86.0 4.9 

4 3 92.0 77.8  

5 4 69.5 68.6 2.4 

6 1 87.6 66.0 5.3 
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Test Panel G 

 

Figure C-G Images from inspection results of test panel G 
 

Table C-G1 Inspection results of test panel G I 

Feature 

index 

Measured 

x position 

(millimeter) 

Measured

y position 

(millimeter)

Calibrated 

x position 

(millimeter)

Calibrated 

y position 

(millimeter)

Absolute 

error in x 

Absolute 

error in y.

1 74.0 91.1 73.5 91.3 0.5 0.2 

2 60.9 62.3 60.3 62.2 0.6 0.1 

3 85.0 52.2 85.1 52.0 0.1 0.2 

4 99.5 71.1 99.9 71.1 0.4 0.0 

Table C-G2 Inspection results of test panel G II 

Defect 

index 

Darkblob 

 Area 

(pixel) 

Boundingbo

x 

Width 

(pixel) 

Boundingbo

x 

Height 

(pixel) 

Convexity Compactness Peripheral Whiteblob 

Area 

(pixel) 

1 326 18 34 0.26 0.18 150 161 

2 60 9 8 0.58 0.84 30 12 

3 132 12 14 0.70 0.84 45 19 

4 68 9 9 0.97 0.84 32 18 
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Table C-G3 Inspection results of test panel G III 

Defect 

index 

Center x 

(pixel) 

Center y 

(pixel) 

Bounding

box height

(pixel) 

Bounding

box width

(pixel)  

angle Area 

(pixel) 

1 300 194 18 37 98.0 523.1 

2 440 300 11 12 14.2 103.7 

3 233 348 10 11 331.1 86.4 

4 362 400 13 14 83.7 143.0 

Table C-G4 Inspection results of test panel G IV 

Highlight 
Area 

(pixel) 

Center x 

(millimeter) 

Center y 

(millimeter) 

Distance 

(millimeter) 

1 17 70.1 91.6 2.2 

2 13 81.3 90.1  

3 1 62.9 63.6 3.0 

4 1 91.3 54.4 6.7 

5 1 98.6 71.9 1.5 

 

 68



REFERENCES 

 

1. R. Lambourne, “Paint and Surface Coatings”, Theory and Practice, Ellis Horwood 
Ltd., 1987 

2. Frank Chen, Gordon M. Brown, Mumin Song, “Overview of three-dimensional shape 
measurement using optical methods”, Optical Engineering, Jan. 2000, 10-22 

3. American National Standards Institute, “ANSI 137.1 standard for ceramic tile”, 1988 
4. B. K. P. Horn, “Shape from shading: a method for obtaining the shape of a smooth 

opaque object from one view”, MIT Project MAC Int. Rep. TR-79 and MIT AI Lab. 
Tech. Rep. 232, Nov. 1970 

5. B. K. P. Horn, “ Hill shading and the reflectance map”, Proc. IEEE, vol. 69, no. 11, 
14-47, Jan. 1981 

6. R. J. Woodham, “Photometric stereo: A reflectance map technique for determining 
surface orientation from image intensity”, Proc. SPIE, vol. 155, 136-143, 1978 

7. J. H. Lambert, “Photometria sive de mensura de gratibus luminis, colorum et umbrae”, 
Augsberg, Germany: Eberhard Klett, 1760 

8. B. Phong, “Illumination for computer generated pictures”, Communication ACM, vol. 
18, 311-317, 1975  

9. K. Ikeuchi, “Determining surface orientations of specular surfaces by using the 
photometric stereo method”, IEEE Trans. Pattern Analysis Machine Intelligence, vol. 
3, no. 6, 661-669, Nov. 1981 

10. A. C. Sanderson, L. E. Weiss, S. K. Nayar, “Structured highlight inspection of specular 
surfaces”, IEEE Trans. Pattern Analysis Machine Intelligence, vol. 10, no.1, 44-55, 
Jan. 1988 

11. Glenn Healey, Thomas Binford, “Local shape from specularity”, Computer Vision, 
Graphics, and Image Processing, 62-86, 1988 

12. K. Torrance, E. Sparrow, “Theory for off-specular reflection from roughened 
surfaces”, Journal of the Optical Society of America, 57:1105-1114, Sep. 1967 

13. S. K. Nayar, Katsushi Ikeuchi, Takeo Kanade, “Surface Reflection: Physics and 
Geometrical Perspectives”, IEEE Trans. On Pattern Analysis and Machine 
Intelligence, vol. 13, no. 7, 611-634, July 1991 

14. Johné M. Parker, et al., “Inspection Technology to Facilitate Automated Quality 
Control of Highly Specular, Smooth Coated Surfaces”, Proceedings of the 2002 IEEE 
International Conference on Robotics and Automation, 2002 

15. R. L. Reynolds, et al., “Theory and applications of a surface inspection technique using 
double-pass retrospection”, Optical Engineering, 32(9): 2122-2129, 1993 

16. D. Pe´rard and J. Beyerer, ‘‘Three-dimensional measurement of specular free-form 
surfaces with a structured-lighting reflection technique,’’ Proceedings of SPIE Vol. 
3204, 1997 

17. P. S. Huang, Q. Hu, F. Jin, and F.P. Chiang, ‘‘Color-encoded digital fringe projection 
technique for high speed three-dimensional surface contouring,’’ Optical. Engineering. 
38(6), 1065–1071, 1999 

 69



18. Roland Höfling, Petra Aswendt, and Reimund Neugebaue, “Phase reflection—a new 
solution for the detection of shape defects on car body sheets”, Optical Engineering, 
39, pp.175-182, 2000 

19. Stefan Karbacher et al., “Visualization and detection of small defects on car-bodies”, 
Vision, Modeling and Visualization 99’, 1-8, 1999 

20. R. L. Reynolds, et al., “Theory and applications of a surface inspection technique 
using double-pass retrospection”, Optical Engineering, 32(9):2122-2129, 1993 

21. DU PONT, “Dupont Training Program Workbook”, 1993 
22. Bellver-Cebreros, M. Rodriguez-Danta, “Caustics and the Legendre Transform”, 

Optics Communications, 92(4-6): 187-192, 1992 
23. Lai, T. and Parker, J. M. “Vision system design for on-line quality control of highly 

specular coated surfaces.” In Mechatronics and Machine Vision (Ed. J. Billingsley), 
2000 (Research Studies Press) 

24. J. Parker, , P. Gnanaprakasam, S. Ganapathiraman, Z. Hou,, “Efficient 3-D 
Characterization of Surface Defects in Smooth Specular Coatings”, Proc. Advanced 
Intelligent Mechatronics 2005,  

25. J. Canny, “A Computational Approach to Edge Detection”, IEEE Transactions on 
Pattern Analysis and Machine Intelligence, Vol. 8, No. 6, Nov. 1986 

26. A. Rosenfeld, E. Johnston,  “Angle Detection on Digital Curves”, IEEE Trans. 
Computers, 22:875-878, 1973. 

27. C.H.Teh, R.T.Chin, “On the Detection of Dominant Points on Digital Curves”, IEEE 
Tr. PAMI, 1989, v.11, No.8, p. 859-872. 

28. Andrew W. Fitzgibbon, R. B. Fisher, “A Buyer’s Guide to Conic Fitting”, Proc.5th 
British Machine Vision Conference, Birmingham, pp. 513-522, 1995. 

29. Zhengyou Zhang, “Parameter Estimation Techniques: A Tutorial with Application to 
Conic Fitting”, Image and Vision Computing Journal, 1996 

30. Jukka Iivarinen, Markus Peura, Jaakko Srel, and Ari Visa, “Comparison of Combined 
Shape Descriptor for Irregular Objects”  8th British Machine Vision Conference, 
1997 

31. Pradeep Gnanapraksam, “Characterization of seed defects in highly specular smooth 
coated surfaces”, Master thesis at University of Kentucky, 2004 

32. Tsai, Roger Y. “An efficient and accurate camera calibration technique for 3D machine 
vision”, IEEE Journal of Robotics and Automation, Vol. RA-3, No. 4, 323-344, August 
1987 

33. DVT Corporation, “DVT SmartImage Sensor installation and user guide”, 7th edition, 
2003 

34. DVT Corporation, “DVT script reference manual”, 4th edition, 2003 
35. Johné M. Parker, “An analytical and experiment investigation of physically accurate 

synthetic images for machine vision design”, Doctoral thesis of Georgia Institute of 
Technology , 1996 

36. “ Method and system for processing measurement signals to obtain a value for a 
physical parameter”, United States Patent, No. 6,092,419: filed November 21, 1997; 
granted July 25, 2000 

37. “Method and system for measuring a physical parameter of at least one layer of a multi 
layer article without damaging the article and sensor head for use therein”, United 
States Patent, No. 6,128,081: filed November 27, 1997; granted October 3, 2000 

 70

http://spiedl.aip.org/vsearch/servlet/VerityServlet?KEY=SPIEDL&possible1=Hofling%2C+Roland&possible1zone=author&maxdisp=25&smode=strresults&aqs=true
http://spiedl.aip.org/vsearch/servlet/VerityServlet?KEY=SPIEDL&possible1=Aswendt%2C+Petra&possible1zone=author&maxdisp=25&smode=strresults&aqs=true


VITA 

  

Jinhua Li was born on 5th November, 1978 in Tianjin, China. He received his Bachelor’s 

Degree in Automation from University of Science and Technology of China, in Hefei, 

Anhui province, China in the year 2001. In pursuit of his higher education, he 

matriculated at the College of Engineering at the University of Kentucky, in Lexington. 

 

 

 
 

 71


	AN INTELLIGENT SYSTEM FOR THE DEFECT INSPECTION OF SPECULAR PAINTED CERAMIC TILES
	Recommended Citation

	TITLE OF THE THESIS
	ABSTRACT OF THESIS 
	ACKNOWLEDGEMENTS 
	TABLE OF CONTENTS 
	LIST OF TABLES 
	LIST OF FIGURES 
	CHAPTER 1 INTRODUCTION 
	1.1 Motivation 
	1.2 Problem Statement 
	1.3 Thesis Outline 

	CHAPTER 2 THEORY BACKGROUND AND RELATED WORK 
	2.1 Surface physical reflection models 
	2.2 Specular surface inspection methods 
	2.3 Existing on-line paint quality inspection systems 

	CHAPTER 3 PAINT SURFACE DEFECTS AND THEIR MATHEMATICAL MODELING 
	3.1 Paint surface defects 
	3.2 Seed defect mathematical modeling and support function representation 
	3.3 Specular reflection on the surface with seed defects 

	CHAPTER 4 APPARATUS SELECTION AND EXPERIMENT TESTBED SETUP 
	4.1 Experiment Source illumination 
	4.1.1 The incandescent illumination system 
	4.1.2 The LED diffuse dome illumination system 

	4.2 SmartImage intelligent sensor 
	4.3 Experiment testbed setup and inspection flowchart 

	CHAPTER 5 DEFECT DETECTION AND FEATURE EXTRACTION  
	5.1 Defect detection 
	5.2 Defect feature extraction 

	CHAPTER 6 INSPECTION IMPLEMENTATION  
	6.1 Camera calibration 
	6.2 Diffuse Angle inspection 
	6.3 Diffuse Illumination inspection 

	CHAPTER 7 RESULTS AND DISCUSSION 
	7.1 Camera calibration verification 
	7.2 Inspect system output and discussion 
	7.3 System real-time inspection and timing 

	CHAPTER 8 CONCLUSIONS AND FUTURE WORK 
	8.1 Conclusions 
	8.2 Recommendation for future work 

	APPENIX A INTRODUCTION OF SMARTIMAGE INTELLIGENT SENSOR 
	A.1 Framework Graphical User Interface 
	A.2 Inspection product and script language 
	A.3 SmartLink communications module 

	APPENDIX B CAMERA CALIBRATION AND TSAI’S ALGORITHM FOR CAMERA CALIBRATION 
	APPENDIX C TEST PANEL IMAGES AND THEIR INSPECTION RESULTS 
	REFERENCES 
	VITA

