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ABSTRACT OF THESIS 

 

AUTOMATIC DETECTION OF SLEEP AND WAKE STATES 

IN MICE USING PIEZOELECTRIC SENSORS 

  

Currently technologies such as EEG, EMG and EOG recordings are the 

established methods used in the analysis of sleep. But if these methods are to be 

employed to study sleep in rodents, extensive surgery and recovery is involved which can 

be both time consuming and costly. This thesis presents and analyzes a cost effective, 

non-invasive, high throughput system for detecting the sleep and wake patterns in mice 

using a piezoelectric sensor. This sensor was placed at the bottom of the mice cages to 

monitor the movements of the mice. The thesis work included the development of the 

instrumentation and signal acquisition system for recording the signals critical to sleep 

and wake classification.  

 Classification of the mouse sleep and wake states were studied for a linear 

classifier and a Neural Network classifier based on 23 features extracted from the Power 

Spectrum (PS), Generalized Spectrum (GS), and Autocorrelation (AC) functions of short 

data intervals. The testing of the classifiers was done on two data sets collected from two 

mice, with each data set having around 5 hours of data. A scoring of the sleep and wake 

states was also done via human observation to aid in the training of the classifiers. The 

performances of these two classifiers were analyzed by looking at the misclassification 

error of a set of test features when run through a classifier trained by a set of training 

features. The best performing features were selected by first testing each of the 23 

features individually in a linear classifier and ranking them according to their 

misclassification rate. A test was then done on the 10 best individually performing 

features where they were grouped in all possible combinations of 5 features to determine 

the feature combinations leading to the lowest error rates in a multi feature classifier. 

From this test 5 features were eventually chosen to do the classification. It was found that 

the features related to the signal energy and the spectral peaks in the 3Hz range gave the 

lowest errors.  Error rates as low as 4% and 9% were achieved from a 5-feature linear 

 
 



classifier for the two data sets. The error rates from a 5-feature Neural Network classifier 

were found to be 6% and 12% respectively for these two data sets.  

 

KEYWORDS: Piezoelectric Sensors, Generalized Spectrum, Pattern Recognition, Neural 

Network, Linear Classifier 
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Chapter 1 

Introduction 
 

1.1 Why study sleep 

Humans on average spend around 8-8.5 hours a day on sleep, which means that 

about a third of our lifetime is spent sleeping. Yet recent estimates suggest that around 40 

to 70 million Americans experience either chronic or intermittent sleep related problems 

[4]. And each year sleep disorders, sleep deprivation and sleepiness add an estimated 

$15.9 billion to the national health care bill [4]. If progress is to be made in the 

understanding of what causes these sleep disorders, technology has to play a helping 

hand. Currently the most popular technologies used in sleep analysis are the 

Electroencephalograms (EEG), Electromyograms (EMG) and Electrooculography (EOG) 

recordings [5].  

Recently there have been many breakthroughs in genetic studies in humans and 

rodents which can be used to find the genes that influence sleep disorders by studying 

sleep patterns in rodents. But if the above stated EEG/EMG/EOG techniques are to be 

used on rodents to study their sleep patterns it would involve extensive surgery and 

recovery as genetic studies generally require a large number of animals. This can be both 

costly and time consuming and would not be practical for large-scale studies. This study 

was focused on developing a non-invasive method of differentiating between sleep and 

wake in rodents that is cheaper and easier than surgical methods, and would be ideal for 

large scale studies. It is cheaper and is also ideal for large scale studies. With this 

method, rodents with differing sleep patterns can be identified and their genetic 

variations that underlie these differences studied.   

 

1.2 Introduction to the system 

 Our technology uses a piezoelectric material as a motion sensor. This material is a 

thin film that is highly sensitive to any motion on it (a more in-depth description of the 

piezo film will be presented in the next chapter). The piezoelectric material was placed at 

the bottom of the mouse cages, with one mouse occupying one cage. During the wake 

state of the mouse a highly erratic output is generated from the piezoelectric sensor due to 
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the mouse running about on the sensor, climbing the walls of the cage etc…. But during 

the sleep state of the mouse, the mouse is laying down on the sensor and the only gross 

body movement from the mouse is its breathing. These breathing patterns produce a low 

frequency periodic signal on the sensor. The signal from the sensor is amplified, sampled, 

and stored for later processing of the data. Once features related to the sleep and wake 

states were extracted from the data, a linear classifier as well as a Neural Network 

classifier was used to differentiate between the sleep and wake states (Figure 1.1).   

 The piezoelectric film was obtained from Measurement Specialties Incorporated. 

The amplifier was designed as part of this thesis work. The A/D converter was a National 

Instruments DAQ card (SCB-68), the output of which was read with the aid of National 

Instruments Labview 7.1 script. The processing of the data, classification and other data 

analysis was implemented with MATLAB 7.0.  

 This thesis will discuss a non-invasive automated method for classification 

of sleep and wake states in mice using features extracted from the data using algorithms 

such as the Power Spectrum [1], Generalized Spectrum [9] and Autocorrelation [1]. It 

will first discuss the amplifier that was designed to collect data from the piezo sensor 

after which it will go through the pre-processing and processing of the signal that was 

done. The performance of the features extracted from the signal will be examined for a 

linear classifier along with other parameters such as data segment window sizes and 

tapering window parameters. As a comparison a nonlinear Neural Network classifier was 

also used and its performance compared with the linear classifier.   

 

 

 

 

 

 

 Mouse Cage and piezo film  

Amplifier Sampling 
and storage 

Data 
processing 
and feature 
extraction 

Classification 

 

Figure 1.1-Outline of system  
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1.3 Literature review 

 Data, such as what was collected, have a random or a stochastic element in its 

structure. These time signals can be periodic when the mice are sleeping, transient when 

the mouse is in motion or shifting and stationary noise when the mouse is still and 

elevated (as is the case when the mouse is hanging on the walls of the cage). Stochastic 

signals such as this can be either stationary or non-stationary depending on the length of 

the data segment being analyzed. A stationary time signal is a signal whose mean and 

variance are constant and do not change with time or position, whereas a non-stationary 

time signal has changing mean and variance does change with time and position [2]. 

However, most signals that are outputs of systems such as what was used for this 

application are more likely to be non-stationary than stationary. The non-stationarities in 

this applications signal occur mainly due to transients created by the movements of the 

mice or due to the signals being cyclostationary signals (cyclostationary signals are non-

stationary processes whose parameters will vary in a periodic manner [9]). Therefore it is 

important that the analysis of the data were done for both stationary and non-stationary 

time series. Methods for processing stationary and non-stationary time series signals were 

researched and this section will discuss these efforts along with previous studies of 

mouse behavior using piezo film sensors.   

 The use of piezo film sensors as transducers to monitor behavioral activity of 

mice has been done before by Megens and Voetens [6]. In this study the piezo sensors 

were used to detect the motor activity of the mice to different drugs and different dosages 

of drugs. In this study, however, the respiratory movements along with the noise were 

filtered out. The primary signal of interest was from motor movements of the feet of the 

mice striking the piezo film and the film is sectioned off as to determine the position of 

the rodent in the cage. But unlike Megens and Voetens work, our study considered both 

the respiratory movements and the motor movements of the mouse and only noise 

elements were filtered out.  

There have been a number of studies done on detecting periodic behavior in 

stationary and non-stationary signals. The use of spectral analysis methods such as the 

Power Spectrum (PS) which is derived from the Discrete Fourier Transform (DFT) for 

example has been the standard for analyzing stochastic stationary signals in the frequency 
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domain [1, 2]. But the PS can give ambiguous results when there are non-stationarities in 

the signal. There are also many alternatives to the Fourier Transform and the power 

spectrum that have been presented. 

 For instance there is the Short Time Fourier Transform (STFT) also known as the 

time-dependent Fourier Transform which analyzes only small segments of the signal at a 

time [1]. This is done by moving a window of fixed length over the data by a certain 

increment and at each instance taking the Discrete Fourier Transform (DFT). It would 

seem like this method would work better for non-stationary signals than the DFT which 

takes the Fourier Transform for the whole signal. And indeed it is, but this method will be 

good only for non-stationary time signals whose characteristics will change over time (a 

chirp signal for instance). But in this application the non-stationarities are mainly due to 

transients which have no dependence on time and thus the STFT would not be ideal for 

this application.  

There have also been methods such as the Periodicity Transform which was 

proposed by Sethares and Staley [7]. This algorithm finds its own set of nonorthogonal 

basis elements (based on the data), rather than assuming a fixed predetermined basis as in 

the Fourier, Gabor and wavelet transforms. But according to the authors this method 

performs better than methods such as the DFT only when the periodicity of the signal 

provides a better explanation of the signal than does frequency [7]. If this is the case then 

a method such as autocorrelation is a better option as it’s more straightforward and easier 

to use for analysis of a signals periodicity, especially for stochastic signals.  

Kanjilal and Palit [8] proposed a scheme for extracting weaker periodic signals in 

the presence of noise and other stronger periodic waveforms based on the Singular Value 

Decomposition (SVD). The extraction procedure consists of two steps. First the signal is 

partitioned into different period lengths. After this matrices are formed with each row 

having a period of the data (for example one matrix will have rows equal to about 10 

samples of data, the next matrix with 20 samples per row and so on). The second step 

consisted of calculating the Singular values for each matrix. The ratio of the singular 

values for each matrix will give an idea of periodicity of the signal. The higher the ratio 

of the singular values, the closer the length of the rows is to the periodicity of that signal. 

This process was repeated till all the components in the signal were recovered. But 
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according to the authors this method has its limitations in that if the power of the weakest 

component happens to be less than that of the background noise or close to it then this 

method will yield inconclusive results. So in other words this method will likely fail if 

there isn’t a high Signal to Noise (SNR) ratio. For this application the signal out of the 

piezo film was small (in the 0.5-1mV range) and hence would be susceptible to noise 

interference. So this method would not have been suitable for this application. This 

algorithm would also have been computationally expensive as it involved dealing with a 

large number of matrices which would have taken up a large amount of memory. And 

considering that this application dealt with large amounts of data, this algorithm again 

would not have been suitable.  

Venkatachalam and Aravena [13] presented a method for detecting periodic 

behavior in non-stationary signals using Wavelet packet decomposition. This method 

used the wavelet packets to create low resolution representations of the signal. The 

assumption that the authors used was that at the low resolutions only the most significant 

effects of the signal would appear, thus enhancing the periodic behavior and while 

suppressing the noise and other random effects. After this was completed a processing 

was done where segments of the data were taken and any outliers were removed (similar 

to a median filtering of the data). But according to the authors this method worked best 

only if the signals were highly periodic and would not be suitable for highly irregular 

signals. For this application, in some instances the data had large and sharp transients 

which meant that this method would not be ideal.   

 Gerr and Allen [9] presented the Generalized Spectrum that provides a method for 

analyzing non-stationary time series by exploiting the phase, particularly in periodic and 

transient signals. Donohue and Huang [14] used this method with good effect for the 

classification of ultrasonic backs-scattered echoes resulting from the structures within 

ultrasonically scanned objects. Donohue and Black [15] used the Generalized Spectrum 

to detect and estimate pitch in acoustic audio signals. Both these applications [14, 15] 

used the Generalized Spectrum with much success on non-stationary signals similar to 

what this application was dealing with.  So this method was used in this work in addition 

to the PS to get complementary information from the frequency domain. 
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 There are also many methods of doing analysis of time series in the time domain 

of which Autocorrelation [1, 2] is probably the best and most straightforward. 

Autocorrelation basically measures the correlation between observations at different 

distances apart and generates autocorrelation coefficients which can be used as a guide to 

the properties of a time series. Hence for this application Autocorrelation was used as 

well.  
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Chapter 2 

System Design for Data Acquisition 
 

2.1 Introduction  

Data acquisition for this work required an amplifier for reading, filtering and 

amplifying the data from the piezo film. This chapter gives an introduction to the piezo 

film and also the amplifier used to obtain the data on which the classifier was built and 

tested. This chapter also discusses the ideal and non-ideal responses of the amplifier 

along with issues related to the A/D converter that was used.    

 
2.2 Description of piezo film sensor 

 The piezo film is made out of a very thin PVDF (Polyvinylidene fluoride), 

polymer. One of the primary uses of this film is to convert mechanical energy to 

electrical energy and thus was used as a transducer in our application. Its extra sensitivity 

also made it an ideal sensor for our application. If a vertical force is applied on this film it 

results in a voltage proportional to the force applied on the film. An electrical model of 

the film is a voltage source in series with a capacitor as shown in figure 2.1 [11], where 

Vs is the voltage created by the force on the piezofilm and C is the capacitance of the 

piezofilm material. 

   

 

 

Vs

C

 
Figure 2.1 - Electrical model of Piezo Film 

 

The capacitance “C” of the piezo film can be calculated using the following formula: 

t
AC ε=                (2.1) 
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Where “A” is the area of the film, “t” is the thickness, “C” is the capacitance and ε  is 

the permittivity that can also be expressed as  

orεεε =             (2.2) 

 where rε is the relative permittivity equal to about 12 for PVDF and oε is the 

permittivity of free space (a constant with value  F/m) [11 ].  1210854.8 −×

 For this application 7.5cm by 15cm piezo films were used. The thickness of the 

film was 28 microns. Hence the total capacitance of the film was 40nF as calculated from 

equation 2.2: 

   nF
m
mmmFC 40
)1028(
)15.075(.)/10854.812( 6

12 =
×
×

××= −
−  

To get a larger sensing area two Piezo films were placed side by side and connected in 

series as shown in figure 2.2.  

 

C

C

- +

+ -

 

VS1

 

VS2

  

TotalC  

Figure 2.2 – Electrical model for the series connection of two piezo films.  The capacitors 

will have opposite polarities. 
 

 

Hence the total capacitance for the two Piezo film sensors connected in series is: totalC

  nFCC
CCCC total

total

20
2

2111
==⇒=+=     (2.3) 
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2.3 Amplifier Design 

 Figure 2.3 shows the design of the amplifier that was used. It consisted of 4 parts, 

the piezo film sensor input, a differential amp, a low pass filter and a non-inverting 

amplifier. The amplifier was designed so that the frequencies of interest were not 

attenuated in any way. The frequencies of interest were in the 1-10Hz range. This was 

because the fundamental frequency of the sleep signals from the mice was found to be 

typically in the 2-3Hz range, and its significant harmonics in the 4-9Hz ranges.   

Since the electrical model of a piezo film sensor is a capacitor in series with a 

voltage source, the sensor exhibits very high output impedance. This is due to the fact 

that the piezo film sensor has a very low capacitance. In addition, the application requires 

measuring signals at low frequencies (<20Hz).   So the piezo films output 

impedance, fcπ21 , will be very large. Hence a high impedance buffer is needed to get 

good responses at the low frequencies.  

For this application a differential operational amplifier was used as the buffer. 

The main reason for choosing a differential amplifier is because it does not amplify noise 

induced on both capacitor surfaces as dramatically as the voltage difference between the 

surfaces resulting from the piezoelectric signal. Noise such as line noise due to cross talk 

and poor connections as well as thermal noise from the resistors can add common mode 

noise to the signal from the piezo film. But the differential amplifier suppresses this 

common mode noise and instead enhances the differential voltage, which is primarily our 

signal of interest [11].    
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I -Piezo Film 
IV - Non-inverting 
Amplifier 

III - Low Pass Filter 

Figure 2.3 – Layout of the amplifier. 

II- Differential Amplifier 

 

As can be seen from figure 2.3, the capacitance of the piezo film and the two 

input resistances (R1) of the differential amplifier are in series which means that the 

piezo film and the differential amplifier will also act as a first order high-pass filter with a 

cutoff of  

CRR
highpassCutoff

)11(2
1_
+

=
π

   (2.4) 

And a gain of 

1
2

R
RGain =      (2.5) 

 The input resistances R1 were chosen to be 3MegΩ  each, so that the total 

input resistance to the differential amp is 6MegΩ . This results in a cutoff of the highpass 

filter at around 

Hz
CRR

2.1
)1020)(103103(2

1
)11(2

1
966 =

××+×
=

+ −ππ
      (2.6) 

 

This cutoff value was chosen so that it does not dampen the frequencies in the 

range 2 - 3Hz, which is the breathing rate of the mouse when sleeping. It was also chosen 

so that any DC frequency components lower than 1Hz was also dampened.  The feedback 

 10



resistances R2 were chosen as 10MegΩ  which meant a gain of 33.3
3

10
1
2

==
R
R coming 

out of the differential amplifier. A disadvantage of having such large resistor values is 

that it increases the thermal noise (thermal noise is proportional to resistor values). But 

the attenuating of this type of noise by the differential amplifier should minimize any 

unwanted effects from these large resistors.   

The piezo film sensor also picked up not only the signal from the mouse but also 

signals from other sources such as power supplies and fluorescent lighting. Probably the 

main source of outside interference was from the 60 Hz power supply that was used to 

power the amplifier. The reason this 60 Hz signal interfered with the piezo signal is due 

to the weakness of the piezo signal relative to the power supplies 60 Hz ripple (It should 

be noted that the piezo signal was in the 0.5-1mV range before any amplification). This 

created a significant spike in the frequency spectrum at the 60Hz point which was clearly 

visible when the actual impulse response of the amplifier was plotted out (see figure 2.5).  

To reduce the impact of this 60Hz signal on the quantization and saturation of this analog 

signal at the A/D conversion, a first order low-pass filter was employed on the signal 

from the differential amp. The cutoff was chosen as follows:  

 

Hz
LPCLPR

26
)1010)(620(2

1
)_)(_(2

1
6 =

×
= −ππ

   (2.7) 

 

To make the roll off in the transition region steeper a higher order low-pass filter 

was considered, but this required more circuitry for little signal improvement, and thus 

only a first order filter was used. This cutoff was also chosen so as not to interfere with 

harmonics for the critical 2-3 Hz breathing oscillations. This meant that stages I, II and 

III of the amplifier formed a band-pass filter with cutoffs at 1.2Hz and 26Hz.    

 The signal from stage III of the amplifier was in the order of about 1-2mV for a 

sleep signal. Hence a non-inverting amplifier with a gain of about 50-75 (17dB-19dB) 

was added to amplify the signal before sending it on the cable for the A/D conversion.  

Figure 2.4 shows the frequency response of the amplifier obtained by modeling 

the ideal amplifier in SPICE. The resulting band-pass filter cutoffs are also shown. 
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Looking at the ideal frequency response it is clear that there is only about a -3dB relative 

attenuation between the maximum at 6Hz and the cutoffs at 1.2Hz and 26Hz.   

 

6 Hz 

26 Hz 1.2 Hz 

Figure 2.4 - The frequency response of the amplifier in a log-log scale.  

 

But to get an idea of what the response of the actual circuit was we attempted to 

get an impulse response from the amplifier. This was done by a quick vertical tapping of 

the piezo film with the tip of a pen, thus simulating an impulse. A power spectral density 

plot was then done on this data.  The result can be seen in Figure 2.5 below.   
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   (a)                                                       (b) 

Figure 2.5 (a) Impulse response of the amplifier (b) Impulse response of amplifier 

zoomed in to the 0-30 Hz range.  

 

The actual impulse response of the amplifier shows a relatively flat response between 0-

6Hz and a rolloff between 6Hz and 26Hz. This is due to the fact that an ideal impulse 

response cannot be imparted on the piezo film.  To verify this, the response from 0-6Hz 

can be modeled as a sinc function with a main lobe width of 12Hz (-6Hz to +6 Hz). This 

will translate into the time domain as a square wave with a width of 1/12= 0.08 sec. So 

this is roughly the width of the impulse that we are imparting on the piezo film. If we are 

to impart a better impulse which will give a flatter response we will have to give an 

impulse smaller than 0.08 sec which would be impractical given the inertia of the 

mechanical elements involved. Due to this limitation we will never be able to get the 

theoretical frequency response in practice. 

As an example Figures 2.6 and 2.7 shows some power spectral density plots of 

sleep and wake data from a mouse. Figure 2.6 is a typical sleep signal with its 3Hz 

fundamental frequency and its harmonics whereas in the wake state you will see a flatter 

spectrum with no peaks.  
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3 Hz 

Harmonics 

       (a)                 (b)  

Figure 2.6 (a) PSD plot of a 30 second sleep signal which was sampled at 512 Hz (b) The 

PSD plot zoomed in to the 0-25Hz region.  

 

 
          (a)                (b) 

Figure 2.7 (a) Power spectral density plot of a 30 second wake signal sampled at 512 HZ 

(b) PSD plot zoomed into the 0-25Hz range 

 

 

2.4 A/D converter 

 The output of the amplifier was run into an A/D converter. The A/D converter 

that was used was a SCB-68 16 channel National Instruments DAQ. This uses a 16 bit 

quantizer. The inputs to the DAQ device were configured in single-ended non-referenced 

mode. The DAQ card was connected to a computer via a National Instruments PCI-6224 

PCI card. The DAQ card was read via a Labview 7.10 script. The A/D converter was 
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sampled at 128 samples/sec. This sampling rate insured that there would be no aliasing 

from the 60Hz frequency which was the highest significant frequency in the spectrum. 

Thus the Nyquist rate of (2x60) Hz was met with this sampling rate. This sampling rate 

also insured that calculations involved in the analysis did not have too many data points. 

It should be noted that the data being collected was for long periods, maybe 24 to 48 

hours at a time. Hence if there were too many data points the calculations would have 

taken longer and issues such as computer memory and hard disk space would have also 

arisen.   The quantization levels ranged from 5±  at 16 bits/sample. The sampled signals 

were then stored in binary format to save hard disk space and then later read in by 

MATLAB for the analysis.  

 

2.5 Summary   

 The main purpose was for the amplifier to deliver a good clean signal from the 

piezo film sensor with less noise as possible.  Also it was important that the 60Hz 

frequency from the power source had little or no effect on the lower frequencies. And this 

circuit did quite well in this aspect as the low pass filter and the selecting of the proper 

sampling rate limited this interference. Although in practice the circuit did not give the 

ideal response, it gave a good response in the frequency range 1-10Hz which was what 

was needed. The rolloff after this frequency range was more beneficial than harmful as it 

would attenuate the 60Hz and other noise components even more.  
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Chapter 3 

Algorithms used to extract features 
  

3.1 Introduction 

To build a classifier to classify between sleep and wake states, features must be 

identified and extracted from the data and used to train and test classifiers. Features can 

be evaluated by their impact on the performance of classifiers in which they are used.  

This chapter will first discuss how the short data segments were extracted for data 

analysis, after which it will discuss the nature of the features extracted from these short 

data segments. It will also examine how these features performed for the sleep and wake 

states.  

When analyzing a stochastic time series signal such as this it is important to take 

into consideration that the signal may not be stationary over the period from which the 

features are extracted. In this data analysis, short segments of data were taken in order to 

increase the likelihood of stationarity. However, if these short data segments have strong 

transients like when the mouse is running around on the sensor, the assumption of 

stationarity does not hold, especially for short segments. If this data segment had one or 

two transients (which can occur when the sleeping mouse makes a slight movement) the 

segment cannot be considered stationary either. Hence to assume that the data in this 

segment would be purely stationary or non stationary would be a false premise. Also it 

should be noted that time series data will be correlated at different time instants, 

especially for periodic data that the sleep signal gives.  So it is important that all these 

factors are taken into consideration when analyzing a time series signal and extracting 

features from it. For this application 23 features were extracted from the data for 

consideration of their use in a classifier. There were 3 primary algorithms that were used 

to create functions from which these 23 features were extracted. These 3 algorithms are 

listed below.  

1)  Power Spectrum (PS) features 

2) Generalized Spectrum (GS) features 

3) Autocorrelation (AC) features 
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The Power Spectrum (PS) was used to extract features directly from the frequency 

domain. These features provided information on which frequencies in the signal 

contained the most power. During sleep most of the power will be concentrated in the 

lower harmonic frequencies i.e. in the fundamental frequency and its harmonics, whereas 

during the wake state it will be spread out over all frequencies (no harmonic patterns). 

The Generalized Spectrum (GS) was also used to extract features from the frequency lag 

or difference domain. Unlike the power spectrum, this method uses additional 

information on the phase of the signal and correlations between the distinct frequency 

components. The autocorrelation was used to extract features from the time lag or 

difference domain. Autocorrelation gives an idea of the periodicity of the time domain 

signal. It also gave information on the correlation of the time signal as a function of time 

domain lags. 

 

  

3.2 Extraction of data segments 

The processing and the extraction of features from the data were done on 8 second 

windows of data (the criteria for selecting an 8 second window will be discussed later). 

This window was then moved by a 4 second increment and another set of 8 second data 

was processed and features extracted. This process continued till the whole data set was 

analyzed. So the data was extracted by using an 8 second moving window with 50% 

overlap.  

A test was done to see how many seconds the window should be incremented by 

before it was decided to use the 4 second increment. This was done by seeing how the 23 

extracted features performed individually in the classification procedure (classification 

will be discussed later) for increments of 1, 2, 3 and 4 seconds. The window size was 

kept constant at 8 seconds. The performance was measured by the misclassification errors 

from the classifier. But it turned out that the increment size did not have any impact at all 

in the classification procedure as the misclassification errors were the same regardless of 

the increment size. Hence increments of 4 seconds were chosen as the data analysis 

progressed faster due to less data segments being analyzed.   
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3.3 The Power Spectrum (PS) 

 One set of features was derived from the power spectrum of the data where the 

absolute value of the DFT of the data segment was taken and then normalized by the 

energy of the spectrum.  

 The discrete data segment x[n] of length N samples is a concatenation of N/2 

samples from the previous data segment and N/2 samples from the current data segment 

due to the 50% overlap discussed earlier. This data segment is then windowed with a 

Kaiser Window w[n] also of length N samples (the parameters used for the Kaiser 

Window will be discussed in a later chapter). The DFT of this windowed data segment is 

then taken resulting in the DFT vector Y[F]. This process can be represented as follows: 
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Where F = 0, 1….N 

 

(It should be noted that the DFT is symmetric about DC and hence only one side of the 

DFT were considered).  

 Y[F] is then energy normalized. Thus the Energy Normalized Power Spectrum 

(ENPS) can be written as: 
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FY

FY
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Σ
=           (3.3) 

 

The reason for the energy normalization was so that different depths of the 

spectrum will be more uniform across the data segments being analyzed. In other words 

normalization removes any large scale energy variations that may occur in the DFT 

values.  

 Figure 3.1 shows what the energy normalized power spectrum looks like during 

sleep and wake states. The use of the PS was useful when the data segment being 

analyzed was stationary.  
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   (a)     (b) 

 Figure 3.1(a) Power spectrum of a sleep signal sampled at 128Hz showing a 

fundamental frequency at 3Hz and its harmonics. (b) Power spectrum of a wake signal 

sampled at 128 Hz showing a flatter spectrum and no prominent peaks. 

 

3.4 The Generalized Spectrum and the Collapsed Average.  

3.4.1 The Generalized Spectrum (GS) 

Spectral analysis of time series is well known and has been widely used 

throughout the years. But almost all spectral analysis methods are ideal only for 

frequency domain analysis of stationary signals and can produce ambiguous results for 

non-stationary signals [9]. A spectral analysis method like the power spectrum for 

example is the expected value of the squared magnitude of the Fourier Transform of a 

signal and thus does not preserve phase information of the signal. Whereas phase is 

irrelevant in the analysis of random stationary signals, it can be an important 

characterization parameter for random non-stationary signals such as transient or 

cyclostationary signals (cyclostationary signals are non-stationary processes whose 

parameters will vary in a periodic manner [9]). The sleep signal from the mouse for 

instance can be considered as periodically correlated or cyclostationary and the wake 

signal can be considered a series of transients. Thus a method for separating these non-

stationarities from other stationarities such as noise would be useful for this application. 

The Generalized Spectrum (GS) is different from the PSD in that it preserves the phase 
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information of the signal and thus more useful for non-stationary analysis. So the GS was 

used to see if the impact of the phase information provided complimentary information 

and thus improved detection performance.  

The GS is in fact an extension of the power spectral density, but the non-

stationarities of the signal can be characterized by using the frequency domain repetition 

and the phase information. The GS is defined in the bi-frequency plane as follows [12]:  
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Where is the Discrete Fourier Transform (DFT) of the signal y(t) at . The E[.] is 

the expected value and the * indicates the complex conjugate [12]. This amounts to 

taking the outer products of the DFT vector and its conjugate which results in an NxN 

matrix where N is the length of the DFT vector. This multiplication and the resulting 

matrix G are shown below: 
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Here the main diagonal will have real values (zero phase) and the off diagonals will have 

complex values. Since the main diagonal results in a square of the DFT and real values 

(since you are multiplying a complex number by its own conjugate) it represents the PSD 

of the data segment if the data segment is stationary. On the other hand the off diagonals 
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will represent the phase coherence between different frequency components and can 

characterize structure in the data. For example the first off diagonal will show the phase 

coherence between frequencies separated by 1Hz, the second diagonal between 

frequencies separated by 2Hz and so on. Also it should be noted that when doing analysis 

with the GS matrix only the upper half is useful as the lower half is just the complex 

conjugate.  

 

3.4.2 Normalization of GS  

  There were two methods of normalization used on the DFT values before the GS 

was calculated; they are the system normalization and the energy normalization methods 

[12].  

The system normalization method is defined as follows: 
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Where is the  component of the DFT vector of the data segment being analyzed. 

This normalization will scale all the magnitudes to unity, but will still preserve the phase. 

The main advantage of system normalization is that it reduces the effects of the system 

on the DFT values and also reduces the energy variation from segment to segment. But at 

the same time it can scale up the noise levels especially from spectral areas where the 

initial amplitudes were low. This can degrade the detection of the actual signal and 

disrupt any phase coherence that may exist. And for this application the system 

normalization did scale up the noise and in many cases reduced the signal-to-noise ratio 

as can be seen from figure 3.2 (b). Thus for this application system normalization was not 

suitable and hence was not used.  

)( iFY thi

Energy normalization is defined as follows: 
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Where is the component of the DFT vector and N is the length of the DFT 

vector. This normalization method reduces the variance of the energy in the power 

spectrum and makes comparing the spectrum from different data segments easier. But it 

also has its disadvantages in that it can increase the energy in parts of the spectrum that 

does not display any peaks and has less energy, which can also degrade the detection of 

the signal.  

)( iFY thi

But for this application this energy normalization method worked better than the 

system normalization as can be seen from figure 3.2. For this data segment the GS is well 

formed with prominent periodic peaks for the energy normalized GS (figure 3.2 (a)) 

whereas the system normalization (figure 3.2 (b)) has scaled up the noise quite 

significantly thus drowning out the peaks.  

 

3.4.3 The Collapsed Average (CA) 

 In typical PSD estimations such as the Periodagram for instance, averaging is 

employed and likewise averaging can be used for the GS as well. For this application the 

Collapsed Average (CA) of the GS [12] was calculated as a method of averaging the GS. 

In cases where the SNR is constant over the spectrum, the CA is used to collapse the 2-

dimensional GS matrix into a 1-dimensional vector. This also decreases the computations 

necessary during the averaging process, as now the CA is only a 1-dimensional vector for 

each data segment. The CA is calculated by taking the coherent mean along each 

diagonal of the GS and plotting the magnitude of this as a function of the frequency 

difference that each diagonal represents. The CA can be described as follows : 
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 Where the numerator is the sum of all the values along the diagonal j of the GS matrix 

and the denominator is the sum along the first diagonal (which is the PSD). So the 

numerator does an arbitrary normalization of the CA using the PSD values. Figure 3.2 
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below shows the CA for a data segment with Energy Normalization and System 

Normalization.  

 

 
                               (a)                                                                (b) 

Figure 3.2 (a) CA of an 8 seconds sleep segment of data that was energy 

normalized. (b) the same segment of data that was system normalized.  

 

3.4.4 Fast calculation of the CA 

 The calculation of the CA will still involve a larger number of calculations. First 

the DFT values had to be calculated and then the GS matrix calculated from which the 

CA is derived. So a faster calculation method to compute the CA was used [12]. This 

involved using the relationship between the PSD and autocorrelation. It should be noted 

that the GS is basically an autocorrelation in the frequency domain (see equation 3.4). 

Hence the above definition of the CA in equation 3.8 can be written as: 
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Where the numerator is the autocorrelation of the DFT vector and the denominator 

is the first element of this autocorrelation vector. But since the definition of 

autocorrelation in a random process is the inverse Fourier Transform of the PSD, the 

)( fY
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numerator of equation 3.9 can also be calculated as follows: 

 

)))((())(( 2tyFFTIFFTFYRYY =                    (3.10) 

Figure 3.2 above shows the CA plot computed using the fast calculation method for a 

sleep data set.  

 

3.4.5 Result of the CA for sleep data 

A time series that is periodically correlated can be modeled as a cyclostationary 

random process. If the data segment being analyzed is purely a sleep signal then this can 

be classified as a non-stationary cyclostationary signal. The phase of this type of non-

stationary signal will be non-linear as can be seen from figure 3.3 (b). For such a 

cyclostationary signal with period T the CA coefficients have the following properties: 

 

( ) 0>jFCA   for   ....3,2,1, == k
T
kFj                  (3.11) 

and   ( ) 0=jFCA   for other frequencies =jF

What this means is that for a cyclostationary sleep signal with period T, the CA will 

display peak values at the fundamental frequency and its corresponding harmonics thus 

displaying correlation between these frequencies and coherency in the phase of the signal 

at these frequencies. It will display zero values or values close to zero at all other 

frequencies.  

As stated earlier for this application the fundamental frequency of the breathing of 

the mouse during the sleep state is around 3Hz which means that the CA will have peak 

values at the frequencies 3, 6, 9 Hz etc… (how prominent these peak values are will 

depend on how well the spectrum is formed and how many harmonics there are in the 

spectrum). Figure 3.3 (c) shows the CA for a sleep data segment and the prominent peaks 

at the 3, 6, 9 Hz. What this signifies is that there is high correlation between frequencies 

separated by 3, 6 and 9 Hz in the DFT. Looking at Figure 3.3 (a), the fundamental 

frequency and harmonics clarify this fact.  

 

 24



 

 

 
(a) (b) 

 
  (c) 

Figure 3.3 (a) PSD of a sleep signal samples at 128Hz (b) The unwrapped phase 

of the same signal showing non-linear phase (c) The GS of this sleep segment 

showing the peaks at 3,6,9 Hz and the correlation between these frequencies.  

 

3.4.6 Result of CA for wake data 

 The wake state of the mouse can be characterized as a series of transient non-

stationary signals with the mouse running about on the sensor, climbing the walls etc... 

But what will the result from the CA be for such a wake signal? Since the wake signal is 

a series of transients or impulses where the position and strength will be totally random, 
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the phase of this type of signal will also be linear (see Figure 3.4 (b)) due to the energy of 

the signal being highly localized. Hence in this case there will be phase coherence 

between all the frequencies. So the CA will display the following relationship: 

 

0)( =jFCA  for any     (3.12) jF

 

Figure 3.4(c) below shows the CA for a wake signal without correlation between 

the peaks. It also shows a rolling off of the CA due to a lack of coherence between any of 

the frequency components.  

 

 
(a) (b)   

 
   (c) 

Figure 3.4 (a) PSD of wake signal (b) unwrapped phase of wake signal showing a 

linear phase (c) The CA of the wake signal 
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3.4.7 Result of Power spectrum and CA for mix of sleep and wake data 

 Now the question arises as to what the result will be from the GS and PS if the 

data segment being analyzed has sleep and wake states in it. Figure 3.5 (a) below shows 

an eight second sleep data segment with one sharp strong transient probably caused by a 

sudden movement of the mouse while sleeping.  

Sharp transients such as this are going to have a very low frequency. For the data 

segment in the figure the transient lasts for about .45 seconds which translates to about 

2.2 Hz in the frequency domain. Sharp transients such as this will also have very broad 

frequency spectra which will result in the frequency spectrum spreading out in this 0-2.2 

Hz range. This transient will also contain more power compared to the rest of the data 

segment, which will correspond to higher peaks in this 0-2.2 Hz frequency range. These 

lower frequencies will then swamp out any frequencies outside this range thus flattening 

out any peaks in the PS caused by the sleep segment of the data in the.  Figure 3.5(b) 

shows this very clearly. The CA will also show no prominent peaks and a rolling off due 

to the lack of coherence between any of the DFT frequencies (see Figure 3.5 (c)).  

It should be noted however that if the transient has a longer duration in the time 

domain (not as sharp a transient as shown in Figure 3.5(a)), then the frequency spreading 

in the lower frequencies will not be that prominent and hence the CA and PS can pick up 

the 3Hz sleep signal and its harmonics.   
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(a) (b) 

 
   (c) 

Figure 3.5 (a) 8 seconds sleep data segment with sharp transient (b) The PSD of 

this data segment (c) The CA of this data segment 

 

3.5 Autocorrelation (AC) 

 The previous methods of extracting features were all from the frequency domain. 

So autocorrelation was used as a means of having some features from the time domain. 

Autocorrelation is used to detect non-randomness in the data and periodicities. It is 

defined as follows for a time series X(t) [1,2]:  
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where   are the autocorrelation coefficients. Hence when there is a periodic 

sleep pattern in the data the autocorrelation coefficients will show periodic peaks and 

show random values for the wake state. Figure 3.6 shows the results of autocorrelation on 

sleep and wake signals.  

),( 21 ttRXX

 

 
(a) (b) 

Figure 3.6 (a) Autocorrelation of sleep signal (b) Autocorrelation of wake 

signal of an 8 second window.  

 

The autocorrelation plot for the sleep signal is typical of a stochastic periodic 

process in that as the time shifts get longer, the autocorrelation coefficients get smaller 

and smaller (for a pure deterministic sine wave for example the amplitude and phase will 

be constant through all the time shifts).  
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Chapter 4 

Processing of signal 
 

4.1 Introduction  

Before doing any analysis on empirical data it is always useful to remove outliers, 

smooth or detrend the data. This chapter will discuss the pre-processing stage that was 

done on the raw data to remove elements of the signal not related to the sleep and wake 

signatures. It will also discuss a processing of the DFT data that was done.    

 

4.2 Pre-processing of data 

 Both the PS and the GS involved taking the DFT of the data segments. But before 

the DFT of the data was taken steps were taken to reduce phenomenon such as spectral 

leakage. When a finite segment of data is taken from an infinitely long data stream (as is 

done in this application), there will be discontinuities at the ends of the data segment. 

These sharp discontinuities have broad frequency spectra and can cause a spreading out 

of the signals frequency spectrum. This spreading means that the signal energy that 

should be concentrated only at one frequency instead leaks into the other adjoining 

frequencies. This spreading is known as spectral leakage. One way to prevent this is by 

making the ends of the data segment go to zero instead of having the discontinuities.  

Applying a tapering window to the data segment will do just this. So to reduce the effects 

of spectral leakage the data segments were first multiplied by a Kaiser window and then 

the DFT taken. The Kaiser window was chosen as it gives more flexibility over the main-

lobe and sidelobe widths and thus more control over the spectral leakage [1]. The 

parameters of the Kaiser window used will be discussed in a later chapter.  

The data segments were also zero padded before taking the DFT so that the 

spectrum would be sufficiently oversampled. This oversampling of the DFT will result in 

the spectrum being evaluated on more grid points, and thus the important peak 

frequencies will be better resolved on the grid axis. 

The data collected from the mice can also have trends in them that can have 

unwanted effects on the frequencies in the spectrum. The data can have aperiodic non-

stationary components that influence the low frequencies of the spectrum. At times the 

 30



data can also exhibit a drift or offset in it, and for this application this was observable at 

times (most likely created by the slow response of the op amp filter, whose bandwidth 

ranged from 1.5 Hz to 10 Hz). This can also introduce a trend in the data. Even if the data 

does not have anomalous trends from the electronics, if segment of data is taken from a 

larger data series it can exhibit an oscillation whose period is larger than the segment. 

This too can introduce trends.  For example taking a segment of data from a larger series 

of sleep data will be like introducing ramp like trends to the data, which can lead to 

spurious components in the PS and autocorrelation coefficients, especially at low 

frequencies. So to remove these trends a linear detrending was done on the raw data. For 

this application removing these linear trends helped remove ramp like trends from the 

autocorrelation that tended to obscure critical features, and likewise removed strong low 

frequency artifacts from the PSD that can potentially obscure signal activity in the critical 

1 to 4 Hz range. The detrending, however, did not seem to have a significant effect on the 

CA. Figure 4.1 and Figure 4.2 shows a data segment with and without the detrending for 

the PS and autocorrelation. Figure 4.1 (a) shows the PS with a very large DC component 

and Figure 4.1(b) shows the PS with the DC component removed due to the detrending. 

Figure 4.2 (a) shows the rolling off of the autocorrelation coefficients due to a linear 

trend and Figure 4.2 (b) shows the coefficients with the trend removed due to detrending. 

Figure 4.3 clarifies the fact that the data detrending did not have any effect on the CA as 

the plots are the same with and without detrending.  

 Applying a bandpass linear digital filter to the raw data was also considered, but 

this seemed to attenuate some of the lower frequencies in the critical range and hence was 

not used in the final analysis.   
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   (a)      (b) 

 Figure 4.1 (a) PS of data segment of 8 seconds without detrending (b) PS of 

detrended data segment.  

 

 

 

 
       (a)                                                                  (b) 

Figure 4.2 (a) Autocorrelation without data detrending (b) Autocorrelation with data 

detrending 
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(a) (b) 

Figure 4.3 (a) CA without data detrending (b) CA with data detrending 

 

4.3 Processing of data 

Removal of linear trends from the raw data only removes the low frequency and DC 

components from the PS and reduce the ramp and parabolic artifacts of the 

Autocorrelation. But the PS and CA still display a rolloff proportional to 1/f in the 

frequency domain (see Figure 4.4 (a) and Figure 4.5(a)). This is more evident in the PS 

than the GS. This frequency domain trend is most likely due to the natural attenuation of 

high frequencies in natural data and the roll-off of the electronic filters. Thus the lower 

frequencies tend to attenuate less than the higher frequencies. The sloping of the 

spectrum can have an inadmissible affect on the location and characterization of spectral 

peaks, depending on where the peaks are located. So to reduce the effects of this rolloff, a 

linear trend removal was done on the PS and the CA. Initially a line was fit in a least 

squares sense to the PS and CA. If the N samples long PS and CA data segment is 

represented as y[n] for the Y-axis values (amplitude) and x[n] for the X-axis values 

(frequency) then the least squares estimate line fit of the data segment can be defined as 

follows [16]: 

bnaxny += ][][ˆ     for  n = 1, 2,….N                  (4.1) 
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Here and are the polynomial coefficients that satisfies the least squares line fit. The 

error or the residuals from this line fit can then be represented as follows: 

a b

⎟
⎠
⎞

⎜
⎝
⎛ −= ][ˆ][ nynyError    (4.4) 

After the line was fit to the data, 50% of the points that deviate in the positive 

direction from the line were censored off. The remaining data points can be represented 

as in equations 4.5 and 4.6 below.  

))]((|[][ Errormediannyny <=        (4.5) 

))]((|[][ Errormediannxnx <=         (4.6) 

 The same process was repeated again for these remaining data points ][ny and 

][nx and another 50% of the data points that deviate in the positive direction removed (as 

in equations 4.1 - 4.6). After this second fitting of the line, the slope and y-intercept of 

the line that fit these remaining data points was used to remove the linear trend for the 

final result as shown in equation 4.7 below: 

)][(][][ bnaxnyny FINAL +−=     (4.7) 

Where  is the PS and CA data with the linear trend removed. The slope, Y-

intercept and the midpoint of this best fit line was also used to extract features for 

classification purposes. These features will be discussed in more detail later on.  

FINALny ][
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(a) (b) 

Figure 4.4 (a) The PS of a sleep segment of 8 seconds without the linear trend 

removed. (b) The PS of the same sleep segment with the linear trend removed.  

 

 
(a) (b) 

Figure 4.5 (a) CA without the linear trend removed. (b) CA with the linear trend 

removed.  
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Chapter 5 

Feature extraction 
 

5.1 Introduction 

 This chapter describes the 23 features used in the classifier and details how they 

were computed from the data. It will also discuss some of the processing of the features 

that was done and the reasons for doing it.   

 

5.2 Extraction of features from the data 

 Table 5.1 below lists all the features that were extracted and tested in the 

classifiers. The features are categorized based on the signal functions from which they 

were extracted. The feature categories are the Collapsed Average (CA), Power Spectrum 

(PS) and Autocorrelation (AC) features. Each of the 23 features that were used was a 

vector with each element in the vector containing the value of that feature for a single 8 

second data segment that was analyzed.    

In the sleep state both the PS and the CA display a large peak in the 2-3Hz region 

along with peaks at the harmonics whereas in the wake state the PS and CA will display a 

flatter response in this frequency range. Based on this observation the position and the 

magnitude of the maximum peaks in this range were extracted from the PS and CA. The 

peaks were detected from the gradients. When the gradient transitioned from a positive to 

a negative between two points it signified a maximum. An interpolation was then done 

between these two points to find the position of the peak. If ][k∇  represents the gradient 

at the point y[k], x[k] in the PS or CA data segment, then the interpolation to find the 

position can be represented as follows: 

 

)()1(
])1[]1[]1[(])[][][(][

kk
kxkkykxkkykPosition

∇−+∇
+∗+∇−+−∗∇−

=     (5.1) 

 

The magnitude at these positions was found as follows: 

x[k])*[k]-(y[k]+])Position[k*][(][ ∇∇= kkMagnitude        (5.2) 
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After all positions and magnitudes of the peaks in the frequency range for the data 

segment were found, the peak with the largest magnitude was picked and its position 

noted. There was a set of features that looked at the magnitude and position of the 

maximum peaks in the frequency range of 0.5-8Hz for both the power spectrum and the 

CA. This frequency range was selected as the sleep signals fundamental frequency and 

harmonics lie in this range. Another set of features was also extracted by looking at the 

position and the magnitude of the maximum peak in the frequency range of 1.5-4.5Hz. 

This frequency range was selected as the sleep signals fundamental frequency lies in this 

range. This same method of peak detection was applied to the autocorrelation as well. But 

for the autocorrelation the full 8 second data segment was used.   

 Another feature was extracted by looking at the energy in the power spectrum. 

The energy was calculated for each N samples long data segment as follows: 

 

  ( )∑
=

=
N

F

FYEnergy
0

2][                      (5.3) 

 

During sleep states the PS typically displays peaks at only the fundamental frequency and 

harmonics. In addition, the weak pressure on the piezoelectric film of the mouse breath 

motion (weak relative to the higher pressures of the mouse moving about on the pad) 

results in low energy overall for sleep states compared to the wake states. 

 A set of features was also extracted from the least squares line fit to the PS and 

the CA that was discussed in the previous chapter. The y-intercept, the slope and the 

midpoint of the line were calculated and used as features. The slope is found from 

equation 4.2 and the y-intercept is found from equation 4.3. The midpoint was calculated 

from the mean of the least squares line as follows: 

 )][(1
1
∑
=

+=
N

n

bnax
N

Midpnt       (5.4) 

In the wake state the y-intercept and the slope displayed larger values due to rolling off of 

the PS and CA (see Figure 3.4 (a) and (c) ), whereas in the sleep state they displayed 

smaller values due to the PS and CA having less rolloff (see Figure 3.3 (a) and (c)). 
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 Another feature used was the periodic likelihood of the CA, PS and the 

Autocorrelation. This was calculated by looking at the total number of all the positive 

gradients in the CA, PS and Autocorrelation. If ][l∇  is a vector representing all the 

gradients and  is all the positive gradients then this calculation can be represented 

as follows: 

][ p∇

 

)]0][(|[][ >∇∇=∇ llp                                        (5.5) 

])[(_ plengthlikelihoodPeriodic ∇=           (5.6) 

 

The periodic likelihood was higher when there was high periodicity (as in the sleep case) 

and low values (as in the wake case).  This feature was extracted only from the 0.5-8Hz 

frequency range of the CA and PS, but was extracted from the entire 8 second data 

segment for the Autocorrelation.    

 The frequencies less than 0.5Hz in the CA also provided some useful information. 

It was mentioned earlier that in the GS matrix the main diagonal represents the PS of the 

data segment. This main diagonal corresponds to the low frequencies in the CA. Hence 

one feature was extracted that gave the frequency content < 0.5 Hz in the CA.  
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Table 5.1 Description of parameters extracted 

Number Feature name  Description 

1 Ca.slope Slope of least squares line fit to CA 

2 Ca.yintc Y-intercept of least squares line fit to CA 

3 Ca.mdband Midband of least squares line fit to CA 

4 Ca.perlike Periodic likelihood of CA 

5 Ca.lfp Frequency content <0.5Hz of the CA  

6 Ca.sp Position of maximum peak in 1.5-4.5Hz range of the CA 

7 Ca.sm Magnitude of maximum peak in 1.5-4.5Hz range of the CA  

8 Ca.spt Position of maximum peak in 0.5-8Hz range of the CA 

9 Ca.smt Magnitude of maximum peak in 0.5-8Hz range of the CA  

10 Sp.enrg Energy in PS 

11 Sp.slope Slope of least squares line fit to PS 

12 Sp.yintc Y-intercept of least squares line fit to PS 

13 Sp.mdband Midband of least squares line fit to PS 

14 Sp.sp Position of maximum peak in 1.5-4.5Hz range of the PS 

15 Sp.sm Magnitude of maximum peak in 1.5-4.5Hz range of the PS 

16 Sp.spt Position of maximum peak in 0.5-8Hz range of the PS 

17 Sp.smt Magnitude of maximum peak in 0.5-8Hz range of the PS 

18 Sp.perlike Periodic likelihood of PS 

19 Ac.sp Position of maximum peak in 1.5-4.5Hz range of the AC 

20 Ac.sm Magnitude of maximum peak in 1.5-4.5Hz range of the AC 

21 Ac.spt Position of maximum peak in 0.5-8Hz range of the AC 

22 Ac.smt Magnitude of maximum peak in 0.5-8Hz range of the AC 

23 Ac.perlike Periodic likelihood of AC 

 

 

5.3 Processing of the features 

Once the features were extracted from the whole data set, further processing was 

done on the features to improve there robustness to anomalous transient activity. The 
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estimated features are impacted by transients, which can cause classification errors. For 

example if an 8 second data window (1 data segment) has two or three small mouse 

movements during sleep, sharp transients spikes can occur in addition to the normal sleep 

signature. In this case it is likely that the features extracted from this data segment will 

lean more towards wake rather than sleep (as shown in section 3.4.7). If the adjoining 

data segments display sleep features then this one wake segment will act as a transient.  

Thus a median filter was employed to smooth consecutive feature estimates.  A 

median filter is a one-dimensional, nonlinear filtering technique that applies a sliding 

window to a data sequence. The median filter replaces the center value in the window 

with the median value of all the points within the window. The reason a median filter was 

preferred over a filter such as a mean filter is because of the robustness of the median 

filtering to the outliers in the data. A mean filter replaces the center value of the data 

segment with the mean of the whole segment. Thus an outlier can have an undue 

influence on a mean filter more than a median filter.  For this application a median filter  

window length of 10 was used. This means that the median filter will be applied to 10 

samples of the feature vector at a time (these 10 samples correspond to the value of the 

feature from 10 data segments each 8 seconds long and with 50% overlap). Figure 5.1 

below shows the effect of the median filtering on one of the features. 

 

 
(a) (b) 

Figure 5.1 (a) Plot of the Sp.spt feature for 2500 data segments (each 8 seconds 

long) without the median filtering. (b) Plot of the same feature but with the 

median filtering.   
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Chapter 6 

The linear classifier and the performance of features 
 

6.1 Introduction 

 Once the 23 features were extracted and processed they were run through a linear 

classifier to test their performance in discriminating between sleep and wake. A linear 

classifier was chosen for comparing feature performance as it’s easier to identify the 

amount of influence each feature has in the classification process.  The features were run 

through the classifier individually and also in combinations and the best performing were 

selected. This chapter will first discuss how the data was collected for use in the 

classifiers. After which it will discusses the training and testing of the linear classifier and 

also the performance of the CA, PS and AC features when run through the classifier.  It 

also examines the data segment size and the Kaiser Window parameters that worked best 

for the features. The use of the Fisher Discriminant to calculate the weighting of the 

features and the computation of the threshold for separating sleep from wake is also 

described. Finally, the performance of the linear classifier was compared to that of a 

Neural Network classifier in order to determine if non-linear classifiers may improve 

performance.  

 

6.2 Collection of data  

 There were two sets of data collected using two different mice on two different 

days. A total of 9 hours of data was collected. The specifics of the data sets are given 

below in Table 6.1.  

 

Table 6.1 – Details of data sets used for testing.  

Data set name Length of data 
   (hours) 

Number of 
mice 

Time of day Percentage of 
sleep and wake 

Data set #1 5 hours 1 Day time 55% sleep, 46% 

wake 

Data set #2 4 hours 1 Day time 56% sleep, 44% 

wake 
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Along with each of these data sets collected from the piezo sensor, each data set 

had its own research assistant doing a human scoring of the observed state of the mouse 

as either wake or sleep.  

 The human scoring was done via a LabVIEW script which was connected to a 

Function Generator via a GPIB interface. This script had different buttons for the sleep 

and wake states. Thus when one of the buttons in the LabVIEW script was pressed it 

would send a signal to the Function Generator which in turn gave out a DC signal. Each 

button had a different DC level assigned to it. So when the human observed a sleep or 

wake state in the mouse he would click on the respective button and get a certain DC 

level out of the function generator. This DC signal from the Function Generator was read 

into the A/D converter along with the signal from the piezo sensor. The state when the 

mouse was laying down on the piezo sensor and had its eyes closed was determined by 

the human as a sleep state. The wake states were when the mouse was walking, 

grooming, climbing the cage or standing still.  

 It should be noted that during the classification process this human scoring is used 

for the training of the classifiers (this will be discussed in more depth in the following 

sections). Thus there is a correlation between the performance of the classifiers and the 

human scoring. But this also turns out to be a limitation on the classification 

performances. For instance the human scoring may not be accurate for short sleep or 

wake bouts as a human likely would not record a sleep or wake state unless it persisted 

for at least 4 or 5 seconds or more.      

 

6.3 The linear classifier 

For this application the classify function in Matlab was used to design and test the 

linear classifier for sets of computed features. This is a supervised classification method 

that first trains the classifier with known sleep and wake features, and then tests it with a 

different feature set.  
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6.3.1 Design and testing of the linear classifier 

Each of the two data sets were divided into 8 second data segments and 23 features 

extracted from each data segment using a moving window (as was discussed in section 

3.2).  This meant that each of the 23 features that were extracted was a vector, with each 

element in the vector containing the value of that feature for a single 8 second data 

segment.  From these feature vectors 25% of the segments were randomly selected to 

train the classifier (compute the weights) and 25% of the segments were randomly 

selected to test the classifier performance. The segments were randomly selected for 

training and testing using a random number generator such that there were no data in 

common between the training and testing sets. The misclassification rate for the trained 

classifier was determined by the performance on the independent test features.  A 

bootstrapping procedure was used where the training and testing features were randomly 

selected 40 times from the entire feature set to yield 40 performance estimates from 

which the mean and standard deviations were computed.  

 

6.4 Individual performance of features 

 Now the question arises as to which features perform the best. To figure this out a 

test was done on each feature individually. One feature at a time was run through the 

classifier and the error rates recorded (one feature was used for the training and the same 

feature was used for testing of the classifier). This testing was done on the two data sets 

listed above in Table 6.1.  

 Various data segment sizes and various values for the Kaiser tapering windows β  

parameter were also tested for each feature to see which combination would give the 

lowest errors. Thisβ  parameter controlled the main-lobe width and the side-lobe 

attenuation of the Kaiser window in the frequency domain, and thus controlled the 

frequency resolution and the spectral leakage that the window allowed. The length of the 

Kaiser window was the same as the data segment size [1].  

 The following sections describe the tests on these two data sets and show the best 

performing features in a table format. The summary on individual feature testing that 

follows (section 6.4.5) will discuss the performance of the features. The errors are also 
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plotted in a bar chart format for clarity. The features were tested for data segment sizes of 

2, 4, 6 and 8 seconds and β  values of 0, 2, 4 and 6. 

 

6.4.1 Individual feature test #1  

 Table 6.2 below gives the lowest error rates for Data set #1 which had 5 hours of 

data. For this test the feature sequences were not median filtered. This was so that we can 

get an idea of how robust these features are without the median filtering. Column three 

shows the best performing data segment sizes and column fours shows the best 

performing Kaiser Window β parameters for that feature. Column five shows the 

minimum error achievable with only that one feature used for classification. The features 

are arranged from the best performing to the worst performing. Figure 6.1 also shows the 

errors in the form of a bar chart. The 95% confidence intervals are also given along with 

the errors.   

 As can be observed from Table 6.2 and Figure 6.1 the CA parameters did not 

seem to perform too well without the median filtering with 8 of the 9 CA features having 

errors above 25 %.  Whereas 4 of the 9 SP features and 3 of the 5 AC features gave error 

rates less than 25%. The features that gave less than 25% errors are highlighted in bold.   

 It should be noted that the majority of the features that performed the best were 

the features that measured the magnitude of the maximum peak in the PS, CA and AC. 

So it is clear that the best information for the classifier comes from the magnitude of the 

peaks in the PS, CA and AC.  
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Table 6.2 Individual performance of features for data set #1 (without median filtering).  

Feature 
Number 

Feature Name Data Segment 
Size (sec) 

Kaiser Window 
β  Parameter  

Minimum Error 

15 Sp.sm 4,6,8 all 14  .304 % ±

10 Sp.enrg 8  all 16  .259 % ±

17 Sp.smt 6,8  all 17  .277 % ±

20 Ac.sm 2  all 19  .391 % ±

7 Ca.sm 8  all 21  .359 % ±

23 Ac.perlike 6,8  all 22  .336 % ±

22 Ac.smt 2   all 24  .358 % ±

12 Sp.yintc 4,6,8  0,2 24  .410 % ±

9 Ca.smt 8  all 25  .336 % ±

13 Sp.mdband 6,8  0,2,4 26  .333 % ±

8 Ca.spt 6,8  all 27  .322 % ±

16 Sp.spt 6,8  all 28  .357 % ±

2 Ca.yintc 8  all 28  .438 % ±

3 Ca.mdband 8  all 29  .460 % ±

5 Ca.lfp 8  all 29  .366 % ±

11 Sp.slope 8 all 30  .394 % ±

18 Sp.perlike 2  2,4,6 30  .383 % ±

1 Ca.slope 8  all 32  .369 % ±

4 Ca.perlike 4  0 32  .296 % ±

6 Ca.sp 2  0,2,4 35  .471 % ±

14 Sp.sp 2  all 36  .504 % ±

19 Ac.sp 6,8  all 39  .465 % ±

21 Ac.spt 6, 8 all 46  .492 % ±
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 Figure 6.1 Bar plot of classification errors from table 6.2  

 

6.4.2 Individual feature test #2 

 Table 6.3 below is the performance of the features individually for the same data 

set #1, but with the median filtering done on the features. The error rates show a 

markedly decrease with the median filtering.  It should be noted that the GS features also 

showed a big improvement and had error rates almost as good as the SP and AC features. 

Most of the GS features showed error rates less than 20% .The features that produced less 

than 20% error are shown in bold. The features are arranged from best performing to 

worst performing. Figure 6.2 also shows the errors in a bar chart format.  
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Table 6.3 Individual performance of features for Data set #1 (with median filtering).  

Feature 
Number 

Feature Name Data Segment 
Size (sec) 

Kaiser Window 
β  Parameter  

Minimum Error 

15 Sp.sm all  all 8  .230 % ±

10 Sp.enrg all  all 10  .233 % ±

17 Sp.smt all  all 10  .214 % ±

20 Ac.sm 4,6  all 10  .262 % ±

7 Ca.sm 8  4,6 11  .231 % ±

18 Sp.perlike 2  2,4,6 14  .214 % ±

9 Ca.smt 6,8  4,6 15  .236 % ±

8 Ca.spt 2 4,6 15  .288 % ±

22 Ac.smt 4,6 all 15  .212 % ±

12 Sp.yintc 4,6,8  all 16  .360 % ±

23 Ac.perlike 6,8  all 16  .320 % ±

4 Ca.perlike 2  0,2 16  .325 % ±

2 Ca.yintc 6,8  all 18  .281 % ±

3 Ca.mdband 6,8  all 18  .276 % ±

5 Ca.lfp 8  4,6 19  .325 % ±

16 Sp.spt W=2,4,6 all 21  .410 % ±

1 Ca.slope 8  all 21  .376 % ±

13 Sp.mdband any  all 21  .307 % ±

6 Ca.sp 2  0,2,4 25  .402 % ±

11 Sp.slope 6,8 all 25  .366 % ±

14 Sp.sp 2  all 28  .405 % ±

19 Ac.sp all  all 35  .357 % ±

21 Ac.spt 6,8  all 39  .419 % ±

 

 

 47



 
 Figure 6.2 Bar plot of classification errors from table 6.2 

 

 GS features such as 2, 3, 4, 5 and 7, 8, 9 show an error percentage less than 20%. 

The SP features 10, 12, 15 and 17 as well as the AC features 20, 22 and 23 give less than 

20% error. The minimum error achievable for this data set with just one feature was with 

the Sp.sm feature which gave 8% error. 

 It should also be noted that most of the features that performed well gave their 

best performance for larger data segment sizes such as 6 or 8 seconds and smaller Kaiser 

window β  parameters such as 4 or 6. The reason for this will be discussed later.  

 

6.4.3 Individual feature test #3 

 This test was for a Data set #2 described in Table 6.1. Here again the features 

were run individually and the errors recorded. No median filtering was performed on 

these sequences of features. Table 6.4 shows the best performing window sizes, Kaiser 

window β  parameters and the minimum errors. The features are arranged from best 

performing to worst performing and the features that gave less than 25% error are 

highlighted in bold. Figure 6.3 shows the errors in a bar chart format.  
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Table 6.4 Individual performance of features for Data set #2 (without median filtering). 

Feature 
Number 

Feature Name Data Segment 
Size (sec) 

Kaiser Window 
β  Parameter  

Minimum Error 

15 Sp.sm all  all 19  .303 % ±

10 Sp.enrg 8  all 21  .396 % ±

17 Sp.smt 6,8  all 21  .335 % ±

20 Ac.sm all  all 21  .409 % ±

22 Ac.smt all  all 22  .395 % ±

16 Sp.spt 6,8  4,6 23  .463 % ±

12 Sp.yintc 6,8  4,6 23  .393 % ±

7 Ca.sm 6,8  all 27  .378 % ±

13 Sp.mdband 6,8  all 27  .418 % ±

9 Ca.smt 6,8  all 29  .391 % ±

2 Ca.yintc 6,8  4,6 30  .419 % ±

18 Sp.perlike 2  2,4 30   .505 % ±

11 Sp.slope 6,8 4,6 30  .404 % ±

23 Ac.perlike all all 31  .427 % ±

19 Ac.sp all  all 31  .470 % ±

3 Ca.mdband 6,8  all 32  .461% ±

4 Ca.perlike 2,4  0,2,4 34  .525 % ±

5 Ca.lfp 6,8  4,6 34  .430 % ±

6 Ca.sp 6,8  all 35  .623 % ±

14 Sp.sp 6,8  all 35  .477 % ±

21 Ac.spt all  all 35  .418 % ±

1 Ca.slope 6,8  4,6 38  .463 % ±

8 Ca.spt 6,8  all 38  .502 % ±
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 Figure 6.3 Bar plot of classification errors from table 6.3 

 

The results are very similar to the results from individual feature test #1 in that the 

CA features did not seem to perform as well as the SP and AC without the median 

filtering. All the CA features showed error rates above 25 %. Just like for individual 

feature test #1, the features that gave the best information to the classifier were the 

features that measured the magnitude of the maximum peaks in the PS, CA and AC.  

 

6.4.4 Individual feature test #4 

 This test was for the same Data set #2 but with the median filtering done on the 

features. The performance of the features and the error rates are shown in table 6.5 and 

figure 6.4 below. The results for this data set was very similar to that from individual 

features test #2 in that almost the same median filtered features from Data set #1 seemed 

to perform well for Data set #2  after the median filtering. The CA features also showed 

considerable improvement from non median filtered CA features. The features that gave 

less than 20% error are highlighted in bold and they are arranged from best performing to 

worst performing.  
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 Here again the best performance for the features was for a larger data segment 

size and smaller Kaiser window β parameters.  

 

Table 6.5 Individual performance of features for data set #2 (with median filtering). 

Feature 
Number 

Feature Name Data Segment 
Size (sec) 

Kaiser Window 
β  Parameter  

Minimum Error 

15 Sp.sm all  all 13  .269 % ±

20 Ac.sm all  all 13  .335 % ±

16 Sp.spt 6,8  all 14  .325 % ±

7 Ca.sm 6  4,6 16  .282 % ±

10 Sp.enrg 8  all 16  .395 % ±

2 Ca.yintc 6,8  4,6 16  .426 % ±

12 Sp.yintc 6,8  0,2,4 16  .332 % ±

18 Sp.perlike 4,6  all 16  .337 % ±

22 Ac.smt 6,8  all 16  .330 % ±

17 Sp.smt 6  all 17  .284 % ±

9 Ca.smt 6  4,6 17  .366 % ±

13 Sp.mdband any  all 20  .403 % ±

3 Ca.mdband 6  4,6 20  .430 % ±

4 Ca.perlike 6  2 21  .430 % ±

11 Sp.slope 8 all 23  .465 % ±

5 Ca.lfp 8  4,6 23  .400 % ±

14 Sp.sp 6,8  2,4 25  .475 % ±

6 Ca.sp 6  0,2,4 26   .299 % ±

19 Ac.sp 6,8  all 27  .469% ±

21 Ac.spt 2,4  all 27  .407 % ±

23 Ac.perlike 6,8 all 28  .343 % ±

1 Ca.slope 6,8  4,6 30  .452 % ±

8 Ca.spt 8 4,6 30  .512 % ±
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 Figure 6.4 Bar plot of errors from Table 6.4 

 

6.4.5 Summary of individual feature testing 

 The results from the testing of the individual features on the two data sets showed 

the features performing pretty much the same for both data sets. The CA parameters did 

not perform well without the median filtering but performed almost on the same level as 

the PS and AC features with the median filtering. What can be deduced from this is that 

the CA features were not as robust as first thought compared to the PS and AC features. 

The CA features seemed to have a lot of transients and outliers which were eventually 

smoothed out by the median filtering. These transients in the features probably occur due 

to the analysis window falling on a sleep segment similar to what was discussed in 

section 3.4.7 where there is a sharp spike like transient or transients in the data in which 

case the features will reflect a wake state for the data segment even though the data 

segment was mostly sleep. If a data segment such as this is preceded and followed by 

purely sleep data segments then the transients in the features are created. The CA seemed 

to be influenced more by this than the SP. The reason for this is likely that the CA is 
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more sensitive to detecting transients or spike-like signals in the data, and in the case of 

weak harmonics, the transients dominated the CA. 

 The fact that there was a pre-processing and processing of the data done can be 

another factor why the PS features performed so well. The detrending of the data would 

have taken out any non-stationarities due to level shift or ramp-like transitions in the data 

that would have obscured the low-frequency features, thus making it more stable.     

Also of interest from these tests was the data segment size and Kaiser window β  

parameter. The best performances occurred for larger segment sizes such as 6 and 8 

seconds and smaller β  parameter values such as 4 and 6. A larger Kaiser window in the 

time domain (the Kaiser window size is the same as the data segment size) and a smaller 

β value implies a broader tapering window in the time domain corresponding to narrower 

main-lobe window that is convolved with the spectrum in the frequency domain. This 

narrower window will results in better resolution in the frequency domain and resolves 

the frequency components a lot better, thus giving better results for the PS and CA 

features. As an example Figure 6.5 and Figure 6.6 below shows an 8 second long Kaiser 

window with β values of 4 and 8 in both the time domain and frequency domain.  

  
 Figure 6.5  Kaiser window which is 8 seconds long with β value of 4.  
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 Figure 6.6 Kaiser window which is 8 seconds long with β value of 8 

 

As these figures show a Kaiser window with β = 4 has a narrower main-lobe, but higher 

side-lobes than the window with β = 8 which has a wider main-lobe, but lower side-

lobes. The higher side-lobes for β =4 implies slightly more spectral leakage, but in this 

application it did not seem to matter too much. It appears that the better resolution from a 

narrower main lobe was more critical. The fact that β =4 gave a narrower main-lobe in 

the frequency domain seemed to have a larger impact. So for this application a data 

segment size and Kaiser window size of 8 seconds and β =4 were chosen.   

 

6.5 Performance of multiple features 

Instead of running features individually, running them in combinations can reduce 

the error rates even more. The reason for this is that additional features can provide 

additional information to the classifier than just one feature. But then again adding extra 

features can also degrade classification performance and actually introduce more errors, 

especially if the feature has a high variance and it is estimated from a small a data 

segment or used to train the classifier with a small data set. For instance suppose three 

features are being used for classification and later two new features are added and the 

errors recorded. Although no features have been deleted, and new information has been 

added, this may actually yield worse results on the new, more complete set of features 

than on the original smaller set. The reason is likely that the new features have a high 
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noise content and that slows down the convergence of the classifier weights in the 

training sequence. Here the classifier performs particularly well with relatively low 

variance and highly predictive features, but degrades when noisy features are included. In 

addition if the noisy features primarily contain redundant information, a lower 

performance can be expected since the redundant features will only bring noise into the 

classifier and not add any new information. So it is important that the features are 

selected so that they give complementary information to the classifier, but without adding 

noise or adding redundancy.   

The following sections describe some tests that were done to test combinations of 

multiple features. The tests were done on the same Data sets #1 and #2 discussed earlier. 

But instead of running the features individually, combinations of 5 features at a time were 

run through the classifier. The classifier was trained with 5 training features and then 

tested with the same 5 features and the errors recorded.  

But not all the features were considered for these combinations tests. Only 10 out of 

the 23 were chosen. The features selected were only the ones that performed well for the 

individual testing of the processed (median filtered) features.  Features that gave high 

error rates in the individual median filtered feature testing were thrown out. This limits 

the possibility of adding noisy features to the classifier.  

The features also had to give additional new information. For example both the 

Sm.sm and Sm.smt features were not considered together even though one gave 

information from 1.5-4.5Hz and the other 0.5-8Hz. But they both had very similar error 

rates and performed almost the same which meant that the maximum peak in the 1.5-

4.5Hz was also the maximum peak in the 0.5-8Hz range. So the Sm.smt feature did not 

give any additional new information over the Sm.sm feature. Hence only the best 

individually performing feature from these two were chosen. This same selection 

procedure was used for the Ca.smt/Ca.sm, Ca.spt/Ca.sp, Sp.spt/Sp.sp and the 

Ac.sm/Ac.smt features as well. Table 6.6 below gives the 10 best features that were 

chosen. 
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Table 6.6 Features chosen for combination testing.  

No.  Feature name Description 

2 Ca.yintc Y-intercept of least squares line fit to CA 

4 Ca.perlike Periodic likelihood of CA 

7 Ca.sm Magnitude of maximum peak in 1.5-4.5Hz range of the CA 

8 Ca.spt Position of maximum peak in 0.5-8Hz range of the CA 

10 Sp.enrg Energy in PS 

12 Sp.yintc Y-intercept of least squares line fit to PS 

15 Sp.sm Magnitude of maximum peak in 1.5-4.5Hz range of the PS 

16 Sp.spt Position of maximum peak in 0.5-8Hz range of the PS 

18 Sp.perlike Periodic likelihood of PS 

20 Ac.sm Magnitude of maximum peak in 1.5-4.5Hz range of the AC 

 

 

6.5.1 Combinations of features test #1 

 This test was done on the Data set #1 mentioned earlier. Median filtering was 

done on the features before classification. The 10 features listed above were taken in 

different combinations of 5 (this would mean 252 different combinations) and run 

through the linear classifier along with the human scored training features. The error from 

the classifier for each combination was recorded.  

 From individual feature test #2 (section 6.4.2 and table 6.3) it was clear that the 

Sp.sm feature alone gave an error of around 8% for this data set. So when running the 

features in combinations a better error rate should be achieved. And indeed this was the 

case as a minimum error rate of 4% was achievable with the combinations.  

But now the question rises as to which of these 10 features when taken in 

combinations would give the lowest error rates. To test this, first all the combinations that 

gave less than 6% error were chosen after which a scoring was done to see how often the 

individual features occurred in these combinations. This test gave a good indication of 

what features were working well in combinations. Figure 6.7 below gives the result of 
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this test. It shows how often each of the 10 features occurred in the combinations that 

gave less than 6% error.  

  From the results the features Ca.yintc, Sp.enrg and Sp.sm seem to stand 

out and are more recurrent in the combinations. From the figure it is clear that features 

Sp.enrg and Sp.sm occur in 100% of the combinations and feature Ca.yintc occurs in 

about 55% of the combinations. These features are the Ca.yintc which is the Y-intercept 

of the CA, Sp.enrg which is the energy of the PS and the Sp.sm which is the spectral 

magnitude in the 1.5-4.5 Hz range. The rest of the features seem to perform about the 

same.   

 
 Figure 6.7 - Features that perform best in combinations for Data set #1 

  

 

6.5.2 Combinations of features test #2 

 This test was the same as the previous one but for Data set #2. Median filtering 

was done on the features and the same 10 features were run through the classifier in 

combinations.  

 From individual feature test #4 (section 6.4.4 and table 6.5) it should be observed 

that the Sp.sm and the Ac.sm features alone gave about 13% error. With the 
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combinations the minimum error achievable for this data set was 9 % which is still an 

improvement from using just one feature. The same test was then done to see how often 

the individual features appeared in the combinations (all combinations that gave less than 

11% error were chosen and a scoring done to see how often the individual features 

occurred in the combinations).  Figure 6.8 below gives the results.  

 

 
Figure 6.8 - Features that perform best in combinations for Data set #2 using the 

linear classifier 

   

  The features that performed best for this data set were slightly different. 

But just as in the previous test features Sp.enrg and Sp.sm performed well with each of 

them occurring in more than 60% of the combinations. In addition features Sp.spt and 

Ac.sm also performed well with Sp.spt occurring in 80% of the combinations and Ac.sm 

occurring in 55% of the combinations. The rest of the features did not stand out and 

seemed to perform about the same. 
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6.5.3 Summary of feature combination tests 

 From these two tests it is clear that features 10 and 15 (Sp.enrg and Sp.sm) 

performed the best and seems to give the best information to the classifier. In addition to 

this there were three other features 2, 16 and 20 (Ca.yintc, Sp.spt and Ac.sm) that 

seemed to perform well. All these 5 features measured different aspects of the stochastic 

data and thus added extra information without adding redundancy and noise to the 

classifier and thus worked the best for classification between sleep and wake. But if these 

five features fail to properly differentiate between sleep and wake then any of the other 

features can be added to the classification process. But these five features seem to suffice 

and the addition of an extra feature unnecessary.  

 

6.6 Calculation of feature weights based on Fisher Discriminant 

The classify function that was used in the previous section to select the best features 

does not provide the weights that must be applied to a test data set so that the data can be 

weighted as either sleep or wake. Instead the Fisher Discriminant was used to calculate 

the weights (the classify function uses the same method for its linear classification even 

though it does not actually give these weights). The Fisher Discriminant weights were 

calculated by using two sets of sleep and wake features already classified as sleep and 

wake using the human scoring. These features are used to decide how the features ought 

to be weighted in order to separate the sleep and wake classes. If the two training feature 

sets are D1 (sleep) and D2 (wake) then the definition of the weights (W) from the Fisher 

Discriminant is as follows: 

)( 21
1 μμ −Σ= −W                              (6.1) 

where Σ  is the sum of the covariance matrices of the D1 and D2 feature sets 

(covariance(D1) + covariance(D2)), 1μ is the mean of the D1 feature set and 2μ is the 

mean of the D2 feature set.  

The Fisher Discriminant weights should give a larger weighting to the features 

that give a substantial contribution in the discrimination process. To test which features 

are weighted larger and which features are weighted lower, the Fisher Discriminant 

weights were calculated for the ten best features listed in table 6.6. They were calculated 
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for both data sets, Data set #1 and Data set #2. The weights for Data set #1 are shown 

below in Figure 6.9. 

 

 
 Figure 6.9 Weight for features in Table 6.5 for data set #1 

 

For this data set it is clear that the largest weights were for features 2, 7, 8, 15 and 20 

(Ca.yintc, Ca.sm, Ca.spt, Sp.sm and Ac.sm). It should also be noted that all of these five 

features performed well when tested individually (see Table 6.3), with each feature 

giving less than 15 % error. Features such as 4, 12, 16, and 18 gave errors greater than 

15% in the individual testing and thus were weighted smaller (see Table 6.3).  

Figure 6.10 below shows the weights for Data set #2. For this data set features 15, 

16 and 20 (Sp.sm, Sp.spt and Ac.sm) seem to be weighted more than the others. This is 

again consistent with the individual feature tests that were done for this data set (See 

Table 6.5). In fact these are the only three features that gave less than 15 % error for the 

individual feature test. So just as for Data set #1 the Fisher Discriminant weights are 

consistent in that they weigh the best performing features more than the rest. This also 

confirms that the tests done to select the best features using the classify function were 

consistent with other results using these features.  
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Figure 6.10 Weight for features in Table 6.5 for data set #2 

 

 The weights for the five best performing features (Ca.yintc, Sp.enrg, Sp.sm, 

Sp.spt and Ac.sm) were also calculated and they are given in Table 6.7 below. These 

Fisher Discriminant weights were consistent for both Data set #1 and Data set #2 and 

thus can be used for weighting the features of any data set.  

 

Table 6.7 – Five best features and their associated weights. 

Feature Number Feature Fisher Discriminant Weights 

2 Ca.yintc 0.3177 

10 Sp.enrg -0.0026 

15 Sp.sm 1.0341 

16 Sp.spt -0.0638 

20 Ac.sm -1.4242 

 

 

6.7 Computation of threshold for differentiating sleep and wake 

Once the weights were calculated the same training sleep and wake features are then 

used again to obtain a threshold that will efficiently separate sleep from wake. First the 

sleep and wake features are weighted by the five weights shown above in table 6.7. Then 

512 thresholds are computed between the maximum and minimum of these weighted 
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sleep and wake features. After which the probability of detection  and the probability 

of false alarm  are calculated from the weighted sleep and wake features for each of 

these 512 thresholds. The optimum threshold was then chosen such that there was an 

equal probability of and . The optimum threshold was calculated as around -3.1 

for both data sets.  Figure 6.11 below shows the plots for Data set #1 and Data set #2 with 

the weighted features and the optimum threshold of -3.1. Sleep states will be above the 

threshold and wake states below the threshold.  

dP

faP

)( dP )( faP

 
(a) (b) 

Figure 6.11 – (a) Weighted features and threshold for data set #1 (b) Weighted 

features and threshold for data set #2.  

 

6.8 Misclassification error rates versus amount of sleep and wake in data 

The error that we see from the classifier is due to a misclassification, the classifier is 

presented a case and it classifies the case incorrectly. In this application the 

misclassification can be caused by either sleep being misclassified as wake or by wake 

being misclassified as sleep. To see which case gave the higher errors a test was done. 

Dataset #1 and Dataset #2 were each divided into three 1 hour segments and then each 

segment at a time was run through the linear classifier and the error rates recorded. The 

percentage of sleep and wake in each segment was also recorded. The features used for 

the classification were the 5 best performing features described in section 6.5.3. They 

were also median filtered before they were run through the classifier. Table 6.8 and Table 
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6.9 below show the amount sleep and wake for each segment and also the error rates for 

each segment.  

Table 6.8 - Percentage of sleep and wake for each hour and respective error rates for Data 

set #1.   

    Hour  Amount of sleep (%) Amount of wake (%) Error (%) 

Hour 1  47 % 53 % 2.4 % 

Hour 2 35 % 65 % 10.6 % 

Hour 3 57 %  43 % 4.7 % 

 

Table 6.9- Percentage of sleep and wake for each hour and respective error rates for Data 

set #2. 

    Hour  Amount of sleep (%) Amount of wake (%) Error (%) 

Hour 1  50 % 50 % 9.8 % 

Hour 2 72 % 28 % 1.8  % 

Hour 3 56 %  44 % 10.5 % 

 

 

From the results above what stands out is hour 2 of data from Data set #1 and Data set 

#2. Hour 2 in Data set #1 has around 2/3 of wake and about 1/3 of sleep resulting in a 

higher error rate than the other two hours. Hour 2 in Data set #2 has around 1/3 wake and 

around 2/3 of sleep and resulting in a very low error rate. So it seems like the more wake 

states there is in the data the more misclassification and errors from the classifier. Hence 

it can be deduced from this that for this application the misclassification occurs mainly 

due to wake being misclassified as sleep and not vice versa.  

 

6.9 Comparison of Linear Classifier with Neural Network Classifier 

A comparison was done between the performance of the Linear Classifier and a 

Neural Network classifier. The Neural Network classifier was implemented with a two 

layer feedforward network with 20 neurons in the first layer and 1 neuron in the second 

layer. All neurons use a hyperbolic tangent sigmoid transfer function and a bias weight. 

The desired output is set to +1 if the input features correspond to sleep and -1 if it 
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corresponds to wake. The neural network was trained and tested in the same way as the 

linear classifier (described in section 6.2) with 25% of the features used for training and 

25% used for testing with no overlap of the features.  

Just as for the linear classifier the individual feature tests were done for the Neural 

Network classifier as well. It turned out that the best performing individual features were 

the same as for the linear classifier. Hence the 10 best features were the same as the ones 

chosen with the linear classifier (see Table 6.6).  

Tests for the performance of multiple features were also done for the Neural 

Network. The tests were the same as the combinations of features tests done for the linear 

classifier described in sections 6.5.1 and 6.5.2 (the 10 best features were taken in 

different combinations of 5).  

Figure 6.12 below gives the features that performed the best in combinations for the 

Neural Network classifier for Data set #1. Just as for the linear classifier the Sp.enrg and 

the Sp.sm features performed the best in combinations for this data set. In addition the 

Ca.sm feature also performed well.  

 
Figure 6.12 - Features that perform best in combinations for Data set #1 using the Neural 

Network classifier. 
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Figure 6.13 below gives the features that performed the best in combinations for the 

Neural Network classifier for Data set #2. Just as for the linear classifier the Sp.sm, 

Sp.spt and Ac.sm features performed the best in combinations for this data set. In 

addition the Ca.sm and Ca.spt features also performed well.    

 
Figure 6.13 - Features that perform best in combinations for Data set #2 using the Neural 

Network classifier. 

 

From these two tests for the Neural Network classifier, it is clear that the best 

performing feature for both data sets was the Sp.sm feature. In addition to this the 

Ca.sm, Sp.enrg, Sp.spt and the Ac.sm features also performed well. These 5 features 

can be used to do any future classification between sleep and wake states when a Neural 

Network classifier is used.   

Table 6.10 below shows the minimum error rates achievable with a combination of 

the 5 best features for both the linear and Neural Network classifier for Data set #1 and 

Data set #2. The 5 best features used for the linear classifier was the Ca.yintc, Sp.enrg, 

Sp.sm, Sp.spt and Ac.sm features and the 5 best features used for the Neural Network 

were Ca.sm, Sp.enrg, Sp.sm, Sp.spt and Ac.sm.  
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Table 6.10 – Error rates for Data set #1 and Data set #2 for linear and Neural Network 

classifiers 

Data set Minimum error rate from 
linear classifier 

Minimum error rate from 
Neural Network classifier 

Data set #1 4% 6% 

Data set #2 9% 12%  
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Chapter 7 

Conclusions and future work  
 

7.1 Conclusions and future work for sensor system 

 The designing of the amplifier for reading the piezoelectric signals was 

successful. Even though the ideal response could not be achieved the response in the 

frequencies of interest was adequate for generating data for this first study in testing sleep 

and wake state classification.  But there are a few problems that exist with this amplifier 

that can be corrected for future versions of the amplifier.  

 

1) The signal from the piezo film was very sensitive to how much contact area the mouse 

has on the sensor.  

2)  In some instances the amplifier tended to saturate for 5-10 seconds. Especially when         

the mouse was in an active state. 

 

For a future version of the circuit a parallel capacitance can be placed between the 

piezofilm and the R1 resistances of the differential op amp. This will increase the 

capacitance seen by the differential op amp and also reduce the cutoff of the highpass 

filter created by the piezofilm and the R1 resistances of the differential op amp. The extra 

capacitance will also decrease the sensitivity of the signal to changes in the capacitance 

of the piezofilm sensor, since this capacitance changes depending on how much contact 

area the mouse has with the sensor. 

Another addition to this amplifier can be the implementing of a voltage trimmer in 

the differential op amp using the voltage trimming connections available in the op amp. 

This can be used to control the offset or drift that sometimes occurs in the data.  The 

current system has no such control, and in some severe cases caused the amplifier to 

saturate for long periods of time.   

 

7.2 Conclusions and future work for classifier.  

The extracted features and classifier also worked well for the classification of the 

data into sleep and wake states. Of the features the PS features seemed to perform the 
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best, even though at first it was assumed that the CA would perform better due to its 

ability to characterize non-stationarities, such as transients (from gross movements or 

transitions between states), and cyclostationarities from the envelope of the respiration 

motion. The reasons why the PS outperformed the CA are likely to be due to the 

detrending of the data and the removal of the linear trend from the DFT values which 

would have taken out any non-stationarities due to ramp-like transitions or level shift in 

the data that would have obscured the low-frequency features, thus making it more stable 

and stationary. Another reason for this is likely that the CA is more sensitive to detecting 

transients or spike-like signals in the data, and in the case of weak harmonics, the 

transients dominated the CA. 

 It should be noted that this work concentrated only on a distinction between sleep 

and wake. But in the future further analysis can be done to try and differentiate sleep into 

REM and non-REM sleep or other stages in sleep. During this study the breathing rates 

during sleep seem to vary between 2.5-3.5 Hz. These breathing rates may be related to 

the different sleep stages the mice are in and will need to be researched further if 

distinctions between different sleep stages are to be found.  

 The linear classifier gave error rates as low as 4% and 9% for the two data sets, 

while the Neural Network classifier gave error rates around 6% and 12% for these two 

data sets. But a limitation of this study is that the “truth” that the classifiers performance 

was scored against was based on human observation. The human observation would not 

account for very short segments of sleep and wake as it is likely that the human would 

not record sleep and wake states unless they lasted for more then 4 or 5 seconds. Thus 

even though the features extracted from the data using the algorithms will record sleep 

and wake in these short segments, the human scoring likely will not. This can lead to 

higher misclassification error rates as was observed with the individual feature tests 

without the median filtering. But the median filtering of the features in a way helped in 

smoothing of these very short sleep and wake recordings in the extracted features and 

made the comparison of the features and the human scoring more even.  

The results that were discussed in this thesis were for around 4 hours of data or more. 

Even for larger time durations such as 24 hours or more the error rates will be determined 

by the amount of wake there was in the data (as was discussed in section 6.8).  If there 
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was more wake in the 24 hours that the data was recorded, a higher error rate can be 

expected. The same holds true for shorter time durations such as 10-15 minutes.  

All in all this system was successful in classifying sleep and wake states in mice and 

will allow the analysis of a large number of mice. It will also take less time and be more 

cost efficient than methods such as EEG, EMG and EOG.   
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