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Abstract of Thesis 

 

 

OPTIMIZING GROWTH CONDITIONS FOR CHEMICAL 

VAPOR DEPOSITION OF SINGLE-WALLED CARBON 

NANOTUBES 

 
Carbon nanotubes present enormous potential for future nanoelectronic 

applications.  This study details one method for producing such nanotubes via 

chemical vapor deposition (CVD) of methane gas at high temperatures.  This 

method represents the best known way to selectively place nanotubes, as will be 

needed for complex electronic structures.  Various growth conditions are 

manipulated and the effects on the resulting nanotubes are recorded. 
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1.0 Introduction 

 
Figure 1 - TEM image of single-wall carbon nanotubes (SWNTs) entangled with catalyst particles. 

 

 

First discovered by Sumio Iijima in 1991 [1], carbon nanotubes (CNTs) have been the 

subject of intense research in recent years.  Such nanotubes are molecules of carbon 

atoms arranged in a cylindrical fashion, often with diameters of 1 nm or less.  These 

nanotubes have remarkable mechanical and electrical properties.  Not least is their ability 

to function as nanoscale transistors and conductors [2]. 

 

Before being used as nanoscale devices, nanotubes must first be precisely located and 

contacted with electrodes.  Having such small size is an advantage for miniaturizing 

electronics, but has proven a great difficulty in application.  Hence, it is desirable to find 

ways to produce carbon nanotubes directly on a given position on a substrate. 

 

One such method is chemical vapor deposition, or CVD [3].  While bulk tubes can be 

produced using a powdered or gaseous catalyst, CVD can also grow tubes directly onto a 
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substrate, in positions determined by patterned catalyst particles.  This technique has 

great potential for opening up microelectronics to carbon nanotube devices [4]. 

 

For this project, a CVD reactor will be constructed and CVD growth of carbon nanotubes 

will be performed.  These tubes will then be examined, to determine how the various 

growth parameters affect the final output. 

 

This report will briefly discuss the known science of nanotubes, the problems involved in 

utilizing nanotubes in electronics applications, and the various means of producing 

nanotubes.  Also, one such means of production, chemical vapor deposition (CVD) is 

explored and experimental results are discussed. 
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1.1 Physical Properties of Nanotubes 

A carbon nanotube is a long, thin structure of concentric tubes of carbon atoms with a 

diameter on the nanometer scale.  Since they can reach lengths on the micron scale, and 

therefore aspect ratios in the thousands, CNTs are often treated as one-dimensional 

structures.  CNTs closely resemble another form of carbon, graphite, with a similar six-

sided crystalline structure.  Where graphite has a planar structure, CNTs appear as 

graphite wrapped into a cylinder [2]. 

 

 
Figure 2 - Various configurations of SWNTs.  (a)  Armchair, n=m (b)  Zigzag, m=0 and (c) Chiral 

[Ref 2] 

 

The simplest carbon nanotube is a single-walled nanotube (SWNT).  Consisting of a 

single carbon shell, these small structures have been recorded with diameters smaller than 

1 nm.  As seen in Figure 2, these SWNTs come in a variety of orientations.  This 

orientation is expressed in a quantity called chirality. 

 

Chirality is denoted by a 2-digit identifier, (n,m).  In this identifier, n and m are 

multipliers for the unit vectors of graphite [5].  See Figure 3.  In the example shown, a 

nanotube of chirality (5, 2) is shown as a portion cut from a graphite sheet.  In the figure, 

5*a1 + 2*a2 lattice units separate the two points A and B.  If these two points were to be 

pulled together, the resulting nanotube would have chirality (5, 2).  The vector C is the 

circumference of the resulting tube, and the vector P is parallel to the length of the tube 

[5]. 
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Figure 3 - Schematic illustration of the generation of a nanotube by folding of a section of a graphite 

sheet [Ref 5] 

 

More complex nanotubes are also possible.  Multi-walled carbon nanotubes (MWNTs) 

are structures of concentric SWNTs.  Each tube has its own chirality, so a combination of 

various types is possible [2]. 
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1.2 Electrical Properties of Nanotubes 

Based on their chirality, a nanotube can be either metallic or semiconducting.  If n=m, or 

if n-m=3i, where i=any integer, then the tube is effectively metallic. This means that it 

can conduct current regardless of whether a bias voltage is present.  Otherwise, the tube 

is semiconducting, with a band gap of Egap = 4/3 hvf/dcnt where dcnt is the tube’s diameter, 

h is Planck’s constant, and vf is the Fermi velocity.  

   

For the case of multi-wall nanotubes, each shell of the overall structure has its own 

chirality.  Thus, most multi-wall nanotubes are effectively metallic, as the probability of 

having all semiconducting component shells is low.  One metallic shell effectively 

renders the whole structure metallic [5]. 

 

By themselves, SWCNTs are inherently p-type semiconductors.  However, annealing in 

vacuum or inert gases can render them n-type [5], or even ambipolar [6].  Ambipolar 

CNTs will conduct for a strong bias voltage of either polarity. 

 

The polarity does not need to be constant for a single tube.  By passivating part of a tube, 

and annealing the whole, the passivated region can be made n-type while the balance 

remains p-type.  The resulting structure behaves as an inverter, all in a single molecule 

[7]. 

 

More complicated logic gates may also be possible.  An extremely long semiconducting 

nanotube could be selectively doped or passivated and annealed to produce regions of a 

specific polarity.  In theory, gates such as NANDs or NORs could be realized in this 

fashion.  A suggested layout for a NAND is shown in Figure 4. 
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Figure 4 (a) A suggested layout for a single-molecule SWNT NAND gate.  Red regions are polysilicon 

gates, blue regions are metal interconnects. (b) The corresponding schematic representation 

 

 

SWNTs by themselves are excellent conductors.  Metallic SWNTs have a resistance of 

just 6.5kOhm, or two units of quantum conductance, 4e2/h [8].  Here, e denotes the 

electron charge and h denotes Planck’s constant.  This opens the possibility of ballistic 

(non-scattering) transistors made from semiconducting SWNTs.  However, to be useful, 

metal contacts must be used to connect to the ends of the tube.  These contact resistances 

have proven to be rather high, as well as unpredictable [9].  Some contacting techniques 

have proven to have very low contact resistances.   

 

1.2.1 Rapid Thermal Annealing of Titanium 

One study has demonstrated that focusing an electron beam on a metal contact would 

reduce its contact resistance by a few orders of magnitude [10].  Using an electron beam 

in this fashion is impractical for large patterns of contacts.  Lee, et al achieved ohmic 

contacts of titanium and cobalt using a rapid thermal annealing (RTA) technique [9].  

Most titanium contacts on CNTs, for example, stabilized naturally at 10MΩ.  When the 
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samples were placed in a vacuum chamber and annealed at 600-800C for just 30s, the 

contact resistance dropped to 0.5 to 50 kΩ, and remained stable for several months.   

 

1.2.2 Palladium Contacts 

Such an annealing technique does, however, require an extra step to produce such low 

contact resistances.  Another group has determined that palladium contacts naturally form 

ohmic contacts with nanotubes [8], with no annealing step required.  Such devices exhibit 

overall resistance (two contacts and the tube itself) of 32kΩ.  This provides good contact 

resistances, but it is noted that palladium itself is not especially durable.  For applications 

where the contacts will be directly probed, it is best to apply an additional metal layer, 

such as titanium. 
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1.3 Electronic Applications of Nanotubes 

Work has been done to take advantage of the similarity between semiconducting SWNTs 

and conventional MOS transistors.  Such nanotube transistors are called CNTFETs, or 

carbon nanotube field-effect transistors.  Simple logic systems have been constructed 

with these CNTFETs as the active elements. 

 

Though by nature p-type, n-type SWNTs can be made by vacuum annealing.  A group in 

the Netherlands fabricated NMOS logic in such a fashion, with off-chip pull-up resistors.  

In this way, they were able to build NMOS inverters, NORs, simple memory cells, and 

ring oscillators [11]. 

 

Such devices are hampered by the fact that they utilize off-chip resistances.  A better way 

would involve on-chip resistances, or even better, CMOS logic.  Such gates have also 

been fabricated.  Taking advantage of the variable doping of a SWNT, CMOS logic can 

be realized using a single tube.  Different parts of the tube can have different polarities, 

so the same tube can be treated as both p-type and n-type.  An inverter created in such a 

way is shown below [7]. 

 

 
Figure 5 - Diagram of an inverter fabricated from a single SWNT [Ref 7] 

 

 

Nanotube-based memory devices have also been fabricated.  A team of researchers in 

Korea fashioned a non-volatile memory cell with a semiconducting SWNT as a channel.  

Similar in structure to a MOSFET, this memory cell uses a 3-layer film in place of the 
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gate oxide.  This film is composed of a Si3N4 layer sandwiched between two SiO2 layers.  

A cross-section and top view is shown below [12]. 

 

 
Figure 6 - A CNT-based memory cell, based on SONOS technology [Ref 12] 

 

 

1.4 Barriers to Widespread Adoption 

Devices such as those described above are formed in one of two ways.  First, by forming 

electrical contacts and directly placing a nanotube there using an atomic force microscope 

(AFM).  Second, by scattering nanotubes at random on a substrate and using an in-situ 

patterning method such as electron beam lithography to pattern electrodes directly on an 

individual tube. 

 

While these are useful for proof of concept experiments, they are impractical for large 

scale production of nanotube devices.  Before nanotube electronics can be made 

commercially viable, a number of problems must be solved: 

 

1. Placement – Nanotubes by the thousands or millions must each be placed in the 

correct location on a substrate. 

2. Numbers – In a given location, the selective placement technique must provide 

finite, repeatable numbers of nanotubes (perhaps exactly one nanotube). 
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3. Specificity – The correct type of nanotube (semiconducting or metallic) must be 

placed in each location.  Further, semiconducting tubes must be of a predictable 

band-gap. 

 

This report will consider the various nanotube production methods available in light of 

these problems.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © Stanton W McVay 
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2.0 Methods of Production 

2.1 Arc-Discharge Synthesis 

Arc Discharge experiments were the first known source of carbon nanotubes, and led to 

their original discovery in 1991.  This technique involves creating an arc of electrical 

current between two carbon electrodes.  The intense heat of the arc vaporizes carbon at 

the anode, and causes it to crystallize as CNTs at the cathode.  One such apparatus is 

shown below. [13] 

 
Figure 7 - Schematic representation of the electric-arc apparatus used at the University of 

Montpellier (France) [Ref 13] 

 

 

Several experimental conditions can be changed to control the qualities of the tubes 

produced.  The proportions of inert gas ambient have been shown to affect the diameter 

of the resulting tubes, as the atmosphere influences how quickly the carbon atoms recool 

after vaporization [14].  The applied voltage and resultant current, and their consistency, 

have also been shown to influence the nanotubes [15]. 

 

In addition, research has shown that single-wall nanotubes can result if the carbon anode 

is doped with metal atoms, such as Fe, Ni, or Co.  During vaporization, the carbon atoms 
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are absorbed into the metal particles and from there begin to re-crystallize as SWNTs 

[16]. 

 

Arc discharge remains a useful method for bulk production of carbon nanotubes.  

However, the exact nature of the resulting tubes is not constant.  Additionally, while 

efforts at improving selectivity are paying off, this method offers no direct means for 

manipulation of tubes. 

 

In terms of the problems of nanotube electronics, this method provides no answer to the 

problem of placement, or the problem of numbers.  Improving control of nanotube 

production, however, does hold potential for solving the problem of specificity. 

 

2.2 Laser Ablation Synthesis 

Laser ablation is similar to arc discharge, in that a carbon source is vaporized so that 

carbon atoms can reform as nanotubes.  In this method, the energy source is a laser beam 

and the carbon source is a graphite target.  The laser strikes the target, vaporizing the 

carbon which re-crystallizes and forms nanotubes [17].  A typical laser ablation apparatus 

is shown below.   

 
Figure 8 - Diagram of the laser ablation process for nanotube growth [Ref 18] 
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As with arc discharge, SWNTs can result if the carbon target is doped with metals such 

as Co, Fe, Ni, or Y.  The resulting soot is composed of SWNTs, plus some MWNTs, 

carbon fibers, and/or amorphous carbon [19].   

 

Like the arc-discharge method, this method provides no answer to the problem of 

placement, or the problem of numbers.  There has been promising work done, however, 

in producing specific types of nanotubes, with potential for solving the problem of 

specificity. 
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2.3 Techniques for Selective Placement 

Arc-discharge and laser ablation synthesis are similar in that they provide bulk 

nanotubes.  To be useful in large-scale electronic applications, a way must be found to 

selectively place nanotubes on a substrate.  Some groups have suggested ways to place 

nanotubes formed by bulk production methods.  In conjunction with methods like arc-

discharge and laser ablation, these techniques suggest solutions to the problem of 

placement. 

 

2.3.1 AC Electric Field Alignment 

Krupke, et al has shown that metallic nanotubes can be aligned between metal electrodes 

using AC electric fields [20].  This phenomenon occurs because of the difference in 

dielectric constants of semiconducting and metallic tubes.  Semiconducting tubes have a 

dielectric constant less than 5.  Metallic tubes, on the other hand, have extremely large 

dielectric constants. 

 

By suspending a mixture of the two tube types in a solvent of a dielectric constant 

between the two extremes and applying an AC electric field, the semiconducting tubes 

are repelled while metallic tubes are attracted.  This could allow metallic tubes to be 

placed in a desired location, to create a low-resistance bridge between two points.   

 

This technique does not, however, work well for large-scale separation of metallic and 

semiconducting tubes.  The actual number of metallic tubes removed from solution is 

small, so this method is lacking as a means to purify semiconducting tubes. 

 

 

2.3.2 Surface Functionalization with Polar Groups 

Collaboration between American and Korean research groups has produced a novel 

method of selective placement of nanotubes [21].  In this method, chains of organic 

molecules are used to pattern the surface.  Polar chemical groups, such as amino or 
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carboxyl, placed on a substrate tend to attract nanotubes in solution.  Conversely, non-

polar groups, such as methyl, have been shown to repel nanotubes. 

 

It has also been shown that once a single nanotube has attached itself to a polar region, it 

has a repelling effect on other tubes.  Thus, it appears that this method also has potential 

to ensure exactly one nanotube in a given location.  At publication, over 70% of such 

regions in experiments had just one nanotube in each polar location. 
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2.4 Chemical Vapor Deposition 

In essence, Chemical Vapor Deposition (CVD) of carbon nanotubes is the decomposition 

of hydrocarbon gases such as methane or ethylene [24].  A catalyst in powder form [23] 

or spread on a substrate [22] is placed inside a furnace.  The furnace is heated and the 

hydrocarbon gases (called feedstock) are introduced.  When the feedstock enters the 

heated furnace, it decomposes in the presence of catalyst into hydrogen gas and free 

carbon atoms.  The hydrogen flows out of the furnace along with most of the carbon 

atoms, but some carbon atoms coalesce on the furnace walls or on the catalyst.   

 

Carbon that reaches the catalyst is absorbed into the metal particles.  When these particles 

become saturated with carbon, the carbon begins to crystallize.  As more carbon becomes 

available, this crystal lengthens into a carbon nanotube.  It has been shown that the 

resulting nanotube has a diameter roughly equal to that of its parent particle. 

 

While earlier work focused on bulk production of nanotubes on powder catalyst, work 

has also been done with patterned catalyst on a substrate.  The properties of the catalyst 

are the same in this arrangement, but far less is present and thus far fewer tubes are 

grown.  One group has used such CVD to grow nanotubes directly on top of existing 

electrodes [22]. 

 

By growing the nanotubes directly onto a substrate, CVD provides a possible solution to 

the problem of placement.  It is uncertain, but one could surmise that careful formulation 

of the catalyst material could help control the problem of numbers, as well.  While CVD 

does not provide a direct means of controlling the properties of nanotubes.  The diameter 

of catalyst particles can be controlled, however, raising the possibility of controlling the 

diameter and thereby the chiralty of CNTs [25].  This would be a potential solution to the 

problem of specificity.  Since CVD suggests solutions to all three problems stated earlier, 

it is the focus of this project.   

 

Copyright © Stanton W McVay 
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3.0 Experimental Results 

3.1 Experimental Overview 

The purpose of this research is to determine the feasibility of CVD growth of carbon 

nanotubes for electronics purposes.  To form a nanotube transistor, for example, one 

SWNT is sufficient and even ideal.  A larger number might also be acceptable, if each 

tube had the same properties and if the number was consistent across the process. 

 

This project relies heavily on the work of two published sources.  A group at Stanford 

University reported the synergistic properties of iron and molybdenum as SWNT catalyst 

material [24].  Another group first showed that low temperatures and feedstock flow rates 

would produce SWNTs as surely as more wasteful processes [23]. 

 

To begin, the experimental procedures of these groups were re-created to produce 

SWNTs.  Once this was done in bulk, the same process was applied to patterns of 

catalyst.  The relative frequency and length of tubes were noted to help characterize the 

growth process. 
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3.2 Apparatus 

Experimental Setup: 

 

 
Figure 9 - The CVD reactor built for this project 

 

The equipment used in CVD synthesis of carbon nanotubes is shown here.  The 

components are as follows: 

 

1. Feedstock and purge gases – There are currently 2 hydrocarbon gases available: 

methane and acetylene.  Hydrogen is also present, but was not found to have any 

effect on nanotube growth.  Argon is used for purging and for diluting feedstock 

concentration.  Gases are purchased from Scott-Gross Co in Lexington, KY. 
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2. Gas flow control and mixer – This device has flowmeters for up to 3 gases, and a 

valve to control the flow of each.  After leaving the flowmeters, the gases are 

blended and then fed into the furnace tube. 

 

3. Furnace tube – custom ordered from Quartz Scientific.  This is a 2” diameter 

quartz tube.  One end is removable for sample access.  The ends are fitted with 

Swagelock fittings for the ¼” tubing. 

 

4. Furnace – Thermolyne 21100.  This is a single-zone furnace with a maximum 

temperature of 1200 C.  Furnace temperature is controlled and monitored with a 

single set point controller. 

 

5. Exhaust – After leaving the furnace, the gases are filtered through liquid paraffin 

and cooled in water before flowing into the nearby fume hood outtake. 
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3.3 Catalyst and Substrate Preparation 

In this project, a Fe-Mo catalyst was used.  Fe catalyst has been shown to stimulate CNT 

growth, but only after a lengthy reduction step with hydrogen gas to convert iron oxides 

to elemental iron particles.  The presence of Mo, however, allows Fe to produce NTs 

without a reduction step [24].  It has also been shown that a Fe:Mo ratio of 5:1 works best 

[23]. 

 

It is not desirable to have only Fe-Mo present in the catalyst.  To provide bulk and 

spacing between particles, alumina nanoparticles of 30nm diameter are used.  The 

catalyst solution was prepared by mixing these chemicals: 

Chemical CAS Quantity 

Methanol 67-56-1 30 mL 

Alumina nanoparticles N/A (from Degussa) 30 mg 

Ferric Nitrate, nonahydrate 7782-61-8 30 mg 

C10H16MoO6 17524-05-9 6 mg 

 

 

The alumina nanoparticles were acquired from Degussa.  Iron was provided in the form 

of ferric nitrate nonahydrate, purchased from the university’s chemical stockroom.  

Molybdenum was provided in the form C10H16MoO6, purchased from Sigma-Aldrich.  

To prepare the catalyst solution, component compound powders are added to 30mL of 

methanol.  The mixture was stirred for 24 hours and sonicated for 1 hour.  To re-use the 

same solution later, it was re-stirred for at least 30 minutes.  The catalyst solution was 

then applied to silicon substrates using a pipet.  For fast evaporation of the methanol, the 

substrate was placed on a hotplate and heated to 80C.  In this way, entire 2-inch silicon 

wafers can be prepared with catalyst, and then broken into pieces for CVD.  
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3.4 Chemical Vapor Deposition 

3.4.1 Pre-Bake Purge 

Before beginning the CVD process, it is crucial to remove all atmospheric air from the 

furnace tube.  The presence of oxygen will result in the formation of CO2 instead of 

atomic carbon during the heating process.  To prevent this, the tube is purged with 

1000mL/min of argon gas for 60 minutes prior to heating the furnace. 

 

3.4.2 Ramp Up 

Once the tube is purged of oxygen gas, the furnace temperature is set to the desired 

growth temperature.  The furnace can heat up at a rate of 50 C/min.  For a typical growth 

temperature of 850 C, 17-18 minutes are required to heat the furnace.  During this ramp, 

the purge gas flow is maintained at 1000mL/min.  Typically, the furnace is allowed to sit 

at the target temperature for another 5 minutes.  This is to allow the furnace’s “hot zone” 

to stabilize at the target temperature. 

 

3.4.3 Chemical Vapor Deposition 

When the target temperature has been reached, the feedstock gas can be introduced and 

the purge gas reduced.  Typical flow rates for CVD are 360mL/min of argon with 

40mL/min of methane.  Currently, there is no true flow control, so these values must be 

maintained and corrected by hand.  The feedstock is allowed to flow for a set period of 

time.  For this project, values of 10-40 minutes were used. 

 

3.4.4 Post-Bake Purge 

An important step in the formation of SWNTs is the post-bake purge.  After the required 

time has elapsed, the carbon feedstock gas is shut off and the argon purge gas is increased 

to 1000mL/min.  Obviously, the ending of the feedstock source does not mean that there 

is no carbon gas in the tube.  If the temperature is reduced immediately after shutting off 

the feedstock gas, the furnace will pass through lower temperatures with a carbon source 
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still present in the tube.  This leads to a buildup of amorphous carbon on the entire 

substrate, including the previously formed carbon nanotubes.  The result is an increase in 

the apparent diameter of the tubes.  This phenomenon will be explained in more detail in 

a later section. 

 

While this buildup is certainly ruinous to electronic applications, it does have a useful 

application in microscopy.  Carbon nanotubes are normally too small to be resolved with 

scanning electron microscopes.  With the carbon buildup, tubes can reach a diameter of 

10nm or greater.  This allows tubes to be seen via SEM, and some quantities, such as 

length and tube frequency, to be measured. 

 

For the purposes of growing single-wall tubes for TEM imaging or electronic purposes, 

however, this buildup should be prevented.  To do so, the temperature of the furnace is 

maintained for one hour after the feedstock gas is shut off.  This removes all the carbon 

source gas from the tube before moving to lower temperatures.  It should be noted for 

future users that doing so will limit the usefulness of SEM, as such small features would 

not be well-resolved, if visible at all.  TEM imaging, however, will be able to show the 

single-wall tubes. 

 

3.4.5 Cleaning the Furnace Tube 

After CVD growth, a thin residue of carbon can become visible inside the furnace tube.  

This carbon build up can be easily burned off by heating the furnace to >800 C while 

flowing oxygen gas through the tube.  The oxygen reacts with the carbon soot, forming 

carbon dioxide.  This removes the carbon film and also removes a potential source of 

contamination from future CVD reactions. 
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3.5 Sample Imaging 

3.5.1 SEM Sample Preparation 

Scanning Electron Microscopy (SEM) is a useful tool for imaging the surface topography 

of a sample.  The University of Kentucky has two SEMs: the Hitachi S-900 and S-3200.  

The S-3200 is much easier to use for relatively low magnification applications, with a 

maximum effective magnification of ~30000x.  The S-900, while not as user-friendly as 

the S-3200, is capable of higher magnifications, up to ~100000x. 

 

For both machines, the sample to be viewed must be adhered to a sample mount.  These 

mounts are metallic, and provide both stability and a ground path for electrons.  The 

sample is adhered to a mount using a layer of colloidal graphite (Ted Pella P/N 16053).  

For heavier samples, a two-sided conductive carbon tab can be used as well.  After the 

sample is adhered to the mount, it is useful to apply more colloidal graphite along the 

edges of the sample.  This ensures that electron charge will not build up on the sample, 

which could result in a distorted or unreadable image. 

 

After imaging, the sample can be removed from the mount by gentle prying.  The mount 

should then be cleaned with acetone to remove the residual graphite.  It is also helpful to 

gently scrub the mount with fine-grit sandpaper until bare metal shows.  This helps 

prevent contamination of the SEM chamber with residual graphite or sample materials. 

 

3.5.2 TEM Sample Preparation 

While SEM is a useful technique for imaging large-scale characteristics of tubes, such as 

length and diameter, it provides no insight into the inner structure of a sample.  

Transmission Electron Microscopy (TEM) provides a cross-sectional view of a sample, 

revealing the sample’s inner structure.  For this project, the JEOL 2000FX and the JEOL 

2010 F were used to confirm the presence of SWNTs. 

 

23 



Since the TEM works by projecting an electron beam through a sample, it is necessary to 

remove the catalyst and tubes from the substrate.  This was done by scraping the catalyst 

from the substrate using a stainless steel scalpel.  Since the tubes are anchored in the 

catalyst, they come away as well.  The resulting black powder is dissolved in isopropyl 

alcohol and sonicated for 1 hour, to break up the catalyst into smaller pieces. 

 

After sonication, the CNT solution is applied to a lacey carbon grid using a pipet.  After 

evaporation, a drop of gold colloid particles is applied and allowed to evaporate.  These 

particles are necessary to provide a calibration standard for TEM images, as the device 

itself provides no scale. 

 

3.6 Discussion of Results 

The first attempt made at CVD growth of nanotubes followed a procedure described by in 

reference 24.  This called for a methane flow rate in the thousands of ml/min for 1 hour.  

When this growth attempt was made, the entire furnace turned black with soot within a 

couple of minutes, so the attempt was halted.  When the sample was removed and 

examined under SEM, large carbon fibers were apparent, with diameters over 100nm.  As 

well, interesting soot structures were present. 

 

It seemed likely that too much feedstock was being used, so another procedure was 

necessary.  Another group published a procedure with far smaller flow rates, as low as 40 

mL/min [23].  This resulted in a far cleaner reactor, and noticeably smaller tube 

diameters.  However, the carbon tubes were still much larger than SWNTs should be, 

with diameters in the tens of nanometers. 

 

A closer examination of these structures showed several notable features.  One was the 

inconsistency of the tube diameters.  As shown in the SEM image in Figure 10, a variety 

of diameters can be present in the same region of the substrate.  
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Figure 10 - CVD grown NTs with a range of diameters.  Note the smaller diameters closer to the 

surface. 

 

As seen in this example, the tube diameters vary from ~40nm down to ~10nm.  Another 

interesting point is that the tubes tend to be smaller closer to the substrate surface. 

 

Inconsistencies have also been seen along the same tube.  Some tubes demonstrate a clear 

tapering effect toward the ends or in their middle sections.  The tube shown here has a 

maximum diameter of ~30nm, but thins at the tips to less than 10nm. 

 

 

25 



 
Figure 11 - Closeup of two nanotubes.  The lower tube tapers and extends to top of the image.  The 

upper tube tapers and disappears to the left, probably before reaching the image edge. 

 

Another feature of these structures is the flaky quality of their walls.  Under high 

magnification, most tubes exhibit frequent cracks or breaks.  These breaks are always 

nearly perpendicular to the tube’s length. 

 

 
Figure 12 - The tube seen here exhibits a typically flaky appearance. 
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In some cases, the cracks appear to have severed the tube, but the tube maintains its 

position.  This would seem to suggest a remnant is present that is not apparent to SEM. 

 
Figure 13 - The tube in the center of the picture appears to have been severed.  It seems likely that a 

remnant is present, though not visible, which is supporting the tube. 
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Figure 14 - TEM image showing a cross-section of a carbon tube structure.  The black ovals are gold 

colloid particles of roughly 20nm diameter. 

 

Under TEM, it appears that another structure is contained within these larger fibers.  The 

outer layers appear amorphous, which may also explain the flaky nature of this outer 

region in SEM images.  The tube shown here has a diameter of roughly 60nm.  The outer 

edges clearly show an amorphous nature, as no crystalline structure is apparent.  The 

inner layer or layers do show some definition, evident in the thin lines running the length 

of this feature.  The lines that are visible appear to be straight and parallel, suggesting a 

MWNT or perhaps a parallel bundle of SWNTs. 
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3.7 Summary of Early Work 

To summarize the findings thus far: 

1. CVD of methane does produce tubelike structures on Fe-Mo catalyst at 800-

900C, at relatively low flow rates. 

2. These tubes are much larger than SWNTs are expected to be. 

3. The tubes themselves are highly variable, with changing diameters and 

frequent gaps and breaks along their lengths. 

4. The internal structure of these tubes is amorphous on the outside, with some 

structure inside. 

 

These findings seem to indicate that nanotubes may be present, but are coated in a thick 

layer of amorphous carbon.  This would seem to explain the inconsistent nature of the 

tubes under SEM, and the amorphous/crystalline structure seen under TEM. 

 

But where does this coating come from?  The publications on which this work was based 

make no mention of this phenomenon, much less its prevention.  Clearly something was 

taken for granted, or left unmentioned.  A closer look at the experimental procedure is 

necessary. 

 

29 



3.8 Modified CVD – Amorphous Carbon Prevention 

 

Another observation was made, based on SEM imaging. 

 
Figure 15 - A carbon tube with several variations in its diameter 

 

 

This image shows a single tube which has a highly variable diameter.  At its widest, it 

appears to be at least 30nm in diameter.  It then tapers in several places to less than 10 

nm, and becomes hard to see at this magnification. 

 

If this structure was grown all at once, it seems unlikely that it would exhibit such an 

inconsistent diameter.  A thick tube at the base tapering to a narrow tip might be possible, 

but such wild variation along its length seems very unlikely.  More likely, the underlying 

crystalline structure (SWNT or MWNT) grows first and reaches full length.  At some 
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point afterward, the amorphous carbon grows or is deposited on the underlying 

nanotubes. 

 

The tapering effect of the tubes as they get closer to the surface may be explained by a 

nanoscale equivalent of ground effects.  That is, the flow of gases is nearly constant far 

above the surface of the substrate.  Closer to the surface, where the catalyst introduces 

variation in elevation, the flow rate might not be a constant.  It is also possible that most 

of the available carbon was already absorbed upstream of the thinner tubes. 

 

From previously published works, we know that the nanotubes themselves grow at high 

temperature under feedstock gas, in this case methane.  So, it stands to reason that the 

coating comes at some point after this high temperature growth. 

 

The growth procedure up to this point had involved flowing methane gas into the reactor 

at high temperature, followed by cooling the tube while purging with argon.  Due to its 

small size, the furnace used can heat up and cool down rather quickly.  It seemed 

reasonable, then, that the reactor could be cooling down faster than the methane could be 

purged.  At lower temperatures, the decomposition of methane would not necessarily 

form new nanotubes. 

 

As it happens, another, older source explained the growth of thick (~1um) carbon fibers 

in this way [26].  So the problem then becomes to maintain a high temperature until the 

methane is cleared out of the tube, so that no amorphous carbon gets a chance to form.  

This is done easily by purging the reactor with argon for several minutes before allowing 

the system to cool down. 

 

As will be shown in the next section, doing this has an interesting side effect.  While 

SWNTs are now apparent under TEM, without their carbon sheathing they are too small 

to resolve in SEM. 
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3.9 TEM Imaging of SWNTs 

 

Without the thick sheath of amorphous carbon, the underlying structure becomes 

apparent.  As shown here, SWNTs are indeed grown from the Fe-Mo catalyst. 

 

 
Figure 16 - TEM image showing two SWNTs.  One is at center-right, the other along the left edge of 

the image.  Both have a diamter of 2-3nm.  These were grown at 900 C. 

 

The TEM image shown here was taken at a magnification of ~3 million x.  Two SWNTs 

are present (one is at the extreme left).  The rounded end of one is also seen.  It is 

noteworthy that the tubes seen in this way are not bundles, but rather individual tubes. 
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Figure 17 - TEM image showing a SWNT protruding from a catalyst mass.  The tube is to the left of 

the black line.  Growth temperature was 900 C 

 

Here a tube is shown emerging from its catalyst.  The presence of the catalyst 

complicated the imaging of the SWNTs.  To prepare these samples, several drops of the 

catalyst were placed on the substrate and dried.  This extra material tended to stick 

together, creating opaque regions on the TEM grid.  This complicated the search for 

SWNTs.  As shown here, the best place to look is along the edges. 

 

33 



 
Figure 18 - Several SWNTs are shown here, grouped into ropes or bundles.  These were grown at a 

temperature of 850 C 

 

Here bundles of SWNTs can be observed.  This image was made using a HRTEM.  The 

tubes were grown at 850 C. 

 

It is noteworthy that there are clear differences in the images of tubes grown at 900 C and 

850 C.  Granted, these images were taken using different instruments.  However, the 

images of tubes grown at 900 C demonstrate individual tubes.  The images of tubes 

(including Figure 1) grown at 850 C appear to be in bundles.  While the instrumentation 

used may be responsible, it is also possible that the different growth regimes had an effect 

on the tubes produced, making bundles more or less likely. 
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3.10 Observed Characteristics of CVD-Grown NTs 

3.10.1 Length vs Time and Temperature 

The first parameter experimented with was the length of grown nanotubes as a function 

of reaction time.  This time was varied from 10 to 40 minutes at temperatures of 800, 850 

and 900 C.  The resulting tubes were measured for length in several spots on each 

sample, with 40-50 tubes measured for each sample.  The only tubes measured were 

those on the edge of a catalyst patch.  Tubes in the interior are tangled, and may have 

been terminated prematurely.  Feedstock concentration was kept at 10% methane/90% 

argon, with a combined flow rate of 400mL/min. 

 

 
 

This sample was grown at 900C for 20 min.  Care was taken to measure the entire length 

of each tube.  For example, the long tube in the center beside the black guideline is 

6.5um, but is coated for only about 1.5um of its length.  A quick glance would 

underreport its length. 
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The measurements were then averaged for each combination of growth conditions.  The 

length histogram for the preceding sample is shown here, followed by a chart of the mean 

length for each growth condition. 

 

Length Histogram for 900 C, 20 minutes
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Figure 19 – Histogram of tube lengths for a sample grown at 900 C for 20 minutes 
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Figure 20 – Graph of Tube Length vs Time and Growth Temperaure 
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As expected, longer growth times tended to produce longer nanotubes.  However, the 

growth rate seems to decay exponentially as the tubes become longer.  Most of the 

growth appears to take place in the first 20 minutes.  Also interesting is that the peak 

growth temperature is not the highest; rather, the mean tube length is greatest at all times 

for a reaction temperature of 850 C. 

 

3.10.2 Length vs Time and Flow Rate 

In this trial, the flow rate of methane and argon was adjusted to produce different 

methane concentrations.  Various times were also used, with results shown below.  The 

growth temperature was kept at 900 C. 
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Figure 21 – Graph of Tube Length vs Time and Feedstock Concentration 

 

In each case, a total flow rate of ~400 sccm was used, with argon for the balance of the 

feedstock.  The mean tube length does not appear to be strongly dependent on the size of 

the methane component.  This would seem to suggest that the 5% flow regime is close to 

a “saturation” level for this process, and that additional methane is not helpful in 

producing longer tubes. 
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3.10.3 Nanotube Starts per Catalyst Length, Constant Temperature 

To determine a minimum catalyst region width to produce a fixed number of nanotubes, a 

metric must be found for how many tubes are expected per unit length of catalyst.  In this 

trial, the number of tubes per length of catalyst was measured, disregarding the actual 

length of the tubes.  In all cases, the growth temperature was held at 900 C. 
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Figure 22 – Graph of Nanotube Population vs Time and Feedstock Concentration 

 

The general trend is for the number of tubes to increase as the flow rate increases, and 

also to increase as the growth time lengthens.  The rate of increase, however, is not great.  

It seems that most of the tubes originated in the first 10 minutes of growth, with only 

slight increase over the next 30 minutes.  Also, while it does seem that a higher flow rate 

contributes to the number of tubes, the difference is not great.  As found in the length 

trials earlier, it appears that increasing the flow rate beyond 5% methane does not 

produce a great improvement in the number of tubes grown. 
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3.10.4 Nanotube Starts per Catalyst Length, Constant Flow Rate 

Another trial was performed to see the effect of varying temperatures on the number of 

tubes grown.  In all cases, the flow rate was kept at 10% methane (40 mL/min CH4 : 350 

mL/min Ar).   
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Figure 23 - Graph of Nanotube Population vs Time and Temperature 

 

As with the previous trials, 850 C appears to be at or near optimum for tube growth.  

Again it is seen that while a longer reaction time produces some effect in the number of 

tubes, the difference is not great.  Also, an interesting effect is seen in the other 

temperatures tested.  In the length trials, it was found that 900 C produced consistently 

longer tubes than 800 C.  However, here it appears that more tubes are actually grown at 

800 C than 900 C. 

 

It should be noted that this and the previous surveys were performed using SEM.  Thus, 

the structures counted were those visible under SEM, which could be carbon-coated 

SWNTs or large bundles of tubes.  So, this number is useful to illustrate the general trend 

that more tubes appear with longer reaction times and concentrations, but not necessarily 

accurate for a proper census of SWNTs per length. 
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3.10.5 Direction of Growth – Direct Observation 

One reason that CVD is so attractive for CNT growth is that it offers the potential to 

create a nanotube exactly where it is needed.  As shown here, CVD also introduces a 

potential problem, in that nanotubes will tend to grow from all directions from the 

catalyst.  While not necessarily a problem for a single CNT device, it would seem to 

prevent any other devices from being formed in a certain radius around the catalyst. 

 
Figure 24 - Catalyst patch with nanotubes growing in all directions 

 

Figure 24 shows a small patch of catalyst after CVD growth.  It can be seen that tubes are 

sprouting from all sides of the catalyst.  This creates a radius in which any other CNT 

devices would likely be rendered inoperative or shorted out.  So, while CNT devices on 

their own may have a relatively small cost in substrate surface area, the extra tubes cause 

a larger effective area.  This is illustrated in Figure 25. 
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Figure 25 - While the surface area of a CNT device may be rather small, its effective surface area is 

much larger, due to the uncontrolled growth of unneeded tubes 

 

This extra area will certainly outweigh any size benefit of CNT devices, and will likely 

outweigh any performance benefit.  So a way must be found to contain or prevent these 

extra tubes. 

 

A proposed means of containment is shown in Figure 26.  A barrier region of alumina 

could be deposited in an arc around the catalyst patch.  While alumina does not prevent 

CNT growth per se, it could possibly serve to at least contain the tubes somewhat.  And 

while the effective surface area is larger than the device itself, it would be far less than 

without a barrier at all. 
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Figure 26 - A suggested means of containing extra CNTs 

 

This idea could not be tested as part of this project.  Another possibility would be to 

increase the flow rate.  It is possible that a strong enough laminar flow could cause grown 

tubes to fall in the direction of the current. 
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3.10.6 Catalyst Thickness 

Part of the difficulty in preparing samples for CVD is the application of the catalyst 

solution.  For applying a uniform layer of liquid to a substrate, a spin-coater is typically 

used.  However, the methanol-based solution used in this project evaporates very quickly.  

Often, the solution has evaporated before the spin coater has even reached full speed.  

This results in uneven layers of catalyst, which can cause changes in the frequency and 

size of nanotube bundles. 

 

 
Figure 27 - The upper image shows a much thicker catalyst patch, and a resulting increase in the 

number of tubes.  The lower image shows a thinner catalyst layer with fewer tubes. 

 

As seen here, a thicker catalyst pad produces a larger number of tubes.  This is only 

sensible, but underscores the fact that a way to achieve uniform catalyst thickness is 

essential for future applications. 

Copyright © Stanton W McVay 
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4.0 Conclusions 

4.1 Summary of Findings 

A CVD reactor was built for this project, and single-walled carbon nanotubes were 

produced.  These tubes were examined using both SEM and TEM microscopy.  SEM was 

used to measure the length of relative frequency of grown nanotubes.  TEM was used to 

confirm that the structures were indeed SWNTs, based on their crystal structure. 

 

In terms of material cost, CVD is an inexpensive method for producing carbon 

nanotubes.  The reactor built for this project cost less than $2500. 

 

One finding of this project is that previous research may have overstated the required 

methane flow rate for reliable nanotube growth.  These results show that while a higher 

proportion of methane makes a small difference, a ratio of 20:380 sccm CH4:Ar is 

sufficient to produce large numbers of tubes, of micron scale length. 

 

Another factor unmentioned in previous works was the post-bake purging of the tube 

with argon.  Without this step, amorphous carbon coats the nanotubes and everything else 

inside the reactor.  While in hindsight it seems an obvious precaution, it was just this 

problem of coating that held up research for several weeks. 

 

It was determined that 850 C is at or near an optimal temperature for growth of 

nanotubes, both in terms of number of tubes produced and length of tubes.  For actual 

production, it may be desirable to use another temperature, if tight control of the number 

or length of tubes is needed.  For example, 900 C was found to produce the least number 

of tubes per length of catalyst.  To produce shorter tubes, growth at 800 C would be 

appropriate. 
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In general, longer reaction times do produce more tubes of greater length.  However, it is 

also apparent across several trials that the majority of tubes are grown in less than 10 

minutes.  This would seem to indicate that the metal particles in the catalyst are of a 

narrow range of sizes and reached saturation at nearly the same time. 

 

Earlier in the report, three problems facing widespread adoption of CNTs for electronics 

were stated:  placement, numbers, and specificity.  Based on this project, it appears that 

CVD is a good method for addressing the placement problem.  Naturally, a few issues 

remain. 

 

The largest obstacle is the tendency of the catalyst to sprout nanotubes in all directions.  

While CVD can certainly put a tube in a given location, it also tends to create lots of 

tubes in undesired places.  This project did not test any means of preventing or containing 

these extra tubes.  This would be a useful avenue for future research. 

 

For the problem of numbers, these results are not especially consistent, which is a 

problem in itself.  Some regions of a sample had large tangled masses of tubes while 

other regions had a few straight tubes.  The formula and preparation of the catalyst 

solution could be improved, to provide more consistent results. 

 

It should be noted that this work depended upon SEM and TEM imaging to confirm the 

presence and measure the characteristics of SWNTs.  Other methods do exist to 

determine whether SWNTs are present.  Some examples are Raman spectroscopy and x-

ray diffraction.  Also, atomic force microscopy (AFM) can be used to scan topography 

beyond the resolution limit of SEM.  It may be useful to utilize these in future works, as 

TEM in particular was rather cumbersome to use.   
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4.2 Suggestions for Future Research 

In no particular order, these are some difficulties found during the course of this project.  

It may be fruitful to future researchers to focus their effort in some of these areas. 

 

- The catalyst solution in the project used a methanol base.  This had a tendency to 

evaporate very quickly, which made spin-coating unreliable.  Inconsistent spin-coating 

results in uneven catalyst thickness across a sample.  A more stable solution would be 

very helpful, so long as it still evaporates in a reasonable amount of time. 

 

- Mixing of the catalyst could also be improved.  As noted, the grown tubes varied in 

density on the same sample.  That is, one part of the catalyst might have just a handful of 

tubes while other parts had veritable webs of nanotubes.  This would seem to indicate an 

inconsistency in the solution. 

 

- Patterning of the catalyst was performed using optical lithography in this project.  Most 

features thus produced were at least tens of microns to a side.  For future work, electron 

beam lithography should be put to greater use.   

 

- The nanotubes were found to grow from the catalyst in all directions.  This is not a 

useful feature for microelectronics.  A way must be found to either prevent or isolate 

these extra tubes, to minimize the surface area for a nanotube device, and to prevent 

shorts or other interference with nearby devices. 

 

 

 

 

 

 

 

Copyright © Stanton W McVay 
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