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ABSTRACT OF THESIS 
 
 
 

MINIMUM FLOW TIME SCHEDULE GENETIC ALGORITHM FOR MASS 
CUSTOMIZATION MANUFACTURING USING MINICELLS 

 
 
Minicells are small manufacturing cells dedicated to an option family and organized in a 
multi-stage configuration for mass customization manufacturing. Product variants, depending 
on the customization requirements of each customer, are routed through the minicells as 
necessary. For successful mass customization, customized products must be manufactured at 
low cost and with short turn around time. Effective scheduling of jobs to be processed in 
minicells is essential to quickly deliver customized products. In this research, a genetic 
algorithm based approach is developed to schedule jobs in a minicell configuration by 
considering it as a multi-stage flow shop. A new crossover strategy is used in the genetic 
algorithm to obtain a minimum flow time schedule.  
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                          Flow time. 
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CHAPTER 1 

1 INTRODUCTION 
 
 

1.1 Overview 
 
Traditionally companies have produced either customized products or standardized products. 

Customized products are generally produced in a manufacturing plant which operates in a low 

volume high variety environment and standardized products are produced in a manufacturing 

plant which operates in a low variety high volume environment, known as mass production. 

Mass production is an efficient way to produce similar products at low cost. Due to the absence 

of the economies of scale advantage in manufacturing customized products, the process is 

associated with high costs. Cellular manufacturing was developed as an alternate process by 

which a medium-large quantity of products could be produced while still accommodating a 

certain amount of product variety. Mass customization is an attempt to extend this product 

variety so that each individual customer’s need can be catered for.  

 

1.2  Mass Customization:   
 
Mass Customization can be defined as “the customization and personalization of products and 

services for individual customers at a mass production price” [15] or efficiency. Mass 

Customization was presented as manufacturing strategy by Pine et al. [5] and was projected as an 

emerging technology by Teresko [23]. The objective of manufacturing customized products at 

low cost was considered to be difficult with the manufacturing capabilities that existed when the 

term was introduced by Davis in his book Future Perfect in 1987 [16]. Mass customization was 

not possible with the traditional manufacturing methods since those strategies could efficiently 

produce either standard products by mass production or customized products by job shops.  

 

The existing strategies were no longer options to cater to the high product variety and better 

quality products demanded. To meet the changes in demand and cope with competition, 
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companies started to look for strategies such as Cellular Manufacturing (CM) and Just-In-Time 

(JIT) manufacturing.  

In a cellular manufacturing (CM) environment, machinery is divided into cells and a family of 

parts or products is produced in each cell. Similar tooling and machines are required to 

manufacture that part family or product family [29]. This classical cellular system is not efficient 

when there is a frequent change in product sequence or in composition of part or product family 

[24] i.e. this system is not favorable in a mass customization environment where there is 

dynamic change in product demand.  

 

JIT and CM are closely related since a cellular production layout is necessary for implementing 

JIT strategy. JIT strategy emphasizes on reducing wastage by reducing the amount of inventory 

and decreasing set-up times. In the above process, while trying to satisfy the objective, JIT 

attempts to achieve a lot size of one. JIT strategy is primarily applied to industries where similar 

products or components are manufactured repeatedly [22]. Hence, even though this strategy 

provides methods to decrease lot size to one, it cannot be efficiently used to produce a single 

customized product on a make-to-order basis, particularly if products are fabricated after 

receiving customer orders.  

 

The introduction of Flexible manufacturing system (FMS) provided the ability to make a variety 

of products with little change over time [4]. The production levels could be increased or 

decreased by using numerically controlled machines [35] and most of the work in this system is 

automated including material handling systems. Hence introducing a FMS that can ‘make-to-

order’ along with proper supporting infrastructure such as advanced information technology 

systems will help in increasing the flexibility. The role of information technology such as the 

Internet provides direct interaction with customer and can help in increasing the responsiveness 

of the company [6]. However, the cost of FMS has prohibited many companies from using it for 

lower volume manufacturing. 

 

In designing manufacturing systems for mass customization one of the few studies considered 

the use of minicells [7]. Minicells are proposed for mass customization environment where 

options (all or few) for various features of the product are fabricated after receiving the customer 
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order. The final product can be assembled later using these and other standard options fabricated 

in bulk. A typical traditional product structure can be represented as shown in Figure 1-1(a) 

where as Figure 1-1(b) represents the product structure as commonly seen in mass customization 

environment [7]. Product variants differ based on the combination of different options used for 

the features. The minicells are formed by considering options, which make up a feature, and their 

processing needs.  

 

 

 

 

 

Product 

Feature 1 Feature 3 Feature 2

 

 

 

 

 1-1(a): Traditional Product structure 

 

 

 

 

 

 

 

 

 

Product 

Feature 1 Feature 3 Feature 2

Options 1B 1A 2A 2B 2C 3B 3A 

Features 

 

 

 1-1(b): Mass Customization Product structure 

Figure 1-1 (Adapted from [17]) 
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In traditional cellular manufacturing each cell is dedicated to a different product family or a 

specific part family where as a minicell is dedicated for producing option families [7]. Different 

options would require same processing methods but with different setups or tooling [7]. 

Depending on the requirement of an option family, machines and operators are grouped together 

to form a minicell. Hence the function of one traditional cell is divided into more than one 

minicell as shown in Figure 1-2. 

 

 

 

Traditional Cell 1 

Traditional Cell 2 

 
1-2(a): Traditional Cells 

 
 
 

1 B 1 C1A

 2 A 2B 2 C

 
1-2(b): Minicells 

 

Figure 1-2 (Adapted from [17]) 
 

Feitzinger and Lee [27] discuss the role of modularity for effective mass customization. Pine [4], 

Baldwin and Clark [57] also emphasize that modularity helps the manufacturing system to cope 

with the rapid demand changes and increase the flexibility. In this proposed manufacturing 

system, the minicells are divided into different stages and products can be routed through 

minicells, as necessary, in a multi-stage manufacturing environment. A modular manufacturing 
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system results because of the multi-cell, multi-stage environment. Such an environment will help 

provide the capability needed in a dynamic demand market such as mass customization.  

 

Comparison of traditional cells and minicells [7] has been done to measure the effectiveness of a 

minicell based manufacturing system design. Two minicells per stage in a 3 stage minicell 

design and two cell traditional cell manufacturing system designs are compared. The 

performance of minicells has been found to be better than traditional cells [7] particularly with 

high variation in product demand. The average flow time has been found to be lower than that 

observed with traditional cells. The makespan was found to be comparable to that with 

traditional cell design but with a lower machine count. The results indicate the robustness of 

minicell designs in a high demand variation environment, similar to the situation expected for 

mass customization. 

 

Low cost of production and reduced delivery time are two important aspects of mass 

customization and scheduling plays an important role in achieving the desired results [7]. 

Reducing delivery time requires a product spending less time in the manufacturing system; 

minimizing flow time (discussed in next section) can help achieve this. The importance of using 

better scheduling techniques to improve minicell performance has been exemplified [17]; hence 

an efficient scheduling strategy can lead to better performance with minicells. 

1.3  Scheduling 
 
Scheduling is defined as the process of assigning a set of tasks to resources over a period of time 

[39]. Scheduling plays an important role in manufacturing industries where it helps in reducing 

the costs and time to manufacture a product. With respect to the time taken to manufacture a 

product, two important terms considered in scheduling are makespan and flow time. While 

makespan is defined as the least time in which all tasks are completed i.e. the time at which the 

last job leaves the system, flow time is the length of the time that a job remains in the system. 

Makespan is also known as total throughput time and flow time as lead-time. Flow time can also 

be represented as the difference of completion time and ready time, ready time being the time 

when the job is available to be processed.  
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A flowshop has ‘m’ machines on which ‘n’ jobs have to be processed and each job has to be 

processed on every machine [37]. Considerable research has been carried out in the flow shop 

scheduling area over the last few decades with the focus shifting from purely theoretical 

problems to more general problems like ‘m-machine’ problem [1]. Flow shop scheduling is 

classified as NP hard [2] and this complexity makes it difficult to have exact solution methods 

for more than two machines [3].  

 

Minimization of flow time leads to reduced in-process inventory and stable use of resources [14]. 

As discussed previously, flow time has an effect on the functioning of minicells. The 

responsiveness of minicells can be related to the objective of minimizing of flow time. This 

objective has received a lot of attention in recent years because of its relevance to the dynamic 

production environment [44]. Some solution procedures used to solve such scheduling problems 

include analytical methods, heuristics and meta-heuristics. 

 

Analytical methods give optimal solutions, but are generally applied to small problems. 

Heuristics are developed for specific problems and are used to get optimal or near optimal 

solutions. Various heuristic methods differ based on the objective for optimization being 

considered and also on the methodology on which they work. Some of the commonly used 

objective functions in scheduling include, for example, minimization of makespan, minimization 

of flow time and minimizing number of tardy jobs. Heuristics such as Nawaz, Enscore, and Ham 

(NEH) heuristic [45] and Campbell, Dudek, and Smith (CDS) heuristic [18] were developed for 

the makespan objective. For minimizing flow time heuristics such as Rajendran and Zielger (RZ) 

heuristic [20] and Framinan and Leisten (FL) heuristic [21] were developed.  

 

Various meta-heuristic procedures such as simulated annealing, tabu search and genetic 

algorithms, which are more general solution procedures, are also being used to solve 

optimization problems. While heuristics are used for specific problems and cannot be 

implemented to any general problem meta-heuristic methods are applicable to wider 

optimization problems. While simulated annealing and genetic algorithms are global search 

techniques, tabu search is a local search technique [52].  
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A genetic algorithm [GA] is a search method which uses concepts of evolution and natural 

selection [9] to find the best solution. The approach is based on the survival of the fittest. The 

concept is simple but provides robust and powerful adaptive search mechanisms [10]. GA’s are 

preferred when there is no efficient solution method for a NP hard problem since they give a 

good solution if not an optimal solution [11]. Being an approximate algorithm, they give the 

solution in much lesser time than deterministic algorithms [12]. This technique has been used 

widely in many fields for optimization such as scheduling and traveling salesman problem. 

Considerable work has been done in utilizing the above mentioned solution procedures for 

scheduling problems [39] [43] [51].  

1.4 Research Objective 
 
The objective of this thesis is to develop a Genetic Algorithm with the objective of minimizing 

the average flow time needed to process a given set of jobs in a minicell configuration. This is 

approached by considering the minicell based manufacturing system configuration as a multi-

stage flow shop.  

 

1.5 Thesis Organization 
 
A literature survey about recent developments in mass customization, genetic algorithms, 

flowshop scheduling, particularly for minimizing average flow time, are presented in chapter 2. 

The definitions and methodology followed in developing the GA are then presented in chapter 3.  

Details about the experimentation conducted and results obtained are discussed in chapter 4. 

Chapter 5 includes a discussion and conclusions. 

 

 
 

 
 
 
 
 
 

Copyright © Phanindra Kumar Chadalavada, 2006 
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CHAPTER 2 

2 LITERATURE REVIEW 
 

In this chapter a summary of literature on topics related to the research is presented. First a 

review of literature on mass customization is presented. This is followed by review of previous 

work on scheduling and genetic algorithms. 

2.1 Mass Customization 
 
Davis [16] introduced the term mass customization through his book ‘Future Perfect’. According 

to Davis, “a one-of-a-kind product can be produced in a batch while still processing a batch by 

mass customization”. This can be only done with advances in manufacturing systems [16]. Even 

though customized products were offered long before the term mass customization was coined, 

they were not able to produce them in high quantity. Mass customization requires the ability to 

produce unique products in high quantity while keeping the production costs lower. 

 

This concept did not get recognition till Pine [4] presented this as a manufacturing strategy. 

According to Pine [4] mass production strategy was no longer sufficient to cater to the rapidly 

changing demands of the consumers. Also to survive from the ever increasing competition new 

strategies had to be developed. Thus the focus shifted away from mass production [4]. With the 

advances in manufacturing and information technology transition from mass production to mass 

customization strategy was possible [4]. Even companies which were setup to produce 

customized products have embraced mass customization strategy to reduce cost and increase 

responsiveness [8].  

 

Customization is being exercised in many companies for a long time even though the term mass 

customization is relatively new. The level of customization varies from company to company. It 

can be as simple as application of postponement strategy, such as by Hewlett-Packard (HP) [27], 

to pure customization, for example, National Bicycle Industrial company (NBIC) in Japan [26]. 

In the case of HP, the assembly of power supply component was delayed from production center 

to distribution center where the appropriate component would be installed according to the 

market to which the component has to be shipped [27]. This saved a lot of inventory while 
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introducing certain degree of customization into the process. NBIC, on the other hand, applied 

pure customization in some of their processes. Certain parts in the assembly of the bicycle such 

as the frame were custom fabricated after receiving the order whereas the rest were standard 

parts. The customer involvement at the initial stages is essential for this form of mass 

customization.  

 

Gilmore and Pine [56] presented four types of mass customization namely collaborative, 

adaptive, transparent and cosmetic. Collaborative mass customizer interacts with customer and 

customizes the product to his needs. Adaptive mass customizer offers a product without any 

dialogue with customer but the product being offered can be customized by the user after he 

purchases it. The product can be altered according to its use by the customer. When a 

manufacturer can predict the customers’ needs and manufactures customized products, it is 

known as transparent customization. Even though there is no need for interaction with customer 

in this technique, their needs have to be correctly assessed. When a single product is sold to 

various customers in different ways, it is known as cosmetic customization. Here, the product is 

packaged and marketed to different customers in different ways. 

 

For mass customization a company should have sufficient information about the customers and 

their choices. For this, the interaction between the company and customer is very important. This 

has been lacking with traditional manufacturing. The advances in information technology have 

enabled bridging this gap by providing means for an efficient and faster communication [6]. Also 

the improvements in technologies for manufacturing processes [5] and development of concepts 

such as Group technology (GT), Just-in-time (JIT), Flexible manufacturing systems (FMS) and 

Lean manufacturing [17] has helped manufacturing systems attain some of the mass 

customization capabilities.  

 

Group Technology: 

Most of the tasks executed in a system can be divided into a number of sets, each set having 

tasks similar to each other. This advantage of having similar tasks or items together, for example 

parts and machines or similar groceries shelved together, is utilized in group technology [28]. 

This concept is applied as classical cellular manufacturing (CM) strategy [24]. In CM, a set of 
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product families are processed in a manufacturing cell which comprises of a set of machines. 

These machines have similar tooling required to process that set of product families [29]. As 

pointed out in previous chapter, classical cellular systems are not efficient when there is a change 

in product variety. Hence, to overcome such obstacles, different approaches have been proposed 

such as virtual cells [30], network cells [34] and dynamic cells [31]. 

 

• Virtual cells: In this approach the cell does not have a fixed set of machines. The 

machines in this type of cell are formed by a logical grouping [32]. Instead of being 

present closer, machines from various departments are grouped logically to complete the 

manufacturing process according to the job composition [33]. Due to this configuration, 

communication plays an important role [33] and also material handling becomes an issue 

[17]. This strategy may not be an ideal choice for mass customization since the product 

demand varies dynamically and hence the frequent changes in layout will not be feasible 

[17].  

 

• Network cells: Here the cells are divided in such a way that machines are not grouped 

together to produce a product family but to complete a part of the total operations 

required [17]. Hence more than one cell is required to complete the process. Network 

cell basically has responsibility for certain processes for a few products within the job 

mix [34]. Such an arrangement increases the flexibility within the process.    

 

• Dynamic cells: In this approach also the machines in a cell are not fixed. But instead of 

forming a logical cell as in virtual cells, the machines are actually shifted from their 

physical position to form a cell required to complete processing of products [24]. This 

would decrease the material handling compared to virtual cells. Though this would 

increase the flexibility, frequent changes in layout due to dynamic demand in mass 

customization environment would make this system less efficient [17]. 

 

Due to the disadvantage of material handling in virtual cells and the disadvantage of machine 

movement in dynamic cells, these strategies are not ideal for mass customization. It can be 

observed that network cells have better advantage than other two approaches. A manufacturing 
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system could utilize and extend the approach used in network cells to design cells for mass 

customization [17].  

 

Flexible manufacturing systems: 

 

With flexible manufacturing system (FMS), the system has the capability to produce different 

products with less change-over time. Also the production levels could be increased or decreased 

by using numerically controlled machines [35]. This system is generally efficient for medium 

batch size production. Material handling plays an important role in this system. Though this 

system has added advantages such as reduced inventory and increased quality levels it also has 

certain disadvantages. This sophisticated technology uses highly costly machines and also the 

level of variety it can offer in products is less [36] than what is desired in mass customization 

environment. This is due to the limited varieties the system can process with restricted number of 

machines. The introduction of new product mix or new machines can cost immensely. Due to 

these problems, FMS use has been decreasing [35] as an efficient strategy to produce 

customizable products. Hence FMS cannot be directly replicated in a mass customization 

environment but can lend to the development of required manufacturing system design [8] [17]. 

 

Lean manufacturing: 

Lean manufacturing is a philosophy based on pull systems [13] where a customer order triggers 

the production of a new item to replace the one that is taken out. In conventional systems the 

products are produced and stocked as inventory based on a forecast, typically known as push 

system. The pull system also has inventory present in the system. But there is a cap on the 

amount of inventory. The strategy of lean manufacturing is to focus on reduction of the seven 

wastes namely Over-production, Waiting time, Transportation, Processing, Inventory, Motion, 

Scrap in manufactured products or any type of business [13].  

Lean manufacturing is not a manufacturing technology initiative but a philosophy to reduce the 

inventory levels [58]. The concept of Just-In-Time (JIT) is also an integral part of lean 

manufacturing. It also tries to increase the flexibility and responsiveness of the system. Even this 

level of flexibility may not be sufficient in a mass customization environment [35], but 
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nevertheless the principles of this philosophy can be used to streamline a mass customized 

manufacturing system and achieve the cost and time improvements.  

2.2 Minicell Configuration 
 

In traditional manufacturing system a product structure is represented by the features it is made 

up of, as was shown in Figure 1-1(a) in Chapter 1. In a mass customization manufacturing 

environment, typically, the product structure is further extended to include options for each 

feature.  Each feature has a number of options, which are chosen by customers as necessary, 

leading to an increase in the number of product variants offered. This product structure is shown 

in Figure 1-1(b) in Chapter 1.  In classical cellular manufacturing environment, product families 

are identified and along with required machines, a manufacturing cell is formed. The cells are so 

designed that products can be processed completely within the cells. A product-machine matrix 

lists all the product types and also the machines which are required to process them, for example, 

Figure 2-1(a). This matrix is used to form product families and machine cells.  

 

But in a mass customization environment the product variants are decided by the choice of 

options for each feature. Hence, when there are many options available for features, the number 

of product variants increase. The machine requirement for some options, even when they belong 

to different features, might be same. According to [17], due to common processing requirements 

for these options, forming a manufacturing cell based on options is more likely to be beneficial 

than having traditional cells based on product families. This approach results in forming smaller 

manufacturing cells which are dedicated to an option-family rather than a traditional cell 

dedicated to a product family. Hence [17] used an option-machine matrix to form option 

families. An example is shown in Figure 2-1(b). These manufacturing cells are referred to as 

minicells [17]. The option-machine matrix provides the processing times of every option on all 

the machines required. If an option does not require processing on any machine, the processing 

time will be zero in the matrix.  
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Machine A Machine B Machine C Machine D Machine E
Product 1 3 5 10 6 3
Product 2 5 4 1 7 5
Product 3 1 4 5 3 2
Product 4 5 4 2 1 6
Product 5 3 5 6 4 3  

2-1(a): Product-Machine matrix (in terms of processing times) for Traditional cells 

 
Machine A Machine B Machine C Machine D Machine E

Option 1 3 0 10 6 3
Option 2 5 4 1 7 0
Option 3 0 4 5 0 2
Option 4 5 0 2 1 6
Option 5 3 5 6 4 0  

2-1(b): Option-Machine matrix (in terms of processing times) for Minicells 

Figure 2-1: Option-Machine Matrix 
 
A minicell manufacturing system is divided into stages by separating the matrix into several sub-

matrices. In the option-machine matrix shown in Figure 2-1(b), the matrix is divided vertically 

into stages. Within each stage, the options are combined based on the processing requirement in 

that stage and option-families are formed. Machines required to process the option family are 

grouped into a minicell. Due to the multi stage system, the options have to visit at least one 

minicell in each stage. If there is no processing required in any of the minicells in a stage, then 

the option can skip that stage.  

2.3 Scheduling 

The process of assigning resources to some tasks in a period of time is known as scheduling [39]. 

A flowshop has ‘m’ machines on which ‘n’ jobs have to be processed and each job has to be 

processed on every machine [37]. The problem of ordering these jobs in an appropriate sequence 

to process on machines is a main issue in any company. In a pure flow shop all the jobs have to 

be processed on all machines whereas in a general flow shop few jobs may skip processing on 

some machines [38]. Some other classifications in scheduling are single machine scheduling, job 

shop scheduling and parallel machine scheduling. 
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A flow shop scheduling problem is deterministic when the data about all the jobs is given. The 

problem becomes stochastic even if there is one variable parameter. The scheduling problem can 

also be classified based on the arrival of the job into the system. If the job is available at zero 

time, i.e. start of the process, or when the arrival times are known in advance, then it is classified 

as static. When the job arrival is random it is known as dynamic. The former case is an ideal 

condition while the later one is the more general practical situation.  The higher the number of 

variable parameters in a system, the more complex the scheduling problem becomes [25].  

A permutation sequence is developed from a scheduling problem when jobs in the same order 

are processed on all machines [38]. Non-permutation schedule gives the sequence which does 

not remain same for all machines in a flowshop. Most of the research is associated with finding 

good permutation schedules because it is less complex compared to finding a non-permutation 

schedule. 

Flow shop scheduling is classified as NP hard [2] for three or more machines. Most of the 

research studied the two machine problem [40] while heuristics were developed for the NP hard 

problems [40]. The recent trend in research is to focus on more practical problem such as ‘m’ 

machine problem [1]. Apart from two machine and ‘m’ machine problem, single machine 

problem is also studied widely due to its vast application. Computer operations, bottleneck 

machine in a line or a continuous flow process are areas where single machine scheduling is 

applicable.  

Enumeration methods or analytical methods, heuristics and meta-heuristics are some of the 

solution procedures used for scheduling problems. While enumeration methods give the optimal 

solution and are the most efficient, the other two procedures give optimal or near optimal 

solutions. Due to the nature of the enumeration method’s ability to work well for only small 

problem sizes [40], heuristics were developed to obtain optimal or near optimal solutions for 

large problem sizes. All the solution procedures have an objective function that needs to be 

minimized or maximized. Objective functions which are generally minimized for example 

include makespan [43] and flow time [21] whereas objective function such as reliability [42] is 

maximized in scheduling problems. Given a set of jobs, the time at which the last job leaves the 

system is known as makespan. It is the total completion time required. Considerable research has 
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been done on this objective [44] since it is related to the throughput [37]. Some of the earliest 

work on this objective was presented by heuristics such as Campbell, Dudek, and Smith (CDS) 

heuristic [18] and Nawaz, Enscore, and Ham (NEH) heuristic [45].  

Flow time minimization has recently gained a lot of importance in recent research work due to its 

effect on resources and inventory [37]. Flow time is the length of the time that a job remains in 

the system. It is also known as lead-time. The Rajendran and Zielger (RZ) heuristic [20] is one of 

the earlier heuristics for minimizing of flow time. In the RZ heuristic, first the jobs are sequenced 

according to a priority rule and then sequence is improved by sequential insertion of each job, 

according to the seed sequence, into the best sequence found so far. Süer et al. [39] presented 

work on minimizing average flow time with a single machine problem with non-zero ready times 

of jobs. An evolutionary program was developed to achieve near optimal solutions. 

Gupta et al. [46] presented heuristic algorithms for a two machine flowshop problem. The 

scheduling problem proposed to reduce the total flow time, while keeping makespan of the 

schedule minimum. Parallel machine scheduling problems are also widely covered because of 

their applications in general cases. Kravchenko and Werner [47] presented a heuristic algorithm 

to minimize the mean flow time. They considered unit set up times for each job and the problem 

consisted of ‘m’ identical parallel machines. Azizoglu and Kirca [48] also considered identical 

parallel machines problem, but the objective was to minimize the total weighted flow time. In 

general it is assumed in a scheduling problem that all problems are of same importance. But if 

the priority levels for different jobs are varying [38], a factor known as the weight is assigned to 

each job. Thus the total weighted flow time objective holds good for such problems.     

Woo and Yim [49] (WY) developed a heuristic for minimization of mean flow time in an ‘m’ 

machine flow shop. The method consisted of two phases where in jobs are ranked according to 

ascending sum of processing times in first phase and then partial sequences are obtained by 

inserting  non-scheduled jobs in all possible positions. The best partial sequence is maintained as 

the solution. This heuristic outperformed the RZ heuristic when the number of jobs considered in 

the problem was large. The WY heuristic and the RZ heuristic were outperformed by the 

heuristic developed by Liu and Reeves [50] (LR heuristic). This heuristic also has the jobs sorted 

in the initial phase and then followed by sequence buildup. But the jobs are ranked in the 
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ascending order of a combined index function. The index consists of weighted total machine idle 

time and artificial total flow time. A search method was then used to improve the solution.  

Framinan and Leisten [21] (FL) presented a heuristic based on the NEH heuristic. The objective 

of the heuristic is to minimize the total flow time. This heuristic will be discussed in detail in 

Chapter 4. This heuristic performed better than the RZ and WY heuristics.  

When a solution procedure makes use of an already developed heuristic in one of its steps, it is 

known as a composite heuristic [37]. These kinds of heuristics are developed to modify or 

enhance the previous successful heuristics. Allahverdi and Aldowaisan [40] developed one such 

composite heuristic which combines WY and RZ heuristics. One of their heuristics, IH7, consists 

of three steps. The first step has the initial solution which is obtained by WY heuristic. The 

second step produces a schedule by using the second phase of RZ heuristic. Lastly, a local search 

method is used to improve the solution. This heuristic gives solutions better than those found 

independently with the two heuristics involved. 

Some of the heuristics discussed above use search techniques such as simulated annealing, tabu 

search or genetic algorithm in their solution methods. Known as meta-heuristics, they are 

applicable to wide range of problems and are not restricted by problem size as the enumeration 

methods. Meta-heuristics are classified as approximate algorithms since they obtain near optimal 

solutions whereas deterministic algorithms obtain optimal solutions. Simulated annealing was 

first presented by Kirkpatrick et al. [51]. The algorithm starts by generating an initial solution 

and by initializing parameter ‘T’. This parameter is known as temperature. The algorithm 

replaces the present solution with a solution from its neighborhood if that solution is better than 

the current one. The solution is found with help of a function. The algorithm also replaces the 

current solution with a bad solution from its neighborhood if it satisfies a probability. The 

probability is a function of parameter ‘T’ and difference in the values of functions. The value of 

‘T’ is decreased gradually during the search process, thus at the beginning of the search the 

solution is replaced frequently and less frequently as the value decreases. The above steps are 

repeated until a termination criterion is reached. The main advantage of this meta-heuristic is that 

the problem does not get stuck at local minima because of the inclusion of the probability 

T
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function. But the main disadvantage is that the method takes large amount of time to get the 

solution. 

Considerable research was done by using simulated annealing in the field of scheduling. Ruiz-

Torres, Enscore, and Barton [59] presented a heuristic based on simulated annealing to minimize 

the average flow time and number of tardy jobs on identical parallel machine problem. Low, 

Yeh, and Huang [60] presented a simulated annealing heuristic for flow shop scheduling 

problems. A heuristic on unrelated parallel machines problem was given by Low [61].  

Tabu search is also an iterative procedure which searches for a better solution in a neighborhood. 

The algorithm contains a list of solutions that have been previously visited and when moving 

into a new neighborhood, the algorithm excludes these solutions [52]. The algorithm tries to 

search for the best solution which is not contained in the list. The advantage of this method is 

also that it avoids local minima but a proper termination condition has to be set, which otherwise 

may end in the method not providing a good result [53]. Apart from scheduling tabu search has 

its applications in inventory management, telecommunications industry and in design area [53]. 

Heuristics based on tabu search were developed for flow shop scheduling problems [62] [63]. 

Grabowski and Wodecki [63] presented a heuristic for minimizing makespan for a permutation 

flow shop problem. A heuristic for minimizing flow time was developed by Chen, Usher, and 

Palanimuthu [64].  

Based on laws of natural selection and survival of the fittest [9], Genetic Algorithms are also an 

iterative procedure where each iteration is called a generation. In this method the solution is 

represented by a chromosome and is generally called solution candidate or population (collection 

of chromosomes). A chromosome consists of genes which represent the encoding of the solution 

to the problem. Typically in one generation, or iteration, new population is created called off-

springs and then each off-spring is modified assuming it will result in improvement of the 

obtained population. An off-spring is created by combining two chromosomes by applying a 

crossover operator. This off-spring is then mutated to slightly modify it. A good solution is 

expected at end of each generation.  
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The performance of a GA can be affected by combination of selection methods, mutation 

methods and crossover methods. Various techniques can be found for chromosome 

representation. Also known as encoding, the coded variables or genes can be represented in 

various formats such as binary code, real number and letter. The binary code is used generally in 

classical encoding problems such as capacity lot sizing while the use of real coded GA has 

increased due to the wider applications. 

Selection method plays an important role in functioning of GA by differentiating good 

population from bad and thus has a role in selecting populations which are to be mated or have to 

be advanced to next generation.   

The mutation operation is performed on a single chromosome to slightly alter the gene sequence. 

Some of the types of mutation strategies available are: 

 

• Inversion mutation [9] [65]: 

In this method, a part of the chromosome is selected and the genes present in that part are 

inverted. In Figure 2-2, the part of the chromosome selected to be inverted is shown. 

 
 
      

      
P1 5 2 4 1 3 
      

2-2(a): Before mutation 
 

 

P1 5 1 4 2 3 
 

2-2(b): After mutation 
 

Figure 2-2: Inversion mutation 

• Insertion mutation [9] [66]: 

In this method a gene is selected randomly and then inserted in a random position. Figure 

2-3 illustrates the process.  
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P1 5 2 4 1 3 
      

2-3(a): Before mutation 
 
 

P1 5 4 1 3 2 
 

2-3(b): After mutation 
 

Figure 2-3: Insertion mutation 

 
 
 

• Reciprocal exchange mutation [9] [67]: 

In this method, two genes are selected at random and then the positions are exchanged. 

  
 
   

 
   

P1 5 2 4 1 3 

Gene selected Insertion point

 

2-4(a): Before mutation 
 
 

P1 5 1 4 2 3 
 

2-4(b): After mutation 
 

Figure 2-4: Reciprocal exchange mutation 
 
The crossover operator is applied to parent population by selecting two chromosomes at a time to 

generate children or off-spring by exchanging genes between the two parents. There are various 

techniques to perform crossover operation. Some crossover strategies are:  

 

• Single cut-point crossover [9]: 

Also known as single point crossover, in this method a crossover point is selected on the 

parent chromosome and all the genes beyond this point are swapped between the two 

parent chromosomes.  
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P1 5 2 4 1 3 

   
 
  

 
 

P2 8 9 2 7 6 
 

2-5(a): Parent chromosomes 
       
P1’ 5 2 4 7 6 
       
P2’ 8 9 2 1 3 

  

2-5(b): Off-spring 
 

Figure 2-5: Single cut-point crossover 
 

• Two point crossover [68] [69]: 

In this method, two points are selected on the parent chromosomes and the genes present 

in between the two cut points are swapped.  

      

 
 
   

 
  

 
 

P1 5 2 4 1 3 
 

 
 
   

 
    

  P2 8 9 2 7 6 
 

2-6(a): Parent chromosomes 
      

 
 
   

 
    

P1’ 5 9 2 1 3 
 

 
 
   

 
    

  P2’ 8 2 4 7 6 
 
 

2-6(b): Off-spring 
 

Figure 2-6: Two point crossover 
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• Order-based crossover [9]: 

In this method a set of positions from one of the parent chromosomes are selected. The 

values present in those positions in that order replace the same value positions in second 

parent chromosome. Only one off-spring is generated through this crossover strategy. 

  
 
    

 
  

P1 5 2 4 1 3 
 

P2 1 3 4 2 5 
 

2-7(a): Parent chromosomes 
 

 1 2 4 3 5 
 

2-7(b): Off-spring 
 

Figure 2-7: Order-based crossover 

 
• Multi-Chromosome crossover: 

Süer et al. [55] presented a new crossover technique known as Multi-Chromosome 

crossover strategy. The crossover is done between two part chromosomes as opposed to 

the conventional method where crossover is performed between two entire chromosomes. 

Süer et al. [55] demonstrated this strategy for a multi-product, multi-period capacitated 

lot sizing problem. In this problem the chromosome has multiple blocks and the blocks 

are considered as part chromosomes. Each block represents a separate product as shown 

in Figure 2-8(a). Taking a population size of 4, the part chromosomes for entire 

population are shown in Figure 2-8(b).  The part chromosomes are ranked as shown in 

Figure 2-8(c). In this crossover strategy, the ranked part chromosomes are divided into 

three groups namely X, Y and Z groups. The size of each group depends on the ratio i.e. 

top x % are allotted to group X, the next y % are allotted to group Y and the remaining 

are allotted to group Z. The first part chromosome from Z group is crossed over with the 

first part chromosome from X group (the best group), second part chromosome from Z 

group with second one in X group and so on. The same pattern is followed for Y group 

also. The part chromosomes in X group are crossed over with in the group. 
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1 2 3 4 1 2 3 5 2 3 4 5
 

Product 1 
 

Product 2 Product 3 

2-8 (a): Entire chromosome representation  

 

C 1  2 1 4 3 ff =5 1 5 2 3 ff =3 3 5 2 4 ff =2 

 

C 2  1 4 2 3 ff =3 2 5 3 1 ff =7 4 2 3 5 ff =5 

 

C 3  3 1 4 2 ff =8 5 3 1 2 ff =4 3 4 5 2 ff =8 

 
                            

C 4  4 2 3 1 ff =9 3 5 2 1 ff =8 5 3 4 2 ff =9 

 
         Product 1                       Product 2                     Product 3 

 
2-8 (b): Part chromosome representation  

 

 

C 2 1 4 2 3 ff =3    C 1 1 5 2 3 ff =3   C1 3 5 2 4 ff =2 

 

C 1 2 1 4 3 ff =5    C 3 5 3 1 2 ff =4   C2 4 2 3 5 ff =5 

 

C 3 3 1 4 2 ff =8    C 2 2 5 3 1 ff =7   C3 4 2 3 5 ff =8 

 
     

C 4 4 2 3 1 ff =9    C 4 3 5 2 1 ff =8   C4 5 3 4 2 ff =9 

 
Product 1                                 Product 2                            Product 3 

 
2-8(c): Ranking part chromosomes according to fitness values (ff) 

 

Figure 2-8: Multi-Chromosome crossover 
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The production schedule of each product is determined for this period of time to minimize the 

total cost incurred in manufacturing the products. The GA developed for this problem using the 

multi-chromosome crossover strategy presented good results. This representation of chromosome 

is similar to a multi-stage flow shop environment, where a chromosome can be divided into 

parts, each part representing a stage. The minicell configuration manufacturing system is similar 

to a multi-stage flow shop environment. This method is thus used to solve the minicell 

configuration problem. 
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CHAPTER 3 

3 METHODOLOGY 
 

The general framework of the minicell configuration considered in this research and the 

methodology followed to develop the genetic algorithm are described in detail in this chapter. 

The proposed genetic algorithm attempts to reduce the average flow time in a multi-stage 

minicell configuration, which resembles a flow shop environment. This objective is achieved by 

trying to obtain an optimal sequence of jobs to be processed on machines at the minicell level.  

 

3.1 Description of Minicell Configuration 
 

A brief description of a minicell configuration has already been provided in Chapter 2. The basis 

to form minicells and the importance of option-machine matrix has been presented. This section 

provides the additional information required about minicell configuration. The minicell 

assignment matrix gives the information about minicell configuration. It is similar to the option-

machine matrix (Figure 2-1), but with machine numbers being replaced by number of stages. The 

values of the matrix indicate the minicell number in which the corresponding option can be 

processed. An example family formation matrix is shown in Figure 3-1. 

 
Stage 1 Stage2 Stage3

Option 1 1 3 1
Option 2 3 2 1
Option 3 2 1 3
Option 4 1 2 1

Feature 3 Option 5 2 3 2

Feature 1

Feature 2
 

Figure 3-1: Minicell Assignment matrix 

3.2 Operation of Minicell configuration 
 

The product variants are routed through the minicells, as necessary, depending on the options 

chosen, to complete the processing. Since the processing needs of options do not remain same in 

all stages, options belonging to one family in one stage can be routed to a different minicell in 

the next stage. Consider the data presented in Figure 3-2(a) and Figure 3-2(b).  
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Feature 1 Feature 2 Feature 3
Product 1 1 3 1
Product 2 3 2 1
Product 3 2 1 3
Product 4 1 2 3
Product 5 2 3 2  

3-2(a) 
Stage 1 Stage2 Stage3

Option 1 1 3 1
Option 2 3 2 1
Option 3 2 1 3
Option 1 2 1 3
Option 2 1 3 2
Option 3 1 2 1
Option 1 2 1 3
Option 2 1 3 2

Feature 3 Option 3 2 3 2

Feature 1

Feature 2

 
3-2(b) 

Figure 3-2 

 

Figure 3-2(a) gives the product structure and Figure 3-2(b) gives the minicell assignment details. 

With this data, the manufacturing system can be represented as shown in the following Figure 

3-3. The routing of product 1, product 2 and product 3 is shown in Figure 3-3. 

 

Minicell 
11 

Minicell 
12 

 

Minicell 
13 

 

Minicell 
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Minicell 
22 

 

Minicell 
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Minicell 
31 

 

Minicell 
32 

 

Minicell 
33 

 

Product 1 

Product 2 

Stage 1 Stage 2 Stage 3

Product 3 

 

 

 

 

 

 

 

 

 

 

Figure 3-3: Operation of minicell manufacturing system 
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The above figure explains how the products flow through the system. Three stages are present 

according to the data in Figure 3-2. The number of minicells per stage is also given in that 

matrix.  The routing of each product as it progresses through the stages is shown. Based on the 

option number chosen for each product, the product structure varies. At the end of all the stages, 

the customized options for the product variant are completely processed.  

 

After the routing of all the product variants has been established, the sequence in which these 

jobs will be processed needs to be determined. Though minicells are smaller than traditional 

cells, but operate similarly, the same flowshop scheduling techniques can be applied here as well 

[17]. Either a permutation or a non-permutation schedule can be developed. While a permutation 

schedule is more suitable for a traditional flowshop problem where all the jobs have to be 

processed on each machine, the same may not hold good for a minicell configuration. All the 

jobs do not enter every minicell and thus may also skip some machines in minicells when 

processing on those machines is not required. Since the option-families also do not remain the 

same in every stage, developing a permutation schedule may not result in effective minicell 

functioning. Therefore, in this research a non-permutation schedule is to be established. 

Developing a schedule with the objective function of minimizing average flow time is 

considered for the present research problem. Flow time is one of the important factors in 

evaluating the performance of minicell. Optimizing the considered objective will not only have 

an effect on the delivery time of the orders [7] but also on the resources [37] in the system. 

Hence an effective solution method has to be developed to solve the scheduling problem. 

 

3.3 Minimum Flow Time Schedule Genetic Algorithm (MFGA) 
 
The details of the MFGA developed to solve the multi stage flow shop scheduling problem in 

minicell configuration are outlined in the sections below. Some of the assumptions considered in 

the scheduling problem are: 

 

• Pre-emption is not allowed 

• Set up times are not considered 

• Jobs are available at time zero i.e. start of problem 
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• All jobs are equally important 

• Jobs have multiple operations 

• Non-permutation sequence is considered 

 

The entire working of the MFGA is represented in a flow chart diagram in Figure 3-4.  
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Figure 3-4: Flow chart representation of working of GA 
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3.3.1 Chromosome Representation 
 
Each chromosome has ‘S’ blocks, each block representing a separate stage. There are ‘mcs’ 

blocks in every stage, each representing a minicell in that stage. The number of stages and 

minicells depend on the type of problem. The genes in each minicell section of the chromosome 

shows the sequence which is to be followed in processing the jobs in that particular minicell. 

Hence the numbers of genes in minicells do not remain constant throughout the chromosome. 

Also some jobs may skip some minicells based on the minicell design. Whenever a product 

variant does not require processing on any of the machines in a minicell, it does not visit that 

minicell. Hence, minicell skipping can take place. This contributes to the variation of number of 

genes in different minicells within a single chromosome. For example we consider a 3 stage 

problem with 2 minicells in each stage. Let the number of jobs be 6. The Figure 3-5 represents 

one possible chromosome representation.   
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Figure 3-5: Chromosome representation 
 

In the above chromosome, for each minicell, the genes represent the job sequence with the kth 

job being in position ‘K’ in sequence. Thus, for example, in minicell 1, job 2 is the 2nd in 

sequence. Each minicell has a unique sequence. As explained previously, the number of genes in 

each minicell varies since all jobs do not have to visit every minicell. 

 

3.3.2 Fitness Function 
 
The objective in the MFGA is to minimize the average flow time to complete the product 

variants. Flow time (f i) is defined as the amount of time a job remains in the system. It is given 
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by the difference between completion time (c i) and ready time (r i), i.e. f i = c i – r i for job i. The 

average flow time is calculated by taking the average of flow times of individual jobs. The 

chromosome with the least fitness function value is the most desired.  

3.3.3 Selection and Reproduction 
 
The population size remains same throughout the problem. When selecting parents for genetic 

operations, the entire initial population is considered for the first generation. From second 

generation onwards, the off-springs created from the previous generation are taken as parents. 

3.3.4 Crossover Strategy 
 
Due to division of chromosomes into stages and subsequent division into minicells, the multi-

chromosome crossover strategy [55] was applied in the GA. This strategy has already been 

explained in Chapter 2. The crossover is done between two part chromosomes as opposed to the 

conventional method where crossover is performed between two entire chromosomes. In the 

MFGA, genes for each minicell are considered a separate part. Each part chromosome has a 

separate fitness function value, average flow time (favg), depending on its sequence. For example 

if there are 3 minicells per stage and population size of 4, then for each minicell there are 3 part 

chromosomes within a stage as shown in Figure 3-6(a). These part chromosomes are ranked 

according to fitness function value as shown in Figure 3-6(b). 

 

C 1  2 1 4 3 favg =5 1 5 2 3 favg =3 3 5 2 4 favg =2 

 

C 2  1 4 2 3 favg =3 2 5 3 1 favg =7 4 2 3 5 favg =5 

 

C 3  3 1 4 2 favg =8 5 3 1 2 favg =4 3 4 5 2 favg =8 

 
                            
C 4  4 2 3 1 favg =9 3 5 2 1 favg =8 5 3 4 2 favg =9 

 
                           Minicell 1                       Minicell 2                     Minicell 3 

 

3-6 (a): Part chromosome representation for one stage 
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C 2  1 4 2 3 favg =3    C 1 1 5 2 3 favg =3   C1 3 5 2 4 favg =2 

 

C 1  2 1 4 3 favg =5    C 3   5 3 1 2 favg =4   C2 4 2 3 5 favg =5 

 

C 3  3 1 4 2 favg =8    C 2   2 5 3 1 favg =7   C3 4 2 3 5 favg =8 

 
     
C 4  4 2 3 1 favg =9    C 4   3 5 2 1 favg =8   C4 5 3 4 2 favg =9 

 
              Minicell 1                                 Minicell 2                            Minicell 3 
 
 

3-6(b): Ranking part chromosomes according to fitness values: average flow time (favg) 

Figure 3-6 

 

The Multi-Chromosome crossover strategy, where part chromosomes are divided into groups and 

a crossover proceeds is described below. Let X=50%, Y=25% and Z=25%. For example, the 

ranked part chromosomes are then grouped as shown in Figure 3-7. Crossover is then applied for 

each minicell segment separately. Thus for minicell 1, the part chromosome from group Z i.e. C4 

is crossed over with C2 as shown in Figure 3-8(c). Similarly C3 from group Y is crossed over 

with C2 as shown in Figure 3-8(b). For X group, the crossover is done between C2 and C1, 

within the group, as shown in Figure 3-8(a). 

 

The cut point is randomly determined for each instance and does not remain constant. After the 

crossover is done, the new part chromosomes are checked to see for repetition of the values in 

genes. If a number is found more than once then, a repairing action is performed. This number is 

replaced by the missing number so that the resulting string presents a complete sequence for 

processing the jobs.  

 

If the number of part chromosomes in Y or Z group are more than those in X group then the 

sequence of part chromosomes in X group are repeated for the remaining ones. For example, if 

there are 5 part chromosomes in Y group and only 3 part chromosomes in X group then the first 
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3 part chromosomes from Y group are crossed over with corresponding ones in X group. For the 

4th part chromosome onwards the sequence for X group starts from 1st part chromosome. The 

above procedure is repeated in every minicell.   

 

X-Group: 

C 2  1 4 2 3 favg =3    C 1 1 5 2 3 favg =3   C1 3 5 2 4 favg =2 

 

C 1  2 1 4 3 favg =5    C 3   5 3 1 2 favg =4   C2 4 2 3 5 favg =5 

 

Y-Group: 

C 3  3 1 4 2 favg =8    C 2   2 5 3 1 favg =7   C3 4 2 3 5 favg =8 

 
Z-Group: 
     
C 4  4 2 3 1 favg =9    C 4   3 5 2 1 favg =8   C4 5 3 4 2 favg =9 

 
          Minicell 1                                 Minicell 2                            Minicell 3 
 

Figure 3-7: Ranked part chromosomes divided into groups 

 
 

C 2  1 4 2 3                  C 2’ 1 2 4 3  

 

C 1 2 1 4 3                  C 1’ 2 4 1 3  

 

3-8 (a): Group X part chromosomes crossed over within the group 

 

C 2  1 4 2 3                  C 2’ 1 4 3 2  

 

C 3  3 1 4 2                  C 3’ 3 1 2 3  

 

3-8 (b): Group Y part chromosome crossed over with the one in group X 
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C 2  1 4 2 3                  C 2’ 1 2 3 4  

 

C 4 4 2 3 1                  C 4’ 4 1 2 3  

 

3-8 (c): Group Z part chromosome crossed over with the one in group X 

 

Figure 3-8: Illustration of crossover strategy for part chromosomes of minicell 1 

 

3.3.5 Mutation Operator 
 
The Reciprocal exchange mutation [25] is applied for the MFGA in this research. In general, in 

this operation two genes are selected at random and their positions are exchanged. Thus we get a 

new sequence in the chromosome.  

 

 
Old part chromosome    4 1 3 2 

 
 

New part chromosome 3 1 4 2 
 

Figure 3-9: Illustration of mutation operation 

 
In the MFGA mutation is applied for each part chromosome, that is minicell, separately. The 

above figure explains the process involved in Reciprocal exchange mutation. The genes present 

in the part chromosome are assigned random numbers and the first gene whose random number 

is less than the mutation probability is chosen for mutation. The other gene is selected randomly 

from the same minicell or part chromosome and both these genes are exchanged.  

 

3.3.6 Regrouping 
 
When the above two genetic operations are completed all the part chromosomes are joined to 

form the final single chromosome. The first part chromosome in order from each minicell group 
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is taken and joined to form one single chromosome. The first part chromosomes are the best 

ranked ones in previous operations. Similarly, rests of chromosomes are formed in the sequence. 

The MFGA is terminated after the required number of generations. 

3.3.7 Software Program for MFGA 
 
In this section the working procedure of the proposed genetic algorithm is discussed. The 

following steps give the sequence in which the algorithm proceeds: 

 

3.3.7.1 Initial population 
 
The initial population consists of (C) chromosomes. The first chromosome is generated with the 

help of the data that user gives as input. The following parameters are the input given by the 

user: 

• Number of machines 

• Number of products 

• Number of features 

• Number of stages 

• Number of chromosomes(population size) 

• Mutation probability 

• Number of generations 

• Number of trials 

• Processing times of each option on every machine: Option-machine matrix 

• Product ID (Figure 3-11) 

• Family formation matrix  

 

These parameters are given through the interface created for the MFGA shown below.  
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3-10(a): Screenshot of interface; Input data is entered 

 

 
3-10(b): Screenshot of interface; Option-machine matrix 

Figure 3-10: Screenshots of Interface 
 
Product ID gives the final representation of the product composition from its product structure 

(Figure 1-1). It represents the option number of each feature which is required to complete the 

processing of the product as shown in Figure 3-11.  
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3-11(a): Product ID 

 

 
3-11(b): Product ID: Each division represents a feature containing the corresponding option 

number  

Figure 3-11: Product ID 
 
By considering the relation between number of minicells per stage, family formation matrix and 

the product ID, a sequence is generated for each minicell. When the sequence of each minicell is 

combined we get the entire scheduling sequence covering all the stages to complete the 

manufacturing in all minicells. The first chromosome is formed by combining all the sequences 

obtained for each minicell. The rest of the chromosomes for the initial population are formed by 

essentially shuffling or randomizing the genes within each minicell. Care is taken that the no 

extra job is allowed into or omitted from the original sequence. 

 

The above mentioned MFGA was developed by coding in Microsoft Visual Basic.NET. The ease 

of creating an interface for the user coupled with the ability to present the work as an executable 

 36



 

file contributed to the choice of selecting Visual Basic.NET as the programming language. The 

interface created for the MFGA and the steps in which it proceeds are explained in Appendix II.  
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CHAPTER 4 

4 EXPERIMENTATION 
 
The experimentations conducted with different problems using the MFGA are presented in this 

chapter. The test problems were also solved by applying the FL heuristic. The results obtained by 

using the heuristic are then compared with the results obtained from MFGA to evaluate the 

effectiveness of the proposed method.   

 

4.1 Initial MFGA testing parameters 
 
Test cases were developed to test the performance of MFGA. Table 4-1 shows the various input 

parameters considered for all the problems tested. 

 

Table 4-1: Input parameters 

 Parameters Values 

1 Number of machines  5 

2 Number of features customized 3 

3 Number of options per feature 2 

4 Number of stages  2 

5 Population size  (i)10 

(ii)20 

(iii)30 

6 Mutation probability, (Pm) (i) 0.1 

(ii)0.2 

 (iii)0.3 

 

 

Four different strategies were considered with the Multi-chromosome crossover strategy to 

divide the population into groups. The strategies vary based on percentage of the population 

assigned to each group i.e. different values of X, Y and Z as shown in Table 4-2 below. 
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Table 4-2: Four strategies for Multi-chromosome crossover strategy 

Percentage assigned  

         Strategy X Y Z 

Strategy 1 50 25 25 

Strategy 2 25 25 50 

Strategy 3 33 33 34 

Strategy 4 30 30 40 

 

For each strategy the genetic algorithm was run for 50, 100 and 200 generations while the 

number of trials remains constant at 30 i.e. for example, each population size and generations 

combination, repeated with the corresponding mutation probability, is run for 30 times to 

evaluate the repeatability of MFGA results. Data regarding the formation of option-machine 

matrix, product ID and family formation matrix is given below.  

 

The following table gives the values of processing times (minutes) of each option on all 

machines: 

Table 4-3: Option-Machine matrix 

        m/c’s  
Options  

M1 
 

M2 M3 M4 M5 

11 3 4 2 0 6 
12 5 1 4 3 3 
21 10 9 5 12 10 
22 6 4 4 6 6 
31 0 7 9 5 10 
32 5 0 7 10 5 

 

The options are represented by a two digit ID. The first digit represents the feature number. The 

second digit in the ID corresponds to the option number corresponding to the feature represented 

by the first digit. For example, 12 denote the second option for feature 1. Hence the processing 

 39



 

time of each product can be calculated by combining the processing times of each option of a 

feature selected by the user.  

 

The manufacturing system is assumed to have two stages in this problem. The following table 

gives the assignment of machines shown in Table 4-4 to each stage. 

 

Table 4-4: Assignment of Machines 

 Stage 1 Stage 2 

Machines M1 M2 M3 M4 M5 

 

 

4.2 FL Heuristic 
 

The multi-stage scheduling problem for minimizing average flow time was also solved by using 

Framinan and Leisten (FL) heuristic [21]. It is based on the NEH heuristic [45]. Though the NEH 

heuristic was developed with the objective of minimizing the makespan, the FL heuristic utilizes 

one of its concepts in developing the heuristic for minimizing total flow time objective. The 

initial step of ordering the jobs in descending order of sum of processing times and then forming 

the partial schedules is borrowed into this heuristic. But instead of ordering them in descending 

order of sum of processing times, they are ranked in ascending order.  

The following steps are followed to solve the problem using FL heuristic (adapted from [21]). 

Step1: 

Set K = 1. The jobs are ordered according to ascending sum of processing times. The best job 

with the shortest processing time is selected and set the partial schedule as current solution S and 

remaining jobs are stored in a set R.  

Step 2: 

Update K = K + 1 

 40



 

Step 3: 

The Kth job is then inserted into the k possible slots, and the partial schedule with lowest flow 

time is retained as best solution. Set this solution as S. This job is then removed from the original 

ordered list R.  

Step 4: 

If k > 2, a general pair wise interchange is applied to this partial schedule, i.e. all the possible 

combinations of the jobs are checked, and the best partial solution with respect to flow time is 

retained as solution S. 

Step 5: 

If the set R is null then stop, else go to Step 2.  

 

Since this heuristic is specifically developed for a permutation flow shop, minor modifications 

are needed before applying it to scheduling a minicell configuration. This heuristic is 

individually applied to each minicell as a separate flow shop scheduling problem to get the best 

possible sequence. The fitness value is the average flow time. In the calculation of fitness value 

for a given minicell, the completion times for products from the preceding minicell are 

considered.  

 
The FL heuristic performs better than the RZ heuristic and WY heuristic discussed in previous 

chapters. This heuristic can also be used as part of a composite heuristic. One such heuristic, 

IH7-FL [37], outperforms even this heuristic. The problem set prepared for the initial testing of 

the MFGA are used to obtain the minimum average flow time schedule with the heuristic. These 

values are then compared with those obtained using the MFGA to evaluate the effectiveness of 

the latter.  
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4.3 Test problems 
 

The three test problems are compared in the following sections.  The information about the 

product structure and minicell assignment is given separately for each problem.  

 

4.3.1 Two Product Variant Problem 
 

The input parameters are already given in Tables 4-1 to 4-5. The following table gives the 

options chosen for each feature, for the five jobs considered in this problem. The number in each 

column represents the option chosen for the particular feature. For example, Product 2 = option 2 

for feature 1 + option 1 for feature 2 + option 2 for feature 3. Each job is assigned a different 

product ID.  

 

Table 4-5: Product ID 

 Feature 1 Feature 2 Feature 3 

Product 1 1 2 1 

Product 2 2 1 2 

Product 3 1 2 1 

Product 4 2 1 2 

Product 5 1 2 1 

 

Even though there are five products given in the above table, only two distinct product variants 

exist. While products 1, 3 and 5 constitute one variant (i.e. 1-2-1 combination), products 2 and 4 

constitute the second variant (i.e. 2-1-2 combination). In scheduling, each product is considered a 

separate job because they will be processed on a make-to-order fashion for mass customization. 

  

The following table gives the minicell assignment matrix i.e. information regarding the 

assignment of options to minicells in each stage. 
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Table 4-6: Minicell assignment matrix 

 Options Stage 1 Stage 2 

11 1 3 
Feature 1 12 2 1 

21 1 2 
Feature 2 22 2 1 

31 1 2 
Feature 3 32 3 1 

 

From the above table it can be seen that options 11, 21 and 31 are routed into minicell 1 of 

stage1, options 12 and 22 are routed into minicell 2 while option 32 is routed to minicell 3. In 

stage 2 options 12, 22 and 32 are routed to minicell1; options 21 and 31 are routed to minicell 2 

while option 11 is routed to minicell 3.  

 

The above test problem 1 is solved by using the FL heuristic. The detailed calculations are 

presented in Appendix I. The result obtained from this calculation is give below in Figure 4-1. 

 

 

1 4 2 3 5 1 4 2 3 5 4 2 1 4 2 5 3 1 4 2 3 5 1 3 5
Minicell 22 Minicell 23

Minicell 13

            Stage 1             Stage 2

Minicell 11 Minicell 12 Minicell 21

 

Figure 4-1: Sequence obtained by FL heuristic 

 

The average flow time obtained for the above sequence is: Favg = 105 minutes. 

 

 

Results from MFGA 

 

The MFGA was then used to solve the same problem. The results obtained after completing the 

runs for all four strategies, for all combinations of number of generations and different mutation 

probabilities, are tabulated as shown in Tables 4-7 to 4-13. 
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The results presented in Table 4-7, Table 4-8, Table 4-9 and Table 4-10 are the best fitness 

values obtained after 30 trials for Strategy 1, Strategy 2, Strategy 3 and Strategy 4 respectively.  

 

In Table 4-11, the results are presented summarized with respect to the three generation numbers 

considered. The mean value is the average of all the best fitness values obtained for every 

population size and mutation probability after 30 trials. From the values it appears that 100 

generations gives the best result when both mean and standard deviation are considered.  While 

200 generations gives the lowest average result for all strategies, except Strategy 3, the standard 

deviation with 200 generations is generally higher. 

 

Table 4-12 gives the mean and standard deviation, after 30 trials, for average flow time with 

respect to population sizes. Strategy 1 with a population size 20 gives the best result, with lowest 

standard deviation value and a low mean fitness value. Population size of 30 also delivers a good 

result, with a lower mean value but higher standard deviation than with population size of 20. 

The other combinations do not present such good results.  

 

Table 4-13 presents the results compared with respect to the different mutation probabilities 

(Pm). The three different values considered are 0.1, 0.2 and 0.3. Strategies 1, 2 and 4 give a good 

result for Pm=0.1 with Strategy 1 giving the least mean fitness value. Combination of Strategy 2 

and Pm=0.2 also gives a comparable result, while other combinations have higher standard 

deviations.  
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The MFGA has given solutions which are better than the FL heuristic in two instances. In 

Strategy 1, for a combination of 200 generations, 10 population size and Pm= 0.3 the MFGA has 

given an average flow time of 102 minutes. In Strategy 4, for a combination of 100 generations, 

10 population size and Pm= 0.2 the MFGA gives an average flow time of 104 minutes. The 

sequences given by the MFGA for the above two cases are presented below: 

 

1 5 3 2 4 1 5 3 2 4 2 4 5 3 1 2 4 5 3 1 2 4 3 5 1
Minicell 22 Minicell 23

Minicell 13

            Stage 1             Stage 2

Minicell 11 Minicell 12 Minicell 21

 
Favg = 102 minutes 

Figure 4-2: Sequence obtained by MFGA for Strategy 1 
 

5 3 2 1 4 5 3 2 1 4 2 4 5 3 2 1 4 5 3 2 1 4 3 5 1
Minicell 22 Minicell 23

Minicell 13

            Stage 1             Stage 2

Minicell 11 Minicell 12 Minicell 21

 
Favg = 104 minutes 

Figure 4-3: Sequence obtained by MFGA for Strategy 4 
 

 

 

The results obtained with the different strategies, as well as other parameters, are quite variable 

as can be observed from the results presented. However, the standard deviation is small and, in 

most cases, the results lie within a short range Scatter plots were developed for different numbers 

of generations, population sizes and mutation probabilities to identify the most effective 

combinations that generate the minimum average flow time schedule. Figure 4-4(a) presents the 

scatter plot for number of generations, Figure 4-4(b) for population sizes and Figure 4-4(c) for 

mutation probabilities.  
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4-4(a): Variation of Average flow time with Number of Generations 
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4-4(b): Variation of Average flow time with Population sizes  
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4-4(c): Variation of Average flow time with Mutation probabilities  

Figure 4-4: Scatter Plots 
 

In the above figures, data points in the lower left region of the graph are the most desired 

combinations. These scatter plots exposes the data points which have low mean average flow 

time as well as a low standard deviation. From Figure 4-4(a) it can be observed that 100 

generations with Strategies 1, 2 and 3 lie in the desired region. In Figure 4-4(b) strategy 1 and 

population sizes 20 and 30 lie in the lower left region of the plot making them the desired values. 

In Figure 4-4(c) a Pm = 0.1 with Strategies 1, 4 and Pm = 0.3 and Strategy 3 lie in the desired 

region.  

 

Convergence diagrams were also used to evaluate the performance of the MFGA. Convergence 

diagram for a 50 generations case is shown in Figure 4-5. The average flow time values for the 

50 generations are taken from a Strategy 1 test problem with population size of 10 and Pm=0.1. 

The average flow time values for the 100 generations case shown in Figure 4-6(a) are taken from 

a Strategy 1 test problem with population size of 10 and Pm=0.3. Figure 4-6(b) represents for 200 

generations case  and the values are taken from a Strategy 1 test problem with population size of 

30 and Pm=0.3. 
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Figure 4-5: Convergence diagram for 50 generations MFGA problem 
 

The following figures present the convergence diagrams for 100 and 200 generations. It can be 

observed that, in all three cases, the MFGA is converging before 100 generations are completed. 

This indicates that using the MFGA for more than 100 generations, most likely does not have 

any significant benefit.  
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4-6(a): Convergence diagram for 100 generations MFGA problem 
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4-6(b): Convergence diagram for 200 generations MFGA problem 

Figure 4-6: Convergence Diagrams 

 

From the above information it can be deduced that Strategy 1 gives better results when compared 

to the other ones. This strategy combined with 100 generations, 20 or 30 population size and Pm 

= 0.1 is likely to present schedules that gives the lowest average flow time with the multi-stage 

minicell configuration considered.    

 

4.3.2 Six Product Variant Problem 
 

The number of product variants in the problem is increased to six. Table 4-14 gives the product 

structure. The previous problem had five products but only 2 product variants. In this problem, 

there are six products and six different product variants. The six different product variants that 

have to be scheduled are represented in Table 4-14. The assignment of options to minicells is 

given in Table 4-15.  
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Table 4-14: Product ID; product structure 

 Feature 1 Feature 2 Feature 3 
Product 1 1 2 1 
Product 2 2 1 2 
Product 3 2 1 1 
Product 4 1 2 2 
Product 5 1 1 2 
Product 6 2 2 1 

 

Table 4-15: Minicell assignment 

 Options Stage 1 Stage 2 

11 1 2 Feature 1 12 2 1 
21 1 3 Feature 2 22 3 2 
31 2 1 Feature 3 32 1 3 

 

From the above information, the path of each product variant through the minicell configuration 

can be identified. The problem was solved by using the FL heuristic as indicated earlier. The 

schedule obtained from the heuristic is given in Figure 4-7. The average flow time obtained for 

this sequence is 115 minutes.  

 

1 4 3 2 5 1 6 3 2 1 4 6 1 6 2 3 4 1 5 6 4 5 2 3
Minicell 22 Minicell 23

Stage 1 Stage 2

Minicell 11 Minicell 12 Minicell 13 Minicell 21  

Figure 4-7: Sequence obtained by FL heuristic 

 
The problem was then solved by applying MFGA. All the four strategies (given in Table 4-2) 

were considered; population size of 20, mutation probability of 0.1 and 100 generations were 

chosen for the experimentation based on the analysis of previous results. The results obtained 

from the MFGA are presented below. 

 

Strategy 1: 

The sequence obtained is shown in Figure 4-8. The average flow time obtained for this schedule 

was 107 minutes. 
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4 1 3 5 2 6 1 3 2 4 6 1 1 3 2 6 4 5 1 6 4 5 3 2
Minicell 2 Minicell 3

Stage 1 Stage 2

Minicell 1 Minicell 2 Minicell 3 Minicell 1  

Figure 4-8: Sequence obtained by MFGA for Strategy 1 
 

Strategy 2: 

The sequence obtained is shown in Figure 4-9. The average flow time obtained for this schedule 

was 106 minutes. 

 

1 4 3 5 2 6 1 2 3 6 4 1 1 6 2 3 4 5 1 6 4 5 2 3
Minicell 2 Minicell 3

Stage 1 Stage 2

Minicell 1 Minicell 2 Minicell 3 Minicell 1  

Figure 4-9: Sequence obtained by MFGA for Strategy 2 
 

Strategy 3: 

The sequence obtained is shown in Figure 4-10. The average flow time obtained for this schedule 

was 111 minutes. 

 

1 3 4 2 5 1 6 3 2 6 4 1 6 2 1 3 4 6 5 1 4 2 3 5
Minicell 2 Minicell 3

Stage 1 Stage 2

Minicell 1 Minicell 2 Minicell 3 Minicell 1  

Figure 4-10: Sequence obtained by MFGA for Strategy 3 

 

 

Strategy 4: 

The sequence obtained is shown in Figure 4-11. The average flow time obtained for this schedule 

was 107 minutes. 

 

1 4 5 3 2 6 1 2 3 6 4 1 6 1 2 3 5 4 6 1 5 4 2 3
Minicell 2 Minicell 3

Stage 1 Stage 2

Minicell 1 Minicell 2 Minicell 3 Minicell 1  

Figure 4-11: Sequence obtained by MFGA for Strategy 4 
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In addition to the above four strategies the problem was also solved by assigning the following 

values to X, Y and Z groups: 

 

X % = 100 

Y % = 0   

Z % = 0   

 

This approach simplifies the crossover in that, now there is only a single group of chromosomes 

within which crossover will be performed. The approach is still different to traditional crossover 

because each minicell is considered an independent block.  

 

The sequence obtained for the above parameters is shown in Figure 4-12. The average flow time 

obtained for this schedule was 107 minutes. 

 

2 1 4 3 5 6 2 1 3 4 1 6 2 1 6 3 4 5 1 6 2 4 5 3
Minicell 2 Minicell 3

Stage 1 Stage 2

Minicell 1 Minicell 2 Minicell 3 Minicell 1  

Figure 4-12: Sequence obtained by MFGA for the new Strategy 

 

From the above results it can be observed that the MFGA performs exceedingly well for this 

problem. All the strategies produce results which are superior to the result given by the FL 

heuristic.  

 

4.3.3 Eight Product Variant Problem 
 

A third test problem with 10 products and eight different product variants was considered. 

Table 4-16 gives the product structure for all 10 jobs. Products 3 and 10 have same composition 

while products 5 and 9 have similar composition. Hence, though there are 10 products, only eight 

different variants exist. 
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Table 4-16: Product ID; product structure 

 Feature 1 Feature 2 Feature 3 
Product 1 1 2 1 
Product 2 2 1 2 
Product 3 2 1 1 
Product 4 1 2 2 
Product 5 1 1 2 
Product 6 2 2 1 
Product 7 1 1 1 
Product 8 2 2 2 
Product 9 1 1 2 
Product10 2 1 1 

 

 

The minicell assignment is given in Table 4-15.  

 

FL heuristic was first applied to solve the problem. The schedule obtained from the heuristic is 

represented by Figure 4-13. The problem was then solved by MFGA. All the four strategies 

(given in Table 4-2) were considered; population size of 20, mutation probability of 0.1 and 100 

generations were chosen for experimentation. The results obtained from the MFGA for strategies 

1-4 are represented by Figures 4-14 to 4-17. The result obtained for the strategy with X % = 100, 

Y % = 0, Z % = 0 is given by Figure 4-18.  
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From the above results it can be observed that the FL heuristic performed very well for this 

problem. There is considerable difference in the solution obtained from MFGA and the heuristic 

value.  
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CHAPTER 5 

5 DISCUSSION AND CONCLUSION 
 
 
Minicells have been identified as a potential manufacturing system for mass customization. The 

need to develop better scheduling approach to improve the performance of minicells further has 

been pointed out in previous research. The minimum flow time schedule genetic algorithm 

(MFGA) for minicells was designed in this research for effective scheduling of jobs in a minicell 

configuration. The experimentation and results for the MFGA were presented in Chapter 4. A 

discussion of results and directions for future research are presented in this section. 

 

5.1 Summary of Results 
 

Results presented in chapter 4 reveal that the MFGA provides better results compared to FL 

heuristic only for test problem 2. There were two instances when the MFGA gave a better 

solution than the heuristic in test problem 1 and none for test problem 3. The potential reasons 

for this variation are discussed in the following sub-sections for each test problem separately. 

 

5.1.1 Test Problem 1 
 

Extensive experimentation was done for this test problem. All the four strategies were tested 

with different population sizes, mutation probabilities and number of generations. The results for 

all the possible combinations are presented and additional work (scatter plots) was done to 

identify the best combination of input parameters for which the MFGA will give superior results. 

As noticed earlier, of all the combinations, the MFGA generated a better solution than the 

heuristic in only two cases. The performance of the algorithm on the whole was not comparable 

to that of the heuristic. There was a marginal difference in the fitness values obtained with the 

two methods.  
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A small test problem with only 10 generations was developed to study the behavior of the 

MFGA further. All the fitness values generated for each chromosome in a generation for all 

generations were tabulated. A box plot was then developed and is shown in Figure 5-1. 
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Figure 5-1: Box plot for the test problem 
 
 
In the above figure Q1 and Q3 represent the lower quartile and upper quartile respectively. It is 

expected that the fitness function value for subsequent generations would reduce due to 

convergence. Also, as the GA begins to settle towards exploiting a locality in the solution space, 

the inter-quartile range in the box plot should likely shorten. However, the results from the box 

plots show that the fitness values from the MFGA are not converging as desired.  The Q1 and 

minimum values are expected to decrease as the number of generations increase. Also the 

interquartile range shows variability in the population created by crossover.  

 

The above observations indicate that the solution candidates generated as the algorithm advances 

are possibly not converging as desired. This raises the concern as to whether the multi-

chromosome strategy used in the MFGA is introducing more variability than generating 

solutions that converge towards the best job sequence. The division of the population into three 

groups before the genetic operations are performed could be one reason for the observed 

behavior. A new test problem with all the chromosomes assigned to only one group (X % = 100, 
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Y % = 0, Z % = 0) was developed. A box plot was then generated for this problem as shown in 

Figure 5-2.  
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Figure 5-2: Box plot for the test problem (X % = 100, Y % = 0, Z % = 0) 

 

 

From the above figure it can be observed that the interquartile range is considerably less than that 

noticed in Figure 5-1 in most cases and also the variation in the value is low. However, still the 

MFGA does not appear to converge as expected. The fitness value decreases for the first three 

generations but then the value keeps fluctuating till 7th generation from where it again gradually 

converges till end of 9th generation. The quality of the solution candidates in this test problem 

appears to be better than the previous test problem.  

 

5.1.2 Test Problem 2 
 

For the test problem 2, MFGA had solutions which were better than the FL heuristic in all four 

strategies. The box plot shown in Figure 5-3 is generated to observe the solution candidate 

evolution through generations. Samples of 11 consecutive generations were selected from 

Strategy 2 to generate this plot. It can be observed from the figure that except for some few 

cases, the solutions are converging towards the end.  
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Figure 5-3: Box plot for the test problem 2 
 

5.1.3 Test Problem 3 
 
The FL heuristic outperformed the MFGA with this test problem. The average flow time value 

obtained from the heuristic was much better than what MFGA has given. The box plot shown in 

Figure 5-4 is generated to observe the solution candidate evolution through generations. Samples 

of 11 consecutive generations were selected from Strategy 2 to generate this plot. The results, 

though similar, appear to be somewhat better than that for problem 1. However, the fact that the 

MFGA did not give a single solution better than the FL heuristic demands further investigation. 

 

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11

Generations

A
ve

ra
ge

 F
lo

w
tim

e 
(m

in
ut

es
)

Q1
min
median
max
Q3

 
Figure 5-4: Box plot for the test problem 3 
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5.2 Observations 
 

The FL heuristic has performed well for the first and third test problems while the MFGA results 

for second test problem were good. It must be noted that while the first and third test problems 

had repetitive product variants, the second test problem had 6 jobs that were all different product 

variants with no repetition. This can be one of the reasons for not so effective performance of the 

MFGA. More detailed experimentation was followed to evaluate causes for the variation.  

 

The test problem with all the solution candidates in one single group (X % = 100, Y % = 0, Z % 

= 0) has produced better results compared to other strategies tested. However, there is no 

considerable improvement in the fitness values obtained and further inquiry is needed to analyze 

the cause for the poor performance of the MFGA. 

 

When the multi-chromosome crossover strategy was first conceptualized for the capacitated lot 

sizing problem, the chromosome was divided into several parts, each part representing a product. 

The genetic operations were performed on these part chromosomes and the best ones were 

combined. Here the optimization of each part chromosome before combining them together led 

to superior results since the composition of one part chromosome had no effect on any other; 

each part represented a different product. But in the MFGA, each part chromosome represents a 

minicell. The schedule developed in one part chromosome has an impact on the effectiveness of 

the succeeding part chromosome. Hence, retrospectively, even though the part chromosomes 

obtained after performing genetic operations individually represent the best solution, the final 

combination may probably not lead to the best result. 

 

As described in Chapter 3, a single chromosome is created initially with the available 

information and the rest of the population size is created from this single chromosome by 

randomizing the genes positions. A small test problem was developed to check the variability 

being introduced in the initial population creation. The problem was repeated three times with a 

population size of 5. The initial population generated in each problem was then compared. It is 

observed that in generating the initial population, the MFGA follows a certain pattern and, 

therefore, the chromosomes are not significantly different. This could have led the MFGA not to 
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explore the solution space effectively. Therefore, it is likely that the approach used to generate 

the initial population could have been a contributor to the results observed. 

 

5.3 Conclusion and Future work 
 

In this thesis, MFGA was developed to minimize the average flow time of the jobs in this 

minicell configuration. A new crossover strategy, previously shown to be superior to the 

classical crossover, was applied in the MFGA. Although the MFGA gave superior results in 

some cases, it was not comparable with others. The analyses reveal several more approaches that 

could be explored to improve the effectiveness of the MFGA in finding optimal solution that 

minimizes average flow time in a minicell configuration. A more efficient method of searching 

the entire solution space can be included in the MFGA. Also a better strategy can be developed 

to combine the part chromosomes to form the final solution candidate.  
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APPENDIX I 
 

FL Heuristic  
 

 
The methodology to solve a scheduling problem using the FL heuristic has already been 

discussed in Chapter 4 on page 40. The working procedure for test problem 1 is presented below. 

 
Stage 1: 
 
Minicell 1 (Machines: M1, M2) 
 
Jobs to be processed: {1, 2, 3, 4, 5} 
 

P1
P2
P3
P4
P5  

 
 
Mean processing times   
 
P1-14                                                              

P2-19 

P3-14 

P4-19 

P5-14 

 

Ascending order of jobs: P1<P3<P5<P2<P4 
 
K=1, S= {1} 
 
K=2, S= {1-3} {3-1} 
 
{1-3} 
 

J1 J3

3 6 14 25
J3J1

                     
 
Favg=39 

 65



 

{3-1} 
 
M1 J3 J1
M2

3 6 14 25
J3 J1

 
 
Favg=39 
 
 
K=3, S= {5-1-3} {1-5-3} {1-3-5} 
 
{1-3-5} 
 
M1 J1 J3 J5
M2

3 6 9 14 25 36
J5J1 J3

 
Favg=75 
 
{5-1-3} 
 
M1 J5 J1 J3
M2

3 6 9 14 25 36
J5 J1 J3

 
Favg=75 
 
{1-5-3} 
 
M1 J1 J5 J3
M2

3 6 9 14 25 36
J1 J5 J3

 
Favg=75 
 
Select {1-3-5} 

Alternative sequences {3-1-5}, {5-3-1}, {1-5-3}. All these sequences result in the same fitness 

value. Hence, {1-3-5} can be retained as the best sequence.  

 

K=4, S= {2-1-3-5}, {1-2-3-5}, {1-3-2-5}, {1-3-5-2}  

 

{2-1-3-5} 

M1 J1 J3 J5
M2

10 13 16 19 30 41 52
J5J2 J1 J3

J2

 
Favg=142 
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{1-2-3-5} 

M1 J1 J3 J5
M2

3 13 23 34 414 16 19
J3 J5

J2
J1 J2

5  
 

Favg=116 

 
{1-3-2-5} 
 
M1 J1 J3 J5
M2

3 6 25 34 45
J5J1 J3

14 16 19
J2

J2

 
 
Favg=118 

 

{1-3-5-2} 
 
M1 J1 J3 J5
M2

3 6 9 14 19 25 36 45
J1 J3 J5

J2
J2

 
 
Favg=120 

 

Select {1-2-3-5} 

Alternative sequences: {2-1-3-5}, {3-2-1-5}, {5-2-3-1}, {1-3-2-5}, {1-5-3-2}, {1-2-5-3}. Some 

sequences are shown above and rests are similar to {1-2-3-5}. Hence, {1-2-3-5} can be retained 

as the best sequence. 

 

K=5, S= {4-1-2-3-5}, {1-4-2-3-5}, {1-2-4-3-5}, {1-2-3-4-5}, {1-2-3-5-4} 

 

{4-1-2-3-5} 

M1 J1 J3 J5
M2

10 13 19 23 26 29 30 39 50 61
J2 J3 J5

J4
J4

J2
J1

 
Favg=199 
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{1-4-2-3-5} 

M1 J1 J3 J5
M2

3 13  14 23 26 29 32 43 54
J5J1 J4 J2 J3

J4 J2

 
Favg=166 

 

{1-2-4-3-5} 
M1 J1 J3 J5
M2

3 13  14 23 26 29 32 43 54
J1 J2
J2 J4

J4 J3 J5
 

Favg=166 

 

{1-2-3-4-5} 

M1 J1 J3 J5
M2

3 23 26 29 34 4513 14 16

J2
J2 J3

J4
J4 J5J1

56  
Favg=172 

 

{1-2-3-5-4} 
M1 J1 J3 J5
M2

3 13 23 29 34 4514 16 19
J3 J5

J4
J4

J2
J1 J2

56  
Favg=170 

 

Select {1-4-2-3-5} 

Alternative sequences: {4-1-2-3-5}, {2-4-1-3-5}, {3-4-2-1-5}, {5-4-2-3-1}, {1-2-4-3-5}, {1-3-2-

4-5}, {1-5-2-3-4}, {1-4-3-2-5}, {1-4-5-3-2}, {1-4-2-5-3}. 

 

{2-4-1-3-5} 

M1 J1 J3 J5
M2

10 26 29 40 51 62
J1 J3 J5

19 20 23
J4

J2 J4
J2

 
Favg=201 
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{1-3-2-4-5} 

M1 J1 J3 J5
M2

3 6 14 16 34 43 54

J4
J4 J5

25 26 29
J1 J3 J2

J2

 
Favg=170 

 

 

{1-5-2-3-4} 
M1 J1 J5 J3
M2

3 6 14 16 19 25 29 34 45 54
J4J1 J5 J2 J3

J2 J4

 
 

Favg=172 

 

Best sequence: {1-4-2-3-5} 

 

 

Processing times of jobs from minicell 1: 

P1-14                                                              

P2-32 

P3-43 

P4-23 

P5-54 

 

Minicell 2 (Machines: M1, M2) 
 
Jobs to be processed: {1, 2, 3, 4, 5} 

 
P1
P2
P3
P4
P5  
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Mean processing times   
 
P1-10                                                              

P2-6 

P3-10 

P4-6 

P5-10 

 
Ascending order of jobs: P2<P4<P1<P3<P5 
 

K=1, S= {2} 

K=2, S= {2-4}, {4-2} 

 

{2-4} 

M1
M2 J2 J4

32 37 38 42 43

J2 J4

 
Favg=81 

 

{4-2} 
M1
M2 J4 J2

23 28 29 32 37 38

J4 J2

 
Favg=67 

 

Select {4-2} 

 

K=3, S= {1-4-2}, {4-1-2}, {4-2-1} 

 

{1-4-2} 

M1
M2 J4 J2

14 20 23 24 28 29 32 37 38

J1 J4 J2
J1

 
Favg=91 
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{4-1-2} 

M1
M2 J4 J2

23 28 29 34 38 39 40

J4 J1 J2
J1

 
Favg=107 

 

{4-2-1} 
M1
M2 J4 J2

23 28 29 32 37 38 43 47
J1

J4 J2 J1

 
Favg=114 

 

Select {1-4-2} 

Alternate sequences: {4-1-2}, {2-4-1}, {1-2-4} 

 

{2-4-1} 

M1
M2 J2 J4

32 37 38 42 43 48 52
J1

J2 J4 J1

 
Favg=133 

 

{1-2-4} 

 
M1
M2 J2 J4

14 20 24 32 37 38 42 43

J1
J1

J2 J4

 
Favg=105 

 

Best sequence: {1-4-2} 

 

K=4, S= {3-1-4-2}, {1-3-4-2}, {1-4-3-2}, {1-4-2-3} 
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{3-1-4-2} 

M1
M2 J4 J2

43 49 65 66

J2

53 55 59 60 61

J3
J3
J1

J1
J4

 
Favg=239 

 

{1-3-4-2} 
 
M1
M2 J4 J2

14 20 24 43 49 59 60

J2

53 54
J1

J3
J3
J4J1

 
 

Favg=192 

 
{1-4-3-2} 
 
M1
M2 J4 J2

14 20 23 24 28 29 43 49 53 54 55
J1

J3 J2
J3

J1 J4

 
 

Favg=161 

 
{1-4-2-3} 

M1
M2 J4 J2

14 20 23 24 28 29 32 37 38 43 49 53
J1

J3
J3

J1 J4 J2

 
 

Favg=144 

 

Select {1-4-2-3} 

Alternate sequences: {4-1-2-3} {2-4-1-3} {3-4-2-1} {1-2-4-3} {1-3-2-4} {1-4-3-2} 

 

{4-1-2-3} 

M1
M2 J4 J2

23 28 29 34 49 53
J3

38  39 40 43
J1
J2 J3J4 J1

 
Favg=160 
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{2-4-1-3} 
M1
M2 J2 J4

32 37 38 42 43 48 58
J1 J3

52 54   

J2 J4 J1 J3

 
Favg=191 

 

{3-4-2-1}  
M1
M2 J4 J2

43 49 65 6953 54 55 59 60

J3
J3
J4 J2 J1

J1
 

Favg=237 

 

{1-2-4-3}  
M1
M2 J2 J4

14 20 24 32 37 38 42 43 49 53

J4
J1

J3
J3

J1 J2

 
Favg=158 

 

{1-3-2-4}  
M1
M2 J2 J4

14 20 24 43 49 59 60

J4

53 54 55

J1
J1

J3
J3
J2

 
Favg=192 

 

{1-4-3-2} 

M1
M2 J4 J2

14 20 23 24 28 29 43 49 53 54 55
J1

J3 J2
J3

J1 J4

 
Favg=161 

 

Best sequence: {1-4-2-3} 

 

K=5, S= {5-1-4-2-3} {1-5-4-2-3} {1-4-5-2-3} {1-4-2-5-3} {1-4-2-3-5} 
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{5-1-4-2-3}  
 
M1
M2 J4 J2

54 60 8664 66 70 71 72 76 77 82

J2 J3
J3

J5
J5
J1

J1
J4

 
 
Favg=369 
 
{1-5-4-2-3}  
 
M1
M2 J4 J2

14 20 24 54 60 70 71 76 80

J3
J3

64 65 66
J1

J5
J5
J4J1 J2

 
 
Favg=305 
 
{1-4-5-2-3}  
 
M1
M2 J4 J2

14 20 23 24 28 29 54 60 71 75
J3

64 65 66
J1

J5
J5
J2J1 J4 J3

 
 
Favg=258 
 
{1-4-2-5-3}  
 
M1
M2 J4 J2

14 20 23 24 28 29 32 37 38 54 60 64 66 70
J3J1

J5
J5
J3J1 J4 J2

 
 
Favg=225 
 
{1-4-2-3-5} 
 
M1
M2 J4 J2

14 20 23 24 28 29 32 37 38 43 49 54 60 64
J5J1

J3
J3

J5J1 J4 J2

 
 
Favg=209 
 
 
Select: {1-4-2-3-5} 
 
Alternate sequences: {4-1-2-3-5} {2-4-1-3-5} {3-4-2-1-5} {5-4-2-3-1} {1-2-4-3-5} {1-3-2-4-5} 

{1-5-2-3-4} {1-4-3-2-5} {1-4-5-3-2} {1-4-2-5-3} 
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{4-1-2-3-5}  
M1
M2 J4 J2

23 28 29 34 49 60 64

J5J4 J1 J2 J3
J5

53 54
J1 J3

38  39 40 43
 

Favg=224 

 

{2-4-1-3-5}  
M1
M2 J2 J4

32 37 38 42 43 48 64
J5

58 60
J1 J3

52 54   

J5J2 J4 J1 J3

 
Favg=255 

 

{3-4-2-1-5} 
M1
M2 J4 J2

43 49 65 75
J5

69 71
J3 J1

53 54 55 59 60

J3 J4 J2 J1 J5

  
Favg=312 

 

{5-4-2-3-1} 
M1
M2 J4 J2

54 60 70 71 76 80 82 8664 65 66

J5
J5
J4 J2 J1

J3
J3

J1

 
Favg= 367 

 

{1-2-4-3-5} 

M1
M2 J2 J4

14 20 24 32 37 38 42 43 49 60 64
J5

53 54

J3
J1 J3

J5J1 J2 J4

 
Favg= 222 

{1-3-2-4-5} 
M1
M2 J2 J4

14 20 24 43 49 59 60 65 69
J5J1 J3

53 54 55

J5J1 J3 J2 J4

 
Favg= 261 
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{1-5-2-3-4}  
M1
M2 J2 J4

14 20 24 54 60 71
J3

64 65 66 75 76 77

J1
J1

J5
J5
J2 J3 J4

 
Favg=306 

 

{1-4-3-2-5}  
M1
M2 J4 J2

14 20 23 24 28 29 43 49 60 64
J5J1 J3

53 54 55

J5J1 J4 J3 J2

 
Favg=225 

 

{1-4-5-3-2}  
M1
M2 J4 J2

14 20 23 24 28 29 54 60 64 66 70 72 73

J1 J4
J1

J5
J5
J3 J2

J3

 
Favg=260 

 

{1-4-2-5-3} 
M1
M2 J4 J2

14 20 23 24 28 29 32 37 38 54 60 64 66 70
J3

J1 J4 J2
J1

J5 J3
J5

 
Favg=225 

 

Best sequence: {1-4-2-3-5} 

 
Processing times of jobs from minicell 2: 
 

P1-24 

P2-38 

P3-54 

P4-29 

P5-64 
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Minicell 3 (Machines: M1, M2) 
 
Jobs to be processed: {2, 4} 

 
P1
P2
P3
P4
P5  

 
 
Mean processing times   
 
P2-5 

P4-5 

 
Ascending order of jobs: P2<P4 
 
K=2, S= {2-4} {4-2} 
 
{2-4}  
 
M1
M2

38 43 48

J2 J4

 
 
Favg=91 
 
{4-2} 
 
M1
M2

29 34 38 43

J4 J2

 
 
Favg=77 
 
Best sequence: {4-2} 
 
Flow times from Stage 1: 
 
P1-24 

P2-43 

P3-54 

P4-34 
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P5-64 

Stage 2 
 
Minicell 1 (Machines: M3, M4, M5) 

Jobs to be processed: {1, 2, 3, 4, 5} 

 
P1
P2
P3
P4
P5  

 
 
Mean processing times   
 
P1-16 

P2-32 

P3-16 

P4-32 

P5-16 

Ascending order of jobs: P1<P3<P5<P2<P4 
 
K=1, S= {1} 
 
K=2, S= {1-3} {3-1} 
 
{1-3} 
 
M3
M4
M5

24 28 34 40 54 58 64 70

J3
J3

J1
J1

J1

J3

 
 
Favg=110 
 
{3-1} 
 
M3
M4
M5

54 58 62 64 70 76
J3

J1
J1

J1

J3
J3

 
 
Favg=146 
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Select {1-3} 
K=3, S= {5-1-3} {1-5-3} {1-3-5} 
 
{5-1-3}  
 
M3
M4
M5

64 68 72 74 76 80 86 92
J1

J3
J3

J3

J5
J5

J5

J1
J1

 
 
Favg=258 
 
{1-5-3}  
 
M3
M4
M5

24 28 34 40 64 68 72 74 80 86
J3

J5
J5

J3
J3

J1
J2

J2

J5

 
 
Favg=206 
 
 
{1-3-5} 
 
M3
M4
M5

24 28 34 40 54 58 64 68 70 74 80
J5J1 J3

J5
J5

J1 J3
J1 J3

 
 
Favg=190 
 
Select {1-3-5} 
 
Alternate sequences: {5-3-1} {1-5-3} {3-1-5}  
 
{3-1-5}  
 
M3
M4
M5

54 58 62 64 68 70 76 82
J5J3 J1

J5
J5

J3 J1
J3 J1

 
 
Favg=228 
 
Best sequence: {1-3-5} 
 
K=4, S= {2-1-3-5} {1-2-3-5} {1-3-2-5} {1-3-5-2} 
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{2-1-3-5} 
 

 

M3
M4
M5

43 54 58 68 73 75 79 81 85 87 93

J2 J1 J3 J5

J5
J2 J1 J3 J5

62 64 67
J2 J1 J3

 
 
Favg=336 
 
{1-2-3-5}  
 
M3
M4
M5

24 28 34 40 43 54 58 67 68 73 75 79 81 87

J1
J1

J1

J2

J5
J2

J2

J3 J5
J3 J5

J3

 
Favg=283 
 
{1-3-2-5}  
 
M3
M4
M5

24 28 34 40 54 58 64 70 73 82 88 90 96

J1 J3
J1 J3

J1 J3

J2
J2

J2

J5
J5

J5

 
 
Favg=296 
 
{1-3-5-2} 
 
M3
M4
M5

24 28 34 40 54 58 64 68 70 74 79 80 92 100

J1 J3
J1

J1
J3

J3

J5
J5

J2J5

J2
J2

 
Favg=290 
 
Select {1-2-3-5}  
 
Alternate sequences: {2-1-3-5} {3-2-1-5} {5-2-3-1} {1-3-2-5} {1-5-3-2} {1-2-5-3} 
 
{3-2-1-5} 
 
M3
M4
M5

54 58 64 69 70 73 77 82 88 90 94 96 102

J5
J1 J5

J1 J5

J3
J3

J3

J2
J2

J2

J1
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 81

Favg=358 
{5-2-3-1} 
 
M3
M4
M5

64 68 74 79 80 83 87 92 98 100 104 106 112
J1J5

J2
J2

J2

J3 J1
J3 J1

J3

J5
J5

 
 
Favg=398 
 
{1-5-3-2} 
  
M3
M4
M5

24 28 34 40 72 74 80 83 86 96 104

J5
J5

J3 J2
J3

J1
J1

J1

J5

J3
J2

J2
54 68  

 
 
Favg=310 
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Best sequence: {1-4-2-5-3}   
 
Flow times from minicell 1: 
 
P1-40 

P2-79 

P3-91 

P4-64 

P5-85 

 
Minicell 2(Machines: M3, M4, M5) 

Jobs to be processed: {1, 2, 3, 4, 5} 
 

P1
P2
P3
P4
P5  

 
Mean processing times   
 
P1-24 

P2-27 

P3-24 

P4-27 

P5-24 

Ascending order of jobs: P1<P3<P5<P2<P4 
 
K=1, S= {1} 
 
K=2, S= {1-3} {3-1} 
 
{1-3} 
 
M3
M4
M5

40 49 54 64 91 100 105 115

J1

J3
J1

J1

J3
J3

 
 
Favg=179 
 
{3-1} 

 86



 

 
M3
M4
M5

91 100 105 109 114 115 125

J3
J3

J3

J1
J1

J1
 

 
Favg=240 
 
Select {1-3} 
 
K=3, S= {5-1-3} {1-5-3} {1-3-5} 
 
 
{5-1-3} 
 
M3
M4
M5

85 94 99 103 108 112 117 119 129

J3
J1 J3

J5
J5

J5

J1
J1

J3

 
 
Favg=357 
 
{1-5-3}  
 
M3
M4
M5

40 49 54 64 85 94 99 103 108 109 119

J1

J3
J1

J1

J5 J3
J5

J5
J3

 
 
Favg=292 
 
{1-3-5} 
 
M3
M4
M5

40 49 54 64 91 100 105 109 114 115 125

J1 J3
J1 J3

J5J1 J3

J5
J5

 
 
Favg=304 
 
Select {1-5-3}  
 
Alternate sequences {5-1-3} {1-3-5} {3-5-1}  
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{3-5-1} 
 
M3
M4
M5

91 100 105 109 135

J1
J1

114 115 118 123 125

J3
J3

J3

J5
J5

J5

J1

 
 
Favg=375 
 
Best sequence {1-5-3} 
 
K=4, S= {2-1-5-3} {1-2-5-3} {1-5-2-3} {1-5-3-2}  
 
{2-1-5-3}  
 
M3
M4
M5

79 84 93 96 101 102 107 111 116 126 136
J5

J3
J3

J3

J1
J1

J1

J5
J5J2

J2

J2

 
 
Favg=484 
 
{1-2-5-3}  
 
M3
M4
M5

40 49 54 64 79 84 93 96 102 106 107 116 126
J3

J2
J2

J5 J3
J5 J3

J5

J1
J1

J1

J2

 
Favg=412 
 
{1-5-2-3}  
 
M3
M4
M5

40 49 54 64 85 94 99 116 121 131

J2
J2

J1 J5
J1

J3J1
J5

J5
108 109 111

J2

J3
J3

 
Favg=425 
 
{1-5-3-2}  
 
M3
M4
M5

40 49 54 64 85 94 99 103 108 109 119 120 130

J1 J5 J3
J1 J5 J3

J1 J5 J3

J2
J2

J2

 
Favg=422 
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Select {1-2-5-3}  
 
Alternate sequences {2-1-5-3} {5-2-1-3} {1-5-2-3} {1-3-5-2} {1-2-3-5} {3-2-5-1} 
 
{5-2-1-3} 
 
M3
M4
M5

85 94 99 116 117 122 131 141

J1 J3
J1

J5
J5
J2

J2

108 109 111

J3
J1 J3J2J5

 
 
Favg=502 
 
{3-2-5-1} 
 
M3
M4
M5

91 100 105 122 123 128 147
J2

J1
J1

114 115 117

J3
J3

J3

J2 J5 J1
J2 J5

137
J5

 
 
Favg=526 
 
{1-3-5-2} 
 
M3
M4
M5

40 49 54 64 91 100 105 109 114 115 125 126

J1 J3
J1

J5 J2
J5 J2

J5J1
J3

J3
136

J2

 
Favg=440 
 
{1-2-3-5} 
 
M3
M4
M5

40 49 54 64 79 84 96 100 114 116 126

J1 J2 J3 J5

J5
105 106 109

J1
J1

J2
J2

J3 J5
J3

 
Favg=412 
 
Best sequence {1-2-5-3} 
 
 
 
K=5, S= {4-1-2-5-3} {1-4-2-5-3} {1-2-4-5-3} {1-2-5-4-3} {1-2-5-3-4} 
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Flow times from minicell 2: 
 
P1-64 

P2-106 

P3-115 

P4-91 

P5-124 

 
Minicell 3(Machines: M3, M4, M5) 

Jobs to be processed: {1, 3, 5} 
 

P1
P2
P3
P4
P5  

 
Mean processing times   
 
P1-8 

P3-8 

P5-8 

 
Ascending order of jobs: P1<P5<P3 
 
K=1, S= {1} 
 
K=2, S= {1-5} {5-1} 
 
 
 
{1-5}  
 
M3 J1 J5
M4
M5

64 66 72 124 126 132
J1 J5

 
 
Favg=204 
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{5-1} 
 
M3 J5 J1
M4
M5

124 126 128 132 138
J5 J1

 
 
Favg=270 
 
Select {1-5}  
 
K=3, S= {3-1-5} {1-3-5} {1-5-3} 
 
{3-1-5}  
 
M3 J3 J1 J5
M4
M5

115 117 119 123 126 129 135
J5J3 J1

 
 
Favg=387 
 
 
{1-3-5}  
 
M3 J1 J3 J5
M4
M5

64 66 72 115 117 123 124 126 132
J1 J3 J5

 
 
Favg=327 
 
 
{1-5-3} 
 
M3 J1 J5 J3
M4
M5

64 66 72 124 126 128 132 138
J1 J5 J3

 
 
Favg=342 
 
 
Select {1-3-5}  
 
Alternate sequences {3-1-5} {5-3-1} {1-5-3} 
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{5-3-1} 
 
M3 J5 J3 J1
M4
M5

124 126 128 132 138 144
J5 J3 J1

 
 
Favg=414 
 
Best sequence {1-3-5} 
 
 
 
Flow times from minicell 3: 
 
P1-72 

P2-106 

P3-123 

P4-91 

P5-132 

 
 
Total flow time = 542 units 

Average flow time= 105 units 

 

The final schedule given by FL heuristic is given below: 

 

 

1 4 2 3 5 1 4 2 3 5 4 2 1 4 2 5 3 1 4 2 3 5 1 3 5
Minicell 22 Minicell 23

Minicell 13

            Stage 1             Stage 2

Minicell 11 Minicell 12 Minicell 21
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APPENDIX II 
 

The MFGA Software Interface 
 
 

The graphical interface used to gather the information required for the MFGA are presented here. 
 
 
The following figure represents the graphical interface for input of initial parameters.  
 

 
 
 

 
 
 
 
 
 
 
 
 
The following figure represents the graphical interface for entering processing times: 
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The following figure represents the graphical interface to obtain the information regarding the 

assignment of machines to stages: 
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The following figure represents the graphical interface used to obtain the product structure 

(product I.D) for each product: 

 
 

The following figure represents the graphical interface for the minicell assignment and the 

strategy selection: 
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The following figure represents the graphical interface for the end of the MFGA 
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