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ABSTRACT OF THESIS 
 

 
 

SEMISTRUCTURED PROBABILISTIC OBJECT QUERY LANGUAGE 

  (A Query Language for Semistructured Probabilistic Data) 

 
This work presents SPOQL, a structured query language for Semistructured Probabilistic 

Object (SPO) model [4]. The original query language for semistructured probabilistic 

database management system [20], SP-Algebra [4], has limitations such as complex 

functional notation and unfamiliarity to application programmers. SPOQL alleviates 

these problems by providing a user friendly and familiar SQL-like declarative syntax for 

writing queries against SPDBMS. We show that parsing SPOQL queries is a more 

involving task than parsing SQL queries. We describe the evaluation algorithm for 

SPOQL queries that we have implemented. 
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Chapter 1 
 
 

Introduction 

 
Many vital applications, used in every walk of life, such as stock market 

prediction software, weather forecast software, image recognition and analysis software 

and other applications of Bayesian Nets [15] are built upon complex databases storing 

uncertain information. Relational databases do not provide consistent support for storing 

and querying probabilistic information. In order to model this uncertain information and 

provide support for storing and querying probabilistic information, researchers have 

proposed several relational models [12, 2, 6, 1], object oriented data models [11, 8] and 

semistructured models [10, 14, 4] over the last two decades. But none of the approaches 

proved flexible enough to handle probability distributions in different contexts. For 

example, consider stock market analysis, where the level of possible financial gain while 

buying the share of a company can be represented in many forms, such as simple 

probability distribution or joint probability distribution, depending upon the number of 

aspects selected such as the past financial history of a company. 

 

With varying information formats, any of the current probabilistic models require 

separate storage, making it hard to express even simple queries. For example, to find all 

the probability distributions involving the aspect of company establishment date, the 

application has to query all relations having establishment date as one of their fields, 

resulting in multiple queries. In order to alleviate the above problem, Dekhtyar et al. 

proposed the semi-structured probabilistic object (SPO) data model [4,20], which 

provides support for storing and managing diverse probability distributions of discrete 

random variables with finite domains and associated information. That means, unlike the 

other data models, SPO data model can store and query probabilistic information with 

different formats. 

 

 



 2

The SPO data model is a semi-structured data model [20]. Semistructured data 

models are aimed at developing the database management techniques to store and retrieve 

uncertain data like probability distributions. Because of the similarity of semistructured 

data model and data models for the Extensible Markup language (XML), the widely 

accepted open standard for data storage and transmission over the internet, XML is used 

to represent the SPO objects in this SPO data model. This entire framework for storing 

and querying varying probabilistic information was implemented by Dr. Zhao [20] as 

Semistructured Probabilistic Database Management System(SPDBMS) with a semi 

structured probabilistic query algebra(SP-algebra) for manipulating and querying SPO 

objects. 

 

SPDBMS lacked a high level query language for querying and retrieving SPO-

objects. Even though SP-Algebra is well-defined and structured, it is quite terse to 

express queries with complex notations. It is more difficult for application programmers 

to express complex queries using SP-Algebra than with a language which has the feel and 

look of SQL. In order to make SPDBMS widely accepted, it is important to develop a 

high level query language as a wrapper for SP-Algebra. This high level language should 

look like the query language used for today’s relational database management system and 

provide a comprehensive way to query SPDBMS. This led to the design and development 

of a new query language called semistructured probabilistic object query language 

(SPOQL), the high level structured query language for SPDBMS over the underlying SP-

Algebra. SPOQL maps queries to SP-Algebra and acts as a wrapper to SP-Algebra. 

SPOQL is easy to learn and use when compared with SP-Algebra. SPOQL can be used to 

express simple to complex queries and can be mapped consistently with the underlying 

SP-Algebra. Also, SPOQL is designed and developed to express nested queries. 

 

The following are my contributions through the current work for the development of 

SPOQL: 

• Proposed and participated in the design of the grammar for SPOQL; 

• proposed and participated in the design of the translation algorithm for mapping 

SPOQL queries to SP-Algebra queries; 
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• developed and implemented an SPOQL parser and translator for SPOQL queries 

which translates an SPOQL query into its equivalent SP-Algebra query using the 

proposed eager evaluation algorithm for SPOQL queries; 

• designed and developed a new operation called “Mix Operation” to SP-Algebra, 

whose details are explained in the later parts of the report; 

• enhanced the “selection” operation of SPDBMS to handle equijoin and 

implemented the enhancement whose details are explained in the later parts of the 

report. 

 

The rest of the report is organized as follows. 

 

Chapter 2 gives an overview of probabilistic databases, SPO model, SPDBMS, SP-

Algebra, and the new SP-Algebra “mix operation” and enhanced SP-Algebra “select” 

operation. Chapter 3 describes the SPOQL syntax, semantics and translation algorithm. It 

explains the building of query trees and mapping of SPOQL queries to SP-Algebra and 

gives examples. Chapter 4 describes the architectural and component overview of 

SPOQL with all relevant implementation details. Chapter 5 describes the experimental 

evaluation of SPOQL in comparison to SP-Algebra queries. Chapter 6 describes 

conclusions and possible future work for extending the SPOQL language. 
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Chapter 2 
 
 

Background and Related work 

 
 This section provides an overview of SPOs, a semistructured probabilistic 

object and SP-Algebra, algebra of atomic query operations on SPOs and the 

implementation of Semistructured probabilistic database management system (SPDBMS) 

in [20]. 

 

2.1 SPO model and SP-Algebra 

 

  SPO provides a flexible data structure to represent a probability 

distribution.  

Definition 1 A Semistructured Probabilistic Object (SPO) S is defined as a tuple  

S = , , , , ,T V P C〈 ω〉  where 

−  T is a relational tuple over some semistructured schema R  overR . T is referred to as 

the context of S  

−  V = {ν1, …νq}⊆  υ  is a set of random variables that participate in S and it is 

required that V ≠ ∅  

−  P : dom(V) →  {(u is the probability table of S. Note that P need not be complete 

−  C = {(u1, X1), … (us, Xs)}, where {u1… , us} = U ⊆  υ  and Xi ⊆  dom(ui), 1≤  i ≤  n, 

such that V ∩U =∅ . Here C is referred to as the conditional of S   

− ω , called the path expression, is an expression of Semistructured Probabilistic 

Algebra (SP-Algebra) 

 

 A collection {S1…Sn} of SPOs is called a SP-Relation. SPOs store 

probability distributions as follows. The participating random variables and 

probability table describes the actual distribution. The conditional part of SPO stores 

conditioning information for the distribution. Context part of SPO provides additional 

information supporting the probability distribution and can store known values of related 

parameters. Context variables are not considered as random variables. The path tells us 
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how the SPO object is constructed. If the path is atomic (single unique identifier), then 

the object was constructed from scratch and inserted into the database. If the path is 

complex, then it indicates which database objects participated in its creation and what SP-

Algebra operations have been applied to it.   

 

Example: By using a SPO object, the conditional probability distribution of performance 

in a database class for CS majors who got ‘A’ in Data Structures can be represtented as 

follows. 

 

ω: S2 
Major :”CS” 
 

Databases

Pr 

A 

B 

C 

D 

E 

0.3 

0.3 

0.2 

0.1 

0.1 

Data Structures=’A’ 

            
 

    Figure 2.1 SPO Bird’s eye view 

 

 SP-Algebra, the query algebra for the SPO model, defines standard 

relational operations of selection, projection, Cartesian product and join. SP-Algebra also 

includes the conditionalization operation [20] more specific to the context of probabilistic 

databases. The current work extends the original SP-Algebra to include the mix 

operation and defines join conditions that can that can be applied to the SP-Algebra 

operations of Cartesian product, join and mix. The formal definitions of mix operation 

and join condition are provided in this section. The formal definition of remaining SP-

Algebra operations are defined and described in detail in [20]. 
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 Informally, the SP-Algebra operations of SPOQL are explained as follows. 

In the definitions for Atomic Projection list, Atomic Selection conditions, and Atomic 

Conditionalization expression, let us consider that var, cnt, cnd, and tbl are 

the notations used to represent random variable, context, conditional and probability table 

parts of an SPO Object. Each of the above notational elements are referenced as 

 [Name.]var,[Name.]cnt,[Name.]cnd,[Name.]tbl respectively. Here, the optional 

parameter Name represents the name of the SP-Relation. The definitions of Atomic 

Projection, Atomic Selection condition and Atomic Conditionalization are as follows: 

 

Definition 2: Atomic projection list is defined as follows: 

F ::=  varlist | cntlist| cndlist 

varlist ::= “var”. 〈 name 〉 (, “var”. 〈 name 〉 )*,where name∈ υ  

 cntlist::= “cnt”. 〈 name 〉 (,”cnt”. 〈 name 〉 )*,where name∈  R  

cndlist::= “cnd”. 〈 name 〉 (,”cnt”. 〈 name 〉 )*,where name∈  υ  

 

Atomic selection conditions are described in Table 2.1 

 

Definition 3: Atomic conditionalization expression is defined as: 

 “var”. 〈 name 〉 =Value, where name∈ υ  

“var”. 〈 name 〉 ∈  Value(,Value)*,where name∈ υ  

 

Selection condition is inductively defined as: 

Base: Atomic selection condition is a selection condition 

Induction: Let c1, c2 be selection conditions. Then, the following are selection 

conditions: c1 ∨  c2, c1 ∧  c2,¬  c1 

 

Definition 4: Join Condition is defined as  

〈Name 〉 .”cnt”. 〈 name 〉 〈Op 〉 〈Name 〉 .”cnt”. 〈 name 〉  where, 

Name – name of sp-relation, name ∈  R , and Op:= ,≤ ,≥ ,≠ ,<,> 
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Table 2.1 Atomic selection conditions 

 

Type Expression Explanation 

Context Condition 

 

“cnt”. 〈 name 〉 〈 Op 〉 constant 

“cnt”. 〈 name 〉 ∈  T 

name∈R  

Op:=,≤ ,≥ ,⊗ ,<,>  

Variable Condition “var”. 〈 name 〉 ∈V name – variable name 

where name∈ υ  

Conditional Condition “cnd”. 〈 name 〉 =Value, 

“cnd”. 〈 name 〉 ∈  C 

“cnd”. 〈 name 〉 ∈  Value(,Value)* 

name – variable name, 

where name∈ υ  

Table Condition “tbl”. 〈 name 〉 = Value 

“tbl”.”prob” Op RValue 

Op:=,≤ ,≥ ,≠ ,<,> 

RValue ∈ 0,1[ ]  

 

 

Definition 5: SP-Algebraic expressions are inductively defined as: 

Base: Let S be a name of an SP-Relation. Sa is an SP-Algebra expression 

Induction: Let e1 and e2 be SP-Algebra expressions. Let c be a Selection Condition (SC), 

f be a Projection List (PL), d be a conditionalization expression (CE) and g be a join 

condition (JC). The SP-Algebra expressions are described in Table 2.2. 

 

 Selection(σ c(S)) operation finds SPOs in a SP-Relation that satisfy a 

specific selection condition. The selection operations on context, participating variables 

or conditionals do not alter the content of the selected objects (SPOs) and result in either 

an SPO being selected or not in its entirety, if in classic relational algebras. If the 

selection operations are used either on the values of the random variable or probabilities 

or probability table, then the resultant SPO will contain only those probability table rows 

that match selection condition but  retains the context, participating variables and 

conditional information. The query can be expressed in English as follows: “Find all 
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those probability distributions in which variable VOP has value success with probability 

greater than 0.5” 

 

Table 2.2 SP-Algebra expressions 

 

Type SP-Algebra expression 

Selection σ c(e1) 

Projection π  f (e1) 

Conditionalization μ d(e1) 

Cartesian product(CP) e1  ×   e2 

CP with join condition e1  × g  e2 

Join e1  = ×   e2    ,  e1  ×=  e2 

join with join condition e1  = × g  e2    ,  e1  ×=g  e2 

Mix e1 ⊗  e2 

mix with join condition e1  ⊗ g  e2 

 

 

 

 Projection (π  f (S)) is an operation that simplifies SPOs. The projection 

operations used on context and conditionals variables are similar to the classic relational 

algebra, meaning either a context or conditional is removed from the resultant SPO 

objects depending on which of these two variables the projection is applied. The rest of 

the resultant SPO does not change otherwise. But, the projection operation on the set of 

participating random variables is a delicate operation as it corresponds to removing the 

other random variables from consideration in a joint probability distribution. The result of 

this operation is a new marginal probability distribution and is stored as the probability 

table component of the resultant SPO. This marginal probability distribution is obtained 

in two steps. First, the columns for random variable that are to be projected are removed 

from the probability table. Now, the probability table may contain duplicate rows whose 

values for all the fields except probability values coincide. In the second step, all the 
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duplicate rows of same type are collapsed(coalesced) into one, with a new probability 

value computed as the sum of values in the collapsed rows.  

 

 Conditionalization (μ d (S)) is the operation that is used for conditioning 

the joint probability distribution. This operation is applied on conditional variables and is 

performed in two steps. First, it removes all the rows from the probability table of the 

SPO that do not match the condition. Then the conditional variable column give in 

condition is removed from the table and the remaining rows are coalesced if needed in 

the same way as in projection operation and then the probability values are normalized. 

 

 Cartesian product (× ) and join (=×  , ×=) are the operations used to build a 

joint probability distribution from the input SPOs. The join operation is applicable to 

those SPOs having common participating random variables and Cartesian product is 

applicable to those SPOs with disjoint lists of participating variables. Two SPOs are cp-

compatible, if their participating variables are disjoint and their conditionals coincide. 

Two SPOs are join-compatible if their participating variables are not disjoint and their 

conditionals coincide. 

 

 Mix(⊗ ) operation is a new operation introduced to SP-Algebra along with 

the development of SPOQL. This operation also constructs a joint probability distribution 

from the input SPOs. Consider two SP-Relations S and S1. They can be either join 

compatible, cp-compatible, or neither join nor cp-compatible. The mix operation is the 

union of the join and Cartesian product. Let S = , , , , ,T V P C〈 ω〉  S1= 〈 T1, V1, P1, C1, ω1 〉  

are two cp-compatible or join-compatible SPOs. Then mix operation S ⊗ S1 is defined as 

follows: 

 S ⊗ S1   = (S ×S1
 ) ∪ ( S=×S1) 

 

 The current work also contributes to the implementation of the mix 

operation and this operation is effectively used by the SPOQL translation algorithm as 

and when needed. The current works also extends combination operations such as 

Cartesian product, mix and join with join conditions. That means, SPOs can now be 
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joined based on the relationships of their respective context attributes. Besides satisfying 

the conditions that are applicable to SPOs participating in Cartesian product mix and join 

operations, their context elements should satisfy the join condition specified. Otherwise, 

elements that do not satisfy the join condition are not combined. 

 

2.2 SP-Algebra Equivalences 

 

 Zhao [20] established the SP-Algebra equivalences in preparation for query 

optimization for SP-Algebra. They are shown in Table 2.3 and Table 2.4. We have 

established additional equivalences involving join and Cartesian product operators. In 

table 2.3, SC,PL and CE represents selection condition, atomic projection list and atomic 

conditionalization expression respectively. Selection condition, atomic projection list and 

atomic conditionalization expression  definitions can be seen in earlier section. 

 

Table 2.3 Query Equivalences for SP-Algebra operations 

 

Equivalence Condition 

σ c∧ c1(e1) ≡ σ c(σ c1(e1)) c and c1 are SCs 

σ c(σ c1(e1)) ≡ σ c1 (σ c (e1)) c and c1 are SCs 

π  f∩ f1(e1) ≡ π  f(π f1(e1)) f and f1 are PLs 

π  f(π f1(e1)) ≡ π f1 (π  f (e1)) f and f1 are PLs 

μ d∧ d1(e1)) ≡  μ d(μ d1(e1)) d and d1 are CEs 

μ d(μ d1(e1))≡ μ  d1 (μ d(e1)) d and d1 are CEs 

e1  ×   e2 ≡  e2  ×   e1 e1 and e2 are cp-compatible 

(e1  ×   e2) ×  e3 ≡  e1  ×  (e2 ×  e3) e1 , e2 and e3 are cp-compatible 
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Table 2.4 Query Equivalences for SP-Algebra operations 

 

Equivalence Condition 

e1  =×  (e2 ×  e3) ≡  (e1  =×   e2) ×  e3 e1 , e2 are join compatible and 

e2 , e3 are cp-compatible 

e1  ×= (e2 ×  e3) ≡  (e1 ×=  e2) ×  e3 e1 , e2 are join compatible and 

e2 , e3 are cp-compatible 

e1  ×  (e2  =×  e3) ≡  (e1 ×   e2) =×  e3 e1 , e2 are cp-compatible and 

e2 , e3 are join-compatible 

e1  ×  (e2  ×=  e3) ≡  (e1 ×   e2) ×=  e3 e1 , e2 are cp-compatible and 

e2 , e3 are join-compatible 

e1  =×  e2  ≡  e2   ×= e1 e1 and e2 are join-compatible 

P(X,Y)*P(Z|Y) = P(X|Y)*P(Y,Z), where 

X,Y are variables from e1 and Y,Z are 

variables from e2 

 

 Selection on probabilities in general does not commute with other 

operations. This is because the projection, conditionalization and Cartesian product 

/join/mix operations change the probability distribution table stored in the probability 

table of the resultant SPO. 

 

 
2.3 Implementation of SPDBMS 

 

 SPDBMS is implemented on top of a relation database management system 

using Java. The Figure 2.1 depicts the overall architecture of the original system [20]. 

The SPDBMS application server processes query request like standard database 

management instruction and SPOQL queries from a variety of applications. 

 

 The application server provides a JDBC-like API, through which client 

applications can send standard database management instructions, such as CREATE 
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DATABASE, DROP DATABASE, CREATE SP-RELATION, DROP SP-RELATION, 

INSERT INTO SP-RELATION, DELETE FROM SP-RELATION, as well as SP-

Algebra queries to the server. Our SPOQL implementation has been integrated into the 

architecture shown in Figure 2.1. 

 
 

Figure 2.2 The overall architecture of SPDBMS 
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2.4 Related Work 

 
 Significant research has been carried out in the management of probabilistic 

data over the years. The early relation models proposed to store and process probabilistic 

data [12,2,6,1] have been replaced by object oriented [11,8] and semistructured models 

[10,14,4,20]. The work of Cavallo and Pittarelli [2] extended the relation model to 

represent uncertainty in information using probabilistic calculus. Every tuple in the 

relation is assigned a probability measure and it indicates the join probability of all the 

attribute values in the tuple. Barbara et al. [1] proposed an extension of the relational 

model using probability theory by adopting a non-1NF probabilistic data model. First 

normal form (1NF) is a normal form used in database normalization. First normal form  

excludes the possibility of repeating groups by requiring that each field in a database hold 

an atomic value, and that records be defined in such a way as to be uniquely identifiable 

by means of a primary key. They redefined the projection, selection and join operations 

using semantics of probability theory and have also introduced a new set of operators to 

explain various set of possibilities. Dey and Sarkar [6] proposed a probabilistic database 

framework with relations adhering to first normal form (1NF).  In this model, the 

probability measure assigned to every tuple indicates the joint probability distribution of 

all the no-key attributes in the relations. 

  They proposed a closed form query algebra and introduced 

conditionalization operation in the context of probabilistic model. Also, the proposed a 

non-procedural probabilistic query language called PSQL [7] as an extension of the SQL 

language.  The ProTDB [14] proposed by Nierman, et al. is close to the SPDBMS 

approach. In ProTDB, XML data model is extended by associating a probability to each 

element with the modification of regular non-probablisitic DTDs, and independent 

probabilities are attached to each individual child of an object. The probabilities in an 

ancestor-descendant chain are related probabilistically, resulting in conditional 

probabilities in XML documents. Some drawbacks of ProTDB are overcome by the 

PXml framework proposed by Hung, Getoor and Subrahmanian [10]. PXml supports 

arbitrary distributions over sets of children and allows arbitrary acyclic dependency 
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models. They also provide that for any query in their model there is a mapping to an 

equivalent query in the Bayesian network. Bayesian networks are directed acylic graphs 

whose nodes represent variables, and whose arcs encode the conditional dependencies 

between the variables. They also proposed a probabilistic interval XML data model, 

PIXml [9].  But joint probability distributions cannot be represented conveniently by 

either PXml or PIXml models. The work on SPDBMS [20] combines and extends the 

ideas in these papers and applies them to an SPO model. The data stored in the SPDBMS 

does not conform to a rigid schema. 
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Chapter 3 
 
 

Semistructured Probabilistic Object Query Language 

 
3.1 Syntax of SPOQL 

 

As stated earlier, SPOQL is designed as a high level query language for SPDBMS 

with declarative syntax. This section explains the syntax and semantics of SPOQL as well 

as the translation algorithm that maps the query expressed through SPOQL into its 

corresponding SP-Algebra. The main objective of this work is to design a query language 

that can handle all the queries expressed through sp-algebra with SPOQL and to translate 

them with a consistent mapping mechanism into their corresponding SP-Algebraic 

expression. 

 

SPOQL is designed to handle simple to complex queries to as well nested queries. 

The basic syntax of SPOQL query looks like as follows: 

 

SELECT <selectlist> 

 FROM <fromlist> 

 [WHERE <condition>] 

 [CONDITIONAL <conditionlist>] 

 

           SPOQL query relates to its sp algebraic expression and consists of selections, 

projections, conditionalizations and combining operations such as mix, Cartesian 

products and joins. Each SPOQL operates on one or more SP Relations and returns an 

SP-Relation. An SP-Relation is a collection of one or more SPOs  
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3.2 SPOQL Query Parts 

 

              Each SPOQL query is made up of two to four clauses. All SPOQL queries must 

have SELECT and FROM clauses whereas WHERE and CONDITIONAL clauses are 

optional. The SELECT clause consists of a list of SPO variables such as context, 

conditional and random variables to be projected and retained in the resultant SP 

Relation. The FROM clause consists of a list of participating SP Relations along with 

their combining operations. The optional WHERE clause consists of a list of selection 

conditions on the SP-Relations specified in the FROM clause as well as the join 

conditions on the combining operations specified in the FROM Clause. The optional 

CONDITIONAL clause specifies the conditionalization expressions on the SP-Relations 

specified in the FROM Clause. Each of these clauses is explained in details as follows. 

 

selectlist: This is a sequence of random variables, context variables and conditional 

variables that are participating in the projection operation and every variable corresponds 

to an SP-Relation in the fromlist. SPOQL also allows wildcard operation ‘*’ in the 

absence of any selectlist and in this case the entire resultant object is retained in the 

result. Wild card operation can be applied to each of context, conditional and random 

variables in selectlist. 

 

fromlist: This is a sequence of SP-Relations separated by combining operations 

“TIMES”, ”JOIN” and “,”. Here, “TIMES” stand for Cartesian product, “JOIN” for the 

join operation and “,” for the mix operation. SPDBMS by default allows left join among 

the participating SP-Relations. SPOQL also provides scope for nested queries. SPOQL 

facilitates this by allowing SPOQL queries in its fromlist. SPOQL also facilitates for 

specifying associativity of combination operation by enclosing the participating SP-

Relations and provides feature for aliasing this operation. 

 

Condition This is a sequence of selection and join conditions separated by the keyword 

“AND”. Each selection condition corresponds to an SP-Relation in the fromlist. 
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Similarly, each join condition corresponds to a combing operation from the fromlist 

depending on the SP-Relations provided by it. 

 

 

3.3 SPOQL Semantics 

ω: S1 
Work-

type:nursing 

City:Lexington 
  VOP P 
success 

failure 

0.75 

0.25 
A=high G=high 

S=high WR=low 

C=high 

           (a) 

  
ω: S2 
City:Lexington 
  WR P 
high 

low 

0.8 

0.2 
WH=good 

           (b) 

 
 Figure 3.1 Probability Distributions 
 
Consider the following few simple SPOQL queries. 

1. SELECT * FROM S1 
    WHERE S1.tbl.VOP=’success’ 
    AND S1.tbl.prob >0.7 
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2. SELECT S1.cnt.city, S1.cnd.A FROM S1 

3. SELECT * FROM S2 JOIN S3 

4 .SELECT * FROM S4 
    CONDITIONAL S4.var.WR=’high’ 
 
ω: S3 
S P 
high 

low 

0.7 

0.3 
WH=good 

           (c) 
 
ω : σ tbl.prob>=0.75(S1) 
work-type: nursing 

city:Lexington 

VOP P 
success 

 

0.75 

 
A=high G=high S=high 

WR=low C=high 

           (d) 
 
ω : π  f (S1) 
city:Lexington 

VOP P 
success 

failure 

0.75 

0.25 
A=high  

           (e) 
 
  Figure 3.1 (continued) 
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SPO(s) in Figure 3.1(d), Figure 3.1(e), Figure3.1 (f), Figure3.1 (g) can be obtained using 

the above SPOQL queries. These are simple queries that represent a single SP-Algebra 

operation. The following is an example of a SPOQL query representing multiple SP-

Algebra operations. 

 

ω: S4=S2 X S3 
city: Lexington 

WR      S P 
high       high 

low       high 

high       low 

low       low 

0.7 

0.3 

WH=good 

           (f) 
 

 

ω : μWR=high(S4) 

city: Lexington 

      S P 
high 

low 

0.7 

0.3 
WH=good 

WR=high 

           (g) 
 

 Figure 3.1 (continued) 

 
SELECT * FROM S2 JOIN S3 
  WHERE S2.tbl.WR=’high’ 
   AND S3.tbl.prob<0.7 
 
 This query involves one join operation and multiple selection operations. 

This query raises questions about its corresponding SP-Algebra translation and the order 
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in which these different operations are evaluated. One interesting case to consider is that, 

in classical relational algebra, Cartesian product and join operations commute and this 

feature allows determining the execution plan during the optimization stage irrespective 

of the order of operations produced by SQL Parsers. But SP-Algebra deals with 

probabilistic data. Cartesian product and join operations and selection on probabilities 

and probability tables do not commute. Hence, it is essential to determine the order of 

SP-Algebra operations and generate an execution plan after parsing the SPOQL query 

and before translating the SPOQL query into its corresponding SP-Algebraic expression. 

In order to have consistent query evaluation, with consistent reasoning, the following 

order of precedence is established for every SP-Relation belonging to the fromlist. 

 

1. Conditionalization operation using conditionlist 

2. Selection operation using selection conditions from condition 

3. Projection operation using selectlist 

4. Join/Times/Mix operation using combining operations from fromlist and join 

conditions from condition. 

 

               In addition to precedence rules, there are other SP-Algebra translation issues 

that need to be handled. SPOQL provides nesting and aliasing in a query to provide 

flexibility or to override the precedence order. In order to ensure proper query translation, 

a separate scope for each level of nesting with in SPOQL query is defined. This scoping 

rule does not permit any elements from the selectlist, condition and conditionlist to 

address SP-relations from the fromlist not belonging to the same query level. For 

example consider the following SPOQL query Q. 

 

SELECT * FROM  

(SELECT * FROM S2 WHERE S2.cnt.year=2000), S1  

    WHERE S1.cnt.age=’19-20’ CONDITIONAL S2.var.LY=’A’ 
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               According to the above scoping rule, the above SPOQL query Q is semantically 

invalid because the conditional operation on SP-relation S2 is present at a different level. 

The above SPOQL query Q can be expressed correctly as follows. 

 

SELECT * FROM  

(SELECT * FROM S2 WHERE S2.cnt.year=2000 CONDITIONAL S2.var.LY=’A’) 

, S1 WHERE S1.cnt.age=’19-20’  

 

               The next SP-Algebra translation issue to consider is the order in which SP-

relations from the fromlist are combined. This does not apply in the absence of any join 

conditions in the query and the classical left-to-right evaluation can be performed. 

However, the presence of join conditions in a SPOQL query requires special handling. 

For example, consider the following SPOQL query Q’. 

 

SELECT * FROM S1 TIMES S2 TIMES S3 

WHERE S2.cnt.year=2006 AND S1.cnt.age-group=S3.cnt.age-group 

 

               If the traditional left-to-right evaluation of the fromlist is performed, then the 

resultant query evaluation is show in Figure 3.2 (a)  The actual query evaluation we 

intend to express through query Q’ is represented in Figure 3.2 (b)  
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S1

S2

σ
cnt.year=2006

×

S3

× S1.cnt.age-group=S3.cnt.age-
group 

S1’

Query tree for SPOQL query Q’ based on left-to-right evaluation 
only

 
Figure 3.2(a) Query tree for SPOQL query Q’ based on left-to right evaluation 

S3S1

× S1.cnt.age-group=S3.cnt.age-
group

S1’

S2

σ
cnt.year=2000

×

S2’

Query tree for SPOQL query Q’ based on left-to-right evaluation with join condition(s)

priority

 
Figure 3.2 (b) Query tree for SPOQL query Q’ based on left-to-right evaluation 

with join conditions(s) priority 
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               In order to override this ambiguity, we must ensure that SPOQL query 

parser/translator will override the default order of combining SP-relations in the fromlist 

of query Q’ and other similar SPOQL queries. This feature can be verbalized as 

materialize the combination of SP-relations under join conditions first.  SPOQL also 

introduces a new feature for explicitly specifying the order in which SP-relations in the 

fromlist can be combined. The explicit ordering query Q’ can be now expressed with this 

feature as follows. 

 

SELECT * FROM S2 TIMES (S1 TIMES S3)  

WHERE S2.cnt.year=2006 

AND S1.cnt.age-group=S3.cnt.age-group 

 

               The query tree for this explicit order query Q’ is same as in Figure 3.2 (b). 

Identical pairs of SP-relations in both orderings can be identified by applying any join 

conditions that refer to the same explicit ordering pair of SP-relations. Hence, the SPOQL 

query evaluation algorithm builds by applying precedence rules and then determining the 

order of join, Cartesian or mix operations with SP-relations as the leaves. 

 

 

3.4 SPOQL Query Translation Algorithm 

 
The translation algorithm of SPOQL consists of following two steps. 

1) Building the query tree 

2) Translation of the query tree into SP-Algebra 

               The algorithm takes SPOQL query Q as its input and produces a query tree as 

its output representing the SP-Algebraic expression describing the semantics of query Q. 

The algorithm is described as follows: 
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Evaluate(SPOQL query Q) 

1. Validate Q to check for scoping consistency and non duplicate SP-relations in the 

fromlist 

2. If valid, then next step, else “Semantic error”. 

3. Extract fromlist , selectionlist, condlist, projlist from Q 

4. Let fromlist=(E1,...,Ek) 

5. for i=1 to  do 

    Ti =Build-subtree(Ei,  selectionlist, condlist , projlist) 

6.   T= T1 

for i=2 to k do 

T=Combine(T, Ti) 

      7.   return Build-path(T, selectionlist ,condlist, projlist) 

 

 

  

Build-subtree(fromExp, selectionlist, condlist, projlist) 

1. if fromExp is a SPOQL query 

return Evaluate(fromExp) 

2. else 

  if fromExp is an SP-Relation 

  return Build-path(fromExp, selectionlist, condlist, projlist) 

 else 

   Let fromExp =(E1 Op E2)Name 

     T1= Build-subtree(E1, selectionlist, condlist, projlist) 

      T2=Build-subtree(E2, selectionlist, condlist, projlist) 

       T=Op(T1, T2) 

      if Name=””” return T 

          else return Build-path(T, selectionlist, condlist, projlist) 

 

 

Figure 3.3 Algorithm for translating SPOQL queries into SP-Algebra expressions 
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Build-path(fromExp, selectionlist, condlist, projlist) 

1. Perform conditionalization operation on fromexp using condlist 

2. Perform selection operation on resultant fromexp using selectionlist 

3. Perform projection operation on resultant fromexp using projlist 

4. return resultant SP-Relation tree T’  

 

Figure 3.3 (Continued) 

 

 

               In this algorithm, Build-path () is a routine that computes the 

conditionalization-selection-projection subtree for each SP-Relation / SP-Relation alias. 

Build-subtree () is a function that produces the query sub tree for a single fromlist entry 

(either an SP-Relation, or a nested SPOQL query or a nested join/product/mix operation). 

 

The working of the algorithm is explained as follows with sample SPOQL queries. 

 

Example 3.1:  

SELECT * FROM S 

WHERE cnt.city=”Lexington” AND var.Y IN V 

AND tbl.prob>0.2 

 

               The above query is a conjunction of atomic selection conditions. This produces 

the following query tree representing the SP-Algebraic expression. The order of selection 

conditions in the SPOQL query does not matter due to the SP-Algebra properties given in 

Table 2.4 

 

Example 3.2:   

               Consider the following SPOQL query Q’’ where S5, S6, S7, S8 represent the 

SP-Relations that describe the distribution for the Welfare to Work client’s 

characteristics-Aptitude, Goals, Confidence, and work history respectively. Welfare to 

Work [3] is a research project aimed at developing software tools to support Welfare to 
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Work case managers in advising their clients. The Welfare to Work case managers have 

to deal with decision-making with uncertainty and constraints in client’s charactersistics. 

Hence, the client characteristics can be easily represented as an SPO and can be queried 

using SPOQL. 

 

SELECT S7.cnt.age-group FROM S5 TIMES S6 TIMES S7 TIMES S8 WHERE  

S6.cnt.year = 1999 AND S5.cnt.age-group=S7.cnt.age-group AND S5.cnt.age-

group=’19-20’ AND S6.cnt.year = S8.cnt.year  

π cnt.age-group

S7

(S7’) σ

S5

(S5’)
cnt.age-group=’19-
20’

σ(S6’)

S6

cnt.year=1999

S8

× S5’ cnt.age-group=S7’ cnt.age-
group × S5’ cnt.age-group=S7’

cnt.age-group

×

(S5’’) (S6’’)

(S5’’’)

 
Figure 3.4 Query tree for Example 3.2 

 

Initially, the SPOQL query is evaluated for its syntactic and semantic validity. Then, 

according to the build path algorithm the selection operation on context is performed on 

SP-Relations S5 and S6 resulting in SP-relations S5’ and S6’ respectively. The projection 

operation on context is then performed on SP-Relation S7 resulting in SP-Relation S7’. 

Then according to Build-subtree algorithm, SP-relations S5’  and S7’  are combined by 

applying the respective join condition to the Cartesian product resulting in SP-relation 

S5’’. Similarly SP-relations S6’ and S8 are combined in resulting SP-relation S6’’. The 

resulting SP-relation S’’’ is the Cartesian product of SP-Relations S5’’ and S6’’. 
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Example 3.3:  

 

SELECT * FROM S1 JOIN (S2, S3) WHERE S1.var.A in V AND S2.tbl.prob >0.2 

σ

S1

var.A IN V σ

S2

tbl.prob>0.2

S1’ S2’

⊗

S3

S2’’

= ×S’’’

 
Figure 3.5 Query tree for Example 3.3 

 

This query illustrates the evaluation of explicitly ordered SP-relations in a SPOQL query. 

The above query is evaluated for its syntactic and semantic validity. According to the 

Build-path algorithm, the selection operation on Variable  is performed on SP-Relation 

S1 and selection operation on probability value is performed on SP-Relation S2 resulting 

in SP-relations S1’ and S2’. Then according to Build-subtree algorithm, SP-relations S2’ 

and S3 are combined using mix operation resulting in SP-relation S2’’.Thus, the resulting 

SP-Relation S’’’ is the join operation of SP-relations S1’ and S2’’. 

 

Example 3.4: 

SELECT cnt.age FROM S where tbl.prob>0.5 CONDITIONAL var.LY=B 
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S

μ
var.LY=B
S’

π S’’
cnt.age

σ
tbl.prob>0.5

 
Figure 3.6 Query tree for Example 3.4 

 

This is a simple query that illustrates the order of evaluation in a SPOQL query. 

According to build path algorithm, Conditionalization operation is performed on the SP-

Relation S resulting in SP-relation S’. Then, selection operation on probability table value 

is performed on SP-Relation S’ resulting in SP-relation S’’. And finally, projection 

operation on context is performed on SP-relation S’’ resulting in the final output SP-

relation S’’’. 

 

Example 3.5: 

SELECT * FROM S1 JOIN (SELECT * from S2 TIMES S3 where S2.cnt.year=2006 

CONDITIONAL S3.var.LY=A) WHERE S1.cnt.DA=18 
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σ

S1

cnt.DA=18
S1’ σ

cnt.year=2006

S2

S2’ μ
var.LY=A

S3

S3’

× S2’’

= ×S’’’

 
Figure 3.7 Query tree for Example 3.5 

 

This query illustrates the functionality of nested queries supported by SPOQL. The above 

query is evaluated for its syntactic and semantic validity. According to build path 

algorithm, conditional operation on conditional variable is performed on SP-relation S3 

resulting in SP-relation S3’ and selection operation on context is performed on SP-

relation S2 resulting in SP-relation S2’. Then according to Build-subtree algorithm, SP-

relations S2’ and S3’ are combined by applying the Cartesian product resulting in SP-

relation S2’’. Now, according to Build-path algorithm, selection operation is performed 

on SP-relation S1 resulting in SP-relation S1’. And then according to Build-subtree 

algorithm, SP-relation S1’ and S2’’ are combined by applying the join operation resulting 

in the final output SP-relation S’’’. 
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Chapter 4 
 
 

Architecture of Semistructured probabilistic Query Language 
 
4.1 System Architecture 
 
Given as a basis the translation mechanism and query language described in the previous 

section, we now introduce the SPOQL translator system architecture and discuss the 

interaction between components of the system. 

SPOQL Query Table
Generator

SPOQL Query Tree 
Builder

SPOQL Query Tree
Translator

SPOQL Query 
Parser

SP-Algebra query
parser

SP-Algebra Query 
Optimizer

SP-Algebra query
Translator

XML Generator

Post-Processor

Internal Object
Model

SPOQL Query
XML

SPOQL

Translator

Engine

Sp-algebra query

RDBMS
SQL Tuple 

Stream  
                    Figure 4.1 Architecture of SPOQL integrated into SPDBMS 

 

The basic architecture of SPOQL translator system and its integration into 

SPDBMS is shown in Figure 4.1.  SPDMBS is the backend storage of probabilistic data 
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for various applications that are developed for the Welfare-to-Work modeling project [3]. 

These applications are currently interacting with SPDBMS using SP-Algebra queries. 

Now with the implementation of SPOQL, these applications can start querying SPDBMS 

using SPOQL queries. The query compilation layer of the SPOQL system consists of the 

parser, query table generator, query tree generator and query tree translator. 

 

The SPOQL parser accepts a textual representation of SPOQL query from various 

applications, transforms it into a parse tree, and then passes it to the query table generator 

for building a transposition table. This transposition table built is then passed to query 

tree generator. The query tree generator evaluates the SPOQL query represented in a 

transposition table. Then it builds a logical query evaluation plan and manipulates it as 

per the semantics of SPOQL. Then the logical query evaluation tree is passed to the query 

tree translator to translate the SPOQL query into its corresponding SP-Algebraic 

expression. The SP-Algebra expression is then finally executed by the rest of the 

SPDBMS components. 

 

4.2 Component Overview 

 

4.2.1 Query Parser 

 

In this step, the query is parsed as per the grammar rules of SPOQL. If the query 

is parsed successfully, then the query is validated against the validation rules of SPOQL. 

If the query does not pass these two steps successfully, the SPOQL engine throws the 

corresponding error to the calling application and stops further processing of SPOQL 

query. Otherwise, the constructed parse tree is passed to the next step for further 

evaluation. The Java parser API is used to build the SPOQL parser[22].  

 

 

4.2.2 Query Table Generator 

 In this step, the SPOQL query is analyzed and a proper transposition table is 

constructed for further evaluation in subsequent stages. As stated in an earlier chapter, the 
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SPOQL engine is designed to handle nested queries. To handle this, the SPOQL engine 

employs the strategy resembling depth-first search for analyzing the query. And since 

depth first search is used for analyzing SPOQL queries, the engine needs to keep track of 

nested queries analyzed so far. Otherwise, the engine will end up analyzing the same 

nested query again and again. In order to overcome this problem and to represent the 

SPOQL query through a proper data structure for further handling, the SPOQL engine 

uses a transposition table. This table is a hash table of each of the nested queries (inner 

level queries) as well as top level query completely analyzed from left to right. A hash 

table is a kind of data structure that associates keys with values. In this case, the SPQOL 

engine pairs nested query/top level query with its corresponding list of query parts such 

as fromlist, selectlist , condition, conditional.  SPOQL engine generates the keys relative 

to the position of the nested query in the SPOQL query. Starting with the top level query, 

the keys are numbered as $PS, $NS1, $NS2, ….. , $NSn where $PS is the key associate 

with top level select statement and $NS1, $NS2,…, $NSn are keys associated with 

corresponding nested select statements if are present. 

 

4.2.3 Query Tree Generator 

By using a transposition hash table constructed for the SPOQL query, the query 

tree generator produces the query evaluation tree for the query as per the semantics of 

SPOQL. The query tree is represented using a stack data structure. A typical entry in the 

stack consists of a SPOQL operator to be applied, SPOQL relation(s) and join or select 

conditions if are present. The query tree generator uses a recursion technique for 

evaluating select statements at various levels. The query tree is constructed by evaluating 

the query from left to right. The inner most SELECT statement is evaluated before 

evaluating the SELECT at its preceding upper level. The precedence of operations and 

scoping rules defined in the previous chapter are applied while constructing the query 

tree. The query tree is used by the query tree translator for translating into SP-Algebraic 

expression. 
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4.2.4 Query Tree Translator 

This is the final step in the translation of SPOQL query into SP-Algebra 

expression. The query tree is represented as a stack. The translator takes out each item 

from the stack and translates each atomic SPOQL query expression into its corresponding 

SP-Algebraic expression. All these atomic SP-Algebraic expression are appended to form 

the SP-Algebraic representation of the given SPOQL query. 
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Chapter 5 
 
 

Experimental Results and Analysis 
 
 

This section explains the experimental setup used for testing SPOQL. The results 

of the tests conducted by writing SPOQL queries for SPDBMS are then compared with 

those results obtained by writing straight SP-Algebra queries. 

 

System Environment 

 

The current system has the application server and the database server running on 

the different machines. Hence a network delay is possible during these tests. The test 

datasets used in the experiment are those used for testing SP-Algebra queries. In order to 

accommodate network delay during these tests for comparative analysis, the queries were 

initially run by the SP-Algebra server and then later by SPOQL Server.  Oracle 8i was 

selected as the backend database server for the current system. The current system has 

440 M Hz Sun Ultra 10 running Solaris OS with 1GB of main memory. For all the 

experiments conducted, 256 M memory is allocated for the JVM and the timing is done 

on the server side. The execution time for SP-Algebra query and SPOQL query is 

captured. Then, the translation time from SPOQL to SP-Algebra is calculated as the 

difference of these times. The results are shown in Table 4.2.  The tests are run for SPOs 

with 2, 3 and 4 variables.  

 

 From the results obtained, we can see certain cases where the execution time of 

SPOQL query is smaller than that of its equivalent SP-Algebra query.  This is because we 

ran the tests for the set of queries written in SP-Algebra using SP-Algebra server initially 

and then ran the same set of queries written in SPOQL using SPOQL Server against the 

same set of SP-Relations in SPDBMS. As SPDBMS is implemented on top of RDBMS, 

RDBMS has the ability to cache query evaluation plans for queries for later use. Hence, if 

the same query is submitted once again then RDBMS uses the cached execution plan and 

fetches results faster.  
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Table 5.1 Execution time of SPOQL queries and SP-Algebra queries for SPOs of 

variable size 2 
 
Number 
of SPOs 

Query Type Execution 
time for SP-

Algebra 
(msec) 

Execution 
time for 
SPOQL 
(msec) 

Difference(SPOQL 
time - SP-Algebra 

time) (msec) 

100 Select on context 78 60 -18 
100 Select on 

conditional 
39 58 19 

100 Select on variable 57 38 -19 
100 Select on table 82 79 -3 
100 Project on context 100 101 1 
100 Project on 

conditional 
80 56 -24 

100 Project on variable 69 58 -11 
100 Conditionalization 53 53 0 
100 Select on 

Probability value 
205 243  

100 Cartesian product 4638 4837 38 
100 Join 297 326 29 
100 Mix operation 4630 4646 16 
100 Complex query 1 54 115 61 
100 Complex query 2 55 103 48 
100 Complex query 3 136 220 84 
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Table 5.2 Execution time of SPOQL queries and SP-Algebra queries for SPOs of 
variable size 3 

 
Number 
of SPOs 

Query Type Execution 
time for SP-

Algebra 
(msec) 

Execution 
time for 
SPOQL 
(msec) 

Difference(SPOQL 
time - SP-Algebra 

time) (msec) 

100 Select on context 17 39 22 
100 Select on 

conditional 
11 20 9 

100 Select on variable 47 59 12 
100 Select on table 48 53 5 
100 Project on context 98 87 -11 
100 Project on 

conditional 
46 42 -4 

100 Project on variable 44 43 -1 
100 Conditionalization 43 43 0 
100 Select on 

Probability Value 
116 117 1 

100 Cartesian Product 18236 18283 47 
100 Join 983 986 3 
100 Mix operation 18811 19076 265 
100 Complex query 1 78 47 -31 
100 Complex query 2 65 61 -4 
100 Complex query 3 185 201 16 
 
 
 

Table 5.3 Execution time of SPOQL queries and SP-Algebra queries for SPOs of 
variable size 4 

 
Number 
of SPOs 

Query Type Execution 
time for SP-

Algebra 
(msec) 

Execution 
time for 
SPOQL 
(msec) 

Difference(SPOQL 
time - SP-Algebra time) 

(msec) 

100 Select context 18 40 22 
100 Select on 

conditional 
13 20 7 

100 Select on variable 53 68 15 
100 Select on table 49 68 19 
100 Project on context 168 145 -23 
100 Project on 

conditional 
43 45 2 

100 Project on variable 19 46 27 
100 Conditionalization 23 51 28 
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Table 5.3 (continued) 
 
100 Select on 

Probability Value 
39 64 25 

100 Complex query 1 35 53 18 
100 Complex query 2 95 141 46 
100 Complex query 3 260 397 137 
 
 

From the tables we can observe that the translation time is relatively greater for 

complex queries and not a major overhead for simple queries as well for join, Cartesian 

product and mix operations.  
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Chapter 6 
 
 

Conclusions and Future work 

 
 

The SPO model for management of uncertain data in databases provides 

flexibility for storing and manipulating large collections of probability distributions. SP-

Algebra, the original query language for SPDBMS provides all major database operations 

and introduces some operations, such as conditionalization specific to probabilistic 

database management system. The traditional limitations of SP-Algebra — the functional 

syntax and unfamiliarity to application programmers have been alleviated by SPOQL. 

SPOQL is a structured query language for the SPO model that provides familiar SQL - 

like declarative syntax that is easier for the programmers. The current work implemented 

SPOQL language over the SP-Algebra.  

 

Parsing SPOQL queries is a more involved task than parsing SQL queries, due to 

the fact that important query equivalences do not hold in SP-Algebra. As a result, some 

query translations are incompatible. Eager evaluation is used for parsing SPOQL queries. 

According to eager evaluation, all operations are applied in the defined order of 

precedence as soon as they can be executed. The new SPDBMS server with SPOQL can 

replace the old SPDBMS server and application using SPDBMS as the back end for 

storage of probabilistic data. This can be used in the system being developed for Welfare-

to-Work modeling project [20]. The current work also extends SP-Algebra with a new 

mix operation and enhances selection by comparing context variables of SPOs. 
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SPOQL Grammar 
 
< spoqlquery > :: = SELECT < selectlist > 
        FROM < spolist > 
        [WHERE < selectioncond >] 
        [CONDITIONAL < conditionlist > 
 
<selectlist> := * | < projectioncond > 
<projectioncond> := < AtomicProjectionList > | 
            < projectioncond >,< projectioncond > 
 
<AtomicProjectionList> is defined in Definition 2 of Chapter 2 
 
<spolist> :=< sp-relation > | 
        < sp-relation > < combOp > < sp-relation > 
 
<sp-relation> := < Name > | 
    (< spoqlquery >)< Name > | 
   (< spoilst>)< Name > 
 
<combOp> := ‘,’|‘JOIN’|’TIMES’ 
 
<selectioncond> := <AtomicSelectioncond> | 
         [(]< selectioncond > AND < selectioncond > [)] | 
         [(]< selectioncond > OR < selectioncond > [)]  
 
<AtomicSelectioncond> is described in Table 2.1 of Chapter 2 
 
<conditionlist> := < AtomicCondExp > | 
       < conditionlist > AND < conditionlist > 
 
<AtomicCondExp> is defined in Definition 3 of Chapter 2 
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