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ABSTRACT OF THESIS 
 
 
 
 

FINITE ELEMENT ANALYSIS AND RELIABILITY STUDY OF 
MULTI-PIECE RIMS 

 
      Multi-piece wheels or rims used on large vehicles such as trucks, tractors, trailers, buses 
and off-road machines have often been known for their dangerous properties because of the 
large number of catastrophic accidents involving them. The main causes for these accidents 
range from dislocation of the rim components in the assembly, mismatch of the components, 
manufacturing tolerances, corrosion of components to tires.  
      A finite element analysis of a two-piece rim design similar to one manufactured by some 
of the prominent rim manufacturers in the USA is undertaken. A linear static deformation 
analysis is performed with the appropriate loading and boundary conditions. The dislocation 
of the side ring with respect to the rim base and its original designer intent position is 
established using simulation results from ANSYS and actual rim failure cases.  
     Reliability of the multi-piece rims is analyzed using the failure data provided by the rim 
manufacturers in connection with a lawsuit (Civil Action No. 88-C-1374). The data was 
analyzed using MINITAB. The effect of an OSHA standard (1910.177) on servicing multi-
piece rims was studied for change in failure patterns of different rims. The hazard functions 
were plotted and failure rates were calculated for each type of rim. The failure rates were 
found to be increasing suggesting that the standard had minimal effect on the accidents and 
failures. The lack of proper service personnel training and design defects were suggested as 
the probable reasons for the increasing failure rates.  
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CHAPTER ONE 

INTRODUCTION 

1.1 BACKGROUND 

The earliest known wheel to the modern civilization was believed to be over fifty-five 

hundred years old, found in archeological excavations in what was Mesopotamia. Over the 

centuries, wheels have undergone gargantuan changes in manufacturing and application 

technology. We have moved over from the initial wooden wheels to manufacturing steel 

wheels to using different alloys for the same purpose for various functions and advantages. 

Successful designs have been established after years of experience, research and testing. 

These improvements have been aided by the development of several new scientific and 

analytical methods. The exact operating conditions can be simulated by finite element 

methods and computer programs. The reliability and safety considerations in operating a 

wheel can be configured with diverse analyses methods. The wheel over the centuries has 

come to become an inseparable part of human civilization. Wheels are also one of the most 

important components of automobiles from the view point of structural safety. As a result, 

wheels must be certified to have sufficient safety margins even under severe driving and 

operating conditions. Moreover, since other requirements such as lighter weight or more 

attractive design make the configuration of the wheel more complicated and sophisticated, 

it has become necessary to perform rigorous strength evaluations of the wheel in detail 

when a new wheel design is developed. A well designed wheel is the foundation which 

adds strength, stability and durability to a tire. Hence, the increased urge to make them 

safer and reliable.  
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1.2 WHEEL AND RIM ASSEMBLIES 

The wheel, according to the SAE standard, SAE J393 OCT 91 is defined as a rotating 

load-carrying member between the tire and the hub. The main components of a wheel are 

the rim, the tire and the disk or the spokes. The rim and the tire in a wheel assembly are 

specially matched components. The hub is the rotating member that represents the 

attachment face for wheel discs. The rim is defined as the supporting member for the tire 

or tire and the tube assembly. The disc wheel is a permanent combination of the rim and 

the disc. The disc or the spider is defined as the center member of a disc wheel. There have 

been many rim designs in use. They can be broadly classified into- a single piece rim and a 

multi-piece rim. A single-piece rim is a continuous one-piece assembly. The multi-piece 

rims are essentially two or more pieces assembled together according to a concentric fit 

design.  The assembly consists of a rim base and either a side ring or a side and lock ring 

depending on the number of pieces making the whole rim. In two-piece assemblies, the 

side ring retains the tire on one side of the rim. The fixed flange supports the other 

side.  The side ring in a two-piece assembly could be either continuous or split. The split 

side ring is designed so that it acts as a self-contained lock ring as well as a flange. Some 

of the rims have a drop centre, where the central portion of the rim base is a drop of a 

certain angle from the main contour of the rim. The area where the drop starts is usually a 

hump which is of two types- Flat Hump (FH) or the Round Hump (RH). The rim is 

designated by either one of these along with the angle of the drop. A couple of these types 

have been illustrated in the figure below.   
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Dimensions: A – Rim width                                       P – Bead seat width 

                     B – Flange width                                   R1 – Flange compound radius 

                     D – Rim diameter                                  R2 – Flange radius 

                     D2 – Rim inside diameter                       R4 – Well top radius 

                     G – Flange height                                   FH – Flat hump 

                     H – Well depth                                       RH – Round hump 

                     M – Well position                                   β – Bead seat angle 

 

Figure 1.1: Rim 
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Figure 1.2: Two-piece rim outline.  
 

In three-piece assemblies, the flange or continuous side ring supports the tire on one side 

of the rim.  The continuous side ring is, in turn, held in place by a separate split lock ring. 

All lock rings are split. In three-piece assemblies, the lock ring is designed to hold the 

continuous side ring on the rim.  

The safety or efficient operation of the rims relies to a large extent on the component parts 

of the rims. Some of the main causes for concern are the deformation of the rim base and 

the side ring. The deformation would not result in a good fit of the assembled parts and 

would thus lead to a failure. Mismatch of the components during the assembly is also an 

important cause for concern. The other major factors affecting the safety are the changes in 

the manufacturing tolerances for the components, road hazards, corrosion of the 

component materials and the tires. The safe operation of the tires play an important role in 

reducing the danger associated with the rims. The process of mounting a tire onto a rim is a 

very crucial process. It could lead to a potentially life threatening situation. The improper 

inflation and also the deflation of the tires also affect the safety of the rims. The multi-

piece rims are essentially a concentric fit of two interlocking parts. If any of them are not 
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in the precise location of the designer’s intent when the rim and the tire assembly is 

inflated, it may result in a separation of the rim components.  

The present work concentrates more on the stress and concentric displacement analysis of 

the two-piece rim components in use. 

1.3 OBJECTIVE 

Multi-piece wheels or rims used on large vehicles such as trucks, tractors, trailers, buses 

and off-road machines have often been known for their dangerous properties. This is 

because of the large number of catastrophic accidents that they have been involved in. The 

accidents have in most cases resulted in serious injury or even death to the workers. The 

main problem with these types of rims is when the tire is mounted or demounted from the 

rim, the assembly blows off. The cause of the actual blow off varies from mismatch of the 

parts during the assembly, wear of the components and improper design. Numerous 

product liability lawsuits have been put up seeking compensation for the damages and the 

complete removal of these rims from the market. Though there has been a strong demand 

for a ban on the multi-piece rims, the wheel industry was successful in avoiding it by 

supporting an awareness and educational program brought out by the Occupational Safety 

and Health Administration (OSHA). The OSHA introduced a guideline in 1980 for 

servicing multi-piece and single rims. This guideline contains the servicing equipment that 

is recommended and the training that is required by the employee to work on the rims. It 

was also made mandatory to display this guideline in all the tire service stations and other 

places where the rims are assembled, mounted or demounted.  The net result of this entire 

educational program was transfer of the liability from the manufacturer to the employees 

working on the rims.   
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Although OSHA guidelines require, among other things, the use of a safety cage during 

the tire mounting operation, accidents still occur after the wheel is removed from the safety 

cage, for example, when it explodes as it is being mounted on the vehicle.  The warnings 

(which are part of the educational program) are not an adequate substitute for a safer 

design.  

The present work seeks to analyze a two-piece rim similar to those manufactured by some 

of the most prominent rim manufacturers in the USA. The actual rim being analyzed is the 

7.5 Type FL Rim, 2 Pc Design, Non-Demountable with and without valve hole. A linear 

static stress and deformation analysis would be performed to look into the areas of 

maximum stress development and also the areas of maximum deformation. Non-linear 

effects will not be considered in this investigation. Reliability of the rims and the effect of 

regulations enforced on the rims such as the Occupational Health and Safety (OSHA) 

guideline will be reviewed.  
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CHAPTER TWO 

REVIEW OF PUBLISHED LITERATURE 

2.1 BACKGROUND 

The modern day truck wheel has undergone many changes in design to improve its overall 

performance on the road. Most of the earlier work on the analysis of tire rims was 

undertaken during the 1970s and 1980s. Bradley [1] traces the development of the modern 

truck disc wheel from the World War II times. Initially the flat base rim was the standard 

of the industry before 1945. In 1945 two types of rims- the advanced rim and the interim 

rim were introduced. The interim rim had a new side ring to the original flat base. This 

gave the tire additional support. The advanced rim was a three piece rim, side ring and lock 

ring combination. It had more advantages than the interim rim design. Bradley also 

discusses the development of the disc portion of the wheel, the tubed and the tubeless 

wheel assemblies. The bevel weld construction of the disc for weight reduction in tubed 

wheel assemblies is shown. The introduction of the drop centre single piece rim for 

tubeless tires was also discussed. The development of the duo rim has also been traced and 

its design features were clearly described. The duo rim could function both as a tubed or a 

tubeless rim.  

2.2 STRESS ANALYSIS 

Ridha [2] presented a finite element stress analysis of automotive wheels which could be 

applied not only to the rim but to the entire wheel. The rim cross-section was first modeled 

by an interconnected grid of fine triangular elements. The displacements of each element 

were calculated and then the strains and finally the stress distribution obtained. The 

formulation of the stiffness matrix of a constant strain triangular element for axisymmetric 
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problems was given along with the modifications for non-axisymmetric problems. He 

concluded from the analysis that the largest principle stresses were located in the regions 

of sharp changes in the rim’s contour, i.e., the flanges and the drop centre. He also 

discussed the effects of increasing the width of the rim for reducing the stress levels.  

Morita et al [3] showed that the present FEM stress evaluation technique was a good and 

effective way to develop new designs for wheels. The induced stress of the wheel in the 

rotating bending fatigue test was simulated by a three dimensional finite element analysis 

of the wheel. The stress distribution was obtained and the results were compared to 

experimental results from strain gauges on a wheel. The comparison yielded similar results 

from both of them. The wheel that they had analyzed was a passenger car wheel (5-1/2 JJ x 

14 WDC). The element used for the FEM modeling was a four-node iso-parametric shell 

element. The effect of different design parameters like the disc thickness, disc hat radius 

and rim thickness were also studied numerically. All the three parameters had an inverse 

proportional relation with the stress amplitude. 

Stearns [4] investigated the effects of tire air pressure along with the radial load on the 

stress and displacement of aluminum alloy tire rims in his doctoral dissertation. The effects 

of providing an opening on the rim and also environmental degradation were also 

investigated. ALGOR was used in the modeling and analysis of the rim, which was a 

single piece type. Stearns’ research revealed that the finite element analysis of the rim was 

more accurate with a brick element rather than a shell or a plate element. Critical areas 

were identified both on the rim and the disc. The Von Mises stresses in the disc were 

found to be much lower than that in the rim. The inboard bead seat area was identified to 

be the area of maximum stress. The stress was however below the endurance limit for the 

applied loading condition. The effect of providing a square opening resulted in 10% higher 

stress concentration when compared to a round hole opening at the same location.  

8 



 

Ridder et al [5] looked into the incorporation of reliability theory into a fatigue analysis 

algorithm. A design algorithm had been developed and the automotive wheel assembly 

was taken as an example to demonstrate its application. Using the program, failure vs. 

cycles curves had been developed for different alloys like 1010 Steel, DP Steel and 5454 

Aluminum. The effects of driver and route variations and also material processing effects 

have been studied. Based on the information collected and the results from the analysis, the 

most reliable wheel spider of the three alloys in consideration was suggested. The effects 

of fatigue crack growth on durability have not been dealt with. This case study was 

concentrated only on component reliability for determination of the best possible material 

for the job. 

The safety and salient features of both single and multi-piece rim types in the context of 

field performance were discussed by Watkins and Blate [6]. The failure of multi-piece rims 

was discussed with a theoretical approach. They had reviewed different finite element 

analyses discussed above to verify adequacy of the existing design. Results of multi-piece 

component analysis had not been presented. Statistical analysis of accident data had also 

been performed. The OSHA guideline on servicing different types of rims had come out 

only a year earlier and the authors expected the injuries to be minimized as a result of it.  

The literature review reveals that most of the analysis and studies on rims had not clearly 

addressed the problem of failure of multi-piece rims and the huge accident data associated 

with them. The OSHA guideline was expected to minimize or control the number of 

accidents relating to multi-piece rims. The effect of OSHA standard on the actual 

serviceability would be revealed by a complete statistical analysis of the data after its 

implementation. This review provides a clear direction to the present study. 
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CHAPTER THREE 

FINITE ELEMENT ANALYSIS 

3.1 INTRODUCTION TO FEA 

The finite element method is a numerical method for solving problems of engineering and 

mathematical physics. Typical problem areas of interest in engineering and mathematical 

physics that are solvable by the use of the finite element method include structural analysis, 

heat transfer, fluid flow, mass transport, and electromagnetic potential. This method is 

used to solve complex problems that are difficult to be satisfactorily solved by other 

analytical methods. It actually originated as a method of analyzing the stress distribution in 

different systems.  

 

The concept of Finite Element Analysis was initially proposed by Courant in 1941 [7]. In a 

work published in 1943, he used the principle of stationary potential energy and piecewise 

polynomial interpolation over triangular sub regions to study the Saint-Venant torsion 

problem. Approximately ten years later engineers had set up stiffness matrices and solved 

the equations with the help of digital computers. The exact behavior of a structure at any 

point can be approximated by using the numerical solutions at discrete points, called nodes. 

The nodes are connected by the elements. The approximate solution for each element is 

represented by a continuous function, which leads to a system of algebraic equations. The 

complete solution is then generated by assembling the elemental solutions, allowing for the 

continuity at the inter-elemental boundaries. 

 

There are numerous element types that could be chosen for a given structure. The selection 

of the appropriate element type depends on the problem at hand. An element or mesh that 
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works fine in a particular situation may not be as good for a different situation. The 

engineer should select the best element for a problem understanding well both the nature of 

the element behavior and the problem itself. The numerical hand calculations using this 

method become increasingly difficult with the complexity in the geometry of the structure 

and with increasing number of nodes. For this reason, several finite element computer 

programs have been developed by research organizations that can produce reliable 

approximate solutions, at a small fraction of the cost of more rigorous, closed-form 

analyses. 

 

Out of all the numerous computer programs currently available to analyze finite element 

problems, ANSYS is very popular software. ANSYS can be efficiently used to analyze a 

number of models in most of the above mentioned areas in engineering and mathematical 

physics. 

 

3.2 INTRODUCTION TO ANSYS 

ANSYS Inc developed and maintains ANSYS, a general purpose finite element modeling 

package for numerically solving static/dynamic structural analysis (both linear and non-

linear), fluid and heat transfer problems as well as electromagnetic and acoustic problems.  

 

From the available element library in ANSYS, the element used for modeling the rim 

section is the SOLID95 type. SOLID95 is a higher order version of the 3-D 8-node solid 

element SOLID45 [8]. It can tolerate irregular shapes without as much loss of accuracy. 

SOLID95 elements have compatible displacement shapes and are well suited to model 

curved boundaries. The element is defined by 20 nodes having three degrees of freedom 

per node: translations in the nodal x, y, and z directions. The element may have any spatial 
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orientation. Elements are generated using free/mapped/automatic meshing. The 

convergence of results is ensured by refining mesh size (increasing the number of 

elements) i.e. h-FEA is adopted. The p-method is more tolerant for element 

distortion and geometry quality such as aspect ratio, skew ness angle etc. Also the 

number of elements is much less compared to h-method; hence no mesh refinement 

is needed for complicated geometry. 

 

 

 

 

Figure 3.1: SOLID95 3-D 20-Node Structural Solid 

(Courtesy: ANSYS, Inc. Theory Reference) 
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3.3 INTRODUCTION TO PRO/E 

Solid modeling, as a field is the result of several convergent developments like automated 

drafting systems, free-form surface design and graphics and animation. The incorporation 

of component design intent in a graphical model by means of parameters, relationships and 

references is known as the parametric design. Pro/E is one of the most widely used 

parametric solid modeling software available today. It can be efficiently used for modeling 

complex parts, features and assemblies. The wheel rim is one such complex component 

which can be easily modeled using Pro/E.  

 

3.4 MODELING USING PRO/E 

The two-piece rim used for the analysis is modeled using Pro/E. The rim as already 

discussed contains two parts- the rim base and the side ring. The two-piece design is a 

concentric fit of these two combining parts. First, the rim base is modeled as a part using 

the ‘revolve’ option in Pro/E. Then, the side ring is also modeled as a part. The two parts 

are then assembled using the ‘components assemble’ option. The assembly is checked for 

the accurate fit of the two parts in the proper designated location. The two-piece rim is 

modeled as a 3600 solid as shown in the figure 3.2. But due to the symmetry in the 

geometry, a 20 model is used for the analysis. 
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Figure 3.2: Tube-Type Demountable Rim Assembly (two-piece)  
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Figure 3.3: Rim Base 

 

 

 

Figure 3.4: Split Side Ring 
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3.5 ANALYSIS OF TWO-PIECE RIM 

The 20 rim modeled in Pro/E is saved as a .iges file. It is then imported into ANSYS using 

the import file command. The import file command in ANSYS can import models from 

Pro/E in the .iges file mode.  

 

The element type used for the model is chosen as SOLID 95 from ANSYS element menu. 

Previous research [4] has shown that the solid element is a better option to model the 

wheel and rim components than the shell elements. The model is then assigned the 

material properties like Young’s Modulus, Poisson’s ratio and density of steel. The 

meshing is done with the ‘mesh tool’ option in ANSYS. A free tetragonal mesh for 

volumes is generated. The total number of elements created as a result of the meshing 

process is 22896. Then the loading and the boundary conditions are applied to the model. 

The model is restrained in all degrees of freedom (ALL DOF) on the lower left side region 

of the rim base. This is the area where the disc or the spokes are attached or bolted to the 

rim connecting it to the hub. Since the 20 model is used due to symmetry, the symmetry 

boundary conditions are applied to the side edges of each component in the two-piece 

assembly. A pressure loading of 90 psi is applied to the top cup surface of the model. This 

is the inflation pressure of the tire acting on the top surface of the rim.  
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Figure 3.5: Two degree model of rim imported into ANSYS 

 

 

Figure 3.6: Elements generated using the meshing option in ANSYS 
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3.6 RESULTS AND DISCUSSION 

The model is run for the applied boundary and loading conditions. Due to the complexity 

of the assembly model and the total number of the elements involved, the processing time 

is very high. The model solves for an approximate time of around two hours. The general 

post processing of the model yielded the deformation and the stress results. A result 

summary from the General post processing menu gave the overview of all the required 

results. The deformed shape of the rim assembly as a result of the pressure loading is 

shown below from the ANSYS plot, figure 3.7. Also, a plot of the deformed and the un-

deformed shape of the assembly is shown in figure 3.8.   

 

 

 

Figure 3.7: ANSYS plot of the deformed shape of the rim assembly. 
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Figure 3.8: ANSYS plot of the deformed and un-deformed shape of the rim assembly. 

 

Figure 3.9: ANSYS plot of the Von-Mises stress profile of the rim assembly.  
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From the plots it is very clear that the assembly comes apart due to the inflation pressures 

of the tire on the rim. The figure 3.7 shows that the side ring is dislocated by 0.00375 

inches. The tongue-in-groove principle of locking the two components, as the fit is usually 

referred to as, has the greatest challenge of retaining the side ring in the groove when the 

extreme pressure acts on the assembly. Roughly half the inflation pressures act on the side 

ring, imposing on it a very high force to move out of the groove. The axisymmetric 

inflation pressure acting on the rim produces an axial force on the side ring and also 

induces shearing and bending effects. The axial force causes the side ring to move in the 

‘x’ direction and the bending moment causes it to dislocate from the original designer 

intent position. Also, the tire bead runs through the area of dislocation. The weakening of 

the tire bead, made up of drawn steel cables which carries most of the hoop stress further 

adds to the impulsive force against the side ring causing it to fail. The outward directed 

axial force acting on the side ring due to the pressure of inflation is very high and pushes 

the ring in the direction of the force acting. The plots from ANSYS are indicative of the 

type of dislocation that is expected due to the forces acting as a result of the inflation 

pressure. 

 

The effect of changing the position of the side ring along the circumference of the rim base 

does not help the situation any further. The simulation run in ANSYS was done changing 

the position of the side ring, i.e., the dislocated area of the side ring is placed in a new 

position on the rim base and similar results have been obtained. The stress contour plot 

shows that the maximum stresses occur in the region of contact between the two 

components and the bead seat area. But due to the high stress acting on the side flange, a 

little deformation is observed on the base area which is in contact with the other 

component and through which runs the tire bead.  
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The results from the ANSYS simulation were checked with some actual rim failure pieces. 

The dislocation is very similar to the one that is obtained from the simulation. The ring or 

the flange is moved out of the position of intent. Figure 3.10 shows the original position of 

a side ring when the components are fit exactly. Figure 3.11 shows the rim components 

from a failure case. Clearly the movement of the ring off the base area is replicated from 

the ANSYS results shown in figure 3.13 and figure 3.14. The effect of changing the 

position of the area of dislocation was also done on the actual components and found to be 

not successful.  

 

 

 

 

 

Figure 3.10: Original fit of the components in a multi-piece rim. 
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The figure above shows the original fit of the components in a multi-piece rim. The black 

portion of the picture is the side ring which is in exact concentric fit with the rim base, 

which is the brown portion of the picture. The side ring is snapped onto the rim base to 

form the exact fit. The figures 3.11 and 3.12 show the fit from a multi-piece rim whose 

side ring is dislocated from its original position. This is because of the effect of inflation 

pressures and other forces acting on it during its operation.  

 

 

 

 

 

Figure 3.11: Dislocation of the ring portion from the rim base at position 1. 

 

 

 

 

22 



 

 

 

 

 

 

 

 

Figure 3.12: Rotational dislocation of ring portion from rim base at position 2. 
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Figure 3.13: Separation of the side ring from the rim base from ANSYS simulation. 

 

Figure 3.14: Dislocation of side ring from rim base from ANSYS simulation. 
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CHAPTER FOUR 

RELIABILITY ANALYSIS 

 

The term ‘Reliability’ is defined as the probability that a product or component can 

perform its desired function for a specified interval under stated conditions. The need for 

the reliability analysis of different components is important because of the demands for 

their safer operation. The data from the failures of components is initially organized into 

distributions and then analyzed for their failure rates, safety index etc. 

 

4.1 STATISTICAL DISTRIBUTIONS 

A reliability function and its related hazard function are unique. Each reliability function 

has a single hazard function and vice versa. All the failure related data can be fit into some 

of the common failure density functions, each having its related hazard function. Some of 

the most common among them are briefly discussed here. 

4.1.1 Exponential Distribution: 

The exponential distribution is widely used in reliability. The probability density function 

for an exponentially distributed random variable ‘t’ is given by    

                               f(t)=(1/θ) e-t/θ  ,  t           0≥

where θ is a parameter called the mean of the distribution, such that θ>0, and   

R(t) = e θ
t−

   ,       t  0≥

4.1.2 Log Normal Distribution: 

The log normal density function is given by             

f(t)=
πσ 2

1
t

 exp
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

−
2ln2/1

σ
µt

   ,      t  0≥

where µ  and σ  are parameters such that  -∞ < ∞<µ  and 0>σ . 
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4.1.3 Weibull Distribution: 

The cumulative distribution for a random variable, x, distributed as the three-parameter 

Weibull is given by, 

                                             ,1),,;(
)( β

δθ
δ

δβθ −
−

−
−=

x

exF         δ≥x  

where 0,0 >> θβ  and 0≥δ . The parameter β  is called the shape parameter or the 

Weibull slope, θ  is the scale parameter or the characteristic life and δ  is called the 

location parameter or the minimum life. The scale parameter is also sometimes indicated 

by η. The two-parameter Weibull has a minimum life of zero and the cumulative 

distribution is given by,  

                                            ,1),;(
)( β

θβθ
x

exF
−

−=   0≥x

The three-parameter Weibull can be converted into the two-parameter distribution by a 

simple linear transformation. The Weibull probability density function for the two-

parameter distribution is given as  

                                         
β

θβ

θθ
ββθ

)(1)(),;(
x

exxf
−−= ,       0≥x

The hazard function is given by  

                                                 ,)()( 1−= β

θθ
β xxh   0≥x

The hazard function is decreasing when 1<β  , increasing when β >1, and constant when 

β   is exactly 1. The hazard function h(x) will change over the lifetime of a population of 

products somewhat as shown in the figure below. The first interval of time represents early 

failures due to material or manufacturing defects. Quality control and initial product 

testing usually eliminate many substandard devices, and thus avoid this initial failure rate. 

Actuarial statisticians call this phase of the curve “infant mortality”.  The second phase of 
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the curve represents chance failures caused by the sudden stresses, extreme conditions, etc. 

In actuarial terms this could be equated to the accidents encountered by the population of 

individuals on a day-to-day basis.  The portion of the curve beyond this region represents 

wear out failures. Here the hazard rate increases as equipment deteriorates. 

 

 

4.2 GOODNESS-OF-FIT TESTS  

The failure data which is modeled into different distributions can be tested for the best fit 

distribution using a couple of methods. These are the Anderson Darling Test and the 

Goodness-of-fit test for a statistical distribution.  

The Anderson-Darling test [9] is used to test if a sample of data came from a population 

with a specific distribution. It is a modification of the Kolmogorov-Smirnov (K-S) test and 

gives more weight to the tails than does the K-S test. The K-S test is distribution free in the 

sense that the critical values do not depend on the specific distribution being tested. The 

Anderson-Darling test makes use of the specific distribution in calculating critical values. 

This has the advantage of allowing a more sensitive test and the disadvantage that critical 

values must be calculated for each distribution. Currently, tables of critical values are 

available for the normal, lognormal, exponential, Weibull, extreme value type and logistic 

distributions. This test is usually applied with a statistical software program that will print 
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the relevant critical values. The Anderson-Darling test is an alternative to the chi-square 

and K-S goodness-of-fit tests.  

The Anderson-Darling test statistic is defined as  

SNA −−=2  

where      ))](1ln()()[ln12( 1
1

iNi

N

i
YFYF

N
iS −+

=

−+
−

= ∑  

‘F’ is the cumulative distribution function of the specified distribution and  are the 

ordered data.  

iY

The critical values for the Anderson-Darling test are dependent on the specific distribution 

that is being tested. Tabulated values and formulas have been published [8] for a few 

specific distributions (normal, lognormal, exponential, Weibull, logistic, extreme value 

type 1). The test is a one-sided test and the hypothesis that the distribution is of a specific 

form is rejected if the test statistic, A, is greater than the critical value. 

The second method for testing the goodness-of-fit is the Correlation Coefficient method. 

The correlation coefficient, r2 (sometimes also denoted as R2) is a quantity that gives the 

quality of a least squares fitting to the original data. It is defined by 

                                          
∑ ∑ ∑ ∑

∑ ∑ ∑
−−

−
=

])(][)([ 2222 yynxxn

yxxyn
r  

or can be stated in more simpler terms as    
yyxx

xy

SSSS
SS

r
2

2 =  

where  are the sum of squared values of a set of ‘n’ data points  

about their respective means. The correlation coefficient is also known as the product-

moment coefficient of correlation or Pearson’s correlation. The value of the maximum 

correlation coefficient for a set of failure data modeled using different distributions could 

be reasonably assumed to be the best fit distribution.  

xyyyxx SSSSSS ,, ),( ii yx
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4.3 FAILURE DATA OF DIFFERENT TYPES OF RIMS 

The large numbers of multi-piece rim accidents occurring over the last few decades have 

resulted in a number of product liability lawsuits being filed. The main objectives of these 

lawsuits were to seek the removal of the multi-piece tire rims from operation and to 

demand compensation for the accidents. The present set of data pertaining to the record of 

these wheel rim accidents has been produced by all the major rim manufacturers to The 

Circuit Court of Kanawha County, West Virginia, in relation to a lawsuit. The data was 

turned in as an exhibit in the Civil Action No. 88-C-1374 [10]. Each data file had the name 

of the victim and the date, time and place the accident had taken place. It also specified the 

type of rim causing the accident and the manufacturer in most cases. The resulting injury 

to the victim and the plaintiffs on behalf of the victim were also included in the details 

pertaining to each lawsuit. The total number of accident cases that were investigated in this 

study is 985. The time period involving the data was from 1955 to 1987. 

The huge number of accidents involving the multi-piece wheel rims caused a lot of 

concern to the Occupational Health and Safety Administration (OSHA). OSHA is an 

organization of the U.S Department of Labor whose goal is to assure the safety and health 

of America's workers by setting and enforcing standards and encouraging continual 

improvement in workplace safety and health. OSHA initially sought to ban all the multi-

piece rims but could not do so because of pressure from the wheel industry. Hence, they 

had brought out a standard for servicing multi-piece and single piece rim wheels in 1980 

[11]. This was part of an educational program to increase the awareness among tire 

mounters and workers in the service stations. 

The data has been thoroughly reviewed and organized into two sets. The first set of data 

contains the details of accidents before the OSHA guideline had come into effect and the 

second set of data contains the details of accidents after the guideline was enforced. A 

tabular format containing the number of various types of wheel rim accidents and the year 
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of the accident for each set of data was created. The tabulated data has been first plotted 

for the accident curves with respect to the year of accident.  

The summary of the number of cases is given below. 

Total Number of Accident Cases Listed:    985. 

Number of ‘RH 5o’ rim accidents:               411. 

Number of Two Piece rim accidents:         147. 

Number of Three Piece rim accidents:         43. 

Number of Single Piece rim accidents:        44. 

Number of Unknown rim type accidents:   340.   

 RH 5 Rim 
Two Piece 

Rim 
Three 

Piece Rim Unknown 
Year Accidents Accidents Accidents Accidents 
1955 1    
1956     
1957     
1958     
1959 1    
1960 2    
1961 2    
1962 1    
1963     
1964 1    
1965 4    
1966 2   1 
1967 4    
1968 4 2  1 
1969 11    
1970 10   4 
1971 11 5  8 
1972 10 1  13 
1973 16 3  27 
1974 16 4 4 10 
1975 16 4 2 10 
1976 11 3 3 9 
1977 23 8 2 22 
1978 24 10 5 27 
1979 23 11 6 34 

 

Table 4.1: Accident statistics for different types of rims before OSHA Guideline 
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  RH 5 Rim  

Two 
Piece Rim  

Three 
Piece Rim  Unknown 

Year Accidents Accidents Accidents Accidents 
1980 22 11 1 26 
1981 46 9 2 36 
1982 28 16 5 15 
1983 29 17 5 21 
1984 32 10 4 24 
1985 19 10 2 15 
1986 15 8   9 
1987 19 9 1 5 

 

Table 4.2: Accident statistics for different types of rims after OSHA Guideline 

 

 

 

  Single Piece 
Year Accidents 
1969 2 
1970   
1971 1 
1972 1 
1973   
1974 4 
1975 2 
1976 5 
1977 4 
1978 3 
1979 2 

 

Table 4.3: Accident statistics for single-piece rims before OSHA Guideline 
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  Single Piece 
Year Accidents 
1980 5 
1981 5 
1982 4 
1983   
1984 4 
1985 1 
1986 1 
1987   

 

Table 4.4: Accident statistics for single-piece rims after OSHA Guideline 

 

From the above data set, the failures relating to only the steel component failure are taken 

into consideration for the purpose of this investigation. The rubber failures like the tire 

blow-out during inflation or deflation, tire bead failures are eliminated. This is because the 

present investigation only deals with failure of rim components, i.e. steel components. The 

failure due to rubber is not considered here. Among the single-piece failures, the different 

modes of failure were found out to be failure during mounting, failure during assembly, 

moving vehicle incidents and separation during welding. From the above modes, only the 

separation during welding is considered as a steel component failure and the rest are 

determined to be rubber failures. Hence, looking into the separation due to welding failures 

in the single-piece rim data, only 1 failure was found. Thus this failure data is used for the 

single-piece rim analysis.  

 

  Single Piece 
Year Accidents 
1985 1 

 

Table 4.5: Accident statistics for single-piece rims (non-rubber failures). 
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Accident curves for different types of rims
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Figure 4.1: Graph for all the different types of rim accidents. 
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 Figure 4.2: Accident Curves for RH 5 rims. 
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Figure 4.3: Accident Curves for Two Piece rims. 
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Figure 4.4: Accident Curves for Three Piece rims. 
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Accident curves for single-piece rims
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Figure 4.5: Accident Curves for Single Piece rims. 

 

Accident curves for unknown rim types
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Figure 4.6: Accident Curves for Unknown type rims. 

 

The above graphs are a simple representation of the failure data of the different rims. 

These graphs show that in most cases the accident curves have risen after the OSHA 

standard was introduced. This is particularly evident from the RH 5 degree and the two-

piece rim curves.  
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4.4 ANALYSIS OF DATA USING MINITAB 

The above failure data for different types of rims is analyzed using the statistical analysis 

software MINITAB 14. MINITAB is widely used software developed by MINITAB Inc. It 

can be used for various purposes like Statistical Process Control, Time Series and 

Forecasting, Reliability/Survival Analysis, Design of Experiments etc. [12]. Data is 

imported into a Minitab Project file from an Excel sheet using the options from the 

Minitab Software. The data is then re-grouped according to the types of rims and the year 

of consideration, i.e. the year in which OSHA introduced the guideline for servicing the 

multi-piece rims.  

The data is first modeled into different distributions using MINITAB. Some of the 

distributions used were the 2 parameter Weibull, 3 parameter Weibull, exponential, normal, 

log-normal, log-logistic etc. After modeling the data, a best fit test was run. The tests used 

for determining the best fit were the Anderson-Darling test and the Correlation Coefficient 

method. For the Anderson-Darling test, the test statistic value should be the least in order 

for the data to best fit the distribution. The values of the computed Anderson-Darling test 

statistic for different rim data shows that the value for the 3 parameter Weibull is the least 

in most of the cases. The correlation coefficient value should be the highest, for a data to 

best fit the distribution. From this method also, it is sufficiently proved that the 3 

parameter Weibull is the best fit distribution. The 3 parameter Weibull is widely known as 

the best fit distribution to model the failure data in most of the engineering situations. The 

values from the MINITAB analysis for the goodness-of-fit tests are given in the appendix.  

Weibull distribution analysis is performed on the data. That is because mechanical 

products tend to degrade over a period of time and are more likely to follow a distribution 

with a strictly increasing hazard function. The Weibull distribution is a generalization of 

the exponential distribution that is appropriate for modeling lifetimes that have constant, 

increasing and decreasing hazard functions. A 95% confidence interval is chosen for the 
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Weibull analysis. The shape (β), the scale (θ) and the location (δ) parameters from the 

analysis of each set of data are investigated with greater detail.  

The single-piece rim data used for the analysis is obtained from the Table 4.5. There is 

only one failure case that is appropriate to the present investigation. This data is 

insufficient for the analysis in MINITAB. It is difficult to perform a distributional analysis 

on a single point. Hence, the MINITAB plots for the single-piece rim data are not shown 

below.  
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RH 5 degree rim accident data analysis 
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Figure 4.7: Distribution overview plot for RH 5 rim accident data (Pre OSHA Standard). 
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Figure 4.8: Distribution overview plot for RH 5 rim accident data (Post OSHA Standard).  

Distribution Overview plot is hereafter referred to as D.O plot. 
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Two-piece rim accident data analysis    
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Figure 4.9: D.O plot for two-piece rim accident data (Pre OSHA Standard). 
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Figure 4.10: D.O plot for two-piece rim accident data (Post OSHA Standard). 
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Three-piece rim accident data analysis 
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Figure 4.11: D.O plot for three-piece rim accident data (Pre OSHA Standard).   
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Figure 4.12: D.O plot for three-piece rim accident data (Post OSHA Standard).    
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Figure 4.13: D.O plot for unknown rim accident data (Pre OSHA Standard).   
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Figure 4.14: D.O plot for unknown rim accident data (Post OSHA Standard).   
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4.5 RESULTS AND DISCUSSION 

The Weibull analysis from MINITAB yields the shape and scale parameter for fitting the 

particular data into a distribution. From the above analysis, we can state the results as 

follows: 

Type of rim: RH 5o

 

Time period 

 

Shape Parameter 

 

   Scale Parameter 

 

Pre OSHA Standard (1972-

1979) 

 

2.485 

 

6.14 

 

Post OSHA Guideline (1980-

1987) 

 

1.727 

 

3.941 

Table 4.6: Results from analysis of ‘RH 50’ type rim data using MINITAB. 

Type of rim: Two piece 

 

Time period 

 

Shape Parameter 

 

Scale Parameter 

 

Pre OSHA Standard (1972-

1979) 

 

8.895 

 

16.364 

 

Post OSHA Standard (1980-

1987) 

 

2.332 

 

5.136 

Table 4.7: Results from analysis of two-piece type rim data using MINITAB. 
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Type of rim: Three piece 

 

Time period 

 

Shape Parameter 

 

Scale Parameter 

 

Pre OSHA Standard (1972-

1979) 

 

5.241 

 

9.315 

 

Post OSHA Standard (1980-

1987) 

 

3.216 

 

5.239 

 

Table 4.8: Results from analysis of three-piece type rim data using MINITAB. 

 

Type of rim: Unknown  

 

Time period 

 

Shape Parameter 

 

Scale Parameter 

 

Pre OSHA Standard (1972-

1979) 

 

1.778 

 

5.366 

 

Post OSHA Standard (1980-

1987) 

 

1.635 

 

3.395 

 

Table 4.9: Results from analysis of unknown type rim data using MINITAB. 
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From the above results it is clear that the shape parameter, β, is greater than 1 in all the 

cases. This indicates that the hazard function of the rim failures is an increasing function 

and the data do not represent an early-life or commissioning failures. The shape parameter, 

as the name implies, determines the shape of the distribution. When β is greater than 1, we 

can reasonably approximate the data to be characteristic of increasing failure rate or hazard 

function. In the case of RH 5o type rims, the shape parameter changed from 2.485 in the 

time period before the OSHA guideline to 1.727 after the OSHA guideline. This implies 

that the failure data distribution has changed from being approximately log-normal before 

the guideline to somewhere in between exponential and log-normal distribution after the 

guideline. The β values for two-piece rim data have changed from 8.895 before the 

guideline to 2.332 after the guideline. The value of β for three-piece rim data before the 

OSHA guideline was 5.241. The β value for three-piece rims after the OSHA guideline 

had been introduced was obtained as 3.216. This implies that the distribution has an 

increasing hazard function and could be fairly approximated to be a normal distribution. 

The results for the single-piece rim data indicate that β changed from being 7.448 during 

the time when the OSHA guideline was not existent to 1.37 after 1980. Similarly, the β 

values for the unknown rim type data also changed from 1.778 before 1980 to 1.635 after 

1980. 

The distribution used for the analysis here is the 3 parameter Weibull distribution. The 

failure rate for a 3 parameter Weibull distribution is calculated by the following formula: 

1)(. −

−
−

−
= β

δη
δ

δη
β tRF  

η here is the scale parameter which is also sometimes indicated by θ.  

Using the above formula, calculations were made for the failure rates of different types of 

rims. The results at the end of the time period of 8 years for each set of data are tabulated 

below. 
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Type of rim 

 

Failure Rate 

(Pre-OSHA Standard) 

 

Failure Rate 

(Post-OSHA Standard) 

 

RH 5 degree rim 

 

0.546289 

 

0.863966 

 

Two-piece rim 

 

0.01606 

 

0.745866 

 

Three-piece rim 

 

0.266757 

 

1.261069 

 

Unknown rims 

 

0.484256 

 

0.999762 

 

Table 4.10: Failure Rates of different types of rims before and after the OSHA Standard. 

From the table shown above it is very clearly evident that the failure rates of the different 

rim types have increased after the OSHA Standard had come into effect. The failure rates 

in the case of two-piece, three-piece and single-piece rims show a drastic increase from 

before the standard to after its introduction. There has also been considerable increase in 

the failure rates of RH 5 degree rims and unknown rims. This shows that there had been 

very little effect of the standard on the number of accidents involving the multi-piece rims.  

 

The beta values which are indicative of the slope of the curve for the data are very high. 

The beta values of some of the rim types have been compared with other published data of 

different engineering systems and components. Table 4.11 shows the low, typical and high 

beta values for these components. The results of the rim data when compared to these other 

components clearly fall on the higher side, which is not very desirable. The beta values 
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should be reduced, so that the failure or hazard associated with them also decreases. The 

beta values can only be reduced with better efforts to maintain the rims and control the 

number of accidents. 

 

 

Item Beta Values (Weibull Shape Factor) 

 Low Typical High 

Nuts 0.5 1.1 1.4 

Pumps, 
lubricators 

0.5 1.1 1.4 

Vibration 
mounts 

0.5 1.1 2.2 

Compressors, 
centrifugal 

0.5 1.9 3 

Steam 
turbines 

0.5 1.7 3 

Gears 0.5 2 6 

Two-piece 
rims 

  8.8 

Three-piece 
rims 

  5.2 

 

Table 4.11: Beta values comparison of multi-piece rims with different engineering 

components. 
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CHAPTER FIVE 

CONCLUSIONS 

 

5.1 SUMMARY 

The desired objective of looking into the rotational dislocation of the multi-piece rim 

components has been established and also the effect of OSHA standard on the failure rate 

of multi-piece rims has been investigated. The main contributions of this work are: 

1. Establishment of the similar rotational dislocation of the rim components from actual 

multi-piece rim components and finite element simulations.  

2. Documenting/modeling the failure data of different types of rims into statistical 

distributions. 

3. Looking into the effect of the OSHA standard 1910.177 (Servicing multi-piece rims) 

on the failure rates of different multi-piece rims. 

 

5.2 CONCLUSIONS 

From the ANSYS simulation results, the dislocation of the side ring was very similar to 

that observed in an actual failed multi-piece rim. The inflation pressure and the radial force 

developed on the side flange cause it to move out of its desired location. The weakening 

and movement of the tire bead also adds to the causes for the dislocation of the side ring. 

The maximum deformation obtained from the ANSYS simulation is taken and the side 

ring is regenerated in Pro/E. The stresses caused a permanent deformation in the contour of 

the side ring. This is incorporated into the regeneration. The figures from Pro/E are shown 

below. The dislocation of the side ring is clearly evident from the plots. The effect of 

rotating the ring component on the rim base only changes the dislocation from one position 

to another. The designer intent fit is no longer present. This assembly when used to mount 

a tire and operate on a vehicle could lead to a catastrophic blowout. The huge number of 
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accidents each year provides enough reason to re-look into the design of the multi-piece 

rim components. The rotation and separation of components is very dangerous when it is 

not contained. This could only be safe if it is restricted to being only on the truck. The 

separation and the subsequent blow-off of the rim components results in a much more 

extensive damage than the one that is contained to being on the truck itself.  

 

Figure 5.1: Regenerated side ring and rim base assembly. 

 

 

Figure 5.2: Dislocation of side ring on regenerated assembly. 
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The failure data from different types of rims have been modeled into statistical 

distributions and the best fit distribution has been established using the Anderson-Darling 

test and the Correlation Coefficient method. The 3 parameter Weibull has been identified 

as the best fit distribution to model the data. The shape parameters for all the types of rims 

are greater than 1, which evidently proves an increasing failure rate. The survival function 

for different type of rims show that the rims have a decreasing survival trend and the 

hazard functions show that the hazard rate is increasing.  

The failure rate for the RH 5 degree rims has increased from 0.546289 during the pre-

OSHA standard period (1972-1979) to 0.863966 during the post-OSHA standard period 

(1980-1987). The corresponding values for the two-piece rim data increased from 0.01606 

to 0.745866. The failure rate of the three-piece rims from the available data during the time 

when the OSHA standard was not in effect was 0.266757. The value for the failure rate 

after the standard came into effect for the three-piece rims is 1.261069. Similarly the 

failure rate values for the unknown rims increased from 0.484256 to 0.999762. The 

increase in the failure rate has been particularly drastic for the two-piece rims. The finite 

element analysis of the two-piece rim suggests the possible reason for this. The dislocation 

due to the ambient conditions causes the failure in most cases.  

 

The probable reasons for the increasing failure rates could be because of the material 

properties of the components, i.e. the properties of steel, manufacturing and design defects, 

operator inefficiency and wear-out period failures. The material properties influence the 

change in the shape and contour of the components. The steel components when exposed 

to a consistent pressure loading after a considerable period of time could fail. The wear-out 

period of a rim also could be a possible reason for the increasing failure rates. The 

manufacturing and design defects also account for the increasing failure rates. Since the 

design of the multi-piece rims is based on a concentric fit, small tolerance defects could 
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sufficiently transform into major problems while operation. Also the lack of proper 

training to the personnel operating on the multi-piece rims leads to failure. Even though 

there are regulations for a standardized working environment, improper training could 

often lead to a catastrophic failure. Products with similar increasing failure rates have been 

looked into, to focus on the reasons for such a trend or behavior.  Electronic products like 

laser diodes, load-sharing power supplies and military equipment were some of the 

products which were found to have increasing failure rates. The reasons for such a trend 

varied from manufacturing and design defects, operator inefficiency to wear-out period 

failures. In some cases material properties also influenced failure rates for these products. 

The non-constant failure rate from the multi-piece rim data suggests that more inspection 

is needed along with new warnings. A small defect identified at an earlier stage can 

prevent a major failure.   

 

The OSHA standard on servicing multi-piece rims which essentially has safety precautions 

like the usage of a cage during inflation, utilization of the proper tools for mounting and 

de-mounting the tire rim assembly, training of the workers on the exact procedure for 

handling the multi-piece rims has not had a positive effect. The situation had become 

worse indicating that more regulations and need for an effective inspection method be part 

of the OSHA standard. More investigation should also be carried out into the design 

features of the multi-piece rims and the method used for the rim components’ assembly. 

The concentric fit of the components allows great risk in its handling and operation. A 

bolted type of multi-piece rim design could be investigated for effective functioning.  The 

B-52 airplanes used by the military have the bolted type of rims in which the failure of the 

assembly contains the separation and do not lead to a blow-off of the components.  
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APPENDIX A 

POST PROCESSING FROM MINITAB 

RH 5 degree rims accident data 

Pre OSHA Standard (1972-1979) 
 
Distribution ID Plot:  Pre OSHA (Years)  
 
Using frequencies in Failures_Pre 
 
Goodness-of-Fit 
 
                         Anderson-Darling  Correlation 
Distribution                        (adj)  Coefficient 
Weibull                             3.990        0.964 
Lognormal                           7.450        0.925 
Exponential                        40.151            * 
Loglogistic                         8.256        0.915 
3-Parameter Weibull                 3.904        0.965 
3-Parameter Lognormal               4.380        0.959 
2-Parameter Exponential            26.701            * 
3-Parameter Loglogistic             6.189        0.941 
Smallest Extreme Value              5.930        0.947 
Normal                              4.340        0.959 
Logistic                            6.148        0.941 
 
 
Table of Percentiles 
 
                                             Standard    95% Normal CI 
Distribution          Percent  Percentile      Error      Lower      Upper 
Weibull                     1    0.670191   0.127203   0.461997   0.972206 
Lognormal                   1     1.16914   0.101072   0.986920    1.38501 
Exponential                 1   0.0356056  0.0025348  0.0309685  0.0409371 
Loglogistic                 1     1.03850   0.121927   0.825027    1.30720 
3-Parameter Weibull         1    0.520149   0.153743   0.218819   0.821479 
3-Parameter Lognormal       1  -0.0100495   0.336319  -0.669224   0.649124 
2-Parameter Exponential     1     1.02044  0.0022363    1.01607    1.02484 
3-Parameter Loglogistic     1   -0.404587   0.380011   -1.14939   0.340220 
Smallest Extreme Value      1    -1.88167   0.567364   -2.99368  -0.769656 
Normal                      1  -0.0963191   0.350049  -0.782403   0.589765 
Logistic                    1   -0.512780   0.398322   -1.29348   0.267918 
Weibull                     5     1.42775   0.184931    1.10764    1.84036 
Lognormal                   5     1.71780   0.120037    1.49793    1.96994 
Exponential                 5    0.181718  0.0129369   0.158052   0.208928 
Loglogistic                 5     1.73701   0.152663    1.46215    2.06354 
3-Parameter Weibull         5     1.41418   0.203340    1.01564    1.81272 
3-Parameter Lognormal       5     1.43766   0.272442   0.903681    1.97163 
2-Parameter Exponential     5     1.14538  0.0114135    1.12322    1.16797 
3-Parameter Loglogistic     5     1.50627   0.291899   0.934155    2.07838 
Smallest Extreme Value      5    0.913260   0.404923   0.119625    1.70689 
Normal                      5     1.40506   0.280570   0.855151    1.95496 
Logistic                    5     1.47788   0.300158   0.889585    2.06618 
Weibull                    10     1.99390   0.206749    1.62720    2.44323 
Lognormal                  10     2.10889   0.131114    1.86695    2.38219 
Exponential                10    0.373264  0.0265734   0.324651   0.429155 
Loglogistic                10     2.19245   0.165816    1.89039    2.54276 
3-Parameter Weibull        10     2.03854   0.218509    1.61027    2.46681 
3-Parameter Lognormal      10     2.21732   0.242278    1.74246    2.69217 
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2-Parameter Exponential    10     1.30916  0.0234443    1.26400    1.35592 
3-Parameter Loglogistic    10     2.38331   0.256308    1.88096    2.88567 
Smallest Extreme Value     10     2.14757   0.335449    1.49010    2.80504 
Normal                     10     2.20544   0.248006    1.71935    2.69152 
Logistic                   10     2.37900   0.261349    1.86676    2.89124 
Weibull                    50     4.77880   0.222086    4.36275    5.23452 
Lognormal                  50     4.34805   0.208223    3.95851    4.77593 
Exponential                50     2.45563   0.174821    2.13582    2.82333 
Loglogistic                50     4.34805   0.217149    3.94261    4.79518 
3-Parameter Weibull        50     4.85375   0.214188    4.43395    5.27355 
3-Parameter Lognormal      50     5.01206   0.187311    4.64494    5.37918 
2-Parameter Exponential    50     3.08968   0.154236    2.80170    3.40726 
3-Parameter Loglogistic    50     5.00665   0.194452    4.62553    5.38777 
Smallest Extreme Value     50     5.37787   0.176115    5.03269    5.72305 
Normal                     50     5.02878   0.186862    4.66254    5.39502 
Logistic                   50     5.02878   0.193934    4.64867    5.40888 
 
 
Table of MTTF 
 
                                  Standard    95% Normal CI 
Distribution                Mean     Error    Lower    Upper 
Weibull                  5.01666  0.206433  4.62795  5.43803 
Lognormal                5.09936  0.259940  4.61451  5.63515 
Exponential              3.54273  0.252214  3.08134  4.07321 
Loglogistic              5.12897  0.249905  4.66183  5.64293 
3-Parameter Weibull      5.00251  0.197609  4.61520  5.38981 
3-Parameter Lognormal    5.03357  0.187351  4.66637  5.40077 
2-Parameter Exponential  4.01920  0.222515  3.60590  4.47986 
3-Parameter Loglogistic  5.02964  0.194238  4.64894  5.41034 
Smallest Extreme Value   5.01657  0.190568  4.64306  5.39008 
Normal                   5.02878  0.186862  4.66254  5.39502 
Logistic                 5.02878  0.193934  4.64867  5.40888 
 
 

Post OSHA Standard (1980-1987) 

Distribution ID Plot:  Post OSHA (Years)  
 
Using frequencies in Failures_Post 
 
Goodness-of-Fit 
 
                         Anderson-Darling  Correlation 
Distribution                        (adj)  Coefficient 
Weibull                             5.395        0.956 
Lognormal                           5.809        0.960 
Exponential                        40.943            * 
Loglogistic                         7.360        0.946 
3-Parameter Weibull                 4.390        0.959 
3-Parameter Lognormal               4.529        0.960 
2-Parameter Exponential            19.665            * 
3-Parameter Loglogistic             6.667        0.953 
Smallest Extreme Value             19.910        0.904 
Normal                              5.328        0.965 
Logistic                            7.218        0.948 
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Table of Percentiles 
 
                                              Standard      95% Normal CI 
Distribution          Percent  Percentile      Error      Lower      Upper 
Weibull                     1    0.514905  0.0656523   0.401048   0.661087 
Lognormal                   1    0.845605  0.0651418   0.727101   0.983423 
Exponential                 1   0.0306260  0.0018391  0.0272254  0.0344514 
Loglogistic                 1    0.753826  0.0692144   0.629674   0.902457 
3-Parameter Weibull         1    0.716343   0.284941   0.441409    1.56209 
3-Parameter Lognormal       1    0.229242   0.231826  -0.225129   0.683613 
2-Parameter Exponential     1     1.01551  0.0016106    1.01236    1.01868 
3-Parameter Loglogistic     1   0.0883854   0.198341  -0.300355   0.477126 
Smallest Extreme Value      1    -2.16217   0.335752   -2.82023   -1.50411 
Normal                      1   -0.820507   0.269383   -1.34849  -0.292527 
Logistic                    1    -1.20988   0.286200   -1.77082  -0.648941 
Weibull                     5     1.10542   0.100044   0.925746    1.31997 
Lognormal                   5     1.27133  0.0785693    1.12630    1.43504 
Exponential                 5    0.156304  0.0093864   0.138949   0.175827 
Loglogistic                 5     1.29525  0.0886384    1.13267    1.48116 
3-Parameter Weibull         5     1.14773   0.149299   0.889431    1.48103 
3-Parameter Lognormal       5     1.04064   0.157726   0.731501    1.34978 
2-Parameter Exponential     5     1.12022  0.0082198    1.10422    1.13644 
3-Parameter Loglogistic     5     1.10477   0.151718   0.807410    1.40213 
Smallest Extreme Value      5    0.341027   0.253044  -0.154931   0.836985 
Normal                      5    0.598616   0.215880   0.175500    1.02173 
Logistic                    5    0.670189   0.210761   0.257104    1.08327 
Weibull                    10     1.54903   0.115711    1.33806    1.79326 
Lognormal                  10     1.58003  0.0863745    1.41949    1.75872 
Exponential                10    0.321061  0.0192803   0.285412   0.361164 
Loglogistic                10     1.65488  0.0976803    1.47409    1.85784 
3-Parameter Weibull        10     1.51284   0.107819    1.31562    1.73963 
3-Parameter Lognormal      10     1.53798   0.136078    1.27127    1.80469 
2-Parameter Exponential    10     1.25747  0.0168842    1.22481    1.29101 
3-Parameter Loglogistic    10     1.65868   0.137937    1.38832    1.92903 
Smallest Extreme Value     10     1.44650   0.217517    1.02018    1.87283 
Normal                     10     1.35515   0.190800   0.981184    1.72911 
Logistic                   10     1.52124   0.182358    1.16383    1.87866 
Weibull                    50     3.74581   0.145377    3.47144    4.04186 
Lognormal                  50     3.40160   0.140450    3.13717    3.68833 
Exponential                50     2.11220   0.126842    1.87767    2.37603 
Loglogistic                50     3.40160   0.142418    3.13362    3.69251 
3-Parameter Weibull        50     3.62976   0.216814    3.22875    4.08059 
3-Parameter Lognormal      50     3.73692   0.154168    3.43476    4.03908 
2-Parameter Exponential    50     2.74966   0.111078    2.54035    2.97622 
3-Parameter Loglogistic    50     3.71884   0.143504    3.43758    4.00010 
Smallest Extreme Value     50     4.33963   0.132087    4.08074    4.59851 
Normal                     50     4.02381   0.143697    3.74217    4.30545 
Logistic                   50     4.02381   0.146217    3.73723    4.31039 
 
 
Table of MTTF 
 
                                  Standard    95% Normal CI 
Distribution                Mean     Error    Lower    Upper 
Weibull                  3.93917  0.134910  3.68343  4.21266 
Lognormal                4.06842  0.181244  3.72825  4.43962 
Exponential              3.04726  0.182994  2.70890  3.42788 
Loglogistic              4.08715  0.179151  3.75068  4.45380 
3-Parameter Weibull      3.95489  0.148523  3.67424  4.25697 
3-Parameter Lognormal    4.01488  0.147623  3.72554  4.30421 
2-Parameter Exponential  3.52865  0.160251  3.22814  3.85714 
3-Parameter Loglogistic  4.01263  0.151047  3.71659  4.30868 
Smallest Extreme Value   4.01604  0.140675  3.74032  4.29176 
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Normal                   4.02381  0.143697  3.74217  4.30545 
Logistic                 4.02381  0.146217  3.73723  4.31039 
 
 

Two-piece rims accident data 

Pre OSHA Standard (1972-1979) 

Distribution ID Plot:  Pre OSHA (Year)  
 
Using frequencies in Failures_Pre 
 
Goodness-of-Fit 
 
                         Anderson-Darling  Correlation 
Distribution                        (adj)  Coefficient 
Weibull                             2.070        0.960 
Lognormal                           3.436        0.892 
Exponential                        18.499            * 
Loglogistic                         3.583        0.892 
3-Parameter Weibull                 1.594        0.971 
3-Parameter Lognormal               2.214        0.943 
2-Parameter Exponential            14.759            * 
3-Parameter Loglogistic             2.523        0.933 
Smallest Extreme Value              1.592        0.970 
Normal                              2.190        0.944 
Logistic                            2.500        0.934 
 
 
Table of Percentiles 
 
                                             Standard      95% Normal CI 
Distribution          Percent  Percentile      Error      Lower      Upper 
Weibull                     1     1.13910   0.382902   0.589436    2.20135 
Lognormal                   1     1.89389   0.226332    1.49841    2.39375 
Exponential                 1   0.0397497  0.0049407  0.0311554  0.0507148 
Loglogistic                 1     1.67821   0.314732    1.16202    2.42371 
3-Parameter Weibull         1   0.0648047   0.835550   -1.57284    1.70245 
3-Parameter Lognormal       1     1.22895   0.551524   0.147984    2.30992 
2-Parameter Exponential     1     1.02434  0.0043552    1.01584    1.03291 
3-Parameter Loglogistic     1    0.756045   0.713123  -0.641652    2.15374 
Smallest Extreme Value      1   -0.788502    1.13662   -3.01624    1.43924 
Normal                      1     1.18056   0.568649  0.0660279    2.29509 
Logistic                    1    0.691576   0.736683  -0.752297    2.13545 
Weibull                     5     2.12048   0.472446    1.37021    3.28159 
Lognormal                   5     2.56254   0.248144    2.11955    3.09811 
Exponential                 5    0.202868  0.0252156   0.159006   0.258830 
Loglogistic                 5     2.53942   0.352256    1.93490    3.33280 
3-Parameter Weibull         5     2.02686   0.865287   0.330930    3.72279 
3-Parameter Lognormal       5     2.55357   0.445094    1.68120    3.42594 
2-Parameter Exponential     5     1.16526  0.0222273    1.12250    1.20965 
3-Parameter Loglogistic     5     2.54616   0.538367    1.49098    3.60134 
Smallest Extreme Value      5     1.87642   0.781661   0.344391    3.40844 
Normal                      5     2.53913   0.454779    1.64778    3.43048 
Logistic                    5     2.53318   0.548190    1.45875    3.60761 
Weibull                    10     2.79008   0.485376    1.98398    3.92371 
Lognormal                  10     3.01074   0.259872    2.54215    3.56570 
Exponential                10    0.416707  0.0517949   0.326610   0.531657 
Loglogistic                10     3.06312   0.361399    2.43072    3.86004 
3-Parameter Weibull        10     3.01459   0.909348    1.23230    4.79688 
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3-Parameter Lognormal      10     3.26526   0.394776    2.49151    4.03901 
2-Parameter Exponential    10     1.35000  0.0456567    1.26342    1.44252 
3-Parameter Loglogistic    10     3.36509   0.464953    2.45380    4.27639 
Smallest Extreme Value     10     3.05331   0.629706    1.81911    4.28751 
Normal                     10     3.26338   0.401302    2.47685    4.04992 
Logistic                   10     3.36682   0.470440    2.44477    4.28887 
Weibull                    50     5.72174   0.383649    5.01712    6.52532 
Lognormal                  50     5.31632   0.355593    4.66313    6.06102 
Exponential                50     2.74144   0.340749    2.14871    3.49767 
Loglogistic                50     5.31632   0.379372    4.62243    6.11439 
3-Parameter Weibull        50     6.01172   0.459415    5.11128    6.91216 
3-Parameter Lognormal      50     5.80688   0.301884    5.21520    6.39856 
2-Parameter Exponential    50     3.35840   0.300367    2.81840    4.00186 
3-Parameter Loglogistic    50     5.80471   0.315125    5.18708    6.42234 
Smallest Extreme Value     50     6.13335   0.292156    5.56073    6.70597 
Normal                     50     5.81818   0.300534    5.22915    6.40722 
Logistic                   50     5.81818   0.313564    5.20361    6.43276 
 
 
Table of MTTF 
 
                                  Standard    95% Normal CI 
Distribution                Mean     Error    Lower    Upper 
Weibull                  5.84580  0.357499  5.18547  6.59020 
Lognormal                5.86620  0.407716  5.11913  6.72229 
Exponential              3.95506  0.491597  3.09993  5.04608 
Loglogistic              5.90968  0.392406  5.18852  6.73107 
3-Parameter Weibull      5.79615  0.342117  5.12562  6.46669 
3-Parameter Lognormal    5.82186  0.301922  5.23011  6.41362 
2-Parameter Exponential  4.40688  0.433338  3.63438  5.34357 
3-Parameter Loglogistic  5.82097  0.314302  5.20495  6.43699 
Smallest Extreme Value   5.78886  0.319662  5.16233  6.41538 
Normal                   5.81818  0.300534  5.22915  6.40722 
Logistic                 5.81818  0.313564  5.20361  6.43276 
 
 

Post OSHA Standard (1980-1987) 

Distribution ID Plot:  Post OSHA (Year)  
 
Using frequencies in Failures_Post 
 
Goodness-of-Fit 
 
                         Anderson-Darling  Correlation 
Distribution                        (adj)  Coefficient 
Weibull                             1.673        0.964 
Lognormal                           3.117        0.949 
Exponential                        19.216            * 
Loglogistic                         3.205        0.939 
3-Parameter Weibull                 1.656        0.964 
3-Parameter Lognormal               1.642        0.965 
2-Parameter Exponential            11.690            * 
3-Parameter Loglogistic             2.044        0.962 
Smallest Extreme Value              6.321        0.930 
Normal                              1.710        0.964 
Logistic                            2.228        0.960 
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Table of Percentiles 
 
                                            Standard      95% Normal CI 
Distribution          Percent  Percentile      Error      Lower      Upper 
Weibull                     1    0.510159   0.111582   0.332300   0.783214 
Lognormal                   1    0.886261   0.105382   0.702019    1.11886 
Exponential                 1   0.0323338  0.0029634  0.0270174  0.0386964 
Loglogistic                 1    0.775367   0.120524   0.571737    1.05152 
3-Parameter Weibull         1    0.374159   0.793413  -0.340631    1.92922 
3-Parameter Lognormal       1   -0.113620   0.578089   -1.24665    1.01941 
2-Parameter Exponential     1     1.01710  0.0025960    1.01203    1.02220 
3-Parameter Loglogistic     1   -0.409440   0.388820   -1.17151   0.352633 
Smallest Extreme Value      1    -2.23479   0.565230   -3.34262   -1.12696 
Normal                      1   -0.698404   0.430402   -1.54198   0.145168 
Logistic                    1    -1.15205   0.470541   -2.07429  -0.229803 
Weibull                     5     1.12572   0.171453   0.835194    1.51730 
Lognormal                   5     1.33797   0.127620    1.10983    1.61301 
Exponential                 5    0.165020  0.0151243   0.137887   0.197492 
Loglogistic                 5     1.34809   0.154470    1.07692    1.68754 
3-Parameter Weibull         5     1.09703   0.390058   0.332528    1.86153 
3-Parameter Lognormal       5    0.990575   0.337488   0.329111    1.65204 
2-Parameter Exponential     5     1.12832  0.0132492    1.10265    1.15459 
3-Parameter Loglogistic     5     1.02996   0.295073   0.451628    1.60829 
Smallest Extreme Value      5    0.388259   0.418965  -0.432899    1.20942 
Normal                      5    0.752838   0.343229  0.0801219    1.42555 
Logistic                    5    0.790498   0.343119   0.117998    1.46300 
Weibull                    10     1.59671   0.197891    1.25237    2.03574 
Lognormal                  10     1.66651   0.140599    1.41252    1.96617 
Exponential                10    0.338964  0.0310665   0.283231   0.405665 
Loglogistic                10     1.73163   0.169202    1.42982    2.09714 
3-Parameter Weibull        10     1.61677   0.245676    1.13525    2.09828 
3-Parameter Lognormal      10     1.62191   0.263849    1.10478    2.13905 
2-Parameter Exponential    10     1.27412  0.0272149    1.22188    1.32859 
3-Parameter Loglogistic    10     1.74494   0.260101    1.23516    2.25473 
Smallest Extreme Value     10     1.54666   0.356343   0.848242    2.24508 
Normal                     10     1.52649   0.302180   0.934228    2.11875 
Logistic                   10     1.66983   0.294046    1.09351    2.24615 
Weibull                    50     3.98560   0.241887    3.53862    4.48904 
Lognormal                  50     3.61577   0.230359    3.19132    4.09666 
Exponential                50     2.22998   0.204381    1.86332    2.66879 
Loglogistic                50     3.61577   0.231932    3.18860    4.10016 
3-Parameter Weibull        50     4.04901   0.348364    3.36623    4.73180 
3-Parameter Lognormal      50     4.11232   0.261915    3.59898    4.62567 
2-Parameter Exponential    50     2.85915   0.179041    2.52891    3.23251 
3-Parameter Loglogistic    50     4.10547   0.224142    3.66616    4.54478 
Smallest Extreme Value     50     4.57830   0.208509    4.16964    4.98697 
Normal                     50     4.25556   0.224469    3.81560    4.69551 
Logistic                   50     4.25556   0.226009    3.81259    4.69853 
 
 
Table of MTTF 
 
                                  Standard    95% Normal CI 
Distribution                Mean     Error    Lower    Upper 
Weibull                  4.21835  0.225733  3.79833  4.68481 
Lognormal                4.34035  0.298800  3.79250  4.96733 
Exponential              3.21718  0.294859  2.68820  3.85026 
Loglogistic              4.38127  0.289059  3.84982  4.98607 
3-Parameter Weibull      4.21070  0.224888  3.76993  4.65148 
3-Parameter Lognormal    4.25526  0.226042  3.81223  4.69830 
2-Parameter Exponential  3.68661  0.258302  3.21357  4.22928 
3-Parameter Loglogistic  4.25634  0.227739  3.80998  4.70270 
Smallest Extreme Value   4.23923  0.222901  3.80235  4.67610 
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Normal                   4.25556  0.224469  3.81560  4.69551 
Logistic                 4.25556  0.226009  3.81259  4.69853 
 
 

Three-piece rims accident data 

Pre OSHA Standard (1972-1979) 

Distribution ID Plot:  Pre OSHA (Year)  
 
Using frequencies in Failures_Pre 
 

Goodness-of-Fit 
 
                         Anderson-Darling  Correlation 
Distribution                        (adj)  Coefficient 
Weibull                             1.483        0.946 
Lognormal                           1.871        0.925 
Exponential                         9.597            * 
Loglogistic                         2.031        0.914 
3-Parameter Weibull                 1.477        0.947 
3-Parameter Lognormal               1.561        0.942 
2-Parameter Exponential             4.414            * 
3-Parameter Loglogistic             1.758        0.929 
Smallest Extreme Value              1.551        0.945 
Normal                              1.556        0.942 
Logistic                            1.753        0.929 
 
 
Table of Percentiles 
 
                                              Standard      95% Normal CI 
Distribution           Percent  Percentile      Error       Lower      Upper 
Weibull                      1     1.68110   0.513001    0.924363    3.05735 
Lognormal                    1     2.42037   0.354606     1.81624    3.22545 
Exponential                  1   0.0418506  0.0074901   0.0294686  0.0594352 
Loglogistic                  1     2.19566   0.417062     1.51314    3.18602 
3-Parameter Weibull          1     1.17165   0.736520   -0.271903    2.61520 
3-Parameter Lognormal        1     1.56845   0.766190   0.0667496    3.07016 
2-Parameter Exponential      1     2.99477  0.0048366     2.98531    3.00427 
3-Parameter Loglogistic      1     1.07747   0.912922   -0.711821    2.86677 
Smallest Extreme Value       1   -0.266147    1.42508    -3.05926    2.52697 
Normal                       1     1.52749   0.785540  -0.0121356    3.06712 
Logistic                     1     1.02392   0.937272   -0.813101    2.86094 
Weibull                      5     2.72156   0.567960     1.80793    4.09689 
Lognormal                    5     3.08982   0.360986     2.45747    3.88490 
Exponential                  5    0.213590  0.0382270    0.150397   0.303336 
Loglogistic                  5     3.06770   0.434679     2.32381    4.04971 
3-Parameter Weibull          5     2.58433   0.691516     1.22898    3.93967 
3-Parameter Lognormal        5     2.82584   0.613755     1.62291    4.02878 
2-Parameter Exponential      5     3.09643  0.0246842     3.04842    3.14519 
3-Parameter Loglogistic      5     2.79313   0.687380     1.44589    4.14037 
Smallest Extreme Value       5     2.21701   0.991990    0.272749    4.16128 
Normal                       5     2.81107   0.623800     1.58844    4.03369 
Logistic                     5     2.77879   0.698176     1.41039    4.14719 
Weibull                     10     3.36679   0.563277     2.42553    4.67332 
Lognormal                   10     3.51941   0.361988     2.87687    4.30547 
Exponential                 10    0.438732  0.0785213    0.308927   0.623077 
Loglogistic                 10     3.56913   0.434655     2.81126    4.53130 
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3-Parameter Weibull         10     3.36243   0.639084     2.10985    4.61501 
3-Parameter Lognormal       10     3.50010   0.541021     2.43972    4.56048 
2-Parameter Exponential     10     3.22969  0.0507032     3.13183    3.33062 
3-Parameter Loglogistic     10     3.57580   0.595175     2.40928    4.74232 
Smallest Extreme Value      10     3.31364   0.806594     1.73274    4.89453 
Normal                      10     3.49533   0.547338     2.42257    4.56810 
Logistic                    10     3.57317   0.601650     2.39396    4.75238 
Weibull                     50     5.87533   0.440696     5.07207    6.80579 
Lognormal                   50     5.57060   0.425565     4.79595    6.47038 
Exponential                 50     2.88633   0.516577     2.03238    4.09910 
Loglogistic                 50     5.57060   0.453028     4.74983    6.53320 
3-Parameter Weibull         50     5.98495   0.421489     5.15885    6.81105 
3-Parameter Lognormal       50     5.90065   0.402354     5.11205    6.68925 
2-Parameter Exponential     50     4.67848   0.333567     4.06832    5.38014 
3-Parameter Loglogistic     50     5.89934   0.424059     5.06820    6.73048 
Smallest Extreme Value      50     6.18361   0.389331     5.42053    6.94668 
Normal                      50     5.90909   0.401556     5.12206    6.69613 
Logistic                    50     5.90909   0.423249     5.07954    6.73864 
 
 
Table of MTTF 
 
                                  Standard    95% Normal CI 
Distribution                Mean     Error    Lower    Upper 
Weibull                  5.88070  0.409023  5.13128  6.73959 
Lognormal                5.93995  0.467974  5.09005  6.93177 
Exponential              4.16410  0.745263  2.93210  5.91376 
Loglogistic              5.96534  0.471706  5.10889  6.96536 
3-Parameter Weibull      5.87506  0.405114  5.08105  6.66907 
3-Parameter Lognormal    5.91125  0.402295  5.12276  6.69973 
2-Parameter Exponential  5.43481  0.481236  4.56892  6.46481 
3-Parameter Loglogistic  5.91068  0.423589  5.08046  6.74090 
Smallest Extreme Value   5.86261  0.424896  5.02983  6.69539 
Normal                   5.90909  0.401556  5.12206  6.69613 
Logistic                 5.90909  0.423249  5.07954  6.73864 
 
 

Post OSHA Standard (1980-1987) 

Distribution ID Plot:  Post OSHA (Year)  
 
Using frequencies in Failures_Post 
 
Goodness-of-Fit 
 
                         Anderson-Darling  Correlation 
Distribution                        (adj)  Coefficient 
Weibull                             1.032        0.975 
Lognormal                           1.195        0.951 
Exponential                         6.661            * 
Loglogistic                         1.172        0.957 
3-Parameter Weibull                 1.083        0.978 
3-Parameter Lognormal               0.994        0.979 
2-Parameter Exponential             4.292            * 
3-Parameter Loglogistic             0.971        0.983 
Smallest Extreme Value              2.119        0.940 
Normal                              1.049        0.973 
Logistic                            0.992        0.977 
 
 
Table of Percentiles 
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                                            Standard      95% Normal CI 
Distribution          Percent  Percentile      Error      Lower      Upper 
Weibull                     1    0.755502   0.274315   0.370829    1.53921 
Lognormal                   1     1.22743   0.256207   0.815304    1.84787 
Exponential                 1   0.0310432  0.0060998  0.0211208  0.0456270 
Loglogistic                 1     1.05364   0.314455   0.587019    1.89116 
3-Parameter Weibull         1    0.550943    2.62315  -0.702802    5.69222 
3-Parameter Lognormal       1    0.664213   0.530357  -0.375267    1.70369 
2-Parameter Exponential     1     1.01530  0.0051733    1.00521    1.02549 
3-Parameter Loglogistic     1    0.316043   0.630685  -0.920076    1.55216 
Smallest Extreme Value      1    -1.27672   0.842964   -2.92890   0.375454 
Normal                      1    0.121780   0.762681   -1.37305    1.61661 
Logistic                    1   -0.410128   0.944640   -2.26159    1.44133 
Weibull                     5     1.42332   0.358726   0.868497    2.33257 
Lognormal                   5     1.68948   0.279035    1.22228    2.33528 
Exponential                 5    0.158433  0.0311311   0.107793   0.232864 
Loglogistic                 5     1.64688   0.349334    1.08669    2.49584 
3-Parameter Weibull         5     1.37822    1.33695  -0.702802    3.99859 
3-Parameter Lognormal       5     1.49098   0.463182   0.583159    2.39880 
2-Parameter Exponential     5     1.11912  0.0264025    1.06855    1.17208 
3-Parameter Loglogistic     5     1.43088   0.515943   0.419652    2.44211 
Smallest Extreme Value      5    0.843952   0.640907  -0.412203    2.10011 
Normal                      5     1.25789   0.600239  0.0814417    2.43434 
Logistic                    5     1.17410   0.659290  -0.118086    2.46628 
Weibull                    10     1.88268   0.385549    1.26027    2.81250 
Lognormal                  10     2.00321   0.289443    1.50916    2.65898 
Exponential                10    0.325435  0.0639458   0.221416   0.478321 
Loglogistic                10     2.01589   0.354452    1.42824    2.84533 
3-Parameter Weibull        10     1.90014   0.805693   0.321009    3.47927 
3-Parameter Lognormal      10     1.96872   0.426243    1.13330    2.80414 
2-Parameter Exponential    10     1.25522  0.0542329    1.15330    1.36614 
3-Parameter Loglogistic    10     1.99296   0.457363    1.09655    2.88938 
Smallest Extreme Value     10     1.78049   0.554703   0.693298    2.86769 
Normal                     10     1.86354   0.522794   0.838886    2.88820 
Logistic                   10     1.89123   0.543962   0.825086    2.95738 
Weibull                    50     3.91463   0.398114    3.20719    4.77812 
Lognormal                  50     3.65310   0.382966    2.97459    4.48638 
Exponential                50     2.14098   0.420688    1.45665    3.14679 
Loglogistic                50     3.65310   0.378327    2.98201    4.47523 
3-Parameter Weibull        50     3.97253   0.533363    2.92716    5.01790 
3-Parameter Lognormal      50     3.88584   0.368806    3.16300    4.60869 
2-Parameter Exponential    50     2.73481   0.356788    2.11776    3.53164 
3-Parameter Loglogistic    50     3.88413   0.362828    3.17300    4.59526 
Smallest Extreme Value     50     4.23151   0.350784    3.54399    4.91904 
Normal                     50           4   0.372772    3.26938    4.73062 
Logistic                   50           4   0.367224    3.28025    4.71975 
 
 
 
Table of MTTF 
 
                                  Standard    95% Normal CI 
Distribution                Mean     Error    Lower    Upper 
Weibull                  4.00801  0.373070  3.33963  4.81016 
Lognormal                4.07747  0.452456  3.28048  5.06809 
Exponential              3.08877  0.606924  2.10151  4.53985 
Loglogistic              4.13318  0.447815  3.34241  5.11103 
3-Parameter Weibull      3.99124  0.360436  3.28479  4.69768 
3-Parameter Lognormal    4.01437  0.375941  3.27754  4.75120 
2-Parameter Exponential  3.50723  0.514737  2.63050  4.67617 
3-Parameter Loglogistic  4.02677  0.372038  3.29759  4.75596 
Smallest Extreme Value   3.95737  0.370926  3.23037  4.68438 
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Normal                   4.00000  0.372772  3.26938  4.73062 
Logistic                 4.00000  0.367224  3.28025  4.71975 
 

 

Unknown rims accident data 

Pre OSHA Standard (1972-1979) 

 
Distribution ID Plot:  Pre OSHA (Years)  
 
Using frequencies in Failures_Pre 
 
Goodness-of-Fit 
 
                         Anderson-Darling  Correlation 
Distribution                        (adj)  Coefficient 
Weibull                             7.806        0.944 
Lognormal                          11.645        0.911 
Exponential                        40.024            * 
Loglogistic                        13.698        0.896 
3-Parameter Weibull                 7.804        0.945 
3-Parameter Lognormal               8.503        0.935 
2-Parameter Exponential            27.601            * 
3-Parameter Loglogistic            11.350        0.914 
Smallest Extreme Value              9.344        0.926 
Normal                              8.418        0.936 
Logistic                           11.264        0.914 
 
 
Table of Percentiles 
 
                                            Standard      95% Normal CI 
Distribution           Percent  Percentile      Error      Lower       Upper 
Weibull                      1    0.566422   0.110008   0.387101    0.828812 
Lognormal                    1     1.02449  0.0906152   0.861433     1.21842 
Exponential                  1   0.0364006  0.0024884  0.0318361   0.0416197 
Loglogistic                  1    0.909027   0.107313   0.721257     1.14568 
3-Parameter Weibull          1    0.686747  0.0901321   0.530984    0.888204 
3-Parameter Lognormal        1   -0.299864   0.337472  -0.961298    0.361569 
2-Parameter Exponential      1     1.02125  0.0022052    1.01694     1.02558 
3-Parameter Loglogistic      1   -0.691519   0.386886   -1.44980   0.0667627 
Smallest Extreme Value       1    -2.30617   0.602690   -3.48742    -1.12492 
Normal                       1   -0.384327   0.348794   -1.06795    0.299298 
Logistic                     1   -0.799592   0.405099   -1.59357  -0.0056135 
Weibull                      5     1.28256   0.170922   0.987732     1.66538 
Lognormal                    5     1.55656   0.111708    1.35231     1.79164 
Exponential                  5    0.185776  0.0127000   0.162480    0.212412 
Loglogistic                  5     1.58485   0.142530    1.32873     1.89033 
3-Parameter Weibull          5     1.29310   0.153927    1.02402     1.63289 
3-Parameter Lognormal        5     1.25011   0.274501   0.712095     1.78812 
2-Parameter Exponential      5     1.14950  0.0112544    1.12765     1.17177 
3-Parameter Loglogistic      5     1.34538   0.302206   0.753063     1.93769 
Smallest Extreme Value       5    0.689099   0.428208  -0.150173     1.52837 
Normal                       5     1.22190   0.281240   0.670680     1.77312 
Logistic                     5     1.31921   0.310567   0.710515     1.92791 
Weibull                     10     1.84003   0.197094    1.49159     2.26987 
Lognormal                   10     1.94538   0.124571    1.71593     2.20552 
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Exponential                 10    0.381598  0.0260867   0.333746    0.436311 
Loglogistic                 10     2.03829   0.159651    1.74822     2.37650 
3-Parameter Weibull         10     1.79716   0.184764    1.46918     2.19836 
3-Parameter Lognormal       10     2.08479   0.244957    1.60469     2.56490 
2-Parameter Exponential     10     1.31762  0.0231174    1.27308     1.36372 
3-Parameter Loglogistic     10     2.27998   0.267958    1.75479     2.80517 
Smallest Extreme Value      10     2.01188   0.353456    1.31912     2.70464 
Normal                      10     2.07817   0.249751    1.58867     2.56768 
Logistic                    10     2.27834   0.273097    1.74308     2.81360 
Weibull                     50     4.73206   0.229492    4.30298     5.20392 
Lognormal                   50     4.27177   0.212661    3.87465     4.70959 
Exponential                 50     2.51046   0.171620    2.19565     2.87041 
Loglogistic                 50     4.27177   0.230007    3.84394     4.74722 
3-Parameter Weibull         50     4.65006   0.236799    4.20836     5.13813 
3-Parameter Lognormal       50     5.07654   0.191742    4.70073     5.45235 
2-Parameter Exponential     50     3.14534   0.152085    2.86094     3.45800 
3-Parameter Loglogistic     50     5.07439   0.205386    4.67184     5.47694 
Smallest Extreme Value      50     5.47373   0.181449    5.11809     5.82936 
Normal                      50     5.09868   0.191171    4.72400     5.47337 
Logistic                    50     5.09868   0.204661    4.69756     5.49981 
 
 
Table of MTTF 
 
                                  Standard    95% Normal CI 
Distribution                Mean     Error    Lower    Upper 
Weibull                  5.03998  0.212458  4.64031  5.47408 
Lognormal                5.15714  0.275334  4.64477  5.72603 
Exponential              3.62183  0.247595  3.16766  4.14112 
Loglogistic              5.18653  0.270093  4.68327  5.74386 
3-Parameter Weibull      5.05801  0.223246  4.63885  5.51505 
3-Parameter Lognormal    5.09944  0.191768  4.72359  5.47530 
2-Parameter Exponential  4.09949  0.219413  3.69124  4.55290 
3-Parameter Loglogistic  5.09832  0.205055  4.69642  5.50022 
Smallest Extreme Value   5.08653  0.197070  4.70028  5.47278 
Normal                   5.09868  0.191171  4.72400  5.47337 
Logistic                 5.09868  0.204661  4.69756  5.49981 
 

 
 

Post OSHA Standard (1980-1987) 

Distribution ID Plot:  Post OSHA (Years)  
 
Using frequencies in Failures_Post 
 

Goodness-of-Fit 
 
                         Anderson-Darling  Correlation 
Distribution                        (adj)  Coefficient 
Weibull                             5.702        0.938 
Lognormal                           5.589        0.954 
Exponential                        25.011            * 
Loglogistic                         7.127        0.937 
3-Parameter Weibull                 5.017        0.940 
3-Parameter Lognormal               4.377        0.964 
2-Parameter Exponential            17.401            * 
3-Parameter Loglogistic             6.193        0.948 
Smallest Extreme Value             13.926        0.895 
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Normal                              4.576        0.961 
Logistic                            6.170        0.946 
 
 
Table of Percentiles 
 
                                            Standard      95% Normal CI 
Distribution           Percent  Percentile      Error       Lower      Upper 
Weibull                      1    0.414904  0.0639976    0.306657   0.561361 
Lognormal                    1    0.685525  0.0652661    0.568832   0.826157 
Exponential                  1   0.0280446  0.0020160   0.0243591  0.0322877 
Loglogistic                  1    0.607725  0.0676976    0.488526   0.756009 
3-Parameter Weibull          1    0.632781  0.0414631    0.556517   0.719496 
3-Parameter Lognormal        1   -0.121138   0.296160   -0.701600   0.459325 
2-Parameter Exponential      1     1.01289  0.0017486     1.00947    1.01633 
3-Parameter Loglogistic      1   -0.577042   0.241101    -1.04959  -0.104492 
Smallest Extreme Value       1    -2.22653   0.357879    -2.92796   -1.52510 
Normal                       1   -0.989346   0.299460    -1.57628  -0.402415 
Logistic                     1    -1.37644   0.318580    -2.00085  -0.752036 
Weibull                      5    0.918824   0.101145    0.740511    1.14007 
Lognormal                    5     1.05245  0.0804412    0.906031    1.22253 
Exponential                  5    0.143129  0.0102888    0.124320   0.164785 
Loglogistic                  5     1.07350  0.0897909    0.911182    1.26473 
3-Parameter Weibull          5    0.981114  0.0792592    0.837443    1.14943 
3-Parameter Lognormal        5    0.722732   0.196603    0.337397    1.10807 
2-Parameter Exponential      5     1.10685  0.0089243     1.08949    1.12448 
3-Parameter Loglogistic      5    0.680852   0.191813    0.304905    1.05680 
Smallest Extreme Value       5    0.120638   0.271669   -0.411824   0.653100 
Normal                       5    0.348100   0.239972   -0.122237   0.818437 
Logistic                     5    0.402656   0.235464  -0.0588443   0.864156 
Weibull                     10     1.30532   0.119043     1.09167    1.56080 
Lognormal                   10     1.32268  0.0894741     1.15844    1.51020 
Exponential                 10    0.293999  0.0211341    0.255363   0.338482 
Loglogistic                 10     1.38885   0.100784     1.20472    1.60112 
3-Parameter Weibull         10     1.28643   0.101118     1.10276    1.50070 
3-Parameter Lognormal       10     1.22634   0.164154    0.904600    1.54807 
2-Parameter Exponential     10     1.23001  0.0183311     1.19460    1.26647 
3-Parameter Loglogistic     10     1.31142   0.173387    0.971585    1.65125 
Smallest Extreme Value      10     1.15721   0.234638    0.697325    1.61709 
Normal                      10     1.06109   0.212086    0.645407    1.47677 
Logistic                    10     1.20800   0.204212    0.807753    1.60825 
Weibull                     50     3.27182   0.156883     2.97834    3.59421 
Lognormal                   50     2.96185   0.151621     2.67910    3.27444 
Exponential                 50     1.93417   0.139037     1.67999    2.22681 
Loglogistic                 50     2.96185   0.156095     2.67118    3.28415 
3-Parameter Weibull         50     3.14244   0.162176     2.84013    3.47694 
3-Parameter Lognormal       50     3.35668   0.170388     3.02272    3.69063 
2-Parameter Exponential     50     2.56898   0.120597     2.34316    2.81656 
3-Parameter Loglogistic     50     3.41752   0.160852     3.10226    3.73279 
Smallest Extreme Value      50     3.87000   0.145332     3.58515    4.15485 
Normal                      50     3.57616   0.159708     3.26314    3.88918 
Logistic                    50     3.57616   0.164166     3.25440    3.89792 
 
 
Table of MTTF 
 
                                  Standard    95% Normal CI 
Distribution                Mean     Error    Lower    Upper 
Weibull                  3.46587  0.145488  3.19213  3.76308 
Lognormal                3.60985  0.200718  3.23712  4.02548 
Exponential              2.79041  0.200588  2.42371  3.21260 
Loglogistic              3.63098  0.201545  3.25669  4.04829 
3-Parameter Weibull      3.46723  0.154205  3.17779  3.78303 
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3-Parameter Lognormal    3.56602  0.160503  3.25144  3.88060 
2-Parameter Exponential  3.26799  0.173985  2.94417  3.62742 
3-Parameter Loglogistic  3.56691  0.164545  3.24441  3.88941 
Smallest Extreme Value   3.56658  0.154367  3.26403  3.86914 
Normal                   3.57616  0.159708  3.26314  3.88918 
Logistic                 3.57616  0.164166  3.25440  3.89792 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

63 



 

APPENDIX B 

 

 

 

 

 

 

 

Figure B.1: Tire rim assembly 
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Figure B.2: Dislocation along a portion of the rim circumference. 
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