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June 5,2005

Prashanth Thumu

The current thesis considers the issue of state estimation of condition systems, a

form of petri net with signal inputs and outputs. In previous research the prob-

lem of unobservability due to progress confusion was identified, in the presence

of which state estimation is not possible. Here we introduce the notion of “Time

Condition Systems", a class of condition systems that uses timing information from

condition models to overcome state estimation problem caused by progress confu-

sion. To make use of the timing information in the plant model, a procedure called

“Exploded Time Plant" is synthesized. This procedure makes the plant model an

observable model. It is proved that this procedure does not alter the structural and

temporal behavior of the plant model and the plant maintains its integrity. The

time plant(s) and the corresponding Exploded time plant(s) are subsequently used

to develop observer(s) and controller(s) for Time condition models.

KEYWORDS: Time condition systems, Petri nets, State estimation, Exploded Time
Plant, Timed observer, Controller.
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Chapter 1

Overview

1.1 Introduction

Automatic control code synthesis for automated system is relatively easy and less

time consuming than manually writing it. Also, automatic code synthesis minimizes

or completely eliminates the need for debugging the control code, caused due to

human errors.

Spectool is one such software package developed in University of Kentucky. This

is a control code synthesis package that allows user to enter high-level specifica-

tions and then have them automatically converted into low level languages (like

PLC ladder logic or assembly language.) used in actuating control signals and sens-

ing responses. The modelling framework used for developing spectool is condi-

tion systems, a class of condition event model introduced by Sreenivas and Krogh

[Krogh00]

In all the previous research of spectool project, controller synthesis, observability

issues, state observer synthesis have been addressed by former researchers in an

untimed world [Holl00], [Holl01], [Holl02], [Holl03], [Holl04]. The goal of this

thesis is to create a framework that encompasses the notion of time in our condition

systems, a class of discrete event systems. We use the timing information from our

time condition models to resolve some state estimation problems in our models. The

time domain to our condition systems enhances the expressive power of condition
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systems and uses the timing information to tackle the progress confusion problem ,

a state estimation problem discussed in [Holl01]

The thesis is divided into five chapters, in chapter 2 we begin discussing "Con-

dition Systems" and then introduce the concept of "Time Condition Systems" for

single layer condition models, a form of discrete event systems with input and out-

put signals called conditions. A procedure is then developed for converting a non-

deterministic plant model into a deterministic and observable plant model called

exploded time plant, without losing structural and temporal integrity. A mapping

function is then developed; this defines “correspondence” of places, transitions and

timing between time plant and exploded time plant. At the end of chapter 2 we

have a lemma and a detailed proof that demonstrates the structural and temporal

integrity between time plant and exploded time plant. At the beginning of chapter

3, problem of “unobservability” is discussed, then the need for observer is identified

and then the different approaches in the literature for for generating observers are

briefly discussed. We then introduce the concept of timed observers and present

requirements for creating a timed observer A timed observer is then automatically

synthesized using the deterministic exploded time plant as input.A short descrip-

tion of the procedure is then presented followed by the proof observability of timed

observer.

In chapter 4 we derive "Generated state label plant" from the exploded time

plant. This plant follows all the properties required to develop a controller. A pro-

cedure is developed to build controller for the time plant using generated state label

plant as input. The controller drives the time plant through a sequence of desired

outputs. In chapter 5 an example is used to illustrate the results; The thesis is con-

cluded by discussing different areas, where the time condition systems approach

can be used. Potential areas for future research are also discussed.

2



Time Plant

Exploded Time Plant

State Label Plant

Timed Observer

Controller

Figure 1.1: Stages In The Generation of Controller From Time Plant.

1.2 Motivation

All our prior research to automatically synthesize control for condition system mod-

els was done in absence of state estimation problem and in an untimed world. There

are many real world situations like cost implications and complexity of having sen-

sors in certain places/situations, where state estimation through signals using sen-

sors might not be practical. Time condition systems deals the problem of state

estimation due to inadequate sensing by using the timing information of the sys-

tem to determine the state change. A simple example of one such system and its

description is given below.

• Goal:

Make sure that the ball bearing is on the block by the time it reaches its final

station.

• Description and Working:

Initially the block is in station 1. After the block reaches station 2, it stops and

3



triggers the "motor on" signal for the ball bearing motor. The motor starts,

and spits out the bearing form the ball bearing dispenser. The bearing falls

on the ramp, rolls on it and finally falls on the block. Then the block moves

on to the final station.

{BB Sensor}

Ball Bearing Dispenser

Station 1 Station 2 Final Station 

{S1} {S2} {S3}

Ramp

Figure 1.2: Example Model.

• Problem Description:

The position of the block at station 1, station 2 and at the final station is sensed

by sensors S1, S2 and S3. The ball bearing sensor (BB sensor) confirms the

falling of ball bearing on the ramp. But, there is no signal to indicate that

the bearing actually dropped on the block at station 2 (inadequate sensing).

Therefore there is no signal or indication that can trigger the movement of the

block to the next station. Controlling such a model and guiding it to its target

state is not possible with current condition systems.

• Proposed Solution:

Time condition systems formalism uses the timing information of the model

4



to generate signals. In this example it uses the information pertaining to the

length of the time it takes the bearing to roll on the ramp and drop on the

block. It uses this information to generate a signal that triggers the movement

of block from station 2 at the right time (block with bearing on it.)

5



Chapter 2

Time Condition Systems

2.1 Time Condition System Models

Condition systems interact with each other and with their outside environment

through conditions. A condition can be considered as a signal that either has a

true or a false value for a period of time. Condition systems were considered in

[Holl00]. Conditions which are associated with places are true whenever that place

is marked, and conditions which are associated with transitions act as guards which

must be true in order for the transition to be enabled to fire. In condition systems

state estimation is not possible due to subsequent states or, more than one possible

next state corresponding to similar input/output observations. The reason for the

introduction of time condition systems is to remove progress confusion from condi-

tion systems using timing information from the condition models. Time-condition

systems are defined as a form of Petri net that requires conditions and timing in-

formation for enabling and firing transitions, and that outputs conditions according

to its markings. Timing in our model is provided by timed transitions. “Merlin’s

Time Petri Nets"[Merlin00], [Merlin01] with the addition of input/output signals,

are used to model “Time-Condition Systems". Merlin’s TPN’s are used because of

their demonstrated expressive power for temporal constraints in Petri Net formal-

ism. The timing information on the transition is denoted by the interval of the

format θ(t). We use the notation θ(t)|min to denote the minimum time of the inter-
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val, representing the minimum time the transition should be enabled before which

it qualifies to fire. The notation θ(t)|max denotes the maximum time of the interval,

representing the maximum time allowed by the transition to fire once it is enabled.

A Time-Condition system Gsysθ is characterized by a form of Petri net repre-

sented by the tuple (PGsysθ
, T Gsysθ

, ALLC,AGsysθ
, CGsysθ

(·), θ(·)), where PGsysθ
is a

set of places, T Gsysθ
is a set of transitions, ALLC is a set of conditions, and AGsysθ

is

a set of directed arcs connecting places to transitions and vice versa. The function

θ(·) maps enabling time intervals to transitions. The function CGsysθ
(·) is a mapping

from transitions and places to conditions.

The state of the system over time τ is represented by the pair of functions

(m(τ), ξ(τ)), where the MARKING m(τ) is a function mapping each place to non-

negative integers, and the CLOCK FUNCTION ξ(τ) is a time function mapping each

transition to non-negative real numbers. Conditions are signals that at any given

time can have value TRUE or FALSE. For each condition c ∈ ALLC, there exists a

complement condition ¬c ∈ ALLC, such that c has value true at a given time if and

only if ¬c has value false. A time-condition function is a function from time τ to

subsets of conditions. We use the time condition function TrueC(τ) to represent

the set of conditions which are true at a given time τ, where ∀τ, TrueC(τ) ⊆ ALLC.

Define the set of all time-condition functions as L.

Given a time τ, let m(τ−) = limτ′→τ m(τ′), ξ(τ−) = limτ′→τ ξ(τ′), and

TrueC(τ−) = limτ′→τ TrueC(τ′) , respectively denote the marking, the timing vector,

and the set of true conditions immediately before time τ. For a given place p, we

use the notation p(t) to represent the set of transitions with arcs from p, and (t)p to

represent the set of transitions with arcs leading to p. For a given transition t, the

notation t(p) is the set of places with arcs from t, and (p)t is the set of places with

arcs to t. For the function CGsysθ
(·), for a place p, we refer to CGsysθ

(p) as the set

of OUTPUT CONDITIONS for the place, and for a transition t, we refer to CGsysθ
(t) as

the set of enabling conditions for the transition.

7



The dynamics of a time-condition system are defined as follows:

1. ALLOWABLE CLOCK TIMES: For all τ, for all transitions t ∈ T Gsysθ
, 0 ≤

ξ(τ)(t) ≤ θ(t)|max.

2. CONDITIONS ASSOCIATED WITH MARKED PLACES HAVE VALUE OF TRUE: Given

time τ, (∀p s.t. m(τ)(p) ≥ 1), CGsysθ
(p) ⊆ TrueC(τ).

3. Given m(τ−), ξ(τ−) and TrueC(τ−), the next state (m(τ), ξ(τ)) satisfies the

following:

(a) T is MARKING ENABLED, meaning (∀p ∈ PGsysθ
m(τ−)(p) ≥ 1|{t ∈

T | p is input to t}|,

(b) T is CONDITION ENABLED, meaning (∀t ∈ T) CGsysθ
(t) ⊆ TrueC(τ−),

(c) T is TIME ENABLED, meaning (∀t ∈ T), θ(t)|min ≤ ξ(τ−) ≤ θ(t)|max

(d) Transitions at limit of time must fire: for any t such that ξ(τ−(t)) =

θ(t)|max, then t ∈ T must fire.

(e) Each next possible marking satisfies the Petri Net firing rule: ∀p ∈
PGsysθ

,m(τ)(p) = m(τ ′)(p) − |{t ∈ T | p is input to t |

(f) Each fired transition has reset clock function: (∀t ∈ T), if transition t

fires, then ξ(τ)(t) = 0.

4. TRANSITIONS WHICH ARE MARKING ENABLED AND CONDITION ENABLED AND

HAVE NOT FIRED HAVE CLOCK FUNCTION INCREASE WITH TIME:

Given a time transition t, say t becomes marking and condition enabled at

time τ ′ and is continuously enabled till time τ ′ + ∆τ ′ (such that θ(t)|min ≤
∆τ ′ ≤ θ(t)|max) but does not fire at time τ ′, then:

• ξ(τ′ + ∆τ′)(t) = ξ(τ′)(t) + ∆τ′

8



P1
P2

t1

{c}

TIME PLANT

M(p1)

M(p2)

{c}

{c}
M(p1)

M(p2)

TIME∆t = 2 ∆t = 3

∆t = 1 ∆t = 1 ∆t = 2 ∆t = 1 TIME

(a)

(b)

[2,5]{X} {X}

Figure 2.1: Examples of Time line diagrams for a Time Plant Model .

The cumulative time enabling of the time condition systems is illustrated in figure

2.1. In part (a) of the figure 2.1 it is shown that p1 is marked for at least 2 time

units only after condition {c} is true for a total of two time units. After condition

{c} remains true for 2 time units, either p1 can remain marked for a maximum

period of 3 time units ({c} must be true during this time)or p2 can become marked

during this period; but not both. This phenomenon is indicated by small dashed

lines and long dashed lines in fig.(a). This period of uncertainty is referred to as

non-deterministic period. After the condition {c} is true for a cumulative of 2+3 =

5 time units, p1 is no longer marked and p2 becomes marked.

In part (b) of figure 2.1, condition {c} becomes true for one time unit. After that

it becomes false for sometime and then it again becomes true for one more time

unit. p1 remains marked all this time but after {c} remains true for cumulative of 2

time units, p2 can become marked. As discussed in part (a), only after {c} remains

9



true for a cumulative time of 5 units, we can be certain that p2 is marked.

Note: In either cases, if p2 becomes marked once, the marking cannot change back to

p1 at any future time.

We say that time functions (m(·), ξ(·), TrueC(·)) are consistent with system

Gsysθ if they satisfy the above for Gsysθ. Given some initial state m0, ξ0 we

define LTime(Gsysθ, (m0, ξ0)) as the set of all time-condition functions TrueC(·)
such that there exists some time-marking function m(·) and clock function ξ(·)
s.t. m(0) = m0, ξ(0) = ξ0, and (m(·), ξ(·), TrueC(·)) are consistent. Timing

information in many cases can be used to identify when a transition might fire. Due

to the ranges of firing times that are possible within the model, it may be possible

to determine the exact state only before a given time, and then after a given time.

We thus can have periods of uncertainty in our state.An example time condition

system is shown in figure 2.2 below. For example, if place p1 is marked, then the

condition A will be true. The transition tp1 is enabled if the place p1 is marked and

condition x1 is true. The timing interval of [2,4] on the transition indicates that the

transition can only fire after at least two time units of being continuously enabled,

and must fire within 4 time units of being continuously enabled.

{A} {C}{B}{B
}

{D}

{B1}

{B2}

P1 P3
P5

P6

p4

P2 P7

tp1

tp3

tp5

tp4tp2 tp6

{x1}

{x3}

{x2} {x4} {x6}

{x5}[3,5][2,4]

P0

{U} tp0

{x0}

Figure 2.2: Time Plant.
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Definition 2.1 Progress Confusion: A Time Condition system Gsysθ has progress

confusion if there exists a transition t′ such that the observed conditions on the

input place p to the transition are the same as on output place p′ to the transition:

CGsysθ
(p) = CGsysθ

(p′).

For example P2, P3 in the Time Plant in figure 2.2 have progress confusion

CGsysθ
(P2) = CGsysθ

(P3)

Definition 2.2 Direction Confusion A Time Condition System Gsysθ has direction

confusion, if there exist two transitions t′ and t′′ such that each of the following is

true:

• both transitions share the same input place.

• the observed conditions on output place are identical: CGsysθ
(p′)|Cobsd

=

CGsysθ
(p′′)|Cobsd

for p′ ∈ t′
(p) and p′′ ∈ t′′

(p);

• the observed condition sets CGsysθ
(t′)|Cobsd

and CGsysθ
(t′′)|Cobsd

are not exclu-

sive.

Definition 2.3 A system model represented by a condition system is state observable

under observed condition set Cobsd if: For times τ0 and τ such that τ ≥ τ0, given any

known initial marking mτ0
and clock ξ(τ0)at time τ0, and given the observed input

and output conditions [(Cin(Gsysθ)∪Cout(Gsysθ))∩Cobsd] over period τ0 to τ, we can

uniquely determine marking mτ at time τ.

Definition 2.4 Time plant model limitations and assumptions

Following are the assumptions of the time condition system models for the rest of this

paper:

• Gsysθ does not have direction confusion.

• No three consecutive places in the time plant model should have progress

confusion.

11



• For each non-deterministic time transition t, (i.e. θ(t)|min 6= θ(t)|max with

progress confusion, |t(p)| = |(p)t| = 1

• For any places pi, pj in Gsysθ if pi, pj have progress confusion, then (∀p′i ∈
(p

(t)
i )(p)) and (∀p′j ∈ (p

(t)
j )(p)), CGsysθ

(p′i) 6= CGsysθ
(p′j)

2.2 Creating The Exploded Time Plant

In order to make these condition systems that we consider to be “State observable",

we synthesize an “Exploded Time plant". In the resulting exploded time plant, all

timing uncertainty is made deterministic. To do this, intermediate states are created

which explicitly represent the state uncertainty. These intermediate states are sim-

ilar to the “macro-states" of Giua in [Giua00], [Giua01]. Procedure to synthesize

“Exploded Time Plant" from time plant model is shown in fig.2.3

Definition 2.5 Given a plant Gsysθ, and given a place in it denoted by p, Define

ALLSTATE = {State(p) | p ∈ Gsysθ} ⊆ ALLC as the set of such conditions. We refer

to such conditions as State Labels.

Definition 2.6 ProgConfPlaceSet(Gsysθ) is defined as the set, where all the places

corresponding to progress confusion are stored. ProgConfPlaceSet(Gsysθ) =

{p, p′ |CGsysθ
(p) = CGsysθ

(p′)} where p is the parent place of p′.

Note: ProgConfPlaceSet(Gsysθ) and ProgConfPlaceSet are interchangeable un-

less mentioned specifically.

Definition 2.7 ProgConfTranSet(Gsysθ) is a set of transitions in the

timed plant Gsysθ, whose input and output places have same conditions.

ProgConfTranSet(Gsysθ)= {t| ∃p ∈(p)t, p′ ∈ t(p) s.t. CGsysθ
(p) = CGsysθ

(p′)}

Note: ProgConfTranSet(Gsysθ) and ProgConfTranSet are interchangeable un-

less mentioned specifically.

12



Definition 2.8 Non-Deterministic Place: If a place has more than one State label

condition as its output condition, it is said to be a Non-Deterministic Place.

Multiple state label conditions indicate the non-determinism of the plant, i.e, we

don’t know if the token is in (Pi) or (Pi+1) but we are sure that it is either in (Pi) or

in (Pi+1).

Definition 2.9 We define NDset as a set of non-deterministic places in GExpθ, i.e,

it is the set of all the places in exploded time plant with more than one state label

condition. NDset = {p |p ∈ PGExpθ
, |CGExpθ

(p) ∩AllState| > 1}

Definition 2.10 AllState is defined as a set of all state label conditions in the ex-

ploded time plant.

Figure 2.3: Exploded Time Plant procedure

1 Initially define GExpθ s.t PGExpθ
, TGExpθ

,AGExpθ

duplicates the timed plant PGsysθ
, TGsysθ

, AGsysθ

2 Let pExpθ ∈ PGExpθ
and tExpθ ∈ TGExpθ

indicate the

corresponding place and transition in GExpθ for

each p ∈ PGsysθ
and t ∈ TGsysθ

3 For each p ∈ PGsysθ
{

4 CGExpθ
(pExpθ) ⇐ {State(p)}

⋃
CGsysθ

(p) }

5 For each t ∈ TGsysθ
{

6 If t 6∈ ProgConfTranSet(Gsysθ) {

7 CGExpθ
(tExpθ) ⇐ CGsysθ

(t)

8 θ(tExpθ) ⇐ {θ(t)} }}

9 For each t ∈ ProgConfTranSet(Gsysθ){

10 EXPAND-TIME(t);}

13



Px3

Px4

Px5

Px6

Px7

{A}

{B}

{B}

{B1}

{B2}

{C}

{D}txp1

txp5,1

txp3,1

txp5,2

txp2,2

txp3,2

txp4,2 txp6

txp4,1

{State p1}

{State p2}

Px2,3

txp2,1

{State p2
,State p3 }

{State p3}

{State p4}

{State p7}

{State p5}

{State p6}

{x1}

{x2}

{x3}
{x3}

{x2}

{x5}

{x6}

{x5}

{x4}
{x4}

Px2

[2,4]

[3]

[2]

Px1Px0

{State p0}

{x0}{U}

txp0

Figure 2.4: Exploded Time Plant.

Exploded Time plant (ExTP) Description:

1. REPLICATING TIME PLANT STRUCTURE: Original plant structure is reproduced.

For every place p and transition t in the plant, there will be a corresponding

place pExpθ and transition tExpθ in the ExTP. Each place pExpθ in the ExTP

outputs condition CGsysθ
(p) corresponding to place p in the timed plant. By

line 4, It also outputs a unique state label “State(p)" assigned to it.

2. PROGRESS CONFUSION CHECK: Lines 5-10 check for progress confusion in

the timed plant by comparing conditions on input ((p)t) and output places

(t(p)) of a transition ‘t’. All the transitions associated with progress confusion

are stored in the set “ProgConfTranSet(Gsysθ)". For each of the remaining

transitions ‘t’ in the time plant there already exists a corresponding transition

tExpθ in ExTP; Conditions and time are assigned to these transitions in lines

7,8. Each of the transitions in “ProgConfTranSet(Gsysθ)" is passed on as a

parameter to the function Expand-time(t)

The function Expand-time(t) performs the following operations
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Figure 2.5: Expand-time(t) Procedure

Procedure Expand-time(t)

1 For this transition t in GExpθ let

tExpθ be the corresponding transition in GExpθ

2 Let Pinput = {p|p ∈ (p)tExpθ}

and Poutput = {p|p ∈ t
(p)
Expθ}

3 DELETE arcs from p ∈ (p)tExpθ to tExpθ and

from tExpθ to t
(p)
Expθ

4 Create transitions tL, tU−L, and place pθ

5 CGExpθ
(tL) ⇐ CGsysθ

(t)

6 θ(tL) ⇐ [θ(t)|min]

7 CGExpθ
(tU−L) ⇐ CGsysθ

(t)

8 θ(tU−L) ⇐ [θ(t)|max − θ(t)|min]

9 CGExpθ
(pθ) ⇐ CGExpθ

(Pinput)
⋃

CGExpθ
(Poutput)

10 CREATE arcs from all p ∈ Pinput to tL

and from tU−L to all p ∈ Poutput

11 CREATE arcs from tL to pθ and from pθ to tU−L

12 For each p ∈ Pinput {

13 FOR each t ∈ p(t)/tL {

14 Create transition tdup with CGsysθ
(tdup) = CGsysθ

(t)

15 Create arcs from pθ to tdup

16 Create arcs from tdup to each p ∈ tp } }

17 For each p ∈ Poutput {

18 FOR each t ∈ p(t) {

19 Create transition tdup s.t.CGsysθ
(tdup)=CGsysθ

(t)

20 Create arcs from pθ to tU−L

21 Create arcs from tdup to each p ∈ tp } }

22 Delete tExpθ
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• EXTRACTING, ISOLATING AND EXPLODING THE TIMED TRANSITION(1-4):

All the input and output place(s) of the transition are extracted in the sets

Pinput and Poutput respectively. After this the transition is isolated by delet-

ing all its input and output arcs. This isolated timed transition tExpθ is now

exploded , i.e, replaced by tL pθ tU−L. tL and tU−L are the replica of timed

transition tExpθ; they have the same conditions assigned to them as tExpθ The

only difference is the timing associated with these transitions.As discussed

earlier tL represents the transition with lower limit of time θ(t)|min on it. tU−L

represents the the transition with deterministic time θ(t)|max − θ(t)|min on it.

pθ is the ND place between these two transitions.

• ASSIGNING CONDITIONS AND TIMES TO THE GENERATED PLACES AND TRANSI-

TIONS: Lines 5, 7 assign the conditions to transitions tL and tU−Lrespectively.

Timing on these transitions are provided by lines 6,8 in the algorithm. pθ is a

Non-deterministic place that outputs all the conditions of both the input and

output place(s)of the current transition tExpθ. Input arcs are drawn to tL from

all place(s) that were input to tExpθ (Pinput) Similarly output arcs are drawn

from tU−L to all place(s)that were output to tExpθ (Poutput).

• NON-DETERMINISTIC ARCS (LINES 12-21) Except for tL, all the transitions

output from places in Pinputset are duplicated. All these duplicated transitions

have input arcs from pθ and output arcs to corresponding p ∈ tp. Similarly all

the transitions output from places in Poutputset are duplicated and have input

arcs from pθ and output arcs to corresponding p ∈ tp.

Definition 2.11 Given time plant Gsysθ and its corresponding exploded time plant

GExpθ. Let Psysθ = {p0, p1, p2...pn} be the set of places in GExpθ. Define PExpθ as

the set of places in corresponding exploded time plant, i.e., PExpθ = {POrig, PND},

where

• POrig = {pxi | 0 ≤ i ≤ n}
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• PND = {pxi,j | pi, pj ∈ Psysθ s.t., p
(t)
i ∩(t) pj ∈ {ProgConfTranSet}} s.t

0 ≤ i ≤ n, 0 ≤ j ≤ n, where pxi indicates a deterministic place and pxi,j a

non-deterministic place.

Note: pxi,j is the non-deterministic place in GExpθ that is attributed to progress

confusion between places pi, pj in time plant.

Let Tsysθ = {t0, t1, t2, ....tn}, Define TExpθ ∈ GExpθ as the set of transitions in exploded

time plant; TExpθ = {TOrig ∪ TProg ∪ TDup}, where

• TOrig = {txi|0 ≤ i ≤ n}, where n = number of transitions in Tsysθ

1. θ(txi) := θ(ti)

• TProg = {txi,1, txi,2 | 0 ≤ i ≤ n ∀ti ∈ {ProgConfTranSet}}

1. θ(txi,1) := θ(ti)|min

2. θ(txi,2) := θ(ti)|max − θ(ti)|min

• TDup = {t̄xi | ti ∈ T } where, T ∈ [(p)tj]
(t) ∪ [t

(p)
j ](t) − {tj}and tj ∈

{ProgConfTranSet}}

We define mapping function(s) that give correspondence relationship between

place(s), transition(s) in time plant and place(s), transition(s) in exploded time

plant.

There are two types of mapping functions:

• Pre-Mapping function := ↔()

• Post-Mapping function := ()↔

1.

↔(pi) =





pxi if {(t)pi} ∩ {ProgConfTranSet} = φ

pxj,i for j s.t. {(pj)
(t) ∩(t) pi} ∩ {ProgConfTranSet} 6= φ
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2.

(pi)
↔ =





pxi,j for j s.t. {(pi)
(t) ∩(t) pj} ∩ {ProgConfTranSet} 6= φ

pxi for j s.t. {(pj)
(t) ∩(t) pi} ∩ {ProgConfTranSet} = φ

Before defining Pre-Mapping and Post-Mapping functions for the transitions we

define the following conditions

A := ti ∈ {ProgConfTranSet}

B := ∃ at least one t ∈ (ti)sib such that t ∈ {ProgConfTranSet}

C := (p)ti ∈ {ProgConfPlaceSet}

The above conditions are key to determine the correspondence mapping between

the time plant and the exploded time plant.

Note 1: Both A, B cannot be true at the same time due to structural limitations

mentioned in "TIME PLANT MODEL LIMITATIONS."

Note 2: Condition A true implies condition C is true

1.

↔(ti) =





txi if conditions ĀBC, ĀB̄C̄ are satisfied

txi,1 if conditions AB̄C is satisfied

t̄xi if conditions ĀB̄C is satisfied

2.

(ti)
↔ =





txi if conditions ĀB̄C, ĀB̄C̄ are satisfied

txi,2 if conditions AB̄C is satisfied

t̄xi if conditions ĀBC is satisfied

The conditions ABC, ABC̄, AB̄C̄, ĀBC̄ are not structurally possible

Lemma 2.1 GIVEN A TIMED COMPONENT SYSTEM Gsysθ WITH PROGRESS CONFU-

SION. LET GExpθ BE EXPLODED TIME PLANT CREATED BY THE ALGORITHM IN FIGURE

2.3, 2.5 FOLLOWING ARE THE PROPERTIES OF EXPLODED TIME PLANT GExpθ
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p1 p2 p3 p4

px1 px2 Px2,3 Px3 px4

txp1 txp2,1 txp2,2

txp3,1

txp3,2

tp1 tp3tp2

Figure 2.6: Example of Mapping.

• State labels : For each place pxi in GExpθ, | CGExpθ
(pxi) ∩ ALLSTATE | ≥ 1

• Matching of Output conditions : For each place pi in Gsysθ, there exists

exactly one place pxi in GExpθ such that CGExpθ
(pxi)∩ ALLSTATE = {State(pi)}.

Furthermore, CGExpθ
(pxi) ∩ AllC-AllState = CGsysθ

(pi).

• Structural integrity :

FORWARD CONNECTIVITY: Since the structure of Exploded time plant GExpθ

is duplicated from the timed plant Gsysθ, For any pi, pj in time plant

Gsysθ, there exists corresponding places pxi, pxj in the exploded time plant

GExpθ such that CGsysθ
(pi) = CGExpθ

(pxi) |ALLC-ALLSTATE and CGsysθ
(pj) =

CGExpθ
(pxj) |ALLC-ALLSTATE

|AllC−AllState is the projector operator1

For any ti 6∈ProgConfTranSet(Gsysθ),Such that pi ∈(p)ti and pj ∈ t
(p)
i , there

exists a corresponding transition txi ∈ GExpθ and pxi, pxj ∈ GExpθ such that

txi ∈ p
(t)
xi ∩(t)pxj and CGExpθ

(txi) = CGsysθ
(ti)

For any transition ti ∈ProgConfTranSet(Gsysθ), let pi ∈(p)t and pj ∈ t(p) de-

1|entry is the projector operator that filters away the conditions that do not belong to its subscript

argument from the condition set to which it is applied. It is also called masking operator.
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note I/P and O/P places and let pxi, pxj represent corresponding places of pi

and pj in GExpθ (satisfying statement 2 of lemma 2.1). Then, there exists a

place pxi,j ∈ NDset and transitions txi,1, txi,2 in GExpθ such that

1. CGExpθ
(pxi) |AllC-AllState = CGExpθ

(pxj) |AllC-AllState= CGExpθ
(pxi,j) |AllC-AllState =

CGsysθ
(pi) = CGsysθ

(pj)

2. txi,1 ∈ p
(t)
xi ∩ (t)pxi,j

3. txi,2 ∈ p
(t)
xi,j ∩ (t)pxj

4. CGExpθ
(txi,1) = CGExpθ

(txi,2) = CGsysθ
(ti).

All the transitions output from pxi,j are replica of transitions output from pxi,

pxj in GExpθ corresponding to pi, pj in Gsysθ. All these replicated transitions

have same output place(s) as pxi and pxj in GExpθ corresponding to pi and pj

in Gsysθ.

REVERSE CONNECTIVITY: For any places pxi, pxj ∈ {GExpθ − NDset}, let txi be

a transition such that txi ∈ p
(t)
xi ∩(t) pxj; Then, there exists a transition ti with

corresponding places pi, pj in Gsysθ satisfying statement 2 in lemma 2.1 such

that t ∈ p
(t)
i ∩(t) pj and CGsysθ

(ti) = CGExpθ
(txi)

For each pxi,j in GExpθ with txi,1 and txi,2 as I/P and O/P transitions (txi =(t)

pxi,j, txi,2 = p
(t)
xi,j) and with pxi =(p) tx,1; pxj =(p) txi,2, there exists t in Gsysθ

with pi as it’s input and pj as its output place such that

1. CGExpθ
(txi,1) = CGExpθ

(txi,2) = CGsysθ
(ti)

2. CGExpθ
(pxi,j) |AllC-AllState= CGsysθ

(pi) = CGsysθ
(pj)

Lemma 2.2 Consider a time plant Gsysθ satisfying "Timed plant model limita-

tions" and with uniquely identifiable initial state. Let GExpθ be its corresponding

exploded time plant with matching structure and conditions, At initial time τ0, if
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TrueCsysθ(τ0)|AllC−AllState = TrueCExpθ(τ0)|AllC−AllState,for any future time such

that non-state conditions have continued to map since the beginning, then at any

future time τ ≥ τ0 such that TrueCsysθ(τ
′)|AllC−AllState = TrueCExpθ(τ

′)|AllC−AllState

for τ0 ≥ τ′ ≥ τ , if pi is marked in original time plant, then either ↔(pi) PExpθ or

(pi)
↔ ∈ PExpθ is marked. i.e. the states of the systems map.

Proof: The state of the system is defined by marking and the timing associ-

ated to it. Say at initial timeτ = τ0, a place pi(i=0) ∈ Gsysθ is marked. i.e.,

msysθ(τ0)(pi) = 1.; i=0. Since Gsysθ satisfies the "Time plant model limitations",

there will be no progress and direction confusion from initially marked place

"p0" in Gsysθ. From lemma statement, there exists a unique corresponding place

pxi ∈ GExpθ for initially marked place pi ∈ Gsysθ (i=0) and from lemma 2.1

CGsysθ
(pi)|AllC−AllState =CGExpθ

(pxi)|AllC−AllState.

⇒ mExpθ(τ0)(px0) = 1.

hence, the initial condition TrueCsysθ(τ0)|AllC−AllState = TrueCExpθ(τ0)|AllC−AllState

has been established.

Now, say at time τ = τ0 + ∆τ an untimed transition tj ∈ p
(t)
i fires in time

plant(i=0, j=0). For t0 to fire it should be both state and condition enabled i.e.

for i=0, j=0

CGsysθ
(pi)|AllC−AllState, CGsysθ

(tj) ∈ TrueCsysθ(τ0 + ∆τ)|AllC−AllState (2.1)

From structural integrity statement in Lemma 2.1

CGsysθ
(tj) = CGExpθ

(txj) (2.2)

and from initial condition, if pi is marked so is pxi

⇒ CGsysθ
(pi)|AllC−AllState = CGExpθ

(pxi)|AllC−AllState (2.3)

∴ at time τ0 + ∆τ

CGExpθ
(pxi)|AllC−AllState, CGExpθ

(txj) ∈ TrueCExpθ(τ0 + ∆τ)|AllC−AllState (2.4)
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From equations 2.1, 2.2, 2.3, 2.4 TrueCsysθ(τ0 + ∆τ)|AllC−AllState =

TrueCExpθ(τ0 + ∆τ)|AllC−AllState. So if the transition t0 fires in Gsysθ, the transi-

tion tx0 in GExpθ would also fire, hence the places p1 = t
(p)
0 ∈ Gsysθ and corre-

sponding place px1 = t
(p)
x0 ∈ GExpθ become marked at the same time instant τ′ s.t.

(τ0 + ∆τ) < τ′ < τ. Hence, msysθ(τ
′)(p1)=1, mExpθ(τ

′)(px1)=1 and

Truecsysθ(τ
′)|AllC−AllState = TrueCExpθ(τ

′)|AllC−AllState

Case 1: Say the newly marked place p1 6∈ ProgConfPlaceSet and let t1 be one of

its output transitions, and let p2 be its output transitions, and let p2 be its output

place i.e. t1 ∈ p
(t)
1 and p2 ∈ t

(p)
1 . Since p1 6∈ ProgConfPlaceSet, for p1,t1 ∈ Gsysθ,

there exists a unique corresponding place pxi and transition txi in exploded time

plant GExpθ. Equations 2.1,2.2, 2.3, 2.4 hold true for i=1, k=1 at time τ = τ′. The

transition t1 in the time plant is state enabled at time τ = τ′ Now say at time τ =

τ′ + ∆τ, t1 becomes both state and condition enabled and fires marking new place

p2 in the time plant; the corresponding transition tx1 in exploded time plant GExpθ

is also state and condition enabled (equations 2.2, 2.3)and fires and px2 becomes

marked. Hence, at time τ = (τ′ + ∆τ)|AllC−AllState

TrueCsysθ(τ
′ + ∆τ)|AllC−AllState = TrueCExpθ(τ

′ + ∆τ)|AllC−AllState

Case 2: Say p1 ∈ {ProgConfPlaceSet} and let t1 be one of its output transitions

such that t1 ∈ {ProgConfTranSet} and θ(t1) = [τmin, τmax] be the time interval on

t1 and let p2 be output place of t1 i.e. t1 ∈ p
(t)
1 , p2 = t

(p)
1

For p1, p2 ∈ {ProgConfPlaceSet} there each exists two corresponding places

(Pre-mapped, Post-mapped) px1, px1,2 for p1 and px1,2, px2 for p2 in exploded time

plant. Similarly for t1 ∈ {ProgConfTranSet} in the time plant, there exists cor-

responding (Pre-mapped, Post-mapped) transition t1,1, t1,2 in exploded time plant

with time intervals [θ(t1)|min] and [θ(t1)|max] − [θ(t1)|min] respectively. Following

cases illustrate all the possible dynamics of the time plant and the corresponding

exploded time plant when it is in progress confusion state:
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1. At time τ = τ′ + [θ(t1)|min] equation 2.2 holds true for t1, tx1,1 and equation

2.3 holds true for p1, px1.

(a) Now say at time τ = τ′ + τmin transition t1 fires and p2 gets marked. Fol-

lowing the algorithm in fig. 2.3, fig. 2.5, the transition tx1,1 in exploded

time plant is forced to fire at deterministic time τ = τ′ + [θ(t1)|min],

thus marking the place px1,2 in exploded time plant. Hence at time

τ = τ′ + [θ(t1)|min], places p2 in the time plant and the corresponding

pre-mapped place px1,2 in exploded time plant are marked. Places p2,

px1,2 satisfy equation 2.3 at time τ = τ′ + [θ(t1)|min] and also for any

transition that belongs to {p
(t)
2 } in time plant, there exists a corresponding

transition that belongs to {px1,2} in exploded time plant those transitions

satisfy equation 2.2.

(b) Say at time τ = τ′ + τmin, transition t1 doesn’t fire in the time plant

and p1 is still marked. According to the algorithm of the exploded time

plant, the corresponding transition tx1,1 in the exploded time plant is

forced to fire after it is time enabled in GExpθ for time (deterministic)

τ = τ′ + [θ(t1)|min]. Therefore after time τ = τ′ + [θ(t1)|min], place px1,2

in the time plant is marked. Hence at time τ = τ′ + [θ(t1)|min], places

p1 in the time plant and the corresponding post-mapped place px1,2 in

exploded time plant are marked. Places p1, px1,2 satisfy equation 2.3 at

time τ = τ′+[θ(t1)|min] and also for any transition that belongs to {p
(t)
1 } in

time plant, there exists a corresponding transition that belongs to {p
(t)
x1,2}

in exploded time plant and those transitions satisfy equation 2.2.

Therefore at time τ = τ′ + [θ(t1)|min]

TrueCsysθ(τ
′ + [θ(t1)|min])|AllC−AllState = TrueCExpθ(τ

′ + [θ(t1)|min]

)|AllC−AllState.

Note: τmin = [θ(t1)|min].
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2. Now say transition t1 fires at time τ = τ′ + τmax and p2 becomes marked,

(Here τmax ≥ τmin & τmax = [θ(t1)|max])

τ = τ′ + [θ(t1)|max] can also be written as τ = (τ′ + [θ(t1)|min]) + (θ(t1)|max −

θ(t1)|min). It was already shown in (b) that at time τ = τ′ + τmin, tx1,1 fires in

the exploded time plant and the post-mapped place of p1, i.e. px1,2 becomes

marked.

At time τ = τ′ + τmin, p1 in the time plant and corresponding post mapped

place px1,2 in exploded time plant are marked. At the same time transition t1

in the time plant and its corresponding post-mapped transition tx1,2 ∈ {p
(t)
x1,2}

in exploded time plant are enabled. From our definition of time condition

models, if t1 remains state and condition enabled for time τmax,i.e. at τ =

τ′ + τmax, it would fire. Since t1 was state and condition enabled at time

τ′+τmin, if it remains enabled for remaining time of (τ′+τmax)−(τ′+τmin) =

τmax − τmin, it has to fire and p2 would get marked. From our construction of

exploded time plant GExpθ, θ(tx1,2) = θ(t1)|max − θ(t1)|min and t1, tx1,2 satisfy

equation 2.2. So if t1 fires and p2 gets marked the corresponding post mapped

transition tx1,2 fires and the post mapped place px2 becomes marked; and for

any transition that belongs to {p
(t)
2 }, there exists corresponding transition that

belongs to {p
(t)
x2 } in exploded time plant and these transitions satisfy equation

2.2. Therefore at τ = τ′ + θ(t1)|max,

TrueCsysθ(τ
′ + θ(t1)|max|AllC−AllState = TrueCExpθ(τ

′ + θ(t1)|max|AllC−AllState.

Note: τmax = [θ(t1)|max].

3. Suppose transition t1 fires at time τ = τ′ + τ′′, (τmin < τ′′ < τmax), and p2

becomes marked. It is shown in (b) that after time τ = τ′ + τmin, px1,2 is

marked in exploded time plant GExpθ and in (c) it is shown that px1,2 will re-

main marked at least till time τ = τ′ + τmax. Now, at time τ = τ′ + τ′′ the
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transition t1 in time plant fires and p2 gets marked and at the same time px1,2

in exploded time plant is marked from (b,c). Hence at time τ = τ′ + τ′′, p2 in

the time plant and the corresponding pre-mapped place px1,2 in exploded time

plant are marked. p2 and px1,2 satisfy equation 2.3 and for any transition that

belongs to {p
(t)
2 }, there exists corresponding transition that belongs to {p

(t)
x1,2}

in exploded time plant and these transitions satisfy equation 2.2.

So at τ = τ′ + τ′′, TrueCsysθ(τ
′ + τ′′)|AllC−AllState = TrueCExpθ(τ

′ +

τ′′)|AllC−AllState.

Case 3: Say p1 ∈ {ProgConfPlaceSet} and let t′1 be one of its output tran-

sitions such that t1 ∈ {ProgConfTranSet}. Since p1 ∈ {ProgConfPlaceSet}

there exists t1 such that t1 ∈ {ProgConfTranSet} and t′1 is sibling of t1, i.e.

, they share the same parent place(p1). Let p2 be the output place of t1 and

θ(t1) = [τmin, τmax] and let p′2 be the output place of t′1.For p1, t1, p2 in the

time plant, there exists corresponding places, transitions, time assignments

and mapping functions similar to one discussed in Case 2. Now for p′2 ∈ GExpθ

there exists a corresponding place px2 in Gexpθ; and for t′1 in Gsysθ there exists

two corresponding transitions (pre-mapped, post-mapped) t′1,1 t′1,2 in GExpθ

Say at time τ = τ′, p1 ∈ Gsysθ becomes marked, the corresponding place px1

in GExpθ is also marked. p1, px1 satisfy equation 2.3, Therefore at time τ = τ′

t1, t′1 ∈ {p
(t)
1 } and the corresponding pre-mapped transitions tx1,1, t′x1,1 ∈ {p

(t)
x1 }

are state enabled. Following cases illustrate dynamics of time plant at this

point:

(a) Say at time τ = τ′ + ∆τ, t′1 becomes condition enabled and fires marking

new place p′2 in the plant, then the corresponding pre-mapped transition

t′x1,1 in GExpθ also becomes state and condition enabled (2.2, 2.3) and

fires and p′x2 becomes marked. Hence at time τ = τ′ + ∆τ

TrueCsysθ(τ
′ + ∆τ)|AllC−AllState = TrueCExpθ(τ

′ + ∆τ)|AllC−AllState.
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(b) Say at time τ = τ′ + ∆τ both t1, t′1 become condition enabled and say t′1

fires at time τ = τ′ + ∆τ + ∆τ1 such that ∆τ1 < τmin, then the time plant

and the exploded time plant follow the same path as discussed previously

in (a). But if τmax < ∆τ1 ≤ τmin then according to the algorithm of

exploded time plant the post mapped place of p1, i.e. px1,2 becomes

marked. Now the post-mapped transitions of t1, t′1, i.e. (tx1,2, t′x1,2) are

condition enabled in exploded time plant. So whenever t′1 fires in time

plant and p′2 becomes marked, the corresponding post-mapped transition

t′x1,2 in the exploded time plant fires and p′x2 becomes marked. Therefore

at τ = τ′ + ∆τ + ∆τ1

TrueCsysθ(τ
′+∆τ+∆τ1)|AllC−AllState = TrueCExpθ(τ

′+∆τ+∆τ1)|AllC−AllState

Note: If ∆τ1 ≥ τmax, then t1 in the plant is forced to fire and t′1 becomes

disabled. (This is discussed extensively in Case 2.)

Therefore, the state of the systems match at any time instant, once the initial

conditions are satisfied. Hence, at any future time τ > τ0

TrueCsysθ(τ)|AllC−AllState = TrueCExpθ(τ)|AllC−AllState

The following figure gives the gist of different cases present in Lemma 2.2

Case 2:

эp1 ProgConfPlaceSet

At  θ(t1)|min At  θ(t1)|max Between θ(t1)|min and θ(t1)|max

t1     p1
(t) fires

э

t1     p1
(t) doesn’t fireэ

t1     p1
(t) firesэ

t1     p1
(t) firesэ

Case 1:

эp1 ProgConfPlaceSet and is not  a uniquely identifiable place

Case 0: p1 Is A Uniquely Identifiable Place in the time plant

Figure 2.7: Gist of Lemma 2.2.
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Chapter 3

Timed Observer

3.1 Timed Observer Synthesis

Discrete event observers have been considered by many authors in discrete event

community. Giua and Seatzu[Giua00],[Giua01] examined the observer problem in

Petri nets, when the net structure is known but initial marking is unknown. They de-

veloped an observer that calculated marking estimate with the error function mono-

tonically decreasing. Holloway and Gong [Holl01], [Holl02] defined state and con-

dition observability criteria and developed an observer system to provide state and

condition signal estimate for single-layer and multi-layer systems. Aguirre-Salas et

al [Sala00] used live, cyclic and conservative interpreted Petri nets (IPN) for state

estimation and for constructing asymptotic observers in discrete event systems.

Unobservability issues arise in condition systems when the state of the system

cannot be determined from the observed input and output signals. In [Holl00],

two types of structures were identified that result in a condition system not be-

ing observable. The first type of structure is called direction confusion, and this

corresponds to having sibling places which could be marked under the observed

condition inputs and outputs. The second type of structure, and the one that we

focus on in this thesis, is when two places in sequence have the same condition sig-

nals, so that it is not possible to determine the transition firing from the condition

observations. This is called progress confusion.
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Figure 3.1: Timed observer.

Our earlier research with observers did not have a time dimension to it.

Effectiveness of our observer was proved under the limitation that we don’t

have progress confusion and direction confusion in our model. In this section

we synthesize a timed observer and prove its effectiveness even under progress

confusion.

We are building a timed observer for single-layer system. A system is classified

as a single layer only if it is modeled by a single plant model, i.e a single compo-

nent. A single layered condition system satisfies the StateGraph property.

Definition 3.1 State Graph or SG property

1. STATE GRAPH ASSUMPTION: EACH TRANSITION HAS EXACTLY ONE INPUT AND

ONE OUTPUT PLACE.

2. UNIQUE MARKED PLACE: FOR EVERY MARKING FOR EACH COMPONENT, THERE

EXISTS EXACTLY ONE MARKED PLACE UNDER M.
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Figure 3.2: "Timed observer synthesis" procedure.

Procedure Timed observer synthesis(GExpθ)

1 Initially define Gobvθ such that PGobvθ
, TGobvθ

, AGobvθ

duplicates the exploded time plant structure PGExpθ
, TGExpθ

, AGExpθ

2 For p∈ PGExpθ
and t ∈ TGExpθ

3 LET pobvθ ∈ PGobvθ
, tobvθ ∈ TGobvθ

indicate corresponding

place and transition in Gobvθ

4 For each p ∈ PGExpθ

{

5 CGobvθ
(pobvθ) ⇐ ({CGExpθ

(p)} ∩ {Statelabel(p)}) ∪A(p) ∪ B(p)

6 For each t′ ∈ p(t)

{

7 LET p′ denote the output place from t′

8 If ({p} ∩NDset) ∪ ({p′} ∩NDset) = ∅
9 CGobvθ

(t′obvθ) ⇐ ({CGExpθ
(p′) − Statelabel}) ∪ (F(pt′p′) ∪ E(pt′p′) ∪H(pt′p′))

10 Else {

11 CGobvθ
(t′obvθ) ⇐ ({CGExpθ

(p′) − Statelabel}) ∪ (F(pt′p′) ∪ E(pt′p′)

∪H(pt′p′)) ∪ CGExpθ
(t′)

12 θ(t′obvθ) ⇐ θ(t′)

}

}

13 Create pinit ∈ PGobvθ

14 Let U={p ∈ PGobvθ
|p is uniquely identified without State labels}

15 For each p ∈ U

16 {

17 Create tobvθ ∈ TGobvθ
with arc from pinit and arc to p

18 CGobvθ
(tobvθ) ⇐ (CGExpθ

(p) − Statelabel) ∪M(p) ∪N(p)

}

}
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3. I/O DISTINCTION: Cin(G)
⋂

Cout(G) = φ.

Observer is a system that inputs observations from a plant and outputs an indication

of the state of a plant. In timed observers we explicitly consider timing in our plant

models. we define fast transitions Tfast as a special case of set of time transitions,

which when enabled fire without any delay. Following are the conditions (Timing

constraints) that have to be satisfied by the transitions to be considered as fast

transitions:

• Time plant:

For any t ∈ Gsysθ if θ(t)|min = 0 and θ(t)|max = 0, then t is a fast transition in

the time plant.

• Exploded time plant:

For any t ∈ GExpθ if θ(t) = [0], then t is a fast transition in exploded time

plant.

Definition 3.2 Given a time τ and a system G with marking mτ, mτ is called a

transient state at time τ if there exists a transition t in Tfast enabled under mτ and

Cτ.

Definition 3.3 [Holl01], [Holl02] A system model represented by a condition system

is state observable under observed condition set Cobsd if: For times τ0 and τ such that

τ0 ≥ τ, given any known initial marking mτ0
at time τ0, and given the observed input

and output conditions [(Cin(Gsysθ)∪Cout(Gsysθ))∩Cobsd] over period τ0 to τ, we can

uniquely determine marking mτ at time τ.

So from the definition, a system will be state observable if knowledge of its past

observable conditions is sufficient to uniquely determine its current state.

A Time plant with progress confusion is not “state observable". This state esti-

mation problem is solved by creating exploded time plant procedure in fig.2.3 and
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fig.2.5. It has also been proved from lemma 2.2 that exploded time plants maintains

the structural and temporal integrity of time plant.

A Timed observer is built for the time plant using the exploded time plant as

input. The procedure in fig.3.2 to synthesize timed observer from exploded time

plant (ExTP) is described below [Holl01], [Holl02].

1. REPLICATING THE EXPLODED TIME PLANT(Lines 1-3)

This is done by copying the structure of ExTP. Each place ‘p’ in ExTP has a

corresponding place pobvθ in the timed observer and each transition ‘t’ in

ExTP has a corresponding transition tobvθ in the timed observer. Lines 4,5

assign the state labels to places in timed observer by extracting state labels

from corresponding places in ExTP. For a place p in the exploded time plant,

define sets A(p), B(p) ⊆ AllC such that

A(p):={c|c ∈ CGExpθ
(p) \ Cobsd}

B(p):= {c|c 6∈ Cobsd and ∀t ∈( t)p,CGExpθ
(t) = c and

∃t′ ∈ p(t), CGExpθ
(t′)= c̄ }

2. CHECKING FOR PROGRESS CONFUSION(Lines 6-8)

Since the ExTP satisfies SG property, every transition t′ in the ExPT has only

one input place (p) and output place (p′). This property would also hold true

for TIMED OBSERVER, because the structure of timed observer was replicated

from ExTP. Lines 7,8 check for progress confusion by comparing the state la-

bels of the places in NDset with the state labels of the input and output places

of the transition t′.

3. ASCERTAIN CONDITIONS AND TIMING ON THE TRANSITIONS OF TIMED OB-

SERVER(Lines 9-12)

31



Line 9 assigns conditions to the transitions whose input and output places are

deterministic, i.e their state labels don’t ∈ NDset .Lines 11, 12 assign condi-

tions to the transitions whose input or output or both I/P,O/P places are non

deterministic, i.e their state labels ∈ NDset. The conditions associated with

the transition (t′obvθ) consists of the following sets.

• CGExpθ
(p′)

These are the conditions that are output by the place that is newly

marked in the ExTP. These must be true if p′ is marked, and thus must

be true for (t′obvθ)to be enabled and fire.

• Fθ(pt′p′)

Fθ(pt′p′) = F(pt′p′)-{State label}

The place p denotes the previously marked place in Exploded time plant.

Upon the firing of the transition t′ in the plant, the conditions for it that

are not in the newly marked place will become false. The set F(pt′p′)

corresponds to the negation of these conditions. Thus, if the previously

marked place in the plant is still marked, some condition in F (if F 6= 0 )

will be false, and the transition (t′obvθ) will not fire.

• Eθ(pt′p′)

Eθ(pt′p′) = E(pt′p′)-{State label}

E(pt′p′) indicates the set of conditions that should be false unless some

sibling place of p′ became marked. If a sibling place of p′ has become

marked, then some condition in E(pt′p′) will be false, and so (t′obvθ) will

not fire.

32



• Hθ(pt′p′)

In cases when the conditions between the place p′ and its sibling are

identical, then determining which transition fired must be done by

considering the enabling condition sets on the transitions leading to the

place, and those condition sets must be exclusive since the system and

the exploded time plant have no direction confusion. In such a case, H

is the enabling condition set for t′ . Thus, (t′obvθ) can fire only if t′ was

enabled and transitions leading to indistinguishable sibling places were

not disabled.

4. CREATING INITIAL TIMED OBSERVER STATES(Lines 13-18)

A place pinit is created. From pinit are created transitions leading to observer

places corresponding places in ExTP, which are uniquely identifiable without

state labels. The initial place of the observer indicates that the state of the

plant is not yet known. As soon as a uniquely labelled place in the plant

becomes marked, then the timed observer can follow the observable plant

thereafter.

Following lemma proves the effectiveness of synthesized timed observer.

Lemma 3.1 Consider a single-layer timed plant Gsysθ, its corresponding exploded

time plant GExpθ and an observed condition set Cobsd such that Gsysθ and GExpθ satisfy

SG property without direction confusion under Cobsd. Let Gobvθ be the timed observer

synthesized by the algorithm in figure 3.2. Let pinit be marked in Gobvθ at time τinit,

and let the plant first visit a uniquely labelled state at some time τ0 > τinit. Then

under Timed observer/System Speed Assumption, where the system and the observer
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are in non-transient states, any actual plant state belongs to observer state estimate

set and observer state estimate contains all and only possible states in the plant.

From the definition of uniquely labelled place we know that at initial time τ0,

the plant visits a uniquely labelled place psysθ; by construction the place pExpθ ∈
GExpθ corresponding to psysθ ∈ Gsysθ is marked. We should show that any change

of state in the exploded time plant is immediately followed by the corresponding

state change in the timed observer. In other words any subsequent transition

firing in the exploded time plant is immediately followed by the corresponding

transition firing in the timed observer. Suppose that for some time τ, mExpθ(τ
−) and

TrueCExpθ(τ
−) are known. Let p denote the marked place in GExpθ under mExpθ(τ

−).

First, assuming that there is no progress confusion in time plant, and in the

corresponding exploded time plant,suppose that no transition fires at time τ so

p is marked under mExpθ(τ). Then [TrueCExpθ(τ
−)

⋂
Cout(GExpθ)]|AllC−AllState

= [TrueCExpθ(τ)
⋂

Cout(GExpθ)]|AllC−AllState. Since there is no progress con-

fusion, then for any t′ ∈ p
(t)
Expθ and p′Expθ ∈ t′

(p), CGExpθ
(p)|AllC−AllState 6=

CGExpθ
(p′)|AllC−AllState. The transition t′obvθ will not fire unless each

c ∈ (CGExpθ
(p′) \ CGExpθ

(p))|AllC−AllState is true, since CGExpθ
(p′) ⊆ CGobvθ

(t′obvθ)

(Line 5). This will not happen while p is marked. It will also not fire unless all

c ∈ CGExpθ
(p) \ CGExpθ

(p′) are false (since Fθ(pt′p′) ⊆ CGobvθ
(t′obvθ)), which again

will not occur while p is marked. Thus, if no transition fires in GExpθ, then no

transition will fire in Gobvθ.

Next suppose the transition t′ fires in GExpθ. We want to show that transi-

tion t′obvθ in the observer is enabled and will fire. For this we must show each

c ∈ CGobvθ
(t′obvθ) is true. If the transition t′ ∈ GExpθ fires, p′ becomes marked.

hence, each c ∈ CGExpθ
(p′) is true. Now that p′ is marked and there is no

progress confusion, TrueCExpθ(τ
−)|AllC−AllState 6= TrueCExpθ(τ)|AllC−AllState. So, if
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c ∈ Fθ(pt′p′)
⋃

Eθ(pt′p′), then c is now true since c̄ 6∈ CGExpθ
(p′). If c ∈ H(pt′p′),

then c is true since it was necessarily true for t′ to fire in the plant. Thus t′obvθ is

enabled and can fire.

Now say at time τ− (τ− > τ0), the time plant becomes marked at a place

having progress confusion, then the corresponding place p in the exploded

time plant is also marked. Suppose that no transition fires at time τ (τ > τ−);

i.e., at time τ the transition t′ ∈ p(t) is (i) not condition enabled (or) (ii)

condition enabled but not time enabled. So p is marked under mExpθ(τ). If

t′ is not condition enabled then [TrueCExpθ(τ
−)

⋂
Cout(GExpθ)]|AllC−AllState =

[TrueCExpθ(τ)
⋂

Cout(GExpθ)]|AllC−AllState.

To prove that no transition will fire in Gobvθ at time τ , we have to show that

some c ∈ CGobvθ
(t′obvθ) is false or θ(t′obvθ) is not satisfied at time τ. If t′ is not

enabled then at least one c ∈ CGExpθ
(t′) is false. From line 11 in fig.3.2 we see that

CGExpθ
(t′) ∈ CGobvθ

(t′obvθ). hence, if CGExpθ
(t′) is false t′obvθ will not fire.

Now if t′ is condition enabled but not time enabled, i.e. at time τ every

c ∈ CGExpθ
(t′) is true but ξ(τ)(t′) < θ(t′), the transition t′ would not fire. From

construction the transition should be both condition and time enabled before it can

fire. From line 12 in fig.3.2θ(t′obvθ) = θ(t′) > ξ(τ)(t′). hence t′obvθ will not fire.

Thus if no transition fires in GExpθ, then no transition will fire in Gobvθ.

Next suppose t′ fires in GExpθ. We want to show that transition t′obvθ in the

observer is enable and will fire. For this we must show that each c ∈ CGobvθ
(t′obvθ)

is true and ξ(τ)(t′obvθ) = θ(t′). If the transition t′ fires then p′ ∈ GExpθ becomes

marked. Therefore each c ∈ CGExpθ
(p′) is true. Since there is progress confusion

Fθ(pt′p′) = ∅. If c ∈ Eθ(pt′p′), then c is now true since c̄ ∈ CGExpθ
(p′). If c ∈

Hθ(pt′p′) then c is true since it was necessarily true for t′ to fire and by construction
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and temporal properties of the exploded time plant ξ(τ)(t′) should be equal to θ(t′)

for the transition t′ to fire in the plant. Thus t′obvθ is enabled and can fire.

We showed that regardless of presence of progress confusion, t′obvθ is enabled

in Gobvθ, now it is to be shown that no other transition is enabled in GExpθ at

time τ. Consider another transition t′′ with input p and p′′ as its output. Since

the time plant model is built under “ Time Plant Model Limitations" there is no

direction confusion. So, either CGExpθ
(p′)|Allc−AllState 6= CGExpθ

(p′′)|Allc−AllState or

There exists c ∈ CGExpθ
(t′′) which is exclusive to CGExpθ

(t′)

1. CGExpθ
(p′)|Allc−AllState 6= CGExpθ

(p′′)|Allc−AllState implies either

(a) [CGExpθ
(p′′)\CGExpθ

(p′)]|AllC−AllState 6= φ

or

(b) [CGExpθ
(p′)\CGExpθ

(p′′)]|AllC−AllState 6= φ

or

(c) both

if (a), it means that there exists c such that c ∈ CGExpθ
(p′), that implies t′′obvθ cannot

be enabled since CGExpθ
(p′′)|AllC−AllState ⊆∈ CGobvθ

(t′′obvθ) and condition c is false.

If (b) is true then c ∈ Eθ(pt′′p′′) ⊆ CGobvθ
(t′′obvθ). in any of the cases t′′obvθ is not

enabled.

If CGExpθ
(p′)|Allc−AllState = CGExpθ

(p′′)|Allc−AllState then there exists c ∈
Hθ(pt′′p′′) that is exclusive to c ∈ Hθ(pt′p′) hence there is some c ∈ CGobvθ

(t′′)

which is exclusive to CGobvθ
(t′) and so transition t′′obvθ is not enabled. Thus, we

have shown that in absence of progress confusion and direction confusion, the only

transition enabled in Gobvθ corresponds to exploded time plant transition that fired,

which corresponds to plant transition that fired. Thus, we have shown that the only
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transition enabled in Gobvθ corresponds to the plant transition fired. Under the as-

sumption that enabled transitions in observer fire immediately, then for any place

p in GExpθ which is marked, the place pobvθ is also marked, and so by line 5 of the

observer synthesis procedure, condition label State(p) ∈ CGobvθ
(pobvθ), and thus

will have a value true. Since Gobvθ satisfies state graph property, pobvθ will be the

only place marked, and so State(p′) for all other p′ 6= p will be false.

Theorem 3.1 Given any time-condition system plant Gsysθ satisfying the “Time

Plant Model Limitations"; and the corresponding exploded time plant GExpθ cre-

ated from procedures in fig. 2.3, 2.5, then GExpθ is state observable:

PROOF: To show observability, it is sufficient to show that each transition fir-

ing can be known with certainty. Note that the marking and clock vector is known

with certainty at time τθ. Consider some transition t in exploded time plant GExpθ

, if transition t has a non-deterministic time interval (i.e. θ(t)|min 6= θ(t)|max),

then it must not correspond to a progress confusion transition in time plant, t 6∈
ProgConfTranSet(Gsysθ), so firing of t can be determined from observing a change

in condition outputs of GExpθ. If we have a transition t with deterministic time

interval (i.e. θ|min(t) = θ|max(t)), then as long as we know by the timing when

the transition became enabled (BY PLACES BECOMING MARKED VIA PREVIOUS TRAN-

SITION FIRINGS), then we know by the timing when t fires.

Next, we must show there will be no direction confusion in the exploded time plant.

From “Time Plant Model Limitations" it is clear that the original time plant Gsysθ

has no direction confusion. Structure of the time plant with NO PROGRESS CONFU-

SION is absolutely identical to the corresponding exploded time plant structure. and

since, direction confusion is a structural property; if there is no direction confusion

in time plant, there is no direction confusion in exploded time plant. Now it only

remains to show that the exploded time plant (GExpθ) does not have any direction

confusion if the corresponding time plant HAS PROGRESS CONFUSION. For every
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pi, pj in time plant Gsysθ , there exists corresponding places pxi, pxj in exploded

time plant GExpθ. Say some pi and pj in the time plant have progress confusion.

The structural change in the corresponding exploded time plant by introduction of

progress confusion in time plant would be the creation of non-deterministic (macro)

place pxi,j in Gexpθ. This place pxi,j has all the outputs of pxi, pxj as its output;

pxi,j is the parent place of all the outputs of pxi, pxj; From the rule 4 of “Time

Plant Model Limitations", we can say that for all p′xi ∈ (p
(t)
xi )(p) and p′xj ∈ (p

(t)
xj )(p),

CGExpθ
(p′xi) 6= CGExpθ

(p′xj). This makes all the output places of pxi,j distinguishable,

hence there is no direction confusion in GExpθ. Hence GExpθ is state observable.
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Chapter 4

Controller Synthesis

4.1 Generated State Label Plant

Figure 4.1: Generated State label plant procedure

Procedure Generated State label plant(GExpθ)

1 Initially define GGspθ such that PGGspθ
, TGGspθ

, AGGspθ

2 duplicate the exploded time plant structure PGExpθ
, TGExpθ

, AGExpθ

3 For p∈ PGGspθ
and t ∈ TGGspθ

4 LET pGspθ ∈ PGGspθ
, tGspθ ∈ TGGspθ

indicate corresponding

place and transition in GGspθ

5 For each p ∈ PGExpθ

6 CGGspθ
(pGspθ) ⇐ (CGExpθ

(p) ∩ Statelabel(p))

7 For each t ∈ TGExpθ

{

8 CGGspθ
(tGspθ) ⇐ CGExpθ

(p)

9 θ(tGspθ) ⇐ θ(t)

}

In our previous research, discrete event controllers have been developed for con-

dition systems [Holl00]. The controller developed by Holloway et al. [Holl00] is a
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set of interacting taskblocks,each of which is automatically synthesized from a cor-

responding component model satisfying state structure assumption. The controller

developed in this chapter uses the same principle and construct as discussed in

[Holl00]. The key difference is that the taskblocks in this controller are synthesized

from a generalized state label plant, an intermediate component model that repre-

sents the original model and also satisfies observability criteria of System Structure

Assumption, discussed later

Note: Original model doesn’t satisfy System Structure Assumption (SSA).

In the Generated state label plant, all the conditions on places other than state

label conditions are erased. Hence, the condition set on each of the places in this

plant is now unique, making it state observable. The algorithm in fig.4.1 converts

the Exploded time plant into Generated state label plant.

• Lines 1-4 in the algorithm reproduce the Exploded time plant structure. For

every place ‘p’ and transition ‘t’ in the Exploded time plant, there will be a

corresponding place pGspθ and transition tGspθ in Generated state label plant.

• Lines 5-6 extract only the state label conditions from the places in Exploded

time plant and assign them to corresponding places in Generated state label

plant. Lines 8-9 assign the conditions and timing information on the transi-

tions from the Exploded time plant to their corresponding transitions in Gen-

erated state label plant.

One of the main goals of the thesis is to synthesize controller for the time plant.

This is done by creating an intermediate model, which we call Generated State Label

Plant and by using timed observer that is synthesized from exploded time plant.

It is then shown that controller generated from generated state label Plant will be

effective when applied for the composition of time plant with a timed observer.
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In chapter 2 it was shown that the exploded time plant models and actual time

plant models share the same behavioral and temporal properties, “ Lemma.2.2". In

chapter 3 It was shown that timed observer built from exploded time plant can also

act as an observer for the time plant from lemma 3.1. In this chapter we show

that generated state label plant shares the same behavioral and temporal proper-

ties with exploded time plant, therefore the timed observer built from the exploded

time plant also acts as an observer for the generated state label plant.

From Holloway et al., 2000, The input/output behavior of the system can be de-

scribed by sequences of condition sets. A condition set sequence, called a C-

sequence, is a finite length sequence of condition sets. Each condition set sequence

is of the form (C1, C2, C3, ...Cn) for some integer n and sets Ci ⊆ AllC for all

0 ≤ i ≤ n. Here, In generated state label plant has all the places have unique state

labels as condition set on them. Given C-sequences s1, s2; let expression s1s2 indi-

cate concatenation of s2 on the end on s1. A set of C-sequences is called language,

and the language consisting of all C-sequences is denoted L.

Definition 4.1 Holloway et al., 2000 Define the descriptive ordering ≤ over condition

sequences such that

1. (C1, C
′
1) ≤ (C2) if C1 ⊆ C2 and C′

1 ⊆ C2.

2. (C1) ≤ (C2C
′
2) if C1 ⊆ C2 and C1 ⊆ C′

2.

3. Given C-sequences s1, s
′
1, s2, s

′
2 such that s1 ≤ s′1 and s2 ≤ s′2, then s1s2 ≤ s′1s

′
2

4. If s1 ≤ s2 and s2 ≤ s3, then s1 ≤ s3

In brief given s1, s2 as specification of conditions which are known to be true se-

quentially overtime, s1 ≤ s2 means that s2 contains at least as much specification of

condition values as s1, i.e. s2 is at least as descriptive as s1.

Theorem 4.1 Consider a single layer timed plant Gsysθ, its corresponding exploded
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time plant GExpθ such that Gsysθ and GExpθ satisfy S.G property and Time Plant

Model Limitations. Let GGspθ be the generated state label plant synthesized by algo-

rithm in fig. 4.1, then

For any timed condition sequence TrueC(·) in the time condition model

TrueC(·)|(Cin(GGspθ)∪AllState) ∈ L(GGspθ, (m0, ξ0))|Cin(GGspθ)∪AllState iff

TrueC(·)|(Cin(GExpθ)∪AllState) ∈ L(GExpθ, (m0, ξ0))|Cin(GExpθ)∪AllState

proof: From construction in algorithm 4.1, for any place pxi ∈ PExpθ, there exists

pgsi ∈ PGspθ such that CGExpθ
(pxi)|AllState = CGGspθ

(pgsi)|AllState, and for each

t ∈ p
(t)
xi there exists a unique t′ ∈ p

(t)
gsi such that CGExpθ

(t) = CGGspθ
(t′).

Now say at time τ0, pxi is marked; i.e., m(τ0)(pxi) 6= 0. From the generated

state label plant procedure in fig.4.1 line 6 we see that CGExpθ
(pxi) ⊆ CGGspθ

(pgsi).

Hence, if pxi ∈ GExpθ is marked so is pgsi ∈ GGspθ. We know that for any t ∈ P
(t)
xi

there is a unique t′ ∈ p
(t)
gsi, both having identical conditions for state and condition

enabling. So, if t fires in GExpθ at time τ, corresponding pgsi would also fire in GGspθ

at the same time instant. Therefore

TrueCGspθ(τ) = TrueCExpθ(τ)

ξGspθ(τ)(t′) = ξExpθ(τ)(t)

Hence for each c-sequence in exploded time plant there is a corresponding c-

sequence in generated state label plant. Similarly from construction, for every c-

sequence in generated state label plant there exists a corresponding c-sequence in

exploded time plant.

4.1.1 TaskBlocks

The plants that we consider to be controlled are modeled by collections of condi-

tion models components of the plant. Let this set of condition models representing
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Figure 4.2: Generated State Label Plant.

components be denoted as Gcompo. The controllers that we consider are also rep-

resented as collections of condition models. The set of these controller models,

representing elements of control logic, are called taskblocks, are denoted as the set

Gtasks. A system G then can consist of a collection of both component models and

taskblocks operating together.

Each taskblock has a specific control function. A taskblock becomes activated

to begin its control function upon its activation condition, which uniquely identifies

the taskblock. Let Cdo ⊂ AllC be the set of activation conditions associated with

taskblocks. For each element do ∈ Cdo we associate the following:

• TB(do) ∈ Gtasks is the unique taskblock (condition system model) for which

do ∈ Cin(TB(do)). No other taskblocks or components have do as an input.

• compl(do) ∈ Cout(TB(do)) is a condition output from the taskblock, indicat-

ing task completion.

• idle(do) ∈ Cout(TB(do)) is a condition output from the taskblock and indi-

cates that the taskblock is not activated. There exists exactly on place p in

TB(do) for which idle(do) is an output, and furthermore, it is the only output
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of that place, CTB(do)(p) = {idle(do)}. In all subsequent discussion, we will

assume each task block only has this place marked under any initial marking

considered.

• Gcompo(do) ∈ Gcompo is a component model associated with the task do. The

same component model may be associated with many different tasks. When

the activation condition has a subscript indicating its goal (such as dox for

goal(dox)) = x), and a unique component outputs that condition, then we

use the subscript to indicate the component net which outputs the target.

Thus, Gcompo(dox) = Gx is the net which outputs condition x.

• goal(do) ∈ Cout(Gcompo)(dox) = Gx is the net which outputs condition x.

• Cinit(do) ⊆ Cin(TB(do)) ∩ Cout(Gcompo(do)) is a set of initiation conditions

for the taskblock that are output from the component Gcompo(do).

We interpret a taskblock as follows: The output condition idle(do) indicates

that the taskblock is not currently outputting any other conditions. A taskblock

TB(do) becomes active (and thus idle(do) becomes false) upon the conditions

{do} ∪ Cinit(do) becoming all true. As long as do remains true, the taskblock and

system components will interact until eventually the condition goal(do) is output

from the taskblock, indicating completion of the task. Whenever do becomes false,

the taskblock returns to the idle state. The following definition of effective formally

describes the behavior of a taskblock when it interacting with a system in its in-

tended manner.

Definition 4.2 (Modified from (Holloway et al., 2000)) Given a system G ⊆ Gtasks ∪
Gcompo with initial state m(τ0) and a condition do ∈ Cin(G) ∩ Cdo such that

idle(do) ∈ TrueC(τ0), do is effective for G under m(τ0) if each of the following

statements are true:

1. Continued activation implies eventual completion: For all s ∈ L(Ggspθ),m(τ0), if
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(φ({do}∪Cinit(do))) ≤ s, then for any Cext and Cext∩(Cout)(GGspθ)∪{¬do} =

φ, there exists s′ such that ss′ ∈ L(GGspθ,m(τ0)), (Cext) ≤ s′, and

({do}{do, compl(do)}) ≤ s′

2. Completion implies earlier activation: For all s ∈ L(GGspθ,m(τ0)), if

(φ{compl(do)}) ≤ s, then

(φ({do} ∪ Cinit(do))φ) ≤ s

3. Completion implies achieved goal: For any condition set string s and any con-

dition set C such that sC ∈ L(GGspθ,m(τ0)), if {compl(do)} ⊂ C, then

{compl(do), goal(do)} ⊆ C

4. Leaving completion implies earlier deactivation: For all s ∈ L(GGspθ,m(τ0)), if

(φ{compl(do)}{¬compl(do)}) ≤ s then

(φ{¬do}φ) ≤ s

5. Deactivation implies eventual return to idle: For all s ∈ L(GGspθ,m(τ0)), if

(φ{¬do}) ≤ s, for any Cext such that ¬do ∈ Cext and Cext ∩ (Cout(GGspθ) ∪
{do}) = φ, there exists s′ such that ss′ ∈ L(GGspθ,m(τ0)), (Cext) ≤ s′, and

({¬do}{¬do, idle(do)}) ≤ s′

The first statement states that after do and Cinit(do) conditions are true,if do re-

mains true, then there will eventually follow a completion condition compl(do)

from the taskblock, and completion is reached entirely through the interaction of

taskblocks and components in GGspθ and not any other external condition.

Now, we consider methods of synthesizing taskblocks. For each component

model and each output condition of the components, we consider two types of
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Figure 4.3: Controller.

taskblocks. The first type is called a maintain-type, and its purpose is to keep a

condition of the system true, given that it was already true when the taskblock was

activated. The second type is called an action-type. Its type is to drive the system to

a given condition from any initial state. Below, we present definitions of maintain-

type and action type taskblocks, we then present an algorithm for synthesizing

action-type blocks, and later we present conditions under which they are effective.

For a given condition x, we distinguish between the action-type and maintain-type

taskblocks through the activation signals: doA
x is the activation condition for the

action-type taskblock TB(doA
x ) with goal(doA

x ) = x, and doM
x is the activation con-

dition for the maintain-type taskblock TB(doM
x ) with goal((doM

x )) = x.

A maintain-type taskblock will keep a given system condition true, as long as

the condition was true initially when the taskblock was activated. This is formally

stated as follows:

Definition 4.3 (Holloway et al., 2000) Given a target condition x from the system,
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a taskblock with activation signal doM
x is a maintain-type taskblock for x if:

1. Cinit(doM
x ) = {x}

2. goal(doM
x ) = x

Action-type taskblocks are intended to drive a component to an intended goal from

any initial state. This is formally stated as follows:

Definition 4.4 (Holloway et al., 2000) Given a target condition x from the compo-

nent, a taskblock with activation signal doA
x is an action-type taskblock for x if

1. Cinit(doA
x ) = {φ}

2. goal(doA
x ) = x

We note in advance that for a given desired system condition, there may be many

maintain-type and action-type taskblocks. Finding an "optimal" such taskblock is

a subject of future research, but is not addressed in this thesis. we assume that

the taskblocks might not interact directly with the system components. Instead,

there may be intermediate taskblocks or components. Thus, the taskblocks that we

synthesize will only output activation conditions. These are either inputs to other

taskblocks or to a direct translator that then interacts with the system component.

To translate a set of conditions C into activation conditions(either for input to

other taskblocks or to a direct translator), we introduce the function

Act(C) = {doA
c |c ∈ C}

Thus, Act(C) gives the activation signals for the action-type taskblocks for each

condition in C.

Throughout the chapter, we assume the systems consist of components that sat-

isfy the following assumption.
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System Structure Assumption (SSA):Consider a system component GGspθ with

set of states MGspθ. The system satisfies the System Structure Assumption (SSA)

for MGspθ if the following are true:

1. Structure: For all transitions t in GGspθ, there exists exactly one input place

and one output place for t. For every place, there exists a path to every other

place.

2. States: MGspθ consists of all states with single place marked.

3. Observability: Each place of GGspθ is uniquely identified by its conditions,

so for each place p, there exists some C ⊆ CGspθ(p) such that for all m ∈
MGspθ, (m(p) = 1) ⇔ (C ⊆ TrueC(·)).

4. Transition selectability For any place p in GGspθ, for all transitions t, t′ out

from p, where t 6= t′, CGspθ(t) * CGspθ(t
′). Also, for all transitions t in GGspθ,

condition input set CGspθ(t) is contradiction free and nonempty.

5. All output conditions have truth established by marking: For any condition

output c ∈ Cout(GGspθ), for all markings m ∈ MGspθ, either c ∈ TrueC

or¬c ∈ TrueC, but not both.

ACTION-TYPE TASKBLOCK SYNTHESIS

In figure 4.6, we show an algorithm to make an action-type taskblock for a given

component model and target condition. The algorithm consists of three proce-

dures. CREATE ABθ(Ctarg) is the top level function. It begins by creating three

places: pidle is the place marked when the taskblock is idle, pinit is a place vis-

ited momentarily following taskblock activation, and pcmpl is the place that will be

marked when the task is completed and the component is outputting goal condi-

tion ctarg . Note that pcmpl outputs the activation condition doM
ctarg

, thus activating

the maintain taskblock associated with ctarg and thus keeping ctarg as long as the
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Figure 4.4: "Timed Controller Synthesis" procedure

Procedure CREATE ABθ(Ctarg)

1 PTB = ∅ TTB = ∅ ATB = ∅
2 Create place pidle in PTB with CTB(pidle) ⇐ {idle(doA

Ctarg
)}

3 Create place pinit in PTB with CTB(pinit) ⇐ ∅
4 Create place pcmpl in PTB with CTB(Pcmpl) ⇐ {cmpl(doA

Ctarg
), doM

Ctarg
}

5 Create transition tinit in TTB from pidle to pinit with CTB(tinit) ⇐ {doA
Ctarg

}

6 Define Ptarg ⇐ {pGGspθ
in GGspθ|Ctarg ∈ CGGspθ

(pGspθ)}

7 For each pGspθ ∈ Ptarg

8 BUILDP(pGGspθ
, pcmpl, Ptarg)

9 For each p ∈ PTB − {pidle, pinit}

10 Create transition t ∈ TTB from p to pidle , CTB ⇐ {¬doA
Ctarg

}
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action-type taskblock is activated. The procedure builds the remaining net by recur-

sively walking back in the component net from places that output ctarg . The first of

these recursive functions is BuildP(pGGspθ
, pprev, Previsit), where pGGspθ

is the place

in the component being considered, pprev is the previously considered node in the

taskblock on which we are building, and Previsit is a set of places in the component

model that are not to be explored along this path, either because they satisfy the

target condition or because they have already been visited in the algorithm. This

procedure creates new transitions into pprev in the taskblock that are conditioned on

the output of psys. Thus, pprev can only become marked when psys is marked. One of

the new transitions comes directly from pinit, thus directing the taskblock marking

to this place pprev immediately after activation when psys is marked. The remaining

new transitions each correspond to place preceding psys in the system net. This is

very similar to action block generated for untimed plant with no progress confu-

sion. however, there is one notable difference. The preceding psys places in the

action block are decided on the basis of, if psys is a "Non-Deterministic" place or a

"Deterministic" place. Deterministic place is given preference over nondeterminis-

tic place when "psys" is selected from system net. If there is no deterministic place

to choose, the non-deterministic place in the system becomes psys and will have a

corresponding transition in the taskblock. Lines 2,3,4 in procedure 4.6 determines

this prioritization. The function BUILDT() is then called with each of these tran-

sitions. psys BUILDT(tGspθ, tprev, Previsit) is a second procedure, called recursively

with BUILDP(). tsys is a transition in the system that leads along a path (included

among the places in Previsit) toward the target condition. psys is the place that

inputs to tsys. The procedure creates a place pprev in the taskblock that outputs

conditions that enable tsys but disable other transitions leading from the place psys.

Thus, when psys is marked in the system and pprev is marked in the taskblock, the

output of pprev will only enable the firing of tsys, thus allowing movement of system

towards target. The recursion then continues, with a call to BUILDP() to build back
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Figure 4.5: Action-type Taskblock BUILDP() function.

Procedure BUILDP (pGspθ, pprev, Previsit)

1 Create transition t in TTB from Pinit to Pprev with CTB(t) ⇐ CGspθ(PGspθ)

2 Define Tinputset ⇐ {tGspθ | tGspθ ∈(t) pGspθ}

3 Define Pinputset ⇐ { All pGspθ input to each tGspθ ∈ Tinputset}

4 If (Pinputset ∩NDset 6= Pinputset) or (Pinputset ∩NDset 6= ∅}
{ Tinputset = {Tinputset − t |(p) t ∈ NDset} }

5 For each tGspθ ∈ Tinputset and CGspθ(
(p)tGspθ) 6= Ctarg

{

6 If the place input to tGspθ is not in Previsit

7 { Create transition t in TTB into pprev with CTB(t) ⇐ CGspθ(pGspθ)

8 BUILDT(tGspθ, t, Previsit) }

}
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further from psys and pprev.

The recursions finally end when each path cannot be extended further back

without revisiting a place already considered. When all recursions are done. CRE-

ATEAB()then creates a transition from each of the places (except pinit, and pidle)

that will then move the marking to pidle when doA
Ctarg

becomes false and taskblock

is deactivated.

Figure 4.6: Action-type Taskblock BUILDT() function.

Procedure BUILDT(tGspθ, tprev, Previsit)

1 Define C′ ⇐ CGspθ(tGspθ) ∪ {¬c|c ∈ CGspθ(t
′
Gspθ) − CGspθ(tGspθ)

for any t′Gspθ sharing an I/P place with tGspθ }

2 Create place p with CTB(p) ⇐ Act(C′)

3 connect p into tprev

4 For pGspθ input to tGspθ

{

5 Previsit ⇐ Previsit ∪ {pGspθ}

6 BUILDP(pGGspθ
, p, Previsit)

}
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Chapter 5

Example

5.1 Time condition system - example model

P1 P3

P5

p4P2

tp1
tp3

tp4

tp2

tp5

P6

Px3 Px4

Px5

Px6Px2,3Px2Px1

txp1 txp2,2

txp4,2

txp5

txp4,1

txp2,1 txp3,2

[3] [2]

txp3,1

{A} {C}{B}{B} {D}

{B1}

{x1} {x3}{x2}

{x4}
{x5}

{A,State p1} {B, State p2} {B,State p2
,State p3 }

{x1} {B,State p3} {C, State p4}

{B1, State p5}

{D, State p6}

{x5}

{x4}

{x4}

{x3}
{x3}

{x2} {x2}

Time Plant

Exploded Time Plant

[3,5]

Figure 5.1: Example of Time Plant and Corresponding Exploded Time Plant.

An example is then used to illustrate the working of all the algorithms and pro-

cedures discussed in previous chapters. Figure 5.1 shows an example of a time plant

with progress confusion, and its corresponding exploded time plant. The time plant

in the above example figure has six places and five transitions, with each place

indicating the state of the system. Places p2 and p3 have progress confusion, i.e,
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both these states have same observable output conditions CGsysθ
(p2) = CGsysθ

(p3)

={B}. The "exploded time plant" in the above figure is generated using procedures

in fig.2.3,2.5 in chapter 2. Lines 3, 4 of the procedure in fig.2.3 gives us the rela-

tion between the conditions on the places in Time plant and Exploded time plant.

For i = 1,2,....6 let pi indicate the place in the time plant that has corresponding

place(s)in exploded time plant. Following are the conditions on the places in the

exploded time plant.

P1 P3

P5

p4P2

tp1

tp3

tp4

tp2

[3,5]

tp5

P6

Px3 Px4

Px5

Px6Px2,3Px2Px1

txp1

txp2,2

txp4,2

txp5

txp4,1

txp2,1

txp3,1

txp3,2[3]

[2]

Figure 5.2: Place(s) Mapping.

CGExpθ
(px1) = {A,State p1}; CGExpθ

(px2) = {B,State p2}, CGExpθ
(px3) = {B,State

p3} and so on till

CGExpθ
(px6) = {D,State p6}

Figure 5.2 shows the correspondence mapping between the places in time plant

and the exploded time plant. The mapping arrows (dual head solid and dotted

arrows)connecting places in the time plant to those in exploded time plant show

the pre-mapping and post-mapping relationship between the plants. For instance

↔(p1)=px1, (p1)
↔ = px1
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P1 P3

P5

p4P2

tp1 tp3

tp4
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[2,4]
tp5

P6

Px3 Px4

Px5

Px6Px2,3Px2Px1

txp1

txp2,2

txp4,2

txp5

txp4,1

txp2,1

txp3,1 txp3,2[3]

[2]

Figure 5.3: Transition(s) Mapping.

↔(p2)=px2,(p2)
↔=px2,3

↔(p3)=px2,3, (p3)
↔=px3

Similarly, For i = 1,...,5 let tpi indicate the transition in the time plant that have

corresponding transition(s) in exploded time plant. Figure 5.1 shows the conditions

assigned to transitions in time plant and the corresponding exploded time plant.

CGExpθ
(txp1) = CGsysθ

(tp1) =X1, CGExpθ
(txp3) = CGsysθ

(tp3) =X3 and so on till

CGExpθ
(txp5) = CGsysθ

(tp5) =X5

Figure 5.3 shows the correspondence mapping between the transitions in the time

plant and the exploded time plant. The mapping arrows show the pre-mapping

and post-mapping relationships between the plants. For instance

↔(tp1)=txp1, (tp1)
↔= txp1

↔(tp2)=txp2,1,(tp2)
↔=txp2,2

↔(tp3)=txp3,1, (tp3)
↔=txp3,2
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Transition tp2 in the “Time plant" that belongs to “ProgConfTranSet(Gsysθ)" is re-

placed by txp2,1px2,3txp2,2 in the “Exploded time plant". px2,3 is the non-deterministic

place that is created in the exploded time plant to solve the progress confusion prob-

lem in time plant. CGExpθ
(px2,3) = {B,State p2, State p3}

Following conditions are true for txp2,1, txp2,2 in Exploded time plant

1. CGExpθ
(txp2,1) =CGExpθ

(txp2−2) = CGsysθ
(tp2) = X2 (Line 5,7 fig.2.5)

2. θ(txp2,1) = [3] (Line 6 fig.2.5)

3. θ(txp2−2) = [2] (Line 8 fig.2.5)

To maintain structural and temporal integrity of the system, all the child place(s) of

px2 and px3 are also made child place(s) of px2,3 in the exploded time plant (fig.5.1);

{p
(p)
x2 }∪ {p

(p)
x3 } = {p

(p)
x2,3} = {px3,px4,px5} by creating duplicate output transitions from

px2,3.

Po3 Po4

Po5

Po6Po2,,3Po2Po1

to1

top2,2

top4,2

top5

top4,1

top2,1

top3,2

[3] [2]

top3,1

{A}

{B,¬A}

{State p 1} {State p 2}

{State p 2
,State p 3 }

{State p 3} {State p 4}

{State p 5}

{State p 6}

{¬C,D}

{¬B,B 1}

{B,x 2}

to3
to5

to4

{C}

{D}

{B1}

Pinit

top1

{B,x 2}

{¬B,¬C,B 1}

{¬B,¬B 1,C}

{¬B,¬B 1,C}

Figure 5.4: Example-Timed Observer .

Using the exploded time plant as input a timed observer is created for this plant.

The algorithm in figure 3.2 is used to create the timed observer. This observer

identifies the state of the exploded time plant at any instant of time and passes
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the information to the controller. Figure 5.4 illustrates the timed observer for the

time plant in fig.5.1. In the first part of algorithm, a net structure, similar to the

exploded time plant is copied. All the places in the observer are given state labels,

{State(Pi)} extracted from corresponding places in exploded time plant. Now, the

condition set for each of the transitions in the observer is determined (Lines 9-12 in

procedure3.2).

Let’s consider transitions top1, top2,1, top2,2

CGobvθ(top1)=({CGExpθ
(px2) − StateLabel}) ∪ Fθ(px1txp1px2) ∪Eθ(px1txp1px2)∪

Hθ(px1txp1px2)

= {B} ∪ {¬A} ∪ {φ} ∪ {φ}

= {B, ¬A}

CGobvθ(top2,1) = ({CGExpθ
(px2,3) − StateLabel}) ∪ Fθ(px2txp2,1px2,3)∪

Eθ(px2txp2,1px2,3) ∪Hθ(px2txp2,1px2,3) ∪ CGExpθ
(txp2,1)

= {B} ∪ {φ} ∪ {φ} ∪ {φ} ∪ {x2}

= {B, x2}

θ(top2,1) = θ(txp2,1)

=[3]

Other transitions’ conditions will be created by the algorithm in a similar manner.

At the end, the algorithm creates an initial state and connects it to places corre-

sponding to uniquely labeled plant states (refer fig.5.4)

In our next step towards generating controller for the time plant, we create

an intermediate model that will be used to build the controller. This intermediate

model is called "Generated State label plant". Figure 5.5 is the Generated State

label plant for the time plant in fig.5.1. It is the replica of exploded time plant but

with state labels as the only conditions on it’s places. Generated state label plant

satisfies all the system structure assumptions (SSA) for generating a controller from

57



it (discussed in chapter 4). Following are the condition outputs of the generated

state label plant.

CGGspθ
(pgs1) = {State p1}

Pgs3 Pgs4

Pgs5

Pgs6Pgs2,3Pgs2Pgs1

tgsp1

tgsp2,2

txp4,2

tgsp5

tgsp4,1

tgsp2,1

tgsp3,2[3]

[2]

tgsp3,1

{State p2}

{State p2
,State p3 }

{x1}

{State p3} {State p4}

{State p5}

{State p6}

{x5}
{x4}

{x4}

{x3}

{x3}

{x2}
{State p1}

Figure 5.5: Generated State Label Plant Example.

CGGspθ
(pgs2) = {State p2}

CGGspθ
(pgs2,3) = {State p2,State p3}

CGGspθ
(pgs3) = {State p3} and so on till CGGspθ

(pgs6) = {State p6}.

Now say, if px1 is marked in the exploded time plant, conditions {A, Statep1} are

true in GExpθ. From our algorithm of generated state label plant, the corresponding

place pgs1 in Ggspθ becomes marked and condition {Statep1} becomes true. Say

after sometime if px2 is marked in GExpθ, conditions {B, Statep2} become true, the

corresponding place pgs2 in Ggspθ becomes marked and condition Statep2 becomes

true. This holds true for all the places in GExpθ and Ggspθ. There is a similar corre-

spondence relationship between transitions of Exploded time plant and Generated

state label plant. Say, if tx1 is enabled so is tgs1 and so on.

Finally a controller is synthesized from the generated state label plant, the con-

troller interacts with the timed observer and generated state label plant to drive

the plant to its target state. Figure 5.6 is the controller that drives the plant from

its initial state to its target state, p6. This is done by backtracking path from the
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Figure 5.6: Example Controller.

target state to the initial state, pgs1, and then driving the plant from current state

to desired target state. This is done in a systematic manner. First the parent place

of pgs6 is determined (i.e. pgs4) and all the transitions that are output form pgs4 are

disabled, except for one that leads to target place pgs6. The conditions on the transi-

tion leading to pgs6 are made true. In this example pgs6 has no sibling place and has

condition x5 on its input transition, hence the condition doA
x5

would become true

after the parent place pgs4 gets marked. So, to reach the target state pgs6, we should

first reach pgs4. Now our intermediate target is to reach pgs4. Again the same prin-

ciple of disabling sibling transition from the parent place of target state is followed;

in addition to that, the controller first looks at all the possible transitions that lead

directly to place pgs4. It then sees if the parent place(s) are deterministic place or a

non-deterministic place, and chooses deterministic over non-deterministic.

Note 1: If there is more than one deterministic parent place, a random selection of a

single place is done at first. The other places are explored in the later stages of con-
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struction.

Note 2: If there is only a non-deterministic parent place to choose, then this place

becomes the parent place.

pgs4 has pgs3 (deterministic place) and pgs2,3 (Non-deterministic place) as its

parent places. Following the algorithm pgs3 is chosen as the parent place and all

the transitions that are input to sibling place(s) of pgs4 are disabled by negating

condition(s) exclusive to those transitions. hence the condition doA
x3

would become

true and the condition doA
x3

would become false after the parent place pgs3 gets

marked. This back tracking continues till all the connected places are covered not

more than once by the controller. Once the controller net is formed, the plant can

be guided to any state from any state as long as there is an actual legal path in the

plant. The timed observer assists the controller in guiding the plant by giving the

current state information of the plant.

Therefore the controller, timed observer and the Generated state label plant

work in a closed loop, guiding the plant to its target state.
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Chapter 6

Conclusion and Future Research

6.1 Conclusion

This thesis presented the concept of timed condition systems, a new class of condi-

tion system that adds the notion of time to the condition system models (introduced

by holloway et al., 2000 [Holl00]). Time condition systems relaxes the "no progress

confusion" limitation that is present in all the previous research ([Holl01]).

An algorithm to develop a deterministic time plant (Exploded time plant) from a

non-deterministic time plant has been discussed in chapter 2. We then synthesize a

timed observer in chapter 3. The observer determines the current state of the plant

by observing its condition outputs and state labels and gives this information to the

controller. The controller synthesized in chapter 4, uses this information to drive

the plant from its current state to the target state.

6.2 Future Research

There are many areas of potential future research in the time condition systems.

The current thesis only deals with single layered condition systems. One of the

areas of future research can be extending the time condition systems to multi-layer

models. Time condition systems also have a potential of being used in the area of

fault detection and monitoring. The timing information on transitions can be used
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as guards to detect faults occurred during unintended state changes. Other area of

potential research can be exploring the usage of time in solving direction confusion

problem.
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