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ABSTRACT OF THESIS 
 
 
 
 

VALIDATION OF DETACHED EDDY SIMULATION USING LESTOOL  
FOR HOMOGENEOUS TURBULENCE 

 
       
           Detached Eddy Simulation (DES) is a hybrid turbulence model, a modification to 
the one-equation model proposed by Spalart and Allmaras (1997) [26]. It combines the 
advantages of both the RANS and LES models to predict any fluid flow. Presently, the 
focus is on using Homogeneous Turbulence to test the DES model. In an attempt to 
scrutinize this model, many cases are considered involving the variance of DES grid 
spacing parameter, CDES, the grid density, Reynolds number and cases with different 
initial conditions. Choosing Homogeneous Turbulence for our study alienates 
complications related to the geometry, boundary conditions and other flow characteristics 
helping us in studying the behavior of the model thoroughly. Also, the interdependencies 
of the model grid spacing parameter, grid density and the numerical scheme used are also 
investigated. Many previous implementations of the DES model have taken the value of 
CDES=0.65. Through this work, many issues including the sensitivity of CDES will be 
made clear. The code used in running the test cases is called LESTool, developed at 
University of Kentucky, Lexington. The two main test cases considered are based on the 
benchmark experimental study by Comte Bellot and Corrsin (1971) [12] and the Direct 
Numerical Scheme (DNS) simulation by Blaisdell et al. (1991) [10]. 
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CHAPTER 1 

Introduction 
1.1.  Introduction to Turbulence 

Turbulent flow is a highly complex phenomenon. Although researchers have studied 

the phenomenon for many years, it is not yet possible to characterize turbulence from a 

purely theoretical standpoint. Many important characteristics of turbulence are well-

known, however, including the following:  

• Turbulence is time-dependent, three-dimensional, and highly non-linear.  

• Fully-developed turbulent motion is characterized by entangled eddies of various 

sizes. The largest eddies arise from hydrodynamic instabilities in the mean flow 

field, e.g., shearing between a flowing stream and a solid boundary or unstable 

stratification produced by heating the fluid from below.  

• The largest eddies break down into smaller eddies which, in turn, break down into 

even smaller eddies. This process of eddy break-down transfers kinetic energy 

from the mean flow to progressively smaller scales of motion. At the smallest 

scales of turbulent motion, the kinetic energy is converted to heat by means of 

viscous dissipation.  

• The dynamic and geometrical properties of the largest eddies are closely related to 

the corresponding properties of the mean flow field. For example, large, unstable 

vortices that form on the perimeter of a turbulent jet tend to possess well-defined 

toroidal structures.  

• The time and length scales of the smallest turbulent eddies are many orders of 

magnitude greater than the time scales and free paths of molecular motion. As a 

result, the processes of viscous dissipation are statistically independent of 

molecular motion.  

• Turbulent motion is not a random phenomenon. As a consequence, turbulent 

fields possess definite spatial and temporal structures.  

1.1.1. Turbulence Modeling 

To create a usable numerical model of a turbulent flow field, it is necessary to 

describe turbulent motion in terms of averaged quantities. Although it is theoretically 
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possible to directly apply the conservation equations to the entire flow field, it is 

unreasonably difficult to do so in practice. As noted above, turbulent flows involve 

entangled eddies the sizes of which encompass a wide range of length scales. To resolve 

an entire turbulent flow field by direct application of the conservation equations, it is 

necessary to employ a computational mesh with element sizes that are smaller than the 

smallest eddies. Such meshes are extremely dense and because computational cost 

increases dramatically with mesh density, this results in computations that are 

prohibitively expensive to resolve. By contrast, models that are based on averaged 

quantities characterize turbulent flows using meshes of reasonable density; therefore, 

they result in reasonable computational times and costs.  

Turbulence modeling is one of the important features of computational fluid 

dynamics. It gives us a scope to estimate the flow properties of any fluid given the initial 

and boundary conditions. However, accurate prediction of the flow is not fully possible 

even now. The solution to complex physical phenomenon requires solving the complete 

Navier-Stokes equations with a proper numerical approach, not to mention the enormous 

usage of computer resources. 

 

1.1.2. History of Turbulence Modeling 

The primary emphasis is upon the time-averaged Navier-Stokes equations. The 

origin of this approach dates back to the end of 19th century when Reynolds (1895) 

published results of his research on turbulence. His pioneering work proved to have such 

profound importance for all future developments that we refer to the standard time-

averaging process as one type of Reynolds averaging. 
The earliest attempts at developing a mathematical description of turbulent 

stresses sought to mimic the molecular gradient-diffusion process. In this spirit, 

Boussinesq (1877) introduced the concept of a so-called eddy viscosity. The Boussinesq 

eddy-viscosity approximation is so widely known that few authors find a need to 

reference his original paper. 
Much of the physics of viscous flows was a mystery in 19th century, and further 

progress awaited Prandtl's discovery of the boundary layer in 1904. Focusing upon 

turbulent flows, Prandtl (1925) introduced the mixing length (an analogy of the mean free 
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path of a gas) and a straightforward prescription for computing the eddy viscosity in 

terms of the mixing length. The mixing-length hypothesis, closely related to the eddy-

viscosity concept, formed the basis of virtually all turbulence modeling research for the 

next twenty years. In modern terminology, we refer to a model based on the mixing-

length hypothesis as an algebraic model or a zero-equation model of turbulence. By 

definition, an n-equation model signifies a model that requires solution of n additional 

differential transport equations in addition to those expressing conservation of mass, 

momentum and energy for the mean flow.  
To improve the ability to predict properties of turbulent flows and to develop a 

more realistic mathematical description of the turbulent stresses, Prandtl (1945) 

postulated a model in which the eddy viscosity depends upon the kinetic energy of the 

turbulent fluctuations, k. He proposed a modeled partial-differential equation 

approximating the exact equation for k. Thus was born the concept of the so-called one-

equation model of turbulence.  
While having an eddy viscosity provides a more physically realistic model, the 

need to specify a turbulent length scale remains. Since the length scale can be thought of 

as a characteristic eddy size and since such scales are different for each flow, turbulence 

models that do not provide a length scale are incomplete. 
A particularly desirable type of turbulence model would be one that can be 

applied to a given turbulent flow by prescribing at most the appropriate boundary and/or 

initial conditions. Ideally, no advance knowledge of any property of the turbulence 

should be required to obtain a solution. We define such a model as being complete. Note 

that our definition implies nothing regarding the accuracy or universality of the model, 

only that it can be used to determine a flow with no prior knowledge of any flow details.  
Kolmogorov (1942) introduced the first complete model of turbulence. In addition to 

having a modeled equation for k, he introduced a second parameter ω that he referred to 

as `the rate of dissipation of energy in unit volume and time.' The reciprocal of ω serves 

as a turbulence time scale, while [k(1/2)/ω] serves as the analog of the mixing length and 

kω is the analog of the dissipation rate, epsilon. In this model, known as k-ω model, ω 

satisfies a differential equation somewhat similar to the equation for k. The model is thus 

termed a two-equation model of turbulence.  
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Chou (1945) and Rotta (1951) laid the foundation for turbulence models that 

obviate use of the Bousssinesq approximation. Rotta devised a plausible model for the 

differential equation governing evolution of the tensor that represents the turbulent 

stresses, i.e., the Reynolds-stress tensor. Such models are most appropriately described as 

stress-transport models. Many authors refer to this approach as second-order closure or 

second-momentum closure. The primary conceptual advantage of a stress-transport 

model is the natural manner in which nonlocal and history effects are incorporated. 
Thus, by the early 1950's, four main categories of turbulence models had evolved, 

viz.,  
(1) Algebraic (Zero-Equation) Models  
(2) One-Equation Models  
(3) Two-Equation Models 
(4) Stress-Transport Models  

Finally, turbulence models have been created that fall beyond the bounds of the 

four categories cited above. This is because model developers have tried unconventional 

approaches in an attempt to remove deficiencies of existing models. 

Among the numerical schemes available to the CFD community, DNS (Direct 

Numerical Simulation) is the most primitive one. In DNS, the flow is resolved temporally 

and spatially to the order of a length scale of the smallest eddy. Thus by such high 

resolution of the grid, the physics of the flow is being captured to the maximum extent by 

establishing continuity in the properties at the macro level. Though this is not attainable, 

the limit would be nearly reached. For simple flows with low Reynolds numbers, this is 

an excellent tool and the solution obtained using DNS is found to be very reliable. But 

some theories say that the grid size in DNS increases at the rate of Re2.6. Thus, it is seen 

that this numerical scheme is possible only for simple geometries and low Reynolds 

number flows. For complicated geometries and high Reynolds number flows, i.e., to the 

applications of the present day even with the high-performance computational clusters 

much like the supercomputers, DNS is still not the primary choice mainly because of the 

computational time involved and economic consideration taken into account as well. 

Effective turbulence models are the need of the hour. LES (Large Eddy Simulation) is a 

very efficient turbulence model. Though the results of LES compared to DNS results are 
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not outstanding, they are still acceptable in the general sense and serve the requirement in 

most cases. More importantly, the simulation using LES is affordable compared to DNS 

cost or time in most cases. In LES, the large eddies of the flow are resolved and the 

smaller eddies are modeled using the SGS (sub grid scale) model. This has given the 

researchers good results for many cases. But for boundary layer flows, the grid has to be 

resolved to a high level and the total computations required to resolve around the 

boundary in most cases is not less even compared to DNS. So LES also turns out to be 

expensive in such cases. Hence the search for an optimum turbulence model is the 

present priority. 
 

1.2. Homogeneous Turbulence 

If a uniform stream of fluid passes through a regular array of holes in a rigid 

sheet, or a regular grid of bars, held at right angles to the stream, the motion downstream 

of the sheet consists of the same uniform velocity together with a superimposed random 

distribution of velocity. This random motion dies away with distance from the grid, and 

to that extent is not statistically homogeneous, but the rate of decay is found to be so 

small that the assumption of homogeneity of the turbulence is valid for most purposes.  

Thus there is available a convenient laboratory method of producing turbulence which is 

approximately homogeneous, the various stages of decay occurring at different distances 

from the grid. 

 
Figure 1.1: Homogeneous Turbulence simulation in a cube colored by Pressure 

fluctuations 
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“Homogeneous Turbulence is a random motion whose average properties are 

independent of position in the fluid” 

- G. K. Batchelor 

 

1.2.1. Mathematical Description of Homogeneous Turbulence 

We shall confine our attention to the case of a fluid which is effectively 

incompressible (indeed, it would be difficult to proceed on any other basis on account of 

the complexity of the problem). The equation of continuity is then 

0=⋅∇ u       (1.2.1) 

where u is the velocity vector of the turbulent motion at a position in the field specified 

by the vector coordinate x, where both u and x are referred to axes such that the fluid has 

no average motion. 

The density, ρ and viscosity, υ are assumed to be constant. Also, the Navier 

Stokes equation is assumed to be valid. The variation of u with x and time t then satisfies 

upuu
t
u 21

∇+∇−=∇⋅+
∂
∂ υ

ρ
    (1.2.2) 

where ∇  represents the gradient operator with respect to the coordinate system x, and p 

represents pressure. The validity of this equation is taken as the fundamental premise. 

Hence, as suggested by Batchelor [13], the mathematical formulation of the 

problem of homogeneous turbulence is this: Given an infinite body of uniform fluid in 

which motions conform to the equations (1.2.1) and (1.2.2), and that at some initial 

instant the velocity of the fluid is a random function of position described by certain 

probability laws which are independent of position, to determine the probability laws that 

describe the motion of the fluid at subsequent times. 

 
1.2.2. Brief History of Homogeneous Turbulence 

The origin of the subject lies in G. I. Taylor’s pioneering work in 1935. Prior to 

this time there had been no clear recognition and acceptance of the fact that the velocity 

of the fluid in turbulent motion is a random continuous function of position and 

discontinuous collisions between discrete entities that have been studied in the kinetic 

theory of gases. When these ideas became popular, Taylor introduced the correlation 
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between the velocities at two points as one of the quantities needed to describe 

turbulence. As soon as the statistics of continuous random statistical homogeneity 

simplified the analysis, Taylor went further still and considered isotropic turbulence. In 

this same paper Taylor described measurements which showed that the turbulence 

generated downstream from a regular array of rods in a wind tunnel was approximately 

homogeneous and isotropic. Thus a clear guide to further theoretical and experimental 

work was established.  

Other important contributions to the subject were made by Taylor in 1938. The 

first was a consideration of the mechanical processes represented by the non-linear term 

in the equation for the decay of mean-square vorticity. This work demonstrated clearly 

two important consequences of the non-linearity of the dynamical equation. The second 

contribution was the introduction into turbulence theory of a result obtained in pure 

mathematics, viz. that the Fourier transform of the correlation between two velocities is 

an energy spectrum function in the sense that it describes the distinction of kinetic energy 

over the various Fourier wave-number components of the turbulence.  

Soon after Taylor’s work, T. Von Karman perceived that mean values of the 

products of the velocities at two (or more points) were tensors, which immediately 

enabled the analysis to be expressed more concisely and greatly facilitated the deductions 

from the assumption of isotropy.  

The required physical basis for one kind of similarity of the turbulence was 

suggested some years later by A. N. Kolmogoroff. Kolmogoroff’s hypothesis was that the 

small-scale components of the turbulence are approximately in statistical equilibrium. 

These small-scale components owe their existence to the non-linear interchange of 

energy between different wave-number components, and Kolmogoroff postulated that the 

equilibrium would be universal, apart from the effect of variation of two parameters, one 

the viscosity of the fluid and the other determined by the large-scale components of the 

turbulence. Thus, when these two parameters are given, the complete statistical 

specification of the small-scale components of the turbulence is determined, and many 

definite predictions may be made from dimensional analysis.  

On the experimental side, a large number of measurements of mean values of 

different velocity products has been made since 1935, principally with the hot-wire 
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anemometer. This instrument is capable of giving an electrical signal which is 

proportional to the instantaneous velocity of the fluid at the point where the wire is 

placed. Examples of the kinds of measurements of which the hot-wire anemometer is 

capable are to be found in the papers by A. A. Townsend who has supplied many of the 

measurements on which our present ideas about homogeneous turbulence are based, and 

S. Corrsin. 

One of the recent benchmark experiments performed on Homogeneous 

Turbulence is the study by Comte Bellot and Corrsin[12]. His results on isotropic 

turbulence have given way to many recent developments by lending a standard basis of 

comparison and the calibration of the developing hybrid turbulence models, for e.g., the 

grid sensitivity parameter, CDES which is one of the critical parameters in a recent 

turbulence model developed called Detached Eddy Simulation (DES)[26] is obtained 

from the Homogeneous Turbulence simulation. 

 
1.3. Description of Present Work 

1.3.1. Motivation 

 “Current CFD (turbulence modeling) capabilities do not permit the reliable 

prediction of separation onset/progression characteristics. Efforts currently underway to 

address this deficiency…need to be accelerated. Major advancements are needed” 

  - Letter to NASA ASTAC Chair from Airframes Systems  

   Subcommittee, 21 March 2000  

As stated in the above quotation and also widely known, the turbulence models 

available cannot predict the separation in flows satisfactorily and hence progress has to 

be made to develop models which can handle many practical problems and  complicated 

flows.  

Direct Numerical Simulation (DNS) is the earliest tool used to solve flow 

problems by solving for the Navier Stokes Equations computationally. But the grid size 

increases dramatically as the Reynolds number is increased. This rules out DNS for 

complicated cases. If we talk about Large Eddy Simulation (LES), it is not much different 

from DNS at the boundary. Away from the boundary it may be affordable, but the grid 

becomes very dense as it approaches the boundary. Hence we cannot use LES as our 
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primary model for a wide variety of cases. Also, it is well known that Reynolds Averaged 

Navier Stokes (RANS) does not predict separated flows well though it is good at dealing 

with cases without separation. From the above mentioned reasons, we definitely need to 

develop a model which suits our requirements and yet is affordable which gives us 

worthy results. 

 “The conversion of a typical RANS code to DES is rapid as far as the 

modification of this model goes, but achieving the required spatial and temporal accuracy 

for LES can demand deep improvements…Thus, DES can address some very challenging 

flow physics but the burden on the user is, not surprisingly, even higher than for a RANS 

study. 

- from the concluding remarks, “Detached Eddy Simulation of Massively Separated 

Flows”, M. Strelets, AIAA 2001-0879 

As stated by Dr. Strelets, Detached Eddy Simulation (DES) can handle 

challenging problems and give us good results. But understanding the model and 

investigating it thoroughly is necessary before it can be used as a perfect model. Every 

model has its own pros and cons, but we believe that DES could work out to be a very 

cheap and realistic model and its advantages could be utilized to the fullest. With this 

hope we begin to explore the model within our limits. Our goals are stated in the next 

section. 

 As will be seen in the future chapters, we have chosen two different cases, one is 

the Blaisdell’s case with a Reynolds number, Re=3640 and other is a CBC case with a 

mesh Re=34000. Since Detached Eddy Simulation is an important tool to study specially 

cases where there is separation, it would also be interesting to study homogeneous 

turbulence at low Re. In this case, we would understand the basic DES model and 

investigate the subtle intricacies in the model. The numerical scheme and the amount of 

artificial added to the model could drastically affect the fashion in which the model 

behaves. Understanding such model behavior would help us a long way in studying even 

complicated cases. 
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1.3.2. Objectives and Summary 

In this present research work, we will discuss the simulation of Homogeneous 

Turbulence in detail using Detached Eddy Simulation (DES). We will scrutinize the 

underlying parameters of DES using our test cases. Our main objectives are 

1. To understand the sensitivity of the DES grid spacing parameter, CDES by 

applying this turbulence model to Homogeneous Turbulence. 

2. To see the effect of grid density when using DES and judging the 

interdependency of CDES and grid density. 

3. Understanding the effect of initial conditions on homogeneous turbulence 

simulation using two different test cases. 

4. Test and observe the sensitivity of the model to Reynolds number 

5. Analyze the behavior of the model with respect to the numerical schemes applied, 

5th order upwind scheme or 6th order central scheme. 

6. Understanding the effect on dissipation rate of the model (from the slope of the 

energy spectrum and temporal energy decay) by varying the numerical scheme 

and CDES and evaluating the interdependencies.                                                            
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CHAPTER 2 

Survey of Previous Work  
2.1. Introduction 

Direct numerical simulation (DNS) is potentially the most accurate way to 

numerically study a turbulent flow. In this approach, the flow field in solved directly 

from the Navier-Stokes equations and no averaging or turbulence modeling is applied. 

Thus only the numerical methods affect the accuracy of the solution. From some point of 

view DNS is the most straightforward approach to CFD. As a drawback DNS requires a 

huge amount of computer capacity and high order numerical methods for good results.  

When direct numerical simulation is applied, the computational domain must be 

large enough and the computational grid dense enough. Otherwise all features of 

turbulence will not be described correctly. The proper length of the domain is set by the 

so called integral length scale. It is the distance after which the self correlation of the 

velocity components vanishes. The number of grid points is set by the Reynolds number. 

As Reynolds number grows the ratio of the integral length scale to the smallest length 

scale in the flow grows and thus smaller eddies will be present in the flow field. The grid 

must be able to capture these smallest scales of motion. For the two above mentioned 

reasons, direct numerical simulation requires so much computer capacity that it is not 

adaptable for engineering type flows. The value of DNS lies in the huge amount of 

information it provides from the flow field. It is a valuable tool for the study of physics of 

turbulence.  

In large eddy simulation (LES) the small scale motion is extracted from the main 

flow field by filtering. While the main flow field is solved from the Navier-Stokes 

equations, the smallest eddies are modeled. LES is conceptually close to RANS, but as a 

method it is more closely related to DNS. In RANS the turbulence model damps out the 

smallest scales of motion no matter how dense a grid is used, while in LES the grid 

density (or filter width) defines the amount of damping. This means that as we use a 

denser grid in LES the turbulence model includes less damping and we approach direct 

numerical simulation. One essential consequence is that with LES we obtain a three 

dimensional flow field for two dimensional geometries, which never happens with 

RANS.  
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Also large eddy simulation requires a huge amount of computer capacity and is 

not yet applicable to most engineering problems. However, RANS is not able to describe 

properly flows over non-streamlined bodies, where the flow is massively separated and 

there exists also other time dependency than turbulence. Still RANS behaves very well in 

boundary layers and requires considerably fewer grid points than LES. This has led to the 

development of so called hybrid methods which combine RANS and LES. They apply 

RANS in the boundary layers and LES in the other parts of the flow field. The open 

problem in the hybrid methods is numerics. While RANS-calculations require damping 

the same feature may spoil the LES result.  

As seen in the Figure 2.1 below as we move from RANS to LES, there is this so 

called ‘grey area’ where it behaves as a combination of LES and RANS models and to 

what degree is of each is unclear. In this region we do not know how the turbulence 

model behaves. We need to find a unified approach to understand the grey area. There 

have been several suggested approaches to address this problem.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Transition from RANS model to the LES model introducing the concept of 
‘grey area’. 
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Some of the unified approaches which address the ‘grey area’ issue and provide a smooth 

transition between the RANS and LES are: 

1. Speziale’s Reynolds Stress Model (Speziale, 1998) 
RANS
ij

n
k

SGS
ij L τβτ )]/exp(1[ ∆−−=  

This is the explicit algebraic Reynolds Stress model proposed by Speziale. Here SGS
ijτ  is 

the sub grid scale Reynolds shear stress and RANS
ijτ  is the Reynolds averaged Navier -

Stokes shear stress. 

2. DES Model or S-A Model (Spalart, 1997) 

),min(~
∆= DESCdd  

This is the Detached Eddy Simulation obtained by modifying d in the one-equation 

model proposed by Spalart and Allmaras, combining the advantages of Reynolds 

Averaged Navier Stokes (RANS) model and the Large Eddy Simulation (LES) model. 

∆DESC  is the product of grid sensitivity parameter CDES and the maximum of the grid 

spacing in any of the directions. 

3. DES SST Model (Travin, 2000) 

)*/(

),,min(~,~/
2/1

2/3

ωβ

ρ

ω

ω

kl

ClllkD

k

DESk
k
DES

=

∆==

−

−  

This model is the Shear Stress Transport based model of DES proposed by Travin. The 

dissipation term of DES is given by k
DESD  and the length scale l~ and ω−k length scale 

ω−kl  are defined as seen above. 

4. KE1E-SAS Model (Menter, 2003) 

6.0),,,min(~
),~,max(~

=∆∆∆=∆

∆= −−

SAS

SASSASKSASK

Czyx

withCLL νν  

This model is based on a one-equation model using the v. Karman length-scale SASKL −ν  to 

adapt to the underlying turbulent structures. The model can be operated in RANS and in 

LES mode and is termed Scale-Adaptive Simulation (SAS) model. 
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In our present research, we shall apply the Spalart-Allmaras’ Detached Eddy 

Simulation (DES) Model to study the Homogeneous Turbulence case. More about this 

model will be explained in section 3.1. The benchmark homogeneous turbulence 

experiment was performed by Comte Bellot and Corrsin [12] using their wind tunnel 

which was about 10 m long. Turbulence was generated using a bi-plane square rod grid 

with mesh sizes of 1 inch and 2 inches. The Reynolds number corresponding to the 2 inch 

mesh is 34000. The results obtained were recorded at three locations downstream of the 

wind tunnel. 

 

2.2. DES studies in the Research World 

Detached Eddy Simulation is not a very old concept. The one-equation model was 

proposed by Spalart et al. [27] in 1997. Since then, other researchers have implemented 

this model, which has added weight to this model in the world of computational modeling 

of flows. It would be helpful to study the kind of work others have done in order to show 

how our work is relevant in the present scenario and how it would help the current 

research industry. 

 

2.2.1. Analysis of DES Model 

In the work on ‘Detached-eddy simulation of an airfoil at high angle of attack’, 

Shur et al. (1999) in their research on turbulence modeling and experiments related to 

DES of an airfoil at high angle of attack made some studies on Homogeneous turbulence. 

They have taken two grids 323 and 643 to perform their studies. They seem to get strong 

ripple effects in the case of 323 grids. However, they get good results using the 643 grid 

when they simulate the CBC case. They obtain a –5/3 slope for the energy decay. They 

give little information about this case in their paper but do conclude that they finally fix 

the value of CDES as 0.65 based on their simulations. Finally they stress that the cut-off 

slope in the CBC energy spectra is very sensitive even to a very slight change in CDES (~ 

+0.05 or –0.05). Also, as we have noticed, they state that this sensitivity is seen not only 

in the value chosen for CDES but also on the grid resolution.  

 In their conclusions, they want to make more studies in the direction of checking 

how sensitive the DES parameters and grid resolution are in terms of getting good results 
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including studies how the Reynolds number and numerical differencing scheme would 

affect the model. DES mainly being a 3D model, they have not got good results when 

they have used the model for 2D simulations. 

In the work on ‘An Approach to Wall Modeling in Large-Eddy Simulations’, 

Nikitin et al. (July 2000) applied the DES model without adjustment as an SGS model in 

the LES of channel flow. The range of Reynolds number Reτ is from 180(a QDNS) to 

80,000(a full LES). This allows us to see how the transition occurs and how it is affected.   

The value of CDES is set from the isotropic homogeneous turbulence experiment as 

0.65. Three different codes were used to test the case. The discretization effects as 

opposed to the modeling effects are what could be mainly scrutinized though their effort. 

The results obtained were stable and fairly accurate though there was some acceptable 

disagreement due to the resolution of the grid.  Finally they conclude saying that these 

results raise hope for gradual improvements that could lead to a simple, stable and 

accurate approach to wall modeling. 

In the work on ‘Detached Eddy Simulation of a Supersonic Axisymmetric Base 

Flow with an Unstructured Solver’, Forsythe et al. [15] studied the base flow (normally 

seen behind a missile, rocket or a projectile) using DES and (Monotone Integrated LES) 

MILES schemes. While dealing with the S-A DES scheme, they have used varying 

values of CDES as they were unsure about which was the best value that had to be used in 

their modeling. The CDES values used were 0.25, 0.5 and 0.65. Though 0.5 is listed here, 

very little studies and discussion is provided in this paper (a reference quoted by Forsythe 

et al. has more information related to CDES=0.50). From the explanation given in the 

paper it can be concluded that the CDES=0.65 performed very poorly. However, when 

CDES=0.25 was used, the results were encouraging.  When comparing results for the 

reattachment location and downstream velocity profile, MILES results matched well. 

And the DES results got better and approached close to MILES results as the CDES was 

reduced from 0.65 until it reached 0.25. Forsythe et al. use two unstructured grids in their 

simulations (Short Grid-1.7 Million cells and Long Grid-2.8 million grids.) 

 In conclusion, Forsythe et al. state that the lower value of CDES, i.e., CDES=0.25 is 

a better value and hence the CDES value should be reduced when an unstructured grid 

consisting of tetrahedrons is used. Also, they state that when capturing the boundary 
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layer, DES did a better job than MILES in general when the LONG (fine) grid was used 

as the RANS mode of DES modeled the boundary layer better than what MILES did. 

They also conclude that since using the right value for CDES is important, computations of 

isotropic turbulence should be performed using the grids that they have used to explore 

the right value of CDES.  

 

2.2.2. Application of DES Model 

In the paper published in the Journal of Fluids Engineering on “Detached-eddy 

simulation with compressibility corrections applied to a supersonic axisymmetric base 

flow”, Forsythe et al. [14] used two models to perform studies on base flows. The 

objective of this paper was to predict the base pressure correctly which is used to 

calculate the base drag. The two models used were: a) Spalart-Allmaras’ DES Model and 

b) Mentor’s Shear Stress Transport model of DES. In the case of S-A DES Model, the 

CDES is taken as 0.65 based on the paper by Shur et al. [21] (discussed previously). In the 

Menter’s SST model of DES [9], the k-ε and k-ω DES have their respective CDES 

calibrated by Strelets isotropic turbulence experiment as C k-ε
DES=0.61 and C k-ω

DES=0.78. 

Menter’s SST model is based on the blending of and k-ε and k-ω models. For the testing 

of cases in this paper, four grids are used (both structured and unstructured). Finally, 

unstructured grids gave far better results as against structured grids when compared to the 

experiment and fine grids have predicted the flow better than coarse grids. Also, in 

general S-A DES results were better than the SST DES results. 

 In the concluding remarks, Forsythe et al. state that though base flows can be 

predicted well using hybrid models like DES than using pure LES or pure RANS, careful 

consideration must be made while choosing the grid size and density.  

Also in the work on ‘Detached Eddy Simulations of Supersonic Flow Over 

Cavity’, Hamed et al. [1] assess the capability of DES in predicting cavity flow fields 

involving interactions between acoustics, turbulence and shock waves. They used 

Menter’s SST model of DES [9] in their study to predict the flow over cavity. Their 

motivation to use a hybrid model comes from the fact that URANS simulations have 

failed in general to capture the flow unsteadiness. They do not mention the CDES values 

that they have used in their paper; the best assumption is that they have used the values 
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suggested by Strelets for the Menter’s SST DES model in his isotropic turbulence 

experiment. The grid that they have used has 0.8x106 grid points as against 21x106 

(205x94x40) grid points used by Rizzetta et al. (comparative results). Their results are 

quite comparable with what Rizzetta et al. obtained. 

Hamed et al. conclude that the SST model of DES has worked in predicting the 

supersonic cavity flow. 

Related to some of the details revealed at the Aerospace Sciences Meeting 2003, 

Reno, Nevada, on “Detached Eddy Simulation around a Forebody at High Angle of 

Attack”, Viswanathan et al. [4] performed studies around a rectangular ogive forebody 

based on the body width/diameter D, the forebody length is 2D while the length of the aft 

section is 4D. The cross-section is a rounded-corner square with corner radius D/4. 

Simulations are performed using the S-A DES model. The CDES value is chosen as 0.65 

as suggested by Shur et al. [21]. No further investigations are made on determining the 

value of right CDES. The grid is of three resolutions a) base line grid (6.5 x 106 cells) b) 

fine grid (8.75 x 106 cells) and c) coarse grids (2.1x106 and 3.5x106 cells). The grid is an 

unstructured grid consisting of tetrahedra and prisms. The Reynolds number variation 

was from 8 x 104 to 2.25 x 106 (based on the freestream speed and diameter D). The grid 

was clustered near the ogive surface and geometrically stretched at a rate of 1.2 away 

from the wall. The distance from the wall to the first cell center was less than 2x10-6D, 

within one viscous unit on average. The results obtained are compared with URANS 

results and experimental results by Pauley et al.  

 Excellent results have been obtained by the S-A DES simulations which compare 

pretty well with the experimental results and are far better than the URANS results. In the 

concluding remarks, Viswanathan et al. point out that when they run the static geometry 

with varying grid resolutions, as the grid density increased, the turbulence model effect 

reduces and the technique (DES) ultimately would approach Direct Numerical 

Simulation. 

Also, in the work on “Film Cooling Analysis Using DES Turbulence Model”, 

Roy et al. [31] use Spalart-Allmaras based Detached Eddy Simulation (DES) model that 

is applied to a film cooled flat plate.  
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The code used is a finite volume based parallel, implicit, unstructured 

Euler/Navier-Stokes flow solver called ‘Cobalt’. GridPro multiples grid generator was 

used to develop a multi-block (15) grid with approximately 1,300,000 cells. Gridgn14.03 

is used to convert this grid into Cobalt compatible unstructured grid containing a single 

block and 899584 cells. The value of CDES taken is 0.65. Comparisons are made with the 

RANS model which shows that the DES simulation greatly enhances the realistic 

description of the dynamic mixing processes. 
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2.3. Present Research Overview 

In the Figure 2.2, we see a summary of the research done which has been documented in 

this thesis. As explained in section 3.2, there are two test cases. The CBC case simulated 

using LESTool is compared to the standard experimental results by Comte Bellot and 

Corrsin [12] and some other results obtained from the studies by Knight et al. [6] and 

Shur et al. [21]. The Blaisdell’s case that is simulated is compared to the DNS studies 

performed by Blaisdell et al. [10]. 

 

 
 

 
Figure 2.2: Overview of the present research work 



 20

CHAPTER 3 

Theory and Test Cases 
The focus of this chapter will be on giving an outline of the DES model and also 

introducing to the research work that has been done on Homogeneous Turbulence earlier.   

3.1. Detached Eddy Simulation 

The present DES model is a simple variation of the S-A one-equation eddy-

viscosity RANS model. The DES modification concerns the destruction term, and hinges 

on the length scales d and d~ . In the S-A model, d is the distance to the nearest wall and 

expresses the (inviscid) confinement of eddies by the wall. In the DES model, we replace 

d with d~ , which is defined as  

),min(
~

∆≡ DESCdd  with ),,max( zyx ∆∆∆=∆  

The role of ∆  is to allow the energy cascade down to the grid size; roughly, it 

makes the pseudo-Kolmogorov length scale, based on the eddy viscosity, proportional to 

the grid spacing. We use the largest dimension of the grid cell as defined by the DES 

model, in contrast with the often-used cube-root definition of ∆ . 

The model is as follows. The transition terms were removed from the S-A model 

[26] and would have no impact except maybe near the buffer layer. The eddy viscosity is 

given by  
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The wall boundary condition is 0~ =ν . The constants are 1355.01 =bc , 3/2=σ , 
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11 bbw ccc ++= , 3.02 =wc , 23 =wc , 1.71 =vc . 

In a structured grid, x∆  and z∆  are independent of y while y∆  is refined near the wall, 

so that there is a layer near the wall in which dd ≡
~ , loosely called the “RANS region”, 

and a region away from the wall in which ∆≡ DESCd~ , called the “LES region”.  

 

3.2. Background of Homogeneous Turbulence 

Homogeneous Turbulence is the simplest of all cases in turbulence with less complexity 

involved compared to any other turbulence case as the boundary conditions are periodic 

and the properties change only with time. This gives us scope to study the DES model in 

a well-defined way without having to worry about intrusion of other complexities that 

would affect our study. In effect, we can have an isolated study of the model.  As we 

shall see, there are two well-known studies that have been done on Homogeneous 

Turbulence. One of them is experimental and the other is numerical. Both of them have 

different initial conditions (energy spectra), Reynolds numbers and initialization 

parameters.  In the present study, two test cases have been considered corresponding to 

each of these research studies. The setup, working and comparison of the results of the 

test cases will be discussed in the future chapters. In this chapter, we shall look at the 

underlying cases that have led to the present research work and also look at the results 

they have obtained. 

The two cases which form the basis for comparing our simulations are: 

1.  The Experimental study performed by Comte Bellot and Corrsin [12] and  

2.  The Direct Numerical Simulation studies made by Blaisdell et al. [10] 

 

3.2.1. Comte Bellot and Corrsin Experiment 

Isotropic turbulence is turbulence whose statistical properties are invariant under 

all axis rotations and reflections. Since physically interesting properties include joint 
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probabilities of field variables at two or more space points, isotropy requires 

homogeneity as well. For simplicity the motion is restricted to be that of a constant 

density, Newtonian fluid with zero mean velocity everywhere, in an inertial frame. 

The benchmark isotropic turbulence experiment performed by Comte Bellot and 

Corrsin [12] will be described here. The closed wind tunnel, Figure 2.1 is about 10m 

long. All turbulence data is generated by a biplane, square-rod, polished dural grid with 

mesh size of 5.08 cm and solidity of 0.34. A few correlation values were measured far 

behind a similar grid of mesh size 2.54 cm, to permit reaching larger dimensionless 

distances and times in the decaying turbulence. The slight (1.27:1) contraction was 

located 18 mesh lengths downstream of the grid. The streamwise ( 2
1u ) and transverse 

( 2
2u , 2

3u ) components’ turbulent energies remained nearly equal to each other as they 

decayed along the length of the test section: 
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Here, t is elapsed time in traveling at the mean flow velocity from the grid, 

∫=
1

0
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)(

x

xU

dxt  

The velocity approaching the grid is Uo = 10 m/sec, and hence a grid mesh Reynolds 

number, Re= U0M/ν = 34000 for Mesh size, M = 5.08 cm. Hence the viscosity can be 

calculated as ν=1.494117E-5 m2/sec. 
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Figure 3.1: Qualitative sketch of upstream end of wind-tunnel test section. [12] 

If U were exactly constant, t would be just proportional to downstream distance.  

The schematic sketch of the wind tunnel used in the CBC experiment is shown here. The 

u1 energy spectra measured from single probe at U0t/M=42, 98 and 171 are tabulated in 

the CBC paper [12]. They are measured as frequency spectra, but, since the relevant 

Taylor approximation is well satisfied, they are interpreted as ‘one-dimensional’ wave-

number spectra, ),( 1
)1(

11 tkE . 

Under the assumption of isotropy, the ‘three-dimensional’ turbulent energy spectra 

),( tkE can be computed from the one-dimensional data as 

),( tkE =



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This expression is carried out by the graphical differentiation of faired curves.  

The numerical data for three-dimensional spectra for 3-d grid is given in Table 3.1. 

In Table 3.1, E(k,t) (defined as  U0t/M) cm2sec-2 is the energy spectrum and k is the wave 

number. 

The Kolmogorov wave-numbers, 
4/1

3
1 






== −

ν
εηKk associated with the dissipative 

eddies, are 34, 21 and 15 cm-1 for stations U0t/M=42, 98 and 171, respectively. We 

observe that most of the dissipation occurs in scales a bit large than η.  
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The dissipation rate is obtained most accurately from the actual energy decay rate, as is 

the Taylor microscale: 
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Table 3.1: Numerical data for three-dimensional spectra behind 2 in grid computed from 

1-d spectra. [12] 
k cm-1 tU0/M=42 tU0/M=98 tU0/M=171 

0.15 -- -- 4.97 x 101
 

0.20 1.29 x 102
 1.06 x 102

 9.20 x 101 

0.25 2.30 x 102 1.96 x 102 1.20 x 102 

0.30 3.22 x 102 1.95 x 102 1.25 x 102 

0.40 4.35 x 102 2.02 x 102 9.80 x 101 

0.50 4.57 x 102 1.68 x 102 8.15 x 101 

0.70 3.80 x 102 1.27 x 102 6.02 x 101 

1.00 2.70 x 102 7.92 x 101 3.94 x 101 

1.50 1.68 x 102 4.78 x 101 2.41 x 101 

2.00 1.20 x 102 3.46 x 101 1.65 x 101 

2.50 8.90 x 101 2.86 x 101 1.25 x 101 

3.00 7.03 x 101 2.31 x 101 9.12 x 100 

4.00 4.70 x 101 1.43 x 101 5.62 x 100 

6.00 2.47 x 101 5.95 x 100 1.69 x 100 

8.00 1.26 x 101 2.23 x 100 5.20 x 10-1 

10.00 7.42 x 100 9.00 x 10-1 1.61 x 10-1 

12.50 3.96 x 100 3.63 x 10-1 5.20 x 10-2 
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15.00 2.33 x 100 1.62 x 10-1 1.41 x 10-2 

17.50 1.34 x 100  6.60 x 10-2  -- 

20.00 8.00 x 10-1  3.30 x 10-2  -- 

 
3.2.1.1. Results of CBC Experiment 

The results were noted at three locations, U0t/M = 42, 98 and 171. These results 

are shown below. We shall perform our simulations using the initial conditions of the 2 

inch mesh (or 5.08 cm) grid used by CBC in their experiment. 

In the Figure 3.2, there are three different curves representing the energy spectrum 

at each of these time stages. U0t/M=42 is the initial time or at physical time equal to zero 

at which we construct the initial conditions. This is shown as the circular symbols. Then 

we see the triangular symbols representing the energy spectrum at U0t/M=98 and then 

we also look at the square symbols which represent the energy spectrum at the last 

recorded time stage or at U0t/M=171.  

 
Figure 3.2: Downstream evolution of one-dimensional energy spectrum. U0=10ms-1, 

5.08 cm grid, U0t/M: circle-42 (topmost), triangle-98 (curve in between), square-171 

(lowermost). [12] 

 

Also, as seen from the above figure, the energy decays and hence as the time increases, 

the peak of the curve decreases evident from Figure 3.2. This trend is rather obvious but 

the exact shape of the curve and the recorded experimental results play an important role. 
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We shall use these standard experimental results obtained by Comte Bellot and Corrsin to 

compare our simulated results using LESTool.  

 The Figure 3.3 shown below is a representation of the energy spectra at the three 

different time stages as explained above, i.e., at U0t/M=42, U0t/M=98 and U0t/M=171.  

 

 
Figure 3.3:  Downstream evolution of three-dimensional energy and dissipation spectra 

5.08 cm grid. [12] 

 

In fact, the figure above is a culmination of representations of energy spectra in 

two different scales, one is in the linear scale and the other is in the log scale. Also, it is a 

clear representation of understanding how the energy spectrum evolves in time. As seen 

in the Figure 3.3, the peaks of E(k) for tU0/M=42, 98 and 171 have reducing heights in 

that order representing the dissipation of turbulent kinetic energy with time. 

 

 CBC Experiment Decay Curve  
 Another important investigation in the CBC case is analyzing the decay rate. The 

energy decay seen in Figure 3.4 is obtained by Comte Bellot and Corrsin in their 

experiment. This decay rate and the slope of the curve depend on various factors which 

we shall analyze and present in the results section in Chapter 5. We shall see how the 
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decay results will be affected by the initial conditions, more specifically the shape of the 

initial energy spectrum. Also the numerical dissipation and the grid sensitivity parameter 

CDES which defines the artificial dissipation added to the DES model affect the shape of 

the decay curve. Only the standard experimental results are presented in this chapter. The 

experimental decay curve produced by Comte Bellot and Corrsin is shown in Figure 3.4.  

The corresponding results obtained by computer simulation using LESTool will 

be shown in the following chapter and comparisons will be made with the experimental 

results.  

 
Figure 3.4: Decay curve points for the CBC Experiment. [12] 

 

3.2.2. Blaisdell’s Direct Numerical Simulation (DNS) 

The Direct Numerical Simulations (DNS) of decaying isotropic turbulence are 

presented by Blaisdell et al. Simulations were performed at low initial rms Mach 

numbers (roughly M0=0.05), moderate initial rms Mach numbers (M0=0.3), and higher 

initial rms Mach numbers (M0=0.7).  

The first simulation run in their study was a repetition of the nearly incompressible 

decaying isotropic test case of Feiereisen et al. For this test, an initial program was 

written to produce initial turbulent fields in the same manner as Feierensen. Feireisen’s 

initial conditions consist of a uniform density field, a random solenoidal velocity field 
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with a specified velocity spectrum, and a pressure field obtained by solving a Poisson 

equation. The initial turbulent Mach number used by Blaisdell et al. was M0 ~0.06. The 

initial spectrum is a tophat energy spectrum with energy between wavenumbers k0=8 and 

k0=16. (The low value of the spectrum at the right end occurs because the energy 

containing range is 168 ≤≤ k .) The computational Reynolds number was Re = 3640, 

which gave a turbulent Reynolds number ( ) 319~/Re
2

=′′′′= µερ iiT uu  and a Taylor 

microscale Reynolds number .40~/Re 1111
== µλρλ q  

The first test case run was using a 643 grid. Blaisdell et al. designated this test a label 

ia64f. The calculations were carried out to t=7.0 and the initial eddy turn-over time 

defined by ερτ /k=  was 12.3. Figure 3.6 shows the three-dimensional velocity spectra 

at t=7.0. This spectra is defined as 

∫∫ ⊗′′′′= )(ˆ)( kdAuukE ii  

Here ⊗  denotes a complex conjugate and the integrals are taken over spherical shells of 

radius k.  

The test case was rerun using a 963 grid. Blaisdell et al. called this new simulation ia96f. 

This velocity spectrum at t=7.0 can be seen in Figure 3.7. With the finer mesh the 

enstrophy spectrum is adequately resolved. The calculations are continued to t=12.0 

which is approximately one initial eddy turn-over time. The velocity spectrum at t=12.0 

develops from the tophat spectrum of Figure 3.5 into a spectrum of low Reynolds number 

turbulence. Note that there is on inertial subrange, which would be indicated by an 

extended region with 3/5~)( −kkE . The presence of an inertial subrange requires a 

separation between the length scales of the energy containing eddies and the dissipative 

eddies. Since the range of the length scales increases with Reynolds number, the number 

of grid points needed to resolve the range of length scales for such a simulation is 

prohibitive, and hence Blaisdell et al. limit their simulations to low Reynolds numbers. 

 

The Blaisdell’s DNS initial spectrum shown in Figure 3.5 is 

1. A top hat spectrum with energy in the wave number band 168 ≤≤ k  

2. 
2

0 )/(24~)( kkekkE − with k0=6 
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The initial temperature and pressure fluctuations obtained by solving a Poisson 

equation for the pressure following Feireisen (1981).  

The results corresponding to cases ia64f and ia96f in Blaisdell et al.’s study will be 

used for judging our results.  

The initial 3-d energy spectrum, E(k) used in Blaisdell’s DNS Simulation [10], for 

simulation for the 643 grid is shown in Figure 3.5. The initial parameters for the isotropic 

simulations are given in Table 3.2. 

 

Table 3.2: The initial parameters for the isotropic simulations [12] 

Case Ia96f 

Grid 963 

E0(k) 1 

( ) 2/1

0ρρ ′′  0.0 

0χ  0.0 

M0 0.06 

Re 3640 

0rmsM  0.0598 

0
ReT  318.7 

0/τft  1.0 
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3.2.2.1. Blaisdell’s DNS Simulation Curves 

Shown below are the simulations of Blaisdell et al. First the initial top hat energy 

spectrum is shown in Figure 3.5. Later the figures corresponding to 643 and 963 grid are 

shown at time, t=7 seconds. 

 
Figure 3.5: Blaisdell et al.’s (1991) Initial 3-d Energy Spectrum, E(k)  used in their DNS 

simulation for ia64f. A similar tophat spectrum shape is used for most of the simulations. 
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Figure 3.6: 3-d velocity spectrum, E(k) for ia64f at t=7, 643 grid. [10] 

 
Figure 3.7: 3-d velocity spectrum, E(k), for ia96f at  t=7, 963 grid. [10] 
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These results shown in the previous sections obtained from CBC experiment [12] and 

Blaisdell’s DNS simulation [10] will become the basis of comparison for all our 

numerical simulations and results that follow. 

  

With reference to the CBC case, there have been some simulations performed by other 

researchers available in the literature. These results are seen in the sections below.  

 

3.3.1. Knight et al.’s Results 

The decaying turbulence was simulated by Knight et al. considering the fluid to 

be inside the cube of length Lc with periodic boundary conditions on all surfaces, 

provided that the length Lc is large compared to the turbulence length scales. The cube 

dimension was taken to be Lc=43.787 cm which represents the zero-intercept of the 

polynomial fit (Figure 5.11) of the energy spectrum E(k).  

For 42 ≤ Uotcbc/M ≤ 171, the cube length Lc is significantly larger than both the 

experimental velocity integral length scale Lv given by 
4.0

0 5.3048.0 





 −=

M
tU

ML cbc
v  

and wavelength Lm corresponding to the peak in the energy spectrum E(k) as indicated in 

table below. 

 

Table 3.33: Ratio of Length Scales [6] 

UotCBC/M T Lc/Lv Lc/Lm 

42 0 41.7 3.48 

98 139.6 29.2 2.79 

171 321.6 23.2 2.09 

 

where 

Lc = Length of cube 

Lm = Experimental wavelength for peak in E(k) 

Lv = Experimental velocity integral length scale 

M = grid mesh spacing in experiment (5.08 cm) 
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tCBC = Dimensional time in experiment 

t = Dimensional time in computation 

(non-dimensionalized by L/U∞) 

 

Some of Knight et al.’s results which will be useful in comparing to our simulations are 

listed below: 

1) Decay of filtered turbulent K.E for Grid 1 (323) 

2) Decay of filtered turbulent K.E for Grid 2 (643) 

3) Turbulence energy spectrum at Uot/M = 98 for Grid 1(323) 

4) Turbulence energy spectrum at Uot/M = 171 for Grid 1(323) 

5) Turbulence energy spectrum at Uot/M = 98 for Grid 1 (323) and Grid 2 (643) 

6) Turbulence energy spectrum at Uot/M = 171 for Grids 1 and 2. 

 
 

 
Figure 3.8 a: Decay of filtered turbulent kinetic energy for Grid 1 (323 grid). CBC 

experimental data is shown in circular symbols. [6] 
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Figure 3.8 b: Decay of filtered turbulent kinetic energy for Grid 1 (333 grid). [6]         
                  
 

 
Figure 3.9: Decay of filtered turbulent kinetic energy for Grid 2 (653 grid). [6] 
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Figure 3.10 a: Turbulent energy spectrum, E(k) at Ut/M=98 for Grid 1 (333 grid). [6] 

 
 
 
 

 
Figure 3.10 b: Turbulent energy spectrum, E(k) at Ut/M=171 for Grid 1 (333 grid).  [6] 
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Figure 3.11 a: Turbulent energy spectrum, E(k) at Ut/M=98 for Grid 1 and 2. [6] 

 
 

 
Figure 3.11 b: Turbulent energy spectrum, E(k) at Ut/M=171 for Grid 1 and 2. [6] 
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Figure 3.12: Experimental data (circular symbols) of Comte-Bellot and Corrsin for E(k) 
Ut/M=42 and polynomial interpolation (solid curve) at initial non-dimensional time. [6] 

 

3.3.2. Strelets et al.’s Results 

Figures 3.13 and 3.14 show the results of Strelets et al. [22] at non-dimensional times 

Ut/M=98 and Ut/M=171. 

 
Figure 3.13: Energy Spectrum produced by Strelets et al. [22] at non-dimensional time 

Ut/M=98 for 643 grid. 
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Figure 3.14: Energy Spectrum produced by Strelets et al. [22] at non-dimensional time 

Ut/M=171 for 643 grid. 
 
 Apart from the standard results shown in section 3.2, we shall also compare our 
results shown in section 3.3.1 and 3.3.2. 
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Chapter Four 

Computer Simulation Setup and Background 
4.1. Initial Conditions 

 In the previous chapter, we have examined the initial conditions of the Comte 

Bellot and Corrsin’s case and the Blaisdell’s case. The discussion of the creation of initial 

conditions is explained in the code ‘Crecomp’. Appendix A provides details about the 

processes involved in generating initial conditions using Crecomp, but this chapter will 

discuss some aspects of the process. 

Initial conditions form the starting point for any simulation. For unsteady 

problems, initial conditions dictate how the flow behaves eventually. So the solution 

obtained at any point of time is a function of initial conditions unlike steady state 

problems. Erratic initial conditions will reflect their discrepancy in the due course. Hence 

it is necessary and important that the initial conditions are setup with proper care. 

Based on the specifications of test case, the data is fed to LESTool using the input 

file called ‘homo.inp’. The required parameters for this input file can be seen in section 

4.3.3.1. The initial energy spectrum and the grid for the simulation of homogeneous 

turbulence experiment is created using Crecomp. These input files are then given as input 

to LESTool along with homo.inp. While setting up the simulation run, we can prescribe 

for how long we would like to run the simulation. Also we can prescribe on how many 

processors we would like the code to be run. The scheme to be used and the numerical 

dissipation to be allowed are prescribed in LESTool code. After setting up the initial 

conditions right and starting the simulation, we collect the obtained output data files and 

then perform post-processing to study the details. Obviously, the run time would be 

proportional to the size of the grid and the amount of physical time we would want the 

initial conditions to be developed. Before setting up the run, we would also decide 

whether we would want to use the No Model or DES model. If we use the DES model, 

we would prescribe the required CDES value in the input file. 
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4.1.1. Blaisdell’s Initial Conditions 

 The initial conditions generated using Crecomp are used as the input for 

LESTool, the code which solves the turbulence equations. The velocity fields needed for 

LESTool are given by Crecomp in such a way that irrespective of the grid density, the 

energy spectrum produced has the same energy for all the initial spectra. The rms 

velocities are taken as the input decides the total energy under the curve. This energy is 

divided across the range of wavelengths available. Since the maximum wave number 

(kmax) in the case of 323 is 17 and is much smaller than in the case of a 963 grid where the 

kmax=49. But since the total energy has to be conserved, the peak of the lower density grid 

is seen to be located higher than the denser grid to accommodate for the excess energy 

which would be distributed across high wave numbers for the denser grids. The shape of 

the initial spectrum curve is a top-hat energy spectrum in the case of the Blaisdell’s case 

and the shape in the case of CBC’s initial spectrum is given by the experimental data 

provided by Comte Bellot and Corrsin. The initial condition in the Blaisdell’s case has 

the following characteristics. It has a zero-mean with periodic random velocity field. The 

divergence of velocity is zero. It has the shape of a Top-hat energy spectrum for the 

velocity field. The temperature and density are constant throughout the simulation. The 

RMS values are prescribed to the energy spectrum initially. The compressibility is zero. 

The shape of the energy spectrum is seen in Section 3.2.2.1. 

  

4.1.2. Comte Bellot and Corrsin’s (CBC) Initial Conditions: 

For creating the initial conditions for the CBC case, the scheme explained by 

Knight et al. [6] is followed.  

The experimental data of Comte-Bellot and Corrsin for the one-dimensional 

energy spectrum, E11 at U0t/M=42 can be approximated by the logarithmic polynomial 

4
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where E11 is in cm3/sec2 and k is in cm-1.  In isotropic turbulence, the energy spectrum 

E(k) can be obtained from E11 by  
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This yields, 
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In the Figure 4.1 we see the polynomial fit for the 1-d energy spectra, E11. The 

polynomial fit is done using simple mathematical curve fitting using the fourth order 

polynomial curve fitting. The experimental CBC data are taken as the points between 

which and beyond which interpolation and extrapolation is done to obtain the curve fit. 

The polynomial by obtained by Knight et al. [6] has the coefficients as indicated in Table 

4.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Experimental data of Comte-Bellot and Corrsin for E11(k) at Uot/M=42 

(circular symbols) and the polynomial fit produced by Knight. [6] 
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Table 4.1: Knight’s coefficients for his logarithmic polynomial fit. [6] 

 

Term Value 

α0 4.7935398 

α1 -1.3284141 

α2 -0.2146974 

α3 -0.0314604 

α4 -0.0169870 

 

4.1.3 More about initial conditions 

 Several attempts have been made to improve the initial conditions. Improving the 

initial conditions means generating initial profiles that are closer to the experimental 

initial conditions. Since the initial conditions could have an effect on the temporal 

evolution of the energy spectrum during the simulation, the closer the initial condition 

produced by LESTool is to the experimental initial condition [12] the better. The initial 

conditions are produced using Crecomp (Appendix A1). The initial spectrum, at t=0, is 

denoted as q.homo in this simulation of homogenous turbulence evolution. 

Some of these cases are described below which aid in understanding the initial conditions 

obtained. 

Figure 4.2 is a plot of all the attempts made to bring the obtained original initial 

condition curve (q.homo) closer to the CBC initial spectrum (with asterisk symbols). We 

shall make the idea conveyed in this graph clear by splitting up the idea in the plots that 

follow. The colors and symbols used will help identify the curves picked from this plot 

while discussing them separately. 
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Figure 4.2: Initial curve produced by ‘Crecomp’ for 323 grid and the polynomial fit 

produced using matlab compared with Knight’s Initial Energy Spectrum and CBC Data 

along with some scaled versions. 
 

 

 

In the Figure 4.3 we see how Knight’s non-dimensional energy spectrum 

compares to the CBC initial spectrum. As explained before the idea proposed by Knight 

will be implemented in our simulations but the idea has been modified to produce slightly 

better initial conditions as will be seen in the next plot. However both the energy spectra 

shown below in Figure 4.3 will be used for the purpose of comparison of our simulations 

for the CBC case. 
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Figure 4.3: Knight’s Initial Energy Spectrum compared with CBC Data at initial time, 

Ut/M=42. 
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In order to get better than what Knight has produced, we have used a linear curve 

fitting (will be seen in Figure 4.4) instead of a logarithmic curve fitting (Knight’s idea). 

This gives us a better initial spectrum as shown below in Figure 4.4 (compared to 

Knight’s energy spectra compared to CBC experimental data shown in Figure 4.3). This 

curve fitting is performed in matlab using a 4th degree polynomial. The comparison of the 

linear curve fit (diamond shaped symbols) made with the standard CBC initial spectrum 

(asterisk symbols) is seen in Figure 4.4. 

 

 
Figure 4.4: Initial Energy Spectrum produced using matlab compared with CBC Data at 
initial time Ut/M=42. This curve is also termed as ‘polyfit’, short for polynomial curve 

fit. 
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In the Figure 4.5 below, the same plot seen in Figure 4.4 is shown but now it is a 

log plot. We see that the comparison is very good matching the CBC data well indicating 

that the linear fit is a better match than the logarithmic fit approach of Knight. Later we 

shall see how this initial spectra will compare to the standard comparison cases after 

performing simulation using LESTool. 

 
Figure 4.5: The logarithmic plot of the same polyfit, polynomial curve fit shown in 

Figure 4.4 
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At this point it becomes important to explain the concept of scaling. Whenever the 

initial conditions (q.homo) are produced using Crecomp, it is made sure that the energy 

spectrum contains the same amount of energy as the original energy spectrum or the 

experimental energy spectrum. But we know that the kmax or the maximum wave number 

used to plot the energy spectra decreases as the grid density decreases. The total number 

of values of k representing the energy spectrum in the case of 1283 grid is 65, 49 in the 

case of 963 grid, 33 in the case of 643 grid and 17 values of k in the case of 323 grid. So, it 

is natural that if the kmax decreases as the grid density decreases, to accommodate for the 

decrease in the area under the curve of higher k value range in higher density grids, the 

lower density grid energy spectra has to be shifted up. This implies that the peak of the 

lower density grid will the highest of all among the initial spectra produced using 

Crecomp.  The initial spectra shown below as the black curve is for the 323 grid shown 

without symbols produced using Crecomp. In order to match this curve with the 

experimental initial spectrum, we could scale the energy of this 323 spectra. The scaling 

factor would be nothing but the excess area under the experimental energy spectra (CBC 

curve) beyond k=17(in the linear scale) to the right of the curve in the case of 323 grid. In 

the Figure 4.6, we see how our initial curve (in black) looks after it is scaled (in green 

diamonds). It compares well with the Knight’s initial spectrum (blue squares). Hence by 

scaling the curve, we can make the initial curve look much better in comparison. But 

would this affect the simulation is the question. As seen at the end in the latter part of the 

thesis, it does not affect much. 

 Thus after scaling we see that the produced scaled energy spectra (diamond 

symbols) is much closer to Knight’s energy spectra (square symbols). 
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Figure 4.6: Our initial energy spectrum, ‘q.homo’ produced using ‘Crecomp’ is scaled 

and compared with Knight’s Initial Energy Spectrum at initial time, Ut/M=42 
 

In the Figure 4.7, we can see the initial condition produced using the idea 

suggested by Knight (same as seen in Figure 4.3) but produced by Crecomp. Here there is 

no scaling used. Hence our curve is much higher than the CBC curve. We perform most 

of our 323 grid simulations using the q.homo curve shown. The quality (slope of the 

curve) of the results after performing the simulations is not affected whether we scale the 

initial energy spectrum curve of not. There would only be a magnitude difference in the 

results produced which can be nullified by scaling the resultant curves appropriately 

using the scaling factor explained before without any loss of generality. The scaled 

version of the initial condition curve (q.homo) matches pretty well with Knight’s 

spectrum (seen in Figure 4.6), especially when we take the higher density initial spectrum 

(say 963 grid-will be seen later). What is shown below is for the 323 grid. We shall see 

that as long as the energy spectrum slope matches the actual slope (CBC spectrum slope), 

the simulation should run fine. This means that both the scaled version and the non-

scaled version of the initial energy spectrum will not have any difference in the energy 
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spectrum slope at t=7 after performing the simulation. We are mainly interested in 

comparing the slope of the energy spectrum after we evolve in time. Thus by scaling, we 

will be comparing the slopes of the curves without any interference of initial magnitudes 

under the energy spectrum. It is important to compare the shape of the energy spectrum 

rather than the overall magnitude of energy under the curve. Specially, the shape of the 

curve after the peak of the energy spectrum is what we would be comparing. So by 

scaling the curve, we can appropriately compare the slopes of the simulations with other 

simulations as well as the experiment. 

 
Figure 4.7: Our initial energy spectrum, ‘q.homo’ produced using ‘Crecomp’ is 

compared with Experimental CBC Initial Spectrum at initial time, Ut/M=42 
 

Once we produce our initial energy spectra, we go ahead and run all our 

simulations. Apart from mainly using the above initial condition (q.homo) for 

simulations, we have also tested with a variation in initial conditions using the 

polynomial fit to see how our results vary. These simulation case can be seen later in the 

results section. 
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4.2. Parameters Setup 

The input file detailed below is used to generate the initial conditions using Crecomp. 

 

&statistic_nml iseed=12345678 / 

&domain_nml ni=64, xbegin=0.0, xend=6.283185 / 

&initial_nml 

 r_mean=1.0, t_mean=1.0, u_mean=0.0, v_mean=0.0, w_mean=0.0, 

 r_rms2=0.0, t_rms2=0.0, u_rms2=0.000040333, v_rms2=0.000040333, w_rms2=0.000040333, 

 chi=0.0, spectrum_type=2/ 

&fluid_nml gamma=1.4, rgas=0.714285614286 / 

!&exponent_spec al0=6.00 / 

&topHat_spec  kstart=8, kend=16 / 

 

4.2.1. Blaisdell’s Case 

Most of the parameters in the input file seen in section 4.2 are self explanatory 

though some more explanation will be given below. In the above input file, the 

spectrum_type=1 corresponds to the Blaisdell’s case and spectrum_type=2 corresponds 

to the CBC case. Hence we would run the Crecomp.exe available from Crecomp with the 

corresponding parameter to obtain the desired initial spectrum.  

 

4.2.2. CBC Case 

Our cube length in LESTool is π2  hence our non-dimensional length scale is 

given by L= π2 . The two quantities which we would focus on non-dimensionalising in 

the input file ‘homo.inp’ are velocity, U and viscosity, mu_ini. From the CBC 

experiment, the viscosity, ν = 1.494117647x10-5 m2sec-1. Also, the velocity is known to 

be U = 10msec-1.  

 

4.2.2.1Explanation of the velocity parameters 

2 2 2 30.011
ˆ 1.0

rms rms rms rms
t

u v w uM
a∞

+ +
= = =



 51

Thus we have, urms
2 = 4.0333x10-5 cm2sec-2. The turbulent mach number in this case is 

given by Mt=0.011. The definition of Mach number gives us the root mean square 

velocity which can be used to define the energy spectrum in the input file for Crecomp. 

Since we deal with homogeneous turbulence, urms
2 = vrms

2 = wrms
2 as seen in the cbc.inp 

file [4.2]. 

 

4.2.3. LESTool Parameter study 

This section focuses on two aspects: 

1. Obtaining all the initial condition parameters to complete the input file, homo.inp. 

2. Obtaining the initial condition file, q.homo using Knight’s polynomial with 

details of non-dimensionalization. 

A typical input file for LESTool is shown in Figure 4.8. Before we run our 

simulations, we have to input the data in the below input file correctly based on the case 

and criterion we choose. The critical parameters below are given an explanation. 

 
Figure 4.8: A typical example of input file, ‘homo.inp’ used in LESTool simulations 
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So the parameters that we would need to run any given case in the in the initial file 

homo.inp are rgas, rho_ini, u_ini, T_ini and mu_ini. 

 

4.2.3.1. Parameter determination 

• The parameter, ‘rho_ini’ is defined as 1.0. 

• Also, T_ini is defined as 1.0. 

• The parameter, ‘rgas’ is given by rgas = 1/γ as the sound speed is defined as 1.0 

and T_ini is defined as 1.0 and the ratio of specific heats for air is  γ = 1.4. Thus, 

rgas = 1/1.4 = 0.714285714286. 

• The parameter, ‘u_ini’ is taken the way Knight et al. define it. Knight et al. define 

the speed of sound as 1/10 the regular speed of sound. So the turbulent Mach 

number, 

Mt =10*MCBC = 0.011. 

  Since, the speed of sound is defined as 1.0,  

u_ini = 0.011 

• The parameter, mu_ini is obtained as follows:  
1

1

( ) ( )Re

( ) (1)(1)

K s us us

CBC us

K s

CBC us

a k a L

a k

ν ν

ν ν

−

−

= =

=> =
 

Thus we get the viscosity in the LESTool simulation as shown below. 

1 1

1 2

1 2

6 1 1

( ) Re ( )

(10 )(5.08 10 )
(34000)(34.2 )(6.96889 10 )
6.268953951 10

CBC CBC CBC
us

K s K CBC K s K

U M
a k a k

ms m
ms m

kgm s

νν − −

− −

− −

− − −

= =

×
=

×

= ×

 

where subscript ‘us’  refers to the simulation performed using LESTool, subscript ‘CBC’ 

refers to CBC experiment and subscript ‘K’ refers to Knight et al.’s simulation. 

 

Thus the parameter for viscosity in the LESTool input file, mu_ini=0.000006268953951 

is obtained. 
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4.3. Machine Configuration 

To do a detailed analysis of homogeneous turbulence modeling using DES, 

efficient coding with a probable extension to MPI platform to enable multiprocessing for 

optimization of time, proper generation of initial conditions, and use of different grid 

densities and appropriate manipulation of DES parameters is necessary. Keeping this in 

mind the grid densities that are considered are 323, 643, 963 in the CBC case and 323, 643, 

963 and 1283 grid in the Blaisdell’s case. The motive behind selecting these grid densities 

for each of the cases will be explained later. The numerical schemes that have been 

adopted are 5th order upwind scheme and 6th order central scheme. The code has been 

mainly run on UTA, 8 250 MHZ IP27 processors, MIPS R10000 Processor Chip, an 

IRIX based SGI machine. The 963 and higher grid cases have been run on the resources 

supplied by NCSA. Some computations have also been done on the LINUX Platform 

Clusters.  

  Typically, it takes about  60-65 hours to run the 643 No Model (MILES) case until 

time, t=12 on UTA, whereas the DES cases take about 35-40 hours more time. The 963 

take a very large amount of time when run of UTA and hence the option of running those 

cases on UTA is ruled out. These cases have been run using the NCSA computing 

resources on the IRIX platform. Typically each case takes about week to finish. The 1283 

cases take very long time. These too have been run on the NCSA machines and took 

about a month to finish. Because of the amount of time that it takes, the 1283 case has 

been restricted only to the No Model case. Also, the 963 case also has been restricted to 

the important cases, whereas the 643 cases have been run liberally. 

 

4.4. LESTool 

LESTool has been developed at University of Kentucky, Lexington. Originally 

built specifically for turbomachinery applications, LESTool has now been modified to 

apply to many different CFD simulations, including fields beyond aerospace and 

mechanical engineering. LESTool is designed to be a comprehensive platform, and is 

continuously adapted for new developments in turbulence-transition modeling, 

computational numerics, and computer science. The code is portable to most parallel 
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systems, based on standard FORTRAN90, OpenMP, and MPI.  Complex engineering 

flows are simulated using high-order numerical schemes and Chimera overset grids to 

solve the time-depended, three-dimensional Navier-Stokes equations. LESTool has been 

optimized for SGI multi-platforms, leading to high floating-point performance and good 

scaling characteristics.  

 

4.5. Post Processing 

The post processing is done using ‘grace’. Grace is a WYSIWYG 2D plotting tool 

for the X Window System and Motif. Grace runs on practically any version of Unix-like 

OS. As well, it has been successfully ported to VMS, OS/2, and Win9*/NT/2000/XP 

(some minor functionality may be missing, though).  

The application is mainly used to plot the energy spectrum curves and energy 

decay curves. It has many features including curve fitting, transformations, integration 

etc. 
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Chapter 5 

Results 
5.1. Introduction 

In this section, we shall include all primary results that meet our objectives. As 

indicated earlier, the two test cases are the CBC case and Blaisdell’s case. Hence this 

chapter is divided into two sections dealing with each of the test cases.  

In exploring the behavior of Detached Eddy Simulation (DES) model, we shall 

specifically target the effects of 

a. Reynolds number 

b. Grid Density 

c. Grid sensitivity parameter, CDES 

We shall also see the effect of numerical dissipation and the variation of the 

numerical scheme used. As listed, results of each of the two cases will follow. 

 

5.2. CBC Case 

5.2.1. Generation of Initial Conditions 

Once the cbc.inp (section 4.2) input file for Crecomp (Appendix A) is given, the 

initial conditions at non-dimensional time Ut/M=42 can be generated. The initial 

conditions generated using Crecomp for the CBC case are shown in Figures 5.1, 5.2 and 

5.3. These figures correspond to three cases with grid densities of 323, 643 and 963. These 

initial condition (also referred to as q.homo) curves are compared to Knight et al.’s initial 

condition (E.dat) in each of the plots. In addition, the areas under each of the curves, 

representing the total energy in each case, is presented. Knight et al.’s initial condition 

curve is produced by the logarithmic polynomial fit explained in Chapter 3. These Knight 

et al.’s polynomial fits curves are produced for each of the grid densities of 323, 643 and 

963 with the largest wave number (kmax) equal to 17, 33 and 49 respectively. As explained 

previously, the initial condition q.homo produced by Crecomp tries to keep a constant 

amount of theoretical energy under the curve irrespective of kmax. This is because the rate 

of energy decay is a function of total energy and not the energy vs. k spectrum. So 

irrespective of the grid density, Crecomp make sure that the total energy under the energy 

spectrum is maintained.  In this attempt, the greater the value of kmax, the more complete 
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is the representation of the energy and therefore the initial curve is closer is the curve to 

the experimental curve. Hence we see that as the grid density increases, q.homo matches 

more closely with Knight et al.’s curve (E.dat). Hence the difference between the 

quantitative areas under the curve in Figure5.3 is the least among the three figures 

considered. 

 
Figure 5.1:  Energy Spectrum produced by ‘Crecomp’ for 323 grid at non-dimensional 

time Ut/M=42. Comparison shown with Knight et al.’s Initial Energy Spectrum 
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Figure 5.2:  Energy Spectrum produced by Crecomp for 643 grid at non-dimensional 

time Ut/M=42. Comparison shown with Knight et al.’s Initial Energy Spectrum. 
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Figure 5.3: Energy Spectrum produced by Crecomp for 963 grid at non-dimensional time 

Ut/M=42. Comparison shown with Knight et al.’s Initial Energy Spectrum. 
 

Figures 5.1, 5.2 and 5.3 each have four curves: 

a. The initial condition curve (q.homo) using Crecomp 

b. Components of q.homo – E1(k), E2(k) and E3(k) 

c.   Knight et al.’s initial curve (E.dat) whose method we have incorporated in 

generating the initial conditions. 

We can see that as the grid density increases from the 323 curve to the 963 curve 

(q.homo), the curve approaches Knight et al.’s initial condition and matches better. To 

produce the initial conditions curve (q.homo), the method proposed by Knight et al. 

(1998) has been used. A logarithmic polynomial fit through the experimental points of 3-

d energy spectrum taken from CBC paper [12] has been used, and hence it makes sense 

that as the grid density is increased, the curve matches the Knight et al.’s initial spectrum 

better because we essentially follow the same approach suggested by Knight et al. while 

producing these initial conditions using Crecomp.  

The energy under ‘q.homo’(LESTool initial condition) produced by Crecomp is  
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 5.864 x 10-5 m2sec-2 for the 323 grid case from Figure 5.4 and the energy under Knight et 

al.’s polynomial curve (E.dat) is 4.031 x 10-5 m2sec-2. Similarly, these values of energies 

for the 643 and 963 grids can be seen from Figures 5.5 and 5.6. The energy difference 

between the two curves (q.homo and Knight et al.’s curve, E.dat) gets smaller as the grid 

density increases. In fact, it actually approaches the energy under Knight et al.’s curve 

(E.dat) as we move from Figure 5.4 to 5.6. And it can also be seen that the energy under 

E.dat also approaches some value which is the exact theoretical value that is supposed to 

be under the curve. This can be calculated mathematically as seen in the next section. 

 

 
Figure 5.4: Comparison of Energy under the initial curve produced by ‘Crecomp’ for 323 

grid and Knight et al.’s Initial Energy Spectrum 
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Figure 5.5: Comparison of Energy under the initial curve produced by ‘Crecomp’ for 643 

grid and Knight et al.’s Initial Energy Spectrum 
 

 
Figure 5.6: Comparison of Energy under the initial curve produced by ‘Crecomp’ for 963 

grid and Knight et al.’s Initial Energy Spectrum 
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5.2.2. Mathematical interpretation of energy under the curve 

The total energy under the energy spectrum is defined by  

In the 323 grid, there are only 17 grid points to define the energy spectrum and 

hence kmax=17.  In the case of 643 initial energy spectrum kmax=33 and in the case of 963 

grid, kmax=49. If kmax is high the span of the curve along the k axis (horizontal axis) will 

increase. Theoretically, as kmax tends to infinity, the energy under the curve will converge 

to 6.04995x10-5 m2sec-2 as calculated above.  

The initial energy spectra, be it 323, 643 or 963 always tries to hold the specified 

amount of theoretical energy (6.04995x10-5 m2sec-2) under the curve. But kmax for 323, 

643 or 963
 is different (17, 33 and 49 respectively). So to maintain the same energy under 

the curve, the curve in the case of 323 rises up to accommodate for the lower kmax. Hence 

as seen in Figure 5.4, q.homo in the case of 323 is situated much above the Knight et al.’s 

initial condition. However, as seen the total amount of energy is actually held up well in 

the case of higher density grids as the discreteness decreases. Thus, eventually as the grid 

density increases to a high value, q.homo converges with Knight et al.’s initial curve 

(E.dat) which in turn attains the theoretical amount of energy under it. But for the 

purpose of simulation, the way the 323 is constructed and the amount of energy it holds is 

very reasonable to obtain good results. Also, it will be seen in this chapter in the section 

5.2.10 (Effect of Scaling) that the initial shape of the curve is more important in deciding 

how good our results will be rather than the amount of energy it holds. Hence as seen in 

Chapter 4 in section 4.1.3, there have been various attempts to improve the shape of the 

initial condition spectrum and match it in the best possible way with the experimental 

CBC initial spectrum. 

 

5.2.3. Simulations Tree 

All our simulations are performed using LESTool. To observe the behavior of the 

DES model and the trend that each of the cases follows many simulations were 

performed. The simulations run with respect to the CBC case are shown in Figure 5.7. 

2 2 2
2 5 2 23 6.04995 10 sec

2 2
rms rms rms

rms
u v wk u m− −+ +′ = = = ×
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These included cases with three kinds of grid densities 323, 643 and 963. Each of these 

cases has been tested with multiple dissipation rates. Also whenever the DES model is 

incorporated, the CDES has been varied over a wide range wherever possible up to 

CDES=0.10 to 2.00.  
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Figure 5.7: Simulations run with respect to the CBC case. 
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5.2.4. Decay Results 

The decay of turbulent kinetic energy with time is very useful to us in interpreting 

the rate of change of dissipation with time. This would help us know how the model is 

behaving. If the dissipation rate is very low then in most cases it turns out that the model 

becomes unstable. So a minimum amount of dissipation is added to make the model 

stable. But adding too much of dissipation would make the model deviate from reality. 

Various energy decay plots resulting from different simulation cases are presented in 

Figure 5.8. The variables considered while running these cases are the grid density, the 

numerical dissipation of the model and the grid sensitivity parameter of DES, CDES. 

Simulations performed using LESTool are compared with experimental CBC and Knight 

et al.’s results. The experimental CBC result only provides us with three points (shown in 

solid green circles) to compare our dissipation rate. These three points represent the 

results at non-dimensional times Ut/M=42, 98 and 171. Among Knight et al.’s results, 

only his best fit decay curve along with his most deviating curves have been shown to 

compare the results produced by LESTool with results obtained from CBC experiment 

and from the literature. Since this plot is cluttered with many curves, useful content shall 

be extracted out and discussed separately.  
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Figure 5.8: Decay curves showing the decay of turbulent kinetic energy, E(k) with 

respect to time t for various values of CDES,, dissipation rates and grid with the 
experimental CBC result. 
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 In the Figure 5.9 below, the change in the turbulent kinetic energy with time or the 

dissipation rate for different cases of dissipation can be seen. The higher the dissipation 

rate (square symbols), the steeper is the initial slope (starting from t=0 at the origin) and 

when the dissipation is small, the dissipation rate is also small. Hence the dissipation rate 

seems to be proportional to the numerical dissipation at initial time non-dimensional time 

Ut/M=42 or physical time t=0. In addition, higher the dissipation rate, the faster is the 

flattening of the curve at longer times (around Ut/M=171). The 100% dissipation curve 

flattens faster than 20% dissipation curve. Here the dissipation rate seems to become 

inversely proportional to the numerical dissipation of the curve after some dissipation of 

energy initially. 

 

 

 
Figure 5.9: Comparison of decay curves with different dissipation rates with the 

experimental CBC Decay points. 
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Intermediate dissipation simulations (dissipation between 20% and 100%) may 

follow intermediate patterns and the trend that is expected (lying between the two curves 

in Figure 5.9). This motivates us to try the 50% dissipation to match the experimental 

CBC points (green circles above) better. As seen in Figure 5.10, the 50% dissipation case 

actually behaves as expected. But this would still be the No Model case with 50% 

dissipation. As seen in Figure 5.8 above, for the DES case when the CDES is increased, the 

initial dissipation rate increases and later the dissipation rate remains almost the same as 

other cases with different values of CDES. This places the curve with a higher CDES below 

the curve with a lower CDES and running parallel to it along the curve. Thus when a CDES 

of 0.65 is incorporated in the DES model of the corresponding No Model case, it matches 

the experimental CBC points (solid green circles) very well as seen in section 5.2.6.  

 

5.2.5. Best Fit Decay 

As seen below in Figure 5.10, the decay curves match the CBC experimental 

decay points very well. We see four different curves of which one of them corresponds to 

Knight et al.’s result (red open circle symbols) and the other three are plots with grid 

densities of 323 and 643. Among the cluster of curves in Figure 5.8, these curves are the 

closest match to CBC curve as evident from Figure 5.10. It can be seen the plots with a 

numerical dissipation closer to 50% produce the best fit curves. Also notice  that these are 

also the DES model plots with a grid sensitivity parameter, CDES=0.65. As explained in 

the previous section, it is really the combination of the right amount of numerical 

dissipation and CDES which gives us the best results and in our case it is evident that the 

best fit decay curves are produced with a DES case of CDES=0.65 and  50% numerical 

dissipation. 
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Figure 5.10: Best decay curve fits shown in comparison to experimental CBC decay 

points for different grid densities and CDES values. 
 

5.2.6. Energy Spectra Results 

In the Figure 5.11, the results of the evolution of energy spectra obtained using 

LESTool are seen at non-dimensional time Ut/M=98. Results obtained using LESTool 

are compared with the CBC curve (bold stars) and with Knight et al.’s results (black and 

red diamond symbols). It is seen that 20% dissipation produces good results. Even 

Strelets [22] points out that central differencing scheme produces good results compared 

to the 5th order upwind scheme as the 5th order upwind produces too much dissipation. So 

better results are obtained as we keep decreasing the numerical dissipation. When 0% 

dissipation is reached, effectively the 5th order upwind scheme merges with the 6th order 

central difference scheme. But, in this case, LESTool goes unstable for numerical 

dissipation less than 10%. So the central scheme is run in a stable manner for this case by 

adding at least 10% numerical diffusion. The cases with 100% dissipation are the No 
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Model cases which like the MILES (Monotone Integrated Large Eddy Simulation) cases 

of Knight el al. unless they are run by the DES model. Really, all cases with No Model 

are like MILES or ILES, but the higher numerical dissipation cases should be more 

comparable to this method. The CDES corresponding to the DES case can be seen in the 

legend. Figure 5.11 gives an idea of the range of results and some of the trends followed 

by varying various parameters. However, these trends and comparisons will be discussed 

more clearly in subsequent sections and in the next chapter.  

 

 
Figure 5.11: Comparison of turbulent kinetic energy spectra results obtained using 

LESTool for various simulations at non-dimensional time Ut/M=98 with Knight et al.’s 

and CBC results. 

 

In the Figure 5.12, we see the plot of the energy spectra results obtained using LESTool 

after a time evolution of non-dimensional time Ut/M=171. As seen in the figure, the blue 

circular symbols correspond to the unscaled initial spectrum which is scaled after 

evolution through time at Ut/M=171 whereas the brown diamond symbols represents the 
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curve which has been scaled at Ut/M=42 and then evolved in time until Ut/M=171. Also 

this curve (brown diamond syymbols) has been obtained from the linear polynomial fit 

(explained in section 4.1.3) as against the logarithmic polynomial fit method of Knight et 

al. It is also seen that since both the curves in discussion merge pretty well as seen in the 

figure, it shows that comparing the curves after a simulation time of Ut/M=171, the 

scaling performed  at initial time does not differ much from the curve where scaling has 

been performed at a later time. The results look much like what they look at Ut/M=98. 

Also they consistently match with the CBC experimental results in a similar way.  

 

 
Figure 5.12: Energy spectra results obtained using LESTool compared with Knight et 

al.’s results and CBC results at non-dimensional time Ut/M=171 
 

5.2.7. Best Fit Energy Spectra Results 

In Figure 5.31, we shall compare our results obtained using LESTool  with  

1. CBC experimental data 

2. Strelets’ simulations 

3. Knight et al.’s simulations 
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As seen in Figure 5.13, the results match the CBC experimental data very well at time 

Ut/M=98. Results are shown for both 323 and 643grids. The 643 results (small purple 

circles) are slightly better than the 323 grid results (inverted red triangles). Also, we have 

seen that the initial condition of 643 matches better than the 323 initial spectrum with the 

experimental CBC initial spectrum. Hence, it is plausible that as the spectrum evolves 643 

is a better match to the CBC spectrum than the 323 grid at both Ut/M=98 and Ut/M=171 

(Figure 5.14).  

 

 
Figure 5.13: Best fit energy spectrum results compared with Knight et al.’s results, 

Spalart’s results and Experimental CBC points at Ut/M=98 for different grid densities. 

 

If we examine Figures 5.13 closely, we can see that when compared to the experimental 

CBC results (bold asterisks), both Strelets’ results and the simulations using LESTool 

(323 and 643 grid : No Model and CDES=0.65)  match very well as opposed to Knight et 

al’s results (333 and 653).  The curves corresponding to the 323 grid produced using 
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LESTool are more crooked compared to the 643 grid results. This can be attributed to the 

initial conditions and also because the grid density influences the smoothness of the 

curve. If the grid density is high the continuity between the points is better connected and 

the energy variation is better represented. Hence the 643 No Model case with 20% 

dissipation matches well with the CBC results. The Strelets results also match very well 

with the CBC curve, but the Strelets S-A case with CDES=0.65 tends to flatten out at the 

end of the curve without actually following the -5/3 slope of CBC curve. Also the Strelets 

MSST case shows a very high dissipation rate at the end of the curve and drops fairly 

quickly down without following the CBC curve. But the 643 No Model case is 

comparatively in a better position in behaving well with respect to exhibiting the -5/3 

slope and dissipating just the right amount of energy. Regarding the 323 grid results 

produced by LESTool (which can be better seen by zooming in), there are both the 

polyfit as well as the ordinary 323 result but with DES modeling. The polyfit curve, as 

explained in section 4.1.3, is a better match to the CBC initial condition. Also it can be 

seen from Figure 5.13 that in general the shape of the polyfit curve matches well with the 

CBC curve and is less crooked than the other 323 curve. Regarding the dissipation rates, 

in the No Model cases, 20% numerical dissipation seems to be just the right amount of 

dissipation in obtaining the right match to CBC curve for both the 323 and 643 grid case. 

However, when the DES model is incorporated, 10% dissipation seems to be a better 

choice. This is because DES adds some amount of numerical dissipation which increases 

the energy dissipation rate at initial time (see discussion of Figure 5.9). So a reduction in 

the numerical dissipation by adopting a 10% dissipation for the 5th order upwind scheme 

appear to be a close-to optimal balance to obtain good results.  

If we look at the results at non-dimensional time Ut/M=171 (Figure 5.14), we see that as 

explained before, 20% dissipation both for 323 grid and 643 grid is a good choice for 

numerical dissipation while simulating the results using LESTool. Also, if we look at 

Strelets’ results, both of his cases (S-A and MSST) seem to deviate slightly away from 

the CBC results at the end of the curves in both the cases. But this is not a very large 

deviation. This happens even in the case of 643 No Model case with 20% dissipation but 

then it quickly adjusts and aligns along the CBC curve by decreasing the dissipation rate 

slightly. Thus unlike the 323 grid case, which is incapable of covering the high wave 
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number (k- horizontal axis), the 643 No Model case with 20% numerical dissipation is the 

only case which actually matches so well with the experimental CBC spectrum. Again 

the relative positions of the curves and the matching with CBC curve can be seen clearly 

when the region is zoomed. As seen after a time evolution of Ut/M=98 in Figure 5.13, 

even at Ut/M=171 in Figure 5.14, the results obtained are very encouraging when 

compared to CBC experimental results, Strelets’ simulations and Knight et al.’s 

simulations. 

 
Figure 5.14: Best fit energy spectrum results compared with Knight et al.’s results, 

Spalart’s results and Experimental CBC points at Ut/M=171 for different grid densities. 

 

5.2.8. Some interesting trends 

In the following plots we see the effects of changes in 

A). CDES 

B). Dissipation 

C). Grid Density 
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In this section, only the trends of the above listed parameters will be shown.  

As seen in Figure 5.15, as CDES is increased, the dissipation rate increases. It is 

actually a more rapid change in the dissipation rate at the peak of the curve. As with other 

curves in this figure, the dissipation rate further along seems to be almost constant. This 

trend was also seen when comparing the decay curves (section 5.2.5).  There is strong 

relationship between the behavior of the change in the grid sensitivity parameter, CDES 

and the numerical dissipation. 

As seen in Figure 5.16, as the numerical dissipation is reduced from 100% to 

10%, the dissipation rate of the model is reduced. It is very obvious that this general 

behavior is observed. But unlike the grid sensitivity parameter, CDES, the change in the 

dissipation rate is not just at the peak. Once the dissipation rate decreases and the curve 

deviates at the peak, it continues to dissipate energy at that constant rate. That is the 

reason the energy spectra are not curvilinearly parallel to each other unlike the trend 

observed in the case of changing of CDES.  

Another important trend is the behavior observed when the grid density is 

changed. From the Figure 5.17, as the grid density increases from 323 to 644 cube, the 

turbulence kinetic energy dissipation rate is reduced initially at the peak in the case of the 

higher density grid. Later, both the grids exhibit almost the same dissipation rate but the 

low density grid dissipates energy at a slightly higher rate as both the curves are seen to 

be very slowly diverging. A possible explanation is that as the grid density increases, the 

inherent numerical dissipation in the model decreases. This happens because the energy 

is not captured at each and every point and since we have only discrete points, the smaller 

eddies which are filtered away in this mesh grid take away the energy. Hence this energy 

is modeled and added to the turbulence model. But the amount of discreteness decreases 

as the grid density increases, hence the dissipation added to the model keeps decreasing 

and hence since there is not as much numerical dissipation that is taking place as the 

simulation evolves.  
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Figure 5.15: The rate of change of dissipation is seen as the CDES is varied from 0.65 to 

2.00 along with the No Model case for 323 grid at Ut/M=98. 
 

 
Figure 5.16: The trend energy spectrum follows as the dissipation rate is varied from 

10% to 100% for a 323 grid at Ut/M=98. 
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Figure 5.17: The variation in energy spectrum depicted above as the grid density is 
changed from 323 to 643 for the No Model case with 100% dissipation at Ut/M=98. 
 

5.2.9. Effect of Scaling 

In the plots below, the effect of scaling is described using the following 

1. The energy spectra at Ut/M=98  

2. The energy spectra at Ut/M=171 and 

3. The decay curve 

While scaling the graph, the y-coordinates of all the points of the curve are simply 

multiplied by a scale factor. The scaling factor is a ratio of the area under our initial curve 

(q.homo) and the area below the CBC curve (cut off at kmax of q.homo). Using a scaling 

factor, q.homo has been scaled and a simulation has been made.  
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Figure 5.17: The comparison of ‘q.homo’ and ‘scaled q.homo’ that evolved thorough 

time seen at Ut/M=98. The scaling has been performed at Ut/M=42 to a 323 No Model 

case with 100% dissipation. 

 

As seen in Figure 5.17, at Ut/M=98 there is only a magnitude shift (which is 

expected) but there is no noticeable effect in the change of the slope of the curve. This 

pattern holds at time Ut/M=171 (Figure 5.18) where only a change in the magnitude is 

seen but there is no change in the actual slope of the curve. So as the curve evolves, the 

scaling performed on the initial energy spectrum, q.homo does not produce any 

significant effect on the dissipation rate. So actually, taking the results from a simulation 

with an unscaled initial condition and scaling the results at later times gives the same 

results as scaling the initial condition and running the simulation to the desired time. 

Also, when the decay curve comparison (Figure 5.19) is observed, there is no 

significant change produced by the scaling effect. There are two curves, one is the decay 

curve of a normal 323 grid with 100% dissipation No Model case and the other one is the 

decay plot of same case as the previous one but with a scaling performed on the initial 
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q.homo energy spectrum at Ut/M=42. Since both the decay curves do not shown any 

significant variance as seen in Figure 5.19 the scaling produces little effect in changing 

the dissipation rate of the energy spectrum. Thus, by scaling the initial energy spectrum 

the dissipation rate of the curve is not affected during the simulation as the curve energy 

spectrum evolves over time. Hence, it can be said that the slope of the initial energy 

spectrum is the one that has been more significant in affecting the evolution of the 

spectrum more than the magnitude of initial energy spectrum.  

 

 
Figure 5.18: The comparison of ‘q.homo’ and ‘scaled q.homo’ that evolved thorough time seen 

at Ut/M=171. The scaling has been performed at initial time, Ut/M=42 on a 643 grid, No Model 

case with 100% Dissipation. 
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Figure 5.19: The comparison of ‘q.homo’ and ‘scaled q.homo’ decay curves for 323 No 

Model, 100% dissipation case. In the case of the scaled decay curve, the scaling has been 

performed at time Ut/M=42. 

 

The preceding section has provided an overview of the simulation of CBC case using 

LESTool. It is seen how the initial conditions are produced and compared to Knight et 

al.’s simulations and CBC initial conditions with specific attention to the concept of 

energy under the energy spectrum. The various results of the energy spectra produced at 

Ut/M=98 and Ut/M=171 along with the results of energy decay plots were seen. Apart 

from this, the different trends of effect of the grid sensitivity parameter CDES, grid density 

and dissipation on the energy spectrum were seen and the effect of scaling the initial 

energy spectra q.homo were discussed. In fact, these trends will become important when 

we look at the other case of the simulation of homogeneous turbulence other than the 

CBC case. This is the Blaisdell’s case. These trends will be compared even for the 

Blaisdell’s case and the consistency will be measured which is discussed in Chapter 6.  
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5.3. Blaisdell’s Case 

Blaisdell et al. performed Direct Numerical Simulation (DNS) studies on 

homogeneous turbulence. We shall compare our results obtained using LESTool with 

their results at t=7. The Reynolds number for the case is Re=3640. Cases have been run 

with 323, 643, 963 and 1283 grids; for comparison, a 1923 grid would be a DNS grid 

comparable to Blaisdell et al. 

 

5.3.1. 643 grid results 

Figure 5.20 shows the initial energy spectrum for the 643 grid. It has a top hat 

energy spectrum as seen from the figure and also seen in the initial conditions seen in 

section 3.2.2. Using this energy spectrum, simulations varying the CDES value, grid 

density and the numerical dissipation are completed.  

 
Figure 5.20: Initial energy spectrum produced using LESTool for 643 grid. 
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Figure 5.21: (643 grid) Comparison of energy spectra for various values of CDES with 

Blaisdell’s spectra at t=7  

 

In the above figure, the Blaisdell’s DNS result is indicated by the solid black 

curve running all the way down. All the other curves with different symbols correspond 

to simulations run using LESTool for various values of grid sensitivity parameter CDES 

considered. The significance of Figure 5.21 is seen better close up in Figure 5.22.  It can 

be seen that when a 643 grid is used, the No Turbulence Model matches best with the 

Blaisdell’s result. When we look at the DES results, the curve with CDES=0.01 almost 

merges with the No Model case and Blaisdell’s curve. 

 

From Figure 5.22 (a), it can be seen that as the grid sensitivity parameter CDES 

increases, the energy dissipation rate also increases. The rate of dissipation is highest for 

CDES=2.00 as seen from the figure. Hence it has the highest slope of all the curves. It is 

interesting to note that the No Model case (MILES Case) matches well with the 

Blaisdell’s DNS curve. Hence it becomes clear that inherently, for the 643 grid, taking a 

low value for CDES would be the best choice as there is already enough dissipation needed 

to keep the simulation going in a stable manner. Increasing the value of CDES causes the 

curve to drift away from the Blaisdell’s DNS case. Also, this is a function of the grid 
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density and numerical dissipation considered. Since all these cases have a 100% 

numerical dissipation, there is no need of addition of any artificial dissipation by means 

of the DES model for this grid as seen from the figure. However, if the numerical 

dissipation were to change or if a different numerical scheme other than the 5th order 

upwind scheme is to be used, then the results might vary. Presently the 5th order upwind 

scheme has been used in this case and the CDES=0.01 is the right choice to match the DNS 

simulation result for the 643 grid. The same trend is seen in Figure 5.22 (b) where the 

Blaisdell’s case simulation of the 643 grid is shown at t=12. 

 

Figure 5.22 (a):  (643 grid) Comparison of energy spectra for various values of CDES with 

Blaisdell’s spectra at t=7. (Zoomed view) 
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Figure 5.22(b): (643 grid) Variation of energy spectrum due to CDES for Blaisdell’s case 

at t=12 

 

From Figure 5.23, we can see how the decay of the turbulent kinetic energy takes 

place in the Blaisdell’s case. The decay rate may depend on many factors including the 

initial energy, the numerical diffusion of the model, the numerical scheme used and the 

value of CDES when the Detached Eddy Simulation model is used. Decay curves have 

been plotted for various values of the grid sensitivity parameter CDES in Figure 5.23. It 

can be seen that as the value of CDES value increases, the energy decay rate also increases. 

The decay rate is lowest for the No Model case and CDES=0.01 among the cases 

considered in the figure. This trend seems to be similar to that seen previously in Figure 

5.22. It is interesting to note that the turbulent energy decay rate is almost the same for 

both the No Model case and CDES=0.01 case. Also both of these cases have displayed 

similarity in behavior when we looked at the turbulent energy spectrum evolution after 

t=7. 
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Figure 5.23:  (643 grid) Comparison of energy decay for various values of CDES with 

Blaisdell’s DNS curve 

 

From the above Figure 5.23, it can also be seen that CDES is a strong factor 

affecting the turbulent energy decay early in the simulation. After a while the rate of 

decay is almost the same for all the cases considered above. Thus, over time the turbulent 

kinetic energy decay changes, starting with a high decay rate and slowly diminishes with 

time, attaining almost a constant rate at later times irrespective of the grid sensitivity 

parameter, CDES. But it should be noted that the overall energy of the spectrum at any 

instant of time is strongly dependent on the value of CDES. As seen above, a higher value 

of CDES tends to dissipate the energy from the spectrum faster than when a lower value of 

CDES is chosen. When compared to the Blaisdell’s DNS spectra, the DNS curve is close 

to a value of CDES which is in the range of 0.40 and 0.65. It is more close to CDES=0.65 at 

later times. 

 

In Figure 5.24, we see the energy spectrum for the 963 grid. It can be seen that as the grid 

sensitivity parameter increases from CDES=0.10 to 2.00, the turbulent energy dissipation 



 85

rate increases, the trend that was observed even in the case of the 643grid results. But the 

details in comparison to the Blaisdell’s DNS curve are different with the denser grid.  

 
 

Figure 5.24:  (963 grid) Comparison of energy spectra for various values of CDES with 

Blaisdell’s DNS spectra as the reference at t=7. 

 

A zoomed version of Figure 5.24 is given in Figure 5.25, depicting the change of 

the energy spectra results as CDES increases from 0.01 to 2.00 in comparison to the 

Blaisdell’s DNS case. If we look closely, it can be seen that the CDES values of 0.65 and 

1.00 are the close matches to Blaisdell’s DNS spectra. Initially, for the lower values of k 

the CDES=1.00 is closely aligned with the DNS curve, but for higher values of k, the DNS 

spectra more closely matches the CDES=0.65 curve. Hence for the 963grid, a CDES value in 

the range of 0.65 to 1.00 would be a good value to consider for simulations.  

 

Considering the 963 results, it is worth deliberating the mechanisms causing the shifts 

from the coarser grid results. One way of looking at it is that adding CDES is like adding 

dissipation to the energy spectrum-the higher the value of CDES the more is the dissipation 

added. But apart from the CDES, there is an inherent physical dissipation which is added 
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to the model. But this inherent dissipation gets smaller as we move to higher density 

grids. This is because the higher density grids are closer to reality (or DNS resolution) 

than the lower density grids and hence less numerical dissipation needs to be added to the 

model. Eventually as the grid density gets very large there is no necessity of adding any 

numerical dissipation to the model or it would be negligible as the modeling effect would 

no longer be present at very large grid densities. 

 

 

Figure 5.25:  (963 grid) Comparison of energy spectra for various values of CDES with 

Blaisdell’s DNS spectra as the reference at t=7 (Zoomed View). 

So, it can be seen that for the same case, say the No Model Case, the 963 grid would have 

less dissipation compared to the 643 grid. This can be seen in Figure 5.25 where the No 

Model case falls above the Blaisdell’s DNS curve since it has relatively higher energy 

because of the lower inherent dissipation. So as seen from the results, the CDES value 

close to and greater than 0.65 would be a better choice while using the Detached Eddy 

Simulation model for the 963 grid, while the No Model case is the best choice for the 

coarser grid. 
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5.3.2. 963 grid results and comparisons 

Looking closely at the results of 643and 963 in comparison to Blaisdell’s DNS case, 

Figure 5.26 and Figure 5.27 give us a good insight.  

 

 

Figure 5.26: Comparison of energy spectra of 643 and 963 for CDES=0.10, 0.65, 1.00 and 

2.00 along with the No Model case and Blaisdell’s DNS spectra as the reference. 

 

Considering only the CDES of 0.10, 0.65 and 1.00 which are close to the DNS 

results we will get to see a good range for both the grid densities considered around the 

Blaisdell’s DNS curve. 
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Figure 5.27: Comparison of energy spectra of 643 and 963 for CDES=0.10, 0.65, 1.00 and 

2.00 along with the No Model (MILES) case and Blaisdell’s DNS spectra as the 

reference. (Zoomed version of part of Figure 5.19) 

 

From Figure 5.27, it can be seen that CDES=2.00 and CDES=0.10 for the 963 and 643 grid 

results respectively deviate far from the DNS curve and hence can be safely avoided 

when the 100%  numerical dissipation is used.  As discussed earlier, the model 

dissipation and the inherent dissipation of a particular case decide the placement of the 

energy spectrum. Ultimately, we believe that as the grid density increases, the energy 

spectrum must coincide with the Blaisdell’s DNS spectra without any addition of 

modeling effect or other artificial dissipation. But when we consider the No Model Case 

where there is no addition of artificial dissipation or model dissipation, the 963 grid 

deviates from the Blaisdell’s DNS curve whereas the 643 No Model case matches well. 

So as the grid density is further increased, the energy spectrum should ultimately 

approach the DNS spectra. Hence we now look at the 1283 No model case energy spectra.  
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5.3.3. 1283 grid results and comparisons 

In the Figure 5.28, we find a summary of results for the No Model case for various grid 

densities including 1283, 963, 643 and 323 grids. Coincidentally, the 643 grid No Model 

case is the best match of all with the DNS spectra. However, as argued before the energy 

spectrum approaches the DNS spectra as the grid density is increased. The placement of 

the 323 grid is lower than the 643 grid as the artificial dissipation or the model diffusion is 

the highest in the 323 grid. But it can be clearly seen that as the grid density increases, the 

model diffusion decreases and also the inherent dissipation also reduces and hence the 

1283 grid is closer to the Blaisdell’s DNS curve compared to the 963 grid. Though the 963 

grid and the 1283 grid seem to coincide for lower values of k (horizontal axis), as the grid 

progresses the 1283 grid actually approaches the DNS curve more closely than the 963 

grid as seen from the Figure 5.28.   

 

 
Figure 5.28: Comparison of energy spectra for various grid densities with Blaisdell’s 

DNS spectra as the reference at t=7. 
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Using a 1283 grid is obviously costly and time consuming compared to using a 

lower order grid. In the Figure 5.28, we also see the results for two 323 grids in 

comparison to other results.  If dissipation is the major factor differentiating the higher 

and lower density grids, reducing the numerical dissipation for the 323 grid from 100% to 

20% should help compensate for the lack of grid points. We see from the Figure 5.28 that 

by doing this, the resultant curve of 323 grid at t=7 actually coincides with the 963 and the 

1283 No Model 100% grid results. Therefore, we can actually achieve the right 

dissipation rate of the higher order grids by reducing the numerical dissipation of the 

lower density grids.  

Alternately, one could use a central-difference scheme with a strong DES effect to 

create the necessary dissipation. Figure 5.29 presents an example of this approach, using 

the Detached Eddy Simulation scheme with a 6th order Central difference scheme on a 

323 grid with CDES=3.00. This produces the right amount of dissipation to match both the 

963 and 1283 grid results. 

 

 
Figure 5.29: Comparison of energy spectra for various grid densities with Blaisdell’s 

DNS spectra as the reference at t=7. 
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From the results obtained from the comparison with Blaisdell’s DNS simulations, it can 

be concluded that it is important that the grid be first tested before running other cases so 

that the CDES value is determined properly. As seen from the results obtained from the 

homogeneous turbulence simulation, the CDES is definitely sensitive to the choice of the 

grid density and numerical dissipation and the numerical scheme used. More studies can 

be done with higher order grids to see when (or if) grid independency would be achieved. 

An open question is whether as the grid density keeps increasing, the model (DES) would 

finally approach DNS. Based on the 1283 results, such a possibility remains open, but this 

will need to be left to future researchers with considerably more computer power. 
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Chapter 6 

Discussions 
6.1. Comparison of trends between Blaisdell and CBC Cases 

 In this report, similarities and differences between the two cases that we have 

dealt till now will be put across, LESTool simulations of Blaisdell et al.[10] and 

simulations of Comte-Bellot and Corrsin [12]. We shall also investigate if LESTool and 

DES have behaved consistently across these cases. Hence, we shall look more deeply into 

some specific aspects of each of the cases.  

In the Blaisdell’s case, we have run our cases using 323, 643, 963 and 1283 grid 

and have compared our results obtained through LESTool with Blaisdell’s DNS 

simulations. In the CBC case, we shall discuss cases run using 323, 643 and 963 grids and 

have compared our results obtained using LESTool with CBC’s experimental results and 

other standard results from the literature.  

 

6.1.1. Effect of Initial Energy Spectra 

Since we are dealing with the simulation of Homogeneous Turbulence, it becomes 

necessary that we talk about initial conditions. Initial conditions are crucial in any 

unsteady turbulence model and we shall see how they affect the model. 

Figures 6.1 and 6.2 are the initial conditions for the Blaisdell’s case and CBC 

case, respectively. It is worth noticing from the Figure 6.1 and 6.2 (a), (b) and (c) below 

that as we increase the grid density, the initial condition approaches the standard 

reference case, i.e., either the Blaisdell’s DNS or the CBC curve. This can also be 

quantitatively seen from the magnitudes of initial energy. In the CBC case, this can be 

seen very clearly quantitatively and graphically as we move from the 323 grid to 643 to 

963 grid.  

In the Blaisdell’s case, this magnitude is lower for the 643 grid (0.0017995) and 

higher for the 963 grid (0.0018034) and should ideally approach the magnitude of energy 

under Blaisdell’s DNS spectrum (0.0035084) at higher grid resolutions. As seen the areas 

under the curves are measured and we can see how close it gets to the ideal area 

(Blaisdell’s case) as the grid density is increased. This is seen in Figure 6.1 below. 
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Figure 6.1: Comparison of initial spectra with Blaisdell’s DNS spectra noticing the effect 

of grid density. 

 

Figures 6.2 (a), (b) and (c) show the initial energy spectra for the CBC case. The 

same trend seen in Blaisdell’s case is also seen here, i.e., as the grid density increases, the 

energy spectrum approaches the Blaisdell’s energy spectrum in the Blaisdell’s case and in 

the CBC case, it approaches the Knight’s spectrum. Notice that in the case of the 323 

grid, q.homo curve has an energy of 5.864x10-5 and the 643 grid curve has an energy of 

5.994x10-5 and 963 grid has an energy of 6.0344x10-5 under the curve. Also the energies 

under the Knight’s spectrum (E.dat) are 4.031x10-5, 5.267x10-5 and 5.7849x10-5 for the 

323, 643 and 963 grids respectively. Each of these curves approach the theoretical amount 

of energy (6.04995x10-5) under the curve (explained in section 5.2.2). 
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Figure 6.2 (a) 323grid initial condition 

 

 
Figure 6.2 (b) 643grid initial condition 
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Figure 6.2 (c) 963grid initial condition 

Figure 6.2: Comparison of initial spectra with Knight et al’s spectra noticing the effect  

of grid density in the CBC case: (a) 323grid (b) 643grid and (c) 963grid. 

 

Therefore in both cases the initial conditions improves noticeably if unsurprisingly as the 

grid density increases. This consistency establishes a baseline behavioral trend that will 

be seen again as we examine the effect of other parameters. 

 

6.1.2. Effect of CDES 

 Here the isolated effect of CDES is examined independent of grid density, 

dissipation or any other numerical scheme. The Figure 6.3 (a) is produced with 100% 

numerical diffusion for the 643 grid using the 5th order upwind scheme for the Blaisdell’s 

case. Figure 6.3 (b) is shown using the 323 grid for the CBC case. As seen from Figure 

6.3(a) and Figure 6.3(b), which are the Blaisdell and CBC cases respectively, CDES as 

expected acts like a dissipation factor. Consistent with the discussion in Chapter 5, as the 

CDES value is increased in each of these simulation cases, the slope of the curve increases 

and it becomes much steeper.  
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Figure 6.3(a): The effect of CDES is seen clearly in the above Blaisdell’s case. CDES 

varies from 0.01 to 2.00. 
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Figure 6.3(b): The effect of CDES is seen clearly in the above CBC’s case. CDES varies 

from 0.65 to 2.00.  This is shown for the 323 grid only for clarity. 

 

 As seen from Figure 6.3 (a) and 6.3 (b), as the value of CDES is increased, the 

same trend is observed in both the cases – Blaisdell’s case and the CBC case.  

 

6.1.3. Effect of Numerical Dissipation 

The numerical dissipation strongly affects the shape of the energy spectrum. Two 

values of numerical dissipation – 20% and 100% have been considered in each of the 

cases – Blaisdell’s case and CBC case. As the dissipation is increased, the curve tends to 

become steeper. This can be seen in Figures 6.4 (a) and 6.4 (b), as the numerical 

dissipation decreases the slope of the curve is reduced. Hence the 20% dissipation curve 

is less steep than the 100% dissipation curve in both the cases. This trend of numerical 

dissipation is consistent in both cases. 
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Figure 6.4 (a) Effect of Dissipation at t=7–Blaisdell’s Case 
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Figure 6.4 (b) Effect of Dissipation at Ut/M=98- CBC Case 

 

The above discussed trend of numerical dissipation is seen consistently in both the cases 

namely Blaisdell’s case and CBC case. 
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6.1.4. Effect of Grid Density 

Figure 6.5 (a) and (b)  illustrate that as the grid density increases, the slope of the 

curve decreases. This reduction in the slope is more prominent for lower values of k after 

the peak and later on the slope is almost the same for both the grid density curves. This is 

because as the grid density increases the artificial dissipation reduces as the modeling 

effect reduces. This extrapolates to the idea that at nearly DNS resolution, there is no 

modeling effect at all and the model purely behaves like the DNS scheme. Again, this 

effect appears to be case dependent. 

 

 
Figure 6.5 (a) Effect of Grid Density at t=7– Blaisdell’s Case 
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Figure 6.5 (b) Effect of Grid Density for No model Case at Ut/M=98– CBC Case 

 

 In the above Figure 6.5 (b), the magnitudes are not the actual ones. The curves 

have been hooked to compare the actual slopes. In other words, the peak points of both 

the curves have been joined without changing the relative position of the other points of 

the curve. This is different from the concept of scaling (explained in Chapter 5). Thus we 

see the isolated effect of grid density on the dissipation rate of the energy spectrum. 

 As seen from the results below, it can be seen that this behavior of grid 

density is very consistent in both the cases. 

 

6.2. Review of Present Work 

Computational Fluid Dynamics (CFD) has been a very useful tool since many 

decades. Many observations which were not feasible by carrying out experiments have 

been made by use of CFD. Over the years, the methods, techniques and approach has 

been improvised much to solve even complex cases. Yet, turbulence has remained one of 

the classical problems of physics still unsolved. We shall address some issues in this field 
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that need attention. This investigation has focused on the most fundamental test case in 

turbulence, that of homogeneous turbulence. We have run the Homogeneous Turbulence 

case with two different initial conditions, classified as Blaisdell’s case and CBC case. In 

the Blaisdell’s case, we have generated our initial conditions and compared our results 

with the DNS simulations of Blaisdell et al. In the CBC case, we have generated our 

initial conditions based on the benchmark experiment performed by Comte Bellot and 

Corrsin [1971]. Data in this case is specifically available at the initial and two other non-

dimensional time evolutions, Ut/M=42, Ut/M=98 and Ut/M=171. Our results have been 

compared with the experimental data. We have also made comparisons to the numerical 

results produced by other researchers specifically Knight et al. and Spalart et al. The 

results obtained in both the cases are discussed by presenting the comparison of energy 

spectra and energy decay plots with their respective reference results. 

 In the present CFD research arena, modeling is the base of simulating any 

physical flow. But we have not reached a point where we could accurately predict the 

flow. DNS has been the tool of researchers ever since. It has been very useful in giving us 

a very good estimate of the flow pattern and properties. It is still a significant method 

widely used. But the economical burden it puts on the user is not something which could 

be sidetracked. The cost of DNS computation is proportional to the Reynolds number, 

Re2.6 [18]. So for complicated flows, it becomes extremely difficult to still stick with 

DNS, even at this moment when computational power costs have slashed and 

technological advancement have given way to large scale commodity clusters capable of 

handling heavy jobs. In the case of Reynolds Averaged Navier Stokes (RANS) modeling, 

it is useful in cases which have only a mild separation of flow across the body and does a 

good job when there is no separation. But in the case of massively separated flows, it is 

known that RANS fails. Alternatively, we could use Large Eddy Simulation (LES). LES 

resolves the larger eddies and models the small scale eddies. But for boundary layer 

flows, LES resolution is not much different from DNS near the surface of the body.  

Hence computationally it’s not a widely viable method.  

 DES provides a unique blend of LES and RANS by tactically applying them at 

specific locations based on the grid spacing. Very close to the boundary we use the 

RANS model and far away from the wall we shift to the LES mode and use a subgrid 
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scale model. By using RANS instead of LES, we will be using 2000 times less number of 

cells than if we were to use the fully resolved LES mode. [18] 

The initial conditions for both these case are generated using the spectral method. 

A program called ‘Crecomp’ has been used to generate these initial conditions. In the 

Blaisdell’s case, the initial energy spectrum is a Tophat energy spectrum. This CBC 

energy spectrum shape was introduced in Chapter 4. In the CBC case, the initial energy 

spectrum has been generated adhering to the method suggested by Knight et al .[2]. Later 

other methods were presented in Chapter 4 which are modifications of this method which 

show promise of better initial condition shape. 

In the Blaisdell’s case with a Reynolds number, Re=3640, cases were run with 

643, 963 and 1283 grids. For each of the grids, a base case is run which is the No model 

case or the Monotone Integrated Large Eddy Simulation (MILES) case. This has the full 

5th order upwind scheme applied, a state we describe as 100% dissipation. Subsequent 

cases of less than 100% dissipation as well as Detached Eddy Simulation (DES) were 

then run in comparison. A 0% dissipation case corresponded to a 6th order central 

scheme, which is invariably unstable without a DES model (and often is unstable even 

with one). When we ran with the DES turbulence model, we needed to specify the value 

for the grid sensitivity parameter, CDES. One of our goals was to test the sensitivity of the 

DES model to the value of CDES. To investigate this effect, we ran cases with the value of 

CDES ranging from 0.1 - 2.0. When Spalart et al. proposed the DES model, they set the 

optimum value of CDES as 0.65, which comes from the Homogeneous turbulence 

simulation [Shur et al]. We have investigated the relevance, importance and sensitivity of 

this parameter when running the DES model with the value of CDES ranging from 0.1 – 

2.0. 

 Our present discussion is only focused on homogeneous turbulence. It goes 

without saying that studying homogeneous turbulence alone would not solve the gamut of 

problems that DES is used in. But, it is important in the sense that Detached Eddy 

Simulation (DES) in itself is thoroughly investigated. This leads us to say that the 

sensitive issues that need to be heeded to and the shortcomings in the model would be 

known. Nevertheless, we would also know how robust and efficient the model is and at 

the same time the flexibility it provides to the user would also become transparent. This is 
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critical in advanced research as not only does it save a lot of time for the user but also 

gives a direction and guidelines in framing the model suiting his requirements. For 

example, if a user can run a case which requires a very dense grid; by adopting DES, he 

could probably get the same result by using a coarser grid by choosing the right grid 

sensitivity parameter CDES, dissipation rate and the appropriate numerical scheme. Thus a  

smart model with a smart approach gives us the best results. 

Numerically, in any computation as the grid density increases the result obtained 

should converge to the true solution usually. This is because, the physical solution is 

computationally well represented and the continuity increases as the grid spacing 

decreases. The limit of the numerical solution as the grid spacing tends to zero should be 

the actual solution. Of course, the cost keeps rising, but that is a different issue. However, 

with some numerical models this may not always be true.  

 The idea in turbulence model is that to keep the simulation stable, usually there is 

artificial dissipation added to the laminar or physical diffusion which is part of any 

physical flow. This makes the model stable without diverging. The more the dissipation 

added the more stable the model is. This artificial diffusion that is added is also called 

false diffusion. It is also true that as we increase the false diffusion in the model, the 

solution deviates more from the true solution. So, it is advisable to just add the right 

amount of artificial diffusion so as keep the code from not diverging. However, it is 

critical to note that as the grid density increases, the artificial diffusion keeps decreasing. 

This happens because higher grid densities more fully resolve the eddies that govern the 

physics of turbulence. Hence it becomes a better representation of reality or the actual 

physical solution. This means that as we reach the DNS resolution, we should practically 

lose all modeling effect as there is no need for modeling at that level. 

In order to validate the DES model the following tasks were performed 

a. Literature survey 

b. Grid spacing parameter, CDES studies 

c. Grid density dependency  

d. Dissipation studies 

e. Numerical scheme effects 

f. Comparison of results with published results. 
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There was a lot of work done by many research on Homogeneous Turbulence. 

Their insight in understanding homogeneous turbulence and modeling it would help us in 

starting off at a higher stand. DES is not new now and there are a lot of research groups 

that have used DES to obtain good results. It would also help if we get an insight of their 

research work.  

 As already said, CDES studies are an important process of validating DES. Apart 

from a detailed analysis of the grid spacing parameter CDES , studies on dissipation rates 

and the numerical schemes are also made. Since LESTool is being used for all our 

simulations, we need to ascertain if LESTool is the proper tool we have in our hands or 

not. Other simulations using LESTool have been done, prior to its use on Homogeneous 

Turbulence. Hence we do not have concerns about using LESTool. Relative comparisons 

of all our cases and comparisons made with the classical and the present research going 

on would help us make useful deductions about our research. Hence we are moving in the 

right direction in tackling the problem at hand and achieving our goal. 

There are basically three types of Dissipation 

1. Dissipation due to the viscosity called ‘laminar dissipation’ 

2. Numerical dissipation  

3. Dissipation due to the model also called ‘Model Dissipation’ 

Let us go deeper into these dissipative effects and speculate how they really 

matter. When we do not use any turbulence model for our simulations, all that matters is 

the laminar diffusion which exists inherently in any simulation which has to be accounted 

for in any physical process. Also, when we use the No Turbulence Model which is 

actually called MILES ( Monotone Integrated LES), we do not have any artificial 

dissipation involved.  

The only effect that pure No Turbulence Model would have is the effect of 

laminar viscosity, which is natural, but we could decrease or increase the numerical 

dissipation to make the simulation more stable or even just to observe the trend, the way 

the model behaves.  

Truly, dissipation is a stabilizing mechanism. In fluid flows as time progresses, 

the energy decays in the form of eddies; larger eddies become smaller eddies which in 

turn break down into even smaller eddies, finally only to be dissipated by the effect of 
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fluid viscosity and converted into internal energy. Now, this natural phenomenon has to 

be imitated by a numerical model. How best we can imitate this for the various physical 

situations that may arise as the case becomes complicated decides how good the model 

is. There are various models that have been developed over time and there are still 

models evolving. Some models suit for some flow patterns or situations better than the 

other, for e.g., RANS is not so good when separation has to be predicted, DES is a better 

choice, based on some established results. What we use in our research is the Spalart-

Allmaras model or more conveniently known as the S-A model. The main parameter 

which governs this model is CDES. By tuning CDES, we are actually controlling the 

dissipation rate. Even this is artificial diffusion, which we add to the simulation, but 

more clearly, this is provided by the model and hence termed as model diffusion. It is 

important that this parameter be tuned and its significance be understood for this study.  

 There are many instances where the present researchers have worked on and made 

use of DES to study cases. Many have got decent results from their studies. But no one 

has gone to the extent of making a detailed analysis of the model and its parameters. An 

attempt in that direction as we did is certainly very beneficial and we aim to focus on 

this aspect. 

In our simulations, we have considered the grid densities so as to cover many 

aspects of our research. One important thing was to see how the model adapts and reacts 

to the change in grid density. For this we definitely had to have a gradation in grid 

density. Secondly, we also needed to confirm the concept of grid independence, that is to 

say that as we keep increasing the grid density the solution should change no more. This 

happens when we reach the DNS resolution beyond which there wouldn’t be any change 

as all the length scales would have been sufficiently resolved. But the question is, is DES 

useful if we have to use such highly dense grids. The answer is no, but research in that 

direction is necessary to confirm that. The idea of the model is that we use a grid which 

suits our budget and problem and then use an appropriate value of CDES and dissipation 

rate, choosing a proper numerical scheme to get satisfactory results without having to use 

huge resources in terms of computation and economy. 

The work that we have done is very beneficial to the research community. 

However, it doesn’t give an exhaustive analysis of the model. To do that more time and 
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testing is needed. But at this point, we have covered many aspects providing a good 

insight into the working of the model.  

Apart from working on homogeneous turbulence, this work can be extended to 

flow over a cylinder. We could use the same analysis used in homogeneous turbulence. It 

would be a good case to support and ascertain the present trend of results. 

 The limiting factors for this present research work are the time, computational 

resources and compatibility. Though, we have good computer resources, to run cases 

with grid density of 963 and higher, it is a heavy task on the IRIX(SGI) machines used 

and even on the NCSA machines it takes up a lot of time. We have excellent Linux 

clusters which could be put to use, but the MPI version of LESTool suitable for the Linux 

platform is in the process of development. So since this problem will be solved soon, we 

should have good resources to build our cases in any future study.  
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Chapter 7 

Conclusions and Future Work 
 

7.1.Conclusions and Recommendations 

A comprehensive examination along with different trials in each of the test cases has 

much to reveal. Initially, starting off on the test cases, the effect of initial conditions was 

considered. In this case, two different aspects of initial conditions are important which 

are (1) The magnitude of the spectrum, which is the value of the area under the curve. (2) 

The shape of the spectrum which is a representation of the slope of the curve. The slope 

of the curve is of great importance. It helps us in determining the decay rate and how the 

decay rate changes and also allows us to compare with other cases and study the trend of 

the simulation. 

 Based on the above observation, it has been seen that the magnitude of the initial 

condition has a strong effect, although the shape especially in the CBC case where the 

wave number is low (nearer to the peak) plays a vital role. Also, by scaling the curve, the 

effect of magnitude in the initial conditions can be nullified. But the shape of the curve is 

crucial in terms of obtaining accurate results. So an effort has to be put in obtaining a 

proper shape and magnitude in terms of the initial conditions. 

 It has been seen in both our test cases that numerical dissipation has had a very 

great impact on the quality of results. It is clear that increase in dissipation gives us stable 

results, but also introduces artificiality in the model. As seen, we have the best results 

when we have the least percentage of numerical dissipation. We have run all our cases 

including the No Model case with the 5th order upwind scheme. As we reduce the 

percentage of numerical dissipation, we approach the 6th order central difference scheme. 

Hence, as seen if we were allowed to use this scheme we would get good results. But in 

our case, some of the No Model cases get unstable when using the central difference 

scheme. Hence, the best solution is using a 5th order upwind scheme with 20% 

dissipation. This has produced very good results.  

 Though the study of high Re flow would be more interesting and useful for testing 

the DES (Detached Eddy Simulation) model, choosing a low Re (as in the Blaisdell’s 

case) also would be very beneficial in drawing many important conclusions about the 
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behavior of the model and the interdependencies of various parameters within the model 

and its implications on the results.  

 The effect of grid density has been studied appropriately within the limitations 

that were placed. It has been seen that high density grids have consistently given us good 

results and in fact better results than the corresponding low density grid results. It is 

evident and also has been explained before why this is so. The high density grid better 

represents the physical flow compared to the low density grid. In the low density grid, the 

intermediate filtered out physical quantities have to be estimated properly and it depends 

on the model how well they are represented. However, low density grids also have given 

us decent results. The contention is that, when we use a turbulence model which models 

the flow accurately taking into account the information lost with the small-scale eddies, 

we gain in many ways. First of all, if we did not have the necessity of modeling, we 

would as well use the DNS (Direct Numerical Simulation) scheme to run our cases. But 

this is not feasible and not a practical solution because of the amount of time, cost and 

resources that would be needed especially for flow with high Re numbers and 

complicated geometries. Thus modeling shows us an easy way out by optimizing all that 

are available within limits and simultaneously obtaining decent results.  

  In the present case, using the DES model, we can use the lower density grid to 

obtain very good results if we were to use the right value of CDES and the proper 

numerical scheme with the numerical dissipation that is appropriate. From the results that 

have been obtained, for most situations, it would be better to use a central difference 

scheme. But if the central difference scheme if unstable, the 5th order upwind scheme 

with a numerical dissipation of 10-20% would be ideal. The value of CDES that DES 

model could work well is in the range of about 0.2 - 0.65. Since No Model scheme has 

been giving decent results in the Blaisdell’s case for 643 grid, and since lower the CDES 

closer is the model to No Model, it is better to use a low value of CDES for coarser grids 

and a higher value of CDES for denser grids but not higher than 0.65. Also, from a series 

of observations in the CBC case, a numerical dissipation of 40-50% with a CDES of 0.65 

has given us the best decay curve results. The shape or slope of the curve was mainly 

influenced by the numerical dissipation, whereas the CDES influenced in shifting the curve 

or changing the overall magnitude of the curve. So ideally, it is a proper combination of 
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the CDES and the numerical dissipation that works out best, but as a general guideline, 

what was proposed earlier would be good enough. 

 

7.2.Future Work 

A lot of findings have been made in the present research work. But still, as always, 

there is scope for improvement by way of development of better models and better 

propositions. The present research has been limited to the case of homogeneous 

turbulence investigating the DES model. But LESTool can actually be used to handle 

many more test cases. A consistency in all of these research results would mean a more 

stable code, reliable results and would help in getting affordable solutions. LESTool is 

known to have given good results for channel flow based on an earlier work at University 

of Kentucky, Lexington. DES could be implemented into it and the results could be 

assessed quickly to gain a better perspective. Also, as an extension to the present work, 

the flow over a cylinder can be considered and studied for different Reynolds numbers. 
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Appendix A 

Crecomp 
 

The program Crecomp is mainly intended to create the initial conditions for 

homogeneous turbulence. It creates the velocity, density and temperature fields with a 

prescribed energy spectrum in Fourier space. For creating a divergence free energy 

spectrum, first the fields are initialized with random numbers. Then the Fourier 

transformation of the velocity components is performed and a projection onto a wave 

number vector computation of the compressible and incompressible velocity components 

is done. Next, the prescribed energy spectrum is computed and a back transformation is 

done. Finally, the spectrum is normalized and the data is written for LESTool.  

 The energy spectrum is defined in defined in the fashion the user desires using the 

input file. In the CBC case, the initial energy spectrum was defined using the curve fit of 

the data points taken from the CBC paper (Genevieve Comte-Bellot et al., 1971). Knight 

et al. (1991) proposed this technique of polynomial curve fitting and the method has been 

utilized along with exploring other possible ways. Here is the part of the code which 

explains the polynomial curve fitting for the generation of initial conditions. 

 

!+ the experimental spectrum by Comte-Bellot and Corrsin 

    SUBROUTINE spec_cbc(kmax, akf, spksol) 

      integer, intent(in) :: kmax 

      real(prec), intent(out) :: akf(kmax) 

      real(prec), intent(out) :: spksol(kmax) 

 

      real(prec), parameter :: L = 43.787 

      real(prec), dimension(0:4), parameter :: alpha = & 

         (/ 4.7935398, -1.3284141, -0.2146974, -0.0314604, -0.0169870 /) 

 

      real(prec) :: ak, akl, E11 

      real(prec) :: E11log(kmax), lak(kmax) 

      integer :: k 
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      do k=1,kmax 

         ak = 2.0_prec*pi*real(k,prec) / L 

         akf(k) = ak 

         lak(k) = log(ak) 

         akl = log(ak) 

         E11 = alpha(0) + alpha(1)*akl + alpha(2)*akl**2 + & 

              alpha(3)*akl**3 + alpha(4)*akl**4 

         E11 = exp(E11) 

         e11log(k) = log10(E11) 

         spksol(k) = E11*( 0.5_prec*(alpha(1) + 2.0_prec*alpha(2)*akl + & 

              3.0_prec*alpha(3)*akl**2 + 4.0*alpha(4)*akl**3)**2 + & 

              alpha(2) - alpha(1) + (3.0_prec*alpha(3)-2.0_prec*alpha(2))*akl & 

              + (6.0_prec*alpha(4) - 3.0_prec*alpha(3))*akl**2 - & 

              4.0_prec*alpha(4)*akl**3) 

      end do 

      open(nspc, file='e11.dat') 

      write(nspc, *)'# k, e11' 

      do k = 1, kmax 

         write(nspc, '(2e16.5)') lak(k), e11log(k) 

      end do 

      close(nspc) 

    END SUBROUTINE spec_cbc 
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