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Abstract of Thesis 

 
Fabrication and Characterization of Schottky diode and Heterojunction 

Solar cells based on Copper Phthalocyanine (CuPc), Buckminster 

Fullerene (C60) and Titanium Dioxide (TiO2) 

 
Organic solar cells are cheaper and much easier to fabricate than the conventional 

inorganic solar cells, but they suffer from low efficiencies due to low carrier mobilities in 

organic films.  In this study Copper Phthalocyanine (CuPc) and Buckminster Fullerene 

(C60) based Schottky diodes were fabricated on ITO coated glass substrates to study their 

performance and a study of the effect of thickness on the cell parameters of CuPc 

Schottky diodes was made.  Also, TiO2 based devices were studied to see the effect of 

TiO2 layer on the cell parameters.  The J-V curves were analyzed for series resistance, 

diode ideality factor and reverse saturation current density.  The devices were also 

characterized by SEM and XRD measurements.  

   

KEYWORDS:  C60 , CuPc, TiO2, Schottky diode solar cells, Heterojunction solar cells. 
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Chapter 1. Introduction 
1.1  Purpose 
        For many years, single crystal devices and thin film devices made of inorganic 

materials served as solar cells for industrial and household applications.  However, the 

trend in recent years has been to use devices whose manufacturing cost is less and which 

would provide decent performance.  This recent trend urged many of the researchers to 

focus on the cheaper alternative to the inorganic materials i.e., the organic solar cells. The 

purpose of this research is to gain insight into the different kinds of organic solar cells 

i.e., the homojunction, heterojunction and the dispersed heterojunction solar cells.  For 

this purpose CuPc (acceptor type) and C60 (donor type) were chosen as the basic materials 

with which the devices were fabricated. 

 

1.2   A brief history of solar cells 
        In 1839 a French physicist named Antonie-Cesar Becquerel observed that shining 

light on an electrode submerged in a conductive solution would create an electric current.  

During the same time a physicist named Edmond Becquerel found that certain material 

would produce a small amount of electric current when it was exposed to light.  This was 

described as the photovoltaic (PV) effect.  Researchers from various parts of the world 

observed this phenomenon and were trying to find a way in which this phenomenon 

could be used to generate electricity on a large scale.  They found that selenium PV cells 

were converting light to electricity.  These selenium solar cells had an efficiency of 1% to 

2%.   

       In 1941, an American scientist named Russel Ohl invented a silicon solar cell.  In 

1954, scientists at Bell Laboratories used the Czochralski process to develop the first 

crystalline silicon photovoltaic cell which had an efficiency of 4%.  In the second half of 

the 20th century the science behind the solar energy was fully understood which led to 

improvements in the PV conversion efficiencies.   

       Solar cells became a good source of electricity for satellites and were also used as 

cheaper alternatives for power lines in remote areas.  Even today, space use remains the 
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primary application of solar cells.  Solar cells could not replace the conventional means 

of generating electricity because of the large costs involved in manufacturing them.   

 

1.3   Current trends with solar cells 
 With the accelerated interest in solar cells people searched for more materials which 

exhibited photovoltaic properties with higher efficiencies and lower cost of 

manufacturing.  In the 1960’s scientists turned towards the thin film materials due to their 

low cost of production.  The thin film solar cells have reduced the cost of production of 

solar cells by a considerable amount.  Thin film solar cells eliminate the expensive crystal 

growth techniques by using closed space sublimation, sputtering and deposition 

techniques.  However thin film solar cells face some problems such as low efficiency and 

short lifetime [1].  In recent years researchers started focusing on cheaper alternatives for 

manufacturing solar cells.  This paved the way for the organic materials to enter the field 

of photovoltaics.  The first ever organic solar cell fabricated in the year 1986 [2] had an 

efficiency of 1%.  Since then the efficiency of the organic solar cells started to increase 

and as of now, stands at about 4-5%.  The efficiencies of organic solar cells are much less 

when compared to their inorganic counterparts but the ease with which they can be 

fabricated and also their cost of production makes them a good alternative [3].  Organic 

solar cells could be manufactured by printing or spraying the materials on to a roll of 

plastic.  We could even have a sheet of solar cells that could be unrolled and put on a 

roof.  The cells also could be made in different colours or even be transparent making 

them good architectural elements.   

       Organic solar cells are plagued with problems such as low efficiency and shorter 

lifetime.  Today most of the research is focused on improving the efficiency and also to 

increase the lifetime of these cells. 

 

1.4   C60 based Schottky diode solar cells 
        C60 also known as buckminster fullerene is a spherical shaped molecule which is 

used as an n-type organic semiconductor.  C60 Schottky diode solar cells with 

ITO(Indium Tin Oxide)/C60/Al structure and efficiencies of less than 104 were reported 

by Tetsuya Taima et al., [4].  They reported an open circuit voltage of 0.046 V and a 
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short circuit current of 2.77 x 102 mA/cm2.  In this thesis, an effort has been made to 

increase the efficiency of these solar cells by improving the open circuit voltage and short 

circuit current.  PEDOT:PSS(3, 4-polyethylenedioxythiophene: polystyrene sulfonate) 

was spincoated onto the ITO coated glass before the deposition of C60 to make the surface 

of ITO smooth.  Also, LiF was deposited on the C60 film before the deposition of 

aluminium contacts to protect the surface of C60 from high energy Al atoms.  The devices 

are characterized by SEM (Scanning Electron Microscopy), UV-Vis (Ultra Violet-Visible 

spectroscopy), XRD (X-Ray Diffraction) and I-V (Current-Voltage) measurements.     

 

1.5  CuPc based Schottky diode solar cells 

        CuPc stands for Copper Phthalocyanine a p-type organic semiconductor which is 

widely used because of its low cost and good photoelectronic properties [5-6].  CuPc 

Schottky diode solar cells with ITO/CuPc (100 nm)/Al structure were fabricated by C.W. 

Kwong et al., [7] and they have reported a open circuit voltage of 0.94 V, short circuit 

current density of 23.5 µA/cm2 and an efficiency of 0.00406 %.  Organic Schottky diode 

solar cells are less efficient when compared to their inorganic counterparts because of 

low carrier mobility.  In this thesis, we tried to study the effect of varying the thickness of 

the CuPc layer on the cell parameters such as open circuit voltage, short circuit current 

and efficiency etc..  As in the case of the C60 Schottky diode solar cells, PEDOT:PSS was 

spincoated on the surface of ITO coated glass before the deposition of CuPc to smooth 

out the irregularities of the ITO surface.  Also the devices were characterized by SEM, 

UV-Vis, XRD and I-V measurements. 

 

1.6   TiO2/CuPc/Al and TiO2/CuPc/PTCBI/Al solar cells  
          Titanium dioxide (TiO2) is a well known n-type semiconductor.  TiO2/CuPc 

heterojunctions with structure ITO/TiO2/CuPc (460 nm)/Au were fabricated by A. K. Ray 

et al., [8] with an open circuit voltage of 0.024 V, 0.012 mA/cm2 at an illumination of 60 

mW/cm2.  Annealed spin coated titanium dioxide films are known to produce porous 

films which can be used for the scattering of light, and thereby increasing the effective 

optical path of light.  In this thesis, an attempt has been made to reduce the thickness of 

the CuPc film to avoid the recombination of the carriers, and thus to produce better 



                                                                         4 

efficiency.  UV-Vis measurements were made to check the peaks of the absorption 

curves.  Also, SEM and I-V measurements were made to calculate the cell parameters. 
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Chapter 2. Theory 

2.1  Theory of Schottky diode solar cells 
         Depending on the work functions of the metal and the semiconductor the type of 

contact between a metal and a semiconductor can be rectifying or ohmic.  Rectifying 

metal-semiconductor contacts are used in applications that require fast switching [9-10].  

A Schottky barrier forms between a metal and a semiconductor contact in the following 

cases, 

                    1.  When Φm<Φs  and the semiconductor is p-type. 

2. When Φm>Φs and the semiconductor is n-type. 

  Figure 2.1 and 2.3 depict the energy level diagrams of the metal and a p-type 

semiconductor before and after contact and Figure 2.2 and 2.4 depict the energy level 

diagrams of the metal and a n-type semiconductor after contact. 
 

 
 
 
            
  
 
 
                
            

 
 
 
 
 
 

Figure 2.1 Energy levels of metal and a p-type semiconductor before contact. 
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Figure 2.2 Energy levels of metal and a n-type semiconductor before contact. 
 
 
                                    

                                  qΦm  -  work function of metal. 

                                  qΦs     -   work function of semiconductor. 

                                  qχ    -  electron affinity of semiconductor. 

                                  Eo    -  vacuum level. 

                                  Efm  -  metal fermi energy level. 

                                  Ef    -  semiconductor fermi energy level. 

                                  Ec    -  conduction band level. 

                                  Ev    -  valence band level. 

                    When the semiconductor and the metal are brought into contact, the electrons 

would diffuse from the metal to the semiconductor until the Fermi levels of both sides are 

aligned and the system reaches equilibrium [11]. 
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Figure 2.3 Energy levels of metal and a p-type semiconductor after contact. 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.4 Energy levels of metal and a n-type semiconductor after contact. 
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semiconductor, as the width of the sheet charge in the metal is negligible.  Light with 

energy greater than ‘Eg’ will be absorbed by the n-type and the p-type material, and the 

carriers created in the depletion region and within a diffusion length of the junction will 

be collected.  The separation of the light generated carriers across the barrier gives rise to 

the light generated current IL.   

 
2.2  Theory of Heterojunction Solar Cells 
        A heterojunction is formed between two semiconductors with different crystal 

structure, bandgap and other properties. Consider separate n-type and p-type 

semiconductor crystals.  The energy band diagram for the n and p type semiconductors 

before contact is shown in Figure 2.5.  The difference in electron concentrations between 

the two materials causes electrons to flow from n to p-type semiconductor and holes from 

p to n-type semiconductor when the two materials are brought together.  This movement 

of the carriers into the oppositely doped materials leads to a charge build up near the 

junction and a subsequent electric field.  This electric field extends from the n-side of the 

junction to the p-side.  The energy band diagram of the p-type and the n-type 

semiconductors after the contact is depicted in Figure 2.6.    

 

 

 

 

 

 

 

 

Figure 2.5  Energy levels of p and  n type semiconductors before contact. 
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Figure 2.6 Energy band diagram of a heterojunction solar cell. 
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absorbed by the n-type material and lead to generation of carriers in the depletion region 

and as well as the bulk of the material.  These separated carriers at the junction give rise 

to the light generated current IL.    
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2. The mobilities of these charges are less when compared to those of 

inorganic materials. 

3. The spectral range of absorption is relatively narrow when compared to 

the inorganic materials. 

Homojunction:  The simplest device structure for an organic solar cell is a homojunction 

which is essentially a sandwich of the organic photovoltaic material between two 

conducting contacts.  The difference in the work function of these two contacts provides 

the necessary electric field which drives the separated charge carriers towards the 

contacts.  Also the generation of separate charges occurs as a result of dissociation of 

these strongly bound excitons by interaction with interfaces, impurities or defects [16-

17].  This electric field sometimes may not be sufficient to break the excitons i.e., the 

electron-hole pair.  In this case the exciton itself travels to the contact where it breaks 

down into the constituent charges [18]. 

 

 

 

 
                                            

 
 
 
 
 
  
 
 
 

Figure 2.7 Generation of excitons in the organic semiconductor. 
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Figure 2.8 Diffusion of the exciton towards a contact. 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

Figure 2.9  Dissociation of the exciton into its constituent electron and hole. 
 

 
Heterojunction:  The heterojunction solar cells are fabricated by sandwiching the donor 

and the acceptor organic photovoltaic materials between two different electrodes.  In the 

heterojunction solar cells, electrostatic forces develop at the interface due to the 

differences in the electron affinity and ionization potential.  This electric field is strong 

and can break the photogenerated excitons if the potential energy difference is greater 

than the exciton binding energy. 
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                      HOMO – Highest occupied molecular orbital. 

LUMO – Lowest unoccupied molecular orbital. 
 

 
Figure 2.10 Donor-Acceptor heterojunction of two organic Semiconductors. 

 
2.4  Equivalent Circuit of a Solar Cell 

  To understand the electronic behavior of a solar cell, it is useful to create an 

electrically equivalent model whose components are well known.  An ideal solar cell can 

be modeled by a diode in parallel with a current source [19-22].  Since practical solar 

cells are not ideal, a series resistance and a shunt resistance are added to the model.  The 

equivalent circuit of a solar cell is shown in Figure 2.11.  

 

Figure 2.11 Equivalent circuit of a solar cell. 
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Here, Rs - series resistance associated with the device, 

          Rsh - shunt resistance associated with the device, 

          V - voltage across the device, 

          IL - light-generated current, 

          I - current through the device. 

The shunt resistance Rsh, arises from the presence of shunting paths formed between 

the layers during deposition.  The series resistance (Rs), arises from the resistance 

associated with quasi neutral regions and the ohmic contacts.  

 

2.5 Photovoltaic Parameters 
The photovoltaic parameters of a solar cell include open-circuit voltage, short circuit 

current, maximum power output, fill factor and efficiency.  

 

2.5.1 Short-Circuit Current 

   The current that flows between the two terminals of a solar cell when they are 

connected together and when light impinges on the cell is called the short circuit current.  

Short circuit current is directly proportional to the number of incident photons and is 

represented by ISC.   

 

2.5.2 Open-Circuit Voltage 

   The voltage that is developed when the terminals of the cell are isolated and when 

light impinges on the cell is called the open circuit voltage of the solar cell and is 

represented by VOC.  

 

 2.5.3 Maximum Power Output 

          The maximum power output of a solar cell is a measure of the maximum power 

that can be delivered by the solar cell. It can be calculated as Pm=ImVm, where Vm and Im 

represent the maximum values of voltage and current in the fourth quadrant of the I-V 

curve.  The point where the power delivered reaches maximum is called the operating 

point of the solar cell.   
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2.5.4 Fill Factor 

   The fill factor of a solar cell is defined as the ratio of VmIm and VocIsc and it 

describes the squareness of the I-V curve.  

                                              Fill Factor = VmIm/VocIsc                                      2.1 

 

2.5.5 Efficiency 

   The efficiency of a solar cell is defined as the ratio of the power delivered at the 

operating point and the incident power.                           

                                                           η = (VmIm/Pin)x100%                              2.2 

Efiiciency is related to Isc and Voc using fill factor(FF) as 

                                                                 η = Isc Voc FF/Pin                                     2.3 
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Chapter 3.  Experimental 
3.1  Device Fabrication 
3.1.1  Device Structures 

            Devices with structure  

                               1) Glass/ITO/C60/LiF/Al  

                               2) Glass/ITO/PEDOT:PSS/C60/LiF/Al  

                               3) Glass/ITO/PEDOT:PSS/CuPc/Al 

                               4) Glass/ITO/TiO2/CuPc/Al  

                               5) Glass/ITO/TiO2/CuPc/PTCBI/Al  

were fabricated.  Figures 3.1, 3.2, 3.3, 3.4 and 3.5 depict the structure of the solar cells 

fabricated.  ITO coated glass substrates were commercially purchased from Delta 

Technologies, Limited, Stillwater, MN.  ITO, a transparent conductor serves as the 

bottom contact to the films and the glass provides mechanical support. 

 
                            Figure 3.1 Glass/ITO/C60/LiF/Al. 
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                     Figure 3.2 Glass/ITO/PEDOT:PSS/C60/LiF/Al. 

 
  Figure 3.3 Glass/ITO/PEDOT:PSS/CuPc/Al. 
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                             Figure 3.4 Glass/ITO/TiO2/CuPc/Al. 
 
 
 

 
                       
                      Figure 3.5 Glass/ITO/TiO2/CuPc/PTCBI/Al. 
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3.1.2  Preparation of TiO2 Sol-Gel 

          TiO2 films were prepared by Sol-gel [23-24].  The reagents, namely titanium Tetra 

isopropoxide (99.999%), isopropanol (99.5%) and nitric acid (70% redistilled)  were 

procured from Aldrich.  The precursor titanium tetra isopropoxide (TTIP) was dissolved 

in isopropanol in a nitrogen environment to which deionized water and then nitric acid 

were added.  The solution was stored in a nitrogen environment after being stirred for 2 

hours.  A typical preparation of 0.1 M TiO2 solution contained 1 ml of TTIP, 0.05 ml of 

HNO3 (70% distilled), 0.1 ml de-ionized water and 32.7 ml of isopropanol.   

 

3.1.3  Substrate Cleaning    

          Prior to the fabrication of the devices the ITO coated glass substrates were cleaned 

thoroughly.  Cleaning the substrates is an essential step which is performed prior to 

spincoating the PEDOT:PSS and TiO2 films to obtain smooth and contaminant free films 

on the ITO coated glass.  Initially the substrates were cleaned with de-ionized water.  The 

substrates were then transferred to a beaker containing acetone and sonicated for about 10 

minutes.  The substrates were then cleaned again with de-ionized water.  Then, the 

substrates were again transferred to a beaker containing methanol and sonicated for 10 

minutes.  The substrates were then cleaned with de-ionized water and were finally dried 

with flowing nitrogen.  The ITO coated glass substrates were then electrically 

characterized to identify the ITO coated side by applying a small voltage on each side of 

the substrate and measuring the resulting current.  The side of the glass without the ITO 

coating  does not allow the passage of any current through it.  

 
3.1.4  Spincoating of the PEDOT:PSS film for device structures 2 and 3 

          PEDOT:PSS was purchased from Bayer.  The PEDOT:PSS films were spincoated 

onto the ITO side of the substrates using Chemat technology spin coater.  The speed of 

the spincoater was set to 4000 rpm and the duration of the spin was 40 seconds.  The 

substrates were then annealed in a Fisher-Scientific furnace at a temperature of 100oC for 

about 1 hour to dry the PEDOT:PSS films and also to increase the adhesion of the films.   
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3.1.5  Spincoating of the TiO2 sol-gel for device structures 4 and 5 

          TiO2 solution prepared using the sol-gel technique was spin coated on the surface 

of the ITO coated glass substrates.  The speed of the spincoater was set to 2000 rpm and 

the duration of the spin was 40 seconds.  The substrates were then annealed overnight in 

a Boekel Industries furnace at a temperature of 300oC to increase the adhesion of the 

films. 

 
3.1.6  Fabrication of C60 films 

          The C60 films were made by thermal evaporation of the powdered C60 obtained 

from Sigma-Aldrich.  The C60 powder was kept in a molybdenum boat and a current of 

the order of approximately 4.0 A was passed through the boat.  During the evaporation 

process, the pressure in the chamber was maintained at 1x10-6 Torr.  The substrates were 

attached to a disc at a height of 30cms from the C60 source.  The current was increased in 

steps of 0.5 A upto 4.0 A.  The pressure in the chamber is maintained at the same level all 

through the evaporation process to maintain the uniformity of the films.  The high 

vacuum in the chamber is required to avoid the vapors being deflected and also to avoid 

the oxidation of the films.  The thickness of the C60 films was monitored using a quartz 

crystal monitor.  A LiF layer was deposited on the C60 layer to protect it from high energy 

Aluminium atoms [25].    

 
3.1.7  Fabrication of CuPc films 

          The CuPc films were made by thermal evaporation of the powdered CuPc obtained 

from Sigma-Aldrich.    The powdered CuPc was kept in a molybdenum boat and a 

current of approximately 3.7 A was passed through the boat.  During the evaporation 

process, the pressure in the chamber was maintained at 1x10-6 Torr.  The substrates were 

attached to a disc at a height of 30 cms from the CuPc source.  The current was increased 

in steps of 0.5 A upto 3.7 A.  The pressure in the chamber is maintained at the same level 

all through the evaporation process to maintain the uniformity of the films.  The high 

vacuum in the chamber is required to avoid the vapors being deflected and also to avoid 

the oxidation of the films.  The thickness of the CuPc films was monitored using a quartz 

crystal monitor.  
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3.1.8  Fabrication of PTCBI (3,4,9,10-perylenetetracarboxylic bis-benzimidazole)  

          films 

          The PTCBI films were made by thermal evaporation of the powdered PTCBI 

obtained from Dr. Anthony’s lab in the Chemistry department at the University of 

Kentucky.  The powdered PTCBI was kept in a molybdenum boat and a current of 

approximately 4.2 A was passed through the boat.  During the evaporation process the 

pressure in the chamber was maintained at 1x10-6 Torr.  The substrates were attached to a 

disc at a height of 30cms from the PTCBI source.  The current was increased in steps of 

0.5 A upto 4.2 A.  The pressure in the chamber is maintained at the same level all through 

the evaporation process to maintain the uniformity of the films.  The high vacuum in the 

chamber is required to avoid the vapors being deflected and also to avoid the oxidation of 

the films.  The thickness of the CuPc films was monitored using a quartz crystal monitor.   

 
3.1.9  Deposition of Aluminium contacts 

          The aluminium contacts were made on the films by thermal evaporation of 

aluminium.  We used a tungsten basket for depositing the aluminium electrodes.  

Aluminium pellets purchased from Sigma-Aldrich were kept in a tungsten basket and the 

chamber was left pumping overnight since the current required for the evaporation of 

aluminium electrodes is high, which in turn increases the pressure in the chamber.  The 

current that was passed through the basket was approximately 4.8 A.  The substrates were 

covered with a mask of aluminium foil in which circular holes of area 0.07cm2 were 

made.  The aluminium gets deposited in these circular holes thus creating circular 

electrodes of 0.07cm2 area.  After the deposition of aluminium the chamber was left to 

cool down for about two hours and then the devices were measured for J-V 

characteristics. 

 
3.2  X-Ray Diffraction (XRD) 
        In XRD, a diffraction pattern results from the interaction of x-rays with the material.  

XRD provides information regarding the phase, structure and composition of the material 

[26].  An XRD pattern is unique for each material. 

        X-rays are diffracted by a series of planes whose orientation is defined with the 

Miller indices h, k and l when incident on a crystal.  If a, b and c are considered to be 
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axes of the unit cell then h, k and l would cut the axes a, b and c into h, k and l sections 

respectively.  The constructive interference would occur at an angle of incidence θ which 

satisfies Bragg’s law given in equation 3.1. 

                                                   2dsinθ = nλ                                                         3.1 

                       where  d is the spacing between the parallel planes  

                                   n is an integer 

                                   λ is the wavelength of the x-rays. 

        The d-spacing among the planes in the crystal corresponds to the peak intensities at 

2θ positions obtained from the XRD pattern.  By comparing with the previously 

calculated reference the indices of the planes and the phase of the material can be 

estimated.  The material can be identified by comparing with a standard set of data.           

 
3.3  Field Emission Scanning Electron Microscopy (FE-SEM)  
       In Field Emission Scanning Electron Microscopy a beam of electrons generated by a 

field emission source scans the surface of the sample.  The electrons which are generated 

in an electron gun are accelerated in a column with a high electrical field gradient.  When 

the electrons bombard the sample, back scattered electrons, secondary electrons, light, 

heat and transmitted electrons are generated.  Backscattered electrons are the ones that 

are bounced off the nuclei of atoms in the sample. Secondary electrons are the electrons 

from the sample.  An electronic signal is generated by a detector which catches the 

secondary electrons.  From the velocity and angle of the secondary electrons, the surface 

structure of the sample can be determined.  Finally the signal is processed with amplifiers 

and the image is seen on the monitor [27]. 

 
3.3.1  Sample Preparation 

          The samples are mounted on copper stubs specifically available for SEM imaging.    

The copper stubs were cleaned by sonicating them with acetone and DI water.  Later, 

they were wiped clean with kim wipes and dried in flowing nitrogen.  A graphite tape of 

dimensions 2 mm x 6 mm was cut and pasted on the copper stub.  Now the test sample is 

cut with dimensions less than the graphite tape and is firmly placed on the graphite tape.  

A conducting colloidal graphite paste is used to cover the edges of the sample by using a 
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paint brush.  Finally the samples are coated with gold before placing them in the SEM 

chamber. 

 

3.3.2  Specimen Exchange 

          The specimen exchange chamber is isolated from the main chamber so that the air 

does not enter the main chamber.  The specimen holder in the specimen exchange 

chamber has a set of grooves to hold the stub.  The specimen is placed in the required 

groove depending on the thickness and imaging requirements.  By following the standard 

procedures the specimen holder is replaced into the specimen exchange chamber.   

 

3.3.3 SEM Imaging 

         The sample under test is first focused with low magnification.  The object is then 

moved to the center of the screen and focused with high magnification.  The aperture 

align switch is turned on and the sample checked for horizontal or vertical swing.  In the 

presence of a swing the screws on the aperture holder are adjusted until the swing 

disappears.  The image is then sharpened using the X and Y stigmator controls.  This is 

done until we obtain the sharpest image. 

 
3.4  Optical Absorption 
       Optical absorption is a technique used to calculate the bandgap energy (Eg) of a 

semiconductor.  The absorption is recorded by making photons of selected wavelength 

incident on the sample under test.  A semiconductor consists of a valence band which has 

electrons and a conduction band which is empty.  When the sample is hit with photons 

the electrons absorb photons with energy higher than the bandgap (Eg) and jump to the 

conduction band as shown in Figure 3.5.  The photons with energy less than the bandgap 

(Eg) are not absorbed since they cannot supply the electrons with energy required to cross 

the bandgap.  The electrons which were initially excited and which have crossed to the 

conduction band, loose that excess energy to the lattice and reach thermal equilibrium.  

 

 

 



                                                                         23 

 

 
     
 
 
 
 

 
 
 
 
 
 

Figure 3.6 Figure depicting absorption of photons with hν>Eg. 
 
 

3.4.1  Measurement of Spectrum 
 
          ITO/PEDOT:PSS/CuPc was taken as the test sample and ITO/PEDOT:PSS was 

taken as a reference sample.  Dual beam spectrophotometer was used for the 

measurements as shown in the Figure 3.6.  Two beams of equal intensity, one through the 

test sample and the other through the reference sample were passed and the resulting 

intensities of both the beams were compared over the selected wavelength range and 

plotted as log10(Io/I) where I is the intensity through the sample and Io is the intensity 

through the reference sample [28]. 

 
 
 
  

 
 
 
 
                            Figure 3.7 UV-Vis Spectrophotometer block diagram. 
 
 
3.5  I-V Measurement Setup 
        The circuit diagram for the I-V measurement setup is shown in the Figure 3.7.  Two 

Keithley digital multimeters and a DC power supply were used in performing these 

measurements.  The measurements were recorded by a Labview software program.  
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Measurements were made within a voltage range of -1V to +1V.  I-V sweep and delay 

time were controlled with the software. 

 

 

 
 
 
                        
 

 
 
 
 
 
 
 
 

Figure 3.8 Circuit diagram of I-V measurement setup. 
 

 
        A – Ammeter used for the measurement of current through the device. 

        V – Voltmeter used for the measurement of voltage acroos the device. 

        Vsupply – Supply voltage. 

        Device – Device under test. 

The electrical characteristics of the device under illumination were measured with the 

help of a solar simulator.  The solar simulator is a rectangular box with a bulb of 

illumination 1 sun (incident power of 100 mW/cm2) at the bottom of the box and a glass 

slab on the top on which the device to be tested is mounted. 
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Chapter 4. Material Characterization 
4.1  Characterization of C60 by SEM 
       C60 is a well-known n-type organic semiconductor and is being used in the 

fabrication of organic solar cells and OLED’s.  C60 has been used in the fabrication of 

Glass/ITO/PEDOT:PSS/C60/LiF/Al and Glass/ITO/PEDOT:PSS/C60/LiF/Al solar cells. 

C60 was thermally evaporated on the PEDOT:PSS coated glass substrates.  Figure 4.1 

shows the SEM image of C60 at a high magnification. 

 

                                             

                                           
Figure 4.1 SEM image of C60 at high magnification. 

 
                                                                                                                                                                        
 

 
       The deposited film was uniform with a particle size of 30 nm.  The SEM image of  

C60 at a low magnification is shown in Figure 4.2 which confirms the uniformity of  

the film. 
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Figure 4.2 SEM image of C60 at low magnification. 

 
4.2  Characterization of C60 by XRD 

       

X-ray diffraction pattern of thermally evaporated C60
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Figure 4.3 XRD of thermally evaporated C60 film. 

 
       The X-ray diffraction pattern of the thermally evaporated C60 film shows peaks  

at 2Ө positions of 10.10 (111), 220 (222), 340(333).  The peaks at positions 230, 300,  
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350, 370, 450, 510 and 600 are produced by ITO.  

 

4.3  Characterization of CuPc by SEM 
       CuPc is a well known p-type organic semiconductor used in the fabrication of 

organic solar cells and OLED’s.  CuPc was used in the fabrication of devices  

Glass/ITO/PEDOT:PSS/CuPc/Al, Glass/ITO/TiO2/CuPc/Al and 

Glass/ITO/TiO2/CuPc/PTCBI/Al.  Figure 4.4 shows the SEM image of the thermally 

evaporated CuPc film on an ITO coated glass substrate at a high magnification. 

 

                
            

                                                                           
 
                           

Figure 4.4 SEM image of CuPc at high magnification. 

 
From Figure 4.4 it can be observed that the average particle size of the thermally 

evaporated CuPc film is around 30 nm.  Figure 4.5 shows the SEM image of the CuPc 

film at a lower magnification. From Figure 4.5 it can be seen that the CuPc film is 

uniform. 

 



                                                                         28 

                                            
 

 
 Figure 4.5 SEM image of CuPc at low magnification. 

 
 

4.4  Characterization of CuPc by XRD 
 
 

x-ray diffraction pattern of thermally evaporated CuPc
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Figure 4.6 XRD of thermally evaporated CuPc film. 
 
        The X-ray diffraction pattern of the thermally evaporated CuPc film shows peak at 

2Ө position of 6.850 as observed by Forrest et al..  The X-ray diffraction pattern of CuPc 
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film is shown in Figure 4.6.  The peaks at positions 230, 300, 350,370, 450, 510 and 600 are 

produced by ITO.  

 
4.5  Characterization of TiO2 by SEM 
         The TiO2 sol-gel prepared as described in section 3.1b was spin coated on the 

surface of the ITO coated glass substrates.  The speed of the spincoater was set to 2000 

rpm and the duration of the spin was 40 seconds.  The substrates were then annealed 

overnight in a Boekel industries furnace at a temperature of 300oC to increase the 

adhesion of the films and also for the formation of pores.  The macropores formed were 

of diameter 300 nm.  The TiO2 film was characterized to be nano crystalline in nature.  

The SEM image of the TiO2 film at a high magnification is shown in Figure 4.7 and at 

low magnification is shown in Figure 4.8.  The TiO2 particles were of size 25 nm. 

 

                                         
 

Figure 4.7 SEM image of TiO2 at high magnification. 
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Figure 4.8 SEM image of TiO2 at low magnification. 
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Chapter 5.  Optical Characterization 
5.1  Optical absorption of C60 
       The optical absorption of C60 was measured in the wavelength range of 280-800 nm.  

Figure 5.1 shows the absorption vs. wavelength plot of the thermally evaporated C60 film.  

The C60 film shows peaks of amplitude 2.2 at 350 nm, 0.75 at 450 nm as observed by 

Tetsuya Taima et al. [4].    
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Figure 5.1 Optical absorption of C60(40 nm) film. 

 
5.2  Calculation of Absorption coefficient (α) 
        Consider a sample of thickness x and let the intensity of light incident on the sample 

be Io and let I(x) be the intensity at a distance x in the sample.  The relation between δI 

the decrement in intensity at a small elemental volume δx at x and the intensity of the 

light at the distance x can be defined by equation 5.1. 

                                                  δI = -α δx I(x)                                                 5.1  

 where α (cm-1) is the absorption coefficient and it depends on the material and  

photon wavelength. 

        Solution to equation 5.1 can be obtained by integration and is given by equation 5.2. 

 
                                                          I(x) = Io exp(-αx)                                            5.2 
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                                                             α  = (1/t) ln(Io/I(x))                                      5.3 
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Figure 5.2 Plot of absorption coefficient vs. wavelength for C60 film. 

 
Figure 5.2 shows the plot of absorption coefficient vs. wavelength for the C60 film.                                    

                                                                                                                                                                        

5.3   Optical absorption of CuPc film of thickness 15 nm 
         Figure 5.4 shows the optical absorption curve of the CuPc layer of thickness 15nm 

and Figure 5.5 shows the absorption coefficient vs. wavelength plot for the film.   

 
 



                                                                         33 

Optical absorption of CuPc(15 nm) 
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Figure 5.3 Optical absorption of CuPc (15 nm) film. 

 
 From Figure 5.4 it can be observed that the CuPc film has absorption peaks at 

wavelengths of 350 nm, 620 nm and 700 nm as observed by C.Y. Kwong et al. [7].  The 

values of the arbitrary units of absorption at 350 nm, 620 nm and 700nm are 0.21, 0.19 

and 0.15 respectively.  

 
 

Plot of absorption coefficient vs. wavelength 
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Figure 5.4 Plot of absorption coefficient vs. wavelength for CuPc (15 nm) film. 
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5.4  Optical absorption of CuPc film of thickness 60 nm 
        Figure 5.6 shows the optical absorption curve of the CuPc layer of thickness 60 nm 

and Figure 5.7 shows the absorption coefficient vs. wavelength plot for the film.   
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Figure 5.5 Optical absorption of CuPc(60 nm) film. 

 

       From Figure 5.6 it can be observed that the CuPc film has absorption peaks at 

wavelengths of 350 nm, 620 nm and 700 nm as observed by C.Y. Kwong et.al. [7].  The 

values of the arbitrary units of absorption at 350 nm, 620 nm and 700nm are 0.92, 0.71 

and 0.55 respectively 
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Plot of absorption coefficient vs. wavelength
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Figure 5.6 Plot of absorption coefficient vs. wavelength for CuPc (60 nm) film. 

 
 

5.5  Optical absorption of CuPc film of thickness 80 nm 
       Figure 5.7 shows the optical absorption curve of the CuPc layer of thickness 80 nm 

and Figure 5.8 shows the absorption coefficient vs. wavelength plot for the film.   

 

Optical absorption of CuPc (80 nm)

0

0.5

1

1.5

2

2.5

3

280 320 360 400 440 480 520 560 600 640 680 720 760 800 840

Wavelength (nm)

A
bs

or
pt

io
n 

(A
bs

.)

 
Figure 5.7 Optical absorption of CuPc(80 nm) film. 
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From Figure 5.8 it can be observed that the CuPc film has absorption peaks at 

Wavelengths of 350 nm, 620 nm and 700 nm as observed by C.Y. Kwong et.al..  The 

values of the arbitrary units of absorption at 350 nm, 620 nm and 700nm are 2.2, 1.8 and 

1.2 respectively. 

 

Plot of absorption coefficient vs. wavelength

0.00E+00

1.00E+05

2.00E+05

3.00E+05

4.00E+05

5.00E+05

6.00E+05

7.00E+05

8.00E+05

280 380 480 580 680 780

Wavelength (nm)

A
bs

or
pt

io
n 

co
ef

fic
ie

nt
 (1

/c
m

)

 
 

Figure 5.8 Plot of absorption coefficient vs. wavelength for CuPc (80 nm) film. 
 
 
5.6  Optical absorption of CuPc film of thickness 100 nm 
        Figure 5.9 shows the optical absorption curve of the CuPc layer of thickness 100 nm 

and Figure 5.10 shows the absorption coefficient vs. wavelength plot for the film.  From 

Figure 5.9 it can be observed that the CuPc film has absorption peaks at wavelengths of 

350 nm, 620 nm and 700 nm.  The values of the arbitrary units of absorption at 350 nm, 

620 nm and 700nm are 2.5, 2.2 and 1.4 respectively.  
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Optical Absorption of CuPc(100 nm)
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Figure 5.9 Optical absorption of CuPc(100 nm) film. 
 

Plot of optical absorption vs. wavelength
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Figure 5.10 Plot of absorption coefficient vs. wavelength for CuPc (100 nm) film. 

 
 
5.7  Optical absorption of CuPc film of thickness 120 nm 
        Figure 5.11 shows the optical absorption curve of the CuPc layer of thickness 120 

nm and Figure 5.12 shows the absorption coefficient vs. wavelength plot for the film.  

From Figure 5.11 it can be observed that the CuPc film has absorption peaks at 
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wavelengths of 350 nm, 620 nm and 700 nm.  The values of the arbitrary units of 

absorption at 350 nm, 620 nm and 700nm are 3.5, 3.0 and 1.8 respecticely.  
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Figure 5.11 Optical absorption of CuPc(120 nm) film. 
 

Plot of absorption coefficient vs. wavelength
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Figure 5.12 Plot of absorption coefficient vs. wavelength for CuPc (120 nm) film. 
 

 
 
 
 



                                                                         39 

5.8  Optical absorption of CuPc film of thickness 140 nm 
  Figure 5.13 shows the optical absorption curve of the CuPc layer of thickness 140 

nm and Figure 5.14shows the absorption coefficient vs. wavelength plot for the film.  

From Figure 5.13 it can be observed that the CuPc film has absorption peaks at 

wavelengths of 350 nm, 620 nm and 700 nm.  The values of the arbitrary units of 

absorption at 350 nm, 620 nm and 700nm are 4.0, 3.5 and 2.0 respecticely.  
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Figure 5.13 Optical absorption of CuPc(140 nm) film. 
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Plot of absorption coefficient vs. wavelength
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Figure 5.14 Plot of absorption coefficient vs. wavelength for CuPc (140 nm) film. 

 

 
5.9   Comparision of optical absorption of CuPc films of thickness 15, 60,               

         80, 100, 120 and 140 nm. 
 
         Figure 5.15 shows the comparision of absorption curves of CuPc films of thickness 

of 15, 60, 80, 100, 120 and 140 nm.    Figure 5.16 shows the absorption coefficient vs. 

wavelength plot for the CuPc films.  As expected the absorbance of the CuPc films 

increased with the thickness of the film.   
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Optical absorption curves of CuPc thickness 15 nm, 60 nm, 80 nm, 100 nm, 120 nm, 
140 nm
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Figure 5.15 Optical absorption of CuPc films with thickness 15, 60, 80, 100, 120, 140 

                     nm. 
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Figure 5.16 Plot of absorption coefficient vs. wavelength for CuPc films with 

                            thickness 15, 60, 80, 100, 120, 140 nm. 
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5.10 Optical absorption of 4 times spin coated TiO2 film of thickness 30  

           nm.  
             Figure 5.17 shows the optical absorption of the 4 times spin coated TiO2 film of 

thickness 30 nm and Figure 5.18 shows the absorption coefficient vs. wavelength plot for 

the same film.  It can be seen from Figure 5.17 that the TiO2 film has a absorption peak 

of amplitude 0.08 at 500 nm and 0.18 at 300 nm. 
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Figure 5.17 Optical absorption of TiO2 (4 times spin coated) film. 
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Figure 5.18 Plot of absorption coefficient vs. wavelength for TiO2 (4 times spin 

                          coated) film. 
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5.11  Optical absorption of CuPc (15 nm) on top of 4 times spin coated    

           TiO2 film of thickness 30 nm. 
           Figure 5.19 shows the optical absorption of CuPc(15 nm) on top of 4 times spin 

coated TiO2 film of thickness 30 nm and Figure 5.20 shows the absorption coefficient vs. 

wavelength plot for the same film.  It can be seen from Figure 5.19 that the film has a 

absorption peaks of amplitude 0.4 at 360 nm, 0.4 at 630 nm and 0.38 at 700 nm. 
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Figure 5.19 Optical absorption of CuPc(15 nm) on top of TiO2 (4 times spin coated)  

                    film. 

 

 



                                                                         44 

            

Plot of aborption coefficient vs. Wavelength 
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Figure 5.20 Plot of absorption coefficient vs. wavelength for CuPc(15 nm) on top of 

                     TiO2 (4 times spin coated) film. 
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Chapter 6.  Electrical Characterization 
6.1  J-V Characterisitcs 
        The J-V characteristics of the devices were measured by applying a voltage across 

the device, with positive polarity to ITO and negative polarity to aluminium(Al).   

         The behavior of these devices is similar to that of an abrupt p-n junction.  The J-V 

characteristics of such devices are usually governed by the “ideal diode equation” in an 

ideal case. 

                                              J J
qV
nkTO=

⎛
⎝⎜

⎞
⎠⎟ −

⎡

⎣
⎢

⎤

⎦
⎥exp 1                                                6.1  

 

 where Jo = reverse saturation current density 

            q = charge of electron = 1.6 x 10-19 C 

            k = Boltzmann constant = 1.38 x 10-23 J.K-1 

                  n = ideality factor of the diode  

            T = Absolute temperature in degree Kelvin. 

According to equation 6.1 for an ideal diode, 

1. The diffusion and drift current (-Jo) currents balance at zero bias (V=0), canceling 

each other and resulting in an absence of net current flow. 

2. In forward bias, the barrier decreases, diffusion current increases exponentially and 

the drift current is unaltered. 

3. In the reverse bias the barrier increases, diffusion current is negligible and drift 

current is unaltered. 

In some real world cases the ideal diode equation may not be applicable due to the 

effects of series resistance, leakage current and other factors.  In such cases equation 6.1 

should be modified.      

 
6.2  Series Resistance (Rs) 
        Series resistance is the resistance caused by quasi neutral regions and the contacts 

made to the device.  In a device which shows a series resistance, the potential drop is 

attributed both to the junction and to the series resistance (Rs).  The potential drop 

associated with the series resistance (Rs) needs to be separated from the applied potential 
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so that the J-V characteristics can be corrected and the current component of the diode 

behavior is extracted.   

Equation 6.1 would then be modified to equation 6.2  
                         

                                         J J
q V JRs

nkTO=
−⎛

⎝⎜
⎞
⎠⎟ −

⎡

⎣
⎢

⎤

⎦
⎥exp

(
1                                              6.2 

 
where Rs is the series resistance and therefore the potential drop across junction is 

calculated by V-JRs.  Rs can then be calculated mathematically from the J-V 

Characteristics. 

On differentiating equation 6.2 we get, 
                                      

                                        1 = −
⎛
⎝⎜

⎞
⎠⎟

−⎡
⎣⎢

⎤
⎦⎥

Jo
q

nkT
dV
dJ

Rs
q V JRs

nkT
exp

(
 

 

So,                                   
dV
dJ

nkT
qJo

q
nkT

V JRs Rs=
−

−
⎡
⎣⎢

⎤
⎦⎥
+exp ( )                                   6.3 

 
Again, from equation 6.2 and ignoring a Jo term, we can rewrite equation 6.3 as, 
                          

                                                      
dV
dJ

nkT
qJ

Rs= +                                                      6.4 

 
      When the applied bias is high, the current through the device would also be large.  

The first term in equation 6.4 would be negligible in this case.  So at a higher bias the 

series resistance can be estimated with the slope of the J-V curve.   

                     

6.3  Ideality Factor(n) and Reverse Saturation Current Density(Jo) 
       Taking the natural logarithm of equation 6.1 we get, 

                                                    ln( ) ln( )J Jo
qV
nkT

= +                                               6.5 

 
     The slope of the above equation is q/nkT.  The ideality factor n can be computed from 

the slope of the straight line.  For an ideal diode, the value of n is 1 and the slope of the 

ln(J) vs. V plot is q/Kt.  In real situations, the value of n deviates from 1 due to processes 

such as high injection and tunneling of carriers between states in the bandgap.  The value 
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of reverse saturation current density can be calculated from the value of  y-intercept of 

the ln(J) vs. V plot. 

 

6.4  J-V Characteristics of C60(40 nm)/Al Schottky diode solar cell 
        The C60 (40 nm) Schottky diode solar cell consists Glass/ITO/C60 (40 nm)/LiF/Al.   

In this structure the C60/Al forms the Schottky junction.  Figure 6.1 shows the dark curve 

measured for device.  The thickness of the LiF (Lithium fluoride) layer deposited was 1 

nm.  LiF was shown to improve the fill factor and efficiency of the devices by Christoph 

J. Brabec et al. [18].  LiF also shields the organic layer from high energy Al atoms. 
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Figure 6.1 Glass/ITO/C60(40 nm)/LiF/Al Schottky diode solar cell dark curve. 
 
         

       The J-V characteristic was obtained by sweeping the voltage from -1 V to +1 V and 

measuring the resulting current.  The aluminium metal contacts were 0.07 cm2 in area.  

The slope of the curve at higher voltages can be approximated as the series resistance of 

the device.  The series resistance(Rs) of the curve in Figure 6.1 was calculated to be 78.06 

Ω/cm2.  The J-V characteristic was then corrected for series resistance by subtracting JRs 

from V.  Figure 6.2 shows the plot of V vs. J and (V-JRs) vs. J.   
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Series resistance corrected dark curve of C60(40 nm)/Al 
device
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Figure 6.2 Series resistance corrected dark curve for C60 (40 nm)/Al device. 
 

 
        The reverse saturation current density J0, and the diode ideality factor n, were 

obtained from the plot of ln(J) vs. V (Figure 6.3).  The value of J0 was calculated from 

the y-intercept of the tangent drawn to the ln(J) vs. V plot, and it was found to be 0.019 

mA/cm2.  The ideality factor was calculated to be 5.73.  The slope of the curve shown in 

Figure 6.1 in reverse bias conditions can be attributed to the shunting paths between the 

metal contact and the C60. 
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Figure 6.3 ln(J) vs. V plot for determining n and J0 of C60 (40 nm)/Al device dark 

                     curve. 
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       Figure 6.4 shows the J-V characteristics of the device Glass/ITO/PEDOT:PSS/C60(40 

nm)/LiF/Al under illumination.  The series resistance, ideality factor and reverse 

saturation current were computed to be 63.08 Ω/cm2, 11.2 and 0.045 mA/cm2 

respectively.   

 
C60(40 nm)/Al schottky diode solar cell light curve
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Figure 6.4 Glass/ITO/C60(40 nm)/LiF/Al Schottky diode solar cell light curve. 
 

 
       Figure 6.5 and 6.6 show the series resistance corrected and ln(J) vs. V plot  

respectively for the light curve. 
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Figure 6.5 Series resistance corrected light curve for C60(40 nm)/Al device. 
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Figure 6.6 ln(J) vs. V plot for determining n and J0 of C60(40 nm)/Al device light 

                      curve. 

 
 

        The Glass/ITO/PEDOT:PSS/C60(40 nm)/LiF/Al cell yielded a Voc and Jsc of 190 mV 

and 0.49 mA/cm2 respectively.  The power delivered was 0.021 mW/cm2 and the fill 

factor was .30.  The cell had an efficiency of 0.021 %. 

 

6.5  J-V Characteristics of C60(60 nm)/Al Schottky diode solar cell 
       The C60 (60 nm) Schottky diode solar cell consists Glass/ITO/PEDOT:PSS/C60(60 

nm)/LiF/Al.   In this structure, the C60/Al forms the Schottky junction.  It has been 

observed that the introduction of a thin layer of PEDOT:PSS on the ITO surface acts to 

smooth the surface of ITO.  Figure 6.7 shows the dark curve measured for device.   
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C60-Al schottky diode solar cell
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Figure 6.7 Glass/ITO/PEDOT:PPS/C60(60 nm)/LiF/Al Schottky diode solar cell dark  

                   curve. 

 
 

       The J-V characteristic was obtained by sweeping the voltage from -1 V to +1 V and  

measuring the resulting current.  The aluminium metal contacts were 0.07 cm2 in area.  

The slope of the curve at higher voltages can be approximated as the series resistance of 

the device.  The series resistance(Rs) of the curve in Figure 6.7 was calculated to be 0.75 

kΩ/cm2.  The J-V characteristic was then corrected for series resistance by subtracting 

JRs from V.  Figure 6.8shows the plot of V vs. J and (V-JRs) vs. J.   
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Series resistance corrected dark curve
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Figure 6.8 Series resistance corrected dark curve for C60(60 nm)/Al device. 
 

 
       The reverse saturation current density J0, and the diode ideality factor n, were 

obtained from the plot of ln(J) vs. V(Figure 6.9).  The value of J0 was found to be 0.047 

mA/cm2.  The ideality factor was calculated to be 13.   
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Figure 6.9 ln(J) vs. V plot for determining n and J0 of C60(60 nm)/Al device dark 

                      curve. 
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      Figure 6.10 shows the J-V characteristics of the device 

Glass/ITO/PEDOT:PSS/C60(60 nm)/LiF/Al under illumination.  The series resistance, 

ideality factor and reverse saturation current were computed to be 0.12 kΩ/cm2, 12.7 and 

0.013 mA/cm2 respectively.   
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Figure 6.10 Glass/ITO/PEDOT:PPS/C60(60 nm)/Al Schottky diode solar cell light 

                        curve. 

 
       Figure 6.11 and 6.12 show the series resistance corrected and ln(J) vs. V plot 

respectively for the light curve. 
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Figure 6.11 Series resistance corrected light curve for C60(60 nm)/Al device. 
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Figure 6.12 ln(J) vs. V plot for determining n and J0 of C60(60 nm)/Al device light 

                       curve. 

 
 
The Glass/ITO/PEDOT:PSS/C60(60 nm)/LiF/Al cell yielded a Voc and Jsc of 310 mV and 

0.048 mA/cm2 respectively.  The power delivered was 0.028 mW/cm2 and the fill factor 

was 0.35.  The cell had an efficiency of 0.028 %. 

 

Structure Series Resistance 
(Rs) 

Ideality Factor 
(n) 

Jo (mA/cm2) 

ITO/C60(40 nm)/LiF/Al 78.06 Ω/cm2 5.73 0.019 mA/cm2 
ITO/PEDOT:PSS/C60(60 

nm)/LiF/Al 
0.75 kΩ/cm2 13 0.047 mA/cm2 

 
Table 6.1 Results of C60 Schottky diode solar cell dark curves. 

 
 

Table 6.1 indicates the variation of series resistance (Rs), ideality factor (n) and reverse 

saturation current density (Jo) of the C60 Schottky diode solar cell dark curves.  It can be 

observed from Table 6.1 that there is an increase in the series resistance from 40 nm 

device to the 60 nm device which can be attributed to the low carrier mobility of 

PEDOT:PSS layer.  The availability of shunting paths between the metal contact and the 

ITO surface in the case of the 40 nm device and the metal contact and the PEDOT:PSS 
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layer in case of the 60 nm device can be the reason for the curves having a slope in the 

reverse bias conditions.   

 

 
Structure Rs  n Jo  Voc Jsc 

 
F.F. P. D. η 

ITO/C60(40 
nm)/LiF/Al 

63.08 
Ω/cm2 

11.2 0.045 
mA/cm2 

190 
mV 

0.49 
mA/cm2 

0.30 0.021  
mW/cm2 

0.021% 

ITO/PEDOT
:PSS/C60(60 
nm)/LiF/Al 

0.12 
kΩ/cm2 

12.7 0.013 
mA/cm2 

310 
mV 

0.48 
mA/cm2 

0.35 0.028  
mW/cm2 

0.028% 

 
Table 6.2 Results of C60 Schottky diode solar cell light curves. 

 
 

Table 6.2 indicates the variation of series resistance (Rs), ideality factor (n), reverse 

saturation current density (Jo), open circuit voltage (Voc), short circuit current (Jsc), fill 

factor, power delivered by the cell and the efficiency of the cell.  As in the case of dark 

curves the series resistance of the cells under illumination also increased due to the 

inclusion of PEDOT:PSS layer in case of the 60 nm device.  The high reverse saturation 

currents suggest the presence of physical shunting paths.  PEDOT:PSS was included to 

smooth out the irregularities in the ITO surface which in turn leads to the formation of a 

uniform C60 film.  With the increase in the thickness of the C60 layer the open circuit 

voltage (Voc) increases by 120 mV.  This increase in Voc can be attributed to the increase 

in the absorption of C60 film when the thickness is increased from 40 nm to 60 nm.  In 

case of the short circuit current (Jsc) we did not observe much change and this can be 

attributed to the increase in the series resistance from 40 nm to 60 nm device.  We 

observed an increase in the fill factor, power delivered and efficiency in case of the 60 

nm device.  The high diode ideality factors indicate several transport mechanisms like 

recombination-generation currents in the depletion region and recombination through 

interface states at the junction.     
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6.6 J-V Characteristics of CuPc/Al Schottky diode solar cells 
       The CuPc/Al Schottky diode solar cell consists of Glass/ITO/PEDOT:PSS/CuPc 

(x)/Al where x is the thickness of the CuPc layer and its values are 15 nm, 60 nm, 80 nm, 

100 nm, 120 nm, 140 nm. 

 
6.6.1  J-V characteristics of CuPc(15 nm)/Al device 

          In this structure the CuPc/Al forms the Schottky junction.  Figure 6.13 shows the 

dark curve measured for device in which the CuPc thickness is 15 nm.   
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Figure 6.13 Glass/ITO/PEDOT:PPS/CuPc(15 nm)/Al Schottky diode solar cell dark  

                    curve. 

 
         The J-V characteristic was obtained by sweeping the voltage from -2 V to +2 V and  

measuring the resulting current.  The aluminium metal contacts were 0.07 cm2 in area.  

The series resistance(Rs) of the curve in Figure 6.13 was calculated to be 7.10 kΩ/cm2.  

The J-V characteristic was then corrected for series resistance by subtracting JRs from V.  

Figure 6.14 shows the plot of V vs. J and (V-JRs) vs. J.   
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Figure 6.14 Series resistance corrected dark curve for CuPc(15 nm)/Al device. 
 
 
Figure 6.15 shows the plot of ln(J) vs. V from which the value of Jo was calculated to  

be 0.121 mA/cm2.  The diode ideality factor n was calculated to be 7.7. 
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Figure 6.15 ln(J) vs. V plot for determining n and J0 for CuPc(15 nm)/Al Schottky 

                      diode dark curve. 
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       Figure 6.16 shows the J-V characteristics of the device Glass/ITO/PEDOT:PSS/CuPc 

(15 nm)/Al under illumination.  The series resistance, ideality factor and reverse 

saturation current were computed to be 6.87 kΩ/cm2, 7.66 and 0.147mA/cm2 

respectively.  Figure 6.17 shows the series resistance corrected curve for the CuPc(15 

nm)/Al light curve and Figure 6.18 shows the ln(J) vs. V plot for the CuPc(15 nm)/Al 

light curve. 
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Figure 6.16 Glass/ITO/PEDOT:PPS/CuPc(15 nm)/Al Schottky diode solar cell light 

                      curve. 
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 Figure 6.17 Series resistance corrected light curve for CuPc(15 nm)/Al device. 
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The Glass/ITO/PEDOT:PSS/CuPc(15 nm)/Al cell yielded a Voc and Jsc of 220 mV and 

0.04 mA/cm2 respectively.  The power delivered was 0.003 mW/cm2 and the fill factor 

was 0.375.  The cell had an efficiency of 0.003 %. 
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Figure 6.18 ln(J) vs. V plot for determining n and J0 for CuPc(15 nm)/Al Schottky  

                    diode light curve. 

 
 

6.6.2 J-V characteristics of CuPc(60 nm)/Al device 

            The series resistance(Rs) of the curve in Figure 6.19 was calculated to be 7.86 

kΩ/cm2.  The J-V characteristic was then corrected for series resistance by subtracting 

JRs from V.  Figure 6.20 shows the plot of V vs. J and (V-JRs) vs. J.   
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CuPc(60 nm)/Al schottky diode solar cell dark curve 
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Figure 6.19 Glass/ITO/PEDOT:PPS/CuPc(60 nm)/Al Schottky diode solar cell dark  

                    curve. 

 
 

Series resistance corrected dark curve of CuPc(60 nm)/Al 
device
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Figure 6.20 Series resistance corrected dark curve for CuPc(60 nm)/Al device. 
  
       Figure 6.21 shows the plot of ln(J) vs. V from which the value of Jo was calculated to  

be 0.127 mA/cm2.  The diode ideality factor n was calculated to be 18.03. 
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Figure 6.21 ln(J) vs. V plot for determining n and J0 for CuPc(60nm)/Al Schottky  

                    diode dark curve. 

 
        Figure 6.22 shows the J-V characteristics of the device 

Glass/ITO/PEDOT:PSS/CuPc(60 nm)/Al under illumination.  The series resistance(Rs), 

ideality factor and reverse saturation current were calculated to be 7.12 kΩ/cm2, 19.3 and 

.110 mA/cm2 respectively.  The J-V characteristic was then corrected for series resistance 

by subtracting JRs from V.  Figure 6.23 shows the plot of V vs. J and (V-JRs) vs. J.   
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Figure 6.22 Glass/ITO/PEDOT:PPS/CuPc(60 nm)/Al Schottky diode solar cell light  

                    curve. 
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Series resistance corrected light curve
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Figure 6.23 Series resistance corrected light curve for CuPc(60 nm)/Al device. 
 
 

        The Glass/ITO/PEDOT:PSS/CuPc(60 nm)/Al cell yielded a Voc and Jsc of 360 mV 

and 0.054 mA/cm2 respectively.  The power delivered was 0.006 mW/cm2 and the fill 

factor was 0.315.  The cell had an efficiency of 0.006 %.  Figure 6.24 shows the ln(J) vs. 

V plot of the device under illumination. 
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Figure 6.24 ln(J) vs. V plot for determining n and J0 for CuPc(60 nm)/Al Schottky  

                    diode light curve. 

 
6.6.3  J-V characteristics of CuPc(80 nm)/Al device 
 
         Figure 6.25 shows the J-V characteristics of the device 

Glass/ITO/PEDOT:PSS/CuPc (80 nm)/Al under dark conditions.  The series resistance 
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(Rs) of the curve in Figure 6.25 was calculated to be 8.45 kΩ/cm2.  The J-V characteristic 

was then corrected for series resistance by subtracting JRs from V.  Figure 6.26 shows the 

plot of V vs. J and (V-JRs) vs. J.   
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Figure 6.25 Glass/ITO/PEDOT:PPS/CuPc(80 nm)/Al Schottky diode solar cell dark  

                    curve. 

 
 

Series resistance corrected dark curve
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Figure 6.26 Series resistance corrected dark curve for CuPc(80 nm)/Al device. 
 

        Figure 6.27 shows the plot of ln(J) vs. V from which the value of Jo was calculated 

to be 0.135 mA/cm2.  The diode ideality factor n was calculated to be 17.5. 
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Figure 6.27 ln(J) vs. V plot for determining n and J0 for CuPc(80 nm)/Al Schottky  

                    diode dark curve. 

 
        Figure 6.28 shows the J-V characteristics of the device 

Glass/ITO/PEDOT:PSS/CuPc(80 nm)/Al under illumination.  The series resistance (Rs), 

ideality factor and reverse saturation current were calculated to be 8.24 kΩ/cm2, 16.08 

and .03 mA/cm2.  The J-V characteristic was then corrected for series resistance by 

subtracting JRs from V.  Figure 6.29 shows the plot of V vs. J and (V-JRs) vs. J.   
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Figure 6.28 Glass/ITO/PEDOT:PPS/CuPc(80 nm)/Al Schottky diode solar cell light  

                    curve. 
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Series resistance corrected light curve
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Figure 6.29 Series resistance corrected light curve for CuPc(80 nm)/Al device. 
 
 

The Glass/ITO/PEDOT:PSS/CuPc(80 nm)/Al cell yielded a Voc and Jsc of 584 mV and 

0.094 mA/cm2 respectively.  The power delivered was 0.016 mW/cm2 and the fill factor 

was 0.29.  The cell had an efficiency of 0.016 %. 
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Figure 6.30 ln(J) vs. V plot for determining n and J0 for CuPc(80 nm)/Al Schottky  

                    diode light curve. 
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6.6.4  J-V characteristics of CuPc(100 nm)/Al device 

          Figure 6.31 shows the J-V characteristics of the device 

Glass/ITO/PEDOT:PSS/CuPc (100 nm)/Al under dark conditions.  The series resistance 

(Rs) of the curve in Figure 6.31 was calculated to be 8.31 kΩ/cm2.  The J-V characteristic 

was then corrected for series resistance by subtracting JRs from V.  Figure 6.32 shows the 

plot of V vs. J and (V-JRs) vs. J.   
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Figure 6.31 Glass/ITO/PEDOT:PPS/CuPc(100 nm)/Al Schottky diode solar cell  

                         dark curve. 
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Figure 6.32 Series resistance corrected dark curve for CuPc(100 nm)/Al device. 
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Figure 6.33 shows the plot of ln(J) vs. V from which the value of Jo was calculated to  

be 0.149 mA/cm2.  The diode ideality factor n was calculated to be 17.78. 

 
ln(J) vs. V plot

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

0 0.5 1 1.5 2 2.5

V

ln
(J

) (
m

A/
sq

-c
m

)

 
 
Figure 6.33 ln(J) vs. V plot for determining n and J0 for CuPc(100 nm)/Al Schottky  

                    diode dark curve. 

 
        Figure 6.34 shows the J-V characteristics of the device 

Glass/ITO/PEDOT:PSS/CuPc (100 nm)/Al under illumination.  The series resistance 

(Rs), ideality factor and reverse saturation current were calculated to be 8.57 kΩ/cm2, 

17.62 and .139 mA/cm2 respectively.  The J-V characteristic was then corrected for series 

resistance by subtracting JRs from V.  Figure 6.35 shows the plot of V vs. J and (V-JRs) 

vs. J.   
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CuPc(100 nm)/Al schottky diode solar cell light curve
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Figure 6.34 Glass/ITO/PEDOT:PPS/CuPc(100 nm)/Al Schottky diode solar cell light  

                    curve. 

 
 

Series resistance corrected light curve

-3

-2

-1

0

1

2

3

4

5

6

7

8

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

V

J(
m

A/
sq

-c
m

)

measured
series resistance corrected

 
 

Figure 6.35 Series resistance corrected light curve for CuPc(100 nm)/Al device. 
 

        The Glass/ITO/PEDOT:PSS/CuPc(100 nm)/Al cell yielded a Voc and Jsc of 770 mV 

and 0.114 mA/cm2.  The power delivered was 0.027 mW/cm2 and the fill factor was 0.31.  

The cell had an efficiency of 0.027 %. 
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Figure 6.36 ln(J) vs. V plot for determining n and J0 for CuPc(100 nm)/Al Schottky  

                    diode light curve. 

 

6.6.5  J-V characteristics of the CuPc (120 nm)/Al device 
 
            Figure 6.37 shows the J-V characteristics of the device 

Glass/ITO/PEDOT:PSS/CuPc (120 nm)/Al under dark conditions.  The series resistance 

(Rs) of the curve in Figure 6.37 was calculated to be 9.32 kΩ/cm2.  The J-V characteristic 

was then corrected for series resistance by subtracting JRs from V.  Figure 6.38 shows the 

plot of V vs. J and (V-JRs) vs. J.   
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CuPc(120 nm)/Al schottky diode solar cell dark curve
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Figure 6.37 Glass/ITO/PEDOT:PPS/CuPc(120 nm)/Al Schottky diode solar cell                               

                     dark curve. 
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Figure 6.38 Series resistance corrected dark curve for CuPc (120 nm)/Al device. 
 

       Figure 6.39 shows the plot of ln(J) vs. V from which the value of Jo was calculated to  

be 0.142 mA/cm2.  The diode ideality factor n was calculated to be 15.95. 
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Figure 6.39 ln(J) vs. V plot for determining n and J0 for CuPc(120 nm)/Al Schottky  

                    diode dark curve. 

 
       Figure 6.40 shows the J-V characteristics of the device Glass/ITO/PEDOT:PSS/CuPc 

(120 nm)/Al under illumination.  The series resistance (Rs), ideality factor and reverse 

saturation current were calculated to be 9.11 kΩ/cm2, 16.5 and 0.118mA/cm2 

respectively.  The J-V characteristic was then corrected for series resistance by 

subtracting JRs from V.  Figure 6.41 shows the plot of V vs. J and (V-JRs) vs. J.   
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CuPc(120 nm)/Al schottky diode solar cell light curve
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Figure 6.40 Glass/ITO/PEDOT:PPS/CuPc(120 nm)/Al Schottky diode solar cell light  

                    curve. 
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Figure 6.41 Series resistance corrected light curve for CuPc (120 nm)/Al device. 
 
         The Glass/ITO/PEDOT:PSS/CuPc (120 nm)/Al cell yielded a Voc and Jsc of 879 mV 

and 0.124 mA/cm2 respectively.  The power delivered was 0.036 mW/cm2 and the fill 

factor was 0.33.  The cell had an efficiency of 0.036 %. 
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Figure 6.42 ln(J) vs. V plot for determining n and J0 for CuPc(120 nm)/Al Schottky  

                    diode light curve. 

 
6.6.6 J-V characteristics of the CuPc(140 nm)/Al device 

            Figure 6.43 shows the J-V characteristics of the device 

Glass/ITO/PEDOT:PSS/CuPc (140 nm)/Al under dark conditions.  The series resistance 

(Rs) of the curve in Figure 6.38 was calculated to be 9.41 kΩ/cm2.  The J-V characteristic 

was then corrected for series resistance by subtracting JRs from V.  Figure 6.44 shows the 

plot of V vs. J and (V-JRs) vs. J.   
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CuPc(140 nm)/Al schottky diode solar cell dark curve
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Figure 6.43 Glass/ITO/PEDOT:PPS/CuPc(140 nm)/Al Schottky diode solar cell 

                         dark curve. 

   

Series resistance corrected dark curve
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Figure 6.44 Series resistance corrected dark curve for CuPc (140 nm)/Al device. 
 
       Figure 6.45 shows the plot of ln(J) vs. V from which the value of Jo was calculated to  

be 0.126 mA/cm2.  The diode ideality factor n was calculated to be 18.29. 
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Figure 6.45 ln(J) vs. V plot for determining n and J0 for CuPc(140 nm)/Al Schottky  

                    diode dark curve. 

 

          Figure 6.46 shows the J-V characteristics of the device 

Glass/ITO/PEDOT:PSS/CuPc (140 nm)/Al under illumination.  The series resistance 

(Rs), ideality factor and reverse saturation current were calculated to be 8.97 kΩ/cm2, 

16.08 and .109 mA/cm2 respectively.  The J-V characteristic was then corrected for series 

resistance by subtracting JRs from V.  Figure 6.47 shows the plot of V vs. J and (V-JRs) 

vs. J.   
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CuPc(140nm)/Al schottkydiode solar cell light curve
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Figure 6.46 Glass/ITO/PEDOT:PPS/CuPc(140 nm)/Al Schottky diode solar cell light  

                    curve. 
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Figure 6.47 Series resistance corrected light curve for CuPc (140 nm)/Al device. 
 

           The Glass/ITO/PEDOT:PSS/CuPc (140 nm)/Al cell yielded a Voc and Jsc of 907 

mV and 0.125 mA/cm2 respectively.  The power delivered was 0.046 mW/cm2 and the 

fill factor was 0.407.  The cell had an efficiency of 0.046 %. 
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Figure 6.48 ln(J) vs. V plot for determining n and J0 for CuPc(140 nm)/Al Schottky  

                    diode light curve. 

 
 

Thickness Series Resistance 
(Rs) 

Ideality Factor (n) Jo (mA/cm2) 

15 nm 7.10 kΩ/cm2 7.7 0.121 
60 nm 7.86 kΩ/cm2 18.03 0.127 
80 nm 8.45 kΩ/cm2 17.5 0.135 
100 nm 8.31 kΩ/cm2 17.78 0.149 
120 nm 9.32 kΩ/cm2 15.95 0.142 
140 nm 9.41 kΩ/cm2 18.29 0.126 

 
Table 6.3 Results of different thickness of CuPc Schottky diode solar cell dark 

                      curves. 

 
From Table 6.3 it can be observed that the series resistance of the devices increases with 

the thickness of the CuPc film.  Also the high series resistance of the devices can be 

attributed to the low electrical conductivity of the CuPc film and the PEDOT:PSS layer.  

From the J-V characteristics of the dark curves of the devices it can be observed that the 

curves show a slope in the reverse bias which can be attributed to the shunting paths 

available between the metal contact and the PEDOT:PSS layer.  Also the high reverse 

saturation currents indicate some physical shunting paths. 
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Thickness Rs  n Jo  Voc  Jsc 

 
F. F. P. D. η 

15 nm 6.87 
kΩ/cm2 

7.66 0.147 
mA/cm2 

220 
mV 

0.042 
mA/cm2 

0.37 0.003 0.003 % 

60 nm 7.12 
kΩ/cm2 

19.3
0 

0.110 
mA/cm2 

360 
mV 

0.054 
mA/cm2 

0.31 0.006 0.006% 

80 nm 8.24 
kΩ/cm2 

16.0
8 

0.127 
mA/cm2 

584 
mV 

0.094 
mA/cm2 

0.29 0.016 0.016% 

100 nm 8.57 
kΩ/cm2 

17.6
2 

0.139 
mA/cm2 

770 
mV 

0.114 
mA/cm2 

0.31 0.027 0.027% 

120 nm 9.11 
kΩ/cm2 

16.5
0 

0.118 
mA/cm2 

879 
mV 

0.124 
mA/cm2 

0.33 0.036 0.036% 

140 nm 8.97 
kΩ/cm2 

16.0
8 

0.109 
mA/cm2 

907 
mV 

0.125 
mA/cm2 

0.40 0.046 0.046% 

 
 

Table 6.4 Results of different thickness of CuPc Schottky diode solar cell light 

                      curves. 

 
Table 6.4 indicates the variation of series resistance (Rs), ideality factor (n), reverse 

saturation current density (Jo), open circuit voltage (Voc), short circuit current (Jsc), fill 

factor, power delivered by the cell and the efficiency of the cell.  As in the case of the 

dark curves, the series resistance of the cells under illumination also increases with the 

thickness of the CuPc films due to the high resistance offered by the increased thickness 

and the PEDOT:PSS layer.  The high reverse saturation currents indicate the presence of 

some physical shunting paths.  The values quoted in the Table 6.4 are the best values 

obtained out of 32 different devices. 
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Figure 6.49 Plot showing the variation of open circuit voltage(Voc) and short circuit  

                    current(Jsc) with thickness of CuPc films.    

 

Figure 6.49 shows a plot of change in open circuit voltage and short circuit current with 

the CuPc thickness.  From the plot it can be observed that the open circuit voltage (Voc) 

increases with the thickness of the CuPc film.  This increase in the open circuit voltage 

can be attributed to the increasing absorption of light by CuPc and the generation of more 

excitons with increasing thickness.  In case of the short circuit current, we observe a rapid 

increase initially but as the thickness of the CuPc layer reaches 120 nm the increase in the 

short circuit current value is less.  This shows that the short circuit current is series 

resistance limited at higher thickness of CuPc layer.  We also observed a slight increase 

in the efficiency of the cells with the increasing thickness of CuPc layer.   The overall 

efficiency of the cells is less when compared to their inorganic counter parts because of 

limited absorption of light across the solar spectrum and low charge carrier mobilities in 

organic layers.  It can be observed from Table 6.3 and Table 6.4 that these diodes have a 
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high diode ideality factors which indicate several transport mechanisms like 

recombination-generation currents in the depletion region and recombination through 

interface states at the junction.     

 

6.7 J-V characteristics of TiO2/CuPc based solar cells 
        The structure of the two TiO2/CuPc based structures that were investigated are 

Glass/ITO/TiO2/CuPc/Al, Glass/ITO/TiO2/CuPc/PTCBI/Al.   

 

6.7.1   J-V characteristics of Glass/ITO/TiO2/CuPc/Al device 

           Figure 6.50 shows the J-V characteristics of the device Glass/ITO/TiO2/CuPc (15 

nm)/Al under dark conditions.  The series resistance(Rs) of the curve in Figure 6.50 was 

calculated to be 11 kΩ/cm2.  The J-V characteristic was then corrected for series 

resistance by subtracting JRs from V.  Figure 6.51 shows the plot of V vs. J and (V-JRs) 

vs. J.   

 

TiO2/CuPc heterojunction solar cell
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Figure 6.50 Glass/ITO/TiO2/CuPc(15 nm)/Al heterojunction solar cell dark curve. 
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Series resistance corrected dark curve
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Figure 6.51 Series resistance corrected dark curve for Glass/ITO/TiO2/CuPc(15 

                         nm)/Al device. 

 
        Figure 6.52 shows the plot of ln(J) vs. V from which the value of Jo was calculated 

to be 0.203 µA/cm2.  The diode ideality factor n was calculated to be 7.08. 
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Figure 6.52 ln(J) vs. V plot for determining n and J0 for  Glass/ITO/TiO2/CuPc(15 

                      nm)/Al device dark curve. 
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Figure 6.53 shows the J-V characteristics of the device Glass/ITO/TiO2/CuPc (15 nm)/Al 

under illumination.  The series resistance (Rs), ideality factor and reverse saturation 

current were calculated to be 9.1 kΩ/cm2, 10.48 and .93 µA/cm2 respectively.  .The J-V 

characteristic was then corrected for series resistance by subtracting JRs from V.  Figure 

6.54 shows the plot of V vs. J and (V-JRs) vs. J.   
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Figure 6.53 Glass/ITO/TiO2/CuPc(15 nm)/Al heterojunction solar cell light curve. 
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Figure 6.54 Series resistance corrected light curve for Glass/ITO/TiO2/CuPc(15 

                         nm)/Al device. 
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The Glass/ITO/TiO2/CuPc (15 nm)/Al cell yielded a Voc and Jsc of 650 mV and 0.0037 

mA/cm2 respectively.  The power delivered was 0.488 µW/cm2 and the fill factor was 

0.203.  The cell had an efficiency of 0.0004 %. 
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Figure 6.55 ln(J) vs. V plot for determining n and J0 for  Glass/ITO/TiO2/CuPc(15 

                      nm)/Al device light curve. 

 
6.7.2   J-V characteristics of the Glass/ITO/TiO2/CuPc/PTCBI/Al device 

           Figure 6.56 shows the J-V characteristics of the device Glass/ITO/TiO2/CuPc (15 

nm)/PTCBI/Al under illumination.  The series resistance (Rs) of the curve in Figure 6.56 

was calculated to be 12.2 kΩ/cm2.  The J-V characteristic was then corrected for series 

resistance by subtracting JRs from V.  Figure 6.57 shows the plot of V vs. J and (V-JRs) 

vs. J.            
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TiO2/CuPc heterojunction solar cell with a modified PTCBI layer dark curve
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Figure 6.56 Glass/ITO/TiO2/CuPc(15 nm)/PTCBI(7 nm)Al heterojunction solar cell  

                    dark curve. 

  

Series resistance corrected dark curve
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Figure 6.57 Series resistance corrected dark curve for Glass/ITO/TiO2/CuPc(15 

                         nm)/PTCBI/Al device. 

  

      Figure 6.58 shows the plot of ln(J) vs. V from which the value of Jo was calculated to  

be 0.018 µA/cm2.  The diode ideality factor n was calculated to be 6.94. 
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Figure 6.58 ln(J) vs. V plot for determining n and J0 for  Glass/ITO/TiO2/CuPc (15 

                      nm)/PTCBI/Al device dark curve. 

 

         Figure 6.59 shows the J-V characteristics of the device Glass/ITO/TiO2/CuPc (15 

nm)/PTCBI/Al under illumination.  The series resistance (Rs), ideality factor and reverse 

saturation current were calculated to be 10.1 kΩ/cm2, 9.36 and .05 µA/cm2 respectively.  

The J-V characteristic was then corrected for series resistance by subtracting JRs from V.  

Figure 6.60 shows the plot of V vs. J and (V-JRs) vs. J.   
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TiO2/CuPc heterojunction solar cell with a modified PTCBI layer light curve
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Figure 6.59 Glass/ITO/TiO2/CuPc (15 nm)/PTCBI (7 nm)Al heterojunction solar cell  

                     light curve. 
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Figure 6.60 Series resistance corrected light curve for Glass/ITO/TiO2/CuPc (15 

                        nm)/PTCBI (7 nm)/Al device. 

 
The Glass/ITO/TiO2/CuPc (15 nm)/PTCBI/Al cell yielded a Voc and Jsc of 850 mV and 

0.153 mA/cm2 respectively.  The power delivered was 0.024 mW/cm2 and the fill factor 

was 0.184.  The cell had an efficiency of 0.024 %. 
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Figure 6.61 ln(J) vs. V plot for determining n and J0 for  Glass/ITO/TiO2/CuPc(15 

                      nm)/PTCBI(7 nm)/Al device light curve. 

 
 

Structure Series Resistance 
(Rs) 

Ideality 
Factor (n) 

Jo  

ITO/TiO2/CuPc/Al 11 kΩ/cm2 7.08 0.203 µA/cm2 
ITO/TiO2/CuPc/PTCBI/Al 12.2 kΩ/cm2 6.94 0.018 µA/cm2 

 
Table 6.5 Results of TiO2/CuPc/Al, TiO2/CuPc/PTCBI/Al solar cell dark curves. 

 
 
          Table 6.5 shows the series resistance, diode ideality factor and reverse saturation 

current densities of the structures ITO/TiO2/CuPc/Al and ITO/TiO2/CuPc/PTCBI/Al.  

These devices suffer from high series resistance offered by the CuPc and TiO2 layers.  

The low electrical conductivity of the CuPc layer can be attributed to the high series 

resistance observed.   
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Structure Rs  n Jo  Voc  Jsc 

 
F. F. P. D.  η 

ITO/TiO2/
CuPc/Al 

9 
kΩ/cm2 

10.4 0.93 
µA/cm2 

650 
mV 

0.0037 
mA/cm2 

0.20 0.488 
µW/cm2 

0.0004
% 

ITO/TiO2/
CuPc/PTC

BI/Al 

10.1 
kΩ/cm2 

9.36 0.05 
µA/cm2 

850 
mV 

0.153 
mA/cm2 

0.18 0.024 
mW/cm2 

0.024
% 

 
Table 6.6 Results of TiO2/CuPc heterojunction and TiO2/CuPc heterojunction with 

                  a modified PTCBI layer light curves. 
 
 

               Table 6.6 shows the cell parameters for ITO/TiO2/CuPc/Al and ITO/TiO2 

/CuPc/PTCBI/Al structures. As in the case of the dark curves the light curves also suffer 

from high series resistance offered by the CuPc and TiO2 layers.  The low value of 

reverse saturation current in case of the ITO/TiO2/CuPc/PTCBI/Al structure when 

compared to the ITO/TiO2/CuPc/Al structure suggests that the PTCBI layer is protecting 

the CuPc layer from being damaged by the high energy aluminium atoms.  As 

hypothesized by V.P. Singh et al. [29] part of the PTCBI layer may actually be used up 

by aluminium in the formation of aluminium oxide (Al2O3) which forms a thin insulating 

layer and thereby protecting the CuPc from being damaged.  Apart from forming a 

heterojunction with CuPc, the presence of pores in the TiO2 layer helps in the scattering 

of light resulting in the increase of optical path and thereby increasing the open circuit 

voltage of the device.  A considerable increase in the short circuit current could not be 

observed because of the high series resistance offered by the CuPc layer.  The 

ITO/TiO2/CuPc/PTCBI/Al structure shows a better photovoltaic behavior because of the 

protection of CuPc layer by the thin PTCBI layer.  The cells suffer from low efficiencies 

due to various factors like high series resistance, low carrier mobilities in the organic 

layer and rapid degradation of organic films when exposed to air.       

 

 

 

 



                                                                         89 

Chapter 7.  Discussion 
7.1  Material characterization of C60 

       C60 is a molecule that consists of 60 carbon atoms in the form of a sphere.  This 

sphere is made up of 12 hexagons and 12 pentagons with a carbon atom on each corner.  

C60 is a well known n-type organic semiconductor used in the fabrication of solar cells 

and OLEDs.  Figure 4.1 shows the SEM image of the C60 film at high magnification and 

Figure 4.2 shows the SEM image of C60 at low magnification.  The average particle size 

of C60 deposited on an ITO coated glass substrate was 30 nm.  The low magnification 

image shows that the deposited film was uniform.   

     Figure 4.3 shows the X-ray diffraction pattern of the C60 film.  The C60 film that was 

thermally evaporated showed peaks at 2θ positions of 10.10, 220 and 340 which 

correspond to 111, 222 and 333 planes respectively.  C60 films did not show any preferred 

orientation which can be attributed to lattice mismatch between C60 and ITO.  The peaks 

produced by C60 films were compared to the ones that were obtained by Z. Dai et al. [30].  

The peaks produced at 2θ positions of 230, 300, 310, 350, 370, 450, 510 and 600 are 

produced by ITO.   

 

7.2 Optical characterization of C60    
The Optical absorption plot of a material gives a fair idea of the absorption 

characteristics of the material in the visible spectrum, which is an important characteristic 

of a good photovoltaic material.  A good photovoltaic material should have broad peaks 

of absorption in the visible spectrum of light to utilize most of the light passing through it 

to generate carriers.  Absorption vs. wavelength plot of C60 film of thickness 40 nm is 

shown in Figure 5.1.  The absorption plot shows peaks at wavelengths of 350 nm and at 

450 nm.  The absorption plot showed peaks at the same positions as obtained by Tetsuya 

Taima et al. [4].  C60 is a symmetric molecule and hence the transition between the 

HOMO and LUMO levels is forbidden, which can be attributed to the lack of a strong 

absorption band in the visible region of the absorption spectrum of C60 [4]. 
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7.3  Electrical characterization of C60 Schottky diode solar cells 
The ITO/C60(40 nm)/LiF/Al structure showed a series resistance of 78.06 Ω/cm2 

and the ITO/PEDOT:PSS/C60(60 nm)/LiF/Al structure showed a series resistance of 0.75 

kΩ/cm2
 in case of the dark curves.  The increase in the value of series resistance from the 

ITO/C60 (40 nm)/LiF/Al structure to the ITO/PEDOT:PSS/C60 (60 nm)/LiF/Al structure 

can be attributed to low carrier mobilities in the PEDOT:PSS layer.  A Lithium Fluoride 

(LiF) layer of thickness 1 nm was deposited on the C60 films before the deposition of 

aluminium to protect the C60 layer from being damaged by the high energy aluminium 

atoms.  In the case of both these devices a Schottky barrier is formed between the C60 

layer and the aluminium layer since the thickness of LiF layer is 1 nm.  The PEDOT:PSS 

layer which was used in the ITO/PEDOT:PSS/C60 (60 nm)/LiF/Al structure serves to 

make the surface of the ITO smooth and also to reduce the availability of shunting paths 

between aluminium and the ITO. 

The value of diode ideality factor for dark curves in the case of the ITO/C60 (40 

nm)/LiF/Al structure was 5.73 and its value is 13 in case of ITO/PEDOT:PSS/C60 (60 

nm)/LiF/Al structure (see Table 6.1).  These high diode ideality factors indicate several 

transport mechanisms like recombination-generation currents in the depletion region and 

recombination through interface states.  The high diode ideality factors may also be 

attributed to tunneling from band states to localized defect states and band-to-band 

tunneling.  The value of reverse saturation current for dark curves in the case of the 

ITO/C60 (40 nm)/LiF/Al structure was 0.019 mA/cm2 and 0.047 mA/cm2 in the case of 

the ITO/PEDOT:PSS/C60 (60 nm)/LiF/Al structure (see Table 6.1).  The presence of 

physical shunting paths is reasonable considering these high reverse saturation currents 

and the fact that the curves have a slope in the third quadrant. 

Table 6.2 indicates the variation of different cell parameters in the case of the 

ITO/C60 (40 nm)/LiF/Al and the ITO/PEDOT:PSS/C60 (60 nm)/LiF/Al structures.  The 

increase in series resistance from 40 nm device (63.08 Ω/cm2) to 60 nm device (0.12 

kΩ/cm2) was also observed in the case of the light curves.  The increase in the value of 

open circuit voltage from 190 mV (40 nm device) to 310 mV (60 nm device) without any 

increase in the value of short circuit currents (0.49 mA/cm2 for 40 nm device and 0.48 

mA/cm2 for 60 nm device) indicates the availability of fewer shunting paths in case of the 
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60 nm device as a result of the inclusion of the PEDOT:PSS layer.  An increase in the 

efficiency from 0.021% (40 nm device) to 0.028% (60 nm device) was also observed.  

Tetsuya Taima et al. [4] have reported an open circuit voltage of 0.046 V and a short 

circuit current of 2.77 x 102 mA/cm2 for ITO/C60 (100 nm)/Al structure.  The high values 

of open circuit voltage observed in C60/Al Schottky diodes fabricated in our lab can be 

attributed to the reduction in the thickness of the C60 layer as compared to the devices 

fabricated by Tetsuya Taima et al..  The value of short circuit currents can be increased 

by sublimating C60 before thermal evaporation since sublimation is known to eliminate 

the impurities present in the material. 

 

7.4 Material characterization of CuPc 
CuPc was used in the fabrication of ITO/PEDOT:PSS/CuPc/Al, ITO/TiO2/CuPc/Al 

and ITO/TiO2/CuPc/PTCBI/Al structures.  CuPc is a well known p-type organic 

semiconductor used in the fabrication of organic solar cells and OLEDs.  Figures 4.4 and 

4.5 show the SEM images of CuPc at high and low magnifications respectively.  It can be 

observed from Figure 4.4 that the average particle size of the CuPc film is approximately 

30 nm.   

         Figure 4.6 shows the X-ray diffraction pattern of the CuPc film.  The CuPc film 

showed a peak at 2θ position of 6.850 which corresponds to 111 plane as observed by 

M.M. El-Nahass et al. [31].  The peaks at 2θ position of 230, 300, 310, 350, 370, 450, 510 

and 600 are produced by ITO.  The fact that the CuPc film showed a single peak at 2θ 

position of 6.850 shows that it has a preferred orientation which results in better 

transportation of carriers.      

 

7.5 Optical characterization of CuPc 
 The absorption vs. wavelength plots of CuPc films of thickness 15nm, 60 nm, 80  

nm, 100 nm, 120 nm and 140 nm are plotted together in Figure 5.15.  These plots showed 

absorption peaks at wavelengths 350 nm, 620 nm and 700 nm as observed by C.Y. 

Kwong et al. [7].  The absorption of these films increased with the thickness of the films 

as expected.  Figure 5.16 shows the absorption coefficient vs. wavelength plot of the 

CuPc films.  It can be observed from Figure 5.16 that the absorption coefficients of the 
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CuPc films of thickness 80nm, 100 nm, 120 nm and 140 nm are approximately equal.  

The absorption coefficients of CuPc films of thickness 15 nm and 60 nm are less than the 

absorption coefficients of films of thickness 80 nm and above.  This behavior can be 

attributed to the scattering of light, and to reflection in 15 nm and 60 nm films since the 

thickness of the films is less compared to the films of thickness 80 nm and above. 

  

7.6 Electrical characterization of CuPc Schottky diode solar cells 
 ITO/PEDOT:PSS/CuPc (x)/Al devices were fabricated and were measured to 

calculate  the photovoltaic parameters where ‘x’ is the thickness of the CuPc layer and its 

values are 15 nm, 60 nm, 80 nm, 100 nm, 120 nm and 140 nm.  Table 6.3 shows the 

variation of series resistance, ideality factor and reverse saturation current of these 

devices measured in the dark.  In these devices, the Schottky barrier is formed between 

the CuPc layer and aluminium.  PEDOT:PSS was used to smooth the surface of ITO.  

From Table 6.3 it can be seen that the series resistance increases with increases in the 

thickness of the CuPc film.  The high values of series resistance in the case of these 

devices can be attributed to low carrier mobilities in the CuPc film and PEDOT:PSS 

layer.  The value of reverse saturation current in these devices is also high indicating the 

presence of physical shunting paths available between aluminium and ITO.  Also, the 

slope of the curves in the third quadrant indicates the presence of physical shunting paths.  

The diode ideality factor in these devices were also high indicating that the current 

transport in these devices cannot be explained with just the diffusion current dominated 

model.  The other transport mechanisms like recombination-generation currents in the 

depletion region, band-to-band tunneling and recombination through interface states at 

the junction may be operative at the interface.   

Table 6.4 lists the photovoltaic parameters of the CuPc/Al Schottky diode solar 

cells.  As in the case of CuPc/Al Schottky diode dark curves the increase in the series 

resistance with the thickness of the CuPc layer was also observed in case of the light 

curves.  An increase in the value of open circuit voltage and short circuit current was 

observed with increase in the thickness of the CuPc layer, which can be attributed to the 

increased absorption of light with the thickness of the CuPc film as observed in Figure 

5.15.  Figure 6.49 shows a plot in which the values of Voc and Jsc are plotted against the 
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thickness of the CuPc layer.  The values of open circuit voltage does not change much 

from 100 nm device to 140 nm device which suggests that the exciton diffusion length of 

the CuPc is approximately 120 nm.  An exciton diffusion length of 10 to 50 nm for CuPc 

was suggested by Fan Yang et al. [32].  It may be possible that the some of the excitons 

generated in these Schottky devices are dissociated by the electrostatic field generated by 

the difference in work functions of ITO and Aluminium electrodes and hence the exciton 

diffusion length may actually be less than 100 nm.  The efficiency of the CuPc Schottky 

diode solar cells increases with the thickness of the CuPc layer, which can be attributed to 

the increase in the open circuit voltage and short circuit current of these devices with the 

increase in the thickness of CuPc layer.  The low values of efficiencies in case of the 

CuPc Schottky diode solar cells can be attributed to low mobility of carriers in CuPc 

films. 

 

7.7 Material characterization of TiO2  
 The TiO2 sol-gel was spin coated on the surface of ITO with the help of a 

spincoater at an rpm of 2000.  The TiO2 films that were spin coated at higher speeds were 

of poor quality in terms of film uniformity.  The TiO2 sol-gel was spin coated 4 times on 

the substrates and the thickness of the film was found to be approximately 30 nm using 

profilometer measurements.  ITO/TiO2/CuPc/Al devices with 8 times spincoated TiO2 

layers were also fabricated but they did not yield any Voc and Jsc.  The motive behind 

using the TiO2 layer in these devices was to increase the effective optical path of light by 

allowing the light to pass through the pores formed on the annealed TiO2 layer.  Figure 

4.7 and Figure 4.8 show the high and low magnification images of the TiO2 layer 

annealed at a temperature of 300OC.  The average particle size of the TiO2 film was 

approximately 25 nm.  The macropores formed on the TiO2 film were of diameter 300 

nm and the density of the pores formed is approximately 0.15 per (µm)2.     

 

7.8 Optical characterization of TiO2   
   Figure 5.17 and Figure 5.18 show the absorption vs. wavelength and absorption 

coefficient vs. wavelength plots of the TiO2 sol-gel that was spincoated on ITO 

substrates.  The approximate thickness of the spincoated TiO2 layer was 30 nm.  The 
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TiO2 film had absorption peaks at wavelengths of 500 nm and 300 nm.  The low 

absorption peaks of the TiO2 film indicate that the film is a good window layer which can 

be used in solar cells.   

 

7.9  Electrical characterization of ITO/TiO2/CuPc/Al and        

ITO/TiO2/CuPc/PTCBI/Al solar cells 
       ITO/TiO2/CuPc (15 nm)/Al solar cells were fabricated with the motive of increasing 

the effective optical path of light by allowing light to pass through the pores formed in 

the annealed TiO2 layer.  In this device a heterojunction is formed at the interface of the 

CuPc (15 nm) layer and the spincoated TiO2 layer.  Also, a Schottky barrier is formed at 

the interface of the CuPc layer and the Aluminium layer.  The value of open circuit 

voltage observed in case of the CuPc (15 nm)/Al Schottky diode solar cell was 430 mV 

(see Table 6.6) less than the value of open circuit voltage observed in TiO2/CuPc(15 

nm)/Al structure indicating the dominance of the TiO2/CuPc heterojunction over the 

CuPc(15 nm)/Al Schottky barrier.  The density of the pores formed on the surface of 

annealed TiO2 was low (0.15 per (µm)2), hence the effective optical path of light could 

not be increased significantly.  Table 6.5 shows the values of series resistance, diode 

ideality factor and reverse saturation current obtained from the J-V characteristics of the 

dark curve of ITO/TiO2/CuPc (15 nm)/Al structure.  The value of series resistance was 

found to be 11 kΩ/cm2 indicating the high series resistance offered by the CuPc and TiO2 

layers.  The value of diode ideality factor was found to be 7.08 which is quite high 

indicating the presence of several transport mechanisms like generation-recombination 

currents and recombination through interface states.  The value of reverse saturation 

currents is less when compared to the ITO/PEDOT:PSS/CuPc (x)/Al structures indicating 

less number of shunting paths available in the ITO/TiO2/CuPc (15 nm)/Al structure.  

         Table 6.6 shows the values of photovoltaic parameters for the ITO/TiO2/CuPc (15 

nm)/Al structure.  The value of open circuit voltage was 650 mV and the value of short 

circuit current was 0.0037 mA/cm2.  A.K. Ray et al. [8] have reported a ITO/TiO2/CuPc 

(460 nm)/Au solar cell with an open circuit voltage of 0.024 V and a short circuit current 

of 0.012 mA/cm2.  The higher value of open circuit voltage observed in case of the 

TiO2/CuPc/Al device fabricated in our lab can be attributed to the reduction in the 
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thickness of CuPc layer from 460 nm (used by A.K Ray et al. [8]) to 15 nm which 

eliminates the recombination of excitons during their movement from the junction 

towards the metal contacts. 

         Table 6.5 shows the series resistance, diode ideality factor and reverse saturation 

current values of the ITO/TiO2/CuPc (15 nm)/PTCBI/Al structure.  PTCBI, a well known 

n-type organic semiconductor was used both to form a heterojuntion with the CuPc layer 

and also to protect the CuPc layer from high energy Aluminium atoms.  In this device a 

heterojunction is formed at the interface of TiO2 and CuPc layers and also at the interface 

of CuPc and PTCBI layers.  The increase in the value of open circuit voltage from 

ITO/TiO2/CuPc (15 nm)/Al structure to ITO/TiO2/CuPc (15 nm)/PTCBI/Al structure 

suggests that the CuPc/PTCBI junction is the dominant junction in the ITO/TiO2/CuPc 

(15 nm)/PTCBI/Al structure.  The value of series resistance was calculated to be 12.2 

kΩ/cm2, which can be attributed to the low mobility of carriers in CuPc and PTCBI 

layers.  The value of diode ideality factor was calculated to be 6.94 indicating the 

presence of several transport mechanisms like generation-recombination currents, 

recombination through interface states and band-to-band tunneling.  The low value of 

reverse saturation current (0.018 µA/cm2) shows the presence of less number of shunting 

paths available in the device.   

        Table 6.6 shows the photovoltaic parameters of the ITO/TiO2/CuPc (15 

nm)/PTCBI/Al structure.  An increase in the values of open circuit voltage and short 

circuit current which can be seen from Table 6.6 was observed from ITO/TiO2/CuPc (15 

nm)/Al structure to ITO/TiO2/CuPc (15 nm)/PTCBI/Al structure which can be attributed 

to the addition of a more dominant CuPc (15 nm)/PTCBI junction to the TiO2/CuPc (15 

nm) junction.  These cells suffer from low efficiencies due to various factors like low 

carrier mobilities in the organic layers and rapid degradation of the organic films when 

exposed to air.      
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Chapter 8. Conclusions  
     C60/Al Schottky diode solar cells were fabricated on ITO coated glass slides.  The 40 

nm thick C60 device yielded a open-circuit voltage of 190 mV and a short-circuit current 

density of 0.49 mA/cm2.  LiF was used to improve the fill factor of the devices and also 

to shield the C60 from high energy Aluminium atoms.  The 60 nm thick C60 device 

yielded an open circuit voltage of 310 mV and a short circuit current of 0.48 mA/cm2.  

We can observe an increase in the open circuit voltage of the 60 nm device when 

compared to the 40 nm device.  The increase in the open circuit voltage can be attributed 

to the increase in the absorption of the film.  The low mobilties of charge carriers in the 

organic films and also the PEDOT:PSS layer resulted in high series resistance and low 

current values.   

           Also, CuPc/Al Schottky diode solar cells were fabricated on ITO coated glass 

substrates.  We observed an increase in open circuit voltage from 220 mV in the case of 

the 15 nm thick device upto 907 mV in the case of the 140 nm thick device.  The increase 

in the open circuit voltage can be attributed to the increasing absorption of light by CuPc 

and generation of more excitons with increasing thickness.  In case of the short circuit 

current, we observe a rapid increase initially from 0.042 mA/cm2 (15 nm thick device) to 

0.124 mA/cm2 (120 nm thick device) but as the thickness of the CuPc layer reaches 120 

nm the increase in the short circuit current is less which can be observed from the short 

circuit current for the 140 nm thick device whose value is 0.125 mA/cm2.  This shows 

that the short circuit current is series resistance limited at higher thickness of the CuPc 

layer.  We also observed an increase in the efficiency of the cells from 0.003% (15 nm 

thick device) to 0.046% (140 nm thick device) with increasing thickness of the CuPc 

layer.   The overall efficiency of the cells is very small when compared to their inorganic 

counterparts because of limited absorption of light across the solar spectrum and low 

charge carrier mobilities in organic layers. 

 Furthermore, TiO2/CuPc/Al and TiO2/CuPc/PTCBI/Al devices were fabricated on 

ITO coated glass substrates.  The values of open circuit voltage were 650 mV in case of 

ITO/TiO2/CuPc/Al structure and 850 mV in case of the ITO/TiO2/CuPc/PTCBI/Al 

structure.  These values of open circuit voltages were one of the highest ever reported 

values for TiO2 based solar cells.  The low value of reverse saturation current in case of 
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the ITO/TiO2/CuPc/PTCBI/Al structure whose value is 0.05 µA/cm2 when compared to 

the ITO/TiO2/CuPc/Al structure whose value is 0.93 µA/cm2 suggests that the PTCBI 

layer is protecting the CuPc layer from being damaged by the Aluminium atoms and 

thereby reducing the shunting paths available.  The cells suffer from low efficiencies due 

to various factors like high series resistance and low carrier mobilities in the organic 

layers.   
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Chapter 9.  Suggestions to future work 
   The efficiency of the C60 and CuPc Schottky diode solar cells can be greatly 

improved by depositing the C60 and CuPc in porous alumina templates and thereby 

increasing the scattering of light.  Electrodeposition of the organic films instead of 

thermal evaporation can be more useful since electrodeposition leads to a better 

conformal deposition of the films into the pores.  The performance of the TiO2 based 

devices can be improved by annealing the TiO2 films at a higher temperature.  A study of 

lifetime of the organic solar cells can also be very useful in judging the practical usage of 

these cells.  Organic semiconductors with higher mobilities as opposed to the ones used 

in this work can also be very useful for the fabrication of solar cells with higher 

efficiencies.   

      The organic materials used in this work were deposited without being subjected to 

any prior purification before deposition.  Sublimation of the organic materials is known 

to improve their purity and thereby increasing the mobility of carriers.  C60, CuPc and 

PTCBI can be purified by sublimation before thermal evaporation which can lead to 

higher efficiencies.  Also, other metal electrodes like silver, gold and platinum can be 

used in place of aluminium to increase the value of short circuit currents.  Also, the 

composition of the chemicals used in the TiO2 sol-gel can be varied to increase the 

density of pores and thereby increasing the effective optical path of light.  

ITO/TiO2/CuPc/PTCBI/Al device with an open circuit voltage of 850 mV and a short 

circuit current density of 0.153 mA/cm2 is the best device to pursue for further work.  The 

value of efficiency which is 0.024% for the ITO/TiO2/CuPc/PTCBI/Al device, can be 

increased by decreasing the value of series resistance.  Sublimation of the organic 

materials used in the fabrication of the device can lead to lower values of series resistance 

and hence higher values of short circuit currents.                    
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