
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

University of Kentucky Master's Theses Graduate School 

2011 

CLUSTER-BASED TERM WEIGHTING AND DOCUMENT RANKING CLUSTER-BASED TERM WEIGHTING AND DOCUMENT RANKING 

MODELS MODELS 

Keerthiram Murugesan 
University of Kentucky, keerthi166@gmail.com 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Murugesan, Keerthiram, "CLUSTER-BASED TERM WEIGHTING AND DOCUMENT RANKING MODELS" 
(2011). University of Kentucky Master's Theses. 651. 
https://uknowledge.uky.edu/gradschool_theses/651 

This Thesis is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted 
for inclusion in University of Kentucky Master's Theses by an authorized administrator of UKnowledge. For more 
information, please contact UKnowledge@lsv.uky.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Kentucky

https://core.ac.uk/display/232559224?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/gradschool_theses
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu


CLUSTER-BASED TERM WEIGHTING AND DOCUMENT RANKING
MODELS

THESIS

A thesis submitted in partial
fulfillment of the requirements for
the degree of Master of Science in
the College of Engineering at the

University of Kentucky

By
Keerthiram Murugesan
Lexington, Kentucky

Director: Dr. Jun Zhang, Professor of Computer Science
Lexington, Kentucky 2011

Copyright c© Keerthiram Murugesan 2011



ABSTRACT OF THESIS

CLUSTER-BASED TERM WEIGHTING AND DOCUMENT RANKING
MODELS

A term weighting scheme measures the importance of a term in a collection. A docu-
ment ranking model uses these term weights to find the rank or score of a document in
a collection. We present a series of cluster-based term weighting and document rank-
ing models based on the TF −IDF and Okapi BM25 models. These term weighting
and document ranking models update the inter-cluster and intra-cluster frequency
components based on the generated clusters. These inter-cluster and intra-cluster
frequency components are used for weighting the importance of a term in addition to
the term and document frequency components. In this thesis, we will show how these
models outperform the TF − IDF and Okapi BM25 models in document clustering
and ranking.
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Chapter 1 Introduction

The Vector Space Model (VSM) represents a document using a vector of T unique
terms in a collection (T -dimension). Each term in a vector is associated with a weight
(term weight) [CK99, SBMM96]. The term weight is based on the frequency with
which the term appears in that document. The term weighting scheme measures the
importance of a term with respect to a document and a collection. A term with
higher weight is more important than a term with lower weight. Each document
can be located in T -dimensional space, where T is the number of unique terms in a
collection (Euclidean space).

With a document represented by a location in Euclidean space, we can compare
any two documents by measuring the actual distance between them. In the same
way, a user-supplied query can be represented as a vector and mapped in Euclidean
space. In order to find a set of documents relevant to a query, we can find documents
that are closer to this query in Euclidean space. A document ranking model finds the
similarities between these documents and a query. If a document is more relevant to
a query, it will get a higher ranking.

VSM and term weighting schemes are widely used in many research areas such as
document clustering, classification, information retrieval, document ranking, etc.

The main contributions of this thesis are discussed in the next two sections.

1.1 Term Weighting Scheme

Unlike the traditional approaches, the term weighting schemes, discussed in this thesis
(CBT ), use the generated clusters to update the weight of each term. These term
weighting schemes for document clustering are based on the traditional TF − IDF .

Our motivation is based on the idea that the terms within a cluster have more
similarity than the terms distributed across different clusters. We concentrated on
the term distribution within a cluster to measure the term weights. We implemented
this idea by giving more weight to the terms that are common within a cluster but
uncommon in other clusters. Our experiment shows that the proposed term weight-
ing schemes based on clusters give better results than the other well-known term
weighting schemes traditionally used for document clustering.

1.2 Cluster-Based Retrieval

Cluster-based retrieval uses the cluster hypothesis to retrieve a set of documents
relevant to a query [LC04].

Cluster hypothesis Documents in the same cluster behave similarly with respect
to relevance to information needs [Voo85].

If a document in a cluster is relevant to a query, then the rest of the documents
in that cluster are potentially relevant to the same query.
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There are two approaches in cluster-based retrieval. The first approach retrieves
one or more clusters relevant to a query instead of retrieving documents relevant to a
query. In other words, this approach retrieves and ranks the relevant clusters instead
of the relevant documents. Based on the cluster hypothesis, the documents from the
highly ranked clusters are more relevant to a query than the documents from the
clusters with lower ranking. The main motive of this approach is to achieve higher
efficiency and faster search.

The second approach uses the generated clusters as a reference in improving the
retrieved relevant documents. In this approach, the given document collection is
clustered (static clustering) beforehand. When a set of documents is retrieved for a
query, the generated clusters (static clusters) of the collection are used as a reference
to update the retrieved relevant document list. The main goal of this approach is to
improve the precision-oriented searches.

This thesis presents a method similar to the second approach. It performs the
clustering on the given collection in advance. It uses these static clusters to update
document ranking. As explained in the previous section (CBT ), the proposed cluster-
based retrieval is based on an idea that terms that are unique to a static cluster are
more important than the terms that are repeated in most of the static clusters.

This unsupervised method identifies the important terms in a cluster using their
frequencies within a static cluster and compares them with the frequency of these
terms outside this static cluster. It integrates the information gathered from these
static clusters into the document ranking model.

1.3 Thesis Overview

This thesis presents new approaches in assigning weight to each term in a document.
Prior works, discussed in Chapter 2, modified the existing term weighting scheme to
improve the efficiency of an algorithm.

Our models use the generated clusters for weighting the importance of a term in a
document. The experimental results in this thesis are based on the application of our
term weighting schemes in document clustering (Chapters 3, 4 and 6) and ranking
(Chapters 5 and 6).

Chapter 3 presents the basic form of our term weighting scheme, Cluster-Based
Term weighting scheme (CBT ), for improving the quality of the clusters generated
by a document clustering algorithm (partitional or hierarchical). The proposed term
weighting scheme uses the information gathered from the generated clusters as sep-
arate components (inter- and intra- cluster frequency components) in addition to
the term frequency and document frequency components. On each iteration, CBT
updates the weight of all unique terms of each cluster in a collection.

CBT penalizes terms of a document that are misplaced in a cluster. In other
words, important terms of documents that are in a right cluster will get a higher
weight with respect to their frequencies, whereas terms of documents that are in a
wrong cluster will be penalized and get a lower weight.

Chapter 4 introduces a variant of CBT (CBTV ) that increases the weight of
important terms in a document (with respect to their frequency within a cluster),

2



without penalizing the terms of a document that are misplaced in a cluster. This
CBTV is used for cluster-based retrieval application. Chapter 5 presents the usage
of CBTV in document ranking. The experimental results compare CBTV with that
of the TF − IDF in document ranking.

Chapter 6 introduces another variant of CBT based on Okapi BM25 model:
CBT BM25. The chapter discusses the experimental comparison between Okapi
and CBT BM25 models for document clustering and ranking. Finally, Chapter 7
concludes with the summary of this thesis.

1.4 Outline

The rest of this thesis is organized as follows: Chapter 2 describes the related works
and motivations behind this work. Chapter 3 presents the basic form of CBT and
compares its experimental results with that of the TF −IDF term weighting scheme.
Chapter 4 then presents a variant of CBT (CBTV ) to address the penalizing problem
in CBT . Chapters 3 and 4 show the application of CBT and CBTV in document
clustering. Chapter 5 shows the application of CBTV in document ranking. Chapter
6 compares CBT BM25 with one of the most popular term weighting and document-
ranking models, Okapi BM25. Chapter 7 concludes this thesis by summarizing the
significance of this contribution.

Copyright c© Keerthiram Murugesan, 2011.
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Chapter 2 Related Works

This chapter discusses the basic knowledge about the information retrieval, document
representation, document clustering and document ranking. These concepts will be
repeatedly used throughout this thesis. We start with the general search engine
architecture, showing how web search works. This general architecture will help us
to understand the basic operations in information retrieval process. Then we discuss
the document representation and term weighting schemes and their application in
document clustering and ranking. Finally, we present the motivation behind this
thesis.

2.1 How Web Search Works

The general search engine architecture (Figure 2.1) consists of the following main
components:

Figure 2.1: General Search Engine Architecture

Crawler

The crawler is an important component of the search engine architecture; it hops
from one web document to another on the Internet in search of any useful infor-
mation, based on the set of URLs provided by the crawler controller. One or more
crawlers run concurrently to maximize the searching for information. When a crawler
fetches a web document, it extracts all the URLs in the document and gives them
to the crawler controller. The crawler controller organizes these URLs based on the
feedback information received from the indexer and query engine components. The

4



crawler adds these web documents to the queue for further processing by the indexer
component. Optionally, a copy of the web document is stored in the page repository
for future use. We will not be discussing about crawlers further in this thesis.

Indexer

The indexer uses a parser to extract all the terms and constructs a vector of terms
(VSM) for each web document in the queue. The representation of documents as
vectors will be discussed in Section 2.2. These document vectors are stored along
with their link information in the indexes using the index controller. These vectors
use term weights to represent the importance of a term in a document (Section 2.3).
The document vectors with the term weights are used for many applications such as
document clustering (Section 2.4), document ranking (Section 2.5), etc.

Query Engine

When a user sends a query to the query engine, the engine extracts all the important
terms from the query using the query parser and constructs a vector of terms. This
query parser is similar in functionality to the index parser. The query vector is then
sent to the index controller, which uses the indexes to generate a list of web pages
that are relevant to the query using a document ranking model (Section 2.5).

Although there are many modules in the search engine architecture, we focused on
these three main components to understand the basic operation of a search engine.
Readers are referred to [MRS08] for the complete description of the search engine
architecture.

2.2 Document Representation

Each document fetched by crawlers in Figure 2.1 needs to be stored in a search
engine. Due to the space and memory constraints, a search engine cannot handle a
document in its raw format. It is necessary to represent each document in a compact,
easy-to-use, standard format.

The boolean retrieval model is one of the most popular information retrieval mod-
els which represents each document as a set of unique terms in a collection. Each
term is mapped to [0,1]. If the termt occurs in the document di, then the termt will
have value 1; otherwise it will have value 0.

di = {term1, wi1; term2, wi2; · · · termT , wiT}. (2.1)

wit =

{
1 if termt is in di
0 if termt is not in di

Like the boolean retrieval model, the vector space model (VSM) uses a bag of
words approach in which each unique term in a collection is mapped to R+. Each
termt in the document di is assigned the weight wit which represents its importance.

5



VSM is the fundamental model in the information retrieval applications such as
clustering, ranking and classification. Each document in a collection is represented
as a vector of unique terms. These T-dimensional document vectors can be placed in
Euclidean space, in which there is one axis for each term. In this representation, the
order of the terms in the vector is not important. Figure 2.2 shows a 3-dimensional
vector in Euclidean space [SM86].

Figure 2.2: 3-Dimensional Vector Space (Euclidean Space from Wikipedia)

Euclidean Distance and Cosine Similarity Measures

In VSM, the Euclidean distance measures the distance between any two document
vectors in Euclidean space [XW05], whereas the cosine similarity measures the simi-
larity between any two document vectors in Euclidean space.

The Euclidean distance between the document vectors x and y is given as:

D(x, y) =

√ ∑
i : 1···T

(xi − yi)2 (2.2)

where T is the total number of terms in the collection ζ. The cosine similarity between
the document vectors x and y is given as:

Cos(x, y) =
x.y

‖x‖‖y‖
(2.3)

where the x.y represents the dot product of the document vectors x and y. The dot
product x.y of the document vectors x and y is defined as:

x.y =
T∑
i=1

xi.yi (2.4)

6



‖x‖ and ‖y‖ represent the Euclidean lengths of the document vectors x and y
respectively. The Euclidean length in Equation 2.3 is used for normalizing the value
using the document length. The Euclidean length of the document vector x is defined
as:

‖x‖ =

√√√√ T∑
i=1

x2i (2.5)

If two documents x and y are similar, then the cosine similarity measure will be closer
to 1; otherwise it will be closer to 0.

2.3 Term Weighting Scheme

As explained in the previous section, the boolean retrieval model assigns 1 or 0
based on the presence or absence of a term in a document. This model performs
undesirably in querying for a document. Later, VSM was introduced for ranked
retrieval [Sal89]. It is widely used in querying documents, clustering, classification and
other information retrieval applications because it is simple and easy to understand.
It uses a bag of word approach. Each document di in the collection ζ is represented
as a vector of terms with weight [CO05, JPD00].

For instance, one of the most commonly used term weighting schemes, TF−IDF ,
assigns weights to each term using the term frequency (tf) and inverse document
frequency (idf). The term frequency of the termt is the number of times the given
termt occurs in a document. The inverse document frequency is the total number
of documents in a collection containing the termt with respect to the total number
of documents (N) in a collection. Then, the document vector, di, in Equation 2.1 is
represented as:

di = {term1, tfi1. log
N

N1

; term2, tfi2. log
N

N2

; · · · termT , tfit. log
N

Nt

; }. (2.6)

The term weight wit determines whether the termt will be included in the further
steps. As mentioned in [SB88], only certain terms extracted from a document can be
used for identifying and scoring a document within the collection. The term weighting
schemes are used to assign weight to each term in a document. These term weights
represent the importance of a term with respect to a collection. Document clustering
uses these term weights to compare two documents for their similarity. Several term
weight schemes are in use today; but none of them are specific to the clustering
algorithms [JPD00].

Table 2.1 shows representation of some of the term weighting schemes commonly
used. Here, TF is the Term Frequency, IDF is the Inverse Document Frequency and
ICF is the Inverse Cluster Frequency.

witj is the weight of the term termt in the document di of the cluster Cj.
tfit = fit is the term frequency of the term termt in the document di.
idft = log N

Nt
is the inverse document frequency for the term termt in the collection

ζ, where N is the total number of documents in the collection and Nt is the number
of documents that contain the term termt.
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Table 2.1: Term weighting schemes.

Term weighting schemes

Norm− TF wit = fit√∑
T f2

it

TF − IDF wit = fit log N
Nt

TF − IDF − ICF witj = fit log N
Nt

log K
Kt

icft = log K
Kt

is the inverse cluster frequency of the term termt in the collection
ζ, where K is the total number of clusters in the collection and Kt is the number of
clusters that contains the term termt.

2.4 Document Clustering

A document clustering algorithm helps to find groups in documents that share a
common pattern [TSK05, SKK00, GRS98, ZKF05, CKPT92]. It is an unsupervised
technique and is used to automatically find clusters in a collection without any user
supervision.

The main goal of the clustering is to find the meaningful groups so that the analysis
of all the documents within clusters is much easier compared to viewing it as a whole
collection. There are different ways to cluster documents. But, most commonly, two
types of clustering methods are used: Partitional and Hierarchical clustering [MZ11].

Partitional Clustering

A partitional clustering algorithm finds all the non-overlapping clusters at once by
dividing the set of documents based on an objective function [JD88, Mac67, NH94,
CS96, ZHD+01, HXZ+98, Bol98, SG00, DHZ+01]. These algorithms try to mini-
mize or maximize an objective function. Most partitional clustering algorithms are
prototype-based, in which a prototype for each cluster is chosen and the documents
are grouped based on these prototypes. These prototypes are called centroids. Usu-
ally these algorithms run several times until a convergence occurs or an optimum
condition is met.

K-means Clustering Algorithm

The K-means clustering algorithm is a popular unsupervised partitional clustering
method [MRS08, Mac02]. The K-means clustering algorithm tries to minimize the
following objective function O(N,K):

O(N,K) =
K∑
j=1

∑
di∈Cj

‖di − cj‖2 (2.7)
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where ‖di − cj‖2 is the distance between the document di and the centroid cj. The
centroid of the documents in a cluster Cj can be computed as:

cj =
1

|Cj|
∑
di∈Cj

di (2.8)

The following algorithm shows the K-means clustering for generating K clusters
on the document collection ζ.

Algorithm 1 K-means partitional clustering algorithm

Require: An integer K ≥ 1, Document Collection ζ.

1: if K = 1 then
2: return ζ
3: else
4: Initialize l = 0
5: {C(0)

1 , · · · , C(0)
K } ← RANDOM − CLUSTERS(ζ,K)

6: repeat
7: for all di ∈ ζ, i : 1 . . . N do
8: m = arg minj |cj − di|
9: C

(l+1)
m ← C

(l+1)
m ∪ di

10: end for
11: l← l + 1
12: for j = 1 to K do
13: cj ← 1

|C(l)
j |

∑
di∈C

(l)
j
di

14: end for
15: until No change in K centroids
16: return {C(l)

1 , · · · , C(l)
K }

17: end if

Initially, the K-means algorithm needs a set of random cluster to start with.
RANDOM − CLUSTERS(ζ,K) in the algorithm 1 generates a set of K random
clusters. The runtime complexity of the K-means algorithm 1 is O(LNK) where L is
the total number of iterations in the outer loop, N is the total number of documents
in a collection and K is the total number of clusters.

Hierarchical Clustering

Hierarchical clustering generates a tree of clusters by splitting / merging clusters on
each level until the desired number of clusters are generated. This generated tree is
often called Dendogram [GRS98, SS73, Kin67, KHK99], shown in Figure 2.3.

Hierarchical clustering can use top-down approach (Divisive) or bottom-up ap-
proach (Agglomerative) to construct the dendogram. Agglomerative clustering starts
with one document in each cluster (singleton cluster) and repeatedly merges two
clusters that are most similar in their pattern at each step until a single cluster
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Figure 2.3: Dendogram

of all the documents is obtained. Divisive clustering, on the other hand, starts
with all documents as a single cluster and splits them until all the clusters are sin-
gleton. These types of clustering are the most commonly used because their un-
derlying representation of clusters in hierarchy resembles their application domain
[ZKF05, XW05, CKPT92].

Hierarchical agglomerative clustering algorithms merge a pair of clusters at each
step based on one of the following linkage metrics for measuring proximity between
the clusters [GRS98, JD88, SS73, Kin67, KHK99, GRS99].

The Single Link Algorithm (SLA) measures the maximum of the pair-wise simi-
larity of the documents from each cluster to merge a pair of clusters [SS73].

SimilaritySLA(CA, CB) = max
x∈CA,y∈CB

cos(x, y) (2.9)

The Complete Link Algorithm (CLA) measures the minimum of the pair-wise
similarity of the documents from each cluster to merge a pair of clusters [Kin67].

SimilarityCLA(CA, CB) = min
x∈CA,y∈CB

cos(x, y) (2.10)

The Group Average Algorithm (unweighted pair group method with arithmetic
mean (UPGMA)) measures the average of the pair-wise similarity of the documents
from each cluster to merge a pair of clusters [JD88].

SimilarityUPGMA(CA, CB) =
1

ninj

∑
x∈CA,y∈CB

cos(x, y) (2.11)

where cos(x, y) is the cosine similarity between two documents or clusters represented
as vectors.

Though there are many other linkage metrics, Equations (2.9),(2.10) and (2.11)
are commonly used. These methods use the Euclidean distance or inter-cluster simi-
larity matrix for their comparisons and measurements. Experiments have shown that
UPGMA performs better than SLA and CLA.

Divisive hierarchical clustering algorithms pick a big cluster or cluster with the
lowest intra-cluster similarity measure to split on each level [ELL01, KR90]. Most
recently, partitional clustering algorithms have been used to split the clusters. The
bisecting K-means algorithm [SKK00] is a typical divisive hierarchical clustering al-
gorithm that uses the K-means partitional clustering algorithm to split its cluster.
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Bisecting K-means Clustering Algorithm

The bisecting K-means algorithm is a hierarchical divisive clustering algorithm. The
bisecting K-means clustering bisects the largest remaining clusters into two subclus-
ters at each iteration using the K-means partitional clustering algorithm, until the
desired number of clusters (K) is obtained.

The following algorithm shows the bisecting K-means clustering for generating
K clusters on the document collection ζ. In Algorithm 2, C is a set of clusters.

Algorithm 2 Bisecting K-means hierarchical divisive clustering algorithm

Require: An integer K ≥ 1, Document Collection ζ.

1: if K = 1 then
2: return ζ
3: else
4: Initialize C ← {ζ}
5: for k = 1 to K − 1 do
6: L← PICK − LARGEST − CLUSTER(C)
7: {C1, C2} ← K −MEANS(L, 2)
8: C ← C ∪ {C1, C2}
9: end for
10: return C
11: end if

PICK − LARGEST − CLUSTER(C) removes and returns the largest cluster in
the set C. The runtime complexity of the bisecting K-means algorithm 2 is linear on
the number of documents, N .

Notations

We used the following notations throughout this thesis: C is the set of clusters in a
collection, C = {C1, C2, · · ·Ck} and Ω is the set of known classes, Ω = {Ω1,Ω2 · · ·Ωl}.
C1, C2, · · ·Ck are the clusters produced by a clustering algorithm and Ω1,Ω2 · · ·Ωl

are the known classes where l = k in our experiment. |Ωi| represents the number of
documents in the class Ωi, |Cj| is the number of documents in the cluster Cj, |Ωi∩Cj|
represents the number of documents appeared in both class Ωi and cluster Cj, N is
the total number of documents in a collection and c is the number of known classes
in a collection.

Evaluation Measures

Cluster validity measures the goodness of the clusters generated by the clustering
algorithm. In order to compare the term weighting schemes in document clustering,
we used the classification-oriented measures. In other words, the performance of a
clustering algorithm can be measured using internal quality criterion and/or exter-
nal quality criterion. In this paper, we used the external quality criterion, which

11



compares the clustering result produced by the clustering algorithm with the known
classes. These classes are identified based on human judgment. We used five external
quality measures in this paper: Entropy, F-Measure, Purity, Mutual Information and
Normalized Mutual Information [TSK05, SKK00, ZKF05].

Entropy

The entropy provides a measure of uncertainty [Sha48]. The entropy of the cluster
Cj can be defined as:

Hj = −
∑
i : 1···l

pij log(pij) (2.12)

Hj = −
∑
i : 1···l

|Ωi ∩ Cj|
|Cj|

log
|Ωi ∩ Cj|
|Cj|

, j : 1 · · · k (2.13)

where j is in 1 · · · k. Equations (2.12) and (2.13) are equivalent. Equation 2.13 is the
maximum likelihood estimate (MLE) of the probabilities in Equation 2.12. The total
entropy of a clustering algorithm, H, is the weighted sum of the entropies of all the
clusters in a collection.

H =
∑

j : 1···k

Hj ∗ |Cj|
N

(2.14)

F-Measure

The F-Measure provides a measure of accuracy [LA99]. It is based on recall and pre-
cision measures used for the evaluation of an information retrieval system. Precision
is the fraction of a cluster that consists of documents of a specified class. Recall is
the extent to which a cluster contains all the documents of a specified class [TSK05].
Precision and recall can be computed as:

Recall, R(Ωi, Cj) =
|Ωi ∩ Cj|
|Ωi|

(2.15)

Precision, P (Ωi, Cj) =
|Ωi ∩ Cj|
|Cj|

(2.16)

F-Measure between the class Ωi and cluster Cj is given by:

F (Ωi, Cj) =
2 ∗R(Ωi, Cj) ∗ P (Ωi, Cj)

R(Ωi, Cj) + P (Ωi, Cj)
(2.17)

The F-Measure of any class Ωi is the maximum F-Measure value obtained in any
node of the hierarchical clustering. The total F-Measure is the weighted average of
the F-Measure values of all the classes

F-Measure(Ωi) = maxF (Ωi, Cj), Cj ∈ C (2.18)

F-Measure =
∑
i : 1···c

|Ωi|
N
∗ F-Measure(Ωi) (2.19)
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Purity

The purity measures the quality of the clusters. The purity of the cluster Cj is given
by:

Purity(Ωi, Cj) = max
i
|Ωi ∩ Cj| (2.20)

Purity =
∑

j : 1···k

Purity(Ωi, Cj)

N
,Ωi ∈ Ω (2.21)

Mutual Information

The mutual information (I) measures the amount of information by which our knowl-
edge about the classes increases when we are told what the clusters are.

I(Ω, C) =
∑
j

∑
i

P (Ωi ∩ Cj) log
P (Ωi ∩ Cj)

P (Ωi)P (Cj)
(2.22)

I(Ω, C) =
∑
j

∑
i

|Ωi ∩ Cj|
N

log
N |Ωi ∩ Cj|
|Ωi||Cj|

(2.23)

where P (Ωi ∩ Cj), P (Ωi) and P (Cj) are the probabilities of a document being in
cluster Cj, in class Ωi, and in both cluster Cj and class Ωi respectively. Equations
2.22 and 2.23 are equivalent. Equation 2.23 is the maximum likelihood estimate
(MLE) of the probabilities in Equation 2.22.

Normalized Mutual Information

The Normalized Mutual Information (NMI) is a normalized variant of the mutual
information to address the problem of singular clusters getting higher I value.

NMI(Ω, C) =
I(Ω, C)

[Hi +Hj]/2
(2.24)

where I(Ω, C) is the mutual information, Hi and Hj are the entropies of the class Ωi

and cluster Cj, respectively.

2.5 Document Ranking

VSM discussed in Section 2.2 can be used to find a list of documents relevant to a
query [Buc, BMWC98, LCS97, SM86, Jon81].

In VSM, documents are relevant only if they are closer to the query in Euclidean
space as shown in Figure 2.2. In Figure 2.4, documents d1 and d2 are closer to the
given query q, which makes d1 and d2 relevant. But it is hard to find the documents
relevant to a query visually. The cosine similarity, discussed in Section 2.2, can be
used to find the relevant documents. The cosine angle between the query q and the
documents can show how far a document is from the query.
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Figure 2.4: Ranking Documents in the Vector Space Model

In the above diagram, if the cosine angle between the document d1 and query q,
α, is less than the cosine angle between the document d2 and query q, θ, then we can
say, document d1 is more relevant to the query q than the document d2. The cosine
similarity measure for ranking is repeated below for more clarity.

Score(q, d) =
q.d

‖q‖‖d‖
(2.25)

In some cases, the normalization may be removed if the document and query
length has no impact on the returned relevant document list. Then, the Score(q, d)
is simply the dot product of query and document vectors.

Score(q, d) = q.d (2.26)

Using Equation 2.26, we can introduce the term weighting scheme into the ranking
model. For instance, if the TF − IDF is used as a term weighting scheme then,
Equation 2.26 can be written as:

Score(q, di) =
∑
t∈q

tf − idft,i (2.27)

Score(q, di) =
∑
t∈q

tfit. log
N

Nt

(2.28)

where tf − idft,i is the term weight of the term termt in the document di, tfit is
the term frequency of the term termt in the document di, N is the total number of
documents in a collection andNt is the number of documents in a collection containing
the term termt. Equations 2.27 and 2.28 are equivalent. With this representation,
any term weighting scheme can be used to score a document for the given query q.
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Document Ranking Algorithm

The algorithm for ranking/scoring documents for a query is given in Algorithm 3.
This algorithm first takes one query term at a time. For each query term, it compute
the partial rank/score for each document in the collection ζ. The final score/rank of
each document in the collection ζ is computed when all the query terms are processed.
This approach is called breadth first search. An alternative approach, depth first
search, computes the final score/rank for each document, before computing a score
for the next document.

Algorithm 3 Document Ranking Algorithm

Require: Query q, and Document Collection ζ.

1: Score[N ] = 0.0
2: for all term termt in query q do
3: for all document di in collection ζ do
4: wit ← tfit. log N

Nt

5: Score[i]← Score[i] + wit

6: end for
7: end for
8: R← SORT (ζ, Score[])
9: return R

Evaluation Measures

Several measures are available to evaluate the relevancy of the retrieved, ranked doc-
ument list. Evaluation of information retrieval systems involves a notion of relevant
and irrelevant documents. A document is relevant if it answers the query. It is dif-
ficult to evaluate since the relevancy is based on the user’s judgment. A document
that is relevant to a query for one user might be irrelevant for some other user. The
set of retrieved documents is based on the top k retrieved documents.

Precision and recall are the two basic measures that use relevancy in the retrieved
and non-retrieved list of documents for a query. With this definition, Equations 2.16
and 2.15 can be redefined in the information retrieval field as follows:

Precision, P =
No. of relevant documents retrieved

Total No. of documents retrieved
(2.29)

Recall, R =
No. of relevant documents retrieved

Total No. of relevant documents
(2.30)

The computed precision and recall measures can be used to plot the precision-
recall curve, as shown in Figure 2.5. If the (k + 1)th document is irrelevant, then
recall is same for the top k documents, but precision has dropped. If the (k + 1)th

document is relevant, then both precision and recall are increased.
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Figure 2.5: Precision-Recall Curve [MRS08]

We used three standard measures, based on precision (Equation 2.29) and recall
(Equation 2.30), that are commonly used in the TREC conferences: Mean Aver-
age Precision (MAP), Precision at 10 (P@10) and Precision at 100 (P@100). The
following definitions are adopted from [MRS08].

Precision at 10 (P@10)

Precision at 10 measures the fraction of relevant document in the top 10 retrieved
documents.

Precision at 100 (P@100)

Precision at 100 measures the fraction of relevant document in the top 100 retrieved
documents.

Mean Average Precision (MAP)

Average Precision is the average of the precision at K values computed after each
relevant document is encountered. Mean Average Precision is the arithmetic mean of
average precision values for individual user queries. Average Precision is simply an
approximate area under the precision-recall curve. MAP is the average of area under
the precision-recall curve of each query.

If the set of relevant documents (of size mj) for a query qj ∈ Q is {d1, d2, · · · dmj
}

and Rjk is the set of ranked retrieval results from the top result until document dk,
then

MAP (Q) =
1

|Q|

|Q|∑
j=1

1

mj

mj∑
k=1

Precision(Rjk) (2.31)
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2.6 Motivations

Several term weighting schemes have been proposed to compute the importance of
a term in a document and in a collection. Norm − TF , TF − IDF , ATC, LTU
and Okapi are some of the widely used term weighting schemes [SB88, SW97]. One
of the most commonly used term weighting schemes is the TF − IDF . It measures
the importance of a term using its frequency within a document and the inverse
of its document frequency within a collection. This thesis extends this idea to the
document clustering and ranking algorithms.

Several papers have suggested modifying an existing term weighting scheme for
their methods. [AK02] shows a modified TF − IDF term weighting scheme to avoid
single terms from getting a higher weight. [RJP+06] proposes a new term weighting
scheme TF − ICF (Term Frequency Inverse Corpus Frequency) for clustering a dy-
namic data stream. It uses the existing collections to weight the terms in the data
stream. Also, [ZWLX09] used DF − ICF with inter- and intra-cluster components
for extracting a description from a cluster.

In this thesis, we extend the idea of [RJP+06] and the cluster components used
in [ZWLX09] to introduce a new term weighting scheme that efficiently uses the
cluster information obtained from the clustering algorithm. In addition, we discuss
the variants of CBT and application of these CBT variants in document clustering
and ranking.

Copyright c© Keerthiram Murugesan, 2011.
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Chapter 3 Cluster-Based Term Weighting Scheme

A term weighting scheme can be used to identify the importance of each term with
respect to a collection and assigns weights to them accordingly. Several term weight
schemes are in use today, but none of them are specific to the clustering algorithms.

In this chapter, we present a new term weighting method based on the traditional
TF−IDF term weighting scheme. Our motivation is based on the idea that the terms
of the documents in a same cluster have similar importance compared to the terms of
the documents in a different cluster. We concentrated on the terms that are important
within a cluster and considered the other terms as irrelevant and redundant. We
implemented this idea by giving more weight to the terms that are common within a
cluster but uncommon in other clusters.

In order to experiment our new term weighting scheme, we used both unsuper-
vised partitional (K-means) and hierarchical (Bisecting K-means) clustering algo-
rithms [MRS08, Mac02, SKK00]. First, we ran the K-means algorithm with the
four term weighting schemes, discussed in the previous chapter, to show that the
CBT term weighting scheme improves the quality of the clusters generated by a par-
titional clustering algorithm. Next, we ran the bisecting K-means algorithm with
the TF − IDF and CBT to compare the clusters generated by these term weight-
ing schemes. The results of these algorithms directly reflect the impact of the term
weighting schemes in the clustering algorithm.

From our experiment, we found that the new term weighting scheme based on
the clusters gives better results than the other well-known term weight schemes tra-
ditionally used for both partitional and hierarchical clustering algorithms.

3.1 The Proposed Term Weighting Scheme

In this section, we introduce our new term weighting scheme. For the term termt,
document di and cluster Cj, CBT is given as:

witj = tfit.idft.dftj.icft (3.1)

= fit. log
N

Nt

.
dfj
|Cj|

. log
K

Kt

(3.2)

Equation (3.1) is equivalent to Equation (3.2). Here, dftj =
dfj
|Cj | is the document

frequency of the term termt within the cluster Cj, where dfj is the number of docu-
ments in the cluster Cj that contain the term termt, and |Cj| is the total number of
documents in the cluster Cj.

Our new term weighting scheme has four components. The first two components
are based on the term weighting components discussed in [SB88]. The last two
components are the cluster components as shown in Table 3.1.

In other words, CBT assigns a weight to a term which is
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Table 3.1: List of Components in CBT term weighting scheme.

Component Description

tfit Term Frequency Component.
High when term t occurs often in
a document i.

idft Collection Frequency Compo-
nent.
High when term t occurs less of-
ten in the entire collection.

dftj Intra-cluster Frequency Compo-
nent.
High when term t occurs more of-
ten in a cluster j.

icft Inter-cluster Frequency Compo-
nent.
High when term t occurs less of-
ten in clusters other than cluster
j.

• Highest when the term occurs more frequently in the documents of a cluster
and uncommon in other clusters.

• Higher when the term occurs less frequently in the documents of a cluster and
uncommon in other clusters.

• Lower when the term occurs often in a few clusters.

• Lowest when the term occurs in most of the documents in a collection.

The following section shows the modified K-means and bisecting K-means algo-
rithms using CBT as a term weighting scheme for computing the importance of a
term in a document.

K-means algorithm with CBT

Initially, the K-means algorithm doesn’t have any information about the cluster com-
ponents, so we start the algorithm by setting dftj and icft to 1 as shown in line 4 and
update the inter- and intra-cluster components on each iteration. If a document has
a set of terms that doesn’t belong to a cluster, then its term weight will be reduced so
that it will move to other clusters. It will be repeated until it finds a suitable cluster
of its type.

The runtime complexity of the traditional K-means algorithm is O(LNK) where L
is the total number of iterations in the outer loop, N is the total number of documents
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Algorithm 4 K-means partitional clustering algorithm with CBT

Require: An integer K ≥ 1, Document Collection ζ.

1: if K = 1 then
2: return ζ
3: else
4: Initialize l = 0
5: {C(0)

1 , · · · , C(0)
K } ← RANDOMCLUSTERS(ζ,K)

6: repeat
7: for all di ∈ ζ, i : 1 . . . N do
8: m = arg minj |cj − di|
9: C

(l+1)
m ← C

(l+1)
m ∪ di

10: end for
11: l← l + 1
12: witj ← tfit.idft.dftj.icft; for each term termt in a document di of a cluster

C
(t)
j , t : 1 . . . T , i : 1 . . . N , j : 1 . . . K

13: for j = 1 to K do
14: cj ← 1

|C(l)
j |

∑
di∈C

(l)
j
di

15: end for
16: until No change in K centroids
17: return {C(l)

1 , · · · , C(l)
K }

18: end if

in a collection and K is the total number of clusters. Algorithm 4 updates the term
weights for all clusters on each iteration to reflect the changes made in the new
clusters, so it takes O(LNK + LK) = O(LNK) since LK < LNK.

Bisecting K-means algorithm with CBT

Like the K-means algorithm in the previous section, dftj and icft are set to 1 initially.

The runtime complexity of the bisecting K-means algorithm is linear with the
number of documents in the collection ζ. Algorithm 5 updates the term weights for
all clusters for K times to reflect the changes made in the new clusters, so it takes
O(N +K2) = O(N) since K << N .

3.2 Data Collections Used For CBT

We used the TREC [TRE99], 20 Newsgroup [Lan] and Reuters-21578 [Lew99] data
collections for our experiment. TR11, TR12, TR23, TR31, and TR45 collections are
taken from TREC-5, TREC-6 and TREC-7. 20 NG S1 - S5 are the five randomly
chosen subsets of 20 Newsgroup documents [ZZH07]. RE S1 and RE S2 data sets
are from Reuters-21578 collection. For the RE S1 data set, we filtered documents
from the original Reuters-21578 data set that belongs only to a single category. We
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Algorithm 5 Bisecting K-means hierarchical divisive clustering algorithm with the
Cluster-Based Term weighting scheme

Require: An integer K ≥ 1, Document Collection ζ.

1: if K = 1 then
2: return ζ
3: else
4: Initialize C ← {ζ}
5: for k = 1 to K − 1 do
6: L← PICK − LARGEST − CLUSTER(C)
7: {C1, C2} ← K −MEANS(L, 2)
8: C ← C ∪ {C1, C2}
9: witj ← tfit.idft.dftj.icft; for each term termt in a document di of a cluster

C
(t)
j in C, t : 1 . . . T , i : 1 . . . N , j : 1 . . . K

10: end for
11: return C
12: end if

got 4645 documents that have only one category. In addition to that, we used the
Reuters transcribed subset (RE S2) [HB99]. For all the data sets shown in Table
3.3, we removed the stop words and stemmed using the Porter stemming algorithm
[Por80].

Table 3.2: Data sets used for the K-means algorithm.

Data set Collection # of Doc # of Class

TR11 TREC 414 9
TR12 TREC 313 8
TR23 TREC 204 6
TR31 TREC 927 7
TR45 TREC 690 10
20 NG S1 20 Newsgroup 2000 20
20 NG S2 20 Newsgroup 2000 20
20 NG S3 20 Newsgroup 2000 20
20 NG S4 20 Newsgroup 2000 20
20 NG S5 20 Newsgroup 2000 20
RE S1 Reuters-21578 4645 59
RE S2 Reuters-21578 200 10

3.3 Experimental Results

In our first experiment, we used the K-means clustering algorithm with Norm−TF ,
TF − IDF , CBT and TF − IDF − ICF term weighting schemes to identify the
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Table 3.3: Data sets used for the Bisecting K-means algorithm.

Data set Collection # of Doc # of Class

TR11 TREC 414 9
TR12 TREC 313 8
TR23 TREC 204 6
TR31 TREC 927 7
TR45 TREC 690 10
RE S1 Reuters-21578 4645 59
RE S2 Reuters-21578 200 10
20 NG 20 Newsgroup 20000 20

Table 3.4: K-means clustering algorithm - Avg. Entropy measured for Norm− TF ,
CBT , TF − IDF − ICF and TF − IDF term weighting schemes.

Term weighting schemes

Data sets Norm −
TF

TF − IDF CBT TF − IDF −
ICF

TR11 0.8413 0.7905 0.8535 0.7749
TR12 0.9009 0.6834 0.6139 0.6261
TR23 1.0424 0.9246 0.8390 0.8501
TR31 0.9379 1.2781 0.9657 1.0822
TR45 1.0787 1.3469 1.0443 1.1485
20 NG S1 2.4824 0.4037 0.2995 0.4475
20 NG S2 2.4954 0.5791 0.4164 0.8010
20 NG S3 2.4727 0.9366 0.5082 0.7886
20 NG S4 2.4923 0.3138 0.2845 0.5210
20 NG S5 2.7464 0.2983 0.3274 0.5665
RE S1 2.0103 2.0638 2.0116 2.0600
RE S2 1.7281 1.7369 1.6810 1.6711

importance of using inter- and intra- cluster components in the term weights using
the average entropy measure. Since the K-means clustering algorithm is unstable and
sensitive to initial centroids, we ran the algorithm 10 times with different random seed
for the initial centroids on each run. We repeated this experiment for the four term
weighting schemes on the data collections listed in Table 3.3.

In addition, we used the bisecting K-means algorithm to show that the cluster-
based term weighting scheme can be applied for hierarchical clustering algorithms. In
this experiment, we compared the TF −IDF and CBT term weighting schemes. We
used the average entropy, average F-Measure and average purity measures to compare
the results. Like the K-means algorithm, we ran the bisecting K-means algorithm 10
times to avoid any fluctuations in the final results.
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Table 3.5: Bisecting K-means clustering algorithm - Avg. Entropy, Avg. F-Measure
and Avg. Purity measured for the TF − IDF and CBT term weighting schemes.

Data CBT TF-IDF
Source Avg.

En-
tropy

Avg.
F-
Measure

Avg.
Purity

Avg.
En-
tropy

Avg.
F-
Measure

Avg.
Purity

TR11 1.3435 0.2067 0.5039 1.4102 0.2478 0.4850
TR12 1.5480 0.2256 0.3936 1.7344 0.1946 0.3514
TR23 1.3337 0.1803 0.4853 1.3351 0.1719 0.4853
TR31 1.2539 0.1473 0.5150 1.4105 0.1407 0.4344
TR45 1.5070 0.3003 0.4404 1.5922 0.2627 0.4210
RE S1 2.0039 0.0504 0.4140 2.0061 0.0519 0.4137
RE S2 1.9169 0.2663 0.2764 1.9981 0.2444 0.2518
20 NG 2.8548 0.09863 0.1079 2.2575 0.1894 0.2141

We calculated the entropy for the term weighting schemes, as given in Equation
(2.13), for each run after the algorithm converged. Then, we computed the average
of the entropies obtained in each run. Similarly, we computed the average F-measure
and average purity measures. Table 3.4 shows the average entropy calculated for each
data set. Table 3.5 shows the average entropy, average F-Measure and average purity
measured for the TF − IDF and CBT term weighting schemes for the bisecting
K-means clustering algorithm.

Both experiments show that the results obtained from the K-means and bisecting
K-means clustering algorithms with the CBT term weighting scheme have shown
better results compared to the other term weighting schemes on each data set.

According to the cluster-based term weighting scheme, a term is considered im-
portant to a cluster if it is unique to that cluster and occurs frequently within the
documents of that cluster. The inter- and intra-cluster components try to identify
these important terms by analyzing the term frequency distribution at three levels:
document, cluster and collection. And our experimental results have shown that
adding these cluster components in the term weighting scheme significantly improves
the results on each data set. We believe that some of the deviations in the results
are due to the clustering algorithms’ lack of handling the noise in the data collection.
The better results in each data set are boldfaced.

Copyright c© Keerthiram Murugesan, 2011.
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Chapter 4 Variant of CBT

The cluster-based term weighting scheme discussed in the previous chapter penal-
izes the terms of the documents that are placed in a wrong cluster. The terms of
documents that are in right cluster get higher term weights. A new variant of CBT
(CBTV ) increases the weight of the important terms of the documents that are in
right clusters without penalizing other terms.

CBTV will be useful for document ranking where the important terms in a docu-
ment should have higher term weights, which in turn improves the overall document
ranking.

Like CBT in Chapter 3, we compared the TF − IDF and CBTV . First, we
ran the K-means partitional clustering algorithm with the TF − IDF and CBTV .
Then, we ran the bisecting K-means hierarchical divisive clustering algorithm with
the TF − IDF and CBT variant to show that CBTV outperforms the traditional
TF − IDF . The results of these algorithms directly reflect the impact of the term
weighting schemes in the clustering algorithms.

This chapter concentrates on introducing a new cluster-based term weighting
scheme that can be used in the upcoming chapter. The main focus of this exper-
iment is to find whether this new term weighting scheme, similar to CBT , can be
applied for both document clustering and ranking.

From our experiment, we found that CBTV based on the clusters gives better
results than the well-known term weight scheme (TF − IDF ) traditionally used for
both partitional and hierarchical clustering algorithms.

4.1 The Proposed Term Weighting Scheme

In this section, we introduce CBTV term weighting scheme. For the term termt,
document di, and cluster Cj, CBTV is given as:

witj = (1− λ)(
tfit.idft
DL

) + (λ)(
dftj.icft
ClS

) (4.1)

= (1− λ)(
fit. log N

Nt

DL

) + (λ)(
dftj. log K

Kt

ClS
) (4.2)

where DL and ClS are the average document length and average cluster size respec-
tively [SBMM96]. Equation (4.1) is equivalent to Equation (4.2). Here, dftj is the
document frequency of the term termt within the cluster Cj.

This CBTV is a linear interpolation of the document and cluster models controlled
by a smoothing parameter λ as shown in Table 4.1.

From Equation 4.1, one can get the normalized TF −IDF term weighting scheme
by taking the value of the smoothing parameter, λ as 0. The document model captures
the frequency distribution of terms within a document and a collection, whereas
the cluster model captures the frequency distribution of the term (using document
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Table 4.1: Notations used in CBTV .

Notation Description

tfit.idft Document Model.
represents frequency of the term
termt with respect to the docu-
ment di and collection ζ.

dftj.icft Cluster Model.
represents frequency of the docu-
ment containing term termt with
respect to the cluster Cj and col-
lection ζ

λ Smoothing Parameter.
To control the influence of above
two models. 4.3

DL and ClS Normalization Factors.
to remove the impact of docu-
ment lengths and cluster size.

frequency) within a cluster and a collection. The cluster model assigns weight to the
unseen terms, for which the document model assign zero value since frequency of the
term termt in document di, tfit = 0. We can call this cluster model fallback model.

The following section shows the modified K-means and bisecting K-means algo-
rithms using CBTV as a term weighting scheme for computing the importance of a
term in a document.

K-means algorithm with CBTV

Initially, the K-means algorithm doesn’t have any information about the cluster com-
ponents, so we start the algorithm by setting dftj and icft to 1 and update the
document and cluster models on each iteration.

The runtime complexity of the traditional K-means algorithm is O(LNK) where L
is the total number of iterations in the outer loop, N is the total number of documents
in a collection and K is the total number of clusters. Algorithm 6 updates the term
weights for all clusters on each iteration to reflect the changes made in the new
clusters, so it takes O(LNK + LK) = O(LNK) since LK < LNK.

Bisecting K-means algorithm with CBTV

Like the K-means algorithm in the previous section, dftj and icft are set to 1 initially.

The runtime complexity of the bisecting K-means algorithm is linear with the
number of documents in the collection ζ. Algorithm 7 updates the term weights for
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Algorithm 6 K-means partitional clustering algorithm with CBTV

Require: An integer K ≥ 1, Document Collection ζ.

1: if K = 1 then
2: return ζ
3: else
4: Initialize l = 0
5: {C(0)

1 , · · · , C(0)
K } ← RANDOMCLUSTERS(ζ,K)

6: repeat
7: for all di ∈ ζ, i : 1 . . . N do
8: m = arg minj |cj − di|
9: C

(l+1)
m ← C

(l+1)
m ∪ di

10: end for
11: l← l + 1
12: witj ← (1 − λ)( tfit.idft

DL
) + (λ)(

dftj .icft
ClS

); for each term termt in a document di

of a cluster C
(t)
j , t : 1 . . . T , i : 1 . . . N , j : 1 . . . K

13: for j = 1 to K do
14: cj ← 1

|C(l)
j |

∑
di∈C

(l)
j
di

15: end for
16: until No change in K centroids
17: return {C(l)

1 , · · · , C(l)
K }

18: end if

Algorithm 7 Bisecting K-means hierarchical divisive clustering algorithm with
CBTV
Require: An integer K ≥ 1, Document Collection ζ.

1: if K = 1 then
2: return ζ
3: else
4: Initialize C ← {ζ}
5: for k = 1 to K − 1 do
6: L← PICK − LARGEST − CLUSTER(C)
7: {C1, C2} ← K −MEANS(L, 2)
8: C ← C ∪ {C1, C2}
9: witj ← (1 − λ)( tfit.idft

DL
) + (λ)(

dftj .icft
ClS

); for each term termt in a document di

of a cluster C
(t)
j in C, t : 1 . . . T , i : 1 . . . N , j : 1 . . . K

10: end for
11: return C
12: end if
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all the clusters for K times to reflect the changes made in the new clusters, so it takes
O(N +K2) = O(N) since K << N .

4.2 Data Collections Used For CBTV

For this experiment on CBTV term weighting scheme, we used the TREC [TRE99],
WebACE [Lan] and Reuters-21578 [Lew99] data collections. FBIS, HITECH, LA1,
and LA2 collections are taken from TREC-5, TREC-6 and TREC-7. RE0 and RE1
data sets are from Reuters-21578 collection. For all the data sets shown in Table
4.2, we removed the stop words and stemmed using the Porter stemming algorithm
[Por80].

Table 4.2: Data sets used for both the K-means and Bisecting K-means algorithms
(with CBTV ).

Data set Collection # of Doc # of Class

FBIS TREC 2463 17
HITECH TREC 2301 6
K1A WEBACE 2340 20
LA1 TREC 3204 6
LA2 TREC 3075 6
RE0 REUTERS-21578 1504 13
RE1 REUTERS-21578 1657 25
WAP WEBACE 2000 20

4.3 Parameter Selection

The document and cluster models use a smoothing parameter to control the influence
of each model. The smoothing parameter (λ) takes different forms [ZL04, LC04].

• The Jelinek-Mercer Method is a simple mixture model where λ is an arbi-
trary weight between 0 and 1.

• For the Bayesian Smoothing with the Dirichlet prior, λ takes the follow-
ing representation.

λ =

∑
termt∈D tfit∑

termt∈D tfit + µ
(4.3)

where
∑

termt∈D tfit is the summation of frequencies of all the terms in the
document di and µ is the Dirichlet smoothing coefficient which usually takes
1000.

In this experiment, we used the Bayesian Smoothing with the Dirichlet prior as
our smoothing parameter. The value of the parameter depends on the collection
being used for the experiment.
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4.4 Experimental Results

We used the K-means and bisecting K-means clustering algorithms to compare the
TF − IDF and CBTV term weighting schemes. Since we changed only the term
weighting schemes used in the K-means and bisecting K-means algorithms, the results
observed from the clusters generated by these algorithms directly represent the impact
of this new variant.

For these experiments, we used the average entropy, average F-Measure, average
purity, mutual information and normalized mutual information evaluation measures
for both the K-means and bisecting K-means clustering algorithms to compare the
TF − IDF and CBTV . We used the algorithms from partitional and hierarchical
clustering to demonstrate that CBTV performs well in both clustering types.

In our first experiment with the K-means clustering algorithm, we ran the algo-
rithm for 10 times with different random seed for the initial centroids on each run
and on each data set, since the K-means algorithm is unstable and sensitive to the
chosen initial centroids. We repeated the same experiment for the TF − IDF term
weighting scheme. We calculated the average entropy, average F-Measure, average
purity, mutual information and normalized mutual information for each data set, by
computing the average of the 10 values of the entropy, F-Measure, Purity, mutual
information and normalized mutual information obtained from 10 runs.

Table 4.3 shows the average entropy, average F-Measure, average purity, mutual
information and normalized mutual information computed for the K-means clustering
algorithm with the TF − IDF and CBT term weighting schemes.

We repeated the same experiment with the bisecting K-means algorithm. We used
the same evaluation measures as for the K-means algorithm (average entropy, average
F-Measure, average purity, mutual information and normalized mutual information).
As with the K-means algorithm, we repeated the experiment 10 times with different
seed for the initial centroids.

Table 4.4 shows the average entropy, average F-Measure, average purity, mutual
information and normalized mutual information computed for the bisecting K-means
clustering algorithm with the TF − IDF and CBT term weighting schemes.
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Table 4.3: K-means clustering algorithm - Avg. Entropy, Avg. F-Measure, Avg. Purity, MI and NMI measured for the
TF − IDF and CBTV term weighting schemes.

Data CBTV TF − IDF
Source Avg.

En-
tropy

Avg.
F-
Measure

Avg.
Purity

MI NMI Avg.
En-
tropy

Avg.
F-
Measure

Avg.
Purity

MI NMI

FBIS 1.1489 0.3756 0.6117 1.2977 0.4580 1.1469 0.3814 0.6020 1.2938 0.4567
HITECH1.1590 0.4515 0.5412 0.5129 0.2863 1.2174 0.4214 0.5082 0.4562 0.2546
K1A 1.3802 0.3737 0.5544 1.1766 0.3928 1.3833 0.3791 0.5542 1.1685 0.3901
LA1 0.9176 0.6180 0.6761 0.7741 0.4320 0.9050 0.6345 0.6915 0.7869 0.4392
LA2 0.8755 0.6365 0.6936 0.8062 0.4499 0.8893 0.6326 0.6870 0.7930 0.4426
RE0 1.0949 0.3125 0.6079 0.7297 0.2845 1.1121 0.3021 0.5973 0.7120 0.2776
RE1 1.1881 0.4266 0.6408 1.4716 0.4572 1.1907 0.4266 0.6386 1.4690 0.4564
WAP 1.3472 0.3751 0.5706 1.2204 0.4074 1.3465 0.3732 0.5706 1.2169 0.4062
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Table 4.4: Bisecting K-means clustering algorithm - Avg. Entropy, Avg. F-Measure, Avg. Purity, MI and NMI measured for
the TF − IDF and CBTV term weighting schemes.

Data CBTV TF − IDF
Source Avg.

En-
tropy

Avg.
F-
Measure

Avg.
Purity

MI NMI Avg.
En-
tropy

Avg.
F-
Measure

Avg.
Purity

MI NMI

FBIS 1.1463 0.4293 0.6209 1.2687 0.4478 1.1816 0.4249 0.6109 1.2298 0.4341
HITECH1.1263

0.4983
0.5632 0.5469 0.3052 1.1633 0.4685 0.5345 0.5104 0.2848

K1A 1.2138 0.4532 0.6105 1.3080 0.4366 1.2397 0.4067 0.5959 1.2800 0.4273
LA1 0.9064 0.5836 0.6875 0.7861 0.4387 0.8795 0.6201 0.6950 0.8132 0.4538
LA2 0.8730 0.6160 0.6893 0.8098 0.4520 0.9291 0.6021 0.6607 0.7532 0.4203
RE0 0.9848 0.3969 0.6610 0.8297 0.3235 1.0124 0.3864 0.6493 0.8027 0.3130
RE1 1.2124 0.4085 0.6383 1.4264 0.4431 1.2466 0.3805 0.6333 1.3940 0.4331
WAP 1.2412 0.4128 0.6008 1.2806 0.4275 1.2707 0.3978 0.5931 1.2562 0.4193
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From Tables 4.3 and 4.4, we observed that CBTV performs better than the
TF − IDF in both the K-means and bisecting K-means clustering algorithms. Both
these experiments have shown that using the document and cluster models in a term
weighting scheme give better results than the traditional TF −IDF . In addition, the
results for CBTV are similar to the results observed for CBT discussed in Chapter
3. The better results in each data set are bold faced.

We will use CBTV as a document ranking model in the next chapter.

Copyright c© Keerthiram Murugesan, 2011.
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Chapter 5 CBT for Document Ranking

A document ranking model finds the similarities between any document in a collection
and a query. A document ranking algorithm retrieves a set of documents that are
most relevant to a query. As explained in Section 2.5, we find the similarity/score
between a document and a query using:

Score(q, d) = q.d (5.1)

5.1 The Proposed Ranking Model

Any term weighting scheme can be used as a document ranking model. Section 2.5
has shown how we can use the TF − IDF term weighting scheme as a document
ranking model. Similarly, we can use CBTV discussed in Chapter 4 as a document
ranking model.

Score(q, di) =
∑
t∈q

CBTVt,i (5.2)

Score(q, di) =
∑
t∈q

(1− λ)(
tfit.idft
DL

) + (λ)(
dftj.icft
ClS

) (5.3)

where DL and ClS are the average document length and average cluster size
respectively. Equation (5.2) is equivalent to Equation (5.3). Here, j in Equation
(5.3) is the index of the cluster Cj of the document di, dftj is the document frequency
of the term termt within the cluster Cj.

CBTV Document Ranking Algorithm

Document ranking algorithm computes the similarity between each document in the
collection ζ and the given query. Based on these similarity scores / ranks computed,
the retrieved list of documents potentially relevant to the query is returned as a search
result. Algorithm 8 uses breadth first search. First, the algorithm computes a partial
score/rank for each document in a collection. The final score/rank will be computed
when all the query terms are handled. This algorithm needs a set of clusters (static
clusters) as an input for computing the score/rank for each document. Line 4 uses
these cluster information for the cluster model and computes the score using CBTV .

Higher the score for a document, more relevant the document is to the given
query. The SORT (ζ, Score[]) sorts the retrieved list based on the scores computed
for each document. The ranked, retrieved list is returned as a search result for the
given query.

5.2 Data Collections Used For CBTV Document Ranking Model

For this experiment, we used three data sets: Genomic, AP89, and Classic3. AP89 is
the collection of Associated Press (AP) news stories from 1989. Classic3 data set is
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Algorithm 8 Document Ranking Algorithm using CBTV

Require: Query q, Cluster set {C1, C2, · · · , CK}, and Document Collection ζ.

1: Score[N ] = 0.0
2: for all term termt in query q do
3: for all document di of cluster Cj in collection ζ do

4: witj ← (1− λ)( tfit.idft
DL

) + (λ)(
dftj .icft
ClS

)
5: Score[i]← Score[i] + witj

6: end for
7: end for
8: R← SORT (ζ, Score[])
9: return R

made from three data sets: MED, CRAN and CISI. Each data set contains a query
set to evaluate the document ranking model.

Table 5.1: Data sets used for CBTV Document Ranking Model.

Data set # of Doc Query Set

Genomic 42,251 1 - 50
AP89 84,640 1 - 50
Classic3 (MED) 3893 1 - 30
Classic3 (CRAN) 3893 1 - 50
Classic3 (CISI) 3893 1 - 50

Since the most common words in a data set do not contribute much to the overall
score/rank, we removed these stop words from both data set and query set. Figure
5.1 shows the top 50 most frequent terms in AP89 data set. Most of the terms in the
list will have no impact on the retrieved list. The terms are then stemmed using the
Porter stemming algorithm [Por80].

5.3 Experimental Results

In this experiment, each data set in Table 5.1 is clustered in advance. The generated
clusters, static clusters, will be used in the cluster model for computing the score/rank
for each document in the collection ζ. These static clusters can be generated using any
document clustering algorithm. In our experiment, we used the traditional K-means
partitional clustering algorithm. And we used K =

√
N as the number of clusters for

the document clustering algorithm. We observed that the results obtained depends
on the quality of the static clusters generated by a clustering algorithm.

We used MAP, P@10 and P@100 measures to evaluate the ranked list of doc-
uments for the query sets. In addition, we have shown the percentage improve-
ment achieved through CBTV compared to the document ranking model with the
TF − IDF term weighting scheme.
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Figure 5.1: Top 50 terms of AP89. Pr is the probability of the occurrence of a term.
[CMS09]

The following three tables show MAP, P@10 and P@100 measured for each data
set with the given query set.

Table 5.2: MAP evaluation measure for Document Ranking Model.

MAP

Data set # of Clusters
(K =

√
N)

CBTV TF − IDF Improvement
(%)

Genomic 206 0.2510 0.1605 +56.39
AP89 291 0.1521 0.1292 +17.73
Classic3 (MED) 62 0.5180 0.4207 +23.13
Classic3
(CRAN)

62 0.3057 0.2493 +22.62

Classic3 (CISI) 62 0.1525 0.1357 +12.38
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Table 5.3: P@10 evaluation measure for Document Ranking Model.

P@10

Data set # of Clusters
(K =

√
N)

CBTV TF − IDF Improvement
(%)

Genomic 206 0.2740 0.2740 -
AP89 291 0.1702 0.1681 +1.25
Classic3 (MED) 62 0.6433 0.5433 +18.41
Classic3
(CRAN)

62 0.2380 0.2040 +16.67

Classic3 (CISI) 62 0.2711 0.2600 +4.27

Table 5.4: P@100 evaluation measure for Document Ranking Model.

P@100

Data set # of Clusters
(K =

√
N)

CBTV TF − IDF Improvement
(%)

Genomic 206 0.2370 0.2004 +18.26
AP89 291 0.1121 0.0964 +16.29
Classic3 (MED) 62 0.1823 0.1603 +13.72
Classic3
(CRAN)

62 0.0514 0.0486 +5.76

Classic3 (CISI) 62 0.1427 0.1456 -1.99

All the evaluation measures have shown that using CBTV for document ranking
has improved the final results. In some cases, we have achieved 64% improvement over
traditional TF −IDF . The results can be expected to improve, if we use hierarchical
clustering for generating the static clusters.

Copyright c© Keerthiram Murugesan, 2011.

35



Chapter 6 Okapi and CBT

Okapi BM25 is one of the best-known term weighting and document ranking func-
tions [RWBW99, RZRZ]. It is a probabilistic model of information retrieval. In
this chapter, we will show how another variant of CBT performs better than Okapi
BM25 model. Okapi BM25 function can be defined as:

wit =
(k1 + 1)tfit

tfit + k1((1− b) + b( Dl

DL
)
.idft (6.1)

where k1, b are tuning parameters for scaling the term frequency tfit and document
length respectively, Dl and DL are the document length and average document length
respectively, and dft is the document frequency of the term termt in the collection
ζ. Experiments have shown that for the values b = 0.75 and k1 between 1.2 and 2,
Okapi BM25 gives the maximum performance.

As discussed earlier, any term weighting scheme can be used for document ranking.
The document ranking model for Okapi BM25 is given as:

Score(q, di) =
∑
t∈q

(k1 + 1)tfit

tfit + k1((1− b) + b( Dl

DL
)
.idft (6.2)

6.1 The Proposed Term Weighting Scheme

In this section, we propose a new term weighting scheme based on CBTV , discussed
in Chapter 4, and Okapi BM25.

witj =

(
(1− λ)

(k1 + 1)tfit

tfit + k1((1− b1) + b1(
Dl

DL
)
. log

N

Nt

+(λ)
(k2 + 1)dfjt

dfjt + k2((1− b2) + b2(
Cs

CS
)
. log

K

Kt

) (6.3)

where b2, k2 are similar to the tuning parameters in Equation 6.1 and b = b1, Cs

and CS are the cluster size and average cluster size respectively, dftj is the document
frequency of the term termt in the cluster Cj.

In Chapter 5, we have shown CBTV based document ranking. Similarly, we can
use CBT BM25 for document ranking.

Score(q, di) =

(∑
t∈q

(1− λ)
(k1 + 1)tfit

tfit + k1((1− b1) + b1(
Dl

DL
)
. log

N

Nt

+(λ)
(k2 + 1)dfjt

dfjt + k2((1− b2) + b2(
Cs

CS
)
. log

K

Kt

) (6.4)

36



The notations used in Equation 6.4 are given in Table 6.1.

Table 6.1: Notations in CBT BM25.

Notation Description

(k1+1)tfit

tfit+k1((1−b1)+b1(
Dl
DL

)
. log N

Nt
Document Model.
represents frequency of the term
termt with respect to the docu-
ment di and collection ζ.

(k2+1)dfjt

dfjt+k2((1−b2)+b2(
Cs
CS

)
. log K

Kt
Cluster Model.
represents frequency of the docu-
ment containing term termt with
respect to the cluster Cj and col-
lection ζ

λ Smoothing Parameter.
To control the influence of above
two models. 4.3

In order to evaluate CBT BM25 for both document ranking and clustering al-
gorithms, as we did in the previous chapters for CBT and CBTV , we performed
two experiments. First, we ran the clustering algorithms (K-means and bisecting K-
means) with CBT BM25 and Okapi BM25. Second, we ran the document ranking
algorithm with CBT BM25 and Okapi BM25 to evaluate the retrieved document
list. The document clustering and ranking algorithms are given below:

K-means algorithm with CBT BM25

Initially, the K-means algorithm doesn’t have any information about the cluster com-
ponents, so we start the algorithm by setting dftj and icft to 1. The K-means al-
gorithm 9 uses Equation 6.3 and updates the document and cluster models on each
iteration.

The runtime complexity of the traditional K-means algorithm is O(LNK) where L
is the total number of iterations in the outer loop, N is the total number of documents
in a collection and K is the total number of clusters. Algorithm 9 updates the term
weights for all the clusters on each iteration to reflect the changes made in the new
clusters, so it takes O(LNK + LK) = O(LNK) since LK < LNK.

Bisecting K-means algorithm with CBT BM25

Like the K-means algorithm in the previous section, dftj and icft are set to 1 initially.
The runtime complexity of the bisecting K-means algorithm is linear with the

number of documents in the collection ζ. Algorithm 10 updates the term weights for
all the clusters for K times to reflect the changes made in the new clusters, so it takes
O(N +K2) = O(N) since K << N .
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Algorithm 9 K-means partitional clustering algorithm with CBT BM25

Require: An integer K ≥ 1, Document Collection ζ.

1: if K = 1 then
2: return ζ
3: else
4: Initialize l = 0, k1 = 1.2, k2 = 1.2, b1 = 0.75 and b2 = 0.75
5: {C(0)

1 , · · · , C(0)
K } ← RANDOMCLUSTERS(ζ,K)

6: repeat
7: for all di ∈ ζ, i : 1 . . . N do
8: m = arg minj |cj − di|
9: C

(l+1)
m ← C

(l+1)
m ∪ di

10: end for
11: l← l + 1
12: witj = (1 − λ) (k1+1)tfit

tfit+k1((1−b1)+b1(
Dl
DL

)
. log N

Nt
+ (λ)

(k2+1)dfjt

dfjt+k2((1−b2)+b2(
Cs
CS

)
. log K

Kt
; for

each term termt in a document di of a cluster C
(t)
j , t : 1 . . . T , i : 1 . . . N ,

j : 1 . . . K
13: for j = 1 to K do
14: cj ← 1

|C(l)
j |

∑
di∈C

(l)
j
di

15: end for
16: until No change in K centroids
17: return {C(l)

1 , · · · , C(l)
K }

18: end if

Algorithm 10 Bisecting K-means hierarchical divisive clustering algorithm with
CBT BM25
Require: An integer K ≥ 1, Document Collection ζ.

1: if K = 1 then
2: return ζ
3: else
4: Initialize C ← {ζ}
5: for k = 1 to K − 1 do
6: L← PICK − LARGEST − CLUSTER(C)
7: {C1, C2} ← K −MEANS(L, 2)
8: C ← C ∪ {C1, C2}
9: witj = (1 − λ) (k1+1)tfit

tfit+k1((1−b1)+b1(
Dl
DL

)
. log N

Nt
+ (λ)

(k2+1)dfjt

dfjt+k2((1−b2)+b2(
Cs
CS

)
. log K

Kt
; for

each term termt in a document di of a cluster C
(t)
j in C, t : 1 . . . T , i : 1 . . . N ,

j : 1 . . . K
10: end for
11: return C
12: end if
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CBT BM25 Document Ranking Algorithm

The document ranking algorithm 11 uses CBT BM25 shown in Equation 6.4.

Algorithm 11 Document Ranking Algorithm using CBT BM25

Require: Query q, Cluster set {C1, C2, · · · , CK}, and Document Collection ζ.

1: Score[N ] = 0.0
2: for all term termt in query q do
3: for all document di of cluster Cj in collection ζ do

4: witj ← (1− λ) (k1+1)tfit

tfit+k1((1−b1)+b1(
Dl
DL

)
. log N

Nt
+ (λ)

(k2+1)dfjt

dfjt+k2((1−b2)+b2(
Cs
CS

)
. log K

Kt

5: Score[i]← Score[i] + witj

6: end for
7: end for
8: R← SORT (ζ, Score[])
9: return R

6.2 Data Collections Used For CBT BM25

We performed two experiments to compare Okapi BM25 with CBT BM25, for
the document clustering and ranking. For the first experiment with the document
clustering algorithms (K-means and bisecting K-means), we used the TREC [TRE99],
WebACE [Lan] and Reuters-21578 [Lew99] data collections. TR11, TR12, TR23,
TR31, TR45, FBIS, HITECH, LA1 and LA2 collections are taken from TREC-5,
TREC-6 and TREC-7. RE0 and RE1 data sets are from Reuters-21578 collection.

Table 6.2: Data sets used for both the K-means and Bisecting K-means algorithms
(with CBT BM25).

Data set Collection # of Doc # of Class

FBIS TREC 2463 17
HITECH TREC 2301 6
K1A WEBACE 2340 20
LA1 TREC 3204 6
LA2 TREC 3075 6
RE0 REUTERS-21578 1504 13
RE1 REUTERS-21578 1657 25
TR11 TREC 414 9
TR12 TREC 313 8
TR23 TREC 204 6
TR31 TREC 927 7
TR45 TREC 690 10
WAP WEBACE 2000 20
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In the second experiment for evaluating the document ranking algorithm with
Okapi and CBT BM25, we used two data sets: Genomic and Classic3. Classic3 data
set is made from three data sets: MED, CRAN and CISI. Each data set contains a
query set to evaluate the document ranking model.

Table 6.3: Data sets used for CBT BM25 Document Ranking Model.

Data set # of Doc Query Set

Genomic 42,251 1 - 50
AP89 84,640 1 - 50
Classic3 (MED) 3893 1 - 30
Classic3 (CRAN) 3893 1 - 50
Classic3 (CISI) 3893 1 - 50

For all the data sets shown in Tables 6.2 and 6.3, we removed the stop words and
stemmed using the Porter stemming algorithm [Por80].

6.3 Experimental Results

In our first experiment with the document clustering algorithm, we used both the
K-means and bisecting K-means clustering algorithms to compare Okapi and CBT
BM25. The clusters generated by these algorithms are evaluated using the entropy,
F-Measure, purity, mutual information and normalized mutual information.

Since the K-means algorithm is unstable and highly dependent on the initial
seeds chosen, we ran the algorithm for 10 times on each data set for both Okapi and
CBT BM25. We measured the entropy, F-Measure, purity, mutual information and
normalized mutual information for each run. The average of these results measured
for the 10 runs is used for the comparison: average entropy, average F-Measure,
average purity, mutual information and normalized mutual information.

Table 6.4 shows the average entropy, average F-Measure, average purity, mutual
information and normalized mutual information computed for the K-means clustering
algorithm with Okapi and CBT BM25 term weighting schemes.

We repeated the same experiment for the bisecting K-means algorithm. From the
experiment on the K-means and bisecting K-means document clustering algorithms,
we found that CBT BM25 performs much better than Okapi BM25 term weighting
scheme. Most of the results in CBT BM25 computed for evaluating the generated
clusters are far better than that of Okapi BM25.

Table 6.5 shows the average entropy, average F-Measure, average purity, mutual
information and normalized mutual information computed for the bisecting K-means
clustering algorithm with Okapi and CBT BM25 term weighting schemes.

40



Table 6.4: K-means clustering algorithm - Avg. Entropy, Avg. F-Measure, Avg. Purity, MI and NMI measured for CBT
BM25 and Okapi BM25.

Data CBT BM25 Okapi BM25
Source Avg.

En-
tropy

Avg.
F-
Measure

Avg.
Purity

MI NMI Avg.
En-
tropy

Avg.
F-
Measure

Avg.
Purity

MI NMI

FBIS 1.1751 0.4233 0.6253 1.2383 0.4371 1.1809 0.3690 0.5991 1.2624 0.4456
HITECH1.2356 0.4281 0.5100 0.4365 0.2436 1.2526 0.4161 0.4950 0.4211 0.2350
K1A 1.1830 0.4144 0.6214 1.3655 0.4558 1.6931 0.3206 0.4758 0.8975 0.2996
LA1 0.8171 0.6456 0.7109 0.8732 0.4873 1.3035 0.4265 0.4874 0.3873 0.2161
LA2 0.8114 0.6354 0.6967 0.8682 0.4845 1.2590 0.4333 0.4934 0.4216 0.2353
RE0 0.9934 0.3435 0.6501 0.8175 0.3187 1.2120 0.2797 0.5708 0.6137 0.2393
RE1 1.3550 0.3513 0.5920 1.3139 0.4082 1.2041 0.4091 0.6356 1.4550 0.4520
TR11 0.7808 0.4970 0.7413 1.1074 0.5040 1.7408 0.1534 0.3609 0.2962 0.1348
TR12 1.2415 0.4193 0.5435 0.6991 0.3362 1.8185 0.1486 0.3201 0.2260 0.1087
TR23 1.0721 0.3430 0.5172 0.2008 0.1334 1.3108 0.2514 0.5 0.2549 0.1423
TR31 1.1344 0.3012 0.5696 0.4268 0.2194 1.3908 0.1680 0.4497 0.1869 0.0961
TR45 1.0358 0.5449 0.6565 1.0209 0.4434 1.7017 0.2444 0.3729 0.4476 0.1944
WAP 1.2460 0.3966 0.5977 1.3319 0.4446 1.6950 0.3184 0.4766 0.9399 0.3138
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Table 6.5: Bisecting K-means clustering algorithm - Avg. Entropy, Avg. F-Measure, Avg. Purity, MI and NMI measured for
CBT BM25 and Okapi BM25 term weighting schemes.

Data CBT BM25 Okapi BM25
Source Avg.

En-
tropy

Avg.
F-
Measure

Avg.
Purity

MI NMI Avg.
En-
tropy

Avg.
F-
Measure

Avg.
Purity

MI NMI

FBIS 1.2701 0.4402 0.5935 1.1368 0.4012 1.2114 0.4501 0.6041 1.2035 0.4248
HITECH1.1373 0.4890 0.5552 0.5353 0.2988 1.1950 0.4623 0.5200 0.4785 0.2671
K1A 1.0710 0.4803 0.6652 1.4421 0.4814 1.4766 0.3847 0.5368 1.0763 0.3593
LA1 0.8188 0.6300 0.7136 0.8731 0.4873 1.3131 0.4121 0.4729 0.3795 0.2118
LA2 0.8644 0.6165 0.6852 0.8163 0.4556 1.1933 0.4986 0.5329 0.4896 0.2732
RE0 0.9661 0.4297 0.6733 0.8433 0.3288 1.0928 0.3603 0.6119 0.7240 0.2822
RE1 1.2978 0.3642 0.6187 1.3386 0.4159 1.2255 0.3919 0.6361 1.4148 0.4395
TR11 0.8249 0.5194 0.7236 1.0087 0.4591 1.4804 0.2768 0.4655 0.4282 0.19488
TR12 1.2435 0.4638 0.5666 0.6414 0.3085 1.5932 0.3018 0.3997 0.3476 0.1671
TR23 1.0250 0.4698 0.6373 0.4386 0.2448 1.2889 0.2353 0.5029 0.2570 0.14343
TR31 0.8109 0.4700 0.6939 0.7252 0.3727 1.0704 0.3194 0.5905 0.4745 0.2438
TR45 0.9894 0.5422 0.6745 1.0564 0.4588 1.2026 0.4836 0.5739 0.8633 0.3749
WAP 1.14748 0.4455 0.6380 1.3737 0.4586 1.5430 0.3719 0.5101 1.0167 0.3394
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Finally, we ran the document ranking algorithm with Okapi and CBT BM25.
Okapi BM25 function is highly parametrized and needs a lot of tuning. Since we
used the same representation for CBT BM25, it has more parameters than Okapi.
In this experiment, we used the same parameter values for both the document and
cluster models. But we think that tuning these parameters with CBT BM25 will
give better results than the one shown in this thesis.

We used MAP, P@10 and P@100 measures to evaluate the ranked list of docu-
ments for the query sets. In addition, we have shown the percentage improvement
achieved through CBT BM25 compared to the document ranking model with Okapi
BM25.

Table 6.6: MAP evaluation measure for Document Ranking Model.

MAP

Data set # of Clusters
(K =

√
N)

CBT BM25 Okapi BM25 Improvement
(%)

Genomic 206 0.3280 0.3045 +7.72
AP89 291 0.1720 0.1619 +6.24
Classic3 (MED) 62 0.5513 0.5383 +2.42
Classic3
(CRAN)

62 0.3511 0.3587 -2.12

Classic3 (CISI) 62 0.1626 0.1548 +5.04

Table 6.7: P@10 evaluation measure for Document Ranking Model.

P@10

Data set # of Clusters
(K =

√
N)

CBT BM25 Okapi BM25 Improvement
(%)

Genomic 206 0.4100 0.3320 +23.49
AP89 291 0.2106 0.2170 -2.95
Classic3 (MED) 62 0.6667 0.6367 +4.71
Classic3
(CRAN)

62 0.2600 0.2760 -5.80

Classic3 (CISI) 62 0.3244 0.3200 +1.38

In this experiment, each data set in Table 6.3 is clustered in advance. The gen-
erated clusters, static clusters, will be used in the cluster model for computing the
score/rank for each document in the collection ζ. These static clusters can be gen-
erated using any document clustering algorithm. In our experiment, we used the
traditional K-means partitional clustering algorithm with K =

√
N as the number of

clusters. We have also observed that the results obtained depends on the quality of
the static clusters generated by a clustering algorithm.
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Table 6.8: P@100 evaluation measure for Document Ranking Model.

P@100

Data set # of Clusters
(K =

√
N)

CBT BM25 Okapi BM25 Improvement
(%)

Genomic 206 0.3036 0.2704 +12.28
AP89 291 0.1343 0.1251 +7.35
Classic3 (MED) 62 0.1830 0.1830 -
Classic3
(CRAN)

62 0.0536 0.0532 +0.75

Classic3 (CISI) 62 0.1589 0.1511 +5.16

All the evaluation measures have shown that using CBT BM25 for document
ranking has improved the final results. The results can be expected to improve, if we
use hierarchical clustering for generating the static clusters.

Copyright c© Keerthiram Murugesan, 2011.
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Chapter 7 Conclusion

In this thesis, we presented a family of cluster-based term weighting schemes focusing
on their application in document clustering and ranking. They are CBT , CBTV and
CBT BM25. CBT is the basic form of the cluster-based term weighting scheme,
which uses intra- and inter-cluster components for incorporating cluster information
in the term weights. In order to experiment this term weighting scheme for document
clustering, we used both partitional (K-means) and hierarchical (bisecting K-means)
algorithms to show that CBT can improve the clusters generated by any type of
document clustering.

The experiments based on CBT have shown better results compared to the tra-
ditional and widely used term weighting scheme, TF − IDF . We used the average
entropy, average F-Measure, average purity, mutual information and normalized mu-
tual information as our evaluation measures for the generated clusters.

Based on the results from CBT , we modified the basic structure of the cluster-
based term weighting scheme. We introduced CBTV , which includes two models
(document and cluster models) whose influence is controlled by a smoothing pa-
rameter. We used the Bayesian smoothing with Dirichlet prior for the smoothing
parameter in CBTV .

The document model tries to find the importance of a term within a document and
a collection, whereas the cluster model finds the importance of a term within a cluster
and a collection. The cluster model tries to find the importance of an unseen term in
a document based on the statistics from the cluster of that document. The structure
of this new variant resembles a probabilistic model and has shown experimentally to
outperform the TF − IDF . This motivated us to use CBTV for document ranking.

We compared the TF−IDF and CBTV for document ranking. The experimental
results have shown significant improvements in the retrieved set returned for a given
query. We have achieved up to 60% for some data sets. We used MAP, P@10 and
P@100 measures to evaluate the ranked list of documents returned for a query.

After our experiment with document ranking using CBTV , we tried our CBT
approach to one of the best-known probabilistic ranking models, Okapi BM25. We
proposed another ranking function based on CBTV and Okapi BM25, CBT BM25.
CBT BM25 has the same structure as CBTV with the document and cluster models
controlled by a smoothing parameter. We experimented with both Okapi and CBT
BM25 models for document clustering (K-means and bisecting K-means document
clustering algorithms) to compare their final results. CBT BM25 outperforms Okapi
in most cases. The experimental results from document ranking with Okapi and CBT
BM25 have shown that CBT BM25 gives considerable improvement in the retrieved
set.

Document ranking using CBTV and CBT BM25 needs a set of static clusters to
compute the score/rank for each document. In our experiment, we used the K-means
partitional clustering for generating these static clusters.
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7.1 Future Works

Quality of Static Clusters

From our experiments, we have found that the quality of the static clusters used for
CBTV and CBT BM25 have a significant impact on the retrieved set for a given
query. Using the clustering algorithm such as UPGMA can improve the final results
in document ranking since UPGMA generates better clusters than the K-means and
bisecting K-means clustering algorithms.

Parameter Tuning

The parameter values used in CBT BM25 depend on the collection used. Since
we have used the same parameter values for CBT BM25 and Okapi BM25, tuning
these parameters can improve the final results from document ranking. We need
separate development and test collections, with their query sets, for experimenting
this approach.

Smoothing Parameter

In CBTV and CBT BM25, we used the Bayesian smoothing with Dirichlet prior
for computing the smoothing parameter. Comparing the performance of CBT mod-
els with different smoothing methods such as Jelinek-Mercer smoothing, Bayesian
smoothing with Dirichlet Prior, absolute discounting, Laplace smoothing, Katz smooth-
ing and Good-Turing estimation will be an interesting approach to focus on.

Copyright c© Keerthiram Murugesan, 2011.
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