
University of Kentucky University of Kentucky

UKnowledge UKnowledge

University of Kentucky Master's Theses Graduate School

2007

A CONTROLLER AREA NETWORK LAYER FOR RECONFIGURABLE A CONTROLLER AREA NETWORK LAYER FOR RECONFIGURABLE

EMBEDDED SYSTEMS EMBEDDED SYSTEMS

Nithyananda Siva Jeganathan
University of Kentucky, nithyanandasiva@yahoo.com

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Jeganathan, Nithyananda Siva, "A CONTROLLER AREA NETWORK LAYER FOR RECONFIGURABLE
EMBEDDED SYSTEMS" (2007). University of Kentucky Master's Theses. 484.
https://uknowledge.uky.edu/gradschool_theses/484

This Thesis is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted
for inclusion in University of Kentucky Master's Theses by an authorized administrator of UKnowledge. For more
information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/gradschool_theses
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

Abstract of Thesis

A CONTROLLER AREA NETWORK LAYER FOR RECONFIGURABLE

EMBEDDED SYSTEMS

Dependable and Fault-tolerant computing is actively being pursued as a research area
since the 1980s in various fields involving development of safety-critical applications.
The ability of the system to provide reliable functional service as per its design is a key
paradigm in dependable computing. For providing reliable service in fault-tolerant
systems, dynamic reconfiguration has to be supported to enable recovery from errors
(induced by faults) or graceful degradation in case of service failures. Reconfigurable
Distributed applications provided a platform to develop fault-tolerant systems and these
reconfigurable architectures requires an embedded network that is inherently fault-
tolerant and capable of handling movement of tasks between nodes/processors within the
system during dynamic reconfiguration. The embedded network should provide
mechanisms for deterministic message transfer under faulty environments and support
fault detection/isolation mechanisms within the network framework. This thesis describes
the design, implementation and validation of an embedded networking layer using
Controller Area Network (CAN) to support reconfigurable embedded systems.

KEYWORDS: Dependable Computing, Fault Tolerance, Embedded Networks,
Distributed system, Controller Area Network (CAN).

 Nithyananda Siva Jeganathan

 10/17/2007

A CONTROLLER AREA NETWORK LAYER FOR RECONFIGURABLE
EMBEDDED SYSTEMS

By

NITHYANANDA SIVA JEGANATHAN

DR. JAMES E. LUMPP Jr.

Director of Thesis

 DR.YU MING ZHANG

Director of Graduate Studies

10/17/2007

RULES FOR THE USE OF THESIS

Unpublished theses submitted for the Master’s degree and deposited in the University of

Kentucky Library are as a rule open for inspection, but are to be used only with due

regard to the rights of the authors. Bibliographical references may be noted, but

quotations or summaries of parts may be published only with the usual scholarly

acknowledgements.

Extensive copying or publication of the dissertation in whole or in part also requires the

consent of the Dean of the Graduate School of the University of Kentucky.

A library that borrows this project for use by its patrons is expected to secure the

signature of each user.

Name Date

__

__

__

__

__

__

__

__

THESIS

NITHYANANDA SIVA JEGANATHAN

The Graduate School

University of Kentucky

2007

A CONTROLLER AREA NETWORK LAYER FOR RECONFIGURABLE EMBEDDED

SYSTEMS

THESIS

A thesis submitted in partial fulfillment of the requirements for the degree of Master of

Science in the College of Engineering

at the University of Kentucky

By

Nithyananda Siva Jeganathan

Lexington, KY

Director: Dr. James E. Lumpp Jr. , Professor of Electrical Engineering

Lexington, KY

2007

Dedicated to my family, friends and

to Almighty who shows me the way…

Acknowledgements

I would like to thank my advisor Dr. James E. Lumpp, Jr. for his invaluable guidance and

support, without which this work would not have been possible. I am grateful for the

motivation and the inspirations he had provided. I would also like to thank my Thesis

Committee members Dr. Henry G. Dietz and Dr. William R. Dieter not only for serving on

the committee, but also for providing me with great learning opportunities.

This work is dedicated to my loving family and to Seema for their understanding, support

and for being the guiding light of my life. Their love and sacrifices made everything possible

and words cannot express my gratitude.

I would like to thank Nate Rhodes and Niveditha for their painstaking efforts in proof-

reading of the thesis work and their valuable suggestions. Last, but not the least I thank my

friends who had motivated me and stood by me in everything.

iii

 Table of Contents

Acknowledgements .. iii

List of Figures .. vi

List of Tables .. vii

Chapter 1: Introduction ... 8

1.1 Background ... 8
1.2 Embedded Networks Overview .. 9
1.3 Data Communication Protocols .. 11

1.3.1 Message Oriented Protocols ... 12
1.4 Medium Access Control (MAC) ... 13
1.5 Ardea Run-time Environment ... 14

1.5.1 IDEAnix Framework .. 16
1.6 Embedded Network Selection ... 18

1.6.1 CAN Advantages .. 21
1.7 Problem Statement .. 21

Chapter 2: CAN Protocol and Applications.. 24

2.1 CAN Applications ... 24
2.1.1 Vehicle Application: Light Electrical Vehicles (LEVs) 25
2.1.2 Marine Applications: Autonomous/ Manned vehicles .. 25
2.1.3 Space Applications: CANAerospace ... 26

2.2 CAN Protocol Specification ... 27
2.2.1 CAN Physical Layer .. 28
2.2.2 CAN Bit timing for the Physical Layer ... 28
2.2.3 CAN Error detection .. 36

Chapter 3: CAN Hardware .. 39

3.1 CAN Hardware Properties: ... 39
3.1.1 CAN Controller Chips ... 39
3.1.2 CAN Transceiver chips .. 39
3.1.3 CAN Repeaters .. 40
3.1.4 CAN Bridges .. 40
3.1.5 CAN Gateways .. 40

3. 2 CAN Microcontrollers Overview .. 40
3.2.1 Silicon Laboratories ... 41
3.2.2 Infineon Technologies ... 41
3.2.3 Texas Instruments .. 43
3.2.4 Design Choice of Microcontroller ... 43

3.3 C_CAN Controller Overview ... 44
3.3.1 C_CAN Engine .. 44
3.3.2 C_CAN Registers... 45

iv

Chapter 4: ENDURA Design & Implementation Details ... 48
4.1 Special Function Register Access in C8051F04x Processors 48
4.2 ENDURA Design.. 49

4.2.1 Initialization Module .. 52
4.2.2 Register Module ... 56
4.2.3 Unregister Module ... 61
4.2.4 Get Packet Module ... 64
4.2.5 Send Packet Module .. 65
4.2.6 Translation Module (CAN2.0A  CAN2.0B  CAN2.0A) 70
4.2.7 CAN Interrupt Service Routine ... 73

Chapter 5: CAN Performance & Reliability Tests ... 79

5.1 Background ... 79
5.2 Test bench Set-up .. 79

5.2.1 Steps to set up the test-bench ... 81
5.3 CAN 2.0A/ B conformance testing ... 82

5.3.1 Register identifier test .. 82
5.3.2 Unregister a Message Identifier Test ... 83
5.3.3 Send Packet Test .. 85
5.3.4 Receive packet module test .. 86

5.4 Performance Testing of ENDURA ... 86
5.4.1 Bandwidth Tests and Analysis ... 87
5.4.2 Latency Tests ... 92
5.4.3 Reliability testing ... 97
5.4.4 Sporadic Packet Tests ... 98

5.5 Performance Analysis Summary... 99

Chapter 6: Conclusion... 101

Appendix A: CAN Protocol Specification .. 103

Appendix B: C_CAN Processor ... 109

References ... 114

Vita .. 118

v

List of Figures
Figure 1: Distributed system view on a UAV [2] ... 9
Figure 2: OSI Layer Reference Architecture .. 10
Figure 3: Node oriented communication .. 11
Figure 4: Message oriented communication ... 12
Figure 5: Ardea Dependency Graph model [26] ... 16
Figure 6: IDEAnix Block diagram and Task level communication with MeRL [4] 17
Figure 7: MeRL block diagram [4] ... 18
Figure 8: State Diagram for CAN Engine ... 31
Figure 9: CAN Data Frame Format .. 32
Figure 10: CAN Remote Request Frame .. 34
Figure 11: Error Frame Format ... 35
Figure 12: Block Diagram of CAN Application ... 51
Figure 13: CAN Module block diagram ... 52
Figure 14: Flow chart for initialization module .. 54
Figure 15: Flow chart for Register module ... 57
Figure 16: Flow chart for Unregister module ... 62
Figure 17: Flow chart for Send Message Module ... 66
Figure 18: Translation Module block Diagram .. 71
Figure 19: Flowchart for CAN ISR functionality ... 74
Figure 20: Block diagram for ENDURA test set up ... 80
Figure 21: Test Bench Setup for ENDURA layer testing ... 80
Figure 22: Test bench set up (a closer look) ... 81
Figure 23: Bandwidth Graph for Packet rate Vs Packets dropped ... 90
Figure 24: Block diagram representing different times measured in Latency tests 93
Figure 25: Timing diagram for receiving a packet ... 94
Figure 26: Timing diagram for Sending packet .. 95
Figure 27: Test Register Details ... 109

vi

vii

List of Tables
Table 1: Design matrix for the embedded networks .. 20
Table 2: CAN frame format for a basic CAN 2.0A frame .. 33
Table 3: Bandwidth Analysis report for 100ms tick delay ... 88
Table 4: Bandwidth Analysis report for 10ms tick delay ... 89
Table 5: Bandwidth Analysis with number of packets sent over time 90
Table 6: Reliability test data after continuous run for 40 hours ... 97
Table 7: Sporadic Test data for CAN ... 98
Table 8: Test Register Bits .. 109
Table 9: List of Protocol Registers in C_CAN processor ... 111
Table 10: List of Interface Registers in C_CAN processor .. 112
Table 11: List of Message handler Registers in C_CAN processor 113

Chapter 1: Introduction
This chapter provides a background and introduction to the problem of providing a

networking layer to support reconfigurable systems, embedded network architectures,

data communication protocols, media access control logics are discussed. The motivation

for the thesis is discussed along with the different embedded networks options and

motivation for the choice of Controller Area Network (CAN) as the desired embedded

network. Finally the goals for the system to be developed are described in detail.

1.1 Background
Dependable and Fault-tolerant computing is being actively pursued as a research area for

deployment in safety-critical applications where guaranteed functional operations of

system is paramount. The system should provide reliable services based on its functional

design and this key requirement is the motivation for implementing fault-tolerant

techniques in system. A Fault-tolerant system should be capable of detecting faults/

errors in the system and also provide minimal services in case of recoverable errors or

degrade gracefully in case of failures. Any distributed system depends on a network

mechanism for establishing communication between the different nodes and for a

reconfigurable distributed architecture, the embedded network should provide

mechanisms for deterministic message transfer under faulty environments and support

fault detection/isolation mechanisms within the network framework.

This thesis research work presents an implementation of an Embedded Network Driver

for Use on Reconfigurable Architectures (ENDURA) that supports fault-tolerant

mechanisms and can be integrated into any reconfigurable architecture as a network

layer. Controller Area Network is a differential signaling serial bus that was developed by

Robert Bosch GmbH for deployment as a system bus in Automobiles. For analyzing the

efficiency of the ENDURA implementation using CAN, a typical safety-critical

distributed system using an Unmanned Aerial Vehicle (UAV) will be considered as an

example where required. Figure 1 shows the system view for a distributed UAV system.

The Tiny Interface Module (TIM) processor boards [2] are embedded on servos and

8

mounted on the wings and the ailerons. The processor boards are connected through a

CAN bus that provides the communication mechanism for the UAV system.

Figure 1: Distributed system view on a UAV [2]

The other CAN applications that are used in Small vehicles (Light Electric Vehicles),

Marine applications (SeaCAN, NAUTILE) and Space applications (SOFIA, SMART-1)

are discussed in detail in Chapter 2.

1.2 Embedded Networks Overview
An overview of the embedded networks is provided in this section. The nodes in a

network can communicate with each other or nodes outside their network through a

variety of software architecture models and physical layers (PHY). Two of the most

popular software architectures in use are the Transfer Control Protocol (TCP)/Internet

Protocol (IP) suite and the International Standards Organization (ISO)/Open Systems

Interconnection (OSI) Reference model (also known as the seven layer ISO/OSI

Reference model) [28].

 The TCP/IP model was developed by the Department of Defense (DoD) to establish

connections between nodes of different types within different networks [26] . The TCP/IP

model was designed to provide guaranteed delivery of information between systems and

9

includes a sliding window protocol controlled by congestion control mechanisms [27].

The TCP/IP model led to the interconnection of networks and to the origin of the Internet.

 The main reference for most of the present embedded networks protocol specifications is

the ISO/OSI Reference model [28]. It is devised by the International Standards

Organization to support open networks communications and also to encapsulate the

existing interconnection standards within the ISO reference model. The model does not

define the exact implementation methodologies but rather defines the mutual recognition

and support of the applicable standards. For more detailed description on the ISO/ OSI

model and implementation requirements refer to [28].

Figure 2 shows the communication mechanism for the OSI Model and classifies 7

different layers based on their functionality. The ISO/ OSI model form the basis for many

of the industrial and embedded networks that are in use today [28].

 Figure 2: OSI Layer Reference Architecture

10

1.3 Data Communication Protocols
The data communication protocols basics that are currently being used in many

applications are discussed in the following sections. The data communication protocols

can be broadly classified into two categories:

 1. Node Oriented Protocols

2. Message Oriented Protocols

Node Oriented Protocols

In node oriented protocols the information is exchanged between nodes by their node

address. Hence the sender transmits the data with the destination node’s unique address,

that is either predefined for the network or can be obtained through a query message and

also optionally the sender’s source address. Typically reserved address(es) is/are

designated for broadcasting information to all or a group of nodes in the network. In the

node oriented scheme, besides specifying the receiver’s nodes address, the content of the

transmitted message needs to be specified as well. In general, all the information sent

across the network follow the same packet formats with payload (or data field) variations.

The information sent across network could be a fixed sized payload or variable payloads.

Figure 3: Node oriented communication

11

Figure 3 shows a generic network based on node oriented protocols. The packet format is

to send the Destination address (Node 3) of the node being addressed to and optionally

the Sender’s address (Node 1). An example of a Node oriented communication is the

Ethernet network technology [29].

1.3.1 Message Oriented Protocols
In Message Oriented Protocols the information is exchanged between nodes through a

Frame or Message Identifiers. The Node transmitting the data sends the information on

the bus with a unique Message Identifier. The nodes on the network make the decision on

accepting or dropping the packets that arrive through the bus. The Frame sent could be

received by one/some/all or none of the nodes. Since the transmitting node does not get

any acknowledgement of the data sent, confirmed message exchange is not suitably

realized [23]. This can be overcome via error-signaling techniques that enable the

receiver inform the sender of problems on the network. There are no reserved message

identifiers or broadcast message identifiers unlike the Node oriented protocols. The

arbitration purely depends on the message identifiers transmitted and higher preference is

normally for lower numbered message identifiers.

Figure 4: Message oriented communication

12

Figure 4 shows the communication between nodes in a message oriented methodology.

The packet that is sent on the network contains only the Message Identifier and not the

destination node’s address as in Node oriented mechanism. For example: in Figure 4

Node 2 rejects the packet and Node 3 accepts the packet. Example of a message oriented

network is Controller Area Network [6].

1.4 Medium Access Control (MAC)
Medium Access Control (MAC) is the mechanism of establishing asynchronous

communication between nodes and this section briefs in detail on the strategies used on

the embedded networks in general. MAC determines which transmitter gets control over

the media for transmission. The MAC logic arbitrates between 2 or more nodes from

transmitting at the same time and prevents collision of information from different nodes.

MAC decisively controls the Real-time behavior and packet latency and choice of MAC

is essential in choosing the data communication protocol.

MAC can be generally classified into two categories as methods with deterministic access

and methods with random bus access. Deterministic bus access methods are in turn

classified into two methods as allowing centrally controlled arbitration and distributed

controlled arbitration. The non-deterministic or random bus access is classified into two

methods as methods allowing collisions and no collisions methodology.

In deterministic bus access method, the arbitration is clearly broken prior to a bus access

thus guaranteeing that only one node will get the bus for transmission. The maximum

system response time can be determined for the bus with accuracy. In centrally controlled

deterministic access, one or more nodes act as the master and determine which node gets

the bus. But if the master/s fails, then network communication is impossible. In

distributed controlled deterministic access, the arbitration is broken by individual nodes

based on a protocol and not controlled by a master node. Hence even if one or more

nodes fail in the network, communication is still possible between the remaining nodes.

Distributed controlled arbitration is more robust in fault-tolerant applications, but its

implementation is more complex than the centrally controlled arbitration.

13

In random bus access, any node on the network could send information once the bus is

idle. Since many different nodes can sense that the bus is idle at the same time, it is

referred to as Carrier Sense Multiple Access (CSMA). The random bus access can be

implemented with Collisions or without collisions. The random bus access without

collisions differs from collision-free bus access (as in deterministic bus access

implementation). The CSMA method in which collisions can occur but also can be

detected is called Carrier Sense Multiple Access/ Collision Detection (CSMA/CD). The

CSMA method in which collisions can occur but are identified later as error in

communication is implemented in the Local Operating Network protocol (LON) [23].

CSMA in which there are no collisions are called Carrier Sense Multiple Access/

Collision Avoidance (CSMA/CA).

1.5 Ardea Run-time Environment
This section provides an overview on the Automatically Reconfigurable Distributed

Embedded Architectures (ARDEA) framework and the basic concepts of dependability

and fault-tolerance. Any safety-critical system that is being developed is a multitude of

hardware and software and the ability of the system to provide reliable functional service

as per its design is a principal paradigm in dependable computing.

In order to achieve high reliability on the data obtained, the system must be able to

withstand the errors that are generated in the system (either deliberate or due to design

flaws) or in case of failures, degrade gracefully or provide reduced services [25]. Hence a

fundamental requirement for any dependable system is to be fault-tolerant and to achieve

fault tolerance within the system redundant processing structures will have to be

incorporated in the system design phase [25].

ARDEA framework considers reconfiguration of the system as a mechanism of providing

fault-tolerance. Ardea framework supports traditional fault-tolerant techniques using

redundant modules and also graceful degradation [26]. The graceful degradation implies

that the system will reconfigure dynamically to produce reduced services of operation

14

depending on the type of fault suffered by the system and as the reconfiguration schemes

are supported in addition to the traditional fault tolerant schemes, make the Ardea

framework highly efficient in handling faults on the system. The dynamic reconfiguration

allows fault-tolerant applications to identify alternate modes of operation and not suffer

system failure during a catastrophic error, but rather have reduced services for the system

through reconfiguration.

The Ardea framework allows for reconfiguration of the architecture by capturing the

system architecture as Dependency Graphs (DG) and the DG’s indicate flow of data

between the modules within the Ardea framework. Redundant modules are also

incorporated into the DGs and the decision of correct data can be made by the process of

voting between the redundant modules. The voting process is represented using Logic-

gates on the DG and hence a DG can be used to represent redundant modules, logic gates,

input and output sources and the quality of the input or output sources. The flow of

information on a DG starts from the input sources end and terminates at the output

devices section. Figure 5 shows a model Ardea DG that shows functional flow of

information from the input modules to the output modules.

15

 Figure 5: Ardea Dependency Graph model [26]

1.5.1 IDEAnix Framework
IDEAnix task messaging framework [4] is critical for implementation for the Ardea

model where location independence of tasks is required for establishing seamless task

movement in the event of reconfiguration. The Ardea software framework consists of a

Real-Time Operating System (RTOS), application level software and a network interface

task. The application level software together with the RTOS and network interface task

were combined together to produce the IDEAnix framework where the tasks can be

moved seamlessly between the processor modules for reconfiguration of architecture as

required by the Ardea framework. The IDEAnix framework is a unique port of a MicroC

OS-II (uCOS-II) a real-time operating system for Si-Labs C8051F04x processors and

Keil compilers. IDEAnix framework includes boot-up and initialization routines specific

to the Si-Labs C8051F04x processors.

The framework consists of two layers of software:

1. Message Routing layer (MeRL)

2. A lower-level embedded network (CAN).

16

The MeRL exists on top of the uCOS-II operating system and uses the OS resources like

Queues, message boxes and multi-threading ability of the OS to control the data and

message flow between the different tasks. The MeRL abstracts the inter-task/ inter-

processor communication and the tasks can communicate seamlessly between tasks

running on same processor or to a task on a different processor without any change in the

running code. Figure 6 shows the IDEAnix block diagram with the task level

communication with the MeRL [4].

BROADCAST NETWORK DRIVER (CAN)

MeRL

USER TASKS

 Figure 6: IDEAnix Block diagram and Task level communication with MeRL [4]

All the tasks running on the IDEAnix register for a message identifier with the MeRL and

the producer of the message broadcasts the packet with message identifier and data

through the network. The tasks running on the same processor or running on remote

processors receive the same packet information through the receiver buffer/queue and

will process the data through the FIFO buffer. This enables the task running on

independent processors be able to receive the same data as the tasks on the same

processor enabling reliable distributed computing. Figure 7 shows the functional block

diagram of MeRL [4].

17

Figure 7: MeRL block diagram [4]

The MeRL is implemented independent of the lower level broadcast network and invokes

a set of well-defined API calls. As long as the network driver is implemented to match

the specifications of the API and is a broadcast type network, the lower level network can

be replaced with no change on the MeRL implementation.

1.6 Embedded Network Selection
There are different embedded networks that are available in the market and the design

considerations on the choice of a network for reconfigurable architecture implementation

are discussed in this section. The Ardea framework requires an embedded network for

communicating between the software modules on different processors and also for

18

propagation of system faults, and configuration information. Also the embedded network

should have fault tolerant standards in-built inside the network framework and physical

media should have the ability to communicate under high-noise environments. These

were some of the design considerations in choosing an embedded network for the

implementation of the Ardea network interface task.

Before choosing an embedded network that can be selected, the software architecture

employed by the network standard and the MAC level communication mechanisms are

also taken into consideration. As the Ardea environment will be used safety-critical

applications, the network must be able to provide deterministic communication between

the nodes. Some of the embedded networks considered for implementation are:

1. Controller Area Network [6]

2. Bluetooth [30]

3. Universal Serial Bus (USB) [31]

4. IEEE 1394 [32]

A design matrix is charted to highlight the properties of the embedded networks and their

relative differences are tabulated as shown in Table 1. It can be seen that some of the

networks chosen have high-overhead in the embedded market and requires a personal

computer to monitor the device communication. This makes some of the networks

undesirable for pure embedded system communications.

Bluetooth [30] network has an advantage of communicating wirelessly over longer

distances, but it is a master-slave communication mechanism and the master node

synchronizes and initiates the communications on the bus. This feature makes the

Bluetooth undesirable in safety-critical applications, where a single failure to the Master

would stop the communications on the network. The USB and IEEE 1394 standards are

aimed at interconnecting peripherals with a desktop computer or any other compatible

device and have higher bandwidths but less channel length. The point to point

communication violates one of the principal requirements of the Ardea framework, where

a packet sent by one node should be visible across all the nodes.

19

Table 1: Design matrix for the embedded networks

Property CAN Bluetooth USB IEEE 1394

Physical layer 2 wire

differential

signaling

2.4GHz

Wireless

spectrum

Twisted pair Two

separately

shielded

Twisted pairs

Topology Multi-master

Bus

Master- Slave

Communication

Point to Point

Star, Tree

Peer to Peer

Data Rate 1 MBits/ Sec 1 MBits/Sec 1.5 MBits/ Sec

to 480

Mbits/Sec

98.3

MBits/Sec to

393.20

MBits/Sec

Maximum Number

of nodes in

network

40 7 Active and

125 passive

devices on

network

127 63

Cable length 40 meters 1- 100 m

(depending

upon class of

device)

5 meters 4.5 meters

Typical application Automotive

applications

(soft real-

time)

Personal Area

networks (cell

phones, PDAs,

cameras)

Personal area

networks

Personal

Area

networks,

Automotive

application

(Renault)

Based on the properties from Table 1, Controller Area Network (CAN) is the only

network that can reliably provide communication at higher data rates and also has

inherent fault-tolerant capabilities. The advantages of using Controller Area Network for

implementing reconfigurable architectures are discussed in Section 1.6.1.

20

1.6.1 CAN Advantages
CAN has reliable data transfer mechanism and due to its 2-wire differential signaling,

remains unaffected by the Electro Magnetic Interference (EMI) on the channel. As CAN

is a bus-based topology and all the nodes on the network using a message-oriented

protocol resulting in loss-free arbitration of the bus. This ensures high determinacy in

packet transmission/reception and enables use of CAN in real-time applications where

critical deadlines have to be met for packets.

In the CAN bus, the Message Identifier determines both the priority of the message and

the bus access resulting in the higher priority messages having short latency time

regardless of the bus load. The CAN also has active error detection and isolation

mechanisms for erroneous nodes on the bus thereby preventing one faulty node from

disturbing the communication on the bus. If a node exceeds the pre-defined error rates,

then the CAN controller disconnects the node from the bus at run-time and the node can

rejoin the network in case it is once again capable of sending/ receiving packets reliably.

CAN supports bandwidth upto 1 Mbits/Sec for a maximum distance of 40 meters is

higher than any other embedded network considered. CAN hardware is cheaper and

microcontrollers support for CAN is significantly higher than any other embedded

network considered (At least 40 known microcontroller vendors support CAN [5]

hardware).

1.7 Problem Statement
This section describes the actual motivation for the thesis research work, the design

constraints and provides a brief overview on the problems that are solved by the thesis

work. The motivation for ENDURA implementation is for the network layer to be

deployed on reconfigurable architectures as network tasks, where the system data can be

reliably communicated between the nodes. The embedded network chosen for Ardea

framework is required to have the ability to efficiently send small payloads, dynamic

registering/unregistering for packets and have real-time application capabilities in-built

on the network framework. Some of the networks that adhere to these criteria are CAN,

21

802.15.4 [33] and ZigBee [34]. The ENDURA layer implementation with CAN requires

that the driver layer adhere to the well defined API prototypes that are exposed to the

higher layers and this will enable higher layers to abstract the network layer below and

invoke the driver APIs for the services required. The ENDURA layer should provide

configuration of the C_CAN controller and also to provide a common platform for

communication between the different sub-systems.

For verification of design and implementation of ENDURA, an UAV application will

have to be tested with a customized implementation. The Auto-pilot communication is

the key to achieving autonomous flight on an UAV and the Auto-pilot used for the CAN

UAV application is a Commercial Off-The Shelf (COTS) Piccolo Auto-pilot. The Piccolo

provides an Extended CAN interface (CAN2.0B) for communicating on the bus and the

rest of the sub-systems on-board the UAV are CAN 2.0A type. Hence the ENDURA

implementation is required to perform the translation of CAN 2.0B packets with 29-bit

message identifiers to the CAN 2.0A format with 11-bit identifiers and vice-versa.

The ENDURA layer should have the ability to send packets either in the CAN2.0A or

CAN2.0B format and be able to receive all the packets that are sent on the network. The

size of the packets can vary from 0 bytes to 8 bytes and the ENDURA layer should

correctly be able to send/ receive all the packets with different payloads. The ENDURA

implementation should expose standard Application Programming Interfaces (APIs) to

the higher level applications and for CAN UAV application the API standard is

mentioned in PAXCAN protocol [21].

Further, the ENDURA layer should be able to meet the minimum performance and

latency requirements for the application. For the CAN UAV application, ENDURA

should be able to send and receive data at least twice as fast as the fastest packet that can

be sent on the network as per the PAXCAN protocol [21]. The ENDURA layer is

required to have limited operating system calls in order to make the driver platform

independent of the operating systems and also for portability across operating systems.

22

23

The full implementation of the ENDURA layer should have fault-tolerant capabilities and

provides reliable communication under noisy environments.

Given the functional requirements expected from ENDURA, the following chapters will

be discussing more in detail on design, implementation and performance details of the

Controller Area Network driver for reconfigurable systems. Chapter 2 discusses the CAN

Physical layers, protocol overview on error detection, packet formats and some CAN

applications and their design. Chapter 3 provides an overview on the hardware that is

available commercially for implementation of CAN and discusses the Microcontroller

support for CAN and the CAN controller details. Chapter 4 documents the functional

requirements, the design decisions, the implementation procedure for ENDURA layer

and fault-tolerant schemes added into the layer. Chapter 5 lists the performance

characteristics that are expected of the network, the results of conformance testing, data

from bandwidth, latency, reliability tests and sporadic packet testing. Chapter 6 shows the

compatibility of the ENDURA implementation with the CAN requirements and provides

the conclusion to the thesis work.

Appendix A provides an overview on the CAN protocol standard and Appendix B

provides an overview on the CAN controller hardware. Appendix C lists the references

that are used for preparing this thesis document.

Chapter 2: CAN Protocol and Applications

This chapter will provide an overview on the CAN Data Link layer, CAN protocol

background information and some popular CAN based applications in use. The CAN

protocol standard specifies only the Data-Link layer and physical layer and the higher

level protocols are not standardized and are application dependent. For implementing an

Ardea reconfigurable architecture, a higher level application layer namely MeRL

(Message Routing Layer) has been developed that controls the binding of message

identifiers with application tasks and also enables seamless passing of tasks / messages

between processors [2].

2.1 CAN Applications
CAN is a widely used many industrial applications and this section briefly discusses

some of the popular applications that use CAN. The CAN protocol is a Data link layer

(DLL) protocol and hence a higher level application has to be implemented to control the

communication mechanisms, application specific message identifier tagging, packet re-

transmission and for deterministic system operation. There are different standardized

higher level protocols that are being used to develop applications through CAN. Some of

the well-defined CAN application layers are:

1. CANOpen

2. CAN Kingdom

3. DeviceNet

4. SAE J1939 (Specific only for Automotive vehicle application)

5. CANAerospace

 Besides these higher level protocols, there are many application specific layers that are

being used by the developers for their custom projects. The IDEA Lab at University of

Kentucky uses IDEAnix framework for implementing a reconfigurable architecture

platform. The CAN application layer is the highest level of software that exists on top of

all the protocol specific software layers. Before presenting the custom developed

24

application for CAN some of the well known commercial / Space applications that use

CAN are discussed in following sections.

2.1.1 Vehicle Application: Light Electrical Vehicles (LEVs)
Though CAN was primarily developed for Cars and trucks, CAN-in-Automation (CiA)

and EnergyBus are jointly developing an open network for Light Electric Vehicles

(LEVs). The resulting bus is to be named EnergyBus and will control all the electrical

devices present on the vehicle and the design will also include a CANOpen network that

will be used to control all the devices and connecting sensors on the vehicle.

LEVs provide a cheaper and environment friendly mode of travel and can be used for

traveling short distances. The LEV market sector focuses on scooters, bicycles, tricycles,

motor scooters/cycles, commute cars and power-assisted wheel chairs. LEVs range in

size from electric scooters in the smaller segment to up to a one-man car that will use the

High Occupancy Lanes (HOV) on freeways.

2.1.2 Marine Applications: Autonomous/ Manned vehicles
Details on some of the application of the CAN on marine projects are discussed in this

section. Research on using local data networks for marine applications has been studied

and implemented in recent years due to advent of new developments in the embedded

network domain. CAN with its high data-rate, availability and built-in error detection

mechanisms make it a highly desirable network standard for any embedded application

requiring local data networks. An Application using CAN for Maritime vehicles is

discussed in the following section.

2.1.2.1 SeaCAN Architecture for Maritime vehicles
The SeaCAN architecture is designed and deployed on all new unmanned seaborne

targets by the United States Navy to aid in its maritime applications. The design includes

an Auto-pilot which controls a closed loop over the network and monitors the GPS

receivers/ Rudder Feedback nodes/Pitch-Roll-Heading, throttle control modules and

Command/ control modules. The SeaCAN architecture is implemented on a number of

25

Infineon C167 microcontrollers, connected through CAN. The entire system is run at a

speed of 125KBits/Sec and lower speed is considered for scalability for larger boats and

longer bus lengths. The Software environment consists of CAN Kingdom architecture

and an Operating system with support in-built for CAN.

2.1.3 Space Applications: CANAerospace
CAN 2.0 A/ B implementation is an event-based protocol and as such cannot be used in

the aerospace industry requiring higher reliability and safety constraints. Hence a version

of the CAN higher level layer called CANAerospace was developed by Stock Flight

systems to provide higher reliability in communication between the nodes on a

distributed space applications. CANAerospace is a light weight protocol which consists

of 5 basic message types and each with its own message identifier range and priority [12].

A Space application design using CAN is discussed in following section.

2.1.3.1 SMART-1 Spacecraft
Small Missions for Advanced Research in Technology (SMART-1) was the first space

craft developed by European Space Agency to travel to the moon and was launched in

September 2003. SMART-1 space craft system is divided into 2 major modules: System

module for controlling the SMART-1 and another to control the space applications. Each

of the module uses a different system CAN bus (System CAN and Payload CAN) for

communications and are controlled by two redundant CONA-A and CONA-B.

For making the system more robust, all the modules in the system are redundant

including the CAN buses. Each CAN bus has one normal path and a redundant path of

communication and the system controller can choose at any time to switch from the

nominal CAN bus to redundant bus. Besides this, all the nodes also look for life sign

message on the network and if the life-sign message wasn’t received within certain

duration, then the nodes switch from the nominal to the redundant bus. In order to reduce

the bus errors due to radiation, radiation hardened CAN controllers were developed and

deployed. SMART-1 successfully was launched on September, 2003 and after 3 years of

26

monitoring the lunar surface reached the end of its mission on September, 2006 by a

mini-impact with the lunar surface.

2.2 CAN Protocol Specification
This section provides an overview on the structure of the protocol specifications and the

details on the different physical layers available. The International Standards

Organization (ISO) had released the specification standards for Controller Area Networks

under CAN 2.0A for Normal 11 bit identification packets and CAN 2.0B for Extended

CAN with 29 Bit identifiers for packets. For the purposes of compatibility between

different implementations of the CAN, the realizations of the CAN should meet the CAN

2.0A [6] or CAN 2.0B [7] standard.

The protocol is based on the OSI “Reference Model” for data communication and the

CAN protocol is standardized mainly in the Data Link Layer – Logical Link Control

(LLC) Sub-layer and Medium Access layer (MAC) and to an extent on the physical layer.

The protocol standard is broadly classified into 3 layers

1. The CAN object layer

2. The CAN transfer layer

3. The physical layer

Layers 1 and 2 together act as the Data-Link Layer of the OSI model and Physical layer

implementation is the actual bit transmission and bit timing schemes. The following

sections will explain some of the layers in more detail. The Can transfer layer represents

the kernel for the CAN protocol and the functionality of the CAN Transfer layer is

implemented mostly in hardware. This implies that the CAN transfer layer offers limited

flexibility and please refer to Appendix A: CAN Protocol S for more information on the

functionality of the CAN Transfer layer.

27

2.2.1 CAN Physical Layer
The physical layer is the lowest and the medium where messages are transmitted between

nodes. The physical layer defines parameters such as the signaling schemes, electrical

levels, cable impedance and cable termination parameters [8] and this section provides an

overview of the CAN physical layers and describes some of the properties of these layers.

There are several different physical layers that can support the operation of Controller

Area Network. Some of them are listed below

1. CAN Standard ISO-11898-2

2. CAN Standard ISO-11898-3

3. SAE J2411

4. Time Triggered CAN ISO-11898-4

5. Modifications of RJ485 connectors were also in use

Besides these physical layer standards, there are several proprietary physical layers that

are in existence. The different physical layers cannot interoperate between each other due

to the difference in the signaling schemes, bit-timing methodology and the type of

electrical signals used and hence the physical layer must be the same for all the nodes

within the same network for communication to be possible except for CAN standard ISO-

11898-2 and CAN standard ISO-11898-3 where transceivers on the same bus could

interoperate in some cases [8].

The CAN Standard 2.0 A/ B does not define the Physical layer requirements for the CAN

layer letting the application designers customize the signaling and the bandwidth

constraints. Refer APPENDIX A for more information on CAN physical layer details.

2.2.2 CAN Bit timing for the Physical Layer
The need for Bit timing in CAN and properties on configuring the Bit-timing registers,

parameters that are included in Bit-timing calculation are discussed in this section. As the

arbitration among nodes is based on the message identifiers, the calculation of bit-timing

is crucial in establishing reliable communication between the nodes. This section

28

provides the various components that compromise a bit sampling time and its calculation

strategies. CAN physical layer uses synchronized transmission at the bit-level and

continuous bit-wise resynchronization is required rather than frame-wise synchronization.

The CAN specification 2.0A/ 2.0B states that the physical layer should have identical bit-

timing for all nodes within the same network.

Each node has its own clock and with no separate clock for synchronization on the

network and the nodes depends on the bit-timing mechanisms to co-ordinate the data

transmission. As the network uses Non-Return to Zero (NRZ) encoding, the CAN

transmitter adds an extra bit after 5 successive bits of same polarity and the receiver

removes these stuffed bits from the packet during decoding. Reception of 6 successive

bits of same polarity is considered as an error in transmission and has to be retransmitted.

Nominal bit time is the number of bits that can be transmitted on the bus per second

without the hard synchronization of the clocks on ideal transmitters. The nominal bit time

is classified into 4 non-overlapping time segments. Refer APPENDIX A for more

information on the exact parameters that control the bit-timing for the CAN protocol.

2.2.2.1 CAN Bus Arbitration

. Controller Area Network is a message-based, broadcast network and the packets

transmitted on the bus can be received by all the nodes present on the bus. This section

explains the concepts involved in CAN bus arbitration and resolving simultaneous

transmission of data by two nodes Since there is no mechanism to detect packet collisions

(due to asynchronous start of packet transmission by the nodes) like in Carrier Sense

Multiple Access-Collision Detection (CSMA-CD) or to avoid collisions like Carrier

Sense Multiple Access-Collision Avoidance (CSMA-CA), CAN uses a decentralized

contention-based bus arbitration to break collisions on the network.

The CAN arbitration field consists of an 11 bit frame identifier (In case of CAN 2.0B, the

frame identifier field is 29 bits) and a Remote Transmit Request (RTR) bit. Whenever

nodes start transmitting simultaneously, bit-wise non-destructive arbitration is used to

29

break the conflict on the bus. The Most Significant Bit (MSB) of the frame identifier is

transmitted first. The network behaves like a Wired-AND logic with the Recessive Level

at +5V and the Dominant level at 0V. All the nodes transmit a Recessive bit as long as

the nodes are idle and the bus is at a Recessive state. Start of Transmission is indicated by

the transmission of a Start-Of-Frame (SOF) bit on the network (Dominant Level).

 All the transmitting nodes compare the transmitted bit level with the signal level on the

bus. If a node transmits a Recessive Level and observes that signal level on the bus is

Dominant, the node stops transmitting the packet immediately (as there is at least one

transmitting node with lower message ID) and enters the listening mode. It waits for the

other transmitting node(s) to complete the packet transfer and waits for the intermission

bit fields to start transmitting again. The state diagram for the Packet transmission,

arbitration and reception is shown in Figure 8. For the bit-wise arbitration based on

Message Identifiers to work, it is assumed that no two nodes can start transmitting packet

frames for the same id with non-zero payload and this constraint is adhered to, during the

system design phase.

30

 Figure 8: State Diagram for CAN Engine

31

2.2.2.2 CAN Frame Formats

The different packet formats that can possibly be sent on the network are discussed in this

section in detail. Some of the packets are sent only during special conditions (mostly for

error conditions) and typically majority of the packets that are sent on the network are

normal CAN data frames. CAN 2.0A/B Standard specifies that there are 4 different type

of CAN Frames that can be found during the lifetime of the network.

1. CAN Data Frame

2. CAN Remote Request Frame

3. CAN Error Frame

4. CAN Overloaded Frame

CAN Data Frame

CAN Data Frame is the format in which data is sent from transmitter to the receiver. It is

initiated by the source and can be received by one or many nodes depending on the

configuration of the receiving nodes. Figure 9 shows the different fields within a CAN

data frame and Table 2 describes the individual fields on the CAN data frame.

Figure 9: CAN Data Frame Format

32

Table 2: CAN frame format for a basic CAN 2.0A frame

Parameter Name No. of

bits

Description

Start of Frame

(SOF)

1 bit Single dominant bit (0V)

Message Id

(Mesg. Id)

11 bits

or

29 bits

11 or 29 bit message identifier is used to

identify the packet on the network and the

message identifiers are transferred in Big

Endian Format (MSB->LSB).

Remote Request

(RTR)

1 bit Remote request bit is sent when a node requires

a packet from any other node on the network. In

RTR request, RTR bit is set to 1 and in RTR

response, RTR bit is zero.

Control Field

6 bits The least significant 4 bits are reserved for Data

Length Code (DLC) to indicate the size of

payload (maximum 8 bytes)

Data Field 64 bits This field contains the payload data that is to be

sent on the network. Maximum payload 8 bytes.

Cyclic redundancy

check (CRC)

15 bits Contains a 15 bit CRC sequence value

CRC Delimiter 1 bit This field is used to indicate end of CRC field

Acknowledgement

field (ACK)

2 bits The transmitter sends 2 bits one for ACK slot

and one as ACK delimiter. All the receivers on

successful reception of packet after CRC check

respond within the ACK slot by overriding the

ACK Slot Recessive bit with a Dominant Bit.

End of Frame

(EOF)

1 bit End of Frame is indicated by a flag sequence of

7 Recessive Bits

33

CAN Remote Frame

Any Node on the network can request for a message ID from the data source of the

identifier by having the Remote Transmit Request (RTR) bit set to 1. The Control field

(Data Length Code) should match the packet length expected by the Request Initiator and

the rest of the packet is same as that of the generic CAN data frame.

The data source of the message ID responds with a CAN Data Frame with the Remote

Request Bit set to 0. As the RTR bit is the last bit in the arbitration field of the frame, the

Remote Request frame has a lower priority than a Data Frame on the network. A Remote

Request frame format is shown in Figure 10.

S
O
F

MESSAGE ID
 11 or 29 bit

R
T
R

CONTROL
FIELD
6 bits

DATA FIELD
0 – 8 bytes

CRC
15
bits

C
R
C

D
L
M
T

A
C
K

S
L
O
T

A
C
K

D
L
M
T

EOF
7

 1-bits

ID
10

ID
9

ID
0

ID
1

ID
2

R
T
R

RSRV
1

RSRV
0

DLC
3

DLC
0

DLC
1

DLC
2

THE MESSAGE
ID HAS 29 BITS

IN CASE OF
CAN2.0B

...
RTR BIT

SET TO 1 FOR
REMOTE REQUEST

FRAME

Figure 10: CAN Remote Request Frame

34

CAN Error Frame

In the CAN Data Frame, the ACK Slot is set to Recessive (+5V) by the first recipient of a

complete packet after CRC Checksum and there is no guarantee that the other nodes on

the network have received the packet correctly. So, any node on the network that did not

receive a packet (Normal Data Packet, Remote Transmit Request or Overloaded packet)

correctly could signal the transmitter by using a CAN Error Frame.

The CAN Error Frame deliberately breaks the Bit-Stuffing rules for the network by

sending 6-bits of same polarity and causes the transmitter to retransmit the data.

Detection of error during transmission or after reception of an error frame or overloaded

frame generates a new error frame. The generic Error Frame format is shown Figure 11.

INTERFRAME SPACE

ERROR FLAGS VIOLATING BIT-
STUFFING

6-12 bits

8 BIT ERROR DELIMITER

Figure 11: Error Frame Format

CAN Overload Frame

This section provides an overview on the CAN overload frame, the circumstances when

the Overload frame is sent and the response of the nodes on the networks. The CAN

Overload frame can be transmitted under two conditions

1. Request Overload frame – requesting for delay in next data

2. Reactive Overload frame – due to errors in intermission field

The CAN Request Overload frame is allowed to be transmitted only during the first bit of

the transmission of a new data frame and can be used to delay the data frame by at most

two frames. The CAN Reactive Overload frame is transmitted to indicate special

35

conditions when error is detected during the intermission field. The conditions where the

Overload Frame is triggered are:

1. Detection of Dominant bit during the first 2 bits of the Intermission field

which is wrongly interpreted as a SOF of new packet

2. Detection of Dominant bit in the last bit of EOF of normal frame or last bit of

Error or overloaded frame

Unlike the transmission of Error frames, the Overload frames do not cause the transmitter

to retransmit the previous frame that was sent. The Overload frames consist of Overload

flags (6- Recessive bits) and an Overload delimiter of 8- bits destroying the intermission

field.

2.2.3 CAN Error detection
One of the major design decisions involving the choice of embedded network is the

ability of the network to operate in high-noise environment and withstand faults on the

network and degrade gracefully if failures occur. The Controller Area Network has well

defined error detection and confinement mechanisms that make the network robust under

faulty conditions. This section discusses some of the error detection techniques described

in the CAN protocol specification.

Before a node can receive any packet from the network, the information is checked for

errors and if required an error frame is sent on the network. The following are the five

Error Detection mechanisms employed by the CAN controller.

1. Bit checking

2. Frame checking

3. CRC checking

4. Acknowledgement checking

5. Bit stuffing checking

2 Bit Checking

36

Every transmitting node on the network checks if the bit transmitted by the node and the

signal level on the bus match. If a node transmits a Dominant bit and finds the signal

level of the bus is at Recessive level (+5V), this indicates a Bus Error and stops the

transmission of the current packet and retransmits again.

3 Frame checking

Each frame that can be present in the network at any specific instant as per the CAN

protocol have some specific constant number of bit fields that are checked by the nodes

for consistency. If the number Recessive delimiter bits after the packet do not match the

protocol specification on the length then a “Form Error” is signaled.

4 Cyclic Redundancy Checking

Cyclic Redundancy checking is a mechanism of finding any corruption in the data

transmission systems with high probability. The 15 bit CRC sequence numbers are highly

effective in finding bit-errors of frame less than 127 bits [22]. Any frame received with

wrong CRC causes “CRC error” on the network.

5 Acknowledgement Checking

All normal data packets have an ACK Slot where at least one node which correctly

received the packet responds with an ACK response by setting the ACK Slot Recessive

bit as Dominant. The transmitting node checks for the ACK Slot after the packet

transmission and if ACK Slot value was not over-written with a Dominant bit, then ACK

Error is signaled.

6 Bit-Stuffing Error

All the nodes check the signal level on the bus constantly for Bit-stuffing errors and if the

nodes detect any packet with more than 5 bits of same polarity, Bit-stuffing error flags

are generated and the error flags deliberately override Bit-stuffing rule and it is to be

37

38

noted this error flags also cause all the other nodes to generate an error frame for the

packet.

Error detection mechanism is capable of identifying all global errors across the bus and

also all local errors at transmitters. The mechanism is also capable of detecting up to 5

randomly distributed errors in a message, bursts of packet with length less than 15 or odd

number of bits in a packet. The message Error rate is proportional to the frame length of

the packet and hence the undetected message probability is significantly higher for

CAN2.0B (Extended frame format) than the CAN2.0A standard. Appendix A: CAN

Protocol S provides more information on fault tolerant mechanisms within the CAN

protocol.

Chapter 3: CAN Hardware
This Chapter provides a review on the hardware available on the market that provide

CAN support and also discusses in detail the microcontrollers with CAN capability and

C_CAN CAN Controller module architecture and configuration steps. The CAN

hardware is supported widely by different manufactures and the entire list of the

manufacturers is listed in [5].

3.1 CAN Hardware Properties:
A large number of vendors provide CAN hardware and the ready availability of hardware

support makes CAN ideal for quick development. The different CAN hardware includes

CAN controller chips, Transceivers, Repeaters, bridges and Gateways and the hardware

properties of these devices are described in Sections 3.1.1 through 3.1.5.

3.1.1 CAN Controller Chips
The CAN controller is responsible for communication on the bus as per the CAN 2.0A/B

protocol and also for maintaining the fault detection and confinement on the bus. This

section explains some of the functionality of the CAN Controller chips and the different

CAN controller chips available in the market are listed. The bit rates can be programmed

up to a speed of 1MBits/sec for a bus length of up to 40 meters. But for actual connection

to the physical layer, CAN Transceiver chips are needed. Some of the CAN Controller

chips available in market are:

1. C_CAN chip from Robert Bosch

2. 82527 from Intel Technologies

3. MCP2150 from Micro-chip

4. SJA1000 Philips

3.1.2 CAN Transceiver chips
CAN transceiver chips provide an abstraction of the physical layer to the CAN controller

chips and also provide mechanisms for electrical isolation of the microcontroller from

network. The CAN transceiver consists of a transmitting amplifier and a receiving

39

amplifier. The transmitting amplifier is responsible for providing sufficient driver output

capacity and also for preventing on-controller driver from overloading and Electro

Magnetic Interference (EMI) reduction. The receiver amplifier is responsible for

maintaining the defined recessive signal level on the bus and also for protecting on-chip

input comparator from the voltage surges on the bus. CAN transceivers also detect shorts

and line breakage on the bus.

3.1.3 CAN Repeaters
CAN Repeaters are passive components that are added to the bus line to increase the

length of the bus. But addition of CAN Repeaters on the bus increases the signal

propagation time on the line. The Repeaters split the bus into two physically separate

electrical segments but are still treated as one logical entity.

3.1.4 CAN Bridges
CAN Bridges connect two logically separate networks on the Data Link Layer level and

the CAN message IDs are different in each of the separate segments. CAN Bridges are

used for defining packet forwarding mechanisms between the networks and can be used

to forward packets or part of packets in an independent time-delayed mode. CAN Bridges

differ from the Repeaters that they forward packets from one network to other, unlike

amplifying the signal like the Repeater. Also Bridges forward packets from two logically

separate networks unlike the Repeaters.

3.1.5 CAN Gateways
CAN Gateways are used to connect two networks with different higher level protocol and

the translation of information occurs at the Layer 7 of the OSI framework. CAN

gateways provide a mechanism for accessing the network through other communication

protocols.

3. 2 CAN Microcontrollers Overview
Microcontrollers provide the development environment for implementation of ENDURA

layer and also for higher level protocols over the CAN controller chips. This section

40

provides an outline on the capabilities of these microcontrollers from the CAN point of

view. Different families of microcontrollers are available in the market with CAN

support and can also be customized as per the application. Most of these microcontrollers

differ in the number of hardware message objects supported by the board and also on the

main processor family. Some of the processor families available on the boards are:

1. 8051 family

2. C16x/ST 10/ XC16x family

3. ARM 7/9 family

4. Cortex M3 family

Microcontrollers with CAN support generically either have an On-chip CAN controller

or can be integrated into the board as a stand-alone device. Some of the Microcontrollers

with varied processor families and CAN controllers are analyzed in Sections 3.2.1

through 3.2.3 (from CAN perspective).

3.2.1 Silicon Laboratories
The Silicon Labs provides CAN support in their Chipset models: C8051F04x and

C8051F06x. The C8051F04x family is a fully integrated system-on-chip 8051 core

microcontroller and can execute at 25 MIPS (Millions of Instructions Per Second). The

C8051F04x development board is integrated with an on-board C_CAN controller chip

from Robert Bosch Gmbh and supports up to 32 message objects [17], each with its own

individual message identifier mask and can be configured in either Receive or Transmit

mode. The C8051F04x supports both CAN 2.0A and CAN 2.0B and a maximum

bandwidth of 1 MBits/S.

3.2.2 Infineon Technologies
Infineon Technologies provides the most extensive CAN support and manufactures

different families of microcontrollers in 8-bit or 16-bit or 32 bit processors with

integrated CAN controllers. This section analyzes the microcontrollers that exist in the 8-

bit, 16-bit and 32-bit processors.

41

3.2.2.1 8051 Family: C500 series (8-bit)
C500 Series of Microcontrollers consists of a fully compatible 8051 core processors and

an On-chip CAN controller with support for CAN 2.0A and CAN 2.0B and supports a

maximum speed of 1 MBaud when the operating frequency is greater than 8 MHz. The

CAN Controller has upto 256 register/ data bytes located in the external RAM and upto

16 message objects can be configured for sending and receiving packet information [13].

3.2.2.2 8051 Family: XC88x series (8-bit)
XC88x series is an enhanced version of the 8051 based core and has extensive

networking capabilities due to an on-chip multiCAN controller and an on-chip LIN

Bootstrap loader [14]. The On-chip CAN Controller handles the networking tasks

specific to the higher level CAN layers and reduces the load on the main processor. The

multiCAN controller has 2 CAN nodes and 32 message objects are shared among both

the nodes. XC88x provides support for connecting to CAN gateways.

3.2.2.3 16-bit Microcontroller (C161 Series)
C161 Series microcontrollers use high performance 16-bit core microcontrollers and

capable of running at peak speeds of 12.5 MIPS. The C161 series consists of an

integrated CAN module with CAN 2.0B support that can send and receive packets in

either 11 bit or 29 bit message identifiers. Fifteen message objects are available for

configuration by the software and the Message object number 15 can be configured

explicitly to support only CAN 2.0A [16]. Like the other Infineon processors, the

maximum bandwidth supported is 1 M Baud. In C161-CS, there are 2 CAN modules and

they can be configured individually and have separate interrupt nodes.

3.2.2.4 32 bit Microcontrollers (XC2200 Series)
XC2200 series employ a high performance 32-bit processor core and consists of an On-

chip MultiCAN controller which can support upto 6 different CAN nodes on a single

processor. There are 256 different message objects [16] that can be configured

individually and supports CAN 2.0A and CAN 2.0B standards at maximum bandwidth of

42

1M Baud. XC2200 Series provides support for Gateway interfacing of CAN networks

and also has support for FlexRay [18] communications.

3.2.3 Texas Instruments
Texas Instruments manufactures higher end microcontrollers with ARM processors and

with high-end Can controllers. This section reviews the ARM based microcontrollers

from Texas Instruments.

Texas Instruments TMS470R1x series of Microcontrollers use a 16 / 32-bit ARM 7

TDMI RISC core processor as the main controller. The Microcontroller may contain

either of the two variants of the CAN controller namely a Standard CAN Controller

(SCC) or a High-End CAN Controller (HECC). Both the controllers use CAN Protocol

Kernel (CPK) module for controlling the protocol tasks and SCC or HECC differ only in

their message control mechanisms. SCC has 16 message Objects and 3 receive identifier

Masks and HECC has 32 message objects and 32 receive identifier Masks [19]. The

maximum bandwidth that is supported by the CAN controllers is 1 MBits/ Sec at 8 MHz

system clock. HECC is also compatible for the software written for SCC.

3.2.4 Design Choice of Microcontroller
After careful comparisons of different microcontroller chipsets and tool chains, Silicon

Laboratories C8051F040 board is chosen as the preferred development platform for

implementation of the Controller Area Network layer for Reconfigurable Embedded

Systems.

The ease of availability of Cross-compilers (Keil, SDCC), tool chains, cost of obtaining

evaluation boards and prior working experience with other 8-bit microcontrollers from

Si-Labs made the Silicon Laboratories a better option over other microcontrollers. The

Si-Labs C8051F040 board uses an integrated C_CAN processor and the

structure/operations of the C_CAN processor are described in Section 3.3.

43

3.3 C_CAN Controller Overview
C_CAN controllers are used for CAN communications in C8051040 boards that are

chosen for implementation of ENDURA and this section provides an overview of the

structure of the C_CAN controller. The C_CAN controller can be used as a stand alone

module or can be integrated as a part of an ASIC [20]. C_CAN controller can be

configured to communicate as per the CAN 2.0A or CAN 2.0B (Extended CAN) protocol

and can be configured for communicating with bit rates upto 1 MBits/Sec. There are 32

message objects that can be individually configured for message transmission or

reception and all the message objects have their own individual identifier mask.

3.3.1 C_CAN Engine
The CAN Engine can be configured through an 8-bit module interface or 2 16-bit ARM

AMBA APB bus. The main components of a C_CAN Controller are:

1. CAN Core

2. Message RAM

3. Message Handler

4. Module Interface

3.3.1.1 CAN Core
This section provides an overview on the CAN Core that runs the CAN Kernel and also

has a Receive/ Transmit shift register for serial/parallel conversion of the packets on the

bus. The CAN Core has to be initialized before the node can start communicating through

the controller. The controller cannot be initialized at run time and any initialization can

take place only after a reset of the controller. During the initialization phase of the

controller, the Init bit of the CAN control register is set to 1 and the Bit timing register

and BRP Extension register has to be set with their corresponding values.

When the Init bit is cleared from the CAN control register, Bit Stream Processor (BSP)

waits for 11 recessive bits for synchronizing with the data transfer with the bus. The CAN

Engine can communicate with the bus only after this synchronization has been

established. For more information on the modes at which the CAN engine can be run

refer to Appendix B.

44

3.3.1.2 Message RAM
The Message RAM within the CAN engine are the locations where the message objects

and the Identifier masks are stored. The message objects are analogous to the hardware

buffers available on the Network Interface Cards (NIC) and the number of message

objects present on the controller provides the flexibility to the software driver for

configuration specific to receive or transmit purposes.

There are 32 message objects that are present in the Message RAM and each with its own

identifier mask. The significance of the identifier mask for each of the Message object is

that, each message object can be configured to receive or transmit a frame with message

Id or a ranges of message Id that are different from the other message objects. Hence it is

possible to have 32 different configurations for the sending and receiving packets.

3.3.1.3 Message handler
The message handler is the state machine that controls the transfer of information

between the Message RAM and the Receive /Transmit shift register that is present in the

CAN Core. The state machine is also responsible for generation of the interrupts (after

successfully receiving/ transmitting a packet or due to error conditions) as per the

configuration of the control / configuration registers.

3.3.1.4 Module Interface
The C_CAN processor can be interfaced through any of the 3 interfaces made available.

The processor has an 8-bit interface for communication with the family of processors that

have 8-bit address bus and two 16-bit interfaces for communication with processors that

have 16 bit address bus. The Silicon Laboratories C8051F04x & C8051F06x interface

with the controller through the 8-bit interface.

3.3.2 C_CAN Registers
The C_CAN processor is accessible to the software for configuration and behavior

control (CAN engine and the message RAM) through the registers provided by the

45

processor. This section provides an overview on the C_CAN registers and the

functionalities of the registers that are stored in the Message RAM. The registers reside in

the 256 bytes of addressable memory space of the processor and all the registers are 16

bit wide with the high-byte at the odd address and low-byte at the even address. C_CAN

Registers are classified based on their control properties.

1. Protocol Control Registers

2. Message Interface Registers

3. Message Handler Registers

3.3.2.1 Protocol Control Registers
An overview on the Protocol control registers and the functionalities provided by the

registers are discussed in this section. The protocol control registers are responsible for

setting the different modes of operation on the CAN controller, controlling the Global

enable/ disable scheme for the error, interrupts, change configuration and Test registers.

The Protocol control registers also provide status interrupts on Tx/Rx, error

active/passive, Warning and bus off information and also configure the bit-timing

registers. For a list of protocol registers and their operation refer Appendix B: C_CAN P

and C_CAN processor User manual [20].

3.3.2.2 Message Interfacing Registers
An overview on the CAN message interface registers and their functionalities are

discussed in this section. The transfer of data from the Message RAM and the CAN

Engine is controlled by a set of 2 interface registers. The interface registers are used to

avoid conflicts between the RAM and the CAN Engine communication and between

transmit block and receive block of the message handlers. The 2 sets of the interface

registers are identical in function and the advantage of the duality of registers is that they

can be used separately for buffering transmitted and received information. This also

enables transmit and receive tasks to interrupt each other and this feature is helpful in

handling high-priority message reception/ transmission. For a list of message interfacing

46

47

registers and their operation refer Appendix B: C_CAN P and C_CAN processor User

manual [20].

3.3.2.3 Message Handler Registers
The Message handler registers that are provided as a mechanism by the message handler

to view the status of the message objects that are configured and as a result the registers

are read-only & 4 bytes wide. The message control values can be set/clear by updating

the values of the corresponding message interface registers for the specific message

object. For a list of message handler registers and their operation refer Appendix B:

C_CAN P and C_CAN processor User manual [20].

Chapter 4: ENDURA Design & Implementation Details
This chapter provides an overview on the ENDURA layer design and implementation

details for reconfigurable embedded systems. The ENDURA layer has been designed

with an objective to provide the reconfigurable architectures the ability to propagate

status, configuration and error messages between nodes seamlessly. In order to test the

validity of the driver design, an application using Unmanned Aerial Vehicle is taken as

an example platform for implementation of ENDURA. The base design from ENDURA

layer can be customized for any reconfigurable application desired and the corresponding

fault-tolerant schemes are highlighted where required.

To achieve portability and application independence, any software developed for the

Unmanned Aerial Systems from the Intelligent Dependable Embedded Architecture

(IDEA) Lab at University of Kentucky uses the IDEAnix [4] framework as the base

platform. The Network driver has been designed to work seamlessly with the IDEAnix

framework and the design & implementation of the network driver are discussed in detail

in this chapter.

4.1 Special Function Register Access in C8051F04x Processors
The Special Function Registers (SFRs) configuration on the C8051F04x boards provides

mechanisms to control and communicate with the 8051-core processor peripherals and

resources. The C8051F040 board has the upper 128 bytes of data RAM (0x80-0xFF)

configured as Special Function Registers (SFRs) [17]. These memory locations can be

accessed either direct addressing (to refer to SFRs) or can be addressed indirectly (to

access data).

 The SFRs having addresses ending with 0x0 or 0x8 are bit or byte addressable. The C51

processor maps the addresses (0x80-0xFF) with a paging scheme so that many SFRs can

be mapped into the available memory of 128 bytes. C8051F040 board uses 5 SFR pages

0, 1, 2, 3, F and these pages can be selected using a selection register SFRPAGE.

Read or write to any of these SFR registers can be achieved through the following steps:

1. Load the SFRPAGE with the appropriate page number containing the SFR

2. Use direct addressing to write or read values into the register

48

Some of the C_CAN processor registers are mapped on to the SFRs and they can be

directly addressed to control the registers on the C_CAN processor. The registers that can

be accessed directly/indirectly are: (All the CAN registers are in SFRPAGE 0x1)

1. CAN Control Register (CAN0CN)

2. CAN Test Register (CAN0TST)

3. CAN Status Register (CAN0STA)

All the other CAN registers are accessed indirectly through the other CAN SFR registers.

The other CAN Registers are:

1. Register containing the address of the CAN Register (CAN0ADR)

2. Register to read/write the higher 8 bits of data on the CAN register

(CAN0DATH)

3. Register to read/write the lower 8 bits of data on the CAN register

(CAN0DATL)

The CAN0ADR is loaded with the index appropriate to the CAN register and the

CAN0DATH & CAN0DATL is used to write/read values on the CAN register. For index

values 0x08 – 0x12 (Interface register 1) and 0x20 – 0x2A (Interface register 2), the

CAN0ADR is auto-incremented by 1 to point to the next CAN Register when the data is

read/ written into CANDATL register.

4.2 ENDURA Design
This section explains the design details on the different components that make up the

ENDURA layer and also the functional details of the various modules. The Controller

Area Network driver design involves configuration of the C_CAN processor,

initialization of the CAN Engine, setting up the message objects for the required Tx/Rx

set-up, management of message id registering/ unregistering and maintaining software

buffers in the C8051F040 processors.

The block diagram in Figure 12 shows the framework for an application to run using the

IDEAnix on an UAV. The ENDURA layer exposes a set of well defined APIs for the

49

IDEAnix to invoke and handles the interrupts from the C_CAN processor as per the

interrupt configuration.

The Silicon Laboratories (Si-Labs) C8051F040 processor executes all the driver level

code and allocates all the memory required for buffers and data storage on the data RAM

of the processor. The Si-Labs processor interacts with the C_CAN processor through the

address and data bus interface provided by the C_CAN processor. The address and data

bus are 8-bits wide and the module interface for the C_CAN processor receives these

requests/inputs and passes the requests to the respective module.

50

Figure 12: Block Diagram of CAN Application

The CAN Core interacts with the CAN Transceiver through the CAN_RX and CAN_TX

pins and in turn controls the values in and out of the CAN bus. The ENDURA layer has

been split into modules based on their functionalities as Initialization module, Register

module, Unregister module, Get Message module, Send Message module and Translation

51

module. Figure 13 shows the interaction between modules within ENDURA and the

registers read/written on the C_CAN processor by each of the modules.

Figure 13: CAN Module block diagram

4.2.1 Initialization Module
This module is responsible for the initialization of the C_CAN processor and is invoked

before any other module from the ENDURA layer could be used. The CAN Core within

52

the C_CAN processor has to be initialized during a Reset or Power ON before any of the

CAN related communication can begin on the network for the node.

The Bit-timing register and the Baud Rate Pre-scaler (BRP) register have to be

configured with the appropriate value for the bus to ensure the correct flow of data. If

Bit-timing and BRP registers are not set correctly with the appropriate value,

communication at the expected bandwidth cannot be possible. Figure 14 shows the

initialization sequences and the registers to be configured (with corresponding Pseudo

code).

4.2.1.1 API Prototype exposed
Void Init_network(void);

4.2.1.2 Configuration Steps in Initialization Module
The Controller Area Network Transmit pin on the C8051F040 board by default is Open

drain and CAN_TX pin has to be enabled as Push-Pull to enable communication on the

network. The digital cross-bar on the C8051040 board also has to be enabled for the low

ports to become active and available for communication. XBR registers [17] are used to

control the port I/O through the crossbar configurations. For the above configuration,

XBR2, XBR3 registers are manipulated.

SFRPAGE = 0xF (SFR page for configurations)

XBR2 = XBR2 | 0x40 (Setting bit number 6 to enable the

crossbar)

XBR3 = XBR3 | 0x80 (Enable the CAN_TX pin to Push-pull

by setting bit number 7)

Hardware reset does not reset any of the values stored on the Message RAM of the

C_CAN processor and have to be cleared by the software during the initialization phase.

SFRPAGE = 0x1 (CAN0PAGE)

CAN0ADR = 0x09 (Interface register 1 –Command Mask)

53

CAN0DATL = 0xFF (Enable write into all the IF1

registers)

Figure 14: Flow chart for initialization module

The following steps have to be repeated to clear all 32 the message objects
CAN0ADR = 0x0F (IF1 – Data Register)

54

CAN0DATH = 0x00 (clearing bytes 2-3 of data reg)

CAN0DATL = 0x00 (Clearing bytes 0-1 of data reg)

Address is auto-incremented to CAN Data Register B1 and B2
CAN0DATH = 0x00 (clearing bytes 6-7 of data reg)

CAN0DATL = 0x00 (Clearing bytes 4-5 of data reg)

CAN0ADR = 0x08 (IF1 – Command Request)

CAN0DATL = 0x01 (Message Object Number)

Once the Command Request value is written with the Message object number, the

CANDAT register values are automatically transferred to the message objects in Message

RAM. CAN interrupts have to be enabled on the C805104x core to check for the

interrupts coming from C_CAN processor.

EIE2 = 0x20 (Enable CAN related interrupt)

SFRPAGE = 0x1 (CAN PAGE)

CAN0CN = 0x41 (Enable the CCE and init bit)

CAN0ADR = 0x03 (point to Bit timing register)

CAN0DAT = 0x6FC0 (Configuring Bit timing register)

0x6FC0 configures the bit-timing register for a bandwidth of 1Mbits/Sec. Finally the

CCE and Init bits are cleared and global interrupts are enabled to activate the CAN

engine.
CAN0CN = 0x06 (Enable global interrupts)

CAN0CN = ~0x41 (Clear the CCE and init bit)

Two arrays of length 32, global to the entire driver module, are allocated to store the

message ids and the data corresponding to the message objects. The object array

(ObjArray) is of type integer and stores the message id received from the message object.

The data array (DataArray) is of type unsigned long and stores the data present in the

message objects. These arrays are used as software buffers to store the values before

sending the information to the higher layers.

55

4.2.2 Register Module
This module is responsible for enabling a node to receive packets that are sent on the

network and in the C8051F04x board, it is possible for configuring a node to receive

either a packet with one specific message identifier or a range of message identifier. This

section explains the details on configuration (with corresponding Pseudo code) for

receiving a single packet or a range of packets and some fault tolerant techniques that can

be used to make the software more tolerant to faults due to message objects being full.

The CAN message handler in the C_CAN processor is responsible for receiving the

packets that are transmitted on the network and storing them in the Message RAM. It also

controls the Tx/Rx shift register in the C_CAN processor. Though all the packets that are

transmitted can be received by all the nodes on the network, the packets have to pass the

message filtering mechanism before they can be stored on the message objects.

 The register module is responsible for configuring a message object to store packets with

one or a range of message ids. The CAN2.0A implementation can have 2048 (2^11)

different message ids and CAN2.0B can have 536,870,912 (2^29) different message ids.

But the maximum message objects available on the hardware are only 32 and hence some

message objects may have to be configured to receive more than one packet and the

arbitration masks are used for this purpose of specifying a range or multiple message ids

to occupy one message object.

 Figure 15 shows the configuration steps that are involved in registering a node

with the given message identifier.

4.2.2.1 API Prototype exposed
UINT8 reg_pkt (CAN_ID_TYPE can_id);

56

 Figure 15: Flow chart for Register module

57

4.2.2.2 Configuration of a message object for a single message id
This section describes the steps (with corresponding Pseudo code) that are involved in

configuring a message object to receive a single message identifier. Before a message

object can be configured for the given message id, the initialization module checks to see

if any of the message object is available for configuration. If all the message objects are

full then an error CAN_MSGOBJS_FULL (201) is returned to the caller.

The message id (can_id) which is input through the API is checked against the values are

stored in ObjArray to see if the message id has already been registered for a message

object. If this condition is true, then an error CAN_DUPLICATE_ID_REG (204) is

returned to the caller indicating that an attempt has been made to register an id which has

already been configured.

A design decision is made on using Interface register 1 for configuring a message object

in receive mode and Interface register 2 for configuring a message object in transmit

mode, to enable the receive and transmit process to interrupt each other when required.

Interface register 1 is used for registering a message id with a message object as below:
SFRPAGE = CAN0PAGE

CAN0ADR = 0x09 (IF1 Command Mask)

CAN0DAT = 0x00B8 (Set for write and use arbitration and

Control bits)

CAN0ADR = 0x0C (IF1 ARB1)

CAN0DAT= 0x00 (Set the higher 15 bits to zero)

Auto-incremented to IF1 ARB2 register and the Message valid bit is set to 1 and message

id is left shifted by 2 bits to copy the message id into bits 28-18.
CAN0DAT = (0x8000) | (message_id << 2)

CAN0ADR = 0x0E (IF1 Message Control)

CAN0DAT = 0x0480 (Enable Rx Interrupt and do not use

Mask registers)

58

The message id is written into the command request register to enable transfer of data

from the IF1 registers to the Message objects. Finally the ObjArray is updated with the

message id for the corresponding message object.

CAN0ADR = 0x08 (IF1 Command Request)

CAN0DATL = (Message object number)

4.2.2.3 Configuration of a message object for group of message ids
This section describes the configuration steps (with corresponding Pseudo code) that are

involved in configuring a message object to receive a single message identifier. The

initial checks are performed to identify, if a message id has already been configured or

check if the message objects are full, else corresponding error codes are returned to the

caller.

To register a message object with a group or range of message objects, the configuration

steps are followed as below:
SFRPAGE = CAN0PAGE

CAN0ADR = 0x09 (IF1 Command Mask)

CAN0DAT = 0x00F8 (Set for write and use arbitration,

Mask and Control bits)

CAN0ADR = 0x0C (IF1 ARB1)

CAN0DAT= 0x00 (Set the higher 15 bits to zero)

CAN0DAT = 0x8000 (Set the Message valid bit)

The IF1 Mask register has to be used in this case to configure a group of message objects
CAN0ADR = 0x0A (IF1 Mask Register)

CAN0DAT = 0x0000 (allows all the packets to be received

by the message object after acceptance filtering)

CAN0DAT = 0x0010 (allows packets with message ids from

0x10 – 0x1F to pass through the acceptance filtering

mechanism)

CAN0ADR = 0x0E (IF1 Message Control)

59

CAN0DAT = 0x1480 (Enable Rx Interrupt and use Mask

registers)

The message id is written into the command request register to enable transfer of data

from the IF1 registers to the Message objects.
CAN0ADR = 0x08 (IF1 Command Request)

CAN0DATL = (Message object number)

4.2.2.4 Fault Tolerance mechanisms for Register module
This section details some of the changes that might have to be added to include the fault

tolerant mechanisms. For implementation of a fault tolerant version of the software, the

register module is modified accordingly to meet the requirements.

The register module in the base version can register for only a maximum of 32 message

identifiers and any attempt to register for more message identifiers return an error to the

caller. This might lead to faults on a node requiring more than 32 packets with different

message identifiers.

Hence in order to accommodate for more message identifiers in the register module, a

group of message objects are allocated for normal configuration and another group of

message objects for special configurations. If the number of message objects under

normal configuration is filled, any message object allocated for special configuration is

chosen for receiving the packets with the given message identifier. The message object is

configured to receive all the packets and the given message identifier is stored

corresponding to the message object number. Subsequent calls to register unique

message identifiers are queued in the list for the message object.

Upon acceptance filtering, a packet with a message identifier that didn’t match normally

configured message objects, the packet is stored on the specially configured message

object. The message identifier value is checked against the values on the message id array

and if a match is found, the packet is forwarded to next layer, else it is discarded. This

60

mechanism ensures that only the packets that have been registered are fetched from the

message object and the rest of the packets are discarded.

4.2.3 Unregister Module
This section explains some steps in configuring a message object that will prevent a node

from receiving the packet with the specific message identifier and also on some steps that

will make the unregister module more fault tolerant in case of using more than 32

message identifiers for a node.

The CAN application can dynamically unregister the message identifiers which have

been previously registered through the register modules and the unregister module

provides the capability to the software application to disassociate a node with a message

identifier at run-time.

After the message identifier has been successfully unregistered, the driver will not be

receiving packets with that specific message identifier or groups of message identifiers.

The same configuration steps are followed for unregistering a single message identifier or

groups of message identifiers. Figure 16 shows the steps that are involved in

unregistering a message identifier from a message object.

4.2.3.1 API Prototype exposed
UINT8 unreg_pkt (CAN_ID_TYPE can_id);

61

Figure 16: Flow chart for Unregister module

4.2.3.2 Steps to unregister a message identifier:
This section describes the steps (with corresponding Pseudo code) that are involved in

unregistering a message object to receive a single message identifier. The message

identifier that is input is checked against the ObjArray to check if the message identifier

has been registered previously for a message object. The unregister module returns an

error message of CAN_UNREG_ID_ERR (205) if the message identifier is already not

registered with the driver.

62

The message object configured to receive the message identifier is obtained by searching

through the ObjArray and then arbitration register is cleared to remove the association of

the message id with the object. The message id entry in the ObjArray is cleared to

remove all associations of the identifier with the message object.

SFRPAGE = 0x1 (CAN PAGE SFR)

CAN0ADR = 0x09 (IF1 command Mask Register)

CAN0DAT = 0x00B8 (Set the Write)

CAN0ADR = 0x0C (IF1 Arbitration register 1)

CAN0DAT = 0x0000 (clear the upper 15 bits of msg id)

CAN0DAT = 0x0000 (clear the lower 15 bits of msg id)

CAN0DAT = 0x0000 (Message control reg. is cleared)

CAN0ADR = 0x08 (IF1 Command Request register)

CAN0DAT = message object number

4.2.3.3 Fault tolerant mechanism for Unregister module:
This section details some of the changes that might have to be added to include the fault

tolerant mechanisms. For implementation of a fault tolerant version of the software, the

unregister module is modified accordingly to meet the requirements.

The unregister module checks to see if the message identifiers that are configured are less

than the maximum allowed for normal configuration, if true, then the module simply

unregisters the message identifier and returns to the caller. If the message identifiers that

are configured are more or equal to the maximum number of message objects available

(MAX_MSG_OBJS_RX in our current implementation) then the message identifier is

unregistered from the message object and a message identifier from the special

configuration list is fetched and stored in the message object for reception. If the

message object with special configuration has no message identifiers to receive, then the

message object is unregistered from receiving any packets.

63

This mechanism will ensure that when the message objects equal the number of message

identifiers required, only normal configurations will remain and all the special

configurations will be unregistered.

4.2.4 Get Packet Module
This section explains how the Get packet module returns the packet data information to

the calling application. When the message identifiers have been registered with the driver

and the packets that match the acceptance filtering are stored in the corresponding

message objects.

As a part of the design, the first N number of message objects (user defined at compile

time) are configured for receiving data and the last 32-(N+R) (N is the number of

message objects reserved for receiving packets and R is the number of other reserved

message objects by translation module) message objects are configured for transmitting

data. Once the data has been fetched from the message object, the data bytes from the

message object will be cleared and hence are stored in software buffers (ObjArray and

DataArray) in the Driver layer until they are either fetched by the calling application or

overwritten by new data.

The Get packet module searches through the ObjArray to check for the matching

message identifier stored in any of the message objects. If any match was found, the

corresponding data from the DataArray is returned to the calling application and if a

match was not found among the message objects, a payload data of 0 and message

identifier of 0 (which is illegal on the CAN network) is sent back to the calling

application to indicate that there was no packets for the message identifier requested.

4.2.4.1 API Prototype exposed
UINT8 get_pkt (CAN_ID_TYPE *can_id_ptr,

 PAYLOAD_TYPE *payload_ptr);

64

4.2.4.2 Fault Tolerant implementation for Get packet module
This section gives an overview of the some of the modifications that have to be made to

the Get Packet module to make it fault tolerant. The existing implementation of the get

packet module is a non-blocking call and fetches the data bytes from the ObjArray and

DataArray. It is entirely possible that the message object could have been updated with a

new value by the time this packet is being read from the Software buffers.

The fault tolerant implementation would have to make the get_pkt call a blocking

synchronous call with the function checking a global packet receipt variable flag to see if

packet data has ever been overwritten in the message object before the get_pkt call. This

flag has to be set in the Interrupt service routine when it is invoked due to packet lost

error. If the global packet receipt flag was set for the message identifier, this implies that

some packet was lost due to overwrite and has to be informed to the caller with an

appropriate error code and return the latest packet message that was received.

This mechanism will ensure that both the data lost due to overwrites and the latest packet

that was successfully received on the network is captured and the caller of the API is

informed of the loss of packets.

4.2.5 Send Packet Module
The Send Packet module is responsible for sending the packet data through the CAN bus

and this section explains the basic configurations involved in configuring a node to send

CAN2.0A and CAN2.0B packets on the network. The maximum payload that can be sent

through the CAN bus is 8 bytes, but after examining the maximum packet size for the

application, the maximum payload size for a packet through the CAN bus for the

CANOED UAV was restricted to 4 bytes.

This restriction is application specific and can be readily modified by changing the

compile time Macros. Figure 17 shows the steps involved in configuring a message

object to be able to transmit a packet on the network.

65

4.2.5.1 API Prototype exposed

UINT8 send_pkt (CAN_ID_TYPE can_id,

 PAYLOAD_TYPE payload);

UINT8 send_pkt_ext (CAN_ID_TYPE can_id,

PAYLOAD_TYPE payload);

CALLED BY
APPLICATION

SET THE IF2 COMMAND MASK
REG TO WRITE

WRITE ARBITRATION BITS
INTO IF2 ARB1 & ARB2 REGS

SET THE MSG VALID BIT AND
THE PAYLOAD LENGTH

WRITE INTO THE IF2
COMMAND REQ REG WITH

MSG OBJ NUMBER

EXIT

IF CAN2.0A
TYPE?

SET MESSAGE ID TO 11
BITS

SET MESSAGE ID TO 29
BITS

YES NO

Figure 17: Flow chart for Send Message Module

4.2.5.2 Configuration steps to send 11-bit (CAN 2.0A) packet on the network
This section describes the steps that are to be followed to configure a message object for

transmitting a CAN2.0A type of packet and this configuration has to be every time a

66

packet is sent out as the message identifier for sending could be different. The number of

message objects to be configured as transmit only are user-dependant (defined at compile

time).

The last 32-(N+R) message objects are configured for transmit purposes and to enable

faster transmission of data sent by the application and the send packet module goes

through these message objects in Round-Robin to choose the next message object to

configure for sending. For the purposes of interacting with the message objects, Interface

register 2 is used to keep the Transmit & Receive pipelines isolated and also to provide

them with the ability to interrupt each other to send or receive higher priority messages.

The Configuration steps for the message objects are shown below:
SFRPAGE = 0x1 (CAN PAGE)

CAN0ADR = 0x21 (IF2 Command Mask)

CAN0DAT = 0x0087 (Set the Write bit, alter all

except Mask bits)

CAN0ADR = 0x24 (IF2 Arbitration register 1)

CAN0DAT = 0x00 (Set upper 15 bits to zero in

CAN2.0A implementation)

Setting Message Valid bit and loading the message id in bits 18-28 bits of ARB2 register
CAN0DAT = 0xA000 | (message id <<2)

CAN0DAT = 0x8000 | (MAX_PAYLOAD_LENGTH)

Setting the transmit request bit and data length code and copying data bytes into IF2 data

register
CAN0ADR = 0x27 (IF2 Data register 1)

CAN0DATH = Data byte [1]

CAN0DATL = Data byte [0]

CAN0DATH = Data byte [3]

CAN0DATL = Data byte [2]

67

Finally the IF2 Command Request register is written with the message object to start the

transfer of data from the Registers to the Message RAM.
CAN0ADR = 0x20

CAN0DATL = (message object number)

4.2.5.3 Configuration steps to send 29-bit packet on the network
This section describes the steps involved in sending a CAN2.0B type packet and a user-

dependent number of message objects are chosen for configuration of CAN2.0B type

packets. Some message objects may be configured for translation purposes and to enable

faster transmission of data sent by the application and the send packet extended frame

module goes through these message objects in Round-Robin to choose the next message

object to configure for sending.

For the purposes of interacting with the message objects, Interface register 2 is used to

keep the Transmit & Receive pipelines isolated and also to provide them with the ability

to interrupt each other to send or receive higher priority messages.

The Configuration steps for the message objects are shown below:
SFRPAGE = 0x1 (CAN PAGE)

CAN0ADR = 0x21 (IF2 Command Mask)

CAN0DAT = 0x0087 (Set the Write bit, alter all

except Mask bits)

CAN0ADR = 0x24 (IF2 Arbitration register 1)

CAN0DAT = 0x0000|(message id) (Filling 0-15 bits with

the message id)

Setting Message Valid bit and loading the message id in bits 18-28 bits of ARB2 register
CAN0DAT = 0xB000 | (0x00)(Setting Extended bit)

Message Control Register setting TX request bit and maximum payload
CAN0DAT = 0x8000 | (MAX_PAYLOAD_LENGTH)

68

Setting the transmit request bit and data length code and copying data bytes into IF2 data

register
CAN0ADR = 0x27 (IF2 Data register 1)

CAN0DATH = Data byte [1]

CAN0DATL = Data byte [0]

CAN0DATH = Data byte [3]

CAN0DATL = Data byte [2]

Finally the IF2 Command Request register is written with the message object to start the

transfer of data from the Registers to the Message RAM.
CAN0ADR = 0x20

CAN0DATL = (message object number)

4.2.5.4 Fault Tolerant implementation for Send packet module

The send packet module in the present implementation is an asynchronous call (non-

blocking) and the module returns to the caller after configuring the message object for

transmit. There is a possibility that packets ready for transmit could be lost by

overwriting if the send packet module is invoked faster than the time taken by the CAN

controller could send packets on the network. This scenario is possible when the Transmit

shift register on the CAN controller waits for the bus to be free while higher priority

packets are occupying the bus and the send packet module is invoked and it overwrites

the existing message identifier and payload with the new information.

As there is no hardware based logic to identify such a scenario of overwrite on the

transmit buffer, the send packet call will have to be synchronous and it could read a

global transmit flag for data and the flag could be updated by the Interrupt service routine

when a packet is sent. This mechanism ensures that there is a One to one correspondence

with the send_pkt call and packets sent on the network else a corresponding error is

returned to the caller and any failure to transmit a packet on the network can also be

tracked due to this implementation.

69

4.2.6 Translation Module (CAN2.0A  CAN2.0B  CAN2.0A)
The translation module implementation details are discussed in this section and it

converts the packets of CAN 2.0A format into CAN 2.0B format and vice versa in detail.

By hardware design, C_CAN processor is complaint with both CAN2.0A and CAN2.0B

standards. But the message objects as per rule cannot be configured to send or receive

both CAN2.0A and CAN2.0B packets and each message object can send or receive either

CAN2.0A or CAN2.0B type of packets. Due to this hardware limitation, the software has

to be written separately to translate the packets that are of type CAN2.0A to CAN2.0B

type and vice versa.

The translation module is responsible for receiving packets that have 11-bit or 29-bit

identifiers and converts the packets into the format required. There is no significant

change when an 11-bit identifier is converted into a 29-bit identifier with the other 18 bits

simply being padded as zeros. But when a 29-bit identifier is truncated into an 11-bit

identifier, care has to be taken to ensure that there are no conflicts with any other

message 11-bit identifier frame. In either case the payload should be kept unaffected and

transmitted as received. This has to be ensured during the system design phase and static

assignment of message identifiers to sub-systems eliminates possible clashes among

nodes during the translation.

The significance of the translation module in the CANOED UAV project is that the

Piccolo Auto-pilot generates packets in CAN2.0B format and all the other sub-systems

on the network receives / transmits packets in CAN2.0A format [21]. The driver

implements two API’s that can be invoked separately to translate data from one format

into another. Figure 18 illustrates the functionality of the translation module and

interaction of the software and registers on the CAN Controller.

4.2.6.1 API Prototype exposed
UINT8 can11_to_29(CAN_ID_TYPE can_id);

UINT8 can29_to_11(CAN_ID_TYPE can_id);

70

MSG OBJ FOR 2.0A
MSG OBJ FOR 2.0B

CAN BUS

SEND_PACKET SEND_PACKET_EXT

CAN2.0A
PACKET

CAN2.0B
PACKET

IF REGISTERS

CAN ISR

CONVERSION
FROM 2.0A
FRAME TO

2.0B FRAME

CONVERSION
FROM 2.0B
FRAME TO

2.0A FRAME

IF CAN2.0A
PACKET IS RXD

IF CAN2.0B
PACKET IS RXD

Figure 18: Translation Module block Diagram

4.2.6.2 Steps in implementing the CAN 11-bit to CAN 29-bit translator
This section describes the sequence to follow to convert a CAN 2.0A type packet into a

CAN 2.0B type packet. The message identifier that is input is checked to identify if it has

already been configured to be received by the register module by looking up the

ObjArray. If the message identifier was already registered with some other message

object, then the message object is disassociated with the message identifier. A message

identifier list is created so that the identifiers that have to be converted from CAN 2.0A to

CAN 2.0B are stored and compared with the packets received after the packets are

received in the message object. Configuring a message object for receiving all the packets

are described in register module section. After the configuration, the module returns to

the calling application with the appropriate error code or CAN_DRIVER_NOERROR if

no error was found.

71

4.2.6.3 Steps in implementing the CAN 29-bit to CAN 11-bit translator
This section describes the sequence to follow to convert a CAN 2.0B type packet into a

CAN 2.0A type packet. A message identifier list is created to maintain the list of message

identifiers to be converted. The message object allocated for translation purposes is

configured for receiving a CAN 2.0B type packet as follows:
SFRPAGE = CAN0PAGE

CAN0ADR = 0x09 (IF1 Command Mask)

CAN0DAT = 0x00F8 (Set for write and use Mask,

Arbitration and Control bits)

CAN0ADR = 0x0C (IF1 ARB1)

CAN0DAT= 0x00 (Set the higher 15 bits to zero)

CAN0DAT = 0x8000 (Set the Message valid bit to 1)

The IF1 Mask register is configured to receive all the packets of type CAN 2.0B and the

IF1 Message control registers are configured to receive interrupts on successful packet

reception.
CAN0ADR = 0x0A (IF1 Mask Register)

CAN0DAT = 0x0000 (sets the higher 15 bits of mask to

zero)

CAN0DAT = 0x8000(allows all the CAN2.0B frames to be

received by the message object after acceptance

filtering)

CAN0ADR = 0x0E (IF1 Message Control)

CAN0DAT = 0x1480 (Enable Rx Interrupt and use Mask

registers)

The message id is written into the command request register to enable transfer of data

from the IF1 registers to the Message objects. After the configuration, the module returns

to the calling application with CAN_DRIVER_NOERROR (1) if no error or the

appropriate error code.
CAN0ADR = 0x08 (IF1 Command Request)

CAN0DATL = (Message object number)

72

4.2.7 CAN Interrupt Service Routine
This section describes the role of the CAN interrupt service routine in the ENDURA

layer and the implementation details of the ISR. The Controller Area Network driver is

configured to receive interrupts from the C_CAN processor for asynchronous response to

handle sending or receiving of packets. The Si-Labs C8051F04x processor assigns an

interrupt number of 19 for the CAN processor core to use and the CAN interrupt is

enabled by the initialization module by setting the 5th bit in the Extended Interrupt

Enable 2 register.

 Upon an interrupt request from the CAN hardware, the interrupt pending flag will be

generated and the processor executes a LCALL to a pre-determined location and executes

the first instruction for the ISR. As the normal program execution flow is stopped when

an interrupt arrives, the ISR execution time has to be kept as small as possible.

In order to ensure deterministic execution times for ISR, there are certain limitations on

implementation of an ISR:

1. The ISR must execute in as little time as possible and any calls to blocking

resources like semaphores, mutexs and message boxes should not be made.

2. The ISR should limit the use of operating system calls and should not create new

threads in a multi-threaded operating system.

3. The ISR should disable all the other interrupts during the execution of the critical

section within the ISR and should re-enable the interrupts once the critical section

has been handled.

Figure 19 illustrates the flow chart for execution of the CAN Interrupt service routine and

the sequences of instructions executed by the ISR to receive a packet.

73

DISABLE GLOBAL
INTERRUPTS

Get Interrupt from
C_CAN processor

READ FROM NEW DATA
REGISTERS

IF
RX

IPT?

CLEAR THE 4TH BIT IN
STATUS REGISTER

READ ARBITRATION ID
AND PAYLOAD FROM

MSG OBJ

STORE IN SOFTWARE
BUFFER

IF
MSG OBJ

CONF SPECIAL?

EXIT

SEND ID AND PAYLOAD
TO MeRL INPUT QUEUE

IF
NEW DATA

IN MSG OBJ?
NO A

A

IF CAN 2.0A
CONF?

NO

YES

YES

NO

PAD UP 11-bit ID to 29-bits

CALL
SEND_PACKET_EXT()

TRUNCATE 29-bits tto
11-bits ID

CALL
SEND_PACKET()

CLEAR THE 5TH BIT IN
STATUS REGISTERNO

YES

YES

 Figure 19: Flowchart for CAN ISR functionality

74

4.2.7.1 CAN ISR implementation details
This section provides an overview on the sequence of instructions that are executed by

the CAN ISR upon invocation by the C8051F04x processor. Before execution of any of

the user instructions in an ISR, the CAN ISR should disable all the other global interrupts

by setting the 7th bit in the Interrupt Enable SFR to 1 (EA = 1). This ensures that no other

interrupt occurs while the CAN ISR is processing the critical section.

The CAN Status register (CANSTA0) is read first to identify the source of the interrupt.

It could be either of the following:

a. 4th Bit is set: RxOK – Successfully received a packet

b. 3rd Bit is set: TxOK – Successfully sent a packet

c. 2nd bit is set: Error - Error interrupt

If the interrupt was generated after receiving a new packet, then the RxOK bit is cleared

in the CAN Status register and the NewDat registers are read to identify which of the

message object received a new packet since the last invocation of the ISR.
CAN0STA = CAN0STA ^ (1 <<4)(Compliment 4th bit)

CAN0ADR = 0x48 (New Data 1 Register)

newDataReg[1] = CAN0DATH;

newDataReg[0] = CAN0DATL;

newDataReg[3] = CAN0DATH;

newDataReg[2] = CAN0DATL;

The newDataReg array is searched linearly to find the message object which generated

the interrupt and once a message object with new data is found, then it has to be read and

stored into the software buffer which in turn can be fetched by the Get Packet module.
CAN0ADR = 0x09 (IF1 Command Mask)

CAN0DAT = 0x007F (configure to read the entire

object)

CAN0ADR = 0x08 (Command Request Register)

CAN0DAT = message object

75

The critical sections of the message object that are of interest when monitoring for

receiving a packets are the arbitration, control and data bits. The arbitration and data bits

provide the actual message identifier and payload information from the packet and the

control data provides the payload length of the packet. Hence after reading a message

object into the Message RAM, the Arbitration, Control and Data bits are read and stored

into the software buffers or sent up to the MeRL layer through the input queue.

CAN0ADR = 0x0E (Message Control Register)

MsgLen = CAN0DAT (Get the Data Length Code)

MsgLen &= 0x0F (only the last 4 bits of DLC)

In case of CAN2.0A implementation, the arbitration bits are extracted from the second

arbitration register IF ARB2 as the first 16 bits are unused in the protocol version 2.0A.

In the IF ARB2 registers, the arbitration bits are stored from bit positions 18- 28 with the

LSB being stored in bit position 18 and MSB at 28th bit.
CAN0ADR = 0x0D (Arbitration register 2)

Message id = CAN0DAT (Get the 11-bit

Arbitration id)

Message id = (message id >> 2) & 0x7FF

In case of 2.0B implementation, the arbitration bits are extracted from both the arbitration

registers IF ARB1 & ARB2 as all the 29 bits are used in the protocol version 2.0B. In this

case, the LSB is stored in bit 0 if IF ARB1 and the MSB is stored in bit 28 of IF ARB 2

register.
CAN0ADR = 0x0C (Arbitration Register 1)

Message id = CAN0DAT (First 15-bit arb. id)

Message id = (message id >>15)| CAN0DAT

Message id &= 0x1FFF (Get the next 16 bits)

The payload is obtained by reading the IF1 Data 1 and IF2 Data 2 registers. As the

payload size has been restricted to 4 bytes for the application, it is sufficient to read the

data bytes from the first 2 IF1 data registers. If more than 4 bytes are considered then all

the 4 data registers have to be read to get the full payload.

76

CAN0ADR = 0x0F (IF1 Data 1 register)

Msg Data = CAN0DAT (Copy first 16 bits)

Msg Data1 = CAN0DAT (Copy next 16 bits)

Msg Data = Msg data | (Msg Data1 <<16)

This information that is fetched from the Message RAM is stored in Software buffers

ObjArray and DataArray and/or sent to the MeRL if configured. These sequences

complete the steps involved in receiving a packet from the CAN controller into the

Software buffers.

But if the interrupt was generated after successfully transmitting a packet on the network

(if configured) then the TxOK (3rd bit) has to be cleared in the CAN status register. As

per the present implementation no other sequences of steps are done if an interrupt occurs

due to successful packet transmit. This section has been left unchanged for future

development purposes where it might be used in implementing a more fault tolerant

network driver layer.
CAN0STA = CAN0STA ^ (1 <<4)(Compliment 3rd bit)

EA = 1 (Enable Global interrupts)

Finally the Global Interrupt is enabled to restore the normal execution of the processor.

4.2.7.2 Fault tolerant implementations of the CAN ISR
This section describes possible extensions to the CAN ISR implementation to make the

software architecture fault tolerant. As per the present implementations, the CAN ISR has

been configured to act only upon successful reception of packets and this feature could be

extended to include successful transmission of packets or to identify errors on the

network.

If the successful transmit interrupt is enabled, then the CAN ISR will set a global variable

flag that will be monitored by the Send Packet or Send Packet Extended modules to

confirm the transfer of a packet on the line. This mechanism can be used to maintain a

one-to-one correspondence to the function call and the packet transfer on the network.

77

78

Similarly if error interrupts are enabled, then the Last changed Error codes (LEC) values

are read and then can be used to identify the problems on the network. The Error codes

will enable a node to enter the “Error Passive” or “Error Active” or “Bus Off” modes and

this would be used in fault detection and isolation mechanism implementations for the

node.

Finally the present CAN ISR implementation does not include the functionality of the

CAN Translator module and when added into the CAN ISR has to be modified from its

standard operation. If the interrupt has been generated by the RxOK and the message

object with the new data has been configured to translate CAN2.0A to CAN2.0B, then

the Arbitration data and packet payload is read from the message object. The Arbitration

id is padded up to 29-bits and the send_packet_ext() API is invoked with the message id

and payload.

If the interrupt has been generated by RxOK and the message object with the new data

has been configured to translate CAN2.0B to CAN2.0A, then arbitration data and

payload is read from the message object. The Arbitration id is truncated to 11-bit

identifier and send_packet() API is invoked with message id and payload.

Chapter 5: CAN Performance & Reliability Tests

5.1 Background
Chapter 1 discussed the details on implementing the ENDURA layer for a distributed

system and the fault tolerant schemes to be add within the driver for safety critical

applications. For a reconfigurable architecture based system, the reliability and

performance of the system has to be analyzed thoroughly before it can be deployed in

applications.

This chapter has been dedicated to describe the test setup on which the tests were run, the

Conformance requirements and tests, observations and performance analysis tests, data

and report. The performance analysis tests include bandwidth testing, Inter-layer Latency

tests, reliability tests and sporadic packet testing. The Conformance tests includes

verification of the services offered by the CAN layer and adherence to the protocol. The

ENDURA layer is tested as a stand-alone module and also integrated into the MeRL,

IDEAnix layers.

5.2 Test bench Set-up
The details on setting up the test bench for Conformance and performance tests are

discussed in this section. The test set-up includes at least 2 Si-Labs C8051F040

evaluation boards connected through a custom-made CAN bus, a PCAN CAN packet

analyzer, a JTAG debugger to burn the user code onto the flash of C8051F040 boards and

RS232 cables to monitor the debugging output from the processors. Figure 20 explains

the connectivity between the nodes and mechanisms to send inputs/ view outputs. Figure

21 and Figure 22 provide a snap shot view on the actual set-up that is used for testing and

also the connections on the set-up.

79

Figure 20: Block diagram for ENDURA test set up

Figure 21: Test Bench Setup for ENDURA layer testing

80

Figure 22: Test bench set up (a closer look)

5.2.1 Steps to set up the test-bench
The procedure in setting up the test bench to analyze the ENDURA implementation and

application is overviewed in this section. The test bench includes 2 or more Si-Labs

C8051040 boards, a PCAN sniffer and a custom-made CAN bus. To configure the test

bench, the CAN bus is connected to the CAN ports of the C8051F040 boards and the

PCAN Sniffer is connected and launched on a desktop computer. For debugging

purposes, RS-232 serial cables are connected to the appropriate ports of C8051F040

boards and optionally they may be connected to a desktop computer to analyze the debug

outputs.

The ENDURA software is compiled together with the IDEAnix framework and MicroC

OS-II using the Keil cross compiler for the Si-Labs C8051F040 board and on successful

compilation, the executable is downloaded onto the C8051F040 boards through Si-Labs

IDE software and JTAG in-circuit emulator. The code is executed on the processors by

starting the application through the Si-Labs IDE software. The debug console on the

81

desktop computer (using HyperTerminal) is monitored and the software can be tested by

providing appropriate input on the debug console.

5.3 CAN 2.0A/ B conformance testing
This section provides an overview on the conformance test requirements, the test inputs

and the observations of the tests. The ENDURA implementation has to meet the basic

functional requirements of the CAN 2.0A and CAN 2.0B protocol in order to be

compatible with other implementations of CAN. This is a critical requirement for

integrating with other devices that are CAN compatible. For example in the UAV project

the COTS Auto-pilot used sends packets in CAN 2.0B type formats and these packets

should be received without errors by the CAN application. Before testing for

conformance, the test bench is set up as indicated in Section 5.2.1 to feed input and to

analyze the results.

The conformance test for the ENDURA layer includes the following:

1. Registering an identifier

2. Unregister an identifier

3. Send a packet with any identifier

4. Receive a packet (for identifiers registered)

5.3.1 Register identifier test
The test logic and inputs used in testing the Register module are discussed in this section.

This test checks for the conformance of the register packet module by inputting different

message identifiers and monitoring whether the ENDURA layer can accept those packets.

Some invalid message identifiers are also input to test the functionality of the driver.

Once the software is initialized, a packet with message identifier 0x5 and arbitrary

payload of 4 bytes is sent through the CAN bus (from PCAN sniffer). The get_pkt() API

is invoked (by pressing one of the options on the debug screen) and the resulting value

82

from the API is checked. As the message identifier 0x5 is not registered with the system,

the message id and payload should be equal to 0.

After this, the reg_pkt() API is invoked from the debug console (by pressing one of the

options on the debug screen) and the message identifier 0x5 is entered. A packet with

message id 0x5 and arbitrary payload of 4 bytes is sent from the PCAN sniffer software

and the get_pkt() API is invoked. The value of message identifier and payload returned

by the get_pkt() API is compared with the value sent and verified and the payload and the

message id should match.

The reg_pkt() API is invoked multiple times for same identifier and this should result in

an error code different from CAN_DRIVER_NOERROR. The test can be repeated to

check the boundary conditions by registering for more than 32 message identifiers.

5.3.1.1 Test Result
1. Register message is found to register the identifier as expected and the packets

with the registered message identifier are received correctly.

2. The Register message returned an error (CAN_DRIVER_ERROR) when an

invalid message identifier was entered.

3. The register message module returned an error (CAN_DUPLICATE_ID_REG)

when the message id has already been registered with other message object

4. The module returned an error (CAN_MSGOBJS_FULL) when an attempt was

made to register for more than 32 message identifiers.

5.3.1.2 Test Observation
Based on the above test results, the register module is found to be working as per the

requirements for the CAN 2.0A/ B protocols.

5.3.2 Unregister a Message Identifier Test
The test logic and inputs used in testing the Unregister module are discussed in this

section. This test checks for the conformance of the unregister packet module by

83

inputting different message identifiers and monitoring whether the ENDURA layer can

disassociate itself from receiving those packets. Some invalid message identifiers are also

input to test the functionality of the driver.

First a message identifier 0x5 is registered for the node by invoking reg_pkt() API and a

packet is sent through the PCAN sniffer with the message id 0x5. Then get_pkt() API is

invoked to check if the packet is received successfully by the driver. After verifying the

reg_pkt() functionality, the unreg_pkt() API is invoked with the message identifier 0x5

and the same packet with message identifier 0x5 and arbitrary payload is sent from the

PCAN sniffer. Finally get_pkt() API is invoked to verify if the packet is still being

received by the node or not. The unreg_pkt() API is also invoked multiple times with the

same message identifier and also with invalid identifiers to check for the correct

functionality of the unregister module.

5.3.2.1 Test Result
1. The unregister message module works as expected when a call is made to

unregister an already registered id, the module removes all association of the

message id from the message object and the node no longer receives the packet

from the bus.

2. The unregister module returns the error codes (CAN_UNREG_ID_ERR) to the

caller if any attempt is made to register an already unregistered message id.

3. The unregister module also returns an error code (CAN_UNREG_ID_ERR) when

given an invalid message identifier is input.

5.3.2.2 Test Observation
Based on the test results, the unregister module is found to be working as per the

requirements for the CAN 2.0A/ B protocols.

84

5.3.3 Send Packet Test
This test validates the conformance of the send packet module by inputting different

message identifiers and monitoring the CAN bus to verify if the packets have been

successfully been sent by the test node. This test can be performed in conjunction with

the Get Packet module test by receiving the packets sent from the test node. Some invalid

message identifiers are also input to test the functionality of the module driver.

send_pkt() API is invoked with the desired message identifier 0x5 and arbitrary payload

and the message identifier, data that is sent is verified using another node registered for

the particular message identifier or through the PCAN sniffer. Similar test is performed

using send_pkt_ext() API to test successful sending of an extended CAN frame and

monitored using PCAN sniffer. The send packet module is tested for boundary conditions

by entering a 0x7FF (2.0 type packet) message identifier and 0x1FFFF (extended CAN

type). These are the last valid message identifiers allowed by each of the protocols and

these packets should be successfully be sent on the network.

Send packet module is tested for invalid message identifiers by entering a message

identifier 0x0 and arbitrary payload. A message identifier of 0x00 is invalid in the CAN

protocol and should not be sent on the network.

5.3.3.1 Test Result
1. All valid packets with message identifiers 0x5, 0x7FF, 0x1FFFF are all seen on

the PCAN sniffer validating the sending of valid packets on the network.

2. The packets with message id 0x0 is not sent on the network and error code

(CAN_DRIVER_ERROR) is returned to the caller.

5.3.3.2 Test Observation
Based on the above tests, the send module is found to be working as expected and meets

the conformance required for the CAN2.0 A/ B protocols.

85

5.3.4 Receive packet module test
This test checks for the conformance of the receive packet module by verifying for

successful reception of packets that are sent from another node. This test can be

performed in conjunction with the Register packet module and Send Packet module

testing by receiving the packets sent from the Send Packet module.

First the reg_pkt() API is invoked with message identifier 0x05 to enable the node to

receive the packets of the message identifier from the network. From the other node, the

send_pkt() API is invoked with message identifier 0x5 and arbitrary payload or through

the transmit section of the PCAN sniffer. The get_pkt() API is invoked and checked for

the message identifier and payload sent through the PCAN sniffer or through any other

node. The get_pkt() API is invoked repeatedly to check for value returned by the module.

5.3.4.1 Test Result
1. The get_pkt() API returns the latest packet that was received by the node and the

payload and message identifier is found to match the values sent.

2. The get_pkt() API invoked without sending any packet returns 0x0 for the

message id and 0x0 for the payload for the packet.

5.3.4.2 Test Observation
Based on the above tests, the receive packet module is found to be working as expected

and was able to receive the packets that were sent to the module. Please refer to the

Performance test section for the efficiency of the get_pkt() API implementation and the

limitations of the driver software.

5.4 Performance Testing of ENDURA
The performance tests that are subject on the ENDURA layer, the test logic behind the

inputs, the results and the observations made after analysis of output data are discussed in

this section. The Conformance test for CAN only provides the accuracy of the

implementation with respect to the CAN protocols and it does not indicate any reliability

86

or performance information. For this purposes, rigorous performance and reliability tests

were performed on the ENDURA layer to observe the performance data for the driver.

ENDURA implementation is tested with a series of performance tests for analysis of the

ability of the driver to perform at various loads. The performance tests can be broadly

classified into 3 sections:

1. Bandwidth Tests and analysis

2. Packet Latency tests

3. Endurance testing

5.4.1 Bandwidth Tests and Analysis
The main objective of the ENDURA layer is to enable communication between nodes

with maximum speed/efficiency possible and hence bandwidth data provided by the

ENDURA implementation is critical to understand the effectiveness of the network driver

and suitability of the network for the application. The requirements for the bandwidth

tests, the different test logics applied on the CAN application, analysis of the results with

the expected value and feasibility study of application are explained in this section. For

testing the bandwidth provided by CAN application, the build of IDEAnix integrated

with the ENDURA layer is considered together with MicroC OS-II.

An application is developed as a user thread on top of the IDEAnix with priority 5 and

another thread with priority 4 (higher priority user thread) is assigned to the network

router that is responsible for routing incoming packets to the corresponding tasks. The

application thread registers for a message identifier through the reg_pkt() API and a

packet with that particular message identifier is sent through the PCAN Sniffer or

through a separate node that has an application thread sending packets continuously.

It is observed that as the packet transmit pipeline takes longer time than the packet

receive pipeline and hence a delay has to be inserted into the send_pkt() and get_pkt()

module to synchronize the sender and receiver with uniform time interval. Any

implementation of the packet receive and transmit pipeline without the software delay

87

swamped the limited number of software buffers available for the driver/ IDEAnix layers

and resulted in packets being lost due to overwriting of software buffers. The bandwidth

is measured under different OS delay values entered on the Receive Packet routine

against the rate at which the packet is sent to the nodes and the results are discussed in the

Sections 5.4.1.1 and Sections 5.4.1.2, which describe the bandwidth test scenarios with 2

different delay timings at the receive packet pipeline of the CAN application.

5.4.1.1 Bandwidth Analysis for 100ms delay in packet receive pipeline
This section provides an analysis on the data obtained from the bandwidth tests of

ENDURA by substituting a delay of 10 OS ticks (100ms) between the every successive

packet transmit/receive call and Table 3 shows the relevant data for the different rates of

packet transmission. It is observed that with bit-rate of approximately 1 to 2 Kbits/Sec

(100ms between successive packets) packets are lost at the receiving end. This is

expected because the application thread has to enable context switching for the network

router thread to process the next packet in queue and as the OS delay is at 10 OS ticks

(100ms), any data that is sent at rate faster than the OS delay will be lost due to overhead

of context switching. Hence the OS delay values are reduced and further analyzed in

section 5.4.1.2.

Table 3: Bandwidth Analysis report for 100ms tick delay

Bit Rate

(Bits/sec)

Number of packets

sent

Number of

packets Rxd

Number of packets

Lost

108 5000 5000 0

216 5000 5000 0

432 5000 5000 0

1K 5000 5000 0

2K 5000 3948 1052

10K 5000 2894 2106

20K 5000 1634 3366

100K 5000 945 4055

88

5.4.1.2 Bandwidth Analysis for 10ms delay in packet receive pipeline
An analysis on the data obtained from the bandwidth analysis of ENDURA layer by

substituting a delay of 1 OS tick (10ms) is explained in this section. The data in Table 4

indicates that with a 10ms delay between successive packets, the CAN application starts

to lose packets at 20K bits/sec. This is expected as the inter-packet delay is decreased by

a factor of 10, the bandwidth is increased by a factor of approximately 10 as well, as the

10ms delay between packets, drops packet at approximately 20K Bits/sec It is observed

that with rate approximately equaling 100K, packets are lost at the receiver due to

overwriting of packet data. The minimum inter-packet time delay that can be achieved for

the ENDURA implementation with IDEAnix and MicroC OS-II is 10ms and with this

minimum inter-packet time delay, it is possible to receive all the packets on the network

with no packet being lost.

Table 4: Bandwidth Analysis report for 10ms tick delay

Bit Rate

(Bits/sec)

Number of packets

sent

Number of

packets received

Number of packets

lost

108 5000 5000 0

216 5000 5000 0

432 5000 5000 0

1K 5000 5000 0

2K 5000 5000 0

10K 5000 5000 0

20K 5000 5000 0

100K 5000 1783 3217

89

Bandwidth Analysis: Packets dropped

0

500

1000

1500

2000

2500

3000

3500

4000

4500

108 216 432 1K 2K 10K 20K 100K

Bit Rate (Bits/Sec)

N
um

be
r o

f P
ac

ke
ts

Delay of 100ms Delay of 10ms

Figure 23: Bandwidth Graph for Packet rate Vs Packets dropped

5.4.1.3 Bandwidth Analysis with Packets sent over time
The Bandwidth Analysis with respect to the time taken to send packets between node is

discussed in this section. The projection on bandwidth is made by sending a fixed number

of packets and measuring the time taken to receive the packets successfully to calculate

the bandwidth on the network. Table 5 shows the relevant data for the number of packets

sent against time taken to send them and bandwidth data for the entire network is

calculated based on the data from the table.

Table 5: Bandwidth Analysis with number of packets sent over time

Number of

packets sent

Number of packets Time taken to send packets (sec)

Received lost

65531 65531 0 75

90

Number of Packets transmitted = 65531

Number of bits per packet = 108 (approximately)

Time taken to send = 75 seconds

Total number of bits sent = No. of Packets transmitted * No. of bits/packet

 = 65531*108 = 7077347 bits

Bandwidth = 7077347/ (75*1024) = 92.15 KBits/Sec (approximately)

5.4.1.4 Bandwidth verification with respect to dropped packets
The bandwidth data that was obtained from the Table 3 and Table 4 shows that the CAN

application breaking points in terms of the bandwidth that will be made available by the

application. Based on these data, it is possible to validate the bandwidth tests. The latency

values

For 10 ms delay between packets:

Time spent by the Application thread waiting = 10ms

Time spent in processing a packet = 850μs

The maximum bandwidth that is possible = (1/10.85ms)*108 = (apprx) 10 KBits/sec

For 100ms delay between packets:

Time spent by the Application thread waiting = 100ms

Time spent in processing a packet = 850μs

The maximum bandwidth that is possible = (1/100.85ms)*10 = (apprx) 1KBits/sec

The data for the 100ms delay corresponds to the value shown in Figure 23 as the packets

were dropped at 1KBits/sec as per the calculation above. For 10ms delay between

packets, the bandwidth achieved is higher and does not match the values obtained from

Figure 23. This could be due to the operating system interaction and varying response

times for the function calls due to semaphore blocks.

5.4.1.5 Bandwidth Data Report
Summary of the tests from Section 5.4.1.1 through 5.4.1.3 are provided in this section.

Figure 23 shows the number of packets dropped for the delay of 100ms between packets

and 10ms delay between packets. It can also be observed from the data in Table 3, Table

91

4, Table 5 that the bandwidth provided by the ENDURA layer together with IDEAnix

layers is much less than that of the peak bandwidth capacity of the C_CAN processor of

1Mbits/sec. The peak bandwidth that can be achieved through the IDEAnix layers is

approximately 100Kbits/Sec and this is 1/10 of the maximum bandwidth.

This is due to the fact that the minimum time required by the operating system for

delaying a task and a context switch to another thread is 1 OS Tick and the number of OS

ticks per second are fixed at 100. This overhead restricts the speed at which the

application thread and the network thread can interact. Responses of the order of 1μ

Second is required to receive packets at 1 MBits/ Sec and as the response time of the OS

is in the order of 10mSecs, the maximum bandwidth of 1 MBits/Sec cannot be achieved

with the MicroC OS-II and IDEAnix setup. The bottleneck can only be removed by

making the OS respond in µSeconds by modifying the OS tick rate and the time that is

considered as one OS tick.

For the PAXCAN UAV application, the packets with highest frequency are to be sent/

received at 20 Hz (50msec) and all the other packets are at period lower than this rate.

Hence, the present software application of IDEAnix framework + ENDURA would be

able to meet the bandwidth needs and requirements of the PAXCAN UAV application.

5.4.2 Latency Tests
The objective of the latency tests, the different test logics applied on the CAN

application, analysis of the results for the latency tests are discussed in this section. A

critical parameter besides the bandwidth data in measuring the efficiency of the

ENDURA & the MeRL is the time taken by the layers to process a packet. The packet

processing times for the ENDURA and MeRL layer can be used to identify the minimum

possible inter-frame spacing and to obtain a higher ceiling on the maximum rate of packet

transfer.

To identify the Latency between the layers, 3 General Purpose I/O pins are chosen on the

Si-Labs C8051F040 board: Port 3 Pin 0, Port 4 Pin 0, Port 5 Pin 0. Initially the receiver

92

pipeline in application sets all the pins to low level and the application spins on the

get_msg() API until a valid packet is fetched by the invoked API.

Port 4 Pin 0 is assigned for ENDURA ISR and the pin will be pulled high whenever a

packet enters the node and the ISR is invoked. Port 3 Pin 0 is assigned to MeRL layer and

the pin is pulled high when a call to the load_up_buff() API is made from the CAN ISR.

Port 5 Pin 0 is assigned to the get_msg() API and pulls the pin high just before it sends

the packet to the Application layer. Once the message is returned to the application layer,

the higher level layer sets all the pins to low again and waits for a new packet to arrive.

Figure 24 shows the different times measured across the software layers during the

latency tests for sending a packet and receiving a packet.

Figure 24: Block diagram representing different times measured in Latency tests

5.4.2.1 Measuring the Latency in receiving a packet
The packet latencies in receive packet pipeline across layers are analyzed in this section

and the maximum bandwidth that the ENDURA can support based on the latencies are

93

compared against the values of the Bandwidth tests. For measuring the latency between

layers, the Port 4 Pin 0 and Port 5 Pin 0 are connected to an Oscilloscope and the low-to-

high transitions are monitored. The time taken to process a packet from the CAN ISR to

higher level application can be observed through this process. Figure 25 shows the timing

diagram for the receive packet pipeline and the total time taken to receive a packet.

Figure 25: Timing diagram for receiving a packet

In the next step, the Pin 0 from Port 3 is connected to the oscilloscope and the transition

from low-to-high for the Pin 3 is analyzed with Pin 0 of Port4 for the time spent in

processing a packet in the ENDURA layer and similarly, the transition can be analyzed

from a higher level layer to MeRL to identify the time spent processing a packet in the

MeRL. Time taken to process a packet by the ENDURA layer is measured as follows:

Time taken by the ENDURA layer (T1) = 101 µSeconds

Time taken by the MeRL (T2) = 756 µSeconds

Total time taken to process a packet (T3) = 856 µSeconds

The times T4, T5, T6 are referenced from Figure 24. Based on the latency values for the

layers computed, it is possible to analyze the maximum bandwidth that can be supported

by the IDEAnix framework and verify it against the actual bandwidth data obtained in

section 5.4.1.

94

5.4.2.2 Measuring Latency in sending a packet
The procedures in measuring the latency in sending a packet through the packet transmit

pipeline and analysis of the data from the latency tests are discussed in this section. This

test is required to understand the maximum rate at which the packet can be sent through

the network.

Send_msg()

Send_pkt()

4mS

100μS

C_CAN
processor

Send_msg()

Waiting for CAN
Semaphore

before calling
send packet

800μS

900μS
Routing data

back into
other tasks

Configures
Message

Object

Sends
packet
on line

CAN Driver delay
4
μS

Time to Invoke an
API

Application
Thread

Application
Thread

9.09mS

4.09 mS

Tref

Figure 26: Timing diagram for Sending packet

For measuring the latency for sending a packet in MeRL, Port 3 Pin 0 is used. Before an

invocation to the send_msg() API from MeRL, it is set to 1 and the MeRL layer before

calling send_pkt() API, sets the Port 3 Pin 0 to low. The timing diagram in Figure 26

shows the delay in sending a packet through the different software layers.

For measuring the latency for sending a packet in the ENDURA layer, MeRL sets the

Port 3 Pin 0 to 1 before calling the send_pkt() API and the ISR after successfully sending

a packet, sets the Port 3 Pin 0 to low and also the time taken by the Driver to configure a

message object and the actual time taken by the CAN Controller to send the packet on the

bus is also recorded. The times T4, T5, T6 are referenced from Figure 24 and Tref from

Figure 26.

95

Time taken to send a packet through the ENDURA layer (T4) = 924 µSeconds

Time taken by MeRL to send a packet to ENDURA (T5) = 4.166 mSeconds

Time taken for sending a packet through the Application (T6) = 9.099 mSeconds

Time taken by the C_CAN Processor to send packet (Tref) = 110μSeconds

The total time taken for sending a packet is high, because the IDEAnix layer after

sending a packet reroutes the message id and payload back into a queue for other tasks

that might have registered for the same message id.

5.4.2.3 Bandwidth calculation for the CAN Application:
The bandwidth that can be expected from the CAN application based on the Latency tests

performed in section 5.4.2.1 and 5.4.2.2 are calculated in this section. The entire CAN

application (IDEAnix + ENDURA) is taken into consideration for this measurement.

Total Time taken to process a packet = 856 μSeconds

The Max bandwidth for CAN = 1 Mbits/sec

 = 1 Mbits/sec / 108 (app. packet size)

 = 9260 packets/ sec

Time taken by the application to process 9260 packets:

 Time taken = 9260 * 856 μSeconds

 = 7.87 Seconds

Number of packets that can be received at 856 μSeconds:

Number of bits that can be received = (9260/ 7.87)* 108

 = 1176 * 108

 = 127074 Bits/ Sec

 = 124 KBits/Sec (appx)

The Maximum bandwidth that can be supported by the IDEAnix layer together

with ENDURA is 124 Kbits/ Sec. This value matches with the bandwidth result

96

where the maximum bandwidth obtained is 100 KBits/Sec.

5.4.2.4 The Bandwidth Calculation for ENDURA layer
The bandwidth that can be expected from the ENDURA layer based on the Latency tests

performed in section 5.4.2.1 and 5.4.2.2 are calculated in this section. The ENDURA

layer alone is considered independent of IDEAnix for this Bandwidth measurement.

Total Time taken to process a packet in Driver = 100 μSeconds

The Max bandwidth for CAN = 1 Mbits/sec

 = 1 Mbits/sec / 108 (app. packet size)

 = 9260 packets/ sec

Time taken by the driver to process 9260 packets:

 Time taken = 9260 * 100 μSeconds

 = 0.926 Second (< 1 second)

The Maximum bandwidth that can be supported by the ENDURA layer (without

including the IDEAnix and Operating system) is 1 MBits/ Sec. Hence the driver is

implementation is able to meet the functional requirement of supporting the maximum

expected bandwidth of 1 MBits/Sec.

5.4.3 Reliability testing
The requirements for reliability testing and the test logic used in the reliability tests are

detailed in this section. The reliability of the application is a key property in analyzing the

performance characteristics of the network. Controller Area Network was subject to 40

hours of continuous packet forwarding and the packets of payload 8 bytes are sent

continuously at the maximum possible packet rate of 10ms/packet.

Table 6: Reliability test data after continuous run for 40 hours

Packet rate

(kbits/sec)

Number of

hours of test

Number of

packets sent

Number of packets

Received lost

10 40 14,406,543 14,406,543 0

97

After running the packets for 40 hours, it was found that no packet was lost in the process

and the packet counts on the transmitting and receiving pipeline were identical. No

leakages of buffers or unexpected software resets were observed. Based on the present

software environment and reliability test data, the CAN application was found to be

reliable at the bandwidth of 100KBits/ sec and received all the packets sent at that rate.

5.4.4 Sporadic Packet Tests
This section provides an overview on the motivation behind the Sporadic packet testing

of the CAN network and the test setup, input and data analysis from the tests. CAN is an

event-based network and asynchronous events on the system triggers packet movement

on the network. Sporadic tests are used to test the robustness of the CAN application for

packet bursts that might occur on the network. Hence the application is tested with bursts

of packets at different rates and for random durations and the results of the sporadic tests

are shown in Table 7.

Table 7: Sporadic Test data for CAN

Sl.

No

Packet

rate

(Kbits

/sec)

Duration of

packet burst

(minutes)

Number of packets

sent

Number of packets

Received lost

1. 1000 5 300 300 0

2. 500 5 600 600 0

3. 100 10 6480 6480 0

4. 50 7 8980 8980 0

5. 10 2 15409 15409 0

Based on the sporadic packet burst test data, it can be deducted that the CAN network is

capable of receiving packets in bursts at different rates/packet numbers and no packets

are lost due to communication errors.

98

5.5 Performance Analysis Summary
The summary of the result of the ENDURA layer implementation validation and the

efficiency/ feasibility of the network for a reconfigurable embedded system are discussed

in this part. The performance analysis data indicates the operating bandwidth where

maximum reliable operation from the CAN application can be expected from the system.

The conformance test for the ENDURA layer to the CAN protocol specification shows

that the ENDURA layer meets the requirements of the CAN protocol and can be

interfaced with other standard CAN hardware without any compatibility issues. The

implementation also provides the feature of translating packet types from CAN 2.0A to

CAN 2.0B and vice-versa. This can be very useful for the CAN UAV application where

the Auto-pilot sends the packet on CAN 2.0B format and the rest of the system desires

packets of CAN 2.0A type.

The Bandwidth tests for the CAN application measures the maximum capability of the

embedded network without loss of packets on the network and the CAN application

achieves maximum efficiency when the packets are transmitted at or greater than

10ms/packet rate and reliable communication is possible at 100KBits/sec based on this

data.

The latency tests for the CAN application validated the measurements of the bandwidth

tests and maximum time taken to send a packet as 9.09mSeconds and the time to receive

a packet as 900μSeconds. The calculations based on the latency measurements showed

the maximum bandwidth that can be supported by the CAN application together with

IDEAnix is 120Kbits/Sec. This bandwidth is approximately 1/10th of the peak value

expected and the drop in efficiency of the network layer due to the overhead added by the

operating system in sending a packet and the time taken by the CAN core to send a

packet through the network after a message object has been configured. As a stand-alone

module the ENDURA layer has a latency of 100μSeconds to receive a packet through the

network and is capable of receiving packets at 1Mbits/ Sec.

99

100

The performance data provides an insight on the maximum reliable bandwidth of the

CAN application and the performance data has to be considered during the system design

phase before deploying the CAN application. For the CAN UAV project, the maximum

packet frequency is 20Hz and this requires a minimum bandwidth of 50KBits/ Sec. As

the performance data extracted from the CAN application is capable of meeting the

desired bandwidth/latency requirements, the CAN application can reliably be ported for

CAN UAV project.

Chapter 6: Conclusion
The design objectives were setup by the constraints and requirements mentioned in Chapter

1. The CAN protocol specification was analyzed in Chapter 2 and the specifications for the

ENDURA layer was set using the protocol capabilities. The various modules that were to

form the driver layer were identified and analyzed individually in Chapter 4. The individual

modules implementation details were discussed in detail and the fault-tolerant schemes that

can be added to module to meet the requirements of the reconfigurable architecture were

explained.

The ENDURA implementation was proved to work as per the functional requirements of the

network layer, with the performance and conformance test data. The performance and

conformance test data prove that the CAN application is capable of reliably communicating

with the nodes on the network at 120 KBits/Sec at variable payloads from 0-8 bytes. Based

on the performance data, the viability of the CAN application for an UAV type of application

was proven to operate reliably under the timing / bandwidth constraints. The ENDURA layer

uses no operating system calls in its implementation, making the driver layer independent

and portable across operating systems. The work on ENDURA layer presented here is a part

of a larger research on reconfigurable embedded architecture by the Intelligent Dependable

Embedded Architecture (IDEA) lab at University of Kentucky. The implementation and

subsequent validation of the ENDURA layer aids in the design of dynamically reconfigurable

architectures.

 There are several enhancements and future research directions for this thesis work. The

CAN application as per the present implementation is capable of operating at a bandwidth of

120KBits/Sec. The maximum bandwidth supported by the application can be improved

significantly if the tick time on the MicroC OS-II can be decreased from its present 10ms/

tick timing. The OS tick can be decreased by reducing the Timer 0 counter reload value on

the C8051F040 board and increasing the number of ticks per second to more than 100 ticks

per second. It is to be noted that the OS kernel will also have to be modified and validated

accordingly to match the timing requirements. An another improvement would be to increase

101

102

the clock rate to make the C8051F040 board run the programs faster and improve upon the

speed of the CAN communication.

The MeRL send packet module can be optimized by reducing the time taken to route a packet

within the tasks on a same processor. This can be improved by allowing the user task to

register for a packet with the driver and as the receive packet pipeline is at least 10 times

faster than the time taken by the MeRL to route a packet internally to other tasks, this would

improve the send packet pipeline time by a factor of 10.

The scope of Controller Area Network can be extended by adding CAN Gateways that are

capable of communicating with other networks of different physical media. The CAN

gateways can convert the packets of CAN type into any other broadcast network packets and

thereby be able to communicate with other networks that are different from CAN. For

example in UAV application, 2 UAVs with different physical networks (CAN and a wireless

network like 802.15.4) can interact with each other through a Gateway that is capable of

converting a CAN packet into 802.15.4 packets and vice-versa. This can be used in forming

Ad-hoc networks dynamically in forming joint missions.

Appendix A: CAN Protocol Specification

Physical layers for CAN Standard:

This section provides details on the different CAN physical layer standards that are available

in the market and their properties, electrical signals and the peak bandwidth supported.

1. CAN Standard ISO-11898-2
This is also called the “High Speed CAN” and the 11898-2 implementation supports

bandwidth up to 1 Mbits/Sec for a maximum distance of 40m and is a two wired balanced

signaling scheme. The characteristic line impedance for the bus is specified to be at 120Ω

and for the two wire system, the common mode voltage ranges are from -2V for CAN_L to

+7V for CAN_H lines. The number of nodes that can be connected to the network is limited

by the Electrical busload. For the Peak 1Mbits/sec bandwidth to be achieved the maximum

propagation delay can be 5ns/m. The CAN standard 2.0A/B specifies that for all the nodes to

communicate within the network, all the nodes must use the similar bit-timing calculation

[5].

2. CAN Standard ISO-11898-3
This is also called the “Low-Speed CAN” or “Fault-Tolerant” CAN and the 11898-3

implementation supports bandwidth up to 125 Kbits/sec. Even though this standard is a two-

wired balanced signaling, the bus could support asymmetric signaling even if one of the

wires is grounded or damaged. As per the CAN 2.0A/B Specification, the 11898-3 standard

is assumed to be for shorter network and the maximum length supported depends on the

maximum load expected on the network. The physical layer can support up to a maximum of

32 nodes. The common mode voltage specification is from -2V to +7V and the power supply

is defined at +5V.

3. SAE J2411 Single wire standard
SAE J2411 is also a CAN standard for the physical layer with low requirements on the bit

rate, bandwidth, bus length. The maximum number of nodes that can be present on the

network is restricted to 32 and SAE J2411 uses an unshielded single wire for communication

at maximum of 33 Kbits/sec.

103

4. Time Triggered CAN (TTCAN): ISO-11898-4
CAN2.0A/ B implementations are event-driven networks i.e asynchronous events trigger

movement of packets on the network. But in many automotive/ space applications,

guaranteed bus access for higher priority packets at a certain rate is required besides

supporting asynchronous behavior. Hence TTCAN protocol was standardized to support

deterministic communication on top of CAN.

TTCAN protocol requires a global clock that has to be implemented in hardware and all the

other modifications are software extensions to existing BasicCAN. All the nodes wait for a

global reference message which is sent periodically from a central reference node and all the

nodes register to get bus access in multiples of reference message slots. The nodes can send a

packet on the bus only when the required message slot time has been reached and by this

mechanism, both TTCAN and BasicCAN nodes can exist/ communicate on the same bus.

Bit-timing for CAN Physical layer (PHY)

This section provides more details on the bit-timing segments within a CAN bit-time and the

parameters that are involved in adjusting the sampling point.

1. Synchronization segment (SYNC_SEG)

2. Propagation delay segment (PROP_SEG)

3. Phase buffer segment 1 (PHASE_1)

4. Phase buffer segment 2 (PHASE_2)

Sample point is defined by the CAN 2.0A/B as the time at which the signal level on the bus

is read and interpreted as either “Recessive (5V)” or “Dominant (0V)”.

1. Synchronization segment (SYNC_SEG):
The synchronization of the bit-timing between the nodes occurs during this segment and the

transition of Recessive (1) to Dominant (0) or vice-versa should occur within this bit-time.

2. Propagation delay segment (PROP_SEG):
The propagation delay segment is for the countering the physical delay in the electrical

signals reaching the nodes and it is at least 2 times the time taken by the electrical signals on

104

the bus sent between the edge nodes on the network. Propagation delay also includes the

input comparator delay at the receiver and also the transmitter driver relay delay.

 PROP_SEG = (2* Signal delay on bus b/w end nodes) +

 Comparator delay at receiver + Driver delay at transmitter

3. Phase Buffer Segments 1 and 2:
CAN uses synchronized transmission at the bit-level and frame-wise synchronization cannot

be applied since there is only one Start of Frame (SOF) bit in every frame. Hence continuous

resynchronization is required by the nodes to enable receivers decode the packets correctly

and phase buffer segments are included to compensate for the edge phase errors. Phase buffer

segments can be lengthened or shortened with resynchronization. There are two types of

synchronization in the physical layer during data transmission.

a. Hard Synchronization:
Hard synchronization occurs during the start of every frame transmission and at the end of

the SYNC_SEG, the bit-timing registers are restarted so that the edge that caused the Hard

Synchronization lies within the SYNC_SEG.

b. Resynchronization:
Resynchronization occurs within the frame and it is used to shorten or lengthen the Phase

buffer segments so that the sampling point lies within the detected edge.

Fault Confinement
Since CAN deviates from the conventional arbitration mechanisms, it is a possibility that one

faulty node could block the entire system from operating normally if left unchecked. This

section explains mechanisms to isolate a faulty node(s) and limit the effect of such a scenario

where a faulty node disrupts communications.

The mechanism of error signaling could enable a faulty node to generate error flags

continuously and could effectively block the transmission of normal frames on the network.

This scenario is analogous to “ICMP Error messages attack” on the TCP/IP based inter-

network, where an ICMP Error messages could be continuously sent on the network to

swamp the nodes from transmitting useful data.

105

To facilitate the confinement of errors, the CAN 2.0A/B protocol specifies that each node

should contain two counters.

1. Transmit counter

2. Receive Error counter

The Receive Error counter is increased by a fixed value whenever the node detects an

erroneous packet on the network. The value of the counter is decreased by a specific fixed

value whenever a packet is received correctly. To ensure correct functional working of this

mechanism, the counter value is increased by larger number than the decrement value.

The Transmit counter is used to record errors encountered during or immediately after the

transmission of packet on the network. If a transmitting node detects an error in transmission,

it increases the counter value by a different fixed value and decreases it by 1 whenever it

successfully sends a packet on the network.

The values of the counters are used to determine the state of the node and are critical in fault

confinement logic implementation. The value by which the counter values are increased

varies depending upon the scenario in which the error was encountered.

The fault confinement state machine could be in any of the 3 states:

1. Error Active

2. Error Passive

3. Bus Off

‘Error Active’ state is the observed by nodes who have Transmit and Receive error counter

values less than 128. The value of less than 128 signifies that the node in itself is free from

faults and detects the errors on the bus reliably. Only the ‘Error Active’ nodes are allowed to

transmit Active Error flags (6 Dominant Bits) during the Error signaling.

‘Error Passive’ state is observed by nodes who have Transmit or Receive error counter values

greater or equal to 128. Since the error increment and decrement values are different, a value

greater than 128 signifies that there could be a fault in the node. ‘Error Passive’ nodes could

only transmit Passive Error flags (6 Recessive Bits) during error signaling. ‘Error Passive’

106

nodes take part in error signaling, but as long as the same error is not recognized by any other

‘Error Active’ node, the Passive Error flags will be ignored. An ‘Error Passive’ node is

allowed to become ‘Error Active’ only after its Transmit and Receive error counter values

are less than 128.

‘Bus Off’ state is observed when the Transmit error counter value exceeds 256 and used to

isolate a node or nodes from communicating on the network. A node can switch from ‘Bus

Off’ to ‘Active Error’ when it correctly recognizes 128 occurrences of 11 consecutive

Recessive bits. The Transmit and Receive error counters are reset to 0 and Active Error flags

rights are enabled.

These mechanisms ensure that decisions on fault confinement, isolation of faulty nodes and

rejoining the network are distributed to individual nodes and effectively ensure fault

tolerance of the network under erroneous conditions.

CAN Transfer Layer
This section provides an overview of the CAN transfer layer and the functionalities of the

module and the CAN Transfer Layer represents the kernel of the CAN protocol. The Transfer

layer is responsible for the actual frame communication in the CAN bus and the CAN

specification defines the standard for CAN Transfer layer precisely. For an implementation

of CAN to be compatible with other implementations, the Transfer Layer should adhere to

the CAN 2.0 A/ B specification strictly.

The CAN Transfer layer is responsible for the Transport protocol and the functionalities of

the transfer layer includes Arbitration of the CAN bus, Frame control and formation, Data

Transmission / Reception on the Can Bus, Error identification/ Signaling, Fault confinement,

Remote transmit request and Packet Acknowledgement.

The transfer layer processes the message to be sent from the Object layer and formats the

message into the CAN frame and transmits it on the CAN Bus and also receives the CAN

frame, checks for errors and passes the message onto the Object layer. The transfer layer also

107

108

controls general configurations related to the bit-timing on the CAN bus and also arbitration

of the bus (identifying if the bus is idle or some other node is transmitting).

The Transfer layer implementation is handled by the CAN Controller chips and offer limited

flexibility in implementation and also the configuration of the transfer layer is performed

through the initial configuration of the CAN Controller Engine.

Appendix B: C_CAN Processor

C_CAN Modes of Operation:
The C_CAN controller supports different modes of operation to facilitate debugging and

analysis of the network. The test modes in which the C_CAN controller can be operated are

1. Basic Mode

2. Loop-back mode

3. Silent mode

4. Loop-back & silent mode

For testing the network with any of these modes, the Test mode has to be enabled in the CAN

Control register [20]. When the 7th bit is set in the CAN Control Register (Address 0x00 and

0x01), the test mode register is enabled and this allows the software to test the network under

different modes listed.

Figure 27: Test Register Details

Table 8: Test Register Bits

Bit No Symbol Description

0-1 R Reserved

2 BSC Basic Mode

3 S Silent Mode

4 LB Loop back Mode

5-6 TX0, TX1 Transmit Control

7 RX 0 – CAN_RX pin is Dominant

1 – CAN_RX pin is Recessive

8-15 R Reserved

109

1. Basic Mode:
 When the CAN Control Register is in Test Mode and the 2nd Bit of the Test Register

is set, Basic mode is enabled. In Basic mode, Interface Register 1 is used as Transmit buffer

and Interface Register 2 is set for Receive buffer. All Message control registers are disabled

and once the bus is idle, the value from the Interface Register 1 is loaded on the CAN TX

shift register and transmitted on the network. When a packet is received from the network,

the message is stored on Interface Register 2 without any acceptance filtering. This mode is

used for testing the basic transmission and reception capabilities of the CAN controller.

2. Loop-Back mode:
 The Loop-back mode is used to test the Transmit and Receive functionality of the

driver by treating the packet sent through the CAN_TX as a packet received. Acknowledge

errors are ignored in this mode. The CAN_RX pin is kept at Recessive level, so no external

packets can be received. Loop-Back mode can be enabled by setting the 4th bit of the Test

Register.

3. Silent Mode:
 In Silent mode, the CAN controller receives all the packets that are found on the

network but the CAN_TX pin is set at Recessive level. This enables successful reception of

all the packets on the network, including remote request frames, but no packet data is sent out

through the bus. This mode can be used to analyze the network without affecting the

communication on the bus.

4. Loop-Back and Silent Mode
 Loop-back and Silent mode can be combined together by setting the bits 3 and 4 of

the Test register. This mode of testing is called ‘Hot Self-test’ [20] where the CAN network

driver can be tested without sending any information to the CAN transceiver connected to the

CAN_RX and CAN_TX pins. The CAN_RX pin is disconnected from the CAN core and the

CAN_TX pin is held at Recessive level.

110

Registers in C_CAN processor:

Protocol Registers in C_CAN processor:
Table 9: List of Protocol Registers in C_CAN processor

Sl.

No

Protocol Register Description

1 CAN Control Register Controls the Global enable/ disable scheme for

the error, interrupts, change configuration and

Test registers

2 CAN Status Register Indicates the status of Tx/Rx, error active/passive,

Warning and bus off information

3 CAN Error Counter

Register

This is a read-only register and gives the counts

of the number of transmit or receive errors on the

bus

4 Bit Timing Register This register is used to configure the Bit timing

for the CAN controller (as per the CAN

bandwidth required).

5 Test Register This register is used for testing the CAN protocol

with different modes such a Loop back, Silent,

Silent & Loop back and Basic CAN mode

6 BRP Extension Register This register is used to pre-scale the baud rate for

the CAN communication

111

Interface Registers in C_CAN processor:
Table 10: List of Interface Registers in C_CAN processor

Sl.

No

Message Interface

Register

Description

1 IF Command Request This register is used to read or write into a message

object. Once a message object number is written

into this register, an automatic transfer to or from

the message object will be started.

2 IF Command Mask

Register

The mask register is used to specify the direction of

movement of data and to specify which message

RAM as source or target

3 IF Mask Registers Interface Mask registers are used to specify the

mask that will be used for message arbitration if

enabled in the Command mask register

4 IF Arbitration Registers Interface arbitration registers is used to specify the

message identifier to apply the interface mask

5 IF Message control

registers

Interface message control registers contain the data

related to message object configuration

6 IF Data Registers A1 &

A2 and B1 and B2

Interface Data registers 1 &2 buffer the data for the

before storing in the Message RAM or transmitting

on the CAN bus. The CAN data is stored in Little

Endian format with the LSB occupying the lower

address and the MSB occupying the higher address.

But the bytes are transmitted in Network byte order

(Big Endian).

112

Message handler Registers in C_CAN processor:
Table 11: List of Message handler Registers in C_CAN processor

Msg handler

Reg

Description

Interrupt

Register

The interrupt register indicates which of the message objects

currently have an interrupt pending. If more than one message

object has an interrupt pending, the interrupt register only

contains the message object number of highest pending interrupt.

The flag remains in active until the interrupt is serviced

Transmission

Request

Registers

Transmission request register indicates which of the message

objects currently have a request to send a message on to the bus.

This register provides the transmit request status by reading the

TxRqst bit from all the 32 message objects.

New Data

Registers

The new data registers are compliment of Transmit request

registers and provide which of the message object has newly

received packet data after it was last cleared by the CAN core.

The new data registers and Transmission request registers are

both 4 bytes in length and each bit represent one of the 32

message objects.

Interrupt

Pending

Register

Interrupt pending register indicates which of the message object

currently has a pending interrupt that is yet to be serviced. The

values for the interrupt pending registers are obtained by reading

the IntPnd bits of the 32 message objects. Lower the message

object number, higher the priority associated with it and this

priority determines which of the message object interrupt is

updated on the Interrupt register for servicing.

Message

Valid

Register

The message valid registers contain the value of the MsgVal bit

of the 32 message objects. The MsgVal bits indicate which

among the 32 message objects have been configured for either

transmit or receive.

113

References

[1] O. Rawashdeh and J. Lumpp, Jr. “Run-Time Behavior of Ardea: A Dynamically

Reconfiguring Distributed Embedded Control Architecture.” IEEEAC paper #1516. IEEE

Aerospace Conference. Big Sky, Montana. March 2006.

[2] T. Arrowsmith, D. Brown and Dr. J. E. Lumpp Jr, "Reconfigurable Embedded Control

for UAVs”, 12th Annual Kentucky EPSCOR Conference. Louisville, KY.

May 2006.

[3] Association for Unmanned Aerial Vehicle Systems International. 2700 S. Quincy

Street, Suite 400, Arlington, VA 22206, http://www.auvsi.org, September 7th, 2007.

[4] D. Brown, C. Collins, D. McClure, A. A. Meriden,P. Profitt, M. Smith, and V.

Yadack, “University of Kentucky Aerial Robotics Team: 2006 AUVSI Student UAV

Competition Design”, University of Kentucky, Lexington, KY 40506, Spring 2006.

[5] CAN in Automation. Am Weichselgarten 26, DE-91058 Erlangen, http://www. can-

cia.org, September 7, 2007.

[6] CAN Specification version 2.0, Part A. Robert Bosch GmbH, Stuttgart, Germany,

1991.

[7] CAN Specification version 2.0, Part B, Robert Bosch GmbH, Stuttgart, Germany,
1991.

[8] KVaser Incorporated. 567 W Channel Island Blvd #336, Port Hueneme, CA 93041,

http://www.kvaser.com, September 7, 2007.

[9] K. H. Johansson, M. Torngren, L. Nielsen, “Vehicle Applications of

Controller Area Network”, Handbook of Networked and Embedded Control Systems,

Birkhäuser, 2005. Invited paper.

[10] Light Electric Vehicle Conference Presentation, Hsinchu Taiwan, March 2007.

114

http://www.auvsi.org/
http://www.kvaser.com/

[11] National Institute of Marine Research, 155, rue Jean-Jacques Rousseau

92138 Issy-les-Moulineaux Cedex, http://ifremer.fr/, May 9, 2007.

 [12] Michael Stock Flight Systems, 27a Umsatzsteuergesetz: DE151230778,

http://www.canaerospace.com, September 7, 2007.

[13] Infineon C500 Architectures and Instruction Set Manual, Infineon Technologies,

http://www.infineon.com/cms/en/product/channel.html?channel=ff80808112ab681d0112ab6

b76fa0841, July 2000.

[14] Infineon XC866 Product Brief, Infineon Technologies, http://www.infineon.com

/cms/en/product/channel.html?channel=ff80808112ab681d0112ab6b81d00865, February 7,

2007.

[15] Infineon C161CS Data sheet 3.0v, Infineon Technologies, http://www.infineon.

com/cms/en/product/channel.html?channel=ff80808112ab681d0112ab6b38840779&tab =2,

Jan 01, 2001.

[16] Infineon XC2200 Family Product Brief, Infineon Technologies,

http://www.infineon.com/cms/en/product/channel.html?channel=ff80808112ab681d0112ab6

b655c0807, March 7, 2007.

[17] Silicon Laboratories C8051F04x data sheet, Silicon Laboratories, http://www.

silabs.com/public/documents/tpub_doc/dsheet/Microcontrollers/CAN/en/C8051F04x.pdf,

December, 2005.

[18] FlexRay Consortium, http://flexray.com, September 9, 2007.

[19] Texas Instruments TMS470R1x data sheet, Texas Instruments, http://focus.ti.com

/mcu/docs/mcusupporttechdocsc.tsp?sectionId=96&tabId=1502&abstractName=spnu197e,

July 2005.

115

http://ifremer.fr/
http://www.canaerospace.com/
http://www.infineon.com/cms/en/product/channel.html?channel=ff80808112ab681d0112ab6b76fa0841
http://www.infineon.com/cms/en/product/channel.html?channel=ff80808112ab681d0112ab6b76fa0841
http://www/
http://flexray.com/

[20] C_CAN User Manual Revision 1.2, Robert Bosch GmbH, http://www.

semiconductors.bosch.de/en/20/can/products/ccan.asp/, June 6, 2000.

[21] PAXCAN protocol, Intelligent Dependable Embedded Architecture Lab, University

of Kentucky, http://www.engr.uky.edu/idea/wiki/doku.php?id =projects:

active:pax:workspace:protocol , September 9, 2007.

[22] Weisstein, Eric W. "BCH Code.", From MathWorld--A Wolfram Web Resource.

http://mathworld.wolfram.com/BCHCode.html, October 17, 2005.

[23] Dr. K Etschberger, “Controller Area Network”, Published by IXXAT Automation

GmbH, 88250 Weingarten, Germany, July 2001.

[24] Controller Area Network Solutions (M) Sdn Bhd, 34-2, Jalan Puteri 2/2, Bandar

Puteri Puchong, 47100 Puchong, Malaysia, http://www.cans.com.my, September 7, 2007.

 [25] A. Avizienis, J.-C. Laprie and B. Randell, Fundamental Concepts of Dependability,

Research Report N01145, LAAS-CNRS, April 2001.

[26] RFC 124, Defense Advanced Research Projects Agency, Information Processing

Techniques Office, 1400 Wilson Boulevard, Arlington, Virginia, December 1979.

[27] RFC 2581, Defense Advanced Research Projects Agency, Information Processing

Techniques Office, 1400 Wilson Boulevard, Arlington, Virginia, December 1979.

[28] ISO/IEC 7498 The Basic Model, part 1, International Standard Organization,

http://www.sigcomm.org/standards/iso_stds/OSI_MODEL/index.html, 1994.

[29] Digital Equipment Corporation, Intel Corporation, and Xerox Corporation: "The

Ethernet -- A Local Area Network: Data Link Layer and Physical Layer (Version 2.0)",

November 1982.

[30] Bluetooth Special Interest Group (SIG), Bellevue, Washington, USA,

http://www.bluetooth.com/bluetooth/, September 18, 2007.

116

http://www.engr.uky.edu/idea/
http://mathworld.wolfram.com/about/author.html
http://mathworld.wolfram.com/
http://mathworld.wolfram.com/BCHCode.html
http://www.cans.com.my/
http://www.sigcomm.org/standards/iso_stds/OSI_MODEL/index.html
http://www.bluetooth.com/bluetooth/

117

[31] Universal Serial Bus Implementers Forum, 5440 SW Westgate Dr., Portland, OR

94221, http://usb.org, September 18, 2007.

[32] IEEE 1394 Trade Association, 1560 East Southlake Blvd., Suite 242

Southlake, TX 76092, USA, http://www.1394ta.org/index.html, September 18, 2007.

[33] IEEE 802.15 TG4 Group, 11 Louis Road, Attleboro, MA 02703 USA, http://ieee802.org

/15/index.html, October 17, 2007.

[34] Freescale Semiconductors, 7700 West Parmer Lane, Austin, Texas 78729, USA,

http://www.freescale.com/webapp/sps/site/homepage.jsp?nodeId=01J4Fs2565, October 17,

2007.

http://usb.org/
http://www.1394ta.org/index.html

Vita
The author, Nithyananda Siva Jeganathan, was born in Palani, Tamil Nadu, India on January

9, 1982. He completed his undergraduate degree in Electronics and Communication

Engineering in April, 2003 from the University of Madras, Tamil Nadu, India. He joined the

Masters of Science program in Electrical Engineering at University of Kentucky in Fall 2005.

He was a Graduate Student Assistant at the Intelligent Dependable Embedded Architecture

(IDEA) lab at the Department of Electrical and Computer Engineering in UK.

118

	A CONTROLLER AREA NETWORK LAYER FOR RECONFIGURABLE EMBEDDED SYSTEMS
	Recommended Citation

