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Abstract of Thesis 

 

A CONTROLLER AREA NETWORK LAYER FOR RECONFIGURABLE 

EMBEDDED SYSTEMS 

 
 

 
Dependable and Fault-tolerant computing is actively being pursued as a research area 
since the 1980s in various fields involving development of safety-critical applications. 
The ability of the system to provide reliable functional service as per its design is a key 
paradigm in dependable computing. For providing reliable service in fault-tolerant 
systems, dynamic reconfiguration has to be supported to enable recovery from errors 
(induced by faults) or graceful degradation in case of service failures. Reconfigurable 
Distributed applications provided a platform to develop fault-tolerant systems and these 
reconfigurable architectures requires an embedded network that is inherently fault-
tolerant and capable of handling movement of tasks between nodes/processors within the 
system during dynamic reconfiguration. The embedded network should provide 
mechanisms for deterministic message transfer under faulty environments and support 
fault detection/isolation mechanisms within the network framework. This thesis describes 
the design, implementation and validation of an embedded networking layer using 
Controller Area Network (CAN) to support reconfigurable embedded systems.  
 
KEYWORDS: Dependable Computing, Fault Tolerance, Embedded Networks, 
Distributed system, Controller Area Network (CAN).   
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Chapter 1: Introduction 
This chapter provides a background and introduction to the problem of providing a 

networking layer to support reconfigurable systems, embedded network architectures, 

data communication protocols, media access control logics are discussed. The motivation 

for the thesis is discussed along with the different embedded networks options and 

motivation for the choice of Controller Area Network (CAN) as the desired embedded 

network. Finally the goals for the system to be developed are described in detail.  

 

1.1 Background 
Dependable and Fault-tolerant computing is being actively pursued as a research area for 

deployment in safety-critical applications where guaranteed functional operations of 

system is paramount. The system should provide reliable services based on its functional 

design and this key requirement is the motivation for implementing fault-tolerant 

techniques in system. A Fault-tolerant system should be capable of detecting faults/ 

errors in the system and also provide minimal services in case of recoverable errors or 

degrade gracefully in case of failures. Any distributed system depends on a network 

mechanism for establishing communication between the different nodes and for a 

reconfigurable distributed architecture, the embedded network should provide 

mechanisms for deterministic message transfer under faulty environments and support 

fault detection/isolation mechanisms within the network framework. 

  

This thesis research work presents an implementation of an Embedded Network Driver 

for Use on Reconfigurable Architectures (ENDURA) that supports fault-tolerant 

mechanisms and can be integrated into any reconfigurable architecture as a network 

layer. Controller Area Network is a differential signaling serial bus that was developed by 

Robert Bosch GmbH for deployment as a system bus in Automobiles. For analyzing the 

efficiency of the ENDURA implementation using CAN, a typical safety-critical 

distributed system using an Unmanned Aerial Vehicle (UAV) will be considered as an 

example where required. Figure 1 shows the system view for a distributed UAV system. 

The Tiny Interface Module (TIM) processor boards [2] are embedded on servos and 
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mounted on the wings and the ailerons. The processor boards are connected through a 

CAN bus that provides the communication mechanism for the UAV system.  

 

 

Figure 1: Distributed system view on a UAV [2] 

The other CAN applications that are used in Small vehicles (Light Electric Vehicles), 

Marine applications (SeaCAN, NAUTILE) and Space applications (SOFIA, SMART-1) 

are discussed in detail in Chapter 2.  

1.2 Embedded Networks Overview 
An overview of the embedded networks is provided in this section. The nodes in a 

network can communicate with each other or nodes outside their network through a 

variety of software architecture models and physical layers (PHY). Two of the most 

popular software architectures in use are the Transfer Control Protocol (TCP)/Internet 

Protocol (IP) suite and the International Standards Organization (ISO)/Open Systems 

Interconnection (OSI) Reference model (also known as the seven layer ISO/OSI 

Reference model) [28].  

 

 The TCP/IP model was developed by the Department of Defense (DoD) to establish 

connections between nodes of different types within different networks [26] . The TCP/IP 

model was designed to provide guaranteed delivery of information between systems and 
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includes a sliding window protocol controlled by congestion control mechanisms [27].  

The TCP/IP model led to the interconnection of networks and to the origin of the Internet.  

 

 The main reference for most of the present embedded networks protocol specifications is 

the ISO/OSI Reference model [28]. It is devised by the International Standards 

Organization to support open networks communications and also to encapsulate the 

existing interconnection standards within the ISO reference model. The model does not 

define the exact implementation methodologies but rather defines the mutual recognition 

and support of the applicable standards.  For more detailed description on the ISO/ OSI 

model and implementation requirements refer to [28].  

 

Figure 2 shows the communication mechanism for the OSI Model and classifies 7 

different layers based on their functionality. The ISO/ OSI model form the basis for many 

of the industrial and embedded networks that are in use today [28].  

 

 

 Figure 2: OSI Layer Reference Architecture 
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1.3 Data Communication Protocols 
The data communication protocols basics that are currently being used in many 

applications are discussed in the following sections. The data communication protocols 

can be broadly classified into two categories:  

 1.  Node Oriented Protocols 

2.  Message Oriented Protocols 

 

Node Oriented Protocols 

In node oriented protocols the information is exchanged between nodes by their node 

address. Hence the sender transmits the data with the destination node’s unique address, 

that is either predefined for the network or can be obtained through a query message and 

also optionally the sender’s source address. Typically reserved address(es) is/are 

designated for broadcasting information to all or a group of nodes in the network. In the 

node oriented scheme, besides specifying the receiver’s nodes address, the content of the 

transmitted message needs to be specified as well. In general, all the information sent 

across the network follow the same packet formats with payload (or data field) variations. 

The information sent across network could be a fixed sized payload or variable payloads. 

 

 

Figure 3: Node oriented communication 

 

11 



 

Figure 3 shows a generic network based on node oriented protocols. The packet format is 

to send the Destination address (Node 3) of the node being addressed to and optionally 

the Sender’s address (Node 1). An example of a Node oriented communication is the 

Ethernet network technology [29].   

 

1.3.1 Message Oriented Protocols 
In Message Oriented Protocols the information is exchanged between nodes through a 

Frame or Message Identifiers. The Node transmitting the data sends the information on 

the bus with a unique Message Identifier. The nodes on the network make the decision on 

accepting or dropping the packets that arrive through the bus. The Frame sent could be 

received by one/some/all or none of the nodes. Since the transmitting node does not get 

any acknowledgement of the data sent, confirmed message exchange is not suitably 

realized [23]. This can be overcome via error-signaling techniques that enable the 

receiver inform the sender of problems on the network. There are no reserved message 

identifiers or broadcast message identifiers unlike the Node oriented protocols. The 

arbitration purely depends on the message identifiers transmitted and higher preference is 

normally for lower numbered message identifiers. 

 

 

Figure 4: Message oriented communication 
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Figure 4 shows the communication between nodes in a message oriented methodology. 

The packet that is sent on the network contains only the Message Identifier and not the 

destination node’s address as in Node oriented mechanism. For example: in Figure 4 

Node 2 rejects the packet and Node 3 accepts the packet. Example of a message oriented 

network is Controller Area Network [6].  

 

1.4 Medium Access Control (MAC) 
Medium Access Control (MAC) is the mechanism of establishing asynchronous 

communication between nodes and this section briefs in detail on the strategies used on 

the embedded networks in general. MAC determines which transmitter gets control over 

the media for transmission. The MAC logic arbitrates between 2 or more nodes from 

transmitting at the same time and prevents collision of information from different nodes. 

MAC decisively controls the Real-time behavior and packet latency and choice of MAC 

is essential in choosing the data communication protocol.  

 

MAC can be generally classified into two categories as methods with deterministic access 

and methods with random bus access. Deterministic bus access methods are in turn 

classified into two methods as allowing centrally controlled arbitration and distributed 

controlled arbitration. The non-deterministic or random bus access is classified into two 

methods as methods allowing collisions and no collisions methodology. 

 

In deterministic bus access method, the arbitration is clearly broken prior to a bus access 

thus guaranteeing that only one node will get the bus for transmission. The maximum 

system response time can be determined for the bus with accuracy. In centrally controlled 

deterministic access, one or more nodes act as the master and determine which node gets 

the bus. But if the master/s fails, then network communication is impossible. In 

distributed controlled deterministic access, the arbitration is broken by individual nodes 

based on a protocol and not controlled by a master node. Hence even if one or more 

nodes fail in the network, communication is still possible between the remaining nodes. 

Distributed controlled arbitration is more robust in fault-tolerant applications, but its 

implementation is more complex than the centrally controlled arbitration. 
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In random bus access, any node on the network could send information once the bus is 

idle. Since many different nodes can sense that the bus is idle at the same time, it is 

referred to as Carrier Sense Multiple Access (CSMA). The random bus access can be 

implemented with Collisions or without collisions. The random bus access without 

collisions differs from collision-free bus access (as in deterministic bus access 

implementation). The CSMA method in which collisions can occur but also can be 

detected is called Carrier Sense Multiple Access/ Collision Detection (CSMA/CD). The 

CSMA method in which collisions can occur but are identified later as error in 

communication is implemented in the Local Operating Network protocol (LON) [23]. 

CSMA in which there are no collisions are called Carrier Sense Multiple Access/ 

Collision Avoidance (CSMA/CA).  

 

1.5 Ardea Run-time Environment 
This section provides an overview on the Automatically Reconfigurable Distributed 

Embedded Architectures (ARDEA) framework and the basic concepts of dependability 

and fault-tolerance. Any safety-critical system that is being developed is a multitude of 

hardware and software and the ability of the system to provide reliable functional service 

as per its design is a principal paradigm in dependable computing.  

 

In order to achieve high reliability on the data obtained, the system must be able to 

withstand the errors that are generated in the system (either deliberate or due to design 

flaws) or in case of failures, degrade gracefully or provide reduced services [25]. Hence a 

fundamental requirement for any dependable system is to be fault-tolerant and to achieve 

fault tolerance within the system redundant processing structures will have to be 

incorporated in the system design phase [25].  

 

ARDEA framework considers reconfiguration of the system as a mechanism of providing 

fault-tolerance. Ardea framework supports traditional fault-tolerant techniques using 

redundant modules and also graceful degradation [26]. The graceful degradation implies 

that the system will reconfigure dynamically to produce reduced services of operation 
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depending on the type of fault suffered by the system and as the reconfiguration schemes 

are supported in addition to the traditional fault tolerant schemes, make the Ardea 

framework highly efficient in handling faults on the system. The dynamic reconfiguration 

allows fault-tolerant applications to identify alternate modes of operation and not suffer 

system failure during a catastrophic error, but rather have reduced services for the system 

through reconfiguration.  

 

The Ardea framework allows for reconfiguration of the architecture by capturing the 

system architecture as Dependency Graphs (DG) and the DG’s indicate flow of data 

between the modules within the Ardea framework. Redundant modules are also 

incorporated into the DGs and the decision of correct data can be made by the process of 

voting between the redundant modules. The voting process is represented using Logic-

gates on the DG and hence a DG can be used to represent redundant modules, logic gates, 

input and output sources and the quality of the input or output sources. The flow of 

information on a DG starts from the input sources end and terminates at the output 

devices section.  Figure 5 shows a model Ardea DG that shows functional flow of 

information from the input modules to the output modules.  
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 Figure 5: Ardea Dependency Graph model [26] 

1.5.1 IDEAnix Framework 
IDEAnix task messaging framework [4] is critical for implementation for the Ardea 

model where location independence of tasks is required for establishing seamless task 

movement in the event of reconfiguration. The Ardea software framework consists of a 

Real-Time Operating System (RTOS), application level software and a network interface 

task. The application level software together with the RTOS and network interface task 

were combined together to produce the IDEAnix framework where the tasks can be 

moved seamlessly between the processor modules for reconfiguration of architecture as 

required by the Ardea framework. The IDEAnix framework is a unique port of a MicroC 

OS-II (uCOS-II) a real-time operating system for Si-Labs C8051F04x processors and 

Keil compilers. IDEAnix framework includes boot-up and initialization routines specific 

to the Si-Labs C8051F04x processors.  

The framework consists of two layers of software: 

1. Message Routing layer (MeRL)  

2. A lower-level embedded network (CAN). 
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The MeRL exists on top of the uCOS-II operating system and uses the OS resources like 

Queues, message boxes and multi-threading ability of the OS to control the data and 

message flow between the different tasks. The MeRL abstracts the inter-task/ inter-

processor communication and the tasks can communicate seamlessly between tasks 

running on same processor or to a task on a different processor without any change in the 

running code. Figure 6 shows the IDEAnix block diagram with the task level 

communication with the MeRL [4].  

BROADCAST NETWORK DRIVER (CAN)

MeRL

USER TASKS 

  
 Figure 6: IDEAnix Block diagram and Task level communication with MeRL [4] 

 

All the tasks running on the IDEAnix register for a message identifier with the MeRL and 

the producer of the message broadcasts the packet with message identifier and data 

through the network. The tasks running on the same processor or running on remote 

processors receive the same packet information through the receiver buffer/queue and 

will process the data through the FIFO buffer. This enables the task running on 

independent processors be able to receive the same data as the tasks on the same 

processor enabling reliable distributed computing. Figure 7 shows the functional block 

diagram of MeRL [4].  
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Figure 7: MeRL block diagram [4]  

 

The MeRL is implemented independent of the lower level broadcast network and invokes 

a set of well-defined API calls. As long as the network driver is implemented to match 

the specifications of the API and is a broadcast type network, the lower level network can 

be replaced with no change on the MeRL implementation.  

 

1.6 Embedded Network Selection 
There are different embedded networks that are available in the market and the design 

considerations on the choice of a network for reconfigurable architecture implementation 

are discussed in this section. The Ardea framework requires an embedded network for 

communicating between the software modules on different processors and also for 
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propagation of system faults, and configuration information. Also the embedded network 

should have fault tolerant standards in-built inside the network framework and physical 

media should have the ability to communicate under high-noise environments. These 

were some of the design considerations in choosing an embedded network for the 

implementation of the Ardea network interface task.  

  

Before choosing an embedded network that can be selected, the software architecture 

employed by the network standard and the MAC level communication mechanisms are 

also taken into consideration. As the Ardea environment will be used safety-critical 

applications, the network must be able to provide deterministic communication between 

the nodes. Some of the embedded networks considered for implementation are: 

1. Controller Area Network [6] 

2. Bluetooth [30] 

3. Universal Serial Bus (USB) [31] 

4. IEEE 1394 [32] 

 

A design matrix is charted to highlight the properties of the embedded networks and their 

relative differences are tabulated as shown in Table 1. It can be seen that some of the 

networks chosen have high-overhead in the embedded market and requires a personal 

computer to monitor the device communication. This makes some of the networks 

undesirable for pure embedded system communications. 

 

Bluetooth [30] network has an advantage of communicating wirelessly over longer 

distances, but it is a master-slave communication mechanism and the master node 

synchronizes and initiates the communications on the bus. This feature makes the 

Bluetooth undesirable in safety-critical applications, where a single failure to the Master 

would stop the communications on the network. The USB and IEEE 1394 standards are 

aimed at interconnecting peripherals with a desktop computer or any other compatible 

device and have higher bandwidths but less channel length. The point to point 

communication violates one of the principal requirements of the Ardea framework, where 

a packet sent by one node should be visible across all the nodes. 
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Table 1:  Design matrix for the embedded networks  

Property CAN Bluetooth USB IEEE 1394 

Physical layer 2 wire 

differential 

signaling 

2.4GHz 

Wireless 

spectrum 

Twisted pair Two 

separately 

shielded 

Twisted pairs 

Topology Multi-master 

Bus 

Master- Slave 

Communication 

Point to Point 

Star, Tree 

Peer to Peer 

Data Rate 1 MBits/ Sec 1 MBits/Sec 1.5 MBits/ Sec 

to 480 

Mbits/Sec 

98.3 

MBits/Sec to 

393.20 

MBits/Sec 

Maximum Number 

of nodes in 

network 

40 7 Active and 

125 passive 

devices on 

network 

127 63 

Cable length 40 meters 1- 100 m 

(depending 

upon class of 

device) 

5 meters 4.5 meters 

Typical application Automotive 

applications 

(soft real-

time) 

Personal Area 

networks (cell 

phones, PDAs, 

cameras) 

Personal area 

networks  

Personal 

Area 

networks, 

Automotive 

application 

(Renault)  

 

Based on the properties from Table 1, Controller Area Network (CAN) is the only 

network that can reliably provide communication at higher data rates and also has 

inherent fault-tolerant capabilities. The advantages of using Controller Area Network for 

implementing reconfigurable architectures are discussed in Section 1.6.1.  
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1.6.1 CAN Advantages 
CAN has reliable data transfer mechanism and due to its 2-wire differential signaling, 

remains unaffected by the Electro Magnetic Interference (EMI) on the channel. As CAN 

is a bus-based topology and all the nodes on the network using a message-oriented 

protocol resulting in loss-free arbitration of the bus. This ensures high determinacy in 

packet transmission/reception and enables use of CAN in real-time applications where 

critical deadlines have to be met for packets.  

 

In the CAN bus, the Message Identifier determines both the priority of the message and  

the bus access resulting in the higher priority messages having short latency time 

regardless of the bus load. The CAN also has active error detection and isolation 

mechanisms for erroneous nodes on the bus thereby preventing one faulty node from 

disturbing the communication on the bus. If a node exceeds the pre-defined error rates, 

then the CAN controller disconnects the node from the bus at run-time and the node can 

rejoin the network in case it is once again capable of sending/ receiving packets reliably.  

 

CAN supports bandwidth upto 1 Mbits/Sec for a maximum distance of 40 meters is 

higher than any other embedded network considered. CAN hardware is cheaper and 

microcontrollers support for CAN is significantly higher than any other embedded 

network considered (At least 40 known microcontroller vendors support CAN [5] 

hardware).  

 

1.7 Problem Statement 
This section describes the actual motivation for the thesis research work, the design 

constraints and provides a brief overview on the problems that are solved by the thesis 

work. The motivation for ENDURA implementation is for the network layer to be 

deployed on reconfigurable architectures as network tasks, where the system data can be 

reliably communicated between the nodes. The embedded network chosen for Ardea 

framework is required to have the ability to efficiently send small payloads, dynamic 

registering/unregistering for packets and have real-time application capabilities in-built 

on the network framework. Some of the networks that adhere to these criteria are CAN, 
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802.15.4 [33] and ZigBee [34]. The ENDURA layer implementation with CAN requires 

that the driver layer adhere to the well defined API prototypes that are exposed to the 

higher layers and this will enable higher layers to abstract the network layer below and 

invoke the driver APIs for the services required. The ENDURA layer should provide 

configuration of the C_CAN controller and also to provide a common platform for 

communication between the different sub-systems.  

 

For verification of design and implementation of ENDURA, an UAV application will 

have to be tested with a customized implementation. The Auto-pilot communication is 

the key to achieving autonomous flight on an UAV and the Auto-pilot used for the CAN 

UAV application is a Commercial Off-The Shelf (COTS) Piccolo Auto-pilot. The Piccolo 

provides an Extended CAN interface (CAN2.0B) for communicating on the bus and the 

rest of the sub-systems on-board the UAV are CAN 2.0A type. Hence the ENDURA 

implementation is required to perform the translation of CAN 2.0B packets with 29-bit 

message identifiers to the CAN 2.0A format with 11-bit identifiers and vice-versa.  

 

The ENDURA layer should have the ability to send packets either in the CAN2.0A or 

CAN2.0B format and be able to receive all the packets that are sent on the network. The 

size of the packets can vary from 0 bytes to 8 bytes and the ENDURA layer should 

correctly be able to send/ receive all the packets with different payloads. The ENDURA 

implementation should expose standard Application Programming Interfaces (APIs) to 

the higher level applications and for CAN UAV application the API standard is 

mentioned in PAXCAN protocol [21].  

 

Further, the ENDURA layer should be able to meet the minimum performance and 

latency requirements for the application. For the CAN UAV application, ENDURA 

should be able to send and receive data at least twice as fast as the fastest packet that can 

be sent on the network as per the PAXCAN protocol [21]. The ENDURA layer is 

required to have limited operating system calls in order to make the driver platform 

independent of the operating systems and also for portability across operating systems. 
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The full implementation of the ENDURA layer should have fault-tolerant capabilities and 

provides reliable communication under noisy environments.  

 

Given the functional requirements expected from ENDURA, the following chapters will 

be discussing more in detail on design, implementation and performance details of the 

Controller Area Network driver for reconfigurable systems. Chapter 2 discusses the CAN 

Physical layers, protocol overview on error detection, packet formats and some CAN 

applications and their design. Chapter 3 provides an overview on the hardware that is 

available commercially for implementation of CAN and discusses the Microcontroller 

support for CAN and the CAN controller details. Chapter 4 documents the functional 

requirements, the design decisions, the implementation procedure for ENDURA layer 

and fault-tolerant schemes added into the layer. Chapter 5 lists the performance 

characteristics that are expected of the network, the results of conformance testing, data 

from bandwidth, latency, reliability tests and sporadic packet testing. Chapter 6 shows the 

compatibility of the ENDURA implementation with the CAN requirements and provides 

the conclusion to the thesis work. 

 

Appendix A provides an overview on the CAN protocol standard and Appendix B 

provides an overview on the CAN controller hardware. Appendix C lists the references 

that are used for preparing this thesis document. 



 

Chapter 2: CAN Protocol and Applications 
 

This chapter will provide an overview on the CAN Data Link layer, CAN protocol 

background information and some popular CAN based applications in use. The CAN 

protocol standard specifies only the Data-Link layer and physical layer and the higher 

level protocols are not standardized and are application dependent. For implementing an 

Ardea reconfigurable architecture, a higher level application layer namely MeRL 

(Message Routing Layer) has been developed that controls the binding of message 

identifiers with application tasks and also enables seamless passing of tasks / messages 

between processors [2].  

 

2.1   CAN Applications 
CAN is a widely used many industrial applications and this section briefly discusses 

some of the popular applications that use CAN. The CAN protocol is a Data link layer 

(DLL) protocol and hence a higher level application has to be implemented to control the 

communication mechanisms, application specific message identifier tagging, packet re-

transmission and for deterministic system operation. There are different standardized 

higher level protocols that are being used to develop applications through CAN.  Some of 

the well-defined CAN application layers are:  

1. CANOpen 

2. CAN Kingdom 

3. DeviceNet 

4. SAE J1939 ( Specific only for Automotive vehicle application) 

5. CANAerospace 

 

 Besides these higher level protocols, there are many application specific layers that are 

being used by the developers for their custom projects. The IDEA Lab at University of 

Kentucky uses IDEAnix framework for implementing a reconfigurable architecture 

platform. The CAN application layer is the highest level of software that exists on top of 

all the protocol specific software layers. Before presenting the custom developed 
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application for CAN some of the well known commercial / Space applications that use 

CAN are discussed in following sections. 

2.1.1   Vehicle Application: Light Electrical Vehicles (LEVs) 
Though CAN was primarily developed for Cars and trucks, CAN-in-Automation (CiA) 

and EnergyBus are jointly developing an open network for Light Electric Vehicles 

(LEVs). The resulting bus is to be named EnergyBus and will control all the electrical 

devices present on the vehicle and the design will also include a CANOpen network that 

will be used to control all the devices and connecting sensors on the vehicle.   

 

LEVs provide a cheaper and environment friendly mode of travel and can be used for 

traveling short distances. The LEV market sector focuses on scooters, bicycles, tricycles, 

motor scooters/cycles, commute cars and power-assisted wheel chairs. LEVs range in 

size from electric scooters in the smaller segment to up to a one-man car that will use the 

High Occupancy Lanes (HOV) on freeways.  

 

2.1.2   Marine Applications: Autonomous/ Manned vehicles 
Details on some of the application of the CAN on marine projects are discussed in this 

section. Research on using local data networks for marine applications has been studied 

and implemented in recent years due to advent of new developments in the embedded 

network domain. CAN with its high data-rate, availability and built-in error detection 

mechanisms make it a highly desirable network standard for any embedded application 

requiring local data networks. An Application using CAN for Maritime vehicles is 

discussed in the following section.  

 

2.1.2.1   SeaCAN Architecture for Maritime vehicles 
The SeaCAN architecture is designed and deployed on all new unmanned seaborne 

targets by the United States Navy to aid in its maritime applications. The design includes 

an Auto-pilot which controls a closed loop over the network and monitors the GPS 

receivers/ Rudder Feedback nodes/Pitch-Roll-Heading, throttle control modules and 

Command/ control modules. The SeaCAN architecture is implemented on a number of 
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Infineon C167 microcontrollers, connected through CAN. The entire system is run at a 

speed of 125KBits/Sec and lower speed is considered for scalability for larger boats and 

longer bus lengths. The Software environment consists of CAN Kingdom architecture 

and an Operating system with support in-built for CAN.  

 

2.1.3   Space Applications: CANAerospace  
CAN 2.0 A/ B implementation is an event-based protocol and as such cannot be used in 

the aerospace industry requiring higher reliability and safety constraints. Hence a version 

of the CAN higher level layer called CANAerospace was developed by Stock Flight 

systems to provide higher reliability in communication between the nodes on a 

distributed space applications. CANAerospace is a light weight protocol which consists 

of 5 basic message types and each with its own message identifier range and priority [12]. 

A Space application design using CAN is discussed in following section.  

 

2.1.3.1   SMART-1 Spacecraft 
Small Missions for Advanced Research in Technology (SMART-1) was the first space 

craft developed by European Space Agency to travel to the moon and was launched in 

September 2003. SMART-1 space craft system is divided into 2 major modules: System 

module for controlling the SMART-1 and another to control the space applications. Each 

of the module uses a different system CAN bus (System CAN and Payload CAN) for 

communications and are controlled by two redundant CONA-A and CONA-B.  

 

For making the system more robust, all the modules in the system are redundant 

including the CAN buses. Each CAN bus has one normal path and a redundant path of 

communication and the system controller can choose at any time to switch from the 

nominal CAN bus to redundant bus. Besides this, all the nodes also look for life sign 

message on the network and if the life-sign message wasn’t received within certain 

duration, then the nodes switch from the nominal to the redundant bus.  In order to reduce 

the bus errors due to radiation, radiation hardened CAN controllers were developed and 

deployed. SMART-1 successfully was launched on September, 2003 and after 3 years of 
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monitoring the lunar surface reached the end of its mission on September, 2006 by a 

mini-impact with the lunar surface.  

 

2.2   CAN Protocol Specification 
This section provides an overview on the structure of the protocol specifications and the 

details on the different physical layers available. The International Standards 

Organization (ISO) had released the specification standards for Controller Area Networks 

under CAN 2.0A for Normal 11 bit identification packets and CAN 2.0B for Extended 

CAN with 29 Bit identifiers for packets. For the purposes of compatibility between 

different implementations of the CAN, the realizations of the CAN should meet the CAN 

2.0A [6] or CAN 2.0B [7] standard.  

 

The protocol is based on the OSI “Reference Model” for data communication and the 

CAN protocol is standardized mainly in the Data Link Layer – Logical Link Control 

(LLC) Sub-layer and Medium Access layer (MAC) and to an extent on the physical layer. 

The protocol standard is broadly classified into 3 layers 

1. The CAN object layer 

2. The CAN transfer layer 

3. The physical layer 

 

Layers 1 and 2 together act as the Data-Link Layer of the OSI model and Physical layer 

implementation is the actual bit transmission and bit timing schemes. The following 

sections will explain some of the layers in more detail. The Can transfer layer represents 

the kernel for the CAN protocol and the functionality of the CAN Transfer layer is 

implemented mostly in hardware. This implies that the CAN transfer layer offers limited 

flexibility and please refer to Appendix A: CAN Protocol S for more information on the 

functionality of the CAN Transfer layer.  
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2.2.1   CAN Physical Layer 
The physical layer is the lowest and the medium where messages are transmitted between 

nodes. The physical layer defines parameters such as the signaling schemes, electrical 

levels, cable impedance and cable termination parameters [8] and this section provides an 

overview of the CAN physical layers and describes some of the properties of these layers. 

 

There are several different physical layers that can support the operation of Controller 

Area Network. Some of them are listed below 

1. CAN Standard ISO-11898-2  

2. CAN Standard ISO-11898-3 

3. SAE J2411 

4. Time Triggered CAN ISO-11898-4 

5. Modifications of RJ485 connectors were also in use 

 

Besides these physical layer standards, there are several proprietary physical layers that 

are in existence. The different physical layers cannot interoperate between each other due 

to the difference in the signaling schemes, bit-timing methodology and the type of 

electrical signals used and hence the physical layer must be the same for all the nodes 

within the same network for communication to be possible except for CAN standard ISO-

11898-2 and CAN standard ISO-11898-3 where transceivers on the same bus could 

interoperate in some cases [8].  

 

The CAN Standard 2.0 A/ B does not define the Physical layer requirements for the CAN 

layer letting the application designers customize the signaling and the bandwidth 

constraints.  Refer APPENDIX A for more information on CAN physical layer details.  

 

2.2.2   CAN Bit timing for the Physical Layer 
The need for Bit timing in CAN and properties on configuring the Bit-timing registers, 

parameters that are included in Bit-timing calculation are discussed in this section. As the 

arbitration among nodes is based on the message identifiers, the calculation of bit-timing 

is crucial in establishing reliable communication between the nodes. This section 
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provides the various components that compromise a bit sampling time and its calculation 

strategies. CAN physical layer uses synchronized transmission at the bit-level and 

continuous bit-wise resynchronization is required rather than frame-wise synchronization. 

The CAN specification 2.0A/ 2.0B states that the physical layer should have identical bit-

timing for all nodes within the same network.  

 

Each node has its own clock and with no separate clock for synchronization on the 

network and the nodes depends on the bit-timing mechanisms to co-ordinate the data 

transmission. As the network uses Non-Return to Zero (NRZ) encoding, the CAN 

transmitter adds an extra bit after 5 successive bits of same polarity and the receiver 

removes these stuffed bits from the packet during decoding. Reception of 6 successive 

bits of same polarity is considered as an error in transmission and has to be retransmitted.   
 

Nominal bit time is the number of bits that can be transmitted on the bus per second 

without the hard synchronization of the clocks on ideal transmitters. The nominal bit time 

is classified into 4 non-overlapping time segments. Refer APPENDIX A for more 

information on the exact parameters that control the bit-timing for the CAN protocol. 

 

2.2.2.1   CAN Bus Arbitration 

. Controller Area Network is a message-based, broadcast network and the packets 

transmitted on the bus can be received by all the nodes present on the bus. This section 

explains the concepts involved in CAN bus arbitration and resolving simultaneous 

transmission of data by two nodes Since there is no mechanism to detect packet collisions 

(due to asynchronous start of packet transmission by the nodes) like in Carrier Sense 

Multiple Access-Collision Detection (CSMA-CD) or to avoid collisions like Carrier 

Sense Multiple Access-Collision Avoidance (CSMA-CA), CAN uses a decentralized 

contention-based bus arbitration to break collisions on the network.  

 

The CAN arbitration field consists of an 11 bit frame identifier (In case of CAN 2.0B, the 

frame identifier field is 29 bits) and a Remote Transmit Request (RTR) bit. Whenever 

nodes start transmitting simultaneously, bit-wise non-destructive arbitration is used to 
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break the conflict on the bus. The Most Significant Bit (MSB) of the frame identifier is 

transmitted first. The network behaves like a Wired-AND logic with the Recessive Level 

at +5V and the Dominant level at 0V. All the nodes transmit a Recessive bit as long as 

the nodes are idle and the bus is at a Recessive state. Start of Transmission is indicated by 

the transmission of a Start-Of-Frame (SOF) bit on the network (Dominant Level).  

 

 All the transmitting nodes compare the transmitted bit level with the signal level on the 

bus. If a node transmits a Recessive Level and observes that signal level on the bus is 

Dominant, the node stops transmitting the packet immediately (as there is at least one 

transmitting node with lower message ID) and enters the listening mode. It waits for the 

other transmitting node(s) to complete the packet transfer and waits for the intermission 

bit fields to start transmitting again. The state diagram for the Packet transmission, 

arbitration and reception is shown in Figure 8. For the bit-wise arbitration based on 

Message Identifiers to work, it is assumed that no two nodes can start transmitting packet 

frames for the same id with non-zero payload and this constraint is adhered to, during the 

system design phase.  
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 Figure 8: State Diagram for CAN Engine 
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2.2.2.2   CAN Frame Formats 

The different packet formats that can possibly be sent on the network are discussed in this 

section in detail. Some of the packets are sent only during special conditions (mostly for 

error conditions) and typically majority of the packets that are sent on the network are 

normal CAN data frames. CAN 2.0A/B Standard specifies that there are 4 different type 

of CAN Frames that can be found during the lifetime of the network. 

1. CAN Data Frame 

2. CAN Remote Request Frame 

3. CAN Error Frame 

4. CAN Overloaded Frame 

 

CAN Data Frame 

CAN Data Frame is the format in which data is sent from transmitter to the receiver. It is 

initiated by the source and can be received by one or many nodes depending on the 

configuration of the receiving nodes. Figure 9 shows the different fields within a CAN 

data frame and Table 2 describes the individual fields on the CAN data frame.  

 

Figure 9: CAN Data Frame Format 
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Table 2: CAN frame format for a basic CAN 2.0A frame  

 
Parameter Name No. of 

bits  

Description 

Start of Frame 

(SOF) 

1 bit Single dominant bit (0V) 

Message Id 

(Mesg. Id) 

11 bits 

or  

29 bits 

11 or 29 bit message identifier is used to 

identify the packet on the network and the 

message identifiers are transferred in Big 

Endian Format (MSB->LSB).  

Remote Request 

(RTR) 

1 bit Remote request bit is sent when a node requires 

a packet from any other node on the network. In 

RTR request, RTR bit is set to 1 and in RTR 

response, RTR bit is zero. 

Control Field 

 

6 bits The least significant 4 bits are reserved for Data 

Length Code (DLC) to indicate the size of 

payload (maximum 8 bytes)  

Data Field 64 bits This field contains the payload data that is to be 

sent on the network. Maximum payload 8 bytes. 

Cyclic redundancy 

check (CRC) 

15 bits Contains a 15 bit CRC sequence value  

CRC Delimiter 1 bit This field is used to indicate end of CRC field 

Acknowledgement 

field (ACK) 

2 bits The transmitter sends 2 bits one for ACK slot 

and one as ACK delimiter. All the receivers on 

successful reception of packet after CRC check 

respond within the ACK slot by overriding the 

ACK Slot Recessive bit with a Dominant Bit.  

End of Frame 

(EOF) 

1 bit End of Frame is indicated by a flag sequence of 

7 Recessive Bits 
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CAN Remote Frame 

Any Node on the network can request for a message ID from the data source of the 

identifier by having the Remote Transmit Request (RTR) bit set to 1. The Control field 

(Data Length Code) should match the packet length expected by the Request Initiator and 

the rest of the packet is same as that of the generic CAN data frame.  

 

The data source of the message ID responds with a CAN Data Frame with the Remote 

Request Bit set to 0. As the RTR bit is the last bit in the arbitration field of the frame, the 

Remote Request frame has a lower priority than a Data Frame on the network. A Remote 

Request frame format is shown in Figure 10. 
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Figure 10: CAN Remote Request Frame 
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CAN Error Frame 

In the CAN Data Frame, the ACK Slot is set to Recessive (+5V) by the first recipient of a 

complete packet after CRC Checksum and there is no guarantee that the other nodes on 

the network have received the packet correctly. So, any node on the network that did not 

receive a packet ( Normal Data Packet, Remote Transmit Request or Overloaded packet) 

correctly could signal the transmitter by using a CAN Error Frame.  

 

The CAN Error Frame deliberately breaks the Bit-Stuffing rules for the network by 

sending 6-bits of same polarity and causes the transmitter to retransmit the data. 

Detection of error during transmission or after reception of an error frame or overloaded 

frame generates a new error frame. The generic Error Frame format is shown Figure 11. 

INTERFRAME SPACE

ERROR FLAGS VIOLATING BIT-
STUFFING

6-12 bits

8 BIT ERROR DELIMITER

 

Figure 11: Error Frame Format 

 

CAN Overload Frame 

This section provides an overview on the CAN overload frame, the circumstances when 

the Overload frame is sent and the response of the nodes on the networks. The CAN 

Overload frame can be transmitted under two conditions 

1. Request Overload frame – requesting for delay in next data 

2. Reactive Overload frame – due to errors in intermission field 

 

The CAN Request Overload frame is allowed to be transmitted only during the first bit of 

the transmission of a new data frame and can be used to delay the data frame by at most 

two frames. The CAN Reactive Overload frame is transmitted to indicate special 
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conditions when error is detected during the intermission field. The conditions where the 

Overload Frame is triggered are: 

1. Detection of Dominant bit during the first 2 bits of the Intermission field 

which is wrongly interpreted as a SOF of new packet 

2. Detection of Dominant bit in the last bit of EOF of normal frame or last bit of 

Error or overloaded frame 

 

Unlike the transmission of Error frames, the Overload frames do not cause the transmitter 

to retransmit the previous frame that was sent. The Overload frames consist of Overload 

flags (6- Recessive bits) and an Overload delimiter of 8- bits destroying the intermission 

field.  

 

2.2.3   CAN Error detection  
One of the major design decisions involving the choice of embedded network is the 

ability of the network to operate in high-noise environment and withstand faults on the 

network and degrade gracefully if failures occur. The Controller Area Network has well 

defined error detection and confinement mechanisms that make the network robust under 

faulty conditions. This section discusses some of the error detection techniques described 

in the CAN protocol specification. 

 

Before a node can receive any packet from the network, the information is checked for 

errors and if required an error frame is sent on the network. The following are the five 

Error Detection mechanisms employed by the CAN controller.  

1. Bit checking 

2. Frame checking 

3. CRC checking 

4. Acknowledgement checking 

5. Bit stuffing checking 

 

2 Bit Checking 
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Every transmitting node on the network checks if the bit transmitted by the node and the 

signal level on the bus match. If a node transmits a Dominant bit and finds the signal 

level of the bus is at Recessive level (+5V), this indicates a Bus Error and stops the 

transmission of the current packet and retransmits again. 

 

3 Frame checking 

Each frame that can be present in the network at any specific instant as per the CAN 

protocol have some specific constant number of bit fields that are checked by the nodes 

for consistency. If the number Recessive delimiter bits after the packet do not match the 

protocol specification on the length then a “Form Error” is signaled. 

 

 

 

4 Cyclic Redundancy Checking 

Cyclic Redundancy checking is a mechanism of finding any corruption in the data 

transmission systems with high probability. The 15 bit CRC sequence numbers are highly 

effective in finding bit-errors of frame less than 127 bits [22]. Any frame received with 

wrong CRC causes “CRC error” on the network. 

 

5 Acknowledgement Checking 

All normal data packets have an ACK Slot where at least one node which correctly 

received the packet responds with an ACK response by setting the ACK Slot Recessive 

bit as Dominant. The transmitting node checks for the ACK Slot after the packet 

transmission and if ACK Slot value was not over-written with a Dominant bit, then ACK 

Error is signaled. 

 

6 Bit-Stuffing Error 

All the nodes check the signal level on the bus constantly for Bit-stuffing errors and if the 

nodes detect any packet with more than 5 bits of same polarity, Bit-stuffing error flags 

are generated and the error flags deliberately override Bit-stuffing rule and it is to be 
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noted this error flags also cause all the other nodes to generate an error frame for the 

packet. 

 

Error detection mechanism is capable of identifying all global errors across the bus and 

also all local errors at transmitters. The mechanism is also capable of detecting up to 5 

randomly distributed errors in a message, bursts of packet with length less than 15 or odd 

number of bits in a packet. The message Error rate is proportional to the frame length of 

the packet and hence the undetected message probability is significantly higher for 

CAN2.0B (Extended frame format) than the CAN2.0A standard. Appendix A: CAN 

Protocol S provides more information on fault tolerant mechanisms within the CAN 

protocol.  



 

Chapter 3: CAN Hardware  
This Chapter provides a review on the hardware available on the market that provide 

CAN support and also discusses in detail the microcontrollers with CAN capability and 

C_CAN CAN Controller module architecture and configuration steps. The CAN 

hardware is supported widely by different manufactures and the entire list of the 

manufacturers is listed in [5].   

 

3.1 CAN Hardware Properties:  
A large number of vendors provide CAN hardware and the ready availability of hardware 

support makes CAN ideal for quick development. The different CAN hardware includes 

CAN controller chips, Transceivers, Repeaters, bridges and Gateways and the hardware 

properties of these devices are described in Sections 3.1.1 through 3.1.5.  

 

3.1.1   CAN Controller Chips 
The CAN controller is responsible for communication on the bus as per the CAN 2.0A/B 

protocol and also for maintaining the fault detection and confinement on the bus. This 

section explains some of the functionality of the CAN Controller chips and the different 

CAN controller chips available in the market are listed. The bit rates can be programmed 

up to a speed of 1MBits/sec for a bus length of up to 40 meters. But for actual connection 

to the physical layer, CAN Transceiver chips are needed. Some of the CAN Controller 

chips available in market are:  

1. C_CAN chip from Robert Bosch 

2. 82527 from Intel Technologies  

3. MCP2150 from Micro-chip 

4. SJA1000 Philips 

 

3.1.2   CAN Transceiver chips 
CAN transceiver chips provide an abstraction of the physical layer to the CAN controller 

chips and also provide mechanisms for electrical isolation of the microcontroller from 

network. The CAN transceiver consists of a transmitting amplifier and a receiving 
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amplifier. The transmitting amplifier is responsible for providing sufficient driver output 

capacity and also for preventing on-controller driver from overloading and Electro 

Magnetic Interference (EMI) reduction. The receiver amplifier is responsible for 

maintaining the defined recessive signal level on the bus and also for protecting on-chip 

input comparator from the voltage surges on the bus. CAN transceivers also detect shorts 

and line breakage on the bus. 

 

3.1.3   CAN Repeaters 
CAN Repeaters are passive components that are added to the bus line to increase the 

length of the bus. But addition of CAN Repeaters on the bus increases the signal 

propagation time on the line. The Repeaters split the bus into two physically separate 

electrical segments but are still treated as one logical entity.  

 

3.1.4   CAN Bridges 
CAN Bridges connect two logically separate networks on the Data Link Layer level and 

the CAN message IDs are different in each of the separate segments. CAN Bridges are 

used for defining packet forwarding mechanisms between the networks and can be used 

to forward packets or part of packets in an independent time-delayed mode. CAN Bridges 

differ from the Repeaters that they forward packets from one network to other, unlike 

amplifying the signal like the Repeater. Also Bridges forward packets from two logically 

separate networks unlike the Repeaters. 

3.1.5   CAN Gateways 
CAN Gateways are used to connect two networks with different higher level protocol and 

the translation of information occurs at the Layer 7 of the OSI framework. CAN 

gateways provide a mechanism for accessing the network through other communication 

protocols.  

 

3. 2   CAN Microcontrollers Overview 
Microcontrollers provide the development environment for implementation of ENDURA 

layer and also for higher level protocols over the CAN controller chips. This section 
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provides an outline on the capabilities of these microcontrollers from the CAN point of 

view. Different families of microcontrollers are available in the market with CAN 

support and can also be customized as per the application. Most of these microcontrollers 

differ in the number of hardware message objects supported by the board and also on the 

main processor family. Some of the processor families available on the boards are: 

1. 8051 family 

2. C16x/ST 10/ XC16x family 

3. ARM 7/9 family 

4. Cortex M3 family 

Microcontrollers with CAN support generically either have an On-chip CAN controller 

or can be integrated into the board as a stand-alone device. Some of the Microcontrollers 

with varied processor families and CAN controllers are analyzed in Sections 3.2.1 

through 3.2.3 (from CAN perspective).  

 

3.2.1   Silicon Laboratories 
The Silicon Labs provides CAN support in their Chipset models: C8051F04x and 

C8051F06x. The C8051F04x family is a fully integrated system-on-chip 8051 core 

microcontroller and can execute at 25 MIPS (Millions of Instructions Per Second). The 

C8051F04x development board is integrated with an on-board C_CAN controller chip 

from Robert Bosch Gmbh and supports up to 32 message objects [17], each with its own 

individual message identifier mask and can be configured in either Receive or Transmit 

mode. The C8051F04x supports both CAN 2.0A and CAN 2.0B and a maximum 

bandwidth of 1 MBits/S. 

3.2.2   Infineon Technologies 
Infineon Technologies provides the most extensive CAN support and manufactures 

different families of microcontrollers in 8-bit or 16-bit or 32 bit processors with 

integrated CAN controllers. This section analyzes the microcontrollers that exist in the 8-

bit, 16-bit and 32-bit processors.  
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3.2.2.1   8051 Family: C500 series (8-bit) 
C500 Series of Microcontrollers consists of a fully compatible 8051 core processors and 

an On-chip CAN controller with support for CAN 2.0A and CAN 2.0B and supports a 

maximum speed of 1 MBaud when the operating frequency is greater than 8 MHz. The 

CAN Controller has upto 256 register/ data bytes located in the external RAM and upto 

16 message objects can be configured for sending and receiving packet information [13].  

 

3.2.2.2   8051 Family: XC88x series (8-bit)  
XC88x series is an enhanced version of the 8051 based core and has extensive 

networking capabilities due to an on-chip multiCAN controller and an on-chip LIN 

Bootstrap loader [14]. The On-chip CAN Controller handles the networking tasks 

specific to the higher level CAN layers and reduces the load on the main processor. The 

multiCAN controller has 2 CAN nodes and 32 message objects are shared among both 

the nodes. XC88x provides support for connecting to CAN gateways. 

 

3.2.2.3   16-bit Microcontroller (C161 Series) 
C161 Series microcontrollers use high performance 16-bit core microcontrollers and 

capable of running at peak speeds of 12.5 MIPS. The C161 series consists of an 

integrated CAN module with CAN 2.0B support that can send and receive packets in 

either 11 bit or 29 bit message identifiers. Fifteen message objects are available for 

configuration by the software and the Message object number 15 can be configured 

explicitly to support only CAN 2.0A [16]. Like the other Infineon processors, the 

maximum bandwidth supported is 1 M Baud. In C161-CS, there are 2 CAN modules and 

they can be configured individually and have separate interrupt nodes.  

 

3.2.2.4   32 bit Microcontrollers (XC2200 Series) 
XC2200 series employ a high performance 32-bit processor core and consists of an On-

chip MultiCAN controller which can support upto 6 different CAN nodes on a single 

processor. There are 256 different message objects [16] that can be configured 

individually and supports CAN 2.0A and CAN 2.0B standards at maximum bandwidth of 
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1M Baud. XC2200 Series provides support for Gateway interfacing of CAN networks 

and also has support for FlexRay [18] communications.  

 

3.2.3   Texas Instruments 
Texas Instruments manufactures higher end microcontrollers with ARM processors and 

with high-end Can controllers. This section reviews the ARM based microcontrollers 

from Texas Instruments.   

 

Texas Instruments TMS470R1x series of Microcontrollers use a 16 / 32-bit ARM 7 

TDMI RISC core processor as the main controller. The Microcontroller may contain 

either of the two variants of the CAN controller namely a Standard CAN Controller 

(SCC) or a High-End CAN Controller (HECC). Both the controllers use CAN Protocol 

Kernel (CPK) module for controlling the protocol tasks and SCC or HECC differ only in 

their message control mechanisms. SCC has 16 message Objects and 3 receive identifier 

Masks and HECC has 32 message objects and 32 receive identifier Masks [19]. The 

maximum bandwidth that is supported by the CAN controllers is 1 MBits/ Sec at 8 MHz 

system clock. HECC is also compatible for the software written for SCC.  

 

3.2.4   Design Choice of Microcontroller 
After careful comparisons of different microcontroller chipsets and tool chains, Silicon 

Laboratories C8051F040 board is chosen as the preferred development platform for 

implementation of the Controller Area Network layer for Reconfigurable Embedded 

Systems.  

 

The ease of availability of Cross-compilers (Keil, SDCC), tool chains, cost of obtaining 

evaluation boards and prior working experience with other 8-bit microcontrollers from 

Si-Labs made the Silicon Laboratories a better option over other microcontrollers.  The 

Si-Labs C8051F040 board uses an integrated C_CAN processor and the 

structure/operations of the C_CAN processor are described in Section 3.3. 
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3.3   C_CAN Controller Overview 
C_CAN controllers are used for CAN communications in C8051040 boards that are 

chosen for implementation of ENDURA and this section provides an overview of the 

structure of the C_CAN controller. The C_CAN controller can be used as a stand alone 

module or can be integrated as a part of an ASIC [20]. C_CAN controller can be 

configured to communicate as per the CAN 2.0A or CAN 2.0B (Extended CAN) protocol 

and can be configured for communicating with bit rates upto 1 MBits/Sec. There are 32 

message objects that can be individually configured for message transmission or 

reception and all the message objects have their own individual identifier mask.  

 

3.3.1   C_CAN Engine 
The CAN Engine can be configured through an 8-bit module interface or 2 16-bit ARM 

AMBA APB bus. The main components of a C_CAN Controller are: 

1. CAN Core 

2. Message RAM 

3. Message Handler 

4. Module Interface 

3.3.1.1   CAN Core 
This section provides an overview on the CAN Core that runs the CAN Kernel and also 

has a Receive/ Transmit shift register for serial/parallel conversion of the packets on the 

bus. The CAN Core has to be initialized before the node can start communicating through 

the controller. The controller cannot be initialized at run time and any initialization can 

take place only after a reset of the controller. During the initialization phase of the 

controller, the Init bit of the CAN control register is set to 1 and the Bit timing register 

and BRP Extension register has to be set with their corresponding values.   

 

When the Init bit is cleared from the CAN control register, Bit Stream Processor (BSP) 

waits for 11 recessive bits for synchronizing with the data transfer with the bus. The CAN 

Engine can communicate with the bus only after this synchronization has been 

established. For more information on the modes at which the CAN engine can be run 

refer to Appendix B.  
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3.3.1.2   Message RAM 
The Message RAM within the CAN engine are the locations where the message objects 

and the Identifier masks are stored. The message objects are analogous to the hardware 

buffers available on the Network Interface Cards (NIC) and the number of message 

objects present on the controller provides the flexibility to the software driver for 

configuration specific to receive or transmit purposes. 

 

There are 32 message objects that are present in the Message RAM and each with its own 

identifier mask. The significance of the identifier mask for each of the Message object is 

that, each message object can be configured to receive or transmit a frame with message 

Id or a ranges of message Id that are different from the other message objects. Hence it is 

possible to have 32 different configurations for the sending and receiving packets.  

 

3.3.1.3   Message handler 
The message handler is the state machine that controls the transfer of information 

between the Message RAM and the Receive /Transmit shift register that is present in the 

CAN Core. The state machine is also responsible for generation of the interrupts (after 

successfully receiving/ transmitting a packet or due to error conditions) as per the 

configuration of the control / configuration registers. 

 

3.3.1.4   Module Interface 
The C_CAN processor can be interfaced through any of the 3 interfaces made available. 

The processor has an 8-bit interface for communication with the family of processors that 

have 8-bit address bus and two 16-bit interfaces for communication with processors that 

have 16 bit address bus. The Silicon Laboratories C8051F04x & C8051F06x interface 

with the controller through the 8-bit interface.  

3.3.2   C_CAN Registers 
The C_CAN processor is accessible to the software for configuration and behavior 

control (CAN engine and the message RAM) through the registers provided by the 
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processor. This section provides an overview on the C_CAN registers and the 

functionalities of the registers that are stored in the Message RAM. The registers reside in 

the 256 bytes of addressable memory space of the processor and all the registers are 16 

bit wide with the high-byte at the odd address and low-byte at the even address. C_CAN 

Registers are classified based on their control properties. 

1. Protocol Control Registers 

2. Message Interface Registers 

3. Message Handler Registers 

 

3.3.2.1   Protocol Control Registers 
An overview on the Protocol control registers and the functionalities provided by the 

registers are discussed in this section. The protocol control registers are responsible for 

setting the different modes of operation on the CAN controller, controlling the Global 

enable/ disable scheme for the error, interrupts, change configuration and Test registers. 

The Protocol control registers also provide status interrupts on Tx/Rx, error 

active/passive, Warning and bus off information and also configure the bit-timing 

registers. For a list of protocol registers and their operation refer Appendix B: C_CAN P 

and C_CAN processor User manual [20].  

 

3.3.2.2   Message Interfacing Registers 
An overview on the CAN message interface registers and their functionalities are 

discussed in this section. The transfer of data from the Message RAM and the CAN 

Engine is controlled by a set of 2 interface registers. The interface registers are used to 

avoid conflicts between the RAM and the CAN Engine communication and between 

transmit block and receive block of the message handlers. The 2 sets of the interface 

registers are identical in function and the advantage of the duality of registers is that they 

can be used separately for buffering transmitted and received information. This also 

enables transmit and receive tasks to interrupt each other and this feature is helpful in 

handling high-priority message reception/ transmission. For a list of message interfacing 
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registers and their operation refer Appendix B: C_CAN P and C_CAN processor User 

manual [20].  

 

3.3.2.3   Message Handler Registers 
The Message handler registers that are provided as a mechanism by the message handler 

to view the status of the message objects that are configured and as a result the registers 

are read-only & 4 bytes wide. The message control values can be set/clear by updating 

the values of the corresponding message interface registers for the specific message 

object. For a list of message handler registers and their operation refer Appendix B: 

C_CAN P  and C_CAN processor User manual [20].  



 

Chapter 4: ENDURA Design & Implementation Details 
This chapter provides an overview on the ENDURA layer design and implementation 

details for reconfigurable embedded systems. The ENDURA layer has been designed 

with an objective to provide the reconfigurable architectures the ability to propagate 

status, configuration and error messages between nodes seamlessly. In order to test the 

validity of the driver design, an application using Unmanned Aerial Vehicle is taken as 

an example platform for implementation of ENDURA. The base design from ENDURA 

layer can be customized for any reconfigurable application desired and the corresponding 

fault-tolerant schemes are highlighted where required.  

 

To achieve portability and application independence, any software developed for the 

Unmanned Aerial Systems from the Intelligent Dependable Embedded Architecture 

(IDEA) Lab at University of Kentucky uses the IDEAnix [4] framework as the base 

platform. The Network driver has been designed to work seamlessly with the IDEAnix 

framework and the design & implementation of the network driver are discussed in detail 

in this chapter.  

4.1   Special Function Register Access in C8051F04x Processors 
The Special Function Registers (SFRs) configuration on the C8051F04x boards provides 

mechanisms to control and communicate with the 8051-core processor peripherals and 

resources. The C8051F040 board has the upper 128 bytes of data RAM (0x80-0xFF) 

configured as Special Function Registers (SFRs) [17]. These memory locations can be 

accessed either direct addressing (to refer to SFRs) or can be addressed indirectly (to 

access data).  

 

 The SFRs having addresses ending with 0x0 or 0x8 are bit or byte addressable. The C51 

processor maps the addresses (0x80-0xFF) with a paging scheme so that many SFRs can 

be mapped into the available memory of 128 bytes.  C8051F040 board uses 5 SFR pages 

0, 1, 2, 3, F and these pages can be selected using a selection register SFRPAGE.  

Read or write to any of these SFR registers can be achieved through the following steps: 

1. Load the SFRPAGE with the appropriate page number containing the SFR  

2. Use direct addressing to write or read values into the register 

48 



 

 

Some of the C_CAN processor registers are mapped on to the SFRs and they can be 

directly addressed to control the registers on the C_CAN processor. The registers that can 

be accessed directly/indirectly are: (All the CAN registers are in SFRPAGE 0x1)  

1. CAN Control Register (CAN0CN) 

2. CAN Test Register (CAN0TST) 

3. CAN Status Register (CAN0STA) 

All the other CAN registers are accessed indirectly through the other CAN SFR registers. 

The other CAN Registers are: 

1. Register containing the address of the CAN Register (CAN0ADR) 

2. Register to read/write the higher 8 bits of data on the CAN register 

(CAN0DATH) 

3. Register to read/write the lower 8 bits of data on the CAN register 

(CAN0DATL) 

 

The CAN0ADR is loaded with the index appropriate to the CAN register and the 

CAN0DATH & CAN0DATL is used to write/read values on the CAN register. For index 

values 0x08 – 0x12 (Interface register 1) and 0x20 – 0x2A (Interface register 2), the 

CAN0ADR is auto-incremented by 1 to point to the next CAN Register when the data is 

read/ written into CANDATL register.  

 

4.2 ENDURA Design 
This section explains the design details on the different components that make up the 

ENDURA layer and also the functional details of the various modules. The Controller 

Area Network driver design involves configuration of the C_CAN processor, 

initialization of the CAN Engine, setting up the message objects for the required Tx/Rx 

set-up, management of message id registering/ unregistering and maintaining software 

buffers in the C8051F040 processors.  

 

The block diagram in Figure 12 shows the framework for an application to run using the 

IDEAnix on an UAV. The ENDURA layer exposes a set of well defined APIs for the 
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IDEAnix to invoke and handles the interrupts from the C_CAN processor as per the 

interrupt configuration. 

 

The Silicon Laboratories (Si-Labs) C8051F040 processor executes all the driver level 

code and allocates all the memory required for buffers and data storage on the data RAM 

of the processor. The Si-Labs processor interacts with the C_CAN processor through the 

address and data bus interface provided by the C_CAN processor. The address and data 

bus are 8-bits wide and the module interface for the C_CAN processor receives these 

requests/inputs and passes the requests to the respective module.  
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Figure 12: Block Diagram of CAN Application 

 

The CAN Core interacts with the CAN Transceiver through the CAN_RX and CAN_TX 

pins and in turn controls the values in and out of the CAN bus. The ENDURA layer has 

been split into modules based on their functionalities as Initialization module, Register 

module, Unregister module, Get Message module, Send Message module and Translation 
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module. Figure 13 shows the interaction between modules within ENDURA and the 

registers read/written on the C_CAN processor by each of the modules.  

 

  
Figure 13: CAN Module block diagram 

 

4.2.1   Initialization Module 
This module is responsible for the initialization of the C_CAN processor and is invoked 

before any other module from the ENDURA layer could be used. The CAN Core within 
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the C_CAN processor has to be initialized during a Reset or Power ON before any of the 

CAN related communication can begin on the network for the node.  

 

The Bit-timing register and the Baud Rate Pre-scaler (BRP) register have to be 

configured with the appropriate value for the bus to ensure the correct flow of data. If 

Bit-timing and BRP registers are not set correctly with the appropriate value, 

communication at the expected bandwidth cannot be possible. Figure 14 shows the 

initialization sequences and the registers to be configured (with corresponding Pseudo 

code).  

 

4.2.1.1   API Prototype exposed 
Void Init_network(void); 

 

4.2.1.2   Configuration Steps in Initialization Module 
The Controller Area Network Transmit pin on the C8051F040 board by default is Open 

drain and CAN_TX pin has to be enabled as Push-Pull to enable communication on the 

network. The digital cross-bar on the C8051040 board also has to be enabled for the low 

ports to become active and available for communication. XBR registers [17] are used to 

control the port I/O through the crossbar configurations. For the above configuration, 

XBR2, XBR3 registers are manipulated. 
 

SFRPAGE = 0xF (SFR page for configurations) 

XBR2 = XBR2 | 0x40 (Setting bit number 6 to enable the 

crossbar) 

XBR3 = XBR3 | 0x80 (Enable the CAN_TX pin to Push-pull 

by setting bit number 7) 

 

Hardware reset does not reset any of the values stored on the Message RAM of the 

C_CAN processor and have to be cleared by the software during the initialization phase.  
 

SFRPAGE = 0x1 (CAN0PAGE) 

CAN0ADR = 0x09 (Interface register 1 –Command Mask) 
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CAN0DATL = 0xFF (Enable write into all the IF1 

registers) 

 

 
Figure 14: Flow chart for initialization module 

 

The following steps have to be repeated to clear all 32 the message objects 
CAN0ADR = 0x0F (IF1 – Data Register) 

54 



 

CAN0DATH = 0x00 (clearing bytes 2-3 of data reg) 

CAN0DATL = 0x00 (Clearing bytes 0-1 of data reg) 

 

Address is auto-incremented to CAN Data Register B1 and B2 
CAN0DATH = 0x00 (clearing bytes 6-7 of data reg) 

CAN0DATL = 0x00 (Clearing bytes 4-5 of data reg) 

CAN0ADR = 0x08 (IF1 – Command Request) 

CAN0DATL = 0x01 (Message Object Number) 

 

Once the Command Request value is written with the Message object number, the 

CANDAT register values are automatically transferred to the message objects in Message 

RAM. CAN interrupts have to be enabled on the C805104x core to check for the 

interrupts coming from C_CAN processor. 

 
EIE2 = 0x20 (Enable CAN related interrupt)  

SFRPAGE = 0x1 (CAN PAGE) 

CAN0CN = 0x41 (Enable the CCE and init bit) 

CAN0ADR = 0x03 (point to Bit timing register) 

CAN0DAT = 0x6FC0 (Configuring Bit timing register) 

 

0x6FC0 configures the bit-timing register for a bandwidth of 1Mbits/Sec. Finally the 

CCE and Init bits are cleared and global interrupts are enabled to activate the CAN 

engine. 
CAN0CN = 0x06 (Enable global interrupts) 

CAN0CN = ~0x41 (Clear the CCE and init bit) 

 

Two arrays of length 32, global to the entire driver module, are allocated to store the 

message ids and the data corresponding to the message objects. The object array 

(ObjArray) is of type integer and stores the message id received from the message object. 

The data array (DataArray) is of type unsigned long and stores the data present in the 

message objects. These arrays are used as software buffers to store the values before 

sending the information to the higher layers.  
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4.2.2   Register Module 
This module is responsible for enabling a node to receive packets that are sent on the 

network and in the C8051F04x board, it is possible for configuring a node to receive 

either a packet with one specific message identifier or a range of message identifier. This 

section explains the details on configuration (with corresponding Pseudo code) for 

receiving a single packet or a range of packets and some fault tolerant techniques that can 

be used to make the software more tolerant to faults due to message objects being full.   

 

The CAN message handler in the C_CAN processor is responsible for receiving the 

packets that are transmitted on the network and storing them in the Message RAM. It also 

controls the Tx/Rx shift register in the C_CAN processor. Though all the packets that are 

transmitted can be received by all the nodes on the network, the packets have to pass the 

message filtering mechanism before they can be stored on the message objects. 

 

 The register module is responsible for configuring a message object to store packets with 

one or a range of message ids. The CAN2.0A implementation can have 2048 (2^11) 

different message ids and CAN2.0B can have 536,870,912 (2^29) different message ids. 

But the maximum message objects available on the hardware are only 32 and hence some 

message objects may have to be configured to receive more than one packet and the 

arbitration masks are used for this purpose of specifying a range or multiple message ids 

to occupy one message object.  

 Figure 15 shows the configuration steps that are involved in registering a node 

with the given message identifier.  

 

4.2.2.1   API Prototype exposed 
UINT8 reg_pkt ( CAN_ID_TYPE can_id); 
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 Figure 15: Flow chart for Register module 
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4.2.2.2   Configuration of a message object for a single message id 
This section describes the steps (with corresponding Pseudo code) that are involved in 

configuring a message object to receive a single message identifier. Before a message 

object can be configured for the given message id, the initialization module checks to see 

if any of the message object is available for configuration. If all the message objects are 

full then an error CAN_MSGOBJS_FULL (201) is returned to the caller.  

 

The message id (can_id) which is input through the API is checked against the values are 

stored in ObjArray to see if the message id has already been registered for a message 

object. If this condition is true, then an error CAN_DUPLICATE_ID_REG (204) is 

returned to the caller indicating that an attempt has been made to register an id which has 

already been configured.  

 

A design decision is made on using Interface register 1 for configuring a message object 

in receive mode and Interface register 2 for configuring a message object in transmit 

mode, to enable the receive and transmit process to interrupt each other when required.  

Interface register 1 is used for registering a message id with a message object as below: 
SFRPAGE = CAN0PAGE 

CAN0ADR = 0x09 (IF1 Command Mask) 

CAN0DAT = 0x00B8 (Set for write and use arbitration and 

Control bits) 

CAN0ADR = 0x0C (IF1 ARB1) 

CAN0DAT= 0x00 (Set the higher 15 bits to zero) 

 

Auto-incremented to IF1 ARB2 register and the Message valid bit is set to 1 and message 

id is left shifted by 2 bits to copy the message id into bits 28-18. 
CAN0DAT = (0x8000) | (message_id << 2) 

CAN0ADR = 0x0E (IF1 Message Control) 

CAN0DAT = 0x0480 (Enable Rx Interrupt and do not use 

Mask registers) 
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The message id is written into the command request register to enable transfer of data 

from the IF1 registers to the Message objects. Finally the ObjArray is updated with the 

message id for the corresponding message object.  

 
CAN0ADR = 0x08 (IF1 Command Request) 

CAN0DATL = (Message object number)  

 

4.2.2.3   Configuration of a message object for group of message ids 
This section describes the configuration steps (with corresponding Pseudo code) that are 

involved in configuring a message object to receive a single message identifier. The 

initial checks are performed to identify, if a message id has already been configured or 

check if the message objects are full, else corresponding error codes are returned to the 

caller.  

 

To register a message object with a group or range of message objects, the configuration 

steps are followed as below: 
SFRPAGE = CAN0PAGE 

CAN0ADR = 0x09 (IF1 Command Mask) 

CAN0DAT = 0x00F8 (Set for write and use arbitration, 

Mask and Control bits) 

CAN0ADR = 0x0C (IF1 ARB1) 

CAN0DAT= 0x00 (Set the higher 15 bits to zero) 

CAN0DAT = 0x8000 (Set the Message valid bit) 

 

The IF1 Mask register has to be used in this case to configure a group of message objects 
CAN0ADR = 0x0A (IF1 Mask Register) 

CAN0DAT = 0x0000 (allows all the packets to be received 

by the message object after acceptance filtering) 

CAN0DAT = 0x0010 (allows packets with message ids from 

0x10 – 0x1F to pass through the acceptance filtering 

mechanism) 

CAN0ADR = 0x0E (IF1 Message Control) 
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CAN0DAT = 0x1480 (Enable Rx Interrupt and use Mask 

registers) 

 

The message id is written into the command request register to enable transfer of data 

from the IF1 registers to the Message objects. 
CAN0ADR = 0x08 (IF1 Command Request) 

CAN0DATL = (Message object number)  

 

4.2.2.4   Fault Tolerance mechanisms for Register module 
This section details some of the changes that might have to be added to include the fault 

tolerant mechanisms. For implementation of a fault tolerant version of the software, the 

register module is modified accordingly to meet the requirements.  

 

The register module in the base version can register for only a maximum of 32 message 

identifiers and any attempt to register for more message identifiers return an error to the 

caller. This might lead to faults on a node requiring more than 32 packets with different 

message identifiers. 

 

Hence in order to accommodate for more message identifiers in the register module, a 

group of message objects are allocated for normal configuration and another group of 

message objects for special configurations. If the number of message objects under 

normal configuration is filled, any message object allocated for special configuration is 

chosen for receiving the packets with the given message identifier. The message object is 

configured to receive all the packets and the given message identifier is stored 

corresponding to the message object number.  Subsequent calls to register unique 

message identifiers are queued in the list for the message object.  

 

Upon acceptance filtering, a packet with a message identifier that didn’t match normally 

configured message objects, the packet is stored on the specially configured message 

object. The message identifier value is checked against the values on the message id array 

and if a match is found, the packet is forwarded to next layer, else it is discarded. This 
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mechanism ensures that only the packets that have been registered are fetched from the 

message object and the rest of the packets are discarded. 
 

4.2.3   Unregister Module 
This section explains some steps in configuring a message object that will prevent a node 

from receiving the packet with the specific message identifier and also on some steps that 

will make the unregister module more fault tolerant in case of using more than 32 

message identifiers for a node. 

 

The CAN application can dynamically unregister the message identifiers which have 

been previously registered through the register modules and the unregister module 

provides the capability to the software application to disassociate a node with a message 

identifier at run-time.  

 

After the message identifier has been successfully unregistered, the driver will not be 

receiving packets with that specific message identifier or groups of message identifiers. 

The same configuration steps are followed for unregistering a single message identifier or 

groups of message identifiers. Figure 16 shows the steps that are involved in 

unregistering a message identifier from a message object.  

 

4.2.3.1   API Prototype exposed 
UINT8 unreg_pkt ( CAN_ID_TYPE can_id); 
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Figure 16: Flow chart for Unregister module 

 

4.2.3.2   Steps to unregister a message identifier: 
This section describes the steps (with corresponding Pseudo code) that are involved in 

unregistering a message object to receive a single message identifier. The message 

identifier that is input is checked against the ObjArray to check if the message identifier 

has been registered previously for a message object. The unregister module returns an 

error message of CAN_UNREG_ID_ERR (205) if the message identifier is already not 

registered with the driver. 
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The message object configured to receive the message identifier is obtained by searching 

through the ObjArray and then arbitration register is cleared to remove the association of 

the message id with the object. The message id entry in the ObjArray is cleared to 

remove all associations of the identifier with the message object.  

 
SFRPAGE = 0x1 (CAN PAGE SFR) 

CAN0ADR = 0x09 (IF1 command Mask Register) 

CAN0DAT = 0x00B8 (Set the Write) 

CAN0ADR = 0x0C (IF1 Arbitration register 1) 

CAN0DAT = 0x0000 (clear the upper 15 bits of msg id) 

CAN0DAT = 0x0000 (clear the lower 15 bits of msg id) 

CAN0DAT = 0x0000 (Message control reg. is cleared) 

CAN0ADR = 0x08 (IF1 Command Request register) 

CAN0DAT = message object number  

 

4.2.3.3   Fault tolerant mechanism for Unregister module: 
This section details some of the changes that might have to be added to include the fault 

tolerant mechanisms. For implementation of a fault tolerant version of the software, the 

unregister module is modified accordingly to meet the requirements.  

 

The unregister module checks to see if the message identifiers that are configured are less 

than the maximum allowed for normal configuration, if true, then the module simply 

unregisters the message identifier and returns to the caller. If the message identifiers that 

are configured are more or equal to the maximum number of message objects available 

(MAX_MSG_OBJS_RX in our current implementation) then the message identifier is 

unregistered from the message object and a message identifier from the special 

configuration list is fetched and stored in the message object for reception.  If the 

message object with special configuration has no message identifiers to receive, then the 

message object is unregistered from receiving any packets. 
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This mechanism will ensure that when the message objects equal the number of message 

identifiers required, only normal configurations will remain and all the special 

configurations will be unregistered.  

 

4.2.4   Get Packet Module 
This section explains how the Get packet module returns the packet data information to 

the calling application. When the message identifiers have been registered with the driver 

and the packets that match the acceptance filtering are stored in the corresponding 

message objects.  

 

As a part of the design, the first N number of message objects (user defined at compile 

time) are configured for receiving data and the last 32-(N+R) ( N is the number of 

message objects reserved for receiving packets and  R is the number of other reserved 

message objects by translation module) message objects are configured for transmitting 

data. Once the data has been fetched from the message object, the data bytes from the 

message object will be cleared and hence are stored in software buffers (ObjArray and 

DataArray) in the Driver layer until they are either fetched by the calling application or 

overwritten by new data.   

 

The Get packet module searches through the ObjArray to check for the matching 

message identifier stored in any of the message objects. If any match was found, the 

corresponding data from the DataArray is returned to the calling application and if a 

match was not found among the message objects, a payload data of 0 and message 

identifier of 0 (which is illegal on the CAN network) is sent back to the calling 

application to indicate that there was no packets for the message identifier requested.  

 

4.2.4.1   API Prototype exposed 
UINT8 get_pkt ( CAN_ID_TYPE *can_id_ptr,  

 PAYLOAD_TYPE *payload_ptr); 
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4.2.4.2    Fault Tolerant implementation for Get packet module 
This section gives an overview of the some of the modifications that have to be made to 

the Get Packet module to make it fault tolerant. The existing implementation of the get 

packet module is a non-blocking call and fetches the data bytes from the ObjArray and 

DataArray. It is entirely possible that the message object could have been updated with a 

new value by the time this packet is being read from the Software buffers.  

 

The fault tolerant implementation would have to make the get_pkt call a blocking 

synchronous call with the function checking a global packet receipt variable flag to see if 

packet data has ever been overwritten in the message object before the get_pkt call. This 

flag has to be set in the Interrupt service routine when it is invoked due to packet lost 

error. If the global packet receipt flag was set for the message identifier, this implies that 

some packet was lost due to overwrite and has to be informed to the caller with an 

appropriate error code and return the latest packet message that was received.  

 

This mechanism will ensure that both the data lost due to overwrites and the latest packet 

that was successfully received on the network is captured and the caller of the API is 

informed of the loss of packets.  

 

4.2.5   Send Packet Module 
The Send Packet module is responsible for sending the packet data through the CAN bus 

and this section explains the basic configurations involved in configuring a node to send 

CAN2.0A and CAN2.0B packets on the network. The maximum payload that can be sent 

through the CAN bus is 8 bytes, but after examining the maximum packet size for the 

application, the maximum payload size for a packet through the CAN bus for the 

CANOED UAV was restricted to 4 bytes.  

 

This restriction is application specific and can be readily modified by changing the 

compile time Macros. Figure 17 shows the steps involved in configuring a message 

object to be able to transmit a packet on the network.  
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4.2.5.1   API Prototype exposed 
 

UINT8 send_pkt (CAN_ID_TYPE can_id, 

 PAYLOAD_TYPE payload); 

 

UINT8 send_pkt_ext (CAN_ID_TYPE can_id, 

PAYLOAD_TYPE payload); 

CALLED BY 
APPLICATION

SET THE IF2 COMMAND MASK 
REG TO WRITE

WRITE ARBITRATION BITS 
INTO IF2 ARB1 & ARB2 REGS

SET THE MSG VALID BIT AND 
THE PAYLOAD LENGTH

WRITE INTO THE IF2 
COMMAND REQ REG WITH 

MSG OBJ NUMBER

EXIT

IF CAN2.0A 
TYPE?

SET MESSAGE ID TO 11 
BITS

SET MESSAGE ID TO 29 
BITS

YES NO

 
Figure 17: Flow chart for Send Message Module 

4.2.5.2   Configuration steps to send 11-bit (CAN 2.0A) packet on the network 
This section describes the steps that are to be followed to configure a message object for 

transmitting a CAN2.0A type of packet and this configuration has to be every time a 
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packet is sent out as the message identifier for sending could be different. The number of 

message objects to be configured as transmit only are user-dependant (defined at compile 

time).  

 

The last 32-(N+R) message objects are configured for transmit purposes and to enable 

faster transmission of data sent by the application and the send packet module goes 

through these message objects in Round-Robin to choose the next message object to 

configure for sending. For the purposes of interacting with the message objects, Interface 

register 2 is used to keep the Transmit & Receive pipelines isolated and also to provide 

them with the ability to interrupt each other to send or receive higher priority messages. 

 

The Configuration steps for the message objects are shown below: 
SFRPAGE = 0x1 (CAN PAGE) 

CAN0ADR = 0x21 (IF2 Command Mask) 

CAN0DAT = 0x0087 (Set the Write bit, alter all  

except Mask bits) 

CAN0ADR = 0x24 (IF2 Arbitration register 1) 

CAN0DAT = 0x00 (Set upper 15 bits to zero in  

CAN2.0A implementation) 

 

Setting Message Valid bit and loading the message id in bits 18-28 bits of ARB2 register 
CAN0DAT = 0xA000 | (message id <<2)  

CAN0DAT = 0x8000 | (MAX_PAYLOAD_LENGTH)  

 

Setting the transmit request bit and data length code and copying data bytes into IF2 data 

register 
CAN0ADR = 0x27 (IF2 Data register 1) 

CAN0DATH = Data byte [1]  

CAN0DATL = Data byte [0] 

CAN0DATH = Data byte [3] 

CAN0DATL = Data byte [2]  
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Finally the IF2 Command Request register is written with the message object to start the 

transfer of data from the Registers to the Message RAM. 
CAN0ADR = 0x20 

CAN0DATL = (message object number) 

 

4.2.5.3   Configuration steps to send 29-bit packet on the network 
This section describes the steps involved in sending a CAN2.0B type packet and a user-

dependent number of message objects are chosen for configuration of CAN2.0B type 

packets. Some message objects may be configured for translation purposes and to enable 

faster transmission of data sent by the application and the send packet extended frame 

module goes through these message objects in Round-Robin to choose the next message 

object to configure for sending. 

 

For the purposes of interacting with the message objects, Interface register 2 is used to 

keep the Transmit & Receive pipelines isolated and also to provide them with the ability 

to interrupt each other to send or receive higher priority messages. 

The Configuration steps for the message objects are shown below: 
SFRPAGE = 0x1 (CAN PAGE) 

CAN0ADR = 0x21 (IF2 Command Mask) 

CAN0DAT = 0x0087 (Set the Write bit, alter all  

except Mask bits) 

CAN0ADR = 0x24 (IF2 Arbitration register 1) 

CAN0DAT = 0x0000|(message id) (Filling 0-15 bits with 

the message id) 

 

Setting Message Valid bit and loading the message id in bits 18-28 bits of ARB2 register 
CAN0DAT = 0xB000 | (0x00)( Setting Extended bit)  

 

Message Control Register setting TX request bit and maximum payload 
CAN0DAT = 0x8000 | (MAX_PAYLOAD_LENGTH)  
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Setting the transmit request bit and data length code and copying data bytes into IF2 data 

register 
CAN0ADR = 0x27 (IF2 Data register 1) 

CAN0DATH = Data byte [1]  

CAN0DATL = Data byte [0] 

CAN0DATH = Data byte [3] 

CAN0DATL = Data byte [2]  

 

Finally the IF2 Command Request register is written with the message object to start the 

transfer of data from the Registers to the Message RAM. 
CAN0ADR = 0x20 

CAN0DATL = (message object number) 

 

4.2.5.4 Fault Tolerant implementation for Send packet module 

The send packet module in the present implementation is an asynchronous call (non-

blocking) and the module returns to the caller after configuring the message object for 

transmit. There is a possibility that packets ready for transmit could be lost by 

overwriting if the send packet module is invoked faster than the time taken by the CAN 

controller could send packets on the network. This scenario is possible when the Transmit 

shift register on the CAN controller waits for the bus to be free while higher priority 

packets are occupying the bus and the send packet module is invoked and it overwrites 

the existing message identifier and payload with the new information.   

 

As there is no hardware based logic to identify such a scenario of overwrite on the 

transmit buffer, the send packet call will have to be synchronous and it could read a 

global transmit flag for data and the flag could be updated by the Interrupt service routine 

when a packet is sent. This mechanism ensures that there is a One to one correspondence 

with the send_pkt call and packets sent on the network else a corresponding error is 

returned to the caller and any failure to transmit a packet on the network can also be 

tracked due to this implementation.  
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4.2.6   Translation Module (CAN2.0A  CAN2.0B  CAN2.0A) 
The translation module implementation details are discussed in this section and it 

converts the packets of CAN 2.0A format into CAN 2.0B format and vice versa in detail. 

By hardware design, C_CAN processor is complaint with both CAN2.0A and CAN2.0B 

standards. But the message objects as per rule cannot be configured to send or receive 

both CAN2.0A and CAN2.0B packets and each message object can send or receive either 

CAN2.0A or CAN2.0B type of packets. Due to this hardware limitation, the software has 

to be written separately to translate the packets that are of type CAN2.0A to CAN2.0B 

type and vice versa.  

 

The translation module is responsible for receiving packets that have 11-bit or 29-bit 

identifiers and converts the packets into the format required. There is no significant 

change when an 11-bit identifier is converted into a 29-bit identifier with the other 18 bits 

simply being padded as zeros. But when a 29-bit identifier is truncated into an 11-bit 

identifier, care has to be taken to ensure that there are no conflicts with any other 

message 11-bit identifier frame. In either case the payload should be kept unaffected and 

transmitted as received. This has to be ensured during the system design phase and static 

assignment of message identifiers to sub-systems eliminates possible clashes among 

nodes during the translation.  

 

The significance of the translation module in the CANOED UAV project is that the 

Piccolo Auto-pilot generates packets in CAN2.0B format and all the other sub-systems 

on the network receives / transmits packets in CAN2.0A format [21]. The driver 

implements two API’s that can be invoked separately to translate data from one format 

into another. Figure 18 illustrates the functionality of the translation module and 

interaction of the software and registers on the CAN Controller.  

 

4.2.6.1   API Prototype exposed 
UINT8 can11_to_29(CAN_ID_TYPE can_id); 

UINT8 can29_to_11(CAN_ID_TYPE can_id); 

70 



 

MSG OBJ FOR 2.0A
MSG OBJ FOR 2.0B

CAN BUS

SEND_PACKET SEND_PACKET_EXT

CAN2.0A
PACKET

CAN2.0B 
PACKET

IF REGISTERS

CAN ISR

CONVERSION 
FROM 2.0A 
FRAME TO 

2.0B FRAME

CONVERSION 
FROM 2.0B 
FRAME TO 

2.0A FRAME

IF CAN2.0A 
PACKET IS RXD

IF CAN2.0B 
PACKET IS RXD

  

Figure 18: Translation Module block Diagram 

 

4.2.6.2   Steps in implementing the CAN 11-bit to CAN 29-bit translator 
This section describes the sequence to follow to convert a CAN 2.0A type packet into a 

CAN 2.0B type packet. The message identifier that is input is checked to identify if it has 

already been configured to be received by the register module by looking up the 

ObjArray. If the message identifier was already registered with some other message 

object, then the message object is disassociated with the message identifier. A message 

identifier list is created so that the identifiers that have to be converted from CAN 2.0A to 

CAN 2.0B are stored and compared with the packets received after the packets are 

received in the message object. Configuring a message object for receiving all the packets 

are described in register module section. After the configuration, the module returns to 

the calling application with the appropriate error code or CAN_DRIVER_NOERROR if 

no error was found.  
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4.2.6.3   Steps in implementing the CAN 29-bit to CAN 11-bit translator 
This section describes the sequence to follow to convert a CAN 2.0B type packet into a 

CAN 2.0A type packet. A message identifier list is created to maintain the list of message 

identifiers to be converted. The message object allocated for translation purposes is 

configured for receiving a CAN 2.0B type packet as follows:  
SFRPAGE = CAN0PAGE 

CAN0ADR = 0x09 (IF1 Command Mask) 

CAN0DAT = 0x00F8 (Set for write and use Mask, 

Arbitration and Control bits) 

CAN0ADR = 0x0C (IF1 ARB1) 

CAN0DAT= 0x00 (Set the higher 15 bits to zero) 

CAN0DAT = 0x8000 (Set the Message valid bit to 1) 

 

The IF1 Mask register is configured to receive all the packets of type CAN 2.0B and the 

IF1 Message control registers are configured to receive interrupts on successful packet 

reception.    
CAN0ADR = 0x0A (IF1 Mask Register) 

CAN0DAT = 0x0000 (sets the higher 15 bits of mask to 

zero) 

CAN0DAT = 0x8000(allows all the CAN2.0B frames to be 

received by the message object after acceptance 

filtering) 

CAN0ADR = 0x0E (IF1 Message Control) 

CAN0DAT = 0x1480 (Enable Rx Interrupt and use Mask 

registers) 

The message id is written into the command request register to enable transfer of data 

from the IF1 registers to the Message objects. After the configuration, the module returns 

to the calling application with CAN_DRIVER_NOERROR (1) if no error or the 

appropriate error code.  
CAN0ADR = 0x08 (IF1 Command Request) 

CAN0DATL = (Message object number)  
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4.2.7   CAN Interrupt Service Routine 
This section describes the role of the CAN interrupt service routine in the ENDURA 

layer and the implementation details of the ISR. The Controller Area Network driver is 

configured to receive interrupts from the C_CAN processor for asynchronous response to 

handle sending or receiving of packets. The Si-Labs C8051F04x processor assigns an 

interrupt number of 19 for the CAN processor core to use and the CAN interrupt is 

enabled by the initialization module by setting the 5th bit in the Extended Interrupt 

Enable 2 register. 

 

 Upon an interrupt request from the CAN hardware, the interrupt pending flag will be 

generated and the processor executes a LCALL to a pre-determined location and executes 

the first instruction for the ISR. As the normal program execution flow is stopped when 

an interrupt arrives, the ISR execution time has to be kept as small as possible.  

 

In order to ensure deterministic execution times for ISR, there are certain limitations on 

implementation of an ISR: 

1. The ISR must execute in as little time as possible and any calls to blocking 

resources like semaphores, mutexs and message boxes should not be made.  

2. The ISR should limit the use of operating system calls and should not create new 

threads in a multi-threaded operating system.  

3. The ISR should disable all the other interrupts during the execution of the critical 

section within the ISR and should re-enable the interrupts once the critical section 

has been handled.  

 

Figure 19 illustrates the flow chart for execution of the CAN Interrupt service routine and 

the sequences of instructions executed by the ISR to receive a packet. 
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  Figure 19: Flowchart for CAN ISR functionality 
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4.2.7.1   CAN ISR implementation details 
This section provides an overview on the sequence of instructions that are executed by 

the CAN ISR upon invocation by the C8051F04x processor. Before execution of any of 

the user instructions in an ISR, the CAN ISR should disable all the other global interrupts 

by setting the 7th bit in the Interrupt Enable SFR to 1 (EA = 1). This ensures that no other 

interrupt occurs while the CAN ISR is processing the critical section.  

 

The CAN Status register (CANSTA0) is read first to identify the source of the interrupt. 

It could be either of the following: 

a. 4th Bit is set: RxOK – Successfully received a packet  

b. 3rd Bit is set: TxOK – Successfully sent a packet 

c. 2nd bit is set: Error  -  Error interrupt  

 

If the interrupt was generated after receiving a new packet, then the RxOK bit is cleared 

in the CAN Status register and the NewDat registers are read to identify which of the 

message object received a new packet since the last invocation of the ISR.   
CAN0STA = CAN0STA ^ (1 <<4)(Compliment 4th bit) 

CAN0ADR = 0x48 (New Data 1 Register) 

newDataReg[1] = CAN0DATH; 

newDataReg[0] = CAN0DATL; 

newDataReg[3] = CAN0DATH; 

newDataReg[2] = CAN0DATL; 

 

The newDataReg array is searched linearly to find the message object which generated 

the interrupt and once a message object with new data is found, then it has to be read and 

stored into the software buffer which in turn can be fetched by the Get Packet module.  
CAN0ADR = 0x09 (IF1 Command Mask) 

CAN0DAT = 0x007F (configure to read the entire  

object) 

CAN0ADR = 0x08 (Command Request Register) 

CAN0DAT = message object  
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The critical sections of the message object that are of interest when monitoring for 

receiving a packets are the arbitration, control and data bits. The arbitration and data bits 

provide the actual message identifier and payload information from the packet and the 

control data provides the payload length of the packet. Hence after reading a message 

object into the Message RAM, the Arbitration, Control and Data bits are read and stored 

into the software buffers or sent up to the MeRL layer through the input queue. 
 

CAN0ADR = 0x0E (Message Control Register) 

MsgLen = CAN0DAT (Get the Data Length Code) 

MsgLen &= 0x0F (only the last 4 bits of DLC) 

 

In case of CAN2.0A implementation, the arbitration bits are extracted from the second 

arbitration register IF ARB2 as the first 16 bits are unused in the protocol version 2.0A. 

In the IF ARB2 registers, the arbitration bits are stored from bit positions 18- 28 with the 

LSB being stored in bit position 18 and MSB at 28th bit.  
CAN0ADR = 0x0D (Arbitration register 2) 

Message id = CAN0DAT (Get the 11-bit  

Arbitration id) 

Message id = (message id >> 2) & 0x7FF 

 

In case of 2.0B implementation, the arbitration bits are extracted from both the arbitration 

registers IF ARB1 & ARB2 as all the 29 bits are used in the protocol version 2.0B. In this 

case, the LSB is stored in bit 0 if IF ARB1 and the MSB is stored in bit 28 of IF ARB 2 

register.  
CAN0ADR = 0x0C (Arbitration Register 1) 

Message id = CAN0DAT (First 15-bit arb. id) 

Message id = (message id >>15)| CAN0DAT  

Message id &= 0x1FFF (Get the next 16 bits) 

 

The payload is obtained by reading the IF1 Data 1 and IF2 Data 2 registers. As the 

payload size has been restricted to 4 bytes for the application, it is sufficient to read the 

data bytes from the first 2 IF1 data registers. If more than 4 bytes are considered then all 

the 4 data registers have to be read to get the full payload.  
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CAN0ADR = 0x0F ( IF1 Data 1 register) 

Msg Data = CAN0DAT (Copy first 16 bits) 

Msg Data1 = CAN0DAT (Copy next 16 bits) 

Msg Data = Msg data | (Msg Data1 <<16) 

 

This information that is fetched from the Message RAM is stored in Software buffers 

ObjArray and DataArray and/or sent to the MeRL if configured.  These sequences 

complete the steps involved in receiving a packet from the CAN controller into the 

Software buffers.  

 

But if the interrupt was generated after successfully transmitting a packet on the network 

(if configured) then the TxOK (3rd bit) has to be cleared in the CAN status register. As 

per the present implementation no other sequences of steps are done if an interrupt occurs 

due to successful packet transmit. This section has been left unchanged for future 

development purposes where it might be used in implementing a more fault tolerant 

network driver layer.  
CAN0STA = CAN0STA ^ (1 <<4)(Compliment 3rd bit) 

EA = 1 (Enable Global interrupts) 

Finally the Global Interrupt is enabled to restore the normal execution of the processor.  

 

4.2.7.2   Fault tolerant implementations of the CAN ISR 
This section describes possible extensions to the CAN ISR implementation to make the 

software architecture fault tolerant. As per the present implementations, the CAN ISR has 

been configured to act only upon successful reception of packets and this feature could be 

extended to include successful transmission of packets or to identify errors on the 

network.  

 

If the successful transmit interrupt is enabled, then the CAN ISR will set a global variable 

flag that will be monitored by the Send Packet or Send Packet Extended modules to 

confirm the transfer of a packet on the line. This mechanism can be used to maintain a 

one-to-one correspondence to the function call and the packet transfer on the network.  
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Similarly if error interrupts are enabled, then the Last changed Error codes (LEC) values 

are read and then can be used to identify the problems on the network. The Error codes 

will enable a node to enter the “Error Passive” or “Error Active” or “Bus Off” modes and 

this would be used in fault detection and isolation mechanism implementations for the 

node.  

 

Finally the present CAN ISR implementation does not include the functionality of the 

CAN Translator module and when added into the CAN ISR has to be modified from its 

standard operation. If the interrupt has been generated by the RxOK and the message 

object with the new data has been configured to translate CAN2.0A to CAN2.0B, then 

the Arbitration data and packet payload is read from the message object. The Arbitration 

id is padded up to 29-bits and the send_packet_ext() API is invoked with the message id 

and payload.  

 

If the interrupt has been generated by RxOK and the message object with the new data 

has been configured to translate CAN2.0B to CAN2.0A, then arbitration data and 

payload is read from the message object. The Arbitration id is truncated to 11-bit 

identifier and send_packet() API is invoked with message id and payload.   

  



 

Chapter 5: CAN Performance & Reliability Tests 
 

5.1   Background 
Chapter 1 discussed the details on implementing the ENDURA layer for a distributed 

system and the fault tolerant schemes to be add within the driver for safety critical 

applications. For a reconfigurable architecture based system, the reliability and 

performance of the system has to be analyzed thoroughly before it can be deployed in 

applications.  

 

This chapter has been dedicated to describe the test setup on which the tests were run, the 

Conformance requirements and tests, observations and performance analysis tests, data 

and report. The performance analysis tests include bandwidth testing, Inter-layer Latency 

tests, reliability tests and sporadic packet testing. The Conformance tests includes 

verification of the services offered by the CAN layer and adherence to the protocol. The 

ENDURA layer is tested as a stand-alone module and also integrated into the MeRL, 

IDEAnix layers. 

 

5.2   Test bench Set-up 
The details on setting up the test bench for Conformance and performance tests are 

discussed in this section. The test set-up includes at least 2 Si-Labs C8051F040 

evaluation boards connected through a custom-made CAN bus, a PCAN CAN packet 

analyzer, a JTAG debugger to burn the user code onto the flash of C8051F040 boards and 

RS232 cables to monitor the debugging output from the processors. Figure 20 explains 

the connectivity between the nodes and mechanisms to send inputs/ view outputs. Figure 

21 and Figure 22 provide a snap shot view on the actual set-up that is used for testing and 

also the connections on the set-up.   
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Figure 20: Block diagram for ENDURA test set up 

 
 

 
 

Figure 21: Test Bench Setup for ENDURA layer testing 
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Figure 22: Test bench set up (a closer look) 

5.2.1   Steps to set up the test-bench 
The procedure in setting up the test bench to analyze the ENDURA implementation and 

application is overviewed in this section. The test bench includes 2 or more Si-Labs 

C8051040 boards, a PCAN sniffer and a custom-made CAN bus. To configure the test 

bench, the CAN bus is connected to the CAN ports of the C8051F040 boards and the 

PCAN Sniffer is connected and launched on a desktop computer. For debugging 

purposes, RS-232 serial cables are connected to the appropriate ports of C8051F040 

boards and optionally they may be connected to a desktop computer to analyze the debug 

outputs.  

 

The ENDURA software is compiled together with the IDEAnix framework and MicroC 

OS-II using the Keil cross compiler for the Si-Labs C8051F040 board and on successful 

compilation, the executable is downloaded onto the C8051F040 boards through Si-Labs 

IDE software and JTAG in-circuit emulator. The code is executed on the processors by 

starting the application through the Si-Labs IDE software. The debug console on the 
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desktop computer (using HyperTerminal) is monitored and the software can be tested by 

providing appropriate input on the debug console.  

 

5.3   CAN 2.0A/ B conformance testing 
This section provides an overview on the conformance test requirements, the test inputs 

and the observations of the tests. The ENDURA implementation has to meet the basic 

functional requirements of the CAN 2.0A and CAN 2.0B protocol in order to be 

compatible with other implementations of CAN. This is a critical requirement for 

integrating with other devices that are CAN compatible. For example in the UAV project 

the COTS Auto-pilot used sends packets in CAN 2.0B type formats and these packets 

should be received without errors by the CAN application. Before testing for 

conformance, the test bench is set up as indicated in Section 5.2.1 to feed input and to 

analyze the results.  

 

The conformance test for the ENDURA layer includes the following: 

1. Registering an identifier  

2. Unregister an identifier  

3. Send a packet with any identifier 

4. Receive a packet (for identifiers registered) 

 

5.3.1   Register identifier test 
The test logic and inputs used in testing the Register module are discussed in this section. 

This test checks for the conformance of the register packet module by inputting different 

message identifiers and monitoring whether the ENDURA layer can accept those packets. 

Some invalid message identifiers are also input to test the functionality of the driver.   

 

Once the software is initialized, a packet with message identifier 0x5 and arbitrary 

payload of 4 bytes is sent through the CAN bus (from PCAN sniffer). The get_pkt() API 

is invoked (by pressing one of the options on the debug screen) and the resulting value 
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from the API is checked. As the message identifier 0x5 is not registered with the system, 

the message id and payload should be equal to 0.  

 

After this, the reg_pkt() API is invoked from the debug console (by pressing one of the 

options on the debug screen) and the message identifier 0x5 is entered. A packet with 

message id 0x5 and arbitrary payload of 4 bytes is sent from the PCAN sniffer software 

and the get_pkt() API is invoked. The value of message identifier and payload returned 

by the get_pkt() API is compared with the value sent and verified and the payload and the 

message id should match.  

 

The reg_pkt() API is invoked multiple times for same identifier and this should result in 

an error code different from CAN_DRIVER_NOERROR. The test can be repeated to 

check the boundary conditions by registering for more than 32 message identifiers.  

 

5.3.1.1   Test Result 
1. Register message is found to register the identifier as expected and the packets 

with the registered message identifier are received correctly. 

2. The Register message returned an error (CAN_DRIVER_ERROR) when an 

invalid message identifier was entered.   

3. The register message module returned an error (CAN_DUPLICATE_ID_REG) 

when the message id has already been registered with other message object  

4. The module returned an error (CAN_MSGOBJS_FULL) when an attempt was 

made to register for more than 32 message identifiers. 

 

5.3.1.2   Test Observation 
Based on the above test results, the register module is found to be working as per the 

requirements for the CAN 2.0A/ B protocols.  

5.3.2   Unregister a Message Identifier Test 
The test logic and inputs used in testing the Unregister module are discussed in this 

section. This test checks for the conformance of the unregister packet module by 
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inputting different message identifiers and monitoring whether the ENDURA layer can 

disassociate itself from receiving those packets. Some invalid message identifiers are also 

input to test the functionality of the driver.   

 

First a message identifier 0x5 is registered for the node by invoking reg_pkt() API and a 

packet is sent through the PCAN sniffer with the message id 0x5. Then get_pkt() API is 

invoked to check if the packet is received successfully by the driver. After verifying the 

reg_pkt() functionality, the unreg_pkt() API is invoked with the message identifier 0x5 

and the same packet with message identifier 0x5 and arbitrary payload is sent from the 

PCAN sniffer. Finally get_pkt() API is invoked to verify if the packet is still being 

received by the node or not. The unreg_pkt() API is also invoked multiple times with the 

same message identifier and also with invalid identifiers to check for the correct 

functionality of the unregister module.  

 

5.3.2.1   Test Result 
1. The unregister message module works as expected when a call is made to 

unregister an already registered id, the module removes all association of the 

message id from the message object and the node no longer receives the packet 

from the bus.  

2. The unregister module returns the error codes (CAN_UNREG_ID_ERR) to the 

caller if any attempt is made to register an already unregistered message id. 

3. The unregister module also returns an error code (CAN_UNREG_ID_ERR) when 

given an invalid message identifier is input. 

 

5.3.2.2   Test Observation 
Based on the test results, the unregister module is found to be working as per the 

requirements for the CAN 2.0A/ B protocols.  
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5.3.3   Send Packet Test 
This test validates the conformance of the send packet module by inputting different 

message identifiers and monitoring the CAN bus to verify if the packets have been 

successfully been sent by the test node. This test can be performed in conjunction with 

the Get Packet module test by receiving the packets sent from the test node. Some invalid 

message identifiers are also input to test the functionality of the module driver.   

 

send_pkt() API is invoked with the desired message identifier 0x5 and arbitrary payload 

and the message identifier, data that is sent is verified using another node registered for 

the particular message identifier or through the PCAN sniffer. Similar test is performed 

using send_pkt_ext() API to test successful sending of an extended CAN frame and 

monitored using PCAN sniffer. The send packet module is tested for boundary conditions 

by entering a 0x7FF (2.0 type packet) message identifier and 0x1FFFF (extended CAN 

type). These are the last valid message identifiers allowed by each of the protocols and 

these packets should be successfully be sent on the network.   

 

Send packet module is tested for invalid message identifiers by entering a message 

identifier 0x0 and arbitrary payload. A message identifier of 0x00 is invalid in the CAN 

protocol and should not be sent on the network.  

 

5.3.3.1   Test Result 
1. All valid packets with message identifiers 0x5, 0x7FF, 0x1FFFF are all seen on 

the PCAN sniffer validating the sending of valid packets on the network.  

2. The packets with message id 0x0 is not sent on the network and error code 

(CAN_DRIVER_ERROR) is returned to the caller. 

 

5.3.3.2   Test Observation 
Based on the above tests, the send module is found to be working as expected and meets 

the conformance required for the CAN2.0 A/ B protocols.  
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5.3.4   Receive packet module test 
This test checks for the conformance of the receive packet module by verifying for 

successful reception of packets that are sent from another node. This test can be 

performed in conjunction with the Register packet module and Send Packet module 

testing by receiving the packets sent from the Send Packet module.  

 

First the reg_pkt() API is invoked with message identifier 0x05 to enable the node to 

receive the packets of the message identifier from the network. From the other node, the 

send_pkt() API is invoked with message identifier 0x5 and arbitrary payload or through 

the transmit section of the PCAN sniffer. The get_pkt() API is invoked and checked for 

the message identifier and payload sent through the PCAN sniffer or through any other 

node. The get_pkt() API is invoked repeatedly to check for value returned by the module. 

 

5.3.4.1   Test Result 
1. The get_pkt() API returns the latest packet that was received by the node and the 

payload and message identifier is found to match the values sent.  

2. The get_pkt() API invoked without sending any packet returns 0x0 for the 

message id and 0x0 for the payload for the packet.  

 

5.3.4.2   Test Observation 
Based on the above tests, the receive packet module is found to be working as expected 

and was able to receive the packets that were sent to the module. Please refer to the 

Performance test section for the efficiency of the get_pkt() API implementation and the 

limitations of the driver software.  

 

5.4   Performance Testing of ENDURA 
The performance tests that are subject on the ENDURA layer, the test logic behind the 

inputs, the results and the observations made after analysis of output data are discussed in 

this section. The Conformance test for CAN only provides the accuracy of the 

implementation with respect to the CAN protocols and it does not indicate any reliability 
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or performance information. For this purposes, rigorous performance and reliability tests 

were performed on the ENDURA layer to observe the performance data for the driver.  

 

ENDURA implementation is tested with a series of performance tests for analysis of the 

ability of the driver to perform at various loads. The performance tests can be broadly 

classified into 3 sections: 

1. Bandwidth Tests and analysis 

2. Packet Latency tests 

3. Endurance testing  

 

5.4.1   Bandwidth Tests and Analysis 
The main objective of the ENDURA layer is to enable communication between nodes 

with maximum speed/efficiency possible and hence bandwidth data provided by the 

ENDURA implementation is critical to understand the effectiveness of the network driver 

and suitability of the network for the application. The requirements for the bandwidth 

tests, the different test logics applied on the CAN application, analysis of the results with 

the expected value and feasibility study of application are explained in this section. For 

testing the bandwidth provided by CAN application, the build of IDEAnix integrated 

with the ENDURA layer is considered together with MicroC OS-II. 

 

An application is developed as a user thread on top of the IDEAnix with priority 5 and 

another thread with priority 4 (higher priority user thread) is assigned to the network 

router that is responsible for routing incoming packets to the corresponding tasks. The 

application thread registers for a message identifier through the reg_pkt() API and a 

packet with that particular message identifier is sent through the PCAN Sniffer or 

through a separate node that has an application thread sending packets continuously.  

 

It is observed that as the packet transmit pipeline takes longer time than the packet 

receive pipeline and hence a delay has to be inserted into the send_pkt() and get_pkt() 

module to synchronize the sender and receiver with uniform time interval. Any 

implementation of the packet receive and transmit pipeline without the software delay 
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swamped the limited number of software buffers available for the driver/ IDEAnix layers 

and resulted in packets being lost due to overwriting of software buffers. The bandwidth 

is measured under different OS delay values entered on the Receive Packet routine 

against the rate at which the packet is sent to the nodes and the results are discussed in the 

Sections 5.4.1.1 and Sections 5.4.1.2, which describe the bandwidth test scenarios with 2 

different delay timings at the receive packet pipeline of the CAN application.  

5.4.1.1   Bandwidth Analysis for 100ms delay in packet receive pipeline 
This section provides an analysis on the data obtained from the bandwidth tests of 

ENDURA by substituting a delay of 10 OS ticks (100ms) between the every successive 

packet transmit/receive call and Table 3 shows the relevant data for the different rates of 

packet transmission. It is observed that with bit-rate of approximately 1 to 2 Kbits/Sec 

(100ms between successive packets) packets are lost at the receiving end. This is 

expected because the application thread has to enable context switching for the network 

router thread to process the next packet in queue and as the OS delay is at 10 OS ticks 

(100ms), any data that is sent at rate faster than the OS delay will be lost due to overhead 

of context switching. Hence the OS delay values are reduced and further analyzed in 

section 5.4.1.2. 

Table 3: Bandwidth Analysis report for 100ms tick delay 

Bit Rate  

(Bits/sec) 

Number of packets 

sent 

Number of 

packets Rxd 

Number of packets  

Lost 

108 5000 5000 0 

216 5000 5000 0 

432 5000 5000 0 

1K 5000 5000 0 

2K 5000 3948 1052 

10K 5000 2894 2106 

20K 5000 1634 3366 

100K 5000 945 4055 
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5.4.1.2   Bandwidth Analysis for 10ms delay in packet receive pipeline 
An analysis on the data obtained from the bandwidth analysis of ENDURA layer by 

substituting a delay of 1 OS tick (10ms) is explained in this section. The data in Table 4 

indicates that with a 10ms delay between successive packets, the CAN application starts 

to lose packets at 20K bits/sec. This is expected as the inter-packet delay is decreased by 

a factor of 10, the bandwidth is increased by a factor of approximately 10 as well, as the 

10ms delay between packets, drops packet at approximately 20K Bits/sec It is observed 

that with rate approximately equaling 100K, packets are lost at the receiver due to 

overwriting of packet data. The minimum inter-packet time delay that can be achieved for 

the ENDURA implementation with IDEAnix and MicroC OS-II is 10ms and with this 

minimum inter-packet time delay, it is possible to receive all the packets on the network 

with no packet being lost.  

Table 4: Bandwidth Analysis report for 10ms tick delay 

Bit Rate  

(Bits/sec) 

Number of packets 

sent 

Number of 

packets received 

Number of packets  

lost 

108 5000 5000 0 

216 5000 5000 0 

432 5000 5000 0 

1K 5000 5000 0 

2K 5000 5000 0 

10K 5000 5000 0 

20K 5000 5000 0 

100K 5000 1783 3217 

 

 

89 



 

Bandwidth Analysis: Packets dropped

0

500

1000

1500

2000

2500

3000

3500

4000

4500

108 216 432 1K 2K 10K 20K 100K

Bit Rate (Bits/Sec)

N
um

be
r o

f P
ac

ke
ts

Delay of 100ms Delay of 10ms

 
Figure 23: Bandwidth Graph for Packet rate Vs Packets dropped 

 

5.4.1.3   Bandwidth Analysis with Packets sent over time 
The Bandwidth Analysis with respect to the time taken to send packets between node is 

discussed in this section. The projection on bandwidth is made by sending a fixed number 

of packets and measuring the time taken to receive the packets successfully to calculate 

the bandwidth on the network. Table 5 shows the relevant data for the number of packets 

sent against time taken to send them and bandwidth data for the entire network is 

calculated based on the data from the table.   

 

Table 5: Bandwidth Analysis with number of packets sent over time 

Number of 

packets sent 

Number of packets  Time taken to send packets (sec) 

Received lost 

65531 65531 0 75 
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Number of Packets transmitted = 65531 

Number of bits per packet = 108 (approximately) 

Time taken to send = 75 seconds 

Total number of bits sent = No. of Packets transmitted * No. of bits/packet 

           = 65531*108 = 7077347 bits 

Bandwidth = 7077347/ (75*1024) = 92.15 KBits/Sec (approximately) 

 

5.4.1.4   Bandwidth verification with respect to dropped packets 
The bandwidth data that was obtained from the Table 3 and Table 4 shows that the CAN 

application breaking points in terms of the bandwidth that will be made available by the 

application. Based on these data, it is possible to validate the bandwidth tests. The latency 

values  

For 10 ms delay between packets:  

Time spent by the Application thread waiting = 10ms 

Time spent in processing a packet = 850μs 

The maximum bandwidth that is possible = (1/10.85ms)*108 = (apprx) 10 KBits/sec  

For 100ms delay between packets: 

Time spent by the Application thread waiting = 100ms 

Time spent in processing a packet = 850μs 

The maximum bandwidth that is possible = (1/100.85ms)*10 = (apprx) 1KBits/sec 

 

The data for the 100ms delay corresponds to the value shown in Figure 23 as the packets 

were dropped at 1KBits/sec as per the calculation above. For 10ms delay between 

packets, the bandwidth achieved is higher and does not match the values obtained from 

Figure 23. This could be due to the operating system interaction and varying response 

times for the function calls due to semaphore blocks.  

5.4.1.5   Bandwidth Data Report 
Summary of the tests from Section 5.4.1.1 through 5.4.1.3 are provided in this section. 

Figure 23 shows the number of packets dropped for the delay of 100ms between packets 

and 10ms delay between packets. It can also be observed from the data in Table 3, Table 
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4, Table 5 that the bandwidth provided by the ENDURA layer together with IDEAnix 

layers is much less than that of the peak bandwidth capacity of the C_CAN processor of 

1Mbits/sec. The peak bandwidth that can be achieved through the IDEAnix layers is 

approximately 100Kbits/Sec and this is 1/10 of the maximum bandwidth.  

 

This is due to the fact that the minimum time required by the operating system for 

delaying a task and a context switch to another thread is 1 OS Tick and the number of OS 

ticks per second are fixed at 100. This overhead restricts the speed at which the 

application thread and the network thread can interact. Responses of the order of 1μ 

Second is required to receive packets at 1 MBits/ Sec and as the response time of the OS 

is in the order of 10mSecs, the maximum bandwidth of 1 MBits/Sec cannot be achieved 

with the MicroC OS-II and IDEAnix setup. The bottleneck can only be removed by 

making the OS respond in µSeconds by modifying the OS tick rate and the time that is 

considered as one OS tick.  

 

For the PAXCAN UAV application, the packets with highest frequency are to be sent/ 

received at 20 Hz (50msec) and all the other packets are at period lower than this rate. 

Hence, the present software application of IDEAnix framework + ENDURA would be 

able to meet the bandwidth needs and requirements of the PAXCAN UAV application.  

5.4.2   Latency Tests 
The objective of the latency tests, the different test logics applied on the CAN 

application, analysis of the results for the latency tests are discussed in this section. A 

critical parameter besides the bandwidth data in measuring the efficiency of the 

ENDURA & the MeRL is the time taken by the layers to process a packet.  The packet 

processing times for the ENDURA and MeRL layer can be used to identify the minimum 

possible inter-frame spacing and to obtain a higher ceiling on the maximum rate of packet 

transfer.  

 

To identify the Latency between the layers, 3 General Purpose I/O pins are chosen on the 

Si-Labs C8051F040 board: Port 3 Pin 0, Port 4 Pin 0, Port 5 Pin 0. Initially the receiver 
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pipeline in application sets all the pins to low level and the application spins on the 

get_msg() API until a valid packet is fetched by the invoked API.  

 

Port 4 Pin 0 is assigned for ENDURA ISR and the pin will be pulled high whenever a 

packet enters the node and the ISR is invoked. Port 3 Pin 0 is assigned to MeRL layer and 

the pin is pulled high when a call to the load_up_buff() API is made from the CAN ISR. 

Port 5 Pin 0 is assigned to the get_msg() API and pulls the pin high just before it sends 

the packet to the Application layer. Once the message is returned to the application layer, 

the higher level layer sets all the pins to low again and waits for a new packet to arrive. 

Figure 24 shows the different times measured across the software layers during the 

latency tests for sending a packet and receiving a packet.  

 

 
Figure 24: Block diagram representing different times measured in Latency tests 

 

5.4.2.1   Measuring the Latency in receiving a packet 
The packet latencies in receive packet pipeline across layers are analyzed in this section 

and the maximum bandwidth that the ENDURA can support based on the latencies are 
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compared against the values of the Bandwidth tests. For measuring the latency between 

layers, the Port 4 Pin 0 and Port 5 Pin 0 are connected to an Oscilloscope and the low-to-

high transitions are monitored. The time taken to process a packet from the CAN ISR to 

higher level application can be observed through this process. Figure 25 shows the timing 

diagram for the receive packet pipeline and the total time taken to receive a packet.  

 

   

Figure 25: Timing diagram for receiving a packet 

 

In the next step, the Pin 0 from Port 3 is connected to the oscilloscope and the transition 

from low-to-high for the Pin 3 is analyzed with Pin 0 of Port4 for the time spent in 

processing a packet in the ENDURA layer and similarly, the transition can be analyzed 

from a higher level layer to MeRL to identify the time spent processing a packet in the 

MeRL. Time taken to process a packet by the ENDURA layer is measured as follows: 

Time taken by the ENDURA layer (T1) = 101 µSeconds 

Time taken by the MeRL (T2) = 756 µSeconds 

Total time taken to process a packet (T3) = 856 µSeconds 

 

The times T4, T5, T6 are referenced from Figure 24. Based on the latency values for the 

layers computed, it is possible to analyze the maximum bandwidth that can be supported 

by the IDEAnix framework and verify it against the actual bandwidth data obtained in 

section 5.4.1.   
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5.4.2.2   Measuring Latency in sending a packet 
The procedures in measuring the latency in sending a packet through the packet transmit 

pipeline and analysis of the data from the latency tests are discussed in this section. This 

test is required to understand the maximum rate at which the packet can be sent through 

the network.  
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Figure 26: Timing diagram for Sending packet 

 

For measuring the latency for sending a packet in MeRL, Port 3 Pin 0 is used. Before an 

invocation to the send_msg() API from MeRL, it is set to 1 and the MeRL layer before 

calling send_pkt() API, sets the Port 3 Pin 0 to low. The timing diagram in Figure 26 

shows the delay in sending a packet through the different software layers.  

 

For measuring the latency for sending a packet in the ENDURA layer, MeRL sets the 

Port 3 Pin 0 to 1 before calling the send_pkt() API and the ISR after successfully sending 

a packet, sets the Port 3 Pin 0 to low and also the time taken by the Driver to configure a 

message object and the actual time taken by the CAN Controller to send the packet on the 

bus is also recorded. The times T4, T5, T6 are referenced from Figure 24 and Tref from  

Figure 26. 
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Time taken to send a packet through the ENDURA layer (T4) = 924 µSeconds 

Time taken by MeRL to send a packet to ENDURA (T5) = 4.166 mSeconds 

Time taken for sending a packet through the Application (T6) = 9.099 mSeconds 

Time taken by the C_CAN Processor to send packet (Tref)  = 110μSeconds 

   

  

The total time taken for sending a packet is high, because the IDEAnix layer after 

sending a packet reroutes the message id and payload back into a queue for other tasks 

that might have registered for the same message id.  

 

5.4.2.3   Bandwidth calculation for the CAN Application: 
The bandwidth that can be expected from the CAN application based on the Latency tests 

performed in section 5.4.2.1 and 5.4.2.2 are calculated in this section. The entire CAN 

application (IDEAnix + ENDURA) is taken into consideration for this measurement.  

 

Total Time taken to process a packet = 856 μSeconds  

The Max bandwidth for CAN = 1 Mbits/sec 

    = 1 Mbits/sec / 108 (app. packet size)  

    = 9260 packets/ sec  

Time taken by the application to process 9260 packets: 

       Time taken = 9260 * 856 μSeconds 

               = 7.87 Seconds  

Number of packets that can be received at 856 μSeconds: 

Number of bits that can be received = (9260/ 7.87)* 108  

     = 1176 * 108 

     = 127074 Bits/ Sec 

     = 124 KBits/Sec ( appx) 

 

The Maximum bandwidth that can be supported by the IDEAnix layer together  

with ENDURA is 124 Kbits/ Sec. This value matches with the bandwidth result  
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where the maximum bandwidth obtained is 100 KBits/Sec.  

 

5.4.2.4   The Bandwidth Calculation for ENDURA layer 
The bandwidth that can be expected from the ENDURA layer based on the Latency tests 

performed in section 5.4.2.1 and 5.4.2.2 are calculated in this section. The ENDURA 

layer alone is considered independent of IDEAnix for this Bandwidth measurement.  

 

Total Time taken to process a packet in Driver = 100 μSeconds  

The Max bandwidth for CAN      = 1 Mbits/sec 

          = 1 Mbits/sec / 108 (app. packet size)  

          = 9260 packets/ sec  

Time taken by the driver to process 9260 packets: 

   Time taken = 9260 * 100 μSeconds 

          = 0.926 Second ( < 1 second ) 

 

The Maximum bandwidth that can be supported by the ENDURA layer (without 

including the IDEAnix and Operating system) is 1 MBits/ Sec. Hence the driver is 

implementation is able to meet the functional requirement of supporting the maximum 

expected bandwidth of 1 MBits/Sec.   

5.4.3   Reliability testing 
The requirements for reliability testing and the test logic used in the reliability tests are 

detailed in this section. The reliability of the application is a key property in analyzing the 

performance characteristics of the network. Controller Area Network was subject to 40 

hours of continuous packet forwarding and the packets of payload 8 bytes are sent 

continuously at the maximum possible packet rate of 10ms/packet. 

Table 6: Reliability test data after continuous run for 40 hours 

Packet rate 

( kbits/sec) 

Number of 

hours of test 

Number of 

packets sent 

Number of packets  

Received lost 

10 40 14,406,543 14,406,543 0 
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After running the packets for 40 hours, it was found that no packet was lost in the process 

and the packet counts on the transmitting and receiving pipeline were identical. No 

leakages of buffers or unexpected software resets were observed. Based on the present 

software environment and reliability test data, the CAN application was found to be 

reliable at the bandwidth of 100KBits/ sec and received all the packets sent at that rate.  

 

5.4.4    Sporadic Packet Tests 
This section provides an overview on the motivation behind the Sporadic packet testing 

of the CAN network and the test setup, input and data analysis from the tests. CAN is an 

event-based network and asynchronous events on the system triggers packet movement 

on the network. Sporadic tests are used to test the robustness of the CAN application for 

packet bursts that might occur on the network. Hence the application is tested with bursts 

of packets at different rates and for random durations and the results of the sporadic tests 

are shown in Table 7. 

Table 7: Sporadic Test data for CAN 

Sl. 

No 

 

Packet 

rate  

(Kbits

/sec) 

Duration of 

packet burst 

(minutes) 

Number of packets 

sent 

Number of packets  

Received lost 

1. 1000 5 300 300 0 

2. 500 5 600 600 0 

3. 100 10 6480 6480 0 

4. 50 7 8980 8980 0 

5. 10 2 15409 15409 0 

 

Based on the sporadic packet burst test data, it can be deducted that the CAN network is 

capable of receiving packets in bursts at different rates/packet numbers and no packets 

are lost due to communication errors. 
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5.5   Performance Analysis Summary 
The summary of the result of the ENDURA layer implementation validation and the 

efficiency/ feasibility of the network for a reconfigurable embedded system are discussed 

in this part. The performance analysis data indicates the operating bandwidth where 

maximum reliable operation from the CAN application can be expected from the system.  

 

The conformance test for the ENDURA layer to the CAN protocol specification shows 

that the ENDURA layer meets the requirements of the CAN protocol and can be 

interfaced with other standard CAN hardware without any compatibility issues. The 

implementation also provides the feature of translating packet types from CAN 2.0A to 

CAN 2.0B and vice-versa. This can be very useful for the CAN UAV application where 

the Auto-pilot sends the packet on CAN 2.0B format and the rest of the system desires 

packets of CAN 2.0A type.  

 

The Bandwidth tests for the CAN application measures the maximum capability of the 

embedded network without loss of packets on the network and the CAN application 

achieves maximum efficiency when the packets are transmitted at or greater than 

10ms/packet rate and reliable communication is possible at 100KBits/sec based on this 

data.  

 

The latency tests for the CAN application validated the measurements of the bandwidth 

tests and maximum time taken to send a packet as 9.09mSeconds and the time to receive 

a packet as 900μSeconds. The calculations based on the latency measurements showed 

the maximum bandwidth that can be supported by the CAN application together with 

IDEAnix is 120Kbits/Sec. This bandwidth is approximately 1/10th of the peak value 

expected and the drop in efficiency of the network layer due to the overhead added by the 

operating system in sending a packet and the time taken by the CAN core to send a 

packet through the network after a message object has been configured. As a stand-alone 

module the ENDURA layer has a latency of 100μSeconds to receive a packet through the 

network and is capable of receiving packets at 1Mbits/ Sec.  

99 



 

100 

 

The performance data provides an insight on the maximum reliable bandwidth of the 

CAN application and the performance data has to be considered during the system design 

phase before deploying the CAN application. For the CAN UAV project, the maximum 

packet frequency is 20Hz and this requires a minimum bandwidth of 50KBits/ Sec. As 

the performance data extracted from the CAN application is capable of meeting the 

desired bandwidth/latency requirements, the CAN application can reliably be ported for 

CAN UAV project.   



 

Chapter 6: Conclusion 
The design objectives were setup by the constraints and requirements mentioned in Chapter 

1. The CAN protocol specification was analyzed in Chapter 2 and the specifications for the 

ENDURA layer was set using the protocol capabilities. The various modules that were to 

form the driver layer were identified and analyzed individually in Chapter 4. The individual 

modules implementation details were discussed in detail and the fault-tolerant schemes that 

can be added to module to meet the requirements of the reconfigurable architecture were 

explained.  

 

The ENDURA implementation was proved to work as per the functional requirements of the 

network layer, with the performance and conformance test data. The performance and 

conformance test data prove that the CAN application is capable of reliably communicating 

with the nodes on the network at 120 KBits/Sec at variable payloads from 0-8 bytes. Based 

on the performance data, the viability of the CAN application for an UAV type of application 

was proven to operate reliably under the timing / bandwidth constraints. The ENDURA layer 

uses no operating system calls in its implementation, making the driver layer independent 

and portable across operating systems. The work on ENDURA layer presented here is a part 

of a larger research on reconfigurable embedded architecture by the Intelligent Dependable 

Embedded Architecture (IDEA) lab at University of Kentucky. The implementation and 

subsequent validation of the ENDURA layer aids in the design of dynamically reconfigurable 

architectures.  

 

 There are several enhancements and future research directions for this thesis work. The 

CAN application as per the present implementation is capable of operating at a bandwidth of 

120KBits/Sec. The maximum bandwidth supported by the application can be improved 

significantly if the tick time on the MicroC OS-II can be decreased from its present 10ms/ 

tick timing. The OS tick can be decreased by reducing the Timer 0 counter reload value on 

the C8051F040 board and increasing the number of ticks per second to more than 100 ticks 

per second. It is to be noted that the OS kernel will also have to be modified and validated 

accordingly to match the timing requirements. An another improvement would be to increase 
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the clock rate to make the C8051F040 board run the programs faster and improve upon the 

speed of the CAN communication. 

 

The MeRL send packet module can be optimized by reducing the time taken to route a packet 

within the tasks on a same processor. This can be improved by allowing the user task to 

register for a packet with the driver and as the receive packet pipeline is at least 10 times 

faster than the time taken by the MeRL to route a packet internally to other tasks, this would 

improve the send packet pipeline time by a factor of 10.  

 

The scope of Controller Area Network can be extended by adding CAN Gateways that are 

capable of communicating with other networks of different physical media. The CAN 

gateways can convert the packets of CAN type into any other broadcast network packets and 

thereby be able to communicate with other networks that are different from CAN. For 

example in UAV application, 2 UAVs with different physical networks (CAN and a wireless 

network like 802.15.4) can interact with each other through a Gateway that is capable of 

converting a CAN packet into 802.15.4 packets and vice-versa. This can be used in forming 

Ad-hoc networks dynamically in forming joint missions.  

 
 



 

Appendix A: CAN Protocol Specification 
 

Physical layers for CAN Standard:  

This section provides details on the different CAN physical layer standards that are available 

in the market and their properties, electrical signals and the peak bandwidth supported.  

1. CAN Standard ISO-11898-2 
This is also called the “High Speed CAN” and the 11898-2 implementation supports 

bandwidth up to 1 Mbits/Sec for a maximum distance of 40m and is a two wired balanced 

signaling scheme. The characteristic line impedance for the bus is specified to be at 120Ω 

and for the two wire system, the common mode voltage ranges are from -2V for CAN_L to 

+7V for CAN_H lines. The number of nodes that can be connected to the network is limited 

by the Electrical busload. For the Peak 1Mbits/sec bandwidth to be achieved the maximum 

propagation delay can be 5ns/m. The CAN standard 2.0A/B specifies that for all the nodes to 

communicate within the network, all the nodes must use the similar bit-timing calculation 

[5].  

2. CAN Standard ISO-11898-3 
This is also called the “Low-Speed CAN” or “Fault-Tolerant” CAN and the 11898-3 

implementation supports bandwidth up to 125 Kbits/sec. Even though this standard is a two-

wired balanced signaling, the bus could support asymmetric signaling even if one of the 

wires is grounded or damaged. As per the CAN 2.0A/B Specification, the 11898-3 standard 

is assumed to be for shorter network and the maximum length supported depends on the 

maximum load expected on the network. The physical layer can support up to a maximum of 

32 nodes. The common mode voltage specification is from -2V to +7V and the power supply 

is defined at +5V.  

3. SAE J2411 Single wire standard 
SAE J2411 is also a CAN standard for the physical layer with low requirements on the bit 

rate, bandwidth, bus length. The maximum number of nodes that can be present on the 

network is restricted to 32 and SAE J2411 uses an unshielded single wire for communication 

at maximum of 33 Kbits/sec. 
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4. Time Triggered CAN (TTCAN): ISO-11898-4 
CAN2.0A/ B implementations are event-driven networks i.e asynchronous events trigger 

movement of packets on the network. But in many automotive/ space applications, 

guaranteed bus access for higher priority packets at a certain rate is required besides 

supporting asynchronous behavior. Hence TTCAN protocol was standardized to support 

deterministic communication on top of CAN.  

 

TTCAN protocol requires a global clock that has to be implemented in hardware and all the 

other modifications are software extensions to existing BasicCAN. All the nodes wait for a 

global reference message which is sent periodically from a central reference node and all the 

nodes register to get bus access in multiples of reference message slots. The nodes can send a 

packet on the bus only when the required message slot time has been reached and by this 

mechanism, both TTCAN and BasicCAN nodes can exist/ communicate on the same bus.  

 

Bit-timing for CAN Physical layer (PHY) 

This section provides more details on the bit-timing segments within a CAN bit-time and the 

parameters that are involved in adjusting the sampling point.  

1. Synchronization segment (SYNC_SEG) 

2. Propagation delay segment (PROP_SEG) 

3. Phase buffer segment 1 (PHASE_1) 

4. Phase buffer segment 2 (PHASE_2) 

 

Sample point is defined by the CAN 2.0A/B as the time at which the signal level on the bus 

is read and interpreted as either “Recessive (5V)” or “Dominant (0V)”. 

1. Synchronization segment (SYNC_SEG): 
The synchronization of the bit-timing between the nodes occurs during this segment and the 

transition of Recessive (1) to Dominant (0) or vice-versa should occur within this bit-time. 

2. Propagation delay segment (PROP_SEG): 
The propagation delay segment is for the countering the physical delay in the electrical 

signals reaching the nodes and it is at least 2 times the time taken by the electrical signals on 
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the bus sent between the edge nodes on the network. Propagation delay also includes the 

input comparator delay at the receiver and also the transmitter driver relay delay.  

 PROP_SEG =   (2* Signal delay on bus b/w end nodes) + 

     Comparator delay at receiver + Driver delay at transmitter 

3. Phase Buffer Segments 1 and 2: 
CAN uses synchronized transmission at the bit-level and frame-wise synchronization cannot 

be applied since there is only one Start of Frame (SOF) bit in every frame. Hence continuous 

resynchronization is required by the nodes to enable receivers decode the packets correctly 

and phase buffer segments are included to compensate for the edge phase errors. Phase buffer 

segments can be lengthened or shortened with resynchronization. There are two types of 

synchronization in the physical layer during data transmission. 

a. Hard Synchronization: 
Hard synchronization occurs during the start of every frame transmission and at the end of 

the SYNC_SEG, the bit-timing registers are restarted so that the edge that caused the Hard 

Synchronization lies within the SYNC_SEG. 

b. Resynchronization: 
Resynchronization occurs within the frame and it is used to shorten or lengthen the Phase 

buffer segments so that the sampling point lies within the detected edge. 

Fault Confinement 
Since CAN deviates from the conventional arbitration mechanisms, it is a possibility that one 

faulty node could block the entire system from operating normally if left unchecked. This 

section explains mechanisms to isolate a faulty node(s) and limit the effect of such a scenario 

where a faulty node disrupts communications.  

 

The mechanism of error signaling could enable a faulty node to generate error flags 

continuously and could effectively block the transmission of normal frames on the network. 

This scenario is analogous to “ICMP Error messages attack” on the TCP/IP based inter-

network, where an ICMP Error messages could be continuously sent on the network to 

swamp the nodes from transmitting useful data.  
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To facilitate the confinement of errors, the CAN 2.0A/B protocol specifies that each node 

should contain two counters. 

1. Transmit counter  

2. Receive Error counter  

The Receive Error counter is increased by a fixed value whenever the node detects an 

erroneous packet on the network. The value of the counter is decreased by a specific fixed 

value whenever a packet is received correctly. To ensure correct functional working of this 

mechanism, the counter value is increased by larger number than the decrement value. 

 

The Transmit counter is used to record errors encountered during or immediately after the 

transmission of packet on the network. If a transmitting node detects an error in transmission, 

it increases the counter value by a different fixed value and decreases it by 1 whenever it 

successfully sends a packet on the network. 

 

The values of the counters are used to determine the state of the node and are critical in fault 

confinement logic implementation. The value by which the counter values are increased 

varies depending upon the scenario in which the error was encountered.   

The fault confinement state machine could be in any of the 3 states: 

1. Error Active 

2. Error Passive 

3. Bus Off 

 

‘Error Active’ state is the observed by nodes who have Transmit and Receive error counter 

values less than 128. The value of less than 128 signifies that the node in itself is free from 

faults and detects the errors on the bus reliably. Only the ‘Error Active’ nodes are allowed to 

transmit Active Error flags (6 Dominant Bits) during the Error signaling.  

 

‘Error Passive’ state is observed by nodes who have Transmit or Receive error counter values 

greater or equal to 128. Since the error increment and decrement values are different, a value 

greater than 128 signifies that there could be a fault in the node. ‘Error Passive’ nodes could 

only transmit Passive Error flags (6 Recessive Bits) during error signaling. ‘Error Passive’ 
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nodes take part in error signaling, but as long as the same error is not recognized by any other 

‘Error Active’ node, the Passive Error flags will be ignored. An ‘Error Passive’ node is 

allowed to become ‘Error Active’ only after its Transmit and Receive error counter values 

are less than 128. 

 

‘Bus Off’ state is observed when the Transmit error counter value exceeds 256 and used to 

isolate a node or nodes from communicating on the network. A node can switch from ‘Bus 

Off’ to ‘Active Error’ when it correctly recognizes 128 occurrences of 11 consecutive 

Recessive bits. The Transmit and Receive error counters are reset to 0 and Active Error flags 

rights are enabled. 

 

These mechanisms ensure that decisions on fault confinement, isolation of faulty nodes and 

rejoining the network are distributed to individual nodes and effectively ensure fault 

tolerance of the network under erroneous conditions.  

CAN Transfer Layer 
This section provides an overview of the CAN transfer layer and the functionalities of the 

module and the CAN Transfer Layer represents the kernel of the CAN protocol. The Transfer 

layer is responsible for the actual frame communication in the CAN bus and the CAN 

specification defines the standard for CAN Transfer layer precisely. For an implementation 

of CAN to be compatible with other implementations, the Transfer Layer should adhere to 

the CAN 2.0 A/ B specification strictly.  

 

The CAN Transfer layer is responsible for the Transport protocol and the functionalities of 

the transfer layer includes Arbitration of the CAN bus, Frame control and formation, Data 

Transmission / Reception on the Can Bus, Error identification/ Signaling, Fault confinement, 

Remote transmit request and Packet Acknowledgement.  

 

The transfer layer processes the message to be sent from the Object layer and formats the 

message into the CAN frame and transmits it on the CAN Bus and also receives the CAN 

frame, checks for errors and passes the message onto the Object layer. The transfer layer also 
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controls general configurations related to the bit-timing on the CAN bus and also arbitration 

of the bus (identifying if the bus is idle or some other node is transmitting). 

 

The Transfer layer implementation is handled by the CAN Controller chips and offer limited 

flexibility in implementation and also the configuration of the transfer layer is performed 

through the initial configuration of the CAN Controller Engine. 



 

Appendix B: C_CAN Processor 

C_CAN Modes of Operation: 
The C_CAN controller supports different modes of operation to facilitate debugging and 

analysis of the network. The test modes in which the C_CAN controller can be operated are  

1. Basic Mode 

2. Loop-back mode 

3. Silent mode 

4. Loop-back & silent mode 

For testing the network with any of these modes, the Test mode has to be enabled in the CAN 

Control register [20]. When the 7th bit is set in the CAN Control Register (Address 0x00 and 

0x01), the test mode register is enabled and this allows the software to test the network under 

different modes listed.  

 
Figure 27: Test Register Details 

 

Table 8: Test Register Bits  

Bit No Symbol Description 

0-1 R Reserved 

2 BSC Basic Mode 

3 S Silent Mode 

4 LB Loop back Mode 

5-6 TX0, TX1 Transmit Control  

7 RX 0 – CAN_RX pin is Dominant  

1 – CAN_RX pin is Recessive 

8-15 R Reserved  
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1. Basic Mode:  
 When the CAN Control Register is in Test Mode and the 2nd Bit of the Test Register 

is set, Basic mode is enabled. In Basic mode, Interface Register 1 is used as Transmit buffer 

and Interface Register 2 is set for Receive buffer. All Message control registers are disabled 

and once the bus is idle, the value from the Interface Register 1 is loaded on the CAN TX 

shift register and transmitted on the network. When a packet is received from the network, 

the message is stored on Interface Register 2 without any acceptance filtering. This mode is 

used for testing the basic transmission and reception capabilities of the CAN controller. 

 

2. Loop-Back mode: 
 The Loop-back mode is used to test the Transmit and Receive functionality of the 

driver by treating the packet sent through the CAN_TX as a packet received. Acknowledge 

errors are ignored in this mode. The CAN_RX pin is kept at Recessive level, so no external 

packets can be received. Loop-Back mode can be enabled by setting the 4th bit of the Test 

Register. 

 

3. Silent Mode: 
 In Silent mode, the CAN controller receives all the packets that are found on the 

network but the CAN_TX pin is set at Recessive level. This enables successful reception of 

all the packets on the network, including remote request frames, but no packet data is sent out 

through the bus. This mode can be used to analyze the network without affecting the 

communication on the bus. 

 

4. Loop-Back and Silent Mode 
 Loop-back and Silent mode can be combined together by setting the bits 3 and 4 of 

the Test register. This mode of testing is called ‘Hot Self-test’ [20] where the CAN network 

driver can be tested without sending any information to the CAN transceiver connected to the 

CAN_RX and CAN_TX pins. The CAN_RX pin is disconnected from the CAN core and the 

CAN_TX pin is held at Recessive level.  
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Registers in C_CAN processor: 

Protocol Registers in C_CAN processor:  
Table 9: List of Protocol Registers in C_CAN processor 

Sl. 

No 

Protocol Register Description 

1 CAN Control Register Controls the Global enable/ disable scheme for 

the error, interrupts, change configuration and 

Test registers 

2 CAN Status Register Indicates the status of Tx/Rx, error active/passive, 

Warning and bus off information 

3 CAN Error Counter 

Register 

This is a read-only register and gives the counts 

of the number of transmit or receive errors on the 

bus 

4 Bit Timing Register This register is used to configure the Bit timing 

for the CAN controller (as per the CAN 

bandwidth required). 

5 Test Register This register is used for testing the CAN protocol 

with different modes such a Loop back, Silent, 

Silent & Loop back and Basic CAN mode 

6 BRP Extension Register This register is used to pre-scale the baud rate for 

the CAN communication 
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Interface Registers in C_CAN processor:  
Table 10: List of Interface Registers in C_CAN processor 

Sl. 

No 

Message Interface 

Register  

Description 

1 IF Command Request This register is used to read or write into a message 

object. Once a message object number is written 

into this register, an automatic transfer to or from 

the message object will be started.  

2 IF Command Mask 

Register 

The mask register is used to specify the direction of 

movement of data and to specify which message 

RAM as source or target 

3 IF Mask Registers Interface Mask registers are used to specify the 

mask that will be used for message arbitration if 

enabled in the Command mask register 

4 IF Arbitration Registers Interface arbitration registers is used to specify the 

message identifier to apply the interface mask 

5 IF Message control 

registers 

Interface message control registers contain the data 

related to message object configuration 

6 IF Data Registers A1 & 

A2 and B1 and B2 

Interface Data registers 1 &2 buffer the data for the 

before storing in the Message RAM or transmitting 

on the CAN bus. The CAN data is stored in Little 

Endian format with the LSB occupying the lower 

address and the MSB occupying the higher address. 

But the bytes are transmitted in Network byte order 

(Big Endian). 
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Message handler Registers in C_CAN processor:  
Table 11: List of Message handler Registers in C_CAN processor  

Msg handler 

Reg  

Description 

Interrupt 

Register 

 

The interrupt register indicates which of the message objects 

currently have an interrupt pending. If more than one message 

object has an interrupt pending, the interrupt register only 

contains the message object number of highest pending interrupt. 

The flag remains in active until the interrupt is serviced 

Transmission 

Request 

Registers 

Transmission request register indicates which of the message 

objects currently have a request to send a message on to the bus. 

This register provides the transmit request status by reading the 

TxRqst bit from all the 32 message objects. 

New Data 

Registers 

The new data registers are compliment of Transmit request 

registers and provide which of the message object has newly 

received packet data after it was last cleared by the CAN core. 

The new data registers and Transmission request registers are 

both 4 bytes in length and each bit represent one of the 32 

message objects. 

Interrupt 

Pending 

Register 

Interrupt pending register indicates which of the message object 

currently has a pending interrupt that is yet to be serviced. The 

values for the interrupt pending registers are obtained by reading 

the IntPnd bits of the 32 message objects. Lower the message 

object number, higher the priority associated with it and this 

priority determines which of the message object interrupt is 

updated on the Interrupt register for servicing.  

Message 

Valid 

Register 

The message valid registers contain the value of the MsgVal bit 

of the 32 message objects. The MsgVal bits indicate which 

among the 32 message objects have been configured for either 

transmit or receive.  
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