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ABSTRACT OF THESIS 

ALL DIGITAL DESIGN AND IMPLEMENTAION OF  
 PROPORTIONAL-INTEGRAL-DERIVATIVE (PID) CONTROLLER  

 

 
 Due to the prevalence of pulse encoders for system state information, an all-
digital proportional-integral-derivative (ADPID) is proposed as an alternative to 
traditional analog and digital PID controllers.  The basic concept of an ADPID stems 
from the use of pulse-width-modulation (PWM) control signals for continuous-time 
dynamical systems, in that the controller’s proportional, integral and derivative actions 
are converted into pulses by means of standard up-down digital counters and other digital 
logic devices. An ADPID eliminates the need for analog-digital and digital-analog 
conversion, which can be costly and may introduce error and delay into the system. In the 
proposed ADPID, the unaltered output from a pulse encoder attached to the system’s 
output can be interpreted directly. After defining a pulse train to represent the desired 
output of the encoder, an error signal is formed then processed by the ADPID. The 
resulting ADPID output or control signal is in PWM format, and can be fed directly into 
the target system without digital-to-analog conversion. In addition to proposing an 
architecture for the ADPID, rules are presented to enable control engineers to design 
ADPIDs for a variety of applications. 
 
KEYWORDS:  proportional-integral-derivative, microprocessor, analog, digital, 

counters, frequency, all-digital, B2 Spice 
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CHAPTER 1 

 INTRODUCTION 

1.1 Background 

 Proportional-Integral-Derivative (PID) controllers have been in existence for 

nearly two-thirds of a century. They remain a key component in industrial process control 

as over 90% of today’s industrial processes are controlled by PID controllers [1]. Due to 

its simplicity, versatility, speed, reliability, flexibility and robustness, many industries 

still rely on this stalwart controller for all types of control. Example includes temperature, 

engine speed and position control among many others. 

PID controllers have evolved from analog controllers using mechanical 

integrators and differentiator, to digital controllers using microprocessors and encoders. 

Indisputably, digital controllers using microprocessors dominate industrial control today. 

Many advantages of microprocessor-based controller can be found in [2-3]. 

Microprocessor control is less expensive to implement than its analog counterpart, and is 

capable of utilizing advanced control algorithm. Other advantages of microprocessor-

based control include flexibility in changing parameter, lighter weight and greater 

insensitivity to noisy external signals. 

Yet, the majority of industrial dynamical systems utilizing digital control are 

continuous, rather than discrete. Thus, using digital controllers on such systems typically 

involves processing an analog sensor signal, in order for the microprocessor to obtain 

system output information. This process is commonly known as analog-to-digital 

conversion (ADC). Likewise, the control signal produced by the microprocessor typically 

requires translation into analog form prior to being fed into the system’s input. This 
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process is known as digital-to-analog conversion (DAC). Both ADC and DAC can 

introduce error, delay or loss of information.  

The introduction of programmable logic devices (PLD) has opened a new era in 

digital implementation. A comparison between PLDs and microprocessors in terms of 

system design and development can be found in [4]. This report clearly shows that PLDs 

have the potential to replace custom microprocessors. The reasons given in [4] include 

the facts that PLDs are less expensive, require shorter time-to-market, have no non-

recurring engineering costs, and have faster simulation times. For these reasons, there is 

an opportunities to replace microprocessors with PLDs. Simultaneously, there exists a 

similar opportunity to eliminate ADC and DAC when implementing digital PID 

controllers. 

Inkjet printers are one of the many applications that utilize digital PIDs. In this 

specific application, the objective is to control the speed of the cartridge carriage inside 

the printer. Inkjet printers have become a popular choice for home users as well as small 

businesses, costing less than laser printers. The challenge in this application is to continue 

to reduce cost while maintaining print quality; marketplace pressure to lower cost and 

improve the quality of printing have pushed printer designers to continually search for 

better ways to improve the product. 

 In an inkjet printer, the head that deposits the ink is attached to a carriage which 

typically houses the ink reservoirs. This carriage moves across the page at a constant 

speed to deposit the ink uniformly onto the paper. This carriage mechanism can be 

actuated either in open loop by a stepper motor, or in closed loop by a DC motor [5]. The 

advantages of a stepper motor and open loop control in this application include: 1) non-
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cumulative error; 2) reliability and greater life span as there are no contact brushes; 3) 

full torque available at stand-still; and 4) lower costs [6]. However, increasing the speed 

of stepper motor generally produces unwanted oscillations. Hence, despite the 

aforementioned advantages, the overall performance under open loop control is limited 

compared to a DC motor with closed loop control. In this specific application, closed 

loop control is also preferred, in that media position drift can be compensated for by 

adjusting the control signal until the speed of the carriage matches that of the reference, 

thereby improving print quality substantially.  

Current inkjet printer systems combine Reduced Instruction Set Computer (RISC) 

and Application-Specific Integrated Circuit (ASIC) for image processing and printer 

control. A microprocessor controls the printing process, while an ASIC implements the 

digital circuitry to support the microprocessor [22]. Improvements in both RISC and 

ASIC technologies effectively reduce the cost of a printer. Yet, differences in individual 

microprocessor architecture and clock speed introduce challenges in simulation porting 

control code from one platform to another [7]. If an Field-Programmable Gate Array 

(FPGA) can replace the microprocessor in an inkjet printer, lower production costs will 

ultimately occur. 

An all digital PID controller (ADPID) introduced in this thesis is a means of 

replacing a PID controller in microprocessor with pure digital logic, that can be 

programmed in a simple FPGA chip. Furthermore, an ADPID eliminates ADC and DAC 

conversion and the associated problems, such as delay. Through digital logic substitution, 

the cost of implementing a PID controller can also be minimized.  
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To prove the concept behind an all-digital PID, we selected a Lexmark Z-52 

inkjet printer as a test bed. The first step in ADPID design is to convert the system’s 

desired output into the equivalent pulse train that would be produced by a linear encoder 

attached to the output of the system. The next step is to produce an error signal by 

comparing the actual system’s encoded output to this reference pulse train. The last step 

is for the ADPID to process this error signal and produce a control signal in Pulse Width 

Modulation (PWM) form, which can be sent directly to the system’s input with no need 

of ADC. 

 

1.2 Scope of Thesis  

 This thesis presents a design and implementation methodology for an All-Digital-

PID-Controller (ADPID) that can replace traditional analog and digital PIDs. The 

proposed ADPID implementation requires only digital logic (i.e., FPGAs, Complex PLDs 

(CPLDs), etc). For an example application, an inkjet printer carriage control system is 

selected. Typical industry control requirements, such as settling time and overshoot for 

this application are 0.16sec and 12% overshoot, respectively.  

 Beyond the introduction, Chapter 2 of this thesis begins with a brief history of 

PID controllers. Then a literature review of several techniques for controlling the 

positioning of printhead carriage transportation is presented. 

 Chapter 3 presents an introduction to analog and digital PID controller design. 

The standard rules and procedures for designing a PID controller are discussed. Also, two 

famous design methods, Root Locus and frequency response design, are followed for 

both analog and digital PID. 
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 In Chapter 4, the All-Digital-PID-Controller is introduced. The theory of the 

controller is discussed. The components and signals involved in the design are explained, 

and the procedures are developed and summarized. A step-by-step heuristic design rules 

are also discussed in detail.  

Chapter 5 presents a case study for an ADPID design using an inkjet printer. A 

transfer function for the printer is derived, and simulation results will be presented and 

discussed. 

Chapter 6 is a summary and conclusion of the thesis; some suggestion for future 

work to improve this ADPID design will be proposed at the end of the chapter. 
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CHAPTER 2 

 LITERATURE REVIEW 

2.1 Brief History of PID Controller 

PIDs combine proportional-integral-derivative control action. In 1788, James 

Watt included a flyball governor, the first mechanical feedback device with only a 

proportional function, into his steam engine. The flyball governor controlled the speed by 

applying more steam to the engine when the speed dropped lower than a set point, and 

vice versa [8]. In 1933, the Taylor Instrumental Company introduced the first pneumatic 

controller with a fully tunable proportional controller. However, a proportional controller 

is not sufficient to control speed thoroughly, as it amplifies error by multiplying it by 

some constant (Kp). The error generated is eventually small, but not zero. In other words, 

it generates a steady state error each time the controller responds to the load [9]. 

Around 1930s, control engineers discovered that steady state error can be 

eliminated by resetting the set point to some artificial higher or lower value, as long as 

the error nonzero. This resetting operation integrates the error, and the result is added to 

the proportional term; today this is known as Proportional-Integral controller. In 1934-

1935, Foxboro introduced the first PI controller. However, PI controllers can over-correct 

errors and cause closed-loop instability. This happens when the controller reacts too fast 

and too aggressively; it creates a new set of errors, even opposite to the real error. This is 

known as “hunting” problem [10]. 

In 1920s, there were suggestions of including the rate of change of error in 

conjunction with PI controller. In 1940, Taylor Instrument Companies successfully 

produced the first PID pneumatic controller; the derivative action was called “pre-act”. 
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With an extra derivative action, problems such as overshoot and hunting are reduced. 

However, issues like finding the appropriate parameter of PID controllers were yet to be 

solved.  

In 1942, Taylor Instrument Company’s Ziegler and Nichols introduced Ziegler-

Nichols tuning rules. Their well-known paper “Optimum settings for automatic 

controllers”, presented two procedures for establishing the appropriate parameters for 

PID controllers. However, the PID controller was not popular at that time, as it was not a 

simple concept; the parameters the manufacturers required to be tuned did not make 

much sense to the users. 

In the mid 1950’s, automatic controllers were widely adopted in industries. A 

report from the Department of Scientific and Industrial Research of United Kingdom 

state, “Modern controlling units may be operated mechanically, hydraulically, 

pneumatically or electrically. The pneumatic type is technically the most advanced and 

many reliable designs are available. It is thought that more than 90 percent of the existing 

units are pneumatic.” [11] The report indicated the need to implement controllers in 

electrical and electronic form.  

In 1951, The Swartwout Company introduced their first electronic PID controller, 

based on vacuum tube technology. Around 1957, the manufacturers started to realize the 

possibility of implementing the controllers in transistors. In 1959, the first solid-state 

electronic controller was introduced by Bailey Meter Co. The advantage of using 

electronic instrument to implement PID controller was explored more deeply years later. 

They are not only capable of including the functions available in pneumatic instruments, 
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but even more complicated mathematical operations can be carried out as well [12]. 

Electronic PID controllers became more common and more acceptable since then.  

The digital computer became involved in process control in the 1960s. The first 

instance in which closed loop control was implemented by a digital computer in an 

industrial plant was done by Texaco’s Port Arthur plant on March 15th, 1959. By 1960, 

many control instrument companies responded to this new technology and offered 

computer-based systems. “Analog controllers should gradually evolve into digital devices, 

providing accuracy at low cost. These controllers will be relatively simple to combine 

into multipoint configurations, which can be applied to optimize unit processes on a local 

basis.” [13]. More discoveries concerning digitizing PID controllers were made, and 

arguments for implementing controllers on microprocessors were brought up as 

microprocessors could handle calculations directly in engineering units [14-15]. 

Due to advances of technology, the PID controller is widely and commonly used 

in process control, aircraft systems, automobiles, home equipment and appliances as well 

as portable devices nowadays. Since the introduction of many modern control theories to 

complement the PID controller, things have not been the same, although the fundamental 

theory for designing one remains the same. Hence, we are greatly indebted to those who 

laid the foundation for developing PID control theory.   

 

2.2 Systems Involve Encoder Feedback Techniques 

Sensors play an important role in mechanical motion. Sensors detect motion, such 

as velocity, shaft angle and position, from stepper or servo motors, and output the useful 

data to the controller. Traditionally, analog transducers are widely used in analog control. 

 8



As the technology advanced from analog to digital, analog transducers were replaced by 

digital transducers. Some analog transducers are still employed with digital controllers, 

by using an analog-digital converter chip; the analog-digital conversion is eliminated 

when a digital transducer is used. By doing so, the digital signal from the transducers can 

be directly transmitted into the controller, and noise level is reduced. More attractively, 

optical sensors can operate under a wide temperature range, and are resistant to magnetic 

fields. Such sensors are economical devices that are able to provide very high levels of 

resolution, accuracy and repeatability [16]. 

Digital encoders are optical sensors within the family of digital transducers. They 

are commonly used to measure linear and rotary position. Generally, the digital encoder 

has a light source, such as a LED, on one side of the disk, and a photodetector on the 

other side of the disk. The resolution of the encoder is determined by the distance 

between the slots in the disk. As the disk rotates, the slots in the disk interrupt the light 

source, and the photodetector sends a pulse train series to the computer. Thus, 

incremental position can be measured by counting the pulses occurring during rotation. 

The velocity can be determined by finding the frequency of the pulse train [17].  

In 1996, Lin et al. successfully controlled the speed of an inkjet print head 

transport system using a phase-locked loop (PLL) [18]. Characteristics such as high 

speed response, insensitivity to noise, and commercially cheap integrated chips make 

PLL highly recommended for motor speed control. A PLL is composed of a phase 

frequency detector (PFD), loop filter, and voltage-controlled oscillator (VCO). The PFD 

in the model was based on the tri-state PFD presented by Best [19]. A lead-lag 

compensator was designed using classical root locus methods as a loop filter. It not only 
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filters out and smoothes the output of the phase-frequency detector, but also improves the 

transient response of the system, according to the design specification. The VCO 

represents mechanical and sensor subsystems, composed of a DC motor, belt pulley 

transmission subsystem, linear strip, and optical sensor. In the experiment, Lin managed 

to regulate the speed at steady state to within 10% error when the carriage moved at 33 

inches/sec. A 10% error is relatively large, but Lin’s performance can definitely be 

improved if the closed-loop system is better modeled.  

In 1997, Adkins came out with an all-digital phase-locked loop (ADPLL) [20], 

and successfully reduced the microprocessor load in operating a Lexmark inkjet printer. 

In most inkjet printers, a microprocessor and an Application-Specific Integrated Circuit 

(ASIC) coordinate to form a controller. A microprocessor controls the printing process, 

while the ASIC is programmed to support the digital circuitry needed by the 

microprocessor. By integrating an ASIC with the controller, the bandwidth of the 

microprocessor is reduced, and a more economical microprocessor can replace it.  

PLL controllers to date are either all analog, or a combination of analog and 

digital configuration (DPLL). In [20], an ADPLL is proposed with a different design 

methodology than Lin’s. First, Adkins analyzed the entire PLL motor system as a 

sophisticated non-linear system. Then, an accurate closed-loop model was derived. 

Following that, he designed a DPLL control system using classical control techniques in 

order to meet design specifications. Lastly, the analog loop filter was converted into a 

digital loop filter. By doing so, ADPLL can now be implemented in an ASIC. The output 

of the control system is connected to the optical encoder, where the frequency of the 

digital pulse signal is generated proportional to the velocity. The digital output is then 
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compared with the phase-frequency detector, in order to generate the error signal. Figure 

2.1 shows the implementation of an ADPLL servo control system with an optical encoder 

[21]. 

The report shows that the author meets all the design specifications. The steady 

state error is ±5%, overshoots are less than 20%, and the carriage attains 90% of the 

desired print speed before the print head traverses 0.5 inches.   

 

 

Encoder Output 

Power 
Amplifier Phase-frequency 

Detector 
Loop 
Filter 

DC Motor System with 
Optical Encoder 

Corresponds to VCO 

Reference

 
Figure 2.1: ADPLL servo control system with optical encoder [24] 

 

 

Deshpande [22, 23] designed and implemented Dynamic Print Mode Control 

(DPMC) on an inkjet printer motion control system, using a Digital Signal Processing 

(DSP), in his master thesis in 2001. DPMC is a method that optimizes the tradeoff 

between print quality and print speed. The system in current commercial inkjet printers is 

based on RISC and ASIC architecture, for image processing and printer control. However, 
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due to the high performance of its real-time execution and compilers on a real-time 

operating system, the author claimed that image processing and printer engine control as 

well as time critical functions can be done on a single DSP. The motivation behind a 

single DSP is that it reduces production cost and yet provides high performance, and can 

be leveraged to suit all different kinds of market. 

 For the cartridge motion control system, the author designed a Zero-Phase-Error-

Tracking (ZPET)-based feed-forward controller for system stability, and a Disturbance 

Observer feedback controller to handle disturbance and uncertainty (i.e. friction, un-

modeled parameter) while controlling the tracking motion. As a result, the author 

analytically obtained a maximum carriage velocity of about 40 inches per second (ips), 

with a steady state error of approximately ±3%. 
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CHAPTER 3 

 ANALOG AND DIGITAL DESIGN OF PID CONTROLLER 

3.1 Introduction 

In this chapter, typical methods used to design analog and digital PID controllers 

are discussed. First, PID compensator design based upon root locus is introduced, and the 

procedure for designing the compensator is explained. Next, PID design based on a 

frequency response method is discussed. Finally, the Ziegler-Nichols tuning method is 

briefly introduced. 

 

3.2 Analog PID 

 Analog PID controllers are common in many applications. They can be easily 

constructed using analog devices such as operational amplifiers, capacitors and resistors. 

They are reliable in mechanical feedback systems, and able to satisfy many control 

problems. 

  

3.2.1 Root Locus Method 

Root locus is one of the methods used to design control systems. It is a technique 

that plots closed-loop poles in the complex plane as the gain varies from zero to infinity. 

It is a method that analyses the relationship between the poles, gain and the stability of 

the system. By understanding the root locus plot, one can design a controller to novel 

specifications, and understand clearly how different controller architectures affect the 

system.   
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In a root locus, the imaginary component of a pole corresponds to damped natural 

frequency, while the radius from the origin to the pole corresponds to natural frequency. 

The settling time for a system is determined by the slowest response among all responses. 

The least settling time can be achieved if the roots fall to the far left on the left-hand 

plane; overshoot can be prevented by placing the poles on the real axis.  

In order to design a PID controller using the root locus method, the system must 

be first transformed into a transfer function. In general, root locus technique analyzes 

only single input single output (SISO) systems. However, an appropriate approximation 

of transforming a multi input multi output (MIMO) system into a SISO model can 

produce a close estimation of the characteristics of the system.  A root locus that passes 

through the right-hand plane is considered unstable, whereas one that remains in the left-

hand plane implies a stable system. A root locus that falls in the jω axis (between the 

right- and left-hand planes) is considered marginal stable.   

Figure 3.1 is an example of a close loop system. K represents the PID controller, 

G represents the transfer function of the system, and H represents the feedback parameter. 

 

W(s) Y(s) 

-

+

K G 

H 
 

 

 

Figure 3.1: Closed loop system 
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3.2.1.1 Procedures for Designing an Analog PID Controller by the Root Locus 

Method 

I. Develop a set of reasonable transient specification based upon the particular 

application. From the specifications, find a pair of closed-loop dominant poles 

which meet these specifications, s1 and s1*. 

II. Find KI term from steady-state error, ess. 

III. Lump 
s

KI  term into the GPID together with G(S). 

IV. Solve for KP and KD by using  

 

Equation 3.1 

 

1)( 1 −=sGGPID

V. Equation 3.1 is rearranged such that 

  

11
1 )(

1
s
K

sG
sKK I

DP −−=+
Equation 3.2 

VI. Hence, KP and KD can be solved by equating the real and imaginary term on the 

left and right side of the equation. 

VII. Sketch the resulting root locus for the compensated system. 

 

3.2.1.2 Example of an Analog PID Root Locus Design 

A set of specification such as settling time, overshoot and steady-state error is 

required to design a PID controller. Settling time is the time required for the process 

variable to settle to within 2% of the target value. Overshoot represents the maximum 
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percentage of the process variable overshoots the target value. Steady-state error 

expresses the final difference between the process variable and the set point. 

The example will be designing a PID controller by root locus method, with the 

following specification: 

 

Settling time = 0.137 second  

Overshoot < 30% (Damping ration, ζ=0.377) 

Steady_state_errorparabola = 1/3070 

 

)579.47(
49.6

+
=

ss
functiontransfer Equation 3.3 

 

From the design specification, the desired closed-loop dominant poles are -29.14+j47.02. 

By going through procedure III to VI in section 3.2.1.1, proportional, integral and 

derivative gains are found 900.12, 22507 and 9 respectively. The step response of the 

closed loop compensated system by root locus is plotted in Figure 3.2. 

 

 16



Step Response

Time (sec)

Am
pl

itu
de

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 
Figure 3.2: Step response of the closed loop compensated system by root locus 
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Figure 3.3: Simulated steady_state_error_parabola of approximately 0.0001 
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3.2.2 Frequency Response Method 

 Frequency response is another method commonly used to design a PID controller. 

Unlike root locus for the s-domain, using poles and zeros, frequency response uses the 

magnitude and phase of the controller to shape the curve in order to meet the 

specifications.  

 Each individual term of a PID controller is defined differently in Bode plots. As 

in root locus, the proportional term does not change the shape of the plot; it adjusts the 

gain and phase margins by shifting the magnitude of the Bode plot up or down.  The 

integral term adds a slope of -20dB/dec to the phase; it tends to destabilize the system by 

adding a constant -90 degrees to the phase angle of the system. The derivative term 

increases the phase margin by adding a +90 degree phase angle into the system, which 

corresponds to the damping ratio; also, a slope of +20dB/dec is contributed to the phase.  

Two important parameters in determining the system stability in the frequency 

response method are gain margin (GM) and phase margin (PM). Phase margin can be 

found by finding the crossover frequency when the phase angle is -180 degrees, and 

measuring the magnitude distance below 0 dB. Similarly, gain margin can be found by 

finding the crossover frequency when the magnitude plot is 0 dB, and measuring the 

angle distance above -180 degrees. The system is unstable if the magnitude plot is not 

below the 0 dB line when the system is at -180 degrees, or if the phase plot is not above -

180 degrees when the system is at 0 dB 
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3.2.2.1 Procedures for Designing an Analog PID Controller by the Frequency 

Response Method 

I. Make sure the open loop system is stable.  

II. Draw the Bode plot of the open loop system. 

III. From the design specification, phase margin is related to damping ratio, ζ as in 

Equation 3.4. Also, the ratio of the crossover frequency and the natural frequency 

is related as in Equation 3.5. 

 

42

1-

4ζ12ζ

2ζtaninargMPhase
++−

=  

Equation 3.4 

 

 
42 412 ζζ

ω
ω

++−=
n

c

Equation 3.5 

 

IV. By understanding the contribution of P, I and D on a Bode plot, they can be 

specified such that the design specification for a closed loop system, such as 

phase margin and crossover frequency can be fulfilled.   

 

3.2.2.2 Example of an Analog PID Frequency Response (Bode Plot) Design 

Design a PID controller with the specification as in Equation 3.4. 

The Bode plot of the open loop system is shown in Figure 3.4. 
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Figure 3.4: Open loop uncompensated system by Bode plot 

 

 

From Equation 3.4 and Equation 3.5, the phase margin is found 41o, and the 

crossover frequency is 66.47 rad/sec. Thus the P, I and D gain are 850, 22000 and 10 

respectively. The corresponding open loop Bode plot is shown in Figure 3.5. 
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Figure 3.5: Open loop PID system compensated by Bode plot 

 

 

3.2.3 Ziegler-Nichols Tuning Method for PID Controllers 

 The Ziegler-Nichols tuning method is based on both open and closed loop testing. 

This tuning method is useful if one purchases a generic PID controller and wants to tune 

it to control a complex system. In order to do so, system parameters needed to be found 

experimentally; the results are interpreted into proper information for the Ziegler-Nichols 

PID controller equation, Equation 3.8.  

 

 Equation 3.8 

  

)11( sT
sT

KpGc d
i

++=
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In Equation 3.8, integral time, Ti and derivative time, Td replace integral gain and 

derivative gain; they are more commonly used when the Ziegler-Nichols method is 

applied. 

 

3.2.3.1 Procedure for an Open Loop Test 

I. Make a step test on an open loop plant. Graph like Figure 3.6 should be attained. 

 

 

  
Time D T 

 
Figure 3.6: Open loop Ziegler-Nichols step response measurement 

 

 

II. Determine dead time, D and rise time, T as in Figure 3.6.  

III. Table 3.1 lists the Ziegler-Nichols tuning parameters for P, PI and PID controller. 

Substitute D and T found from step II into the table to calculate the gains.  
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IV. Substitute the Kp, Ti and Td found in Table 3.1 into Equation 3.8 to obtain 

proportional gain, integral gain and derivative gain. 

 

 

Table 3.1: Open loop Ziegler-Nichols tuning parameter on step response 

 

Controller Type Kp Ti Td

 

P D
T  

 

- 

 

- 

 

PI 
0.9*

D
T  

3.0
D  

 

- 

 

PID 
1.2*

D
T  

 

2*D 

 

0.5*D 

 

 

 

3.2.3.2 Procedure for a Closed Loop Test 

I. Disable integral and derivative action of the controller so that the controller only 

has proportional control action. 

II. Make a set point test (i.e step response) and increase the proportional gain until 

stable oscillation is achieved. The proportional gain at stable oscillation is 

recorded as Ku. 

III. Read the oscillation period, Tu as shown in Figure 3.7.  

IV. Substitute both Ku and Tu into Table 3.2 to obtain Kp, Ti and Td. Finally, 

proportional, integral and derivative gain can be found from Equation 3.8. 
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time 

Tu

 
Figure 3.7:  Closed loop Ziegler-Nichols measurement 

 
 
 
 

Table 3.2: Closed loop Ziegler-Nichols tuning parameter 
 

Controller Type Kp Ti Td

 

P 

 

uK*5.0  

 

- 

 

- 

 

PI 

 

0.45*  uK 2.1
uT

 
 

- 

 

PID 

 

0.6*  uK

 

0.5*  uT

 

0.125*  uT

 

 

 

3.2.3.3 Example of an Open Loop Ziegler-Nichols Tuning Method 

 The specification in Equation 3.3 will be used to find the proper P, I and D gains 

by using Ziegler-Nichols tuning method.  

 

)579.47(
49.6

+ss Equation 3.9 
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The open loop step test for 50 seconds was made on the model and Figure 3.8 was 

obtained. 

 

 

 
 

Figure 3.8: Ziegler-Nichols tuning method on an open loop system 

 

 

The dead time, D = 0.02 second, and rise time, T = 15 second. Thus, KP = 900, KI = 

22500, KD = 9. The compensated closed loop system for 1 second is shown in Figure 3.9. 
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Figure 3.9: Closed loop compensated system by Ziegler-Nichols tuning method 

 

 

3.3 Digital PID 

 Digital PID is commonly used because it is more suitable to design for a complex 

system for the purpose of reducing cost, and is more immune to noise than an analog PID. 

Several methods can be used to design a digital PID. One of the methods is to design an 

analog PID first, then convert the s-domain into the z-domain with appropriate 

approximation. A digital PID can also be directly designed by the root locus and direct 

response methods. 

 

3.3.1 Conversion from Analog to Digital PID 

 The conversion from s-domain into z-domain is quick and easy. The conversion 

can be done by using difference approximation, ZOH (zero-order hold), bilinear 
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transformation or first-order hold. In this section, the difference approximation equation 

is derived. 

The proportional term in PID can be approximated as:  

 

   

 The backward rectangular rule approximation of integral term in PID: 

Equation 3.10 )(kepK

 

     

 Also, the backward difference approximation of derivative term in PID: 

Equation 3.11 )1( −kTeIK

    

)]1()([ −− keke
T
DK

Equation 3.12  

 

However, the integral term requires previous information. Thus, the summation of 

the three terms becomes, where T denotes the sample period: 

 

)1()1()(

)]1()([)()()(

−+−=

−−++=

kTeKkaka

keke
T

K
kakePKku

I

D

 

 Equation 3.13 

 

Equation 3.13 is the position algorithm of the present control output. The velocity 

algorithm for the PID is: 

 

 

 
)2()2()1(

)]2()1([)1()1()1(

−+−=−

−−−+−+−=−

kTeKkaka

keke
T

K
kakePKku

I

D

Equation 3.14 
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By subtracting Equation 3.14 from Equation 3.13, the digital PID is approximated 

as: 

          Equation 3.15 

)]2()1(2)([)1()]1()([)1()( −+−−+−+−−=−− kekeke
T

K
kTeKkekePKkuku D

I

 

3.3.2 Direct Root Locus Design 

 Root locus design for a digital PID is similar to an analog PID. Basically, the 

rules for drawing the root locus for both are the same except that stability, frequency and 

damping ratio are changed.  

In terms of stability, it is suggested that the poles be placed in the right-hand plane, 

and inside the unit circle. The closer the poles are to the origin, the faster the settling time 

will be. The procedure to design a digital PID is exactly the same as an analog PID, 

where the poles and zeros work together to shape the root loci to the desired location. 

Even though there is no need to physically build a controller algorithm as the 

analog PID, one needs to consider whether the digital PID is realizable (i.e. the controller 

does not requires future variables). If the controller is not programmable, the digital PID 

needs to be redesigned. Modification such as adding another pole inside the unit circle 

can possibly make the controller realizable.       

 

3.3.3 Direct Frequency Design 

 Direct frequency design is useful especially in deadbeat control, a method to 

make the system meet commands one sample time later than the desired time. 
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 Using direct frequency design, system requirements are first considered, and 

written in the form of a transfer function. The controller and system transfer function is 

set equal to the desired transfer function.  Then, the proportional, integral and derivative 

terms can be solved. This is illustrated in Equation 3.16. 

 

 

)()(1
)()(

)(
)()(

zGzD
zGzD

zR
zCzT

+
== Equation 3.16 

 

 In Equation 3.16, T(z) represents the desired transfer function, C(z) represents 

sampled system output, R(z) represents sampled system desired input, D(z) represents a 

controller transfer function, and G(z) represents a discrete system transfer function. 

 Again, the digital PID must be programmable, so that it does not require the 

knowledge of future variables. 

 

3.3.4 Tuning for Digital PID  

 The procedure of Ziegler-Nichols tuning for a digital PID is the same as tuning an 

analog PID, explained in section 3.2.3.1. The main difference between them is the 

sampling time. If the sampling time designed for the digital PID is small compared to 

system response, an analog tuning method like Ziegler-Nichols works well in a digital 

PID. However, if the sampling time is larger than the system response, the tuning 

becomes inaccurate. Thus, it is important to select and design the sampling time wisely, 

in order to achieve optimum performance. 
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CHAPTER 4 

ALL-DIGITAL PID 

4.1 Introduction 

 ADPID is an all-digital implementation of a PID controller. PID controllers 

currently available on the market are implemented by programmable controller (PC) or 

DSPs. In 1998, Professors Marra and Walcott proposed the ADPID in their patent 

application, as a means to implement PIDs using only digital logic.  

In this chapter, the theory of designing an ADPID is discussed. Each component 

used, as well as the role of each signal involved, is explained. Also, the procedures and 

basic rules for designing an ADPID are clearly listed and walked through step by step. 

The objective of the design is to minimize the hardware and to speed the execution 

process.    

 

4.2 The First Patent on an ADPID Controller 

 The idea of an ADPID was first introduced by Professors Bruce Walcott and 

Michael Marra from the University of Kentucky. A patent application titled 

“Asynchronous Digital Implementation of PID controllers” was submitted in 1998. In the 

application, the authors contrasted the common approach and the all-digital way of PID 

implementation. They realized the importance of PLDs, that they may replace customized 

microprocessors in the near future as they become less expensive, require shorter time-to-

market, and do not suffer from obsolescence issues. 

 The authors considered the problems introduced by DAC and ADC in digital 

control of continuous dynamical systems. Both ADC and DAC produce error, delay, or 

 30



loss of information. Thus, the authors saw the need to implement PIDs with an ADPID, 

without either ADC or DAC. The resulting ADPID implementation would be far more 

cost effective. 

 In the patent application, the authors included the requirements to implement this 

ADPID. For instance, an ADPID requires a digital signal proportional to the error 

between the reference frequency and the frequency of the pulse train from the output of 

the encoder. An integral term is required, representing a digital signal proportional to the 

integral over the time of the error between the reference frequency and the frequency of 

the pulse train from the output of the encoder. A derivative term is also needed, 

representing a digital signal proportional to the change in error between the reference 

frequency and the frequency of the pulse train from the output of the encoder. Also, 

ADPID requires a means to combine these three digital signals into one single control 

signal to generate a control signal.   

 In addition to the list of requirements, the authors proposed some helpful 

solutions to make this controller realizable. First, the authors represented each P, I and D 

term with two sets of counters, CP1 and CP2, CI1 and CI2, CD1 and CD2 respectively. Then, 

the authors varied the weighting on the P, I and D terms by varying the frequencies of the 

counters. The weighting on the proportional term is suggested such that 

 

2

1

P

P
P f

fK = Equation 4.1 

 

In the patent application, the authors explained how each counter works. For the 

proportional term, if the error signal is activated and the direction of the error is in the 
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high state, CP1 counts up at the frequency of fP1. Likewise, CP1 counts down at frequency 

fP1 when the direction of the error is in the low state. As the error signal transitions from 

high to low, CP1 stops counting and resets its own counters to zero. CP2 loads the current 

state of CP1 and counts the state at the frequency of fP2 to zero. 

 The weighting on the integral term is suggested  

 

2

1

I

I
I f

fK =
Equation 4.2 

 

For the integral term, if the error signal is activated and the direction of the error 

is in the high state, CI1 counts up at the frequency of fI1. Likewise, CI1 counts down at 

frequency fI1 when the direction of the error is in the low state. As the error signal 

transitions from high to low, CI1 stops counting and holds at the current state. CI2 loads 

the current state of CI1 and counts the state at the frequency of fI2 to zero. Then, CI1 

resumes from the previous state if the error goes to high state. 

The weighting on the derivative term is proposed such that 

 

2

1

D

D
D f

fK =
Equation 4.3 

 

For the derivative term, if the error signal is activated and the direction of the 

error is in the high state, CD1 counts up at the frequency of fD1. Likewise, CD1 counts 

down at frequency fD1 when the direction of the error is in the low state. As the error 

signal transitions from high to low, CD1 stops counting and subtracts the present state 

from the current state of the register. The value after the subtraction will be loaded into 
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CD2. The register is refreshed with the current state of CD1. Then, CD1 resets its own 

counters. CD2 counts the state at the frequency of fD2 to zero.  

Nevertheless, the authors did not mention how the three signals can be combined 

together to become a control signal. The generation of the control signal in PWM, and the 

direction of the control signal, were not defined. The authors also did not explain how the 

error signal and the error directional signal can be generated. 

 

4.3 The Modification of the Original ADPID in This Thesis 

The primary modification was made to the placement of the summation of the 

three signals. Instead of adding the signals after their second counters, the signals are now 

combined immediately after their first counters. A digital adder adds the three signals 

simultaneously when the error signal transitions from high to low state. This result is 

transferred to a combined counter, where the signals now share one counting frequency, 

fA. In other words, only four counting frequencies, fP1, fI1, fD1 and fA, are involved, 

instead of six. Figure 4.1 is the counter structure illustrated in the patent. Figure 4.2 

shows the counter structure of the modified ADPID. 

 

 

 

 

 

 

 

 

 

 

 33



 

 

 

 

 

 

 

 

 

 

 
 

 
 
 
 
 
 

 
 
 

 
 
  
 

1 bit 

1 bit 

n bit 

n bit 

n bit 

Error signal 

CP1
@ fP1

CP2
@ fP2

CI1
@ fI1

CI2
@ fI2

1 bit 

 
 

Combine 
all the three 

signals 
together 

 

CD2
@ fD2

CD1
@ fD1

1 bit 

1 bit 

Error Directional signal 

 
 

Figure 4.1: Counters structure illustrated in the patent 
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Figure 4.2: Counters structure of the modified all-digital PID 
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Implementing the ADPID with four counting frequencies reduces both hardware 

and cost. As the hardware is reduced, the time delay is possibly minimized. In the patent, 

no counters share a common counting frequency. As a result, the summation is always 

changing until they all reach zero state.  This summation will be processed before it can 

generate a PWM signal.  

Through the present proposal, a static summation can be loaded into the counter 

as soon as the error has been counted by the first set of counters. Also, the PWM output 

from the common counter can be directly understood by the system without further 

interpretation. 

 

4.4 Overview of the Contrast between a Digital PID and an ADPID 

In a digital PID control, the encoded signal feedback from the system is converted 

into usable form for PC/DSP, where the digital PID controller is programmed into. For 

instance, the encoded output needs to be first translated into analog voltage, in order to be 

compared with the reference voltage. Then this signal is manipulated by digital PID to 

produce a control signal. This is illustrated in Figure 4.3. 

 

GPID(Z) System with Encoder Output 

Decoder/Converter 

Output 
        Reference 

 
Figure 4.3: Digital PID controller in an encoded system 
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  In contrast, an ADPID control can directly utilize the unaltered and raw data from 

the output of an encoder as a feedback signal, by means of all digital logic devices. After 

defining a pulse train to represent the desired output of the encoder, an error signal can be 

formed by comparing the pulse train with the encoded system output. This is shown in 

Figure 4.4. 

 
 

Convert to 
Frequency 

All 
Digital  

PID 

System with 
 Encoder Output 

OutputReference 

 

Figure 4.4: All-digital PID controller in an encoded system 

 

4.5 Design of an ADPID 

 To design an ADPID requires the knowledge to generate a proportional digital 

signal of the error, an integral digital signal for the errors over time, and a derivative 

digital signal for the change in error. These three separate signals need to be combined 

together to form a PWM control signal. 

An ADPID is mainly constructed by digital logic devices, such as 4-bit up/down 

counters, JK flip-flop, D flip-flop, multiplexer, and digital gates (i.e. AND, OR, 

EXOR…). In general, the error between the reference and encoded output is counted up 

or down by counters. The speed of counting depends on frequencies fP, fI and fD. Then, 

the summation of the counters is counted to zero at frequency fA. The control signal 
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generated by an ADPID is in PWM form, and the corresponding direction is determined 

by the most significant bit of the adders. 

 

 

Desired Reference 

Encoder Output 

Generated Reference 

            Error Signal (P) 

 
Figure 4.5: Generation of an error signal 

 

 

4.5.1 Error Signal (P) 

I. Generated reference 

Generated reference is a set of pulse trains that represents the desired output of the 

encoder. The resolution of the encoder used in the system determines the frequency of 

the pulses. For example, if a linear encoder represents 1 Volt with one hundred and 

fifty pulses, the frequency of the reference will be the desired voltage multiplied by 

one hundred fifty. The conversion from analog voltage to digital pulse train can be 

done by crystal, 555 Timer, or a Voltage-Controlled-Oscillator (VCO). 

II. Encoded output 
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Encoded output is the raw system output transformed into digital pulses by an 

encoder. Among the many encoders, encoder strips and encoder disks are commonly 

installed in systems. 

 

From Figure 4.5, error is generated when the “high” or “low” of the reference 

signal and the encoded output do not match. An EXOR is the simplest device to 

implement this task. Table 4.1 shows the truth table of an EXOR. 

 

 

Table 4.1: Truth table of an EXOR 

 

Generated Reference Encoded Output Result 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

 

 

Whenever the generated reference and the encoded output differ, the output from 

EXOR is “1”. On the other hand, when both generated reference and encoded output are 

the same, EXOR outputs a “0”. This implies that the error is zero. 

 

4.5.2 Error Directional Signal (D) 

 An error directional signal is necessary to indicate the counting direction of KP, KI 

and KD counters. This is the direction for the error generated by EXOR. One way to 

implement this task is to compare the desired voltage with the analog output from the 
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system. When the desired voltage is greater than the system output, the counters are set to 

count up mode. The counters switch to count down mode when the system output 

overshoots the desired voltage. Since this is an analog way of implementation, the 

comparator can be done by an operational amplifier. 

A digital way to implement the task is to have two sets of counters with the same 

counting frequency. Each counter is responsible to count the width of the pulses 

generated by reference and encoded output respectively. The counter with the higher 

count indicates that the corresponding signal is longer and thus, it is slower than the other. 

Thus, the direction of the KP, KI and KD counters can be switched accordingly. 

 

4.5.3 ADPID Signal 

An all-digital PID signal is composed of: 

1. P = Proportional error signal 

2. I = Integral error signal 

3. D = Derivative error signal 

Each KP, KI and KD term needs to be first designed by either root locus or 

frequency response methods, explained in Chapter 3. Then these terms are translated into 

frequency format to be used by an ADPID. 

From Figure 4.2, P, I and D have their own distinct counting frequencies, fP, fI and 

fD respectively. The three separate signals are combined together, and the result is fed 

into one counter that counts at base frequency fA.  
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In this thesis, the determination of the frequencies is made primarily based on 

experimental experience. A few simulations were run, and it was concluded that the 

optimum frequency for the largest gain among the terms KP, KI or KD is fifty to one 

hundred times larger than the reference signal. After the first counting frequency is 

known, the combined frequency, fA, can be calculated. Then the other two frequencies 

with lower gain can be obtained. 

 

4.5.3.1 Base Frequency 

In order to vary the weighting on each proportional, integral and derivative term, 

the frequencies of the counters are carried so that: 

 

 
DIPZ

f
fK

A

Z
Z ,,, ==

Equation 4.4 

 

The base frequency, fA, is the counting frequency for the combined counters. It is 

directly related to fP, fI and fD. It can be determined after any one of the proportional, 

integral or derivative frequencies is known. Technically, low frequencies cause 

inaccurate counting, whereas extremely high counting frequencies create problems such 

as integrator windup. As a result, more hardware is needed to prevent counting overflow. 

Hence it is crucial to design a proper counting frequency, to obtain an accurate model yet 

reduce the hardware to the minimum.  

 

4.5.3.2 Proportional Error Signal 
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The proportional counter is implemented by SN74LS169, counting at frequency fP. 

In order to vary the weighting on the proportional terms, the frequencies of the counters 

are carried such that: 

 

 

A

P
P f

fK =
                                        Equation 4.5 

 

KP is the proportional term designed for PID controllers from Chapter 3. If KP is 

the largest gain among the three, fP can be estimated as one hundred times larger than the 

reference frequency. Thus, fA is known. If KP is not the largest gain, fA is calculated 

through the other terms before fP is known. Inputs involve in the proportional counter (CP) 

are: 

 

I. up/down ( DU / ) 

This input signal is the error directional signal explained in Section 4.5.2. This 

signal controls the counting direction for the counter. When the error directional 

signal is in high state (D=1), the counter counts up. When the error directional 

signal is in low state (D=0), the counter counts down. 

 

II. clock (CLK) 

This input signal is proportional to frequency (fP). This frequency controls the 

counting speed for the proportional counter. 
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III. inputs (A, B, C, D) 

A, B, C and D load data from 2-line to 1-line data selectors/multiplexers, 

SN74LS157. The multiplexer selects either 1 or -1 based upon the directional 

error signal. If the directional error signal is in low state, the multiplexer chooses -

1 and starts counting downwards. Likewise, when the directional error signal is in 

high state, the multiplexer chooses 1 and count upwards. The counting starts from 

1 or -1 instead of 0 (the default value for a counter), because the counting should 

take place once the error is generated. 

 

IV. count enable( ENTandENP ) 

The first counter’s count enable is activated ( ENTandENP  = 0) when the error 

signal is in high state (P=1) and when the JK flip-flop’s clear is not zero.  

Otherwise the proportional counter does not count. 

 

V. load ( LOAD ) 

Load is activated ( LOAD  = 0) for 1 clock cycle when the error signal is in high 

state (P=1) and when JK flip-flop’s clear is not equal to zero. Otherwise the 

counter does not load any values. 
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Clr = clear from JKFF
Err = error signal 
Load = load for proportional counter
Count = count enable for proportional counter

 
 

Figure 4.6: State diagram to control count enable and load signals for a proportional 

counter 

 

  

If the error signal is in high state (P=1) and the directional signal is also in the 

high state (D=1), the proportional counter (CP) counts up at frequency fP. If the error 

signal is in high state (P=1) and the directional signal is in the low state (D=0), CP counts 

down at frequency fP. If the error signal is in low state (P=0), CP stops counting and holds 

the current values. CP resets and starts counting from zero when the next error signal is in 

high state (P=1). These are concluded in Table 4.2. 
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Table 4.2: Summary of proportional term counting sequence 

 

Error Signal (P) Directional Error 

Signal (D) 

Reaction on proportional counter (CP) 

0 0 Stop counting. Resume from 0 when error signal 

(P) = 1 

0 1 Stop counting. Resume from 0 when error signal 

(P)  = 1 

1 0 Reset CP. Count Down @ fP

1 1 Reset CP. Count Up @ fP

 

 

 

4.5.3.3 Integral Error Signal 

The integral counter is implemented by SN74LS169, counting at frequency fI. In 

order to vary the weighting on the integral terms, the frequencies of the counters are 

carried such that: 

 

A

I
I f

fK =                         

Equation 4.6 

 

KI is the integral term designed for PID controllers. From Section 4.3.3.1, if KI is 

the largest gain among the three, fI is one hundred times larger than the reference 

frequency. Thus, fA is known. If KI is not the largest gain, fA is calculated from other 

terms before fI is known. Inputs involved in the integral counter (CI) are: 

 

I. up/down ( DU / ) 

 45



This input signal is the error directional signal explained in Section 4.5.2. This 

signal controls the counting direction for the counter. When the error directional 

signal is in high state (D=1), the counter counts up. When the error directional 

signal is in low state (D=0), the counter counts down. 

 

II. clock (CLK) 

This input signal is integral frequency (fI). This frequency controls the counting 

speed for the integral counter. 

 

III. inputs (A, B, C, D) 

A, B, C and D load data from 2-line to 1-line data selectors/multiplexers, 

SN74LS157, during the very first error. The multiplexer selects either 1 or -1 

based upon the directional error signal. If the directional error signal is in low 

state, the multiplexer chooses -1 and starts counting downwards. Likewise, when 

the directional error signal is in high state, the multiplexer chooses 1 and counts 

upwards. Counting starts from 1 or -1 instead of 0 (the default value for a counter) 

because the counting should take place once the error is generated. 

 

IV. count enable( ENTandENP ) 

The first counter’s count enable is activated ( ENTandENP  = 0) when the error 

signal is in high state (P=1) and JK flip-flop’s clear is not zero.  Otherwise the 

integral counter does not count. 
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V. load ( LOAD ) 

Load is activated ( LOAD  = 0) for 1 clock cycle at the first appearance of an error. 

The counter does not load until the clear of the JK flip flop goes low. 
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B

Clr=1, Err=0
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Load = 1
Count = 0

D 110

Load = 1
Count = 1

B

Clr=1, Err=0

Clr=1, Err=1

Clr=1, Err=1
Clr=1, Err=1 Clr=1, Err=0

Clr=1, Err=0

Clr=0, Err=0
Clr=0, Err=1

Clr=0, Err=0
Clr=0, Err=1

Clr = Clear from JKFF
Err = error signal
Load = load for integral counter
Count = count enable for integral counter

 
 

Figure 4.7: State diagram to control count enable and load signals for an integral counter 

 

 

If the error signal is in high state (P=1) and the directional signal is in the high 

state (D=1), the integral counter (CI) counts up at frequency fI. If the error signal is in 

high state (P=1) and the directional signal is in low state (D=0), CI counts down at 
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frequency fI. If the error signal is in low state (P=0), CI stops counting and holds its 

current value. CI continues counting from previous states when the next error signal is in 

high state (P=1). These are concluded in Table 4.3. 

 

 

Table 4.3: Summary of integral term counting sequence 

 

Error Signal (P) 

Directional Error 

Signal (D) 

 

Reaction on integral counter (CI) 

0 

 

0 

 

Stop counting & hold at current value. Continue 

from previous states when error signal (P) = 1 

0 

 

1 

 

Stop counting & hold at current value. Continue 

from previous states when error signal (P)  = 1 

1 0 Count Down @ fI

1 1 Count Up @ fI

 

 

4.5.3.4 Derivative Error Signal 

 The derivative counter is implemented by SN74LS169, counting at frequency fD. 

In order to vary the weighting on the derivative terms, the frequencies of the counters are 

carried such that: 

                        

A

D
D f

fK =   Equation 4.7                       

 

KD is the derivative term designed for PID controllers. From Section 4.3.3.1, if 

KD is the largest gain among the three, fD is one hundred times larger than the reference 
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frequency. Thus, fA is known. If KD is not the largest gain, fA is calculated from other 

terms before fD is known. Inputs involve in the derivative counter (CD) are: 

 

I. up/down ( DU / ) 

This input signal is the error directional signal explained in Section 4.5.2. This 

signal controls the counting direction for the counter. When the error directional 

signal is in high state (D=1), the counter counts up. When the error directional 

signal is in low state (D=0), the counter counts down. 

 

II. clock (CLK) 

This input signal is the derivative frequency (fD). This frequency controls the 

counting speed for the derivative counter. 

 

III. inputs (A, B, C, D) 

A, B, C and D load data from 2-line to 1-line data selectors/multiplexers, 

SN74LS157. The multiplexer selects either 1 or -1 based upon the up/down 

directional error signal. If the directional error signal is in low state (D=0), the 

multiplexer chooses -1 and starts counting from there. Likewise, when the 

directional error signal is in high state (D=1), the multiplexer chooses 1. The 

counting starts from 1 or -1 instead of 0 (the default value for a counter) because 

the counting should start taking place as the load signal is activated.  

 

IV. count enable ( ENTandENP ) 
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Count is activated ( ENTandENP  = 0) when error signal is in high state (P=1) 

and when JK flip-flop’s clear is not zero. Else, derivative counter does not count. 

 

V. load ( LOAD ) 

Load is activated ( LOAD  = 0) for 1 clock cycle when the error signal is in high 

state (P=1) and when JK flip-flop’s clear is not equal to zero. Otherwise the 

counter loads no values.  
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Clr = Clear from JKFF
Err = Error signal
Load = Load for Derivative counter
Count = count enable for derivative counter
ClkD = clock for DFF
ClrD = clear for DFF

 
 

Figure 4.8: State diagram to control count enable and load signals for a derivative counter 
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If the error signal is in high state (P=1) and the directional signal is in the high 

state (D=1), the derivative counter (CD) counts up at frequency fD. If the error signal is in 

high state (P=1) and the directional signal is in low state (D=0), CD counts down at 

frequency fD. As the error signal transitions from high to low, the state of CD is subtracted 

from the current state of DFF, CD-R. CD-R is loaded into the adder, while the current state 

of CD is loaded and stored into DFF. CD resets and starts counting from zero when the 

next error signal is in high state (P=1). These are concluded in Table 4.4. 

 

 

Table 4.4: Summary of derivative term counting sequence 

 

Error Signal 

(P) 

Directional Error 

Signal (D) Reaction on derivative counter (CD) 

0 

 

0 

 

Stop counting. Subtract CD from current state of 

DFF, CD-R. Load CD-R into adder. Load and store 

current state of CD into DFF. Resume counter from 

zero when error signal (P) = 1 

0 

 

1 

 

Stop counting. Subtract CD from current state of 

DFF, CD-R. Load CD-R into adder. Load and store 

current state of CD into DFF. Resume counter from 

zero when error signal (P) = 1 

 

1 0 Reset CD. Count Down @ fD

 

1 1 Reset CD. Count Up @ fD
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4.5.3.5 Combination of the Three Separate Terms (P, I, D) 

  From Figure 4.2, the separate signals from the proportional, integral and 

derivative counters are added together by the digital adder, SN74283. The summation of 

the three is loaded into a combined counter, CA. Then, the digital counter SN74LS169 

counts them to zero at base frequency, fA. Inputs involved in combined counter (CA) are: 

I. up/down ( DU / ) 

This input signal depends on the result from the adder. If the most significant bit 

(MSB) of the adder is “1”, (meaning that the summation of the three terms is 

negative), the count down counter (CA) counts up to zero. On the other hand, if 

the most significant bit (MSB) of the adder is “0”, (meaning that the summation 

of the three terms is positive), the count down counter (CA) counts down to zero. 

Hence, the magnitude for the combination of the three signals is derived. 

 

II. clock (CLK) 

This input signal is the base frequency (fA). This frequency controls the counting 

speed for the combined counter. 

 

III. inputs (A, B, C, D) 

A, B, C and D load data from 2-line to 1-line data selectors/multiplexers, 

SN74LS157. The multiplexer selects either “0” or outputs from adder. As the 

counter is not initialized during the first cycle of the error, the multiplexer selects 

“0” so that the input for PWM can be initialized. As the error counting is finished, 
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the inputs from (A, B, C, D) are loaded for counting. Figure 4.8 shows the activity 

of the multiplexer select line. 

 

IV. count enable ( ENTandENP ) 

Count is activated ( ENTandENP  = 0) when the output of the combined counter 

is not zero, so counting continues regardless of the error state. Whenever the 

counter finishes counting (i.e. output = 0), this signal is deactivated.  

 

V. load ( LOAD ) 

Load is activated ( LOAD  = 0) for 1 clock cycle when the error signal transitions 

from high state (P=1) to low state (P=0).  It is also activated during the first error, 

where the counter is not yet initialized. The state diagram in Figure 4.9 shows the 

activation of the load signal. 
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Figure 4.9: State diagram to control multiplexer select line and load signal for a 

combined counter 

 

 

I. Adder: 

The states of the proportional counter (CP), integral counter (CI) and derivative 

counter (CD) are added simultaneously by the adder. Since the adder is an 

asynchronous device, it performs counting when the three counters change state. 

 

II. Combined counters: 

As the error signal transitions from high to low, the count-down counter (CA) 

loads the results from the adder (CP + CI + (CD-R)). The counting direction 

 54



depends on the result from the adder. If the most significant bit (MSB) of the 

adder is “1”, the summation of the three terms is negative; thus the combined 

counter will count up at frequency fA to zero. On the other hand, if the MSB of the 

adder is “0”, the summation of the three terms is positive; then the combined 

counter counts down at frequency fA to zero. However, the counting sequence is 

interrupted when load is activated. In this case, the combined counters discontinue 

the previous counting and pick up the new loaded number. The summary of the 

process to combine the three signals is listed in Table 4.5. 

 

 

Table 4.5: Summary of combine counters counting sequences 

 

Error Signal (P) 

MSB from 

Adder Reaction on combine counter 

0 0 

Load the summation from the adders. 

Count down @ fA until zero is reached 

0 1 

Load the summation from the adders. 

Count up @ fA until zero is reached 

1 0 Continue count down if zero is not reached 

1 1 Continue count up  if zero is not reached 

 

 

4.5.3.6 PWM Amplifying Gain 

The output of the combined counters is fed into an OR gate to generate the 

magnitude of the PWM control signal. The direction of PWM is determined by the MSB 

of the adder.  
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The PWM amplifying gain is derived by first obtaining the highest control voltage 

in an analog simulation; this voltage is divided by the magnitude of the PWM. The final 

result is the amplifying gain for the PWM signal. 

 

4.5.3.7 Theoretical Analog and All-Digital PID Signal Comparison 

A theoretical signal comparison was made between analog and all-digital PIDs. 

Each proportional, integral and derivative term for both analog and all-digital was tested 

and compared in pair. To begin with, an arbitrary set of voltage and gain were first 

programmed into each term. For the all-digital approach, the arbitrary voltage was 

changed to frequency format to represent the error signal. The same parameters of 

voltage and gain were applied to an analog simulation. The theoretical results were 

compared. 

 First, a test was run on an all-digital proportional term. Both integral and 

derivative gains were set to zero. The counters had proportional gain, KP=1.5, and input 

voltage = 1V (150 Hz). In Figure 4.10(a), the lower signal shows the PWM 

corresponding to the error. The upper signal represents the reference waveform of 

(voltage=1*gain=1). The ratio of the period of PWM to the period of the reference 

waveform throughout the simulation represents the amplifying gain produced by the 

proportional counters. In this example, the ratio is 1.5. This result is shown in Figure 

4.10(b). Figure 4.10(c) shows the analog version of proportional signal with 

(voltage=1*gain=1). 

 

 

 56



 
 
 

Figure 4.10(a): PWM of a proportional signal 
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Figure 4.10(b): All-digital simulation of a proportional signal 
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Figure 4.10(c): Analog method of proportional gain multiplied by input voltage  

 
 
 

 
Next, a simulation was run on the integral term to both all-digital and analog PIDs. 

Both proportional and derivative gains were set to zero. The integral gain and the 

constant input voltage were set to 1. The upper signal shown in Figure 4.11(a) reflects the 

reference waveform of (voltage=1*gain=1), while the lower signal represents the PWM 

signal for the integral term. By finding the ratio of the PWM signal to the reference 

waveform, Figure 4.11(b) is obtained. The result shown in Figure 4.11(b) differs from 

Figure 4.11(c) because the all-digital integral counters are saturated after the second cycle. 

The integral counters are not able to finish counting the previous error, while the next 

error is already loaded into the counters. 
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Figure 4.11(a): PWM of an integral signal 
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Figure 4.11(b): All-digital simulation of an integral signal 
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Figure 4.11(c): Analog method of integral gain multiplied by input voltage 
 

 
 
 

Then, a simulation was done on the derivative term on both analog and all-digital 

PIDs. Both proportional and integral gains were set to zero. The derivative gain was set 

to 1, and the input was a ramp with slope equal to 1. The upper signal in Figure 4.12(a) 

shows the reference waveform of (ramp input with slope=1*gain=1), while the lower 

signal in the same plot is the PWM for the derivative term. As the derivative term detects 

the change of direction of the system, the ratio of the PWM signal to the reference 

waveform can be found by first subtracting the current error period from the previous 

error period. Then the PWM signal is divided by the reference waveform. The all-digital 

result displayed in Figure 4.12(b) is consistent with the analog result in Figure 4.12(c). 
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Figure 4.12(a): PWM for a derivative signal 
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Figure 4.12(b): All-digital simulation of a derivative signal 
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Figure 4.12(c): Analog method of integral gain multiplied by input voltage 

 

 

From Figures 4.10(b), 4.11(b) and 4.12(b), the outputs do not start from zero 

milliseconds. This is because the digital pulse train is idle at the beginning of the 

simulation. A PWM signal is only generated each time the error counting is finished. 

Hence, the first rising edge of the all-digital simulation can only respond after the first 

error.  
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CHAPTER 5 

ADPID SIMULATION AND RESULTS 

5.1 Introduction 

In the previous chapter, the structure and the design of an ADPID were introduced. 

In Chapter 5, a case study based on the ADPID theory stated in Chapter 4 is tested. 

Specifically, an ADPID controller is designed and analytically tested on a Lexmark Z-52 

inkjet printer. The goal of the design is to control the system track and stabilize at 1 Volt 

within 0.16 second. 

The transfer function of the printer is derived, and the proper PID gains are 

designed by the Root Locus method. Next, the gains are transformed into appropriate 

proportional, integral and derivative frequencies. Then the ADPID simulation is 

compared with the analog simulation. 

 

5.2 Case Study - Inkjet Printer Carriage Motion Control  

The carriage motion model was analytically obtained from [22], [23]. The author 

approximated the mechanism of the printer by using the pseudo-random binary sequences 

(PRBS) identification technique. In this model, the belt dynamic is assumed to be stiff, 

and thus is ignored. 

 

5.2.1 Transfer Function for the Inkjet Printer Carriage Motion System 

 Figure 5.1 represents an approximate model of the cartridge transport mechanism. 

The parameters of the symbols used in Figure 5.1 are listed in Table 5.1. 
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Figure 5.1:  Analytical model of a cartridge transport mechanism [21] 

 

 

Table 5.1:  Parameters for a cartridge transport mechanism [21] 

 

Symbol Parameter Value 

Jsys Effective moment of inertia 3.973x10-6kg·m2

B Viscous damping 1.890x10-4N·m·sec 

Ra Motor coil resistance 13.6Ω 

La Motor coil inductance 8.16mH 

Kτ Torque constant 0.0452N·m/A 

rp Motor pulley radius 0.0038m 

i Actual current input to carriage DC motor   

ω Angular velocity of carriage armature   

x Carriage position   

 

 

 

 From the transport mechanism model shown in Figure 5.1, the transfer function 

between angular velocity and input voltage for the cartridge transport system is given by  
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 In Equation 5.1, the term Kτ
2 is due to back-emf, and is relatively small compared 

to other terms. Thus, it is eliminated from the equation. By substituting the values of each 

parameter from Table 5.1 into Equation 5.1,  
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 The poles in Equation 5.2 are 0, -47.579, and -1666.64 on the s-plane. The poles 

that are located closest to the jω-axis on the s-plane will dominate the response, since 

they have longer settling times than the others. From Equation 5.2, the dominant poles 

are 0 and -47.579. The least dominant pole can be eliminated by dividing the numerator 

by 1666.64. Hence the closed-loop transfer function between angular velocity and input 

voltage for this cartridge transport system is approximated as  
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 Also, the open-loop transfer function between position and input voltage for the 

cartridge transport system is given by  
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5.2.2 PID Controller for the Inkjet Printer Carriage Motion System 

 The goal of the controller in this project is to track 150 pulses within 0.16 second 

with an overshoot of less than 12%. By using the root locus method explained in Chapter 

3, P, I and D gains for the system are: 

 

KP = 300 

KI = 0.2 

 KD = 0.2 Equation 5.5 

 

 Thus, the closed loop PID compensated system transfer function becomes 

 

 
23
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ss
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++

Equation 5.6 

 

A root locus plot for the PID compensated system is shown in Figure 5.2. The 

step response of the uncompensated system and the PID compensated system are 

displayed in Figure 5.3. 
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Figure 5.2:  Root Locus for a PID compensated system 
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Figure 5.3:  Step responses for an uncompensated system and a PID compensated system 

 

 

5.2.3 Simulation and Results on a PID Compensated System Based on B2 Spice 

 A PID compensated system was tested on B2 Spice software. Simulink was first 

considered to implement this simulation task, as it is more suitable and more generally 

used in system control analysis. However, it was found that the software lacks digital 

components such as up/down counters. Also, to modify an existing counter was not an 

option, as the script files are all hidden. Thus, B2 Spice was chosen as a replacement for 

Simulink. 

 The simulation was divided into analog and digital categories. The results from 

analog and all-digital are compared. 
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5.2.3.1 Analog Simulation 

 In the analog simulation, the PID controller is programmed as an analog transfer 

function. The reference voltage and system output voltage are both converted into digital 

pulses. Then, EXOR compares these two pulses to generate an error signal. In the 

simulation, switches perform as an H-bridge, as H-bridge is not available in the B2 Spice 

software. When the output voltage of the system is greater than the reference voltage, the 

switch selects the negative direction of the PWM control signal, and vice versa. Figure 

5.4 shows the results of the analog PID tracking 1 Volt for 250 ms.  

 

 
 

Figure 5.4:  Analog simulation tracking 1 Volt for 250 ms  

 

 

5.2.3.2 All-Digital Simulation 

 In the all-digital simulation, proportional, integral and derivative terms are 

translated into fP, fI, fD and fA. From Equation 5.3, KP, KI and KD are factored out by one 

hundred because this software consumes intensive computer memory. Later, this factored 
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one hundred is multiplied into the system transfer function. This guarantees that the 

overall closed loop transfer function before and after the modification are the same. The 

modified KP, KI and KD, and the system transfer function, are shown in Equations 5.7 and 

5.8 respectively.  

 

KP = 3 

KI = 0.002 

 KD = 0.002 Equation 5.6 
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The magnitude of the PWM is 5V. The amplifier found to amplify the control signal is 

three. Hence, the final system transfer function for the digital simulation is: 
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Equation 5.8 

 

The largest gain found in Equation 5.6 is KP. As the system in this simulation is tracking 

1 Volt, which is equivalent to 150 pulses-per-inch, the frequency of the reference signal 

is 150 Hz. Thus, the frequency of fP is: 

 

 

Hzf
Hzf

A

P

5000315000
15000150100

=÷=
=×=

Equation 5.9 
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By substituting Equation 5.9 into Equations 4.6 and 4.7, fI, fD are found  

 

Hzf
Hzf

D

I

105000002.0
105000002.0
=×=
=×=

Equation 5.10 

 

Figure 5.5 is the plot of all-digital PID tracking 1 Volt based on the frequencies found in 

Equations 5.9 and 5.10.  

 

 

 
 

Figure 5.5:  All-digital simulation tracking 1 Volt for 350 ms 

 

 

 

5.2.3.3 Analog and All-Digital PID Simulation Comparison 

 Figure 5.5 shows that the ADPID is tracking 1 Volt with approximately ±0.4 Volt 

of fluctuation. The graph is not as smooth as the analog simulation. In an ADPID, 

proportional, integral and derivative counters count the error at various frequencies. The 

three individual signals are added together to generate one summation signal that is 
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counted to zero at the speed of the combined frequency. It would be ideal if the combined 

counters manage to count the summation to zero before the next error comes. However, 

this does not always happen because the length of the error differs from time to time. If 

the summation is large and the next error is ready to be loaded into the combined counter, 

the counting sequence for the previous error is terminated, and the counter starts a new 

counting sequence for the new error. As a result, the model becomes less accurate as the 

settling time is longer and peak voltage is higher. 

Another problem encountered during the simulation was that the digital counter 

SN74LS169 does not work exactly as planned in Chapter 4. In general, a synchronous 

counter counts when the count enable is low at the rising edge of the clock. In Chapter 4, 

however, the conditions for proportional, integral and derivative counters to count merely 

depend on the rising edge of the error signal. This means that regardless of the clock, all 

the counters should start counting at the very beginning of the error. However, during the 

digital simulation, the clock is an independent source. As any clock frequencies among 

proportional, integral and derivative counters are relatively small compared to the 

generated error frequency, the rising edges of the clock miss the occurrence of the error. 

As a result, the counters do not count even though the count enable is low.  

 Figure 5.6 shows the generated error during the first 100 ms of the simulation. 

Figure 5.7 shows the clock frequency of integral and derivative counters for 100 ms. 

From Equation 5.10, integral and derivative counters at 10 Hz count only one time within 

100 ms. Thus, all the generated error lying between the rising edges of the clock are 

missed. 
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Figure 5.6:  Generated error during the simulation  

 

 

 

 
 

Figure 5.7:  Counting frequency for integral and derivative counters at 10 Hz 
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The accuracy can be improved by replacing the digital counter SN74LS169 with 

an asynchronous counter. An asynchronous counter’s clock rising edge depends on the 

occurrence of the error as well as the counting frequency. The clock in the all-digital 

simulation has a rising edge which occurs consistently throughout the simulation. By 

replacing the synchronous with the asynchronous counter, the counting will start at the 

rising edge of the generated error. Technically, the rising edge of the clock will align with 

the rising edge of the generated error. This will solve the problem caused by the 

synchronous counter. 

 Also, the all-digital result can be improved by reversing Equation 4.4 to 

 

DIPZ
f
fK

Z

A
Z ,,, == Equation 5.11 

  

The new Equation 5.11 provides a large combined frequency fA with respect to fZ 

when the gain is larger than one. From the digital simulation result, there is a problem 

when the combined counters have insufficient time to count the error to zero. According 

to Equation 4.4, when the gain is larger than one, fA is smaller than fZ. As a result, the 

time for the combined counters to count the summation to zero will be much longer than 

the time spent to count the error. By substituting Equation 4.4 with Equation 5.11, the 

combined counters timing issue can be improved such that the combined counters are 

now able to count more aggressively than before. 

As the combined counters timing issue is improved, both Equations 4.4 and 5.11 

agree that the model will be more efficient when the frequencies of all the terms are 

increased proportionally. As the frequencies increase, the error can be counted more 

 74



accurately. However, this implementation will cost more in hardware in order to prevent 

the counters from overflowing.  
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

 The all-digital implementation of a PID controller explores an option in addition 

to analog and digital PID controllers. The concept of an ADPID stems from the use of 

PWM, where the controller’s proportional, integral and derivative actions are converted 

into pulses by means of standard up-down digital counters and other digital logic devices. 

The final product of a controller will be realized in digital programmable logic devices 

such as FPGAs and CPLDs. 

Professors Bruce Walcott and Michael Marra from the University of Kentucky 

were the pioneers of ADPID controllers. In 1998, the authors introduced an ADPID as a 

replacement to analog and digital PIDs. The concept was filed in a patent application by 

the two professors, called “Asynchronous Digital Implementation of PID controllers”. In 

the patent application, the authors contrasted the ADPID to the traditional PID, and listed 

the requirements to implement this sort of controller. The introduction of ADPID 

eliminates both ADC and DAC, which reduces cost, error and delay to the system.  

 In an ADPID, each proportional, integral and derivative term is represented by a 

pair of frequencies, where the ratio of the frequencies equals the gain of each term. These 

frequencies determine the counting speeds of the counters. After defining a pulse train to 

represent the desired output of the encoder, an error signal is formed and processed by the 

ADPID. The resulting ADPID output or control signal is in PWM format, and can be fed 

directly into the target system without ADC. 
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 Each term in the PID consists of two sets of counters, CZ1 and CZ2, where z 

represents P, I or D. The weightings on the P, I and D terms are varied by the frequencies 

of the counters. For instance, the weighting on the proportional term is  

 

2

1

P

P
P f

fK = Equation 6.1 

 

CP1 counts at a frequency of fP1 when the error signal is in the high state. The 

counting direction depends solely on the error directional signal. When the voltage of a 

system output exceeds the voltage of a desired reference, the counters are set to count 

down mode, and vice versa. As the error signal transitions from high to low, CP1 stops 

counting and resets the counters to zero. CP2 loads the current state of CP1 and counts the 

state at the frequency of fP2 to zero.  

 In order to represent an integrating action, the weighting on the integral term is  

 

2

1

I

I
I f

fK =
Equation 6.2 

 

When the error signal is in the high state, counter CI1 counts at the frequency of fI1. 

Similarly, the counting direction depends on the error directional signal. As the error 

signal transitions from high to low, CI1 stops counting and holds at the current state. CI2 

loads the current state of CI1 and counts the state at the frequency of fI2 to zero. The CI1 

counters resume from the previous state if the error is in high state. 

The weighting on the derivative term is represented as 
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2

1

D

D
D f

fK =
Equation 6.3 

 

When the error signal is in the high state, CD1 counts at the frequency of fD1. The 

counting direction depends on the error directional signal. As the error signal transitions 

from high to low, CD1 stops counting and subtracts the present state from the current state 

of the register, D flip-flop. The value after the subtraction is loaded into CD2. The D flip-

flop is refreshed with the current state of CD1. Then, CD1 resets the counter. CD2 counts the 

state at the frequency of fD2 to zero.  

In the patent application, the authors did not mention a procedure to combine the 

three separate P, I and D signals. The generation of a PWM control signal and the 

corresponding direction were not stated. There is no detail as to how the error and its 

directional signal can be determined. Also, no guideline for designing the counting 

frequencies was explained. Hence, this thesis includes step-by-step “rule of thumb” 

modifications to complete the picture of an ADPID.  

In the thesis, an error signal is generated by comparing the digital-pulsed 

reference and the encoded system output with an EXOR gate. The direction of an error 

signal is sensed by an operational amplifier. The separate proportional, derivative and 

integral signals are summed together after their first set of counting. Specifically, 

asynchronous adders are placed after CP1, CI1 and CD1, and combine the signals when CP1, 

CI1 and CD1 change state. At the falling edge of an error signal, the summation is 

transferred to combined counters, which count at frequency fA. The output from the 

combined counters goes through an OR gate, becoming a PWM control signal. The 
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corresponding direction is determined by the MSB of the adders. Thus, by implementing 

the ADPID with four counting frequencies, fP, fI, fD and fA, cost and hardware are reduced.  

The modified expression for the counting frequency thus becomes 

 

 
DIPZ

f
fK

A

Z
Z ,,, ==

Equation 6.4 

 

From experimental experience, the counting frequencies are calculated such that 

the highest gain among proportional, integral and derivative signals has a frequency 

range of fifty to one hundred times greater than the frequency of the reference signal. 

Then, fA and the other two frequencies with lower gain can be found by substituting the 

appropriate terms into Equation 6.4. 

The amplifying gain is necessary to amplify the PWM signal. The gain can be 

found by first measuring the maximum control voltage generated in an analog version of 

simulation. Then, this voltage is divided by the magnitude of the PWM signal, emanating 

from the OR gate of the ADPID. The final result is the amplifying gain for the ADPID, 

which is placed after the OR gate, or before the PWM is fed into the system.   

The complete procedure to implement an ADPID is summarized as: 

1. Find P, I and D gains, using one of the methods explained in Chapter 3.  

2. Obtain the resolution of the encoder. Find the desired frequency corresponding 

to the reference signal. 

3. Multiply the highest gain among P, I and D to the range of fifty to one hundred 

times the reference frequency. 
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4. Find the combined frequency, fA, from Equation 6.4. 

5. Find the other two lower gains’ counting frequencies from Equation 6.4. 

6. Perform an analog version of the simulation to measure the largest control 

voltage.  

7. Divide the voltage obtained in Step 6 by the magnitude of the PWM signal. This 

result is the amplifying gain for the ADPID. 

 

Such an ADPID was tested analytically on a Lexmark Z-52 inkjet printer by B2 

Spice software. The controller is designed to track and stabilize the system to 1 Volt 

within 0.16 second. An approximate model of the cartridge transport mechanism for the 

printer was derived. Using the root locus method, the proportional, integral and derivative 

gains were determined to be 300, 0.2 and 0.2 respectively. As the resolution of the 

encoder is 1 Volt, equivalent to 150 pulses per inch, the frequency of the reference signal 

thus becomes 150 Hz. The largest gain is the proportional signal; the frequency of fP is 

calculated to be 15 KHz.  fA, fI and fD were found to be 5 KHz, 10 Hz and 10 Hz 

respectively.  

Both analog and all-digital simulation and results were compared and analyzed. 

Analog simulation shows a peak at around 38 ms, and stabilizes in 80 ms with a ripple of 

±0.05 V, while digital simulation ripples steadily at ±0.4 V.  

 In an ADPID, proportional, integral and derivative signals are combined and 

counted to zero at frequency fA by a combined counter. It would be ideal if the combined 

counters can finish counting before the next error enters; however, this is not always 

possible, because the length of the errors differs from time to time. If the summation is 
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large and the next error is ready to be loaded into the combined counter, the counting 

sequence for the previous error will be terminated in order for the counter to start a new 

counting sequence. As a result, the PWM does not reflect the real control signal for the 

previous error.    

Also, the unwise selection of digital counter SN74LS169 conflicts with the 

counter proposed in Chapter 4, which are asynchronous rather than synchronous. A 

synchronous counter counts when its count enable is low at the rising edge of the clock, 

whereas an asynchronous counter merely depends on the rising edge of its count enable. 

In the all-digital simulation, the clock in the synchronous counter works as an 

independent source. As the clock frequencies among proportional, integral and derivative 

counters are relatively small compared to the generated error frequency, the rising edges 

of the clock miss the occurrence of the error. As a result, the counters do not count when 

the count enable is low.  

 A few attempts have been made to systematize the design of the counting 

frequencies. One was based on the concept of finding the settling time through bandwidth 

frequency. This is done by first getting a Bode plot of an open loop compensated system, 

and then finding the bandwidth frequency at which the magnitude is -3dB. The unit of the 

frequency is converted from rad/sec to Hz. The time constant is the reciprocal of the 

frequency. By approximating settling time equals four times of time constant, a frequency 

corresponding to the settling time can be achieved. In order to obtain a more accurate 

counting sequence, the settling frequency is increased on the order of fifty to one hundred 

times greater than the original frequency. This is the combined frequency, fA.  
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However after deep consideration, this method is found not always to work, 

especially when the system tends to have a small time constant. The combined frequency 

thus becomes small, which effectively reduces the proportional, integral and derivative 

frequencies. Eventually, the counters will not count accurately because of the low 

counting frequencies.  

Another attempt was to set the combined frequency equal to the reference 

frequency. Then, proportional, integral and derivative frequencies can be calculated 

through Equation 6.4. However, this method proves inappropriate because the counting 

sequence presents poor error estimation when gains are small. This attempt is similar to 

the method used throughout the thesis when the gain is one hundred.  

   In addition to previous attempts, a different counters counting sequence was also 

considered. Instead of using the second complement adding method, the first counting 

starts from the middle of an n-bit counter. For example, a 4-bit counter starts counting 

from seven, instead of zero. Ultimately this method was rejected because the counters 

overflow when the errors are continuously in the counting up direction. Also, the work of 

adding the three signals can be more complicated when the counters are switching the 

counting direction. 

 In this thesis, an ADPID is tested on B2 Spice software. Simulink was first 

considered to implement the simulation, as it is generally used to analyze system controls. 

However, Simulink lacks digital components such as up/down counters; in addition, it is 

impossible to modify an existing counter because script files are not available. Thus, B2 

Spice was chosen as a replacement for Simulink. 
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6.2 Future Work 

 The error directional signal in this design is implemented by an analog device, an 

operational amplifier, working as a voltage comparator to compare the desired voltage 

with the analog output from the system. Since the objective of this ADPID is to 

implement the controller all-digitally, a digital method should replace this analog 

implementation, so that the controller can be absolutely programmed into PLDs.  

The simulation presented in Chapter 5 shows that an ADPID should be 

implemented asynchronously rather than synchronously. The rising edge of the clock 

should depend first on the occurrence of the error, then on the counting frequency. 

Technically, the rising edge of the clock is aligned with the rising edge of the generated 

error. Then, the counting rate is determined by the frequencies designed for each of the 

proportional, integral and derivative counters (i.e fP, fI, fD). This helps the counters avoid 

missing counting the errors. 

Also, the simulation result can be improved by rearranging the counting 

frequencies to  

 

DIPZ
f
fK

Z

A
Z ,,, == Equation 6.5 

  

When the gain is larger than one, Equation 6.5 provides a large fA with respect to 

fZ. By letting the combined counters count more aggressively, the insufficient counting 

time issue caused by the combined counters can be improved. 
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In this thesis, the method for designing counting frequencies is determined by 

experimental experience. A mathematical model is yet to be designed, so that ADPIDs 

can be implemented more systematically.  

Even though B2 Spice software was chosen to design and implement the ADPID, 

some deficiencies were discovered throughout the simulation. For instance, B2 Spice 

does not provide any H-bridge. The hidden resistance in the components causes voltage 

fluctuation in the circuit. Also, initially counter SN74LS169 did not work properly, as 

described in the Texas Instrument TTL data book. This problem was fixed months later, 

after this issue had been reported many times to Beige Bag Software, Inc. Due to all the 

inconveniences associated with the software, a more suitable platform should be 

considered in order to test the ADPID more effectively. 

 Last but not least, the ADPID should be programmed into a digital PLD such as a 

FPGA chip. Then it should be utilized on a real application, so that its real world 

performance characteristics can be gauged. 
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