
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

University of Kentucky Master's Theses Graduate School 

2004 

TESTING AND VALIDATION OF A CORRELATION BASED TESTING AND VALIDATION OF A CORRELATION BASED 

TRANSITION MODEL USING LOCAL VARIABLES TRANSITION MODEL USING LOCAL VARIABLES 

Srinivas Reddy Likki 
University of Kentucky, srinivas@engr.uky.edu 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Likki, Srinivas Reddy, "TESTING AND VALIDATION OF A CORRELATION BASED TRANSITION MODEL 
USING LOCAL VARIABLES" (2004). University of Kentucky Master's Theses. 319. 
https://uknowledge.uky.edu/gradschool_theses/319 

This Thesis is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted 
for inclusion in University of Kentucky Master's Theses by an authorized administrator of UKnowledge. For more 
information, please contact UKnowledge@lsv.uky.edu. 

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/gradschool_theses
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu


ABSTRACT OF THESIS 
 
 
 
 

TESTING AND VALIDATION OF A CORRELATION BASED 
 TRANSITION MODEL USING LOCAL VARIABLES 

 
 

A systematic approach of testing and validating transition models is developed and 
employed in testing of a recently developed transition model. The testing methodology uses 
efficient computational tools and a wide range of test cases. The computational tools include a 
boundary layer code, single zone Navier Stokes solver, and a multi-block Navier Stokes solver 
which uses MPI and is capable of handling complex geometries and moving grids. Test cases 
include simple flat plate experiments, cascade experiments, and unsteady wake/blade interaction 
experiments. The test cases are used to test the predicting capabilities of the transition model 
under various effects such as free stream turbulence intensity, Reynolds number variations, 
pressure gradient, flow separation, and unsteady wake/blade interaction. Using the above test 
cases and computational tools a method is developed to validate transition models. The transition 
model is first implemented in boundary layer code and tested for simple flat plate cases. Then the 
transition model is implemented in single zone Navier Stokes solver and tested for hysteresis 
effects for flat plate cases. Finally the transition model is implemented in multi zone Navier 
Stokes solver and tested for compressor and turbine cascade cases followed by unsteady 
wake/blade interaction experiments.  

Using the method developed a new correlation based transition model (Menter et al. 
2004) which uses local variables is tested and validated. The new model predicted good results 
for high free stream turbulence and high Reynolds number cases. For low free stream turbulence 
and low Reynolds number cases, the results were satisfactory. 
 
KEYWORDS: Transition Modeling, Transition Model Validation, Intermittency, Transport 
Equation, Flow Separation. 
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Chapter One 

Introduction 
 

1.1 Introduction to Transition  
Transition plays an important role in various turbomachinery applications. Flow transition is 

affected by large disturbances in the external flow such as pressure gradient and free stream 

turbulence intensity. Flow transition is also affected by Reynolds number variations, flow 

separation, unsteady wake/blade interactions, surface roughness, surface temperature, and 

curvature. The location of the onset and the extension of transition are of major importance in 

various turbomachinery applications. Throughout the transitional region, heat transfer and skin 

friction increase dramatically from their low laminar values at the onset of transition to their 

corresponding high fully turbulent values at the end of transition. In order to calculate heat 

transfer and skin friction in the transition region, accurate prediction of the onset of transition, 

extent of transition and its interaction with the boundary layer development is required. In 

addition the transition behavior has a dominant effect on the separation behavior of boundary 

layers and stall. As a consequence accurate prediction of transition plays an important role in the 

design of efficient turbomachinery components, particularly low-pressure turbines. Due to low 

density and low speeds the Reynolds numbers may drop to very low values. At these low 

Reynolds numbers, the flow remains laminar and may separate on the suction surface of the 

blades before it becomes turbulent. This flow separation is the main cause of losses in low-

pressure turbines. Low-pressure turbines operate at low values of Reynolds number, especially at 

high-altitude cruise conditions. If the flow transition takes place, the separation bubble is 

suppressed and the losses are reduced. Therefore it is crucial to predict under what conditions 

and at what location the flow transition takes place in order to accurately predict losses. As a 

result, the ability to predict transition accurately is of great importance for the design of future, 

highly-loaded efficient turbines for gas turbine engines.  

 

There are a number of different transition mechanisms depending on the turbulence level of the 

external flow, the pressure gradient along the laminar boundary layer, the geometrical details and 

the surface roughness. Flows in turbomachines are affected by free stream turbulence intensity, 
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pressure gradient and unsteady wake/blade interactions. Due to the above effects the main 

transition mechanism in turbomachines is bypass transition (Morkovin, 1969). Bypass transition 

takes place on the boundary layer by high levels of turbulence in the free stream that is generated 

by the upstream blade rows.  

 

1.2 Motivation 
Bypass transition is a complex phenomenon that depends mainly on the turbulence intensity and 

the status of the boundary layer due to pressure gradients and separation. There is also some 

empirical evidence that suggests the structure of the turbulence (length scale) can have an impact 

on the transition location (Mayle, 1991). As linear methods cannot be applied to bypass 

transition, there is only a limited range of engineering tools, most of which are highly empirical 

(Savill, 1993a, Savill, 1996). 

 

It became apparent within the TRANSPRETURB European network on transition prediction 

(http://transition.imse.unige.it/) that there are mainly two concepts used to model bypass 

transition in industry (Menter et al., 2004). The first is the application of low Reynolds number 

turbulence models. However the ability of a low-Re turbulence model to predict transition seems 

to be coincidental. This is because the calibration of the damping functions is based on 

reproducing the viscous sublayer behavior, not on predicting transition from laminar to turbulent 

flow. The progress report of the TRANSPRETURB network states: “The use of turbulence 

models without any coupling to an intermittency equation proves to be very delicate and often 

extremely unreliable in the prediction of transition.”  

 

The second approach, which is favored by industry over low-Re models, is the use of empirical 

correlations. The correlations usually relate the free stream turbulence intensity, Tu,  to the 

transition Reynolds number where the length scale is based on the momentum thickness. There 

are a number of transition models based on empirical correlations. Considerable progress has 

been made in the development of transition models, but existing models are still not always 

robust, because they do not capture all the physics of the transition process well. Transitional 

boundary layers are intermittent, that is at a fixed position in the boundary layer, the flow is 

continuously switching between turbulent like state and non turbulent state as the turbulent spots 
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are convected past. Most existing transition models do not treat these two zones separately. 

Intermittency based models, such as those proposed by Steelant and Dick (1996), Suzen and 

Huang (2000), and Solomon et al. (1995) represent an attempt to model the transition region by 

treating the zones separately. More recently, a new transition model is developed by Menter et al. 

(2004). The new model is based on two transport equations, one for intermittency and one for 

transition onset.  The model uses the concept of vorticity Reynolds number to link transition 

onset correlations with intermittency and is based only on local variables. The new model can be 

used for unstructured grids and parallel processing and is a significant improvement over the 

existing transition models. 

 

Model validation is equally important as model development. Transition models can be 

calibrated for a particular test case. By doing so, the model gives good results for that particular 

case and may not perform well for other cases. What we really need is a transition model which 

gives good results for all the cases and performs well under the effects of freestream turbulence 

intensity, pressure gradient, flow separation, Reynolds number, and unsteadiness. Using the 

validation technique developed in this thesis, transition model is extensively tested for different 

test cases which investigate the predicting capability of the model under various effects like 

freestream turbulence intensity, pressure gradient, flow separation, Reynolds number, and 

unsteadiness.  So there is a need to validate all the existing transition models. In this research an 

approach is developed to test and validate transition models using a wide range of test cases and 

efficient computational tools. Using this approach the predicting capability of the transition 

model under the effects of free stream turbulence intensity, pressure gradient, flow separation, 

Reynolds number, and unsteadiness is investigated. Efficient computational tools which include 

boundary layer code, single zone Navier Stokes solver, and multi block Navier Stokes solver are 

used. First the transition model is implemented in boundary layer code and tested for simple flat 

plate cases. Then the transition model is implemented in single zone Navier Stokes solver and 

tested for hysteresis effects for simple flat plate cases. Then the model is implemented in multi 

zone Navier Stokes solver and tested for compressor and turbine cascade experiments and finally 

for unsteady wake/blade interaction experiments. This thesis details the testing and validation of 

a new correlation based transition model using the systematic approach. 
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The new transition model is the result of a joint collaboration between ANSYS CFX, GE GRC 

and University of Kentucky as shown in figure 1.1. ANSYS CFX played the main role in 

development of the new transition model. University of Kentucky CFD group is responsible for 

testing and validation of the new transition model and also for assisting ANSYS CFX and GE 

GRC in rapid testing of the new model and setting up the test cases. GE GRC is responsible for 

the application of the new transition model for various industrial test cases. The new model is 

implemented in GE’s TACOMA code, CFX code of ANSYS, and GHOST code of University of 

Kentucky. As a result, the new transition model is developed and tested for various 

turbomachinery applications, such as compressor and turbine cascade cases and also for 

industrial wind turbine cases.  

 

 

 

 

  
ANSYS CFX  GE GRC 
           Model    Application
Development

 Model
 New 

      
  UKCFD  
    Testing & 

Validation 

 
Figure 1.1 : Details of Project Collaboration 
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Chapter Two 

Transition Review 

 
2.1 Flow Transition 
In general, there are three important modes of transition. The natural transition process is 

described by Schlichting (1979), and is based on the formation of a weak instability in the 

laminar boundary layer. This instability amplifies and proceeds through various stages until it 

forms fully turbulent flow. Bypass transition described by Morkovin (1969) is caused due to the 

disturbances in external flow such as free stream turbulence and pressure gradient and is 

dominant in gas turbine engines. Separated flow transition occurs in the free shear layer and may 

not involve T-S waves. Separated flow transition is common in low pressure turbines and 

compressors. 

 

2.2 Modes of Transition 
The different modes of transition are natural transition, bypass transition, separated-flow 

transition, periodic-unsteady transition and reverse transition. Bypass transition and periodic-

unsteady transition are observed in majority of the turbomachinery applications. Separated-flow 

transition is observed in compressors and  reverse transition is observed in nozzles with highly 

accelerating flows. The different modes of transition are detailed in the next sections. 

 

2.2.1 Natural Transition 
Natural transition is first described by Tollmien and Schlichting (Mayle, 1991).  This type of 

transition begins with a weak instability in the laminar boundary layer at a critical value of the 

momentum thickness Reynolds number. These instabilities are one dimensional. These weak 

instabilities proceed through various stages of amplifications and amplifies into two dimensional 

instabilities and finally into three dimensional instabilities. These instabilities further grow and 

form loop vortices and then develop into turbulent spots. These turbulent spots convect 

downstream and coalescence to form a fully turbulent boundary layer. 
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2.2.2 Bypass Transition 
Due to high turbulence intensity, pressure gradient and unsteady wake/blade interaction, the first 

two stages of the natural transition process are bypassed and formation of turbulent spots occur 

directly. As the first two stages of the transition process are bypassed, this type of transition is 

named Bypass transition. Morkovin (1969) introduced the term bypass transition to describe the 

transition process, which occurs in high disturbance flows, such as those present in 

turbomachinery. Kachanov (1994) noted that the bypass transition is connected to direct non-

linear laminar flow breakdown under the influence of external disturbances. This is observed 

when high levels of environmental perturbations (free stream disturbances, surface roughness 

etc.) are present (Kyriakides et al., 1999). This type of transition is common in gas turbine 

engines.  

 

2.2.3 Separated - Flow Transition 
In low pressure turbines and compressors, transition may occur in the separated shear layer 

(Mayle, 1991). The laminar flow separates at low Reynolds number due to strong adverse 

pressure gradients. The flow may reattach as turbulent forming a laminar-separation/ turbulent 

reattachment bubble on the surface. The transition occurs within the separation bubble and this 

type of transition occurs due to adverse pressure gradients. The separation bubble length depends 

on the transition process within the shear layer. This type of transition may involve all the stages 

of natural transition. For low free stream turbulence levels the flow in the bubble is laminar and 

instabilities of the T-S type are observed. 

 

2.2.4 Periodic - Unsteady Transition 
This type of transition is caused by the periodic passage of wake structures from upstream 

airfoils or obstructions (cylinders) and is referred to as wake induced or periodic unsteady 

transition (Kyriakides et al., 1999). Transition induced by wakes or shocks, compared to the 

above mentioned stages, appear to bypass the first stage of natural transition. The turbulent spots 

are formed and convect downstream. Turbulent spots immediately coalesce after formation and 

immediately grow and propagate downstream to form fully turbulent layer. This type of 

transition is found in majority of the turbomachinery applications. In turbomachines, viscous 

wakes from the proceeding stator or rotor blade row pass through the succeeding rotor or stator 
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blade row, generating unsteady pressure, surface heat transfer and boundary layers. This is called 

unsteady wake/blade interaction (Fan and Lakshminarayana, 1996).  
 

2.2.5 Reverse Transition or Relaminarization 
Transition from turbulent to laminar flow also exists and is called reverse transition or 

relaminarization.  This type of transition is noticed in flows through nozzles with strong 

acceleration (Mayle, 1991). This is because the acceleration on the pressure side of most airfoils 

near the trailing edge, in the exit ducts of combustors and on the suction side of turbine airfoils 

near the leading edge are generally higher than that for which reverse transition occurs. Reverse 

transition involves a balance between convection, production and dissipation of the turbulent 

kinetic energy within the boundary layer. 

 

2.3 Factors Affecting Flow Transition 
Transition phenomenon is affected by various factors such as free stream turbulence, pressure 

gradient, surface roughness, curvature, compressibility, heat transfer, film cooling, and acoustic 

disturbances. Although the transition phenomenon is affected due to various other secondary 

factors, the above mentioned factors play a significant role in affecting transition phenomenon. 

The effect of above mentioned factors on transition is detailed in the following section. 

 

2.3.1 Free Stream Turbulence 
Free stream turbulence does increase the dynamics and heat transfer in the turbulent boundary 

layer and the heat transfer seems to be more sensitive to free stream turbulence. Increasing the 

free stream turbulence reduces the Reynolds number at which transition onset occurs. Increasing 

the free stream turbulence, the production of turbulent spots increases and thus the transition 

length decreases. At higher turbulence levels, transition occurs in a bypass mode and is 

completely independent of the Tollmien-Schlichting instability (Mayle, 1991). 

 

2.3.2 Pressure Gradient 
The acceleration parameter is an appropriate measurement of the pressure gradient for favorable 

pressure gradient flows. With an increase in acceleration transition Reynolds number increases 
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thus delaying transition. For low turbulence levels the effect of acceleration is significant, while 

for flows in gas turbines where the turbulence level is high, effect of acceleration is negligible as 

the onset of transition is controlled by free stream turbulence. For adverse pressure gradient 

cases, increase in negative acceleration increases the transition Reynolds number, delaying 

transition onset. Effect of turbulence on transition is much less for adverse pressure gradient 

flows when compared to favorable pressure gradients (Mayle, 1991).  

  

2.3.3 Surface Roughness 
Surface Roughness plays a dominant role on transition behavior over an airfoil. Increasing the 

surface roughness decreases the transition Reynolds number and thus the transition occurs much 

earlier on a rough airfoil when compared to a smooth airfoil. For a high free stream turbulence 

level, a highly rough airfoil decreases the transition length by 60% when compared to a smooth 

airfoil. For a smaller roughness, a smaller effect can be observed (Mayle, 1991). 

 

2.3.4 Curvature 
Surface curvature plays an important role in the prediction of transition behavior. A concave 

curvature can either decrease or increase the transition Reynolds number depending on the 

strength of curvature and turbulence level. For a low free stream turbulence case, concave 

curvature can move the transition upstream when Gortler vortices form and break down to 

turbulence. For a high free stream turbulence case, a concave curvature does have a significant 

effect, moving the transition location upstream thereby increasing the turbulent transport and 

causing skin friction to rise by as much as 40%. Transition on a convex surface is only slightly 

delayed and an increase of around 10% in the transition length is observed (Mayle, 1991). 

 

2.3.5 Compressibility 
Majority of the flows in gas turbines are compressible. Compressibility has only very slight 

influence on stability and transition at subsonic speeds. However at higher supersonic speeds it 

has complicated effects. Thus the effect of Mach number on transition onset and production rate 

have to be taken into account along with the effect of shock waves. As Mach number increases 

the onset of transition is delayed and the spot production rate is decreased thus increasing the 

transition length roughly by 8-30%. A passing shock wave from an upstream airfoil induces a 
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small concentrated vortex on the pressure side of the airfoil near the leading edge and thus can 

cause transition as the shock moves along the surface (Mayle, 1991).  

 

2.3.6 Heat Transfer 
Heating or cooling the flow affects the transition at low free stream turbulence intensity. Wall 

heat transfer influences the stability and transition because viscosity depends on temperature. 

Heated or cooled wall also heats/cools the fluid in its vicinity and thus changes the viscosity. 

Reduced near wall viscosity stabilizes the flow owing to increased velocity gradient and 

decreased shape factor thus effecting flow transition. At high free stream turbulence levels it was 

observed that heat transfer has negligible effect on spot production rate and thus on the transition 

length (Mayle, 1991).  

 

2.3.7 Film Cooling 
Film cooling effects the state of the boundary layer and thus causes the flow to undergo 

transition to turbulent flow. Injection of coolant from the film holes along the turbine airfoil 

disrupts the laminar flow and acts as a source of turbulence. Thus the flow transition takes place. 

Even though injection causes transition, a strong acceleration can make the flow laminar again as 

observed during the first stages of film cooled turbine airfoils (Mayle, 1991). 

 

2.3.8 Acoustic Disturbances 
The external flow may contain disturbances, either fluctuations of decaying background 

turbulence (wind tunnels) or atmospheric turbulence (flight conditions). Acoustic noise may be 

present in both situations. Such disturbances especially if they are within a suitable frequency 

band and are large in amplitude, can accelerate the transition process. Thus acoustic disturbances 

can act as a source of turbulence and thus allows transition to take place.    

 

2.4 Transition - Turbomachinery Applications 
Transition plays an important role in various turbomachinery applications such as flows in 

compressors, combustors, high pressure and low pressure turbines. To calculate the heat transfer 

on various components of the turbomachine, transition and its interaction with boundary layer 
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development has to be predicted accurately. In the following section the transition phenomena in 

compressors, combustors, high pressure and low pressure turbines is explained. 

 

2.4.1 Transition Phenomena in Compressors 
In compressors the transition process is interlinked with separation process and thus the interplay 

between separation and transition has to be clearly understood to predict the transition 

phenomena in compressors. Transition in adverse pressure gradients, separated flows and wake 

induced transition has to be clearly studied to understand the transition process in compressors. 

On pressure side of the compressor, transition begins before the point of maximum pressure and 

near the trailing edge we encounter relaminarization. The transition phenomena on the pressure 

side can be calculated accurately but it is insignificant as the losses incurred on the pressure side 

are much less than on the suction side. On suction side transition usually begins near the point of 

minimum pressure and occurs either by bypass mode or separated flow mode depending on the 

Reynolds number of the flow (Mayle, 1991). 

 

2.4.2 Transition Phenomena in Combustors 
Laminar boundary layers exist in combustors for flows with high turbulence and favorable 

pressure gradient. In the exit ducts of combustors, where large favorable pressure gradients exist, 

flow transition occurs in either direction. Transition in combustors have no effect on the 

aerodynamic performance of the combustor unless, as possible in reverse curved exit ducts, the 

duct is so poorly designed that it separates. Transition in combustors mainly affects the heat 

transfer and thus understanding the transition phenomena benefits the prediction of heat transfer 

in combustors (Mayle, 1991).  
 

2.4.3 Transition Phenomena in Turbines 
Predicting flows in turbines is in much advanced stage compared to the flows in any other 

components of the engine. The main reason for this is because the flows in compressor and 

combustor involve large separated regions compared to turbines and thus are much more 

complicated to determine (Mayle, 1991). Also the heat transfer prediction on various parts of the 

turbine is in much advanced stage to provide adequate cooling in face of the ever increasing 
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turbine temperature. Since the flows in a turbine are transitional and as the turbulent heat transfer 

is much larger compared to the heat transfer in laminar flows, prediction of transition is 

important in turbines.  

 

In high pressure turbines, transition mainly affects the heat transfer on various components. 

Since aerodynamic losses are mainly due to the turbulent flow after transition, the effect of 

transition on losses is less significant in high pressure turbines. In low pressure turbine, the flow 

has low Reynolds number. Understanding the transition behavior is particularly important to 

efficiently design the turbine both aerodynamically and thermally.  

 

2.5 Transition Prediction Methods 
Prediction of flow transition plays an important role in the analysis and performance of various 

components of turbomachinery. There are mainly four ways to determine flow transition (Suzen 

et al., 2001). One of the methods is to use the stability theory. In this method, stability equations 

are solved at streamwise stations to predict the onset of transition. This method requires prior 

solution of the mean flow field and does not give any information of the turbulent flow apart 

from onset of transition. Another method is using empirical correlations in the form of en. This 

method also requires prior solution of the mean flow field and these two methods are not 

compatible with current CFD approaches. Another method to predict flow transition is the use of 

low-Reynolds number turbulence models. Savill (1993a), Westin and Henkes (1997) showed that 

none of the existing low-Reynolds number models were adequate to predict the onset and length 

of transition  accurately for a wide range of flow conditions. 

  

An alternative to this approach is to use the concept of intermittency to blend the flow from 

laminar to turbulent regions. The intermittency concept was originally proposed by Emmons 

(1951). He defined the intermittency function γ as the probability of the flow being turbulent at a 

given position. With a constant turbulent spot propagation parameter σ the intermittency function 

can be written as (Narasimha, 1957): 

( ) 







−−−= 2exp1 tr

tr

xx
u

nσγ                                                                                                     (2.1) 
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where u is the free stream velocity and n is the spot generation rate. The number of turbulent 

spots produced per unit length and time at the position of transition onset xtr is given by n. The 

value of n is computed by transition models that correlate it to characteristic flow properties.  

 

Chen and Thyson (1971) introduced an intermittency function taking into account the effect of 

changing freestream velocities on the spot convection velocity:  

( )











−−−= ∫

x

x
trtr

tr

dx
u

xxn 1exp1γ                                                                                                 (2.2)   

 

Solomon et al. (1995) extended this model by defining the spot spreading half-angle α and the 

spot propagation parameter σ as a function of the local pressure gradient parameter λθ.  
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The intermittency function is used to modify the turbulent viscosity as calculated by the Prandtl-

Kolmogorov relation yielding: 

tt µγµ .* =                                                                                                                                     (2.4) 

As the flow in the freestream is turbulent the modification of µt is performed only within the 

boundary layer. At the interface a switching function is applied and γ is set to unity outside the 

boundary layer. 

 

Steelant and Dick (1996) proposed a transport equation for intermittency, in which the source 

term of the equation is developed such that the γ distribution of Dhawan and Narasimha across 

the transition region can be reproduced. Steelant and Dick used their model to predict the 

transition flow under zero, favorable, and adverse pressure gradients. Since their method requires 

solution of two sets of conditioned Navier Stokes equations this method is not compatible with 

the current CFD approaches.  

 

Cho and Chung (1992) developed a γεκ −−  turbulence model for free shear flows. This model 

explicitly incorporates the intermittency into the εκ −  turbulence model by introducing an 
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additional transport equation for intermittency. Cho and Chung used this model to accurately 

calculate spreading rates for free shear flows. This model provided a realistic profile of γ in the 

cross stream direction.  

 

Suzen and Huang (1999) improved the intermittency transport equation by combining the best 

properties of Steelant and Dick’s model and Cho and Chung’s model. Their model reproduces 

the streamwise intermittency distribution of Dhawan and Narasimha and also produces a realistic 

variation of intermittency in the cross stream direction. For attached flows the onset of transition 

is calculated using the new correlation developed by Suzen et al. (2001). For separated flows, the 

onset of transition is calculated using correlation developed by either Davis et al. (1987) or 

Suzen at al. (2001). This model has been validated for a wide range of flows and predicted good 

results for all the cases (Suzen and Huang, 2004). This model requires calculation of momentum 

thickness Reynolds number and running length of the boundary layer. As this model requires 

calculation of integral quantities, it is applicable only for 2-D flows and is difficult to use in 

parallel environment. 

 

Langtry and Sjolander (2002) developed a new transition model which can predict flow 

transition under the influence of free stream turbulence intensity, pressure gradient and flow 

separation. The model is based on Van Driest and Blumer’s (1963) concept of vorticity Reynolds 

number and has been calibrated for use with the Menter (1994) SST turbulence model. This new 

model is validated for T3 test cases and Pak-B low-pressure turbine cases and predicted good 

results. The new model is compatible with unstructured codes, compatible with various widely-

accepted turbulence models, and is computationally inexpensive. This new model is relatively a 

simple transition model which is compatible with current Navier-Stokes codes and appears to 

predict with good accuracy the transition in both attached and separated shear layers. 

 

Menter et al. (2004) developed a new transition model based on local variables. The model is 

based on two transport equations, one for intermittency and the other for transition onset. The 

proposed transport equations do not attempt to model the physics of the transition process (unlike 

e.g. turbulence models), but form a framework for the implementation of correlation based 

models into general purpose CFD methods. The intermittency obtained from the transport 
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equation is used to modify the production and destruction term of the SST turbulence model of 

Menter (1994). The details of the model formulation is given in Appendix A2. For prediction of 

separated flow transition a modification is introduced to the model which is called separated flow 

modification. This modification is implemented to predict good results for low free stream 

turbulence and low Reynolds number cases. However the new model predicted good results for 

high free stream turbulence and high Reynolds number cases and satisfactory results for low free 

stream turbulence and low Reynolds number cases. The new model uses the concept of vorticity 

Reynolds number to link the correlation and the intermittency equation. As the new model is 

based only on local variables, it is compatible with modern CFD methods using unstructured 

grids and massive parallel execution. The new transition model is a significant improvement over 

the existing transition models.  

 

2.6 Transition Model Validation 
There are a number of transition models which are developed and are under development. 

Testing and validation of transition model is as important as model development. Transition 

models can be calibrated for a particular test case. By doing so, the model gives good results for 

that particular case and may not perform well for other cases. What we really need is a transition 

model which gives good results for all the cases and can be used for the design of efficient 

turbines for gas turbine engines. So there is a need to validate all the existing transition models. 

In this thesis a technique to test and validate transition models is developed using a wide range of 

test cases and efficient computational tools. Test cases include simple flat plate experiments used 

for investigating the predicting capability of the transition model under the effects of free stream 

turbulence intensity and pressure gradient, compressor and turbine cascade experiments used for 

investigating the predicting capability of the transition model under the effects of free stream 

turbulence intensity, pressure gradient, flow separation, and Reynolds number, and finally 

unsteady wake/blade interaction experiments used for investigating the predicting capability of 

the transition model under the effect of unsteadiness. Computational tools include boundary 

layer code, single zone Navier Stokes solver, and multi-zone Navier Stokes solver. Using the 

above test cases and testing tools an approach is developed to validate transition models 

systematically. First the transition model is implemented in boundary layer code and tested for 

simple flat plate cases. Then the transition model is implemented in single zone Navier Stokes 
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solver to check for hysteresis effects for simple flat plate cases. Finally the transition model is 

implemented in multi-zone Navier Stokes solver and tested for compressor and turbine cascade 

experiments followed by unsteady wake/blade interaction experiments. 
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Chapter Three 

Method of Testing and Validation 
 

A systematic method of testing and validating transition models is developed using a wide range 

of test cases and efficient computational tools. Test cases include simple flat plate experiments, 

compressor and turbine cascade experiments, and unsteady wake/blade interaction experiments. 

These test cases investigate the predicting capabilities of the transition model under various 

effects like free stream turbulence, pressure gradient, Reynolds number, flow separation, and 

unsteady wake/blade interaction. The efficient computational tools include boundary layer code, 

single zone Navier Stokes solver, and multi block Navier Stokes solver. Using the above test 

cases and computational tools a validation algorithm is developed to test and validate transition 

models. The following section details the test cases, computational tools and the validation 

algorithm. 

 

3.1 Test Cases 
In order to investigate the predicting capability of the transition model under the effects of 

Reynolds number, free stream turbulence intensity, pressure gradient, flow separation, and 

unsteady wake/blade interaction the test cases are setup. The test cases are chosen to investigate 

the capability of the transition models under a wide range of flow conditions which include zero, 

favorable and adverse pressure gradients for different free stream turbulence intensities and 

Reynolds numbers. The test cases assembled form a complete set which simulate realistic 

turbomachinery flow conditions. The test cases are tabulated in table 3.1 along with the effects 

investigated. 

 

Simple flat plate experiments are assembled to investigate the predicting capability of the 

transition model under the effects of free stream turbulence intensity and pressure gradient. 

Compressor and turbine cascade experiments are assembled to investigate the predicting 

capability of the model under the effects of free stream turbulence intensity, pressure gradient, 

Reynolds number, and flow separation. Unsteady wake/blade interaction experiments are 
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assembled to investigate the capability of the model under the effect of unsteadiness. The test 

cases are described in detail in the following sections. 

 

3.1.1 T3 Flat Plate Experiments of Savill (1993a, 1993b) 
The ERCOFTAC T3 benchmark test cases are assembled by Savill (1993a, 1993b) to test the 

ability of transition and turbulence models to predict the effects of free stream turbulence 

intensity and Reynolds number on the development and subsequent transition of a laminar 

boundary layer under zero and variable pressure gradient conditions. For the testing and 

validation of transition models some of the T3 flat plate test cases used include T3A, T3B, T3A-, 

T3C1, and T3C2. Cases T3A, T3B, and T3A- are zero pressure gradient cases for three different 

free stream turbulence intensities. Cases T3C1 and T3C2 are cases with continuous change in 

pressure gradient representing an aft-loaded turbine blade for two different turbulence intensities. 

The schematic diagram of the flat plate used for the experiments is shown in figure 3.1. The 

variation of the pressure coefficient distribution along the flat plate for variable pressure gradient 

cases is shown in figure 3.2. Table 3.2 gives the details of the inlet velocity, turbulence intensity, 

and pressure gradient for each of the flat plate cases. T3 flat plate test cases are used for initial 

model testing and validation.  

 

3.1.2 Pak-B Low-Pressure Turbine Blade Experiments of Huang et al. (2003) 
Huang et al. (2003) conducted experiments on PAK-B blade cascade for a wide range of 

Reynolds numbers and turbulence intensities. These experiments are assembled to investigate the 

effect of free stream turbulence, pressure gradient, Reynolds number, and separation on flow 

transition. The Reynolds number range from 50,000 to 100,000 based on inlet velocity and axial 

chord. In their experiments the blades has an axial chord length of 6.28 inches. The Pak-B 

cascade details are shown in figure 3.3. The experimental pressure coefficient values and 

velocity profiles are measured using surface mounted hot films along the suction side of the Pak-

B blade cascade. The freestream turbulence intensity in the tunnel was measured as 0.08%. In 

order to increase the turbulence intensity, two grids with different mesh sizes are used. One of 

the grids had the mesh size of 2.54cm (denoted as Grid 0) and the other had 0.80cm (denoted as 

Grid 3). The decay of turbulence after the grids was measured using crosswire. The grids were 

movable in the tunnel so that the turbulence level of the flow that reaches the blades could be 
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controlled by moving the grid that is, by increasing or decreasing the distance between the grid 

and the blade. Experiments were performed for Reynolds numbers 50,000, 75,000 and 100,000 

with grids placed 30 inches away from the blade leading edge, corresponding to turbulence 

intensities of 2.85% and 1.6% at the leading edge for Grid 0 and Grid 3 respectively. Pressure 

coefficient data is available for all cases and velocity profiles are available for Re=50,000, 

75,000, and 100,000 with FSTI=0.08% and 2.85% cases. Table 3.3 gives the details of the free 

stream turbulence intensities for all the cases.  

 

Experiments of Huang et al. (2003) on Pak-B cascade are used to investigate the effect of free 

stream turbulence intensity, pressure gradient, Reynolds number, and separation on flow 

transition. These experiments form a good case as it tests the ability of transition model to 

predict flow separation and its interaction with transition for a wide range of free stream 

turbulence intensities and Reynolds numbers. 

 

3.1.3 Highly Loaded Compressor Cascade Experiments of Zierke and Deutsch 

(1989) 
Comparisons of viscous computations are most needed under flow conditions typical of modern 

compressor blades, especially under off-design conditions (Zierke and Deutsch, 1989). 

Therefore, measurements of boundary layers and near wakes have been acquired on a highly 

loaded compressor cascade blade at two incidence angles near a chord Reynolds number of 

500,000. The incidence angles of 5.0° and -1.5° yield boundary layers with a wide variety of 

characteristics. In order to provide the experimental data, a cascade facility with a one-

component laser Doppler Velocimeter to measure the periodic, two-dimensional flow field about 

a double-circular-arc, compressor blade in cascade is developed. These measurements provide 

some physical insight into the very complex flows in the turbomachinery. The transitional 

separation bubbles in compressors play an important role in the development of most of the 

boundary layers and wakes measured in the cascade and thus computing these bubbles prove to 

be a key aspect in computing the entire cascade flow field. The blade section used in the tests is a 

compressor blade designed at the NASA Lewis Research Center. The blade section is a double-

circular-arc blade with 65° of camber, a 20.5° stagger angle, a solidity of 2.14 and 228.6 mm 
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chord length. Available data from the experiments include skin friction coefficient on both the 

pressure side and suction side of the cascade measured using laser Doppler velocimetry.  

 

The experiments of Zierke and Deutsch on a compressor cascade are conducted to predict the 

transitional separation bubbles in the compressor which prove to be a key aspect in computing 

the much complex flow field in a compressor cascade. This experiment forms a good case as it 

provides physical insight into the very complex flows in a compressor.  

 

3.1.4 Large Scale Turbine Cascade Experiments of Ubaldi et al. (1996) 
Wakes from turbine blades are unsteady in character, because of the formation of large organized 

vertical structures, known as Von Karman vortex sheet. This phenomenon is well known in 

cylinders, especially at moderate Reynolds numbers. Vortex shedding is a cause of energy losses, 

periodic mechanical loading, vibrations and noise (Ubaldi et al., 1996). The current experiment 

is a technique on large scale cascades of a turbine blade profile designed at VKI. The details of 

the VKI blade are summarized in table 3.4. The VKI cascade details are shown in figure 3.4. The 

blade boundary layer development was noted on the suction and pressure sides of the central 

blade of a three-blade large scale turbine linear cascade. The blade profile, designed at VKI, is 

representative of a high efficiency gas turbine nozzle blade. During the experiment, the cascade 

was operating at an isentropic downstream Mach number of 0.24 and the Reynolds number 

based on the outlet flow conditions and chord length was 1.6*106. Experimental data include 

normalized friction velocity on the suction side of the blade measured using fiber optic laser 

Doppler velocimeter. 

 

3.1.5 Unsteady Wake/blade Interaction Experiments of Stieger et al. (2003) 
An experimental investigation of the effects of unsteady wake/blade interaction on transition and 

separation in low pressure turbines is performed by Stieger et al. (2003). These experiments were 

conducted in order to investigate the effects of periodically passing wakes on laminar to 

turbulent transition and separation in low pressure turbines. The test section was designed to 

simulate unsteady wakes in turbine engines in order to study their effects on boundary layers and 

separated flow regions on blade suction surface. The test section involved a T106 turbine blade 

cascade subjected to wake passing from a moving bar wake generator. The flow conditions 
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correspond to Rex=91, 077 based on chord and inlet velocity and FSTI = 0.1%. Table 3.5 shows 

the details of T106 cascade. Figure 3.5 shows the experimental setup of the bar passing cascade 

with T106 profile and figure 3.6 shows the cascade arrangement for the experiment. The 

experimental data include velocity profiles of the wake at different locations, pressure coefficient 

distribution, turbulent kinetic energy contours, and phase averaged and mean velocity 

distributions along the suction side of the blade measured together with hot wire boundary layer 

traverses and PIV.  

 
Unsteady wake/blade interaction experiments of Stieger et al. (2003) on T106 cascade are used 

to investigate the effect of periodically passing wakes on laminar turbulent transition and 

separation in low pressure turbines. 

 

3.2 Computational Tools 
The computational tools used for testing and validation of transition models consists of a 

boundary layer code which solves the boundary layer equations and a single zone Navier Stokes 

solver and a multi zone Navier Stokes solver. All the codes use finite volume approach to solve 

the flow field equations, turbulence model equations, and the transition model equations. 

Boundary layer code is used for initial testing and validation of transition models and also for the 

development of new correlations, grid dependence, and parametric studies. During the validation 

process of the transition model, boundary layer code is used in the initial stages as it takes 

comparatively less time computationally to obtain a solution compared to the Navier Stokes 

solvers. The single zone Navier Stokes solver is used to validate the transition model for T3 flat 

plate test cases to check the hysteresis effects. Multi zone Navier Stokes solver is used for the 

validation of the transition model for compressor and turbine cascade experiments and also for 

unsteady wake/blade interaction experiments. Multi zone Navier Stokes solver “GHOST” uses 

MPI to allow different computational zones to be executed on different processors at the same 

time reducing the computational time. All the codes are developed at University of Kentucky by 

Dr. P. G. Huang. The details of the codes are given in the following sections. 
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3.2.1 Boundary Layer Code 
The boundary layer code solves the mean flow equations using second order finite volume 

method. The boundary layer code has  SST, εκ −  and ωκ − turbulence models implemented in 

it. Boundary layer code solves the turbulence model and the transport equations for intermittency 

and transition onset using second order finite volume method. The code is used for validation of 

the new transition model for T3 flat plate test cases. Boundary layer code is used during the first 

stages of testing as it is computationally efficient and takes less time to obtain a solution 

compared to Navier Stokes solver. Boundary layer code is used for grid dependency check and 

parametric study of the transition model. Also the boundary layer code is used for development 

of various correlations for transition onset and transition length and also for the development of 

new transition model. 

 

3.2.2 Single Zone Navier Stokes Solver 
The single zone Navier Stokes solver calculates the flow field equations, turbulence model and 

the transport equations for intermittency and transition onset using second order finite volume 

method. The code has SST, εκ −  and ωκ − turbulence models implemented in it. The code is 

used in the second stage of the validation process described in the next section to check the 

model for hysteresis effects for zero pressure gradient T3 cases. Single zone Navier Stokes code 

is used to test and validate the transition model for simple flat plate cases, investigating the 

predicting capability of the model under the effects of Reynolds number, free stream turbulence 

and pressure gradient.   

 

3.2.3 Navier Stokes Solver “GHOST” 
GHOST is a multi-zone Navier Stokes solver developed at University of Kentucky by Dr. P. G. 

Huang. This code is based on a finite volume formulation with chimera overset grids. GHOST 

code is implemented with Menter’s SST two-equation model, which has been found to provide 

good predictive capability for flows with separation. QUICK and TVD schemes are applied to 

discretize the convective terms in the momentum, turbulence and transition model equations. 

Central difference scheme is used for the diffusive terms and the second order upwind time 

discretization is employed for the temporal terms. GHOST code employs MPI parallelization to 
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allow different computational zones to be executed on different processors thus decreasing the 

effective computation time. GHOST code has been tested extensively and is currently being used 

for a variety of CFD studies. GHOST code is used to validate the transition model for turbine 

and compressor cascade cases. 

 

3.3 Method of Validation 
A systematic approach of testing and validating transition models is developed using the wide 

range of test cases and the available testing tools. The validation approach is given below in the 

form of an algorithm. 

 

Algorithm for testing and validation of transition models 

Step 1 : The transition model is implemented in the boundary layer code and tested for T3 flat 

plate test cases of Savill (1993a,1993b). The boundary layer code is used at this level as it is 

computationally efficient and takes less time to obtain the solution. Also T3 flat plate cases are 

so chosen because they are the simplest of all the cases used to investigate the effect of Reynolds 

number, free stream turbulence intensity, and pressure gradient on flow transition. T3 flat plate 

experiments employed consist of three zero pressure gradient cases of varying free stream 

turbulence intensities and two variable pressure gradient cases for different turbulence 

intensities. T3 flat plate experiments are used for initial testing and validation of the transition 

model. 

 

Step 2 : The transition model is then implemented in the single zone Navier Stokes solver and 

tested for T3 flat plate test cases. The solution obtained from Navier Stokes solver is checked 

against the solution obtained from boundary layer code for hysteresis effects. If the solutions 

obtained from step one and step two are different then the source of discrepancy is found and 

changes are made in the transition model and step one is repeated. The same procedure is 

repeated until solutions obtained from step one and two are the same. If the solutions obtained 

from both the codes are similar then step three is performed. At this step, the results obtained 

from step one are tested for hysteresis effects and verified. 
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Step 3 :  The transition model is implemented in the multi block Navier Stokes solver “GHOST” 

and tested for turbine and compressor cascade experiments. This step consists of three substeps 

which were performed using a systematic approach. If any discrepancy from the results is found 

for the below steps, then the source of discrepancy is found and changes are made in the 

transition model and all the steps starting from step one are repeated until a satisfactory result is 

obtained.  

 

Step 3.1 : The transition model is first tested for Pak-B cascade experiments of Huang et 

al. (2003). These experiments are used to investigate the predicting capability of the transition 

model under the effects of flow separation, Reynolds number variations, and freestream 

turbulence intensity. Using this case the transition model is tested for a wide range of free stream 

turbulence intensities and Reynolds numbers. The predicting capability of the transition model is 

investigated for three different turbulence intensities and for three different Reynolds numbers.  

 

Step 3.2 : The transition model is then tested for PSU compressor cascade experiments of 

Zierke and Deutsch (1989) and Genoa large scale turbine cascade experiments of Ubaldi et al. 

(1996). Using these cases the predicting capability of the transition model is investigated under 

the effects of free stream turbulence intensity, Reynolds number, pressure gradient, and flow 

separation. 

 

Step 3.3 : The transition model is finally tested for effects of unsteadiness using the 

unsteady wake/blade interaction experiments of Stieger et al. (2003). This experiment 

investigates the capability of the transition model under the effects of free stream turbulence, 

Reynolds number, pressure gradient, flow separation, and unsteady wake/blade interaction. 

 

Conclusion : Using all the above stages of the algorithm the predicting capabilities of the 

transition model is extensively tested under the effects of various important parameters such as 

free stream turbulence intensity, Reynolds number, pressure gradient, flow separation, and 

unsteadiness. 
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Table 3.1 : List of Test Cases 

 

Test Cases Effects Investigated 

T3 Flat plate cases of Savill (1993a, 1993b) Re, FSTI, dp/ds 

Pak-B cascade experiments  of  

Huang et al. (2003) 

Re, FSTI, dp/ds, separation 

PSU compressor cascade experiments of 

Zierke and Deutsch (1989) 

Re, FSTI, dp/ds, separation 

Genoa large scale turbine cascade 

experiments of Ubaldi et al. (1996) 

Re, FSTI, dp/ds, separation 

Unsteady wake/blade interaction experiments 

of Stieger et al. (2003) 

Re, FSTI, dp/ds, separation, 

unsteadiness 

 

 

Table 3.2 : Details of T3 Flat Plate Experiments of Savill (1993a, 1993b) 

 

Test Case       Inlet 

Velocity(m/s) 

  Turbulence       

  Intensity(%) 

   Pressure    

   Gradient 

T3A 5.4 0.035 zero 

T3B 9.4 0.065 zero 

T3A- 19.8 0.00874 zero 

T3C1 6.3 0.0911 variable 

T3C2 5.3 0.0287 variable 
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Table 3.3 : Details of Experiments of Huang et al. (2003) 

 

                  

    Reynolds      

     Number 

(Re= µρ /xincu )

 

Turbulence   

Intensity(%) 

50000 0.08 

75000 0.08 

100000 0.08 

50000 2.35 

75000 2.35 

100000 2.35 

50000 6.0 

75000 6.0 

100000 6.0 

 

 

Table 3.4 : Cascade Geometry for Genoa Cascade Experiments of Ubaldi et al. (1996) 

 

Chord Length C = 300 mm

Pitch to chord ratio g/c = 0.7 

Aspect ratio h/c = 1.0 

Inlet blade angle deg01 =β  

Number of blades N = 3 
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Table 3.5 : Details of T106 Cascade for Experiments of Stieger et al. (2003)  

 

Chord 198mm 

Blade stagger 59.3° 

Cascade pitch 158mm 

Inlet flow angle 37.7° 

Design exit flow angle 63.2° 

Bar diameter 2.05mm 

Axial Distance: bars to LE 70mm 

Flow Coefficient(Uaxial/Ubar) 0.83 

 

 

 

Uin H
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Figure 3.1 : Schematic Diagram of Computational Grid for Flat Plate Experiments of Savill 

(1993a, 1993b) 
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Figure 3.2 : Pressure Coefficient Profile for Variable Pressure Gradient Flat Plate Experiments of 

Savill (1993a, 1993b) 

                                                                       

 
 

Chord length, L 

Axial chord length, Lx 

Axial chord to chord ratio, Lx/L = 0.906 

 Pitch to chord ratio, P/L = 0.8 

Blade inlet angle  , β1=35° 

Blade outlet angle, β2=-60° 

Figure 3.3 : Details of P&W PAK-B Blade Cascade (Huang et al., 2003) 
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Figure 3.4 : Details of Genoa Blade Cascade (Ubaldi et al., 1996) 
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Figure 3.5 : Bar Passing Cascade With T106 Profile (Stieger et al., 2003) 
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Figure 3.6 : T106 Cascade Arrangement for Unsteady Transition due to Wake Impingement 

(Stieger et al., 2003) 
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Chapter Four  

Results and Discussion 
 
The new transition model developed by Menter et al. (2004) is tested and validated using the 

algorithm outlined in the previous chapter. The transition model consists of two transport 

equations, one for intermittency and one for transition onset. To predict good results for low free 

stream turbulence intensity and low Reynolds number flows, a separated flow modification is 

made to the model. Details of the model formulation is given in appendix A2. The model is 

validated for simple flat plate experiments, compressor and turbine cascade experiments and 

unsteady wake/blade interaction experiments. The transition model is validated using the 

boundary layer code, single zone Navier Stokes code, and multi zone Navier Stokes code. The 

transition model is first tested using simple flat plate experiments, then tested using compressor 

and turbine cascade experiments and finally using unsteady wake/blade interaction experiments 

as per the validation algorithm given in previous chapter.  The results obtained for all the test 

cases are described in the following sections. 

  

4.1 T3 Flat Plate Experiments of Savill (1993a, 1993b)  
The new transition model is first tested for the simple flat plate experiments as mentioned in step 

one of the validation algorithm. T3 flat plate test experiments assembled by Savill (1993a, 

1993b) investigate the predicting capability of the transition model under the effect of free 

stream turbulence intensity, Reynolds number and pressure gradient. Cases T3A, T3B, and T3A- 

are zero pressure gradient cases and T3C1 and T3C2 are cases with continuous change in 

pressure gradient representing an aft-loaded turbine blade. The length before the flat plate at 

which free stream conditions are mentioned is called the starting length. The starting length for 

all the cases is 0.05m. The height of the grid is 0.08m. The schematic diagram of the 

computational grid used for flat plate cases is shown in figure 3.1 in the previous chapter. The 

length of the grid and inflow conditions for all the T3 cases is given in Table 4.1. In the 

computations, 100 grid points, expanding from wall to the freestream, were used in the cross 

stream direction for all the T3 cases. The y+ values for the first point away from the wall is 0.1 

for all the cases. The solutions were obtained by using 2000  streamwise points for T3A test 
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case. For T3B, T3A-, T3C1, and T3C2 test cases 1000 streamwise points are used. These step 

sizes and cross stream grid points were found satisfactory by performing a careful grid-

independency check, in which the step sizes and grid spacing were both decreased by half and no 

effect on the solutions was found. Inlet turbulent kinetic energy is fixed according to the 

freestream turbulence levels and the energy dissipation rate is adjusted according to the decay of 

the freestream turbulence. The Reynolds number (Rex) for all the T3 test cases is based on the 

freestream velocity at the flat plate leading edge. 

 

T3A experiment of Savill corresponds to a zero-pressure-gradient flow over a flat plate at Re = 

6.48*105 per meter. The inlet free stream turbulence intensity is 3.5%. The decay of freestream 

turbulence intensity is matched with experimental data by specifying 3.13/ =µµ t  at the inlet 

and is shown in figure 4.1. 

  

The computed skin-friction coefficient distribution is compared to the experimental data in figure 

4.2. The new transition model predicted the length of the transition well. The onset of transition 

is slightly delayed in the computations when compared to the experiments. The comparison of 

the Reynolds number based on momentum thickness, Reθ, is shown in figure 4.3. The Reynolds 

number based on momentum thickness obtained from the computation is under predicted 

compared to the experimental values as seen in figure 4.3. Also the predicted shape factor 

variations were compared with the experimental data in figure 4.4. We can observe premature 

decline of the shape factor in the computations when compared to the experiments.  

 

T3B experiment of Savill corresponds to a zero-pressure-gradient flow over a flat plate at Re = 

12.53*105 per meter. The inlet free stream turbulence intensity is 6.5%. The decay of freestream 

turbulence intensity is matched with experimental data by specifying 0.100/ =µµ t  at the inlet 

as shown in figure 4.5. 

 

The computed skin-friction coefficient distribution is compared to the experimental data as 

shown in figure 4.6. The skin friction plot shows that the new model predicted slightly early 

transition to turbulent flow when compared to the experiment. The comparison of the Reynolds 

number based on momentum thickness, Reθ, and shape factor variation are shown in figures 4.7 

 32



and 4.8 respectively. We can observe that the shape factor is under predicted in the computations 

when compared to experiments from figure 4.8. 

 

T3A- experiment of Savill corresponds to a zero-pressure-gradient flow over a flat plate at Re = 

26.4 * 105 per meter. The inlet free stream turbulence intensity is 0.874%. The decay of 

freestream turbulence intensity is matched with experimental data by specifying 72.8/ =µµ t  at 

the inlet as shown in figure 4.9. 

 

The computed skin-friction coefficient distribution is compared to the experimental data and 

shown in figure 4.10. The onset of transition from the computations is much earlier compared to 

the experimental value as seen in figure 4.10. The comparison of the Reynolds number based on 

momentum thickness, Reθ, and shape factor variation are shown in figures 4.11 and 4.12 

respectively. Shape factor variation from the computational results does not match well with the 

experimental data.  

 

The next cases are the T3C1 and T3C2 experiments of Savill (1993a, 1993b). These cases are 

variable pressure gradient flows representing actual turbine characteristics. Both cases have 

similar pressure variations, but with different Reynolds numbers and free stream turbulence 

intensities.  

 

T3C1 case has an inlet Reynolds number of 6.72*105 per meter. The inlet free stream turbulence 

intensity is 9.11%. The decay of freestream turbulence intensity is matched with experimental 

data by specifying 702.48/ =µµ t  at the inlet and is shown in figure 4.13.  

 

The computed skin-friction coefficient distribution is compared to the experimental data in figure 

4.14. The length of the transition mode predicted according to the computations is short 

compared to the experiments. The flow transitions to turbulent flow earlier in the computations 

when compared to the experiments. The comparison of the Reynolds number based on 

momentum thickness, Reθ, is shown in figure 4.15 along with the shape factor variation in figure 

4.16. The calculated value of Reynolds number based on momentum thickness, Reθ, agrees well 
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with the experiment as seen from figure 4.15. However the shape factor is under predicted 

according to the computations when compared to the experiment as seen in figure 4.16.   

 

T3C2 case has an inlet Reynolds number of 5.65*105 per meter. The inlet free stream turbulence 

intensity is 2.87%. The decay of freestream turbulence intensity is matched with experimental 

data by specifying 9335.8/ =µµ t  at the inlet, as shown in figure 4.17. 

 

The computed skin-friction coefficient distribution is compared to the experimental data and is 

shown in figure 4.18. The onset of transition is delayed according to the computations when 

compared to the experiments. The length of transition is small from the computation compared to 

the experiment. The comparison of Reynolds number based on momentum thickness, Reθ, with 

the experimental data and the shape factor variations are shown in figures 4.19 and 4.20 

respectively. From figure 4.19, we can observe that the Reynolds number based on momentum 

thickness is under predicted according to the computations when compared to the experiments. 

The shape factor variation does not match well with the experimental data.  

 

4.1.1 Grid Dependence Study  
In order to study the effect of grid dependence on flow transition a comprehensive study of the 

effect of grid  density on the skin friction variation is made for zero pressure gradient T3 test 

cases. The dimensions of the computational grid for T3A case is 3.3m*0.08m. First T3A case is 

computed using 1000 points in the streamwise direction and 100 points in the cross stream 

direction as shown in figure 4.21. Then the points in the streamwise direction are doubled to 

2000. We can observe from the figure that the solution obtained using 2000*100 points is the 

grid independent solution. To further study the effect of grid dependence the number of points 

both in the streamwise and cross stream direction were doubled to 4000*200. We can observe 

that the solution obtained using 4000*200 points is same as the solution obtained using 

2000*100 points. Finally the points in both streamwise and cross stream direction are increased 

to 8000*400 points and it is observed that increasing the points does not affect the solution. T3A 

case is then computed using Navier Stokes code which is the second step in the validation 

algorithm. The size of the computational domain for T3A case using Navier Stokes code is 

3.3m*0.08m with 400 and 200 points in the streamwise and cross stream direction respectively. 
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The solution obtained from the Navier Stokes solver is same as the solution obtained using 

2000*100 points for boundary layer code.  Then the effect of grid dependence is studied for T3B 

and T3A- cases. The dimensions of the computational grid for T3B and T3A- cases are 

2.0m*0.08m. The skin friction variation for T3B and T3A- cases are shown in figures 4.22 and 

4.23 respectively. First the boundary layer code is run using 1000 points in the streamwise 

direction and 100 points in the cross stream direction. Then the points in the streamwise direction 

are increased to 2000. The solution obtained using 1000*100 points is the grid independent 

solution. Finally the grid points are increased to 4000*200 and 8000*400 for both T3B and T3A- 

case and no effect on the skin friction variation is observed. Then T3B and T3A- cases are 

computed using Navier Stokes code. The size of the computational domain for T3B and T3A- 

cases using Navier Stokes code is 2.0m*0.08m with 400 and 200 points in the streamwise and 

cross stream direction respectively. The solution obtained using the Navier Stokes code is same 

as the solution obtained using 1000*100 points for the boundary layer code.  

 

The grid independent solutions for all the zero pressure gradient T3 test cases are established and 

the effect of grid density on the solution is studied. Also the transition model is tested for 

hysteresis effects for the flat plate experiments using the single Navier Stokes code which is the 

second stage of the validation algorithm. 

 

4.1.2 Study on Effect of y+  

In order to investigate the effect of first grid point spacing on the predicting capability of the 

transition model, a study on the skin friction variation is made for flat plate T3A experiment. The 

skin friction variation for T3A experiment for different values of y+ is shown in figure 4.24. First 

the solution is computed using a y+  value of 1.0. Then the y+ value is decreased to 0.5. The skin 

friction prediction does not change as the y+ value is decreased from 1.0 to 0.5. Next 

computations are performed using  y+ values of 0.1, 0.01, and 0.001. Decreasing the y+ all the 

way down from 0.5 to 0.001 does not affect the solution. Finally, the y+ value is decreased to a 

value of 0.0001. Decreasing the y+ value to such a low value affects the solution and it can be 

observed from the figure that the onset of transition is delayed. This might be due to the adverse 

effect of the SST blending function. From the figure it can be said that choosing a value from 1.0 
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to 0.001 for y+ does not affect the solution for flat plate test cases. However a value of around 1.0 

is suggested based on the results for all the test cases.   

 

The new transition model predicted satisfactory results for all T3 cases. The computations were 

performed using boundary layer code. Then the transition model is tested for hyseteresis using 

single zone Navier Stokes code. The results obtained from the single zone Navier Stokes code 

are similar to the results obtained from boundary layer code. Having completed both the steps of 

the validation algorithm successfully, the model is then tested for Pak-B cascade experiments of 

Huang et al. (2003) which is the next step of the validation algorithm.  

 

4.2 Pak-B Low-Pressure Turbine Blade Experiments of Huang et al. (2003) 
Next step in the testing and validation process is testing the transition model for Pak-B low-

pressure turbine blade experiments of Huang et al. (2003). Huang et al. (2003) conducted 

experiments on PAK-B blade cascade for a range of Reynolds numbers and turbulence 

intensities. The Reynolds numbers range from 50,000 to 100,000 based on inlet velocity and 

axial chord, coupled with FSTI’s of 0.08%, 2.35%, and 6.0%  as listed in Table 4.2. 

 

The computations for FSTI=0.08% case were performed using the grid shown in figure 4.25. The 

multiblock grid has five zones. The four zones on which the blade grid is superposed each have 

125*225 grid points and the O-type grid around the blade has 401*101 points with first y+ less 

than 0.5. Further refinement of the grid has negligible effect on the solution. 

 

The computations for high FSTI cases are computed using the six zone multiblock grid system 

shown in figure 4.26. The background zones each have 125*225 grid points and the O-type grid 

around the blade has 401*101 points. The computational domain is extended upstream of the 

blade in order to specify the correct turbulence intensity at the inlet and to match the decay of 

turbulence that reaches the blade.  

 

First the cases with no grid in the tunnel corresponding to FSTI=0.08%  are computed. The 

comparisons of computed and the experimental pressure coefficient distribution  along with the 

velocity profiles for Re=100,000, 75,000, and 50,000 are shown in figures 4.27 through 4.32. 
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Velocity profiles are computed at seven axial stations on the suction side of the blade and the 

computed results are compared with the experimental data.  

 

For Re=100,000 the computed pressure coefficient distribution is compared with the 

experimental data as shown in figure 4.27. The experimental data is shown by solid dots, the 

fully turbulent solution is given by dotted line and the result from the transition model is given 

by solid line. The pressure coefficient distribution shown is along the suction and pressure side 

of the Pak-B cascade. The pressure plateau apparent in the figure on the suction side of the blade 

characterizes the separation bubble. We can observe a small separation bubble on the second half 

of the suction side of the blade. From the pressure coefficient distribution we can observe that 

the flow separates around x/Cx = 0.725 and reattachment takes place around x/Cx = 0.85. The 

velocity profile is shown in figure 4.28. The velocity profiles compare well with the 

experimental data as shown in figure 4.28. At the first three stations, the flow is laminar and 

attached. The flow separation takes place at x/Cx = 0.725 according to both computations and 

experiments. Reattachment of the flow takes place around x/Cx =0.85 according to the 

computation and experiment. 

  

When the Reynolds number is reduced to 75,000, the size of the separation bubble increases as 

seen from the plateau on the suction side of the Pak-B blade as shown in figure 4.29. The 

velocity profile is shown in figure 4.30. The flow separates round x/Cx =0.725 and the flow 

reattaches around 0.85 according to the computation, whereas the flow reattaches around 0.875 

according to the experiment. 

  

Finally, the computations are performed for a Reynolds number of 50,000. The size of the 

separation bubble is much larger as seen from the plateau on the suction side of the blade in 

figure 4.31. The velocity profile is shown in figure 4.32. The flow separates around x/Cx =0.725 

and the flow reattaches earlier compared to the experiments  at x/Cx =0.90 and seen in figure 

4.32. According to the computation the flow reattaches earlier compared to the experiment. 

Figures 4.33 shows the effective intermittency contours and the streamlines for a freestream 

turbulence intensity of 0.08% and Reynolds number of 50000. The figure on the left shows the 

intermittency contours on a Pak-B cascade and the figure on the right shows the zoomed portion 
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of the cascade near the trailing edge. From the streamlines in the right figure we can observe the 

flow separation and reattachment clearly. Figure 4.34 shows the turbulent kinetic energy 

contours along with the streamlines for a freestream turbulence intensity of 0.08% and Reynolds 

number of 50000. The figure on the left shows the turbulent kinetic energy contours along the 

Pak-B cascade and the figure on the right shows the zoomed portion near the trailing edge on the 

suction side of the blade. From the figure on the right the separation bubble can be observed.  

 

Next the high FSTI cases are computed and a comparison of computed and experimental 

pressure coefficient distributions along with the velocity profiles is made for Re = 50,000, 

75,000, and 100,000 for freestream turbulence intensity of 6.0%.  

 

For Re=100,000 case, the computed velocity profiles compare well with the experiment as 

shown in figure 4.36. The flow is laminar and attached at the first three measurement stations. 

The flow starts to separate at x/Cx = 0.74 and the flow reattached around x/Cx =0.85. We can 

observe a small separation bubble from the plateau in figure 4.35. The size of the separation 

bubble is in good agreement with the experiment as seen from figure 4.35.  

 

For Re=75,000 case, the pressure coefficient distribution is shown in figure 4.37. We observe a 

separation bubble from the plateau on the suction side of the blade and also the reattachment can 

be observed from the figure. The velocity profile is shown in figure 4.38. The flow is attached at 

the first three measurement stations as shown in figure 4.38. The flow starts to separate around 

x/Cx =0.74 and the flow reattaches around x/Cx = 0.85 according to the computation, whereas the 

flow reattaches around x/Cx =0.87 according to the experiment. 

 

For Re=50,000 case, the pressure coefficient distribution is shown in figure 4.39. We can 

observe a larger separation bubble in this case and the size of the separation bubble from the 

computation is small compared to the experiment. The velocity profile is shown in figure 4.40. 

The flow starts to separate around x/Cx =0.725 and the flow reattaches much earlier than the 

experiment around x/Cx = 0.85 compared to x/Cx =0.89 according to the experiment.  
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Finally computations are performed for Reynolds number of 100,000, 75,000 and 50,000 for a 

freestream turbulence intensity of 2.35%. The computed and experimental pressure coefficient 

distributions for FSTI = 2.35% for Re = 100,000, 75,000, and 50,000 are shown in figures 4.41, 

4.42 and 4.43 respectively. The computed pressure coefficient distributions are in well 

agreement with the experiments.  

 

The pressure coefficient distribution for all nine experiments on Pak-B cascade is shown in 

figure 4.44. The Reynolds number increases from 50,000 to 75,000 and finally to 100,000 from 

left to right. The freestream turbulence intensity increases from 0.08% to 2.35% and finally to 

6.0% from bottom to top. Each plot shows the experimental results, fully turbulent solution and 

the results from transition model. We can observe separation from the plateau on the suction side 

of the blade in all the nine cases. From the figure, we can observe that as the FSTI increases from 

bottom to top, the size of the separation bubble decreases. Also as the Reynolds number 

increases from left to right, the size of the separation bubble decreases. The figures on the top 

right hand side have small separation bubble from both the computations and experiments. The 

size of the separation bubble predicted is in well agreement with the experiments. The figures on 

the bottom left hand side have large separation bubble according to both the computations and 

experiments. The size of the separation bubble is small from the computations compared with the 

experiments. As the transition model does not predict the size of the separation bubble correctly 

and also the reattachment length is not in well agreement with the experiments for low 

freestream turbulence and low Reynolds number cases, a parametric study on the separation 

modification is made to improve the results for low freestream turbulence and low Reynolds 

number cases. 

  

4.2.1 Parametric Study for Low Freestream Turbulence and Low Reynolds 

Number Case 
In order to study the effect of separated flow modification for low freestream turbulence and low 

Reynolds number cases, a parametric study on the separated flow modification is made. The 

computations were performed for a freestream turbulence of 0.08% and for a Reynolds number 

of 50000. The modification for separation-induced transition is shown in appendix A2. Using 

this modification the intermittency obtained from the transport equation is modified to obtain 
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effective intermittency. First the separated flow modification is switched off and the computation 

is performed. Figure 4.45 shows the pressure coefficient distribution along the suction and 

pressure side of the Pak-B cascade from the experiment, fully turbulent solution, transition 

model without separated flow modification and also from transition model for various values of  

s1. The size of the separation bubble is controlled by the constant s1. The solution obtained by 

switching off the separation modification is considered as baseline solution. A large separation 

bubble is observed for the baseline solution. 

 

Next the value of s1 in the separation modification term is changed. The original value for the 

new transition model is 8.0. When the value of s1 is decreased to 0.1 and 0.001, the separation 

bubble size increases and the solution is similar to the baseline solution. Then the s1  value is 

increased to 5.0. Increasing the value of s1 to 5.0 the solution obtained is similar to the solution 

obtained from the original transition model which has a value of 8.0 for s1. Further increasing the 

value of s1 to 10, 15, 50, 150, and finally 500 does not seem to affect the solution. The solution 

obtained using these values is similar to the original solution. We observed the size of the 

separation bubble increases as the value of s1 is decreased to 0.1 and 0.001. This is due to the 

presence of the limiting factor in the calculation of the effective intermittency.  The results show 

that it is not possible to match the experimental data only by changing s1 (i.e. transition length). 

We observe that the transition length can be changed by varying the value of s1. However we can 

match the experimental data only if we predicted the onset of transition accurately. The onset of 

transition correlation we are using is predicting transition onset earlier. Once the transition onset 

is offset it is not possible to match the experimental data changing alone the transition length. 

There are a number of correlations for separated flows in literature. Two such correlations are the 

correlation developed by Davis et al. (1987) and the correlation developed by Suzen et al. 

(2001). In order to predict the onset of transition correctly, the present correlation used in the 

transition model has to be improved or replaced by one of the above correlation. Once the onset 

of transition is predicted accurately, then we can vary the value of s1 such that the reattachment 

length matches the experimental data. However the effect of other parameters on the solution is 

studied and described below. 

 

 40



Table 4.3 gives the details of the modifications for all the computations made here after for the 

parametric study for low freestream turbulence and low Reynolds number cases. Runs 1 through 

7 are made for different values of the constants in the term Freattach. The formulation of the term 

Freattach can be seen from appendix A2. The constants used for the runs 1 through 7 are detailed in 

the table 4.3. Table 4.3 clearly shows the modification made for each run along with the original 

term. From figure 4.46, it can be observed clearly that the separation bubble size and the 

reattachment length cannot be changed changing the constants in Freattach term.  

 

Next the value of the limiter in the calculation of the effective intermittency is changed. The 

original value of the limiter as seen from appendix A2 is 5. Runs 8 through 12 are computed for 

different values of the limiter and the values of the limiter are given in table 4.3. Decreasing the 

value of the limiter to 1.0 (run 9) and to 0.1 (run 8), a large separation bubble is observed and the 

solution is similar to the solution obtained without separation modification (baseline solution). 

When the value of the limiter is increased to 1.5 (run 10) the size of the separation bubble 

decreases. However the size of the separation bubble is large compared to the original solution. 

When the value of the limiter is increased to 3 (run 11) and to 10 (run 12) the solution obtained is 

similar to the original transition model solution. From the above study a value of 5.0 which is 

used for the limiter is highly recommended.   

 

Finally, the effect of changing the blending function on the predicting capability of the transition 

model is studied. Figure 4.48 shows pressure coefficient distribution for the experiment, fully 

turbulent solution, original transition model, and the transition model for different values of the 

factor to the blending function. The values of the factor used for the computations are tabulated 

in table 4.3. Decreasing the blending function by a factor of 10 i.e. for a value of 0.1 (run 13), the 

separation bubble size increases and we observe a large separation bubble. Next the blending 

function is increased by a factor of 5.0 (run 14) and 10.0 (run 15). Multiplying the blending 

function by 5.0 and 10.0 does not affect the solution. The size of the separation bubble is same 

from run 14 and run 15 and are similar to the original transition model solution.  

 

Based on the above parametric study it can be observed that the constants chosen in the final 

model formulation are the best values. Changing the constants increase the separation bubble 
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size. Also changing the transition length (s1) only, the reattachment length does not match the 

experiment. The transition onset has to predicted accurately for the reattachment length and 

separation bubble size to match the experimental data. Thus the correlation developed by Davis 

et al. (1987) or the correlation developed by Suzen et al. (2001) for separated flows has to be 

incorporated to predict the onset of transition accurately. Once the onset of transition is predicted 

correctly the reattachment length and the separation bubble size can be matched well with the 

experimental results.  

 

4.3 Highly Loaded Compressor Cascade Experiments of Zierke and Deutsch 

(1989) 
Then the next step in the validation algorithm is performed. In this step the transition model is 

tested using the compressor and turbine cascade experiments. First the transition model 

predictability is investigated using the experiments of Zierke and Deutsch (1989). Comparisons 

of viscous computations are most needed under flow conditions typical of modern compressor 

blades, especially under off-design conditions. Therefore, measurements of boundary layers and 

near wakes have been acquired on a highly loaded compressor cascade blade at two incidence 

angles near a chord Reynolds number of 500,000. Computational grid used for this case is shown 

in figure 4.49. Computational grid consists of 9 zones.  

 
A comparison of computed pressure coefficient distribution against experiments are shown in 

figures 4.50 and 4.51 for two different incidence angles -1.5° and 5.0° respectively. Table 4.2 

gives the inflow conditions for the computations. On the suction side transition occurs at the 

leading edge due to a small leading edge separation bubble. A separation bubble on the suction 

side trailing edge can be observed from figure 4.51. On the pressure side, transition occurs at mid 

chord and the prediction agrees well with the experimental data. Contours of intermittency, 

turbulent kinetic energy and eddy viscosity are shown in figures 4.52, 4.53, and 4.54 

respectively. There is a discrepancy on the suction side trailing edge for -1.5° case, both in the 

experiments and in the computations. This might be due to the error in the incidence angle. As 

the Reynolds number is very high, there is not much difference between the solution obtained 

using transition model and fully turbulent solution. 

 

 42



 

4.4 Large Scale Turbine Cascade Experiments of Ubaldi et al. (1996) 
Next the transition model is investigated using the large scale turbine cascade experiments of 

Ubaldi et al. (1996). Wakes from turbine blades are unsteady in character, because of the 

formation of large organized vertical structures, known as Von Karman vortex sheet. This 

phenomenon is well known in cylinders, especially at moderate Reynolds numbers. The current 

experiment is a technique on large scale cascades of a turbine blade profile designed at VKI.  

The grid used for the computations is shown in figure 4.55. The computational grid consists of 

six zones with blade grid overlapped on five background zones. 

 

The Reynolds number based on the outlet flow conditions and chord length is 1.6 x 106  and table 

4.2 gives the inflow conditions. The normalized friction velocity is computed on the suction side 

of the blade and is compared with the experimental data as shown in figure 4.56. From the figure 

we can observe that according to the computation, the onset of transition is predicted earlier 

compared to the experiment. Also the transition length is shorter from the computation when 

compared to the experiment. Having tested the transition model using the compressor and turbine 

cascade experiments for the effects of freestream turbulence intensity, Reynolds number, 

pressure gradient and separation, the transition model is finally investigated for the effects of 

unsteady wake/blade interaction.  

 

4.5 Unsteady Wake/blade Interaction Experiments of Stieger et al. (2003) 
A computational investigation on the effects of unsteady wake/blade interaction on transition and 

separation in low pressure turbines has been performed by numerical simulations of recent 

experiments of Stieger et al. (2003). These experiments were conducted in order to investigate 

the effects of periodically passing wakes on laminar to turbulent transition and separation in low 

pressure turbines. The flow conditions correspond to Rex = 91,077 based on chord and inlet 

velocity and FSTI = 0.1% . The grid used for the computations is shown in figure 4.57 along 

with the details of the rod grid. 
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The computed velocity profile of the wake at x/C = -0.04 before it enters the blade passage is 

compared to the experiment as shown in figure 4.58. The figure shows that the computation is in 

good agreement with the experiment illustrating that the wake from the moving bars is captured 

accurately. The computed time averaged pressure coefficient distribution for unsteady 

experiments and computations is shown in figure 4.59. Also shown in figure are the steady state 

results from the computation and the experiment. In steady state computations separation is 

predicted further downstream when compared to the experiment as evident from the comparison 

of the pressure coefficient distributions. We observe that in unsteady computations the separation 

bubble is completely suppressed according to the experiments whereas a small separation bubble 

is predicted according to the computation. However the size of the separation bubble is small 

from the unsteady computations when compared to the steady state computations. Time variation 

of the skin friction coefficient on the suction side of the blade is shown in figure 4.60. It can be 

observed that the flow is largely separated near the trailing edge of the blade for most of the 

time. We observe at a wake passing time (t/T) of 0.5 early transition appears at the 70 percent 

chord location, which is where the wake is located at that point in time. Also observed is the 

reverse flow in the turbulent part downstream of the transition location. Similar regions of the 

reverse flow in the turbulent patch were also observed by Stieger et al. (2003) in the experiment 

using a particle image velocimetry method. The computed and experimental pressure coefficient 

contours are shown in figure 4.61. From the figure it can observed that the peaks in experiments 

were well captured in the computations. But we observe some unsteadiness in the computations. 

Figure 4.62 shows the mean velocity comparisons between the computations and experiment. 

The mean velocity comparisons are made at 25 different stations on the suction side of the T106 

cascade. From the first twenty stations the computational results are in well agreement with the 

experiment. However for the last five stations, near the trailing edge of the T106 cascade, we 

observe a discrepancy and a separation bubble is predicted according to the computations. 

However in experiments no separation bubble is observed. Also comparison of computed and 

experimental phase averaged velocity distributions at various streamwise stations on the suction 

surface of the blade is shown in figures 4.63a through 4.63x. It can be observed from the figures 

that the movement of the wake is captured accurately according to the computations when 

compared to the experiments. The computed and experimental turbulent kinetic energy contours 

at various time levels are shown in figures 4.64a through 4.64h. In the figures the computed 

 44



results are shown on the right column and the experimental data are shown on the left. From the 

figure it can be observed that the location of the wake and the width of the wake is captured 

accurately according to the computations when compared to the experiments. However the 

magnitude of the turbulent kinetic energy is different from the computations when compared to 

the experiments.  

 

Using the unsteady wake/blade interaction experiments of Stieger et al. (2003) the transition 

model is finally tested for the effect of unsteadiness. This experiment investigates the effect of 

periodically passing wakes on laminar to turbulent transition and separation in low pressure 

turbines. From the computational results it is observed that the wake is captured accurately 

compared to the experiments. From the pressure coefficient distribution it can be observed that 

the unsteadiness suppresses the separation bubble. However from the unsteady time averaged 

results it can be observed that flow separation is still predicted, whereas experimental results 

indicate attached flow. Also discrepancies are observed near the trailing edge of the T106 

cascade in the mean velocity profile comparisons. From the results it is evident that a small 

separation bubble is predicted according to the computations. So the separation modification 

made to the transition model has to be further improved.    

 

 

 

Table 4.1 : Inflow Conditions for T3 Flat Plate Experiments of Savill (1993a, 1993b) 

 

 

 Test     

 Case 

Inlet 

Velocity(m/s) 

Turbulence 

Intensity(%) 

 

µt/µ 

Length of 

the Plate, 

L (m) 

Starting  

 Length,    

  S (m) 

Minimum 

Grid Size 

T3A 5.4 0.035 13.3 3.3 0.05 2000*100

T3B 9.4 0.065 100.0 2.0 0.05 1000*100

T3A- 19.8 0.00874 8.72 2.0 0.05 1000*100

T3C1 6.3 0.0911 48.702 1.6 0.05 1000*100

T3C2 5.3 0.0287 8.9335 1.6 0.05 1000*100

 45



 

 

Table 4.2 : Inflow Conditions for Cascade Cases 

 

 

Test Case 

Reynolds  

Number 

     Turbulence 

Intensity (%) 

            

µt/µ 

Huang 

FSTI = 0.08% 

 

50000 

 

0.08 

 

10.0 

Huang 

FSTI = 0.08% 

 

75000 

 

0.08 

 

10.0 

Huang 

FSTI = 0.08% 

 

100000 

 

0.08 

 

10.0 

Huang 

FSTI = 2.35% 

 

50000 

 

2.35 

 

6.50 

Huang 

FSTI = 2.35% 

 

75000 

 

2.35 

 

9.75 

Huang 

FSTI = 2.35% 

 

100000 

 

2.35 

 

13.0 

Huang 

FSTI = 6.0% 

 

50000 

 

6.0 

 

15.0 

Huang 

FSTI = 6.0% 

 

75000 

 

6.0 

 

22.5 

Huang 

FSTI = 6.0% 

 

100000 

 

6.0 

 

30.0 

Zierke(i=5°) 505000 0.18 10.0 

Zierke(i=-1.5°) 501000 0.18 9.0 

Genoa 593200 3.0 1.0 
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Table 4.3 : Modifications for the Parametric Study for Experiments of Huang et al. (2003) 

 

Run Original Term Modified Term 

Run  

  1 

4

15






−

=
TR

reattach eF  

1

15






−

=
TR

reattach eF  

Run  

  2 

4

15






−

=
TR

reattach eF  

8

15






−

=
TR

reattach eF  

Run  

  3 

4

15






−

=
TR

reattach eF  

3

20






−

=
TR

reattach eF  

Run  

  4 

4

15






−

=
TR

reattach eF  

4

4






−

=
TR

reattach eF  

Run  

  5 

4

15






−

=
TR

reattach eF  

4

100






−

=
TR

reattach eF  

Run  

  6 

4

15






−

=
TR

reattach eF  

8

4






−

=
TR

reattach eF  

Run 

  7 

4

15






−

=
TR

reattach eF  

20

2






−

=
TR

reattach eF  

Run 

  8 
treattach

c

v
sep FFs θ

θ

γ 

















−








= 5,0,1

Re193.2
Re

maxmin 1

 

treattach
c

v
sep FFs θ

θ

γ 





















−








= 1.0,0,1

Re193.2
Re

maxmin 1

 

Run 

  9 
treattach

c

v
sep FFs θ

θ

γ 

















−








= 5,0,1

Re193.2
Re

maxmin 1

 

treattach
c

v
sep FFs θ

θ

γ 





















−







= 1,0,1

Re193.2
Re

maxmin 1
 

Run     

 10 
treattach

c

v
sep FFs θ

θ

γ 

















−








= 5,0,1

Re193.2
Re

maxmin 1

 

treattach
c

v
sep FFs θ

θ

γ 





















−







= 5.1,0,1

Re193.2
Re

maxmin 1
 

Run   

 11 
treattach

c

v
sep FFs θ

θ

γ 

















−








= 5,0,1

Re193.2
Re

maxmin 1

 

treattach
c

v
sep FFs θ

θ

γ 





















−







= 3,0,1

Re193.2
Re

maxmin 1
 

Run   

 12 
treattach

c

v
sep FFs θ

θ

γ 

















−








= 5,0,1

Re193.2
Re

maxmin 1

 

treattach
c

v
sep FFs θ

θ

γ 





















−







= 10,0,1

Re193.2
Re

maxmin 1
 

 

 

 47



 

 

Table 4.3 : continued 

 

 Run 

 13 
treattach

c

v
sep FFs θ

θ

γ 

















−








= 5,0,1

Re193.2
Re

maxmin 1

 

treattach
c

v
sep FFs θ

θ

γ 1.05,0,1
Re193.2

Re
maxmin 1 






















−








=

 

 Run 

 14 
treattach

c

v
sep FFs θ

θ

γ 

















−








= 5,0,1

Re193.2
Re

maxmin 1

 

treattach
c

v
sep FFs θ

θ

γ 55,0,1
Re193.2

Re
maxmin 1 


















−








=  

 Run 

 15 
treattach

c

v
sep FFs θ

θ

γ 

















−








= 5,0,1

Re193.2
Re

maxmin 1

 

treattach
c

v
sep FFs θ

θ

γ 105,0,1
Re193.2

Re
maxmin 1 






















−








=
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Figure 4.1 : Variation of Freestream Turbulence Intensity Along the Flat Plate for T3A Case 
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Figure 4.2 : Variation of Skin Friction Coefficient Along the Flat Plate for T3A Case 

Rex

R
e θ

0 250000 500000 750000 1E+06
0

1000

2000

3000

T3A Experiment
Transition Model

 
Figure 4.3 : Variation of Reynolds Number Based on Momentum Thickness Along the Flat Plate 

 for T3A Case 
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Figure 4.4 : Variation of Shape Factor Along the Flat Plate for T3A Case 
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Figure 4.5 : Variation of Freestream Turbulence Intensity Along the Flat Plate for T3B Case 
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Figure 4.6 : Variation of Skin Friction Coefficient Along the Flat Plate for T3B Case 

Rex

R
e θ

0 250000 500000 750000 1E+06
0

1000

2000

3000

T3B Experiment
Transition Model

 
Figure 4.7 : Variation of Reynolds Number Based on Momentum Thickness Along the Flat Plate 

for T3B Case 
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Figure 4.8 : Variation of Shape Factor Along the Flat Plate for T3B Case 
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Figure 4.9 : Variation of Freestream Turbulence Intensity Along the Flat Plate for T3A- Case 
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Figure 4.10 : Variation of Skin Friction Coefficient Along the Flat Plate for T3A- Case 
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Figure 4.11 : Variation of Reynolds Number Based on Momentum Thickness Along the Flat 

Plate for T3A- Case 
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Figure 4.12 : Variation of Shape Factor Along the Flat Plate for T3A- Case 
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Figure 4.13 : Variation of Freestream Turbulence Intensity Along the Flat Plate for T3C1 Case 
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Figure 4.14 : Variation of Skin Friction Coefficient Along the Flat Plate for T3C1 Case 
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Figure 4.15 : Variation of Reynolds Number Based on Momentum Thickness Along the Flat 

Plate for T3C1 Case 
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Figure 4.16 : Variation of Shape Factor Along the Flat Plate for T3C1 Case 
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Figure 4.17 : Variation of Freestream Turbulence Intensity Along the Flat Plate for T3C2 Case 
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Figure 4.18 : Variation of Skin Friction Coefficient Along the Flat Plate for T3C2 Case 
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Figure 4.19 : Variation of Reynolds Number Based on Momentum Thickness Along the 

Flat Plate for T3C2 Case  
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Figure 4.20 : Variation of Shape Factor Along the Flat Plate for T3C2 Case 
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Figure 4.21 : Effect of Grid Dependence for T3A Case 
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Figure 4.22 : Effect of Grid Dependence for T3B Case 
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Figure 4.23 : Effect of Grid Dependence for T3A- Case 
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Figure 4.24 : Effect of y+ for T3A Case 
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Figure 4.25 : Computational Grid for FSTI = 0.08% Case of Huang et al. (2003)  
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Figure 4.26 : Computational Grid for FSTI = 2.35% and FSTI = 6.0% Case of  

Huang et al. (2003)  
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Figure 4.27 : Pressure Coefficient Comparison for FSTI=0.08% & Re=100000 

 61



 

U / Uin

y n
(m

m
)

0 1 20

2

4

6

8

10

x / cx = 0.9

U / Uin

y n
(m

m
)

0 1 20

2

4

6

8

10

x / cx = 0.75

U / Uin

y n
(m

m
)

0 1 2
0

2

4

6

8

10

x / cx = 0.6

U / Uin

y n
(m

m
)

0 1 2
0

2

4

6

8

10

x / cx = 0.7

U / Uin

y n
(m

m
)

0 1 20

2

4

6

8

10

x / cx = 0.80

U / Uin

y n
(m

m
)

0 1 20

2

4

6

8

10

x / cx = 0.85

U / Uin

y n
(m

m
)

0 1 2
0

2

4

6

8

10

x / cx = 0.5

 
Figure 4.28 : Velocity Profile for FSTI=0.08% & Re=100000 
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Figure 4.29 : Pressure Coefficient Comparison for FSTI=0.08% & Re=75000 
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Figure 4.30 : Velocity Profile for FSTI=0.08% & Re=75000 
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Figure 4.31 : Pressure Coefficient Comparison for FSTI=0.08% & Re=50000 
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Figure 4.32 : Velocity Profile for FSTI=0.08% & Re=50000 
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Figure 4.33 : Streamlines and Effective Intermittency Contours for PAK B Cascade 

( FSTI = 0.08% & Re = 50000 ) 
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Figure 4.34 : Streamlines and Turbulent Kinetic Energy Contours for PAK B Cascade 

( FSTI = 0.08% & Re = 50000 ) 
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Figure 4.35 : Pressure Coefficient Comparison for FSTI=6.0% & Re=100000 
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Figure 4.36 : Velocity Profile for FSTI=6.0% & Re=100000 
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Figure 4.37 : Pressure Coefficient Comparison for FSTI=6.0% & Re=75000 
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Figure 4.38 : Velocity Profile for FSTI=6.0% & Re=75000 
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Figure 4.39 : Pressure Coefficient Comparison for FSTI=6.0% & Re=50000 
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Figure 4.40 : Velocity Profile for FSTI=6.0% & Re=50000 
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Figure 4.41 : Pressure Coefficient Comparison for FSTI=2.35% & Re=100000 
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Figure 4.42 : Pressure Coefficient Comparison for FSTI=2.35% & Re=75000 
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Figure 4.43 : Pressure Coefficient Comparison for FSTI=2.35% & Re=50000 
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Figure 4.44 : Pressure Coefficient Comparison for Experiments of Huang et al. (2003) 
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Figure 4.45 : Effect of Varying S1 for Low Freestream Turbulence and Low  

Reynolds Number Case 
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Figure 4.46 : Parametric Study I for Low Freestream Turbulence and Low  

Reynolds Number Case 
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Figure 4.47 : Parametric Study II for Low Freestream Turbulence and Low  

Reynolds Number Case 
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Figure 4.48 : Parametric Study III for Low Freestream Turbulence and Low 

 Reynolds Number Case 
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Figure 4.49 : Computational Grid for Compressor Cascade Experiment of Zierke and Deutsch 

(1989) 
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Figure 4.50 : Pressure Coefficient Comparison for Zierke and Deutsch Compressor Cascade,  

i = -1.5° 
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Figure 4.51 : Pressure Coefficient Comparison for Zierke and Deutsch Compressor Cascade,  

i = 5.0° 
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Figure 4.52 : Intermittency Contours for Zierke and Deutsch Compressor Cascade, 

 i = 5.0° 
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Figure 4.53 : Turbulent Kinetic Energy Contours for Zierke and Deutsch Compressor Cascade,  

i = 5.0° 
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Figure 4.54 : Eddy Viscosity Contours for Zierke and Deutsch Compressor Cascade,  

i = 5.0° 
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Figure 4.55 : Computational Grid for Turbine Cascade Experiment of Ubaldi et al. (1996) 
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Figure 4.56 : Normalized Friction Velocity for Genoa Turbine Cascade 
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Detail of rod grid

 
Figure 4.57 : Computational Grid for T106 Experiments of Stieger et al. (2003) 
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Figure 4.58 : Velocity Profile at x / C = -0.04 for T106 Cascade 
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            Figure 4.59 : Comparison of Computed and Experimental Pressure  

            Coefficient Distributions for T106 Cascade 
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Figure 4.60 : Computed Phase Averaged Skin Friction Coefficient Distribution on the Suction 
Surface of T106 Blade 
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Figure 4.61 : Comparison of Computed and Experimental Pressure 

 Coefficient Contours for T106 Cascade 
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Figure 4.62 :  Mean Velocity Profiles for T106 Cascade 
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Figure 4.63 : Comparison of Computed and Experimental Velocity Distributions at Various 

Streamwise Stations on Suction Surface of the Blade for T106 Cascade 
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Figure 4.63 : continued 
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                                 Experiment                                          Computation 

a)  t / T  = 0.125 

         
                                  Experiment                                       Computation 

b) t / T  = 0.250 
 

Figure 4.64 :  Comparison of Computed and Experimental Isocontours of Turbulent Kinetic 
Energy at Different Time Levels for T106 Cascade, continued 
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                               Experiment                                            Computation 

c) t / T = 0.375 
 

Figure 4.64 : continued 
 

         
                               Experiment                                            Computation 

d) t / T = 0.500 
 

Figure 4.64 : continued 
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                                Experiment                                          Computation 

e) t / T = 0.625 
 

Figure 4.64 : continued   

 
                         Experiment                                             Computation 

f) t / T = 0.750 
 

Figure 4.64 : continued 
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                          Experiment                                           Computation 

g) t / T = 0.875 
 

Figure 4.64 : continued 
 

  
                           Experiment                                            Computation 

h) t / T = 1.0 
 

Figure 4.64 : continued 
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Chapter Five 

Conclusions and Future Work 

 
5.1 Conclusions 
A systematic approach of testing and validating transition models is developed and employed in 

testing of a recently developed transition model. The testing methodology uses efficient 

computational tools and a wide range of test cases. The computational tools include a boundary 

layer code, single zone Navier Stokes solver, and a multi-block Navier Stokes solver. Test cases 

include simple flat plate experiments of Savill (1993a, 1993b), Pak-B cascade experiments of 

Huang et al. (2003), compressor cascade experiments of Zierke and Deutsch (1989), turbine 

cascade experiments of Ubaldi et al. (1996), and unsteady wake/blade interaction experiments of 

Stieger et al. (2003). The above test cases investigate the predicting capability of the transition 

model under the effects of freestream turbulence, Reynolds number, pressure gradient, flow 

separation, and unsteady wake/blade interaction.  

 

A new correlation based transition model which uses local variables is tested and validated using 

the available test cases and computational tools. The new transition model is tested and validated 

for the following experiments. 

 

The new transition model is first tested and validated for T3 flat plate experiments of Savill 

(1993a, 1993b). These experiments investigate the effect of free stream turbulence intensity on 

the development and subsequent transition of a laminar boundary layer under zero and variable 

pressure gradients. T3A, T3B, and T3A- are zero pressure gradient flows and T3C1 and T3C2 

are variable pressure gradient flows. The results obtained from the computations are satisfactory 

when compared to the experiments. The new transition model predicted small transition length in 

some cases and also the onset of transition is predicted earlier compared to the experiments. 

 

The transition model is then validated using PAK-B blade for the experiments assembled by 

Huang et al. (2003). The new model is tested for three different free stream turbulence intensities 

coupled with three different Reynolds numbers. These experiments investigate the capability of 
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the transition model under the effect of free stream turbulence intensity and Reynolds number.  

The new model predicted good results for high free stream turbulence and high Reynolds number 

cases. For low free stream turbulence and low Reynolds number cases the separation bubble 

predicted is small compared to the experiments and also the reattachment point is not in well 

agreement compared to the experiment. This deficiency can be eliminated by further improving 

the separation modification made to the transition model. A parametric study of the separation 

modification of the new model is made and it is concluded that the onset of transition is not 

predicted accurately. Thus changing the transition length alone, reattachment length cannot be 

matched with the experiment. However once the transition onset is predicted accurately using 

separated flow correlations such as correlation developed by Davis et al. (1987) or the alternate 

correlation developed by Suzen et al. (2001), the new model can predict good results for low 

freestream turbulence and low Reynolds number cases. 

 

The new model is then validated for highly loaded compressor cascade experiments of Zierke 

and Deutsch (1989). Computations are made for two different incidence angles and the Reynolds 

number is of the order of 500,000. From the pressure coefficient distribution, a separation bubble 

near the trailing edge on the suction side can be observed. Also on the pressure side transition 

occurs along the mid chord and the prediction agrees well with the experiment. However due to 

high Reynolds number there is not much difference between the solution obtained using 

transition model and fully turbulent solution. There seems to be an error in the measurement for  

-1.5° incidence angle case as seen from the discrepancy from the pressure coefficient distribution 

plot. 

 

The new model is then validated for large scale turbine cascade experiments of Ubaldi et al. 

(1996). From the normalized friction velocity plot it can observed that the onset of transition is 

predicted earlier compared to the experiments. Also the length of transition is short compared to 

the experiment and an sudden rise in the friction velocity can be observed once the transition 

starts. 

 

Using the unsteady wake/blade interaction experiments of Stieger et al. (2003) the transition 

model is finally tested for the effect of unsteadiness. This experiment investigates the effect of 
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periodically passing wakes on laminar to turbulent transition and separation in low pressure 

turbines. From the computational results it is observed that the wake is captured accurately 

compared to the experiments. From the pressure coefficient distribution it can be observed that 

the unsteadiness suppresses the separation bubble. However from the unsteady time averaged 

results it can be observed that flow separation is still predicted, whereas experimental results 

indicate attached flow. Also discrepancies are observed near the trailing edge of the T106 

cascade in the mean velocity profile comparisons. From the results it is evident that a small 

separation bubble is predicted according to the computations. These results indicate that the 

separated flow modification incorporated to the transition model has to be further improved.    

 

5.2 Future Work 
Using the available database of test cases and computational tools, transition models can be 

tested and validated. Also the available test cases and computational tools aid in the development 

of a new transition model.  

 

For the present transition model, the separation modification has to be further improved to 

capture the separation bubble accurately for low free stream turbulence and low Reynolds 

number cases. Also either separated flow correlation developed by Davis et al. (1987) or the 

correlation developed by Suzen et al. (2001) has to be incorporated to predict the onset of 

separated flow transition accurately. The new model has to be validated extensively for unsteady 

cases, further investigating  the effect of unsteadiness on flow transition.  
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Appendix 

 
A.1 Nomenclature 
Cp      pressure coefficient, ptotal-p/(0.5ρUref

2) 

Cf      skin friction coefficient,  τ/(0.5ρUref
2) 

FSTI  freestream turbulence intensity (percent), 100(2k/3)1/2/Uref 

k        turbulent kinetic energy 

K       flow acceleration parameter 

L        turbulent length scale, k1/2/ω 

L        axial reference length 

P        local static pressure 

ptotal   inlet total pressure 

Rex    Reynolds number, ρLUref/µ 

Reθ    momentum thickness Reynolds number, ρθU0/µ 

Reθt   transition onset momentum thickness Reynolds number, ρθtU0/µ 

RT     viscosity ratio 

Ry     wall-distance based turbulent Reynolds number 

Rv     vorticity Reynolds number 

S       absolute value of strain rate, (2SijSij)1/2 

Sij      strain rate tensor, 0.5(∂ui/∂xj + ∂uj/∂xi) 

U       local velocity 

Uo      local freestream velocity 

Uref    inlet reference velocity 

x/C    axial distance over axial chord 

y        distance to nearest wall 

y+       distance in wall coordinates, ρyµτ/µ 

δ        boundary layer thickness 

ε        turbulence dissipation rate 

θ        momentum thickness 

λθ       pressure gradient parameter, (ρθ2/µ)(dU/ds) 
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µ        molecular viscosity 

µt       eddy viscosity 

µτ       friction velocity 

ρ        density 

τ        wall shear stress 

Ω       absolute value of vorticity, (2ΩijΩij)1/2 

Ωij     vorticity tensor, 0.5(∂ui/∂xj - ∂uj/∂xi)   

Ω       specific turbulence dissipation rate, ε/k 

 

Subscripts 
t transition onset 

s streamline 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 91



A2. A Correlation Based Transition Model Using Local Variables (Menter et 

al., 2004) 

 
1.0  Transport Equation for Intermittency 
 
The intermittency equation is formulated as follows: 
 
( ) ( )
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The transition sources are defined as: 
 

[ ] 1
1

ac
onsetlength FSFP γργ =                                                                                                    (A2) 

γγγ 111 PcE e=                                                                                             (A3) 
 

where S is the strain rate magnitude.  
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( )0,max 32 onsetonsetonset FFF −=                                                                                           (A9) 
                              

( )tc f θθ ReRe =                                                                                                                 (A10) 
 
The destruction/relaminarization sources are defined as follows: 
 

turba FcP γργ Ω= 22
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4
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The constants for the intermittency equation are: 
 

;5.0;0.1 11 == ae cc  
;0.1;03.0;50 22 === fae cc σ  
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The boundary condition for γ at a wall is zero normal flux while at an inlet γ is equal to 1.   
  
 
2.0  Transport Equation for Transition Momentum Thickness Reynolds  
Number   
 
The transport equation for the transition momentum thickness Reynolds number 

tθRe  is defined 

as follows: 

 
( ) ( ) ( )
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The source term is defined as follows: 
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ρ
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where t is a time scale which is present for dimensional reasons. 
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The boundary condition for 

tθRe  at a wall is zero flux.  The boundary condition for 
tθRe  at an inlet 

should be calculated from the empirical correlation based on the inlet turbulence intensity.  

 

The model constants for the transport equation are as follows, where cθt controls the magnitude 

of the source term and σθt controls the diffusion coefficient: 
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3.0  Separation Induced Transition 
 
The modification for separation-induced transition is given by:   
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( )sepeff γγγ ,max=                                                                                           (A23) 

 s  81 =

 
The size of the separation bubble can be controlled with the constant s1.   
 
 
4.0  Coupling with the Turbulence Model 
 
The new transition model has been calibrated for use with the SST turbulence model of Menter 

(1994).  The details of the SST turbulence model is given in appendix A3. The transition model 

is coupled with the turbulence model as follows: 
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keffk PP γ=
~

                                                                               (A26) 
( ) keffk DD 0.1),1.0,max(min γ=                                                                              (A27) 

 
where Pk and Dk are the production and destruction terms from the turbulent kinetic energy 

equation in the original SST turbulence model. 

 

The modified blending function is defined as follows: 

 

µ
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( )311 ,max FFF orig=                                                                                               (A30) 
where  F1orig is the original blending function from the SST turbulence model.   

 

5.0 New Empirical Correlation 
The new empirical correlation is defined as follows: 
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λθ = (θ2/ν)dU/ds                                                                   (A31) 
 
K =  (ν/U2)dU/ds                                                                   (A32) 
 

where dU/ds is the acceleration along in the streamwise direction and can be computed by taking 

the derivative of the velocity (U) in the x, y and z directions and then summing the contribution 

of these derivatives along the streamwise flow direction as follows: 
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The empirical correlation is defined as: 
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where Tu is the local turbulence intensity (in percent) as defined in the nomenclature.  For 

numerical robustness the acceleration parameters and the empirical correlation should be limited 

as follows: 
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A3. SST Turbulence Model (Menter, 1994) 
Menter’s SST model is based on a mix of two equation ωκ −  and εκ −  turbulence models  

using a blending function F1. The model can be written as 
κ -equation: 
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The constants, c, β, ,, ωκ σσ and are given by the following general expression 

2111 )1( φφφ FF −+=                                                                                                                    (A3) 

where φ  represents any one of these constants; 1φ  represents any constant in the ωκ − model; 

2φ  represents the corresponding constant in the εκ −  model. These constants are defined as  

Set 1 ( ωκ − ): 
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Set 2 ( εκ − ): 
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The Production term is given as  
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The blending function F1 is defined as  

( )4
11 argtanh=F                                                                                                                           (A8) 

with 
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where d is the distance to the closest wall and CD  is the positive portion of the cross-diffusion 

term in Eq. (A2). 
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The kinematic eddy viscosity is defined as 
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where Ω  is the magnitude of vorticity and = 0.31. The function F1a 2 is given by 
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