
University of Kentucky University of Kentucky

UKnowledge UKnowledge

University of Kentucky Master's Theses Graduate School

2004

DESIGN ENHANCEMENT AND INTEGRATION OF A PROCESSOR-DESIGN ENHANCEMENT AND INTEGRATION OF A PROCESSOR-

MEMORY INTERCONNECT NETWORK INTO A SINGLE-CHIP MEMORY INTERCONNECT NETWORK INTO A SINGLE-CHIP

MULTIPROCESSOR ARCHITECTURE MULTIPROCESSOR ARCHITECTURE

Kanchan P. Bhide
University of Kentucky, kpbhid2@uky.edu

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Bhide, Kanchan P., "DESIGN ENHANCEMENT AND INTEGRATION OF A PROCESSOR-MEMORY
INTERCONNECT NETWORK INTO A SINGLE-CHIP MULTIPROCESSOR ARCHITECTURE" (2004). University
of Kentucky Master's Theses. 253.
https://uknowledge.uky.edu/gradschool_theses/253

This Thesis is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted
for inclusion in University of Kentucky Master's Theses by an authorized administrator of UKnowledge. For more
information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/gradschool_theses
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

ABSTRACT OF THESIS

DESIGN ENHANCEMENT AND INTEGRATION OF A PROCESSOR-MEMORY

INTERCONNECT NETWORK INTO A SINGLE-CHIP MULTIPROCESSOR
ARCHITECTURE

This thesis involves modeling, design, Hardware Description Language (HDL)

design capture, synthesis, implementation and HDL virtual prototype simulation
validation of an interconnect network for a Hybrid Data/Command Driven Computer
Architecture (HDCA) system. The HDCA is a single-chip shared memory multiprocessor
architecture system. Various candidate processor-memory interconnect topologies that
may meet the requirements of the HDCA system are studied and evaluated related to
utilization within the HDCA system. It is determined that the Crossbar network topology
best meets the HDCA system requirements and it is therefore used as the processor-
memory interconnect network of the HDCA system. The design capture, synthesis,
implementation and HDL simulation is done in VHDL using XILINX ISE 6.2.3i and
ModelSim 5.7g CAD softwares. The design is validated by individually testing against
some possible test cases and then integrated into the HDCA system and validated against
two different applications. The inclusion of crossbar switch in the HDCA architecture
involved major modifications to the HDCA system and some minor changes in the design
of the switch. Virtual Prototype testing of the HDCA executing applications when
utilizing crossbar interconnect revealed proper functioning of the interconnect and
HDCA. Inclusion of the interconnect into the HDCA now allows it to implement
“dynamic node level reconfigurability” and “multiple forking” functionality.

KEYWORDS: Interconnection Networks, Hybrid Architectures, Multiprocessor System,
 System on Chip, Crossbar Network

 Kanchan P. Bhide

12/17/2004

DESIGN ENHANCEMENT AND INTEGRATION OF A PROCESS – MEMORY
INTERCONNECT NETWORK INTO A SINGLE – CHIP MULTIPROCESSOR

ARCHITECTURE

By

Kanchan P.Bhide

Dr. J. Robert Heath
Director of Thesis

Dr.Yu Ming Zhang

Director of Graduate Studies

 12/17/2004

RULES FOR THE USE OF THESES

Unpublished theses submitted for the Master’s degree and deposited in the University of
Kentucky Library are as a rule open for inspection, but are to be used only with due
regard to the rights of the authors. Bibliographical references may be noted, but
quotations or summaries of parts may be published only with the permission of the
author, and with the usual scholarly acknowledgments.

Extensive copying or publication of the theses in whole or in part also requires the
consent of the Dean of the Graduate School of the University of Kentucky.

A library that borrows this thesis for use by its patrons is expected to secure the signature
or each user.

Name Date

THESIS

Kanchan P.Bhide

The Graduate School

University of Kentucky

2004

DESIGN ENHANCEMENT AND INTEGRATION OF A PROCESSOR-MEMORY
INTERCONNECT NETWORK INTO A SINGLE-CHIP MULTIPROCESSOR

ARCHITECTURE

THESIS

A thesis submitted in partial fulfillment of the requirements for the degree of Master of
Science in Electrical Engineering in the College of Engineering at the University of

Kentucky

By

Kanchan P.Bhide

Lexington, Kentucky

Director: Dr. J. Robert Heath, Associate Professor of Electrical and Computer

Engineering

Lexington, Kentucky,

2004

MASTER’S THESIS RELEASE

I authorize the University of Kentucky Libraries to reproduce this thesis in whole or in
part for the purposes of research.

Signed: Kanchan P. Bhide

Date: 12/17/2004

iii

ACKNOWLEDGEMENTS

 I would like to thank my advisor and guide Dr. Heath for his constructive advice

and support which helped me complete my thesis in a timely manner.

 I would also like to thank my committee members Dr. Dietz and Dr. Dieter for their

valuable support. Each individual provided insights that guided and challenged my

thinking, substantially improving the finished product.

 In addition to the technical and instrumental assistance above, I received equally

important assistance from my family and friends.

iv

TABLE OF CONTENTS

Acknowledgements .. iii
List of Tables.. vi
List of Figures ... vii
Chapter One: Introduction

1.1 Background and Positioning of Research ... 1
1.2 Goals and Objectives... 2

Chapter Two: Types of Interconnect Systems

2.1 Static Interconnection Networks ... 7
2.1.1 Completely Connected Networks (CCNs) ... 7
2.1.2 Limited Connection Networks (LCNs) .. 8

2.1.2.1 Linear Arrays... 9
2.2 Dynamic Interconnection Networks.. 14

2.2.1 Bus-based Dynamic Interconnection Networks... 14
2.2.2 Switch – based Interconnect Networks .. 16
2.2.2.3 Multi – stage Networks (MINs.. 18

Chapter Three: Multistage Interconnect Network Complexity

3.1 Crossbar Topology .. 22
3.2 Benes Network .. 23
3.3 Clos Network... 23
3.4 Complexity Comparison ... 26

Chapter Four: Design of the Crossbar Interconnect Network

4.1 Organization of Shared Memory... 33
4.2 Basic Design of Crossbar Switch .. 33

Chapter Five: Implementation of Variable Priority Interconnection and Virtual Prototype
Validation of Correct Independent Operation and Operation as the Processor-Memory
Interconnect of the HDCA

5.1 VHDL Design Capture.. 41
5.1.1 Modifications to Behavioral Approach .. 41
5.1.2 Implementation of 4 x 4 Crossbar Interconnect ... 42
5.1.3 Functional Testing of a 4 x 4 Crossbar Interconnect Network 43
5.1.4 Component Level Description and Testing.. 51
5.1.5 Validation of crossbar switch via HDCA system... 59
5.1.6 Application 1 Described with Acyclic Process Flow Graph.............................. 66
5.1.7 Application 2 Described with Cyclic Flow Graph ... 91
5.1.8: Latency and Starvation Issues... 115

v

Chapter Six: Dynamic Node Level Reconfigurability and Multiple Forking Capability
6.1 Concept of Node Level Reconfigurability and Changes to HDCA 117
6.2 Multiple Forking Capability of the HDCA System: ... 125
6.3 Application Describing Multiple Forking in HDCA System:................................. 126

Chapter Seven: FPGA Resources Utilized in HDCA Virtual Prototype Development and
Testing Environment

Chapter Eight: Conclusion

Appendices
Appendix A1:Post Place and Route VHDL Code For Functional Model of the Interconnect
Network... 138
Appendix A2:Post Place and Route VHDL Code For Acyclic Applications 142
Appendix B:Application 1: Acyclic Process Flow Graph Model 286

References ... 296

Vita .. 298

vi

LIST OF TABLES

TABLE 3.1 – Table for comparison of complexity ………………………………………27
TABLE 5.1 – Shared Memory Address Space and Contents …………………………….43
TABLE 5.2 – Parameters Depiction in Cases Described ………………………………...44
TABLE 5.3 – Shared Memory Address Space and Contents……………………………..51

vii

LIST OF FIGURES

Figure 1.1, High Level Schematic of the HDCA system .. 4
Figure 1.2, CE Controller Block Diagram .. 5
Figure 2.1, A Topology Based Taxonomy for Interconnection Networks............................ 6
Figure 2.2, Static and Dynamic Interconnect Networks [10].. 7
Figure 2.3, Completely Connected Network... 8
Figure 2.4, Linear Array Network... 9
Figure 2.5, Ring Network.. 9
Figure 2.6, 2-D Mesh Network ... 10
Figure 2.7, 2-D Torus Network... 10
Figure 2.8, 3x3x2 Mesh Network.. 11
Figure 2.10, Cube-Interconnect Networks with Different Dimensions. 12
Figure 2.11, Cube Connected Cycles. ... 13
Figure 2.12, Star Connected Network. .. 14
Figure 2.13, Single Bus System .. 15
Figure 2.14, Crossbar Network System. ... 16
Figure 2.15, Different Settings of the 2 x 2 SE ... 17
Figure 2.16, 8 x 8 Omega Network... 19
Figure: 2.18, Re- arrangement of Connection 110 100.. 20
Figure 2.19, Clos Three-Stage Network in Block Form ... 21
Figure 3.1, 8 x 8 Crossbar Network .. 22
Figure 3.2, Benes Network[6] ... 24
Figure 3.3, Clos Network[6] ... 25
Figure 3.4, Complexity Chart for N<= 16 [6] ... 28
Figure 3.5, Complexity Chart for N>=16 [6] .. 28
Figure 3.6, Multiprocessor Shared Memory Organization ... 30
Figure 3.7, Shared Memory Organization... 31
Figure 3.8, Organization of Each Memory Block... 31
Figure 4.3, Decode Logic D[i] .. 35
Figure 4.4, Priority Logic Block ... 35
Figure 4.5, Flow Chart for the Priority Logic Block in Figure.4.4 36
Figure 4.1a, PI[i] and D[i][j] Bus Structure .. 37
Figure 4.1b, IM[j] Bus Structure ... 38
Figure 4.6, Plot Showing Gate Count vs Size of Crossbar Interconnect Network 38
Figure 4.2a, Detailed Block Diagram Interconnection Network for N x M Network 39
Figure 4.2b, Detailed Block Diagram of the Interconnect Network 40
Figure 5.1, Simulation Tracer 1 .. 48
Figure 5.2, Simulation Tracer 2 .. 49
Figure 5.3, Simulation Tracer 3 .. 50
Figure 5.4, Simulation Tracer 4 .. 55
Figure 5.5, Simulation Tracer 5 .. 56
Figure 5.6, Simulation Tracer 6 .. 57
Figure 5.7, Brief Overview of Priority Logic for the Interconnection Switch.................... 58
Figure 5.9, Memory/Register Architecture with Added Features 61
Figure 5.8, Changes Made to PE Controller- Additional Mux M5..................................... 62

viii

Figure 5.11, An Example of a Process Flow Graph.. 64
Figure 5.12, Process Flow Graph for Application 1 ... 66
Figure 5.13, Command Tokens for Both Copies of P1 to CE0 Issued by PRT Mapper..... 69
Figure 5.14, First Instruction and Input of First Five Values.. 70
Figure 5.15, Input of Last 5 Values for Process P1 of copy 1 .. 71
Figure 5.16, Two Command Tokens Issued to PRT Mapper of Copy 1............................. 72
Figure 5.17, Command Tokens Issued to CE0 and CE1 by PRT Mapper of Copy 1 73
Figure 5.18, Instructions for Process P1 of Copy 2 and for Process P3 of Copy 1............. 74
Figure 5.19, Two Command Tokens Issued to PRT Mapper for Copy 2 75
Figure 5.20, Two Command Tokens Issued to CEs by PRT Mapper for Copy 2............... 76
Figure 5.21, Instruction Issued by CE0 of Process P2 for Copy 1...................................... 77
Figure 5.22, Instruction by CE1 of P3 Copy 2 and Commend Token from PRT to CE2... 78
Figure 5.23, Division Op. for P5 with Results, Command Token to PRT Mapper Copy 1 80
Figure 5.24, Command Tokens for P4 to PRT Mapper, from PRT to CE4 for Copy 1...... 81
Figure 5.25, Multiplication Operation by CE4, Token Issued to PRT Mapper Copy 1 82
Figure 5.26, Command Token for P5 Issued to PRT Mapper, from PRT to CE2 Copy 2.. 83
Figure: 5.27 Div Op.for P5 with Results, Command Token to PRT Mapper for Copy 2... 84
Figure 5.28, Join Instruction for Process P6 for Copy 1 ... 86
Figure 5.29, Process P7 Instruction and Final Output of the Result of P6 for Copy 1 87
Figure 5.30, Multiplication Process Result, Command Token to PRT Mapper Copy 2..... 88
Figure 5.31, Join Process P6 Instructions for Copy 1 ... 89
Figure 5.32, Process P7 with Final Value of the Result of Process P6 for Copy 1............. 90
Figure 5.33, Application for Swapping of two Values ... 91
Figure 5.34, Instruction for Process P1 and Input of First two Values 94
Figure 5.35, Process P1 Inputs of Last 3 Values... 95
Figure 5.36, Instructions for Processes P2 and P4 with Results ... 96
Figure 5.37, Process P3: First Comparison ... 97
Figure 5.38, Process P5: First Execution .. 98
Figure 5.39, Process P2: Second Execution.. 100
Figure 5.40, Process P4: Second Execution.. 101
Figure 5.41, Process P3: Second Execution.. 102
Figure 5.42, Process P5: Second Execution.. 103
Figure 5.43, Process P2: Third Execution... 104
Figure 5.44, Process P4: Third Execution... 105
Figure 5.45, Process P3: Third Execution... 107
Figure 5.46, Process P5: Third Execution... 108
Figure 5.47, Process P2: Fourth Execution ... 109
Figure 5.48, Process P4: Fourth Execution ... 110
Figure 5.49, Process P3: Fourth Execution, Exit of Loop, Token Issued to PRT Mapper 111
Figure 5.50, Process P5: Fourth Execution, Exit of Loop, Token Issued to PRT Mapper 113
Figure 5.51, Process P6 Join Operation, Final Results, Values Swapped......................... 114
Figure 6.1, Load Threshold Token Fed Into HDCA Setting the Value of Threshold Flag117
Figure 6.2, Input of two Load Threshold and Eight Command Tokens in the System..... 119
Figure 6.3, Process P1 for First Four Command Tokens .. 120
Figure 6.4, Forking of Tokens and Queue Depth of CE1 Reaching Threshold Value 121
Figure 6.5, Threshold Flag Set for CE0 and CE1, Stand by CE Triggered 123

ix

Figure 6.6, Threshold Flag Set 2nd Time for CE0 and CE1, Stand by CE Triggered 124
Figure 6.6, Multiple Forking Concept Used in the HDCA System 125
Figure 6.7, Application Describing Multiple Forking in HDCA 126
Figure 6.8, Command Token Input into the System ... 128
Figure 6.9, Instruction for Process P1 ... 129
Figure 6.10, Instruction for P2 with Result and Command Token for P3 130
Figure 6.11, Process P3 and Process P7 Execution and Results 131
Figure 6.12, Instruction for Process P4 and P5 with Results .. 132
Figure 6.13, Join Instructions for Process P8 with Result .. 133
Figure 6.14, Final Process P6 Join Operation and Result ... 134

1

Chapter One

Introduction

1.1 Background and Positioning of Research

Most parallel/distributed architectures require some type of interconnection

network to link the various elements of the computer system. Anyone designing a parallel

or distributed architecture computer system encounters a major obstacle; the

Interconnection Network problem. A multiple processor system consists of two or more

processors connected to each other in a manner that allows them to share the simultaneous

execution of a given computational task. Interconnection networks should be capable of

providing rapid data transfer among processors; memories etc.

 There are a number of styles of communication for multiprocessor networks.

These can be broadly classified according to the communication model as multiple

processors (single address space/shared memory) versus multiple computers (multiple

address/distributed memory). They can be classified according to the physical connection

used as bus based versus network based multiple processors. The organization and

performance of a multiple processor system is greatly influenced by the interconnection

network used to connect them. A single shared bus network or a crossbar switch can be

used as an interconnection network. While the first technique represents a simple, easy to

expand topology; it is however limited in performance since it does not allow more than

one processor/memory transfer at any given time. The crossbar provides full

processor/memory distinct connections however it can be expensive. Multistage

interconnection networks sometimes strike a balance between the limitation of a single

shared bus network system and expense of crossbar switch system. The cost of multistage

interconnection network can be considerably less as compared to the crossbar, especially

for large numbers of processor/memories. Crossbar interconnect,though are cost and

complexity competitive with other types of interconnects when within a certain size range,

as will be later addressed. Another way to connect the multiple processors to multiple

memories is to use multiple bus system. It can also be suggested as a compromise between

shared bus system and crossbar switch.

2

This thesis is primarily a study of various kinds of interconnect networks which

may meet the requirements of the Hybrid Data/Command Driven Architecture (HDCA)

multiprocessor system [16,17,7] shown in Figure 1.1. It then involves enhancement of a

design developed in [6]. The design is described in Vhsic Hardware Description Language

(VHDL) for an interconnect network suitable for integration into the HDCA system.

The HDCA is a multiprocessor shared memory architecture. It is a hybrid data flow

machine since it uses data flow concepts to migrate data from one process to another yet

uses a program counter in the actual execution of processes on processors. It utilizes

advantages of both Von-Neumann and data flow type architectures [16,17]. The shared

memory is organized as a single memory divided into blocks as shown in the Figure 1.1

and is explained in detail in Chapter 3. The interconnect network to be designed should be

able to connect requesting processors on one side of the interconnect network to the

memory blocks on the other side of the interconnect network as shown in Figure 3.7. The

efficiency of the interconnect network increases with number of parallel connections

between the processors and memory blocks.

1.2 Goals and Objectives

The goal of this work is to analyze different types of interconnect networks

applicable to the HDCA system. Their connection, routing mechanism, complexity are

described and evaluated. This work also includes design, VHDL description synthesis and

implementation of interconnect network based on a crossbar topology. Analysis will show

this topology to be the one that best meets the HDCA system requirements.

The crossbar switch can provide simultaneous connections among all its inputs and

all its outputs. The crossbar contains a switching element (SE) at the intersection of any

two lines extended horizontally or vertically inside the switch. Circuit switching networks

can be classified by the connection of the network and the relation of the network inputs

and outputs [1]. The most basic distinction concerns whether inputs and outputs are

differentiated or whether all ports are treated equally. Single sided networks have only one

set of connections or ports, all of them are treated equally. They can be designed to meet

the requirements of inter-processor communication and are unique to distributed memory

systems. In distributed memory systems processors do not have to share common memory,

3

each processor communicates with its own local memory, hence using single sided

crossbar network communication between any two processors is possible. Double sided

networks connect two distinct set of ports, usually referred to as inputs and outputs. Ports

in one set generally may be connected only to the ports of the other set.

The HDCA system under consideration is shared memory architecture. It will be

seen the double sided crossbar network is the most suitable to be used as the interconnect

network. The design will need some kind of priority logic, which prioritizes conflicting

requests for memory accesses by the processors. In the HDCA system the memory is

divided into blocks, each block containing memory locations with different address ranges.

The interconnect design will be a combination of a double sided crossbar interconnect

network, priority logic and a shared memory organization. A single bus system network is

being used as a means to communicate between the CEs and data memory in a “first phase

prototype” of the HDCA system [5]. The interconnect design to be developed and

described in this thesis was developed specific to the HDCA system but it may possibly be

used in other multiprocessor systems.

A survey of different types of interconnect networks is described in Chapter 2.

Complexity of dynamic interconnection networks is discussed in chapter 3. The detailed

crossbar interconnect network design is described in Chapter 4. Chapter 5 includes

individual simulation testing set up and results, validation of the crossbar is done using the

HDCA system, modifications to the HDCA system for proper functioning of the entire

system are described. Additional functionality incorporated into the HDCA system,

Dynamic Node Level Reconfigurability and Multiple Forking capability of the architecture

is explained in detail and exhibited with the help of application in Chapter 6. Virtual

prototype development and the testing environment is discussed in Chapter 7. Conclusions

and recommendations are being included in Chapter 8.

4

Figure 1.1, High Level Schematic of the HDCA system

5

Instruction 0

Instruction 2
Instruction 1

Instr. locationPNHJ Next PN0 Next PN1 Exit PN

Data addr.Time StampLast PN

Instruction buffer
LOOK UP TABLE

FIFO
QUEUE

Interface Controller

Cnt_token 6
Th_flag
ITRC 4

Sign
S

En_w
En_r
Rst_r
Rst_f

Time_s 4
Ram_addr 6
Data_in 18
Prog_flag 6

Q
da

ta

 1
8

Data_bus 16

R
d_

ld

D
at

a
 1

6
R

_T
_T

ab
le

2

R
ST

LT
_a

dd
r

 3

W
R

_o
ut

 2

CLK

RST

Chip_en

Stoploop

To
ke

n
Bu

s
 3

2

Bu
s

re
qu

es
t

Bu
s

gr
an

t

I_
rd

y

Sn
d_

I

A
vl

5

Figure 1.2, CE Controller Block Diagram

 6

Chapter Two

Types of Interconnect Systems

 Interconnect networks can be classified as either static or dynamic [4]. Static

networks can be further classified according to their interconnection pattern as One-

dimension (1D), Two Dimensional (2D) and Hypercube (HC’s).Dynamic networks can

be further classified according to the scheme of interconnection as bus-based versus

switch-based. Bus-based networks are classified as single bus or multiple bus. On the

other hand switch-based dynamic networks are classified according to the structure of the

interconnect network as Single-Stage (SS), Multistage (MS), or crossbar networks.

Figure 2.1, A Topology Based Taxonomy for Interconnection Networks

Interconnection
Networks

Static Dynamic

1D 2D HC Switch-based Bus-based

Multiple Single

Single Stage Multi-stage Crossbar

 7

 Static networks form all connections when the machine is designed rather than

when the connection is needed. In a static network, messages must be routed along

established link. This means a single message must ‘hop’ through intermediate processors

on its way to its destination. The nodes are the computers and the routing is done by the

computers. Dynamic networks establish a connection between two or more nodes ‘on the

fly’ as messages are routed along the links. The nodes are switching elements and the

routing is done by the network [8] [9].

Figure 2.2, Static and Dynamic Interconnect Networks [10]

2.1 Static Interconnection Networks

The features are having fixed paths, unidirectional or bi-directional, between

processors. Two types of static networks can be identified. They are ‘Completely

Connected Networks’ (CCNs) and ‘Limited Connection Networks’ (LCNs) [4].

2.1.1 Completely Connected Networks (CCNs)

In a completely connected network each node is connected to all other nodes in

the network. An example having nodes N = 6 is shown in Figure. 2.3. A total of 15 links

are required in order to satisfy the complete interconnectivity of the network.

 8

Figure 2.3, Completely Connected Network

These networks guarantee fast delivery of messages from any source node to any

destination node, only one path has to be traversed. Completely connected networks are

however expensive in terms of number of links needed for construction. This

disadvantage is more severe for higher values of N.

 The number of links in a completely connected network is given by N (N-1)/2, i.e.

O (N2). The delay complexity of CCNs, measured in terms of the number of links

traversed as messages are routed from any source to any destination is constant, O(1).

2.1.2 Limited Connection Networks (LCNs)

As the name suggests these networks do not provide a direct link from every node

to every other node in the network. The length of the path for the message to traverse

from source node to destination is expected to be longer compared to the paths in CCNs.

Two conditions have to be taken into consideration for the LCNs, the need for a pattern

of interconnection among nodes and the need for a mechanism for routing messages

around the network until they reach their destinations.

 9

2.1.2.1 Linear Arrays and Ring (Loop) Networks

Figure 2.4, Linear Array Network

 Each node is connected to its two immediate neighboring nodes, except the ones

at each end. If node a needs to communicate with node b, b>a, the message traverses

through nodes a+1, a+2… b-a. Similarly if b<a, the message has to traverse nodes a-1,

a-2… a-b. The worst possible case is when node 1 has to send a message to node ‘N’.

The message has to traverse a total of N-1 nodes before it reaches the destination node.

Hence though these systems are easy to design and have a simple architecture. They tend

to be slow. This is particularly shows when ‘N’ is large.

 The network complexity of a linear array is O (N) and time complexity is O (N).

If the two nodes at the extreme ends of a linear array network are connected, then the

resultant network has a ring (loop) architecture.

Figure 2.5, Ring Network

2.1.2.2 Mesh-connected Networks
An n-dimensional mesh can be defined as an interconnection structures that has

K0 x K1 x …x Kn-1 nodes where n is the number of dimensions of the network and Ki is the

radix of dimension i.

 10

Figure 2.6, 2-D Mesh Network

The linear array as described above is a 1-D mesh network. The mesh architecture

with wraparound connections forms a ‘torus’.

Figure 2.7, 2-D Torus Network

A number of routing mechanisms have been used to route messages around

meshes. One such routing mechanism is known as the ‘dimension-ordering’ routing. A

message is routed in one given dimension at a time, arriving at the proper coordinate in

each dimension before proceeding to the next dimension. Consider a 3-D mesh as shown

in the Figure below. It is a 3x3x2 mesh network. Each node is represented by its position

(i, j, k), messages are first sent along the ‘i’ dimension then along the ‘j’ dimension and

finally along the ‘k’ dimension. A maximum two turns are allowed and these turns are

from ‘i’ to ‘j’ and then from ‘j’ to ‘k’. Figure 2.8 shows the route of a message sent from

 11

node S at (0, 0, 0) to node D at position (2, 1, 2). For a mesh interconnection network

with ‘N’ nodes, the longest distance traveled between any two arbitrary nodes is O (N)

Figure 2.8, 3x3x2 Mesh Network

Multiprocessors with mesh interconnection networks are able to support many

scientific computations very efficiently. Another advantage of mesh interconnection

networks is that they are scalable.

2.1.2.3 Tree Network
A binary tree network shown in the Figure 2.9 is an example of a tree network.

Figure 2.9, A Tree network

If a node at level ‘i’, assuming that the root node is at level 0; needs to

communicate with a node at level ‘j’, (i>j) and the destination node belongs to the same

root’s child sub tree, then it sends its message up the tree traveling node at levels i-1, i-

2,…j+1 until it reaches the destination node.

2.1.2.4 Cube- connected Networks

 12

Cube connected networks have their interconnection network patterned after the

n-cube structure. An n-cube, also called the Hypercube of order n, is defined as a

undirected graph having 2n vertices (0 to 2n – 1) such that there is an edge between a

given pair of vertices if and only if, the binary representation of their addresses differs by

one and only one bit.

Figure 2.10, Cube-Interconnect Networks with Different Dimensions.

In a cube-based system processing elements are positioned at the vertices of the

graph. Edges of the graph represent point-to-point communication links between

 13

processors. Each processor in a 4-cube network is connected to 4 other processors. If the

source of message is at ‘i’ and the destination is at ‘j’ then route of message can be found

by xoring the binary address representation of ‘i’ and ‘j’. For instance, if a message is

sent from source ‘S’ node 0101 to destination ‘D’ node 1011, then the xoring operation

results in 1110. This means that the message has to traverse only along 2, 3 and 4 (from

left to right) in order to arrive at the destination. The order of message travel is not

important. Once a message travels in any order along the three dimensions it reaches the

destination node.

The hypercube is also known as logarithmic architecture. This is due to the fact

that the maximum number of links a message has to traverse in order to reach its

destination in an n-cube containing N= 2n nodes in log2N = n links. Another feature of the

hypercube networks is the recursive nature for their construction. An n-cube can be

constructed from two sub cubes each having an (n-1) degree by connecting nodes of

similar addresses in both sub cubes. As shown in Figure 2.9 the 4-cube network is

constructed from two 3- cube networks. However it can be seen that the hypercube

networks are not easily scalable.

One of the variations from the basic hypercube interconnection is the cube-

connected cycle architecture. In this architecture, 2n+r nodes are connected in an n-cube

fashion such that groups of r nodes each form cycles at the vertices of the cube.

Figure 2.11, Cube Connected Cycles.

Figure 2.11 shows a 3-cube connected cycle network with r=3. It has three nodes

forming a loop at each vertex of the 3-cube.

 14

2.1.2.5 Star Connected Network
In a star topology [6](see Figure 2.12) there is one central node processor to

which all other nodes are connected, each node has one connection whereas center node

has N-1 connections. The routing mechanism is trivial. If the message is routed from one

of the nodes to center node the path is just the edge connecting them. If a message is

routed from a source node to a destination node other than the destination node, then the

message is routed from a source node to a center node and from that node to a destination

node. Star networks are not feasible for large networks since the central node becomes a

bottleneck.

Figure 2.12, Star Connected Network.

2.2 Dynamic Interconnection Networks

These networks include bus-based systems (single and multiple) and switch –

based systems (single-stage, multi-stage and the crossbar) [4].

2.2.1 Bus-based Dynamic Interconnection Networks

2.2.1.1 Single bus Systems
They are the simplest and an efficient solution when the cost and a moderate

number of processors are involved. [6]

 15

Figure 2.13, Single Bus System

 All processors communicate with a single shared memory. Typical size of such a

system is between 2 to 32 processors. However single bus systems are inherently limited

by the bandwidth of the bus and also that only one single bus communication can take

place at a time. The main drawback is a bottleneck to the shared memory when the

number of processors becomes large and also a single point of failure hangs the entire

system.

2.2.1.2 Multiple Bus Systems
 The use of multiple buses to connect multiple processors is a natural extension to

the single shared bus system. This system uses several parallel buses to interconnect

multiple processors and multiple memory modules. A number of connection schemes is

possible with this system [4].

• Multiple - bus with full bus-memory connection: All the memory modules

connected to all buses.

• Multiple – bus with single bus-memory connection: Each memory module

connected to a specific bus.

• Multiple – bus with partial bus-memory connection: Each memory module

connected to a subset of buses.

• Multiple – bus with class- based memory connection: Memory modules are

grouped into classes and each class is connected to a specific subset of buses.

 16

Buses can be classified as ‘synchronous’ or ‘asynchronous’. For any event on the

synchronous bus, the transaction time is taken into account. The transaction time is

known apriori. In the case of asynchronous buses,the occurrence of an event is triggered

by availability of data and the readiness of devices to initiate bus transactions.

2.2.2 Switch – based Interconnect Networks
Connections among processors and memory modules are made with the help of

simple switches. Three basic topologies exist, they are Crossbar, Single –stage, and

Multi-stage.

2.2.2.1 Crossbar Networks
All the processors in a crossbar network(Figure 2.14) have dedicated buses

directly connected to all memory blocks. It represents the other extreme to the limited

single bus network; it can provide simultaneous connections among all its inputs and all

its outputs [1,4,10].

Figure 2.14, Crossbar Network System.

 17

A crossbar contains a Switching Element (SE) at the intersection of any two lines

extended horizontally or vertically inside the switch. It is a ‘nonblocking’ network that

allows any input – output connection pattern to be executed.

The network complexity for an N x N crossbar measured in terms of number of

switching points is O (N2). The time complexity measured in terms of the amount of

input to output delay is O (1). In spite of high speed, their use is normally limited to those

systems containing 32 or fewer processors due to increase in complexity and hence the

cost.

2.2.2.2 Single Stage Interconnection Networks
In these networks a single stage of switching elements (SEs) exists between the

inputs and the outputs of the network. The simplest that can be used is the 2 x 2 switching

element. There could be four possible settings that such switching element can assume.

Figure 2.15, Different Settings of the 2 x 2 SE

• Straight: Upper input is transferred to the upper output and the lower input to

lower output.

• Exchange: Upper input is transferred to the lower output and the lower input

to upper output.

• Upper – broadcast: Upper input is broadcast to both the upper and lower

outputs.

• Lower – broadcast: Lower input is broadcast to both the upper and lower

outputs.

A well known connection pattern for interconnecting the inputs and the outputs of

a single-stage network is the‘Shuffle-Exchange’. Two operations are used; they can be

defined using an ‘m’ bit- wise address pattern of inputs, pm-1 pm-2…p1p0, as given:

 18

S (Pm-1 Pm-2… P1 P0) = Pm-2 Pm-3 …P1 P0 Pm-1

E (Pm-1Pm-2…P1P0) = Pm-1Pm-2…P1 Po

Perfect shuffle operation: cyclic shift 1 place left as in 101 011

Exchange operation: invert least significant bit as in 101 100 [8]

With these operations data is circulated from input to output until it reaches its

destination. The network complexity of the single stage interconnection network is O (N)

and the time complexity is O (N).

2.2.2.3 Multi – stage Networks (MINs)
Multi-stage Interconnection Networks (MINS) are introduced as a means to

improve some limitations of the single–stage networks while keeping the cost within

limits. MINs can provide a number of simultaneous paths between processors and

memory modules. The routing of a message from a given source to a given destination is

based on the destination address, also called ‘Self–routing’. Each bit in the destination

address is used to route the message through one stage in several of these

networks[1,4,8]. The first MSB of the destination address is used to control the routing in

the first stage, the next bit for stage two and so on [4][8].

MINs can be classified in a number of different ways; one of the criterions is

‘blockage’ [1,4]. Based on this criterion the MINs are classified as

• Blocking Networks: These networks possess the property that in the

presence of a currently established interconnection between a pair of

input to output the arrival of a new interconnection between two

arbitrarily unused input and output may or may not be possible.

• Re–arrangeable Networks: These networks have the property that it is

always possible to re- arrange already established connections in order to

make allowance for other connections to be established simultaneously.

• Non–blocking Networks: These are networks that are characterized by the

property that in the presence of a currently established connection

between any pair of input/output, it is always possible to establish a

 19

connection between any arbitrary unused pair of input/output without

rearrangement of any existing connection.

Omega Network

A multi-stage interconnect network using 2 x 2 switch boxes and a perfect

shuffle interconnection pattern between the stages is called an Omega Network [1,4](see

Figure 2.16).

Figure 2.16, 8 x 8 Omega Network

In general an N x N Omega Network connects N inputs to N outputs where N =

2 n. There are ‘n’ stages of N/2 switches of size 2 x 2 and the input is a shuffle

connection. In an Omega Network there is one unique path from each input to each

output. This is an example of a ‘blocking network’.

Benes Network

It is a well known example of a re–arrangeable network [1,4]. Figure 2.17

shows an example 8 x 8 Benes Network. Two simultaneous connections are shown

established in the network.A message is to be routed from 110 100 and 010 110.

The paths are shown, one as a dotted line and another as a bold dark line [4].

 20

Figure: 2.17, Benes Network with Two Simultaneously Established Paths.

 The re-arrangeable property of this network can be exhibited with the

following example. If a message is to be routed from 101 001 with the previously two

paths established, the path from 110 100 must be re routed. This re–arrangement is

shown in Figure 2.18.

Figure: 2.18, Re- arrangement of Connection 110 100

Clos Network

It is a well known example of a non-blocking networks. [1,4] It comprises of

r1(n1 x m) input crossbar switches, m(r1 x r2) middle crossbar switches and r2m x n2

output crossbar switches. Generally Clos’s three stage nonblocking arrangement uses

rectangular crossbars in all stages; however with an equal number of inputs and outputs,

the middle switches are square. Each crossbar has one output connected to an input of

each crossbar of the stage that follows, hence there always exists a possible path through

each of the middle – stage switches between any input and output [1].

 21

Figure 2.19, Clos Three-Stage Network in Block Form

 22

Chapter Three

Multistage Interconnect Network Complexity

 Chapter 2 overviewed the various types of interconnect network systems used in

today’s world. The main issue in this chapter is to choose a suitable interconnect network

which can be used in the HDCA system[7]. For the HDCA system, the desired

interconnect should be able to establish non-blocking, high speed connections from the

requesting Computing Elements (CEs) to the shared memory. The interconnect should be

able to resolve any conflicts of two or more processors wanting to access the same

memory block and grant access to the memory to the CE which has the highest priority.

Considering this brief overview of the requirements of an interconnect network suitable

for the HDCA system, it can be concluded that the non-blocking, re-arrangeable

multistage or crossbar networks (Benes, Clos and Crossbar) discussed in chapter two are

suitable to use in the HDCA system.

3.1 Crossbar Topology

 The Crossbar provides simultaneous connections among all its inputs and outputs.

It is a non-blocking, very reliable and high–speed network. An (8x 8) example is shown

in Figure 3.1.

Figure 3.1, 8 x 8 Crossbar Network

 23

 A typical crossbar network with ‘N’ inputs(processors) and ‘M’ outputs(memory

modules), is depicted by X N, M. As discussed in Chapter two, the complexity of a

crossbar is given by N x M. Complexity increases with the increase in number of inputs

and outputs. This is the main limitation of this network. This reduces the scope of

scalability of crossbars [6].

3.2 Benes Network

 The Benes network(Figure 3.2) is a re-arrangeable multistage network. [1,6] For

any value of N,d should be chosen so that logdN is an integer. The number of stages for

an N x N Benes network is given by (2logdN-1) and has (N/d) crossbar switches in each

stage. Hence BN,d is implemented with [[(N/d)*(2logdN-1)] crossbar switches. The

general architecture is as shown in Figure 3.2. As can be seen in the Figure,

N: Number of inputs or outputs

d: Dimension of each crossbar switch (X d,d)

I: First stage switch = Xd, d

II: Middle stage switch = BN/d,d

III: Last stage switch = Xd,d

 The complexity of the network is given by [(N/d)* (2logdN-1)* d2]. The network

latency is a factor of (2logdN-1), since there are (2logdN-1) stages between input and

output. There are different routing paths available between input and output. It is a

limited scalability network; this and network latency are the main drawbacks of the

Benes network. For very large networks Benes network implementation is cost effective.

3.3 Clos Network

 Clos network is a non-blocking multistage network as stated in Chapter two.

Figure 3.3 shows a typical N x M Clos network represented by CN, M [1,6]

The blocks I and III are always crossbar switches and II is a crossbar switch for a

3 stage Clos network. In implementations of higher order Clos networks, II is a lower

order Clos network.

 24

II

B
N/d,d

I

X
d, d

II

B
N/d,d

II

B
N/d,d

I

X
d, d

III

X
d, d

III

X
d, d

III

X
d, d

I

X
d, d

P
0

P
1

P
d-1

P
d

P
2d-1

P
n-d

P
n-1

P
d

P
d+1

P
n-d+1

M
0

M
1

M
0

M
d-1

M
d

M
d+1

M
2d-1

M
n-d

M
n-d+1

M
n-1

Figure 3.2, Benes Network[6]

 25

 I
(1)

 I
(2)

 I
(C1)

III
(1)

III
(2)

III
(C2)

II
(1)

II
(2)

II
(K)

P
0

P
1

P
d-1

P
d

P
2d-1

P
n-d

P
n-1

P
dP
d+1

P
n-d+1

M
0

M
1

M
d-1

M
d

M
d+1

M
2d-1

M
n-d

M
n-d+1

M
n-1

Figure 3.3, Clos Network[6]

 26

N: Number of processors

M: Number of Memory blocks

K: Number of Second stage switches

C1: Number of First stage switches

C2: Number of Third stage switches

For a three stage Clos network, I = X
N/C1,K

 , II = X
C1,C2

 , III = X
K,M/C2

 and the

condition for a non-blocking Clos implementation is K = N/C1 + M/C2 - 1.

A three stage Clos implementation for N = 16, M = 32, C1 = 4, C2 = 8 has K = 16/4 +

32/8 - 1 = 7. Each 1st stage switch becomes a 4 x 7 crossbar switch and the 2nd stage

switch becomes a 4 x 8 Crossbar switch and each third stage switch becomes a Crossbar

switch of size 7 x 4. (I = X4,7 II = X4,8 III = X7,4). The complexity of a Clos network

is given by C clos = [K (N +M) + K (C1*C2)]. Using the non-blocking condition, K =

N/C1 + M/C2 - 1. For N = M & C1 = C2, K = 2N/C1 - 1 and hence

C clos = (2N/C1 - 1) {2N + C12 }.

For an optimum cross point count for non-blocking Clos networks, N/C1 = (N/2)1/2

 = > C12 = 2N

 => C clos = ((2N)1/2 - 1). 4N. (Approximately)

 The Clos network can be implemented for any non-prime value of ‘N’. The main

advantage of clos network implementation is scalability; however disadvantages are

network latency and implementation for smaller networks.

3.4 Complexity Comparison
 Table 3.1 shows the complexity comparison of the three networks discussed

above. In the table ‘I’ is the complexity and ‘II’ is the corresponding network

implementation for different values on ‘N’; here the number of inputs and number of

outputs are assumed to be ‘N’ for simplicity in comparison.

 27

Table 3.1 Table for Comparison of Complexity

N Crossbar Benes Clos

I II I II I II

2 4 X(2,2) 4 B(2,2) 4 C(2,2)

3 9 X(3,3) 9 B(3,3) 9 C(3,3)

4 16 X(4,4) 24 B(4,2) 36 C(4,2)

5 25 X(5,5) 25 B(5,5) 25 C(5,5)

6 36 X(6,6) 80 B(8,2) 63 C(6,3)

7 49 X(7,7) 80 B(8,2) 96 C(8,4)

8 64 X(8,8) 80 B(8,2) 96 C(8,4)

9 81 X(9,9) 81 B(9,3) 135 C(9,3)

10 100 X(10,10) 224 B(16,2) 135 C(10,5)

11 121 X(11,11) 224 B(16,2) 180 C(12,6)

12 144 X(12,12) 224 B(16,2) 180 C(12,6)

13 169 X(13,13) 224 B(16,2) 189 C(14,7)

14 196 X(14,14) 224 B(16,2) 189 C(14,7)

15 225 X(15,15) 224 B(16,2) 275 C(15,5)

16 256 X(16,16) 224 B(16,2) 278 C(16,8)

32 1024 X(32,32) 576 B(32,2) 896 C(32,8)

64 4096 X(64,64) 1408 B(64,2) 2668 C(64,16)

81 6561 X(81,81) 1701 B(81,3) 4131 C(81,9)

128 16384 X(128,128) 3328 B(128,2) 7680 C(128,16)

 28

Chart 1, shown in Figure 3.4, is the graph of complexity of the three topologies

versus N, the number of processors or memory blocks; for lower values of N (N <= 16).

Chart 2, shown in Figure 3.5, is the graph of complexity of the three topologies versus N,

the number of processors or memory blocks, for higher values of N (N >= 16).

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

25
50
75

100
125
150
175
200
225
250
275
300

Chart 1

Crossbar
Benes
Clos

N

C
om

pl
ex

ity

Figure 3.4, Complexity Chart for N<= 16 [6]

16 32 64 81 128
0

2500

5000

7500

10000

12500

15000

17500

Chart 2

Crossbar
Benes
Clos

N

C
om

pl
ex

ity

Figure 3.5, Complexity Chart for N>=16 [6]

 29

 The equations used for calculating the complexities of the three topologies are as
follows:

C clos = (2N/C1 - 1) {2N + C12 },

For N/C1 = (N/2)1/2, taken to the closest integer value.

C benes = [(N/d)* (2logdN-1)* d2],

C crossbar = N2

 From table 3.1 and the charts in Figures 3.4 and 3.5, one can conclude that the

crossbar topology has the lowest or almost equal complexity for the values of N<=16.

Therefore the crossbar network is the best interconnect implementation for N<=16. This

network is faster than any other network since the hardware required is less as compared

to other networks. It is also a non-blocking network as there is connection capability of

every input to every output. For systems having configurations of more than (16 x16) but

less than (32 x32), one has to trade–off between speed and complexity, since for

multistage networks like Benes or Clos, the complexity is less as compared to the

crossbar network; however at the cost of speed. For systems with configurations of more

than (32 x 32), the Benes network proves to be the best choice.

 The HDCA system in consideration requires an interconnect network system with

complexity of not more than 256 (16 x 16). Hence, from the above discussion, one can

conclude that the crossbar switch is the best suitable for the HDCA system. The HDCA

system as described in [5,18] has a single bus communicating between the shared

memory and the computing elements (CEs). With the interconnect network acting as the

communication channel between the above said components the system is as shown in

Figure 3.6. The shared memory is divided into a number of blocks as can be seen in

Figure 3.7. Here the number of memory blocks, ‘M’ is chosen such that 2c =M.

 30

Figure 3.6, Multiprocessor Shared Memory Organization

I
N
T
E
R
C
O
N
N
E
C
T

MB[0]

MB[1]

MB[M-1]

P[0]

P[1]

P[N-1]

PI[0]

PI[1]

PI[N-1]

IM[0]

IM[1]

IM[M-1]

 31

Figure 3.7, Shared Memory Organization

Figure 3.8, Organization of Each Memory Block

MB [0]

MB [1]

MB [2]

MB [2c-1]

0
1

2b-1

01a-1

 32

 A main issue in implementing a crossbar network is arbitration of processor

requests for memory accesses. The arbitration issue comes into play when two or more

processors, Computing Elements in this case, request for memory access within the same

memory block. There are mainly two kinds of protocols for designing a crossbar

interconnect, fixed priority and variable priority protocols. Round robin protocol, First-In

First-Out (FIFO), Least Recently Used (LRU) and Last-In First-Out (LIFO) are some of

the fixed priority protocols used. A fixed priority protocol assigns fixed priorities to the

requesting processors. In case of conflict, the processor having the highest priority ends

up having its request granted all the time. In the HDCA system, a variable priority

protocol is used, here priorities assigned to processors dynamically vary over time based

on some parameters of the system. In the HDCA system of Figure 1.1, all processors are

dynamically assigned a priority depending upon individual input queue depth (see Figure

1.2) at any given point of time. In the case of conflict, the processor having the highest

(deepest) queue depth at that point of time gets the request grant. When two processors

accessing the same memory block have the same queue depth and priority is then

determined by “processor identification number”. The HDCA system needs to settle

some more arbitration issues for processor conflicts. A detailed design of the

implementation is described in the next chapter.

 33

Chapter Four

Design of the Crossbar Interconnect Network

A detailed design of the crossbar interconnect network suitable for integration

into the HDCA system is described in this chapter. A general overview of the

organization of the computing elements, the crossbar interconnect and the shared memory

with blocks is shown in the Figure 3.6. In this figure PI[i] represents the bus structure

between Processor and Crossbar Switch. IM[i] represents bus structure between Crossbar

Switch and Memory Blocks. The Figures 4.1a and 4.1b shows the detailed diagram of

both the bus structures.

4.1 Organization of Shared Memory

The utilized shared memory organization used is shown in Figures 3.7 and 3.8.

From Figure 3.7, there are (2c = M) memory blocks and the organization of each memory

block is shown in Figure 3.9. In each memory block, there are 2b addressable locations,

of ‘a’ bits width. Hence the main memory which includes all the memory blocks has 2b+c

addressable locations of ‘a’ bits width. Therefore the width of the address bus of each

processor is (c + b) bits wide and the data bus of each processor is ‘a’ bits wide.For the

address bus “c” represents the most significant bits of the bus and “b” represents the least

significant bits of the bus.

4.2 Basic Design of Crossbar Switch

 Refering to the Figures 3.7 and 4.1a and 4.1b the signal ctrl[i] goes high when the

processor is requesting a connection to a particular memory block. The rw[i] signal goes

high when a processor has to write into the memory block and goes low when it has to

read out from a memory block. The qdep[i] is the queue depth of the processor[i],

addr_bus[i] is the (b+c) address of the memory location where ‘c’ is the block address

with which the processor wants to communicate. flag[i] is an output of the crossbar

switch; it goes high when the processor request is granted access to the memory block.

The value of flag[i] is decided by a priority logic which is described in a later section.

The bit widths of ‘ctrl[i]’, ‘rw’ and ‘flag[i]’ remain one bit, however the bit widths for

 34

other inputs and outputs can vary. The design is adaptable to any number of processors

and memory blocks.

 Using Figure 4.2a, a generic representation of the interconnect to understand the

working of the crossbar, lets take an example of processor[i] requesting access to

memory block[j] represented by MB[j]. This means ctrl[i] goes high and the ‘c’ bits of

addr_bus is ‘j’. Processor[i] gets connected to the bus D[i][j] ,through a decode logic D[i]

as shown in Figure 4.2a. The address is decoded by the decoder and connection is

established between processor[i] and D[i][j]. Every memory block has a priority logic

block ‘prl_behav[j]’ as shown in Figure 4.2 and 4.4. The function of this logic block is to

grant access to a processor having the deepest queue depth among the processors

requesting access to the same memory block. Once a processor gains access to a memory

block indicated by the flag[i] going high, the connection between the processor[i] and the

memory block MB[j] is established and data flow from or into the memory takes place

depending on the value of rw[i]. This connection stays active as long as the processor

holds deepest queue depth or the request for the memory block by processor that is ctrl[i]

is high. For the case of processors having the same queue depth the processor having

highest processor identification number gets the highest priority. Each priority logic

block sets a value of ‘sub_flag’; these values are re-evaluated again if the situation of two

or more processors requesting access to the same memory block arises. Otherwise, there

is no change in the evaluation of ‘flag’. This is achieved by a combinatorial logic refer to

Appendix[A2] A flow chart showing the algorithm of the priority logic block in the

Figure 4.4; is shown in the Figure 4.5. The mbaddr[x] signal shown in the flow chart

corresponds to the ‘c’ MSBs. The flag[i] signal in Figure 4.5 is shown as signal

sub_flag[i] in Figure 4.4. The number of computing elements or processors is assumed to

be four in this case; however this logic holds good for any number of processors. The

processors whose ctrl signal is high that is those requesting access to the memory are

considered for the algorithm in discussion.

 35

Figure 4.3, Decode Logic D[i]

Figure 4.4, Priority Logic Block

Priority logic block

prl_behav[j]

D[0][i]

D[1][i]

D[M-1][i]

qd0 qd1 qd [m-1]

flag[i]

P[i]

D[0][i]

D[1][i]

D[M-1][i]

ADDR_BLK[i]

D[i]

 36

Figure 4.5, Flow Chart for the Priority Logic Block in Figure.4.4

 ctrl[0] = '1'
 &
mbaddr[0] = j

max=qd[0]
 i = 0max=0

 ctrl[1] = '1'
& mbaddr[1] = j
& qd[1] >= max

 max = max
 i = i

flag[i] = '0'
max = qd[1]
 i = 1

 ctrl[2] ='1'
& mbaddr[2] =j
& qd[2] >= max

flag[i] = '0'
 max = qd[2]
 i = 2

 max = max
 i = i

 ctrl[3] = '1'
& mbaddr[3] = j
& qd[3] >= max

 flag[i] = '0'
 max = qd[3]
 i = 3

 max = max
 i =i

 flag[i] = '1'

ctrl[i] = '1'

 flag[i] = '0'

T

F

T

T

T

T

F

F

F

 37

The block compares current maximum queue depth with the queue depth of every

processor starting from the 0th processor. The integer values ‘i’shown in the Figure 4.5 is

the processor identification number, having the deepest queue depth at that particular

instant. Once the comparison is done as depicted in the Figure 4.5 the flag[i] goes high,

granting the access to the particular processor satisfying the logical criteria explained in

the flow chart.

Thus it can be seen that the interconnect network described here gives all the

processors the choice of simultaneous access to the shared memory, granted by the

priority logic. The best case scenario is when all the processors have their requests

granted by the priority logic. This is possible when all processors are requesting access to

different memory blocks that is no two processors have the same ADDR_BLK.

The crossbar interconnect is described in VHDL using two different approaches.

One is a behavioral approach; it has a single function which describes the processor

prioritization done by the priority logic blocks. The VHDL code for this approach is in

Appendix A1.The other is a component level (RTL level) model of the crossbar switch.

This particular model has basically two types of components; the decode logic block and

a priority logic block. Each processor has a pair of decoder and priority logic blocks

between the processor and the memory block. The VHDL code of the interconnect is

shown in Appendix A2

Figure 4.1a, PI[i] and D[i][j] Bus Structure

CTRL[i]

RW[i]

FLAG[i]

ADDR[i]

DATA[i]

QD [i]

b+c

a

 38

Figure 4.1b, IM[j] Bus Structure

 A graph of the number of gates required in implementation of different sizes of

interconnection networks was plotted as shown in Figure 4.6. It shows that it scalable for

smaller designs. However the projected values of the gate count for values greater than

16 are expected to shoot up exponentially. The exact values could not be found out for

networks greater than 8x8, since the network could not fit in the largest FPGA chip

available in Xilinx 6.2.3i package.

0

2000

4000

6000

8000

10000

12000

14000

4 x4 5 x5 6 x6 8 x8

Size of the network

N
um

be
r o

Series1

Figure 4.6, Plot Showing Gate Count vs Size of Crossbar Interconnect Network

CTRL[i]

RW[i]

FLAG[i]

ADDR[i]

DATA[i]

b+c

a

 39

Figure 4.2a, Detailed Block Diagram Interconnection Network for N x M Network

 40

Figure 4.2b, Detailed Block Diagram of the Interconnect Network

 41

Chapter Five

Implementation of Variable Priority Interconnection and Virtual Prototype

Validation of Correct Independent Operation and Operation as the

Processor-Memory Interconnect of the HDCA

5.1 VHDL Design Capture

 As explained in Chapter 4, the crossbar interconnect design capture in VHDL has

been achieved two different ways. One is a behavioral approach [6](see Appendix A1)

and the other is a component level (RTL level) approach(see Appendix A2). The

structural equivalent of the behavioral description is shown in Figure 5.1. The component

level approach is structurally outlined as shown in Figure 4.2a and 4.2b of chapter 4. The

variable priority crossbar interconnect of [6] was validated to function correctly. It was

never integrated into the HDCA. The version of this interconnect as addressed in Chapter

4, will first be independently validated in this Chapter. It will then be validated in this

Chapter to perform correctly within the HDCA.

5.1.1 Modifications to Behavioral Approach

 The main VHDL code [6] has a function ‘flg’, an entity ‘main’ and a process’P1’.

This code is scalable(generic parameterized coding in an HDL sense) in the sense that it

is possible to increase the number of processors, memory blocks, memory locations in

each memory block, data width and the width of the queue depth bus. The VHDL code

for the interconnect as it will be tested in the HDCA is included in the Appendix A1.

Here the number of processors, the number of memory blocks and also the number of

addressable locations in each memory block is assumed to be ‘4’. Queue depth of each

computing element is also assumed to be four bits wide(See Figure 4.2a)

 The code described in [6] was developed to be implemented with Xilinx

Foundation series software hence it had to be modified in the following manner to display

correct results using the Xilinx ISE 6.2i and ModelSim 5.7g CAD software packages. In

[6] the function ‘flg’ consists of two ‘for-loops’ embedded in each other. This is modified

to have a single ‘for-loop’ module. The revised code is attached in the Appendix A1.

 42

5.1.2 Implementation of 4 x 4 Crossbar Interconnect
 The VHDL coded interconnect network with crossbar switch integrated in HDCA

[Appendix A1 and A2] are synthesized and virtually post placed and routed using Xilinx

6.2.3i CAD Tool and Modelsim 5.7g as a simulation tool. The design is tested using

Xilinx XC2V 8000 from the Virtex II family of chips. It has 8 million gates

configuration. The entire design development, testing and validation is done on a system

with following parameters: Intel Pentium4, 3.00 GHz and 1 GB of RAM. The operating

system used is Microsoft Windows XP, service pack 2.

The resource utilization and timing summary for the functionally coded crossbar

switch[Appendix A1]:

Device Utilization Summary:

Logic Utilization:
 Number of Slice Flip Flops: 64 out of 93,184 1%
 Number of 4 input LUTs: 697 out of 93,184 1%
Logic Distribution:
 Number of occupied Slices: 353 out of 46,592 1%
 Number of Slices containing only related logic: 353 out of 353 100%
 Total Number 4 input LUTs: 697 out of 93,184 1%

 Number of bonded IOBs: 78 out of 824 9%
 IOB Flip Flops: 32
 Number of GCLKs: 1 out of 16 6%

Total equivalent gate count for design: 5,352

Timing Summary:

Speed Grade: -5

Minimum period: 3.455ns (Maximum Frequency: 289.436MHz)
Minimum input arrival time before clock: 23.698ns
Maximum output required time after clock: 4.840ns
Maximum combinational path delay: 24.490ns

 43

The resource utilization and timing summary for the structurally coded crossbar switch

[Appendix A2]:

Device Utilization Summary:

Logic Utilization:
 Number of Slice Flip Flops: 106 out of 93,184 1%
 Number of 4 input LUTs: 624 out of 93,184 1%
Logic Distribution:
 Number of occupied Slices: 318 out of 46,592 1%
 Number of Slices containing only related logic: 318 out of 318 100%
 Number of Slices containing unrelated logic: 0 out of 318 0%
 Total Number 4 input LUTs: 624 out of 93,184 1%
 Number of bonded IOBs: 78 out of 824 9%
 IOB Flip Flops: 32
 Number of GCLKs: 1 out of 16 6%

Total equivalent gate count for design: 5,256

Timing Summary:

Speed Grade: -5

Minimum period: 7.836ns (Maximum Frequency: 127.616MHz)
Minimum input arrival time before clock: 7.714ns
Maximum output required time after clock: 5.349ns
Maximum combinational path delay: No path found

5.1.3 Functional Testing of a 4 x 4 Crossbar Interconnect Network
 Various scenarios tested for validation of the design are described and the results

are shown in simulation tracer Figures. The values shown in the tracers are represented in

hexadecimal format:

Case 1:

All processors write to different memory locations in different memory blocks. All the

memory locations are being written. The table 5.1 gives the addresses and contents of

each addres after each processor does a write.

Table 5.1 Shared Memory Address Space and Contents

Addr.Location Data(case1,2)

0000[0] 1
0001[1] 2
0010[2] 3
0011[3] 4

 44

0100[4] 5
0101[5] 6
0110[6] 7
0111[7] 8
1000[8] 1
1001[9] 2
1010[A] 3
1011[B] 4
1100[C] 5
1101[D] 6
1110[E] 7
1111[F] 8

 In the cases described below the method to depict the parameters such as queue

depth(qdep), read or write(rw), ctrl , processor requesting access to the

memory(addr_bus) and the data written(data_in) is as follows(the individual values are

also in hexadecimal):

Table 5.2 Parameters Depiction in the Cases Described

Processor

Number
P3 P2 P1 P0

Value in hex

combined as

shown in

case 1

qdep 1 2 3 4 1234

rw 1 1 1 1 F

ctrl 1 1 1 1 F

addr_bus C 8 4 0 C840

data_in 5 1 5 1 5151

This method is used for all the cases described in this section and the section following

it(section 5.1.4)

qdep is x“1234”.

rw: x”F”

ctrl: x”F”

Data is written in order of 1st, 2nd, 3rd and 4th data location in each memory block.

 45

addr_bus: x” C840” data_in: x”5151” (Value shown in the table for addr_bus and

data_in as an example)

addr_bus: x” D951” data_in: x”6262”

addr_bus: x” EA62” data_in: x”7373”

addr_bus: x” FB73” data_in: x”8484”

Case2:

 All the processors reading out the data written in case 1 .Hence all the parameters remain

the same except for r_w. The result of both the cases is observed in the simulation

tracer1(see page 47)

 rw: x”0”

Case 3:

qdep :x”1234”

rw: x”0”

addr_bus: x”CD56”

Processors ‘0’ and ‘1’ try to access the same memory block ‘1’.However since the ‘qdep’

of processor ‘0’ (qdep=4) is greater than processor ‘1’(qdep=3), processor ‘0’ is granted

access to read out the value ‘7’ (addr. location: 6)

Similarly processors ‘2’ and ‘3’ try to access the same memory block ‘3’. However the

‘qdep’ of processor ‘2’ (qdep=2) is greater than processor ‘3’ (qdep=1).Processor ‘2’ is

granted access to read out the value ‘6’ (addr. Location: D)

The result observed in the simulation tracer 1.(see page 47)

Case 4:

qdep: x”2244”

rw:x”0”

addr_bus: x”CD56”

This is a situation where two processors are accessing the same memory block and both

of them have same ‘qdep’. The processor with highest processor number is granted

access. As can be seen from the simulation tracer 2 (see page 48) that processor ‘1’ gains

access to memory block ‘1’ and processor ‘3’ to memory block ‘3’.

 46

Processor 1 reads out ‘6’from location ‘5’

Processor 3 reads out ‘5’from location ‘C’

Case 5:

qdep:x”1234”

rw:x”F”.

addr_bus:x”CD56”

data_in: x” AAAA”

Situation similar to case 3 as described above.

Here processor ‘0’ and processor ‘2’ gain access to the memory blocks ‘1’ and ‘3’

respectively.

Processor ‘0’ writes in ‘A’ at location ‘6’

Processor ‘2’ writes in ‘A’ at location ‘D’

Case 6:

All the parameters kept same except for rw.

rw:x”0”

The values written in case 5 are observed in this case. The result can be viewed in the

Figure simulation tracer 2(see page 48).

Data_out: x”5A6A”

Case 7:

Situation where all the four processors access the same memory block 2.

addr_bus:x”BA98”

rw:x”F”

data_in:x”CCCC”

The qdep is the same for all.

qdep:x”2222”

 47

According to the logic designed the processor ‘3’ with the highest processor number

gains access to the memory block ‘2’.The result observed in the simulation tracer 2(see

page 48).

Case 8:

Read out the value written in case 7.The processor ‘3’ gained access and wrote ‘C’ at

location ‘B’.

The result observed in simulation tracer 2(see page 48).

Case 9:

All the cases described so far had ctrl as “F”

In this case we observe the results changing the ctrl.

ctrl:x”3” => “0011” in binary.

rw: x”F”

data_in: x”BBBB”

addr_bus: x”FA32”

qdep :x”4565”

Processor ‘2’ and ‘3’ are not requesting access to the memory.

Processor ‘0’ and ‘1’ are requesting access for the same memory block ‘0’.

However processor ‘1’ gains the access since its qdep(=6) is greater than qdep(=5)

processor ‘0’. Processor ‘1’ writes ‘B’ at location ‘3’

The result observed in the simulation tracer 3(see page 49).

The next stage is reading out the value written

Data out: x”CDBA”

Addr_bus: x”FA32”

Case 10:

Case where none of the processors are requesting access to the memory blocks.

ctrl:x”0”

The result observed on the simulation tracer 3 (see page 49).

There is no change in the value.

 48

Figure 5.1, Simulation Tracer 1

Case 1:
Different ‘addr_bus’ to
be written with values at
‘data_in’

Case 2:
Values fed in the system
are read out

Case 3

 49

Figure 5.2, Simulation Tracer 2

Case 4 Case 5 Case 6 Case 7 Case 8

 50

Figure 5.3, Simulation Tracer 3

Case 9 Case 10

 51

5.1.4 Component Level Description and Testing

 The main VHDL code for this module ‘gate_ic_a’ consists of two components,

‘dec_ic_a’ and ‘prl_behav’ as can be seen in the Appendix A2. This design is also

scalable as the code in Appendix A1 described above. The number of processors, the

number of memory blocks and also the number of addressable locations in each memory

block is assumed to be ‘4’. Queue depth of each computing element is also assumed to be

four bits wide.

Various test cases for the verification of design are described and the results are

shown in the simulation tracer Figures, it should be noted the values shown in the tracers

are in hexadecimal format.

Case 1:

All the four processors are accessing different memory blocks. Eventually all the memory

locations in all the blocks are written into with data. The table gives the address and

memory locations of the values fed in.

Table 5.3 Shared Memory Address Space and Contents

Addr.Location Data(case1,2)
0000[0] F
0001[1] E
0010[2] D
0011[3] C
0100[4] B
0101[5] A
0110[6] 9
0111[7] 8
1000[8] 7
1001[9] 6
1010[A] 5
1011[B] 4
1100[C] 3
1101[D] 2
1110[E] 1
1111[F] 0

 52

qdep is x“1234”.

rw: x”F”

ctrl: x”F”

Data is written in order of 1st, 2nd, 3rd and 4th data location in each memory block.

addr_bus: x” C840” data_in: x”37BF”

addr_bus: x” D951” data_in: x”26AE”

addr_bus: x” EA62” data_in: x”159D”

addr_bus: x” FB73” data_in: x”048C”

Case2:

 All the processors read out the data written in case 1 .Hence all the parameters remain

the same except for r_w. The result of both the cases is observed in the simulation tracer4

rw: x”0”

Case 3:

qdep :x”1234”

rw: x”0”

addr_bus: x”EF01”

Processors ‘0’ and ‘1’ try to access the same memory block ‘0’.However since the ‘qdep’

of processor ‘0’ (qdep=4) is greater than processor ‘1’(qdep=3), processor ‘0’ is granted

access to read out the value ‘E’ (addr. location: 1)

Similarly processors ‘2’ and ‘3’ try to access the same memory block ‘3’. However the

‘qdep’ of processor ‘2’ (qdep=2) is greater than processor ‘3’ (qdep=1).Processor ‘2’ is

granted access to read out the value ‘0’ (addr. Location: F)

Hence the value of flag is x”5

The result observed in the simulation tracer 5.

Case 4:

qdep: x”2244”

rw:x”0”

addr_bus: x”EF01”

 53

This is a situation where two processors are accessing the same memory block and both

of them have same ‘qdep’. The processor with highest processor number is granted

access. As can be seen from the simulation tracer 5 that processor ‘1’ gains access to

memory block ‘0’ and processor ‘3’ to memory block ‘3’.

Processor 1 reads out ‘F’ from location ‘0’

Processor 3 reads out ‘1’from location ‘E’

Case 5:

qdep:x”1234”

rw:x”5” => “0101” in binary.

addr_bus:x”EF01”

data_in: x” AAAA”

Situation similar to case 3 as described above.

Here processor ‘0’ and processor ‘2’ gain access to the memory blocks ‘0’ and ‘3’

respectively.

Processor ‘0’ writes in ‘A’ at location ‘1’

Processor ‘2’ writes in ‘A’ at location ‘F’

Case 6:

All the parameters kept same except for rw.

rw:x”0”

The values written in case 5 are observed in this case. The result can be viewed in the

Figure simulation tracer 5.

Data_out: x”1AFA”

Case 7:

Situation where all the four processors access the same memory block 2.

addr_bus:x”7654”

rw:x”F”

data_in:x”1111”

The qdep is the same for all.

 54

qdep:x”2222”

According to the logic designed the processor ‘3’ with the highest processor number

gains access to the memory block ‘2’.Value ‘1’ is written at location ‘7’.The result

observed in the simulation tracer 6.

Case 8:

Read out the value written in case 7.The processor ‘3’ gained access and wrote ‘1’ at

location ‘7’.

The result observed in simulation tracer 6.

Case 9:

All the cases described so far had ctrl as “F”

In this case we observe the results changing the ctrl.

ctrl:x”C” => “1100” in binary.

rw: x”F”

data_in: x”EEEE”

addr_bus: x”FE32”

qdep :x”1232”

Processor ‘0’ and ‘1’ are not requesting access to the memory.

Processor ‘2’ and ‘3’ are requesting access for the same memory block ‘3’.

However processor ‘2’ gains the access since its qdep(=2) is greater than qdep(=1)

processor ‘3’. Processor ‘2’ writes ‘E’ at location ‘E’

The result observed in the simulation tracer 6.

The next stage is reading out the value written

Data out: x”1EFB”

Addr_bus: x”FE32”

Case 10:

Case where none of the processors are requesting access to the memory blocks.

ctrl:x”0”

The result observed on the simulation tracer 6.

There is no change in the value.

 55

Figure 5.4, Simulation Tracer 4

Case 1:
Different ‘addr_bus’ to
be written with values at
‘data_in’

Case 2:
Values fed in the system
are read out

 56

Figure 5.5, Simulation Tracer 5

Case 3 Case 4
Data written in at
location ‘1’ and
‘F’is displayed

Case 5 and 6

 57

Figure 5.6, Simulation Tracer 6

Case 7 and 8 Case 9 Case 10

 58

A brief overview of the cases discussed in 5.1.1 and 5.1.2 can be obtained from

the following graph in Figure 5.7 shown below.

 The parameters which decide on the priority logic as described in section 5.1.1

and 5.1.2 are ‘r_w’, ‘qdep’, ‘ctrl’, ‘addr_blk’ and processor identification number. The

chart is shown considering that all the processor’s ‘ctrl’ signal is at logic ‘1’ (request for

access to the data memory), ‘r_w’ could be either a ‘0’or ‘1’ (processor could either read

or write from the data memory). Hence the chart is plotted taking ‘qdep’, ‘addr_blk’ and

processor identification number as the parameters. The processors which granted access

are shown in solid color bars and those which are denied are transparent or clear.

At time ‘1’:

Processor 0 has queue depth of ‘4’and requests access to block 0(Blk0).

Processor 1 has queue depth of ‘3’and requests access to block 1(Blk1).

Processor 2 has queue depth of ‘2’and requests access to block 2(Blk3).

Processor 3 has queue depth of ‘1’and requests access to block 3(Blk3).

Since all the processors are accessing different memory blocks all of them are granted

access as can be seen from the chart.

Figure 5.7, Brief Overview of Priority Logic for the Interconnection Switch.

 59

At time ‘2’:

Processor 0 has queue depth of ‘4’and requests access to block 0(Blk0).

Processor 1 has queue depth of ‘3’and requests access to block 0(Blk0).

Processor 2 has queue depth of ‘2’and requests access to block 3(Blk3).

Processor 3 has queue depth of ‘1’and requests access to block 3(Blk3).

In this case as can be seen processor P0 and P1 are requesting access to the same

memory block 0, however since the queue depth of processor P0 (qdep=4) is higher than

processor P1(qdep=3), the processor P0 is granted access to block 0 and processor P1 is

denied access. Similarly processor P2 and P3 are requesting access to the same memory

block 3, the processor P2 is granted access to the memory block 3 since the queue depth

of processor P2 (qdep=2) is higher than processor P3 (qdep=1).

At time ‘3’:

Processor 0 has queue depth of ‘4’and requests access to block 0(Blk0).

Processor 1 has queue depth of ‘4’and requests access to block 0(Blk0).

Processor 2 has queue depth of ‘2’and requests access to block 3(Blk3).

Processor 3 has queue depth of ‘2’and requests access to block 3(Blk3).

In this situation again processor P0 and P1 are requesting access to the same memory

block 0, the queue depth for both the processors is the same (qdep=4). Hence according

to the logic described in chapter 4, processor with higher identification number

(Processor P1 in this case) is granted access. Processor P2 and Processor P3 are accessing

the same memory block 3 and have same queue depth (qdep =2), hence similar to the

situation discussed here for processor P0 and P1 the processor P3 is granted access since

it has the highest processor identification number in this case.

5.1.5 Validation of crossbar switch via HDCA system

 The crossbar switching network as described in Appendix A2 is embedded in the

second phase “virtual” prototype of the HDCA system. The interfacing of the crossbar

switch with the entire system involved major modifications to the first phase HDCA

system [5] and some enhancements to the crossbar network in Appendix A2.

 60

5.1.5.1 Changes and Enhancements to the First Phase Prototype

 The base functional model of the first phase prototype [5] of the HDCA is unable

to exhibit correct results at all times using Xilinx ISE 5.2i. On careful observation it is

observed that small components which constitute towards the working of the entire

system were not functioning correctly. In order to get the system to work as desired some

major modifications and addition of some components had to be done to the first phase

system. Due to frequent software related issues in the Xilinx ISE5.2i a decision was made

to shift to the higher version, Xilinx ISE6.2.3i which is a much more stable version. In

this section a brief description of the modifications made are listed component wise.

PE Controller

 The following problems were noted in the first phase system [5]. In the state

OP11 where in values are added immediately to the register value [7], the system failed

to give out correct results. As a solution to this problem a multiplexer M5 is added to the

existing Memory – Register Architecture [5]. This change allowed the output value of the

Instruction Register IR0 to be connected directly to the register R3. The changes made

have been separately shown in the Figure 5.8. Also the subtraction operation performed

was giving incorrect results. The state OP5 was unable to give correct subtraction results.

Appropriate changes are made to render correct results. These changes have been

incorporated in the second phase system [7].

 Another problem was encountered in the data input process into the ALU of the

PE. The bidirectional data bus was directly connected to the ALU input which was a

combinational logic, due to this unwanted data was also fed into the system along with

correct values. Finally it resulted in an output with unwanted values and incorrect results.

As a solution to this problem a register is introduced in front of the combinational logic

circuit, the ALU. This change allowed only the correct values to enter the combinatorial

logic and outputted correct results. The diagram with both the changes made is shown in

Figure 5.9.

 61

Figure 5.9, Memory/Register Architecture with Added Features

 62

Figure 5.8, Changes Made to PE Controller- Additional Mux M5

Interface Controller

 For pipelined execution of the applications running on HDCA the control logic

module had to be modified. In the work done in [1982 paper], the HDCA system is

capable of running multiple copies of the same application simultaneously on the system.

Different copies of the same application are distinguished on the basis of the ‘Time

Stamp’ field of the command token as shown below in Figure 5.6. For the entire set of

token format refer [7]

 Command Token

Hold Field Physical
Location

Time Stamp Process
Number

XXXXXXXX Data
Address

 31 30 24 23 21 20 16 15 8 7 0

Figure: 5.10a Command Token Format of the HDCA System

 An application developed in [5] is designed to meet the pipelined nature of the

HDCA, however on running an application it gvives out incorrect results. On a closer

examination of the behavior this discrepancy was due to the signal ‘outbuf’ in the control

logic module. At the end of every process execution a ‘Send PRT’ and a ‘StopL’ token is

being issued by the CEs which completed the process to the PRT Mapper. The signal

‘outbuf’ as mentioned above is being used in the formation of these tokens. With multiple

 63

copies running on the system simultaneously, it was observed that the value of first copy

of ‘outbuf’ was getting overwritten by the consecutive copy of ‘outbuf’ before the value

is used. This resulted in loss of data for the first application and hence abrupt termination

of the first application. The code for the formation of ‘Send PRT’ and ‘StopL’ tokens can

be obtained from Appendix A of [5].

 A major modification had to be introduced in the system to fix this particular

problem. Logic is established to differentiate among the command tokens with the help of

the ‘Time Stamp’ field of the command token in Figure 5.6. An array like structure is

introduced to store the data required in the formation of the ‘Send PRT’ and ‘StopL’

tokens. The command token format is also changed in the wake of this change. The bits

from 15 down to 8 in the token which were don’t cares(X) are changed to all ‘1s’. Along

with this change a new process ‘get_data’ is introduced in the control logic module in

order to parse the command tokens appropriately. The new format of the command token

is shown in the Figure 5.7

Command Token

Hold Field Physical
Location

Time Stamp Process
Number

11111111 Data
Address

 31 30 24 23 21 20 16 15 8 7 0

Figure 5.10b: New Token Format for the Command Token of the HDCA

As can be seen from the format above the ‘Time Stamp’ field is 3 bits wide allowing 8

copies of the same application to run simultaneously on the system.

 Another capability of this system as discussed in [3] is the ‘Dynamic Node Level

Re-configurability’ where in during the execution of an application the queue builds up

and on reaching a set threshold value, a new CE is configured on the fly to take up the

extra load of the overloaded CE. One of the problems faced while testing this property

was loss of command tokens. The system failed to parse them, resulting in a sudden

termination of the entire copy of the corresponding application. A new delay state is

added to the control logic module.

 64

Dynamic Load Balancing Circuit

 As a part of verifying the correct functioning of the HDCA system, numerous

applications are run on it. While running one of the applications as shown in Figure 5.11,

it was observed that the join operation of the processes P2 and P3 to process P4 was

showing incorrect results.

Figure 5.11, An Example of a Process Flow Graph

On close scrutiny the problem was found in the ‘dynamic load balancing circuit’ module.

It can be seen from the Figure above that during the join operation of P2 and P3, the

register R6 as shown in Figure 2.4 of [7], is utilized to store values of the Physical

Location, Process Number and the Data Location. This register is used specifically for

the join operation; it stores the values of Process Number and Physical Location of the

current process, P2 in this case. These values are used by the consecutive process, P3 in

this case so that they map to the same resultant process P4 here. The problem in this join

operation was that the system failed to understand that the operation is a join operation

owing to the fact that the values stored in R6 were not being assigned to the next process.

The change is documented in the Appendix A2.

Input ROM

 An input ROM is designed and introduced in the HDCA system in order to input

data values on which the application runs. The data is requested into the system in a

particular fashion and hence a core generated module could not be used. It is observed

that the data is requested every third clock cycle by the system, to facilitate transfer of

 65

values from ROM a special signal ‘valid’ as output. Only the values that are output every

third clock cycle are considered to be valid and are sent inside the system.

Multiplier CE

 This CE is another important addition to the HDCA system enhancing its

heterogeneity. Multiplication forms a major part in the applications for Digital Signal

Processing and the like; earlier the applications running on the application were limited

because of the lack of multiplier CE. Therefore a new Multiplier CE is developed and

integrated along with the other CEs. There are various ways in which a multiplier can be

designed, a few of them are Booth’s algorithm and core generated multiplier. After

having carried out a survey of multipliers it is observed that multipliers designed using

Booth’s algorithm consumed more power as compared to the core generated multipliers.

Since the factor of consumption of low power was of prime importance a design decision

was made to use the multiplier as shown in the Appendix A2. As can be seen the

multiplier is not a core generated, however on synthesis it is clear that the system has

utilized the core generated multiplier to infer the coded multiplier.

Crossbar Interconnect Network

 As described in the chapter 4, in which the crossbar switch is found to be the best

interconnection for the HDCA system, it is introduced and integrated with the

architecture. This is a step forward in the effort to make the HDCA system more scalable

and effective. One major problem faced in the first phase of the system was that of bus

contention in the light of two or more processors trying to access the data memory. This

issue is addressed effectively by the addition of the crossbar interconnect network. The

following section consists of two applications run on the HDCA system with the crossbar

embedded into the system. A design decision was made to use the component level

crossbar network explained in chapter 4. It should be noted here that depending on which

CE accesses the memory block (refer Chapter 4) the values stored in the memory can be

viewed at the ports “mem_out_0, mem_out_1, mem_out_2, mem_out_3” for processes

executed by CE0,CE1,CE2 and CE4 respectively. Similar argument holds good for their

 66

respective address locations which can be observed at “mem_ad_out_0…3”(4 different

ports). These ports are shown in all the following Figures.

5.1.6 Application 1 Described with Acyclic Process Flow Graph

Figure 5.12, Process Flow Graph for Application 1

Each process can be described in more detail as follows:

P1 – Input of ‘n’ numbers into the Shared Data Memory from the InROM.

P2 - Add First ‘n/2’ numbers inputted and store the result in Data Memory.

P3 – Add the next ‘n/2’ numbers inputted and similar to P2 store the value in data

memory.

P4 – Multiply the result of P2 by value ‘k’ stored in the instruction memory of the

Multiplier CE.

P5 – Divide the result of P3 by value ‘k’ stored in the instruction memory of the Divider

CE

P6 – Subtract the result of P5 (Multiplication) from P4 (Division) and store the value in

the data memory.

P7 – Output the final value of the result obtained in process P6.

The process flow graph described is tested by running two copies of the same

application, giving two command tokens. The initialization tokens and the instruction sets

are described in detail in Appendix B. For the application described the number of values

inputted ‘n’ is assumed to be 10(unsigned) and ‘k’ is assumed to be 2(unsigned). The

 67

command tokens are inputted after the initialization tokens. The two command tokens

given are: x“0101FF03” with time stamp as “000” and x“0121FF11” with time stamp as

“001”. They address the PRT mapper to map the first process P1 for both the copies.

Here since none of the CEs are being used the PRT mapper allocates CE0 for both the

copies of P1, as CE0 has a higher priority over CE1 on process P1.Figure 5.13 shows the

two command tokens being issued to the CE0.

 The first instruction issued by the interface controller of each CE is shown in the

waveforms at the ports “db_pe_icm0_fin0 for CE0 and similarly for other CEs. These

ports taken out are from the connection signal between individual CE and its Controller

as shown in Figure 1.1. CE0 begins execution of process P1, it inputs 10 values from the

input bus ‘inpt_data0’ into the shared data memory, the Figure 5.14 shows the inputting

of first 5 values(all 2sin this case) into the data locations starting from x”03”of shared

memory block. The Figure also indicates CEs accessing, a particular block in the

memory, for instance in this case CE0 is accessing block ‘blk0’ (refer to the last two

signals of the waveform in Figure 5.14). The inputting of the remaining 5 values is shown

in Figure 5.15. It can be seen that the ‘rq_ipt0’ goes high whenever CE requests a value

to be entered in a particular location. Consequently the ‘idv0’signal is made high, to

allow the inputting of values. The values stored in memory can be viewed at the

“mem_out_0”.

After the process P1 is executed, as seen in process flow graph (Figure 5.12)

process P1 forks to two processes, resulting in two command tokens (x“01020003” and

x“01030003”) being issued to the PRT mapper. This is depicted in Figure 5.16

PRT Mapper chooses the most available CE and allocates the processes. In this

case the process P2 is mapped to CE0 since it is the most available and process P3 is

mapped to CE1. The reason P3 is allocated to CE1 is that this CE is made the most

available for process P3 by changing ‘ram address’ field in Load PRT Mapper Token [7].

It should be noted here that this value could be changed to get different results; this

application is run as per values in Appendix B. The Figure 5.17 shows the command

tokens being issued to the CEs, process P2 to CE0 (x“0302FF03”) and P3 to CE1

(x“0203FF03”). At the end of process P1 for the copy 1 of the application, the execution

of process P1 for 2nd copy of the application begins, the instruction is issued by the CE0

 68

(“9C11 3003”). In the meantime CE1 starts execution of the process P3 for the first copy

(“9C03 3024”). In this case CE0 and CE1 are accessing the same memory block ‘blk0’,

however not at the same time hence there are no conflicts. All these developments can be

seen in the Figure 5.18.

At the end of the execution of process P1 of copy 2, two command tokens are

generated by CE0 and issued to the PRT mapper, similar to copy1. It is shown in Figure

5.19. The PRT Mapper makes a selection of the most available CE and allocates the

processes to the particular CEs. Figure 5.20 shows that the PRT Mapper allocates P2 to

CE0 and P3 to CE1 giving out the tokens x“0323FF11” and x“0223FF11”.

The execution of process P2 of copy 1 begins after the end of process P1 of copy

2. The instruction x“9C03 3017” is being issued to the CE0. This is shown in Figure 5.21.

In Figure 5.22 it can be seen that the instruction for process P3 is issued by CE1 x“9C11

3024” and also a command token x“ 01050003” for the process P5 is being issued to the

PRT Mapper as the execution of process P3 ends. The process P5 is a division operation

as shown in Figure 5.12, the PRT Mapper allocates the process P5 to the Divider CE as

can be seen from the token x“0405FF03”. The stored data values in the data memory, the

result of the addition of first 5 and the last 5 values before and after the division and

multiplication results and final results are shown in the appendix B.

 69

Figure 5.13, Command Tokens for Both Copies of P1 to CE0 Issued by PRT Mapper

Copy 1 Copy 2

 70

Figure 5.14, First Instruction and Input of First Five Values.

Process P1 forCopy 1

Input of first five values
unsigned ‘2’

 71

Figure 5.15, Input of Last 5 Values for Process P1 of copy 1

Output of CE0

CE0 accessing block 0

 72

Figure 5.16, Two Command Tokens Issued to PRT Mapper of Copy 1

Process P1 forked and
command tokens of P2 and P3
given to PRT Mapper

 73

Figure 5.17, Command Tokens Issued to CE0 and CE1 by PRT Mapper of Copy 1

Command token for Process P3
to CE1 of copy 1 Command token for Process P2

to CE0 of copy 1

 74

Figure 5.18, Instructions for Process P1 of Copy 2 and for Process P3 of Copy 1

Instruction for
Process P1 by
CE0 copy 2

Instruction for
Process P3 by
CE1copy 1

CE0 and CE1 access same block blk 0

 75

Figure 5.19, Two Command Tokens Issued to PRT Mapper for Copy 2

Process P1 forked and
command tokens of P2 and P3
given to PRT Mapper copy 2

 76

Figure 5.20, Two Command Tokens Issued to CEs by PRT Mapper for Copy 2

Command token for Process P3
to CE1 of copy 2

 77

Figure 5.21, Instruction Issued by CE0 of Process P2 for Copy 1

Instruction for Process P2 to
CE0 of copy 1

 78

Figure 5.22, Instruction by CE1 of P3 Copy 2 and Commend Token from PRT to CE2

Instruction for Process P3 by
CE1 of copy 2

Command Token issued to PRT
mapper for Process P5 for copy 2

 79

The division operation is shown in the Figure 5.23, the division of value

unsigned‘10’ (result of addition of last 5 values of process P3) at x”0E”by unsigned’2’,

the result unsigned ‘5’ is obtained after a 20 clock cycle delay and is stored at the same

location of ‘10’ that is x”0E”. To exhibit perfect division operation the ports of the

divider CE are taken out and shown in the lower part of the same Figure 5.23. At the end

of the execution the Divider CE sends the command token to the PRT Mapper

x”81060003” which signifies that it is a join operation. The PRT Mapper waits for the P4

process to execute and issue similar token to the PRT Mapper.

After the execution of process P2 by CE0 it sends the command token

x”01040003” to the PRT Mapper. The next process is P4, multiplication operation; hence

the PRT Mapper allocates the process to the Multiplier CE (CE4). It issues a command

token x”0504FF03” to CE4. This is shown in Figure 5.24. The Figure also shows the

issuance of instruction for process P3 for copy 2 to CE0 “db_pe_icm_0_fin0”.

Figure 5.25 elaborately shows the multiplication operation after the issue of the

multiplier instruction. The value unsigned ‘10’ stored at location x”0D” (addition of first

5 values in process P2) is multiplied by unsigned ‘2’. The result, unsigned ‘5’ is stored at

same location x”0D”. These values can be seen at port “mem_out_3” and locations at

“mem_ad_out_3” of the waveform. The ports of the multiplier CE are taken out and

shown in the waveform of Figure 5.25 to further exhibit the functioning of the multiplier

CE. At the end of process P4 a command token is being issued by CE4 to the PRT

Mapper x”81060003” which indicates a join process P6 similar to the Division process

explained earlier.

The process P2 of copy 2 after execution sends a command token for process P5

to PRT Mapper and eventually the PRT Mapper sends the command token to the Divider

CE. This is shown in Figure 5.26. The detail division operation is shown in Figure

5.27.Here the unsigned value ‘10’ stored at x”1C”, refer to Appendix B is divided by

unsigned value of ‘2’. The result is stored in the same location x”1C” as shown in the

waveform of Figure 5.27.Values observed at “mem_out_2”at location “mem_ad_out_2”.

Similar to the division operation of copy 1 the divider ports are taken out to confirm

perfect functioning of the divider CE. The following command token for process P6 is

issued by CE2 to PRT mapper.

 80

Figure 5.23, Division Op. for P5 with Results, Command Token to PRT Mapper Copy 1

Instruction for Process P5 by
Divider CE copy 1

‘10’(unsigned) at location
x”0E” divided by ‘2’ – values
visible at mem_out_2 and
location at mem_ad_out_2

Result of division ‘5’(unsigned)
at location x”0E” – values
visible at mem_out_2 and
location at mem_ad_out_2

 81

Figure 5.24, Command Tokens for P4 to PRT Mapper, from PRT to CE4 for Copy 1

Command token given to PRT
mapper for process P4 copy 1

Instruction for Process P3 by
CE0 copy 2

Command token given to Multiplier
CE for process P4 copy 1 copy 1

 82

Figure 5.25, Multiplication Operation by CE4, Token Issued to PRT Mapper Copy 1

‘10’(unsigned) at location
x”0D” multiplied by ‘2’ –
values visible at mem_out_3
and location at mem_ad_out_3

Result of division ‘20’(unsigned) at
location x”0D” – values visible at
mem_out_3 and location at
mem_ad_out_3

Instruction for Process P4 by
Multiplier CE copy 1

CE0 ,CE1 and CE3 access same
block blk 0

 83

Figure 5.26, Command Token for P5 Issued to PRT Mapper, from PRT to CE2 Copy 2

Command token given to PRT
mapper for process P5 copy 2

Command token given to Divider
CE for process P5 copy 2

 84

Figure: 5.27 Div Op.for P5 with Results, Command Token to PRT Mapper for Copy 2

‘10’(unsigned) at location
x”1C” divide by ‘2’ – values
visible at mem_out_2 and
location at mem_ad_out_2

Result of division ‘5’(unsigned) at
location x”1C” – values visible at
mem_out_2 and location at
mem_ad_out_2

Instruction for Process P5 by
Divider CE copy 2

CE0 and CE2 access same
block blk 0

 85

 In Figures 5.25 and 5.27 it can be seen that two CEs are accessing the same

memory block ‘blk0’.In the meanwhile the PRT Mapper allocates CE1 to compute the

process P6 of copy 1 as can be seen from Figure 5.28. The instruction x”9C03 9803

3032”for the join operation is issued to CE1.From Figure 5.12, it is understood that in the

process P6 the values obtained from the result of process P4 are subtracted from result of

process P5. The value unsigned ‘5’ (result of division) at location x”0D”, is subtracted

from unsigned ‘20’ (result of multiplication) at x”0E”and the result unsigned ‘15’ is

stored at location x”0F”. The result of the process P6 is outputted by the process P7. At

the end of process P6 a command token is issued to the PRT mapper and consequently

the PRT Mapper allocates the process P7 to CE0. The instruction for process P7 is issued

by CE0 x”9C03 3039”. This process outputs the results of the subtraction operation in P6.

Hence the result can be seen as explained earlier in Figure 5.29. Also it can be seen in the

Figure the command token for process P4 of copy 2 being issued to PRT Mapper and

eventually a command token x”0524FF11”seen at port “token_bus_prt_pe” issued to the

Multiplier CE to execute the process P4 of multiplication.

After the command token for the process P4 is issued to Multiplier CE, the instruction is

issued and multiplication takes place. The value unsigned ‘10’ stored as a result of the

execution of process P2 at x”1B” is multiplied by unsigned ‘2’, the result is stored at the

same location x”1B”. At the end of process P4, a command token x”81060011” for the

join process P6 is issued. This is shown in Figure 5.30.

 The PRT Mapper allocates the next process P6 to CE1 since it is the most

available CE at that point of time. The instruction for the process P6 is given out to CE1,

x”9C11 9811 3032”.This can be see from Figure 5.31. Subtraction operation takes place.

The result of the process P5 (division) is subtracted from the result of P4 (multiplication)

similar to the copy 1. The result is stored at x”1D”, refer to the Appendix B. The value of

the final result is outputted in the next process P7. Hence after the execution of process

P6 the command token to execute process P7 is given to the PRT Mapper which in turn

allocates CE0, it issues the instruction x”9C11 3039”. The result unsigned ‘15’ can be

seen in Figure 5.32 at port “mem_out_0” at location “mem_ad_out0” (x”1D”).

 86

Figure 5.28, Join Instruction for Process P6 for Copy 1

Command Token for Process P6
given to CE1 of copy 1

Instruction for Process P6 by
CE1 copy 1-join operation

 87

Figure 5.29, Process P7 Instruction and Final Output of the Result of P6 for Copy 1

Instruction for Process P7 by
CE0 copy 1-Display of final
values

Command token given to PRT
mapper for process P4 copy 2

Command token given to Multiplier
CE for process P4 copy 2

Final Result of ‘15’(unsigned) at
location x”0F” – values visible at
mem_out_0 and location at
mem_ad_out_0

 88

Figure 5.30, Multiplication Process Result, Command Token to PRT Mapper Copy 2

Instruction for Process P4 by
Multiplier CE copy 2

‘10’(unsigned) at location
x”1B” multiply by ‘2’ – values
visible at mem_out_3 and
location at mem_ad_out_3

Result of multiplication
‘20’(unsigned) at location x”1B” –
values visible at mem_out_3 and
location at mem_ad_out_3

 89

Figure 5.31, Join Process P6 Instructions for Copy 1

Instruction for Process P7 by
CE0 copy 1-Display of final
values

Command token given to CE1 for
process P6 copy 2 – join operation

 90

Figure 5.32, Process P7 with Final Value of the Result of Process P6 for Copy 1

Final Result of ‘15’(unsigned) at
location x”1D” – values visible at
mem_out_0 and location at
mem_ad_out_0

Instruction for Process P7 by
CE0 copy 1-Display of final
values copy 2

 91

5.1.7 Application 2 Described with Cyclic Flow Graph

Figure 5.33, Application for Swapping of two Values

Each process shown in figure 5.33 is explained in more detail as follows:

P1 – Input 2 large values say T1 and T2 with T1>T2

P2 – Add unsigned ‘10’ to T2 to get a new value of T2.

P3 - Check if T2 =T1 orig. If yes, branch to P6 (Exit PN), display both T1 and T2

 Else branch to P2 again (feedback loop)

P4 – Subtract unsigned ‘10’from T1 and update the new value of T1.

P5 – Check if T1=T2 orig. If yes, branch to P6 (Exit PN), display both T1 and T2

 Else branch to P4 again (feedback loop)

P6 – Display the values of T1 and T2 and then exit. The values should be swapped with

respect to their original locations.

There are certain modifications done to the HDCA system to function correctly for

the loop application described here. The figure 5.33 shows that process P6 is a join

operation it is executed only when the condition for the Exit PN is satisfied. Each time

the execution of the application loops back (P3 loops back to P2 and P5 to P4) the

command token generated and issued to the PRT Mapper by the CEs executing processes

 92

P3 and P5 have the join bit field set to logic ‘1’[5]. However the next process is process

P2 for P3 and process P4 for P5 rather than process P6, the actual join process. The join

process check in the controller of PRT mapper is modified to handle this issue. When the

condition for the Exit PN is satisfied the system should be able to properly join the two

processes P4 and P5 in this case. In order for this part to function correctly the ‘StopL’

token format is modified. The bits from 15 down to 8 in the ‘StopL’ token are all at logic

‘0’ state. The bit 15 in this case is modified to be at logic’1’.This bit is used by the PRT

Mapper to indicate that the token is for the real join operation. The system works

perfectly with these changes made and outputs correct results refer to Appendix B.

The process flow graph shown above is tested by running a copy of an application.

The initialization tokens and instruction set for processes of the application are described

in detail in Appendix B. For this application the value of T1 (original) is unsigned

‘100’and value of T2 (original) is unsigned ‘60’. As can be seen from the description of

processes the values of T1 and T2 change and are different from original as the

application progresses, hence the values are inputted twice into the data memory. This

ensures that one of the pairs of values inputted remains intact. A command token

(x”01010003”) is inputted into the system. It triggers the system to begin the application.

It addresses the PRT mapper to map the process P1 to a CE which is the most available at

that point of time. It is observed that PRT mapper allocates process P1 to CE0 as it has

higher priority over CE1. The instruction is issued by controller of CE0 which prompts

the CE0 to input values from the input ROM, it should be noted here that a new

component ‘inrom’ has been added into the system in order to facilitate inputting

different values of data into the system’s data memory. Figure 5.34 shows the instruction

issued to CE0 indicated by port name “db_pe_icm0_fin0” (connection between interface

controller module and PE) refer to Figure 1.1; the signal is taken out as the port name.

The execution of the process P1 begins by inputting values from ‘inrom’. Figure 5.34

shows that two values unsigned ‘60’ and ‘100’ are input at locations x”03” and x”04”.

The values can be seen at the “mem_out_0” since CE0 is executing the process. The

Figure 5.31 shows the inputting of the next 3 values into the data memory. They are

unsigned ‘10’, ‘60’ and ‘100’ at locations x”05”,”06” and “07” respectively. In the set of

waveforms that follow it should be noted that the ports “db_req0_dbug, db_req1_dbug,

 93

db_req3_dbug” are the signals coming from CEs 0, 1 and 3 respectively. These signals go

high when the CE requests access to the memory. Similarly ports “db_grant0_dbug,

db_grant1_dbug, db_grant3_dbug” are signals coming from the crossbar network to the

CEs that are granted access.

At the end of process P1, it forks to two processors P2 and P4 as can be seen from

5.33. Hence two command tokens are issued by CE0 to PRT Mapper; it maps the two

processes to CEs depending on the availability. It is observed that process P4 is allocated

to CE0 and process P2 to CE1. In this case for process P2, CE1 is made the most

available in a similar way as described in the application 1, this setting could be changed.

It can be seen in Figure 5.36, the instruction for P4 is issued to the CE0 and instruction

for P2 is issued to CE1. The execution of the process P2 can be seen at “mem_out_1” and

corresponding address at “mem_ad_out_1” since CE1 is executing it. Similarly it can be

seen that CE0 is executing the process P4 on observing line “mem_out_0”and location at

“mem_ad_out_0”.The result for process P2 which is unsigned ‘70’is stored at location

x”03” and result of process P4, unsigned ‘90’ is stored at location x”04”.

 At the end of each process P2 and P4, command token is issued by the CEs to the

PRT Mapper which in turn finds the most available CE and maps the processes to it.

Figure 5.37 shows the instruction (x”9C03 3014”) for process P3 is being issued to CE0.

In this process the values unsigned ‘100’ at x”07” and value at x”03” are compared for

equality. In this case the values are not equal since unsigned ‘100’ ≠ unsigned ‘70’.The

execution loops back to process P2 as per the condition stated in the explanation of the

processes.

Similar to process P3 which executes after P2, process P5 is executed after

process P4. In process P5 also the values unsigned ‘60’ at x”06” and value at location

x”04” are compared. If the values do not match, the execution loop backs to execute

process P4 again. At this time the values are not equal hence the process P4 is executed

again. This is shown in Figure 5.38. It also shows the instruction for process P2 issued by

the interface controller of CE1 to CE1.

 94

Figure 5.34, Instruction for Process P1 and Input of First two Values

Instruction for Process P1 by CE0
‘60’(unsigned) at x”03”
‘100’(unsigned) at x”04”

 95

Figure 5.35, Process P1 Inputs of Last 3 Values

‘10’(unsigned) at x”05”
 ‘60’(unsigned) at x”06”

 ‘100’(unsigned) at x”07”

 96

Figure 5.36, Instructions for Processes P2 and P4 with Results

Result of process P2 ‘70’ at x”03”
Result of process P4 ‘90’ at x”04”

Instruction for process P2 (first execution)

Instruction for process P4 (first execution)

 97

Figure 5.37, Process P3: First Comparison

Instruction for process P3 (first comparison)

Comparison of ‘100’ and ‘70’, not equal loop
back to Process P2
Command token issued to PRT mapper

 98

Figure 5.38, Process P5: First Execution

Instruction for process P5 (first execution)

Comparison of ‘60’ and ‘90’, not equal loop
back to Process P4

 99

The detail execution of process P2 is shown in Figure 5.39. The addition

operation takes place and at this point of time the result calculated is unsigned ‘80’ (70 +

10) and is stored at location x”03”. It can be concluded by observing the ports

“db_req0_dbug, db_req1_dbug” and corresponding “db_grant0_dbug,

db_grant1_dbug”that CE0 and CE1 are accessing the same memory block (block 0).

However since the CEs are accessing the same memory block the processor requesting

the memory access early in time is granted access. After execution of P3 and looping

back to P4, the PRT Mapper allocated process P4 to CE0 as can be seen in Figure 5.40.

The subtraction of unsigned ‘10’ from value at location x”04”takes place. In this case the

result calculated is unsigned ‘80’ (90 -10) at location x”04”.

At the end of process P2, the updated value is checked once again against the

original value. This is done in process P3 as seen earlier. The execution of process P3 for

the second time is shown in Figure 5.41. The CE0 executes this process as is seen from

the instruction issued by interface controller of CE0 to CE0. Since the values compared

are not equal, the application loops back to execute process P2 again. The command

token x”81020003” is issued by CE0 to PRT Mapper (note the “token_bus_prt_pe” port

which is a signal connecting CEs and Token Mapper, refer to Figure 1.1).

After the execution of process P4 as explained earlier, the original value at

location x”06” which is unsigned ‘60’ is compared with the new value obtained as a

result of process P4. This is shown in Figure 5.42. The value at location x”04” is now

unsigned ‘80’. It is evident that the values being compared are not equal, hence the

application execution has to loop back to execute process P4. The command token for P4

is issued by CE0 to PRT Mapper as shown at port “token_bus_prt_pe”: x”81040003”.

The Figure also shows the instruction for process P2 issued to CE1 by its interface

controller. The execution of the process P2 and the result is shown in detail in Figure

5.43. As can be seen from port “mem_out_1” unsigned ‘80’ at x”03”(“mem_ad_out_0”)

is added with unsigned ‘10’ at x”05” result unsigned ‘90’is stored at the x”03”.

The process P4 is also executed again for the third time. The execution is done by

CE0. It is shown in Figure 5.44. The value unsigned ‘80’ at x”04” obtained from earlier

execution is subtracted by unsigned ‘10’ at x”05” and the result unsigned ‘70’is stored at

the same location x”04”.

 100

Figure 5.39, Process P2: Second Execution

Instruction for process P2 (2nd execution) by CE1

Addition of ‘70’ at x”03” with ‘10’ at x”05”
Result ‘80’at x”03”

 101

Figure 5.40, Process P4: Second Execution

Instruction for process P4 (2nd execution) by CE0

Subtraction of ‘10’ at x”05” from ‘90’ at
x”04”
Result ‘80’at x”04”

 102

Figure 5.41, Process P3: Second Execution

Instruction for process P3 (2nd comparison)

Comparison of ‘100’ and ‘80’, not equal loop
back to Process P3
Command token issued to PRT mapper

 103

Figure 5.42, Process P5: Second Execution

Instruction for process P5 (2nd comparison)

Comparison of ‘60’ and ‘80’, not equal loop
back to Process P4
Command token issued to PRT mapper

 104

Figure 5.43, Process P2: Third Execution

Instruction for process P2 (3nd execution) by CE1

Addition of ‘80’ at x”03” with ‘10’ at x”05”
Result ‘90’at x”03”

 105

Figure 5.44, Process P4: Third Execution

Instruction for process P4 (2nd execution) by CE0

Subtraction of ‘10’ at x”05” from ‘80’ at
x”04”
Result ‘70’at x”04”

 106

 At the end of process P2 again the comparison operation takes place in process

P3.The values compared are unsigned ‘100’ at x”07” and unsigned ‘90’ at x”03”. Since

the comparison result is not equal, it loops back again to execute P2. Figure 5.45 shows

the execution of process P3 for the third time.

 Similarly the process P5 is also executed again for the third time. After the

execution of process P4 the updated value is compared with the original. Here new value

unsigned ‘70’ at x”03” is compared with the original unsigned’60’ at x”06”. The values

are not equal and hence application loops back to execute process P4. The values can be

seen at port “mem_out_0” and locations at “mem_ad_out_0” of Figure 5.46.The

instruction for the process P2 is also seen to be issued to CE1 by its interface controller.

The detail application is shown in Figure 5.47.

The process P2 is executed again after the looping back from process P3. As seen

in Figure 5.47 process P2 is executed by CE1 and the results can be viewed at port

“mem_out_1” and locations at “mem_ad_out_1”. In this case unsigned value ‘90’ at

location x “03”added to value unsigned ‘10’at x”05” to get the result unsigned value

‘100’at x”03”.one can also observe the requests and grants port lines depicting that both

CE0 and CE1 are accessing the same memory block ‘0’.

 Process P4 is also executed again as a result of looping back from process P3.

This process is executed by CE0 as seen from the Figure 5.48. Observing port

“mem_out_0” and locations “mem_ad_out_0”, the subtraction operation and the result

can be seen. The value unsigned ‘10’ at x”05” is subtracted from updated value at

location x”04”, unsigned ‘70’ in this case. The result unsigned ‘60’ is stored at x”04”.

 After the execution of process P2 for the fourth time the process P3 is executed

again by CE0. The value at x”03” unsigned ‘100’is compared with the original value

unsigned ‘100” at x”07”.The result of the comparison is satisfied that is the two values

compared are equal. Hence the condition for exiting the loop is satisfied, the application

proceeds to execute process P6 which is a join operation as can be seen in Figure 5.33.

This is shown in Figure 5.49.

 107

Figure 5.45, Process P3: Third Execution

Instruction for process P3 (3rd comparison)

Comparison of ‘100’ and ‘90’, not equal loop
back to Process P2
Command token issued to PRT mapper

 108

Figure 5.46, Process P5: Third Execution

Instruction for process P5 (3rd comparison)

Comparison of ‘60’ and ‘70’, not equal loop
back to Process P4
Command token issued to PRT mapper

 109

Figure 5.47, Process P2: Fourth Execution

Instruction for process P2 (3rd execution) by CE1

Addition of ‘90’ at x”03” with ‘10’ at x”05”
Result ‘100’at x”03”

 110

Figure 5.48, Process P4: Fourth Execution

Instruction for process P4 (3rd execution) by CE0

Subtraction of ‘10’ at x”05” from ‘70’ at
x”04”
Result ‘60’at x”04”

 111

Figure 5.49, Process P3: Fourth Execution, Exit of Loop, Token Issued to PRT Mapper

Instruction for process P3 (4th comparison)

Comparison of ‘100’ at x”07” and ‘100’ at
x”03”, equal hence proceed to join Process P6
Command token issued to PRT mapper

 112

It can be observed from all the Figures in this application that the signal ‘state’ is

taken out from all the interface controller modules as a port.The controller for CE0 goes

into the ‘StopL’ state since the Exit Loop condition is satisfied. CE0 issues a command

token x”81060003”to the PRT mapper. The mapper waits for other join token which is

sent by process P5 after the exit PN condition is satisfied.

 The process P5 is executed by CE0 and the instruction is issued by its interface

controller, it is shown in Figure 5.50. The value at location x”06”, ‘60’ (unsigned) is

compared with updated value unsigned ‘60’ at x”04”. The values are equal and hence the

condition for the Exit loop is satisfied. The execution proceeds to process P6 and CE0

issues a command token x” 81068003” similar to process P3 as described earlier. The

state of the controller of CE0 goes into the ‘StopL’ state.

 The PRT Mapper receives both the tokens of the join process P6. It maps CE1 as

the most available CE to execute process P6. The instruction is issued by CE1 interface

controller to CE1.The values can be seen at the port “mem_out_1” and locations on

“mem_ad_out_1” port. It can be observed that the values ‘100’ (unsigned) which was at

x”04” and ‘60’ (unsigned) at x”03” are swapped with respect to the locations. At the end

of process P6 the value ‘100’ (unsigned) is at x”03” and value ‘60’ (unsigned) is now at

x”04”.This is shown in Figure 5.51.

 113

Figure 5.50, Process P5: Fourth Execution, Exit of Loop, Token Issued to PRT Mapper

Instruction for process P5 (4th comparison)

Comparison of ‘60’ at x”06” AND at x”04”,
equal hence proceed to join Process P6
Command token issued to PRT mapper

 114

Figure 5.51, Process P6 Join Operation, Final Results, Values Swapped

Instruction for process P6 – join operation by CE1

Swapping achieved
Originally ‘100’ at x”04” now at x”03”
Originally ‘60’ at x”03” now at x”04”

 115

5.1.8: Latency and Starvation Issues

 Latency or delay within a crossbar switch, measured in terms of the amount of the

input to output delay, is a constant. [4] The crossbar possesses a constant rate of delay. It

is observed that the time required for the grant signal to go high after a request signal is

made high by a CE is two and half clock cycles. Once the connection is established

between the CE and memory block it takes one clock cycle to read out values from the

memory and also one clock cycle to write in data. These delays can be observed from the

waveforms shown for the execution of applications described above in section 5.1.3 and

5.1.4.

 Chapter 3 discussed choosing the arbitration technique for processors requesting

memory access. A variable priority arbitration scheme is used in the design of the

crossbar in this case. The priority is based on the value of the queue depth of individual

processors [5] [7] [15]. In case there is contention for the same memory block the

processor with the highest memory block is granted access. The issue of starvation may

arise when the processor, granted access to the memory block continues to request for

memory access. In this case the other processors requesting memory access have to wait

for an indefinite time until the processor having high priority ceases to request memory

access. This can be a serious problem in interconnection networks and has to be given

special attention. Fortunately, in this situation where the crossbar switch is being used in

a HDCA system, this issue is taken care off. According to the design of the HDCA

architecture [5,7,15] the PRT mapper allocates process requests to the individual CEs

according to their availability at that point of time during an application run. The

availability is determined by tokens lined up in the queue of the processors. Hence in a

situation where in processor with highest priority keeps on getting access to the memory

block, the PRT Mapper eventually assigns the new processes to the other CEs since the

processor with highest priority already has deeper queue depth already. After some time

the processor which had been granted access, no longer has the highest (deepest) queue

depth and hence the access to the memory ceases. This allows the other processors to

access the memory blocks.

 116

 However, in other systems where the crossbar could be used in an environment

different from the HDCA system, one way to overcome this issue is to make use of the

operating system used. The amount of time any processor can be granted access to the

memory block could be preset to a certain amount. Once any processor is granted access

the operating system should start the timer and at the end of the preset time check if the

processor still has access to memory and if yes, then it should be removed at the end of

the stipulated time making provision for other processors to gain access to the memory.

 117

Chapter Six

Dynamic Node Level Reconfigurability and Multiple Forking Capability

6.1 Concept of Node Level Reconfigurability and Changes to HDCA

 For the applications developed and described in Chapter 5, a static resource

allocation algorithm is first executed to statically assign specific application process to

specific processors within the HDCA system prior to execution of the application.

However, in many cases especially in real time applications, unexpected events may

occur. This may lead to a sudden increase of input values exceeding the limits assigned

during static allocation. At this time it is required that additional copies of processes, on

the fly, be assigned to existing or newly configured processors within the HDCA. This is

the concept of node level reconfigurability.

 In order to implement this concept in the HDCA system another stand by CE is

introduced to the architecture. It triggers when both CE0 and CE1 get overloaded. The

maximum queue depth of the processors is set to ‘8’ (unsigned). However the threshold

value is selected as ‘5’ (unsigned). The value of the threshold is chosen less than the

maximum that is ‘8’ to avoid any loss of tokens that may occur in transition of issuing the

token to a stand by CE rather than the overloaded one and also to provide sufficient

tolerance to the system. The threshold for each of the CE0 and CE1 is set by feeding in

two Load Threshold tokens as shown in Figure 6.1, for a list of all tokens refer [7]. The

value of the threshold for both CEs is set to ‘5’ (unsigned) by inputting tokens

x”83E80005” for CE0 and x”82E80005” for CE1.

Load Threshold Token

1 Physical Location 11101 XXXXXXXXX Time_S Threshold

 31 30 24 23 19 18 10 9 6 5 0

Figure 6.1, Load Threshold Token Fed Into HDCA Setting the Value of Threshold Flag

A design decision to trigger the stand by CE is made on the basis that when both

the CEs reach their threshold value of ‘5’ (unsigned). At this point the token instead of

being issued to either of the CE0 or CE1 is being given to the stand by CE. The controller

 118

of the PRT Mapper is modified, a check is put if the threshold value of both the CEs is

reached and if true the new token is issued to the stand by CE.

 The application used to describe and verify the concept of the node level

reconfigurability is that explained in 5.1.5. In order to make the system compute intense 8

command tokens are being fed into the system instead of one as in 5.1.5. The waveforms

are captured; whenever the threshold for the CE0 and CE1 is reached the stand by CE is

triggered is observed.

The command tokens fed in the system are:

x”0101FF03” x”0121FF09” x”0141FF0F” x”0161FF15”

x”0181FF1C x”01A1FF21” x”01C1FF28” x”01E1FF2E”

 The command tokens input into the system and the two load threshold tokens are

shown in Figure 6.2. The tokens can be seen on “op_token_bus”. The “prog_flag” is set

to ‘5’unsigned for CE0 at 6200 ns in the waveform.

 Figure 6.3 shows that process 1 is being executed for the first four command

tokens. The instructions can be seen at “db_pe_icm0_fin0” for CE0 and at

“db_pe_icm1_fin1” for CE1. Also “prog_flag” for both the processors CE0 and CE1 is

set to ‘5’ from the load threshold token. The signals “avlsig0”, “avlsig1” and “avlsig5”

show the queue depth values of CE0, CE1 and stand by CE respectively. The values of

the “avlsig0” and “avlsig1” vary from 0 to 2 as can be seen. The value does not increase

beyond that since the process P1 is not complete for all the command tokens and hence

have not yet forked to two processes each. As explained in 5.1.5 each process P1 forks to

two processes in effect generating two command tokens issued to the PRT Mapper.

 Figure 6.4 shows that forking has been done for some of the command tokens as

can be seen from the instructions at “db_pe_icm0_fin0” and at “db_pe_icm1_fin1”. Most

of the tokens are being issued to CE1 and its queue depth increases as can be seen from

the Figure 6.4. It reaches the threshold value of ‘5’ and hence the threshold flag,

“th_flag” for CE1 is set to ‘1’around 39.5 us. However, in this case since CE0 is not yet

reached its threshold the stand by CE is not triggered

 119

Figure 6.2, Input of two Load Threshold and Eight Command Tokens in the System

Two Load threshold tokens
Eight Command tokens inputted

 120

Figure 6.3, Process P1 for First Four Command Tokens

Process P1 for first four command tokens

 121

Figure 6.4, Forking of Tokens and Queue Depth of CE1 Reaching Threshold Value

Threshold for CE1 reaching threshold value

 122

 The tokens generated after forking of P1 for all the eight command tokens are

more or less distributed and assigned equally to the two CEs, CE0 and CE1. Hence at

time 68 us as can be seen in Figure 6.5, both the threshold flags are set to ‘1’, now the

stand by CE gets triggered. It can be observed that the following token which is x”

0645FF0F” for process five of the third command token is being issued to stand by CE

instead of being issued to CE0 or CE1. In that case the tokens would have been

x”0345FF0F” and x”0245FF0F” for CE0 and CE1 respectively. It can also be shown that

“avlsig5” goes from “00” to “01” and returns to “00” once the process starts executing on

the stand by CE. The token issued to the stand by CE can be observed on

“token_bus_prt_pe”.

 During the course of execution of the application this situation arises many times

and stand by CE is triggered to take off the extra load of the CEs. Another such situation

is shown in Figure 6.6. The threshold for both the CEs sets to ‘1’ at around 80.5 us and

the next following token is being issued to the stand by CE. The token x”0685FF1C” is

seen on “token_bus_prt_pe”.

 Thus it can be concluded from the waveforms that the design modifications to the

HDCA in order to incorporate the node level reconfigurability works correctly.

 123

Figure 6.5, Threshold Flag Set for CE0 and CE1, Stand by CE Triggered

Threshold for CE1 and CE0 reached Stand By CE
triggered

 124

Figure 6.6, Threshold Flag Set 2nd Time for CE0 and CE1, Stand by CE Triggered

 125

6.2 Multiple Forking Capability of the HDCA System:

 The applications described thus far as in chapter 5 had a major limitation in terms

of parallelism; processes being executed simultaneously. The number of processes that a

single process could fork to is limited to two. One of the ways this problem could be

overcome is described here.

 It can be seen from the Figure 6.6 that a process that forks into three processes is

initially divided into two main processes one of which is the dummy process that just

helps to fork the processes further into two processes. In the dummy process the

processor goes into a “no-op” state causing a delay and forking into two processes. This

can be seen as a “cascading effect”, with this method a process can be made to fork to ‘n’

number of processes.

 In order to incorporate this concept into the HDCA system, an additional state

‘OP13’ is added to the controller of the PE. This state as stated earlier is a ‘no-op’ state

that basically forks into two processes. The code for the additional state is included in the

Appendix B.

Figure 6.6, Multiple Forking Concept Used in the HDCA System

 126

6.3 Application Describing Multiple Forking in HDCA System:

Figure 6.7, Application Describing Multiple Forking in HDCA

Each process shown in the Figure 6.7 is explained in more detail as follows:

P1 – Input 6 numbers into the system.

P2 – Sum the first two numbers inputted.

P3 – Dummy Process that forks into processes P4 and P5.

P4 – Sum of the middle two numbers that is 3rd and 4th numbers inputted.

P5 - Sum of last two numbers inputted.

P8 – Subtract the result of P5 from result of P4.

P7 – Multiply the result of process P2 with ‘4’ (unsigned).

P8 – Add the result of process P7 and P8 and display.

 A series of tokens are inputted into the system and finally a command token

x”01010003” is fed in, as shown in Figure 6.8

 Figure 6.9 shows the instruction for the first process P1 “9C03 3003”. Six

numbers are inputted into the system all unsigned ‘2’s in this case. The end of process P1

results in three processes, P2, P4 and P5 to achieve this forking as discussed earlier P1

forks to P2 and P3. P3 is a dummy process which facilitates further forking into P4 and

 127

P5 as shown in Figure 6.7. The Figure 6.10 shows the execution of process P2, it is

addition of unsigned ‘2’ at locations x”03” and x”04”. The result unsigned ‘4’ is stored at

location x”0A”. The Figure also shows the token for process P3 x”02030003”.

 Figure 6.11 shows the execution of process P3 which is a “no-op” with instruction

“9C03 3000” and also execution and result of process P7. Process P7 is a multiplication

process the result of process P2 which is unsigned ‘4’ is multiplied by unsigned ‘4’. The

result unsigned ‘16’ is stored at x”0A”. It can be viewed at “mem_out_3” and at location

“mem_ad_out_3”.

 The execution of dummy process P3 results in two processes P4 and P5. The

Figure 6.12 shows the instructions for process P4 x”9C03 3018” and x”9C03 3020” for

process P5. The result for both the processes can be observed unsigned ‘4’

(“mem_out_1”) at locations x”14” for process P4 and unsigned ‘4’ (mem_out_1”) at

x”1E” for process P5.

 Figure 6.13 shows the instruction x”9C03 9803 3028” for the join operation of

process P8 as shown in Figure 6.7. It is a subtraction operation, the result of process P4 is

subtracted from result of P5. Hence the value of the subtraction operation is unsigned ‘0’

(unsigned ‘4’ at x”14”subtracted from unsigned ‘4’ at x”1E”). The result is ‘0’ (unsigned)

is stored at location x” 28”. The Figure also shows the token for the join process P6 being

issued to the PRT Mapper by the CE, x”81060003”.

 The instruction for final process P6 x”9C03 9803 3030”is shown in Figure 6.14.

The process consists of addition operation; the result of P7 is added to the result of P8.

The result unsigned ‘16’ (unsigned ‘16’ at location x”0A” added to unsigned ‘0’at x”28”)

is stored at location x”3C” as can be seen at “mem_out_1”.

 128

Figure 6.8, Command Token Input into the System

Command token input into the
system

 129

Figure 6.9, Instruction for Process P1

Instruction for P1

Input of six values

 130

Figure 6.10, Instruction for P2 with Result and Command Token for P3

Instruction for P2 with results ‘04’
at x”0A”

 131

Figure 6.11, Process P3 and Process P7 Execution and Results

Instruction for P3 ,Dummy Process
 Instruction for P7 ,Multiplication

operation , result x”0010” at x”0A”

 132

Figure 6.12, Instruction for Process P4 and P5 with Results

Instruction for P4 ,Addition
Operation result ‘04’ at x”14”

Instruction for P5 ,Addition
Operation result ‘04’ at x”1E”

 133

Figure 6.13, Join Instructions for Process P8 with Result

Join Instruction for P8 ,Subtraction
Operation result ‘00’ at x”2E”

 134

Figure 6.14, Final Process P6 Join Operation and Result

Join Instruction for P6 ,Addition
Operation result x”10” at x”3C”

 135

Chapter Seven

FPGA Resources Utilized in HDCA Virtual Prototype Development and

Testing Environment

 The VHDL coded interconnect network and the entire HDCA system with

crossbar switch integrated in it [Appendix A1 and A2] are synthesized and virtually post

placed and routed using Xilinx 6.2.3i CAD Tool and Modelsim 5.7g as a simulation tool.

The term ‘virtual prototype’ signifies that the system is validated using the Modelsim

Simulator and shows correct results for the ‘Simulate Post-Place and Route VHDL

Model’. This is the final step before actually downloading the system design onto a

prototype board.

 The design is tested using Xilinx XC2V8000 from the Virtex II family of chips.It

has 8 million gates configuration. The entire design development, testing and validation

is done on a system with following parameters: Intel Pentium 4, 3.00 Ghz with 1 GB of

RAM. The operating system used is Microsoft Windows XP, service pack 2.

 Among the various applications developed with the crossbar switch embedded in

the HDCA system, two are tested for the post place and route simulation.

The resource utilization and timing summary for aplication 1: Acyclic Application shown

in Figure 5.12 is given below:

Device utilization summary:

 Number of External IOBs 717 out of 824 87%
 Number of LOCed External IOBs 0 out of 717 0%
 Number of MULT18X18s 1 out of 168 1%
 Number of RAMB16s 9 out of 168 5%
 Number of SLICEs 12429 out of 46592 26%
 Number of BUFGMUXs 1 out of 16 6%
 Number of TBUFs 908 out of 23296 3%
 Total equivalent gate count for design: 874,228

 Timing Summary:
 Speed Grade: -5

 Minimum period: 21.516ns (Maximum Frequency: 46.477MHz)
 Minimum input arrival time before clock: 9.415ns

 136

 Maximum output required time after clock: 14.407ns
 Maximum combinational path delay: 8.562ns
The resource utilization for application 2: Application having Multiple Forking

Capability as shown in Figure 6.7 is given below:

Device utilization summary:

 Number of External IOBs 727 out of 824 88%
 Number of LOCed External IOBs 0 out of 727 0%
 Number of MULT18X18s 1 out of 168 1%
 Number of RAMB16s 9 out of 168 5%
 Number of SLICEs 13912 out of 46592 29%
 Number of BUFGMUXs 1 out of 16 6%
 Number of TBUFs 908 out of 23296 3%
 Total equivalent gate count for design: 895,077

Timing Summary:
 Speed Grade: -5

 Minimum period: 21.516ns (Maximum Frequency: 46.477MHz)
 Minimum input arrival time before clock: 12.957ns
 Maximum output required time after clock: 14.407ns
 Maximum combinational path delay: 8.562ns

 137

Chapter Eight

Conclusion

A modular and scalable architecture and design for a crossbar interconnect

network of a HDCA single chip multiprocessor system is presented. The design capture,

synthesis, simulation is done in VHDL using XILINX ISE 6.2.3i and ModelSim 5.7g

CAD soft wares. The design is individually validated and integrated in the main HDCA

system and validated again against two varied applications. The inclusion of crossbar

switch in the HDCA architecture involved major modifications in the HDCA system and

some minor changes in the design of the switch. The results show perfect functioning of

the crossbar network. Dynamic Node Level reconfigurability feature added to enhance

the HDCA capability is also tested against the acyclic application and shows proper

functioning. The architecture is limited in terms of a process forking to maximum of two

processes; this shortcoming is overcome and is tested by an application and exhibits

perfect functioning of the system.

Building up a complete full proof architecture with all the capabilities is an on

going process. With the work done in this thesis certain goals are achieved as listed above

and described in detail in the earlier chapters; however there is still lot of work to be done

before architecture could be used for more serious applications. One of the biggest

challenges lies in the development of an Operating system. Some of the important

functions that the operating system [3] should do are to perform all initialization

operations and monitor the entire system in general and also detect failures, bottlenecks

and quickly reconfigure the system to overcome the problem. With the integration of

interconnect switch in the system the operating system should keep track of which

processors are requesting access to which memory blocks on timely basis so that the

condition of data incoherency does not arise.

 138

Appendices

Appendix A1:Post Place and Route VHDL Code For Functional Model of

the Interconnect Network

Module Name:main.vhd

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Uncomment the following lines to use the declarations that are
-- provided for instantiating Xilinx primitive components.
--library UNISIM;
--use UNISIM.VComponents.all;

entity main is

generic (N : integer := 3; -- Number of inputs and outputs
 P : integer := 15; -- qdepth value it is actually four times the value of qdepth for each q depth
 K : integer := 15; -- address bus combined (summation) of all the processors
 Q : integer := 15); -- data bus width input and output

 port (clk: in std_logic ;
 rst: in std_logic ;
 ctrl: in std_logic_vector(N downto 0) ;
 qdep: in std_logic_vector(P downto 0) ;
 addr_bus: in std_logic_vector(K downto 0) ;
 data_in : in std_logic_vector(Q downto 0) ;
 rw: in std_logic_vector(N downto 0) ;
 flag: inout std_logic_vector(N downto 0) ;
 data_out: out std_logic_vector(Q downto 0));

end main ;

architecture test_main of main is

type qd is array (N downto 0) of std_logic_vector(N downto 0) ;
type data_array is array (N downto 0) of std_logic_vector(N downto 0) ;
type addr_array is array (N downto 0) of std_logic_vector(N downto 0) ;
type mb is array (N downto 0) of std_logic_vector(1 downto 0) ;
type mem_array is array (K downto 0) of std_logic_vector(N downto 0) ;

-- This function does the priority logic for all the memory blocks
-- This can work for any number of processors and memory blocks

 139

-- by changing 'i' and 'j' values

function flg (qdep, addr_bus, ctrl:std_logic_vector) return
std_logic_vector is

variable qdvar: std_logic_vector (N downto 0) ;
variable flag: std_logic_vector(N downto 0) ;
variable qdv : std_logic_vector(N downto 0) ;
variable gnt : std_logic ;
variable a: integer range 0 to N;
variable b: integer ;
variable memaddr : mb ;
variable qd_arr : qd ;

begin

 qd_arr(0) := qdep(3 downto 0) ;
 qd_arr(1) := qdep(7 downto 4) ;
 qd_arr(2) := qdep(11 downto 8) ;
 qd_arr(3) := qdep(15 downto 12) ;

 memaddr(0) := addr_bus(3 downto 2) ;
 memaddr(1) := addr_bus(7 downto 6) ;
 memaddr(2) := addr_bus(11 downto 10) ;
 memaddr(3) := addr_bus(15 downto 14) ;

L1: for i in 0 to N loop

L2: for j in 0 to N loop

 if (ctrl(j) = '0') then
 flag(j) := '0' ;
 qdv(j) := '0' ;
 elsif (memaddr(j) = i) then
 qdv(j) := '1' ;
 else
 qdv(j) := '0' ;
 end if ;
end loop L2 ;

qd_var_loop : for i in 0 to N loop
qdvar(N) := '0';
end loop qd_var_loop;

gnt := '0' ;

L3: for k in 0 to N loop

 if qdv(k) = '1' then
 if qdvar <= qd_arr(k) then

 140

 qdvar := qd_arr(k) ;
 a := k ;
 gnt := '1' ;
 else
 flag(k) := '0' ;
 end if;
 end if ;
end loop L3 ;

if (gnt = '1') then
flag(a) := '1' ;

end if ;

end loop L1 ;
return (flag) ;

end flg;

signal memory: mem_array ;

begin
P1 : process(ctrl, clk, qdep, addr_bus, rst, data_in) is

begin

if (rst = '1') then
flag_loop : for i in 0 to N loop
flag(N) <= '0';
end loop flag_loop;

data_out_loop : for i in 0 to Q loop
data_out(Q) <= '0';
end loop data_out_loop;

else

flag <= flg(qdep, addr_bus, ctrl) ;

-- Memory transaction
-- The conditional statements make sure that the connection is established
-- before memory transaction
-- This routine is to be repeated for each addition of processor

if (clk 'event and clk = '0') then

if (flag(0) = '1') then

if (rw(0) = '1') then
memory(conv_integer(addr_bus(3 downto 0))) <= data_in(3 downto 0) ;
data_out(3 downto 0) <= (others => 'Z') ;
--data_out(3 downto 0) <= memory(conv_integer(addr_bus(3 downto 0))) ;
else

 141

data_out(3 downto 0) <= memory(conv_integer(addr_bus(3 downto 0))) ;
end if ;
end if ;

if (flag(1) = '1') then

if (rw(1) = '1') then
memory(conv_integer(addr_bus(7 downto 4))) <= data_in(7 downto 4) ;
data_out(7 downto 4) <= (others => 'Z') ;
else
data_out(7 downto 4) <= memory(conv_integer(addr_bus(7 downto 4))) ;
end if ;
end if ;

if (flag(2) = '1') then

if (rw(2) = '1') then
memory(conv_integer(addr_bus(11 downto 8))) <= data_in(11 downto 8) ;
data_out(11 downto 8) <= (others => 'Z') ;
else
data_out(11 downto 8) <= memory(conv_integer(addr_bus(11 downto 8))) ;
end if ;
end if ;

if (flag(3) = '1') then

if (rw(3) = '1') then
memory(conv_integer(addr_bus(15 downto 12))) <= data_in(15 downto 12) ;
data_out(15 downto 12) <= (others => 'Z') ;
else
data_out(15 downto 12) <= memory(conv_integer(addr_bus(15 downto 12)))
;
end if ;
end if ;

end if;
end if;

end process P1 ;

end test_main ;

 142

Appendix A2:Post Place and Route VHDL Code For Acyclic Applications

Module Name:entirenew.vhd

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
-- Uncomment the following lines to use the declarations that are
-- provided for instantiating Xilinx primitive components.
--library UNISIM;
--use UNISIM.VComponents.all;

entity entiresystry2 is

Port (rst,clk:in std_logic;
 inpt_data0,inpt_data1:in std_logic_vector(15 downto 0);
 idv0,idv1:in std_logic;
 op_req:in std_logic;
 Op_Token_bus: in STD_LOGIC_VECTOR (31 downto 0);
 Mem_out_0,Mem_out_1,Mem_out_2,Mem_out_3: out std_logic_vector (15 downto 0);
 Addr_en: in std_logic;
 mem_ad_out_0,mem_ad_out_1,mem_ad_out_2,mem_ad_out_3:out std_logic_vector(6 downto 0);

R3_out_dbug_fin0,R3_out_dbug_fin1 : out std_logic_vector(15 downto 0);
shft_out_dbug_fin0,shft_out_dbug_fin1 : out std_logic_vector(15 downto 0);
dbug_st_pe_fin0,dbug_st_pe_fin1 : out std_logic_vector(3 downto 0);
dbus_sig0_fin0,dbus_sig1_fin1,dbus_sig2_fin2 : out std_logic_vector (15 downto 0);
dataout_lut_fin0,dataout_lut_fin1,dataout_lut_fin2,dataout_lut_fin3:out std_logic_vector(15 downto 0);
db_pe_icm0_fin0,db_pe_icm1_fin1,db_pe_icm1_fin2,db_pe_icm1_fin3 : out std_logic_vector(15 downto 0) ;
R0_out_dbug_fin0,R0_out_dbug_fin1 : out std_logic_vector(15 downto 0);
token_bus_prt_pe : out std_logic_vector (31 downto 0);
Wr_out_dbug0_fin0,Wr_out_dbug1_fin1 : out std_logic_vector(1 downto 0);
ce_sig0_fin0,ce_sig1_fin1: out std_logic;
tbgrnt_sig0_fin0,tbgrnt_sig1_fin1 : out std_logic;
tbreq_sig0_fin0,tbreq_sig1_fin1 : out std_logic;
i_rdy_icm0_fin0,i_rdy_icm1_fin1 : out std_logic ;
snd_i_icm0_fin0,snd_i_icm1_fin1 : out std_logic;
 l_in_fin0,l_in_fin1,l_in_fin2 : out std_logic_vector(31 downto 0);
 contrl_0,control_1 : out std_logic_vector(3 downto 0);
 x_dbug_fin0,x_dbug_fin1,x_dbug_fin3 : out std_logic_vector(6 downto 0);
 dloutfin0,dloutfin1:out std_logic_vector(15 downto 0);
 count_dbug0,count_dbug1,count_dbug3:out std_logic_vector(6 downto 0);
 db_req3_dbug,db_grant3_dbug : out std_logic;

 db_req0_dbug,db_grant0_dbug : out std_logic;
 db_req1_dbug,db_grant1_dbug : out std_logic;
 RLTable0,RLTable1,RLTable2,RLTable3: out std_logic_vector(1 downto 0);
 dwr0,dwr1,dwr2,dwr3: out std_logic;
 tabin0,tabin1,tabin2,tabin3: out std_logic;
 temp3_ce0,temp3_ce1 :out std_logic_vector(2 downto 0);
 temp2_ce0,temp2_ce1 :out std_logic_vector(1 downto 0);
 temp1_ce0,temp1_ce1 :out std_logic_vector(1 downto 0);
 temp4_ce0,temp4_ce1 :out std_logic_vector(4 downto 0);

 temp5_ce0,temp5_ce1 :out std_logic_vector(3 downto 0);
 count_ce1 : out std_logic_vector (7 downto 0)

 143

end entiresystry2;

architecture Behavioral of entiresystry2 is
--Begin components used in this module

--PE3/CE0 component

component PE is
 port (Data_Bus : inout std_logic_vector(15 downto 0);
 R_W : out std_logic;
 Cntl_bus : in std_logic_vector(15 downto 0);
 RST, ODR, IDV : in std_logic;
 clk, Bus_grant : in std_logic;
 CInstr_rdy : in std_logic;
 inpt : in std_logic_vector(15 downto 0);
 Bus_req, Snd_Instr, Fin : out std_logic;
 Addr : out std_logic_vector(7 downto 0);
 Rq_inpt, Rq_outpt : out std_logic;
 STOPLOOP : out std_logic;
 -- added for dbugging
 R3_out_dbug : out std_logic_vector(15 downto 0);
 shft_out_dbug : out std_logic_vector(15 downto 0);
 dbug_st_pe : out std_logic_vector(3 downto 0);
 tmp4_dbug : out std_logic_vector(15 downto 0);
 m5outdbg: out std_logic_vector(15 downto 0);
 R0_out_dbug : out std_logic_vector(15 downto 0);
 tmp3_dbug: out std_logic_vector(2 downto 0);
 tmp2_dbug: out std_logic_vector(1 downto 0);
 tmp1_dbug: out std_logic_vector(1 downto 0);
 tmp44_dbug: out std_logic_vector(4 downto 0) ;
 tmp5_dbug: out std_logic_vector(3 downto 0);
 count_out_pe : out std_logic_vector (7 downto 0)
) ;
end component;
--Interface controller component listing

component CONTChip is
 generic (Chip_addr : integer := 3;
 Inst0 : integer := 156;
 Inst1 : integer := 48;
 Inst2 : integer := 152
);
 port (
 Data_bus: inout STD_LOGIC_VECTOR (15 downto 0);
 Chip_EN: in STD_LOGIC;
 Snd_i,stoplp: in std_logic;
 Rst: in STD_LOGIC;
 Clk: in STD_LOGIC;
 tbus_grnt: in STD_LOGIC;
 token_bus: inout STD_LOGIC_VECTOR (31 downto 0);
 tbus_req: out STD_LOGIC;
 I_rdy: out std_logic;
 Avail: out STD_LOGIC_VECTOR (4 downto 0);
 x_dbug : out std_logic_vector(6 downto 0);
 count_dbug : out std_logic_vector(6 downto 0);
 Wr_out_dbug : out std_logic_vector (1 downto 0);

 144

 R_L_Table_dbug: out STD_LOGIC_VECTOR (1 downto 0);
 Ld_Rd_dbug: out STD_LOGIC;
 ccntl_in_dbug :out std_logic_vector(24 downto 0);
 dataout_lut : out std_logic_vector(15 downto 0);
 outbuf0_dbug: out std_logic_vector(15 downto 0);
 outbuf1_dbug : out std_logic_vector(15 downto 0);
 line_out_dbug: out std_logic_vector(31 downto 0);
 l_in : out std_logic_vector(31 downto 0);
 buf_dbug : out std_logic_vector(24 downto 0);
 cntl_out_fin : out std_logic_vector(3 downto 0);
 dlout_contchip:out std_logic_vector(15 downto 0);
 dwr_cont: out std_logic;
 tab_in_contchip: out std_logic
);
end component;

-- Component Listing for Process Req token mapper

component Token_mapr is
 port (
 token_bus: inout STD_LOGIC_VECTOR (31 downto 0);
 bus_req: inout STD_LOGIC;
 clk : in std_logic;
 rst : in std_logic;
 bus_grnt: in STD_LOGIC;
 Avail3: in STD_LOGIC_VECTOR (4 downto 0);
 Avail4: in STD_LOGIC_VECTOR (4 downto 0);
 Avail2: in STD_LOGIC_VECTOR (4 downto 0);
 Avail5: in STD_LOGIC_VECTOR (4 downto 0);
 obstemp6_prtdbug,t6_prtdbug: out std_logic_vector(22 downto 0)
);
end component;
-- Divider PE
component Divpe is
 port (Cntrlr_bus : in std_logic_vector(15 downto 0);
 Snd_I : out std_logic;
 clk : in std_logic;
 rst : in std_logic;
 Instr_rdy : in std_logic;
 Fin : out std_logic;
 Data_bus : inout std_logic_vector(15 downto 0);
 Bus_req : out std_logic;
 Bus_gnt : in std_logic;
 Addr : out std_logic_vector(6 downto 0);
 R_W : buffer std_logic;
 loc_bus_dbug : out std_logic_vector(7 downto 0);
 Iaddr_bus_dbug : out std_logic_vector(7 downto 0);
 Iaddr_dbug : out std_logic_vector(7 downto 0);
 R2_out_dbug : out std_logic_vector(7 downto 0);
 Imem_bus_dbug : out std_logic_vector(15 downto 0)
);
end component;

component multpe is
 Port (mcntl_bus : in std_logic_vector(15 downto 0);
 Snd_I : out std_logic;

 145

 clk : in std_logic;
 rst : in std_logic;
 Instr_rdy : in std_logic;
 Fin : out std_logic;
 mdata_bus : inout std_logic_vector(15 downto 0);
 bus_req : out std_logic;
 bus_gnt : in std_logic;
 multaddr : out std_logic_vector(7 downto 0);--Output address to shared dmem
 r_w : inout std_logic;
 cbusout_dbug : out std_logic_vector(7 downto 0);
 Iaddr_bus_dbug : out std_logic_vector(7 downto 0);
 R2out_dbug : out std_logic_vector(7 downto 0);
 Imem_bus_dbug : out std_logic_vector(15 downto 0);
 mux3out_dbg:out std_logic_vector(7 downto 0);
 ms3dbg:out std_logic_vector(1 downto 0);
 ms1dbg : out std_logic;
 ms2dbg : out std_logic;
component multpe is
 Port (mcntl_bus : in std_logic_vector(15 downto 0);
 Snd_I : out std_logic;
 clk : in std_logic;
 rst : in std_logic;
 Instr_rdy : in std_logic;
 Fin : out std_logic;
 mdata_bus : inout std_logic_vector(15 downto 0);
 bus_req : out std_logic;
 bus_gnt : in std_logic;
 multaddr : out std_logic_vector(7 downto 0);--Output address to shared dmem
 r_w : inout std_logic;
 cbusout_dbug : out std_logic_vector(7 downto 0);
 Iaddr_bus_dbug : out std_logic_vector(7 downto 0);
 R2out_dbug : out std_logic_vector(7 downto 0);
 Imem_bus_dbug : out std_logic_vector(15 downto 0);
 mux3out_dbg:out std_logic_vector(7 downto 0);
 ms3dbg:out std_logic_vector(1 downto 0);
 ms1dbg : out std_logic;
 ms2dbg : out std_logic;
 adderout_dbug : out std_logic_vector(7 downto 0);
 ms4dbg : out std_logic;
 lmd_dbg,lmr_dbg : out std_logic;
 ndout : out std_logic;
 multout_fin : out std_logic_vector(15 downto 0);
 tomultr_dbg:out std_logic_vector(7 downto 0);
 tomultd_dbg:out std_logic_vector(7 downto 0)

);
end component;

component gate_ic_a is
 Port (clk: in std_logic ;
 rst: in std_logic ;
 ctrl: in std_logic_vector(3 downto 0) ;
 qdep: in std_logic_vector(19 downto 0) ;
 addr_bus: in std_logic_vector(27 downto 0) ;
 data_in0,data_in1,data_in2,data_in3 : in std_logic_vector(15 downto 0) ;
 rw: in std_logic_vector(3 downto 0) ;

 146

 flag: inout std_logic_vector(3 downto 0) ;
 data_out0,data_out1,data_out2,data_out3: out std_logic_vector(15 downto 0)
);
end component;

--Begin signals used in the system
signal dbus_sig0,dbus_sig1,dbus_sig2,dbus_sig3: std_logic_vector(15 downto 0);
signal rw_sig0,rw_sig1,rw_sig2,rw_sig3: std_logic;
signal db_pe_icm0,db_pe_icm1,db_pe_icm2,db_pe_icm3: std_logic_vector(15 downto 0);
signal db_grant0,db_grant1,db_grant2,db_grant3:std_logic;
signal i_rdy_icm0,i_rdy_icm1,i_rdy_icm2,i_rdy_icm3: std_logic;
signal db_req0,db_req1,db_req2,db_req3: std_logic;
signal snd_i_icm0,snd_i_icm1,snd_i_icm2,snd_i_icm3: std_logic;
signal ce_sig0,ce_sig1,ce_sig2,ce_sig3:std_logic;
signal addr_0,addr_1,addr_2,addr_3:std_logic_vector(7 downto 0);
signal stop_lp_sig0,stop_lp_sig1: std_logic;
signal tbgrnt_sig0,tbgrnt_sig1,tbgrnt_sig2,tbgrnt_sig3:std_logic ;
signal tbreq_sig0,tbreq_sig1,tbreq_sig2,tbreq_sig3 : std_logic;
signal avlsig0,avlsig1,avlsig2,avlsig3 : std_logic_vector(4 downto 0);
signal op_token_bus_sig : std_logic_vector(31 downto 0);
signal bus_req_prt,bus_grnt_prt : std_logic;
signal mem_ad : std_logic_vector (7 downto 0);
signal mem_di_0,mem_di_1,mem_di_2,mem_di_3 : std_logic_vector(15 downto 0);
signal mem_do_0,mem_do_1,mem_do_2,mem_do_3 : std_logic_vector(15 downto 0);
signal m_r_w : std_logic;
signal optmp_req : std_logic;
signal op_gnt:std_logic; -- This was earlier set to buffer resulting in elaboration error in post-translate
simulation
signal odr0,odr1: std_logic;
signal Rq_OPT0 : std_logic;
signal Rq_OPT1 : std_logic;
signal rq_ipt0,rq_ipt1 : std_logic;

begin
--Port Mapping for components
PE3_CE0: pe port map(Data_Bus=>dbus_sig0,
 R_W => rw_sig0,
 Cntl_bus=>db_pe_icm0,
 RST=>rst,
 ODR=>odr0,
 IDV=>idv0,
 clk=>clk,
 Bus_grant=>db_grant0,
 CInstr_rdy=>I_rdy_icm0,
 inpt =>inpt_data0,
 Bus_req=>db_req0,
 Snd_Instr=>snd_i_icm0,
 Fin=>ce_sig0,
 Addr =>addr_0,
 Rq_inpt=>Rq_IPT0,
 Rq_outpt=>Rq_OPT0,
 STOPLOOP =>Stop_lp_sig0,
 -- added for dbugging
 R3_out_dbug=>R3_out_dbug_fin0,

 147

 shft_out_dbug=>shft_out_dbug_fin0,
 dbug_st_pe => dbug_st_pe_fin0,
 R0_out_dbug => R0_out_dbug_fin0,
 tmp3_dbug => temp3_ce0,
 tmp2_dbug => temp2_ce0,
 tmp1_dbug => temp1_ce0,
 tmp44_dbug => temp4_ce0,
 tmp5_dbug => temp5_ce0,
 count_out_pe => open

);
PE2_CE1: pe port map(Data_Bus=>dbus_sig1,
 R_W => rw_sig1,
 Cntl_bus=>db_pe_icm1,
 RST=>rst,
 ODR=>odr1,
 IDV=> idv1,
 clk=>clk,
 Bus_grant=>db_grant1,
 CInstr_rdy=>I_rdy_icm1,
 inpt =>inpt_data1,
 Bus_req=>db_req1,
 Snd_Instr=>snd_i_icm1,
 Fin=>ce_sig1,
 Addr =>addr_1,
 Rq_inpt=>Rq_IPT1,
 Rq_outpt=>Rq_OPT1,
 STOPLOOP =>Stop_lp_sig1,
 -- added for dbugging
 R3_out_dbug=>R3_out_dbug_fin1,
 shft_out_dbug=>shft_out_dbug_fin1,
 dbug_st_pe => dbug_st_pe_fin1,
 R0_out_dbug => R0_out_dbug_fin1,
 tmp3_dbug => temp3_ce1,
 tmp2_dbug => temp2_ce1,
 tmp1_dbug => temp1_ce1,
 tmp44_dbug => temp4_ce1,
 tmp5_dbug => temp5_ce1,
 count_out_pe => count_ce1
);
Icmodule0: contchip port map(Data_bus => db_pe_icm0,
 Chip_EN => ce_sig0,
 Snd_i => snd_i_icm0,
 stoplp => stop_lp_sig0,
 Rst => rst,
 Clk =>clk,
 tbus_grnt =>tbgrnt_sig0,
 token_bus =>op_token_bus_sig,
 tbus_req =>tbreq_sig0,
 I_rdy =>I_rdy_icm0,
 Avail =>avlsig0,
 x_dbug =>x_dbug_fin0,
 count_dbug =>count_dbug0,
 Wr_out_dbug =>Wr_out_dbug0_fin0,
 R_L_Table_dbug =>RLTable0,
 Ld_Rd_dbug =>open,

 148

 dataout_lut =>dataout_lut_fin0,
 outbuf0_dbug =>open,
 outbuf1_dbug =>open,
 line_out_dbug =>open,
 l_in =>l_in_fin0,
 buf_dbug => open ,
 ccntl_in_dbug => open,
 cntl_out_fin => control_0,
 dlout_contchip=>dloutfin0,
 dwr_cont=>dwr0,
 tab_in_contchip => tabin0

);
Icmodule1: contchip Generic map (chip_addr =>2,
 Inst0=> 156,
 Inst1=> 48,
 Inst2=> 152)
 port map(Data_bus => db_pe_icm1,
 Chip_EN => ce_sig1,
 Snd_i => snd_i_icm1,
 stoplp => stop_lp_sig1,
 Rst => rst,
 Clk =>clk,
 tbus_grnt =>tbgrnt_sig1,
 token_bus =>op_token_bus_sig,
 tbus_req =>tbreq_sig1,
 I_rdy =>I_rdy_icm1,
 Avail =>avlsig1,
 x_dbug =>x_dbug_fin1,
 count_dbug =>count_dbug1,
 Wr_out_dbug =>Wr_out_dbug1_fin1,
 R_L_Table_dbug =>RLTable1,
 Ld_Rd_dbug =>open,
 dataout_lut =>dataout_lut_fin1,
 outbuf0_dbug =>open,
 outbuf1_dbug =>open,
 line_out_dbug =>open,
 l_in =>l_in_fin1 ,
 buf_dbug => open,
 ccntl_in_dbug => open,
 cntl_out_fin => control_1,
 dlout_contchip=>dloutfin1,
 dwr_cont=>dwr1,
 tab_in_contchip => tabin1
);

-- port mapping for interface controller module for div chip
Icmodule2: contchip Generic map (chip_addr => 4,
 Inst0=> 142,
 Inst1=> 255,
 Inst2=> 142)
 port map(Data_bus => db_pe_icm2,
 Chip_EN => ce_sig2,
 Snd_i => snd_i_icm2,
 stoplp => '0',
 Rst => rst,

 149

 Clk =>clk,
 tbus_grnt =>tbgrnt_sig2,
 token_bus =>op_token_bus_sig,
 tbus_req =>tbreq_sig2,
 I_rdy =>I_rdy_icm2,
 Avail =>avlsig2,
 x_dbug =>open,
 count_dbug =>open,
 Wr_out_dbug =>open,
 R_L_Table_dbug =>RLTable2,
 Ld_Rd_dbug =>open,
 dataout_lut =>dataout_lut_fin2,
 outbuf0_dbug =>open,
 outbuf1_dbug =>open,
 line_out_dbug =>open,
 l_in =>l_in_fin2 ,
 buf_dbug => open,
 ccntl_in_dbug => open,
 dwr_cont=>dwr2,
 tab_in_contchip => tabin2
);
Icmodule3: contchip Generic map (chip_addr => 5,
 Inst0=> 142,
 Inst1=> 255,
 Inst2=> 142)
 port map(Data_bus => db_pe_icm3,
 Chip_EN => ce_sig3,
 Snd_i => snd_i_icm3,
 stoplp => '0',
 Rst => rst,
 Clk =>clk,
 tbus_grnt =>tbgrnt_sig3,
 token_bus =>op_token_bus_sig,
 tbus_req =>tbreq_sig3,
 I_rdy =>I_rdy_icm3,
 Avail =>avlsig3,
 x_dbug =>x_dbug_fin3,
 count_dbug =>count_dbug3,
 Wr_out_dbug =>open,
 R_L_Table_dbug =>RLTable3,
 Ld_Rd_dbug =>open,
 dataout_lut =>dataout_lut_fin3,
 outbuf0_dbug =>open,
 outbuf1_dbug =>open,
 line_out_dbug =>open,
 l_in =>open,
 buf_dbug => open,
 ccntl_in_dbug => open,
 dwr_cont=>dwr3,
 tab_in_contchip => tabin3
);

prtmapper: token_mapr port map(token_bus =>Op_token_bus_sig,
 bus_req=>bus_req_prt,
 clk =>clk,
 rst =>rst,

 150

 bus_grnt =>bus_grnt_prt,
 Avail3 =>avlsig0,
 Avail4 => avlsig2,
 Avail2 =>avlsig1,
 Avail5 => avlsig3,
 temp6_prtdbug=>open,
 t6_prtdbug=>open

);
DIV1 : divpe port map(Cntrlr_bus=>db_pe_icm2,
 Snd_I=> snd_i_icm2,
 clk => clk,
 rst => rst,
 Instr_rdy => I_rdy_icm2,
 Fin => ce_sig2,
 Data_bus => dbus_sig2,
 Bus_req => db_req2,
 Bus_gnt => db_grant2,
 Addr => addr_2(6 downto 0),
 R_W => rw_sig2,
 loc_bus_dbug => open,
 Iaddr_bus_dbug => open,
 Iaddr_dbug => open,
 R2_out_dbug => open,
 Imem_bus_dbug => open
);

multpemap: multpe port map

 (mcntl_bus => db_pe_icm3,
 Snd_I => snd_i_icm3,
 clk =>clk,
 rst =>rst,
 Instr_rdy =>i_rdy_icm3,
 Fin =>ce_sig3,
 mdata_bus =>dbus_sig3,
 bus_req =>db_req3,
 bus_gnt =>db_grant3,
 multaddr =>addr_3,
 r_w =>rw_sig3,
 cbusout_dbug => open,
 Iaddr_bus_dbug => open,
 R2out_dbug => open,
 Imem_bus_dbug =>open,
 mux3out_dbg=> open,
 ms3dbg=> open,
 ms1dbg => open,
 ms2dbg => open ,
 adderout_dbug => open,
 ms4dbg => open,
 lmd_dbg=> open,
 lmr_dbg => open,
 ndout => open,
 multout_fin => open,

 151

 tomultr_dbg=> open,
 tomultd_dbg=> open

);

IC_gate: gate_ic_a Port map (clk => clk,
 rst => rst,
 ctrl(0) => db_req0,
 ctrl(1) => db_req1,
 ctrl(2) => db_req2,
 ctrl(3) => db_req3,
 qdep(4 downto 0) => avlsig0,
 qdep(9 downto 5) => avlsig1,
 qdep(14 downto 10)=> avlsig2,
 qdep(19 downto 15)=> avlsig3,
 addr_bus(6 downto 0) => addr_0(6 downto 0),
 addr_bus(13 downto 7) => addr_1(6 downto 0),
 addr_bus(20 downto 14) => addr_2(6 downto 0),
 addr_bus(27 downto 21) => addr_3(6 downto 0),
 data_in0 => mem_di_0,
 data_in1 => mem_di_1,
 data_in2 => mem_di_2,
 data_in3 => mem_di_3,
 rw(0) => rw_sig0,
 rw(1) => rw_sig1,
 rw(2) => rw_sig2,
 rw(3) => rw_sig3,
 flag(0) => db_grant0,
 flag(1) => db_grant1,
 flag(2) => db_grant2,
 flag(3) => db_grant3,
 data_out0 => mem_do_0,
 data_out1 => mem_do_1,
 data_out2 => mem_do_2,
 data_out3 => mem_do_3
);
-- signals taken out for dbugging
dbus_sig0_fin0 <= dbus_sig0;
dbus_sig1_fin1 <= dbus_sig1;
dbus_sig2_fin2 <= dbus_sig2;
db_pe_icm0_fin0 <= db_pe_icm0;
db_pe_icm1_fin1 <= db_pe_icm1;
db_pe_icm1_fin2 <= db_pe_icm2;
db_pe_icm1_fin3 <= db_pe_icm3;
token_bus_prt_pe <= Op_token_bus_sig;
ce_sig1_fin1 <= ce_sig1;
ce_sig0_fin0 <= ce_sig0;
tbgrnt_sig0_fin0 <= tbgrnt_sig0;
tbgrnt_sig1_fin1 <= tbgrnt_sig1;
tbreq_sig0_fin0 <= tbreq_sig0;
tbreq_sig1_fin1 <= tbreq_sig1;
i_rdy_icm0_fin0<= i_rdy_icm0;
i_rdy_icm1_fin1<= i_rdy_icm1;
snd_i_icm0_fin0 <= snd_i_icm0;
snd_i_icm1_fin1 <= snd_i_icm1;
db_req3_dbug<= db_req3;

 152

db_grant3_dbug <= db_grant3;
db_req1_dbug<= db_req1;
db_grant1_dbug <= db_grant1;
db_req0_dbug<= db_req0;
db_grant0_dbug <= db_grant0;

-- changes made with the addition of IC switch
-- Address ports taken out --
 mem_ad_out_0<=addr_0(6 downto 0);
 mem_ad_out_1<=addr_1(6 downto 0);
 mem_ad_out_2<=addr_2(6 downto 0);
 mem_ad_out_3<=addr_3(6 downto 0);
-- Memory contents to be viewed --
 Mem_out_0 <= mem_do_0;
 Mem_out_1 <= mem_do_1;
 Mem_out_2 <= mem_do_2;
 Mem_out_3 <= mem_do_3;
-- addition of process 1 for the inputting of values into the data memory
input_2_mem : process(db_grant0,db_grant1,db_grant2,db_grant3,clk,rst)

begin
 if(rst ='1') then
 mem_di_0 <= x"0000";
 mem_di_1 <= x"0000";
 mem_di_2 <= x"0000";
 mem_di_3 <= x"0000";

 else

 if(clk'event and clk='0') then
 if(db_grant0 ='1') then

 mem_di_0 <= dbus_sig0;
 else mem_di_0 <=(others =>'0');
 end if;

 if(db_grant1 ='1') then

 mem_di_1 <= dbus_sig1;
 else mem_di_1 <=(others =>'0');
 end if;

 if(db_grant2 ='1') then

 mem_di_2 <= dbus_sig2;
 else mem_di_2 <=(others =>'0');
 end if;

 if(db_grant3 ='1') then

 mem_di_3 <= dbus_sig3;
 else mem_di_3 <=(others =>'0');
 end if;
 end if;
 end if;

 153

end process input_2_mem;

-- process 2 for outputting the values from data memory
output_from_mem : process(db_grant0,db_grant1,db_grant2,db_grant3,rw_sig0,rw_sig1,rw_sig2,
 rw_sig3,clk,rst)

begin

if(rst='1') then
 dbus_sig0 <= x"0000";
 dbus_sig1 <= x"0000";
 dbus_sig2 <= x"0000";
 dbus_sig3 <= x"0000";
 else

 if(clk'event and clk='0') then
 if(db_grant0 ='1' and rw_sig0 ='0') then

 dbus_sig0 <= mem_do_0;
 else dbus_sig0 <=(others =>'Z');
 end if;

 if(db_grant1 ='1' and rw_sig1 ='0') then

 dbus_sig1 <= mem_do_1;
 else dbus_sig1 <=(others =>'Z');
 end if;

 if(db_grant2 ='1' and rw_sig2 ='0') then

 dbus_sig2 <= mem_do_2;
 else dbus_sig2 <=(others =>'Z');
 end if;

 if(db_grant3 ='1' and rw_sig3 ='0') then

 dbus_sig3 <= mem_do_3;
 else dbus_sig3 <=(others =>'Z');
 end if;
 end if;
 end if;
end process output_from_mem;

-- end of process 2

-- Token bus logic
optmp_req <= Op_req;
Tknbuslg : process (tbreq_sig0,tbgrnt_sig0,bus_req_prt,bus_grnt_prt,tbreq_sig1,
 tbgrnt_sig1,tbreq_sig2,tbgrnt_sig2,tbgrnt_sig3,tbreq_sig3,Optmp_req,Op_gnt, rst)
 begin
 if rst = '1' then
 tbgrnt_sig0 <= '0';
 bus_grnt_prt <= '0';

 154

 tbgrnt_sig1 <= '0';
 tbgrnt_sig2 <= '0';
 tbgrnt_sig3 <= '0';
 Op_gnt <= '0';
 elsif (bus_req_prt ='1')and (tbgrnt_sig0='0') and(tbgrnt_sig1='0') and
 (tbgrnt_sig2='0')and(Op_gnt='0') and (tbgrnt_sig3='0') then
 tbgrnt_sig0 <= '0';
 bus_grnt_prt <= '1';
 tbgrnt_sig2 <= '0';
 tbgrnt_sig1 <= '0';
 tbgrnt_sig3 <= '0';
 Op_gnt <= '0';
 elsif (Optmp_req ='1') and (bus_grnt_prt ='0') and (tbgrnt_sig0='0') and
 (tbgrnt_sig1='0') and (tbgrnt_sig2='0') and (tbgrnt_sig3 ='0')then
 tbgrnt_sig0 <= '0';
 bus_grnt_prt <= '0';
 tbgrnt_sig1 <= '0';
 tbgrnt_sig2 <= '0';
 tbgrnt_sig3 <= '0';
 Op_gnt <= '1';
 elsif (tbreq_sig0 = '1') and (bus_grnt_prt='0') and (Op_gnt='0') and
 (tbgrnt_sig2='0')and (tbgrnt_sig1='0') and (tbgrnt_sig3 ='0') then
 tbgrnt_sig0 <= '1';
 bus_grnt_prt <= '0';
 tbgrnt_sig2 <= '0';
 tbgrnt_sig1 <= '0';
 tbgrnt_sig3 <= '0';
 Op_gnt <= '0';
 elsif (tbreq_sig2='1') and (bus_grnt_prt='0') and (Op_gnt='0') and
 (tbgrnt_sig0='0') and (tbgrnt_sig1='0') and (tbgrnt_sig3 ='0') then
 tbgrnt_sig0 <= '0';
 bus_grnt_prt <= '0';
 tbgrnt_sig2 <='1';
 tbgrnt_sig1 <= '0';
 tbgrnt_sig3 <= '0';
 Op_gnt <= '0';
 elsif (tbreq_sig1='1') and (bus_grnt_prt='0') and (Op_gnt='0') and
 (tbgrnt_sig0='0') and (tbgrnt_sig2='0')and (tbgrnt_sig3='0') then
 tbgrnt_sig0 <= '0';
 bus_grnt_prt <= '0';
 tbgrnt_sig2<='0';
 tbgrnt_sig1 <= '1';
 tbgrnt_sig3 <= '0';
 Op_gnt <= '0';
 elsif (tbreq_sig3='1') and (bus_grnt_prt='0') and (Op_gnt='0') and
 (tbgrnt_sig0='0') and (tbgrnt_sig2='0')and (tbgrnt_sig1='0') then
 tbgrnt_sig0 <= '0';
 bus_grnt_prt <= '0';
 tbgrnt_sig2<='0';
 tbgrnt_sig1 <= '0';
 tbgrnt_sig3 <= '1';
 Op_gnt <= '0';
 end if;
 if (bus_req_prt = '0') then bus_grnt_prt <= '0';
 end if;
 if (Optmp_req = '0') then Op_gnt <= '0';

 155

 end if;
 if (tbreq_sig0 = '0') then tbgrnt_sig0 <= '0';
 end if;
 if (tbreq_sig2 = '0') then tbgrnt_sig2 <= '0';
 end if;
 if (tbreq_sig1 = '0') then tbgrnt_sig1 <= '0';
 end if;
 if (tbreq_sig3 = '0') then tbgrnt_sig3 <= '0';
 end if;
 end process;

arbiter_logic: process(clk,rst)
begin
if rst = '1' then
 odr0<='0';
 odr1<='0';

elsif (clk'event and clk='1') then
 case rq_opt0 is
 when '1' => odr0 <= '1';
 when '0' => odr0 <= '0';
 when others =>
 end case;

 case rq_opt1 is
 when '1' => odr1 <= '1';
 when '0' => odr1 <= '0';
 when others =>
 end case;

end if;
end process arbiter_logic;

Op_token_bus_sig <= Op_token_bus when Op_gnt = '1' else
 (others=>'Z');

end Behavioral;

 adderout_dbug : out std_logic_vector(7 downto 0);
 ms4dbg : out std_logic;
 lmd_dbg,lmr_dbg : out std_logic;
 ndout : out std_logic;
 multout_fin : out std_logic_vector(15 downto 0);
 tomultr_dbg:out std_logic_vector(7 downto 0);
 tomultd_dbg:out std_logic_vector(7 downto 0)

);
end component;

component gate_ic_a is
 Port (clk: in std_logic ;
 rst: in std_logic ;
 ctrl: in std_logic_vector(3 downto 0) ;
 qdep: in std_logic_vector(19 downto 0) ;
 addr_bus: in std_logic_vector(27 downto 0) ;

 156

 data_in0,data_in1,data_in2,data_in3 : in std_logic_vector(15 downto 0) ;
 rw: in std_logic_vector(3 downto 0) ;
 flag: inout std_logic_vector(3 downto 0) ;
 data_out0,data_out1,data_out2,data_out3: out std_logic_vector(15 downto 0)
 -- f_s_out0,f_s_out1,f_s_out2,f_s_out3 : out std_logic_vector(3 downto 0);
-- dco_out0,dco_out1,dco_out2,dco_out3 : out std_logic_vector(3 downto 0)
);
end component;

 --
--Begin signals used in the system
signal dbus_sig0,dbus_sig1,dbus_sig2,dbus_sig3: std_logic_vector(15 downto 0);
signal rw_sig0,rw_sig1,rw_sig2,rw_sig3: std_logic;
signal db_pe_icm0,db_pe_icm1,db_pe_icm2,db_pe_icm3: std_logic_vector(15 downto 0);
signal db_grant0,db_grant1,db_grant2,db_grant3:std_logic;
signal i_rdy_icm0,i_rdy_icm1,i_rdy_icm2,i_rdy_icm3: std_logic;
signal db_req0,db_req1,db_req2,db_req3: std_logic;
signal snd_i_icm0,snd_i_icm1,snd_i_icm2,snd_i_icm3: std_logic;
signal ce_sig0,ce_sig1,ce_sig2,ce_sig3:std_logic;
signal addr_0,addr_1,addr_2,addr_3:std_logic_vector(7 downto 0);
signal stop_lp_sig0,stop_lp_sig1: std_logic;
signal tbgrnt_sig0,tbgrnt_sig1,tbgrnt_sig2,tbgrnt_sig3:std_logic ;
signal tbreq_sig0,tbreq_sig1,tbreq_sig2,tbreq_sig3 : std_logic;
signal avlsig0,avlsig1,avlsig2,avlsig3 : std_logic_vector(4 downto 0);
signal op_token_bus_sig : std_logic_vector(31 downto 0);
signal bus_req_prt,bus_grnt_prt : std_logic;
signal mem_ad : std_logic_vector (7 downto 0);
signal mem_di_0,mem_di_1,mem_di_2,mem_di_3 : std_logic_vector(15 downto 0);
signal mem_do_0,mem_do_1,mem_do_2,mem_do_3 : std_logic_vector(15 downto 0);
signal m_r_w : std_logic;
signal optmp_req : std_logic;
signal op_gnt:std_logic; -- This was earlier set to buffer resulting in elaboration error in post-translate
simulation
signal odr0,odr1: std_logic;
signal Rq_OPT0 : std_logic;
signal Rq_OPT1 : std_logic;
signal rq_ipt0,rq_ipt1 : std_logic;
--signal idv0, idv1 : std_logic;

--signal token_bus_prt_pe_sig :std_logic_vector(31 downto 0);
begin
--Port Mapping for components
PE3_CE0: pe port map(Data_Bus=>dbus_sig0,
 R_W => rw_sig0,
 Cntl_bus=>db_pe_icm0,
 RST=>rst,
 ODR=>odr0,
 IDV=>idv0,
 clk=>clk,
 Bus_grant=>db_grant0,
 CInstr_rdy=>I_rdy_icm0,
 inpt =>inpt_data0,
 Bus_req=>db_req0,
 Snd_Instr=>snd_i_icm0,

 157

 Fin=>ce_sig0,
 Addr =>addr_0,
 Rq_inpt=>Rq_IPT0,
 Rq_outpt=>Rq_OPT0,
 STOPLOOP =>Stop_lp_sig0,
 -- added for dbugging
 R3_out_dbug=>R3_out_dbug_fin0,
 shft_out_dbug=>shft_out_dbug_fin0,
 dbug_st_pe => dbug_st_pe_fin0,
 R0_out_dbug => R0_out_dbug_fin0,
 tmp3_dbug => temp3_ce0,
 tmp2_dbug => temp2_ce0,
 tmp1_dbug => temp1_ce0 ,
 tmp44_dbug => temp4_ce0,
 tmp5_dbug => temp5_ce0 ,
 count_out_pe => open
 -- tmp6_dbug => temp6_ce0

);
PE2_CE1: pe port map(Data_Bus=>dbus_sig1,
 R_W => rw_sig1,
 Cntl_bus=>db_pe_icm1,
 RST=>rst,
 ODR=>odr1,
 IDV=> idv1,
 clk=>clk,
 Bus_grant=>db_grant1,
 CInstr_rdy=>I_rdy_icm1,
 inpt =>inpt_data1,
 Bus_req=>db_req1,
 Snd_Instr=>snd_i_icm1,
 Fin=>ce_sig1,
 Addr =>addr_1,
 Rq_inpt=>Rq_IPT1,
 Rq_outpt=>Rq_OPT1,
 STOPLOOP =>Stop_lp_sig1,
 -- added for dbugging
 R3_out_dbug=>R3_out_dbug_fin1,
 shft_out_dbug=>shft_out_dbug_fin1,
 dbug_st_pe => dbug_st_pe_fin1,
 R0_out_dbug => R0_out_dbug_fin1,
 tmp3_dbug => temp3_ce1,
 tmp2_dbug => temp2_ce1,
 tmp1_dbug => temp1_ce1,
 tmp44_dbug => temp4_ce1,
 tmp5_dbug => temp5_ce1 ,
 count_out_pe => count_ce1
 -- tmp6_dbug => temp6_ce1
);
Icmodule0: contchip port map(Data_bus => db_pe_icm0,
 Chip_EN => ce_sig0,
 Snd_i => snd_i_icm0,
 stoplp => stop_lp_sig0,
 Rst => rst,
 Clk =>clk,
 tbus_grnt =>tbgrnt_sig0,

 158

 token_bus =>op_token_bus_sig,
 tbus_req =>tbreq_sig0,
 I_rdy =>I_rdy_icm0,
 Avail =>avlsig0,
 x_dbug =>x_dbug_fin0,
 count_dbug =>count_dbug0,
 Wr_out_dbug =>Wr_out_dbug0_fin0,
 R_L_Table_dbug =>RLTable0,
 Ld_Rd_dbug =>open,
 dataout_lut =>dataout_lut_fin0,
 outbuf0_dbug =>open,
 outbuf1_dbug =>open,
 --line_out_dbug =>line_out_dbug_fin0,
 line_out_dbug =>open,
 l_in =>l_in_fin0,
 --buf_dbug => buf_dbug_fin0 ,
 buf_dbug => open ,
 --ccntl_in_dbug => ccntl_in_fin0,
 ccntl_in_dbug => open,
 cntl_out_fin => control_0,
 dlout_contchip=>dloutfin0,
 dwr_cont=>dwr0,
 tab_in_contchip => tabin0

);
Icmodule1: contchip Generic map (chip_addr =>2,Inst0=> 156,
 Inst1=> 48, Inst2=> 152)
 port map(Data_bus => db_pe_icm1,
 Chip_EN => ce_sig1,
 Snd_i => snd_i_icm1,
 stoplp => stop_lp_sig1,
 Rst => rst,
 Clk =>clk,
 tbus_grnt =>tbgrnt_sig1,
 token_bus =>op_token_bus_sig,
 tbus_req =>tbreq_sig1,
 I_rdy =>I_rdy_icm1,
 Avail =>avlsig1,
 x_dbug =>x_dbug_fin1,
 count_dbug =>count_dbug1,
 Wr_out_dbug =>Wr_out_dbug1_fin1,
 R_L_Table_dbug =>RLTable1,
 Ld_Rd_dbug =>open,
 dataout_lut =>dataout_lut_fin1,
 outbuf0_dbug =>open,
 outbuf1_dbug =>open,
 --line_out_dbug =>line_out_dbug_fin1,
 line_out_dbug =>open,
 l_in =>l_in_fin1 ,
 --buf_dbug => buf_dbug_fin1,
 buf_dbug => open,
 --ccntl_in_dbug => ccntl_in_fin1,
 ccntl_in_dbug => open,
 cntl_out_fin => control_1,
 dlout_contchip=>dloutfin1,
 dwr_cont=>dwr1,

 159

 tab_in_contchip => tabin1
 --Statedbg_fin =>St_fin0
);

-- port mappinh for interface controller module for div chip
Icmodule2: contchip Generic map (chip_addr => 4,Inst0=> 142,
 Inst1=> 255, Inst2=> 142)
 port map(Data_bus => db_pe_icm2,
 Chip_EN => ce_sig2,
 Snd_i => snd_i_icm2,
 stoplp => '0',
 Rst => rst,
 Clk =>clk,
 tbus_grnt =>tbgrnt_sig2,
 token_bus =>op_token_bus_sig,
 tbus_req =>tbreq_sig2,
 I_rdy =>I_rdy_icm2,
 Avail =>avlsig2,
 x_dbug =>open,
 count_dbug =>open,
 Wr_out_dbug =>open,
 R_L_Table_dbug =>RLTable2,
 Ld_Rd_dbug =>open,
 dataout_lut =>dataout_lut_fin2,
 outbuf0_dbug =>open,
 outbuf1_dbug =>open,
 --line_out_dbug =>line_out_dbug_fin2,
 line_out_dbug =>open,
 l_in =>l_in_fin2 ,
 buf_dbug => open,
 ccntl_in_dbug => open,
 dwr_cont=>dwr2,
 tab_in_contchip => tabin2
);
--
Icmodule3: contchip Generic map (chip_addr => 5,Inst0=> 142,
 Inst1=> 255, Inst2=> 142)
 port map(Data_bus => db_pe_icm3,
 Chip_EN => ce_sig3,
 Snd_i => snd_i_icm3,
 stoplp => '0',
 Rst => rst,
 Clk =>clk,
 tbus_grnt =>tbgrnt_sig3,
 token_bus =>op_token_bus_sig,
 tbus_req =>tbreq_sig3,
 I_rdy =>I_rdy_icm3,
 Avail =>avlsig3,
 x_dbug =>x_dbug_fin3,
 count_dbug =>count_dbug3,
 Wr_out_dbug =>open,
 R_L_Table_dbug =>RLTable3,
 Ld_Rd_dbug =>open,
 dataout_lut =>dataout_lut_fin3,
 outbuf0_dbug =>open,
 outbuf1_dbug =>open,

 160

 --line_out_dbug =>line_out_dbug_fin3,
 line_out_dbug =>open,
 l_in =>open,
 buf_dbug => open,
 ccntl_in_dbug => open,
 dwr_cont=>dwr3,
 tab_in_contchip => tabin3
);

prtmapper: token_mapr port map(token_bus =>Op_token_bus_sig,
 bus_req=>bus_req_prt,
 clk =>clk,
 rst =>rst,
 bus_grnt =>bus_grnt_prt,
 Avail3 =>avlsig0,
 Avail4 => avlsig2,
 Avail2 =>avlsig1,
 Avail5 => avlsig3,
 --obstemp6_prtdbug=>obstemp6_prtdbug_fin,
 obstemp6_prtdbug=>open,
 --t6_prtdbug=>t6_prtdbug_fin
 t6_prtdbug=>open

);
-- Port map to the shared core generated Data Memory.
--datamem : proc_dmem port map (addr => Mem_ad(4 downto 0),clk => clk,din => Mem_di,
 -- dout => Mem_do, we => M_R_W);
-- port map to the divider and interface controller module
DIV1 : divpe port map(Cntrlr_bus=>db_pe_icm2,
 Snd_I=> snd_i_icm2,
 clk => clk,
 rst => rst,
 Instr_rdy => I_rdy_icm2,
 Fin => ce_sig2,
 Data_bus => dbus_sig2,
 Bus_req => db_req2,
 Bus_gnt => db_grant2,
 Addr => addr_2(6 downto 0),
 R_W => rw_sig2,
 loc_bus_dbug => open,
 Iaddr_bus_dbug => open,
 Iaddr_dbug => open,
 R2_out_dbug => open,
 Imem_bus_dbug => open

);

multpemap: multpe port map

 (mcntl_bus => db_pe_icm3,
 Snd_I => snd_i_icm3,
 clk =>clk,
 rst =>rst,
 Instr_rdy =>i_rdy_icm3,

 161

 Fin =>ce_sig3,
 mdata_bus =>dbus_sig3,
 bus_req =>db_req3,
 bus_gnt =>db_grant3,
 multaddr =>addr_3,
 r_w =>rw_sig3,
 cbusout_dbug => open,
 Iaddr_bus_dbug => open,
 --Iaddr_dbug : out std_logic_vector(7 downto 0);
 R2out_dbug => open,
 Imem_bus_dbug =>open,

 mux3out_dbg=> open,
 ms3dbg=> open,
 ms1dbg => open,
 ms2dbg => open ,
 adderout_dbug => open,
 ms4dbg => open,
 lmd_dbg=> open,
 lmr_dbg => open,
 ndout => open,
 --multout_fin => mult_dbug,
 multout_fin => open,
 tomultr_dbg=> open,
 tomultd_dbg=> open

);

IC_gate: gate_ic_a
 Port map (clk => clk,
 rst => rst,
 ctrl(0) => db_req0,
 ctrl(1) => db_req1,
 ctrl(2) => db_req2,
 ctrl(3) => db_req3,
 qdep(4 downto 0) => avlsig0,
 qdep(9 downto 5) => avlsig1,
 qdep(14 downto 10)=> avlsig2,
 qdep(19 downto 15)=> avlsig3,
 addr_bus(6 downto 0) => addr_0(6 downto 0),
 addr_bus(13 downto 7) => addr_1(6 downto 0),
 addr_bus(20 downto 14) => addr_2(6 downto 0),
 addr_bus(27 downto 21) => addr_3(6 downto 0),
 data_in0 => mem_di_0,
 data_in1 => mem_di_1,
 data_in2 => mem_di_2,
 data_in3 => mem_di_3,
 rw(0) => rw_sig0,
 rw(1) => rw_sig1,
 rw(2) => rw_sig2,
 rw(3) => rw_sig3,
 flag(0) => db_grant0,
 flag(1) => db_grant1,
 flag(2) => db_grant2,
 flag(3) => db_grant3,
 data_out0 => mem_do_0,

 162

 data_out1 => mem_do_1,
 data_out2 => mem_do_2,
 data_out3 => mem_do_3
);
-- signals taken out for dbugging
dbus_sig0_fin0 <= dbus_sig0;
dbus_sig1_fin1 <= dbus_sig1;
dbus_sig2_fin2 <= dbus_sig2;
db_pe_icm0_fin0 <= db_pe_icm0;
db_pe_icm1_fin1 <= db_pe_icm1;
db_pe_icm1_fin2 <= db_pe_icm2;
db_pe_icm1_fin3 <= db_pe_icm3;
token_bus_prt_pe <= Op_token_bus_sig;
--Addr_0_fin0 <=Addr_0;
--Addr_1_fin1<=Addr_1;
ce_sig1_fin1 <= ce_sig1;
ce_sig0_fin0 <= ce_sig0;
tbgrnt_sig0_fin0 <= tbgrnt_sig0;
tbgrnt_sig1_fin1 <= tbgrnt_sig1;
tbreq_sig0_fin0 <= tbreq_sig0;
tbreq_sig1_fin1 <= tbreq_sig1;
i_rdy_icm0_fin0<= i_rdy_icm0;
i_rdy_icm1_fin1<= i_rdy_icm1;
snd_i_icm0_fin0 <= snd_i_icm0;
snd_i_icm1_fin1 <= snd_i_icm1;
db_req3_dbug<= db_req3;
db_grant3_dbug <= db_grant3;
db_req1_dbug<= db_req1;
db_grant1_dbug <= db_grant1;
db_req0_dbug<= db_req0;
db_grant0_dbug <= db_grant0;

--

-- changes made with the addition of IC switch
-- Address ports taken out --
 mem_ad_out_0<=addr_0(6 downto 0);
 mem_ad_out_1<=addr_1(6 downto 0);
 mem_ad_out_2<=addr_2(6 downto 0);
 mem_ad_out_3<=addr_3(6 downto 0);

-- Memory contents to be viewed --

 Mem_out_0 <= mem_do_0;
 Mem_out_1 <= mem_do_1;
 Mem_out_2 <= mem_do_2;
 Mem_out_3 <= mem_do_3;

-- addition of process 1 for the inputting of values into the data memory
input_2_mem : process(db_grant0,db_grant1,db_grant2,db_grant3,clk,rst)

begin
 if(rst ='1') then
 mem_di_0 <= x"0000";
 mem_di_1 <= x"0000";

 163

 mem_di_2 <= x"0000";
 mem_di_3 <= x"0000";

 else

 if(clk'event and clk='0') then
 if(db_grant0 ='1') then

 mem_di_0 <= dbus_sig0;
 else mem_di_0 <=(others =>'0');
 end if;

 if(db_grant1 ='1') then

 mem_di_1 <= dbus_sig1;
 else mem_di_1 <=(others =>'0');
 end if;

 if(db_grant2 ='1') then

 mem_di_2 <= dbus_sig2;
 else mem_di_2 <=(others =>'0');
 end if;

 if(db_grant3 ='1') then

 mem_di_3 <= dbus_sig3;
 else mem_di_3 <=(others =>'0');
 end if;
 end if;
 end if;
end process input_2_mem;

 -- end of process 1

-- end of changes made ----

-- process 2 for outputting the values from data memory
output_from_mem : process(db_grant0,db_grant1,db_grant2,db_grant3,rw_sig0,rw_sig1,rw_sig2,
 rw_sig3,clk,rst)

begin

if(rst='1') then
 dbus_sig0 <= x"0000";
 dbus_sig1 <= x"0000";
 dbus_sig2 <= x"0000";
 dbus_sig3 <= x"0000";
 else

 if(clk'event and clk='0') then
 if(db_grant0 ='1' and rw_sig0 ='0') then

 dbus_sig0 <= mem_do_0;
 else dbus_sig0 <=(others =>'Z');

 164

 end if;

 if(db_grant1 ='1' and rw_sig1 ='0') then

 dbus_sig1 <= mem_do_1;
 else dbus_sig1 <=(others =>'Z');
 end if;

 if(db_grant2 ='1' and rw_sig2 ='0') then

 dbus_sig2 <= mem_do_2;
 else dbus_sig2 <=(others =>'Z');
 end if;

 if(db_grant3 ='1' and rw_sig3 ='0') then

 dbus_sig3 <= mem_do_3;
 else dbus_sig3 <=(others =>'Z');
 end if;
 end if;
 end if;
end process output_from_mem;

-- end of process 2

-- Token bus logic
optmp_req <= Op_req;
Tknbuslg : process (tbreq_sig0,tbgrnt_sig0,bus_req_prt,bus_grnt_prt,tbreq_sig1,
 tbgrnt_sig1,tbreq_sig2,tbgrnt_sig2,tbgrnt_sig3,tbreq_sig3,Optmp_req,Op_gnt, rst)
 begin
 if rst = '1' then
 tbgrnt_sig0 <= '0';
 bus_grnt_prt <= '0';
 --Tbs4_gnt <= '0';
 tbgrnt_sig1 <= '0';
 tbgrnt_sig2 <= '0';
 tbgrnt_sig3 <= '0';
 Op_gnt <= '0';
 elsif (bus_req_prt ='1')and (tbgrnt_sig0='0') and(tbgrnt_sig1='0') and
 (tbgrnt_sig2='0')and(Op_gnt='0') and (tbgrnt_sig3='0') then
 tbgrnt_sig0 <= '0';
 bus_grnt_prt <= '1';
 --Tbs4_gnt <= '0';
 tbgrnt_sig2 <= '0';
 tbgrnt_sig1 <= '0';
 tbgrnt_sig3 <= '0';
 Op_gnt <= '0';
 elsif (Optmp_req ='1') and (bus_grnt_prt ='0') and (tbgrnt_sig0='0') and
 (tbgrnt_sig1='0') and (tbgrnt_sig2='0') and (tbgrnt_sig3 ='0')then
 tbgrnt_sig0 <= '0';
 bus_grnt_prt <= '0';
 --Tbs4_gnt <= '0';
 tbgrnt_sig1 <= '0';
 tbgrnt_sig2 <= '0';

 165

 tbgrnt_sig3 <= '0';
 Op_gnt <= '1';
 elsif (tbreq_sig0 = '1') and (bus_grnt_prt='0') and (Op_gnt='0') and
 (tbgrnt_sig2='0')and (tbgrnt_sig1='0') and (tbgrnt_sig3 ='0') then
 tbgrnt_sig0 <= '1';
 bus_grnt_prt <= '0';
 --Tbs4_gnt <= '0';
 tbgrnt_sig2 <= '0';
 tbgrnt_sig1 <= '0';
 tbgrnt_sig3 <= '0';
 Op_gnt <= '0';
 elsif (tbreq_sig2='1') and (bus_grnt_prt='0') and (Op_gnt='0') and
 (tbgrnt_sig0='0') and (tbgrnt_sig1='0') and (tbgrnt_sig3 ='0') then
 tbgrnt_sig0 <= '0';
 bus_grnt_prt <= '0';
 --Tbs4_gnt <= '1';
 tbgrnt_sig2 <='1';
 tbgrnt_sig1 <= '0';
 tbgrnt_sig3 <= '0';
 Op_gnt <= '0';
 elsif (tbreq_sig1='1') and (bus_grnt_prt='0') and (Op_gnt='0') and
 (tbgrnt_sig0='0') and (tbgrnt_sig2='0')and (tbgrnt_sig3='0') then
 tbgrnt_sig0 <= '0';
 bus_grnt_prt <= '0';
 -- Tbs4_gnt <= '0';
 tbgrnt_sig2<='0';
 tbgrnt_sig1 <= '1';
 tbgrnt_sig3 <= '0';
 Op_gnt <= '0';
 elsif (tbreq_sig3='1') and (bus_grnt_prt='0') and (Op_gnt='0') and
 (tbgrnt_sig0='0') and (tbgrnt_sig2='0')and (tbgrnt_sig1='0') then
 tbgrnt_sig0 <= '0';
 bus_grnt_prt <= '0';
 -- Tbs4_gnt <= '0';
 tbgrnt_sig2<='0';
 tbgrnt_sig1 <= '0';
 tbgrnt_sig3 <= '1';
 Op_gnt <= '0';
 end if;
 if (bus_req_prt = '0') then bus_grnt_prt <= '0';
 end if;
 if (Optmp_req = '0') then Op_gnt <= '0';
 end if;
 if (tbreq_sig0 = '0') then tbgrnt_sig0 <= '0';
 end if;
 if (tbreq_sig2 = '0') then tbgrnt_sig2 <= '0';
 end if;
 if (tbreq_sig1 = '0') then tbgrnt_sig1 <= '0';
 end if;
 if (tbreq_sig3 = '0') then tbgrnt_sig3 <= '0';
 end if;
 end process;

arbiter_logic: process(clk,rst)
begin
if rst = '1' then

 166

 odr0<='0';
 odr1<='0';

elsif (clk'event and clk='1') then
 case rq_opt0 is
 when '1' => odr0 <= '1';
 when '0' => odr0 <= '0';
 when others =>
 end case;

 case rq_opt1 is
 when '1' => odr1 <= '1';
 when '0' => odr1 <= '0';
 when others =>
 end case;

end if;
end process arbiter_logic;

Op_token_bus_sig <= Op_token_bus when Op_gnt = '1' else
 (others=>'Z');

end Behavioral;

Module Name: contchip.vhd
library IEEE;
use IEEE.std_logic_1164.all;

entity CONTChip is
 generic (Chip_addr : integer := 3;
 Inst0 : integer := 156;
 Inst1 : integer := 48;
 Inst2 : integer := 152);
 port (
 Data_bus: inout STD_LOGIC_VECTOR (15 downto 0);
 Chip_EN: in STD_LOGIC;
 Snd_i,stoplp: in std_logic;
 Rst: in STD_LOGIC;
 Clk: in STD_LOGIC;
 tbus_grnt: in STD_LOGIC;
 token_bus: inout STD_LOGIC_VECTOR (31 downto 0);
 tbus_req: out STD_LOGIC;
 I_rdy: out std_logic;
 Avail: out STD_LOGIC_VECTOR (4 downto 0);
 --x_dbug : out std_logic_vector(9 downto 0);
 x_dbug : out std_logic_vector(6 downto 0);
 --count_dbug : out std_logic_vector(9 downto 0);
 count_dbug : out std_logic_vector(6 downto 0);
 Wr_out_dbug : out std_logic_vector (1 downto 0);
 R_L_Table_dbug: out STD_LOGIC_VECTOR (1 downto 0);
 Ld_Rd_dbug: out STD_LOGIC;
 --tab_1ntry : out std_logic_vector (4 downto 0);
 --tab_addntry : out std_logic_vector (7 downto 0);
 --tab_exitpn_ntry : out std_logic_vector(3 downto 0);
 ccntl_in_dbug :out std_logic_vector(24 downto 0);

 167

 --QData_dbug : out std_logic_vector (17 downto 0);
 dataout_lut : out std_logic_vector(15 downto 0);
 outbuf0_dbug: out std_logic_vector(15 downto 0);
 outbuf1_dbug : out std_logic_vector(15 downto 0);
 line_out_dbug: out std_logic_vector(31 downto 0);
 l_in : out std_logic_vector(31 downto 0);
 buf_dbug : out std_logic_vector(24 downto 0);
 -- Statedbg_fin :out string(1 to 10):=" "
 cntl_out_fin : out std_logic_vector(3 downto 0);
 dlout_contchip:out std_logic_vector(15 downto 0);
 dwr_cont: out std_logic;
 tab_in_contchip: out std_logic
);
end CONTChip;

architecture CONTChip_arch of CONTChip is

component queue is --FIFO Queue code
 port (clk, enw, rst_f,rst_r,enr,s:in std_logic;
 time_s: in std_logic_vector(3 downto 0);
 din: in std_logic_vector(17 downto 0);
 ram_add: in std_logic_vector(5 downto 0);
 prog_flag: in std_logic_vector(5 downto 0);
 error: inout std_logic;
 sign: out std_logic;
 ITRC: out std_logic_vector(3 downto 0);
 th_flag: out std_logic;
 count_token:inout std_logic_vector(5 downto 0);
 dout: out std_logic_vector(17 downto 0));
end component;

component LUT is
 generic (Instr0 : integer := 156;
 Instr1 : integer := 48;
 Instr2 : integer := 152);
 port (
 R_L_Table: in STD_LOGIC_VECTOR (1 downto 0);
 Ld_Rd: in STD_LOGIC;
 Data: inout STD_LOGIC_VECTOR (15 downto 0);
 rst: in STD_LOGIC;
 clk : in STD_LOGIC;
 Wr_out : in std_logic_vector (1 downto 0);
 W_en : out std_logic;
 addr: in STD_LOGIC_VECTOR (4 downto 0);
 time_stmp : in STD_LOGIC_VECTOR(2 downto 0);
 Proc_Num: in STD_LOGIC_VECTOR (4 downto 0);
 data_loc: in STD_LOGIC_VECTOR (7 downto 0);
 join_flg: buffer std_logic;
 Instr_out: out STD_LOGIC_VECTOR (15 downto 0);
 --tab_1ntry : out std_logic_vector (4 downto 0);
 --tab_addntry : out std_logic_vector (7 downto 0);
 --tab_exitpn_ntry : out std_logic_vector(3 downto 0)
 tab_in_dbg: out std_logic
);
end component;

 168

component Cntl_Logic is
 generic (Chip_addr : integer := 3;
 Inst0 : integer := 156;
 Inst1 : integer := 48;
 Inst2 : integer := 152);
 port (
 rst: in STD_LOGIC;
 clk: in STD_LOGIC;
 tkn_bus: inout STD_LOGIC_VECTOR (31 downto 0);
 Cnt_token: in STD_LOGIC_VECTOR (5 downto 0);
 thl_flag: in STD_LOGIC;
 ITRC: in STD_LOGIC_VECTOR (3 downto 0);
 sign: in STD_LOGIC;
 Join_flg: in STD_LOGIC;
 data: inout STD_LOGIC_VECTOR (15 downto 0);
 En_W: out STD_LOGIC;
 En_R: out STD_LOGIC;
 rst_f: out STD_LOGIC;
 rst_r: out STD_LOGIC;
 s: out STD_LOGIC;
 bus_grant : in std_logic;
 bus_rqst : out std_logic;
 time_s: out STD_LOGIC_VECTOR (3 downto 0);
 ram_addr: out STD_LOGIC_VECTOR (5 downto 0);
 D_out: out STD_LOGIC_VECTOR (17 downto 0);
 Prog_flag: out STD_LOGIC_VECTOR (5 downto 0);
 wr_out: buffer STD_LOGIC_VECTOR (1 downto 0);
 LT_addr: out STD_LOGIC_VECTOR (4 downto 0);
 rst_LT: out STD_LOGIC;
 R_L_table: buffer STD_LOGIC_VECTOR (1 downto 0);
 Ld_Rd: out STD_LOGIC;
 Instr_Rdy: out STD_LOGIC;
 Snd_instr : in std_logic;
 finished, stoploop: in STD_LOGIC;
 -- x_dbug : out std_logic_vector(9 downto 0);
 x_dbug : out std_logic_vector(6 downto 0);
 --count_dbug : out std_logic_vector(9 downto 0);
 count_dbug : out std_logic_vector(6 downto 0);
 outbuf0_dbug : out std_logic_vector(15 downto 0);
 outbuf1_dbug : out std_logic_vector(15 downto 0);
 line_out_dbug: out std_logic_vector(31 downto 0);
 line_in_dbug : out std_logic_vector(31 downto 0);
 buf_in_dbug : out std_logic_vector(24 downto 0);
 cntl_in_dbug : out std_logic_vector (24 downto 0);
 cntl_out : out std_logic_vector(3 downto 0);
 dlout:out std_logic_vector(15 downto 0);
 dwr_op: out std_logic
 --Statedbg:out string(1 to 10):=" "

);
end component;

signal Instr_out : std_logic_vector(15 downto 0); --LUT output
signal WEN : std_logic; --chip output enable
signal QData : std_logic_vector(17 downto 0); --FIFO output
signal rst_lut, rst_f, rst_r : std_logic;

 169

signal R_L_Table, WR_Out : std_logic_vector(1 downto 0);
signal Read_Load : std_logic;
signal jn_flag : std_logic;
signal LData : std_logic_vector(15 downto 0); --I/O for LUT
signal Addr : std_logic_vector(4 downto 0); --LUT address lines
signal tok_cnt : std_logic_vector(5 downto 0); --FIFO count
signal Thres_flag : std_logic; --Threshold flag
signal ITRC : std_logic_vector(3 downto 0);
signal sign, s : std_logic;
signal en_Wr, en_Rd : std_logic; --FIFO read/write
signal time_S : std_logic_vector(3 downto 0); --FIFO time setting
signal Ram_addr : std_logic_vector(5 downto 0); --FIFO address lines
signal FData : std_logic_vector(17 downto 0); --FIFO input lines
signal Prog_flag : std_logic_vector(5 downto 0); --FIFO threshold set lines
-- added for dbugging

begin

 Cont1 : Cntl_logic generic map (Chip_addr,Inst0, Inst1, Inst2)
 port
map(rst=>Rst,clk=>Clk,tkn_bus=>token_bus,Cnt_token=>tok_cnt,thl_flag=>Thres_flag,

ITRC=>ITRC,sign=>sign,join_flg=>jn_flag,data=>LData,En_W=>en_Wr,En_R=>en_Rd,rst_f=>rst_f,rst_
r=>rst_r,
 s=>s,bus_grant=>tbus_grnt,bus_rqst=>tbus_req,time_s=>time_S,ram_addr=>Ram_addr,
 D_out=>FData,Prog_flag=>Prog_flag,wr_out=>WR_Out,LT_addr=>Addr,rst_LT=>rst_lut,
 R_L_table=>R_L_Table,Ld_Rd=>Read_Load,Instr_Rdy=>I_rdy,Snd_instr=>Snd_i,
 finished=>Chip_EN,
stoploop=>stoplp,x_dbug=>x_dbug,count_dbug=>count_dbug,
 outbuf0_dbug=>outbuf0_dbug,outbuf1_dbug=>outbuf1_dbug,
 line_out_dbug=>line_out_dbug,line_in_dbug =>
l_in,buf_in_dbug=>buf_dbug,

cntl_in_dbug=>ccntl_in_dbug,cntl_out=>cntl_out_fin,dlout=>dlout_contchip,dwr_op=> dwr_cont);

 LUT1 : LUT generic map(Inst0, Inst1, Inst2)
 port map(R_L_Table=>R_L_Table,Ld_Rd=>Read_Load,Data=>LData,rst=>rst_lut,clk=>clk,
 Wr_out=>WR_Out,W_en=>WEN,addr=>Addr,time_stmp=>QData(17 downto
15),Proc_Num=>QData(14 downto 10),
 data_loc=>QData(7 downto 0),join_flg=>jn_flag,Instr_out=>Instr_out,tab_in_dbg =>
tab_in_contchip
);

 FIFOQ : queue port
map(clk=>clk,enw=>en_Wr,rst_f=>rst_f,rst_r=>rst_r,enr=>en_Rd,s=>s,time_s=>time_S,

din=>FData,ram_add=>Ram_addr,prog_flag=>Prog_flag,error=>open,sign=>sign,ITRC=>ITRC,
 th_flag=>Thres_flag,count_token=>tok_cnt,dout=>QData);

 -- added for checking the changes

 Wr_out_dbug <= wr_out;
 R_L_Table_dbug<= R_L_Table;
 Ld_Rd_dbug <= Read_Load ;
-- QData_dbug<=QData;
dataout_lut<= Ldata;

 170

 Data_bus <= Instr_out when WEN = '1' else (others=>'Z');
 Avail <= Tok_cnt(4 downto 0);
 end CONTChip_arch;

Module Name: cntl_logic.vhd

--The IEEE standard 1164 package, declares std_logic, rising_edge(), etc.
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;
use std.textio.all;

entity Cntl_Logic is
 generic (Chip_addr : integer := 3;
 Inst0 : integer := 156;
 Inst1 : integer := 48;
 Inst2 : integer := 152);
 port (
 rst: in STD_LOGIC;
 clk: in STD_LOGIC;
 tkn_bus: inout STD_LOGIC_VECTOR (31 downto 0);
 Cnt_token: in STD_LOGIC_VECTOR (5 downto 0);
 thl_flag: in STD_LOGIC;
 ITRC: in STD_LOGIC_VECTOR (3 downto 0);
 sign: in STD_LOGIC;
 Join_flg: in STD_LOGIC;
 data: inout STD_LOGIC_VECTOR (15 downto 0);
 En_W: out STD_LOGIC;
 En_R: out STD_LOGIC;
 rst_f: out STD_LOGIC;
 rst_r: out STD_LOGIC;
 s: out STD_LOGIC;
 bus_grant : in std_logic;
 bus_rqst : out std_logic;
 time_s: out STD_LOGIC_VECTOR (3 downto 0);
 ram_addr: out STD_LOGIC_VECTOR (5 downto 0);
 D_out: out STD_LOGIC_VECTOR (17 downto 0);
 Prog_flag: out STD_LOGIC_VECTOR (5 downto 0);
 wr_out: buffer STD_LOGIC_VECTOR (1 downto 0);
 LT_addr: out STD_LOGIC_VECTOR (4 downto 0);
 rst_LT: out STD_LOGIC;
 R_L_table: buffer STD_LOGIC_VECTOR (1 downto 0);
 Ld_Rd: out STD_LOGIC;
 Instr_Rdy: out STD_LOGIC;
 Snd_instr : in std_logic;
 finished, stoploop: in STD_LOGIC;
 --x_dbug : out std_logic_vector(9 downto 0);
 x_dbug : out std_logic_vector(6 downto 0);
 --count_dbug : out std_logic_vector(9 downto 0);
 count_dbug : out std_logic_vector(6 downto 0);
 cntl_in_dbug : out std_logic_vector(24 downto 0);
 outbuf0_dbug : out std_logic_vector(15 downto 0);
 outbuf1_dbug : out std_logic_vector(15 downto 0);
 line_out_dbug: out std_logic_vector(31 downto 0);
 line_in_dbug : out std_logic_vector(31 downto 0);

 171

 buf_in_dbug : out std_logic_vector(24 downto 0);
 -- Statedbg:out string(1 to 10):=" "
 cntl_out : out std_logic_vector(3 downto 0);
 dlout:out std_logic_vector(15 downto 0);
 dwr_op: out std_logic
);
end Cntl_Logic;

architecture Cntl_Logic_arch of Cntl_Logic is

component mapbuf
 port (
 din: IN std_logic_VECTOR(24 downto 0);
 clk: IN std_logic;
 wr_en: IN std_logic;
 rd_en: IN std_logic;
 ainit: IN std_logic;
 dout: OUT std_logic_VECTOR(24 downto 0);
 full: OUT std_logic;
 empty: OUT std_logic);
end component;
--signal stout:string(1 to 10):="State ";
signal nxt_lded : std_logic;
signal wr_en, ld_t : std_logic;
signal line_in, line_out : std_logic_vector(31 downto 0);
constant Load_Table : std_Logic_vector := "111111"; --tkn opcode
constant Load_Thres : std_logic_vector := "111101"; --tkn opcode
constant Table_input: std_logic_vector := "111110"; --tkn opcode
constant Status : std_logic_vector := "111100"; --tkn opcode
constant Switch : std_logic_vector := "111011"; --tkn opcode
constant tken : std_logic_vector := "00----"; --tkn value
constant PRT_addr : std_logic_vector := "0000001"; --PRT addr
constant PRT_stat : std_logic_vector := "0000000111100"; --snd status to PRT
signal lcl_addr : std_logic_vector(6 downto 0);
type State_Type is (Sysrst,Ld_table,GetTkn,StopL, DeQ,Issue,Dummy,SndPRT,ChkStat,PRam);
signal State: State_Type;
-- entry is data structure for loading LUT
type entry is record
 entry0, entry1: std_logic_vector(15 downto 0);
end record;
--**************************Make changes here for different apps************************
type entry_tbl is array(6 downto 0) of entry;
--***
signal tbl_entry : entry_tbl;
signal outbuf0, outbuf1 : std_logic_vector(15 downto 0);
signal buf_in, temp3 : std_logic_vector(24 downto 0);
signal dline_in, dline_out : std_logic_vector(15 downto 0);
signal dwr : std_logic;
signal re, we, empty, full : std_logic;
signal cntl_in, last_cntl_in : std_logic_vector(24 downto 0);
--signal count, x : std_logic_vector(9 downto 0);
signal count, x : std_logic_vector(6 downto 0);

begin
dlout<=dline_out;
x_dbug <= x;

 172

count_dbug<= count;
cntl_in_dbug <= cntl_in;
lcl_addr <= conv_std_logic_vector(Chip_addr, 7);
outbuf0_dbug<=outbuf0;
outbuf1_dbug<=outbuf1;
line_out_dbug<= line_out;
line_in_dbug <= line_in;
buf_in_dbug <= buf_in;
dwr_op <= dwr;
-- define tri-state logic for token bus
with (wr_en) select
 line_in <= tkn_bus when '1',
 (others=>'0') when others;

tkn_bus <= line_out when wr_en = '0' else
 (others=>'Z');
-- define tri-state logic for data bus
dline_in <= data when dwr = '1' else
 (others=> 'Z');
data <= dline_out when dwr = '0' else
 (others=> 'Z');

INFifo : mapbuf port map (din => buf_in,clk =>clk,wr_en => we,rd_en => re,
 ainit => rst, dout => cntl_in,
 full => full,empty => empty);

getdata : process (clk, full, line_in, rst)
 begin
 if rst = '1' then
 we <= '0';
 buf_in <= (others=>'0');
 elsif (clk'event and clk='1') then
 if (line_in(30 downto 24) = lcl_addr and full ='0') then
 buf_in <= line_in(31)&line_in(23 downto 0);
 we <= '1';
 else
 buf_in <= (others=>'0');
 we <= '0';
 end if;
 end if;
end process;

-- Initialize the Table with entry0 and entry1 asynchronously at reset.

--init_table: process(rst)
--begin
--if rst = '1' then
-- for i in 0 to 4 loop
-- tbl_entry(i).entry0(15 downto 0)<=x"0000";
-- tbl_entry(i).entry1(15 downto 0)<=x"0000";
-- end loop;
--end if;
--end process init_table;

 173

CntlSt: process (clk,rst)

 variable ind, ind2 : integer;
 variable done, comp, running, stopflag, Snd_done, in_delay, buf_delay : Boolean;
 variable delay, iter, fin_join, first_val, in_delay2 : Boolean;
 variable iss_delay, is2_delay : Boolean;

 begin
 if rst = '1' then
 State <= Sysrst;
 elsif (clk'event and clk='1') then

 case State is
 when Sysrst =>
 cntl_out <="0000";

-- stout<="Reset ";
 --count <= "0000000001"; done := False; x <= "0000000001";
 -- count <= "00001"; done := False; x <= "00001";
 count <= "0000001"; done := False; x <= "0000001";
 Snd_done := False; comp := False; running := False;
 bus_rqst <= '0'; first_val := true; in_delay2 := False;
 dwr <= '1'; iss_delay := False; in_delay := false; stopflag:=false;
 rst_f <= '1'; --reset Queue
 rst_r <= '1'; buf_delay := false;
 rst_LT <= '1'; --reset LUT
 R_L_Table <= "00"; is2_delay := false;
 Ld_RD <= '0';
 nxt_lded <='0'; --block PE from getting tkn
 wr_en <= '1'; --enable bus snoop
 State <= Ld_Table;
 Instr_rdy <= '0';
 fin_join := false;
 prog_flag <= "000000";
 LT_addr <= "00000";
 wr_out <= "00";
 en_W <= '0'; en_R <= '0';
 time_s <= "0000"; s <= '0';
 ram_addr <= "000000";
 D_out <= "000000000000000000";
 re <= '0';
 delay := false; iter := false;
 temp3 <= (others=>'0');
 last_cntl_in <= (others=>'0');

 when Ld_Table =>
 cntl_out <="0001";
-- stout<="Load Table";

 174

 wr_en <= '1';
 Ld_Rd <= '0';
 rst_f <= '0';
 rst_r <= '0';
 rst_LT <= '0';
 en_W <= '0'; en_R <= '0';
 s <= '0';
 ram_addr <= "000000";
 D_out <= "000000000000000000";
 bus_rqst <= '0';
 wr_out <= "00";
 if (done = false) then --get table tokens
 case count is
 when "0000001" => ind := 0;
 when "0000010" => ind := 1;
 when "0000100" => ind := 2;
 when "0001000" => ind := 3;
 when "0010000" => ind := 4;
 when "0100000" => ind := 5;
 when "1000000" => ind := 6;
 when others => null;
 end case;
 if (empty = '0' and in_delay = false) then
 Re <='1'; --get token from queue
 in_delay := true;
 Count <= count;
 State <= Ld_table;
 elsif (in_delay = true and in_delay2 = False) then
 in_delay2 := true; re <= '0';
 Count <= Count;
 State <= Ld_table;
 elsif (in_delay2 = true) then --parse token
 if (cntl_in(24 downto 19))=Load_Table then
 tbl_entry(ind).entry1(7 downto 0) <= cntl_in(7 downto 0); --data
addr
 tbl_entry(ind).entry0(0) <= cntl_in(8); --hold field
 tbl_entry(ind).entry1(8) <= cntl_in(9); --Join field
 Count <= Count;
 elsif (cntl_in(24 downto 19))=Table_Input then
 tbl_entry(ind).entry0(15 downto 11)<=cntl_in(18 downto 14); --PN
 tbl_entry(ind).entry0(10 downto 6) <=cntl_in(13 downto 9); --Next PN
 tbl_entry(ind).entry0(5 downto 1) <=cntl_in(8 downto 4); --Next PN1
 tbl_entry(ind).entry1(12 downto 9) <=cntl_in(3 downto 0); --Exit PN
 tbl_entry(ind).entry1(15 downto 13) <="000"; --
ununsed bits init to 0
 --count <= count(8 downto 0)&count(9);
 count <= count(5 downto 0)&count(6);
 --if count < "1000000000" then
 if count < "1000000" then
 done := false;
 else
 done := True;
 end if;
 end if;
 in_delay := false;
 in_delay2 := false;

 175

 Re <= '0';
 end if;
 State <= Ld_Table;
 elsif done = True then -- load LUT
 re <= '0';
 case x is
 when "0000001" => LT_addr <= "00000"; ind2 := 0;
 when "0000010" => LT_addr <= "00001"; ind2 := 1;
 when "0000100" => LT_addr <= "00010"; ind2 := 2;
 when "0001000" => LT_addr <= "00011"; ind2 := 3;
 when "0010000" => LT_addr <= "00100"; ind2 := 4;
 when "0100000" => LT_addr <= "00101"; ind2 := 5;
 when "1000000" => LT_addr <= "00110"; ind2 := 6;
 when others => null;

 end case;
 case R_L_Table is
 when "00" => dwr <= '0'; --enable write to LUT
 dline_out <= tbl_entry(ind2).entry0;
 R_L_Table <="01";
 State <= Ld_Table;
 when "01" => dwr <= '0';
 dline_out <= tbl_entry(ind2).entry1;
 R_L_Table <= "10";
 State <= Ld_Table;
 -- when "10" => R_L_Table <= "00";
 when "10" => R_L_Table <= "00";
 dwr <= '0'; --enable write to LUT
 dline_out <= tbl_entry(ind2).entry0;

 --if x < "1000000000" then
 if x < "1000000" then
 -- x <= x(8 downto 0)&x(9);
 x <= x(5 downto 0)&x(6);
 State <= Ld_table;
 else
 done := False;
 --x <= x(8 downto 0)&x(9);
 x <= x(5 downto 0)&x(6);
 dwr <= '1';
 State <= GetTkn;
 end if;
 when others => R_L_Table <= "00";
 --x<= "0000000001"; done := False; dwr <= '1';
 x<= "0000001"; done := False; dwr <= '1';
 State <= GetTkn;
 end case;
 end if;

 when GetTkn =>
 cntl_out <="0010";
-- stout<="Get Token ";
 en_W <= '0';
 bus_rqst <= '0';
 wr_en <= '1';

 176

 R_L_Table <= "00";
 en_R <= '0';
 LT_addr <= "00000";
 if join_flg = '0' then
 wr_out <= "00";
 else
 wr_out <= wr_out;
 end if;
 R_L_Table <= "00";
 Ld_RD <= '0';
 s <= '0';
 ram_addr <= "000000";
 rst_f <= '0';
 rst_r <= '0';
 rst_LT <= '0';
 if (stoploop = '1') then
 stopflag := true;
 state <= GetTkn; -- break out the process loop
 elsif ((finished = '1') and (nxt_lded='0') and (running=True)) then
 running := false;
 State <= Dummy; --handle finished proc
 elsif ((stopflag=true) and (finished = '1') and (nxt_lded='1')) then
 State <= StopL;
 elsif ((stopflag=false) and (finished = '1') and (nxt_lded='1')) then
 State <= SndPRT; --handle finished proc
 elsif (nxt_lded='0' and Cnt_token > "000000") then --Dequeue for processing
 State <= DeQ;
 elsif (empty = '0' and in_delay = false) then
 re <= '1'; --get token
 in_delay := true;
 Count <= Count;
 State <= GetTkn;
 elsif (in_delay = true and buf_delay = false) then
 re <= '0';
 buf_delay := true;
 count <= Count;
 State <= GetTkn;
 elsif (buf_delay = true) then
 if (cntl_in(24 downto 19))= Status then
 last_cntl_in <= cntl_in;
 State <= ChkStat;
 elsif (cntl_in(24 downto 19)) = Load_Table then
 last_cntl_in <= cntl_in;
 State <= Ld_Table;
 elsif (cntl_in(24 downto 19)) = Load_Thres then
 prog_flag <= cntl_in(5 downto 0); --ld threshold value
 time_s <= cntl_in(9 downto 6); --ld sample time
 last_cntl_in <= cntl_in;
 State <= GetTkn;
 elsif (cntl_in(24 downto 19)) = Switch then
 temp3 <= cntl_in;
 last_cntl_in <= cntl_in;
 State <= PRam; --enter psuedo-RAM funct.
 elsif (cntl_in(24) = '0') then --token rcvd
 if (Cnt_token /= "111111") then --enque token
 en_W <= '1';

 177

 D_out(17 downto 10) <= cntl_in(23 downto 16);
 D_out(9 downto 0) <= cntl_in(9 downto 0);
 last_cntl_in <= cntl_in;
 State <= GetTkn;
 end if;
 else
 State <= GetTkn; --invalid token read
 end if;
 buf_delay := false;
 in_delay := false;
 else
 re <= '0';
 State <= GetTkn; --repeat
 end if;

 when StopL =>
 cntl_out <="0011";
-- stout<="Stop Loop ";
 en_R <= '0'; en_W <='0';
 s <= '0';
 ram_addr <= "000000";
 rst_f <= '0';
 rst_r <= '0';
 rst_LT <= '0';
 re <= '0';
 LT_addr <= "00000";
 D_out <= "000000000000000000";
 stopflag :=false;
 if Snd_done = False then
 Ld_Rd <= '1';
 dwr <= '1'; -- enable write from LUT to controller
 if first_val = true then
 case R_L_Table is
 when "00" => R_L_Table <= "10";
 State <= StopL;
 when "01" => R_L_Table <= "10";
 State <= StopL;
 when "10" => R_L_Table <= "11";
 State <= StopL;
 when "11" => R_L_Table <= "11";
 outbuf0 <= dline_in;
 first_val := false;
 State <= StopL;
 when others => R_L_Table <= "00";
 end case;
 else
 R_L_Table <= "00";
 outbuf1 <= Dline_in;
 Ld_Rd <= '0';
 Snd_done := True;
 first_val := true;
 State <= StopL;
 end if;
 else
 bus_rqst <= '1';

 178

 Ld_Rd <='0';
 R_L_Table <= "00";
 if bus_grant = '1' then
 wr_en <= '0';
 line_out(20 downto 0) <= ('0'&outbuf1(11 downto
8)&"00000000"&outbuf1(7 downto 0));
 line_out(30 downto 24) <= PRT_addr;
 line_out(23 downto 21) <= outbuf0(13 downto 11); --time stamp
 line_out(31) <= '0'; --hold field
 Snd_done := false;
 if nxt_lded = '1' then
 State <= Issue;
 else
 State <= GetTkn;
 end if;
 else
 State <= StopL; --wait for bus
 end if;
 end if;

 when DeQ =>
 cntl_out <="0100";
-- stout<="De-Queue ";
 en_W <= '0';
 s <= '0';
 ram_addr <= "000000";
 rst_f <= '0';
 rst_r <= '0';
 rst_LT <= '0';
 bus_rqst <= '0';
 LT_addr <= "00000";
 temp3 <= (others=>'0');
 D_out <= "000000000000000000";
 en_R <= '1';
 LD_RD <= '1';
 nxt_lded <= '1';
 R_L_Table <= "01";
 re <= '0';
 if Join_flg = '1' then
 fin_join := true;
 wr_out <= wr_out;
 else
 fin_join := false;
 wr_out <= "00";
 end if;
 if (finished = '1') then
 State <= Issue;
 elsif (finished = '0') then
 State <= GetTkn;
 end if;

 when Issue =>
 cntl_out <="0101";
-- stout<=" Issue ";

 179

 en_R <= '0'; en_W <= '0';
 wr_en <= '1';
 bus_rqst <= '0';
 nxt_lded <= '0';
 R_L_Table <= "00";
 s <= '0';
 ram_addr <= "000000";
 rst_f <= '0';
 rst_r <= '0';
 rst_LT <= '0';
 re <= '0';
 bus_rqst <= '0';
 LT_addr <= "00000";
 D_out <= "000000000000000000";
 if (join_flg='1' and cnt_token > "000000" and fin_join = false) then
 Instr_Rdy <= '0';
 State <= DeQ; --Issue another token
 elsif (join_flg='1' and cnt_token = "000000" and fin_join = false) then
 State <= GetTkn; --Other join tkn not available
 nxt_lded <= '0';
 Instr_Rdy <= '0';
 elsif ((join_flg = '0') or (join_flg='1' and fin_join = true)) then
 case (wr_out) is
 when "00" => Wr_out <= "01"; --snd 1st instr
 Instr_Rdy <= '1';
 State <= Issue;
 when "01" => if (snd_instr = '0' or iss_delay = False or is2_delay =
false) then
 state <= Issue;
 Wr_out <= Wr_out;
 if iss_delay = true then
 is2_delay := true; --2nd delay cycle
 end if;
 iss_delay := true; --delay to allow PE to read instr.
 else
 if fin_join=true then --snd 2nd/3rd instrs
 Wr_out <= "11";
 Instr_Rdy <= '1';
 else
 Wr_out <= "10";
 Instr_Rdy <= '1';
 end if;
 iss_delay := false; --reset delay var.
 is2_delay := false;
 State <= Issue;
 end if;
 when "10" => if (snd_instr = '0' or iss_delay = False or is2_delay =
false) then
 Instr_Rdy <= '0';
 Wr_out <= Wr_out;
 if iss_delay = true then
 is2_delay := true;
 end if;
 iss_delay := true;
 STATE <= Issue;
 else

 180

 Wr_out <= "00";
 iss_delay := false;
 is2_delay := false;
 running := True;
 fin_join := false;
 Instr_Rdy <= '0';
 if (Cnt_token = "000000") then
 State <= GetTkn;
 else
 State <= DeQ;
 end if;
 end if;
 when "11" => if (snd_instr = '0' or iss_delay = False or is2_delay =
false) then
 state <= issue;
 Wr_out <= Wr_out;
 Instr_Rdy <= '0';
 if iss_delay = true then
 is2_delay := true;
 end if;
 iss_delay := true;
 else
 Wr_out <= "10";
 Instr_Rdy <= '1';
 iss_delay := false;
 is2_delay := false;
 State <= Issue;
 end if;
 when others => Wr_out <= "00";
 State <= GetTkn;
 end case;
 end if;

 when Dummy =>
 cntl_out <="0110";
-- stout<=" Dummy ";
 en_R <= '0'; en_W <='0';
 wr_en <= '1';
 bus_rqst <= '0';
 s <= '0';
 ram_addr <= "000000";
 rst_f <= '0';
 rst_r <= '0';
 rst_LT <= '0';
 LT_addr <= "00000";
 D_out <= "000000000000000000";
 Ld_Rd <= '1';
 R_L_Table <= "01";
 if stopflag = true then State <= StopL;
 else State <= SndPRT;
 end if;

 when SndPRT =>
 cntl_out <="0111";
-- stout<="Send PRT ";
 en_R <= '0'; en_W <='0';

 181

 s <= '0';
 ram_addr <= "000000";
 rst_f <= '0';
 rst_r <= '0';
 rst_LT <= '0';
 re <= '0';
 LT_addr <= "00000";
 D_out <= "000000000000000000";
 if Snd_done = False then
 Ld_Rd <= '1';
 dwr <= '1'; -- enable write from LUT to controller
 if first_val = true then
 case R_L_Table is
 when "00" => R_L_Table <= "10";
 State <= SndPRT;
 when "01" => R_L_Table <= "10";
 State <= SndPRT;
 when "10" => R_L_Table <= "11";
 State <= SndPRt;
 when "11" => R_L_Table <= "11";
 outbuf0 <= dline_in;
 first_val := false;
 State <= SndPRT;
 when others => R_L_Table <= "00";
 end case;
 else
 R_L_Table <= "00";
 outbuf1 <= Dline_in;
 Ld_Rd <= '0';
 Snd_done := True;
 first_val := true;
 State <= SndPRT;
 end if;
 else
 bus_rqst <= '1';
 Ld_Rd <='0';
 R_L_Table <= "00";
 if bus_grant = '1' then
 wr_en <= '0';
 if comp = False then
 --line_out(20 downto 0) <= (outbuf0(9 downto 5)&"00000000"&outbuf1(7
downto 0));
 line_out(20 downto 0) <= (outbuf0(9 downto
5)&"00000000"&cntl_in(7 downto 0));
 line_out(30 downto 24) <= PRT_addr;
 line_out(23 downto 21) <= outbuf0(13 downto 11); --time stamp
 line_out(31) <= outbuf0(10); --hold field
 if outbuf0(4 downto 0) = "00000" then --check for 2nd token
 comp := false; --only one tkn to snd
 Snd_done := false;
 if nxt_lded = '1' then
 State <= Issue;
 else
 State <= GetTkn;
 end if;
 else

 182

 State <= SndPRT;
 comp := True;
 end if;
 else
 --line_out(20 downto 0) <= (outbuf0(4 downto 0)&"00000000"&outbuf1(7
downto 0));
 line_out(20 downto 0) <= (outbuf0(4 downto
0)&"00000000"&cntl_in(7 downto 0));
 line_out(30 downto 24) <= PRT_addr;
 line_out(23 downto 21) <= outbuf0(13 downto 11); --time stamp
 line_out(31) <= outbuf0(10);
 comp := false;
 Snd_done := false;
 if nxt_lded = '1' then
 State <= Issue;
 else
 State <= GetTkn;
 end if;
 end if;
 else
 State <= SndPRT; --wait for bus
 end if;
 end if;

 when ChkStat =>
 cntl_out <="1000";
-- stout<="Check Stat";
 re <= '0';
 line_out(31) <= '0';
 line_out(30 downto 24) <= PRT_addr;
 line_out(23) <= '0';
 line_out(22) <= sign;
 line_out(21 downto 18) <= ITRC;
 line_out(17) <= thl_flag;
 line_out(16 downto 11) <= Cnt_token(5 downto 0);
 line_out(10 downto 0) <= (others=>'0');
 bus_rqst <= '1';
 if bus_grant = '1' then
 wr_en <= '0';
 State <= GetTkn;
 else
 State <= ChkStat;
 end if;

 when PRam =>
 cntl_out <="1001";
-- stout<=" PRam ";
 if (iter = false and delay = false) then
 S <= '1'; re <='0';
 ram_addr <= temp3(5 downto 0);
 iter := true;
 State <= PRam;
 elsif (iter = true and delay = false) then
 S <= '1';
 ram_addr <= temp3(11 downto 6);
 iter := false; delay := true;

 183

 State <= PRam;
 elsif (delay = true) then
 S <= '0';
 temp3 <= (others=>'0');
 delay := false;
 State <= GetTkn;
 end if;
 end case;
 end if;

end process;

end Cntl_Logic_arch;

Module Name: mapbuf.vhd

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;

entity mapbuf is
 port (din: in std_logic_vector(24 downto 0);
 clk: in std_logic;
 wr_en: in std_logic;
 rd_en: in std_logic;
 ainit: in std_logic;
 dout: out std_logic_vector(24 downto 0);
 full: out std_logic;
 empty: out std_logic);
end mapbuf;

architecture buf_body of mapbuf is
--depth should be atleast 2 times the CE having the most no. of processes.For eg:
--if CE0 has 10 processes and multiplier CE has 8 processes, then the depth should be atleast 10x2=20 or
19 downto 0
constant deep: integer := 50; --changed to 31 for app2 mat mult
type fifo_array is array(deep downto 0) of std_logic_vector(24 downto 0);
signal mem: fifo_array;
signal f1,e1 : std_logic;

begin
full<=f1;
empty<=e1;
process (clk, ainit)
variable startptr, endptr: natural range 0 to deep+1;
begin

 if clk'event and clk = '1' then
 if ainit='1' then
 startptr:=0;
 endptr:=0;
 f1<='0';
 e1<='1';
 end if;
 if wr_en = '1' then

 184

 if f1 /='1' then
 mem(endptr) <= din;
 e1<='0';
 endptr:=endptr+1;
 if endptr>deep then endptr:=0;
 end if;
 if endptr=startptr then
 f1<='1';
 end if;
 end if;
 end if;

 if rd_en ='1' then
 if e1 /= '1' then
 dout <= mem(startptr);
 f1<='0';
 startptr:=startptr+1;
 if startptr > deep then startptr:=0;
 end if;
 if startptr=endptr then
 e1<='1';
 end if;
 end if;
 end if;
 end if;
end process;
end buf_body;

Module Name: lut.vhd
--The IEEE standard 1164 package, declares std_logic, rising_edge(), etc.
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity LUT is
 generic (Instr0 : integer := 156;
 Instr1 : integer := 48;
 Instr2 : integer := 152);
 port (
 R_L_Table: in STD_LOGIC_VECTOR (1 downto 0);
 Ld_Rd: in STD_LOGIC;
 Data: inout STD_LOGIC_VECTOR (15 downto 0);
 rst: in STD_LOGIC;
 clk : in STD_LOGIC;
 Wr_out : in std_logic_vector (1 downto 0);
 W_en : out std_logic;
 addr: in STD_LOGIC_VECTOR (4 downto 0);
 time_stmp : in STD_LOGIC_VECTOR(2 downto 0);
 Proc_Num: in STD_LOGIC_VECTOR (4 downto 0);
 data_loc: in STD_LOGIC_VECTOR (7 downto 0); -- coming from the Q
 join_flg: buffer std_logic;
 Instr_out: out STD_LOGIC_VECTOR (15 downto 0);
 -- tab_1ntry : out std_logic_vector(4 downto 0);
 -- tab_addntry : out std_logic_vector (7 downto 0);

 185

 -- tab_exitpn_ntry : out std_logic_vector(3 downto 0);
 tab_in_dbg : out std_logic
);
end LUT;

architecture LUT_arch of LUT is

signal Last_Proc : std_logic_vector(7 downto 0); --hold last data loc issued
signal Last_PN : std_logic_vector(4 downto 0); --hold last PN #
signal Snd_buf_PN: std_logic_vector(4 downto 0); --hold PN# of outbuffer
type Entry is record
 H_fld: std_logic; --Hold bit of entry
 J_fld: std_logic; --Proc is a join op
 PN : std_logic_vector(4 downto 0); --Process Number
 Inst_addr : std_logic_vector(7 downto 0); --address of 1st instr.
 Nxt_PN0 : std_logic_vector(4 downto 0); --Next PN
 Nxt_PN1 : std_logic_vector(4 downto 0); --PN used if a fork
 Exit_PN : std_logic_vector(3 downto 0); --PN after exit the process loop
end record;
type table is array(23 downto 0) of entry;
signal L_table : table;
-- changing to just one entry for dbugging

--signal L_table : entry;
--variable L_table : table;
signal tab_out, tab_in : std_logic;
signal temp_data : std_logic_vector(15 downto 0);

-- ADDED TO DBUG
signal temp_data_in1,temp_data_in2 :std_logic_vector (15 downto 0);

--constant Ldreg_data : std_logic_vector(31 downto 10):= "1111111100001111000000";
--constant LdPC : std_logic_vector(31 downto 10):= "1111000011111111000000";
signal Snd_buf_Inst0, Snd_buf_Inst1 : std_logic_vector(15 downto 0);
signal last_time_stmp, Snd_buf_tmstp : std_logic_vector(2 downto 0);
signal Snd_buf_Inst2 : std_logic_vector(15 downto 0);
signal Ldreg_data, LdPC,Ldreg2_data : std_logic_vector(15 downto 8);
--signal l1, l2, l0 : unsigned(15 downto 8);

-- signals added for dbugging
--signal tab_1ntry : std_logic_vector(4 downto 0);

begin
--l0 <= CONV_unsigned(Instr0, 8);
--l1 <= Conv_unsigned(Instr1, 8);
--l2 <= Conv_unsigned(Instr2, 8);
--Ldreg_data <= Conv_std_logic_vector(l0, 8);
--LdPC <= Conv_std_logic_vector(l1, 8);
--Ldreg2_data <= Conv_std_logic_vector(l2, 8);

 -- added for dbugging
--tab_1ntry <=L_table(0).PN;
--tab_addntry <= L_table(0).Inst_addr;
--tab_exitpn_ntry <= L_table(0).Exit_PN;

 186

Ldreg_data <= Conv_std_logic_vector(Instr0, 8);
LdPC <= Conv_std_logic_vector(Instr1, 8);
Ldreg2_data <= Conv_std_logic_vector(Instr2, 8);

Snd_buf_Inst0(15 downto 8) <= Ldreg_data;
Snd_buf_Inst1(15 downto 8) <= LdPC;
Snd_buf_Inst2(15 downto 8) <= Ldreg2_data;

read: process (clk, R_L_Table, Ld_Rd, rst) --decode queue tokens
 begin --and send nxt tkn to cntrlr
 if rst = '1' then
 Snd_buf_Inst1(7 downto 0) <= (others=>'0');
 Snd_buf_Inst0(7 downto 0) <= (others=>'0');
 Snd_buf_Inst2(7 downto 0) <= (others=>'0');
 Join_flg <= '0';
 Snd_buf_tmstp <= (others=> '0');
 Last_Proc <= (others=>'0');
 last_PN <= (others=>'0');
 last_time_stmp <= (others=> '0');
 Snd_buf_PN <= (others=>'0');
 temp_data <= (others=>'0');
 elsif (clk'event and clk='1') then

 if Ld_Rd = '1' then
 case (R_L_Table) is
 when "01"=>
 --Issue to PE
 if join_flg = '0' then
 Last_Proc <= Snd_buf_Inst0(7 downto 0);
 last_PN <= Snd_buf_PN;
 last_time_stmp <= Snd_buf_tmstp;
 Snd_buf_Inst0(7 downto 0) <= data_loc;
 Snd_buf_PN <= Proc_num;
 Snd_buf_tmstp <= time_stmp;
 end if;
 --for x in 0 to 9 loop
 for x in 0 to 22 loop
 -- some changes for dbugging
 if Proc_Num = L_table(x).PN then
 --if Proc_Num = L_table.PN then
 if join_flg = '0' then
 Snd_buf_Inst1(7 downto 0) <= L_table(x).Inst_addr;
 --Snd_buf_Inst1(7 downto 0) <= L_table.Inst_addr;
 if L_table(x).J_fld = '1' then
 --if L_table.J_fld = '1' then
 join_flg <= '1';
 else
 join_flg <= '0';
 end if;
 else --join op, issue another data loc
 Snd_buf_Inst2(7 downto 0) <= data_loc;
 join_flg <= '0';
 end if;
 end if;
 end loop;

 187

 when "10"=>
 Join_flg <='0';
 --for z in 0 to 9 loop
 for z in 0 to 22 loop --send to cntrlr
 if Last_PN = L_table(z).PN then
 --next token PN's
 temp_data(4 downto 0) <= L_table(z).Nxt_PN1;
 temp_data(9 downto 5)<= L_table(z).Nxt_PN0;
 temp_data(10) <= L_table(z).H_fld;
 temp_data(13 downto 11) <= last_time_stmp;
 temp_data(15 downto 14) <= "00";
 end if;
 end loop;
 --for z in 0 to 9 loop --send to cntrlr
 -- if Last_PN = L_table.PN then
 --next token PN's
 -- temp_data(4 downto 0) <= L_table.Nxt_PN1;
 -- temp_data(9 downto 5)<= L_table.Nxt_PN0;
 --temp_data(10) <= L_table.H_fld;
 --temp_data(13 downto 11) <= last_time_stmp;
 --temp_data(15 downto 14) <= "00";
 --end if;
 -- end loop;
 when "11"=>
 join_flg <= '0';

 when others => --for y in 0 to 9 loop --send to cntrlr
 for y in 0 to 22 loop
 if Last_PN = L_table(y).PN then
 temp_data(15 downto 12) <= "0000";
 temp_data(11 downto 8) <= L_table(y).Exit_PN;
 temp_data(7 downto 0) <= Last_Proc; --data location
 end if;
 end loop;
 --for y in 0 to 9 loop --send to cntrlr
 --if Last_PN = L_table.PN then
 --temp_data(15 downto 12) <= "0000";
 --temp_data(11 downto 8) <= L_table.Exit_PN;
 --temp_data(7 downto 0) <= Last_Proc; --data location
 --end if;
 --end loop;
 temp_data <= temp_data;
 --join_flg <= '0';
 end case;
 end if;
 end if;
end process;

-- control for tab_out tri-state
tab_out <= '1' when (Ld_Rd ='1' and (R_L_table = "10" or R_L_table = "11")) else
 '0';

--data_load : process (tab_out, tab_in, data, temp_data) --trnfr data to/from cntrlr
 --begin
 -- if tab_in = '1'then
 -- if R_L_table ="01"

 188

 -- then temp_data_in1 <= data;
 -- elsif R_L_table ="10"
 -- then temp_data_in2 <= data;
 -- --end if;--else data <= (others=> 'Z');
 -- end if;
 -- elsif tab_out ='1' then data <= temp_data;
 -- else data <= (others=> 'Z');
 -- end if;
--end process;
data_load : process (clk,tab_out, tab_in, data, temp_data) --trnfr data to/from cntrlr
 begin
 if(clk'event and clk='0') then
 if tab_in = '1'then
 if R_L_table ="01" then
 temp_data_in1 <= data;
 elsif R_L_table ="10" then
 temp_data_in2 <= data;
 --end if;--else data <= (others=> 'Z');
 end if;
 elsif tab_out ='1' then
 data <= temp_data;
 else
 data <= (others=> 'Z');
 end if;
 end if;

end process;

load: process (rst, clk, Ld_Rd, R_L_table) --Initialize table entries
 variable val : integer;
 begin
 if rst = '1' then
 --for x in 0 to 9 loop
 for x in 0 to 22 loop
 L_table(x).H_fld <= '0';
 L_table(x).J_fld <= '0';
 L_table(x).PN <= "00000";
 L_table(x).Inst_addr <= (others=>'0');
 L_table(x).Nxt_PN0 <= "00000";
 L_table(x).Nxt_PN1 <= "00000";
 L_table(x).Exit_PN <= "0000";
 end loop;
 -- L_table.H_fld <= '0';
 -- L_table.J_fld <= '0';
 -- L_table.PN <= "00000";
 -- L_table.Inst_addr <= (others=>'0');
 -- L_table.Nxt_PN0 <= "00000";
 -- L_table.Nxt_PN1 <= "00000";
 -- L_table.Exit_PN <= "0000";
 elsif (clk'event and clk='1') then
 if Ld_Rd = '0' then
 case (addr) is
 when "00000" => val :=0;
 when "00001" => val :=1;
 when "00010" => val :=2;
 when "00011" => val :=3;

 189

 when "00100" => val :=4;
 when "00101" => val :=5;
 when "00110" => val :=6;
 when "00111" => val :=7;
 when "01000" => val :=8;
 when "01001" => val :=9;
 when "01010" => val := 10;
 when "01011" => val := 11;
 when "01100" => val := 12;
 when "01101" => val := 13;
 when "01110" => val := 14;
 when "01111" => val := 15;
 when "10000" => val := 16;
 when "10001" => val := 17;
 when "10010" => val := 18;
 when "10011" => val := 19;
 when "10100" => val := 20;
 when "10101" => val := 21;
 when "10110" => val := 22;
 when "10111" => val := 23;
 when "11000" => val := 24;
 when "11001" => val := 25;
 when "11010" => val := 26;
 when "11011" => val := 27;
 when "11100" => val := 28;
 when "11101" => val := 29;
 when "11110" => val := 30;
 when "11111" => val := 31;
 when others => val :=0;
 end case;
 case (R_L_table) is
 when "01" =>
 L_table(val).PN <= temp_data_in1(15 downto 11);
 L_table(val).Nxt_PN0 <= temp_data_in1(10 downto 6);
 L_table(val).Nxt_PN1 <= temp_data_in1(5 downto 1);
 L_table(val).H_fld <= temp_data_in1(0);
 when "10" =>
 L_table(val).Exit_PN <= temp_data_in2(12 downto 9);
 L_table(val).J_fld <= temp_data_in2(8);
 L_table(val).Inst_addr <= temp_data_in2(7 downto 0);
 when others => L_table(val).Nxt_PN1 <=L_table(val).Nxt_PN1;

 end case;
 end if;
 end if;
end process;

--control for tab_in tri-state
tab_in <= '1' when (Ld_Rd='0' and R_L_table /="00") else
 '0';
--control for wr_out tri-state
W_en <= '1' when (wr_out = "01" or wr_out = "10" or wr_out = "11") else
 '0';
tab_in_dbg <=tab_in;
send_instr: process (clk, wr_out,Snd_buf_Inst0,Snd_buf_Inst1,Snd_buf_Inst2) --send instr's to PE
 begin

 190

 case (wr_out) is
 when "01" =>
 Instr_out <= Snd_buf_Inst0; --send 1st instr
 --Instr_out <= "1001110000000100";
 when "10" =>
 Instr_out <= Snd_buf_Inst1; --send 2nd instr
 --Instr_out <= "0011000000000011";
 when "11" =>
 Instr_out <= Snd_buf_Inst2; --send other join data loc
 when others => Instr_out <= (others=>'0');
 end case;
end process;

end LUT_arch;

Module Name : Queue.vhd

-- QUEUE.vhd used in synthesis simulation.
-- Top level design for FIFO model

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity queue is -- total queue source code
 port (clk, enw, rst_f,rst_r,enr,s:in std_logic;
 time_s: in std_logic_vector(3 downto 0);
 din: in std_logic_vector(17 downto 0);
 ram_add: in std_logic_vector(5 downto 0);
 prog_flag: in std_logic_vector(5 downto 0);

 error: inout std_logic;

 sign: out std_logic;
 ITRC: out std_logic_vector(3 downto 0);
 th_flag: out std_logic;
 count_token:inout std_logic_vector(5 downto 0);
 dout: out std_logic_vector(17 downto 0));
end queue;

architecture queue_body of queue is

component rate
 port (Clk, Enw, Rst,
 error_full: in std_logic;
 time_s: in std_logic_vector(3 downto 0);
 sign: out std_logic;
 ITRC: out std_logic_vector(3 downto 0));

end component;

component FIFO_block_syn generic(N: integer := 18);
 port (

 191

 din: in std_logic_vector(N-1 downto 0);
 ENR: in std_logic;
 ENW: in std_logic;
 clk, Rst: in std_logic;
 ram_add: in std_logic_vector(5 downto 0);
 s:in std_logic;
 prog_flag: in std_logic_vector(5 downto 0);
 ENR_out: out std_logic;
 ENW_out: out std_logic;
 error: out std_logic;
 error_full: inout std_logic;
 th_flag: out std_logic;
 count_token: inout std_logic_vector(5 downto 0);
 wptr_out: out std_logic_vector (5 downto 0);
 rptr_out: out std_logic_vector (5 downto 0);
 dout: out std_logic_vector(N-1 downto 0));
end component;

component ram
 port (waddr: in std_logic_vector(5 downto 0);
 datain: in std_logic_vector(17 downto 0);
 clk: in std_logic;
 wren: in std_logic;
 rden: in std_logic;
 raddr: in std_logic_vector(5 downto 0);
 dataout: out std_logic_vector(17 downto 0));
end component;

signal error_full: std_logic;
signal dout_ram: std_logic_vector (17 downto 0);
signal dout_FIFO: std_logic_vector (17 downto 0);
signal din_ram: std_logic_vector (17 downto 0);
signal ENR_out, ENW_out: std_logic;
signal wptr_out, rptr_out: std_logic_vector(5 downto 0);

begin

rate1: rate port map (Clk,Enw,Rst_r,error_full,time_s,sign,ITRC);

FIFO_syn1: FIFO_block_syn port map(dout_ram,ENR,ENW,clk,Rst_f,ram_add,s,prog_flag,ENR_out,
 ENW_out,error,error_full,th_flag,count_token,wptr_out,rptr_out,
 dout_FIFO);

ram1 : ram port map(wptr_out,din_ram,clk,ENW_out,ENR_out,rptr_out,dout_ram);

 process(s,dout_FIFO,din,dout_ram)
 begin
 case s is
 when '1' => din_ram <= dout_FIFO; dout <= (others => '0');
 when others => din_ram <= din; dout <= dout_ram;
 end case;
 end process;

end queue_body;

Module Name: fifo.vhd

 192

-- FIFO_block.vhd used in synthesis simulation.
library ieee;
use ieee.std_logic_1164.all;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;

entity FIFO_block_syn is generic(N: integer := 18);
 port (
 din: in std_logic_vector(N-1 downto 0);
 ENR: in std_logic;
 ENW: in std_logic;
 clk, Rst: in std_logic;
 ram_add: in std_logic_vector(5 downto 0);
 s:in std_logic;
 prog_flag: in std_logic_vector(5 downto 0);
 ENR_out: out std_logic;
 ENW_out: out std_logic;
 error: out std_logic;
 error_full: inout std_logic;
 th_flag: out std_logic;
 count_token: inout std_logic_vector(5 downto 0);
 wptr_out: out std_logic_vector (5 downto 0);
 rptr_out: out std_logic_vector (5 downto 0);
 dout: out std_logic_vector(N-1 downto 0));
end FIFO_block_syn;

architecture FIFO_block_body of FIFO_block_syn is

--
-- Signals used in the Error detection unit block
--
signal error_empty: std_logic;

--
-- Signals used in the FCU block
--
signal flag_fcu1,flag_fcu2,flag_fcu3,flag_fcu4,
flag_fcu5: std_logic;

--
-- Signals used when the pseudo-RAM function is evoked
--
signal ASE1,ASE2: std_logic_vector(5 downto 0);
signal dout_ASE : std_logic_vector(5 downto 0);

signal RAM1,RAM2: std_logic_vector(17 downto 0);
signal dout_RAM1, dout_RAM2: std_logic_vector(17 downto 0);
signal din_RAM1, din_RAM2: std_logic_vector(17 downto 0);

signal rptr,wptr: std_logic_vector(5 downto 0);

begin

 process (wptr, rptr, s, ram_add, dout_ASE)
 begin

 193

 case s is
 when '1' => rptr_out <= ram_add; wptr_out <= dout_ASE;
 when others => rptr_out <= rptr; wptr_out <= wptr;
 end case;
 end process;

 process(rst,s,flag_fcu1,flag_fcu2,flag_fcu3, flag_fcu4,flag_fcu5,ENR,ENW,error_empty,error_full)
 begin
 if rst = '1' then
 ENW_out <= '0'; ENR_out <= '0';
 else
 if s = '1' then
 if flag_fcu1 = '0' and flag_fcu2 = '0' and
 flag_fcu3 = '0' and flag_fcu4 = '0' and flag_fcu5 = '0' then
 ENR_out <= '1'; ENW_out <='0';
 elsif flag_fcu1 = '1' and flag_fcu2 = '0' and
 flag_fcu3 = '0' and flag_fcu4 = '0' and flag_fcu5 = '0' then
 ENR_out <= '1'; ENW_out <= '0';
 elsif flag_fcu1 = '1' and flag_fcu2 = '1' and
 flag_fcu3 = '1' and flag_fcu4 = '0' and flag_fcu5 = '0' then
 ENR_out <= '0'; ENW_out <= '1';
 elsif flag_fcu1 = '1' and flag_fcu2 = '1' and
 flag_fcu3 = '1' and flag_fcu4 = '1' and flag_fcu5 = '0' then
 ENR_out <= '0'; ENW_out <= '1';
 else
 ENR_out <= '0'; ENW_out <= '0';
 end if;
 else
 ENR_out <= ENR and (not error_empty); ENW_out <= ENW and (not error_full);
 end if;
 end if;
 end process;

 ASE_block:process(rst,s,clk)
 begin
 if rst = '1' then
 ASE1 <= (others => '0'); ASE2 <= (others => '0');
 dout_ASE <= (others => '0');
 else
 if s = '1' then
 if clk'event and clk = '1' then
 if flag_fcu1 = '0' and flag_fcu2 = '0' and
 flag_fcu3 = '0' and flag_fcu4 = '0' then
 ASE1 <= ram_add;
 elsif flag_fcu1 = '1' and flag_fcu2 = '0' and
 flag_fcu3 = '0' and flag_fcu4 = '0' then
 ASE2 <= ram_add;
 elsif flag_fcu1 = '1' and flag_fcu2 = '1' and
 flag_fcu3 = '0' and flag_fcu4 = '0' then
 dout_ASE <= ASE2;
 elsif flag_fcu1 = '1' and flag_fcu2 = '1' and
 flag_fcu3 = '1' and flag_fcu4 = '0' then
 dout_ASE <= ASE1;
 end if;
 end if;
 end if;

 194

 end if;
 end process;

 RAM_block:process(rst,clk)
 begin
 if rst = '1' then
 RAM1 <= (others => '0'); RAM2 <= (others =>'0');
 dout<= (others => '0');
 else
 if clk'event and clk = '1' then
 if s = '1' then
 if flag_fcu1 = '0' and flag_fcu2 = '0' and
 flag_fcu3 = '0' and flag_fcu4 ='0' then
 RAM1 <= din;
 elsif flag_fcu1 = '1' and flag_fcu2 = '0' and
 flag_fcu3 = '0' and flag_fcu4 ='0' then
 ram2 <= din;
 elsif flag_fcu1 = '1' and flag_fcu2 = '1' and
 flag_fcu3 = '0' and flag_fcu4 ='0' then
 dout <= RAM1;
 elsif flag_fcu1 = '1' and flag_fcu2 = '1' and
 flag_fcu3 = '1' and flag_fcu4 ='0' then
 dout <= RAM2;
 else
 RAM2 <= (others => '0'); RAM1 <= (others => '0');
 end if;
 end if;
 end if;
 end if;
 end process;

 WAP_RAP: process (rst,clk)
 begin
 if rst = '1' then
 wptr <= (others => '0'); rptr <= (others => '0');
 else
 if clk'event and clk = '1' then
 if s= '0' then
 if enw = '1' and error_full = '0' then
 if wptr /= "111111" then
 wptr <= wptr + "000001";
 else
 wptr <= (others => '0');
 end if;
 end if;

 if enr = '1' and error_empty = '0' then
 if rptr /= "111111" then
 rptr <= rptr + "000001";
 else
 rptr <= (others => '0');
 end if;
 end if;
 end if;
 end if;
 end if;

 195

 end process;

 error <= error_full or error_empty;

 EDU: process(rst,wptr,rptr,enw,enr,s,count_token)
 begin
 if rst = '1' then
 error_full <= '0'; error_empty <= '0';
 else
 if s = '0' then
 if wptr = rptr and enw = '1' and enr = '0'
 and count_token /= "000000" then
 error_full <= '1'; error_empty <= '0';
 elsif rptr = wptr and count_token /= "100000"
 and enw = '0' and enr = '1' then
 error_full <= '0'; error_empty <= '1';
 else
 error_full <= '0'; error_empty <= '0';
 end if;
 end if;
 end if;
 end process;

 TCU: process(rst,clk)
 begin
 if rst = '1' then
 count_token <= (others => '0');
 else
 if clk'event and clk = '1' then
 if s = '0' then
 if enw = '1' and enr = '0' then
 if count_token /= "100000" and error_full /= '1' then
 count_token <= count_token + "000001";
 end if;
 elsif enw = '0' and enr = '1' then
 if count_token /= "000000" and error_empty /= '1' then
 count_token <= count_token - "000001";
 end if;
 end if;
 end if;
 end if;
 end if;
 end process;

 PTU: process(rst,s,prog_flag,count_token)
 begin
 if rst = '1' then
 th_flag <= '0';
 else
 if s = '0' then
 if count_token >= prog_flag then
 th_flag <= '1';
 else
 th_flag <= '0';
 end if;
 end if;

 196

 end if;
 end process;

 FCU: process(clk,rst)
 begin
 if rst = '1' then
 flag_fcu1 <= '0'; flag_fcu2 <= '0';
 flag_fcu3 <= '0'; flag_fcu4 <= '0';
 flag_fcu5 <= '0';
 else
 if clk'event and clk = '1' then
 if s = '1' then
 if flag_fcu1 = '0' and flag_fcu2 = '0' and
 flag_fcu3 = '0' and flag_fcu4 = '0' and flag_fcu5 = '0' then
 flag_fcu1 <= '1';
 elsif flag_fcu1 = '1' and flag_fcu2 = '0' and
 flag_fcu3 = '0' and flag_fcu4 = '0' and flag_fcu5 = '0' then
 flag_fcu2 <= '1';
 elsif flag_fcu1 = '1' and flag_fcu2 = '1' and
 flag_fcu3 = '0' and flag_fcu4 = '0' and flag_fcu5 = '0' then
 flag_fcu3 <= '1';
 elsif flag_fcu1 = '1' and flag_fcu2 = '1' and
 flag_fcu3 = '1' and flag_fcu4 = '0' and flag_fcu5 = '0' then
 flag_fcu4 <= '1';
 elsif flag_fcu1 = '1' and flag_fcu2 = '1' and
 flag_fcu3 = '1' and flag_fcu4 = '1' and flag_fcu5 = '0' then
 flag_fcu5 <= '1';
 end if;
 else
 flag_fcu1 <= '0'; flag_fcu2 <= '0';
 flag_fcu3 <= '0'; flag_fcu4 <= '0';
 flag_fcu5 <= '0';
 end if;
 end if;
 end if;
 end process;

end FIFO_block_body;

Module Name: ram.vhd

-- RAM.vhd
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;
USE STD.TEXTIO.ALL;

entity ram is
 port (waddr: in std_logic_vector(5 downto 0);
 datain: in std_logic_vector(17 downto 0);
 clk: in std_logic;
 wren: in std_logic;

 197

 rden: in std_logic;
 raddr: in std_logic_vector(5 downto 0);
 dataout: out std_logic_vector(17 downto 0));
end ram;

architecture ram_body of ram is

constant deep: integer := 63;
type fifo_array is array(deep downto 0) of std_logic_vector(17 downto 0);
signal mem: fifo_array;

signal waddr_int: integer range 0 to 63;
signal raddr_int: integer range 0 to 63;

begin
waddr_int <= conv_integer(waddr);
raddr_int <= conv_integer(raddr);

process (clk)
begin
 if clk'event and clk = '1' then
 if wren = '1' then
 mem(waddr_int) <= datain;
 end if;
 end if;
end process;
dataout <= mem(raddr_int);
end ram_body;

Module Name : rate.vhd

-- This is the vhdl description of the rate_block

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rate is
 port (Clk, Enw, Rst,
 error_full: in std_logic; -- active high reset(synchronous) and write enable
 time_s: in std_logic_vector(3 downto 0); -- This specify the time time period one wants to
 -- use for calculating the difference in rate for
 -- 2 time period.

 sign: out std_logic; -- If the sign is 0 it means rate decreases and if
 -- it is 1 than it means the rate has increased.

 ITRC: out std_logic_vector(3 downto 0)); -- ITRC gives us the rate comparison of 2 time.
slices

end rate;

architecture body_rate of rate is

 198

signal time_s_temp: std_logic_vector(3 downto 0);

signal count_clk : std_logic_vector(3 downto 0); -- Output from the clock counter block that tells how
 -- many clock cycle has passed.

signal write_storeRef : std_logic; -- Control signal that acts as the write enable signal for storeRef memory
 -- element.

signal count_t : std_logic_vector(3 downto 0); -- Output from the token_counter block that gives
-- information on how many control token is written into the
-- memory array within a time slice.

signal storeRef : std_logic_vector(3 downto 0); -- Output of the store_ref_rate block and is used as the
 -- reference to count the build up rate.

signal storeComp,fill_flag : std_logic_vector(3 downto 0); -- Output of the store_comp_rate block and is
-- used as the comparator value to count the
-- ITRC.

signal mem_stack: std_logic_vector(7 downto 0);
signal last : std_logic;
signal time_s_temp_lessOne : integer range 0 to 8;

begin

 CCU:process(clk,rst,time_s) -- This section describes the clock counter unit block
 begin
 if rst = '1' then
 time_s_temp <= time_s; -- store the desired time period
 count_clk <= (others => '0');
 write_storeRef <= '0';

 case time_s is
 when "0000" => time_s_temp_lessOne <= 0;
 when "0001" => time_s_temp_lessOne <= 0;
 when "0010" => time_s_temp_lessOne <= 0;
 when "0011" => time_s_temp_lessOne <= 1;
 when "0100" => time_s_temp_lessOne <= 2;
 when "0101" => time_s_temp_lessOne <= 3;
 when "0110" => time_s_temp_lessOne <= 4;
 when "0111" => time_s_temp_lessOne <= 5;
 when "1000" => time_s_temp_lessOne <= 6;
 when others => time_s_temp_lessOne <= 0;
 end case;

 elsif (Clk'event and Clk = '1') then
 if error_full = '0' then
 if (count_clk = time_s_temp) then
 count_clk <= "0001";
 else
 if count_clk /= "1000" then
 count_clk <= count_clk + "0001";
 end if;
 end if;

 199

 if (count_clk = (time_s_temp -"0001")) then
 write_storeRef <= '1';
 else
 write_storeRef <= '0';
 end if;
 end if;
 end if;
 end process;

 WTCU: process(clk,rst) -- This section describes the write token counter unit block
 begin
 if rst = '1' then
 count_t <= (others => '0');
 elsif clk'event and clk = '1' then
 if error_full = '0' then
 if count_clk = time_s_temp then
 if enw = '1' then
 count_t <= "0001";
 else
 count_t <= "0000";
 end if;
 else
 if enw = '1' then
 if count_t /= "1000" then
 count_t <= count_t + "0001";
 end if;
 end if;
 end if;
 end if;
 end if;
 end process;

 SE2:process(clk,rst) -- This section describes the SE1 block that is used to store the RITB.
 begin
 if rst = '1' then
 storeRef <= (others => '0');
 elsif clk'event and clk = '1' then
 if error_full = '0' then
 if write_storeRef = '1' then
 storeRef <= count_t;
 end if;
 end if;
 end if;
 end process;

 SE3: process(clk,rst) -- This section describes the SE3 block that is used to
 -- store and determine the NITB.
 begin
 if rst = '1' then
 storeComp <= (others => '0');
 fill_flag <= (others => '0');
 elsif clk'event and clk = '1' then
 if error_full = '0' then
 if fill_flag /= time_s_temp then
 fill_flag <= fill_flag + "0001";

 200

 if enw = '1' and last = '0' then
 storeComp <= storeComp + "0001";
 end if;
 else
 if enw = '1' and storeComp /= time_s_temp and last = '0' then
 storeComp <= storeComp + "0001";
 elsif enw = '0' and storeComp /= "0000" and last = '1' then
 storeComp <= storeComp - "0001";
 end if;
 end if;
 end if;
 end if;
 end process;

 AU: process (storeComp, storeRef, Rst, error_full) -- This section describes the arithetic unit block that
 -- is used to count the input token buildup
 begin
 if Rst = '1' then
 sign <= '0'; ITRC <= (others => '0');
 else
 if error_full = '0' then
 if storeRef > storeComp then
 ITRC <= storeRef - storeComp;
 sign <= '0';
 elsif storeRef = storeComp then
 ITRC <= (others => '0');
 sign <= '0';
 else
 ITRC <= storeComp - storeRef;
 sign <= '1';
 end if;
 end if;
 end if;
 end process;

 process(clk,rst)
 begin
 if rst = '1' then
 last <= '0'; mem_stack <= (others => '0');
 elsif clk'event and clk = '1' then
 if error_full = '0' then
 last <= mem_stack(time_s_temp_lessOne);
 if enw = '1' then
 mem_stack <= mem_stack(6 downto 0) & '1';
 else
 mem_stack <= mem_stack(6 downto 0) & '0';
 end if;
 end if;
 end if;
 end process;

end body_rate;

Module Name: divpe.vhd
-- Code for Divider Processor for HDFCA project
-- File: divpe.vhd

 201

-- synopsys translate_off

Library XilinxCoreLib;

-- synopsys translate_on

--The IEEE standard 1164 package, declares std_logic, rising_edge(), etc.
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity Divpe is
 port (Cntrlr_bus : in std_logic_vector(15 downto 0);
 Snd_I : out std_logic;
 clk : in std_logic;
 rst : in std_logic;
 Instr_rdy : in std_logic;
 Fin : out std_logic;
 Data_bus : inout std_logic_vector(15 downto 0);
 Bus_req : out std_logic;
 Bus_gnt : in std_logic;
 Addr : out std_logic_vector(6 downto 0);
 R_W : buffer std_logic;
 --R_W : inout std_logic;
 loc_bus_dbug : out std_logic_vector(7 downto 0);
 Iaddr_bus_dbug : out std_logic_vector(7 downto 0);
 Iaddr_dbug : out std_logic_vector(7 downto 0);
 R2_out_dbug : out std_logic_vector(7 downto 0);
 Imem_bus_dbug : out std_logic_vector(15 downto 0)
 --LR2_dbug : out std_logic
);
end Divpe;

architecture dpe of Divpe is

--
-- This file was created by the Xilinx CORE Generator tool, and --
-- is (c) Xilinx, Inc. 1998, 1999. No part of this file may be --
-- transmitted to any third party (other than intended by Xilinx) --
-- or used without a Xilinx programmable or hardwire device without --
-- Xilinx's prior written permission. --
--

component div1
 port (
 dividend: IN std_logic_VECTOR(15 downto 0);
 divisor: IN std_logic_VECTOR(15 downto 0);
 quot: OUT std_logic_VECTOR(15 downto 0);
 remd: OUT std_logic_VECTOR(15 downto 0);
 c: IN std_logic);
end component;

--

 202

-- This file was created by the Xilinx CORE Generator tool, and --
-- is (c) Xilinx, Inc. 1998, 1999. No part of this file may be --
-- transmitted to any third party (other than intended by Xilinx) --
-- or used without a Xilinx programmable or hardwire device without --
-- Xilinx's prior written permission. --
--

component div_imem
 port (
 addr: IN std_logic_VECTOR(3 downto 0);
 clk: IN std_logic;
 din: IN std_logic_VECTOR(15 downto 0);
 dout: OUT std_logic_VECTOR(15 downto 0);
 we: IN std_logic);
end component;

component add_subber8
 port (
 A: IN std_logic_VECTOR(7 downto 0);
 B: IN std_logic_VECTOR(7 downto 0);
 C_IN: IN std_logic;
 C_OUT: OUT std_logic;
 ADD_SUB: IN std_logic;
 Q_OUT: OUT std_logic_VECTOR(7 downto 0));
end component;

signal Imem_bus, R0_out, R1_out, Inst_in, Inst_out : std_logic_vector(15 downto 0);
signal R2_out, Data_loc1, Data_loc2 : std_logic_vector(7 downto 0);
signal s2, s1, s0, s3 ,s4, s5, s6, s7 : std_logic;
signal Div_out, mux2_out, adder_out : std_logic_vector(7 downto 0);
signal mux1_out, result : std_logic_vector(15 downto 0);
signal div_en, ld_d1, ld_d2, ld_iaddr : std_logic;
signal loc_bus, Iaddr, Iaddr_bus : std_logic_vector(7 downto 0);
constant GoDiv : std_logic_vector(7 downto 0) := "11111111";
constant StoreDL : std_logic_vector(7 downto 0) := "10001000";
type OP_state is (reset,Getop,O1,O2,O3,O4,O5,O5A,O5B,O5C,O6,O7,O8,O9,O10);
signal OP : OP_state;
signal LR2, LR1, Ci, LR0, R2_rst, ld_rslt, I_R_W : std_logic;
signal qout_out, remd_out, rem_rslt : std_logic_vector(15 downto 0);
signal mux5_out, mux6_out, MUX4_OUT : std_logic_vector(7 downto 0);
signal delay : std_logic_vector(19 downto 0);
signal one, zero : std_logic;
signal test :string (1 to 10);

begin
one <= '1';
zero <= '0';

-- added for dbugging
loc_bus_dbug <= loc_bus;
Iaddr_bus_dbug <= Iaddr_bus;
Iaddr_dbug <= Iaddr;
R2_out_dbug <= R2_out;
Imem_bus_dbug <= Imem_bus;
--LR2_dbug <=LR2;

 203

ADD5 : add_subber8
 port map (A =>R2_out, B =>mux2_out, C_IN => Ci, C_OUT => open,
 ADD_SUB =>one, Q_OUT =>adder_out);

D2 : div1 port map (dividend => R0_out, divisor => R1_out, quot => qout_out,
 remd => remd_out, c => clk);

mux2_out <= data_loc2 when (s3='0' and s2='0') else
 data_loc1 when (s3='0' and s2='1') else
 Iaddr when (s3='1' and s2='0') else
 (others=> '0');

mux1_out <= Data_bus when s1='0' else
 Imem_bus;

Addr <= Data_loc2(6 downto 0) when s0='0' else
 data_loc1(6 downto 0);

mux4_out <= Iaddr_bus when s4='0' else
 adder_out;

mux5_out <= loc_bus when s5 = '0' else
 adder_out;

mux6_out <= loc_bus when s6 = '0' else
 adder_out;

DIM1 : div_imem port map (addr => Iaddr(3 downto 0), clk => clk, din => Inst_in,
 dout => Inst_out, we => I_R_W);

Imem_bus <= Inst_out when I_R_W = '0' else
 (others=>'Z');

Inst_in <= Imem_bus when I_R_W = '1' else
 (others=>'0');

Data_bus <= result when (R_W = '1' and S7 = '0') else
 rem_rslt when (R_W = '1' and S7 = '1') else
 (others=>'Z');

control: process(clk, instr_rdy, bus_gnt, cntrlr_bus, rst, delay, data_loc2,Op)

 variable load_delay, ld_del2, del : boolean;

 begin
 if rst = '1' then
 OP <= reset;
 elsif (clk'event and clk = '1') then
 if Op = reset then
 test <= "StateReset";
 snd_i <= '1'; del := false;
 fin <= '1'; ld_del2 := false;
 bus_req <= '0'; I_R_W <= '0';
 r_w <= '0'; LR0 <= '0';

 204

 s4 <= '0'; s1 <= '0';
 s2 <= '0'; s3 <= '0'; s0 <= '1';
 s5 <= '0'; s6 <= '0'; s7 <= '0';
 Ci <= '0'; LR2 <= '0'; LR1 <= '0';
 LD_D1 <= '0'; LD_D2 <= '0';
 r2_rst <= '1'; load_delay := false;
 ld_rslt <= '0'; ld_Iaddr<= '0';
 delay <= "00000000000000000001";
 Op <= GetOp;
 elsif Op = GetOp then --ld data loc 1
 r2_rst <= '0'; LD_D2 <= '0';
 LR2 <= '0'; LR1 <= '0';
 bus_req <= '0';
 ld_rslt <= '0'; ld_Iaddr<= '0';
 if instr_rdy = '1' then
 loc_bus <= Cntrlr_bus(7 downto 0);
 LD_D1 <= '1';
 fin <= '0'; s5 <= '0';
 Snd_i <= '1';
 Op <= O1;
 else
 OP <= GetOp;
 end if;
 elsif Op = O1 then
 LD_D1 <= '0';
 r2_rst <= '0';
 LR2 <= '0'; LR1 <= '0';
 bus_req <= '0';
 ld_rslt <= '0';
 if (instr_rdy = '1' or load_delay = true) then
 if cntrlr_bus(15 downto 8) = StoreDL then --ld dl2
 loc_bus <= cntrlr_bus(7 downto 0);
 LD_D2 <= '1'; ld_Iaddr<= '0';
 fin <= '0'; s6 <= '0';
 snd_i <='1';
 Op <= O1;
 elsif cntrlr_bus(15 downto 8) = GoDiv then --start div ops
 if (load_delay = false) then
 Iaddr_bus <= cntrlr_bus(7 downto 0); --ld instr loc
 LD_D2 <= '0'; s4 <= '0';
 Ld_Iaddr <= '1';
 Snd_I <= '0';
 load_delay := true;
 Op <= O1;
 elsif (load_delay = true) then
 Ld_Iaddr <= '0';
 Op <= O2; load_delay := false;
 end if;
 end if;
 else
 Op <= O1;
 end if;
 elsif Op = O2 then --ld R2 with dl1 offset
 r2_rst <= '0'; LD_D2 <= '0'; --from Imem
 LR1 <= '0'; ld_d1 <= '0';
 bus_req <= '0';

 205

 ld_rslt <= '0';
 ld_Iaddr <= '0';
 I_R_W <= '0'; LR2 <= '1';
 Op <= O3;
 elsif Op = O3 then --add offset to dl1 str in dl1
 LD_D2 <= '0';
 -- changes for dbugging
 --LR2 <= '1';
 LR2 <= '0';
 LR1 <= '0';
 bus_req <= '0';
 ld_rslt <= '0'; ld_Iaddr<= '0';
 Ci <= '0'; LR2 <= '0';
 LD_D1 <= '1'; S5 <= '1';
 s2 <= '1'; s3 <= '0';
 Op <= O4; r2_rst <= '1';
 elsif Op = O4 then --Inc Iaddr
 if (ld_del2 = false) then
 LD_D2 <= '0';
 LR2 <= '0'; LR1 <= '0';
 bus_req <= '0';
 ld_rslt <= '0';
 LD_D1 <= '0'; r2_rst <= '0';
 s2 <= '0'; s3 <= '1'; S4<='1';
 ci <= '1'; ld_Iaddr <= '1';
 Op <= O4; ld_del2 := true;
 elsif (ld_del2 = true) then
 ld_Iaddr <= '0';
 Op <= O5;
 ld_del2 := false;
 end if;
 elsif Op = O5 then --Check for 2nd dl
 r2_rst <= '0'; LD_D2 <= '0';
 bus_req <= '0'; ld_d1 <= '0';
 ld_rslt <= '0';
 ld_Iaddr <= '0';
 if data_loc2 = "00000000" then --get divisor from IMEM
 I_R_W <= '0'; lr0 <= '0'; --put in R1
 S1 <= '1'; lr1 <= '1';
 Op <= O6;
 else --get data from DMEM
 I_R_W <= '0'; lr0 <= '0'; --get offset to Dl2
 lr2 <='1';
 Op <= O5a; lr1<='0';
 end if;
 elsif Op = O5a then --add offset to Dl2
 r2_rst <= '0';
 LR1 <= '0';
 bus_req <= '0'; ld_d1 <= '0';
 ld_rslt <= '0'; ld_Iaddr<= '0';
 lr2 <= '0'; s2 <= '0'; s3 <= '0';
 ci <= '0'; s6 <= '1';
 LD_D2 <= '1';
 Op <= O5b;
 elsif Op = O5b then
 test <= "State O5b ";

 206

 r2_rst <= '0';
 LR2 <= '0'; LR1 <= '0';
 ld_d1 <= '0';
 ld_rslt <= '0'; ld_Iaddr<= '0';
 LD_D2 <= '0'; s0 <= '0';
 bus_req <= '1'; R_w <= '0';
 Op <= O5c; s1 <= '0';
 elsif Op = O5c then --ld R1 with divisor
 test <= "State O5c ";

 r2_rst <= '0'; LD_D2 <= '0'; --from DMEM
 LR2 <= '0'; s1 <= '0';
 ld_d1 <= '0';
 ld_rslt <= '0'; ld_Iaddr<= '0';
 if bus_gnt = '1' then
 lr1 <= '1';
 Op <= O6;
 else
 LR1 <= '0';
 Op <= O5c;
 end if;
 elsif Op = O6 then --ld R0 with dividend
 test <= "State O6 ";

 r2_rst <= '0'; LD_D2 <= '0';
 LR2 <= '0'; LR1 <= '0';
 ld_d1 <= '0';
 ld_rslt <= '0'; ld_Iaddr<= '0';
 s0<= '1'; R_w <= '0';
 bus_req <= '1';
 Op <= O7;
 elsif Op = O7 then
 r2_rst <= '0'; LD_D2 <= '0';
 LR2 <= '0'; LR1 <= '0';
 ld_d1 <= '0';
 ld_rslt <= '0'; ld_Iaddr<= '0';
 if bus_gnt = '1' then
 lr0 <= '1';
 Op <= O8;
 else
 lr0 <= '0';
 OP <= O7;
 end if;
 elsif Op = O8 then --wait for result 20 CC's
 LD_D2 <= '0';
 LR2 <= '0'; LR1 <= '0';
 bus_req <= '0'; ld_d1 <= '0';
 ld_Iaddr<= '0';lr0 <= '0';
 bus_req <= '0';
 r2_Rst <= '1';
 if delay = "10000000000000000000" then
 Ld_rslt <= '1';
 Op <= O9;
 else
 delay <= delay(18 downto 0)&'0';

 207

 ld_rslt <= '0';
 Op <= O8;
 end if;
 elsif Op = O9 then
 test <= "State O9 ";
 r2_rst <= '0';
 LR2 <= '0'; LR1 <= '0';
 ld_rslt <= '0'; ld_Iaddr<= '0';
 r2_Rst <= '0'; R_W <= '1';
 if data_loc2 = "00000000" then --use DL1 for store
 S0<='1';
 ld_d2 <= '0';
 else --use DL2 for store
 S0 <= '0';
 ld_d1 <= '0';
 end if;
 Bus_req <= '1';
 Op <= O10;
 elsif Op = O10 then
 test <= "State O10 ";
 r2_rst <= '0'; LD_D2 <= '0';
 LR2 <= '0'; LR1 <= '0';
 ld_d1 <= '0'; S7 <= '0';
 ld_rslt <= '0'; ld_Iaddr<= '0';
 if bus_gnt = '1' then --Store Quotient in mem
 fin <= '1';

 bus_req <= '0';
 Op <= reset;
 else
 Op <= O10;
 end if;
 end if;
 end if;

end process;

reg2 : process (clk, Imem_bus, R2_rst, Lr2)
 begin
 if clk'event and clk='1' then
 if R2_rst = '1' then
 R2_out <= (others=>'0');
 elsif lr2 = '1' then
 R2_out <= Imem_bus(7 downto 0);
 else
 R2_out <= R2_out;
 end if;
 end if;
end process;

reg_dl1: process (clk, mux5_out, rst, LD_D1)
 begin
 if rst ='1' then
 data_loc1 <= (others=>'0');
 elsif clk'event and clk='1' then
 if LD_D1 = '1' then

 208

 data_loc1 <= mux5_out;
 else
 data_loc1 <= data_loc1;
 end if;
 end if;
end process;

reg_dl2: process (clk, mux6_out, rst, LD_D2)
 begin
 if rst ='1' then
 data_loc2 <= (others=>'0');
 elsif clk'event and clk='1' then
 if LD_D2 = '1' then
 data_loc2 <= mux6_out;
 else
 data_loc2 <= data_loc2;
 end if;
 end if;
end process;

reg_R0: process (clk, data_bus, rst, lR0)
 begin
 if rst ='1' then
 R0_out <= (others=>'0');
 elsif clk'event and clk='1' then
 if lR0 = '1' then
 R0_out <= data_bus;
 else
 R0_out <= R0_out;
 end if;
 end if;
end process;

reg_R1: process (clk, mux1_out, rst, lR1)
 begin
 if rst ='1' then
 R1_out <= (others=>'0');
 elsif clk'event and clk='1' then
 if lR1 = '1' then
 R1_out <= mux1_out;
 else
 R1_out <= R1_out;
 end if;
 end if;
end process;

reg_Iaddr: process (clk, mux4_out, rst, ld_Iaddr)
 begin
 if rst ='1' then
 Iaddr <= (others=>'0');
 elsif clk'event and clk='1' then
 if ld_Iaddr = '1' then
 Iaddr <= mux4_out;
 else
 Iaddr <= Iaddr;
 end if;

 209

 end if;
end process;

reg_Rslt: process (clk, qout_out, remd_out, rst, ld_Rslt)
 begin
 if rst ='1' then
 result <= (others=>'0');
 rem_rslt <= (others=>'0');
 elsif clk'event and clk='1' then
 if ld_Rslt = '1' then
 result <= qout_out;
 rem_rslt <= remd_out;
 else
 result <= result;
 rem_rslt <= rem_rslt;
 end if;
 end if;

end process;

end architecture;

Module Name : addsub8_synthable.vhd

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.std_logic_unsigned.ALL;
--use ieee.std_logic_arith.all;

ENTITY add_subber8 IS

 PORT(
 A: IN std_logic_vector(7 DOWNTO 0);
 B: IN std_logic_vector(7 DOWNTO 0);
 C_IN: IN std_logic;
 C_OUT: OUT std_logic;
 ADD_SUB: IN std_logic;
 Q_OUT: OUT std_logic_vector(7 DOWNTO 0));
END add_subber8;

ARCHITECTURE sim OF add_subber8 IS
 SIGNAL S: std_logic_vector(7 DOWNTO 0);
 SIGNAL S1: std_logic_vector(7 DOWNTO 0);
 SIGNAL AA: std_logic_vector(7 DOWNTO 0);
 SIGNAL C: std_logic_vector(8 DOWNTO 0);
 SIGNAL T: std_logic_vector(7 DOWNTO 0);

BEGIN
Q_OUT<=S;
PROCESS(A,B,C_IN,ADD_SUB,C,T,AA,S1,S)
begin
if ADD_SUB='1' THEN
 C(0)<= C_IN;
 for i in 0 to 7 loop
 S(i) <= A(i) xor B(i) xor C(i);

 210

 C(i+1)<= (A(i) and B(i)) or (A(i) and C(i)) or (B(i) and C(i));
 end loop;
 C_OUT <= C(8);
else
 T<=NOT (B+C_IN);
 AA<=A+1;

 C(0) <= C_in;
 for i in 0 to 7 loop
 S1(i) <= AA(i) xor T(i) xor C(i);
 C(i+1)<= (AA(i) and T(i)) or (AA(i) and C(i)) or (T(i) and C(i));
 end loop;
 --C_OUT <= NOT C(8);
 C_OUT <= C(8);
 if C(8) = '0'
 then
 --if s1(7) = '1' and A(7) = '0' then
 s <= (not s1) +1;
 else s <= s1;
 end if;
end if;
end process;
END sim;

Module Name: div1.xco (Xilinx IP Core)

--
-- This file is owned and controlled by Xilinx and must be used --
-- solely for design, simulation, implementation and creation of --
-- design files limited to Xilinx devices or technologies. Use --
-- with non-Xilinx devices or technologies is expressly prohibited --
-- and immediately terminates your license. --
-- --
-- XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS" --
-- SOLELY FOR USE IN DEVELOPING PROGRAMS AND SOLUTIONS FOR --
-- XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE, OR INFORMATION --
-- AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, APPLICATION --
-- OR STANDARD, XILINX IS MAKING NO REPRESENTATION THAT THIS --
-- IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT, --
-- AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE --
-- FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY --
-- WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE --
-- IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR --
-- REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF --
-- INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS --
-- FOR A PARTICULAR PURPOSE. --
-- --
-- Xilinx products are not intended for use in life support --
-- appliances, devices, or systems. Use in such applications are --
-- expressly prohibited. --
-- --
-- (c) Copyright 1995-2003 Xilinx, Inc. --
-- All rights reserved. --
--
-- You must compile the wrapper file div1.vhd when simulating
-- the core, div1. When compiling the wrapper file, be sure to

 211

-- reference the XilinxCoreLib VHDL simulation library. For detailed
-- instructions, please refer to the "CORE Generator Guide".

-- The synopsys directives "translate_off/translate_on" specified
-- below are supported by XST, FPGA Compiler II, Mentor Graphics and Synplicity
-- synthesis tools. Ensure they are correct for your synthesis tool(s).

-- synopsys translate_off
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

Library XilinxCoreLib;
ENTITY div1 IS
 port (
 dividend: IN std_logic_VECTOR(15 downto 0);
 divisor: IN std_logic_VECTOR(15 downto 0);
 quot: OUT std_logic_VECTOR(15 downto 0);
 remd: OUT std_logic_VECTOR(15 downto 0);
 c: IN std_logic);
END div1;

ARCHITECTURE div1_a OF div1 IS

component wrapped_div1
 port (
 dividend: IN std_logic_VECTOR(15 downto 0);
 divisor: IN std_logic_VECTOR(15 downto 0);
 quot: OUT std_logic_VECTOR(15 downto 0);
 remd: OUT std_logic_VECTOR(15 downto 0);
 c: IN std_logic);
end component;

-- Configuration specification
 for all : wrapped_div1 use entity XilinxCoreLib.dividervht(behavioral)
 generic map(
 dividend_width => 16,
 signed_b => 0,
 fractional_b => 0,
 divisor_width => 16,
 fractional_width => 16,
 divclk_sel => 1);
BEGIN

U0 : wrapped_div1
 port map (
 dividend => dividend,
 divisor => divisor,
 quot => quot,
 remd => remd,
 c => c);
END div1_a;

-- synopsys translate_on

Module Name : div_imem.xco (Xilinx IP Core)

 212

--
-- This file is owned and controlled by Xilinx and must be used --
-- solely for design, simulation, implementation and creation of --
-- design files limited to Xilinx devices or technologies. Use --
-- with non-Xilinx devices or technologies is expressly prohibited --
-- and immediately terminates your license. --
-- --
-- XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS" --
-- SOLELY FOR USE IN DEVELOPING PROGRAMS AND SOLUTIONS FOR --
-- XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE, OR INFORMATION --
-- AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, APPLICATION --
-- OR STANDARD, XILINX IS MAKING NO REPRESENTATION THAT THIS --
-- IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT, --
-- AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE --
-- FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY --
-- WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE --
-- IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR --
-- REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF --
-- INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS --
-- FOR A PARTICULAR PURPOSE. --
-- --
-- Xilinx products are not intended for use in life support --
-- appliances, devices, or systems. Use in such applications are --
-- expressly prohibited. --
-- --
-- (c) Copyright 1995-2002 Xilinx, Inc. --
-- All rights reserved. --
--
-- You must compile the wrapper file div_imem.vhd when simulating
-- the core, div_imem. When compiling the wrapper file, be sure to
-- reference the XilinxCoreLib VHDL simulation library. For detailed
-- instructions, please refer to the "Coregen Users Guide".

-- The synopsys directives "translate_off/translate_on" specified
-- below are supported by XST, FPGA Express, Exemplar and Synplicity
-- synthesis tools. Ensure they are correct for your synthesis tool(s).

-- synopsys translate_off
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

Library XilinxCoreLib;
ENTITY div_imem IS
 port (
 addr: IN std_logic_VECTOR(3 downto 0);
 clk: IN std_logic;
 din: IN std_logic_VECTOR(15 downto 0);
 dout: OUT std_logic_VECTOR(15 downto 0);
 we: IN std_logic);
END div_imem;

ARCHITECTURE div_imem_a OF div_imem IS

component wrapped_div_imem
 port (
 addr: IN std_logic_VECTOR(3 downto 0);

 213

 clk: IN std_logic;
 din: IN std_logic_VECTOR(15 downto 0);
 dout: OUT std_logic_VECTOR(15 downto 0);
 we: IN std_logic);
end component;

-- Configuration specification
 for all : wrapped_div_imem use entity XilinxCoreLib.blkmemsp_v5_0(behavioral)
 generic map(
 c_sinit_value => "0",
 c_reg_inputs => 0,
 c_yclk_is_rising => 1,
 c_has_en => 0,
 c_ysinit_is_high => 1,
 c_ywe_is_high => 1,
 c_ytop_addr => "1024",
 c_yprimitive_type => "4kx1",
 c_yhierarchy => "hierarchy1",
 c_has_rdy => 0,
 c_has_limit_data_pitch => 0,
 c_write_mode => 0,
 c_width => 16,
 c_yuse_single_primitive => 0,
 c_has_nd => 0,
 c_enable_rlocs => 0,
 c_has_we => 1,
 c_has_rfd => 0,
 c_has_din => 1,
 c_ybottom_addr => "0",
 c_pipe_stages => 0,
 c_yen_is_high => 1,
 c_depth => 16,
 c_has_default_data => 0,
 c_limit_data_pitch => 8,
 c_has_sinit => 0,
 c_mem_init_file => "div_imem.mif",
 c_default_data => "0",
 c_ymake_bmm => 0,
 c_addr_width => 4);
BEGIN

U0 : wrapped_div_imem
 port map (
 addr => addr,
 clk => clk,
 din => din,
 dout => dout,
 we => we);
END div_imem_a;

-- synopsys translate_on

Module Name : ic_hdca_gate.vhd

library IEEE;

 214

use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Uncomment the following lines to use the declarations that are
-- provided for instantiating Xilinx primitive components.
--library UNISIM;
--use UNISIM.VComponents.all;

entity gate_ic_a is
 Port (clk: in std_logic ;
 rst: in std_logic ;
 ctrl: in std_logic_vector(3 downto 0) ;
 qdep: in std_logic_vector(19 downto 0) ;
 addr_bus: in std_logic_vector(27 downto 0) ;
 data_in0,data_in1,data_in2,data_in3 : in std_logic_vector(15 downto 0) ;
 rw: in std_logic_vector(3 downto 0) ;
 flag: out std_logic_vector(3 downto 0) ;
 data_out0,data_out1,data_out2,data_out3: out std_logic_vector(15 downto 0)
 -- f_s_out0,f_s_out1,f_s_out2,f_s_out3 : out std_logic_vector(3 downto 0);
 -- dco_out0,dco_out1,dco_out2,dco_out3 : out std_logic_vector(3 downto 0)
);
end gate_ic_a;

architecture gate_level of gate_ic_a is

-- component listing

component Dec_ic_a is
 port(dec_out : out std_logic_vector(3 downto 0);
 ctrl_dec : in std_logic;
 addr_blk : in std_logic_vector(1 downto 0)
);
end component;

component prl_behav is
 Port (clk,rst : in std_logic;
 d0,d1,d2,d3 : in std_logic;
 q0,q1,q2,q3 : in std_logic_vector(4 downto 0);
 sub_flg : out std_logic_vector (3 downto 0)
);
end component;

-- memory array ----
type mem_array is array (127 downto 0) of std_logic_vector(15 downto 0);

--signal list
signal d_sig0,d_sig1,d_sig2,d_sig3 : std_logic_vector(3 downto 0);
signal flg_sig0,flg_sig1,flg_sig2,flg_sig3: std_logic_vector(3 downto 0);
signal memory : mem_array;
signal flag_decide0,flag_decide1,flag_decide2,flag_decide3: std_logic_vector(3 downto 0);
signal flag_wire: std_logic_vector(3 downto 0);
-- make qdep as signal
--signal qd00,qd01,qd02,qd03 : std_logic_vector(3 downto 0);

 215

-- signal list end here

begin

-- signals to ports if any

--f_s_out0 <= flg_sig0;
--f_s_out1 <= flg_sig1;
--f_s_out2 <= flg_sig2;
--f_s_out3 <= flg_sig3;

--dco_out0 <= d_sig0;
--dco_out1 <= d_sig1;
--dco_out2 <= d_sig2;
--dco_out3 <= d_sig3;
flag <= flag_wire;

flag_decide0<= flg_sig0(0)&flg_sig1(0)&flg_sig2(0)&flg_sig3(0);
flag_decide1<= flg_sig0(1)&flg_sig1(1)&flg_sig2(1)&flg_sig3(1);
flag_decide2<= flg_sig0(2)&flg_sig1(2)&flg_sig2(2)&flg_sig3(2);
flag_decide3<= flg_sig0(3)&flg_sig1(3)&flg_sig2(3)&flg_sig3(3);

-- port mapping
-- decoder instantiated 4 times

DEC0 : Dec_ic_a port map(dec_out => d_sig0,
 ctrl_dec => ctrl(0),
 addr_blk => addr_bus(6 downto 5)
);

DEC1 : Dec_ic_a port map(dec_out => d_sig1,
 ctrl_dec => ctrl(1),
 addr_blk => addr_bus(13 downto 12)
);

DEC2 : Dec_ic_a port map(dec_out => d_sig2,
 ctrl_dec => ctrl(2),
 addr_blk => addr_bus(20 downto 19)
);

DEC3 : Dec_ic_a port map(dec_out => d_sig3,
 ctrl_dec => ctrl(3),
 addr_blk => addr_bus(27 downto 26)
);
-- decoder instantiation ends ----

-- pr logic instantiation 4 times ----

PRL_LOGIC0 : prl_behav port map(clk => clk,
 rst => rst,

 216

 d0 => d_sig0(0),
 d1 => d_sig1(0),
 d2 => d_sig2(0),
 d3 => d_sig3(0),
 q0 => qdep(4 downto 0),
 q1 => qdep(9 downto 5),
 q2 => qdep(14 downto 10),
 q3 => qdep(19 downto 15),
 sub_flg => flg_sig0
);

PRL_LOGIC1 : prl_behav port map(clk => clk,
 rst => rst,
 d0 => d_sig0(1),
 d1 => d_sig1(1),
 d2 => d_sig2(1),
 d3 => d_sig3(1),
 q0 => qdep(4 downto 0),
 q1 => qdep(9 downto 5),
 q2 => qdep(14 downto 10),
 q3 => qdep(19 downto 15),
 sub_flg => flg_sig1

);

PRL_LOGIC2 : prl_behav port map(clk => clk,
 rst => rst,
 d0 => d_sig0(2),
 d1 => d_sig1(2),
 d2 => d_sig2(2),
 d3 => d_sig3(2),
 q0 => qdep(4 downto 0),
 q1 => qdep(9 downto 5),
 q2 => qdep(14 downto 10),
 q3 => qdep(19 downto 15),
 sub_flg => flg_sig2

);

PRL_LOGIC3 : prl_behav port map(clk => clk,
 rst => rst,
 d0 => d_sig0(3),
 d1 => d_sig1(3),
 d2 => d_sig2(3),
 d3 => d_sig3(3),
 q0 => qdep(4 downto 0),
 q1 => qdep(9 downto 5),
 q2 => qdep(14 downto 10),
 q3 => qdep(19 downto 15),
 sub_flg => flg_sig3

);

-- extra logic to be added since all the prl_blks give output flag value ...

 217

-- there would be conflict as to what the final value is
-- try and include it in a process ... so that flag value changes in accordance with the
-- clk ..
flag_assign : process (clk,rst,flag_decide0,flag_decide1,flag_decide2,flag_decide3)

begin

if(rst ='1') then
flag_wire <= "0000";

elsif (clk'event and clk ='0') then
 case flag_decide0 is
 when "0000" => flag_wire(0) <= '0';
 when others => flag_wire(0) <= '1';
 end case;

case flag_decide1 is
 when "0000" => flag_wire(1) <= '0';
 when others => flag_wire(1) <= '1';
 end case;

 case flag_decide2 is
 when "0000" => flag_wire(2) <= '0';
 when others => flag_wire(2) <= '1';
 end case;

 case flag_decide3 is
 when "0000" => flag_wire(3) <= '0';
 when others => flag_wire(3) <= '1';
 end case;

end if;

end process flag_assign;

-- end of extra logic added ----------

-- write about r_w logic,shall come along with flag thing ----

data_transfer : process(rst,data_in0,data_in1,data_in2,data_in3,flag_wire,rw,clk)

begin

if (rst ='1') then
--flag <= "0000";
data_out0 <=x"0000";
data_out1 <=x"0000";
data_out2 <=x"0000";
data_out3 <=x"0000";
-- making the memory array all zeroes
MEM : for i in 0 to 127 loop
memory(i)<=x"0000";

 218

end loop MEM;
else

if (clk'event and clk ='1') then

if (flag_wire(0) ='1')then
if (rw(0) ='1') then
 memory(conv_integer(addr_bus(6 downto 0))) <= data_in0;
elsif (rw(0)='0')then
 data_out0 <= memory(conv_integer(addr_bus(6 downto 0)));
end if;
end if;

if (flag_wire(1) ='1') then
if (rw(1) ='1') then
memory(conv_integer(addr_bus(13 downto 7))) <= data_in1;
--data_out1 <=(others =>'Z'); --commented later
else
data_out1 <= memory(conv_integer(addr_bus(13 downto 7)));
end if;
end if;

if (flag_wire(2) ='1') then
if (rw(2) ='1') then
memory(conv_integer(addr_bus(20 downto 14))) <= data_in2;
--data_out2 <=(others =>'Z');
else
data_out2 <= memory(conv_integer(addr_bus(20 downto 14)));
end if;
end if;

if (flag_wire(3) ='1') then
if (rw(3) ='1') then
memory(conv_integer(addr_bus(27 downto 21))) <= data_in3;
--data_out3 <=(others =>'Z');
else
data_out3 <= memory(conv_integer(addr_bus(27 downto 21)));
end if;
end if;

end if;
end if;

end process data_transfer;

end gate_level;

Module Name : dec_ic_a.vhd

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

 219

-- Uncomment the following lines to use the declarations that are
-- provided for instantiating Xilinx primitive components.
--library UNISIM;
--use UNISIM.VComponents.all;

entity dec_ic_a is
 Port (dec_out : out std_logic_vector(3 downto 0);
 ctrl_dec : in std_logic;
 addr_blk : in std_logic_vector(1 downto 0)
);
end dec_ic_a;

architecture Behavioral of dec_ic_a is

signal ctrl_bar,addr1_bar,addr0_bar : std_logic;

begin
ctrl_bar <= not ctrl_dec;
addr1_bar <= not addr_blk(1);
addr0_bar <= not addr_blk(0);
dec_out(0)<= ctrl_dec and addr1_bar and addr0_bar;
dec_out(1)<= ctrl_dec and addr1_bar and addr_blk(0);
dec_out(2)<= ctrl_dec and addr_blk(1) and addr0_bar;
dec_out(3)<= ctrl_dec and addr_blk(1) and addr_blk(0);

end Behavioral;

Module Name : prl_behav.vhd

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Uncomment the following lines to use the declarations that are
-- provided for instantiating Xilinx primitive components.
--library UNISIM;
--use UNISIM.VComponents.all;

entity prl_behav is
 Port (clk,rst : in std_logic;
 d0,d1,d2,d3 : in std_logic;
 q0,q1,q2,q3 : in std_logic_vector(4 downto 0);
 sub_flg : out std_logic_vector (3 downto 0)
);
end prl_behav;

architecture Behavioral of prl_behav is

-- signal listing -----
signal d3d2d1d0 :std_logic_vector(3 downto 0);

--- end of signal list----

begin

 220

-- process for the selection of proper PE ---

sel : process (d0,d1,d2,d3,clk,rst)

variable max : std_logic_vector(4 downto 0);

begin

if (rst ='1') then
 sub_flg <= "0000";
else
 if (clk'event and clk='0') then
 d3d2d1d0 <= d3&d2&d1&d0;

 case d3d2d1d0 is
 when "0001" => sub_flg <= "0001" ;
 when "0010" => sub_flg <= "0010";
 when "0100" => sub_flg <= "0100";
 when "1000" => sub_flg <= "1000";
 when "0011" =>
 max:= q0;
 if((max < q1)and (max = q1)) then
 max:= q1;
 sub_flg <="0010";
 else
 sub_flg <="0001";
 end if;

 when "0111" =>
 max:= q0;
 if(max<=q1) then
 max := q1;
 if(max<=q2) then
 max := q2;
 sub_flg <="0100";
 else
 sub_flg <="0010";
 end if;
 else
 sub_flg <="0001";
 end if;

 when "0110" =>
 max :=q1;
 if(max<=q2) then
 max:= q2;
 sub_flg <="0100";
 else
 sub_flg <="0010";
 end if;

 when "0101" =>
 max :=q0;
 if(max<=q2)then
 max:=q2;

 221

 sub_flg <="0100";
 else
 sub_flg <="0001";
 end if;

 when "1111" =>
 max :=q0;
 if(max<=q1) then
 max:=q1;
 if(max<=q2) then
 max:=q2;
 if(max<=q3) then
 max:=q3;
 sub_flg<="1000";
 else
 sub_flg <="0100";
 end if;
 else
 sub_flg<="0010";
 end if;
 else
 sub_flg <="0001";
 end if;

 when "1110" =>
 max :=q1;
 if(max<=q2)then
 max:=q2;
 if(max<=q3) then
 max:=q3;
 sub_flg <="1000";
 else
 sub_flg <="0100";
 end if;
 else
 sub_flg <="0010";
 end if;

 when "1010" =>
 max :=q1;
 if(max<=q3) then
 max:=q3;
 sub_flg <="1000";
 else
 sub_flg <="0010";
 end if;

 when "1001"=>
 max:=q0;
 if(max<=q3)then
 max:=q3;
 sub_flg<="1000";
 else
 sub_flg<="0001";
 end if;

 222

 when "1101" =>
 max :=q0;
 if(max<=q2)then
 max:=q2;
 if(max<=q3) then
 max:=q3;
 sub_flg<="1000";
 else
 sub_flg<="0100";
 end if;
 else
 sub_flg<="0001";
 end if;

 when "1100" =>
 max :=q2;
 if(max<=q3) then
 max:=q3;
 sub_flg <="1000";
 else
 sub_flg <="0100";
 end if;

 when "1011" =>
 max :=q0;
 if(max<=q1)then
 max:=q1;
 if(max<=q3)then
 max:=q3;
 sub_flg <="1000";
 else
 sub_flg<="0010";
 end if;
 else
 sub_flg <="0001";
 end if;

 when others => sub_flg<="0000";

 end case;
end if ;
end if;

end process;

end Behavioral;

Module Name : multpe.vhd

--
-- Multiplier PE
-- Version 1.00
-- Coded by Kanchan,Sridhar
--
 -- synopsys translate_off

 223

 Library XilinxCoreLib;
 -- synopsys translate_on

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use IEEE.NUMERIC_STD.ALL;

entity multpe is
 Port (mcntl_bus : in std_logic_vector(15 downto 0);
 Snd_I : out std_logic;
 clk : in std_logic;
 rst : in std_logic;
 Instr_rdy : in std_logic;
 Fin : out std_logic;
 mdata_bus : inout std_logic_vector(15 downto 0);
 bus_req : out std_logic;
 bus_gnt : in std_logic;
 multaddr : out std_logic_vector(7 downto 0);--Output address to shared dmem
 --r_w : buffer std_logic;
 r_w : inout std_logic;
 cbusout_dbug : out std_logic_vector(7 downto 0);
 Iaddr_bus_dbug : out std_logic_vector(7 downto 0);
 --Iaddr_dbug : out std_logic_vector(7 downto 0);
 R2out_dbug : out std_logic_vector(7 downto 0);
 Imem_bus_dbug : out std_logic_vector(15 downto 0);

 mux3out_dbg:out std_logic_vector(7 downto 0);
 ms3dbg:out std_logic_vector(1 downto 0);
 ms1dbg : out std_logic;
 ms2dbg : out std_logic;
 adderout_dbug : out std_logic_vector(7 downto 0);
 ms4dbg : out std_logic;
 lmd_dbg,lmr_dbg : out std_logic;
 ndout : out std_logic;
 multout_fin : out std_logic_vector(15 downto 0);
 tomultr_dbg:out std_logic_vector(7 downto 0);
 tomultd_dbg:out std_logic_vector(7 downto 0)

);
end multpe;

architecture Behavioral of multpe is

component mult is
 Port (a : in std_logic_vector(7 downto 0);
 b : in std_logic_vector(7 downto 0);
 q : out std_logic_vector(15 downto 0);
 clk:in std_logic;
 newdata : in std_logic);
end component;
--
-- This file is owned and controlled by Xilinx and must be used --
-- solely for design, simulation, implementation and creation of --

 224

-- design files limited to Xilinx devices or technologies. Use --
-- with non-Xilinx devices or technologies is expressly prohibited --
-- and immediately terminates your license. --
-- --
-- XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS" --
-- SOLELY FOR USE IN DEVELOPING PROGRAMS AND SOLUTIONS FOR --
-- XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE, OR INFORMATION --
-- AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, APPLICATION --
-- OR STANDARD, XILINX IS MAKING NO REPRESENTATION THAT THIS --
-- IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT, --
-- AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE --
-- FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY --
-- WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE --
-- IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR --
-- REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF --
-- INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS --
-- FOR A PARTICULAR PURPOSE. --
-- --
-- Xilinx products are not intended for use in life support --
-- appliances, devices, or systems. Use in such applications are --
-- expressly prohibited. --
-- --
-- (c) Copyright 1995-2002 Xilinx, Inc. --
-- All rights reserved. --
--

component mult_imem IS
 port (
 addr: IN std_logic_VECTOR(2 downto 0);
 clk: IN std_logic;
 din: IN std_logic_VECTOR(15 downto 0);
 dout: OUT std_logic_VECTOR(15 downto 0);
 we: IN std_logic);
end component;

component add_subber8 IS

 PORT(
 A: IN std_logic_vector(7 DOWNTO 0);
 B: IN std_logic_vector(7 DOWNTO 0);
 C_IN: IN std_logic;
 C_OUT: OUT std_logic;
 ADD_SUB: IN std_logic;
 Q_OUT: OUT std_logic_vector(7 DOWNTO 0));
END component;

--All control signals for the various components used

--Control signals for the multiplexors used in the design
signal ms0,ms1,ms2,ms4,ms5:std_logic;
signal ms3:std_logic_vector(1 downto 0);
--control signals for datalocations,reg R2
signal mldl1,mldl2,mldr2,lmr,lmd,lmar:std_logic;
signal mlresult:std_logic;

 225

--output of data locations 1 and 2
signal mdloc1out,mdloc2out:std_logic_vector(7 downto 0);
signal r2out:std_logic_vector(7 downto 0);
signal mux3out,mux5out,mux0out,mux1out,adderout:std_logic_vector(7 downto 0);
--output from controller to data locations
signal cbusout:std_logic_vector(7 downto 0);
signal mux4out:std_logic_vector(15 downto 0);
-- signal added to supplement the mdatabus port ...
signal mdata_sig : std_logic_vector(15 downto 0);

--outputs of multiplier and multiplicand registers

signal mrout,mdout:std_logic_vector(7 downto 0);
--output from pipelined multiplier and output from result register
signal multout,multrslt:std_logic_vector(15 downto 0);

--Core instruction memory signals
signal inst_in,inst_out:Std_logic_vector(15 downto 0);
signal imem_bus:std_logic_vector(15 downto 0);

--Adder signal that is not being used
signal ci:std_logic;
--signal iaddr:std_logic_vector(7 downto 0);
signal iaddr_bus:std_logic_vector(7 downto 0);
signal from_cntl : std_logic_vector(7 downto 0);
signal rwmem:std_logic;
type OP_state is (reset,Getop,Op1,Op2,Op3,Op4,Op5,Op6,Op7,Op8,Op9,Op10,Op11,Op12,Op13,Op14);
signal OP : OP_state;
signal delay : std_logic_vector(1 downto 0); --Need a 2 CC delay for multiplication to get over
signal r2_rst : std_logic;
signal ndsig:std_logic;

--Start the multiplication operation
constant startmult : std_logic_vector(7 downto 0) := "11111111";
constant storemultdl : std_logic_vector(7 downto 0) := "10001000";

--Alias list starts here

alias toimem:std_logic_vector(2 downto 0) is iaddr_bus(2 downto 0);
alias tomultr:std_logic_vector(7 downto 0) is mdata_bus(7 downto 0);
alias tomultd:std_logic_vector(7 downto 0) is mux4out(7 downto 0);
alias to_r2:std_logic_vector(7 downto 0) is imem_bus(7 downto 0);

begin
tomultr_dbg<=tomultr;
tomultd_dbg<=tomultd;
ms3dbg<=ms3;
ms2dbg<= ms2;
ms1dbg<= ms1;

 226

ms4dbg<= ms4;
lmd_dbg <= lmd;
lmr_dbg<= lmr;
mux3out_dbg<=mux3out;
ndout<= ndsig;
adderout_dbug <= adderout;
multout_fin<= multrslt;
-- added for debugging
cbusout_dbug <= cbusout;
--Iaddr_dbug <= Iaddr;
iaddr_bus_dbug<=Iaddr_bus;
R2out_dbug <= r2out;
Imem_bus_dbug <= imem_bus;
--Port maps and when else statements come here outside the process

addermap: add_subber8
 port
map(a=>r2out,b=>mux3out,c_in=>ci,c_out=>open,add_sub=>'1',q_out=>adderout);

multmap: mult port map(a=>mrout,b=>mdout,q=>multout,clk=>clk,newdata=>ndsig);

multimemmap:mult_imem port map(addr=>toimem,clk=>clk,din=>inst_in,dout=>inst_out,we=>rwmem);

--End port maps for components

--Mux functionality starts here
imem_bus <=inst_out when rwmem = '0' else
 (others=>'Z');

mdata_bus<=multrslt when mlresult='1' else
 (others=>'Z');
--tomultr <= mdata_bus(7 downto 0) when lmr='1' else
 -- (others=>'z');

mux0out<= cbusout when ms0='0' else
 adderout when ms0='1'else
 (others=>'Z');

mux1out<= cbusout when ms1='0' else
 adderout when ms1='1'else
 (others=>'Z');

--Mux 2 output
multaddr<= mdloc1out when ms2='0' else
 mdloc2out when ms2='1' else
 (others=>'Z');

mux3out<= mdloc1out when ms3="00" else
 mdloc2out when ms3="01" else
 iaddr_bus when ms3="10" else

 227

 (others=>'Z');

mux4out<= mdata_bus when ms4='0' else
 imem_bus when ms4='1' else
 (others=>'Z');
mux5out <= from_cntl when ms5='0' else
 adderout when ms5='1' else
 (others=>'Z');

-- The main process that controls the functioning of the multiplier
control:process(clk,rst,instr_rdy, bus_gnt, mcntl_bus,mdloc2out,Op,r2_rst,ndsig,delay)
variable load_delay, ld_del2, del : boolean;
--Start editing here
begin
 if rst = '1' then
 OP <= reset;
 elsif (clk'event and clk = '1') then
 if Op = reset then
 snd_i <= '1';
 del := false;
 fin <= '1';
 ld_del2 := false;
 bus_req <= '0';
 rwmem <= '0';
 r_w <= '0';
 lmr <= '0';
 ms4 <= '0';
 ms1 <= '0';
 ms3 <= "00";
 ms0 <= '1';
 ms2<='0';
 ms5 <= '0';
 Ci <= '0';
 mldr2<= '0';
 lmd<= '0';
 mldl1<= '0';
 mldl2 <= '0';
 load_delay := false;
 mlresult <= '0';
 lmar<= '0';
 r2_rst <= '1'; -- active high resets R2
 delay <= "01";
 ndsig<='0';
 assert not(Op=reset) report "-------------------Reset State-----------------" severity
Note;

 Op <= GetOp;

 elsif Op = GetOp then --ld data loc 1
 mldl2 <= '0';
 mldr2 <= '0';
 lmd <= '0';
 bus_req <= '0';
 mlresult <= '0';

 228

 lmar<= '0';
 r2_rst <= '0';
 if instr_rdy = '1' then
 cbusout <= mcntl_bus(7 downto 0);
 mldl1 <= '1';
 fin <= '0';
 ms0 <= '0';
 Snd_i <= '1';
 Op <= Op1;
 assert not(Op=GetOp) report "-------------------Get Op----------
-------" severity Note;
 else
 OP <= GetOp;
 end if;

 elsif Op = Op1 then
 mldl1 <= '0';
 r2_rst <= '0';
 mldr2 <= '0'; lmd <= '0';
 bus_req <= '0';
 mlresult <= '0';
 if (instr_rdy = '1' or load_delay = true) then
 if mcntl_bus(15 downto 8) = storemultdl then --ld dl2
 assert not(Op=Op1) report "-------------------Op1:inside
storemultdl-----------------" severity Note;
 cbusout <= mcntl_bus(7 downto 0);
 mldl2 <= '1';
 lmar<= '0';
 fin <= '0';
 ms1 <= '0';
 snd_i <='1';
 Op <= Op1;
 elsif mcntl_bus(15 downto 8) = startMult then --start multiplication

 if (load_delay = false) then
 assert not(Op=Op1) report "-------------------Op1:inside startMult-----------------" severity Note;

 from_cntl <= mcntl_bus(7 downto 0); --ld instr loc
 mldl2 <= '0';
 ms5 <= '0';
 lmar <= '1';
 Snd_I <= '0';
 load_delay := true;
 Op <= Op1;
 elsif (load_delay = true) then
 lmar <= '0';
 Op <= Op2;
 load_delay := false;
 end if;
 end if;
 else
 Op <= Op1;
 end if;

 229

 elsif Op = Op2 then --ld R2 with dl1 offset
assert not(Op=Op2) report "-------------------Op2:inside Op2-----------------" severity Note;

 mldl2 <= '0'; --from Imem
 lmd <= '0';
 mldl1 <= '0';
 bus_req <= '0';
 mlresult <= '0';
 lmar <= '0';
 rwmem <= '0';
 mldr2 <= '1';
 r2_rst <= '0';
 Op <= Op3;

 elsif Op = Op3 then --add offset to dl1 str in dl1
assert not(Op=Op3) report "-------------------Op3:add ofset to dl1-----------------" severity Note;
 mldl2 <= '0';
 -- changes for dbugging
 --mldr2 <= '1';
 mldr2 <= '0';
 lmd <= '0';
 bus_req <= '0';
 mlresult <= '0';
 lmar<= '0';
 Ci <= '0';
 mldr2 <= '0';
 mldl1 <= '1';
 ms0 <= '1';
 ms3(0) <= '0';
 ms3(1) <= '0';
 r2_rst <= '0';
 Op <= Op4;

 elsif Op = Op4 then --Inc Iaddr
 if (ld_del2 = false) then
assert not(Op=Op4) report "-------------------Op4:Inc Addr-----------------" severity Note;

 mldl2 <= '0';
 mldr2 <= '0';
 lmd <= '0';
 bus_req <= '0';
 mlresult <= '0';
 mldl1 <= '0';
 ms3 <= "10";
 ms5<='1';
 ci <= '1';
 lmar <= '1';
 ld_del2 := true;
 r2_rst <= '1';
 Op <= Op4;

 230

 elsif (ld_del2 = true) then
 lmar <= '0';
 Op <= Op5;
 ld_del2 := false;
 end if;

 elsif Op = Op5 then --Check for 2nd dl
assert not(Op=Op5) report "-------------------Op5:Check for dl2-----------------" severity Note;

 mldl2 <= '0';
 bus_req <= '0';
 mldl1 <= '0';
 mlresult <= '0';
 lmar <= '0';
 if mdloc2out = "00000000" then --get divisor from IMEM
 rwmem <= '0';
 lmr <= '0'; --put in R1
 ms4 <= '1';
 lmd <= '1';
 Op <= Op9;
 else --get data from DMEM
 rwmem <= '0';
 lmr <= '0'; --get offset to Dl2
 mldr2 <='1';
 lmd<='0';
 Op <= Op6;
 end if;

 elsif Op = Op6 then --add offset to Dl2
assert not(Op=Op6) report "-------------------Op6:add ofset to dl2-----------------" severity Note;
 r2_rst <= '0';
 lmd <= '0';
 bus_req <= '0';
 mldl1 <= '0';
 mlresult <= '0';
 lmar<= '0';
 mldr2 <= '0';
 ms3<= "00";
 ci <= '0';
 ms1 <= '1';
 mldl2 <= '1';
 Op <= Op7;

 elsif Op = Op7 then
assert not(Op=Op7) report "-------------------Op7:bus req state-----------------" severity Note;
 mldr2 <= '0';
 lmd <= '0';
 mldl1 <= '0';
 mlresult <= '0';

 231

 lmar<= '0';
 mldl2 <= '0';
 ms2 <= '0';
 bus_req <= '1';
 R_W <= '0';
 ms4 <= '0';
 Op <= Op8;

 elsif Op = Op8 then --ld R1 with divisor
assert not(Op=Op8) report "-------------------Op8:ld multiplicand -----------------" severity Note;
 mldl2 <= '0'; --from DMEM
 mldr2 <= '0';
 ms4 <= '0';
 mldl1 <= '0';
 mlresult <= '0';
 lmar<= '0';

 if bus_gnt = '1' then
 lmd <= '1';
 Op <= Op9;
 else
 lmd <= '0';
 Op <= Op8;
 end if;

 elsif Op = Op9 then --ld R0 with dividend
assert not(Op=Op9) report "-------------------Op9:ld multiplier-----------------" severity Note;
 mldl2 <= '0';
 mldr2 <= '0';
 lmd <= '0';
 mldl1 <= '0';
 mlresult <= '0';
 lmar<= '0';
 ms2<= '0';
 R_W <= '0';
 bus_req <= '1';
 r2_rst <= '0';
 Op <= Op10;

 elsif Op = Op10 then
assert not(Op=Op10) report "-------------------Op10:Bus grant=1-----------------" severity Note;

 mldl2 <= '0';
 mldr2 <= '0';
 lmd <= '0';
 mldl1 <= '0';
 mlresult <= '0';
 lmar<= '0';

 232

 if bus_gnt = '1' then
 lmr <= '1';
 Op <= Op11;
 else
 lmr <= '0';
 OP <= Op10;
 end if;

 elsif Op = Op11 then --wait for result 20 CC's
assert not(Op=Op11) report "-------------------Op11:20 cc ruko-----------------" severity Note;
 mldl2 <= '0';
 mldr2 <= '0';
 lmd <= '0';
 bus_req <= '0';
 mldl1 <= '0';
 lmar<= '0';
 lmr <= '0';

 ndsig<='1';--This signal tells the multiplier to process the inputs
 if delay = "10" then
 -- if rdy_sig ='1' then
 mlresult <= '1';
 --r_w<='1';--added here not in original list
 bus_req<='1';
 ndsig<='0';
 Op <= Op12;
 else
 delay <= delay(0 downto 0)&'0';
 mlresult <= '0';
 Op <= Op11;
 end if;

 elsif Op = Op12 then
assert false report "-------------------Op12:use dl1/dl2 to store-----------------" severity Note;

 --ndsig<='1';--added this while testing mult_icm module.Not there originally
 --ndsig<='1'; -- change made to check
 mldr2 <= '0';
 lmd <= '0';
 mlresult <= '1';
 lmar<= '0';
 -- R_W <= '1';

 if mdloc2out = "00000000" then --use DL1 for store
 ms2<='0';
 mldl2 <= '0';
 else --use DL2 for store
 ms2 <= '1';
 mldl1 <= '0';
 end if;
 --Bus_req <= '1';

 233

 Op <= Op13;

 elsif Op = Op13 then
 assert false report "-------------------Op13:-----------------" severity Note;

 mldl2 <= '0';
 mldr2 <= '0';
 lmd <= '0';
 mldl1 <= '0';
 mlresult <= '1';
 lmar<= '0';
 Bus_req <= '1';
 ndsig <= '0';
 if bus_gnt = '1' then --Store Quotient in mem
 -- fin <= '1';
 R_W<='1';

 --bus_req <= '0';

 --Op <= reset;
 Op<=Op14;
 else
 Op <= Op13;
 end if;
 elsif Op=Op14 then
 assert false report "Op14 state " severity note;
 bus_req<='0';
 fin<='1' ;
 R_W<='0';
 -- r_w <= '1'; -- change made to c if correct value gets written

 Op<= reset;

 end if;
 end if;

end process;

multiplierreg: process (clk, tomultr, rst, lmr)
 begin
 if rst ='1' then
 mrout <= (others=>'0');
 elsif clk'event and clk='1' then
 if lmr = '1' then
 mrout <= tomultr;
 end if;
 end if;
end process;

 234

multiplicandreg: process (clk,rst,lmd,tomultd)
 begin
 if rst ='1' then
 mdout <= (others=>'0');
 elsif clk'event and clk='1' then
 if lmd = '1' then
 mdout <= tomultd;
 end if;
 end if;
end process;

regr2:process(clk,r2_rst,to_r2,mldr2)
 begin
 if r2_rst='1' then
 r2out <=(others=>'0');
 elsif clk'event and clk='1' then
 if mldr2='1' then
 r2out<=to_r2;
 end if;
 end if;
end process;

dataloc1:process(clk,rst,mldl1,mux0out)
 begin
 if rst='1' then
 mdloc1out <=(others=>'0');
 elsif clk'event and clk='1' then
 if mldl1='1' then
 mdloc1out<=mux0out;
 end if;
 end if;
end process;

dataloc2:process(clk,rst,mldl2,mux1out)
 begin
 if rst='1' then
 mdloc2out <=(others=>'0');
 elsif clk'event and clk='1' then
 if mldl2='1' then
 mdloc2out<=mux1out;
 end if;
 end if;
end process;

Instmar:process(clk,rst,mux5out,lmar)
 begin
 if rst='1' then
 iaddr_bus <=(others=>'0');
 elsif clk'event and clk='1' then
 if lmar='1' then
 iaddr_bus<=mux5out;
 end if;

 235

 end if;
end process;

reg_result: process (clk,rst,multout, mlresult)
 begin
 if rst ='1' then
 multrslt <= (others=>'0');

 elsif clk'event and clk='1' then
 if mlresult = '1' then
 multrslt <= multout;
 end if;
 end if;
end process;
end Behavioral;

Module Name : mult.vhd

--Multiplier version 1.0
--Date: 02/27/2004

--Explanation of signals
--a and b are 8 bit inputs(unsigned) and can be thought of as the muliplier and
--multiplicand.They produce an output which can be max 16 bits
--

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use IEEE.NUMERIC_STD.ALL;

entity mult is
 Port (a : in std_logic_vector(7 downto 0);
 b : in std_logic_vector(7 downto 0);
 q : out std_logic_vector(15 downto 0);
 clk:in std_logic;
 newdata : in std_logic);
end mult;

architecture Behavioral of mult is
--signal listings here
signal qsig: std_logic_vector(15 downto 0);
begin
q<=qsig;
multiply: process(clk,newdata,a,b) is
begin
if (clk'event and clk='1') then
 if (newdata='1') then
 qsig<=a*b;--Multiply the inputs
 else
 qsig<=qsig;--Latch on to the values
 end if;

 236

end if;
end process;
end Behavioral;

Module Name : mult_imem.xco (Xilinx IP Core)

--
-- This file is owned and controlled by Xilinx and must be used --
-- solely for design, simulation, implementation and creation of --
-- design files limited to Xilinx devices or technologies. Use --
-- with non-Xilinx devices or technologies is expressly prohibited --
-- and immediately terminates your license. --
-- --
-- XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS" --
-- SOLELY FOR USE IN DEVELOPING PROGRAMS AND SOLUTIONS FOR --
-- XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE, OR INFORMATION --
-- AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, APPLICATION --
-- OR STANDARD, XILINX IS MAKING NO REPRESENTATION THAT THIS --
-- IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT, --
-- AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE --
-- FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY --
-- WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE --
-- IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR --
-- REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF --
-- INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS --
-- FOR A PARTICULAR PURPOSE. --
-- --
-- Xilinx products are not intended for use in life support --
-- appliances, devices, or systems. Use in such applications are --
-- expressly prohibited. --
-- --
-- (c) Copyright 1995-2003 Xilinx, Inc. --
-- All rights reserved. --
--
-- You must compile the wrapper file mult_imem.vhd when simulating
-- the core, mult_imem. When compiling the wrapper file, be sure to
-- reference the XilinxCoreLib VHDL simulation library. For detailed
-- instructions, please refer to the "CORE Generator Guide".

-- The synopsys directives "translate_off/translate_on" specified
-- below are supported by XST, FPGA Compiler II, Mentor Graphics and Synplicity
-- synthesis tools. Ensure they are correct for your synthesis tool(s).

-- synopsys translate_off
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

Library XilinxCoreLib;
ENTITY mult_imem IS
 port (
 addr: IN std_logic_VECTOR(2 downto 0);
 clk: IN std_logic;
 din: IN std_logic_VECTOR(15 downto 0);
 dout: OUT std_logic_VECTOR(15 downto 0);
 we: IN std_logic);

 237

END mult_imem;

ARCHITECTURE mult_imem_a OF mult_imem IS

component wrapped_mult_imem
 port (
 addr: IN std_logic_VECTOR(2 downto 0);
 clk: IN std_logic;
 din: IN std_logic_VECTOR(15 downto 0);
 dout: OUT std_logic_VECTOR(15 downto 0);
 we: IN std_logic);
end component;

-- Configuration specification
 for all : wrapped_mult_imem use entity XilinxCoreLib.blkmemsp_v5_0(behavioral)
 generic map(
 c_sinit_value => "0",
 c_reg_inputs => 0,
 c_yclk_is_rising => 1,
 c_has_en => 0,
 c_ysinit_is_high => 1,
 c_ywe_is_high => 1,
 c_ytop_addr => "1024",
 c_yprimitive_type => "16kx1",
 c_yhierarchy => "hierarchy1",
 c_has_rdy => 0,
 c_has_limit_data_pitch => 0,
 c_write_mode => 0,
 c_width => 16,
 c_yuse_single_primitive => 0,
 c_has_nd => 0,
 c_enable_rlocs => 0,
 c_has_we => 1,
 c_has_rfd => 0,
 c_has_din => 1,
 c_ybottom_addr => "0",
 c_pipe_stages => 0,
 c_yen_is_high => 1,
 c_depth => 8,
 c_has_default_data => 0,
 c_limit_data_pitch => 18,
 c_has_sinit => 0,
 c_mem_init_file => "mult_imem.mif",
 c_default_data => "0",
 c_ymake_bmm => 0,
 c_addr_width => 3);
BEGIN

U0 : wrapped_mult_imem
 port map (
 addr => addr,
 clk => clk,
 din => din,
 dout => dout,
 we => we);
END mult_imem_a;

 238

-- synopsys translate_on

Module Name : pe.vhd

--The IEEE standard 1164 package, declares std_logic, rising_edge(),
--etc.
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity PE is
 port (Data_Bus : inout std_logic_vector(15 downto 0);
 R_W : out std_logic;
 Cntl_bus : in std_logic_vector(15 downto 0);
 RST, ODR, IDV : in std_logic;
 clk, Bus_grant : in std_logic;
 CInstr_rdy : in std_logic;
 inpt : in std_logic_vector(15 downto 0);
 Bus_req, Snd_Instr, Fin : out std_logic;
 Addr : out std_logic_vector(7 downto 0);
 Rq_inpt, Rq_outpt : out std_logic;
 STOPLOOP : out std_logic;
 -- added for dbugging
 R3_out_dbug : out std_logic_vector(15 downto 0);
 shft_out_dbug : out std_logic_vector(15 downto 0);
 dbug_st_pe : out std_logic_vector(3 downto 0);
 tmp4_dbug : out std_logic_vector(15 downto 0);
 m5outdbg: out std_logic_vector(15 downto 0);
 R0_out_dbug : out std_logic_vector(15 downto 0);
 tmp3_dbug: out std_logic_vector(2 downto 0);
 tmp2_dbug: out std_logic_vector(1 downto 0);
 tmp1_dbug: out std_logic_vector(1 downto 0) ;
 tmp44_dbug: out std_logic_vector(4 downto 0) ;
 tmp5_dbug: out std_logic_vector(3 downto 0) ;
 count_out_pe : out std_logic_vector (7 downto 0)
 -- tmp6_dbug: out std_logic_vector(1 downto 0)
) ;
end PE;

Architecture pe_arch of pe is
component Reg_B_in is
port(din: in std_logic_vector(15 downto 0); -- data from data_bus
 dout:out std_logic_vector(15 downto 0); -- register output
 clk: in std_logic; -- clk
 rst: in std_logic; --
Asynch Reset
 ctrlreg: in std_logic
 -- Control signal
);
end component;

component Controller2 is

 239

 port (reset,clk, Int_Pend : in std_logic;
 Z, S, V, IDV, ODR : in std_logic;
 IR : in std_logic_vector(15 downto 12);
 Int_rdy, B_grnt : in std_logic;
 CE, R_W, LMDR1, LMDR0 : out std_logic;
 LMAR,LV, LZ, LS : out std_logic;
 S0, S1, S2, S3, S4 : out std_logic;
 S5, S6, S7, S8, S9 : out std_logic;
 S10, LR5, Snd_Inst, B_req : out std_logic;
 Ci, LPC, INC_PC, S11 : out std_logic;
 LIR0, LIR1, LR4 : out std_logic;
 Clr_dec, Ld_dec : out std_logic;
 Req_inpt, Req_otpt : out std_logic;
 STOPLOOP : out std_logic;
 dbug_st : out std_logic_vector(3 downto 0);
 m5ctrl : out std_logic;
 count_out : out std_logic_vector (7 downto 0);
 decide: out std_logic
);
end component;

component mem_1 is
 port (data_bus : inout std_logic_vector(15 downto 0);
 Idata_bus : inout std_logic_vector(15 downto 0);
 clk, rst, CE: in std_logic;
 LMAR : in std_logic;
 LMDR1, LMDR0 : in std_logic;
 Addr : in std_logic_vector(7 downto 0);
 mux16 : in std_logic_vector(15 downto 0);
 Fin, sel_Ibus : out std_logic;
 MAddr_out : out std_logic_vector(7 downto 0));
end component;

component mux16_4x1
 Port (line_out : out std_logic_vector(15 downto 0);
 Sel : in std_logic_vector(1 downto 0);
 line_in3,line_in2,line_in1,line_in0 : in std_logic_vector(15 downto
0));
end component;

component mux16_5x1
 Port (line_out : out std_logic_vector(15 downto 0);
 Sel : in std_logic_vector(2 downto 0);
 line_in4,line_in3,line_in2,line_in1,line_in0 : in
std_logic_vector(15 downto 0));
end component;

component mux8_4x1
 Port (line_out : out std_logic_vector(7 downto 0);
 Sel : in std_logic_vector(1 downto 0);
 line_in3,line_in2,line_in1,line_in0 : in std_logic_vector(7 downto
0));

 240

end component;

component PC
 Port (q_out : buffer std_logic_vector(7 downto 0);
 --q_out : inout std_logic_vector(7 downto 0);
 clk, clr : in std_logic;
 D : in std_logic_vector(7 downto 0);
 load, inc : in std_logic);
end component;

component REGS
 port (q_out : buffer std_logic_vector(15 downto 0);
 --q_out : inout std_logic_vector(15 downto 0);
 clk, clr : in std_logic;
 D : in std_logic_vector(15 downto 0);
 Load : in std_logic);
End component;

component Shifter_16
 port(ALU_out : in std_logic_vector(15 downto 0);
 Sel : in std_logic_vector(1 downto 0);
 Shf_out : out std_logic_vector(15 downto 0)) ;
End component;

component ALU
 port(a, b : in std_logic_vector(15 downto 0);
 S8, S7, Cntl_I : in std_logic;
 C_out : out std_logic;
 Result : out std_logic_vector(15 downto 0)) ;
End component;

component mux16bit_2x1 is
 Port (line_out : out std_logic_vector(15 downto 0);
 Sel : in std_logic;
 line_in1,line_in0 : in std_logic_vector(15 downto 0));
end component;

Signal PC_out,MAR_val : std_logic_vector(7 downto 0);
signal PC_VAL: std_logic_vector(7 downto 0);
Signal R4_out, IR0_70, IR1_70, IR1_158 : std_logic_vector(7 downto 0);
signal R0_out, R1_out,R2_out, R3_out: std_logic_vector(15 downto 0);
signal shft_out, Alu_out, MDR_val: std_logic_vector(15 downto 0);
signal Alu_in : std_logic_vector(15 downto 0);
signal Inpt_Sel, Dec_Sel : std_logic_vector(1 downto 0);
signal IR_1512: std_logic_vector(15 downto 12);
signal Co, Ci : std_logic;
signal reg, Reg0_en, Reg1_en,Reg2_en, Reg3_en : std_logic;
signal Vo, So, Zo : std_logic;
signal CE, R_W1 : std_logic;
signal LMDR1, LMDR0, LMAR : std_logic;

 241

signal LPC, INC_PC, LIR0, LIR1 : std_logic;
signal S9, S8, S7, S6 : std_logic;
signal LR4:std_logic;
signal S5, S4, S3, S2, S1, S0 : std_logic;
signal V, S, Z, LV, LS, LZ : std_logic;
signal temp1, temp2, val2 : std_logic_vector(1 downto 0);
signal temp4, sixteen0, val1, B_in : std_logic_vector(15 downto 0);
-- added for debugging
signal val11 : std_logic_vector(15 downto 0);
signal Clr_dec, Ld_dec, one0, Instr_rdy : std_logic;
signal eight0, R5_out, mem_addr_out : std_logic_vector(7 downto 0);
signal LR5, sel_Ibus : std_logic;
signal S10,S11: std_logic;
signal Instr_bus, Idata_bus : std_logic_vector(15 downto 0);
signal temp3 : std_logic_vector(2 downto 0);
signal m5out:std_logic_vector(15 downto 0);
signal m5ctrl:Std_logic;
signal temp44 : std_logic_vector(4 downto 0);
signal temp5 : std_logic_vector (3 downto 0);
signal count_out : std_logic_vector(7 downto 0);
signal bus_req_pe : std_logic;
signal dout_bin: std_logic_vector(15 downto 0);-- Data ouput of the Register Reg_Bin
signal decide : std_logic; -- Control for the register Reg_Bin before ALU mux
signal R5mod: std_logic_vector(15 downto 0);
begin

-- added for dbugging
R5mod <= eight0&R5_out;
tmp1_dbug <= temp1;
tmp2_dbug <= temp2;
tmp3_dbug <= temp3;
R3_out_dbug <= R3_out;
R0_out_dbug <= R0_out;
shft_out_dbug <= shft_out;
tmp4_dbug <= temp4;
m5outdbg<=m5out;
count_out_pe <= count_out;
--
sixteen0 <= "0000000000000000";
eight0 <= "00000000";
one0 <= '0';

temp1 <= S9&S4;
temp2 <= S3&S2;
temp3 <= S11&S1&S0;
IR_1512 <= temp4(15 downto 12);
Dec_Sel <= temp4(11 downto 10);
Inpt_Sel <= temp4(9 downto 8);
IR0_70 <= temp4(7 downto 0);
-- added ports for viewing the control signals -----

temp44 <= s10&s8&s7&s6&s5;
temp5 <= LMDR1&LMDR0&LMAR&LPC;
--temp6 <= R_W& B_req;

tmp44_dbug <= temp44;

 242

tmp5_dbug <= temp5;
--tmp6_dbug <= temp6;
Vo <= V;
So <= S;
Zo <= Z;
-- added for debugging assignment to a signal --------
bus_req <= bus_req_pe;

Status: process (clk)
 Begin
 If (clk'event and clk='0') then
 if Alu_out = "0000000000000000" then
 Z <= '1';
 else
 Z <= '0';
 end if;
 S <= Alu_out(15);
 V <= (Co xor Ci);
 End if;
 End process;

--B_in <= eight0&R5_out when S10 = '1' else --new mux for immediate ops
 --Data_bus;

------------ change #1 to bring out correct values at the other input of the ALU

--B_in <= eight0&R5_out when S10 = '1' else --new mux for immediate ops
-- Data_bus when S10 ='0';-- else

RegBin_mux: mux16bit_2x1 port map(line_out => B_in,Sel => S10,
line_in0=>dout_bin, line_in1 =>
R5mod);
RegBin: Reg_B_in port map(clk=> clk, rst => rst, din => data_bus, dout
=> dout_bin,ctrlreg =>
decide);
M1: mux8_4x1 port map(PC_val,temp1,eight0,R4_out,IR1_158,IR0_70);
M2: mux8_4x1 port map(MAR_val,temp2,R3_out(7 downto
0),IR1_70,IR0_70,PC_out);
M3: mux16_5x1 port
map(MDR_val,temp3,Instr_Bus,sixteen0,shft_out,Alu_in,inpt);
M4: mux16_4x1 port map(Alu_in,Inpt_Sel,R3_out,R2_out,R1_out,R0_out);
M5 : mux16bit_2x1 port map(m5out,m5ctrl,shft_out,temp4);

P1: PC port map(PC_out, clk, RST, PC_val, LPC, INC_PC);
R5: PC port map(R5_out, clk, RST, IR0_70, LR5, one0);
R4: PC port map(R4_out, clk, one0, PC_out, LR4,one0); --modified needed 8 bit reg
--R0: REGS port map(R0_out, clk, one0, shft_out, Reg0_en);
R0: REGS port map(R0_out, clk, RST, shft_out, Reg0_en);
--R1: REGS port map(R1_out, clk, one0, shft_out, Reg1_en);
--R2: REGS port map(R2_out, clk, one0, shft_out, Reg2_en);
--R3: REGS port map(R3_out, clk, one0, m5out, Reg3_en);

R1: REGS port map(R1_out, clk, RST, shft_out, Reg1_en);
R2: REGS port map(R2_out, clk, RST, shft_out, Reg2_en);

 243

R3: REGS port map(R3_out, clk, RST, m5out, Reg3_en);

-- Get input from Controller or Instr. Mem

Instr_Bus <= IData_bus when sel_Ibus = '1' else
 Cntl_bus when sel_Ibus = '0' else --added to fix bus conflicts
 (others=>'0');

--Ir0: REGS port map(temp4, clk, one0, Instr_Bus, LIR0);

Ir0: REGS port map(temp4, clk, RST, Instr_Bus, LIR0);

-- option 1 : considering that the IR1 is not used at all
-- commenting the val1 which caused the buffer problem.

--val1 <= IR1_158&IR1_70;
-- added for dbugging
--val11<= val1;
--Ir1: REGS port map(val11, clk, one0, Instr_Bus, LIR1);

val2 <= s6&s5;
SH1: Shifter_16 port map(Alu_out, val2, shft_out) ;

A1: ALU port map(Alu_in, B_in, S8, S7, Ci, Co, Alu_out) ;

R_W <= R_W1; --sent to DMEM
Addr <= mem_addr_out; --sent to DMEM
Mem1: mem_1 port map(DATA_bus, IData_bus, clk, RST, CE,
LMAR,LMDR1,LMDR0,
 MAR_val,Mdr_val, FIN, sel_Ibus, mem_addr_out);

-- This provides Control for getting instructions from PE Controller
Instr_Rdy <= CInstr_Rdy when ((PC_out="00000000") or
(PC_out="00000001")
 or (PC_out="00000010")) else
 '1';

C1: Controller2 port map(RST, clk, one0, Zo, So, Vo, IDV, ODR, IR_1512,
Instr_Rdy, Bus_grant,
 CE, R_W1, LMDR1,LMDR0, LMAR,LV, LZ, LS, S0, S1, S2, S3, S4, S5, S6,
S7,
 S8, S9, S10, LR5, Snd_Instr, bus_req_pe, Ci, LPC, INC_PC, S11, LIR0,
LIR1,
 LR4, Clr_dec, Ld_dec, Rq_inpt, Rq_outpt,
STOPLOOP,dbug_st_pe,m5ctrl,count_out,decide =>
decide);

Decoder: process (clk, Clr_dec)
 begin
 if (clk'event and clk='1') then
 if (Clr_dec = '1') then
 Reg3_en <='0'; Reg2_en <='0';

 244

 Reg1_en<='0'; Reg0_en <='0';
 elsif (Ld_dec='1') then
 case (Dec_Sel) is
 when "11" => Reg3_en <='1';
 Reg2_en <='0';
 Reg1_en <='0';
 Reg0_en <='0';
 When "10" => Reg3_en <='0';
 Reg2_en <='1';
 Reg1_en <='0';
 Reg0_en <='0';
 When "01" => Reg3_en <='0';
 Reg2_en <='0';
 Reg1_en <='1';
 Reg0_en <='0';
 When "00" => Reg3_en <='0';
 Reg2_en <='0';
 Reg1_en <='0';
 Reg0_en <='1';
 When others => null;
 End case;
 End if;
 End if;
End process;
End architecture;

Module Name : aluv.vhd

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity ALU is
 port(a, b : in std_logic_vector(15 downto 0);
 S8, S7, Cntl_I : in std_logic;
 C_out : out std_logic;
 Result : out std_logic_vector(15 downto 0)) ;
End entity;

Architecture alu_arch of alu is

signal sel : std_logic_vector(2 downto 0);

component add_subber16

 port (
 A: IN std_logic_VECTOR(15 downto 0);
 B: IN std_logic_VECTOR(15 downto 0);
 C_IN: IN std_logic;
 C_OUT: OUT std_logic;
 ADD_SUB: IN std_logic;
 Q_OUT: OUT std_logic_VECTOR(15 downto 0));
end component;

 245

signal as_out : std_logic_vector(15 downto 0);
signal asC_out, A_S : std_logic;
signal carryI : std_logic;

begin

sel <= S8&S7&Cntl_i;

ad_sb: add_subber16 port map
 (A => a, B => b, C_IN=>CarryI, C_OUT =>asC_out,ADD_SUB => A_S,Q_OUT => as_out);

ops: process (sel, a, b, as_out, asC_out)
 begin
 case (sel) is
 when "000" => result <= a or b;
 C_out<='0'; CarryI <='0';
 A_S <= '1';
 When "001" => result <= a or b;
 C_out<='0'; CarryI <='0';
 A_S <= '1';
 When "100" => A_S <= '1'; --add op
 result <= as_out;
 C_out <= asC_out;
 CarryI <='0';
 When "101" => A_S <= '0'; --sub op
 result <= as_out;
 C_out <= asC_out;
 CarryI <='0';
 When "010" => result <= b; --pass through
 C_out <='0'; CarryI <='0';
 A_S <= '1';
 When "011" => result <= b; --pass through
 C_out <='0'; CarryI <='0';
 A_S <= '1';
 When "110" => result <= a and b;
 C_out<='0'; CarryI <='0';
 A_S <= '1';
 When "111" => result <= as_out; --Increment op
 C_out<= asC_out;
 A_S <= '1';
 CarryI <='1';
 When others => null;
 End case;
 End process;

End architecture;

Module Name : addsub16_synthable.vhd

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.std_logic_unsigned.ALL;
--use ieee.std_logic_arith.all;

ENTITY add_subber16 IS

 246

 PORT(
 A: IN std_logic_vector(15 DOWNTO 0);
 B: IN std_logic_vector(15 DOWNTO 0);
 C_IN: IN std_logic;
 C_OUT: OUT std_logic;
 ADD_SUB: IN std_logic;
 Q_OUT: OUT std_logic_vector(15 DOWNTO 0));
END add_subber16;

ARCHITECTURE sim OF add_subber16 IS
 SIGNAL S: std_logic_vector(15 DOWNTO 0);
 SIGNAL S1: std_logic_vector(15 DOWNTO 0);
 SIGNAL AA: std_logic_vector(15 DOWNTO 0);
 SIGNAL C: std_logic_vector(16 DOWNTO 0);
 SIGNAL T: std_logic_vector(15 DOWNTO 0);

BEGIN
Q_OUT<=S;
PROCESS(A,B,C_IN,ADD_SUB,C,T,AA,S1,S)
begin
if ADD_SUB='1' THEN
 C(0)<= C_IN;
 for i in 0 to 15 loop
 S(i) <= A(i) xor B(i) xor C(i);
 C(i+1)<= (A(i) and B(i)) or (A(i) and C(i)) or (B(i) and C(i));
 end loop;
 C_OUT <= C(16);
else
 T<=NOT (B+C_IN);
 AA<=A+1;

 C(0) <= C_in;
 for i in 0 to 15 loop
 S1(i) <= AA(i) xor T(i) xor C(i);
 C(i+1)<= (AA(i) and T(i)) or (AA(i) and C(i)) or (T(i) and C(i));
 end loop;
 --C_OUT <= NOT C(16);
 C_OUT <= C(16);
 if C(16) = '0'
 then
 --if s1(15) = '1' and A(15) = '0' then
 s <= (not s1) +1;
 else s <= s1;
 end if;
end if;
end process;
END sim;

Module Name : controller.vhd

--The IEEE standard 1164 package, declares std_logic, rising_edge(), etc.
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

 247

use IEEE.std_logic_unsigned.all;
entity Controller2 is
 port (reset,clk, Int_Pend : in std_logic;
 Z, S, V, IDV, ODR : in std_logic;
 IR : in std_logic_vector(15 downto 12);
 Int_rdy, B_grnt : in std_logic;
 CE, R_W, LMDR1, LMDR0 : out std_logic;
 LMAR,LV, LZ, LS : out std_logic;
 S0, S1, S2, S3, S4 : out std_logic;
 S5, S6, S7, S8, S9 : out std_logic;
 S10, LR5, Snd_Inst, B_req : out std_logic;
 Ci, LPC, INC_PC, S11 : out std_logic;
 LIR0, LIR1, LR4 : out std_logic;
 Clr_dec, Ld_dec : out std_logic;
 Req_Inpt, Req_Otpt : out std_logic;
 STOPLOOP: out std_logic;
 dbug_st : out std_logic_vector(3 downto 0);
 m5ctrl : out std_logic;
 count_out : out std_logic_vector (7 downto 0);
 decide : out std_logic
);
End controller2;
Architecture cont_arch of controller2 is
Type state_type is (RST, InstF, ID, OP0, OP1, OP2, OP3, OP4, OP5,OP6, OP7, OP8, OP9,
 OP10, OP11, OP12,OP13);
Signal STATE : state_type;
Signal count : std_logic_vector(7 downto 0); --shift reg for internal states
signal dbug_st_sig : std_logic_vector(3 downto 0); -- added for checking the states
begin
contl: process (clk, reset)
 begin
 if (reset='1') then
 STATE<=RST;
 elsif (clk'event and clk='1') then
 if (STATE=RST) then
 dbug_st_sig <= "1111";
 Snd_Inst <= '0';
 LMDR1 <= '1'; LMDR0 <= '1'; B_req <='0';
 CE <= '0'; R_W <='0'; Count <= "00000001";
 LMAR<='0'; LV<='0'; LZ<='0'; LS<='0';
 S0<='0'; S1<='0'; S2<='0'; S3<='0'; S4<='0';
 S5<='0'; S6<='0'; S7<='0'; S8<='0'; S9<='0';
 Ci<='0'; LR4<='0'; LIR0<='0'; LIR1<='0';
 Clr_dec <= '1'; Ld_dec <='0'; S11 <= '0';
 INC_PC<='0'; LPC<='0'; STATE <= InstF;
 S10 <= '0'; LR5 <= '0';
 req_inpt <= '0'; req_otpt <= '0';
 STOPLOOP <= '0';decide <= '0';
 m5ctrl <='0'; -- send shiftout to M5
 elsif (STATE=InstF) then
 dbug_st_sig <= "1110";
 m5ctrl <='0';
 decide <='0';
 LMDR1<='0'; LMDR0<='0'; S11 <= '0';
 LR5 <= '0'; S10 <='0'; Ci <='0';
 Ld_dec <='0'; S0 <= '1'; B_req <='0';

 248

 LPC <= '0'; INC_PC<='0'; LMAR<='0';
 req_inpt <= '0'; req_otpt <= '0';
 CE<='0'; LIR0<='0'; LIR1<='0'; R_W <='0'; --added R_W part here
 STOPLOOP <= '0';
 if ((Int_Pend='1')or (Count="00000010")) then
 if (Count="00000001") then
 LR4 <= '1';Clr_dec<='1';
 Count<= Count(6 downto 0)&'0';
 STATE<=InstF;
 elsif (Count="00000010") then
 LPC <= '1'; S4 <= '1'; S9 <= '1'; LR4 <='0';
 Count<=Count(6 downto 0)&'0'; STATE <= InstF;
 End if;
 elsif ((Int_Pend='0')or(Count="00000100")) then
 LMAR <= '1'; Clr_dec <= '1';
 S2 <= '0'; S3 <= '0'; Snd_Inst <= '1';
 STATE <= ID;
 if (Count="00000100") then
 Count <= "00"&Count(7 downto 2);
 End if;
 End if;
 elsif (STATE=ID) then
 dbug_st_sig <= "1101";
 if (Count="00000001") then
 if Int_rdy = '1' then --check to see if Instr ready
 LR4<='0'; LPC<='0'; LMAR<='0';
 CE <= '1'; R_W <='0'; Clr_dec <= '0';
 S10 <= '0'; Snd_Inst <= '0';
 LMDR1 <='1'; LMDR0<='0'; -- mdr output is mux16
 S11 <= '1'; S0 <= '0'; S1 <= '0'; -- mux output is instr_bus
 -- added m5ctrl signal to select IR0
 -- m5ctrl <='0';
 INC_PC <='1'; B_req <= '0';
 req_inpt <= '0'; req_otpt <= '0';
 Count <= Count(6 downto 0)&'0';
 STATE <= ID;
 else
 Count <= Count;
 STATE <= ID;
 end if;
 elsif (Count="00000010") then
 INC_PC <= '0'; CE <= '0';
 LIR0<='1'; -- instruction loaded in the IR0
 LMDR1 <= '1'; LMDR0 <= '1'; --hold MDR memory
 Count <= Count(6 downto 0)&'0';
 STATE <= ID;
 elsif (Count="00000100") then
 case (IR) is --decode opcode
 when "0000" => STATE <= OP0;
 when "0001" => STATE <= OP1;
 when "0010" => STATE <= OP2;
 when "0011" => STATE <= OP3;
 when "0100" => STATE <= OP4;
 when "0101" => STATE <= OP5;
 when "0110" => STATE <= OP6;
 when "0111" => STATE <= OP7;

 249

 when "1000" => STATE <= OP8;
 when "1001" => STATE <= OP9;
 when "1010" => STATE <= OP10;
 when "1011" => STATE <= OP11;
 when "1100" => STATE <= OP12;
 when "1101" => STATE <= OP13;

 when others => STATE <= RST; --error has occurred RST
 end case;
 Count <= "00"&Count(7 downto 2); LIR0 <= '0';
 End if;
 elsif (STATE=OP0) then
 dbug_st_sig <= "0000";
 if (Count="00000001") then
 S10 <= '0'; S11 <= '0';
 req_inpt <= '1'; req_otpt <= '0'; --signal input wanted
 if (IDV='0') then
 STATE <= OP0; Count <= Count;
 else
 STATE <= OP0;
 Count <= Count(6 downto 0)&'0';
 End if;
 elsif (Count="00000010") then
 req_inpt <= '0'; req_otpt <= '0';
 LMDR1<='1'; LMDR0 <='0';
 LMAR<='1'; S2<='1'; S0<='0';
 S3<='1'; S1<='0'; B_req <= '1';
 Count <= Count(6 downto 0)&'0';
 STATE <= OP0;
 elsif (Count="00000100") then
 if B_grnt = '1' then --check bus access
 LMDR1<='0'; LMDR0<='1';
 LMAR<='0';
 CE <='1'; R_W<='1';
 Count <= "00"&Count(7 downto 2);
 STATE <= InstF;
 else
 Count <= Count;
 STATE <= OP0;
 end if;
 end if;
 elsif (STATE=OP1) then
 dbug_st_sig <= "0001";
 if (Count = "00000001") then
 LMAR <= '1'; S2<='1'; S3<='1';
 S10 <= '0'; B_req <= '0'; S11 <= '0';
 Count <= Count(6 downto 0)&'0';
 STATE <= OP1;
 elsif (Count = "00000010") then
 LMAR <= '0'; B_req <= '1';
 Count <= Count(6 downto 0)&'0';
 STATE <= OP1;
 elsif (Count = "00000100") then
 if B_grnt = '1' then --check bus access
 CE <='1'; R_W<='0'; Ld_dec <='1';
 LMDR1<='0'; LMDR0<='0'; decide <= '1';

 250

 LMAR <= '0';
 Count <= Count(6 downto 0)&'0';
 STATE<=OP1;
 else
 Count <= Count;
 STATE<= OP1;
 end if;
 elsif (Count = "00001000") then
 CE <='0'; LMDR0<='1'; B_req <='0';
 S8<='1'; S7<='0'; Ci<='0';
 ld_dec <= '0'; clr_dec <= '1';
 Count <= "000"&Count(7 downto 3);
 STATE <= InstF;
 End if;
 elsif (STATE=OP2) then
 dbug_st_sig <= "0010";
 if (Count = "00000001") then
 LMAR<='1'; S2<='1'; S3<='1';
 LMDR1<='1'; LMDR0<='0'; B_req <= '1';
 S0<='1'; S1<='0'; S10 <= '0';
 Count <= Count(6 downto 0)&'0';
 STATE <= OP2; S11 <= '0';
 elsif (Count="00000010") then
 if B_grnt = '1' then
 LMAR <= '0'; LMDR1<='0'; LMDR0<='1';
 CE<='1'; R_W <= '1';
 Count <= '0'&Count(7 downto 1);
 STATE <= InstF;
 else
 Count <= Count;
 STATE <= OP2;
 end if;
 end if;
 elsif (STATE=OP3) then
 dbug_st_sig <= "0011";
 LPC <= '1'; S4 <= '0'; S9<='0';
 S10 <= '0'; B_req <= '0';
 STATE <= InstF; S11 <= '0';
 elsif (STATE=OP4) then
 dbug_st_sig <= "0100";
 if (Count="00000001") then
 LMAR <= '1'; S2<='1'; S3<='1';
 S10 <= '0'; B_req <= '0'; S11 <= '0';
 Count <= Count(6 downto 0)&'0';
 STATE <= OP4;
 elsif (Count="00000010") then
 LMAR <= '0'; B_req <= '1';
 Count <= Count(6 downto 0)&'0';
 STATE <= OP4;
 elsif (Count = "00000100") then
 if B_grnt = '1' then
 LMAR<='0'; --Ld_dec <='1';
 LMDR1 <='0'; LMDR0 <= '0'; --place in MDR
 CE <= '1'; R_W<='0'; S8<='0'; S7<='1';
 Ci<='0'; S5 <= '0'; S6<='0';
 Count <= Count(6 downto 0)&'0';

 251

 STATE <= OP4;
 else
 Count <= Count;
 STATE <= OP4;
 end if;
 elsif (Count="00001000") then
 CE <= '0'; --Ld_dec <= '0';
 LMDR0 <= '1'; S8 <= '1'; S7 <= '0';
 Ci <= '1'; --subtract
 --LMAR <= '1';
 S2<='0'; S3<='0'; B_req <= '0';
 Count <= Count(6 downto 0)&'0';
 STATE <= OP4;
 elsif (Count="00010000") then
 if ((S xor V)='0') then
 LMDR0<= '0';
 LPC<='1'; S4<='0'; S9<='0';
 Count <= "0000"&Count(7 downto 4);
 STATE <= InstF;
 else
 Count <= "0000"&Count(7 downto 4);
 STATE <= InstF;
 end if;
 end if;

-- elsif (STATE=OP5) then
-- dbug_st_sig <= "0101";
-- if (Count = "00000001") then
-- LMAR<='1'; S2<='1'; S3<='1';
-- S10 <= '0'; B_req <='0'; S11 <= '0';
-- Count <= Count(6 downto 0)&'0';
-- STATE<= OP5;
-- elsif (Count = "00000010") then
-- LMAR <= '0'; B_req <= '1';
--
-- Count <= Count(6 downto 0)&'0';
-- STATE<= OP5;
-- elsif (Count = "00000100") then
-- if B_grnt = '1' then
-- LMAR<='0';
-- CE<='1'; R_W<='0';
-- S8<='1'; S7<='0'; Ci<='1';
-- s11<='0'; s1<='1'; s0<='0';
-- LMDR1 <='1'; LMDR0 <= '0';
-- S2<='1'; S3<='1'; LMAR <= '1';
-- Count <= Count(6 downto 0)&'0';
-- STATE<=OP5;
-- else
-- Count <= Count;
-- STATE <= OP5;
-- end if;
-- elsif (Count = "00001000") then
-- LMDR1 <='0'; LMDR0 <= '1';
-- R_W <='1'; CE <='1';
-- LMAR <= '0';
-- Count <= Count(6 downto 0)&'0';

 252

-- STATE <= OP5;
-- elsif (Count = "00010000") then
-- B_req <='0';
-- Count <= "0000" & Count(7 downto 4);
-- STATE <= InstF;
-- end if;

-- Replaced logic for subtraction with logic for addition making suitable changes in
-- ALU signals.
 elsif (STATE=OP5) then
 dbug_st_sig <= "0101";
 if (Count = "00000001") then
 LMAR <= '1'; S2<='1'; S3<='1';
 S10 <= '0'; B_req <= '0'; S11 <= '0';
 Count <= Count(6 downto 0)&'0';
 STATE <= OP5;
 elsif (Count = "00000010") then
 LMAR <= '0'; B_req <= '1';
 Count <= Count(6 downto 0)&'0';
 STATE <= OP5;
 elsif (Count = "00000100") then
 if B_grnt = '1' then --check bus access
 CE <='1'; R_W<='0'; Ld_dec <='1';
 LMDR1<='0'; LMDR0<='0';
 LMAR <= '0';
 decide <= '1';
 Count <= Count(6 downto 0)&'0';
 STATE<=OP5;
 else
 Count <= Count;
 STATE<= OP5;
 end if;
 elsif (Count = "00001000") then
 CE <='0'; LMDR0<='1'; B_req <='0';
 S8<='1'; S7<='0'; Ci<='1';
 ld_dec <= '0'; clr_dec <= '1';
 Count <= "000"&Count(7 downto 3);
 STATE <= InstF;
 End if;

-- End changed part

 elsif (STATE=OP6) then
 dbug_st_sig <= "0110";
 if (Count = "00000001") then
 LMAR<='1'; S2<='1'; S3<='1';
 S10 <= '0'; B_req <= '0';
 Count <= Count(6 downto 0)&'0';
 STATE <= OP6; S11 <= '0';
 elsif (Count = "00000010") then
 LMAR <='0'; B_req <= '1';

 253

 Count <= Count(6 downto 0)&'0';
 STATE <= OP6;
 elsif (Count = "00000100") then
 if B_grnt = '1' then
 LMAR<='0';
 LMDR1<='0'; LMDR0<='0';
 CE<='1'; R_W<='0';
 req_inpt <= '0'; req_otpt <= '1'; --signal output rdy
 Count <= Count(6 downto 0)&'0';
 STATE <= OP6;
 else
 Count <= Count;
 STATE <= OP6;
 end if;
 elsif (Count = "00001000") then
 CE<='0';
 if (ODR='0') then
 LMDR1 <='1'; LMDR0 <= '1'; --MAINTAIN DATA
 STATE <= OP6; Count <= Count;
 B_req <= '0';
 else
 LMDR1<='0'; LMDR0<='1'; B_req <= '0';
 req_inpt <= '0'; req_otpt <= '0';
 Count <= "000"&Count(7 downto 3);
 STATE <= InstF;
 end if;
 end if;
 elsif (STATE=OP7) then
 dbug_st_sig <= "0111";
 if (Count = "00000001") then
 LMAR <= '1'; S2 <='1'; S3<='1';
 Count <= Count(6 downto 0)&'0';
 S10 <='0'; B_req <= '0';
 STATE <= OP7; S11 <= '0';
 elsif (Count = "00000010") then
 LMAR <= '0'; B_req <= '1';
 Count <= Count(6 downto 0)&'0';
 STATE <= OP7;
 elsif (Count = "00000100") then
 if B_grnt = '1' then
 LMAR<='0'; Ld_dec <= '1';
 LMDR1<='0'; LMDR0<='0';
 CE<='1'; R_W<='0';
 decide <= '1';
 Count <= Count(6 downto 0)&'0';
 STATE <= OP7;
 else
 Count <= Count;
 STATE <= OP7;
 end if;
 elsif (Count = "00001000") then
 CE<='0'; clr_dec <= '1'; B_req <= '0';
 LMDR0<='1'; ld_dec <= '0';
 S9<='0'; S7<='1'; S8<='0';
 Ci<='0'; S5<='0'; S6<='0';
 Count <= "000"&Count(7 downto 3);

 254

 STATE <= InstF;
 end if;
 elsif (STATE=OP8) then -- STOP PROCESS LOOP
 dbug_st_sig <= "1000";
 if (Count="00000001") then
 LMAR <= '1'; S2<='1'; S3<='1';
 S10 <= '0'; B_req <= '0'; S11 <= '0';
 Count <= Count(6 downto 0)&'0';
 STATE <= OP8;
 elsif (Count="00000010") then
 LMAR <= '0'; B_req <= '1';
 Count <= Count(6 downto 0)&'0';
 STATE <= OP8;
 elsif (Count = "00000100") then
 if B_grnt = '1' then
 LMAR<='0';
 LMDR1 <='0'; LMDR0 <= '0'; --place in MDR
 CE <= '1'; R_W<='0'; S8<='0'; S7<='1';
 Ci<='0'; S5 <= '0'; S6<='0';
 Count <= Count(6 downto 0)&'0';
 STATE <= OP8;
 else
 Count <= Count;
 STATE <= OP8;
 end if;
 elsif (Count="00001000") then
 CE <= '0';
 LMDR0 <= '1'; S8 <= '1'; S7 <= '0';
 Ci <= '1'; --subtract
 S2<='0'; S3<='0'; B_req <= '0';
 Count <= Count(6 downto 0)&'0';
 STATE <= OP8;
 elsif (Count="00010000") then
 if (Z='1') then
 STOPLOOP <= '1';
 LPC<='1'; S4<='0'; S9<='0';
 end if;
 Count <= "0000"&Count(7 downto 4);
 STATE <= InstF;
 end if;
 elsif (STATE=OP9) then
 dbug_st_sig <= "1001";
 if (Count = "00000001") then
 LMDR1 <= '1'; LMDR0 <= '1';
 S11 <= '0'; Ld_dec <= '1';
 -- extra logic added to get the output of IR0 directly to R3
 m5ctrl <='0';
 Count <= Count(6 downto 0)&'0';
 STATE <= OP9; B_req <= '0';
 elsif (Count = "00000010") then
 LMDR1 <= '0'; LMDR0 <= '1';
 S8 <= '0'; S7 <= '1'; Ci <= '0';
 S5 <= '0'; S6 <= '0'; S10 <='0';
 Ld_dec <= '0'; clr_dec <= '1';
 Count <= '0'&Count(7 downto 1);
 STATE <= InstF;

 255

 end if;
 elsif (STATE=OP10) then
 dbug_st_sig <= "1010";
 B_req <= '0';
 if (Count = "00000001") then
 -- added to get output from shifter
 m5ctrl <= '1';
 S0 <= '1'; S1 <= '1'; S10 <='0'; --Ld MDR with 0
 LMDR1 <= '1'; LMDR0 <= '0';
 ld_dec<='1'; S11 <= '0';
 Count <= Count(6 downto 0) &'0';
 STATE <= OP10;
 elsif (Count = "00000010") then
 LMDR1 <='0'; LMDR0 <= '1'; --ADD one, INC OP
 S8 <= '1'; S7 <='1'; Ci <='1';
 S5 <= '0'; S6 <='0';
 ld_dec <= '0'; clr_dec<='1';
 Count <= '0'& Count(7 downto 1);
 STATE <= InstF;
 end if;
 elsif (STATE=OP11) then
 dbug_st_sig <= "1011";
 B_req <= '0';
 if (Count = "00000001") then
 LR5 <= '1'; S11 <= '0'; --ld_dec <= '1';
 ld_dec <= '0';
 Count <= Count(6 downto 0)&'0';
 STATE <= OP11;
 elsif (Count = "00000010") then
 LR5 <= '0'; S10 <='1';
 --ld_dec <= '0'; clr_dec <= '1';
 -- we need R3_out to appear at MAR input
 -- so m5ctrl<= '1'; so that shifter output is selected and M2 output
 -- should be R3_out(7 downto 0) so set proper values for s3 and s2 => "11"
 m5ctrl <= '1'; -- get output from shifter
 ld_dec <= '1'; clr_dec <= '0';
 S8 <= '1'; S7 <= '0'; Ci <= '0';
 S5 <= '0'; S6 <= '0';
 s3<= '1'; s2 <= '1';
 Count <= Count(6 downto 0)&'0';
 State <= OP11;
 elsif (count = "00000100") then
 LMAR <= '1';
 ld_dec<='0';clr_dec <='1';
 Count <= "00"& Count(7 downto 2);
 STATE <= InstF;
 end if;
 elsif (STATE=OP12) then -- sub rd, imm
 dbug_st_sig <= "1100";
 B_req <= '0';
 if (Count = "00000001") then
 LR5 <= '1'; S11 <= '0'; ld_dec <= '1';
 Count <= Count(6 downto 0)&'0';
 STATE <= OP12;
 elsif (Count = "00000010") then
 LR5 <= '0'; S10 <='1';

 256

 ld_dec <= '0'; clr_dec <= '1';
 S8 <= '1'; S7 <= '0'; Ci <= '1';
 S5 <= '0'; S6 <= '0';
 Count <= '0'&Count(7 downto 1);
 STATE <= InstF;
 end if;

-- addition of and extra no -op state ----

elsif (STATE=OP13) then
 dbug_st_sig <= "1101";
 if (Count = "00000001") then
 LMAR<='1'; S2<='1'; S3<='1';
 S10 <= '0'; B_req <= '0';
 Count <= Count(6 downto 0)&'0';
 STATE <= OP6; S11 <= '0';
 elsif (Count = "00000010") then
 LMAR <='0';
 Count <= Count(6 downto 0)&'0';
 STATE <= OP13;
 elsif (Count = "00000100") then
 -- if B_grnt = '1' then
 LMAR<='0';
 -- LMDR1<='0'; LMDR0<='0';
 -- CE<='1'; R_W<='0';
 -- req_inpt <= '0'; req_otpt <= '1'; --signal output rdy
 Count <= Count(6 downto 0)&'0';
 STATE <= OP13;
 --else
 -- Count <= Count;
 -- STATE <= OP13;
 -- end if;
 elsif (Count = "00001000") then
 CE<='0';
 Count <= "000"&Count(7 downto 3);
 STATE <= InstF;
 -- end if;
 end if;

 else STATE <= RST; --error, goto reset state
 end if;
 end if;
end process;
 dbug_st <=dbug_st_sig;
 count_out <= count;
end architecture;

Module Name : mempe.vhd

--The IEEE standard 1164 package, declares std_logic, rising_edge(), etc.
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;
-- synopsys translate_off

 257

Library XilinxCoreLib;

-- synopsys translate_on

entity mem_1 is
 port (data_bus : inout std_logic_vector(15 downto 0);
 Idata_bus : inout std_logic_vector(15 downto 0);
 clk, rst, CE: in std_logic;
 LMAR : in std_logic;
 LMDR1, LMDR0 : in std_logic;
 Addr : in std_logic_vector(7 downto 0);
 mux16 : in std_logic_vector(15 downto 0);
 Fin, Sel_Ibus : out std_logic;
 Maddr_out : out std_logic_vector(7 downto 0));
end entity;

architecture mem_arch of mem_1 is
--
-- This file was created by the Xilinx CORE Generator tool, and --
-- is (c) Xilinx, Inc. 1998, 1999. No part of this file may be --
-- transmitted to any third party (other than intended by Xilinx) --
-- or used without a Xilinx programmable or hardwire device without --
-- Xilinx's prior written permission. --
--
component proc_imem
 port (
 addr: IN std_logic_VECTOR(7 downto 0);
 clk: IN std_logic;
 din: IN std_logic_VECTOR(15 downto 0);
 dout: OUT std_logic_VECTOR(15 downto 0);
 we: IN std_logic);
end component;

signal Mq_out : std_logic_vector(15 downto 0);
signal r_en : std_logic;
signal Mdata_out, Mdata_in : std_logic_vector(15 downto 0);
signal sel : std_logic_vector(1 downto 0);
signal q_out : std_logic_vector(7 downto 0);
signal data_in, data_out : std_logic_vector(15 downto 0);
signal Idata_out, Ddata_out : std_logic_vector(15 downto 0);
signal one, zero : std_logic;

Begin
one <= '1';
zero <= '0';

MARreg: process (clk, LMAR, rst) --MAR register
 begin
 if rst = '1' then
 q_out <= (others=>'0');
 elsif (clk'event and clk='1') then
 if (LMAR='1') then
 q_out <= addr;
 else q_out <= q_out;

 258

 end if;
 end if;
 end process;

Maddr_out <= q_out;
sel_Ibus <= '0' when (q_out = "00000000" or q_out= "00000001" or q_out="00000010") else
 '1'; --determine source of Instruction

FIN <= '1' when q_out = "00000000" else --get instr from PE Controller not IMEM
 '0';

data_bus <= Mq_out when (r_en = '0') else
 (others=>'Z');

--
-- Component Instantiation
--
Instr_mem : proc_imem port map (addr => q_out, clk => clk, din => data_in,
 dout => Idata_out, we => ZERO);

Idata_bus <= Idata_out when (CE='0') else
 (others=>'0');

--MDR register
Mdata_in <= Data_bus when r_en='1' else
 (others=>'0');

r_en <= '0' when ((LMDR1='0')and(LMDR0='1')) else
 '1';

sel <= LMDR1 & LMDR0;

regout: process (clk, rst)
 begin
 if rst = '1' then
 Mq_out <= (others=>'0');
 elsif (clk'event and clk='0') then -- at negative edge of the clock
 case (sel) is
 when "00" => Mq_out <= Mdata_in;
 when "01" => Mq_out <= Mq_out;
 when "10" => Mq_out <= mux16;
 when "11" => Mq_out <= Mq_out;
 when others => null;
 end case;
 end if;
 end process;

end architecture;

Module Name : proc_imem.xco (Xilinx IP Core)

--
-- This file is owned and controlled by Xilinx and must be used --
-- solely for design, simulation, implementation and creation of --

 259

-- design files limited to Xilinx devices or technologies. Use --
-- with non-Xilinx devices or technologies is expressly prohibited --
-- and immediately terminates your license. --
-- --
-- XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS" --
-- SOLELY FOR USE IN DEVELOPING PROGRAMS AND SOLUTIONS FOR --
-- XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE, OR INFORMATION --
-- AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, APPLICATION --
-- OR STANDARD, XILINX IS MAKING NO REPRESENTATION THAT THIS --
-- IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT, --
-- AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE --
-- FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY --
-- WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE --
-- IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR --
-- REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF --
-- INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS --
-- FOR A PARTICULAR PURPOSE. --
-- --
-- Xilinx products are not intended for use in life support --
-- appliances, devices, or systems. Use in such applications are --
-- expressly prohibited. --
-- --
-- (c) Copyright 1995-2003 Xilinx, Inc. --
-- All rights reserved. --
--
-- You must compile the wrapper file proc_imem.vhd when simulating
-- the core, proc_imem. When compiling the wrapper file, be sure to
-- reference the XilinxCoreLib VHDL simulation library. For detailed
-- instructions, please refer to the "CORE Generator Guide".

-- The synopsys directives "translate_off/translate_on" specified
-- below are supported by XST, FPGA Compiler II, Mentor Graphics and Synplicity
-- synthesis tools. Ensure they are correct for your synthesis tool(s).

-- synopsys translate_off
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

Library XilinxCoreLib;
ENTITY proc_imem IS
 port (
 addr: IN std_logic_VECTOR(7 downto 0);
 clk: IN std_logic;
 din: IN std_logic_VECTOR(15 downto 0);
 dout: OUT std_logic_VECTOR(15 downto 0);
 we: IN std_logic);
END proc_imem;

ARCHITECTURE proc_imem_a OF proc_imem IS

component wrapped_proc_imem
 port (
 addr: IN std_logic_VECTOR(7 downto 0);
 clk: IN std_logic;
 din: IN std_logic_VECTOR(15 downto 0);
 dout: OUT std_logic_VECTOR(15 downto 0);

 260

 we: IN std_logic);
end component;

-- Configuration specification
 for all : wrapped_proc_imem use entity XilinxCoreLib.blkmemsp_v5_0(behavioral)
 generic map(
 c_sinit_value => "0",
 c_reg_inputs => 0,
 c_yclk_is_rising => 1,
 c_has_en => 0,
 c_ysinit_is_high => 1,
 c_ywe_is_high => 1,
 c_ytop_addr => "1024",
 c_yprimitive_type => "16kx1",
 c_yhierarchy => "hierarchy1",
 c_has_rdy => 0,
 c_has_limit_data_pitch => 0,
 c_write_mode => 0,
 c_width => 16,
 c_yuse_single_primitive => 0,
 c_has_nd => 0,
 c_enable_rlocs => 0,
 c_has_we => 1,
 c_has_rfd => 0,
 c_has_din => 1,
 c_ybottom_addr => "0",
 c_pipe_stages => 0,
 c_yen_is_high => 1,
 c_depth => 256,
 c_has_default_data => 0,
 c_limit_data_pitch => 18,
 c_has_sinit => 0,
 c_mem_init_file => "proc_imem.mif",
 c_default_data => "0",
 c_ymake_bmm => 0,
 c_addr_width => 8);
BEGIN

U0 : wrapped_proc_imem
 port map (
 addr => addr,
 clk => clk,
 din => din,
 dout => dout,
 we => we);
END proc_imem_a;

-- synopsys translate_on

Module Name : mux16b.vhd

--The IEEE standard 1164 package, declares std_logic, rising_edge(), etc.
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

 261

Entity mux16_4x1 is
 Port (line_out : out std_logic_vector(15 downto 0);
 Sel : in std_logic_vector(1 downto 0);
 line_in3,line_in2,line_in1,line_in0 : in std_logic_vector(15 downto 0));
end entity;

architecture mux16 of mux16_4x1 is

begin

it3: process(Sel,line_in3,line_in2,line_in1,line_in0)
 begin
 case (Sel) is
 when "00" => line_out <= line_in0;
 when "01" => line_out <= line_in1;
 when "10" => line_out <= line_in2;
 when "11" => line_out <= line_in3;
 when others =>line_out <= (others=>'X');
 end case;
 end process;

end architecture;

Module Name : mux16b5.vhd

--The IEEE standard 1164 package, declares std_logic, rising_edge(), etc.
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

Entity mux16_5x1 is
 Port (line_out : out std_logic_vector(15 downto 0);
 Sel : in std_logic_vector(2 downto 0);
 line_in4, line_in3, line_in2: in std_logic_vector(15 downto 0);
 line_in1, line_in0 : in std_logic_vector(15 downto 0));
end entity;

architecture mux165 of mux16_5x1 is

begin

it3: process(Sel,line_in4,line_in3,line_in2,line_in1,line_in0)
 begin
 case (Sel) is
 when "000" => line_out <= line_in0;
 when "001" => line_out <= line_in1;
 when "010" => line_out <= line_in2;
 when "011" => line_out <= line_in3;
 when "100" => line_out <= line_in4;
 when others => null;
 end case;
 end process;

 262

end architecture;

Module Name : mux_2x1.vhd

--The IEEE standard 1164 package, declares std_logic, rising_edge(), etc.
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

Entity mux16bit_2x1 is
 Port (line_out : out std_logic_vector(15 downto 0);
 Sel : in std_logic;
 line_in1,line_in0 : in std_logic_vector(15 downto 0));
end entity;

architecture myarch of mux16bit_2x1 is

begin

muxproc: process(Sel,line_in1,line_in0)
 begin
 case Sel is
 when '0' => line_out <= line_in0;
 when '1' => line_out <= line_in1;
 when others =>NULL;--line_out <= (others=>'X');
 end case;
 end process;

end architecture;

Module Name : mux8b.vhd

--The IEEE standard 1164 package, declares std_logic, rising_edge(), etc.
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

Entity mux8_4x1 is
 Port (line_out : out std_logic_vector(7 downto 0);
 Sel : in std_logic_vector(1 downto 0);
 line_in3,line_in2,line_in1,line_in0 : in std_logic_vector(7 downto 0));
end entity;

architecture mux8 of mux8_4x1 is

begin

it3: process(Sel,line_in3,line_in2,line_in1,line_in0)
 begin
 case (Sel) is
 when "00" => line_out <= line_in0;
 when "01" => line_out <= line_in1;
 when "10" => line_out <= line_in2;

 263

 when "11" => line_out <= line_in3;
 when others =>line_out <= (others=>'X');
 end case;
 end process;

end architecture;

Module Name : pc.vhd

--The IEEE standard 1164 package, declares std_logic, rising_edge(), etc.
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

Entity PC is
 Port (q_out : buffer std_logic_vector(7 downto 0);
 --q_out : inout std_logic_vector(7 downto 0);
 clk, clr : in std_logic;
 D : in std_logic_vector(7 downto 0);
 load, inc : in std_logic);
end entity;

architecture pc_arch of PC is

signal d_in : std_logic_vector(7 downto 0);

begin

it5: process (clk, clr)
 begin
 if (clr='1') then
 q_out <= (others=>'0');
 elsif (clk'event and clk='1') then
 if ((inc='1') and (load='0')) then
 q_out <= (q_out+1);
 elsif ((load='1') and (inc='0')) then
 q_out <= D;
 else q_out <= q_out;
 end if;
 end if;
 end process;

end architecture;

Module Name : reg_bin.vhd
-- This Register isolates the Data bus from the Input Mux before the ALU
-- which prevents "X" and "Z"s from appearing on the mux output
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity Reg_B_in is
port(din: in std_logic_vector(15 downto 0); -- data from data_bus

 264

 dout:out std_logic_vector(15 downto 0); -- register output
 clk: in std_logic; -- clk
 rst: in std_logic; -- Asynch Reset
 ctrlreg: in std_logic -- Control signal
);
end Reg_B_in;
architecture Behavioral of Reg_B_in is
begin
process(rst,clk)
begin
if rst = '1' then
 dout<=(others=>'0');
elsif(clk'event and clk='1') then
 case ctrlreg is
 when '0' => dout <=(others=>'0');
 when others => dout <= din;
 end case;
end if;
end process;
end Behavioral;

Module Name : regpe.vhd

--The IEEE standard 1164 package, declares std_logic, rising_edge(), etc.
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity REGS is
 port (q_out : buffer std_logic_vector(15 downto 0);
 --q_out : inout std_logic_vector(15 downto 0);
 clk, clr : in std_logic;
 D : in std_logic_vector(15 downto 0);
 Load : in std_logic);
End entity;

Architecture regs_arch of regs is

Begin

It: process(clk, clr)
 Begin
 if (clr='1') then
 q_out <= (others=>'0');
 elsif (clk'event and clk='0') then
 if (load='1') then
 q_out <= D;
 else
 q_out <= q_out;
 end if;
 end if;
 end process;

 265

end architecture;

Module Name : shifter_16.vhd

--The IEEE standard 1164 package, declares std_logic, rising_edge(), etc.
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity Shifter_16 is
 port(ALU_out : in std_logic_vector(15 downto 0);
 Sel : in std_logic_vector(1 downto 0);
 Shf_out : out std_logic_vector(15 downto 0)) ;
End entity;

Architecture shift of shifter_16 is

begin

it2: process (ALU_out, Sel)
 begin
 case (Sel) is
 when "00" => Shf_out <= ALU_out;
 when "01" => Shf_out <= (ALU_out(14 downto 0) &'0');
 when "10" => Shf_out <= ('0'&ALU_out(15 downto 1));
 when "11" => Shf_out <= (others=>'0');
 when others => null;
 end case;
 end process;

end architecture;

Module Name : token_mapr.vhd

library IEEE;
use IEEE.std_logic_1164.all;

entity Token_mapr is
 port (
 token_bus: inout STD_LOGIC_VECTOR (31 downto 0);
 --bus_req: buffer STD_LOGIC;
 bus_req: inout STD_LOGIC;
 clk : in std_logic;
 rst : in std_logic;
 bus_grnt: in STD_LOGIC;
 Avail3: in STD_LOGIC_VECTOR (4 downto 0);
 Avail4: in STD_LOGIC_VECTOR (4 downto 0);
 Avail2: in STD_LOGIC_VECTOR (4 downto 0);
 Avail5: in STD_LOGIC_VECTOR (4 downto 0);
 obstemp6_prtdbug,t6_prtdbug: out std_logic_vector(22 downto 0)
 --Pl_in_dbug :out std_logic_vector(6 downto 0);
 --tok_in_dbug : out std_logic_vector(16 downto 0)
);
end Token_mapr;

 266

architecture Token_mapr_arch of Token_mapr is

component PRT_Cntl
 port (
 Tokbus: inout STD_LOGIC_VECTOR (31 downto 0);
 clk : in std_logic;
 rst : in std_logic;
 tbus_grant: in STD_LOGIC;
 --tbus_req: buffer STD_LOGIC;
 tbus_req: inout STD_LOGIC;
 tok_in : out std_logic_vector(16 downto 0);
 Pl_in : out std_logic_vector(6 downto 0);
 Addr : out std_logic_vector(7 downto 0);
 clr : out std_logic;
 q2 : out std_logic;
 chip_on : out std_logic;
 nxt_token : in std_logic_vector(22 downto 0)
);
end component;

component dy_load_bal_ckt
 port(Clk: in std_logic;
 Clear : in std_logic;
 On1 : in std_logic;
 Tok_in: in std_logic_vector(16 downto 0);
 PL_in: in std_logic_vector(6 downto 0);
 Aval0, Aval1, Aval2,Aval3,Aval4,Aval5,Aval6,Aval7 : in std_logic_vector(4 downto 0);
 Addr: in std_logic_vector(7 downto 0);
 OBUS: out std_logic_vector(22 downto 0);
 Q2: in std_logic;
 obstemp6_dbug,t6_dbug:out std_logic_vector(22 downto 0));
end component;

signal prt_tok_in : std_logic_vector(16 downto 0);
signal prt_pl_in : std_logic_vector(6 downto 0);
signal prt_addr : std_logic_vector(7 downto 0);
signal prt_clr, prt_q2, en : std_logic;
signal prt_out : std_logic_vector(22 downto 0);
signal five1 : std_logic_vector(4 downto 0);

begin

 five1 <= "11111";

 C1: PRT_CNTL port map(Tokbus=> token_bus, clk => clk, rst => rst, tbus_grant=> bus_grnt,
 tbus_req=> bus_req, tok_in => prt_tok_in, Pl_in =>prt_pl_in,
 Addr =>prt_addr, clr =>prt_clr, q2 => prt_q2, chip_on => en,
 nxt_token => prt_out);

 M1: dy_load_bal_ckt port map (Clk => clk, Clear => prt_clr, On1 => en, Tok_in =>prt_tok_in,
 PL_in => prt_pl_in, Aval0=> five1, Aval1=> Avail2, Aval2=> Avail3,
 Aval3=> Avail4, Aval4=> Avail5, Aval5=> five1, Aval6=> five1,
 Aval7=> five1, Addr=> prt_addr, OBUS=> prt_out, Q2=> prt_q2,
 obstemp6_dbug =>obstemp6_prtdbug,t6_dbug=>t6_prtdbug);
end Token_mapr_arch;

 267

Module Name : dy_load_bal_ckt.vhd

-- FILENAME : dlbc.v
-- MODULE : dy_load_bal_ckt
--The IEEE standard 1164 package, declares std_logic, rising_edge(), etc.
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;
entity dy_load_bal_ckt is
 port(Clk: in std_logic;
 Clear : in std_logic;
 On1 : in std_logic;
 Tok_in: in std_logic_vector(16 downto 0);
 PL_in: in std_logic_vector(6 downto 0);
 Aval0, Aval1, Aval2,Aval3,Aval4,Aval5,Aval6,Aval7 : in std_logic_vector(4 downto 0);
 Addr: in std_logic_vector(7 downto 0);
 OBUS: out std_logic_vector(22 downto 0);
 Q2: in std_logic;
 obstemp6_dbug,t6_dbug:out std_logic_vector(22 downto 0)
);
End dy_load_bal_ckt;
Architecture mapr of dy_load_bal_ckt is
component mcntrlr
 port(start : buffer std_logic;
 c1,c2,c3,c4,c5,c6,c7,c8,c9 : out std_logic;
 q1, q2, q3: in std_logic;
 On1, clr : in std_logic;
 Clk: in std_logic);
End component;
component dec3x5
 port(do: out std_logic_vector(5 downto 1);
 s : in std_logic_vector(2 downto 0));
end component;
component map_Fifo
 port (data_out : out std_logic_vector(16 downto 0);
 data_in: in std_logic_vector(16 downto 0);
 stack_full : inout std_logic;
 sigl : out std_logic;
 clk, rst : in std_logic;
 write_to_stack, read_from_stack: in std_logic);
end component;
component ic_net
 port(A1,A2,A3,A4,A5 : out std_logic_vector(5 downto 1);
 S1,S2,S3,S4,S5 : in std_logic_vector(7 downto 1);
 Aval0,Aval1,Aval2 : in std_logic_vector(5 downto 1);
 Aval3,Aval4,Aval5 : in std_logic_vector(5 downto 1);
 Aval6,Aval7 : in std_logic_vector(5 downto 1));
End component;
component register_R0
 port(outr0 : buffer std_logic_vector(16 downto 0);
 clk, clear : in std_logic;
 Prt_in : in std_logic_vector(16 downto 0);
 C2 : in std_logic);

 268

End component;
component mux_2x1
 port(muxout : out std_logic;
 in1, in0 : in std_logic;
 sel : in std_logic);
end component;
component ram_unit
 port (Ramout : out std_logic_vector(6 downto 0);
 Ramin : in std_logic_vector(6 downto 0);
 PN : in std_logic_vector(4 downto 0);
 C4, c9, Dec_in, clk : in std_logic);
End component;
component regA1_5
 port(out_reg : buffer std_logic_vector(4 downto 0);
 clk, clear : in std_logic;
 reg_in : in std_logic_vector(4 downto 0);
 c7 : in std_logic);
end component;
component reg_Pl
 port(out_pl : buffer std_logic_vector(6 downto 0);
 clk, clear : in std_logic;
 Pl_in : in std_logic_vector(6 downto 0);
 C5 : in std_logic);
End component;
component comparator
 port(a_lt_b: out std_logic;
 a_gte_b : out std_logic;
 a, b : in std_logic_vector(5 downto 1));
end component;
component regR1_4
 port(regout : buffer std_logic_vector(22 downto 0);
 clk, clear : in std_logic;
 regin : in std_logic_vector(22 downto 0);
 c5, c6, y : in std_logic);
end component;
component regR5
 port(regout : buffer std_logic_vector(22 downto 0);
 clk, clear : in std_logic;
 regin : in std_logic_vector(22 downto 0);
 c5,c6,y,f : in std_logic);
end component;
component regR6
 port(regout : buffer std_logic_vector(22 downto 0);
 clk, clear : in std_logic;
 regin : in std_logic_vector(22 downto 0);
 c8, c10, c11 : in std_logic);
end component;
component regR7
 port(regout : buffer std_logic_vector(22 downto 0);
 clk, clear : in std_logic;
 regin : in std_logic_vector(22 downto 0);
 c5, c6, y, F : in std_logic);
end component;
Constant one : std_logic := '1';
Constant zero: std_logic := '0';
Signal fifo_out, OUT_R0: std_logic_vector(16 downto 0);

 269

Signal dec_out: std_logic_vector(5 downto 1);
Signal PN, A1, A2, A3, A4, A5, OUT_A1, OUT_A2 : std_logic_vector(4 downto 0);
Signal OUT_A3, OUT_A4, OUT_A5: std_logic_vector(4 downto 0);
Signal PL_out1, PL_out2, PL_out3, PL_out4: std_logic_vector(6 downto 0);
Signal PL_out5,PL1, PL2, PL3, PL4, PL5: std_logic_vector(6 downto 0);
Signal ORC2_C7,q1,C1, C2, C3, C4, C5, C6, C7, C8, C9: std_logic;
Signal a, b, c, d, e, f, g, h, i, j, a_bar, b_bar, c_bar: std_logic;
signal d_bar, e_bar, f_bar, g_bar, h_bar, i_bar, j_bar: std_logic;
signal Y1, Y2, Y3, Y4, Y5, start, stack_full: std_logic;
signal F1, fifo_wr : std_logic;
signal t1,t2,t3,t4,t5,t6, t7 : std_logic_vector(22 downto 0);
signal OBUS_sig : std_logic_vector(22 downto 0);
--signal OBStemp : std_logic_vector(22 downto 0);
-- trying to dbug the OBUStemp buffer problem
signal OBStemp1,OBStemp2,OBStemp3 : std_logic_vector(22 downto 0);
signal OBStemp4,OBStemp5,OBStemp6,OBStemp7 : std_logic_vector(22 downto 0);
signal OBStemp5_7 : std_logic_vector(22 downto 0);
--signal not_F : std_logic;
begin
--**** FIFO ****
FI_EN: process (tok_in)
 begin
 if tok_in = "00000000000000000" then
 fifo_wr <= '0';
 else
 fifo_wr <= '1';
 end if;
 end process;

f0: map_FIFO port map(fifo_out, tok_in, stack_full, q1, CLK, CLEAR, fifo_wr, C1);
--**** REGISTER R0 ****
r0: register_R0 port map(OUT_R0, CLK, CLEAR, fifo_out, C1);
--**** DECODER ****
d0: dec3x5 port map(dec_out, ADDR(2 downto 0));
--**** OR_(C2&C7) ****
orc2_c7 <= c2 or c7;

--**** MUX AFTER REG_R0 ****
mux_r0_0: mux_2x1 port map(PN(0), ADDR(3), OUT_R0(8), C7);
mux_r0_1: mux_2x1 port map(PN(1), ADDR(4), OUT_R0(9), C7);
mux_r0_2: mux_2x1 port map(PN(2), ADDR(5), OUT_R0(10), C7);
mux_r0_3: mux_2x1 port map(PN(3), ADDR(6), OUT_R0(11), C7);
mux_r0_4: mux_2x1 port map(PN(4), ADDR(7), OUT_R0(12), C7);
--**** RAM_UNITS 1_5 ****
ram0: ram_unit port map(PL_out1, PL_in, PN, C2, C7, dec_out(1), clk);
ram1: ram_unit port map(PL_out2, PL_in, PN, C2, C7, dec_out(2), clk);
ram2: ram_unit port map(PL_out3, PL_in, PN, C2, C7, dec_out(3), clk);
ram3: ram_unit port map(PL_out4, PL_in, PN, C2, C7, dec_out(4), clk);
ram4: ram_unit port map(PL_out5, PL_in, PN, C2, C7, dec_out(5), clk);
--**** REGISTER FOR LOADING PL FROM RAM ****
reg_PL0: reg_PL port map(PL1, CLK, CLEAR, PL_out1, C3);
reg_PL1: reg_PL port map(PL2, CLK, CLEAR, PL_out2, C3);
reg_PL2: reg_PL port map(PL3, CLK, CLEAR, PL_out3, C3);
reg_PL3: reg_PL port map(PL4, CLK, CLEAR, PL_out4, C3);
reg_PL4: reg_PL port map(PL5, CLK, CLEAR, PL_out5, C3);
--**** IC_NET(Nx5) ****

 270

ic0: ic_net port map(A1, A2, A3, A4, A5, PL1, PL2, PL3, PL4, PL5, Aval0, Aval1, Aval2, Aval3, Aval4,
Aval5, Aval6, Aval7);
--**** DETERMINE WHETHER THERE IS A FAULT IN PL5 ****
faultdet: process (A1,A2,A3,A4,A5)
 begin
 if ((A1="11111") and (A2="11111") and (A3="11111")
 and (A4="11111")and (A5="11111")) then
 F1<='1';
 else
 F1<='0';
 end if;
 End process;

--**** REGISTER FOR LOADING AVAILABILITIES ****
regA0: regA1_5 port map(OUT_A1, CLK, CLEAR, A1, C4); --changed from c5
regA1: regA1_5 port map(OUT_A2, CLK, CLEAR, A2, C4);
regA2: regA1_5 port map(OUT_A3, CLK, CLEAR, A3, C4);
regA3: regA1_5 port map(OUT_A4, CLK, CLEAR, A4, C4);
regA4: regA1_5 port map(OUT_A5, CLK, CLEAR, A5, C4);
--**** COMPARATORS ****
com1: comparator port map(a, a_bar, OUT_A1, OUT_A2);
com2: comparator port map(b, b_bar, OUT_A1, OUT_A3);
com3: comparator port map(c, c_bar, OUT_A2, OUT_A3);
com4: comparator port map(d, d_bar, OUT_A1, OUT_A4);
com5: comparator port map(e, e_bar, OUT_A2, OUT_A4);
com6: comparator port map(f, f_bar, OUT_A3, OUT_A4);
com7: comparator port map(g, g_bar, OUT_A1, OUT_A5);
com8: comparator port map(h, h_bar, OUT_A2, OUT_A5);
com9: comparator port map(i, i_bar, OUT_A3, OUT_A5);
com10: comparator port map(j, j_bar, OUT_A4, OUT_A5);

--**** AND GATES TO OBTAIN MOST AVAILABLE PROCESS ****
y1 <= a and b and d and g and c6;
y2 <= a_bar and c and e and h and c6;
y3 <= b_bar and c_bar and f and i and c6;
y4 <= d_bar and e_bar and f_bar and j and c6;
y5 <= g_bar and h_bar and i_bar and j_bar and c6;
--**** REGISTERS R1 THRU R7 ****
t1 <= (Out_R0(16 downto 14)&PN(4 downto 0)&PL1&OUT_R0(7 downto 0));
t2 <= (Out_R0(16 downto 14)&PN(4 downto 0)&PL2&OUT_R0(7 downto 0));
t3 <= (Out_R0(16 downto 14)&PN(4 downto 0)&PL3&OUT_R0(7 downto 0));
t4 <= (Out_R0(16 downto 14)&PN(4 downto 0)&PL4&OUT_R0(7 downto 0));
t5 <= (Out_R0(16 downto 14)&PN(4 downto 0)&PL5&OUT_R0(7 downto 0));
--t6 <= (Out_R0(16 downto 14)&OBStemp6(19 downto 8)&OUT_R0(7 downto 0));
t6 <= (Out_R0(16 downto 14)&OBuS_sig(19 downto 8)&OUT_R0(7 downto 0));
t7 <= (Out_R0(16 downto 14)&PN(4 downto 0)&"1110011"&OUT_R0(7 downto 0));

--OBUS <= OBStemp when (y1='1' or y2='1' or y3='1' or y4='1' or y5='1'
 --or c9='1') else
 --(others=>'0');
-- Debug signal added to view the contents on obstemp6
obstemp6_dbug<=OBStemp6;
t6_dbug<=t6;
OBUS_sig <= OBStemp1 when (y1='1')else
 OBStemp2 when (y2='1')else
 OBStemp3 when (y3='1')else

 271

 OBStemp4 when (y4='1')else
 OBStemp6 when (c9='1')else
 OBStemp5_7 when (y5='1')else
 (others => '0');
OBStemp5_7 <= OBStemp5 when (F='0')
 else OBStemp7 ;
-- changes done for debugging to include it in t6
obus <= obus_sig ;
regR1: regR1_4 port map(OBStemp1, CLK, CLEAR, t1, C3, C4, Y1);
RegR2: regR1_4 port map(OBStemp2, CLK, CLEAR, t2, C3, C4, Y2);
RegR3: regR1_4 port map(OBStemp3, CLK, CLEAR, t3, C3, C4, Y3);
regR4: regR1_4 port map(OBStemp4, ClK, CLEAR, t4, C3, C4, Y4);
reR5: regR5 port map(OBStemp5, CLK, CLEAR, t5, C3, C4, Y5, F);
reR6: regR6 port map(OBStemp6, CLK, CLEAR, t6, C6, C8, C9);
reR7: regR7 port map(OBStemp7,CLK,CLEAR, t7, C3, C4, Y5, F);

--**** CONTROLLER ****
cntr0: mcntrlr port map(start, C1, C2, C3, C4, C5, C6, C7, C8, C9, q1, q2,
OUT_R0(13), ON1, CLEAR, CLK);
End architecture;

Module Name : comparator.vhd

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity comparator is
 port(a_lt_b: out std_logic;
 a_gte_b : out std_logic;
 a, b : in std_logic_vector(5 downto 1));
end comparator;

architecture comp of comparator is
signal altb: std_logic;
begin
process (a,b) is
begin
if a<b then altb <='1';
else altb <= '0';
end if;
end process;
a_gte_b <= not altb;
a_lt_b <= altb;
end architecture;

Module Name : Dec3x5.vhd

-- FILENAME : dec3x5.v
-- MODULE : dec3x5

--The IEEE standard 1164 package, declares std_logic, rising_edge(), etc.

 272

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity dec3x5 is
 port(do: out std_logic_vector(5 downto 1);
 s : in std_logic_vector(2 downto 0));
end dec3x5;

architecture decs of dec3x5 is

-- Internal wire declarations
signal s0_bar, s1_bar, s2_bar: std_logic;

begin
-- Gate instantiations
 s0_bar <= not s(0);
 s1_bar <= not s(1);
 s2_bar <= not s(2);
 do(1) <= s2_bar and s1_bar and s0_bar;
 do(2) <= s2_bar and s1_bar and s(0);
 do(3) <= s2_bar and s(1) and s0_bar;
 do(4) <= s2_bar and s(1) and s(0);
 do(5) <= s(2) and s1_bar and s0_bar;

end architecture;

Module Name : ic_net.vhd

-- FILENAME : IC_NET.v
-- MODULE : ic_net

--The IEEE standard 1164 package, declares std_logic, rising_edge(), etc.
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity ic_net is
 port(A1,A2,A3,A4,A5 : out std_logic_vector(5 downto 1);
 S1,S2,S3,S4,S5 : in std_logic_vector(7 downto 1);
 Aval0,Aval1,Aval2 : in std_logic_vector(5 downto 1);
 Aval3,Aval4,Aval5 : in std_logic_vector(5 downto 1);
 Aval6,Aval7 : in std_logic_vector(5 downto 1));
End ic_net;

Architecture icn of ic_net is

Begin
 The: process (S1, S2, S3, S4, S5, Aval0, Aval1, Aval2, Aval3,
 Aval4, Aval5, Aval6, Aval7)
 begin
 case S1 is
 when "0000001" => A1 <= Aval0;

 273

 when "0000010" => A1 <= Aval1;
 when "0000011" => A1 <= Aval2;
 when "0000100" => A1 <= Aval3;
 when "0000101" => A1 <= Aval4;
 when "0000110" => A1 <= Aval5;
 when "0000111" => A1 <= Aval6;
 when "0001000" => A1 <= Aval7;
 when others => A1 <="11111";
 end case;

 case S2 is
 when "0000001" => A2 <= Aval0;
 when "0000010" => A2 <= Aval1;
 when "0000011" => A2 <= Aval2;
 when "0000100" => A2 <= Aval3;
 when "0000101" => A2 <= Aval4;
 when "0000110" => A2 <= Aval5;
 when "0000111" => A2 <= Aval6;
 when "0001000" => A2 <= Aval7;
 when others => A2 <= "11111";
 end case;

 case S3 is
 when "0000001" => A3 <= Aval0;
 when "0000010" => A3 <= Aval1;
 when "0000011" => A3 <= Aval2;
 when "0000100" => A3 <= Aval3;
 when "0000101" => A3 <= Aval4;
 when "0000110" => A3 <= Aval5;
 when "0000111" => A3 <= Aval6;
 when "0001000" => A3 <= Aval7;
 when others => A3 <= "11111";
 end case;

 case S4 is
 when "0000001" => A4 <= Aval0;
 when "0000010" => A4 <= Aval1;
 when "0000011" => A4 <= Aval2;
 when "0000100" => A4 <= Aval3;
 when "0000101" => A4 <= Aval4;
 when "0000110" => A4 <= Aval5;
 when "0000111" => A4 <= Aval6;
 when "0001000" => A4 <= Aval7;
 when others => A4 <= "11111";
 end case;

 case S5 is
 when "0000001" => A5 <= Aval0;
 when "0000010" => A5 <= Aval1;
 when "0000011" => A5 <= Aval2;
 when "0000100" => A5 <= Aval3;
 when "0000101" => A5 <= Aval4;
 when "0000110" => A5 <= Aval5;
 when "0000111" => A5 <= Aval6;
 when "0001000" => A5 <= Aval7;
 when others => A5 <= "11111";

 274

 end case;

end process;

end architecture;

Module Name : mapfifo.vhd

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity MAP_Fifo is
 port (data_out : out std_logic_vector(16 downto 0);
 data_in: in std_logic_vector(16 downto 0);
 --stack_full : buffer std_logic;
 stack_full : inout std_logic;
 sigl : out std_logic;
 clk, rst : in std_logic;
 write_to_stack, read_from_stack: in std_logic);
end MAP_Fifo;

architecture fif1 of MAP_fifo is

component add_subber4
port (
 A: IN std_logic_VECTOR(3 downto 0);
 B: IN std_logic_VECTOR(3 downto 0);
 C_IN: IN std_logic;
 C_OUT: OUT std_logic;
 ADD_SUB: IN std_logic;
 Q_OUT: OUT std_logic_VECTOR(3 downto 0));
end component;

component add_subber5
port (
 A: IN std_logic_VECTOR(4 downto 0);
 B: IN std_logic_VECTOR(4 downto 0);
 C_IN: IN std_logic;
 C_OUT: OUT std_logic;
 ADD_SUB: IN std_logic;
 Q_OUT: OUT std_logic_VECTOR(4 downto 0));
end component;

signal stack_empty: std_logic;

 275

signal read_ptr,write_ptr: std_logic_vector(3 downto 0); -- Pointer for reading and writing
signal ptr_diff: std_logic_vector(4 downto 0); -- Distance between ptrs
type stkarray is array(15 downto 0) of std_logic_vector(16 downto 0);
signal stack: stkarray; -- memory array
signal fourB1, rsum, wsum : std_logic_vector(3 downto 0);
signal valone, zero : std_logic;
signal psum_add, psum_sub, fiveB1 : std_logic_vector(4 downto 0);

begin

stack_empty <= '1' when ptr_diff = "00000" else
 '0';
stack_full <= '1' when ptr_diff = "10000" else
 '0';
sigl <= not stack_empty;

-- begin data_transfer
datatrn: process (clk, rst)
variable i, j : integer;
begin
 if (rst='1') then
 data_out <= (others=>'0');
 elsif (clk'event and clk='0') then

 case read_ptr is
 when "0000" => i := 0;
 when "0001" => i := 1;
 when "0010" => i := 2;
 when "0011" => i := 3;
 when "0100" => i := 4;
 when "0101" => i := 5;
 when "0110" => i := 6;
 when "0111" => i := 7;
 when "1000" => i := 8;
 when "1001" => i := 9;
 when "1010" => i := 10;
 when "1011" => i := 11;
 when "1100" => i := 12;
 when "1101" => i := 13;
 when "1110" => i := 14;
 when "1111" => i := 15;
 when others => null;
 end case;
 case write_ptr is
 when "0000" => j := 0;
 when "0001" => j := 1;
 when "0010" => j := 2;
 when "0011" => j := 3;
 when "0100" => j := 4;
 when "0101" => j := 5;
 when "0110" => j := 6;
 when "0111" => j := 7;
 when "1000" => j := 8;
 when "1001" => j := 9;
 when "1010" => j := 10;
 when "1011" => j := 11;

 276

 when "1100" => j := 12;
 when "1101" => j := 13;
 when "1110" => j := 14;
 when "1111" => j := 15;
 when others => null;
 end case;
 if ((read_from_stack='1') and (write_to_stack='0') and (stack_empty='0')) then
 data_out <= stack(i);
 elsif ((write_to_stack='1') and (read_from_stack='0') and (stack_full='0')) then
 stack(j) <= data_in;
 elsif ((write_to_stack='1') and (read_from_stack='1') and (stack_empty='0') and
 (stack_full='0')) then
 stack(j) <= data_in;
 data_out <= stack(i);
 end if;
 end if;
end process;

--
-- Component Instantiation
--
fourB1 <= "0001";
valone <= '1';
fiveB1 <= "00001";
zero <= '0';

rptr_add : add_subber4
 port map (A=>read_ptr, B =>fourB1, C_IN=>zero, C_OUT=>open,
 ADD_SUB=>valone, Q_OUT=>rsum);

wptr_add : add_subber4
 port map (A=>write_ptr, B =>fourB1, C_IN=>zero, C_OUT=>open,
 ADD_SUB=>valone, Q_OUT=>wsum);

ptr_add : add_subber5
 port map (A=>ptr_diff, B=>fiveB1, C_IN=>zero, C_OUT=>open,
 ADD_SUB=>valone, Q_OUT=>psum_add);

ptr_sub : add_subber5
 port map (A=>ptr_diff, B=>fiveB1, C_IN=>zero, C_OUT=>open,
 ADD_SUB=>zero, Q_OUT=>psum_sub);

unkn: process(clk, rst)
 begin
 if (rst='1') then
 read_ptr <= (others=>'0');
 write_ptr <= (others=>'0');
 ptr_diff <= (others=>'0');
 elsif (clk'event and clk='0') then
 if ((write_to_stack='1') and (stack_full='0') and (read_from_stack='0')) then
 write_ptr <= wsum; --address for next clock edge
 ptr_diff <= psum_add;
 elsif ((write_to_stack='0') and (stack_empty='0') and (read_from_stack='1')) then
 read_ptr <= rsum;
 ptr_diff <= psum_sub;
 elsif ((write_to_stack='1') and (stack_empty='0') and (stack_full='0') and

 277

 (read_from_stack='1')) then
 read_ptr <= rsum;
 write_ptr <= wsum;
 ptr_diff <= ptr_diff;
 end if;
 end if;
end process;

end architecture;

Module Name : Mapcntlr.vhd

-- FILENAME : mapcntlr.vhd
-- MODULE : mCntrlr

--The IEEE standard 1164 package, declares std_logic, rising_edge(), etc.
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity mcntrlr is
 port(start : buffer std_logic;
 c1,c2,c3,c4,c5,c6,c7,c8,c9 : out std_logic;
 q1, q2, q3: in std_logic;
 On1, clr : in std_logic;
 Clk: in std_logic);
End mcntrlr;

Architecture mcont of mcntrlr is

signal T, D : std_logic_vector(11 downto 1);
signal out1,out2: std_logic;
signal Din1, Din2: std_logic;

begin
-- Synchronous Sequential Process
-- Synchronous start circuit (negative edge triggered)
startckt: process (clk, clr)
 begin
 if (clr = '1') then
 out1 <= '0';
 out2 <= '0';
 elsif (clk'event and clk='0') then
 out1 <= Din1;
 out2 <= Din2;
 end if;
end process;

-- sequential controller flip flops (positive edge triggered)
contff: process (clk, clr)
 begin
 if (clr = '1') then
 T <= (others=>'0');
 elsif (clk'event and clk='1') then

 278

 T <= D;
 End if;
End process;

-- Combinational Process
comb: process (T,out1,out2, q1, q2, q3, ON1, start)
 begin
 -- Generate 'start' signal
 Din1<= ON1;
 Din2 <= out1;
 start <= out1 and (not out2);

 -- Generate Flip Flop Next State Equations
 d(1) <= (start or (T(9) and (not q2)) or T(8) or T(11));
 D(2) <= (T(1) and q1);
 D(3) <= T(2);
 D(4) <= (T(3) and (not q3));
 D(5) <= T(4) and (not q2);
 D(6) <= T(5);
 D(7) <= T(6);
 D(8) <= T(7);
 D(9) <= (T(1) and (not q1)) or (T(9) and q2) or (T(4) and q2);
 D(10) <= T(3) and q3;
 D(11) <= T(10);

 -- Generate Control Equations
 c1 <= T(2);
 c2 <= T(4);
 c3 <= T(5);
 c4 <= T(6);
 c5 <= T(7);
 c6 <= T(8);
 c7 <= T(9);
 c8 <= T(10);
 c9 <= T(11);

end process;

end architecture;

Module Name : Ram_unit.vhd

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity ram_unit is
 port (Ramout : out std_logic_vector(6 downto 0);
 Ramin : in std_logic_vector(6 downto 0);
 PN : in std_logic_vector(4 downto 0);
 C4, c9, Dec_in, clk : in std_logic);
End ram_unit;

 279

Architecture rams of ram_unit is

component mapram2
 port (
 a: IN std_logic_VECTOR(4 downto 0);
 clk: IN std_logic;
 d: IN std_logic_VECTOR(6 downto 0);
 we: IN std_logic;
 spo: OUT std_logic_VECTOR(6 downto 0));
end component;

component mux_2x1
 port(muxout : out std_logic;
 in1, in0 : in std_logic;
 sel : in std_logic);
end component;

Signal ram_in: std_logic_vector(6 downto 0);
Signal INEN: std_logic;
Signal MUX_OUT, INN: std_logic;
signal one : std_logic;

begin
 one <= '1';
 -- Instantiate 2x1 mux for CE of Ram
 m0: mux_2x1 port map(MUX_OUT, DEC_IN, one, INEN);

 -- and gate for RW
 INN <= Dec_in and c9;
 INEN <= c4 or c9;

 -- Bi-directional Buffers

 ram_in <= ramin when INEN = '1' else (others=>'Z');
 --ramout <= ram_out when INEN = '1' else (others=>'Z');

-- Instantiate 32x7 Ram
ram1 : mapram2 port map
 (a =>PN, CLK => clk, D =>ram_in, WE =>INN, spo => ramout);

end architecture;

Module Name : Mapram.vhd

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;
USE STD.TEXTIO.ALL;

entity mapram2 is
 port (a: in std_logic_vector(4 downto 0);
 clk: in std_logic;
 d: in std_logic_vector(6 downto 0);

 280

 we: in std_logic;
 spo: out std_logic_vector(6 downto 0));
end mapram2;

architecture ram_body of mapram2 is

constant deep: integer := 31;
type fifo_array is array(deep downto 0) of std_logic_vector(6 downto 0);
signal mem: fifo_array;

signal addr_int: integer range 0 to 31;

begin
addr_int <= conv_integer(a);

process (clk)
begin
 if clk'event and clk = '1' then
 if we = '1' then
 mem(addr_int) <= d;
 end if;
 end if;
end process;
spo <= mem(addr_int);
end ram_body;

Module Name : reg_pl.vhd

-- FILENAME : reg_PL.v
-- MODULE : reg_PL

--The IEEE standard 1164 package, declares std_logic, rising_edge(), etc.
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity reg_Pl is
 port(out_pl : buffer std_logic_vector(6 downto 0);
 clk, clear : in std_logic;
 Pl_in : in std_logic_vector(6 downto 0);
 C5 : in std_logic);
End reg_pl;

Architecture regp of reg_pl is

begin

Regit: process(clk, clear)
 Begin
 If clear = '1' then
 out_pl <= (others=>'0');
 elsif (clk'event and clk='0') then
 if c5 = '1' then
 out_pl <= pl_in;

 281

 else
 out_pl <= out_pl;
 end if;
 end if;
 end process;

end architecture;
Module Name : prt_cntl.vhd

library IEEE;
use IEEE.std_logic_1164.all;

entity PRT_Cntl is
 port (
 Tokbus: inout STD_LOGIC_VECTOR (31 downto 0);
 clk : in std_logic;
 rst : in std_logic;
 tbus_grant: in STD_LOGIC;
 --tbus_req: buffer STD_LOGIC;
 tbus_req: inout STD_LOGIC;
 tok_in : out std_logic_vector(16 downto 0);
 Pl_in : out std_logic_vector(6 downto 0);
 Addr : out std_logic_vector(7 downto 0);
 clr : out std_logic;
 q2 : out std_logic;
 chip_on : out std_logic;
 nxt_token : in std_logic_vector(22 downto 0)
);
end PRT_Cntl;

architecture PRT_Cntl_arch of PRT_Cntl is

component mapbuf
 port (
 din: IN std_logic_VECTOR(24 downto 0);
 clk: IN std_logic;
 wr_en: IN std_logic;
 rd_en: IN std_logic;
 ainit: IN std_logic;
 dout: OUT std_logic_VECTOR(24 downto 0);
 full: OUT std_logic;
 empty: OUT std_logic);
end component;

signal w_en : std_logic;
signal tline_in, tline_out : std_logic_vector(31 downto 0);
type optype is (reset, Ld_Ram, Operate, Hold, Normal);
signal op : optype;
signal tok_buf, tok_temp, bufout : std_logic_vector(24 downto 0);
constant lcl_addr : std_logic_vector(6 downto 0) := "0000001";
constant Load_R : std_logic_vector(5 downto 0) := "111010";
type jbuf is array(1 downto 0) of std_logic_vector(15 downto 0);
signal join_buf : jbuf;
signal join0_avl, join1_avl : std_logic;
signal buf_num, full, empty1, we, re : std_logic;

 282

signal out_buf : std_logic_vector(31 downto 0);

begin

 tline_in <= Tokbus when w_en = '0' else (others=>'0');
 Tokbus <= tline_out when w_en = '1' else (others=>'Z');
 chip_on <= '1';
 w_en <= '1' when (tbus_grant='1' and tbus_req='1') else
 '0';

Inbuf : mapbuf port map (din => tok_buf,clk => clk,wr_en => we,rd_en => re,
 ainit => rst,dout => bufout,full => full,
 empty => empty1);

 iptproc: process (clk, tline_in, rst, full)
 begin
 if rst = '1' then
 we <= '0';
 tok_buf <= (others=>'0');
 elsif (clk'event and clk='1') then
 if tline_in(30 downto 24) = lcl_addr then
 tok_buf <= tline_in(31)&tline_in(23 downto 0);
 if full = '0' then
 we <= '1'; --place Token in buffer
 else
 we <= '0';
 end if;
 else
 we <= '0';
 tok_buf <= (others=>'0');
 end if;
 end if;
 end process;

 control: process (rst, clk, op, empty1)
 variable cont, ld_delay, del2, inpt_delay, inpt_del2 : boolean;
 begin
 if rst ='1' then op <= reset;
 elsif (clk'event and clk='1') then

 case (op) is
 when reset => clr <= '1';
 q2 <= '0'; re <= '0';
 cont := false;
 ld_delay := false;
 del2 := false; inpt_del2 := false;
 inpt_delay := false;
 tok_temp <= (others=>'0');
 tbus_req <= '0';
 buf_num <= '0';
 out_buf <= (others=> '0');
 tok_in <= (others=>'0');
 Pl_in <= (others=>'0');
 Addr <= (others=> '0');
 join_buf(0) <= (others=>'0');
 join_buf(1) <= (others=>'0');

 283

 join0_avl <= '1';
 join1_avl <= '1';
 op <= Operate;

 when Operate => clr <= '0';
 q2 <= '0';
 tok_in <= (others=>'0');
 Pl_in <= (others=>'0');
 Addr <= (others=> '0');
 if (tbus_grant = '1' and tbus_req = '1') then
 tline_out <= out_buf;
 out_buf <= (others=> '0');
 re <= '0';
 op <= Operate;
 elsif (empty1 = '0' and inpt_delay = false) then
 re <= '1'; --get token from queue
 inpt_delay := true;
 op <= Operate;
 elsif (inpt_delay = true and inpt_del2 = false) then
 re <= '0';
 inpt_del2 := true;
 op <= Operate;
 elsif (inpt_del2 = true) then --parse read token
 if (bufout(24 downto 19)) = Load_R then
 tok_temp <= bufout; --Load RAM token
 inpt_delay := false;
 op <= Ld_Ram;
 elsif bufout(24) = '1' then --hold token
 tok_temp <= bufout;
 inpt_delay := false;
 op <= Hold;
 else
 tok_temp <= bufout;
 inpt_delay := false;
 op <= Normal; --normal token
 end if;
 inpt_delay := false;
 inpt_del2 := false;
 else
 re <= '0';
 op <= Operate; --wait for token
 end if;

 when Ld_Ram => clr <= '0';
 q2 <= '1';
 re <= '0';
 if (ld_delay = false and del2 = false) then
 op <= Ld_Ram;
 ld_delay := true;
 elsif (ld_delay = true and del2 = false) then
 op <= Ld_Ram;
 del2 := true;
 else
 Pl_in <= tok_temp(14 downto 8);
 Addr <= tok_temp(7 downto 0);
 tok_in <= (others=>'0');

 284

 op <= Operate;
 del2 := false;
 ld_delay := false;
 --tok_temp <= (others=>'0');
 end if;

 when Normal => clr <= '0';
 q2 <= '0';
 re <= '0';
 tok_in(13) <= tok_temp(24);
 tok_in(12 downto 8) <= tok_temp(20 downto 16);
 tok_in(7 downto 0) <= tok_temp (7 downto 0);
 tok_in(16 downto 14) <= tok_temp(23 downto 21);
 Pl_in <= (others=>'0');
 Addr <= (others=> '0');
 --tok_buf <= (others=>'0');
 op <= Operate;

 when Hold => clr <= '0';
 q2 <= '0'; re <= '0';
 Pl_in <= (others=>'0');
 Addr <= (others=> '0');
 if (cont = true) then --send 2nd token in join
 tok_in(16 downto 14) <= "000";
 tok_in(13) <= '1';
 if buf_num = '0' then
 tok_in(12 downto 0) <= join_buf(0)(12 downto 0);
 join0_avl <= '1';
 join_buf(0) <= (others=>'0');
 else
 tok_in(12 downto 0) <= join_buf(1)(12 downto 0);
 join1_avl <= '1';
 join_buf(1) <= (others=>'0');
 end if;
 cont := false;
 op <= Operate;
 elsif tok_temp(23 downto 16) = join_buf(0)(15 downto 8) then
 --send first token
 tok_in(13) <= '0';
 tok_in(12 downto 8) <= tok_temp(20 downto 16);
 tok_in(7 downto 0) <= tok_temp(7 downto 0);
 tok_in(16 downto 14) <= tok_temp(23 downto 21);
 cont := true;
 buf_num <= '0';
 --tok_buf <= (others=>'0');
 op <= Hold;
 elsif tok_temp(23 downto 16) = join_buf(1)(15 downto 8) then
 --send first token
 tok_in(13) <= '0';
 tok_in(12 downto 8) <= tok_temp(20 downto 16);
 tok_in(7 downto 0) <= tok_temp(7 downto 0);
 tok_in(16 downto 14) <= tok_temp(23 downto 21);
 cont := true;
 buf_num <= '1';
 --tok_buf <= (others=>'0');
 op <= Hold;

 285

 elsif (cont = false and join0_avl = '1') then --wait for other token
 join_buf(0)(15 downto 8) <= tok_temp(23 downto 16);
 join_buf(0)(7 downto 0) <= tok_temp(7 downto 0);
 join0_avl <= '0';
 --tok_buf <= (others=>'0');
 op <= Operate;
 elsif (cont = false and join1_avl = '1') then --wait for other token
 join_buf(1)(15 downto 8) <= tok_temp(23 downto 16);
 join_buf(1)(7 downto 0) <= tok_temp(7 downto 0);
 join1_avl <= '0';
 --tok_buf <= (others=>'0');
 op <= Operate;
 else --join buffer overflow
 --tok_buf <= (others=>'0');
 op <= Operate;
 end if;

 end case;
 if out_buf /= "00000000000000000000000000000000" then
 tbus_req <= '1';
 else
 tbus_req <= '0';
 end if;
 if nxt_token /= "00000000000000000000000" then
 out_buf(31) <= '0';
 out_buf(30 downto 24) <= nxt_token(14 downto 8);
 out_buf(23 downto 21) <= nxt_token(22 downto 20);
 out_buf(20 downto 16) <= nxt_token(19 downto 15);

 out_buf(7 downto 0) <= nxt_token(7 downto 0);

 out_buf(15 downto 8) <= "00000000";

 end if;
 end if;
 end process;

end PRT_Cntl_arch;

 286

Appendix B: Application 1: Acyclic Process Flow Graph Model

Sets of Table Load, Table Input and Load PRT tokens to be fed in the LUT are as
follows:

For CE0:

Process Number Table Load Table Input Load PRT
P1 83f80003 83f04430 81d0030c
P2 83f80017 83F08800 81D00314
P3 83F80024 83F0CA00 81D0031B
P6 83F80232 83F18E00 81D00334
P7 83F80039 83F1C000 81D0033C

For CE1:

Process Number Table Load Table Input Load PRT
P1 82f80003 82f04430 81D0020B
P2 82f80117 82F08800 81D00213
P3 82F80024 82F0CA00 81D0021C
P6 82F80232 82F10E00 81D00233
P7 82F80039 82F1C000 81D0023D

For CE2:

Process Number Table Load Table Input Load PRT
P5 84F80104 84F14C00 81D0042B

For CE3:

Process Number Table Load Table Input Load PRT
P4 85F80104 85F10C00 81D00523

Contents of Instruction Memory:

Process P1:

Instruction Memory
Address Data Operation

3 0300 INPUT MEM[R3]
4 AF00 INC R3
5 0300 INPUT MEM[R3]
6 AF00 INC R3
7 0300 INPUT MEM[R3]

 287

8 AF00 INC R3
9 0300 INPUT MEM[R3]
A AF00 INC R3
B 0300 INPUT MEM[R3]
C AF00 INC R3
D 0300 INPUT MEM[R3]
E AF00 INC R3
F 0300 INPUT MEM[R3]
10 AF00 INC R3
11 0300 INPUT MEM[R3]
12 AF00 INC R3
13 0300 INPUT MEM[R3]
14 AF00 INC R3
15 0300 INPUT MEM[R3]
16 3000 JUMP #0

Process P2:

Instruction Memory
Address Data Operation

17 7300 LD R0, MEM[R3]
18 AF00 INC R3
19 1000 ADD R0, MEM[R3]
1A AF00 INC R3
1B 1000 ADD R0, MEM[R3]
1C AF00 INC R3
1D 1000 ADD R0, MEM[R3]
1E AF00 INC R3
1F 1000 ADD R0, MEM[R3]
20 BF06 ADD R3, #6
21 2000 STORE MEM[R3], R0
22 6300 OUTPUT MEM[R3]
23 3000 JMP #0

Process P3:

Instruction Memory
Address Data Operation

24 BF05 ADD R3, #5
25 7300 LD R0, MEM[R3]
26 AF00 INC R3
27 1000 ADD MEM[R3], R0
28 AF00 INC R3
29 1000 ADD MEM[R3], R0
2A AF00 INC R3
2B 1000 ADD MEM[R3], R0
2C AF00 INC R3

 288

2D 1000 ADD MEM[R3], R0
2E BF02 ADD R3, #5
2F 2000 STORE MEM[R3], R0
30 6300 OUTPUT MEM[R3]
31 3000 JMP #0

Process P6:

Instruction Memory
Address Data Operation

32 BF0A ADD R3, #10
33 7300 LD R0, MEM[R3]
34 AF00 INC R3
35 5000 SUB MEM[R3], R0
36 AF00 INC R3
37 2000 STORE MEM[R3], R0
38 3000 JMP #0

Process P7:

Instruction Memory

Address Data Operation

39 BF0C ADD R3, #12
3A 6300 OUTPUT MEM[R3]
3B 3000 JMP #0

Process P4: Multiplication

Instruction Memory
Address Data Operation

04 000A OFFSET ADDITION
05 0002 MULTIPLICAND VAL

Process P5: Division

Instruction Memory
Address Data Operation

04 000B OFFSET ADDITION
05 0002 DIVISOR VAL

 289

Contents of the shared data memory:

 For the copy 1 of application, the data stored in the data memory is decimal ‘2’

from location x”03” to x”0C”.The data location after addition of first five numbers is

stored in location x”0D” and similarly the result of the addition of the next five numbers

is stored at x”0E”.

 The value changes after the division and multiplication process takes place. The

table shows the values before and after the division and multiplication operation. The

final result decimal ‘15’is stored at location x”0F”.

Address Location Result before Multiplication
and division (decimal)

Result after multiplication and
division (decimal)

0D 10 20
0E 10 5

 For the copy 2 of application, the data stored in the data memory is decimal ‘2’

from location x”11” to x”1A”.The data location after addition of first five numbers is

stored in location x”1B” and similarly the result of the addition of the next five numbers

is stored at x”1C”.

 The value changes after the division and multiplication process takes place. The

table shows the values before and after the division and multiplication operation. The

final result decimal ‘15’ is stored at location x”1D”.

Address Location Result before Multiplication
and division (decimal)

Result after multiplication and
division (decimal)

1B 10 20
1C 10 5

 290

Application 2: Cyclic Process Flow Graph Model

Sets of Table Load, Table Input and Load PRT tokens to be fed in the LUT are as
follows:

For CE0:

Process Number Table Load Table Input Load PRT

P1 83f80003 83f04440 81d0030c
P2 83f8010D 83F08600 81D00314
P3 83F80014 83F0C406 81D0031C
P4 83f8011B 83f10A00 81D00324
P5 83F80023 83F14806 81D0032C
P6 83F8022A 83F18000 81D00334

For CE1:

Process Number Table Load Table Input Load PRT
P1 82F80003 82F04440 81d0020B
P2 82F8010D 82F08600 81D00213
P3 82F80014 82F0C406 81D0021B
P4 82Ff8011B 82F10A00 81D00223
P5 82F80023 82F14806 81D0022B
P6 82F8022A 82F18000 81D00233

Contents of Instruction Memory:

Process P1:

Instruction Memory
Address Data Operation

3 0300 INPUT MEM[R3]
4 AF00 INC R3
5 0300 INPUT MEM[R3]
6 AF00 INC R3
7 0300 INPUT MEM[R3]
8 AF00 INC R3
9 0300 INPUT MEM[R3]
A AF00 INC R3
B 0300 INPUT MEM[R3]
C 3000 JUMP #0

 291

Process P2:

Instruction Memory
Address Data Operation

D 7300 LD R0, MEM[R3]
E BF02 ADD R3, #2
F 1000 ADD MEM[R3], R0
10 Cf02 SUB R3, #2
11 2000 STORE MEM[R3], R0
12 6300 OUTPUT MEM[R3]
13 3000 JMP #0

Process P3:

Instruction Memory
Address Data Operation

14 BF04 ADD R3, #4
15 7300 LD R0, MEM[R3]
16 CF04 SUB R3, #4
17 8000 IS R0= MEM[R3]
18 2000 STORE MEM[R3], R0
19 6300 OUTPUT MEM[R3]
1A 3000 JMP #0

Process P4:

Instruction Memory
Address Data Operation

1b BF01 ADD R3, #1
1C 7300 LD R0, MEM[R3]
1D Af00 INC R3
1E 5000 SUB R0,MEM[R3]
1F CF01 SUB R3, #1
20 2000 STORE MEM[R3], R0
21 6300 OUTPUT MEM[R3]
22 3000 JMP #0

Process P5:

Instruction Memory
Address Data Operation

23 BF03 ADD R3, #3
24 7300 LD R0, MEM[R3]
25 CF02 SUB R3,#2
26 8000 IS R0= MEM[R3]

 292

27 2000 STORE MEM[R3], R0
28 6300 OUTPUT MEM[R3]
29 3000 JMP #0

Process P6:

Instruction Memory
Address Data Operation

2A 7300 LD R0, MEM[R3]
2B 6300 OUPUT MEM[R3]
2C AF00 INCR R3
2D 6300 OUPUT MEM[R3]
2E 3000 JMP #0

Application 3: Proving the concept of Multiple Forking for the HDCA

Sets of Table Load, Table Input and Load PRT tokens to be fed in the LUT are as
follows:

For CE0

Process Number Table Load Table Input Load PRT
P1 83f80003 83f04430 81d0030c
P2 83f8000F 83F08E00 81D00314
P3 83F80016 83F0C850 81D0031C
P4 83F80118 83F11000 81D00324
P5 83F80120 83F15000 81d0032C
P8 83F80328 83F20C00 81D00344
P6 83F80230 83F18000 81D00334

For CE1

Process Number Table Load Table Input Load PRT
P1 82f80003 82f04430 81d0020B
P2 82f8000F 82F08E00 81D00213
P3 82F80016 82F0C850 81D0021C
P4 82F80118 82F11000 81D00223
P5 82F80120 82F15000 81d0022B
P8 82F80328 82F20C00 81D00243
P6 82F80230 82F18000 81D00234

 293

For Multiplier CE

Process Number Table Load Table Input Load PRT
P7 85f80104 85F1CC00 81d0053C

Process P1:

Instruction Memory
Address Data Operation

3 0300 INPUT MEM[R3]
4 AF00 INC R3
5 0300 INPUT MEM[R3]
6 AF00 INC R3
7 0300 INPUT MEM[R3]
8 AF00 INC R3
9 0300 INPUT MEM[R3]
A AF00 INC R3
B 0300 INPUT MEM[R3]
C AF00 INC R3
D 0300 INPUT MEM[R3]
E 3000 JUMP #0

Process P2:

Instruction Memory
Address Data Operation

F 7300 LD R0, MEM[R3]
10 AF00 INC R3
11 1000 ADD R0, MEM[R3]
12 BF06 ADD R3, #6
13 2000 STORE MEM[R3], R0
14 6300 OUTPUT MEM[R3]
15 3000 JMP #0

Process P3:

Instruction Memory
Address Data Operation

16 D300 DELAY
17 3000 JMP #0

 294

Process P4:

Instruction Memory
Address Data Operation

18 BF02 ADD R3, #2
19 7300 LD R0, MEM[R3]
1A AF00 INC R3
1B 1000 ADD MEM[R3], R0
1C BF0E ADD R3,#14
1D 2000 STORE MEM[R3], R0
1E 6300 OUTPUT MEM[R3]
1F 3000 JMP #0

Process P5:

Instruction Memory
Address Data Operation

20 BF04 ADD R3, #4
21 7300 LD R0, MEM[R3]
22 AF00 INC R3
23 1000 ADD MEM[R3], R0
24 BF16 ADD R3, #22
25 2000 STORE MEM[R3], R0
26 6300 OUTPUT MEM[R3]
27 3000 JMP #0

Process P8:

Instruction Memory
Address Data Operation

28 BF11 ADD R3, #17
29 7300 LD R0, MEM[R3]
2A BF0A ADD R3, #10
2B 5000 SUB MEM[R3], R0
2C BF0A ADD R3, #10
2D 2000 STORE MEM[R3], R0
2E 6300 OUTPUT MEM[R3]
2F 3000 JMP #0

Process P6:

Instruction Memory
Address Data Operation

30 BF07 ADD R3, #7

 295

31 7300 LD R0, MEM[R3]
32 BF1E ADD R3, #30
33 1000 ADD MEM[R3], R0
34 BF14 ADD R3, #20
35 2000 STORE MEM[R3], R0
36 6300 OUTPUT MEM[R3]
37 3000 JMP #0

Process P7:

Contents of Instruction Memory for Multiplier CE

Instruction Memory
Address Data Operation

04 0007 OFFSET ADDITION
05 0004 MULTIPLICAND VALUE

One command token was entered for the test bench and its value was x”01010003”

Final Results in the Shared Data Memory is “16” at location “60”.

 296

References

1. George Broomell and J. Robert Heath, “Classification Categories and Historical

Development of Circuit Switching Topologies”, ACM Computing Surveys, Vol.15,

No.2, pp. 95-133, June 1983.

2. J. Robert Heath, Paul Maxwell, Andrew Tan, and Chameera Fernando, “Modeling,

Design, and Experimental Verification of Major Functional Units of a Scalable Run-

Time Reconfigurable and Dynamic Hybrid Data/Command Driven Single-Chip

Multiprocessor Architecture and Development and Testing of a First-Phase

Prototype”, Private Communication, 2002.

3. J. Robert Heath, George Broomell, Andrew Hurt, Jim Cochran, Liem Le, “A

Dynamic Pipeline Computer Architecture for Data Driven Systems”, Research

Project Report, Contract No. DASG60-79-C-0052, University of Kentucky Research

Foundation, Lexington, KY 40506, Feb., 1982

4. Abd- El-Barr and El- Rewini, Computer Design and Architecture, draft manuscript,

John Wiley 2004. http://engr.smu.edu/~rewini/8380/

5. Xiaohui Zhao, “Hardware Description Language Simulation and Experimental

Hardware Prototype Validation of a First Phase Prototype of a Hybrid/Data

Command Driven Architecture”,Masters Project,University of Kentucky,

Lexington,KY,Feb. 2003.

6. Venugopal Duvvuri, “Design, Development, and Simulation/Experimental Validation

of a Crossbar Interconnection Network for a Single – Chip Shared Memory

Multiprocessor Architecture”, Masters Project, University of Kentucky, June 2002.

7. Sridhar Hegde, “ Functional Enhancement and Applications Development for a

Hybrid Heterogenous Single-Chip Multiprocessor Architecture”, Masters Thesis,

University of Kentucky, Lexington, KY, December 2004.

8. http://www.ee.uwa.edu.au/~maceyb/aca319-2002/handouts/Section4.pdf

9. http://www3.informatik.uni-erlangen.de/Lehre/RA/SS2001/Skript/05a-interconn1.pdf

10. http://www.cosc.brocku.ca/Offerings/3P93/notes/4-Interconnect.doc

11. www.comp.nus.edu.sg/~cs4231/lec/l01.pdf

12. B.Monien, R.Feldmann, R.Klasing, R.Luling, “Parallel Architectures: Design and

Efficient Use.” Department of Computer Science, University of Paderborn, Germany.

http://engr.smu.edu/~rewini/8380/
http://www3.informatik.uni-erlangen.de/Lehre/RA/SS2001/Skript/05a-interconn1.pdf
http://www.cosc.brocku.ca/Offerings/3P93/notes/4-Interconnect.doc
www.comp.nus.edu.sg/~cs4231/lec/l01.pdf

 297

13. www.cs.ucsd.edu/classes/fa01/cs260

14. www.cs.colostate.edu/~cs575dl/lects/lec3.ppt

15. Paul Maxwell, “Design Enhancement, Synthesis and Field Programmable Gate Array

Post Implementation Simulation Verification of a Hybrid Data/Command Driven

Architecture.”, Masters Project,Department of Electrical Engineering, University of

Kentucky, Lexington KY, 2001.

16. J.R.Heath, S.Ramamoorthy, C.E.Stroud and A.Hurt, “ Modeling, Design and

Performance Analysis of a Parallel Hybrid Data/Command Driven Architecture

System and its Scalable Dynamic Load Balancing Circuit”, IEEE Trans. On Circuits

and Systems, II: Analog and Digital Signal Processing, Vol. 44, No.1, pp. 22 -40,

Januar, 1997.

17. J.R. Heath and B. Sivanesa, "Development, Analysis, and Verification of a Parallel

Hybrid Data-flow Computer Architectural Framework and Associated Load

Balancing Strategies and Algorithms via Parallel Simulation", SIMULATION, Vol.

69, No. 1, pp. 7-25, July, 1997.

18. Xiaohui Zhao, J. Robert Heath, Paul Maxwell, Andrew Tan, and Chameera

Fernando, “Development and First-Phase Experimental Prototype Validation of a

Single- Chip Hybrid and Reconfigurable Multiprocessor Signal Processor System”,

Proceedings of the 2004 IEEE Southeastern Symposium on System Theory, Atlanta,

GA, 5pps, March 14-16, 2004.

www.cs.ucsd.edu/classes/fa01/cs260
www.cs.colostate.edu/~cs575dl/lects/lec3.ppt

 298

Vita

Author's Name – Kanchan P.Bhide
Birthplace - Mumbai, India
Birthdate - September 14, 1978

Education

Bachelor of Science in Electrical Engineering
Sardar Patel College of Engineering,
University of Mumbai, India
June - 2000

Honors, Awards and Activities

Recipient of BIACS (BlueGrass Indo American Civic Society) Shashi Sathaye Memorial
Scholarship for excellence in academics (2002) at University of Kentucky.

	DESIGN ENHANCEMENT AND INTEGRATION OF A PROCESSOR-MEMORY INTERCONNECT NETWORK INTO A SINGLE-CHIP MULTIPROCESSOR ARCHITECTURE
	Recommended Citation

	Abstract
	Approval Page
	Rules for the use of Theses
	Cover Page
	Title Page
	Master's Thesis Release
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter One: Introduction
	1.1 Background and Positioning of Research
	1.2 Goals and Objectives

	Chapter Two: Types of Interconnect Systems
	2.1 Static Interconnection Networks
	2.1.1 Completely Connected Networks (CCNs)
	2.1.2 Limited Connection Networks (LCNs)
	2.1.2.1 Linear Arrays and Ring (Loop) Networks
	2.1.2.2 Mesh-connected Networks
	2.1.2.3 Tree Network
	2.1.2.4 Cube- connected Networks
	2.1.2.5 Star Connected Network

	2.2 Dynamic Interconnection Networks
	2.2.1 Bus-based Dynamic Interconnection Networks
	2.2.1.1 Single bus Systems
	2.2.1.2 Multiple Bus Systems

	2.2.2 Switch – based Interconnect Networks
	2.2.2.1 Crossbar Networks
	2.2.2.2 Single Stage Interconnection Networks
	2.2.2.3 Multi – stage Networks (MINs)

	Chapter Three: Multistage Interconnect Network Complexity
	3.1 Crossbar Topology
	3.2 Benes Network
	3.3 Clos Network
	3.4 Complexity Comparison

	Chapter Four:Design of the Crossbar Interconnection Network
	4.1 Organization of Shared Memory
	4.2 Basic Design of Crossbar Switch

	Chapter Five: Implementation of Variable Priority Interconnection and Virtual Prototype Validation of Correct Independent Operation and Operation as the Processor-Memory Interconnect of the HDCA
	5.1 VHDL Design Capture
	5.1.1 Modifications to Behavioral Approach
	5.1.2 Implementation of 4 x 4 Crossbar Interconnect
	5.1.3 Functional Testing of a 4 x 4 Crossbar Interconnect Network
	5.1.4 Component Level Description and Testing
	5.1.5 Validation of crossbar switch via HDCA system
	5.1.5.1 Changes and Enhancements to the First Phase Prototype

	5.1.6 Application 1 Described with Acyclic Process Flow Graph
	5.1.7 Application 2 Described with Cyclic Flow Graph
	5.1.8: Latency and Starvation Issues

	Chapter Six: Dynamic Node Level Reconfigurability and Multiple Forking Capability
	6.1 Concept of Node Level Reconfigurability and Changes to HDCA
	6.2 Multiple Forking Capability of the HDCA System
	6.3 Application Describing Multiple Forking in HDCA System

	Chapter Seven: FPGA Resources Utilized in HDCA Virtual Prototype Development and Testing Environment
	Chapter Eight: Conclusion
	Appendices
	Appendix A1:Post Place and Route VHDL Code For Functional Model of
	Appendix A2:Post Place and Route VHDL Code For Acyclic Applications
	Appendix B: Application 1: Acyclic Process Flow Graph Model

	References
	Vita

