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ABSTRACT OF THESIS 
 
 
 

EXPERIMENTAL AND NUMERICAL INVESTIGATION                                 
OF PLASMA-JET FORMING 

 
Sheet metal forming has found increasing applications in modern industries. To eliminate use of 
expensive tools during product development, thermal forming, a rapid prototyping process that is 
flexible enough to decrease costs has been developed. Thermal forming processes use a heat 
source to perform the required deformation mainly by creating a thermal difference along the 
thickness of the sheet. Gas flames, lasers and plasma heat sources have been used for sheet metal 
bending by thermal forming. An alternative to laser and gas flames, plasma-jet forming has been 
developed that uses a non-transferred plasma arc as a heat source. The plasma-jet forming 
system uses a highly controllable non-transferred plasma torch as a heat source to create the 
necessary thermal gradient in the sheet metal that causes the required plastic deformation. 
Various experiments to produce simple linear bends and other complex shapes have been 
conducted by using different scanning options and coupling techniques. A computer simulated 
model using finite element method is being developed to study key parameters affecting this 
process and also to measure the thermal transient temperature distribution during the process. A 
predictive model to relate the deformation to the temperature gradient for various materials is 
being developed. Simulation results that are in accordance to experimental observations will 
further improve this material forming process to be highly controllable and more accurate 
KEYWORDS:  Metal forming, Thermal forming, Laser Forming, Rapid prototyping, 
                         Finite element method. 
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CHAPTER I 

INTRODUCTION 

1.1 Motivation 

 
Sheet metal forming technology is one of the most common methods of forming used in 

industry. Metal forming on a conventional basis involves hard tooling that performs with 

assistance from high power equipment. These methods, although they have a very low process 

time have many disadvantages. While high costs of tools increase the expense of forming during 

prototyping, thermal forming has emerged as an alternative to conventional metal forming of 

sheets that eliminates the use of any tooling and reduce costs, especially for prototyping and low 

volume production. It is a non-contact metal forming process that employs a heat source to 

induce necessary thermal distortion to bend the sheet metal. Thermal forming of sheet metals 

being the most flexible forming process, and is very similar to torch bending and straightening 

process used in ship building industry. With vast improvements in its process in a short time, 

thermal forming processes can soon find commercial applications in various industrial 

applications.  

Thermal forming is a highly controllable and repeatable forming process that can be used to form 

complex shapes with minimal material degradation. Many of the process and material parameters 

were analyzed using laser heat sources both experimentally and analytically [2-22]. Plasma-jet 

forming process has been used as an alternative to lasers to provide a cheaper and faster means to 

bend sheets [23-30]. Bending behavior and processing effects were analyzed with changing 

material parameters. Although the major parameters resulting in process variability have been 

determined, there is a need to improve the process by investigating possible multi-pass 

techniques that will increase the bending with increased scans. A predictive model that will 

determine the stress behavior and temperature field distributions will also enunciate further 

advancements of this process. 
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 1.2 Research Objective and Outline 

 
Thermal forming applications and activities have been increasing for the past two decades with 

considerable efforts focused on making this process highly reproducible. As an alternative to 

mechanical forming methods, experiments and analysis of thermal forming systems using lasers 

and plasma heat sources have resulted in greater efficiencies and increased forming options. 

Although the mechanisms, process and product variables have been identified, greater emphasis 

on analysis and prediction of bending with respect to these parameters has to be performed. 

Multi-pass bending characteristics and resultant effects of material parameters such as strain 

hardening have to be investigated. This will require analyzing new techniques to form the sheet 

using continuous and discrete heating procedures that are supported by advanced simulations. 

The fundamental theme of this dissertation is to improve the Plasma-jet Forming process by 

analyzing various methods that can be employed to increase the bending behavior. A 

Computational Model will also be developed in an effort to analyze the thermal stress behavior 

and predict the bending angle with increase in passes. Effect of continuous heating and discrete 

or alternative heating and cooling methods will be observed by experiments. Temperature and 

stress behavior during these processes will be predicted by using a thermo-mechanical finite 

element simulation tool. As the flexibility of a structure increases, linear approximations often do 

not accurately predict the behavior. Predicting non-linear behavior of such a flexible process will 

be a challenging task when the three dimensional mathematical model, material model and 

computational time are considered.   

An experimental approach to increase the bending behavior with increased passes will be 

analyzed. Effect of continuous heating on the material will be determined. An alternate technique 

based on discrete heating and cooling in an effort to increase temperature gradient for better 

bending will be considered. Experiments will be performed to compare these continuous and 

discrete pass techniques. 
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To investigate the process capability of plasma-jet forming on sheets of large thickness, 

experiments will be performed to study the multi pass bending rate with varying thickness. 

Sheets of thickness from 0.8mm up to 3mm will be formed and relation between bending and 

process parameters such as torch speed, power and offset distance will be determined. Efforts 

will also be made to correlate these experimental data with simulation results so that effect of 

thermal stresses over bending rate can be accurately analyzed. A commercial finite element 

program ANSYS will be used to simulate and analyze thermo-mechanical model of plasma-jet 

forming. 
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 1.3 Thesis Layout 

 
This thesis consists of six chapters including the current introduction chapter. In Chapter II, a 

detailed literature review with past and present activities in thermal forming involving both 

lasers and plasma heat sources will be discussed. Mechanisms, simulations and experiments that 

have been published to date will be discussed to study possible options for further enhancement 

of this process. Chapter III consists of the details of the plasma-jet forming system and 

experimental investigations of process and material parameters on bending angle will be 

discussed. Details of finite element analysis using ANSYS will be discussed in Chapter IV. The 

thermo-mechanical simulation results will be analyzed to predict a relation between thermal 

gradient and bending. Also challenges related to material models and mathematical modeling for 

multi pass bending will be listed. Chapter V contains the overall summary and contributions 

made from this experimental and numerical investigation. Recommendations and future scope of 

this work will also be discussed in Chapter VI. An appendix with information regarding the finite 

element procedure for possible element shapes will be provided. 

 
 

 

 

 

             
            
 

 

 
 
 

  4  



  

CHAPTER II 

LITERATURE REVIEW 

2.1 Background 

 
Metal forming in a conventional manufacturing environment involves use of heavy tooling and 

machinery that consumes high power. Thermal forming is a flexible forming technology that 

uses a heat source-gas flame, plasma or laser to form a sheet metal by inducing thermal stresses 

in the sheet instead of external mechanical forces. Thermal forming is a tool-less, non-contact 

material forming technology that overcomes the need for expensive tools as in conventional 

sheet metal bending processes. The major advantage of thermal forming is it being highly 

controllable and repeatable and that it can be used to form complex shapes even with brittle 

materials. Thermal forming is potentially applicable in rapid prototyping, low volume 

manufacturing environment. 

2.2 Thermal Forming Mechanism 

 
The concept of thermal forming emerges from thermal expansion and contraction phenomenon 

of metals. The localized heating of the metal tends to expand the metal, but under the influence 

of high temperatures when the expansion is constrained, compressive stresses are generated 

resulting in plastic deformation of the material in the heated region. 

The basic thermal forming process involves a moving heat source that traverses a guided path 

(straight line or curvilinear) on the top surface of the sheet metal, to locally heat the sheet metal 

while the remaining sheet is at ambient conditions. A coolant is used on the bottom surface to 

create a necessary temperature gradient that generates thermal stresses in the sheet. The localized 

temperature changes enunciate plastic deformation along the heated zone thereby bending the 

metal plate. 

 This method of bending by application of differential temperatures is termed as Temperature 

Gradient Mechanism. The Temperature gradient mechanism has been found to be major reason 

for bending by Thermal forming [1][2][3][6][7][8][11]. Figure 2.1 illustrates the temperature 

gradient mechanism with respect to plasma-jet forming. 
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(a): Thermal Gradient along thickness.    (b): Material Behavior during heating. 
 

   
(c): Heating Phase-Counter Bending.  (d): Cooling Phase-Positive Bending. 

 
Figure 2.1: Temperature gradient mechanism in Plasma Forming. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thermal forming is basically a two-step process, the heating phase followed by the cooling phase 

(Figure 2.1(c) & (d)). The metal plate initially when heated bends away from the heat source 

(counter- bending) and later bends towards the heat source (positive bending) when cooled [1] 

[4][5][11][26].  

Majority of experiments involved a cantilever beam like arrangement with the sheet clamped at 

one end. Some experiments involved the metal plates having supports on both ends and the 

unrestricted sheet was allowed to bend freely. 

Bending away from the heat source occurs when the surface being heated along the bending line 

exhibits a convex hinge. This is mainly because of a high temperature on the top surface and a 

low temperature on the bottom surface along the heating line. As shown in Figure 2.2(a) 
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compressive stresses (S1) and tensile stresses (S2) generate on top and bottom surfaces 

respectively.  The metal on the top surface being hotter tends to expand and the ambient 

temperature surrounding it tries to restrict the expansion thereby allowing it to bend away from 

the heat source. 

Bending towards the heat source is said to be the second step of the forming process where the 

material on the top is in plastic state due to heating while the material on the bottom still 

maintains its elastic state. On cooling, contraction occurs in the sheet metal mainly in the plastic 

deformed heated zone and thereby bending the plate towards the heat source permanently. This 

mainly occurs due to lower yield stress of the material at higher temperatures than at low 

temperatures [1][4]. This helps in bending on cooling it further until the whole sheet reaches 

equilibrium (room temperature). 

  

 
 

(a) Heating                                (b) Cooling 
 

Figure 2.2: Deformation during Heating & Cooling Process. 
Digitized from Chen Y.W.[26]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Apart from the temperature gradient mechanism, buckling and shortening (Upsetting) 

mechanism have been defined. Buckling occurs when the beam diameter is much larger than the 

sheet thickness and a low scanning speed is used. This results in a thermo elastic-plastic buckling 

in the material. The buckle creates a residual plastic strain causing the deflection. Shortening or 

Upsetting occurs due to an increased moment of inertia than that of the sheet material in the 

metal geometry that prevents buckling [21][8].  
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(a) Buckling Mechanism.                                      (b) Upsetting Mechanism. 

 
Figure 2.3: Buckling and Shortening Mechanisms in Thermal Forming. 

 

 

 

 

 

 

 

 

 

This increased moment of inertia could generate high energy in the metal plate in one step. 

Shortening generally occurs along the geometrical plane. Bending towards the arc is mainly due 

to temperature gradient mechanism when a high speed torch with a small beam width is used. 

Buckling allows the sheet to bend away from the arc and generally occurs when a slow moving 

heat source is used with a large beam diameter. Shortening or Upsetting happens with a slow 

moving beam and a small beam diameter. Shortening is the mechanism generally used to form 

tubes and bowls. 

2.3 Heat Sources 

 
Thermal Forming is a method of localized heating, used to generate thermal stresses that 

enunciate a permanent deformation in the material. This concept of localized heating or line 

heating is being used in the ship building industry for straightening long-bent metallic plates 

[1].Gas Flame Torches was predominantly the only heat source used for flame straightening and 

altering weld structures until lasers came into existence. 

2.3.1 Laser Forming 

 
Over the past thirty years development of lasers has led to its application in manufacturing 

industry in a new way replacing many conventional techniques. Lasers were first employed as 

heat source for sheet metal forming in early 1980’s by Masubuchi et al. [2]. It has been 

demonstrated that simple bending of sheet metals is practically possible and can be extended to 
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study the possible forming of complex structures. Studies have been performed to analyze the 

effect of residual stresses and deflections in complex shapes formed by laser bending using 

thermo-mechanical Finite Element Simulations at M.I.T, U.S.A [2][3][4]. The effects of 

temperature field distribution and its influence on thermal strains have been determined and were 

followed by parametric studies in an effort to optimize the performance characteristics. 

Lasers provided a highly controllable heat source that could rapidly heat metallic surfaces. 

Further investigations on the effects of Laser Bending on material degradation, surface effects, 

mechanisms and investigations of 2D and 3D complex shapes have been performed by 

Vollertsen, Geiger, et al in Germany.[5] [6] [8]. Laser forming process was modeled using both 

finite difference and finite element methods [7]. Based on these simulations Vollertsen et al. 

suggested an empirical model to predict the bending angle as a function of material used and 

laser heat source properties [9]. Application of Laser forming in various fields was investigated 

by Frackiewicz et al. [10][11].  

Many complex structures including tubes, pipes and utensils were produced with laser bending 

equipment under a highly controllable manufacturing environment. These research activities 

were performed on various materials of varied thickness.  

With extensive experiments been performed to identify the effect of process variables such as the 

scanning speed, beam diameter and power, determining the controllability and repeatability of 

the process was to be evaluated. Thomson and Pridham have investigated the improvement of 

the manufacturing control parameters for laser forming by the application of closed loop controls 

[12]. The deformations of the sheet metal were analyzed to determine optimum forming 

parameters. Kyrsanidi et.al. have developed a valid numerical model for the laser forming 

process of steel components by using a coupled transient thermal-structural finite element 

analysis.[13]. Multi-scan laser forming techniques for analysis of edge effects and bending angle 

per pass for three-dimensional thin plates have been studied[14]. Convex laser forming 

techniques and its application in forming tubes have also been investigated [15] . Finite element 

simulations to study the strain rate effects on bending with increase of number of passes was also 

performed. 

The focus in early 1990’s was to develop and automate a highly precisioned closed loop control 

for laser forming that could improve the performance and help in analyzing the process variables 

to determine their effects on final deformation of the workpiece [9][10][11][12][14]. In the late 
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1990’s, the effects of process parameters of a laser induced line heating equipment were studied 

on various materials such as Inconel, stainless steels, Aluminum alloys, Low carbon streels and 

also Titanium alloys [16][17]. The major work done until the early 21st century using the Laser 

Line Heating method involved analysis, optimization of the control system and the forming 

process so as to predict the bending angle and improve the process to form complex shapes. The 

thickness of sheet metals  under test varied from 0.7mm to 3mm with various scanning methods 

and torch speeds.All the experiments were carried out using both low (Nd:YAG) and high (CO2) 

powered lasers.These laser systems require additional safety norms from highly destructible 

reflections. 

Recent advancements in laser forming involved experiments and analysis for its applicability in 

ship buliding industry. Sheet metal plates of thickness up to 6mm were formed to determine the 

capability of laser line heating for large ship structures [18][19][20][21]. The transient 

temperature fields and the bending angles were predicted for ship bulding structures using finite 

element method. It was observed that the bending angle per pass for plates of thickness varying 

from 3mm to 6mm was in the range of 0.8 degrees to 2 degrees per pass depending on the 

scanning method and velocity[22]. 

Much of the research activity on laser forming for ship structures is being done at University of 

Liverpool,U.K. and Penn State University,U.S.A. Numerical modelling and optimization of laser 

forming process for stainless steel circular sections has also been studied[46]. 

Some of the modern day research in laser forming is performed to study the implementation of 

this method in shipbuilding, automotive, micro-electronics and materials engineering. 

Microstructural analysis to study the strain rate effects on the flow stress and forming efficiency 

are also being analyzed[23][24].The variations of the bending angle with number of passes, the 

total bending angle and bending angle per pass were determined [25]. 

Laser forming is also being used to form fiber metal laminates that are generally of very high 

strength and very difficult to form because of their construction.These materials are being tested 

for application in aerospace industry because of their significant weight reductions (strength to 

weight ratio). Multi pass laser forming on polyamide fiber metal laminates was investigated and 

studies about  the material integrity and high speeed formability for complex shapes are being 

performed[34]. 
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Figure 2.4: Laser forming the upper layer for Fiber Metal Laminate [34]. 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.2 Plasma-Jet Forming 

 
As an alternative to lasers, plasma-jet forming was used as a cheaper and viable thermal forming 

method.[1][26][27][28]. A Non-transferred plasma torch has been used to create an arc that has a 

considerably higher heat transfer efficiency than the Lasers. The plasma-arc heat sources will 

also be able to produce higher temperatures at a faster rate than the lasers. The low powered 

plasma arc was used as a heat source and a compressed CO2 gas was used as a coolant. The 

plasma arc is a highly controllable heat source that moves along a predetermined line and 

generates the required thermal gradients to obtain bending without having a major effect on the 

material degradation. 

 The processing effects of the plasma system were analyzed with scanning speed, standoff 

distance and cooling rate as variables[29]. The physical properties and effect of material 

properties were also invesigated and it was found that with the increase in number of passes, 

hardening along the heat affected zone had increased although not to a high value[30]. 

The plasma scans were performed on four different materials(Mild Steel, Stainless Steel, Copper 

and Aluminum) of thickness 0.8mm. The effects of material parameters such as the thermal 

conductivity, thermal expansion coefficient were analysed[26][30]. It was found that a high 

temperature heat source on the top surface and a coolant on the bottom will bend the plate 
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towards the heat source whereas a low temperature heat source and no coolant will bend the 

sheet away from the heat source. It was also observed that the travel speed has significant effect 

on bending and surface temperatures of the sheet. A low scanning velocity and low thermal 

conductivity will heat the metal surface faster and thereby ensure higher thermal gradient with a 

precaution that the melting point is not reached. A higher velocity will thereby produce less 

surface temperatures and thereby less temperature gradient resulting in less bending. 

Thermal conductivity of the material is found to be the decisive factor in determining the 

bending angle using plasma-jet forming. In  recent years finite element simulations on plasma-jet 

forming were performed to study the effect of temperature field distribution and thermal stresses 

on bending[31][32]. The influences of thermal and mechanical parameters on the sheet metal 

geometry were analysed and the effect of the plasma arc power on the thermal gradient and 

surface temperature was investigated. It was found that arc power and scanning velocity are two 

major parameters that control the bending angle and forming accuracy.  Current input forms a 

vital characteristic on which the plasma-arc power is dependent. Hence many experiments have 

been conducted by using the combination of current input and torch speed such that optimum 

bending angles are obtained by efficient use of the process variables (resources) available.A 

detailed overview of the developments of thermal forming have been incorporated in various 

articles published in the proceedings of IWOTE’05[33]. Present developments in thermal 

forming (mainly laser forming) have been discussed and the future directions of its growing 

applications was perceived. 

 

 
Figure 2.5: Bending samples using Plasma-jet Forming 

Digitized from Chen Y.W.[26]. 
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2.4 Discussion 
 

Plasma-jet Forming has  been a better alternative to Laser forming as it could reduce costs. 

Plasma arc is capable of producing higher temperature gradient and higher surface temperatures 

in lesser time with fewer number of passes when compared to Laser because of its high 

heat/energy transfer efficiency. Also, use of plasma will eliminate any requirement of absorptive 

coating like graphite. Plasma forming is a cheaper and safer method to employ when compared 

to lasers. Plasma forming finds its place in almost all the thermal forming applications.When 

forming efficiency is considered, Plasma-jet forming was found to produce a higher bending 

with a low powered system and fewer number of passes. Laser forming is more advantageous in 

electronics and micro forming where relatively higher precision is required. 

Efforts have been made in optimizing the process by considering different ways of heating and 

cooling of the metal plate with both laser and plasma heat sources. Present day research in 

thermal forming involves validating its applications in electronic and ship building industry. 

Hence this dissertation will mainly focus on improving the existing Plasma-jet forming process 

enabling a greater control and increased bending behavior. Experimental investigations will be 

performed to examine the bending behavior and the effect of various forming options with 

alternating heating and cooling methods. A computational model will be generated using a finite-

element numerical simulation tool to analyze both thermal and structural behavior with respect to 

the variations in both process and physical parameters. The temperature field distribution and the 

stresses leading to bending will be investigated with respect to the thermal gradient mechanism. 
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CHAPTER III 

EXPERIMENTAL INVESTIGATION 

 

3.1 Background 

 
Earlier experimental investigation of plasma-jet forming involved use of a constant thickness 

sheet (0.8mm) to study the bending behavior of various materials [26]. Stainless steel (SS304), 

low carbon mild steel, Aluminum (Al 6061) and copper (C11000) alloys were used to analyze 

the scope of plasma jet forming. Correlation between the forming process parameters and 

bending were established. The influence of material physical parameters was also analyzed. All 

these materials were subjected to a constant power input subjected to line heating by continuous 

passes. While the bending behavior of these materials emphasized on thermal conductivity to be 

the major deciding factor, various forming options such as alternate heating and cooling, variable 

power line heating have to be considered. Also to analyze possible chances of increase in 

bending, influence of sheet thickness on bending is to be analyzed. Majority of the discussion in 

this chapter will involve observations made from experiments using alternate line heating 

methods where intermittent heating and cooling cycles will be analyzed. Effect of heating 

followed by rapid cooling after two cycles until 10 heating cycles will be determined and 

compared to continuous heating method. SS304 sheets of thickness 2mm and 3mm will be 

studied so that the effect of thickness on thermal bending may be determined. Magnesium alloy 

AZ31 will also be formed to investigate its forming capability by the application of plasma line 

heating. 
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3.2 Plasma-jet Forming System. 

 
The plasma-jet forming system mainly consists of a non transferred plasma torch as a moving 

heat source that scans through a predetermined path with a coolant at the bottom thereby creating 

necessary thermal gradient required for bending as shown in the figure below. 

 
 

 
 

Figure 3.1:  An illustration of the plasma-jet forming concept. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The sheet is clamped at one end and the other end is left free to enable a cantilever beam like 

arrangement. Experimental design of this system involves use of an automated robotic system to 

control the speed, distance and direction of traverse of the torch and cooling jet. A non 

transferred plasma arc torch is powered to generate required heating stream. The positioning of 

the torch, its motion and other parameters are controlled by an external workstation. 
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Figure 3.2:  A schematic diagram of Plasma-jet forming system. 

Digitized from Chen Y.W.[26]. 

 

 

 

 

 

 

 

 

 

 

 

 

The workstation mainly contains control software that is used to set major parameters required 

for the forming process. It helps in automating the multi-pass forming process. A manual control 

function is also enabled to help the operator adjust the position of the torch and its movement. 

The motion control system is used to control the tilt and direction of motion of the torch. It is 

also used to control the rotation of the workpiece clamp. The positioning system is a three-

dimensional system used to move and locate the torch such that the plasma jet is always 

perpendicular to the work piece along the line of heating. The positioning system mainly consists 

of a three degrees of freedom cartesian robotic system as the body that enables to move the torch 

in X, Y and Z directions respectively. Servomotors connected to each positioner help in the 

movement of the positioning system along the Cartesian axis. The arm of the robot has a single 

degree of freedom and is fixed with a tilt motor that helps in tilting the torch so as to maintain 

perpendicularity with the workpiece.  

The workpiece clamp is provided with a 360 degree rotational capability along the XY plane. 

The torch is provided with a raster motion in the Y direction so that surface damage or melting of 

the workpiece can be avoided. All these parameters as input are controlled by the control 

software I/O interface programmed using Visual C++ and ActiveX tools. 
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Figure 3.3: A schematic diagram of the robotic positioning and motion control 
system. [26] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The table below contains the maximum range of major process parameters involved in plasma-

jet forming system. 

          Table 3.1:  Range of process parameters in the plasma-jet forming system. 

Parameters Range 

Plasma-jet current 1 A-100 A 

Cooling jet flow rate 0 L/min - 50 L/min 

Travel speed 1 mm/s - 15 mm/s 

Stand off distance 1 mm – 11 mm. 

Beam diameter 1.5 mm – 4 mm 

Y-direction traverse distance 1 mm – 100 mm 

Torch tilting angle 10 - 600

Clamp rotation angle 10 - 3600
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The process parameters were standardized to optimize the forming capability for a 0.8mm thick 

sheet metal [26]. The plasma jet current of 30A, cooling jet flow rate of 19 L/min and torch 

speeds from 2 mm/s to 10 mm/s were used in majority of experiments. A constant orifice 

diameter of 2 mm was used with a standoff distance of 4mm. The Y-direction traverse of the 

torch was limited to a maximum of 10mm and could be altered based on the width of the 

workpiece used. The maximum torch tilting angle was set to 150. The vibration amplitude range 

was 0.5mm to 6mm. The vibrating frequency is between 0 to 4Hz. The size and shape of the 

workpiece will mainly determine the exact parameters to be used at the time of operation of the 

forming system. The bending angle of the workpiece has been measured manually using a 

protractor with an error of ± 0.20. 
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3.3 Effect Of Different Scanning Methods 

 
The forming method used for experimental investigations was predominantly a continuous pass 

method where the plasma torch was allowed to traverse a predetermined path for given number 

of cycles. The workpiece was later allowed to cool down to ambient temperature. One pass is 

defined to be completed when the torch starts at a specific point, moves to the other end and 

again traverses back to the original point. Hence one pass consists of forward and return cycle 

together. On an average 10 passes were performed to study the bending behavior by altering 

various process parameters. Thermal bending process mainly follows the temperature gradient 

mechanism to allow sufficient thermal stresses to be generated that enunciate a plastic 

deformation. The continuous pass method was used on four different materials by varying the 

process parameters to determine their effect on bending. The stand off distance, current input, 

beam diameter and torch speed mainly constituted the process parameters for these experiments. 

 

Figure 3.4: Bending angle at different torch speeds for SS304, 0.8mm 
thickness using continuous pass method [26]. 
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Large bending angles with fewer passes can be obtained if a constant temperature difference 

between top and bottom surfaces is maintained. To achieve this, the material needs to be cooled 

down and again reheated to almost the same surface temperature in the next pass. This will not 

only enhance the material properties but also help in maintaining a consistent thermal gradient in 

each and every pass. In order to investigate a possible increase of bending angle in a multi-pass 

plasma-jet forming environment, effect of single pass and double pass scanning methods have 

been investigated. 

In a single pass method, the plasma torch is allowed to traverse one pass and then the material is 

cooled rapidly with the help of coolant at the bottom surface to rapidly decrease the temperature 

to the ambient conditions. The material is reheated for another pass and the process is continued 

until predefined number of passes are completed. A double pass method is similar to the single 

pass method with the difference being in number of plasma irradiations being followed. The 

material is cooled to room temperature after two passes are completed in a double pass method. 

Experiments have been conducted on SS304 and low carbon mild steel sheets of dimension 

(130×50×0.8) mm. Comparison of double pass and continuous pass methods was performed to 

study any possible improvements in bending. 

SS304,I=30A,V=10mm/s,L=4mm,W=2mm.
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Figure 3.5: Plasma jet scans using three different scanning options on 0.8mm thick 
SS304 at10mm/s torch speed. 
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Figure 3.6: Plasma jet scans using three different scanning options on 0.8mm thick 

SS304 at 8 mm/s torch speed. 
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Figure 3.7: Comparison of double pass and continuous scanning options 

on 0.8mm thick SS304 at 6 mm/s torch speed. 
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Figure 3.8:  Comparison of double pass and continuous scanning options 

on 0.8mm thick SS304 at 6 mm/s torch speed. 
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Figure 3.9: Bending angle using double pass method at various forming speeds 
on 0.8mm thick SS304 sheet. 
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As observed from experiments (Figure 3.5), a single pass method depicts a similar bending 

behavior as a continuous pass method. This could probably be because of the time associated 

with the application of heat in a single pass method. Although alternate heating and cooling takes 

place, not enough surface temperatures are generated in a single pass method to create a thermal 

gradient sufficient enough to enunciate significant increase in bending. Using a double pass 

method a greater rate of bending per pass can be achieved as two plasma scans will not only 

provide high surface temperatures for temperature gradient between the top and bottom surfaces 

but also generate stresses that are just enough to provide a larger bend. As the material is cooled, 

the material properties are retrieved and thus reheating it will lead to generating a thermal 

gradient equal to that in the previous cycle. This also avoids continuous increase of surface 

temperatures and subsequent decrease in temperature gradient. The double pass method hence 

will provide an increased forming efficiency in a low-volume manufacturing environment. 

Although the processing time increases because of intermittent heating and cooling phenomenon, 

rapid cooling by using the coolant will help in decreasing the material temperature to ambient 

conditions faster.  
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Low Carbon Mild Steel          

I=30A,V=8mm/s,L=4mm,W=2mm.
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Figure 3.10: Bending angle variation at 8mm/s using continuous and double pass 
method on 0.8mm thick mild steel sheet. 
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Figure 3.11: Bending angle variation at 6mm/s using continuous and double pass 

method on 0.8mm thick mild steel sheet.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  24  



  

 
Low Carbon Mild Steel    

I=30A,V=4mm/s,L=4mm,W=2mm.
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Figure 3.12: Bending angle variation at 4mm/s using continuous and double pass 
method on 0.8mm thick mild steel sheet.
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Figure 3.13: Bending angle variation at 2mm/s using continuous and double pass 
method on 0.8mm thick mild steel sheet. 
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Low Carbon Mild Steel 
I=30A,L=4mm,W=2mm.
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Figure 3.14: Bending behavior at various torch speeds using double pass method 
on 0.8mm thick low carbon mild steel plate. 

 

 

 

 

 

 

 

3.4 Effect Of Thickness 

 

The forming parameters such as current and velocity were varied to study their effect of 

changing thickness on bending. All the experimental observations have been performed on 

sheets of 0.8mm. SS304 sheets of dimension (130×50×2) mm and (150×50×3) mm are used to 

determine the effect of thickness on bending. 

3.4.1 Observations On 2mm Thick Sheets. 

 
Stainless steel sheets of 0.8mm thickness have shown an increase in the bending angle when high 

power and low torch speeds are used. Typically this is because of high surface temperatures 

being applied for a longer period of time at low torch speeds. Use of very low speeds (2mm/s) 

resulted in material damage and local melting of a 0.8mm thickness sheet metal. 
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SS304,V=6mm/s,L=4mm,W=2mm,t=2mm.
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Figure 3.15: Comparison of bending using continuous and double pass method 
for 2mm thick SS304 sheet at 6mm/s torch speed. 
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Figure 3.16: Comparison of bending at different torch speeds for 2mm thick 
SS304 sheet by double pass method. 
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Figure 3.17: Comparison of bending using continuous and double pass method for 

2mm thick SS304 sheet at different torch speeds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Experiments on the 2mm thick SS304 have been conducted using the standard process 

parameters, 30A current, 4mm stand-off, and 2mm beam diameter at various torch speeds. The 

bending angle increased with decrease in torch speed under a constant heat input. Also the 

deformation in a 2mm thick sheet was found to be less than that observed in a 0.8mm thick metal 

plate at the same operating parameters. Also, scanning method used for forming has a significant 

effect on bending of sheets of large thickness. As observed earlier for thin sheets, Use of double 

pass method has shown significant increase in bending angle for sheets of large thickness than 

any other scanning method. 
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Figure 3.18: Comparison of bending using continuous pass method for sheets of 

thickness 0.8mm and 2mm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Although a constant heat input rate was used, a decrease in bending with increase in thickness 

has been observed in the above case. The amount of heat supplied by 30A current may not be 

sufficient to create larger thermal gradients hence a higher current input was used to study the 

possible increase in bending. Current inputs of 40A and 50A have been used on sheet of 

thickness 2mm. Use of these high current inputs resulted in melting of thin sheets, an increase in 

bending angle has been observed at higher power inputs on thick sheets. 
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Figure 3.19: Bending behavior for a 2mm thick SS304 sheet at different current 

inputs at 8mm/s torch speed by continuous pass method. 
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Figure 3.20: Bending behavior for a 2mm thick SS304 sheet at different current 
inputs at 4mm/s torch speed by continuous pass method. 
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3.4.2 Observations On 3mm Thick Sheets. 

 
To determine the relationship between the forming parameters and their effect on bending with 

changing thickness, experiments are also performed on a 3mm thick SS304 metal plate. Under a 

constant heat input, bending behavior decreases with increase in thickness of this sheet. This is 

mainly due to the need of greater rate of heat input for large cross-sectional areas so that a high 

temperature difference between the top and bottom surfaces can be created in minimum time.  
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Figure 3.21: Bending behavior for a 3mm thick SS304 sheet at different torch speeds 

by continuous pass method.
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Figure 3.22: Bending behavior for a 3mm thick SS304 sheet at different current 
inputs at 4mm/s torch speed by continuous pass method. 
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Figure 3.23: Bending behavior for a 3mm thick SS304 sheet at different current  
                   inputs at 8mm/s torch speed by continuous pass method. 
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It has been observed that the bending angle is closely related to the heat input as long as the 

metal surface does not melt. While 0.8mm thick sheets melted at 30A current input, 2mm and 

3mm thick sheets could produce significantly large bend angles with 40A and 50A of current. 

Sheet metals of large thickness needed higher power inputs to produce bending angles almost 

equal to the thin sheets formed at lower heat inputs. All the experimental observations to study 

the effect of thickness have been made on SS304 sheets. As the thickness was increased the 

amount of power input was also increased to obtain bends similar to that of regular thin sheets of 

0.8mm. This implies that although sufficiently large thickness is available for the sheet to create 

a large thermal gradient, greater heat input is needed to generate temperatures high enough for 

the temperature difference to induce plastic deformation. The experiments on 2mm and 3mm 

sheets have been conducted using the continuous pass method. Use of a double pass method may 

increase the forming efficiency and rate of bending per pass further, especially at high heat 

inputs where a greater thermal gradient is possible. A greater number of passes and high heat 

inputs are required for sheets of large thickness in a continuous pass method, but then the rate of 

bending decreases subsequently with increase in the number of passes as the temperature 

difference between the top and bottom surfaces decreases.  
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Figure 3.24: Effect of sheet thickness on bending for SS304 sheets using 

 continuous pass method. 
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3.5 Plasma-Jet Forming Of Magnesium Alloys 

 
Magnesium and its alloys have found increased applications in today’s automotive and aerospace 

industry. This is mainly because of high strength-to-weight ratio of magnesium alloys. To 

investigate further, the possible effect of material parameters on bending, thermal bending of 

magnesium alloys has been considered. AZ31B Mg-Al alloy sheets of dimensions (100×50×1) 

mm have been used for experiments. The standard forming parameters of 30 Amps current, 4mm 

stand-off distance, and 2mm beam diameter have been applied. Different torch speeds were used 

to analyze its effect on bending. Material damage (melting) occurred on the surface of the sheet 

along the line of heating when 30A current was used at 6mm/s torch speed and below. Hence the 

current input was later reduced to 20A to study the forming characteristics. 

 

Mg-AZ31,I=30A,V=8mm/s,L=4mm,W=2mm,t=1mm.
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Figure 3.25: Bending angle vs. no. of passes for 1mm thick Mg-AZ31 at 8mm/s 
          torch speed and 30A current, using continuous pass method. 
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Mg-AZ31,I=20A,L=4mm,W=2mm,t=1mm.
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Figure 3.26: Bending behavior of 1mm thick Mg-AZ31 at various torch speeds 
 for 20A current using continuous pass method.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AZ31B has a lower melting point (900K) and relatively higher thermal conductivity when 

compared to that of the stainless steel, hence it becomes relatively difficult to form at higher heat 

inputs. While use of a 30A current damaged the material at low and medium torch speeds, lower 

power input at 20A produced bends up to 220 in 10 continuous passes. Bending angle decreased 

with increase in torch speed. This was a similar observation of other materials tested earlier. 
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Figure 3.27: Bending behavior of various materials of thickness 0.8mm 
(except Mg: 1mm thick) at 8mm/s torch speed. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The figure above illustrates the bending behavior of various metals when similar processing 

parameters have been used. Use of SS304 sheets resulted in a very high bending values because 

of low thermal conductivity and high melting point of the material.  
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 3.6 Discussion 
 
Majority of the experiments have been performed using a constant thickness of 0.8mm. A 

comparison between different scanning options was done to determine an efficient method of 

forming wherein the material properties are recovered and also the use of resources was 

considerably reduced. Significant increase of bending angle has been observed using a double 

pass method when compared to single pass and continuous pass methods. Single pass method 

and continuous pass methods have shown a similar bending behavior and this can be attributed to 

less surface temperatures generated during single pass method. In a continuous pass method, the 

surface temperatures increase eventually with every plasma scan, but the thermal gradient 

decreases with time as the temperatures gradually pass through the thickness decreasing the 

temperature difference on the top and bottom surfaces. Also a decrease of bending with increase 

in passes is observed even though higher temperatures are maintained. This can be attributed to 

increase in strain hardening in the material along with the decrease in the temperature gradient. A 

relative increase in bending in a double pass method is mainly because of a constant thermal 

gradient being maintained whenever heating is restarted. The material is allowed to cool down 

after every two plasma scans. Reheating the material will allow the metal to reach the same 

maximum surface temperatures as in previous passes and in turn maintain the thermal difference 

along the thickness. Also any residual temperatures left in the sheet will help in increasing 

bending as the flow stress is considerably reduced. The double pass method is also effective 

especially on mild steel. Alternate heating and cooling will allow materials of high thermal 

conductivity to maintain consistent gradient. The major increase in bending using a double pass 

method is mainly observed after the second pass, when reheating from ambient temperature 

occurs. This increase in bending is observed even in subsequent passes until strain hardening, 

section thickening and other thermal effects hinder the increase in bending further. 

As the thickness increases, it has been observed that rate of bending decreases, when the same 

heat input parameters are used. For materials of greater thickness, increase in the heat input by 

increase of current led to greater bends. As the cross-sectional thickness of the sheet increases, 

rapid heating is required to reach peak temperatures. Although there is enough thickness 

available to create a temperature gradient, the normal heat inputs used for thin sections will not 

be sufficient to generate high surface temperatures required for creating stresses that lead to 
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deformation of the metal plate. Also the thermal stresses developed will not have created high 

plastic strains required for large deformations. 

It has been observed that while a 0.8mm sheet melts at lower speeds when a 30A current is used, 

2mm and 3mm thick sheets can sustain high heat inputs provided by 30A and 40A current inputs 

and also provide large bending angles than at lower heat inputs. As shown in Figure 3.22 and 

3.23, bending rate can be rapidly increased with the use of large heat inputs for thick sections 

until no material damage is incurred. 

Magnesium AZ31B alloy of thickness 1mm is used for experimentation using plasma-jet 

forming. It has been found that material damage occurs when a 30A current and low torch speeds 

are used on AZ31.Al6061 and AZ31 have similar melting points of about 900K. No material 

damage occurred at higher heat inputs on Al6061. This is presumably because of higher thermal 

conductivity of aluminum alloys. Magnesium alloys have low thermal conductivity (77 W/mK) 

and hence when lower torch speeds are used, very high surface temperatures are generated.  

When smaller input currents are used on magnesium alloys, large bending angles have been 

determined. It is also observed that larger bending angle was obtained with an AZ31 sheet when 

compared with low carbon mild steel. Mild steel has lower thermal conductivity than magnesium 

alloys and hence a greater bending is expected especially in thermal forming applications. This 

increased bending in AZ31 could probably be because of the use of fine grained material. A fine 

grained structure will enable the material to soften easily and hence improve formability of the 

sheet. This can be determined only when metallurgical studies regarding the effect of grain 

structure are performed. 

As the number of passes increased, the rate of bending decreased. This behavior is observed in 

all the materials formed using plasma-jet forming. The reduction in bending in a multi pass line 

heating method as the number of passes increases may occur if hardness of the material increases 

with every pass. Strain hardening occurs whenever entanglement of dislocations in the atomic 

structure happens due to plastic deformation. As the entanglement of dislocations increase, 

deformation decreases and hardening increases [25]. Surface temperature variations also lead to 

either increase or decrease in bending as the number of passes increase. While any inherent 

temperature in the material reduces the flow stress to increase formability, there are equal 

chances of reduction of temperature gradient between the top and bottom surfaces. Bending 

hence decreases rapidly as the number of passes increase for materials of high thermal 
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conductivity, use of intermittent passes will be beneficial for these materials than that of 

continuous passes. Although the process time increases with the use of alternate heating and 

cooling methods, rapid cooling jets will help reduce process time by significant margin.  

Surface temperatures determine the overall temperature difference to be generated between the 

top and bottom surface. Hence for plasma-jet forming to be fast and efficient, determining an 

optimum peak temperature that will enhance the bending capability by providing larger thermal 

gradients is necessary. A temperature field analysis coupled by a structural analysis will help in 

investigating the effects of physical and mechanical properties of materials on bending both at 

lower and elevated temperatures. The study of the stress distribution will allow further 

improvements in the process. Also the effect of surface temperatures and thermal gradient in 

sheets of different thickness formed using continuous and double pass methods can be compared.  

To investigate the above, a finite element thermo-mechanical simulation has been performed. 

The effect of temperature field distribution and the plastic strains on thermal bending using the 

results from a computational model will be discussed in the next chapter. 
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CHAPTER IV 

THERMO-MECHANICAL SIMULATION USING ANSYS 

4.1 Background 

 

Numerical simulation is generally performed using advanced finite element programs. The finite 

element method (FEM) is a discrete procedure for complex continuum problems that demand 

tedious computations supported by mathematically defined statements. FEM is an active 

investigation tool that is highly beneficial in numerical analysis and problems that involve 

transient dynamic analysis of varied disciplines such as structural analysis, heat transfer, fluid 

flow and electro-magnetic simulations. FEM programs not only reduce the computational time 

but also help in solving very complex problems to an optimum value eliminating the need of 

equation formulation and manual calculations. 

Numerical simulation of a plasma-jet forming process will involve a nonlinear coupled transient 

thermo-mechanical simulation. The thermal modeling is used to determine the transient 

temperature field analysis on the sheet metal resulting from the heat flux generated by a moving 

plasma heat source. The temperature effects of the moving heat source are transferred to a 

nonlinear transient structural analysis model to predict the stresses and large deformations that 

occur in the metal plate. Finite element modeling of plasma-jet forming will involve large 

nonlinear inelastic deformations. Modeling and analysis of these complex computational cases 

will require a finite element program to be typically incremental and iterative. Hence a 

commercial general purpose finite element computer program ANSYS10.0 [35] will be used for 

analysis of plasma-jet forming. 
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4.2 Computational Modeling Of Plasma-Jet Forming 

 

Thermo-mechanical simulation of plasma-jet forming is a two-step process. The initial step 

involves nonlinear transient spatial distribution of the heat flux induced by the non-transferred 

plasma torch to determine the temperature field distribution on the surface of the sheet material. 

Once the time dependent temperature field analysis is completed, these temperatures are applied 

at various nodes on the material to assess the stress-strain behavior and consequent effects of 

plastic deformation of the material. In the thermo-mechanical analysis, an incremental theory of 

plasticity is generally applied. The plastic deformation of material should satisfy Von Mises 

yield criterion and the corresponding flow rules associated with the material behavior [36]. 

The heat generated at the tip of the plasma torch is passed by the plasma-jet to the top surface of 

the metal plate based on the Fourier’s law of heat conduction. The plasma torch moves over the 

sheet metal in the x-direction with a velocity νx. The general heat transfer equation in this case 

for the metal plate is: 

 X X yc T T T T Tv k k k
t x x x y y z

ρ
⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛+ = + +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝⎝ ⎠

z z
⎞
⎟
⎠

                   (1) 

T is the temperature, c is the heat capacity, ρ is the density and kx, ky and kz represent the thermal 

conductivities of the material. The workpiece has been considered to have isotropic material 

properties. Thermal properties of the material such as thermal conductivity, specific heat, density 

and enthalpy are temperature dependent. Same value of thermal conductivity is used in all the 

three directions. The conduction and convection coefficients on the surface of the metal plate 

have a major role in determining the temperature field behavior during plasma-jet forming. 

While the simulations of a 3-D solid model for plasma-jet forming using FEM is highly time 

consuming, reduction of the computational time can be obtained by specifying a pre-defined 

temperature for material properties. In plasma-jet forming, the material is heated to temperatures 

that do not exceed the melting point of the sheet material used. The initial temperatures are set to 

the ambient conditions of the material before being formed. The heat induced by a plasma beam 

at a particular spatial coordinate follows the Gaussian distribution characteristics.  

The concepts for determining thermal history on surfaces for thin and thick sheets with moving 

heat sources are based on Rosenthal’s theory for generalized equations on heat flow. The key to 

Rosenthal’s solutions are some major assumptions such as existence of a quasi-stationary 
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temperature distribution. The heat source is also considered to be a point heat source that moved 

with a constant velocity along the x-axis of a fixed rectangular coordinate system [38]. Based on 

these assumptions, a typical temperature distribution around a moving point heat source is given 

as: 

2 2 2

2 2 2

T T T C v
y z k

ρ T
ξ ξ
∂ ∂ ∂ ∂

+ + = −
∂ ∂ ∂ ∂                                                   (2) 

ξ  is defined as the distance of the point heat source from a fixed reference point on the x-axis 

and is give by : 

x vtξ = −                      (3) 

Rosenthal further solved eq.2 to obtain a simplified heat flow equation for both thin and thick 

plates applicable to two dimensional and three dimensional heat flow conditions: 
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ξ α
ο 2
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π α

=                                                                       (4) 

Rosenthal’s model is an infinite series solution to the heat dissipated by conduction in a semi-

infinite work piece with constant thermo physical properties [38]. While numerous 

advancements of this model exist, the above equations formed a basis for time-temperature 

distribution around a heat affected zone because of a moving point heat source. Various 

numerical modeling programs have been developed based on Rosenthal’s generalized heat flow 

equations with vast applications in welding and hot working. Validations of the time-temperature 

relations obtained from analytical approach with that of experimental results will help in further 

optimizing the line heating approach for plasma-jet forming. 

The input plasma heat or energy on the surface of the sheet metal is given by [26]:  

. .
.

f E Iq
W V

=         (5) 

q denotes the input energy per unit area and f  represents the heat transfer coefficient for a non 

transferred plasma jet. Plasma generally has higher heat transfer efficiency and source intensity 

than the lasers. The heat source intensity of plasma is generally between 5 × 106 and 5 × 1010 

W/m2 and the heat transfer efficiency is usually 80% to 90% [37]. After the temperature 
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distribution is analyzed using the thermal/heat transfer analysis, the temperatures are applied 

with the predefined boundary conditions to predict any possible deformation and eventually 

study the stress distribution along the plate. The boundary conditions for plasma-jet forming 

represent the actual experimental position of the metal plate while being formed. The ambient 

temperatures along with convective boundaries are used as initial and boundary conditions in 

thermal analysis (Figure 4.1). The clamping of sheet on one end is used as the boundary 

condition in mechanical/structural analysis. With the applied boundary conditions and 

temperatures on the metal plate, the metal plate will undergo inelastic (plastic) deformation. Due 

to the temperature differential along the x, y and z axes, thermal strains will develop varying 

with time. These in turn will give rise to bending moments causing the plate to deform.  

 

Figure 4.1: Boundary conditions for plasma-jet forming. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nonlinear material properties are required for an inelastic structural analysis. Also a constitutive 

material model is fundamental for a finite element simulation of plasma-jet forming. The 

material constitutive models for cyclic loading prove to be more complex than those of 

monotonic loading. In FEM, relationship between stress-strain(σ-ε) curve for the specimen being 

formed will mainly determine the final bending behavior. The stresses and strains resulting from 

the temperature difference created in the metal plate will be constructed into the σ-ε curve to 
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determine whether the thermal loading has resulted in an inelastic or plastic behavior. While 

nonlinear elastic modulus is used for these simulations, yield point of the material after each 

thermal cycle will have a major effect on the final deformation of the sheet metal in plasma-jet 

forming. The material modeling plays a crucial role in obtaining accurate results in thermo-

mechanical simulations. The model must not only account for varying strain, strain rate and 

temperature but also the changing microstructure. The latter is a function of the previous thermo-

mechanical history of the material. Micro-structural behavior is a major criterion in thermal 

forming simulations especially for stainless and low carbon steels that undergo these changes at 

temperatures much below their melting points. Interpretation and validation of results obtained at 

the end of structural analysis is another important aspect in FEM. 
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4.3 Numerical Simulation Using ANSYS 

 

Numerical simulation using any commercial finite element code will require determination of a 

sequential algorithm that can be executed to perform the analysis. A coupled nonlinear transient 

thermal-structural analysis is required for plasma-jet forming. The main focus being the 

interaction between temperature field and the deformation of the sheet based on the thermal 

stresses developed by plasma irradiations on the sheet metal. 

Discretizing the element type into number of finite element divisions of the appropriate element 

type is the first major step. Selection of element type is highly dependent on the nature of 

analysis being pursued. A 20 node brick element is used for 3-D coupled field analysis of 

plasma-jet forming (Figure 4.2). The decision of using this element was based on need for an 

element type suitable for coupled-field analysis and sustain the system size constrains for 

computations. A 20 node brick element has compatible temperature shapes suitable for 3-D 

transient thermal analysis that can be switched over to study the results corresponding transient 

structural analysis. 

 

 
Figure 4.2:  20 Node Brick element.  
Digitized from Ansys User’s Manual. [42]. 

 

 

 

 

 

 

 

 

 

 

 

The nature of heat flux distribution on the surface because of a moving heat source has been 

assumed to be uniform and the Gaussian heat flux distribution is neglected. This was mainly 

done to decrease the complexity of the program and overall computation time. The materials 

used in this analysis are isotropic and continuous. The plastic deformation generates no internal 
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energy as the heat generated during plastic deformation is small when compared to the energy 

input in the plasma-jet forming and hence is negligible. The temperatures induced by the heat 

flux onto the surface are below the melting point of the metal and hence no melting takes place. 

Sequentially coupled thermal and structural analyses have been implemented and are performed 

separately. While the radiation distribution is generally nonlinear, in this analysis the effects of 

radiation have not been considered. The convection coefficients along the boundaries have been 

increased to nullify the effect of radiation. The total strain is considered to be sum of elastic and 

plastic strains. The plastic strain values will be predominantly high when compared to elastic 

strain values. Also, no external load is assumed to be applied on the workpiece. The sheet metal 

is clamped on one edge in the plasma-jet forming process. 

The material model has to be accurate for both nonlinear thermal and structural analysis to be 

optimum. While temperature dependent thermal properties are required to determine the 

temperature distribution, temperature dependent physical properties and a nonlinear σ-ε curve 

that satisfies the kinematic hardening model determine the amount of inelastic deformation and 

stresses induced in the model. All the simulation work done illustrated in this dissertation is on a 

SS304 metal plate of dimension (130×50×0.8) mm for torch speeds from 2mm/s to 10mm/s. The 

tables below illustrate the composition of SS304 and nonlinear thermal properties for SS304. 

Table 4.1: Chemical composition of SS304 by percentage (%). 

Alloying Elements Percentage(by weight) 

Cr 18.1 

Ni 8.4 

Mn 1.6 

C 0.1 

Si 0.69 

P 0.04 

S 0.022 

Mo 0.31 

Cu 0.33 

V 0.48 

Fe 69.93 
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Table 4.2: Temperature dependent thermal properties of SS304 [39]. 

  Temperature 

     (K) 

   Density 

   (Kg/m3) 

  Thermal Conductivity 

       (W/mK) 

    Specific  Heat 

       (KJ/Kg K) 

300 7900 16.5 495 

500 7850 17.5 532 

1000 7600 23.3 595 

1500 7340 31.0 660 

1700 7200 34.4 690 

 

The material properties above in table 4.2 are vital in terms of the temperature field distribution 

that determines the stress-strain distribution and corresponding inelastic deformation on the 

surface. 

Table 4.3: Temperature dependent mechanical properties of SS304 at room temperature and 

900K [39]. 

 
   Temperature 

    (K) 

    σy

   (Mpa) 

     σu

  (Mpa) 

     E 

     (Mpa) 

       n 

300   291    606     189000    0.105 

900   137    369     148000     0.15 
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Figure 4.3: Cyclic stress-strain (σ-ε) behavior of SS304.  

Axial stress vs. total strain. 
Digitized from N.Merah, et al. [39]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FEA simulations using ANSYS for nonlinear behavior of materials models for inelastic 

deformations using σ-ε curves can follow multilinear isotropic and multilinear kinematic 

hardening options. A nonlinear kinematic hardening model is used in this simulation.  

While the yield stress criterion determines the rate of deformation, change in flow stress with 

increase in temperature and strain rate are also vital for plasma-jet forming where large plastic 

deformations are prevalent. Accuracy of the material model used so as to fit the exact σ-ε curve 

similar to experimental parameters is of greater significance for determination of the stress 

distribution in structural analysis. 

The geometric model used for numerical studies is similar to that of the metal specimen used for 

experiments. The mesh model has been divided such that it is finest along the heating zone 

where the thermal gradient is maximum and temperature changes are rapid. As a 20 Node brick 

element is used for 3-D analysis (Figure 4.2), Solid90 element is used in thermal analysis and is 

automatically converted to solid95 in structural analysis. This helps in maintaining the same 

geometrical and mesh model for both thermal and structural analysis.  
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Figure 4.4: Element distribution and mesh distribution for a 20 node brick 

element generated by a mapped mesh. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The finer the mesh size along the heating zone, more accurate is the result. For Plasma-jet 

forming, temperature gradient along thickness can be accurately measured when greater number 

of elements are available along the thickness of the metal plate where heat is being induced. 

Adopting a finer mesh for large deformations in ANSYS is of greater significance as better 

aspect ratios will also reduce any distortion errors and further deviance of the result from the 

exact solution. Hence a mapped mesh has been used with proper element size specifications 

along the heating zone such that the aspect ratio of each element is within an acceptable range 

(1-5). The rest of the metal plate has been graded with a free mesh.  

Use of adaptive remeshing and rezoning will further increase the accuracy of the solution as 

dynamic mesh modification along the deformed or distorted elements is possible. In the current 

version of ANSYS, adaptive remeshing and rezoning are not available for 3-D transient analysis. 

A sequentially coupled thermo-mechanical simulation is a complex procedure that needs to be 

controlled by a structured algorithm. Convergence of solution for these nonlinear problems is 

generally possible by the use of a Newton-Raphson method. While many numerical integration 

schemes are available, Newton-Raphson method is a widely used numerical approximation 

methods along with implicit numerical integration methods for nonlinear structural problems. 
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For large deflection analysis, the resultant stiffness matrix should be a function of deflection [40] 

[41].Nonlinear analysis requires large computation times and hence it is important to utilize all 

possible simplification in order to improve convergence of the solution. Also the path 

dependency of the solution during nonlinear material behavior may also affect the final result 

attained. Geometrical nonlinearities arise generally in a nonlinear structural analysis when large 

strains are produced especially in metal forming. A moving heat source will require the heat flux 

to be applied as a surface load on each element and be moved along the scanning path from one 

element to another depending on the time and velocity of the plasma torch. The heat flux induced 

will be used to determine the temperature field distribution along the metal plate. These 

temperatures will then be applied as body loads in a transient structural analysis to measure the 

deformation obtained. Given the complexity of the problem, execution of an algorithm in 

ANSYS has been performed using ANSYS Parametric Design Language (APDL) [42]. APDL 

provides a user controlled step by step instructions that interact with ANSYS to provide a 

flexible and efficient simulation procedure [43]. In a transient analysis setting up the number of 

load steps, substeps and equilibrium iterations is necessary. This will enable a proper response of 

the structure at specific points in time as desired. The programming methodology using APDL is 

available in ANSYS Documentation [42]. Thermo-mechanical analysis of plasma-jet forming is 

a two step process. Transient thermal analysis is first performed and is followed by nonlinear 

transient structural analysis. The figure in the next page illustrates the algorithm used for finite 

element simulation. 
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Figure 4.5: Flow diagram of sequentially coupled thermal-structural analysis  

of plasma-jet forming. 
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The heat flux induced on the top surface of the sheet metal is dependent on the current, voltage, 

velocity of the torch and the orifice diameter of the width of the heating zone as explained in 

equation 5. The heat transfer coefficient f  for a plasma heat source lies between 0.8 and 0.9. f  

is taken as 0.85 in this simulation. The coolant at the bottom surface is maintained at a constant 

temperature of 298 K. The moving heat source is simulated by passing the heat flux to be 

induced on the top surface from one element to another. The surface load applied in the previous 

element is deleted and then applied on the next set of elements on the predetermined line of 

heating. The coolant is applied on the bottom surface of the sheet metal and moves along with 

the plasma torch along the heating zone.  

 
 
 
 
 
 
 
 

(a) (b) 
 
 
 
 
 
 
 

(c)                 (d) 
 
 
 
 
 
 
 
 
 
(e)       (f) 

Figure 4.6: Illustration of the temperature distribution using a moving heat source. 
              (f) shows the temperature profile on the metal plate while cooling. 
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As shown in the figure 4.6, major changes in the temperatures on the surface of the sheet metal 

occur mainly on the set of elements along the heating line. The temperature on the top surface 

increases as the number of plasma-jet scans increase, but the coolant maintains the bottom 

surface at relatively low temperatures creating a gradient along the thickness. When the sheet 

metal is cooled down during the cooling phase, the temperature spreads through the metal until 

the whole plate achieves uniform temperature. The transient thermal analysis of plasma-jet 

forming follows the thermal gradient mechanism (section 2.2) to induce stresses required for 

bending. The temperature gradient along the thickness of the metal plate determines the amount 

of plastic deformation possible. 

 

 
Figure 4.7: Thermal gradient along thickness of a 0.8mm SS304 sheet. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The surface temperatures increase as the number of plasma scans increase but remain below the 

melting point of the material. Also as the heat source moves away from an element gradual 

decrease in temperature takes place. Any residual temperature present in the metal should help in 

increasing the bending as a hotter metal is easier to form than a colder metal. 
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 for two passes. 

 
Figure 4.8: Temperatures on the top surface of the sheet using single pass method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure above describes the temperature profile on the top surface of a sheet metal during plasma-

jet forming. Sudden rise in temperature at a node is due to the heat flux induced by the moving 

heat source. As the heat source moves away from the node, temperatures decrease because of the 

existence of a coolant on the bottom surface and ambient conditions around the sheet.  The 

temperatures continue to rise as the plasma torch scans through the top surface and decrease 

along the thickness. The slower the torch speed greater is the surface temperature on the surface 

of the sheet metal. Slower torch speeds allow the heat flux to be applied for more time than that 

at higher torch speeds and this allows a greater thermal gradient to be created at relatively faster 

rate thereby ensuring high bending angles.  
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4.9a: Temperature behavior on the top surface (h=0.8mm). 

4.9b: Surface temperature at a node in the mid-thickness (h=0.4mm). 

4.9c: Temperatures at the bottom surface (h=0mm). 
Figure 4.9: Surface temperatures with time using double pass method for SS304, 

0.8mm thick plate at 8mm/s torch speed and 30A current. 



  

Surface temperatures prove to be vital for thermal gradient mechanism to provide large bending 

angles. While torch speed was observed to be a major parameter to increase the surface 

temperatures, increase in the overall power input from the plasma torch will also increase the 

surface temperatures. Also uses of alternate heating and cooling methods have helped in 

maintaining larger temperature gradient during multipass forming. Various scanning methods 

used in plasma-jet forming have been explained earlier in section 3.6. 

 

 
Figure 4.10: Maximum surface temperatures reached at various torch speeds 
 for 0.8mm thick SS304 plate taken at a node on the middle of heating line 

 on the top surface at the end of second pass using double pass method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It has been observed that at a torch speed of 2mm/s, the surface temperature of the 0.8mm SS304 

plate is 1780 K, exceeding the melting point of the material (1690 K). Similar observation has 

been made during experiments where specimens have melted at low torch speed of 2mm/s. 
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SS304,V=8mm/s,L=4mm,W=2mm.
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Figure 4.11: Surface temperatures on a 0.8mm SS304 sheet at various current 
inputs for 8mm/s torch speed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The surface temperatures on the metal surface increase with decrease in torch speeds and also 

with increase in the current input. While a slower velocity of the plasma torch allows heat flux to 

be induced for a greater time, increase in current input will increase the amount of heat flux to be 

induced on the surface of the sheet metal.  For materials of low thermal conductivity and less 

thickness, use of higher power (current) inputs will result in melting of the material. Proper 

coupling of the power and torch speeds will hence provide an optimum bending value. Also 

higher surface temperatures during heating will result in larger thermal gradient as coolant 

manages to keep the temperature at the bottom surface consistently at low temperatures. Large 

thermal stresses are created and lead to permanent deformation in the sheet along the heat 

affected zone. Different scanning methods (section 3.3) analyzed during experiments have 

shown significant increase in the bending value. This can be validated with an observation of the 

surface temperatures and temperature gradients being created when these methods are used. 
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SS304,I=30A,L=4mm,W=2mm.
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Figure 4.12: Surface temperatures with respect to various multi pass scanning 
methods for 0.8mm thick SS304 plate on the top surface of the sheet. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Surface temperatures are maximum during double pass method and this can be attributed to 

greater number of scans being performed when compared with any other scanning method used. 

While continuous number of scans increases the surface temperature, thermal gradient reduces 

gradually as temperatures penetrate through the internal layers of the metal. Use of alternate 

heating and cooling will help in maintaining a constant thermal gradient as heating after 

subsequent cooling will generate the same amount of temperature as in previous passes. The 

surface temperatures although high enough, do not exceed the melting point of the material. For 

materials of lower thermal conductivity, less number of passes are required to produce high 

temperatures that create a large thermal gradient to enunciate plastic deformation, where as for 

materials of high conductivity sustaining a large value of thermal gradient becomes difficult and 

the temperature difference reduced gradually. 
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Figure 4.13: Temperature difference (gradient) between the top and bottom surfaces 
                  using continuous and double pass methods for 0.8mm thick SS304 sheet. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in the figure above, thermal gradient decreased rapidly with increase in number of 

passes for a continuous scanning method while a consistent thermal gradient was maintained in a 

double pass method. In a double pass method, reheating allows the material to reach a peak 

temperature thereby allowing it to maintain a thermal gradient equivalent to those in previous 

passes. Use of double pass method hence has been advantageous as a constant large thermal 

gradient led to increased amount of bending (fig 3.5-3.8).  
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Figure 4.14: Element solution of the temperature distribution for plasma-jet forming 

for a 0.8mm thick SS304 at a torch speed of 10mm/s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The width of the heating zone is the sum of the orifice diameter of the plasma torch and the 

width covered by the torch due to raster. A constant orifice diameter of 2mm was used and the 

raster for the torch was set to 1mm. Hence a total width of 3mm was heated by the moving heat 

source. Simulations have been performed as in experiments with the heating width along the 

central axis. As observed in Figure 4.1.4, the moving heat source applies the localized heat flux 

only on the set of elements associated in the heating width. As the heat source traverses forward 

and backward along the line of heating, the temperatures dissipate through the thickness and 

along the surface. The temperature distribution above illustrates similar behavior with an 

overview of the elements affected by the induced heat flux and the total heat affected zone. 
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Figure 4.15: Temperature distribution on the top, middle and bottom surfaces 

         along the heat affected zone using a double pass method. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
It has been observed that the temperature distribution was symmetrical along the line of heating 

and the surface temperature decreased as the distance from the neutral axis increased.  

All the temperatures obtained at various time steps by the application of surface loads from 

transient thermal analysis are transferred to structural analysis as body loads to study the stress 

distribution and measure the deformation in the sheet. The material model shown in Figure 4.3 

has been used for the simulation. The geometrical shape and mesh distribution are perfectly 

imported from the thermal analysis to perform the structural analysis. The temperatures obtained 

from the thermal analysis are imported at every load step and applied on the physical model 

based on the time step, velocity and position of the heat source.  

The deformation in the structure is based on the material model and depends on the value of the 

stresses and corresponding strains developed. The multilinear kinematic hardening model uses 

the Besseling model (overlay model). Bauschinger effect is included in this model [42]. The 

assumption is that the corresponding points on the different stress-strain curves represent the 

temperature dependent yield behavior of a particular sublayer.  

The plastic strains in ANSYS are calculated based on the formula: 

Effective Plastic strain = Total True Strain –True Stress/Y.                      (6) 
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As the stress value increases, recoverable strain (true stress/Y) value also increases. The material 

model (σ-ε curve) used for input needs to be accurate enough in a nonlinear analysis to obtain 

necessary measurements. 

Also when the corresponding stresses generated are high enough that they exceed the yield 

strength of the material, inelastic (permanent) deformation occurs. Yield strength is a major 

parameter on which deformation is dependent in plasma-jet forming. Higher the yield strength of 

the material less is the deformation as more plasma-jet scans are required to generate high stress-

strain values. Generation of these stresses is also dependent on the thermal gradient. The increase 

in temperature of the body and the temperature difference along the thickness help in enhancing 

the stresses induced in the structure. Presence of any residual temperatures before reheating 

using a single pass method and double pass method helps in increasing bending by reducing the 

flow stress [25].  
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Figure 4.16: Maximum stresses vs. plasma scans on the top surface along the  

heating zone using double pass method. 
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Figure 4.17: Plastic strain vs. no. of passes on the top surface along the heating zone 

using double pass method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The stresses in the structure increase initially and gradually decrease but still remain in the 

plastic state. The yield strength of SS304 is approximately 197 Mpa and decreases with increase 

of temperature. Bending using Plasma-jet forming is hence a combination of the thermal gradient 

and the stresses generated that lead to a plastic deformation. A constant peak thermal gradient 

and high surface temperatures help in inducing necessary thermal stresses. Also, temperatures on 

the surface are determined by the combination of current input (power) and torch speed used. 
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Figure 4.18: A view of the thermal gradient and deformation at the end of first  

                  pass using a continuous bending method for a 0.8mm thick SS304   
sheet at 10mm/s torch speed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The residual stresses at the end of cooling during plasma-jet forming are found to be minimal 

and the effect of these residual stresses on the bending rate in further passes is negligible. The 

stresses on an element during heating are compressive and tensile stresses generate as the 

material cools down. Figure 4.19 and 4.20 show the stress distribution during plasma-jet 

forming. The stresses leftover (residual) at the end of cooling are observed to be close to be very 

low (0-110 Mpa). Also the residual stress values (Figure 4.20) after cooling do not exceed the 

yield strength value and hence the net effect of these stresses on the deformation is minimum.  
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Figure 4.19:  Compressive stresses at a node during plasma-jet forming. 

 
Figure 4.20:  Nodal solution for axial stresses along the thickness during 

plasma-jet forming. 
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Figure 4.21: Stress distribution in a plate during Plasma-jet forming. 

 

 

 

 

 

 

 

 

 

 

 

 

The stresses induced in the structure are found to be symmetrical along the line of heating(Y 

axis). The maximum stress region lies along the heating width of 3mm. Stresses are maximum at 

the center of the neutral axis along line of heating and gradually reduce away from the center. 

These high stresses along the plasma scanned region lead to a permanent deformation along its 

axis. The line of heating hence forms the bending line and actuates incremental bending as the 

number of irradiations increase. Residual temperatures have a direct effect on bending. While 

presence of high temperatures reduce the flow stress to aid bending further, but there are equal 

chances for reduction of thermal gradient. The stresses induced in the structure lead to the 

permanent deformation, bending angle is measured based on the deflection obtained along the z-

axis. The net deflection obtained in plasma-jet forming is positive and hence an upward bending 

is observed. 
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Figure 4.22: Deflection(in mm) at the end of first pass using single pass method 
 for 0.8mm thick SS304 at 10mm/s torch speed. 

(Deflection vs time obtained from time history processor.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The deflection in the structure is measured from the deflection vs time measurements in the time 

history post processor of ANSYS. These time-based measurements help us in measuring the 

deflection after each pass at a specific time on specific node based on the iterations performed. 

Deflection obtained above in Figure 4.22 was measured to be equivalent to a bending angle of 

1.980. Hence for a 10mm/s torch speed, at a 30A current input a positive bending angle of 20 was 

obtained on 0.8mm thick SS304 sheet metal. While all major input parameters that determine the 

bending have been examined, effect of offset distance on bending has not been considered in the 

present analysis. 
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Figure 4.23: A view of deflection obtained after a single pass using plasma-jet 
forming. 

 
Figure 4.23a: Deflection along the deformed edge obtained at 10mm/s torch 

speed on 0.8mm thick SS304 sheet. 

 
Figure 4.23b: Comparison of bending with deformed and undeformed edge 

(initial state) at 10mm/s torch speed on 0.8mm thick SS304 sheet. 
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The bending angle obtained after each pass can thus be predicted for any change in velocity, 

power and orifice diameter. This dissertation mainly focuses on analysis of plasma-jet forming 

with SS304 of thickness 0.8mm, orifice diameter 2mm and current input of 30A, while the 

velocity of the plasma torch was varied from 2mm/s to 10mm/s. 

The bending angle after the first pass has been validated with those observed during experiments 

(Figure 4.24). 
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Figure 4.24: Comparison of bending angle after first pass between simulation 

 and experiment using continuous passes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The bending angle obtained using thermo-mechanical analysis for plasma-jet forming has a near 

accuracy between 90% and 95%. The validation of the bending angle has been done for torch 

speeds from 4mm/s to 10mm/s. While melting was observed during experiments for a speed of 

2mm/s, the peak temperatures observed during simulation exceeded the melting point of the 

material (Figure 4.10). The bending angle using simulation has been found to be accurate only 

for a single pass. The thermal analysis can predict the temperatures during multiple plasma scans 

but the structural analysis has provided accurate results only till the end of first pass.  
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 The bending angle decreased significantly with increase in number of passes for multi-pass 

analysis when reheating was initiated the next pass after subsequent cooling (Figure 4.25). A 

Multi pass plasma-jet forming simulation requires accurate material model that can predict the 

nonlinear material behavior after each pass. The material model used in this simulation fits only 

for the initial heating and cooling process. When the metal plate is reheated, a new material 

model input is required with true values of yield stress and flow stress along the line of heating. 

These values can be obtained from experiments and tensile tests on sectioned materials along the 

line of heating after each pass. Predicting a generalized material model for the value of yield 

stress and flow stress after each pass is a herculean task, as it depends on the velocity of the 

plasma torch and the power input. Any variation of these input values will change the surface 

temperature and hence the values of flow stress and corresponding yield stress. 

 

 

Figure 4.25: Bending angle variation after first and second pass using single pass 
    method for 0.8mm thick SS304 sheet at 10mm/s torch speed. 
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The table below summarizes the observations from both experimental and numerical 

investigation. 

             Table 4.4: Bending angle at various speeds for 0.8mm thick SS304. 

 

 

        Bending Angle  

   S.No 

 

 Current 

 

  Velocity 

 Thermal 

 Gradient  Experiment Simulation 

 

   Error 

     1      30A    2mm/s    880K          ---       ---      --- 

     2      30A    4mm/s    710K         7.9       7.6    3.94% 

     3      30A    6mm/s    620K         4.8       4.6    4.34% 

     4      30A    8mm/s    550K         3.9       3.7    5.40% 

     5     30A   10mm/s    430K         1.9       1.8    5.55% 
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4.4 Discussion 

 

Thermo-mechanical simulation using ANSYS has been mainly performed to study the stress 

distribution and determine the peak surface temperatures on the sheet so as to determine 

optimum parameters that effect plasma-jet forming. While velocity, current, offset distance and 

orifice diameter are the main input parameters on which bending angle is dependent, it has been 

observed during simulation that variation of current input and torch speed have a greater effect 

on bending. Coupling of current input and velocity of the plasma torch will allow greater control 

on the bending behavior during plasma-jet forming. Use of medium torch speeds and high 

current input will allow increase in bending rate in less number of passes if melting point is not 

exceeded. It has also been observed that thermal gradient is a major entity that determined the 

bending value. Maintaining a large thermal gradient all through the passes has a direct effect on 

bending and this has been observed in simulation as well as in experiments. 

Variation of current input changes the power input from the plasma torch on the metal surface. 

Increase in power input increases the net heat flux being induced on the sheet metal. Decrease in 

velocity also increases the heat input on the metal. While high velocities decrease the bending 

value, lower torch speeds help in increasing the bending angle. This can be attributed to the 

strain rates and flow stress in the material. Higher velocities result in decrease of surface 

temperatures and hence thermal gradient. Also strain rates tend to increase when high torch 

speeds are used. Decrease in surface temperatures and thermal gradient result in increase of flow 

stress. The effect of strain rates remains undetermined in this simulation. Inclusion of strain rate 

may not have a predominant effect on bending as the flow stress and surface temperatures on the 

final bending angle. Slower velocities increase the net heat input on the metal surface as the 

plasma torch take more time to scan through the sheet. This increase in temperature allows 

generation of high temperature difference along thickness.  

Also high temperatures reduce the flow stress thereby enhancing the bending capability of the 

material. Thus any residual temperature after cooling in each pass may help increase the bending 

rate per pass. This can be observed in all the experimental values where bending angle increased 

significantly after each pass before strain hardening and section thickening hinder the bending 

rate. 
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Figure 4.26: Bending angle vs thermal gradient at various torch speeds for 
0.8mm thick SS304 sheet.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bending angle depends on the thermal gradient and hence as observed from the Figure above a 

decrease in thermal gradient decreases the bending angle. The rate of decrease of bending angle 

with respect to thermal gradient is nonlinear as it also depends on additional parameters such as 

the temperature dependent thermal and physical properties and the net amount of inelastic 

deformation. Also, the amount of thermal stresses induced to create necessary plastic 

deformation varies with change in velocity. This is mainly attributed to the net heat input per unit 

time and the corresponding effect on the plastic strains being generated. 

Multi pass plasma-jet forming requires prediction of the exact material model that can determine 

the yield stress and other temperature dependent mechanical properties. Yield stress is a vital 

material property that affects the bending behavior. In a multi-scan forming process, yield 

strength along the heating zone varies as the material is heated and cooled.  

Microstructural changes aided by dynamic recrystallization lead to changes in flow stress and 

yield stress of the material thus affecting the final bending value [44].  
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Figure 4.27: Comparison of yield stress with or without 

 microstructure consideration. 
Digitized from Jin Cheng, et al. [44].

 

 

 

 

 

 

 

 

 

 

 

 

The changes in yield stress and corresponding softening effects need to be taken into account in 

the material model to obtain accurate measurements in large deformations analysis. Also 

increase in yield strength increases hardening in the material thereby decreasing the deformation 

in the sheet metal. The reduction in bending rate after the first pass in the simulation can also be 

because of elastic recovery during plastic deformation. The material is deformed plastically in 

the first pass during heating and the stress is then released by cooling. Hence the material ends 

up with a permanent strain. When the stress is re-applied on the material, it behaves elastically 

until the new yield point is reached. This new yield point is generally higher than the original 

yield point.  

The elastic strain developed during the reheating process before the material reaches its new 

yield point results in elastic strain recovery. As a constant load is applied throughout the heating 

process, thermal stresses and plastic strains to be developed in subsequent passes have to be 

higher than those preceding them. This can be achieved by determining the material model that 

fits the yield strength behavior after each pass coupled with use of an efficient cooling method. 

Nonlinear thermo-mechanical simulation of plasma-jet forming demands long computational 

times and high operational memories. Higher the density of the mesh model, greater is the 

accuracy of the FEM algorithm. A nonlinear model with a moving heat source using a 

sequentially coupled analysis needs faster processing capability and high disk space to store, 
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retrieve and execute the data from the results files. Hence all the simulations have been 

performed on a 4GB RAM dual processor SunFire 280R cluster running on Solaris 9 with 

parallel processing capability. The system level constraints have been tackled with necessary 

assumptions to ease the performance and determine required data in a faster manner. Long 

simulation times and constraints on number of nodes and elements in the University edition of 

ANSYS led to limiting the analysis only on 0.8mm plates.  

While the effect of thermal gradient and its dependency on velocity and current input have been 

examined, efforts have to be made to study the effects of strain rate and microstructural behavior 

on yield strength so that modeling of multi pass plasma-jet forming is possible. The effect of 

strain rate on bending can be examined by altering the velocity and temperature dependent 

properties such as flow stress. Determining the effect of various cooling methods is also vital for 

thermal forming processes especially when alternate heating and cooling methods are 

considered. A parametric analysis with input variables such as velocity, power, cooling method, 

thickness and orifice diameter needs to be performed to analyze the optimum process constraints 

in plasma-jet forming process.  
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CHAPTER V 

CONCLUSIONS 

5.1 Background 

 
Experimental and Numerical Investigations of Plasma-jet forming have been performed to study 

the effect of the input variables on the forming efficiency. While thermal conductivity of the 

material determines the rate of bending, process variables such as current (power) input and 

velocity of the plasma torch have a major effect on the overall deformation. Scanning method 

and thickness of the specimen also have a significant effect on the plasma-jet forming process. 

Key observations from experiments and thermo-mechanical simulation are summarized below. 

5.2 Experimental Investigation 

 
The main focus of the experimental investigation was to analyze the effects of changing torch 

speed and current input on bending. Effect of different scanning methods and effect of changing 

thickness on thermal bending was also studied. 

5.2.1 Factors Affecting Heat Input 

 
• Change in the current input to the plasma torch has a direct effect on bending. Increase in 

current, increases the net power input and hence the amount of heat flux induced on the top 

surface of the sheet metal. This increases the surface temperatures and hence the thermal 

gradient along thickness. 

 
• Changes in the velocity have similar effect on bending as change in current. Increase in the 

torch speed decreases the bending as the net surface temperatures reduce drastically. This 

increases the flow stress and also reduces the thermal gradient. While slow torch speeds are used, 

high surface temperatures are generated as more heat is induced on the surface. Also, variation of 

torch speed affects the strain rate behavior and hence the final bending angle. 

In both the cases above, thermal gradient mechanism has a predominant effect on bending in 

plasma-jet forming. Hence increasing the thermal gradient along the thickness will allow greater 
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deformation. Proper coupling of velocity and current input allows enhanced control on the 

forming process so that higher bending angles can be attained without surface damage or 

melting. 

5.2.2 Factors Affecting Thermal Gradient 

Thermal gradient mechanism is mainly prevalent for thin sheets when small beam widths are 

used. In order to increase the forming efficiency, a large thermal gradient has to be maintained 

all through the process. Hence to study the thermal gradient behavior different scanning methods 

were used. 

• Use of alternate heating and cooling methods led to higher bending angles in less number of 

passes as heating, cooling and reheating further in the next pass helps maintain a constant 

thermal gradient. Bending angle per pass had increased considerably when a double pass method 

was used and this can be attributed to high surface temperatures being generated. Use of alternate 

heating and cooling also enhances the material properties by allowing it to regain its structural 

properties during cooling. While low bending angles were achieved using continuous number of 

passes, decrease in the bending angle after a few passes was also observed. This is mainly due to 

strain hardening in the material along the heating width due to large number of plasma scans. 

• Thickness of the material used for thermal forming determines the processing time and 

number of plasma scans needed to obtain the desired bending angle apart from the existing 

process parameters. Increase in thickness helps increase the temperature difference but not 

enough stresses are created that lead to plastic deformation. Surface temperatures in a thick sheet 

are obtained by using high current inputs and lower torch speeds that cannot be used on thin 

sections. Also as more stresses need to be induced for thick sections use of a larger heating width 

will help enhance the forming capability.  

• Thermal conductivity of the material has a major effect on bending than any other process 

variable in plasma-jet forming. Experiments involved use of three different materials- stainless 

steel (SS304), mild steel and magnesium alloy (AZ31). Stainless steel has a very low thermal 

conductivity and hence high bending values have been recorded. For materials of low thermal 

conductivity high surface temperatures are generated and these lead to dynamic recrystallization 

of the material especially in stainless steels [26]. AZ31 alloy has higher thermal conductivity 
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than mild steel but higher bending values have been observed. This may be due to fine grained 

structure of the magnesium alloy specimen used.  

Experimental investigation formed a basis to study the processing effects on bending   where 

thermal gradient was the major factor. To analyze the effect of these process variables numerical 

simulation has been performed and the results have been validated with some of the experimental 

observations. 

5.3 Numerical Simulation 

 
The sequentially coupled thermo-mechanical analysis was performed mainly to study the 

temperature field distribution and predict the bending behavior. Efforts have also been made to 

correlate bending with thermal gradient. Simulation was performed by using different scanning 

methods on SS304 sheets of 0.8mm thickness. The transient thermal and structural analysis was 

simulated with geometrical and material nonlinearities in consideration. Temperature dependent 

material properties have been used for analysis. 

The following observations have been made based on the thermo-mechanical simulation 

performed. 

1. The surface temperatures are maximum when low torch speeds and high current inputs 

are used. Thermal gradient along the thickness is high when the temperatures on the top 

surface are maximum. 

2. A constant peak temperature below the melting point can be obtained by using a 

combination of velocity and current. 

3. Thermal gradient decreases as the number of passes increase when continuous scanning 

option is used. A constant and large temperature difference can be maintained using a 

double pass method. 

4. The temperature distribution on the surface are symmetrical along the center line (neutral 

axis) of the heating width. 

5. Temperatures are maximum on the top surface and decrease through the thickness 

because of the use of coolant on the bottom surface. 

6. The heat flux induced temperatures are localized and are found to be maximum at the 

center of the heating width and decreases as we move away from the neutral axis. 

7. Residual stresses at the end of the forming process were found to be minimum. 
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8. A decrease in thermal gradient along thickness leads to a significant decrease in bending 

angle. 

9. Thermal and mechanical stresses are maximum in the heating width and constitute the 

major part of the deformation mechanism. 

10. The planar stresses on the sheet are symmetrical about the centerline along the heating 

width and the effect of clamping on one side was negligible. Also no local variation of 

these stresses was found during multipass bending. 

11. Increase in temperature reduces flow stress and assists bending while increase in hardness 

and yield strength reduces bending. 

12. Bending angle reduces with decrease in velocity and also with reduction in current input. 

13. Elastic recovery and change in yield strength after every plasma scan lead to variation in 

bending angle. Hence a material model that can predict the temperature dependent 

material properties after various plasma irradiations is required to achieve accurate results 

during multipass bending. 

  79  



  

CHAPTER VI 

RECOMMENDATIONS FOR FUTURE WORK 

 
Most of the present day research in the field of thermal forming is on laser forming. Lasers have 

an advantage of precision and accuracy while plasma heat sources are economical and efficient 

and repeatable. Plasma-jet forming being cheaper needs to be further improved to avail enhanced 

control of the process. 

6.1 Improvements In Numerical Modeling 
 

Computational modeling involving finite element analysis can improve day by day because of 

vast improvements in commercial FEM codes. Thermo-mechanical simulation used in current 

dissertation does not avail adaptive remeshing and rezoning capability. Present day FEM codes 

provide rezoning and adaptive remeshing only for 2-D analysis. Rezoning and remeshing help in 

improving the geometrical and mesh structure dynamically there by increasing the accuracy of 

the FEM. Use of these capabilities in 3-D thermo-structural analysis reduces the deformation 

error and helps maintain reasonable aspect ratio values. 

Study of the effect of input variables such as offset distance, orifice diameter and cooling rate is 

also necessary. Cooling rate and torch speed affect the strain rate during the process and thus 

affects the overall deformation rate. Therefore, proper coupling of all the process variables will 

allow enhanced control on the forming parameters and thereby provide with optimum 

deformation characteristics. 

Strain rates have been assumed to be constant in the present analysis. Investigation of the effect 

of strain rate with change in temperature and velocities has to be considered especially in metals 

where recrystallization and phase transformation have been observed. Strain rate also affects the 

flow stress of the material during metal forming. Hence study of strain rate effects using 

numerical simulation needs to be done to validate its observations with metallurgical analysis. 

Metallurgical analysis should involve tensile tests to study the yield strength and hardness of the 

heating width where deformation is maximum. These tests have to be done in specimens after 
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each pass so as to determine the net effect of multiple plasma scans on the yield strength of the 

material.  

Also, any change in the input variable will affect the yield strength. Metallurgical analysis is also 

important to resolve the material model irregularities for simulation of multipass plasma-jet 

forming as the behavior of yield strength, flow strength and hardness can be predicted.  

The present thermo-mechanical analysis can be extended further to couple with fluid analysis to 

study the material flow behavior during plastic deformation. 

Also a parametric analysis with current, velocity and heating width as variables can be 

performed to optimize the bending behavior. Also the thermo-structural analysis can further be 

improved to study the effects of different cooling methods and Gaussian heat distribution model. 

This can be further applied to simulate models for other materials such as mild steel, aluminum, 

copper and magnesium alloys. Also effect of varying thickness and cooling effects can be 

examined using a parametric study. 

6.2 Improvements In The Control System 
 
Accuracy and repeatability are the two major factors that determine the consistency of a system. 

Plasma-jet forming system can be improved by using closed loop controls to enhance the 

forming capabilities. Current plasma-jet forming apparatus is a semi-automatic forming system 

where the motion and position controls are highly efficient. This system can be extended to 

automate the feedback process so that rapid changes in temperatures and bending angles can be 

recorded. Plasma-jet forming system requires feedback systems that are highly sensitive to 

minute changes in surface temperatures and deformation. To enhance this capability a futuristic 

model is developed based that can be used with the current system. 
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Figure 6.1: Oblique view of the sensor arrangement on the sheet during 

 Plasma-jet forming. 

   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 6.2: Orthographic view of the temperature and displacement measurement 

sensors for plasma-jet forming. 
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The arrangement of the sensors has been suggested for sheets of dimension (130×50×0.8) mm. 

The sensors T1-T7 represent thermocouples used to measure temperature on the sheet during 

plasma-jet forming.D1 & D2 represent displacement sensors. The displacement sensors can be 

dial gauges or linear variable displacement transducers (LVDT). Measurement of deflection on 

the plate can be done on the two ends (D1 & D2). Any major difference in the measurements on 

sensors D1 & D2 will be an error in clamping or experimental setup.  

Rapid changes of temperature occur along the heating width as the moving heat source scans 

through the plate. Measurement of temperatures at various points on the heat affected zone is 

necessary to study the temperature field distribution. Temperatures measured on the top surface 

and along the thickness will also help in validating the results obtained from numerical 

simulation. While highly sensitive thermocouples can be used to measure temperatures, infrared 

thermal sensing cameras can also be utilized.  

The temperatures during the plasma scans can be recorded with a charge coupled device camera 

equipped with infrared filters after calibrating the camera sensor and image processing, the 

temperature distribution along the heating width can be determined. Also the temperature history 

can recorded during the plasma-jet forming process by 36 gauge K type thermocouples at seven 

locations on the top and bottom surfaces along the transverse sections near the middle of the 

plate. 

Feedback from these sensors will require additional data acquisition boards so that computer 

control on the measurements is possible. Plasma torch has been manually adjusted during 

experiments so that the line of heating is normal to the plasma beam. Automation of the control 

system will require programming the motor connected to the plasma torch swivel and improve 

accuracy of plasma-jet forming. This also requires prediction of the bending angle after each 

pass so that the plasma torch can be moved accordingly and perpendicularity is maintained 

between the plasma beam and the metal plate. 

Experiments have to be performed on sheets of thickness greater than 2mm to determine the 

affect of thickness on bending angle and the flexibility of the system on the whole. These should 

also involve specimens of varying width as greater width as change in the width will change the 

time involved in heating by the plasma torch. Experiments must be further extended to other 

materials so that complex shapes can be easily formed. It was observed that higher current inputs 

coupled with lower torch speeds and different scanning method helped in increasing the bending 
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for thick sheets. The flexibility of this process for sheets of greater thickness (up to 8mm) needs 

to be examined further. 

The effect of gas flow rate, offset distance and heating width has not been considered in the 

present dissertation. A detailed analysis of these parameters will help improve the process as a 

whole. Also, the parameters affecting the heat input have to be studied further to determine 

possible relation between the heat output from the plasma torch based on current input given and 

its subsequent effect on surface temperatures. 

The plasma-jet forming method is a flexible forming process that provides an economical means 

of bending sheet metals. Plasma-jet forming is highly efficient process and proper coupling of 

the process parameters will further enhance the possibilities of increasing the bending rate per 

pass. 
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APPENDIX 

APPENDIX-A 

NOMENCLATURE 
 

L     Offset Distance (mm). 

W     Plasma torch orifice Diameter (mm). 

t        Thickness of the sheet metal (mm). 

V      Velocity of the plasma torch (mm/s). 

I     Current (A). 

ρ      Density (Kg/m3). 

c       Specific Heat capacity (KJ/Kg-K). 

v      Velocity of the moving heat source (m/s). 

Xv     Velocity of the moving point source.  

                        in x-direction (m/s). 

T      Temperature (K). 

Tο      Ambient Temperature (K). 

k      Thermal Conductivity (W/mK). 

Xk , ,   Thermal Conductivity in x ,y and  yk zk

                       z direction (W/mK). 

         ξ     Distance of the point heat source from a fixed   

                                reference point(m). 

q      Heat input from the plasma source(J/m). 
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oK      Bessel function of the first kind, 

                       zero  order. 

R        (ξ 2+y2+z2)1/2, Distance from the plasma   

                       heat   source to particular fixed point. 

α      Thermal Diffusivity (m2/s). 

f      Heat transfer coefficient. 

t      Time(sec). 

σ      True Stress(Mpa) 

ε       Total Strain. 

Y     Elastic(Young’s) Modulus(N/m2). 

E     Voltage (V). 
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APPENDIX-B 
 
The ANSYS code has been executed in batch mode on a UNIX environment to reduce the 

operational time and other system constraints. 

The following command executes the program on a UNIX server in batch mode. 

nohup ansys100 –b –p <inputfilename> & outputfilename & 

The ANSYS program for a single plasma scan using SS304 of 0.8mm thickness and speed 

8mm/s is given below. The variables in the do loop can be altered to increase the number of 

passes and alter the process parameters. 

 

/com,thermal    ! Start Thermal Analysis 

/FILNAME,plasma,0 

/TITLE,SS304…8mm/s….0.8mm Thickness 

/PREP7 

ET,1,SOLID90   ! Selection of element type 

/units,si 

type,1 

mat,1 

mp,emis,1,0.96 

mptemp,1,300,500,900, 

mpdata,kxx,1,1,16.5,17.5,18.8       ! Defining Temp. Dependent Thermal  

            Properties 

mpdata,dens,1,1,7900,7850,7800  

K,1,-.065,0.025,, 

K,2,-0.065,-0.025,, 

K,3,0.065,-0.025,, 

K,4,0.065,0.025,, 

K,5,-.001,0.025,, 

K,6,-0.001,-0.025,, 

K,7,0.001,-0.025,, 
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K,8,0.001,0.025,, 

LSTR,       1,       2 

LSTR,       2,       6 

LSTR,       6,       5 

LSTR,       5,       1 

LSTR,       5,       8 

LSTR,       8,       7 

LSTR,       7,       6 

LSTR,       7,       3 

LSTR,       3,       4 

LSTR,       4,       8 

FLST,2,4,4 

FITEM,2,1 

FITEM,2,4 

FITEM,2,3 

FITEM,2,2 

AL,P51X 

FLST,2,4,4 

FITEM,2,3 

FITEM,2,5 

FITEM,2,6 

FITEM,2,7 

AL,P51X 

FLST,2,4,4 

FITEM,2,6 

FITEM,2,10 

FITEM,2,9 

FITEM,2,8 

AL,P51X 
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VOFFST,1,.0008, , 

VOFFST,2,-0.0008, , 

VOFFST,3,0.0008, , 

 

 

vglue,1,2,3     ! Generation ofGeometrical Model 

FLST,5,1,4,ORDE,1 

FITEM,5,3 

CM,_Y,LINE 

LSEL, , , ,P51X 

CM,_Y1,LINE 

CMSEL,,_Y 

LESIZE,_Y1, , ,50, , , , ,1 

FLST,5,1,4,ORDE,1 

FITEM,5,5 

CM,_Y,LINE 

LSEL, , , ,P51X 

CM,_Y1,LINE 

CMSEL,,_Y 

LESIZE,_Y1, , ,5, , , , ,1 

FLST,5,1,4,ORDE,1 

FITEM,5,25 

CM,_Y,LINE 

LSEL, , , ,P51X 

CM,_Y1,LINE 

CMSEL,,_Y 

LESIZE,_Y1, , ,5, , , , ,1 

MSHAPE,1,3D 

MSHKEY,0 
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CM,_Y,VOLU 

VSEL, , , ,       4 

CM,_Y1,VOLU 

CHKMSH,'VOLU' 

CMSEL,S,_Y 

VSWEEP,_Y1 

 

CMDELE,_Y 

CMDELE,_Y1 

CMDELE,_Y2 

CM,_Y,VOLU 

VSEL, , , ,       5 

CM,_Y1,VOLU 

CHKMSH,'VOLU' 

CMSEL,S,_Y 

VMESH,_Y1 

CMDELE,_Y 

CMDELE,_Y1 

CMDELE,_Y2 

CM,_Y,VOLU 

VSEL, , , ,       1 

CM,_Y1,VOLU 

CHKMSH,'VOLU' 

CMSEL,S,_Y 

VMESH,_Y1 

CMDELE,_Y 

CMDELE,_Y1 

CMDELE,_Y2    ! Mesh Model 

asel,s,,,1,6,1 

nsla 
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sf,all,conv,2,300                      ! Boundary conditions 

allsel 

asel,s,,,19,24,1 

nsla 

sf,all,conv,2,300                     ! Ambient Conditions 

allsel  

asel,s,,,8, 

nsla 

sf,all,conv,2,300                      ! Natural Convection 

allsel 

asel,s,,,17, 

nsla 

sf,all,conv,2,300           

allsel 

FINISH 

/SOLU 

antype,trans     ! Start Transient Analysis 

trnopt,full 

nropt,auto,,     ! Newton Raphson Optimization 

eqslv, 

solcontrol,on 

neqit,on 

autots,on 

outpr,all,all 

tunif,300     !Initial Condition 

kbc,0      !Ramped Solution 

outres,basic,all,, 

outres,epel,all,, 

outres,eppl,all,, 
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outres,epth,all,, 

*set,k,1     !Heating Phase 

*set,j,0.000001 

*set,i,5 

*do,k,1,2,1              ! No. of Passes, One pass equals 2 iterations 

 

*if,i,eq,5,then 

*do,i,5,230,5     ! Forward Iteration 

!deltim,0.068,0.068,0.068, 

time,j 

deltim,0.068,0.068,0.068, 

sfdele,all,hflux 

esel,s,,,i 

nsle,s,face,6 

sf,all,hflux,16800000   !Moving Heat source heat flux application surface load on   

                                      ! nodes of element surface 

allsel 

esel,s,,,i+230 

nsle,s,face,6 

sf,all,hflux,16800000  

allsel 

esel,s,,,i+460 

nsle,s,face,6 

sf,all,hflux,16800000    

allsel 

esel,s,,,i+690 

nsle,s,face,6 

sf,all,hflux,16800000    

allsel 

esel,s,,,i+920 
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nsle,s,face,6 

sf,all,hflux,16800000    

allsel 

esel,s,,,i-4 

nsle,s,face,1 

sf,all,conv,3,278       ! Coolant on the bottom 

 

 

allsel 

esel,s,,,i+226 

nsle,s,face,1 

sf,all,conv,3,278       !Convection on Bottom Surface 

allsel 

esel,s,,,i+456 

nsle,s,face,1 

sf,all,conv,3,278    

allsel 

esel,s,,,i+686 

nsle,s,face,1 

sf,all,conv,3,278    

allsel 

esel,s,,,i+916 

nsle,s,face,1 

sf,all,conv,3,278    

allsel 

solve 

esel,s,,,i 

esel,a,,,i+230 

esel,a,,,i+460 

esel,a,,,i+690 

esel,a,,,i+920 
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nsle,s,face,6 

sfdele,all,hflux       ! Deletion of Surface loads on previous  

                                                                  elements 

 

allsel 

*SET,j,j+0.136 

*enddo 

sfdele,all,hflux 

*elseif,i,eq,230,then 

*do,i,230,5,-5                        ! Backward Iteration 

 

 time,j 

deltim,0.068,0.068,0.068, 

esel,s,,,i 

nsle,s,face,6 

sf,all,hflux,16800000    

allsel 

esel,s,,,i+230 

nsle,s,face,6 

sf,all,hflux,16800000    

allsel 

esel,s,,,i+460 

nsle,s,face,6 

sf,all,hflux,16800000    

allsel 

esel,s,,,i+690 

nsle,s,face,6 

sf,all,hflux,16800000    

allsel 

esel,s,,,i+920 
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nsle,s,face,6 

sf,all,hflux,16800000    

allsel 

esel,s,,,i-4 

nsle,s,face,1 

sf,all,conv,3,278    

allsel 

esel,s,,,i+226 

nsle,s,face,1 

sf,all,conv,3,278    

allsel 

esel,s,,,i+456 

nsle,s,face,1 

sf,all,conv,3,278    

allsel 

esel,s,,,i+686 

nsle,s,face,1 

sf,all,conv,3,278    

allsel 

esel,s,,,i+916 

nsle,s,face,1 

sf,all,conv,3,278    

allsel 

solve 

esel,s,,,i 

esel,a,,,i+230 

esel,a,,,i+460 

esel,a,,,i+690 

esel,a,,,i+920 

nsle,s,face,6 

sfdele,all,hflux 
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allsel 

*SET,j,j+.136 

*enddo 

sfdele,all,hflux 

*endif 

*set,k,k+1 

*enddo 

sfdele,all,all                                                   ! End of 2 plasma scans 

time,50 

deltim,1,1,1 

asel,s,,,1,6,1 

nsla 

sf,all,conv,2,300                        ! Cooling Phase 

allsel  

asel,s,,,19,24,1 

nsla 

sf,all,conv,2,300                       !Natural Cooling at Ambient Conditions 

allsel 

asel,s,,,8, 

nsla 

sf,all,conv,2,300        

allsel 

asel,s,,,17, 

nsla 

sf,all,conv,2,300        

allsel                           

solve 

sfdele,all,all 

asel,s,,,1,6,1 

nsla 

sf,all,conv,2,300                      ! Resetting Boundary Conditions 
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allsel 

asel,s,,,19,24,1 

nsla 

sf,all,conv,2,300        

allsel 

asel,s,,,8, 

nsla 

sf,all,conv,2,300       

allsel 

asel,s,,,17, 

nsla 

sf,all,conv,2,300       

allsel 

save,plasma,dbt  ! Save Thermal database 

    ! END OF THERMAL ANALYSIS. 

 

/PREP7              ! Start Structural Analysis 

ETCHG,TTS                                             ! Switch Element Type Thermal to Structural 

mp,prxy,1,0.3 

mp,alpx,1,12e-6 

mptemp,1,300,900,                        ! Define temperature-dependent physical properties 

mpdata,ex,1,1,17.9E10,14.96E10, 

TB,KINH,1,2,8                                              ! Activate a data table 

TBTEMP,300                                               ! Kinematic Hardening Material Model                               

! Strain, stress at temperature = 300K 

TBPT,,11e-4,197e6 

TBPT,,5E-3,283e6 

TBPT,,10E-3,433e6 

TBPT,,15E-3,508e6 

TBPT,,20E-3,433e6 

TBPT,,25E-3,423e6 
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TBPT,,30E-3,415e6 

TBPT,,35E-3,409e6 

TBTEMP,900                                               !Temperature = 900K 

TBPT,,.00125,187e6 

TBPT,,.0045,301e6 

TBPT,,.012,411e6 

TBPT,,.016,487e6 

TBPT,,.023,418e6 

TBPT,,.0275,405e6 

TBPT,,.032,402e6 

TBPT,,.037,400e6 

/XRANGE,0,0.005 

TBPLOT,KINH,1 

finish 

/SOLU 

lsclear,all 

antype,trans,new  ! Start Transient Analysis 

autots,on 

neqit,1000 

nlgeom,on       ! Large Deflection Analysis 

outpr,all,all 

outres,all,all,, 

kbc,0 

nsubst,26,1000,1 

timint,off 

time,0.0001 

ASEL,S, , ,       5 

NSLA 

D,ALL, , , , , ,ALL, , , , ,  ! Clamping 

ALLSEL,ALL 

lswrite,1 
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timint,on 

 

*set,n,2 

*set,v,0.136    ! Heating Phase 

*do,v,0.136,12.512,0.136    ! Forward & Backward Iteration 

deltim,0.068,0.068,0.068 

time,v 

LDREAD,TEMP,,,v,,'plasma','rth',     !Reads Thermal Data As Structural Body Loads  

lswrite,n 

*set,n,n+1 

*enddo 

deltim,1,1,1     

time,50      ! Cooling Phase 

LDREAD,TEMP,,,50,,'plasma','rth',                    

lswrite,94                                                            ! Write Load Steps 

lssolve,1,94,1            ! Solve all load steps 

      ! End of Single Pass 

save,plasma,dbs      ! Save Structural Database 

save      ! Save all 

       ! END OF SIMULATION. 
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