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ABSTRACT OF THESIS

Current methods of determining spinal cord recovery in mice, post-directed
injury, are qualitative measures. This is due to the small size and quickness of
mice. This thesis presents a design for a gait acquisition and analysis system
able to capture the footfalls of a mouse, extract position and timing data, and
report quantitative gait metrics to the operator. These metrics can then be used
to evaluate the recovery of the mouse. This work presents the design evolution
of the system, from initial sensor design concepts through prototyping and
testing to the final implementation. The system utilizes a machine vision
camera, a well-designed walkway enclosure, and image processing techniques
to capture and analyze paw strikes. Quantitative results gained from live animal
experiments are presented, and it is shown how the measurements can be used
to determine healthy, injured, and recovered gait.
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1 INTRODUCTION

1.1 Background

Current medical research is being conducted with the intent of  understanding the intricacies

of spinal cord injury. Though the ability to perform precision surgery on test animals is

highly advanced [1], [2], [3], the methods used to ascertain recovery are still qualitative

measures. Lab mice play a particularly integral role in spinal trauma research, but due to

their small size and quickness, the results of the current means of measure, the BBB score,

or the reduced BMS score, are highly subjective. 

The BBB score was developed by Michele Basso, Michael Beattie, and Jacqueline

Bresnahan at Ohio State University in 1995 [4]. The BBB score is a 21 point scale used to

rate the recovery of rats post spinal trauma. The scale is applied by having a trained operator

observe the injured animals and score them based on specific behaviors associated with

trauma recovery. The BBB score is separated into three categories, with seven rankings per

category, based on the key phases of recovery. The first phase, early recovery, scores the

animal’s hindlimb joint movement, ranging from no  movement to extensive movement of

all three joints on each side. The second phase, intermediate recovery, scores paw placement

(plantar stepping), weight support, and interlimb coordination. The final phase, late recovery,

scores paw rotation, tail support, toe dragging, and body stability. It is assumed that for each

ranking, all the requirements of the previous ranks are met. A healthy or fully recovered

animal will walk with full interlimb coordination, plantar steps, weight support, paws rotated

parallel to the body, no toe dragging, tail up off the ground, and stable body posture. 

The BBB score can be used to rate the recovery of mice, as well as rats, but due to the small

size and increased quickness of mice, a reduced scale, the BMS score (Basso Mouse Scale),

has been developed [5]. The BMS score is a 9 point scale were granularity is decreased by

removing recovery criterion which are too difficult to ascertain for mice. Ratings based on
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individual joint movement, toe clearance, or finer degrees of particular recovery criteria are

removed. The scale is still separated into the three recovery phases: early, intermediate, and

late. Early recovery rates basic ankle movement. Intermediate recovery rates occasional

plantar stepping with limited weight support. Late recovery rates coordinated stepping, paw

rotation, body stability, and tail support. Detailed criteria for each scale point is given in

Appendix I.  

The BBB and the BMS scores are able to provide researchers some level of agreement

between measures of  mouse recovery, but there remain several shortcomings. The scoring

is inherently subjective [6], [7], being based on the adeptness of the observer. The observers

must be trained to identify particular characteristics and uniformly score each gradual change

in behavior. Even with adequate training, scores can vary slightly from one observer to the

next. The results can also be easily misinterpreted. The difference between 3 and 4 on the

BMS scale is not as significant as the difference between 4 and 5 which reflects a shift in

recovery phase. Each phase represents an important biological change and this method of

scoring does not highlight those transitions. These limitations show that a more reliable

method of recovery tracking is needed; a method by which animal recovery can be

determined by quantifiable measurement data.  

The average healthy mouse has a mass of approximately 30g. It moves at an average velocity

of 26 cm/s within a range of 14 cm/s to 43 cm/s. The average amount of time spent per

complete stride is 260ms where the forelimbs spend an average of 160ms in contact with the

ground and the hindlimbs an average of 185ms. The average length of a stride is 6.76cm and

the average stance width is 2.7cm. The paws are approximately 1cm2 for the fore paws and

1cm x 1.5cm for the hind paws. They typically contact the ground at a 5° rotation outward

from the center line. For a normal gait, the hind paw will land just behind where the previous

fore paw was. Mice move with coordinated stepping, meaning that for every forelimb step

taken, a hindlimb step of the alternating side follows. Therefore, alternate-side, forelimb-

hindlimb pairs move synchronously. [8], [9], [10].
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1.2 Objective

The objective of this work is to develop a complete system which will capture the movement

of a mouse and process it to derive quantifiable data describing the dynamics of the gait.

These gait metrics can then be analyzed before and after a spinal injury has occurred to track

the progress of recovery treatments. The device will also have archival and retrieval

functionality to allow the review of experiments at each stage of the recovery cycle. The goal

is to provide an analytical alternative to the methods presently being employed to rank

animal recovery. 

The functional requirements of the gait analysis device stem from three distinct groups;

engineering, operability, and data reporting. The device first and foremost must have a high

sensor resolution and sample rate. The minimum resolution is 10 sensor nodes per inch. This

will show where a foot has made contact but will not provide any clarity. The ideal

resolution is 100 sensor nodes per inch or greater. This will give enough data per foot to

accurately display the separation of digits and the rotation. The minimum sample rate is 40

frames per second. This correlates to 10 frames of data per full stride. The ideal sample rate

is 100 frames per second or greater. This provides 25 frames per full stride on average which

is enough to get decent timing measurements. 

The force applied at each sensor node must also be measured. The device has to sense a

minimum of 1g per node to have enough resolution to detect if the animal is favoring one

limb over another. The total sensing area of the device must be large enough to accumulate

enough data to compute average measurements. The device must also sense multiple contact

points as more than one paw may be in contact with the surface at a time.
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The operability requirements pertain to the use of the device with live animals in a medical

lab setting. It must be physically robust, tolerant to repeat usage, tolerant to animal

excretions, and be quick and easy to clean. The system must be completely self contained,

with the exception of a PC interface. Lastly, it is required that no preparation of the animal

is necessary for the device to be used. Training of the animals in advance, though, is

acceptable. Applying ink to the animals’ feet is permissible, though undesirable.

The data reported to the user must identify as many of the following gait metrics as possible.

The positional metrics include stride length, stance width, coordination, maximum contact

area, and  paw rotation. The temporal metrics include stride duration, stance duration, swing

duration, and tail dragging duration. Additional metrics include inter-limb coordination,

stride frequency, velocity, paw pressure, and ground reaction force.

1.3 Thesis Overview

This thesis will explore two methods of acquiring gait data: the development of a solid-state

sensor array and the development of a camera-based solution. Each design method has its

advantages and disadvantages which will be discussed. Ultimately, it will be shown that the

camera-based design is the  most practical to implement. The evolution of the image

processing algorithm used to identify paw placement within a data frame will also be

discussed.

The bulk of this thesis will discuss design challenges and the related solutions leading to the

final system design. There were three major challenges encountered during the research

process. The first being the ability to manufacture a prototype of the solid-state sensor array.

To obtain even a minimal amount of resolution, a prohibitively large number of sensing

elements had to be manufactured at a prohibitively small size. Research was conducted to

identify a suitable addressing scheme to access the large number of elements easily, but, as

will be shown, nothing was found to be sufficient. This directly led to the decision to switch

the system to a camera-based model. The second challenge dealt with the complexity

involved in lighting the gait capture area to create enough contrast for the camera to
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distinguish between the mouse’s paws the rest of the body and background. A variety of

lighting schemes were implemented to attempt to force the intensity of the feet to be

different enough for reliable detection by the image processing algorithm. The third

challenge was developing an image matching algorithm which could parse through the large

amounts of video data in a timely manner with a minimal number of false or missed matches.

The main focus of this thesis is the development of the acquisition and analysis system,

including all aspects of hardware design, interfacing, and software development. Some work

has been done to gauge the effectiveness of this system for replacing the current method of

determining spinal trauma recovery, but only within the scope of improving the engineering

design. 

The first chapter of this thesis presents the current method used to assign value to the level

of recovery of mice post spinal cord trauma. A brief introduction to the gait dynamics of an

average healthy mouse is then provided. The objective of the thesis is then outlined with a

synopsis of the basic functional requirements and the challenges the design presents. Lastly,

an overview of the thesis chapters is given.

In the second chapter, a variety of technologies are surveyed which demonstrate the potential

for use as the core sensor element of the device. These technologies include several solid-

state sensor types, pre-existing touchscreen technologies, and digital imaging cameras.

Additionally, there are several existing device which function similarly to the propose

system or may be adapted for use in some way. The chapter ends with a discussion of the

limitations of each technology and which deserve further consideration. 

The third chapter presents the initial feasability experiments conducted with the three most

promising sensor technologies. The chapter begins by briefly discussing addressing schemes

which were considered for implementing sensor arrays. The three sensor test devices, the

dual layer piezoelectric film array, the capacitive sensor array, and the camera/plate system

are then reviewed. Lastly, the merits and limitations of the three systems are presented. The
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conclusion to use the camera/plate system is made after detailing the design restrictions of

the other two technologies. This also requires a refinement of the overall system requirement

to be made.

The forth chapter refines the general problem statement to a concise design based upon the

camera/plate sensing system. The chapter begins by detailing the progression of

development of the camera/plate system. Next, the specific design criteria of the gait

acquisition and analysis device are set. Lastly, a brief overview is presented of the individual

components of the device which must be developed and what potential design challenges

may arise.

In the fifth chapter, the machine vision camera to be used for the final device is chosen. The

chapter begins by providing a brief description of the camera. Next, the major capabilities

of the camera are described in detail. The software development kit used to access camera

features and retrieve the image data is then discussed. The limitations of the camera are then

documented and the challenges which will need to be solved during the development process

are discussed. Lastly, a discussion on choosing an appropriate lens for the application is

presented. 

Chapter six, which documents the device design evolution, is one half of the bulk of this

research. Focusing only on the physical stand design, this chapter documents the evolution

of the hardware from a basic camera and plastic pane to a fully functional experimental

device. It is important to see the maturation of the physical hardware to understand why each

component included in the final design is critical to overall device functionality. This chapter

is broken into too main parts. The first documents each component group (e.g. walkway

plates, lighting, enclosure). The second presents the prototype design sequence and

highlights the changes made to each successive stage. The chapter ends by giving a complete

description of the final physical design.
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Chapters seven and eight represent the other major half of the research, the image processing

and paw identification algorithm. Chapter seven presents the image processing techniques

explored. The general use of each of these methods are explained in detail and the specific

use for each of them pertaining to paw identification is discussed. 

Chapter eight presents the two paw detection algorithms which were developed. A full

description of each is given, along with the details of each image processing technique used

during each stage of the algorithm. The results and limitations of each algorithm are also

presented, including why the first algorithm was abandoned in lieu of the second one.

Chapter nine presents the experimental results acquired from the final system design. The

results are reported for both healthy and injured animals. These results are briefly discussed

and then an analysis of the effectiveness of the system is presented. This covers the ratio of

positive to false detection of the gait. Chapter nine also recommends training the mice for

use with the device to acquire higher quality gait data. 

Chapter ten concludes the thesis by analyzing the gait data acquired and discussing the

quantitative measures derived from the data. This leads into a discussion of the effectiveness

of the system to replace or augment the present method of measuring gait recovery. Chapter

ten also includes  a discussion of what future refinements may be made to the system to

possibly achieve improved results. Lastly a final review of the complete system is presented

to conclude the thesis.
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2 SURVEY OF TECHNOLOGIES

2.1 Introduction

The ideal gait acquisition design solution is to have an arbitrarily long pad on which any

small animal can run across that measures the force and placement of each footfall. This

chapter will present a variety of technologies which can be adapted to detect both force and

position, some of which are suitable for use in a gait sensing device. Additionally, products

already on the market that have functionality similar to the proposed system or may be

adapted for use in this system will be reviewed. The chapter concludes with a discussion of

which technologies merit further experimentation and which are determined to not be

suitable to the application of gait detection.

2.2 Resistive Touch Sensors 

Resistive touch sensors report touch as voltage change relative to a base voltage as the

resistance of the probe is altered due to an applied force. The method of how this resistance

is generated depends on what type of resistive technology is used. The electrical equivalent

of the sensor is a potentiometer. There are several different types of resistance sensors, some

lending more to force measuring applications, others to positional applications, while others

try to have a blend of both.

The first type is the layered film resistive sensor. These sensors generate resistance values

based on the contact between two conductive films held apart by a nonconductive separator

and are typically used in touch screens [11]. Force is sensed by applying a base voltage to

one film and probing the voltage at each point on the opposing film. Of this type, there are

two subcategories: 4-wire and 5-wire. The 4-wire system employs two conductive circuit

films typically separated by nonconductive micro-dots spaced at the desired resolution and

overlain on a glass plate. For this setup there needs to be a separate overlay for both x and

y measurements. In the 5-wire setup, one of the circuit films is deposited directly onto the
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glass. This allows for both x and y measurements to be taken from one layer. It also greatly

improves durability as the base voltage is applied to the rigid glass layer which is not being

deformed by continuous touches as in the 4-wire setup. 

The second type of resistive sensor is a semi-conductive polymer film sensor. This type of

sensor uses a polymer film which exhibits a decrease in resistance as force is applied [12].

A micro-dot grid of this polymer film is then laid out to determine position; these are

typically used in touch pad pointers. Due to the nature of the technology, resistive sensors

are capable of sensing forces applied from a finger, a stylus, or any other object. They also

allow for very precise force measurements, though commercially available systems typically

set the threshold activation force at approximately 30g (this is typically where linearity

begins). Smaller forces may be measured with customized hardware geared toward detecting

more minute changes in voltage. 

A drawback to resistive sensors is size versus resolution. As the overall sensor area

increases, resolution decreases. A pad of an area of 6.35cm x 6.35cm would have a sensor

resolution of about 4 sensors per mm. If these sensors are to be utilized the gait acquisition

system, many small pads of a high resolution would be needed to cover the overall area

required. This would mean more custom hardware to address each sensor.  Resistive sensors

have a durability of ~35 million touches per point. The sensors are entirely resistant to fluids,

both in physical design and electrical characteristics.

2.3 Capacitive Touch Sensors

Capacitive touch sensors report touch based on a capacitance change corresponding to an

applied force. There are two main types of capacitive sensors. The first type employs two

conductive plates which are separated by a dielectric [13]. When force is applied, the two

plates are brought closer together and the capacitance changes. This is the technology that

current large scale force measurement pads are based on. It is more susceptible to

disturbances due to fluids but can be protected to minimize this. It has a durability of about

100 million touches per point. Its force sensing range is the highest of all the sensor types
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with the ability to discern forces from as little as 0.1g to 20kg, though not with the same

device. The low end range falls from about 0.01g to 500g with a resolution of 0.01g. The

spatial resolution is only about 1 sensor per 2mm but that remains consistent for any size

area. This type of sensor is also able to detect any object. 

The second type of capacitive sensor works by utilizing a wire grid to detect the presence

of a nearby electromagnetic field [14]. When an external field is near enough to distort the

field generated by the grid, a measurable change in capacitance occurs. This is how most

conventional touch pads work. While highly accurate for determining position, force would

have to be determined based on how close the object is to the sensor grid while pressing on

a material with a known displacement for a given force. Another obvious drawback is that

the measured object must generate an electromagnetic field. A finger would be detected, but

a fingernail, stylus, or any other inanimate object would not. This technology gives the

highest positional accuracy but the lowest force accuracy. It has the spatial resolution of

about 20 sensors per mm but overall area can only be a maximum of about 8cm x 8cm. Force

sensing, due to being so difficult to setup, is usually only an on/off value with an activation

threshold around 50g. This type of sensor is very susceptible to fluids as they tend to distort

the fields and affect the measurements.

2.4 Acoustic Touch Sensors

Acoustic sensors send ultrasonic waves through a glass substrate and measure the location

and force of wave distortion caused by a touch [15]. Unlike the other technologies, this

sensor has no film overlays or printed circuit contact surfaces. This greatly improves the

durability. The system uses an elaborate controller to generate acoustic pulses in the glass

and measure where there is deflection. This makes it highly accurate, on the order of 15

sensor points per millimeter. The drawback is that it can only detect one point on the surface.

Multiple touch points are resolved to the point nearest the wave emitter. While the sensor

is capable of detecting force values, its activation threshold is set between 50g and 80g. With

the complexity of the controller needed to use the sensor, it would be difficult to manually

adjust the force sensing values or read them directly.



11

2.5 Fiber Optic Touch Sensors

Fiber optic sensors measure the change in the scattering pattern of light traveling through

elastomer cells as they are deformed by a touch [16]. They have a force detection range from

less than 0.1g to 300g and a positional accuracy of 1 sensor per millimeter. The durability

of the sensor array itself is very low, but the surface can be covered with a variety of

materials to guard against fluids, scrapes, and tears. The sensor can be made to a maximum

width of 30cm and length of 900cm. It has a maximum sampling rate of 8kHz depending on

the number of sensor nodes. The sensor is triggered by any type of object. At the time of the

initial research, this type of sensor was out of production while the company producing it,

Tactex Controls, underwent  redesign and refinancing. It is now available again for custom

orders. 

2.6 Piezoelectric Polymer Film

Piezoelectric polymer film sensors work by taking advantage of the piezoelectric effect.

Piezoelectricity is a material property where an electric potential is produced proportional

to the amount of strain. This property is unique in that it is also reversible. An applied

voltage will cause the material to flex a proportional amount. This duality is also sign

dependent, meaning that a positive flex corresponds to a positive voltage, and likewise, a

negative flex to a negative voltage. Piezoelectric polymer film sensors are produced by

laminating a layer of a piezoelectric polymer, such as Polyvinylidene Fluoride (PVDF),

between two conductive traces, typically silver [17].
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Commercially available piezoelectric film sensors are produced with a 28µm thick polymer

layer and can generate a CMOS level voltage without amplification [18]. By measuring the

voltage, the sensor reads as a vibration sensor, that is, only transient forces are measured.

Experimentally, forces as small as 0.5g and as large as 50g have been detected [19]. An

interesting property of piezoelectric polymers is that the resonance frequency of the material

is dependent on the strain placed on the material. Therefore a steady-state force can be

measured as a proportional change in the frequency response of the material as shown in

Equation 2.1.

 (2.1)
f f

f
AF

−
=0

0

where f0 is the natural resonance frequency;

f is the resonance frequency after pressure is applied;

A is a proportionality constant;

F is the applied force;

2.7 Machine Vision Cameras

Machine vision cameras differ from conventional digital PC cameras in that they typically

offer greater resolution, frame rate, feature sets, and configuration options. The basic

requirement of a machine vision camera is that  it must meet higher resolution and frame rate

demands. Typically, machine vision cameras have variable resolution and frame rate setting

that are maximized based on available bandwidth. This can mean real-time capture (30fps)

at high resolutions (1280x1024) or high speed capture (100+ fps) at smaller resolutions

(640x480). Beyond those two settings, focus adjustment, wide angle viewing, and a PC

connection are vital camera features. Focus adjustment allows the camera to be placed

varying distances away from the object and still maintain image clarity. The wide angle

viewing area allows for a shorter “working distance” or distance between the camera and the

target. This is important for maintaining a minimum device height to ensure tabletop usage

(~6"-12") while still allowing a greater span (~8"-24") to remain in view. A PC connection

(Firewire or USB) is also preferred as the data is to be stored and analyzed digitally.
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Converting from an analog to digital using a frame grabber is inefficient, requires more

hardware, and has the possibility of introducing noise. Additional camera features include

control, digital or otherwise, over gain, contrast, and exposure time. Variable gain allows the

camera to adapt to a variety of lighting conditions. A feature which will become important

when numerous lighting schemes are tested. Brightness and/or contrast controls allow the

intensities in the image to be fine tuned to help highlight relevant data. Control over

exposure time helps to reduce motion blur by capturing over a very short time span, thereby

adding clarity to the data. Further detail on machine vision cameras will be discussed in

following chapters.

2.8 Kistler Force Plate

The Kistler Force Plate is a smooth surface connected to four 3-axis piezoelectric force

sensors. The three axes allow forces to be measure in all three directions. This product is

used for gait experiments where component force measurements are needed. Measuring

ground-reaction forces (z-direction) only shows how much mass is being supported by each

limb. Measuring forces in the x and y directions shows how much force is being applied to

forward locomotion or braking. With the addition of specialized hardware, this system is also

able to determine the position where the force is applied. The system can only resolve a

single point of contact however and is intended for measuring human gait. The plate

dimensions are 24cm x 40cm and it has a sensing range from 0kg - 510kg. 

2.9 Fingerworks Touchpad

The Fingerworks Multipoint Touchpad is designed for low impact mouse and keyboard

input. Its based on a custom designed capacitance sensor array sampled quickly allowing it

to track multiple points simultaneously. Commercially it is intended to be used as an

alternative computer input device which allows hand gestures to be translated to keyboard

commands. The raw data stream from the device can be accessed directly to provide position

and surface pressure of all points of contact. The pad itself is 6.5" wide by 5" long and has

a sensing array of 40 x 16 elements, resulting in a resolution of three sensors per inch on the

vertical and six sensors per inch on the horizontal. Tests with live mice show an adequate
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response, though the spatial resolution was too low to obtain data other than crude paw

placement. This is shown in Figure 1. A software development kit was to be released for the

device, however, from the time the initial research was conducted, Fingerworks has since

gone out of business and this product is no longer available.

Figure 1. Live Animal Response of Fingerworks Touchpad

2.10 Pressure Profile Systems TactArray

The TactArray by Pressure Profile Systems (PPS) is a thin, flexible, sheet that can sense

force and position via a high precision measurement of a capacitive sensor grid. The sensor

grid is created by layering vertical and horizontal conductive strips separated by a

compressible dielectric. The capacitance of each intersection is measured to determine force

applied. The system can sample a maximum number of 10,240 elements by measuring ten

32 x 32 element pads simultaneously. The entire array can be sampled every tenth of a

second. Each sensing element is 4mm2. Forces as low as 1g are able to be detected. The

TactArray is only available as a complete system, custom designed for each customer. The

sensing pads themselves are not sold individually .
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2.11 Tekscan Animal Gait Measurement System

The Tekscan Animal Gait Measurement System provides a full hardware and software

solution for the measurement of small animal gait. The sensors are built from a combination

of force sensing resistors and piezoelectric film arrays [20]. The sensors are customizable

in size and resolution from a minimum size of 5.6cm x 5.6cm and a resolution of 1.3mm per

sensor to a maximum size of 24.6cm x 98.4cm and resolution of 5.6mm per sensor. The ideal

sensor for detecting mouse gait would be the model 5051 with a size of 5.6cm x 22.4cm

(4.4"x8.8") and a resolution of 1.3mm (0.05") per sensor. 

2.12 Mouse Specifics DigiGait Imaging System

The Mouse Specifics DigiGait Imaging System is a full gait imaging and analysis device

[21]. It uses a transparent belt treadmill for the animal contact area and an underside

mounted camera to capture the gait data. Interchangeable compartments are placed above

the belt to contain the animal and are provided for both mice and rats. The treadmill belt

speed is variable from 0 to 100 cm/s and can be set to an up or down incline. Gait detection

is done semi-automatically by matching based on paw color and a user selected contrast

ratio. The maximum capture frame rate is 150 fps. Twenty-five different gait metrics are

reported. These are based on spatial and temporal results which include step sequences and

averages of total and single paw stride distances, contact durations reported in times and

percentages, and paw area and rotations. The system is not available for purchase, only for

rent from the company. Figure 2 shows a sample screen displaying gait metrics acquired by

the system. Average stride length, paw angle, stance width, and timing data can be seen.
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Figure 2. DigiGait Analysis Screen

2.13 Discussion

The initial design solution was to have an arbitrarily long pad on which any small animal

could run across and the force, placement, and timing of each footfall be measured. A variety

of technologies were surveyed which could be adapted for use in a gait sensing device. After

thorough examination of the available technologies, it was found that many could detect

position or force, but few could do both. It was also found that many of the position sensing

technologies could only resolve a single contact point and were therefore unsuitable for gait

detection. Additionally, there were several products already available that had similar

functionality to the proposed system. Each of these, however, were found to be too costly,

lacked a key feature, or were not adaptable to the requirements for use in the gait detection

system. 

Experiments with the resistive based sensors showed several limitations of the technology.

It was determined that the sensors were not sensitive enough to measure the small forces

applied by a mouse. The sensors were also incapable of resolving multiple contact points,

the result being that a sensor array would need to be constructed to acquire positional data.

It was found that there was no readily available manufacturing process to create an array of

resistive sensors. For these reasons, the resistive based sensor was dismissed. The acoustic

sensors were unable to locate multiple touch points as well and were overly complex to setup
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and maintain, and therefore were not feasible. The fiber-optic sensors could have been an

acceptable solution, however, they were not available for purchase or testing during the

development phase. The Kistler Force Plate would have measured all three force vectors

very accurately, but lacked any kind of positional data without complex analysis hardware,

and even then could only resolve a single point of contact. The PPS TactArray and the

Tekscan Gait Measurement System would have been ideal solutions for preliminary

development, but only complete, custom systems were available, and these did not meet all

the requirements of the proposed system. Individual components which could be modified

and adapted were not available for purchase. The Mouse Specifics DigiGait treadmill is the

device with the most similarities to the final system. It was, however, not available for

purchase, only for rent, and therefore not customizable.

The capacitive based sensors, the piezoelectric film sensors, and the machine vision cameras

were the three technology types which showed the most possibility for use in gait tracking.

Capacitive based sensors can be grouped closely together, thus creating high resolution

arrays and allowing for  multiple contact point detection. They also have the ability to detect

force based on proximity or contact area. Piezoelectric film sensors can also be configured

in high resolution arrays which would permit multiple contact points. They too have the

ability to detect forces, either transient from direct measurement, or static from material

strain measurement. Lastly, machine vision cameras provide the best spatial resolution of

all technologies as well as providing a easy interface for data capture. The disadvantage is

that force data is lost. These three technologies proved to have the most potential

applicability to the design of a gait detection system. Further research was therefore

conducted to determine the merits of each type of technology by building actual hardware

prototypes and testing with live animals. 
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3 TECHNOLOGY FEASIBILITY EXPERIMENTS

3.1 Introduction

Three of the technologies surveyed, capacitive sensor arrays, piezoelectric film sensor

arrays, and machine vision cameras, merit further experimentation to determine if they can

be applied to gait detection. This chapter will begin by presenting a brief discussion of

addressing schemes for large sensor arrays. This is necessary to understand the complexity

involved in producing the capacitive and piezoelectric film sensor arrays.  Next, a dual layer

piezoelectric film sensor device will be presented. Following that, a capacitive grid sensor

device will be discussed. Finally, a system designed using a machine vision camera will be

explored. The chapter will be concluded with a comparison of the features and limitations

of each of the technologies based on actual experiments.

3.2 Addressing Schemes

To help understand the prototype system designs, it is necessary to present several methods

of addressing arrays of sensor elements. There are three primary issue to discuss when

selecting an appropriate addressing scheme: resolution, cross-talk, and wiring complexity.

Resolution relates to the density of the sensor nodes. For sensing mouse paws, it has already

been stated that resolution must fall within 10 nodes per inch to 100+ nodes per inch to

obtain relevant data. The individual sensor nodes, therefore, must measure, at the very most,

no larger than one tenth of an inch. Additionally, there must be a buffer space between the

sensor elements to isolate them from one another and to reduce cross-talk. Cross-talk occurs

when adjacent sensor elements not in contact with the object report a value due to their

proximity to the activated sensor. High sensor resolution becomes irrelevant if the cross-talk

between all the sensor nodes is too high. This could allow hundreds of small sensors to

report instead as a single large one. With high resolution and small, numerous sensor

elements, wiring  complexity increases. A single square inch of sensor area with a resolution

of 10 nodes per inch can have 100 output lines. The same area with 100 nodes per inch can
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have 10,000 output lines. A 3" by 12" sensor pad at high resolution can have as many at

360,000 output lines. Direct addressing of each sensor element at this size and resolution is

prohibitive due to the number of circuit traces which must be made, the physical layout

space required, and the volume of circuit components to which each trace must be

connected. It is for these reasons that more novel addressing schemes are explored. There

are three types of addressing configurations other than direct addressing which were

developed and evaluated: dual layer busing, passive element matrices, and active element

matrices. 

Figure 3. Dual Layer Bus Addressing

In the dual layer bus addressing scheme, shown in Figure 3, the circuit traces act as the

sensing surfaces for electromagnetic field detection or capacitance changes. This uses a dual

layer circuit board with the sensing columns on one side of the board and the rows on the

other. The signal gain for the underside of the board would then be adjusted to match with

the top side which is closer to the point of contact. An alternate design is to have both traces

on a single side of the board with the rows being shunted to the back of the board only when



20

they would intersect a column. This also reduces the gain matching issues. A single, non-

conductive layer is placed over the traces to protect them from direct contact. Sensing is

done by row and column. The disadvantage of this method is that with multiple contact

points, detections will occur at any active row-column crossing. Two contact points, in

opposite corners, will be falsely identified as four contact points arranged as corners of a

rectangle.

The second type of addressing scheme is the passive element matrix design. In this design,

shown in Figure 4, the sensing elements are unpowered circuit elements, such as force

sensing resistors or capacitive plates, which are connected to multiplexed horizontal and

vertical bus lines. The bus lines are used to complete a circuit through an individual sensor

element and then the circuit properties are measured. When not addressed, the bus line goes

to a disconnect state. Each element is then switched into the circuit, one by one, until the

entire grid is read. The advantage is that the number of output wires are reduced from rows

* columns to rows + columns. The disadvantage is that the nodes which are not being

actively addressed are electrically summed and then placed in parallel with the addressed

node, thus adding extra cross-talk to the signals.
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Figure 4. Passive Element Matrix Addressing

The third type of addressing scheme it the active element matrix design. In this design,

shown in Figure 5, the sensing elements are powered nodes which are connected to power

and ground buses and have a third output line which carries the sensor data. Each element

is selected by powering connecting it to power and then reading the sensor value from the

output. The entire matrix is read by cycling power to all nodes. For some sensor types, such

as piezoelectric sensors, the output bus can be reduced to a single wire connected to the

output line of all the sensor elements. This has the possibility of increasing sensor cross-talk

however. An alternative is to only connect the outputs from each row or each diagonal set

of sensors. This has the benefit of reducing output line numbers with minimal increase in

sensor cross-talk. 
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Figure 5. Active Element Matrix Addressing
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3.3 Dual Layer Piezoelectric Film Array

This sensor array prototype is comprised of two piezoelectric film layers separated by a thin,

non-conducting layer. The bottom piezoelectric layer is excited by a high frequency signal.

This causes the layer to vibrate. The vibration is then transmitted mechanically to the top

layer were it is measured. When a force is applied to the surface, the vibration is dampened.

Force can be measured as a proportional decrease in the amplitude of the signal. A simple

prototype of this design was built and tested using piezoelectric film sensors from

Measurement Specialties, Inc. (MSI). The sensors are shown in Figure 6 and the sensor array

prototype is shown in Figure 7. 

Figure 6. Piezoelectric Film Sensor

Figure 7. Dual Layer Piezoelectric Touch Sensor Test
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This prototype consists of three dual layer piezoelectric pads placed adjacent to one another.

These are the three strips located in the center of the breadboard in Figure 7. A frequency

of 44kHz was applied to the bottom film layer and the top layer of each pad was individually

monitored on a four channel oscilloscope. It was shown that when a force is applied to a pad,

the corresponding signal amplitude decreases. This is shown in Figure 8 where the signal of

the sensor being touched has decreased approximately 0.5V.

Figure 8. Response of Dual Layer Piezoelectric Sensor to Touch

Further testing showed that there are several more factors to be taken into account to make

the system perform reliably. It was found that an intermediate layer must be sandwiched

between the two piezoelectric layers. In addition to being non-conductive, this layer must

also be thick, relative to the piezoelectric layers, and deformable. This broadens the

measured voltage range of the force dampened signal. It was also found that much of the

signal response was not due to the pressure applied, but rather to the capacitance storage

created by the two conductive films. It was difficult to measure amplitude changes using a

small mass set but was very easy when contacting the sensors with a finger. The natural EM-

field surrounding a finger was enough to distort, to a measurable degree, the capacitance

created by the layered sensors. Although this was proportional to applied pressure, it was

also very easy to force the value to its extreme by pressing the sensor stiff against the

breadboard or by increasing the area in contact with the sensor. Due to these design
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challenges, it was decided to proceed with a different sensor type rather than try to create

and characterize a reliable piezoelectric solution and then adapt it to the needs of this project.

It should be noted that a similar design was presented in the October 2004 issue of the IEEE

Sensors Journal [19] . The research presented uses an array of single layer piezoelectric

elements to measure an applied steady-state force. This method is similar to the dual layer

piezoelectric force sensor in that it stimulates a sensing element with fixed frequency signal

(in this case, the natural resonance frequency) and then measures the amount of signal

change when a force is applied. The difference is that this method both stimulates and

measures from the same single layer of piezoelectric material by taking advantage of the

property of the material to shift its natural resonance frequency based on applied strain. The

results of this method show merit, however, considerably more research would need to be

done before this method of sensing could be employed in the design of a gait detection

system. 

3.4 Capacitive Sensor Array 

The capacitive sensor array measures a very small change in capacitance of a conductive

plate when a external EM-field, such as that generated by a finger or a paw comes in

proximity. An array of plates allow both force and location to be determined. The

Fingerworks Touchpad utilizes this type of sensor technology. Beyond the initial tests to

determine if a mouse would be capable of activating it, the Fingerworks Touchpad was not

further experimented with. This was due to the company’s lack of development kits and then

its eventual closing of business. A capacitive based sensor prototype was therefore

developed using Quantum Research Group’s capacitive touch sensor chips. 
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The Quantum Research Group’s QTouch, and QMatrix lines of chips provide single chip

solutions for creating and configuring capacitive sensors and sensor arrays. The first test

design used the QT110 chip, which is a single input proximity sensor, shown on the left in

Figure 8. This came mounted on an evaluation board directly from the company and was

used explore the potential of the capacitive sensor based solution. The second test design

used the QT320 chip, which is a dual input proximity sensor, shown on the right in Figure

9. 

Figure 9. QProx Single and Dual Input QTouch Boards

Both of these chips were set to trip the circuit when an external field was present within

2mm of the sensor surface, or the thickness of the printed circuit board. The sensing surfaces

were traced on the underside of the board and the active sensing area was marked on the top.

The dual input chip was used to drive a rudimentary proximity sensor array. The sensor array

was designed using the dual layer addressing scheme. The rows and columns were

multiplexed using a Maxim MAX306CPI dual 8-bit analog multiplexor. This initial design,

though not very effective, did highlight the false detection issue with the dual layer bus

addressing structure. It also demonstrated the inability to multiplex effectively with

capacitive sensors which auto-adjust.
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The third test design used the Quantum QT60645 chip, a 64-key proximity sensor, mounted

on the E6645 evaluation board. In addition, the evaluation kit came with a 64-key keyboard

layout, and control software. The evaluation board, sample keyboard layout, and a sensor

array built for testing are shown in Figure 10. The control software is used to adjust circuit

gains and to monitor contact points. Testing was done by first placing a mouse on the

keyboard layout to determine if the mouse was capable of registering contact with the

system. It was found that it was. 

Figure 10. QProx E6645 Evaluation Kit

The next step was to create a custom grid using the same 64-key input but with a very small

sensor spacing. A circuit board layout was drawn to mount the QT60486 chip; a 48-key chip.

Quantum did not offer low volume orders or samples for the QT60645 chips and has since

ceased producing them altogether. The board layout was designed to connect only the

minimal set of required components and provide a connection to the sensor grid. The sensor

grid itself was designed as a second circuit to be printed on a flexible film. The grid is

composed of interdigitating wire traces separated by ground buses. The circuit diagram for

the sensor array is shown in Figure 11 and the dual side film layout for the sensor grid is
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shown in Figure 12. Sensing works by connecting row and column traces to the chip, which

then measures the baseline capacitance between each interdigitated trace. A deflection past

a set threshold of the capacitance field by an external field indicates a touch. The ground

traces are used to separate one sensing element from another by absorbing stray capacitance.

The sensor grid would be mounted to a rigid base and then connected to the drive circuit,

mounted underneath. This allows for multiple individual grids to be placed adjacently,

thereby creating a much larger, unified sensing area. A master control processor would then

be used to query each individual sensor grid and collect and report data from the entire field.

Figure 11. QT60486 Sensor Chip Circuit Diagram 
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Figure 12. Interdigitated Capacitive Sensor Grid Layout

The capacitive sensor array had several production limitations which led to the ultimate

decision to abandon the design. Firstly, it was deemed too costly to produce the micro-trace,

flexible film, sensor grid. Local facilities were not available to manufacture the grid so it had

to be made by an outside board manufacturer which specialized in thin film layouts. Small,

precision, low quantity units proved to be too expensive to produce and the turn-around time

proved to be too long. These limitations were compounded by need to test, redesign, and

then manufacture several iterations. In addition to prototype production limitations, the sheer

number of grids which must be connected together to form a complete sensing field became

a concern. Each grid was only sized to be 1"x1", which would require 36 units to achieve the

basic size of 2"x12" or 72 units to achieve an optimal size of 3"x24". It also proved difficult

to design a circuit layout compact enough to fit all the necessary components into a single

square inch area. Even if the thin film sensor grid and the circuit layout could have been

efficiently produced, the sensor grids would only have a resolution of eight sensing elements

per inch, too coarse of a resolution to obtain any data other than basic contact points.  
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3.5 Camera/Plate System

The camera/plate system is based on a machine vision camera, mounted under a transparent

or translucent plate, which records the gait of a mouse as it walks across the plate. The

recording is then analyzed to extract the locations of each paw placement. Several factors

were considered during the selection of an appropriate camera. It was decided that the

camera needed to have a digital output or an external frame grabber for transferring the video

to a computer; necessary for both analysis and archival of the video. Other important factors

include resolution, frame rate, feature sets, and data connection type. Table 1 shows a

comparison of the various cameras which were considered.

Table 1.  Machine Vison Camera Comparison

The cameras were compared primarily on maximum resolution and frame rate. These two

factors directly correlate to accuracy of the spatial and temporal gait measurements. The

connection type was also important since it dictated if special hardware was needed to get

the data from the camera. Additional features, such as adjustable resolution and frame rates,

were considered too, as they allow for more flexibility of experimentation. 

Although high-end machine vision cameras had been researched, the first camera

experimented with was the Logitech Quickcam for Notebooks, shown in Figure 13. It was

decided to begin with a basic consumer digital camera to test the feasibility of the
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camera/plate design before purchasing an expensive high-end camera. Although the

Quickcam did not have the larger resolutions, faster frame rates, and extensive feature sets

of many of the machine vision cameras, it was inexpensive and easy to use for initial testing.

The Quickcam has a frame rate of 15fps at a resolution of 640x480 and 30fps at a resolution

of 320x240. It has a manual focus lens and feature controls which include adjustments for

digital gain, gamma correction, and white balance. It can run in either color or grayscale

mode at both resolutions and it connects to the computer via the USB port. It is a Video for

Windows compatible device, so nearly every Windows based video capture program will

recognize it. The Quickcam was used with the Pagoda prototype device, detailed in a later

section.

Figure 13. Logitech Quickcam PC Camera for Notebooks

3.6 Discussion

The goal of this research is to build a sensing device to measure the force, position, and

timing parameters of the gait of a mouse over several strides. Data would be collected by a

sensor array, preferable a solid-state sensor device embedded within the walkway, and would

be communicated, to a central controller or user console. After an extensive survey of sensor

devices, the three most promising technologies underwent experimental testing. 

The piezoelectric film sensors have a number desirable characteristics including compact

size, static and transient force sensitivity, and simple circuit connectivity. An array of

densely packed piezoelectric film sensors would provide data on both the location and the

applied force of multiple, simultaneous contact points. The limitation of the technology is

found in the inability to easily manufacture such a sensor device. The basic testing conducted
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with only three sensor elements demonstrated the difficultly in creating and calibrating a

piezoelectric film sensor array. The final conclusion is that such an array must first be

thoroughly researched to determine the optimal film thickness, piezoelectric strain,

intermediate layer material, and capacitance rating, among other factors before any

manufacturing can be done. The production process itself must then include screen printing

or deposition of the piezoelectric film, non-conductive layer (if applicable), and all

addressing lines with very small, precise tolerances. Such a research effort would be large

scale project of its own. A manufacturing process would also have to be developed to create

the final sensor device. The piezoelectric thin-film sensor array goes far beyond the scope

of this project which is why it was abandoned for an alternate sensor technology. 

Capacitive sensor arrays have the advantage of not having actual sensor elements, but rather

function by measuring the capacitive field between two wire traces. This allows for a very

simplistic circuit design since no additional components need to be connected beyond the

single chip which measures the capacitances. It also has the advantage of allowing for a high

resolution sensor grid. Additionally, the sensor chips used in the test design automatically

calibrated to the sensor grid. This prevents the sensitivity from straying over time or with

use. The experimentation with this technology progressed to the design of a full sensor array

prototype. It was at this time that the inherent disadvantages of the capacitive sensor array

solution became apparent. The wire traces and spacing between can be made to be very

small (down to 0.005") on a printed circuit board or flexible film. At the finest trace size, a

full sensor element, comprised of a ground wire, a column wire, a row wire, a second ground

wire, and the corresponding space between each of them, will measure 0.04"x0.04". At that

size, the resolution is 25 sensors per inch, or roughly 1 sensor per millimeter. This does not

include any addressing line which must be added. This design assumes a single wire for each

row and column with no interdigitation. When setup in this configuration, the signal gain for

each sensing line must be increased since there is so little capacitance to measure. This has

the disadvantage of drastically increasing the noise level of the signal which causes an

increase in false contact detections. In practice, it was found that the chip could not calibrate

properly and the sensors were either forced constantly active or inactive depending on where
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the threshold was set. To create a grid which was not overly amplified, the resolution was

reduced down to only eight sensor elements per inch. The second major limitation of the

capacitive sensor array was the same problem with manufacturing that was found when

exploring the piezoelectric film approach. The row and column sensor grid traces are

required to be on or very near to the same plane. This poses a layout problem when printing

the grid on standard PC boards. It was therefore required to print the grid on a flexible film

with the vertical and horizontal traces on opposite sides. Again, manufacturing became an

issue due to the expense involved in producing thin trace, high precision, low quantity,

custom circuits. It was ultimately decided to not use the capacitive sensor array technology

based on the aforementioned limitations.

The machine vision camera has the distinct advantages of a high spatial resolution, fast

frame captures, and an easy interface for data collection. The two clear limitations are that

the capture area does not scale well and that there is no way to collect force data. The spatial

resolution is dependent on three factors, the overall camera resolution, the distance to the

target, and the viewing angle of the lens. With the right lens and the proper height

adjustment, a high-end camera can cover a full 12" span at a resolution of 100 pixels

(sensors) per inch. The proper camera can also sample this area at a rate of 100 frames per

seconds, a difficult feat with large solid-state sensor arrays. Additionally, the camera does

not require specialized hardware to be designed to collect and transmit the sensor data. All

but one of the machine vision cameras come with an internal frame grabber and connect via

standard digital connectors. The limitation of the camera design is the inability to measure

applied force. After reviewing the first two sensor technologies, and the metrics actually

required to measure gait, it was determined that removing the force measurement in

exchange for the spatial accuracy of the camera was an acceptable tradeoff. It was therefore

decided to proceed with the machine vision camera based design. This was then adapted to

the camera/plate system where a rigid, transparent plate would be mounted above the

camera. The camera then records video of the mouse as it runs across the plate. This

simplified system of data acquisition would then allow the research to be focused back to

gait identification rather than sensor development.
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4 GAIT ACQUISITION AND ANALYSIS DEVICE SPECIFICATION

4.1 Introduction

The following chapters will detail the development of a camera/plate based gait acquisition

system and an image processing based detection and analysis tool. Chapter Five will detail

the specific machine vision camera which was chosen for the final implementation. Chapter

Six will focus on the design evolution of the physical walkway stand assembly. Several

design challenges were discovered during the development process. Discussion will cover

the importance of each to the overall design and the progression of a solution through each

prototype iteration. The final walkway stand design will be presented which incorporates the

refined hardware features and meets all the system requirements. Chapter Seven will begin

the discussion of the automated gait detection algorithm by presenting the many image

processing techniques explored. Chapter Eight details the two image processing based paw

identification algorithms used and describes the final implementation. The end result of this

work will be a complete gait acquisition and analysis system consisting of a well designed

physical stand with considerations for an optimal data acquisition environment, animal

management, and simple user operability, and a robust paw identification algorithm based

on advanced adaptable image processing methodologies.

4.2 System Requirements

The system must be able to capture video frames from a minimum frame rate of 60fps to an

ideal rate of 100fps. Experiments conducted with live mice using a 60fps camera show paw

contact and swing durations as low as four frames each. This is the minimum number of

frames acceptable per strike. Using a lower frame rate could result in the complete loss of

a strike if the mouse is moving at top speed. The capture area must have a minimum length

long enough to acquire three complete strides of a mouse. The longest stride length measured

from the live experiments was 6.4cm or 2.5". A walkway length of at least 8" is therefore

required; 12" would be ideal. The image resolution must meet a minimum of 100 pixels/inch
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to properly discern the digits of each paw. This was determined by capturing the image of

a paw at 100pix/in and then reducing the image size and evaluating the clarity of the digits.

Digit spacing is the most discernable paw feature and will become the basis of the detection

algorithm, it is therefore important to have the greatest amount of resolution possible. The

walkway stand must be small enough for table top use, lightweight enough for easy

movement, and robust to repeated handling. The stand must be self-contained, therefore, all

the necessary sensors, electronics, lighting, and the camera must be housed within the stand.

The mouse must be able to be easily loaded into the device and have a directed path over the

active viewing area. To accommodate the mouse, the walkway must be a minimum of 2"

wide; 3" to fully accommodate an injured animal. The walkway must be tolerant to repeat

mouse movement across the surface and robust to any excretions the mouse may leave

behind. It must also be easy for the operator to clean and to retrieve the mouse at any point.

The device must maintain set lighting conditions at all times to ensure uniformity in the

image data. However, the algorithm must be tolerant to non-uniformities in the lighting

should optimal lighting not be guaranteed. The algorithm must execute in a timely manner

and display results to the user in a meaningful and effective way. Lastly, the algorithm must

be able to automatically detect and identify only the paws in a frame which are in contact

with the plate and then report a minimal gait parameter set: this includes step sequence,

stride length, stance width, stride time, and paw rotation.

4.3 Design Overview

The camera/plate system design will consist of a machine vision camera mounted beneath

a transparent/translucent plate which will serve as a walkway for the mouse. The machine

vision camera will be the PixeLINK PL-A741-R. The plate will be constructed out of a glass

or plastic pane. An enclosure will be constructed over the walkway to direct the mouse

across the active capture area and to assist with the loading and retrieval of the animal. Trip

sensors will be placed along the sides of the walkway to notify the system when the mouse

has entered and exited the capture area. Notifying the system of when an animal is present

will trigger data capture and thereby limit the video to only the frames which contain the

animal and are therefore relevant. Lighting will be mounted to the stand to properly
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illuminate the walkway for improved data capture. An optimal lighting scheme is important

to produce the maximum contrast possible between the paws touching the plate and the rest

of the mouse’s body and the background. This will  help the detection algorithm to separate

paws in contact with the plate from the rest of the scene. Additional hardware will be in the

form of analog/digital circuitry and/or a microcontroller to handle sensor interfacing and

communications to the host PC. A host PC will be used to run the software designed for

capturing and storing gait data from the camera. Additionally, the paw identification and gait

analysis algorithm will run from the host PC. The identification algorithm will utilize image

processing methods to extract and identify the individual paws in the frame. This will be

done in a three step process: locating relevant data, categorizing the data, and applying

object matching techniques. Once located, the positions of the paws will be used to calculate

all the spatial gait parameters and the frame number combined with the capture frame rate

will be used to calculate all the temporal gait parameters. The spatial and temporal accuracy

of the gait measurement will be dependant then on the resolution and frame rate of the

camera. 
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5 MACHINE VISION CAMERA

5.1 Introduction

The PixeLINK PL-A741-R camera, shown in Figure 14, is a professional grade machine

vision camera. It supports a number of features and controls and is highly reconfigurable for

adaptation to a variety of imaging applications [22]. It is a grayscale camera and connects

via a standard Firewire port. It supports a standard C-mount, 2/3" CCD lens. It has full

software control over all features, such as gain, brightness, exposure time, resolution, and

frame rate. It supports external hardware frame triggering and has two general purpose

output pins. The camera is setup in a right angle configuration for easy mounting into spaces

where height is a concern.

Figure 14. PixeLINK PL-A741-R Machine Vision Camera
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5.2 Capabilities

The camera’s key feature is its ability to provide a variable resolution and frame rate with

the limiting factor being maximum data transfer bandwidth. The camera’s resolution can be

adjusted from a minimum of 80x2 pixels to a maximum of 1280x1024 pixels or to any user

defined value in between. Additionally, the capture area can be windowed to any region

within the boundary of the maximum resolution. For example, the capture area can be set to

a 640x480 window with an offset of 300 pixels from the top and left edges. The camera can

achieve a maximum frame rate of 8000fps at the minimum resolution and exposure time, At

the maximum resolution and exposure time (40 milliseconds), the maximum frame rate

available is 13fps. The resolution and frame rate are dependent on exposure time and

available bandwidth. The camera’s total available bandwidth is ~280Mbps. The exposure

time defines how long the camera integrates light in the CCD before storing the value and

resetting the sensor. Decreasing exposure time allows for a greater number of frames to be

captured per second. However, the brightness of the image is reduced since there is less light

collected by the sensor. The camera can achieve a maximum frame rate of 27fps at full

resolution when set to the minimum exposure time of 0.04ms. The external lighting must be

very intense at this setting for the camera to register any image data. A spreadsheet to

calculate the camera’s frame rate at various resolutions and exposure time settings is

provided by PixeLINK.

The original version of the camera supported three shutter trigger modes: rolling shutter, free

running global shutter, and hardware triggered global shutter. The rolling shutter mode

would integrate the light values in a single row of the CCD, pass the data onto a buffer, and

then continue with the next row. This method provided a higher overall frame rate, but

resulted in blurring quickly moving objects within a frame. This shutter mode is no longer

present in current versions of the PL-A741-R camera and all data pertaining to it should be

disregarded. In global shutter mode, the CCD integrates lights over all the sensor rows

simultaneously and stores the values in a buffer. When the integration time expires, all the

image data is transferred at once, and the sensor  resets to gather data for the next frame. In

the free running mode, the camera generates an internal periodic signal based on exposure
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time and frame rate to trigger the capture of frames. In hardware triggered mode, the camera

looks for an externally generated trigger signal on the trigger port pins. 

5.3 Software Development Kit

The camera package includes a software development kit (SDK) for the integration of the

camera into third-party applications [23]. The SDK provides a software interface for

adjusting the camera settings and for acquiring image data. It also provides support for

callback functions for on-the-fly image processing. The SDK has two main parts: the OEM

Capture Application and the Application Programming Interface (API) Library.

Figure 15. Screen Capture of PixeLINK Capture OEM
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The OEM Capture Application is a generic application provided by PixeLINK which gives

access to all the camera’s settings and provides an out-of-the-box means to capture images

or video. A screen shot of the OEM Capture Application is shown in Figure 15. The API

Library is a compiled external development library containing a collection of API functions.

The API functions are medium level routines which provide all the basic commands and

control of the camera; from setup parameters to data acquisition.

In addition to the image data, with each frame, the camera  sends a frame descriptor. The

frame descriptor lists all the frame’s parameters, such as image size, frame number, exposure

time, as well as the values each of the cameras settings during that frame. The descriptor

may be customized to provide additional user-defined data. 

5.4 Limitations

Although the PixeLINK camera is highly versatile, it remains limited in several ways. The

maximum bandwidth for a Firewire port is 400Mbps. The camera only transmits data at

280Mbps. There is a lot of untapped bandwidth which the camera could use to increase the

maximum frame rate at maximum resolution. Also, the camera only captures grayscale

images. Color images would help to lessen the demand for high contrast data. Instead of a

cutoff threshold being set to distinguish between foreground and background objects, shades

of color could be extracted for better processing. A true GPIO port would be very beneficial

for interfacing with other external hardware. 

The real limitations of the camera are seen in the SDK. The OEM Capture Application is too

simplistic to be used for anything but device setup and testing. The API Library is only a

loose collection of Windows API functions. The library is not organized into any kind of

class or object oriented structure, despite its intended use in a C++ development

environment. This means that a wrapper class must first be written to encapsulate the API

functions and all associated variables before the camera can be accessed. The functions

themselves are not low level enough either to provide complete access to the camera’s data

registers or other internal hardware. What results are functions which do not provide the
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hardware access that assembly routines would, nor the ease of use of higher level, object

oriented solutions. These limitations, however, can be designed around and the PixeLINK

camera retains best feature set is the most customizable of all the cameras. For these reasons,

it was selected for system development. 

5.5 Lenses

The camera lens had to be carefully selected to provide greatest area of coverage with the

shortest working distance and least distortion possible. To select an appropriate lens, the

working distance, or distance between the lens and the walkway, the desired length of the

capture area, and the desired resolution of the image had to be determined [24]. These

variables would decide the focal length, or distance between the lens and the CCD sensor

element, required. It was decided to set the image resolution to 100 pixels per inch as this

provided adequate imaging of both the paw’s rotation and spread of the digits. Figure 16

shows images of the same paw at successively smaller resolutions, in descending order: 150

pix/in, 100 pix/in, 75 pix/in, 50 pix/in. At the resolution of 50 pix/in, the paw shows

individual digits and rotation are difficult to distinguish. Without the side-by-side

comparison to the higher resolution images, identification would be even harder. The 75

pix/in paw begins to show some difference in the digits, but it would again be difficult to

judge rotation without the comparison to the higher resolutions. At 100 pix/in, the resolution

is just high enough to distinguish all the pertinent characteristics.

Figure 16. Comparison of Descending Imaging Resolutions

Based on that resolution, the length of the capture area was set to 12" or 1200 pixels

(<1280pix max). To maintain a high frame rate, the capture area was windowed so that only

a long narrow portion was active. It was decided that the most width needed would be 4"
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since the animal easily fits into that width and it  provides ample room for an injured animal

to spread out its limbs. A working distance of 20cm or less was also determined for

maintaining a small device height. Based upon these values, a focal length of 5mm was

calculated using equations 5.1 and 5.2 and Figure 17 [24]. 

Figure 17. Lens Geometry
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For the camera’s 2/3" CCD (8.8mm x 6.6mm), this sets the working distance to ~17cm. In

application though, a 5mm focal length lens for a 2/3" CCD is rare and is priced far above

what is acceptable for this project (>$1,000). The lens ultimately chosen has an 8mm focal

length, with an angular field of view of 57.62°. This allows a 100 pix/in resolution at a

working distance of 29.56cm. The lens is a Computar M0814-MP.
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6 WALKWAY STAND AND DEVICE HARDWARE

6.1 Introduction

This chapter will discuss the walkway stand and the physical hardware of the gait acquisition

device. This chapter also presents the design evolution of the physical setup from a basic test

rigging to the final hardware assembly ready for experimental use. All of the attempted

hardware designs will be presented in order of implementation to demonstrate what worked,

what did not, what led to improved designs. It will also be shown why the elements which

made it to the final design are necessary for the overall operation of the device. The chapter

is split into three sections. The first discusses all the individual components of the physical

device. The second section iterates through four prototype designs, documenting the

progression toward a final solution. The last section discusses the various features of the

final prototype and how the design requirements were met. 

6.2 Components

The following sections detail the core components which comprise the walkway stand.

Extensive testing was conducted to find the best hardware for each component type. The

technical details of the hardware and which worked the best for each grouping are presented.
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6.2.1 Walkway Plates

The mouse requires a surface on which to walk that is transparent enough for the camera to

capture the footfalls from beneath. Several different types of materials were tested for

durability, transparency, and color filtering. The first walkway was built out of clear, 1/8"

thick, Lexan plastic. The plastic surface ultimately ended up being too easily scratched and

too thin; to the point of bending as the animal walked across. It was decided that a frosted

material would provide optical filtering of the animal’s body before capture, thereby

reducing the burden on the digital filtering.  Figure 18 shows a comparison of the clear

plastic walkway and the frosted glass walkway. The frosted material allows objects in

contact with the surface to maintain clarity and heavily filters out object not in contact.   

Figure 18. Clear plastic walkway and frosted glass walkway.

It was decided that a green color filter would increase the contrast between the mouse’s pink

feet and white body. Figure 19 shows a comparison of live mouse images captured through

various colored lenses. It was decided that the green and blue lenses increase the paw to

body contrast, if only slightly. The blue filter required a larger intensity gain to be applied,

as it was a darker lens, thus the green lens was chosen. Though the increase in contrast is not

substantial, any small gain will prove valuable by reducing the necessity of the detection

algorithm to digitally increase contrast later. The revised walkway was built from a frosted

glass pane purchased from a local glass shop. To apply the green filter, a green lens was

placed on the camera rather than trying to get colored and frosted glass. This proved to have

the same effect and allowed for removing and swapping the lens as necessary during testing.
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Figure 19. Frame Color Filtering Tests
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6.2.2 Track Enclosure

The walkway and camera are mounted to a frame which also provides an enclosure for the

track and mounts for the lighting and other external electronics. The track enclosure consists

of two parts, the walkway section and the end caps. At end caps are small enclosures or

“mouse houses” where the animal can be loaded or retrieved. Variations of these are shown

in Figure 20. 

Figure 20. Original (Top) and Refined (Bottom) Mouse Houses

The mouse house on the starting side is illuminated and the one on the ending side is shaded.

This was done because the mouse should naturally run from light to dark. The houses

themselves are spacious enough to accommodate the entire mouse. This aids in loading and

removing the animal. The walkway section is only as wide as the mouse to help prevent the
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mouse from turning around and moving in the wrong direction across the capture area. The

walkway is also enclosed with a clear plastic canopy to prevent the animal from escaping

while still allowing the operator to see it. The canopy was tested with both a rectangular and

triangular shape as shown in Figure 21.

Figure 21. Rectangular and Triangular Canopies

It was found that it is more difficult for the mouse to turn around when in the triangular

canopy because it can’t climb the wall like in the rectangular one. A cover, or hood, placed

above the canopy and walkway, is also necessary to reduce ambient light and to provide a

matching colored background for runs with light or dark mice.

6.2.3 Lighting

Many different types of light sources were tested in a variety of configurations. The light

sources include ambient light (unlit), florescent cabinet lights, ultra-bright white LEDs,

outdoor patio rope lights, high intensity fiber-optic point lights, halogen work lamps, and

ultra-bright, wide-angle, LED light strips. These are shown in Figure 22.
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Figure 22. Lighting Sources Tested

The florescent cabinet lights are 1.5ft long, 15 Watt, florescent lights purchased from a

hardware store. They plug into a standard wall-outlet and can be mounted to any long rigid

surface. The ultra-bright white LEDs are basic LEDs which emit a very bright white light.

They consume about 2.3V and each requires a resistor to set the input current (~5ma). These

can be mounted to any rigid surface and pointed in any direction. Many can be clustered

together to increase the overall illumination. The fiber-optic point lights are from a table top

device used to illuminate microscope slides or small work areas. This device has a high

intensity light which is delivered to two bendable fiber-optic arms. This sits on the table top

and each arm may be separately positioned to illuminate a particular area. The halogen work
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lamps are standard 150 Watt lamps available at any local hardware store. These lamps plug

into a standard wall-outlet and can be setup on the table top or mounted via the stand legs.

They cannot be mounted any closer than 6" from the target because of the heat produced.

The ultra-bright LED strips are professionally built strips of wide-angle, white, surface

mount LEDs. The strips are available in 6", 1', and 2' lengths. Each strip operates at 12 Volts

and consumes 60mA, 120mA, and 240mA respectively. They may be powered directly from

a wall-plug adapter or from existing circuitry, provided it can supply the necessary current.

The strips can also be chained together to share the same power source. The strips come with

an adhesive backing for mounting to any flat, long, rigid surface and are thin enough to slide

into brackets for mounting. 

6.2.4 External Hardware

External interface hardware is necessary for power, control, and communications. The power

circuitry consists of voltage dividers and current limiters to ensure the proper power level

is supplied to each of the external components: microcontroller, trigger circuitry, and

lighting. The triggering circuit consists of two LED and phototransistor pairs which create

“trip beams” to determine when an animal has entered and exited the capture area so that

only relevant data is captured. An output signal is activated when the first trip beam is

crossed and deactivated when the second beam is crossed. This design uses MOSFETs to

activate the sensor elements and an S-R latch to hold the output state. The circuit schematic

is shown in Figure 23. 
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Figure 23. MOSFET Based Triggering Circuit

The components X1, X2, X3, and X4 are each n-channel enhanced MOSFETs. The part

number used is Zetex ZVN3306A. The phototransistors, Q1 and Q2 are NPN phototransistor

for visible and near-infrared detection. The part number used is Vishay BPW77NA. The

triggering circuit was originally designed to be connected to the camera’s general purpose

input/output (GPIO) port. The GPIO pins are set to no-connect when disabled and are set to

ground when enabled. It was discovered, though, that these pins were output only, so the

circuit could be activated, but the trigger signal could not be read.  The external hardware

was, therefore, redesigned to simplify the circuit and to remove the dependence on the

camera’s limited I/O. The revised designed uses much simpler circuitry and includes a

microcontroller to handle sensor I/O and PC communications. The revised circuitry consists

only the two LED/phototransistor pairs and the necessary pull-up resistors and voltage

dividers for each of the sensor lines to ensure that the 12 volts the trip beams use is

converted down to the 3 volts the microcontroller requires. The circuit diagram for the

revised design is shown in Figure 24. 
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Figure 24. Revised Microcontroller Based Triggering Circuit

The microcontroller used is an SiLabs C8051F300 processor mounted on a development

board. The processor is based off an 8051 core and has 8 GPIO pins, UART communications

bus, and 8kB of program space. The development board provides an RS-232 level shifter

with serial port connector, a 12-pin header for connecting the sensor lines, and all the

necessary power circuitry [25]. The code running on the microcontroller is a simple state

machine with boundary checks. It  reads sensor data from the two trip sensors and reports

the state to the host computer. The triggering software has 4 states: idle, waiting, capturing,

and done. On startup, the microcontroller is in idle. When a request to begin an experiment

is received, the controller enters the wait state and activates the sensors and read the values

from the first sensor. When the first sensor is tripped, the controller deactivates the LED to

signal that it was crossed and then reads from the second sensor. This is the capturing state.

When the second sensor is tripped, the controller deactivates it to signal that it was crossed

and transitions to the done state. This tells the host computer to stop the image capture from

the camera. The microcontroller is programed to only report the current state when queried,

so it dependent on the program running on the PC to initiate all communications. Using the

microcontroller in this way helps to keep the external circuitry from becoming too complex

and eases the burden on the PC when capturing data.
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6.2.5 PC Capture Software 

The PC capture software incorporates a number of programming elements which aid in the

high speed capture and storage of image data, the communications with the camera, and the

playback of the data stored. The capture software itself is written in C++ using Microsoft’s

Visual C++ Studio .NET Addition. Visual Studio provides all the basic code which handles

the creation of the program window and all Windows event handling. The interface to the

camera is controlled by the PixeLINK API Library. This is an external library available as

part of the PixeLINK SDK and is a collection of API functions. The API functions are

medium level routines which provide all the basic commands to the camera, ranging from

setup parameters to data acquisition. As the library is simply a collection of API functions,

a wrapper class had to be developed to properly incorporate the functions into the C++

object oriented environment. 

During the capture process, all of the available system resources are devoted to acquiring

and storing the image data as rapidly as its coming in so as to avoid missed frames.

Typically, a Windows program only executes in a single thread. If a single thread was used

for this application, then during the capture process, all of the controls would become frozen.

This would mean that until the second trip beam was crossed, the program would continue

to record data, without giving the user the ability to cancel or reset. To circumvent this, the

capture software is written to be multi-threaded. In total, the software has three separate run-

time threads. The main thread draws performs all the vital program functions and provides

for user control. When told to begin a capture sequence, the program starts a secondary

thread which opens the serial port and handles all communications with the external

hardware. This thread posts messages back to the main thread alerting it to what stage of the

capture process the system is in. When the first beam is tripped and the main thread is

alerted, another secondary thread is started which actually reads the data from the camera

and saves it, frame by frame, to the hard drive as a video file. This thread is set to a higher

priority than the other two as it needs to keep up with the rate at which the camera is

delivering data. At this point, all three threads are running; the main thread to allow for user

intervention, the communications thread to watch for a change in the external hardware state,
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and the capture thread to acquire and store data from the camera. When the second trip beam

is triggered, the communications thread will post a message to the main thread to end data

capture. The main thread then stops both the capture and serial threads and the system is idle

again.

The management of the image data is performed by a third-party ActiveX class called

VideoOCX which was written by Marvelsoft to provide quick and easy integration of video

into C++ programs. VideoOCX manages the storage, compression, and playback of the

video. The structure of data coming from the camera matches the structure received by the

ActiveX function so the incoming data is simply passed directly to the ActiveX control

where it is then put in to the standard audio/video interweave (AVI) format and saved to

disk. Once capture is complete, the video data can be reviewed in a window provided by the

ActiveX class. 

6.3 Prototypes

The following sections document the prototype designs which were developed. Each stage

shows marked changes in design and technology. The first prototype is basic system used

to test the feasibility of the camera/plate design. The final prototype is the result of extensive

research and many hardware iterations and user reviews. It represents a fully functional

solution capable of meeting all the design requirements and collecting real experiment data.

6.3.1 “Pagoda” Proof-of-Concept Testbed

The first test setup was built to accommodate a camera capturing video under a transparent

surface that the animal moves across. The physical setup is comprised of a plastic and

wooden frame with a black covering to prevent interference from ambient light. The camera

is mounted inside the frame, facing up, where above it, a piece of transparent plastic is

placed. A hood was also built which straddles the sides of the box and is used to block

overhead lighting from being seen in the camera’s view. The complete assembly of the

Pagoda stand is shown in Figure 25.
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Figure 25. Pagoda Camera/Plate Test Stand

The first tests were conducted prior to building the Pagoda stand to determine the working

distance between the plate and the camera. To do this, the Quickcam camera was mounted

to a shaft were the vertical distance could be varied. A ruler was placed underneath the

camera and the distance between the two was adjusted for different pixel per centimeter

ratios. The results of this are shown in Table 2. It was concluded that 50pix/cm with a

window size of 12.8cm x 9.6cm at a working distance of 17cm was a good balance of

settings for testing and the Pagoda stand was built to these specifications.
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Table 2. Quickcam Working Distance and Resolution Comparison.

The Pagoda stand was used to conduct the initial lighting tests. The first tests used only the

florescent cabinet lights and the outdoor patio rope lights. These early tests also quickly

showed the need for a hood over the capture area to block out overhead lighting. The

florescent lights were tested in a variety of locations. They were placed inside the frame, on

the bottom, flanking each side of the camera, inside the frame, on the top, just under the

walkway plate, and outside of the frame, on the top, just to each side of the walkway plate.

These tests were done to try to obtain the best amount of contrast between the mouse’s paws

and its body and the background.

The Pagoda stand was also used to test if a standard camera’s frame rate of 15fps at full

resolution would be sufficient for data capture. At 15fps, the mouse can move a paw from

one position to another with the video capturing little or no transition. Figure 26

demonstrates this by showing three successive frames recorded at 15fps. It is shown that

contact and swing durations are each represented by a single frame. In this video, the mouse

is moving at 21cm/s. If the mouse were moving at a higher velocity, a contact or swing could

be lost altogether. At 30fps, for the average mouse speed, this only amounts to

approximately 10 frames per complete stride or 2.5 frames per contact or swing.  



56

Figure 26. Successive Frames Captured at 15 fps
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6.3.2 “Poplar” Device Parameters Testbed

The second prototype system, shown in Figure 27,  was built to utilize the PixeLINK PL-

A741-R camera and to allow for hardware reconfiguration to test a variety of design

parameters. This stand was built out of ½" thick poplar wood. This provided a large and

sturdy frame for any number of hardware components to be easily mounted. The primary

considerations for this phase of development were camera placement, walkway materials,

lighting schemes, and enclosure configurations. Extensive testing was done, particularly on

the lighting schemes, to obtain images with the highest contrast possible.

Figure 27. Poplar Gait Stand

Camera placement, or more specifically, the working distance between the camera lens and

the walkway plate, was the first design aspect which needed to be addressed as it determined

the physical dimensions of the stand. A resolution of 100 pixels per inch was chosen as it
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had previously been determined to provided adequate definition of paw rotation and the

spread of digits. Given this resolution, and the selected 8mm lens, the working distance was

set to 27.4cm. 

In this design, the walkway plate had to be reconfigurable so that a variety of materials with

various properties could be tested quickly and easily. To accommodate this, the stand was

designed so that the walkway sits on two long support rails, one each on the left and right

side, at the precise working distance from the camera lens. The rails are covered with a strip

of foam insulation to both grip and protect the walkway. 

The need for reconfigurable lighting schemes was the topmost requirement for this prototype

phase. Illumination of the capture area plays an essential role in the quality of the data

gathered. To support this requirement, lighting mounts for the cabinet lights, and later for

the LED light strips, were placed directly under the walkway, parallel to the plane of the

walkway, and directly above the walkway. Lights were also able to be positioned anywhere

on the base of the stand. The various lighting mounts are shown in Figure 28. The image on

the left shows the parallel and above surface mount areas. The center image shows the a

florescent light mounted under the walkway. The right image shows the LED strip mount

under the walkway in place of the florescent light. 

Figure 28. Poplar Stand Lighting Mounts

Finally, this prototype had to facilitate the use of actual mice to gain real experiment data.

To accommodate live animals, an enclosure was built around the walkway which

incorporated two mouse houses, light and dark, a triangular, transparent canopy, and a dual
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sided hood. The hood is a piece of plastic which spans a little over the full length and width

of the capture area. It is coated in white on one side and black on the other to provide the

appropriate matching background for when light or dark mice are run. Testing of the Poplar

prototype consisted mainly of developing an optimal lighting scheme. Some video capture

triggering tests were performed before shifting to the next prototype phase. 

Lighting Tests

Proper illumination of the capture area is paramount to getting usable data. The white mice

have a white body with light pink paws, nose, and tail. When exposed to overhead

illumination, the background appears very bright and the body and appendages appear very

dark. The pink areas do not differ in intensity enough from the body to discern one from the

other. Conversely, when illuminated from underneath, the body and appendages appear very

bright and the background appears dull. This makes the white mouse body standout, but the

paws turn out to be the in the same intensity range as the background. Because of the low

contrast between the paws and either the body or the background, simple image thresholding

is not a viable identification technique. To assist later on with the paw identification routines,

the original image must show a high amount of contrast between the paws and the rest of

scene. 

In the very first tests, the walkway plate was a transparent pane of 1/8" inch thick plastic and

there was no filtering of the light. The plastic, however, was easy to scratch, too flexible, and

too thin to transmit light parallel through its structure. It was decided to switch to a 1/4" glass

pane instead. The increased thickness would allow for the plate to be illuminated internally,

which was one of the new lighting schemes under development. It was also decided that the

glass be frosted as a means of optical blurring so that only objects touching the surface were

in detail. Figure 29 shows the result of the optical blurring. The front-right paw in contact

with the plate appears clearly. The front-left paw not in contact with the plate appears only

as a dark shape. 
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Figure 29. Results of Various Lighting Schemes
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Figure 30. Optical Blurring Effect Due to Frosted Glass

Multicolor lenses were also tested at this time to see if color filtering would help enhance

the contrast. Red, orange, yellow, green, blue, and polarized lenses were each tested. While

there were not significant differences, the green lens did provide some contrast enhancement,

so it was decided to continue using it with every subsequent experiment. 

The lighting tests on the Poplar stand were extensive. Every light source was tested in

multiple configurations. Figure 30 shows varied results of these tests. Image A is the result

of a low intensity light shining up from under the walkway. The overall intensity is dull

causing the paws and the background to share the same intensity range. Image B is the result

of bright lights being placed above and to the side of walkway and a digital gain added to

increase intensity values. Although the paws are particularly clear in this image, the outline

of the body is also very distinct. When performing object detection, the body and nose are

very difficult to separate from the paws. Image C represents bright lights placed below the

walkway illuminating both the mouse and a white backdrop that has been placed over the

canopy. A digital intensity gain has also been applied. Although the body intensity is closer

to that of the background than in image A, the contrast between the two is still greater than

the contrast between the body/background and the paws. Image D is the results of lights

being placed exclusively above the walkway and a black backdrop placed on the canopy.

Only the sides of the animal are illuminated which creates a strong body and tail outline,

even through the frosted glasses. It still remains difficult to distinguish the paws though.
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The cabinet lights were tested in the same three positions as in the Pagoda setup: next to the

camera under the walkway, to each side directly under the walkway, and to each side directly

above the walkway. A forth position was also tested with the Poplar setup; parallel with  the

edge of the walkway such that the light is directed directly through the plate. This was based

off the Clarke and Still setup [8], [9]. The idea is that any point of contact the animal makes

with the plate is illuminated while the rest of the scene remains dark. The cabinet lights were

tested first in this configuration. It was quickly shown though that they did not have enough

power to provide light throughout the entirety of the plate. The edges were well lit, but the

falloff toward the center of the plate was substantial. There was also not sufficient

illumination of the points of contact to differentiate anything from the dark background.

Next, the cabinet lights were setup to illuminate both the edge of the walkway and the area

above it. This resulted in the outline of the animal becoming very apparent, but there was

still too little contrast between the paws and the body. After that, the cabinet lights were

moved down to the base of the stand and directed upwards. This had the effect of lighting

the paws and the body, but leaving the background dark. The paws and the body were again

very similar in intensity, this time being similarly bright rather than dark.

At this point, lighting tests switched to using ultra-bright white LEDs. Twenty LEDs were

placed, ten on each side, along the edges of the walkway. Like the cabinet lights, these did

not provide enough light to illuminate to the center of the walkway. They also cast a very

non-uniform falloff pattern in the image. The LEDs were also tried along above the

walkway, but the results were the same as the cabinet lights: bright background, middle

intensity body and feet. 

At this point, mounts for the cabinet lights were made directly underneath each side of the

walkway. Tests from this configuration showed the greatest amount of intensity contrast.

The paws were in high contrast against the white body and had enough contrast against the

mid-range background that they were able to be selected out using the image processing
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techniques concurrently being developed. This setup was used until it was decided that there

was simply too much non-uniformity of the intensities in the image data. The image

matching algorithms could detect the feet when they were properly illuminated in the center

of the capture area, however, there was too much variation in the intensity on the boarders

for reliable detection. At this point, new lighting schemes were once again explored.

It was decided that if the capture area could be flooded with light that it would saturate the

camera except for where the paws were located and the detection algorithm could pick and

choose from whatever detail remained. The first test of this was with the fiberoptic point

lights. One of each of these were positioned at each end of the track and pointed up toward

the walkway from underneath. It was found, however, that they did not provide a wide

enough beam to light the entire area without  falloff. Next, two halogen work lamps were

tested. The provided more light than any of the other sources, but were too bulky to place

under the walkway or mount in any reasonable way. They also produced an excessive

amount of heat which was undesirable around the camera and control electronics. 

Finally, the ultra-bright white LED lighting strips were tested. At the time, they were only

a recent acquisition but proved to be an excellent solution to the lighting issue. The light

strips were precisely spaced, ultra-bright, 90° spread, white LEDs mounted to a thin rigid

strip measuring 12" long. Two of these strips were mounted directly underneath the

walkway, in place of the cabinet lights. The light provided from the strips was bright and

uniform, with the exception of some slight falloff at each end.

Triggering Tests

For the early tests of the camera, the video was captured for a set period of time. This

worked fine for testing, but files were large with long spans of empty frames, and often the

run was cut short because the time ran out. For acquiring usable data, a start/stop triggering

system had to be developed. The first design of the triggering system utilized the camera’s

existing general purpose input/output (GPIO) ports. A circuit was designed which would

signal when each of the trip beams were crossed and, therefore, when the animal was in the
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capture area. The circuit was built to allow the camera to activate/deactivate the entire circuit

so the trip beams would only turn on when an experiment was being conducted. After the

circuit was built and connected to the camera, it was then found that the camera’s GPIO

ports were, in contrast to the documentation, output only ports. To attempt to bypass this

issue, the signal line was connected to the external hardware trigger pin on the camera and

the camera was set to external trigger mode from internal trigger mode. Normally, the

camera generates its own internal periodic signal to capture a frame of data a the appropriate

time. This can be overridden with an external device which connects to the external trigger

pins. To interface the existing trip beam circuit, camera was set to watch the external trigger

pin and when it saw the first switch in value (i.e. the mouse crossed the first trip beam),

instead of capturing a frame, the camera switched over to the internal periodic signal and

then proceeded to capture each frame of data. To stop the capture, instead of using the

second trip beam, the software watched for a change the last column in the image data which

would indicate that the mouse was present and that recording could stop. In practice, this

method was very processor intensive as it require multiple program threads to constantly be

watching the image data without resource conflicts. It was decided that a redesign of the

external hardware was needed to simplify the system and remove the dependence on the

camera’s limited I/O ability. 

The revised designed uses much simpler circuitry and includes a microcontroller to handle

sensor I/O and PC communications. The revised system still uses the two

LED/phototransistor pairs, now connected the microcontroller. The microcontroller keeps

track of which beams are tripped and if they are tripped in the correct order. This information

is then passed along to the PC via a serial connection. This setup has the advantage of being

easily reconfigured, as all that is needed is to reprogram the microcontroller, and does not

require the PC software to keep track of the external hardware state. The is the responsibility

of the PC software though to query the triggering system and to do so in a timely manner.

It also means that the PC must be equipped with a serial port.
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On-Site Tests

Once the lighting and triggering issues were worked out and the software written, the system

was ready for the first live animal tests. The initial tests successfully captured data and

demonstrated the successful implementation of each of the subsystems. The success of this

prototype warranted the design of a revised system which would incorporate modifications

based on operator observations, improvements to the lighting scheme, and an overall

streamlining of the system.

6.3.3 “Fleet Foot” Complete System Implementation

The final prototype system, shown in Figure 31, is an updated, streamlined version of the

previous Poplar design. The goal of this design phase was to build a system which retained

the basic features of the previous design, but to implement them in an improved or finalized

form. The stand is now built from Delrin plastic rather than wood. Delrin is as sturdy and can

be machined as easily as wood, but is non-porous, which allows for easy cleaning.  There

is still a glass walkway mounted above the camera with two enclosures on each end for the

animal to run between. The same microcontroller based triggering system is used and the

LED strip lights are now permanently mounted directly under, and to each side, of the

walkway. Further improvements and revisions will be detailed in the following sections.
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Figure 31. Fleet Foot Gait Acquisition System

Camera to Plate Working Distance Modifications

Feedback gained from the previous design indicated that the overall height of the device was

too large for tabletop use. It was therefore decided to reduce the total height by

approximately10cm (1/3 the height). This gives a working distance of 17.5cm and has the

additional advantage of increasing the resolution of the image to roughly 150 pixels per inch.

However, with the increase in resolution, there is a decrease in frame rate. The system is now

only able to reach a maximum of 75fps. The other drawback of this modification is that there

is now more “fish-eyeing” of the image and the intensity values. This means that near the

ends of the image there is increased image distortion and variation in light intensity. This

effect is shown in Figure 32 and is caused by using the lens so close to its minimum working

distance. 

Figure 32. Intensity “Fish-Eye” Effect 
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Walkway Modifications 

The walkway on the previous prototype was 12" long to match the length of the desired

capture area with the trip beams positioned directly outside the houses on each end. Testing,

though, showed that the mice would often walk part ways out of the house and then stop to

determine if it was safe to cross to the other end. This would trigger the system to start

recording before the mouse was actually in motion. To correct for this, the walkway, still a

frosted pane of 1/4" thick glass, has been extended to 20" in length. There were two main

reasons for this. First off, the extended length gives the animal time to come out of the house

and explore a bit without breaching the trip lines and starting data capture. This way, when

capturing is triggered, the animal will already have begun walking in a standard gait toward

the other end. This increases the usefulness of the data and reduces blank or irrelevant frame

from the video. The second reason for extending the walkway plate is that it now forms the

floor of the light side house as shown in Figure 33. 

Figure 33. Light Mouse House with Translucent Floor

It was decided that in the previous version, even though the light side house was not lined

in black, like the dark side one, the light side house was still not bright enough compared to

the well lit walkway to promote the animal run out and across. With the glass plate now

extended under the light side house, this allows the lighting to be extended underneath it as

well, making it as bright as the rest of the walkway. It also makes the surface uniform, so the

mouse is less aware of the transition from the house to the walkway. Testing shows the

advantage of this modification as the mice are now much less reluctant to run to the other



68

end of the device. The width of the plate was changed as well. The plate on the Poplar

prototype was 6" across, but the canopy only sealed in a 2" wide space. Since that much

width was unneeded, the walkway was reduced to 3.5" across. This gives a 3" wide walkway

to better accommodate injured animals and a 1/4" lip on each side for mounting.

Lighting Modifications

The lighting scheme for this prototype is based off the best of the various types tested in the

previous design. The ultra-bright white LED lighting strips are used and are mounted

directly below the walkway plate, just to each side of the edge of the capture area. These

provide ample uniform light across the entire region. The change from the last version to this

version is that they now extend the full 24" length of the device. This is to ensure that there

is uniform light well past the leading and trailing edges of the capture area, as well as serving

to illuminated the bright side mouse house. 

Enclosure Modifications 

The enclosure setup for this prototype is a finalized version of the experimental design from

the Poplar prototype. Changes were made to the design of the houses, the way the light and

dark side houses were differentiated, the shape of the canopy, and the way the walkway is

mounted to the stand. User feedback suggested that to ease the loading and removal of the

animals that the houses should be top loading rather than side loading. The houses were

therefore built with a removable cover on the top rather than a hinged door on each end. In

the previous design, the house were each built identical and then the interior of the dark side

house was painted black. For this design, since Delrin plastic is available in white and black,

the light side house was built out of white plastic and the dark side house out of black

plastic. This allows the light side house to be very bright and the dark side house to be very

dark, much more than either were in the Poplar prototype. With all the modifications to

promote better motivation of the animal to move from one end to the other, the canopy style

was changed from a triangular shape to a rectangular one. The reasoning for this is that it

allows more freedom of movement for injured animals. It also provides a stable platform for

the hood to rest on. The final modification is to the way the walkway plate is mounted to the
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stand. Rather than resting on the supports, the walkway now slides into channels on each

side of the stand, as shown in Figure 34. This provides better support for the glass plate

while still allowing it to be removed for cleaning or swapping. The black plastic floor of the

dark side house also slides into this channel. 

Figure 34. Walkway Insertion Channels

Modular Design

One of the new aspects to the Fleet Foot prototype is its modular top and bottom design,

shown in Figure 35. In this design, the top part of the stand, which includes the walkway,

lighting, and enclosures, separates from the bottom where the camera and all the electronics

are mounted. The advantage of this is that the top can be removed for animal training, while

the more expensive and less portable components can remain in one safe location. This also

allows for multiple modules to be used in varying locations or simultaneously. Additionally,

this can produce a better response from the mice as the same setup they were trained can also

be used when real experiment data is collected. When used separately, the top plugs into its

own power adapter. When joined with the base, connectors on the support struts link up the

sensors and lights.



70

Figure 35. Modular Halves of Fleet Foot Stand

Preliminary Tests and Results 

The first tests with the new prototype resulted in successfully acquiring usable data and

spotlighted a few more design issues to be addressed. User feedback indicated subtle

changes to the physical design while data analysis showed the need for further modifications

to the lighting scheme. The first change requested to the physical setup was to make the

mouse houses removable to help with cleaning. At the time of testing, the houses were

fastened directly to the stand which made it difficult to reach in and clean up anything the

mice left behind. The next recommendation was to switch back to the triangular shaped

canopy. The rectangular canopy allowed for too much freedom to explore the runway, so the

animals were prone to wander around rather than run straight through. It was also requested

that the hood which provides the light or dark background and blocks overhead light be

affixed to the stand by a more stable means. At the time, it was only resting on top of the

canopy and  could easily be bumped off. Also, with the move back to the triangular canopy,

the hood had to be supported by some other method. Lastly, though this was not a user issue,

it was decided that it would be preferable to hinge the covers of the houses simply so there

were two less independent parts to keep track of.
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Lighting again became an issue with this implementation. The decrease in the working

distance between the lens and the plate caused an increase in the fish-eyeing of the light

intensities (See Figure 32). This is due to the curvature of the lens, the close proximity to the

plate and light source, and wide angle viewing. This creates a problem with setting a correct

overall gain, or median intensity. If the gain is increased, the ends will brighten up, but the

middle becomes washed out, resulting in less definition of the paws. This is shown in image

A of Figure 36. If the gain is decreased such that the paws are no longer washed out in the

center region, then the intensities of the paws and the background, at the two ends, become

much closer, again resulting is less definition of the paws. This is shown in image B of

Figure 36. 

Figure 36. Paws Washed Out and in Dark Edge Region

To combat the issue of non-uniform background intensities, for first tests of this system, the

paws of all the animals were inked with a dark indigo ink and the gain was increased to

make the ends nearly as bright as the center. This had the advantage of having the white
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body blend into the white background and provided stark contrast between the paws and the

rest of the scene. Figure 37A shows the first trials with inking. The gait was not increased

to match the body to the background because it was found that, in practice, the edges of the

paws would washout. This resulted in smaller looking paws which were unable to be

detected. This was just one of the disadvantages to this method. There were several more

found. The first being that each animal had to be inked before the experiment. This proved

to be time consuming and messy. Also, it is quite difficult to ink a mouse’s paw, particularly

without getting ink on any part of the body. What typically resulted was the mouse’s belly

also being dyed black. Often times too, the ink was not entirely dry when the mouse walked

across the device and footprints were left behind, sometimes dark enough to register as

contact point even after the mouse had moved on. Despite these issues, inking the paws of

healthy mice proved to be the best method to create a high amount of contrast and acquire

usable data. Once the mice were injured, however, the limitations were magnified. The mice

would drag their entire body through the ink and there was little way to distinguish a paw

from the rest of the amorphous  dark area in the image. An example of this is shown in

Figure 37B. To solve this problem, and to remove the dependence on inking the paws

altogether, it was decided to mount a second set of LED light strips just above the walkway

to help brighten the background of the image without having to adjust the gain applied to the

intensity data. The physical design modifications and the changes to the lighting scheme

resulted in a second version of the Fleet Foot prototype being developed. As the changes

were only minimal, there was no need to create an entirely new prototype.
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Figure 37. Mouse with Inked Paws Before and After Injury
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6.3.4 “Fleet Foot” Complete System Implementation - Mark II

The Mark II version of the Fleet Foot system, shown in Figure 38, represents the most

current design. All of the recommended modifications have been applied resulting in a

streamlined device. This system represents the culmination of research conducted on the

mechanical ascpects of the system. 

Figure 38. The Fleet Foot Gait Acquisition System - Mark II

Mark II Enclosure Modifications

The first revision to be implemented was the ability to remove the houses on each end for

cleaning. In the previous version, the houses provided the cross connection between two

sides of the upper half of the stand. For the houses to be removable, connecting braces were

added between each of the struts to hold the two side together, as shown in Figure 39A. To

hold the houses in place, but still allow them to be easily removed, it was decided to embed

magnets into each of the ends and the base of the houses. This way the houses can be clicked

into place when in use and easily pulled off for cleaning. This is shown in Figure 39B. The

back wall of the house extends down to touch the rails on each side to provide added
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stability when the house is attached the stand. The covers of the houses are now attached and

hinged as well, to allow easy access without the issue of being misplaced. Additionally, the

canopy has been reverted back to the original triangular shape. This proves very effective

at keeping the animals on track and not turning around mid-run or wandering about. The

hood was also modified to have extenders with pegs on each end which are inserted into

slots in the top of each of the houses. The hood still retains its two-sided design for use with

either light or dark mice. The pegs are spaced in an offset configuration to ensure proper

connection when the hood is flipped. The new hood design in shown in Figure 39, images

C and D.

Figure 39. Fleet Foot Mark II Enclosure Modifications
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Dual Level Lighting

The most important modification to the Fleet Foot system is the dual level lighting scheme.

To ensure a white background when using white mice for the best contrast between the paws

and the rest of the scene, two extra ultra-bright LED strips are mounted above the walkway,

one on each side. The light strips are mounted at a 45° angle pointing up toward the hood.

This way, the background is brighten without adding too much extra brightness to the body

and paws. The intensity of the lights is trimmed using a 570S resistor in series with the

strips. This is done to balance the background intensity with the rest of the scene. The dual

level lighting system is shown in Figure 40 and a comparison of the image data with and

without the dual level lighting is shown in Figure 41. In Figure 41, the bottom image is a

frame captured without the dual level lighting. The top image is a frame of the same mouse

captured with the dual level lighting. With the dual level lighting, the body blends into the

background and the paws remain in comparatively high contrast.

Figure 40. Dual Level Lighting
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Figure 41. Dual Level and Single Level Lighting Comparison

System Tests

The Fleet Foot prototypes were tested by acquiring real experimental data for a set of 13

mice over a four week period. The first week runs were conducted with healthy mice on the

first version of the Fleet Foot system. The subsequent three weeks of experiments were

conducted using the Mark II version of the system. The system performed very well during

all tests and is suitable for continued research. The experimental results will be presented in

Chapter 9.

6.4 Final Design Discussion

Overall the camera-plate solution works well. The main difficulties lie in determining when

a paw is in contact with the plate. The low contrast between the paw and the rest of the

image is at the core of this problem. It was through a combination of optimal lighting

schemes and digital enhancement that points of contact were actually able to be determined.

The resolution of the data is much greater than any other solution, but at the expense of

being able to collect force data. With all the subsystems integrated and tweaked, the data
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collected is of usable quality. The final prototype has been shown to stand up to repeat use

and to collect consistent data. Conducting an experiment simply involves loading the animal

into the bright side house, setting the hood to the proper side, depending on the color of the

mouse, and starting the capture process from the PC software. 

6.4.1 Physical Dimensions

The final prototype of the gait acquisition system is a table top device measuring 24" long,

6" wide, and 14" high. When separated into its two modules, the top walkway modules has

a height of 8.5" and the bottom component module has a height of 5.5" with both retaining

the same length and width.

6.4.2 Interface and Power Requirements

The final prototype of the gait acquisition system requires a PC running Windows 2000 or

greater which meets the following minimum requirements: processor speed of 1.6GHz,

512MB RAM, 5GB of free hard drive space (for storing raw experiment video data), a

screen resolution of 1024x768. The PC also must have a dedicated Firewire port (cannot be

a combination USB Firewire card) and a free serial port. The final prototype requires a 1

amp, 12 volt, regulated power supply with a positive center adapter. 
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7 IMAGE PROCESSING TECHNIQUES

7.1 Introduction

Gait analysis is conducted on a PC via a custom designed detection algorithm. The algorithm

utilizes a myriad of image processing methods to filter, analyze, and report  relevant paw

contact information from the visual capture of the gait. This chapter will detail the

requirements the algorithm must meet, several image processing techniques to filter,

categorize, and match image data, and the implementations designed and tested. 

7.2 Locating Relevant Data

The first step to paw identification is examining the data and extracting the information

relevant to object matching. There are several methods of determining which points can be

useful in the image. During the course of this research, three of these methods were

explored;  threshold separation, edge detection, and difference of gaussian. 

7.2.1 Separation by Threshold

Threshold separation is an image processing technique where relevant data is extracted from

background data by partitioning the image data based on an intensity threshold value. That

is, any point in the image above a threshold is copied into the new data image (7.1).

(7.1)D x y I x y Thresh( , ) ( , )= >

Examples of threshold separation at various threshold values are shown in Figure 42. Basic

threshold separation when the data is separated into two groups based on a single value or

a slightly more advanced method where there is an upper threshold and a lower threshold.

This requires the object in the frame to be in high contrast with the background, otherwise,

it is difficult to pick a threshold value where the separation always holds true. 
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Figure 42. Basic Thresholding at Incremental Levels

Foreground extraction is an advanced method of threshold separation where a threshold

mask is applied to the image to emphasize relevant data. This is done by computing a

background image either by performing a heavy blur to the original image or by capturing

an empty frame. The background image is then subtracted from the original image. The

result is an image containing only the foreground objects. This method is also useful for

removing undesirable artifacts in the data. The disadvantages are that it amplifies any noise
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present in the image and that the resulting image is of lower contrast than the original. This

method can be extended for use as a filter to prepare an image with a nonuniform

background for further image processing, as shown in Figure 43. First, the mean intensity(:)

of the background image is computed. An inverted intensity mask is created by subtracting

the each pixel value of the background from the mean (7.2a). The mask is then added to the

image data to produce a result which has a uniform background (7.2b).

(7.2)
[ ]

U x y B x y

D x y I x y U x y

( , ) ( , )

( , ) ( , ) ( , )

= −

= +

µ

uint 8

Figure 43. Foreground Extraction Using Background Normalization

7.2.2 Edge Detection 

Edge Detection is an image processing technique where the edges of objects in the image are

detected and outlined. Edge detection works by finding the areas in the image data where

there are sharp transitions in intensity. Basic edge detection is performed by simply taking

the derivative of the image and highlighting all the points which are above a set threshold.

More advanced methods use multiple thresholds or higher order derivatives. Three different

methods of edge detection were explored during the course of this research. These are the

Sobel / Prewitt method, the Canny method, and the Zero-Cross method. 
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Sobel / Prewitt Method

The Sobel / Prewitt method of edge detection computes the image gradient, or two

dimensional derivative of the image data using either the Sobel (7.3) or Prewitt (7.4)

operators. 

(7.3)
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The rows and the columns are computed separately by performing a 2-D convolution

between the corresponding operator matrix and the image. The two results are then added

together to form the final image containing the edge data.  The only difference between the

two operators is the Sobel method will slightly accentuate vertical and horizontal edges.

Figure 44. Sobel and Prewitt Edge Detection
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Figure 44 shows the results of the Sobel and Prewitt methods on a low contrast, non-uniform

intensity image. The first frame is the original image. The second frame shows the result of

the two detectors. The values in the image are equal to the 2-D gradient magnitude. The third

frame shows a inverse of the gradient magnitude to better highlight the edges as well as the

noise. The final frame shows the results after performing a black and white threshold of the

gradient magnitude. All intensities higher than 75 (scale: 0-255) were kept. This gives the

final edge detection result. It can be seen that the Sobel method produces slightly more

intense edge segments. 

Canny Method

The Canny method of edge detection is used when there are discontinuities in the image

intensities. This method uses two thresholds to distinguish between strong and weak edges.

The weak edges are only included if they connect with a strong edge. The process begins by

first blurring the image with a gaussian filter to remove high frequency content (7.6). This

is done to remove noise from the image which may be identified as a weak edge. The image

gradient is then computed using the any of the basic edge operators, though typically, the

Sobel operator is used. The raw edges from the resulting data are then thinned to a single

pixel wide line segment. To thin the edges, each pixel is compared to its neighboring pixels

along the direction of the local gradient. If the pixel value is greater than that of its

neighbors, then it is copied into a new image containing all the local maxima. Two threshold

levels are then applied to the new data set. The larger of the two thresholds identifies all of

the strong edges. All pixel values above this threshold are copied over into a strong edge

image. The second, smaller threshold identifies weaker edge segments. All pixel values

above this threshold are copied into a weak edge image. The final step is to link the strong

edges with the weak edges to provide one continuous edge. This is done by selecting a pixel

in the strong edge image and tracing along the edge by searching for adjacent pixels. When

no more adjacent pixels are found, the same neighborhood in the weak edge image is

searched. If an edge pixel is found, it is added to the strong edge image and the search

continues. The result is that anywhere there is a break in the strong edge, and there’s a weak

edge present, the weak edge data fills in the gap, and all weak edges not touching a strong
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edge are filtered out. Figure 45 shows the results of Canny edge detection on a single frame

of data for incremental thresholds. It is shown that lower thresholds locate more edges but

are much more susceptible to detecting edges in the background and noise. The high

thresholds remove the weaker background edges, but also remove details which are still

desired. 

There are several advantage of this method over the single threshold methods. The gaussian

prefiltering makes it less susceptible to identifying false edges due to noise, the thinned

edges provide a more accurate boundary for subsequent image processing procedures, and

the dual thresholds allow for low contrast edges, which may otherwise not be located, to be

added to the data set without adding extraneous data. The drawback of this method is that

it is computationally intensive and requires a lot of memory space to store intermediate data

in.
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Figure 45. Canny (Left) and Zero-Cross (Right) 
Edge Detection Results at Varying Thresholds
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Zero-Cross Method

The Zero-Cross method is another means by which to perform edge detection on images with

non-uniform intensities. This method computes a second-order spatial derivative to identify

areas where there is rapid change in image intensity. Any point where the gradient quickly

spikes and then quickly changes back is considered an edge. This can be represented as zero-

crossings in the second derivative. To find the edges, the high frequency noise is first

removed using a gaussian filter, as is done in the Canny method. The second order derivative

is approximated by convolving the image with a Laplacian operator. The most common

Laplacian operators used are shown below.
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The resulting image has values of zero where the change in intensity is gradual enough not

to be picked up; negative values on the brighter side of an edge; positive values on the darker

side of an edge, and a ridge of zeros between the positive and negative values where the edge

lies. The edges are extracted by searching the data for all positive to zero to negative

transitions above a given  threshold of change. This method has the advantage of being the

most robust to non-uniform intensity shifts in the data. The intensity change across an edge

does not have to be consistent throughout the image. Only the transition must be uniform,

independent of intensity value. The drawback of this is that for low contrast edge detection,

where this method would be typically used, it is much more susceptible to noise. Figure 45,

on the right side, shows the results of Zero-Cross edge detection on a single frame of data

for incremental thresholds. It is shown that a low threshold produces more edge points, but

many of these stem from noise in the background. Higher thresholds quickly remove much

of the noise edge points but also result in creating discontinuous object edge lines. This

becomes a problem if a closed loop edge is needed. Pre-filtering the image and selecting an

appropriate threshold is, therefore, crucial. This method is less computationally intensive
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than the Canny method as it does not require as much scrutinizing of the data to determine

an edge. The Sobel / Prewitt methods are still faster since they do not require a second pass

of the data.

7.2.3 Difference of Gaussian

The Difference of Gaussian (DoG) is a processing technique which accentuates textures

within an image. This is performed by passing the image through a Gaussian filter several

times and then computing the difference between each iteration [26], [27]. 

for x, y   =   -n, ..., -1, 0, 1, ..., n (7.6)( )G x y e
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The result is that uniform regions or regions with slowly changing intensity are filtered out

and areas with strong inconsistencies in intensity, or high in texture, are strengthened. The

first step is to set up a common Gaussian filter. The sigma value of the Gaussian function

controls the amount of smoothing between each iteration. A smaller sigma will allow finer

textures to be accentuated, but is also more susceptible identifying noise as texture. To

produce the DoG data the image is convolved with the Gaussian filter and stored. The result

is then convoluted again with the Gaussian filter to effectively produce an image with a 2F

blur. The first blurred image is then subtracted from the second blurred image to produce the

DoG. To produce multiple levels of DoG’s simultaneously, this process can be repeated until

the desired number of levels are computed.
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Figure 46. Four Levels of Difference of Gaussian Filtered Image

Figure 46 shows the first four levels of a Difference of Gaussian operation. The first level

detects the background noise as texture and so, while the paws are detectable through the

noise, its not yet the best solution. Level 2 removes much of the noise and the remaining data

points correspond to the paws in contact with the plate, the outline of the animal, and

smudges on the glass. The third and fourth levels help to further filter non-contact points and

extraneous objects. 

7.3 Categorizing Data

Categorization is a necessary step toward assigning value to relevant data extracted from an

image. This can be done by grouping similar pixels of data together to form a higher level

data set, by describing a region of data by its relation to other similar pixels or to an external

reference, or by finding robust key points exclusive to the data set.

7.3.1 Shape Clustering

Shape Clustering is a method used to link closely related pixels together to form a larger

object. There are two primary method of grouping data into shapes. Groups can be formed

by proximity or by connectivity. Proximity grouping states that if one pixel is within a

certain range from another pixel, the two can be associated. This can be determined by

calculating the distance between the two pixels and checking the result against a set

inclusion threshold, or by searching within a boundary around the target pixel and
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associating any other pixels found. Additionally, proximity clustering can be used to group

together clusters of pixels which have already been associated with one another to form a

single, larger object. This method has the advantage of being able to link together

discontinuous portions of a single larger object. The disadvantages are that outlying pixels

will be missed and that two separate objects located within the proximity threshold distance

of each other will be joined together.

Figure 47. Grouping Pixel Regions by Proximity

Figure 47 shows proximity grouping of segmented pixel regions which all belong to a single

paw. A search radius of 15 pixels is used to join together the regions and to exclude the

extraneous object found in the bottom left.

The second method of shape clustering is by connectivity. Connectivity grouping is when

one pixel is found and forms a new group, then adjacent pixels become associated with the

first one, and then pixels adjacent to those become associated with the set [28]. This

continues recursively until all connected pixels are grouped together. Connectivity grouping

can get very computationally expensive if there are a lot of pixels very close together and

the recursion function becomes very deep. A second method of connectivity grouping is to

scan through the image row by row and if a pixel is found which hasn’t yet been associated

with a group, it is assigned a new group. Neighboring pixels are then assigned to that group

as well. The image continues to be scanned linearly until there are no more adjacent pixels

to group together. After all the pixels have been assigned groups, a second pass is made to
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connect adjacent groups. Groups which are touching one another are assigned to the lowest

group number of those in contact. The effect is a parent child relationship between adjacent

groups which is resolved until just a single group is left to represent each object. Grouping

can be based on N4 or N8 connectivity. Figure 48 shows the connectivity grouping process.

Figure 48. Dual Pass Grouping by Connectivity

A new group is created for the first pixel in the first row and the second pixel is immediately

associated with it. A second group is created for the first set of pixels in the second row. The

second set of pixels in that row are associated with the first group since they are in contact

with it. The same is true for the two pixels in the third row. In the forth row, the first pixel

is associated with the second group due to connectivity, but the remaining pixels are

assigned to a new group even though the last pixel connects to an existing group. The new

group is defined since the first pixel is not touching an existing group. This new group is

considered a child of the first group. The second pass is used to reconcile connecting groups

with parent-child relationships and therefore the last group is absorbed into the first. This

method has the advantage of only requiring a linear search of the data to assign the initial

groups and a less intensive recursive search resolves adjacencies, thus reducing computation

time. The disadvantage is that if there is a discontinuity to the object, the object will be split

into to separate pieces. 

7.3.2 Parametric Descriptor

The Parametric Descriptor is a method used to describe the shape of an object by

characterizing it in some quantifiable fashion. A circle, for instance, can be characterized by

its center-point and radius. In this way, all the pixel values representing the circle in the
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image data can be reduced down to just two values and the image of the circle can still be

redrawn if needed. This has the advantages of reducing the amount of data needed to

represent an object in the image or being able to describe complex shapes within an image

in a quantifiable way. This process is typically done after an object has been defined, either

by extraction from the image or by a shape clustering technique. There are three basic means

of parameterizing shape data, by a known equation, by measuring data points relative to a

reference point, or by interdependent measurements, that is measurements relative to all the

other points in the object data set. If it is known that there is a particular geometric shape

present in the image, then it can be described by the corresponding equation and only the

parameters of the equation be stored. This only works for basic shapes (lines, circles,

rectangles, triangles, etc.) which can be describe using an equation. For general shapes,

parameterization typically consists of measuring the offset of the data relative to another

point in the image. Figure 49 shows two examples of this. One way is to measure the

distance and angle from a pixel back to a common reference point. This reference point may

be chosen arbitrarily, by a user, or through some mathematical means (such as calculating

the centroid of the object). Distance and direction of all the data points comprising the object

are then calculated and store relative to the reference point. This creates a descriptor then

that can be used to recreate the object independent of the image from which is was taken.

Another way to create a descriptor is to categorize the data relative to other data points  of

the object. This can be done relative to every other pixel or to only adjacent pixels. Again,

this creates an independent representation of the generalized shape. Additional parameters

can be included as well, such as scale, rotation, or projection. Adding parameters, however,

increases the complexity of the descriptor which may be undesirable for additional

processing steps.
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Figure 49. Parametric Descriptors Based on a 
Central Reference Point and Interconnection

7.3.3 Robust Key Points

Robust key points are points in the data which contain a high level of descriptive information

about the object they belong to [26], [27]. They may be the edges, an area of a unique

texture, or a point which is present in all scales or transformations of the image. These are

consistencies in the data which are maintained even with noise and image manipulation.

Their robustness means that they are most likely to be present in all instances of the object

and are therefore highly useful for categorizing the object. Typically, an object only has a

few of these points, but since they are so unique to the object, only a few are needed to

describe the object. These points are parameterized based on their consistent attributes and

are store together to form a highly unique description of the object. The advantage of this

is that is can be used to identify the object’s presence in other image. The disadvantage is

that the object itself is not stored, no can it be restored using the key points.

7.4 Object Detection and Identification

Object detection and identification is the key component of the analysis algorithm. There are

several methods to detect target data within a given image. Detection, though, is only one

part. Detection only states that there is an object found in the image. Identification states

whether that object is what is being searched for. Identification tends to be a more difficult

process which requires additional processing steps. 
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7.4.1 Sum of Absolute Differences

The sum of absolute differences is the simplest method of object detection. For each point

in the frame image, an image of the target object subtracted and the resulting pixel values

are summed and stored at that location. If the target object is present within the frame, then

the pixel location with a value closest to zero, below some minimum detection threshold, is

where the object is located. This method only works if the target object is of the same

orientation and brightness as the matching object in the frame image. To detect variations

of the object, a separate pass must be made for each permutation. This method will work for

basic objects which are guaranteed not to change from one frame to the next in any way,

other than their location. 

7.4.2 Cross-Correlation

This method of object detection locates the point where the target object image is most

similar to values within the frame image by performing 2-D correlation between the two data

sets. For each point in the frame image, the pixels in the target image are element-wise

multiplied with the corresponding pixels in the frame image and all the resultants are

summed, normalized, and stored at that location. The target object is detected in the frame

if the peak value of the cross-correlation image is greater than a set threshold. This method

is more robust than the sum of absolute differences because it can still detect an object if

lighting conditions have changed or the object is slightly rotated skewed. The limitations of

this method is that it is exponentially more computationally intensive for larger image sizes.

It also has issues when performing the cross-correlation at the edges where the target image

is shifted such that it hangs off the bounds of the frame image. There are several ways to

account this, including truncation, wrap around, or edge pixel duplication. None of these are

perfect solutions.

7.4.3 Shape Number

The shape number, or chain code, detection method compares a descriptors of the shape

boundary generated from the target image and the frame image. To create the boundary

descriptors, edge detection first performed on the frame and the target image. The Canny
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method is used because the ideal boundary is a continuous, closed-loop, single pixel wide

line. The descriptor, called the shape number or chain code, is formed by choosing an

arbitrary edge pixel as a starting point and then locating the next adjacent edge pixel. The

shape number can be computed using either N4 or N8  neighborhoods. A number is assigned

to each possible pixel direction, 0-3 for N4 and 0-7 for N8. The number corresponding to the

direction of the adjacent pixel is added to the chain. Figure 50 shows the generation of an

N4 chain code. 

Figure 50. Computing an N4 Shape Number (Chain Code)

Each connecting pixel in the chain is added until the original start point is reached or the

edge segment ends. A 1-D cross-correlation is then performed between the target shape

number and the frame shape number(s) to locate matches. Matching the descriptors using

cross-correlation has two benefits. Since it is a similarity match, small perturbations in shape

signature are smoothed out. Additionally, the starting point of the edge signature from the

frame image can be arbitrarily chosen since the cross-correlation can cycle through all the

values by using  vector wrapping. The drawbacks of this method are that there is no way to

create a rotation or transformation invariant descriptor and that accuracy is dependent on the

quality of the edges extracted from the image data. A continuous, closed-contour edge

provides the best descriptor, but this is not always possible to obtain. Discontinuous edges

dramatically increase the likelihood of producing false or missing matches. 
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7.4.4 Hough Transformation

The Hough Transformation is an object detection method where each data point gets to

“vote” on the likeliness that is part of a parameterized object descriptor [29]. This is typically

used to identify lines or circles within an image; any object which can be described

parametrically [30]. This method works by transforming each data point to a curve in the

parameter space via a parametric equation or a lookup table of descriptor values. The

parameter space acts as an accumulator for all the transformed data points. The local

maxima, or areas where there are the greatest overlap of the curves, are then transformed

back to the image space where they become the location of matches to the descriptor [31].

For geometric shapes, a parametric equation is used for the transformation. For example, a

line is transformed to the parameter space via equation (7.7).

(7.7)r x y= +cos( ) sin( )θ θ

Non-geometric shapes require a descriptor to be generated since there is no basic transform

equation. To create a descriptor, key points must first be extracted from the data. Typically

is done by performing an edge detection on the image. A reference point is then defined from

which to base the descriptor. This reference point may be the centroid, the spatial center, an

edge point, or some other arbitrary point. For each key point located in the image a

distance/angle pair is generated relative to the reference point using equation 7.8.
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The distance (d) is the distance between the coordinate location of the key point (x,y) and

the reference point (xc,yc). The angle (2) is the angle, 0-360°, from the x-axis, of the vector

line connecting the key point to the reference point. These values are shown in Figure 51.
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Figure 51. Generalized Hough Transform Descriptor Parameters

The direction of the gradient is also computed for each key point and the descriptors are

sorted based on ascending order of the gradient angle. This creates the final parametric

descriptor for that shape. 

Matching a target shape to a shape found in a new image is done by locating key points in

the new image and using the shape descriptor to increment values in the parameter space.

A peak in the parameter space above a set detection threshold indicates a match. To extract

key points in the new image, the same method used to generate the key points for the shape

descriptor is used. Again, this is typically an edge detection. For each key point found, the

gradient angle is computed and the closest entry in the shape descriptor is selected. Using

the direction/angle pair from that descriptor entry, the probable coordinates of the reference

point (xc,yc) are computed using equation 7.9.
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The location (xc,yc) in the parameter space is then incremented by 1. The parameter space

acts as an accumulator to tally the “votes” each key point casts based on the estimated

location of the reference point of the shape. A peak in the parameter/accumulator space

indicates a location where the most number of key points from the frame image agreed that

the shape was present. If this peak value is greater than a set threshold for detection, then a

positive match is made.
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There is a second method which can be used to approximate the Hough transform [29]. This

method does not require that the image gradient angle be computed. By not computing the

gradient angle, a decrease in processing time can be seen for simple matching within large

images. Instead of computing and matching the gradient angle to the closest descriptor entry,

all the descriptor entries are processed for each key point. Since the gradient angles are

unused, they need not be computed when generating the descriptor either. The

direction/angle pairs simply are added to the descriptor in the order they are computed. With

all the descriptor entries added to the accumulator for all the key points, the accumulator

values become much larger and are present within a larger area. This has the advantage of

producing better object detection since there is more overlapping of the accumulated votes

but has the disadvantage of producing worse object identification since the definition of the

peaks are more vague.

The Hough transform method provides an accurate technique to located very specific

irregular shapes within an image. Even the approximation of the transform is very effective

at detecting and identifying complex shapes given relatively uncluttered data. The method

also has the capability to be expanded to detect shapes independent of rotation and scale.

This requires, though, additional parameters be added to the shape descriptor which

increases dimensionality. Increased dimensionality increases processing time and resources

required to perform a match.
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8 PAW IDENTIFICATION ALGORITHM

8.1 Detection Requirements

There are many requirements imposed on the detection algorithm to ensure that it properly

identifies the paws within the images without false or missed matches. The detection

algorithm must be able to detect multiple, similar looking paws within a single frame,

determine the position of the paws found, identify which paw has been located, and

determine association between the same paw in previous or successive frames. The

algorithm must also be robust to noise and variation in intensities within the image, variation

in intensities from one image to the next, low contrast images, and extraneous objects in the

view. Additionally, the algorithm must perform quickly and efficiently, as it will be required

to process a large set of images in a timely manner.

Figure 52. Multiple Paw Contact Configurations

Within a single frame, there may be no paws or there may be all four paws. Typically, there

are one or two paws on the surface with the others either coming or going. Figure 52 shows

example of image with all four paws and with two paw striking during motion. Regardless

of the number, any paw in contact with the surface must be registered. Once located within

a frame, each identified paw must be associated with its corresponding instance in previous

and successive frames. This must be spatially localized though, as there will be multiple

strikes of the same paw, and similar appearing paws, at differing locations within the video.

This measures its persistence in time throughout the data set. 
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Figure 53. Flaws in the Image Data

The algorithm must be able to process frames which may be corrupted by noise, non-uniform

intensities, or extraneous objects, as shown in Figure 53. Noise can arise from over-

amplifying the gain added to the image by the camera, video compression, or low quality

overhead florescent lighting. The algorithm needs to be able to filter this out without losing

useful image data. Non-uniformity in intensity can occur within a frame, from one region

to another, or between frames, in which the median intensity shifts. Most non-uniformities

are removed or reduced via the optimal lighting scheme of the physical setup, however, even

under the best conditions, there still remains some variation in intensity. The algorithm must

be advanced enough to correct for non-uniformities or avoid methods which would be

sensitive to such variations. 

Target detection and target identification are both required of the algorithm. Though similar,

target detection is used to determine if a type of object is present within an image, target

identification matches the object to a specific template and returns the location within the

frame. For basic detection, the target object can have very loose bounds on it definition. For

example, it may be a line or a circle, though the angle of the line or the radius of the circle

is not defined. Detection will simply determine if the object type is present anywhere in the

frame. Target identification will match a circle of a specific radius and report its location

within the frame at the exclusion of other circles not matching the template radius. To apply

detection and identification to paw matching, detection would determine if a frame contained

a paw or multiple paws. Identification would assign value to each paw found (e.g. fore or



100

hind) and specify where in the frame each paw was found.  Identification, however, increases

computational complexity because the algorithm is searching for a higher precision match.

Multiple similar objects, such as four mouse paws, can be easily detected, but require greater

processing to properly identify. 

8.2 Implementation

There were two implementations of the paw detection and identification algorithm. The first

one was based on matching a target descriptor to one extracted from the image data. The

descriptors were generated by measuring the distance and angle between the centroid of a

region thought to be a paw and the centroid of the smaller pixels groups within the region.

These pixel groups were found using the difference of Gaussian method. This method proved

to have too many false and missed detections, so a second algorithm was developed. The

second algorithm uses the Hough transform to match a descriptor of edge points from a

target image to the edges found in the frame image. When a paw is detected, it  is registered

to the region of the image it was found and a new target descriptor is generated for use in

subsequent frames. This method provides higher accuracy for positive identification.

8.2.1 Descriptor Matching Based on Centroid of Difference of Gaussian Regions

This implementation of the paw identification algorithm is a multi-step process which uses

a variety of image processing techniques to extract and categorize relevant image data, that

is, areas in the image where there are paws in contact with the plate. This method processes

a single frame at a time, independent of other frames in the sequence. The first step is to

extract all the objects in contact with the plate from the rest of the frame image. To do this,

a multi-level, difference of gaussian image set is computed from the frame. The initial sigma

value used is . It is decided that the second level of this set provides a goodσ = 2

representation of the objects in contact with the plate, while minimizing background noise

(See Figure 46 in Chapter 7). To reduce computation time, only the desired level can be

computed. For the second level, this corresponds to sigma values of 2 and 4. The pixels in

the raw DoG image are then placed into groups based on N–4 connectivity. This is a dual-

pass process where the pixels are first assigned a group and then adjoining groups are
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merged. Groups less than a set size (2x2) are considered extraneous and are removed from

the data. Each pixel is then reassigned a value corresponding to its group number. The pixel

groups are then assigned to a larger collection of groups based on proximity. This is a

recursive process where a group is added to a collection if it is within a set distance (15

pixels) of another region. Figure 54 shows the results of this process on an image frame.

Figure 54B is the Difference of Gaussian after a black and white threshold has been applied.

Image C shows the result of pixel grouping. The gray value of each pixel corresponds to the

group number it belongs to. Figure 54D shows the results of grouping nearby pixel clusters

into complete regions. 

Figure 54. Pixel Clustering of DoG Data

For each collection of pixel groups, a descriptor is generated based on the distance and angle

from the centroid of the collection to the centroid of each of the pixel groups. The descriptor

is a 120 element vector where each element represents 3° of rotation. Each distance and

angle measure is decomposed into the closest two angle bins and the resulting distances are

added the corresponding vector elements. The resulting descriptors are then compared with

a master target descriptor of each paw. The master target descriptors are computed using the

same process from an ideal paw image. The matching is done by finding the descriptors
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which have the smallest “distance” from the target descriptor. Equation 8.1 is used to

compute the closeness-of-match distance for each element shift of the image descriptors.

(8.1)[ ]Dist shift tdesc i pdesc i shift
i end

( ) ( ) ( )
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∑ 2
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The shifting is done to match all rotations. The values are wrapped as they are shifted until

a complete rotation is tested. A small distance between the two descriptor means they are

closely matched. A matched descriptor will represent a paw in the image. It is possible for

multiple paws to be located in a single frame. The center point of the paw is given by the

centroid of the collection of pixel groups. The rotation of the paw can be found to the nearest

3° and is given by the value of the shift parameter where the best match was found. 

The algorithm is able to detect paws in the image with ~70% accuracy. This can be increased

to ~85% accuracy but the number of false detections increases as well. Also, the algorithm

is not able to discern one paw from another. Only paw detection within a frame is possible,

not identification. False detections are sometimes registered when the animal’s face is close

to the plate. The algorithm in unable to detect the paws of black mice. This is because the

image data for black mice is very high contrast compared to white mice. The difference of

gaussian therefore no longer provides multiple clusters of pixel for each paw. Instead the

paws are seen one large shape. This gives the corresponding descriptor zero elements to

match with. It was ultimately decided that this method of detection was flawed in its

designed since it relied on imperfect data to generate the match descriptors. Further

development was subsequently abandoned. 

8.2.2 Locally Adaptive Generalized Hough Transform

This paw identification algorithm utilizes edge detection and the generalized Hough

transform to locate paws in the frame. It is optimized for use with the camera/plate data

acquisition system. This method processes a single frame at a time, but the search areas are

dependent on each paw location from the previous frame. The background of each frame in

the sequence is normalized to provide better paw contrast in each frame, remove extraneous
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objects or imperfections on the plate, and reduce noise. To normalize the background, the

threshold separation technique discussed in section 6.3.1 is performed. The first frame of the

sequence is used to create a uniformity mask. The mask is then added to each of the frames

in the sequence. The caveat of using the first frame to generate the mask is that the frame

must be empty. Figure 55 shows the uniformity mask (A) for a frame sequence and the

results of the intensity normalization (C) on an image frame (B). 

Figure 55. Uniformity Mask, Raw Frame, and Background Normalized Frame
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Next, edge detection is performed to extract all the edges in the sequence. This can be done

across the entire sequence at once, or can be performed just before the target matching step.

Performing edge detection just before target matching has the advantage of only requiring

a single frame of edge data to be stored rather than a copy of the entire sequence being held

in memory. For the white mice, the zero-cross method of edge detection is used. This is

performed using the first Laplacian operator shown in 6.L with a threshold of 0.002. This

highlights the low contrast outer edges as well as the texture within the paw while removing

the greatest amount of noise. For black mice, the canny edge detection method is used. This

is performed with a sigma value of 2 and thresholds of 0.3 and 0.12 (40% strong edge

threshold). For black mice, the canny method outlines the paws  very precisely. The canny

method is the preferred method as it does an excellent job of outlining just the paws in

contact with the plate. The white mice data is too low contrast to properly use this method,

so the zero-cross method is used instead to obtain a good approximation of the edges with

minimal noise.

A master target descriptor is predefined for each of the paws. The master image is selected

by comparing numerous images of the same paw and choosing one which best defines the

canonical shape. Figure 56 shows the comparison of images of the back paws of a white

mouse used to select a master target descriptor. 

Figure 56. Left and Right Hind Paws Samples Used to Generate Hind Paw Descriptors
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The descriptor is generated by first performing a canny edge detection on the master paw

image. The edge lines are then cleaned up by hand to produce a prototypical representation

of the paw. The image is cropped to contain only the edge pixels and a center point is chosen

as reference point to based the descriptor around. The final result is shown in Figure 57.

Figure 57. Master Target Descriptor Image for White Mouse Hind Right Paw

The distances and angles from the center reference point to each of the edge pixels are then

computed. These distance/angle pairs form the final parametric descriptor. It was found that

for improved detection, each paw would have multiple descriptors representing various

poses. Each paw, therefore, has three descriptor sets, as seen in Figure 58, one for the

average paw shape, one for the paw with the digits spread far apart, and one for the paw with

the digits pinched close together. There are also separate descriptor sets for white mice and

black mice. For the front paws, there are an average of 174 distance/angle pairs per

descriptor. For the back paws there are an average of 341. 

Figure 58. Descriptors Based on Variation in Paw Poses

Target matching is implemented by performing a Hough transformation of the edge

enhanced image for each of the paw descriptors. This process starts by first searching the

edge enhanced frame image for edge points. When an edge point is found, values in the

accumulator space are incremented (or “voted” on) at the locations computed by the

distance/angle pairs of the paw descriptor centered about the edge point. The result in the

accumulator space after all the edge points have been processed is a peak where the center

point of the paw is suspected to be. The peak represents the location where the greatest
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number of edge pixels agree that the reference point, which the paw descriptor is based on,

lies. If the peak is above a set detection threshold, then the location is considered to be a

positive match. However, there is rarely ever a single peak, but rather a collection of smaller,

highly localized peaks. Therefore, for greater accuracy, its better in practice to smooth out

the peaks. This is done in two ways. First, for each vote in the accumulator, the pixel value

at the location computed by the distance/angle pair is incremented by 3 and the surrounding

pixels are each incremented by 1. Secondly, after all the votes are cast, the entire

accumulator is smoothed by convolving it with a 5x5 identity matrix. The smoothing

removes jagged areas around the peak locations and accentuates the peaks themselves. This

makes it easier to find a single local maximum rather than several smaller maxima grouped

closely together.

The Hough transform is able to both detect and identify each paw, including multiple paws

within a frame with a high level of accuracy. There are instances though, particularly when

processing the low contrast white mouse frames, when one paw is falsely identified as

another. A left paw, for example, may be mistaken as a right paw. When the back paws lift

up from the plate, they can appear very similar to a front paw with the digits spread out. To

reduce the number of inaccurate matches and to reduce computational complexity, a

bounding system is implemented to track and predict the positions of the paws as they

transition through the sequence of frames. 

Each paw is assigned its own bounding box with values for the leading, trailing, left, and

right edges. Initially, the bounds on the left paws are set to the full frame length and to the

60% of the image width from the left side. Likewise, the right paw bounds are set similarly,

but with the width range justified to the right side. This provides a cross-over area of 20%

image width in the center where both left and right paws may be detected. The length bounds

are initialized to the full length of the image so that if a paw misses detection early in the

sequence, it can still be detected in subsequent frames. When a paw is detected, the bounds

are immediately adjusted to window in on the paw. For front paws, the bounds are set to the

width of the paw plus 20 pixels on each side and the length of the paw plus 30 pixels on each
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side. For back paws, the bounds are set to the width of the paw plus 35 pixels on each side

and the length of the paw plus 50 pixels on each side. The buffer space is added to ensure

that no edge pixels belonging to the paw are missed by the Hough transform as the transform

is only performed within the bounding area of each paw. When the front paw bounds are

updated, the back paw bounds on the same side are  updated as well. Since back paw will

never lead the front paw, the leading edge of the back paw can be set to the trailing edge of

the front paw. Once a detected paw ceases contact with the plate, the bounds are reassessed

to predict the path of the animal. The leading edge is extended to 50% of the total frame

length past the last detected center point. For a left paw, the left edge is reset back the far left

side of the frame and the right edge is set to half way between the current right edge value

and the current left edge value of the right paw. For a right paw, the same updates are made

only with the right and left side edges switched. 

Dynamic windowing results in a number of advantages when using the Hough transform. It

reduces computation time because the transform is only applied to the points within the

window. It forces the algorithm to only look for a particular paw within a predicted area,

thereby reducing false matches. Lastly, it reduces the number of misses since the detection

threshold within the window can be decreased without resulting in an increase in false

matches. 

To match paws within each frame, the accumulator spaces are searched for the peak values

which are larger than the detection threshold. The location and strength of peaks found

within the detection boundaries are stored and the maximum strength peak from a complete

paw descriptor set is compared to the detection threshold for that paw. If the maximum

strength peak is greater than the threshold, then it is considered a match and the location of

the peak is stored as the center point of the paw. For each frame, the center points of all four

paws are logged. If a paw is not present in the frame, it’s center is logged as (-1,-1). If a new

match is found, then, in addition to adjusting the bounding region, a new dynamic descriptor

is generated based on the edge data from the frame. The distance/angle pairs for the new

adaptive descriptor are computed for each edge pixel within the bounding area relative to the
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center point given by the Hough transform match. This new descriptor is then added to the

set of descriptors for that paw to be used for matching in the next frame. The dynamic

descriptor is updated each time a positive match is made. By matching to a dynamically

changing descriptor, the paw can be tracked with greater accuracy through subsequent

frames. Without using the adaptive descriptor, the strength of the maximum peak falls below

the detection threshold shortly after the initial match. This is because the master descriptors

are based on an image of a firmly planted paw. As the paw shifts off the plate, the match

strength of the master descriptors drops. The adaptive descriptor will track the paw until it

is entirely off the plate. In addition to the dynamic descriptor, there are independent

adjustable detection thresholds for each paw. The thresholds are initialized to a set value

(White mice: Front = 37, Back = 35; Black mice: Front = 41, Back = 37), but for each frame

that a match is found, the value is reduced by 2. The threshold is then reset when the paw

ceases contact. This also helps to maintain paw tracking after the initial match is made.

The final result of the frame processing is a list of all the paws identified. The list is indexed

by frame, and for each frame, there are four entries, one for each paw. These entries contain

the location of the paw within that particular frame. The next step is to associate occurrences

of the same paw from one frame to the next. A new list is created to organize the gait data

by order of footfall. The raw gait data is searched frame by frame, and for each new instance

of paw contact, a new entry is made which stores the average center point and the frame

numbers where contact begins and ends. 

Finally, to ensure that the same paw is not identified twice in the same frame, the gait data

is searched for center points with close proximity during the same time span. There can be

occurrences when a back paw is registered as both a back paw and a front paw. This

typically happens near the end of the run when the front paws are out of frame and the back

paws are lifting off the plate. It is assumed then, for these cases, that the doubly identified

paw is truly a back paw. If such a case is found in the gait data, then the correspond front

paw data is removed from the set. 
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This method of detection requires a lot of fine tuning of the threshold values and boundary

conditions, but once all values are set, it provides a highly accurate method of both detecting

and identifying paws through a sequence of images. This method is used in the final

implementation of the gait analysis system. The experimental results garnered from this

method will be presented in the following chapter.

8.3 Final Implementation

The final implementation of the detection and identification algorithm is based on the locally

adaptive generalized Hough transform method. This method was chosen over the Difference

of Gaussian based method because if proved to be more robust to image noise, non-uniform

background intensities and extraneous. The Hough transform method also uses more well

defined descriptors. Tthe results of the final implementation of the algorithm will be

presented in the following chapter. 

The final algorithm uses the approximation method of computing the Hough transform. The

approximation is used because it is simpler to implement and requires less memory resources

than the full Hough transform implementation. The disadvantage of using the approximation

is that paws occasionally miss detection. To correct for this, descriptor sets of multiple poses

of each paw are used to increase the likelihood of detection. Although using multiple pose

descriptors increases the identification accuracy, it also increase the run-time of the

algorithm. The time to process an average gait data sequence, approximately 100 frames, is

520 seconds, or 5 seconds per frame. This time can vary though. Frames where paws are

already in contact with the plate will process faster since the paw location is already known

and wide-range search need not be conducted. 

There are two major limitations to the identification algorithm. It requires the mice to

continually make forward progress and it is not invariant to paw rotation. For identification

to occur, no paw may be placed behind its last known location. If the animal stops part way

through a run and steps backwards, the paw contact point will not be located. This is due to

the predictive nature of the algorithm. The algorithm is set to only look for paws which
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correspond to proper forward moving animal gait. The second limitation is that the

identification process is not invariant to paw rotation. Paws can still be identified within ±2°

of rotation relative to the paw descriptor. The algorithm can be made rotation invariant but

this requires that descriptors be generated for all possible rotations. Matching to a greater

number of descriptors, while possible, increases the run-time to unacceptable limits. 
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9 EXPERIMENTAL RESULTS

9.1 Introduction

This chapter presents the results of the final design of the gait acquisition system. The results

shown here are gathered from experiments conducted on live animals using the Fleet Foot -

Mark II system and the Locally Adaptive Generalized Hough Transform identification

algorithm. Data presented includes the raw image data acquired from the system and the data

reported to the user based on the image data. A performance analysis of the system is also

detailed.  

9.2 Live Animal Experiments

Live animal experiments are conducted in a four step process: 1.) Configuring the device for

the shade of mouse, 2.) Loading the animal, 3.) Activating the system for capture and

opening the walkway doors, 4.) Removing the animal and cleaning the device surfaces. The

device setup differs slightly for white mice and dark (black or brown) mice. For a white

mouse experiment, the dual level lighting scheme is used and the walkway hood is set such

that the white side is facing down toward the plate and camera. For a black mouse

experiment, the dual level lighting is not needed, nor desired, and therefore the top level of

lights (above the plate) are disconnected. The walkway hood is set such that the black side

is facing the plate and camera. An experiment is started by loading a mouse into the light

side house, closing the top, and setting the gate in place to separate the house from the

walkway. The PC software is then used to activate the trip sensors, initialize the camera for

capture, and prepare the computer for data recording. When the trip sensor light, this

indicates that the system is primed and in standby for image capture. The gate is then

removed to allow the mouse onto the walkway. As the mouse crosses the walkway, the

sensors are tripped and the PC software begins data recording. When the mouse reaches the

dark end, the second set of trip sensors are triggered and the recording ends. The gate is also

inserted back between the walkway and the dark house to keep the mouse from crossing
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back over. The mouse is then removed, the houses and walkway are cleaned of any

contaminants, and the gate is place back between the light side house and the walkway. The

system is now ready for another run. After all experimental data is collected, it can then be

analyzed independent of the physical device. The live animal experiments with the final

design have yielded usable mouse gait data. The experiments document the progression of

recovery after an injury and prove the feasibility of the system for tracking spinal injury

recovery.

9.2.1 Healthy White Mice

Figure 59 shows White Mouse Aqua-1. This image was taken from data of the first run

captured on 8-2-05. This was a pre-operation run conducted to collect healthy animal gait

data. For this experiment, the animal’s paws were not inked as they had been in the initial

experiments with the first Fleet Foot design. Inking had proved to have too many

disadvantages, so instead, this series of runs (and all subsequent experiments) was captured

using the newly designed dual level lighting scheme. Using the dual level lighting, the

background and body merge together very well and the paws remain in comparatively high

contrast. The paw identification markers present in the image are placed on the computed

center point of each paw. The different shapes of the markers identify which paw was

located; X for fore-right, + for fore-left,   |_ for hind-right, " for hind-left.

Figure 59. Healthy White Mouse with Paw Identification Markers

Figure 60 shows the trace of White Mouse Aqua-1's gait. The chart displays paw contact for

each frame as an on/off value where the presence of graph bar represents paw contact. The
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chart is organized with the forelimbs as the center two traces and the hindlimbs as the outer

two traces. The strike pattern of healthy interlimb coordination follows fore-right ÷ hind-left

÷ fore-left ÷ hind-right and then repeats. During coordinated stepping, opposite, non-

adjacent paws strike in quick succession with the hind paw lagging slightly (e.g. fore-right,

hind-left will strike within 1-2 frames of one another). This is followed by a contact/swing

time in which locomotion occurs. The first two paws then raise from contact and the

opposite two quickly strike to maintain balance. Full coordinated stepping is shown to be

present in Figure 60. Starting with the first fore-right paw strike, the gait pattern follows

each of the healthy gait criteria over a total of 9 paw strikes. This represents two complete

strides with a third being composed of the leading portion of one at the start of the graph and

the trailing portion of another at the end of the graph.  

Figure 60. Gait Trace of Healthy White Mouse
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9.2.2 Injured White Mice

Figure 61 shows White Mouse Blue-2 post spinal trauma. This image was taken from data

of the third run captured on 7-20-05, four weeks post-injury. It is shown that the hind limbs

are entirely incapacitated, as they are palm up and dragging behind the animal. This implies

that the front paws are supporting all the weight and forward locomotion.

Figure 61. Injured White Mouse with Paw Identification Markers

Figure 62 shows the trace of White Mouse Blue-2's gait. The graph supports the assumption

that all the weight support and locomotion is produced by the forelimbs. The quick, short

burst of movement followed by long periods of contact and virtually no hindlimb contact

displays typical injured gait behavior. The brief spikes in the hind limb traces are due to false

detections arising from matching the dragging paws.
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Figure 62. Gait Trace of Injured White Mouse

9.2.3 Healthy Black Mice

Figure 63 shows Black Mouse Red-2. This image was taken from data of the second run

captured on 8-24-05. This was a pre-operation experiment conducted to collect healthy

animal gait data. The black mice, as can be seen, have paws with much greater contrast to

the body and the background than that of the white mice.  Because of the improved contrast,

the lights above the walkway are not needed and are disconnected for all black mice

experiments. Additionally, the hood is set so that the black side is facing the camera, thereby

providing a black background. 
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Figure 63. Healthy Black Mouse with Paw Identification Markers

Figure 64 shows the trace of Black Mouse Red-2's gait. The healthy interlimb coordination

pattern is present for the first half of the sequence and three complete strides can be

distinguished from the data. The second half of the data indicates that the animal stopped just

prior to triggering the second trip beam. This is common among the black mice. They are

either more curious about the red light of trip beam or more wary of the dark mouse house

or both. It remains to be seen if better training will remove this delay. It should also be noted

that during the coordinated stepping, opposite non-adjacent paws make contact nearly

simultaneously as their counterparts are lifting from the plate. This differs from the results

seen in the white mice where the fore paws typically lead the hind paws. 
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Figure 64. Gait Trace of Healthy Black Mouse

9.2.4 Injured Black Mice

Figure 65 shows Black Mouse Red-2 post spinal trauma. This image was taken from data

of the third run captured on 9-16-05. Spinal trauma has resulted in the complete loss of hind

limb movement. 

Figure 65. Injured Black Mouse with Paw Identification Markers
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Figure 66 shows the trace of Black Mouse Red-2's gait. There is no interlimb coordination

present as the hind limbs have been completely disabled. The injury gait pattern of short,

quick fore paw steps is seen instead. 

Figure 66. Gait Trace of Injured Black Mouse

 

9.3 Hit/Miss/False Detection Ratio

The Hit/Miss/False (H:M:F) detection ratio is the percentage ratio of positive paw

identifications (hits), to missed paw identifications (misses), to false identifications (false

detects). A positive paw identification is defined as any point where a paw is located and the

identification algorithm correctly detects its presence and classifies it. The goal of the

algorithm is to generate 100% positive matches. 

A missed paw identification is defined as any point where a paw is located and the algorithm

fails to detect it. The result of this is a gap in the gait data. There are several causes for

missed detections. The primary cause is paw rotation. Since the algorithm is not rotationally

invariant, paws which are rotated past the tolerance of the descriptors fail to be detected.

Low contrast regions are the second main cause of missed detections. These occur when the

paw is tucked under the body or placed against the background in such a way that intensity
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contrast significantly drops. When this occurs, edges are not properly located and there is

not enough data to compare with the descriptors to raise the match value above the detection

threshold. The third main cause of missed detections is out-of-bound errors. This error

occurs when the paw is placed outside of the prediction window. This often happens when

the mouse stops mid run and then continues again in another direction and crosses a paw

over the previously computed centerline. 

A false paw identification is defined as any point where a paw is located and the algorithm

correctly detects its presence, but falsely classifies it. This can happen when a paw crosses

to far past the centerline and is identified as the opposite side paw or when a hind paw is

lifting off the plate. As the hind paw lifts up it appears similar to a front paw. False

detections can also occur near the dark side edge capture area. In this region, both fore and

hind paws can be detected in the same location. It is equally likely that a front paw may

make contact just within the capture area as it might at some point just outside. This depends

on how the animal is lined up when it enters the capture area. If the front paw contacts the

plate out of frame, then the hind paw will make contact in the edge region. Since the

algorithm is searching for both in the same location, a hind paw can be confused for a front

paw. The algorithm performs a search for dual detection at the same location, but there

remain some occurrences when a hind paw is falsely identified at a front paw.

For healthy white mice, the H:M:F ratio was found to be 87.3%Hits : 10.4%Misses : 2.3%

False Hits. For healthy black mice, the H:M:F ratio was found to be 86%Hits : 11%Misses

: 3%False Hits. The ratio for the white mice was computed from 21 separate runs. The ratio

for the black mice was computed from 33 separate runs. For the white mice, 76% of missed

detections were due to low contrast images leading to poor edge data. All the false hits were

due to previously missed paws being incorrectly identified in later frames because the

prediction windows were not updated. It was also found, particularly for the black mice, that

paws which missed detection initially would be detected a few frames later after the animal

had shifted its weight and rotated the paw just slightly enough to bring it into the rotational

tolerance of the descriptor. For the black mice, 43% of the missed detections were identified
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at hits in subsequent frames. Also, for black mice, 53% of the total number of misses were

caused by rotation outside of the detection range. To correct for these misses, additional

descriptors can be added to account for slightly more inward and outward paw rotation. This

has the drawback however of increasing computation time. It should be noted though, that

for experiments where the animal proceeded straight across the walkway, without hesitation

or variance, there was 100% positive identification.  

9.4 Mice Training

Testing has proven that it is extremely important to train the mice to run across the device

before conducting real experiments. This ensures that the animal is comfortable with the

system and knows what is expected of it. Untrained mice are hesitant and often stop part way

through the run, resulting in unusable gait data. Not only do trained mice yield better data,

but it is less time consuming to conduct the experiment when the animal is cooperative.

There have been several successful training methods used. One method is to place the mouse

in the device with access to both houses and let the animal explore the area for 10-15

minutes. This allows the mouse to explore the area and become comfortable with device.

Another method is to provide a food incentive to the mouse at the dark end of the device.

This trains the animal to run across the walkway for a reward. A third method is to place the

mouse in the device and then gently push it out of the houses onto the walkway every time

it enters one. This trains it to leave the house as soon as it enters one. If repeated daily a

week prior to the experimental run, these training methods can result in greatly improved

gait data by minimizing idle time and exploration on the walkway. 



121

10 CONCLUSION

10.1 Introduction

This chapter present a analysis of the final data acquired from the gait acquisition and

analysis system. First, the raw data reported to the user from the detection algorithm is given.

The gait metrics derived from this data are then presented and explained. Next, a description

of the layout and use of the gait trace charts is detailed. This is followed by a detailed

summary of an entire injury experiment where the level of recovery is ascertained on a

weekly basis using data provide by the system. Next, a comparison between the system and

the previous method of evaluating recovery, the BMS score is presented. This is followed

by a final discussion on system design alternatives for future study. The chapter is concluded

with an overview of the entire project. 

10.2 Gait Data Reported

The gait data generated by the identification algorithm is reported to the user via an Excel

spreadsheet. Table 3 is an example set of pre-op gait data from white mouse Aqua-1. 

Table 3. Raw Gait Data Generated by the Identification Algorithm

Paw Center-X (cm) Center-Y (cm) Start Frame Stop Frame  Strike Order

FLF 17.7 1.8 9 17 FLF
FLF 11.0 1.7 25 32 FRF
FLF 4.3 1.5 39 49 BLF
FRF 14.4 3.2 17 25 FLF
FRF 7.6 3.1 32 40 BRF
FRF 1.3 3.1 49 59 FRF
BLF 18.4 1.8 19 25 BLF
BLF 11.6 1.5 34 44 FLF
BLF 5.0 1.3 50 64 BRF
BRF 14.6 3.1 27 35 FRF
BRF 7.9 3.0 41 52 BLF
BRF 1.9 2.9 60 68 BRF
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The data is organized by paw (front left, front right, back left, back right). The x and y

coordinates of the paw center points are reported in centimeters, based upon the upper left

corner of the frame. The frame number where contact started and contact ceased for each

paw strike is given. Finally, the order of paw strikes is shown separately. In addition to this

data, the identification algorithm generates a second data sheet which provides the contact

and swing durations of each paw. This data is used to generate the gait trace graphs. 

10.3 Analysis of Gait Data

From the data given by the identification algorithm, a number of desirable gait metrics can

be obtained. The center point coordinates allow for any spatial measurement to be computed,

the most relevant being stride length and stance width. The frame numbers provide timing

data which can be used to derive stance duration, swing duration, and velocity. Interlimb

coordination can be measured by observing strike order and contact time.

Table 4. Computed Gait Metrics Based on Acquired Data

Average Stride

Length (cm)

Average Stride

Time (msec)

Average Contact

Duration (msec)

Average Swing

Duration (msec)
Front Left 6.5 258 139 125
Front Right 6.5 275 144 133
Back Left 6.7 258 167 125
Back Right 6.4 275 150 117

Average Stance Width (cm) Coordination
Fore 1.48 Number
Hind 1.45 45

The metrics derived from the data set in 10.1 for mouse Aqua-1 are shown in Table 4. The

Average Stride Length is the direction-of-motion distance from one paw strike to the next

of the same paw, measured in centimeters. This is found, for each paw, by averaging the

differences of the x-coordinates between each paw strike. The Average Stride Time measures

the amount of time from the beginning of one paw strike to the beginning of the next of the

same paw, reported in milliseconds. This value is computed for each paw by calculating the

difference of the start frame number between each strike, dividing by the capture frame rate
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(60fps for this data set), and then averaging the results. The Average Contact Duration is the

average time the paw spends in contact with the plate, measured in milliseconds. Contact

duration is derived by computing the difference between the start and end frame numbers

for each paw strike. The Average Swing Duration is the average time the paw spends

between strikes. Swing duration is derived by computing the difference between the end

frame of one paw strike and the start frame of the next paw strike of the same paw. With all

time data, the resolution of the calculated value is dependent on the capture frame rate. For

this data set, with a frame rate of 60fps, the time is measured in increments of 0.0167

seconds. The Average Stance Width is the across-the-body distance between the right and

left paws, measured in centimeters. The stance width is found, for fore and hind paws, by

computing the difference between the left and right side paw y-coordinates for the same

strike number. 

The Coordination Number is a score devised to rate the level of interlimb coordination of

the mouse. This number is based on the strike order and the healthy coordination pattern

(fore-right ÷ hind-left ÷ fore-left ÷ hind-right). The coordination number is computed by

assigning an incrementing value to each strike transition which follows the healthy gait

pattern. The values are then summed to get the final coordination number. If there is a break

in the gait pattern, the value assignment resets. A pattern of hind-left ÷ fore-left ÷ hind-

right ÷ fore-right ÷ hind-left would be assigned the values [1 2 3 4] for the four healthy gait

transitions. The coordination number is then 1+2+3+4 = 10. A pattern of fore-left ÷ fore-

right ÷ hind-left ÷ hind-right ÷ fore-right ÷ hind-left would be assigned [0 1 0 1 2] for a

coordination number of 4. For the Aqua-1 data set, there are 9 successive paw strikes which

follow the healthy gait pattern. The values assigned to this sequence are [1:9] which gives

the final coordination number of 45. If there was a break in the pattern half way though the

strike sequence, the new values would be [1 2 3 4 0 1 2 3 4] to give a coordination number

of 20.
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Gait trace charts provide a quick visual method to convey acquired gait timing data and

strike order. This allows for a cursory assessment of the recovery state of the mouse based

on quantitative measures. The gait traces shown in Figure 67 were selected randomly from

healthy mouse gait data sets where the mice ran directly across the plate. Interlimb

coordination can be visually identified as the checkerboard pattern in the graphs. This

represents the alternating strikes of pairs of opposite non-adjacent paws. The upper-left to

lower-right diagonal striping of the contact start frames is also indicative of interlimb

coordination. The two full strides and partial third stride are apparent in the data as well. The

data capture ends at the trace with the highest frame number. Variations in the length and

spacing of the traces correspond to animal behavior during the capture and to subtle gait

differences intrinsic to each animal strain. 
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Figure 67. Healthy Animal Gait Traces Showing Interlimb Coordination
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The animal behaviors are easy to recognize from the data. The subtle differences in gait are

more difficult to catagorize as there is no preexisting, comprehensive, mouse gait model, for

each individual strain, to compare to. The two mouse behaviors most distinguished in the

data are idle time and average velocity. Idle time is when the mouse has entered the capture

area but severely slows or complete ceases motion. For healthy mice, there are typically two

reasons for idle time: the mouse stops to examine the walkway, or something found on it,

or it becomes wary of the dark end house or second trip beam and pauses just before

triggering the capture to end. This behavior can be seen particularly well in the final

elongated traces in Figures 67 C and D. In Figure 67C, the uniform length and spacing of the

traces in the first 35 frames indicate the mouse was moving with a consistent steady gait. In

the latter 35 frames, the hind-left, fore-left, and hind-right limbs maintain contact with the

plate for nearly the full remainder of the capture time. This indicates that the mouse paused

just prior to triggering the second trip beam. The raise in the fore-left and hind-right paws

just before capture ends, as well as the final short step taken with the hind-left paw, shows

where the mouse continued forward movement and progressed far enough to stop the data

capture. This behavior is supported by the video record. 

General velocity is the second prominent animal behavior distinguishable from the gait trace

charts. There are the same number of traces in Figures 67A and B, yet a quick inspection of

the charts will show that mouse Blue-2 in graph B was moving faster than mouse Aqua-1

in graph A. The traces in graph A begin in frame 9 and end in frame 68. The traces in graph

B begin in frame 11 and end in frame 49. Although there is only a 2 frame difference

between the start times, the end times differ by 19 frames. The length of the traces in graph

A are approximately 8 frames long whereas the length of the traces in graph B are

approximately 6 frames long. The overall capture time and the length of traces both indicate

that mouse Blue-2 traversed the same walkway distance in less time than mouse Aqua-1, and

therefore was moving at a greater velocity. The data supports this, showing that the average

contact time of Blue-2 is 6.08 (101msec at 60fps) frames and its velocity is 24.5 cm/s. The

average contact time of Aqua-1 is 9.0 frames (150msec at 60fps) and its velocity is 17.7

cm/s. 
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In additional to indicating animal behavior, the gait trace charts display subtle difference

between the gait characteristics of different strains of mice. The most perceptible difference

being the timing of the hind limb strike when a new interlimb pair makes plate contact. In

white mice, there is a 1-2 frame lag between the forelimb contact and the alternate hindlimb

contact. This delay is not as prevalent in black mice and can be, at times, reversed, with the

hind paw being detected a frame before the fore paw. Without a standard strain-by-strain

models of mouse gait to compare to, these nuances, and their effect on the overall gait are

overlooked. 

10.4 Tracking Recovery Using Gait Data

Recovery of an injured mouse is measured as the progressive reestablishment of the healthy

gait pattern. Interlimb coordination, stride length, stance width, stance duration, and swing

duration will change based on the level of injury and phase of recovery. To show how the

recovery of an injured mouse can be tracked, the gait data from a single mouse acquired over

a several week span is presented. The injury is a directed, quick impact, spinal cord trauma

with the intention of disabling the animal’s hind limbs. The spinal cord injury was

successfully administered to black mouse Red-2 resulting in complete loss of hind limb

functionality. Figure 68 shows the gait traces of mouse Red-2 taken before the spinal cord

injury and then once a week for two weeks post-operation. Graph A shows a healthy

interlimb coordination pattern and has be discussed in the previous section. Graph B shows

the gait trace of the animal one week post-op. It is clear from the trace that the hind limbs

are no longer supporting weight or contributing to forward movement. The hind limbs,

completely incapacitated and dragging behind the animal, are no longer supporting weight

or contributing to forward movement and result in no trace on the chart. The forelimbs are

providing all locomotive drive through a series of exaggerated, plantar steps punctuated by

quick, staccato movements. The short swing duration of the forelimb steps indicate that all

weight support is maintained by front paws. The longer contact times indicate that all

forward motion is being driven by the front paws as well. The video supports the

interpretation of the chart data, showing quick bursts of paw movement during repositioning

followed by long labored movement as the mouse drags the rest of its body along. It has also
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been shown the injured mice tend to vary less from a straight path as their hindered

movement makes them less inclined to explore.

Figure 68. Gait Traces Showing Recovery of Black Mouse Red-2
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Figure 68C shows the gait data acquired two weeks after spinal cord injury. The chart shows

partial recovery of hind limb motility. The hind-right trace indicates that motor skill has been

partially restored to the paw. The hind-left paw is still dragging behind however as its trace

is absent from the graph. The forelimbs, while still providing the majority of forward drive,

as shown by the long contact times, are no longer as quick and numerous as they were the

previous week. This indicates that the  hind-right limb may be contributing some weight

support and/or propulsive force. Interlimb coordination between the fore-left and hind-right

paws is also starting to emerge again. The strike order is correct, but only one sequence

occurs timely enough to effect the coordination number, giving this run score of 3. Upon

review of video, it is evident that there has been some motility restore to the hind-left paw

as well, but not enough to make plantar contact, support weight, or aid in forward

locomotion. Figure 69 is a frame taken from the video showing the plantar stepping of the

hind-right paw and the instability that remains in the hind-left paw. 

Figure 69. BM Red-2 After Partial Injury Recovery

10.5 Comparison to BMS Score

The goal of this research is to have developed a system that can, by gathering qualitative

data pertaining to mouse gait, augment or even substitute the BMS score (Basso Mouse

Scale), currently the defacto method of assessing spinal cord trauma recovery in mice. As

discussed in the introductory chapter, there are three phases of recovery associated with the

BMS score, each pertaining to a marked change animal health. The first, or early recovery
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phase, covers limb movement with no weight support and scores as follows: 0 for no

movement, 1 for slight ankle movement, 2 for extensive movement. The second, or

intermediate recovery phase, categorizes step type: 3 for dorsal stepping, 4 for plantar

stepping. The final, or late recovery phase, gauges all other aspects of recovery: 5 for

frequent plantar stepping with no coordination, 6 for frequent plantar stepping with some

coordination, 7 for consistent plantar stepping with coordination and proper paw rotation,

8 for all the aforementioned criteria and mild trunk stability, 9 for full trunk stability and no

tail dragging.

The gait acquisition and analysis system that has been developed is able to provide a BMS

score over most of the scale, independent of the user. For many of the scores, it is

additionally capable of providing a more accurate and qualitative assessment of the recovery

criteria. Since the acquisition portion of the system was designed to detect plantar paw

placement, scores lower than 4 are not delineated by the system. The early recovery scores

which rank ankle movement are among the more subjective parts of the BMS. These scores

depend on the operator to determine if joint movement is caused by voluntary muscle

contraction or by the limb dragging across the surface. As this is difficult enough for a

human operator to determine and not hugely significant to measuring recovery, only extent

of injury, these scores were not automated in the analysis system. Additionally, score 3,

dorsal stepping, is not included in the detection algorithm since the algorithm is focused on

locating plantar steps for the collection of data relevant to computing gait metrics. Dorsal

stepping could be determined if the proper target descriptor was added, but dorsal steps lack

many of the characteristic paw features which the algorithm relies on to substantiate a match.

The acquisition system does allow the user to review the recorded video and therefore these

lower scores can be assigned manually if necessary. 

The BMS scores 4-7 are more identifiable by the acquisition and analysis system as locating

and documenting plantar steps and ascertaining interlimb coordination are the primary

requirements of the system. Score 4, occasional plantar stepping, can be evaluated by

examining a gait trace chart. Any traces appearing on the chart will indicate the paws that



131

made plantar placement. Scores of 5, 6, and 7 can be assigned based on the coordination

number. Gait data with a coordination number of 0-6 and that show some plantar placement

on the gait trace can be ranked as a 5. Data with a coordination number between 7 and 19

represent some coordinated stepping but may perhaps only show it with a single limb or with

a slow response. This can be ranked as a 6. Data with high coordination numbers 20-30 show

a considerable amount of interlimb coordination with a few slight stumbles or false starts.

This also indicates consistent plantar stepping and proper paw rotation. Properly rotated

paws increase the number of positively identified plantar steps since they are a closer match

to the target descriptors. Data of this type can be ranked as a 7. Scores of 8 and 9 extend

beyond what the analysis system is capable of ascertaining on its own. These scores rank

trunk stability and tail dragging, two criteria which the detection algorithm does not look for.

Although only the middle four scores of the BMS are covered by the gait acquisition and

analysis system, the system can still provide a better overall assessment of recovery. The

goal of the research was not to create an automated BMS scoring device, but rather an

advanced system capable of providing an objective method of evaluating animal recovery

using quantifiable gait data. The BMS relies heavily on ranking interlimb coordination to

measure recovery progress. This is a similarity both the BMS and the gait analysis system

share. The gait analysis system, however, bases its coordination score on precise paw

position and timing data rather than subjective observation. Additionally, the coordination

number is weighted to emphasize quality of the coordinated stepping. Lastly, the

coordination number is not grouped together with several other criteria to form an

amorphous ranking. The weighted value and independence from other recovery criteria give

greater significance to the value. A coordination number of 28 has very different meaning

from a score of 45. A BMS score of 5 compared to a 6 is ambiguous when solely examining

interlimb coordination. 
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The gait trace charts can be used as powerful tools to quickly estimate the level of injury or

recovery. The charts provide a concise description of the measured timing data and strike

order of the gait. BMS scoring for the middle ranges can be made directly from the chart

information with no more subjective assessment than what’s already inherent to the system.

Additionally, the traces provide visual documentation of the gait that is easier to review and

publish than a full video capture sequence. Comparing traces can also provide more

agreement between observers on the behavior of the test animals than a score of a 5, 6, or

7 could. 

The gait analysis system also reports spatial gait data, a set of measurements lacking from

the BMS score. This data consists of paw placement relative to other paws, previous paw

location, and the overall stride. It includes stride length, stance width, centerline variation,

and all other measurements that can be computed based on precise paw location. These are

all factors not considered by the BMS score but have been shown to be affected by injury.

Acquired data shows that post-injury, the stride length decreases and the stance width

increases. This is due to the short, quick steps and the increased weight support on the

forelimbs. By simply comparing distance metrics before and after injury, a rough assessment

of the animal’s healthy can be made. These measures can indicate the overall strength and

stamina of the mouse, and when combined with the rest of the gait data, determine the level

of recovery with greater accuracy.
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10.6 Refinement of the System

There are several aspects of the final system which could undergo further refinement to

improve the quality and timeliness of the reported gait data. A better design of the walkway

stand could allow for more strides to captured, thereby increasing the quality of the data and

making the system less susceptible to variant mouse behavior. Improving the efficiency of

the detection algorithm, primarily in the Hough transform can lead to decreased processing

time and reporting of additional gait metrics. Solid-state force sensor technology could also

be review again with the aim of creating a hybrid solution capable of collecting both high

resolution positional data and force data.

10.6.1 Refinement of Camera/Plate Stand

There are several modifications to the stand which could be implemented. These include a

longer walkway and a wide angle lens for greater strike coverage, better lighting to further

reduce non-uniform intensities, a redesigned hood mount for better placement and light/dark

selection, longer mouse houses to accommodate the animal’s tail, and improved electrical

wiring including a standardized connection block for the top half to be connected to the

lower half or powered separately, a main power switch, and a switch to power the top level

lights independently.

Limitations on the number of strides recorded per capture are due to the size and layout of

the physical stand. A simple revision which could be made to accommodate the capture of

more than three full strides (two usable) is the design a longer walkway. A longer walkway,

however, requires a wider angle camera lens. The lens likely have to be custom ordered,

thereby raising expensive and procurement time, since the focal length that would be

required is not readily available for the size of mount and CCD of the camera. Additional

image processing would  also have to be done to correct for the increased image distortion.
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General modifications to the lighting, hood mount, and mouse house dimensions are among

the user requested improvements. Improved lighting can be implemented to create

background intensities with greater uniformity. This will serve to remove the dependence

on digital gain and thereby decrease image noise. An better method of mounting the hood

to the top of the device is most requested user modification. The current design requires

precise alignment and does not remove and replace very quickly. This often leads to partial

placement. It is also dependent on the user to place the correct side facing the plate for the

color of mouse. A way to remove this requirement from the user would be desired in a

revised design. Extending length mouse houses is needed to allow the mouse to fully enter,

including its tail, into the enclosure. The current design did not take the tail into account and

so there have been several instances where a tail gets pinched by the loading door or the

walkway gate. 

The device could also use improved wiring overall. Standardized connectors are needed to

link the top and bottom portions of the device together. Currently, the connectors are flimsy

and unprotected, allowing them to be easily bent. The connectors are also needed on the top

walkway portion so that  it may be powered independently during training. Additional

circuitry is needed for the control of the top level lights as well. These lights are not used

during black mice experiments and it would be preferable if the software could set them

appropriately rather than the user. A main power switch is necessary too as the current

method of powering the system is to simply plug it into the power outlet. 

10.6.2 Refinement of Detection Algorithm

The detection algorithm can be modified to process the gait videos in a more timely manner

and to detect and report paw rotation. It is possible that by implementing the full Hough

transform, rather than the approximation, the computation time may decrease and rotation

detection may be able to be added. The approximation method was originally implemented

because it was more efficient for fewer target descriptors and provided higher quality results

than the DoG method being used at the time. To ensure accurate matching though, the

dynamic boundaries and multiple descriptors were implemented. This greatly increased the
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computation time. By reexamining the design and using the full Hough transform, it may be

possible to streamline the process. The full Hough transform bases the descriptors on the

local gradients which could help with avoiding false detections with white mice. This is

because matching is done along the gradient edge rather than among a group of line

segments which may randomly appear to be similar to a paw. Even if computation time is

not diminished, it is theorized that rotation angle may be added without increasing run-time.

10.6.3 Alternative Designs

There are several alternative designs which may be explored during the continued

development of this system. The two prominent physical designs are the single layer

piezoelectric film sensor array and the camera/treadmill system. The single layer

piezoelectric film sensor array would be based on the work done to measure force by

measuring the change in natural resonance due to a strain. An array hundred of thousands

tiny piezoelectric film elements would have the advantage of being able to detect both force

and position. However, a considerable amount of work would have to be put into the design

and fabrication. It also has the limitation of only being able to detect as many strides as can

be covered in its length, just like the current system. The second alternative design, the

camera/treadmill system, would function similar to the present design only the static plate

would be substituted with a translucent, motor-driven, belt. A belt set at a constant velocity

would ensure that the mouse is always moving consistently. This design also lessens the

requirements on the camera. The camera now can focus on a much smaller area where

lighting can be better controlled and the mouse has less area to wander in. By capturing only

the length of a single stride, the frame rate could be tripled for the same resolution.

Additionally, more strides would be captured per run leading to improved quality of gait

measurements. Theoretically, this could provide enough data to create a general

mathematical model of mouse gait. 
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10.7 Final Design Review

The final gait acquisition and analysis system utilizes a machine vision camera to record

digital video of a mouse as it run across a translucent walkway. Once captured, the video is

processed using an advanced, custom designed, image processing algorithm. The algorithm

searches the video for paws in contact with the plate which appear as highly focused regions.

The paws are identified by the algorithm as fore or hind, left or right and the center point and

frame numbers are stored for each instance of contact. The data collected for each paw strike

is reported to the user for further analysis. The final design meets the requirements of

reliably detecting and identifying paws from a sequence of images, determining the location

of each paw, associating instances of the same paw at the same location through time, and

reporting the data to the user in a meaningful way. Additionally, the hardware is physically

robust and portable. Mice are easily loaded and are completely contained within the device.

The device is modular to facilitate cleaning and replacement of components. 

There are some areas where the device falls short of meeting the full set of requirements.

Most notably, the present design does not report rotation angle of the paws. Although the

system is not incapable of determining paw rotation, this was decided to be omitted because

of the dramatic increase in computation time required to calculate the data. The device is

limited to capturing approximately three full strides of a healthy animal per run. This

includes two full strides and a third being broken up across the beginning and ending of the

sequence. The device is unable to measure force between the paws and the plate. Though this

was not a requirement of the revised solution, it was an initial requirement of the device.

This may still be implemented in the future. The computation time of the identification

algorithm is extremely lengthy. All analysis is therefore done post-experiment.

Copyright © Casey Patrick Harr
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Appendix I.

Basso Mouse Scale (BMS).

Early Recovery:

0 - no ankle movement

1 - slight ankle movement

2 - extensive movement

Intermediate Recovery:

3 - plantar placement of the paw with or without wight support or dorsal stepping but no

planter stepping

4 - occasional plantar stepping

Late Recovery:

5 - frequent or consistent plantar stepping, no coordination or frequent or consistent plantar

stepping, some coordination, paws rotated at initial contact and lift off

6 - frequent or consistent plantar stepping, some coordination, paws parallel at initial contact

or frequent or consistent plantar stepping, mostly coordinated, paws rotated at initial contact

and lift off

7 - frequent or consistent plantar stepping, mostly coordinated,  paws parallel at initial

contact and rotated at lift off or frequent or consistent plantar stepping, mostly coordinated,

paws parallel at initial contact and lift off and severe trunk instability

8 - frequent or consistent plantar stepping, mostly coordinated,  paws parallel at initial

contact and lift off and mild trunk stability or frequent or consistent plantar stepping, mostly

coordinated, paws parallel at initial contact and lift off, normal trunk instability and tail

down or up and down

9 - frequent or consistent plantar stepping, mostly coordinated,  paws parallel at initial

contact and lift off. normal trunk instability and tail always up
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