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Abstract of Thesis 

 

Fabrication of Polymer Based Optical Devices for  

Communication and Sensing 

 
Polymer waveguides present a potentially low cost alternative to electronics in 

communication systems. Polymers offer relatively straightforward and 

economical fabrication when compared to conventional materials.  In this study, a 

fabrication process for Bragg gratings in polymer waveguides was developed.  

Waveguides were designed using finite-element analysis, patterned via e-beam 

lithography, and a detailed fabrication method was developed.  

 

Surface-Plasmon Resonance (SPR) is a widely accepted method for biological 

and chemical sensing. Measurement of bulk refractive index changes and 

specific surface binding is a crucial part in any biosensing. Design and fabrication 

of a novel self-referencing SPR sensor is described and its functionality is tested.    

   

KEYWORDS:   Surface-plasmon, Teflon AF-1600, Bragg grating, SPR, Femlab, 
Polymer Waveguide, PMMA. 
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Chapter 1 

INTRODUCTION 

1.1 Background 
 

In 1880 Alexander Graham Bell invented the photo phone. He tried to transmit 

sound waves of human speech by focusing a beam of sunlight on a thin mirror. The 

sound waves caused the mirror to vibrate which caused corresponding variation in the 

energy transmitted to the light detector [1]. This in turn varied the resistance of the 

detector which caused the current in the telephone to vary. Bell could send voice signals 

700 feet using this setup. 

In the present day optical systems provide much higher bandwidth and much 

longer distance communications. Photonic systems generally offer very large information 

capacity (bandwidth) [2]. Apart from this they offer low transmission losses, less heat 

generation, immunity to cross talk and immunity to electromagnetic interference when 

compared to electric transmission systems.  

There are two kinds of broad band communications – free space optics and guided 

wave optics. The former one can be realized over a few kilometer distances where source 

and destination are visible to each other. In this case atmosphere is the transmission 

medium. Guided wave optical communication, and specifically optical fiber 

communication is more practical and useful for current communication needs. Guided 

wave optics applies the principle of total internal reflection to confine the light inside the 

core of the waveguide. More on this will be dealt with further in later chapters.  

Apart from communications, photonics also play a crucial role in biological and 

chemical sensing. During the last two decades there has been great research activities 
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aimed towards development of optical sensors. Among other methods of optical sensing 

like ellipsometry, surface plasmon resonance (SPR) is gaining lot of attention and SPR is 

increasingly being used for the sensing purposes. In 1982, Nylander and Liedberg 

demonstrated the SPR based sensors for gas detection. Since then most work has focused 

on exploiting SPR for optical bio sensing. The later chapters cover more about SPR 

sensor operation and fabrication.  

This thesis work is aimed at fabricating and characterizing integrated polymer 

waveguides for Bragg gratings based filters and SPR sensors. A detailed fabrication 

procedure has been described for the both. However due to various obstructions in 

finding the right materials and problems with the working of related equipment only SPR 

sensors could be practically realized and characterized. However a detailed methodology 

for fabrication of waveguides and their modeling has been documented to provide a 

starting point for future work.  

    

1.2 Why Polymer Waveguides and Why Teflon 
 

Though much progress has been achieved in the design and production of 

integrated dielectric waveguides (DWG), the right material for these structures is still an 

unanswered question. Indium Phosphide (InP) based waveguides are often a popular 

choice. But the processing involved with it is highly complex and the materials are 

extremely expensive. Among other contestants, the one drawing lot of attention is the 

class of polymers. Numerous polymer based waveguide devices have been made in the 

past, and great progress is being made to develop waveguides suitable for communication 

and sensing purposes. For communications wavelengths near 1550nm polymer 
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waveguides are attractive because they are relatively simple to process, cost effective and 

exhibit low optical loss. Apart from this they offer a possibility to fabricate dense 

integrated circuits, suitable for present requirements. There is a possibility of achieving 

high contrast index, which makes the device smaller and reduces the bending losses. 

In 1994, Anadi Mukherjee [3] et al. fabricated channel waveguide with PMMA  

(n = 1.47) as core and SiO2 (n = 1.45) as cladding. W.H.Wang et al. [4] successfully 

fabricated fiber Bragg grating waveguides with Novolak (ENR) resin polymer (from 

MicroChem, n = 1.57) as core and SiO2 as cladding.  In 2000, Y.G.Zhao [5] et al. 

reported channel waveguide with PMMA as core and Cytop ((Asahi Glass Company) as 

cladding. Cytop (n = 1.36) is similar to Teflon AF-1600 in terms of refractive index. 

Teflon is one of the polymers with a very low refractive index of 1.3036. Our design of 

devices using Teflon AF-1600 as cladding offers high contrast in refractive indices of 

core and cladding. The light signal will be confined more strongly in the core when the 

difference between refractive indices of core and cladding is greater. The combination of 

PMMA and Teflon AF-1600 offers higher refractive index contrast than any one of the 

previous polymer waveguide devices.  In addition, the use of Teflon is particularly 

important for bio-chemical sensors working in solutions.  In this case the refractive index 

of the cladding must closely match the refractive index of the sensor. 

 

1.3 Bragg Gratings in Optical Waveguides 
 

Waveguides used for optical communication are made of transparent dielectrics. 

The core of the waveguide is made of a higher refractive index material and is 

surrounded by a cladding of lower refractive index material. The principle of total 
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internal reflection causes the optical wave to be confined in the core of the waveguide. 

This difference in the refractive indices causes the wave to be confined inside the core.  

The core of typical optical waveguides is of uniform refractive index through out 

its length. However, it is possible that to vary the refractive index or the geometric 

dimensions of the core periodically along its length. Such structures are called gratings. A 

particular type of grating, the Bragg gratings, reflects light over a narrow wavelength 

range and transmits the other wavelengths. The wave length which is reflected back 

depends on the period of variation of refractive index and the effective index of the 

waveguide.   

λb = 2Ληeff  

   Where λb = wavelength of reflected light 

     Λ = grating period 

     ηeff = effective refractive index.  

Each change in refractive index or waveguide dimensions reflects a small amount of 

light. If the wavelength of light satisfies the above equation then the reflections from each 

high refractive index zone interfere constructively and cause complete reflection of that 

particular wavelength. The wavelengths not fitting the above equation are transmitted 

through the grating as the reflections in this case interfere destructively and are cancelled.  
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The following figure shows a schematic representation of a Bragg gratings based 

waveguide. 

 

Reflected  
   Beam 

PMMA 
(1.4799)

Gratings Teflon 
(1.3036) 

Transmitted 
     Light 

Figure 1.1 Schematic of a Bragg grating in a Teflon-PMMA polymer waveguide.  The reflected 
wavelength is indicated by the yellow arrow. 
  
  
The following figure illustrates the input and output spectra of a waveguide with an 

integrated Bragg grating. 

λb      λb λ 
       Input  
     Spectrum 

Transmission 
 Spectrum 

Reflection 
Spectrum 

 

Figure 1.2 Input and Output Spectra of a waveguide with a Bragg grating.   
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In this thesis we have successfully demonstrated a novel fabrication method to 

make the polymer waveguides. PMMA forms the core and Teflon forms the cladding. A 

detailed description about the fabrication process is given in chapter three. The bulk of 

the project focuses on the fabrication.  

 

1.4      Surface Plasmon Resonance (SPR)  
 
 Since last two decades there has been great research activities aimed towards 

development of optical sensors. Optical sensors play a key role in biological and 

chemical sensing.  SPR is an optical phenomenon arising from the interaction of light 

with a metal surface. A surface plasmon wave is a charge density TM (transverse-

magnetic) wave which propagates along the interface of a metal and dielectric. SPR 

occurs when a thin metal film with negative permittivity is surrounded by a material with 

positive permittivity. At optical wavelengths gold, silver and copper exhibit negative real 

permittivity. However gold is the most widely used metal for SPR based sensors because 

of its chemical stability and abundant surface fictionalization techniques [6].  

 Surface plasmon waves can be excited by light when the energy and momentum 

of the incident photon and the surface plasmon wave match. When this happens the 

energy of the photon is transferred to the charge density wave at the interface. For a given 

angle of incidence, coupling to the plasmon wave occurs at a specific wavelength and is 

visible as a dip in the reflection spectrum. Since an evanescent electric field extends away 

from the metal surface into the surround dielectric, changes in the optical properties of 

the dielectric will cause the resonance dip to occur at a different wavelength. This 

phenomenon forms the basis of sensing.  
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 The resonance condition is not satisfied when the light is incident directly at the 

metal-dielectric interface. Momentum of the incident photons should be altered to 

achieve the resonance [7].  There are three often used configurations, prism couplers, 

optical waveguides and gratings, often used to couple surface-plasmon waves. We have 

used BK-7 glass prism coupler in this thesis.  

 
                   

1.5        Why Long Range Surface Plasmon (LRSP) and SiO2 
 

To distinguish refractive index and surface binding simultaneously at the same 

location, using single beam one needs to have LRSP and SRSP occur at the same 

wavelength. We need two resonant dips to identify two changes simultaneously. This 

occurs when a metal is surrounded by dielectric material of similar refractive index. In 

1990[8], Matsubara et al. presented an angle modulated sensor based on LRSP. For LRSP 

to occur, the metal layer and prism should be separated by dielectric whose refractive 

index is closely matched to that of the analyte. Since most of the analytes are in aqueous 

solution, with refractive index close to that of water, a dielectric with a refractive index 

similar to that of water would permit a LRSP. Thus Teflon AF-1600 (1.30368) is an ideal 

choice for LRSP to occur. Homola et al. have successfully demonstrated a wavelength 

modulated sensor based on LRSP. The reflection spectrum they measured is similar to 

that shown below. Thickness of Teflon AF-1600 and gold layers used in the simulations 

are the same as they used. 
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Plot 1.1 Simulated reflection spectrum obtained when coupling to a long-range surface plasmon wave 
supported by a Teflon-Au-Water structure.  Good agreement was obtained with the experimental 
results of Homola et al. 
    
 

 However, Homola et al did not couple to both LRSP and SRSP wave 

simultaneously. For effective self referencing one should be able to get measure the 

response of both modes simultaneously for the same angle of incidence. With careful 

selection of the thickness of the metal layer this can be achieved, and light can be made to 

couple to both the long and the short range surface plasmons. Thus we see two different 

dips in the reflection spectrum. When this happens, one can observe two couplings – long 

range surface plasmon (LRSP) and short range surface plasmon (SRSP). SRSP is 

concentrated more near the metal surface and is more effective in sensing surface binding 

processes common in biochemical sensing. On the other hand both modes should be 
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similarly effective in sensing bulk refractive index changes. For self-referenced sensing, 

it is only important that the modes exhibit different sensitivities for solution refractive 

index changes and for surface binding.   

The plot below shows both LRSP and SRSP occurring at the same angle of 

incidence.  

 

Plot 1.2 Simulation Plot with Teflon and Gold Layers where the Teflon and Gold thicknesses were 
500nm and 55nm respectively and the angle of incidence was 680

 
 
  In this thesis work, we have fabricated a self referencing SPR sensor using 

Teflon as one of the dielectric layer. Gold is evaporated on the Teflon to form the metal 

layer. Formation of (Octadecanethiol) ODT layer was used to demonstrate self 

referencing action of the sensor. Surface binding sensitivities and bulk refractive index 

sensitivities are measured using the following equations.  

 9



                                               LR S-LR B-LR BS t S nλΔ = Δ + Δ  (1) 

                                        SR S-SR B-SR BS t S nλΔ = Δ + Δ  (2) 

LR and SR denote long range and short range respectively, ΔnB and Δt are bulk refractive 

index change and thickness of the ODT layer respectively. Δn

B

BB is obtained from the 

measurements of Albuquerque et al [9] and Δt can be known from the data of Whitesides 

et al [10].  The same device can be modified to sense non – specific binding in analyte 

when part of the gold layer is masked and SiO2 is evaporated on the exposed gold 

surface. For practical purposes the gold surface will be functionalized to bind to a 

specific target and SiO2 surface would remain non-functionalized. Thus the target body 

will bind only to gold and not to SiO2; anything that binds to both the surfaces is not the 

target substance. Christina Boozer et al [11] fabricated a similar sensor using Tantalum 

pentoxide on gold surface; however, this sensor did not support both long- and short- 

range surface plasmons. As a result, the sensor relied on a spatially separate reference 

regions to measure background refractive index changes. 

Later chapters explain more about the fabrication and modeling of these devices. 

Functionalizing of the sensor surface has been tested using ODT layer. ODT, when flown 

through the sensor binds only to the gold surface and not to SiO2. When the optical input 

beam overlaps both the exposed gold and the SiO2 coated regions one should observe 

three resonance dips on the reflection spectrum. However, this is only possible with 

precisely controlled material thickness and film quality. Unfortunately equipment 

problems prevented us from measuring film thicknesses for the fabricated sensors and 

hence the experimental results could not be correlated with our simulations.  
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However we could successfully demonstrate that the device with optimization can 

function to detect non-specific binding.   
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Chapter 2 

MODELING 

2.1 Overview 

To begin fabricating devices one need to know their optimum dimensions. This 

chapter explains the theoretical modeling used to obtain the dimensions according to 

which devices were fabricated. Methods for modeling Bragg gratings in waveguides and 

SPR sensors are discussed here.    

All results in this chapter were obtained numerically using Femlab and Matlab.  

Femlab is a multi-physics modeling tool which solves partial differential equations 

(PDE’s) using the finite element method. Femlab has a special electomagnetics library, 

which was used for modeling horizontal (width) and vertical (thickness) dimensions. 

Femlab was used to solve the full vector wave equations for either the electric or 

magnetic fields.    

    022 =+∇ EE μεω

      022 =+∇ HH μεω

 

2.2 Modeling a Channel Waveguide 

All waveguides are modeled using perpendicular hybrid mode, in the 

electomagnetics module of Femlab. A channel waveguide is the simplest model discussed 

and therefore is a good place to start. Bragg-grating model will be built on the methods 

used for channel waveguide models.  The waveguide is modeled in 2-D.  First step is to 

draw a channel waveguide model using Femlab CAD tool. In the Femlab results 
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presented in this thesis, the X-axis represents the width in meters, of the materials and Y-

axis represents the thickness (in meters). The following drawing shows a channel 

waveguide.  

 

Figure 2.1 CAD Drawing of Channel Waveguide 
 
 

Next refractive indices of Teflon and PMMA at 1550nm and boundary conditions 

are to be specified. The following specifications are used for the channel waveguide. 

   Teflon AF-1600 = 1.3036 

   PMMA = 1.4799 

There are eight boundaries in the channel waveguide structure. All the Boundary 

conditions were set as perfect electric conductors. 

 n x E = 0 

The wavelength used is 1550nm as the waveguide were modeled for 

communication purpose. Once done with drawing the waveguide, we automatically 

generate the finite-element mesh. The mesh can be refined to get more accurate results. 
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Figure 2.2 Channel waveguide with mesh used for analysis. 
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Finally the solver is invoked to solve the PDE’s. The result obtained is shown in the 

following figure. The figure illustrates the modes in the waveguide for those particular 

dimensions. 

 

Figure 2.3 Solver result showing the modes in the waveguide for a particular geometry. 
 
 

2.3 Modeling PMMA thickness 
 

Since waveguides are designed for communication purpose, simulations were 

done to find the dimensions which result in single mode waveguides. Dimensions of 

PMMA are critical as it forms the core of the device. Initially arbitrary dimensions of 

Teflon were chosen as width = 10microns and thickness = 4microns. Keeping these fixed 

dimensions of PMMA in X and Y directions were varied. Simulations were performed 

with different dimensions of PMMA. Basing on the results, waveguide becomes 

multimode when thickness of PMMA exceeds ≈ 1micron and width exceeds ≈ 2microns. 
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Hence PMMA thickness was fixed at 0.7microns. This thickness was chosen because it is 

within the range of obtainable from spin coating PMMA. Moreover we get a margin of 

error of 0.3 microns. The following figure shows that waveguides tends to become multi 

mode when the width of PMMA is 2.5 microns and the thickness is 1.5 microns.  

 

Figure 2.4   Higher order mode in a channel waveguide when PMMA thickness exceeds 1micron 
 
 

2.4      Modeling Teflon thickness 
 

Once the core dimensions are fixed, simulations were done to find the optimum 

lower cladding thickness for Teflon on a silicon substrate. In this case the waveguide 

mode is not of a concern. The key criterion was power loss. Dimensions were chosen to 

provide acceptable power loss. Because of the high index contrast any reasonable Teflon 

thickness essentially eliminated mode overlap with the substrate.  As a result, power loss 
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to the substrate was not a serious concern.  The Teflon thickness was fixed at 4 microns 

because we knew the spin speed to get 4 micron thickness.   

The more important parameter was the separation of the PMMA core from any 

surrounding PMMA.  Since PMMA is a positive electron beam resist, the core is left 

unexposed and the surrounding regions are exposed.  We would like to minimize the area 

required for e-beam exposure, so we needed to find the lateral separation that provided 

acceptable power loss.  The power in the waveguide mode was reduced by -35db when 

the core was 5 microns from any surrounding PMMA, and -50db when the core was 

10microns or farther.  Hence a width of 10 microns was chosen. It can be observed from 

the figure below that it is much less when the width was 10microns.  

 

Figure 2.5 Contours of constant modal power (log scale) indicating the required separation of the 
PMMA core from any surrounding PMMA.  The modal power is reduced by -50dB 10μm away from 
the core.   
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From the above figure it is clear that all the power is confined to the Teflon, when 

separation from any adjacent PMMA is 10microns. The final dimensions of the channel 

waveguide are as follows: 

 widthp = 2 microns   widtht = 10 microns  

 thicknessp = 0.7 microns  thicknesst = 4 microns 

 

 2.5      Design of Bragg Gratings in Polymer Waveguides 
 

The Bragg grating model was setup up almost identical to the channel waveguide 

with the exception of the gratings in sidewalls of the core.  All boundaries are still 

specified as perfect electrical conductors.  All the properties of PMMA and Teflon are 

also the same. The refractive index for the gratings region was 1.39. Now that the 

dimensions of the core and cladding are fixed, the only the grating dimensions are to be 

changed. Here we were aiming for waveguides with grating strength between 60/cm and 

100/cm.   

The grating period for a wavelength of 1550nm is 565.7nm as obtained from the 

equation in section 1.2. The CAD drawing of a waveguide with grating is shown in the 

figure. 
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Figure 2.6 CAD Drawing of Gratings in a PMMA-Teflon channel waveguide. 
 
 
 

2.6 Procedure to find grating strength 
 

Grating strength for TE mode is given by [12] 
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(Replace Ex with Ey to find grating strength in TM mode) 
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where  
βπ2

2
0k

 = 
effλη
1    

effη  is obtained for a given dimension, from simulating the waveguide in Femlab. 

Ex and Ey denote electric filed in X and Y directions and λ = 1550nm. 

The values for the integrals are obtained by performing sub domain integration in Femlab 

over gratings and waveguide. The below figure shows the GUI for performing integration 

(integration is performed over the selected region, integration value is shown at the 

bottom of the window) 

 

  

Figure 2.7 Integration over the grating region using Femlab. 
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Both effective index and grating strength change with depth of the grating teeth 

 

Gratings 
W

LW 

As the grating teeth come closer the width of the waveguide core, ‘W’ decreases and 

‘LW’ increases. Their difference is the depth of the grating teeth. Grating strength was 

calculated for various grating dimensions, varying lengths of LW and L. The plot for 

grating strength,  Grating Teeth Depth vs. Grating Strength is shown in the figure.  
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Plot 2.1 Grating Depth vs. Grating Strength 
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Waveguides with suitable grating strengths were patterned in the Raith50 Universal e-

beam lithography tool.  

Thus with all the waveguide dimensions fixed, waveguide patterns are drawn in 

the Raith software. They are such that average width of the core is 2microns.  

 

 

 LW W 

Figure 2.8 Gratings Pattern in Raith50 
 
 
Dimensions of ‘LW’ and ‘W’ were chosen such that their average was always 2microns. 

       

 

 

        

 22



2.7 Modeling Self Referencing SPR Sensor  
 

Modeling for the sensor was done using custom software written using Matlab. 

Only Teflon AF-1600, gold, SiO2 thickness and angle of incidence were to be decided. 

We began with the thickness used by Homola et al. Refractive index of Teflon AF-1600 

as a function of wavelength was calculated using the measurements of Lowry et al [13]. 

This data was used to determine the refractive index of Teflon AF-1600 in the infrared 

region from Cauchy’s dispersion formula fit. Measurements of J.A.Woolam Co were 

used to find refractive index of gold as a function of wavelength.  

The refractive index measurements were used to plot dispersion relations of LRSP 

and SRSP. Dispersion relations, plotted by simulating a thin gold film surrounded by 

Teflon AF 1600 intersect with that of BK-7 prism at two distinct wavelengths [6]. At 

these points the coupling to the surface plasmon modes will be strongest.  Thus light 

couples to the LRSP at shorter wavelength and to SRSP at longer wavelength.  

 

Plot 2.2 Dispersion Relations of SRSP, LRSP and BK-7 Prism 
 
 

 23



The Thickness of Teflon AF-1600, gold and SiO2 play key role as they can alter 

the coupling and self referencing may not be obtained if they are different from the 

specified values. The final stack of materials for the SPR sensor is drawn below: 

SiO2
Teflon Gold 

   BK-7  
Substrate 

 

The Matlab simulations were performed to find the thickness of these materials.  

One should get a reflectance spectrum as shown in the below plot for  500nm of Teflon 

AF-1600, 50nm of SiO2 and 55nm of gold and the angle of incidence is equal to 680.  

 

Plot 2.3 Simulation Result when Gold = 55nm, SiO2 = 50nm 
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Thicknesses play a very crucial role in the functioning as sensor. We simulated 

the sensor with various thicknesses of Teflon AF-1600 and gold at various angles. 

Simulations were performed to find out the right thickness for SiO2 which can result in 

considerable amount of difference in the spectrum with and without SiO2 layer.   
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Chapter 3 

FABRICATION 
 

Once the dimensions are fixed, the waveguides and the sensor must be fabricated. 

This is the most challenging part of the project. Since we were using Teflon, which was 

developed such that nothing sticks to it, making PMMA adhere to it was the most crucial 

part of the project. This chapter describes the fabrication steps for the waveguides and 

later gives way to the fabrication of SPR sensor. Due to the breakdown of the e-beam 

lithography (EBL) system, we couldn’t go ahead with the e-beam exposure. But a 

detailed account of the steps for the exposure has been mentioned in this chapter.  

 

3.1 Overview 
 

First step is to clean the silicon wafer. Since the adhesion of Teflon to silicon is 

poor, adhesion promoter is first spin coated on the wafer. Next, Teflon is spin coated and 

soft baked to form the lower cladding. Later PMMA is spin coated on top of the Teflon 

and soft baked to form the core. After e-beam exposure and development, Teflon is again 

spin coated to form the upper cladding. But due to equipment trouble we later switched to 

fabrication of SPR sensor. The fabrication for the sensor is comparatively less 

complicated. For the SPR sensor, BK-7 glass substrate was used. Teflon was spin coated 

and gold was deposited on it. Later, half of it was masked and SiO2 was deposited. 

Detailed explanation of the above fabrication process is given in the following sections of 

the chapter.  
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3.2 Fabrication of Bragg Gratings in Polymer Waveguides 
 
 The first step is to clean the silicon wafer. Since the wafer acts only as a smooth, 

flat substrate, it has negligible effect on the waveguide functioning. Hence rigorous 

cleaning procedures like RCA 1 and RCA 2 were not performed. The wafer is first 

sonicated in acetone to remove organic contaminations. Later it is rinsed with isopropyl 

alcohol (IPA) as cleaning with deionised (DI) water doesn’t completely remove the traces 

of acetone. Then the wafer is blown dry with nitrogen. The wafer is then placed on a 

chuck, where it is held by a vacuum. The desired chemical is then dispensed using a 

simple dropper. The speed of the spin coater can be selected as required. Also the spin 

coater can be set to spin at a certain speed for the initial few seconds and then ramp up to 

a higher speed. The spin coater has two sets of speed controls and timers to accomplish 

this.   

 The thickness of the material after spin coating depends on the spin speed and the 

viscosity. All the materials are dissolved in a solvent; their concentration in the solvent 

sets the viscosity.  

 Since the Teflon doesn’t adhere well to the Si wafer, prior to spin coating Teflon, 

adhesion promoter must be spin coated. The adhesion promoter used is 1H, 1H, 2H, 2H 

perfluorodecyltriethoxy silane (Lancaster Synthesis, Inc.). Adhesion promoter solution is 

made by mixing 2% of adhesion promoter with 95% ethyl alcohol and 2% water. It is 

spin coated at an initial speed of 500 RPM for 12 seconds and then 1000 RPM for 30 

seconds. First speed spreads the solution on the sample and second evaporates the 

solvent. The speed and time in this case are not of much importance as the adhesion 

promotion layer is essentially one molecule thick and doesn’t interfere with the device 
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performance. The device is then soft baked at 1100C for 10 minutes to evaporate any 

residual solvent.  

 Now Teflon is spin coated on the adhesion promoter layer. The Teflon used for 

our devices is Teflon-AF 1600(Dupont, Inc.). There are different solvents for Teflon-AF 

1600 and the finding the right solvent is very important as the entire fabrication depends 

on this. More on this will be discussed in section 3.3 of the chapter.  Teflon is spin coated 

at 500 RPM for 12 seconds and then at 1000 RPM for 30 seconds. The sample is then 

soft baked at 1800C for 15 minutes to let all the solvent evaporate. This combination of 

spin speed gives a thickness of 4 microns. 

 Next step is to spin coat PMMA (polymethyl methacrylate), provided by 

MicroChem, on Teflon-AF 1600. This was one of the major hurdles and took several 

months to figure out a way to make PMMA stick to Teflon-AF 1600. Since nothing sticks 

to Teflon-AF 1600, PMMA would fly off the wafer as soon as the spin coater was started. 

After much thinking and research, it was found that oxygen plasma etching solves the 

problem of adhesion. This was a kind of break through in the project as it opened several 

directions to proceed 

The Teflon coated sample is plasma etched at 50% power for 60sec in a custom 

made Plasma-Preen system. It is manufactured from a microprocessor controlled 

microwave and uses the relevant digital control functions present on the microwave. It 

also has an analog power control feature to provide a wider control over the plasma 

power. The system operates by the flow of a process gas (we used oxygen) at reduced 

pressure (~ 2-5 Torr) through the process chamber (inside which sample is placed) and 
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exciting the plasma discharge. The process produces ionized gas particles which react 

with the sample surface.  

 

Figure 3.1 Plasma Preen Etch System 
 

 

Figure 3.2 Plasma Etch Chamber 
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The mechanism for improved adhesion is still an open question. Some have 

hypothesized that the oxygen plasma etch roughens the Teflon-AF 1600 surface and 

creates grooves on the surface where PMMA would settle into during spin coating.  

However, the RMS roughness of the Teflon-AF 1600 coated surface was on average 

10A0 greater than what it was before etching. The roughness was measured from Dektak 

6M profiler (Veeco, Inc). This amount of roughness was not a concern as the Teflon-AF 

1600 layer formed the cladding for the waveguide device.  Therefore, we believe that 

oxygen atoms may replace some fluorine atoms in the Teflon polymer during etching.  

Normally, this reaction would be energetically unfavorable, but the presence of high 

energy ions may enable it.   

 Once plasma etched, PMMA is spin coated on the sample. For the waveguide 

device we used 4% PMMA in a cholorobenzene solution. A spin speed of 1000RPM for 

30 seconds yields 0.7 micron thickness. This is confirmed from readings obtained from 

the Dektak 6M profiler. The spin speed curve provided by MicroChem also confirms the 

same. Here an important observation was made that if the sample is spin coated at a 

lower initial speed as done in case of adhesion promoter and Teflon-AF 1600, the later 

higher speed will have no effect on the PMMA thickness. The thickness of PMMA was 

observed to be around one micron if it was spin coated at an initial speed of 500 RPM 

and then at 1000 RPM. Hence the initial spinning should be eliminated. This is not 

surprising given that chlorobenzene is a highly volatile solvent and is likely to evaporate 

during the low-speed spin step.  After spin coating PMMA, it is soft baked at 1100C for 5 

minutes to get rid of the residual solvent. The following block diagram describes the 

entire fabrication process.  
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.  

 

Adhesion promoter  

  

Teflon-AF 1600  

 

 

PMMA 

 

E-Beam Exposure 
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After Developing PMMA 

 

 

Teflon-AF 1600   

 

 

 

Figure 3.3 Fabrication Steps for PMMA-Teflon waveguides 
 
 

Now the sample is ready to write a waveguide pattern on it. Next task is to draw a 

waveguide with gratings pattern. The sample will then be loaded into the e-beam 

lithography system and the drawn regions will be exposed to electron beam. In e-beam 

lithography, electrons, instead of photons, which are used in the photolithography system, 

are used to write patterns. E-beam lithography system consists of electron source, 

vacuum chamber and a stage to move substrate around. Electron stream is made to pass 

through electromagnetic lenses and focused into a small spot. E-beam lithography is 

much slower than photolithography; however, the system is not limited by diffraction and 

thus provides much higher resolution. The PMMA coated substrate is exposed to these 

electrons and the exposed area is developed away in 1:3 methyl-iso butyl ketone: IPA 

developer to obtain the required pattern 

The pattern is drawn using Raith50 Universal E-Beam lithography tool. A Matlab 

code is used to generate a text file with desired coordinate positions for the gratings. This 
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text file is then loaded into the Raith50 tool to generate patterns. Patterns are drawn such 

that the average width of the waveguide is two microns as mentioned in the modeling 

chapter. The overlapping regions will be cancelled out so that they are not exposed twice. 

By changing the depth of the grating teeth one can obtain patterns with different grating 

strengths. The following figure shows the gratings pattern obtained from the tool 

 

Figure 3.4 Grating Pattern Drawn in Raith50 Tool 
 

The pattern is duplicated and the exposure dose was varied from 0.7 to 1.2 so that we can 

determine which provides best defined pattern.  . 

 Now the sample and the pattern are ready to be exposed in the e-beam lithography 

system. The following exposure settings were proposed to be use in the system. 
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E beam Lithography Exposure Parameters 

Table 3.1 Specifications Used in EBL to Write the Waveguide Pattern 
 

Settings: 

Beam Current = 0.4459 nA 

Write Field = 100 μm 

Magnification = 813X 

 

Area: 

Step Size = 0.0504 

Dwell Time = 0.011393 

Dose  = 200 

 
Line:   

Step Size = 0.0198 

Dwell Time = 0.012000 

Dose  = 2702.42 

 

Dot:  

Dwell Time = 0.051073 

Dose  = 0.022773 

 

 

Now the exposed pattern is developed in methyl-isobutyl ketone (MIBK): IPA in the 

ratio of 1:3 for 30 seconds and rinsed with IPA and DI water. This removes the exposed 

PMMA and what is left forms the core of the waveguide. Then again Teflon is spin 

coated on the waveguide and soft baked.  

 

3.3 Problems with Teflon  
 

There are different kinds of Teflon available from Dupont with different solvents, 

concentrations, and glass transition temperatures.  We began our experiments using 6% 

(by weight) Teflon-AF 1600 in 3M’s Fluorinert FC75 solvent. Concentration of Teflon-

AF 1600 is not a problem as it can be reduced by diluting or increased by heating it to 

evaporate the solvent. However the kind of solvent used is more important as the 

roughness of the Teflon-AF 1600 layer depends strongly on the solvent. By not using the 
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right kind of solvent, the surface of the Teflon-AF 1600 coated sample can be very rough. 

The following figures show the surface of the Teflon-AF 1600 coated sample when FC75 

solvent was used.  These were taken from the Dektak6M profiler. 

 

Figure 3.5 Rough Teflon Coated AF-1600, when Solvent is FC75 
 

 

Figure 3.6 Rough Teflon AF-1600 Coated Surface 
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The roughness was measured to be greater than 500nm. This amount of roughness 

was not suitable for the either the waveguide or for the sensor design.  Other groups have 

observed that higher boiling point (and thus less volatile) solvents yield lower roughness 

in spin coating. As a test experiment we exchanged the solvent used for coating Teflon-

AF.  The Teflon solution was heated at 600-700C to evaporate most of the Fluorinert FC-

75 in it. Then we mixed the highly concentrated Teflon solution with Fluorinert FC-

40(3M) which is a higher boiling point solvent. Now the solvent in Teflon-AF 1600 was 

largely Fluorinert FC-40(3M).  This gave us a highly uniform and smooth Teflon layer as 

can be seen from the below figure. 

 

Figure 3.7 Smooth Teflon AF-1600 Coated Surface with FC40 
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The roughness reduced by 10 times, was found to be around 50nm. This was the first 

hurdle in the fabrication and it took a while to figure out the problem. Hence we later 

switched to a different grade of Teflon-AF 1600 which was provided at 18% by weight in 

Fluorinert FC-40. Since it was more concentrated, we diluted it with more Fluorinert FC-

40 to reduce the concentration. 

 

3.4 Fabrication of SPR sensor 
 

The first step in any kind of fabrication is to clean the substrate. The substrate 

used in this case was BK-7 glass substrate (Esco Products, Inc). This one was chosen in 

particular because it matched the refractive index of the prism, which is the main 

component in the measurement setup, as will be discussed in the next chapter. The 

substrate comes in nicely polished square shape. It is sonicated in acetone and rinsed with 

IPA. Then it is blown dry in nitrogen.  

Then adhesion promoter is spin coated using the same spin speed and baking 

temperatures as was used in the fabrication of waveguides. However there are few 

changes in the Teflon-AF 1600 spin speed as we required a much thinner film for the 

sensor. The Teflon-AF 1600 solution was further diluted with FC-40 to reduce the 

concentration to 9%. Also it was spin coated at a higher speed to get a thinner film. The 

spin speed used was 500 RPM for 12 seconds followed by 3000 RPM for 30 seconds. 

Then the substrate was soft baked at 1800C for 15 minutes.  
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3.5 Deposition of Gold 
 

Next a thin film of gold (99.9% gold pellets from Kurt Lesker, Inc.); of thickness 

55nm was deposited on the Teflon surface.  The gold was deposited using electron beam 

(e-beam) evaporation. The sample is placed inside the e-beam evaporator and the 

evaporator chamber is evacuated. A vacuum of 2.0x10-6 Torr was used for this 

experiment.  An accelerating grid is raised to a voltage of 9 kV with respect to a filament. 

A current is then applied through the filament to heat it up. Electrons will then be 

released by phenomenon of thermionic emission. The filament current adjustment 

controls the electron beam intensity. The electron beam is then bent by a magnetic field 

and focused on a crucible filled with gold pellets. The focusing of the beam is 

accomplished by horizontal and vertical controls that vary the magnetic field. The gold 

starts melting when the filament current is high enough. Due to the high vacuum in the 

chamber, gold atoms evaporate from the crucible and will deposit on the sample 

substrate.  
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Figure 3.8 Electron-beam Evaporator 
 

Though the same task can be performed using thermal evaporator, there is a possibility of 

getting a non uniform thickness of the film as the source size in that case would be large. 

Also e-beam evaporator offers more precise control on the film thickness. 

 

3.6     Deposition of SiO2 

 
 After gold deposition, the sample was taken out and an aluminum foil was used to 

mask half of the gold coated substrate. Silicon dioxide granules (Kurt Lesker, Inc) were 

evaporated in the e-beam evaporator. The same vacuum and voltage was used. After 

performing rigorous simulations on Matlab, we decided to go for a thickness of 50nm of 

SiO2. Since the aluminum foil masked part of the substrate, SiO2 was deposited only on 
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one half of the sensor. The structure of the SPR sensor after SiO2 deposition would be as 

shown in the following diagram. 

  Teflon-AF 1600  

Adhesion promoter  

 

 

 

 
 

 

 

 

Gold  

 
 

Silicon dioxide 

 

Figure 3.9 Fabrication Steps for Self Referencing SPR Sensor 
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Chapter 4 

TEST SETUP and RESULTS 

4.1 Measurements 
 

Unfortunately we couldn’t fabricate the Bragg gratings in waveguides due to the 

failure of the EBL system. Hence no experiments were done on it to verify its 

functioning. This chapter describes the test set up for testing the sensor and the results 

obtained from the experiments.  

The overall goal of the test setup is to introduce incident light from a halogen 

lamp onto the SPR sensor and then collect the reflected spectrum and plot the resonance 

wavelength vs. time. The light must first be polarized as TE and TM and either of the two 

is selected for a particular purpose. The polarized light is incident upon the sensor.  The 

schematic of overall setup can be seen in figure below [6]. 

  

Figure 4.1 Schematic of Test Setup 
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The sensor, fabricated on BK-7 glass substrate, is mounted on BK-7 equilateral 

prism (Esco Products, Inc.). BK-7 specific index matching fluid (Cargille, Inc.) is used to 

bind the two so that there is no air gap. An ultra high molecular weight polyethylene 

(UHMW) flow cell is made to suit the dimensions of the prism and the substrate. The 

figure shows the flow cell and the prism arrangement. It is based on the Kretschmann 

prism apparatus.  

 

 

 
Figure 4.2 Sensor clamped with Flow Cell on Prism 

 

It is sealed with a neoprene gasket. Liquids were flowed across the sensor surface 

through PTFE tubing. A vacuum pump and a liquid trap enable the flow through the tube. 

The flow trap consists of a 500 ml side arm Erlenmeyer flask maintained at 17 kPa and a 

polyetheretherketone (PEEK) micro metering valve (Upchurch Scientific) which controls 
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the liquid flow rate. The prism and the flow cell/sensor setup are mounted on a custom 

made, variable angle optical reference measuring system.  

Light from a halogen lamp (Model DH-2000, Ocean Optics, Inc.) is sent into the 

measuring apparatus through a 200 micron core multimode optical fiber. A Glan-Taylor 

Polarizer (ThorLabs, Inc.), mounted on a rotation stage, can be adjusted such that either 

TE or TM wave is incident on the prism. A collimating lens focuses light from the fiber 

through polarizer and into prism and finally onto the sensor. A similar set up of lenses 

and fiber on the other side of the prism collects the reflected light. Here the fiber is routed 

to a computer controlled spectrometer (Ocean Optics Model HR-4000). A program is 

developed in Labview (National Instruments) to plot the data collected from the 

spectrometer. It plots the points of resonance vs. time.  

 

4.2 Detection 
 

To demonstrate the sensors self referencing capability, formation of ODT 

monolayer on the gold and SiO2 is studied. ODT was dissolved in ethanol to form 3.2mM 

solution. Solutions of 2% and 4% by weight methanol in ethanol were also prepared. The 

solutions were introduced on the sensor in the following order: 

 (1) Ethanol (2) 2% methanol in ethanol (3) 4% methanol in ethanol (4) ethanol 

(5) 3.2mM ODT in ethanol (6) 4% methanol in ethanol (7) 2% methanol in ethanol. All 

experiments were done at room temperature using the flow rate of 0.0149ml/sec. 

The following settings for the Ocean Optics spectrometer were used, while acquiring 

data:  Integration time = 10ms, 10 averages per wavelength, Boxcar averaging of 50 

wavelengths. 
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Prior to collecting data a dark spectrum was stored with the lamp turned off and 

was subsequently subtracted from all measurements. A reference reflection spectrum was 

taken using the incident TE wave. The angle of incidence was adjusted to place the LRSP 

and SRSP minima within the region of the spectrum with lowest noise. The measurement 

system can be adjusted such that the TM wave is incident either on gold or on SiO2 

region. The same experimental procedure is repeated when the TM wave is entirely 

incident on the SiO2 region.  

 

4.3 Experimental and Simulated Results 
 

With careful selection of material thicknesses, light incident on the overlap of 

gold and SiO2 should give three dips in the spectrum as shown in the plot. This is when 

the thickness of the gold is 55nm and that SiO2 is 50nm at an incident angle of 680. The 

Teflon AF-1600 thickness was 500nm. 
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Plot 4.1 Expected Plot when Incident Beam Overlaps Gold and SiO2 Regions Separately 
 
 

Since we did not fabricate the device with right thicknesses, we did not get the 

expected result. However we could measure the reflection spectrum for each of the two 

surfaces individually. The below figure shows the experimental spectrum obtained from 

the fabricated sensor.  
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Experimental Result -- SiO2 and Gold
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Figure 4.3 Experimental results from the bare gold and gold coated SiO2 surfaces.   
   
 
Though the resonance wavelengths didn’t match with the simulation results, we could get 

four distinct dips (two for each region), as shown in the above figure. The simulation 

spectrum is show below. 

 46



 
 

Plot 4.2 Expected Result when light is incident on Gold and SiO2 regions 

 

4.4 Probable Reasons for Mismatch in the Results 
 
 Thickness of each layer plays a huge role in the occurrence of resonance. 

Variation in thickness of any of the layers can lead to widening the dips or pushing them 

into the high noise infrared region, making it difficult to measure. A sensor may even 

cease to behave as self referencing with slight variation in the thicknesses. When the 

sensor is  simulated with gold thickness as 60nm and SiO2 thickness as 60nm, the 

spectrum looks very much different from what it was when the thickness were 55nm and 

50nm respectively. 

. 
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Plot 4.3 Simulated Result when Thickness of SiO2 = 60nm and Gold = 60nm 
  

The resonance dip for SiO2 is completely into noise region where it is difficult to 

measure. Thus because of not get getting the exact thickness values, we couldn’t get the 

expected spectrum. 

 Another important variant is the angle of incidence. Results change dramatically 

when there is any slight variation in the angle of incidence. This fact is evident from the 

following plot. The reflection spectrum for gold is shown in the plot, similar effect was 

observed for SiO2 too.  
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Plot 4.4 Difference in the Reflectance Spectrum of Gold when the angle of incidence is changed to 650

 

As can be seen from the above plot the sensor ceases to behave as self referencing for a 

change of 30 in the angle of incidence. With the right thickness values, we can expect the 

simulated results as we have obtained four distinct resonance dips, which shows that the 

two materials behave differently for the refractive index changes.  
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4.5 Results 
 
  The following graphs show the shift in the resonance with the change in the 

refractive index.  We note that the device is not optimized and the short range resonance 

was in a high noise region as indicated by the plots below.   
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Plot 4.5 Long range surface plasmon resonance wavelength for the bare gold surface when exposed 
to different concentrations of methanol in ethanol. 
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Plot 4.6 Short range surface plasmon resonance wavelength for the bare gold surface when exposed 
to different concentrations of methanol in ethanol. 
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The following plots are obtained when the light was incident on the SiO2 
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Plot 4.7 Short range surface plasmon resonance wavelength for the SiO2 coated surface when exposed 
to different concentrations of methanol in ethanol. 
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Plot 4.8 Long range surface plasmon resonance wavelength for the SiO2 coated surface when exposed 
to different concentrations of methanol in ethanol. 
 

 

The following plots show the reflectance spectrum when ODT was flowed over 

the sensor along with other solutions.  Note the permanent change in the resonance 

wavelength after exposure to ODT.  This indicates the formation of an ODT monolayer 

on the gold surface.  The high affinity of the thiol molecule for gold makes this binding 

process essentially irreversible.  
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Plot 4.9 Gold_LRSP resonance wavelength when ODT is flowed over the sensor 
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Plot 4.10 SiO2_LRSP when ODT is Flowed over the Sensor 
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The surface and bulk sensitivities obtained when light beam was incident on gold and 

SiO2 are listed below. 

Table 4.1 Experimental results 
                          

 

 

 

Material SB-LR   (nm/RIU) SB-SR  (nm/RIU) 

Gold 1811.32 2535.84 

SiO2 1369.05 2245.28 

 

 

Material SS-LR   (nm/nm-thickness) SS-SR  (nm/nm-thickness) 

Gold 0.585 2.25 

SiO2 0 0 
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Chapter 5 
 

FABRICATION CHALLENGES 

5.1 Overview 
 

This project was marred with equipment failures and many obstacles in 

fabrication which took considerable time to get over, major ones being the surface 

roughness of Teflon AF-1600 and adhesion of PMMA to Teflon AF-1600. In spite of 

overcoming these issues we couldn’t fabricate channel waveguides with Teflon AF-1600 

and PMMA using photolithography. This chapter describes our initial design and why it 

didn’t work. During the early stages of the project, channel waveguides with Teflon AF-

1600 as cladding and PMMA as core were designed and photolithography was planned to 

be used for the formation of waveguides on PMMA. A clear description of the fabrication 

process and where it failed is given below. 

 

5.2 Fabrication of Channel Waveguides 
 

After the regular wafer cleaning, Teflon AF-1600 was spin coated on it at a spin 

speed of 500 RPM for 12 seconds followed by 1000 RPM for 30 seconds. It was then soft 

baked for 15 minutes at 1850C  

 

Teflon AF-1600 
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This is followed by oxygen plasma etch for 60 seconds at 50% power. PMMA is then 

spin coated on the etched Teflon AF-1600 surface at the speed of 1000 RPM and then 

baked at 1800C for 5 minutes. 

 
 
To form waveguides, positive photo resist (Shipley’s 1813 resist) is spin coated on the 

PMMA surface at 400 RPM for 30 seconds and baked at 1150C for one minute.  

The resist is then exposed through the mask for 20 seconds and developed for 30 seconds 

in positive resist developer MF-319 developer (Microposit). 

 

 

he ou o 

sist is also exposed. 

PMMA  

 

Exposed and developed photo resist  

 

 

 

 

T t the mask such that all the remaining phot remaining resist is again exposed with

re
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On the exposed resist, 30nm of SiO2 was deposited in e-beam evaporator. 

 

Expose resist without mask 

30nm SiO2

 
The wafer is then immersed in the positive resist developer so that the SiO2 is lifted off 

along with the exposed resist. We couldn’t get the lift off to happen even after leaving the 

wafer in the developer overnight. We increased second exposure time to 90 seconds and 

repeated experiment, but didn’t achieve any success. Below are described further steps 

had the lift off been a success. Assuming that the SiO2 was lifted off: 
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After lift off  

 
The wafer would be plasma etched for 15 seconds at 10% power so that exposed PMMA 

is removed. Thus SiO2 acts as a mask.  

 

After Oxygen Etch 

 
  
Then SiO2 would be removed in hydrofluoric acid (HF) and finally we would get PMMA 

channel waveguides on Teflon AF-1600 surface. 

PMMA channels  
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Teflon AF-1600 should be again spin coated on PMMA as upper cladding.  

 
 

Teflon AF-1600   
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Chapter 6 
 

CONCLUSIONS AND FURTHER WORK 

 

6.1 Possible Variations in the Design 
 

We expect that varying the thicknesses of various layers of the sensor will 

yield experimental spectra similar to the simulated results. Making the SiO2 layer thinner 

will move the SRSP resonance to shorter wavelengths making it possible to measure the 

resonance dip. Also making the Teflon thinner will make the resonance dips of gold and 

SiO2 more distinguishable. However, changing the gold thickness will have no positive 

effect. Making the gold thicker will cause the SRSP and LRSP to overlap. Making the 

gold thinner will cause the SRSP associated with the gold to overlap the one 

corresponding to the SiO2. In addition, making the gold thinner beyond a certain value 

will place the SRSP resonance outside the wavelength range of the spectrometer and 

prevent self referencing. 

 

6.2 Conclusions 
 
  The choice of right kind of solvent for Teflon AF-1600 is the first step to 

fabricate any device as Teflon AF-1600 layer can be unacceptably rough depending on 

the solvent. Other key lesson learned in the fabrication process was that the Teflon AF-

1600 surface needs to be altered in order to make other polymers adhere to it. This 

possibility opens many doors to myriad combinations with which devices can be 
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designed as Teflon AF-1600 is one of the few low refractive index solids. These two 

factors hold the key to fabrication of any Teflon AF-1600 – PMMA based optical device.  

In case of SPR sensors, thicknesses control their proper functioning. Slight 

differences in the thickness of gold and silicon dioxide can alter the reflectance spectra 

dramatically. Unfortunately, with no means to measure the thickness values of any of the 

three involved materials, we had to use our best guess in the fabrication of SPR sensors. 

The crystal monitor on the e-beam evaporator was found to be highly erroneous as 

obtained results were no where close to the simulated results obtained using crystal 

monitor readings. Fabricating a sensor with the specified gold and SiO2 thicknesses 

should yield a greater difference in the sensitivities of LRSP and SRSP to solution index 

changes. In addition, the measurement of four different resonances (LRSP and SRSP with 

and without and SiO2 overlayer) suggests that we can build a self-referencing sensor that 

compensates for both solution index changes and for non-specific binding.   

  

6.3 Suggestions for Further Work 
 

The first critical step towards fabricating a working device is to have highly 

precise measurements of thickness values. Samples at various stages of the fabrication 

process could be sent off to be measured or taken to a collaborative institution with the 

appropriate equipment to give accurate thickness values. If the sensor could be fabricated 

according the specified thickness values, one can hopefully obtain results matching the 

simulations. The challenge will be to optimize the device such that all the resonances lay 

well within the low noise measurement regions or to provide a supplemental infrared 

light source.    
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Waveguides with integrated Bragg gratings could be written using the EBL 

system as the patterns and a known fabrication process is well in place. In line with our 

original plan, PMMA could be replaced with dye-doped PMMA to produce electro 

optical polymer waveguide devices. However this would require re-designing few details 

according to the refractive index of the dye-doped PMMA. 
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