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ABSTRACT OF THESIS 

 

 
PERFORMANCE EVALUATION AND OPTIMIZATION OF THE 

UNSTRUCTURED CFD CODE UNCLE 
 

Numerous advancements made in the field of computational sciences have made CFD 
a viable solution to the modern day fluid dynamics problems. Progress in computer 
performance allows us to solve a complex flow field in practical CPU time. 
Commodity clusters are also gaining popularity as computational research platform 
for various CFD communities. This research focuses on evaluating and enhancing the 
performance of an in-house, unstructured, 3D CFD code on modern commodity 
clusters. The fundamental idea is to tune the codes to optimize the cache behavior of 
the node on commodity clusters to achieve enhanced code performance. Accordingly, 
this work presents discussion of various available techniques for data access 
optimization and detailed description of those which yielded improved code 
performance. These techniques were tested on various steady, unsteady, laminar, and 
turbulent test cases and the results are presented. The critical hardware parameters 
which influenced the code performance were identified. A detailed study 
investigating the effect of these parameters on the code performance was conducted 
and the results are presented. The successful single node improvements were also 
efficiently tested on parallel platform. The modified version of the code was also 
ported to different hardware architectures with successful results. Loop blocking is 
established as a predictor of code performance. 
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__________ 
CHAPTER  

                                         1 
        __________ 

 
 

INTRODUCTION 
 
 
1.1 Overview 
 
The advent of technology has brought us sophisticated computational tools. With the 

presence of state of the art supercomputers, computational solutions to fluid dynamics 

problems have become a more viable option. Computational Fluid Dynamics (CFD) has 

grown in popularity as a potent method for solutions of practical Fluid dynamics 

problems. Now that we have an established alternate method for solving fluid dynamics 

problems, improving these known methods seem like a logical step in progression.  CFD 

simulations are typically done on very sophisticated computational platforms (e.g. 

NASA’s supercomputer ‘Columbia’). As these computational facilities are usually in 

short supply, the time available for computation on these kinds of machines is not in 

abundance. Added to the problem of time constraint one is often faced with the fiscal 

problem associated with the costly computational times of these machines.  

 

With these existing problems it is not desirable to run unoptimized codes on the 

supercomputers. Unoptimized codes will lead to inefficient use of the computational time 

and will prove costly to run. One of the ways to overcome this problem is to improve the 

hardware architecture of the computational platforms but this area is pretty much limited 

by the technological advances made in that field over which a CFD researcher has no 

control. So a logical solution to the problem would be to optimize the existing CFD 

code(s) to make them run faster so that the computational time could be used more 

effectively and economically.  
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For most problems CFD simulations often lag behind the real physical time which means 

that one minute of CFD simulation time takes more than one minute of the physical time. 

Optimization of the CFD codes may not be able to remove the disparity totally but would 

be an initial step in that process. 

 

1.2 What is CFD?  
 
CFD is sophisticated computer based design and analysis technique that enables one to 

model and study the dynamics of any thing that flows. It is based upon complex sets of 

non-linear mathematical equations that describe the fundamentals of fluid, heat and mass 

transport. The concerned physical domain is divided into a computational grid. These 

equations are then solved iteratively, on each small grid cell, with the use of very 

complex computer algorithms or a code. It allows the user to build virtual models of a 

fluid flow problem and assign physical and chemical properties to the fluid in the model 

and CFD then predicts the solution. CFD can provide solutions for problems concerned 

with flow of gases and liquids, moving bodies, heat and mass transfer, chemical 

reactions, multi-phase physics, fluid structure interaction, and acoustics with computer 

based modeling. It was primarily used in fields of aerospace, maritime, and 

meteorological sciences and is widely used in automobile and chemical industries and is 

rapidly gaining popularity in other fields. A sample CFD grid for space shuttle launch 

vehicle and a naval ship is shown in Fig 1.1[1] 

 

1.3 Why CFD? 
 
CFD has a couple of inherent advantages over the traditional methods used to solve the 

fluid dynamics problems. Some of the major ones are 

 
Insight  

Often when a user is faced with a design which is difficult to model or test through 

experimental techniques, CFD can provide insight by virtually moving into the user’s 

design and test its performance. It allows the user to witness phenomena which is not 

otherwise possible by other means. It provides all desired information at every point of 

the computational domain which is often not possible by traditional methods.  
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Figure 1.1(a) A CFD grid for a space shuttle launch vehicle (SSLV) [1] 

 

 
 

Figure 1.1(b) A CFD grid for a naval ship [1] 
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Foresight 

When confronted with problem of choosing between various possible alternatives for a 

modeling problem, CFD can prove to be handy. It allows for application of various 

boundary conditions to the problem and gives the predictions in a short time. This 

facilitates testing of various alternatives until an optimal solution is reached. This saves 

valuable time which would be lost in physically prototyping and testing each alternative. 

 

Efficiency 

The insight and foresight that CFD provides helps in better and faster design, saving 

money, shortening the design cycle, and industry compliance. The equipment required 

can be built, installed, and upgraded with a very little downtime. Also, the physical space 

requirement is minimal. It allows for faster prototyping and design which leads to faster 

fabrication of the product.  

 

1.4 A Brief History of CFD 
 
Fluids have captivated the mankind since the dawn of civilization, whether it was waters 

in the rivers and oceans, winds in the skies, or the flow of blood in our body. Archimedes 

has been credited for starting the field of static mechanics and hydrostatics. He was the 

first person to determine ways to measure the volumes and densities of an object. 

Leonardo Da Vinci contributed to field of fluid mechanics by pictorially depicting 

various fluid phenomena he observed and he summed it up in his work “Del moto e 

misura dell'acqua” which covers waves and their interference, eddies, free jets, water 

surfaces, and many other related phenomena.  

 

Isaac Newton, in late 17th century made an attempt to quantify and predict the fluid 

motion with his set of physical equations. His major contributions to this field includes, 

his (Newton's) second law of motion, the concept of viscosity, the reciprocity principle, 

and the relationship between the speed and wavelength of a wave at the surface. Daniel 

Bernoulli contributed by giving us the famous Bernoulli's equation which describes the 

behavior of fluid along a streamline. Leonard Euler derives the Euler equations which 

explain the principle of conservation of mass and momentum for an inviscid fluid. He 

also put forth the velocity potential theory.  
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In the 19th century Claude Louis Marie Henry Navier and George Gabriel Stokes added 

the viscosity to the Euler equations resulting in the Navier-Stokes (N-S) equations.  This 

set of differential equations which describe the conservation of mass, momentum, 

species, pressure and turbulence are the basic fundamentals of the modern day 

computational fluid dynamics. One of the shortcomings of the full N-S equations was that 

they were so closely coupled that it required huge computational power for solution of 

practical flow problems, which only became available in the form of digital computers in 

the 1960s. In the 19th century noticeable contributions were made to the field of fluid 

dynamics  by Osborne Reynolds, Jean Marie Louis Poiseuille, John William Rayleigh, 

John Le Rond D'alembert, Pierre Simon de Laplace, Joseph Louie Lagrange, and 

Simeon-Dennis Poisson.  

 

The 20th century saw major development of new theories and improvement of existing 

theories in boundary layer and turbulence. Ludwig Prandtl proposed the famous boundary 

layer theory, the Prandtl number, compressible flows and the concept of mixing length. 

Theodore Von Karman studied the Von Karman vortex sheets. Geoffrey Ingram Taylor 

put forth a statistical theory of turbulence and the concept of Taylor microscales. Andrey 

Nikolaevich Kolmogorov proposed the universal energy spectrum and the idea of 

Kolmogorov scales for turbulence. George Batchelor contributed to the theory of 

homogeneous turbulence.  

 

The first real attempt to use CFD for prediction of a physical fluid phenomenon was 

made by Lewis Fry Richardson, in late 19th century, when he tried to numerically predict 

the weather by dividing the physical space into grid cells and use the finite difference 

approximation of the Bjerknes's equations. It resulted in a failure because a prediction of 

an eight hour period took six weeks.  In 1933, Thom did the numerical simulation of flow 

past the cylinder. Kawaguti, in 1953, achieved a similar result from his simulations of 

flow past a cylinder.   

 

In 1960s, theoretical division of NASA at Los Alamos, introduced many numerical 

methods such as Particle-in-cell (PIC), Marker-and-cell(MAC), Vorticity -Stream 

function, Arbitrary-Lagrangian Eulerian (ALE) methods and the ε−k turbulence model. 
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In 1970s Brian Spalding and his associates developed the SIMPLE algorithm, a modified 

form of ε−k  turbulence equations, the concept of upwind differencing, 'Eddy break-up' 

and ‘presumed pdf'’ combustion models. The 1980s saw development of commercial 

codes for use in the industry to solve the problems of heat, flow and mass transfer.  Since 

then CFD has evolved from being an indispensable part of aerodynamics and 

hydrodynamics industry to being a vital part of any discipline which deals with craft of 

designing and manufacturing moving things.  

 

1.5 Introduction to the Problem  
 
Computational fluid dynamics is always in search of more computer power. The future of 

computational fluid dynamics requires major improvements in large scale numerical 

simulation of the Navier-Stokes equations. These however, require enormous and very 

expensive computing resources which are limited. This problem has been further 

compounded by the CFD expanding from traditional aerospace and meteorological 

applications to more diverse applications.  

 

Large scale, time dependent problems which incur high computational cost are generally 

solved on sophisticated supercomputer facilities. The access to these supercomputers is 

limited primarily to government organizations and agencies doing research funded by the 

government. This leaves the non-government organizations and academic research 

community with almost no access to these facilities. An option for interested large 

organizations to overcome this hindrance is to buy a supercomputer facility and share it 

among them. However, these supercomputers are very expensive, difficult to upgrade, 

and have high maintenance costs. Thus, this option is not often economically viable. 

Apart from that smaller research facilities and organizations simply cannot afford this 

cost. So the high upfront cost of the CFD tool has put it beyond the reach of scientists and 

researchers whose studies and applications will benefit CFD the most.  

 

Numerous advances are being made in the field of commodity computer hardware, which 

make computing better and cheaper. So commodity clusters have come up as an 

inexpensive alternate option to the high cost supercomputers. They are easy to build, 

maintain and upgrade. Also, as they cost considerably less than the supercomputers they 
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can serve the interests of all research communities. The CFD group at the University of 

Kentucky has come up with commodity clusters which allow the high cost CFD to be 

performed on low cost clusters. Presently, there are five Kentucky Fluid Clusters (KFC’s) 

each built with a different architecture, serving the computational needs of the CFD 

group.  

 

UNCLE is an in-house, unstructured CFD code developed by Dr. George Huang at the 

University of Kentucky. It is capable of handling incompressible, two/three-dimensional 

calculations and varied geometry types. It uses a cell-centered pressure based approach 

based on the SIMPLE algorithm. It is second order accurate in both time and space. It is 

also adept at handling parallel computations. A detailed description of the code is 

presented in the later chapters.  

 
UNCLE is a well developed code fully capable of handling computations of complex 

geometries which appear in practical computation. As the state of art computational 

facility is available at the CFD group in the form of KFC machines, it makes appropriate 

sense to choose them as a platform for the optimization work. One of the appealing 

features of computational fluid dynamics is the time and speed associated with it. The 

performance optimization would make it even faster thus saving costly computer time.  

 

This exercise will reveal the performance shortcomings of this code and try to correct 

them and the insight gained during the process will help us design better and efficient 

codes in the future. A sample plot showing the walltime comparison results between the 

optimized and unoptimized versions of the code is shown in Fig. 1.2. The plot indicates 

that there is about 50% improvement in the performance of the optimized code. This 

thesis presents the various techniques that were tried and used to achieve these 

improvements in the code performance. The successful optimization techniques could be 

used to improve the performance of other codes. Optimization of CFD codes in general 

improves the overall performance so that limited and expensive computational time can 

be efficiently utilized. 
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Figure 1.2 Walltime comparisons between the unoptimized and optimized versions 

of the code 

 

1.6 Approach 
 
With the foray of computers in everyday life, today’s engineers are taking keen interest in 

the inner details of working of a computer. The memory architecture of the modern day 

computer is virtually evolving everyday. A wide array of memory types and fast 

microprocessors are available today giving the user the numerous options to design the 

machine conducive to his needs. With a computational facility custom made for CFD 

calculations available in form of KFC machines, this study will focus on enhancing the 

performance of UNCLE code by optimizing the cache behavior on these systems. 

Various techniques for data access optimization will be employed and their effect on the 

code performance will be studied in detail. This will also help us identify the key 

parameters of the memory architecture that influence the code performance. These 



 9

parameters once identified, can be tuned, if necessary, to gain additional improvements. 

This cache based optimization can then potentially be used on various other codes and 

platforms.  

 

1.7 Previous Work 

Kadambi et al. [2] addressed the problem of moving the data between the memory and 

processors in their optimization of a program which solved three dimensional Euler 

equations. The first technique employed was to reduce the number of memory references 

by reallocation of the data space. The second scheme to improve the cache behavior and 

reducing the memory reference cost was restructuring the program structure. They 

achieved an improvement of 45% in their best case. The primary (L1) cache miss rate 

was reduced by more than a factor of four but the secondary cache miss rate did not show 

any significant changes. 

 

Hauser et al. [3] used array of structures to group multiple fundamental variables together 

in a cache friendly manner instead of using separate arrays for each variable. This 

improves the spatial locality of the data. They reprogrammed their code DNSTool to 

make sure that the nested loops accesses multidimensional array in such a manner that the 

array with the smallest stride is in the innermost loop. In the later publication [4], the 

work was extended to other codes LESTool and Overflow. The effect of these changes on 

scalability was studied by conducting test on multiple numbers of nodes and different 

computer architectures. The codes showed near linear scalability of different degrees on 

different cluster architectures. 

 

1.8 Background 
 
To comprehend the methodology adopted in this research it is essential to understand the 

behavior of the cache. Caching is a technology based on the memory subsystem of a 

computer. It appears on a computer in various forms such as memory caches, hardware 

caches, software caches, and page caches. The current work aims at optimizing the usage 

of memory cache to enhance the code performance. To understand the technology behind 

the existence of cache in the computer we will have a look at the working of a computer 

and its memory architecture.  
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Numerous advances in the field of chip design have given us varied and faster 

microprocessors otherwise known as just processors or Central Processing Unit (CPU). 

They are basically the heart of any computer.  The speed of a microprocessor is measured 

in clock speed. Clock cycle is the time taken by the processor to execute the simplest 

instruction. Clock speed is the number of these clock cycles executed per second by the 

processor. It is generally measured in megahertz (Mhz) or gigahertz (GHz). Each 

processor requires a certain fixed number of clock cycles to execute an instruction. So the 

faster is the clock cycles, the faster is the processor. 

 

1.8.1 Memory Architecture 
 
The data in the computer is stored in hard disk which a rigid magnetic disk which can 

used to both write and erase digital data. It is the primary storage unit of a computer.  The 

next level in the computer architecture hierarchy is Random Access Memory (RAM). 

RAM is a volatile memory used to temporarily store the information for processing.  

Successful execution of a program includes sending data and instructions explaining what 

is to be done with the data, to the processor. The clock cycles of the RAM are around 60 

nanoseconds and that of a hard disk is around 12 milliseconds. These are pretty fast times  

by themselves but when compared to the clock cycle of a 2GHz processor (which has a 

clock cycle of about 0.5 nanoseconds) these devices are fairly slow in speed of their 

operations.  

 

When the processor is working on a data and requests further data, which is not available 

to the processor at that moment, to carry on the execution of a program, it goes back to 

the RAM and checks for its availability. A latency time is usually associated with all such 

operations. Latency time or latency is the time usually wasted by a device while it is 

waiting for another device to execute its function. If the data is found in the RAM, the 

processor goes ahead with the execution of the program and if it not found in the RAM it 

goes all the way to the hard disk to fetch the data.  As the RAM and the hard disk have 

slower clock cycles it takes a long time to locate and fetch the data to the processor 

(hence increasing the latency time), while the processor is idle at the time when the data 

is being searched or fetched. This affects the efficiency of the processor and also the 

overall computational time.  
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Figure 1.3 Memory Hierarchy in a typical computer [5] 

 

 

This problem can be handled by the introduction of an intermediate smaller and faster 

memory type between the processor and the larger memory type (i.e. RAM). This is 

called the cache memory. Typical memory hierarchy architecture is shown in the Fig. 1.3. 

The design of the hierarchical memory systems in the modern computer is based on two 

fundamental concepts, time and space locality. Time locality is the guess by the memory 

system that it is likely that the memory objects referenced recently will be referenced 

again in the near future. The cache memory allows the storage of the recently referenced 

data in a faster memory type so that it can be accessed quickly. Spatial locality is the 

guess that the memory objects referenced recently will be adjacent or nearby to memory 

objects that will be referenced in the near future. Hierarchical memory systems use 

spatial locality by dividing the memory space into smaller chunks called ‘cache blocks’ 

or ‘cache lines’. The data is transferred from larger memory to cache in cache-lines. 

Cache-line is the smallest unit of memory (data) transferred between the main memory 

and the cache. It contains contents of contiguous block of the large memory.  



 12

So when a request for data arises from the processor, the cache is accessed first before 

moving to a larger memory type. If the required data is found in the cache it is called a 

cache hit. A cache hit saves us valuable computational time as it has a small latency. It is 

important to note that whenever a small piece of any data is requested by the processor it 

gets all the data present in the cache line. If the required data is not found in the cache it 

is called a cache miss. When a cache miss occurs the computer searches for the data in 

the larger memory types.  

 

There is a theoretical concept called locality of reference in computer science that says 

that a program spends about 90% of the computational time in about 10% of the code.  

As the program uses 10% of the code most of the time, if a substantial or all of that 10% 

(depending on the size of the program) can be made available in the faster cache the 

program can run faster. This is one the basic reasons cache helps in faster execution of a 

program. It is possible to have multiple numbers of caches between the processor and the 

main memory. In most of the personal computers (PCs) we have a two layered cache, L1 

cache being the cache closest to the processor in terms of access and L2 cache being the 

one between the L1 cache and the larger memory RAM.  

 

A table showing the typical characteristics of these memory types is shown below.  

 

Type Typical speed Typical size 

L1 cache 10 nanoseconds 4 – 128 KB 

L2 cache (e

SRAM) 

20 – 30 nanoseconds 128 – 512 KB 

Main memory (e

RAM ) 

60 nanoseconds 128 MB – 2 GB  

Hard disk 10 milliseconds 20 – 100 GB 

 

Table 1.1 Typical characteristics of memory types 
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During a computation if the processor requests data, it is first searched for in the L1 

cache. If it is found in L1 cache, it is called a L1 cache hit; otherwise it is called a L1 

cache miss. Then the data is searched in the immediate higher memory, in this case the 

L2 cache. If the data is found in the L2 cache it is a L2 cache hit or if the data is not in the 

L2 cache the next higher memory RAM is searched and it is called a L2 cache miss. So 

ideally, for the perfect execution of the program without any time delay we need to have 

data stored or data access pattern streamlined in such a fashion so that there are no cache 

misses. This is possible only for very small grids which fit into L1 or L2 cache, but this is 

highly impractical for CFD calculations. So the idea is to reduce the L1 and L2 cache 

misses and brings them as close as reasonable to zero.  

 

The codes can be made to run at accelerated speed if we can use larger memories which 

are as fast as the cache but the faster memory tends to be very costly and not 

economically viable. So the memory architecture design is a trade off between its cost 

effectiveness and its efficiency. This also dictates that the subsequent memory types 

between the large memory and processor has to be smaller in size when compared to its 

predecessor. Memory architecture is said to have an inclusive design if the information in 

the smaller memory type is duplicated in the larger memory type. If the information is not 

duplicated in the larger memory, it is said to have an exclusive design.  

 

1.8.2 Space Filling Curves (SFC) 

Space filling curves have been fascinating to mathematicians and students of 

mathematics for over a century now. George Cantor, in 1878, proved that any two finite 

dimensional smooth manifolds have the same cardinality, irrespective of their 

dimensions. This implied that the interval [0, 1] can be mapped bijectively onto the 

square [0, 1]2. In 1879, E. Netto proved that such a bijective mapping is necessarily 

discontinuous. So attention was focused to find a surjective mapping, if any existed, that 

could satisfy these properties. In 1890, Guiseppe Peano found the first space filling curve. 

Therefore the space-filling curves are also often referred to as Peano curves. 
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Definition: An N-dimensional space-filling curve is a continuous, surjective (onto) 

function from the unit interval [0, 1] to the N-dimensional unit hypercube [0, 1] N. It is a 

simple way of mapping multi-dimensional space into one-dimensional space. A 2-

dimensional space-filling curve is a continuous curve that passes through every point of 

the unit square [0, 1]2. The concept of space-filling curves is not limited to 2-dimension 

and could be extended to N-dimensions. It may be thought of as the limit of a sequence of 

curves which are traced through the space. 

There are numerous variants of pace filling curve available today. Some of the well-

known spaces filling curves are Hilbert’s SFC, Peano’s SFC, Sierpinski’s SFC, 

Lebesgue’s SFC, Schoenberg’s SFC, and Osgood’s Jordan curves. 

 

  

     

 

Figure 1.4 First order space filling curve 

David Hilbert was the person to highlight the geometrical manifestation of the space 

filling curves. He also identified the general geometric generating procedures for 

construction of entire class of these curves. Hilbert’s space filling curves consists of a set 

of perpendicular lines traversing through the unit square. The orthogonal lines render it 

easy to construct and formulate a repetitive procedure for coding. Therefore Hilbert’s 

space filling curve was used to test the idea of grid blocking with the use of space filling 

curves.  

1

2 3

4
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1.8.2.1 Construction of Hilbert Space Filling Curve 

As mentioned earlier the basic function of a space filling curve is to traverse through the 

space and pass through every single point in the space. The Hilbert’s space filling curve 

necessitates the partition of the domain into ‘22n’ sub domains. Here ‘n’ represents the 

order of the curve. The higher the is value of the ‘n’, the higher is the number of sub 

domains and higher is order of the space filling curves.  

The construction of the first order curve requires the partition of the unit square in to 4 

(22 x 1) sub domains. This is shown in Fig. 1.4. The space filling curve (shown in red) 

passes through all the sub domains, starting from the bottom left hand corner and passing 

through the other sub domains in the order mentioned by the numbers (inside them) and 

reaching the end at the bottom right hand corner. The first order Hilbert curve is 

approximately similar to an inverted cup or an inverted ‘U’ in appearance. The second 

order curve is constructed by dividing each original sub domain of the previous order into 

4 sub domains (as shown in the Fig. 1.5) which gives us a total of 16 (4x4) sub domains 

for the second order. This number of sub domains correlates to the previously mentioned 

partition requirement which also provides the same number of sub domain 16 (22 x 2). The 

original (first order) sub domain is differentiated by different colors. The first order curve 

is rotated in clockwise direction by ninety degrees and positioned in the lower left hand 

corner of the domain (shown in purple). Similarly another one is rotated by ninety 

degrees in the anti-clockwise direction and placed in the bottom right hand corner (shown 

in violet). Two of them are placed unchanged in the top two quadrants and all the four of 

them are joined by lines (dotted). This gives us the second generation of the curve.   

The next member of the family is obtained by treating each quarter as the whole and 

repeating the operation. The actual Hilbert Curve is not a member of this family; it is the 

limit that the sequence approaches. A fourth order space filling curve is shown in the Fig. 

1.6. Hypothetically, at a certain limit the sub domain shrinks to the size of a single at 

which the space filling curve would be passing through every single point of the unit 

square, thus traversing the complete domain. 
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Figure 1.5 Second order space filling curve 

 
Figure 1.6 Fourth order space filling curve 



 17

1.8.2.2 Previous Applications of SFC 
 
Space filling curves has been used in varied number of applications. Ogawa [7] used it 

for parallelization of an adaptive Cartesian mesh solver based on 2N- tree data structure. 

The space filling curves were utilized to isotropically divide the domains in smaller 

subdomains and number them. The load balancing for computation on multiple 

processors is done by using the numbering done by space filling curve. Aftosmis et al. [1] 

utilized space filling curves in various applications for Cartesian methods for CFD. They 

employed the space filling curves for reordering, multigrid coarsening, inter-mesh 

interpolation, and to generate single pass algorithms for mesh partitioning. 

 
Dennis [8] employed SFC for partitioning of domain in his study of atmospheric models. 

A gnomonic projection of a cube onto the surface of a sphere was done. The space filling 

curves were used to partition this domain for better parallel performance. Behren et al. [9] 

developed an efficient load distribution algorithm for unstructured parallel grid 

generation. Phuvan et al. [10] used the space filling curves for texture analysis. They 

showed that a one-dimesional image scan which follows a Peano curve to a desired 

resolution preserved two-dimensional proximity is efficient for wavelet transform and 

artificial neural network pattern recognition. Dafner et al. [11] developed a context based 

space filling curve approach for scanning images. 

 
1.8.3 Techniques for Data Access Optimizations 
 
Data access optimizations are modifications made to a code which changes the way in 

which the loop nests are executed. These changes maintain all the data dependencies and 

numerical accuracy of the original computations. There are numerous transformations 

that could be made to a particular code. Also various combinations of these individual 

modifications can be applied to a code with varying degrees of success. The combination 

of changes yielding the best performance is highly code specific. The optimized 

performance is dependent on the various intricate details of the code structure which 

changes from code to code; therefore no particular technique is suggested as universally 

effective. However, the modifications that were considered or rendered, in their original 

or modified form, to the code in this study are given below 
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1.8.3.1 Loop Interchange 

 
 Loop interchange involves reversing the order of two adjacent loops in a loop nest. This 

transformation can be extended to more than just two loops, which is referred as loop 

permutation. This can be generally applied to loops whose order of execution bears no 

effect on the final result. Loop interchange can reduce the stride of an array based 

computation in some cases. The stride is defined as the number of array elements 

accessed in the memory within consecutive loop iterations. The shorter strides lead to 

better data locality and encourage register reuse. In the Algorithm 1.1, simply the ‘i’ 

and ‘j’ loops interchanged. 

 

       Original loop nest    Interchanged loop nest 
INT a[n][n],sum     INT a[n][n],sum 

DO i = 1,n        DO j = 1,n 

    DO j = 1,n       DO i = 1,n 

        sum = sum + a[i][j]            sum = sum + a[i][j] 

    ENDO        ENDDO 

ENDDO     ENDDO   

 

Algorithm 1.1 Loop Interchange 

 

The scope of improvement by the use of this technique is elaborated by Fig. 1.7. We 

assume that all the elements in the array ‘a’ are stored in a column major. The array 

elements are next to each other in the column if their second indices are consecutive 

numbers. It could very well be stored in row major order and the transformation will still 

hold. If the array is large enough it will not fit totally into the cache. 

 

When an element is requested for computation in row major order, say ‘a[i] [j]’in 

this case, a lot of data along with the requested data is grabbed in a stride. We assume 

that the stride size is six array elements. Thus the data grabbed might not contain the 

information pertaining to the required neighboring array elements. So another request for 

the data is made and it is obtained. So in every stride only information pertaining to one 

element is being received and rest of the data is not being used at all. This leads to large 
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number of strides to do the task which translates into large computational time. An 

immediate instinctive approach to rectify this problem of ineffective use data will be to 

change the direction of the stride. So if we can orient the stride to the allocation of the 

data in the memory so that consecutive elements of the array ‘a’ can be accessed in a 

single stride, as shown in transformed algorithm, we can reduce the extra data calls 

associated with each computation inside the loop. Substantial improvements in cache 

performance can be achieved by reducing the excess number of data calls and enhanced 

data reuse. This method will show substantial improvements only if the whole array is 

larger than the cache size. 

 
   

Figure 1.7 (a) Row wise stride access (b) Column wise stride access 

 

1.8.3.2 Loop Fusion 
 
Loop fusion involves taking two neighboring loops which have the same amount of 

iteration space to negotiate during the computation and combining their bodies under a 

single loop instead of two different loops as shown in Algorithm 1.2. This is also referred 

to as loop jamming. This is only plausible only when the bodies of two loops are 

independent of each other. There cannot be any flow, anti, or output dependencies in 

fused loop for which the instructions from the first loop are dependent upon instruction 

from the second loop. Loop fusion results reducing the loop overhead as there is only a 
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single body inside the loop, instead of two separate bodies in two different loops. In this 

case the overhead will be reduced by a factor of two. This reduction of loop overhead 

largely depends on the complexity of the loop bodies.  

 
     Original loop nest    Loop Fusion  nest 
     DO i = 1,n    DO i = 1,n  

      b[i] = a[i]*10    b[i] = a[i]*10 

     ENDDO      c[i] = b[i]/5 

     DO i = 1,n     ENDDO 

  C[i] = b[i]/5 

 ENDDO 

Algorithm 1.2 Loop Fusion 

 
Loop fusion also helps  improve the data locality. This could be seen in the algorithm 

shown. We can clearly see in the original algorithm that the loop sweeps over three 

different arrays in two loops. If the size of the arrays are large enough (larger than the 

cache), then the values of ‘b[i]’calculated in the first loop can be swept out of the 

cache before they can used in the computation n the second loop. When the second loop 

begins the whole array ‘b[i]’ has to be loaded again from the higher memory. This 

leads to ineffective use of data. However, this problem can be overcome by the loop 

fusion. The values of ‘b[i]’are calculated and reused for further calculation in the 

same body before it can be kicked out of the cache memory. This leads to fewer data calls 

which in turn leads to lower cache misses.  

 

1.8.3.3 Loop Blocking 
 
 Loop blocking is dividing the whole computational domain into smaller blocks for the 

purpose of computation. This is generally useful when the body of the nested loop 

contains many large arrays and calculation is repeated over the loop more than once at a 

single call. In the Algorithm 1.3, shown below, we see that the body of the loop contains 

three arrays ‘a’, ‘b’, and ‘c’, associated with each unit/cell. The whole grid is 

divided in to small blocks. There are ‘n’such blocks in the whole grid.  Also we notice 

that the calculation over the body of the loop is repeated ‘m’ number of times. We 

further assume that these arrays are larger than the cache size. 
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Original loop nest    Loop Blocked nest 
     DO j = 1, m    DO i = 1, n/b  

     DO i = 1, n     DO j = 1, m 

       DO ii = (i-1)*b +1, i*b 

  a[i][j] = a[i-1][j] + 1   a[i][j] = a[i-1][j] + 1 

  b[i][j] = b[i][j+1] * 10  b[i][j] = b[i][j+1] * 10 

  c[i][j] = b[i+1][j] / 5   c[i][j] = b[i+1][j] / 5 

      

       ENDDO  

 ENDDO      ENDDO 

 ENDDO     ENDDO 

       

Algorithm 1.3 Loop Blocking 

 

 

        

        

        

        

        

        

        

        

 

Figure 1.8 Computational domain (Blocked) 

 

CFD calculations often require simultaneous calculations over contiguous block of cells. 

We see that in Algorithm 1.3 that the calculations of each array element require the data 

pertaining to the neighboring element. In the original loop, the whole computational 

domain shown in the Fig. 1.8 is solved at the same time. If time the loop sweeps over the 
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entire domain in a row or column wise stride and calculations of each unit cell are done 

using the information stored in the neighboring cells, the information stored in this 

original cell be will be required when the calculations on associated  neighboring cells are 

being performed. This information, however, could be moved out of the memory by the 

time it is recalled. This information had to be searched and reloaded for calculation which 

leads to high latency and cache misses. This situation is compounded since the 

calculation has to be repeated ‘m’ number of times and the information has to be 

reloaded ‘m’ number of times leading to high data misses.  

 

Instead of solving the whole computational domain at the same time, the domain can be 

divided into smaller blocks (indicated by the color) as shown in Fig. 1.8 and computation 

can be carried over these smaller blocks. As shown in the blocked loop nest, the 

computational domain is divided into smaller blocks which fit into the cache and the 

calculation is repeated ‘m’ number of times over this small block. This ensures that the 

data in the cache is effectively reused before it is moved out of the cache resulting in 

enhanced cache performance.   

 

1.8.3.4 Array Merging 
 
This technique is a useful when different elements of an array or data structure are often 

accessed together but are not close together in the memory. This technique is also known 

as group-and-transpose and improves the spatial locality between the array or data 

structure elements. The simplest way to implement this is use of multidimensional array. 

If the array or data structure is already multidimensional this process could be facilitated 

by addition of an extra dimension as shown in Algorithm 1.4. 

 

Original array    Merged array 
     INT a[n],b[n],c[n]  INT abc[n,3] 

 DO i = 1,n   DO i = 1,n 

  c[i] = a[i]+b[i]   abc[i,3] = abc[i,1]+abc[i,2] 

 ENDDO    ENDDO 

  

Algorithm 1.4 Merged Array 
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Another simple technique for multidimensional arrays is to transpose the array 

dimensions by interchanging them as shown in the Algorithm 1.5. This is similar to the 

loop interchange.  

 

Original array    Transposed array 
     INT abc [n, 3]    INT abc [3, n] 

 

Algorithm 1.5 Transposed Array 

 

1.8.3.5 Loop Unrolling 
 
Loop unrolling is simply replicating the body of the loop more than one time to reduce 

the cost of the loop overhead. The loop index in advanced by a prescribed number instead 

of advancing by a single step each time and the loop body is replicated the same number 

of times inside the loop. Instead of checking the loop termination condition after every 

iteration, it is done once in the prescribed number of iterations. The loop overhead is 

reduced because the loop condition is checked less often. More computation is performed 

in every iteration when the loop is unrolled. An example of unrolled loop is shown in 

Algorithm 1.6. 

 

Original loop     Unrolled loop 
 DO i = 1,n            DO i = 1,n 

      b[i] = a[i]*10     b[i] = a[i]*10 

          c[i] = b[i]/5            c[i] = b[i]/5 

 ENDDO      b[i+1] = a[i+1]*10 

        c[i+1] = b[i+1]/5 

        i = i + 2 

       ENDDO 

     

Algorithm 1.6 Unrolled Loop 
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1.8.3.6 Prefetching 
 
Modern processors are much faster than the memory in which the program and the data is 

stored. This means that the instructions cannot be read and the data cannot be fetched fast 

enough to keep the processor busy at all the time. Prefetching is the processor action of 

getting instruction and data from the memory before the processor needs it. If the 

prefetching is done efficiently, a continuous data flow to the processor can be achieved. 

Modern processors have prefetching instructions programmed in them. The prefecthing 

can be customized depending upon the requirements of a code and this would require 

writing machine language instructions at appropriate locations in the code, which is not a 

trivial task. This is generally a suggested method for very large codes.  
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__________ 
CHAPTER  

                                         2         __________ 
 
 

COMPUTATIONAL TOOLS 
 

 

 

This chapter presents a comprehensive description of computational tools and platforms 

that were used in this study. To begin with a discussion of the CFD code UNCLE and the 

numerics involved is presented. The computational architecture employed in this study is 

also described in detail. A brief description of the profiling tool ‘gprof’ and the cache 

simulator tool ‘Valgrind’ follows. These tools will be used to assess the cache 

performance of the codes. 

 

2.1 Description of UNCLE 
 
UNCLE is an in-house code at the University of Kentucky, written by Dr. George Huang, 

designed to meet the challenges of physical problems with complex geometries, 

complicated boundary conditions on parallel computers while maintaining high 

computational efficiency. It was validated by Dr. Chen Hua at University of Kentucky 

using various challenging test cases. The detailed description of the code and validation 

process is presented in the Hua et al [13]. It is a two/three- dimensional, finite volume, 

unsteady, incompressible, Navier-Stokes solver with cell-centered pressure based 

SIMPLE algorithm.  The code is second-order accurate in both time and space. It is very 

flexible in geometry as it can handle grids of various types such as triangular, 

quadrilateral, tetrahedral and hexahedral. METIS [14], a program based on multilevel 
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graph partitioning schemes, is used for grid partitioning. The parallel construction of code 

is done using message passing interface (MPI) protocols and it has worked successfully 

on systems ranging from commodity PC clusters to supercomputers.  

 

The cell-centered pressure-based method is based on the SIMPLE algorithm with second 

order accuracy in both time and space. The numerical flux on the interfaces is computed 

using a second order upwind scheme for all the advection terms and a second order 

central difference scheme for all the diffusion terms. A collocated grid system with the 

Rhie and Chow momentum interpolation method [15] is employed to avoid the 

checkerboard solution of the pressure based scheme. The code is written in FORTRAN 

90 and has been successfully ported to several computational platforms. The details of the 

code formulation are given below and further details may be found in Hua et al [13]. 

 

2.2 Governing equations 
 
The governing equations for unsteady incompressible viscous flow under the assumption 

of no body force and heat transfer are: 

Conservation of Mass 
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where ρ is density, p is pressure, ui are the components of the velocity vector, ni is unit 

normal vector of the interface, τij is tensor of shear force, and specific internal energy is 
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2.2.1 Convective and diffusive fluxes 
 
Figure 2.1(a) shows the schematic diagram for the integration areas for convective fluxes. 

The flow properties on the interface can be obtained by using Taylor series expansion, as 

shown in Eq. (4) 

 

 

 

        (a)            (b) 

Figure 2.1 Schematic diagrams for integration areas. (a) Convective fluxes, and (b) 

Diffusive fluxes [13]. 
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where φ stands for the velocity components and any scalar quantities, the superscript RHS 

and LHS denote the approximation from the right-hand side and left-hand side of the 

interface respectively, and HOT represents higher order terms. By substituting Eq. (4) 

into Eq. (5), interfacial flow properties φf can be obtained. 
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The gradients at the nodal points (cell centers) are evaluated by the Gauss’s divergence 
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where Nface is the total number of interfaces of the cell and V denotes the volume of the 

control cell. 

 

The schematic diagram for diffusive fluxes is shown in Fig 2.1(b). The gradients at the 

interface can be evaluated by using the chain rule as Eq. (7) 
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where the local coordinate system ( ζηξ ,, ) is defined by the orientation of the face 

 

For the triangular mesh in Fig. 2.1(b), ξ is the vector from nodal point P1 to P2, η is the 

vector from vertex V1 to V2, and Ω is the integration area for diffusive fluxes. The 

diffusive fluxes can be approximated by Eq. (8) 
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where φPi denotes the properties at nodal points and φVi denotes the properties at vertices. 

The values at vertices are obtained by averaging surrounding nodal values using inverse 

distances from all surrounding nodal points as the weighting function. 
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2.2.2 Center pressure based SIMPLE algorithm 
 
With the use of an initial pressure field, Pn, we can obtain un, vn, and wn by solving the 

momentum equations in a sequential manner. The solution method is based on the first 

order delta form of the left-hand side (LHS) and the momentum equations can be written 

in the form as Eq. (9) 
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where the coefficients anb  and ac are  
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where subscript c denotes the cell value to be solved, subscript nb denotes the neighbor 

cells, and A denotes the interfacial area. Equation (9) can be solved by using Gauss-

Seidel point substitution. Then, we can obtain u*, v*, and w* with Eq. (12) 
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At this stage u*, v*, and w* satisfy the momentum equations, but they do not necessarily 

satisfy the continuity equation. In order to satisfy mass conservation, the velocity has to 

be interpolated to the interface. In order to avoid checkerboard solutions, the interfacial 

velocity has to be driven solely by the pressure difference evaluated directly at the 

interfaces. To accomplish this without sacrificing any accuracy, the interpolated 

interfacial velocity is divided into two components: one is the velocity component 

without the pressure contribution and the other is solely the pressure contribution. The 

former is first evaluated at the cell center as 
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and then interpolated onto the cell faces. The latter is obtained directly from the pressure 

difference of the two adjacent nodal points, P1 and P2, such that the interfacial velocity 

can be expressed as: 
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where Vf/af is obtained by interpolation from the cell center to the interface as: 
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We further assume that there are corrections to uf
*, vf

*, and wf
*, such that the continuity 

equation can be satisfied 
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We can rewrite Eq. (16) as 
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where the right-hand side in Eq. (17) represents the mass imbalance in the control volume 

cell. We assume that there is a corresponding pressure correction field, p′, which drives 

the velocity corrections according to 
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By substituting the velocity correction equations into the equation for the mass 

imbalance, we can obtain the equations of the pressure correction 
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where anb and ac in the continuity equation are 
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Once the pressure correction is obtained, one can update the pressure field by 

ppp p
nn ′+=+ α1                                     (22) 

where αp is the under-relaxation factor for pressure and is generally a value in the range 

0.5-0.8. Then the velocity correction on the interfaces as well as nodal points is updated 

according to Eq. (14). 

 

2.3 Time discretization 
 
A second-order fully implicit scheme is employed for the temporal discretization. Here, 

we take a one-dimensional equation example  
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where φ is primitive variable, f is interfacial flux, and the superscript n indicates the index 

in time. A deferred iterative algorithm is employed to obtain φn+1 by substituting Eq. (24) 

into Eq. (23), 
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where the subscript m stands for the subiteration level. The final equation is 
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The right-hand side of Eq. (25) is explicit and can be implemented in a straightforward 

manner to discretize the spatial derivative term. The left-hand side terms are evaluated 

based on the first order upwind differencing scheme. The deferred iterative algorithm is 

strongly stable, and the solution φn+1 is obtained by using inner iterations to reach the 

convergent solution of the right-hand side of Eq. (25), corresponding to Δφ  approaching 

zero. At least one subiteration is performed at every time step so that this method is fully 

implicit. 
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2.4 Partitioning approach 
 
Excellent load balancing between the subgrids on each node is achieved through using 

METIS for domain decomposition. METIS can partition an unstructured grid into any 

integer number of zones without losing load balance. It is compatible with many 

platforms and convenient for running CFD codes on a variety of supercomputer to cluster 

architectures. The present partitioning approach has been tested by a number of 

two/three-dimensional geometries. All results show good load balances. The details of 

partitioning are described in detail in Hua et al [13]. 

 

2.5 Description of the Input Files  
 
UNCLE uses structures and arrays to store the flow and geometry data of the 

computational domain.  Most of the data is stored in four key array of structures of the 

form Φ (x,y): φ 1..φ n, where ‘φ ’ is the structure which is associated with any given point 

(x,y,z), and ‘φ i’ is the variable that contains data concerned with the point. This ensures 

that all the similar data associated with the variable ‘φ i’ for all the cells is stored 

contiguously in the memory. These structures contain data related to node, face, vertex, 

and cell. The face structure is a subset of another structure which divides the faces into 

internal faces and boundary faces. UNCLE reads this required data from the input files 

which are given below.  

 

cell.dat – This file contains the total number of cells and information whether the 

simulation conducted is two or three dimensional. Given below is an example of a typical 

file.  

    
 65536  2D 

        1 

        1       65536    fluid fluid* 

 

The number ‘65536’ denotes the total number of a grid points in the computational mesh. 

The number ‘1’ denotes the grid is a one contiguous domain and ‘fluid’ denotes the 

model option.  
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face.dat – This file tells us which vertices and nodes are associated with each internal 

face. The faces are stored in order they occur, when one moves across the cells in a row 

or column wise ‘i-j’ manner. This is followed by similar information about the boundary 

faces with specific boundary conditions. A sample of face.dat is shown below. 

 

      130560 

        2       11      17      2       1 
        2       9       17      4       1 
        . 
        .          
   2       13      23      16      15 
 
        4 
 
        256 wall * wall_R 
        2       10      14      17      16 
        . 
      . 
        2       16      1       20      11 
 
        256 wall * wall_Bottom 
        2       6       11      21      1 
        . 
        . 
      2       13      10      24      16 
 
        256 wall * wall_L 
        2       2       7       25      6 
        . 
        . 
        2       9       6       28      1 
 
        256 inl * inl 
        2       1       3       29      11 
        . 
        . 
        2       5       2       32      6 
 
The first number ‘130560’ indicates the total number of internal faces. It is followed by 

information about each of these internal faces. The faces occur in the increasing order of 

their numbering.  
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The first number in each line of the face information indicates the number of vertices 

associated with that face. It is followed by the vertex numbers and the two node numbers 

on either side of the face. The data is represented in this manner for all the internal faces. 

After the data pertaining to the internal faces is specified the boundary faces data is 

presented. The number ‘4’, following the internal faces, indicate the number of boundary 

condition for the domain. This is followed by the data pertaining to these boundary 

conditions. The first number ‘256’ indicates the number of faces on each domain 

boundary. It is followed by the name of the boundary condition describing if it is a wall, 

an inlet or some other boundary face. The ‘*’ indicates to the information pertaining the 

treatment of the boundary condition in relevant subroutines in the UNCLE code. This is 

again followed by the detailed data for each face similar to the internal faces in the 

manner described above. This pattern continues until all the boundary conditions are 

described. 

 
vertex.dat – This file contains the information about the vertex numbers and their 

geometry coordinates. A sample is vertex.dat shown below. The first number in the file is 

the total number of vertices in the domain. It is followed by the vertex information. The 

first number in each line indicates the vertex number followed by its geometrical 

coordinates. The present file is for a two-dimensional case hence the x and y- coordinates 

are shown. 

       66049 
        1       1.000000        1.000000 
        2       0.000000        1.000000 
        3       0.750000        1.000000 
        4       0.500000        1.000000 
 
dist.dat – This file is required for the turbulent calculations and stores data pertaining to 

distance of a node from the wall. A sample dist.dat is shown below. The first two lines 

containing data pertaining to the geometry of the boundary faces and also is the standard 

syntax which is used for plotting the data. The number of boundary points is 769 and the 

number of boundary elements is 768.  It is followed by the geometrical coordinate data 

for the vertices. Since the case presented here is two-dimensional the x and y- coordinates 

are shown. The vertices occur in increasing order of their numbering. The following data 

is the node connectivity data which is useful in plotting.  
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      variables = "x", "y" 

       zone n= 769  E= 768  F=FEpoint, ET=triangle 

     1.00000000000000        0.00000000000000D+000 

        1.00000000000000        3.90600000000000D-003 

    . 

    . 

    . 

        1.00000000000000      5.69400000000000D-003 

        1.00000000000000        7.81200000000000D-003 

           1           2           2 

           2           3           3 

           . 

     . 

           5           6           6 

 

 

2.6 Description of Critical Subroutines  
 
UNCLE contains various subroutines which perform a variety of operations required by 

the users. When executed the data is read from the input files and a few initial 

subroutines calculate the necessary information to set up the geometry, initial, and 

boundary conditions. The program then moves to the iterative core which contains 

iterative loops over numerous subroutines which compute the CFD calculations. As 

mentioned earlier, almost all numerically intensive codes spend 90% of the time in about 

10% of the code while executing. This rule of thumb for large computer codes stands in 

the case of UNCLE. A profiling of the unmodified code revealed that a large percentage 

of the time was spent in seven critical subroutines inside the iterative core of the code. 

These core subroutines compute the various flow variables and solve them using the 

Gauss-Siedel solver. Given below is the discussion of these critical and other major 

subroutines. 
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1) i_sovler_gs_velocity    
 
As mentioned earlier, UNCLE employs a delta form approach to solve the equations. An 

initial value for a physical property ‘φ ’, if not provided, is assumed and a small change 

delta ( φΔ ) is added to the initial value at every iteration until satisfactory solution is 

achieved. The calculation of each ‘ φΔ ’ involves the ‘ φΔ ’ of all the neighboring cells.  

 

This subroutine solves for the delta change in velocity at the cell center using a Gauss-

Seidel matrix solver. It contains a DO loop over cell centers (or cells). At the end of each 

complete sweep over all the cells the velocity at all the nodes is updated. To ensure a 

stable convergence and accuracy this iterative loop over cells is repeated more than once 

each time this subroutine is called, with the use of another iterative loop. This number of 

iterations will be from hereon referred to as inner iterations for velocity. The number of 

inner iterations for velocity depends upon the complexity of the case.  

 

2) i_solver_gs_p  
 
This subroutine solves for pressure-related terms at the cell center using a Gauss-Seidel 

matrix solver. It consists of a DO loop over cell centers. It also employs inner iterations 

for pressure for purpose of stability and accuracy similar to those in i_sovler_gs_velocity.  

 
3) i_solver_gs_ke 
 
This subroutine is similar to the above two subroutines applied to the turbulent 

calculations. It is also dominated by DO loops over cells. The variables of turbulence 

equations are updated at the end of each iteration. The inner iteration employed for 

stability will be referred as inner iteration for turbulence.  

 

4) Continuity 
 
This subroutine applies the Rhie and Chow momentum interpolation scheme to get 

information related to pressure terms. It is dominated largely by DO loops over the faces. 

All the coefficients of the pressure related terms are calculated in this subroutine. This 

subroutine calls  i_solver_gs_p, set_bc_vel and set_bc_p.  



 38

5) cal_velocity 
 
This subroutine determines fluxes on the faces and calculates the coefficient terms related 

to the velocity. Akin to continuity it largely contains DO loops over faces. This 

subroutine calls i_solver_gs_velocity and set_bc_vel. 

 

6) cal_ke 
 
This subroutine is similar to the cal_velocity and calculates the turbulent fluxes on faces. 

All the turbulence related coefficients are calculated here. This subroutine in turn calls 

i_solver_gs_ke. 

 

7) gradients_2d 
 
This subroutine calculates the velocity gradients required by other subroutines for the 

computations. It is also dominated by DO loops over faces.  

 

8) set_bc_vel/_set_bc_p/set_bc_ke 
 
These subroutines just set the boundary conditions for velocity, pressure, and the 

turbulence at the end of each time step.  

 

To summarize the first seven critical subroutines, the first three are largely do-loops over 

the cells and involve repetitive inner iterations over these loops, making them the 

costliest subroutines in terms of computational time. The next four are dominated by 

loops over the faces, with smaller additional cell loops. These subroutines typically 

account for about 80-95% of the entire execution time depending upon the grid size.  

 

2.7 Gprof 
 
Profiling allows the user to investigate the working of his code. It tells what amount of 

time was spent in each subroutine and which other subroutines do a subroutine call while 

it is being executed. This allows the user to identify the slower subroutines and consider 

changes to make it execute faster. It tells which subroutines are being called for execution 
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more or less often than expected and spot the bugs in the program that might otherwise 

go unnoticed. It can be helpful in case of complex and lengthy codes which are very hard 

to analyze by reading the source. If a certain feature (subroutine) of the code is disabled, 

no information regarding that feature will show up in the profiling. The ‘gprof’ tool was 

used to do the profiling of the codes in this work. 

 

There are three steps to be followed to profile a code with gprof during the profiling: 

 
1) Compile the program and link it with profiling enabled 
 
The first step in generating a profile is to add the ‘-pg’ option while compiling the 

code.If the general way of compiling the code using the ‘mpi’ enabled FORTRAN 77 

compiler is  

 mpif77  uncle.f90   -o uncle.exe 
 
The profiling could be enabled by  

 mpif77  uncle.f90   -pg  -o uncle.exe 

 

2) Executing the program 
 
Once the program is compiled, it has to run to acquire the data need by the ‘gprof ’ for 

profiling. The program is run as usual using the normal arguments.  

 
 mpirun –np 1 ./uncle.exe 
 
The program will run normally giving the usual output but it will run a bit slowly because 

of the extra time spent in collecting and writing the required profiling data. The profile 

data is written to a file called ‘gmon.out’ just before exiting in the program’s current 

working directory. Any existing file of that name and its content is overwritten. 

 

3) Run ‘gprof’ and analyze the profiling output 
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There are various options available for analyzing the output. They are given below. 

 

Flat profile: 

Flat profile gives the time spent in each function and the number of times each function 

was called. This is the kind of output desired in this study as it gives the time spent in 

each subroutine concisely and helps the key subroutines to be identified for the 

optimization.  Hence it is described below.  

 

The functions are sorted by the decreasing order of the time it took for execution, 

followed by decreasing number of calls made to them, which is followed by functions 

being listed in alphabetical order. The flat profile starts with information about the 

sampling which tells us how often the samples were taken.  It gives a rough estimate of 

margin of errors associated with each time figure. In this example each sample count is 

0.01 seconds which correlates to a 100 Hz sampling rate. It means that a sample was 

taken in every 0.01 seconds. If the runtime for the program is in the order of sample 

count, say 0.1 seconds, only 10 samples were taken during the run and the values 

reported cannot be considered statistically reliable, as the number of samples were very 

small. So for these values to be very reliable the runtime of the program should be 

considerably larger than the sample count.  Some of the terminology that appears in the 

flat profile is given below. 
 

% time  

This gives the percentage of the total time spent in a particular function. The sum of the 

%time taken by all the subroutines should add up to 100%.  

cumulative seconds  

This is the cumulative total number of seconds that were spent executing a particular 

function, in addition to the time spent in all the functions above this function in this table.  

self seconds  

This is the number of seconds spent on executing a particular  function alone. This is the 

criterion by which the functions are sorted in the flat profile.  
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calls  

 This is the number of times a function was called. If a function was never called or was 

not compiled during the profiling enabled, this field would be left blank.  

 self ms/call  

This gives the average number of milliseconds spent in a particular function every time it 

is called. If it is not compiled or never called, this field like the one above will be left 

blank. 

total ms/call  

This gives the average number of milliseconds used up by a function and its descendants 

per call, if the function is profiled. Otherwise, the field is left blank. 

name  

This simply gives the name of the function whose data is mention in the row. 

 

A sample flat profile for UNCLE is shown below. 

 

Table 2.1 Flat profile for UNCLE code 
 
Each sample counts as 0.01 seconds. 

  %   cumulative   self          self     total 

 time   seconds   seconds calls  ms/call  ms/call       name 

 24.34  21.33     21.33   400   53.33    53.33   i_solver_gs_vel 

 23.85  42.23     20.90   400   52.25    52.25   i_solver_gs_p_ 

 21.54  61.11     18.88   400   47.20    103.71  continuity_2d_ 

 15.89  75.04    13.93   400   34.83    88.29   cal_velocity_2d_ 

 8.73   82.69     7.65    401   19.08    19.08   gradients_2d_ 

 2.81   85.15     2.46    401    6.13    6.13    cal_vertex_v_ 

 1.84   86.76     1.61    400    4.03    4.03    cal_vertex_p_ 

 

The names of the subroutines are in the far right column. The left most column shows the 

percentage time taken by the subroutines. The subroutines are in the flat profile are 

always given in decreasing order of the percentage time consumed. The flat profile 

contains the data of all the subroutines in the program but for simplicity only the major 
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subroutines are shown here. So a look at the percentage time column helps one identify 

the major time consuming subroutines. The next two columns contains data about the 

individual and cumulative time consumed while execution of each individual subroutines. 

It is followed by the column that shows the number of times these subroutines were 

called. As the computations were done for 400 iterations most of the subroutines have 

400 against their name in this column. A couple of the subroutines which are used to set 

up the initial flow field are called one extra time, hence the number 401 in this column 

for the appropriate subroutines. The next column shows the times spent in the subroutine 

for each call without considering the time spent in the subroutines which this particular 

subroutine called. The following column gives the total time consumed by a subroutine 

with due consideration to the other subroutines called by this particular subroutine. As the 

number of calls for major subroutines is about the same the time taken per each call 

easily relates to the total time consumed by the subroutines which is presented in the third 

column.  

 

Call Graph: 
 
The call graph gives detailed analysis for each function. It tells how many times a 

function was called by other functions and how many other functions it called and 

estimated time associated with all of the above functions. This might help in eliminating 

time consuming function calls.  

 

Annotated Source Listing: 
 
 The annotated source listing gives out a copy of the source program along with the 

number of times each line in the source code was executed.  

 

2.8 Valgrind 
 
Numerically intensive CFD codes are often plagued with memory and performance 

problems. One of many tools that provide help concerning this issue is Valgrind. 

Valgrind is a set of debugging and profiling tools for codes running on Linux. It helps in 

tracking the memory leaks and other performance issues. Valgrind is an open source tool 
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and it does not require the user to recompile, relink, or modify the source code. On the 

other hand, it has the disadvantage of slower runtime. 

 

Some of the benefits associated with Valgrind are: 

• Uses dynamic binary translation so that modification, recompilation, or relinking of 

the source code is not necessary. 

• Debugs and profiles large and complex codes. 

• Can be used on any kind of code written in any language. 

• Works with the entire code, including the libraries. 

• Can be used with other tools, such as GDB. 

• Serves as a platform for writing and testing new debugging tools. 

 

Valgrind consists of five major tools Memcheck, Addrcheck, Cachegrind, 

Massif, and Helgrind which are tightly integrated into the Valgrind core. 

 

Memcheck checks for the use uninitialized memory and all memory reads and writes. All 

the calls to malloc, free, and delete are instrumented when memcheck is run. It 

immediately reports the error as it happens, with the line number in the source code if 

possible. The function stack tracing tells us how the error line was reached. The tracks 

are addressed at byte level and initialization of values is addressed at bit level. This helps 

Valgrind detect the uninitialization of even a single unused bit and not report spurious 

errors on bitfield operations. The drawback of memcheck is that it makes the program run 

10 to 30 times slower than normal. 

 

Addrcheck is a toned down version of Memcheck. Unlike Memcheck it does not check 

for uninitialized data, which leads to Addrcheck detecting fewer errors than Memcheck. 

On the brighter side it runs approximately twice as fast (5 to 20 times longer than normal) 

and uses less memory. This allows the programs to run for longer time and cover more 

test scenarios. In summation, Addrcheck should be run lo locate major memory bugs 

while Memcheck should be used to do a thorough analysis. 
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Cachegrind is a cache profiler. It performs detailed simulation of the L1 and L2 caches in 

the CPU. It helps in accurately pinpointing the sources of cache misses in the source 

code. It provides the number of cache misses, memory references, and instructions 

executed for each line of source code. It also provides per-function, per-module and 

whole-program summaries. The programs run approximately 20 to 100 times slower than 

normal. With the help of the KCacheGrind visualization tool these profiling results can 

be seen in a graphical form which is easier to comprehend. This tool was exhaustively 

used in this study. 

 

Massif is a heap profiler. The detailed heap profiling is done by taking snapshots of the 

program’s heap. It produces a graph showing heap usage over time. It also provides 

information about the parts of the code that are responsible for the most memory 

allocations. The graph is complemented by a text or HTML file that includes information 

about determining where the most memory is being allocated. Massif makes the program 

run approximately 20 times slower than the normal.  

 

Helgrind is a thread debugger. It finds data traces in multithreaded codes. It searches for 

the memory locations which are accessed by more than one thread but for which no 

consistently used lock can be found. These locations indicate of loss of synchronization 

between threads and could potentially cause timing-dependent problems.  

 
2.9 Kentucky Fluid Clusters 
 
In this section we will focus on two different clusters, Kentucky Fluid Clusters 4 and 5 

(KFC4, KFC5). On both systems the Intel 8.0 and 9.0 FORTRAN90 compiler (ifort) with 

-O3 optimization and LAM MPI were used for the purpose of compiling UNCLE for this 

study. Since these clusters are controlled in-house, nodes can be readily restricted to a 

single job at a time; as such, the difference between the CPU time and the walltime has 

proven negligible, so walltime is used as the basis of the testing. Time values also 

exclude time associated with the input and output operation (I/O time). 
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Figure 2.2 Kentucky Fluid Clusters (KFC) 4 and 5 

 

Kentucky Fluid Cluster 4 is a 32 bit architecture constructed of AMD Athlon 2500+ 

Barton processors. The current configuration is a 47 node system linked by two networks: 

a single Fast Ethernet (100 Mb/s) switch and a single Gigabit (1Gb/s) switch. Each node 

has 512 MB of RAM and each processor has a L2 cache of 512 KB. The server is 

separate from the nodes and plays no direct role in the iterative computation. KFC4 is 

housed at the University of Kentucky.  

 

Kentucky Fluid Cluster 5 is a 64-bit architecture, constructed of 47 AMD64 2.08 GHz 

processors linked by a single Gigabit (1Gb/s) switch. Each node has 512 MB of RAM 

and each processor has a L2 cache of 512 KB. The server is separate from the nodes and 

plays no direct role in the iterative computation. Like KFC4, KFC5 is housed at the 

University of Kentucky.  
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__________ 
CHAPTER  

                                         3 
        __________ 

 
 

PRELIMINARY RESULTS 
 
 
This chapter presents a discussion of techniques which were employed with varying 

degree of success in this research. The original unmodified uncle code went through 

some modifications to arrive at a cleaned up version of the code. The code was checked 

for redundant if-then and do loops and they were either removed of modified accordingly 

to improve the performance of the code. The subroutines that essentially had the same 

iteration space were merged together in the fashion as described under the loop fusion 

section. Also the part of the code that was not used in the computation was commented 

out to avoid unnecessary data misses. An improvement of approximately 5% was 

observed in walltime for large grids. So this slightly tuned up version was used as the 

basic version for further modification.  

 

3.1 Space Filling Curve Test Case 
 
The lid driven cavity was chosen as the test case for steady state computations. The lid 

driven cavity, shown in the Fig. 3.1, is a fairly standard test case with simple boundary 

conditions. It was chosen because it has simply geometry yet a complex flow pattern. It 

is also easy to generate and divide into parts. It is treated as a unit square with a moving 

wall on the top. The top wall has the non-dimensional u-velocity value as unity and v-

velocity value as zero. The other three walls have a no-slip boundary condition. 
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Figure 3.1 Schematic diagram showing the lid driven cavity 

 
Figure 3.2 A 256x256 computational grid for lid driven cavity 
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The structured grid was used in this case as it is easy to construct and fit into the square 

cavity. A computational grid for a 256x256 grid is shown in Fig 3.2. 

 

As mentioned earlier UNCLE requires certain input files namely cell.dat, vertex.dat, and 

face.dat to read in the input data. In the original grid generator, the numbering of the 

face, cell, and vertex was done by moving from cell to cell in a row wise (i-j) manner. 

The numbering started from the lower left hand corner. After the cell and all the internal 

faces and vertices were numbered, the next cell to be numbered was the adjacent one in 

the next column. After all the cells in a row were numbered, the numbering would 

continue with the cell at lower left hand corner of the next row, hence the name i-j path. 

The path traversed by this is shown with black arrows in the Fig. 3.3. In this fashion all 

the cells were numbered and the boundary faces were numbered only after all the internal  

 

Figure 3.3 Contrasting i-j and SFC paths in a grid 
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faces were assigned numbers. The cell, face, and vertex numbers were written in these 

input files in the manner they were assigned. 

 

To have flexibility in grid generation, a grid generation code ‘grid.c’ was written in 

C/C++, which generated files in the aforementioned manner. The time for code execution 

(walltime) was calculated using appropriate MPI commands. There were two walltime 

calculations, first including the time for reading input and writing output, the second 

being the time spent purely on calculations. As dedicated access to the clusters was 

ensured, the walltimes were pretty close to the CPU time and later was considered for 

timing tests.  

 

As the approach adopted in this research is to optimize the cache behavior to speed up 

the CFD code, it is necessary to obtain a general pattern of cache behavior. It is not 

feasible to run the codes for various grid sizes till convergence to study the cache 

behavior because the time involved would be enormous. Fortunately the initial tests done 

with various grid sizes revealed that the cache behavior tends to stabilize after the initial 

developments by the time 400 iterations are completed [18]. The cache misses tend to 

flatten out after 400 iterations, so running a code for same number of iterations would 

give a very good estimate of the cache performance. So unless mentioned otherwise, all 

the cache simulation tests were done for 400 iterations.  

 

A few preliminary speed tests were done using the valgrind cache profiling tool with 

grids of different size on KFC4 to get the basic cache performance data. The cache 

performances of these test cases are shown in the Fig. 3.4. Ideally, we would like to have 

zero miss rates in both the caches but it is not feasible in most practical cases. The 

smallest grid used was 16x16 and it showed the ideal zero L2 cache miss rate and a L1 

miss rate of about 0.8%. As the grid size was increased, it was observed that the cache 

behavior started to depart from the optimum. When the grid size was increased to 25x25, 

the L1 cache miss jumped drastically from 0.8 % to 9.5% and L2 cache miss rate jumped 

from zero to 3.3%. The L1 and L2 cache misses were about 10% and 9% respectively for 

the grid size of 50x50. This high miss rate continued in the same range from hereon with 
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the increase in the grid sizes. It is evident that the code had the capability to perform at 

near zero cache miss rate but the increase in the grid size clearly is causing departure 

from this behavior.  

 
Figure 3.4 Cache performances for grids of various sizes 

 

A profiling of the two-dimensional code version was done using the gprof tool and the 

walltimes taken by critical subroutines of two grid sizes 16x16 and 256x256 for 5000 

iterations are shown in Fig. 3.5. As we move from a smaller grid to a larger grid we 

expect increase in time taken by these subroutines owing to the larger number of grid 

points. This behavior was extant in this case but the growth in these subroutines from a 

smaller grid to a larger grid size was found to be very disproportionate. The largest 

growth in time taken was observed in the Gauss-Siedel solver subroutines followed by 

the subroutines gradients, cal_vel, and continuity. The increased times taken by these 

subroutines were very consistent with the cache miss rate. So the attention was focused 

on a technique which could potentially reduce the time taken by all the subroutines at the 

same time without necessarily changing the way the computations were done.  
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Figure 3.5 Comparison of times taken by critical subroutines 

 

In the earlier cases the numbering was done in the traditional ‘i-j’ manner. To calculate 

the physical parameters of a cell, UNCLE requires the values of the physical parameters 

of the neighboring cells. So it would be beneficial to have the parameters of the 

neighboring cells readily available when required. This is not always possible on large 

grids where the numbering was done in ‘i-j’ manner because by the time calculations are 

being done at cells near the end of a row the data pertaining to cells at the start of the row 

is flushed out of the cache. This data is required again when the calculations on the cells 

at the start of the next row are being performed because the former are now a part of 

neighboring cell set. This process repeats itself whenever every new row is being 

calculated and ofcourse at every iteration and sub-iteration. This leads to a higher 

number of data calls and cache misses which makes the code run more slowly. So using 

the space filling curve for numbering the cells, faces, and vertices could be beneficial as 

the recursive nature of the space filling curve requires it to traverse neighboring cells 

before moving to the distant ones. As the space filling curves moves through every point 

in an N-dimensional space, every cell would be numbered.  
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Therefore the ‘grid.c’ grid generator was accordingly modified to alter the numbering 

scheme using the Hilbert’s space filling curve. As the space filling curves moves among 

the neighboring cells, covering each cell in the vicinity before moving to a farther one, it 

ensures better overall spatial data locality. This contrast to the ‘i-j’ manner can be seen in 

Fig. 3.3. The data related to the adjoining cells almost always can be procured from the 

cache without reaching for the higher memory resulting in fewer data calls and lower 

cache misses. A larger computational grid and the space filling curve used to number the 

grid is shown in the Fig. 3.6.  

 

Figure 3.6 Computational grid blocked by space filling curves 

 

The space filling curves inherently divides the whole grid into blocks of smaller sizes. 

The domain instead of being solved as a whole in some random manner is now being 

solved a ‘block’ at a time. This phenomenon can be clearly seen from Fig. 3.6. To start 
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with all the cells inside the green square are solved first and when the calculations are 

done the next three blocks containing same number of cells in the green square are 

solved. It is to be noted that the next higher block designated by the blue square contains 

four smaller blocks of size designated by the green square. When all the four blocks 

inside the blue square are solved the whole process repeats itself with the blue square 

now being the basic block size, until whole of the grid is covered.  

 

3.2 Space Filling Curve Results 
 
The space filling curve scheme seemed promising but it did not yield encouraging 

results. The space filling curve can be easily generated only for a square grid with side of 

2n (where n can be any integer), which restricted our ability to test any random grid size. 

The results are presented for comparison in the Fig 3.7 and 3.8 and Table 3.1. The 

walltime presented is for 1000 iterations and is normalized by the grid size. The data 

calls are also divided by a factor of ten so that it can be easily compared to the cache 

misses.  

 

Coincident with the initial findings we see that there are negligible L1 miss rates and 

almost zero miss rates for a grid size of 16x16 in both the cases. This indicates that the 

grid size nearly fits into the L1 cache. As we moved to the grid size of 32x32 we see an 

increase in the cache misses which increase a bit more for a grid of 64x64 and tends to 

asymptote for grids of higher sizes. There was a small reduction (~2%) in walltime for 

grids of smaller sizes and the effect was most noticeable on the 256x256 grid where the 

reduction in walltime was about 5%. 

 

Though the space filling curve scheme did not alter the L2 cache miss rate considerably, 

a significant improvement in L1 cache misses was noted for all the larger grid sizes 

indicating the spatial data locality in the L1 cache. As the latency time associated with 

the L1 misses is not very large when compared to that of L2 and other misses, the L1 

cache improvements could not manifest itself into large overall reduction in walltime.  
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Figure 3.7 Walltime, data calls and cache misses as a function of grid size for i-j 

numbering scheme 

 
Figure 3.8 Walltime, data calls and cache misses as a function of grid size for SFC 

numbering scheme 
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Table 3.1 Comparative profiles of i-j path and SFC path for various grid sizes 

 16x16 32x32 64x64 256x256 

Grid Type IJ SF IJ SF IJ SF IJ SF 
Total Time 
(seconds) 

0.702 0.688 6.723 6.542 33.78 33.70 597.9 567.8

i_solver_gs_velocity 
0.12 0.20 1.89 1.82 7.62 7.49 

 
136.8 

 
135.8

i_solver_gs_p 
0.18 0.18 1.33 1.35 5.39 5.33 

 
132.9 

 
131.2

cont_2d 
0.11 0.05 1.16 1.08 8.14 8.17 

 
132.0 

 
124.0

cal_velocity_2d 
0.14 0.09 1.23 1.15 8.32 8.33 

 
110.2 

 
90.0 

gradients_2d 
0.03 0.06 0.60 0.50 2.19 2.31 

 
52.1 

 
55.3 

other 
0.11 0.11 0.52 0.64 2.12 2.07 

 
34.1 

 
31.0 

 
 

The ability of this technique to effect the L1 misses while causing no effect of L2 misses 

is intriguing but a possible explanation is discussed here. The grids constructed with the 

‘i-j’ manner were not exactly random; instead they were calculated in a deliberate 

pattern. The neighboring cells set for two contiguous cells were close together in most of 

the cases. Owing to the large L2 cache sizes the calculations on the neighboring cells 

were done near coincidently without any large L2 cache misses because the information 

was probably already present in the L2 cache. However the L1 cache is much smaller 

and could not retain the data pertaining to the neighboring cells all the time, hence we 

see more L1 misses in the ‘i-j’ case when compared to the space filling curve path. If the 

grid was more random in manner we could probably have seen some significant 

improvements in the walltime but this hypothesis could not be tested because of lack of 

such random grids.  

 

The results in the Table 3.1 for the large 256x256 grid clearly show small improvement 

in the continuity and cal_vel subroutines. On the other hand the Gaussian solver 

subroutines which are predominantly loop over cells showed negligible gains; hence they 

became primary focus in the next steps of the optimization process.  
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3.3 Loop blocking 
 
The profiling of the unmodified code done using the gprof tool for various grids 

suggested that the two Gauss-Siedel solvers for the velocity (i_gs_solver_vel) and 

pressure (i_gs_solver_P), shown in Fig. 3.5, were the two critical and also the costliest 

subroutines in terms of computation for grids of substantial (or practical) sizes.  Both 

these subroutines contained internal sub-iterations over the whole computational grid (or 

block in case of parallel processing) to ensure accuracy and a stable solution for each 

time step.  

 

During these sub-iterations the change in velocity (Δ v) and pressure (Δ p) were 

calculated and added to the velocity and pressure respectively calculated at the previous 

timestep. To calculate the Δ v and Δp of each cell the Δ v and Δp of the neighboring 

cells are required which thereby translates into the data calls.  This operation is repeated 

in each subroutine for a prescribed number of internal sub-iterations.  

 

When the computation is performed over a large block or grid size the data called in for 

computation of a particular cell eventually squeezes out (data miss) of the L2 cache as 

there is data coming in for the computation performed over a distant cell and occupies 

the space in the L2 cache. As mentioned earlier, this operation is carried out for a 

prescribed number of sub-iterations, the data is squeezed out for the same prescribed 

number of times and this leads to subsequent recalls leading to huge data misses in the 

these subroutines.  

 

The sub-iterations are only meant for the purpose of accuracy. So if the data can be 

reused before it can be moved out of the L2 cache, it will significantly reduce the data 

misses associated with these two subroutines. This leads to the idea of loop blocking. 

Loop blocking improves the temporal and spatial locality of the data. By dividing the 

domain into smaller cache friendly blocks we can ensure that the calculations are 

performed on a contiguous set of data and this data will be reused in the near future. 
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The domain available for computation was further divided into smaller cache-friendly 

subblocks during the computation in the two Gauss-Siedel solver subroutines as shown 

in the algorithms 3.1 and 3.2. The size of the cache-friendly subblocks was determined 

by conducting some experiments with subblocks of different sizes. The subblock size of 

30x30 was found to fit snugly into the L2 cache. During the computation of the Δ v and 

Δ p of all the cells in the smaller subblock most of the data required for  the 

computations remained in the cache and was readily available for calculation (and 

subsequent recall for internal iteration). 

 

 Do iter = 1, nstep  

Do i= 1, block 

 Call Δv or Δp of neighboring cells 

 Calculate the Δv or Δp of cell 

Enddo 

Enddo 

 
Algorithm 3.1 The Gauss-Siedel subroutines in the unmodified UNCLE code 

 

Do i= 1,nblock 

Do iter = 1, nstep  

Do j=1,subblock  

 Call Δv or Δp of neighboring cells 

 Calculate the Δv or Δp of cell 

Enddo 

Enddo 

Enddo 

 

subblock = cache friendly block size 

nblock = block/subblock 

 

Algorithm 3.2 The Gauss-Siedel subroutines in the modified UNCLE code 
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In this way the data can be efficiently used before being moved out of the L2 cache 

which leads to reduction in the data misses associated with those two subroutines and 

reduction in the walltime.  An important thing to note is that the computation done in the 

code with the loop blocking is fundamentally similar to the ones done in the non-blocked 

version but they are not exactly the same at every step. By applying the loop blocking in 

the Gaussian solver subroutines we are changing the way the computation of Δ v and Δ p 

is done in the internal subiteration, because some of the Δ v’s and Δp’s at the boundary 

of the blocks cannot be updated until the end of the subiteration. This might lead to 

minor discontinuities at the boundaries but results presented later show that they 

negligible. 

 

3.4 Efficient Data Calling/Optimized Data Access 
 
After the data misses and the corresponding walltimes of the two Gauss-Siedel 

subroutines were reduced, the attention turned to next set of critical subroutines, cal_vel 

and continiuty, and a minor subroutine, gradients. 

 

UNCLE is an unstructured code, which means there is no definite and defined structure 

for all the cells in a domain. The cells can assume any shape among the triangle, 

quadrilateral, hexagon, and octagon and cells of different geometry can coexist inside the 

same computational domain. As the cells used in the computation are of fairly complex 

structure, it is almost impossible to align their faces to standard Cartesian axes. To 

overcome this difficulty local Cartesian axes are assumed parallel and perpendicular to a 

face and later transformed to standard Cartesian axes by multiplying with a 

transformation matrix. For a two-dimensional case this transformation of each face has 

four elements in it. Another four elements associated to a face are its two vertices and 

two cells on either side of it.  Also we have the x-coordinate and y-coordinate of the 

center of each face associated with it.  This leaves ten elements being associated with 

each face. Some additional elements are added to the existing ones in the three 

dimensional calculations. 
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The faces are further divided into two data structure types. The first being ‘Internal’ 

which contains all the internal faces of a computational domain and the other being ‘BC’ 

(Boundary Condition) which contains all the faces on the boundary of a computational 

domain. The above mentioned ten elements are required for computation in the 

aforementioned subroutine cal_vel, continiuty  and gradients, all of which contain the 

two data structure types ‘Internal’ and ‘BC’. 

 

All of the ten elements are called for each face in the two data structure types and 

assigned to a local variable and the computation is done using the local variable. The 

assignment is done in the following manner  

 

For ‘Internal’ 

 xx = internal%face(iface)%x 

and  for ‘BC’ 

 xx = bc%face(iface)%x 

 

 xx = local variable 

 x = element associated to the face 

 
As all ten elements are typically called upon at the same place in the code, it would be 

beneficial if all of them were stored at the same place using a cache-friendly two 

dimensional array instead of a pointer. This could make use of the spatial data locality 

principles. When a data is accessed, a bunch of data along with the requested data is 

grabbed from the memory. If all the data pertaining to the cell is stored in the same place, 

chances are that relevant data is grabbed along with the requested data and is already 

present in the cache when the request for it is made. This will act like data prefetching.  

The difference between the two methods can be seen in Fig. 3.9. Two new two-

dimensional array variables ‘facex’ (for integers) and ‘facedata’ (for floating point 

numbers) were introduced and were used to store the data. The allocation to the local 

variable was made in the following manner as compared to above 
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For ‘Internal’ 

 xx = internal%facex(iface,num) 

 xx = internal%facedata(iface,num) 

 

For ‘BC’ 

 xx = bc%facex(iface,num) 

 xx = bc%facedata(iface,num) 

 

where each ‘num’ corresponds to a different element of the face.  

 
This leads to more efficient data storage and memory allocation and also to reduction in 

the data misses and the walltimes.  Further improvement can be achieved by integrating 

the two data structure types ‘Internal’ and  ‘BC’ and thus removing the dependence of 

the variables  ‘facex’  and ‘facedata’ on the two data structure types (removal of the 

remaining pointer %). This though being a simple concept can turn out to be complicated 

in application and also undermine the advantages of having two data structure types in 

various other parts of the code. It is to be noted that no fundamental change is done in the 

way the computation is being done unlike the case with loop blocking. Data that is being 

is called upon for computation is being called in a more cache friendly manner.  

 

3.5 Code Versions 
 
The tuned up version as described in the beginning of the chapter, after removal of 

redundant statements and rearrangement of statements with in a loop, was designated as 

the basic version U1. The code that incorporated the two dimensional arrays instead of 

the pointers was named U2. The version that employed the subblocking in the Gaussian 

solver subroutines was called U3. Finally, all the modifications of the above two codes 

U2 and U3 were combined in the same code to arrive at the final version U4. All the 

versions with turbulent calculations have been designated with ‘T’ instead of ‘U’.  
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Figure 3.9(a) Original data structure 

 
 
 

 
 
 

Figure 3.9(b) Modified data structure 
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 3.6 Results 
 
It is evident the smaller subblocks will fit better in the memory and have fewer data 

misses. But if we use very small subblocks then the extra communication cost may 

eclipse the advantage gained in walltime due to improved cache performance. Also we 

might have instabilities or discontinuities growing at the boundaries of the subblocks 

because they are not being updated at every subiteration within the Gauss-Siedel point 

solvers. So a series of tests with subblocks of different sizes were done. 

 

 The results of the preliminary tests done with subblock of various sizes are shown in 

Fig. 3.10. The walltime considered throughout this study is the time taken for 

computation excluding the time taken for file input and output. It is normalized by 

number of iterations and grid size for ease of comparison. In this case the walltime 

presented here is for 1000 iterations We can see that the code with subblocks of 70x70 

shows an improvement (~10-12%) over the basic unmodified version but it is less than 

the improvements made by the code with 10x10 subblocks which is about 35%. The 

subblock size of 10x10 was the most efficient subblock size. A subblock of lower size 

showed diminished performance possibly due to increased loop overheads. 

 

A comparison of the results of basic UNCLE version U1 and the subblock 10x10 for 

smaller grids revealed that the codes behave in a similar fashion up to a grid size of about 

900 (30x30 subblock) grid points as seen in Fig. 3.11. At that point we see a sudden and 

jump in the walltime of the basic version which indicates the likelihood of deteriorating 

cache performance at that point. The walltimes increased initially after this point and 

then it started to asymptote displaying the same poor performance.  

 

This suggests that the subblocks as big as 30x30 can be used instead of 10x10 without 

any significant loss of performance because the subblock of 30x30 could easily fit into 

the L2 cache. Though a sublock of 10x10 is a bit faster, a subblock of 30x30 would 

require dividing the domain in lesser parts and this would ensure that we have less 

instability building up at the boundaries of the subblocks. To confirm the cause of the 

deteriorating code performance a valgrind cache simulation was done and the results are  
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Figure 3.10 Walltime comparisons for various code versions 
 
  

 

 
 

Figure 3.11 Determination of efficient subblock size 
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Figure 3.12 Walltime and cache misses for various grid sizes 
 
 

 
 

       Figure 3.13 Walltime and cache misses for smaller grids 
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shown in the Fig. 3.12 and 3.13. It can be noted that there is a strong correlation between 

the cache misses and the walltime in both the cases. It appears that the performance 

enhancement was indeed cache driven. 

 
The changes in the face data structure was made in the subroutines throughout the code. 

The loop blocking was applied to Gauss-Siedel solvers for velocity and pressure because 

the performance of these subroutines deteriorated the most at the larger grids when 

compared to the small grids as shown in Fig. 3.5. The walltime tests were done with 

various versions of the code on KFC4 for numerous grid sizes and are shown in Fig 3.14.  

The walltime was normalized with the grid size for sake of comparison among various 

grid sizes. The data calls were divided by a factor of ten so they could be placed on the 

same figure. The walltimes and the cache data for all the four versions are presented in 

Fig. 3.15.  

 
Version U2 which incorporates just the data structure change showed improvement of 

about 15% for almost all the grid sizes. There was not a noticeable reduction in the data 

calls but a significant reduction in the cache misses was observed. This indicates that the 

data was now being called in a more efficient manner and that the improvement was 

cache driven. The use of a two-dimensional array instead of a pointer ensured the spatial 

locality of the data. 

 
Version U3 with loop blocking applied to the Gauss-Siedel solvers showed 

approximately 35% improvement in the walltime compared to the version U1. There was 

a significant reduction in the data calls and cache misses. The version U4, which is the 

combination of changes made in the version U2 and U3 showed further improvements in 

the walltime along with the decrease in the data misses. Overall from version U1 to U4 

the walltime was reduced by half and the L2 cache misses were reduced by more than 

50%.  

 

The normalized walltime remained roughly the same for all the practical grid sizes. This 

same behavior was noticed in the L1 and L2 cache miss for most of the grid sizes. Fig. 

3.18 shows the overall improvement of the modified codes over the original version U1. 
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Figure 3.14 Walltime for different versions of the code 

 
 

Figure 3.15(a) Walltime and cache data for U1 
 



 67

 
 Figure 3.15(b) Walltime and cache data for U2 

 
Figure 3.15(c) Walltime and cache data for U3 
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 Figure 3.15(d) Walltime and cache data for U4 

 
Figure 3.16 Performance improvement percentage over U1 
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A gprof was done on the versions U1 and U3 and the results are shown in Fig. 3.17. The 

Gauss-Siedel routines to which the loop blocking was applied shows an improvement of 

about 400%. It is demonstrated that the methods used lead to significant improvements in 

the code performance. The codes were also run to steady state convergence to study the 

effect of these changes on the results. The Reynolds number used was 400 and the grid 

size was 256x256. Fig. 3.18 shows the streamline plots obtained by running versions U1 

and U4 of the code. The improved version in clearly in good agreement with the original 

version and it competently captures all the complex vortices.  

 

A comparison of the u-velocity contour is shown in the Fig. 3.19. The contours obtained 

from both the codes are overlapped and they are in good agreement. Also shown in Fig. 

3.20(a) are the u-velocity at the vertical centerline obtained using the original and the 

optimized version of the code and they are in good agreement with the results of Ghia’s 

et al. [19].  
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Figure 3.17 Comparison of time taken by critical subroutines for U1 and U3 



 70

 
Figure 3.18(a) Streamline plot for U1 

 
Figure 3.18(b) Streamline plot for U4 
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Figure 3.19 u-velocity contour plots for U1(yellow) and U4(black) 

 
Figure 3.20(a) u-velocity at the vertical centerline 
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Figure 3.20(b) v-velocity at the horizontal centerline 

 

 
Figure 3.21 Evolution of u-velocity at the vertical centerline 
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The v-velocity profiles at the horizontal centerline are shown in Fig. 3.20(b) which are 

likewise in good agreement with each other. Fig 3.21 shows the evolution of centerline 

u-velocity with time. It can be seen that initially there is a slight disagreement between 

the u-velocity profiles but it disappears as the number of iteration increases.  

 
The convergence criteria used for the above mentioned results was that the all residuals 

of velocities and pressure should be less that 10 6− .To check the numerical accuracy of 

result achieved to the last decimal place, the computations were done with increasingly 

stricter criterion for convergence. The simulations were done till the residuals were less 

than 10 8− , 10 10− ,10 12−  successively and the u-velocity at the vertical center line obtained 

by using versions U1 and U4 was compared and is presented in Table 3.2. We can see 

that the solutions are in good agreement with each other. It was also observed that the 

rate of convergence of residuals from 10 6−  to 10 12−  was almost identical for both the 

versions. Version U4 took 10% more number of iterations than version U1, when 

reducing all the residuals to less than 10 6−  was the convergence criteria. When a stricter 

criterion of 10 12−  was used, the version U4 took about 3% more iterations. 

 
 Figure 3.22 Prediction of performance based on the subblock size 
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The walltimes obtained using version U4 with subblocks of different sizes is shown in 

Fig. 3.22 There is a proportional reduction in the walltime with the decrease in the 

subblock size. There is not a large reduction between the walltimes of subblock 30x30 

and 10x10 because a subblock of 30x30 fits into the L2 cache. So the improvements of 

10x10 subblock over 30x30 subblock is minimal.  

 

Another significant observation to be made is that the performance of the code with a 

particular subblock size is predictable. All the walltimes remain reasonably flat for grids 

of all sizes. The code performs approximately as if the smaller subblock is being solved 

instead of the whole grid. So running the tests on blocks of different sizes would help in 

predicting the potential gains that could be achieved by using the subblock of that 

particular size.  

 
The convergence patterns of the residuals of two different versions for a grid size of 

256x256 are shown in the Fig. 3.23 and 3.24. The residue shown is the square root of 

sum of square of the residuals of velocities and pressure. A few extra oscillations are 

seen in the U4 version and convergence is also a bit slow as seen in Fig. 3.23 for a 

subblock of 10x10. As the domain is solved in the blocks of 100 cells (10x10) small 

discontinuities build up at the boundaries and this probably causes the difference in the 

two patterns.  The version U4 with subblock of 10x10 takes about 10% more iterations 

for convergence.  

 
Unlike the 10x10 subblock the convergence of 30x30 was more similar to that of the 

original version U1 as seen in Fig. 3.24. This could be so because the 30x30 subblocks 

divide the domain into fewer internal blocks and fewer internal boundaries are created 

and hence the discontinuities are less. So it is beneficial to solve the domain in the larger 

subblocks and fewer subdomians. The code with the subblock of 10x10 is a bit faster 

than the subbblock 30x30 version but the convergence is faster in the latter version so the 

code performance of these two codes are comparable. A test conducted to compare the 

overall performance of these two subblock sizes showed that the 10x10 subblock is 

approximately 10% faster than the 30x30 version. 
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Figure 3.23 Residue convergence pattern for U1 and U4 

 

 
Figure 3.24 Residue convergence pattern for various versions of the code 
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A few tests were conducted to improve the convergence of the 10x10 subblock. The 

whole grid was solved every fifth or tenth sub-iteration instead of solving the subblocks 

in an effort to minimize the instabilities generated due to the subblocks. There is a slight 

improvement in the convergence when compared to that of the purely 10x10 subblocked 

version but it was not comparable to the convergence of the original or 30x30 subblock 

version.   

 

The loop unrolling which involved replicating the body of the loop to reduce the loop 

overhead was also tested. The Gauss-Siedel solver subroutines for velocity and pressure 

were unrolled to investigate the potential improvements. The idea is to do more 

calculations per call so that less time is spent in checking the loop conditions. This 

technique though promising did not yield any significant improvements. This technique 

is usually successful in cases which require a lot of loop condition checking in a 

subroutine. In the case of UNCLE many redundant loops were already cleared to arrive 

at the original version. The minor improvements achieved due to the loop unrolling in 

these Gauss-Siedel solver subroutines could very well be masked by the diminished 

performances of L1 and L2 cache in these subroutines. 

 

3.7 Summary 
 
In this chapter a novel technique of numbering the cells in a domain by using the space 

filling curves was discussed. This promising technique was applied to the grid 

numbering system without any major improvements in the code performance. The loop 

blocking scheme was applied to the Gauss-Siedel solver subroutines in the code and 

tested on a steady laminar test case with successful results. Approximately 35% 

improvement in walltime was observed for grids of all sizes. It was shown that these 

improvements were achieved due to enhanced cache performance.  

 

Another major change was made to the code by restructuring some of the data structures 

used to store data. The data structures with pointers were replaced by two dimensional 

arrays to provide better spatial locality of the data. This yielded approximately 15% 

improvement in the wall time for all the grid sizes. So overall, approximately 50% 
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improvements in walltime compared to the version U1 were observed. Using the domain 

numbered using space filling curve can add an additional 5% improvement to this 

existing 50%. Furthermore accuracy tests were performed to check the efficacy of the 

new techniques with successful results. A brief discussion on the effect of these 

techniques on various code performance parameters was presented. It was established 

that the performance of a loop blocked code could be predicted by doing a few simple 

tests.  

 

In this chapter techniques were tested on a steady laminar case. These techniques now 

need to be tested on unsteady and turbulent test cases to establish the universality of the 

approach. Also they have to be tested on a different system to study their behavior on a 

different computational architecture. Parallel computations needs to be conducted to test 

the scalability of this modifications. Finally the work has to be extended to some three-

dimensional and more challenging test cases. The aforementioned work is presented in 

the next chapters. 
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__________ 
CHAPTER  

                                         4 
        __________ 

 
 

UNSTEADY AND 
THREE-DIMENSIONAL RESULTS 

 
 
 
 

In the previous chapter we have discussed the various optimization techniques, both 

successful and unsuccessful, and tested their efficacy on a steady laminar test case. The 

results obtained from the basic version of the code U1 were in very good agreement with 

the modified version U4 of the code. In this chapter we will present the results of tests 

done on time-dependent cases. The study will further extend to both steady and unsteady 

three-dimensional cases.  

 
4.1 Unsteady Test Case 
 
The flow over an unsteady cylinder was chosen as the test case for a time dependent 

problem. It is a fairly standard test case for unsteady simulations and has simple 

boundary conditions as shown in Fig. 4.1. The non-dimensionalized u-velocity is unity 

and v-velocity is zero at the inlet. A no-slip boundary condition is imposed on the bottom 

wall. The top and right walls are for the outflow. The Reynolds number for these 

simulations was 100. 
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Figure 4.1 A schematic diagram of flow over a cylinder 
 

 
Figure 4.2 Grid used for the unsteady timing test 
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The grid used for the timing tests is shown in the Fig. 4.2. The cylinder has a unit 

diameter. The side of the square is 30 diameters. It is a square grid instead of a rectangle 

as shown in Fig. 4.4 which is 80 diameters in length and 40 diameters in height. The grid 

is dense and circular near the cylinder and as it moves out it becomes coarse and tends 

towards a structured square grid. The grid shown is 200x200 grid points with 200 points 

in circumferential ‘i’ direction and 200 points in the radial ‘j’ direction. The tests were 

conducted on the grids of multiple sizes of the same geometry as discussed above and the 

results are shown in Fig. 4.3. 

 
Figure 4.3 Walltime comparisons of various versions for a flow over a cylinder 

 
 

4.1.1 Two-dimensional Unsteady Test Case Results 
 
An improvement in the performance similar to the steady state case was observed. The 

performance improvement of smaller grids was slightly in excess of 50%. For grids of 

larger size the improvements achieved were close to 60%. There was an enhanced 

performance for large grids because the version U1 took larger time for calculation per 
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Figure 4.4 Grid used to do the accuracy tests for flow over a cylinder 

 
 

 

 
Figure 4.5 Lift and drag comparisons of versions U1 and C4 
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grid point whereas for the version U4 the time spent for calculation per grid point 

remained the same as the one for the smaller grids. The overall improvements were in 

excess of 50% for all the grid sizes for the cases which is slightly better than the steady 

state simulations because twice as many subiterations (10 for velocity and 20 for 

pressure) were used in the Gauss-Siedel solver for accuracy.  

 

To check the accuracy of time dependent computations of the modified code the grid 

shown in Fig. 4.4 was used. It is slightly different when compared to the grid used for the 

walltime time tests. It is rectangular as opposed to the square grid used earlier and 

consists of 22705 cells. The cylinder in not in the center but it shifted towards the left 

with lot of grid points in the wake region. The grid is finer near the cylinder and it 

becomes coarser as we move away from the cylinder.  

 
One of the basic reasons we chose to use a different grid for accuracy test was to 

compare it the results presented in Hua et al. [13] which were obtained during the 

validation process. The validation process used the exact same grid so it behooves us to 

use the same grid as it facilitates direct comparison. A direct comparison of lift and drag 

data for Re =100 between the code version C4 which was used in validation and version 

U1 is shown in Fig. 4.5 and Table 4.1. The version C4 had the same overall methodology 

of computation but there were minor differences in the way some calculations were done. 

This explains the initial disparity between the lift and drag patterns of the two codes. 

After the initial period of disagreement in the lift and drag they tend to concur as steady 

periodic oscillations are achieved.  

 

Once it was established that the version U1 is comparable to C4, the accuracy tests were 

done for the version U4 with different subblock sizes. The lift and drag from these tests 

are shown in the Fig. 4.6. It can be seen that the lift and drag from different versions are 

in good agreement with each other. A close comparison of the lift data is shown in Fig. 

4.7 (a). There is a slight shift in the phase but the magnitude and frequency of the lift 

remains the same. Fig. 4.7 (b) shows the blowup plot for the drag data. Again we observe  
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Figure 4.6 Lift and drag comparisons of various code versions  
 

 
 

Figure 4.7 (a) Lift comparisons of various code versions 
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Figure 4.7 (b) Drag comparisons of various code versions 

 
 
 

Table 4.1 Comparison of lift, drag and Strouhal number for various 2D codes  

 
Source 
(Re = 100) 

C L  
 

C D  
 

tS  Speedup 
Comparison 

Hua et al. [13] ± 0.314 1.325± 0.008 0.165 -5% 

Ku et al. [20] ± 0.228 1.33~1.358 0.1675 - 

U1 ± 0.317 1.335± 0.008 0.1657 0 

U4-sb30 ± 0.3128 1.323± 0.008 0.1646 45% 

U4-sb10 ± 0.3134 1.3232± 0.010 0.1645 53% 

 
 

a slight shift in the phase similar to the lift data but here we see a slight difference in the 

magnitude of the drag. A look at the Table 4.1 shows that the drag amplitude for the 

subblocked version is similar to that of version C4. The frequency of the oscillations 



 86

which is denoted by the Strouhal number in Table 4.1 for various versions is in good 

agreement with each other. Also given in Table 4.1 are the speedup comparisons of 

different versions with U1. 

 
4.2 Three-dimensional Simulations  
 
4.2.1 Steady State Test Case 
 
After successfully testing the two-dimensional steady and unsteady cases, the attention 

was focused on three dimensional test cases. The test case chosen for steady simulations 

was three-dimensional wall driven cavity as shown in Fig. 4.8. 

 

 
 

Figure 4.8 A schematic diagram showing the three-dimensional wall driven cavity 
 

 
The computational grid consisted of 287496 cells so it was divided into four blocks for 

parallel computation as shown in Fig. 4.9. The simulations were done using version U1 

and loop blocked version U3 with subblock size of 100 cells run till steady state 

convergence. The version U2 and U4 which incorporated the data structure changes 

encountered some problems during parallel computation so these versions were not used 

to conduct the simulations. The version U3 performed better than the version U1 and an 

U = 1 
V = 0 
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improvement of 20% was observed in wall time. The results of these simulations are 

shown in the Fig. 4.10. 

 

The contour plots of u, v, and w-velocity were taken at Z = 0.5 plane. The version U1 

results are shown by the flood map and red dashed lines whereas the version U3 results 

are denoted by black dashed lines. It can be observed that the results are in good 

agreement with each other. The loop blocking yielded 20 % improvement in the walltime 

compared to the 35% in the two dimensional cases. This is because the Gauss-Siedel 

solver subroutines were the majority of calculations in the two-dimensional cases and 

their optimization lead to a large drop in walltime. In three-dimensional cases the Gauss-

Siedel solver subroutines do not constitute the same proportion of calculation as 

compared to the two-dimensional case because of additional subroutines related to three-

dimensional calculations, hence less overall improvement in the walltime. The residual 

convergence behavior, shown in Fig. 4.11, is similar to that of the two dimensional cases. 

The loop blocked version U3 took approximately 10% more iterations for equivalent 

convergence.  

 
Figure 4.9 Computational grid for three-dimensional wall driven cavity (4 blocks) 
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Figure 4.10 (a) u-velocity contour at Z = 0.5 plane 

 
 

Figure 4.10 (b) v-velocity contour at Z = 0.5 plane 
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Figure 4.10 (c) w-velocity contour at Z = 0.5 plane 

 

 
 
Figure 4.11 Residual convergence patterns for three-dimensional wall driven cavity  
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4.2.2 Unsteady Test Case 
 
The flow over a cylinder was again chosen as the test case for unsteady calculations. A 

schematic diagram of the test case is shown in the Fig. 4.12. The grid used for simulation 

consisted of approximately 1.14 million points. It was divided into 32 parts for parallel 

computation. It is the same grid used by Hua et al. [13] in their computations. The 

computational grid is shown in Fig. 4.13. The simulations were conducted for Reynolds 

number of 200 and the lift and drag results are shown in Fig. 4.14. Table 4.2 shows the 

lift, drag, and Strouhal number comparison with other known experimental and 

numerical results. 

 

 
 

Figure 4.12 A schematic diagram for three-dimensional flow over a cylinder 
 
 

The lift and drag are from both the versions are in good agreement with each other. 

Similar to the two-dimensional simulation results we see a slight shift in phase for both 

the lift and drag pattern but the magnitude is same for both the versions. A comparison 

shown in Table 4.2 reveals that the results from both unmodified U1 and loop blocked 

U3 version with subblock size of 10x10 are in good agreement with the results of Hua et 

al [13] and with those of other experimental results. 
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Figure 4.13 Three-dimensional grid for flow over a cylinder 

 

 
 

Figure 4.14 Lift and drag comparisons for three-dimensional simulations 



 92

Table 4.2 Comparison of lift, drag and Strouhal number for various 3D code 
simulations and experiments (* = Experimental) 
 
Source 
Re = 200 

C L  
 

C D  
 

tS  

U1 ± 0.665 13255± 0.042 0.195 

U4-sb10 ± 0.664 13247± 0.042 0.195 
Hua et al. [13] ± 0.664 1.324± 0.042 0.195 
Henderson [21]   0.178 
Roshko [22] *   0.19 
Wille [23] *  1.3  
Williamson [24] *   0.197 

 
 

 

4.3 Summary 

This chapter presented the extension of the blocking techniques to time dependent 

simulations with successful results. Loop blocking was also extended to steady and 

unsteady three-dimensional simulations. The results obtained from the loop blocked 

version U3 of the code compared favorably to that of version U1. Loop blocking was 

established as a sound technique for enhancing code performance based on principle of 

improved cache behavior.  
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__________ 
CHAPTER  

                                         5 
        __________ 

 
 

TURBULENT RESULTS  
AND OTHER TECHNIQUES 

 
 

This chapter presents the results of the turbulent simulations for steady and time 

dependent cases. All the tests conducted thus far were on KFC4. The results of tests 

performed to investigate the portability of the code modifications to different hardware 

architecture are discussed. The results of parallel tests performed to test the scalability of 

the code are presented 

 

5.1 Steady Turbulent Test Case 
 
The test case chosen was again the wall-driven cavity for the reasons mentioned earlier. 

However, the grid used, shown in Fig. 5.1, was slightly different from the one used for 

testing steady laminar cases. The grid is not uniform; instead it is finer at all the 

boundaries and coarser towards the center. This is done to ensure so all the turbulent 

features near the wall can be captured effectively. The Reynolds number used was 

500000. The grid used is 256x256. The grid was divided into eight blocks and parallel 

computations were done. The tests were conducted on KFC5. 
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Figure 5.1 Grid used for testing steady turbulent case 

5.1.1 Steady State Turbulent Simulation Results 
 
The turbulent simulations are very sensitive to the instabilities or discontinuities that are 

generated in the system. It was observed that during the simulations minor instabilities 

had the potential to grow up abruptly and cause the calculations to diverge. The subblock 

size of 10x10 was used in Gauss-Siedel solver subroutines for velocity and pressure, 

whereas a subblock size of 30x30 was used in corresponding turbulent subroutine. It is 

highly recommended that higher subblock should be used in all the subroutines because 

they have fewer boundaries associated with them. The results of the turbulent 

simulations of wall driven cavity are shown in Fig. 5.2. An improvement of about 21% 

was observed in the walltime. The overlapped u-velocity contour plots for version T1 

and T3 are shown in Fig. 5.2(a). The flood contour and the red lines correspond to the 

version T1. The black dashed lines correspond to version T3. It can be observed that the 

results are in good agreement with each other. Fig 5.2(b) shows the v-velocity contours 

which are also consistent with each other. It is to be noted that the loop blocked version 

T3 is capable of predicting the results of steady turbulent simulations with high degree 

accuracy. 
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Figure 5.2(a) u-velocity contour plots for versions T1 (red) and T3 (black) 

 
Figure 5.2(b) v-velocity contour plots for T1 (red) and T3 (black) 
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5.2 Time Dependent Turbulent Simulations 
 
Active flow control methodology is one of the growing areas in the aerodynamics 

research. One of the means to do it is to superimpose forced oscillations with mean flow 

to obtain the desired results for e.g. suction or blowing using actuators. Synthetic jet 

demonstrates the capabilities to fulfill the requirements of these actuators. Hence it was 

chosen as a test case for unsteady turbulent simulations. This test case is the case 1 used 

in the CFDVAL 2004 workshop [24] which was organized to test the capabilities of 

various CFD codes. A numerical simulation of a synthetic jet into quiescent air was 

performed using the two different versions of UNCLE. A schematic diagram describing 

the geometry is shown in Fig. 5.3.  

 

 

 
Figure 5.3 Schematic diagram showing the synthetic jet 
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The inlet velocity was defined by the displacement history of the center of the 

diaphragm. This in turn was provided by a periodic boundary condition defined by: 

0776928.4
119707081.0
026689782.0
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∞V  is the maximum inlet velocity and v is the inlet velocity at dimensionless time t . The 

parameters a, b, c and d are dimensionless. The outflow boundary condition at the top 

satisfies the continuity equations. For all the other walls no-slip condition is imposed as 

the wall boundary condition. The computational grid is shown in Fig. 5.4 

 
Figure 5.4 Grid used for synthetic jet test case 
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5.2.1 Results for Simulation of Synthetic Jet 
 
The Reynolds number used was 2453.72 and the value chosen to non-dimesionalize the 

velocity was 30 m/sec. The non-dimesionalized time period for one cycle and the time 

step were 52.488 and 0.009 respectively. The unmodified version T1 and the version 

with modified data structure T2 were used to conduct these simulations. The tests were 

for two complete cycle and the final results are shown in Fig. 5.5. The contour flood and 

the red dashed lines represent the results from version T1 and the green dashed lines 

represent the version T2. Fig 5.5(a) shows the u-velocity contour plot and Fig. 5.5(b) 

shows the v-velocity contour plots for the same. We can see that the results are in good 

agreement with each other.  

 

 
Figure 5.5(a) u-velocity contour of synthetic jet for versions T1 (red) and T2 (green) 
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Figure 5.5(b) v-velocity contour of synthetic jet for versions T1 (red) and T2 (green) 

 
5.3 External Blocking  
 
The improvements achieved by the loop blocking of the Gauss-Siedel solver subroutines 

encouraged us to try out the new technique of external blocking. In the loop locking the 

blocking was applied to only a few critical subroutines, which ensured that the 

computation was done on small cache friendly blocks at a time instead of the full 

domain. The other subroutines of code were still solved on the whole domain at a time. 

To investigate the potential benefit of solving the whole code in small blocks instead of 

just a few subroutines the external blocking techniques was tested. A schematic diagram 

showing the external blocking mechanism is shown in Fig. 5.6. 
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Figure 5.6 Schematic of external blocking 
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To perform parallel processing the domain is divided in to small sub-domains or blocks 

and then each of these small sub-domains is sent to a different processor for 

computations. So instead of solving the small sub-domains on different processors, if we 

could send them all to the same processor they would be solved a small block at a time. 

Thus the whole code not just a few subroutines could potentially benefit from the 

blocking. 

 

5.3.1 External Blocking Results 
 
 The cache friendly block size which was determined earlier (and presented in an earlier 

chapter) was 900 cells. So the whole domain was divided into blocks which were 

approximately 900 cells for all the grid sizes. All the blocks were then solved on the 

same processor. These tests were first done for unmodified version U1. The walltime 

results for these simulations are shown in Fig. 5.7. We can observe that for smaller 

overall grids external blocking did not show any improvements and showed an increase 

in walltime instead. As we moved towards the grids of larger sizes we see considerable 

improvements in the wall time but this improvement was not comparable to the 

improvements achieved by the internal loop blocking. 

 

The external blocking was also applied to the loop blocked version U3 of the code to 

investigate if the unfavorable performance of the external blocking for the smaller grids 

could be rectified and to study the potential improvement by combining both the 

blocking techniques. The results of these simulations are also shown in Fig. 5.7. We 

observe the same deteriorating performance for the external blocking for smaller grid 

sizes. For all the larger grids there was a notable improvement in the walltime. The 

results of the simulations from both of the codes show that the external blocking yield 

favorable improvements just for the larger grids compared to the improvements of the 

loop blocking where the improvements were universal i.e. for grids of all sizes. 

 

A gprof profile of the code was done to investigate the reason for the deteriorating 

performance on the smaller grids. The walltime performances for the grid of 70x70 are 

identical in both externally blocked and unblocked versions of U1 and U3. This same 
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behavior is reflected in the profiling data shown in the Fig. 5.8(a). The performance 

tends to deteriorate for the grids lying between 100x100 and 200x200. The profiling data 

for 150x150 grid is shown in the Fig. 5.8(b). For version U1 we observe a slight increase 

in the time taken by the Gauss-Siedel solver subroutines when the external subblocking 

was applied. Also a marginal increase in the ‘other’ subroutines was observed. This 

explains the cause of detrimental performance at this grid size. On the contrary in version 

U3 we observe a high increase in the time taken by the subroutines ‘cal_vel’, ‘continuity’ 

and ‘gradients’. Only the Gauss-Siedel solver routines seemed to be benefited by the 

external blocking. The minimal time consumed by them earlier was further reduced by 

the application of external blocking. The grid size of 350x350 saw marginal 

improvements in most of the subroutines translating into overall better performance of 

the code, as seen in Fig. 5.8(c), when external blocking was applied. This behavior was 

observed for both versions U1 and U3 hence we had enhanced performance for this grid 

size in both the cases. 

  
Figure 5.7 Walltime results for external blocking 
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Figure 5.8 Gprof results for grid sizes of (a) 70x70 (b) 150x150 (c) 350x350 
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5.4 Tests on Different Hardware Architectures 

Once the successful simulations were performed for the steady and unsteady test cases 

on KFC4, the attention was now focused on a different machine KFC5. The idea was to 

investigate the effect of hardware architecture on the code performance. KFC5 has a 

higher data bandwidth and a faster processor with 64 bit architecture as opposed to the 

32 bit architecture in KFC4. The cache and RAM sizes of 512 KB and 512 MB per node 

respectively are same for both the clusters.  

 
Various versions of UNCLE were run on both KFC4 and KFC5 and the walltimes from 

the runs are shown in Fig. 5.9 and 5.10. A plot showing percentage gains on KFC5 over 

KFC4 for various grid sizes is shown in the Fig. 5.11. A quick look at the results show 

that the KFC5 runs are completed in about 45-50 % of the time taken by the KFC4 runs. 

Also the walltime profiles for all the versions are much smoother on KFC5. This 

enhanced cache performance is due to better hardware architecture. The data was 

transferred faster along with the faster calculations. 

 
Figure 5.9 Walltime comparisons for various code versions on KFC4 
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Figure 5.10 Walltime comparisons for various code versions on KFC5 

 
Figure 5.11 Percentage gains on KFC5 over KFC4 for various grid sizes 
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Figure 5.12(a) Gprof data for 256x256 grid on KFC4 

 

KFC5

0.0000
50.0000

100.0000
150.0000
200.0000
250.0000
300.0000
350.0000

Uncle Sbc

Versions

Ti
m

e

Others
Gradients
GS_Vel
GS_Press
Cal_Vel
Cont inuity

 
Figure 5.12(b) Gprof data for 256x256 grid on KFC5 
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It can be seen from Fig 5.11 that versions U2 and U4 which incorporate the data 

structure changes were slightly more benefited by the new architecture. Also the gap 

between the times taken by U2 and U3 versions has been reduced on the KFC5 platform. 

Fig. 5.12 and Table 5.1 show the grof profiles for a 256x256 grid on KFC4 and KFC5. 

The time taken in computation is shown in the Fig. 5.12 and the percentage time taken in 

computation is shown in the Table 5.1.It can be seen that there is a proportionate 

reduction in the times taken by various subroutines when the code was ported from 

KFC4 to KFC5. The subroutines that were optimized performed slightly better than the 

non-optimized subroutines. This can be observed in the slight increase in time taken by 

the ‘others’ subroutines. 

 

Table 5.1(a) Gprof profile data for 256x256 grid on KFC4 
 

Percentage time taken by subroutines 
KFC4 U1 U2 U3 U4 

Continuity 22.15 18.4 34.08 30.46 
Cal_Vel 18.49 15.66 28.96 26.14 

GS_Press 21.85 25.35 6.06 8.8 
GS_Vel 22.6 26.47 7.62 10.05 

Gradients 9.32 7.58 14.59 13.42 
Others 5.59 6.54 8.69 11.13 

 
 

Table 5.1(b) Gprof profile data for 256x256 grid on KFC5 
 

Percentage time taken by subroutines 
KFC5 U1 U2 U3 U4 

Continuity 22.1 16.29 32.77 28.34 
Cal_Vel 21.61 15.66 27.21 25.75 

GS_Press 21.23 25.62 6.5 8.45 
GS_Vel 17.78 25.97 7.73 10.12 

Gradients 9.75 7.46 14.26 12.5 
Others 7.53 9 11.53 14.84 

 
 
5.5 Parallel Tests 
 
The primary goal of this research was the single node optimization of the code. A 

parallel test was also done to investigate the scalability of these code modifications. The 

parallel tests were done using the lid driven cavity case. The grid size used was 256x256.  
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Figure 5.13 Parallel speedup comparison for versions U1 and U3 

 
 

The tests were done on up to 16 processors and the speedup results are shown in Fig. 

5.13. The ideal linear speedup line is shown in black. It can be observed that both the 

original and loop blocked versions of the code are slightly sublinear which is what we 

expect due to some time losses associated with the internode communication.The 

original version had a diminished performance when six nodes were used for calculations 

whereas this effect was not noticed in the loop blocked version which seemed to be 

smooth in performance. However, the overall performance of the original version U1 

was slightly better than the loop blocked version U3 for all other cases. The versions U2 

and U4 could not be tested due to the problems encountered by the new data structure in 

parallel computation. 
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__________ 
CHAPTER  

                                         6 
        __________ 

 
CONCLUSIONS AND  

FUTURE WORK 
 
 
 

 

 

6.1 Conclusions 
 
An initial optimization of the unstructured, 3-D code UNCLE was completed 

successfully. The technique to partition and solve the domain in a cache friendly manner 

was tested with positive results. Various techniques such as array merging, loop blocking, 

and external blocking were tested which reduced the cache misses and enhanced the code 

performance. A few of the data structures were modified to optimize the data access 

pattern with successful results. External subblocking was also applied and compared to 

the loop blocking technique. 

 
The preliminary work involved testing the space filling curves to inherently subblock the 

whole grid in a cache friendly manner. This technique showed improvements of about 

5% for large grid sizes but remained ineffective for smaller grids. Since an approach 

aimed at improving the whole code performance at the same time did not yield 

overwhelming results, the attention was then focused on the critical subroutines. The 

initial tests included simulation of a steady, laminar lid driven cavity flow. The Gauss-

Siedel solver subroutines involved repetitive calculations over the same data set and 

consumed about half of the computation time in these cases. Hence, they became a 
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primary target for application of loop blocking. The face data structure was also modified 

in some of the major subroutines to investigate potential improvements through data 

structure modification. 

  

In the two-dimensional steady laminar test case the loop blocking with subblocks of 

various sizes were tested. The subblock of 900 cells was found to fit into the L2 cache. 

The subblock size of 100 cells gave the best walltime results which was a 35% reduction 

in walltime for all grid sizes. The walltimes for this case were slightly less than the 

subblock of 900 cells. As the size of subblock was increased further from 100 cells, the 

walltimes also increased respectively. The data structure modifications showed 15% 

improvements over the original version. These changes compounded together yielded 

50% improvement in runtime. The improvements in both the cases were largely cache 

driven. Both the methods significantly reduced the L1 and L2 cache misses which 

translated into faster code execution. Another technique called loop unrolling was tested 

but it did not show significant improvements in the walltimes. 

 

While the implementation of a new data structure did not change the calculations, the 

loop blocking slightly altered the way the calculations were done. The implementation of 

loop blocking introduced new subblock boundaries which gave rise to small 

discontinuities whose effect was observed in the residual convergence patterns. The loop 

blocked versions tend to converge 10% more slowly than the original versions. But the 

improvements gained by the aforementioned techniques negate this small set back and 

yield large overall improvements. The accuracy tests conducted showed that the results 

were in good agreement with each other, thus establishing the modifications as a viable 

performance enhancing technique for CFD codes. Also, the steady laminar simulations 

were subblock insensitive. All the subblock sizes, large or small, gave the same final 

solution with few noticeable instabilities during the process. The only effect was seen in 

the residual pattern. 

 

The walltime results of the loop blocked versions showed some interesting results. The 

walltime per node for loop blocked version while solving the whole domain was 
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approximately similar to walltime per node while a domain of the size of subblock was 

being solved.  The code and cache behaved as if the domain of size of the subblock was 

being solved instead of the whole domain. This test was conducted for various subblock 

sizes and this behavior was extant in all of them. So these results showed that the 

performance of a loop blocked code could be approximately predicted by conducting 

simple tests on small subblocks instead of running the code with the whole grid. The 

effective subblock could be chosen pertaining to ones need, if the subblocked subroutines 

took up a large percentage of time initially before subblocking, as in this case.  

 

These results for time dependent simulations of flow over a cylinder showed performance 

improvements ranging from 55-60%. This slight improvement over the steady state 

versions is due to the increased number of inner iterations in the unsteady simulations. 

The three-dimensional simulations were also conducted successfully using the cavity and 

the cylinder test cases for steady and unsteady calculations respectively and they showed 

less overall improvement compared to the two-dimensional version. The results are 

summarized in Table 6.1. This happened because the targeted subroutines did not form a 

major portion of the code due to the introduction of extra three-dimensional and related 

calculations. The accuracy tests done for three-dimensional versions also showed that the 

results were in good agreement with each other.  

 

After thorough analyses of laminar results were done, the tests were conducted for the 

turbulent cases. The steady state tests were done using the lid-driven cavity and the 

results of the loop blocked version were consistent with the ones achieved with the 

original version. Unlike the laminar simulations, the turbulent simulations were very 

sensitive to the size of the subblock. The smaller subblocks gave rise to numerous 

discontinuities and instabilities which caused a problem in convergence. So it is 

recommended that the subblock size of at least 900 cells be used for loop blocking in the 

case of UNCLE for turbulent simulations. Simulation of a synthetic jet in quiescent air 

was done with the code which incorporated modified data structures and the results 

compared successfully with the original version. 
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The technique of external blocking was also tested for the laminar cases. The external 

blocking effectively subblocks the whole grid instead of few specific subroutines. The 

results contrary to the expectations did not compare well with those of loop blocking. The 

performance of externally blocked codes deteriorated for smaller and moderate grid sizes 

and improvement of 5-10% was observed for the larger grid sizes. The cause for the 

deteriorating performances in small and moderate grid sizes was the excessive time spent 

in the Gauss-Siedel solvers. The external blocking in conjunction with loop blocking was 

applied to various grid sizes and performances similar to the external subblocking  were 

observed in this case. One would reckon that the combination of these two schemes 

would provide large improvements but it was not observed in this case.  

 

Tests were conducted in parallel to check the scalability of the code. The results showed 

that the loop blocked scaled successfully on multiple nodes and achieved slightly sub-

linear speedup. The codes were also ported to faster and more modern hardware 

architecture. KFC5 which had 64 bit architecture compared to 32 bit of KFC4 and a high 

data transfer bandwidth showed large improvements in the performance of the code. The 

walltime performances of the various versions were reduced by 45-50%.  

 

Although the data modification seemed to be fruitful, it encountered problems when 

executed on a parallel platform. The parallel computations require introduction of virtual 

boundaries when the grid is divided into several parts. The data structure allocation did 

not comprehensively address this issue and more investigation is required in this area to 

rectify this problem. The time dependent cases with the turbulent calculations were very 

sensitive to loop blocking. The small discontinuities generated in the system made the 

calculations very unstable. The instabilities grew randomly at a certain point in the 

calculation and caused the computations to diverge. The idea of loop blocking in 

turbulent simulations requires further investigation to find the cause of such behavior.  

 

Despite of the few problems encountered, the optimization overall was largely successful. 

The techniques used were thoroughly investigated and established as performance 

enhancing methods for two/three-dimensional laminar simulations using unstructured 
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CFD codes. These techniques were proven successful for turbulent simulation albeit the 

time dependent ones. The critical hardware parameters were identified and tuned to 

obtain aforementioned performance enhancement. The summary of the improvements is 

shown in the Table 6.1. 

 

Table 6.1 Summary of improvements achieved 

Case Best Version/Method % Improvement 

Large Grids Space-Filling Curve          ~5% 

2D Steady Laminar             U4         ~50% 

2D Unsteady Laminar             U4        50-60% 

3D Steady Laminar             U3          10% 

3D Unsteady Laminar             U3        ~23% 

2D Steady Turbulent             T5        ~22% 

2D Unsteady Turbulent             T2        ~6% 

Large Grids External Blocking        ~10% 

 

 

6.2 Future Work 
 
The improvements in the performance were largely due to gains in the Gauss-Siedel 

solver subroutines which were targeted by the loop blocking. The loop blocking 

technique drastically reduced the time taken by these Gauss-Siedel solvers to the 

minimum possible, which leave little scope of improvement in these subroutines. A lot of 

other subroutines such as cal_vel, continuity, gradients, and set_bc need further attention 

as they would be the next target of the optimization work. The issue of sensitivity of the 

turbulent simulations with regard to subblocking requires thorough investigation.  

 

A major potential lies in further modification of the remaining data structure. In this 

study only the face data structure was modified in few subroutines and it gave an 

encouraging 15% improvement. It was comprehensively shown that the multidimensional 
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arrays are more cache friendly way of storing the data when compared to the pointers. 

The other dominant cell and vertex data structures are prime candidates for restructuring. 

The restructuring of the cell data structure can further reduce the time consumed by 

Gauss-Siedel solver subroutines. These modifications of cell and vertex data structures 

were beyond the scope of this research because it involved major restructuring of the 

code. This definitely should be a target for next level of optimization.  

 

The cause of deteriorating performance of the external blocking for small and medium 

size grids needs to be investigated. Also the space filling curve based grid numbering 

though mildly successful in the two-dimensional holds a larger scope of improvement  

for the three-dimensional version and should be one of the focus of next stage of 

optimization.  
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__________________ 
 

                                         APPENDIX 
        __________________ 

 
A1. Loop Blocking 
 
The original and the modified i_solver_gs_vel and the loop blocked version are presented 

here. Similar changes were applied to Gauss-Siedel solver for pressure i_solver_gs_p and 

Gauss-Siedel solver for turbulence i_solver_gs_ke.  The original code has three different 

loops with the same iteration space for solving the velocities u,v,w. In the loop blocked 

version they have been merged using some extra local variables, so that they can be 

solved simultaneously. This facilitates better data and spatial locality in these subroutines 

resulting in fewer cache misses and enhanced performances.  

 
A1.1 ORIGINAL SUBROUTINE 
 
SUBROUTINE i_solver_gs_velocity (cell, node, coef, ncell, nnode, BLOCK, 
nblock, num_iter) 
      INTEGER :: icell, ncell, iter, num_iter, nblock, nnode, iblock 
      TYPE (cells), DIMENSION (:) :: cell 
      TYPE (points), DIMENSION (:) :: node 
      TYPE (coeffs), DIMENSION (:) :: coef 
      TYPE (block_t), DIMENSION (:) :: block 
      real (high), dimension(nnode) :: dt 
      REAL (high) :: res, summ, dt1, dt2, dt3, dt4, dt5, dt6, summ1,  
 errors=1.e-4_high 
      dt = 0._high 
      DO iter = 1, num_iter 
        summ = 0._high 
        do iblock=1,nblock 
          IF(INDEX(BLOCK(iblock)%title,'soli')==0)then 
          do icell=block(iblock)%n_begin,block(iblock)%n_end 
            IF (cell(icell)%num_faces == 3) THEN 
              dt1 = dt(cell(icell)%surround_p%i(1)) 
              dt2 = dt(cell(icell)%surround_p%i(2)) 
              dt3 = dt(cell(icell)%surround_p%i(3)) 
              res = coef(icell)%rhs_u + coef(icell)%an_u(1) * dt1 + & 
   & coef(icell)%an_u(2)* dt2 + coef(icell)%an_u(3)* dt3 
            ELSE IF (cell(icell)%num_faces == 4) THEN 
              dt1 = dt(cell(icell)%surround_p%i(1)) 
              dt2 = dt(cell(icell)%surround_p%i(2)) 
              dt3 = dt(cell(icell)%surround_p%i(3)) 
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              dt4 = dt(cell(icell)%surround_p%i(4)) 
              res = coef(icell)%rhs_u + coef(icell)%an_u(1) * dt1 + & 
   coef(icell)%an_u(2) * dt2 + coef(icell)%an_u(3)*dt3 & 
   &+ coef(icell)%an_u(4) * dt4 
            ELSE IF (cell(icell)%num_faces == 6) THEN 
              dt1 = dt(cell(icell)%surround_p%i(1)) 
              dt2 = dt(cell(icell)%surround_p%i(2)) 
              dt3 = dt(cell(icell)%surround_p%i(3)) 
              dt4 = dt(cell(icell)%surround_p%i(4)) 
              dt5 = dt(cell(icell)%surround_p%i(5)) 
              dt6 = dt(cell(icell)%surround_p%i(6)) 
              res = coef(icell)%rhs_u + coef(icell)%an_u(1) * dt1 + & 
   & coef(icell)%an_u(2)* dt2 + coef(icell)%an_u(3)* &  
   & dt3 + coef(icell)%an_u(4) * dt4 + &  
   & coef(icell)%an_u(5) * dt5 + coef(icell)%an_u(6) * & 
   & dt6 
            ELSE 
              PRINT *, 'error 1', icell, cell(icell)%num_faces 
            END IF 
            summ = summ + abs (res-coef(icell)%ap_u/urfu*dt(icell)) 
            dt(icell) = res / coef(icell)%ap_u*urfu 
          end do 
          endif 
        END DO 
        IF(iter==1)then 
          if(summ<tiny)exit 
          summ1=summ 
        else 
          IF (summ/summ1 < errors) EXIT 
        endif 
      END DO 
      node(1:ncell)%u  = node(1:ncell)%u + dt(1:ncell) 
 
      dt = 0._high 
      DO iter = 1, num_iter 
        summ = 0._high 
        do iblock=1,nblock 
          IF(INDEX(BLOCK(iblock)%title,'soli')==0)then 
          do icell=block(iblock)%n_begin,block(iblock)%n_end 
            IF (cell(icell)%num_faces == 3) THEN 
                dt1 = dt(cell(icell)%surround_p%i(1)) 
                dt2 = dt(cell(icell)%surround_p%i(2)) 
                dt3 = dt(cell(icell)%surround_p%i(3)) 
             res = coef(icell)%rhs_v  + coef(icell)%an_v(1) * dt1 + & 
          & coef(icell)%an_v(2) * dt2 + coef(icell)%an_v(3) * dt3 
            ELSE IF (cell(icell)%num_faces == 4) THEN 
                dt1 = dt(cell(icell)%surround_p%i(1)) 
                dt2 = dt(cell(icell)%surround_p%i(2)) 
                dt3 = dt(cell(icell)%surround_p%i(3)) 
                dt4 = dt(cell(icell)%surround_p%i(4)) 
              res = coef(icell)%rhs_v + coef(icell)%an_v(1) * dt1 + &   
         & coef(icell)%an_v(2) * dt2 & 
                  & + coef(icell)%an_v(3) * dt3 + coef(icell)%an_v(4)&  
   & * dt4 
            ELSE IF (cell(icell)%num_faces == 6) THEN 
                dt1 = dt(cell(icell)%surround_p%i(1)) 
                dt2 = dt(cell(icell)%surround_p%i(2)) 
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                dt3 = dt(cell(icell)%surround_p%i(3)) 
                dt4 = dt(cell(icell)%surround_p%i(4)) 
                dt5 = dt(cell(icell)%surround_p%i(5)) 
                dt6 = dt(cell(icell)%surround_p%i(6)) 
              res = coef(icell)%rhs_v + coef(icell)%an_v(1) * dt1 + &  
   & coef(icell)%an_v(2)*dt2 + coef(icell)%an_v(3)*dt3 & 
   & + coef(icell)%an_v(4)* dt4 + coef(icell)%an_v(5) & 
   &* dt5 + coef(icell)%an_v(6) * dt6 
            ELSE 
              stop 
            END IF 
            summ = summ + abs (res-coef(icell)%ap_v/urfv*dt(icell)) 
            dt(icell) = res / coef(icell)%ap_v*urfv 
          enddo 
          endif 
        END DO 
        IF(iter==1)then 
          if(summ<tiny)exit 
          summ1=summ 
        else 
          IF (summ/summ1 < errors) EXIT 
        endif 
      END DO 
      node(1:ncell)%v  = node(1:ncell)%v + dt(1:ncell) 
 
      if(dim==2)return 
 
      dt = 0._high 
      DO iter = 1, num_iter 
        summ = 0._high 
        do iblock=1,nblock 
          IF(INDEX(BLOCK(iblock)%title,'soli')==0)then 
          do icell=block(iblock)%n_begin,block(iblock)%n_end 
            IF (cell(icell)%num_faces == 3) THEN 
                dt1 = dt(cell(icell)%surround_p%i(1)) 
                dt2 = dt(cell(icell)%surround_p%i(2)) 
                dt3 = dt(cell(icell)%surround_p%i(3)) 
                res = coef(icell)%rhs_w  + coef(icell)%an_w(1)* dt1 + & 
   & coef(icell)%an_w(2) * dt2 + coef(icell)%an_w(3) * & 
   & dt3 
            ELSE IF (cell(icell)%num_faces == 4) THEN 
                dt1 = dt(cell(icell)%surround_p%i(1)) 
                dt2 = dt(cell(icell)%surround_p%i(2)) 
                dt3 = dt(cell(icell)%surround_p%i(3)) 
                dt4 = dt(cell(icell)%surround_p%i(4)) 
                res = coef(icell)%rhs_w + coef(icell)%an_w(1) * dt1 + & 
   & coef(icell)%an_w(2)* dt2 + coef(icell)%an_w(3)* & 
   & dt3 + coef(icell)%an_w(4) * dt4 
            ELSE IF (cell(icell)%num_faces == 6) THEN 
                dt1 = dt(cell(icell)%surround_p%i(1)) 
                dt2 = dt(cell(icell)%surround_p%i(2)) 
                dt3 = dt(cell(icell)%surround_p%i(3)) 
                dt4 = dt(cell(icell)%surround_p%i(4)) 
                dt5 = dt(cell(icell)%surround_p%i(5)) 
                dt6 = dt(cell(icell)%surround_p%i(6)) 
                res = coef(icell)%rhs_w + coef(icell)%an_w(1)* dt1 + & 
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   & coef(icell)%an_w(2)* dt2 + coef(icell)%an_w(3)* dt3 
   & + coef(icell)%an_w(4)* dt4+ coef(icell)%an_w(5) * & 
   & dt5 + coef(icell)%an_w(6) * dt6 
            ELSE 
              stop 
            END IF 
            summ = summ + abs (res-coef(icell)%ap_w/urfw*dt(icell)) 
            dt(icell) = res / coef(icell)%ap_w*urfw 
          enddo 
          endif 
        END DO 
        IF(iter==1)then 
          if(summ<tiny)exit 
          summ1=summ 
        else 
          IF (summ/summ1 < errors) EXIT 
        endif 
      END DO 
      node(1:ncell)%w  = node(1:ncell)%w + dt(1:ncell) 
      return 
    END SUBROUTINE i_solver_gs_velocity 
 
 
 
A1.2 LOOP-BLOCKED VERSION 
 
SUBROUTINE i_solver_gs_velocity_sb (cell, node, coef, ncell, nnode, 
BLOCK, nblock, num_iter) 
      INTEGER :: icell, ncell, iter, num_iter, nblock, nnode, 
iblock,counter,subblock,nsubblock,remainder 
      TYPE (cells), DIMENSION (:) :: cell 
      TYPE (points), DIMENSION (:) :: node 
      TYPE (coeffs), DIMENSION (:) :: coef 
      TYPE (block_t), DIMENSION (:) :: block 
      real (high), dimension(nnode) :: dt,dt_u,dt_v,dt_w 
      REAL (high) :: res_w,res_u,res_v,summ, dt1, dt2, dt3, dt4, dt5,  
   dt6, summ1, errors=1.e-4_high 
      REAL (high) :: dt11,dt22,dt33,dt44,dt55,dt66,dt01,dt02, 
   dt03,dt04,dt05,dt06 
      dt_u = 0._high 
      dt_v = 0._high 
      dt_w = 0._high 
      subblock=100 
! 
      IF  ( subblock > ncell) then 
    DO iter = 1, num_iter 
         do icell= 1, ncell 
              dt1 = dt_u(cell(icell)%surround_p%i(1)) 
              dt2 = dt_u(cell(icell)%surround_p%i(2)) 
              dt3 = dt_u(cell(icell)%surround_p%i(3)) 
              dt4 = dt_u(cell(icell)%surround_p%i(4)) 
              dt5 = dt_u(cell(icell)%surround_p%i(5)) 
              dt6 = dt_u(cell(icell)%surround_p%i(6)) 
              dt11 = dt_v(cell(icell)%surround_p%i(1)) 
              dt22 = dt_v(cell(icell)%surround_p%i(2)) 
              dt33 = dt_v(cell(icell)%surround_p%i(3)) 
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              dt44 = dt_v(cell(icell)%surround_p%i(4)) 
              dt55 = dt_v(cell(icell)%surround_p%i(5)) 
              dt66 = dt_v(cell(icell)%surround_p%i(6)) 
              dt01 = dt_w(cell(icell)%surround_p%i(1)) 
              dt02 = dt_w(cell(icell)%surround_p%i(2)) 
              dt03 = dt_w(cell(icell)%surround_p%i(3)) 
              dt04 = dt_w(cell(icell)%surround_p%i(4)) 
              dt05 = dt_w(cell(icell)%surround_p%i(5)) 
              dt06 = dt_w(cell(icell)%surround_p%i(6)) 
                res_u = coef(icell)%rhs_u + coef(icell)%an_u(1)*dt1 + & 
   & coef(icell)%an_u(2) * dt2 + coef(icell)%an_u(3) * & 
   & dt3 + coef(icell)%an_u(4) * dt4 + &  
   & coef(icell)%an_u(5) * dt5 + coef(icell)%an_u(6) * & 
   & dt6 
                res_v = coef(icell)%rhs_v + coef(icell)%an_w(1)* dt11 & 
   & + coef(icell)%an_v(2)* dt22 + coef(icell)%an_v(3) & 
   & * dt33 + coef(icell)%an_v(4) * dt44 & 
                 & + coef(icell)%an_v(5)* dt55 + coef(icell)%an_v(6) & 
   & * dt66 
                res_w = coef(icell)%rhs_w + coef(icell)%an_w(1)* dt01 & 
   & + coef(icell)%an_w(2)*dt02 + coef(icell)%an_w(3) *& 
   & dt03 + coef(icell)%an_w(4) * dt04 & 
               & + coef(icell)%an_w(5)* dt05 + coef(icell)%an_w(6) & 
   & * dt06 
            summ = summ + abs (res_u- &  
   & coef(icell)%ap_u/urfu*dt_u(icell))+abs (res_v- & 
   & coef(icell)%ap_v/urfv*dt_v(icell)) & 
                  & + abs (res_w-coef(icell)%ap_w/urfw*dt_w(icell)) 
            dt_u(icell) = res_u / coef(icell)%ap_u*urfu 
            dt_v(icell) = res_v / coef(icell)%ap_v*urfv 
            dt_w(icell) = res_w / coef(icell)%ap_w*urfw 
         enddo 
! 
        IF(iter==1)then 
          if(summ<tiny)exit 
          summ1=summ 
        else 
          IF (summ/summ1 < errors) EXIT 
        endif 
   ENDDO 
 ELSE 
 
      remainder = mod(ncell,subblock) 
      nsubblock = ncell/subblock 
! 
      IF(remainder > 0)then 
      nsubblock = nsubblock + 1 
      ELSE 
      nsubblock = nsubblock 
      ENDIF 
! 
        do counter = 1, nsubblock 
         DO iter = 1, num_iter 
         summ = 0._high 
     IF (counter == nsubblock)then 
     IF (remainder > 0)then 
       do icell= (counter-1)*subblock+1,(counter-1)*subblock+remainder 



 120

              dt1 = dt_u(cell(icell)%surround_p%i(1)) 
              dt2 = dt_u(cell(icell)%surround_p%i(2)) 
              dt3 = dt_u(cell(icell)%surround_p%i(3)) 
              dt4 = dt_u(cell(icell)%surround_p%i(4)) 
              dt5 = dt_u(cell(icell)%surround_p%i(5)) 
              dt6 = dt_u(cell(icell)%surround_p%i(6)) 
              dt11 = dt_v(cell(icell)%surround_p%i(1)) 
              dt22 = dt_v(cell(icell)%surround_p%i(2)) 
              dt33 = dt_v(cell(icell)%surround_p%i(3)) 
              dt44 = dt_v(cell(icell)%surround_p%i(4)) 
              dt55 = dt_v(cell(icell)%surround_p%i(5)) 
              dt66 = dt_v(cell(icell)%surround_p%i(6)) 
              dt01 = dt_w(cell(icell)%surround_p%i(1)) 
              dt02 = dt_w(cell(icell)%surround_p%i(2)) 
              dt03 = dt_w(cell(icell)%surround_p%i(3)) 
              dt04 = dt_w(cell(icell)%surround_p%i(4)) 
              dt05 = dt_w(cell(icell)%surround_p%i(5)) 
              dt06 = dt_w(cell(icell)%surround_p%i(6)) 
        
      res_u = coef(icell)%rhs_u + coef(icell)%an_u(1)*dt1 + & 
   & coef(icell)%an_u(2) * dt2 + coef(icell)%an_u(3) * & 
   & dt3 + coef(icell)%an_u(4) * dt4 + &  
   & coef(icell)%an_u(5) * dt5 + coef(icell)%an_u(6) * & 
   & dt6 
                res_v = coef(icell)%rhs_v + coef(icell)%an_w(1)* dt11 & 
   & + coef(icell)%an_v(2)* dt22 + coef(icell)%an_v(3) & 
   & * dt33 + coef(icell)%an_v(4) * dt44 & 
                 & + coef(icell)%an_v(5)* dt55 + coef(icell)%an_v(6) & 
   & * dt66 
                res_w = coef(icell)%rhs_w + coef(icell)%an_w(1)* dt01 & 
   & + coef(icell)%an_w(2)*dt02 + coef(icell)%an_w(3) *& 
   & dt03 + coef(icell)%an_w(4) * dt04 & 
               & + coef(icell)%an_w(5)* dt05 + coef(icell)%an_w(6) & 
   & * dt06 
            summ = summ + abs (res_u- &  
   & coef(icell)%ap_u/urfu*dt_u(icell))+abs (res_v- & 
   & coef(icell)%ap_v/urfv*dt_v(icell)) & 
                  & + abs (res_w-coef(icell)%ap_w/urfw*dt_w(icell)) 
 
            dt_u(icell) = res_u / coef(icell)%ap_u*urfu 
            dt_v(icell) = res_v / coef(icell)%ap_v*urfv 
            dt_w(icell) = res_w / coef(icell)%ap_w*urfw 
 
       enddo 
     ELSE 
           do icell= (counter-1)*subblock+1,(counter)*subblock 
              dt1 = dt_u(cell(icell)%surround_p%i(1)) 
              dt2 = dt_u(cell(icell)%surround_p%i(2)) 
              dt3 = dt_u(cell(icell)%surround_p%i(3)) 
              dt4 = dt_u(cell(icell)%surround_p%i(4)) 
              dt5 = dt_u(cell(icell)%surround_p%i(5)) 
              dt6 = dt_u(cell(icell)%surround_p%i(6)) 
              dt11 = dt_v(cell(icell)%surround_p%i(1)) 
              dt22 = dt_v(cell(icell)%surround_p%i(2)) 
              dt33 = dt_v(cell(icell)%surround_p%i(3)) 
              dt44 = dt_v(cell(icell)%surround_p%i(4)) 
              dt55 = dt_v(cell(icell)%surround_p%i(5)) 
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              dt66 = dt_v(cell(icell)%surround_p%i(6)) 
              dt01 = dt_w(cell(icell)%surround_p%i(1)) 
              dt02 = dt_w(cell(icell)%surround_p%i(2)) 
              dt03 = dt_w(cell(icell)%surround_p%i(3)) 
              dt04 = dt_w(cell(icell)%surround_p%i(4)) 
              dt05 = dt_w(cell(icell)%surround_p%i(5)) 
              dt06 = dt_w(cell(icell)%surround_p%i(6)) 
 
             res_u = coef(icell)%rhs_u + coef(icell)%an_u(1)*dt1 + & 
   & coef(icell)%an_u(2) * dt2 + coef(icell)%an_u(3) * & 
   & dt3 + coef(icell)%an_u(4) * dt4 + &  
   & coef(icell)%an_u(5) * dt5 + coef(icell)%an_u(6) * & 
   & dt6 
                res_v = coef(icell)%rhs_v + coef(icell)%an_w(1)* dt11 & 
   & + coef(icell)%an_v(2)* dt22 + coef(icell)%an_v(3) & 
   & * dt33 + coef(icell)%an_v(4) * dt44 & 
                 & + coef(icell)%an_v(5)* dt55 + coef(icell)%an_v(6) & 
   & * dt66 
                res_w = coef(icell)%rhs_w + coef(icell)%an_w(1)* dt01 & 
   & + coef(icell)%an_w(2)*dt02 + coef(icell)%an_w(3) *& 
   & dt03 + coef(icell)%an_w(4) * dt04 & 
               & + coef(icell)%an_w(5)* dt05 + coef(icell)%an_w(6) & 
   & * dt06 
            summ = summ + abs (res_u- &  
   & coef(icell)%ap_u/urfu*dt_u(icell))+abs (res_v- & 
   & coef(icell)%ap_v/urfv*dt_v(icell)) & 
                  & + abs (res_w-coef(icell)%ap_w/urfw*dt_w(icell)) 
 
            dt_u(icell) = res_u / coef(icell)%ap_u*urfu 
            dt_v(icell) = res_v / coef(icell)%ap_v*urfv 
            dt_w(icell) = res_w / coef(icell)%ap_w*urfw 
       enddo 
      ENDIF 
     ELSE 
       do icell= (counter-1)*subblock+1,counter*subblock 
              dt1 = dt_u(cell(icell)%surround_p%i(1)) 
              dt2 = dt_u(cell(icell)%surround_p%i(2)) 
              dt3 = dt_u(cell(icell)%surround_p%i(3)) 
              dt4 = dt_u(cell(icell)%surround_p%i(4)) 
              dt5 = dt_u(cell(icell)%surround_p%i(5)) 
              dt6 = dt_u(cell(icell)%surround_p%i(6)) 
              dt11 = dt_v(cell(icell)%surround_p%i(1)) 
              dt22 = dt_v(cell(icell)%surround_p%i(2)) 
              dt33 = dt_v(cell(icell)%surround_p%i(3)) 
              dt44 = dt_v(cell(icell)%surround_p%i(4)) 
              dt55 = dt_v(cell(icell)%surround_p%i(5)) 
              dt66 = dt_v(cell(icell)%surround_p%i(6)) 
              dt01 = dt_w(cell(icell)%surround_p%i(1)) 
              dt02 = dt_w(cell(icell)%surround_p%i(2)) 
              dt03 = dt_w(cell(icell)%surround_p%i(3)) 
              dt04 = dt_w(cell(icell)%surround_p%i(4)) 
              dt05 = dt_w(cell(icell)%surround_p%i(5)) 
              dt06 = dt_w(cell(icell)%surround_p%i(6)) 
               
                res_u = coef(icell)%rhs_u + coef(icell)%an_u(1)*dt1 + & 
   & coef(icell)%an_u(2) * dt2 + coef(icell)%an_u(3) * & 
   & dt3 + coef(icell)%an_u(4) * dt4 + &  
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   & coef(icell)%an_u(5) * dt5 + coef(icell)%an_u(6) * & 
   & dt6 
                res_v = coef(icell)%rhs_v + coef(icell)%an_w(1)* dt11 & 
   & + coef(icell)%an_v(2)* dt22 + coef(icell)%an_v(3) & 
   & * dt33 + coef(icell)%an_v(4) * dt44 & 
                 & + coef(icell)%an_v(5)* dt55 + coef(icell)%an_v(6) & 
   & * dt66 
                res_w = coef(icell)%rhs_w + coef(icell)%an_w(1)* dt01 & 
   & + coef(icell)%an_w(2)*dt02 + coef(icell)%an_w(3) *& 
   & dt03 + coef(icell)%an_w(4) * dt04 & 
               & + coef(icell)%an_w(5)* dt05 + coef(icell)%an_w(6) & 
   & * dt06 
            summ = summ + abs (res_u- &  
   & coef(icell)%ap_u/urfu*dt_u(icell))+abs (res_v- & 
   & coef(icell)%ap_v/urfv*dt_v(icell)) & 
                  & + abs (res_w-coef(icell)%ap_w/urfw*dt_w(icell)) 
 
            dt_u(icell) = res_u / coef(icell)%ap_u*urfu 
            dt_v(icell) = res_v / coef(icell)%ap_v*urfv 
            dt_w(icell) = res_w / coef(icell)%ap_w*urfw 
 
       enddo 
   ENDIF 
! 
! 
     IF(iter==1)then 
          if(summ<tiny)exit 
          summ1=summ 
        else 
          IF (summ/summ1 < errors) EXIT 
        endif 
      END DO 
   enddo 
! 
  ENDIF 
      node(1:ncell)%u  = node(1:ncell)%u + dt_u(1:ncell) 
      node(1:ncell)%v  = node(1:ncell)%v + dt_v(1:ncell) 
      node(1:ncell)%w  = node(1:ncell)%w + dt_w(1:ncell) 
 
! 
      return 
    END SUBROUTINE i_solver_gs_velocity_sb 
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A2. Data Structure Change 
 
Given below are the changes made to the data structure in the code. The new data 

structure with two-dimensional array replaced the pointer for the face data structure. The 

v(1), v(2), p1, p2 were replaced by 1,2,3,4 respectively in the two-dimensionsal 

array. Similar changes were made to other variables also. The changes were made only to 

the face data structure to test the idea and also because it showed a major scope of 

improvement.  
     

For ‘internal’ 
 
       internal%facex(iface,1) = internal%face(iface)%v(1) 
       internal%facex(iface,2) = internal%face(iface)%v(2) 
       internal%facex(iface,3) = internal%face(iface)%p1 
       internal%facex(iface,4) = internal%face(iface)%p2 
 
For ‘Boundary Conditions’ 
 
    boundary%bc(ibc)%facex(iface,1) = boundary%bc(ibc)%face(iface)%v(1) 
    boundary%bc(ibc)%facex(iface,2) = boundary%bc(ibc)%face(iface)%v(2) 
    boundary%bc(ibc)%facex(iface,3) = boundary%bc(ibc)%face(iface)%p1 
    boundary%bc(ibc)%facex(iface,4) = boundary%bc(ibc)%face(iface)%p2 
 
 
In the relevant subroutines the values associated with the variables were called using the 

new data structure as shown below. The new data structure proved to e more cache 

friendly and led to performance improvements. 

 
A2.1 ORIGINAL DATA STRUCTURE 
 
        v1 = internal%face(iface)%v(1) 
        v2 = internal%face(iface)%v(2) 
        p1 = internal%face(iface)%p1 
        p2 = internal%face(iface)%p2 
        a1 = internal%face(iface)%a(1) 
        a2 = internal%face(iface)%a(2) 
        ex = internal%face(iface)%e(1) 
        ey = internal%face(iface)%e(2) 
        nx = internal%face(iface)%n(1) 
        ny = internal%face(iface)%n(2) 
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A2.1 MODIFIED DATA STRUCTURE 
 
 
         v1 = internal%facex(iface,1) 
         v2 = internal%facex(iface,2)          
         p1 = internal%facex(iface,3) 
         p2 = internal%facex(iface,4) 
         a1 = internal%facedata(iface,1) 
         a2 = internal%facedata(iface,2) 
         ex = internal%facedata(iface,3) 
         ey = internal%facedata(iface,4) 
         nx = internal%facedata(iface,5) 
         ny = internal%facedata(iface,6) 
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