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ABSTRACT OF THESIS 

 

 

 
A LOCALLY CORRECTED NYSTRÖM METHOD FOR SURFACE INTEGRAL 

EQUATIONS: AN OBJECT ORIENTED APPROACH 
 
 

Classically, researchers in Computational Physics and specifically in Computational 
Electromagnetics have sought to find numerical solutions to complex physical problems.  
Several techniques have been developed to accomplish such tasks, each of which having 
advantages over their counterparts.  Typically, each solution method has been developed 
separately despite having numerous commonalities with other methods.  This fact 
motivates a unified software tool to house each solution method to avoid duplicating 
previous efforts.  Subsequently, these solution methods can be used alone or in 
conjunction with one another in a straightforward manner.  The aforementioned goals can 
be accomplished by using an Object Oriented software approach.  Thus, the goal of the 
presented research was to incorporate a specific solution technique, an Integral Equation 
Nyström method, into a general, Object Oriented software framework. 
 
 
KEYWORDS: Electromagnetics, Integral Equations, Nyström Method, High Order  
  Solution Method, Object Oriented Software 
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Introduction: 
 

Research areas in Computational Physics are ever expanding as computing technology 

continues to grow.  An important goal of these research efforts is to solve very large, 

complex problems in a fast, efficient, and accurate manner.  Consider the development of 

a new GPS (Global Positioning System) satellite.  This is a very complex problem 

(certainly beyond the scope of an analytical solution) with thousands if not millions of 

unknowns.  Researchers have developed and will continue to improve upon techniques to 

model these satellites such that they function properly when put into orbit. 

 

One approach to modeling problems of the type posed above is to use an Integral 

Equation (IE) method.  IE methods seek to pose integral based solutions to the underlying 

physical equations which govern the proposed problem.  In a computational approach, 

these equations are then discretized to yield a numerical solution which can be found 

through successive computations. 

 

IE methods are not the only approach used to solve these problems; others include Finite 

Element Methods (FEM) and time domain methods such as the Finite Difference Time 

Domain (FDTD).  Each of these methods has advantages over the others but they all have 

several commonalities.  Classically, new simulation codes are developed for each new 

solution technique.  These new codes come at the cost of reworking common bonds 

between methods.  Thus, a general framework which houses all of these solution 

techniques would be advantageous.  This can be accomplished through Object Oriented 

coding. 

 

This thesis will focus on one area of Computational Physics, Electromagnetics, and a 

specific IE method used to solve related problems, The Locally Corrected Nyström 

Method.  First, a review of the governing physical equations and properties of 

Electromagnetic IE problems will be presented.  This will be followed by an overview 

and subsequent discussion of the Locally Corrected Nyström Method.  Further motivation 

for an Object Oriented design will be presented along with an overview of the Nyström 
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implementation.  Finally, the presented methods will be validated by a series of 

numerical examples and performance results. 
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I. Review of Surface Integral Equations 

 

1.0) Maxwell’s Equations [1] 

 

The fundamental laws that govern Electromagnetic (EM) phenomena are given by a set 

of vector equations known as Maxwell’s equations, named after the famous Scottish 

mathematical physicist James Clerk Maxwell.  These equations written in time domain, 

differential form are: 

 i
BE M
t

∂∇× = − −
∂

 (1.0.1) 

 i c
DH J J
t

∂∇× = + +
∂

 (1.0.2) 

 vD ρ∇ ⋅ =  (1.0.3) 

 mB ρ∇ ⋅ =  (1.0.4) 

where E  is the vector electric field in [V/m], H  is the vector magnetic field in [A/m], D  

is the electric flux density in [C/m], B  is the magnetic flux density in [Wb/m], iM  is the 

impressed magnetic current density in [V/m2], iJ  is the impressed electric current density 

in [A/m2], cJ  is the conduction electric current density in [A/m2], ρv is the electric charge 

density in [C/m], and ρm is the magnetic charge density in [Wb/m].  Equations (1.0.1) and 

(1.0.2) are Faraday’s and Ampere’s Law respectively and equations (1.0.3) and (1.0.4) 

are the electric and magnetic forms of Gauss’ Law. 

 

The constitutive relations which supplement the above equations are as follows: 

 D Eε= ∗  (1.0.5) 

 B Hμ= ∗  (1.0.6) 

 cJ Eσ= ∗  (1.0.7) 

where ε is the time varying permittivity of the media in [F/m], μ is the time varying 

permeability of the media in [H/m], σ is the time varying conductivity of the media in 

[S/m] and where * represents a convolution. 
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This thesis will discuss Surface Integral Equations (SIEs) in the frequency domain, rather 

than the time domain.  Thus the above equations need to be written in Time Harmonic 

form.  Assuming an j te ω  time dependence, equations (1.0.1-1.0.4) are written: 

 iE M j Bω∇× = − −  (1.0.8) 

 i cH J J j Dω∇× = + +  (1.0.9) 

 vD ρ∇ ⋅ =  (1.0.10) 

 mB ρ∇ ⋅ =  (1.0.11) 

where ω is radian frequency of the EM waves.  The constitutive relations remain the 

same for the frequency domain, however the convolution simply becomes a 

multiplication. 

 

One final relation that needs to be presented is known as the Continuity Equation.  The 

Continuity Equation is derived by taking the divergence of Ampere’s Law, (1.0.9): 

( ) ( )

i c

ic

ic

H J J j D

H J j D

H J j D

ω
ω

ω

∇× = + +

∇× = +

∇ ⋅ ∇× = ∇ ⋅ +

 

using the vector identity ( ) 0H∇ ⋅ ∇× = , the above becomes 

( ) 0ic

ic

J j D

J j D

ω

ω

∇⋅ + =

∇⋅ = −∇⋅
 

then applying Gauss’ Law, 

 ic vJ jωρ∇ ⋅ = −  (1.0.12) 

Equation (1.0.12) is the final form for the Continuity Equation. 

 

1.1) Boundary Conditions [1] 

 

When EM waves propagate between two different media they experience discontinuities 

at the interface.  In order to properly preserve Maxwell’s equations at these interfaces 
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special treatment is needed in the form of boundary conditions.  These boundary 

conditions dictate field behavior at material and conducting interfaces and are a natural 

consequence of Maxwell’s equations.  The derivation shown here follows from [1]. 

 

General Material Interface 

 

Consider Figure 1.1.1 below, an interface between two materials with constitutive 

parameters ε1, μ1, σ1 and ε2, μ2, σ2.  The derivation of the electric field boundary 

condition originates from Faraday’s Law in integral form.  Taking the surface integral of 

both sides of equation (1.0.8) yields: 

 ( ) i
S S S

E ds M ds j B dsω∇× ⋅ = − ⋅ − ⋅∫∫ ∫∫ ∫∫  (1.1.1) 

Applying Stokes Theorem to the left hand side reduces (1.1.1) to, 

 
( )   ( '  )

S C

i
C S S

A ds A dl Stokes Theorem

E dl M ds j B dsω

∇× ⋅ = ⋅

⋅ = − ⋅ − ⋅

∫∫ ∫

∫ ∫∫ ∫∫
 (1.1.2) 

Equation (1.1.2) is the relation from which we will derive the electric field boundary 

condition. 

n̂

 
Figure 1.1.1 Material Interface for Field Boundary Conditions 

 

As the height of the rectangle Δh becomes smaller the overall area S also becomes 

smaller.  Therefore, in the limit as Δh goes to zero the contribution of the magnetic flux 
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surface integral term in (1.1.2) becomes negligible.  In the same limit as height 

approaches zero the left hand side of (1.1.2) becomes: 

 1 2ˆ ˆw w
C

E dl E a w E a w⋅ = ⋅ Δ − ⋅ Δ∫  (1.1.3) 

The magnetic current iM  is confined to a very thin layer between the two media.  

Because iM  is strictly a surface current as the height approaches zero the surface 

integration has a non-zero contribution to (1.1.2): 

 
( )

( ) ( )
0 0

0

ˆ ˆlim lim

ˆ ˆ ˆ ˆlim

i i w hh h
S

i w h s w hh

M ds M a a w h

M a a w h M a a w

Δ → Δ →

Δ →

⎡ ⎤⋅ = ⋅ × Δ Δ⎣ ⎦

⎡ ⎤⋅ × Δ Δ = ⋅ × Δ⎣ ⎦

∫∫
 (1.1.4) 

Equating (1.1.3), (1.1.4), and applying some basic vector identities yields the final result 

for the electric field boundary condition: 

 

( )
( ) ( )

( )

1 2

1 2

2 1

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆRealizing, 

ˆ

w w s w h

w s w h

h

s

E a w E a w M a a w

E E a M a a

a n

n E E M

⋅ Δ − ⋅ Δ = − ⋅ × Δ

− ⋅ = − ⋅ ×

=

× − = −

 (1.1.5) 

The boundary condition for the magnetic field can be derived in the same manner as 

above but rather beginning with Ampere’s Law in integral form.  Following the same 

steps yields the magnetic field boundary condition: 

 ( )2 1ˆ sn H H J× − =  (1.1.6) 

If the boundary had no sources (i.e. sJ  and sM  = 0), equations (1.1.5) and (1.1.6) dictate 

a classic result in that the electric and magnetic fields are tangential continuous across a 

boundary interface.  A discontinuity in the tangential fields would necessitate a surface 

current to be present. 

 

Now that the boundary condition on the fields has been established the discussion will 

continue with the boundary condition for the fluxes.  The integral form of Gauss’ Law 

can be derived by taking the volume integral of equation (1.0.10): 

 v
V V

D dv dvρ∇ ⋅ =∫∫∫ ∫∫∫   (1.1.7) 
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The Divergence Theorem can then be used to simplify the left hand side of (1.1.7): 

 
(  )

V S

v
S V

Adv A ds Divergence Theorem

D ds dvρ

∇ ⋅ = ⋅

⋅ =

∫∫∫ ∫∫

∫∫ ∫∫∫
 (1.1.8) 

Now refer to the cylindrical cutout between the two regions in Figure 1.1.2.  There are 

two surface areas of interest, namely A and Ao.  As the height of the cylinder vanishes 

the contribution of Ao to the surface integral in (1.1.8) is negligible.  Assuming there are 

no charges or sources on the boundary, (1.1.8) can be rewritten as, 

2 1ˆ ˆ 0
A

D ds D nA D nA⋅ = ⋅ − ⋅ =∫∫  

Dividing both sides by the area yields the electric flux boundary condition: 

 ( )2 1ˆ 0n D D⋅ − =  (1.1.9) 

A similar expression for the magnetic flux boundary condition can be derived from the 

magnetic form of Gauss’ Law: 

 ( )2 1ˆ 0n B B⋅ − =  (1.1.10) 

If there are charges along the surface of the interface the right hand side of (1.1.8) 

collapses simply into surface charges and the flux boundary conditions become, 

 
( )
( )

2 1

2 1

ˆ

ˆ

e

m

n D D

n B B

ρ

ρ

⋅ − =

⋅ − =
 (1.1.11) 

where eρ  and mρ  are the electric and magnetic surface charge densities on the interface. 
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n̂

n̂

 
Figure 1.1.2 Material Interface for Flux Boundary Conditions 

 

Perfectly Conducting Interface 

 

There are two other interfaces to note before continuing the discussion of SIEs, a Perfect 

Electric Conductor (PEC) and a Perfect Magnetic Conductor (PMC).  For a material to be 

a PEC it must have infinite electrical conductivity.  As a consequence of having infinite 

electrical conductivity a PEC cannot support magnetic charge or magnetic current.  

Therefore, 

| 0, | 0s PEC m PECM ρ= =  

Similarly, a PMC cannot support electric charge or electric current: 

| 0, | 0s PMC e PMCJ ρ= =  

A property of both PECs and PMCs is that the total field within the conductor is zero.  

Assuming that region 1 is a PEC and utilizing the above properties, the boundary 

conditions can be written, 

 

2

2

2

2

ˆ 0
ˆ

ˆ

ˆ 0

s

e

n E

n H J

n D

n B

ρ

× =

× =

⋅ =

⋅ =

 (1.1.12) 

Finally, if region 1 is a PMC then the boundary condition can be written, 
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2

2

2

2

ˆ

ˆ 0
ˆ 0
ˆ

s

m

n E M

n H

n D

n B ρ

× = −

× =

⋅ =

⋅ =

 (1.1.13) 

 

1.2) Equivalence Principle [1, 2] 

 

A basic EM principle used in the derivation of SIEs is known as Huygen’s Equivalence 

Principle.  Consider the problem posed by Figure 1.2.1 of an arbitrary target illuminated 

by an incident EM wave.  The problem is divided into two different regions, separated by 

the fictitious surface S.  Region 1 is a homogeneous space with constitutive parameters ε1 

μ1.  Region 2 is an inhomogeneous space which can contain an arbitrary number of 

targets.  For this example Region 2 contains both a PEC and material target.  The incident 

EM wave is located in Region 1 and produces fields E1, H1 in Region 1 and E2, H2 in 

Region 2. 

 

n̂
 

Figure 1.2.1  Equivalence Principle 

 

Now consider the intermediate problem posed by Figure 1.2.2.  Equivalent currents have 

been placed on the surface S.  These currents satisfy the following relations: 
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1

1

ˆ

ˆ
s

s

J n H

M n E

= ×

= − ×
 

where n̂  is the outward surface normal to S.  Equivalence theory states that the 

combination of the original source and the equivalent sources produce the exact same 

fields in Region 1 as the original problem, namely 1E and 1H .  However, as a 

consequence of these equivalent sources the fields in Region 2 have been nullified via the 

extinction theorem.  In other words, the fields in Region 2 are zero because the equivalent 

sources radiate negative the incident field within Region 2. 

 

Since the fields in Region 2 are nullified by these equivalent currents the inhomogeneities 

can be modified in an arbitrary manner without affecting the fields in Region 1.  A 

convenient choice would be to remove all the inhomogeneities and replace Region 2 with 

the same material parameters as Region 1 leaving both regions with the same 

homogeneous properties (Figure 1.2.3).  This leaves an equivalent exterior problem with 

both the original incident EM source and the equivalent surface currents radiating in 

homogeneous space. 

n̂
 

Figure 1.2.2 Intermediate Equivalence Principle 
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Thus, using Equivalence, the problem has been simplified to solving for the unknown 

surface currents sJ  and sM  rather than the fields in both regions in the presence of the 

inhomogeneities.  This principle is of practical interest because for typical problems (e.g. 

EM wave hitting an airplane) we are mostly concerned with the scattered field reflected 

from the target rather than the fields within the target. 

 

n̂
 

Figure 1.2.3 Equivalent Exterior Problem 

 

1.3) Derivation of Surface Integral Equations [3, 4] 

 

1.3.1) Electric Field Integral Equation 

Now that some basic EM principles have been presented we can continue on to the 

discussion of Surface Integral Equations.  The first SIE of interest is the Electric Field 

Integral Equation (EFIE).  For simplicity let’s first consider the EFIE on a PEC target. 

 

Figure 1.3.1a depicts an arbitrarily shaped PEC target illuminated by an EM wave 

propagating in free space.  We are interested in the scattered field off this target; from 

Equivalence, we know that the total field exterior to the target is equal to the sum of the 

incident and scattered fields:  

 tot inc scatE E E= +  (1.3.1) 
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n̂

n̂

 
Figure 1.3.1 Scattering by PEC and Equivalent Problem 

 

Figure 1.3.1(b) shows the equivalent problem of incE  and sJ  radiating in freespace.  In 

order to solve equation (1.3.1) we need to move the problem to a location where the total 

field is known.  According to equation (1.1.12) the total tangential electric field must be 

zero on the surface of a PEC.  Thus (1.3.1) can be rewritten as, 

 
ˆ ˆ| |
               or
ˆ ˆ| |

inc scat
S S

inc scat
S S

n E n E

t E t E

× = − ×

⋅ = − ⋅

 (1.3.2) 

where t̂  is the unit tangent to the surface S.  sJ  radiates scatE .  Their relationship is 

governed by the magnetic vector potential A .  From [1] scatE  can be written: 

 

0

0
0 0

0

( ) ( , ') '

( , ')   '
4

scat

s
S

jk R

E jk A A
jk

A r J G r r ds

eG r r where R r r
R

ηη

π

−

= − + ∇∇ ⋅

= ⋅

= = −

∫  (1.3.3) 
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( , ')G r r  is known as the Freespace Green’s Function and describes how a point source at 

'r  radiates to an observation point r .  Combining equations (1.3.2) and (1.3.3) yields the 

EFIE: 

 
0

0
0 0

0

| '|

ˆ ˆ

( ) ( ') '
4 | ' |

inc
e

jk r r

e s
S

t E t jk A
jk

er A J r ds
r r

ηη

π

− −

⎡ ⎤
⋅ = ⋅ − + ∇Φ⎢ ⎥

⎣ ⎦

Φ = ∇ ⋅ = ∇ ⋅
−∫

 (1.3.4) 

where 0η  is the freespace wave impedance and k0 is the freespace wave number.  ( )e rΦ  

is known as the electric scalar potential. 

 

1.3.2) Magnetic Field Integral Equation 

The next SIE of interest is the Magnetic Field Integral Equation (MFIE).  Again consider 

the problem depicted in Figure 1.3.1.  However, rather than solving for the electric field 

we will focus on the solution for the magnetic field.  Again according to Equivalence we 

have the relation in the region outside of the PEC target, 

 tot inc scatH H H= +  (1.3.5) 

Let’s again move the problem to the surface of the target.  The magnetic field boundary 

condition on a PEC is given by equation (1.1.12).  Thus (1.3.5) can be written as, 

 
ˆ ˆ ˆ| | |

ˆ ˆ| |

tot inc scat
S S S

inc scat
s S S

n H n H n H

J n H n H

× = × + ×

= × + ×
 (1.3.6) 

In this case, sJ  again radiates scatH  and is governed by the magnetic vector potential A .  

scatH  can thus be written [1], 
scatH A= ∇×  

Plugging into (1.3.6), 

ˆ ˆ| |inc
s S SJ n H n A= × + ×∇×  

The right hand side of (1.3.6) needs some special attention in the form of a Principle 

Value Integral (PVI) [5].  The problem in evaluating this integral lies in the fact that H is 

dual valued at the surface S.  The details of this evaluation will not be discussed here, 

however the final result of the MFIE from [3, 5] becomes, 
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 ( )
0

0 2

1ˆ ˆ| ( , ') '
2

 ( , ') 1
4

 ' ,  '

inc
S s s

S

jk R

n H J n J G r r ds

e Rwhere G r r jk R
R R

and R r r R r r
π

−

× = + × ×∇

∇ = + ⋅ ⋅

= − = −

∫

 (1.3.7) 

 

1.3.3) Combined Field Integral Equation 

The above EFIE and MFIE derivations are applicable to arbitrary targets, both open (e.g. 

thin PEC strip) and closed (e.g. sphere, dielectric slab) for the EFIE and simply open for 

the MFIE because of its dual valued nature.  However, when solving problems involving 

closed targets both the EFIE and MFIE operators experience a break down effect known 

as Interior Resonance.  Interior Resonance stems from the fact that at discrete frequencies 

the internal and external boundary conditions are simultaneously satisfied.  This leads to 

a dual valued problem which has no unique solution.  The reader will be referred to 

Chapters 5 and 6 of [2] for a more in depth proof of Interior Resonance. 

 

There are several remedies for this phenomena one of which is known as the Combined 

Field Integral Equation (CFIE).  For the same problem geometry the EFIE and MFIE 

operators experience resonance at different frequencies.  The CFIE takes advantage of 

this fact by taking a linear combination of the EFIE and MFIE operators.  The weight of 

each operator is chosen such that the CFIE has a unique solution at all frequencies.  The 

CFIE operator is commonly written as [2], 

 (1 )CFIE EFIE MFIEα α η= + −  (1.3.8) 

where α is a scaling coefficient between 0 and 1.  The wave impedance, η, is applied to 

the MFIE operator to ensure that both operators have the same scaling.  

 

1.3.4) Integral Equation for Homogeneous Dielectric Bodies 

Now that the SIEs for PEC targets have been discussed our focus will shift to dielectric 

bodies.  The most commonly used SIE for EM scattering from dielectric targets is known 

as the PMCHWT formulation (named after Poggio, Miller, Chang, Harrington, Wu, and 

Tsai) [3, 6, 7].  Consider the problem of Figure 1.3.4 of a dielectric body illuminated by 

an incident EM wave. 
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1n̂

2n̂

 
Figure 1.3.4 Scattering from a Homogeneous Dielectric Body 

 

Again the dielectric body in Figure 1.3.4 will be replaced with equivalent currents 

radiating from the surface.  However, dielectric bodies can support both sJ  and sM  

surface currents.  Subsequently, the formulations for the scattered field in each region are 

different.  scatE and scatH are now more generally written as, 

 
( , ') '

( , ') '

scat

scat

s
S

s
S

jE j A A F

jH A j F F

A J G r r ds

F M G r r ds

ωμ
ωε

ωε
ωμ

= − − ∇∇ ⋅ − ∇×

= ∇× − − ∇∇ ⋅

= ⋅

= ⋅

∫

∫

 (1.3.9) 

where F is the dual to A , the electric vector potential.  Using these relations we can 

write the total field in Region 1: 

 
1 1 1

1 1 1 0 1 1 1
1

ˆ ˆ ˆ

ˆ ˆ ˆ

tot inc scat

tot inc scat

tot inc

E E E

n E n E n E

jn E n E n j A A Fωμ
ωε

= +

× = × + ×

⎛ ⎞
× = × + × − − ∇∇⋅ − ∇×⎜ ⎟

⎝ ⎠

 (1.3.10) 

The total field in Region 2 is now written as, 
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2 2

2 2 0 2 2 2
2

ˆ ˆ

ˆ ˆ

tot scat

tot scat

tot

E E

n E n E

jn E n j A A Fωμ
ωε

=

× = ×

⎛ ⎞
× = × − − ∇∇ ⋅ − ∇×⎜ ⎟

⎝ ⎠

 (1.3.11) 

The boundary condition between the two regions is that the tangential electric field is 

continuous. 

( )1 1 2

1 1 1 2

ˆ 0

ˆ ˆ

tot tot

tot tot

n E E

n E n E

× − =

× = ×
 

With the knowledge that 1 2ˆ ˆn n= − equations (1.3.10) and (1.3.11) can be combined: 

( ) ( ) ( ) ( )

1 1 1 2 2

1 2

1
0 1 2 1 2 1 2

1 2

0

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ '

,  ,  
4

i

inc scat scat

inc scat scat

inc
s s s s

S

jk R

i i i

n E n E n E

n E n E n E

jn E n j J G G M G G J G J G ds

ewhere G k
R

εωμ
ωε ε

ω ε μ
π

−

× + × = ×

× = − × − ×

⎡ ⎤
× = × + − ×∇ + + ∇∇⋅ + ∇∇⋅⎢ ⎥

⎣ ⎦

= =

∫

 (1.3.12) 

where the subscript has been dropped on the surface normal which is assumed to point 

into the region that contains the incident EM wave.  The magnetic field follows the same 

argument as above.  The final form for the magnetic field is written as, 

( ) ( ) ( )2
1 1 2 1 2 1 2

1 0

ˆ ˆ 'inc
s s s s

S

jn H n j M G G J G G M G M G dsεωε
ε ωμ

⎛ ⎞ ⎡ ⎤× = × + + ×∇ + + ∇∇⋅ +∇∇⋅⎜ ⎟ ⎣ ⎦⎝ ⎠
∫

 (1.3.13) 

Equations (1.3.12) and (1.3.13) represent the final form for the dielectric or PMCHWT 

SIE formulation. 

 

1.3.5) Hybrid Dielectric / PEC Body Integral Equation 

Before continuing the discussion on Hybrid SIE’s it is convenient to define compact 

versions of the integral operators given above.  In EFIE, MFIE, and PMCHWT 

formulations there are two basic integral operators; they are defined as follows: 
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( )ˆ ˆ( ) ( , ') ' ( , ') '

1 ˆ( ) ( , ') '
2

s s s
S S

s s s
S

L J n J G r r ds n J G r r ds

K J J n J G r r ds

= × ⋅ + × ∇∇ ⋅ ⋅

= + × ×∇

∫ ∫

∫
 (1.3.14) 

The L and K operators are valid for magnetic surface currents as well and appear in the 

same form by simply replacing sJ with sM . 

 

Now consider the problem in Figure 1.3.5 of a PEC strip above a dielectric slab.  There 

are two regions of interest in this problem, Region 1 which contains the PEC strip and 

Region 2 which contains the dielectric slab.  We know from the boundary conditions and 

equivalence that Region 1 supports only electric current, pecJ .  Region 2 will support both 

electric and magnetic currents, Jε and M ε .   

 
Figure 1.3.5 Hybrid PEC Dielectric Scattering Problem 

 

Formulating the integral equations that govern the scattered fields in each region follows 

from the PMCHWT derivation.  In compact form, the fields in Region 2 are written, 

 
0 ( ) ( )

0 ( ) ( )

L J K M

L M K J
ε ε

ε ε

= +

= +
 (1.3.15) 

Realizing that the PEC can only support J , the fields in Region 1 can be written in a 

similar manner: 

 
0 ( ) ( ) ( )

( ) ( ) ( )

inc
pec

inc
pec

M L J K M L J

J L M K J K J
ε ε

ε ε

= = + +

= + +
 (1.3.16) 
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1.4) Kernels 

 

The final focus of this review section will be on the integral operators defined in 

equations (1.3.14).  For the purposes of this thesis, the quantities internal to the integrals 

of these operators are known as Kernels.  The L and K operators have three basic types of 

kernels, each with their own properties. 

 

First consider the K operator.  The Kernel present in the K operator is of the form: 

( , ')G r r×∇f  

Notice that as the source and observation points, 'r  and r , begin to coincide the Kernel 

approaches an infinite value.  Functions that exhibit this behavior are known as singular 

functions.  This particular Kernel has a 2

1
R

singularity because of the derivative on the 

Green’s Function.  Because of this singularity special care needs to be taken when 

solving the discrete form of the K operator.  Note that the K operator has a purely 

diagonal term outside the integral.  Thus the K operator is known as a Second Kind 

Integral Operator.  This diagonal term helps to improve conditioning for discrete forms of 

the K operator. 

 

The L operator has two types of Kernels.  They are as follows: 

( )
( , ')                        (i)

( , ')              (ii)

G r r

G r r

⋅

∇∇⋅ ⋅

f

f
 

Kernel (i) is a smoothing Kernel and has a 1
R

singularity.  Kernel (ii) is hypersingular and 

poorly behaved because of its 3

1
R

singularity.  The L operator is a first kind integral 

equation because of the combination of the smoothing and hypersingular pieces.  Thus, 

discrete forms of the L operator tend to be very poorly conditioned. 
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II. Method of Weighted Residuals 

 

Section I was devoted to deriving explicit forms for SIEs on arbitrary targets.  These SIEs 

can be solved exactly for simple geometries such as spheres using techniques such as the 

Mie Series [8].  However, the ultimate goal of SIEs is to solve problems of intricate 

shapes such as an aircraft.  Once the target becomes more complex the exact solution is 

increasingly difficult to achieve.  To alleviate this problem the Method of Weighted 

Residuals (also known as Method of Moments or MoM) will be used to discretize the 

continuous problem domain into finite regions on which an approximate solution can be 

reached.   

 

MoM can be divided into four main steps [9]: 

1) Discretization of the Problem Domain 

2) Selection of Interpolation Functions 

3) Formulation of the System of Equations 

4) Solution to the System of Equations 

 

First, the geometry must be discretized into simple geometrical pieces, usually triangles 

or quadrilaterals for surfaces and tetrahedra or hexahedra for volumes.  These elements 

are used to approximate the exact geometry to a desired degree of accuracy.  The process 

of discretizing the target geometry is commonly referred to as meshing. 

 

The interpolation functions are chosen to represent the current which is induced on these 

targets from the inbound sources.  The degree of these functions determine, in part, the 

accuracy of the approximation. 

 

A system of equations arises from unknown coefficients placed with each interpolation 

function as one cannot know a priori how the current will behave on a given element.  N 

elements and N unknown coefficients leads to an N by N system of equations which can 

be solved in a direct manner using LU decomposition [10]. 
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Each of the four steps in MoM will be discussed in more detail in the subsequent 

sections. 

 

2.0) Meshing 

 

The first and possibly most important step in MoM is domain discretization or meshing.  

The manner in which the problem domain is meshed has a significant impact on solution 

time and accuracy.  As noted above, the continuous problem domain is sub divided into a 

set number of smaller subdomains or elements using basic geometrical shapes.  The 

elements are assumed to be fitted polyhedra.  For example, triangular elements are fitted 

if each edge is shared by two or fewer triangles (open structures do not necessarily have 

every edge shared).  Below in Figure 2.0 is a cube whose surface has been meshed with 

both quadrilaterals and triangles. 

 

(a) (b)

 
Figure 2.0 Meshed Cube.  2.0(a) is meshed with quadrilaterals, 2.0(b) with triangles. 

 

In general, there is a relationship between the number of meshed elements and solution 

accuracy; that is if the number of meshed elements increases the solution generally 

becomes more accurate.  For linear elements there is a linear relationship between 
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discretization error and element size [9], :  ( ),   error O h h cell size= .  However, this 

relationship comes at the penalty of increased computational time.  For a direct LU 

decomposition the number of operations to reach a solution is on the order of the number 

of elements cubed, 3( )O N .  Thus an increase in the number of elements significantly 

impacts computational time.  Careful consideration needs to be taken when meshing to 

compromise between solution accuracy and computational time. 

 

2.0.1) High Order Meshing 

As noted above there is a fundamental relation between mesh density, solution accuracy, 

and solution time.  One technique used to increase solution accuracy without sacrificing 

as much time is the use of high order meshing elements (Figure 2.0.1).  For smooth 

targets, these high order elements, also known as curvilinear elements, can improve 

discretization error based on the polynomial order of the element, 

:  ( ),   perror O h p polynomial order=  .  Thus when compared to linear elements you can 

achieve an equivalent discretization error using fewer high order elements.  This allows 

for improved accuracy without increasing computational costs. 

 

(a) (b)

 
Figure 2.0.1 Meshing Elements.  2.0.1(a) depicts a linear triangular element, 2.0.1(b) a quadratic triangular 

element.  Note that the second order element has curved edges and more nodes. 

 

Further discussion on curvilinear elements and general curvilinear coordinate systems can 

be found in [9] and [11]. 
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2.1) Interpolation Functions [9] 

 

Interpolation Functions represent an approximation to the actual solution within each 

meshed element.  These are known functions with varying polynomial degree which are 

only supported locally.  Interpolation Functions can be chosen to span multiple mesh 

elements on which they have nonzero values.  Outside of the defined local support the 

Interpolation Functions are zero.   

 

Consider the boundary value problem (BVP), 

 L fφ =  (2.1.1) 

where L is an arbitrary operator, f is a known forcing function or source, and φ  is a 

function which resides within a domain Ω bound by Γ.  φ  satisfies the classic Dirichlet 

and/or Neumann boundary conditions on Γ: 

 
1 1

2 2

| ,  constant       (Dirichlet)

| ,  constant    (Neumann)
n

φ γ γ
φ γ γ

Γ

Γ

=
∂ =
∂

 (2.1.2) 

This BVP can be solved using MoM.  φ  is expanded into a summation of known 

interpolation functions weighted by unknown constant coefficients. 

 
1

 ,  
N

j j j
j

cφ φ φ
=

≈ ∈Ω∑  (2.1.3) 

jφ  are the known interpolation functions of polynomial order p that span Ω bound by Γ.  

jc  are the unknown constant coefficients which need to be solved for.  These are also 

referred to as Degrees of Freedom or DOFs.  Plugging (2.1.3) back into (2.1.1) yields, 

 
1

N

j j
j

c L fφ
=
∑  (2.1.4) 
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2.2) Formulation of the System of Equations 

 

We have now expanded (2.1.1) into (2.1.4) which has N unknowns.  In order to solve the 

system we need to first formulate N equations to yield a unique solution.  First, let’s 

define the inner product as follows [9]: 

 
,  d  (scalar form),  denotes a conjugate transpose

,  d  (vector form)

a

a

a
Ω

Ω

Ψ Φ = Ψ Φ Ω

Ψ Φ = Ψ Φ Ω

∫

∫
 (2.2.1) 

Now take equation (2.1.4) and take the inner product with some testing function iφ : 

 
1

, ,  ;    1,
N

j i j i
j

c L f i Nφ φ φ
ΩΩ

=

= =∑  (2.2.2) 

Repeating this procedure for N testing functions results in an N by N system of equations: 

 
1 1 1 1 1

1

, ... , ,
... ... ... ... ...
, ... , ,

N

N N N N N

L L c f

L L c f

φ φ φ φ φ

φ φ φ φ φ

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ =⎜ ⎟ ⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

 (2.2.3) 

Define the compact form of this system as, 

 Kc b=  (2.2.4) 

The formulation presented follows a Galerkin approach in which the expansion functions 

jφ  are known as the basis functions and iφ are known as the testing functions.  The choice 

of these functions will be discussed in more detail with relation to the Nyström method.  

However, for Galerkin approaches both the basis and testing functions are represented by 

the same interpolation functions. 

 

2.3) Solution to system of Equations 

 

The solution of (2.2.4) takes the form, 

 
1

c K b
−

=  (2.3.1) 

The inverse of the K matrix is effectively implemented using an LU decomposition (This 

thesis will be concerned with direct solution methods rather than iterative approaches 

which can be found in [10]).  Once the coefficients have been found an approximation to 
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the current on each patch can be made simply by multiplying the patch basis function by 

the weighting coefficient.  These current approximations can then be used in 

postprocessing to yield other quantities of interest. 
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III. Nyström Method [12-14] 

 

As noted in previous sections, the goal of this thesis is to solve SIEs on arbitrary targets 

using MoM.  There are many techniques to accomplish this task.  Our focus will now 

shift to the underlying method used throughout the remainder of this thesis, the Nyström 

Method.  It is worth noting that the Nyström Method has been shown to be equivalent to 

a quadrature sampled Moment Method [14].   

 

A conventional Nyström Method serves as a simple and efficient way to discretize 

integral equations with non-singular kernels.  Consider the following IE: 

 ( ) ( ') ( ') '
S

x x G x x dsφ ϕ= −∫  (3.1.1) 

where S is a smooth surface, ( )xφ is a known forcing function evaluated at observation 

point x  on S, ( ')G x x−  is the kernel, and ( ')xϕ is the function of interest at the source 

point 'x .  Along with this IE consider a quadrature rule given by, 

 1

( ) ( )

( )

N

n n
nS

n n

f x ds f x

x x u

ω
=

≅

=

∑∫  (3.1.2) 

An example of a quadrature rule which satisfies (3.1.2) would be a Gauss-Legendre rule 

with weights nω  and abscissa points nu  [15].  The Nyström discretization of ( )xφ  on S is 

preformed simply by evaluating ( )xφ  at each quadrature point on S.  That is, 

 ( )n nxϕ ϕ=  (3.1.3) 

The discretized form of (3.1.1) can then be achieved by applying (3.1.2) and (3.1.3) to 

form the matrix relation: 

 
1

( ) ( )  ;    1,
N

m n m n n
n

m G x x m Nφ ω ϕ
=

= − =∑  (3.1.4) 

Assuming that ( )xφ  and ( ')G x x−  are regular functions (non-singular), S is smooth, and 

a high order quadrature scheme is used then the solution to (3.1.4) represents a high order 

approximation to the function of interest ( ')xϕ .  The error in this approximation is the 

same as the underlying quadrature rule.   
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As noted in section 1.4 the kernels used in the integrals for wave scattering problems are 

singular, some even hypersingular.  These properties spoil the high order modeling of the 

kernel at vanishing separation of the source and observation points.  Therefore the 

Nyström scheme has to be modified to incorporate these singularities while still 

maintaining its high order accuracy.   

 

3.1) Locally Corrected Nyström Method (LCN) 

 

Conventional Nyström Methods are capable of discretizing and solving non-singular IEs 

to high order accuracy.  Wave scattering problems have kernels which are undefined 

when the source and observation points coincide.  However, Nyström Methods can still 

be applied to problems with singular kernels by modifying the underlying quadrature rule 

near the singularity.  The high order quadrature rule used in the conventional Nyström 

Method provides a very accurate solution for smooth functions, or for singular functions 

at distances away from the singularity.  The Locally Corrected Nyström Method (LCN) 

uses the same high order quadrature rule away from the singularity but also employs 

“local corrections” to maintain high order accuracy near the singular point.   

 

Again consider the problem in (3.1.1) however let the kernel be singular.  (3.1.4) can be 

we written as, 

 
1 1

( ) ( )
N N

m n m n n
m n

m G x xφ ω ϕ
= =

= −∑∑  (3.1.5) 

LCN now divides the problem into two regions, a region near and far from the singular 

point.  Thus (3.1.5) becomes, 

 
1 1

( ) ( )
N N

m n m n n n n
m far n m near n

G x x mφ ω ϕ ω ϕ
∈ = ∈ =

= − +∑ ∑ ∑ ∑  (3.1.6) 

where ( )n mω  represents the modified quadrature weights for the specialized rule at the 

singularity.  The evaluations in the far region are straight forward and follow directly 

from the previous section.  The specialized quadrature rule for the near region serves to 

fix the underlying quadrature rule so that the integration can maintain its high order 

properties despite the integrand being singular. 
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In order to solve for these modified quadrature weights a set of basis functions ( )mB r are 

defined on the surface or patch of interest.  The details of these functions will be 

discussed in subsequent sections.  However, they are typically chosen in a similar fashion 

to the underlying quadrature rule.  Thus the near term can be expanded, 

 
1

( ) ( ) ( ') ( ') '
N

n n m m n n m
n S

m B r G x x B r dsω
=

= −∑ ∫  (3.1.7) 

Repeating (3.1.7) for 1,m N= leads to a linear system of equations: 

 s mL ω κ=  (3.1.8) 

where sL  is a matrix local to the patch with elements ,[ ] ( )s n j n jL B r= , mκ  is a vector with 

entries ( ') ( ') 'm m n n m
S

G x x B r dsκ = −∫  which can be evaluated to a desired precision using 

adaptive quadrature.  The solution of (3.1.8) yields the modified quadrature weights 

which then can be applied to the near term in (3.1.6).  With the application of the 

modified weights (3.1.6) now represents a high order discrete solution to the integral 

equation posed in (3.1.1) with a singular kernel. 

 

3.2) Basis Functions 

 

Now that the LCN method has been presented we will shift focus to specific details on 

applying this method to a scattering problem.  First let’s assume an arbitrary target has 

been discretized into curvilinear patches which model the surface contour to high order.  

The next step in the MoM procedure would be the selection of basis functions.  As noted 

in section 3.1, the selection of basis functions for LCN mirrors that of the underlying 

quadrature rule.  More specifically, the basis functions are modeled in the same 

polynomial space as the quadrature rule.  For the purposes of this thesis Legendre 

polynomials will be chosen as the representative space for the quadrature rule and the 

basis functions. 

 

The pth order basis on a quadrilateral is defined as follows [16, 17]: 
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1 2 1

1 2 2

1 2

0,
( ) ( )  ;  

0, -1

0, -1
( ) ( )  ;  

0,

ˆ

n m

l k

n

n paP u P u
m pg

l paP u P u
k pg

g a a a

∈
∈

∈
∈

= × ⋅

 (3.2.1) 

where ( )jP u are the jth order Legendre polynomials.  Following Stratton’s notation in [11] 

(u1, u2) are the local curvilinear coordinates of the quadrilateral cell, ia are the local 

unitary vectors, ˆna  is the surface normal, and g  is the surface Jacobian. 

 

There are a few things to note about the basis set defined in (3.2.1).  First, the set is 

mixed order because of the differing degrees on the two Legendre polynomials.  One is 

complete to order p  and the other complete to order 1p + .  As noted in [16, 17] a mixed 

order basis set better serves scattering problems because it correctly models edge 

singularities which result from open or sharp surfaces.  A polynomial complete set, one 

which the Legendre polynomials all have the same order, would lead to spurious 

solutions when applied to a problem with edge singularities.  Both a polynomial complete 

set and a mixed order set would solve problems involving smooth scatterers however the 

mixed order set is chosen because it applies to a wider range of problems. 

 

The second item of note is that there are two distinct basis functions in (3.2.1), one which 

lives along the unitary vector 1a  and the other along 2a .  When using this basis set in 

conjunction with LCN an appropriate testing procedure must follow.  A straight forward 

approach from [16] uses separate, mixed order quadrature rules for each of the two test 

vectors.  This results in a square system of local corrections which can be readily solved. 

 

3.3) Treatment of Self and Near Self Interactions 

 

3.3.1) Duffy Transform 

As noted above, the LCN needs local corrections in order to maintain high order 

accuracy.  There are two distinct corrections which need to be discussed, those for the 
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self terms and near self terms.  Self terms occur when the basis and testing functions lie 

on the same patch which presents a problem because of the singularity in the kernel.  

Near self terms are not singular however they lie within a region of rapid variation in the 

kernel and thus need special treatment. 

 

The singularity in the self terms can be handled by a technique known as Duffy 

Transform [18].  Consider the kernel ( , ') '
S

G r r ds∫  being integrated over the quad 

depicted in Figure 3.3a with a singular point at the cell center, c
nr .   

 

c
nr

c
nr

1u

2u

(0,0) (1,0)

(0,1)

1r

2r

c
nr

 
Figure 3.3 a) Quadrilateral with singular point at cell center. b) Triangulated Quad. c) Degenerate Quad 

mapped into unitary space. 

 

The first step in the Duffy Transform is to triangulate the cell at the singular point (Figure 

3.3b).  Thus the integration becomes a sum over the four segmented triangles.  Each of 

these triangles is then considered to be a degenerate quad meaning that one side of the 

quad has collapsed into a point on the triangle.  The degenerate quad is then mapped into 

the unitary space:  the former vertices 1 2,r r  are mapped to (1,0) and (0,1) respectively 
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while c
nr is mapped to edge 1 0u = (Figure 3.3c).  Once the mapping is complete, the 

integral over each triangle can be written: 
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 (3.3.1) 

The process of triangulating the singular quad and mapping to the unitary space 

effectively removes the (1/ )RΟ  singularity.  The resulting integral in (3.3.1) can then be 

found using a Gauss Legendre quadrature rule or a Lin Log rule for faster convergence.  

Integrands which contain singularities of higher order need to be modified before Duffy 

can be used.  If the higher singularity can not be reduced to (1/ )RΟ  then another 

technique must be employed for the self term. 

 

3.3.2) Octree Decomposition [19, 20] 

As noted above, the near self interactions need to be “locally corrected” in order to 

maintain the high order accuracy of the Nyström Method.  Section 3.1 outlined how to 

apply these local corrections in a manner which preserves the high order properties of the 

Nyström Method, however, the question remains as to the cutoff point between near and 

far interactions.  A technique used to make this distinction is known as an Octree 

Decomposition. 

 

To best illustrate an Octree Decomposition we will first look at its two dimensional 

counterpart, the Quadtree Decomposition.  Consider the problem depicted in Figure 

3.3.2.1 of an arbitrary two dimensional scattering target.  To begin a Quadtree 

decomposition first enclose the target by a fictitious square whose dimension is equal to 

that of the largest linear dimension of the scatterer.  This is sometimes referred to as the 

root box.  Next, create the first level of the Quadtree by dividing the root box into four 

equal pieces, denoted in Figure 3.3.2.1 by the blue dotted lines.  This results in four 

equally sized groups at level one and is in fact how the Quadtree gets its name.   
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A B

C

D

 
Figure 3.3.2.1 Quadtree Decomposition.  The arbitrary target is decomposed into three Quadtree levels. 

 

The next step in a Quadtree decomposition follows similarly from the first, divide each of 

the level one groups into four level two groups denoted by the red dotted lines in the 

figure.  Thus at level two we now have sixteen total groups.  This process continues for a 

specified number of levels until it is determined that subsequent divisions are no longer 

necessary.  Consider the level three division in Figure 3.3.2.1, denoted by the green 

dashed dotted lines.  Note that not every level two group was divided because the group 

either did not contain any information (e.g. top left level two group) or not enough 

information to warrant the division (e.g. bottom right level two group).   

 

Next, consider the level three groups A, B, and C.  Groups A and B are known as 

touching near neighbors because they share a common edge.  In the context of the 

Nyström method, interactions between sources in region A and observers in region B 

would need to be locally corrected following the procedure in section 3.1.  Conversely, 

interactions between group A and group C would simply be preformed via the point 

based reactions outlined in section 3.0.  Thus, A and C would be considered a far 

interaction due to their separation in the Quadtree decomposition. 

 

An Octree Decomposition mirrors that of the Quadtree but with an added dimension.  

That is, three dimensional targets would be enclosed in a cube and divided into eight 
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equal groups during each division.  Thus, each group in an Octree can have up to twenty 

seven touching near neighbors (including the self term) as opposed to only nine in a 

Quadtree decomposition.  Again, Octree near neighbor reactions would need to 

incorporate the local corrections to maintain high order accuracy.  Figure 3.3.2.2 shows 

an example of an Octree decomposition. 

 

 
Figure 3.3.2.2. Octree Decomposition. 

 

For additional accuracy, the local corrections can be expanded beyond the near neighbor 

groups to include the non-touching near neighbor groups.  These groups are defined as 

children of my parents touching near neighbors.  Thus from Figure 3.3.2.1 group D 

would be a non-touching near neighbor of group A.  The motivation for including the 

non-touching near neighbor groups for local corrections is because EM kernels can be 

nearly singular in close proximity to the self patch.  There are several other EM 

techniques which use Octree Decompositions, an example being the Fast Multipole 

Method (FMM) [21]. 
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3.4) Nyström EFIE and MFIE [14] 

 

Now that the basics of the LCN have been presented we will now apply these techniques 

in conjunction with the MoM process to yield the Nyström specific versions of the 

discrete EFIE and MFIE operators for PEC surfaces.  Again consider the EFIE from 

equation (1.3.4) which will be rewritten here as: 

 0
0 0

0

( ) ( ') ( , ') ' ( , ') ( ') 'inc

S S

t E r t jk J r G r r ds j G r r J r ds
k
ηη

⎡ ⎤
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⎣ ⎦
∫ ∫  (3.4.1) 

where t is a vector tangential to S at r .  Expanding the current in (3.4.1) with the basis 

functions defined in (3.2.1) yields the discrete EFIE: 
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where the test vector 
qmja is a unitary vector evaluated at the quadrature abscissa point 

mqr and ,p kN N  are the number of curvilinear patches and quadrature points per patch 

respectively.  Note that in practice both of the derivatives will be placed on the Green’s 

function due to the choice of point basis functions.  The relation in (3.4.2) will be used 

for the far interactions however the second term will need to be rewritten for the near 

interactions as it is hypersingular and not integrable via Duffy Transform. 

 

From [12], we can rewrite the second term on the right hand side of (3.4.2) as: 
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where Cp is the contour bounding Sp, ˆpe is the outward normal to Cp tangential to S, and 

( ')
mqK r is defined as: ( )||

( ')
( ') ( ') |

'm qm

j i
q k r r

a r
K r g J r

g == ∇ ⋅ .  Now, the surface integral in 

(3.4.3) can be shown to have a (1/ )RΟ singularity which can be efficiently evaluated to 

desired accuracy using Duffy Transform.  The contour integrals lie on the boundaries of 

S.  Since the quadrature points will always be contained in S these integrals will never be 

singular and thus can be evaluated via adaptive quadrature without further treatment. 

 

The discrete Nyström MFIE follows in a similar manner.  Consider the MFIE from 

(1.3.7) written here as: 

 1ˆ ˆ( ) ( ) ( , ') ( ') '
2

inc
n n
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Applying the same basis functions as those for the EFIE, (3.4.4) can be written, 
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where the unit normal ˆna is evaluated at 
mqr , '

mqR r r= − , and R R= .  It can be shown 

that the integrand in (3.4.5) has a (1/ )RΟ  which again can be found in a controllable 

manner with Duffy Transform. 

 

3.5) Advantages over Galerkin Methods [12] 

 

Now that sufficient background has been presented for SIEs and the Nyström method in 

particular we will now discuss its advantages over standard Galerkin approaches.  The 

classical method for solving SIEs comes from [4].  Rao, Wilton, and Glisson (RWG) 

developed their divergence conforming basis functions over triangular patches.  RWG 

basis functions are said to be divergence conforming because they preserve normal 

continuity of current across edges; this is a consequence of the basis having a divergence 

complete to zero-th order.  RWG functions are rooftop functions which span two 
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triangular patches joined by a shared edge.  In the context of a MoM procedure, choosing 

RWG basis functions for both the test and basis sets results in a Galerkin procedure.   

 

Elimination of Multipatch Basis 

 

The first major advantage of Nyström over a standard Galerkin approach using RWG 

basis functions is the elimination of multipatch basis functions.  Multipatch basis 

functions are typically used to strictly enforce continuity which helps solution accuracy 

as well as ease of implementation.  For low order geometry models, the error in not 

enforcing continuity is on the same order as the error in the discretization.  Thus for low 

order RWG basis functions the enforcement condition becomes necessary as to help 

eliminate a significant source of error.  Conversely, for a high order model the error in 

not enforcing continuity does not have as significant an impact because continuity is 

achieved as a natural consequence of properly solving the integral equation.  Also, the 

discretization error can more easily be made insignificant for high order schemes.  The 

decrease in modeling error can also be reduced in the context of a Galerkin, RWG 

procedure, however, high order extensions for RWG basis functions have been shown to 

be difficult to implement [22].   

 

Junction issues are another set of problems which can be avoided by eliminating 

multipatch basis functions.  Typical EM problems of interest involve objects which are 

composed of both material and conducting regions.  Junctions, or basis functions which 

connect a material and conducting patch, need non-trivial special treatment.  Nyström 

methods avoid these issues because basis functions live only on one patch which can be 

associated with either a material or conducting region but not both.  These junction issues 

also impact fast solution methods, such as the FMM, which take advantage of grouping 

techniques to do long range interactions [21].  For these methods, multipatch basis would 

either need to be split which increases complexity or the group sizes would need to 

increase which decreases efficiency.   
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Faster Precomputation 

 

Because of its point interaction nature, the Nyström method is faster at filling the system 

matrix than standard Galerkin methods.  Galerkin methods require 2N numerical double 

integrations in order to fill the system matrix.  Nyström requires less than 2N  kernel 

evaluations and only ( )NΟ calculations of the local correction coefficients.  This fact is 

validated by the data presented in [12].  A comparison was made between a high order 

Nyström method, a high order Galerkin method, and a low order Galerkin solver known 

as the Fast Illinois Solver Code (FISC).  Each method was run under comparable 

conditions for different sized PEC spheres; that is each code was setup to have an 

equivalent number of unknowns per wavelength.  An MFIE formulation and a standard 

LU solver were used in all cases.  The results are summarized below in Table 3.5. 

 

 
Table 3.5. Nyström vs Galerkin Performance [12]. 

 

Note that for the 2.7λ case the Nyström setup time was nearly 20 times faster than the 

high order Galerkin method and over 4 times faster than FISC while yielding comparable 

accuracy. 
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Memory Reduction: 

 

One final advantage of note is Nyström’s ability to reduce memory costs for iterative 

solvers.  For an iterative solver, storing the full system matrix costs 2( )NΟ .  This can be 

reduced with Nyström to ( )NΟ by only storing the local correction matrices.  Unsaved 

portions can be reproduced if need be in a fast and efficient manner because they are 

simply point evaluations of the kernel.  In the context of the FMM, memory costs can be 

reduced from 5/ 4( )NΟ in the single level case to ( log( ))N NΟ in the multilevel case [12]. 
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IV. Object Oriented Design [23, 24] 

 

4.0) Motivation 

The following sections will switch gears toward the software engineering efforts of the 

Nyström Implementation.  The Nyström method as described in previous sections is 

relatively straightforward to implement and has been used previously by several sources 

[12, 14].  In fact, the University of Kentucky already uses Nyström methods in its own 

Material Scattering (Mscat) code.  However, as research in the EM area continues to 

grow the need for a common software framework becomes apparent.  All forms of 

discrete EM solvers, whether an integral or differential based method in the time or 

frequency domain, share some common bonds which typically are re-written each time a 

new code is developed: geometry modeling and information storage is an example of a 

link between all methods.  The degrees of commonality depend on the implemented 

method but moving existing code into a united framework would allow for reuse without 

“reinventing the wheel.”  New EM software technologies would come online faster as 

common pieces would simply be reused rather than written from scratch.   

 

As a consequence of these commonalities, the University of Kentucky decided to create a 

universal framework for all EM codes and research, entitled General Electromagnetic 

Framework or GEMF.  The goal of GEMF is to unite all existing codes and current 

research under one umbrella so that new techniques can build off previous efforts.  

GEMF would not only allow for code reuse with new research but also ease 

improvements to previous technologies and enable hybridized techniques: a combined 

Integral Equation and Finite Element method for example.  This concept seems very 

simplistic and straightforward however only recently has it been used in practice.  The 

EIGER code [25] was developed under this paradigm as are current codes at the 

University of Illinois [26].   

 

In order to achieve its goal, the GEMF code must exhibit several key qualities: 

reusability, flexibility, and maintainability.  First and foremost, the GEMF code must be 

setup such that old code can easily be reused.  Without this property the main, underlying 
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goal of GEMF is compromised.  Also, GEMF must be flexible to allow for new 

technologies to be integrated.  Finally, since GEMF will house several technologies it 

must be easy to maintain.  If the code is not designed properly and documented 

extensively pieces could potentially be lost and thus effort would be wasted.  These 

necessary conditions are typical advantages and natural consequences of an Object 

Oriented (OO) design.   

 

4.1) Classes and Objects 

 

Now that the motivation for an OO design has been presented a definition of OO design 

and subsequent discussion is needed.  Meyer defines OO design as, “the construction of 

software systems as structured collections of abstract data type implementations” [23].  

At first glance this definition may seem confusing so for a more complete understanding 

let us first discuss two features of OO design, Classes and Objects. 

 

Consider the following example: inventorying cars on a dealer lot.  Each car can be 

defined by the following attributes: make, model, color, year.  Let us define a Car class: 
class Car 
{ 
 string make; 
 string model; 
 string color; 
 int  year; 
} 

The Car class serves as a blueprint from which a specific Car type can be created.  A 

specific instance of the Car class would be called a Car object, say for example a 2006 

gray Honda Civic.  The object has information which uniquely describes a particular 

instance of a class.  Thus each car on the lot is a specific instance or object of the Car 

class.  Now returning to Meyer’s definition, OO systems are built as a collection of 

classes.  Each class provides a list of services which are accessed in no particular order.  

A good class design is general so that different system level designs can reuse the 

services provided by each class.  The process of combining classes into an OO system 

typically is achieved in a bottom-up manner. 
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4.1.1) Design Approach and Potential Problems 

Typical OO systems begin by considering the top level of abstraction, or the class from 

which everything else will be derived.  In the context of GEMF, the highest level is 

known as the GEMF System level.  Each subsequent system type is derived from this 

GEMF System base class.  Figure 4.1.1 diagrams the hierarchy of GEMF Systems. 

 

 

 
Figure 4.1.1 GEMF System hierarchy 

 

The system level hierarchy was designed to be as general as possible and to incorporate 

all the potential system types.  Once the hierarchy is established each system type can 

then be filled in a bottom-up manner.  This is a feasible approach however initial designs 

are potentially difficult because such a broad range of problems need to be considered.  

Consequently, efficiency may be sacrificed for generality in that functions can no longer 

be geared toward a specific system type but must be applicable to subclassed system 

types. 

 

4.2) Reusability 

 

As noted above, reusability is an essential piece of OO system design.  Meyer defines 

reusability as, “the ability of software products to be reused, in whole or part, for new 

applications” [23].  To illustrate the concept of reusability we will discuss the geometry 
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hierarchy within GEMF.  Since all of these system types use a similar philosophy for 

meshing a CellMap class was created to store all the common information between 

system and analysis types (see Figure 4.2).  Information such as node lists, edge and face 

maps, and topology links (Volume, Face, Edge, Node) can all be accessed from the 

CellMap.   

 
Figure 4.2 CellMap Hierarchy 

 

Note that the CellMap is subclassed into three distinct types, CellMap3D, 2D, and 1D.  

This allows for general use with 3D, 2D, or 1D meshes without needless extra storage.  

For the surface Nyström implementation in GEMF only the 2D and 1D levels need to be 

used.  However, if a 3D Finite Element method were introduced the CellMap3D would 

be needed but could be accessed without changing the CellMap structure.  Thus, the 

above CellMap class can be reused regardless of the system or analysis requirements. 

 

4.2.1) Inheritance 

An important property that allows classes like CellMap to be reused is called inheritance.  

Again consider Figure 4.2.  Note that both the CellMap3D and 2D are subclassed into 

different types, Quads and Tris for CellMap2D, and Hexes, Tets, and Prisms for 

CellMap3D.  This again allows for general meshing and gives two options at the 2D level 

and three options at the 3D level.  For simplicity let’s consider the two subclasses of 

CellMap2D, Tris and Quads.  Both the Tri and Quad subclasses will inherit all common 

functions and data from their parent class CellMap2D (e.g. nodelist, dimension).  They 
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will then have the ability to add their own features such as edge node mapping (which of 

course would be different for Tris and Quads).  Thus, the Tri and Quad classes are known 

as subclasses or descendants of the CellMap2D class.  The same inheritance argument 

applies for the subclasses of CellMap3D. 

 

4.3) Flexibility 

 

Reusability and inheritance provide some means toward flexibility in an OO system.  

Another additional means of flexibility is known as dynamic binding.  Dynamic binding 

is considered the most important aspect of runtime flexibility.  Again we can consider the 

CellMap hierarchy of Figure 4.2 to illustrate.  For each CellMap type, a position vector 

can be established given a local coordinate point of interest: 

 
virtual R3 rPositionVector(const GEMFFLOAT *lc, SilvesterArgs &args) 

const = 0;  
 

The explicit calculation of position vectors depends on the CellMap type thus the method 

is defined at the base class level as a virtual function which then will be implemented 

specifically at the leaf or child class level.  Subsequently, QuadCellMap2D and 

TetCellMap3D will have different implementations of the same rPositionVector 

function.  Dynamic binding ensures that at runtime the correct version of this same 

function is called depending on the current CellMap type. 

 

Dynamic binding offers another flexibility:  Since the caller in the Nyström System only 

knows about CellMaps and calls the rPositionVector routine only via the base class, 

there is no need to change the Nyström System implementation when another CellMap 

type is added (e.g. OctagonCellMap2D).  Dynamic binding will still choose the correct 

version of rPositionVector at runtime.  This property of dynamic binding is very 

important to OO system design.  Classically new code could only use older code.  Now 

with dynamic binding old code can use new code without any retrofits! 

 



43 

 

4.4) Maintainability 

 

Within the context of maintainability, software engineers are mostly concerned with the 

amount of effort needed to implement changes in user requirements, changes in data 

formatting, bug fixing, etc.  In fact, according to [23] an estimated 70% of software costs 

are devoted to maintenance.  Consequently, a quality piece of software cannot afford to 

neglect the aspects of maintainability.  Fortunately, OO system design ensures that these 

maintenance procedures are relatively simple and straightforward to perform.  All of the 

aforementioned topics are foundations of maintainability.  Changes due to user 

requirements or data formatting should be easy to apply following the paradigms of 

reusability and flexibility: existing source code would only need to be modified in one 

place or (if the user decides not to change existing code) a new inheritance branch would 

incorporate the changes.  Inheritance also helps to ensure that bugs are localized and not 

spread over the entire source code tree. 
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V. GEMF Implementation 

 

Now that a basic motivation for OO system design has been presented we will 

specifically discuss the Nyström implementation within GEMF.  The platform chosen for 

GEMF was Visual C++.  This is one of the more widely used programming platforms 

and is conducive to OO design.  There are many classes and functions which are used 

within the Nyström framework (too many to discuss in the context of this thesis), 

subsequently, we will focus on the main classes and functionality of the Nyström method: 

NyströmSystem, Background and Kernel Classes, and NyströmFillManager. 

 

5.1) NyströmSystem 

 

The NyströmSystem class houses all of the Nyström specific analysis data and functions.  

As depicted in Figure 4.1.1 NyströmSystem is a subclass of the more general Frequency 

Domain System.  NyströmSystem is the brains behind Nyström analysis in that it handles 

all of the upper level duties such as SystemCreate, SystemFill, and SystemSolve.  

Because the Nyström method is applicable to a wide variety of analysis and solver types 

GEMF has a hierarchy of NyströmSystem types.  Further discussion of the 

NyströmSystem classes will begin by discussing this hierarchy while moving toward the 

specific branch implemented for this thesis. 

 

5.1.1) Nyström Hierarchy 

In an effort to preserve the reusability and flexibility aspects of OO design, the 

NyströmSystem class has a hierarchy of analysis types, depicted below in Figure 5.1.1.  

Currently there are three different Nyström analysis types: DenseNyström, 

FMMNyström, and LOGOSNyström. 
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Figure 5.1.1 NyströmSystem Hierarchy. 

 

The DenseNyström class was motivated by a standard direct LU solution method and will 

be discussed in subsequent sections.  FMMNyström and LOGOSNyström are fast 

iterative and direct methods respectively.  They each require a unique filling and storage 

scheme and thus have their own branch in the Nyström hierarchy.   

 

5.1.2) Input Information 

A common link not only between the NyströmSystem types but 

FrequencyDomainSystem types is the input mesh and simulation information.  Currently, 

this information is read in by a series of function calls at the FrequencyDomainSystem 

level: ReadMaterialParameters(),ReadMeshDefinition(),ReadUserControlData() 

 

The MaterialParameters file contains information such as the number of material surfaces 

in the mesh (e.g. dielectric, PEC).  MeshDefinition contains the output and some basic 

connectivity data supplied by the meshing tool, such as node and element lists as well as 

element type (e.g. Quad, Tri, Hex).  UserControlData provides simulation specific 

information such as frequency and default error tolerance. 

 

Three specific functions within the input file context of FrequencyDomainSystem worthy 

of a brief discussion are CreateNewBackGNDandKernel, CreateNewCellInfo, and 

CreateNewElement.  Creating a new Background occurs during the processing of the 

MaterialParameters file.  Each new material type (e.g. dielectric, PEC) has different 

characteristics and thus a new Background object is created for each material type.  The 
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CellInformation class houses data specific to cells within the mesh.  For example, 

dielectric materials can support both electric and magnetic currents while PEC materials 

can only support electric current.  Therefore, dielectrics and PECs will have separate 

CellInfo objects which will contain information about its supported current type (amongst 

other information).  Finally, a new element is created with its corresponding node list for 

each entity specified by the MeshDefinition file.   

 

In an effort to preserve reusability, the creation of both new backgrounds and elements 

are handled in a switch statement.  Consider the following code excerpt: 
void GEMF::FreqDomainSystem::CreateNewElement(GEMFSYSID elemType, 
GEMFSYSID cellInfoID, GEMFSYSID order, std::vector<GEMFSYSID> &nodeIDs) 
{ 
 switch(elemType) 
 { 
 case LINEAR_QUAD: 
  CreateLinearQuadCell(elemType, cellInfoID, order, nodeIDs); 
  break; 
 
 case LINEAR_TRI: 
  UnsupportedCellTypeWarning(elemType); 
  break; 
 
  . 
  . 
  . 
 
 default: 
  UnsupportedCellTypeWarning(elemType); 
  break; 
 } 
} 

 

Each time a new element is created its type is passed to this function and the 

corresponding element is created via the switch statement.  Currently there is only 

support for Linear Quads; the unsupported types will greet the user with a warning 

message until the correct creation functions come online. 

 

5.1.3) DenseNyströmSystem 

As noted above, DenseNyströmSystem is responsible for the higher level system 

functions: SystemCreate, SystemFill, SystemSolve.  SystemCreation creates all of the 
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objects needed for a Nyström analysis: system matrices, DOF information and storage, 

generation of an Octree.   

 

Once SystemCreation prepares all of the objects and memory, SystemFill begins 

computing the overall system matrix.  This is done by looping over the Octree structure 

and filling local element blocks.  These local blocks are then assembled into the global 

matrix via the DOF information established in the system creation.  The SystemFill is at 

such a high level of abstraction that it mainly consists of function calls to other classes 

(e.g. FillManager) that house the meat of the filling process.  Finally, SystemSolve takes 

the global system matrix and performs a direct LU factorization.  The factorized form can 

then be used to solve multiple right hand side (RHS) forcing vectors. 

 

5.2) Background and Kernel Classes 

 

As mentioned above, the Background and Kernel classes are associated with materials.  

They both have the class hierarchy depicted in Figure 5.2.  Kernels react two cells 

through the Background’s Greens Function.  The material information needed in the 

Kernel evaluations is stored on the Background objects.  The actual evaluations are 

preformed by the Kernel class.  Currently only the Homogeneous Media Backgrounds 

and Kernels are available but the class hierarchy has been established following the 

above OO paradigm. 

 

 
Figure 5.2 Kernel and Background Class Hierarchy 

 

Kernel evaluations are at the core of all frequency domain integral equation methods.  

Thus, the functions within the Kernel class must be as efficient as possible.  Timing 
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analysis and profiling will be discussed in the results section however one topic worth 

mentioning is how the Kernel class handles multiple source and field reactions. 

 

Four possible types of source field reactions exist in integral equation methods regardless 

of the material parameters in the mesh (PEC, Dielectric, etc.): Electric Field due to 

Electric Current E(J), Electric Field due to Magnetic Current E(M), Magnetic Field due 

to Electric Current H(J), Magnetic Field due to Magnetic Current H(M).  These source 

field blocks are determined solely by the source and field patches (field patch determines 

the supported field types, source patch determines the radiating sources).  The Kernel 

evaluations perform all reaction blocks simultaneously to allow common pieces to be 

reused.  Consider the following code excerpt: 

 
if(isE)    if(isH) 
{     { 
 if(isJ)    if(isJ) 
 {     { 
  .     . 
  .     . 
  .     . 
 }     } 
 if(isM)    if(isM) 
 {     { 
  .     . 
  .     . 
  .     . 
 }     } 
}     } 

 

The above if blocks determine which source field reactions to compute (Booleans are set 

prior to Kernel function calls).  Thus, only the necessary reactions are computed and 

common calculations can be efficiently reused. 

 

5.3) NyströmFillManager 

 

The last and perhaps most important section of the Nyström implementation is the 

NyströmFillManager.  As noted above, the FillManager controls all aspects of the local 

element filling process.  Since there are two possible types of reactions for Nyström (near 

and far reactions) the NyströmFillManager has two subclasses: NearFillManager and 
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FarFillManager.  NyströmFillManager also has ties to the NyströmLEMData class which 

stores local element data and contains copies of the DOF information used in the 

assembly.  The FillManager hierarchy is diagramed below in Figure 5.3. 

 

 
Figure 5.3 NyströmFillManager Hierarchy and tie to NyströmLEMData 

 

The Near and Far FillManagers perform three main tasks: SetupCalculator, 

SetExternalFunctions, ComputeLEMRow. 

 

SetupCalculator 

 

SetupCalculator uses the idea of “Factories” to establish the numerical integrator used in 

the filling process.  The integrator factory is a way to properly point the 

NyströmFillManager to the correct integrator desired by the integrand filling functions.  

The integrator factory requires a topology type (e.g. QuadFace), integration order, and 

two Booleans which tell the factory whether it should create a singular integrator and/or 

an adaptive integrator. 

 
NumericalIntegrator* CreateNumericalIntegrator(TOPOTYPES &topoType, 
                                                     int const &order, 
                                                     bool &isAdaptive, 
                                                     bool &isSingular); 
 

SetExternalFunctions 

 

SetExternalFunctions uses the same factory ideas as SetupCalculator to establish a 

pointer to the correct integrand filling function.  Creating the external function requires 

the function type and pointer to where the function is located.  For Nyström, each 
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possible integrand function lives on the NyströmFillManager.  There are three possible 

types: IntegrandFunctionNonSelf, IntegrandFunctionSelfPatch, and 

IntegrandFunctionSelfBoundary. 

 
GEMF::ExternalFunction* CreateIntegrandFunction 
                       ( const int &intID,  
                          NyströmFillManager* const &NyströmFillMgr = 0 
                       ); 
 

ComputeLEMRow 

 

Finally, ComputeLEMRow takes the numerical integrator and external function discussed 

above and computes the integration.  Since these were established using the factory 

paradigm the integration should be directed to the correct integrand function within the 

NyströmFillManager. 

 
virtual int ComputeIntegration(ExternalFunction* const &integrand, 
                                     GEMF::GEMFFLOAT* &resultVector, 
                                     const int &vectorLength, 
                                     const int &datatype =    

       GEMF::REAL_DATA_TYPE) = 0; 
 

NyströmFillManager Duties 

 

The remaining tasks of the FillManager are preformed at the parent class level.  The 

current source field pairs are passed in via NyströmSystem.  Once the FillManager has 

access to the current source and field cells then decisions on supported field and current 

types can be made.  As noted above the integrand filling functions live and are calculated 

in the parent level FillManager.  The final task performed by the FillManager is 

computing the Local Element Matrix.  This function calls and assembles LEM rows 

calculated at the child class level.  These are then stored on the LEMData structure and 

passed back to NyströmSystem to be assembled into the global system matrix. 
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VI. Numerical Results 

 

Now that sufficient background has been presented, our focus will shift toward validating 

the Nyström implementation within GEMF.  There are several benchmarks to compare 

against.  Firstly, as noted above, Nyström methods have previously been utilized in 

Kentucky’s Mscat code (written in Fortran).  The code structure for both the GEMF and 

Mscat codes are the same so in theory their results should be identical.  In practice, they 

have a small amount of error due to numerical round off and finite data precision.  

Analytical techniques such as the Mie Series can be used for validating canonical 

geometries (e.g. Cylinders, Spheres).  One final validation tool is an RWG Galerkin 

based IE solver developed in EE 625: Computational Electrodynamics at the University 

of Kentucky.  The Galerkin based solver will help prove accuracy for non-canonical 

geometries.  The numerical validation presented is for the EFIE only.  Validations for the 

remaining SIE types will be discussed below in the Future Work section. 

 

The specific cases to be studied are: 1λ  radius PEC Sphere, 3
4

λ  edge PEC Box, and an 

open 3
4

λ  edge PEC Box; all simulations were run using a base frequency of 1 GHz 

( 0.3mλ ≈ ).  Before presenting the results for these test cases we must first briefly discuss 

a universal measure for scattering problems, Radar Cross Section. 

 

6.0) Radar Cross Section [2] 

 

A typical measure of interest in scattering problems is known as the Radar Cross Section 

(RCS).  RCS is a measure of how a target scatters power in a given direction relative to 

an isotropic scatterer (one which uniformly scatters power).  Before we define the RCS 

we first must describe the radiated far fields.  In the far field, the scattered field becomes 

an outward traveling plane wave: 
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Applying the far field approximation, the scattered fields can be written in terms of their 

Cartesian projections: 
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Now the RCS can be defined via the scattered far fields: 
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Observation angles co-located with the incident field angle yields a MonoStatic RCS, 

different observation and incident angles yields a BiStatic RCS.   

 

Since there are two incident field projections and two far field projections there are four 

RCS measures: 
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6.1) Validation 

 

Scattering from a PEC Sphere 

 

The first validation case was a 1λ  radius PEC sphere simulated at a frequency of 1 GHz 

( 0.3mλ ≈ ).  Low order geometry modeling was used along with a constant basis order 

(12 DOFs per patch).  Both the GEMF and Mscat codes were ran while increasing the 

total number of patches.  These results were then compared with the Mie Series solution 

[27].  Bistatic RCS results are depicted below in Figures 6.1.1, 6.1.2, and 6.1.3. 
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Figure 6.1.1 Scattering from a PEC Sphere 1λ  radius @ 1GHz (0.3m) Co-Pole Term. : 0VVσ φ = °  
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Figure 6.1.2. Enhanced View of PEC Scattering from a Sphere. 

 

0 20 40 60 80 100 120 140 160 180
-6

-4

-2

0

2

4

6

8

10

12

Scattering from a PEC Sphere 1 λ radius @ 1GHz
(θ, φ) inc = (0,0)

12 DOFs per Patch

θ (deg)
φ = 90 plane

R
C

S
 (d

B
)

 

 

HV (GEMF 503 patches)
Mie Series

 
Figure 6.1.3 Scattering from a PEC Sphere Cross Pole Term. : 90HVσ φ = °  
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As you can see from the above plots as the total number of patches are increased both the 

Mscat and GEMF codes converge to the Mie Series solution.  This convergence is limited 

by the underlying geometric discretization error; thus in order to fully take advantage of 

the Nyström method we should switch to curvilinear patches to help eliminate geometric 

error.  There is one final note concerning the PEC sphere test case, accuracy of GEMF vs 

Mscat.  Note that both codes appear to have identical answers.  In fact, the worst case 

error observed during debugging and testing was 0.1% relative error.  The error observed 

was from the System Matrix Z in a Forbenius Norm sense.  That is, 

0.1%mscat GEMF fro

mscat fro

Z Z

Z

−
<  

 

Scattering from a PEC Box 

 

The second validation case was a 3
4

λ  edge PEC box at 1 GHz.  These results were 

compared to the aforementioned RWG Galerkin solver from EE 625.  Note that the 

incident field was aimed at the corner of the box, ( , ) (45 ,45 )inc incθ φ = ° ° .  This was to 

help validate both the incident field excitation and the RCS calculations.  BiStatic RCS 

results are depicted below in Figures 6.1.4 though 6.1.7, MonoStatic RCS in Figure 6.1.8. 
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Figure 6.1.4 Scattering from a PEC Box ¾ λ edge @ 1GHz. Co-Pole Term. : 0VVσ φ = °  
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Figure 6.1.5 Scattering from a PEC Box ¾ λ edge @ 1GHz. Cross-Pole Term. : 0VHσ φ = °  
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Figure 6.1.6 Scattering from a PEC Box ¾ λ edge @ 1GHz. Cross-Pole Term. : 0HVσ φ = °  
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Figure 6.1.7 Scattering from a PEC Box ¾ λ edge @ 1GHz. Co-Pole Term. : 0HHσ φ = °  
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Figure 6.1.8 Scattering from a PEC Box ¾ λ edge @ 1GHz.  MonoStatic RCS. 

 

Again, from the results above we can see that all 3 codes converge to the correct answer.  

Take note of the convergence in Figure 6.1.7.  Since there is no discretization error the 

Nyström code converges faster than the RWG code because of its high order nature.  

Because of its low order nature the RWG code requires geometric refinement to achieve 

the correct results while Nyström simply requires a polynomial refinement. 

 

Scattering from an Open PEC Box 

 

The final validation case was an open 3
4

λ  edge PEC box at 1 GHz.  This problem is 

more difficult than the previous because the open box allows for an increase in multiple 

scattering; energy can bounce around inside the box before being scattered back away 

from the target.  The incident field was directed into the opening rather than at a corner.  

The BiStatic results are below in Figures 6.1.9 and 6.1.10, MonoStatic results in Figure 

6.1.11. 
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Figure 6.1.9 Scattering from an Open PEC Box ¾ λ edge @ 1GHz. Co-Pole Term. : 0VVσ φ = °  
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Figure 6.1.10 Scattering from an Open PEC Box ¾ λ edge @ 1GHz. Co-Pole Term. : 0HHσ φ = °  
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Figure 6.1.11 Scattering from an Open PEC Box ¾ λ edge @ 1GHz.  MonoStatic RCS. 

 

 

6.2) Performance Analysis 

 

As noted previously, there are potential efficiency tradeoffs when using an OO paradigm 

to develop software.  Since the underlying code structure in both Mscat and Nyström 

within GEMF are similar it seems reasonable to assume their performance would follow 

suit.  Subsequently, a timing study was conducted to determine which code performed 

better during the system matrix filling and solve routines.  Both codes were given the 

same problem under two different scenarios: variable patches with constant DOFs per 

patch, and constant number of patches with variable DOFs per patch (the geometry for 

each test was the same PEC sphere from section 6.1).  Below, Figures 6.2.1 and 6.2.2 

depict timing results between the Fortran and C++ implementations of the Nyström code. 
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Figure 6.2.1.  Timing Comparison Between C++ and Fortran Codes with a Constant Number of DOFs per 

Patch (12) and Variable Number of Patches. 
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Figure 6.2.2.  Timing Comparison Between C++ and Fortran Codes with a Constant Number of Patches 

(144) and Variable Number of DOFs per Patch. 
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First, consider the example of variable patches with constant patch DOFs.  Note that both 

the C++ and Fortran codes scale at approximately the same rate.  This is expected as the 

code structures are similar.  The Fortran version of the Nyström code is a factor of 8 

faster than the C++ version in the fill time.  As expected, the solve times were nearly 

identical; this is simply because both codes use the same LAPACK libraries to calculate 

the system solution.  The second example reinforced all of these points.  Fortran was still 

around a factor of 8 faster.  The overall solution times were slightly higher; this was most 

likely due to the adaptive integrators taking longer to converge because of the increase in 

near singular terms. 

 

Possible Causes 

 

Some preliminary work has been done to determine the root cause of the speed 

differences between the Fortran and C++ codes.  Using Intel’s VTune profiling tool it 

was thought that the use of C++ Standard Template Libraries (STL) caused the 

performance difference.  Specifically, the use of the STL vector class.   

 

The vector class is a special type of array.  Rather than dynamically allocating memory as 

would be needed to create an array during runtime, vectors can yield the same results 

simply by using the push_back command.  This allows the user to add elements to a 

vector without using the dynamic memory allocation needed for runtime arrays (in 

reality, C++ performs the necessary memory allocation behind the scenes).   

 

One can easily see that if the vector is not initialized to the desired size it is possible for 

C++ to spend unnecessary time allocating memory each time a new element is added to 

the vector.  Thus one possible solution to the performance drop in C++ versus Fortran 

would be to preallocate all the vectors to their appropriate size.  Another alternative 

would be to use dynamic arrays rather than vectors.  The latter option was originally 

vetoed because using vectors eased code implementation. 
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These assumptions were verified by preallocating memory used for vectors within C++.  

These changes caused a factor of 2 performance increase.  These results are displayed 

along with the original timing comparison in Figures 6.2.1 and 6.2.2.   
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VII. Future Work 

 

Substantial effort has been put forth to create a Nyström surface integral formulation 

within GEMF.  However, there are several remaining tasks to bring this analysis branch 

of GEMF to completion.  The OO paradigm has been at the forefront in creating the 

Nyström formulation so in theory the remaining pieces should fit seamlessly into the 

existing framework.  In reality, there will be some stumbling blocks and possible code 

reorganization.  Thus, the remaining sections seek to outline these remaining tasks and 

the details associated therein.  Please note that the following sections do not include all of 

the potential future work (e.g. implementing fast solvers) rather some of the more basic 

yet still important tasks. 

 

7.0) Additional Surface Integral Formulations 

 

As discussed in the review section of this thesis there are several other SIE methods 

beyond the Electric Field Integral Equation: 2 formulations for PEC targets, namely the 

MFIE and CFIE, and the PMCHWT for hybrid PEC and material targets.  The core 

Kernel calculations within GEMF were designed with all of these formulations in mind.  

For a general target you will have the following reactions: 

( )     Electric Field due to Electric Current Source
( )   Electric Field due to Magnetic Current Source
( )    Magnetic Field due to Electric Current Source
( )  Magnetic Field due to Magnetic Curr

E J
E M
H J
H M ent Source

 

During numerical integration, the integrand functions have built in Boolean checks to 

determine the desired Kernel reaction based on the current source and field patch (see 

Section 5.2).  Since the EFIE was the chosen method for preliminary study only the E(J) 

Kernel blocks were validated.  The remaining blocks were implemented but not 

debugged.  These additions will specifically impact the following functions within the 

HomogeneousMediaKernel class: ComputeTdotGdotB, ComputeGradGdotB, 

ComputeTdotMixedPGFdotB, ComputeGV. 
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One additional adjustment needs to be made in order to correctly develop the remaining 

SIE’s.  Currently, the testing vectors used in the MoM procedure were chosen to be the 

field patch unitary vectors.  For the EFIE, this actually results in the most accurate testing 

procedure.  However, for the MFIE we need to change the testing vectors to the 

reciprocal unitary vectors ( n̂ unitary× ) to ensure accuracy.  The CFIE follows suit with 

the MFIE as it is simply a linear combination of the two.  Ideally the code will 

automatically chose the correct testing vector based on the formulation desired.  The field 

testing vectors are set in the CalculateFieldTestVectors routine inside the 

NyströmFillManager. 

 

7.1) High Order Geometry Modeling 

 

The Nyström method is a high order method due to the combination of high order 

geometry modeling along with high order basis functions.  Removing one of these two 

components reduces the overall effectiveness of the method (as seen above in the 

numerical results).  GEMF is setup to handle arbitrary geometry models.  These 

calculations mainly impact CellMaps.  Again, while the code structure is in place high 

order geometries have yet to be validated. 

 

One additional portion of the code which may need some modification by the addition of 

high order geometries is the input file readers and subsequent mesh creation.  Creating 

node and edge lists will need to be verified since each input element will have more than 

the standard number of nodes (e.g. 8 for a 2nd order quad). 

 

7.2) Extension to Volume Integral Formulations 

 

Much like the previous two tasks the extension to Volume Integral Equations (VIE) 

should be fairly straight forward.  Again, VIE’s will follow a similar code structure as the 

current SIE’s.  However, they will touch different portions of the geometry and 

integration tools. 
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7.3) Creating the GEMF Toolbox 

 

Perhaps one of the most important on going efforts will be the expansion and 

maintenance of GEMF.  Eventually, GEMF will be a toolbox from which each 

subsequent analysis type can access common functions (e.g. integrators, geometry).  

Currently there are two methods under GEMF, the presented Nyström method and a 

Discrete Galerkin Finite Element Time Domain (DGFETD) method.  These two methods 

are very unique and thus interact with the GEMF toolbox in vastly different manners.  

This uniqueness helped draw out faulty designs in the preliminary version of the toolbox.  

Each new analysis method will no doubt raise new issues with the GEMF toolbox 

however these initial growing pains have hopefully alleviated potential future problems. 

 

A short term goal to aid in the maintenance of GEMF is the development of a GEMF 

code repository (Figure 7.3).  The GEMF repository will house all of the current analysis 

types, each having their own module.  The code in every module will be unique to that 

analysis type.  Each then will have access to the global GEMF toolbox. 

 

 
Figure 7.3 GEMF Code Repository 

 

Segregating the code into modules has several advantages.  The most important 

advantage is that everyone will have access to one common GEMF toolbox so there will 

not be several different revisions existing at one time.  Also, through the use of 

Concurrent Versions System (CVS) tools read and write access can be set for each 

individual module.  This will allow the owner of the code, University of Kentucky, to 

allow different development partners have access only to particular portions of the code. 
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There are however a few disclaimers in setting up the repository in the above manner.  If 

the GEMF toolbox ever needed an invasive code change (e.g. changing functions, 

moving code up or down the inheritance branches) it will be the responsibility of the 

owner to ensure that each module remains unaffected or receives the necessary changes.  

For this to be possible, each module will need extensive unit tests and sample problems 

which can be executed and compared to previous results to validate the changes. 

 

7.4) Performance Improvements 

 

Previously, preliminary effort has been put forth to improve the performance of the 

implemented Nyström method in C++.  These efforts resulted in a factor of 2 increase, 

however, the overall performance was still a factor of 4 slower than the Fortran version.  

Subsequently, further investigation is needed to reduce the performance gap. 

 

Again with the aid of Intel’s VTune performance analyzer the system fill time was 

profiled.  After the initial modifications, the function call rPositionVector consumes 41% 

of the overall fill time.  This call is expected to be a significant part of the fill process but 

the overall percentage is believed to be too high.  Drilling down a few levels in the 

profiling tool yields a possible cause: vector class memory management. 

 

The SilvesterArgs class was created to be a storage container for Sylvester polynomial 

calculations; these are the interpolation polynomials used for CellMap calculations.  

SilvesterArgs consists of 2 and 3 dimensional vectors and are used throughout the code as 

temporary memory storage containers (631 instances!).  It is believed that these 2 and 3D 

vectors yield too much overhead and slow down the code due to poor memory 

management.  There are a few potential solutions.  First, replace the temporary 

SilvesterArgs memory containers with WorkSpace arrays.  WorkSpace was developed 

after SilvesterArgs and provides a clean and efficient way to handle dynamic memory 

and temporary storage containers.  Another alternative would be to re-write the 

SilvesterArgs class to use WorkSpace arrays rather than vectors.  This could potentially 

save time because there are so many instances of SilvesterArgs throughout the code. 
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