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ABSTRACT OF THESIS

EXTENDING AND ENHANCING GT-ITM

GT-ITM is a topology generation tool. Since its release GQWIi§ widely used in the scientific
community for network simulations. GTITM is extended to gag routing on its topology. The
routing algorithm used for interdomain routing attemptemoulate the BGP routing protocol seen
on the Internet. It uses a policy file if supplied to make nogitilecisions. An additional functionality
provided with the tool is the ability to automatically geater policy file for large graphs.
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Chapter 1

Introduction

1.1 Background

Researchers seeking to improve some aspect of the furgiafithe Internet often test their
hypotheses using some form of simulation. In many casesetveork topology plays an important
role in such simulations. Network topology refers to thatiehships among the elements (channels
and switches/routers) that make up the network. In the tga@ars, a number of tools have been
developed to produce models of internet topology that asmime sense realistic. These tools try
to emulate the essential characteristics of the Intermmlogy in order to provide a realistic test
bench for researchers. One of the most important aspectaetirork topology model is the way
it determines the path or paths followed by a packet as tlgltthrough a network. This routing
aspect affects the performance of many algorithms.

A network essentially has two important attributes: Toggland Routing. A network may be
represented as a collection of nodes connected to eachtbtbagh links. Topology refers to this
interconnection of the nodes with each other, whereasngutfers to the paths taken by packets
from source nodes to destination nodes. A good network égyobenerator should be able to
represent these two features, viz. topology and routingyam a way that the topology is similar to
the Internet topology and the routes are similar in natutbeaoutes taken on the Internet.

In this chapter, we first describe the topological structfréhe Internet. Later we describe
the intradomain and interdomain routing protocols. Thershi# our attention to Internet topology
model generators, specifically GT-ITM, and understand theeat limitations in the tool. We then
outline the improvements to GT-ITM to be discussed in theaiaater of the thesis.

1.2 Structure of the Internet

The Internet is divided into Autonomous Systems (AS’s). HEAS is a unit of router policy:
either a single network, or a group of networks that is cdletidby a common network administra-

tor (or group of administrators) on behalf of a single adstiaitive entity (such as a university, a



business enterprise, or a business division). Each autom®system in the greater Internet is also
sometimes referred to as a routing domain. An autonomousmyis assigned a globally unigque
number, sometimes called an Autonomous System Number (ABM)is document we will use a
more generic terrdomain rather than A

On the Internet different routing algorithms are used withidomain and outside a domain.
RIP (Routing Information Protocol) and OSPF (Open ShoResh First) are common intradomain
routing protocols while BGP (Border Gateway Protocol) s defacto interdomain routing protocol
for the Internet. Networks within an AS use an intradomaintirag protocol for message exchanges
within the AS and use an interdomain routing protocol for sage exchanges outside the AS.

Generally [1/2], each domain on the Internet can be cladsifseatransit domain or astub
domain. Transit domains provideansit connectivity for other domains: that is, they carry packets
whose source and destination are both outside the domaib.d8mains do not provide such transit
services; only packets whose source or destination lidsimihe domain can be found in a stub
domain. Stub domains contain most of tlend systemi the Internet, and most traffic travels
between the stub domains. This distinction is the basishtransit-stubmodel used in GT-ITM
(Georgia Tech Internet Topology Models). The figurd 1.Isillates the different types of domains.

e Transit Domaingorrespond to service providers on the Internet. They aff@enectivity for
the stub domains to rest of the Internet. Transit domaindgréefinition multi-homed a
transit domain may be connected to multiple stub domainsedlsas other transit domains.
Transit domains correspond to Internet Service Providéistwprovide Internet connectivity

to smaller domains.

e Single-Homed Stub Domaitsve a connection to just one neighbor domain, i.e. they are
connected to only one transit domain. Single-homed stubadftsrcorrespond to the “leaves”
of the AS-level topology graph - for example, University gam networks with just one

service provider.

e Multi-homed Stub Domainare connected to two or more domains. Such a domain may be
connected to two or more transit domains, in which case itrhakiple entry/exit points,

!Technically an AS is not quite equivalent to a routing domaind there can be several routing domains within
the same AS in which case each domain within that AS can inigely speak a interdomain routing protocol with
its neighboring domains. But for the sake of simplicity, ahd way GT-ITM tool is designed, we consider a domain
equivalent to an AS. As we will see in later sections, tradsihains and stub domains, behave as AS’s on the Internet,
exchanging routing information.
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Figure 1.1: Hierarchy on the Internet

and packets may be routed to different exits for differergtidations. Multi-homed stubs

correspond to large campuses or companies having multipleders.

Alternatively, a multi-homed stub may connect to only oransit domain, but have link(s)
to other stub domain(s). The stub domains involved form aipgeelationship and agree to
exchange traffic among themselves over the backdoor liftonrttgoing through their service
providers. The main objective in setting up a backdoor Isoireduce costs by not transiting
packets through a provider.

Domains on the Internet may form a provider-customer i@tatiip or a peer-peer relationship
based on the characteristics described above. Theseonshifps are generally governed by the
cash flow between domains. If a domairpays domairY for connectivity to the Internet, domain
X is a customer of domaiv. For example, stub domains are customers of transit doraaithstub
domains connected by a backdoor link form a peering relgligm Similarly a transit domaixcan
be a customer of some transit domgjrand a peer of some other transit domaifRResearch on the
Internet topologyllP] has confirmed that the domain structfrthe Internet exhibits a hierarchy of

at least 4 to Riers. A tier on the Internet is a logical collection of routing daims such that all



domains in a tier form a provider or a customer relationshih @omains in lower and higher tiers
respectively. The top tier consists of the core, which issdanterconnection of AS’s. That is, in
the core, every AS has a direct link to every other AS in the @md thus is a source of reachability
for all other core AS’s. The AS’s in the bottom tiers typigatiave a lower edge degﬂ:&md hence

have to depend on the core to route packets to some far ofhdtish. The bottom tier consists of

stub domains.

1.2.1 Internet Topology generators

In the last few years a good deal of study has been focusedt@emdt topology. Simulations
and other experiments need models of topology of the Intefifese simulation models are called
as Internet Topology generators. Such models are usualiggented as graphs, in which the nodes
represent routers and edges represent the channels. litéscgmmon for network simulators
to generate large graphs to test the wide area performanoevefprotocols or to measure the
characteristics of the network or to compare differentqgots with each other. Because of the scale
of the Internet and other considerat@neobody knows the actual topology of the Internet. To make
up for the lack of knowledge about the actual graph, the tgpobenerators generate the models
stochastically. The challenge is to produce random grdmihtve structural characteristics similar
to those of the Internet. A lot of research has been aimedtatrdaing what those characteristics
are. Different researchers have come up with differentlgggneration methods, based on which
characteristics they believe are important. Some focusiemaitchy, others on degree of n(ﬂes
Some try to model the router level topology while others foon mainly domain level topology.
PLNG (Power Law Network Generator) is an example of degresedaetwork generator, where
the node in-degree and out-degree follows a power law. bgyoyenerators like Inet, Tiers, GT-
ITM [4] 1] take the hierarchy into consideration for modadjithe Internet topology. Both types
of topology generators try to match the essential charatiter of the Internet with some kind
of tradeoff caused due to the preference given to either igradechy or the degree aspect of the

topology.

2Here edge degree refers to the number of edges a domain Heisswieighbor domains. For example if a domain A
has 5 neighbors, but is connected to just three out of thbea,the domain has an edge degree of three.

3Internet is huge and is constantly changing. Internet tgppls in a state of constant flux because new domains are
added to the Internet and new links are established betwaightror domains.

“4Internet hierarchy refers to the provider-customer retathips between domains and the node degree refers to the
number of edges a node has with its neighbors.



1.3 Routing in the Internet

As mentioned in previous section RIP and OSPF are mainly fssddtradomain routing, i.e
routing within an AS, while BGP is the main interdomain rogtiprotocol on the Internet. Intrado-
main routing involves finding the shortest path from the seuo the destination according to a
common metric—mostly hop count or the distance betweensiddewever, Interdomain routing
is based on policies and the path followed from source to #wimhtion makes use of domain-
level polices to decide its route. In particular, the In&isinterdomain routing protocol (BGP) is
designed to support selection of interdomain paths baseatborain-level policies. There policies
reflect, for example the customer-provider and peerindiogiships.

Routing within a domain is less complex than interdomaintingu This is mainly because
of the use of a common metric to select paths. Hop count isdylgi used as a metric to decide
which route is to be used; the route with the minimum hop cdégichosen. There are two classes
of intradomain routing protocol: Distance Vector and Lirtat®. With a distance vector protocol,
e.g. RIP, each node advertises distance information toeitghbors and with every subsequent
advertisement a node gains information about the netwattkstarts building its routing tables. On
the other hand, with link state routing protocols, e.g. OSREh node advertises the status of its
attached links to its neighbors; once all the informatiogdthered, each node runs a shortest path
algorithm like Dijkstra’s to compute the shortest path tofeaode and to populate its routing tables.

The next subsection focuses on interdomain routing.

1.3.1 Border Gateway Protocol (BGP)

BGP, the current Internet standard for interdomain routiatyveen the AS'’s, allows each AS
to set its own policies for route selection. Policies aretabriles, that help the BGP border router

to select routes to a destination. Some of the things whidibips can achieve are:

¢ If an AS has two neighbors A and B, a policy may give more pefee to routes through
neighbor A for some destination prefixes and more preferemoeighbor B for other desti-

nation prefixes.

e A policy may reject a route if a route violates some definedddwn. For example, a route

may be rejected if it has been received via an AS which is ddam&ustworthy.

BGP, being an interdomain routing protocol, deals with esuat the AS level. Thus BGP

treats the Internet as an AS graph with each AS labeled withesset of addresses (prefixes) that



are reachable from the border router in that AS. These boadgers (entry-exit nodes in the AS)

exchange information about the routes they know with ottwedér routers in neighbor AS’s. On

receiving a packet, a BGP speaker decides to forward theep&lan appropriate neighbor based
on the prefix information it has received from all neighband ¢he packet destination.

When connection between BGP neighbors is first establistsch BGP node advertises its
presence to its neighbors. As information about nodes ipggated through the network, each
BGP node starts building a routing table, which it can canteulind a path to a particular address.
When changes to the routing tables are encountered, BG&saénd to their neighbors only those
routes which have changed. BGP routers do not send periogiing updates and do not advertise
routes that are not installed in the local routing table ¢hat are not being used to route packets).

Routes learned via BGP haa#tributesassociated with them, which are used in choosing the
route that will actually be used from among multiple paththeodestination. Following is a (greatly

abbreviated) discussion of the BGP route attributes andefeztion process.

BGP Attributes

e Network Layer Reachability Information (NLRI): (address prefix) defines the set of desti-
nation addresses of the route being advertised. For exathpl@etwork with network num-
ber 202.54.10.* will advertise a route with NLRI 202.54*0ONLRI is used for comparing
destinations.

e Local Preference: (number) Local preference is the basic mechanism for imefgimg im-
port policies and is not advertised to other domains but ésl wgithin the domain to assign
preferences to routes. This attribute is set by the domainirastration and the routes with
a higher local preference are preferred over others. As amplbe, a provider will prefer a

route through a customer to one through a peer.

e AS Path: (list of ASN’s) When a route transits an AS, the AS Number ideatito an ordered
list of identifiers that records the sequence of AS’s throwdiich the route has passed. This
serves two purposes. First, itis used in the route seleptioress as described below. Second,
it is used to detect cycles: if adding the domain’s ASN to tHe Rath forms a cycle then
the route is discarded. For example if a BGP node in AS 8 resedvroute with AS Path
(1,4,8,7,6), then it will discard this route as the AS hasadly processed this route before,
and adding 8 again to this AS path will form a cycle (8,7,6,8)



e Nexthop: (address) This is the IP address of the border router in tighiber domain. The
routers in a multi-homed domain which are connected to reuteother domains are the
border routers in that domain. Every time a route advertisgrneaves a domain the border
router in that domain attaches its address tawaehopattribute. For a particular destination,
the nexthop attribute of the route indicates the neighbanalpn through which the packet has

to be forwarded to reach to that destination.

There are several other attributes, but the ones mentidneekaare most important for our

purposes.

BGP Route Selection Process

The BGP route selection process determines which routébevilsed for interdomain routing
and advertised to other AS’s. Routes on the border routemaretained in RIB’s (Routing Infor-
mation Bases). A BGP speaking router maintains three RIB'sRIB_in, RIB_local, RIB_out for
storing the route information it has received. RBcontains routes received from its neighbors
(minus any routes with cycles in their AS path). Tibeal preferencdor each route is then deter-
mined from the policy information and the route with the r@ghlocal preference is installed in the
RIB_local and used to route packets. If two routes have the sacaé poeference value, the route
with the shortest AS path is selected. Export policies of & then further select a subset of routes
from RIB_local to be placed in RIBut for advertisement to neighbors. Note that the nexthep at
tribute is not used in the selection process, it just deteesivhere to forward the packet once the
route has been selected.

The routes stored in RIBcal are aggregated to reduce the size of the RIB’s. For plam
if routes to IP prefixes 172.168.224.00/24 and 172.1680@220 both use 10.1.0.2 as next hop,
the destinations can be aggregated into a single destinptiefix 172.168.224.0/20 if no other
** *.0/24 prefix matches 172.168.224.0/20.

1.4 Introduction to GT-ITM

GT-ITM (Georgia Tech Internet topology models) as the naeyats, is an Internet topology
generator(l2]. Since its release GT-ITM has been widely usdde scientific community for net-
work simulations. It is implemented on top of SGB (Stanfondy@h Base)l[5], a flexible collection

of data structures and algorithms for creating, storing, manipulating abstract graphs. GT-ITM



supports the creation of random graphs that have a varietyrwdtures, as well as storage of such
graphs in a portable file format. GT-ITMtsansit-stubmodel attempts to create realistic topology
with a two level hierarcl@ and appropriate edge weights to implement a default royiigy
between domai

GT-ITM lets graph generation parameters be specified in igroation file. Using the config-
uration file, the size of the graph as well as various paramébat control graph properties, such as
edge probability factor, number of extra edges etc. can eeifspd. Below are the list of parameters

user can specify in the configuration file.

¢ Method of generating routing tableklser can specify whether he wants to generate a random,
hierarchical or a transit stub graph.

e Number of graphsNumber of graphs to be generated.
¢ Initial Seed:Seed to generate random numbers for graph creation.

e Number of stub domains per transit domaiAverage number of stub domains connected to

a single transit domain.

¢ Random transit-stub edge&xtra edges to be placed between transit domains and stub do-

mains
e Random stub-stub edgesxtra edges to be placed between stub domains.

e Probability of double edges between transit domaitfsthis parameter is 1, there will be
double edges between the transit domains which are comhdftiis parameter is 0, there
will be a single edge between connected transit domains.ndimber between 0 and 1 would
indicate the probability of having double edges betweemeoted transit domains.

e Number of transit domaindNumber of transit domains.
e Edge methodThis parameter specifies the method of placing edges betinaesit domains.

e Edge density between transit domairehe edge density indicates how densely the transit
domains are connected with each other. Edge density of tatedi that all transit domains
have an edge with all other transit domains.

5Transit-Stub model forms a two level hierarchy with tram&itmains in the top tier and stub domains in the bottom
tier

5The default policy takes care of the fact that multi-homedbstomains do not provide transit service between two
domains.

10



Average number of nodes in the transit domains.

Edge methodMethod of placing edges between the nodes of transit domains

Edge density between the nodes in the transit domains.

Average number of nodes in the stub domains.

Edge methodMethod of placing edges between the nodes of stub domains.

Edge density between the nodes in the stub domains.

The generated graph is stored in the Stanford Graph Base®fihat, which can later be read in
for simulation and other purposes. Along with this basid toogenerate graphs, GT-ITM offers
other tools for evaluating some of the important graph priigee and for converting the graph to
a human-readable format to get some better understanditigeagraph. The original GT-ITM

comprises

¢ A command-line program that controls the creation of randpaphs according to various
models (including the transit-stub model) and parameters

e A command-line program that controls the evaluation ofoiaicharacteristics of graphs,e.g.

diameter.

e Various example graphs and parameter files for creating.them

Limitations of GT-ITM

Since its release GT-ITM has not been modified except for faw fixes and other minor
changes. Below are some of the known limitations of the GNI-tdol.

e GT-ITM does not provide a mechanism to do routing on its toggland the user has to
supply an implementation.

e GT-ITM generated topology is essentially a two level hiengr(i.e., Transit-Stub), whereas
the real Internet seems to have more hierarchy in its strei¢€].

e The Degree distribution afomains(ASsh GT-ITM does not look like that in the Internet. It
is rather uniform, where the Internet’s AS-level node dedomks at least something like a
power-law distribution.

11



Taking these three limitations into consideration, thebfgm statement of the thesis is defined
in the next section.

1.5 Problem Statement

The problem we are trying to solve is two-fold: routing angddlmgy. The idea is to generate
routing tables for the GT-ITM topology, such that the rowessrealistic in nature. Also the topology

on which the routes are generated should be a reasonablyrabksrepresentation of the Internet.

1.5.1 Scalable Routing

GT-ITM by itself is a topology generation tool. This tool isad by researchers to generate
graph models for simulation purposes. Most of the simuteéigperiments are based on measuring
or evaluating some of the important Internet charactesstiatency, bandwidth etc. It is quite
common to generate large graphs to test the wide area penficerof new protocols, or to measure
characteristic of the network, or the interaction of diéer protocols with each other, etc. In order
to do these simulations its important for the simulator teehsome means of mapping a destination
to a next hop from a particular node, so as to be able to roetgalfic generated in the simulation
in a realistic way. In other words, some means for creatingimg tables is required for routing.
GT-ITM does not presently include such capability.

Current Techniques

Various solutions are possible in order to generate thagingptables. One simple but non-
optimal way is to construct a big 2-D matrix where enitfycontains the next hop on the shortest
path from nodé to nodej as is done in Floyd Warshall algorithm. However, as statelieedhis
is a non-optimal solution both in terms of space and time &edsblution to use Floyd-Warshall
is not a scalable one. The Floyd-Warshall all pairs shopast algorithm has a complexity of the
order ofn3, wheren is the number of nodes in the grﬁ)hThus, with the increasing size of the
graph the time needed to compute the all node shortest patages rapidly, soon reaching limits
of practicality. The space requirement for this solutiomitovery high as it requires storing a matrix
of sizen?. This demands a lot of memory, and certainly this is not algiaption for large graphs.

"Using Floyd-Warshall, each node in a graph of n nodes, carpatera path to all other nodes rt time. So the
time required for building routing tables for the entiregndsn? x n = n3.

12



However, there is another observation to be made in thisgonthe approach of using Floyd-
Warshall forsakes all the advantage that is offered by a GITfEnsit-stub graph. Floyd Warshall
regards all the nodes in the graph as part of a flat graph, ilgnéine hierarchy among the nodes
in the graph. This is not the case with the Internet as we higady observed, different routing
algorithms are used within a domain and outside a domains diffierentiation in intradomain
and interdomain routing protocols is the first source ofaduiity in the Internet. This layering
provides two advantages for routing information to any idasibn. First it prevents huge amount
of information from being exchanged between nodes and seitoeduces the information storage
at each node. Thus using Floyd Warshall algorithm to computées on the GT-ITM topology,
turns out to be an inefficient solution.

An alternative solution to the Routing problem is to use tivedé and conquer approach:
1. Run Floyd Warshall within individual domains
2. Run Floyd Warshall over a graph in which each node reptesesingle domain

Merging information gathered from the first and the secord,sbbuting tables for the whole graph
can be generated. This solution is less expensive in terrhstbfspace and time, as here we run
Floyd Warshall on small blocks rather than one large blodkil&rly, the memory required to store
these small blocks of information is much less than thatiredufor one large block. Consider a
graph withn nodes,z domains,X; transit domains X, stub domains and on averagenodes per
transit domain and nodes per stub domain. The complexity of calculating rautables for the
whole graph i) (23 + X3 + X,2%). Complexity of calculating all pairs shortest path on a doma
level graph ofz nodes isO(x?). Similarly complexity of calculating all pairs shortesttipavith

X, transit domains with an average gfnodes andX, stub domains with an average ofnodes

is O(Xy® + X,2%). As achieved in the previous implementation of GT-ITM, we caiarantee
that stub domains don't transit packets between domainsugthwe will have some control over
the path packets will follow using this approach, interiled- policy-based routing is difficult to
achieve by assigning definite values to edge weights bettteedomains. (It is worth noting here
that edge weights are assigned in GT-ITM transit-stub gréph manner that ensures that shortest-
path routing always produces a path between two nodes iereliff domains that has the correct
form, i.e. which passes through the first stub domain, falidvey zero or more transit domains,
followed by the other stub domain. However, the sequenceansit domains selected is always the

one that yields the shortest sequence of edges.)

13



Need for Policy-Based Routing

Paths generated by Floyd Warshall are shortest path roasesiton the edge weights defined.
Routes obtained on the Internet are governed by domain pelieies and may not be the shortest.
On the Internet every AS needs to have some control over hatingpinformation flows in and
out of their network, which they achieve using domain levaiges. So we need a mechanism to
do policy-based routing on the GT-ITM topology. Some of thaltenges in doing policy-based

routing are:

e BGP Simulation: Since BGP protocol used on the Internet uses domain-lesaigs to
make routing decisions we decided to do something simildB@&d in order to simulate
Internet-like routing on GT-ITM graph. We decided to sintalthe BGP protocol (to its bare
minimum) ignoring the unessential details and focusinghengdrime aspects of the protocol

which are relevant and beneficial in our context.

e Generation of policies for simulation We need to generate policies which can be used
during BGP simulation. On the Internet an administrator dbanain specifies policies for
his domain. The user needs to have the knowledge of the tppdtoorder to write down
policies and to study their effect on the routes taken. Sinceur simulation, a user can
generate multiple domains in the GT-ITM topology, he maydeespecify policies for every
such domain. If number of domains is small, then specifyirggpmain polcies can be a
simple task once the basic connectivity between domaingsdsvk. But for a graph with
a large number of domains, specifying policies can be tiovesaming, and hence we need
a mechanism to automatically generate policies for largglys with minimum user input.
This user input should define some generic rules which evenyaih should follow, and we

should be able to generate polices for every domain basedtkse tules.

One of the important advantages of simulating BGP-stylepdiased routing is that it enables
us to study issues related to policy and convergence of tteqnl. Currently a lot of research is
being done on BGP convergen¢é(I8] 10,11, 12]. Number of relses have suggested conditions
on policies which ensure that the protocol converges andetstgble routing tables at each node.
BGP divergence due to incorrect policies may cause unnagefieoding of routing information
and create unstable oscillations in the BGP protocol. Theisa described in the next chapter will

help the researcher to see the effect of policies on BGP gubtmnvergence.
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1.5.2 Realistic Topology

In the GT-ITM transit-stub model, by definition transit damstransit the information sent by
the stub domains. Stub domains form the terminal end pointiseotopology and use the transit
domains for communicating information to other stub domeaiStub domains do not transit any
information. Looking at the nature of route flow in the GT-ITik&nsit-stub model based on this
definition, it may appear to be a 2 tier topology composedanfdit domains forming the first tier and
stub domains forming the second. Conceptually the traegél Igraph in the GT-ITM topology is
treated as a flat graph and path taken by the route betweesit flamain is essentially shortest path
based on some metric like hop count or edge weight. Wherees ieduce the Internet into a GT-
ITM like transit-stub graph such that domains which do namsit information become stub domains
and the rest get classified as transit domains, we would wb#eat the routes taken between transit
domains on the Internet may not be shortest path routes. i§ biscause, the routes taken on the
Internet are influenced by the domain policies which in tusgoverned by the provider-customer-
peer relationship existing between connected domainsoiSBT-ITM topology to appear realistic,
we need to do Internet-like routing on top of the GT-ITM tapgy. We try to solve this issue by
providing an efficient routing solution on top of the GT-ITkahsit-stub topology, such that the
GT-ITM topology appears to be like the Internet topology.

1.5.3 Relation between Routing and Topology

Though we have described routing and topology as two sepprablems, it is observed that
solving one problem complements the other. One of the swlstis to increase the number of tiers
in the GT-ITM topology. We tag each transit domain by a lobir number such that the transit
domains with lower tier numbers are the providers of tradsihains with higher tier numbers if
there exists a link between the two domains. Domains withstirae tier number become peers
if there exists a link between the domains. Thus by assigtdgg to transit domains we define
provider-customer-peer relationship in the transit leéepblogy. We take these tags into account
to construct routing tables for the GT-ITM topology. The hut used to construct routing tables
based on these tags, is explained in detail in the next chapte

Looking at the Routing problem, it has been described thadT®T lacks routing support.
Solutions like Floyd-Warshall result in shortest path esutWe wish to provide Internet-like routes
which are based on some domain policy. Domain adminisgadetect routes which are more

commercially profitable and thus may end up selecting longeates than the actual shortest path.
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The commercial profitability here means that the domain d@ay less for the packet flow through
other domains. This in turn is directly related to the comuigrrelationship between domains.
Thus, solving the topology problem helps in solving the Rauproblem. In the next chapter, we
explain in detail the process of route selection based orafforelationships.

1.5.4 Conclusion

In this chapter we established two main objectives: neegdticy-based routing on the GT-
ITM topology and need of Internet-like topology. In the nekiapter we describe our proposed
solution to achieve the above mentioned objectives.
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Chapter 2

Generation of Routing Tables

In this chapter we discuss our approach to generation oingtables for the GT-ITM topol-
ogy. This would extend the usability of the tool for more cdexpsimulations, providing more

control over the routing aspects of the network.

2.1 General Approach

It was discussed previously that routing on the Internetsduat always follow the shortest
path paradigm; instead, routing domains select routesdb@sénterdomain policies. Our solution
takes into consideration this policy-based routing papadin providing routing support for GT-
ITM topology.

If we attempt to control the paths between transit domaihnis, would require the user to
have complete knowledge of the transit level topology tacgpeolicies to govern the paths. To
make it easier to apply our methods to very large graphs, stvegessary to come up with a more
generic way to define policies, with minimum user input andimum knowledge of the generated
topology. We used the idea presented[inl [10] to solve thelgmolof generating policies with
minimum user input; a nice byproduct of this approach is thgtarantees protocol convergence
and stable routes at each node [8].

In our implementation we first define transit domains as beurgjomers, peers or providers of
other transit domains (by assigning logical tier numbdrg¥ forming an tier topology. The number
of tiersn depends on the clique size in the topology and the edge ddretitveen the nodes and
its computation is explained later in this chapter. Thenkintause of the provider-customer-peer
relationship existing in the n-tier topolc@yrouting policies are generated. These routing policies
are used to generate interdomain routing tables. The imnath routing tables for each domain are
generated by running Floyd Warshall all pairs shortest pigbrithm for each domain. Once we
have the routing tables, path from any source node to anyndésh node can be determined, by

consulting the intradomain and interdomain tables.

'Domain in tier n is a provider of domain in tier n-1, if theress a link between the two domains. Similarly domain
in tier n-1 becomes a customer of that domain in tier n. Domairthe same tier, who share a link become peers
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Policies

GT-ITM graph
Routing
Lookup (B)
GT-ITM graph Policies Routing Tables

Figure 2.1: Routing Model
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Policies are a set of rules specified in a file which is read byrtluting file generation tool,
to decide the paths. In Figure 2.1 (A) we see that the policagsbe generated using an algorithm
which reads the graph, or can be manually written by the useishown in FiguréZ]1 (B), using
an appropriate algorithm the GT-ITM graph is read and rgutables are generated. Policies may
be provided as an input to the algorithm, and the generatetihgotables will obey the policies.
The routing lookup API reads the routing tables to give the hep node from the source to the
destination. In the following sections we describe in détaiv each block in Figure2.1 is designed
and implemented.

There are two components to the problem of providing scaledlting services to simulations

that use graph models:

e Computing and storing next hop routing information

e Using the next hop routing information to enumerate the fatm the given source to the

given destination at simulation time

We wish to separate these two components. That is, we wistotide an ability to construct
and store routing tables separately from the graph itsaffigosimulations can be run on the same

graph with different routing tables.

2.1.1 Simplifications in design

We have made the following simplifying assumptions in owige to help us generate routing
tables for the GT-ITM topology. These simplifications do affect or violate the core working of
the BGP protocol. Instead they ignore some of the more congdpects of the protocol which may

not be very important for the user during simulation.

e The (unique) border router in a single-homed stub domairaywises a default route for
destinations outside the domain. This is usually the caskdrnnternet, as just one path is
available for a packet to exit a domain.

e We assume that all border routers in a domain are always symicked, by modeling each
domain as a single node in a graph. In other words, we ignereftact of the Internal BCHD

20n the Internet every AS can have multiple border routersshBrder router runs BGP protocol and exchanges
routing information with its neighbors. This routing infoation is synchronized between all other border routersgusi
the Internal BGP (IBGP) so that each border router has thevletiyje of routes exchanged by other border routers in the
AS.
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¢ Routing information is not aggregated as it travels throtighnetwork. This is an artifact of
the way GT-ITM identifies networks; it is never possible tpleze a set of prefixes with a

(shorter) prefix without some possibility of losing infortica.

Before we plunge into the specifics of our solution, we briefygcribe the GT-ITM naming
convention. This naming convention is important to un@erding the partial aggregation per-

formed in the route exchange process.

2.1.2 Naming conventions in GT-ITM

In GT-ITM, each transit-stub graph is represented as a ggapbture. The nodes of the graph
are stored in an array; edges are stored in linked lists ededowith nodes. Thus nodes and edges
can be accessed directly, via the data structures in thg drraddition, each node in the graph is
assigned a name that encodes its position in the graphigtucthese names have a well-defined

syntax of the form

<type
indicator>":" <transit domain id> "." <transit node id> [/ " <stub

domain id> "." <stub node id>]

where the type indicator indicates whether the node is aitrdnmain node or a stub domain node.
For example, S:1.2/3.4 refers to node 4 in stub domain 3 ateddo transit node 2 in transit
domain 1. All numbering begins at 0. Similarly T:1.2 refepsnbde 2 in transit domain 1. In our
implementation we use thesymbol as a wildcard character; thus T:1.* refers to all saddransit
domain 1 and S:1.2/3.* refers to all nodes in stub domaina&h#d to node 2 in transit domain 1.
This naming convention is useful for advertising destmrathetworks in routing; it corresponds to
the use of prefixes to denote parts of IP address space. Fopkxahe NLRI for a route originating
from transit domain 1 can be represented as T:1.*. SimikldyNLRI for a route originating from

a stub domain 2 connected to transit node 1 in transit domaenze represented as S:2.1/2.* or
T:1.* as the node belongs to a stub domain which is conneotdrisit domain T:1.*. As shown in
Figure[Z.2 this type of aggregation can be done for singhadtbstub domains as they are connected

to just one transit domain.
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Routing tables of distant node

S:1.2/2.* T:2.%

Single-homed stu
S:1.2/3.* T:2.*

Aggregated to...

T:1.* T:2.*

Figure 2.2: Naming and aggregation in GT-ITM

2.2 GT-ITM:Routing and Topology

As was noted in the introduction, the naive approach of cdinguhe shortest path from
every node to every other node does not scale very well. Weftire split the problem into two
parts, namely computation of intradomain routing inforimatfor each domain, and computation
of a domain level path connecting each pair of stub domaihg most straight-forward approach
to more scalable routing is to run Floyd-Warshall within védomain to produce an intradomain
routing table, and then to run Floyd-Warshall again on theaia level graph (i.e. an "abstract”
graph that has domains as nodes and an edge between two ddfittaéne is an edge that connects a
node in one domain to a node in the other). However, we wishdoramodate policies that restrict
the selection of domain-level paths. The process by whiishisrachieved is described below; first

we describe the representation of the routing information.

2.2.1 Routing table structures

Our scheme for scalable routing associates with each noaéramsit-stub graph two routing
tables: an intradomain table and an interdomain table. awstin FigurdZB, the intradomain table
is a two-dimensional matrix shared by all nodes in the domeitry, j in the matrix contains the
index of the node which is the first hop on the path froto j. This matrix is populated by running

the Floyd Warshall all-nodes-shortest path algorithm endbmain graph without edges to other
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Index in the table refers to the transit no
0-—>T:00 1-—>T:01 2-—>T:0.2

Figure 2.3: Intradomain routing tables

domains. (Because of the way GT-ITM graphs are construtiiediodes belonging to a domain are
contiguous in the vertex array of the overall transit-stedpd.) Intradomain routing lookup can be
done by simply indexing into an array, using the node numb#reodestination as offset. Another
way to view this information is that each nodéas its own row of the table, and the next hop to

nodej in its domain is contained in columjpof that row:.

The interdomain routing table is an array of entries, eactiaining a string representing the
destination , the next hop information for that destinatiemmd the AS path attribute associated with
the route. Because strings are used to identify destindtomains, interdomain lookup requires a
longest prefix match similar to that used in IP forwarding. sifmplify the implementation of the
routing lookup API, the next hop information stored for atendomain route is actually the border

router in that domain, i.e. the exit node from the domain sxhethat destination.

As shown in Figuré_2]4, the interdomain table for a stub dontainsists of a single entry
representing the default route. There is just one copy aiintieedomain routing table for the entire
domain. There is one problem with this approach. The intealo next hop information for thexit
router, i.e. the last router encountered by a packet before it fetheedomain, needs to be different

for that for other nodes, lest it forward interdomain paskiet itself. As can be seen from the
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default S:0.1.2.1

O
3 S:0.1/2.1
S O
o5 0
40
S0.1/2* ©

Figure 2.4: routing tables for single-homed stub domain

figure, the next hop for the border router S:0.1/2.1 is S2011/However, the interdomain routing

lookup for the node S:0.1/2.1 needs to return T:0.1 insté&®t@1/2.1. This could be handled by
having a separate copy of the interdomain table for eacheboaditer. However, we chose to trade
computation for space, and instead recognize this speasa& im the routing lookup code, so that
the correct next hop for the border routers is returned. Viia@xthis in detail in the next chapter

where we discuss the routing lookup algorithm.

The situation becomes trickier in the case of multi-homenhaios, but it is all handled in
the lookup code. Figure—2.5 shows the interdomain routibdetéor transit domain T:0.*. If the
destination is some node in T:1.* then the routing lookuptfer border router should return the
border router in domain T:1.* and not the border router in donT:2.*. To determine the correct
next hop in such cases, the lookup code consults some &dtiitfiormation stored with the route.
(The routing lookup algorithm is discussed in in the nextotba)

2.2.2 Generation of routing tables

Generation of intradomain routing tables is fairly simfi&ery domain is represented in terms
of a two dimensional matrix M[i,j] where M[i][j] = 1 if therexasts a direct link from node i to node

j. If there is no direct link from node i to node j then M]i][j] sc. Here we are using the convention
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T:0.0

T:0.0

Figure 2.5: routing tables for multi-homed domains

of 1 or oo because we are considering hop count as a metric to detesmimtest path and not the
actual distance between the nodes. This matrix is given agpanto the Floyd Warshall algorithm
which finds the shortest path from every node to every otheero the domain. Thus if there
aret transit domains withc nodes per domain andstub domains withy hodes per domain the
complexity of computing the intradomain routing tablesdes (23 + sy?).

Generation of interdomain routing tables uses a much marglsx approach than the gen-
eration of intradomain routing tables. Firstly, we need ¢b @ domain level picture of the graph,
as interdomain routing takes place between individual doesngSecondly, as described before we
need to run a BGP-like routing protocol on this domain levelpd). The interdomain routing poli-
cies may also be supplied as an input for deciding the rotéier running both the intradomain
and interdomain routing protocols on the graph, we storgémerated routing tables to a file, which
then can be used later for simulation.

As described before we use a process similar to BGP to genetatdomain routing tables.
When BGP first starts, the domains exchange routing infoomatdvertising their presence on the
Internet. Similarly, we make each domain in the GT-ITM graglvertise its reachability informa-
tion to other domains. As each domain gathers informatiaugbther domains, it decides which
route it should store in its interdomain routing tables gsta local policies.

Below we enumerate in detail the steps taken to generatmgatatbles.
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¢ |dentify individual domains in the graph: GT-ITM graph is a flat graph and vertices of the
graph are stored in a linear array. Contiguous parts ofitiest array correspond to the nodes
of individual domains. The nodes of the first transit domaasiored first followed by nodes
of each stub domain to which it is connected, followed by teet transit domain and so on.
To generate intradomain routing tables, we mentioned teaieed a two dimensional matrix
representing the vertices and their edge interconnecti8imilarly for interdomain routing,
the domains need to exchange routing information. Thuscibipes necessary to identify the
nodes of every domain, for running the intradomain and dterain routing algorithms. To
achieve that, for every transit and stub domain, we storesittee(number of nodes) of each
domain in a single array, and, using cumulative additiorgréicular domains nodes can be
accessed.

¢ Run Floyd-Warshall all pairs shortest path algorithm on eacd domain: Using the pre-
vious step, a two dimensional matrix is generated to reptesgch domain. This matrix is
given as an input to Floyd Warshall's all pairs shortest péglorithm and the next hop matrix

(intradomain routing tables) is generated for each domain.

e Build a SGB graph with number of nodes equal to number of multthomed domains:
Domains with two or more border routers are called multi-edndomains; they need to
run an interdomain routing protocol to decide the bordeteoto which the traffic has to
be forwarded for destinations outside the domain. Multikbd domains include all transit
domains (assuming there is more than one) and multi-homaxdsimains. Single-homed
stub domains have just one border router connecting the idadima transit domain. Ideally
it is not required to run any interdomain routing protockelBGP for such domains, because
for any destination outside the domain the traffic can be &oded via border router.

The multi-homed domains in the transit-stub graph are ifiedtand a new SGB graph with
nodes equal to the multi-homed domains is created, so we draveode for every multi-
homed domain. We call this graph tirgerdomain graphand the nodes in the graph are
connected in a pattern identical to the way multi-homed dosare connected to each other
in the main graph-that is if a link exists between a node inditadomain 1 and a node in
transit domain 2 then there is a link between the node reptiegetransit domain 1 and the
node representing transit domain 2 in the interdomain grajé use the node index in this
linear graph array as the ASN (Autonomous System Numbeheoflomain for the purposes
of constructing the AS path.
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Figure 2.6: Store border routers at edges.

¢ |dentify the border routers in each domain: A node in the interdomain graph represents a
multi-homed domain in the main graph. During the route erglegprocess, when a node in
the interdomain graph receives a route advertisement foomesieighbor node, the next hop
attribute of that route is set to the neighbor domain who &ded this route. But here we
have no information about the router inside that domain vanedrded this route as we are
dealing with the interdomain graph where each node reptesenentire domain. So we find
the border routers in each domain by parsing the main gragghstare the name of the border
routers connecting two domains in the main graph along Wkigheidge connecting these two
domains in the interdomain grﬁ)hSee Figur€&?2l6

¢ Initialize the Routing Information Bases(RIBs): Three RIBs (RIBin, RIB_local and RIBout)
are defined for each node in the interdomain graph. Each dosteaits off with just one route-
the route to itself. During bootstrapping this route is atlged to the neighbors. For example,
a transit domain T:1.* will initially have a route with NLRI:I.* and its own AS number as
the only entry in its AS path. This route is stored in the RI& of this domain to be exported

3For doing route traversal on the main graph, we need thisshociter information. Stanford Graph Base tool allows

the storage of two auxiliary fields with an edge. We use onbedé to store this border router information
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to its neighbors.

e Propagate routes: Routes stored in RIBut of a node are propagated to its neighbors. A
gueue is maintained to monitor the process of this routeangh Each item in the queue

carries the following information.

— The neighbor node which should copy the routes from the ntimede’s RIBout

— The current node

To start with, the first node in the interdomain graph fills fueue with information about its
neighbors. For example, if node 0 in the interdomain gragloisected to node 6, 10 and 12,
then it would fill the queue with informatio(6, 0), (10, 0), (12,0).Till the queue becomes
empty, each entry in the queue is fetched and processed. €itjigbor route is copied from
its RIB_out and checked for cycles. If the route contains the cumede’s ASN in its AS
path, that route is discarded, as it has already been pextéygshis node. This also prevents
flooding of routing information. If the route is valid and ¢aims no cycles, then it is copied
into the RIB.in of the current node. If a route is new to the receiving ASig)o (i.e. a route
with similar NLRI information is not present in RlBcal for that AS(node)), then the route’s
local preference for that AS is computed after referringh® policy file. (The generation of
the policy file is discussed in greater detail in secliah)2af0 policy file is specified, or the
local preference for that route is not listed in the policg,fi default local preference of 80 is
assumed. If a route with similar NLRI information is presenRIB_local of the current AS
(node), then the local preference of the two routes is coethaand the route with a lower
local preference is discarded. In case of a tie between ta pweference values of the two
routes, the route with a longer AS path is discarded and teendth the shorter AS path is
stored in the RIBlocal of the current node. If the receiving node is a transindin, then it
refers to its export policies to decide whether it can expgwtroute to its neighbors, if so, it
places the route in its RIBUtl. Once a node has copied the route to its RIB, the next
step is to advertise this route to its neighbor. This is donadding the appropriate entry to

the queue.

e Generate interdomain routing table for single-homed stalndins: Single-homed stub do-
mains are not a part of the route exchange process deschbed.&5ingle-homed stubs have

“4For stub domains the only route which is placed in Ri is the route to itself. This prevents other domains from
transiting the traffic through a stub domain thus satisfyhgbasic property of the transit- stub model
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only one route (thelefaultroute, which connects to one transit domain) to reach otber d
mains. A route that has NLRI as '*" and next hop as the addrés#iseoborder router in that
single-homed stub domain is placed in the interdomain mgutable for such domains (as
discussed earlier, and shown in Figlrd 2.4).

The Queue of route exchanges becomes empty when no chargesmany routing tables
and no new route is learned by any of the vertex. Once the abmvgutation is complete, the
routing information is stored in a file for later access. Thenfime is the same as that of the graph,
with the extension ".rt’ (so if the graph file is ts600-0.glkeththe routing information file is named
as ts600-0.rt). The routing file contains the intradomaiunting tables (next hop matrix for each
domain) followed by the interdomain routing tables (Rti®al for each domain). To make sure that
the routing file is being used for the same graph file for whieis generated, the checksum from
the SGB '.gb’ file is stored with the routing. The above memid file naming is slightly different

if the policies are auto-generated, which is discusseddrséttiol Z13.

2.3 Policies

One of the important features of the tool developed for thésis is the use of policies for
making routing decisions. User is able to specify polic@srbute selection, which are read by the
routing table generation program. Policies are of two typeport and export policies. Import poli-
cies assign a local preference to routes and are used witlimain to select among different routes
to the same destination. Export policies filter out domainshich a route should not be forwarded.
Policies are important because they determine the flow ficttzetween transit domains.

Our objective is to generate a policy file with minimum usegputi Internet domain-level
policies are a result of the commercial relationships amdoigains. We use this commercial
relationship model in generating a policy file that specifieicy for every domain in the Internet.
In the existing GT-ITM tool, there is no information othemthdistance to consider in choosing
routers. Policies provide the additional information fouting algorithms to use in selecting routes,
by assigning roles gfrovider, customerandpeerto domains. Itis observed that route flows are in
opposite direction to cash flol [110,113,1 14] 15]. In particw#arovider will always prefer to route
traffic through its customers because the customer paysfoying that traffic. Its next preference
is to route traffic via a peer. FigukeR.7 shows the generaligeo-customer hierarchy seen on the

Internet.
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Customer—Provider Hierarchy
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provider@——— = customer| _— IP Traffid

Figure 2.7: Hierarchy on the Internet

As seen in figurE218, domains in lower tiers route infornmatlrough domains in higher tiers.
We see that due to peering, domains can exchange routingnafion without going through their
providers. Generally peers do not export routing inforeraibout their peers as show in Figlird 2.9.
Thus the route showed in dotted line is not allowed in suchea@io. Domains which belong to
the same tier but are not directly connected need to go thrbigher tiers in order to be reachable.
Policy information generated in GT-ITM guarantees such lzab®r. A transit domain does not
export the route information it received from a domain iroitn tier to another domain in the same
tier.

Our current implementation supports a simple languagepiecifying import and export poli-
cies. An input file defines the policies used by specific dosjafmo policy is explicitly specified
for a domain, the default policy is used. Import policiesigisdocal preference values to routes
based on their attributes. An example of an import policyfi$ransit domain O receives a route to
Transit domain 2 from Transit domain 1 then assign it a locafgyvence of 100'. In the policy file

this rule is stated as

012 100
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This policy can be used to favor a route to Transit domain @utph neighbor Transit domain
1. As another example, a transit domain x may not trust sommer dtansit domain y, hence may
prefer not to route through that transit domain. In that cagelicy may specify "If x receives a
route to a destination transit domain ™ and transit domis in its AS path then assign it a local
preference 50”. This filters out routes through transit domydao any destination whenever there is
a better (say, with default local preference) alternatiMee wildcard character * denotesy ASN

Export policies allow the user to define rules for exportimg toute information for a particular
domain to its neighbor. An example of an export policy is s domain 0 should not advertise a
route received from Transit domain 2 for any destinationtd*neighbor Transit domain 1’. In the

policy file this rule is stated as
0+ 21

This policy information enables the user to specify re@ligblicies and study the behavior of
BGP for that set of policies.

The user can specify this policy file manually and providesitam input to the routing file
generation program. The route file generation program réagolicy file to determine which
routes to store for a particular domain. It can become cusapee for the user to write huge policy
files for large graphs. Thus we need to devise a mechanismtamatically generate a policy file
for a given graph with minimum user input. Below we describe process of generating policy
files for large graphs.

In the GT-ITM graph the stub domains form the leaves of thelgreéSince stub domains do
not provide transit service, they cannot be providers terodomains. But it is possible for a transit
domain to act as a provider to some other transit domain. F@pme know that the top tier of the
Internet has an edge degree of 1 with every domain havinggatecevery other domain in that tier.
The bottom tiers have lesser edge degree and use the tomttessit traffic to the destination. So
we try to label the nodes of the transit domain with their itidormation (essentially a tier number)
such that highest tier number consists of densely connewtdork of domains. To achieve this,
first we find a clique of domains. Clique is a group of nodes dhel every node in that group
has an edge to every other node in that group. Then we run Bréagdt Search (BFS) algorithm
starting with domains in the clique. The detailed approasddito generate the hierarchical transit
level graph is as follows.

The user is asked to enter the number of transit domains vgtiobld form the core of the

graph. As mentioned previously, the core has domains whietiudly connected, having an edge
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from every domain to every other domain. In graph termingltigs core is commonly referred as

a clique. If a clique (of domains) of a specified size cannotdomd then the user is prompted to
enter a smaller size. If a clique of the specified size exigtsiun breadth-first-search starting with
nodes (domains) in the clique. The nodes which are at the dapth in the breadth first search tree
are at the same tier in the graph. The depth of the BFS tree t®thl number of tiers in the graph,

with an extra tier comprising the stub domains. The numbeieas formed depends upon the size
of the core and the edge density of the transit level graptovBe/e describe the detailed process
of generating tiers and creating a policy file for use.

e Generate atransit level graph from the GT-ITM graph: We need to identify all the transit
domains in the main graph, and create a graph with nodesseagiieg the transit domains in
the main GT-ITM graph.. This graph will be used (instead eftiain graph) in the next two
steps.

e Find a clique of the required size: There is no efficient algorithm to find a clique of a given
size (Finding a clique is a NP complete problem). A brute doatgorithm for large graphs
would be extremely time consuming, so we need to use soméstiesito determine a clique
of a given size. We decided to use the stable model semantiisd a clique. This was
developed in the Laboratory for Theoretical Computer Smestt the Helsinki University of
Technologyl16].

Stable model semantics is a tool for constraint programmirigere we define a set of rules
and run the stable model (smodels) program to find a solutiohe rules we defined. In

our case we defined certain rules which would result in findirgjque of particular size in

a graph. The rules are defined by us and smodels program firdisti@s for the defined set

of rules.

e Run breadth first search (BFS) on the reduced graphif the size of the transit level graph
is nand the size of the core ¢ghen create a graph of sifie-c+1). This way we represent the
whole core with one node. That node has an edge for every Bdgednnects a core node to
a non-core node. Then, starting at this node we run the brdiaskt search algorithm. As we
run the BFS algorithm at each step we store the tier numbercht ode.

e Generate the policy file: The information generated from breadth first search is used t
generate the policy file, which contains import and expolicps. Import policies are spec-

ified by assigning a local preference to routes from neighbddased on the hierarchical
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Peering provides Shortcuts

peer ®&—e@ peer
provider @&——— = customer

Figure 2.8: Peering

relationship between two adjacent nodes, each node gefspaopaiate local preference val-
ues for routes received from the other. At every node in thesit level graph, the following
algorithm is used to determine the local preference of sofrtam its neighbors.

1. If neighbor is a peer then assign local preference. of

2. If neighbor is a customer then assign local preference-ofl.

3. If neighbor is a provider then assign local preference of1.

The pseudo code for generating export policies is as follows

1. If aroute is received from a node in the same tier, thentd@md the route to neighbors

within that tier or the tiers above.

2. If a route is received from a node in a higher tier, don'tds#ére route to nodes in the

current tier

e Store this information to a policy file, using the simple laage described earlier.
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The Peering Relationship

peer e—e peer Peers provide transit between their
provider—= customer respective customers

Peers do not provide transit between peers
Peers often donot exchange $$$

Traffic allowed
< - = Traffic not allowed

Figure 2.9: Routing flows

2.4 Realistic topology using real Internet data

The current topology generation algorithm in GT-ITM does use real Internet data. Instead
it uses user input to decide number of nodes and for placiggsdetween router nodes. User can
change the input parameters to generate a topology witerdiff densities and attributes. But if
we can generate a topology using the real Internet data dsphg then that topology might be a
better approximation of the Internet topology. In this getive describe the generation of GT-ITM
domain-level topology using real Internet data.

Skitter[15], developed by CAIDA (Co-operative associatfor Internet Data Analysis), is a
tool for actively probing the Internet in order to analyzedtngy and performance. Skitter con-
sists of a set of monitors which are continuously sending RC{iftaceroute) requests to multiple
destinations on the Internet. The traceroute informatiatigred at each monitor is aggregated to
generate Internet IP route information. The IP routes aga thapped to their corresponding AS
using the Border Gateway Protocol (BGP) routing tablesectdid by the University of Oregon’s
RouteViews project. Thus we can generate AS path data ointieenket, which can be effectively
used to generate the domain-level GT-ITM topology.

We first generate an AS graph from the AS path data using thdd8tbGraph Base. Then we

identify the transit domains and the stub domains in the A#lgr The leaf nodes in the graph are
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identified as the stub domains and all other nodes becomestigttdomains.

Once we have generated the transit-stub graph of the Int&®egraph, this graph can be
expanded to include nodes within the AS or transit and stubailos. Later this expanded graph
can be treated the same as other GT-ITM topologies to genearating tables. This latter feature
(i.e. expanding the AS graph to include nodes) is not ina@teal in the current implementation of
GT-ITM and is a subject of further research. However, a toaldnvert the skitter AS path data into

a transit-stub SGB graph is provided.

2.5 Conclusion

In this chapter we discussed our solution for the routingtapdlogy problem. We divide the
GT-ITM topology into multiple tiers, which aided us in defigj policies based on the provider-
customer-peer model. Then we generate routing tables asdtese policies. We also briefly
discussed how we can achieve realistic domain intercoimmeby/ building the GT-ITM topology

of the real Internet data acquired from skitter.



Chapter 3

Routing Lookup and GTITM Software

3.1 Introduction

In this chapter, first we explain the routing lookup proceséind a path from a source to a
destination and then we list the APl used to access the mtainles and return the correct next
hop. Towards the end of the chapter, we demonstrate theiefferse of policies to return different

paths for the same source-destination pair by giving sorampies.

Our implementation provides a nexthop function, which metuthe nexthop node along the
path from a given source to a given destination. Because veejgst one copy of the interdomain
routing table for the whole domain, the routing lookup istddibit complicated. We explain the

working of routing lookup for the example topology shown igure[3.].

default S:0.0/1.0 Destination Next hop
T:2.* T:0.2
0 2 T:1.* T:0.1
T:0.*
1
3®
0
0 °
1 °
S:0.0/1.*
S:2.1/3.*
T:0.* T:1.2 T:2.*
1
T:2.* T:1.2
0o e
T:1.* 2 2
le

Figure 3.1: Sample routing topology
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Suppose we want to find a route from node S:0.0/1.1 to S:2.17e route can be traced by
calling the nexthop function iteratively until the destina is reacheﬂl As can be seen from the
figure the source stub domain is single-homed and has jusinnéo transit domain T:0.*. So there
is just one entry in its interdomain routing table: the d#faoute. When the nexthop function is
called for the given source and destination, the first stépfind whether the destination node is in
the same domain or a different domain. If the node is in theesdomain then the intradomain table
is consulted and we are done. There is just a single intraithotaiale for every domain which stores
the index of the nexthop node from every source to everymiin in that domain. This table can
be read to figure out the path from a given source and destimatithin that domain. Otherwise
(as in this case), the interdomain table is consulted. Tieedomain table returns the address of the
exit border router in the current domain as the next hop. Thddy router is temporarily made the
destination and the next hop address is determined usingttagomain routing table. When the
nexthop function is called at the border router, insteacetifrning the same node (as indicated by
the interdomain routing table) the function returns theradsl of the transit domain node T:0.0 to
which the border router is connected. This process of fintlisgcorrect neighboring border router
is fairly simple in the case of a single-homed domain, begdhsre is just one interdomain link.
Now on calling the nexthop function for node T:0.0 and dedton S:2.1/3.2 the nexthop function
fails to find a match for S:2.1/3.2 in the interdomain table.it3ooks for T:2.* (knowing that stub
domains matching S:2.1/* are connected to node 1 in trapsitadh 2) and discovers T:0.2 as next
hop. The route to T:0.2 is determined by consulting the @dnaain routing table and calling the
nexthopfunction at T:0.2, route to T:2.0 is determined. On callihg hexthop function at node
T:2.0, again no entry for S:2.1/3.2 is found in the interdamable; however, the nexthop function
recognizes that the destination is connected to a node isame transit domain, and so looks up
T:2.1 in the intradomain table. At T:2.1 the nexthop funeatieturns the stub node in the domain
S:2.1/3.*; once inside that domain the intradomain tablesisd for the rest of the route. Finally,
we explain the case mentioned earlier in the context of B, where a border transit node has
neighbors in two different transit domains. Consider a easere the nexthop function is asked for
the next hop for a destination in transit domain T:0.* fronded:1.2. The border router T:1.2 has
two outgoing links: one to T:0.* and one to T:2.*. To find thamzt nexthop, the AS path of the

route is consulted. The AS path for the route to destinati®rTs [0 2] which means that the route

1On calling the nexthop function with a certain source andidason, the function returns the next hop node on the
path from the source to the destination. This nexthop foncis called again with the same destination but now the
source as the node returned from the previous call to nexfthlois process is continued till the nexthop function resurn
the destination node itself, which confirms that completh frmm source to the destination has been traced.
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traverses domain 2 and domain 0. (Assume that 0, 1 and 2 a®SNs of domains T:0.*, T:1.*
and T:2.*.) This means that the next hop for destination*is2in domain with ASN 2. In this way,

the correct next hop for border routers can be determined fne AS path.

3.2 API

The routing support being described will be available agarsge library along with GT-ITM.
Here we briefly describe the API to be exported by this librdggch function returns a non zero
value to indicate successful operation else it returns Okt INto indicate failure.

e int itmrt _generaterouting _tables(Graph *g): Given a GT-ITM graph, this function runs
the intradomain and the interdomain routing algorithmsdoeagate the interdomain and in-
tradomain routing tables.

e int itmrt _free_routing _tables(Graph *g): Given a GT-ITM graph, this function frees the
memory allocated for both the routing tables. The call isegally made before calling gb
recycle.

e intitmrt _read_tables from _file(Graph *g, char *rt file name): Given a GT-ITM graph and
the name of the .rt routing file, the function reads the rgutiables from the file into the

memory.

e intitmrt _write _tables to_file(Graph *g, char *sgb file name): Given a GT-ITM graph and
the sgb filename, the function writes the routing tables téeanfith the same name but with

extension rt instead of gb.

e \ertex *next_hop(Graph *g, Vertex *source, Vertex *destination): This is the main call
which gives access to routing tables. The source and dastinare vertex pointers in the
Graph g. This call returns the Vertex pointer of the nexthogentowards the destination. If
lookup fails it returns NULL indicating the reason for logkfailure to standard output. We
need to call itmrireadtablesfrom_file or itmrt_generaterouting tables before calling this
function.
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3.3 Using the tool

The routing information generation feature in GT-ITM is reaof two important programs
policytool and genrth genrtb invoked the API routings described above to creatging table

information and save it to a file.

3.3.1 Generation of policy file

policytool is used to generate a policy file. The input to thegpam is the .gb file.
policytool .gbfile

A sample run of the tool is shown below.

ash:”/gt-itm/bin> policytool ts300504-0.gb

Number of transit domains 25

Enter the desired size of the core: 7

Policies generated in file ts300504-0-7.po

Tier info stored in file ts300504-0.tr

ash:"/gt-itm/bin> more ts300504-0.tr

Total tiers 2

Core: 4 7 9 11 12 18 20

Tier 1: 01 23568 10 13 14 15 16 17 19 21 22 23 24

3.3.2 Generation of routing tables

Once the policy file is generated we can use the genrtb prograyanerate the routing files.
The genrtb program takes the .gb file and the .po policy filsndaut. The policy file input to the
genrtb program is optional.

genrtb -g .gbfile -p .pofile

The policy file is either written by the user or it is automalig generated by the policytool

program. A sample run of the genrtb program is shown below.

ash:™/gt-itm/bin> genrtb -g ts300504-0.gb -p ts300504-0- 7.po
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Generating the intradomain routing tables
number of domains = 15025
no. of multi-homed domains = 233
Reading the policy file ts300504-0-7.po...
Generating the interdomain routing tables
0 percent completed
1 percent completed
I
99 percent completed
100 percent completed
Adding the default routes to the single-homed domains
Writing the routing tables to the .rt file
Routing tables generated and stored in ts300504-0-7.rt

3.3.3 Traceroute from source to destination

The prograngtitmtr traces a route from a given source to a given destination. pfbgram
internally makes the above described API calls to read taphtgand calls the next hop function to
compute the path from the source to the destination.

gtitmtr .gbfile .rtfile start node index end node index

A sample run of this program is shown below.

ash:"/gt-itm/bin> gtitmtr ts300504-0.gb ts300504-0-7.r t 10000 20000
Source = S:0.16/25.16 Destination = S:1.10/4.16
Intradomain routing table loaded

Interdomain table loaded Routing tables loaded in memory

S:0.16/25.6
S:0.16/25.1
S:0.16/25.7
S:0.16/25.14
S:0.16/25.5
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S:0.16/25.8
T:0.16
T:0.1
T:0.11

10: T:20.14
11: T:20.9

12: T:1.19

13: T:1.8

14: T:1.10

15: S:1.10/4.18
16: S:1.10/4.1
17: S:1.10/4.21
18: S:1.10/4.16

Lookup time: 2226 microseconds
ash:”/gt-itm/bin>

3.4 Effect of Policies

3.4.1 Effect of import policies

Import policies are mainly defined using the local prefeeeatiribute. To see the result of
import policies, we will create a simple topology consigtirf 3 transit domains, fully connected to
each other as shown in Figurel.1.

Then we manually write a policy file which defines an importipofor T:1.* stating:

(Assign a local preference of 100 for any destination roet®ived from T:2.*.) Since the
default local preference is 80, for destination T:0.*, Tshould prefer a longer route through T:2.*,
instead going though the direct link to T:0.* as the formes hdigher local preference. Below we
enumerate the path from source to destination, with andowitthe defined import policy.

Path from source to destination without policies:

Source = S:1.0/2.2 Destination = S:0.0/1.1



Which route should T:1.* take ? What do the policies ¢

Figure 3.2: Import policies example

Intradomain routing table loaded

Interdomain table loaded Routing tables loaded in memory

T:1.0
T:1.1
T:0.1
T:0.2
T:0.0
S:0.0/1.1

Lookup time: 134 microseconds

Path from source to destination with the import policy:

Source = S:1.0/2.2 Destination = S:0.0/1.1
Intradomain routing table loaded
Interdomain table loaded

Routing tables loaded in memory

T:1.0

T:1.1

T:2.0

T:0.1

T:0.2

T:0.0
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7. S:0.0/1.1

Lookup time: 150 microseconds

We see from above, that when the policy file is used in credtiegrouting tables, a longer

path is taken to the destination.

3.4.2 Effect of export policies

Each node in the domain level graph has been tagged by a tieoaruwhich enables us to
identify a particular node as either a customer, providea peer of its connected neighbor. In the
tool described in the previous section, our automaticatigegated export policies make sure that a
domain does not export routes learnt from its peer and peovalits other peers and providers. We
now present an example demonstrating how export policfestahe route taken.

Consider a GT-ITM topology with 300504 nodes, 25 transit doma and 233 multi-homed
domains (transit + multi-homed stubs). To see the effectatitigs we will show the traceroute
from a source to destination with and without policies. fir& use policies, we run thgolicytool
program on the .gb file, to generate a policy file for use. The gtructure of the transit level

topology is shown below.

Total tiers 2
Core: 4 7 9 11 12 18 20
Tier 1: 01 2 356 8 10 13 14 15 16 17 19 21 22 23 24

Then we generate two routing tables, one with this policyafen input to thgenrtbprogram
and one without. Below is a traceroute from a source to artstn without the use of policies.

Source = S:2.6/22.12 Destination = S:6.11/9.1

Intradomain routing table loaded

Interdomain table loaded Routing tables loaded in memory
1. S:2.6/22.17

2. S:2.6/22.13
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3: S:2.6/22.1
4: S:2.6/22.9
5: T:2.6

6: T:2.8

7: T:2.16

8: T:23.17

9: T:23.11

10: T:23.3

11: T:6.11

12: S:6.11/9.9
13: S:6.11/9.19
14: S:6.11/9.1
Lookup time: 1189 microseconds

As we see in the above traceroute, the path follows transitedo?” : 2. x — — T : 23.x — — T : 6.

and the hop count is 14. Looking at tiers information showovabT:2.*, T:23.* and T:6.* belong

to the same tier. If policies were used, such a behavior iacceptable, as a pier is not supposed to
exchange routes learnt from its peers to other peers. Balawraceroute for the same source and
destination, but with policies imposed to decide the route.

Source = S:2.6/22.12 Destination = S:6.11/9.1
Intradomain routing table loaded
Interdomain table loaded

Routing tables loaded in memory
S:2.6/22.17

S:2.6/22.13

S:2.6/22.1

S:2.6/22.9

T:2.6

T:2.2

T:2.1

T:18.17
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9: T:18.2

10:
11:
12:
13:
14:
15:
16:

T:18.7
T:6.10
T:6.5
T:6.11
S:6.11/9.9
S:6.11/9.19
S:6.11/9.1

Lookup time: 1504 microseconds

In this route the path followed is T:2.* — T:18.* — T:6.* ancethop count is 16. Looking at the tiers

information shown above, T:18.* belongs to a higher tientfi2.* and T:6.* making it a provider

to both T:2.* and T:6.*. As we see here, though the hop coustitiereased to 16 (as compared to

14 without the use of policies), the path taken obeys the xmdicies as shown in Figufe3.2.

path with export policies

path without policies

Figure 3.3: Export policies example

3.4.3 Effect of different policies on the same graph

In this section we demonstrate the use of different poli@sfivith the same graph to generate

different routing tables. We will see that these two routiagles result in different paths for the

same pair of source and destination. We vary the core sizedar to generate two different policy

files for the same graph.

For this example we select a graph of 80800 nodes. First wergena policy file based on a



core size of 5. Observe that the total number of tiers in théeés 3 (Core, Tier 1 and Stub domains)

ash:™/gt-itm/freshcopy/bin> policytool ts80800-0.gb

Number of transit domains 20

Enter the desired size of the core: 5
Policies generated in file ts80800-0-5.po
Tier info stored in file ts80800-0.tr

ash:”/gt-itm/freshcopy/bin> more ts80800-0.tr

Total tiers 2

Core: 5 6 13 16 17

Tier 1: 01 23 47 89 10 11 12 14 15 18 19
ash:”/gt-itm/freshcopy/bin>

Then we generate a policy file based on a core size of 2. Ob8wvthe total number of tiers

in this case is 4 (Core, Tierl, Tier2 and Stub domains)

ash:”/gt-itm/freshcopy/bin> policytool ts80800-0.gb
Number of transit domains 20

Enter the desired size of the core: 2
Policies generated in file ts80800-0-2.po
Tier info stored in file ts80800-0.tr
ash:™/gt-itm/freshcopy/bin> more ts80800-0.tr
Total tiers 3

Core: 11 14

Tier 1: 01 256 89 10 13 16 18 19
Tier 2. 3 4 7 12 15 17
ash:"/gt-itm/freshcopy/bin>

For each policy file generated, we use the genrtb program riergee routing tables. The
routing tables are stored by the hame ts80800-0-5.rt afdiB®EBO-2.rt respectively. Below is the

traceroute for some source and destination by using ts80&€t as the routing table file.



ash:™/gt-itm/freshcopy/bin> gtitmtr ts80800-0.gb ts808
Graph Restored

Source = T:0.10 Destination = T:5.2
Intradomain routing table loaded
Interdomain table loaded

Routing tables loaded in memory
T:0.0

T:0.19

T:13.19

T:13.20

T:5.28

T:5.2

Lookup time: 558 microseconds

o a0 hw R

00-0-5.rt 10 20000

In the above trace we see that the route passes throught lansiin 13 to reach transit domain

5. Below is a traceroute for the same source and destinatibnsing ts80800-0-2.rt as the routing

table file.

ash:™/gt-itm/freshcopy/bin> gtitmtr ts80800-0.gb ts808
Graph Restored

Source = T:0.10 Destination = T:5.2
Intradomain routing table loaded
Interdomain table loaded

Routing tables loaded in memory
T:0.2

T:14.22

T:14.27

T:11.27

T:11.0

T:11.31

T:5.34

T:5.0

T:5.2

Lookup time: 848 microseconds

© o N g R wbdhdR
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In the above trace we see that the route passes through ttangiin 14 and 11 to reach transit

domain 5.

3.5 Conclusion

In this chapter, we showed the effective use of policies tegate different paths from a source
to a destination. By changing the core size, we can maniptite hierarchy in the graph. This in
turn results in different policy files for the same graph. lEgolicy file when used with a given
GT-ITM graph, will generate different set of routing tablasd each routing table may result in
different paths for the same source-destination pair. Tdasure of GT-ITM can be effectively
used to simulate Internet routing, by dynamically chandimgrouting files to get different paths at
different times. In the next chapter we show some resultstaito by running some experiments

of different graphs.
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Chapter 4

GT-ITM Software

4.1 Introduction

In this chapter, first we list the API used to access the rgutibles and return the correct
next hop. In the previous chapter, we discuss the routinggdbokup algorithm. Towards the end
of the chapter, we demonstrate the effective use of politigsturn different paths for the same

source-destination pair by giving some examples.

4.2 API

The routing support being described will be available agarsge library along with GT-ITM.
Here we briefly describe the API to be exported by this library

e intitmrt _generaterouting _tables(Graph *g): Given a GT-ITM graph this function runs the
intradomain and the interdomain routing algorithms to gateethe interdomain domain and

intradomain routing tables.

e int itmrt _free_routing _tables(Graph *g): Given a GT-ITM graph this function frees the
memory allocated for both the routing tables. The call isegally made before calling gb

recycle.

e intitmrt _read_tables from file(Graph *g, char *rt file name): Given a GT-ITM graph and
the name of the .rt routing file the function reads the routagjes from the file into the

memory. This is an alternative to the generate API call asfaster.

e intitmrt _write _tablesto_file(Graph *g, char *sgb file name): Given a GT-ITM graph and
the sgb file name the function writes the routing tables toeaviith the same sgb filename

but with extension rt instead of gb. This call can be made drggnerate call is successful.

e Vertex *next_hop(Graph *g, Vertex *source, Vertex *destination): This is the main call

which gives access to routing tables. The source and dastinare vertex pointers in the



Graph g. This call returns the Vertex pointer of the nexthogentowards the destination. If
lookup fails it returns NULL indicating the reason for logkéailure to standard output. We

need to call itmrireadtablesfrom_file before calling this function.

4.3 Using the tool

The routing information generation feature in GT-ITM is reaof two important programs
policytoolandgenrth

4.3.1 Generation of policy file

policytool is used to generate a policy file. The input to thegpam is the .gb file.
policytool .gbfile
A sample run of the tool is shown below.

ash: /gt-itm/bin¢, policytool 8)0504-
0.gb Number of transit domains 25 Enter the desired size efctire: 7 Policies generated in
filets300504-0-7.po Tier info stored in file ts300504-0gh&/gt-itm/bing, more ts300504-0.tr Total
tiers2Core: 47911121820 Tier1: 0123568101314 1516 17 2218 24

4.3.2 Generation of routing tables

Once the policy file is generated we can use the genrtb prograganerate the routing files.
The genrtb program takes the .gb file and the .po policy filendaut. The policy file input to the
genrtb program is optional.

genrtb -g .gbfile -p .pofile

The policy file is either written by the user or it is automalig generated by the policytool
program. A sample run of the genrtb program is shown below.

ash:”/gt-itm/bin> genrtb -g ts300504-0.gb -p ts300504-0- 7.po0
Generating the intradomain routing tables

number of domains = 15025

no. of multi-homed domains = 233

Reading the policy filets300504-0-7.po...
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Generating the interdomain routing tables
0 percent over
1 percent over
I
99 percent over 100 percent over Adding the default routes to
single-homed domains Writing the routing tables to the .rt f
Routing tables generated and stored in ts300504-0-7.rt Fin
the final tasks 66545 66545

4.3.3 Traceroute from source to destination

The prograngtitmtr traces a route from a given source to a given destination. pfbgram

internally makes the above mentioned API calls to read thplgand calls
compute the path from the source to the destination.
gtitmtr .gbfile .rtfile start node index end node index

A sample run of this program is shown below.

ash:”/gt-itm/bin> gtitmtr ts300504-0.gb ts300504-0-7.r
Source = S:0.16/25.16 Destination = S:1.10/4.16
Intradomain routing table loaded

Interdomain table loaded

Routing tables loaded in memory

S:0.16/25.6
S:0.16/25.1
S:0.16/25.7
S:0.16/25.14
S:0.16/25.5
S:0.16/25.8
T:0.16

T:0.1

T:0.11
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10:
11:
12:
13:
14:
15:
16:
17:
18:

T:20.14
T:20.9
T:1.19
T:1.8
T:1.10
S:1.10/4.18
S:1.10/4.1
S:1.10/4.21
S:1.10/4.16

Lookup time: 2226 microseconds

ash:™/gt-itm/bin>

4.4 Effect of Policies

4.4.1 Effect of import policies

Import policies are mainly defined using the local prefeesattribute. To see the result of

import policies, we will create a simple topology consigtirf 3 transit domains, fully connected to

each other as shown in Figurel4.1.

Which route should T:1.* take ? What do the policies ¢

Figure 4.1

Then we manually write a policy fil

. Import policies example

e which defines a import pplior T:1.* stating: Assign a

local preference of 100 for any destination route receivethfT:2.*. Since the default local pref-
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erence is 80, for destination T:0.*, T:1.* should prefer ader route through T:2.*, instead going
though the direct link to T:0.* as the former has a higher Ipcaference. Below we enumerate the
path from source to destination, with and without the defiinggbrt policy.

Path from source to destination without policies.

Source = S:1.0/2.2 Destination = S:0.0/1.1
Intradomain routing table loaded
Interdomain table loaded

Routing tables loaded in memory

T:1.0

T:1.1

T:0.1

T:0.2

T:0.0

S:0.0/1.1

Lookup time: 134 microseconds

Path from source to destination with the import policy.

Source = S:1.0/2.2 Destination = S:0.0/1.1
Intradomain routing table loaded
Interdomain table loaded

Routing tables loaded in memory
T:1.0

T:1.1

T:2.0

T:0.1

T:0.2

T:0.0

S:0.0/1.1

Lookup time: 150 microseconds
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We see from above, that when the policy file is used, a longiripdaken to the destination.

4.4.2 Effect of export policies

Each node in the domain level graph has been tagged by a tieberuwhich enables us to
identify a particular node as either a customer, providea peer of its connected neighbor. In the
tool described in the previous section, our automaticaigegated export policies make sure that
a domain does not export routes learnt from its peer and geov0 its other peers and providers.
Giving a suitable example we will demonstrate how the expolities affect the route taken.

Consider a GT-ITM topology with 300504 nodes, 25 transit diorg, 233 multi-homed do-
mains (transit + multi-homed stubs). To see the effect ot we will show the traceroute from
a source to destination with and without policies. Firstiyuse policies, we run thgolicytool pro-
gram on the .gb file, to generate a policy file for use. The treicture of the transit level topology

is shown below.

Total tiers 2
Core: 4 7 9 11 12 18 20
Tier 1: 01 2 356 8 10 13 14 15 16 17 19 21 22 23 24

Then we generate two routing tables, once with this polieyed an input to thgenrtbprogram

and once without. Below is a traceroute from a source to teérddion without the use of policies.

Source = S:2.6/22.12 Destination = S:6.11/9.1
Intradomain routing table loaded

Interdomain table loaded

Routing tables loaded in memory

S:2.6/22.17

S:2.6/22.13

S:2.6/22.1

S:2.6/22.9

T:2.6

T:2.8
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7: T:2.16
8: T:23.17
9: T:23.11
10: T:23.3
11: T:6.11
12: S:6.11/9.9
13: S:6.11/9.19
14: S:6.11/9.1

Lookup time: 1189 microseconds

As we see in the above traceroute, the path follows trangiiedo?” : 2.« — — T : 23.x— —T : 6.

and the hop count is 14. Looking at tiers information showoveb T:2.*, T:23.* and T:6.* belong

to the same tier. If policies were used, such a behavior iacceptable, as a pier is not supposed to
exchange routes learnt from its peers to other peers. Balaraceroute for the same source and

destination, but with policies imposed to decide the route.

Source = S:2.6/22.12 Destination = S:6.11/9.1
Intradomain routing table loaded
Interdomain table loaded

Routing tables loaded in memory
S:2.6/22.17

S:2.6/22.13

S:2.6/22.1

S:2.6/22.9

T:2.6

T:2.2

T:2.1

T:18.17

T:18.2

10: T:18.7

11: T:6.10

12: T:6.5



13: T:6.11

14: S:6.11/9.9
15: S:6.11/9.19
16: S:6.11/9.1

Lookup time: 1504 microseconds

In this route the path followed is T:2.* — T:18.* — T:6.* andethop count is 16. Looking at the tiers
information shown above, T:18.* belongs to a higher tientfi&2.* and T:6.* making it a provider
to both T:2.* and T:6.*. As we see here, though the hop coustilereased to 16 (as compared to
14 without the use of policies), the path taken obeys the exmdicies as shown in Figuie3.2.

path with export policies

path without policies

Figure 4.2: Export policies example

4.5 Conclusion

In this chapter, we showed the effective use of policies tegate different paths from a source
to a destination. By changing the core size, we can maniptitet hierarchy in the graph. This in
turn results in different policy files for the same graph. tEgolicy file when used with a given
GT-ITM graph, will generate different set of routing tablasd each routing table may result in
different paths for the same source-destination pair. Tdasure of GT-ITM can be effectively
used to simulate Internet routing, by dynamically chandimgrouting files to get different paths at
different times. In the next chapter we show some results @it by running some experiments
of different graphs.
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Chapter 5

Simulation graphs

In the first chapter, we discussed how the traditional appresi to generating routing paths
were ineffective, as they demanded more memory space angdutational time. Hence we pro-
posed a solution which is less complex in space and time, dichvalso gives better control over
generation of routing tables. In this chapter we will stugly performance of the tool in terms of the
time it takes to generating intradomain and interdomairiimguables and memory space required
to store the routing tables.

The time complexity of generating the intradomain routiaglés is a function of the number
of domains in the graph and the number of nodes in each domédiereas the time taken for
the generation of interdomain routing tables depends omaingber of multi-homed domains and
the number of edges between the multi-homed domains in tgghgrSince transit domains are
essentially multi-homed, increasing the number of trashaihains automatically increases the time
taken to generate interdomain routing tables. Hence weddlarent measurements by varying
the number of nodes, the number of multi-homed domains, ldumber of transit domains, and
study the time taken for routing table generation and itcespailization for storing the routing
tables.

Based on the parameter (number of nodes, number of domainther of multi-homed do-
mains) we are changing, we generate different graphs bygainguthat parameter. For each graph,
we generate the routing tables usiggnrth We record the total time taken for the generation of
the routing tables. Once the routing tables are stored i atffie file size is recorded for different
graphs.

Below we show the graphs, which plot the results for our diff set of experimental runs.
These simulation runs were made on a 2 GHz machine with 1GB RAM

On an average the lookup time for a single hop is 100 micresk;ovhich means that if a
route has 10 hops from a source to a destination, it would ttaéeoute around 1ms. This time
excludes the time taken for reading the graph into the memory

In the graph§5]1 arld 5.2 the number of transit domains wasckestant at 25, and number

of nodes in the transit domains was varied to increase thkriamber of nodes in the graph.
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Figure 5.3: Number of multi-homed domains Vs Time

In the grapi 513 the number of multi-homed domains was vdrnigdy keeping the number
of transit domains constant. This was done by adding exarssit-stub and stub-stub edges thus
increasing the number of multi-homed stub domains.

In the grapi’514 anld 3.5, the number of transit domains wefed:a

In graph$ 511 andd.2 we increase the nodes in the transitidsimat keep the number of transit
domains and stub domains constant in order to increasetdentonber of nodes within the graph.
This keeps the size of the interdomain graph (graph cortstiuo run the BGP-like interdomain
algorithm to find the interdomain routes) constant, butéases the matrix size for computing the
intradomain routing tables. Let us assume that we haransit domainss stub domains per transit
node,z nodes per transit domains apchodes per stub domain, the time complexity of computing
the intradomain routing tables would bet@{ + txsy?). The total number of nodes in the graph
would betz(1 + sy). Let us assume the time taken to generate the interdomaingdables ad;.

So the total time to generate the routing tables would beO¢ tzsy?)) + I;. When we increase
x by keeping all other parameters constant, we observe fraptgs.ll that we get a linear increase
in time when referenced against the total number of noddseigtaph.

Let us analyze the effect of increasing the number of nodetherspace requirements. As
mentioned in the previous chapters, the routing table filesisbs of intradomain routing tables
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followed by the interdomain routing tables. Intradomaintiog tables consist of two dimensional
matrices for each domain (transit and stub) giving all pahlertest paths between the nodes of
that domain. In the interdomain routing tables, for eachtrindmed domain we list a routing
path to every other multi-homed domain. Say for example we hamulti-homed domains, each
multi-homed domain would have a patiwto— 1 multi-homed domain. So the size of interdomain
routing tables is a function of the number of multi-homed dom in the graph whereas the size
of the intradomain routing tables is a function of the numiienodes within the transit domains
and stub domains. In the graphl5.2 we observe that the sizeeafouting tables file increases
linearly with the increase in the transit domain nodes. is thse the size of the intradomain tables
increases and the size of the interdomain tables remairgtargn Important point to note here is
that increasing the number of nodes within the transit domaind the stub domains has no effect
on the interdomain routing table generation time nor thesa store the interdomain tables.
remains constant in both the case mentioned above as theenwinimulti-homed domains remain
constant.

In graph[2.4, we increase the graph size by increasing théewuof transit domains in the
graph. There are two ways of increasing the multi-homed dimsn#&ither we increase the number
of transit domains or we add extra transit-stub or stub-stddpes which increases the number of
multi-homed stub domains. Increasing the number of multirbd domains has effect both on
the intradomain tables generation time and the interdonadiles generation time. Looking at the
equation Ofz>® + txsy®), when we increase the number of transit domairibe time taken to
generate intradomain routing tables increases as we haum teloyd Warshal on more domains.
Similarly increasing the transit domains increases the tiaken to generate interdomain routing
tables as we have to compute more routes for each multi-hclomain.

In grapH&.B, we increase the number of transit-stub andsttubedges to increase the number
of multi-homed domains. This does not have any effect onritradomain time as the number of
domains remains constant. But the time taken to computedioit@ain routing tables does increase.
Due to this reason we see that as compared to draph 5.4 the alldpe graphibl3 is less as in-
tradomain computation time is not affected in the later cais¢he last graphBl5, we observe that
increasing the transit domains has a linear increase iingpfite size. Increase in transit domains
increases the number of entries in the interdomain routibdethence the increase in routing file
size.

The obijective of the thesis was to enhance the current GTddfvare by providing routing

support so that route from any node to any other node can bendeed without the user having to
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provide his own implementation. The idea was to use a rouwlggrithm which is time-efficient,
space efficient (uses less memory) and also generatesgaatiltes which occupy less space and
generates routes similar in nature to those found on thenkete A primitive implementation was
to use Floyd Warshal algorithm which was not efficient botleirms of time and space for graphs
with large number of nodes. So we decided to break the roytinblem into intradomain and
interdomain and treat them separately. Finding intradomatites was done using Floyd Warshal
as the number of nodes within a domain is much lesser as cemhpathe total number of nodes.
This way we achieved some gain both in terms of time and sp&oe.generating interdomain
routing tables, we implemented a BGP-like protocol whidtetainto account domain level policies
and gives some control to the user to control the routes. ibgokt some examples in the previous
chapter we see that by controlling the policies we could ghahe route taken between two nodes.
Looking at the graphs above we see that the time taken to @enesuting tables and the space
required to store the routing tables is a linear functionhef tumber of nodes in the graph. Thus
our solution satisfies all the objectives defined in the thesi
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