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ABSTRACT OF THESIS

EXTENDING AND ENHANCING GT-ITM

GT-ITM is a topology generation tool. Since its release GTITM is widely used in the scientific

community for network simulations. GTITM is extended to support routing on its topology. The

routing algorithm used for interdomain routing attempts toemulate the BGP routing protocol seen

on the Internet. It uses a policy file if supplied to make routing decisions. An additional functionality

provided with the tool is the ability to automatically generate policy file for large graphs.
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Chapter 1

Introduction

1.1 Background

Researchers seeking to improve some aspect of the functioning of the Internet often test their

hypotheses using some form of simulation. In many cases the network topology plays an important

role in such simulations. Network topology refers to the relationships among the elements (channels

and switches/routers) that make up the network. In the recent years, a number of tools have been

developed to produce models of internet topology that are insome sense realistic. These tools try

to emulate the essential characteristics of the Internet topology in order to provide a realistic test

bench for researchers. One of the most important aspects of anetwork topology model is the way

it determines the path or paths followed by a packet as they travel through a network. This routing

aspect affects the performance of many algorithms.

A network essentially has two important attributes: Topology and Routing. A network may be

represented as a collection of nodes connected to each otherthrough links. Topology refers to this

interconnection of the nodes with each other, whereas routing refers to the paths taken by packets

from source nodes to destination nodes. A good network topology generator should be able to

represent these two features, viz. topology and routing, insuch a way that the topology is similar to

the Internet topology and the routes are similar in nature tothe routes taken on the Internet.

In this chapter, we first describe the topological structureof the Internet. Later we describe

the intradomain and interdomain routing protocols. Then weshift our attention to Internet topology

model generators, specifically GT-ITM, and understand the current limitations in the tool. We then

outline the improvements to GT-ITM to be discussed in the remainder of the thesis.

1.2 Structure of the Internet

The Internet is divided into Autonomous Systems (AS’s). Each AS is a unit of router policy:

either a single network, or a group of networks that is controlled by a common network administra-

tor (or group of administrators) on behalf of a single administrative entity (such as a university, a
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business enterprise, or a business division). Each autonomous system in the greater Internet is also

sometimes referred to as a routing domain. An autonomous system is assigned a globally unique

number, sometimes called an Autonomous System Number (ASN). In this document we will use a

more generic termdomain, rather than AS.1

On the Internet different routing algorithms are used within a domain and outside a domain.

RIP (Routing Information Protocol) and OSPF (Open ShortestPath First) are common intradomain

routing protocols while BGP (Border Gateway Protocol) is the defacto interdomain routing protocol

for the Internet. Networks within an AS use an intradomain routing protocol for message exchanges

within the AS and use an interdomain routing protocol for message exchanges outside the AS.

Generally [1, 2], each domain on the Internet can be classified as atransit domain or astub

domain. Transit domains providetransit connectivity for other domains: that is, they carry packets

whose source and destination are both outside the domain. Stub domains do not provide such transit

services; only packets whose source or destination lies within the domain can be found in a stub

domain. Stub domains contain most of theend systemsin the Internet, and most traffic travels

between the stub domains. This distinction is the basis for the transit-stubmodel used in GT-ITM

(Georgia Tech Internet Topology Models). The figure 1.1 illustrates the different types of domains.

• Transit Domainscorrespond to service providers on the Internet. They offerconnectivity for

the stub domains to rest of the Internet. Transit domains areby definitionmulti-homed: a

transit domain may be connected to multiple stub domains as well as other transit domains.

Transit domains correspond to Internet Service Providers which provide Internet connectivity

to smaller domains.

• Single-Homed Stub Domainshave a connection to just one neighbor domain, i.e. they are

connected to only one transit domain. Single-homed stub domains correspond to the “leaves”

of the AS-level topology graph - for example, University campus networks with just one

service provider.

• Multi-homed Stub Domainsare connected to two or more domains. Such a domain may be

connected to two or more transit domains, in which case it hasmultiple entry/exit points,

1Technically an AS is not quite equivalent to a routing domain, and there can be several routing domains within
the same AS in which case each domain within that AS can independently speak a interdomain routing protocol with
its neighboring domains. But for the sake of simplicity, andthe way GT-ITM tool is designed, we consider a domain
equivalent to an AS. As we will see in later sections, transitdomains and stub domains, behave as AS’s on the Internet,
exchanging routing information.
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Single homed stub

Multi−homed stub

Stubs with backdoor link

Transit domains

Figure 1.1: Hierarchy on the Internet

and packets may be routed to different exits for different destinations. Multi-homed stubs

correspond to large campuses or companies having multiple providers.

Alternatively, a multi-homed stub may connect to only one transit domain, but have link(s)

to other stub domain(s). The stub domains involved form a peering relationship and agree to

exchange traffic among themselves over the backdoor link without going through their service

providers. The main objective in setting up a backdoor link is to reduce costs by not transiting

packets through a provider.

Domains on the Internet may form a provider-customer relationship or a peer-peer relationship

based on the characteristics described above. These relationships are generally governed by the

cash flow between domains. If a domainX pays domainY for connectivity to the Internet, domain

X is a customer of domainY. For example, stub domains are customers of transit domainsand stub

domains connected by a backdoor link form a peering relationship. Similarly a transit domainx can

be a customer of some transit domainy, and a peer of some other transit domainz. Research on the

Internet topology [9] has confirmed that the domain structure of the Internet exhibits a hierarchy of

at least 4 to 5tiers. A tier on the Internet is a logical collection of routing domains such that all
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domains in a tier form a provider or a customer relationship with domains in lower and higher tiers

respectively. The top tier consists of the core, which is a dense interconnection of AS’s. That is, in

the core, every AS has a direct link to every other AS in the core and thus is a source of reachability

for all other core AS’s. The AS’s in the bottom tiers typically have a lower edge degree2, and hence

have to depend on the core to route packets to some far off destination. The bottom tier consists of

stub domains.

1.2.1 Internet Topology generators

In the last few years a good deal of study has been focused on Internet topology. Simulations

and other experiments need models of topology of the Internet. These simulation models are called

as Internet Topology generators. Such models are usually represented as graphs, in which the nodes

represent routers and edges represent the channels. It is quite common for network simulators

to generate large graphs to test the wide area performance ofnew protocols or to measure the

characteristics of the network or to compare different protocols with each other. Because of the scale

of the Internet and other considerations3 , nobody knows the actual topology of the Internet. To make

up for the lack of knowledge about the actual graph, the topology generators generate the models

stochastically. The challenge is to produce random graphs that have structural characteristics similar

to those of the Internet. A lot of research has been aimed at determining what those characteristics

are. Different researchers have come up with different graph generation methods, based on which

characteristics they believe are important. Some focus on hierarchy, others on degree of nodes4.

Some try to model the router level topology while others focus on mainly domain level topology.

PLNG (Power Law Network Generator) is an example of degree based network generator, where

the node in-degree and out-degree follows a power law. Topology generators like Inet, Tiers, GT-

ITM [4, 1] take the hierarchy into consideration for modelling the Internet topology. Both types

of topology generators try to match the essential characteristics of the Internet with some kind

of tradeoff caused due to the preference given to either the hierarchy or the degree aspect of the

topology.

2Here edge degree refers to the number of edges a domain has with its neighbor domains. For example if a domain A
has 5 neighbors, but is connected to just three out of those, then the domain has an edge degree of three.

3Internet is huge and is constantly changing. Internet topology is in a state of constant flux because new domains are
added to the Internet and new links are established between neighbor domains.

4Internet hierarchy refers to the provider-customer relationships between domains and the node degree refers to the
number of edges a node has with its neighbors.
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1.3 Routing in the Internet

As mentioned in previous section RIP and OSPF are mainly usedfor intradomain routing, i.e

routing within an AS, while BGP is the main interdomain routing protocol on the Internet. Intrado-

main routing involves finding the shortest path from the source to the destination according to a

common metric—mostly hop count or the distance between nodes. However, Interdomain routing

is based on policies and the path followed from source to the destination makes use of domain-

level polices to decide its route. In particular, the Internet’s interdomain routing protocol (BGP) is

designed to support selection of interdomain paths based ondomain-level policies. There policies

reflect, for example the customer-provider and peering relationships.

Routing within a domain is less complex than interdomain routing. This is mainly because

of the use of a common metric to select paths. Hop count is typically used as a metric to decide

which route is to be used; the route with the minimum hop countis chosen. There are two classes

of intradomain routing protocol: Distance Vector and Link State. With a distance vector protocol,

e.g. RIP, each node advertises distance information to its neighbors and with every subsequent

advertisement a node gains information about the network and starts building its routing tables. On

the other hand, with link state routing protocols, e.g. OSPF, each node advertises the status of its

attached links to its neighbors; once all the information isgathered, each node runs a shortest path

algorithm like Dijkstra’s to compute the shortest path to each node and to populate its routing tables.

The next subsection focuses on interdomain routing.

1.3.1 Border Gateway Protocol (BGP)

BGP, the current Internet standard for interdomain routingbetween the AS’s, allows each AS

to set its own policies for route selection. Policies are a set of rules, that help the BGP border router

to select routes to a destination. Some of the things which policies can achieve are:

• If an AS has two neighbors A and B, a policy may give more preference to routes through

neighbor A for some destination prefixes and more preferenceto neighbor B for other desti-

nation prefixes.

• A policy may reject a route if a route violates some defined condition. For example, a route

may be rejected if it has been received via an AS which is deemed untrustworthy.

BGP, being an interdomain routing protocol, deals with routes at the AS level. Thus BGP

treats the Internet as an AS graph with each AS labeled with some set of addresses (prefixes) that
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are reachable from the border router in that AS. These borderrouters (entry-exit nodes in the AS)

exchange information about the routes they know with other border routers in neighbor AS’s. On

receiving a packet, a BGP speaker decides to forward the packet to an appropriate neighbor based

on the prefix information it has received from all neighbors and the packet destination.

When connection between BGP neighbors is first established,each BGP node advertises its

presence to its neighbors. As information about nodes is propagated through the network, each

BGP node starts building a routing table, which it can consult to find a path to a particular address.

When changes to the routing tables are encountered, BGP routers send to their neighbors only those

routes which have changed. BGP routers do not send periodic routing updates and do not advertise

routes that are not installed in the local routing table (i.e. that are not being used to route packets).

Routes learned via BGP haveattributesassociated with them, which are used in choosing the

route that will actually be used from among multiple paths tothe destination. Following is a (greatly

abbreviated) discussion of the BGP route attributes and theselection process.

BGP Attributes

• Network Layer Reachability Information (NLRI): (address prefix) defines the set of desti-

nation addresses of the route being advertised. For example, the network with network num-

ber 202.54.10.* will advertise a route with NLRI 202.54.10.*. NLRI is used for comparing

destinations.

• Local Preference: (number) Local preference is the basic mechanism for implementing im-

port policies and is not advertised to other domains but is used within the domain to assign

preferences to routes. This attribute is set by the domain administration and the routes with

a higher local preference are preferred over others. As an example, a provider will prefer a

route through a customer to one through a peer.

• AS Path: (list of ASN’s) When a route transits an AS, the AS Number is added to an ordered

list of identifiers that records the sequence of AS’s throughwhich the route has passed. This

serves two purposes. First, it is used in the route selectionprocess as described below. Second,

it is used to detect cycles: if adding the domain’s ASN to the AS Path forms a cycle then

the route is discarded. For example if a BGP node in AS 8 receives a route with AS Path

(1,4,8,7,6), then it will discard this route as the AS has already processed this route before,

and adding 8 again to this AS path will form a cycle (8,7,6,8)
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• Nexthop: (address) This is the IP address of the border router in the neighbor domain. The

routers in a multi-homed domain which are connected to routers in other domains are the

border routers in that domain. Every time a route advertisement leaves a domain the border

router in that domain attaches its address to thenexthopattribute. For a particular destination,

the nexthop attribute of the route indicates the neighbor domain through which the packet has

to be forwarded to reach to that destination.

There are several other attributes, but the ones mentioned above are most important for our

purposes.

BGP Route Selection Process

The BGP route selection process determines which routes will be used for interdomain routing

and advertised to other AS’s. Routes on the border router aremaintained in RIB’s (Routing Infor-

mation Bases). A BGP speaking router maintains three RIB’s viz. RIB in, RIB local, RIB out for

storing the route information it has received. RIBin contains routes received from its neighbors

(minus any routes with cycles in their AS path). Thelocal preferencefor each route is then deter-

mined from the policy information and the route with the highest local preference is installed in the

RIB local and used to route packets. If two routes have the same local preference value, the route

with the shortest AS path is selected. Export policies of an AS, then further select a subset of routes

from RIB local to be placed in RIBout for advertisement to neighbors. Note that the nexthop at-

tribute is not used in the selection process, it just determines where to forward the packet once the

route has been selected.

The routes stored in RIBlocal are aggregated to reduce the size of the RIB’s. For example,

if routes to IP prefixes 172.168.224.00/24 and 172.168.224.00/20 both use 10.1.0.2 as next hop,

the destinations can be aggregated into a single destination prefix 172.168.224.0/20 if no other

*.*.*.0/24 prefix matches 172.168.224.0/20.

1.4 Introduction to GT-ITM

GT-ITM (Georgia Tech Internet topology models) as the name depicts, is an Internet topology

generator [2]. Since its release GT-ITM has been widely usedin the scientific community for net-

work simulations. It is implemented on top of SGB (Stanford Graph Base) [5], a flexible collection

of data structures and algorithms for creating, storing, and manipulating abstract graphs. GT-ITM
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supports the creation of random graphs that have a variety ofstructures, as well as storage of such

graphs in a portable file format. GT-ITM’stransit-stubmodel attempts to create realistic topology

with a two level hierarchy5 and appropriate edge weights to implement a default routingpolicy

between domains6.

GT-ITM lets graph generation parameters be specified in a configuration file. Using the config-

uration file, the size of the graph as well as various parameters that control graph properties, such as

edge probability factor, number of extra edges etc. can be specified. Below are the list of parameters

user can specify in the configuration file.

• Method of generating routing tables:User can specify whether he wants to generate a random,

hierarchical or a transit stub graph.

• Number of graphs:Number of graphs to be generated.

• Initial Seed:Seed to generate random numbers for graph creation.

• Number of stub domains per transit domain:Average number of stub domains connected to

a single transit domain.

• Random transit-stub edges:Extra edges to be placed between transit domains and stub do-

mains

• Random stub-stub edges:Extra edges to be placed between stub domains.

• Probability of double edges between transit domains:If this parameter is 1, there will be

double edges between the transit domains which are connected. If this parameter is 0, there

will be a single edge between connected transit domains. Anynumber between 0 and 1 would

indicate the probability of having double edges between connected transit domains.

• Number of transit domains:Number of transit domains.

• Edge method:This parameter specifies the method of placing edges betweentransit domains.

• Edge density between transit domains:The edge density indicates how densely the transit

domains are connected with each other. Edge density of 1 indicates that all transit domains

have an edge with all other transit domains.
5Transit-Stub model forms a two level hierarchy with transitdomains in the top tier and stub domains in the bottom

tier
6The default policy takes care of the fact that multi-homed stub domains do not provide transit service between two

domains.
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• Average number of nodes in the transit domains.

• Edge method.Method of placing edges between the nodes of transit domains.

• Edge density between the nodes in the transit domains.

• Average number of nodes in the stub domains.

• Edge method.Method of placing edges between the nodes of stub domains.

• Edge density between the nodes in the stub domains.

The generated graph is stored in the Stanford Graph Base’s file format, which can later be read in

for simulation and other purposes. Along with this basic tool to generate graphs, GT-ITM offers

other tools for evaluating some of the important graph properties and for converting the graph to

a human-readable format to get some better understanding ofthe graph. The original GT-ITM

comprises

• A command-line program that controls the creation of randomgraphs according to various

models (including the transit-stub model) and parameters

• A command-line program that controls the evaluation of various characteristics of graphs,e.g.

diameter.

• Various example graphs and parameter files for creating them.

Limitations of GT-ITM

Since its release GT-ITM has not been modified except for few bug fixes and other minor

changes. Below are some of the known limitations of the GT-ITM tool.

• GT-ITM does not provide a mechanism to do routing on its topology and the user has to

supply an implementation.

• GT-ITM generated topology is essentially a two level hierarchy (i.e., Transit-Stub), whereas

the real Internet seems to have more hierarchy in its structure [9].

• The Degree distribution ofdomains(ASs)in GT-ITM does not look like that in the Internet. It

is rather uniform, where the Internet’s AS-level node degree looks at least something like a

power-law distribution.
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Taking these three limitations into consideration, the problem statement of the thesis is defined

in the next section.

1.5 Problem Statement

The problem we are trying to solve is two-fold: routing and topology. The idea is to generate

routing tables for the GT-ITM topology, such that the routesare realistic in nature. Also the topology

on which the routes are generated should be a reasonably measurable representation of the Internet.

1.5.1 Scalable Routing

GT-ITM by itself is a topology generation tool. This tool is used by researchers to generate

graph models for simulation purposes. Most of the simulation experiments are based on measuring

or evaluating some of the important Internet characteristics: latency, bandwidth etc. It is quite

common to generate large graphs to test the wide area performance of new protocols, or to measure

characteristic of the network, or the interaction of different protocols with each other, etc. In order

to do these simulations its important for the simulator to have some means of mapping a destination

to a next hop from a particular node, so as to be able to route the traffic generated in the simulation

in a realistic way. In other words, some means for creating routing tables is required for routing.

GT-ITM does not presently include such capability.

Current Techniques

Various solutions are possible in order to generate these routing tables. One simple but non-

optimal way is to construct a big 2-D matrix where entryi,j contains the next hop on the shortest

path from nodei to nodej as is done in Floyd Warshall algorithm. However, as stated earlier this

is a non-optimal solution both in terms of space and time and the solution to use Floyd-Warshall

is not a scalable one. The Floyd-Warshall all pairs shortestpath algorithm has a complexity of the

order ofn3, wheren is the number of nodes in the graph7 . Thus, with the increasing size of the

graph the time needed to compute the all node shortest path increases rapidly, soon reaching limits

of practicality. The space requirement for this solution too is very high as it requires storing a matrix

of sizen2. This demands a lot of memory, and certainly this is not a viable option for large graphs.

7Using Floyd-Warshall, each node in a graph of n nodes, can compute a path to all other nodes inn2 time. So the
time required for building routing tables for the entire graph isn

2 x n = n
3.
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However, there is another observation to be made in this context. The approach of using Floyd-

Warshall forsakes all the advantage that is offered by a GTITM transit-stub graph. Floyd Warshall

regards all the nodes in the graph as part of a flat graph, ignoring the hierarchy among the nodes

in the graph. This is not the case with the Internet as we have already observed, different routing

algorithms are used within a domain and outside a domain. This differentiation in intradomain

and interdomain routing protocols is the first source of scalability in the Internet. This layering

provides two advantages for routing information to any destination. First it prevents huge amount

of information from being exchanged between nodes and second it reduces the information storage

at each node. Thus using Floyd Warshall algorithm to computeroutes on the GT-ITM topology,

turns out to be an inefficient solution.

An alternative solution to the Routing problem is to use the divide and conquer approach:

1. Run Floyd Warshall within individual domains

2. Run Floyd Warshall over a graph in which each node represents a single domain

Merging information gathered from the first and the second step, routing tables for the whole graph

can be generated. This solution is less expensive in terms ofboth space and time, as here we run

Floyd Warshall on small blocks rather than one large block. Similarly, the memory required to store

these small blocks of information is much less than that required for one large block. Consider a

graph withn nodes,x domains,Xt transit domains,Xs stub domains and on averagey nodes per

transit domain andz nodes per stub domain. The complexity of calculating routing tables for the

whole graph isO(x3 +Xty
3 +Xsz

3). Complexity of calculating all pairs shortest path on a domain

level graph ofx nodes isO(x3). Similarly complexity of calculating all pairs shortest path with

Xt transit domains with an average ofy nodes andXs stub domains with an average ofz nodes

is O(Xty
3 + Xsz

3). As achieved in the previous implementation of GT-ITM, we can guarantee

that stub domains don’t transit packets between domains. Though we will have some control over

the path packets will follow using this approach, internet-like policy-based routing is difficult to

achieve by assigning definite values to edge weights betweenthe domains. (It is worth noting here

that edge weights are assigned in GT-ITM transit-stub graphs in a manner that ensures that shortest-

path routing always produces a path between two nodes in different domains that has the correct

form, i.e. which passes through the first stub domain, followed by zero or more transit domains,

followed by the other stub domain. However, the sequence of transit domains selected is always the

one that yields the shortest sequence of edges.)
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Need for Policy-Based Routing

Paths generated by Floyd Warshall are shortest path routes based on the edge weights defined.

Routes obtained on the Internet are governed by domain levelpolicies and may not be the shortest.

On the Internet every AS needs to have some control over how routing information flows in and

out of their network, which they achieve using domain level polices. So we need a mechanism to

do policy-based routing on the GT-ITM topology. Some of the challenges in doing policy-based

routing are:

• BGP Simulation: Since BGP protocol used on the Internet uses domain-level policies to

make routing decisions we decided to do something similar toBGP in order to simulate

Internet-like routing on GT-ITM graph. We decided to simulate the BGP protocol (to its bare

minimum) ignoring the unessential details and focusing on the prime aspects of the protocol

which are relevant and beneficial in our context.

• Generation of policies for simulation: We need to generate policies which can be used

during BGP simulation. On the Internet an administrator of adomain specifies policies for

his domain. The user needs to have the knowledge of the topology in order to write down

policies and to study their effect on the routes taken. Sincein our simulation, a user can

generate multiple domains in the GT-ITM topology, he may need to specify policies for every

such domain. If number of domains is small, then specifying per-domain polcies can be a

simple task once the basic connectivity between domains is known. But for a graph with

a large number of domains, specifying policies can be time-consuming, and hence we need

a mechanism to automatically generate policies for large graphs with minimum user input.

This user input should define some generic rules which every domain should follow, and we

should be able to generate polices for every domain based on these rules.

One of the important advantages of simulating BGP-style policy-based routing is that it enables

us to study issues related to policy and convergence of the protocol. Currently a lot of research is

being done on BGP convergence [8, 10, 11, 12]. Number of researchers have suggested conditions

on policies which ensure that the protocol converges and we get stable routing tables at each node.

BGP divergence due to incorrect policies may cause unnecessary flooding of routing information

and create unstable oscillations in the BGP protocol. The solution described in the next chapter will

help the researcher to see the effect of policies on BGP protocol convergence.
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1.5.2 Realistic Topology

In the GT-ITM transit-stub model, by definition transit domains transit the information sent by

the stub domains. Stub domains form the terminal end points of the topology and use the transit

domains for communicating information to other stub domains. Stub domains do not transit any

information. Looking at the nature of route flow in the GT-ITMtransit-stub model based on this

definition, it may appear to be a 2 tier topology composed of transit domains forming the first tier and

stub domains forming the second. Conceptually the transit level graph in the GT-ITM topology is

treated as a flat graph and path taken by the route between transit domain is essentially shortest path

based on some metric like hop count or edge weight. Whereas ifwe reduce the Internet into a GT-

ITM like transit-stub graph such that domains which do not transit information become stub domains

and the rest get classified as transit domains, we would observe that the routes taken between transit

domains on the Internet may not be shortest path routes. Thisis because, the routes taken on the

Internet are influenced by the domain policies which in turn are governed by the provider-customer-

peer relationship existing between connected domains. So for GT-ITM topology to appear realistic,

we need to do Internet-like routing on top of the GT-ITM topology. We try to solve this issue by

providing an efficient routing solution on top of the GT-ITM transit-stub topology, such that the

GT-ITM topology appears to be like the Internet topology.

1.5.3 Relation between Routing and Topology

Though we have described routing and topology as two separate problems, it is observed that

solving one problem complements the other. One of the solutions is to increase the number of tiers

in the GT-ITM topology. We tag each transit domain by a logical tier number such that the transit

domains with lower tier numbers are the providers of transitdomains with higher tier numbers if

there exists a link between the two domains. Domains with thesame tier number become peers

if there exists a link between the domains. Thus by assigningtags to transit domains we define

provider-customer-peer relationship in the transit leveltopology. We take these tags into account

to construct routing tables for the GT-ITM topology. The method used to construct routing tables

based on these tags, is explained in detail in the next chapter.

Looking at the Routing problem, it has been described that GT-ITM lacks routing support.

Solutions like Floyd-Warshall result in shortest path routes. We wish to provide Internet-like routes

which are based on some domain policy. Domain administrators select routes which are more

commercially profitable and thus may end up selecting longerroutes than the actual shortest path.
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The commercial profitability here means that the domain has to pay less for the packet flow through

other domains. This in turn is directly related to the commercial relationship between domains.

Thus, solving the topology problem helps in solving the Routing problem. In the next chapter, we

explain in detail the process of route selection based on domain relationships.

1.5.4 Conclusion

In this chapter we established two main objectives: need forpolicy-based routing on the GT-

ITM topology and need of Internet-like topology. In the nextchapter we describe our proposed

solution to achieve the above mentioned objectives.
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Chapter 2

Generation of Routing Tables

In this chapter we discuss our approach to generation of routing tables for the GT-ITM topol-

ogy. This would extend the usability of the tool for more complex simulations, providing more

control over the routing aspects of the network.

2.1 General Approach

It was discussed previously that routing on the Internet does not always follow the shortest

path paradigm; instead, routing domains select routes based on interdomain policies. Our solution

takes into consideration this policy-based routing paradigm in providing routing support for GT-

ITM topology.

If we attempt to control the paths between transit domains, this would require the user to

have complete knowledge of the transit level topology to specify policies to govern the paths. To

make it easier to apply our methods to very large graphs, it was necessary to come up with a more

generic way to define policies, with minimum user input and minimum knowledge of the generated

topology. We used the idea presented in [10] to solve the problem of generating policies with

minimum user input; a nice byproduct of this approach is thatit guarantees protocol convergence

and stable routes at each node [8].

In our implementation we first define transit domains as beingcustomers, peers or providers of

other transit domains (by assigning logical tier numbers) thus forming an tier topology. The number

of tiers n depends on the clique size in the topology and the edge density between the nodes and

its computation is explained later in this chapter. Then, making use of the provider-customer-peer

relationship existing in the n-tier topology1, routing policies are generated. These routing policies

are used to generate interdomain routing tables. The intradomain routing tables for each domain are

generated by running Floyd Warshall all pairs shortest pathalgorithm for each domain. Once we

have the routing tables, path from any source node to any destination node can be determined, by

consulting the intradomain and interdomain tables.

1Domain in tier n is a provider of domain in tier n-1, if there exists a link between the two domains. Similarly domain
in tier n-1 becomes a customer of that domain in tier n. Domains in the same tier, who share a link become peers
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Figure 2.1: Routing Model

 

           18



Policies are a set of rules specified in a file which is read by the routing file generation tool,

to decide the paths. In Figure 2.1 (A) we see that the policiescan be generated using an algorithm

which reads the graph, or can be manually written by the user.As shown in Figure 2.1 (B), using

an appropriate algorithm the GT-ITM graph is read and routing tables are generated. Policies may

be provided as an input to the algorithm, and the generated routing tables will obey the policies.

The routing lookup API reads the routing tables to give the next hop node from the source to the

destination. In the following sections we describe in detail how each block in Figure 2.1 is designed

and implemented.

There are two components to the problem of providing scalable routing services to simulations

that use graph models:

• Computing and storing next hop routing information

• Using the next hop routing information to enumerate the pathfrom the given source to the

given destination at simulation time

We wish to separate these two components. That is, we wish to provide an ability to construct

and store routing tables separately from the graph itself sothat simulations can be run on the same

graph with different routing tables.

2.1.1 Simplifications in design

We have made the following simplifying assumptions in our design to help us generate routing

tables for the GT-ITM topology. These simplifications do notaffect or violate the core working of

the BGP protocol. Instead they ignore some of the more complex aspects of the protocol which may

not be very important for the user during simulation.

• The (unique) border router in a single-homed stub domain always uses a default route for

destinations outside the domain. This is usually the case inthe Internet, as just one path is

available for a packet to exit a domain.

• We assume that all border routers in a domain are always synchronized, by modeling each

domain as a single node in a graph. In other words, we ignore the effect of the Internal BGP2

2On the Internet every AS can have multiple border routers. Each border router runs BGP protocol and exchanges
routing information with its neighbors. This routing information is synchronized between all other border routers using
the Internal BGP (IBGP) so that each border router has the knowledge of routes exchanged by other border routers in the
AS.
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• Routing information is not aggregated as it travels throughthe network. This is an artifact of

the way GT-ITM identifies networks; it is never possible to replace a set of prefixes with a

(shorter) prefix without some possibility of losing information.

Before we plunge into the specifics of our solution, we brieflydescribe the GT-ITM naming

convention. This naming convention is important to understanding the partial aggregation per-

formed in the route exchange process.

2.1.2 Naming conventions in GT-ITM

In GT-ITM, each transit-stub graph is represented as a graphstructure. The nodes of the graph

are stored in an array; edges are stored in linked lists associated with nodes. Thus nodes and edges

can be accessed directly, via the data structures in the array. In addition, each node in the graph is

assigned a name that encodes its position in the graph structure. These names have a well-defined

syntax of the form

<type

indicator>":" <transit domain id> "." <transit node id> ["/ " <stub

domain id> "." <stub node id>]

where the type indicator indicates whether the node is a transit domain node or a stub domain node.

For example, S:1.2/3.4 refers to node 4 in stub domain 3 connected to transit node 2 in transit

domain 1. All numbering begins at 0. Similarly T:1.2 refers to node 2 in transit domain 1. In our

implementation we use the∗ symbol as a wildcard character; thus T:1.* refers to all nodes in transit

domain 1 and S:1.2/3.* refers to all nodes in stub domain 3 attached to node 2 in transit domain 1.

This naming convention is useful for advertising destination networks in routing; it corresponds to

the use of prefixes to denote parts of IP address space. For example, the NLRI for a route originating

from transit domain 1 can be represented as T:1.*. Similarlythe NLRI for a route originating from

a stub domain 2 connected to transit node 1 in transit domain 2can be represented as S:2.1/2.* or

T:1.* as the node belongs to a stub domain which is connected to transit domain T:1.*. As shown in

Figure 2.2 this type of aggregation can be done for single-homed stub domains as they are connected

to just one transit domain.
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S:1.2/3.*

T:1.*

S:1.2/2.*

Single−homed stubs

Routing tables of distant node

Aggregated to...

S:1.2/2.*

S:1.2/3.*

T:2.*

T:2.*

T:1.* T:2.*

Figure 2.2: Naming and aggregation in GT-ITM

2.2 GT-ITM:Routing and Topology

As was noted in the introduction, the naive approach of computing the shortest path from

every node to every other node does not scale very well. We therefore split the problem into two

parts, namely computation of intradomain routing information for each domain, and computation

of a domain level path connecting each pair of stub domains. The most straight-forward approach

to more scalable routing is to run Floyd-Warshall within every domain to produce an intradomain

routing table, and then to run Floyd-Warshall again on the domain level graph (i.e. an ”abstract”

graph that has domains as nodes and an edge between two domains if there is an edge that connects a

node in one domain to a node in the other). However, we wish to accommodate policies that restrict

the selection of domain-level paths. The process by which this is achieved is described below; first

we describe the representation of the routing information.

2.2.1 Routing table structures

Our scheme for scalable routing associates with each node ina transit-stub graph two routing

tables: an intradomain table and an interdomain table. As shown in Figure 2.3, the intradomain table

is a two-dimensional matrix shared by all nodes in the domain; entry i, j in the matrix contains the

index of the node which is the first hop on the path fromi to j. This matrix is populated by running

the Floyd Warshall all-nodes-shortest path algorithm on the domain graph without edges to other
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1 2

Figure 2.3: Intradomain routing tables

domains. (Because of the way GT-ITM graphs are constructed,the nodes belonging to a domain are

contiguous in the vertex array of the overall transit-stub graph.) Intradomain routing lookup can be

done by simply indexing into an array, using the node number of the destination as offset. Another

way to view this information is that each nodei has its own row of the table, and the next hop to

nodej in its domain is contained in columnj of that rowi.

The interdomain routing table is an array of entries, each containing a string representing the

destination , the next hop information for that destination, and the AS path attribute associated with

the route. Because strings are used to identify destinationdomains, interdomain lookup requires a

longest prefix match similar to that used in IP forwarding. Tosimplify the implementation of the

routing lookup API, the next hop information stored for an interdomain route is actually the border

router in that domain, i.e. the exit node from the domain to reach that destination.

As shown in Figure 2.4, the interdomain table for a stub domain consists of a single entry

representing the default route. There is just one copy of theinterdomain routing table for the entire

domain. There is one problem with this approach. The interdomain next hop information for theexit

router, i.e. the last router encountered by a packet before it leaves the domain, needs to be different

for that for other nodes, lest it forward interdomain packets to itself. As can be seen from the
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T:0.1

T:0.*

S:0.1/2.*
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T:1.0

T:1.1

T:1.2
T:1.*

T:0:0

T:0:2

default S:0.1.2.1

5

Figure 2.4: routing tables for single-homed stub domain

figure, the next hop for the border router S:0.1/2.1 is S:0.1/2.1. However, the interdomain routing

lookup for the node S:0.1/2.1 needs to return T:0.1 instead of S:0.1/2.1. This could be handled by

having a separate copy of the interdomain table for each border router. However, we chose to trade

computation for space, and instead recognize this special case in the routing lookup code, so that

the correct next hop for the border routers is returned. We explain this in detail in the next chapter

where we discuss the routing lookup algorithm.

The situation becomes trickier in the case of multi-homed domains, but it is all handled in

the lookup code. Figure 2.5 shows the interdomain routing table for transit domain T:0.*. If the

destination is some node in T:1.* then the routing lookup forthe border router should return the

border router in domain T:1.* and not the border router in domain T:2.*. To determine the correct

next hop in such cases, the lookup code consults some attribute information stored with the route.

(The routing lookup algorithm is discussed in in the next chapter.)

2.2.2 Generation of routing tables

Generation of intradomain routing tables is fairly simple.Every domain is represented in terms

of a two dimensional matrix M[i,j] where M[i][j] = 1 if there exists a direct link from node i to node

j. If there is no direct link from node i to node j then M[i][j] =∞. Here we are using the convention
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Figure 2.5: routing tables for multi-homed domains

of 1 or∞ because we are considering hop count as a metric to determineshortest path and not the

actual distance between the nodes. This matrix is given as aninput to the Floyd Warshall algorithm

which finds the shortest path from every node to every other node in the domain. Thus if there

are t transit domains withx nodes per domain ands stub domains withy nodes per domain the

complexity of computing the intradomain routing tables becomes (tx3 + sy3).

Generation of interdomain routing tables uses a much more complex approach than the gen-

eration of intradomain routing tables. Firstly, we need to get a domain level picture of the graph,

as interdomain routing takes place between individual domains. Secondly, as described before we

need to run a BGP-like routing protocol on this domain level graph. The interdomain routing poli-

cies may also be supplied as an input for deciding the routes.After running both the intradomain

and interdomain routing protocols on the graph, we store thegenerated routing tables to a file, which

then can be used later for simulation.

As described before we use a process similar to BGP to generate interdomain routing tables.

When BGP first starts, the domains exchange routing information advertising their presence on the

Internet. Similarly, we make each domain in the GT-ITM graphadvertise its reachability informa-

tion to other domains. As each domain gathers information about other domains, it decides which

route it should store in its interdomain routing tables using its local policies.

Below we enumerate in detail the steps taken to generate routing tables.
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• Identify individual domains in the graph: GT-ITM graph is a flat graph and vertices of the

graph are stored in a linear array. Contiguous parts of this linear array correspond to the nodes

of individual domains. The nodes of the first transit domain are stored first followed by nodes

of each stub domain to which it is connected, followed by the next transit domain and so on.

To generate intradomain routing tables, we mentioned that we need a two dimensional matrix

representing the vertices and their edge interconnections. Similarly for interdomain routing,

the domains need to exchange routing information. Thus it becomes necessary to identify the

nodes of every domain, for running the intradomain and interdomain routing algorithms. To

achieve that, for every transit and stub domain, we store thesize (number of nodes) of each

domain in a single array, and, using cumulative additions, aparticular domains nodes can be

accessed.

• Run Floyd-Warshall all pairs shortest path algorithm on each domain: Using the pre-

vious step, a two dimensional matrix is generated to represent each domain. This matrix is

given as an input to Floyd Warshall’s all pairs shortest pathalgorithm and the next hop matrix

(intradomain routing tables) is generated for each domain.

• Build a SGB graph with number of nodes equal to number of multi-homed domains:

Domains with two or more border routers are called multi-homed domains; they need to

run an interdomain routing protocol to decide the border router to which the traffic has to

be forwarded for destinations outside the domain. Multi-homed domains include all transit

domains (assuming there is more than one) and multi-homed stub domains. Single-homed

stub domains have just one border router connecting the domain to a transit domain. Ideally

it is not required to run any interdomain routing protocol like BGP for such domains, because

for any destination outside the domain the traffic can be forwarded via border router.

The multi-homed domains in the transit-stub graph are identified and a new SGB graph with

nodes equal to the multi-homed domains is created, so we haveone node for every multi-

homed domain. We call this graph theinterdomain graphand the nodes in the graph are

connected in a pattern identical to the way multi-homed domains are connected to each other

in the main graph-that is if a link exists between a node in transit domain 1 and a node in

transit domain 2 then there is a link between the node representing transit domain 1 and the

node representing transit domain 2 in the interdomain graph. We use the node index in this

linear graph array as the ASN (Autonomous System Number) of the domain for the purposes

of constructing the AS path.
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Figure 2.6: Store border routers at edges.

• Identify the border routers in each domain: A node in the interdomain graph represents a

multi-homed domain in the main graph. During the route exchange process, when a node in

the interdomain graph receives a route advertisement from some neighbor node, the next hop

attribute of that route is set to the neighbor domain who forwarded this route. But here we

have no information about the router inside that domain who forwarded this route as we are

dealing with the interdomain graph where each node represents an entire domain. So we find

the border routers in each domain by parsing the main graph, and store the name of the border

routers connecting two domains in the main graph along with the edge connecting these two

domains in the interdomain graph3. See Figure 2.6

• Initialize the Routing Information Bases(RIBs): Three RIBs (RIBin, RIB local and RIBout)

are defined for each node in the interdomain graph. Each domain starts off with just one route-

the route to itself. During bootstrapping this route is advertised to the neighbors. For example,

a transit domain T:1.* will initially have a route with NLRI T:1.* and its own AS number as

the only entry in its AS path. This route is stored in the RIBout of this domain to be exported

3For doing route traversal on the main graph, we need this border router information. Stanford Graph Base tool allows
the storage of two auxiliary fields with an edge. We use one of these to store this border router information
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to its neighbors.

• Propagate routes: Routes stored in RIBout of a node are propagated to its neighbors. A

queue is maintained to monitor the process of this route exchange. Each item in the queue

carries the following information.

– The neighbor node which should copy the routes from the current node’s RIBout

– The current node

To start with, the first node in the interdomain graph fills thequeue with information about its

neighbors. For example, if node 0 in the interdomain graph isconnected to node 6, 10 and 12,

then it would fill the queue with information(6, 0), (10, 0), (12, 0).Till the queue becomes

empty, each entry in the queue is fetched and processed. The neighbor route is copied from

its RIB out and checked for cycles. If the route contains the currentnode’s ASN in its AS

path, that route is discarded, as it has already been processed by this node. This also prevents

flooding of routing information. If the route is valid and contains no cycles, then it is copied

into the RIB in of the current node. If a route is new to the receiving AS(node), (i.e. a route

with similar NLRI information is not present in RIBlocal for that AS(node)), then the route’s

local preference for that AS is computed after referring to the policy file. (The generation of

the policy file is discussed in greater detail in section 2.3.) If no policy file is specified, or the

local preference for that route is not listed in the policy file, a default local preference of 80 is

assumed. If a route with similar NLRI information is presentin RIB local of the current AS

(node), then the local preference of the two routes is compared, and the route with a lower

local preference is discarded. In case of a tie between the local preference values of the two

routes, the route with a longer AS path is discarded and the one with the shorter AS path is

stored in the RIBlocal of the current node. If the receiving node is a transit domain, then it

refers to its export policies to decide whether it can exportthe route to its neighbors, if so, it

places the route in its RIBout4. Once a node has copied the route to its RIBout, the next

step is to advertise this route to its neighbor. This is done by adding the appropriate entry to

the queue.

• Generate interdomain routing table for single-homed stub domains: Single-homed stub do-

mains are not a part of the route exchange process described above. Single-homed stubs have

4For stub domains the only route which is placed in RIBout is the route to itself. This prevents other domains from
transiting the traffic through a stub domain thus satisfyingthe basic property of the transit- stub model
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only one route (thedefault route, which connects to one transit domain) to reach other do-

mains. A route that has NLRI as ’*’ and next hop as the address of the border router in that

single-homed stub domain is placed in the interdomain routing table for such domains (as

discussed earlier, and shown in Figure 2.4).

The Queue of route exchanges becomes empty when no changes occur to any routing tables

and no new route is learned by any of the vertex. Once the abovecomputation is complete, the

routing information is stored in a file for later access. The filename is the same as that of the graph,

with the extension ’.rt’ (so if the graph file is ts600-0.gb then the routing information file is named

as ts600-0.rt). The routing file contains the intradomain routing tables (next hop matrix for each

domain) followed by the interdomain routing tables (RIBlocal for each domain). To make sure that

the routing file is being used for the same graph file for which it was generated, the checksum from

the SGB ’.gb’ file is stored with the routing. The above mentioned file naming is slightly different

if the policies are auto-generated, which is discussed in the section 2.3.

2.3 Policies

One of the important features of the tool developed for this thesis is the use of policies for

making routing decisions. User is able to specify policies for route selection, which are read by the

routing table generation program. Policies are of two types: import and export policies. Import poli-

cies assign a local preference to routes and are used within adomain to select among different routes

to the same destination. Export policies filter out domains to which a route should not be forwarded.

Policies are important because they determine the flow of traffic between transit domains.

Our objective is to generate a policy file with minimum user input. Internet domain-level

policies are a result of the commercial relationships amongdomains. We use this commercial

relationship model in generating a policy file that specifiespolicy for every domain in the Internet.

In the existing GT-ITM tool, there is no information other than distance to consider in choosing

routers. Policies provide the additional information for routing algorithms to use in selecting routes,

by assigning roles ofprovider , customerandpeer to domains. It is observed that route flows are in

opposite direction to cash flow [10, 13, 14, 15]. In particular a provider will always prefer to route

traffic through its customers because the customer pays for carrying that traffic. Its next preference

is to route traffic via a peer. Figure 2.7 shows the general provider-customer hierarchy seen on the

Internet.
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provider customer IP Traffic

Customer−Provider Hierarchy

Figure 2.7: Hierarchy on the Internet

As seen in figure 2.8, domains in lower tiers route information through domains in higher tiers.

We see that due to peering, domains can exchange routing information without going through their

providers. Generally peers do not export routing information about their peers as show in Figure 2.9.

Thus the route showed in dotted line is not allowed in such a scenario. Domains which belong to

the same tier but are not directly connected need to go through higher tiers in order to be reachable.

Policy information generated in GT-ITM guarantees such a behavior. A transit domain does not

export the route information it received from a domain in itsown tier to another domain in the same

tier.

Our current implementation supports a simple language for specifying import and export poli-

cies. An input file defines the policies used by specific domains; if no policy is explicitly specified

for a domain, the default policy is used. Import policies assign local preference values to routes

based on their attributes. An example of an import policy is ’If Transit domain 0 receives a route to

Transit domain 2 from Transit domain 1 then assign it a local preference of 100’. In the policy file

this rule is stated as

0 1 2 100
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This policy can be used to favor a route to Transit domain 2 through neighbor Transit domain

1. As another example, a transit domain x may not trust some other transit domain y, hence may

prefer not to route through that transit domain. In that casea policy may specify ”If x receives a

route to a destination transit domain ’*’ and transit domainy is in its AS path then assign it a local

preference 50”. This filters out routes through transit domain y to any destination whenever there is

a better (say, with default local preference) alternative.The wildcard character * denotesany ASN.

Export policies allow the user to define rules for exporting the route information for a particular

domain to its neighbor. An example of an export policy is ’Transit domain 0 should not advertise a

route received from Transit domain 2 for any destination ’*’to neighbor Transit domain 1’. In the

policy file this rule is stated as

0 * 2 1

This policy information enables the user to specify realistic policies and study the behavior of

BGP for that set of policies.

The user can specify this policy file manually and provide it as an input to the routing file

generation program. The route file generation program readsthis policy file to determine which

routes to store for a particular domain. It can become cumbersome for the user to write huge policy

files for large graphs. Thus we need to devise a mechanism to automatically generate a policy file

for a given graph with minimum user input. Below we describe the process of generating policy

files for large graphs.

In the GT-ITM graph the stub domains form the leaves of the graph. Since stub domains do

not provide transit service, they cannot be providers to other domains. But it is possible for a transit

domain to act as a provider to some other transit domain. From[9] we know that the top tier of the

Internet has an edge degree of 1 with every domain having an edge to every other domain in that tier.

The bottom tiers have lesser edge degree and use the top tiersto transit traffic to the destination. So

we try to label the nodes of the transit domain with their tierinformation (essentially a tier number)

such that highest tier number consists of densely connectednetwork of domains. To achieve this,

first we find a clique of domains. Clique is a group of nodes suchthat every node in that group

has an edge to every other node in that group. Then we run Breadth First Search (BFS) algorithm

starting with domains in the clique. The detailed approach used to generate the hierarchical transit

level graph is as follows.

The user is asked to enter the number of transit domains whichshould form the core of the

graph. As mentioned previously, the core has domains which are fully connected, having an edge
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from every domain to every other domain. In graph terminology this core is commonly referred as

a clique. If a clique (of domains) of a specified size cannot befound then the user is prompted to

enter a smaller size. If a clique of the specified size exists,we run breadth-first-search starting with

nodes (domains) in the clique. The nodes which are at the samedepth in the breadth first search tree

are at the same tier in the graph. The depth of the BFS tree is the total number of tiers in the graph,

with an extra tier comprising the stub domains. The number oftiers formed depends upon the size

of the core and the edge density of the transit level graph. Below we describe the detailed process

of generating tiers and creating a policy file for use.

• Generate a transit level graph from the GT-ITM graph: We need to identify all the transit

domains in the main graph, and create a graph with nodes representing the transit domains in

the main GT-ITM graph.. This graph will be used (instead of the main graph) in the next two

steps.

• Find a clique of the required size: There is no efficient algorithm to find a clique of a given

size (Finding a clique is a NP complete problem). A brute force algorithm for large graphs

would be extremely time consuming, so we need to use some heuristics to determine a clique

of a given size. We decided to use the stable model semantics to find a clique. This was

developed in the Laboratory for Theoretical Computer Science at the Helsinki University of

Technology[16].

Stable model semantics is a tool for constraint programming, where we define a set of rules

and run the stable model (smodels) program to find a solution for the rules we defined. In

our case we defined certain rules which would result in findinga clique of particular size in

a graph. The rules are defined by us and smodels program finds a solution for the defined set

of rules.

• Run breadth first search (BFS) on the reduced graph:If the size of the transit level graph

is n and the size of the core isc then create a graph of size(n-c+1). This way we represent the

whole core with one node. That node has an edge for every edge that connects a core node to

a non-core node. Then, starting at this node we run the breadth first search algorithm. As we

run the BFS algorithm at each step we store the tier number at each node.

• Generate the policy file: The information generated from breadth first search is used to

generate the policy file, which contains import and export policies. Import policies are spec-

ified by assigning a local preference to routes from neighbors. Based on the hierarchical
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Peering provides Shortcuts

peer peer

provider customer

Figure 2.8: Peering

relationship between two adjacent nodes, each node gets an appropriate local preference val-

ues for routes received from the other. At every node in the transit level graph, the following

algorithm is used to determine the local preference of routes from its neighbors.

1. If neighbor is a peer then assign local preference ofx.

2. If neighbor is a customer then assign local preference ofx + 1.

3. If neighbor is a provider then assign local preference ofx − 1.

The pseudo code for generating export policies is as follows.

1. If a route is received from a node in the same tier, then don’t send the route to neighbors

within that tier or the tiers above.

2. If a route is received from a node in a higher tier, don’t send the route to nodes in the

current tier

• Store this information to a policy file, using the simple language described earlier.
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The Peering Relationship

Peers provide transit between their
respective customers
Peers do not provide transit between peers
Peers often donot exchange $$$

peer peer
provider customer

Traffic not allowed
Traffic allowed

Figure 2.9: Routing flows

2.4 Realistic topology using real Internet data

The current topology generation algorithm in GT-ITM does not use real Internet data. Instead

it uses user input to decide number of nodes and for placing edges between router nodes. User can

change the input parameters to generate a topology with different densities and attributes. But if

we can generate a topology using the real Internet data as theinput, then that topology might be a

better approximation of the Internet topology. In this section we describe the generation of GT-ITM

domain-level topology using real Internet data.

Skitter[15], developed by CAIDA (Co-operative association for Internet Data Analysis), is a

tool for actively probing the Internet in order to analyze topology and performance. Skitter con-

sists of a set of monitors which are continuously sending ICMP (traceroute) requests to multiple

destinations on the Internet. The traceroute information gathered at each monitor is aggregated to

generate Internet IP route information. The IP routes are then mapped to their corresponding AS

using the Border Gateway Protocol (BGP) routing tables collected by the University of Oregon’s

RouteViews project. Thus we can generate AS path data of the Internet, which can be effectively

used to generate the domain-level GT-ITM topology.

We first generate an AS graph from the AS path data using the Stanford Graph Base. Then we

identify the transit domains and the stub domains in the AS graph. The leaf nodes in the graph are
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identified as the stub domains and all other nodes become the transit domains.

Once we have generated the transit-stub graph of the Internet AS graph, this graph can be

expanded to include nodes within the AS or transit and stub domains. Later this expanded graph

can be treated the same as other GT-ITM topologies to generate routing tables. This latter feature

(i.e. expanding the AS graph to include nodes) is not incorporated in the current implementation of

GT-ITM and is a subject of further research. However, a tool to convert the skitter AS path data into

a transit-stub SGB graph is provided.

2.5 Conclusion

In this chapter we discussed our solution for the routing andtopology problem. We divide the

GT-ITM topology into multiple tiers, which aided us in defining policies based on the provider-

customer-peer model. Then we generate routing tables basedon these policies. We also briefly

discussed how we can achieve realistic domain interconnection by building the GT-ITM topology

of the real Internet data acquired from skitter.
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Chapter 3

Routing Lookup and GTITM Software

3.1 Introduction

In this chapter, first we explain the routing lookup process to find a path from a source to a

destination and then we list the API used to access the routing tables and return the correct next

hop. Towards the end of the chapter, we demonstrate the effective use of policies to return different

paths for the same source-destination pair by giving some examples.

Our implementation provides a nexthop function, which returns the nexthop node along the

path from a given source to a given destination. Because we save just one copy of the interdomain

routing table for the whole domain, the routing lookup is a little bit complicated. We explain the

working of routing lookup for the example topology shown in Figure 3.1.

T:0.*

T:2.*

S:0.0/1.*
S:2.1/3.*

T:1.*

1
0

0

1

0

1

2

0

3
1

2

2

default S:0.0/1.0

T:0.*

T:2.*

T:1.2

T:1.2

Destination Next hop

T:2.*

T:1.*

T:0.2

T:0.1

Figure 3.1: Sample routing topology
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Suppose we want to find a route from node S:0.0/1.1 to S:2.1/3.2. The route can be traced by

calling the nexthop function iteratively until the destination is reached1. As can be seen from the

figure the source stub domain is single-homed and has just onelink, to transit domain T:0.*. So there

is just one entry in its interdomain routing table: the default route. When the nexthop function is

called for the given source and destination, the first step isto find whether the destination node is in

the same domain or a different domain. If the node is in the same domain then the intradomain table

is consulted and we are done. There is just a single intradomain table for every domain which stores

the index of the nexthop node from every source to every destination in that domain. This table can

be read to figure out the path from a given source and destination within that domain. Otherwise

(as in this case), the interdomain table is consulted. The interdomain table returns the address of the

exit border router in the current domain as the next hop. The border router is temporarily made the

destination and the next hop address is determined using theintradomain routing table. When the

nexthop function is called at the border router, instead of returning the same node (as indicated by

the interdomain routing table) the function returns the address of the transit domain node T:0.0 to

which the border router is connected. This process of findingthe correct neighboring border router

is fairly simple in the case of a single-homed domain, because there is just one interdomain link.

Now on calling the nexthop function for node T:0.0 and destination S:2.1/3.2 the nexthop function

fails to find a match for S:2.1/3.2 in the interdomain table. So it looks for T:2.* (knowing that stub

domains matching S:2.1/* are connected to node 1 in transit domain 2) and discovers T:0.2 as next

hop. The route to T:0.2 is determined by consulting the intradomain routing table and calling the

nexthopfunction at T:0.2, route to T:2.0 is determined. On calling the nexthop function at node

T:2.0, again no entry for S:2.1/3.2 is found in the interdomain table; however, the nexthop function

recognizes that the destination is connected to a node in thesame transit domain, and so looks up

T:2.1 in the intradomain table. At T:2.1 the nexthop function returns the stub node in the domain

S:2.1/3.*; once inside that domain the intradomain table isused for the rest of the route. Finally,

we explain the case mentioned earlier in the context of Figure 3.1, where a border transit node has

neighbors in two different transit domains. Consider a casewhere the nexthop function is asked for

the next hop for a destination in transit domain T:0.* from node T:1.2. The border router T:1.2 has

two outgoing links: one to T:0.* and one to T:2.*. To find the correct nexthop, the AS path of the

route is consulted. The AS path for the route to destination T:0.* is [0 2] which means that the route

1On calling the nexthop function with a certain source and destination, the function returns the next hop node on the
path from the source to the destination. This nexthop function is called again with the same destination but now the
source as the node returned from the previous call to nexthop. This process is continued till the nexthop function returns
the destination node itself, which confirms that complete path from source to the destination has been traced.
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traverses domain 2 and domain 0. (Assume that 0, 1 and 2 are theASNs of domains T:0.*, T:1.*

and T:2.*.) This means that the next hop for destination T:2.* is in domain with ASN 2. In this way,

the correct next hop for border routers can be determined from the AS path.

3.2 API

The routing support being described will be available as a separate library along with GT-ITM.

Here we briefly describe the API to be exported by this library. Each function returns a non zero

value to indicate successful operation else it returns 0 or NULL to indicate failure.

• int itmrt generaterouting tables(Graph *g): Given a GT-ITM graph, this function runs

the intradomain and the interdomain routing algorithms to generate the interdomain and in-

tradomain routing tables.

• int itmrt free routing tables(Graph *g): Given a GT-ITM graph, this function frees the

memory allocated for both the routing tables. The call is generally made before calling gb

recycle.

• int itmrt read tables from file(Graph *g, char *rt file name): Given a GT-ITM graph and

the name of the .rt routing file, the function reads the routing tables from the file into the

memory.

• int itmrt write tables to file(Graph *g, char *sgb file name): Given a GT-ITM graph and

the sgb filename, the function writes the routing tables to a file with the same name but with

extension rt instead of gb.

• Vertex *next hop(Graph *g, Vertex *source, Vertex *destination): This is the main call

which gives access to routing tables. The source and destination are vertex pointers in the

Graph g. This call returns the Vertex pointer of the nexthop node towards the destination. If

lookup fails it returns NULL indicating the reason for lookup failure to standard output. We

need to call itmrtreadtablesfrom file or itmrt generaterouting tables before calling this

function.
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3.3 Using the tool

The routing information generation feature in GT-ITM is made of two important programs

policytool and genrtb. genrtb invoked the API routings described above to create routing table

information and save it to a file.

3.3.1 Generation of policy file

policytool is used to generate a policy file. The input to the program is the .gb file.

policytool .gbfile

A sample run of the tool is shown below.

--------------------------------------------------- ----------------

ash:˜/gt-itm/bin> policytool ts300504-0.gb

Number of transit domains 25

Enter the desired size of the core: 7

Policies generated in file ts300504-0-7.po

Tier info stored in file ts300504-0.tr

ash:˜/gt-itm/bin> more ts300504-0.tr

Total tiers 2

Core: 4 7 9 11 12 18 20

Tier 1: 0 1 2 3 5 6 8 10 13 14 15 16 17 19 21 22 23 24

--------------------------------------------------- ----------------

3.3.2 Generation of routing tables

Once the policy file is generated we can use the genrtb programto generate the routing files.

The genrtb program takes the .gb file and the .po policy file as an input. The policy file input to the

genrtb program is optional.

genrtb -g .gbfile -p .pofile

The policy file is either written by the user or it is automatically generated by the policytool

program. A sample run of the genrtb program is shown below.

--------------------------------------------------- ----------------

ash:˜/gt-itm/bin> genrtb -g ts300504-0.gb -p ts300504-0- 7.po
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Generating the intradomain routing tables

number of domains = 15025

no. of multi-homed domains = 233

Reading the policy file ts300504-0-7.po...

Generating the interdomain routing tables

0 percent completed

1 percent completed

|

99 percent completed

100 percent completed

Adding the default routes to the single-homed domains

Writing the routing tables to the .rt file

Routing tables generated and stored in ts300504-0-7.rt

--------------------------------------------------- ----------------

3.3.3 Traceroute from source to destination

The programgtitmtr traces a route from a given source to a given destination. Theprogram

internally makes the above described API calls to read the graph and calls the next hop function to

compute the path from the source to the destination.

gtitmtr .gbfile .rtfile start node index end node index

A sample run of this program is shown below.

--------------------------------------------------- ----------------

ash:˜/gt-itm/bin> gtitmtr ts300504-0.gb ts300504-0-7.r t 10000 20000

Source = S:0.16/25.16 Destination = S:1.10/4.16

Intradomain routing table loaded

Interdomain table loaded Routing tables loaded in memory

1: S:0.16/25.6

2: S:0.16/25.1

3: S:0.16/25.7

4: S:0.16/25.14

5: S:0.16/25.5
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6: S:0.16/25.8

7: T:0.16

8: T:0.1

9: T:0.11

10: T:20.14

11: T:20.9

12: T:1.19

13: T:1.8

14: T:1.10

15: S:1.10/4.18

16: S:1.10/4.1

17: S:1.10/4.21

18: S:1.10/4.16

Lookup time: 2226 microseconds

ash:˜/gt-itm/bin>

--------------------------------------------------- ----------------

3.4 Effect of Policies

3.4.1 Effect of import policies

Import policies are mainly defined using the local preference attribute. To see the result of

import policies, we will create a simple topology consisting of 3 transit domains, fully connected to

each other as shown in Figure 4.1.

Then we manually write a policy file which defines an import policy for T:1.* stating:

(Assign a local preference of 100 for any destination route received from T:2.*.) Since the

default local preference is 80, for destination T:0.*, T:1.* should prefer a longer route through T:2.*,

instead going though the direct link to T:0.* as the former has a higher local preference. Below we

enumerate the path from source to destination, with and without the defined import policy.

Path from source to destination without policies:

--------------------------------------------------- ----------------

Source = S:1.0/2.2 Destination = S:0.0/1.1
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T:1.*

T:0.*

T:2.*

Which route should T:1.* take ? What do the policies say ?

Figure 3.2: Import policies example

Intradomain routing table loaded

Interdomain table loaded Routing tables loaded in memory

1: T:1.0

2: T:1.1

3: T:0.1

4: T:0.2

5: T:0.0

6: S:0.0/1.1

Lookup time: 134 microseconds

--------------------------------------------------- ----------------

Path from source to destination with the import policy:

--------------------------------------------------- ----------------

Source = S:1.0/2.2 Destination = S:0.0/1.1

Intradomain routing table loaded

Interdomain table loaded

Routing tables loaded in memory

1: T:1.0

2: T:1.1

3: T:2.0

4: T:0.1

5: T:0.2

6: T:0.0
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7: S:0.0/1.1

Lookup time: 150 microseconds

--------------------------------------------------- ----------------

We see from above, that when the policy file is used in creatingthe routing tables, a longer

path is taken to the destination.

3.4.2 Effect of export policies

Each node in the domain level graph has been tagged by a tier number, which enables us to

identify a particular node as either a customer, provider ora peer of its connected neighbor. In the

tool described in the previous section, our automatically generated export policies make sure that a

domain does not export routes learnt from its peer and provider to its other peers and providers. We

now present an example demonstrating how export policies affect the route taken.

Consider a GT-ITM topology with 300504 nodes, 25 transit domains and 233 multi-homed

domains (transit + multi-homed stubs). To see the effect of policies we will show the traceroute

from a source to destination with and without policies. Firstly to use policies, we run thepolicytool

program on the .gb file, to generate a policy file for use. The tier structure of the transit level

topology is shown below.

--------------------------------------------------- ----------------

Total tiers 2

Core: 4 7 9 11 12 18 20

Tier 1: 0 1 2 3 5 6 8 10 13 14 15 16 17 19 21 22 23 24

--------------------------------------------------- ----------------

Then we generate two routing tables, one with this policy fileas an input to thegenrtbprogram

and one without. Below is a traceroute from a source to a destination without the use of policies.

--------------------------------------------------- ----------------

Source = S:2.6/22.12 Destination = S:6.11/9.1

Intradomain routing table loaded

Interdomain table loaded Routing tables loaded in memory

1: S:2.6/22.17

2: S:2.6/22.13
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3: S:2.6/22.1

4: S:2.6/22.9

5: T:2.6

6: T:2.8

7: T:2.16

8: T:23.17

9: T:23.11

10: T:23.3

11: T:6.11

12: S:6.11/9.9

13: S:6.11/9.19

14: S:6.11/9.1

Lookup time: 1189 microseconds

--------------------------------------------------- ----------------

As we see in the above traceroute, the path follows transit domainT : 2.∗−−T : 23.∗−−T : 6.∗

and the hop count is 14. Looking at tiers information shown above, T:2.*, T:23.* and T:6.* belong

to the same tier. If policies were used, such a behavior is notacceptable, as a pier is not supposed to

exchange routes learnt from its peers to other peers. Below is a traceroute for the same source and

destination, but with policies imposed to decide the route.

--------------------------------------------------- ----------------

Source = S:2.6/22.12 Destination = S:6.11/9.1

Intradomain routing table loaded

Interdomain table loaded

Routing tables loaded in memory

1: S:2.6/22.17

2: S:2.6/22.13

3: S:2.6/22.1

4: S:2.6/22.9

5: T:2.6

6: T:2.2

7: T:2.1

8: T:18.17
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9: T:18.2

10: T:18.7

11: T:6.10

12: T:6.5

13: T:6.11

14: S:6.11/9.9

15: S:6.11/9.19

16: S:6.11/9.1

Lookup time: 1504 microseconds

--------------------------------------------------- ----------------

In this route the path followed is T:2.* – T:18.* – T:6.* and the hop count is 16. Looking at the tiers

information shown above, T:18.* belongs to a higher tier than T:2.* and T:6.* making it a provider

to both T:2.* and T:6.*. As we see here, though the hop count has increased to 16 (as compared to

14 without the use of policies), the path taken obeys the export policies as shown in Figure 4.2.

T:18.*

T:2.* T:23.* T:6.*Tier 1

Tier 0

path with export policies

path without policies

Figure 3.3: Export policies example

3.4.3 Effect of different policies on the same graph

In this section we demonstrate the use of different policy files with the same graph to generate

different routing tables. We will see that these two routingtables result in different paths for the

same pair of source and destination. We vary the core size in order to generate two different policy

files for the same graph.

For this example we select a graph of 80800 nodes. First we generate a policy file based on a
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core size of 5. Observe that the total number of tiers in this case is 3 (Core, Tier 1 and Stub domains)

ash:˜/gt-itm/freshcopy/bin> policytool ts80800-0.gb

Number of transit domains 20

Enter the desired size of the core: 5

Policies generated in file ts80800-0-5.po

Tier info stored in file ts80800-0.tr

ash:˜/gt-itm/freshcopy/bin> more ts80800-0.tr

Total tiers 2

Core: 5 6 13 16 17

Tier 1: 0 1 2 3 4 7 8 9 10 11 12 14 15 18 19

ash:˜/gt-itm/freshcopy/bin>

Then we generate a policy file based on a core size of 2. Observethat the total number of tiers

in this case is 4 (Core, Tier1, Tier2 and Stub domains)

ash:˜/gt-itm/freshcopy/bin> policytool ts80800-0.gb

Number of transit domains 20

Enter the desired size of the core: 2

Policies generated in file ts80800-0-2.po

Tier info stored in file ts80800-0.tr

ash:˜/gt-itm/freshcopy/bin> more ts80800-0.tr

Total tiers 3

Core: 11 14

Tier 1: 0 1 2 5 6 8 9 10 13 16 18 19

Tier 2: 3 4 7 12 15 17

ash:˜/gt-itm/freshcopy/bin>

For each policy file generated, we use the genrtb program to generate routing tables. The

routing tables are stored by the name ts80800-0-5.rt and ts80800-0-2.rt respectively. Below is the

traceroute for some source and destination by using ts80800-0-5.rt as the routing table file.
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ash:˜/gt-itm/freshcopy/bin> gtitmtr ts80800-0.gb ts808 00-0-5.rt 10 20000

Graph Restored

Source = T:0.10 Destination = T:5.2

Intradomain routing table loaded

Interdomain table loaded

Routing tables loaded in memory

1: T:0.0

2: T:0.19

3: T:13.19

4: T:13.20

5: T:5.28

6: T:5.2

Lookup time: 558 microseconds

In the above trace we see that the route passes through transit domain 13 to reach transit domain

5. Below is a traceroute for the same source and destination but using ts80800-0-2.rt as the routing

table file.

ash:˜/gt-itm/freshcopy/bin> gtitmtr ts80800-0.gb ts808 00-0-2.rt 10 20000

Graph Restored

Source = T:0.10 Destination = T:5.2

Intradomain routing table loaded

Interdomain table loaded

Routing tables loaded in memory

1: T:0.2

2: T:14.22

3: T:14.27

4: T:11.27

5: T:11.0

6: T:11.31

7: T:5.34

8: T:5.0

9: T:5.2

Lookup time: 848 microseconds
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In the above trace we see that the route passes through transit domain 14 and 11 to reach transit

domain 5.

3.5 Conclusion

In this chapter, we showed the effective use of policies to generate different paths from a source

to a destination. By changing the core size, we can manipulate the hierarchy in the graph. This in

turn results in different policy files for the same graph. Each policy file when used with a given

GT-ITM graph, will generate different set of routing tablesand each routing table may result in

different paths for the same source-destination pair. Thisfeature of GT-ITM can be effectively

used to simulate Internet routing, by dynamically changingthe routing files to get different paths at

different times. In the next chapter we show some results we obtain by running some experiments

of different graphs.
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Chapter 4

GT-ITM Software

4.1 Introduction

In this chapter, first we list the API used to access the routing tables and return the correct

next hop. In the previous chapter, we discuss the routing tables lookup algorithm. Towards the end

of the chapter, we demonstrate the effective use of policiesto return different paths for the same

source-destination pair by giving some examples.

4.2 API

The routing support being described will be available as a separate library along with GT-ITM.

Here we briefly describe the API to be exported by this library.

• int itmrt generaterouting tables(Graph *g): Given a GT-ITM graph this function runs the

intradomain and the interdomain routing algorithms to generate the interdomain domain and

intradomain routing tables.

• int itmrt free routing tables(Graph *g): Given a GT-ITM graph this function frees the

memory allocated for both the routing tables. The call is generally made before calling gb

recycle.

• int itmrt read tables from file(Graph *g, char *rt file name): Given a GT-ITM graph and

the name of the .rt routing file the function reads the routingtables from the file into the

memory. This is an alternative to the generate API call as it is faster.

• int itmrt write tables to file(Graph *g, char *sgb file name): Given a GT-ITM graph and

the sgb file name the function writes the routing tables to a file with the same sgb filename

but with extension rt instead of gb. This call can be made onlyif generate call is successful.

• Vertex *next hop(Graph *g, Vertex *source, Vertex *destination): This is the main call

which gives access to routing tables. The source and destination are vertex pointers in the
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Graph g. This call returns the Vertex pointer of the nexthop node towards the destination. If

lookup fails it returns NULL indicating the reason for lookup failure to standard output. We

need to call itmrtreadtablesfrom file before calling this function.

4.3 Using the tool

The routing information generation feature in GT-ITM is made of two important programs

policytoolandgenrtb.

4.3.1 Generation of policy file

policytool is used to generate a policy file. The input to the program is the .gb file.

policytool .gbfile

A sample run of the tool is shown below.

——————————————————————- ash: /gt-itm/bin¿ policytool ts300504-

0.gb Number of transit domains 25 Enter the desired size of the core: 7 Policies generated in

filets300504-0-7.po Tier info stored in file ts300504-0.tr ash: /gt-itm/bin¿ more ts300504-0.tr Total

tiers 2 Core: 4 7 9 11 12 18 20 Tier 1: 0 1 2 3 5 6 8 10 13 14 15 16 17 19 2122 23 24 —————

—————————————————-

4.3.2 Generation of routing tables

Once the policy file is generated we can use the genrtb programto generate the routing files.

The genrtb program takes the .gb file and the .po policy file as an input. The policy file input to the

genrtb program is optional.

genrtb -g .gbfile -p .pofile

The policy file is either written by the user or it is automatically generated by the policytool

program. A sample run of the genrtb program is shown below.

--------------------------------------------------- ----------------

ash:˜/gt-itm/bin> genrtb -g ts300504-0.gb -p ts300504-0- 7.po

Generating the intradomain routing tables

number of domains = 15025

no. of multi-homed domains = 233

Reading the policy filets300504-0-7.po...
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Generating the interdomain routing tables

0 percent over

1 percent over

|

99 percent over 100 percent over Adding the default routes to the

single-homed domains Writing the routing tables to the .rt f ile

Routing tables generated and stored in ts300504-0-7.rt Fin ishing

the final tasks 66545 66545

--------------------------------------------------- ----------------

4.3.3 Traceroute from source to destination

The programgtitmtr traces a route from a given source to a given destination. Theprogram

internally makes the above mentioned API calls to read the graph and calls the next hop function to

compute the path from the source to the destination.

gtitmtr .gbfile .rtfile start node index end node index

A sample run of this program is shown below.

--------------------------------------------------- ----------------

ash:˜/gt-itm/bin> gtitmtr ts300504-0.gb ts300504-0-7.r t 10000 20000

Source = S:0.16/25.16 Destination = S:1.10/4.16

Intradomain routing table loaded

Interdomain table loaded

Routing tables loaded in memory

1: S:0.16/25.6

2: S:0.16/25.1

3: S:0.16/25.7

4: S:0.16/25.14

5: S:0.16/25.5

6: S:0.16/25.8

7: T:0.16

8: T:0.1

9: T:0.11
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10: T:20.14

11: T:20.9

12: T:1.19

13: T:1.8

14: T:1.10

15: S:1.10/4.18

16: S:1.10/4.1

17: S:1.10/4.21

18: S:1.10/4.16

Lookup time: 2226 microseconds

ash:˜/gt-itm/bin>

--------------------------------------------------- ----------------

4.4 Effect of Policies

4.4.1 Effect of import policies

Import policies are mainly defined using the local preference attribute. To see the result of

import policies, we will create a simple topology consisting of 3 transit domains, fully connected to

each other as shown in Figure 4.1.

T:1.*

T:0.*

T:2.*

Which route should T:1.* take ? What do the policies say ?

Figure 4.1: Import policies example

Then we manually write a policy file which defines a import policy for T:1.* stating: Assign a

local preference of 100 for any destination route received from T:2.*. Since the default local pref-
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erence is 80, for destination T:0.*, T:1.* should prefer a longer route through T:2.*, instead going

though the direct link to T:0.* as the former has a higher local preference. Below we enumerate the

path from source to destination, with and without the definedimport policy.

Path from source to destination without policies.

--------------------------------------------------- ----------------

Source = S:1.0/2.2 Destination = S:0.0/1.1

Intradomain routing table loaded

Interdomain table loaded

Routing tables loaded in memory

1: T:1.0

2: T:1.1

3: T:0.1

4: T:0.2

5: T:0.0

6: S:0.0/1.1

Lookup time: 134 microseconds

--------------------------------------------------- ----------------

Path from source to destination with the import policy.

--------------------------------------------------- ----------------

Source = S:1.0/2.2 Destination = S:0.0/1.1

Intradomain routing table loaded

Interdomain table loaded

Routing tables loaded in memory

1: T:1.0

2: T:1.1

3: T:2.0

4: T:0.1

5: T:0.2

6: T:0.0

7: S:0.0/1.1

Lookup time: 150 microseconds

--------------------------------------------------- ----------------
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We see from above, that when the policy file is used, a longer path is taken to the destination.

4.4.2 Effect of export policies

Each node in the domain level graph has been tagged by a tier number, which enables us to

identify a particular node as either a customer, provider ora peer of its connected neighbor. In the

tool described in the previous section, our automatically generated export policies make sure that

a domain does not export routes learnt from its peer and provider to its other peers and providers.

Giving a suitable example we will demonstrate how the exportpolicies affect the route taken.

Consider a GT-ITM topology with 300504 nodes, 25 transit domains, 233 multi-homed do-

mains (transit + multi-homed stubs). To see the effect of policies we will show the traceroute from

a source to destination with and without policies. Firstly to use policies, we run thepolicytoolpro-

gram on the .gb file, to generate a policy file for use. The tier structure of the transit level topology

is shown below.

--------------------------------------------------- ----------------

Total tiers 2

Core: 4 7 9 11 12 18 20

Tier 1: 0 1 2 3 5 6 8 10 13 14 15 16 17 19 21 22 23 24

--------------------------------------------------- ----------------

Then we generate two routing tables, once with this policy file as an input to thegenrtbprogram

and once without. Below is a traceroute from a source to the destination without the use of policies.

--------------------------------------------------- ----------------

Source = S:2.6/22.12 Destination = S:6.11/9.1

Intradomain routing table loaded

Interdomain table loaded

Routing tables loaded in memory

1: S:2.6/22.17

2: S:2.6/22.13

3: S:2.6/22.1

4: S:2.6/22.9

5: T:2.6

6: T:2.8
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7: T:2.16

8: T:23.17

9: T:23.11

10: T:23.3

11: T:6.11

12: S:6.11/9.9

13: S:6.11/9.19

14: S:6.11/9.1

Lookup time: 1189 microseconds

--------------------------------------------------- ----------------

As we see in the above traceroute, the path follows transit domainT : 2.∗−−T : 23.∗−−T : 6.∗

and the hop count is 14. Looking at tiers information shown above, T:2.*, T:23.* and T:6.* belong

to the same tier. If policies were used, such a behavior is notacceptable, as a pier is not supposed to

exchange routes learnt from its peers to other peers. Below is a traceroute for the same source and

destination, but with policies imposed to decide the route.

--------------------------------------------------- ----------------

Source = S:2.6/22.12 Destination = S:6.11/9.1

Intradomain routing table loaded

Interdomain table loaded

Routing tables loaded in memory

1: S:2.6/22.17

2: S:2.6/22.13

3: S:2.6/22.1

4: S:2.6/22.9

5: T:2.6

6: T:2.2

7: T:2.1

8: T:18.17

9: T:18.2

10: T:18.7

11: T:6.10

12: T:6.5
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13: T:6.11

14: S:6.11/9.9

15: S:6.11/9.19

16: S:6.11/9.1

Lookup time: 1504 microseconds

--------------------------------------------------- ----------------

In this route the path followed is T:2.* – T:18.* – T:6.* and the hop count is 16. Looking at the tiers

information shown above, T:18.* belongs to a higher tier than T:2.* and T:6.* making it a provider

to both T:2.* and T:6.*. As we see here, though the hop count has increased to 16 (as compared to

14 without the use of policies), the path taken obeys the export policies as shown in Figure 4.2.

T:18.*

T:2.* T:23.* T:6.*Tier 1

Tier 0

path with export policies

path without policies

Figure 4.2: Export policies example

4.5 Conclusion

In this chapter, we showed the effective use of policies to generate different paths from a source

to a destination. By changing the core size, we can manipulate the hierarchy in the graph. This in

turn results in different policy files for the same graph. Each policy file when used with a given

GT-ITM graph, will generate different set of routing tablesand each routing table may result in

different paths for the same source-destination pair. Thisfeature of GT-ITM can be effectively

used to simulate Internet routing, by dynamically changingthe routing files to get different paths at

different times. In the next chapter we show some results we obtain by running some experiments

of different graphs.
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Chapter 5

Simulation graphs

In the first chapter, we discussed how the traditional approaches to generating routing paths

were ineffective, as they demanded more memory space and computational time. Hence we pro-

posed a solution which is less complex in space and time, and which also gives better control over

generation of routing tables. In this chapter we will study the performance of the tool in terms of the

time it takes to generating intradomain and interdomain routing tables and memory space required

to store the routing tables.

The time complexity of generating the intradomain routing tables is a function of the number

of domains in the graph and the number of nodes in each domain,whereas the time taken for

the generation of interdomain routing tables depends on thenumber of multi-homed domains and

the number of edges between the multi-homed domains in the graph. Since transit domains are

essentially multi-homed, increasing the number of transitdomains automatically increases the time

taken to generate interdomain routing tables. Hence we takedifferent measurements by varying

the number of nodes, the number of multi-homed domains, and the number of transit domains, and

study the time taken for routing table generation and its space utilization for storing the routing

tables.

Based on the parameter (number of nodes, number of domains, number of multi-homed do-

mains) we are changing, we generate different graphs by changing that parameter. For each graph,

we generate the routing tables usinggenrtb. We record the total time taken for the generation of

the routing tables. Once the routing tables are stored in a file, the file size is recorded for different

graphs.

Below we show the graphs, which plot the results for our different set of experimental runs.

These simulation runs were made on a 2 GHz machine with 1GB RAM.

On an average the lookup time for a single hop is 100 microseconds, which means that if a

route has 10 hops from a source to a destination, it would takethe route around 1ms. This time

excludes the time taken for reading the graph into the memory.

In the graphs 5.1 and 5.2 the number of transit domains was kept constant at 25, and number

of nodes in the transit domains was varied to increase the total number of nodes in the graph.
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Figure 5.3: Number of multi-homed domains Vs Time

In the graph 5.3 the number of multi-homed domains was variedbut by keeping the number

of transit domains constant. This was done by adding extra transit-stub and stub-stub edges thus

increasing the number of multi-homed stub domains.

In the graph 5.4 and 5.5, the number of transit domains were varied.

In graphs 5.1 and 5.2 we increase the nodes in the transit domains but keep the number of transit

domains and stub domains constant in order to increase the total number of nodes within the graph.

This keeps the size of the interdomain graph (graph constructed to run the BGP-like interdomain

algorithm to find the interdomain routes) constant, but increases the matrix size for computing the

intradomain routing tables. Let us assume that we havet transit domains,s stub domains per transit

node,x nodes per transit domains andy nodes per stub domain, the time complexity of computing

the intradomain routing tables would be O(tx3 + txsy3). The total number of nodes in the graph

would betx(1 + sy). Let us assume the time taken to generate the interdomain routing tables asIt.

So the total time to generate the routing tables would be O(tx3 + txsy3)) + It. When we increase

x by keeping all other parameters constant, we observe from graph 5.1 that we get a linear increase

in time when referenced against the total number of nodes in the graph.

Let us analyze the effect of increasing the number of nodes onthe space requirements. As

mentioned in the previous chapters, the routing table file consists of intradomain routing tables
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followed by the interdomain routing tables. Intradomain routing tables consist of two dimensional

matrices for each domain (transit and stub) giving all pairsshortest paths between the nodes of

that domain. In the interdomain routing tables, for each multi-homed domain we list a routing

path to every other multi-homed domain. Say for example we have m multi-homed domains, each

multi-homed domain would have a path tom − 1 multi-homed domain. So the size of interdomain

routing tables is a function of the number of multi-homed domains in the graph whereas the size

of the intradomain routing tables is a function of the numberof nodes within the transit domains

and stub domains. In the graph 5.2 we observe that the size of the routing tables file increases

linearly with the increase in the transit domain nodes. In this case the size of the intradomain tables

increases and the size of the interdomain tables remains constant. Important point to note here is

that increasing the number of nodes within the transit domains and the stub domains has no effect

on the interdomain routing table generation time nor the space to store the interdomain tables.It

remains constant in both the case mentioned above as the number of multi-homed domains remain

constant.

In graph 5.4, we increase the graph size by increasing the number of transit domains in the

graph. There are two ways of increasing the multi-homed domains. Either we increase the number

of transit domains or we add extra transit-stub or stub-stubedges which increases the number of

multi-homed stub domains. Increasing the number of multi-homed domains has effect both on

the intradomain tables generation time and the interdomaintables generation time. Looking at the

equation O(tx3 + txsy3), when we increase the number of transit domainst the time taken to

generate intradomain routing tables increases as we have torun Floyd Warshal on more domains.

Similarly increasing the transit domains increases the time taken to generate interdomain routing

tables as we have to compute more routes for each multi-homeddomain.

In graph 5.3, we increase the number of transit-stub and stub-stub edges to increase the number

of multi-homed domains. This does not have any effect on the intradomain time as the number of

domains remains constant. But the time taken to compute interdomain routing tables does increase.

Due to this reason we see that as compared to graph 5.4 the slope of the graph 5.3 is less as in-

tradomain computation time is not affected in the later case. In the last graph 5.5, we observe that

increasing the transit domains has a linear increase in routing file size. Increase in transit domains

increases the number of entries in the interdomain routing table hence the increase in routing file

size.

The objective of the thesis was to enhance the current GT-ITMsoftware by providing routing

support so that route from any node to any other node can be determined without the user having to
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provide his own implementation. The idea was to use a routingalgorithm which is time-efficient,

space efficient (uses less memory) and also generates routing tables which occupy less space and

generates routes similar in nature to those found on the Internet. A primitive implementation was

to use Floyd Warshal algorithm which was not efficient both interms of time and space for graphs

with large number of nodes. So we decided to break the routingproblem into intradomain and

interdomain and treat them separately. Finding intradomain routes was done using Floyd Warshal

as the number of nodes within a domain is much lesser as compared to the total number of nodes.

This way we achieved some gain both in terms of time and space.For generating interdomain

routing tables, we implemented a BGP-like protocol which takes into account domain level policies

and gives some control to the user to control the routes. Looking at some examples in the previous

chapter we see that by controlling the policies we could change the route taken between two nodes.

Looking at the graphs above we see that the time taken to generate routing tables and the space

required to store the routing tables is a linear function of the number of nodes in the graph. Thus

our solution satisfies all the objectives defined in the thesis.
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