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ABSTRACT OF THESIS 

 

TOLERANCE ALLOCATION FOR KINEMATIC SYSTEMS 

 
A method for allocating tolerances to exactly constrained assemblies is 

developed.  The procedure is established as an optimization subject to constraints.  The 
objective is to minimize the manufacturing cost of the assembly while respecting an 
acceptable level of performance.  This method is particularly interesting for exactly 
constrained components that should be mass-produced. 

This thesis presents the different concepts used to develop the method.  It 
describes exact constraint theory, manufacturing variations, optimization concepts, and 
the related mathematical tools.  Then it explains how to relate these different topics in 
order to perform a tolerance allocation. 

The developed method is applied on two relevant exactly constrained examples: 
multi-fiber connectors, and kinematic coupling. Every time a mathematical model of the 
system and its corresponding manufacturing variations is established.  Then an 
optimization procedure uses this model to minimize the manufacturing cost of the system 
while respecting its functional requirements.  The results of the tolerance allocation are 
verified with Monte Carlo simulation. 

 

KEYWORDS: Tolerance Allocation, Manufacturing Variation, Kinematic Design 
Theory, Optimization 
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Chapter 1: Introduction and Thesis Overview 

1.1. Background to the Thesis 

Kinematic design is widely used in precision engineering.  In effect, kinematic 

systems, also known as exactly constrained systems, present good repeatability if 

stiffness and load capacity are not critical parameters [1].  Moreover, the behavior of 

kinematic systems can be described in a mathematical model, since the location of the 

exact constraints are analytically defined by one unique solution [2].  It is then possible to 

develop an analytical tool that can help the designer of a kinematic system to make an 

optimized design [3]. 

On the other hand, kinematic design provides economical solutions for making 

repeatable assemblies.  In effect, the design of kinematic systems is often relatively 

simple, and they can be easily manufactured.  These good characteristics make the 

kinematic systems interesting for mass production, where they can be used in 

manufacturing, fixturing, and material handling.  For instance, Vallance and Slocum [4] 

described the use of kinematic couplings for positioning pallets in flexible assembly 

systems. 

However, a poor tolerance allocation may affect the precision of a kinematic 

system, despite its good repeatability.  This is a major problem if the kinematic systems 

are intended for interchangeable assemblies, for instance a fixturing feature that is used 

on several workstations of a production line.  Hence an efficient tolerance allocation is of 

primary interest for exactly constrained systems. 

Teradyne Connection Systems (TCS), a manufacturer of daughtercard and 

backplane connectors, is developing a multifiber optical connector by following the 

kinematic design principles.  This connector will be manufactured in mass production, so 

TCS wants to allocate the tolerances on this product so that its manufacturing cost is 

minimized while its required accuracy is preserved.  Furthermore, the Precision Systems 

Laboratory of the University of Kentucky is conducting an extensive study on kinematic 

couplings; a tolerance allocation on these exactly constrained features could contribute to 

this wide analysis. 
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These two requirements have led to the development of a general approach for 

allocating tolerances on kinematic systems.  This thesis is the result of this work.  It 

describes the method in detail, with the different engineering principles used.  Then the 

tolerance allocation is applied to the multifiber optical connector and the kinematic 

coupling for illustrating the developed method. 

  

1.2. Prior Work and Literature Review 

This section introduces the main principles of mechanics and mathematics with 

the corresponding relevant literature reviews that will serve as the background to the 

work done in this thesis.  The materials covered are the exactly constrained systems, the 

dimensional variations of a manufactured part, and tolerance allocation using least cost 

optimization. 

 

1.2.1. Exactly Constrained Systems 

The principle of kinematic design states that point contact should be established at 

the minimum number of points required to constrain a body in the desired position and 

orientation [1].  In this case, the degrees of freedom of the rigid system are exactly 

constrained, so a mathematical model of the system can exactly predict its location.  Prior 

studies used this property to develop analytical methods for designing kinematic systems. 

One of the best examples is given by Schmiechen and Slocum [3], who published 

a design method using linear algebra to represent the geometry of a kinematic assembly.  

They could derive a simple expression for determining the error motions within the 

assembly in function of the applied forces.  They could also quantify the stability of the 

kinematic system.  This publication demonstrates that an analytical model of a kinematic 

system is a powerful tool for improving its design.  A similar approach can be used to 

develop a variation study of the exactly constrained system. 

Blanding [5] made an extensive study of the theoretical aspect of kinematic 

design.  On a more practical point of view, the standard ISO 3952-1 [6] presents a 

convenient way to represent symbolically the kinematic links of a mechanical system, 
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and it is a powerful tool for the designer to determine whether a system is exactly 

constrained or not. 

 

1.2.2. Dimensional Variations 

Manufacturing perfect dimensions is impossible.  In effect, it is well known that 

any manufacturing process is subject to variations, and the produced parts can’t have 

exactly the same dimensions.  Furthermore, the dimensions may change with time or 

environmental conditions, which can for instance generate wear or thermal expansion.  

This is the reason why a designer has to affect tolerances to the nominal dimensions, in 

order to specify the acceptable limits of the variations.  The functionality of a part should 

be accepted if its dimensions stay within their assigned tolerances. 

Tolerances can be either dimensional or geometric.  If they are dimensional, they 

define the acceptable range of values that a length or an angle can get.  If they are 

geometric, they put conditions on the shape of the part, such as flatness, roundness or 

angularity.  Standards [7,8] cover this subject in detail and provide to the designer useful 

recommendations for assigning efficiently the tolerances. 

Manufactured dimensions are hence subject to variations.  It is then possible to 

express them as randomly distributed variables to analyze them through a mathematical 

model.  Actually, the Statistical Process Control (SPC) method, widely used in industry 

for quality insurance, is based on this concept [9]. 

A thorough analysis of the geometry of a kinematic system should take into 

consideration these dimensional variations.  The mathematical model of the system will 

set up the nominal value and the tolerances of the dimensions in terms of expected value 

and standard deviation of the corresponding random variables.  The variation analysis of 

the kinematic coupling will then be based upon concepts from statistics. 
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1.2.3. Least Cost Tolerance Allocation 

Chase [10] presented several relevant techniques for allocating tolerances on 

mechanical systems.  The most efficient one is arguably the tolerance allocation using 

least cost optimization. 

Studies have experimentally determined relations between cost and tolerance for 

different manufacturing processes since the 1940s [11].  Linear regressions of the 

measured data provide empirical functions describing these relations.  By combining 

these functions to the mathematical model of the analyzed kinematic system, it is possible 

to determine the manufacturing cost of the system for a given accuracy. 

Such a mathematical model can be implemented in a tolerance allocation routine.  

By using an optimization technique, the designer can assign the tolerances such that the 

manufacturing cost of the system is minimized while its functional requirements are 

respected.  The tolerance allocation is then formulated as a minimization subject to 

constraints. 

Some mathematical software packages include an optimization toolbox [12].  It is 

a convenient tool for solving optimization problems with multiple parameters, which can 

be faced in any discipline.  The user has to implement the problem in an algorithm, by 

defining the objective and the constraints in a mathematical form. 

If it is decided to optimize the design of a kinematic system by least cost tolerance 

allocation, the objective function is the manufacturing cost of the parts, which has to be 

minimized.  The constraints are the mathematical expressions of the functional 

requirements of the product, which are generally directly related to the accuracy of the 

system. 

 

1.2.4. Mathematics and Statistics 

This thesis presents overall an analytical work, so it relies heavily on several 

topics from mathematics and statistics.  Mathematical models of the exactly constrained 

systems are based on analytic geometry [13].  One of the methods for analyzing the 

variations of the system calls for homogeneous transformation matrices [1,14], then a 
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multivariate error analysis [15] is performed.  A completely analytical model of the 

systems, which combines continuous random variables in non-linear relations, is another 

alternative for evaluating the location and orientation variations of a system; hence a 

reliable reference in engineering statistics is required [16].  In several cases, the methods 

resort to regression analyses [16] for fitting the experimental data.  Finally, random 

simulations using the Monte Carlo method [17] are extensively used for estimating the 

statistics of the output parameters. 

 

1.3. Thesis Overview 

This thesis describes a method for allocating tolerances on kinematic systems.  

The objective is to find virtually the best combination of tolerances to set on an exactly 

constrained assembly in order to reduce its manufacturing cost related to its geometric 

and dimensional variations, while its functional requirement is respected. 

 
1.3.1. Hypothesis 

Prior work reviews show that a thorough analysis of kinematic systems can 

predict with accuracy their mechanical behavior [3,18].  On the other hand, there exist 

many methods for assigning tolerances to mechanical assemblies [19], with different 

levels of efficiency.  Hence the hypothesis stipulates that it is possible to define a 

tolerance allocation method made especially for kinematic systems. Since this method 

would be based on exact analytical models, it should be better than the current tolerance 

allocations available for mechanical assemblies in general. 

 
1.3.2. Content Overview 

Chapter 2 describes the different concepts used in the method.  It covers 

kinematic design theory, the manufacturing variations, and the principles of least cost 

tolerance allocation, with the corresponding mathematical tools.  The developed method 

is applied to kinematically designed optical fiber connectors in Chapter 3.  Then Chapter 

4 presents the tolerance allocation procedure applied to kinematic couplings.  Finally, 

Chapter 5 discusses future work and thesis conclusions. 
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Chapter 2: Concepts Used in the Method 

2.1. Exactly Constrained Systems 

2.1.1. Theory 

Any motion of a free rigid body in a 3D space can be described as a combination 

of three pure translations and three rotations.  Each of these six motion parameters is 

called a degree of freedom.  They can be quantitatively described if a reference frame is 

attached to the space.  In two dimensions, position and orientation of a free object are 

only defined by two translations and one rotation. 

A body is constrained if at least one of its degrees of freedom is suppressed.  A 

mechanical connection between two bodies suppresses one or more of their degrees of 

freedom.  In a mechanical assembly, the degrees of freedom to be suppressed are defined 

by the functional requirements of the system.  Robustness of the design of a mechanism 

is improved if only the degrees of freedom that need to be removed are constrained; if a 

motion can stay free, it is better not to constrain it. 

Kinematic design theory [5] stipulates that a body is exactly constrained when 

every degree of freedom that has to be suppressed is blocked by one single constraint.  If 

two or more constraints are suppressing the same degree of freedom, the system is over-

constrained.  In this case, position and orientation of the body is established by several 

conflicting references.  Due to manufacturing variations and other sources of errors, these 

references cannot match perfectly.  Consequently, an over-constrained body may not fit 

correctly in its assembly.  If the dimensions are too loose, there will be an excessive 

clearance in the assembly that may affect the functionality of the mechanism; if they are 

too tight, the over-constrained body may satisfy the redundant constraints by enduring an 

elastic or plastic deformation that generates internal stress within the body.  In both cases, 

repeatability of the assembly is affected. 

Kinematic design offers some important advantages for precision engineering.  

Since every suppressed degree of freedom is restricted by one single constraint, there 

only exists one solution for determining the position and orientation of the constrained 

body.  This property provides a good repeatability to the exactly constrained mechanism, 
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if the external conditions stay relatively constant.  Kinematically designed assemblies can 

be manufactured at low cost, since their design is relatively simple and they don’t need 

relatively tight tolerances to reach a good repeatability, compared to over-constrained 

mechanisms.  Moreover, location of the exactly constrained body can be predicted by 

establishing a mathematical model of the assembly; there exists a straightforward 

correspondence between exact constraint and exact mathematical solution.  The presented 

tolerance allocation method relies upon this characteristic. 

However, kinematic design may not be a suitable solution for applications where 

mechanical loads are important.  In effect, exact constraint design tends to minimize the 

area of the contacting surfaces, and then it increases tremendously the contact stress.  

Another design philosophy may be used to prevent these problems: elastic averaging 

intentionally over-constrains the bodies in order to carry larger loads [1].  Contact 

between parts is spread on broad surfaces, so contact pressure is reduced and stiffness of 

the system is increased.  Manufacturing errors are averaged out, which may improve 

accuracy of the assembly, but tolerances have to be tight to obtain a good level of 

repeatability, which significantly increases the manufacturing cost of the system. 

Exact constraint theory is therefore an adequate design tool for precision 

engineering when mechanical loads are not a critical parameter.  Kinematic design 

provides a good repeatability at a relatively low cost. 

The ideal scheme of exact constraints would be to suppress every degree of 

freedom by a punctual contact.  However, practical considerations, like manufacturability 

of the parts or stiffness of the assembly, may prevent this theoretical scheme.  Exact 

constraint theory is then completed by the definition of connections, which are the 

different possible combinations of constraints suppressing a set of degrees of freedom. 

 

2.1.2. Types of Connection 

When two bodies are mechanically connected, some of their degrees of freedom 

are constrained.  The nature of their connection is defined by determining which motions 

are suppressed.  An ISO standard [6] extensively describes the different types of 

connections, as presented in Table 2-1. 
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Table 2-1: 3D Symbols of Connections for Kinematic Diagrams (after ISO 3952-1) 

Type of 
Connection 

Symbol 
Relative Motions 

Possible 
Examples 

Fixed 
x

y
z

 

0 Rotation 
0 Translation 

Bolted assemblies; 
Welded parts 

Pin 
x

y

z

 

1 Rotation (x) 
0 Translation 

Spindle in its housing; 
Rotating wheel on fixed 

axis 

Sliding 
x

y
z

 

0 Rotation 
1 Translation (x) 

Translation stage 

Helical 
x

y
z

 

1 Rotation (x) 
1 Translation (x) 

(correlated) 

Screw in 
tapped hole 

Cylindrical 
x

y

z

 

1 Rotation (x) 
1 Translation (x) 

Cylinder in 
vee-groove 

Joint 
x

y
z

 

2 Rotations (x,z) 
0 Translation 

Universal joint 

Spherical 
x

y
z

 

3 Rotations 
0 Translation 

Sphere in cone 

Planar 
x

y
z

 

1 Rotation (z) 
2 Translations (x,y) 

Flat surface on 
flat surface 

Ring 
x

y
z

 

3 Rotations 
1 Translation (x) 

Sphere in vee-groove 

Linear 
x

y

z

 

2 Rotations (x,z) 
2 Translations (x,y) 

Cylinder on 
flat surface 

Punctual 
x

y

z

 

3 Rotations 
2 Translations 

Sphere on 
flat surface; 
Cylinder on 

perpendicular cylinder 
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Every elementary connection may be symbolically represented by a kinematic 

diagram.  There exists a design procedure based upon these diagrams.  By drawing the 

entire kinematic diagram of the mechanism, the designer can efficiently prevent 

redundant constraint and establish an exactly constrained system.  This procedure starts 

by mapping the constraints between the different components.  It consists in enumerating 

every part of the assembly, then identifying which degrees of freedom are suppressed by 

the connections in every pair of interacting parts.  Creating a reference coordinate system 

is generally useful for determining the connections and preventing the redundant 

constraints.  Afterwards the designer can draw the kinematic diagram of the assembly by 

representing the different connections with the corresponding symbol.  It is also 

important to notice that a combination of elementary connections can constrain another 

degree of freedom that was not suppressed by the present elementary connections.  For 

clarity, a figure separated from the overall kinematic diagram of the whole assembly can 

explain what the combination stands for; this is similar to a detailed view in an 

engineering drawing. 

Kinematic diagrams may appear at different levels of the design.  First of all, they 

can be used for modeling the core concept of the mechanism.  At this point, the kinematic 

diagram should be the simplest one and does not necessarily represent all the components 

of the assembly.  Basically, this first kinematic diagram should answer the question: 

“What is this mechanism for?”  There should be only one kinematic diagram possible for 

representing the core concept of the system. 

After defining the core concept of the mechanism, the following question is “How 

does it work?”  New kinematic diagrams can then be established for representing the 

architecture of the system.  Compared to the previous ones, these diagrams are more 

detailed and describe the connections between the interacting parts of the assembly.  At 

this level, the designer can establish different diagrams, each of them illustrating a 

different type of possible architecture.  Once a set of potential solutions is established, 

further engineering analyses will help to select the best architecture with respect to the 

functionality of the mechanism.  Contrarily to the diagram corresponding to the core 

concept, which should be simple and fixed forever, the diagram representing an 
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architecture should be constantly improved by testing new possible combinations of 

connections and detailing every elementary link in the assembly. 

The progressive revisions of the mechanism will finally lead to its definitive 

version. The corresponding kinematic diagram should accurately represent the system as 

it will be built, with all the most elementary parts and connections.  It is the result of 

integrating all the physical and practical considerations in the chosen architecture; hence 

it should answer the question: “How is it made?”  There should be only one possible 

kinematic diagram corresponding to the final version of the mechanism.  A mathematical 

model of the system should be established by representing parametrically this last 

kinematic analysis. 

  

2.1.3. Example of Kinematic Spindle 

As an illustrative example, a kinematic analysis is performed on a kinematically 

designed spindle [18].  Exact constraint principles applied to this kind of device improve 

its accuracy and repeatability, compared to other existing spindle designs. 

The concept of this mechanism is to allow only one rotation of the spindle in its 

housing. Let this degree of freedom be identified as the rotation about the z-axis. The 

assembly then constrains the three possible translations and the two other rotations.  

There is basically a pin contact between the spindle and its housing.  The mapping and 

the kinematic diagram of the core concept of this assembly is presented in Fig 2-1: 

Spindle Housing
Pin

Tx, Ty, Tz, Rx, Ry
xy

z

 

Fig 2-1: Kinematic Analysis of the Concept of a Spindle 
 

It is relatively difficult to make a direct pin contact between two parts.  The 

assembly can be divided into a combination of elementary connections that constrain the 

same degrees of freedom.  The designer has to pay attention not to constrain twice the 
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same degree of freedom; otherwise the system would be over-constrained.  Two possible 

architectures equivalent to a pin contact are illustrated in Fig 2-2 and Fig 2-3. 

Spindle Housing
Planar

Tz, Rx, Ry

Punctual

Ty

Punctual
Tx

xy
z

 

Fig 2-2: Kinematic Analysis of the First Possible Architecture for the Spindle 
 

Spindle Housing
Punctual

Tz

Linear
Ty, Rx

Linear
Tx, Ry

xy

z

 

Fig 2-3: Kinematic Analysis of the Second Possible Architecture for the Spindle 
 

An extensive study of the spindle showed that the second architecture was a better 

design in regard to its current applications [18].  The next step is to complete the design 

of the mechanism by incorporating practical considerations, like material choice or 

manufacturability.  A direct punctual contact between the spindle and the housing has to 

be avoided to prevent excessive wear of the contact point.  Inserting a steel ball between 

the two components is a better solution. This ball will punctually touch a flat surface of 

the housing, and it will be in spherical contact with a conic shape made in the spindle. 

On the other hand, adding ceramic at the linear contacts would lower friction and 

consequently improve the quality of the mechanism.  Each linear contact is then replaced 

by an equivalent combination of two parallel punctual contacts, made by positioning 

cylindrical ceramic rods perpendicularly to the axis of the cylindrical spindle.  For 

simplifying the manufacturability of the mechanism, the ceramic rods are fixed by epoxy 
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to the housing.  The equivalence of the contacts is illustrated in Fig 2-4.  The mapping of 

the connections in the final design of the mechanism is established in Fig 2-5, while the 

corresponding kinematic diagram is modeled in Fig 2-6.  Finally, an exactly constrained 

spindle following these kinematic principles is shown in Fig 2-7. 

Equivalence of a Linear Contact Equivalence of a Punctual Contact
 

Fig 2-4: Kinematic Diagrams of Equivalent Contacts 
 

Spindle

Housing

Ceramic
Rod

Ball

Ceramic
Rod

Ceramic
Rod

Ceramic
RodPunctual

Spherical Punctual
Punctual

Punctual
Punctual

Fixed Fixed

Fixed Fixed

Ceramic
Rod

Fixed

 

Fig 2-5: Mapping of the Contacts in the Final Design of the Exactly Constrained Spindle 
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xy

z

Ball

Rod

Rod

Rod

Rod

Housing

Spindle

Rod

 

Fig 2-6: Kinematic Diagram of the Final Design of the Exactly Constrained Spindle 
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Housing

Ceramic
Rods

Steel
Ball

Spindle

Exploded View Assembled Mechanism
 

Fig 2-7: Exactly Constrained Spindle Corresponding to the Presented Kinematic Analysis 
 

2.2. Manufacturing Variations 

2.2.1. Presentation 

2.2.1.1. Introduction 

Manufactured dimensions cannot perfectly equal their nominal values, and 

manufactured shapes cannot present a perfect geometry.  In effect, produced parts are 

subject to variations, coming from different sources, that will affect their accuracy.  

These dimensional and geometric errors should be taken into consideration when 

designing a system, so that the assembly can be mounted and the mechanism can fulfill 

its functional requirements despite these unavoidable variations.  The designer has then to 
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define tolerances on the dimensions and the geometric specifications in order to define 

the range of values in which the variations stay acceptable.  Some methods to analyze the 

combination of these variations will be introduced in this section.  There also exist some 

well-known methods to control the manufacturing variations for a quality policy 

[20,21,22]. 

2.2.1.2. Sources of Variations 

A first category of sources of errors comes from the manufacturing operation 

itself.  Even if the manufacturing process is well controlled, there are always sources of 

variations that affect the accuracy of the parts.  An improper mounting of the product on 

the machine will generate a misalignment with regard to its theoretical reference frame 

that will bring about errors in the part.  Furthermore, manufacturing machines may have 

components with a noteworthy weight moving at relatively high speed; this is the case for 

most of the machines used in material removal processes.  Inertia of these moving 

components will produce vibrations that will spread through the entire machine.  There 

exist some isolation systems to prevent these vibrations, but a residual amount of noise 

that will reach the product and the operating parts of the machine will still remain.  These 

vibrations will affect the accuracy of the operation and create manufacturing variations in 

the product. 

A second type of sources of errors is related to time.  One of the most notable 

sources of error varying with time is tool wear, which affects accuracy of a machining 

process throughout tool life.  Moreover, adjustment of the machines modifies the set-up 

of the manufacturing processes; hence accuracy of a production may vary periodically, 

every time a set-up is adjusted. 

Finally, environmental conditions are a third source of errors.  For instance, 

change of temperature can affect relative positioning of the manufactured product and the 

operating parts of the machine because of thermal expansion.  Purity of the working 

atmosphere can also have consequences for the accuracy of the manufacturing process.  

And variations in the structure of the row material in which the part is made may affect 

the quality of the final product. 
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These are the main sources of manufacturing variations, but there exist a lot of 

other ones that have a minor effect.  Furthermore, there exist some random sources of 

errors that cannot be predicted. 

 

2.2.2. Mathematical Representation  

The tolerance allocation procedure needs a mathematical model of the variations 

in order to combine them and predict analytically their effects on the functional 

requirements of the mechanism. Statistics are used to model the manufacturing 

dimensions and their errors. 

2.2.2.1. Dimensions as Random Variables 

Most of the current methods for combining manufacturing variations implicitly 

define the produced dimensions as random variables following probability distributions 

[19].  The worst-case analysis, which is relatively simple to use, assumes that the 

dimensions follow a uniform distribution in a range bounded by the assigned tolerances.  

But more efficient yet complex methods state that the dimensions follow a normal 

distribution; the central limit theorem [16] justifies the suitability of such an assumption. 

The statistical process control (SPC) method, widely used in industry, relies upon this 

assumption [20].  The variables are assumed to be independent. 

In statistics, a normally distributed variable is defined by its expected value that 

locates it and its standard deviation that characterizes its dispersion.  On the other hand, a 

designer specifies a dimension by its nominal value and its tolerances.  There are several 

ways to attribute a tolerance, but the simplest one may be to specify the nominal value 

plus or minus a deviation.  Assuming that the manufacturing process is correctly 

controlled, the expected value equals the nominal dimension while the tolerancing 

deviation equals three times the standard deviation. In effect, this range of six standard 

deviations centered on the expected value covers 99.73% of the cases, and it is commonly 

accepted that it corresponds to the range limited by the tolerances on a technical drawing.  

These basic relations create a link between theoretical statistics and practical engineering 

specifications. 
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2.2.2.2. Mathematical Model of the Geometric Specifications 

Dimensional tolerancing, which deals with lengths and angles, is generally not 

enough for specifying the acceptable variations of an assembly.  It is also important to 

assign proper tolerances to the geometric features, with the design tools defined in the 

standards [7,8], because they are critical to part functionality.  Variations in shape, 

orientation, and location will affect the variation of the complete assembly, so an efficient 

tolerance analysis has to take them into consideration.  However, geometric tolerances as 

specified on a technical drawing cannot be included in a straightforward way in a 

tolerance analysis process. Geometric tolerances should therefore be broken into 

elementary dimensional specifications that can be quantified and combined in a variation 

analysis.  Including geometric feature variations in a tolerance analysis is a current 

problem for computer-aided tolerancing programs [23].  However, a relatively simple 

method can be used manually, with a comprehensive analysis of the geometric 

specifications [24]. 

The geometrical feature variations are individually considered to be turned into 

dimensional tolerances.  The modified representation of the geometric variation depends 

upon the type of kinematic connection between the assembled parts, identified with the 

method of the kinematic diagrams presented in Section 2.1.  This means that different 

combinations of dimensional tolerances may represent the same type of geometric 

specification, depending on its required performance.  The tolerances are set on the 

functional translations and rotations of the considered connection; the geometric 

specifications are then transformed into lengths and angles that can be easily inserted in 

the tolerance analysis. 

For example, consider the same flatness specification used in two different cases, 

as illustrated in Fig 2-8.  A flatness tolerance specifies a zone defined by two virtual 

parallel planes within which the surface must lie.  In the first case, the flat surface is in 

contact with a ball; it is then a punctual contact that only suppresses a translation. The 

flatness specification may be transformed into a dimensional tolerance assigned to the 

suppressed translation.  In the second case, a flat surface with the same flatness 

specification is in contact with a round pin; this time there is a linear connection that 
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constrains one translation and one rotation in the 3D space.  The flatness specification 

may be turned into two dimensional tolerances, one for the acceptable stroke on the 

suppressed translation and the other one for the acceptable variation in the suppressed 

angle. 

0.010

x

z
y

Translation in z suppressed
with a               tolerance,

Rotation about y suppressed
with a               tolerance

05.0±

o29.0±

Second case:

Linear
connection

0.010

x

z
y First case:

Punctual
connection

Translation in z suppressed
with a               tolerance05.0±

 

Fig 2-8: Flatness Specifications Transformed into Dimensional Tolerances 
 

Geometric specifications may refer to virtual datum features.  The advantage of 

the parametric model of the assembly is that this datum reference frame can be 

mathematically represented as if it were a real part of the assembly. However, if the 

geometric specification is subject to a thorough metrology control, it is better to model it 

so that it can be physically measured despite its virtual nature.  For instance in Sections 

3.2.2.4 and 4.3.2, the aperture angle of a vee-groove will be divided into two half-angles 

in order to have a physical way to measure the inclination angle of the vee-groove. 

Finally, the designer should have in mind the manufacturing process with which 

the geometric feature is made in order to estimate the possible variations affecting its 

specification. 
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2.2.3. Methods to Analyze the Variations 

There exist a variety of methods for combining the variations in a tolerance 

allocation procedure.  Their suitability depends on the complexity of the mathematical 

model representing the assembly.  An efficient method that analyzes the system 

variability should be repeatable to provide reliable results, computationally fast because 

tolerance allocation will use an iterative process, and as simple as possible for avoiding 

the mistakes when establishing it.  This section presents the three different methods that 

are used in the examples detailed in the two next chapters. 

2.2.3.1. Monte Carlo Simulation 

One of the simplest methods for combining the manufacturing variations is 

arguably Monte Carlo simulation [17].  It consists in generating a lot of numeric 

experiments in which the outputs variables are calculated from a set of randomly 

distributed input variables.  The programmer has to define the random distribution of the 

input variables, with their expected values and their standard deviations.  The number of 

experiments generated should be big enough to determine with reliability the statistic 

parameters of the output variables. 

Performing Monte Carlo simulation for a tolerance analysis is pretty 

straightforward. Once the mathematical model of the assembly is established, the 

assignable dimensions are generated as normally distributed variables, with a mean equal 

to their nominal dimension and the standard deviation equal to one third of their 

tolerancing deviation.  Many assemblies are numerically generated with the mathematical 

model, and the resulting output values, which are the parameters affecting the 

performance of the system, are collected every time.  The populations of output values 

are finally treated statistically in order to determine their distributions and their 

corresponding statistical parameters. 

This method is relatively simple, once the mathematical model of the assembly is 

established: the input variables are generated simply, and they are combined in a direct 

way that is very close to reality.  It is then quite easy to follow the elementary operations 

performed within the program and debug the eventual mistakes.  However, computing 

time may be an issue on common computers.  In effect, it is necessary to generate a great 
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number of experiments to get reliable results, and the required iterative loop may be very 

time consuming.  This method is then used in the examples presented in Chapters 3 and 4 

as a tolerance analysis to verify the results of more complex methods, but not for a 

tolerance allocation, for which processing time is a critical parameter. 

2.2.3.2. Analytical Model 

An alternative method for analyzing the assembly tolerances is to apply directly 

the law of error propagation [25] to the mathematical model of the system.  The 

parametric model should be simple enough to return every performance parameter zj with 

one single direct combination fj of the n different input variables wi, as shown in Eq (2-1).  

Assume that the input variables are independent. 

( )nj wwwwfz ,,,, 321 K=  (2-1) 

The input variables wi follow known probability distributions, with determined 

means µi and standard deviations σi.  The expected value 
jzµ  of the performance 

parameter zj is simply calculated from Eq (2-2), while its standard deviation 
jzσ  is 

obtained by using Eq (2-3). 
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The variation of the performance parameter is then expressed with one single 

equation.  This analytical model of the resulting errors is appropriate for a tolerance 

allocation procedure, since calculations are relatively fast once the algorithm is 

established.  However, the last equation requires the calculation of all the partial 

derivatives of function fj, which may rapidly turn into huge mathematical entities difficult 

to manipulate, in accordance with the complexity of the function.  This will affect the 

transparency of the algorithm. 

The major problem of this method appears when the output variables are not 

perfectly independent.  The current method does not calculate the correlation coefficients 
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between the different output variables, and it may be a penalty if they should be 

combined.  A solution would be to determine an experimental approximation of the effect 

of these unknown correlation coefficients.  This study may be done by regression analysis 

of results returned by Monte Carlo simulations of the performance of the assembly. 

This method is used in Chapter 3 for determining the system variability of the 2D 

model of optical fiber connectors.  An approximation of the effect of an unknown 

correlation coefficient existing between two output variables is illustrated in this 

example. 

2.2.3.3. Multivariate Error Analysis 

A third method for combining variations within a mechanical assembly is based 

on multivariate error analysis [15].  This method, derived from Taylor series expansion, 

is suitable for tolerance allocation because it can handle the calculation of a relatively 

large number of output variables resulting from the combinations of a large number of 

input variables [26].  It is for instance appropriate for allocating tolerances on the 

kinematic coupling presented in Chapter 4, for which 6 output variables result from 43 

input parameters. 

The analysis starts again from Eq (2-1).  The corresponding Taylor series 

expansion presented in Eq (2-4) expresses the output parameter zj as a function of the 

expected values, µi, and the errors, ∆wi, of the input variables. 
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The basic definition of the error, 
jzδ , in the output parameter zj is presented in Eq 

(2-5); then it is rearranged by inserting the Taylor series expansion, as shown is Eq (2-6). 
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Assuming that the higher order terms are negligible, this last equation returns a 

linear combination of the dimensional errors in the input variables.  Consider that there 
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are m output variables; the complete set of linear transformations can be arranged in 

matrix form, as illustrated in Eq (2-7).  The m × n matrix of partial derivatives is 

commonly referred as to the Jacobian matrix, [J]. 
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An advantage of the multivariate error analysis method is that exact expressions 

of the output variables are not necessarily required.  In effect, the elements of the 

Jacobian matrix can be estimated numerically.  This is done by perturbing individual 

input parameters from their expected value, virtually generating the consequent assembly, 

and then calculating the errors in the output parameters. 

The input variables are actually the assignable dimensions, so it is simple to 

establish their covariance matrix, [Cw], if their tolerances are known.  A simple 

expression presented in Eq (2-8) relates the covariance matrix of the input parameters to 

the covariance matrix of the output variables, [Cz]. 

[ ] [ ][ ][ ]Twz JCJC =  (2-8) 

By extracting the errors from the diagonal of the resulting matrix [Cz], the 

multivariate error analysis returns the variations in the output parameters as a function of 

the tolerances assigned to the input variables.  This analysis can then be implemented in a 

tolerance allocation procedure. 

 

2.2.3.4. Comparison of the Methods 

As a synthesis, Table 2-2 presents a qualitative comparison of the three described 

methods.  They are evaluated in accordance to their suitability in a tolerance allocation 

procedure.  However, they may be used for other analyses. 
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Table 2-2: Comparison of Methods for Analyzing System Variability 

 Monte 
Carlo 

Simulation 

Analytical 
Model 

Multivariate 
Error 

Analysis 
Simplicity of establishing the algorithm, 
once the mathematical model is known 

Good Regular Regular 

Transparency of the algorithm, when 
bringing modifications or corrections 

Good Bad Regular 

Repeatability of the results Good Very good* Very good 

Computing speed Very bad Very good Regular 

Ability to allocate tolerances 
On simple assemblies 

Regular Very good Good 

Ability to allocate tolerances 
on complex assemblies 

Bad Regular Good 
* Subject to independence of output variables 

In conclusion, Monte Carlo simulation is relatively easy to establish, but is not 

really suitable for tolerance allocation; it can be used to verify the results of the other 

methods by performing a tolerance analysis, though.  The analytical model is very 

efficient if the assembly is not too complex; it presents great advantages, but also suffers 

notable drawbacks.  Finally, multivariate error analysis provides a good compromise of 

computing characteristics that makes it very interesting for allocating tolerances in 

general. 

 

2.3. Least Cost Tolerance Allocation 

2.3.1. Introduction 

First of all, it is important to note the difference between tolerance analysis and 

tolerance allocation.  Tolerance analysis calculates the performance of a system for a 

given set of fixed tolerances, while tolerance allocation selects the tolerances to assign so 

that the system can satisfy its functional requirements.  The objective of the presented 

work is to minimize the manufacturing cost of an exactly constrained system.  This cost 

is affected by the values of the tolerances assigned to the different dimensions of the 

system.  The current problem is then a least cost tolerance allocation.   
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On one hand, making tight tolerances increases the manufacturing cost of the 

system. On the other hand, if the tolerances are too large, the accuracy of the entire 

system may be so affected that it may not be able to fulfill its functional requirements 

anymore.  A compromise between cost minimization and functionality of the product 

then has to be established.  This can be done by finding the best set of tolerances that 

allows the system to keep respecting its functionality for the least cost possible.  Hence 

the problem is expressed as a minimization subject to constraints.  An optimization 

algorithm has to be established, in which the tolerances can be modified so that the 

manufacturing cost can be lowered while the performance of the system stays at an 

acceptable level. 

Least cost tolerance allocation may be identified as a fundamental problem in 

industry: finding a balanced compromise between precision and mass production.  In 

effect, precision is represented by the functional requirements of the system, while 

manufacturing cost is a major concern in mass production.  The proposed way to solve 

this problem is an optimization procedure.  However, optimization techniques may be 

used in many other disciplines or even other engineering analyses [27]. 

 

2.3.2. Tolerance Allocation by Optimization 

The real difficulty when dealing with an optimization problem is its formulation 

for computational purposes.  Once the different elements of the problem are identified 

and expressed in a mathematical form, it is relatively easy to write the corresponding 

algorithm, and some software packages can solve it with a specific optimization toolbox.  

This section presents the elements to identify in order to solve the current problem, which 

is a minimization subject to constraints. 

The first entities to identify are the design variables.  They are the quantifiable 

parameters that can be changed by the algorithm while looking for the optimized 

solution.  These elements should be linearly independent in order to avoid conflicting 

solutions.  In effect, if several specifications can define one single design variable, they 

may be contradictory when the optimization program is run, so it would be impossible to 

return a properly optimized value for the design variable concerned.  In the current 
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problem, the design variables are the tolerances in the exactly constrained assembly.  

Assuming they are expressed as deviations from the nominal dimensions, their values 

should be positive.  Moreover, for satisfying the independence requirement, one single 

value should represent a group of tolerances made by the same elementary manufacturing 

sequence.  In effect, it is impossible to make different levels of tolerance during the same 

manufacturing process; so all the tolerances made by one sequence are strongly 

correlated. 

The second feature to identify is the objective of the optimization.  It is a function, 

depending on the design variables, that has to be optimized.  For least cost tolerance 

allocation, the objective function is the manufacturing cost that has to be minimized.  It 

should be expressed in terms of the values of the assignable tolerances; it is then 

necessary to establish mathematically some cost / tolerance functions.  This topic will be 

discussed in the next section. 

Finally, the system may be subject to constraints.  They can be defined either as 

equalities or as inequalities, influenced by the design variables.  Constraint functions are 

then bounded by limits, which are the functional requirements of the system.  There may 

be multiple constraints, one for each requirement of the system.  For the tolerance 

allocation problem, the constraints are expressed as inequalities.  They are the deviations 

resulting from the combinations of the assignable tolerances, which are the design 

variables.  These combinations are made with one of the different techniques presented in 

Section 2.2.3 that establish a mathematical model of the system.  These final deviations 

characterize the performance of the system, so they shouldn’t be greater than a defined 

limit, otherwise the system won’t be able to fulfill its functional requirements.   

 

2.3.3. Cost / Tolerance Relations 

The objective function of the tolerance allocation procedure requires an 

expression of the manufacturing cost of the assembly as a function of the tolerances.  It is 

then necessary to establish cost / tolerance relations.  There exists a notable amount of 

publications dealing with this subject for metal removal processes. Chase [10] provides 
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an efficient synthesis of these studies, with empirical functions describing the 

relationships between tolerance and cost. 

For material removal processes, the tolerances can be tightened or loosened by 

modifying the manufacturing parameters, such as feed, cutting speed, or depth of cut.  

Quality of tooling, of fixtures, and of cutting tools also affects the tolerances and the 

manufacturing cost.  In addition, the workpiece may also be changed by selecting a more 

machinable alloy.  All these parameters create a relation between tolerances and 

manufacturing cost.  It is nearly impossible to predict analytically these relations; hence 

empirical models have to be established from experimental data. 

The manufacturing cost of a dimension depends upon several parameters: 

• The selected manufacturing process.  The existing material removal processes don’t 

produce the same tolerancing deviation for the same operating cost.  Some of them are 

suitable for roughing operations, while other ones are adapted for finishing sequences.  

Moreover, some processes are only efficient for a given range of dimensions.  A 

manufacturing cost should then be defined for every material removal process. 

• The dimension’s nominal value, also known as the range.  It is more expensive to 

hold a given tolerance for a big dimension than for a smaller one.  Cost / tolerance 

relations then depend upon the range of the manufactured dimensions.  

• The assigned tolerance.  Tightening tolerances increases cost.  This is the design 

variable that can be modified to adjust the cost, once the nominal dimension is defined 

and the manufacturing process is selected. 

Different sets of experiments were run while varying these three parameters, and 

the resulting cost was estimated.  This cost was expressed in a relative way to eliminate 

the effects of inflation.  The resulting experimental data were treated by a curve fit 

procedure to establish empirical relations.  According to Chase’s researches, the 

reciprocal power equation presented in Eq (2-9) looks to be an appropriate function to 

represent the variable part of cost / tolerance relations. 
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β

α

Tolerance

Range
ACost ×=  (2-9) 

where A, α and β are positive constants depending on the selected manufacturing process. 

Once the design of the assembly is fixed and the manufacturing process is 

selected, it is possible to transform this equation into a direct relation between cost and 

tolerance.  One function will then be specific to one assignable dimension. 

Relations for material removal processes have already been established.  

However, cost / tolerance functions for other manufacturing processes have not yet been 

analyzed in a broad scope.  Further investigation should be conducted in this field for 

establishing a complete analysis of the possible cost / tolerance relations. 

 

2.4. Chapter Summary 

Exact constraint theory, analysis of manufacturing variations, and concepts of 

optimization are used to establish a method for allocating tolerances to kinematic 

systems.  The procedure can be divided into four major steps: 

• Describe the geometry and dimensional variations in a mathematical form.  This is 

done by establishing a parametric model of the assembly in order to characterize the 

performance of the system as a function of its manufacturing variations, as described in 

Section 2.2.2.  This method is especially suitable for exactly constrained systems, as 

explained in Section 2.1. 

• Combine dimensional variations within the assembly to estimate resulting variation 

in the system.  Monte Carlo simulation, analytical modeling, and multivariate error 

analysis are some of the mathematical tools that can be used for performing this 

combination; they are presented in Section 2.2.3. 

• Relate resulting variations to the performance requirements of the system.  This is 

specific to the functionality of every system, so there is no general method that can be 

presented.  However, the functional requirements of a mechanical assembly are related to 

the assembly variation, previously calculated. 
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• Relate dimensional tolerances to manufacturing cost.  Since the problem is a least 

cost tolerance allocation, the objective is to minimize the cost of the system by 

adequately assigning its tolerances.  Cost / tolerance relations are then needed; they are 

presented in Section 2.3.3. 

 

These four steps are included in an optimization algorithm illustrated in Fig 2-1.  

This program varies the tolerances of the assembly in order to find the minimum 

manufacturing cost while respecting the functional requirements of the system.  There 

exist different methods for combining the manufacturing variations. One should be 

selected advisedly, in accordance with the complexity of the system. 

An optimization procedure is performed on one fixed design, for which the 

nominal dimensions and the manufacturing processes have been previously selected.  

Different design or manufacturing concepts can be compared by simply modifying the 

input data of the optimization, then comparing the resulting costs provided by the 

different tolerance allocations. 
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Fig 2-9: Flowchart of Least Cost Tolerance Allocation for Kinematic System 
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Chapter 3: Application to Optical Fiber Connectors 

3.1. Introduction 

3.1.1. Presentation 

3.1.1.1. Fiber Optics 

Until the 1980s, copper cables carried most electronic communication. Then 

optical fibers were introduced, where light signals replace the electrical ones.  An optical 

fiber is a transparent rod, usually made of glass or clear plastic, through which light may 

propagate.  Its structure consists of a core, where light travels, coated with a cladding, as 

illustrated in Fig 3-1.  A jacket can eventually protect the fiber. 

Protective Jacket
Cladding

Core

 

Fig 3-1: Structure of an Optical Fiber 
 

The core and the cladding have different optical characteristics. The core 

refractive index is slightly greater than the cladding one; hence light stays inside the core 

and reflects against the core/cladding interface.  For typical communication fibers, the 

cladding diameter is ~ 125 µm.  The core diameter can vary a lot, depending on the 

nature of the fiber. For multimode fibers, in which light propagates in many modes, the 

core diameter is commonly ~ 50 µm.  For single-mode fibers, the core diameter can vary 

from 5 to 12 µm. 

Fiber optic communication presents numerous advantages compared to other 

communication methods [28]: 
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• Transmission loss is relatively low; thus long-distance transmission is possible 

without using a costly amplification system, 

• Fiber is lighter than copper cable, 

• An optical fiber can carry more information than an equivalent copper cable can, 

• There is a complete electrical isolation between the sender and the receiver, 

• There is no interference in the transmission of light from electrical disturbances or 

electrical noise, 

• Optical fiber is more reliable, since it is not subject to corrosion and can better 

withstand environmental conditions, 

• Communication is more secure since it is impossible to intercept the light signal from 

outside, 

• The manufacturing cost of a fiber optic communication system is lower than the cost 

of an equivalent cable communication system. 

3.1.1.2. Transmission Losses 

As shown in Eq (3-1), transmission coefficient (T) is defined as the ratio of the 

output signal power (Pout) over the input signal power (Pin), where both powers are 

expressed in the same units while the transmission coefficient is a non-dimensional 

number. 

in

out

P

P
T =  (3-1) 

It is often convenient to express signal loss in decibels, with the relation given in 

Eq (3-2).  Since the transmission coefficient T is a number between 0 and 1, loss in 

decibels is always a negative number.  However, it is common to talk only of its absolute 

value because loss implies the negative sign. 









×=

in

out
dB P

P
Loss 10log10  (3-2) 
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Transmission loss is relatively low in fiber optic communication.  In effect, a 

common copper cable reduces the signal power to ~ 1% of its input value after one 

kilometer, which represents a 20 dB loss, while a non-interrupted single-mode fiber can 

typically carry up to 96% of the signal on the same distance, which corresponds to a 0.16 

dB loss.  Signal loss increases with fiber length, so for comparison purposes, most of the 

calculations refer to a standard length of one kilometer. 

There exist three main sources of light loss in a fiber [28]: 

• Material loss.  Absorption occurs when light interacts with the molecular structure of 

the material.  Impurities inside the fiber may increase this signal loss. 

• Light scattering.  Molecules, impurities and structural imperfections of the material 

scatter light, which stops propagating and is lost. 

• Bend loss.  In practical applications, an optical fiber never follows a straight line but 

instead is curved.  If the radius of curvature is too small, light can’t reflect correctly on 

the core/cladding interface and is dissipated. 

These losses are wavelength dependent.  For most applications, the greater the 

wavelength, the lower the loss, but some applications need a specific wavelength.  These 

losses occur inside the fiber.  On the other hand, connection losses generally have more 

important consequences.  For instance, a lateral misalignment of 1 micron between two 

connected single-mode fibers generates a 0.21 dB signal loss.  

As illustrated in Fig 3-2, there exist three types of connection losses [28] that are 

directly related to the positional manufacturing errors within the connectors: 

• Lateral misalignment is due to the offset of the centerlines of the mating fibers, 

• End-separation misalignment comes from the gap between the ends of the connected 

fibers, 

• And finally, angular misalignment occurs when there exists an angle between the two 

axes of the fibers. 
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Fig 3-2: Misalignments Generating Connection Losses Between Mating Fibers 

 

Every one of these misalignments generates a loss that can be calculated thanks to 

analytical formulae found in literature [29].  The lateral misalignment is of most concern 

for connection loss since angular misalignment is negligible and end-separation is usually 

resolved by mechanical contact between the fibers or index-matching compounds.  

Optical fiber connectors should then limit in priority this kind of misalignment in order to 

improve efficiently their performance. 

Polishing the end surfaces of the fibers is also important for limiting connection 

loss.  In the current study, it is assumed that the quality of the polishing operation is ood 

enough to ignore the resulting connection loss compared the one generated by the lateral 

misalignment. 

3.1.1.3. Optical Fiber Connectors 

Most of the mass-produced connections for optical fibers are made by mechanical 

connectors, which are separable and relatively economical.  However, these devices have 

to be manufactured accurately to align correctly the fiber cores. 

A common type of array connector is an assembly of two mechanically 

transferable (MT) ferrules aligned by pins.  An MT ferrule holds the fibers in position by 

locating features such as cylindrical channels or vee-grooves.  An aligning pin is housed 

in a cylindrical hole of a theoretically equal diameter, but manufacturing variations for 

the pin and the MT ferrule make this purely theoretical equality impossible.  If the 

diameter of the hole is greater than the diameter of the pin, there is a clearance between 

them and the assembly is under-constrained.  If the hole has a smaller diameter than the 

pin, the system is over-constrained and there is an elastic or plastic deformation of the 
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components that affects their accuracy.  In both cases, precision of the alignment is 

notably affected. 

A solution to avoid these effects is to design the ferrules so that the components 

are exactly constrained when assembled together.  The concept of the connector is 

illustrated in Fig 3-3.  A kinematic analysis of this assembly is presented in Section 3.2.1. 

 

 
 

Fig 3-3: Optical Fiber Connector with Kinematically Designed Ferrules 
 

These connectors are used in a passive alignment configuration: the fibers are 

directly put into the ferrules to be aligned; no improvement system is applied to correct 

their positioning; therefore the lateral misalignment between two mating fiber cores 

depends directly on the dimensional and geometric variations of the components. 

 

3.1.2. Background and Prior Work 

Transmission loss is a major issue when connecting optical fibers.  When fiber 

optics communication was introduced, most of the current manufacturing processes 

couldn’t attain the precision required for making mechanical connectors that could 
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provide a reasonable coupling efficiency by simply aligning two fibers.  Some 

sophisticated techniques were then developed.  For instance, lenses could expand the 

light beam at the end of the cores [30], micro actuators could improve the fiber alignment 

[31], or the core diameters could be artificially increased by thermal expansion [32].  

However, these techniques substantially increase the manufacturing cost of the 

connectors. 

Recent developments in manufacturing have made possible the production of 

mechanical connectors capable of positioning the fibers with suitable accuracy [33].  The 

resulting passive alignment is now so efficient that it is possible to avoid the correcting 

systems previously mentioned.  This solution is a way to reduce the number of parts 

within the connector, and consequently its manufacturing cost. 

Production of optical fiber connectors can involve various manufacturing 

processes, like injection molding [34], LIGA technique [35] or etching [36], and different 

materials [37,38].  Manufacturing variations are a critical issue in connector design [39].  

In effect, manufacturing errors generate misalignments that increase transmission loss 

[29].  Prior research performed tolerance analyses on MT ferrules using Monte Carlo 

simulation [40] or analytical techniques [41]. 

This chapter describes a tolerance allocation technique for kinematically designed 

connectors which is more efficient than the existing methods used for MT ferrules. The 

developed procedure is based upon an exact mathematical model of the connector, which 

improves the reliability of the method. The technique has been experimented with 

Matlab∗ scripts. Monte Carlo simulations, also computed in Matlab, have been built to 

verify the results of the tolerance allocation. 

 

3.1.3. Tolerance Allocation 

A rigorous tolerance allocation performed on the exactly constrained connector is 

based upon a four-step algorithm, as described below. 

                                                        
∗ Matlab for Windows is software from The MathWorks, Inc., 24 Prime Park Way, Natick, MA. 
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• Describe the geometry and dimensional variations in a mathematical form.  A 

parametric model for every component of the connector is established as a function of the 

nominal dimensions and the corresponding dimensional variations. Since the design of 

the current connector follows the exact constraint theory, a kinematic analysis of the 

connections among the different parts supplies a unique solution for the respective 

location of the components. This solution, accurate and reliable, can be expressed 

mathematically in a parametric model of the whole assembly. 

• Combine dimensional variations in the connector to estimate misalignment of mating 

fibers.  The dimensional variations of the connector are directly related to its assigned 

tolerances.  The dimensional errors within the connector generate a misalignment 

between the mating fibers.  Applying the law of error propagation on the mathematical 

model of the assembly provides an analytical relation between dimensional variation and 

fiber misalignment. The unique solution of the mathematical model due to the exact 

constraint theory makes this approach possible. 

• Relate assembly variations to the performance requirements of the connector.  The 

performance of a connector is defined by its capacity to transmit light with as little loss as 

possible.  Connection losses dependent on a mechanical connector are directly related to 

the misalignments generated by the manufacturing errors of the components.  When 

considering realistic manufacturing variations, lateral misalignment is the most critical 

parameter.  The lateral misalignment between two mating fibers therefore characterizes 

the performance of a connector.  Since the present connector aligns arrays of multiple 

fibers, its performance will be defined with regard to the maximum misalignment 

observed in the whole array. 

• Relate dimensional tolerances to manufacturing cost.  This connector will be mass-

produced; hence its manufacturing cost has to be minimized.  The magnitude of the 

acceptable lateral misalignment determines the manufacturing processes that should be 

used for making the connector.  Once the production sequence is selected, it is possible to 

express the manufacturing cost as a function of the assigned tolerances using cost-

tolerance functions. 
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The algorithm presented in Fig 3-4 includes these four steps.  The law of error 

propagation, applied to the mathematical model of the connector, returns an analytical 

relation between lateral misalignment and manufacturing tolerances.  In parallel, cost-

tolerance functions are used to calculate the resulting manufacturing cost.  The process is 

implemented in an optimization loop. 

Start

Input Nominal Dimensions for
Components of the Connector

Input Fixed Tolerances
for Pins and Fibers

Set of Tolerances for Ferrules
as a Starting Guess

Establish Parametric Model
of the Connector

Establish Partial Derivatives of Misalignments
with Respect to Assignable Dimensions

Input Constraints on
Acceptable Misalignments

Calculate Misalignments by
Law of Error Propagation

Calculate Manufacturing Cost

Can the Cost
Be Reduced?

Display Optimized Set of Tolerances
and Minimized Cost

End

Yes

No

Select a New Set
of Tolerances

 
 

Fig 3-4: Flowchart of the Tolerance Allocation for Optical Fiber Connector 
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3.2. Mathematical Model 

3.2.1. Exact Constraints Within the Connector 

The exactly constrained connector follows the rules of kinematic design theory.  

The main requirement of this feature is two align mechanically two arrays of fibers.  

Every fiber is located in a vee-groove: there is a cylindrical contact between a fiber and 

its corresponding ferrule.  The two ferrules are aligned by two pins.  The male ferrule is 

connected to the first pin by a vee-groove, and to the second pin by two planes; in both 

cases, it is a cylindrical contact.  The female ferrule has a different design to avoid 

redundant constraints.  In effect, a vee-groove still makes a cylindrical contact between 

the first pin and the ferrule, but a single plane is touching the second pin for making a 

linear contact.  Finally, the different elements are maintained in position by flexible clips.  

The corresponding kinematic mapping of the connector is illustrated in Fig 3-5, while its 

kinematic diagram is represented in Fig 3-6 with four pairs of fibers. 
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Fig 3-5: Kinematic Analysis of the Exactly Constrained Connector 
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Fig 3-6: 3D Kinematic Diagram of the Exactly Constrained Connector 

 

As discussed previously, lateral misalignment is the major source of transmission 

loss in mechanical connections.  A 2D model of the connector is then a reasonable 

approximation for representing its geometry.  The modeling plane is the xy-plane, z being 

the direction along the axes of the fibers. The geometry of the male ferrule is illustrated 

in the plane perpendicular to the axes of the fibers in Fig 3-7. 
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x

y
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Fig 3-7: Male Ferrule in the xy-Plane 

 

In the 2D configuration, it is possible to establish a direct mathematical relation 

between the variation of the dimensions in the ferrules and the lateral misalignment 
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between two mating fibers.  Since the components are exactly constrained, there is a 

unique solution for the location of a connection point between two features. 

  

3.2.2. Parametric Model of the Components in the Connector 

3.2.2.1. Presentation 

The tolerance allocation process is based upon a mathematical model of the 

assembly that includes the dimensions of the components and their respective variations 

due to the manufacturing errors.  These variations appear at different levels of the 

assembly.  First of all, the fibers have variations that can be represented in 2D as shown 

in Fig 3-8.  If the fiber is perfect, its core and its cladding are concentric and perfectly 

circular with known diameters.  But in a real case, the manufacturing errors affect the 

dimensions and the shape of a fiber. 
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Fig 3-8: 2D Model of a Perfect Fiber and a Real Fiber 
 

The defects previously presented are only for individual fibers.  The variations of 

the ferrules and the alignment pins will also affect the accuracy of the alignment of a 

whole array of fibers.  In theory, this array is a perfectly straight line with a constant pitch 

between two successive fibers, as illustrated in Fig 3-9.  Manufacturing errors in the 

different components of the connector induce variations in the positioning of the fibers 

within the array.  Fig 3-10 presents some relevant variations that can happen in an array 

because of the manufacturing errors. 
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Fig 3-9: 2D Model of a Perfect Array of Fibers 
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Fig 3-10: 2D Model of an Array of Fibers with Manufacturing Variations 
 

Finally, the function of a connector is to mate two arrays of fibers.  Both arrays 

have their dimensional and geometric variations, as explained before.  When mating the 

arrays, the errors in the fibers, the ferrules, and the alignment pins are combined and 

produce a lateral misalignment in every pair of mating cores, as shown in Fig 3-11.  The 

parametric model to be established should calculate this lateral misalignment as a 

function of the manufacturing errors within the different components of the connector, by 

mathematically expressing this combination of variations.  



 

 42  

 
Fig 3-11: 2D Model of Mating Arrays of Fibers with Manufacturing Variations 

 

The manufactured dimensions are interpreted as variables in the mathematical 

model.  This section presents how the different components with their respective errors 

are parametrically represented.  Since a statistical treatment will be performed on the 

mathematical model, the dimensions subject to manufacturing errors are expressed as 

randomly distributed variables, with an expected value equal to their nominal dimension 

and a standard deviation related to their assigned tolerance.  Identification of their 

distribution is important too. 

3.2.2.2. Pins and Fiber Claddings 

Two pins align the ferrules, and the fibers are located by vee-grooves.  These 

cylindrical features are represented by circles in the 2D model.  The diameter is the only 

dimension that is important for positioning the fibers, since the length of the pins is not 

taken into consideration in the 2D model.  The diameter can vary by its scalar dimension, 

represented by its magnitude, or by its geometry, defined by its non-circularity, as 

illustrated in Fig 3-12. 
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Fig 3-12: Different Possible Errors in a Cylindrical Feature 

 

Knowing the radius of a cylinder is particularly important at the two contact 

points with the corresponding vee-groove.  The parametric model of a random cylinder 

first defines its average radius as a normally distributed variable: this deals with the 

strictly dimensional variation of the feature.  Then at both contact points, the average 

radius is multiplied by a random coefficient that stands for the non-circularity of the 

feature: this is its geometric variation.  This coefficient is a normally distributed variable, 

with an expected value of 1. 

3.2.2.3. Cores of Fibers 

A fiber is aligned by its cladding in contact with a vee-groove of the ferrule.  But 

light is transmitted through the core of the fiber.  Thus the errors of the core position 

relative to the cladding should be taken into consideration. 

In a perfect fiber, the core is exactly concentric to the cladding.  In a real one, 

there may be an eccentricity that can be quantified by the fiber manufacturer.  The 

mathematical model represents this eccentricity with two parameters: its magnitude, 

which is a normally distributed variable whose expected value equals 0, and its location 

angle, which is a uniformly distributed variable varying from 0 to 180 degrees.  Note that 

it is not necessary to distribute this angle on a 360-degree range, since the normally 

distributed magnitude can have a negative value. 

Geometry of the core itself can also vary.  Its diameter is expressed as a normally 

distributed variable.  Its non-circularity has a negligible effect on the transmission loss, 
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compared to the other sources of errors.  Then a core is assumed to be perfectly circular; 

this approximation simplifies the mathematical model without affecting its accuracy. 

3.2.2.4. Ferrules 

The fibers tolerances are determined by industry standards.  On the oter hand, it is 

possible to control the tolerances on the ferrules and the pins to reduce production cost 

while respecting the functional requirements of the connectors.  The geometry of a ferrule 

is parametrically represented in 2D by a set of lengths and angles, as illustrated in Fig 

3-13.  All these dimensions are normally distributed variables in the mathematical model. 
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Fig 3-13: 2D Parametric Representation of a Ferrule 

 

Distances in the x-direction between vee-grooves are referred to as pitches.  A 

complete parametric model of the ferrule requires three pitches: pitch between the pin 

vee-groove and the closest fiber vee-groove (identified as “Pitch Pin” in Fig 3-13), pitch 

between two successive fiber vee-grooves (“Pitch Fiber”), and finally pitch between the 

wall positioning the second pin and the closest fiber vee-groove (“Pitch Flat”). 

Since these dimensions only locate the grooves in the x-direction, another set of 

lengths is needed for positioning them in the y-direction.  These dimensions are called 

“depth,” and they represent the distance between the vertex of a vee-groove and a datum 
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plane, shown as the bottom of a perfect ferrule in Fig 3-13.  The vertex of a groove is 

actually a virtual point, since it is hidden by the radius of curvature present at the bottom 

of the groove.  Once again, there are three different dimensions for the whole ferrule.  

The first depth is used by the pin vee-groove (“Depth Pin”).  The second one locates the 

fiber grooves (“Fiber Depth”).  The third one is finally the distance between the datum 

plane and the flat surface positioning the second fiber (“Depth Flat”).  This flat surface is 

modeled in the parametric representation as perfectly parallel to the datum plane; any 

form variation of the surface, such as flatness error or parallelism error, is included in the 

variation of the depth.  This statement is acceptable because the pin and the ferrule are 

exactly constrained, so their contact is reduced to one single point in the 2D 

representation. 

The parametric model of the ferrule is completed by the angles of the vee-

grooves.  These features are used to locate the first pin and the fibers.  Two angles affect 

the accuracy of a vee-groove: its aperture angle, and its inclination angle, which is the 

angle between its bisector and the y-axis.  Metrology applied to a ferrule cannot directly 

measure the value of the inclination angle, so it was decided to represent the vee-groove 

as a combination of two half-angles.  The aperture angle is defined as the sum of the two 

half-angles while the inclination angle is calculated as half their difference.  Hence the 

parametric model uses half-angles for the pin vee-grooves (“Half-Angle Pin”) and for the 

fiber grooves (“Half-Angle Fiber”). 

The second pin is positioned in the male ferrule by a flat surface and a wall.  The 

mathematical model combines these two surfaces to define them as a single vee-groove. 

However, since the flat surface is defined as perfectly parallel to the x-direction, there is 

no need to model an inclination angle for this groove.  Its aperture angle (“Angle Flat”) is 

sufficient to represent mathematically its geometry and the related variations. 

3.2.2.5. List of the Variables 

The previous sections present how the variables included in the parametric model 

of the connector are defined.  Table 3-1 summarizes these randomly distributed variables 

with their respective distributions. 
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Table 3-1: Variables Used in the 2D Parametric Model of the Connector 

 Dimension Distribution 

Average diameter Normal 
Pi

n 

Non-circularity Normal centered on 1 

Average diameter of cladding Normal 

Non-circularity of cladding Normal centered on 1 

Diameter of core Normal 

Magnitude of core eccentricity  Normal centered on 0 

Fi
be

r 

Angle of core eccentricity Uniform on a 180-degree range 

Pitch between pin and closest fiber Normal 

Pitch between two successive fibers Normal 

Pitch between wall and closest fiber Normal 

Depth of pin vee-groove Normal 

Depth of fiber vee-groove Normal 

Depth of flat surface Normal 

Half-angle of pin vee-groove Normal 

Half-angle of fiber vee-groove Normal 

Fe
rr

ul
e 

Angle between wall and flat surface Normal 

 

 

3.2.3. Mathematic Description of the Geometric Model 

3.2.3.1. Assembly of a Random Cylinder Inside a Random Vee-Groove 

Knowing the real location of a cylindrical feature in a vee-groove is of primary 

interest for modeling the geometry of the connector, since the pins and the fibers are 

located by vee-grooves.  The advantage of such an assembly is that the resting position of 

the cylindrical feature is defined by only two lines, which is equivalent to an exact 

constraint for a 2D model.  Hence there can only be one resting position for one given 

cylinder and one vee-groove if the effects of friction and stiffness of the features are 

neglected.  The geometry of a non-round cylinder in a real vee-groove is illustrated in Fig 

3-14. 
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Fig 3-14: Location of a Random Cylinder in a Random Vee-Groove 

 

The geometry of the groove is defined by two angles: φL is the angle between the 

left edge of the vee-groove and the vertical, and φR  is the one for the right side.  The non-

round cylinder (pin or fiber) is put inside the vee-groove.  C is the center of the non-

round cylinder.  V is the vertex of the vee-groove.  ML and MR are respectively the 

contact points of the cylinder with the left edge of the vee-groove and with the right edge.  

Consequently, CML and CMR are respectively the radii of the cylinder on the left side and 

on the right side.  The goal is to find the coordinates of vector CV .  The known 

dimensions are the radii CML and CMR, and the angles Lφ  and Rφ . 

At the contact points ML and MR, the non-round cylinder locally acts like a 

perfect cylinder, so the edges are perpendicular to the respective radii at these contact 

points, which gives Eqs (3-3)-(3-4): 

2

π
=∠ CVM L  (3-3) 

2

π
=∠ VCM R  (3-4) 

From the geometry of triangle (CMLMR), we can get the relation shown in Eq 

(3-5): 



 

 48  

( )LRRLRLRL CMMCMCMCMCMMM ∠⋅⋅⋅−+= cos222  (3-5) 

On the other hand, the geometry of quadrilatere (CMLVMR) provides Eq (3-6): 

CVMVCMVMMCMM LRLRRL ∠−∠−∠−=∠ π2  (3-6) 

Inserting Eqs (3-3)-(3-4) in Eq (3-6) gives Eq (3-7): 

LRRL VMMCMM ∠−=∠ π  (3-7) 

Trigonometric relations applied to Eq (3-7) leads to Eq (3-8): 

( ) ( )LRRL VMMCMM ∠−=∠ coscos  (3-8) 

Eq (3-9) is obtained by expressing Eq (3-8) in terms of the known dimensions: 

( ) ( )RLRLCMM φφ +−=∠ coscos  (3-9) 

Eq (3-5) can now be modified by inserting Eq (3-9) to become Eq (3-10): 

( )RLRLRLRL CMCMCMCMMM φφ +⋅⋅⋅++= cos222  (3-10) 

This equation fully defines the length MLMR with respect to known dimensions. 

The next step deals with the geometry of triangle (CMLMR), which provides Eq 

(3-11): 

( )
RLL

RRLL
LR MMCM

CMMMCM
CMM

⋅⋅
−+

=∠
2

cos
222

 (3-11) 

Inserting Eq (3-10) in Eq (3-11) gives Eq (3-12), and by simplification Eq (3-13): 

( )








⋅⋅

+⋅⋅⋅+⋅
=∠

RLL

RLRLL
LR MMCM

CMCMCM
CMM

2

cos22
arccos

2 φφ
 (3-12) 

( )







 +⋅+
=∠⇒

RL

RLRL
LR MM

CMCM
CMM

φφcos
arccos  (3-13) 

This last equation fully defines the value of angle RLMCM∠  with respect to 

known dimensions. 



 

 49  

Then the geometry of rectangle triangles (VMLC) and (VMRC) are taken into 

consideration to establish Eq (3-14)-(3-15): 

222 VCCMVM LL =+  (3-14) 

222 VCCMVM RR =+  (3-15) 

Combining these two equations results in Eq (3-16): 

2222
RLLR CMCMVMVM −+=  (3-16) 

At the same time, the geometry of triangle (VMLMR) is used to establish Eq 

(3-17): 

( )RLRLLRLLR MVMMMVMMMVMVM ∠⋅⋅⋅−+= cos2222  (3-17) 

Equality of Eq (3-16) and Eq (3-17) results in Eq (3-18): 

( ) 222 cos2 RLRLRLLRL RRMVMMMVMMM −=∠⋅⋅⋅−  (3-18) 

Eq (3-19) is obtained by inserting Eq (3-10) in Eq (3-18): 

( )

( ) 22

22

cos2

cos2

RLRLRLL

RLRLLRL

CMCMMVMMMVM

MMVMCMCM

−=∠⋅⋅⋅−

+⋅⋅⋅++ φφ
 (3-19) 

Trigonometric relations establish Eq (3-20): 

( ) ( )CMMCMMMVM LRLRRL ∠=





 −=∠ sin

2
coscos

π
 (3-20) 

This relation is inserted in Eq (3-19) to obtain Eq (3-21): 

( )
( )CMMMM

CMCMCM
VM

LRRL

RLRLR
L ∠⋅

+⋅⋅−
=

sin

cos2 φφ
 (3-21) 

Now the geometry of rectangle triangle (VCML) is observed to establish Eq 

(3-22): 

( )
L

L
L VM

CM
CVM =∠tan  (3-22) 
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Inserting Eq (3-21) in Eq (3-22) results in Eq (3-23): 

( )
( )








+⋅⋅+

∠⋅⋅
=∠

RLRLR

LRRLL
L CMCMCM

CMMMMCM
CVM

φφcos

sin
arctan 2

 (3-23) 

This equation fully defines angle LCVM∠  with respect to known dimensions. 

The same triangle is used to obtain Eq (3-24): 

( )L

L

CVM

CM
CV

∠
=

sin
 (3-24) 

The coordinates of vector CV can finally be established with Eqs (3-25)-(3-26): 

( )

( )








∠−⋅−=

∠−⋅=

LLCV

LLCV

CVMCVY

CVMCVX

φ

φ

cos

sin

 

(3-25) 

 

 (3-26) 

By inserting Eq (3-24), these equations can be modified as shown in Eqs (3-27)-

(3-28). 

( )
( )

( )
( )










∠
∠−⋅

−=

∠
∠−⋅

=

L

LLL

CV

L

LLL

CV

CVM

CVMCM
Y

CVM

CVMCM
X

sin

cos

sin

sin

φ

φ

 

(3-27) 

 

 (3-28) 

These last two equations fully define the coordinates of vector CV  with respect 

to known dimensions, in the local coordinate system of a ferrule. 

3.2.3.2. Creating an Array of Fibers 

The previous step presents a way to calculate the coordinates of a fiber or a pin in 

its respective vee-groove.  The following step is to define the coordinates of the fibers in 

the same coordinate system. The general shape of a ferrule is illustrated in Fig 3-15: 
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y

 
Fig 3-15: Shape of a Random Ferrule in 2D 

 

The temporary coordinate system (indexed A) is such that the bottom of the 

ferrule is horizontal.  The starting point is to define the coordinates of vector 21CC . This 

vector can be decomposed like this: 22211121 CVVVVCCC ++= . 

Coordinates of vector 11VC  can be found with the method presented in Section 

3.2.3.1.  The x-coordinate of vector 21VV  is a dimension defined by the designer.  Its y-

coordinate can be defined by the dimension scheme presented in Eqs (3-29)-(3-30), 

related to the bottom of the ferrule: 

12 12
hYhY V

A
V

A −=−  (3-29) 

121221

hhYYY V
A

V
A

VV

A −=−=⇔  (3-30) 

The second pin is assumed to lie on a horizontal surface, at the contact point MR2.  

Triangle (V2MR2C2) is rectangle in MR2, so the coordinates of vector 22CV  are given by 

Eqs (3-31)-(3-32): 

( )








=

∠
=

22

222

22

22

22 tan

RCV

A

R

R

CV

A

MCY

CVM

MC
X

 
(3-31) 

 (3-32) 

Subsequently the coordinates of vector 21CC  are given by relations presented in 

Eqs (3-33)-(3-34): 



 

 52  

( )222

22

tan211121 CVM

MC
XXX

R

R

VV

A

VC

A

CC

A

∠
++=  (3-33) 

2212
1121

RVC

A

CC

A MChhYY +−+=  (3-34) 

The coordinates of every fiber’s center are found with a similar dimension 

scheme. 

The next step is to set a new coordinate system, indexed B.  Its center is still the 

center of the reference pin, but the horizontal is now defined as the line going through the 

centers of the two pins.  Hence there is an angle εp2 between coordinate systems A and B.  

The value of this angle can be defined with the coordinates of the vectors in coordinate 

system A, as shown in Eq (3-35): 














=

21

21arctan2

CC

A

CC

A

p X

Y
ε  (3-35) 

The manufacturing errors in a fiber vee-groove will create a similar offset angle 

εf.  The coordinates ( )f
B

f
B YX ,  of the center of a fiber in the coordinate system B are 

then presented in Eqs (3-36)-(3-37): 

( )2
22 cos pff

A
f

A
f

B YXX εε −×+=  (3-36) 

( )2
22 sin pff

A
f

A
f

B YXY εε −×+=  (3-37) 

Finally, the coordinates of the core of the fiber are calculated by taking into 

consideration the eccentricity of the core deviating from the center of the fiber, as shown 

in Eqs (3-38)-(3-39): 

( )ecccoref
B

core
B EccXX φcos⋅+=  (3-38) 

( )ecccoref
B

core
B EccYY φsin⋅+=  (3-39) 

where Ecccore is the magnitude of the offset of the core and φecc is its orientation angle. 
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3.2.3.3. Mating Two Fibers 

The coordinates of the centers of the fibers can be determined independently by 

the method presented in the previous sections.  Since the ferrules are aligned by the two 

pins, the coordinate system B, whose origin is the center of the first pin and whose x-axis 

is the line that goes through the center of both pins, is common to the two ferrules. 

The core of a fiber in the male ferrule is modeled by its coordinates 

( )coreM
B

coreM
B YX , .  It has to be aligned with a core of a corresponding fiber in the female 

ferrule; the coordinates of this second core are ( )coreF
B

coreF
B YX , .  The lateral 

misalignment d between the two mating cores is then: 

( ) ( )22

coreF
B

coreM
B

coreF
B

coreM
B YYXXd −+−=  (3-40) 

When dealing with single-mode fibers, applying Marcuse’s model [29] on this 

final result allows calculating the transmission loss in decibels due to the geometric 

variations of the features assembled in the connector. 

Transmission loss depends upon lateral misalignment but also upon the optical 

properties of the fibers.  Contrarily to multi-mode fibers, single-mode fibers work with a 

specific wavelength λ (defined in meters).  It is then possible to define a free space 

propagation constant k (unit: m-1) for a single-mode connection, with Eq (3-41):   

λ
π2

=k  (3-41) 

Marcuse starts by defining a dimensionless Vi parameter for the ith fiber with Eq 

(3-42): 

( )22
claddingcorei nnakV −⋅⋅=  (3-42) 

where ai is the core radius of the fiber (in m).  This Vi parameter is used for defining the 

width parameter wi (in m) of the ith fiber by the empirical formula presented in Eq (3-43): 











++⋅= 6

2
3

879.2619.1
65.0

ii

ii
VV

aw  (3-43) 
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Finally, the transmission coefficient T between two mating fibers indexed with the 

subscripts 1 and 2 assumes the form shown in Eq (3-44): 









+
⋅

−







+

⋅⋅
=

2
2

2
1

22

2
2

2
1

21 2
exp

2

ww

d

ww

ww
T  (3-44) 

where d is the lateral misalignment defined in Eq (3-40).  The corresponding signal loss 

in dB can be calculated with Eq (3-2). 

Such an analytical model cannot be found for multi-mode fibers.  The relation 

between lateral misalignment and connection loss is then established by using 

experimental data.  The experiment consists in mating two fibers with a controlled 

misalignment. The transmission ratio is recorded while the offset is modified.  The 

collected data are graphically plotted as a point cloud, as illustrated in Fig 3-16.  A 

polynomial regression run on this point cloud returns an empirical relation between 

transmission ratio and lateral misalignment for multi-mode fibers. 

 
Fig 3-16: Experimental Determination of a Relation 
Between Loss and Misalignment by Curve Fitting 
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These equations constitute the parametric model of a connector by establishing a 

mathematical relation between the transmission loss and the manufacturing dimensions 

with their respective variations.  The model is used in a tolerance allocation procedure to 

ensure that the maximum acceptable transmission loss is respected while the 

manufacturing cost is minimized. 

 

3.3. Tolerance Allocation 

3.3.1. Overview 

This section presents a method for allocating tolerances to dimensions in exactly 

constrained ferrules used to align optical fibers.  The objective is to reduce the 

manufacturing cost without exceeding a limit on the misalignment between two mating 

fibers.  The allocation procedure is performed on the 2D geometric model of the multi-

fiber connector developed in the previous section.  An analytical representation of the 

connection, based upon statistics, is used for providing a relation between variation in 

manufactured dimensions and variation in the resulting misalignment of the fibers 

contained in the array.  Optimal tolerances are determined using a non-linear constrained 

optimization algorithm that minimizes the manufacturing cost while satisfying constraints 

on the variation of the misalignment of any pair of fibers in the array.  The method 

provides a useful tool when designing mass-produced connectors for multi-fiber cables, 

for which manufacturing cost and accuracy are critical parameters. 

The goal of this study is to select tolerances that are sufficient for aligning optical 

fibers without excessive loss, but simultaneously minimize manufacturing costs that arise 

from excessively tight tolerances.  Tolerance allocation is generally formulated as an 

optimization problem with an objective function and a set of constraints.  In this case, the 

objective is to minimize the manufacturing cost which is a function of the tolerances.  

Tolerance relations for etched silicon parts are not available.  However, for other 

materials like zirconium, a secondary material removal process like grinding may 

improve the tolerances.  In this case, we employ relations developed by Chase [10] to 

relate manufacturing costs to tolerances.  Both cost and signal loss can be defined as 
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functions of the tolerances allocated by the designer.  The optimization constraints are 

formulated as maximum tolerable signal loss within an entire connector. 

In formulating the optimization problem, the greatest challenge is determining a 

relationship between the tolerances and the performance criteria.  For complex 

assemblies such as an optical fiber connector, Monte Carlo simulations are effective 

means for relating final tolerance of an assembly to the tolerances of the components 

[42].   However, it may be difficult to implement Monte Carlo simulations within the 

optimization algorithm due to computational time.  We instead use an alternative 

approach in which a few Monte Carlo simulations provide a mathematical model relating 

assembly tolerances to component tolerances.  Knowing the geometry and the dimensions 

of the connector, it is possible to define the signal loss of the fiber connection as a 

function of the tolerances of the ferrules. 

This section presents a process to efficiently allocate the tolerances for vee-

groove fiber alignment. The first step is to construct a mathematical model of the 

dimensions and geometry of the connector, which was detailed in the previous section.  

The second step is to define, through a statistical study, the misalignment of the fiber as a 

function of the tolerances in the ferrules.  The third step is to estimate a relation between 

the tolerances and the manufacturing costs.  Finally, tolerances are allocated with an 

optimization algorithm that minimizes the manufacturing cost for a given maximum limit 

on signal loss. 

 

3.3.2. Variation Analysis by the Law of Error Propagation 

Tolerance allocation requires a relation between dimensional variations and 

connection loss.  It is established by applying the law of error propagation [25] on the 

mathematical model of the connectors. This method is computationally efficient when 

used in a tolerance allocation algorithm. 

The geometric model of the ferrules must be expressed in terms of statistics. 

Every dimension ξi, presented in Table 3-1, is defined as a randomly distributed variable. 

Its mean µi equals the value of the nominal dimension, while its standard deviation σi is a 
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third of the tolerance. For a complete representation of the connector, the same procedure 

is applied for the dimensions of the fibers and the alignment pins. 

The lateral misalignment dj for the jth pair of fibers is modeled as a vector in the 

xy-plane. It is possible to define its coordinates, ( )
jj dd yx , , as a function of the dimensions 

of the ferrules, the fibers, and the pins, as shown in Eqs (3-45)-(3-46): 

( )nixd jj
fx ξξξξ ,...,,...,, 21=  (3-45) 

( )niyd jj
fy ξξξξ ,...,,...,, 21=  (3-46) 

n being the total number of assigned dimensions within the connector. 

According to the law of error propagation, if the dimensions are independent 

(which is a reasonable assumption for most applications), then the standard deviations 

jdxσ and 
jdyσ  of the lateral misalignment in the x and y directions are given by Eqs 

(3-47)-(3-48): 

∑
=










∂

∂
≈

n

i
i

i

x

x
j
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f
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2

2

2 σ
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σ  (3-47) 

∑
=
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2

2

2 σ
ξ

σ  (3-48) 

For perfect dimensions, the misalignment equals zero.  Hence for random 

dimensions, its variation is directly related to its standard deviation and does not depend 

on its expected value.  The law of error propagation then gives a direct analytical 

expression of the variance in lateral misalignment as function of the variances in the 

different dimensions of the connector.  Since the current study analyzes the sensitivity of 

the lateral misalignment to the geometry of the ferrules, the standard deviations related to 

the dimensions of the fibers and the pins are considered as constants.  Only the 9 standard 

deviations defining the ferrules are identified as the variables to optimize. 

Eqs (3-47)-(3-48) return the variances of the components in the x and y directions 

for the lateral misalignment, but Marcuse’s model requires the magnitude of the 
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misalignment, dj.  Its value could be expressed with a joint probability distribution for xd 

and yd, but an unknown correlation coefficient between the two components compromises 

the accuracy of the calculation.  If the correlation coefficient were negligible, an exact 

definition of the joint probability distribution could be established with the calculations 

presented in Appendix A; however the value of the coefficient is too high to be neglected.  

Therefore a Monte Carlo simulation of the connector is used to determine an empirical 

relation between the connection loss and the standard deviations of 
jdx  and 

jdy  by a two-

step process. 

The first step consists in collecting data from the Monte Carlo simulation.  Its 

inputs are the nominal values and the tolerances of the different dimensions defining the 

geometry of a connector.  A large number of connectors are virtually generated using the 

mathematical model previously presented.  Their dimensions are normally distributed, 

with a mean equal to their nominal value and a standard deviation equal to one third of 

their tolerance.  The algorithm calculates the misalignment of each randomly generated 

sample; then it performs a statistical treatment on the collected results.  Finally, it returns 

the standard deviation of the components in x and y of the lateral misalignment, as well as 

a cumulative distribution function (cdf) of the connection loss (in dB) for every pair of 

fibers, as shown in Fig 3-17. 
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Fig 3-17: Outputs of Monte Carlo Simulation 

 

Every cdf is curve fitted with a two-variable continuous function.  Since the 

tolerance analysis focuses on the highest part of the cdf (beyond 90%), the curve fitting is 

performed exclusively on this part of the cdf in order to get more reliable approximations.  

It has been found that for single-mode fibers, the cdf of a Weibull random variable is a 

good approximation, while a Gamma incomplete function fits well the cdf of the multi-

mode fibers. 

The simulation is run many times with different input tolerances.  The resulting 

cdf’s are reduced to two parameters defining the fitted curve.  Hence the first step of the 

process returns a set of values for the two fitting parameters as a function of the standard 

deviations of 
jdx  and 

jdy . 

The second step is a new curve fitting procedure.  This time, one of the fitting 

parameters is plotted as a function of the standard deviations of 
jdx  and 

jdy , and it is 
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curve fitted.  The resulting relations are finally compared to new Monte Carlo 

simulations, and it has appeared that they were extremely reliable.  These functions are 

used as empirical models of the connection loss. 

Thereby a variation analysis based upon the law of error propagation, followed by 

an empirical yet accurate model of the connector performance, provides a relation 

between the connection loss and the tolerances of the ferrules. 

 

3.3.3. Cost / Tolerance Functions 

The cost of a manufactured part depends upon the selected manufacturing process 

and dimensional tolerances.  The cost of achieving a particular tolerance depends upon 

both the dimension's nominal value and tolerance.  The manufacturing cost generally 

increases if the tolerance is tightened, and it is more expensive to make a given tolerance 

on a large nominal dimension.  Based on this, Chase [10] recommends expressing 

tolerances as reciprocal power functions for material removal processes.  Eq (3-49) 

expresses the tolerance for the ith dimension, ti, as a function of cost, Ci, range, Ri, and 

three constants ai, bi, and ci.  The values of the three constants depend upon the range and 

the manufacturing process.  Although a constant term would be necessary for accuracy, it 

is practically impossible to evaluate and doesn’t affect the tolerance allocation. 

i

i

b
i

a
i

ii
C

R
ct ×=  (3-49) 

Similar functions are not available for etching processes commonly used with silicon. 

Knowing the range and the manufacturing process of every dimension enables the 

generation of the cost-tolerance functions required to estimate the manufacturing cost of a 

connector as a function of the tolerances assigned to its different dimensions.  The 

portion of the total manufacturing cost that is attributable to ferrule tolerancing is the sum 

of the costs for the successive manufacturing processes used for producing a ferrule. 
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3.3.4. Results of the Tolerance Allocation Algorithm 

Optimal tolerances for the dimensions are determined using nonlinear constrained 

optimization.  The problem is formulated as a minimization subject to constraints.  The 

function to minimize is the manufacturing cost of the connector with respect to its 

tolerances, as defined in the previous section.  Constraints are formulated by specifying 

that the standard deviation of the lateral misalignment, 
jdσ , for every pair of fibers 

within the connector must be positive yet below a critical value. Additional bounds can 

be specified to prevent the optimization from driving the assigned tolerances to 

unreasonably high or low values.  

Since this optimization only deals with allocating tolerances to the ferrules, it is 

assumed that the tolerances for the fibers and the alignment pins are already known 

empirically or predicted by another analysis.  The variables of the optimization problem 

are then the tolerances for the 9 dimensions defining the ferrules. 

This method was used to allocate tolerances to an exemplary connector.  The 

objective was to minimize the manufacturing cost of an 8-fiber connector while the 

connection loss of every pair of single-mode fibers should be less than 0.5 dB.  The 

calculated connection losses along the connectors are displayed in Fig 3-18, and the 

resulting tolerances allocated by the optimization procedure are listed in Table 3-2. 
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Fig 3-18: Computed Losses for Optimized Exemplary Connector 

 

Table 3-2: Computed Tolerances for Exemplary Connector 

Dimension Nominal Value Assigned Tolerances 

Pitch between pin and closest fiber 1225 µm 0.594 µm 

Pitch between two successive fibers 250 µm 0.594 µm 

Pitch between wall and closest fiber 1225 µm 20.000 µm 

Depth of pin vee-groove 512.11 µm 0.892 µm 

Depth of fiber vee-groove 1192.74 µm 0.519 µm 

Depth of flat surface 790 µm 1.147 µm 

Half-angle of pin vee-groove 1.65806 rad 1.027 × 10-3 rad 

Half-angle of fiber vee-groove 1.65806 rad 5.760 × 10-3 rad 

Angle between wall and flat surface 1.57080 rad 87.27 × 10-3 rad 

 

The results of the tolerance allocation performed on this case show that special 

care should be taken when machining the vee-grooves for the pins.  The tolerance on 

their angle is relatively tight, compared to the other dimensions, even if a sub-micron 
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tolerance is needed for most of the dimensions defining the ferrule.  On the other hand, 

tolerances related to the flat surface of the ferrules are relatively opened.  The tolerance 

allocation demonstrates that the manufacturing cost of the ferrule can be reduced when 

making this geometric feature, since the flat surface doesn’t require the high level of 

accuracy needed for the rest of the ferrule. 

 

3.3.5. Comparison with Monte Carlo Simulation 

Monte Carlo simulation, whose algorithm is presented in Fig 3-19, is used to 

verify the results of the tolerance allocation.  A large number of connectors with random 

dimensions are virtually generated; then a statistic treatment of the results returns the 

mean and standard deviation of the signal loss.  These simulated data should be 

comparable to the results obtained with the law of error propagation applied to the 

parametric model of the connector.   

Start

Generate a Random Connector

Quantity of
Samples?

Calculate Signal Loss due
to Lateral Misalignment

Record Signal Loss

Calculate Mean and Standard
Deviation of Signal Loss

Display Mean and
Standard Deviation of Loss

End

Input Nominal Dimensions and
Tolerances  for Fibers

Input Nominal Dimensions and
Tolerances  for Pins

Input Nominal Dimensions and
Tolerances  for Ferrules

 
Fig 3-19: Flowchart of Monte Carlo Simulation for Multi-Fiber Connectors 
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Such Monte Carlo simulation is applied on the exemplary connector, with the 

nominal dimensions and assigned tolerances presented in Table 3-2.  The results are 

displayed with a cumulative distribution function of the signal loss for every pair of 

mating fibers, shown in Fig 3-20.  As expected, every loss is less than 0.5 dB for 99.5% 

of the cases with the selected set of tolerances. 

 
Fig 3-20: Monte Carlo Simulation for Exemplary Connector with Optimized Tolerances 

 

3.4. Manufacturing Process 

3.4.1. Introduction 

Tolerancing the optical fiber connector leads to the study of their production 

process.  This section presents initial results from investigating the manufacture of high 

precision micro-scale vee-grooves fabricated in Aluminum 6061-T6.  The manufacturing 

process being tested includes three primary steps.  The first step produces the rough 

shape of the vee-grooves using conventional wire electro discharge machining (wire 

EDM).  The second step coats the grooves with a hard layer using the Sandford process.  

The final step will produce precise vee-grooves with smooth surfaces by grinding away a 
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portion of the hard coating.  In this chapter, we describe the fabrication process, assess 

the surfaces of the vee-grooves, and evaluate manufacturing variation in the form of the 

vee-grooves prior to the grinding step.  The recast layer and coating thickness were 

investigated using metallography. 

Micro grooves and channels can be manufactured with material removal 

processes such as etching [43], mechanical cutting with miniature cutters [44,45], and 

non-traditional micro machining [46].  Alternatively, they can be formed with processes 

such as coining [47] and molding. 

The objective in this work is to investigate the suitability of a process for 

producing micro vee-grooves in aluminum 6061-T6 with processes and equipment that 

are readily available.  Etching processes are not readily available to most manufacturers 

and are not appropriate for aluminum.  Mechanical cutting, which is readily available, 

produces burrs that are significant at this length scale [48] and are difficult to remove.  

For these reasons, a process based on wire electro discharge machining (wire EDM) and 

precision grinding is investigated.  For testing purposes, the vee-grooves of the first 

ferrule prototypes were manufactured with nominal width, depth, and aperture angles of 

approximately 180 µm, 156 µm, and 60 degrees, respectively, after grinding. 

 

3.4.2. Description of the Process 

The first step in the manufacturing process is to cut the general shape of the vee-

grooves using conventional wire EDM.  This process is applicable for any conductive 

material, and many EDM machines are capable of using wires with diameters as small as 

20 ìm.  Wire EDM can therefore produce a wide variety of groove geometries with 

lengths up to many millimeters.  Unfortunately, wire EDM generates a recast layer 

produced by the re-solidification of molten metal.  This undesirable surface is clearly 

visible with scanning electron microscopy (SEM) as shown in Fig 3-21.  The imprecision 

of the vee-grooves and the rough surface justify grinding after EDM. 
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Fig 3-21: SEM Image of Micro Vee-grooves Following Wired EDM Operation 

 

Prior to grinding, a hard coating was applied to the aluminum grooves using the 

Sandford process [49].  It is an electrochemical process that produces a sapphire-like 

structure on the surface of aluminum parts by generating an oxide-coating layer.  The 

coating penetrates the base metal and builds up on the surface.  The hardness of the 

coating results in excellent abrasion resistance and is readily ground.  

The third and final step in the manufacturing process will be to grind the precise 

shape of the vee-grooves into the coating to satisfy requirements for surface finish and 

tolerances.  At this time, we have fabricated a set of sample parts that are now ready for 

the grinding operation. 

 

3.4.3. Metallography Study 

A metallography study was conducted to characterize the vee-grooves after wire 

EDM and after applying the hard coat layer.  Hence, the effects of both steps on the final 
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precision of the vee-grooves can be identified.  The metallography study consisted of 

slicing the manufactured parts, mounting the parts, grinding and polishing the parts’ 

endfaces, and finally observing the faces with an optical microscope.  

A part cut with wire EDM but before coating was studied to characterize the 

recast layer observed in Fig 3-21.  The recast layer produced a generally rough profile 

around the perimeter of the part that varied in thickness from between 4 ìm and 8 ìm as 

shown in Fig 3-22. 

6 µm

4 µm

6 µm

Aluminum

72

207 µm

97 µm

 
Fig 3-22: Metallography Study of a Vee-Groove Produced with Wire EDM 
 

Fig 3-23 shows an image of a vee-groove after coating with the Sandford process.  

The thickness of the coating layer was not uniform, and it varied with the geometry of the 

vee-groove.  On the sloped surfaces, the thickness was typically about 32 ìm thick, but 

the thickness was only 16 ìm at the bottom of the grooves.  A thicker coating layer is 

achievable with a longer coating time, and may be necessary if gross errors exist during 

grinding. 
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Fig 3-23: Metallographic Study of Coated Vee-Groove 

 

3.4.4. Stylus Profilometry of Grooves 

The accuracy and variation of the grooves’ 2D shape was assessed prior to 

coating. Since the width, depth, and length of the grooves were approximately 170 ìm, 

150 ìm, and 4 mm (before grinding), a 3D approach over the area of the grooves was 

necessary.  Stylus profilometry was selected as the measurement technique since it 

provided suitable resolution in the z direction (~1 nm) over the necessary scan area (4 

mm x 4.6 mm).   

The stylus (~0.2 ìm diameter) traveled along a path in the horizontal plane and 

recorded the height of the surface. The surface was scanned in a raster fashion by 

measuring a set of parallel traces.  Traces were sequentially measured across the set of 

parallel grooves (x direction) with an increment in the y direction of 50 ìm.  The scan 

velocity in the x direction was 200 ìm/s, and it sampled the height of the surface at 1 ìm 

intervals. Thus a 3D point cloud of data points was collected, and it is shown in Fig 3-24 

along with the ideal geometry. 
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Fig 3-24: Point Cloud from Profilometry Traces 

 

The manufacturing variation in the vee-grooves is observed after projecting the 

3D point cloud onto a 2D plane intersecting the parallel vee-grooves.  In Fig 3-25, it is 

evident that the EDM process did not remove the material at the very bottom of the 

grooves. 

 
Fig 3-25: 3D Profilometry Data Projected onto a 2D Plane for Comparison to Ideal 

Model 
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As shown in Fig 3-26, the geometry of a vee-groove is represented in two 

dimensions with four parameters and their manufacturing errors: 

• angle of aperture, α, and angle error, 
jαδ , 

• inclination angle, γ, which is the angle between the groove’s bisector and a vertical 

line (ideally γ �equals zero),  and angle error, 
jγδ , 

• depth to the virtual vertex, h, and error, 
jhδ , and the 

• radius of curvature, r, at the bottom of the groove, and error, 
jrδ . 

Vertexx

z

0

jj αδα + jγδ

jhjh δ+
jrjr δ+

 
Fig 3-26: Manufacturing Errors in a Vee-Groove 

 

A simple algorithm that calculates the geometric parameters of the grooves from 

the measured profilometer data was developed [50].  For each vee-groove in a 2D trace, 

the algorithm fitted a straight line to the inclined edges and determined their slope and 

intersection. Thus two half-angles for every groove were calculated: the left one, βL, and 

the right one, βR. The angle of aperture was determined as the sum of the half angles.  

The intersection of the two fitted lines gave the coordinates of the groove’s virtual vertex, 

and so the depth of the groove, h, was determined. The inclination angle was calculated 

as half the difference between βL and βR.   

Using this algorithm on 40 traces and 16 grooves per trace yielded the geometric 

parameters of 640 2D grooves.  Statistics characterizing the mean and variation of the 

parameters are shown in Table 3-3. 
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Table 3-3: Statistics of 2D Geometric Parameters Describing Vee-Groove Variation 

Feature
Target
value

Lower
Limit

Estimated
Mean

Upper
Limit

Lower
Limit

Estimated
Variance

Upper
Limit

Left half angle (degrees) 30.0 34.41 34.63 34.84 7.1 7.9 8.9
Right half angle (degrees) 30.0 35.07 35.30 35.54 8.2 9.2 10.3

Aperture (degrees) 60.0 69.59 69.93 70.27 16.9 18.8 21.1
Inclination (degrees) 0.0 -0.49 -0.34 -0.19 3.5 3.8 4.3

Height (microns) 150 130.9 131.4 131.8 25.7 28.6 32.0

Estimate of the Mean
(95% Confidence Interval)

Estimate of the Variance
(95% Confidence Interval)

 

 

3.4.5. Conclusions 

This chapter introduced a manufacturing process to make micro-scale vee-

grooves in Aluminum 6061T6 and a metrology procedure to measure their dimensional 

variation.  Surface roughness and variation were found to be significant after EDM and 

coating, and so grinding remains necessary.  A metallography study showed that variation 

in the thickness of the coating layer depended upon groove geometry.  The thickness of 

the coating in the depth of the groove was approximately half the thickness on the flat 

surfaces. 

Despite the dimensional variation after wire EDM and coating, the grooves are 

acceptable for subsequent grinding operations.  The results of the grinding operation will 

be presented in future work. 
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Chapter 4: Application to Kinematic Couplings 

4.1. Introduction 

4.1.1. Presentation 

Kinematic couplings, illustrated in Fig 4-1, are widely used for positioning one 

rigid body with respect to another.  Contact between a ball body and a groove body 

occurs at six points, which is the minimum necessary for static equilibrium.  Hence, 

kinematic couplings exactly constrain [5] all six degrees of freedom without over-

constraint and are therefore extremely repeatable techniques for positioning two bodies 

[51,52].  However, the relative position and orientation of the two bodies are not 

necessarily accurate.  Accuracy must be attained with either mechanical adjustments or 

tight production tolerances, both of which increase the manufacturing cost of the 

kinematic coupling. 

Vee Groove

Vee Grooves

Ball
Body

Groove
Body

 
Fig 4-1: Three-Groove Kinematic Coupling 
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As kinematic couplings increasingly find applications in manufacturing, fixturing, 

and material handling, it is necessary to consider the effect of inaccurate kinematic 

couplings.  For instance, Vallance and Slocum [4] described the use of kinematic 

couplings for positioning pallets in flexible assembly systems.  In this application, 

kinematically coupled pallets are routinely exchanged at multiple machine stations, and 

hence manufacturing errors in each pallet and station contribute to system-wide 

manufacturing variation. 

This chapter presents a method for allocating tolerances to the dimensions of 

kinematic couplings so that variation in the position and orientation of kinematically 

coupled bodies is less than a set of design constraints.  The geometry of the contacting 

surfaces is modeled using parametric functions of dimensions that include manufacturing 

errors.  The variation in the kinematic couplings’ position and orientation errors are 

expressed as a function of the tolerances using a multivariate error analysis [26].  The 

tolerances of the coupled bodies are related to manufacturing costs via cost/tolerance 

relations for common processes (milling, drilling, grinding, etc.) published by Chase [10].  

Finally, a constrained nonlinear optimization problem returns dimensional tolerances for 

the kinematic coupling that minimize manufacturing costs but satisfy constraints on 

variation in position and orientation. 

 

4.1.2. Background and Prior Work 

Kinematic couplings have been used in precision instruments for many years 

[53,54], and their utility in precision machines is widely recognized [55].  In traditional 

applications, often a single ball body and a single groove body are ever coupled together, 

and so the principal functions of the kinematic coupling are: 

• to minimize variation in the position and orientation of the ball body after removing 

and replacing the ball body, and 

• to minimize elastic deformation induced in the ball body due to excessive constraints. 

The success of similar anti-distortion mountings and kinematic couplings with 

regard to these two functions was studied and demonstrated by designers of precision 
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instruments and machines [2,3,56].  As a result, they found increasing application within 

precision manufacturing equipment and processes [4,57,58].  For some of these 

applications, multiple ball bodies are coupled with a single or several groove bodies.  

This introduces system-level variation due to inaccurate production of the mating 

surfaces within the kinematic coupling, which was described and analyzed by Vallance 

[26].  To increase the accuracy of each coupling and thereby reduce the system-wide 

variation, the dimensional variation within the set of ball and groove bodies must be 

specified and controlled.  

Limits on the dimensional variation within the ball and groove bodies can be 

specified on drawings using standard techniques for dimensional and geometric 

tolerances [7].  Early tolerancing research resulted in approaches for tolerance analysis 

that predict the effect of multiple tolerances on the dimensions and geometry of 

mechanical components [59,60].  The most common approaches use worst-case analyses 

[61], root-sum-square (RSS) analyses [62], statistical techniques [63], or Monte Carlo 

simulation [64].  More recent research extended tolerance analysis techniques to 

assemblies of components [65,66], and some of these techniques are available in 

tolerance analysis software and may even be integrated with CAD software [67].  

Software for tolerance allocation [68], which is the inverse problem of assigning 

values to the tolerances, is less available.  Therefore, tolerance allocation is less common, 

but it has been demonstrated for particular mechanical systems [69].  Tolerance 

allocation often uses optimization techniques [70] that minimize cost [71,72] subject to 

constraints on variation using cost-tolerance relations [73]. 

This chapter contributes a formulation and solution to tolerance allocation for 

kinematic couplings, which compliments other analytical tools that assist during design 

[3,74,75].  The technique for assigning tolerances is statistical, and it uses multivariate 

error analysis [15] and nonlinear constrained optimization [76] to minimize cost.  The 

technique has been implemented and verified using a set of scripts that execute within 

Matlab.  An additional set of Matlab scripts verifies the results of the allocation using 

random Monte Carlo simulations. 
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4.1.3. Tolerance Allocation 

Rigorously allocating tolerances to the dimensions of kinematic couplings, 

requires an algorithm that incorporates the four aspects described below. 

• Describe the geometry and dimensional variation in a mathematical form.  Both 

bodies of the kinematic coupling should be represented parametrically, with respect to 

their nominal dimensions and their dimensional errors.  The contact points between the 

two bodies are of primary interest for defining the assembly variations of the kinematic 

coupling, so the parametric representation should concentrate on contacting surfaces in 

terms of the dimension schemes for modeling the ball and groove bodies. 

• Combine dimensional variation in the ball body and groove body to estimate 

variation in the resting position and orientation of the ball body.  The limits to 

dimensional variation in the ball and groove bodies are defined by tolerances.  When a 

ball and groove body with particular dimensional errors are assembled together, the ball 

body is positioned and oriented with errors in its resting position (xr, yr, zr, αr, βr, γr).  A 

relation between dimensional variation and variation in the resting position and 

orientation is provided by multivariate error analysis.  This approach requires a robust 

method for determining the resting location of the ball body. 

• Relate assembly variation to the performance requirements of the kinematic coupling.  

The acceptable errors in the resting position and location are defined by the assembly 

tolerances specified by the designer.  If the designer uses error budgeting techniques [77], 

then the limits on position and orientation errors associated with the kinematic coupling 

are known.  However, these limits are usually specified at operating points, where 

manufacturing operations are performed, rather than at a reference coordinate system.  

The performance of the kinematic coupling should therefore be assessed using variation 

in the position and orientation of operating points. 

• Relate dimensional tolerances to manufacturing costs.  The objective of the tolerance 

allocation is to minimize the manufacturing cost of the kinematic coupling, while 

satisfying tolerances on the assembly errors.  It is then necessary to establish cost-

tolerance functions relevant to the manufacturing operations used to produce the ball and 

groove bodies. 
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These four aspects are incorporated into the algorithm illustrated in Fig 4-2.  The 

multivariate error analysis is an iterative process in which one dimension is perturbed at a 

time. It returns the variation of the resting location and the manufacturing cost.  This 

process is nested in an optimization loop. 
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Fig 4-2: Flowchart of the Tolerance Allocation for Kinematic Couplings 
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4.2. Mathematical Model 

4.2.1. Parametric Representation of Contacting Surfaces 

We require an analytical representation of the contacting surfaces within a 

kinematic coupling containing manufacturing errors.  A common style of kinematic 

couplings uses three balls resting in three vee-grooves, as illustrated in Fig 4-1 [74], and 

so we use the parametric equations for a sphere and flat surface.  We distinguish six 

spherical surfaces since the effective diameter of the ball near the contact point may be 

slightly different due to out-of-roundness in the ball.  The arrangement of the six 

spherical and flat surfaces is illustrated in Fig 4-3. For computational purposes, 

coordinate systems are attached to each surface.  The 12 surfaces are described in 

reference coordinate systems located at the coupling centroid of the ball body (BC) and 

groove body (GC). 
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Fig 4-3: Parametric Representation of Spherical and Flat Contacting Surfaces 
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When load is not critical, the contact between a spherical surface and a flat 

surface is punctual. Every point contact suppresses a degree of freedom, thus the six 

contacts fully constraint the two bodies of the kinematic coupling. 

Eq (4-1) describes all points [
iii BBB zyx ,, ] that lie within a spherical surface with 

diameter, 
iBd , and center located by the position vector, [ ]z

B
BCy

B
BCx

B
BC

B
BC

iiii
PPPP ,,=

v
.  

The subscript, Bi, indicates that the points are associated with the ith spherical surface, and 

the prescript, BC, denotes that the position vector is measured in the coordinate system 

located at the centroid of a triangle defined by the centers of the three balls.  The sub-

subscript, i, which indicates a particular contact surface, varies between 1 and 6. 

1...6for       0
4

1
)()()( 2222 ==−−+−+− idPzPyPx

iiiiiii B
z

B
BC

B
y

B
BC

B
x

B
BC

B  (4-1) 

Eq (4-2) describes all points [
iii FFF zyx ,, ] that lie within the flat plane in one of 

the coupling’s vee-grooves.  The subscript, Fi, indicates that the variables are associated 

with the ith flat surface.  The plane is defined by a position vector that locates a point in 

the vee-groove, [ ]z
F

GCy
F

GCx
F

GC
F

GC
iiii

PPPP ,,=
v

, and a vector normal to the plane, 

[ ]z
F

GCy
F

GCx
F

GC
F

GC
iiii

nnnn ,,=v
.  The prescript, GC, indicates that the vectors are 

measured in a coordinate system located at the grooves’ coupling centroid.   

1...6for    0)()()( ==−+−+− iPznPynPxn z
F

GC
F

z
F

GCy
F

GC
F

y
F

GCx
F

GC
F

x
F

GC

iiiiiiiii
 (4-2) 

The components of the position and normal vectors used in Eqs (4-1)-(4-2) 

depend upon the manufactured dimensions of the kinematic coupling.  Two sets of 

dimensions, ( )
mBBB ddd ,,,

21
K  and ( )

nFFF ddd ,,,
21
K , define the geometry of the ball 

body and groove body, respectively.  The dimensions are measured with respect to two 

sets of metrology datum frames that define a coordinate system in the ball body denoted 

with a prescript, BD, and a coordinate system in the groove body denoted with a 

prescript, GD.  The form of these relations depends upon the dimension scheme specified 

by the designer, but they are expressed generally as shown in Eqs (4-3)-(4-5). 
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( )
mii BBBBB

BD dddfP ,,,
21
K

v
=  (4-3) 

( )
nii FFFFF

GD dddfP ,,,
21
K

v
=  (4-4) 

( )
nii FFFnF

GD dddfn ,,,
21
K

v =  (4-5) 

The position vectors that locate the spherical and flat surfaces are transformed 

from the coordinate systems determined by the manufacturing datums (BD and GD) to 

the centroidal coordinate systems (BC and GC) using homogeneous transformation 

matrices (HTMs), TBC
BD  and TGC

GD , as shown in Eqs (4-6)-(4-7). 

ii B
BDBC

BDB
BC PTP

vv
=  (4-6) 

ii F
GDGC

GDF
GC PTP

vv
=  (4-7) 

The HTMs TBC
BD  and TGC

GD  are determined using a triangle defined by the centers 

of the balls.  The origin of the centroidal coordinate system is located at the intersection 

of the triangle’s bisectors [1].  Its x-axis points towards the ball that contains contacting 

surfaces 5 and 6, and the three apices lie in the xy-plane.  An algorithm for determining 

TBC
BD  and TGC

GD  is presented in Appendix E. 

 

4.2.2. Resting Position and Orientation 

When rigid ball and groove bodies are kinematically coupled, the ball body rests 

in a location that minimizes energy.  If friction at the contact points is neglected, the 

resting location is determined solely from the manufactured geometry of the bodies.  The 

solution described here [26] uses the geometric model presented in the previous section 

to calculate the relative position and orientation between kinematically coupled bodies 

that contain manufacturing errors.  By avoiding assumptions such as a linear relation 

between manufacturing errors and resting position, the method remains valid for even 

large manufacturing errors.   
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Specification of the resting position and orientation requires that three translations 

xr, yr, and zr, and three rotations αr=rot(BCZ), βr=rot(BCY), and γr=rot(BCX) be determined.  

These degrees of freedom are expressed in a transformation matrix, TGC
BC , between the 

centroid coordinate systems in the ball body (BC) and groove body (GC).  The objective 

is to determine the unknowns (xr, yr, zr, αr, βr, γr) and hence TGC
BC , but this cannot be done 

without also determining the position vectors that locate the six contact points, 
iC

GC P
v

. 
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Fig 4-4: Solution for Resting Position and Orientation 

 

As illustrated in Fig 4-4: , the solution employs a system of 24 equations and 

unknowns that are solved iteratively using a nonlinear numerical technique.  The inputs 

to the solver include the diameters of the spherical contacting surfaces, 
iBd , the position 

vectors that locate the balls in the BC coordinates, 
iB

BC P
v

, the position vectors that locate 

the flat surfaces in the GC coordinates, 
iF

GC P
v

, and the normal vectors at the flat surfaces, 
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iF
GCn

v
.  The outputs of the algorithm include the translations and rotations of the resting 

position, xr, yr, zr, αr, βr, γr and the positions vectors that locate the six contact points in 

the GC coordinate system, 
iC

GC P
v

.  

The system of 24 equations is obtained in two distinct sets.  The first set of six 

equations is obtained by requiring that the contact points lie in the plane defined by the 

flat surfaces.  As shown in Eq (4-8), this is accomplished by substituting the coordinates 

of the contact points into Eq (4-2), which may be done six times for each contact point. 

1...6for  0)()()( ==−+−+− iPznPynPxn z
F

GC
C

z
F

GCy
F

GC
C

y
F

GCx
F

GC
C

x
F

GC

iiiiiiiii
 (4-8) 

The second set of eighteen equations is obtained from six equations that express a 

closed loop of vectors between the contacting balls and flat surfaces.  The vector loop is 

illustrated in Fig 4-5 for one ball and flat surface.  One path in the loop originates at the 

GC coordinate system and includes the unknown transformation, TGC
BC , and the position 

of the ball center, 
iB

BC P
v

.  The second path in the loop also originates at the GC 

coordinate system, but it proceeds to the unknown position of the contact point, 
iC

GC P
v

, 

and through a vector normal to the flat surface of magnitude 2/
iBd .  The closed vector 

loop is expressed mathematically in Eq (4-9), and may be written six times for each 

contact point. 

1...6for  
2

1 ==− in
d

PPT
iii F

GCB
C

GC
B

BCGC
BC

vvv
 (4-9) 
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Fig 4-5: Vector Loop Between Ball and Flat Surface 

 

After the iterative solver returns values for the unknown variables, the HTM 

between the GC and BC coordinate systems is computed as shown in Eq (4-10).  If the 

rotations are small, then the matrix form may be simplified using small angles 

approximations. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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(4-10) 

 

4.2.3. Multivariate Error Analysis of Variation in Resting Location 

Tolerance allocation requires a relation between dimensional variation and 

system-wide variability in the resting position and orientation.  This can be accomplished 

using a Monte Carlo simulation, but multivariate error analysis provides a more 

computationally efficient approach [26].  After allocating tolerances, a Monte Carlo 

simulation is an effective means for verifying the results. 

Multivariate error analyses use linear approximations derived from Taylor series 

expansion.  For instance, there exists a function, ),,( 21 dX +
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As shown in Eq (4-11), an estimate of the deviation in the x-coordinate, 
rxδ , is 

expressed using a Taylor series expansion to X that includes only first-order terms 

consisting of partial derivatives and differential errors in the dimensions, jd∆ .  

nm
nmx d

X
d

d

X
d

d

X
d

r

+
+ ∂

∂
∆++

∂
∂

∆+
∂
∂

∆≈ ...
2

2
1

1δ  (4-11) 

Similar expressions are written for the deviations in the remaining degrees of 

freedom, 
ryδ , 

rzδ , 
rγδ , 

rβδ and 
rαδ .  All six approximations are expressed in matrix form 

by the transformation shown in Eq (4-12).  The )(6 nm +×  matrix of partial derivatives 

is referred to as the Jacobian matrix, [J]. 
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Since expressions for the six degrees of freedom are not actually known, the 

elements of [J] are estimated numerically.  This is done by perturbing the value of each 

dimension from its nominal value, calculating the resting location that gives the six 

errors, and then evaluating a column in [J]. 

Assuming the dimensions are continuously distributed random variables and that 

a tolerance is equivalent to a 3σ range, the error analysis can be treated statistically.  A 

covariance matrix organizes variances along its diagonal and covariances in the off-

diagonal terms.  The diagonal elements are therefore squares of the standard deviations of 

the corresponding random variables.  The covariance matrix, [CD], of the kinematic 

coupling's dimensions is given in Eq (4-13).  If the dimensions are independent and 
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therefore uncorrelated, the off-diagonal covariance terms will equal zero.  This is a 

common assumption during tolerance allocation. 
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A similar covariance matrix, [CE], for the variation in the resting location is 

defined in Eq (4-14). 
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The covariance matrix of the resting location errors, [CE], is related to the 

covariance matrix of the dimensions [CD] by Eq (4-15) [15]. 

[ ] [ ][ ][ ]T
DE JCJC =  (4-15) 

By extracting the diagonal elements of the matrix, [CE], the multivariate error 

analysis returns the variation in the resting position and orientation in terms of the 

tolerances on dimensions. 

 
4.2.4. Variation at Operating Points 

The previous section presented a method for estimating the variation in the 

position and orientation of a coordinate system located at the coupling centroid in the ball 

body.  Although this is useful, the utility of the tolerance allocation is greatly improved if 

it considers the variation at additional points in the ball body.  For instance, in kinematic 

couplings intended for positioning pallets in flexible assembly operations [4], assembly 

operations such as insertion and joining are performed to a product held within a fixture 

attached to the ball body.  Hence, the designer’s specifications on variation, as 

determined with an error budget, are preferably specified at operating points.  
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Fig 4-6 illustrates the definition of a single operating point.  A coordinate system, 

denoted with the prescript, OPk, is defined at the kth operation point.  An HTM, TBD
OPk

, 

locates the operating point with respect to the manufacturing datum frame in the ball 

body, BD. A set of p operating points is similarly defined by a set of p HTMs. 

GC x

yz

x

yz

Operating
Point

TkOP
GC

x

yz

BD TkOP
BD

TGC
BD

OPk

 
Fig 4-6: Coupled Kinematic Coupling with Operating Point 

 

After determining TBC
BD  between the ball body’s datums and coupling centroid 

using the algorithm in Appendix E, the position and orientation of the operating points 

can be calculated in the coordinate system at the groove body’s coupling centroid using 

the transformations shown in Eq (4-16).  Since TGC
BC contains the resting position errors 

resulting from coupling the ball and groove bodies, the transformation TGC
OPk

 reveals the 

effect of an inaccurate coupling on the position and orientation at the operating point.  

Larger position errors usually result from amplifying small rotations by the distance 

separating the operating point from the coupling centroid (Abbe offset). 
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TTTT BD
OP

BC
BD

GC
BC

GC
OP kk

=  (4-16) 

The multivariate error analysis is expanded to include the operating points.  This 

is accomplished by expanding the vector of errors and the Jacobian matrix as shown in 

Eq (4-17) so that they incorporate error terms associated with the set of p operating 

points.  If all six degrees of freedom at each operating point are included, then the 

dimensions of the error vector become (6+6×p)×1, and the dimensions of the Jacobian 

matrix become (6+6×p)×(m+n).  However, most manufacturing operations have sensitive 

and insensitive directions, so considering only the sensitive directions simplifies the 

problem and requires only a subset of the degrees of freedom at each operating point.  

Evaluation of the new terms in the Jacobian matrix is still determined by perturbing each 

dimension in the ball and groove body, calculating the resting position and orientation, 

and subsequently extracting changes in the values within TGC
OPk

. 
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With the changes shown in Eq (4-17), the covariance matrix [CE] calculated with 

Eq (4-15) takes the alternative form shown in Eq (4-18).  This form includes additional 

terms for the variances and covariances associated with the position and orientation at the 

operating points. 
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4.3. Tolerance Allocation 

4.3.1. Manufacturing Cost and Tolerances 

The cost of manufactured ball and groove bodies depends upon the selected 

manufacturing process and dimensional tolerances.  The cost of achieving a particular 

tolerance depends upon both the dimension's nominal value and its tolerance.  The 

manufacturing cost generally increases if the tolerance is tightened, and it is more 

expensive to hold a given tolerance on larger nominal dimensions.  Based on this, Chase 

[10] recommends expressing tolerances as reciprocal power functions.  Eq (4-19) 

expresses the tolerance for the jth dimension, tj, as a function of cost, Cj, range, Rj, and 

three constants aj, bj, and cj.  The values of the three constants depend upon the range and 

the manufacturing process.  Although a constant term in Eq (4-19) would be necessary 

for accuracy, it is practically impossible to evaluate and doesn’t affect the tolerance 

allocation. 

j

j

b
j

a
j

jj
C

R
ct ×=  (4-19) 

Chase provides a set of cost-tolerance curves for some metal removal processes 

[10].  By extrapolating these curves, we determine values for the coefficients aj, bj and cj 

for each dimension in the kinematic coupling.  Table 4-1 presents the coefficients 

calculated for an exemplary kinematic coupling configuration. 
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Table 4-1: Coefficients for Cost / Tolerance Relations 

Dimension Process aj bj cj 

Thickness of the plate Milling 0.4431 2.348 0.0355 

Length of a leg Grinding 0.4323 1.385 0.0217 

Diameter of a ball Lapping 0.3862 1.052 0.0130 

Location of a hole Milling 0.4431 2.257 0.0255 

Height of a vee-groove Grinding 0.4323 1.421 0.0228 

 

Using the values in Table 4-1, Eq (4-19) defines the manufacturing cost for every 

dimension in the exemplary kinematic coupling.  Plots of the relations in Fig 4-7 

illustrate the effect of tightening tolerances.  The portion of the total manufacturing cost 

that is attributable to tolerancing is then the sum of the costs for all l dimensions in the 

ball and groove bodies, as shown in Eq (4-20). 

jj bl

j j

a
jj

total t

Rc
C

1

1
∑

=









 ⋅
=  (4-20) 

l being the number of manufacturing processes. 
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Fig 4-7: Cost / Tolerance Relations for Dimensions 

 

4.3.2. Tolerance Allocation by Optimization 

Optimal tolerances for the dimensions are determined using nonlinear constrained 

optimization.  The problem is formulated as shown in Eq (4-21), where the total cost 

from Eq (4-20) is used as the objective function that is minimized.  Constraints are 

formulated by specifying that the standard deviation of the translation and rotation errors 

must be positive yet below critical values.  Additional bounds can be specified to prevent 

the optimization from driving the assigned tolerances to unreasonably high or low values. 
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(4-21) 

The allocation method was used to allocate tolerances to an exemplary kinematic 

coupling.  The parametric surface representation was based on 25 dimensions in the ball 

body (m=25) and 18 dimensions (n=18) in the groove body, illustrated in Fig 4-8 and Fig 

4-9.  Some dimensions may look redundant, but they are actually needed to express the 

purely geometric tolerances in terms of dimensional tolerances.  The cost-tolerance 

coefficients listed in Table 4-1 and the constraints listed in Table 4-2 were used during 

the optimization.  The resulting tolerances allocated by the optimization procedure are 

listed in Table 4-3.  The different Matlab codes are presented in Appendix D. 
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Fig 4-8: Dimension Schemes for the Ball Pallet, in its Datum Frame 
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Fig 4-9: Dimension Schemes for the Groove Body, in its Datum Frame 
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Table 4-2: Constraints Used for Exemplary Tolerance Allocation 

Variation Constraint Calculated 
max

rxσ  6.67 µm 5.23 µm 
max

ryσ  6.67 µm 6.67 µm 
max

rzσ  6.67 µm 4.87 µm 
max

rγσ  1.164×10-3 rad 0.115×10-3 rad 
max

rβσ  1.164×10-3 rad 0.068×10-3 rad 
max

rασ  1.164×10-3 rad 0.078×10-3 rad 

Table 4-3: Computed Tolerances 

 Dimensions 
Nominal 

Dimension 
Assigned 
Tolerance 

Thickness of the plate 6.35 mm 1.000 mm 
Length of a leg (×3) 19.05 mm 0.749 mm 
Ball diameter (×3) 12.70 mm 0.464 mm 

Roundness of ball at contact point (×6) 0 mm 0.071 mm 
Leg 1 25.40 mm 
Leg 2 25.40 mm 

X coordinate of a leg-axis 
at the top of the plate 

Leg 3 177.80 mm 
0.030 mm 

Leg 1 177.80 mm 
Leg 2 25.40 mm 

Y coordinate of a leg-axis 
at the top of the plate 

Leg 3 101.6 mm 
0.030 mm 

Leg 1 25.40 mm 
Leg 2 25.40 mm 

X coordinate of a leg-axis at 
the bottom of the plate 

Leg 3 177.80 mm 
0.030 mm 

Leg 1 177.80 mm 
Leg 2 25.40 mm 

B
al

l P
al

le
t 

Y coordinate of a leg axis at 
the bottom of the plate 

Leg 3 101.6 mm 
0.030 mm 

Height of the vertices for the groove body (×3) 2.54 mm 0.449 mm 
Groove 1 -π/3 rad 

Groove 2 π/3 rad Orientation angle of a groove 
Groove 3 π rad 

0.100 rad 

Half-angle of aperture of a groove (×6) π/4 rad 0.078 rad 
Groove 1 25.40 mm 
Groove 2 25.40 mm X coordinate of a groove 
Groove 3 177.80 mm 

0.419 mm 

Groove 1 177.80 mm 
Groove 2 25.40 mm 

G
ro

ov
e 

B
od

y 

Y coordinate of a groove 
Groove 3 101.60 mm 

0.419 mm 

Total number of dimensions: 43 
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It appears that for the actual kinematic coupling geometry, the position error in 

the y-direction is the critical parameter.  The optimization program minimizes the 

manufacturing cost while reaching this limit. 

 

4.3.3. Verification by Monte Carlo Simulation 

The results of the optimization algorithm are verified with a Monte Carlo 

simulation, illustrated in Fig 4-10.  A large number of kinematic couplings are virtually 

generated using the parametric model.  Their dimensions are randomly distributed, with a 

mean equal to their nominal value and a standard deviation equal to one third of the 

allocated tolerance. 

Start

Generate a Random Ball Pallet

Generate a Random Groove  Body

Quantity of
Samples?

Calculate Resting Position
of Ball Body on Groove Body

Calculate Errors in Resting Position

Calculate Mean and Standard Deviation
of Errors in Position and Orientation

Display Mean and
Standard Deviation of Errors

End

Input Nominal Dimensions and
Tolerances  for Groove Body

Input Nominal Dimensions and
Tolerances  for Ball Pallet

 
Fig 4-10: Flowchart of Monte Carlo Simulation for Kinematic Couplings 

 

The algorithm calculates the resting position and orientation of each randomly 

generated sample, then it performs a statistical treatment on the collected results.  Finally, 

it returns the mean and standard deviation of the resting position and orientation. 
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Table 4-4 compares the results computed by the optimization algorithm with 

those calculated by the Monte Carlo simulation.  The inputs were the nominal dimensions 

and the assigned tolerances presented in Table 4-3.  10,000 samples were generated for 

the simulation.  For a better comparison, the limits of a 95% confidence interval were 

computed on the standard deviations of the six errors returned by the simulation. 

Table 4-4: Comparison Optimization / Simulation 

Simulation: Limits of the 
95% confidence interval Standard Deviation 

Results of 
Tolerance 
Allocation Lower Upper 

rxσ (µm) 5.23 5.14 5.28 

ryσ (µm) 6.67 6.66 6.85 

rzσ (µm) 4.87 4.81 4.94 

rγσ (× 10-6 rad) 115 114 117 

rβσ (× 10-6 rad) 67.5 66.1 67.9 

rασ (× 10-6 rad) 78.4 76.6 78.7 

 

4.4. Conclusion 

Kinematic couplings are known as an economical method for precisely locating 

one body with respect to another, but the relative position and orientation between the 

coupled bodies depends upon manufacturing errors.  In systems that exchange coupled 

bodies, system-wide variation results from the inaccuracy of dimensions in each body.  

Therefore, tolerances should be selected so that the system-wide variation is within a 

specified range.  

This chapter presents and demonstrates a method for allocating tolerances to the 

dimensions of the bodies.  A parametric representation of the contacting surfaces is 

constructed and combined with a procedure that calculates the resting location based on 

the inaccurate dimensions.  An analytical relation between dimensional variation and 

variation in the resting location is obtained from multivariate error analysis.  Optimal 

tolerances are computed by minimizing the relative manufacturing cost while respecting 

constraints on variation in the resting position and orientation. 
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Chapter 5: Conclusions and Future Work 

5.1. Conclusions 

Exactly constrained systems present interesting characteristics for precision 

engineering.  In effect, they are repeatable, economical to build, and predictable if used 

advisedly.  These properties suggest that it is possible to combine them in order to reduce 

the manufacturing cost of mass-produced kinematic systems.  This thesis verified this 

hypothesis by developing a rigorous procedure for solving the current problem; then it 

illustrated the resulting method with two relevant examples. 

The cost and the performances of a mechanical assembly are governed by the 

tolerances assigned to the dimensions and the geometry of the components.  That is the 

reason why the developed procedure was a least cost tolerance allocation.  A 

mathematical model is established for the exactly constrained system by a comprehensive 

analysis of its kinematic connections.  The manufacturing variations are combined by 

applying principles of statistics similar to the ones used in the SPC method; the 

developed procedure could then be easily incorporated in a quality policy.  A basic study 

of the functional requirements of the system enables the establishment of a direct relation 

between its performances and its manufacturing variations.  Finally, empirical functions 

established from experimental observations relate variation and cost in manufacturing.  

These different analyses are nested in an optimization algorithm in order to perform a 

least cost tolerance allocation. 

In conclusion, this thesis presents an analytical tool for the precision design 

engineer.  It helps him or her to select the tolerances to assign to a kinematic system in 

order to reduce its manufacturing cost while respecting its functionality.  The developed 

method enables the use of the efficiency of precision engineering for solving a current 

industrial problem. 

 

5.2. Future Work 

The presented method is ready to be used, which is proven by the two performed 

examples.  However, it can be improved.  First of all, other methods for analyzing the 
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variations can be explored in addition to the ones presented in Section 2.2.3.  They may 

be more suitable for other kinematic configurations.  Some promising methods are 

described in literature dealing with optimization problems in general [12]; they can be 

adapted for least cost tolerance allocation procedures. 

Furthermore, new cost / tolerance relations can be experimentally established for 

manufacturing processes different from the traditional metal removal processes.  In 

effect, the existing relations only deal with these kinds of processes.  Other processes like 

etching, EDM, or LIGA technique can be used to produce exactly constrained 

components, especially in a precision engineering field.  Hence it would be interesting to 

establish their cost / tolerance relations in order to extend the possibility of the current 

method. 

On the other hand, the presented method reduces the manufacturing cost only by 

assigning the tolerances.  A broader analysis could also optimize the nominal values of 

the dimensions.  This improved method would not only be a least cost tolerance 

allocation, but a more global design optimization procedure that would be more efficient 

for reducing the manufacturing cost of the mass-produced components. 

Finally, the robustness of the current method can be improved by taking into 

consideration the effects of mechanical loads, vibrations, and similar constraints.  In 

effect, the presented procedure assumed that these external mechanical disturbances were 

negligible.  Incorporating them into the least cost optimization method would then widen 

the scope of the analysis.  These disturbances would be expressed as additional 

constraints in the optimization algorithm, since they characterize the performance of the 

system. 
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Appendix A: 

Probability Density Function of Sum of Squares 
 

Problem statement: 

X: Gaussian random variable  X ~ N(0, σX) 

Y: Gaussian random variable  Y ~ N(0, σY) 

X and Y are independent. 

What is the probability density function of 22 YXR +=  ? 

 

Joint density function of X and Y:  
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Probability density function of R: 
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 Appendix B: 

Matlab Codes for Kinematic Couplings 
 

B1. Optimization: Objective Function 
function f = kct_obj(x) 
 
% COEFFICIENTS 
% Coefficients CA 
CA_lap = 0.3862; 
CA_grind = 0.4323; 
CA_ream = 0.2880; 
CA_mill = 0.4431; 
CA_turn = 0.3515; 
% It will be CA-1 for the angles 
 
% Ranges R 
R_Thick = 6.35; 
R_Length = 19.05; 
R_Diam = 12.70; 
R_Circ = R_Diam; 
R_PosB = 177.8;    % X and Y should have the same tolerance 
R_Height = 31.75;  % Hypothenuse 
R_Orient = 38.1;        
R_Halfa = R_Height;  
R_PosG = 177.8;    % X and Y should have the same tolerance 
 
% Coefficients CB 
CB_Thick = 2.3480; 
CB_Length = 1.3847; 
CB_Diam = 1.0516; 
CB_Circ = CB_Diam; 
CB_PosB = 2.2568; 
CB_Height = 1.4207; 
CB_Orient = 1.3490; 
CB_Halfa = CB_Height;  
CB_PosG = 2.2568; 
 
% Coefficients Bm 
Bm_Thick = 0.3420; 
Bm_Length = 0.1578; 
Bm_Diam = 0.0410; 
Bm_Circ = Bm_Diam; 
Bm_PosB = 0.5440; 
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Bm_Height = 0.1999; 
Bm_Orient = 0.2714; 
Bm_Halfa = Bm_Height;  
Bm_PosG = 0.5440; 
 
% Coefficients CG 
CG_Thick = Bm_Thick^CB_Thick / R_Thick^CA_mill; 
CG_Length = Bm_Length^CB_Length / R_Length^CA_grind; 
CG_Diam = Bm_Diam^CB_Diam / R_Diam^CA_lap; 
CG_Circ = Bm_Circ^CB_Circ / R_Circ^CA_lap; 
CG_PosB = Bm_PosB^CB_PosB / R_PosB^CA_mill; 
CG_Height = Bm_Height^CB_Height / R_Height^CA_grind; 
CG_Orient = Bm_Orient^CB_Orient / R_Orient^CA_grind; 
CG_Halfa = Bm_Halfa^CB_Halfa / R_Halfa^CA_grind; 
CG_PosG = Bm_PosG^CB_PosG / R_PosG^CA_mill; 
 
% COST FUNCTION 
f = (CG_Thick * R_Thick^CA_mill / x(1))^(1/CB_Thick) + 
(CG_Length * R_Length^CA_grind / x(2))^(1/CB_Length) + 
(CG_Diam * R_Diam^CA_lap / x(3))^(1/CB_Diam) + (CG_Circ * 
R_Circ^CA_lap / x(4))^(1/CB_Circ) + (CG_PosB * 
R_PosB^CA_mill / x(5))^(1/CB_PosB) + (CG_Height * 
R_Height^CA_grind / x(6))^(1/CB_Height) + (CG_Orient * 
R_Orient^(CA_grind-1) / x(7))^(1/CB_Orient) + (CG_Halfa * 
R_Halfa^(CA_grind-1) / x(8))^(1/CB_Halfa) + (CG_PosG * 
R_PosG^CA_mill / x(9))^(1/CB_PosG); 
f= real(f); 
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B2. Optimization: Constraint Functions 
 
function [c, ceq] = kct_const(x) 
 
% NOMINAL DIMENSIONS 
% For the ball pallet 
Xb_nomB = [1  1  7] * 25.4; 
Yb_nomB = [7  1  4] * 25.4; 
t = 6.35; 
L = [0.75  0.75  0.75] * 25.4; 
D = [0.5  0.5  0.5] * 25.4; 
 
% For the groove body 
Xp_nomG = [1.0  1.0  7.0] * 25.4; 
Yp_nomG = [7.0  1.0  4.0] * 25.4; 
Hvertex = [0.1  0.1  0.1] * 25.4; 
Or = [-60  60  180] * pi/180; 
Halfa = [45  45  45  45  45  45] * pi/180; 
Dpft = 12.7; 
 
% TOLERANCES 
% x(1) = Thick_tol  % x(2) = Length_tol 
% x(3) = Diam_tol  % x(4) = Circ_tol 
% x(5) = PosB_tol  % x(6) = Heightv_tol 
% x(7) = Orient_tol  % x(8) = Halfa_tol 
% x(9) = PosG_tol 
 
% MAXIMUM TOLERANCES DEFINED BY THE DESIGNER 
Xmax = 0.02; 
Ymax = 0.02; 
Zmax = 0.02; 
Amax = 0.002; 
Bmax = 0.002; 
Gmax = 0.002; 
 
% CONSTRAINT FUNCTION 
[Xcalc, Ycalc, Zcalc, Acalc, Bcalc, Gcalc] = 
kct_errors(Xb_nomB, Yb_nomB, t, L, D, Xp_nomG, Yp_nomG, 
Hvertex, Or, Halfa, Dpft, x(1), x(2), x(3), x(4), x(5), 
x(6), x(7), x(8), x(9)); 
calc = [Xcalc Ycalc Zcalc]; 
 
c = [real(Xcalc)-Xmax, real(Ycalc)-Ymax, real(Zcalc)-Zmax]; 
ceq = []; 
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B3. Optimization: Invoking File 
close all; clear all; 
 
% Invoke constrained optimization routine 
Lower_bounds = [0.001 0.001 0.001 0.001 0.001 0.001 0.0002 
0.0002 0.001]; 
Upper_bounds = [1 1 1 1 1 1 0.1 0.1 1]; 
Starting =  0.1*Lower_bounds; 
 
options = 
optimset('LargeScale','off','Diagnostics','on','Display','i
ter','MaxFunEvals',4000,'TolFun',0.01); 
[x, fval, exitflag, output] = fmincon(@kct_obj, Starting, 
[], [], [], [], Lower_bounds, Upper_bounds, @kct_const, 
options); 
Cost = fval 
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B4. Monte Carlo Simulation 
% Kinematic Coupling Tolerances, Monte Carlo Simulation 
% Dimensions in mm and radians 
 
clear all; close all; 
 
% PARAMETERS FOR THE SIMULATION 
N_samples = 10000; 
 
% NOMINAL DIMENSIONS 
% For the ball pallet 
Xb_nomB = [1  1  7] * 25.4; % Fixed 
Yb_nomB = [7  1  4] * 25.4; % Fixed 
t = 6.35; 
L = [0.75  0.75  0.75] * 25.4; 
D = [0.5  0.5  0.5] * 25.4; 
% For the groove body 
Xp_nomG = [1.0  1.0  7.0] * 25.4; % Fixed 
Yp_nomG = [7.0  1.0  4.0] * 25.4; % Fixed 
Hvertex = [0.1  0.1  0.1] * 25.4; 
Or = [-60  60  180] * pi/180; 
Halfa_nom = [45  45  45  45  45  45] * pi/180; 
Dpft = 12.7; % Fixed 
 
% TOLERANCES 
Thick_tol = 1.00; 
Length_tol = 0.9927; 
Diam_tol = 0.0312; 
Circ_tol = 0.0122; 
XB_tol = 0.0078; 
YB_tol = 0.0078; 
Heightv_tol = 0.0320; 
Orient_tol = 0.1; 
Halfa_tol = 0.0039; 
XG_tol = 0.0277; 
YG_tol = 0.0277; 
 
 
for is = 1:N_samples 
% GENERATING RANDOM VARIABLES 
% For the ball pallet 
    Thick = normrnd(t, Thick_tol/3);     % Same thickness 
for one plate 
    for i = 1:3 
        Length(i) = normrnd(L(i), Length_tol/3); 
        Diam(i) = normrnd(D(i), Diam_tol/3); 
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        Circ(2*i-1) = normrnd(0, Circ_tol/3); 
        Circ(2*i) = normrnd(0, Circ_tol/3); 
        dXtop_B(i) = normrnd(0, XB_tol/3); 
        dYtop_B(i) = normrnd(0, YB_tol/3); 
        dXbot_B(i) = normrnd(0, XB_tol/3); 
        dYbot_B(i) = normrnd(0, YB_tol/3); 
% For the groove body 
        Heightv(i) = normrnd(Hvertex(i), Heightv_tol/3); 
        Orient(i) = normrnd(Or(i), Orient_tol/3); 
        Halfa(2*i-1) = normrnd(Halfa_nom(i), Halfa_tol/3); 
        Halfa(2*i) = normrnd(Halfa_nom(i), Halfa_tol/3); 
        dXpin_G(i) = normrnd(0, XG_tol/3); 
        dYpin_G(i) = normrnd(0, YG_tol/3); 
    end   
 
     
% CALCULATING RESTING POSITION 
    [X_B_BC, Y_B_BC, Z_B_BC, Db_row] = 
kct_ballgeom(Xb_nomB, Yb_nomB, Thick, Length, Diam, Circ, 
dXtop_B, dYtop_B, dXbot_B, dYbot_B); 
    PB1=[X_B_BC(1); Y_B_BC(1); Z_B_BC(1); 1]; 
    PB2=[X_B_BC(2); Y_B_BC(2); Z_B_BC(2); 1]; 
    PB3=[X_B_BC(3); Y_B_BC(3); Z_B_BC(3); 1]; 
    PB4=PB3; 
    dB=Db_row'; 
 
    [TG11_G, TG12_G, TG21_G, TG22_G, TG31_G, TG32_G] = 
kct_groovegeom(Xp_nomG, Yp_nomG, Hvertex, Or, Halfa, Dpft, 
dXpin_G, dYpin_G); 
         
    
[alpha,beta,gamma,xr,yr,zr,Pc1,Pc2,Pc3,Pc4,Pc5,Pc6]=kct_res
t(PB1,PB2,PB3,PB4,dB,TG11_G,TG12_G,TG21_G,TG22_G,TG31_G,TG3
2_G); 
    Amcs(is) = alpha; Bmcs(is) = beta; Gmcs(is) = gamma; 
    Xmcs(is) = xr;    Ymcs(is) = yr;   Zmcs(is) = zr; 
end 
 
% STATISTICS 
mu_A = mean(Amcs);   sigma_A = std(Amcs); 
mu_B = mean(Bmcs);   sigma_B = std(Bmcs); 
mu_G = mean(Gmcs);   sigma_G = std(Gmcs); 
mu_X = mean(Xmcs);   sigma_X = std(Xmcs); 
mu_Y = mean(Ymcs);   sigma_Y = std(Ymcs); 
mu_Z = mean(Zmcs);   sigma_Z = std(Zmcs); 
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B5. Sub-Function: kct_ballgeom 
function [X_B_BC, Y_B_BC, Z_B_BC, Db] = 
kct_ballgeom(X_B_nomB, Y_B_nomB, Thick, Lft, Diam, Circ, 
DeltaX_Top_datB, DeltaY_Top_datB, DeltaX_Bottom_datB, 
DeltaY_Bottom_datB) 
 
 
% X_B_nomB: X coord of the 3 balls 3*1 
% Y_B_nomB: Y coord of the 3 balls 3*1 
% Thick: Thickness of the plate is a scalar 
% Lft: Length of a foot (until center of the ball) is a 3*1 
% Diam: Diameter of a ball is a 3*1 
% Circ: Circularity of a radius is a 6*1 
% DeltaX_Top_datB: X Offset at the top of the plate, is a 
3*1 
% DeltaY_Top_datB: Y Offset at the top of the plate, is a 
3*1 
% DeltaX_Bottom_datB: X Offset at the bottom of the plate, 
is a 3*1 
% DeltaY_Bottom_datB: X Offset at the bottom of the plate, 
is a 3*1 
 
 
for ib = 1:3 
    X_Top_datB(ib) = X_B_nomB(ib) + DeltaX_Top_datB(ib); 
    Y_Top_datB(ib) = Y_B_nomB(ib) + DeltaY_Top_datB(ib); 
    X_Bottom_datB(ib) = X_B_nomB(ib) + 
DeltaX_Bottom_datB(ib); 
    Y_Bottom_datB(ib) = Y_B_nomB(ib) + 
DeltaY_Bottom_datB(ib); 
    Z_Bottom_datB(ib) = -Thick;     % Same thickness for 
one plate 
     
% CALCULATIONS 
%% Coordinates of the balls, in the datum CSYS (starting 
point + magnitude * unit direction vector) 
    Magn_Vect_Axis(ib) = sqrt((X_Top_datB(ib)-
X_Bottom_datB(ib))^2 + (Y_Top_datB(ib)-Y_Bottom_datB(ib))^2 
+ Z_Bottom_datB(ib)^2); 
    X_B_datB(ib) = X_Bottom_datB(ib) + (X_Bottom_datB(ib) - 
X_Top_datB(ib)) * Lft(ib) / Magn_Vect_Axis(ib); 
    Y_B_datB(ib) = Y_Bottom_datB(ib) + (Y_Bottom_datB(ib) - 
Y_Top_datB(ib)) * Lft(ib) / Magn_Vect_Axis(ib); 
    Z_B_datB(ib) = Z_Bottom_datB(ib) + Z_Bottom_datB(ib) * 
Lft(ib) / Magn_Vect_Axis(ib); 
end 
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%% Geometry of the coupling triangle 
%%% Length of the sides 
Side_TriB(1) = sqrt( (X_B_datB(2)-X_B_datB(3))^2 + 
(Y_B_datB(2)-Y_B_datB(3))^2 + (Z_B_datB(2)-Z_B_datB(3))^2 
); 
Side_TriB(2) = sqrt( (X_B_datB(3)-X_B_datB(1))^2 + 
(Y_B_datB(3)-Y_B_datB(1))^2 + (Z_B_datB(3)-Z_B_datB(1))^2 
); 
Side_TriB(3) = sqrt( (X_B_datB(1)-X_B_datB(2))^2 + 
(Y_B_datB(1)-Y_B_datB(2))^2 + (Z_B_datB(1)-Z_B_datB(2))^2 
); 
%%% Apex angles 
Apex_TriB(1) = acos( (Side_TriB(2)^2 + Side_TriB(3)^2 - 
Side_TriB(1)^2) / (2*Side_TriB(2)*Side_TriB(3)) ); 
Apex_TriB(2) = acos( (Side_TriB(3)^2 + Side_TriB(1)^2 - 
Side_TriB(2)^2) / (2*Side_TriB(3)*Side_TriB(1)) ); 
Apex_TriB(3) = acos( (Side_TriB(1)^2 + Side_TriB(2)^2 - 
Side_TriB(3)^2) / (2*Side_TriB(1)*Side_TriB(2)) ); 
%%% Coordinates of the centers of the balls in the BC CSYS 
X_B_BC(3) = Side_TriB(2) * sin(Apex_TriB(1)/2) / 
cos(Apex_TriB(2)/2); 
Y_B_BC(3) = 0;       % By definition, Ball 3 is on the X-
axis 
X_B_BC(1) = X_B_BC(3) - Side_TriB(2) * cos(Apex_TriB(3)/2); 
Y_B_BC(1) = Y_B_BC(3) + Side_TriB(2) * sin(Apex_TriB(3)/2); 
X_B_BC(2) = X_B_BC(3) - Side_TriB(1) * cos(Apex_TriB(3)/2); 
Y_B_BC(2) = Y_B_BC(3) - Side_TriB(1) * sin(Apex_TriB(3)/2); 
for ib = 1:3 
    Z_B_BC(ib) = 0;   % In BC CSYS, the Z-plane goes 
through the 3 balls 
    Rb(2*ib-1) = Diam(ib)/2;    % Fix the average radius on 
one side of the ball 
    Rb(2*ib) = Diam(ib)/2;      % Fix the average radius on 
the other side 
end 
for i = 1:6 
    Db(i) = 2*(Rb(i) + Circ(i));    % Add out of roundness 
end     
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B6. Sub-Function: kct_centroid 
function [T] = kct_centroid(X, Y, Z) 
 
% Calculates the coordinates of the apices of a coupling 
triangle in its centroid coordinates system 
 
% Length of the sides 
Side(1) = sqrt( (X(2)-X(3))^2 + (Y(2)-Y(3))^2 + (Z(2)-
Z(3))^2 ); 
Side(2) = sqrt( (X(3)-X(1))^2 + (Y(3)-Y(1))^2 + (Z(3)-
Z(1))^2 ); 
Side(3) = sqrt( (X(1)-X(2))^2 + (Y(1)-Y(2))^2 + (Z(1)-
Z(2))^2 ); 
 
% Apex angles 
Apex(1) = acos( (Side(2)^2 + Side(3)^2 - Side(1)^2) / 
(2*Side(2)*Side(3)) ); 
Apex(2) = acos( (Side(3)^2 + Side(1)^2 - Side(2)^2) / 
(2*Side(3)*Side(1)) ); 
Apex(3) = acos( (Side(1)^2 + Side(2)^2 - Side(3)^2) / 
(2*Side(1)*Side(2)) ); 
 
% Coordinates of the centers of the balls in the centroid 
CSYS 
 X_CC(3) = Side(2) * sin(Apex(1)/2) / cos(Apex(2)/2); 
 Y_CC(3) = 0;      % By definition, Ball 3 is on the X-axis 
 X_CC(1) = X_CC(3) - Side(2) * cos(Apex(3)/2); 
 Y_CC(1) = Y_CC(3) + Side(2) * sin(Apex(3)/2); 
 X_CC(2) = X_CC(3) - Side(1) * cos(Apex(3)/2); 
 Y_CC(2) = Y_CC(3) - Side(1) * sin(Apex(3)/2); 
 for i = 1:3 
     Z_CC(i) = 0;   % In centroid CSYS, the Z-plane goes 
through the 3 balls 
 end     
 
 
% Unit vectors 
U_31 = [X(1)-X(3);  Y(1)-Y(3);  Z(1)-Z(3)] / Side(2); 
U_32 = [X(2)-X(3);  Y(2)-Y(3);  Z(2)-Z(3)] / Side(1); 
U_3C = [U_31(1)+U_32(1); U_31(2)+U_32(2); U_31(3)+U_32(3)] 
/ sqrt((U_31(1)+U_32(1))^2 + (U_31(2)+U_32(2))^2 + 
(U_31(3)+U_32(3))^2); 
 
% Coordinates of centroid 
Dist_3C = Side(2) * sin(Apex(1)/2) / cos(Apex(2)/2); 
Xc = X(3) + Dist_3C * U_3C(1); 
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Yc = Y(3) + Dist_3C * U_3C(2); 
Zc = Z(3) + Dist_3C * U_3C(3); 
Bc = asin((Zc-Z(3)) / X_CC(3));                                 
% Rotation about the Y axis 
Ac = acos((X(3)-Xc) / (X_CC(3)*cos(Bc)));                       
% Rotation about the Z axis 
Gc = asin((Z(2) - Zc + X_CC(2)*sin(Bc)) / 
(Y_CC(2)*cos(Bc)));   % Rotation about the X axis 
 
 
% Set the elements within the homogenous transformation 
matrix 
T(1:4,1)=[cos(Ac)*cos(Bc);                          
sin(Ac)*cos(Bc);                         -sin(Bc);          
0]; 
T(1:4,2)=[cos(Ac)*sin(Bc)*sin(Gc)-sin(Ac)*cos(Gc);  
sin(Ac)*sin(Bc)*sin(Gc)+cos(Ac)*cos(Gc);  cos(Bc)*sin(Gc);  
0]; 
T(1:4,3)=[cos(Ac)*sin(Bc)*cos(Gc)+sin(Ac)*sin(Gc);  
sin(Ac)*sin(Bc)*cos(Gc)-cos(Ac)*sin(Gc);  cos(Bc)*cos(Gc);  
0]; 
T(1:4,4)=[Xc; Yc; Zc; 1]; 
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B7. Sub-function: kct_errors 
function [X_tol, Y_tol, Z_tol, A_tol, B_tol, G_tol] = 
kct_errors(Xb_nomB, Yb_nomB, t, L, D, Xp_nomG, Yp_nomG, 
Hvertex, Or, Halfa, Dpft, thick_tol, Length_tol, Diam_tol, 
circ_tol, PosB_tol, Heightv_tol, Orient_tol, Halfa_tol, 
PosG_tol) 
 
% Xb_nomB: X coord of the 3 balls 3*1 
% Yb_nomB: Y coord of the 3 balls 3*1 
% t: Thickness of the plate is a scalar 
% L: Length of a foot (until center of the ball) is a 3*1 
% D: Diameter of a ball is a 3*1 
% Xp_nomG: nominal X coord of a vee-groove, is a 3*1 
% Yp_nomG: nominal Y coord of a vee-groove, is a 3*1 
% Hvertex: Distance between the top of the plate and the 
vertex of a vee-groove, is a 3*1 
% Or: Orientation angle of the grooves, is a 3*1 
% Halfa: Half-Angle of aperture of the vee-grooves is a 6*1 
% Dpft: Diameter of a perfect virtual ball, is a scalar 
 
 
% GENERATING DIMENSIONS 
Dim(1) = t;              % Thickness of the ball plate 
for i = 1:3 
    Dim(1+i) = L(i);     % Foot length for the ball plate 
    Dim(4+i) = D(i);     % Ball diameter for the ball plate 
    Dim(6+2*i) = 0;      % Circularity on one side for the 
ball plate 
    Dim(7+2*i) = 0;      % Circularity on the other side 
for the ball plate 
    Dim(13+i) = 0;   % X offset at the top for the ball 
plate 
    Dim(16+i) = 0;   % Y offset at the top for the ball 
plate 
    Dim(19+i) = 0;   % X offset at the bottom of the 
ball plate 
    Dim(22+i) = 0;       % Y offset at the bottom of the 
ball plate 
    Dim(25+i) = Hvertex(i);         % Height of the 
vertices for the groove body 
    Dim(28+i) = Or(i);              % Orientation angle of 
the grooves for the groove body 
    Dim(30+2*i) = Halfa(2*i-1);     % Half-angle on one 
side of the groove, for the groove body 
    Dim(31+2*i) = Halfa(2*i);       % Half-angle on the 
other side of the groove, for the groove body 



 

 112  

    Dim(37+i) = 0;       % X offset of a pin, for the 
groove body 
    Dim(40+i) = 0;       % Y offset of a pin, for the 
groove body 
end     
N_dims = size(Dim,2); 
 
Varia(1) = thick_tol;    % Thickness of the ball plate 
for i = 1:3 
    Varia(1+i) = Length_tol;  % Foot length for the 
ball plate 
    Varia(4+i) = Diam_tol;     % Ball diameter for the 
ball plate 
    Varia(6+2*i) = circ_tol;       % Circularity on one 
side for the ball plate 
    Varia(7+2*i) = circ_tol;       % Circularity on the 
other side for the ball plate 
    Varia(13+i) = PosB_tol;        % X offset at the top 
for the ball plate 
    Varia(16+i) = PosB_tol;        % Y offset at the top 
for the ball plate 
    Varia(19+i) = PosB_tol;        % X offset at the bottom 
for the ball plate 
    Varia(22+i) = PosB_tol;        % Y offset at the bottom 
for the ball plate 
    Varia(25+i) = Heightv_tol;     % Height of the vertices 
for the groove body 
    Varia(28+i) = Orient_tol;      % Orientation angle of 
the grooves for the groove body 
    Varia(30+2*i) = Halfa_tol;     % Half-angle on one side 
of the groove, for the groove body 
    Varia(31+2*i) = Halfa_tol;     % Half-angle on the 
other side of the groove, for the groove body 
    Varia(37+i) = PosG_tol;        % X offset of a pin, for 
the groove body 
    Varia(40+i) = PosG_tol;        % Y offset of a pin, for 
the groove body 
end 
 
 
% CALCULATING THE JACOBIAN 
for i1 = 1:N_dims       % the dimension we are looking at 
    for i2 = 1: N_dims  % loop to create the perturbed 
array 
        if i1 == i2 
            Perturb(i2) = Dim(i2) + Varia(i2); 
        else 
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            Perturb(i2) = Dim(i2); 
        end 
    end 
    t_p = Perturb(1); 
    for i = 1:3  
        L_p(i) = Perturb(1+i); 
        D_p(i) = Perturb(4+i); 
        ci_B_p(2*i-1) = Perturb(6+2*i); 
        ci_B_p(2*i) = Perturb(7+2*i); 
        dXtop_B_p(i) = Perturb(13+i); 
        dYtop_B_p(i) = Perturb(16+i); 
        dXbot_B_p(i) = Perturb(19+i); 
        dYbot_B_p(i) = Perturb(22+i); 
        Hvertex_p(i) = Perturb(25+i); 
        Or_p(i) = Perturb(28+i); 
        Halfa_p(2*i-1) = Perturb(30+2*i); 
        Halfa_p(2*i) = Perturb(31+2*i); 
        dXpin_G_p(i) = Perturb(37+i); 
        dYpin_G_p(i) = Perturb(40+i); 
    end 
     
    % For the ball pallet 
    [X_B_BC, Y_B_BC, Z_B_BC, Db] = kct_ballgeom(Xb_nomB, 
Yb_nomB, t_p, L_p, D_p, ci_B_p, dXtop_B_p, dYtop_B_p, 
dXbot_B_p, dYbot_B_p); 
    PB1=[X_B_BC(1); Y_B_BC(1); Z_B_BC(1); 1]; 
    PB2=[X_B_BC(2); Y_B_BC(2); Z_B_BC(2); 1]; 
    PB3=[X_B_BC(3); Y_B_BC(3); Z_B_BC(3); 1]; 
    PB4=PB3; 
    dB=Db'; 
 
    % For the groove body 
    [TG11_G, TG12_G, TG21_G, TG22_G, TG31_G, TG32_G] = 
kct_groovegeom(Xp_nomG, Yp_nomG, Hvertex_p, Or_p, Halfa_p, 
Dpft, dXpin_G_p, dYpin_G_p); 
 
    % CALCULATING RESTING POSITION 
    
[alpha,beta,gamma,xr,yr,zr,Pc1,Pc2,Pc3,Pc4,Pc5,Pc6]=kct_res
t(PB1,PB2,PB3,PB4,dB,TG11_G,TG12_G,TG21_G,TG22_G,TG31_G,TG3
2_G); 
    dXdDim(i1) = xr / Varia(i1); 
    dYdDim(i1) = yr / Varia(i1); 
    dZdDim(i1) = zr / Varia(i1); 
    dAdDim(i1) = alpha / Varia(i1); 
    dBdDim(i1) = beta / Varia(i1); 
    dGdDim(i1) = gamma / Varia(i1); 
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end     
 
Jacob = [dXdDim; dYdDim; dZdDim; dAdDim; dBdDim; dGdDim]; 
 
% COVARIANCE MATRICES 
CoMtx_Dim = zeros(N_dims,N_dims); 
for i = 1:N_dims 
    CoMtx_Dim(i,i) = Varia(i)^2 / 9; 
end     
 
CoMtx_Err = Jacob * CoMtx_Dim * Jacob'; 
X_tol = 3 * sqrt(CoMtx_Err(1,1)); 
Y_tol = 3 * sqrt(CoMtx_Err(2,2)); 
Z_tol = 3 * sqrt(CoMtx_Err(3,3)); 
A_tol = 3 * sqrt(CoMtx_Err(4,4)); 
B_tol = 3 * sqrt(CoMtx_Err(5,5)); 
G_tol = 3 * sqrt(CoMtx_Err(6,6)); 
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B8. Sub-Function: kct_groovegeom 
function [T_V11_GC, T_V12_GC, T_V21_GC, T_V22_GC, T_V31_GC, 
T_V32_GC] = kct_groovegeom(X_V_nomG, Y_V_nomG, 
Height_V_mfgG, Orient_mfgG, Halfangle, Diam, DeltaX_mfgG, 
DeltaY_mfgG) 
     
% X_V_nomG: nominal X coord of a vee-groove, is a 3*1 
% Y_V_nomG: nominal Y coord of a vee-groove, is a 3*1 
% Height_V_mfgG: Distance between the top of the plate and 
the vertex of a vee-groove, is a 3*1 
% Orient_mfgG: Orientation angle of the grooves, is a 3*1 
% Halfangle: Half-Angle of aperture of the vee-grooves is a 
6*1 
% Diam: Diameter of a perfect virtual ball, is a scalar 
% DeltaX_mfgG: X Offset of the pin, is a 3*1 
% DeltaY_mfgG: Y Offset of the pin, is a 3*1 
 
 
% FLAT SURFACES IN MFG COORDINATES SYSTEM 
% Translation of the vertex 
for ig = 1:3 
    X_V_mfgG(ig) = X_V_nomG(ig) + DeltaX_mfgG(ig); 
    Y_V_mfgG(ig) = Y_V_nomG(ig) + DeltaY_mfgG(ig); 
end     
T_V_Tr_1 = [1  0  0  X_V_mfgG(1);  0  1  0  Y_V_mfgG(1);  0  
0  1  Height_V_mfgG(1);  0  0  0  1]; 
T_V_Tr_2 = [1  0  0  X_V_mfgG(2);  0  1  0  Y_V_mfgG(2);  0  
0  1  Height_V_mfgG(2);  0  0  0  1]; 
T_V_Tr_3 = [1  0  0  X_V_mfgG(3);  0  1  0  Y_V_mfgG(3);  0  
0  1  Height_V_mfgG(3);  0  0  0  1]; 
 
% Rotation about the Z axis of the vertex 
T_V_RinZ_11 = [cos(Orient_mfgG(1)-pi/2)  -
sin(Orient_mfgG(1)-pi/2)  0  0;  sin(Orient_mfgG(1)-pi/2)  
cos(Orient_mfgG(1)-pi/2)  0  0;  0  0  1  0;  0  0  0  1]; 
T_V_RinZ_12 = [cos(Orient_mfgG(1)+pi/2)  -
sin(Orient_mfgG(1)+pi/2)  0  0;  sin(Orient_mfgG(1)+pi/2)  
cos(Orient_mfgG(1)+pi/2)  0  0;  0  0  1  0;  0  0  0  1]; 
T_V_RinZ_21 = [cos(Orient_mfgG(2)-pi/2)  -
sin(Orient_mfgG(2)-pi/2)  0  0;  sin(Orient_mfgG(2)-pi/2)  
cos(Orient_mfgG(2)-pi/2)  0  0;  0  0  1  0;  0  0  0  1]; 
T_V_RinZ_22 = [cos(Orient_mfgG(2)+pi/2)  -
sin(Orient_mfgG(2)+pi/2)  0  0;  sin(Orient_mfgG(2)+pi/2)  
cos(Orient_mfgG(2)+pi/2)  0  0;  0  0  1  0;  0  0  0  1]; 
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T_V_RinZ_31 = [cos(Orient_mfgG(3)-pi/2)  -
sin(Orient_mfgG(3)-pi/2)  0  0;  sin(Orient_mfgG(3)-pi/2)  
cos(Orient_mfgG(3)-pi/2)  0  0;  0  0  1  0;  0  0  0  1]; 
T_V_RinZ_32 = [cos(Orient_mfgG(3)+pi/2)  -
sin(Orient_mfgG(3)+pi/2)  0  0;  sin(Orient_mfgG(3)+pi/2)  
cos(Orient_mfgG(3)+pi/2)  0  0;  0  0  1  0;  0  0  0  1]; 
 
% Rotation about the Y axis of the vertex 
T_V_RinY_11 = [cos(pi/2-Halfangle(1))  0  sin(pi/2-
Halfangle(1))  0;  0  1  0  0;  -sin(pi/2-Halfangle(1))  0  
cos(pi/2-Halfangle(1))  0;  0  0  0  1]; 
T_V_RinY_12 = [cos(pi/2-Halfangle(2))  0  sin(pi/2-
Halfangle(2))  0;  0  1  0  0;  -sin(pi/2-Halfangle(2))  0  
cos(pi/2-Halfangle(2))  0;  0  0  0  1]; 
T_V_RinY_21 = [cos(pi/2-Halfangle(3))  0  sin(pi/2-
Halfangle(3))  0;  0  1  0  0;  -sin(pi/2-Halfangle(3))  0  
cos(pi/2-Halfangle(3))  0;  0  0  0  1]; 
T_V_RinY_22 = [cos(pi/2-Halfangle(4))  0  sin(pi/2-
Halfangle(4))  0;  0  1  0  0;  -sin(pi/2-Halfangle(4))  0  
cos(pi/2-Halfangle(4))  0;  0  0  0  1]; 
T_V_RinY_31 = [cos(pi/2-Halfangle(5))  0  sin(pi/2-
Halfangle(5))  0;  0  1  0  0;  -sin(pi/2-Halfangle(5))  0  
cos(pi/2-Halfangle(5))  0;  0  0  0  1]; 
T_V_RinY_32 = [cos(pi/2-Halfangle(6))  0  sin(pi/2-
Halfangle(6))  0;  0  1  0  0;  -sin(pi/2-Halfangle(6))  0  
cos(pi/2-Halfangle(6))  0;  0  0  0  1]; 
 
% Combination of the transformations 
% You give coord in local CSYS, this matrix will return the 
coord in the mfg CSYS 
T_V11_mfgG = T_V_Tr_1 * T_V_RinZ_11 * T_V_RinY_11; 
T_V12_mfgG = T_V_Tr_1 * T_V_RinZ_12 * T_V_RinY_12; 
T_V21_mfgG = T_V_Tr_2 * T_V_RinZ_21 * T_V_RinY_21; 
T_V22_mfgG = T_V_Tr_2 * T_V_RinZ_22 * T_V_RinY_22; 
T_V31_mfgG = T_V_Tr_3 * T_V_RinZ_31 * T_V_RinY_31; 
T_V32_mfgG = T_V_Tr_3 * T_V_RinZ_32 * T_V_RinY_32; 
 
 
% GROOVE CENTROID IN MFG COORDINATES SYSTEM 
for ig = 1:3 
    Dist_CV(ig) = (Diam/2) / sin((Halfangle(2*ig-1) + 
Halfangle(2*ig)) / 2);    % Distance between vertex and 
center of the ball 
    X_G_mfgG(ig) = X_V_mfgG(ig) - Dist_CV(ig)  * 
sin((Halfangle(2*ig-1) - Halfangle(2*ig)) /2) * 
sin(Orient_mfgG(ig)); 
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    Y_G_mfgG(ig) = Y_V_mfgG(ig) + Dist_CV(ig)  * 
sin((Halfangle(2*ig-1) - Halfangle(2*ig)) /2) * 
cos(Orient_mfgG(ig)); 
    Z_G_mfgG(ig) = Height_V_mfgG(ig) + Dist_CV(ig)  * 
cos((Halfangle(2*ig-1) - Halfangle(2*ig)) /2); 
end 
T_GC_mfgG = kct_centroid(X_G_mfgG, Y_G_mfgG, Z_G_mfgG); 
% You give coord in centroid CSYS, this matrix will return 
the coord in the mfg CSYS 
 
 
% FLAT SURFACES IN GROOVE CENTROID COORDINATES SYSTEM 
T_V11_GC = inv(T_GC_mfgG) * T_V11_mfgG; 
T_V12_GC = inv(T_GC_mfgG) * T_V12_mfgG; 
T_V21_GC = inv(T_GC_mfgG) * T_V21_mfgG; 
T_V22_GC = inv(T_GC_mfgG) * T_V22_mfgG; 
T_V31_GC = inv(T_GC_mfgG) * T_V31_mfgG; 
T_V32_GC = inv(T_GC_mfgG) * T_V32_mfgG; 
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B9. Sub-Function: kct_perturb 
close all; clear all; 
 
% Perturbations 
 
% INPUT 
% For the ball pallet 
Xb_nomB = [1  1  7] * 25.4; % Fixed 
Yb_nomB = [7  1  4] * 25.4; % Fixed 
t = 6.35; 
L = [0.75  0.75  0.75] * 25.4; 
D = [0.5  0.5  0.5] * 25.4; 
 
% For the groove body 
Xp_nomG = [1.0  1.0  7.0] * 25.4; % Fixed 
Yp_nomG = [7.0  1.0  4.0] * 25.4; % Fixed 
Hvertex = [0.1  0.1  0.1] * 25.4; 
Or = [-60  60  180] * pi/180; 
Halfa = [45  45  45  45  45  45] * pi/180; 
Dpft = 12.7; % Fixed 
 
 
% TOLERANCES 
thick_tol = 0.02; 
Length_tol = 0.05; 
Diam_tol = 0.03; 
circ_tol = 0.01; 
XB_tol = 0.05; 
YB_tol = 0.05; 
Heightv_tol = 0.05; 
Orient_tol = 0.002; 
Halfa_tol = 0.003; 
XG_tol = 0.05; 
YG_tol = 0.05; 
 
 
% GENERATING DIMENSIONS 
Dim(1) = t;              % Thickness of the ball plate 
for i = 1:3 
    Dim(1+i) = L(i);     % Foot length for the ball plate 
    Dim(4+i) = D(i);     % Ball diameter for the ball plate 
    Dim(6+2*i) = 0;      % Circularity on one side for the 
ball plate 
    Dim(7+2*i) = 0;      % Circularity on the other side 
for the ball plate 
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    Dim(13+i) = 0;       % X offset at the top for the ball 
plate 
    Dim(16+i) = 0;       % Y offset at the top for the ball 
plate 
    Dim(19+i) = 0;       % X offset at the bottom of the 
ball plate 
    Dim(22+i) = 0;       % Y offset at the bottom of the 
ball plate 
    Dim(25+i) = Hvertex(i);         % Height of the 
vertices for the groove body 
    Dim(28+i) = Or(i);              % Orientation angle of 
the grooves for the groove body 
    Dim(30+2*i) = Halfa(2*i-1);     % Half-angle on one 
side of the groove, for the groove body 
    Dim(31+2*i) = Halfa(2*i);       % Half-angle on the 
other side of the groove, for the groove body 
    Dim(37+i) = 0;       % X offset of a pin, for the 
groove body 
    Dim(40+i) = 0;       % Y offset of a pin, for the 
groove body 
end     
N_dims = size(Dim,2); 
 
Varia(1) = thick_tol;    % Thickness of the ball plate 
for i = 1:3 
    Varia(1+i) = Length_tol;        % Foot length for the 
ball plate 
    Varia(4+i) = Diam_tol;          % Ball diameter for the 
ball plate 
    Varia(6+2*i) = circ_tol;        % Circularity on one 
side for the ball plate 
    Varia(7+2*i) = circ_tol;        % Circularity on the 
other side for the ball plate 
    Varia(13+i) = XB_tol;           % X offset at the top 
for the ball plate 
    Varia(16+i) = YB_tol;           % Y offset at the top 
for the ball plate 
    Varia(19+i) = XB_tol;           % X offset at the 
bottom for the ball plate 
    Varia(22+i) = YB_tol;           % Y offset at the 
bottom for the ball plate 
    Varia(25+i) = Heightv_tol;      % Height of the 
vertices for the groove body 
    Varia(28+i) = Orient_tol;       % Orientation angle of 
the grooves for the groove body 
    Varia(30+2*i) = Halfa_tol;      % Half-angle on one 
side of the groove, for the groove body 



 

 120  

    Varia(31+2*i) = Halfa_tol;      % Half-angle on the 
other side of the groove, for the groove body 
    Varia(37+i) = XG_tol;           % X offset of a pin, 
for the groove body 
    Varia(40+i) = YG_tol;           % X offset of a pin, 
for the groove body 
end 
 
 
% CALCULATING THE JACOBIAN 
for i1 = 1:N_dims       % the dimension we are looking at 
    for i2 = 1: N_dims  % loop to create the perturbed 
array 
        if i1 == i2 
            Perturb(i2) = Dim(i2) + Varia(i2); 
        else 
            Perturb(i2) = Dim(i2); 
        end 
    end 
    t_p = Perturb(1); 
    for i = 1:3  
        L_p(i) = Perturb(1+i); 
        D_p(i) = Perturb(4+i); 
        ci_B_p(2*i-1) = Perturb(6+2*i); 
        ci_B_p(2*i) = Perturb(7+2*i); 
        dXtop_B_p(i) = Perturb(13+i); 
        dYtop_B_p(i) = Perturb(16+i); 
        dXbot_B_p(i) = Perturb(19+i); 
        dYbot_B_p(i) = Perturb(22+i); 
        Hvertex_p(i) = Perturb(25+i); 
        Or_p(i) = Perturb(28+i); 
        Halfa_p(2*i-1) = Perturb(30+2*i); 
        Halfa_p(2*i) = Perturb(31+2*i); 
        dXpin_G_p(i) = Perturb(37+i); 
        dYpin_G_p(i) = Perturb(40+i); 
    end 
     
    % For the ball pallet 
    [X_B_BC, Y_B_BC, Z_B_BC, Db] = kct_ballgeom(Xb_nomB, 
Yb_nomB, t_p, L_p, D_p, ci_B_p, dXtop_B_p, dYtop_B_p, 
dXbot_B_p, dYbot_B_p); 
    PB1=[X_B_BC(1); Y_B_BC(1); Z_B_BC(1); 1]; 
    PB2=[X_B_BC(2); Y_B_BC(2); Z_B_BC(2); 1]; 
    PB3=[X_B_BC(3); Y_B_BC(3); Z_B_BC(3); 1]; 
    PB4=PB3; 
    dB=Db'; 
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    % For the groove body 
    [TG11_G, TG12_G, TG21_G, TG22_G, TG31_G, TG32_G] = 
kct_groovegeom(Xp_nomG, Yp_nomG, Hvertex_p, Or_p, Halfa_p, 
Dpft, dXpin_G_p, dYpin_G_p); 
 
    % CALCULATING RESTING POSITION 
    
[alpha,beta,gamma,xr,yr,zr,Pc1,Pc2,Pc3,Pc4,Pc5,Pc6]=kct_res
t(PB1,PB2,PB3,PB4,dB,TG11_G,TG12_G,TG21_G,TG22_G,TG31_G,TG3
2_G); 
    dXdDim(i1) = xr / Varia(i1); 
    dYdDim(i1) = yr / Varia(i1); 
    dZdDim(i1) = zr / Varia(i1); 
    dAdDim(i1) = alpha / Varia(i1); 
    dBdDim(i1) = beta / Varia(i1); 
    dGdDim(i1) = gamma / Varia(i1); 
end     
 
Jacob = [dXdDim; dYdDim; dZdDim; dAdDim; dBdDim; dGdDim] 
 
% COVARIANCE MATRICES 
CoMtx_Dim = zeros(N_dims,N_dims); 
for i = 1:N_dims 
    CoMtx_Dim(i,i) = Varia(i)^2 / 9; 
end     
 
CoMtx_Err = Jacob * CoMtx_Dim * Jacob' 
X_tol = 3 * sqrt(CoMtx_Err(1,1)) 
Y_tol = 3 * sqrt(CoMtx_Err(2,2)) 
Z_tol = 3 * sqrt(CoMtx_Err(3,3)) 
A_tol = 3 * sqrt(CoMtx_Err(4,4)) 
B_tol = 3 * sqrt(CoMtx_Err(5,5)) 
G_tol = 3 * sqrt(CoMtx_Err(6,6)) 
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B10. Sub-Function: kct_rest 
function 
[alpha,beta,gamma,xr,yr,zr,Pc1,Pc2,Pc3,Pc4,Pc5,Pc6]=kct_res
t(PB1,PB2,PB3,PB4,dB,TG11_G,TG12_G,TG21_G,TG22_G,TG31_G,TG3
2_G) 
% This function calls the fsolve routine to solve the 24 
nonlinear equations that provide the resting position of 
the ball body of a kinematic coupling in a groove body.  
Vectors PB1, PB2, PB3, and PB4 locate the centers of the 
balls in coordinate sytem located at the coupling centroid.  
TG11_G,TG12_G,TG21_G,TG22_G,TG31_G, and TG32_G are the 
transformations from groove surfaces to groove coordinate 
system (ideally equal to ball coupling centroid).  alpha, 
beta, and gamma, are rotations about x,y, and z, 
respectively.  xr, yr, and zr are displacements, and 
Pc1,Pc2,Pc3,Pc4,Pc5, and Pc6 are position vectors to the 
contact points. 
 
% Setup initial guesses for unknowns 
for i=1:6 
   vars(i)=0; % Initial guess for the error components are 
all set to zero 
end 
vars(7:9)=PB1(1:3); % Initial guess for the coordinates of 
contact point #1 are set to the center of ball #1 
vars(10:12)=PB1(1:3); % Initial guess for the coordinates 
of contact point #2 are set to the center of ball #2 
vars(13:15)=PB2(1:3); % Initial guess for the coordinates 
of contact point #3 are set to the center of ball #3 
vars(16:18)=PB2(1:3); % Initial guess for the coordinates 
of contact point #4 are set to the center of ball #4 
vars(19:21)=PB3(1:3); % Initial guess for the coordinates 
of contact point #5 are set to the center of ball #5 
vars(22:24)=PB3(1:3); % Initial guess for the coordinates 
of contact point #6 are set to the center of ball #6 
vars=vars'; 
 
% Setup params vector to pass variables to fsolve routine 
params(1:3)=PB1(1:3); 
params(4:6)=PB2(1:3); 
params(7:9)=PB3(1:3); 
params(10:12)=PB4(1:3); 
params(13:15)=TG11_G(1:3,1); 
params(16:18)=TG11_G(1:3,2); 
params(19:21)=TG11_G(1:3,3); 
params(22:24)=TG11_G(1:3,4); 
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params(25:27)=TG12_G(1:3,1); 
params(28:30)=TG12_G(1:3,2); 
params(31:33)=TG12_G(1:3,3); 
params(34:36)=TG12_G(1:3,4); 
params(37:39)=TG21_G(1:3,1); 
params(40:42)=TG21_G(1:3,2); 
params(43:45)=TG21_G(1:3,3); 
params(46:48)=TG21_G(1:3,4); 
params(49:51)=TG22_G(1:3,1); 
params(52:54)=TG22_G(1:3,2); 
params(55:57)=TG22_G(1:3,3); 
params(58:60)=TG22_G(1:3,4); 
params(61:63)=TG31_G(1:3,1); 
params(64:66)=TG31_G(1:3,2); 
params(67:69)=TG31_G(1:3,3); 
params(70:72)=TG31_G(1:3,4); 
params(73:75)=TG32_G(1:3,1); 
params(76:78)=TG32_G(1:3,2); 
params(79:81)=TG32_G(1:3,3); 
params(82:84)=TG32_G(1:3,4); 
params(85)=dB(1); 
params(86)=dB(2); 
params(87)=dB(3); 
params(88)=dB(4); 
params(89)=dB(5); 
params(90)=dB(6); 
params=params'; 
 
% Solve the nonlinear system of equations 
retvars=fsolve(@kct_seat,vars,optimset('Display','off'),par
ams); 
 
alpha=retvars(1); 
beta=retvars(2); 
gamma=retvars(3); 
xr=retvars(4); 
yr=retvars(5); 
zr=retvars(6); 
Pc1=[retvars(7:9);1]; 
Pc2=[retvars(10:12);1]; 
Pc3=[retvars(13:15);1]; 
Pc4=[retvars(16:18);1]; 
Pc5=[retvars(19:21);1]; 
Pc6=[retvars(22:24);1]; 
 
%TB_G(1:4,1)=[cos(alpha)*cos(beta);sin(alpha)*cos(beta);-
sin(beta);0]; 
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%TB_G(1:4,2)=[cos(alpha)*sin(beta)*sin(gamma)-
sin(alpha)*cos(gamma);sin(alpha)*sin(beta)*sin(gamma)+cos(a
lpha)*cos(gamma);cos(beta)*sin(gamma);0]; 
%TB_G(1:4,3)=[cos(alpha)*sin(beta)*cos(gamma)+sin(alpha)*si
n(gamma);sin(alpha)*sin(beta)*cos(gamma)-
cos(alpha)*sin(gamma);cos(beta)*cos(gamma);0]; 
%TB_G(1:4,4)=[xr;yr;zr;1]; 
 



 

 125  

B11. Sub-Function: kct_seat 
function retvars=kct_seat(vars, params) 
 
% This function evaluates the 24 functions that are the 
system of non-linear equations that can be solved for the 
seating position (transformation) of the ball body in the 
groove body.  When used with fsolve.m the system can be 
solved for the x,y,z,alpha,beta, and gamma pose coordinates 
as well as the coordinates of the 6 contact points.  This 
function must be sent the positions of the balls in a 
coordinate system located at the coupling centroid, the 
contact normal vectors, and the ball diameter in the 
components of the vector params. 
 
alpha=vars(1);  % Rotation angle about z-axis 
beta=vars(2);    % Rotation angle about y-axis 
gamma=vars(3);   % Rotation angle about x-axis 
xr=vars(4);      % Position in x-axis 
yr=vars(5);  % Position in y-axis 
zr=vars(6);  % Position in z-axis 
Pc1(1:4)=[vars(7:9);1];    Pc1=Pc1'; % Contact point 1's 
coordinates  
Pc2(1:4)=[vars(10:12);1];  Pc2=Pc2'; % Contact point 2's 
coordinates 
Pc3(1:4)=[vars(13:15);1];  Pc3=Pc3'; % Contact point 3's 
coordinates  
Pc4(1:4)=[vars(16:18);1];  Pc4=Pc4'; % Contact point 4's 
coordinates 
Pc5(1:4)=[vars(19:21);1];  Pc5=Pc5'; % Contact point 5's 
coordinates  
Pc6(1:4)=[vars(22:24);1];  Pc6=Pc6'; % Contact point 6's 
coordinates 
 
% Extract values in params vector into meaningful notation 
Pb1=[params(1:3)];Pb1(4)=1;  % Position of ball 1 in 
coordinate system at coupling centroid in ball body 
Pb2=[params(4:6)];Pb2(4)=1;  % Position of ball 2 in 
coordinate system at coupling centroid in ball body 
Pb3=[params(7:9)];Pb3(4)=1;  % Position of ball 3 in 
coordinate system at coupling centroid in ball body 
Pb4=[params(10:12)];Pb4(4)=1;   % Position of ball 4 in 
coordinate system at coupling centroid in ball body 
TG11_G=[params(13:15),params(16:18),params(19:21),params(22
:24)]; % Transformation from surface 1_1 to Groove coord 
system 
TG11_G(4,1:4)=[0,0,0,1]; 
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TG12_G=[params(25:27),params(28:30),params(31:33),params(34
:36)]; % Transformation from surface 1_2 to Groove coord 
system 
TG12_G(4,1:4)=[0,0,0,1]; 
TG21_G=[params(37:39),params(40:42),params(43:45),params(46
:48)]; % Transformation from surface 2_1 to Groove coord 
system 
TG21_G(4,1:4)=[0,0,0,1]; 
TG22_G=[params(49:51),params(52:54),params(55:57),params(58
:60)]; % Transformation from surface 2_2 to Groove coord 
system 
TG22_G(4,1:4)=[0,0,0,1]; 
TG31_G=[params(61:63),params(64:66),params(67:69),params(70
:72)]; % Transformation from surface 3_1 to Groove coord 
system 
TG31_G(4,1:4)=[0,0,0,1]; 
TG32_G=[params(73:75),params(76:78),params(79:81),params(82
:84)]; % Transformation from surface 3_2 to Groove coord 
system 
TG32_G(4,1:4)=[0,0,0,1]; 
rB(1)=params(85)/2; % Radius of Balls 
rB(2)=params(86)/2; 
rB(3)=params(87)/2; 
rB(4)=params(88)/2; 
rB(5)=params(89)/2; 
rB(6)=params(90)/2; 
 
%Extract normal vectors at contact points from the 
transformation matrices 
n1=[TG11_G(1:3,3);1]; % Unit vector in direction of 
contact force 1 at contact point 1 
n2=[TG12_G(1:3,3);1]; % Unit vector in direction of 
contact force 2 at contact point 2 
n3=[TG21_G(1:3,3);1]; % Unit vector in direction of 
contact force 3 at contact point 3 
n4=[TG22_G(1:3,3);1]; % Unit vector in direction of 
contact force 4 at contact point 4 
n5=[TG31_G(1:3,3);1]; % Unit vector in direction of 
contact force 5 at contact point 5 
n6=[TG32_G(1:3,3);1]; % Unit vector in direction of 
contact force 6 at contact point 6 
 
 
% Calculate elements within the homogenous transformation 
matrix representing resting position 
T(1:4,1)=[cos(alpha)*cos(beta);sin(alpha)*cos(beta);-
sin(beta);0]; 
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T(1:4,2)=[cos(alpha)*sin(beta)*sin(gamma)-
sin(alpha)*cos(gamma);sin(alpha)*sin(beta)*sin(gamma)+cos(a
lpha)*cos(gamma);cos(beta)*sin(gamma);0]; 
T(1:4,3)=[cos(alpha)*sin(beta)*cos(gamma)+sin(alpha)*sin(ga
mma);sin(alpha)*sin(beta)*cos(gamma)-
cos(alpha)*sin(gamma);cos(beta)*cos(gamma);0]; 
T(1:4,4)=[xr;yr;zr;1]; 
 
retvars(1:24)=zeros(24,1); 
retvars(1:4)  =T*Pb1-Pc1-rB(1)*n1;  
retvars(4:7)  =T*Pb1-Pc2-rB(2)*n2;  
retvars(7:10) =T*Pb2-Pc3-rB(3)*n3;  
retvars(10:13)=T*Pb2-Pc4-rB(4)*n4;  
retvars(13:16)=T*Pb3-Pc5-rB(5)*n5;  
retvars(16:19)=T*Pb4-Pc6-rB(6)*n6;  
retvars(19)=TG11_G(3,4)+1/TG11_G(3,3)*(TG11_G(1,3)*(TG11_G(
1,4)-Pc1(1))+TG11_G(2,3)*(TG11_G(2,4)-Pc1(2)))-Pc1(3);  
retvars(20)=TG12_G(3,4)+1/TG12_G(3,3)*(TG12_G(1,3)*(TG12_G(
1,4)-Pc2(1))+TG12_G(2,3)*(TG12_G(2,4)-Pc2(2)))-Pc2(3);  
retvars(21)=TG21_G(3,4)+1/TG21_G(3,3)*(TG21_G(1,3)*(TG21_G(
1,4)-Pc3(1))+TG21_G(2,3)*(TG21_G(2,4)-Pc3(2)))-Pc3(3);  
retvars(22)=TG22_G(3,4)+1/TG22_G(3,3)*(TG22_G(1,3)*(TG22_G(
1,4)-Pc4(1))+TG22_G(2,3)*(TG22_G(2,4)-Pc4(2)))-Pc4(3);  
retvars(23)=TG31_G(3,4)+1/TG31_G(3,3)*(TG31_G(1,3)*(TG31_G(
1,4)-Pc5(1))+TG31_G(2,3)*(TG31_G(2,4)-Pc5(2)))-Pc5(3);  
retvars(24)=TG32_G(3,4)+1/TG32_G(3,3)*(TG32_G(1,3)*(TG32_G(
1,4)-Pc6(1))+TG32_G(2,3)*(TG32_G(2,4)-Pc6(2)))-Pc6(3);  
retvars=retvars'; 
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Appendix C: 

Determining the HTM from a Metrology Datum 
Frame to a Centroidal Coordinate System 

 

The coordinates of the triangles’ three apices B1 ( )
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denoted with the prescript D, as shown in Fig C1. 
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Fig C1: Datum and Centroid Coordinate Systems in Coupling Triangle 

 

The centroidal coordinate system, denoted with the prescript C, is defined by 

three criteria: 

� Its origin is located at the intersection of the triangle’s bisectors, which is the centroid 

C. 

� Its x-axis points towards B3. 

� The three apices B1, B2 and B3 lie in the xy-plane. 

Criterion � implies that the z-coordinates of the apices are equal to zero, as 

shown in Eq (C1): 
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The complete geometry of triangle (B1B2B3) is determined by calculating the edge 

lengths using Eq (C2)-(C4) and the internal angles using Eq (C5)-(C7). 
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Applying the law of sine’s in triangle (B1CB3) gives Eq (C8): 
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Since the three angles of a triangle are supplementary, triangle (B1CB3) provides 

Eq (C9). 

133131 BCBBCBCBB ∠−∠−=∠ π  (C9) 

Applying the same rule on triangle (B1B2B3) gives Eq (C10): 

312 BBB ∠−∠−=∠ π  (C10) 

By definition, the bisectors divide the triangle’s internal angles into two equal 

angles. This rule gives Eq (C11) and Eq (C12). 
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Inserting Eq (C10)-(C12) into Eq (C9) provides Eq (C13): 
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Eq (C14) results from a trigonometry relation applied on Eq (C13): 
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Eq (C15) is obtained by inserting Eq (C14) into Eq (C8): 
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Criteria � and � imply that the x-coordinate of apex B3 is equal to the length 

CB3. This condition gives Eq (C16) and Eq (C17): 
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The relative position of apex B1 with respect to apex B3 is known, so its 

coordinates in the centroidal coordinate system can be found as shown in Eq (C18) and 

(C19): 
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Coordinates of apex B2 are similarly defined in Eq (C20) and (C21): 
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Finding the rotation angles about the three axes of the centroidal coordinate 

system requires the definition of three distinct unit vectors that start from apex B3 and 

point respectively towards B1, B2 and C. The coordinates of these unit vectors in the 

metrology datum frame are presented in Eq (C22)-(C24): 



















−

−

−

×=

31

31

31

13

13

1

B
D

B
D

B
D

B
D

B
D

B
D

BB
D

zz

yy

xx

BB
u
r

 

 



















−

−

−

×=

32

32

32

23

32

1

B
D

B
D

B
D

B
D

B
D

B
D

BB
D

zz

yy

xx

BB
u
r

 

 

( ) ( ) ( )




















+

+

+

×
+++++

=

z
BB

Dz
BB

D

y
BB

Dy
BB

D

x
BB

Dx
BB

D

z
BB

Dz
BB

Dy
BB

Dy
BB

Dx
BB

Dx
BB

D
CB

D

uu

uu

uu

uuuuuu
u

2313

2313

2313

231323132313

3 222

1r  

 

(C22) 

 

 

 

(C23) 

 

 

 

(C24) 

 

Then the coordinates of the centroid C in the metrology datum frame are defined 

by Eq (C25)-(C27): 
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 Hence the rotation βC
D  about the y-axis, between the two coordinate systems, is 

obtained by Eq (C28): 
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The following step is the definition of the rotation αC
D  about the z-axis, between 

the two coordinate systems, whose definition is presented in Eq (C29): 
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Finally, the rotation γC
D  about the x-axis, between the two coordinate systems, is 

defined by Eq (C30): 
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To conclude, the Homogeneous Transformation matrix TC
D  between the two 

coordinate systems is defined by equation (C31). 
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