
University of Kentucky University of Kentucky

UKnowledge UKnowledge

University of Kentucky Master's Theses Graduate School

2005

Master Texture Space: An Efficient Encoding for Projectively Master Texture Space: An Efficient Encoding for Projectively

Mapped Objects Mapped Objects

David Guinnip
University of Kentucky

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Guinnip, David, "Master Texture Space: An Efficient Encoding for Projectively Mapped Objects" (2005).
University of Kentucky Master's Theses. 228.
https://uknowledge.uky.edu/gradschool_theses/228

This Thesis is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted
for inclusion in University of Kentucky Master's Theses by an authorized administrator of UKnowledge. For more
information, please contact UKnowledge@lsv.uky.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Kentucky

https://core.ac.uk/display/232559096?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/gradschool_theses
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

ABSTRACT OF THESIS

David Guinnip

The Graduate School

University of Kentucky

2005

Master Texture Space: An Efficient Encoding for Projectively Mapped Objects

ABSTRACT OF THESIS

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science in the

College of Engineering
at the University of Kentucky

By

David Guinnip

Lexington, Kentucky

Director: Dr. Grzegorz W. Wasilkowski, Associate Professor of Computer

Science

Lexington, Kentucky

2005

Copyright c© David Guinnip 2005

ABSTRACT OF THESIS

Master Texture Space: An Efficient Encoding for Projectively Mapped Objects

Abstract

Projectively textured models are used in an increasingly large number of applications
that dynamically combine images with a simple geometric surface in a viewpoint depen-
dent way. These models can provide visual fidelity while retaining the effects afforded
by geometric approximation such as shadow casting and accurate perspective distortion.
However, the number of stored views can be quite large and novel views must be synthe-
sized during the rendering process because no single view may correctly texture the entire
object surface. This work introduces the Master Texture encoding and demonstrates that
the encoding increases the utility of projectively textured objects by reducing render-time
operations. Encoding involves three steps; 1) all image regions that correspond to the same
geometric mesh element are extracted and warped to a facet ofuniform size and shape,
2) an efficient packing of these facets into a new Master Texture image is computed, and
3) the visibility of each pixel in the new Master Texture datais guaranteed using a simple
algorithm to discard occluded pixels in each view. Because the encoding implicitly repre-
sents the multi-view geometry of the multiple images, a single texture mesh is sufficient
to render the view-dependent model. More importantly, every Master Texture image can
correctly texture the entire surface of the object, removing expensive computations such
as visibility analysis from the rendering algorithm. A benefit of this encoding is the sup-
port for pixel-wise view synthesis. The utility of pixel-wise view synthesis is demonstrated
with a real-time Master Texture encoded VDTM application. Pixel-wise synthesis is also
demonstrated with an algorithm that distills a set of MasterTexture images to a single
view-independent Master Texture image.

KEYWORDS: View-dependent Projective Texture Mapping,Visiblity Analysis, View Syn-
thesis, Triangle Packing, Rectangle Packing

Master Texture Space: An Efficient Encoding for Projectively Mapped Objects

By

David Guinnip

Director of THESIS

Director of Graduate Studies

RULES FOR THE USE OF THESIS

Unpublished thesises submitted for the Master’s degree anddeposited in the University of
Kentucky Library are as a rule open for inspection, but are tobe used only with due regard
to the rights of the authors. Bibliographical references maybe noted, but quotations or
summaries of parts may be published only with the permissionof the author, and with the
usual scholarly acknowledgements.

Extensive copying or publication of the thesis in whole or inpart also requires the consent
of the Dean of the Graduate School of the University of Kentucky.

A library that borrows this thesis for use by its patrons is expected to secure the signature
of each user.

Name Date

MASTER THESIS

David Guinnip

The Graduate School

University of Kentucky

2005

Master Texture Space: An Efficient Encoding for Projectively Mapped Objects

THESIS

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science in the

College of Engineering
at the University of Kentucky

By

David Guinnip

Lexington, Kentucky

Director: Dr. Grzegorz W. Wasilkowski, Associate Professor of Computer

Science

Lexington, Kentucky

2005

Copyright c© David Guinnip 2005

ACKNOWLEDGEMENTS

I would like to thank my adviser, Dr. Christopher Jaynes, for his helpful guidance,

support, and encouragement throughout the completion of this thesis. I would like to thank

Dr. Ruigang Yang and Dr. Etienne Grossman for giving me assistance and encouragement.

I would like to thank my family for their love and support.

iii

Table of Contents

Acknowledgements iii

List of Tables v

List of Figures vi

Chapter 1 Introduction 1

Chapter 2 Related Work 4

Chapter 3 Master Texture Encoding Algorithm 7
3.1 Introduction . 7
3.2 Facet Parameterization .. 8
3.3 Efficient Facet Packing .10

3.3.1 Triangle Pairing . 11
3.3.2 Rectangle Tiling . 13
3.3.3 Simulated Annealing Search for Efficient Rectangle Packing 14

3.4 Visibility Determination .. . 16

Chapter 4 Results 19

Chapter 5 Applications 24
5.1 Real-time View-dependent Application 24
5.2 Off-line View Synthesis .. 27

5.2.1 View-independent Synthesis Algorithm 27

Chapter 6 Conclusion 29

Bibliography 31

Vita 34

iv

List of Tables

4.1 Exemplar data set statistics. 19
4.2 Compression rates for four different data sets of varyingmesh size, exem-

plar image size, and number of views. .21
4.3 Image difference scores of the four data sets using both maximum enclos-

ing triangle and mean triangle warping 22

v

List of Figures

1.1 Traditional view-dependent texture mapping versus theMaster Texture Space
encoding. (Top) Traditional approach. Exemplar images must be stored
with a different set of texture coordinates per image. As newviews of the
object are needed at run-time, these different texture coordinates must be
available. (Bottom) After encoding, the Master Texture space hold a new
set of images that require only a single set of texture coordinates. A single
pixel (shown as a line) in all images corresponds to the same point on the
object mesh. 2

3.1 Example of facet parameterization. (top row) Three images of a real-world
car object. A single mesh face corresponding (insert on eachview, top row)
as seen in each image. (bottom row) Facets are parameterizedto uniform
shape, size, and orientation. .. 8

3.2 A section of the triangle-pairing for the BMW Max-Area-Facet data set.
The top image shows the initial pairings using simple heuristics to select
pairings for search initialization. It has a pairing efficiency (measured as
total area used within the rectangular bounding boxes)of 81%. The bottom
image is after optimization, using the 5th cooling schedule(Figure 4.2).
The final pairing efficiency is 97%. .12

3.3 Packing example using the sequence-pair. (Far Left) A set of 10 rectan-
gles. (Middle left) Conditioning the initial sequence-pairset. Rows show
the sequence-pair at each iteration of the conditioning algorithm. (Mid-
dle right) The conditioned packing of the sequence-pair that is the initial
state of the annealing process. This initial packing has dimension 100 x
104 with 50% efficiency. (Far right) The result of the packingafter the
annealing process has dimension 43 x 130 with 94% efficiency.. 15

3.4 Example of the iterative facet packing process. (Left) Initial estimate of
image size and packing (see Text). (Middle) Final result after 22,433 iter-
ations of the annealing process using schedule 5 (See Figure4.2). In this
example, packing efficiency (measured as ratio of covered pixels to total
pixels in image) was increased from 89.3% to 93.3%. (Right) Final Master
Texture image containing the facet pixel data. 15

3.5 (Top)Exemplar image from the ”truck” data set. Triangleoutlined in white
on cab illustrates a partially occluded surface facet from this view. (Far
left) Partially occluded facet extracted and warped. (Middle left) Pixels
determined to be occluded shown in white. (Middle right) Closest neighbor
facet that contains visible pixels. (Far right) Synthesized facet containing
only visible data. 17

vi

4.1 Results of the Master Texture encoding applied to the fourdifferent test
objects. Each example shows an exemplar image (top left), object mesh
(bottom left), example Master Texture, and the rendered view (at right). . . 20

4.2 A study of cooling rates on two different data sets. (Left) A plot of the total
packing efficiency for the BMW and Helicopter data sets for each of the
different cooling schedules. (Right) Cooling schedule includes the start-
ing temperature (randomness) of the search and a reduction value that is
applied at each iteration to dictate how rapidly the temperature is decreased. 20

4.3 A side-by-side comparison of the BMW model rendered from afixed view.
(a) Rendering using traditional view-dependent texture mapping and an ex-
emplar view. (b) Rendering from the same view using a Master Texture
encoded image. (c) Direct image difference of first two renderings. Differ-
ences have been normalized to a range of 0-255 for visualization purposes.
Only 5.6% of the 640x480 pixels in the image are different with a mean
intensity difference of less than five. 22

5.1 NVIDIA pixel shader for performing per-fragment texture blending. 26
5.2 Screen shots from Master Texture encoding applications. Right image is

a screen shot of the VDTM application with mirror toggle enabled. Left
image is a screen shot of the View-Independent Master Texture encoded
object as seen from a web page with the ArchVision RPC ActiveX con-
trol [1]. 28

vii

Chapter 1

Introduction

Image-based modeling is based on the observation that images can be used to render views

of a scene without the need for an explicit representation ofthe underlying geometry.

By eliminating or reducing the reliance on accurate geometry, image-based modeling has

proven to be a powerful method to accurately render views of ascene [6, 8, 10, 11, 33]. Al-

though all image-based methods represent a scene with a collection of images, techniques

vary in the number of stored images, how these images are combined with scene geometry,

and the rendering algorithms that produce viewpoints of themodel not contained in image

data.

View-dependent projective texture mapping (VDTM) has proven to be a particularly

powerful image-based modeling technique for many domains and applications [5, 2, 10,

12, 27]. In contrast to other approaches that rely on image data alone, VDTM dynamically

combines image-data with a model according to the current viewpoint of the scene. If

calibration information (i.e. the intrinsic properties ofthe camera as well as its extrinsic

pose with respect to the object) is known about each view, theperspective mapping between

each view and the object geometry can be established and image pixels can be projected

onto the object surfaces from each view. Because this approach utilizes model geometry,

rendering effects such as shadow casting, perspective distortion, and self-occlusions are

supported. At the same time, high-resolution data, constructed from one or more exemplar

images of the real-world object, provides photo-realisticsurface texture.

An unfortunate drawback to these methods however, is the large number of views re-

quired to accurately reproduce a scene. Often, as the complexity of the scene increases

1

Figure 1.1: Traditional view-dependent texture mapping versus the Master Texture Space
encoding. (Top) Traditional approach. Exemplar images must be stored with a different
set of texture coordinates per image. As new views of the object are needed at run-time,
these different texture coordinates must be available. (Bottom) After encoding, the Master
Texture space hold a new set of images that require only a single set of texture coordinates.
A single pixel (shown as a line) in all images corresponds to the same point on the object
mesh.

either the mesh geometry must more accurately reflect the scene or the number of images

must increase. As a result, researchers have begun to focus on compression, storage, and

novel view generation techniques to alleviate these problems [5,11,13,14,31]. This work

introduces an efficient representation and corresponding encoding process that was specifi-

cally designed for the image-based, view-dependent projective mapping domain. The tech-

nique reorganizes the image space so that a given pixel location across the image set corre-

sponds to the same surface location. The result is a set of images that share the same texture

coordinates regardless of viewpoint. This encoding improves the efficiency of image stor-

age as the underlying projective geometry can be discarded and traditional image-based

2

operations such as view synthesis, view interpolation and editing become straightforward

in the newly encoded image space [12]. This Master Texture Encoding reorders pixel data

corresponding to mesh triangles by computing the optimal placement of texture triangles

into a new 2D image plane. Optimal tiling of a plane using triangle elements is an NP-

complete problem [4] and we introduce a new algorithm that searchers for an approximate

solution via simulated annealing.

Once encoded, a given point on the object surface corresponds to the same pixel lo-

cation in all views, regardless of the initial multi-view geometry to which the images cor-

respond. This is significantly different from traditional view-dependent texture mapping

scenarios in which the mapping from image to surface points is either implicitly encoded

in a set of projection matrices or explicitly stored as a set of texture coordinates per-image.

Figure 1.1 depicts the general difference behind a traditionally encoded VDTM model and

the Master Texture representation. Pixel-wise alignment of images encoded in Master Tex-

ture space can be utilized to perform view synthesis directly in image space. Pixel-wise

alignment allows Master Texture images to support view synthesis at render-time as well

as off-line. Applications that utilize view-synthesis in the two desperate domains are pre-

sented in Chapter 5.

3

Chapter 2

Related Work

The Master Texture encoding is inspired by recent progress in combining geometric models

with view-dependent texture information to produce realistic scenes at render time. Early

image-based modeling and rendering techniques formalizedthe use of pixel data, poten-

tially captured from real-world scenes, for rendering without explicit geometric descrip-

tions [25, 29, 30, 33]. Pure image-based representations are beneficial for creating novel

views when a large number of match points are recoverable andthe entire scene can be rep-

resented in the set of exemplar images or some function thereof. Several techniques have

been presented for performing view-synthesis in this domain [7, 15]. Light Field render-

ing [9, 16, 33], plenoptic function recovery [30, 20], Opacity Hull 3D photography [19],

and novel view synthesis based on trilinear constraints [3]are focused on exploiting the

image-based representation to generate novel views directly from the available images and,

in some cases, camera calibration information. Hybrid methods that use both image data

and a simple surface description of the scene have been shownto alleviate several of these

problems [5, 10, 11, 14]. Exemplar images are projected ontoa surface model from their

known viewing location and then rendered from a novel viewpoint. In this way, perspective

effects and occlusions are partially reproduced in the new view based on the accuracy of the

underlying surface geometry. Research in VDTM mainly focuses on reducing the storage

requirements in order to facilitate larger numbers of viewsand remove rendering artifacts.

Debevec et al. introduced a view interpolation algorithm tosynthesize novel views at ren-

der time by combining information from multiple exemplar images that are close (in terms

of viewing parameters) to the desired view [11]. The approach pre-computes visibility

4

information for each mesh face and stores this information in a view-map data structure.

At render time, the view-map is queried to correctly combinedifferent exemplar images

on a single mesh face to insure that texture information contains only visible pixels. The

algorithm produces smoothly blended texture information from the exemplar views. As

the work of [11] suggests, visibility analysis is an important aspect of accurate novel view

generation. A caveat of projective texture mapping is the necessity to perform visibility

analysis at render-time. Furthermore, complex processingof the existing mesh must occur

in order to detect and eliminate special cases such as partially visible mesh elements as

seen from any exemplar image view [34]. Such processing has the potential to increase

the complexity of the underlying mesh. Alternatively, images encoded in a Master Tex-

ture space contain pixels that represent unique Euclidean positions on the surface mesh.

Therefore, visibility analysis can be performed directly in the image space without altering

the existing mesh. Novel view generation in Master Texture space is equivalent to linear

interpolation of the Master Texture images. Furthermore, the set of Master Textures can be

synthesized into a single Master Texture through direct image space operations, which ex-

tends the utility of the data set to rendering applications that do not support view-dependent

texture mapping.

In work similar to our own, [22] describes an Eigen-Texture encoding scheme that

stores all the views of a particular model face in a single image texture. This representation

has the advantage of being amenable to off-line compressionmethods and results show

that the technique is able to achieve between 5:1 and 15:1 compression rates with little or

no loss in image fidelity. However, render-time texture compression is not addressed, and

since an Eigen-Texture is constructed from a single mesh element under different illumi-

nations, rendering an arbitrary view must access all Eigen-Textures [22]. Perhaps future

research involving the Master Texture encoding could involve incorporating Eigen-Texture

compression for off-line storage of the image data set, using the packing map (see section

3.2) to transfer between the Eigen-Texture space and the Master Texture space.

The Master Texture Encoding can be interpreted as an algorithm for automatic texture

atlas generation (ATAG) [17, 18, 26]. The basic goal of existing ATAG algorithms is to

5

create a texture atlas that can be easily painteda-posteriorithrough a 3D Painting System

without causing visual artifacts from segmentation or parameterization while maximizing

packing efficiency [17]. Unlike the Master Texture encoding, previous methods for ATAG

do not generally consider texture information as input, anddo not base quality of the en-

coding on preserving source texture information. Since VDTM data sets provide color

informationa-priori, our algorithm only needs to parameterize a surface elementin texture

space to minimize the image-space difference of the encodedand exemplar elements. Also,

image-based editing of Master Texture data sets can be performed prior to encoding [12],

so the amenability for image-based editing of encoded data sets is not a concern. Therefore,

the sole concern of segmentation and packing in the Master Texture algorithm is minimiz-

ing empty space in destination textures, resulting in packing efficiency ranging from 85 -

95% (see Chapter 4). The general Master Texture algorithm waspresented in [12] and here

we further develop along a number of lines including 1) a new and more efficient method

for facet-packing, 2) a novel visibility analysis phase that exploits properties of the Master

Texture space to discard unused image information, 3) a real-time rendering algorithm, and

4) a simple Master Texture synthesis algorithm to distill the set of Master Textures to a

single, view-independent data set. The latter contribution significantly reduces the size of

the data set and extends the usefulness Master Texture objects to rendering architectures

that do not support view-dependent rendering. In addition,we explore the behavior of

the algorithm under a wider variety of test cases and proposenew directions for this and

similar research. Results demonstrate that the new Master Texture space preserves image

fidelity contained in the exemplar views, achieves reasonable compression, and facilitates

efficient rendering and manipulation of the encoded images for a wide variety of rendering

applications.

6

Chapter 3

Master Texture Encoding Algorithm

3.1 Introduction

The Master Texture encoding algorithm consists of three stages. The first stage parameter-

izes the local basis of each of them triangular mesh elements in then exemplar images. The

result is a set ofn face elements, orf acets, for each of them mesh elements, of uniform

size, shape and orientation. The next stage of the algorithmdetermines a packing map that

will determine an optimal packing for the set ofm facets extracted and parameterized from

each exemplar imagen. A two-stage annealing process first pairs facets into rectangles

that minimize wasted space across the pairings. Next, the set of ⌈n/2⌉ rectangles from the

first annealing process are packed into a destination 2D plane that minimizes wasted space.

The result of the second annealing phase is the packing map, which gives coordinates to

place each of them facets into the 2D plane of the n exemplar views - the Master Texture

images. The final stage of the algorithm performs visibilityanalysis to fill occluded pixels

in the Master Texture images set with visible pixels, resulting in a Master Texture image

set that can accurately texture the surface mesh from any view-point, while maintaining

view-dependent effects such as specular highlights and surface details represented in the

view-dependent image data. Results show that the encoded data sets reduce render-time

storage requirements by reducing texture dimensions and eliminating the need to compute

or store multiple sets of texture coordinates. The explicitbenefit of storage reduction legit-

imizes the use of the Master Texture encoding for VDTM in domains that involve resource

constraints (i.e. transmission of a VDTM over a limited bandwidth link). However, an

7

Figure 3.1: Example of facet parameterization. (top row) Three images of a real-world car
object. A single mesh face corresponding (insert on each view, top row) as seen in each
image. (bottom row) Facets are parameterized to uniform shape, size, and orientation.

implicit benefit of the encoding is the correspondence of Euclidean positions on the sur-

face mesh to pixels across the set of stored Master Textures.The Master Texture encoding

guarantees that a pixel,(i, j)k, in Master Texture imagek corresponds to the same point on

the surface as pixel(i, j) in all other Master Textures.Pixelwise correspondenceis a ben-

eficial property of the Master Texture encoding because viewcorrespondence operations

including view synthesis can occur on the now pixel-aligneddata directly in image space.

3.2 Facet Parameterization

Given a set ofn different exemplar images, each of them mesh triangles are projected

into all views to producen∗m image facets. For a single mesh triangle,n facets, one

for each view, are computed using the 3 triangular vertices and then projection matrices

corresponding to the views.

pi
k = Pixk,k = 1..3 (3.1)

Wherexk is the three-dimensional homogeneous point of the trianglevertexk, pi
k is

the resulting two-dimensional homogenous image coordinates of the facet in imagei, and

P is the 4x3 projection matrix that describes how world pointsappear in exemplar viewi.

8

After Equation 3.1 has been computed for all facets in the data set, all projection matrices

are discarded and further operations now take place on the resultingn different 2D facets

for that mesh triangle in image space. We refer to the set of facetspi
k, corresponding to

a single mesh triangle as af acet f amily, wherei ranges from 1 to the number of views

available. Figure 3.1 shows a model as seen from three different exemplar views. The three

triangular facets, corresponding to the same mesh element (i.e. the same facet family) are

highlighted on each exemplar view. Note that the facets are deformed due to perspective

effects. Once extracted, the all the facets within each family are warped into a uniform size

and shape. For a given family, each facet is transformed to a target right triangle of width

w and heighth whose longest axis is aligned with that of the x-axis in imagespace. For a

givenw andh, a two-dimensional affine warp,X = [a11a12a13a21a22a23]T, is derived from

the three corresponding points on the initial triangle applied to each of then facets:

A =

x0 y0 1 0 0 0
0 0 0 x0 y0 1
x1 y1 1 0 0 0
0 0 0 x1 y1 1
x2 y2 1 0 0 0
0 0 0 x2 y2 1

,B =

0
0
w
0
0
h

,Ax = B (3.2)

WhereA is the set of initial image coordinates of the mesh triangle,B is a vector containing

the corresponding target coordinates of the warped facet. Note thatB is constructed so

that the resulting facets are all aligned with the image axes. The elements ofx are then

determined from the least squares solution:

X = (ATA)−1ATB (3.3)

As opposed to approaches that warp triangles to the maximum size of any triangle

as seen in any view [12], we use amean enclosing triangleapproach, that computes the

axis-aligned, right triangle that is minimally distant from all triangles in the family. This

increases the compression achieved by the algorithm while avoiding undue sampling arti-

facts by guaranteeing that the target triangle width,w, and height,h, are close to the facet

family under consideration. This is accomplished by minimizing the sum of the distances

between facet vertices before and after warping:

9

argminw,h
k

∑
j=1

3

∑
i=1

‖D(xi ,Awhxi)‖ (3.4)

WhereD(a,b) is the Euclidean distance between pointxi and the point warped by the

affine transformAwhxi . Note thatAwh is the affine transform matrix given by Equations 3.2

and 3.3 for particularw andh values. This way the size of a packing triangle for a facet

family remains fixed and resampling must only occur once. Once the facet families have

been parameterized, each facet familyFn is analyzed to see if it is of uniform color across

all views. If the image difference acrossFn is less than an intensity difference threshold ,

and the facets are of uniform color, then the dimension of thefacet family can be reduced

to fixed dimensiond. To eliminate sampling artifacts during render-time rasterization, we

used fixedd of 5. Our results used an intensity difference threshold of 5.

3.3 Efficient Facet Packing

At this stage of processing, each family containsn facets of the same size and shape even

though they have been derived fromn unique views. Each of these facets are placed into

n different Master Texture images at the same position and orientation to guarantee align-

ment of the facets across views. For a mesh of sizem, one facet from each of them facet

families is placed into the same Master Texture. Facets are restricted to 90-degree rota-

tions in order to minimize aliasing artifacts. Once facets have been packed, the result is a

new Mater Texture image for each of the original exemplar views that contain one warped

facet from each of the original facet families. The packing algorithm maximizes pixel use

in the Master Texture image while at the same time minimizingthe size of the image re-

quired. The result of the packing algorithm for one view, referred to as a packing map, is

applied directly to all the remaining views to guarantee that each image in the Master Tex-

ture space is pixel-wise aligned. The packing process first pairs the set ofn right triangles

in rectangular bounding regions so that the total area of allrectangles is minimized. This

step is motivated by the desire to reduce the triangle-packing problem to one of efficient

tiling using rectangular elements. Although research has produced interesting theoretical

10

results related to tiling triangles on the plane, more efficient techniques focus on the more

constrained problem of placing rectangles on a planar surface to maximize coverage while

allowing only translation and 90-degree rotations of the individual rectangles [21]. An

optimal packing of the rectangles within the smallest possible image region is then com-

puted in order to derive a final Master Texture image. Specifically, given the set of⌈n/2⌉

rectangles, the smallest bounding rectangle (image) that minimizes the number of points

within that rectangle not covered by image data is computed.Efficient packing of poly-

gon elements on the plane is not a new research topic and has been studied with varying

constraints as the two-dimensional tiling problem. In similar work, Soucy et al. generates

an image to texture-map the object surface by packing textured triangles into the 2D im-

age plane [31]. The new triangle-packing algorithm described here is based on an iterative

optimization process rather than a set of packing heuristics and is able to outperform (in

terms of space utilization) the method described in [31]]. Optimal solutions for specific

2D tiling packing problems have been motivated by industrial applications, such as stock

cutting, data storage, and VLSI design [21], and we draw uponthese to develop a solution

to our problem.

3.3.1 Triangle Pairing

Facets are first converted into rectangles by pairing similar triangles and fitting a bounding

rectangle to the result. Care must be taken at this stage to efficiently pair triangles so as to

efficiently make use of the resulting rectangular region. Since the facets are right triangular

and the base and height run along scan lines, two facets can bepaired by transposing one

of the facets along the x and y-axis, and placing it at the bottom right coordinate of the

minimum bounding rectangular region of the two facets. To distinguish between the facets

in a pairing, the transposed facet is called the flipped facet, while the other will be referred

to as the base facet. Equation 3.5 determines the size of the resulting bounding rectangle

that encloses the paired facets.

argmin((argmax(k,n)∗argmax(l ,m)),(argmax(l ,n)∗argmax(k,m))) (3.5)

11

Figure 3.2: A section of the triangle-pairing for the BMW Max-Area-Facet data set. The
top image shows the initial pairings using simple heuristics to select pairings for search
initialization. It has a pairing efficiency (measured as total area used within the rectangular
bounding boxes)of 81%. The bottom image is after optimization, using the 5th cooling
schedule (Figure 4.2). The final pairing efficiency is 97%.

Where(m,n) and(k, l) are the dimensions of the un-flipped facet and flipped facet, respec-

tively. The problem of pairing right triangles to produce a set of rectangles with a globally

minimum area is a specific instance of the 1-D bin-packing problem: given an unlimited

number of variable sized bins and a fixed set of items, place items within bins in such a

way as to minimize the total bin size required. Flipped triangles play the role of the items

while base triangles act as the bins. A packed bin then, is a base facet that has been paired

with a flipped facet. The total size of a bin is determined by Equation 3.5, and unlike the

general bin-packing problem, the bin size changes according to which item is contained in

the bin. However, the goal remains identical: discover an optimal packing of the bins (base

facets) with items (flipped facets) such that the total bin area is minimized.

Initially, the data set is conditioned by pairing the largest two un-paired facets until all

facets have either been paired, or in the case of an odd numberof facets, the smallest facet

remains the sole un-paired facet. A search process iteratesover potential parings using

the total coverage area as an error metric. The space of possible pairing is search via an

annealing process to avoid local minima in the search space.Three operations that occur

with equal probability are used to move through the search space: a facet may be flipped (if

paired, its partner is also flipped), two items may exchange bins, or two bins may exchange

items. Varying cooling schedules were used and results show-pairing efficiency ranging

from 86% to 97%. Figure 3.2 shows a set of triangular facets extracted from a single view

of the BMW model. Initial pairings are shown at top and the result after the annealing

process terminates is shown in the bottom image of Figure 3.2. Although the pair-selection

12

algorithm is iterative, we have found that in practice it outperforms more straightforward

heuristic-based methods such as directly pairing triangles according to the similarity of

their hypotenuse length. It should also be noted that this isan off-line process and, because

facets are of the same size/shape across all images, the pairing selections in one image

determine the same pairing for all images. Results related topairing efficiency using a

variety of cooling schedules are shown in Chapter 4.

3.3.2 Rectangle Tiling

The set of rectangles resulting from the pairing assignments computed in the previous phase

of processing are now efficiently packed into a bounding rectangular region. There has been

much success in applying simulated annealing to solve the rectangle-packing problem in

other application domains such as circuit board design [13,21]. This success is, in part,

due to the sequence-pair representation of the search space. This representation supports

flexible operations during the annealing process and efficient computation of the cost func-

tion for an arbitrary configuration in the search space [21].The representation encodes a

particular packing into two sequences(X,Y) that describe a complete ordering of the rec-

tangles on each of the two axes of the plane. A full description of the sequence-pair is out

of the scope of this paper, but a brief overview follows (for further details, refer to [21]).

A sequence-pair is a pair of sequences(X,Y) of n elements representing a list ofn

rectangles. Geometric constraints on the sequence describe the geometric locations of the

rectangles in the packing. Rather than explicitly representthe actual 2D offset of each

rectangle in the plane, the order of appearance in a sequencedescribes whether a given

rectanglex is ”above” , ”below” , ”to the right of” , or ”to the left of” another rectangle

x̂ in the packed plane. For instance, if ˆx is beforex in both sequences, then ˆx is ”to the

left of” and”below” x in the packed image plane. Because the sequence-pair representa-

tion does not explicitly represent 2D coordinates on the plane, blocks cannot overlap one

another. In this way, a valid packing is intrinsic to the sequence-pair representation and

checking for degenerative configurations (such as overlapping rectangles) while perturb-

ing the sequence-pair is not necessary. Therefore a packingcan be perturbed by simply

13

shuffling the entries in either of the two sequences.

In order to measure the quality of a particular sequence-pair, it is necessary to con-

vert the representation to actual rectangle coordinates sothat the total size of the bounding

region and coverage can be measured. Quality is given by the ratio of the sum of the com-

ponent rectangle areas over the total bounding rectangle size. Since the sequence-pair will

be evaluated for quality potentially thousands of times during the annealing process, it is

important that this measure can be computed quickly. In practice, the bounding rectangle

size is directly derived from the sequence-pair using a fasttechnique, called the longest

common subsequence evaluation [32]. This method has been shown to run 60 times faster

than earlier graph-based methods [21] and is used here to compute the quality of a par-

ticular sequence-pair during the annealing process. For further details on sequence-pair

evaluation via longest common subsequences, the reader is directed to [32].

3.3.3 Simulated Annealing Search for Efficient Rectangle Packing

Simulated annealing search framework is used to compute theoptimal rectangle packing

over the sequence-pair representation space. To improve the time required to converge to

a solution, rectangle placement is initialized using straightforward heuristics. First, rec-

tangles are flipped so the largest dimension is the width, then the set of rectangles are

sorted by width from largest to smallest. In previous work [12], the largest rectangle to

the smallest was simply packed in order into the new image under the assumption that

packing efficiency will decrease if large rectangles are left to be packed into nearly full

tiling. This requires that a fixed image width for the Master Texture packing is determined

a-priori, which is set to be the square root of the total sum of the areasof the rectangles

to be packed. The sequence-pair is similarly initialized through the following operations.

The Y sequence is constructed by adding each element from theX sequence to the Y se-

quence from back-to-front until the sum of the widths of the rectangles in the Y sequence

fits within the approximate dimension and no more rectanglescan be added. This process

is repeated until all rectangles from X have been added to theY sequence.

Figure 3.3 shows an example of the initial conditioning for aset of ten rectangles. This

14

heightwidthRectangle

ID

20109

30558

20207

10506

26265

13124

1010010

993

16152

24231

10)86527139(4

10)865271xx(x

10)865xxxxx(x

10)8xxxxxxx(x

10)xxxxxxxx(x

x)xxxxxxxx(x

3)42971568(10

Figure 3.3: Packing example using the sequence-pair. (Far Left) A set of 10 rectangles.
(Middle left) Conditioning the initial sequence-pair set. Rows show the sequence-pair at
each iteration of the conditioning algorithm. (Middle right) The conditioned packing of
the sequence-pair that is the initial state of the annealingprocess. This initial packing has
dimension 100 x 104 with 50% efficiency. (Far right) The result of the packing after the
annealing process has dimension 43 x 130 with 94% efficiency.

Figure 3.4: Example of the iterative facet packing process.(Left) Initial estimate of image
size and packing (see Text). (Middle) Final result after 22,433 iterations of the annealing
process using schedule 5 (See Figure 4.2). In this example, packing efficiency (measured
as ratio of covered pixels to total pixels in image) was increased from 89.3% to 93.3%.
(Right) Final Master Texture image containing the facet pixel data.

15

sequence-pair initial guess is then optimized via simulated annealing. Four operations are

used in the annealing process: 1) Transpose a rectangle (rotates the rectangle 90-degrees

in the plane), 2) Swap two elements from theX sequence, 3) Swap two elements from the

Y sequence, 4) Swap two elements from both sequences. Varyingcooling schedules were

used and results show packing efficiency, measured as total area covered by pixels in the

final image, ranging from 85% to 98% (see Section 4). When the process terminates, a

packing map that determines how all facets are placed into the Master Texture has been

discovered. Figure 3.4 shows this iterative packing process for a family of rectangles on

the BMW data set and the resulting Master Texture. Once computed, this same packing

map is then applied to all other facet sets to derive the complete Master Texture space.

3.4 Visibility Determination

The goal of the visibility analysis phase of the encoding algorithm is to classify every pixel

in the Master Texture images as either visible or occluded. Once this determination has

been made, occluded pixels can be directly replaced with visible pixels from other views.

Because the same pixel corresponds to the same point on the object surface, an occluded

pixel (i,j) in Master Texture image k need only look for a replacement in pixel (i,j) of the

remaining Master Texture image set. Initially, the entire underlying mesh is rendered from

a given exemplar viewing position and its depth buffer values are stored. This is similar to

other visibility methods that assume the presence of a modelor simple geometric primitives

[23, 28]. Next, the weighted Euclidean position for every pixel used to texture map mesh

faces is derived from the barycentric coordinate weights ofa given pixel that are applied

to each Euclidean position of the mesh face containing that pixel. Given these weights, the

resulting position of a pixellx,y,z, is given by Equation 3.6.

lx,y,z = mx,y,zwm+nx,y,zwn +ox,y,zwo (3.6)

In this equation,mx,y,z,nx,y,z, andox,y,z are the Euclidean positions of the mesh face vertices

containing the pixel, whilewm, wn, andwo are barycentric weights of the relative positions

16

Figure 3.5: (Top)Exemplar image from the ”truck” data set. Triangle outlined in white on
cab illustrates a partially occluded surface facet from this view. (Far left) Partially occluded
facet extracted and warped. (Middle left) Pixels determined to be occluded shown in white.
(Middle right) Closest neighbor facet that contains visiblepixels. (Far right) Synthesized
facet containing only visible data.

for each position respectively. Pixels that are not used to texture map faces (i.e. pixels

taking up wasted space in the packed images) are marked invalid and are discarded for the

remainder of the algorithm. To determine if a Euclidean position on the model surface

is visible from a given view, the projection of the mesh pointonto the image plane is

computed along with the depth buffer value at that image point. If the depth buffer value

of the extracted pixel is the same as the depth buffer values in the stored depth buffer, then

the pixel is visible from the corresponding viewing position; otherwise it is occluded. This

process is used to classify the visibility of each Master Texture image pixel in the set of

Master Texture images. Once classified, occluded pixels arethen filled with valid pixel

information. This is a straightforward operation due to thepixel-wise alignment property

of the Master Texture space. If a pixel(i, j) is occluded in view p, then it is filled with a

visible pixel (i, j) in the Master imaget closest to viewp. The dot product of the optic

axis of view p and each of the Master Texture images in which pixel(i, j) is visible is

17

computed. The view with the largest dot product contains theclosest visible pixel, and

the entry in Master imagep is replaced with this value. At the conclusion of visibility

synthesis, all Master images are now filled with visible pixel values. Figure 3.5 shows this

process for a particular facet on the ”truck” model.

18

Chapter 4

Results

The Master Texture encoding algorithm was run on several data sets in order to study

algorithm behavior under a variety of conditions. Results are discussed in terms of com-

pression rates and fidelity loss with respect to the originaldata. Computer graphics models

were used for two of the four models (Lamp and Helicopter) so that ground truth data was

readily available. A third and fourth model (BMW automobile and Ford F150 truck) were

created from a low-polygon count model combined with real-world images of a scale model

captured under controlled conditions. Data sets of varyingmesh complexity and varying

numbers of exemplar images were used. The criteria for evaluating the approach were 1)

efficiency of rendering a Master Textured object from changing viewpoints, 2) compression

rate of the Master Texture encoding as compared to traditional texture mapping, 3) triangle

packing efficiency, and 4) fidelity of the Master Texture encoded model after rendering as

compared to the original data set. The algorithm was run on all data sets using an Intel

2.4Ghz machine.

The four data sets are shown in Table 4.1. Master texture and mesh samples from

the data sets are shown in Figure 4.1. Encoding times are largely dependent on mesh

Model Mesh Faces Views Exemplar Image Size
Truck 1801 28 512x512
Lamp 1842 90 640x480

Helicopter 436 360 720x576
BMW 651 28 640x480

Table 4.1: Exemplar data set statistics.

19

Figure 4.1: Results of the Master Texture encoding applied tothe four different test objects.
Each example shows an exemplar image (top left), object mesh(bottom left), example
Master Texture, and the rendered view (at right).

resolution and number of iterations performed in the annealing process. Encoding times

typically range from a few seconds, for a 651 polygon model containing 28 views using

a rapid cooling schedule, to 86 minutes for 1842 polygon model with 90 views using a

slow cooling schedule. The pairing process was capable of producing efficient triangle

pairs and demonstrated consistent pixel utilization of thebounding rectangle of 86 to 95%.

These rectangular regions were then packed using the algorithm described in Section 3.3.

Overall compression rates are greatly influenced by the resulting Master Texture image

size as well as the efficiency of packing the rectangular regions into that image. For data

sets with a relatively small numbers of triangular mesh elements, the annealing process

provides the greatest increase in efficiency. For instance,the helicopter data set increased 7

percent for the mean and greatest enclosing encodings. In contrast, data sets with a larger

Cooling Schedules

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1 2 3 4 5 6
006

0.0001105

0.01104

0.01203

0.0011002

0.0012001

Reduction

Value

Starting

Temperature

Cooling

Schedule

Figure 4.2: A study of cooling rates on two different data sets. (Left) A plot of the total
packing efficiency for the BMW and Helicopter data sets for each of the different cooling
schedules. (Right) Cooling schedule includes the starting temperature (randomness) of the
search and a reduction value that is applied at each iteration to dictate how rapidly the
temperature is decreased.

20

number of triangular mesh elements receive a smaller increase in efficiency. The truck

data set is a good example of this behavior with less than 1 percent increase in efficiency

in mean and greatest enclosing encodings. This effect is partly due to the fact that our

initialization heuristics are more efficient for the largermesh element data sets. Of course,

the particular cooling schedule utilized in the annealing process will influence both the time

to convergence and the efficiency of the rectangle packing inthe Master Texture image.

Figure 4.2 depicts the effect of overall packing efficiency in the Master Texture image

versus six different cooling schedules labelled 1 through 6on the BMW data set. The

cooling schedules differ in the starting temperature and the rate at which that temperature

is iteratively lowered.

Figure 4.2 (Right) shows the different parameters for each ofthe six different cooling

schedules. Compression rates of the three different objectswere measured. Compression

rates were measured as the ratio of total bytes required for traditional VDTM versus VTDM

using the Master Texture encoding. Table 4.2 summarizes theresults of the experiment

using both the maximum enclosing triangle (Max MT) and mean enclosing triangle (Mean

MT) warping methods during the encoding process. Compression rates are related to the

size of exemplar views, the percentage of pixels in those views that related to the model,

and even the distribution of those views around the model itself. In general, compression

rates are reasonable for data sets with a large number of views and a moderate number of

polygons on the object mesh. Table 4.3 clearly demonstratesthe advantage of using the

mean enclosing triangle warping approach for compression.

Artifacts may arise from the facet-warping phase when imagedata is resampled accord-

Model Max MT Comp. Sched. Time Mean MT Comp.
Size Ratio (minutes) Size Ratio

Truck 622x589 0.84 1 72 342x325 2.77
Lamp 448x417 1.63 1 86 236x226 5.88

Helicopter 663x546 1.14 5 14 271x228 6.66
BMW 904x785 0.48 5 49 490x420 1.42

Table 4.2: Compression rates for four different data sets of varying mesh size, exemplar
image size, and number of views.

21

Model Max % diff. M.I.D.(Max MT) Mean % diff. M.I.D. (Mean MT)
Truck 2.16 2.3 2.66 2.6
Lamp 5.86 4.6 6.16 4.6

Helicopter 5.86 4.6 6.06 5.0
BMW 5.03 4.0 5.63 4.3

Table 4.3: Image difference scores of the four data sets using both maximum enclosing
triangle and mean triangle warping

Figure 4.3: A side-by-side comparison of the BMW model rendered from a fixed view. (a)
Rendering using traditional view-dependent texture mapping and an exemplar view. (b)
Rendering from the same view using a Master Texture encoded image. (c) Direct image
difference of first two renderings. Differences have been normalized to a range of 0-255
for visualization purposes. Only 5.6% of the 640x480 pixelsin the image are different with
a mean intensity difference of less than five.

ing to the new facet shape prior to packing into the Master Texture space. In order to study

the effects of the encoding process on fidelity, Master Texture encoded images are used to

re-render the model from the same view as an exemplar image. Adirect difference of the

two images, then, reveals how and where the Master Texture encoding result differs from

the ground truth data. Table 4.3 shows the results of this experiment with our data sets using

both the maximum enclosing and mean target triangle warpingmethods (see Section 3.2).

Figure 4.3 shows an original exemplar image of the BMW model and the difference images

that result from re-rendering the scene using Master Texture encodings and computing an

absolute difference. Figure 4.3(middle) corresponds to a Master Texture image that was

computed using the mean enclosing triangle method and Figure 4.3(right) corresponds to

the image difference of the first two images. The method used to select a target trian-

gle influences the amount of warp (and potential resampling)that may be present in the

data. Unsurprisingly, Table 4.3 shows that the maximum enclosing triangle approach pro-

duces images that are closer to the original data but do not achieve the same compression

22

rates. Whatever the warping method used, the Master Texture images are very similar in

appearance to their original counterparts. Across the five different test data sets, the mean

percentage of pixels that were different in re-rendered views was less than five percent and

the mean intensity difference of those pixels was less than five intensity levels.

23

Chapter 5

Applications

Intrinsic in the properties of Master Texture-encoded objects is the support for simple pixel-

wise view synthesis. We show the utility of view synthesis intwo distinct domains. First,

a real-time application for displaying a Master Texture encoded object using today’s com-

modity graphics hardware is introduced. Next, an algorithmfor compressing the set of

Master images to a single Master image is demonstrated. The resulting Master Texture

data can then be efficiently transmitted across the web. An interactive viewing client-server

application was developed in order to demonstrate this capability.

5.1 Real-time View-dependent Application

A real-time model visualization tool that makes use of the view-dependent Master Tex-

ture encoding was developed to demonstrate the advantages of working within the Master

Texture space. The application is loosely based on the system described in [11], and is

capable of render-time blending of a VDTM object. The input to the application consists

of the geometric mesh, set of Master encoded imagesI (views), and the optic axis vectors

corresponding to the source view of eachI . To ensure smooth blending as the viewing

position changes, we utilize a view map data structure [11].We chose this technique over a

more robust technique, such as the one presented in [5], because of its speed and amenabil-

ity to a single-pass hardware-accelerated implementation. The limitation is that it assumes

an outside looking in model of the viewing space, and all source views point roughly at the

view map origin.

24

A conditioning step assigns the closest source view in the polar coordinate grid to each

of the nodes of the view map. The algorithm proceeds by dynamically choosing the three

closest views given the current viewing position and each isassigned a blending weight.

The current viewing positionpv is first mapped into polar coordinate grid and intersecting

triangle t of pv is determined. The three nodes oft become the three closest reference

views.

Blending weights are then computed as the barycentric coordinates ofpv on t. The

weightWi for a given source viewi of t is given by

Wi = Ai/At (5.1)

whereAi is the area of the triangle formed bypv and the two vertices other thani, andAt

represents the total area oft. Blending guarantees source view weights will vary smoothly

as the viewpoint changes [11]. It is important to note blending effectiveness is related to

the ratio of the number of source views to the number of nodes in the view map. As the

ratio approaches zero, the three node indices for any given viewing position will reference

the same view. As the ratio approaches infinity, source viewswill not be indexed in the

view map. Empirically, a ratio of 1/6 yields good results andwas used for the application.

Once blending weights have been determined, the final color of each fragmentfc is

determined by applying the blending weights to the corresponding textures using the fol-

lowing equation,

fc =
3

∑
i=1

ci ∗Wi (5.2)

whereci is the texture color andWi is the normalized weight. Because data exists in a

Master Texture space, color assignments can be applied on a per-fragment basis in a pixel

shader. Figure 5.1 shows the source code for the pixel shader. It is written in NVIDIA’s CG

language [24]. This is the only operation performed by the fragment program, since more

complicated operations such as visibility analysis are nowunnecessary. It is also important

to note that a single set of texture coordinates are loaded and used for all Master images.

This eliminates the overhead of texture coordinate computations and dynamic loading of

three independent texture coordinate sets per frame. Our application contains a mirror

25

����������	
���

����������������������������

��������������������������

��������� ����!�����"#����$��

%�

��������� ��

�������������������������

%�

�� ���
����&���	
������'� ������������
���
�����$��� ('�

�� ������������
���
�����$���)'

������������
���
�����$��� �'

������������
������*�+��	,�('

������������
������*�+��	,�)'

������������
������*�+��	,��-

�� ����.��

//0���,��,���1)��� ������������
��,���� �����

��������� �������(�2��� �$&�� ('���3�� ����!�-�//����4�������
���� ����!5

��������� �������)�2��� �$&��)'���3�� ����!�-�//����4�������
���� ����!5

��������� ���������2��� �$&�� �'���3�� ����!�-�//����4�������
���� ����!5

�.�3�����2������& ����� �������(3��6�+��	,�(�7�

����� �������(3	�6�+��	,�(�7

����� �������(38�6�+��	,�('��

����� �������)3��6�+��	,�)�7�

����� �������)3	�6�+��	,�)�7

����� �������)386�+��	,�)'

����� ��������3��6�+��	,���7�

����� ��������3	�6�+��	,���7

����� ��������38�6�+��	,��-�

�� ��������.��

%

Figure 5.1: NVIDIA pixel shader for performing per-fragment texture blending.

toggle that can enable a ”mirror” that shows the reflection ofthe data set. Figure 11 left

shows a screen shot of the application with the mirror toggleenabled. The mirror effect

is simply a second rendering pass from a view 180-degrees around the object. The second

rendering pass uses the same views and weights as the first render pass, eliminating the

need to perform a second query of the view map. This illustrates how any single Master

Texture, or combination thereof, can accurately texture the entire object surface.

The real-time application generates a rendering rate of 85 fps for the BMW data set

with mirror enabled and 75 fps with mirror disabled. We tested the application on a Dell

26

Precision 480 with an Intel Xeon processor and an NVIDIA Quadro FX 500 graphics card.

5.2 Off-line View Synthesis

Off-line view synthesis through direct image-space operations is a benefit exclusive to Mas-

ter Texture encoded objects. Image-based edits in one Master Texture image, for example,

can be directly propagated to all views without the need to recapture or modify all im-

ages [12]. Here we introduce a simple algorithm that exploits this property to derive a

single Master Texture image from a set of Master views that correctly textures the object

from any view. The algorithm results in a data set that is drastically smaller (in terms of

file size) and view-independent, allowing greater access tothe encoded object.

5.2.1 View-independent Synthesis Algorithm

The view synthesis algorithm for Master Texture encoded VDTM models consists of filling

an initially empty Master Texture with pixel information that most accurately represents the

model from any given viewing position. The result is a singleMaster image that can be

utilized to texture map the underlying surface in a view-independent fashion. This is quite

simple since occluded pixels do not exist in the Master imagespace at the conclusion of

the encoding, therefore reducing the complexity of the algorithm to simple geometric rela-

tionships of the pixellocations and their relation to the Euclidean positions of the enclosing

facet vertices.

The algorithm proceeds as follows: for each vertex of a facetin the Master image, find

the closest view to the vertex. A closest view associated with a facet vertexF is determined

by finding the largest dot product produced by multiplying each exemplar view position

vector byF ’s vertex normal
−→
Nf . Next, for each pixelp contained in the empty facet, store

the weighted sum (in terms of barycentric coordinate weights of the pixel location relative

to the container facet, see Equation 5.1 and Equation 5.2) ofthe color components of the

correspondingp in the three closest views. Barycentric coordinates are usedfor blending

to guarantee continuity of color values across face boundaries. Once the Master image is

generated, the object can be viewed by statically texturingthe view-independent Master

27

Figure 5.2: Screen shots from Master Texture encoding applications. Right image is a
screen shot of the VDTM application with mirror toggle enabled. Left image is a screen
shot of the View-Independent Master Texture encoded objectas seen from a web page with
the ArchVision RPC ActiveX control [1].

image onto the underlying geometry via the texture coordinate set. Although dynamic

effects such as lighting are lossed, compression of the original data set is drastic. For the

data sets discussed in Chapter 4, for example, compression was increased by a factor of

the total source views for each data set. These smaller data sets, although possibly not as

visually stunning, are much more accessible to the spectrumreal-time 3D applications, such

as web-based viewers. To demonstrate the utility of the view-independent algorithm, we

have converted several Master Texture data sets to the standard ArchVision RPC format [2].

These data sets can be downloaded and viewed through the web via the ArchVision ActiveX

Viewer [1] at http://www.metaverselab.org/research/imb/mastertexture/index.html.

28

Chapter 6

Conclusion

We have introduced an efficient representation and corresponding encoding process that

specifically addresses problems related to image-based, view-dependent projective render-

ing. The technique achieves reasonable compression of the image-data and supports effi-

cient operations in the newly compressed space that are typically applied to image-based

objects such as view synthesis, view interpolation and editing. The Master Texture space is

an object-specific encoding that compresses the set of texture meshes, computed by mul-

tiplying the underlying mesh by the set of projection matrices, into a single global texture

mesh. Exemplar images are then uniformly transformed to adhere to the new texture mesh.

This single texture mesh and the set of newly encoded Master Textures are sufficient to

reconstruct the view-dependently textured object from arbitrary views. Once complete,

all pixel data in the Master Textures is valid for view interpolation and other image-based

operations. The Master Texture encoding avoids storing (orcomputing) multiple sets of

textures with the use of a single, and fixed, set of texture coordinates. Furthermore, be-

cause all views of the object have been transformed into the Master Texture space, any

point on the object surface corresponds to the same pixel in all images.

Because visibility information is explicitly encoded in theMaster Texture space, subse-

quent visibility analysis and interpolation operations are straightforward linear operations

on the pixel-wise aligned data. Perhaps more importantly, the visibility information en-

coded in the Master Texture space can be used to easily synthesize views. The utility

of image synthesis in Master Texture space was demonstratedin two distinct domains: a

real-time VDTM rendering application using todays commodity graphics hardware, and

29

an algorithm to produce a single view-independent Master Texture object of drastically

reduced file size for use in applications that do not support VDTM, e.g. the ArchVision

RPC ActiveX Viewer. We are currently in the process of exploring new ways to exploit

the Master Texture space to increase efficiency of traditional image-based rendering tech-

niques. One promising area of research is the automatic reduction of complex computer

graphics models to a Master Texture encoded view-dependentrepresentation. For example,

by re-rendering a complex scene under different lighting conditions and encoding the illu-

mination changes as different Master Textures, subsequence relighting of the model can be

accomplished using simple pixel-wise addition in the Master Texture space. Another area

of research is a progressive encoding of the Master Texture space for resolution control for

different application domains.

30

Bibliography

[1] ArchVision. RPC activex viewer. www.archvision.com/rpcactivexviewer, 2005.

[2] ArchVision. RPC technology. www.archvision.com, 2005.

[3] S. Avidan and A. Shashua. Novel view synthesis by cascading trilinear tensors.IEEE
Transactions On Visualization and Computer Graphics, 4(4):293–306, 1998.

[4] B.S. Baker, E. G. Coffman, and R. L. Rivest. Orthogonal packings in two dimensions.
SIAM Journal of Computing, 9(4):846–855, 1980.

[5] C. Buehler, M. Bosse, L. McMillan, S. J. Gortler, and M. F. Cohen. Unstructured
lumigraph rendering. InSIGGRAPH 2001, Computer Graphics Proceedings, pages
425–432, 2001.

[6] D. Burschka, D. Cobzas, Z. Dodds, G. Hager, M. Jagersand, and K. Yerex. Recent
methods for image-based modeling and rendering. InIEEE Virtual Reality Tutorial
1, March 2003.

[7] C.S. Carpenter, B. Seales, C. Jaynes, and R. Stevens. Automated basis-view and
match-point selection for the archvision rpc image-based model. InProceedings of
the International Conference on Multimedia, pages 577–581, September 2001.

[8] S. E. Chen and L. Williams. View interpolation for image synthesis.Computer Graph-
ics, 27(Annual Conference Series):279–288, 1993.

[9] W-C. Chen, J-Y. Bouguet, M. Chu, , and R. Grzesuk. Light field mapping: Efficient
representation and hardware rendering of surface light fields. InSIGGRAPH 2002,
pages 447–456, 2002.

[10] P. Debevec, C. J. Taylor, and J. Malik. Modeling and rendering architecture from
photographs: A hybrid geometry and image-based approach.Computer Graphics,
30(Annual Conference Series):11–20, 1996.

[11] P. Debevec, Y. Yu, and G. Boshukov. Efficient view-dependent image-based rendering
with projective texture-mapping. InEurogaphics Rendering Workshop, pages 105–
116, June 1998.

[12] D. Guinnip, C. Jaynes, D. Rice, and R. Stevens. Efficient image-based projective map-
ping using the Master Texture Encoding. InWinter School Conference in Computer
Graphics, pages 49–56, 2003.

[13] S. Kirkpatrick, C.D. Gelatt, , and M.P. Vecchi. Optimisation by simulated annealing.
Science, 220:671–680, 1983.

31

[14] C. S. Kurashima, R. Yang, and A. Lastra. Combining approximate geometry with
view-dependent texture mapping - a hybrid approach to 3d video teleconferencing. In
SIGGRAPI, pages 112–120, October 2002.

[15] S. Laveau and O. Faugeras. 3-d scene representation as acollection of images. InPro-
ceedings of 12th International Conference on Pattern Recognition, volume 1, pages
689–691, 1994.

[16] M. Levoy and P. Hannrahan. Light field rendering. InSIGGRAPH 1996, pages 31–42,
1996.

[17] B. Levy, S. Petitjean, N. Rayand, and J.Maillot. Least squares conformal maps for
automatic texture atlas generation. InSIGGRAPH 2002, pages 362–371, 2002.

[18] J. Maillot, H.Yahia, and A. Verroust. Interactive texture mapping. InSIGGRAPH
1993, pages 27–34, 1993.

[19] W. Matusik, H. Pfister, A. Ngan, P. Beardsley, R. Ziegler, and L. McMillan. Image-
based 3d photography using opacity hulls. InSIGGRAPH 2002, pages 427–437,
2002.

[20] L. McMillan and G. Bishop. Plenoptic modeling: An image-based rendering system.
In SIGGRAPH 1995, pages 39–46, 1995.

[21] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani. Vlsi module placement based
on rectangle-packing by the sequence pair.IEEE Transaction on Computer Aided
Design of Integrated Circuits and Systems, 15(12):1518–1524, 1996.

[22] K. Nishino, Y. Sato, and K. Ikeuchi. Eigen-texture method: Appearance compres-
sion and synthesis based on a 3d model.IEEE Transactions on Pattern Analysis and
Machine Intelligence, 23(10):1257–1265, 2001.

[23] NVIDIA. Hardware shadow mapping. devel-
oper.nvidia.com/object/hwshadowmappaper.html.

[24] NVIDIA. Nvidia cg toolkit. developer.nvidia.com/object/cgtoolkit.html.

[25] K. Pulli, M. Cohen, T. Duchamp, H. Hoppe, L. Shapiro, and W. Stuetzle. View-based
rendering: Visualizing real objects from scanned range andcolor data. InProceedings
of 8th Eurographics Workshop on Rendering, pages 22–34, June 1997.

[26] N. Ray and B. Levy. Hierarchical least squares conformal maps. In11th Pacific
Conference on Computer Graphics and Applications 2003, pages 263–270, 2003.

[27] REALVIZ. developer/producer of image-processing software and applications, 2005.

[28] M. Segal, C. Korobkin, R. Widenfelt, J. Foran, and P. Haeberli. Fast shadows and
lighting effects using texture mapping. InSIGGRAPH 1992, pages 249–252, July
1992.

[29] S. Seitz and C.R. Dyer. View morphing. InSIGGRAPH 1996, pages 21–30, 1996.

[30] S. Seitz and K. Kutulakos. Plenoptic image editing. InProc. 6th International Con-
ference in Computer Vision (ICCV ’98), pages 17–24, 1998.

32

[31] M. Soucy, G. Godin, and M. Rioux. A texture-mapping approach for the compression
of colored 3d triangulations.The Visual Computer, 12:503–514, 1996.

[32] X. Tang, R. Tian, and D. F. Wong. Fast evaluation of sequence pair in block placement
by longest common subsequence computation. InConference on Design, Automation
and Test in Europe, pages 106–111, 2000.

[33] D. Wood, D. Azuma, K. Aldinger, B. Curless, T. Duchamp, D. Salesin, and W. Stuet-
zle. Surface light fields for 3d photography. InSIGGRAPH 2000, pages 287–296,
2000.

[34] Y. Yu. Efficient visibility processing for projective texture-mapping.Journal of Com-
puters and Graphics, 23(2):245–253, 1999.

33

Vita
Name: David Guinnip
Date of Birth: Aug. 29th, 1977
Place of Birth: Lexington, Kentucky

Education

• B.S. in Computer Science and Studio Art, Transylvania University, Lexington, KY,
May, 2000.

Publications

• David Guinnip, Christopher Jaynes, David Rice, and Randall Stevens. ”Efficient
Image-Based Projective Mapping using the Master Texture Space Encoding”. In
Winter School Conference of Computer Graphics, pages 49-56, 2003.

• David Guinnip, Ruigang Yang, and Liang Wang. ”View-Dependent Textured Splat-
ting for Rendering Live Scenes” Techincal Report 431-05, Department of Computer
Science, University of Kentucky, Lexington, KY, 2005.

Presentations

• David Guinnip and Ruigang Yang. ”View-Dependent Textured Splatting for Render-
ing Live Scenes” SIGGRAPH Poster Presentation, 2004.

Honors and Awards

• Finalist in ACM Student Research Competition for SIGGRAPH 2004 Poster, ”View-
Dependent Textured Splatting for Rendering Live Scenes”.

• Teaching Assistantship, University of Kentucky, 2000-2001.

• Research Assistantship, University of Kentucky, 2000-2001.

• Research Assistantship, University of Kentucky, 2003-2004.

34

	Master Texture Space: An Efficient Encoding for Projectively Mapped Objects
	Recommended Citation

	Abstract
	Rules of Use
	Title
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1
	Chapter 2
	Chapter 3
	Section 3.1
	Section 3.2
	Section 3.3
	Section 3.3.1
	Section 3.3.2
	Section 3.3.3
	Section 3.4
	Chapter 4
	Chapter 5
	Section 5.1
	Section 5.2
	Section 5.2.1
	Chapter 6
	Bibliography
	Vita

