View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by University of Kentucky

Uiy > a
UK J I __ d University of Kentucky
[JOWIEC ge UKnowledge
University of Kentucky Master's Theses Graduate School

2005

Master Texture Space: An Efficient Encoding for Projectively
Mapped Objects

David Guinnip
University of Kentucky

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation

Guinnip, David, "Master Texture Space: An Efficient Encoding for Projectively Mapped Objects" (2005).
University of Kentucky Master's Theses. 228.

https://uknowledge.uky.edu/gradschool_theses/228

This Thesis is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted
for inclusion in University of Kentucky Master's Theses by an authorized administrator of UKnowledge. For more
information, please contact UKnowledge@lsv.uky.edu.

https://core.ac.uk/display/232559096?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/gradschool_theses
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

ABSTRACT OF THESIS

David Guinnip

The Graduate School
University of Kentucky
2005

Master Texture Space: An Efficient Encoding for Projectivdiapped Objects

ABSTRACT OF THESIS

A thesis submitted in partial fulfilment of the
requirements for the degree of Master of Science in the
College of Engineering
at the University of Kentucky

By
David Guinnip

Lexington, Kentucky

Director: Dr. Grzegorz W. Wasilkowski, Associate ProfessiocComputer
Science
Lexington, Kentucky
2005
Copyright© David Guinnip 2005

ABSTRACT OF THESIS

Master Texture Space: An Efficient Encoding for Projectivdiapped Objects

Abstract

Projectively textured models are used in an increasingtyelmumber of applications
that dynamically combine images with a simple geometri¢aser in a viewpoint depen-
dent way. These models can provide visual fidelity whileingétg the effects afforded
by geometric approximation such as shadow casting and aecperspective distortion.
However, the number of stored views can be quite large andiniews must be synthe-
sized during the rendering process because no single vigncareectly texture the entire
object surface. This work introduces the Master Textureodimg and demonstrates that
the encoding increases the utility of projectively textuodjects by reducing render-time
operations. Encoding involves three steps; 1) all imag®nsghat correspond to the same
geometric mesh element are extracted and warped to a facetifofm size and shape,
2) an efficient packing of these facets into a new Master Textnage is computed, and
3) the visibility of each pixel in the new Master Texture detguaranteed using a simple
algorithm to discard occluded pixels in each view. Becauseeticoding implicitly repre-
sents the multi-view geometry of the multiple images, alginigxture mesh is sufficient
to render the view-dependent model. More importantly, yWaster Texture image can
correctly texture the entire surface of the object, remgweRrpensive computations such
as visibility analysis from the rendering algorithm. A bé&nef this encoding is the sup-
port for pixel-wise view synthesis. The utility of pixel-se view synthesis is demonstrated
with a real-time Master Texture encoded VDTM applicatioixePwise synthesis is also
demonstrated with an algorithm that distills a set of MaJ&xture images to a single
view-independent Master Texture image.

KEYWORDS: View-dependent Projective Texture Mapping,bigy Analysis, View Syn-
thesis, Triangle Packing, Rectangle Packing

Master Texture Space: An Efficient Encoding for Projectivdiapped Objects

By

David Guinnip

Director of THESIS

Director of Graduate Studies

RULES FOR THE USE OF THESIS

Unpublished thesises submitted for the Master’s degrealapdsited in the University of
Kentucky Library are as a rule open for inspection, but afeetaised only with due regard
to the rights of the authors. Bibliographical references rnaynoted, but quotations or
summaries of parts may be published only with the permissighe author, and with the
usual scholarly acknowledgements.

Extensive copying or publication of the thesis in whole opant also requires the consent
of the Dean of the Graduate School of the University of Kekyuc

A library that borrows this thesis for use by its patrons ipeoted to secure the signature
of each user.

Name Date

MASTER THESIS

David Guinnip

The Graduate School
University of Kentucky
2005

Master Texture Space: An Efficient Encoding for Projectivdiapped Objects

THESIS

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science in the
College of Engineering
at the University of Kentucky

By
David Guinnip

Lexington, Kentucky

Director: Dr. Grzegorz W. Wasilkowski, Associate ProfessiocComputer
Science
Lexington, Kentucky
2005
Copyright© David Guinnip 2005

ACKNOWLEDGEMENTS

| would like to thank my adviser, Dr. Christopher Jaynes, fr telpful guidance,
support, and encouragement throughout the completionfitasis. | would like to thank
Dr. Ruigang Yang and Dr. Etienne Grossman for giving me assigtand encouragement.

| would like to thank my family for their love and support.

Table of Contents

Acknowledgements

List of Tables

List of Figures

Chapter 1 Introduction
Chapter 2 Related Work

Chapter 3 Master Texture Encoding Algorithm

3.1 Introduction
3.2 Facet Parameterization
3.3 EfficientFacetPacking
3.3.1 TrianglePairing.
3.3.2 RectangleTiling
3.3.3 Simulated Annealing Search for Efficient Rectangl&ipgc. . . .
3.4 \Visibility Determination

Chapter 4 Results

Chapter 5 Applications

5.1 Real-time View-dependent Application.
5.2 Off-lineView Synthesis
5.2.1 View-independent Synthesis Algorithm

Chapter 6 Conclusion
Bibliography

Vita

Vi

24
24
27
27

29
31

34

List of Tables

4.1 Exemplardatasetstatistics.
4.2 Compression rates for four different data sets of varyiegh size, exem-

plar image size, and numberofviews.
4.3 Image difference scores of the four data sets using ba#imum enclos-

ing triangle and mean trianglewarping

List of Figures

1.1

3.1

3.2

3.3

3.4

3.5

Traditional view-dependent texture mapping versudtaster Texture Space

encoding. (Top) Traditional approach. Exemplar imagestrhasstored
with a different set of texture coordinates per image. As n@ws of the
object are needed at run-time, these different texturedioates must be
available. (Bottom) After encoding, the Master Texture gplacld a new
set of images that require only a single set of texture coatds. A single
pixel (shown as a line) in all images corresponds to the savire pn the

objectmesh.

Example of facet parameterization. (top row) Three iesag a real-world
car object. A single mesh face corresponding (insert on @aeh top row)
as seen in each image. (bottom row) Facets are parametévizediform

shape, size, and orientation.

A section of the triangle-pairing for the BMW Max-Areadea data set.
The top image shows the initial pairings using simple héigsgo select

pairings for search initialization. It has a pairing effiooy (measured as

total area used within the rectangular bounding boxes)&6.8lhe bottom
image is after optimization, using the 5th cooling sched&igure 4.2).

The final pairing efficiency is97%.

Packing example using the sequence-pair. (Far Left)tAdfs&0 rectan-
gles. (Middle left) Conditioning the initial sequence-psat. Rows show
the sequence-pair at each iteration of the conditioningréalgm. (Mid-
dle right) The conditioned packing of the sequence-pait ithéhe initial
state of the annealing process. This initial packing hasedsion 100 x
104 with 50% efficiency. (Far right) The result of the packaiter the

annealing process has dimension 43 x 130 with 94% efficiency.

Example of the iterative facet packing process. (Lefijdl estimate of
image size and packing (see Text). (Middle) Final resuttra2®,433 iter-
ations of the annealing process using schedule 5 (See Hgreln this
example, packing efficiency (measured as ratio of covereelpio total
pixels in image) was increased from 89.3% to 93.3%. (RightaFﬁ/laster
Texture image containing the facet pixel data. .
(Top)Exemplar image from the "truck” data set. Tnartglﬁellned in Whlte
on cab illustrates a partially occluded surface facet from view. (Far
left) Partially occluded facet extracted and warped. (Nedeft) Pixels
determined to be occluded shown in white. (Middle right) €kisreighbor
facet that contains visible pixels. (Far right) Syntheditacet containing

onlyvisibledata.

Vi

15

15

4.1

4.2

4.3

5.1
5.2

Results of the Master Texture encoding applied to the didfterent test
objects. Each example shows an exemplar image (top lefi@comesh
(bottom left), example Master Texture, and the rendered (& right). . . 20
A study of cooling rates on two different data sets. (L&fplot of the total
packing efficiency for the BMW and Helicopter data sets forheatcthe
different cooling schedules. (Right) Cooling schedule idekithe start-

ing temperature (randomness) of the search and a redudiloe that is
applied at each iteration to dictate how rapidly the temioeeais decreased. 20
A side-by-side comparison of the BMW model rendered frdixesl view.

(a) Rendering using traditional view-dependent texturepimapand an ex-
emplar view. (b) Rendering from the same view using a Mastgtufe
encoded image. (c) Direct image difference of first two remdgs. Differ-
ences have been normalized to a range of 0-255 for visualizptirposes.
Only 5.6% of the 640x480 pixels in the image are differenthvd@tmean
intensity difference of lessthanfive. 22

NVIDIA pixel shader for performing per-fragment tex¢urlending. 26
Screen shots from Master Texture encoding applicati&ight image is

a screen shot of the VDTM application with mirror toggle eleab Left

image is a screen shot of the View-Independent Master Texncoded
object as seen from a web page with the ArchVision RPC ActiveX-c

trol [1]. 28

vii

Chapter 1

Introduction

Image-based modeling is based on the observation that sytagebe used to render views
of a scene without the need for an explicit representatiothefunderlying geometry.
By eliminating or reducing the reliance on accurate geometrgge-based modeling has
proven to be a powerful method to accurately render viewssoeae [6, 8, 10, 11, 33]. Al-
though all image-based methods represent a scene witheztoof of images, techniques
vary in the number of stored images, how these images areinethtvith scene geometry,
and the rendering algorithms that produce viewpoints ofttlbelel not contained in image
data.

View-dependent projective texture mapping (VDTM) has grovo be a particularly
powerful image-based modeling technique for many domanmasagplications [5, 2, 10,
12, 27]. In contrast to other approaches that rely on imatgeaane, VDTM dynamically
combines image-data with a model according to the currewpoint of the scene. If
calibration information (i.e. the intrinsic propertiestble camera as well as its extrinsic
pose with respect to the object) is known about each vievpengpective mapping between
each view and the object geometry can be established anctipizgls can be projected
onto the object surfaces from each view. Because this appradizes model geometry,
rendering effects such as shadow casting, perspectivertiist, and self-occlusions are
supported. At the same time, high-resolution data, coatsdufrom one or more exemplar
images of the real-world object, provides photo-realistidace texture.

An unfortunate drawback to these methods however, is tige lanmber of views re-

quired to accurately reproduce a scene. Often, as the critypté the scene increases
1

Figure 1.1: Traditional view-dependent texture mappinguws the Master Texture Space
encoding. (Top) Traditional approach. Exemplar imagestrhasstored with a different
set of texture coordinates per image. As new views of thecblajee needed at run-time,
these different texture coordinates must be available.t¢BgtAfter encoding, the Master
Texture space hold a new set of images that require only éesteg of texture coordinates.
A single pixel (shown as a line) in all images correspondfitodame point on the object
mesh.

either the mesh geometry must more accurately reflect threesmethe number of images
must increase. As a result, researchers have begun to factenagpression, storage, and
novel view generation techniques to alleviate these problg,11,13,14,31]. This work
introduces an efficient representation and correspondiogding process that was specifi-
cally designed for the image-based, view-dependent gregamapping domain. The tech-
nique reorganizes the image space so that a given pixeldocatross the image set corre-
sponds to the same surface location. The result is a set geisthat share the same texture
coordinates regardless of viewpoint. This encoding imesahe efficiency of image stor-

age as the underlying projective geometry can be discardédraditional image-based

operations such as view synthesis, view interpolation afitthg become straightforward
in the newly encoded image space [12]. This Master Textuméing reorders pixel data
corresponding to mesh triangles by computing the optimatgrhent of texture triangles
into a new 2D image plane. Optimal tiling of a plane usingrgie elements is an NP-
complete problem [4] and we introduce a new algorithm thatdeers for an approximate
solution via simulated annealing.

Once encoded, a given point on the object surface corresponithe same pixel lo-
cation in all views, regardless of the initial multi-viewaaetry to which the images cor-
respond. This is significantly different from traditionaéw-dependent texture mapping
scenarios in which the mapping from image to surface possther implicitly encoded
in a set of projection matrices or explicitly stored as a $é¢xture coordinates per-image.
Figure 1.1 depicts the general difference behind a trathtlp encoded VDTM model and
the Master Texture representation. Pixel-wise alignmémhages encoded in Master Tex-
ture space can be utilized to perform view synthesis diyantimage space. Pixel-wise
alignment allows Master Texture images to support viewlssis at render-time as well
as off-line. Applications that utilize view-synthesis mettwo desperate domains are pre-

sented in Chapter 5.

Chapter 2
Related Work

The Master Texture encoding is inspired by recent progressmbining geometric models
with view-dependent texture information to produce re@liscenes at render time. Early
image-based modeling and rendering techniques formatleedise of pixel data, poten-
tially captured from real-world scenes, for rendering withexplicit geometric descrip-
tions [25, 29, 30, 33]. Pure image-based representati@nbeareficial for creating novel
views when a large number of match points are recoverablén@ehtire scene can be rep-
resented in the set of exemplar images or some functionaghegeveral techniques have
been presented for performing view-synthesis in this dan{di, 15]. Light Field render-
ing [9, 16, 33], plenoptic function recovery [30, 20], OpsdHull 3D photography [19],
and novel view synthesis based on trilinear constraintsaf8]focused on exploiting the
image-based representation to generate novel views lgifemtn the available images and,
in some cases, camera calibration information. Hybrid wagtthat use both image data
and a simple surface description of the scene have been shalirviate several of these
problems [5, 10, 11, 14]. Exemplar images are projected arsiarface model from their
known viewing location and then rendered from a novel viempadn this way, perspective
effects and occlusions are partially reproduced in the riew tsased on the accuracy of the
underlying surface geometry. Research in VDTM mainly fosuse reducing the storage
requirements in order to facilitate larger numbers of viewvd remove rendering artifacts.
Debevec et al. introduced a view interpolation algorithrsytothesize novel views at ren-
der time by combining information from multiple exemplarages that are close (in terms

of viewing parameters) to the desired view [11]. The appnoa@-computes visibility
4

information for each mesh face and stores this informatioa view-map data structure.
At render time, the view-map is queried to correctly combilifeerent exemplar images
on a single mesh face to insure that texture informationainstonly visible pixels. The
algorithm produces smoothly blended texture informatiamf the exemplar views. As
the work of [11] suggests, visibility analysis is an impaottaspect of accurate novel view
generation. A caveat of projective texture mapping is theeasity to perform visibility
analysis at render-time. Furthermore, complex processitige existing mesh must occur
in order to detect and eliminate special cases such as Ipaxtisible mesh elements as
seen from any exemplar image view [34]. Such processingh®gpdtential to increase
the complexity of the underlying mesh. Alternatively, inegagencoded in a Master Tex-
ture space contain pixels that represent unique Euclideaitigns on the surface mesh.
Therefore, visibility analysis can be performed directifhe image space without altering
the existing mesh. Novel view generation in Master Texty@&cs is equivalent to linear
interpolation of the Master Texture images. Furthermdre set of Master Textures can be
synthesized into a single Master Texture through direcgergpace operations, which ex-
tends the utility of the data set to rendering applicatitvag tio not support view-dependent
texture mapping.

In work similar to our own, [22] describes an Eigen-Texture@&ling scheme that
stores all the views of a particular model face in a singlegen@xture. This representation
has the advantage of being amenable to off-line compress&thods and results show
that the technique is able to achieve between 5:1 and 15: pression rates with little or
no loss in image fidelity. However, render-time texture cogspion is not addressed, and
since an Eigen-Texture is constructed from a single meshezieunder different illumi-
nations, rendering an arbitrary view must access all Eifgtures [22]. Perhaps future
research involving the Master Texture encoding could veahcorporating Eigen-Texture
compression for off-line storage of the image data set,gusia packing map (see section
3.2) to transfer between the Eigen-Texture space and theeMBexture space.

The Master Texture Encoding can be interpreted as an digofior automatic texture
atlas generation (ATAG) [17, 18, 26]. The basic goal of engstATAG algorithms is to

5

create a texture atlas that can be easily paiatpdsteriorithrough a 3D Painting System
without causing visual artifacts from segmentation or peeterization while maximizing
packing efficiency [17]. Unlike the Master Texture encodipgevious methods for ATAG
do not generally consider texture information as input, dadhot base quality of the en-
coding on preserving source texture information. Since WDdata sets provide color
informationa-priori, our algorithm only needs to parameterize a surface eleméetture
space to minimize the image-space difference of the encad@dxemplar elements. Also,
image-based editing of Master Texture data sets can berpextbprior to encoding [12],
so the amenability for image-based editing of encoded @dsasnot a concern. Therefore,
the sole concern of segmentation and packing in the MasteufBealgorithm is minimiz-
ing empty space in destination textures, resulting in paglkifficiency ranging from 85 -
95% (see Chapter 4). The general Master Texture algorithnpresented in [12] and here
we further develop along a number of lines including 1) a nad more efficient method
for facet-packing, 2) a novel visibility analysis phaset tigploits properties of the Master
Texture space to discard unused image information, 3) girealrendering algorithm, and
4) a simple Master Texture synthesis algorithm to distid Het of Master Textures to a
single, view-independent data set. The latter contrilousignificantly reduces the size of
the data set and extends the usefulness Master Textureéohpe@ndering architectures
that do not support view-dependent rendering. In additwa,explore the behavior of
the algorithm under a wider variety of test cases and propegedirections for this and
similar research. Results demonstrate that the new Maskéuréespace preserves image
fidelity contained in the exemplar views, achieves reasienatimpression, and facilitates
efficient rendering and manipulation of the encoded imagea fvide variety of rendering

applications.

Chapter 3

Master Texture Encoding Algorithm

3.1 Introduction

The Master Texture encoding algorithm consists of thregestaThe first stage parameter-
izes the local basis of each of thetriangular mesh elements in thexemplar images. The
result is a set oh face elements, ofacets for each of thean mesh elements, of uniform
size, shape and orientation. The next stage of the algod#termines a packing map that
will determine an optimal packing for the setroffacets extracted and parameterized from
each exemplar image. A two-stage annealing process first pairs facets into ngbts
that minimize wasted space across the pairings. Next, thef $a/2] rectangles from the
first annealing process are packed into a destination 22 pkat minimizes wasted space.
The result of the second annealing phase is the packing maphwives coordinates to
place each of then facets into the 2D plane of the n exemplar views - the Mastgture
images. The final stage of the algorithm performs visibgihalysis to fill occluded pixels
in the Master Texture images set with visible pixels, resglin a Master Texture image
set that can accurately texture the surface mesh from amy-pént, while maintaining
view-dependent effects such as specular highlights arfdcgidetails represented in the
view-dependent image data. Results show that the encodadselst reduce render-time
storage requirements by reducing texture dimensions amiheking the need to compute
or store multiple sets of texture coordinates. The exgbiertefit of storage reduction legit-
imizes the use of the Master Texture encoding for VDTM in dome&hat involve resource

constraints (i.e. transmission of a VDTM over a limited bardth link). However, an

Figure 3.1: Example of facet parameterization. (top rome€hmages of a real-world car
object. A single mesh face corresponding (insert on each, t@ row) as seen in each
image. (bottom row) Facets are parameterized to uniformpeshaze, and orientation.
implicit benefit of the encoding is the correspondence oflilaan positions on the sur-
face mesh to pixels across the set of stored Master TextlihesMaster Texture encoding
guarantees that a pixé€i, j)x, in Master Texture imagk corresponds to the same point on
the surface as pixél, j) in all other Master Texturef¥ixelwise correspondendg a ben-

eficial property of the Master Texture encoding because wiemespondence operations

including view synthesis can occur on the now pixel-aligdath directly in image space.

3.2 Facet Parameterization

Given a set oh different exemplar images, each of tmemesh triangles are projected
into all views to producerx m image facets. For a single mesh triangiefacets, one
for each view, are computed using the 3 triangular verticesthen projection matrices
corresponding to the views.

Pl = Pix,k=1..3 (3.1)

Wherex is the three-dimensional homogeneous point of the triangteexk, p}(is
the resulting two-dimensional homogenous image coordmat the facet in image and

P is the 4x3 projection matrix that describes how world poaypear in exemplar view
8

After Equation 3.1 has been computed for all facets in the dat, all projection matrices
are discarded and further operations now take place on shudtirg n different 2D facets
for that mesh triangle in image space. We refer to the set(m‘tsﬁqJL, corresponding to
a single mesh triangle asfacet family wherei ranges from 1 to the number of views
available. Figure 3.1 shows a model as seen from three eliffexxemplar views. The three
triangular facets, corresponding to the same mesh elementi{e same facet family) are
highlighted on each exemplar view. Note that the facets aferched due to perspective
effects. Once extracted, the all the facets within eachl{eane warped into a uniform size
and shape. For a given family, each facet is transformed doget right triangle of width
w and height whose longest axis is aligned with that of the x-axis in imagace. For a
givenw andh, a two-dimensional affine warp = [aj1810a13801820823] T, is derived from

the three corresponding points on the initial triangle egaplo each of the facets:

(X0 Yo 1 0 0 O 0
0O 0 O x Yy 1 0
X2 yy 1 0 0 Of , |[(w B
A= 0 0 0x y 1 ,B= 0 ,AX=B (3.2)
X2 Y2 1 0 0 O 0
(0 0 0 x y2 1] h]

WhereA is the set of initial image coordinates of the mesh trianglis,a vector containing
the corresponding target coordinates of the warped facete MhatB is constructed so
that the resulting facets are all aligned with the image aXds elements ok are then

determined from the least squares solution:
X=(ATA)"IATB (3.3)

As opposed to approaches that warp triangles to the maxinizeno$ any triangle
as seen in any view [12], we usengean enclosing trianglapproach, that computes the
axis-aligned, right triangle that is minimally distant fnaall triangles in the family. This
increases the compression achieved by the algorithm whilelimag undue sampling arti-
facts by guaranteeing that the target triangle wigthand heighth, are close to the facet
family under consideration. This is accomplished by mizimg the sum of the distances

between facet vertices before and after warping:
9

k 3
argmirw,h % Z"D(Xi’Athi)|| (3.4)
j=1li=

WhereD(a,b) is the Euclidean distance between poinand the point warped by the
affine transformA,+x; . Note thatA,, is the affine transform matrix given by Equations 3.2
and 3.3 for particulaw andh values. This way the size of a packing triangle for a facet
family remains fixed and resampling must only occur once. €xhe facet families have
been parameterized, each facet fanfilyis analyzed to see if it is of uniform color across
all views. If the image difference acroBg is less than an intensity difference threshold ,
and the facets are of uniform color, then the dimension ofdbet family can be reduced
to fixed dimensiord. To eliminate sampling artifacts during render-time ragsion, we

used fixed of 5. Our results used an intensity difference threshold of 5

3.3 Efficient Facet Packing

At this stage of processing, each family contairfacets of the same size and shape even
though they have been derived fromunique views. Each of these facets are placed into
n different Master Texture images at the same position arehtaiion to guarantee align-
ment of the facets across views. For a mesh of sizene facet from each of tha facet
families is placed into the same Master Texture. Facetsesteicted to 90-degree rota-
tions in order to minimize aliasing artifacts. Once faceagehbeen packed, the result is a
new Mater Texture image for each of the original exemplawsiéhat contain one warped
facet from each of the original facet families. The packitgpathm maximizes pixel use

in the Master Texture image while at the same time minimizingsize of the image re-
quired. The result of the packing algorithm for one vieweredd to as a packing map, is
applied directly to all the remaining views to guarantee dzch image in the Master Tex-
ture space is pixel-wise aligned. The packing process fais$ phe set oh right triangles

in rectangular bounding regions so that the total area okatangles is minimized. This
step is motivated by the desire to reduce the triangle-pgcgroblem to one of efficient

tiling using rectangular elements. Although research madyced interesting theoretical

10

results related to tiling triangles on the plane, more effictechniques focus on the more
constrained problem of placing rectangles on a planar saittamaximize coverage while
allowing only translation and 90-degree rotations of thdidual rectangles [21]. An
optimal packing of the rectangles within the smallest g@esimage region is then com-
puted in order to derive a final Master Texture image. Spetificgiven the set ofn/2]
rectangles, the smallest bounding rectangle (image) ti@tmzes the number of points
within that rectangle not covered by image data is compukticient packing of poly-
gon elements on the plane is not a new research topic and kasshelied with varying
constraints as the two-dimensional tiling problem. In samwork, Soucy et al. generates
an image to texture-map the object surface by packing tedttrrangles into the 2D im-
age plane [31]. The new triangle-packing algorithm desatibere is based on an iterative
optimization process rather than a set of packing heusisticd is able to outperform (in
terms of space utilization) the method described in [31]pti@al solutions for specific
2D tiling packing problems have been motivated by induképglications, such as stock
cutting, data storage, and VLSI design [21], and we draw upesge to develop a solution

to our problem.

3.3.1 Triangle Pairing

Facets are first converted into rectangles by pairing sirri@ngles and fitting a bounding
rectangle to the result. Care must be taken at this stage ¢eeetty pair triangles so as to
efficiently make use of the resulting rectangular regionc8ithe facets are right triangular
and the base and height run along scan lines, two facets cpaiteel by transposing one
of the facets along the x and y-axis, and placing it at thedbottight coordinate of the

minimum bounding rectangular region of the two facets. &idguish between the facets
in a pairing, the transposed facet is called the flipped fadeile the other will be referred

to as the base facet. Equation 3.5 determines the size oéséting bounding rectangle

that encloses the paired facets.

argmin(argmaxk, n) xargmaxl,m)), (argmaxl, n) = argmaxk, m))) (3.5)

11

ﬂ' nnrnnrmr =

Figure 3.2: A section of the triangle-pairing for the BMW Maxea-Facet data set. The
top image shows the initial pairings using simple heursstix select pairings for search
initialization. It has a pairing efficiency (measured aaltarea used within the rectangular
bounding boxes)of 81%. The bottom image is after optim@atusing the 5th cooling
schedule (Figure 4.2). The final pairing efficiency is 97%.

Where(m,n) and(k,|) are the dimensions of the un-flipped facet and flipped faespec-
tively. The problem of pairing right triangles to producee af rectangles with a globally
minimum area is a specific instance of the 1-D bin-packinglam: given an unlimited
number of variable sized bins and a fixed set of items, plasagtwithin bins in such a
way as to minimize the total bin size required. Flipped tgias play the role of the items
while base triangles act as the bins. A packed bin then, isa fazet that has been paired
with a flipped facet. The total size of a bin is determined by&iwpn 3.5, and unlike the
general bin-packing problem, the bin size changes acaptdiwhich item is contained in
the bin. However, the goal remains identical: discover amwd packing of the bins (base
facets) with items (flipped facets) such that the total beaas minimized.

Initially, the data set is conditioned by pairing the latg®g un-paired facets until all
facets have either been paired, or in the case of an odd nurhfaarets, the smallest facet
remains the sole un-paired facet. A search process iteoatspotential parings using
the total coverage area as an error metric. The space obp®gsiiring is search via an
annealing process to avoid local minima in the search spHaeee operations that occur
with equal probability are used to move through the searahespa facet may be flipped (if
paired, its partner is also flipped), two items may exchamge lor two bins may exchange
items. Varying cooling schedules were used and results gfaming efficiency ranging
from 86% to 97%. Figure 3.2 shows a set of triangular facettmeted from a single view
of the BMW model. Initial pairings are shown at top and the leafier the annealing

process terminates is shown in the bottom image of FigureftBough the pair-selection

12

algorithm is iterative, we have found that in practice itprrforms more straightforward
heuristic-based methods such as directly pairing trianglecording to the similarity of
their hypotenuse length. It should also be noted that ttas isff-line process and, because
facets are of the same size/shape across all images, thegpsélections in one image
determine the same pairing for all images. Results relatgwhiong efficiency using a

variety of cooling schedules are shown in Chapter 4.

3.3.2 Rectangle Tiling

The set of rectangles resulting from the pairing assignswsrputed in the previous phase
of processing are now efficiently packed into a boundingamegtilar region. There has been
much success in applying simulated annealing to solve tttamgle-packing problem in
other application domains such as circuit board design Z13B, This success is, in part,
due to the sequence-pair representation of the search. sphaiserepresentation supports
flexible operations during the annealing process and efticemputation of the cost func-
tion for an arbitrary configuration in the search space [d1le representation encodes a
particular packing into two sequenc@s,Y) that describe a complete ordering of the rec-
tangles on each of the two axes of the plane. A full descmptiothe sequence-pair is out
of the scope of this paper, but a brief overview follows (farther details, refer to [21]).

A sequence-pair is a pair of sequen¢&sY) of n elements representing a list of
rectangles. Geometric constraints on the sequence deshalgeometric locations of the
rectangles in the packing. Rather than explicitly represie@tactual P offset of each
rectangle in the plane, the order of appearance in a sequEsceibes whether a given
rectanglex is "above”, "below”, "to the right of”, or "to the left of” another rectangle
X in the packed plane. For instance xifs"beforex in both sequences, thenis "to the
left of” and”below” x in the packed image plane. Because the sequence-pair nefarese
tion does not explicitly represent 2D coordinates on thagldlocks cannot overlap one
another. In this way, a valid packing is intrinsic to the sege-pair representation and
checking for degenerative configurations (such as oveirigprectangles) while perturb-

ing the sequence-pair is not necessary. Therefore a packimdpe perturbed by simply

13

shuffling the entries in either of the two sequences.

In order to measure the quality of a particular sequence-pas necessary to con-
vert the representation to actual rectangle coordinatésagahe total size of the bounding
region and coverage can be measured. Quality is given byatteeaf the sum of the com-
ponent rectangle areas over the total bounding rectargge Since the sequence-pair will
be evaluated for quality potentially thousands of timesrduthe annealing process, it is
important that this measure can be computed quickly. Intip&che bounding rectangle
size is directly derived from the sequence-pair using atastinique, called the longest
common subsequence evaluation [32]. This method has beemgb run 60 times faster
than earlier graph-based methods [21] and is used here tputerthe quality of a par-
ticular sequence-pair during the annealing process. Htin€fudetails on sequence-pair

evaluation via longest common subsequences, the readeedsad to [32].

3.3.3 Simulated Annealing Search for Efficient Rectangle Packing

Simulated annealing search framework is used to computegtmmal rectangle packing
over the sequence-pair representation space. To imprevntle required to converge to
a solution, rectangle placement is initialized using gtiforward heuristics. First, rec-
tangles are flipped so the largest dimension is the widtm the set of rectangles are
sorted by width from largest to smallest. In previous worR][Xhe largest rectangle to
the smallest was simply packed in order into the new imagesutite assumption that
packing efficiency will decrease if large rectangles aretiefoe packed into nearly full
tiling. This requires that a fixed image width for the Mastexflire packing is determined
a-priori, which is set to be the square root of the total sum of the asktse rectangles
to be packed. The sequence-pair is similarly initializedtigh the following operations.
The Y sequence is constructed by adding each element frod Heguence to the Y se-
guence from back-to-front until the sum of the widths of thetangles in the Y sequence
fits within the approximate dimension and no more rectancgesbe added. This process
is repeated until all rectangles from X have been added t¥ theguence.

Figure 3.3 shows an example of the initial conditioning feeaof ten rectangles. This

14

Rectangle | width | height
1D

1 23 | 24
2 15 | 16 (x X X X X X X X X
EREN
12 [13
26 | 26
50 | 10
20 | 20
55 | 30
10 | 20
100| 10

w

[CeReo-RE RN NG, BIF-

-
o

EH

Figure 3.3: Packing example using the sequence-pair. (Ef) A set of 10 rectangles.
(Middle left) Conditioning the initial sequence-pair set. vikoshow the sequence-pair at
each iteration of the conditioning algorithm. (Middle riyffhe conditioned packing of
the sequence-pair that is the initial state of the annealingess. This initial packing has
dimension 100 x 104 with 50% efficiency. (Far right) The réstdilthe packing after the
annealing process has dimension 43 x 130 with 94% efficiency.

NN LTI IO L I —
Iy T LT LT LT
I LU I LA

1l
I 1
110

Figure 3.4: Example of the iterative facet packing procéssft) Initial estimate of image

size and packing (see Text). (Middle) Final result afte#t33,iterations of the annealing
process using schedule 5 (See Figure 4.2). In this examabéjng efficiency (measured
as ratio of covered pixels to total pixels in image) was iasesl from 89.3% to 93.3%.
(Right) Final Master Texture image containing the facet fpabega.

15

sequence-pair initial guess is then optimized via simdlatenealing. Four operations are
used in the annealing process: 1) Transpose a rectangiegdhe rectangle 90-degrees
in the plane), 2) Swap two elements from Kesequence, 3) Swap two elements from the
Y sequence, 4) Swap two elements from both sequences. Vawolimg schedules were
used and results show packing efficiency, measured as tetlcavered by pixels in the
final image, ranging from 85% to 98% (see Section 4). When tbegss terminates, a
packing map that determines how all facets are placed itdMaster Texture has been
discovered. Figure 3.4 shows this iterative packing pred¢esa family of rectangles on
the BMW data set and the resulting Master Texture. Once cagdptiis same packing

map is then applied to all other facet sets to derive the cetapliaster Texture space.

3.4 Visibility Determination

The goal of the visibility analysis phase of the encodingatgm is to classify every pixel
in the Master Texture images as either visible or occludedceGhis determination has
been made, occluded pixels can be directly replaced witblgipixels from other views.
Because the same pixel corresponds to the same point on e sbjface, an occluded
pixel (i,j) in Master Texture image k need only look for a r@ggment in pixel (i,j) of the
remaining Master Texture image set. Initially, the entinelerlying mesh is rendered from
a given exemplar viewing position and its depth buffer valaee stored. This is similar to
other visibility methods that assume the presence of a nwdginple geometric primitives
[23, 28]. Next, the weighted Euclidean position for everygbiused to texture map mesh
faces is derived from the barycentric coordinate weighta given pixel that are applied
to each Euclidean position of the mesh face containing tixat.pgGiven these weights, the

resulting position of a pixdk,», is given by Equation 3.6.

Ixy,z = My y.2Wm =+ Ny y z2Wn + Ox y. 2Wo (3.6)

In this equationyyy z,Nxy,z, andoyy,, are the Euclidean positions of the mesh face vertices

containing the pixel, whilevy,, w,, andw, are barycentric weights of the relative positions

16

Figure 3.5: (Top)Exemplar image from the "truck” data setafgle outlined in white on
cab illustrates a partially occluded surface facet frora Wew. (Far left) Partially occluded
facet extracted and warped. (Middle left) Pixels determiitoebe occluded shown in white.
(Middle right) Closest neighbor facet that contains visipibeels. (Far right) Synthesized
facet containing only visible data.

for each position respectively. Pixels that are not useextute map faces (i.e. pixels
taking up wasted space in the packed images) are markedtiaval are discarded for the
remainder of the algorithm. To determine if a Euclidean fa@sion the model surface
is visible from a given view, the projection of the mesh paamto the image plane is
computed along with the depth buffer value at that imagetpdirthe depth buffer value
of the extracted pixel is the same as the depth buffer vatuteei stored depth buffer, then
the pixel is visible from the corresponding viewing positiotherwise it is occluded. This
process is used to classify the visibility of each Mastertieximage pixel in the set of
Master Texture images. Once classified, occluded pixelshene filled with valid pixel
information. This is a straightforward operation due to piresl-wise alignment property
of the Master Texture space. If a pix@! j) is occluded in view p, then it is filled with a
visible pixel (i, j) in the Master image closest to viewp. The dot product of the optic

axis of view p and each of the Master Texture images in which pixegj) is visible is

17

computed. The view with the largest dot product containscibsest visible pixel, and
the entry in Master image is replaced with this value. At the conclusion of visibility
synthesis, all Master images are now filled with visible pwedues. Figure 3.5 shows this

process for a particular facet on the "truck” model.

18

Chapter 4

Results

The Master Texture encoding algorithm was run on several dats in order to study
algorithm behavior under a variety of conditions. Resulesdiscussed in terms of com-
pression rates and fidelity loss with respect to the origilagh. Computer graphics models
were used for two of the four models (Lamp and Helicopterhsd ¢round truth data was
readily available. A third and fourth model (BMW automobiledaFord F150 truck) were
created from a low-polygon count model combined with reattdimages of a scale model
captured under controlled conditions. Data sets of varymegh complexity and varying
numbers of exemplar images were used. The criteria for atialythe approach were 1)
efficiency of rendering a Master Textured object from chaggiewpoints, 2) compression
rate of the Master Texture encoding as compared to traditiexture mapping, 3) triangle
packing efficiency, and 4) fidelity of the Master Texture et model after rendering as
compared to the original data set. The algorithm was run bdagh sets using an Intel
2.4Ghz machine.

The four data sets are shown in Table 4.1. Master texture aghrsamples from

the data sets are shown in Figure 4.1. Encoding times areladgpendent on mesh

Model Mesh Faces Views | Exemplar Image Size

Truck 1801 28 512x512

Lamp 1842 90 640x480
Helicopter 436 360 720x576

BMW 651 28 640x480

Table 4.1: Exemplar data set statistics.

19

Figure 4.1: Results of the Master Texture encoding appli¢dedour different test objects.
Each example shows an exemplar image (top left), object r(lesthom left), example
Master Texture, and the rendered view (at right).

resolution and number of iterations performed in the anngarocess. Encoding times
typically range from a few seconds, for a 651 polygon modeit@oing 28 views using
a rapid cooling schedule, to 86 minutes for 1842 polygon rhadid 90 views using a
slow cooling schedule. The pairing process was capableaxfyaing efficient triangle
pairs and demonstrated consistent pixel utilization otibending rectangle of 86 to 95%.
These rectangular regions were then packed using the thigodescribed in Section 3.3.
Overall compression rates are greatly influenced by thdtheguMaster Texture image
size as well as the efficiency of packing the rectangularoreginto that image. For data
sets with a relatively small numbers of triangular mesh elets, the annealing process
provides the greatest increase in efficiency. For instaheehelicopter data set increased 7

percent for the mean and greatest enclosing encodings.nirest, data sets with a larger

Cooling Schedules Cooling Starting Reduction
0.98 Schedule |Temperature Value
0.96 1 200 0.001
094 ~ 2 100 0.001
0.92 -

0.9] 3 20 0.01
088 1 4 10 0.01
0.86 |
0.84 - I: 5 10 0.0001
0-82 T T T T T T 6 0 0

1 2 3 4 5 6

Figure 4.2: A study of cooling rates on two different datassdteft) A plot of the total
packing efficiency for the BMW and Helicopter data sets foreaicthe different cooling
schedules. (Right) Cooling schedule includes the startimpégature (randomness) of the
search and a reduction value that is applied at each itaeratialictate how rapidly the
temperature is decreased.

20

number of triangular mesh elements receive a smaller iser@aefficiency. The truck
data set is a good example of this behavior with less than depeincrease in efficiency
in mean and greatest enclosing encodings. This effect ibyp#ue to the fact that our
initialization heuristics are more efficient for the largeesh element data sets. Of course,
the particular cooling schedule utilized in the annealiragpss will influence both the time
to convergence and the efficiency of the rectangle packirtpenMaster Texture image.
Figure 4.2 depicts the effect of overall packing efficienoythe Master Texture image
versus six different cooling schedules labelled 1 througtn@he BMW data set. The
cooling schedules differ in the starting temperature aed#te at which that temperature
is iteratively lowered.

Figure 4.2 (Right) shows the different parameters for eadh@ftix different cooling
schedules. Compression rates of the three different objesrts measured. Compression
rates were measured as the ratio of total bytes requireckiditional VDTM versus VTDM
using the Master Texture encoding. Table 4.2 summarizesethdts of the experiment
using both the maximum enclosing triangle (Max MT) and meaaeiasing triangle (Mean
MT) warping methods during the encoding process. Comprnessi@s are related to the
size of exemplar views, the percentage of pixels in thosevibat related to the model,
and even the distribution of those views around the modelfitén general, compression
rates are reasonable for data sets with a large number o§\d@ad a moderate number of
polygons on the object mesh. Table 4.3 clearly demonstthteadvantage of using the
mean enclosing triangle warping approach for compression.

Artifacts may arise from the facet-warping phase when int&da is resampled accord-

Model Max MT | Comp. | Sched.| Time Mean MT | Comp.
Size Ratio (minutes) Size Ratio

Truck 622x589| 0.84 1 72 342x325| 2.77
Lamp | 448x417| 1.63 1 86 236x226| 5.88
Helicopter| 663x546| 1.14 5 14 271x228| 6.66
BMW 904x785| 0.48 5 49 490x420| 1.42

Table 4.2: Compression rates for four different data setsaofing mesh size, exemplar
image size, and number of views.

21

Model | Max % diff. | M.l.D.(Max MT) | Mean % diff. | M.1.D. (Mean MT)

Truck 2.16 2.3 2.66 2.6

Lamp 5.86 4.6 6.16 4.6
Helicopter 5.86 4.6 6.06 5.0

BMW 5.03 4.0 5.63 4.3

Table 4.3: Image difference scores of the four data setgusih maximum enclosing
triangle and mean triangle warping

Figure 4.3: A side-by-side comparison of the BMW model reeddrom a fixed view. (a)
Rendering using traditional view-dependent texture mappind an exemplar view. (b)
Rendering from the same view using a Master Texture encodadgem(c) Direct image
difference of first two renderings. Differences have beemadized to a range of 0-255
for visualization purposes. Only 5.6% of the 640x480 pixelfe image are different with
a mean intensity difference of less than five.

ing to the new facet shape prior to packing into the Mastetufexspace. In order to study
the effects of the encoding process on fidelity, Master Trexémcoded images are used to
re-render the model from the same view as an exemplar imagkeat difference of the
two images, then, reveals how and where the Master Textwedarg result differs from
the ground truth data. Table 4.3 shows the results of thisraxgnt with our data sets using
both the maximum enclosing and mean target triangle wanpietnods (see Section 3.2).
Figure 4.3 shows an original exemplar image of the BMW moddltae difference images
that result from re-rendering the scene using Master Tex@acodings and computing an
absolute difference. Figure 4.3(middle) corresponds toastst Texture image that was
computed using the mean enclosing triangle method and &igy@(right) corresponds to
the image difference of the first two images. The method usesklect a target trian-
gle influences the amount of warp (and potential resamplimgf) may be present in the

data. Unsurprisingly, Table 4.3 shows that the maximumaaieg triangle approach pro-

duces images that are closer to the original data but do mi¢\aecthe same compression

22

rates. Whatever the warping method used, the Master Texnagds are very similar in
appearance to their original counterparts. Across the fiterent test data sets, the mean
percentage of pixels that were different in re-renderedsieas less than five percent and

the mean intensity difference of those pixels was less tvanritensity levels.

23

Chapter 5

Applications

Intrinsic in the properties of Master Texture-encoded digjes the support for simple pixel-
wise view synthesis. We show the utility of view synthesi$vio distinct domains. First,

a real-time application for displaying a Master Textureaated object using today’s com-
modity graphics hardware is introduced. Next, an algorifomcompressing the set of
Master images to a single Master image is demonstrated. dhdting Master Texture
data can then be efficiently transmitted across the web. #&ndntive viewing client-server

application was developed in order to demonstrate thishibiya

5.1 Real-time View-dependent Application

A real-time model visualization tool that makes use of thewdependent Master Tex-
ture encoding was developed to demonstrate the advantagestong within the Master
Texture space. The application is loosely based on themydescribed in [11], and is
capable of render-time blending of a VDTM object. The inputte application consists
of the geometric mesh, set of Master encoded im&fj@sws), and the optic axis vectors
corresponding to the source view of edchTo ensure smooth blending as the viewing
position changes, we utilize a view map data structure \\g.chose this technique over a
more robust technique, such as the one presented in [Slubecd its speed and amenabil-
ity to a single-pass hardware-accelerated implementatiba limitation is that it assumes
an outside looking in model of the viewing space, and all semtews point roughly at the

view map origin.

24

A conditioning step assigns the closest source view in tier poordinate grid to each
of the nodes of the view map. The algorithm proceeds by dycaigichoosing the three
closest views given the current viewing position and eadms&gned a blending weight.
The current viewing positiop, is first mapped into polar coordinate grid and intersecting
triangle t of py is determined. The three nodestobecome the three closest reference
views.

Blending weights are then computed as the barycentric coates ofp, ont. The

weightW for a given source viewof t is given by
W= A /A (5.1)

whereA is the area of the triangle formed Ipy and the two vertices other tharandA;
represents the total areatofBlending guarantees source view weights will vary smoothly
as the viewpoint changes [11]. It is important to note blagdffectiveness is related to
the ratio of the number of source views to the number of nodeke view map. As the
ratio approaches zero, the three node indices for any gisving position will reference
the same view. As the ratio approaches infinity, source vigillsnot be indexed in the
view map. Empirically, a ratio of 1/6 yields good results avak used for the application.

Once blending weights have been determined, the final cdleach fragment; is
determined by applying the blending weights to the corredpw textures using the fol-
lowing equation,

3

fo= _;ci «W (5.2)

wherec; is the texture color antl is the normalized weight. Because data exists in a
Master Texture space, color assignments can be applied erfeagment basis in a pixel
shader. Figure 5.1 shows the source code for the pixel shiagewritten in NVIDIAs CG
language [24]. This is the only operation performed by tlagifinent program, since more
complicated operations such as visibility analysis are nonecessary. It is also important
to note that a single set of texture coordinates are loadédised for all Master images.
This eliminates the overhead of texture coordinate contiputs and dynamic loading of

three independent texture coordinate sets per frame. Calicapon contains a mirror
25

struct fragment{
float4 position : POSITION;
float4 color0 : COLORO;
float2 texcoord0 : TEXCOORDO;
¥
struct pixel{
float4 color : COLOR;
S
pixel main (fragmentIN, const uniform sampler2D texA,
const uniform sampler2D texB,
const uniform sampler2D texC,
const uniform floatl weightA,
const uniform floatl weightB,
const uniform floatl weightC){
pixel OUT;
/[Fetch the RGB texel color from the textures
float4 texelColorA = tex2D(texA, IN.texcoord0);/all 3 use same texcoord!
float4 texelColorB = tex2D(texB, IN.texcoord0);//all 3 use same texcoord!
float4 texelColorC = tex2D(texC, IN.texcoord0);/all 3 use same texcoord!
OUT.color=float4(texelColorA.r * weightA +
texelColorA.g * weightA +
texelColorA.b * weightA,
texelColorB.r * weightB +
texelColorB.g * weightB +
texelColorB.b* weightB,
texelColorC.r * weightC +
texelColorC.g * weightC +
texelColorC.b * weightC);

return OUT;

Figure 5.1: NVIDIA pixel shader for performing per-fragmeexture blending.

toggle that can enable a "mirror” that shows the reflectiothefdata set. Figure 11 left
shows a screen shot of the application with the mirror togglabled. The mirror effect
is simply a second rendering pass from a view 180-degreemdithe object. The second
rendering pass uses the same views and weights as the fidstr neaiss, eliminating the
need to perform a second query of the view map. This illussriiow any single Master
Texture, or combination thereof, can accurately textueecthtire object surface.

The real-time application generates a rendering rate op85dr the BMW data set

with mirror enabled and 75 fps with mirror disabled. We tddtee application on a Dell

26

Precision 480 with an Intel Xeon processor and an NVIDIA QuodeX 500 graphics card.

5.2 Off-line View Synthesis

Off-line view synthesis through direct image-space openatis a benefit exclusive to Mas-
ter Texture encoded objects. Image-based edits in one MEstaure image, for example,
can be directly propagated to all views without the need tapture or modify all im-
ages [12]. Here we introduce a simple algorithm that explthts property to derive a
single Master Texture image from a set of Master views thatctly textures the object
from any view. The algorithm results in a data set that istdralyy smaller (in terms of

file size) and view-independent, allowing greater accesisd@ncoded object.

5.2.1 View-independent Synthesis Algorithm

The view synthesis algorithm for Master Texture encoded WDiodels consists of filling
an initially empty Master Texture with pixel informationgtmost accurately represents the
model from any given viewing position. The result is a singlaster image that can be
utilized to texture map the underlying surface in a viewependent fashion. This is quite
simple since occluded pixels do not exist in the Master imgggece at the conclusion of
the encoding, therefore reducing the complexity of the g to simple geometric rela-
tionships of the pixellocations and their relation to theltiean positions of the enclosing
facet vertices.

The algorithm proceeds as follows: for each vertex of a factte Master image, find
the closest view to the vertex. A closest view associateld avfaicet verte¥ is determined
by finding the largest dot product produced by multiplyingleaxemplar view position
vector byF’s vertex normaI\Tf. Next, for each pixep contained in the empty facet, store
the weighted sum (in terms of barycentric coordinate weaigiithe pixel location relative
to the container facet, see Equation 5.1 and Equation 5.@)ofolor components of the
corresponding in the three closest views. Barycentric coordinates are fesdalending
to guarantee continuity of color values across face boueslaOnce the Master image is
generated, the object can be viewed by statically textuttiegview-independent Master

27

Figure 5.2: Screen shots from Master Texture encoding egdmins. Right image is a
screen shot of the VDTM application with mirror toggle ereabl Left image is a screen
shot of the View-Independent Master Texture encoded obgseen from a web page with

the ArchVision RPC ActiveX control [1].

image onto the underlying geometry via the texture cootdirs@t. Although dynamic

effects such as lighting are lossed, compression of thenatigata set is drastic. For the
data sets discussed in Chapter 4, for example, compress®imar@ased by a factor of
the total source views for each data set. These smaller detaadthough possibly not as
visually stunning, are much more accessible to the speaafitime 3D applications, such
as web-based viewers. To demonstrate the utility of the wwelependent algorithm, we

have converted several Master Texture data sets to thessthAcchVision RPC format [2].

; View-Independent Master Texture Space BMW ... I =] B3

Fle Edt View Favoites Took Help]

Eack - o= - (D [2] A | QSeach [ilFavoites »
Address !@ ata\brwmaster_BMWw_2'\createRPC\BMW.htm j @ Go
Google - | =] gpseachwes - (1) >

These data sets can be downloaded and viewed through thaawtble ArchVision ActiveX

Viewer [1] at http://www.metaverselab.org/research/imdistertexture/index.html.

28

Chapter 6

Conclusion

We have introduced an efficient representation and correbpg encoding process that
specifically addresses problems related to image-basad;dependent projective render-
ing. The technique achieves reasonable compression ofméger-data and supports effi-
cient operations in the newly compressed space that areatiypapplied to image-based
objects such as view synthesis, view interpolation andredilThe Master Texture space is
an object-specific encoding that compresses the set ofréertashes, computed by mul-
tiplying the underlying mesh by the set of projection magsicinto a single global texture
mesh. Exemplar images are then uniformly transformed tew&dio the new texture mesh.
This single texture mesh and the set of newly encoded Mastduies are sufficient to

reconstruct the view-dependently textured object fromtiaty views. Once complete,

all pixel data in the Master Textures is valid for view intelgtion and other image-based
operations. The Master Texture encoding avoids storingdanputing) multiple sets of

textures with the use of a single, and fixed, set of texturedinates. Furthermore, be-
cause all views of the object have been transformed into thet& Texture space, any
point on the object surface corresponds to the same pixdllimages.

Because visibility information is explicitly encoded in thlaster Texture space, subse-
guent visibility analysis and interpolation operations atraightforward linear operations
on the pixel-wise aligned data. Perhaps more importartily,visibility information en-
coded in the Master Texture space can be used to easily syzehaews. The utility
of image synthesis in Master Texture space was demonstratea distinct domains: a

real-time VDTM rendering application using todays comntpdjraphics hardware, and
29

an algorithm to produce a single view-independent Maste&tufe object of drastically
reduced file size for use in applications that do not supp®@TM, e.g. the ArchVision
RPC ActiveX Viewer. We are currently in the process of explgrnew ways to exploit
the Master Texture space to increase efficiency of traditionage-based rendering tech-
niques. One promising area of research is the automatictieduof complex computer
graphics models to a Master Texture encoded view-depeneler@sentation. For example,
by re-rendering a complex scene under different lightingdttions and encoding the illu-
mination changes as different Master Textures, subseguehghting of the model can be
accomplished using simple pixel-wise addition in the Ma3txture space. Another area
of research is a progressive encoding of the Master Texpaeesfor resolution control for

different application domains.

30

Bibliography

[1]
[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

ArchVision. RPC activex viewer. www.archvision.conzgztivexviewer, 2005.
ArchVision. RPC technology. www.archvision.com, 2005.

S. Avidan and A. Shashua. Novel view synthesis by cascamlilinear tensorslEEE
Transactions On Visualization and Computer Graphit@):293—-306, 1998.

B.S. Baker, E. G. Coffman, and R. L. Rivest. Orthogonal packingwo dimensions.
SIAM Journal of Computing(4):846-855, 1980.

C. Buehler, M. Bosse, L. McMillan, S. J. Gortler, and M. F. CohdJnstructured
lumigraph rendering. ISIGGRAPH 2001, Computer Graphics Proceedjmgges
425-432, 2001.

D. Burschka, D. Cobzas, Z. Dodds, G. Hager, M. JagersardiKarverex. Recent
methods for image-based modeling and renderingEEE Virtual Reality Tutorial
1, March 2003.

C.S. Carpenter, B. Seales, C. Jaynes, and R. Stevens. Autbimates-view and
match-point selection for the archvision rpc image-basedeh InProceedings of
the International Conference on Multimedages 577-581, September 2001.

S. E. Chenand L. Williams. View interpolation for imagelyesis Computer Graph-
ics, 27(Annual Conference Series):279-288, 1993.

W-C. Chen, J-Y. Bouguet, M. Chu, , and R. Grzesuk. Light field piag: Efficient
representation and hardware rendering of surface ligldsieln SIGGRAPH 2002
pages 447-456, 2002.

P. Debevec, C. J. Taylor, and J. Malik. Modeling and remdgearchitecture from
photographs: A hybrid geometry and image-based appro@dmputer Graphics
30(Annual Conference Series):11-20, 1996.

P. Debevec, Y. Yu, and G. Boshukov. Efficient view-depsrtdmage-based rendering
with projective texture-mapping. IBurogaphics Rendering Workshgpages 105—
116, June 1998.

D. Guinnip, C. Jaynes, D. Rice, and R. Stevens. Efficiengedaased projective map-
ping using the Master Texture Encoding. Winter School Conference in Computer
Graphics pages 49-56, 2003.

S. Kirkpatrick, C.D. Gelatt, , and M.P. Vecchi. Optimigsm by simulated annealing.
Science220:671-680, 1983.

31

[14] C. S. Kurashima, R. Yang, and A. Lastra. Combining apprat@argeometry with
view-dependent texture mapping - a hybrid approach to 3glovidleconferencing. In
SIGGRAP] pages 112-120, October 2002.

[15] S. Laveau and O. Faugeras. 3-d scene representatiaroiscion of images. liPro-
ceedings of 12th International Conference on Pattern Reitiogn volume 1, pages
689-691, 1994.

[16] M. Levoy and P. Hannrahan. Light field renderingSIGGRAPH 1996pages 31-42,
1996.

[17] B. Levy, S. Petitiean, N. Rayand, and J.Maillot. Leastasga conformal maps for
automatic texture atlas generation.SitGGRAPH 2002pages 362—-371, 2002.

[18] J. Maillot, H.Yahia, and A. Verroust. Interactive tex¢ mapping. INSIGGRAPH
1993 pages 27-34, 1993.

[19] W. Matusik, H. Pfister, A. Ngan, P. Beardsley, R. Zieglerd &. McMillan. Image-
based 3d photography using opacity hulls. SIGGRAPH 2002pages 427-437,
2002.

[20] L. McMillan and G. Bishop. Plenoptic modeling: An imafased rendering system.
In SIGGRAPH 1995pages 39-46, 1995.

[21] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitanilsmodule placement based
on rectangle-packing by the sequence pdiEEE Transaction on Computer Aided
Design of Integrated Circuits and Systerh§(12):1518-1524, 1996.

[22] K. Nishino, Y. Sato, and K. Ikeuchi. Eigen-texture matdh Appearance compres-
sion and synthesis based on a 3d motleEE Transactions on Pattern Analysis and
Machine Intelligencg23(10):1257-1265, 2001.

[23] NVIDIA. Hardware shadow mapping. devel-
oper.nvidia.com/object/hwshadowmapper.html.

[24] NVIDIA. Nvidia cg toolkit. developer.nvidia.com/obgt/cgtoolkit.html.

[25] K. Pulli, M. Cohen, T. Duchamp, H. Hoppe, L. Shapiro, andSetzle. View-based
rendering: Visualizing real objects from scanned rangecatat data. IrProceedings
of 8th Eurographics Workshop on Renderipgges 22—-34, June 1997.

[26] N. Ray and B. Levy. Hierarchical least squares conformapsn In11lth Pacific
Conference on Computer Graphics and Applications 2@@ges 263—270, 2003.

[27] REALVIZ. developer/producer of image-processing saifte and applications, 2005.

[28] M. Segal, C. Korobkin, R. Widenfelt, J. Foran, and P. Hakbd-ast shadows and
lighting effects using texture mapping. BIGGRAPH 1992pages 249-252, July
1992.

[29] S. Seitz and C.R. Dyer. View morphing. 8iIGGRAPH 1996pages 21-30, 1996.

[30] S. Seitz and K. Kutulakos. Plenoptic image editing.Phoc. 6th International Con-
ference in Computer Vision (ICCV '98)ages 17-24, 1998.

32

[31] M. Soucy, G. Godin, and M. Rioux. A texture-mapping agmio for the compression
of colored 3d triangulationsThe Visual Computed2:503-514, 1996.

[32] X. Tang, R. Tian, and D. F. Wong. Fast evaluation of segagair in block placement
by longest common subsequence computatiol@dnference on Design, Automation
and Test in Europgrages 106-111, 2000.

[33] D. Wood, D. Azuma, K. Aldinger, B. Curless, T. Duchamp, @l&in, and W. Stuet-
zle. Surface light fields for 3d photography. SiGGRAPH 2000pages 287-296,
2000.

[34] Y. Yu. Efficient visibility processing for projectivekture-mappingJournal of Com-
puters and Graphicg23(2):245-253, 1999.

33

Vita

Name: David Guinnip
Date of Birth: Aug. 29th, 1977
Place of Birth: Lexington, Kentucky

Education

e B.S. in Computer Science and Studio Art, Transylvania Unitiersexington, KY,
May, 2000.

Publications

e David Guinnip, Christopher Jaynes, David Rice, and Randalled® “Efficient
Image-Based Projective Mapping using the Master Texture&gancoding”. In
Winter School Conference of Computer Graphjgages 49-56, 2003.

e David Guinnip, Ruigang Yang, and Liang Wang. "View-Depenrdextured Splat-
ting for Rendering Live Scenes” Techincal Report 431-05, Depent of Computer
Science, University of Kentucky, Lexington, KY, 2005.

Presentations
e David Guinnip and Ruigang Yang. "View-Dependent Textureth&ing for Render-
ing Live Scenes” SIGGRAPH Poster Presentation, 2004.

Honors and Awards

e Finalistin ACM Student Research Competition for SIGGRAPH 2004téY, "View-
Dependent Textured Splatting for Rendering Live Scenes”.

e Teaching Assistantship, University of Kentucky, 2000-200
e Research Assistantship, University of Kentucky, 2000-2001

e Research Assistantship, University of Kentucky, 2003-2004

34

	Master Texture Space: An Efficient Encoding for Projectively Mapped Objects
	Recommended Citation

	Abstract
	Rules of Use
	Title
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1
	Chapter 2
	Chapter 3
	Section 3.1
	Section 3.2
	Section 3.3
	Section 3.3.1
	Section 3.3.2
	Section 3.3.3
	Section 3.4
	Chapter 4
	Chapter 5
	Section 5.1
	Section 5.2
	Section 5.2.1
	Chapter 6
	Bibliography
	Vita

