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Abstract of Thesis 
 

 
 
 

A NETWORK PROCESSING NODE FOR LIGHT UNMANNED AIRCRAFT 
 

Over the last decade, research into unmanned and autonomous vehicles has greatly increased.  With 
applications ranging from science and exploration to humanitarian and military efforts, the rising 
need for autonomous vehicles demands constant innovation and growth.  The Intelligent Dependable 
Embedded Architectures (IDEA) lab at the University of Kentucky is continually launching research 
oriented programs [1].  A few key projects focus on the development of Unmanned Aerial Vehicles 
(UAV).  Through this research, at the University of Kentucky, the need to develop a reliable, 
lightweight, node based hardware for use in light UAVs and other unmanned and autonomous 
vehicles became apparent.  This paper addresses the design and implementation of a network 
processing node for light UAVs.  This system utilizes a Controller Area Network (CAN) noise 
tolerant communications bus, a low power ZigBee Wireless Network for expanded inner plane 
communications and Silicon Laboratories C8051F041 microcontrollers to provide the necessary 
inputs/output and data processing.  The final result will be a flight ready light UAV featuring 
distributed processing nodes to handle the servo communications and controls. 

 
KEYWORDS: Unmanned Aerial Vehicle, Embedded Processing, Avionics Bus 

Communications, Controller Area Network, ZigBee Wireless Network 
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1 Introduction 

1.1 Background 

Unmanned Aerial Vehicles (UAVs) have been developing and changing for as long as humans have 

understood flight.  Once primarily seen as military assets, many of the early unmanned aircraft were 

barely more than guided missiles.  With continual development however, the technology surrounding 

unmanned flight grew, along with the number of applications.  Now many scientific and educational 

institutions realize the value of the implementation of UAVs.  These tools can provide cheap and 

effective ways to gather information and survey areas and situations that once were not possible. 

 

Two of the better known UAVs are the United States Military’s Global Hawk and Predator, seen in 

Figure 1.1.  The Predator is considered a medium-altitude, long-endurance, remotely piloted craft 

[2].  This craft typically operates with a ground station crew of three, including one pilot and two 

people to monitor and operate sensors, communicating with the craft directly or via satellite.     

 

 

 
Figure 1.1 – Left Image- Predator, Right Image- Global Hawk [3] 

 

In contrast to the Predator, the Global Hawk is a fully autonomous UAV.  This craft is capable of 

autonomously taxiing, taking off, completing an aerial mission, returning and landing.  The ground 

station crew for Global Hawk is solely responsible for monitoring the craft’s health and status and 

updating mission parameters [4].  Though well known both of these systems are too large and 

expensive for most non-military applications. 
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One way that unmanned flight reaches into more applications is the parallel development of 

autopilots.  The integration of a well designed autopilot eliminates the need for trained and 

experienced pilots to design, develop, test, and finally implement a UAV.  Most autopilot systems 

consist of an in-plane sensor and control device connected via radio to a ground station.  The ground 

station is responsible for notifying the flight unit of the flight path and parameters, as well as 

allowing a user to modify flight elements in real time.  The in-plane unit is also responsible for 

guiding the aircraft’s flight control surfaces.   

1.2 Motivation 

There have been several Unmanned Aircraft Systems (UAS) platforms designed, implemented and 

tested at the University of Kentucky, each having its own unique features and designs.  Three UAS 

platforms implemented at the University of Kentucky are BIG BLUE, the 3rd Annual AUVSI 

competition airframe AIRCAT and the 4th Annual AUVSI competition airframe Southern Komfort.  

Due to the size of these projects the need for a modular firmware design was quickly realized and 

through the many iterations of design and physical implementations issues with noise and payload 

integration became apparent.  These issues cause delays in flight time and flight testing, as well as 

increased development time.   

1.2.1 BIG BLUE 

The Baseline Inflatable-wing Glider, Balloon Launched Unmanned Experiment (BIG BLUE) was 

the University Of Kentucky College Of Engineering’s first journey into UAS design [5].  As part of 

a NASA workforce development grant this program introduces students to a multidisciplinary 

aerospace project with the goal of designing and testing novel Mars exploration aircraft technology.  

The first generations focused on development of inflatable/rigidizable wings along with a custom 

flight control system seen in Figure 1.2.  This system focused around a single microcontroller 

utilizing functions that communicated information directly between the various sensors, actuators 

and input/output.  This system was unable to support fault tolerance and due to the direct 

communication between functions, a single, small error could result in catastrophic system failures. 
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Figure 1.2 – Single Processor Design 

 

The second generation of BIG BLUE utilized distributed processing integrating several processors 

into the design.  These processors, communicating through a common data bus (Figure 1.3), 

provided hardware redundancy, having duplicate sets of sensors tied directly into some of the 

mission critical components.  This system still suffered from the single point of failure provided by 

the I2C communication bus.  This I2C bus also added additional hazard by being susceptible to noise, 

potentially delivering incorrect or incomplete data transmissions. 

 

 
Figure 1.3 – Distributed Processing 
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The third generation of BIG BLUE focused on integrating a single microcontroller mission 

controller, a single daughterboard housing various sensors/actuators and an embedded operating 

system.  The operating system selected was MicroC/OS-II [6] because it is preemptive, task 

orientated, and includes libraries that support all common functionality and data structures of a high-

level operating system.  These combined features allow the use of a modular firmware design.  This 

characteristic was desired in a large development project such as BIG BLUE since it allows the 

design elements to be divided among the participating teams. 

 

 
Figure 1.4 – BIG BLUE 3 Flight Photo 

 

1.2.2 AIRCAT/ Southern Komfort 

The Airborne Intelligent Research Craft for Autonomous Technology (AIRCAT) system was 

designed by a combination of electrical and mechanical engineering students under a workforce 

development grant in the spring of 2005.  The goal of this project was to develop a completely 

custom, novel entry to the 3rd Annual AUVSI Student Unmanned Aerial Vehicle (UAV) 

Competition.  The AIRCAT system consists of a custom airframe, onboard autopilot, camera system, 

battery based power system and ground station. 
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Figure 1.5 – AIRCAT Airframe [7]. 

 

The onboard electronics of the AIRCAT airframe consists of a central mission control processor, a 

MicroPilot MP2028 autopilot, a two-way data modem, infrared and visible light digital cameras, and 

Amateur Television (ATV) streaming real-time video [8].  The mission control processor is an 8-bit 

microcontroller from Silicon Laboratories.  This system incorporated the embedded real-time OS 

MicroC/OS-II into its firmware design due to the need for dedicated code segments, to monitor and 

control multiple subsystems in real-time.  Because several subsystems including ATV, the data 

modem and the MP2028 communications radio needed to transmit live signals at the same time, 

electromagnetic interference (EMI) problems occurred.  This required the incorporation of shielding 

into the design.  In order to reduce the effects of the EMI, a more physically modular design was 

investigated. Such a modular design would use a noise tolerant communications bus to connect a 

distributed set of nodes together preventing noise propagation throughout the system.     
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Figure 1.6 – Entry for the 2006 AUVSI Student Competition 

 

Southern Komfort is the most recent UAS platform designed at the University of Kentucky 

competed at the 4th annual AUVSI UAV Competition in June 2006 [9]. As seen in Figure 1.6 this 

UAS utilizes a conventional high-wing R/C model airframe, a Piccolo Autopilot and custom 

electronics for flight control and mission payload control. This was coupled with high-bandwidth 

communications and state-of-the-art image processing capable of merging collected images into a 

composite photograph of a large geographic area.  Though with the integration of the new autopilot 

system the craft experienced a great improvement in flight reliability, the need still existed to 

develop a fault tolerant distributed system.   

1.2.3 UAV Network Design 

The target design of a light UAV network, seen in Figure 1.7, focuses on distributed processing 

utilizing a fault/noise tolerant communication bus.  This system could then be easily utilized by 

many applications including the 2007 AUVSI Student UAV Competition.  By utilizing the 

distributed processing a digital signal can be used to transmit servo positioning data to the respective 

network node.  This node can then decode the data and produce the necessary analog servo signal 

which only needs to be transmitted a short distance, reducing the effects of EMI.  Another 

application would be in the development of ReadyUAV. 
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Figure 1.7 – Target UAV Network Design 

 

ReadyUAV is an in-development prototype for a rapidly deployable, easily reconfigurable, light 

UAV.   This aircraft is designed to allow a novice user to quickly deploy the craft in a variety of 

support or reconnaissance roles.  A modular frame allows the user to quickly change out various 

payloads, including cameras, autopilots, or other sensor packages, while maintaining a standard nose, 

tail and set of wings (Figure 1.8).  The University of Kentucky IDEA lab developed the necessary 

tools to design the software layer.  Ardea (Automatically Reconfigurable Distributed Embedded 

Architecture) will provide the ability to dynamically reconfigure with the addition or subtraction of 

software nodes [10][11].  This system simply needs the hardware framework to support Ardea.  By 

utilizing a bus network that automatically reconfigures with the addition or subtraction of 

components, ReadyUAV can become a reality. 

 

 
Figure 1.8 – ReadyUAV Conceptual Design 

 

1.3 Problem Definition 

In order to produce a rapidly deployable, easily reconfigurable, light UAV, a solid communications 

network is required.  This network, wired or wireless, must efficiently deliver control information to 
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the various different nodes, and in turn control the respective flight sensors or servos.  Beyond this 

capability, the system should handle the addition or removal of payloads without affecting system or 

flight stability.  Finally, the system must provide this functionality in a package that is easily 

understood and integrated into existing and future embedded light aircraft designs. 

1.3.1 Requirements 

The development of electronics affiliated with light unmanned aircraft must satisfy many of the same 

base requirements that guide the development of the aircraft itself.  The end result must maintain a 

small form factor, be lightweight, and have reasonable power consumption.  Beyond these base 

requirements, the resulting system must completely satisfy current functionality demands as well as 

provide room for future growth.  The current demands include the ability to seamlessly integrate the 

IDEAnix operating system that is being developed in parallel, utilize the reliable Controller Area 

Network (CAN) wired network, and developed on a silicon laboratories 8051 microcontroller.  The 

future growth is addressed by the exploration and implementation of an 802.15.4/ZigBee based 

wireless network layer as well as providing additional hardware resources. The specifics of each 

hardware and software requirement are explored in the respective hardware and software design 

chapters.  

1.3.2 Alternatives 

Currently there are no commercial off-the-shelf (COTS) alternatives available that satisfy the design 

requirements.  One of the closest matches is a C8051F040 development kit from Silicon Laboratories 

[12].  Based off the same line of microcontrollers targeted in development of the custom module, this 

option offers all of the same processing functionality.  This development kit, however, is too large 

for light unmanned aircraft as can be seen by the comparison in Figure 1.9.   
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Figure 1.9 – Silicon Laboratories C8051F040 Development Kit vs. the Custom Module 

 

Other microcontroller’s such as Freescale Semiconductor’s HC08GZ family or the Micro/sys Inc. 

MCB58 also lack the critical design element of being easily integrated with IDEAnix and other lab 

code repositories [13][14].  Manufacturers specialize in selling microcontrollers and other 

components to be included as part of consumers’ designs.  The commercial market for developing 

networking hardware for light unmanned aircraft is not large enough to support the costs of 

development. 

 

From the perspective of developing a wirelessly networked version of the system Silicon 

Laboratories again provides the best COTS alternative through a joint project with Helicomm [15].  

This module, designed including a Silicon Laboratories C8051F133 microcontroller, would provide 

the wireless link and easy integration utilizing current code repositories.  As with the development of 

a wired solution, however, there are no exact matches.  This option would not provide the CAN 

networking that is provided with the base module and daughter card design.  There are a number of 

alternative radio options available that could be utilized in the base module and daughter card design.  

The 802.15.4/ZigBee compatible XBee Pro module from MaxStream was chosen to support the 

wireless functionality. The rationale for choosing this module over alternatives is covered in the 

Hardware Design chapter. 

1.3.3 Objectives 

The objective of this design is to provide a lightweight, low power, small form-factor distributed 

networking node for aiding the development of light unmanned aircraft at the University of 

Kentucky.  This Tiny Interface Module should be able to be quickly adapted by students working to 
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develop current and future light unmanned aircraft systems, as well as provide a stable platform for a 

majority of future lab embedded design applications.  The end result should meet the performance of 

COTS alternatives and ultimately provide a more customized solution than existing options. 

1.4 Thesis Overview 

The text above provides background information into the history and development of UAVs, 

internally and externally to the University of Kentucky, as well as outlining the objectives and 

requirements that guided the development of the Tiny Interface Module.  The second chapter will 

address the specific hardware design decisions that are required to provide a solution that provided a 

balance between convenience and size.  In chapter three, the software design decisions surrounding 

the future utilization of the module as well as the development of a wireless driver are discussed.  

Chapter four covers the implementation of the module with the final selection of hardware 

components as well as fabrication and population of the Tiny Interface Module.  Chapter five 

describes the testing that was performed, including the integration of IDEAnix, to verify the 

module’s operation along with and explanation of the test results.  Finally, chapter six concludes 

with a summary. 
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2 Hardware Design 

2.1 Introduction 

This chapter addresses the major decisions behind the hardware design of the Tiny Interface Module.  

This process involved a researching existing design techniques and principals and applications, as 

well as collaborating with the students and professors what features would most likely be needed and 

utilized in the module.   This process begins with the selection process for the base microcontroller 

and supporting peripherals.  Next, the factors leading to the selection of the main communications 

bus are addressed.  Finally, the design decisions for selecting a wireless network are covered, 

followed by a summary. 

2.2 Microcontroller and Peripherals 

The Tiny Interface Module has been designed to provide a small form factor processing and 

input/output device for light Unmanned Aerial Vehicles.  This functionality requires a large degree 

of flexibility to adapt to any UAV application while maintaining a simplified set of features.  

Providing this balance of functionality and simplicity required careful selection of processing, 

communications, power regulation, and headers/connectors. 

2.2.1 Processor 

Selecting the microcontroller to handle the processing needs of any systems is a sensitive task. The 

key factors to consider during selection are the system constraints, operating temperature range, 

power consumption, packaging and cost.  Next, the baseline performance must be determined by 

examining the data range to be handled and the precision, as well as speed, of calculations.  Finally, 

the system input/output, program memory and RAM requirements must be investigated for any 

unusual or special requirements [16].  Influenced by any number of these factors, the final decision is 

based on what microcontroller will provide the required functionality and a welcoming user 

experience.  For the development of small form-factor processing in light UAVs, the Silicon 

Laboratories’ 8051 product line’s stability, capabilities and cost efficiency distinguished it as the best 

option.   

 

As the platform of choice for a number of previous and ongoing projects, the Silicon Laboratories 

8051 microcontrollers have earned the respect of the IDEA lab.  More importantly, however, they 

have also grown a respectable repository of experience and intellectual property exclusive to the lab.  

Being able to quickly adapt and integrate existing code will help to ensure the module’s success.   
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The specific product line chosen was the C8051F04x.  This line was selected since it provided a 

stable 8051 based embedded processing platform with integrated Controller Area Network (CAN) 

communications capabilities.  The microcontroller specifications are covered in Section 4.3.1. 

2.2.2 Communications 

The main communications protocol chosen must allow for reliable distributed embedded processing.  

Through earlier research and experimentation performed within the IDEA lab, the Controller Area 

Network [17] was determined to provide the needed speed, flexibility and reliability necessary to 

support a small-aircraft avionics bus [18].  The selection of CAN is discussed further in Section 2.3. 

 

Though selection of the main communication protocol was crucial, it was not the only 

communication option included in the hardware.  Other communications protocols supported by the 

Silicon Laboratories C8051F04x microcontroller line include universal asynchronous 

receiver/transmitter (UART), Inter-Integrated Circuit (I2C), and serial peripheral interface (SPI) [20].  

These communication protocols provide added functionality to the module through the addition of 

peripherals or testing and user interaction.  With the goal of future growth, a wireless networking 

option was also developed.  The CAN and wireless networking options are discussed further in 

Sections 2.3 and 2.4 respectively. 

2.2.3 Power 

The power system for the Tiny Interface Module required the ability to regulate an input power 

source to a level that was usable by the chosen components and the conditioning of that power to 

ensure stability.  Historically, linear regulators are the base for most power supplies used in 

electronics [21].  Voltage regulators take an input voltage, possibly varying within a set range, and 

provide constant output voltage independent of the load.  Selection of an appropriate voltage 

regulator can be done by noting requirements of: the maximum load current, the type of input 

voltage source (AC or battery), the output voltage precision, the quiescent (idle) current and any 

special required features such as a shutdown pin or error flag. 

 

The power conditioning portion of the power system is performed by using bypass or decoupling 

capacitors.  These parts are used to store small amounts of energy locally so that changes in current 

demand can be responded to quickly.  This aids in reducing the effect of line the inductance resulting 

from quickly changing current demands in PCB lines.  It is important to place these capacitors as 
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close to the board component that they are bypassing to minimize line inductance, between the 

capacitor and the part, as well as to ensure the capacitor is operating at an frequency band where it is 

most effective [22].  The effective frequency is essentially the time it takes for the transient current 

demand of the part to see relief from the capacitor.  This distance should be less than ¼ wavelength, 

ideally placement is at least 1/10
th of quarter wavelength.  

2.2.4 Headers/Connectors 

Choosing the headers and connectors to interface with the module relied heavily on footprint, 

weight, personal preferences and availability.  Options such as DB-9 and RJ-45 offered convenience 

due to their availability as standard serial, or Ethernet, connectors.  They do, however, have the 

disadvantage of bulky end connectors.  In a small form-factor design, bulky connectors can quickly 

dissipate the design’s size and weight advantages.   

 

Many customized connector options are available through electronics hardware distributors.  These 

options have all been carefully designed and fabricated for use in various systems.  Unfortunately, 

when dealing with custom connectors, inflexibility and supply availability are always a concern.  

These factors do not rule out using a custom connector, but they should be carefully surveyed before 

committing to a particular option.    

 

One other option considered was to use a basic straight-pin header.  This choice provides a small 

footprint, minimal weight, and great flexibility for the development of custom connectors.  Also, as a 

staple component of any electronics lab, the supply of acceptable part compliments is often large.  

Straight-pin headers do, however, require that all harnesses be custom fabricated and do not offer the 

physical connection security that comes with the clips and screw-posts of some options. 

2.2.5 Versions/Revisions 

As with any project, the Tiny Interface Module development underwent several major design 

revisions.  These versions were marked by minor changes in the design and integration goals, 

resulting in significant hardware design changes.  The first stage of revisions was marked by adding 

the ability to isolate the power line, supplied by the custom CAN harness, and the voltage supply line 

for the servo headers. An additional servo header was also added in this stage to allow a single 

module to directly interface with all four of the Piccolo autopilot’s servo outputs.  The next version 

involved the reduction of the board footprint to match that of a standard RC aircraft servo and the 

addition of mounting holes.  Finally the latest revision came with the addition of a RS-232 level 
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shifter to simplify harnessing, a larger voltage regulator to compensate for the wireless module’s 

increased current demand, and connection of the microcontroller’s I2C lines to a header.   

2.3 Wired Communication  

As cited earlier, the decision to use a Controller Area Network (CAN) bus as the main form of 

communication came about through previous IDEA lab research and experimentation.  It is, 

however, still important to understand other available options.  An obvious option exists to use some 

form of Ethernet communication.  With this option, fault tolerance can be achieved, but as a 

networking system designed for large scale networks, the hardware overhead would be cost and size 

prohibitive.   

 

Another option would be to implement a proprietary option such as LonTalk from Echelon 

Corporation.  This option however has the potential hazard of containing “Black Box” components 

[23].  Without understanding the core functions of the network, there is a risk that the designed 

solution will be poorly tailored to the desired application.  Also, when dealing with proprietary 

solutions, there is the possibility of becoming locked into a required or limited set of development 

tools. 

 

Two of the more promising alternatives to CAN are the Time-Triggered Protocol (TTP) and the 

newly developed FlexRay.  FlexRay, developed in cooperation by companies such as BMW, Bosch, 

DaimlerChrysler, and Freescale, provides up to a 20 Mbps data rate, increased data frame size and 

provides the framework for integrated fault tolerance through a dual bus design and a Bus Guardian 

[24].  TTP is targeted at a broad range of safety critical applications focusing on safety, 

composability, the ability to modify or add functions without affecting system stability, and not 

limiting the data rate or throughput [25].  With the currently available hardware TTP can support 

25Mbps synchronous transmission and can have data payloads up to 240 bytes. 

 

Ultimately, though, alternatives to CAN do exist. CAN however, is the correct networking choice for 

developing this light UAV system.  CAN provides the necessary hardware to support design growth 

and advances in the fault tolerance.  This solution also has a large selection of communication 

hardware and a large system design knowledgebase to aid in future developments. 
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2.3.1 CAN Networking 

CAN was first developed in the mid 1980’s as a reliable communications bus for automotive 

applications.  With the increased complexity of vehicles, it was no longer sufficient to connect each 

related automotive component directly.  Instead of each component having analog and digital 

connections, all controllers and peripherals need only one CAN connection [26].  This original 

specification featured a start-of-frame bit, 11-bit arbitration identifier, remote transmission request 

bit, data length code, data field, cyclic redundancy check, acknowledge slot (for receiving nodes to 

acknowledge receiving data) and finally an end of frame delimiter. 

 

With the ever gaining acceptance of CAN and its possible application in other system designs, CAN 

2.0, featuring a 29-bit identifier, was released in 1991 [17].  This option, referred to as CAN 2.0B or 

extended, allowed a flag to be thrown between the 11-bit arbitration identifier and the remote 

transmission request telling the receiving device that another 18-bit arbitration identifier would 

follow.  After the 18-bit id is received, the CAN message is the same as the 11-bit version.  CAN 

2.0B is backwards compatible with CAN 2.0A, the 11-bit identifier, whereas a CAN 2.0A device 

will simply ignore a CAN 2.0B message.   

 

The CAN functionality included with the Silicon Laboratories C8051F04x microcontrollers can 

operate at bit rates up to 1Mbit/second [20].  The integrated Bosch CAN controller includes 32 

message objects that can be configured to send or receive data.  All data filtering and transmission 

protocols are handled within the CAN controller and not Silicon Laboratories proprietary CIP-51 

processing core.  All interaction between the core and the CAN controller is performed though 

Special Function Registers (SFRs).  The bulk of the CAN bus’s tolerance to noise and interference 

comes from the use of differential signaling.  An example of a typical CAN bus configuration can be 

seen in Figure 2.1.  
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Figure 2.1 – Example of CAN Bus Configuration 

 

One of the biggest advantages of utilizing a CAN bus is the use of balanced differential signaling.  

The differential signaling functions by having both lines in a resting state of approximately 1.5 volts.  

When data is transmitted a high value on the bus will take the voltage on CAN High from 1.5 to 2.5 

volts, while taking CAN Low from 1.5 to .5 volts.  The current in each signal line flows in equal but 

opposite directions; this in combination with twisted pair cabling creates a field-canceling effect for 

low noise emissions [ 19].   

2.4 Wireless Communication  

Recently there has been a great effort to expand wireless connectivity.  Many designs are focused 

around the industrial, scientific, and medical (ISM) frequency bands.  In the United States the most 

common of these frequency bands are 900MHz, 2.4 GHz, and 5.8 GHz.  There are many options 

utilizing these frequencies, the most commonly known include Wireless Local Area Network, 

WLAN, (802.11), Wireless Personal Area Networks, WPAN, (802.15), and Broadband Wireless 

Metropolitan Area Network, WiMAX, (802.16) [27][28][29].  Of these available standards, the 

WPAN is the best option to produce the desired in-plane networking. 

 

Within the WPAN specification, however, there exist four task groups: 802.15.1 – Specifications for 

Wireless Persona Area Networks, 802.15.2 – Coexistence of Wireless Personal Area Networks with 

Other Wireless Devices Operating in Unlicensed Frequency Band, 802.15.3 – High Rate Wireless 

Personal Area Networks, and 802.15.4 – Low Rate Wireless Personal Area Networks.  At this time, 

the most notable of these are Bluetooth (802.15.1) and ZigBee (802.15.4).   
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Bluetooth and ZigBee provide competitive and comparable features.  Bluetooth, however, is 

designed primarily for ad-hoc type networks with one master and multiple slave devices.  The typical 

Bluetooth network is seen in devices that have relatively high power demands and can be recharged 

frequently.  A standard ZigBee node is designed to have a battery lifespan of months to years.  

Bluetooth networks currently have a limitation of eight active nodes [30].  ZigBee, on the other hand, 

utilizes star, mesh, and cluster tree networks and therefore has the addressing capabilities to support 

over 65,000 nodes per network [31].  As a tradeoff for the increased node capacity, ZigBee networks 

communicate at serial speeds of at most 115200 bits per second (bps) as opposed to Bluetooth’s 1 

Mbps. 

 

The benefits of using a wired network include higher bandwidth communications than in wireless, 

with good physical connections data is more likely to arrive at the intended destination, and wired 

connections can be extremely noise tolerant.  WPAN solutions, however, have advantages with 

greater flexibility. They can add and remove nodes without infrastructure changes and extend the 

local network externally over short distances to other nearby nodes or debug interfaces. 

2.4.1 ZigBee/802.15.4 

The standard chosen to implement the wireless networking functionality of the Tiny Interface 

Module is based off the IEEE 802.15.4 -2003 standard [32].  This specification operates at 868MHz 

in Europe, 915MHz in the United States or 2.4 GHz worldwide utilizing Direct Sequence Spread 

Spectrum (DSSS).  The physical layer (PHY) and medium access control (MAC) layer control 

access to the radio channels utilizing Carrier Sense Multiple Access with Collision Detection 

(CSMA-CA). With CSMA-CA each node in a network must notify the other nodes that it intends to 

transmit before data is transmitted [33].  Figure 2.2 is a high level view of how the layers of 

802.15.4 and ZigBee relate.   
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Figure 2.2 – 802.15.4/ZigBee Layer Model 

 

 On top of the PHY and MAC layers, additional ZigBee layers are implemented.  These layers, 

defined by the ZigBee Alliance, are the network, security and application layers.  It is through these 

layers that functionality, such as forming star, mesh, and cluster-tree network topologies, is 

implemented. 

 

The ZigBee platform has many advantages and disadvantages.  ZigBee is a newly developing 

standard which provides ample opportunity to work with and shape early prototypes and designs.  

The target audience for ZigBee development and integration is in low-power, low-cost, simple home, 

office and industrial applications.  The low-power and low-cost features make this option very 

appealing to the light UAV market.  Due to bandwidth limitations, 115 Kbps versus the CAN 

1Mbps, this option will require careful implementation as to ensure that the system does not become 

overloaded. 



 19

2.4.2 Modules 

To implement a ZigBee/802.15.4 network, there are numerous manufacturers and components 

available.  The products range from Freescale Semiconductor’s line of simple low power 

transceivers to more complete systems like MaxStream’s XBee module [34].  There are merits and 

disadvantages associated with the selection of each option.  For example a Freescale Semiconductor 

MC13201 (Figure 2.3) provides full 802.15.4 compliance in a small form-factor part.  This part can 

be connected as a slave device, via SPI, to most microcontrollers [35].  The cost of having such a 

small form factor component is that it only provides a transceiver.  To fully implement this part into 

a working network also requires the addition of an external crystal oscillator, software customization, 

and the development of an antenna.  

 

 
Figure 2.3 – Freescale MC13201 Transceiver 

 

If space is available, there are several manufacturers that provide systems that include simple 

transceiver microcontroller combinations.  These options are power hungry compared to the single 

transceiver options, demanding as much as 100mA to operate versus the Freescale component’s 

mere 30mA.  The benefits of the transceiver/microcontroller module come with the simplicity of 

integration and operation.  These modules include all required hardware, so often startup and 

communication is simply a matter of supplying the correct voltage and connecting to a UART or PC 

serial port.  Some modules such as the MaxStream XBee (Figure 2.4) even include the necessary 

antenna. 
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Figure 2.4 – MaxStream XBee-Pro Module 

 

Ultimately all of the options are ZigBee/802.15.4 compliant so selection of the correct module 

involves finding a balance between ease of integration, cost, weight, and size. 

2.4.3 Antenna Design 

With many of the available ZigBee options, the choice of antenna is left to the designer.  There are 

three commonly discussed methods of interfacing antennas with the modules.  The first option often 

described is to fabricate an antenna as part of the components PCB board.  This option requires the 

least number of additional components.  To do it correctly, however, requires an advanced 

understanding and familiarity with antenna design as well as stringent controls over the PCB 

fabrication processes and materials to ensure consistency.   

 

Another option available is to use a chip style antenna.  These antennas are professionally designed 

and fabricated for particular operating frequencies.  A typical 2.4 GHz chip antenna is not much 

larger than a grain of rice and with the correct filtering could produce good results.  However, like 

PCB fabricated antennas, this option requires strict design consideration for component placement 

and board properties.   

 

The final major option is to utilize some form of wire or external antenna.  This option can be as 

simple as a flexible wire, as is included with certain XBee modules.  Other options, as seen with the 

Integration ZigBee module, require adaptors and connectors to make the connection to a standard 

antenna with a Subminiature Version A (SMA) connector or similar antenna. 
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2.5 Summary 

In this chapter the hardware design aspects of developing a network processing node for light UAVs 

were described.  The considerations for choosing the microcontroller and peripherals were 

addressed, followed by an overview of the options for selecting, and the features of, the main wired 

and wireless communications bus.  The next chapter explores the decisions and development of the 

software required to implement the system functionality. 
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3 Software Design 

3.1 Introduction 

This chapter explores the design and development of the software layers of the light UAV system 

and the Tiny Interface Module.  The first section covers the use of preprocessor directives and 

generic initialization functions to streamline user integration into the module.  Section 3.3 describes 

the design and functionality of the custom CAN networking driver.  The next section introduces the 

custom wireless networking driver design and development.  In Section 3.5, the custom operating 

system (OS) designed to be implemented on the module, is surveyed.  The chapter concludes with a 

summary and comments section. 

3.2 Generic Initialization  

In order to fulfill the design objective of making the Tiny Interface Module quickly adaptable by 

students, it was necessary to eliminate the need for each module’s base functionality to be 

individually designed.  This was done by standardizing a base set of pin configurations and by 

creating generic initialization functions to allow user configuration of key components.  The base pin 

configuration, seen in Figure 3.1, ensures that the listed features are always available and connected 

to the same module pin.  In the case of the UART level shifting, keeping the same output pin is 

crucial.   

 

 
Figure 3.1 – Default Pin Configuration. 

 

The generic initialization functions provide an equally important role by providing the user with the 

ability to change key options without adjusting the function coding.  In some cases, the changes may 

simply be a baud rate or clock rate; in other cases, it may involve configuring a block of inputs or 

outputs.  The generic initialization functions include configuring UART 0 and 1, CAN 
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communications, wireless communications, the programmable counter array (PCA), general purpose 

input/output (GPIO) and the system clock.  Development of the PCA and GPIO were included as 

part of the IDEAnix OS developed by Darren J. Brown through the University of Kentucky.  The 

CAN communications functions were the focus of the research performed by Nithyananda S. 

Jeganathan.  The UART and system clock functions were developed by Darren J. Brown and 

modified to be included as part of the wireless driver. The modification was in response to a 

concurrent need and slightly different design requirements.  Finally, development of the wireless 

communications functions was part of the wireless daughter board implementation of this project.   

3.3 CAN Driver 

Development of a CAN driver was performed by Nithyananda S. Jeganathan at the University of 

Kentucky as part of his graduate research project.  The communications specification used to guide 

the development went through five major revisions.  Through this progression the specification 

developed from one set of seven functions into a Driver API and a User API.  The User API will be 

not addressed because it functions exclusively between the OS and the user.  The Driver API, 

however, describes the interaction between the CAN and the OS.  The other key design decisions 

were that the driver would only support 11-bit identifiers and would contain a standardized four byte 

data packet that can be padded with zeros if necessary.  These simplifications are intended to enable 

the network to be quickly implemented and easily adapted by students.  Optimization and handling 

of 29-bit identifiers is targeted for future development.  The basic structure of the driver follows the 

Application Programming Interface (API) seen in Figure 3.2.   

 

 
Figure 3.2 – CAN Driver API 
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The init_can function is a general purpose initialization function used to initially configure the CAN 

hardware.  The send_pkt function sends the CAN frame across the bus of the passed variable values 

can_id and payload.  Reg_pkt registers to receive frames with the CAN packet ID of can_id.  

Unreg_pkt removes the registration for receiving a packet ID of can_id, therefore the packet will be 

ignored.  Finally, get_pkt is used to return the current buffered data packet using the pointers 

can_id_ptr and payload_ptr.  This last function is only implemented for non-IDEAnix applications.  

IDEAnix uses an included custom function to pass data up to tasks running in the OS space. 

3.4 Wireless Driver 

Like the CAN driver, development of a comprehensive wireless driver could constitute and 

independent research project.  Because this was incorporated as one aspect of a larger development, 

a base level of functionality with minimal code overhead and design time was developed.  Using this 

approach, research into different network design theories as well as ways to utilize included XBee, 

and custom design, application programming interfaces (APIs) was conducted.  The end result is a 

wireless driver providing the required fundamental OS API functionality.  With user exposure to this 

functionality future research will be dedicated to developing a more feature rich implementation.   

3.4.1 Wireless Network Design Considerations 

Implementation of a network requires careful consideration of a number of key factors.  These 

factors are all based around ensuring that the data sent is received as intended.  The first obstacle to 

be overcome to make sure data is able to reach the intended destination.  The three network 

topologies that are utilized by ZigBee are star, mesh and cluster tree.  Seen in Figure 3.3, the star 

topology relies on a single centralized coordinator node to receive and relay all communications.  A 

cluster tree has groupings, clusters, of nodes that utilize a single coordinator node per group to 

communicate with the network’s main coordinator.  The final network topology is a mesh, which 

utilizes many nodes equally to share the burden of relaying data from one point to another. 

 



 25

 

Star
Cluster Tree

Mesh

 
Figure 3.3 - ZigBee Network Topologies  

 

XBee-Pro module utilizes point-to-point, point-to-multipoint, and peer-to-peer topologies.  Point-to-

point can be seen as a simplified form of a star network, where there is just direct communication 

between two nodes.  Point-to-multipoint functions as the star network described above.  Finally, 

peer-to-peer provides functionality similar to that of a mesh network, with all nodes able to 

communicate directly with others. 

 

Once a network topology is chosen, the second step is to ensure that the data received is correct.  

This is done in two forms, error checking of the received data and ensuring that no malicious data is 

accepted.  There are many current techniques and algorithms available to check data for errors, 

including Checksums, Hamming Codes and Cyclic Redundancy Checks (CRC) [36], all with 

inherent strengths and weaknesses.  Checksums are very commonly used in conjunction with CRCs, 

as a second level of protection in data communication systems such as IP, TCP, and UDP [37].  The 

CRC ensures data transmission integrity while the checksum verifies that data was not corrupted by 

routers or the transmitting or receiving hosts.  The XBee-Pro module includes a similar checksum 

CRC combination.  As part of the 802.15.4 specification a 16-bit CRC is included as part of the 

MAC layer [32].  Utilizing the checksum is an option that can be incorporated into the XBee module 

API communication frames discussed in the next section.   
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System security is an area that could be easily overlooked in development of networks for light 

UAVs.  With the development of the wired communications bus, the system is isolated and therefore 

has no need to include measures to prevent a malicious user from interfacing with the system.  

Wireless systems do not afford this luxury, since all communications are transported over an open 

medium: air.  Of the competitive technologies to ZigBee, Bluetooth is the only other technology to 

provide a complete approach to security [38].  ZigBee uses a multi-level design, providing the 

advanced encryption standard (AES) as part of the IEEE - 802.15.4 standard, and then providing 

additional security key generation within the ZigBee standard.   

 

The final concern when developing a wireless network is anticipating the effects of using the 

crowded industrial, scientific and medical (ISM) radio band.  The ISM band is intended for use by 

devices, industrial, scientific, medical or domestic, that “generate and use locally RF energy” [39].  

Devices within this range are regulated by Federal Communications Commission (FCC) and are 

required to be “constructed in accordance with good engineering practice.”  Despite regulations, 

there is no way to ensure that the communication bandwidth will be available.  In tests to study the 

effects of the closely related IEEE - 802.11 and Bluetooth, the possibility exists for physical layer 

timeouts and increased packet error rates [40].  This interference unfortunately is something that 

cannot be avoided while using wireless technology.  Through testing and good system design, the 

goal is that these effects can be minimized. 

3.4.2 XBee Operation Modes 

The MaxStream XBee module discussed in earlier sections is designed to be easily integrated into 

many applications.  To accommodate this, the module is preconfigured to function out of the box by 

simply connecting the respective UART transmit and receive lines as well as power and ground 

connections.  As a result the default software configuration is very flexible.  The XBee module is 

initially configured in what is referred to as Transparent Mode [34].  Transparent Mode instructs the 

module to operate as a “serial line replacement”, sending and receiving all data from the respective 

data pins.  This is performed using a combination of clear channel assessment, to ensure that no other 

node is currently broadcasting, and a 100 character buffer.   

 

The other mode of operation is referred to as API operation.  This frame-based API allows for 

greater interaction with the modules networking capabilities from within the application code.  This 

mode has an extensive set of frames to allow for module configuration and status messages to be 

exchanged.  These frames also contain a checksum byte to ensure that the frame data is correct.   
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The XBee API has advantages over alternatives, including integration of the traditional modem AT 

commands in to the frame structure, to program the module, and provisions of status feedback.  It 

does, however, add a great deal of complexity to the code development by adding handshaking 

between the XBee module and the microcontroller.  Because a broadcast network is desired, much of 

the XBee API functionality must be disabled.  Therefore the system ultimately relies on the custom 

data frame discussed is the next section.   

3.4.3 Custom Wireless API 

Development of a wireless driver for the Tiny Interface Module requires the creation of a generic set 

of functions that can be utilized both individually by a user and by integration into the IDEAnix 

operating system being developed in parallel.  To facilitate integration, the wireless driver’s 

functions would use the same nomenclature and variable types that were developed for the CAN 

driver.  The CAN driver API can be seen in Figure 3.2 of Section 3.3. 

 

The wireless network utilizes a peer-to-peer topology, with lost or corrupt data packets being 

ignored.  Like with the CAN driver, the wireless driver consists of an initialization function, send 

and get packet functions and register and un-register functions.  An additional function, request 

packet, was created to aid in the code design and testing and is available to users. 

 

The basic flow of wireless communications can be seen in Figure 3.4.  Interactions with the XBee 

network occurs by either a UART character transmit or receive.  Incoming characters are handled by 

the UART 1 Interrupt Service Routine (ISR), which is triggered with each incoming or outgoing 

character.  The ISR first checks if the data is incoming or outgoing.  If it is incoming the character is 

compared against a counter to see if a complete frame has arrived.  If a complete frame has not yet 

arrived, the character is added to a buffer and the ISR clears the flag to wait for the next character.  If 

the frame is complete, the ID is checked against the list of registered IDs.  If there is a match, the 

frame is copied to a user accessible buffer to be accessed using the get packet function or pushed to 

the OS buffers using IDEAnix functions.  Otherwise, the data is dumped.   

 

The process of handling outgoing data is much simpler.  The OS or user calls the send packet 

function passing an ID of type unsigned integer and a payload of type unsigned long.  These values 

are then placed in a frame with start and stop delimiters and transmitted across the UART1 transmit 

line.   
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Figure 3.4 – Wireless Driver Input\Output Block Diagram 

 

The register and un-register functions are straightforward.  The OS calls either function passing the 

respective ID as a parameter.  Then in both cases, the ID is compared against the current ID array.  In 

the case of registering an ID, if the ID is not found a free slot is located and the ID recorded.  With 

un-registering IDs the ID, if found, is replaced with a placeholder value representing an open 

position.  In both the register and un-register functions if the desired condition is not met an error is 

returned. 

 

If any of the send, receive, register or un-register functions encounter unexpected errors or are unable 
to complete an action, an error code is returned.  The set of error codes seen in  
Table 3.1 were developed to accurately convey the error and to allow a system to respond 

accordingly. 
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Error Code Name Value Description 

 WRLS_DRIVER_NOERROR  1 Function completed successfully 

 WRLS_DRIVER_ERROR 200 Un-explained error returned 

 WRLS_MSGOBJS_FULL 201 Send data error (future use) 

 WRLS_MSGID_NOTFOUND 202 Requested ID was not found 

 WRLS_MSGDATA_NOTFOUND 203 Requested Data was not found 

 WRLS_DUPLICATE_ID_ERR 204 Registering ID was already found 

 WRLS_UNREG_ID_ERR 205 Un-registering ID was not found 

 WRLS_MSGID_FULL 206 Maximum Number of IDs registered 

 

Table 3.1 – Function Error Codes 

 

3.5 IDEAnix 

IDEAnix was developed by Darren J. Brown at the University of Kentucky as a build of the 

embedded operating system MicroC/OS-II ported to the 8051 hardware architecture.  This build 

provides initialization functions required for the Silicon Labs C8051F04x series microcontrollers as 

well as a message routing layer (MeRL).  The inspiration behind the development of IDEAnix was 

the necessity to provide code independence and modularity.  In a task driven operating system, as is 

provided by the MicroC/OS-II core, user tasks are not aware of other tasks.  This feature, in 

combination with the message routing capabilities of MeRL, provides a platform that can be fully 

reconfigurable and utilized successfully within a fault tolerant system.  

 

MeRL, seen in Figure 3.5, functions by utilizing ID values to filter and broadcast data across the 

supplied network, as well as to distribute the data internally.  The network type is not specified by 

either IDEAnix or MeRL.  The only requirement is that the network driver follows the same Driver 

API as was specified for CAN.   
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Figure 3.5 – Network Software Framework 

 

3.6 Summary 

This chapter covered the software designed to support the Tiny Interface Module.  The major 

components are the CAN and wireless drivers as well as the custom OS build, IDEAnix.  Chapter 

four will explore the implementation of the module. 
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4 Implementation 

4.1 Introduction 

This chapter discusses the specifics of the components derived from Sections 2 and 3.  Presentation 

of the components follows an order similar to that of the original descriptions.  The chapter starts 

with the hardware, processor, communications, power, headers/connectors and other hardware of 

note.  The next section gives detailed specifications for the wireless hardware.  Third, the chapter 

explains the external contributions, as well as the contributions made as part of this project, to the 

software design.  The fourth section gives an overview into the various stages and different 

techniques utilized for prototype fabrication.  The chapter concludes with a summary and comments.   

4.2 Overview of Design 

As addressed in previous sections, the Tiny Interface Module was designed to provide the base 

hardware layer for a light UAV system bus.  As seen in Figure 4.1, the final system consists of a 

main board providing almost all of the above described functionality with the wireless capabilities 

being supplied by the optional wireless daughterboard.   
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Figure 4.1 – Tiny Interface Module Hardware Block Diagram 
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4.3 CAN Module Hardware 

This section discusses the specific components and hardware selected for implementation of the Tiny 

Interface Module.  Table 4.1 lists the Tiny Interface Module’s components, estimated unit costs and 

total costs.  The pricing information was collected from Digikey Corporation, except for the PCB 

board cost which is quoted from PCBExpress for a batch size of 15 modules. 

 

TIMCAN P/N Number Unit Price Total 
13 Pin Dual Header 929665-02-13-ND 1.0 3.1140 3.1140 

19 Pin Single Header 929647-09-19-ND 1.0 2.0310 2.0310 

MCU 336-1206-ND 1.0 15.5700 15.5700 

Switch 401-1427-1-ND 2.0 0.4170 0.8340 

500mA Voltage Regulator TPS77633D 1.0 1.7500 1.7500 

LED (green) L62505CT 1.0 0.2160 0.2160 

LED (red) L62501CT-ND 1.0 0.2220 0.2220 

LED (yellow) L62507CT 1.0 0.2490 0.2490 

CAN transceiver 296-11654-1 1.0 3.0400 3.0400 

1.0u Tantalum CAP 511-1467-1-ND 16.0 0.2470 3.9520 

10.0u Tantalum CAP 511-1473-1-ND 1.0 0.2830 0.2830 

.1u Ceramic CAP PCC1812CT 6.0 0.0740 0.4440 

56 Resistor P56ACT-ND 3.0 0.0414 0.1242 

120 Resistor P120ACT-ND 1.0 0.0770 0.0770 

1K Resistor P1.0KACT-ND 7.0 0.0414 0.2898 

10K Resistor P10KACT-ND 2.0 0.0770 0.1540 

Level Shifter MAX3233ECWP+G36 1.0 8.8000 8.8000 

PCB Manufacture PCBExpress 1.0 20.2000 20.2000 

   Total $61.35
 

Table 4.1 – Parts List and Component Pricing for the Tiny Interface Module (12/4/2006) 

 

4.3.1 C8051F041 Microcontroller 

As discussed in Section 2.2.1 the Silicon Laboratories C8051F04x product line was chosen as the 

processing base for the Tiny Interface Module.  This product line consists of eight versions all with 

slightly different functionality or form-factor.  Each version features the same core components, 
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including a 25 mega-instructions per second 8051 core, flash, CAN, 2 UARTs, I2C, SPI, 

programmable counter arrays and general purpose input/output.  Product numbers ending in an even 

number feature a 100-pin thin quad flat pack (TQFP) package; odd numbers represent a 64-pin 

TQFP package [20].  Since board space is a premium, and the number of inputs/outputs is limited, 

the 100-pin package was not necessary.  Therefore, the 64-pin C8051F041 processor, shown in 

Figure 4.2, was chosen from the Silicon Laboratories product line.  The key feature of the 041 is the 

12-bit analog-to-digital converter that provides greater resolution for future applications. 

 

 
Figure 4.2 – Silicon Labs C8051F041 Microcontroller 

4.3.2 Communications 

The Tiny Interface Module features four main forms of wired communication including, Controller 

Area Network (CAN), Universal Asynchronous Receiver/Transmitter (UART), I2C compatible 

System Management Bus (SMBus), and Serial Peripheral Interface Bus (SPI).  Both the SMBus and 

SPI communications can connect directly to the C8051F041 processor.  In order to have CAN 

communications or be able to communicate with the UART via a computer or other RS-232 device, 

transceivers are necessary. 

 

The communication implementation decisions for development of the Tiny Interface Module 

hardware involved the selection and implementation of Controller Area Network (CAN) and RS-232 

transceivers.  The CAN transceiver, seen in Figure 4.3, is from Texas Instruments.  The 

SN65HVD230 is a 3.3 volt part so it can function off the same voltage supple lines as the 

microcontroller.  This part also features a low current standby mode of 370 micro amps.  To ensure 
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that a faulty node does not disturb the rest of the bus this part also features an open-circuit fail safe 

and “glitch-free power-up and power-down” [41].   

 

 
Figure 4.3 – CAN Transceiver 

 

Research into RS-232 level shifters resulted in the selection of the Maxim MAX3233ECWP+G36, 

Figure 4.4.  This dual RS-232 Transceiver runs off a single 3.3 volt supply, meets EIA/TIA-232 

specifications, can transmit at up to 250kbps and has an auto shutdown feature for power savings 

[42].  This functionality is provided in a wide SOIC with internal capacitors to save board space and 

complexity 

 
Figure 4.4 – Maxim Dual RS-232 Transceiver 

 

Also seen in Figure 4.4 are two unpopulated resistors (R16, R17) these components serve as jumpers 

enabling and disabling the level shifting of UART1.  This feature was added so that UART1 could 
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also be accessed directly by components such as the XBee module.  If the user desires the level 

shifter UART1 resistors R16 and R17 must be populated with 0 ohm short circuits.   

 

The final two provided communications protocols, I2C and SPI, do not need a transceiver or other 

enabling hardware.  The microcontroller pins are therefore routed to pin headers that will be 

discussed in Section 4.3.4. 

4.3.3 Power 

The power system design for the Tiny Interface Module has three main parts: the voltage regulator to 

provide a voltage level usable by the microcontroller, pull-up resistors for interfacing with the target 

application, servos, and capacitors to condition the power supplied to the module and its peripherals.  

The Tiny Interface Module utilized two models of voltage regulators during the prototyping stage.  

The first regulator, a Texas Instruments TPS76533, featured a low quiescent current of 35 micro 

amps while sourcing 3.3 volts at 150 milliamps [43].  This part could handle input voltages of up to 

13.5 volts.  The second voltage regulator, chosen due to the increased current demands of the 

wireless daughter module, was also from Texas Instruments.  The TPS77533 has features similar to 

that of the original voltage regulator.  The main difference is its ability to source 500 milliamps 

while still maintaining a low quiescent current of 85 micro amps [44].  The final regulator is seen in 

Figure 4.5.   

 

 
Figure 4.5 – Capacitors, Pull-up Resistors, and Voltage Regulator 
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The second part of the power system design was enabling direct connection of R/C servos to the 

board.  This required the use of four pull-up resistors, shown in Figure 4.5.  Since most servos for 

R/C places are six volt parts, it was necessary to provide a way to ‘pull-up’ the 3.3 volt 

microcontroller output to the necessary six volts.  By predefining the servo pins as open-drain within 

the microcontroller, the appropriate pins float to six volts for digital high or are pulled to ground for 

digital low outputs.    

 

The final objective was to condition the power entering the board and key components.   As 

discussed in section 2.2.3 the use of tantalum and ceramic capacitors in the system were intended to 

aid in the availability of consistent and stable power.  In addition to the added capacitors, which were 

dictated by the component specifications, one 1 micro farad tantalum and one .1 micro farad ceramic 

capacitor were added to each voltage input into the microcontroller.  Also, a series of four tantalum 

capacitors were added on the servo power supply lines as seen in Figure 4.5.  These capacitors, 

currently 1 micro farad each, could be increased in value to provide more consistent power, if later 

deemed necessary, on the extremely noisy six volt servo power lines.   

 

4.3.4 Headers/ Connectors 

As previously stated, one of the main design features of the Tiny Interface Module is its ability to be 

easily integrated into R/C aircraft.  This is largely facilitated through the careful selection of headers 

and connectors.  Seen in Figure 4.6 the header across the top of the board provides JTAG 

programming and two level shifted UARTs.  The 8-pin header at the bottom left of the board 

provides two 4-pin CAN connections; each 4-pin connector having a CAN-high, CAN-low, six volt 

power, and ground connection. 
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Figure 4.6 – Module Headers 

 

The next 4-pin block provides the ability to jumper or isolate the six volt CAN power line from the 

six volt lines connecting to the servo headers.  Isolating the two power buses gives the ability to 

utilize a separate battery or other power supply for module powering and servo control.  This is 

needed if the servos require a different voltage than comes across the 4-pin CAN connector or if the 

servos pull the six volt line below the tolerances of the module’s voltage regulator.  

 

Immediately to the right of the 4-pin block are the four 3-pin servo headers.  These headers use the 

same spacing and pin order of most R/C servo connectors.  The top pin is the data line from the 

microcontroller.  The middle pin is the six volt line.  Finally, the bottom pin is the ground 

connection.  The remaining pins serve as three general purpose input/output lines (GPIO), a three 

volt power supply line for various applications, a 2-pin non-level shifted UART communications, a 

3-pin SPI and a 2-pin I2C. 

4.3.5 Other Hardware 

Along with the required functionality already discussed the Tiny Interface Module also includes two 

other features for user convenience.  First, the module has three status Light Emitting Diodes 

(LEDs), Figure 4.7.  The first LED at the top is tied between the 3.3 volt power and ground to show 

that the board has power.  The other two LEDs are tied to GPIO pins on the microcontroller for user 

defined functionality. 
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Figure 4.7 – Reset Button and Power and Status LEDs 

 

The second convenience feature implemented on the Tiny Interface Module was the addition of two 

push-buttons.  One push-button (Figure 4.7) acts as a soft reset for the microcontroller.  The other 

push-button is tied to a pin on the microcontroller to be used as a user defined input. 

4.4 Wireless Hardware 

Development of the Tiny Interface Module wireless hardware, like all other module components, 

went through several revisions.  The original concept was to design and fabricate a module 

fundamentally identical to the CAN based module.  The goal was to find a simple wireless solution 

that would allow the CAN transceiver to be exchanged for a wireless transceiver.  Due to design 

decisions discussed in Chapter 2 however, this solution was not feasible.   

 

Instead a custom daughterboard was developed to accompany the CAN based module. The module 

that was chosen to integrate into the daughter board was the MaxStream XBee-Pro 802.15.4/ZigBee 

module [34].  A version of this module that operated at 900MHz was selected to avoid unnecessary 

interference with the Piccolo Autopilot’s 2.4GHz radio communications.  The daughterboard went 

through several revisions as seen in Figure 4.8.  After much investigation and trial and error, the 

simplest solution proved to be the best option. 
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Figure 4.8 – Wireless Daughterboard Evolution 

 

4.4.1 Daughter Board 

The development of the daughterboard hardware involved providing stable electrical and physical 

connection for the XBee module.  This process consisted of interfacing four pins from the CAN 

based module, 3.3 volt power, ground, UART transmit, and UART receive,  to the corresponding 

pins on the XBee wireless module.  The PCB was approximately the same dimensions as the CAN 

based module allowing the CAN based modules’ mounting holes to be used to physically secure the 

daughterboard.  This simple design had two major benefits.  First, this provided good connection 

between the microcontroller and the XBee module with a minimum of wiring and PCB complexity.  

Secondly, due to the simple design, the board could be completely designed, fabricated and 

populated in-house, a benefit further elaborated in section 4.6.   

 

The final design is seen in Figure 4.9.  It can be seen that the copper traces and solder connections 

are isolated to one side of the PCB, eliminating the need for through-hole plating.  Jumper wires are 

used to electrically connect the daughterboard to the CAN based module.  This board can then be 

mounted to a Tiny Interface Module using simple nylon bolts and spacers. 
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Figure 4.9 – Daughter Board Mounted on Module 

 

4.4.2 Module Interface 

The XBee module plugs into a one millimeter spacing socket on the daughter board.  Though the 

XBee module has many optional pins for future expansion, the basic necessary pins are the 3.3 volt 

power, ground, and UART transmit and receive.  These pins are connected to the large straight-pin 

header on the CAN based module.  This header has the necessary 3.3 volt, ground, and UART 

connections.  Care must be taken to ensure that the Tiny Interface Module has not been configured to 

level shift the UART1 lines.  This is done by un-populating the two 0 ohm resistors identified by the 

silk screen as R16 and R17.  If this is done correctly, the module can be communicated with and 

configured using basic AT commands.   

4.5 Software 

Though the Tiny Interface Module was designed to be flexible, allowing it to adapt to any light UAV 

application, basic hardware initialization and a wireless driver were completed to facilitate the 

module’s operation.  By providing this functionality as part of the Tiny Interface Module’s 

development it allowed the module to be utilized, and tested, independent of the design status of 

IDEAnix.  In parallel projects software design, of IDEAnix and the CAN driver, was completed by 

Darren Brown and Nithyananda S. Jeganathan as part of their respective research at the University of 

Kentucky.  A simple set of system initializations was needed for the cases without operating systems 
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in addition to developing a driver for implementing wireless functionality.  The code as implemented 

and tested on the module is described in chapter 3.   

4.6 Fabrication 

Basic module fabrication consists of three major steps: board computer aided design (CAD), PCB 

prototyping and PCB population.  Section 2.2.5 described the hardware versions and revisions 

through which the Tiny Interface Module progressed.  While the device features were selected and 

revised, there was also constant revision to the physical board design.  As seen in Figure 4.10, the 

Tiny Interface Module PCB board continually increased in component density throughout the 

progression.  The final populated module measured approximately 1 5/8 inches by 1 3/8 inches by 

1/2 inch.  This was possible due to improvements in both board manufacturing techniques and the 

optimization and reorganization of component placement.   

 

 
Figure 4.10 – TIMCAN Hardware Board Footprints (Oldest on Left to Newest on Right) 

 

4.6.1 Board CAD 

The programs used for development of the Tiny Interface Module were Multisim and Ultiboard.  

Multisim is a schematic design program.  Functioning similar to most schematic programs, Multisim, 

shown in Figure 4.11 A, is used for creation and connection of the various components of the 

module.  These schematics are then exported directly into Ultiboard.  Once in Ultiboard, shown in 

Figure 4.11 B, the components are placed and the copper connections between associated pins are 

made.  From Ultiboard, the final design can then be exported as a gerber file to be utilized in the 

PCB fabrication. 
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Figure 4.11 – A) Multisim and B) Ultiboard Screen Captures 

 

4.6.2 On-campus PCB Prototyping 

During the early stages of the Tiny Interface Module development and final development of the 

daughter board, on-campus resources were used for PCB prototyping.  First, this process included 

importing the gerber files developed in Ultiboard into the milling machine’s custom milling 

software.  A blank PCB board was then placed in the milling machine seen in Figure 4.12.  Two 

sided copper PCB boards, meaning the board consisted of a non-conductive layer with a copper on 

top and on bottom, were used.  It was at this point that all through-holes and vias are drilled for two 

sided boards.    
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Figure 4.12 – ECE Department Milling Machine 

 

After the drilling is completed, the board is removed from the machine.  The holes are then treated 

with a conductive ink and the board is placed in a plating bath where the combination of current and 

the conductive ink forms a copper lining within the holes (Figure 4.13).  The board is then dried and 

returned to the milling machine where each side’s copper traces are formed.  This is done by cutting 

narrow gaps on either side of the desired trace isolating it from the rest of the copper layer. 

 

 
Figure 4.13 – ECE Department Through Hole Plating Bath 

 

The final step of this process is to tin the copper.  The tinning process consists of using a tin based 

chemical solution to treat the board.  The solution reacts with the copper, resulting in a surface that is 

tolerant to oxidation and is easier to work with soldering.   
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4.6.3 Professional PCB Prototyping 

There are a number of PCB prototyping options available through the internet.  PCBExpress, now 

part of Sunstone Circuits, was chosen because it had a history of satisfactory results and provided an 

Education Sponsorship Program.  The process that PCBExpress uses, as described on the website 

[45], involves drilling board holes, applying thin copper deposits within the holes, and applying a 

photosensitive dryfilm around the board pads and traces.  Next, an electrochemical process is used to 

build the copper on the desired surfaces, and then the board is tinned.  Finally the dryfilm is removed 

and all exposed copper, not protected by the tin, is etched.  If the option is purchased, the board, with 

exception of the solder pads, has a solder mask applied and then the board is dipped in a tank of 

solder coating the pads.  Finally, the board is labeled using a silk screening process, and the outline is 

cut. 

 

Though professional board fabrication comes at a premium price both financially and in increased 

fabrication times, the benefits of material and process consistency are often worth the cost for bulk or 

complex PCB fabrication.  It is worth noting, however, that for a simple board design like the 

wireless daughterboard, in-house manufacturing easily provides a reliable prototype. 

4.6.4 PCB Population 

Independent of where the PCB was created, the final stage of fabrication is board population.  For 

the Tiny Interface Module this process was completed using a combination of solder reflow and hand 

soldering.   Solder reflow involves placing a small amount of solder paste on each component pad on 

a side of the PCB.  This is done using a solder paste system like the one seen in Figure 4.14.  Next 

the components for this side are placed using a pick and place machine or by hand using tweezers. 
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Figure 4.14 – ECE Department Solder Paste System 

 

The board is then placed on the reflow machine.  The reflow machine heats and cools the board as it 

is slid from right to left across plates of increasing, then rapidly decreasing, temperature (Figure 

4.15).  This process allows the solder paste to become a liquid and adhere to both the components 

and the pads.  When the solder is then quickly cooled, the two are bonded physically and electrically 

with the hardened conductive solder.   

 

 
Figure 4.15 – ECE Department Solder Reflow Machine 

 

After verifying that the newly formed solder joints are correct, the next step is to solder by hand the 

remaining parts.  These parts either could not go through the reflow machine, like the headers, or 

they are on the bottom side of the PCB.  This process is done using standard hand soldering 
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equipment such as a soldering iron with a very fine tip, tweezers for holding and placing the small 

surface mount parts, and a solder wick for cleaning up or correcting poor connections (Figure 4.16). 

 

 
Figure 4.16 – Hand-Solder Station 

 

4.7 Summary 

This chapter presented the implementations of the hardware and software aspects of the Tiny 

Interface Module.  The next chapter will present the various types and stages of testing as well as the 

results. 
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5 Testing 

5.1 Introduction 

Previous chapters have discussed the goals and design decisions for development of the Tiny 

Interface Module.  This chapter covers the module’s testing process and results.  The chapter is 

concluded with a future work section and a summary. 

5.2 Preliminary Testing 

Testing of the Tiny Interface Module was completed in two phases: preliminary and application 

testing.  Preliminary testing included assessing the Tiny Interface Module’s basic functionality and 

performance.  From this phase of testing errors in board fabrication and population would be caught 

as well as establishing baseline hardware performance data.  It was crucial for the module to pass all 

of these tests before more complex and sensitive scenarios were pursued.   

5.2.1 Bit Flipping, SI Labs Application Example 

The basic functionality of the Tiny Interface Module was first testing by utilizing a modified form of 

a Silicon Laboratories application example included with the C8051F04x development kit [46].  The 

base code was provided by the microcontroller manufacturer as a means to illustrate a working CAN 

bus.  This served as an appropriate test because part of the module’s design goal was to provide a 

standardized coding platform, requiring only minor modifications to utilize existing code libraries.  

Key alterations to the application note include utilizing an internal timing source, adjusting the CAN 

timing to use the new timing source, and adding a UART output and respective interrupts.  The final 

key change was to define the module’s input/output pins to toggle on a button press and send a 

message over the UART.  The test layout can bee seen in Figure 5.1.  The CAN bus connects a 

Silicon Laboratories C8051F040 development board, running the unmodified application note code, 

to a Tiny Interface Module.  The development board could be replaced by another module if desired.  

The module is connected via RS-232 to a PC for a status display.  Finally, a scope probe can be used 

to monitor the toggling input/output pins to verify operation. 
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Figure 5.1 – Preliminary Testing Configuration 

 

This test effectively determines if the CAN bus is working, that all solder connections to the 

input/output pins of the microcontroller are made, and that the RS-232 level shifter is connected and 

functioning.  

 

5.2.2 Servo/Power Noise Testing 

Noise introduce to the Tiny Interface Module by the connection of servos was a concern during the 

system design.  Therefore once the general pin functionality of the module had been tested, it was 

important to determine a servo’s true effect.  First, using the PCA of the microcontroller, a servo 

pulse output was produced.  As seen in Figure 5.2 the output, using the pull-up resistors, was 

approximately a six volt pulse, between one and two milliseconds in length, every 20 milliseconds.    
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Figure 5.2 – Servo Pulses from Module 

 

This same pulse was then applied with a Futaba S3010 servo attached, and then placed under load 

(Figure 5.3).  The resulting pulse did exhibit a change, dropping from approximately 6.2 volts to just 

under 6 volts, but the results were still well within servo operation tolerances [47]. 

 

 
Figure 5.3 – Servo Pulse with Load 
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5.2.3 Range Testing 

The last of the preliminary tests focused on the wireless functionality.  Observing wireless 

input/output and communications between two Tiny Interface Modules is proof enough that basic 

code can work.  The modules, however, needed to be tested to see the actual throughput and 

distances that could be expected.  Since the wireless module was chosen to function as part of an 

intra-plane network, it was not necessary to determine if the one mile range claimed in the XBee 

module’s data sheet was obtainable.  A test was instead designed to determine operation at ranges 

within 100 feet.  Table 5.1 shows the number of missed packets at each range and data rate. 

 

   Range   

Data rate 1 meter 10 meters 30 meters 
9600 0 0 0 
57600 2 2 2 
115200 0 7 10 

 

Table 5.1 – Packet Errors Versus Data Rate and Range 

 

The errors are for each ten-thousand packets that were passed between the modules. A packet 

consists of 5 bytes, a 1 byte header and 4 bytes of data.  It is worth noting that in range tests 

conducted at 1 meter and 115200 in a lab, the error rate jumped to 72 per/10000 packets.  This most 

likely should be contributed to the existence of an 802.11 wireless network [40].  By the design of 

the wireless driver, bad packets are ignored, and with the high frequency that servo data is updated, 

the occasional bad packet would cause the servo to maintain its current position for an additional 

fraction of a second. 

 

5.3 Application Testing 

The second phase of Tiny Interface Module testing was done through application testing.  This phase 

relied on the creation of realistic scenarios to test the modules’ performance.  To aid in the credibility 

of the test results, it was imperative that the tests utilize as much of the final flight hardware as 

possible.  Therefore all components were placed within the airframe utilizing the airframe network 

cabling and batteries.  This phase was also completed in two stages: IDEAnix integration and flight 

simulation. 
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5.3.1 IDEAnix Integration  

This stage was completed primarily by Darren J. Brown because, by design, the goal was to quickly 

and easily adapt and execute the IDEAnix OS and test application on the Tiny Interface Module.  

Integration progressed as anticipated with the Tiny Interface Module providing all of the necessary 

hardware.  The first step to verify the system was functioning correctly was to use a task to send a 

pulse across the CAN and have another module’s task react accordingly.  As seen from the 

oscilloscope screen capture in Figure 5.4, this interaction occurred successfully.  The originating 

module transitions from a high to low value on a send, while the receiving module transitions from a 

low to high upon receiving data.  From this test a baseline IDEAnix CAN transmission delay could 

also be established by taking the time delay between the transitions.  This means that the minimum 

delay for IDEAnix to transmit data from one task to another task on another module was 

approximately 640 microseconds.     

 

 
Figure 5.4 – CAN Transmit vs. Receive Delay 

 

It is important to note that data is strictly baseline.  Once future applications and code are developed, 

additional testing could be performed to see how the time delay is affected due to a high traffic as 

well as lower priority versus higher priority tasks. 
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5.3.2 Flight Simulation Testing 

The successful completion of a flight simulation was the final test of the functionality of the Tiny 

Interface Module.  The simulation, seen in Figure 5.5, demonstrates that the module can handle the 

demands of a flight ready system.   

 

 

Controller Area Network

TIM Module

Piccolo 
Autopilot

TIM Module
(Nose)

TIM Module
(Left Wing)

TIM Module
(Right Wing)

TIM Module
(Tail)

Servo ServoServoServoServo

Ground Station

 
Figure 5.5 – Simulation Block Diagram 

 

This system includes receiving commands from a ground station, shown in Figure 5.6, to a Piccolo 

autopilot.  Next, the Piccolo outputs four pulse-width modulation (PWM) servo signals which are 

inputted, converted to long integer values, and encapsulated in a CAN packet using a Tiny Interface 

Module.  Then the four other modules on the wired CAN network are able to receive the packets 

with servo position data and control the respective servo(s). 

 

 
Figure 5.6 – Piccolo Ground Station Running a Simulation for Testing 
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As with the preliminary testing, the concern for power reliability with the servos attached still 

existed.  Beyond being able to successfully run flight simulations, additional load was put on the 

servos during testing, shown in Figure 5.7, to ensure that the power would not drop below the servo 

required 4.8 volts.  

 

 
Figure 5.7 – Six Volt Power Line with Load 

 

The final aircraft can be seen in Figure 5.8.  This system includes (from right to left) a single tail 

module controlling the elevator and rudder, two modules in the center of the plane one, bringing in 

and parsing the autopilot signals and one controlling the throttle and nose gear, and finally one 

module in each wing controlling the respective ailerons.   
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Figure 5.8 – In Aircraft Testing of Module and CAN Bus 

 
The next stage of this test would be to conduct flight tests.  Flight testing is a very time intensive task 

that is completely contingent on current weather conditions.  When the appropriate conditions are 

available the system, from the flight simulations, is flight ready. 

5.4 Future Work 

Despite the successful test results illustrated above, with any design there is the possibility of future 

development.  The two major areas of focus would be the addition of a measure of environmental 

tolerance and further development of the wireless system.  Groundwork for the wireless system has 

been laid but a good deal could be done to keep up with the new and ever changing ZigBee protocol, 

as well as establishing ways to ensure wireless reliability.   

 

Another area that could be addressed is the development of the Tiny Interface Module’s 

environmental tolerance.  There exist many options from mounting the module within a hobby box 

to utilizing special board, and component, conformal coatings.  The hobby box prototype seen in 

Figure 5.9 was developed as a preliminary test to further understand the cost, benefits and module 
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mounting process.  This initial test proved to be very costly, time intensive, and sacrificed the 

module’s weight and size advantages.   

 

 
Figure 5.9 – Module Mounted in a Hobby Box 

 

It is still evident, however, that other options exist that may require fewer design sacrifices while still 

providing module protection.  Ultimately, the addition of environmental tolerance would improve the 

robustness and user-friendliness of the Tiny Interface Module. 

5.5 Summary 

This chapter presented the Tiny Interface Module’s testing and results and areas for future 

development.  From this data the success of the design can be properly assessed in chapter 6.   
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6 Summary 

The goal of this project was to produce a network processing node for a rapidly, deployable, easily 

reconfigurable, light UAV.  The first chapter provided the background and motivation of the node 

design.  In chapter two the hardware design was discussed.  Chapter three looked at the design of the 

software providing a generic initialization and wireless driver.  Next in chapter four the design 

implementation was discussed.  Finally the test designs and results were discussed.  From these test 

results it can be concluded that the goals of the design were achieved since: 

 

1 The target UAV system design (Figure 1.7) was successfully designed and tested (Figure 

5.5). 

2 The CAN communications network was able to deliver control information to the distributed 

Tiny Interface Modules and respective servos. 

3 The node provided the necessary headers and connections to support direct interfacing with 

servos. 

4 The node was sufficiently small to be distributed throughout a light aircraft. 

5 The module successfully utilized CAN, IDEAnix, and a Silicon Laboratories 8051 

microcontroller. 

6 Finally, the node provides the foundation for future growth with the wireless network 

layer and additional hardware resources. 
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7 Appendix 
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