
University of Kentucky University of Kentucky

UKnowledge UKnowledge

University of Kentucky Master's Theses Graduate School

2007

A NETWORK PROCESSING NODE FOR LIGHT UNMANNED A NETWORK PROCESSING NODE FOR LIGHT UNMANNED

AIRCRAFT AIRCRAFT

Timothy William Arrowsmith
University of Kentucky, tim.arrowsmith@uky.edu

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Arrowsmith, Timothy William, "A NETWORK PROCESSING NODE FOR LIGHT UNMANNED AIRCRAFT"
(2007). University of Kentucky Master's Theses. 422.
https://uknowledge.uky.edu/gradschool_theses/422

This Thesis is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted
for inclusion in University of Kentucky Master's Theses by an authorized administrator of UKnowledge. For more
information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/gradschool_theses
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

Abstract of Thesis

A NETWORK PROCESSING NODE FOR LIGHT UNMANNED AIRCRAFT

Over the last decade, research into unmanned and autonomous vehicles has greatly increased. With
applications ranging from science and exploration to humanitarian and military efforts, the rising
need for autonomous vehicles demands constant innovation and growth. The Intelligent Dependable
Embedded Architectures (IDEA) lab at the University of Kentucky is continually launching research
oriented programs [1]. A few key projects focus on the development of Unmanned Aerial Vehicles
(UAV). Through this research, at the University of Kentucky, the need to develop a reliable,
lightweight, node based hardware for use in light UAVs and other unmanned and autonomous
vehicles became apparent. This paper addresses the design and implementation of a network
processing node for light UAVs. This system utilizes a Controller Area Network (CAN) noise
tolerant communications bus, a low power ZigBee Wireless Network for expanded inner plane
communications and Silicon Laboratories C8051F041 microcontrollers to provide the necessary
inputs/output and data processing. The final result will be a flight ready light UAV featuring
distributed processing nodes to handle the servo communications and controls.

KEYWORDS: Unmanned Aerial Vehicle, Embedded Processing, Avionics Bus

Communications, Controller Area Network, ZigBee Wireless Network

A NETWORK PROCESSING NODE FOR LIGHT UNMANNED AIRCRAFT

By

Timothy William Arrowsmith

Director of Thesis

Director of Graduate Studies

RULES FOR THE USE OF THESES

Unpublished theses submitted for the Master’s degree and deposited in the University of
Kentucky Library are as a rule open for inspection, but are to be used only with due regard to
the rights of the authors. Bibliographical references may be noted, but quotations or summaries of
parts may be published only with the permission of the author, and with the usual scholarly
acknowledgments.

Extensive copying or publication of the thesis in whole or in part also requires the consent of the
Dean of the Graduate School of the University of Kentucky.

A library that borrows this thesis for use by its patrons is expected to secure the signature of each
user.

Name Date

__

__

__

__

__

__

__

__

__

__

__

__

__

__

THESIS

Timothy William Arrowsmith

The Graduate School

University of Kentucky

2007

A NETWORK PROCESSING NODE FOR LIGHT UNMANNED AIRCRAFT

THESIS

A thesis submitted in partial fulfillment of the

requirements for the degree of Master of Science in the
College of Engineering at the University of Kentucky

By

Timothy William Arrowsmith

Lexington, Kentucky

Director: Dr. James E. Lumpp, Professor of Electrical Engineering

Lexington, Kentucky

2007

 iii

TABLE OF CONTENTS

List of Tables………………...…………………………………………………………………….v

List of Figures……………………………………………………………………………………..vi

1 Introduction ... 1

1.1 Background... 1
1.2 Motivation .. 2

1.2.1 BIG BLUE ... 2
1.2.2 AIRCAT/ Southern Komfort ... 4
1.2.3 UAV Network Design ... 6

1.3 Problem Definition ... 7
1.3.1 Requirements ... 8
1.3.2 Alternatives.. 8
1.3.3 Objectives .. 9

1.4 Thesis Overview... 10
2 Hardware Design... 11

2.1 Introduction .. 11
2.2 Microcontroller and Peripherals ... 11

2.2.1 Processor.. 11
2.2.2 Communications .. 12
2.2.3 Power ... 12
2.2.4 Headers/Connectors ... 13
2.2.5 Versions/Revisions .. 13

2.3 Wired Communication ... 14
2.3.1 CAN Networking... 15

2.4 Wireless Communication ... 16
2.4.1 ZigBee/802.15.4... 17
2.4.2 Modules ... 19
2.4.3 Antenna Design.. 20

2.5 Summary .. 21
3 Software Design .. 22

3.1 Introduction .. 22
3.2 Generic Initialization .. 22
3.3 CAN Driver .. 23
3.4 Wireless Driver... 24

3.4.1 Wireless Network Design Considerations ... 24
3.4.2 XBee Operation Modes ... 26
3.4.3 Custom Wireless API... 27

3.5 IDEAnix ... 29
3.6 Summary .. 30

4 Implementation ... 31
4.1 Introduction .. 31
4.2 Overview of Design.. 31
4.3 CAN Module Hardware ... 32

4.3.1 C8051F041 Microcontroller .. 32
4.3.2 Communications .. 33
4.3.3 Power ... 35
4.3.4 Headers/ Connectors .. 36
4.3.5 Other Hardware.. 37

 iv

4.4 Wireless Hardware ... 38
4.4.1 Daughter Board.. 39
4.4.2 Module Interface.. 40

4.5 Software.. 40
4.6 Fabrication.. 41

4.6.1 Board CAD .. 41
4.6.2 On-campus PCB Prototyping... 42
4.6.3 Professional PCB Prototyping ... 44
4.6.4 PCB Population.. 44

4.7 Summary .. 46
5 Testing... 47

5.1 Introduction .. 47
5.2 Preliminary Testing .. 47

5.2.1 Bit Flipping, SI Labs Application Example... 47
5.2.2 Servo/Power Noise Testing ... 48
5.2.3 Range Testing .. 50

5.3 Application Testing .. 50
5.3.1 IDEAnix Integration .. 51
5.3.2 Flight Simulation Testing .. 52

5.4 Future Work.. 54
5.5 Summary .. 55

6 Summary ... 56
7 Appendix ... 57
8 References ... 61
9 Vita.. 64

 v

LIST OF TABLES

Table 3.1 – Function Error Codes.. 29
Table 4.1 – Parts List and Component Pricing for the Tiny Interface Module (12/4/2006).......... 32
Table 5.1 – Packet Errors Versus Data Rate and Range.. 50

 vi

LIST OF FIGURES

Figure 1.1 – Left Image- Predator, Right Image- Global Hawk [3] .. 1
Figure 1.2 – Single Processor Design .. 3
Figure 1.3 – Distributed Processing... 3
Figure 1.4 – BIG BLUE 3 Flight Photo... 4
Figure 1.5 – AIRCAT Airframe [7]. .. 5
Figure 1.6 – Entry for the 2006 AUVSI Student Competition .. 6
Figure 1.7 – Target UAV Network Design.. 7
Figure 1.8 – ReadyUAV Conceptual Design... 7
Figure 1.9 – Silicon Laboratories C8051F040 Development Kit vs. the Custom Module 9
Figure 2.1 – Example of CAN Bus Configuration... 16
Figure 2.2 – 802.15.4/ZigBee Layer Model... 18
Figure 2.3 – Freescale MC13201 Transceiver ... 19
Figure 2.4 – MaxStream XBee-Pro Module .. 20
Figure 3.1 – Default Pin Configuration. .. 22
Figure 3.2 – CAN Driver API.. 23
Figure 3.3 - ZigBee Network Topologies .. 25
Figure 3.4 – Wireless Driver Input\Output Block Diagram... 28
Figure 3.5 – Network Software Framework .. 30
Figure 4.1 – Tiny Interface Module Hardware Block Diagram... 31
Figure 4.2 – Silicon Labs C8051F041 Microcontroller ... 33
Figure 4.3 – CAN Transceiver... 34
Figure 4.4 – Maxim Dual RS-232 Transceiver.. 34
Figure 4.5 – Capacitors, Pull-up Resistors, and Voltage Regulator... 35
Figure 4.6 – Module Headers... 37
Figure 4.7 – Reset Button and Power and Status LEDs... 38
Figure 4.8 – Wireless Daughterboard Evolution ... 39
Figure 4.9 – Daughter Board Mounted on Module.. 40
Figure 4.10 – TIMCAN Hardware Board Footprints (Oldest on Left to Newest on Right) 41
Figure 4.11 – A) Multisim and B) Ultiboard Screen Captures .. 42
Figure 4.12 – ECE Department Milling Machine.. 43
Figure 4.13 – ECE Department Through Hole Plating Bath ... 43
Figure 4.14 – ECE Department Solder Paste System .. 45
Figure 4.15 – ECE Department Solder Reflow Machine... 45
Figure 4.16 – Hand-Solder Station .. 46
Figure 5.1 – Preliminary Testing Configuration.. 48
Figure 5.2 – Servo Pulses from Module .. 49
Figure 5.3 – Servo Pulse with Load... 49
Figure 5.4 – CAN Transmit vs. Receive Delay ... 51
Figure 5.5 – Simulation Block Diagram .. 52
Figure 5.6 – Piccolo Ground Station Running a Simulation for Testing 52
Figure 5.7 – Six Volt Power Line with Load... 53
Figure 5.8 – In Aircraft Testing of Module and CAN Bus .. 54
Figure 5.9 – Module Mounted in a Hobby Box... 55

 1

1 Introduction

1.1 Background

Unmanned Aerial Vehicles (UAVs) have been developing and changing for as long as humans have

understood flight. Once primarily seen as military assets, many of the early unmanned aircraft were

barely more than guided missiles. With continual development however, the technology surrounding

unmanned flight grew, along with the number of applications. Now many scientific and educational

institutions realize the value of the implementation of UAVs. These tools can provide cheap and

effective ways to gather information and survey areas and situations that once were not possible.

Two of the better known UAVs are the United States Military’s Global Hawk and Predator, seen in

Figure 1.1. The Predator is considered a medium-altitude, long-endurance, remotely piloted craft

[2]. This craft typically operates with a ground station crew of three, including one pilot and two

people to monitor and operate sensors, communicating with the craft directly or via satellite.

Figure 1.1 – Left Image- Predator, Right Image- Global Hawk [3]

In contrast to the Predator, the Global Hawk is a fully autonomous UAV. This craft is capable of

autonomously taxiing, taking off, completing an aerial mission, returning and landing. The ground

station crew for Global Hawk is solely responsible for monitoring the craft’s health and status and

updating mission parameters [4]. Though well known both of these systems are too large and

expensive for most non-military applications.

 2

One way that unmanned flight reaches into more applications is the parallel development of

autopilots. The integration of a well designed autopilot eliminates the need for trained and

experienced pilots to design, develop, test, and finally implement a UAV. Most autopilot systems

consist of an in-plane sensor and control device connected via radio to a ground station. The ground

station is responsible for notifying the flight unit of the flight path and parameters, as well as

allowing a user to modify flight elements in real time. The in-plane unit is also responsible for

guiding the aircraft’s flight control surfaces.

1.2 Motivation

There have been several Unmanned Aircraft Systems (UAS) platforms designed, implemented and

tested at the University of Kentucky, each having its own unique features and designs. Three UAS

platforms implemented at the University of Kentucky are BIG BLUE, the 3rd Annual AUVSI

competition airframe AIRCAT and the 4th Annual AUVSI competition airframe Southern Komfort.

Due to the size of these projects the need for a modular firmware design was quickly realized and

through the many iterations of design and physical implementations issues with noise and payload

integration became apparent. These issues cause delays in flight time and flight testing, as well as

increased development time.

1.2.1 BIG BLUE

The Baseline Inflatable-wing Glider, Balloon Launched Unmanned Experiment (BIG BLUE) was

the University Of Kentucky College Of Engineering’s first journey into UAS design [5]. As part of

a NASA workforce development grant this program introduces students to a multidisciplinary

aerospace project with the goal of designing and testing novel Mars exploration aircraft technology.

The first generations focused on development of inflatable/rigidizable wings along with a custom

flight control system seen in Figure 1.2. This system focused around a single microcontroller

utilizing functions that communicated information directly between the various sensors, actuators

and input/output. This system was unable to support fault tolerance and due to the direct

communication between functions, a single, small error could result in catastrophic system failures.

 3

Figure 1.2 – Single Processor Design

The second generation of BIG BLUE utilized distributed processing integrating several processors

into the design. These processors, communicating through a common data bus (Figure 1.3),

provided hardware redundancy, having duplicate sets of sensors tied directly into some of the

mission critical components. This system still suffered from the single point of failure provided by

the I2C communication bus. This I2C bus also added additional hazard by being susceptible to noise,

potentially delivering incorrect or incomplete data transmissions.

Figure 1.3 – Distributed Processing

 4

The third generation of BIG BLUE focused on integrating a single microcontroller mission

controller, a single daughterboard housing various sensors/actuators and an embedded operating

system. The operating system selected was MicroC/OS-II [6] because it is preemptive, task

orientated, and includes libraries that support all common functionality and data structures of a high-

level operating system. These combined features allow the use of a modular firmware design. This

characteristic was desired in a large development project such as BIG BLUE since it allows the

design elements to be divided among the participating teams.

Figure 1.4 – BIG BLUE 3 Flight Photo

1.2.2 AIRCAT/ Southern Komfort

The Airborne Intelligent Research Craft for Autonomous Technology (AIRCAT) system was

designed by a combination of electrical and mechanical engineering students under a workforce

development grant in the spring of 2005. The goal of this project was to develop a completely

custom, novel entry to the 3rd Annual AUVSI Student Unmanned Aerial Vehicle (UAV)

Competition. The AIRCAT system consists of a custom airframe, onboard autopilot, camera system,

battery based power system and ground station.

 5

Figure 1.5 – AIRCAT Airframe [7].

The onboard electronics of the AIRCAT airframe consists of a central mission control processor, a

MicroPilot MP2028 autopilot, a two-way data modem, infrared and visible light digital cameras, and

Amateur Television (ATV) streaming real-time video [8]. The mission control processor is an 8-bit

microcontroller from Silicon Laboratories. This system incorporated the embedded real-time OS

MicroC/OS-II into its firmware design due to the need for dedicated code segments, to monitor and

control multiple subsystems in real-time. Because several subsystems including ATV, the data

modem and the MP2028 communications radio needed to transmit live signals at the same time,

electromagnetic interference (EMI) problems occurred. This required the incorporation of shielding

into the design. In order to reduce the effects of the EMI, a more physically modular design was

investigated. Such a modular design would use a noise tolerant communications bus to connect a

distributed set of nodes together preventing noise propagation throughout the system.

 6

Figure 1.6 – Entry for the 2006 AUVSI Student Competition

Southern Komfort is the most recent UAS platform designed at the University of Kentucky

competed at the 4th annual AUVSI UAV Competition in June 2006 [9]. As seen in Figure 1.6 this

UAS utilizes a conventional high-wing R/C model airframe, a Piccolo Autopilot and custom

electronics for flight control and mission payload control. This was coupled with high-bandwidth

communications and state-of-the-art image processing capable of merging collected images into a

composite photograph of a large geographic area. Though with the integration of the new autopilot

system the craft experienced a great improvement in flight reliability, the need still existed to

develop a fault tolerant distributed system.

1.2.3 UAV Network Design

The target design of a light UAV network, seen in Figure 1.7, focuses on distributed processing

utilizing a fault/noise tolerant communication bus. This system could then be easily utilized by

many applications including the 2007 AUVSI Student UAV Competition. By utilizing the

distributed processing a digital signal can be used to transmit servo positioning data to the respective

network node. This node can then decode the data and produce the necessary analog servo signal

which only needs to be transmitted a short distance, reducing the effects of EMI. Another

application would be in the development of ReadyUAV.

 7

Figure 1.7 – Target UAV Network Design

ReadyUAV is an in-development prototype for a rapidly deployable, easily reconfigurable, light

UAV. This aircraft is designed to allow a novice user to quickly deploy the craft in a variety of

support or reconnaissance roles. A modular frame allows the user to quickly change out various

payloads, including cameras, autopilots, or other sensor packages, while maintaining a standard nose,

tail and set of wings (Figure 1.8). The University of Kentucky IDEA lab developed the necessary

tools to design the software layer. Ardea (Automatically Reconfigurable Distributed Embedded

Architecture) will provide the ability to dynamically reconfigure with the addition or subtraction of

software nodes [10][11]. This system simply needs the hardware framework to support Ardea. By

utilizing a bus network that automatically reconfigures with the addition or subtraction of

components, ReadyUAV can become a reality.

Figure 1.8 – ReadyUAV Conceptual Design

1.3 Problem Definition

In order to produce a rapidly deployable, easily reconfigurable, light UAV, a solid communications

network is required. This network, wired or wireless, must efficiently deliver control information to

 8

the various different nodes, and in turn control the respective flight sensors or servos. Beyond this

capability, the system should handle the addition or removal of payloads without affecting system or

flight stability. Finally, the system must provide this functionality in a package that is easily

understood and integrated into existing and future embedded light aircraft designs.

1.3.1 Requirements

The development of electronics affiliated with light unmanned aircraft must satisfy many of the same

base requirements that guide the development of the aircraft itself. The end result must maintain a

small form factor, be lightweight, and have reasonable power consumption. Beyond these base

requirements, the resulting system must completely satisfy current functionality demands as well as

provide room for future growth. The current demands include the ability to seamlessly integrate the

IDEAnix operating system that is being developed in parallel, utilize the reliable Controller Area

Network (CAN) wired network, and developed on a silicon laboratories 8051 microcontroller. The

future growth is addressed by the exploration and implementation of an 802.15.4/ZigBee based

wireless network layer as well as providing additional hardware resources. The specifics of each

hardware and software requirement are explored in the respective hardware and software design

chapters.

1.3.2 Alternatives

Currently there are no commercial off-the-shelf (COTS) alternatives available that satisfy the design

requirements. One of the closest matches is a C8051F040 development kit from Silicon Laboratories

[12]. Based off the same line of microcontrollers targeted in development of the custom module, this

option offers all of the same processing functionality. This development kit, however, is too large

for light unmanned aircraft as can be seen by the comparison in Figure 1.9.

 9

Figure 1.9 – Silicon Laboratories C8051F040 Development Kit vs. the Custom Module

Other microcontroller’s such as Freescale Semiconductor’s HC08GZ family or the Micro/sys Inc.

MCB58 also lack the critical design element of being easily integrated with IDEAnix and other lab

code repositories [13][14]. Manufacturers specialize in selling microcontrollers and other

components to be included as part of consumers’ designs. The commercial market for developing

networking hardware for light unmanned aircraft is not large enough to support the costs of

development.

From the perspective of developing a wirelessly networked version of the system Silicon

Laboratories again provides the best COTS alternative through a joint project with Helicomm [15].

This module, designed including a Silicon Laboratories C8051F133 microcontroller, would provide

the wireless link and easy integration utilizing current code repositories. As with the development of

a wired solution, however, there are no exact matches. This option would not provide the CAN

networking that is provided with the base module and daughter card design. There are a number of

alternative radio options available that could be utilized in the base module and daughter card design.

The 802.15.4/ZigBee compatible XBee Pro module from MaxStream was chosen to support the

wireless functionality. The rationale for choosing this module over alternatives is covered in the

Hardware Design chapter.

1.3.3 Objectives

The objective of this design is to provide a lightweight, low power, small form-factor distributed

networking node for aiding the development of light unmanned aircraft at the University of

Kentucky. This Tiny Interface Module should be able to be quickly adapted by students working to

 10

develop current and future light unmanned aircraft systems, as well as provide a stable platform for a

majority of future lab embedded design applications. The end result should meet the performance of

COTS alternatives and ultimately provide a more customized solution than existing options.

1.4 Thesis Overview

The text above provides background information into the history and development of UAVs,

internally and externally to the University of Kentucky, as well as outlining the objectives and

requirements that guided the development of the Tiny Interface Module. The second chapter will

address the specific hardware design decisions that are required to provide a solution that provided a

balance between convenience and size. In chapter three, the software design decisions surrounding

the future utilization of the module as well as the development of a wireless driver are discussed.

Chapter four covers the implementation of the module with the final selection of hardware

components as well as fabrication and population of the Tiny Interface Module. Chapter five

describes the testing that was performed, including the integration of IDEAnix, to verify the

module’s operation along with and explanation of the test results. Finally, chapter six concludes

with a summary.

 11

2 Hardware Design

2.1 Introduction

This chapter addresses the major decisions behind the hardware design of the Tiny Interface Module.

This process involved a researching existing design techniques and principals and applications, as

well as collaborating with the students and professors what features would most likely be needed and

utilized in the module. This process begins with the selection process for the base microcontroller

and supporting peripherals. Next, the factors leading to the selection of the main communications

bus are addressed. Finally, the design decisions for selecting a wireless network are covered,

followed by a summary.

2.2 Microcontroller and Peripherals

The Tiny Interface Module has been designed to provide a small form factor processing and

input/output device for light Unmanned Aerial Vehicles. This functionality requires a large degree

of flexibility to adapt to any UAV application while maintaining a simplified set of features.

Providing this balance of functionality and simplicity required careful selection of processing,

communications, power regulation, and headers/connectors.

2.2.1 Processor

Selecting the microcontroller to handle the processing needs of any systems is a sensitive task. The

key factors to consider during selection are the system constraints, operating temperature range,

power consumption, packaging and cost. Next, the baseline performance must be determined by

examining the data range to be handled and the precision, as well as speed, of calculations. Finally,

the system input/output, program memory and RAM requirements must be investigated for any

unusual or special requirements [16]. Influenced by any number of these factors, the final decision is

based on what microcontroller will provide the required functionality and a welcoming user

experience. For the development of small form-factor processing in light UAVs, the Silicon

Laboratories’ 8051 product line’s stability, capabilities and cost efficiency distinguished it as the best

option.

As the platform of choice for a number of previous and ongoing projects, the Silicon Laboratories

8051 microcontrollers have earned the respect of the IDEA lab. More importantly, however, they

have also grown a respectable repository of experience and intellectual property exclusive to the lab.

Being able to quickly adapt and integrate existing code will help to ensure the module’s success.

 12

The specific product line chosen was the C8051F04x. This line was selected since it provided a

stable 8051 based embedded processing platform with integrated Controller Area Network (CAN)

communications capabilities. The microcontroller specifications are covered in Section 4.3.1.

2.2.2 Communications

The main communications protocol chosen must allow for reliable distributed embedded processing.

Through earlier research and experimentation performed within the IDEA lab, the Controller Area

Network [17] was determined to provide the needed speed, flexibility and reliability necessary to

support a small-aircraft avionics bus [18]. The selection of CAN is discussed further in Section 2.3.

Though selection of the main communication protocol was crucial, it was not the only

communication option included in the hardware. Other communications protocols supported by the

Silicon Laboratories C8051F04x microcontroller line include universal asynchronous

receiver/transmitter (UART), Inter-Integrated Circuit (I2C), and serial peripheral interface (SPI) [20].

These communication protocols provide added functionality to the module through the addition of

peripherals or testing and user interaction. With the goal of future growth, a wireless networking

option was also developed. The CAN and wireless networking options are discussed further in

Sections 2.3 and 2.4 respectively.

2.2.3 Power

The power system for the Tiny Interface Module required the ability to regulate an input power

source to a level that was usable by the chosen components and the conditioning of that power to

ensure stability. Historically, linear regulators are the base for most power supplies used in

electronics [21]. Voltage regulators take an input voltage, possibly varying within a set range, and

provide constant output voltage independent of the load. Selection of an appropriate voltage

regulator can be done by noting requirements of: the maximum load current, the type of input

voltage source (AC or battery), the output voltage precision, the quiescent (idle) current and any

special required features such as a shutdown pin or error flag.

The power conditioning portion of the power system is performed by using bypass or decoupling

capacitors. These parts are used to store small amounts of energy locally so that changes in current

demand can be responded to quickly. This aids in reducing the effect of line the inductance resulting

from quickly changing current demands in PCB lines. It is important to place these capacitors as

 13

close to the board component that they are bypassing to minimize line inductance, between the

capacitor and the part, as well as to ensure the capacitor is operating at an frequency band where it is

most effective [22]. The effective frequency is essentially the time it takes for the transient current

demand of the part to see relief from the capacitor. This distance should be less than ¼ wavelength,

ideally placement is at least 1/10
th of quarter wavelength.

2.2.4 Headers/Connectors

Choosing the headers and connectors to interface with the module relied heavily on footprint,

weight, personal preferences and availability. Options such as DB-9 and RJ-45 offered convenience

due to their availability as standard serial, or Ethernet, connectors. They do, however, have the

disadvantage of bulky end connectors. In a small form-factor design, bulky connectors can quickly

dissipate the design’s size and weight advantages.

Many customized connector options are available through electronics hardware distributors. These

options have all been carefully designed and fabricated for use in various systems. Unfortunately,

when dealing with custom connectors, inflexibility and supply availability are always a concern.

These factors do not rule out using a custom connector, but they should be carefully surveyed before

committing to a particular option.

One other option considered was to use a basic straight-pin header. This choice provides a small

footprint, minimal weight, and great flexibility for the development of custom connectors. Also, as a

staple component of any electronics lab, the supply of acceptable part compliments is often large.

Straight-pin headers do, however, require that all harnesses be custom fabricated and do not offer the

physical connection security that comes with the clips and screw-posts of some options.

2.2.5 Versions/Revisions

As with any project, the Tiny Interface Module development underwent several major design

revisions. These versions were marked by minor changes in the design and integration goals,

resulting in significant hardware design changes. The first stage of revisions was marked by adding

the ability to isolate the power line, supplied by the custom CAN harness, and the voltage supply line

for the servo headers. An additional servo header was also added in this stage to allow a single

module to directly interface with all four of the Piccolo autopilot’s servo outputs. The next version

involved the reduction of the board footprint to match that of a standard RC aircraft servo and the

addition of mounting holes. Finally the latest revision came with the addition of a RS-232 level

 14

shifter to simplify harnessing, a larger voltage regulator to compensate for the wireless module’s

increased current demand, and connection of the microcontroller’s I2C lines to a header.

2.3 Wired Communication

As cited earlier, the decision to use a Controller Area Network (CAN) bus as the main form of

communication came about through previous IDEA lab research and experimentation. It is,

however, still important to understand other available options. An obvious option exists to use some

form of Ethernet communication. With this option, fault tolerance can be achieved, but as a

networking system designed for large scale networks, the hardware overhead would be cost and size

prohibitive.

Another option would be to implement a proprietary option such as LonTalk from Echelon

Corporation. This option however has the potential hazard of containing “Black Box” components

[23]. Without understanding the core functions of the network, there is a risk that the designed

solution will be poorly tailored to the desired application. Also, when dealing with proprietary

solutions, there is the possibility of becoming locked into a required or limited set of development

tools.

Two of the more promising alternatives to CAN are the Time-Triggered Protocol (TTP) and the

newly developed FlexRay. FlexRay, developed in cooperation by companies such as BMW, Bosch,

DaimlerChrysler, and Freescale, provides up to a 20 Mbps data rate, increased data frame size and

provides the framework for integrated fault tolerance through a dual bus design and a Bus Guardian

[24]. TTP is targeted at a broad range of safety critical applications focusing on safety,

composability, the ability to modify or add functions without affecting system stability, and not

limiting the data rate or throughput [25]. With the currently available hardware TTP can support

25Mbps synchronous transmission and can have data payloads up to 240 bytes.

Ultimately, though, alternatives to CAN do exist. CAN however, is the correct networking choice for

developing this light UAV system. CAN provides the necessary hardware to support design growth

and advances in the fault tolerance. This solution also has a large selection of communication

hardware and a large system design knowledgebase to aid in future developments.

 15

2.3.1 CAN Networking

CAN was first developed in the mid 1980’s as a reliable communications bus for automotive

applications. With the increased complexity of vehicles, it was no longer sufficient to connect each

related automotive component directly. Instead of each component having analog and digital

connections, all controllers and peripherals need only one CAN connection [26]. This original

specification featured a start-of-frame bit, 11-bit arbitration identifier, remote transmission request

bit, data length code, data field, cyclic redundancy check, acknowledge slot (for receiving nodes to

acknowledge receiving data) and finally an end of frame delimiter.

With the ever gaining acceptance of CAN and its possible application in other system designs, CAN

2.0, featuring a 29-bit identifier, was released in 1991 [17]. This option, referred to as CAN 2.0B or

extended, allowed a flag to be thrown between the 11-bit arbitration identifier and the remote

transmission request telling the receiving device that another 18-bit arbitration identifier would

follow. After the 18-bit id is received, the CAN message is the same as the 11-bit version. CAN

2.0B is backwards compatible with CAN 2.0A, the 11-bit identifier, whereas a CAN 2.0A device

will simply ignore a CAN 2.0B message.

The CAN functionality included with the Silicon Laboratories C8051F04x microcontrollers can

operate at bit rates up to 1Mbit/second [20]. The integrated Bosch CAN controller includes 32

message objects that can be configured to send or receive data. All data filtering and transmission

protocols are handled within the CAN controller and not Silicon Laboratories proprietary CIP-51

processing core. All interaction between the core and the CAN controller is performed though

Special Function Registers (SFRs). The bulk of the CAN bus’s tolerance to noise and interference

comes from the use of differential signaling. An example of a typical CAN bus configuration can be

seen in Figure 2.1.

 16

Microcontroller

CAN
TX

CAN
RX

Microcontroller

CAN
TX

CAN
RX

Microcontroller

CAN
TX

CAN
RX

Microcontroller

CAN
TX

CAN
RX

CAN
Transceiver

CAN
Transceiver

CAN
Transceiver

CAN
Transceiver

R R

CAN High

CAN Low
Figure 2.1 – Example of CAN Bus Configuration

One of the biggest advantages of utilizing a CAN bus is the use of balanced differential signaling.

The differential signaling functions by having both lines in a resting state of approximately 1.5 volts.

When data is transmitted a high value on the bus will take the voltage on CAN High from 1.5 to 2.5

volts, while taking CAN Low from 1.5 to .5 volts. The current in each signal line flows in equal but

opposite directions; this in combination with twisted pair cabling creates a field-canceling effect for

low noise emissions [19].

2.4 Wireless Communication

Recently there has been a great effort to expand wireless connectivity. Many designs are focused

around the industrial, scientific, and medical (ISM) frequency bands. In the United States the most

common of these frequency bands are 900MHz, 2.4 GHz, and 5.8 GHz. There are many options

utilizing these frequencies, the most commonly known include Wireless Local Area Network,

WLAN, (802.11), Wireless Personal Area Networks, WPAN, (802.15), and Broadband Wireless

Metropolitan Area Network, WiMAX, (802.16) [27][28][29]. Of these available standards, the

WPAN is the best option to produce the desired in-plane networking.

Within the WPAN specification, however, there exist four task groups: 802.15.1 – Specifications for

Wireless Persona Area Networks, 802.15.2 – Coexistence of Wireless Personal Area Networks with

Other Wireless Devices Operating in Unlicensed Frequency Band, 802.15.3 – High Rate Wireless

Personal Area Networks, and 802.15.4 – Low Rate Wireless Personal Area Networks. At this time,

the most notable of these are Bluetooth (802.15.1) and ZigBee (802.15.4).

 17

Bluetooth and ZigBee provide competitive and comparable features. Bluetooth, however, is

designed primarily for ad-hoc type networks with one master and multiple slave devices. The typical

Bluetooth network is seen in devices that have relatively high power demands and can be recharged

frequently. A standard ZigBee node is designed to have a battery lifespan of months to years.

Bluetooth networks currently have a limitation of eight active nodes [30]. ZigBee, on the other hand,

utilizes star, mesh, and cluster tree networks and therefore has the addressing capabilities to support

over 65,000 nodes per network [31]. As a tradeoff for the increased node capacity, ZigBee networks

communicate at serial speeds of at most 115200 bits per second (bps) as opposed to Bluetooth’s 1

Mbps.

The benefits of using a wired network include higher bandwidth communications than in wireless,

with good physical connections data is more likely to arrive at the intended destination, and wired

connections can be extremely noise tolerant. WPAN solutions, however, have advantages with

greater flexibility. They can add and remove nodes without infrastructure changes and extend the

local network externally over short distances to other nearby nodes or debug interfaces.

2.4.1 ZigBee/802.15.4

The standard chosen to implement the wireless networking functionality of the Tiny Interface

Module is based off the IEEE 802.15.4 -2003 standard [32]. This specification operates at 868MHz

in Europe, 915MHz in the United States or 2.4 GHz worldwide utilizing Direct Sequence Spread

Spectrum (DSSS). The physical layer (PHY) and medium access control (MAC) layer control

access to the radio channels utilizing Carrier Sense Multiple Access with Collision Detection

(CSMA-CA). With CSMA-CA each node in a network must notify the other nodes that it intends to

transmit before data is transmitted [33]. Figure 2.2 is a high level view of how the layers of

802.15.4 and ZigBee relate.

 18

Applications

MAC Layer

Network And
Security Layer

Application
Framework

Application Profiles

PHY Layer

ZigBee

802.15.4

Both

Figure 2.2 – 802.15.4/ZigBee Layer Model

 On top of the PHY and MAC layers, additional ZigBee layers are implemented. These layers,

defined by the ZigBee Alliance, are the network, security and application layers. It is through these

layers that functionality, such as forming star, mesh, and cluster-tree network topologies, is

implemented.

The ZigBee platform has many advantages and disadvantages. ZigBee is a newly developing

standard which provides ample opportunity to work with and shape early prototypes and designs.

The target audience for ZigBee development and integration is in low-power, low-cost, simple home,

office and industrial applications. The low-power and low-cost features make this option very

appealing to the light UAV market. Due to bandwidth limitations, 115 Kbps versus the CAN

1Mbps, this option will require careful implementation as to ensure that the system does not become

overloaded.

 19

2.4.2 Modules

To implement a ZigBee/802.15.4 network, there are numerous manufacturers and components

available. The products range from Freescale Semiconductor’s line of simple low power

transceivers to more complete systems like MaxStream’s XBee module [34]. There are merits and

disadvantages associated with the selection of each option. For example a Freescale Semiconductor

MC13201 (Figure 2.3) provides full 802.15.4 compliance in a small form-factor part. This part can

be connected as a slave device, via SPI, to most microcontrollers [35]. The cost of having such a

small form factor component is that it only provides a transceiver. To fully implement this part into

a working network also requires the addition of an external crystal oscillator, software customization,

and the development of an antenna.

Figure 2.3 – Freescale MC13201 Transceiver

If space is available, there are several manufacturers that provide systems that include simple

transceiver microcontroller combinations. These options are power hungry compared to the single

transceiver options, demanding as much as 100mA to operate versus the Freescale component’s

mere 30mA. The benefits of the transceiver/microcontroller module come with the simplicity of

integration and operation. These modules include all required hardware, so often startup and

communication is simply a matter of supplying the correct voltage and connecting to a UART or PC

serial port. Some modules such as the MaxStream XBee (Figure 2.4) even include the necessary

antenna.

 20

Figure 2.4 – MaxStream XBee-Pro Module

Ultimately all of the options are ZigBee/802.15.4 compliant so selection of the correct module

involves finding a balance between ease of integration, cost, weight, and size.

2.4.3 Antenna Design

With many of the available ZigBee options, the choice of antenna is left to the designer. There are

three commonly discussed methods of interfacing antennas with the modules. The first option often

described is to fabricate an antenna as part of the components PCB board. This option requires the

least number of additional components. To do it correctly, however, requires an advanced

understanding and familiarity with antenna design as well as stringent controls over the PCB

fabrication processes and materials to ensure consistency.

Another option available is to use a chip style antenna. These antennas are professionally designed

and fabricated for particular operating frequencies. A typical 2.4 GHz chip antenna is not much

larger than a grain of rice and with the correct filtering could produce good results. However, like

PCB fabricated antennas, this option requires strict design consideration for component placement

and board properties.

The final major option is to utilize some form of wire or external antenna. This option can be as

simple as a flexible wire, as is included with certain XBee modules. Other options, as seen with the

Integration ZigBee module, require adaptors and connectors to make the connection to a standard

antenna with a Subminiature Version A (SMA) connector or similar antenna.

 21

2.5 Summary

In this chapter the hardware design aspects of developing a network processing node for light UAVs

were described. The considerations for choosing the microcontroller and peripherals were

addressed, followed by an overview of the options for selecting, and the features of, the main wired

and wireless communications bus. The next chapter explores the decisions and development of the

software required to implement the system functionality.

 22

3 Software Design

3.1 Introduction

This chapter explores the design and development of the software layers of the light UAV system

and the Tiny Interface Module. The first section covers the use of preprocessor directives and

generic initialization functions to streamline user integration into the module. Section 3.3 describes

the design and functionality of the custom CAN networking driver. The next section introduces the

custom wireless networking driver design and development. In Section 3.5, the custom operating

system (OS) designed to be implemented on the module, is surveyed. The chapter concludes with a

summary and comments section.

3.2 Generic Initialization

In order to fulfill the design objective of making the Tiny Interface Module quickly adaptable by

students, it was necessary to eliminate the need for each module’s base functionality to be

individually designed. This was done by standardizing a base set of pin configurations and by

creating generic initialization functions to allow user configuration of key components. The base pin

configuration, seen in Figure 3.1, ensures that the listed features are always available and connected

to the same module pin. In the case of the UART level shifting, keeping the same output pin is

crucial.

Figure 3.1 – Default Pin Configuration.

The generic initialization functions provide an equally important role by providing the user with the

ability to change key options without adjusting the function coding. In some cases, the changes may

simply be a baud rate or clock rate; in other cases, it may involve configuring a block of inputs or

outputs. The generic initialization functions include configuring UART 0 and 1, CAN

 23

communications, wireless communications, the programmable counter array (PCA), general purpose

input/output (GPIO) and the system clock. Development of the PCA and GPIO were included as

part of the IDEAnix OS developed by Darren J. Brown through the University of Kentucky. The

CAN communications functions were the focus of the research performed by Nithyananda S.

Jeganathan. The UART and system clock functions were developed by Darren J. Brown and

modified to be included as part of the wireless driver. The modification was in response to a

concurrent need and slightly different design requirements. Finally, development of the wireless

communications functions was part of the wireless daughter board implementation of this project.

3.3 CAN Driver

Development of a CAN driver was performed by Nithyananda S. Jeganathan at the University of

Kentucky as part of his graduate research project. The communications specification used to guide

the development went through five major revisions. Through this progression the specification

developed from one set of seven functions into a Driver API and a User API. The User API will be

not addressed because it functions exclusively between the OS and the user. The Driver API,

however, describes the interaction between the CAN and the OS. The other key design decisions

were that the driver would only support 11-bit identifiers and would contain a standardized four byte

data packet that can be padded with zeros if necessary. These simplifications are intended to enable

the network to be quickly implemented and easily adapted by students. Optimization and handling

of 29-bit identifiers is targeted for future development. The basic structure of the driver follows the

Application Programming Interface (API) seen in Figure 3.2.

Figure 3.2 – CAN Driver API

 24

The init_can function is a general purpose initialization function used to initially configure the CAN

hardware. The send_pkt function sends the CAN frame across the bus of the passed variable values

can_id and payload. Reg_pkt registers to receive frames with the CAN packet ID of can_id.

Unreg_pkt removes the registration for receiving a packet ID of can_id, therefore the packet will be

ignored. Finally, get_pkt is used to return the current buffered data packet using the pointers

can_id_ptr and payload_ptr. This last function is only implemented for non-IDEAnix applications.

IDEAnix uses an included custom function to pass data up to tasks running in the OS space.

3.4 Wireless Driver

Like the CAN driver, development of a comprehensive wireless driver could constitute and

independent research project. Because this was incorporated as one aspect of a larger development,

a base level of functionality with minimal code overhead and design time was developed. Using this

approach, research into different network design theories as well as ways to utilize included XBee,

and custom design, application programming interfaces (APIs) was conducted. The end result is a

wireless driver providing the required fundamental OS API functionality. With user exposure to this

functionality future research will be dedicated to developing a more feature rich implementation.

3.4.1 Wireless Network Design Considerations

Implementation of a network requires careful consideration of a number of key factors. These

factors are all based around ensuring that the data sent is received as intended. The first obstacle to

be overcome to make sure data is able to reach the intended destination. The three network

topologies that are utilized by ZigBee are star, mesh and cluster tree. Seen in Figure 3.3, the star

topology relies on a single centralized coordinator node to receive and relay all communications. A

cluster tree has groupings, clusters, of nodes that utilize a single coordinator node per group to

communicate with the network’s main coordinator. The final network topology is a mesh, which

utilizes many nodes equally to share the burden of relaying data from one point to another.

 25

Star
Cluster Tree

Mesh

Figure 3.3 - ZigBee Network Topologies

XBee-Pro module utilizes point-to-point, point-to-multipoint, and peer-to-peer topologies. Point-to-

point can be seen as a simplified form of a star network, where there is just direct communication

between two nodes. Point-to-multipoint functions as the star network described above. Finally,

peer-to-peer provides functionality similar to that of a mesh network, with all nodes able to

communicate directly with others.

Once a network topology is chosen, the second step is to ensure that the data received is correct.

This is done in two forms, error checking of the received data and ensuring that no malicious data is

accepted. There are many current techniques and algorithms available to check data for errors,

including Checksums, Hamming Codes and Cyclic Redundancy Checks (CRC) [36], all with

inherent strengths and weaknesses. Checksums are very commonly used in conjunction with CRCs,

as a second level of protection in data communication systems such as IP, TCP, and UDP [37]. The

CRC ensures data transmission integrity while the checksum verifies that data was not corrupted by

routers or the transmitting or receiving hosts. The XBee-Pro module includes a similar checksum

CRC combination. As part of the 802.15.4 specification a 16-bit CRC is included as part of the

MAC layer [32]. Utilizing the checksum is an option that can be incorporated into the XBee module

API communication frames discussed in the next section.

 26

System security is an area that could be easily overlooked in development of networks for light

UAVs. With the development of the wired communications bus, the system is isolated and therefore

has no need to include measures to prevent a malicious user from interfacing with the system.

Wireless systems do not afford this luxury, since all communications are transported over an open

medium: air. Of the competitive technologies to ZigBee, Bluetooth is the only other technology to

provide a complete approach to security [38]. ZigBee uses a multi-level design, providing the

advanced encryption standard (AES) as part of the IEEE - 802.15.4 standard, and then providing

additional security key generation within the ZigBee standard.

The final concern when developing a wireless network is anticipating the effects of using the

crowded industrial, scientific and medical (ISM) radio band. The ISM band is intended for use by

devices, industrial, scientific, medical or domestic, that “generate and use locally RF energy” [39].

Devices within this range are regulated by Federal Communications Commission (FCC) and are

required to be “constructed in accordance with good engineering practice.” Despite regulations,

there is no way to ensure that the communication bandwidth will be available. In tests to study the

effects of the closely related IEEE - 802.11 and Bluetooth, the possibility exists for physical layer

timeouts and increased packet error rates [40]. This interference unfortunately is something that

cannot be avoided while using wireless technology. Through testing and good system design, the

goal is that these effects can be minimized.

3.4.2 XBee Operation Modes

The MaxStream XBee module discussed in earlier sections is designed to be easily integrated into

many applications. To accommodate this, the module is preconfigured to function out of the box by

simply connecting the respective UART transmit and receive lines as well as power and ground

connections. As a result the default software configuration is very flexible. The XBee module is

initially configured in what is referred to as Transparent Mode [34]. Transparent Mode instructs the

module to operate as a “serial line replacement”, sending and receiving all data from the respective

data pins. This is performed using a combination of clear channel assessment, to ensure that no other

node is currently broadcasting, and a 100 character buffer.

The other mode of operation is referred to as API operation. This frame-based API allows for

greater interaction with the modules networking capabilities from within the application code. This

mode has an extensive set of frames to allow for module configuration and status messages to be

exchanged. These frames also contain a checksum byte to ensure that the frame data is correct.

 27

The XBee API has advantages over alternatives, including integration of the traditional modem AT

commands in to the frame structure, to program the module, and provisions of status feedback. It

does, however, add a great deal of complexity to the code development by adding handshaking

between the XBee module and the microcontroller. Because a broadcast network is desired, much of

the XBee API functionality must be disabled. Therefore the system ultimately relies on the custom

data frame discussed is the next section.

3.4.3 Custom Wireless API

Development of a wireless driver for the Tiny Interface Module requires the creation of a generic set

of functions that can be utilized both individually by a user and by integration into the IDEAnix

operating system being developed in parallel. To facilitate integration, the wireless driver’s

functions would use the same nomenclature and variable types that were developed for the CAN

driver. The CAN driver API can be seen in Figure 3.2 of Section 3.3.

The wireless network utilizes a peer-to-peer topology, with lost or corrupt data packets being

ignored. Like with the CAN driver, the wireless driver consists of an initialization function, send

and get packet functions and register and un-register functions. An additional function, request

packet, was created to aid in the code design and testing and is available to users.

The basic flow of wireless communications can be seen in Figure 3.4. Interactions with the XBee

network occurs by either a UART character transmit or receive. Incoming characters are handled by

the UART 1 Interrupt Service Routine (ISR), which is triggered with each incoming or outgoing

character. The ISR first checks if the data is incoming or outgoing. If it is incoming the character is

compared against a counter to see if a complete frame has arrived. If a complete frame has not yet

arrived, the character is added to a buffer and the ISR clears the flag to wait for the next character. If

the frame is complete, the ID is checked against the list of registered IDs. If there is a match, the

frame is copied to a user accessible buffer to be accessed using the get packet function or pushed to

the OS buffers using IDEAnix functions. Otherwise, the data is dumped.

The process of handling outgoing data is much simpler. The OS or user calls the send packet

function passing an ID of type unsigned integer and a payload of type unsigned long. These values

are then placed in a frame with start and stop delimiters and transmitted across the UART1 transmit

line.

 28

Xbee Network

ISR Triggered on
Incoming Byte/

Char

End Of Packet ?

Registered ID ?

Push to OS or Main
Buffer (non-OS)

Add to
Buffer

Dump
BufferNO

No

Yes

Yes

Output on UART1

Format Packet
(Start Delimiter , ID,

Payload , End Delimiter)

Call Function
‘Send Packet’

Figure 3.4 – Wireless Driver Input\Output Block Diagram

The register and un-register functions are straightforward. The OS calls either function passing the

respective ID as a parameter. Then in both cases, the ID is compared against the current ID array. In

the case of registering an ID, if the ID is not found a free slot is located and the ID recorded. With

un-registering IDs the ID, if found, is replaced with a placeholder value representing an open

position. In both the register and un-register functions if the desired condition is not met an error is

returned.

If any of the send, receive, register or un-register functions encounter unexpected errors or are unable
to complete an action, an error code is returned. The set of error codes seen in
Table 3.1 were developed to accurately convey the error and to allow a system to respond

accordingly.

 29

Error Code Name Value Description

 WRLS_DRIVER_NOERROR 1 Function completed successfully

 WRLS_DRIVER_ERROR 200 Un-explained error returned

 WRLS_MSGOBJS_FULL 201 Send data error (future use)

 WRLS_MSGID_NOTFOUND 202 Requested ID was not found

 WRLS_MSGDATA_NOTFOUND 203 Requested Data was not found

 WRLS_DUPLICATE_ID_ERR 204 Registering ID was already found

 WRLS_UNREG_ID_ERR 205 Un-registering ID was not found

 WRLS_MSGID_FULL 206 Maximum Number of IDs registered

Table 3.1 – Function Error Codes

3.5 IDEAnix

IDEAnix was developed by Darren J. Brown at the University of Kentucky as a build of the

embedded operating system MicroC/OS-II ported to the 8051 hardware architecture. This build

provides initialization functions required for the Silicon Labs C8051F04x series microcontrollers as

well as a message routing layer (MeRL). The inspiration behind the development of IDEAnix was

the necessity to provide code independence and modularity. In a task driven operating system, as is

provided by the MicroC/OS-II core, user tasks are not aware of other tasks. This feature, in

combination with the message routing capabilities of MeRL, provides a platform that can be fully

reconfigurable and utilized successfully within a fault tolerant system.

MeRL, seen in Figure 3.5, functions by utilizing ID values to filter and broadcast data across the

supplied network, as well as to distribute the data internally. The network type is not specified by

either IDEAnix or MeRL. The only requirement is that the network driver follows the same Driver

API as was specified for CAN.

 30

MeRL

User Tasks and Code

Broadcast Network Driver
(CAN, Wireless)

IDEAnix

Figure 3.5 – Network Software Framework

3.6 Summary

This chapter covered the software designed to support the Tiny Interface Module. The major

components are the CAN and wireless drivers as well as the custom OS build, IDEAnix. Chapter

four will explore the implementation of the module.

 31

4 Implementation

4.1 Introduction

This chapter discusses the specifics of the components derived from Sections 2 and 3. Presentation

of the components follows an order similar to that of the original descriptions. The chapter starts

with the hardware, processor, communications, power, headers/connectors and other hardware of

note. The next section gives detailed specifications for the wireless hardware. Third, the chapter

explains the external contributions, as well as the contributions made as part of this project, to the

software design. The fourth section gives an overview into the various stages and different

techniques utilized for prototype fabrication. The chapter concludes with a summary and comments.

4.2 Overview of Design

As addressed in previous sections, the Tiny Interface Module was designed to provide the base

hardware layer for a light UAV system bus. As seen in Figure 4.1, the final system consists of a

main board providing almost all of the above described functionality with the wireless capabilities

being supplied by the optional wireless daughterboard.

 Input\Output

Servo
(x4)

PCA(s)
GPIO(s)

Microcontroller

Silicon Labs
C8051F041

Communications

CAN UART

SPI I2C

Power System

Voltage Regulator

Power Conditioning

LEDs (x3)
Pushbuttons (x2) JTAG Programming

Figure 4.1 – Tiny Interface Module Hardware Block Diagram

 32

4.3 CAN Module Hardware

This section discusses the specific components and hardware selected for implementation of the Tiny

Interface Module. Table 4.1 lists the Tiny Interface Module’s components, estimated unit costs and

total costs. The pricing information was collected from Digikey Corporation, except for the PCB

board cost which is quoted from PCBExpress for a batch size of 15 modules.

TIMCAN P/N Number Unit Price Total
13 Pin Dual Header 929665-02-13-ND 1.0 3.1140 3.1140

19 Pin Single Header 929647-09-19-ND 1.0 2.0310 2.0310

MCU 336-1206-ND 1.0 15.5700 15.5700

Switch 401-1427-1-ND 2.0 0.4170 0.8340

500mA Voltage Regulator TPS77633D 1.0 1.7500 1.7500

LED (green) L62505CT 1.0 0.2160 0.2160

LED (red) L62501CT-ND 1.0 0.2220 0.2220

LED (yellow) L62507CT 1.0 0.2490 0.2490

CAN transceiver 296-11654-1 1.0 3.0400 3.0400

1.0u Tantalum CAP 511-1467-1-ND 16.0 0.2470 3.9520

10.0u Tantalum CAP 511-1473-1-ND 1.0 0.2830 0.2830

.1u Ceramic CAP PCC1812CT 6.0 0.0740 0.4440

56 Resistor P56ACT-ND 3.0 0.0414 0.1242

120 Resistor P120ACT-ND 1.0 0.0770 0.0770

1K Resistor P1.0KACT-ND 7.0 0.0414 0.2898

10K Resistor P10KACT-ND 2.0 0.0770 0.1540

Level Shifter MAX3233ECWP+G36 1.0 8.8000 8.8000

PCB Manufacture PCBExpress 1.0 20.2000 20.2000

 Total $61.35

Table 4.1 – Parts List and Component Pricing for the Tiny Interface Module (12/4/2006)

4.3.1 C8051F041 Microcontroller

As discussed in Section 2.2.1 the Silicon Laboratories C8051F04x product line was chosen as the

processing base for the Tiny Interface Module. This product line consists of eight versions all with

slightly different functionality or form-factor. Each version features the same core components,

 33

including a 25 mega-instructions per second 8051 core, flash, CAN, 2 UARTs, I2C, SPI,

programmable counter arrays and general purpose input/output. Product numbers ending in an even

number feature a 100-pin thin quad flat pack (TQFP) package; odd numbers represent a 64-pin

TQFP package [20]. Since board space is a premium, and the number of inputs/outputs is limited,

the 100-pin package was not necessary. Therefore, the 64-pin C8051F041 processor, shown in

Figure 4.2, was chosen from the Silicon Laboratories product line. The key feature of the 041 is the

12-bit analog-to-digital converter that provides greater resolution for future applications.

Figure 4.2 – Silicon Labs C8051F041 Microcontroller

4.3.2 Communications

The Tiny Interface Module features four main forms of wired communication including, Controller

Area Network (CAN), Universal Asynchronous Receiver/Transmitter (UART), I2C compatible

System Management Bus (SMBus), and Serial Peripheral Interface Bus (SPI). Both the SMBus and

SPI communications can connect directly to the C8051F041 processor. In order to have CAN

communications or be able to communicate with the UART via a computer or other RS-232 device,

transceivers are necessary.

The communication implementation decisions for development of the Tiny Interface Module

hardware involved the selection and implementation of Controller Area Network (CAN) and RS-232

transceivers. The CAN transceiver, seen in Figure 4.3, is from Texas Instruments. The

SN65HVD230 is a 3.3 volt part so it can function off the same voltage supple lines as the

microcontroller. This part also features a low current standby mode of 370 micro amps. To ensure

 34

that a faulty node does not disturb the rest of the bus this part also features an open-circuit fail safe

and “glitch-free power-up and power-down” [41].

Figure 4.3 – CAN Transceiver

Research into RS-232 level shifters resulted in the selection of the Maxim MAX3233ECWP+G36,

Figure 4.4. This dual RS-232 Transceiver runs off a single 3.3 volt supply, meets EIA/TIA-232

specifications, can transmit at up to 250kbps and has an auto shutdown feature for power savings

[42]. This functionality is provided in a wide SOIC with internal capacitors to save board space and

complexity

Figure 4.4 – Maxim Dual RS-232 Transceiver

Also seen in Figure 4.4 are two unpopulated resistors (R16, R17) these components serve as jumpers

enabling and disabling the level shifting of UART1. This feature was added so that UART1 could

 35

also be accessed directly by components such as the XBee module. If the user desires the level

shifter UART1 resistors R16 and R17 must be populated with 0 ohm short circuits.

The final two provided communications protocols, I2C and SPI, do not need a transceiver or other

enabling hardware. The microcontroller pins are therefore routed to pin headers that will be

discussed in Section 4.3.4.

4.3.3 Power

The power system design for the Tiny Interface Module has three main parts: the voltage regulator to

provide a voltage level usable by the microcontroller, pull-up resistors for interfacing with the target

application, servos, and capacitors to condition the power supplied to the module and its peripherals.

The Tiny Interface Module utilized two models of voltage regulators during the prototyping stage.

The first regulator, a Texas Instruments TPS76533, featured a low quiescent current of 35 micro

amps while sourcing 3.3 volts at 150 milliamps [43]. This part could handle input voltages of up to

13.5 volts. The second voltage regulator, chosen due to the increased current demands of the

wireless daughter module, was also from Texas Instruments. The TPS77533 has features similar to

that of the original voltage regulator. The main difference is its ability to source 500 milliamps

while still maintaining a low quiescent current of 85 micro amps [44]. The final regulator is seen in

Figure 4.5.

Figure 4.5 – Capacitors, Pull-up Resistors, and Voltage Regulator

 36

The second part of the power system design was enabling direct connection of R/C servos to the

board. This required the use of four pull-up resistors, shown in Figure 4.5. Since most servos for

R/C places are six volt parts, it was necessary to provide a way to ‘pull-up’ the 3.3 volt

microcontroller output to the necessary six volts. By predefining the servo pins as open-drain within

the microcontroller, the appropriate pins float to six volts for digital high or are pulled to ground for

digital low outputs.

The final objective was to condition the power entering the board and key components. As

discussed in section 2.2.3 the use of tantalum and ceramic capacitors in the system were intended to

aid in the availability of consistent and stable power. In addition to the added capacitors, which were

dictated by the component specifications, one 1 micro farad tantalum and one .1 micro farad ceramic

capacitor were added to each voltage input into the microcontroller. Also, a series of four tantalum

capacitors were added on the servo power supply lines as seen in Figure 4.5. These capacitors,

currently 1 micro farad each, could be increased in value to provide more consistent power, if later

deemed necessary, on the extremely noisy six volt servo power lines.

4.3.4 Headers/ Connectors

As previously stated, one of the main design features of the Tiny Interface Module is its ability to be

easily integrated into R/C aircraft. This is largely facilitated through the careful selection of headers

and connectors. Seen in Figure 4.6 the header across the top of the board provides JTAG

programming and two level shifted UARTs. The 8-pin header at the bottom left of the board

provides two 4-pin CAN connections; each 4-pin connector having a CAN-high, CAN-low, six volt

power, and ground connection.

 37

Figure 4.6 – Module Headers

The next 4-pin block provides the ability to jumper or isolate the six volt CAN power line from the

six volt lines connecting to the servo headers. Isolating the two power buses gives the ability to

utilize a separate battery or other power supply for module powering and servo control. This is

needed if the servos require a different voltage than comes across the 4-pin CAN connector or if the

servos pull the six volt line below the tolerances of the module’s voltage regulator.

Immediately to the right of the 4-pin block are the four 3-pin servo headers. These headers use the

same spacing and pin order of most R/C servo connectors. The top pin is the data line from the

microcontroller. The middle pin is the six volt line. Finally, the bottom pin is the ground

connection. The remaining pins serve as three general purpose input/output lines (GPIO), a three

volt power supply line for various applications, a 2-pin non-level shifted UART communications, a

3-pin SPI and a 2-pin I2C.

4.3.5 Other Hardware

Along with the required functionality already discussed the Tiny Interface Module also includes two

other features for user convenience. First, the module has three status Light Emitting Diodes

(LEDs), Figure 4.7. The first LED at the top is tied between the 3.3 volt power and ground to show

that the board has power. The other two LEDs are tied to GPIO pins on the microcontroller for user

defined functionality.

 38

Figure 4.7 – Reset Button and Power and Status LEDs

The second convenience feature implemented on the Tiny Interface Module was the addition of two

push-buttons. One push-button (Figure 4.7) acts as a soft reset for the microcontroller. The other

push-button is tied to a pin on the microcontroller to be used as a user defined input.

4.4 Wireless Hardware

Development of the Tiny Interface Module wireless hardware, like all other module components,

went through several revisions. The original concept was to design and fabricate a module

fundamentally identical to the CAN based module. The goal was to find a simple wireless solution

that would allow the CAN transceiver to be exchanged for a wireless transceiver. Due to design

decisions discussed in Chapter 2 however, this solution was not feasible.

Instead a custom daughterboard was developed to accompany the CAN based module. The module

that was chosen to integrate into the daughter board was the MaxStream XBee-Pro 802.15.4/ZigBee

module [34]. A version of this module that operated at 900MHz was selected to avoid unnecessary

interference with the Piccolo Autopilot’s 2.4GHz radio communications. The daughterboard went

through several revisions as seen in Figure 4.8. After much investigation and trial and error, the

simplest solution proved to be the best option.

 39

Figure 4.8 – Wireless Daughterboard Evolution

4.4.1 Daughter Board

The development of the daughterboard hardware involved providing stable electrical and physical

connection for the XBee module. This process consisted of interfacing four pins from the CAN

based module, 3.3 volt power, ground, UART transmit, and UART receive, to the corresponding

pins on the XBee wireless module. The PCB was approximately the same dimensions as the CAN

based module allowing the CAN based modules’ mounting holes to be used to physically secure the

daughterboard. This simple design had two major benefits. First, this provided good connection

between the microcontroller and the XBee module with a minimum of wiring and PCB complexity.

Secondly, due to the simple design, the board could be completely designed, fabricated and

populated in-house, a benefit further elaborated in section 4.6.

The final design is seen in Figure 4.9. It can be seen that the copper traces and solder connections

are isolated to one side of the PCB, eliminating the need for through-hole plating. Jumper wires are

used to electrically connect the daughterboard to the CAN based module. This board can then be

mounted to a Tiny Interface Module using simple nylon bolts and spacers.

 40

Figure 4.9 – Daughter Board Mounted on Module

4.4.2 Module Interface

The XBee module plugs into a one millimeter spacing socket on the daughter board. Though the

XBee module has many optional pins for future expansion, the basic necessary pins are the 3.3 volt

power, ground, and UART transmit and receive. These pins are connected to the large straight-pin

header on the CAN based module. This header has the necessary 3.3 volt, ground, and UART

connections. Care must be taken to ensure that the Tiny Interface Module has not been configured to

level shift the UART1 lines. This is done by un-populating the two 0 ohm resistors identified by the

silk screen as R16 and R17. If this is done correctly, the module can be communicated with and

configured using basic AT commands.

4.5 Software

Though the Tiny Interface Module was designed to be flexible, allowing it to adapt to any light UAV

application, basic hardware initialization and a wireless driver were completed to facilitate the

module’s operation. By providing this functionality as part of the Tiny Interface Module’s

development it allowed the module to be utilized, and tested, independent of the design status of

IDEAnix. In parallel projects software design, of IDEAnix and the CAN driver, was completed by

Darren Brown and Nithyananda S. Jeganathan as part of their respective research at the University of

Kentucky. A simple set of system initializations was needed for the cases without operating systems

 41

in addition to developing a driver for implementing wireless functionality. The code as implemented

and tested on the module is described in chapter 3.

4.6 Fabrication

Basic module fabrication consists of three major steps: board computer aided design (CAD), PCB

prototyping and PCB population. Section 2.2.5 described the hardware versions and revisions

through which the Tiny Interface Module progressed. While the device features were selected and

revised, there was also constant revision to the physical board design. As seen in Figure 4.10, the

Tiny Interface Module PCB board continually increased in component density throughout the

progression. The final populated module measured approximately 1 5/8 inches by 1 3/8 inches by

1/2 inch. This was possible due to improvements in both board manufacturing techniques and the

optimization and reorganization of component placement.

Figure 4.10 – TIMCAN Hardware Board Footprints (Oldest on Left to Newest on Right)

4.6.1 Board CAD

The programs used for development of the Tiny Interface Module were Multisim and Ultiboard.

Multisim is a schematic design program. Functioning similar to most schematic programs, Multisim,

shown in Figure 4.11 A, is used for creation and connection of the various components of the

module. These schematics are then exported directly into Ultiboard. Once in Ultiboard, shown in

Figure 4.11 B, the components are placed and the copper connections between associated pins are

made. From Ultiboard, the final design can then be exported as a gerber file to be utilized in the

PCB fabrication.

 42

Figure 4.11 – A) Multisim and B) Ultiboard Screen Captures

4.6.2 On-campus PCB Prototyping

During the early stages of the Tiny Interface Module development and final development of the

daughter board, on-campus resources were used for PCB prototyping. First, this process included

importing the gerber files developed in Ultiboard into the milling machine’s custom milling

software. A blank PCB board was then placed in the milling machine seen in Figure 4.12. Two

sided copper PCB boards, meaning the board consisted of a non-conductive layer with a copper on

top and on bottom, were used. It was at this point that all through-holes and vias are drilled for two

sided boards.

 43

Figure 4.12 – ECE Department Milling Machine

After the drilling is completed, the board is removed from the machine. The holes are then treated

with a conductive ink and the board is placed in a plating bath where the combination of current and

the conductive ink forms a copper lining within the holes (Figure 4.13). The board is then dried and

returned to the milling machine where each side’s copper traces are formed. This is done by cutting

narrow gaps on either side of the desired trace isolating it from the rest of the copper layer.

Figure 4.13 – ECE Department Through Hole Plating Bath

The final step of this process is to tin the copper. The tinning process consists of using a tin based

chemical solution to treat the board. The solution reacts with the copper, resulting in a surface that is

tolerant to oxidation and is easier to work with soldering.

 44

4.6.3 Professional PCB Prototyping

There are a number of PCB prototyping options available through the internet. PCBExpress, now

part of Sunstone Circuits, was chosen because it had a history of satisfactory results and provided an

Education Sponsorship Program. The process that PCBExpress uses, as described on the website

[45], involves drilling board holes, applying thin copper deposits within the holes, and applying a

photosensitive dryfilm around the board pads and traces. Next, an electrochemical process is used to

build the copper on the desired surfaces, and then the board is tinned. Finally the dryfilm is removed

and all exposed copper, not protected by the tin, is etched. If the option is purchased, the board, with

exception of the solder pads, has a solder mask applied and then the board is dipped in a tank of

solder coating the pads. Finally, the board is labeled using a silk screening process, and the outline is

cut.

Though professional board fabrication comes at a premium price both financially and in increased

fabrication times, the benefits of material and process consistency are often worth the cost for bulk or

complex PCB fabrication. It is worth noting, however, that for a simple board design like the

wireless daughterboard, in-house manufacturing easily provides a reliable prototype.

4.6.4 PCB Population

Independent of where the PCB was created, the final stage of fabrication is board population. For

the Tiny Interface Module this process was completed using a combination of solder reflow and hand

soldering. Solder reflow involves placing a small amount of solder paste on each component pad on

a side of the PCB. This is done using a solder paste system like the one seen in Figure 4.14. Next

the components for this side are placed using a pick and place machine or by hand using tweezers.

 45

Figure 4.14 – ECE Department Solder Paste System

The board is then placed on the reflow machine. The reflow machine heats and cools the board as it

is slid from right to left across plates of increasing, then rapidly decreasing, temperature (Figure

4.15). This process allows the solder paste to become a liquid and adhere to both the components

and the pads. When the solder is then quickly cooled, the two are bonded physically and electrically

with the hardened conductive solder.

Figure 4.15 – ECE Department Solder Reflow Machine

After verifying that the newly formed solder joints are correct, the next step is to solder by hand the

remaining parts. These parts either could not go through the reflow machine, like the headers, or

they are on the bottom side of the PCB. This process is done using standard hand soldering

 46

equipment such as a soldering iron with a very fine tip, tweezers for holding and placing the small

surface mount parts, and a solder wick for cleaning up or correcting poor connections (Figure 4.16).

Figure 4.16 – Hand-Solder Station

4.7 Summary

This chapter presented the implementations of the hardware and software aspects of the Tiny

Interface Module. The next chapter will present the various types and stages of testing as well as the

results.

 47

5 Testing

5.1 Introduction

Previous chapters have discussed the goals and design decisions for development of the Tiny

Interface Module. This chapter covers the module’s testing process and results. The chapter is

concluded with a future work section and a summary.

5.2 Preliminary Testing

Testing of the Tiny Interface Module was completed in two phases: preliminary and application

testing. Preliminary testing included assessing the Tiny Interface Module’s basic functionality and

performance. From this phase of testing errors in board fabrication and population would be caught

as well as establishing baseline hardware performance data. It was crucial for the module to pass all

of these tests before more complex and sensitive scenarios were pursued.

5.2.1 Bit Flipping, SI Labs Application Example

The basic functionality of the Tiny Interface Module was first testing by utilizing a modified form of

a Silicon Laboratories application example included with the C8051F04x development kit [46]. The

base code was provided by the microcontroller manufacturer as a means to illustrate a working CAN

bus. This served as an appropriate test because part of the module’s design goal was to provide a

standardized coding platform, requiring only minor modifications to utilize existing code libraries.

Key alterations to the application note include utilizing an internal timing source, adjusting the CAN

timing to use the new timing source, and adding a UART output and respective interrupts. The final

key change was to define the module’s input/output pins to toggle on a button press and send a

message over the UART. The test layout can bee seen in Figure 5.1. The CAN bus connects a

Silicon Laboratories C8051F040 development board, running the unmodified application note code,

to a Tiny Interface Module. The development board could be replaced by another module if desired.

The module is connected via RS-232 to a PC for a status display. Finally, a scope probe can be used

to monitor the toggling input/output pins to verify operation.

 48

CAN RS-232

9VDC
6VDC

Scope Probe

C8051F040
Development Board

Tiny
Interface
Module

Oscilloscope
PC

Figure 5.1 – Preliminary Testing Configuration

This test effectively determines if the CAN bus is working, that all solder connections to the

input/output pins of the microcontroller are made, and that the RS-232 level shifter is connected and

functioning.

5.2.2 Servo/Power Noise Testing

Noise introduce to the Tiny Interface Module by the connection of servos was a concern during the

system design. Therefore once the general pin functionality of the module had been tested, it was

important to determine a servo’s true effect. First, using the PCA of the microcontroller, a servo

pulse output was produced. As seen in Figure 5.2 the output, using the pull-up resistors, was

approximately a six volt pulse, between one and two milliseconds in length, every 20 milliseconds.

 49

Figure 5.2 – Servo Pulses from Module

This same pulse was then applied with a Futaba S3010 servo attached, and then placed under load

(Figure 5.3). The resulting pulse did exhibit a change, dropping from approximately 6.2 volts to just

under 6 volts, but the results were still well within servo operation tolerances [47].

Figure 5.3 – Servo Pulse with Load

 50

5.2.3 Range Testing

The last of the preliminary tests focused on the wireless functionality. Observing wireless

input/output and communications between two Tiny Interface Modules is proof enough that basic

code can work. The modules, however, needed to be tested to see the actual throughput and

distances that could be expected. Since the wireless module was chosen to function as part of an

intra-plane network, it was not necessary to determine if the one mile range claimed in the XBee

module’s data sheet was obtainable. A test was instead designed to determine operation at ranges

within 100 feet. Table 5.1 shows the number of missed packets at each range and data rate.

 Range

Data rate 1 meter 10 meters 30 meters
9600 0 0 0
57600 2 2 2
115200 0 7 10

Table 5.1 – Packet Errors Versus Data Rate and Range

The errors are for each ten-thousand packets that were passed between the modules. A packet

consists of 5 bytes, a 1 byte header and 4 bytes of data. It is worth noting that in range tests

conducted at 1 meter and 115200 in a lab, the error rate jumped to 72 per/10000 packets. This most

likely should be contributed to the existence of an 802.11 wireless network [40]. By the design of

the wireless driver, bad packets are ignored, and with the high frequency that servo data is updated,

the occasional bad packet would cause the servo to maintain its current position for an additional

fraction of a second.

5.3 Application Testing

The second phase of Tiny Interface Module testing was done through application testing. This phase

relied on the creation of realistic scenarios to test the modules’ performance. To aid in the credibility

of the test results, it was imperative that the tests utilize as much of the final flight hardware as

possible. Therefore all components were placed within the airframe utilizing the airframe network

cabling and batteries. This phase was also completed in two stages: IDEAnix integration and flight

simulation.

 51

5.3.1 IDEAnix Integration

This stage was completed primarily by Darren J. Brown because, by design, the goal was to quickly

and easily adapt and execute the IDEAnix OS and test application on the Tiny Interface Module.

Integration progressed as anticipated with the Tiny Interface Module providing all of the necessary

hardware. The first step to verify the system was functioning correctly was to use a task to send a

pulse across the CAN and have another module’s task react accordingly. As seen from the

oscilloscope screen capture in Figure 5.4, this interaction occurred successfully. The originating

module transitions from a high to low value on a send, while the receiving module transitions from a

low to high upon receiving data. From this test a baseline IDEAnix CAN transmission delay could

also be established by taking the time delay between the transitions. This means that the minimum

delay for IDEAnix to transmit data from one task to another task on another module was

approximately 640 microseconds.

Figure 5.4 – CAN Transmit vs. Receive Delay

It is important to note that data is strictly baseline. Once future applications and code are developed,

additional testing could be performed to see how the time delay is affected due to a high traffic as

well as lower priority versus higher priority tasks.

 52

5.3.2 Flight Simulation Testing

The successful completion of a flight simulation was the final test of the functionality of the Tiny

Interface Module. The simulation, seen in Figure 5.5, demonstrates that the module can handle the

demands of a flight ready system.

Controller Area Network

TIM Module

Piccolo
Autopilot

TIM Module
(Nose)

TIM Module
(Left Wing)

TIM Module
(Right Wing)

TIM Module
(Tail)

Servo ServoServoServoServo

Ground Station

Figure 5.5 – Simulation Block Diagram

This system includes receiving commands from a ground station, shown in Figure 5.6, to a Piccolo

autopilot. Next, the Piccolo outputs four pulse-width modulation (PWM) servo signals which are

inputted, converted to long integer values, and encapsulated in a CAN packet using a Tiny Interface

Module. Then the four other modules on the wired CAN network are able to receive the packets

with servo position data and control the respective servo(s).

Figure 5.6 – Piccolo Ground Station Running a Simulation for Testing

 53

As with the preliminary testing, the concern for power reliability with the servos attached still

existed. Beyond being able to successfully run flight simulations, additional load was put on the

servos during testing, shown in Figure 5.7, to ensure that the power would not drop below the servo

required 4.8 volts.

Figure 5.7 – Six Volt Power Line with Load

The final aircraft can be seen in Figure 5.8. This system includes (from right to left) a single tail

module controlling the elevator and rudder, two modules in the center of the plane one, bringing in

and parsing the autopilot signals and one controlling the throttle and nose gear, and finally one

module in each wing controlling the respective ailerons.

 54

Figure 5.8 – In Aircraft Testing of Module and CAN Bus

The next stage of this test would be to conduct flight tests. Flight testing is a very time intensive task

that is completely contingent on current weather conditions. When the appropriate conditions are

available the system, from the flight simulations, is flight ready.

5.4 Future Work

Despite the successful test results illustrated above, with any design there is the possibility of future

development. The two major areas of focus would be the addition of a measure of environmental

tolerance and further development of the wireless system. Groundwork for the wireless system has

been laid but a good deal could be done to keep up with the new and ever changing ZigBee protocol,

as well as establishing ways to ensure wireless reliability.

Another area that could be addressed is the development of the Tiny Interface Module’s

environmental tolerance. There exist many options from mounting the module within a hobby box

to utilizing special board, and component, conformal coatings. The hobby box prototype seen in

Figure 5.9 was developed as a preliminary test to further understand the cost, benefits and module

 55

mounting process. This initial test proved to be very costly, time intensive, and sacrificed the

module’s weight and size advantages.

Figure 5.9 – Module Mounted in a Hobby Box

It is still evident, however, that other options exist that may require fewer design sacrifices while still

providing module protection. Ultimately, the addition of environmental tolerance would improve the

robustness and user-friendliness of the Tiny Interface Module.

5.5 Summary

This chapter presented the Tiny Interface Module’s testing and results and areas for future

development. From this data the success of the design can be properly assessed in chapter 6.

 56

6 Summary

The goal of this project was to produce a network processing node for a rapidly, deployable, easily

reconfigurable, light UAV. The first chapter provided the background and motivation of the node

design. In chapter two the hardware design was discussed. Chapter three looked at the design of the

software providing a generic initialization and wireless driver. Next in chapter four the design

implementation was discussed. Finally the test designs and results were discussed. From these test

results it can be concluded that the goals of the design were achieved since:

1 The target UAV system design (Figure 1.7) was successfully designed and tested (Figure

5.5).

2 The CAN communications network was able to deliver control information to the distributed

Tiny Interface Modules and respective servos.

3 The node provided the necessary headers and connections to support direct interfacing with

servos.

4 The node was sufficiently small to be distributed throughout a light aircraft.

5 The module successfully utilized CAN, IDEAnix, and a Silicon Laboratories 8051

microcontroller.

6 Finally, the node provides the foundation for future growth with the wireless network

layer and additional hardware resources.

 57

7 Appendix

C
A

N
R

X
C

A
N

TX
A

V
+

A
G

N
D

A
G

N
D

1
A

V
+1

V
R

E
F

V
R

E
FA

A
IN

0.
0

A
IN

0.
1

A
IN

0.
2

A
IN

0.
3

H
V

C
A

P
H

V
R

E
F

H
V

A
IN

+
H

V
A

IN
-

X
TA

L1
X

TA
L2

M
O

N
E

N
P

1.
7

P
1.

6
P

1.
5

P
1.

4
V

D
D

D
G

N
D

P
1.

3
P

1.
2

P
1.

1
P

1.
0

P
2.

7
P

2.
6

P
2.

5
P

2.
4

P
2.

3
P

2.
2

P
2.

1
P

2.
0

P
3.

7
P

3.
6

D
G

N
D

1
V

D
D

1
P

3.
5

P
3.

4
P

3.
3

P
3.

2
P

3.
1

P
3.

0
P

0.
7

P
0.

6
P

0.
5

P
0.

4
P

0.
3

P
0.

2
P

0.
1

P
0.

0
D

G
N

D
2

V
D

D
2

TM
S

TC
K

TD
I

TD
O

/R
S

T
D

A
C

1
D

A
C

0

U
1

C
80

51
F0

41

IN
1

O
U

T1

U
6

C
M

D
17

-2
1V

G
D

TR
8

IN
1

O
U

T1

U
5

C
M

D
17

-2
1V

Y
D

TR
8

IN
1

O
U

T1

U
7

C
M

D
17

-2
1V

R
D

TR
8

C
A

N
H

C
A

N
L C

A
N

_6
V

3V
re

g

G
N

D
C

A
N

H
C

A
N

L

C
A

N
TX

C
A

N
R

X

G
N

D

3V
re

g

U
2

H
D

R
1X

4

6V G
N

D

C
A

N
L

C
A

N
H

U
4

H
D

R
1X

46V G
N

D

C
A

N
L

C
A

N
H

C
A

N
TX

C
A

N
R

X

3V
re

g

G
N

D

3V
re

g

3V
re

g

3V
re

g

G
N

D

G
N

D

G
N

D

3V
re

g

3V
re

g

3V
re

g

R
ST

3V
re

g

G
N

D

G
N

D
LE

D
ST

A
T1

LE
D

ST
A

T0

LE
D

ST
A

T0

LE
D

ST
A

T1

TC
K

TD
I

TD
O

3V
re

g

G
N

D
R

S0
TX

R
S0

R
X

R
ST

TD
O

TD
I

TC
K

TM
S

U
0T

X
U

0R
X

6V
3V

re
g

G
N

D

PS
H

B
TN

3V
re

g

G
N

D

PS
H

B
TN

6V G
N

D

6V G
N

D

6V

U
1T

X
U

1R
X

U
1T

X

U
1R

X

IO
1

IO
2

IO
3

IO
4

G
N

D

G
N

D

G
N

D

3V
re

g

TM
S

IN1
Out1OUT2

IN2

U
9

K
M

R
22

1

IN1
Out1OUT2

IN2

U
12

K
M

R
22

1

R
1

60
.4

O
hm

_1
%

R
2

60
.4

O
hm

_1
%

R
4

60
.4

O
hm

_1
% C
19

10
0n

F
C

20
1.

0u
F

R
9

1.
00

kO
hm

_1
%R

8 10
kO

hm
_5

%

C
13

1.
0u

F

R
6

1.
00

kO
hm

_1
%R

5 10
kO

hm
_5

%

C
15

1.
0u

F

R
7_

S
E

R
V

0

1.
00

kO
hm

_1
%

C
17

1.
0u

F

R
10

_S
E

R
V

1

1.
00

kO
hm

_1
%

R
11

_S
E

R
V

2

1.
00

kO
hm

_1
%

C
11

1.
0u

F

C
14

1.
0u

F

C
18

1.
0u

F
C

21
1.

0u
F

C
22

1.
0u

F

C
16

1.
0u

FC
10

1.
0u

F

C
9

1.
0u

F

C
6

1.
0u

FC
2 1.
0u

F

C
3

1.
0u

F

C
7

1.
0u

F

R
3

1.
00

kO
hm

_1
%

C
4

10
0n

F
C

1
10

0n
F

C
5

10
0n

F

C
8

10
0n

F

C
12

10
0n

F

J1

H
D

R
2X

2

C
A

N
_6

V
6V G

N
D

D
G

N
D

V
cc R

V
re

f
C

A
N

L
C

A
N

H
R

s

U
10

S
N

65
H

V
D

23
0

G
N

D

G
N

D

G
N

D

C
A

N
_6

V

SC
K

M
IS

O

M
O

SI
IO

0

IO
0

IO
1

IO
2

IO
3

IO
4

IO
5

IO
5

IO
6

IO
6

R
12

_S
E

R
V

3

1.
00

kO
hm

_1
%

6V

SC
K

M
IS

O
M

O
SI

IO
0

IO
1

IO
2

IO
3

IO
4

IO
5

S
C

K
6V 6V

1
6V

2
6V

3
3V

re
g

U
1R

X
M

IS
O

G
N

D
G

N
D

1
G

N
D

2
G

N
D

3
IO

6
U

1T
X

M
O

S
I

U
13

H
D

R
3X

7

R
2O

U
T

/IN
V

A
LI

D
T2

IN
T1

IN
FO

R
C

E
O

N
R

1O
U

T
T1

O
U

T
R

1I
N

V
C

C
/F

O
R

C
E

O
FF

V
+

V
+1

C
1+

C
1-

C
2+

C
2-

V
-

G
N

D
T2

O
U

T
R

2I
N

U
11

M
A

X
32

33
E

E
W

P

U
0T

X

R
S0

R
X

3V
re

g

U
1T

X

G
N

D

U
0R

X
R

S0
TX

U
1R

X

R
S1

TX
R

S1
R

X

TI
M

 V
4_

3
10

/1
2/

/2
00

6

R
13

12
0O

hm
_5

%

G
N

D
/E

N IN IN
1

O
U

T
O

U
T1

FB
/N

C
/R

S
T/

P
G

U
8

TP
S

77
53

3

R
S1

TX

R
S1

R
X

C
24

10
uF

G
N

D

U
3

H
D

R
1X

10

TD
I

TD
O

TC
K

TM
S

3V G
N

D
Tx

0
R

x0 Tx
1

R
x1

SD
A

SC
L

R
16

0O
hm

_1
%

R
17

0O
hm

_1
%

SD
A

SC
L

J2

H
D

R
1X

2

 58

W
ire

le
ss

 D
au

gh
te

r B
oa

rd
 V

2_
0

11
/1

0/
20

06

V
C

C
D

O
U

T
D

IN
D

O
8

IN
5

P
W

M
0

D
N

C
IN

8
/D

TR
G

N
D

A
D

4
/C

TS
/S

LE
E

P
V

R
E

F
A

D
5

/R
TS

A
D

3
A

D
2

A
D

1
A

D
0

U
14

X
be

eP
ro

3V
re

g

U
1T

X
U

1R
X

G
N

D

G
N

D
3V

re
g

U
1R

X
U

1T
X

G
N

D
N

A
N

A
1

U
1T

X
U

1R
X

3V
re

g

U
1

H
D

R
1X

6T
H

 59

 60

 61

8 References

[1] Intelligent Embedded Dependable Architectures Lab, University of Kentucky,
http://www.engr.uky.edu/idea

[2] U.S. Air Force Fact Sheet “MQ-1 Predator Unmanned Aerial Vehicle,”
http://www.af.mil/factsheets/factsheet.asp?fsID=122 , January 2007.

[3] Photos Courtesy of the United States Air Force, http://www.af.mil/

[4] U.S. Air Force Fact Sheet “Global Hawk,” http://www.af.mil/factsheets/factsheet.asp?fsID=175 ,
October 2005.

[5] A. Simpson, O. Rawashdeh, S. Smith, J. Jacob, W. Smith, and J. Lumpp. “BIG BLUE: A High-
Altitude UAV Demonstrator of Mars Airplane Technology” IEEEAC paper #1436. IEEE Aerospace
Conference. Big Sky, Montana. March 2005.

[6] Jean Labrosse, MicroC/OS-II The Real-Time Kernel Second Edition. CMPBooks, 2002.

[7] Photo Courtesy of the University of Kentucky College of Engineering,
http://www.engr.uky.edu/news/archives/2005/AIRCATfirstcompetition.htm

[8] Darren Brown, Tim Arrowsmith, Alicia Mylin, Robert Koontz Adam Fox, Neal Phelps, Daniel
Thomas, Johnathan Rowe, Robert Jones, David Jackson, Adam Groves, and Michael Sama.
“AIRCAT: Airborne Intelligent Research Craft for Autonomous Technology.” 2005 AUVSI Student
UAV Competition Paper

[9] Darren Brown, Craig Collins, Dale McClure, Ala Aldin Meriden, Phillip Profitt, Matt Smith, and
Van Yadack. “University of Kentucky Aerial Robotics Team: 2006 AUVSI Student UAV
Competition Design.” 2006 AUVSI Student UAV Competition Paper

[10] O. Rawashdeh, D. Feinauer, C. Harr, G. Chandler, D. Jackson, A. Groves, and J. Lumpp. “A
Dynamically Reconfiguring Avionics Architecture for UAVs” AIAA-2005-7050. AIAA
Infotech@Aerospace Conference. Arlington, Virginia. September 2005.

[11] O. Rawashdeh and J. Lumpp. “A Technique for Specifying Dynamically Reconfigurable
Embedded Systems” IEEEAC paper #1435. IEEE Aerospace Conference. Big Sky, Montana. March
2005.

[12] Silicon Laboratories, http://www.silabs.com

[13] Freescale Semiconductor, http://www.freescale.com

[14] Micro/sys, http://www.embeddedsys.com

[15] Helicomm, http://www.helicomm.com/

[16] Vaglica, J.J., Gilmour, P.S., “How to select a microcontroller,” Spectrum, IEEE, vol. 27, no. 11,
pp.106-109, 1990.

 62

[17] Robert Bosch GmbH, CAN Specification 2.0, 1991.

[18] G. Chandler, C. Harr, O. Rawashdeh, D. Feinauer, D. Jackson, A. Groves, and J. Lumpp.
“Wireless Extension of an Avionics Bus for Prototyping and Testing Reconfigurable UAVs” AIAA-
2005-7151. AIAA Infotech@Aerospace Conference. Arlington, Virginia. September 2005.
http://www.engr.uky.edu/idea/wiki/lib/exe/fetch.php?id=publications%3Adefault&cache=cache&me
dia=publications:0509_aiaa_chandler.pdf

[19] Corrigan, S., “Introduction to the Controller Area Network (CAN)” Texas Instruments Application
Report August 2002

[20] Silicon Laboratories C8051F04x Datasheet, http://www.silabs.com

[21] Simpson, C., “Linear and Switching Voltage Regulator Fundamentals,” 1995 from
http://www.national.com

[22] XILINX, Appl. Note XAPP623 (v2.1), Feb. 28 2005.

[23] Dean, A., “Embedded Communication Network Pitfalls,” http://www.embedded.com/ , 1997

[24] National Instruments, “FlexRay Automotive Communication Bus,”
http://zone.ni.com/devzone/cda/main

[25] TTA-Group, “TTP – Frequently Asked Questions,” http://www.tttech.com 2004

[26] National Instruments, “Controller Area Network (CAN) Overview,”
http://zone.ni.com/devzone/cda/main

[27] IEEE standard 802.11 – 1999 “Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications,” Reaffirmed June 2003

[28] IEEE standard 802.15.1-2005 “Wireless medium access control (MAC) and physical layer
(PHY) specification for wireless personal area networks (WPANs).” June 2005

[29] IEEE standard 802.16 - 2004 “Air Interface for Fixed Broadband Wireless Access Systems,”
October 2004

[30] Bluetooth Specification “Core v2.0 + EDR,” http://www.bluetooth.org November 2004

[31] Craig, W. C., “ZigBee” Wireless Control That Simply Works,” http://www.zigbee.org

[32] IEEE standard 802.15.4 - 2003 “Wireless Medium Access Control (MAC) and Physical Layer
(PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs),” October 2003

[33] ZigBee Specification Version 1.0, December 14 2004, http://www.zigbee.org

[34] MaxStream XBee-Pro Product Manual, http://www.maxstream.net , July 2006

[35] Freescale Semiconductor MC13201 Datasheet, http://www.freescale.com , 2006

 63

[36] Feldmeier, D. C., “Fast Software Implementation of Error Detection Codes,” IEEE/ACM Trans.
Networking, vol. 3(6), pp. 640-651, December 1995.

[37] Stone, J., Greenwald, M., Partridge, C., Hughes, J., “Performance of Checksums and CRC’s
over Real Data,” IEEE/ACM Trans. Networking, vol.6 no.5, pp. 529-543, October 1998.

[38] Sikora, A. “ZigBee Competitive Technology Analysis,” http://www.zigbee.org

[39] United States Code of Federal Regulations Chapter 1 Part 18.101,
http://www.access.gpo.gov/nara/cfr/waisidx_05/47cfr18_05.html

[40] Sikora, A., Groza, V. F., “Coexistence of IEEE802.15.4 with other Systems in the 2.4 GHz-
ISM-Band,” Instrumentation and Measurement Technology Conference, Ottowa, Canada May 2005

[41] Texas Instruments SN65HVD232 Datasheet, http://www.ti.com , 2002

[42] Maxim Integrated Products MAX3233E Datasheet, http://www.maxim-ic.com , 2004

[43] Texas Instruments TPS76533 Datasheet, http://www.ti.com , 1999

[44] Texas Instruments TPS77533 Datasheet, http://www.ti.com , 2003

[45] PCBExpress Printed Circuit Tutorial, http://www.pcbexpress.com/technical/tutorial.php , 2007

[46] Silicon Laboratories C8051F04x Development Kit User’s Guide, http://www.silabs.com , 2006

[47] Futaba, http://www.futabarc.com

 64

9 Vita

Personal

Birth Place: Evansville, IN, USA
Date of Birth: November 21, 1981

Education

Bachelor of Science (B.S.) in Electrical Engineering, May 2005
Department of Electrical and Computer Engineering
University of Kentucky, Lexington, KY, USA

Work Experience

Research Assistant
08/04 - 12/06
Intelligent Dependable Embedded Architectures (IDEA) Laboratory
University of Kentucky, Lexington, KY

Co-operative Education Student
08/02 – 05/04
ADTRAN, INC., Huntsville, AL

Computer Technician
01/01 – 08/03
Interdisciplinary Human Development Institute (IHDI)

Honors

University Scholars Program
Finalist of the National Co-op of the Year Competition
College of Engineering Academic Scholarship
University of Kentucky Merit Scholarship
Ambassador for the University of Kentucky College of Engineering
Dean’s List
Tau Beta Pi Honor Society
Eta Kappa Nu International Electrical Engineering Honor Society

Publications

Darren Brown, Tim Arrowsmith, Alicia Mylin, Robert Koontz Adam Fox, Neal Phelps,
Daniel Thomas, Johnathan Rowe, Robert Jones, David Jackson, Adam Groves, and Michael
Sama. “AIRCAT: Airborne Intelligent Research Craft for Autonomous Technology.” 2005
AUVSI Student UAV Competition Paper

	A NETWORK PROCESSING NODE FOR LIGHT UNMANNED AIRCRAFT
	Recommended Citation

	Microsoft Word - Thesis formatted_vfinal_nthr.doc

