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Abstract of Thesis 
 

Self referencing SPR sensor by simultaneous excitation of 
long and short range surface plasmon modes 

 
A novel surface plasmon resonance sensor is fabricated to evaluate its use in 

biochemical sensing. The sensor can differentiate between bulk refractive index 

changes and surface binding reactions of interest. There has been a great interest in 

developing sensors to differentiate biological or chemical agents from interfering 

effects, but they still remain in research phase.  In this work, a prism coupler is used 

to simultaneously excite both long and short range surface plasmon modes of the 

sensor. The differing sensitivities of the long and short range modes allow one to 

distinguish surface binding reactions of interest from refractive index fluctuations. In 

this thesis, we have demonstrated the sensor’s self referencing capability by 

detecting the formation of an octadecanethiol self assembled monolayer while 

varying solution refractive index.  

   

KEYWORDS:   Surface-plasmon, Long Range, Short Range, Self-Referencing, 
Sensitivity. 
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Chapter 1 

Introduction 

1.1 SPR Sensor Background 

Surface Plasmon Resonance (SPR) sensors are extensively used as optical sensors for the 

detection of biological and chemical analytes. Due to this, SPR biosensors hold a great potential 

in fields such as food-safety, environmental protection and medicine [1]. SPR biosensors are also 

used in the analysis of biomolecular interactions. Hence SPR biosensors are also used in real-

time monitoring of biomolecules binding to target molecules on the sensor. 

 

A surface plasmon wave is an electromagnetic wave that propagates along the interface of 

certain metals and a dielectric. Metals such as gold, silver and copper exhibit negative real 

permittivity at optical wavelengths. However gold is the most widely used metal for SPR based 

sensors because of its chemical stability and abundant surface functionalization techniques [2]. 

 

Direct excitation of surface plasmons at metal dielectric interface is not possible. The most 

commonly used method to generate a surface plasmon wave is Kretschmann configuration of 

attenuated total reflection (ATR). The principle behind total internal reflection is that light 

incident at the interface between materials of refractive indices n1 and n2 (where n1 > n2) is 

completely reflected beyond a critical angle theta (θ). Surface plasmon resonance occurs when 

these two conditions are satisfied:  

1. The incident angle must be greater than the critical angle  

2. The component of incident light’s that is parallel to sensor surface matches with the wave 

vector of surface plasmon wave.  
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When this happens, the energy of the incident photon is transferred to surface plasmon wave. Fig 

1.1 shows the prism coupler configuration for exciting surface plasmon waves. The prism is used 

to couple some light to SP wave and reflect some light to an optical photo detector. Since an 

evanescent electric field extends away from the metal surface into the surrounding dielectric, 

changes in the optical properties of the dielectric will cause the resonance to shift to a different 

wavelength.                                                                                                                                                                 

               

prism

gold

incident
beam

reflected
beam

surface-plasmon
wave

solutiontarget substance 
bound to surface

    Figure 1.1 Prism coupler configuration used to excite surface plasmon waves 

 

Surface plasmon waves can also be excited by two other systems, grating-couplers and optical 

waveguides [1]. In this work we limit our explanations to the prism coupler based SPR system, 

as we used this system in our work.  

Concept of surface plasmon resonance biosensing:  
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Surface plasmon waves are sensitive to changes in the refractive index of dielectric. This is the 

principle behind SPR biosensors – i.e. binding of a target analyte to immobilzed biomolecular 

recognition element produces a local increase in refractive index at the sensor surface [1]. This is 

demonstrated in Fig 1.2. The theory behind surface plasmon resonance sensing will be explained 

in greater detail in the future sections of this work. 

 
 

                         
Biomolecular  
Recognition element 
Biolayer refractive  
Index, n                                         Metal 
SPW propagation 
constant β 
                                                  

 
Analyte  (concentration C)       
                                       Metal 
 
n → n+∆n 
β → β+ ∆β 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1.2   The local refractive index near the metal surface changes when the target analyte is  
flowing through sensor and binds to the biomolecular recognition element. 
 

1.2 Motivation for self-referencing sensors 

In general, surface plasmon sensors are sensitive to refractive index variations whether they 

result from the binding of target biomolecules to the sensor surface or to interfering effects such 

as non-specific adsorption of non-target molecules by the sensor surface and background 

refractive index variations (due to temperature variations, composition fluctuations etc). Hence 

SPR sensors are dependent on the cumulative effect of refractive index changes in the analyte 

and also to the surface binding interactions of the biological agent. It is difficult to distinguish 

the individual effects of analyte refractive index and the surface binding interaction with only 

one reading. Two channels or two readings are required for the sensor to differentiate between 

 3



the bulk index changes and surface binding changes. This concept of using two readings or two 

channels is known as self referencing. There have been several self referencing methods 

implemented which will be explained in the next section. The method which we implemented 

uses two surface plasmon modes and will be described in detail in section 2.1.1. 

  

1.3 Previous work towards self-referencing sensors 

Surface binding of a target analyte is known as a specific effect, while changes in refractive 

index due to changes in analyte concentrations, temperature variations etc. are known as non-

specific effects. Self referencing separates specific effects from non-specific effects. This 

requires a sensor with at least two different outputs. If the sensitivity of the outputs to specific 

and non-specific effects is different, then the effects can be separated to achieve self-referencing. 

  

Some of these methods used in previous research to create self referencing sensors are described 

below: 

 

One of the self-referencing schemes being used is a planar light pipe configuration approach [3]. 

In this approach, the light source is directed on the sensor substrate at two different locations 

separated by a distance to give rise to two channels. The second channel is functionalized such 

that the analyte will not bind specifically to the sensor surface and so this channel measures non-

specific effects. Surface binding experiments are conducted on the first channel and the second 

channel is taken as reference. 

 However a few disadvantages that are noticed in this approach are: 
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1. Any difference in sensor properties, recognition element surface concentration, or temperature 

between the two locations could yield errors in the reference measurement.   

2. Two separate locations and two separate read outs are required for two channels. 

 

A dual surface plasmon surface sensor approach was suggested by Homola [4] where a thin, high 

refractive index dielectric overlayer covers part of the substrate to spectrally separate sensing 

channels. When light is incident on the substrate and overlaps both regions, the reflection 

spectrum exhibits two dips. The total reflectivity is the sum of composite reflectivities of channel 

without a dielectric overlayer and channel with dielectric overlayer. The specific response of this 

dual channel sensor to surface binding interactions is demonstrated by immobilization of 

biomolecules on one of the channels. It is seen that there is significant change in the spectrum 

dip of this channel due to surface binding. The other channel showed little response to surface 

binding. This dual sensor approach is extended to multichannel capability which will allow more 

sensing channels thereby allowing the sensor to discriminate surface binding from other non 

specific effects. Some of the disadvantages of this dual sensor approach are  

1. Spatial separation of two channels. 

2.  Reduced signal-to-noise ratio because minimum reflection is ½ for any one channel. 

3. Difficult to calibrate because different functionalization chemistries are required for the metal 

and overlayer. 

The separation of surface binding changes from bulk refractive index changes was also 

demonstrated by Homola et al. in [5] by using a high dielectric oxide overlayer covering a part of 

metal surface.  Polyethyleneoxide (PEO) mixed with biotin terminated thiol, i.e. PEO/BAT thiols 

are used as self assembled monolayers (SAM) on metal side and PEO silanes served as self 
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assembled monolayers on metal oxide surface. The concept of self assembled monolayer and its 

use will be explained in greater detail in the future sections of this work. A solution of 

streptavidin was introduced on the metal and metal-oxide surfaces and it was seen that metal 

oxide surface showed very little response to streptavidin solution whereas the metal surface 

showed high affinity for streptavdin adsorption. It is concluded that the metal oxide accounted 

for non-specific adsorption and hence it is subtracted from the response of metal surface to 

extract specific adsorption of streptavidin. This approach followed very complex surface 

functionalization. This is due to the following reasons. 

1.  One-step self assembly was not possible as the PEO silanes also react with metal surface 

leading to inconsistent PEO/BAT SAMs. 

2. Cross Contamination is also possible if PEO/BAT thiols react with PEO silanes. 

 

Multichannel capability is described in [6] by Homola et al. A multichannel surface plasmon 

resonance sensor is demonstrated by first incorporating the dual channel sensor approach 

(mentioned above) with spectral discrimination of sensing channels by using a dielectric 

overlayer covering a part of the metal layer. These two channels account for non specific 

responses of the sensor i.e. refractive index changes due to temperature fluctuations and 

adsorption of non-target molecules to the sensor surface.   Now the sensor is functionalized to 

have multichannel capability by adding two more channels (one with dielectric overlayer 

covering a part of metal layer and other with the absence of dielectric overlayer). The response 

of first two channels is taken as reference to account for non specific response of sensor and the 

response of other two channels allow the extraction of specific response associated with surface 

binding.  
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The self referencing sensor demonstrated here makes use of a prism coupler configuration. This 

configuration uses a single beam with no dielectric over layer. Also, there is no spatial separation 

of sensing and reference channels. When light passes through the prism coupler and through the 

dielectric metal interface it excites two separate surface plasmon modes of the sensor. These two 

modes exhibit different propagation characteristics and these two modes respond differently to 

refractive index and surface binding variations. The self referencing aspect of separating the bulk 

refractive index changes and surface binding changes is thus achieved by exploiting the different 

sensitivities of the two surface plasmon modes. 
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Chapter 2 

Sensor Theory and Design 
 

2.1.1 Principle of Sensor Operation 

A surface plasmon wave or surface plasmon polariton is a TM (Transverse-Magnetic) polarized 

electromagnetic wave which propagates along the interface between dielectric and metal. So the 

magnetic vector of the SPR wave is perpendicular to the direction of propagation and parallel to 

the plane of the interface.  The wave vector of a SPR wave propagating along the interface of 

semi-infinite metal dielectric interface is given by 

m d
sp o

m d

k k
ε ε
ε ε

=
+

 

 Where ko denotes the free space wave vector given by ko = 2π/λ where λ is the free space 

wavelength [7]. εm denotes dielectric constant of metal and εd denotes dielectric constant of 

dielectric.

Surface plasmon waves exist if the real part of εm is less than εd, and this condition is satisfied by 

many metals at optical wavelengths. 

 

The real part of propagation constant determines the phase of the TM wave and imaginary part 

represents losses occurring in the propagation.  The propagation constant of a surface plasmon 

wave on a thin metal with thickness h bounded by two dielectric media (Figure 2.1.1) was 

determined by Burke et al [8]. The derivation below summarizes their treatment and adopts their 

notation.       
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Figure 2.1.1 Dielectric slab surrounding a metal layer of thickness h. 

For waves propagating along x-axis the magnetic field is oriented in the y-direction and is given 

by  

( ) ( )expyH Cf z i wt xβ= −⎡ ⎤⎣ ⎦  

 

where β is the complex propagation constant of SP wave, ω is the frequency, C is normalization 

constant, and f(z) is a z dependence of magnetic field. 

 

From Maxwell’s equations the electric fields can be derived as 

0 0

, y
x z

HiE E
z

β
ωε ε ωε ε yH

∂
= = −

∂
 

The function f(z) in the three media is given by 

 

( ) [ ]

( ) ( ) ( )

( ) ( ) ( ) ( )

1 1

1
2 2 1

2 1

1
3 2 2 1 3

2 1

:   exp ,  0

:   cosh sinh , 0< 
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m
m

m

f z S z z
S

f z S z S z h
S

S
f z S z S S z h z

S

ε
ε

ε ε
ε

ε
ε ε

ε

= <

= + <

⎡ ⎤
= + − −⎡ ⎤⎢ ⎥ ⎣ ⎦
⎣ ⎦

h>

 

Metal 

Dielectric 1 
x 

y 
z

h 

Dielectric 2 
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Note that these equations follow Burke et al. closely, but two errors have been corrected in 

expression for the field profile in the metal.   

Where S1, S2 and S3 are given by 

S1
2 = β2  ε1ko

2, 

S2
2 = β2  εmko

2, 

S3 
2 = β2  ε3ko

2

For the continuity of tangential electric field at z=0 and z=h leads to the transcendental equation 

( )( ) ( )( )2 2
2 1 3 2 2 1 3 2 1 3 3 1 2tanh 0S h S S S S S Sε ε ε ε ε ε+ + + =  

If the slab is symmetric i.e. the refractive index on either side of the metal is identical, it supports 

two modes which have symmetric and anti-symmetric field profiles [8]. If the slab is 

asymmetric, it leads to two surface plasmon modes one which is not completely symmetric and 

one which is not completely anti-symmetric. The two surface plasmon modes are shown in Fig 

2.1.2. It can be seen that one of modes extends deeply into the dielectric and the other mode 

penetrates deeply into the metal film. The mode which exhibits less overlap within the metal and 

has lower absorption loss is termed the Long Range Surface Plasmon (LRSP) mode. The other 

mode which exhibits a higher overlap within the metal and hence greater absorption loss is 

termed the Short Range Surface Plasmon (SRSP) mode. Since the electric field of the short range 

surface plasmon mode is concentrated at the metal surface, the propagation constant is affected 

strongly by surface binding. In the same way, the propagation constant of long range surface 

plasmon mode is affected by the bulk refractive index changes more than the surface binding 

because it extends more deeply into the solution. This forms the basis of our entire work as we 

determine to separate the surface binding effects from the bulk refractive index changes using 
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these two modes based on the fact that the short range mode is more sensitive to surface binding 

than the long range.  

 

In this work, Teflon AF, an amorphous flouropolymer is used as a buffer layer. It has excellent 

optical properties and has a refractive index close to water [9]. The thickness of gold film is 

55nm. The refractive index of Teflon AF as a function of wavelength was determined by Lowry 

et al. [9].  The refractive index of Teflon AF at visible and near infrared wavelengths can be 

determined using a simple Cauchy formula fit. The Cauchy formula states the relation between 

refractive index and wavelength as 

                                           n =   1 + A1 (1+ B1 / λ2) where A1 and B1 are constants [10].                                 
                         
We plotted the refractive index of Teflon AF with wavelength using this Cauchy formula fit in 

Figure 2.1.3. The refractive index of gold as a function of wavelength is obtained from 

measurements of variable angle spectroscopic ellipsometer (VASE) measurements done by J.A 

Woolam Co. These measurements were confirmed using our own gold samples as detailed in 

Appendix. Also shown in Figure 2.1.4 is the dispersion relation for light incident from a BK7 

prism at an angle of 63.9 degrees. It can be seen that the dispersion curves of these two modes 

intersect with the dispersion curve of prism coupled beam at two distinct points, the long range 

coupling taking place in visible region and the short range coupling taking place in near infrared 

region. The curves do not account for any perturbation of the surface plasmon modes by the 

prism or substrate. 
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Figure 2.1.2 Calculated magnetic field profiles of the long- and short- range surface plasmon modes 
supported by a 55 nm thick gold film between dielectrics with refractive index of 1.33. The fields of the long-
range (symmetric) mode penetrate deeply into the dielectric allowing for sensitive measurement of 
background index changes. The fields of the short-range (anti-symmetric) mode are concentrated at the metal 
surface for better detection of surface binding. 
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Figure 2.1.3 Refractive index of Teflon AF in the wavelength range of 500-1000nm 
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Figure 2.1.4 Calculated dispersion relations for the long-range (LRSP) and short-range (SRSP) surface-
plasmon modes of a 55-nm thick gold thin film surrounded by a medium with the refractive index of Teflon-
AF.   Points of maximum coupling to the surface-plasmon modes are indicated at the intersection of the 
curves. 
 

2.1.2 Calculating Reflection Spectrum 

Fig 2.1.5 shows the prism coupling configuration for our experiment set up. Our goal is to plot 

the TM reflection spectrum of the sensor and to derive the reflection and transmission 

coefficients as a function of wavelength. 
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Figure 2.1.5 Prism coupler configuration for simultaneously launching long and short range surface plasmon 
waves. 
 
When light propagates through different layers, the angles of propagation in these layers are 

dependent on the refractive indices of these layers. The relation between angle of propagation 

and refractive index in two media is given by Snell’s law 

( )
( )

21

2 1

sin
sin

n
n

θ
θ

=  

Where n1 and n2 are the refractive indices of medium 1 and medium 2 respectively and θ1 is the 

angle of incidence and θ2 is the angle of propagation at the two media. 

 

For a TM polarized wave, the reflection coefficient is the ratio of reflected magnetic field 

component parallel to surface and the incident magnetic field parallel to surface.  The reflection 

coefficient is given by 
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n2 cos(θ1)n1cos(θ2) 

                                               r   =       ──────────── 

n2 cos(θ1)+ n1 cos(θ2) 

The transmission coefficient is the ratio of transmitted magnetic field component parallel to 

surface and incident magnetic field parallel to surface. 

The transmission coefficient is given by 

                                                                   2  n1 cos(θ1) 

                                            t   =            ──────────── 

n2 cos(θ1)+ n1 cos(θ2) 

The power (or intensity) of reflected and transmitted is given by square of the reflection or 

transmission coefficients. 

                                                           R = |r|2 

                                                           T = |t|2 

 

We used Transmission matrix (T-matrix) theory to calculate the net reflection and transmission 

for this prism coupling setup. [11] 

 

For the interface between two layers with different refractive indices the T-Matrix is given by 

                                                                         [ 1/t    r/t 

                                                     T       = 

                                                                           r/t   1/t] 

Now, if the wave has to travel a length L in the second layer, the corresponding T-matrix is given 

by 
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                                                                          [ejβL        0 

                                                     T       = 

                                                                   0      e-jβL] 

 

Where β is the propagation constant of the wave inside the layer and L is the distance the wave 

propagates. 

 

So for a dielectric block of length L the resultant T-Matrix is given by multiplying the individual 

T-Matrices 

[ejβL/t      r/tejβL 

                                                                              T = 

                                                          r/te-jβL  e-jβL /t] 

 

The main advantage of the T-matrices is that more complicated structures can be modeled simply 

by matrix multiplying the individual components. 

 

In our case (Figure 2.1.5) light propagates through prism, dielectric buffer layer, metal, adsorbed 

layer, and finally through the solution. If  nprism, nbuffer, nmetal, nlayer, nsolution denote the refractive 

indices of prism, buffer material, metal layer, adsorbed layer and analyte solution and tbuffer, tmetal, 

tlayer denote the thicknesses of buffer material, metal layer, adsorbed layers, then according to 

Snell’s law the angle of incidence at different points of interaction is calculated as 

θ01 = asin(sin(θ0)/ nprism) 

Where θ0 is the angle of incidence at air-prism interface and θ01 is the angle of propagation at air-
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prism interface.  Since the prism is an equilateral triangle the relation between θ01 and θ1 is given 

by  

θ1 = θ01 + (60/180)π = asin(sin(θ0)/ nprism) + π /3 

where θ1 is the angle of incidence at prism-substrate interface (Figure 2.1.6). 

                                        

Figure 2.1.6 showing the calculation of angle θ1 at the prism-substrate interface. 

In our case, the refractive index of prism and substrate is same as they are both made up of glass. 

The angles of incidence at buffer-substrate layer, buffer-metal layer, metal-SAM layer and SAM 

layer-analyte interfaces are given by  

θ2 = asin(nprism/nbuffer    sin(θ1)) 

θ3 = asin(nbuffer/nmetal    sin(θ2)) 

θ4 = asin(nmetal/nlayer     sin(θ3)) 

θ5 = asin(nlayer/nsolution sin(θ4)) 

The propagation constants at different layers is calculated as 

k1 = 2πnprism/λ  cos(θ1) 

k2 =2πnbuffer/λ  cos(θ2) 

k3 =2πnmetal/λ    cos(θ3) 

θ0 

θ1 

θ01
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k4 =2πnlayer/λ    cos(θ4) 

k5 =2πnsolution/λ cos(θ5) 

The net Transmission matrix for the sensor setup is given by the matrix multiplication of 

individual T-matrices 

                  [1 0]’                                                               x 

                  T(nsolution, nlayer, θ4, θ5 , k4, tlayer )           x 

T =            T(nmetal, nlayer, θ3, θ4, k3, tmetal )              x  

                  T(nmetal, nbuffer, θ3, θ2, k2, tbuffer )             x 

                  T(nprism, nbuffer, θ2, θ1) 

 

Where the components in the parenthesis denote the variables needed to obtain the T-matrix of 

two layers. 

 

The coefficient of reflection is given by 

                   r = T(2)/T(1); 

 

The coefficient of transmission is given by 

                 t = 1/T(1) 

 

Finally the reflectivity (percentage of reflection) can be calculated as 

 

R = |r|2

The main performance characteristics of a SPR biosensor are sensitivity and limit of detection. 
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Sensitivity is the change in sensor output (wavelength, angle of incidence, intensity etc) of the 

light wave interacting with the SPW wave to either the change in solution index or the 

concentration of bound analyte on the surface. In our case, we define sensitivity in terms of the 

change in the resonance wavelength. This sensitivity can be divided into two components, (1) 

wavelength change due to binding of the analyte to sensor surface and (2) wavelength change 

due to the effect of change in the solution index. To validate this, we simulated the reflection 

spectrum of SPR waves. The point where the incident light wave couples to the SP wave can be 

seen as a dip in the reflection spectrum. In our case we used gold as the metal layer and ethanol 

as the solution.   

Fig 2.1.7 shows reflection spectrum in air showing only one dip in reflection spectrum.   Fig 

2.1.8 shows reflection spectrum with ethanol for three different thicknesses of gold. It can be 

seen there are two dips in reflection spectrum showing Long Range and Short Range spectrum 

with long range peak occurring at lower wavelengths and short range peak occurring at higher 

wavelengths. Although gold thickness is kept constant in SPR biosensing, it can be seen that the 

percentage of reflected light for long range and short range SP waves varies with the thickness of 

gold.  Fig 2.1.9 shows reflection spectrum for 2 different scenarios:  (1) Ethanol as solution and 

(2) Changing Ethanol refractive index by 0.001.  Figures 2.1.10 and 2.1.11 show the enlarged 

long range reflection spectrum and enlarged short range reflection spectrum of Figure 2.1.9 
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Figure 2.1.7: Reflection spectrum without analyte – BK7+Teflon-AF+Gold stack. Teflon thickness-500nm 
and gold thickness-60nm. 

 

Figure 2.1.8: Reflection spectrum for three different thickness of gold. BK7+Teflon-AF+gold+ethanol stack. 
Teflon thickness-500nm and three different thickness of Gold- 50nm(blue curve), 55nm(red curve), 
60nm(pink curve)  
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Figure 2.1.9: Reflection spectrum with ethanol solution.  Pure ethanol solution(blue curve), Refractive index 
of ethanol increased by 0.001(red curve). 

 

Figure 2.1.10: Enlarged Long Range Reflection spectrum of Figure 2.1.9. Pure ethanol solution(blue curve), 
Refractive index of ethanol increased by 0.001(red curve). 
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Figure 2.1.11: Enlarged Short Range Reflection spectrum of Figure 2.1.9. Pure ethanol solution(blue curve), 
Refractive index of ethanol increased by 0.001(red curve). 
 

2.1.3 Sensitivity of Long and Short Range SPW modes 

The sensitivities of long and short range surface plasmon modes can be obtained from the 

reflection spectrum of the sensor. It is to be noted that the Long and Short Range modes have 

different sensitivities for bulk index changes and surface binding. If the response of long range 

and short range surface plasmon mode follows linearly with the surface binding changes and 

bulk refractive index changes, then the long range and short range surface plasmon resonance 

shifts, ∆λLR and ∆λSR are given by 

                                   LR S-LR B-LR BS t S nλ∆ = ∆ + ∆ , and                          

                                   SR S-SR B-SR BS t S nλ∆ = ∆ + ∆                                     
Where SS-LR and SS-SR are the surface binding sensitivities and SB-LR and SB-SR are the bulk 

refractive index sensitivities of long and short range modes respectively. ∆t and ∆nB are the 
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adsorbed layer thickness change and bulk refractive index change respectively. 

  

If the Sensitivities are known, the bulk index change (∆nB) and surface layer thickness change 

(∆t) can be calculated as 

                       LR B-LR SR B-SR

S-LR B-LR S-SR B-SR

S S
t

S S S S
λ λ∆ − ∆

∆ =
−

, and  

                        LR S-LR SR S-SR
B

B-LR S-LR B-SR S-SR

S S
n

S S S S
λ λ∆ − ∆

∆ =
−

.  

Because we measure two resonance shifts to estimate ∆t and ∆nB, predicting limits of detection 

is slightly more involved than for a standard SPR sensor. If we assume the measurement noise 

for ∆λLR and ∆λSR is not correlated, then we can simply add the variances of the terms in the 

numerators of above mentioned equations. The resulting limits of detection (LOD) at three 

standard deviations are given by 

 
 

                         ( ) ( ) ( )
( )

2 2
LR B-LR SR B-SR

2
S-LR B-LR S-SR B-SR

var var
LOD 3 sqrt

S S
t

S S S S

λ λ⎡ ⎤∆ + ∆
⎢ ⎥∆ =
⎢ ⎥−⎣ ⎦

           

 

                        ( ) ( ) ( )
( )

2 2
LR S-LR SR S-SR

B 2
B-LR S-LR B-SR S-SR

var var
LOD 3 sqrt

S S
n

S S S S

λ λ⎡ ⎤∆ + ∆
⎢ ⎥∆ =
⎢ ⎥−⎣ ⎦

           

 
It should also be noted that the dependence of the resonance wavelengths on the product of the 

bound layer and the background index changes can be significant. In such case the long range 

and short range surface plasmon resonance shifts are given by  

                LR S-LR B-LR SB-LRB BS t S n S t nλ∆ = ∆ + ∆ + ∆ ∆ , and  
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                     SR S-SR B-SR SB-SRB BS t S n S t nλ∆ = ∆ + ∆ + ∆ ∆            

Where SSB-LR and SSB-SR describe product dependence of long and short range resonances 

respectively. Although, one must numerically solve this complex set of nonlinear equations to 

determine ∆t and ∆nB from measurements of ∆λLR  and ∆λSR, there will be an improved accuracy 

in the measurements by including this product term. 

 

2.2 Selection of Materials and Refractive Indices 

The next step is to determine the materials that make up the sensor. In our experiments Teflon is 

used as buffer cladding layer, Gold as Metal layer, Ethanol as main solution. This section 

describes few reasons for selecting these materials. 

 

Reason for using Teflon AF: 

The Teflon AF materials have the lowest commercially available index of refraction. Also, they 

are extremely resistant to chemical attack and exhibit low moisture absorption. The transmission 

of Teflon in the wavelength range of our interest from 500-1000nm is shown in Figure 2.1.3.                

 

The primary reason for using Teflon is that refractive indices of different solutions used in our 

experiments such as ethanol, methanol and water match very closely with the refractive index of 

Teflon. This aspect is very important for realization of sensor as self-referencing sensor. In 

addition, Teflon’s chemical stability allows simple integration into bio-chemical sensors. 

 

Reason for using Gold:  
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Gold supports surface-plasmon waves in the visible and near infrared regions. In addition, gold is 

very stable and not reactive with the chemical used. Gold is the most extensively used metal in 

fabricating SPR sensors. 

 

Reason for using Ethanol: 

Ethanol serves as a solvent for the octadecanethiol molecules that will form a self-assembled 

monolayer on the gold surface. The refractive index of ethanol also closely matches with that of 

the Teflon buffer layer, so both SR and LR plasmon waves can be excited. A few other reasons 

are its low cost, its low toxicity, its low tendency to be incorporated into the self assembled 

monolayers and its availability in high purity. 

 

2.3 Initial Sensor Design 

Any sensor design consists of identifying the materials that are used for the sensor. In our 

experiments we used a BK7 prism which is approximately 25.4mm thick. As outlined above, 

Teflon is used as the base cladding layer and it is spin coated to a thickness of 500nm+-10%. 

This is because we found out that we get a good working area for a range of wavelengths where 

the sensor can couple to long range and short range modes. Again as outlined above, gold is the 

metal layer used and its thickness is in the range of 50-60 nm. In this range we found out that the 

reflection spectral dips are very narrow for short and long range modes. When higher thicknesses 

of Gold are used the sensor doesn’t couple to short range modes (red color curve in Fig 2.3.1), 

the reason being the short range modes can not penetrate through the thick layers of gold. When 

lower thicknesses of gold are used the sensor doesn’t couple to long range modes or the short 
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range modes (pink color curve in Fig 2.3.1), within the range of visible to near IR wavelengths 

that can be measured with a silicon detector.  In addition, the prism more strongly perturbs the 

long-range mode in this case. So in our case, we found a very good working area for Teflon 

thickness in the range of 500-600nm and gold thickness in the range of 50-60nm. The blue color 

curve in Fig 2.3.1 shows the reflection spectrum for a gold thickness of 50nm. It can be seen that 

the incident light excites both long range and short range modes. Ethanol is the main solution 

used in our experiments. We ensured that proper care is taken to maintain clean conditions all 

throughout the fabrication process. 

 

Figure 2.3.1: Reflection spectrum for three different thickness of gold. BK7+Teflon-AF+gold+ethanol stack. 
Teflon thickness-500nm and for three different thickness of Gold.  50nm(blue curve), 100nm(red curve), 
32nm(pink curve) 
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Chapter 3 

Sensor Fabrication 
 

3.1 Spin coating of Teflon 

To begin the sensor fabrication process the BK7 substrate is first cleaned with isopropyl alcohol 

and acetone and blown dry with nitrogen.  

1. Preparation of Teflon solution: The Teflon AF-1600 solution is mixed with FC-40 Fluorinert 

solvent in the ratio of 2:1 by volume. Both Teflon AF-1600 solution and FC-40 solvent are 

obtained from Dupont Inc. 40ml of Teflon AF-1600 solution is mixed with 20ml of FC-40 

solvent and the solution is stirred with a magnetic stirrer for about 15-20 minutes. The stirrer is 

cleaned with isopropyl alcohol and DI water before its use. The roughness of the spin coated 

Teflon layer was 5nm approximately. Initially when Teflon was used with FC-77 solvent the 

roughness was measured to be 50nm. So there was approximately 90% reduction in the 

roughness of Teflon layer when FC-40 was used as the solvent. The next step is to spin coat this 

Teflon solution on BK7 substrate. 

 

2. An adhesion promoter is spin coated prior to spin coating Teflon to improve the adhesion of 

Teflon to the substrate. The adhesion promoter used is 1H, 1H, 2H, 2H perfluorodecyltriethoxy 

silane (Lancaster Synthesis, Inc.). Adhesion promoter solution is made by mixing 2% of 

adhesion promoter with 95% ethyl alcohol and 2% water. This adhesion promoter is spin coated 

at 1000RPM. After this, the sample is baked at 112C for 10mins. This is done to evaporate any 

residual solvent. 
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3. The Teflon solution is next spin coated at a speed of 1000RPM and then the sample is baked at 

112C for 10mins. After this the sample is baked again at 180C for 5mins. This combination 

produced a thickness of 1.5microns. The spin speed is varied to produce desired thickness of 

Teflon. A spin speed of 2000RPM produced 1.2micron thick Teflon layer. The thickness of 

Teflon layer we wanted to achieve is 500nm, we found out that a spin speed of 3000RPM gives 

us desired thickness of 500nm for Teflon layer.  

 

3.2 Deposition of Gold 

Gold is deposited on the Teflon layer using electron beam evaporation. The e-beam evaporator is 

shown in the Figure 3.2.1. Gold deposited is obtained from Kurt Lesker, Inc which is 99.9% 

pure. A minimum pressure of 2.0x10-6 is used as the starting point before gold deposition and a 

voltage of 8kv is maintained throughout the evaporation. The thickness of gold in our 

experiments is in between 50-60nm.  

 

                                          

Figure 3.2.1 Electron-beam evaporator (University of Kentucky) 
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3.3 Measurement of layer thicknesses 

Thickness of Teflon: 

We used an ellipsometer to measure the thickness of Teflon layer. The ellipsometer is operated at 

633nm wavelength and provides three different angles of incidence on the substrate. Since BK7 

is only weakly reflective, we spin coated the Teflon layer on a silicon substrate simultaneously, 

maintaining the same spin speeds and processing conditions as that of the BK7 sample. The 

Teflon layer thickness is measured with the ellipsometer. The thickness is also confirmed with 

stylus profiler at various positions. This is done by scratching the Teflon layer on silicon 

substrate. The thickness measured by stylus profiler is approximately 10% higher than that 

measured by the ellipsometer.  It should be noted the real thickness of Teflon layer on sensor 

might be few nanometers off from the thickness of Teflon layer on silicon. 

 

Thickness of Gold: 

The same procedure is used for measuring gold thickness i.e. by taking a silicon sample and 

evaporating gold on the silicon substrate. This sample and the sensor are coated with gold in the 

e-beam evaporator at the same time. This ensures that gold is deposited on these two samples at 

identical thickness. Again, the ellipsometer is used to measure thickness of gold on silicon 

substrate, because of the non-reflecting nature of BK7 substrate. This ellipsometer comes with 

software which takes the readings for an angle of incidence and gives the thickness and 

refractive index of layer of interest as output. Appendix section describes how we determined the 

refractive index of gold. 
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Chapter 4 

Experimental Section 

4.1 Experimental Setup 

Figure 4.1.1 shows the schematic diagram of surface plasmon resonance sensor used in our 

setup.  

 

 

Figure 4.1.1 Schematic diagram of a self-referencing surface-plasmon resonance sensor.  The sensor consists 
of a thin gold film on a buffer layer that is closely matched to the solution in interest. 
 

The sensor substrate is placed in contact with a BK7 equilateral prism (Esco Products, Inc.) 

using a BK7 specific index matching fluid (Cargille, Inc.).  The prism and sensor are clamped in 

a custom made ultra-high molecular weight polyethylene (UHMW) flow cell sealed with either a 

neoprene or polytetrafluoroethylene (PTFE) gasket.  Liquids are introduced to the sensor surface 

through PTFE tubing using a vacuum pump and liquid trap.  The trap consists of a 500mL side-

arm Erlenmeyer flask maintained at 17 kPa using a rotary vacuum pump and a bleed valve.  A 
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polyetheretherketone (PEEK) micro-metering valve (Upchurch Scientific) is used to control the 

liquid flow rate. 

 

The flow-cell/sensor assembly is mounted on a custom designed variable angle optical reflection 

measurement system. Light from a halogen lamp (Model DH-2000, Ocean Optics, Inc.) is 

introduced into the reflection measurement apparatus using a 200 µm core multi-mode optical 

fiber.  A collimating lens directs the light from the fiber through a calcite Glan-Taylor polarizer 

(ThorLabs, Inc.) and into the prism.  The polarizer is mounted in a rotation stage that can be 

adjusted such that either a TE or TM wave is incident on the sensor.  The reflected light is 

collected by another lens and coupled to a multimode fiber which routes it to a computer 

controlled spectrometer (Ocean Optics model HR-4000).  The figure 4.1.2 shows the snapshot of 

sensor setup 

flow cell

 

 Figure 4.1.2 Picture of the optical system with major component labeled.   
 

polarizer 

angle adjustment
output 
fiber 

prisminput fiber
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Introduction of Self Assembled Monolayers: 

A self assembled monolayer is a layer one molecule thick that can covalently bind to the surface. 

A very good example is the reaction of alkanethiols with gold [12]. Another example of self 

assembled monolayers is the reaction of silanes with glass [13]. Some of the potential 

applications of self assembled monolayers are in the areas of lubrication, corrosion protection, 

photolithographical or electrical resists, and sensing [12]. In our work, octadecanethiol (ODT) is 

used as the SAM layer. 

 

Reason for using octadecanethiol as monolayer: 

Octadecanethiol monolayers form as a uniform single molecule thick layer. ODT has a single 

sulphur atom which binds very strongly to gold and this process is essentially irreversible. ODT 

is a large hydrocarbon molecule (18 carbon atoms) which yields a relatively thick (~2 nm) 

surface layer. 

 

It was seen that octadecanethiol layer reaches a thickness of 2nm in 4.3 minute incubation time 

[14] and this value was taken as the standard for the thickness of octadecanethiol in all our 

experiments. We also tried to measure the thickness of ODT layer on gold using ellipsometer. 

Although we were not able to derive the exact thickness from ellipsometer readings, we were 

able to determine that the values were different compared to the gold layer without the ODT 

layer. 

4.2 Description of Experiment 

The TE reflection spectrum is taken as reference for all measurements. Once the spectrum is 
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referenced, the polarizer is rotated to TM (90 degrees shift) to view the functioning of the sensor. 

The reflection spectrum can be viewed using Ocean Optics software.  We also designed Labview 

software to plot the peak wavelengths of the spectrum in real time. 

 

The outline of our experiment is as follows: 

1. Initially when there is no ethanol solution flowing through the flow cell, there is no coupling 

of surface plasmon waves. 

2. When ethanol is flowed through the cell, long and short range surface plasmon resonances 

appear, as seen in Figure 4.2.1. The output of Labview software plots these long and short range 

peak wavelengths as a function of time. Even though there is some disturbance that can be 

noticed when ethanol is initially flowed, the output becomes steady after sometime (less than a 

minute). 

3. After the spectrum become steady, the flow stream is switched to a solution containing 95% 

ethanol and 5% methanol. There is a momentary loss of surface plasmon waves soon after this 

switch occurs, but it is difficult to notice. This is due to the formation of bubbles in the flow cell 

during this switch. The short and long range peaks shift to shorter wavelengths Figure 4.2.2. This 

is due to the effective refractive index decrease as a result of dilution of ethanol concentration 

with methanol.  

4. Once again after the spectrum becomes steady, the flow steam is switched to a solution 

containing 90% ethanol and 10% methanol. The short and long range peaks shift to still shorter 

wavelengths Figure 4.2.2. It can be noticed that the sensitivity is positive in these regions. After 

this, the solution is reverted back to ethanol. The long and short range waves return to the same 

wavelengths as before with the ethanol solution. 
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5. This is the main step in the whole experiment where octadecanethiol is introduced. So the flow 

stream is switched to octadecanethiol solution so that the octadecanthiol binds to gold surface 

resulting in the formation of monolayer. As the ODT layer starts binding to the gold surface 

there will be a gradual increase in the surface coverage of monolayer and because of this there is 

a gradual increase in the peak wavelengths of long and short range SP waves Fig 4.2.2, step4. As 

a concession to ellisometric characterization of SAMs in the literature, we represent fractional 

coverage in terms of average thickness. After the spectrum becomes steady (5 minutes) the 

thickness of monolayer is approximated to be 2nm.  

6. The flow stream is switched back to ethanol solution. The peak wavelengths for long and short 

range modes shift to higher wavelengths as compared to the peaks when the sensor is without the 

monolayer. 

This is the critical point in our work as the output spectrum proves that the sensor is sensitive to 

surface binding.  

7. The flow stream is switched to 95% ethanol and 5% methanol solution and 90% ethanol and 

10 % methanol solutions the only difference being this time the ODT layer is bound to surface. 

The sensor works as expected as can be seen in Figure 4.2.2.  

9. In the end, ethanol is flowed through the sensor and the experiment is ended. The spectrum 

comes back to the original position as in Figure 4.2.2. 
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Figure 4.2.1 Experimental reflection spectrum showing coupling to both  long range and short range surface 
plasmon modes. 
 

 

Figure 4.2.2 Top-Plot of long range resonance wavelength with time.  Bottom-Plot of short range resonance 
wavelength with time. 
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Precautions for the future:  

1. The sensor setup should be fairly undisturbed during the whole experiment. Even slight 

movements can vary the flow rate of the solution and the angle of incidence.  

2. Making sure that the flow tube is immersed completely in the beakers thus preventing any 

unwanted bubbles. 

3. It is suggested that the experiment room contains as minimal external light interacting with the 

sensor as possible. 

4. All the solutions used must be maintained at room temperature in our case, as temperature has 

effect on refractive index of the solution. 

5. Transferring the flow cell between different solutions must be done quickly to avoid bubbles 

in the flow cell.  

 

4.3 Experimental Results 

Experiment 1: The first experiment sought to measure the sensors response to varying solution 

refractive indices. This is demonstrated by mixing water with ethylene glycol solution. The 

Figure 4.3.1 shows the sensor response (experiment) when ethylene glycol is mixed with water. 

The blue curve is when there is no solution flowing through the sensor. The red curve shows the 

reflection when pure water is flowing through the sensor. After sometime, a solution containing 

40ml water and 2ml ethylene glycol is introduced through the sensor (pink curve in Figure 4.3.1) 

and soon after that a solution containing 40ml water and 4ml ethylene glycol (black curve in 

Figure 4.3.1) is flowed through the sensor. 
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From Figure 4.3.1, it can be observed that the peaks of long and short range modes shift to 

higher wavelengths because of increase in refractive index of water-ethylene glycol mixtures. 

 

Figure 4.3.1: Sensor response (experiment) to refractive index change by adding ethylene glycol to water 
 

Experiment 2: In this experiment we demonstrated that the temperature of the solution changes 

the refractive index of the solution and the sensor responds to these refractive index changes. We 

used water to demonstrate this and the reflection spectrum can be seen in figure 4.3.2. 
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Figure 4.3.2 Reflection spectrum at different temperatures of water.  Blue curve shows the reflection 
spectrum when there is no solution present.  
 
Water at 80C is passed through the sensor and the peaks are measured. 

As this water cools down, the subsequent peaks are measured after 1, 2, 3 and 5 minutes. As 

water gradually cools down with time, the refractive index of water also changes. The refractive 

index of water increases as the temperature of water decreases in the range between 80-20C. The 

refractive index of water increases by 0.00988 as it cools down from 80-20C. From the figure it 

can be seen the curves do not drift apart too much, as the refractive index change of water with 

temperature is very small (Figure 4.3.2). Figure 4.3.3 and 4.3.4 shows the enlarged reflection 

spectrum of Fig 4.3.2 for long range peaks and short range peaks. In the case of both long and 

short range SP waves, the peaks occur at higher wavelengths as water cools down. 
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Figure 4.3.3: Long range mode response to temperature of water. water at 80C(red curve),  After 1 minute of 
cooling down of water(pink curve), After 2 minutes of cooling down of water(black curve), After 3 minutes of 
cooling down of water(green curve), After 5 minutes of cooling down of water(yellow curve). 
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Figure 4.3.4: Short range mode response to temperature of water. water at 80C(red curve),  After 1 minute of 
cooling down of water(pink curve), After 2 minutes of cooling down of water(black curve), After 3 minutes of 
cooling down of water(green curve), After 5 minutes of cooling down of water(yellow curve). 
 

Main Experiment: 

In this section we compare the experiment and simulation results for the main experiment. 

The long range and short range peaks for experiment and simulation are shown in Table 4.3.1 

and Table 4.3.2 respectively. The experimental results are obtained from Figure 4.2.2. For 

simulation we used the following values: angle of incidence of 67 degrees, Teflon thickness of 

500nm and gold thickness of 60nm, ODT thickness of 2nm after 4.3 min incubation time [14], 

refractive index of Teflon[9], refractive index of gold[J.A. Woolam Co.’s measurements, as 

supplied with their VASE ellipsometer], refractive index of ODT[14] and refractive index of 

ethanol-methanol mixtures[15]. 
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Comparison of long range resonance peaks between experiment and simulation: 

Peak Resonance wavelength Experiment(nm) Simulation(nm) 

100% Ethanol without SAM 649.5 633 

95% Ethanol+5% Methanol without SAM 648 632 

90% Ethanol+10% Methanol without SAM 644.5 631 

100% Ethanol with SAM 651.5 634 

95% Ethanol+5% Methanol with SAM 650 633 

90% Ethanol+10% Methanol with SAM 648 632 

Table 4.3.1 Long Range mode  peaks from experiment and simulation 
 
Comparison of short range resonance peaks between experiment and simulation: 

Peak Resonance wavelength Experiment(nm) Simulation(nm) 

100% Ethanol without SAM 900 939 

95% Ethanol+5% Methanol without SAM 894 919 

90% Ethanol+10% Methanol without SAM 884 903 

100% Ethanol with SAM 903 959 

95% Ethanol+5% Methanol with SAM 898 938 

90% Ethanol+10% Methanol with SAM 892 922 

Table 4.3.2 Short Range mode  peaks from experiment and simulation 
 
For Long Range and Short Range SP waves, there is a maximum of 6.5% offset between 

experimental results and simulation. 
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Reasons that might explain this offset include 

1. Angle of incidence is not determined accurately. Even a 0.001 degree error in the angle 

measured can make a significant difference. 

2. The thickness of gold is not determined accurately. 

3. We observed a change in thickness of Teflon after evaporation of gold. 

Figure 4.3.5 shows the reflection spectrum from simulation and Figures 4.3.6 and 4.3.7 show the 

enlarged reflection spectrum of Figure 4.3.5 for Long Range peaks and Short Range peaks. 

 

Figure 4.3.5 – Reflection spectrum from simulation   BK7+Teflon-AF+Gold+ODT+varying concentration of 
Ethanol. Teflon thickness-500nm, gold thickness-60nm, ODT thickness-2nm. Blue curve - 100% ethanol 
without ODT, red curve – 95% ethanol+5% methanol without ODT, pink curve 90% ethanol+10% methanol 
without ODT, black curve – 100% ethanol with ODT, yellow curve – 95% ethanol+5% methanol with ODT, 
green curve 90% ethanol+10% methanol with ODT. 
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Figure 4.3.6 Enlarged Long Range Reflection spectrum of Figure 4.3.5. Blue curve - 100% ethanol without 
ODT, red curve – 95% ethanol+5% methanol without ODT, pink curve 90% ethanol+10% methanol without 
ODT, black curve – 100% ethanol with ODT, yellow curve – 95% ethanol+5% methanol with ODT, green 
curve 90% ethanol+10% methanol with ODT. 

 

Figure 4.3.7 Enlarged Short Range Reflection spectrum of Figure 4.3.5. Blue curve - 100% ethanol without 
ODT, red curve – 95% ethanol+5% methanol without ODT, pink curve 90% ethanol+10% methanol without 
ODT, black curve – 100% ethanol with ODT, yellow curve – 95% ethanol+5% methanol with ODT, green 
curve 90% ethanol+10% methanol with ODT. 

 43



4.4 Analysis and Discussion 

From the output spectrum the following points can be observed. 

1. The sensitivity of long range and short range modes is positive in the wavelength range 

observed. 

2. The long and short range modes respond differently to bulk index and surface binding 

variations. 

3. The sensor is stable for at least tens of minutes at a time. 

4. Even though noise is part of any spectrum output, it is found to be very minimal here. 

6. Also, the SPR sensor is highly sensitive to bulk refractive index changes and surface binding 

changes.   

 

The sensitivities of long range and short range modes for surface layer thickness change and bulk 

refractive index change are calculated by numerically solving the linear equations in section 

2.1.3 for ∆t and ∆nB. We determined the refractive index change to be 0.00133 between pure 

ethanol and 5% methanol in ethanol [15]. Because the sensor performs more linearly over this 

small index range, we choose this as our calibration point, rather than the 10% methanol in 

ethanol. The data of Whitesides et al. suggests that the ODT monolayer thickness will be 2.0 nm 

after the 4.3 minute incubation time is adopted here [14]. Thus, we choose this bulk refractive 

index change and surface-layer thickness change as our calibration points. 

 

The bulk index sensitivities for LRSP and SRSP for the linear model are found to be 

1600nm/RIU and 4100nm/RIU respectively. It can be seen that the sensitivity of short range 

mode to bulk index change is higher than that of long range mode. This is attributed to more 
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closely matched dispersion relations of the short range surface plasmon and the incident light in 

the prism coupler. 

  

The surface-binding sensitivities for LRSP and SRSP are 1.1nm/nm-thickness and 2.2nm/nm-

thickness respectively. It can be seen that the higher sensitivity of short range mode is again 

attributed to more closely matched dispersion relations and enhanced surface field strength. The 

difference in sensitivities further ensures the effectiveness of the self-referencing scheme.  

 

We also compared the sensitivities of bulk refractive index changes and surface binding changes 

for experiment and simulation. The theoretical sensitivity values are derived from the values 

obtained from simulated reflection spectrum Figure 4.3.5. It can be seen that the initially 

calculated theoretical values are significantly different from the  

 

 
Sensitivities Bulk(nm/RIU) Surface(nm/nm) 

 SR LR SR LR 

Experimental 4900 1600 2.2 1.1 

Theoretical 15000 752 1.5 0.5 

Theoretical(corrected)  3900 1900 1.7 1.2 

 

 

 

 

 
 
 
 
Table 4.4.1: Comparison of sensitivities for bulk refractive index changes and surface binding changes 
 
experimental values. The reasons for this offset are explained in the previous section. We 

corrected these theoretical values by curve fitting the reflection spectrum of Figure 4.2.1 to 

determine the angle of incidence, thickness of Teflon and gold. We found the values to be 

 45



68.4 degrees, 350nm and 46nm for angle of incidence, thickness of Teflon and gold respectively. 

The theoretical corrected sensitivities are shown in Table 4.4.1 and we find a considerably closer 

match with experimental sensitivities for bulk refractive index and surface binding changes. 

 

While surface and bulk sensitivities for the linear model provide points of comparison for other 

sensors, modeling a nonlinear sensor response provides more effective self-referencing. 

Specifically, we account for the sensor’s response to the product of film thickness and 

background refractive index change as incorporated in section 2.1.3. The sensitivity parameters 

for both the linear and nonlinear models are summarized in Table 4.4.2. It can be seen that the 

sensitivity values for linear model are the same as the experiment sensitivity values in Table 

4.4.1. 
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Figure 4.4.1 plots the solution index and average surface layer thickness as a function of time during 
monolayer formation. The labeled regions indicated the solution flowing and correspond to those in Fig. 
4.2.2: (1) EtOH, (2) 95% EtOH + 5% MeOH, and (4) 3.2 mM octadecanethiol (ODT) in EtOH. Note that the 
self-referencing sensor can distinguish the change in surface-layer thickness from the change in background 
refractive index due to the presence of ODT or methanol in solution. 
 
The solution index and surface layer thickness are simultaneously determined by numerically 

solving the nonlinear set of equation in section 2.1.3 for ∆t and ∆nB. Fig. 4.4.1 plots the solution 

index and average surface layer thickness as a function of time during monolayer formation. It 

can be observed that the solution index measurement is not largely affected by the gradual 

increase in monolayer thickness. In addition, the measured surface layer thickness is largely 

unaffected by the solution index change due to the presence of either ODT or methanol in 

solution. So our self-referencing scheme performs as expected.  We observe slight deviations in 

the thickness measurement when the solutions are switched. This is because of the non-linear 

response to solution index that is not fully accounted by the six coefficient model presented 

above.  
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Although we have yet to optimize the self-referencing sensor design, it is helpful to investigate 

the limits of detection for both surface-layer thickness changes and for solution index changes. 

We find LODs at 3-standard deviations of the baseline response of an equilibrated sensor. The 

baseline measurement of pure ethanol indicates the LOD for solution index to be 4.6x10-5 RIU at 

100msec per sample. Assuming uncorrelated noise, this translates to a LOD of 1.4x10-5 RIU for 

a standard 1 sec sample time. The surface-layer LOD is estimated as 0.21 nm for 100msec 

sampling and 0.065 nm for standard 1 sec sampling. Because the sensor is noise limited LOD 

would improve with increased optical power, with better coupling efficiency, and with reduced 

spectrometer noise. 

 

Linear Model Nonlinear Model 

Mode Sb(nm/RIU) Ss(nm/RIU) 

LRSP 1600 1.1 

SRSP 4100 2.2 
 

Mode Sb(nm/RIU) Ss(nm/RIU) Ssb(nm/nm.RIU) 

LRSP 1600 1.1 0.037 

SRSP 4300 2.0 -181 
 

Table 4.4.2 Sensitive parameters of long range and short range modes for bulk refractive index and surface 
binding changes from linear and non-linear model 
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Chapter 5 

Conclusions and Future Work 
 
A self-referencing surface plasmon resonance sensor was demonstrated using a structure that 

supports both short and long range surface plasmon modes. Simultaneous excitation of both short 

and long range modes is advantageous because 

1. No dielectric overlayer is required to separate sensing and reference channels. 

2. In other self referencing schemes two separate read-outs are required for sensing and reference 

channels, whereas here just one read-out is sufficient. 

3. The sensor is straightforward to fabricate and the fabrication process is very repeatable. 

4. The reflection spectrum of this sensor is consistent with the dimensions of sensor parameters 

such as thickness of gold, thickness of Teflon layer etc, for example whenever the sensor is 

fabricated with a thicker gold layer, we observed that the long range mode peaks in the reflection 

spectrum shift to higher wavelengths and the short range mode peaks in the reflection spectrum 

shift to lower wavelengths and vice-versa. 

 

We conclude that the self referencing sensor presented in this work can be used to distinguish 

bulk refractive index changes and surface binding interactions. We have demonstrated this self 

referencing capability by exciting long and short range surface plasmon modes and by binding 

octadecanthiol to the gold layer from an ethanol solution. 

 

Suggestions for Future Work: 

1. Future work can be based on fabricating self referencing sensor that are optimized for higher 

sensitivities. The thicknesses of gold and Teflon can be varied for optimal performance and the 

 49



experiments can performed with various analytes.  

2. One of the most challenging steps we encountered in the whole process is to estimate the 

thickness of Teflon AF layers and gold layers. This problem is further compounded by the 

erroneous readings of gold thickness on the crystal monitor of e-beam evaporator. Accurate and 

precise determination of the thickness of Gold and Teflon layers can be done by taking the 

sensor to a place where there is proper equipment to measure the thicknesses. 

3.  Different self assembled monolayers can be used in our experiments and their surface binding 

phenomenon can be studied.  

4. The variable angle spectrometer that is used is not precise enough to determine the angle of 

incidence. This is very important in simulations as the sensor is very sensitive to the angle of 

incidence to a degree of 0.001. 

 

The self referencing scheme presented above can be taken as basis and further progress can be 

made by using complex analytes or by binding various self assembled monolayers to gold. Even 

though the goal might not be to determine the absolute values i.e. to determine the exact 

thickness of binding layer but instead it can be used to see how the sensor response differs when 

studying the surface binding of different monolayers on gold. 
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Appendix 
 

Determination of Refractive Index of Gold 

To determine the refractive index of gold we used a Variable-Angle Spectroscopic Ellipsometer 

(VASE J.A. Woolam Inc.) at the University of Louisville. This value is again confirmed with our 

single angle, single wavelength ellipsometer readings.  We used a 2 layer stack on silicon 

substrate with PMMA as the second layer and gold which is used in the sensor is deposited on 

the top of PMMA layer. We prepared three different samples having three different thickness of 

gold. The VASE ellipsometer can emit light in the range of wavelengths from 300-1000nm and 

the real and imaginary part of refractive index of gold is plotted for three different angles of 

incidence using VASE software. These reading are compared with our Gartner ellipsometer 

readings for these 3 samples at a wavelength of 632.8nm and the compared values for these 3 

samples are shown in tables A1, A2, A3 respectively. 

 

10nm Sample VASE ellipsometer UK Gartner ellipsometer 

Real part of refractive index(n) 0.1880 0.1880 

Imaginary part of refractive 

index(k) 

-3.5681 -3.5668 

Thickness of gold(d in nm) 20.019 19.632 

Table A1 Shows comparison for 10nm sample 
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20nm Sample VASE ellipsometer UK Gartner ellipsometer 

Real part of refractive index(n) 0.1882 0.1827 

Imaginary part of refractive 

index(k) 

-3.4569 -3.4673 

Thickness of gold(d in nm) 32.357 32.834 

Table A2 Shows comparison for 20nm sample 
 
 
30nm Sample VASE ellipsometer UK Gartner ellipsometer 

Real part of refractive index(n) 0.1788 0.1770 

Imaginary part of refractive 

index(k) 

-3.3931 -3.3596 

Thickness of gold(d in nm) 34.049 35.568 

Table A3 Shows comparison for 30nm sample 
 
The graphs of n (real part of refractive index of gold) & k (real part of refractive index of gold) 

from VASE ellipsometer for wavelength range between 300nm – 1000nm for 10nm sample, 

20nm sample and 30nm sample are shown in Figures A1, A2, A3 respectively. The 3 different 

green curves represent experimental readings for 30, 50, 70 degrees angle of incidence and the 

red curve represent the generated readings by VASE ellipsometer software. 
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Figure A1 Left figure shows real part of refractive index(n) and right figure shows imaginary part of 
refractive index(k) for 10nm sample. 
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Figure A2 Left figure shows real part of refractive index(n) and right figure shows imaginary part of 
refractive index(k) for 20nm sample. 
 

For 30nm target gold thickness sample: 
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Figure A3 Left figure2 shows real part of refractive index(n) and right figure shows imaginary part of 
refractive index(k) for 30nm sample. 
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