
University of Kentucky University of Kentucky

UKnowledge UKnowledge

University of Kentucky Master's Theses Graduate School

2004

FUNCTIONAL ENHANCEMENT AND APPLICATIONS FUNCTIONAL ENHANCEMENT AND APPLICATIONS

DEVELOPMENT FOR A HYBRID, HETEROGENEOUS SINGLE-CHIP DEVELOPMENT FOR A HYBRID, HETEROGENEOUS SINGLE-CHIP

MULTIPROCESSOR ARCHITECTURE MULTIPROCESSOR ARCHITECTURE

Sridhar Hegde
University of Kentucky, hedge@uky.edu

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Hegde, Sridhar, "FUNCTIONAL ENHANCEMENT AND APPLICATIONS DEVELOPMENT FOR A HYBRID,
HETEROGENEOUS SINGLE-CHIP MULTIPROCESSOR ARCHITECTURE" (2004). University of Kentucky
Master's Theses. 252.
https://uknowledge.uky.edu/gradschool_theses/252

This Thesis is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted
for inclusion in University of Kentucky Master's Theses by an authorized administrator of UKnowledge. For more
information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/gradschool_theses
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

ABSTRACT OF THESIS

FUNCTIONAL ENHANCEMENT AND APPLICATIONS DEVELOPMENT FOR A
HYBRID, HETEROGENEOUS SINGLE-CHIP MULTIPROCESSOR

ARCHITECTURE

 Reconfigurable and dynamic computer architecture is an exciting area of research
that is rapidly expanding to meet the requirements of compute intense real and non-real
time applications in key areas such as cryptography, signal/radar processing and other
areas. To meet the demands of such applications, a parallel single-chip heterogeneous
Hybrid Data/Command Architecture (HDCA) has been proposed. This single-chip multi-
processor architecture system is reconfigurable at three levels: application, node and
processor level. It is currently being developed and experimentally verified via a three
phase prototyping process. A first phase prototype with very limited functionality has
been developed. This initial prototype was used as a base to make further enhancements
to improve functionality and performance resulting in a second phase virtual prototype,
which is the subject of this thesis. In the work reported here, major contributions are in
further enhancing the functionality of the system by adding additional processors, by
making the system reconfigurable at the node level, by enhancing the ability of the
system to fork to more than two processes and by designing some more complex
real/non-real time applications which make use of and can be used to test and evaluate
enhanced and new functionality added to the architecture. A working proof of concept of
the architecture is achieved by Hardware Description Language (HDL) based
development and use of a Virtual Prototype of the architecture. The Virtual Prototype
was used to evaluate the architecture functionality and performance in executing several
newly developed example applications. Recommendations are made to further improve
the system functionality.

KEYWORDS: Reconfigurable Computing, System on a Chip, Embedded Systems,
 Multi-Processor System

 Sridhar Hegde
 12/15/2004

FUNCTIONAL ENHANCEMENT AND APPLICATIONS DEVELOPMENT FOR A

HYBRID HETEROGENEOUS SINGLE-CHIP MULTIPROCESSOR

ARCHITECTURE

By

Sridhar Hegde

Dr. J. Robert Heath
(Director of Thesis)

Dr. YuMing Zhang

 (Director of Graduate Studies)

12/15/2004

RULES FOR THE USE OF THESES

Unpublished theses submitted for the Master’s degree and deposited in the University of
Kentucky Library are as a rule open for inspection, but are to be used only with due
regard to the rights of the authors. Bibliographical references may be noted, but
quotations or summaries of parts may be published only with the permission of the
author, and with the usual scholarly acknowledgments.

Extensive copying or publication of the theses in whole or in part also requires the
consent of the Dean of the Graduate School of the University of Kentucky.

A library that borrows this thesis for use by its patrons is expected to secure the signature
or each user.

Name Date

THESIS

Sridhar Hegde

The Graduate School

University of Kentucky

2004

DESIGN ENHANCEMENT AND APPLICATIONS DEVELOPMENT FOR A

HYBRID, HETEROGENEOUS, SINGLE-CHIP MULTIPROCESSOR

ARCHITECTURE

THESIS
__

A thesis submitted in partial fulfillment of the requirements for the degree of Master of

Science in Electrical Engineering in the College of Engineering at the University of
Kentucky

By

Sridhar Hegde

Lexington, Kentucky

Director: Dr. J. Robert Heath, Associate Professor of Electrical and Computer

Engineering

Lexington, Kentucky

2004

MASTER’S THESIS RELEASE

I authorize the University of Kentucky Libraries to reproduce this thesis in whole or in
part for purposes of research

Signed: _________________________________

Date: 12/15/2004

 iii

ACKNOWLEDGEMENTS

The following thesis, while an individual work, benefited from the insights and direction

of several people. First, my Thesis Chair, Dr. J Robert Heath, exemplifies the high

quality scholarship to which I aspire. Next, I wish to thank the complete Thesis

Committee: Dr. J Robert Heath, Dr. Hank Dietz, and Dr. Bill Dieter. Each individual

provided insights that guided and challenged my thinking, substantially improving the

finished product. In addition to the technical and instrumental assistance above, I

received equally important assistance from family and friends. Finally, I wish to thank

the respondents of my study (who remain anonymous for confidentiality purposes). Their

comments and insights created an informative and interesting project with opportunities

for future work.

 iv

TABLE OF CONTENTS

Acknowledgements .. iii
List of Tables .. vi
List of Figures.. vii
Chapter One : Introduction

1.1 Background... 1
1.2 HDCA Concepts ... 4
1.3 Goals and Objectives of the Thesis... 6
1.4 Thesis Summary.. 7

Chapter Two : Background and System Details
2.1 HDCA and Related Background Work... 9
2.2 PRT Mapper.. 12
2.3 Multi-Function Queue... 15
2.3.1 FIFO Block .. 16
2.3.2 Rate Block.. 17
2.4 The Computing Elements ... 18
2.5 The CE Controller... 21
2.6 Interface Controller... 23
2.7 The Multiplier and the Divider CEs.. 28

Chapter Three : Design Methodology and Modifications
3.1 Design Methodology... 32

3.1.1 Problem Definition... 32
3.1.2 Requirements definition... 33

3.2 Design Flow Approach ... 33
3.3 Modifications to the First Phase Prototype... 38

3.3.1 PE Controller ... 38
3.3.2 Interface Controller.. 39
3.3.3 Crossbar Interconnect Network ... 41
3.3.4 Input Rom for the Data .. 42
3.3.5 Multiplier CE ... 43
3.3.6 Dynamic Load Balancing Circuit .. 43
3.3.7 Memory-Register Computer Architecture CEs ... 44

3.4 Second Version (Phase) HDCA System... 46
Chapter Four : Virtual Prototype Development

4.1 The Virtual Prototype ... 49
4.3 FPGA Based Chip Resource Utilization Reports ... 50

4.3.1 Device Utilization report for the Multiple Forking Application...................... 50
4.3.2 The Delay and Timing Summary Report – Application One 51
4.3.3 Device Utilization Report for Un-pipelined Integer Manipulation Algorithm 51
4.3.4 Delay and Timing Summary Report – Application Two................................. 52

4.4 Timing Constraints Definition for Post Implementation Simulation...................... 53
Chapter Five : Functional Enhancements to the HDCA

5.1 Dynamic Node Level Reconfigurability... 54
5.1.1 Introduction and Concept... 54

 v

5.1.2 Assignment Policy and Implementation .. 55
5.2 Multiple Forking ... 65

5.2.1 Introduction and Concept... 65
5.2.2 Implementation .. 66
5.2.3 Post Place n Route Simulation Validation of an Application with Multiple
Forking.. 67

Chapter Six : Example Applications Development, Testing and Evaluation for
Enhanced Fully Functional HDCA

6.1 Application One: Acyclic Integer Averaging Algorithm.. 77
6.2 Acyclic Application Two – 2x 2 Matrix Multiplication Algorithm 87
6.3 Acyclic Application 3 – 3x3 by 3x2 matrix multiplication algorithm with
performance evaluation and gate count comparisons ... 104
6.4 Application Four – Acyclic Pipelined integer manipulation algorithm................ 129
6.5 Complex Non-Deterministic Cyclic Value Swap Application 158

Chapter Seven : Conclusions and Recommendations
7.0 Conclusion .. 185
7.1 Recommendations... 186

Appendix A.. 188
Appendix B .. 332
References.. 354
Vita ... 358

 vi

LIST OF TABLES

Table 2.1, Instruction Set of the Memory-Register CEs... 19
Table 2.2, Token Formats Available for the HDCA System.. 26
Table 2.3, Physical Addresses of the Modules in the Prototype....................................... 27
Table 3.1, New Token Format for the Command Token of the HDCA 40
Table 4.1, Device Utilization Summary for Application One .. 50
Table 4.2, Device Utilization Summary for Application Two.. 52

 vii

LIST OF FIGURES

Figure 1.1 : High Level Architecture of the DPCA.. 3
Figure 1.2 : Process Flow Graph for a Typical Application ... 7
Figure 2.1a : A High Level Diagram of the original HDCA .. 10
Figure 2.1b : Basic Process Flow Graph Structures. .. 11
Figure 2.2 : Example Process Flow Graph. .. 12
Figure 2.3 : Token Format for the HDCA .. 12
Figure 2.4 : Process Request Token mapper Circuit Diagram.. 14
Figure 2.5 : Multifunctional Queue .. 15
Figure 2.6 : FIFO Block Functional Diagram... 16
Figure 2.7 : Rate Block Functional Diagram. ... 17
Figure 2.8 : Memory Register Computer Architecture - CE0 and CE1............................ 20
Figure 2.9 : CE controller for 16-bit unpipelined Memory Register CEs 21
Figure 2.10 : Explanation of Hold and Join Concept.. 22
Figure 2.11 : Interface Controller State Machine for the CE.. 23
Figure 2.12 : Divider CE. To be CE2 in the Latest Version HDCA................................. 28
Figure 2.14 : Multiplier CE used in the HDCA.. 31
Figure 3.1 : Design Methodology for the HDCA System. ... 35
Figure 3.3 : Changes to the PE Controller Showing the Additional Multiplexer M5 39
Figure 3.4 : Control Logic for the Interface Controller Module....................................... 41
Figure 3.5 : Crossbar Interconnect Network for the Revised HDCA............................... 42
Figure 3.6 : Simple Application 1 for the HDCA system... 44
Figure 3.7 : Modified Memory Register Computer Architecture as it exists now 45
Figure 3.8 : An Enlarged Figure of the CE Controller Showing all its Functional Units. 46
Figure 3.9 : Block Diagram of the Second Phase HDCA System.................................... 47
Figure 4.1 : Timing constraints for Post Implementation Simulation 53
Figure 5.1a : Dynamic Node Level Re-configurability .. 55
Figure 5.1 : Two Threshold Tokens and Eight Command Tokens being input into the

System... 57
Figure 5.2 : Process 1 Executed for the 4 Command Tokens and “Prog_Flag” being set 60
Figure 5.3 : Threshold Flag Set for CE1 and Queue Depth Increasing for CE1 61
Figure 5.4 : Both Thresholds set and Standby CE Reconfiguring.................................... 62
Figure 5.5 : Standby CE Kicking in to take in the Additional Load on the System......... 64
Figure 5.6 (a), (b) and (c) : Different Flow Graph Topologies... 65
Figure 5.7 : Application Flow Graph for Multiple Forking.. 67
Figure 5.8 : One Command Token of x”01010003” for the Multiple Fork Application.. 69
Figure 5.9 : Values of x”02” being Input into the System.. 70
Figure 5.10 : Token for P3 Issued and P2 Completes Execution 71
Figure 5.11 : The Dummy Process P3 and the Instruction for Multiplication.................. 72
Figure 5.12 : Process P4 and P5 Successfully Executing ... 73
Figure 5.13 : Join Operation - Subtraction is Performed Leading to x”0000” at x”2E” .. 74
Figure 5.14 : Final Result is Displayed at the Proper Location .. 75
Figure 6.1 : Integer Averaging Algorithm .. 78
Figure 6.2 : Process P1 being done by CE0.. 80
Figure 6.3 : Input Values Stored at Consecutive Locations.. 81

 viii

Figure 6.4 : P2 and P3 being Done Simultaneously by CE0 and CE1 82
Figure 6.5 : Join Operation of P2 and P3 to P4 being done by CE0................................. 83
Figure 6.6 : Average of the k Numbers being Computed by the Divider CE................... 84
Figure 6.7 : Final Result of Algorithm being Displayed in Process P6 by CE0............... 85
Figure 6.8 : Matrix Multiplication Operation for Application two................................... 87
Figure 6.10 : 2 sets of the First Four Values in Matrix A are Inputs into the System 91
Figure 6.11 : Process P2 and P3 being done by CE0 and their Results being Stored....... 92
Figure 6.12 – Process P4 executed by CE0 .. 94
Figure 6.13 : Processes P5 and P6 executed by CE0 and their Results 95
Figure 6.14 – Process P7 being executed by CE0 and the Results Being Displayed 96
Figure 6.15 : Processes P8 and P9 being Executed by CE0 ... 97
Figure 6.16 : Process P10 being Done by CE0. It Computes Component C21 98
Figure 6.17 : Processes P11 and P12 done by CE0 .. 100
Figure 6.18 : Process P13 Computing the Last Component C22..................................... 101
Figure 6.19 : All Results with their Data Locations in the Shared Data Memory.......... 102
Figure 6.20 : Number of Elements in the Data Rom vs. Dimensions of Input matrix ... 104
Figure 6.21 : Process Flow Graph for Asymmetric Matrix Multiplication of Application 3

... 107
Figure 6.22 : First 5 Values of the Matrix A being Input Through the Data ROM........ 109
Figure 6.23 : Last Four Values of the First Set of Data Stored at Locations Ending at

“09”hex ... 110
Figure 6.24 – Second set of Data for Matrix A, Starting at “OC” hex 111
Figure 6.25 : Last 4 Data Values for Second Set of Matrix A, Ending at “14” hex 112
Figure 6.26 : P2, P3 and P4 with Results, “16”, “2” and “12” Unsigned on “mult_dbug”

... 113
Figure 6.27: P5 Being Done to Calculate C11. .. 114
Figure 6.28 : Processes P6, P7 and P8 being executed by CE 0..................................... 116
Figure 6.29 : P9 Computes Sum of Products C12 stored at “61”hex in Data Memory.. 117
Figure 6.30 : Process P10, P11 and P12 – Multiplications being Done 118
Figure 6.31 –Process P13 Computes C21 Stored at “62”hex finally in Shared Data

Memory... 119
Figure 6.32 – Processes P14, P15 and P16 Computing Products 120
Figure 6.33 : Process P17 Calculates C22 Stored at “63”hex Finally in Shared Data

Memory... 121
Figure 6.34 : Processes P18, P19 and P20 are Done by the Multiplier CE 4. 122
Figure 6.35 : Join Operation0Ccomputes C31 Storing it at “64”hex in Shared Data

Memory... 123
Figure 6.36 : P22, P23 and P24 being Performed by CE4.. 124
Figure 6.37 : Last Component of Result being Calculated and Stored as part of P25.... 125
Figure 6.38 : Final Results Being Displayed by Process P26... 126
Figure 6.39 : Plot of Maximum Frequency vs. Speed Grades for Applications 2 and 3 127
Figure 6.40 : Process Flow Graph for Application Four .. 129
Figure 6.41 : Command Tokens for both Copies of Process P1 to CE0 Issued by PRT

Mapper .. 132
Figure 6.42 : P1 – First 5 Values of Copy1 being sent to Shared Data Memory 133
Figure 6.43 - Input of Last 5 Values for Process P1 of Copy 1...................................... 134

 ix

Figure 6.44 : Two Command Tokens being Issued to PRT Mapper for Copy 1............ 135
Figure 6.45 : Command Tokens Issued to CE0 and CE1 by PRT Mapper for Copy1 ... 136
Figure 6.46 : Instructions for Process P1 of Copy 2 and for Process P3 of Copy 1 137
Figure 6.47 : Two Command Tokens Issued to PRT Mapper for Copy 2...................... 139
Figure 6.48 : Two Command Tokens Issued to CEs by PRT Mapper for Copy 2 - P2 and

P3 .. 140
Figure 6.49 : Process P3 for Copy2 of the Application .. 141
Figure 6.50 : Division Operation in the Process of Execution. 142
Figure 6.51 : Division Operation for Process P5 with Results and Issue of Command

Token to PRT Mapper for Copy 1 .. 144
Figure 6.52 : Command Token for Process P4 Issued to PRT Mapper and from PRT to

CE4 for Copy 1 ... 145
Figure 6.53 : Multiplication Operation by CE4 and Command Token Issued to PRT

Mapper for Copy 1.. 147
Fig: 6.54 : Command Token for P5 Issued to PRT mapper and from PRT to CE2 for

Copy 1... 148
Figure 6.55 : Process P5 and Command Token to PRT Mapper for Copy 2.................. 149
Figure 6.56 : Join Instruction for Process P6 of Copy 1... 151
Figure 6.57: Instruction for P7 and Final Results for Copy1 of Application Displayed 152
Figure 6.58 : Result of Multiplication and Command Token Issued to PRT Mapper.... 154
Figure 6.59 : Join Process P6 - Instructions for Copy 2 ... 155
Figure 6.60 : Process P7 with Final Value of the Result Displayed for Copy 2............. 156
Figure 6.61 : Process Flow Graph for the Application Swapping Two Sets of Values.. 158
Figure 6.62 – First 2 Values being Input from Input ROM into the Shared Data Memory

... 161
Figure 6.63 : Values of k and Safe Values of T1 and T2 being Input into the System .. 162
Figure 6.64 : Instructions for Processes P2 and P4... 164
Figure 6.65 : Process P3 being done. First Comparison Will be Performed. 165
Figure 6.66 : Process P5 is done comparing 60 with 90... 166
Figure 6.67 : P2 being Re-Executed as Part of First Feedback Loop 168
Figure 6.68 : First Feedback for P4 done by CE0... 169
Figure 6.69 : Process P3 being Executed For the Second Time 170
Figure 6.70 : Process P5 being Executed Second Time and the Follow on Process P4 . 172
Figure 6.71 : Process P2 Executed 3rd Time and a Value of 90 Stored at Location x”03”

... 174
Figure 6.72 : Process P4 Executed 3rd Time With 70 Stored at Location x”04”............ 175
Figure 6.73 : Process P3 Executed 3rd Time Where 90 is Compared with 100.............. 176
Figure 6.74 : Process P5 done by CE0 where 70 is compared with 60 177
Figure 6.75 : Process P2 Executed 4th time by CE1 to Obtain a Result of Unsigned “100”

... 178
Figure 6.76 : P4 is done by CE1 - 4th Iteration. A Value of Unsigned “60” at x”04” ... 179
Figure 6.77 – Process P3 Final Execution and Token for P6 Issued to PRT Mapper 180
Figure 6.78 – Process P5 Executed for Last Time and Command Token for P6 182
Figure 6.79 – Join Operation P6 with Final Results and Addresses Displayed.............. 183

 1

Chapter One
Introduction

1.1 Background

Despite the increase in computing power and performance of uni-processor

systems, there have been advancements in technology causing the evolution of complex

real and non real time algorithms which demand the increased performance of

multiprocessor systems. Along with such requirements, is the need for a fault tolerant, re-

configurable system, which can dynamically reconfigure to match the needs of compute

intense applications. Such systems often use Field Programmable Gate Array (FPGA)

technology as the basis for their use and design. The ability to configure these chips for a

particular application and then quickly modify a configuration to meet the demands of

new applications is highly desirable. Not only does it allow for application specificity,

but it can also add a certain degree of fault tolerance and re-configurability that

applications may demand. If a particular section of the chip has a fault then the existing

logic can still be modified to execute the applications on the chip.

 An early inception of these concepts originally led to introduction of a tightly

coupled Dynamic Pipeline Computer Architecture (DPCA) [1,2,3,4,5,6,7,8,9] in the early

1980s. The DPCA as originally envisioned was reconfigurable at the application and the

node level. It was reconfigurable at the application level in the sense that it could execute

any application described by a process flow graph. At the node level, the architecture

could dynamically allocate additional processors, on the fly, to a processor node when it

became overloaded and continue execution of the application, as described in [3]. As

indicated in [3], The DPCA architecture was originally developed as a real time

processing system for phased array radar. In addition, the system was designed to

execute any medium to coarse grained application which could be modeled as a single or

multiple input/output, cyclic or acyclic process flow graph of any topology. The

architecture varied from most others at the time because of utilization of hybrid data-flow

concepts and von Neumann type processors. It was a hybrid data flow machine since it

used data flow concepts to migrate data from one process to another but still made use of

a program counter in the actual execution of processes on processors. Additionally,

 2

within the architecture, it is not the arrival of data at a node which causes the processes to

execute but instead the arrival of a control token. The idea was to implement a medium

to coarse grained multi-processor system with no inter-communication between

individual processors. This system would consist of multiple processors that would

communicate only through the exchange of command tokens and shared data memory.

These tokens, upon their arrival into a queue fronting a processor would activate an

appropriate process in the instruction memory of a given processor, commonly referred to

in the architecture as a Computing Element (CE). A functional level diagram of the

original DPCA is shown in Figure 1-1. Each CE in the figure was to be an early 1980s

era mini computer.

 The DPCA architecture functioned by receiving any process flow graph as an

input. The Operating System would analyze this flow graph and allocate processes to

CE's that would optimize the flow graph's execution [3,4,10,11]. The system would then

be initialized and the application execution would start. Throughout an application's

execution, control tokens circulate in the system. As a processor executing in a CE

completes, it writes data needed by successor processes of a flow graph to the shared data

memory of Figure 1.1. It lastly generates a control token which is routed to the CE-

Mapper Process Request Token (PRT) Router and then the Process Request Mapper

functional unit of Figure 1.1. The Process Request Mapper, using hardware; dynamically

balances the load of the system. The CE-Mapper PRT Router and Process Request

Mapper analyze the current load condition of each CE and issue a control token to a CE

holding a copy of the process where wait time for execution of the process is minimal

[3,7,12]. A CE receiving a control token executes the desired process and then, upon its

completion, issues a control token to the CE-Mapper that indicates the next process (es)

to execute. In this system, CE's do not directly communicate but are able to share data

through the CE-Data Memory Circuit Switch [2,3,8,9,27,28]. Applications are thus

executed by executing the process flow graphs that represent them.

 3

For a more intricate explanation of the DPCA system and its operation, see [3].

Figure 1.1 : High Level Architecture of the DPCA

TOKEN

 4

The DPCA system, over time and as Integrated Circuit (IC) technology changed, has

evolved into the single-chip based HDCA or the Hybrid Data/Command Driven

Architecture.

1.2 HDCA Concepts

 As one can see upon review of [1-12], high level simulation and design for

several of the functional units of the DPCA system were developed but no hardware

prototypes were ever developed for experimental testing. Also, no attemps were made to

prototype and test the entire DPCA system. More recently, due to rapid enhancement in

IC technology and heightened interest in high performance single-chip multiprocessor

architectures for embedded and other applications, it was realized that the DPCA was

functionally amenable; with some functional changes and enhancements to being

implemented as a hybrid single-chip heterogeneous multiprocessor system.

Consequently, the DPCA system has evolved into the current HDCA system. The start

was in the 1997 time-frame [13,14]. A number of changes were incorporated while

moving from the DPCA to the HDCA system. Amongst the most significant were,

moving from a distributed system to a single chip architecture or a System On a Chip

(SoC) and making the system reconfigurable at a third, processor architecture level,

which basically implied that the processor used in a Computing Element (henceforth

referred to as a CE), could be dynamically configured from a reference “library” of

processors to optimize execution of portions of the process flow graph. The entire HDCA

concept was envisaged to be implemented in a three stage process. As part of the first

stage, system simulation work [13,14], it was demonstrated that the system could be

reconfigured at the system and node levels. A hardware prototype was not built at that

time due to constraints related to costs and changes in architecture that were to come.

Recent changes in IC technology have spawned reconfigurable logic such as FPGAs with

as many as 5 to 6M gates on a single chip and have also scaled down the costs associated

with manufacturing such chips. An approach was undertaken of first imeplementing and

experimentally testing and validating an FPGA based hardware prototype of key

functional units of the HDCA [15,16]. A first hardware prototype of a very basic and

scaled down entire system HDCA was developed, experimentally tested and it further

 5

validated that the architecture could execute simple and elementary applications

described by acyclic process flow graphs [17].

 As a background to which the research and development of this thesis can

be compared, an examination of various journals and papers reveals different interesting

areas to which reconfigurable and dynamic computing has expanded. One of these areas

is in developing custom architectures. In [18], the researchers show that a custom FPGA

solution outperforms an ASIC based design due to the fact that the logic in an FPGA can

be reconfigured to meet the needs of applications running on the architecture.

 Another area of research is in replacing software modules by the equivalent

hardware circuitry. It is here that the reconfigurable nature of an FPGA is most important

as shown in [19], where one can use the available hardware resources in the FPGA to

accelerate the bottleneck in the software code, thereby gaining some extra performance

benefits. Since the logic elements in the FPGA are programmable, one can customize the

hardware for any application without having the need to make board revisions. Also, the

work done in [19,20,21] show that often implementing an algorithm in hardware instead

of software provides performance improvements.

Recently, combining ASICs with reconfigurable logic has been increasing as

shown in the GARP system of [22,23]. Here the researchers allow the system to

implement certain functions of an application in the reconfigurable logic in order to

obtain enhanced performance. The close integration of ASICs and reconfigurable logic

allows designers to take advantage of fast, general purpose ASICs while maintaining the

flexibility and specificity of reconfigurable logic.

Yet another area where reconfigurable computing is expanding is in space

applications where the focus is on fault tolerant, low power, radiation tolerant design. In

the work done in [24], the researchers have been designing a Reconfigurable Data Path

processor for Space applications where execution agility is maintained by conditional

switching of the data path instead of conditional branching.

Another venture is in the work done at Clemson University [25] where scientific

algorithms are mapped to FPGAs through the use of a 'toolbox' of designs. The

Reconfigurable Computing Application Development Environment (RCADE) system

combines several designs from its library to execute an application in a data flow manner.

 6

Through the use of these techniques, the researchers are able to utilize FPGAs for

scientific applications while maintaining the desired speed of the application.

The work done in [26] is notable, where the researchers present a coarse-grained

dynamically reconfigurable array architectures promising performance and flexibility for

different challenging applications in the area of broadband mobile communication

systems.

Based on the above developments, the HDCA can be classified under the same

category as the work reported in [21, 25 and 26]. Reconfigurable Architectures have thus

touched every aspect of life from Communication, Signal Processing to Space

applications in the recent years. Unlike systems in the work of [21,25], the HDCA system

can analyze an input application's needs at run time and then configure the system for the

most efficient execution. Additionally, the HDCA is designed to be fault tolerant. It is

capable of recognizing failed nodes and reconfiguring itself to continue operations.

Overall, the main contributions to this field are the integration of compiler-type run time

system configuration, with dynamic hardware implementations of software algorithms

and the incorporation of fault tolerance. Typical applications of the HDCA architecture

would thus be in real and non-real time systems, such as in embedded systems for use in

space, phased array radars, and sonar signal processing and different areas of Digital

Signal Processing such as image processing where multiple filtering operations may be

needed to be performed on the same set of input pixels. As an example, one set of the

input data pixels in an image may need to be Sobel edge enhanced and the other may

need to be smoothened.

1.3 Goals and Objectives of the Thesis

The main goal of the research and development done here is to design,implement

and test a second phase functionally working latest model of the HDCA computer

architecture[3,12,13,14,15,16,29] with non complex and complex applications and take it

through a “virtual prototyping” process where a working single-chip post place and route

VHDL simulation model is demonstrated. In order to achieve this goal, several

previously developed system functional units will be used. Some will be significantly

modified and newly designed.A VHDL model of the latest version of the HDCA will be

developed.The system should have multiple Computing Elements (each with a Multi-

 7

function Queue [16]), the Process Request Token Mapper [15], a shared memory that is

accessible by all processing elements [29], and a common Token Bus. An additional goal

is to demonstrate the ability of the system to function with heterogeneous processing

elements and to reconfigure dynamically at the node level at run-time to meet the

additional processor work load requirements and maintain a fault tolerant model of the

system (as mentioned in [3]). Thus the work done here, should demonstrate that the

architecture can process an application dynamically reconfigurable at the node level. The

second phase virtual prototype of the HDCA will not have the restriction of the first

phase system prototype [17] which was that one process could, fork into, atmost two

processes. Removing this restriction will allow the HDCA to execute interesting process

flow graphs, such as the acyclic graph shown in Figure 1.2 below.

Figure 1.2 : Process Flow Graph for a Typical Application

Finally, the work of this thesis demonstrates that the heterogeneous shared

memory HDCA multiprocessor system can be implemented to a single-chip.

1.4 Thesis Summary

 The remainder of the thesis provides the detailed information on the HDCA

system architecture and the steps taken to functionally enhance and upgrade the existing

model to one which can implement process flow graph of any topology and implement

node level dynamic reconfigurability. Chapter Two adresses previous work done on the

HDCA and provides more detail on the system concepts utilized for the same and

 8

explains in great detail, all the core components of the system including the additional

components added while moving to the second phase model of the HDCA. Chapter Three

provides information on the systematic design methodology utilized and the changes

made to the first phase prototype [17] to get it from a partially-functional condition to a

fully functional, synthesizable and implementable second phase “virtual prototype” using

the latest version of the Xilinx ISE 6.2.3i software [30] and Mentor Graphics Modelsim

5.7g SE [31] tool sets.in the new foundation ISE environment. Chapter Four addresses

the “Virtual Prototype” development process and provides information on hardware

usage and timing statistics. Chapter Five introduces the functional enhancements into the

HDCA and provides a detailed insight into the concepts of dynamic node level

reconfigurability and multiple forking. Next, Chapter Six discusses complex real/non-real

time applications developed for the architecture and the simulation results obtained. It

also showcases talks about system scalability at the application level and performance

results. It also justifies the policy decisions taken in the process of demonstrating the

concepts. Chapter Seven concludes by discussing the overall achievements and suggests

directions for the continued advancement of the architecture in the form of

recommendations.

 9

Chapter Two
Background and System Details

2.1 HDCA and Related Background Work

The HDCA architecture as developed and demonstrated in [17] consisted of three

CE’s (each with an instruction memory and CE controller), a Token bus, a Process

Request Token (PRT) mapper with controller and a data bus with shared data memory as

shown in Figure 2.1a. In theory, the CEs used in the system could be any CEs but in

order to demonstrate the heterogeneous nature of the system, two of the CEs used were

16 bit un-pipelined memory register type computer architectures developed as part of

coursework. The third CE was a special purpose Divider CE.It was different in the sense

that it did not have a program counter like the other CE instead it used a controller along

with a special purpose pipelined divider to execute processes that needed to use the

divide operation.

One of the core concepts of the HDCA architecture is its ability to execute any

application that can be described by a process flow graph model. As mentioned in [17], in

this model, data arrival does not trigger process execution as would a pure data flow

graph model. Instead, the arrival of Control Tokens triggers process execution. These

Control Tokens are shorter and thus more efficiently and quickly transmitted between

computing elements than blocks of data. In the process flow model, data is propagated

from one process to another through the use of a shared memory structure. Actions are

performed on that data when processes access the data memory. The HDCA architecture

operates on the principle that applications can be modeled using process flow graphs and

then implemented in a system.

 10

Figure 2.1a : A High Level Diagram of the original HDCA

 The fundamentals of process flow graphs start with their three basic structures as

shown in Figure 2.1b from [3]. A process flow graph can basically consist of linear

pipelines, forks, and joins. In a linear pipeline Control Tokens simply move from one

process to the next in a uniform manner. Data needed by the processes are resident in a

shared memory. Within a fork Control Tokens are distributed to multiple follow-on or

successor processes. Forking may be to two or more processes and may be selective or

non-selective. To potentially increase the amount of parallelism in an application, a

scheme for multiple forking has been introduced to the HDCA. The join is the

complimentary function to the fork where Control Tokens from two or more sources are

selectively or non-selectively combined for execution in one process. The non-selective

fork represents a total broadcast of data along all output arcs, whereas the selective fork

represents a broadcast of data along a single output arc or a subset of output

 11

arcs.Similarly, during the execution of a selective join, only a selected subset of input

arcs to a process is active. A non-selective join is triggered when all the inputs to a

process are active. When these basic structures are combined, any application composed

of multiple processes can be modeled. Figure 2-2 shows a simple process flow graph of

an algorithm operating on integers. In this graph execution begins at “Process P1” with

the input of a set of integers. “Process P1” then forks a subset of this information to

processes P2 and P3 where some integers are summed. Simultaneously, in pipeline

fashion, Process P1 inputs a second set of integers. Processes P4 and P5 then perform

multiplication and division operations on their results to obtain new results which they

transmit to process P6 where an absolute difference is taken. Process P7 finally outputs

the result of this computation to the user. The simulation results and virtual prototype

output waveforms for this application can be found in later chapters of this thesis. The

idea behind the HDCA is to have multiple processors

Figure 2.1b : Basic Process Flow Graph Structures.

Processes on individual Computing Elements (CE's) do not start execution until an

initializing token has arrived. Once a token is received, indicating the location and

availability of data needed by the process, the CE parses it in order to determine the

proper process to execute. This is due to the fact that each CE can hold several processes

in its Instruction memory or only one process. The CE then executes the appropriate

process and upon completion issues the follow-on token(s) for the successor process (es).

 12

These tokens are the sole communication between CE's. . An example Control Token

format is shown in Figure 2.3.

Figure 2.2 : Example Process Flow Graph.

 In this token the Hold Field is used to indicate a requested process that is a

member of a join operation. It is also used by the system in a manner such that the

processor token queue depth represents true wait time for the initiation of a requested

process. The Physical address denotes the destination CE or functional unit for the token.

For example the five different CEs used in the HDCA system presented later have

addresses of two, three, four, five and six The Process Number indicates which process to

execute and the Data Location provides the address of the data in shared memory which

is accessed through the Crossbar interconnect switch as described in [29,32].

Hold Field &

Physical Address
Process Number Data Location

Figure 2.3 : Token Format for the HDCA

2.2 PRT Mapper

An important function of the PRT Mapper (see Figure 1.1 for this dunctional unit in the

DPCA and Figure 2.4 for a more detailed view of its design as enhanced to operate in the

 13

HDCA) is to maintain the dynamic system workload balance. In order to achieve this

goal, it constantly monitors the input control token queue lengths/depths of each CE in

order to determine the most available CE. Control tokens are sent first to the PRT

mapper where it is cross-referenced in a RAM table to determine which CE's are able to

run the desired process. Not all CEs can run all the processes. The workloads of the

eligible CEs are then compared, resulting in a control token being issued to the least

loaded CE i.e the one with the lowest amount of work to be done. In order to determine

which CE has the least amount of work, the concept of shortest wait time is used. The

CE that has the shortest wait time indication in its input control token queue is the most

available since it will service the token before its corresponding CE. Once the eligible

CE's are known, it compares the workloads of those CE's to determine which is the least

utilized. A new control token is then created using the physical address of the selected

CE and the location of the associated data. The newly formed token is then output on the

Token Bus via the OBUS to the appropriate CE. This new control token contains the

Process Number to be executed, the physical location of the destination CE, and the

address of the required data in the shared data memory. The original design capture was

done in Verilog, therefore it was necessary to interpret the code and translate it to VHDL

for the HDCA VHDL model. This was done in the work described in [17].

 In addition to the load balancing function of the PRT mapper, the state of the

system is continuously monitored in order to detect faults and system failures. If a CE

node fails, the system has the ability to shift the work of a failed node to another location.

Additionally, the system is designed with the intent to allow it to reconfigure its

processing elements in the event of a failure or to create additional copies of a resource

that is heavily used. This happens when the tokens have been queued sufficient enough,

that the queue depth reaches a pre-defined “threshold” determined by the user/operating

system. At this stage, an additional processor is dynamically initiated and configured, on

the fly, to “help-out” this overloaded CE and help it reduce the queue depth by executing

some of the follow on processes. This allows the system to dynamically maintain the

desired application system input to output rate and functionality of the system even if

elements fail or workloads are higher than initially and statically predicted from the

application process flow graph.

 14

Figure 2.4 : Process Request Token mapper Circuit Diagram.

 15

2.3 Multi-Function Queue

 When the original architecture (DPCA) was designed as represented in Figure 1-

1, it was a known fact that the CE's would each require a FIFO queue to hold control

tokens that were yet to be parsed and executed. This was so because as tokens are parsed

by the CEs and a particular CE gets busy executing the process, the incoming tokens have

to wait for their turn in the queue. If there was no queue provided, these tokens would be

lost and hence the system would not behave as expected. Gradually, as work progressed

on the development of the HDCA, it was determined that this queue needed some more

additional features. These new features allow the HDCA to operate in both a real time

and non-real time environment, and they support its dynamic node-level re-

configurability. The functionality of the FIFO queue was expanded to implement six

different functions [16]. It can read and write simultaneously, maintain a count of

elements in the queue, and signal when a programmable queue depth threshold is met. It

can also switch the order of any two tokens in the queue and report the net rate at which

tokens are entering or leaving the queue over a programmable time period. A high-level

block diagram of the Multi-Function Queue is found in Figure 2-5. Figures 2-6 and 2-7

show a functional level diagram of the FIFO and Rate blocks respectively.

Figure 2.5 : Multifunctional Queue

 16

2.3.1 FIFO Block

Figure 2.6 : FIFO Block Functional Diagram.

The Queue’s ability to switch the order of tokens can allow the system to give priority

to a given token. If the system sees that a process is waiting for an input token that is

stuck in an unusually long queue, it can re-organize the queue such that the token of

interest is swapped with the token at the top of the queue which is about to be serviced.

This helps to reduce execution time by allowing processes to be executed faster. The

queue achieves this by placing the tokens in a temporary buffer and then swapping them.

The swapping is implemented by an address interchange between the two tokens using

the RAM1 and RAM2

 17

2.3.2 Rate Block

Figure 2.7 : Rate Block Functional Diagram.

Another important feature of the Queue is the "rate" feature as represented by the

Rate Block of Figure 2.7. It measures the Input Token Rate Change (ITRC) over a

programmable time interval (Time_S). This time period indicates the time period over

which to base the calculations. The Queue then determines whether there was a net

increase or decrease in the number of tokens passing through the Queue over the given

time period. The outputs of this function are a sign bit (Sign) and a magnitude (ITRC).

Thus the Operating System can determine the workload of a CE by the number of tokens

arriving or departing a given queue. The original queue VHDL code had to be modified

as reported in the work done in [17,33] to suit the HDCA system.

 18

2.4 The Computing Elements

 The first phase prototype of the HDCA consisted of 3 Computing Elements [17,

33]. Two of the CEs - CE0 and CE1, were 16-bit unpipelined memory-register computer

architectures, developed as part of the graduate program coursework and as shown in

Figure 2.8. In order to show the heterogeneous nature of the system, a special purpose

simple pipelined divider CE was also included in the system. The instruction set for CE0

and CE1 is shown in Table 2.1. Both processors have full functionality: a register set in

the data path available to the assembly language programmer, a Hardware Vectored

Priority Interrupt System (HVPIS) in addition to other functional units such as Arithmetic

and Logical Unit (ALU), a Program Counter (PC) and simple Input/Output (I/O)

structure. The instruction set listed in table 2.1 was felt to be sufficient to test the

functionality of the second phase model of the HDCA. The processor used for CE2 is a

simple pipelined divider circuit. This divider can be considered as a special purpose

circuit for a system that needs additional computational power and it allows the single-

chip multiprocessor prototype system to be heterogeneous. Each CE, as shown in Figure

2.8, has its controller, which includes a multifunctional queue [16,17,33], a Lookup Table

(LUT) and an Interface Controller (see Figure 2.9 for the CE controller). Additionally, as

part of work done to build the second phase model, two additional Computing Elements

were added to the HDCA system. In order to execute complex and non-complex

applications, the need for a special purpose multiplier CE was felt. Often, in DSP and

Image Processing applications, multiplication is an important aspect of any operation and

hence a new special purpose multiplier was added to the HDCA system. A fifth CE will

be added to this HDCA system as part of this work and it will be architecturally the same

as the Memory-Register CEs of Figure 2.8., but it is unique in the sense that it does not

come into picture under normal conditions. Under normal operating conditions, when the

Queues of the existing CEs have not built up to their threshold, this CE acts as a stand-by

CE monitoring the queue depth of either of the two CEs. Once the queue depth of both of

the operational CEs exceeds the pre-programmed threshold, this additional CE is

dynamically configured, on the fly, to initiate and start accepting the tokens from that

point on and executing them. This concept has been explained in detail in Chapter 5

along with the design decisions that have been made. Implentation of this concept results

 19

in node-level dynamic capability of the architecture. Once the queue depth goes reduces

below the pre-programmed threshold, the CE goes back to its sensing state where it

silently monitors the queue depth of either CEs.

Table 2.1, Instruction Set of the Memory-Register CEs

No. Instruction Action

0 Mem [Ri] <= input Input data to Mem [Ri], i = 0,…3

1 Add RD, Mem [Ri] RD <= Mem [Ri] + RD, i = 0,…3, D = 0,…3,

D≠i

2 Store Mem [Ri], RD Mem [Ri] <= RD, i = 0,…3, D = 0,…3, D≠i

3 Jump address immediate PC <= Address immediate

4 Branch RD, Mem [Ri],

Address

If RD >= Mem [Ri], then PC <= Address, i =

0,…3, D = 0,…3, D≠i

5 Sub Mem [Ri], RD Mem [Ri] <= Mem [Ri] – RD, i = 0,…3, D =

0,…3, D≠i

6 Output <= Mem [Ri] Output data Mem [Ri], i = 0,…3

7 Load RD, Mem [Ri] RD <= Mem [Ri], i = 0,…3, D = 0,…3, D≠i

8 Branch out loop If RD = Mem [Ri], then branch out Process flow

loop, i = 0,…3, D = 0,…3, D≠i

9 Load Ri, immediate Ri <= Immediate

A Increment Ri Ri <= Ri +1, i = 0,…3

B Add Ri, immediate Ri <= Ri + immediate, i = 0,…3

C Sub Ri, immediate Ri <= Ri – immediate, i = 0,…3

 Additionally, this new CE can also be configured with proper programming to act

as a back-up CE in case any node fails due to unforeseen circumstances. This would help

in producing a fault tolerant model of the system, consistent with the idea presented in

[3].

 20

Most of the instructions represented by Table 2.1 are self explanatory. The special

instruction “Branch out Loop” is used to exit from applications that involve looping and

it is necessary to exit from the loop when a predefined condition has been met. This is

further explained in the CE controller module.

P C

R 5

R 4R 0

R 1

R 2

R 3

IR 0
IR 1

M
A

R

S h ifte r

A L U

M u x

M u xM u x

D ec o d er

C o n tro lle r

V ec to r
In te rru p t
S y stem

M u x

In s tru c tio n
M em o ry

1 2 8 x 1 6 b i tM
ux

A d d re ss B u s

D a ta B u s

In p u t L in e s

In p u t R e a d y

O u tp u t R e a d y

Figure 2.8 : Memory Register Computer Architecture - CE0 and CE1

The HVPIS and IR1 are not used in the cirtual prototype testing of the HDCA reported in

this thesis. These units are though included in the design and VHDL description of the

CE and can be used whenever desired.

 21

2.5 The CE Controller

Figure 2.9 : CE controller for 16-bit unpipelined Memory Register CEs

 Each Memory register CE architecture has a controller associated with the CE as

shown in Figure 2.9. It basically consists of an Interface Controller, the FIFO queue and a

Look up Table (LUT). Some of these components have been described earlier in this

chapter. The LUT contains all the information necessary to communicate with a CE.

During system initialization, the LUT is loaded with information about all of the

processes that a given CE can execute. It consists of process number identifier (PN), the

address of the Process Number’s first instruction in memory (Instruction Location),

follow-on process numbers (PN0, PN1), a hold bit (H) and a join bit (J). Since the only

communication between CE's is tokens, any CE must know what the next processes are

in order to issue the correct follow-on token. This explains the reason for having the

follow on process numbers in the LUT. The functionality of Hold and Join bits come into

picture when the process flow graph is non-linear, or in other words, has forks and joins

as explained earlier. The Hold bit is set to logic one if the follow-on process to be

executed is a member of a Join operation. The Join bit when set to logic one indicates that

the Process to be run is a join process and thus will have more than one token associated

with it in the Queue. To further explain, let’s take a simple example. Say process P1 forks

 22

into two follow on processes, P2 and P3 and let’s say these processes finally join at P4 as

illustrated in Fig.2.10.

Figure 2.10 : Explanation of Hold and Join Concept

 The initial HDCA design [17,33] was limited to two follow on processes but in the work

done here it will been shown that the design can be modified to incorporate a multiple

fork where a single process has more than two successors. Also the number of processes

that could be held in the LUT is limited to 18 processes. This is, however, a figure that

can be changed and is a function of the underlying technology to which the design is

being synthesized and the complexity of the application. Once the LUT is loaded, it

works by receiving a token from the Queue. It compares this token's Process Number

with the LUT entries. In the event of a match, its instruction buffers are then filled with

the Instruction address and the data address. This helps the CE decide what is to be done.

An example of these instructions is as follows. Instruction '0' tells the CE to load the data

address into a register. If this is a join operation, then Instruction Two loads data address

two into a register. Instruction one tells the CE to jump to the address of its first

instruction. The LUT sends these instructions when the CE indicates over the 'Finished'

input that it is done executing the current process and is ready to receive information

about the next process that is to be executed. This is explained more vividly in Chapter 6,

when applications are discussed. When the CE finishes a previously running Process, it

signals 'Finished' and thus the LUT prepares to send the follow-on token to the PRT

mapper, it places the finished Process' information in a buffer (Last PN, Time Stamp,

Data Address). Then it compares the Process Number with the entries in its table. Once a

P1

P2

P3

P4

Hold bit =1

Hold bit =1

Join bit =1

 23

match is found, it sends the data location along with the Hold Field bit, and the follow-on

Process Number(s) to the Interface Controller, which sends the token(s) out on the Token

Bus.

2.6 Interface Controller

The Interface Controller of Figure 2.11 provides the logic to integrate the LUT, the

Queue, and the CE. One of the functions of the Interface Controller is to receive Tokens

from the Token Bus and transmit output Tokens. On the receive side, it has the

previously described FIFO buffer to temporarily hold fifteen inbound tokens. Besides this

simple task, the Interface Controller is a State Machine for the control of the LUT and

Queue. The State Diagram for the Interface Controller is found in Figure 2.11

System
Reset

Load
Table

Get
Token

PRAM

Check
Status

Dummy
Read

Send
PRT

DeQeue

Issue
Stop
Loop

RST =1

LUT not full
X < 10000

X = 10000

Instr = Load table

D
el

ay
 =

 tr
ue

In
st

r =
 S

w
itc

h
to

ke
n

Delay = false

Bus grant = 0

Instr =
 Check Status

Bus grant =1

Finished = 1

C
nt > 0

Nxt_lded = 0 Cnt > 0

Finished = 0

WR_out=”01”
or “00” or “11”

Nxt_lded = 1

Comp = true or

bus_grant = ‘0’
R_L_Tab

le = “0
0”

 or “0
1” o

r “1
0”

Finished=1, nxt_lded=0

running=true

Nxt_lded = 1

N
xt

_l
de

d=
0 N

xt_lded=0

S
top_flag=FALSE,

nxt_lded=1, finished=1

St
op

_f
la

g=
TR

U
E,

nx
t_

ld
ed

=1
, f

in
is

he
d=

1

Token Rcvd

Load threshold & time

Cnt = 0

Figure 2.11 : Interface Controller State Machine for the CE

 The controller starts functioning, as soon as the reset signal goes active low. The

first state, after “System Reset” is the “Load Table” state. It remains in this state until the

 24

Look up Table described above has all its entries populated. How many entries are

needed to fill up the Look up Table - depends on the topology of the process flow graph.

This concept is thoroughly explained in Chapter 6 where applications are described. Once

the Look up Table is full, the controller moves to the “Get Token” state. Here the

controller waits for properly addressed tokens to arrive from the Token Bus. The first

thing the controller checks is if a process previously sent to the CE has completed

executing. If it has, and another token is available in the instruction buffers for execution

(Next_Loaded is true), then the state switches to Send PRT. If no token is ready for

execution, then the state moves to the Dummy Read State. If the CE is still busy

executing a process and a token is in the queue, the controller moves to the “De-Queue”

state. If none of those conditions are met, then the inbound token is parsed to determine

what type of command it contains. The state will then move to “Check Status”, “Load

Table”, “PRAM”, or it will loop back to Get Token. The Get Token State is the Default

State when the system is waiting for a token arrival or Process completion.

 The “De-Queue” state simply removes a token from the Queue and passes it to the

LUT. The state then moves to “Get Token” if the CE is busy (not Finished) or to Issue if

the CE is ready for another Process (Finished). In the Issue state, the LUT records the last

Process executed, if any, and issues a new process to the CE. After issuing the Process, if

another token is in the Queue, it will go to the “De-Queue” State to keep the LUTs

instruction buffer full. Otherwise, it will go back to the Default State.

 The “Dummy Read” state is only used in the case where a Process completes and

there is no token available in the instruction buffer to send to the CE. The state allows the

LUT to record the finished Process' information without issuing another Process. This

state always transitions to the Send PRT State. In the applications described here, the CEs

are fairly efficient and hence the system never goes into this state.

 The “Send PRT” state transmits the follow-on tokens of a completed process from

the LUT to the Interface Controller. The Interface Controller then negotiates for the

Token Bus and submits the tokens to the PRT mapper. Upon completion of the send, if

another token is loaded in the LUT's instruction buffer, the state moves to Issue. If a

token is not loaded the state returns to the “Get Token” state.

 25

 The “Check Status” and “PRAM” states are for the Multifunctional Queue. The

PRAM is used to aid in the swap function. The instructions place the Queue in the swap

mode and then provide the swap address locations from where tokens are to be swapped.

Finally the Queue is removed from the swap mode when this is accomplished.

 The HDCA can not start functioning until it has received all the information it

needs to start system operation. This information is in essence a set of Tokens. There are

different set of Token formats for the HDCA, each performing a unique function. The

token names were chosen sensibly to give a good idea of what the function of the token

was. Table 2.2 represents the tokens that could be used in the HDCA system. Though not

all Token formats are used in the work reported here, some of the Token formats are

needed for special functionalities incorporated in the core components that were designed

earlier.

Table 2.2, Token Formats Available for the HDCA System

a. Table Load Token

1 Physical
Location

11111 XXXXXXXXX Join Field Hold Field Instruction
Address

31 30 24 23 19 18 10 9 8 7 0

b. Table Input Token

1 Physical
Location

11110 Process Number
(PN)

Next PN0 Next PN1 XXXX

31 30 24 23 19 18 14 13 9 8 4 3 0

c. Load Threshold Token

1 Physical Location 11101 XXXXXXXXX Time_S Threshold

 31 30 24 23 19 18 10 9 6 5 0

d. Switch Tokens Token

1 Physical Location 11011 XXXXXXX Address 2 Address 1

 31 30 24 23 19 18 12 11 6 5 0

 26

e. Read Status Token

1 Physical Location 11100 XXXXXXXXXXXXXXXXXXX

 31 30 24 23 19 18 0

f. Send Status Token
0 Physical

Location
0 Sign ITRC Threshold XXXXXXXXXXXXXXXXX

31 30 24 23 22 21 18 17 16 0

g. Load_PRT Mapper Token
1 PRT Location 11010 XXXX Physical

Location
Process
Number

 RAM
Address

31 30 24 23 19 18 15 14 8 7 3 2 0

h. Command Token

Hold Field Physical
Location

Time
Stamp

Process
Number

XXXXXXXX Data
Address

 31 30 24 23 21 20 16 15 8 7 0

Out of these possible token formats, Token formats a, b, g and h were used for all

applications. The “Load Threshold” token was used in the application for demonstrating

dynamic node level reconfigurability. The tokens that are used to initialize the Look up

Table are the “Table Load” and “Table Input” tokens. These tokens, in essence, contain

information about the processes different CEs could possibly execute. They provide

information on the current process number, the following process numbers for the

successor nodes, the address of the process’s first instruction in local memory, a Hold and

a Join field. The remaining four tokens are used to access the advanced functionality of

the multifunctional queue if required. The “Load Threshold Token” identifies the queue

for a CE by the “physical location” of the CE and programs the threshold for the queue

and the time period (Time_s) desired for sampling the input and output rate. The “Switch

Tokens” token is utilized to swap tokens in the queue by address as previously mentioned

in this chapter. The “Read Status Token” and “Send Status Token” are designed to obtain

status information of a queue. The “Read Status Token” is sent by the operating system to

a CE directing it to provide status information. The “Send Status Token” is like an “ack”

containing the Input Token Rate Change (ITRC) over the specified time, its sign (positive

and negative) and a flag to indicate whether or not the threshold has been crossed for the

 27

queue. “Load PRT” token is used to initialize the RAM in the PRT mapper upon system

startup. It contains information about the physical location (address) of the CE, the

process number that CE holds, and the RAM address within PRT to load this information.

This token is primarily responsible for starting application execution.

Each CE has a unique address which distinguishes it from the other CEs. Table

2.3 represents the physical addresses of the CEs as used in the current HDCA. These

addresses are essential for proper functionality of the token bus with the set of tokens

described above. The work done in [17] had 4 unique locations. However additional CEs

were added as part of the second phase modeling explained in the next chapter which

now leads to 6 unique locations.

Element Physical Location

PRT mapper 0000001

CE0(MR16) 0000011

CE1(MR16) 0000010

CE2(DIV) 0000100

CE3(MULT) 0000101

CE4(STANDBY) 0000110

Table 2.3, Physical Addresses of the Modules in the Prototype

Beside each CE, in parenthesis, is a brief description of its features. CEs 0, 1 and 4 are

the 16-bit unpipelined memory register computer architectures. CE2 and CE3 are the

special purpose multiplier and divider CEs. CE4 is a STANDBY CE (see Figure 2.8); it

is the CE that will be used to show the dynamic nature of the system by automatically

being configured and re-configured as needed when the queue depth increases beyond a

particular threshold as determined by the Operating System.

 28

2.7 The Multiplier and the Divider CEs

 The Multiplier and divider CEs are special purpose CEs. The Divider is a simple

core-generated pipelined divider. It uses unsigned arithmetic. Figure 2.12 shows the

divider CE used in the HDCA system.

Figure 2.12 : Divider CE. To be CE2 in the Latest Version HDCA

This processor is capable of receiving the data locations from the CE Controller and then

fetching its operands. The processor first loads one or two data location addresses into

registers (Data Loc 1 and Data Loc 2). Then, the start instruction is received from the CE

Controller. This provides it the first address in Instruction Memory to access. The first

Instruction provides an offset for the Data Locations if necessary. The system then

fetches the divisor and places it in a register (R1). If there is a valid address in the Data

Loc 2 Register, the divisor comes from the shared HDCA Data Memory; otherwise it is

 29

loaded from the Instruction Memory. Next, the dividend is fetched from Data Memory

and placed in a register (R0). When both operands are loaded the division operation

begins. Twenty clock cycles later, the result is output and placed in output registers

(Result and Remainder). The results are then output to the shared HDCA Data Memory.

Lastly, the processor reverts to address zero and awaits the next process.

The multiplier CE of Figure 2.14 is similar to the Divider CE but is much faster.

When a choice was to be made between the different types of algorithms that could be

used to implement the multiplier, careful analysis was needed to determine which

approach was the best out of the various methods of implementation available such as the

well known Booth’s algorithm. The Xilinx Virtex 2 FPGA multiplier contains hardware

multipliers. In order to limit the usage of LUT and based on power considerations, the

style of coding used was such that the inferred multipliers used the coregen Intellectual

Property (IP) multipliers from the Virtex 2 chip. Besides, they are ideally suited for

performing operations like Digital Down Converting (DDC) and Convolutions which

falls under some typical applications that would be run on this architecture. These

multipliers are associated with a block RAM as shown in Figure 2.13. A few important

rules need to be kept in mind. When multiplying, the width of the result would be the

sum of the widths of the two inputs. Also signed data representations often use the top bit

(MSB) to represent the information about the sign. For example, for a positive number

the MSB is always 0 and for a negative number its always 1. When working with signed

data, it is important to maintain sign information. The multiplier used here infers a

pipelined multiplier that is faster that the unpipelined version. Also, since the data bus

width is 16 bits for the entire system, the inputs to the multiplier cannot be greater than 8

bits each. The coregen multipliers have been found to produce the same results in terms

of resource usage as instantiated multipliers. However instantiated versions were used in

this code so that additional ports and signals could be added to the multiplier if needed

and the design could be scaled in the future.

 30

A performance of up to 200 MHz + can be inferred using this core multiplier as

mentioned in [34]. Figure 2.14 shows a block diagram of a typical multiplier CE in the

system. Since the multiplier is pipelined and the inferred multiplier is implemented on the

basis of Look up Tables in the chip, the result is obtained in one clock cycle. Using the

current design, the programmer is forced to utilize relative addressing for accessing data

items. Since the original data address provided by the Operating System is passed along

with each token, there is no way to use a different addressing scheme to access data

items. This certainly is a system limitation but works well for small systems.

Switch
Matrix

Switch
Matrix

Switch
Matrix

Switch
Matri

Block select
RAM

8
x

8
M

ul
tip

lie
r

Figure 2.13: Core Multipliers associated with Block RAMs

 31

Figure 2.14 : Multiplier CE used in the HDCA

All these components as described above, when put together along with the associated

I/O structure will form the latest version of the HDCA system addressed and will be

shown in the next chapter.

Pipelined Multiplier

Multiplicand Reg Multiplier Reg

Mux

Instruction Memory
8x16

Instr Mar

M
ux

Data loc1 Data loc2

Mux Mux

Controller

R2

Mux

M
ux

adder

16

8 8

8 8

16

8

8

 32

Chapter Three
Design Methodology and Modifications

3.1 Design Methodology

While designing the second and latest phase model of the HDCA, a "Top Down"

design system was utilized. In this approach, the problem is first defined and then split

into smaller manageable components. These smaller components are then developed,

tested and integrated into the main system. This approach allows the designer to develop

the components in a simple, modular fashion while maintaining focus on the system's

requirements.

3.1.1 Problem Definition

 The first step in accomplishing the previously presented goals was to analyze the

background information and then define the problem statement. In this case, the initial

problem was to modify an initial version limited functionality prototype into a model that

could be behaviorally simulated. Next, the scope of the project was to design and

develop additional processors with their respective controllers, develop complex

applications for the system and demonstrate node level reconfigurability for the added

standby processors. Next, an additional feature was to be added wherein, the HDCA

could fork to more than two processes. An additional goal was to integrate the crossbar

Interconnect network switch developed in [32], into the system and the existing devices

re-configured to counter the latency introduced by the switch. The Operating System,

processor level re-configurability and replacing the addressing system would be left for a

future third phase model where an actual working hardware prototype would be built.

 33

3.1.2 Requirements definition

Once these issues were identified, the next step was to identify system

requirements. It was known that before any work could be done on the second phase

model of the HDCA, a fully functional working first phase model was needed. This in

turn needed individual test benches to be developed for each component to test it for

deficiencies. Once success was achieved at getting a working model by making

modifications to the pre-existing components, the infrastructure had to be incorporated to

add the additional CEs into the system. This would require assigning new physical

locations to the CE and also maintaining the same system of communication that existed

between the other CEs. Another requirement was to develop Complex/Non-complex

applications that would utilize all the CEs and also bring out their dynamic,

reconfigurable nature. A more functionally desirable network switch was also integrated

into the HDCA system to make the design scalable, reduce bus contention and improve

system performance.

Next, the size of the system had to be determined. In order to fit the system on a

FPGA, it was decided to have a system with five CE's. Each CE would have a small

instruction memory and a connection via an interconnect network to a small shared Data

memory. Along with the decision on the number of CE's was the decision on how many

different types of CE's to use. It was decided that three different CE types would be

modeled in order to demonstrate the ability of the architecture to incorporate

heterogeneous systems. These CE's were chosen to be simple un-pipelined 16-bit

architectures and a special purpose pipelined divider and multiplier CEs in order to keep

the system complexity low and its area small.

Lastly, the total number of processes that the system could execute was bounded

to thirty-two or fewer with the exit PN being fifteen or lower. This helped to keep the

token widths to 32 bits and the experimental system to a more manageable size.

3.2 Design Flow Approach

 There are many flowcharts that exist for design methodologies when using

Hardware Description Languages. Most of these begin with developing behavioral

 34

models, testing those with pre-synthesis simulators, then altering the code in order to

synthesize the design. This approach has many benefits and is often necessary when

there are many limiting design factors such as signal timing. In this work there were no

such limitations or restrictions. Since this was an initial second phase model to

demonstrate the functionality of the architecture, there were no requirements to run at a

certain frequency or to fit in a particular device. Nor were there any standards which had

to be incorporated into the design in order to interact with another device. Given this

environment, it was decided to modify the approach taken. This decision coupled with

the natural flow of Xilinx's Foundation 6.2.3 ISE CAD software guided the design

process.

 The overall design flow is shown in Figure 3.1.It was known early in the process

that the device would be synthesized and that it did not have to meet any particular timing

requirements. In terms of area, the only requirement was the goal of fitting the system on

a single Virtex 2 XC2V8000 chip. Second, the Foundation ISE 6.2.3i software allows for

pre-synthesis simulation, post synthesis and post implementation VHDL simulation

testing (post, place, and route).Of course, having to synthesize the code before running a

simulation wasted design time while it was running the synthesis tools, but this was

balanced by the fact that the developed code could be easily synthesized and

implemented as in contrast to the first phase prototype code that was started with. The

purpose of both pre and post simulation stages is to achieve functional validation of the

system. The post-implementation simulation validates that the system components would

function properly given the actual timing characteristics of the chosen target chip

resources and its routing delays. More detail about the testing is found in Chapter Six.

 The Post place and Route phase (post-implementation) allows the user to input

system timing and placement constraints before mapping and placing the circuit on a

target FPGA chip. Again, constraints here were relatively few since there was no timing

or other requirements for the project. The HDCA prototype was synthesized, mapped,

placed, and routed to a Xilinx XC2V8000 FPGA chip with the 1152 package and a speed

grade of -5.

 35

Figure 3.1 : Design Methodology for the HDCA System.

 36

 Next, the circuit can be tested again using post-implementation simulation. Here

the same test vectors were used, as before. Normally the idea here is to verify that the

circuit continues to meet the design goals now that the actual logic resource timing delays

are known. Post-implementation simulation is both a “functional” and a “performance”

simulation in that, the simulation includes the actual propogation delays of the logic

resources within the target FPGA chip. In this instance, it was important to verify that the

circuit still functioned properly, but there were no hard requirements which would

disqualify the circuit even if the actual timing was slower than predicted. As part of the

entire process mentioned above code is written, tested, corrected and then run through the

process again. This process can be time consuming and difficult. However, the process

can be made easier by breaking the problem into sub-components. If individual

components are tested from the beginning and taken through the entire design flow

process, the final system should in theory require less testing than a system designed as a

whole. Figure 3-2 illustrates the basic coding hierarchy utilized in this work. The overall

design was the PE chip and it consisted of four basic building blocks as shown. Each

sub-block consisted of lower-level modules and this hierarchy can also be seen in the

code when the project is set up.

 37

Figure 3-2: Hierarchical Layout of VHDL Code for HDCA Prototype.

 38

3.3 Modifications to the First Phase Prototype

In order to meet the HDCA system second phase prototype goals and

requirements, large scale improvements and changes were required to be made to the first

phase prototype system of [17]. Improvements and changes included modifying existing

functionality or adding new components. Also during the implementation phase it was

observed that Xilinx 5.2 ISE would frequently have software related issues Finally, a

design decision was made to move to the more stable Xilinx 6.2.3 ISE version of the

software which included a trade off between losses in development time versus a more

stable version of the code. In this section, functionality addition and other changes made

to the HDCA system to move it from the first phase prototype stage to a correctly

functioning second phase “virtual prototype” will be presented in a modular fashion.

Changes made to individual components will be discussed in detail.

3.3.1 PE Controller

The following issues were noted in the first phase prototype of the PE controller in [17].

The subtraction operation performed by the PE of Figure 2.8 was yielding incorrect

results. This was tracked down to the state OP5 of the PE Controller. Appropriate

changes were made in the code for this state to work. Also, additional changes were made

to include a new multiplexer M5 into the existing Memory Register Computer

Architecture of Fig 2.8. These changes allowed the output of the Instruction Register, IR0

to be directly sent to the Register R3. The changes that have been incorporated have been

shown separately in Figure 3.3 and also as a system in Figure 3.7.

 39

Figure 3.3 : Changes to the PE Controller Showing the Additional Multiplexer M5

3.3.2 Interface Controller

The Control logic module of the Interface controller had to be modified for pipelined

execution of the applications that will run on the revised HDCA. In [17], the researchers

address the pipelined nature of the HDCA wherein, multiple copies of an application can

be run simultaneously on the system. The primary way to distinguish between different

copies of an application running on the system is by means of the “Time Stamp” field of

the command token shown in Table 2.2. As mentioned in [17], an application was

designed to test the pipelined nature of the system. However it was observed that the

system was displaying incorrect results. On a microscopic examination, it was attributed

to the signal “outbuf” in the control logic module. After execution of every process a

“Send PRT” and “StopL” token is issued to the PRT Mapper by the CE which completed

execution. The signal “outbuf” is used in the formation of the “Send PRT” token. As

multiple copies of an application are running simultaneously on the HDCA, it was seen

2x1 Mux M5

Register R3

M5out 8

Shifter

M5ctrl

IR0

1 0

To Mux before ALU

From ALU

From Instr Memory

8

 40

that the value of “outbuf” for the first copy of the application was overwritten by the

second copy of the application causing loss of data for the first application. This

terminated the first application abruptly. For more details on the signal “outbuf” and the

formation of the “Send PRT” and “StopL” token, refer to the Appendix A of [35].

 To fix this issue and get the HDCA to function properly with multiple copies of

an application, a provision was introduced to use the “Time Stamp” field of the command

token to differentiate between copies of an application. This involved introduction of an

array like structure to store the data required for the formation of these tokens. Also

changes were introduced in the command token format - bits 15 through 8, to distinguish

it from the other tokens circulating in the system. These bits are now set to logic one. As

part of this change, a new process “get_data” was integrated into the control logic module

to parse the command tokens properly. This new process can be seen in the code section

in Appendix A. Table 3.1 shows the new format for the Command Token.

Table 3.1, New Token Format for the Command Token of the HDCA

Command Token

Hold Field Physical

Location

Time Stamp Process

Number

11111111 Data

Address

 31 30 24 23 21 20 16 15 8 7 0

Looking at this format, one can see that the “Time Stamp” is a three bit field allowing up

to eight command tokens to be issued, which are in essence, eight copies of an

application running in parallel.

 One of the goals of the work reported here was to be able to show the queue depth

of the CEs build up and consequently, on reaching a pre-set threshold value, a new CE,

configured on the fly, to help out and reduce the load of the overloaded CE. This

capability of the HDCA is referred to as “Dynamic Node Level Re-Configurability”. It

was seen that when multiple command tokens were issued to the system, some tokens

were being lost and to fix this a new “Delay State” was added as shown in Figure 3.4.

This delay state, as the name suggests, introduced a delay of two clock cycles which

fixed the issue that was being seen.

 41

Figure 3.4 : Control Logic for the Interface Controller Module

3.3.3 Crossbar Interconnect Network

The single-bus based logic used to access the shared data memory in the first

phase HDCA system was removed and a Crossbar Interconnect Network as developed

and described in [32] was integrated into the system. Since this introduced an additional

delay in the system due to the latency of the switch, changes were needed to ease this

transition into the HDCA. Figure 3.5 shows a block diagram of the interconnect network

that was used for the revised HDCA system. This allows multiple processors to access

the shared data memory at the same time. In the event that two processors with different

queue depths request access to the same memory block, the processor with the deepest

queue depth gets access to the block first while the other request is queued up. In the

event that the queue depths of both processors are the same, the processor with the

highest processor number gets access first while the other request is queued up. For a

 42

detailed description of the Interconnect network functionality and the reasons for the

choice of a Crossbar Interconnect network, refer to [32].

Figure 3.5 : Crossbar Interconnect Network for the Revised HDCA

3.3.4 Input Rom for the Data

 An input ROM was developed for the data to be input into the system. Core-

generated modules could not be used here because of the way the bus requests come in,

for data. Every third cycle there is a data request and to suit this functionality, an input

ROM was designed with a valid “signal” as output. The ROM would read out values, at

every clock cycle; however, only the values that are output every third cycle would be

valid and would be sent to the data bus. This ensured that correct values were read out

from the proper locations. Another approach to this could have been to use the core

generated ROM and use a “wrapper” around it. While this approach could have saved

considerable area, the design would not be scalable and would lose its ability of

“component re-use”.

 43

3.3.5 Multiplier CE

 This was another important addition to the system. While searching for

applications to be executed on this system, it was found that the existing operations were

insufficient for executing complex applications. Multiplication is an important operation

is the area of Digital Signal Processing and the architecture was limited in the sense that

there were no Computing Elements that could readily perform multiplication. Thus a

need for the Multiplication unit along with its associated controller was felt. This led to

the design of a new CE, the multiplier CE and its subsequent integration into the HDCA.

While making a decision about the algorithm to be chosen, a couple of options were

available. There were core multipliers in the Virtex 2 architecture on one hand and on the

other hand there were algorithms such as the Booth’s algorithm. While designing the

multiplier, it was kept in mind that this architecture would find use in embedded systems

or real time systems where area and power play important roles. A literature survey from

Xilinx revealed that using the core multipliers produced low power multipliers with fast

logic and used up less number of look up Tables. Additionally it would also consume

lesser power than a multiplier inferred using Booths or other such fast algorithms and

hence a design decision was made to use the style of coding as represented in the

Appendix. While, this directly does not use the core multipliers, the multipliers inferred

on synthesis of the code are core multipliers and hence all the important aspects

mentioned above apply to it.

3.3.6 Dynamic Load Balancing Circuit

 While testing the basic functionality of the HDCA with a simple application,

(Application 1 of Chapter 6), and as shown in Figure 3.5 below, it was observed that the

join operation of processes P2 and P3 to yield process P4 was displaying incorrect

results. On careful analysis, the issue was traced to the Dynamic Load Balancing Circuit

module. As can be seen from Figure 3.6, during the join operation of P2 and P3, the

register R6 as shown in Figure 2.4, is used to store the values of the Physical Location,

Process Number and the Data Location.

 44

Figure 3.6 : Simple Application 1 for the HDCA system

This is a special register in the sense that it stores the Process Number and Physical

location of the current process, say P2; to be used by the consecutive process, say P3; so

that they map to the same follow on process, P4. The values stored in R6, weren’t being

assigned properly to the consecutive process, resulting in the system failing to understand

that the processes are intended to join at the next process, P4 in this case. The logic added

has been documented in Appendix A.

3.3.7 Memory-Register Computer Architecture CEs

 The Memory-Register Computer Architecture CEs (Figure 2.8) were also found

to need functional improvement. On delving through the code, a number of errors were

noticed. These errors did not cause issues in a behavioral simulation. However, while

going through post place and route simulation, the CE0 and CE1 modules stopped

functioning. Both these CEs use a number of registers which have asynchronous high

reset signals. These signals should clear the registers in system reset state. However the

“reset” pin of the registers was tied to logic zero all the time leading to errors in post

place and route simulation. Another problem lied in the fact that the bi-directional data

bus was a direct input to the multiplexer before the ALU. This caused unknown values to

enter the system that cascaded through the combinational logic in the system. This also

 45

caused issues in a post place and route simulation environment. All these problems were

fixed and the Memory Register CEs have been modified and are as shown below in

Figure 3.7.

Figure 3.7 : Modified Memory Register Computer Architecture as it exists now

Many other small changes were required to get the overall code to function while moving

from the first phase to the second phase model. Small changes in code have not been

mentioned here but have been documented as comments in appendix along with the code

for an easy understanding of the system functionality and VHDL coding. To reduce the

time it may take to develop an eventual third phase prototype and for a better

 46

understanding of the system, the VHDL code describing the HDCA (Appendix A) has

now been well documented.

3.4 Second Version (Phase) HDCA System

 Functionality and other enhancements and fixes to the major functional units of

the first version (phase one) HDCA system has been described in previous sections of

this chapter. All these functoinal units were structured, interfaced and connected in a

manner resulting in a five CE second version (second phase) HDCA system as shown in

Figures 3.9. The enlarged view of the associated CE Controller along with its

components has been shown in Figure 3.8 below.

Figure 3.8 : An Enlarged Figure of the CE Controller Showing all its Functional Units

 47

Figure 3.9 : Block Diagram of the Second Phase HDCA System

 48

The CE Controller shown in Figure 3.8 was already described in the previous chapters.

The modifications to the Look Up Table, Fifo Queue and the Interface Controller have

also been described in Chapter 3. These three units, with their described changes, when

interfaced together form the CE controller for the Memory Register Computers, CE0,

CE1 and the Standby CE. The controllers for the Multiplier CE and Divider CE have

been shown as separate entities in Figure 3.9 to maintain uniformity. These are however

resident within the high level block of the Multiplier and the Divider CEs.

 49

Chapter Four

Virtual Prototype Development

4.1 The Virtual Prototype

 The HDCA system will be implemented to what is called the “Virtual Prototype”

level where-in a Post Place and Route HDL model of the HDCA with enhancements will

be developed and shown to work for two different applications. The bit-stream will not

be downloaded to a prototyping board. Instead, it will be left at a stage wherein as part of

future HDCA developments, the bit stream could be downloaded to a physical hardware

prototype.

 The first application that will be taken through the Post Place and Route process is

the application with Multiple Forking (Figure 5.7) of Chapter 5. The second application

that will be demonstrated is the Fourth Application of Chapter 6, which is the Acyclic

Integer Manipulation Algorithm (Figure 4.40). A pipelined version of this will also be

shown to work behaviorally and to prove that a non-pipelined version would also run

fine, only one of the two command tokens will be used for the HDL Post Place and Route

Simulation.

4.2 The Simulation Environment and Overview of the Testing Process

 Simulation testing of the HDCA was first carried out using the Xilinx 5.2ISE

CAD software. The simple application developed initially (Application 1 of Chapter 6)

passed the post-implementation simulation testing. Later, the HDCA system was

implemented and simulation tested using the Xilinx ISE 6.2.3 ISE CAD software [30].

Modelsim 5.7g PE version (31) is used as the simulator and the host PC was a high

performance AMD Athlon processor running Windows XP, 32 bit edition at 2.16 GHz

with 2GB of RAM. Input stimuli are added through the HDL bencher, where the timing

constraints could also be specified. After Synthesis, Implementation is done and as part

of this the Map, Place and Route algorithm is executed. Then, Post-Implementation

simulation is carried out using Modelsim with the test vector set provided in Appendix B

for different applications and after the Input ROM and the Instruction Memories have

been initialized using the Memory Editor tool provided in Xilinx. The simulation results

 50

are then compared with known correct results in order to validate correct operation of the

HDCA system.

 After the HDCA model is validated through post-implementation simulation, the

“Virtual Prototype” is ready. At this point, the bit stream can be generated and

downloaded to a target technology chip (Virtex 2, XC2V8000 in this case) and a physical

hardware prototype built to demonstrate a working hardware model.

4.3 FPGA Based Chip Resource Utilization Reports

 The HDCA system is synthesized, mapped, placed and routed to the target device,

XC2V8000, with the implementation being conducted using the optimization option of

speed instead of area. This is because this chip is large enough to hold the entire design

and the design will not be downloaded to a hardware prototype. The following are the

device utilization reports for the applications used to prove the concept for Multiple

Forking (referred to as Application One here) and the Acyclic Integer Manipulation

Algorithm (Application 4 of Chapter 6, referred to as Application Two here).

4.3.1 Device Utilization report for the Multiple Forking Application

Table 4.1, Device Utilization Summary for Application One

Elements Utilized Total Available Percent Utilized

Slices 13912 46592 29%

Loced External IOBs 0 727 59%

External IOBs 727 824 88%

MULT18X18s 1 168 1%

RAMB16s 9 168 5%

BUFGMUXs 1 16 6%

TBUFs 908 23296 3%

 51

Number of Gates 895077

4.3.2 The Delay and Timing Summary Report – Application One

The score for this design is: 529

The number of signals not completely routed for this design is: 0

The average connection delay for this design is: 2.172

The maximum pin delay is: 18.858

The average connection delay on the 10 worst nets is: 15.588

Timing Summary

Speed Grade: -5

Minimum period: 21.516ns (Maximum Frequency: 46.477MHz)

Minimum input arrival time before clock: 12.957ns

Maximum output required time after clock: 14.407ns

Maximum combinational path delay: 8.562ns

 From the above report, it is evident that a lot of the External IOBs are utilized.

One of the reasons for this was the large number of signals that were taken out as ports

for debugging the system when it had issues. These ports were kept intact and hence the

device utilization report shows a high number for the External IOB usage. These ports

can be safely removed and this would help get down the number of IOB usage.

4.3.3 Device Utilization Report for Un-pipelined Integer Manipulation Algorithm

The device utilization report for Application Two is shown below. Again, only important

aspects of the report have been shown here. The number of External IOBs used is again

high, for the same reason.

 52

Table 4.2, Device Utilization Summary for Application Two

Elements Utilized Total Available Percent Utilized

Slices 12429 46592 26%

Loced External IOBs 0 717 0%

External IOBs 717 824 87%

MULT18X18s 1 168 1%

RAMB16s 9 168 5%

BUFGMUXs 1 16 6%

TBUFs 908 23296 3%

Number of Gates 874228

4.3.4 Delay and Timing Summary Report – Application Two

The score for this design is: 507

The number of signals not completely routed for this design is: 0

The average connection delay for this design is: 2.181

The maximum pin delay is: 17.370

The average connection delay on the 10 worst nets is: 14.443

Placement: completed - no errors found.

Routing: completed - no errors found.

Timing Summary

Speed Grade: -5

Minimum period: 21.516ns (Maximum Frequency: 46.477MHz)

Minimum input arrival time before clock: 9.415ns

Maximum output required time after clock: 14.407ns

Maximum combinational path delay: 8.562ns

 53

4.4 Timing Constraints Definition for Post Implementation Simulation

 After post-synthesis testing of the HDCA second phase model, the HDCA is post

implementation tested. The system clock is set with a period of 100 ns with a 50% duty

cycle as shown in Figure 4.1

Figure 4.1 : Timing constraints for Post Implementation Simulation

For the work described in [17], it was suggested that the minimum input setup time and

maximum output delay time be set to 0 ns to get rid of timing constraints error. As a first

step this was tried out. However, HDL bencher does not allow the constraints to be set to

0. These timing constraints were important to get rid of some Timing Violations that

were being observed for the system. On experimenting with different values, it was found

that the values of 10 ns for Maximum Output delay and 15 ns for Minimum Input Setup

time helped to address the issues.

 Thus the HDCA “Virtual Prototype” system was developed to be robust and ready

for the Physical Prototype phase.

 54

Chapter Five

Functional Enhancements to the HDCA

5.1 Dynamic Node Level Re-configurability

5.1.1 Introduction and Concept

 In the work done in [13,14], the researchers refer to the additional ability of the

system architecture to dynamically configure/move or assign processors or other physical

resources to application processes which may unexpectedly become overloaded. The

researchers refer to this feature of the system as “Dynamic Node Level Re-

configurability”. One of the most important goals of the second phase model of the

HDCA was to make it dynamically node-level reconfigurable. Often in real and non-real

time systems, it is seen that the system load can unexpectedly increases beyond a certain

statistically calculated or predicted threshold. This may cause the system to get

overloaded and/or fail unexpectedly. A simple example of this may be a radar signal

processing system that tracks incoming aircrafts. An HDCA system maybe designed to

track a maximum of fifty aircrafts at any given time. If for some reason, seventy five

aircrafts arrive in the region simultaneously, the system should be able to dynamically

cope with this unexpected overload and exhibit correct functionality. This brings in the

concept of Dynamic Node Level Re-configurability wherein, a dormant node or a CE

could be configured and/or re-configured dynamically to handle the additional load on

the system and go back to stand-by mode once the system load has reduced to one within

normal operating conditions.

 55

Figure 5.1a : Dynamic Node Level Re-configurability

Figure 5.1a illustrates the concept of Dynamic Node-level Reconfigurability. Assume

Static Resource Algorithm indicates one copy of Process P1 is required. Let the “one

copy” process running on a CE processor be represented by P11. Assume that

unexpectedly control tokens coming into the queue of the CE executing Process P11

increase in input rate to a point where they exceed the set threshold of the token queue.

This means Process P11 can not meet the process request rate and it needs help. In the

HDCA system dormant CEs can be initiated and programmed to implement process P11.

The process flow chart segment of Figure 5.1a indicates that two additional copies of

process P11 represented by the dotted circles P12 and P13, have been on the fly,

dynamically initiated and each is running on a different initially dormant CE. The HDCA

should have the ability to startup dormant processors in a system to help out overloaded

processors as determined by the control token queue depth.

5.1.2 Assignment Policy and Implementation

 For implementing this important concept, the final loop application described in

Chapter 6 (Section 6.5) will be used. Please refer ahead for an explanation of this system.

This application was found to be complex enough to observe queuing in the system,

which is a pre-requisite for dynamic node level re-configurability. The increase in queue

depth indicates that the system is getting overloaded and is about to reach its normal

prescribed maximum load. Figure 5.1 shows the tokens being input shows two “load-

threshold” tokens that are inputs to the system through the HDL Bencher. Also, eight

command tokens are provided as inputs. These are in essence, eight copies of the looping

 56

application being executed on the system. The data that these tokens operate on may be

the same or different but is irrelevant here considering the fact that a proof of concept of

this new feature is being provided. The eight command tokens cause pipelined execution

on the system and overload the system beyond its designed threshold causing the standby

CE or the dormant CE to kick in.

 57

Figure 5.1 : Two Threshold Tokens and Eight Command Tokens being input into the System

8 command tokens or 8 copies of the application Avlsig0 and avlsig1

 58

Another option that was possible was to get the standby CE to dynamically configure

itself, when both CE0 and CE1 got overloaded. The second choice was chosen while

arriving at a decision due to a number of reasons. Firstly, considering the nature of the

application under consideration, it was seen that there would have been a lot of switching

that could have occurred if the first option was used. This would essentially cause

reduced performance of the system if the standby CE would re-configure repeatedly and

then go back to dormant mode; more so, when implemented as a system on chip. Also,

since one CE in the system was still not overloaded, it was decided that the additional

load on the system should now go to this CE until it too gets overloaded and then the

stand-by CE would be configured. This makes perfect sense considering the fact that it

would reduce the repeated switching of the standby CE into and out of the system and

hence keep performance losses to a bare minimum. One may argue that since overloading

of a system is something that does not happen frequently, the performance losses due to

switching do not apply. This is the main reason that the nature of the application should

be first considered while making this important policy decision. Additionally, for making

the system flexible, the first option was still kept open. By making a small adjustment in

the “PRT Controller” logic of the system, which is a small change of an “and” gate to an

“or” gate, the first option could be implemented. This helps the designers make their own

choice before they design the code for application and configure the bit stream to be

downloaded into the FPGA.

Referring to the token formats described earlier, the “Load threshold” token has

its last field as the “Threshold field”. This is a programmable value which can vary

between 0 and thirty two. For the system under consideration, the value of the threshold

field was set to five. Additionally, it should be remembered that the queue depth and

threshold are two different values. The queue is deeper than the threshold. This is akin to

the concept in system design where a system is designed to “operate” under a particular

rating but at the same time some amount of “tolerance” is also provided. In the limiting

case, the queue depth can be equal to the threshold but under no circumstances can it be

lesser than the threshold. Referring to Figure 5.1, the signals “avlsig0”, “avlsig1” and

“avlsig5” are the queue depths of CE0, CE1 and CE5. The queue depths of the other CEs

have not been shown because they are not used in this application and lie dormant in the

 59

system. The signal “prog_flag” indicates the threshold value for the system that we just

discussed about and as is evident from Figure 5.2, this gets set to a value of five for CE0

first and eventually for CE1 as well.

In Figure 5.2, it can be clearly seen that the thresholds have been set for the

system and the system has started execution. The first process, which is the input of the

numbers x”3C”, x”64”,x”0A”,x”3C” and x”64” at consecutive locations starting x”03”,

starts for most of the command tokens. The queue depth varies between zero and two.

Since the first process has not yet completed for a majority of the command tokens, it

hasn’t yet forked into two follow-on tokens each and hence the load on the system is

relatively low. Once the forking process completes for most of the command tokens, as

can be seen from the instructions of x”9C21”, x”9C28” etc. on the bus

“db_pe_icm_fin0”, “db_pe_icm_fin1” in Figure 5.3, most of the resulting tokens are

issued to CE1 causing its queue depth to rapidly increase to a value of five. Additionally,

as can be seen from the value on the signal “avlsig5”, even though the threshold flag has

been set for CE1, the stand-by CE has not yet dynamically kicked in, which verifies the

policy decision that was taken. Also, as can be seen, the other tokens are now sent to

CE0, indicated by value of the signal “avlsig0” at the cursor. This causes the queue depth

of CE0 to increase as well.

 60

Figure 5.2 : Process 1 Executed for the 4 Command Tokens and “Prog_Flag” being set

Avlsig0 and avlsig1

 61

Figure 5.3 : Threshold Flag Set for CE1 and Queue Depth Increasing for CE1

Queue depth reaches 5 for CE1

Threshold flag is set to 1 all the while till Queue depth remains at 5

 62

Figure 5.4 : Both Thresholds set and Standby CE Reconfiguring

Once both thresholds are set, the command token for the next
instruction is given to the standby CE.

Avlsig0 and avlsig1

 63

Once both thresholds are set, approximately at 68 us into the run as indicated in Figure

5.4 by the last 2 signals in the waveform, the next token x”0645FF0F” is now issued to

the standby CE. Also, its queue depth goes to a value of one as indicated by the signal

“avlsig5” and once it finishes executing the process it had started with, the depth goes

back to x”00” indicating that the standby CE has once again gone into stand-by mode

after doing its job. It is noteworthy to remember that had the tokens been issued to CE0

or CE1 instead of the standby CE, the next token would have been either

x”0345FF0F”(for CE0) or x”0245FF0F”(for CE1). This goes on a number of times into

the run.

 For the sake of brevity, all instances have not been shown as that would require

tens of waveforms considering the run time for the application with eight command

tokens. What is important here is to remember that this application provides a proof of

concept of this feature and successfully implements this feature based on the policy

decisions. Another instance of the dynamic node level re-configurability has been

indicated in Figure 5.5 as shown below.

 64

Figure 5.5 : Standby CE Kicking in to take in the Additional Load on the System

Once both thresholds are set, the command token for the next
instruction is given to the standby CE.

 65

At approximately 80.4 us, both CEs reach their threshold limit causing the standby CE to

take in the next token as is indicated by the value of x”0685FF1C”, which is actually the

process P5.

 Thus, the concept of Dynamic Node Level Re-configurability is demonstrated and

incorporated into the second phase model of the HDCA. The tracers shown and the

results discussed verify the same.

5.2 Multiple Forking

5.2.1 Introduction and Concept

 One of the restrictions of the first phase model of the HDCA was its restricted

ability to be able to fork to just two successor processes. As initially described, a process

flow graph can fork to two processes. The information about these two processes is

stored in the look up table through the “Table Input” token. Ideally, a process flow graph

may have any of the following topologies.

 (a) (b) (c)

Figure 5.6 (a), (b) and (c) : Different Flow Graph Topologies

In real and non-real time systems, to extract the maximum amount of parallelism inherent

in an application and supported by the hardware, it is desirable to execute as many

processes as possible in parallel on different available processors causing the application

to execute in a shorter time. This is possible by the concept called as “Multiple forking”

where one process forks to multiple follow on processes which can then execute in

parallel on the different processors in the system.

 66

5.2.2 Implementation

The first phase model of the HDCA could only fork to two processes as shown in

Figure 5.6 (a). A typical process flow graph, however may take a shape as shown in

Figure 5.6 (b), that is; it could fork to three or even four processes. To handle this feature

while maintaining the original architectural constraints, the approach shown in Figure 5.6

(c) was taken. Here, the first process forks into two processes, as shown in Figure 5.6 (c).

While the top process is a normal process, the bottom process is just a dummy process,

which again forks to produce two actual processes. The dummy process does not do any

actual useful work and it can be thought of as a “no-op” operation. It just serves as a

channel for allowing multiple forking to occur without any issues. The first process, thus,

in essence, forks into three actual processes. The same concept can be extended to four or

more processes by making the result of the first fork in Figure 5.6 (c) into two dummy

processes which then again fork to produce two actual processes each, thus effectively

forking to 4 processes. This concept was proved to work by implementing an application

all the way to post place and route validation. To implement this “no-op” operation, an

additional instruction was added to the Instruction set architecture of the Memory-

Register Computer architectures. The change involved adding an additional state to the

controller of the Processing Element. This was the addition of another state called the

“no-op” state which was a dummy state introducing a small delay. Since this process had

to be represented with its own set of “Table Load” and “Table Input” tokens, this

provided the two additional fields required for forking into three processes as described

in the tracers for the application shown below.

 67

5.2.3 Post Place n Route Simulation Validation of an Application with Multiple
Forking

Figure 5.7 : Application Flow Graph for Multiple Forking

Figure 5.7 shows a process flow graph for an application that provides a proof of concept

for multiple forking. In the following section, post place and route validation results

prove that the virtual prototype with this feature works fine and hence is able to

successfully fork into more than two processes through a dummy process, thus

overcoming the restrictions of the first phase model.

 For the application shown above, one command token was used and its value was

set to x”01010003” as shown in Figure 5.8. Process P1, is the first process in the system.

As with most of the applications, this process provides the input data for the application.

In this case, the input data is a set of values x”02”. Figure 5.9 shows this value being

input into the system. These values are stored at consecutive locations in memory starting

from location x”03”.

 Once this is over, process P2 starts executing adding the first two values of x”02”,

producing a result of x”04” eventually which is stored at location x”0A” in the shared

data memory and also a token for the third process P3 is issued as shown at the location

 68

of the cursor by the highlighted value. This process is to be done by CE1 as it is found to

be and it also starts executing. This has been indicated in Figure 5.10.

 Process P3 is a dummy process and it does not do any useful work in the

system other than introducing a delay. This can be seen from the instruction x“9C03

3000” in Figure 5.11. Also, it can be seen that process P2 completes and the

multiplication process starts execution as indicated by the instruction x”8E03 FF04”. The

dummy process forks into two actual processes P4 and P5 which do the addition

operations as can be seen in Figure 5.12, producing results of x”04” and x”04”, which are

stored at locations x”14” and x”1E” respectively in the shared data memory. Process P6

then executes. As part of the join operation, it subtracts values of x”04” from x”04”

producing a result of zero; which is stored at location x”2E”. This is shown in Figure

5.13.

 69

Figure 5.8 : One Command Token of x”01010003” for the Multiple Fork Application

 70

Figure 5.9 : Values of x”02” being Input into the System

 71

Figure 5.10 : Token for P3 Issued and P2 Completes Execution

 72

Figure 5.11 : The Dummy Process P3 and the Instruction for Multiplication

Delay
Instruction

Instruction for Multiplication

 73

Figure 5.12 : Process P4 and P5 Successfully Executing

P4 and P5- Adds two numbers to get a result of 4

 74

Figure 5.13 : Join Operation - Subtraction is Performed Leading to x”0000” at x”2E”

Join Instruction

Final result

 75

Figure 5.14 : Final Result is Displayed at the Proper Location

 76

Thus multiple forking can be effectively achieved by using the concept of the dummy

process and this overcomes the architectural forking restriction of the first phase model of

the HDCA in [17].

 77

Chapter Six

Example Applications Development, Testing and Evaluation for

Enhanced Fully Functional HDCA
Process flow graphs can be classified under two broad categories, acyclic or cyclic

process flow graphs with single or multiple inputs/outputs. An acyclic process flow graph

has no feedback data going into processes that are earlier in the process flow. This

essentially means that there are no loops in the graph. A cyclic process flow graph, on the

other hand has feedback data dependence that form loops in the graph. Again, cyclic

process flow graphs could be split into deterministic or non-deterministic graphs. The one

with deterministic cycles of feedback loops, can be converted into an acyclic process

flow graph, if it is known early on as to how many loops are going to be executed. Thus,

it is not a true cyclic process flow graph. The one with non-deterministic cycles of

feedback loops, as shown in sixth application, is a true cyclic process flow graph. In this

chapter, six applications are described by the two types of process flow graphs mentioned

above. These applications go on to prove that virtually any application that can be

represented by a process flow graph can be execute on this architecture given that it

meets the restrictions imposed by the architecture definitions. Some applications

described are commonly used in image processing or other such areas in the field of

digital signal processing or embedded systems.

6.1 Application One: Acyclic Integer Averaging Algorithm

 The first application represented here is a simple acyclic integer averaging

algorithm. This application was primarily developed to test the core functionality of the

different components in the system before additional processors were added in to the

system and after suitable changes were made to the code as provided in [35]. It can be

seen from this application that additional modifications, such as the input data ROM and

the multiplier processor have not yet been incorporated into the system keeping the

system simple but at the same time fully functional with the incorporated changes. Also it

can be seen from the images that the interconnect network has not yet been included in

the system.

 78

 Figure 6.1 shows a process flow graph for the integer averaging algorithm. The

process nomenclature and functionality can be described as below.

Figure 6.1 : Integer Averaging Algorithm

P1: Input ‘k’ numbers.

P2: Add first “k-2” numbers.

P3: Add remaining 2 numbers.

P4: Add the results of P2 and P3 to compute the sum of “k” numbers.

P5: Compute the average of the numbers by calculating “Result of P4”/k.

P6: Display the final results of the calculation.

In theory “k” could be a large number, for example, used when computing an average of

a large sample of data sets, as in the mean or median of the age of all the people living in

a county. However, to keep the first application simple and to provide a proof of concept,

a value of 6 was chosen for “k”. Any value of k > 2 would work for this system without

having the need to change the topology of the process flow graph.

As part of the first process “P1”, six numbers are inputs into the system via the

input bus “inpt_data0”. This can be seen in Figure 5.2 when “rq_ipt0” signal goes high

requesting input. In response to this request, the input data valid signal,”idv0” is made

high so that the value on the input bus is latched on .This can be seen in Figure 6.3 where

the first six numbers, all have a value of six and are stored at consecutive locations

P2

P3

P4

P6

P1

Input k numbers

Sum first (k-2)

Display Results

Add results of P2 and
P3

Compute
Average

Add remaining 2
numbers

P5

 79

starting at 3, as represented by the “mem_ad_out” port. This is consistent with the values

shown in Appendix B. These processes have been indicated with an arrow and explained.

Process P1 forks in to two follow on processes P2 and P3 and next these are

executed. This can be seen in Figure 6.4, where the two processes are done by CE0 and

CE1 simultaneously. The instructions “300F” hex and “301A” hex refer to the locations

“0F” and “0A” hex where the instructions for these processes start. These locations have

been tabulated in Appendix B. As part of process P2, the first (k-2) numbers or four

numbers are summed. The result of the computation is stored at data location “0A”hex

and the result of P3 is stored at “09” hex. Also a high on the request output bus,

“rq_opt0” indicates that the system is requesting access to the bus to display the results

and when the grant is given, the results appear on the “mem_out” bus.

 80

Figure 6.2 : Process P1 being done by CE0

 81

Figure 6.3 : Input Values Stored at Consecutive Locations

Input 6 values from the input data bus, inpt_data0

 81

Process P1 forks to two follow on processes P2 and P3 and these are next executed. This

can be seen in Figure 6.4, where the two processes are done by CE0 and CE1

simultaneously. The instructions “300F” hex and “301A” hex refer to the locations “0F”

and “0A” hex where the instructions for these processes start. These locations have been

tabulated in Appendix B. As part of process P2, the first (k-2) numbers or four numbers

are summed. The result of the computation is stored at data location “0A”hex and the

result of P3 is stored at “09” hex. Also a high on the request output bus, “rq_opt0”

indicates that the system is requesting access to the bus to display the results and when

the grant is given, the results appear on the “mem_out” bus.

Once these processes finish execution, the next process P4 needs to execute. This

is a join process and operates on the two sets of data it receives from the locations where

processes P2 and P3 had stored their results. This is clear from Figure 6.5 where CE0

performs the join operation by collecting data from locations “09”hex and “0A” hex and

adding them to compute the final result, which is finally stored at location “0B” hex.

Once this is done, the last operation is the division operation. Division in the HDCA

system takes typically about twenty clock cycles. As part of the division process, value of

36 at location “0B” hex is taken by the divider CE and divided by the value of “k” which

is six and the final result of 6 is stored at the same location “0B” hex. This can be seen in

Figure 6.6. Finally, as part of the last process P6, the system displays the final result

computed. From Figure 6.7 it can be seen that the final value of the average of the k

numbers that were input in to the system is displayed.

 82

Figure 6.4 : P2 and P3 being Done Simultaneously by CE0 and CE1

 83

Figure 6.5 : Join Operation of P2 and P3 to P4 being done by CE0

 84

Figure 6.6 : Average of the k Numbers being Computed by the Divider CE.

Result of 6 at location x”0B”

Division Operation going on

 85

Figure 6.7 : Final Result of Algorithm being Displayed in Process P6 by CE0

 86

The first application thus proved that the changes made to the existing first phase

prototype code to port it to the ISE platform were functionally correct and had no issues.

The next challenge was the inclusion of additional components and designing another

application that used these components along with the existing ones. This was

accomplished in the second acyclic application that was developed where an additional

multiplier CE was added along with an input data ROM. The second application is a two

by two matrix multiplication application with application in the area of Digital Signal

Processing.

 87

6.2 Acyclic Application Two – 2x 2 Matrix Multiplication Algorithm

 Matrix Multiplications are common in DSP Applications such as Convolution

where a moving window consisting of an array of co-efficient or weighting factors called

operators of kernels is moved throughout the original image and a new convoluted image

results due to the operation. The process flow graph for such an application is shown in

Figure 6.9. As part of this application, the data for the first matrix, Matrix A is transferred

into the system by means of the input data ROM. The second Matrix is stored in the

Instruction Memory of the Multiplier CE. Once computation is performed on these sets of

numbers, the final results are again stored back in the shared data memory.

 Since this was the second application to be tested, at this moment only two

additional components, the input data ROM and the multiplier CE were integrated into

the existing HDCA system. The Interconnect network switch was not yet ready and

development was still going on, to make it scalable and ready for the HDCA. Figure 6.8

shows the Matrices that were used and the final result that should be seen .

Figure 6.8 : Matrix Multiplication Operation for Application two

 88

Fi
gu

re
 6

.9
 :

2x
2

M
at

rix
 M

ul
tip

lic
at

io
n

A
lg

or
ith

m
 fo

r A
pp

lic
at

io
n

2

 89

For the entire representation below the notation Aij and Bkl is used, where i, k

represent the row numbers and j,l represent the column numbers. It is noteworthy to

remember here that for the two matrices A and B to be compatible for multiplication, the

number of columns of the first matrix should equal the number of rows for the second

matrix or in other words, j = k. Also, the resulting matrix would be of dimensions Cil.

P1: Input 2 sets of 4 numbers into the system.

P2: Multiply A11 and B11.

P3: Multiply A12 and B21.

P4: Compute C11= A11 x B11 + A12 x B21.

P5: Multiply A11 and B12.

P6: Multiply A12 and B22.

P7: Compute C12= A11 x B12 + A12 x B22.

P8: Multiply A21 and B11.

P9: Multiply A22 and B21.

P10: Compute C21= A21 x B11 + A22 x B21.

P11: Multiply A21 and B12.

P12: Multiply A22 and B22.

P13: Compute C22= A21 x B12 + A22 x B22.

P14: Display C11, C12, C21, C22.

Figure 6.10 shows two sets of the first four values of Matrix A being input into

the system from the input ROM. This is done by CE0 in response to the first instruction

that can be seen on the “db_pe_icm0_fin0” port. These values are stored at consecutive

locations starting from three, i.e from locations three to ten. The reason for storing two

sets of data is that when say for example, P2 finishes execution, it writes it’s result at the

same location where the original data was stored. In this case, originally a value of 6 is

stored at address 3 and when P2 gets over; the value at 3 gets updated to 72. However, we

require the old value of 6 again while performing computations for C12 and thus it needs

to be stored safely.

 90

In some ways, this can be thought to be a limitation in the bus design, leading to

usage of additional resources in the HDCA. However, on the other hand, this is also

useful in recursive algorithms where the results of one operation need to be used by the

next process, as for example in finding the factorial of a given number which is often

used in Permutations and Combinations in the area of Mathematics.

 The next process P2, multiplies a value of “6” at address “3” with a value of “12”

stored in the instruction memory of the muliplier to generate a result of “72” which is

stored back at location “3”. This can be clearly seen in Figure 6.11 where the ports of the

multiplier have been waved up as signals in the simulation for easy observation. As can

be seen from the code for the multiplier in Appendix A, whenever the newdata signal

goes high, dataa on the output of the multiplier is sent to the data bus for storage. The

same figure also shows the process P3 being done by CE0, where a value of “3” stored at

address “4” is multiplied by a value of “8” stored in the instruction memory of the

multiplier to yield a result of “24” which is stored back at location “4”.

 91

Figure 6.10 : 2 sets of the First Four Values in Matrix A are Inputs into the System

Values being input from inROM

Command Token

 92

Figure 6.11 : Process P2 and P3 being done by CE0 and their Results being Stored.

Process P2 Process P3

 93

Once process P2 and P3 are done, the next operation to follow is the join operation where

the process P4, is used to compute the first phase of the final result, C11. This process

takes its data from the locations where processes P2 and P3 stored their final results and

computes the final result by doing an addition operation. This can be seen in Figure

6.12.Also it can be clearly seen that the data “72” is retrieved from location “3” and the

data “24” is retrieved from location “4” which corroborates the fact mentioned above for

the duplication of input data in the data ROM. The final result of the addition is “96”

which is stored at location “0B” hex in the data memory. This is also displayed as an

output when the request output signal goes high demanding access to the data bus to

display the output. Next, Processes P5 and P6 are executed and this can be seen in Figure

6.13- where a value of “6” is used, but this time retrieved from location “7” where it was

stored as a copy in the input ROM and multiplied with a value of “5” to yield a result of

“30” which is again stored at location “7”. Also as part of process P6, a value of “3”

from location “8” is multiplied with a value of “30” stored in the instruction memory to

yield a result of “90” which is again stored back at location “8”.

 Next, as part of the join operation P7, these results obtained are added to compute

the final result of “120”. This is the C12 component of the final matrix and the value is

stored at location “0C” hex in the shared data memory. The result is also displayed on the

“mem_out” bus so that the data location and the value where the data is stored can be

easily cross-referenced with the values represented in the Appendix B. This has been

represented in Figure 6.14.

Similarly, processes P8, P9 do the multiplication and P10 does the join operation.

 94

Figure 6.12 – Process P4 executed by CE0

Process P4 – A join operation

 95

Figure 6.13 : Processes P5 and P6 executed by CE0 and their Results

Process P5 Process P6

 96

Figure 6.14 – Process P7 being executed by CE0 and the Results Being Displayed

Process P7 – A join operation

 97

Figure 6.15 : Processes P8 and P9 being Executed by CE0

Process P8 Process P9

 98

Figure 6.16 : Process P10 being Done by CE0. It Computes Component C21

Process P10 – A join operation

 99

 The results obtained are added to get the C21 component of the final matrix. This

result is stored at location “0D” hex. These operations and the results can be seen in

Figures 6.15 and 6.16 respectively.

 Once this has been done, the last section of the computation remains, where the

processes P11 and P12 first multiply the values “4” by “5” and “2” by “30” as shown in

Figure 6.17 and then the result of this operation is retrieved by the join process P13

which calculates the final component C22 of the resultant matrix and stores it at location

“0E” hex. This is displayed in Figure 6.18. Finally the last process P14, displays all the

results computed and stored so far or in other words it displays the contents of the shared

data memory where the results were earlier stored by the join processes P4, P7, P10 and

P13. These are the four final results of the matrix multiplication operation and can be

clearly seen in Figure 6.19. The final results of this algorithm are “96” located at location

“0B” hex.”120” located at “0C”hex. A value of “64” located at “0D” hex and a value of

“80” located at “0E” hex. These results are consistent with the 2x2 matrix multiplication

application for the matrices that were inputs into the system.

 This application goes on to prove the diverse nature of the system. While it

accomplished the goal of successfully testing the newly designed components in the

HDCA, it also brought out the face that algorithms which find use in embedded

computing and DSP applications can be executed on this architecture. In fact the parallel

nature of the HDCA favors the operation of such algorithms. An important question that

arises is that of scalability and performance. It’s nice to know the increase in gate count

as application get bigger and the resulting changes in performance.

 100

Figure 6.17 : Processes P11 and P12 done by CE0

Process P11 Process P12

 101

Figure 6.18 : Process P13 Computing the Last Component C22

Process P13 – A join operation

 102

Figure 6.19 : All Results with their Data Locations in the Shared Data Memory

96 at x”0B”
120 at x”0C”

64 at x”0D”

80 at x”0E”
Final Process to display all results

 103

To prove that the HDCA was scalable and that different types of matrix

multiplication algorithms could be run on it, an asymmetric matrix multiplication

algorithm was executed. Since the process flow graph of any application that can be run

on this architecture is limited to 32 processes, a 3x3 matrix multiplication operation could

not be run as it exceeded the process limit. Also, it would not help prove the fact that

asymmetric multiplications could also be done and hence, as part of application 3 that

was developed, a 3x3 matrix A was multiplied with a 3x2 matrix B to yield a final 3x2

matrix C.

 104

6.3 Acyclic Application 3 – 3x3 by 3x2 matrix multiplication algorithm with

performance evaluation and gate count comparisons

 Since the base algorithm that was used is the same as that of application 2 with a

difference only in dimensions, this application is not explained in as detail as application

two. Figure 6.21 shows a process flow graph for this application. The noticeable

difference in this graph compared to that of application two is an increased number of

processes, almost double those of application two, bringing this application close to the

maximum process limit and increasing its complexity. Also worth mentioning, is the fact

that each partial result computation, now has an additional multiplication operation

associated with it, leading to an increase in the amount of duplication. Thus the amount

of data in the input ROM can be represented by the equation O(data dup) = 2 * k2 for an

Figure 6.20 : Number of Elements in the Data Rom vs. Dimensions of Input matrix

input square matrix of dimensions ‘k’. Thus if there was a “3x3” matrix, the data ROM

would have 18 elements and so on. This is plotted in the Figure 6.20. From the plot, it is

clear that the rise in number of elements is roughly exponential with the increase in size

Number of Elements Vs Dimension

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9

Dimensions of the Matrix

N
um

be
r o

f E
le

m
en

ts

 105

of the matrix, which means that for very large matrices, the system would consume lot of

resources in the FPGA chip and subsequently would not fit in a single chip. Since the

HDCA system described here, was limited to thirty two processes , the need for fixing the

bus logic wasn’t felt necessary. The processes of this application can be described as

below.

P1: Input 2 sets of 9 numbers into the system. This is the first matrix- Matrix A.

P2: Multiply A11 and B11.

P3: Multiply A12 and B21.

P4: Multiply A13 and B31.

P5: Compute C11= A11 x B11 + A12 x B21 + A13 x B31

P6: Multiply A11 and B12.

P7: Multiply A12 and B22.

P8: Multiply A13 and B32.

P9: Compute C12= A11 x B12 + A12 x B22 + A13 x B32

P10: Multiply A21 and B12.

P11: Multiply A22 and B21.

P12: Multiply A23 and B31.

P13: Compute C21= A21 x B11 + A22 x B21 + A23 x B31.

P14: Multiply A21 and B12.

P15: Multiply A22 and B22.

P16: Multiply A23 and B32.

P17: Compute C22= A21 x B12 + A22 x B22 + A23 x B32

P18: Multiply A31 and B11.

P19: Multiply A32 and B21.

P20: Multiply A33 and B31.

P21: Compute C31= A31 x B11 + A32 x B21 + A33 x B31

P22: Multiply A31 and B12.

P23: Multiply A32 and B22.

P24: Multiply A33 and B32.

 106

P25: Compute C32= A31 x B12 + A32 x B22 + A33 x B32.

P26: Display C11, C12, C21, C22, C31,C32

Since there are 26 processes that are to be executed and there are eighteen multiplications

to be performed, the size of the look up table needs to be increased for accomodating this.

Hence the look up table needed to have eighteen entries before it had all the data it

needed for the application to execute. Also its visible that there are twelve addition

processes that could be executed by CE0 or CE1 but this is less than the value of eighteen

needed to fill up the lookup table and hence six more sets of table load and table input

tokens need to be added. These can be any table load/ table input pair from earlier

processes. Figure 6.21 explains in great detail as to what each process does and the sets of

data it operates on. Also indicated by the side is information on the CE that performs the

given process.

 107

Figure 6.21 : Process Flow Graph for Asymmetric Matrix Multiplication of Application 3

 108

 Similar to application two, one matrix is stored in the Instruction Memory of the

multiplier while the other values are input through the data ROM into the system. The

test vectors, Instruction Memory Initialization and other details of this application can be

found in Appendix B, which has test vectors for all applications discussed here. In this

section, only waveforms representing system operation have been shown. The system

begins operation at process P1, where two sets of Input data representing the first matrix

and input into the system. This can be seen clearly in Figure 6.22 through Figure 6.25.

The values are stored at consecutive locations starting from 3 and incrementing by 1. So

the first 9 values are stored at locations “03”hex through “0B”hex respectively. This can

be clearly seen in Figure 6.23 which shows the first set of last 4 values which end at “0B”

which has a value of “09”. Figure 6.24 clearly shows the data being repeated again

starting at location “0C” hex and ending at “14” hex as shown in Figure 6.25.

 This represents the completion of process P1. Once the process P1 gets over the

next process to be executed are P2 and P3. In the figures that follow, a brief explanation

of each operation is given along with the figure. Details of system operation have already

been explained in Application two and will not be repeated again here. Processes P2,P3

and P4 are all multiplication processes that calculate part of the product needed to

compute the final sum of products. Figure 6.26 shows all three processes being executed

along with the results. The “mult-dbug” port has the final result which gets latched on to

the data bus and stored at the proper location as indicated in the waveform. This

completes all the information needed to compute the first SOP (Sum of Products).

 109

Figure 6.22 : First 5 Values of the Matrix A being Input Through the Data ROM

Values 1,2,3,4 and 5 starting at consecutive locations from 3

 110

Figure 6.23 : Last Four Values of the First Set of Data Stored at Locations Ending at “09”hex

 111

Figure 6.24 – Second set of Data for Matrix A, Starting at “OC” hex

 112

Figure 6.25 : Last 4 Data Values for Second Set of Matrix A, Ending at “14” hex

Address location 14 hex

 113

Figure 6.26 : P2, P3 and P4 with Results, “16”, “2” and “12” Unsigned on “mult_dbug”

P2 P3 P4

 114

Figure 6.27: P5 Being Done to Calculate C11.

Join Operation for P5

C11 calculated

 115

Similarly Figures 6.28 through 6.29 show P6,P7 and P8 being done which are

multiplication operations storing data “12’, “4” and “18” at locations “0C”hex,”0D”hex

and “0E” hex respectively. Once this is computed, next the components C21 and C22 need

to be computed. These are computed by Processes P10 through P17 as shown in Figure

6.30 – Figure 6.33. Similarly the components C31 and C32 are likewise calculated by

processes P18 through P25 as is seen in Figures 6.34 to 6.37. Once all the results of the

matrix multiplication algorithm are ready, they are displayed once again, together to

verify the final result. It is lucid from Figure 6.38 that the correct values have been

computed and stored at the locations as described in Appendix B. These are namely,

unsigned values of 30,34,93,94,156 and 154 stored at hex locations 60, 61, 62, 63, 64 and

65 respectively.

 116

Figure 6.28 : Processes P6, P7 and P8 being executed by CE 0

P6 P7 P8

 117

Figure 6.29 : P9 Computes Sum of Products C12 stored at “61”hex in Data Memory

P9 computes sum

Result at x”61”

 118

Figure 6.30 : Process P10, P11 and P12 – Multiplications being Done

 119

Figure 6.31 –Process P13 Computes C21 Stored at “62”hex finally in Shared Data Memory

Instruction for P13 - Join

Sum stored at x”62”

 120

Figure 6.32 – Processes P14, P15 and P16 Computing Products

 121

Figure 6.33 : Process P17 Calculates C22 Stored at “63”hex Finally in Shared Data Memory

Unsigned 94 stored at x”63” in data memory

 122

Figure 6.34 : Processes P18, P19 and P20 are Done by the Multiplier CE 4.

 123

Figure 6.35 : Join Operation0Ccomputes C31 Storing it at “64”hex in Shared Data Memory

C31 computed- 156 at x”64”

 124

Figure 6.36 : P22, P23 and P24 being Performed by CE4

 125

Figure 6.37 : Last Component of Result being Calculated and Stored as part of P25

C31 computed- 154 at x”65”

 126

Figure 6.38 : Final Results Being Displayed by Process P26

30,34,93,94,156,154 at x”60”,x”61”,x”62”,x”63”,x”64”,x”65”

 127

Thus this algorithm goes on to prove the very important fact that matrices of any

dimension can be multiplied using this architecture if the restrictions of limitation to 32

processes are avoided besides, when the simple processors used are replaced by hybrid

processors, which can perform all kinds of operations, the inherent parallelism in these

operations can be made use of and better performance achieved.

 Finally the results of both these operations were compared and a graph showing

performance with different speed grades has been shown in Figure 6.39. This gives a

good idea of system performance with increase in matrix size.

1

2

2 x 2 Mat Mult

3 x 2 Mat Mult

29

30

31

32

33

34

35

36

37

Frequency (MHz)

Speed Grades
2 x 2 Mat Mult

3 x 2 Mat Mult

Figure 6.39 : Plot of Maximum Frequency vs. Speed Grades for Applications 2 and 3

The above figure shows the maximum frequency at which the HDCA could be run when

the multiplication algorithms were performed. It is clear that there is a vast improvement

in performance when moving from a speed grade of -4 (shown as 1 in graph) to a speed

grade of -5 (shown as 2 in graph). Also, it is evident that there is a slight improvement in

performance as the matrix size increases from that of application one to application two.

 128

 The next application described is pretty different in that it uses all the processors

in the system, unlike some of the applications that have been described just now and

introduces the concept of “multiple command tokens” hinted at in chapter 2.This is

explained in the next application along with the results obtained on running the

application. Gradually this concept is extended to demonstrate a complex loop

application and the dynamic node level reconfigurability concept.

 129

6.4 Application Four – Acyclic Pipelined integer manipulation algorithm

Figure 6.40 : Process Flow Graph for Application Four

The process flow graph for this application can be split into the following processes –

P1 – Input “n” numbers into the Shared Data Memory from the Input Data ROM..

P2 - Add the first half of these numbers and store the result in the Shared Data Memory.

P3 – Add the remaining numbers in parallel and store the results in the shared data

memory.

P4 – Multiply the result of P2 by value “k” stored in the instruction memory of the

Multiplier CE.

P5 – Divide the result of P3 by value “k” stored in the instruction memory of the Divider

CE.

P6 – Subtract the result of P5 from P4 and store the result in the data memory.

P7 – Display the address and value of the final result calculated in P6.

At first glance this application looks like any other application previously

developed. However there are a couple of major change here. In all the applications that

had been described earlier, there was just a single copy of the application running on the

entire system. Moreover, a core generated shared data memory was used in the system.

 130

Thus when multiple CEs requested for the bus, one or more CEs had to wait for the

access until the CE that was accessing memory was done with its work. This limitation

was removed in this application by the introdcution of the interconnect network switch in

the system as mentioned in [19]. In Chapter 2, it was mentioned that the HDCA could

support pipelined computation. This means that at any given time, there could be multiple

copies of a process flow graph running on the system. The copies running on the system

may or maynot operate on the same data values. This application shows the pipelined

nature of the HDCA by executing two copies of the above process flow graph in unison

thereby making the algorithm compute intense.

In order to accomplish this, two copies of command tokens are provided as test

vectors at the end of the test vector input phase. Each of these command tokens; as can be

seen from Table 2.2 in Section 2.6 of chapter 2, has a three bit field called “Time Stamp”.

This field helps the HDCA distinguish between different copies of a given application.

This is essential for proper operation of the HDCA. If there were no way to separate the

two copies and if we assume that the two copies of the application operate on different

sets of data, then the HDCA could, for example, erroneously perform some process, say

P6, by taking first value from copy 1 of the application and the second from copy2 of the

application. Since the “Time Stamp” field for both command tokens is different, this does

not happen. For the first command token, the “Time Stamp” field is set to logic zeros and

for the second command token it is set to a logic one. Also, worth mentioning is the fact

that the “Time Stamp” field is a three bit field, which means that at any given time, at the

most, eight copies of an application could be initiated on the system. In the application

described here, 10 values were input into the shared data memory through the Input ROM

and the value of k was chosen to be “2”. The initialization tokens and the command

tokens have been shown in Appendix B. The two command tokens, x“0101FF03” with

time stamp as “000” and x“0121FF11” with time stamp as “001”instruct the PRT mapper

to map the first process P1 for both the copies. The PRT mapper allocates CE0 for both

the copies of process P1, as CE0 has a higher priority over CE1 on process P1 and both

CEs are idle before the first process begins. Figure 6.41 shows the two command tokens

being issued to the CE0. The first instruction issued by the interface controller of each CE

is shown in the waveforms at the ports “db_pe_icm0_fin0” for CE0 and similarly for

 131

other CEs. These output ports have been named based on their connections. Hence, the

said port is the bus between the CE and its interface controller module. CE0 begins

execution of process P1, and 10 values are transferred to the shared data memory through

the ‘inpt_data0’ bus. Figure 6.42 shows the first 5 values (all 2s in this case) being sent

into the data locations starting from x”03”of the shared memory block. The figure also

indicates CEs accessing, a particular block in the shared data memory, for instance in this

case CE0 is accessing block ‘blk0’. The remaining 5 values are similarly sent to the

shared data memory and this is indicated in the next figure, Figure 6.43. The values

stored in memory can be viewed at the “mem_out_0” bus.

 According to the flow graph topology, P1 forks to two processes, resulting

in two command tokens (x“01020003” and x“01030003”) which are issued to the PRT

mapper to be allocated to the most available CE. This is depicted in Figure 6.44. The

PRT Mapper chooses CE0 as most available for process P2 and CE1 for process P3.

Again this is a feature that is decided by the Load PRT token. Figure 6.45 shows the

command tokens being issued CE0 for process P2 (x“0302FF03”) and CE1 for process

P3 (x“0203FF03”). When the first process for the first copy of the application finishes

execution, the execution of the second copy of the first process, P1 starts. This can be

seen in the instruction (“9C11 3003”). In the meantime CE1 starts execution of the

process P3 for the first copy (“9C03 3024”) of the application. In this case, both CE0 and

CE1 are accessing the same memory block ‘blk0’, however not at the same time hence

there is no simultaneous access. These events are depicted in Figure 6.46. Also the block

boundaries for shared data memory are defined in Appendix B.

 132

Figure 6.41 : Command Tokens for both Copies of Process P1 to CE0 Issued by PRT Mapper

2nd Command Token 1st Command Token

 133

Figure 6.42 : P1 – First 5 Values of Copy1 being sent to Shared Data Memory

Input 5 values as shown by arrows. All have a value of x”02”

 134

Figure 6.43 - Input of Last 5 Values for Process P1 of Copy 1

 135

Figure 6.44 : Two Command Tokens being Issued to PRT Mapper for Copy 1

Process P2 is the next

Process P3 is the next

Implies a fork

 136

Figure 6.45 : Command Tokens Issued to CE0 and CE1 by PRT Mapper for Copy1

To CE0 by PRT Mapper To CE1 by PRT

 137

Figure 6.46 : Instructions for Process P1 of Copy 2 and for Process P3 of Copy 1

 138

The second copy of the application also follows the same flow graph, hence when

process P1 gets over and the CE indicates that it is finished with the current instruction,

two command tokens are generated by CE0 and issued to the PRT mapper, similar to

copy1. Figure 6.47 depicts this. The PRT again has to choose the most available CE.

Figure 6.48 shows that the PRT Mapper allocates P2 to CE0 and P3 to CE1 for the

second copy of the application, which is indicated by the tokens x“0323FF11” and

x“0223FF11”. Its handy to remember that CE0 has an address of x”03” and CE1 has an

address of “02” and hence a quick look at the command token always indicates which CE

is being allocated a given process. The execution of process P2 of copy 1 begins after the

end of process P1 of copy 2. The instruction x“9C03 3017” is being issued to the CE0.

This is shown in figure 6.49. In figure 6.50 it can be seen that the instruction for process

P3 is issued by CE1 x“9C11 3024” and also a command token x“01050003” for the

process P5 is being issued to the PRT Mapper as the execution of process P3 ends. The

process P5 is a division operation as shown in figure 6.51, it takes about twenty clock

cycles. The PRT Mapper allocates process P5 to the Divider CE as can be seen from the

token x“0405FF03”. All the results of computation are stored in the shared data memory

and these values can be referred to in Appendix B. The division operation is shown in the

figure 6.50, the division of value unsigned‘10’ (result of addition of last 5 values of

process P3) at x”0E”by unsigned’2’, the result unsigned‘5’ is obtained after a 20 clock

cycle delay and is stored at the same location of ‘10’ that is x”0E”. To exhibit perfect

division operation the ports of the divider CE are taken out and shown. At the end of the

execution the Divider CE sends the command token to the PRT Mapper x”81060003”

 139

Figure 6.47 : Two Command Tokens Issued to PRT Mapper for Copy 2

 140

Figure 6.48 : Two Command Tokens Issued to CEs by PRT Mapper for Copy 2 - P2 and P3

 141

Figure 6.49 : Process P3 for Copy2 of the Application

Process P3 for Copy2 – Note the 9C11 indicating that it’s the second copy

 142

Figure 6.50 : Division Operation in the Process of Execution.

Division

 143

which implies a join operation to follow. The PRT Mapper will wait for the P4 process to

execute and issue similar token to the PRT Mapper. After the execution of process P2 by

CE0 it sends the command token x”01040003” to the PRT Mapper. The next process is

P4, a multiplication operation; hence the PRT Mapper allocates the process to the

Multiplier CE (CE4). It issues a command token x”0504FF03” to CE4. This is shown in

Figure 6.52. The figure also shows the issue of instruction for process P3 for copy 2 to

CE0 on the “db_pe_icm_0_fin0” bus.

 144

 Figure 6.51 : Division Operation for Process P5 with Results and Issue of Command Token to PRT Mapper for Copy 1

Division
Issue of Command Token

 145

Figure 6.52 : Command Token for Process P4 Issued to PRT Mapper and from PRT to CE4 for Copy 1

Command Token to PRT PRT to CE4

 146

Figure 6.53 shows the multiplication operation after the issue of the multiply instruction

to the multiplier CE. An unsigned value of ‘10’ stored at location x”0D” (addition of first

5 values as part of process P2) is multiplied by ‘2’. The result, 20 is stored at same

location x”0D”. These values can be seen at port “mem_out_3” and location

“mem_ad_out_3” of the waveform. The ports of the multiplier CE have been added and

shown to display the functioning of the multiplier CE. At the end of process P4 a

command token is being issued by CE4 to the PRT Mapper x”81060003” which indicates

a join process P6 is next.

The process P2 of copy 2 after execution sends a command token for process P5 to PRT

Mapper and eventually the PRT Mapper sends the command token to the Divider CE.

This is shown in Figure 6.54. The detailed division operation is shown in figure 6.55.

Here the unsigned value ‘10’ stored at x”1C” is divided by the unsigned value of ‘2’. The

result, “5” is stored in the same location x”1C” as shown in the waveform of Figure 6.55.

Result is observed at “mem_out_2” and address at location “mem_ad_out_2”. Similar to

the division operation of copy 1 the divider ports have been waved up for display. The

following command token for process P6 is issued by CE2 to PRT mapper.

 147

Figure 6.53 : Multiplication Operation by CE4 and Command Token Issued to PRT Mapper for Copy 1

 148

Fig: 6.54 : Command Token for P5 Issued to PRT mapper and from PRT to CE2 for Copy 1

Division PRT to CE2

 149

Figure 6.55 : Process P5 and Command Token to PRT Mapper for Copy 2

Process P5

PRT Mapper to Copy2

 150

 In Figures 6.53 and 6.55 it can be seen that two CEs are accessing the same

memory block ‘blk0’.Meanwhile the PRT Mapper allocates CE1 to compute the process

P6 of copy 1 as can be seen from figure 6.56. The instruction x”9C03 9803 3032”for the

join operation is issued to CE1. In process P6 the values obtained from the result of

process P4 are subtracted from result of process P5. An unsigned value of ‘5’ (result of

division) at location x”0D”, is subtracted from the result of multiplication, ‘20’ stored at

x”0E” and the final result of ‘15’ is stored at location x”0F”. The result of the process P6

is finally displayed by another process P7. The instruction for process P7 is executed by

CE0 x”9C03 3039”. This process outputs the results of the subtraction operation in P6.

Hence the result can be seen as explained earlier in figure 6.57. Also the command token

for process P4 of copy 2 being issued to PRT Mapper and eventually a command token

x”0524FF11” is issued to the Multiplier CE to execute the process P4 for copy 2 of the

application.

 151

Figure 6.56 : Join Instruction for Process P6 of Copy 1

Join Instruction for P6

 152

Figure 6.57: Instruction for P7 and Final Results for Copy1 of Application Displayed

Final Result at x”0F”

 153

 After the command token for the process P4 is issued to Multiplier CE, the

instruction is issued and multiplication takes place. The final result of the multiplication

is stored at the location x”1B”, where the earlier result of addition process was stored.

Once P4 is done, the command token x”81060011” for the join process P6 is issued. This

is shown in Figure 6.58

 The PRT Mapper allocates the next process P6 to CE1 finding it to be the most

available. The instruction for the process P6 is issued to CE1, as can be seen from the

value of x”9C11 9811 3032”.This can be seen from Figure 6.59. Subtraction operation

takes place. The result of the process P5 (division) is subtracted from the result of P4

(multiplication) as part of the process P6. The final result of unsigned “15” is stored at

x”1D”. Process P7 displays this value again. The command token to execute process P7

is given to the PRT Mapper which in turn allocates it to CE0 and it executes the

instruction x”9C11 3039”. The final result can be seen in Figure 6.60 at port

“mem_out_0” and address location (x”1D”) “mem_ad_out0”.

 154

Figure 6.58 : Result of Multiplication and Command Token Issued to PRT Mapper

Multiplication Result

 155

Figure 6.59 : Join Process P6 - Instructions for Copy 2

 156

Figure 6.60 : Process P7 with Final Value of the Result Displayed for Copy 2

Final Result 15 at x”1D”

 157

 Thus, this application as described, used all the CEs and also introduced the

interconnect network in the system. Additionally, the pipelined nature of the HDCA was

verified by showing that multiple copies of an application could be executed on the

system.

 None of the application discussed so far have a cyclic nature. To show that the

HDCA system could work well, with complex cyclic applications involving “while-do”

or “if-then” loops, a new application was developed that basically swaps two values over

a period of time. This application was further extended to prove dynamic node level

reconfigurability by increasing the rate at which data was entering the system and causing

the queue at the CEs to build up to the threshold value making it necessary for an

additional standby CE to dynamically configure to prevent system overload and failure.

 158

6.5 Complex Non-Deterministic Cyclic Value Swap Application

 Figure 6.61 : Process Flow Graph for the Application Swapping Two Sets of Values

Figure 6.61 shows a process flow graph that has feedback or back going loops.

This application is non-deterministic in nature, in the sense that, since values of T1 and

T2 might vary from application to application, it is not possible to unfold the loop to

make the process flow graph non-cyclic.

One such use of this application maybe in temperature monitors for embedded

systems, where the system keeps on monitoring temperature values at a regular period of

time and when the values reach a particular threshold, the system takes a pre-determined

action to prevent overheating. Furthermore, to show that this could also be done for the

case where temperature goes on reducing and a trigger is set to fire on reaching a

minimum value, this flow graph was developed with two feedback loops. An explanation

of what each process is supposed to do is shown below. For the flow graph shown above,

a value of x”0A” was chosen for k and values of T2 and T1 were chosen to be x”4C” and

x”64” respectively, to keep the application small and provide a working proof of concept.

P1 – Input 2 values say T1 and T2 with T1>T2

 159

P2 – Add a value of unsigned ‘10’ to T2 to get a new value of T2.

P3 - Check if T2 =T1 original. If yes, branch to P6 (Exit PN), display both T1 and T2

 Else branch to P2 again (feedback loop)

P4 – Subtract a ”0A” from T1 and update T1 to its new value.

P5 – Check if T1=T2 orig. If yes, branch to P6 (Exit PN), display both T1 and T2

 Else branch to P4 again (feedback loop)

P6 – Display the values of T1 and T2 and then exit.

The HDCA system as defined in the first phase prototype mentioned in [4], could

not perform a join operation on the Exit PN. Hence, it could not handle process flow

graphs of the nature shown above. Certain changes were incorporated into the second

phase model to fix this behavior. Process P6, as shown in the flow graph is a join

operation that should be executed only when the loops for both feedback processes get

over. Each time the flow graph loops back, the resulting command token generated and

issued to the PRT Mapper by the CEs executing processes P3 and P5 would have the join

bit field set to a logic one. However, when conditions for exiting the loop are not correct,

the next process is process P2 for P3 and process P4 for P5 rather than process P6. The

check for the join process in the controller of PRT mapper was modified to handle this

issue. The ‘StopL’ token format was modified to fix this problem. Bits from 15 down to 8

in the ‘StopL’ token are all at logic zero state. As part of the fix, bit 15 was modified to

be at logic one. This bit was used by the PRT Mapper to indicate that the token is for the

real join operation. This fixed the problems and the system functions correctly now, as

expected. The details of the test vectors and the initialization information for the input

ROM has been indicated in Appendix B. Additionally, since the application was found to

be time intensive, providing grant for the bus manually took lot of re-runs. To fix this

problem, the request grant logic was automated so that whenever a request was made, say

for example to display the values after a process gets over, the grant was automatically

given, provided the bus was free.

 Each time the processes P1 and P2 execute, they produce new values. These

values are stored at the same location as the original values that were input into the

system. Hence, for the comparison processes, P3 and P5, the original values of both T1

and T2 are needed to make a correct comparison. To achieve this, two sets of values T1

 160

and T2 are input into the shared data memory through the input ROM. Only one copy of

this application was run on the system. The command token given at the end of the test

bench, as can be seen from Appendix B is x”01010003”. In response to this, the system

starts executing the application and as part of the input process P1, the PRT mapper finds

CE0 to be the most available CE and allocates process P0 to it. Figure 6.62 shows this.

From the figure, it is clear that the unsigned values of 60 and 100 are input into the

shared data memory at locations 3 and 4 by the instruction x”9C03 3003” on the

“db_pe_icm0_fin0” port. Figure 6.63 shows the remaining 3 values being input into the

system. These are the value of “k” which is x”0A” at location 5 and the original safe

values of T2 and T1 which are x”4C” at location “6” and x”64” at location “7” in the

shared data memory. In all the waveforms, that follow, the ports “db_req0_dbug,

db_req1_dbug, db_req3_dbug” are the signals from the CEs 0, 1 and 3 respectively.

These signals go high when the CE requests access to the data bus whenever it needs to

access the shared data memory. Similarly ports “db_grant0_dbug, db_grant1_dbug,

db_grant3_dbug” are signals from the interconnect switch to the CEs that are granted

access. Also, the ports “mem_out_0” through “mem_out_3” are outputs from the shared

data memory and the corresponding “mem_ad_out_0” through “mem_ad_out_3” the

addresses where the data is stored.

 161

Figure 6.62 – First 2 Values being Input from Input ROM into the Shared Data Memory

First Value 60 at x”03”

Second Value 100 at x”04”

 162

Figure 6.63 : Values of k and Safe Values of T1 and T2 being Input into the System

Increment/Decrement Value Safe Values of 60 and 100 at
locations 6 and 7 respectively

 163

 When process P1 finishes, it forks to two follow on processes, P2 and P4 due to

which CE0 issues two command tokens to the PRT Mapper, which in turn allocates

Process P2 to CE1 and process P4 to CE0.This is demonstrated in Figure 6.64. The

results for P2, an unsigned value of 70, appears at the port “mem_out_1” and it is stored

at location x”03” indicated by the “mem_ad_out_1” port.

 Similarly for CE0, the result of subtraction, an unsigned value of “90” appears at

“mem_out_0” port and it is stored at the address x”04” in the shared data memory. From

this point on whenever CE0 performs an operation and displays a result, the bus

“mem_out_0” should be seen for the final result and the bus “mem_ad_out_0” should be

seen for the address at which it stores the result. The same applies for the other CEs.

Once the two processes get over, the next processes P3 and P5 need to be executed.

Figure 6.65 shows the comparison process P3 being done when a command token is

issued to the PRT mapper and it issues P3 to CE0. The instruction for this can be seen as

x”9C03 3014”. As part of this process, the new value of unsigned 70 is compared with

the original value of T1, which is unsigned 100 to see if it should loop back. Since the

check comes out false, the application loops back to process P2, as per the process flow

graph. Similarly, process P5 is executed after process P4 which compares the new value

of unsigned 90 with the original value of T2, unsigned 60 to see if they are equal. The

compare fails and hence the application loops back to process P4. This is shown in

Figure 6.66.

 164

Figure 6.64 : Instructions for Processes P2 and P4

Instruction for P2 done by CE1

Instruction for P4 done by CE0

 165

Figure 6.65 : Process P3 being done. First Comparison Will be Performed.

Process P3

 166

Figure 6.66 : Process P5 is done comparing 60 with 90

60 and 90 compared

 167

As part of the first loop back, process P2 starts execution. It takes the value of unsigned

70 that was stored at location x”04” and adds the value of unsigned 10 to it again to

obtain a final result of unsigned 80 which is stores back at location x”03” in the shared

data memory. This has been illustrated in Figure 6.67. Also, as part of the loop back

process for the lower loop, when P5 loops back to P4 for the first time, the PRT mapper

allocates this process to CE0, as can be seen from Figure 6.68 and a value of unsigned

“10” is again subtracted from the new value of unsigned “90” that was earlier computed

and stored at location x”04”.This leads to a new value of unsigned “80” and as usual it is

stored back at location x”04”. Once P2 ends, P3 needs to be executed and again the

comparison of this new value calculated in P2 needs to be done. The execution of process

P3 for the second time is illustrated in Figure 6.69. This is done by CE0 as it evident from

the waveform. Also, the command token x”8102003” indicates next process is P2 again.

 168

Figure 6.67 : P2 being Re-Executed as Part of First Feedback Loop

CE0 re-executes P2

70 is added with 10 to get 80

 169

Figure 6.68 : First Feedback for P4 done by CE0

 170

Figure 6.69 : Process P3 being Executed For the Second Time

100 is compared with 80

 171

This means that the comparison of 100 with 80 did not turn out equal which is true.

Hence the application loops back to P2 for a second time. After the execution of process

P4, process P5 needs to be executed for the second time. Here a value of unsigned “80”

needs to be compared with an unsigned value of “60”. As part of this process, the updated

value of “80” is retrieved from the location x”04” and compared to the original T2 value

of unsigned “60” stored at location x”06”.The command token for P4 is issued by CE0 to

the PRT mapper since the comparison fails to turn out to be equal and the value of

x”81040003” indicates this in Figure 6.70. This figure also shows the instruction for P2

being issued to CE1 to be executed by the interface controller. As part of this operation,

the value of unsigned “80” that was earlier stored at location x”03” is added with the

unsigned value of “10” and the final result of unsigned “90” is stored back at location

x”03”. This is shown in Figure 6.71.Process P4 is also similarly executed for the third

time by CE0 when a value of unsigned”80” stored at location x”04” is retrieved and a

value of unsigned “10” subtracted from it to obtain a result of unsigned “70” which is

stored back at location x”04”.Again, this is demonstrated in Figure 6.72.

 172

Figure 6.70 : Process P5 being Executed Second Time and the Follow on Process P4

60 at 6 is compared with 80 at 4

 173

Once again, the compares at P3 and P5 need to be done. As shown in Figure 6.73,

a value of unsigned 90 is retrieved from location x”03” and it is compared with the

original value of T1, which is unsigned 60. Since the two are not equal, the compare fails

again and the application loops back to process 2.Similarlym, as part of process P5, a

value of unsigned “70” stored at location x”04” is compared with the original value of

T2, which is unsigned 60 and since they are not equal, the application loops back to P4.

Both these processes are executed by CE0. This is shown in Figure 6.74.

Next, processes P2 and P4 need to be executed again. As shown in Figure 6.75,

process P2 is executed by CE1, which retrieves the updated value of unsigned “90” and

adds the value of unsigned “10” to it to obtain a value of unsigned “100” which is stored

at location x”03” again.

 Also, the process P4 is re-executed, this time, by CE0. As part of this process, it

retrieves the value of unsigned “70” from location x”04” and subtracts unsigned value of

“10” from it to obtain a final result of unsigned “60” that it stores back at location

x”04”.This has been displayed in Figure 6.76. Once this is over, process P3 is re-executed

as part of the compare process. Here a value of unsigned 100 from location x”03” is

compared for equality with the original value of T1, unsigned “100” stored at location

x”07”.This is demonstrated in Figure 6.77.

 174

Figure 6.71 : Process P2 Executed 3rd Time and a Value of 90 Stored at Location x”03”

 175

Figure 6.72 : Process P4 Executed 3rd Time With 70 Stored at Location x”04”

 176

Figure 6.73 : Process P3 Executed 3rd Time Where 90 is Compared with 100

100 at 7 is compared with 90 at 3

 177

Figure 6.74 : Process P5 done by CE0 where 70 is compared with 60

 178

Figure 6.75 : Process P2 Executed 4th time by CE1 to Obtain a Result of Unsigned “100”

 179

Figure 6.76 : P4 is done by CE1 - 4th Iteration. A Value of Unsigned “60” at x”04”

 180

Figure 6.77 – Process P3 Final Execution and Token for P6 Issued to PRT Mapper

100 at 7 compared with 100 at 3. It matches and hence the looping stops

Command Token issued to PRT Mapper for execution of P6, the final process

 181

Here, the condition for “Exit-PN” is finally satisfied as the comparison succeeds and the

token x”81068003” is issued to the PRT Mapper so that it can map it to the most

available CE to execute process P6. Also a look at the “state” signal for the interface

controller module indicates that the system has gone to the “StopL” state and successfully

broken out of the loop. The PRT Mapper now waits for the other join token that has to be

sent by process P5, once its Exit PN condition is met. Process P5 is executed by CE0 and

as indicated in Figure 6.78. As part of this process, the unsigned value of “60” at location

x”04” is compared with the original value of unsigned‘60’ at location x”06”.

 The values turn out to be equal and hence the condition for the breaking out of the

loop is satisfied. CE0 issues a command token x” 81068003” indicating that the next

process is P6.The “state” signal of the controller of CE0 goes into the ‘StopL’ state

indicating this and the command is sent to the PRT Mapper for mapping it to the most

available CE, for executing process P6.

 The PRT Mapper receives both these tokens and performs the join operation,

allocating the instruction to CE1 which it finds to me the most available CE at this

moment. The final values are displayed as part of this process. It can be now seen that the

values are swapped from what they were initially input at, that is, at location x”03” we

now have a value of unsigned “60” and at location x”04” we now have a value of

unsigned “100”, contrary to the initial settings. This is indicated in Figure 6.79.

 182

Figure 6.78 – Process P5 Executed for Last Time and Command Token for P6

60 at 6 compared with 60 at 4. It matches and hence the looping stops

Command Token issued to PRT Mapper for execution of P6, the final process.
Note the “8” in the command token indicating the Hold field is set.

 183

Figure 6.79 – Join Operation P6 with Final Results and Addresses Displayed

Instruction for Process P6. Display the swapped values- 100 at 3 and 60 at 4

 184

Thus, this application shows that the system can comfortably execute process flow graphs

with multiple iteration or loops and prove very useful in systems that use such

algorithms.

 Using the above described applications, it has been verified that the HDCA is

suited for Process Flow Graphs of varying complexities. It can comfortably handle cyclic

and acyclic process flow graphs of different types and execute them in a fault tolerant,

robust manner.

 185

Chapter Seven
Conclusions and Recommendations

7.0 Conclusion

The second phase model of the HDCA thus has lots of improvements over the

first phase model of the HDCA. A special purpose multiplier CE has now been added to

the system along with its associated controller. It can now execute applications of varied

nature and of practical importance like Convolution, Digital Down Converting and the

like. The second phase HDCA no longer possesses the limitations of the first phase,

wherein,a single process could not fork to any more than two processes.This limitation is

overcome in the second phase of the HDCA by means of a dummy process, as

demomnstrated. The second phase HDCA is also re-configure at the node level, which

helps prevent system failures when overloading of a particular node occurs. This system

meets most of the requirements imposed by the compute intense real and non real time

applications that are in use today. Besides the parallel nature of the system, its scalability

makes it ideal to be used in the aforementioned applications. The introduction of the

Interconnect Network Switch into the system further improves the HDCA by reducing

the bus contention by introducing a variable priority shared memory contention

resolution protocol. This also prevents any starvation issues from arising, making the

system more robust. Thus in the work reported here, additional enhancements have been

made to the HDCA by adding newer processors, making functional enhancements and

validating it with different kinds of complex acyclic/cyclic applications.

 186

7.1 Recommendations

The following recommendations for a future third phase model would further improve the

HDCA and remove whatever restrictions remain in the current system

1) An operating system should be introduced for the HDCA. Currently, several Operating

Systems are available for embedded systems like VXWorks, Linux etc. One advantage of

having this would obviously be in handling faults and getting over them. Another big

advantage would be the system would be more automated with all the tokens for an

application being input by the system rather than the user. The data valid signal which

controls data entering the LUT would also be handled by the Operating System. It would

also help control hazards if any in the system.

2) More complex processors should be introduced. The current memory-register

computer architectures are self sufficient for providing a proof of concept. However,

when it comes down to real world applications such as weather prediction and ocean

current models etc. raw power is needed; which the simple memory-register computers

fail to provide. It would be nice to have an IBM Power PC instead of the memory-register

computer architecture. This would also mean changing the address bus widths to 32 bits

or more from 16 bits. This change would provide the designer more flexibility to design

the system. Another advantage of this would be the ability to do multiplication and

division within a single processor instead of having special purpose architectures for it.

Also, the standby CE would then be able to serve as a back-up for any of the CEs because

it would then be able to perform all operations that the existing CEs could do.

3) The token widths and the hence the bus widths should be increased beyond 32 bits.

This would allow the design of applications with a higher complexity. To cite and

example, just increasing the process number field by 1 bit allows 64 processes instead of

32. Increasing the "Exit PN" field by 2 bits allows the application to loop anywhere till

the last process. While these restrictions could be overcome by modifying the current

system by removing some bits from the other fields, it would involve a tradeoff in

reducing the number of processors that can simultaneously coexist in the system and their

corresponding physical addresses on a chip.

4) To improve performance some kind of burst mechanism could be used to transfer data

and addresses on the same bus, similar to what is done in the PCI protocol. This could

 187

help take full advantage of today’s high powered processors and help improve the

performance.

5) An introduction of a cache system and replacing the current processors with their

corresponding pipelined versions could be additional steps that could be done to improve

performance as a first step, before going for the IBM Power PC processors.

6) Currently the Input Data Rom complexity varies in the order of 2 * k 2, where k is the

number of elements in the input matrix when a multiplication or a division operation is to

be done. This limitation roots in the design of the divider and multiplier bus where the

data address does not change after the data has been fetched from the data memory

causing the result to be overwritten over the original data. A provision should be

provided to get around this issue. This issue roots in the absence of a Program Counter in

the processor due to which the data address cannot be changed once its been assigned to

retrieve either the dividend or the multiplicand.

 188

Appendix A
VHDL Code for Post Place and Route Simulation

Module Name: entirenew.vhd – Top Level Entity for the Entire HDCA System

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
-- Uncomment the following lines to use the declarations that are
-- provided for instantiating Xilinx primitive components.
--library UNISIM;
--use UNISIM.VComponents.all;

entity entiresystry2 is

Port (rst,clk:in std_logic;
 inpt_data0,inpt_data1:in std_logic_vector(15 downto 0);
 idv0,idv1:in std_logic;
 op_req:in std_logic;
 Op_Token_bus: in STD_LOGIC_VECTOR (31 downto 0);
 Mem_out_0,Mem_out_1,Mem_out_2,Mem_out_3: out std_logic_vector (15 downto 0);
 Addr_en: in std_logic;
 mem_ad_out_0,mem_ad_out_1,mem_ad_out_2,mem_ad_out_3:out std_logic_vector(6 downto 0);
 R3_out_dbug_fin0,R3_out_dbug_fin1 : out std_logic_vector(15 downto 0);
 shft_out_dbug_fin0,shft_out_dbug_fin1 : out std_logic_vector(15 downto 0);
 dbug_st_pe_fin0,dbug_st_pe_fin1 : out std_logic_vector(3 downto 0);
 dbus_sig0_fin0,dbus_sig1_fin1,dbus_sig2_fin2 : out std_logic_vector (15 downto 0);
 dataout_lut_fin0,dataout_lut_fin1,dataout_lut_fin2,dataout_lut_fin3:out std_logic_vector(15
downto 0);
 db_pe_icm0_fin0,db_pe_icm1_fin1,db_pe_icm1_fin2,db_pe_icm1_fin3 : out std_logic_vector(15
downto 0) ;
 R0_out_dbug_fin0,R0_out_dbug_fin1 : out std_logic_vector(15 downto 0);
 token_bus_prt_pe : out std_logic_vector (31 downto 0);
 Wr_out_dbug0_fin0,Wr_out_dbug1_fin1 : out std_logic_vector(1 downto 0);
 ce_sig0_fin0,ce_sig1_fin1: out std_logic;
 tbgrnt_sig0_fin0,tbgrnt_sig1_fin1 : out std_logic;
 tbreq_sig0_fin0,tbreq_sig1_fin1 : out std_logic;
 i_rdy_icm0_fin0,i_rdy_icm1_fin1 : out std_logic ;
 snd_i_icm0_fin0,snd_i_icm1_fin1 : out std_logic;
 l_in_fin0,l_in_fin1,l_in_fin2 : out std_logic_vector(31 downto 0);
 contrl_0,control_1 : out std_logic_vector(3 downto 0);
 x_dbug_fin0,x_dbug_fin1,x_dbug_fin3 : out std_logic_vector(6 downto 0);
 dloutfin0,dloutfin1:out std_logic_vector(15 downto 0);
 count_dbug0,count_dbug1,count_dbug3:out std_logic_vector(6 downto 0);
 db_req3_dbug,db_grant3_dbug : out std_logic;
 db_req0_dbug,db_grant0_dbug : out std_logic;
 db_req1_dbug,db_grant1_dbug : out std_logic;
 RLTable0,RLTable1,RLTable2,RLTable3: out std_logic_vector(1 downto 0);
 dwr0,dwr1,dwr2,dwr3: out std_logic;
 tabin0,tabin1,tabin2,tabin3: out std_logic;
 temp3_ce0,temp3_ce1 :out std_logic_vector(2 downto 0);
 temp2_ce0,temp2_ce1 :out std_logic_vector(1 downto 0);

 189

 temp1_ce0,temp1_ce1 :out std_logic_vector(1 downto 0);
 temp4_ce0,temp4_ce1 :out std_logic_vector(4 downto 0);
 temp5_ce0,temp5_ce1 :out std_logic_vector(3 downto 0);
 count_ce1 : out std_logic_vector (7 downto 0));

end entiresystry2;

architecture Behavioral of entiresystry2 is
--Begin components used in this module

--PE3/CE0 component

component PE is
 port (Data_Bus : inout std_logic_vector(15 downto 0);
 R_W : out std_logic;
 Cntl_bus : in std_logic_vector(15 downto 0);
 RST, ODR, IDV : in std_logic;
 clk, Bus_grant : in std_logic;
 CInstr_rdy : in std_logic;
 inpt : in std_logic_vector(15 downto 0);
 Bus_req, Snd_Instr, Fin : out std_logic;
 Addr : out std_logic_vector(7 downto 0);
 Rq_inpt, Rq_outpt : out std_logic;
 STOPLOOP : out std_logic;
 -- added for dbugging
 R3_out_dbug : out std_logic_vector(15 downto 0);
 shft_out_dbug : out std_logic_vector(15 downto 0);
 dbug_st_pe : out std_logic_vector(3 downto 0);
 tmp4_dbug : out std_logic_vector(15 downto 0);
 m5outdbg: out std_logic_vector(15 downto 0);
 R0_out_dbug : out std_logic_vector(15 downto 0);
 tmp3_dbug: out std_logic_vector(2 downto 0);
 tmp2_dbug: out std_logic_vector(1 downto 0);
 tmp1_dbug: out std_logic_vector(1 downto 0);
 tmp44_dbug: out std_logic_vector(4 downto 0) ;
 tmp5_dbug: out std_logic_vector(3 downto 0);
 count_out_pe : out std_logic_vector (7 downto 0)
) ;
end component;
--Interface controller component listing

component CONTChip is
 generic (Chip_addr : integer := 3;
 Inst0 : integer := 156;
 Inst1 : integer := 48;
 Inst2 : integer := 152
);
 port (
 Data_bus: inout STD_LOGIC_VECTOR (15 downto 0);
 Chip_EN: in STD_LOGIC;
 Snd_i,stoplp: in std_logic;
 Rst: in STD_LOGIC;
 Clk: in STD_LOGIC;
 tbus_grnt: in STD_LOGIC;
 token_bus: inout STD_LOGIC_VECTOR (31 downto 0);
 tbus_req: out STD_LOGIC;

 190

 I_rdy: out std_logic;
 Avail: out STD_LOGIC_VECTOR (4 downto 0);
 x_dbug : out std_logic_vector(6 downto 0);
 count_dbug : out std_logic_vector(6 downto 0);
 Wr_out_dbug : out std_logic_vector (1 downto 0);
 R_L_Table_dbug: out STD_LOGIC_VECTOR (1 downto 0);
 Ld_Rd_dbug: out STD_LOGIC;
 ccntl_in_dbug :out std_logic_vector(24 downto 0);
 dataout_lut : out std_logic_vector(15 downto 0);
 outbuf0_dbug: out std_logic_vector(15 downto 0);
 outbuf1_dbug : out std_logic_vector(15 downto 0);
 line_out_dbug: out std_logic_vector(31 downto 0);
 l_in : out std_logic_vector(31 downto 0);
 buf_dbug : out std_logic_vector(24 downto 0);
 cntl_out_fin : out std_logic_vector(3 downto 0);
 dlout_contchip:out std_logic_vector(15 downto 0);
 dwr_cont: out std_logic;
 tab_in_contchip: out std_logic
);
end component;

-- Component Listing for Process Req token mapper

component Token_mapr is
 port (
 token_bus: inout STD_LOGIC_VECTOR (31 downto 0);
 bus_req: inout STD_LOGIC;
 clk : in std_logic;
 rst : in std_logic;
 bus_grnt: in STD_LOGIC;
 Avail3: in STD_LOGIC_VECTOR (4 downto 0);
 Avail4: in STD_LOGIC_VECTOR (4 downto 0);
 Avail2: in STD_LOGIC_VECTOR (4 downto 0);
 Avail5: in STD_LOGIC_VECTOR (4 downto 0);
 obstemp6_prtdbug,t6_prtdbug: out std_logic_vector(22 downto 0)
);
end component;
-- Divider PE
component Divpe is
 port (Cntrlr_bus : in std_logic_vector(15 downto 0);
 Snd_I : out std_logic;
 clk : in std_logic;
 rst : in std_logic;
 Instr_rdy : in std_logic;
 Fin : out std_logic;
 Data_bus : inout std_logic_vector(15 downto 0);
 Bus_req : out std_logic;
 Bus_gnt : in std_logic;
 Addr : out std_logic_vector(6 downto 0);
 R_W : buffer std_logic;
 loc_bus_dbug : out std_logic_vector(7 downto 0);
 Iaddr_bus_dbug : out std_logic_vector(7 downto 0);
 Iaddr_dbug : out std_logic_vector(7 downto 0);
 R2_out_dbug : out std_logic_vector(7 downto 0);
 Imem_bus_dbug : out std_logic_vector(15 downto 0)
);

 191

end component;

component multpe is
 Port (mcntl_bus : in std_logic_vector(15 downto 0);
 Snd_I : out std_logic;
 clk : in std_logic;
 rst : in std_logic;
 Instr_rdy : in std_logic;
 Fin : out std_logic;
 mdata_bus : inout std_logic_vector(15 downto 0);
 bus_req : out std_logic;
 bus_gnt : in std_logic;
 multaddr : out std_logic_vector(7 downto 0);--Output address to shared dmem
 r_w : inout std_logic;
 cbusout_dbug : out std_logic_vector(7 downto 0);
 Iaddr_bus_dbug : out std_logic_vector(7 downto 0);
 R2out_dbug : out std_logic_vector(7 downto 0);
 Imem_bus_dbug : out std_logic_vector(15 downto 0);
 mux3out_dbg:out std_logic_vector(7 downto 0);
 ms3dbg:out std_logic_vector(1 downto 0);
 ms1dbg : out std_logic;
 ms2dbg : out std_logic;
component multpe is
 Port (mcntl_bus : in std_logic_vector(15 downto 0);
 Snd_I : out std_logic;
 clk : in std_logic;
 rst : in std_logic;
 Instr_rdy : in std_logic;
 Fin : out std_logic;
 mdata_bus : inout std_logic_vector(15 downto 0);
 bus_req : out std_logic;
 bus_gnt : in std_logic;
 multaddr : out std_logic_vector(7 downto 0);--Output address to shared dmem
 r_w : inout std_logic;
 cbusout_dbug : out std_logic_vector(7 downto 0);
 Iaddr_bus_dbug : out std_logic_vector(7 downto 0);
 R2out_dbug : out std_logic_vector(7 downto 0);
 Imem_bus_dbug : out std_logic_vector(15 downto 0);
 mux3out_dbg:out std_logic_vector(7 downto 0);
 ms3dbg:out std_logic_vector(1 downto 0);
 ms1dbg : out std_logic;
 ms2dbg : out std_logic;
 adderout_dbug : out std_logic_vector(7 downto 0);
 ms4dbg : out std_logic;
 lmd_dbg,lmr_dbg : out std_logic;
 ndout : out std_logic;
 multout_fin : out std_logic_vector(15 downto 0);
 tomultr_dbg:out std_logic_vector(7 downto 0);
 tomultd_dbg:out std_logic_vector(7 downto 0)

);
end component;

component gate_ic_a is
 Port (clk: in std_logic ;
 rst: in std_logic ;

 192

 ctrl: in std_logic_vector(3 downto 0) ;
 qdep: in std_logic_vector(19 downto 0) ;
 addr_bus: in std_logic_vector(27 downto 0) ;
 data_in0,data_in1,data_in2,data_in3 : in std_logic_vector(15 downto 0) ;
 rw: in std_logic_vector(3 downto 0) ;
 flag: inout std_logic_vector(3 downto 0) ;
 data_out0,data_out1,data_out2,data_out3: out std_logic_vector(15 downto 0)
);
end component;

--Begin signals used in the system
signal dbus_sig0,dbus_sig1,dbus_sig2,dbus_sig3: std_logic_vector(15 downto 0);
signal rw_sig0,rw_sig1,rw_sig2,rw_sig3: std_logic;
signal db_pe_icm0,db_pe_icm1,db_pe_icm2,db_pe_icm3: std_logic_vector(15 downto 0);
signal db_grant0,db_grant1,db_grant2,db_grant3:std_logic;
signal i_rdy_icm0,i_rdy_icm1,i_rdy_icm2,i_rdy_icm3: std_logic;
signal db_req0,db_req1,db_req2,db_req3: std_logic;
signal snd_i_icm0,snd_i_icm1,snd_i_icm2,snd_i_icm3: std_logic;
signal ce_sig0,ce_sig1,ce_sig2,ce_sig3:std_logic;
signal addr_0,addr_1,addr_2,addr_3:std_logic_vector(7 downto 0);
signal stop_lp_sig0,stop_lp_sig1: std_logic;
signal tbgrnt_sig0,tbgrnt_sig1,tbgrnt_sig2,tbgrnt_sig3:std_logic ;
signal tbreq_sig0,tbreq_sig1,tbreq_sig2,tbreq_sig3 : std_logic;
signal avlsig0,avlsig1,avlsig2,avlsig3 : std_logic_vector(4 downto 0);
signal op_token_bus_sig : std_logic_vector(31 downto 0);
signal bus_req_prt,bus_grnt_prt : std_logic;
signal mem_ad : std_logic_vector (7 downto 0);
signal mem_di_0,mem_di_1,mem_di_2,mem_di_3 : std_logic_vector(15 downto 0);
signal mem_do_0,mem_do_1,mem_do_2,mem_do_3 : std_logic_vector(15 downto 0);
signal m_r_w : std_logic;
signal optmp_req : std_logic;
signal op_gnt:std_logic; -- This was earlier set to buffer resulting in elaboration error in post-translate
simulation
signal odr0,odr1: std_logic;
signal Rq_OPT0 : std_logic;
signal Rq_OPT1 : std_logic;
signal rq_ipt0,rq_ipt1 : std_logic;

begin
--Port Mapping for components
PE3_CE0: pe port map(Data_Bus=>dbus_sig0,
 R_W => rw_sig0,
 Cntl_bus=>db_pe_icm0,
 RST=>rst,
 ODR=>odr0,
 IDV=>idv0,
 clk=>clk,
 Bus_grant=>db_grant0,
 CInstr_rdy=>I_rdy_icm0,
 inpt =>inpt_data0,
 Bus_req=>db_req0,
 Snd_Instr=>snd_i_icm0,
 Fin=>ce_sig0,
 Addr =>addr_0,

 193

 Rq_inpt=>Rq_IPT0,
 Rq_outpt=>Rq_OPT0,
 STOPLOOP =>Stop_lp_sig0,
 -- added for dbugging
 R3_out_dbug=>R3_out_dbug_fin0,
 shft_out_dbug=>shft_out_dbug_fin0,
 dbug_st_pe => dbug_st_pe_fin0,
 R0_out_dbug => R0_out_dbug_fin0,
 tmp3_dbug => temp3_ce0,
 tmp2_dbug => temp2_ce0,
 tmp1_dbug => temp1_ce0,
 tmp44_dbug => temp4_ce0,
 tmp5_dbug => temp5_ce0,
 count_out_pe => open

);
PE2_CE1: pe port map(Data_Bus=>dbus_sig1,
 R_W => rw_sig1,
 Cntl_bus=>db_pe_icm1,
 RST=>rst,
 ODR=>odr1,
 IDV=> idv1,
 clk=>clk,
 Bus_grant=>db_grant1,
 CInstr_rdy=>I_rdy_icm1,
 inpt =>inpt_data1,
 Bus_req=>db_req1,
 Snd_Instr=>snd_i_icm1,
 Fin=>ce_sig1,
 Addr =>addr_1,
 Rq_inpt=>Rq_IPT1,
 Rq_outpt=>Rq_OPT1,
 STOPLOOP =>Stop_lp_sig1,
 -- added for dbugging
 R3_out_dbug=>R3_out_dbug_fin1,
 shft_out_dbug=>shft_out_dbug_fin1,
 dbug_st_pe => dbug_st_pe_fin1,
 R0_out_dbug => R0_out_dbug_fin1,
 tmp3_dbug => temp3_ce1,
 tmp2_dbug => temp2_ce1,
 tmp1_dbug => temp1_ce1,
 tmp44_dbug => temp4_ce1,
 tmp5_dbug => temp5_ce1,
 count_out_pe => count_ce1
);
Icmodule0: contchip port map(Data_bus => db_pe_icm0,
 Chip_EN => ce_sig0,
 Snd_i => snd_i_icm0,
 stoplp => stop_lp_sig0,
 Rst => rst,
 Clk =>clk,
 tbus_grnt =>tbgrnt_sig0,
 token_bus =>op_token_bus_sig,
 tbus_req =>tbreq_sig0,
 I_rdy =>I_rdy_icm0,
 Avail =>avlsig0,

 194

 x_dbug =>x_dbug_fin0,
 count_dbug =>count_dbug0,
 Wr_out_dbug =>Wr_out_dbug0_fin0,
 R_L_Table_dbug =>RLTable0,
 Ld_Rd_dbug =>open,
 dataout_lut =>dataout_lut_fin0,
 outbuf0_dbug =>open,
 outbuf1_dbug =>open,
 line_out_dbug =>open,
 l_in =>l_in_fin0,
 buf_dbug => open ,
 ccntl_in_dbug => open,
 cntl_out_fin => control_0,
 dlout_contchip=>dloutfin0,
 dwr_cont=>dwr0,
 tab_in_contchip => tabin0

);
Icmodule1: contchip Generic map (chip_addr =>2,
 Inst0=> 156,
 Inst1=> 48,
 Inst2=> 152)
 port map(Data_bus => db_pe_icm1,
 Chip_EN => ce_sig1,
 Snd_i => snd_i_icm1,
 stoplp => stop_lp_sig1,
 Rst => rst,
 Clk =>clk,
 tbus_grnt =>tbgrnt_sig1,
 token_bus =>op_token_bus_sig,
 tbus_req =>tbreq_sig1,
 I_rdy =>I_rdy_icm1,
 Avail =>avlsig1,
 x_dbug =>x_dbug_fin1,
 count_dbug =>count_dbug1,
 Wr_out_dbug =>Wr_out_dbug1_fin1,
 R_L_Table_dbug =>RLTable1,
 Ld_Rd_dbug =>open,
 dataout_lut =>dataout_lut_fin1,
 outbuf0_dbug =>open,
 outbuf1_dbug =>open,
 line_out_dbug =>open,
 l_in =>l_in_fin1 ,
 buf_dbug => open,
 ccntl_in_dbug => open,
 cntl_out_fin => control_1,
 dlout_contchip=>dloutfin1,
 dwr_cont=>dwr1,
 tab_in_contchip => tabin1
);

-- port mapping for interface controller module for div chip
Icmodule2: contchip Generic map (chip_addr => 4,
 Inst0=> 142,
 Inst1=> 255,
 Inst2=> 142)

 195

 port map(Data_bus => db_pe_icm2,
 Chip_EN => ce_sig2,
 Snd_i => snd_i_icm2,
 stoplp => '0',
 Rst => rst,
 Clk =>clk,
 tbus_grnt =>tbgrnt_sig2,
 token_bus =>op_token_bus_sig,
 tbus_req =>tbreq_sig2,
 I_rdy =>I_rdy_icm2,
 Avail =>avlsig2,
 x_dbug =>open,
 count_dbug =>open,
 Wr_out_dbug =>open,
 R_L_Table_dbug =>RLTable2,
 Ld_Rd_dbug =>open,
 dataout_lut =>dataout_lut_fin2,
 outbuf0_dbug =>open,
 outbuf1_dbug =>open,
 line_out_dbug =>open,
 l_in =>l_in_fin2 ,
 buf_dbug => open,
 ccntl_in_dbug => open,
 dwr_cont=>dwr2,
 tab_in_contchip => tabin2
);
Icmodule3: contchip Generic map (chip_addr => 5,
 Inst0=> 142,
 Inst1=> 255,
 Inst2=> 142)
 port map(Data_bus => db_pe_icm3,
 Chip_EN => ce_sig3,
 Snd_i => snd_i_icm3,
 stoplp => '0',
 Rst => rst,
 Clk =>clk,
 tbus_grnt =>tbgrnt_sig3,
 token_bus =>op_token_bus_sig,
 tbus_req =>tbreq_sig3,
 I_rdy =>I_rdy_icm3,
 Avail =>avlsig3,
 x_dbug =>x_dbug_fin3,
 count_dbug =>count_dbug3,
 Wr_out_dbug =>open,
 R_L_Table_dbug =>RLTable3,
 Ld_Rd_dbug =>open,
 dataout_lut =>dataout_lut_fin3,
 outbuf0_dbug =>open,
 outbuf1_dbug =>open,
 line_out_dbug =>open,
 l_in =>open,
 buf_dbug => open,
 ccntl_in_dbug => open,
 dwr_cont=>dwr3,
 tab_in_contchip => tabin3
);

 196

prtmapper: token_mapr port map(token_bus =>Op_token_bus_sig,
 bus_req=>bus_req_prt,
 clk =>clk,
 rst =>rst,
 bus_grnt =>bus_grnt_prt,
 Avail3 =>avlsig0,
 Avail4 => avlsig2,
 Avail2 =>avlsig1,
 Avail5 => avlsig3,
 temp6_prtdbug=>open,
 t6_prtdbug=>open

);
DIV1 : divpe port map(Cntrlr_bus=>db_pe_icm2,
 Snd_I=> snd_i_icm2,
 clk => clk,
 rst => rst,
 Instr_rdy => I_rdy_icm2,
 Fin => ce_sig2,
 Data_bus => dbus_sig2,
 Bus_req => db_req2,
 Bus_gnt => db_grant2,
 Addr => addr_2(6 downto 0),
 R_W => rw_sig2,
 loc_bus_dbug => open,
 Iaddr_bus_dbug => open,
 Iaddr_dbug => open,
 R2_out_dbug => open,
 Imem_bus_dbug => open
);

multpemap: multpe port map

 (mcntl_bus => db_pe_icm3,
 Snd_I => snd_i_icm3,
 clk =>clk,
 rst =>rst,
 Instr_rdy =>i_rdy_icm3,
 Fin =>ce_sig3,
 mdata_bus =>dbus_sig3,
 bus_req =>db_req3,
 bus_gnt =>db_grant3,
 multaddr =>addr_3,
 r_w =>rw_sig3,
 cbusout_dbug => open,
 Iaddr_bus_dbug => open,
 R2out_dbug => open,
 Imem_bus_dbug =>open,
 mux3out_dbg=> open,
 ms3dbg=> open,
 ms1dbg => open,
 ms2dbg => open ,
 adderout_dbug => open,

 197

 ms4dbg => open,
 lmd_dbg=> open,
 lmr_dbg => open,
 ndout => open,
 multout_fin => open,
 tomultr_dbg=> open,
 tomultd_dbg=> open

);

IC_gate: gate_ic_a Port map (clk => clk,
 rst => rst,
 ctrl(0) => db_req0,
 ctrl(1) => db_req1,
 ctrl(2) => db_req2,
 ctrl(3) => db_req3,
 qdep(4 downto 0) => avlsig0,
 qdep(9 downto 5) => avlsig1,
 qdep(14 downto 10)=> avlsig2,
 qdep(19 downto 15)=> avlsig3,
 addr_bus(6 downto 0) => addr_0(6 downto 0),
 addr_bus(13 downto 7) => addr_1(6 downto 0),
 addr_bus(20 downto 14) => addr_2(6 downto 0),
 addr_bus(27 downto 21) => addr_3(6 downto 0),
 data_in0 => mem_di_0,
 data_in1 => mem_di_1,
 data_in2 => mem_di_2,
 data_in3 => mem_di_3,
 rw(0) => rw_sig0,
 rw(1) => rw_sig1,
 rw(2) => rw_sig2,
 rw(3) => rw_sig3,
 flag(0) => db_grant0,
 flag(1) => db_grant1,
 flag(2) => db_grant2,
 flag(3) => db_grant3,
 data_out0 => mem_do_0,
 data_out1 => mem_do_1,
 data_out2 => mem_do_2,
 data_out3 => mem_do_3
);
-- signals taken out for dbugging
dbus_sig0_fin0 <= dbus_sig0;
dbus_sig1_fin1 <= dbus_sig1;
dbus_sig2_fin2 <= dbus_sig2;
db_pe_icm0_fin0 <= db_pe_icm0;
db_pe_icm1_fin1 <= db_pe_icm1;
db_pe_icm1_fin2 <= db_pe_icm2;
db_pe_icm1_fin3 <= db_pe_icm3;
token_bus_prt_pe <= Op_token_bus_sig;
ce_sig1_fin1 <= ce_sig1;
ce_sig0_fin0 <= ce_sig0;
tbgrnt_sig0_fin0 <= tbgrnt_sig0;
tbgrnt_sig1_fin1 <= tbgrnt_sig1;
tbreq_sig0_fin0 <= tbreq_sig0;
tbreq_sig1_fin1 <= tbreq_sig1;

 198

i_rdy_icm0_fin0<= i_rdy_icm0;
i_rdy_icm1_fin1<= i_rdy_icm1;
snd_i_icm0_fin0 <= snd_i_icm0;
snd_i_icm1_fin1 <= snd_i_icm1;
db_req3_dbug<= db_req3;
db_grant3_dbug <= db_grant3;
db_req1_dbug<= db_req1;
db_grant1_dbug <= db_grant1;
db_req0_dbug<= db_req0;
db_grant0_dbug <= db_grant0;

-- changes made with the addition of IC switch
-- Address ports taken out --
 mem_ad_out_0<=addr_0(6 downto 0);
 mem_ad_out_1<=addr_1(6 downto 0);
 mem_ad_out_2<=addr_2(6 downto 0);
 mem_ad_out_3<=addr_3(6 downto 0);
-- Memory contents to be viewed --
 Mem_out_0 <= mem_do_0;
 Mem_out_1 <= mem_do_1;
 Mem_out_2 <= mem_do_2;
 Mem_out_3 <= mem_do_3;
-- addition of process 1 for the inputting of values into the data memory
input_2_mem : process(db_grant0,db_grant1,db_grant2,db_grant3,clk,rst)

begin
 if(rst ='1') then
 mem_di_0 <= x"0000";
 mem_di_1 <= x"0000";
 mem_di_2 <= x"0000";
 mem_di_3 <= x"0000";

 else

 if(clk'event and clk='0') then
 if(db_grant0 ='1') then

 mem_di_0 <= dbus_sig0;
 else mem_di_0 <=(others =>'0');
 end if;

 if(db_grant1 ='1') then

 mem_di_1 <= dbus_sig1;
 else mem_di_1 <=(others =>'0');
 end if;

 if(db_grant2 ='1') then

 mem_di_2 <= dbus_sig2;
 else mem_di_2 <=(others =>'0');
 end if;

 if(db_grant3 ='1') then

 199

 mem_di_3 <= dbus_sig3;
 else mem_di_3 <=(others =>'0');
 end if;
 end if;
 end if;
end process input_2_mem;

-- process 2 for outputting the values from data memory
output_from_mem : process(db_grant0,db_grant1,db_grant2,db_grant3,rw_sig0,rw_sig1,rw_sig2,
 rw_sig3,clk,rst)

begin

if(rst='1') then
 dbus_sig0 <= x"0000";
 dbus_sig1 <= x"0000";
 dbus_sig2 <= x"0000";
 dbus_sig3 <= x"0000";
 else

 if(clk'event and clk='0') then
 if(db_grant0 ='1' and rw_sig0 ='0') then

 dbus_sig0 <= mem_do_0;
 else dbus_sig0 <=(others =>'Z');
 end if;

 if(db_grant1 ='1' and rw_sig1 ='0') then

 dbus_sig1 <= mem_do_1;
 else dbus_sig1 <=(others =>'Z');
 end if;

 if(db_grant2 ='1' and rw_sig2 ='0') then

 dbus_sig2 <= mem_do_2;
 else dbus_sig2 <=(others =>'Z');
 end if;

 if(db_grant3 ='1' and rw_sig3 ='0') then

 dbus_sig3 <= mem_do_3;
 else dbus_sig3 <=(others =>'Z');
 end if;
 end if;
 end if;
end process output_from_mem;

-- end of process 2

-- Token bus logic
optmp_req <= Op_req;
Tknbuslg : process (tbreq_sig0,tbgrnt_sig0,bus_req_prt,bus_grnt_prt,tbreq_sig1,

 200

 tbgrnt_sig1,tbreq_sig2,tbgrnt_sig2,tbgrnt_sig3,tbreq_sig3,Optmp_req,Op_gnt, rst)
 begin
 if rst = '1' then
 tbgrnt_sig0 <= '0';
 bus_grnt_prt <= '0';
 tbgrnt_sig1 <= '0';
 tbgrnt_sig2 <= '0';
 tbgrnt_sig3 <= '0';
 Op_gnt <= '0';
 elsif (bus_req_prt ='1')and (tbgrnt_sig0='0') and(tbgrnt_sig1='0') and
 (tbgrnt_sig2='0')and(Op_gnt='0') and (tbgrnt_sig3='0') then
 tbgrnt_sig0 <= '0';
 bus_grnt_prt <= '1';
 tbgrnt_sig2 <= '0';
 tbgrnt_sig1 <= '0';
 tbgrnt_sig3 <= '0';
 Op_gnt <= '0';
 elsif (Optmp_req ='1') and (bus_grnt_prt ='0') and (tbgrnt_sig0='0') and
 (tbgrnt_sig1='0') and (tbgrnt_sig2='0') and (tbgrnt_sig3 ='0')then
 tbgrnt_sig0 <= '0';
 bus_grnt_prt <= '0';
 tbgrnt_sig1 <= '0';
 tbgrnt_sig2 <= '0';
 tbgrnt_sig3 <= '0';
 Op_gnt <= '1';
 elsif (tbreq_sig0 = '1') and (bus_grnt_prt='0') and (Op_gnt='0') and
 (tbgrnt_sig2='0')and (tbgrnt_sig1='0') and (tbgrnt_sig3 ='0') then
 tbgrnt_sig0 <= '1';
 bus_grnt_prt <= '0';
 tbgrnt_sig2 <= '0';
 tbgrnt_sig1 <= '0';
 tbgrnt_sig3 <= '0';
 Op_gnt <= '0';
 elsif (tbreq_sig2='1') and (bus_grnt_prt='0') and (Op_gnt='0') and
 (tbgrnt_sig0='0') and (tbgrnt_sig1='0') and (tbgrnt_sig3 ='0') then
 tbgrnt_sig0 <= '0';
 bus_grnt_prt <= '0';
 tbgrnt_sig2 <='1';
 tbgrnt_sig1 <= '0';
 tbgrnt_sig3 <= '0';
 Op_gnt <= '0';
 elsif (tbreq_sig1='1') and (bus_grnt_prt='0') and (Op_gnt='0') and
 (tbgrnt_sig0='0') and (tbgrnt_sig2='0')and (tbgrnt_sig3='0') then
 tbgrnt_sig0 <= '0';
 bus_grnt_prt <= '0';
 tbgrnt_sig2<='0';
 tbgrnt_sig1 <= '1';
 tbgrnt_sig3 <= '0';
 Op_gnt <= '0';
 elsif (tbreq_sig3='1') and (bus_grnt_prt='0') and (Op_gnt='0') and
 (tbgrnt_sig0='0') and (tbgrnt_sig2='0')and (tbgrnt_sig1='0') then
 tbgrnt_sig0 <= '0';
 bus_grnt_prt <= '0';
 tbgrnt_sig2<='0';
 tbgrnt_sig1 <= '0';
 tbgrnt_sig3 <= '1';

 201

 Op_gnt <= '0';
 end if;
 if (bus_req_prt = '0') then bus_grnt_prt <= '0';
 end if;
 if (Optmp_req = '0') then Op_gnt <= '0';
 end if;
 if (tbreq_sig0 = '0') then tbgrnt_sig0 <= '0';
 end if;
 if (tbreq_sig2 = '0') then tbgrnt_sig2 <= '0';
 end if;
 if (tbreq_sig1 = '0') then tbgrnt_sig1 <= '0';
 end if;
 if (tbreq_sig3 = '0') then tbgrnt_sig3 <= '0';
 end if;
 end process;

arbiter_logic: process(clk,rst)
begin
if rst = '1' then
 odr0<='0';
 odr1<='0';

elsif (clk'event and clk='1') then
 case rq_opt0 is
 when '1' => odr0 <= '1';
 when '0' => odr0 <= '0';
 when others =>
 end case;

 case rq_opt1 is
 when '1' => odr1 <= '1';
 when '0' => odr1 <= '0';
 when others =>
 end case;

end if;
end process arbiter_logic;

Op_token_bus_sig <= Op_token_bus when Op_gnt = '1' else
 (others=>'Z');

end Behavioral;

 adderout_dbug : out std_logic_vector(7 downto 0);
 ms4dbg : out std_logic;
 lmd_dbg,lmr_dbg : out std_logic;
 ndout : out std_logic;
 multout_fin : out std_logic_vector(15 downto 0);
 tomultr_dbg:out std_logic_vector(7 downto 0);
 tomultd_dbg:out std_logic_vector(7 downto 0)

);
end component;

component gate_ic_a is

 202

 Port (clk: in std_logic ;
 rst: in std_logic ;
 ctrl: in std_logic_vector(3 downto 0) ;
 qdep: in std_logic_vector(19 downto 0) ;
 addr_bus: in std_logic_vector(27 downto 0) ;
 data_in0,data_in1,data_in2,data_in3 : in std_logic_vector(15 downto 0) ;
 rw: in std_logic_vector(3 downto 0) ;
 flag: inout std_logic_vector(3 downto 0) ;
 data_out0,data_out1,data_out2,data_out3: out std_logic_vector(15 downto 0)
 -- f_s_out0,f_s_out1,f_s_out2,f_s_out3 : out std_logic_vector(3 downto 0);
-- dco_out0,dco_out1,dco_out2,dco_out3 : out std_logic_vector(3 downto 0)
);
end component;

 --
--Begin signals used in the system
signal dbus_sig0,dbus_sig1,dbus_sig2,dbus_sig3: std_logic_vector(15 downto 0);
signal rw_sig0,rw_sig1,rw_sig2,rw_sig3: std_logic;
signal db_pe_icm0,db_pe_icm1,db_pe_icm2,db_pe_icm3: std_logic_vector(15 downto 0);
signal db_grant0,db_grant1,db_grant2,db_grant3:std_logic;
signal i_rdy_icm0,i_rdy_icm1,i_rdy_icm2,i_rdy_icm3: std_logic;
signal db_req0,db_req1,db_req2,db_req3: std_logic;
signal snd_i_icm0,snd_i_icm1,snd_i_icm2,snd_i_icm3: std_logic;
signal ce_sig0,ce_sig1,ce_sig2,ce_sig3:std_logic;
signal addr_0,addr_1,addr_2,addr_3:std_logic_vector(7 downto 0);
signal stop_lp_sig0,stop_lp_sig1: std_logic;
signal tbgrnt_sig0,tbgrnt_sig1,tbgrnt_sig2,tbgrnt_sig3:std_logic ;
signal tbreq_sig0,tbreq_sig1,tbreq_sig2,tbreq_sig3 : std_logic;
signal avlsig0,avlsig1,avlsig2,avlsig3 : std_logic_vector(4 downto 0);
signal op_token_bus_sig : std_logic_vector(31 downto 0);
signal bus_req_prt,bus_grnt_prt : std_logic;
signal mem_ad : std_logic_vector (7 downto 0);
signal mem_di_0,mem_di_1,mem_di_2,mem_di_3 : std_logic_vector(15 downto 0);
signal mem_do_0,mem_do_1,mem_do_2,mem_do_3 : std_logic_vector(15 downto 0);
signal m_r_w : std_logic;
signal optmp_req : std_logic;
signal op_gnt:std_logic; -- This was earlier set to buffer resulting in elaboration error in post-translate
simulation
signal odr0,odr1: std_logic;
signal Rq_OPT0 : std_logic;
signal Rq_OPT1 : std_logic;
signal rq_ipt0,rq_ipt1 : std_logic;
--signal idv0, idv1 : std_logic;

--signal token_bus_prt_pe_sig :std_logic_vector(31 downto 0);
begin
--Port Mapping for components
PE3_CE0: pe port map(Data_Bus=>dbus_sig0,
 R_W => rw_sig0,
 Cntl_bus=>db_pe_icm0,
 RST=>rst,
 ODR=>odr0,
 IDV=>idv0,
 clk=>clk,

 203

 Bus_grant=>db_grant0,
 CInstr_rdy=>I_rdy_icm0,
 inpt =>inpt_data0,
 Bus_req=>db_req0,
 Snd_Instr=>snd_i_icm0,
 Fin=>ce_sig0,
 Addr =>addr_0,
 Rq_inpt=>Rq_IPT0,
 Rq_outpt=>Rq_OPT0,
 STOPLOOP =>Stop_lp_sig0,
 -- added for dbugging
 R3_out_dbug=>R3_out_dbug_fin0,
 shft_out_dbug=>shft_out_dbug_fin0,
 dbug_st_pe => dbug_st_pe_fin0,
 R0_out_dbug => R0_out_dbug_fin0,
 tmp3_dbug => temp3_ce0,
 tmp2_dbug => temp2_ce0,
 tmp1_dbug => temp1_ce0 ,
 tmp44_dbug => temp4_ce0,
 tmp5_dbug => temp5_ce0 ,
 count_out_pe => open
 -- tmp6_dbug => temp6_ce0

);
PE2_CE1: pe port map(Data_Bus=>dbus_sig1,
 R_W => rw_sig1,
 Cntl_bus=>db_pe_icm1,
 RST=>rst,
 ODR=>odr1,
 IDV=> idv1,
 clk=>clk,
 Bus_grant=>db_grant1,
 CInstr_rdy=>I_rdy_icm1,
 inpt =>inpt_data1,
 Bus_req=>db_req1,
 Snd_Instr=>snd_i_icm1,
 Fin=>ce_sig1,
 Addr =>addr_1,
 Rq_inpt=>Rq_IPT1,
 Rq_outpt=>Rq_OPT1,
 STOPLOOP =>Stop_lp_sig1,
 -- added for dbugging
 R3_out_dbug=>R3_out_dbug_fin1,
 shft_out_dbug=>shft_out_dbug_fin1,
 dbug_st_pe => dbug_st_pe_fin1,
 R0_out_dbug => R0_out_dbug_fin1,
 tmp3_dbug => temp3_ce1,
 tmp2_dbug => temp2_ce1,
 tmp1_dbug => temp1_ce1,
 tmp44_dbug => temp4_ce1,
 tmp5_dbug => temp5_ce1 ,
 count_out_pe => count_ce1
 -- tmp6_dbug => temp6_ce1
);
Icmodule0: contchip port map(Data_bus => db_pe_icm0,
 Chip_EN => ce_sig0,

 204

 Snd_i => snd_i_icm0,
 stoplp => stop_lp_sig0,
 Rst => rst,
 Clk =>clk,
 tbus_grnt =>tbgrnt_sig0,
 token_bus =>op_token_bus_sig,
 tbus_req =>tbreq_sig0,
 I_rdy =>I_rdy_icm0,
 Avail =>avlsig0,
 x_dbug =>x_dbug_fin0,
 count_dbug =>count_dbug0,
 Wr_out_dbug =>Wr_out_dbug0_fin0,
 R_L_Table_dbug =>RLTable0,
 Ld_Rd_dbug =>open,
 dataout_lut =>dataout_lut_fin0,
 outbuf0_dbug =>open,
 outbuf1_dbug =>open,
 --line_out_dbug =>line_out_dbug_fin0,
 line_out_dbug =>open,
 l_in =>l_in_fin0,
 --buf_dbug => buf_dbug_fin0 ,
 buf_dbug => open ,
 --ccntl_in_dbug => ccntl_in_fin0,
 ccntl_in_dbug => open,
 cntl_out_fin => control_0,
 dlout_contchip=>dloutfin0,
 dwr_cont=>dwr0,
 tab_in_contchip => tabin0

);
Icmodule1: contchip Generic map (chip_addr =>2,Inst0=> 156,
 Inst1=> 48, Inst2=> 152)
 port map(Data_bus => db_pe_icm1,
 Chip_EN => ce_sig1,
 Snd_i => snd_i_icm1,
 stoplp => stop_lp_sig1,
 Rst => rst,
 Clk =>clk,
 tbus_grnt =>tbgrnt_sig1,
 token_bus =>op_token_bus_sig,
 tbus_req =>tbreq_sig1,
 I_rdy =>I_rdy_icm1,
 Avail =>avlsig1,
 x_dbug =>x_dbug_fin1,
 count_dbug =>count_dbug1,
 Wr_out_dbug =>Wr_out_dbug1_fin1,
 R_L_Table_dbug =>RLTable1,
 Ld_Rd_dbug =>open,
 dataout_lut =>dataout_lut_fin1,
 outbuf0_dbug =>open,
 outbuf1_dbug =>open,
 --line_out_dbug =>line_out_dbug_fin1,
 line_out_dbug =>open,
 l_in =>l_in_fin1 ,
 --buf_dbug => buf_dbug_fin1,
 buf_dbug => open,

 205

 --ccntl_in_dbug => ccntl_in_fin1,
 ccntl_in_dbug => open,
 cntl_out_fin => control_1,
 dlout_contchip=>dloutfin1,
 dwr_cont=>dwr1,
 tab_in_contchip => tabin1
 --Statedbg_fin =>St_fin0
);

-- port mappinh for interface controller module for div chip
Icmodule2: contchip Generic map (chip_addr => 4,Inst0=> 142,
 Inst1=> 255, Inst2=> 142)
 port map(Data_bus => db_pe_icm2,
 Chip_EN => ce_sig2,
 Snd_i => snd_i_icm2,
 stoplp => '0',
 Rst => rst,
 Clk =>clk,
 tbus_grnt =>tbgrnt_sig2,
 token_bus =>op_token_bus_sig,
 tbus_req =>tbreq_sig2,
 I_rdy =>I_rdy_icm2,
 Avail =>avlsig2,
 x_dbug =>open,
 count_dbug =>open,
 Wr_out_dbug =>open,
 R_L_Table_dbug =>RLTable2,
 Ld_Rd_dbug =>open,
 dataout_lut =>dataout_lut_fin2,
 outbuf0_dbug =>open,
 outbuf1_dbug =>open,
 --line_out_dbug =>line_out_dbug_fin2,
 line_out_dbug =>open,
 l_in =>l_in_fin2 ,
 buf_dbug => open,
 ccntl_in_dbug => open,
 dwr_cont=>dwr2,
 tab_in_contchip => tabin2
);
--
Icmodule3: contchip Generic map (chip_addr => 5,Inst0=> 142,
 Inst1=> 255, Inst2=> 142)
 port map(Data_bus => db_pe_icm3,
 Chip_EN => ce_sig3,
 Snd_i => snd_i_icm3,
 stoplp => '0',
 Rst => rst,
 Clk =>clk,
 tbus_grnt =>tbgrnt_sig3,
 token_bus =>op_token_bus_sig,
 tbus_req =>tbreq_sig3,
 I_rdy =>I_rdy_icm3,
 Avail =>avlsig3,
 x_dbug =>x_dbug_fin3,
 count_dbug =>count_dbug3,
 Wr_out_dbug =>open,

 206

 R_L_Table_dbug =>RLTable3,
 Ld_Rd_dbug =>open,
 dataout_lut =>dataout_lut_fin3,
 outbuf0_dbug =>open,
 outbuf1_dbug =>open,
 --line_out_dbug =>line_out_dbug_fin3,
 line_out_dbug =>open,
 l_in =>open,
 buf_dbug => open,
 ccntl_in_dbug => open,
 dwr_cont=>dwr3,
 tab_in_contchip => tabin3
);

prtmapper: token_mapr port map(token_bus =>Op_token_bus_sig,
 bus_req=>bus_req_prt,
 clk =>clk,
 rst =>rst,
 bus_grnt =>bus_grnt_prt,
 Avail3 =>avlsig0,
 Avail4 => avlsig2,
 Avail2 =>avlsig1,
 Avail5 => avlsig3,
 --obstemp6_prtdbug=>obstemp6_prtdbug_fin,
 obstemp6_prtdbug=>open,
 --t6_prtdbug=>t6_prtdbug_fin
 t6_prtdbug=>open

);
-- Port map to the shared core generated Data Memory.
--datamem : proc_dmem port map (addr => Mem_ad(4 downto 0),clk => clk,din => Mem_di,
 -- dout => Mem_do, we => M_R_W);
-- port map to the divider and interface controller module
DIV1 : divpe port map(Cntrlr_bus=>db_pe_icm2,
 Snd_I=> snd_i_icm2,
 clk => clk,
 rst => rst,
 Instr_rdy => I_rdy_icm2,
 Fin => ce_sig2,
 Data_bus => dbus_sig2,
 Bus_req => db_req2,
 Bus_gnt => db_grant2,
 Addr => addr_2(6 downto 0),
 R_W => rw_sig2,
 loc_bus_dbug => open,
 Iaddr_bus_dbug => open,
 Iaddr_dbug => open,
 R2_out_dbug => open,
 Imem_bus_dbug => open

);

multpemap: multpe port map

 207

 (mcntl_bus => db_pe_icm3,
 Snd_I => snd_i_icm3,
 clk =>clk,
 rst =>rst,
 Instr_rdy =>i_rdy_icm3,
 Fin =>ce_sig3,
 mdata_bus =>dbus_sig3,
 bus_req =>db_req3,
 bus_gnt =>db_grant3,
 multaddr =>addr_3,
 r_w =>rw_sig3,
 cbusout_dbug => open,
 Iaddr_bus_dbug => open,
 --Iaddr_dbug : out std_logic_vector(7 downto 0);
 R2out_dbug => open,
 Imem_bus_dbug =>open,

 mux3out_dbg=> open,
 ms3dbg=> open,
 ms1dbg => open,
 ms2dbg => open ,
 adderout_dbug => open,
 ms4dbg => open,
 lmd_dbg=> open,
 lmr_dbg => open,
 ndout => open,
 --multout_fin => mult_dbug,
 multout_fin => open,
 tomultr_dbg=> open,
 tomultd_dbg=> open

);

IC_gate: gate_ic_a
 Port map (clk => clk,
 rst => rst,
 ctrl(0) => db_req0,
 ctrl(1) => db_req1,
 ctrl(2) => db_req2,
 ctrl(3) => db_req3,
 qdep(4 downto 0) => avlsig0,
 qdep(9 downto 5) => avlsig1,
 qdep(14 downto 10)=> avlsig2,
 qdep(19 downto 15)=> avlsig3,
 addr_bus(6 downto 0) => addr_0(6 downto 0),
 addr_bus(13 downto 7) => addr_1(6 downto 0),
 addr_bus(20 downto 14) => addr_2(6 downto 0),
 addr_bus(27 downto 21) => addr_3(6 downto 0),
 data_in0 => mem_di_0,
 data_in1 => mem_di_1,
 data_in2 => mem_di_2,
 data_in3 => mem_di_3,
 rw(0) => rw_sig0,
 rw(1) => rw_sig1,
 rw(2) => rw_sig2,
 rw(3) => rw_sig3,

 208

 flag(0) => db_grant0,
 flag(1) => db_grant1,
 flag(2) => db_grant2,
 flag(3) => db_grant3,
 data_out0 => mem_do_0,
 data_out1 => mem_do_1,
 data_out2 => mem_do_2,
 data_out3 => mem_do_3
);
-- signals taken out for dbugging
dbus_sig0_fin0 <= dbus_sig0;
dbus_sig1_fin1 <= dbus_sig1;
dbus_sig2_fin2 <= dbus_sig2;
db_pe_icm0_fin0 <= db_pe_icm0;
db_pe_icm1_fin1 <= db_pe_icm1;
db_pe_icm1_fin2 <= db_pe_icm2;
db_pe_icm1_fin3 <= db_pe_icm3;
token_bus_prt_pe <= Op_token_bus_sig;
--Addr_0_fin0 <=Addr_0;
--Addr_1_fin1<=Addr_1;
ce_sig1_fin1 <= ce_sig1;
ce_sig0_fin0 <= ce_sig0;
tbgrnt_sig0_fin0 <= tbgrnt_sig0;
tbgrnt_sig1_fin1 <= tbgrnt_sig1;
tbreq_sig0_fin0 <= tbreq_sig0;
tbreq_sig1_fin1 <= tbreq_sig1;
i_rdy_icm0_fin0<= i_rdy_icm0;
i_rdy_icm1_fin1<= i_rdy_icm1;
snd_i_icm0_fin0 <= snd_i_icm0;
snd_i_icm1_fin1 <= snd_i_icm1;
db_req3_dbug<= db_req3;
db_grant3_dbug <= db_grant3;
db_req1_dbug<= db_req1;
db_grant1_dbug <= db_grant1;
db_req0_dbug<= db_req0;
db_grant0_dbug <= db_grant0;

--

-- changes made with the addition of IC switch
-- Address ports taken out --
 mem_ad_out_0<=addr_0(6 downto 0);
 mem_ad_out_1<=addr_1(6 downto 0);
 mem_ad_out_2<=addr_2(6 downto 0);
 mem_ad_out_3<=addr_3(6 downto 0);

-- Memory contents to be viewed --

 Mem_out_0 <= mem_do_0;
 Mem_out_1 <= mem_do_1;
 Mem_out_2 <= mem_do_2;
 Mem_out_3 <= mem_do_3;

-- addition of process 1 for the inputting of values into the data memory
input_2_mem : process(db_grant0,db_grant1,db_grant2,db_grant3,clk,rst)

 209

begin
 if(rst ='1') then
 mem_di_0 <= x"0000";
 mem_di_1 <= x"0000";
 mem_di_2 <= x"0000";
 mem_di_3 <= x"0000";

 else

 if(clk'event and clk='0') then
 if(db_grant0 ='1') then

 mem_di_0 <= dbus_sig0;
 else mem_di_0 <=(others =>'0');
 end if;

 if(db_grant1 ='1') then

 mem_di_1 <= dbus_sig1;
 else mem_di_1 <=(others =>'0');
 end if;

 if(db_grant2 ='1') then

 mem_di_2 <= dbus_sig2;
 else mem_di_2 <=(others =>'0');
 end if;

 if(db_grant3 ='1') then

 mem_di_3 <= dbus_sig3;
 else mem_di_3 <=(others =>'0');
 end if;
 end if;
 end if;
end process input_2_mem;

 -- end of process 1

-- end of changes made ----

-- process 2 for outputting the values from data memory
output_from_mem : process(db_grant0,db_grant1,db_grant2,db_grant3,rw_sig0,rw_sig1,rw_sig2,
 rw_sig3,clk,rst)

begin

if(rst='1') then
 dbus_sig0 <= x"0000";
 dbus_sig1 <= x"0000";
 dbus_sig2 <= x"0000";
 dbus_sig3 <= x"0000";
 else

 210

 if(clk'event and clk='0') then
 if(db_grant0 ='1' and rw_sig0 ='0') then

 dbus_sig0 <= mem_do_0;
 else dbus_sig0 <=(others =>'Z');
 end if;

 if(db_grant1 ='1' and rw_sig1 ='0') then

 dbus_sig1 <= mem_do_1;
 else dbus_sig1 <=(others =>'Z');
 end if;

 if(db_grant2 ='1' and rw_sig2 ='0') then

 dbus_sig2 <= mem_do_2;
 else dbus_sig2 <=(others =>'Z');
 end if;

 if(db_grant3 ='1' and rw_sig3 ='0') then

 dbus_sig3 <= mem_do_3;
 else dbus_sig3 <=(others =>'Z');
 end if;
 end if;
 end if;
end process output_from_mem;

-- end of process 2

-- Token bus logic
optmp_req <= Op_req;
Tknbuslg : process (tbreq_sig0,tbgrnt_sig0,bus_req_prt,bus_grnt_prt,tbreq_sig1,
 tbgrnt_sig1,tbreq_sig2,tbgrnt_sig2,tbgrnt_sig3,tbreq_sig3,Optmp_req,Op_gnt, rst)
 begin
 if rst = '1' then
 tbgrnt_sig0 <= '0';
 bus_grnt_prt <= '0';
 --Tbs4_gnt <= '0';
 tbgrnt_sig1 <= '0';
 tbgrnt_sig2 <= '0';
 tbgrnt_sig3 <= '0';
 Op_gnt <= '0';
 elsif (bus_req_prt ='1')and (tbgrnt_sig0='0') and(tbgrnt_sig1='0') and
 (tbgrnt_sig2='0')and(Op_gnt='0') and (tbgrnt_sig3='0') then
 tbgrnt_sig0 <= '0';
 bus_grnt_prt <= '1';
 --Tbs4_gnt <= '0';
 tbgrnt_sig2 <= '0';
 tbgrnt_sig1 <= '0';
 tbgrnt_sig3 <= '0';
 Op_gnt <= '0';
 elsif (Optmp_req ='1') and (bus_grnt_prt ='0') and (tbgrnt_sig0='0') and
 (tbgrnt_sig1='0') and (tbgrnt_sig2='0') and (tbgrnt_sig3 ='0')then

 211

 tbgrnt_sig0 <= '0';
 bus_grnt_prt <= '0';
 --Tbs4_gnt <= '0';
 tbgrnt_sig1 <= '0';
 tbgrnt_sig2 <= '0';
 tbgrnt_sig3 <= '0';
 Op_gnt <= '1';
 elsif (tbreq_sig0 = '1') and (bus_grnt_prt='0') and (Op_gnt='0') and
 (tbgrnt_sig2='0')and (tbgrnt_sig1='0') and (tbgrnt_sig3 ='0') then
 tbgrnt_sig0 <= '1';
 bus_grnt_prt <= '0';
 --Tbs4_gnt <= '0';
 tbgrnt_sig2 <= '0';
 tbgrnt_sig1 <= '0';
 tbgrnt_sig3 <= '0';
 Op_gnt <= '0';
 elsif (tbreq_sig2='1') and (bus_grnt_prt='0') and (Op_gnt='0') and
 (tbgrnt_sig0='0') and (tbgrnt_sig1='0') and (tbgrnt_sig3 ='0') then
 tbgrnt_sig0 <= '0';
 bus_grnt_prt <= '0';
 --Tbs4_gnt <= '1';
 tbgrnt_sig2 <='1';
 tbgrnt_sig1 <= '0';
 tbgrnt_sig3 <= '0';
 Op_gnt <= '0';
 elsif (tbreq_sig1='1') and (bus_grnt_prt='0') and (Op_gnt='0') and
 (tbgrnt_sig0='0') and (tbgrnt_sig2='0')and (tbgrnt_sig3='0') then
 tbgrnt_sig0 <= '0';
 bus_grnt_prt <= '0';
 -- Tbs4_gnt <= '0';
 tbgrnt_sig2<='0';
 tbgrnt_sig1 <= '1';
 tbgrnt_sig3 <= '0';
 Op_gnt <= '0';
 elsif (tbreq_sig3='1') and (bus_grnt_prt='0') and (Op_gnt='0') and
 (tbgrnt_sig0='0') and (tbgrnt_sig2='0')and (tbgrnt_sig1='0') then
 tbgrnt_sig0 <= '0';
 bus_grnt_prt <= '0';
 -- Tbs4_gnt <= '0';
 tbgrnt_sig2<='0';
 tbgrnt_sig1 <= '0';
 tbgrnt_sig3 <= '1';
 Op_gnt <= '0';
 end if;
 if (bus_req_prt = '0') then bus_grnt_prt <= '0';
 end if;
 if (Optmp_req = '0') then Op_gnt <= '0';
 end if;
 if (tbreq_sig0 = '0') then tbgrnt_sig0 <= '0';
 end if;
 if (tbreq_sig2 = '0') then tbgrnt_sig2 <= '0';
 end if;
 if (tbreq_sig1 = '0') then tbgrnt_sig1 <= '0';
 end if;
 if (tbreq_sig3 = '0') then tbgrnt_sig3 <= '0';
 end if;

 212

 end process;

arbiter_logic: process(clk,rst)
begin
if rst = '1' then
 odr0<='0';
 odr1<='0';

elsif (clk'event and clk='1') then
 case rq_opt0 is
 when '1' => odr0 <= '1';
 when '0' => odr0 <= '0';
 when others =>
 end case;

 case rq_opt1 is
 when '1' => odr1 <= '1';
 when '0' => odr1 <= '0';
 when others =>
 end case;

end if;
end process arbiter_logic;

Op_token_bus_sig <= Op_token_bus when Op_gnt = '1' else
 (others=>'Z');

end Behavioral;

Module Name: contchip.vhd
library IEEE;
use IEEE.std_logic_1164.all;

entity CONTChip is
 generic (Chip_addr : integer := 3;
 Inst0 : integer := 156;
 Inst1 : integer := 48;
 Inst2 : integer := 152);
 port (
 Data_bus: inout STD_LOGIC_VECTOR (15 downto 0);
 Chip_EN: in STD_LOGIC;
 Snd_i,stoplp: in std_logic;
 Rst: in STD_LOGIC;
 Clk: in STD_LOGIC;
 tbus_grnt: in STD_LOGIC;
 token_bus: inout STD_LOGIC_VECTOR (31 downto 0);
 tbus_req: out STD_LOGIC;
 I_rdy: out std_logic;
 Avail: out STD_LOGIC_VECTOR (4 downto 0);
 --x_dbug : out std_logic_vector(9 downto 0);
 x_dbug : out std_logic_vector(6 downto 0);
 --count_dbug : out std_logic_vector(9 downto 0);
 count_dbug : out std_logic_vector(6 downto 0);
 Wr_out_dbug : out std_logic_vector (1 downto 0);
 R_L_Table_dbug: out STD_LOGIC_VECTOR (1 downto 0);

 213

 Ld_Rd_dbug: out STD_LOGIC;
 --tab_1ntry : out std_logic_vector (4 downto 0);
 --tab_addntry : out std_logic_vector (7 downto 0);
 --tab_exitpn_ntry : out std_logic_vector(3 downto 0);
 ccntl_in_dbug :out std_logic_vector(24 downto 0);
 --QData_dbug : out std_logic_vector (17 downto 0);
 dataout_lut : out std_logic_vector(15 downto 0);
 outbuf0_dbug: out std_logic_vector(15 downto 0);
 outbuf1_dbug : out std_logic_vector(15 downto 0);
 line_out_dbug: out std_logic_vector(31 downto 0);
 l_in : out std_logic_vector(31 downto 0);
 buf_dbug : out std_logic_vector(24 downto 0);
 -- Statedbg_fin :out string(1 to 10):=" "
 cntl_out_fin : out std_logic_vector(3 downto 0);
 dlout_contchip:out std_logic_vector(15 downto 0);
 dwr_cont: out std_logic;
 tab_in_contchip: out std_logic
);
end CONTChip;

architecture CONTChip_arch of CONTChip is

component queue is --FIFO Queue code
 port (clk, enw, rst_f,rst_r,enr,s:in std_logic;
 time_s: in std_logic_vector(3 downto 0);
 din: in std_logic_vector(17 downto 0);
 ram_add: in std_logic_vector(5 downto 0);
 prog_flag: in std_logic_vector(5 downto 0);
 error: inout std_logic;
 sign: out std_logic;
 ITRC: out std_logic_vector(3 downto 0);
 th_flag: out std_logic;
 count_token:inout std_logic_vector(5 downto 0);
 dout: out std_logic_vector(17 downto 0));
end component;

component LUT is
 generic (Instr0 : integer := 156;
 Instr1 : integer := 48;
 Instr2 : integer := 152);
 port (
 R_L_Table: in STD_LOGIC_VECTOR (1 downto 0);
 Ld_Rd: in STD_LOGIC;
 Data: inout STD_LOGIC_VECTOR (15 downto 0);
 rst: in STD_LOGIC;
 clk : in STD_LOGIC;
 Wr_out : in std_logic_vector (1 downto 0);
 W_en : out std_logic;
 addr: in STD_LOGIC_VECTOR (4 downto 0);
 time_stmp : in STD_LOGIC_VECTOR(2 downto 0);
 Proc_Num: in STD_LOGIC_VECTOR (4 downto 0);
 data_loc: in STD_LOGIC_VECTOR (7 downto 0);
 join_flg: buffer std_logic;
 Instr_out: out STD_LOGIC_VECTOR (15 downto 0);
 --tab_1ntry : out std_logic_vector (4 downto 0);
 --tab_addntry : out std_logic_vector (7 downto 0);

 214

 --tab_exitpn_ntry : out std_logic_vector(3 downto 0)
 tab_in_dbg: out std_logic
);
end component;

component Cntl_Logic is
 generic (Chip_addr : integer := 3;
 Inst0 : integer := 156;
 Inst1 : integer := 48;
 Inst2 : integer := 152);
 port (
 rst: in STD_LOGIC;
 clk: in STD_LOGIC;
 tkn_bus: inout STD_LOGIC_VECTOR (31 downto 0);
 Cnt_token: in STD_LOGIC_VECTOR (5 downto 0);
 thl_flag: in STD_LOGIC;
 ITRC: in STD_LOGIC_VECTOR (3 downto 0);
 sign: in STD_LOGIC;
 Join_flg: in STD_LOGIC;
 data: inout STD_LOGIC_VECTOR (15 downto 0);
 En_W: out STD_LOGIC;
 En_R: out STD_LOGIC;
 rst_f: out STD_LOGIC;
 rst_r: out STD_LOGIC;
 s: out STD_LOGIC;
 bus_grant : in std_logic;
 bus_rqst : out std_logic;
 time_s: out STD_LOGIC_VECTOR (3 downto 0);
 ram_addr: out STD_LOGIC_VECTOR (5 downto 0);
 D_out: out STD_LOGIC_VECTOR (17 downto 0);
 Prog_flag: out STD_LOGIC_VECTOR (5 downto 0);
 wr_out: buffer STD_LOGIC_VECTOR (1 downto 0);
 LT_addr: out STD_LOGIC_VECTOR (4 downto 0);
 rst_LT: out STD_LOGIC;
 R_L_table: buffer STD_LOGIC_VECTOR (1 downto 0);
 Ld_Rd: out STD_LOGIC;
 Instr_Rdy: out STD_LOGIC;
 Snd_instr : in std_logic;
 finished, stoploop: in STD_LOGIC;
 -- x_dbug : out std_logic_vector(9 downto 0);
 x_dbug : out std_logic_vector(6 downto 0);
 --count_dbug : out std_logic_vector(9 downto 0);
 count_dbug : out std_logic_vector(6 downto 0);
 outbuf0_dbug : out std_logic_vector(15 downto 0);
 outbuf1_dbug : out std_logic_vector(15 downto 0);
 line_out_dbug: out std_logic_vector(31 downto 0);
 line_in_dbug : out std_logic_vector(31 downto 0);
 buf_in_dbug : out std_logic_vector(24 downto 0);
 cntl_in_dbug : out std_logic_vector (24 downto 0);
 cntl_out : out std_logic_vector(3 downto 0);
 dlout:out std_logic_vector(15 downto 0);
 dwr_op: out std_logic
 --Statedbg:out string(1 to 10):=" "

);
end component;

 215

signal Instr_out : std_logic_vector(15 downto 0); --LUT output
signal WEN : std_logic; --chip output enable
signal QData : std_logic_vector(17 downto 0); --FIFO output
signal rst_lut, rst_f, rst_r : std_logic;
signal R_L_Table, WR_Out : std_logic_vector(1 downto 0);
signal Read_Load : std_logic;
signal jn_flag : std_logic;
signal LData : std_logic_vector(15 downto 0); --I/O for LUT
signal Addr : std_logic_vector(4 downto 0); --LUT address lines
signal tok_cnt : std_logic_vector(5 downto 0); --FIFO count
signal Thres_flag : std_logic; --Threshold flag
signal ITRC : std_logic_vector(3 downto 0);
signal sign, s : std_logic;
signal en_Wr, en_Rd : std_logic; --FIFO read/write
signal time_S : std_logic_vector(3 downto 0); --FIFO time setting
signal Ram_addr : std_logic_vector(5 downto 0); --FIFO address lines
signal FData : std_logic_vector(17 downto 0); --FIFO input lines
signal Prog_flag : std_logic_vector(5 downto 0); --FIFO threshold set lines
-- added for dbugging

begin

 Cont1 : Cntl_logic generic map (Chip_addr,Inst0, Inst1, Inst2)
 port
map(rst=>Rst,clk=>Clk,tkn_bus=>token_bus,Cnt_token=>tok_cnt,thl_flag=>Thres_flag,

ITRC=>ITRC,sign=>sign,join_flg=>jn_flag,data=>LData,En_W=>en_Wr,En_R=>en_Rd,rst_f=>rst_f,rst_
r=>rst_r,
 s=>s,bus_grant=>tbus_grnt,bus_rqst=>tbus_req,time_s=>time_S,ram_addr=>Ram_addr,
 D_out=>FData,Prog_flag=>Prog_flag,wr_out=>WR_Out,LT_addr=>Addr,rst_LT=>rst_lut,
 R_L_table=>R_L_Table,Ld_Rd=>Read_Load,Instr_Rdy=>I_rdy,Snd_instr=>Snd_i,
 finished=>Chip_EN,
stoploop=>stoplp,x_dbug=>x_dbug,count_dbug=>count_dbug,
 outbuf0_dbug=>outbuf0_dbug,outbuf1_dbug=>outbuf1_dbug,
 line_out_dbug=>line_out_dbug,line_in_dbug =>
l_in,buf_in_dbug=>buf_dbug,

cntl_in_dbug=>ccntl_in_dbug,cntl_out=>cntl_out_fin,dlout=>dlout_contchip,dwr_op=> dwr_cont);

 LUT1 : LUT generic map(Inst0, Inst1, Inst2)
 port map(R_L_Table=>R_L_Table,Ld_Rd=>Read_Load,Data=>LData,rst=>rst_lut,clk=>clk,
 Wr_out=>WR_Out,W_en=>WEN,addr=>Addr,time_stmp=>QData(17 downto
15),Proc_Num=>QData(14 downto 10),
 data_loc=>QData(7 downto 0),join_flg=>jn_flag,Instr_out=>Instr_out,tab_in_dbg =>
tab_in_contchip
);

 FIFOQ : queue port
map(clk=>clk,enw=>en_Wr,rst_f=>rst_f,rst_r=>rst_r,enr=>en_Rd,s=>s,time_s=>time_S,

din=>FData,ram_add=>Ram_addr,prog_flag=>Prog_flag,error=>open,sign=>sign,ITRC=>ITRC,
 th_flag=>Thres_flag,count_token=>tok_cnt,dout=>QData);

 -- added for checking the changes

 216

 Wr_out_dbug <= wr_out;
 R_L_Table_dbug<= R_L_Table;
 Ld_Rd_dbug <= Read_Load ;
-- QData_dbug<=QData;
dataout_lut<= Ldata;
 Data_bus <= Instr_out when WEN = '1' else (others=>'Z');
 Avail <= Tok_cnt(4 downto 0);
 end CONTChip_arch;

Module Name: cntl_logic.vhd

--The IEEE standard 1164 package, declares std_logic, rising_edge(), etc.
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;
use std.textio.all;

entity Cntl_Logic is
 generic (Chip_addr : integer := 3;
 Inst0 : integer := 156;
 Inst1 : integer := 48;
 Inst2 : integer := 152);
 port (
 rst: in STD_LOGIC;
 clk: in STD_LOGIC;
 tkn_bus: inout STD_LOGIC_VECTOR (31 downto 0);
 Cnt_token: in STD_LOGIC_VECTOR (5 downto 0);
 thl_flag: in STD_LOGIC;
 ITRC: in STD_LOGIC_VECTOR (3 downto 0);
 sign: in STD_LOGIC;
 Join_flg: in STD_LOGIC;
 data: inout STD_LOGIC_VECTOR (15 downto 0);
 En_W: out STD_LOGIC;
 En_R: out STD_LOGIC;
 rst_f: out STD_LOGIC;
 rst_r: out STD_LOGIC;
 s: out STD_LOGIC;
 bus_grant : in std_logic;
 bus_rqst : out std_logic;
 time_s: out STD_LOGIC_VECTOR (3 downto 0);
 ram_addr: out STD_LOGIC_VECTOR (5 downto 0);
 D_out: out STD_LOGIC_VECTOR (17 downto 0);
 Prog_flag: out STD_LOGIC_VECTOR (5 downto 0);
 wr_out: buffer STD_LOGIC_VECTOR (1 downto 0);
 LT_addr: out STD_LOGIC_VECTOR (4 downto 0);
 rst_LT: out STD_LOGIC;
 R_L_table: buffer STD_LOGIC_VECTOR (1 downto 0);
 Ld_Rd: out STD_LOGIC;
 Instr_Rdy: out STD_LOGIC;
 Snd_instr : in std_logic;
 finished, stoploop: in STD_LOGIC;
 --x_dbug : out std_logic_vector(9 downto 0);
 x_dbug : out std_logic_vector(6 downto 0);
 --count_dbug : out std_logic_vector(9 downto 0);
 count_dbug : out std_logic_vector(6 downto 0);

 217

 cntl_in_dbug : out std_logic_vector(24 downto 0);
 outbuf0_dbug : out std_logic_vector(15 downto 0);
 outbuf1_dbug : out std_logic_vector(15 downto 0);
 line_out_dbug: out std_logic_vector(31 downto 0);
 line_in_dbug : out std_logic_vector(31 downto 0);
 buf_in_dbug : out std_logic_vector(24 downto 0);
 -- Statedbg:out string(1 to 10):=" "
 cntl_out : out std_logic_vector(3 downto 0);
 dlout:out std_logic_vector(15 downto 0);
 dwr_op: out std_logic
);
end Cntl_Logic;

architecture Cntl_Logic_arch of Cntl_Logic is

component mapbuf
 port (
 din: IN std_logic_VECTOR(24 downto 0);
 clk: IN std_logic;
 wr_en: IN std_logic;
 rd_en: IN std_logic;
 ainit: IN std_logic;
 dout: OUT std_logic_VECTOR(24 downto 0);
 full: OUT std_logic;
 empty: OUT std_logic);
end component;
--signal stout:string(1 to 10):="State ";
signal nxt_lded : std_logic;
signal wr_en, ld_t : std_logic;
signal line_in, line_out : std_logic_vector(31 downto 0);
constant Load_Table : std_Logic_vector := "111111"; --tkn opcode
constant Load_Thres : std_logic_vector := "111101"; --tkn opcode
constant Table_input: std_logic_vector := "111110"; --tkn opcode
constant Status : std_logic_vector := "111100"; --tkn opcode
constant Switch : std_logic_vector := "111011"; --tkn opcode
constant tken : std_logic_vector := "00----"; --tkn value
constant PRT_addr : std_logic_vector := "0000001"; --PRT addr
constant PRT_stat : std_logic_vector := "0000000111100"; --snd status to PRT
signal lcl_addr : std_logic_vector(6 downto 0);
type State_Type is (Sysrst,Ld_table,GetTkn,StopL, DeQ,Issue,Dummy,SndPRT,ChkStat,PRam);
signal State: State_Type;
-- entry is data structure for loading LUT
type entry is record
 entry0, entry1: std_logic_vector(15 downto 0);
end record;
--**************************Make changes here for different apps************************
type entry_tbl is array(6 downto 0) of entry;
--***
signal tbl_entry : entry_tbl;
signal outbuf0, outbuf1 : std_logic_vector(15 downto 0);
signal buf_in, temp3 : std_logic_vector(24 downto 0);
signal dline_in, dline_out : std_logic_vector(15 downto 0);
signal dwr : std_logic;
signal re, we, empty, full : std_logic;
signal cntl_in, last_cntl_in : std_logic_vector(24 downto 0);
--signal count, x : std_logic_vector(9 downto 0);

 218

signal count, x : std_logic_vector(6 downto 0);

begin
dlout<=dline_out;
x_dbug <= x;
count_dbug<= count;
cntl_in_dbug <= cntl_in;
lcl_addr <= conv_std_logic_vector(Chip_addr, 7);
outbuf0_dbug<=outbuf0;
outbuf1_dbug<=outbuf1;
line_out_dbug<= line_out;
line_in_dbug <= line_in;
buf_in_dbug <= buf_in;
dwr_op <= dwr;
-- define tri-state logic for token bus
with (wr_en) select
 line_in <= tkn_bus when '1',
 (others=>'0') when others;

tkn_bus <= line_out when wr_en = '0' else
 (others=>'Z');
-- define tri-state logic for data bus
dline_in <= data when dwr = '1' else
 (others=> 'Z');
data <= dline_out when dwr = '0' else
 (others=> 'Z');

INFifo : mapbuf port map (din => buf_in,clk =>clk,wr_en => we,rd_en => re,
 ainit => rst, dout => cntl_in,
 full => full,empty => empty);

getdata : process (clk, full, line_in, rst)
 begin
 if rst = '1' then
 we <= '0';
 buf_in <= (others=>'0');
 elsif (clk'event and clk='1') then
 if (line_in(30 downto 24) = lcl_addr and full ='0') then
 buf_in <= line_in(31)&line_in(23 downto 0);
 we <= '1';
 else
 buf_in <= (others=>'0');
 we <= '0';
 end if;
 end if;
end process;

-- Initialize the Table with entry0 and entry1 asynchronously at reset.

--init_table: process(rst)
--begin
--if rst = '1' then
-- for i in 0 to 4 loop
-- tbl_entry(i).entry0(15 downto 0)<=x"0000";
-- tbl_entry(i).entry1(15 downto 0)<=x"0000";
-- end loop;

 219

--end if;
--end process init_table;

CntlSt: process (clk,rst)

 variable ind, ind2 : integer;
 variable done, comp, running, stopflag, Snd_done, in_delay, buf_delay : Boolean;
 variable delay, iter, fin_join, first_val, in_delay2 : Boolean;
 variable iss_delay, is2_delay : Boolean;

 begin
 if rst = '1' then
 State <= Sysrst;
 elsif (clk'event and clk='1') then

 case State is
 when Sysrst =>
 cntl_out <="0000";

-- stout<="Reset ";
 --count <= "0000000001"; done := False; x <= "0000000001";
 -- count <= "00001"; done := False; x <= "00001";
 count <= "0000001"; done := False; x <= "0000001";
 Snd_done := False; comp := False; running := False;
 bus_rqst <= '0'; first_val := true; in_delay2 := False;
 dwr <= '1'; iss_delay := False; in_delay := false; stopflag:=false;
 rst_f <= '1'; --reset Queue
 rst_r <= '1'; buf_delay := false;
 rst_LT <= '1'; --reset LUT
 R_L_Table <= "00"; is2_delay := false;
 Ld_RD <= '0';
 nxt_lded <='0'; --block PE from getting tkn
 wr_en <= '1'; --enable bus snoop
 State <= Ld_Table;
 Instr_rdy <= '0';
 fin_join := false;
 prog_flag <= "000000";
 LT_addr <= "00000";
 wr_out <= "00";
 en_W <= '0'; en_R <= '0';
 time_s <= "0000"; s <= '0';
 ram_addr <= "000000";
 D_out <= "000000000000000000";
 re <= '0';
 delay := false; iter := false;
 temp3 <= (others=>'0');

 220

 last_cntl_in <= (others=>'0');

 when Ld_Table =>
 cntl_out <="0001";
-- stout<="Load Table";
 wr_en <= '1';
 Ld_Rd <= '0';
 rst_f <= '0';
 rst_r <= '0';
 rst_LT <= '0';
 en_W <= '0'; en_R <= '0';
 s <= '0';
 ram_addr <= "000000";
 D_out <= "000000000000000000";
 bus_rqst <= '0';
 wr_out <= "00";
 if (done = false) then --get table tokens
 case count is
 when "0000001" => ind := 0;
 when "0000010" => ind := 1;
 when "0000100" => ind := 2;
 when "0001000" => ind := 3;
 when "0010000" => ind := 4;
 when "0100000" => ind := 5;
 when "1000000" => ind := 6;
 when others => null;
 end case;
 if (empty = '0' and in_delay = false) then
 Re <='1'; --get token from queue
 in_delay := true;
 Count <= count;
 State <= Ld_table;
 elsif (in_delay = true and in_delay2 = False) then
 in_delay2 := true; re <= '0';
 Count <= Count;
 State <= Ld_table;
 elsif (in_delay2 = true) then --parse token
 if (cntl_in(24 downto 19))=Load_Table then
 tbl_entry(ind).entry1(7 downto 0) <= cntl_in(7 downto 0); --data
addr
 tbl_entry(ind).entry0(0) <= cntl_in(8); --hold field
 tbl_entry(ind).entry1(8) <= cntl_in(9); --Join field
 Count <= Count;
 elsif (cntl_in(24 downto 19))=Table_Input then
 tbl_entry(ind).entry0(15 downto 11)<=cntl_in(18 downto 14); --PN
 tbl_entry(ind).entry0(10 downto 6) <=cntl_in(13 downto 9); --Next PN
 tbl_entry(ind).entry0(5 downto 1) <=cntl_in(8 downto 4); --Next PN1
 tbl_entry(ind).entry1(12 downto 9) <=cntl_in(3 downto 0); --Exit PN
 tbl_entry(ind).entry1(15 downto 13) <="000"; --
ununsed bits init to 0
 --count <= count(8 downto 0)&count(9);
 count <= count(5 downto 0)&count(6);
 --if count < "1000000000" then
 if count < "1000000" then
 done := false;
 else

 221

 done := True;
 end if;
 end if;
 in_delay := false;
 in_delay2 := false;
 Re <= '0';
 end if;
 State <= Ld_Table;
 elsif done = True then -- load LUT
 re <= '0';
 case x is
 when "0000001" => LT_addr <= "00000"; ind2 := 0;
 when "0000010" => LT_addr <= "00001"; ind2 := 1;
 when "0000100" => LT_addr <= "00010"; ind2 := 2;
 when "0001000" => LT_addr <= "00011"; ind2 := 3;
 when "0010000" => LT_addr <= "00100"; ind2 := 4;
 when "0100000" => LT_addr <= "00101"; ind2 := 5;
 when "1000000" => LT_addr <= "00110"; ind2 := 6;
 when others => null;

 end case;
 case R_L_Table is
 when "00" => dwr <= '0'; --enable write to LUT
 dline_out <= tbl_entry(ind2).entry0;
 R_L_Table <="01";
 State <= Ld_Table;
 when "01" => dwr <= '0';
 dline_out <= tbl_entry(ind2).entry1;
 R_L_Table <= "10";
 State <= Ld_Table;
 -- when "10" => R_L_Table <= "00";
 when "10" => R_L_Table <= "00";
 dwr <= '0'; --enable write to LUT
 dline_out <= tbl_entry(ind2).entry0;

 --if x < "1000000000" then
 if x < "1000000" then
 -- x <= x(8 downto 0)&x(9);
 x <= x(5 downto 0)&x(6);
 State <= Ld_table;
 else
 done := False;
 --x <= x(8 downto 0)&x(9);
 x <= x(5 downto 0)&x(6);
 dwr <= '1';
 State <= GetTkn;
 end if;
 when others => R_L_Table <= "00";
 --x<= "0000000001"; done := False; dwr <= '1';
 x<= "0000001"; done := False; dwr <= '1';
 State <= GetTkn;
 end case;
 end if;

 when GetTkn =>

 222

 cntl_out <="0010";
-- stout<="Get Token ";
 en_W <= '0';
 bus_rqst <= '0';
 wr_en <= '1';
 R_L_Table <= "00";
 en_R <= '0';
 LT_addr <= "00000";
 if join_flg = '0' then
 wr_out <= "00";
 else
 wr_out <= wr_out;
 end if;
 R_L_Table <= "00";
 Ld_RD <= '0';
 s <= '0';
 ram_addr <= "000000";
 rst_f <= '0';
 rst_r <= '0';
 rst_LT <= '0';
 if (stoploop = '1') then
 stopflag := true;
 state <= GetTkn; -- break out the process loop
 elsif ((finished = '1') and (nxt_lded='0') and (running=True)) then
 running := false;
 State <= Dummy; --handle finished proc
 elsif ((stopflag=true) and (finished = '1') and (nxt_lded='1')) then
 State <= StopL;
 elsif ((stopflag=false) and (finished = '1') and (nxt_lded='1')) then
 State <= SndPRT; --handle finished proc
 elsif (nxt_lded='0' and Cnt_token > "000000") then --Dequeue for processing
 State <= DeQ;
 elsif (empty = '0' and in_delay = false) then
 re <= '1'; --get token
 in_delay := true;
 Count <= Count;
 State <= GetTkn;
 elsif (in_delay = true and buf_delay = false) then
 re <= '0';
 buf_delay := true;
 count <= Count;
 State <= GetTkn;
 elsif (buf_delay = true) then
 if (cntl_in(24 downto 19))= Status then
 last_cntl_in <= cntl_in;
 State <= ChkStat;
 elsif (cntl_in(24 downto 19)) = Load_Table then
 last_cntl_in <= cntl_in;
 State <= Ld_Table;
 elsif (cntl_in(24 downto 19)) = Load_Thres then
 prog_flag <= cntl_in(5 downto 0); --ld threshold value
 time_s <= cntl_in(9 downto 6); --ld sample time
 last_cntl_in <= cntl_in;
 State <= GetTkn;
 elsif (cntl_in(24 downto 19)) = Switch then
 temp3 <= cntl_in;

 223

 last_cntl_in <= cntl_in;
 State <= PRam; --enter psuedo-RAM funct.
 elsif (cntl_in(24) = '0') then --token rcvd
 if (Cnt_token /= "111111") then --enque token
 en_W <= '1';
 D_out(17 downto 10) <= cntl_in(23 downto 16);
 D_out(9 downto 0) <= cntl_in(9 downto 0);
 last_cntl_in <= cntl_in;
 State <= GetTkn;
 end if;
 else
 State <= GetTkn; --invalid token read
 end if;
 buf_delay := false;
 in_delay := false;
 else
 re <= '0';
 State <= GetTkn; --repeat
 end if;

 when StopL =>
 cntl_out <="0011";
-- stout<="Stop Loop ";
 en_R <= '0'; en_W <='0';
 s <= '0';
 ram_addr <= "000000";
 rst_f <= '0';
 rst_r <= '0';
 rst_LT <= '0';
 re <= '0';
 LT_addr <= "00000";
 D_out <= "000000000000000000";
 stopflag :=false;
 if Snd_done = False then
 Ld_Rd <= '1';
 dwr <= '1'; -- enable write from LUT to controller
 if first_val = true then
 case R_L_Table is
 when "00" => R_L_Table <= "10";
 State <= StopL;
 when "01" => R_L_Table <= "10";
 State <= StopL;
 when "10" => R_L_Table <= "11";
 State <= StopL;
 when "11" => R_L_Table <= "11";
 outbuf0 <= dline_in;
 first_val := false;
 State <= StopL;
 when others => R_L_Table <= "00";
 end case;
 else
 R_L_Table <= "00";
 outbuf1 <= Dline_in;
 Ld_Rd <= '0';
 Snd_done := True;

 224

 first_val := true;
 State <= StopL;
 end if;
 else
 bus_rqst <= '1';
 Ld_Rd <='0';
 R_L_Table <= "00";
 if bus_grant = '1' then
 wr_en <= '0';
 line_out(20 downto 0) <= ('0'&outbuf1(11 downto
8)&"00000000"&outbuf1(7 downto 0));
 line_out(30 downto 24) <= PRT_addr;
 line_out(23 downto 21) <= outbuf0(13 downto 11); --time stamp
 line_out(31) <= '0'; --hold field
 Snd_done := false;
 if nxt_lded = '1' then
 State <= Issue;
 else
 State <= GetTkn;
 end if;
 else
 State <= StopL; --wait for bus
 end if;
 end if;

 when DeQ =>
 cntl_out <="0100";
-- stout<="De-Queue ";
 en_W <= '0';
 s <= '0';
 ram_addr <= "000000";
 rst_f <= '0';
 rst_r <= '0';
 rst_LT <= '0';
 bus_rqst <= '0';
 LT_addr <= "00000";
 temp3 <= (others=>'0');
 D_out <= "000000000000000000";
 en_R <= '1';
 LD_RD <= '1';
 nxt_lded <= '1';
 R_L_Table <= "01";
 re <= '0';
 if Join_flg = '1' then
 fin_join := true;
 wr_out <= wr_out;
 else
 fin_join := false;
 wr_out <= "00";
 end if;
 if (finished = '1') then
 State <= Issue;
 elsif (finished = '0') then
 State <= GetTkn;

 225

 end if;

 when Issue =>
 cntl_out <="0101";
-- stout<=" Issue ";
 en_R <= '0'; en_W <= '0';
 wr_en <= '1';
 bus_rqst <= '0';
 nxt_lded <= '0';
 R_L_Table <= "00";
 s <= '0';
 ram_addr <= "000000";
 rst_f <= '0';
 rst_r <= '0';
 rst_LT <= '0';
 re <= '0';
 bus_rqst <= '0';
 LT_addr <= "00000";
 D_out <= "000000000000000000";
 if (join_flg='1' and cnt_token > "000000" and fin_join = false) then
 Instr_Rdy <= '0';
 State <= DeQ; --Issue another token
 elsif (join_flg='1' and cnt_token = "000000" and fin_join = false) then
 State <= GetTkn; --Other join tkn not available
 nxt_lded <= '0';
 Instr_Rdy <= '0';
 elsif ((join_flg = '0') or (join_flg='1' and fin_join = true)) then
 case (wr_out) is
 when "00" => Wr_out <= "01"; --snd 1st instr
 Instr_Rdy <= '1';
 State <= Issue;
 when "01" => if (snd_instr = '0' or iss_delay = False or is2_delay =
false) then
 state <= Issue;
 Wr_out <= Wr_out;
 if iss_delay = true then
 is2_delay := true; --2nd delay cycle
 end if;
 iss_delay := true; --delay to allow PE to read instr.
 else
 if fin_join=true then --snd 2nd/3rd instrs
 Wr_out <= "11";
 Instr_Rdy <= '1';
 else
 Wr_out <= "10";
 Instr_Rdy <= '1';
 end if;
 iss_delay := false; --reset delay var.
 is2_delay := false;
 State <= Issue;
 end if;
 when "10" => if (snd_instr = '0' or iss_delay = False or is2_delay =
false) then
 Instr_Rdy <= '0';
 Wr_out <= Wr_out;
 if iss_delay = true then

 226

 is2_delay := true;
 end if;
 iss_delay := true;
 STATE <= Issue;
 else
 Wr_out <= "00";
 iss_delay := false;
 is2_delay := false;
 running := True;
 fin_join := false;
 Instr_Rdy <= '0';
 if (Cnt_token = "000000") then
 State <= GetTkn;
 else
 State <= DeQ;
 end if;
 end if;
 when "11" => if (snd_instr = '0' or iss_delay = False or is2_delay =
false) then
 state <= issue;
 Wr_out <= Wr_out;
 Instr_Rdy <= '0';
 if iss_delay = true then
 is2_delay := true;
 end if;
 iss_delay := true;
 else
 Wr_out <= "10";
 Instr_Rdy <= '1';
 iss_delay := false;
 is2_delay := false;
 State <= Issue;
 end if;
 when others => Wr_out <= "00";
 State <= GetTkn;
 end case;
 end if;

 when Dummy =>
 cntl_out <="0110";
-- stout<=" Dummy ";
 en_R <= '0'; en_W <='0';
 wr_en <= '1';
 bus_rqst <= '0';
 s <= '0';
 ram_addr <= "000000";
 rst_f <= '0';
 rst_r <= '0';
 rst_LT <= '0';
 LT_addr <= "00000";
 D_out <= "000000000000000000";
 Ld_Rd <= '1';
 R_L_Table <= "01";
 if stopflag = true then State <= StopL;
 else State <= SndPRT;
 end if;

 227

 when SndPRT =>
 cntl_out <="0111";
-- stout<="Send PRT ";
 en_R <= '0'; en_W <='0';
 s <= '0';
 ram_addr <= "000000";
 rst_f <= '0';
 rst_r <= '0';
 rst_LT <= '0';
 re <= '0';
 LT_addr <= "00000";
 D_out <= "000000000000000000";
 if Snd_done = False then
 Ld_Rd <= '1';
 dwr <= '1'; -- enable write from LUT to controller
 if first_val = true then
 case R_L_Table is
 when "00" => R_L_Table <= "10";
 State <= SndPRT;
 when "01" => R_L_Table <= "10";
 State <= SndPRT;
 when "10" => R_L_Table <= "11";
 State <= SndPRt;
 when "11" => R_L_Table <= "11";
 outbuf0 <= dline_in;
 first_val := false;
 State <= SndPRT;
 when others => R_L_Table <= "00";
 end case;
 else
 R_L_Table <= "00";
 outbuf1 <= Dline_in;
 Ld_Rd <= '0';
 Snd_done := True;
 first_val := true;
 State <= SndPRT;
 end if;
 else
 bus_rqst <= '1';
 Ld_Rd <='0';
 R_L_Table <= "00";
 if bus_grant = '1' then
 wr_en <= '0';
 if comp = False then
 --line_out(20 downto 0) <= (outbuf0(9 downto 5)&"00000000"&outbuf1(7
downto 0));
 line_out(20 downto 0) <= (outbuf0(9 downto
5)&"00000000"&cntl_in(7 downto 0));
 line_out(30 downto 24) <= PRT_addr;
 line_out(23 downto 21) <= outbuf0(13 downto 11); --time stamp
 line_out(31) <= outbuf0(10); --hold field
 if outbuf0(4 downto 0) = "00000" then --check for 2nd token
 comp := false; --only one tkn to snd
 Snd_done := false;
 if nxt_lded = '1' then

 228

 State <= Issue;
 else
 State <= GetTkn;
 end if;
 else
 State <= SndPRT;
 comp := True;
 end if;
 else
 --line_out(20 downto 0) <= (outbuf0(4 downto 0)&"00000000"&outbuf1(7
downto 0));
 line_out(20 downto 0) <= (outbuf0(4 downto
0)&"00000000"&cntl_in(7 downto 0));
 line_out(30 downto 24) <= PRT_addr;
 line_out(23 downto 21) <= outbuf0(13 downto 11); --time stamp
 line_out(31) <= outbuf0(10);
 comp := false;
 Snd_done := false;
 if nxt_lded = '1' then
 State <= Issue;
 else
 State <= GetTkn;
 end if;
 end if;
 else
 State <= SndPRT; --wait for bus
 end if;
 end if;

 when ChkStat =>
 cntl_out <="1000";
-- stout<="Check Stat";
 re <= '0';
 line_out(31) <= '0';
 line_out(30 downto 24) <= PRT_addr;
 line_out(23) <= '0';
 line_out(22) <= sign;
 line_out(21 downto 18) <= ITRC;
 line_out(17) <= thl_flag;
 line_out(16 downto 11) <= Cnt_token(5 downto 0);
 line_out(10 downto 0) <= (others=>'0');
 bus_rqst <= '1';
 if bus_grant = '1' then
 wr_en <= '0';
 State <= GetTkn;
 else
 State <= ChkStat;
 end if;

 when PRam =>
 cntl_out <="1001";
-- stout<=" PRam ";
 if (iter = false and delay = false) then
 S <= '1'; re <='0';
 ram_addr <= temp3(5 downto 0);
 iter := true;

 229

 State <= PRam;
 elsif (iter = true and delay = false) then
 S <= '1';
 ram_addr <= temp3(11 downto 6);
 iter := false; delay := true;
 State <= PRam;
 elsif (delay = true) then
 S <= '0';
 temp3 <= (others=>'0');
 delay := false;
 State <= GetTkn;
 end if;
 end case;
 end if;

end process;

end Cntl_Logic_arch;

Module Name: mapbuf.vhd

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;

entity mapbuf is
 port (din: in std_logic_vector(24 downto 0);
 clk: in std_logic;
 wr_en: in std_logic;
 rd_en: in std_logic;
 ainit: in std_logic;
 dout: out std_logic_vector(24 downto 0);
 full: out std_logic;
 empty: out std_logic);
end mapbuf;

architecture buf_body of mapbuf is
--depth should be atleast 2 times the CE having the most no. of processes.For eg:
--if CE0 has 10 processes and multiplier CE has 8 processes, then the depth should be atleast 10x2=20 or
19 downto 0
constant deep: integer := 50; --changed to 31 for app2 mat mult
type fifo_array is array(deep downto 0) of std_logic_vector(24 downto 0);
signal mem: fifo_array;
signal f1,e1 : std_logic;

begin
full<=f1;
empty<=e1;
process (clk, ainit)
variable startptr, endptr: natural range 0 to deep+1;
begin

 if clk'event and clk = '1' then
 if ainit='1' then
 startptr:=0;

 230

 endptr:=0;
 f1<='0';
 e1<='1';
 end if;
 if wr_en = '1' then
 if f1 /='1' then
 mem(endptr) <= din;
 e1<='0';
 endptr:=endptr+1;
 if endptr>deep then endptr:=0;
 end if;
 if endptr=startptr then
 f1<='1';
 end if;
 end if;
 end if;

 if rd_en ='1' then
 if e1 /= '1' then
 dout <= mem(startptr);
 f1<='0';
 startptr:=startptr+1;
 if startptr > deep then startptr:=0;
 end if;
 if startptr=endptr then
 e1<='1';
 end if;
 end if;
 end if;
 end if;
end process;
end buf_body;

Module Name: lut.vhd
--The IEEE standard 1164 package, declares std_logic, rising_edge(), etc.
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity LUT is
 generic (Instr0 : integer := 156;
 Instr1 : integer := 48;
 Instr2 : integer := 152);
 port (
 R_L_Table: in STD_LOGIC_VECTOR (1 downto 0);
 Ld_Rd: in STD_LOGIC;
 Data: inout STD_LOGIC_VECTOR (15 downto 0);
 rst: in STD_LOGIC;
 clk : in STD_LOGIC;
 Wr_out : in std_logic_vector (1 downto 0);
 W_en : out std_logic;
 addr: in STD_LOGIC_VECTOR (4 downto 0);
 time_stmp : in STD_LOGIC_VECTOR(2 downto 0);
 Proc_Num: in STD_LOGIC_VECTOR (4 downto 0);
 data_loc: in STD_LOGIC_VECTOR (7 downto 0); -- coming from the Q

 231

 join_flg: buffer std_logic;
 Instr_out: out STD_LOGIC_VECTOR (15 downto 0);
 -- tab_1ntry : out std_logic_vector(4 downto 0);
 -- tab_addntry : out std_logic_vector (7 downto 0);
 -- tab_exitpn_ntry : out std_logic_vector(3 downto 0);
 tab_in_dbg : out std_logic
);
end LUT;

architecture LUT_arch of LUT is

signal Last_Proc : std_logic_vector(7 downto 0); --hold last data loc issued
signal Last_PN : std_logic_vector(4 downto 0); --hold last PN #
signal Snd_buf_PN: std_logic_vector(4 downto 0); --hold PN# of outbuffer
type Entry is record
 H_fld: std_logic; --Hold bit of entry
 J_fld: std_logic; --Proc is a join op
 PN : std_logic_vector(4 downto 0); --Process Number
 Inst_addr : std_logic_vector(7 downto 0); --address of 1st instr.
 Nxt_PN0 : std_logic_vector(4 downto 0); --Next PN
 Nxt_PN1 : std_logic_vector(4 downto 0); --PN used if a fork
 Exit_PN : std_logic_vector(3 downto 0); --PN after exit the process loop
end record;
type table is array(23 downto 0) of entry;
signal L_table : table;
-- changing to just one entry for dbugging

--signal L_table : entry;
--variable L_table : table;
signal tab_out, tab_in : std_logic;
signal temp_data : std_logic_vector(15 downto 0);

-- ADDED TO DBUG
signal temp_data_in1,temp_data_in2 :std_logic_vector (15 downto 0);

--constant Ldreg_data : std_logic_vector(31 downto 10):= "1111111100001111000000";
--constant LdPC : std_logic_vector(31 downto 10):= "1111000011111111000000";
signal Snd_buf_Inst0, Snd_buf_Inst1 : std_logic_vector(15 downto 0);
signal last_time_stmp, Snd_buf_tmstp : std_logic_vector(2 downto 0);
signal Snd_buf_Inst2 : std_logic_vector(15 downto 0);
signal Ldreg_data, LdPC,Ldreg2_data : std_logic_vector(15 downto 8);
--signal l1, l2, l0 : unsigned(15 downto 8);

-- signals added for dbugging
--signal tab_1ntry : std_logic_vector(4 downto 0);

begin
--l0 <= CONV_unsigned(Instr0, 8);
--l1 <= Conv_unsigned(Instr1, 8);
--l2 <= Conv_unsigned(Instr2, 8);
--Ldreg_data <= Conv_std_logic_vector(l0, 8);
--LdPC <= Conv_std_logic_vector(l1, 8);
--Ldreg2_data <= Conv_std_logic_vector(l2, 8);

 -- added for dbugging

 232

--tab_1ntry <=L_table(0).PN;
--tab_addntry <= L_table(0).Inst_addr;
--tab_exitpn_ntry <= L_table(0).Exit_PN;

Ldreg_data <= Conv_std_logic_vector(Instr0, 8);
LdPC <= Conv_std_logic_vector(Instr1, 8);
Ldreg2_data <= Conv_std_logic_vector(Instr2, 8);

Snd_buf_Inst0(15 downto 8) <= Ldreg_data;
Snd_buf_Inst1(15 downto 8) <= LdPC;
Snd_buf_Inst2(15 downto 8) <= Ldreg2_data;

read: process (clk, R_L_Table, Ld_Rd, rst) --decode queue tokens
 begin --and send nxt tkn to cntrlr
 if rst = '1' then
 Snd_buf_Inst1(7 downto 0) <= (others=>'0');
 Snd_buf_Inst0(7 downto 0) <= (others=>'0');
 Snd_buf_Inst2(7 downto 0) <= (others=>'0');
 Join_flg <= '0';
 Snd_buf_tmstp <= (others=> '0');
 Last_Proc <= (others=>'0');
 last_PN <= (others=>'0');
 last_time_stmp <= (others=> '0');
 Snd_buf_PN <= (others=>'0');
 temp_data <= (others=>'0');
 elsif (clk'event and clk='1') then

 if Ld_Rd = '1' then
 case (R_L_Table) is
 when "01"=>
 --Issue to PE
 if join_flg = '0' then
 Last_Proc <= Snd_buf_Inst0(7 downto 0);
 last_PN <= Snd_buf_PN;
 last_time_stmp <= Snd_buf_tmstp;
 Snd_buf_Inst0(7 downto 0) <= data_loc;
 Snd_buf_PN <= Proc_num;
 Snd_buf_tmstp <= time_stmp;
 end if;
 --for x in 0 to 9 loop
 for x in 0 to 22 loop
 -- some changes for dbugging
 if Proc_Num = L_table(x).PN then
 --if Proc_Num = L_table.PN then
 if join_flg = '0' then
 Snd_buf_Inst1(7 downto 0) <= L_table(x).Inst_addr;
 --Snd_buf_Inst1(7 downto 0) <= L_table.Inst_addr;
 if L_table(x).J_fld = '1' then
 --if L_table.J_fld = '1' then
 join_flg <= '1';
 else
 join_flg <= '0';
 end if;
 else --join op, issue another data loc
 Snd_buf_Inst2(7 downto 0) <= data_loc;
 join_flg <= '0';

 233

 end if;
 end if;
 end loop;

 when "10"=>
 Join_flg <='0';
 --for z in 0 to 9 loop
 for z in 0 to 22 loop --send to cntrlr
 if Last_PN = L_table(z).PN then
 --next token PN's
 temp_data(4 downto 0) <= L_table(z).Nxt_PN1;
 temp_data(9 downto 5)<= L_table(z).Nxt_PN0;
 temp_data(10) <= L_table(z).H_fld;
 temp_data(13 downto 11) <= last_time_stmp;
 temp_data(15 downto 14) <= "00";
 end if;
 end loop;
 --for z in 0 to 9 loop --send to cntrlr
 -- if Last_PN = L_table.PN then
 --next token PN's
 -- temp_data(4 downto 0) <= L_table.Nxt_PN1;
 -- temp_data(9 downto 5)<= L_table.Nxt_PN0;
 --temp_data(10) <= L_table.H_fld;
 --temp_data(13 downto 11) <= last_time_stmp;
 --temp_data(15 downto 14) <= "00";
 --end if;
 -- end loop;
 when "11"=>
 join_flg <= '0';

 when others => --for y in 0 to 9 loop --send to cntrlr
 for y in 0 to 22 loop
 if Last_PN = L_table(y).PN then
 temp_data(15 downto 12) <= "0000";
 temp_data(11 downto 8) <= L_table(y).Exit_PN;
 temp_data(7 downto 0) <= Last_Proc; --data location
 end if;
 end loop;
 --for y in 0 to 9 loop --send to cntrlr
 --if Last_PN = L_table.PN then
 --temp_data(15 downto 12) <= "0000";
 --temp_data(11 downto 8) <= L_table.Exit_PN;
 --temp_data(7 downto 0) <= Last_Proc; --data location
 --end if;
 --end loop;
 temp_data <= temp_data;
 --join_flg <= '0';
 end case;
 end if;
 end if;
end process;

-- control for tab_out tri-state
tab_out <= '1' when (Ld_Rd ='1' and (R_L_table = "10" or R_L_table = "11")) else
 '0';

 234

--data_load : process (tab_out, tab_in, data, temp_data) --trnfr data to/from cntrlr
 --begin
 -- if tab_in = '1'then
 -- if R_L_table ="01"
 -- then temp_data_in1 <= data;
 -- elsif R_L_table ="10"
 -- then temp_data_in2 <= data;
 -- --end if;--else data <= (others=> 'Z');
 -- end if;
 -- elsif tab_out ='1' then data <= temp_data;
 -- else data <= (others=> 'Z');
 -- end if;
--end process;
data_load : process (clk,tab_out, tab_in, data, temp_data) --trnfr data to/from cntrlr
 begin
 if(clk'event and clk='0') then
 if tab_in = '1'then
 if R_L_table ="01" then
 temp_data_in1 <= data;
 elsif R_L_table ="10" then
 temp_data_in2 <= data;
 --end if;--else data <= (others=> 'Z');
 end if;
 elsif tab_out ='1' then
 data <= temp_data;
 else
 data <= (others=> 'Z');
 end if;
 end if;

end process;

load: process (rst, clk, Ld_Rd, R_L_table) --Initialize table entries
 variable val : integer;
 begin
 if rst = '1' then
 --for x in 0 to 9 loop
 for x in 0 to 22 loop
 L_table(x).H_fld <= '0';
 L_table(x).J_fld <= '0';
 L_table(x).PN <= "00000";
 L_table(x).Inst_addr <= (others=>'0');
 L_table(x).Nxt_PN0 <= "00000";
 L_table(x).Nxt_PN1 <= "00000";
 L_table(x).Exit_PN <= "0000";
 end loop;
 -- L_table.H_fld <= '0';
 -- L_table.J_fld <= '0';
 -- L_table.PN <= "00000";
 -- L_table.Inst_addr <= (others=>'0');
 -- L_table.Nxt_PN0 <= "00000";
 -- L_table.Nxt_PN1 <= "00000";
 -- L_table.Exit_PN <= "0000";
 elsif (clk'event and clk='1') then
 if Ld_Rd = '0' then
 case (addr) is

 235

 when "00000" => val :=0;
 when "00001" => val :=1;
 when "00010" => val :=2;
 when "00011" => val :=3;
 when "00100" => val :=4;
 when "00101" => val :=5;
 when "00110" => val :=6;
 when "00111" => val :=7;
 when "01000" => val :=8;
 when "01001" => val :=9;
 when "01010" => val := 10;
 when "01011" => val := 11;
 when "01100" => val := 12;
 when "01101" => val := 13;
 when "01110" => val := 14;
 when "01111" => val := 15;
 when "10000" => val := 16;
 when "10001" => val := 17;
 when "10010" => val := 18;
 when "10011" => val := 19;
 when "10100" => val := 20;
 when "10101" => val := 21;
 when "10110" => val := 22;
 when "10111" => val := 23;
 when "11000" => val := 24;
 when "11001" => val := 25;
 when "11010" => val := 26;
 when "11011" => val := 27;
 when "11100" => val := 28;
 when "11101" => val := 29;
 when "11110" => val := 30;
 when "11111" => val := 31;
 when others => val :=0;
 end case;
 case (R_L_table) is
 when "01" =>
 L_table(val).PN <= temp_data_in1(15 downto 11);
 L_table(val).Nxt_PN0 <= temp_data_in1(10 downto 6);
 L_table(val).Nxt_PN1 <= temp_data_in1(5 downto 1);
 L_table(val).H_fld <= temp_data_in1(0);
 when "10" =>
 L_table(val).Exit_PN <= temp_data_in2(12 downto 9);
 L_table(val).J_fld <= temp_data_in2(8);
 L_table(val).Inst_addr <= temp_data_in2(7 downto 0);
 when others => L_table(val).Nxt_PN1 <=L_table(val).Nxt_PN1;

 end case;
 end if;
 end if;
end process;

--control for tab_in tri-state
tab_in <= '1' when (Ld_Rd='0' and R_L_table /="00") else
 '0';
--control for wr_out tri-state
W_en <= '1' when (wr_out = "01" or wr_out = "10" or wr_out = "11") else

 236

 '0';
tab_in_dbg <=tab_in;
send_instr: process (clk, wr_out,Snd_buf_Inst0,Snd_buf_Inst1,Snd_buf_Inst2) --send instr's to PE
 begin
 case (wr_out) is
 when "01" =>
 Instr_out <= Snd_buf_Inst0; --send 1st instr
 --Instr_out <= "1001110000000100";
 when "10" =>
 Instr_out <= Snd_buf_Inst1; --send 2nd instr
 --Instr_out <= "0011000000000011";
 when "11" =>
 Instr_out <= Snd_buf_Inst2; --send other join data loc
 when others => Instr_out <= (others=>'0');
 end case;
end process;

end LUT_arch;

Module Name : Queue.vhd

-- QUEUE.vhd used in synthesis simulation.
-- Top level design for FIFO model

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity queue is -- total queue source code
 port (clk, enw, rst_f,rst_r,enr,s:in std_logic;
 time_s: in std_logic_vector(3 downto 0);
 din: in std_logic_vector(17 downto 0);
 ram_add: in std_logic_vector(5 downto 0);
 prog_flag: in std_logic_vector(5 downto 0);

 error: inout std_logic;

 sign: out std_logic;
 ITRC: out std_logic_vector(3 downto 0);
 th_flag: out std_logic;
 count_token:inout std_logic_vector(5 downto 0);
 dout: out std_logic_vector(17 downto 0));
end queue;

architecture queue_body of queue is

component rate
 port (Clk, Enw, Rst,
 error_full: in std_logic;
 time_s: in std_logic_vector(3 downto 0);
 sign: out std_logic;
 ITRC: out std_logic_vector(3 downto 0));

end component;

 237

component FIFO_block_syn generic(N: integer := 18);
 port (
 din: in std_logic_vector(N-1 downto 0);
 ENR: in std_logic;
 ENW: in std_logic;
 clk, Rst: in std_logic;
 ram_add: in std_logic_vector(5 downto 0);
 s:in std_logic;
 prog_flag: in std_logic_vector(5 downto 0);
 ENR_out: out std_logic;
 ENW_out: out std_logic;
 error: out std_logic;
 error_full: inout std_logic;
 th_flag: out std_logic;
 count_token: inout std_logic_vector(5 downto 0);
 wptr_out: out std_logic_vector (5 downto 0);
 rptr_out: out std_logic_vector (5 downto 0);
 dout: out std_logic_vector(N-1 downto 0));
end component;

component ram
 port (waddr: in std_logic_vector(5 downto 0);
 datain: in std_logic_vector(17 downto 0);
 clk: in std_logic;
 wren: in std_logic;
 rden: in std_logic;
 raddr: in std_logic_vector(5 downto 0);
 dataout: out std_logic_vector(17 downto 0));
end component;

signal error_full: std_logic;
signal dout_ram: std_logic_vector (17 downto 0);
signal dout_FIFO: std_logic_vector (17 downto 0);
signal din_ram: std_logic_vector (17 downto 0);
signal ENR_out, ENW_out: std_logic;
signal wptr_out, rptr_out: std_logic_vector(5 downto 0);

begin

rate1: rate port map (Clk,Enw,Rst_r,error_full,time_s,sign,ITRC);

FIFO_syn1: FIFO_block_syn port map(dout_ram,ENR,ENW,clk,Rst_f,ram_add,s,prog_flag,ENR_out,
 ENW_out,error,error_full,th_flag,count_token,wptr_out,rptr_out,
 dout_FIFO);

ram1 : ram port map(wptr_out,din_ram,clk,ENW_out,ENR_out,rptr_out,dout_ram);

 process(s,dout_FIFO,din,dout_ram)
 begin
 case s is
 when '1' => din_ram <= dout_FIFO; dout <= (others => '0');
 when others => din_ram <= din; dout <= dout_ram;
 end case;
 end process;

 238

end queue_body;

Module Name: fifo.vhd
-- FIFO_block.vhd used in synthesis simulation.
library ieee;
use ieee.std_logic_1164.all;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;

entity FIFO_block_syn is generic(N: integer := 18);
 port (
 din: in std_logic_vector(N-1 downto 0);
 ENR: in std_logic;
 ENW: in std_logic;
 clk, Rst: in std_logic;
 ram_add: in std_logic_vector(5 downto 0);
 s:in std_logic;
 prog_flag: in std_logic_vector(5 downto 0);
 ENR_out: out std_logic;
 ENW_out: out std_logic;
 error: out std_logic;
 error_full: inout std_logic;
 th_flag: out std_logic;
 count_token: inout std_logic_vector(5 downto 0);
 wptr_out: out std_logic_vector (5 downto 0);
 rptr_out: out std_logic_vector (5 downto 0);
 dout: out std_logic_vector(N-1 downto 0));
end FIFO_block_syn;

architecture FIFO_block_body of FIFO_block_syn is

--
-- Signals used in the Error detection unit block
--
signal error_empty: std_logic;

--
-- Signals used in the FCU block
--
signal flag_fcu1,flag_fcu2,flag_fcu3,flag_fcu4,
flag_fcu5: std_logic;

--
-- Signals used when the pseudo-RAM function is evoked
--
signal ASE1,ASE2: std_logic_vector(5 downto 0);
signal dout_ASE : std_logic_vector(5 downto 0);

signal RAM1,RAM2: std_logic_vector(17 downto 0);
signal dout_RAM1, dout_RAM2: std_logic_vector(17 downto 0);
signal din_RAM1, din_RAM2: std_logic_vector(17 downto 0);

signal rptr,wptr: std_logic_vector(5 downto 0);

begin

 239

 process (wptr, rptr, s, ram_add, dout_ASE)
 begin
 case s is
 when '1' => rptr_out <= ram_add; wptr_out <= dout_ASE;
 when others => rptr_out <= rptr; wptr_out <= wptr;
 end case;
 end process;

 process(rst,s,flag_fcu1,flag_fcu2,flag_fcu3, flag_fcu4,flag_fcu5,ENR,ENW,error_empty,error_full)
 begin
 if rst = '1' then
 ENW_out <= '0'; ENR_out <= '0';
 else
 if s = '1' then
 if flag_fcu1 = '0' and flag_fcu2 = '0' and
 flag_fcu3 = '0' and flag_fcu4 = '0' and flag_fcu5 = '0' then
 ENR_out <= '1'; ENW_out <='0';
 elsif flag_fcu1 = '1' and flag_fcu2 = '0' and
 flag_fcu3 = '0' and flag_fcu4 = '0' and flag_fcu5 = '0' then
 ENR_out <= '1'; ENW_out <= '0';
 elsif flag_fcu1 = '1' and flag_fcu2 = '1' and
 flag_fcu3 = '1' and flag_fcu4 = '0' and flag_fcu5 = '0' then
 ENR_out <= '0'; ENW_out <= '1';
 elsif flag_fcu1 = '1' and flag_fcu2 = '1' and
 flag_fcu3 = '1' and flag_fcu4 = '1' and flag_fcu5 = '0' then
 ENR_out <= '0'; ENW_out <= '1';
 else
 ENR_out <= '0'; ENW_out <= '0';
 end if;
 else
 ENR_out <= ENR and (not error_empty); ENW_out <= ENW and (not error_full);
 end if;
 end if;
 end process;

 ASE_block:process(rst,s,clk)
 begin
 if rst = '1' then
 ASE1 <= (others => '0'); ASE2 <= (others => '0');
 dout_ASE <= (others => '0');
 else
 if s = '1' then
 if clk'event and clk = '1' then
 if flag_fcu1 = '0' and flag_fcu2 = '0' and
 flag_fcu3 = '0' and flag_fcu4 = '0' then
 ASE1 <= ram_add;
 elsif flag_fcu1 = '1' and flag_fcu2 = '0' and
 flag_fcu3 = '0' and flag_fcu4 = '0' then
 ASE2 <= ram_add;
 elsif flag_fcu1 = '1' and flag_fcu2 = '1' and
 flag_fcu3 = '0' and flag_fcu4 = '0' then
 dout_ASE <= ASE2;
 elsif flag_fcu1 = '1' and flag_fcu2 = '1' and
 flag_fcu3 = '1' and flag_fcu4 = '0' then
 dout_ASE <= ASE1;

 240

 end if;
 end if;
 end if;
 end if;
 end process;

 RAM_block:process(rst,clk)
 begin
 if rst = '1' then
 RAM1 <= (others => '0'); RAM2 <= (others =>'0');
 dout<= (others => '0');
 else
 if clk'event and clk = '1' then
 if s = '1' then
 if flag_fcu1 = '0' and flag_fcu2 = '0' and
 flag_fcu3 = '0' and flag_fcu4 ='0' then
 RAM1 <= din;
 elsif flag_fcu1 = '1' and flag_fcu2 = '0' and
 flag_fcu3 = '0' and flag_fcu4 ='0' then
 ram2 <= din;
 elsif flag_fcu1 = '1' and flag_fcu2 = '1' and
 flag_fcu3 = '0' and flag_fcu4 ='0' then
 dout <= RAM1;
 elsif flag_fcu1 = '1' and flag_fcu2 = '1' and
 flag_fcu3 = '1' and flag_fcu4 ='0' then
 dout <= RAM2;
 else
 RAM2 <= (others => '0'); RAM1 <= (others => '0');
 end if;
 end if;
 end if;
 end if;
 end process;

 WAP_RAP: process (rst,clk)
 begin
 if rst = '1' then
 wptr <= (others => '0'); rptr <= (others => '0');
 else
 if clk'event and clk = '1' then
 if s= '0' then
 if enw = '1' and error_full = '0' then
 if wptr /= "111111" then
 wptr <= wptr + "000001";
 else
 wptr <= (others => '0');
 end if;
 end if;

 if enr = '1' and error_empty = '0' then
 if rptr /= "111111" then
 rptr <= rptr + "000001";
 else
 rptr <= (others => '0');
 end if;
 end if;

 241

 end if;
 end if;
 end if;
 end process;

 error <= error_full or error_empty;

 EDU: process(rst,wptr,rptr,enw,enr,s,count_token)
 begin
 if rst = '1' then
 error_full <= '0'; error_empty <= '0';
 else
 if s = '0' then
 if wptr = rptr and enw = '1' and enr = '0'
 and count_token /= "000000" then
 error_full <= '1'; error_empty <= '0';
 elsif rptr = wptr and count_token /= "100000"
 and enw = '0' and enr = '1' then
 error_full <= '0'; error_empty <= '1';
 else
 error_full <= '0'; error_empty <= '0';
 end if;
 end if;
 end if;
 end process;

 TCU: process(rst,clk)
 begin
 if rst = '1' then
 count_token <= (others => '0');
 else
 if clk'event and clk = '1' then
 if s = '0' then
 if enw = '1' and enr = '0' then
 if count_token /= "100000" and error_full /= '1' then
 count_token <= count_token + "000001";
 end if;
 elsif enw = '0' and enr = '1' then
 if count_token /= "000000" and error_empty /= '1' then
 count_token <= count_token - "000001";
 end if;
 end if;
 end if;
 end if;
 end if;
 end process;

 PTU: process(rst,s,prog_flag,count_token)
 begin
 if rst = '1' then
 th_flag <= '0';
 else
 if s = '0' then
 if count_token >= prog_flag then
 th_flag <= '1';
 else

 242

 th_flag <= '0';
 end if;
 end if;
 end if;
 end process;

 FCU: process(clk,rst)
 begin
 if rst = '1' then
 flag_fcu1 <= '0'; flag_fcu2 <= '0';
 flag_fcu3 <= '0'; flag_fcu4 <= '0';
 flag_fcu5 <= '0';
 else
 if clk'event and clk = '1' then
 if s = '1' then
 if flag_fcu1 = '0' and flag_fcu2 = '0' and
 flag_fcu3 = '0' and flag_fcu4 = '0' and flag_fcu5 = '0' then
 flag_fcu1 <= '1';
 elsif flag_fcu1 = '1' and flag_fcu2 = '0' and
 flag_fcu3 = '0' and flag_fcu4 = '0' and flag_fcu5 = '0' then
 flag_fcu2 <= '1';
 elsif flag_fcu1 = '1' and flag_fcu2 = '1' and
 flag_fcu3 = '0' and flag_fcu4 = '0' and flag_fcu5 = '0' then
 flag_fcu3 <= '1';
 elsif flag_fcu1 = '1' and flag_fcu2 = '1' and
 flag_fcu3 = '1' and flag_fcu4 = '0' and flag_fcu5 = '0' then
 flag_fcu4 <= '1';
 elsif flag_fcu1 = '1' and flag_fcu2 = '1' and
 flag_fcu3 = '1' and flag_fcu4 = '1' and flag_fcu5 = '0' then
 flag_fcu5 <= '1';
 end if;
 else
 flag_fcu1 <= '0'; flag_fcu2 <= '0';
 flag_fcu3 <= '0'; flag_fcu4 <= '0';
 flag_fcu5 <= '0';
 end if;
 end if;
 end if;
 end process;

end FIFO_block_body;

Module Name: ram.vhd

-- RAM.vhd
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;
USE STD.TEXTIO.ALL;

entity ram is
 port (waddr: in std_logic_vector(5 downto 0);
 datain: in std_logic_vector(17 downto 0);

 243

 clk: in std_logic;
 wren: in std_logic;
 rden: in std_logic;
 raddr: in std_logic_vector(5 downto 0);
 dataout: out std_logic_vector(17 downto 0));
end ram;

architecture ram_body of ram is

constant deep: integer := 63;
type fifo_array is array(deep downto 0) of std_logic_vector(17 downto 0);
signal mem: fifo_array;

signal waddr_int: integer range 0 to 63;
signal raddr_int: integer range 0 to 63;

begin
waddr_int <= conv_integer(waddr);
raddr_int <= conv_integer(raddr);

process (clk)
begin
 if clk'event and clk = '1' then
 if wren = '1' then
 mem(waddr_int) <= datain;
 end if;
 end if;
end process;
dataout <= mem(raddr_int);
end ram_body;

Module Name : rate.vhd

-- This is the vhdl description of the rate_block

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rate is
 port (Clk, Enw, Rst,
 error_full: in std_logic; -- active high reset(synchronous) and write enable
 time_s: in std_logic_vector(3 downto 0); -- This specify the time time period one wants to
 -- use for calculating the difference in rate for
 -- 2 time period.

 sign: out std_logic; -- If the sign is 0 it means rate decreases and if
 -- it is 1 than it means the rate has increased.

 ITRC: out std_logic_vector(3 downto 0)); -- ITRC gives us the rate comparison of 2 time.
slices

end rate;

architecture body_rate of rate is

 244

signal time_s_temp: std_logic_vector(3 downto 0);

signal count_clk : std_logic_vector(3 downto 0); -- Output from the clock counter block that tells how
 -- many clock cycle has passed.

signal write_storeRef : std_logic; -- Control signal that acts as the write enable signal for storeRef memory
 -- element.

signal count_t : std_logic_vector(3 downto 0); -- Output from the token_counter block that gives
-- information on how many control token is written into the
-- memory array within a time slice.

signal storeRef : std_logic_vector(3 downto 0); -- Output of the store_ref_rate block and is used as the
 -- reference to count the build up rate.

signal storeComp,fill_flag : std_logic_vector(3 downto 0); -- Output of the store_comp_rate block and is
-- used as the comparator value to count the
-- ITRC.

signal mem_stack: std_logic_vector(7 downto 0);
signal last : std_logic;
signal time_s_temp_lessOne : integer range 0 to 8;

begin

 CCU:process(clk,rst,time_s) -- This section describes the clock counter unit block
 begin
 if rst = '1' then
 time_s_temp <= time_s; -- store the desired time period
 count_clk <= (others => '0');
 write_storeRef <= '0';

 case time_s is
 when "0000" => time_s_temp_lessOne <= 0;
 when "0001" => time_s_temp_lessOne <= 0;
 when "0010" => time_s_temp_lessOne <= 0;
 when "0011" => time_s_temp_lessOne <= 1;
 when "0100" => time_s_temp_lessOne <= 2;
 when "0101" => time_s_temp_lessOne <= 3;
 when "0110" => time_s_temp_lessOne <= 4;
 when "0111" => time_s_temp_lessOne <= 5;
 when "1000" => time_s_temp_lessOne <= 6;
 when others => time_s_temp_lessOne <= 0;
 end case;

 elsif (Clk'event and Clk = '1') then
 if error_full = '0' then
 if (count_clk = time_s_temp) then
 count_clk <= "0001";
 else
 if count_clk /= "1000" then
 count_clk <= count_clk + "0001";
 end if;

 245

 end if;
 if (count_clk = (time_s_temp -"0001")) then
 write_storeRef <= '1';
 else
 write_storeRef <= '0';
 end if;
 end if;
 end if;
 end process;

 WTCU: process(clk,rst) -- This section describes the write token counter unit block
 begin
 if rst = '1' then
 count_t <= (others => '0');
 elsif clk'event and clk = '1' then
 if error_full = '0' then
 if count_clk = time_s_temp then
 if enw = '1' then
 count_t <= "0001";
 else
 count_t <= "0000";
 end if;
 else
 if enw = '1' then
 if count_t /= "1000" then
 count_t <= count_t + "0001";
 end if;
 end if;
 end if;
 end if;
 end if;
 end process;

 SE2:process(clk,rst) -- This section describes the SE1 block that is used to store the RITB.
 begin
 if rst = '1' then
 storeRef <= (others => '0');
 elsif clk'event and clk = '1' then
 if error_full = '0' then
 if write_storeRef = '1' then
 storeRef <= count_t;
 end if;
 end if;
 end if;
 end process;

 SE3: process(clk,rst) -- This section describes the SE3 block that is used to
 -- store and determine the NITB.
 begin
 if rst = '1' then
 storeComp <= (others => '0');
 fill_flag <= (others => '0');
 elsif clk'event and clk = '1' then
 if error_full = '0' then
 if fill_flag /= time_s_temp then

 246

 fill_flag <= fill_flag + "0001";
 if enw = '1' and last = '0' then
 storeComp <= storeComp + "0001";
 end if;
 else
 if enw = '1' and storeComp /= time_s_temp and last = '0' then
 storeComp <= storeComp + "0001";
 elsif enw = '0' and storeComp /= "0000" and last = '1' then
 storeComp <= storeComp - "0001";
 end if;
 end if;
 end if;
 end if;
 end process;

 AU: process (storeComp, storeRef, Rst, error_full) -- This section describes the arithetic unit block that
 -- is used to count the input token buildup
 begin
 if Rst = '1' then
 sign <= '0'; ITRC <= (others => '0');
 else
 if error_full = '0' then
 if storeRef > storeComp then
 ITRC <= storeRef - storeComp;
 sign <= '0';
 elsif storeRef = storeComp then
 ITRC <= (others => '0');
 sign <= '0';
 else
 ITRC <= storeComp - storeRef;
 sign <= '1';
 end if;
 end if;
 end if;
 end process;

 process(clk,rst)
 begin
 if rst = '1' then
 last <= '0'; mem_stack <= (others => '0');
 elsif clk'event and clk = '1' then
 if error_full = '0' then
 last <= mem_stack(time_s_temp_lessOne);
 if enw = '1' then
 mem_stack <= mem_stack(6 downto 0) & '1';
 else
 mem_stack <= mem_stack(6 downto 0) & '0';
 end if;
 end if;
 end if;
 end process;

end body_rate;

Module Name: divpe.vhd
-- Code for Divider Processor for HDFCA project

 247

-- File: divpe.vhd
-- synopsys translate_off

Library XilinxCoreLib;

-- synopsys translate_on

--The IEEE standard 1164 package, declares std_logic, rising_edge(), etc.
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity Divpe is
 port (Cntrlr_bus : in std_logic_vector(15 downto 0);
 Snd_I : out std_logic;
 clk : in std_logic;
 rst : in std_logic;
 Instr_rdy : in std_logic;
 Fin : out std_logic;
 Data_bus : inout std_logic_vector(15 downto 0);
 Bus_req : out std_logic;
 Bus_gnt : in std_logic;
 Addr : out std_logic_vector(6 downto 0);
 R_W : buffer std_logic;
 --R_W : inout std_logic;
 loc_bus_dbug : out std_logic_vector(7 downto 0);
 Iaddr_bus_dbug : out std_logic_vector(7 downto 0);
 Iaddr_dbug : out std_logic_vector(7 downto 0);
 R2_out_dbug : out std_logic_vector(7 downto 0);
 Imem_bus_dbug : out std_logic_vector(15 downto 0)
 --LR2_dbug : out std_logic
);
end Divpe;

architecture dpe of Divpe is

--
-- This file was created by the Xilinx CORE Generator tool, and --
-- is (c) Xilinx, Inc. 1998, 1999. No part of this file may be --
-- transmitted to any third party (other than intended by Xilinx) --
-- or used without a Xilinx programmable or hardwire device without --
-- Xilinx's prior written permission. --
--

component div1
 port (
 dividend: IN std_logic_VECTOR(15 downto 0);
 divisor: IN std_logic_VECTOR(15 downto 0);
 quot: OUT std_logic_VECTOR(15 downto 0);
 remd: OUT std_logic_VECTOR(15 downto 0);
 c: IN std_logic);
end component;

 248

--
-- This file was created by the Xilinx CORE Generator tool, and --
-- is (c) Xilinx, Inc. 1998, 1999. No part of this file may be --
-- transmitted to any third party (other than intended by Xilinx) --
-- or used without a Xilinx programmable or hardwire device without --
-- Xilinx's prior written permission. --
--

component div_imem
 port (
 addr: IN std_logic_VECTOR(3 downto 0);
 clk: IN std_logic;
 din: IN std_logic_VECTOR(15 downto 0);
 dout: OUT std_logic_VECTOR(15 downto 0);
 we: IN std_logic);
end component;

component add_subber8
 port (
 A: IN std_logic_VECTOR(7 downto 0);
 B: IN std_logic_VECTOR(7 downto 0);
 C_IN: IN std_logic;
 C_OUT: OUT std_logic;
 ADD_SUB: IN std_logic;
 Q_OUT: OUT std_logic_VECTOR(7 downto 0));
end component;

signal Imem_bus, R0_out, R1_out, Inst_in, Inst_out : std_logic_vector(15 downto 0);
signal R2_out, Data_loc1, Data_loc2 : std_logic_vector(7 downto 0);
signal s2, s1, s0, s3 ,s4, s5, s6, s7 : std_logic;
signal Div_out, mux2_out, adder_out : std_logic_vector(7 downto 0);
signal mux1_out, result : std_logic_vector(15 downto 0);
signal div_en, ld_d1, ld_d2, ld_iaddr : std_logic;
signal loc_bus, Iaddr, Iaddr_bus : std_logic_vector(7 downto 0);
constant GoDiv : std_logic_vector(7 downto 0) := "11111111";
constant StoreDL : std_logic_vector(7 downto 0) := "10001000";
type OP_state is (reset,Getop,O1,O2,O3,O4,O5,O5A,O5B,O5C,O6,O7,O8,O9,O10);
signal OP : OP_state;
signal LR2, LR1, Ci, LR0, R2_rst, ld_rslt, I_R_W : std_logic;
signal qout_out, remd_out, rem_rslt : std_logic_vector(15 downto 0);
signal mux5_out, mux6_out, MUX4_OUT : std_logic_vector(7 downto 0);
signal delay : std_logic_vector(19 downto 0);
signal one, zero : std_logic;
signal test :string (1 to 10);

begin
one <= '1';
zero <= '0';

-- added for dbugging
loc_bus_dbug <= loc_bus;
Iaddr_bus_dbug <= Iaddr_bus;
Iaddr_dbug <= Iaddr;
R2_out_dbug <= R2_out;
Imem_bus_dbug <= Imem_bus;

 249

--LR2_dbug <=LR2;

ADD5 : add_subber8
 port map (A =>R2_out, B =>mux2_out, C_IN => Ci, C_OUT => open,
 ADD_SUB =>one, Q_OUT =>adder_out);

D2 : div1 port map (dividend => R0_out, divisor => R1_out, quot => qout_out,
 remd => remd_out, c => clk);

mux2_out <= data_loc2 when (s3='0' and s2='0') else
 data_loc1 when (s3='0' and s2='1') else
 Iaddr when (s3='1' and s2='0') else
 (others=> '0');

mux1_out <= Data_bus when s1='0' else
 Imem_bus;

Addr <= Data_loc2(6 downto 0) when s0='0' else
 data_loc1(6 downto 0);

mux4_out <= Iaddr_bus when s4='0' else
 adder_out;

mux5_out <= loc_bus when s5 = '0' else
 adder_out;

mux6_out <= loc_bus when s6 = '0' else
 adder_out;

DIM1 : div_imem port map (addr => Iaddr(3 downto 0), clk => clk, din => Inst_in,
 dout => Inst_out, we => I_R_W);

Imem_bus <= Inst_out when I_R_W = '0' else
 (others=>'Z');

Inst_in <= Imem_bus when I_R_W = '1' else
 (others=>'0');

Data_bus <= result when (R_W = '1' and S7 = '0') else
 rem_rslt when (R_W = '1' and S7 = '1') else
 (others=>'Z');

control: process(clk, instr_rdy, bus_gnt, cntrlr_bus, rst, delay, data_loc2,Op)

 variable load_delay, ld_del2, del : boolean;

 begin
 if rst = '1' then
 OP <= reset;
 elsif (clk'event and clk = '1') then
 if Op = reset then
 test <= "StateReset";
 snd_i <= '1'; del := false;
 fin <= '1'; ld_del2 := false;
 bus_req <= '0'; I_R_W <= '0';

 250

 r_w <= '0'; LR0 <= '0';
 s4 <= '0'; s1 <= '0';
 s2 <= '0'; s3 <= '0'; s0 <= '1';
 s5 <= '0'; s6 <= '0'; s7 <= '0';
 Ci <= '0'; LR2 <= '0'; LR1 <= '0';
 LD_D1 <= '0'; LD_D2 <= '0';
 r2_rst <= '1'; load_delay := false;
 ld_rslt <= '0'; ld_Iaddr<= '0';
 delay <= "00000000000000000001";
 Op <= GetOp;
 elsif Op = GetOp then --ld data loc 1
 r2_rst <= '0'; LD_D2 <= '0';
 LR2 <= '0'; LR1 <= '0';
 bus_req <= '0';
 ld_rslt <= '0'; ld_Iaddr<= '0';
 if instr_rdy = '1' then
 loc_bus <= Cntrlr_bus(7 downto 0);
 LD_D1 <= '1';
 fin <= '0'; s5 <= '0';
 Snd_i <= '1';
 Op <= O1;
 else
 OP <= GetOp;
 end if;
 elsif Op = O1 then
 LD_D1 <= '0';
 r2_rst <= '0';
 LR2 <= '0'; LR1 <= '0';
 bus_req <= '0';
 ld_rslt <= '0';
 if (instr_rdy = '1' or load_delay = true) then
 if cntrlr_bus(15 downto 8) = StoreDL then --ld dl2
 loc_bus <= cntrlr_bus(7 downto 0);
 LD_D2 <= '1'; ld_Iaddr<= '0';
 fin <= '0'; s6 <= '0';
 snd_i <='1';
 Op <= O1;
 elsif cntrlr_bus(15 downto 8) = GoDiv then --start div ops
 if (load_delay = false) then
 Iaddr_bus <= cntrlr_bus(7 downto 0); --ld instr loc
 LD_D2 <= '0'; s4 <= '0';
 Ld_Iaddr <= '1';
 Snd_I <= '0';
 load_delay := true;
 Op <= O1;
 elsif (load_delay = true) then
 Ld_Iaddr <= '0';
 Op <= O2; load_delay := false;
 end if;
 end if;
 else
 Op <= O1;
 end if;
 elsif Op = O2 then --ld R2 with dl1 offset
 r2_rst <= '0'; LD_D2 <= '0'; --from Imem
 LR1 <= '0'; ld_d1 <= '0';

 251

 bus_req <= '0';
 ld_rslt <= '0';
 ld_Iaddr <= '0';
 I_R_W <= '0'; LR2 <= '1';
 Op <= O3;
 elsif Op = O3 then --add offset to dl1 str in dl1
 LD_D2 <= '0';
 -- changes for dbugging
 --LR2 <= '1';
 LR2 <= '0';
 LR1 <= '0';
 bus_req <= '0';
 ld_rslt <= '0'; ld_Iaddr<= '0';
 Ci <= '0'; LR2 <= '0';
 LD_D1 <= '1'; S5 <= '1';
 s2 <= '1'; s3 <= '0';
 Op <= O4; r2_rst <= '1';
 elsif Op = O4 then --Inc Iaddr
 if (ld_del2 = false) then
 LD_D2 <= '0';
 LR2 <= '0'; LR1 <= '0';
 bus_req <= '0';
 ld_rslt <= '0';
 LD_D1 <= '0'; r2_rst <= '0';
 s2 <= '0'; s3 <= '1'; S4<='1';
 ci <= '1'; ld_Iaddr <= '1';
 Op <= O4; ld_del2 := true;
 elsif (ld_del2 = true) then
 ld_Iaddr <= '0';
 Op <= O5;
 ld_del2 := false;
 end if;
 elsif Op = O5 then --Check for 2nd dl
 r2_rst <= '0'; LD_D2 <= '0';
 bus_req <= '0'; ld_d1 <= '0';
 ld_rslt <= '0';
 ld_Iaddr <= '0';
 if data_loc2 = "00000000" then --get divisor from IMEM
 I_R_W <= '0'; lr0 <= '0'; --put in R1
 S1 <= '1'; lr1 <= '1';
 Op <= O6;
 else --get data from DMEM
 I_R_W <= '0'; lr0 <= '0'; --get offset to Dl2
 lr2 <='1';
 Op <= O5a; lr1<='0';
 end if;
 elsif Op = O5a then --add offset to Dl2
 r2_rst <= '0';
 LR1 <= '0';
 bus_req <= '0'; ld_d1 <= '0';
 ld_rslt <= '0'; ld_Iaddr<= '0';
 lr2 <= '0'; s2 <= '0'; s3 <= '0';
 ci <= '0'; s6 <= '1';
 LD_D2 <= '1';
 Op <= O5b;
 elsif Op = O5b then

 252

 test <= "State O5b ";

 r2_rst <= '0';
 LR2 <= '0'; LR1 <= '0';
 ld_d1 <= '0';
 ld_rslt <= '0'; ld_Iaddr<= '0';
 LD_D2 <= '0'; s0 <= '0';
 bus_req <= '1'; R_w <= '0';
 Op <= O5c; s1 <= '0';
 elsif Op = O5c then --ld R1 with divisor
 test <= "State O5c ";

 r2_rst <= '0'; LD_D2 <= '0'; --from DMEM
 LR2 <= '0'; s1 <= '0';
 ld_d1 <= '0';
 ld_rslt <= '0'; ld_Iaddr<= '0';
 if bus_gnt = '1' then
 lr1 <= '1';
 Op <= O6;
 else
 LR1 <= '0';
 Op <= O5c;
 end if;
 elsif Op = O6 then --ld R0 with dividend
 test <= "State O6 ";

 r2_rst <= '0'; LD_D2 <= '0';
 LR2 <= '0'; LR1 <= '0';
 ld_d1 <= '0';
 ld_rslt <= '0'; ld_Iaddr<= '0';
 s0<= '1'; R_w <= '0';
 bus_req <= '1';
 Op <= O7;
 elsif Op = O7 then
 r2_rst <= '0'; LD_D2 <= '0';
 LR2 <= '0'; LR1 <= '0';
 ld_d1 <= '0';
 ld_rslt <= '0'; ld_Iaddr<= '0';
 if bus_gnt = '1' then
 lr0 <= '1';
 Op <= O8;
 else
 lr0 <= '0';
 OP <= O7;
 end if;
 elsif Op = O8 then --wait for result 20 CC's
 LD_D2 <= '0';
 LR2 <= '0'; LR1 <= '0';
 bus_req <= '0'; ld_d1 <= '0';
 ld_Iaddr<= '0';lr0 <= '0';
 bus_req <= '0';
 r2_Rst <= '1';
 if delay = "10000000000000000000" then
 Ld_rslt <= '1';
 Op <= O9;
 else

 253

 delay <= delay(18 downto 0)&'0';
 ld_rslt <= '0';
 Op <= O8;
 end if;
 elsif Op = O9 then
 test <= "State O9 ";
 r2_rst <= '0';
 LR2 <= '0'; LR1 <= '0';
 ld_rslt <= '0'; ld_Iaddr<= '0';
 r2_Rst <= '0'; R_W <= '1';
 if data_loc2 = "00000000" then --use DL1 for store
 S0<='1';
 ld_d2 <= '0';
 else --use DL2 for store
 S0 <= '0';
 ld_d1 <= '0';
 end if;
 Bus_req <= '1';
 Op <= O10;
 elsif Op = O10 then
 test <= "State O10 ";
 r2_rst <= '0'; LD_D2 <= '0';
 LR2 <= '0'; LR1 <= '0';
 ld_d1 <= '0'; S7 <= '0';
 ld_rslt <= '0'; ld_Iaddr<= '0';
 if bus_gnt = '1' then --Store Quotient in mem
 fin <= '1';

 bus_req <= '0';
 Op <= reset;
 else
 Op <= O10;
 end if;
 end if;
 end if;

end process;

reg2 : process (clk, Imem_bus, R2_rst, Lr2)
 begin
 if clk'event and clk='1' then
 if R2_rst = '1' then
 R2_out <= (others=>'0');
 elsif lr2 = '1' then
 R2_out <= Imem_bus(7 downto 0);
 else
 R2_out <= R2_out;
 end if;
 end if;
end process;

reg_dl1: process (clk, mux5_out, rst, LD_D1)
 begin
 if rst ='1' then
 data_loc1 <= (others=>'0');
 elsif clk'event and clk='1' then

 254

 if LD_D1 = '1' then
 data_loc1 <= mux5_out;
 else
 data_loc1 <= data_loc1;
 end if;
 end if;
end process;

reg_dl2: process (clk, mux6_out, rst, LD_D2)
 begin
 if rst ='1' then
 data_loc2 <= (others=>'0');
 elsif clk'event and clk='1' then
 if LD_D2 = '1' then
 data_loc2 <= mux6_out;
 else
 data_loc2 <= data_loc2;
 end if;
 end if;
end process;

reg_R0: process (clk, data_bus, rst, lR0)
 begin
 if rst ='1' then
 R0_out <= (others=>'0');
 elsif clk'event and clk='1' then
 if lR0 = '1' then
 R0_out <= data_bus;
 else
 R0_out <= R0_out;
 end if;
 end if;
end process;

reg_R1: process (clk, mux1_out, rst, lR1)
 begin
 if rst ='1' then
 R1_out <= (others=>'0');
 elsif clk'event and clk='1' then
 if lR1 = '1' then
 R1_out <= mux1_out;
 else
 R1_out <= R1_out;
 end if;
 end if;
end process;

reg_Iaddr: process (clk, mux4_out, rst, ld_Iaddr)
 begin
 if rst ='1' then
 Iaddr <= (others=>'0');
 elsif clk'event and clk='1' then
 if ld_Iaddr = '1' then
 Iaddr <= mux4_out;
 else
 Iaddr <= Iaddr;

 255

 end if;
 end if;
end process;

reg_Rslt: process (clk, qout_out, remd_out, rst, ld_Rslt)
 begin
 if rst ='1' then
 result <= (others=>'0');
 rem_rslt <= (others=>'0');
 elsif clk'event and clk='1' then
 if ld_Rslt = '1' then
 result <= qout_out;
 rem_rslt <= remd_out;
 else
 result <= result;
 rem_rslt <= rem_rslt;
 end if;
 end if;

end process;

end architecture;

Module Name : addsub8_synthable.vhd

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.std_logic_unsigned.ALL;
--use ieee.std_logic_arith.all;

ENTITY add_subber8 IS

 PORT(
 A: IN std_logic_vector(7 DOWNTO 0);
 B: IN std_logic_vector(7 DOWNTO 0);
 C_IN: IN std_logic;
 C_OUT: OUT std_logic;
 ADD_SUB: IN std_logic;
 Q_OUT: OUT std_logic_vector(7 DOWNTO 0));
END add_subber8;

ARCHITECTURE sim OF add_subber8 IS
 SIGNAL S: std_logic_vector(7 DOWNTO 0);
 SIGNAL S1: std_logic_vector(7 DOWNTO 0);
 SIGNAL AA: std_logic_vector(7 DOWNTO 0);
 SIGNAL C: std_logic_vector(8 DOWNTO 0);
 SIGNAL T: std_logic_vector(7 DOWNTO 0);

BEGIN
Q_OUT<=S;
PROCESS(A,B,C_IN,ADD_SUB,C,T,AA,S1,S)
begin
if ADD_SUB='1' THEN
 C(0)<= C_IN;
 for i in 0 to 7 loop
 S(i) <= A(i) xor B(i) xor C(i);

 256

 C(i+1)<= (A(i) and B(i)) or (A(i) and C(i)) or (B(i) and C(i));
 end loop;
 C_OUT <= C(8);
else
 T<=NOT (B+C_IN);
 AA<=A+1;

 C(0) <= C_in;
 for i in 0 to 7 loop
 S1(i) <= AA(i) xor T(i) xor C(i);
 C(i+1)<= (AA(i) and T(i)) or (AA(i) and C(i)) or (T(i) and C(i));
 end loop;
 --C_OUT <= NOT C(8);
 C_OUT <= C(8);
 if C(8) = '0'
 then
 --if s1(7) = '1' and A(7) = '0' then
 s <= (not s1) +1;
 else s <= s1;
 end if;
end if;
end process;
END sim;

Module Name: div1.xco (Xilinx IP Core)

--
-- This file is owned and controlled by Xilinx and must be used --
-- solely for design, simulation, implementation and creation of --
-- design files limited to Xilinx devices or technologies. Use --
-- with non-Xilinx devices or technologies is expressly prohibited --
-- and immediately terminates your license. --
-- --
-- XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS" --
-- SOLELY FOR USE IN DEVELOPING PROGRAMS AND SOLUTIONS FOR --
-- XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE, OR INFORMATION --
-- AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, APPLICATION --
-- OR STANDARD, XILINX IS MAKING NO REPRESENTATION THAT THIS --
-- IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT, --
-- AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE --
-- FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY --
-- WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE --
-- IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR --
-- REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF --
-- INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS --
-- FOR A PARTICULAR PURPOSE. --
-- --
-- Xilinx products are not intended for use in life support --
-- appliances, devices, or systems. Use in such applications are --
-- expressly prohibited. --
-- --
-- (c) Copyright 1995-2003 Xilinx, Inc. --
-- All rights reserved. --
--
-- You must compile the wrapper file div1.vhd when simulating
-- the core, div1. When compiling the wrapper file, be sure to

 257

-- reference the XilinxCoreLib VHDL simulation library. For detailed
-- instructions, please refer to the "CORE Generator Guide".

-- The synopsys directives "translate_off/translate_on" specified
-- below are supported by XST, FPGA Compiler II, Mentor Graphics and Synplicity
-- synthesis tools. Ensure they are correct for your synthesis tool(s).

-- synopsys translate_off
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

Library XilinxCoreLib;
ENTITY div1 IS
 port (
 dividend: IN std_logic_VECTOR(15 downto 0);
 divisor: IN std_logic_VECTOR(15 downto 0);
 quot: OUT std_logic_VECTOR(15 downto 0);
 remd: OUT std_logic_VECTOR(15 downto 0);
 c: IN std_logic);
END div1;

ARCHITECTURE div1_a OF div1 IS

component wrapped_div1
 port (
 dividend: IN std_logic_VECTOR(15 downto 0);
 divisor: IN std_logic_VECTOR(15 downto 0);
 quot: OUT std_logic_VECTOR(15 downto 0);
 remd: OUT std_logic_VECTOR(15 downto 0);
 c: IN std_logic);
end component;

-- Configuration specification
 for all : wrapped_div1 use entity XilinxCoreLib.dividervht(behavioral)
 generic map(
 dividend_width => 16,
 signed_b => 0,
 fractional_b => 0,
 divisor_width => 16,
 fractional_width => 16,
 divclk_sel => 1);
BEGIN

U0 : wrapped_div1
 port map (
 dividend => dividend,
 divisor => divisor,
 quot => quot,
 remd => remd,
 c => c);
END div1_a;

-- synopsys translate_on

Module Name : div_imem.xco (Xilinx IP Core)

 258

--
-- This file is owned and controlled by Xilinx and must be used --
-- solely for design, simulation, implementation and creation of --
-- design files limited to Xilinx devices or technologies. Use --
-- with non-Xilinx devices or technologies is expressly prohibited --
-- and immediately terminates your license. --
-- --
-- XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS" --
-- SOLELY FOR USE IN DEVELOPING PROGRAMS AND SOLUTIONS FOR --
-- XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE, OR INFORMATION --
-- AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, APPLICATION --
-- OR STANDARD, XILINX IS MAKING NO REPRESENTATION THAT THIS --
-- IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT, --
-- AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE --
-- FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY --
-- WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE --
-- IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR --
-- REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF --
-- INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS --
-- FOR A PARTICULAR PURPOSE. --
-- --
-- Xilinx products are not intended for use in life support --
-- appliances, devices, or systems. Use in such applications are --
-- expressly prohibited. --
-- --
-- (c) Copyright 1995-2002 Xilinx, Inc. --
-- All rights reserved. --
--
-- You must compile the wrapper file div_imem.vhd when simulating
-- the core, div_imem. When compiling the wrapper file, be sure to
-- reference the XilinxCoreLib VHDL simulation library. For detailed
-- instructions, please refer to the "Coregen Users Guide".

-- The synopsys directives "translate_off/translate_on" specified
-- below are supported by XST, FPGA Express, Exemplar and Synplicity
-- synthesis tools. Ensure they are correct for your synthesis tool(s).

-- synopsys translate_off
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

Library XilinxCoreLib;
ENTITY div_imem IS
 port (
 addr: IN std_logic_VECTOR(3 downto 0);
 clk: IN std_logic;
 din: IN std_logic_VECTOR(15 downto 0);
 dout: OUT std_logic_VECTOR(15 downto 0);
 we: IN std_logic);
END div_imem;

ARCHITECTURE div_imem_a OF div_imem IS

component wrapped_div_imem
 port (
 addr: IN std_logic_VECTOR(3 downto 0);

 259

 clk: IN std_logic;
 din: IN std_logic_VECTOR(15 downto 0);
 dout: OUT std_logic_VECTOR(15 downto 0);
 we: IN std_logic);
end component;

-- Configuration specification
 for all : wrapped_div_imem use entity XilinxCoreLib.blkmemsp_v5_0(behavioral)
 generic map(
 c_sinit_value => "0",
 c_reg_inputs => 0,
 c_yclk_is_rising => 1,
 c_has_en => 0,
 c_ysinit_is_high => 1,
 c_ywe_is_high => 1,
 c_ytop_addr => "1024",
 c_yprimitive_type => "4kx1",
 c_yhierarchy => "hierarchy1",
 c_has_rdy => 0,
 c_has_limit_data_pitch => 0,
 c_write_mode => 0,
 c_width => 16,
 c_yuse_single_primitive => 0,
 c_has_nd => 0,
 c_enable_rlocs => 0,
 c_has_we => 1,
 c_has_rfd => 0,
 c_has_din => 1,
 c_ybottom_addr => "0",
 c_pipe_stages => 0,
 c_yen_is_high => 1,
 c_depth => 16,
 c_has_default_data => 0,
 c_limit_data_pitch => 8,
 c_has_sinit => 0,
 c_mem_init_file => "div_imem.mif",
 c_default_data => "0",
 c_ymake_bmm => 0,
 c_addr_width => 4);
BEGIN

U0 : wrapped_div_imem
 port map (
 addr => addr,
 clk => clk,
 din => din,
 dout => dout,
 we => we);
END div_imem_a;

-- synopsys translate_on

Module Name : ic_hdca_gate.vhd

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

 260

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Uncomment the following lines to use the declarations that are
-- provided for instantiating Xilinx primitive components.
--library UNISIM;
--use UNISIM.VComponents.all;

entity gate_ic_a is
 Port (clk: in std_logic ;
 rst: in std_logic ;
 ctrl: in std_logic_vector(3 downto 0) ;
 qdep: in std_logic_vector(19 downto 0) ;
 addr_bus: in std_logic_vector(27 downto 0) ;
 data_in0,data_in1,data_in2,data_in3 : in std_logic_vector(15 downto 0) ;
 rw: in std_logic_vector(3 downto 0) ;
 flag: out std_logic_vector(3 downto 0) ;
 data_out0,data_out1,data_out2,data_out3: out std_logic_vector(15 downto 0)
 -- f_s_out0,f_s_out1,f_s_out2,f_s_out3 : out std_logic_vector(3 downto 0);
 -- dco_out0,dco_out1,dco_out2,dco_out3 : out std_logic_vector(3 downto 0)
);
end gate_ic_a;

architecture gate_level of gate_ic_a is

-- component listing

component Dec_ic_a is
 port(dec_out : out std_logic_vector(3 downto 0);
 ctrl_dec : in std_logic;
 addr_blk : in std_logic_vector(1 downto 0)
);
end component;

component prl_behav is
 Port (clk,rst : in std_logic;
 d0,d1,d2,d3 : in std_logic;
 q0,q1,q2,q3 : in std_logic_vector(4 downto 0);
 sub_flg : out std_logic_vector (3 downto 0)
);
end component;

-- memory array ----
type mem_array is array (127 downto 0) of std_logic_vector(15 downto 0);

--signal list
signal d_sig0,d_sig1,d_sig2,d_sig3 : std_logic_vector(3 downto 0);
signal flg_sig0,flg_sig1,flg_sig2,flg_sig3: std_logic_vector(3 downto 0);
signal memory : mem_array;
signal flag_decide0,flag_decide1,flag_decide2,flag_decide3: std_logic_vector(3 downto 0);
signal flag_wire: std_logic_vector(3 downto 0);
-- make qdep as signal
--signal qd00,qd01,qd02,qd03 : std_logic_vector(3 downto 0);

 261

-- signal list end here

begin

-- signals to ports if any

--f_s_out0 <= flg_sig0;
--f_s_out1 <= flg_sig1;
--f_s_out2 <= flg_sig2;
--f_s_out3 <= flg_sig3;

--dco_out0 <= d_sig0;
--dco_out1 <= d_sig1;
--dco_out2 <= d_sig2;
--dco_out3 <= d_sig3;
flag <= flag_wire;

flag_decide0<= flg_sig0(0)&flg_sig1(0)&flg_sig2(0)&flg_sig3(0);
flag_decide1<= flg_sig0(1)&flg_sig1(1)&flg_sig2(1)&flg_sig3(1);
flag_decide2<= flg_sig0(2)&flg_sig1(2)&flg_sig2(2)&flg_sig3(2);
flag_decide3<= flg_sig0(3)&flg_sig1(3)&flg_sig2(3)&flg_sig3(3);

-- port mapping
-- decoder instantiated 4 times

DEC0 : Dec_ic_a port map(dec_out => d_sig0,
 ctrl_dec => ctrl(0),
 addr_blk => addr_bus(6 downto 5)
);

DEC1 : Dec_ic_a port map(dec_out => d_sig1,
 ctrl_dec => ctrl(1),
 addr_blk => addr_bus(13 downto 12)
);

DEC2 : Dec_ic_a port map(dec_out => d_sig2,
 ctrl_dec => ctrl(2),
 addr_blk => addr_bus(20 downto 19)
);

DEC3 : Dec_ic_a port map(dec_out => d_sig3,
 ctrl_dec => ctrl(3),
 addr_blk => addr_bus(27 downto 26)
);
-- decoder instantiation ends ----

-- pr logic instantiation 4 times ----

PRL_LOGIC0 : prl_behav port map(clk => clk,
 rst => rst,
 d0 => d_sig0(0),

 262

 d1 => d_sig1(0),
 d2 => d_sig2(0),
 d3 => d_sig3(0),
 q0 => qdep(4 downto 0),
 q1 => qdep(9 downto 5),
 q2 => qdep(14 downto 10),
 q3 => qdep(19 downto 15),
 sub_flg => flg_sig0
);

PRL_LOGIC1 : prl_behav port map(clk => clk,
 rst => rst,
 d0 => d_sig0(1),
 d1 => d_sig1(1),
 d2 => d_sig2(1),
 d3 => d_sig3(1),
 q0 => qdep(4 downto 0),
 q1 => qdep(9 downto 5),
 q2 => qdep(14 downto 10),
 q3 => qdep(19 downto 15),
 sub_flg => flg_sig1

);

PRL_LOGIC2 : prl_behav port map(clk => clk,
 rst => rst,
 d0 => d_sig0(2),
 d1 => d_sig1(2),
 d2 => d_sig2(2),
 d3 => d_sig3(2),
 q0 => qdep(4 downto 0),
 q1 => qdep(9 downto 5),
 q2 => qdep(14 downto 10),
 q3 => qdep(19 downto 15),
 sub_flg => flg_sig2

);

PRL_LOGIC3 : prl_behav port map(clk => clk,
 rst => rst,
 d0 => d_sig0(3),
 d1 => d_sig1(3),
 d2 => d_sig2(3),
 d3 => d_sig3(3),
 q0 => qdep(4 downto 0),
 q1 => qdep(9 downto 5),
 q2 => qdep(14 downto 10),
 q3 => qdep(19 downto 15),
 sub_flg => flg_sig3

);

-- extra logic to be added since all the prl_blks give output flag value ...
-- there would be conflict as to what the final value is

 263

-- try and include it in a process ... so that flag value changes in accordance with the
-- clk ..
flag_assign : process (clk,rst,flag_decide0,flag_decide1,flag_decide2,flag_decide3)

begin

if(rst ='1') then
flag_wire <= "0000";

elsif (clk'event and clk ='0') then
 case flag_decide0 is
 when "0000" => flag_wire(0) <= '0';
 when others => flag_wire(0) <= '1';
 end case;

case flag_decide1 is
 when "0000" => flag_wire(1) <= '0';
 when others => flag_wire(1) <= '1';
 end case;

 case flag_decide2 is
 when "0000" => flag_wire(2) <= '0';
 when others => flag_wire(2) <= '1';
 end case;

 case flag_decide3 is
 when "0000" => flag_wire(3) <= '0';
 when others => flag_wire(3) <= '1';
 end case;

end if;

end process flag_assign;

-- end of extra logic added ----------

-- write about r_w logic,shall come along with flag thing ----

data_transfer : process(rst,data_in0,data_in1,data_in2,data_in3,flag_wire,rw,clk)

begin

if (rst ='1') then
--flag <= "0000";
data_out0 <=x"0000";
data_out1 <=x"0000";
data_out2 <=x"0000";
data_out3 <=x"0000";
-- making the memory array all zeroes
MEM : for i in 0 to 127 loop
memory(i)<=x"0000";

 264

end loop MEM;
else

if (clk'event and clk ='1') then

if (flag_wire(0) ='1')then
if (rw(0) ='1') then
 memory(conv_integer(addr_bus(6 downto 0))) <= data_in0;
elsif (rw(0)='0')then
 data_out0 <= memory(conv_integer(addr_bus(6 downto 0)));
end if;
end if;

if (flag_wire(1) ='1') then
if (rw(1) ='1') then
memory(conv_integer(addr_bus(13 downto 7))) <= data_in1;
--data_out1 <=(others =>'Z'); --commented later
else
data_out1 <= memory(conv_integer(addr_bus(13 downto 7)));
end if;
end if;

if (flag_wire(2) ='1') then
if (rw(2) ='1') then
memory(conv_integer(addr_bus(20 downto 14))) <= data_in2;
--data_out2 <=(others =>'Z');
else
data_out2 <= memory(conv_integer(addr_bus(20 downto 14)));
end if;
end if;

if (flag_wire(3) ='1') then
if (rw(3) ='1') then
memory(conv_integer(addr_bus(27 downto 21))) <= data_in3;
--data_out3 <=(others =>'Z');
else
data_out3 <= memory(conv_integer(addr_bus(27 downto 21)));
end if;
end if;

end if;
end if;

end process data_transfer;

end gate_level;

Module Name : dec_ic_a.vhd

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Uncomment the following lines to use the declarations that are
-- provided for instantiating Xilinx primitive components.

 265

--library UNISIM;
--use UNISIM.VComponents.all;

entity dec_ic_a is
 Port (dec_out : out std_logic_vector(3 downto 0);
 ctrl_dec : in std_logic;
 addr_blk : in std_logic_vector(1 downto 0)
);
end dec_ic_a;

architecture Behavioral of dec_ic_a is

signal ctrl_bar,addr1_bar,addr0_bar : std_logic;

begin
ctrl_bar <= not ctrl_dec;
addr1_bar <= not addr_blk(1);
addr0_bar <= not addr_blk(0);
dec_out(0)<= ctrl_dec and addr1_bar and addr0_bar;
dec_out(1)<= ctrl_dec and addr1_bar and addr_blk(0);
dec_out(2)<= ctrl_dec and addr_blk(1) and addr0_bar;
dec_out(3)<= ctrl_dec and addr_blk(1) and addr_blk(0);

end Behavioral;

Module Name : prl_behav.vhd

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Uncomment the following lines to use the declarations that are
-- provided for instantiating Xilinx primitive components.
--library UNISIM;
--use UNISIM.VComponents.all;

entity prl_behav is
 Port (clk,rst : in std_logic;
 d0,d1,d2,d3 : in std_logic;
 q0,q1,q2,q3 : in std_logic_vector(4 downto 0);
 sub_flg : out std_logic_vector (3 downto 0)
);
end prl_behav;

architecture Behavioral of prl_behav is

-- signal listing -----
signal d3d2d1d0 :std_logic_vector(3 downto 0);

--- end of signal list----

begin

-- process for the selection of proper PE ---

 266

sel : process (d0,d1,d2,d3,clk,rst)

variable max : std_logic_vector(4 downto 0);

begin

if (rst ='1') then
 sub_flg <= "0000";
else
 if (clk'event and clk='0') then
 d3d2d1d0 <= d3&d2&d1&d0;

 case d3d2d1d0 is
 when "0001" => sub_flg <= "0001" ;
 when "0010" => sub_flg <= "0010";
 when "0100" => sub_flg <= "0100";
 when "1000" => sub_flg <= "1000";
 when "0011" =>
 max:= q0;
 if((max < q1)and (max = q1)) then
 max:= q1;
 sub_flg <="0010";
 else
 sub_flg <="0001";
 end if;

 when "0111" =>
 max:= q0;
 if(max<=q1) then
 max := q1;
 if(max<=q2) then
 max := q2;
 sub_flg <="0100";
 else
 sub_flg <="0010";
 end if;
 else
 sub_flg <="0001";
 end if;

 when "0110" =>
 max :=q1;
 if(max<=q2) then
 max:= q2;
 sub_flg <="0100";
 else
 sub_flg <="0010";
 end if;

 when "0101" =>
 max :=q0;
 if(max<=q2)then
 max:=q2;
 sub_flg <="0100";
 else
 sub_flg <="0001";

 267

 end if;

 when "1111" =>
 max :=q0;
 if(max<=q1) then
 max:=q1;
 if(max<=q2) then
 max:=q2;
 if(max<=q3) then
 max:=q3;
 sub_flg<="1000";
 else
 sub_flg <="0100";
 end if;
 else
 sub_flg<="0010";
 end if;
 else
 sub_flg <="0001";
 end if;

 when "1110" =>
 max :=q1;
 if(max<=q2)then
 max:=q2;
 if(max<=q3) then
 max:=q3;
 sub_flg <="1000";
 else
 sub_flg <="0100";
 end if;
 else
 sub_flg <="0010";
 end if;

 when "1010" =>
 max :=q1;
 if(max<=q3) then
 max:=q3;
 sub_flg <="1000";
 else
 sub_flg <="0010";
 end if;

 when "1001"=>
 max:=q0;
 if(max<=q3)then
 max:=q3;
 sub_flg<="1000";
 else
 sub_flg<="0001";
 end if;

 when "1101" =>
 max :=q0;
 if(max<=q2)then

 268

 max:=q2;
 if(max<=q3) then
 max:=q3;
 sub_flg<="1000";
 else
 sub_flg<="0100";
 end if;
 else
 sub_flg<="0001";
 end if;

 when "1100" =>
 max :=q2;
 if(max<=q3) then
 max:=q3;
 sub_flg <="1000";
 else
 sub_flg <="0100";
 end if;

 when "1011" =>
 max :=q0;
 if(max<=q1)then
 max:=q1;
 if(max<=q3)then
 max:=q3;
 sub_flg <="1000";
 else
 sub_flg<="0010";
 end if;
 else
 sub_flg <="0001";
 end if;

 when others => sub_flg<="0000";

 end case;
end if ;
end if;

end process;

end Behavioral;

Module Name : multpe.vhd

--
-- Multiplier PE
-- Version 1.00
-- Coded by Kanchan,Sridhar
--
 -- synopsys translate_off
 Library XilinxCoreLib;
 -- synopsys translate_on

library IEEE;

 269

use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use IEEE.NUMERIC_STD.ALL;

entity multpe is
 Port (mcntl_bus : in std_logic_vector(15 downto 0);
 Snd_I : out std_logic;
 clk : in std_logic;
 rst : in std_logic;
 Instr_rdy : in std_logic;
 Fin : out std_logic;
 mdata_bus : inout std_logic_vector(15 downto 0);
 bus_req : out std_logic;
 bus_gnt : in std_logic;
 multaddr : out std_logic_vector(7 downto 0);--Output address to shared dmem
 --r_w : buffer std_logic;
 r_w : inout std_logic;
 cbusout_dbug : out std_logic_vector(7 downto 0);
 Iaddr_bus_dbug : out std_logic_vector(7 downto 0);
 --Iaddr_dbug : out std_logic_vector(7 downto 0);
 R2out_dbug : out std_logic_vector(7 downto 0);
 Imem_bus_dbug : out std_logic_vector(15 downto 0);

 mux3out_dbg:out std_logic_vector(7 downto 0);
 ms3dbg:out std_logic_vector(1 downto 0);
 ms1dbg : out std_logic;
 ms2dbg : out std_logic;
 adderout_dbug : out std_logic_vector(7 downto 0);
 ms4dbg : out std_logic;
 lmd_dbg,lmr_dbg : out std_logic;
 ndout : out std_logic;
 multout_fin : out std_logic_vector(15 downto 0);
 tomultr_dbg:out std_logic_vector(7 downto 0);
 tomultd_dbg:out std_logic_vector(7 downto 0)

);
end multpe;

architecture Behavioral of multpe is

component mult is
 Port (a : in std_logic_vector(7 downto 0);
 b : in std_logic_vector(7 downto 0);
 q : out std_logic_vector(15 downto 0);
 clk:in std_logic;
 newdata : in std_logic);
end component;
--
-- This file is owned and controlled by Xilinx and must be used --
-- solely for design, simulation, implementation and creation of --
-- design files limited to Xilinx devices or technologies. Use --
-- with non-Xilinx devices or technologies is expressly prohibited --
-- and immediately terminates your license. --
-- --

 270

-- XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS" --
-- SOLELY FOR USE IN DEVELOPING PROGRAMS AND SOLUTIONS FOR --
-- XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE, OR INFORMATION --
-- AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, APPLICATION --
-- OR STANDARD, XILINX IS MAKING NO REPRESENTATION THAT THIS --
-- IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT, --
-- AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE --
-- FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY --
-- WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE --
-- IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR --
-- REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF --
-- INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS --
-- FOR A PARTICULAR PURPOSE. --
-- --
-- Xilinx products are not intended for use in life support --
-- appliances, devices, or systems. Use in such applications are --
-- expressly prohibited. --
-- --
-- (c) Copyright 1995-2002 Xilinx, Inc. --
-- All rights reserved. --
--

component mult_imem IS
 port (
 addr: IN std_logic_VECTOR(2 downto 0);
 clk: IN std_logic;
 din: IN std_logic_VECTOR(15 downto 0);
 dout: OUT std_logic_VECTOR(15 downto 0);
 we: IN std_logic);
end component;

component add_subber8 IS

 PORT(
 A: IN std_logic_vector(7 DOWNTO 0);
 B: IN std_logic_vector(7 DOWNTO 0);
 C_IN: IN std_logic;
 C_OUT: OUT std_logic;
 ADD_SUB: IN std_logic;
 Q_OUT: OUT std_logic_vector(7 DOWNTO 0));
END component;

--All control signals for the various components used

--Control signals for the multiplexors used in the design
signal ms0,ms1,ms2,ms4,ms5:std_logic;
signal ms3:std_logic_vector(1 downto 0);
--control signals for datalocations,reg R2
signal mldl1,mldl2,mldr2,lmr,lmd,lmar:std_logic;
signal mlresult:std_logic;
--output of data locations 1 and 2
signal mdloc1out,mdloc2out:std_logic_vector(7 downto 0);
signal r2out:std_logic_vector(7 downto 0);
signal mux3out,mux5out,mux0out,mux1out,adderout:std_logic_vector(7 downto 0);

 271

--output from controller to data locations
signal cbusout:std_logic_vector(7 downto 0);
signal mux4out:std_logic_vector(15 downto 0);
-- signal added to supplement the mdatabus port ...
signal mdata_sig : std_logic_vector(15 downto 0);

--outputs of multiplier and multiplicand registers

signal mrout,mdout:std_logic_vector(7 downto 0);
--output from pipelined multiplier and output from result register
signal multout,multrslt:std_logic_vector(15 downto 0);

--Core instruction memory signals
signal inst_in,inst_out:Std_logic_vector(15 downto 0);
signal imem_bus:std_logic_vector(15 downto 0);

--Adder signal that is not being used
signal ci:std_logic;
--signal iaddr:std_logic_vector(7 downto 0);
signal iaddr_bus:std_logic_vector(7 downto 0);
signal from_cntl : std_logic_vector(7 downto 0);
signal rwmem:std_logic;
type OP_state is (reset,Getop,Op1,Op2,Op3,Op4,Op5,Op6,Op7,Op8,Op9,Op10,Op11,Op12,Op13,Op14);
signal OP : OP_state;
signal delay : std_logic_vector(1 downto 0); --Need a 2 CC delay for multiplication to get over
signal r2_rst : std_logic;
signal ndsig:std_logic;

--Start the multiplication operation
constant startmult : std_logic_vector(7 downto 0) := "11111111";
constant storemultdl : std_logic_vector(7 downto 0) := "10001000";

--Alias list starts here

alias toimem:std_logic_vector(2 downto 0) is iaddr_bus(2 downto 0);
alias tomultr:std_logic_vector(7 downto 0) is mdata_bus(7 downto 0);
alias tomultd:std_logic_vector(7 downto 0) is mux4out(7 downto 0);
alias to_r2:std_logic_vector(7 downto 0) is imem_bus(7 downto 0);

begin
tomultr_dbg<=tomultr;
tomultd_dbg<=tomultd;
ms3dbg<=ms3;
ms2dbg<= ms2;
ms1dbg<= ms1;
ms4dbg<= ms4;
lmd_dbg <= lmd;
lmr_dbg<= lmr;
mux3out_dbg<=mux3out;

 272

ndout<= ndsig;
adderout_dbug <= adderout;
multout_fin<= multrslt;
-- added for debugging
cbusout_dbug <= cbusout;
--Iaddr_dbug <= Iaddr;
iaddr_bus_dbug<=Iaddr_bus;
R2out_dbug <= r2out;
Imem_bus_dbug <= imem_bus;
--Port maps and when else statements come here outside the process

addermap: add_subber8
 port
map(a=>r2out,b=>mux3out,c_in=>ci,c_out=>open,add_sub=>'1',q_out=>adderout);

multmap: mult port map(a=>mrout,b=>mdout,q=>multout,clk=>clk,newdata=>ndsig);

multimemmap:mult_imem port map(addr=>toimem,clk=>clk,din=>inst_in,dout=>inst_out,we=>rwmem);

--End port maps for components

--Mux functionality starts here
imem_bus <=inst_out when rwmem = '0' else
 (others=>'Z');

mdata_bus<=multrslt when mlresult='1' else
 (others=>'Z');
--tomultr <= mdata_bus(7 downto 0) when lmr='1' else
 -- (others=>'z');

mux0out<= cbusout when ms0='0' else
 adderout when ms0='1'else
 (others=>'Z');

mux1out<= cbusout when ms1='0' else
 adderout when ms1='1'else
 (others=>'Z');

--Mux 2 output
multaddr<= mdloc1out when ms2='0' else
 mdloc2out when ms2='1' else
 (others=>'Z');

mux3out<= mdloc1out when ms3="00" else
 mdloc2out when ms3="01" else
 iaddr_bus when ms3="10" else
 (others=>'Z');

mux4out<= mdata_bus when ms4='0' else
 imem_bus when ms4='1' else

 273

 (others=>'Z');
mux5out <= from_cntl when ms5='0' else
 adderout when ms5='1' else
 (others=>'Z');

-- The main process that controls the functioning of the multiplier
control:process(clk,rst,instr_rdy, bus_gnt, mcntl_bus,mdloc2out,Op,r2_rst,ndsig,delay)
variable load_delay, ld_del2, del : boolean;
--Start editing here
begin
 if rst = '1' then
 OP <= reset;
 elsif (clk'event and clk = '1') then
 if Op = reset then
 snd_i <= '1';
 del := false;
 fin <= '1';
 ld_del2 := false;
 bus_req <= '0';
 rwmem <= '0';
 r_w <= '0';
 lmr <= '0';
 ms4 <= '0';
 ms1 <= '0';
 ms3 <= "00";
 ms0 <= '1';
 ms2<='0';
 ms5 <= '0';
 Ci <= '0';
 mldr2<= '0';
 lmd<= '0';
 mldl1<= '0';
 mldl2 <= '0';
 load_delay := false;
 mlresult <= '0';
 lmar<= '0';
 r2_rst <= '1'; -- active high resets R2
 delay <= "01";
 ndsig<='0';
 assert not(Op=reset) report "-------------------Reset State-----------------" severity
Note;

 Op <= GetOp;

 elsif Op = GetOp then --ld data loc 1
 mldl2 <= '0';
 mldr2 <= '0';
 lmd <= '0';
 bus_req <= '0';
 mlresult <= '0';
 lmar<= '0';
 r2_rst <= '0';
 if instr_rdy = '1' then
 cbusout <= mcntl_bus(7 downto 0);

 274

 mldl1 <= '1';
 fin <= '0';
 ms0 <= '0';
 Snd_i <= '1';
 Op <= Op1;
 assert not(Op=GetOp) report "-------------------Get Op----------
-------" severity Note;
 else
 OP <= GetOp;
 end if;

 elsif Op = Op1 then
 mldl1 <= '0';
 r2_rst <= '0';
 mldr2 <= '0'; lmd <= '0';
 bus_req <= '0';
 mlresult <= '0';
 if (instr_rdy = '1' or load_delay = true) then
 if mcntl_bus(15 downto 8) = storemultdl then --ld dl2
 assert not(Op=Op1) report "-------------------Op1:inside
storemultdl-----------------" severity Note;
 cbusout <= mcntl_bus(7 downto 0);
 mldl2 <= '1';
 lmar<= '0';
 fin <= '0';
 ms1 <= '0';
 snd_i <='1';
 Op <= Op1;
 elsif mcntl_bus(15 downto 8) = startMult then --start multiplication

 if (load_delay = false) then
 assert not(Op=Op1) report "-------------------Op1:inside startMult-----------------" severity Note;

 from_cntl <= mcntl_bus(7 downto 0); --ld instr loc
 mldl2 <= '0';
 ms5 <= '0';
 lmar <= '1';
 Snd_I <= '0';
 load_delay := true;
 Op <= Op1;
 elsif (load_delay = true) then
 lmar <= '0';
 Op <= Op2;
 load_delay := false;
 end if;
 end if;
 else
 Op <= Op1;
 end if;

 elsif Op = Op2 then --ld R2 with dl1 offset

 275

assert not(Op=Op2) report "-------------------Op2:inside Op2-----------------" severity Note;

 mldl2 <= '0'; --from Imem
 lmd <= '0';
 mldl1 <= '0';
 bus_req <= '0';
 mlresult <= '0';
 lmar <= '0';
 rwmem <= '0';
 mldr2 <= '1';
 r2_rst <= '0';
 Op <= Op3;

 elsif Op = Op3 then --add offset to dl1 str in dl1
assert not(Op=Op3) report "-------------------Op3:add ofset to dl1-----------------" severity Note;
 mldl2 <= '0';
 -- changes for dbugging
 --mldr2 <= '1';
 mldr2 <= '0';
 lmd <= '0';
 bus_req <= '0';
 mlresult <= '0';
 lmar<= '0';
 Ci <= '0';
 mldr2 <= '0';
 mldl1 <= '1';
 ms0 <= '1';
 ms3(0) <= '0';
 ms3(1) <= '0';
 r2_rst <= '0';
 Op <= Op4;

 elsif Op = Op4 then --Inc Iaddr
 if (ld_del2 = false) then
assert not(Op=Op4) report "-------------------Op4:Inc Addr-----------------" severity Note;

 mldl2 <= '0';
 mldr2 <= '0';
 lmd <= '0';
 bus_req <= '0';
 mlresult <= '0';
 mldl1 <= '0';
 ms3 <= "10";
 ms5<='1';
 ci <= '1';
 lmar <= '1';
 ld_del2 := true;
 r2_rst <= '1';
 Op <= Op4;

 elsif (ld_del2 = true) then
 lmar <= '0';

 276

 Op <= Op5;
 ld_del2 := false;
 end if;

 elsif Op = Op5 then --Check for 2nd dl
assert not(Op=Op5) report "-------------------Op5:Check for dl2-----------------" severity Note;

 mldl2 <= '0';
 bus_req <= '0';
 mldl1 <= '0';
 mlresult <= '0';
 lmar <= '0';
 if mdloc2out = "00000000" then --get divisor from IMEM
 rwmem <= '0';
 lmr <= '0'; --put in R1
 ms4 <= '1';
 lmd <= '1';
 Op <= Op9;
 else --get data from DMEM
 rwmem <= '0';
 lmr <= '0'; --get offset to Dl2
 mldr2 <='1';
 lmd<='0';
 Op <= Op6;
 end if;

 elsif Op = Op6 then --add offset to Dl2
assert not(Op=Op6) report "-------------------Op6:add ofset to dl2-----------------" severity Note;
 r2_rst <= '0';
 lmd <= '0';
 bus_req <= '0';
 mldl1 <= '0';
 mlresult <= '0';
 lmar<= '0';
 mldr2 <= '0';
 ms3<= "00";
 ci <= '0';
 ms1 <= '1';
 mldl2 <= '1';
 Op <= Op7;

 elsif Op = Op7 then
assert not(Op=Op7) report "-------------------Op7:bus req state-----------------" severity Note;
 mldr2 <= '0';
 lmd <= '0';
 mldl1 <= '0';
 mlresult <= '0';
 lmar<= '0';
 mldl2 <= '0';
 ms2 <= '0';

 277

 bus_req <= '1';
 R_W <= '0';
 ms4 <= '0';
 Op <= Op8;

 elsif Op = Op8 then --ld R1 with divisor
assert not(Op=Op8) report "-------------------Op8:ld multiplicand -----------------" severity Note;
 mldl2 <= '0'; --from DMEM
 mldr2 <= '0';
 ms4 <= '0';
 mldl1 <= '0';
 mlresult <= '0';
 lmar<= '0';

 if bus_gnt = '1' then
 lmd <= '1';
 Op <= Op9;
 else
 lmd <= '0';
 Op <= Op8;
 end if;

 elsif Op = Op9 then --ld R0 with dividend
assert not(Op=Op9) report "-------------------Op9:ld multiplier-----------------" severity Note;
 mldl2 <= '0';
 mldr2 <= '0';
 lmd <= '0';
 mldl1 <= '0';
 mlresult <= '0';
 lmar<= '0';
 ms2<= '0';
 R_W <= '0';
 bus_req <= '1';
 r2_rst <= '0';
 Op <= Op10;

 elsif Op = Op10 then
assert not(Op=Op10) report "-------------------Op10:Bus grant=1-----------------" severity Note;

 mldl2 <= '0';
 mldr2 <= '0';
 lmd <= '0';
 mldl1 <= '0';
 mlresult <= '0';
 lmar<= '0';
 if bus_gnt = '1' then
 lmr <= '1';
 Op <= Op11;

 278

 else
 lmr <= '0';
 OP <= Op10;
 end if;

 elsif Op = Op11 then --wait for result 20 CC's
assert not(Op=Op11) report "-------------------Op11:20 cc ruko-----------------" severity Note;
 mldl2 <= '0';
 mldr2 <= '0';
 lmd <= '0';
 bus_req <= '0';
 mldl1 <= '0';
 lmar<= '0';
 lmr <= '0';

 ndsig<='1';--This signal tells the multiplier to process the inputs
 if delay = "10" then
 -- if rdy_sig ='1' then
 mlresult <= '1';
 --r_w<='1';--added here not in original list
 bus_req<='1';
 ndsig<='0';
 Op <= Op12;
 else
 delay <= delay(0 downto 0)&'0';
 mlresult <= '0';
 Op <= Op11;
 end if;

 elsif Op = Op12 then
assert false report "-------------------Op12:use dl1/dl2 to store-----------------" severity Note;

 --ndsig<='1';--added this while testing mult_icm module.Not there originally
 --ndsig<='1'; -- change made to check
 mldr2 <= '0';
 lmd <= '0';
 mlresult <= '1';
 lmar<= '0';
 -- R_W <= '1';

 if mdloc2out = "00000000" then --use DL1 for store
 ms2<='0';
 mldl2 <= '0';
 else --use DL2 for store
 ms2 <= '1';
 mldl1 <= '0';
 end if;
 --Bus_req <= '1';

 Op <= Op13;

 279

 elsif Op = Op13 then
 assert false report "-------------------Op13:-----------------" severity Note;

 mldl2 <= '0';
 mldr2 <= '0';
 lmd <= '0';
 mldl1 <= '0';
 mlresult <= '1';
 lmar<= '0';
 Bus_req <= '1';
 ndsig <= '0';
 if bus_gnt = '1' then --Store Quotient in mem
 -- fin <= '1';
 R_W<='1';

 --bus_req <= '0';

 --Op <= reset;
 Op<=Op14;
 else
 Op <= Op13;
 end if;
 elsif Op=Op14 then
 assert false report "Op14 state " severity note;
 bus_req<='0';
 fin<='1' ;
 R_W<='0';
 -- r_w <= '1'; -- change made to c if correct value gets written

 Op<= reset;

 end if;
 end if;

end process;

multiplierreg: process (clk, tomultr, rst, lmr)
 begin
 if rst ='1' then
 mrout <= (others=>'0');
 elsif clk'event and clk='1' then
 if lmr = '1' then
 mrout <= tomultr;
 end if;
 end if;
end process;

multiplicandreg: process (clk,rst,lmd,tomultd)
 begin
 if rst ='1' then

 280

 mdout <= (others=>'0');
 elsif clk'event and clk='1' then
 if lmd = '1' then
 mdout <= tomultd;
 end if;
 end if;
end process;

regr2:process(clk,r2_rst,to_r2,mldr2)
 begin
 if r2_rst='1' then
 r2out <=(others=>'0');
 elsif clk'event and clk='1' then
 if mldr2='1' then
 r2out<=to_r2;
 end if;
 end if;
end process;

dataloc1:process(clk,rst,mldl1,mux0out)
 begin
 if rst='1' then
 mdloc1out <=(others=>'0');
 elsif clk'event and clk='1' then
 if mldl1='1' then
 mdloc1out<=mux0out;
 end if;
 end if;
end process;

dataloc2:process(clk,rst,mldl2,mux1out)
 begin
 if rst='1' then
 mdloc2out <=(others=>'0');
 elsif clk'event and clk='1' then
 if mldl2='1' then
 mdloc2out<=mux1out;
 end if;
 end if;
end process;

Instmar:process(clk,rst,mux5out,lmar)
 begin
 if rst='1' then
 iaddr_bus <=(others=>'0');
 elsif clk'event and clk='1' then
 if lmar='1' then
 iaddr_bus<=mux5out;
 end if;
 end if;
end process;

 281

reg_result: process (clk,rst,multout, mlresult)
 begin
 if rst ='1' then
 multrslt <= (others=>'0');

 elsif clk'event and clk='1' then
 if mlresult = '1' then
 multrslt <= multout;
 end if;
 end if;
end process;
end Behavioral;

Module Name : mult.vhd

--Multiplier version 1.0
--Date: 02/27/2004

--Explanation of signals
--a and b are 8 bit inputs(unsigned) and can be thought of as the muliplier and
--multiplicand.They produce an output which can be max 16 bits
--

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use IEEE.NUMERIC_STD.ALL;

entity mult is
 Port (a : in std_logic_vector(7 downto 0);
 b : in std_logic_vector(7 downto 0);
 q : out std_logic_vector(15 downto 0);
 clk:in std_logic;
 newdata : in std_logic);
end mult;

architecture Behavioral of mult is
--signal listings here
signal qsig: std_logic_vector(15 downto 0);
begin
q<=qsig;
multiply: process(clk,newdata,a,b) is
begin
if (clk'event and clk='1') then
 if (newdata='1') then
 qsig<=a*b;--Multiply the inputs
 else
 qsig<=qsig;--Latch on to the values
 end if;
end if;
end process;
end Behavioral;

 282

Module Name : mult_imem.xco (Xilinx IP Core)

--
-- This file is owned and controlled by Xilinx and must be used --
-- solely for design, simulation, implementation and creation of --
-- design files limited to Xilinx devices or technologies. Use --
-- with non-Xilinx devices or technologies is expressly prohibited --
-- and immediately terminates your license. --
-- --
-- XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS" --
-- SOLELY FOR USE IN DEVELOPING PROGRAMS AND SOLUTIONS FOR --
-- XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE, OR INFORMATION --
-- AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, APPLICATION --
-- OR STANDARD, XILINX IS MAKING NO REPRESENTATION THAT THIS --
-- IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT, --
-- AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE --
-- FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY --
-- WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE --
-- IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR --
-- REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF --
-- INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS --
-- FOR A PARTICULAR PURPOSE. --
-- --
-- Xilinx products are not intended for use in life support --
-- appliances, devices, or systems. Use in such applications are --
-- expressly prohibited. --
-- --
-- (c) Copyright 1995-2003 Xilinx, Inc. --
-- All rights reserved. --
--
-- You must compile the wrapper file mult_imem.vhd when simulating
-- the core, mult_imem. When compiling the wrapper file, be sure to
-- reference the XilinxCoreLib VHDL simulation library. For detailed
-- instructions, please refer to the "CORE Generator Guide".

-- The synopsys directives "translate_off/translate_on" specified
-- below are supported by XST, FPGA Compiler II, Mentor Graphics and Synplicity
-- synthesis tools. Ensure they are correct for your synthesis tool(s).

-- synopsys translate_off
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

Library XilinxCoreLib;
ENTITY mult_imem IS
 port (
 addr: IN std_logic_VECTOR(2 downto 0);
 clk: IN std_logic;
 din: IN std_logic_VECTOR(15 downto 0);
 dout: OUT std_logic_VECTOR(15 downto 0);
 we: IN std_logic);
END mult_imem;

ARCHITECTURE mult_imem_a OF mult_imem IS

component wrapped_mult_imem

 283

 port (
 addr: IN std_logic_VECTOR(2 downto 0);
 clk: IN std_logic;
 din: IN std_logic_VECTOR(15 downto 0);
 dout: OUT std_logic_VECTOR(15 downto 0);
 we: IN std_logic);
end component;

-- Configuration specification
 for all : wrapped_mult_imem use entity XilinxCoreLib.blkmemsp_v5_0(behavioral)
 generic map(
 c_sinit_value => "0",
 c_reg_inputs => 0,
 c_yclk_is_rising => 1,
 c_has_en => 0,
 c_ysinit_is_high => 1,
 c_ywe_is_high => 1,
 c_ytop_addr => "1024",
 c_yprimitive_type => "16kx1",
 c_yhierarchy => "hierarchy1",
 c_has_rdy => 0,
 c_has_limit_data_pitch => 0,
 c_write_mode => 0,
 c_width => 16,
 c_yuse_single_primitive => 0,
 c_has_nd => 0,
 c_enable_rlocs => 0,
 c_has_we => 1,
 c_has_rfd => 0,
 c_has_din => 1,
 c_ybottom_addr => "0",
 c_pipe_stages => 0,
 c_yen_is_high => 1,
 c_depth => 8,
 c_has_default_data => 0,
 c_limit_data_pitch => 18,
 c_has_sinit => 0,
 c_mem_init_file => "mult_imem.mif",
 c_default_data => "0",
 c_ymake_bmm => 0,
 c_addr_width => 3);
BEGIN

U0 : wrapped_mult_imem
 port map (
 addr => addr,
 clk => clk,
 din => din,
 dout => dout,
 we => we);
END mult_imem_a;

-- synopsys translate_on

Module Name : pe.vhd

 284

--The IEEE standard 1164 package, declares std_logic, rising_edge(),
--etc.
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity PE is
 port (Data_Bus : inout std_logic_vector(15 downto 0);
 R_W : out std_logic;
 Cntl_bus : in std_logic_vector(15 downto 0);
 RST, ODR, IDV : in std_logic;
 clk, Bus_grant : in std_logic;
 CInstr_rdy : in std_logic;
 inpt : in std_logic_vector(15 downto 0);
 Bus_req, Snd_Instr, Fin : out std_logic;
 Addr : out std_logic_vector(7 downto 0);
 Rq_inpt, Rq_outpt : out std_logic;
 STOPLOOP : out std_logic;
 -- added for dbugging
 R3_out_dbug : out std_logic_vector(15 downto 0);
 shft_out_dbug : out std_logic_vector(15 downto 0);
 dbug_st_pe : out std_logic_vector(3 downto 0);
 tmp4_dbug : out std_logic_vector(15 downto 0);
 m5outdbg: out std_logic_vector(15 downto 0);
 R0_out_dbug : out std_logic_vector(15 downto 0);
 tmp3_dbug: out std_logic_vector(2 downto 0);
 tmp2_dbug: out std_logic_vector(1 downto 0);
 tmp1_dbug: out std_logic_vector(1 downto 0) ;
 tmp44_dbug: out std_logic_vector(4 downto 0) ;
 tmp5_dbug: out std_logic_vector(3 downto 0) ;
 count_out_pe : out std_logic_vector (7 downto 0)
 -- tmp6_dbug: out std_logic_vector(1 downto 0)
) ;
end PE;

Architecture pe_arch of pe is
component Reg_B_in is
port(din: in std_logic_vector(15 downto 0); -- data from data_bus
 dout:out std_logic_vector(15 downto 0); -- register output
 clk: in std_logic; -- clk
 rst: in std_logic; --
Asynch Reset
 ctrlreg: in std_logic
 -- Control signal
);
end component;

component Controller2 is
 port (reset,clk, Int_Pend : in std_logic;
 Z, S, V, IDV, ODR : in std_logic;
 IR : in std_logic_vector(15 downto 12);
 Int_rdy, B_grnt : in std_logic;
 CE, R_W, LMDR1, LMDR0 : out std_logic;
 LMAR,LV, LZ, LS : out std_logic;

 285

 S0, S1, S2, S3, S4 : out std_logic;
 S5, S6, S7, S8, S9 : out std_logic;
 S10, LR5, Snd_Inst, B_req : out std_logic;
 Ci, LPC, INC_PC, S11 : out std_logic;
 LIR0, LIR1, LR4 : out std_logic;
 Clr_dec, Ld_dec : out std_logic;
 Req_inpt, Req_otpt : out std_logic;
 STOPLOOP : out std_logic;
 dbug_st : out std_logic_vector(3 downto 0);
 m5ctrl : out std_logic;
 count_out : out std_logic_vector (7 downto 0);
 decide: out std_logic
);
end component;

component mem_1 is
 port (data_bus : inout std_logic_vector(15 downto 0);
 Idata_bus : inout std_logic_vector(15 downto 0);
 clk, rst, CE: in std_logic;
 LMAR : in std_logic;
 LMDR1, LMDR0 : in std_logic;
 Addr : in std_logic_vector(7 downto 0);
 mux16 : in std_logic_vector(15 downto 0);
 Fin, sel_Ibus : out std_logic;
 MAddr_out : out std_logic_vector(7 downto 0));
end component;

component mux16_4x1
 Port (line_out : out std_logic_vector(15 downto 0);
 Sel : in std_logic_vector(1 downto 0);
 line_in3,line_in2,line_in1,line_in0 : in std_logic_vector(15 downto
0));
end component;

component mux16_5x1
 Port (line_out : out std_logic_vector(15 downto 0);
 Sel : in std_logic_vector(2 downto 0);
 line_in4,line_in3,line_in2,line_in1,line_in0 : in
std_logic_vector(15 downto 0));
end component;

component mux8_4x1
 Port (line_out : out std_logic_vector(7 downto 0);
 Sel : in std_logic_vector(1 downto 0);
 line_in3,line_in2,line_in1,line_in0 : in std_logic_vector(7 downto
0));
end component;

component PC
 Port (q_out : buffer std_logic_vector(7 downto 0);
 --q_out : inout std_logic_vector(7 downto 0);
 clk, clr : in std_logic;

 286

 D : in std_logic_vector(7 downto 0);
 load, inc : in std_logic);
end component;

component REGS
 port (q_out : buffer std_logic_vector(15 downto 0);
 --q_out : inout std_logic_vector(15 downto 0);
 clk, clr : in std_logic;
 D : in std_logic_vector(15 downto 0);
 Load : in std_logic);
End component;

component Shifter_16
 port(ALU_out : in std_logic_vector(15 downto 0);
 Sel : in std_logic_vector(1 downto 0);
 Shf_out : out std_logic_vector(15 downto 0)) ;
End component;

component ALU
 port(a, b : in std_logic_vector(15 downto 0);
 S8, S7, Cntl_I : in std_logic;
 C_out : out std_logic;
 Result : out std_logic_vector(15 downto 0)) ;
End component;

component mux16bit_2x1 is
 Port (line_out : out std_logic_vector(15 downto 0);
 Sel : in std_logic;
 line_in1,line_in0 : in std_logic_vector(15 downto 0));
end component;

Signal PC_out,MAR_val : std_logic_vector(7 downto 0);
signal PC_VAL: std_logic_vector(7 downto 0);
Signal R4_out, IR0_70, IR1_70, IR1_158 : std_logic_vector(7 downto 0);
signal R0_out, R1_out,R2_out, R3_out: std_logic_vector(15 downto 0);
signal shft_out, Alu_out, MDR_val: std_logic_vector(15 downto 0);
signal Alu_in : std_logic_vector(15 downto 0);
signal Inpt_Sel, Dec_Sel : std_logic_vector(1 downto 0);
signal IR_1512: std_logic_vector(15 downto 12);
signal Co, Ci : std_logic;
signal reg, Reg0_en, Reg1_en,Reg2_en, Reg3_en : std_logic;
signal Vo, So, Zo : std_logic;
signal CE, R_W1 : std_logic;
signal LMDR1, LMDR0, LMAR : std_logic;
signal LPC, INC_PC, LIR0, LIR1 : std_logic;
signal S9, S8, S7, S6 : std_logic;
signal LR4:std_logic;
signal S5, S4, S3, S2, S1, S0 : std_logic;
signal V, S, Z, LV, LS, LZ : std_logic;
signal temp1, temp2, val2 : std_logic_vector(1 downto 0);

 287

signal temp4, sixteen0, val1, B_in : std_logic_vector(15 downto 0);
-- added for debugging
signal val11 : std_logic_vector(15 downto 0);
signal Clr_dec, Ld_dec, one0, Instr_rdy : std_logic;
signal eight0, R5_out, mem_addr_out : std_logic_vector(7 downto 0);
signal LR5, sel_Ibus : std_logic;
signal S10,S11: std_logic;
signal Instr_bus, Idata_bus : std_logic_vector(15 downto 0);
signal temp3 : std_logic_vector(2 downto 0);
signal m5out:std_logic_vector(15 downto 0);
signal m5ctrl:Std_logic;
signal temp44 : std_logic_vector(4 downto 0);
signal temp5 : std_logic_vector (3 downto 0);
signal count_out : std_logic_vector(7 downto 0);
signal bus_req_pe : std_logic;
signal dout_bin: std_logic_vector(15 downto 0);-- Data ouput of the Register Reg_Bin
signal decide : std_logic; -- Control for the register Reg_Bin before ALU mux
signal R5mod: std_logic_vector(15 downto 0);
begin

-- added for dbugging
R5mod <= eight0&R5_out;
tmp1_dbug <= temp1;
tmp2_dbug <= temp2;
tmp3_dbug <= temp3;
R3_out_dbug <= R3_out;
R0_out_dbug <= R0_out;
shft_out_dbug <= shft_out;
tmp4_dbug <= temp4;
m5outdbg<=m5out;
count_out_pe <= count_out;
--
sixteen0 <= "0000000000000000";
eight0 <= "00000000";
one0 <= '0';

temp1 <= S9&S4;
temp2 <= S3&S2;
temp3 <= S11&S1&S0;
IR_1512 <= temp4(15 downto 12);
Dec_Sel <= temp4(11 downto 10);
Inpt_Sel <= temp4(9 downto 8);
IR0_70 <= temp4(7 downto 0);
-- added ports for viewing the control signals -----

temp44 <= s10&s8&s7&s6&s5;
temp5 <= LMDR1&LMDR0&LMAR&LPC;
--temp6 <= R_W& B_req;

tmp44_dbug <= temp44;
tmp5_dbug <= temp5;
--tmp6_dbug <= temp6;
Vo <= V;
So <= S;
Zo <= Z;
-- added for debugging assignment to a signal --------

 288

bus_req <= bus_req_pe;

Status: process (clk)
 Begin
 If (clk'event and clk='0') then
 if Alu_out = "0000000000000000" then
 Z <= '1';
 else
 Z <= '0';
 end if;
 S <= Alu_out(15);
 V <= (Co xor Ci);
 End if;
 End process;

--B_in <= eight0&R5_out when S10 = '1' else --new mux for immediate ops
 --Data_bus;

------------ change #1 to bring out correct values at the other input of the ALU

--B_in <= eight0&R5_out when S10 = '1' else --new mux for immediate ops
-- Data_bus when S10 ='0';-- else

RegBin_mux: mux16bit_2x1 port map(line_out => B_in,Sel => S10,
line_in0=>dout_bin, line_in1 =>
R5mod);
RegBin: Reg_B_in port map(clk=> clk, rst => rst, din => data_bus, dout
=> dout_bin,ctrlreg =>
decide);
M1: mux8_4x1 port map(PC_val,temp1,eight0,R4_out,IR1_158,IR0_70);
M2: mux8_4x1 port map(MAR_val,temp2,R3_out(7 downto
0),IR1_70,IR0_70,PC_out);
M3: mux16_5x1 port
map(MDR_val,temp3,Instr_Bus,sixteen0,shft_out,Alu_in,inpt);
M4: mux16_4x1 port map(Alu_in,Inpt_Sel,R3_out,R2_out,R1_out,R0_out);
M5 : mux16bit_2x1 port map(m5out,m5ctrl,shft_out,temp4);

P1: PC port map(PC_out, clk, RST, PC_val, LPC, INC_PC);
R5: PC port map(R5_out, clk, RST, IR0_70, LR5, one0);
R4: PC port map(R4_out, clk, one0, PC_out, LR4,one0); --modified needed 8 bit reg
--R0: REGS port map(R0_out, clk, one0, shft_out, Reg0_en);
R0: REGS port map(R0_out, clk, RST, shft_out, Reg0_en);
--R1: REGS port map(R1_out, clk, one0, shft_out, Reg1_en);
--R2: REGS port map(R2_out, clk, one0, shft_out, Reg2_en);
--R3: REGS port map(R3_out, clk, one0, m5out, Reg3_en);

R1: REGS port map(R1_out, clk, RST, shft_out, Reg1_en);
R2: REGS port map(R2_out, clk, RST, shft_out, Reg2_en);
R3: REGS port map(R3_out, clk, RST, m5out, Reg3_en);

-- Get input from Controller or Instr. Mem

Instr_Bus <= IData_bus when sel_Ibus = '1' else
 Cntl_bus when sel_Ibus = '0' else --added to fix bus conflicts

 289

 (others=>'0');

--Ir0: REGS port map(temp4, clk, one0, Instr_Bus, LIR0);

Ir0: REGS port map(temp4, clk, RST, Instr_Bus, LIR0);

-- option 1 : considering that the IR1 is not used at all
-- commenting the val1 which caused the buffer problem.

--val1 <= IR1_158&IR1_70;
-- added for dbugging
--val11<= val1;
--Ir1: REGS port map(val11, clk, one0, Instr_Bus, LIR1);

val2 <= s6&s5;
SH1: Shifter_16 port map(Alu_out, val2, shft_out) ;

A1: ALU port map(Alu_in, B_in, S8, S7, Ci, Co, Alu_out) ;

R_W <= R_W1; --sent to DMEM
Addr <= mem_addr_out; --sent to DMEM
Mem1: mem_1 port map(DATA_bus, IData_bus, clk, RST, CE,
LMAR,LMDR1,LMDR0,
 MAR_val,Mdr_val, FIN, sel_Ibus, mem_addr_out);

-- This provides Control for getting instructions from PE Controller
Instr_Rdy <= CInstr_Rdy when ((PC_out="00000000") or
(PC_out="00000001")
 or (PC_out="00000010")) else
 '1';

C1: Controller2 port map(RST, clk, one0, Zo, So, Vo, IDV, ODR, IR_1512,
Instr_Rdy, Bus_grant,
 CE, R_W1, LMDR1,LMDR0, LMAR,LV, LZ, LS, S0, S1, S2, S3, S4, S5, S6,
S7,
 S8, S9, S10, LR5, Snd_Instr, bus_req_pe, Ci, LPC, INC_PC, S11, LIR0,
LIR1,
 LR4, Clr_dec, Ld_dec, Rq_inpt, Rq_outpt,
STOPLOOP,dbug_st_pe,m5ctrl,count_out,decide =>
decide);

Decoder: process (clk, Clr_dec)
 begin
 if (clk'event and clk='1') then
 if (Clr_dec = '1') then
 Reg3_en <='0'; Reg2_en <='0';
 Reg1_en<='0'; Reg0_en <='0';
 elsif (Ld_dec='1') then
 case (Dec_Sel) is
 when "11" => Reg3_en <='1';
 Reg2_en <='0';
 Reg1_en <='0';

 290

 Reg0_en <='0';
 When "10" => Reg3_en <='0';
 Reg2_en <='1';
 Reg1_en <='0';
 Reg0_en <='0';
 When "01" => Reg3_en <='0';
 Reg2_en <='0';
 Reg1_en <='1';
 Reg0_en <='0';
 When "00" => Reg3_en <='0';
 Reg2_en <='0';
 Reg1_en <='0';
 Reg0_en <='1';
 When others => null;
 End case;
 End if;
 End if;
End process;
End architecture;

Module Name : aluv.vhd

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity ALU is
 port(a, b : in std_logic_vector(15 downto 0);
 S8, S7, Cntl_I : in std_logic;
 C_out : out std_logic;
 Result : out std_logic_vector(15 downto 0)) ;
End entity;

Architecture alu_arch of alu is

signal sel : std_logic_vector(2 downto 0);

component add_subber16

 port (
 A: IN std_logic_VECTOR(15 downto 0);
 B: IN std_logic_VECTOR(15 downto 0);
 C_IN: IN std_logic;
 C_OUT: OUT std_logic;
 ADD_SUB: IN std_logic;
 Q_OUT: OUT std_logic_VECTOR(15 downto 0));
end component;

signal as_out : std_logic_vector(15 downto 0);
signal asC_out, A_S : std_logic;
signal carryI : std_logic;

begin

sel <= S8&S7&Cntl_i;

 291

ad_sb: add_subber16 port map
 (A => a, B => b, C_IN=>CarryI, C_OUT =>asC_out,ADD_SUB => A_S,Q_OUT => as_out);

ops: process (sel, a, b, as_out, asC_out)
 begin
 case (sel) is
 when "000" => result <= a or b;
 C_out<='0'; CarryI <='0';
 A_S <= '1';
 When "001" => result <= a or b;
 C_out<='0'; CarryI <='0';
 A_S <= '1';
 When "100" => A_S <= '1'; --add op
 result <= as_out;
 C_out <= asC_out;
 CarryI <='0';
 When "101" => A_S <= '0'; --sub op
 result <= as_out;
 C_out <= asC_out;
 CarryI <='0';
 When "010" => result <= b; --pass through
 C_out <='0'; CarryI <='0';
 A_S <= '1';
 When "011" => result <= b; --pass through
 C_out <='0'; CarryI <='0';
 A_S <= '1';
 When "110" => result <= a and b;
 C_out<='0'; CarryI <='0';
 A_S <= '1';
 When "111" => result <= as_out; --Increment op
 C_out<= asC_out;
 A_S <= '1';
 CarryI <='1';
 When others => null;
 End case;
 End process;

End architecture;

Module Name : addsub16_synthable.vhd

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.std_logic_unsigned.ALL;
--use ieee.std_logic_arith.all;

ENTITY add_subber16 IS

 PORT(
 A: IN std_logic_vector(15 DOWNTO 0);
 B: IN std_logic_vector(15 DOWNTO 0);
 C_IN: IN std_logic;
 C_OUT: OUT std_logic;
 ADD_SUB: IN std_logic;
 Q_OUT: OUT std_logic_vector(15 DOWNTO 0));

 292

END add_subber16;

ARCHITECTURE sim OF add_subber16 IS
 SIGNAL S: std_logic_vector(15 DOWNTO 0);
 SIGNAL S1: std_logic_vector(15 DOWNTO 0);
 SIGNAL AA: std_logic_vector(15 DOWNTO 0);
 SIGNAL C: std_logic_vector(16 DOWNTO 0);
 SIGNAL T: std_logic_vector(15 DOWNTO 0);

BEGIN
Q_OUT<=S;
PROCESS(A,B,C_IN,ADD_SUB,C,T,AA,S1,S)
begin
if ADD_SUB='1' THEN
 C(0)<= C_IN;
 for i in 0 to 15 loop
 S(i) <= A(i) xor B(i) xor C(i);
 C(i+1)<= (A(i) and B(i)) or (A(i) and C(i)) or (B(i) and C(i));
 end loop;
 C_OUT <= C(16);
else
 T<=NOT (B+C_IN);
 AA<=A+1;

 C(0) <= C_in;
 for i in 0 to 15 loop
 S1(i) <= AA(i) xor T(i) xor C(i);
 C(i+1)<= (AA(i) and T(i)) or (AA(i) and C(i)) or (T(i) and C(i));
 end loop;
 --C_OUT <= NOT C(16);
 C_OUT <= C(16);
 if C(16) = '0'
 then
 --if s1(15) = '1' and A(15) = '0' then
 s <= (not s1) +1;
 else s <= s1;
 end if;
end if;
end process;
END sim;

Module Name : controller.vhd

--The IEEE standard 1164 package, declares std_logic, rising_edge(), etc.
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;
entity Controller2 is
 port (reset,clk, Int_Pend : in std_logic;
 Z, S, V, IDV, ODR : in std_logic;
 IR : in std_logic_vector(15 downto 12);
 Int_rdy, B_grnt : in std_logic;
 CE, R_W, LMDR1, LMDR0 : out std_logic;
 LMAR,LV, LZ, LS : out std_logic;
 S0, S1, S2, S3, S4 : out std_logic;

 293

 S5, S6, S7, S8, S9 : out std_logic;
 S10, LR5, Snd_Inst, B_req : out std_logic;
 Ci, LPC, INC_PC, S11 : out std_logic;
 LIR0, LIR1, LR4 : out std_logic;
 Clr_dec, Ld_dec : out std_logic;
 Req_Inpt, Req_Otpt : out std_logic;
 STOPLOOP: out std_logic;
 dbug_st : out std_logic_vector(3 downto 0);
 m5ctrl : out std_logic;
 count_out : out std_logic_vector (7 downto 0);
 decide : out std_logic
);
End controller2;
Architecture cont_arch of controller2 is
Type state_type is (RST, InstF, ID, OP0, OP1, OP2, OP3, OP4, OP5,OP6, OP7, OP8, OP9,
 OP10, OP11, OP12,OP13);
Signal STATE : state_type;
Signal count : std_logic_vector(7 downto 0); --shift reg for internal states
signal dbug_st_sig : std_logic_vector(3 downto 0); -- added for checking the states
begin
contl: process (clk, reset)
 begin
 if (reset='1') then
 STATE<=RST;
 elsif (clk'event and clk='1') then
 if (STATE=RST) then
 dbug_st_sig <= "1111";
 Snd_Inst <= '0';
 LMDR1 <= '1'; LMDR0 <= '1'; B_req <='0';
 CE <= '0'; R_W <='0'; Count <= "00000001";
 LMAR<='0'; LV<='0'; LZ<='0'; LS<='0';
 S0<='0'; S1<='0'; S2<='0'; S3<='0'; S4<='0';
 S5<='0'; S6<='0'; S7<='0'; S8<='0'; S9<='0';
 Ci<='0'; LR4<='0'; LIR0<='0'; LIR1<='0';
 Clr_dec <= '1'; Ld_dec <='0'; S11 <= '0';
 INC_PC<='0'; LPC<='0'; STATE <= InstF;
 S10 <= '0'; LR5 <= '0';
 req_inpt <= '0'; req_otpt <= '0';
 STOPLOOP <= '0';decide <= '0';
 m5ctrl <='0'; -- send shiftout to M5
 elsif (STATE=InstF) then
 dbug_st_sig <= "1110";
 m5ctrl <='0';
 decide <='0';
 LMDR1<='0'; LMDR0<='0'; S11 <= '0';
 LR5 <= '0'; S10 <='0'; Ci <='0';
 Ld_dec <='0'; S0 <= '1'; B_req <='0';
 LPC <= '0'; INC_PC<='0'; LMAR<='0';
 req_inpt <= '0'; req_otpt <= '0';
 CE<='0'; LIR0<='0'; LIR1<='0'; R_W <='0'; --added R_W part here
 STOPLOOP <= '0';
 if ((Int_Pend='1')or (Count="00000010")) then
 if (Count="00000001") then
 LR4 <= '1';Clr_dec<='1';
 Count<= Count(6 downto 0)&'0';
 STATE<=InstF;

 294

 elsif (Count="00000010") then
 LPC <= '1'; S4 <= '1'; S9 <= '1'; LR4 <='0';
 Count<=Count(6 downto 0)&'0'; STATE <= InstF;
 End if;
 elsif ((Int_Pend='0')or(Count="00000100")) then
 LMAR <= '1'; Clr_dec <= '1';
 S2 <= '0'; S3 <= '0'; Snd_Inst <= '1';
 STATE <= ID;
 if (Count="00000100") then
 Count <= "00"&Count(7 downto 2);
 End if;
 End if;
 elsif (STATE=ID) then
 dbug_st_sig <= "1101";
 if (Count="00000001") then
 if Int_rdy = '1' then --check to see if Instr ready
 LR4<='0'; LPC<='0'; LMAR<='0';
 CE <= '1'; R_W <='0'; Clr_dec <= '0';
 S10 <= '0'; Snd_Inst <= '0';
 LMDR1 <='1'; LMDR0<='0'; -- mdr output is mux16
 S11 <= '1'; S0 <= '0'; S1 <= '0'; -- mux output is instr_bus
 -- added m5ctrl signal to select IR0
 -- m5ctrl <='0';
 INC_PC <='1'; B_req <= '0';
 req_inpt <= '0'; req_otpt <= '0';
 Count <= Count(6 downto 0)&'0';
 STATE <= ID;
 else
 Count <= Count;
 STATE <= ID;
 end if;
 elsif (Count="00000010") then
 INC_PC <= '0'; CE <= '0';
 LIR0<='1'; -- instruction loaded in the IR0
 LMDR1 <= '1'; LMDR0 <= '1'; --hold MDR memory
 Count <= Count(6 downto 0)&'0';
 STATE <= ID;
 elsif (Count="00000100") then
 case (IR) is --decode opcode
 when "0000" => STATE <= OP0;
 when "0001" => STATE <= OP1;
 when "0010" => STATE <= OP2;
 when "0011" => STATE <= OP3;
 when "0100" => STATE <= OP4;
 when "0101" => STATE <= OP5;
 when "0110" => STATE <= OP6;
 when "0111" => STATE <= OP7;
 when "1000" => STATE <= OP8;
 when "1001" => STATE <= OP9;
 when "1010" => STATE <= OP10;
 when "1011" => STATE <= OP11;
 when "1100" => STATE <= OP12;
 when "1101" => STATE <= OP13;

 when others => STATE <= RST; --error has occurred RST
 end case;

 295

 Count <= "00"&Count(7 downto 2); LIR0 <= '0';
 End if;
 elsif (STATE=OP0) then
 dbug_st_sig <= "0000";
 if (Count="00000001") then
 S10 <= '0'; S11 <= '0';
 req_inpt <= '1'; req_otpt <= '0'; --signal input wanted
 if (IDV='0') then
 STATE <= OP0; Count <= Count;
 else
 STATE <= OP0;
 Count <= Count(6 downto 0)&'0';
 End if;
 elsif (Count="00000010") then
 req_inpt <= '0'; req_otpt <= '0';
 LMDR1<='1'; LMDR0 <='0';
 LMAR<='1'; S2<='1'; S0<='0';
 S3<='1'; S1<='0'; B_req <= '1';
 Count <= Count(6 downto 0)&'0';
 STATE <= OP0;
 elsif (Count="00000100") then
 if B_grnt = '1' then --check bus access
 LMDR1<='0'; LMDR0<='1';
 LMAR<='0';
 CE <='1'; R_W<='1';
 Count <= "00"&Count(7 downto 2);
 STATE <= InstF;
 else
 Count <= Count;
 STATE <= OP0;
 end if;
 end if;
 elsif (STATE=OP1) then
 dbug_st_sig <= "0001";
 if (Count = "00000001") then
 LMAR <= '1'; S2<='1'; S3<='1';
 S10 <= '0'; B_req <= '0'; S11 <= '0';
 Count <= Count(6 downto 0)&'0';
 STATE <= OP1;
 elsif (Count = "00000010") then
 LMAR <= '0'; B_req <= '1';
 Count <= Count(6 downto 0)&'0';
 STATE <= OP1;
 elsif (Count = "00000100") then
 if B_grnt = '1' then --check bus access
 CE <='1'; R_W<='0'; Ld_dec <='1';
 LMDR1<='0'; LMDR0<='0'; decide <= '1';
 LMAR <= '0';
 Count <= Count(6 downto 0)&'0';
 STATE<=OP1;
 else
 Count <= Count;
 STATE<= OP1;
 end if;
 elsif (Count = "00001000") then
 CE <='0'; LMDR0<='1'; B_req <='0';

 296

 S8<='1'; S7<='0'; Ci<='0';
 ld_dec <= '0'; clr_dec <= '1';
 Count <= "000"&Count(7 downto 3);
 STATE <= InstF;
 End if;
 elsif (STATE=OP2) then
 dbug_st_sig <= "0010";
 if (Count = "00000001") then
 LMAR<='1'; S2<='1'; S3<='1';
 LMDR1<='1'; LMDR0<='0'; B_req <= '1';
 S0<='1'; S1<='0'; S10 <= '0';
 Count <= Count(6 downto 0)&'0';
 STATE <= OP2; S11 <= '0';
 elsif (Count="00000010") then
 if B_grnt = '1' then
 LMAR <= '0'; LMDR1<='0'; LMDR0<='1';
 CE<='1'; R_W <= '1';
 Count <= '0'&Count(7 downto 1);
 STATE <= InstF;
 else
 Count <= Count;
 STATE <= OP2;
 end if;
 end if;
 elsif (STATE=OP3) then
 dbug_st_sig <= "0011";
 LPC <= '1'; S4 <= '0'; S9<='0';
 S10 <= '0'; B_req <= '0';
 STATE <= InstF; S11 <= '0';
 elsif (STATE=OP4) then
 dbug_st_sig <= "0100";
 if (Count="00000001") then
 LMAR <= '1'; S2<='1'; S3<='1';
 S10 <= '0'; B_req <= '0'; S11 <= '0';
 Count <= Count(6 downto 0)&'0';
 STATE <= OP4;
 elsif (Count="00000010") then
 LMAR <= '0'; B_req <= '1';
 Count <= Count(6 downto 0)&'0';
 STATE <= OP4;
 elsif (Count = "00000100") then
 if B_grnt = '1' then
 LMAR<='0'; --Ld_dec <='1';
 LMDR1 <='0'; LMDR0 <= '0'; --place in MDR
 CE <= '1'; R_W<='0'; S8<='0'; S7<='1';
 Ci<='0'; S5 <= '0'; S6<='0';
 Count <= Count(6 downto 0)&'0';
 STATE <= OP4;
 else
 Count <= Count;
 STATE <= OP4;
 end if;
 elsif (Count="00001000") then
 CE <= '0'; --Ld_dec <= '0';
 LMDR0 <= '1'; S8 <= '1'; S7 <= '0';
 Ci <= '1'; --subtract

 297

 --LMAR <= '1';
 S2<='0'; S3<='0'; B_req <= '0';
 Count <= Count(6 downto 0)&'0';
 STATE <= OP4;
 elsif (Count="00010000") then
 if ((S xor V)='0') then
 LMDR0<= '0';
 LPC<='1'; S4<='0'; S9<='0';
 Count <= "0000"&Count(7 downto 4);
 STATE <= InstF;
 else
 Count <= "0000"&Count(7 downto 4);
 STATE <= InstF;
 end if;
 end if;

-- elsif (STATE=OP5) then
-- dbug_st_sig <= "0101";
-- if (Count = "00000001") then
-- LMAR<='1'; S2<='1'; S3<='1';
-- S10 <= '0'; B_req <='0'; S11 <= '0';
-- Count <= Count(6 downto 0)&'0';
-- STATE<= OP5;
-- elsif (Count = "00000010") then
-- LMAR <= '0'; B_req <= '1';
--
-- Count <= Count(6 downto 0)&'0';
-- STATE<= OP5;
-- elsif (Count = "00000100") then
-- if B_grnt = '1' then
-- LMAR<='0';
-- CE<='1'; R_W<='0';
-- S8<='1'; S7<='0'; Ci<='1';
-- s11<='0'; s1<='1'; s0<='0';
-- LMDR1 <='1'; LMDR0 <= '0';
-- S2<='1'; S3<='1'; LMAR <= '1';
-- Count <= Count(6 downto 0)&'0';
-- STATE<=OP5;
-- else
-- Count <= Count;
-- STATE <= OP5;
-- end if;
-- elsif (Count = "00001000") then
-- LMDR1 <='0'; LMDR0 <= '1';
-- R_W <='1'; CE <='1';
-- LMAR <= '0';
-- Count <= Count(6 downto 0)&'0';
-- STATE <= OP5;
-- elsif (Count = "00010000") then
-- B_req <='0';
-- Count <= "0000" & Count(7 downto 4);
-- STATE <= InstF;
-- end if;

 298

-- Replaced logic for subtraction with logic for addition making suitable changes in
-- ALU signals.
 elsif (STATE=OP5) then
 dbug_st_sig <= "0101";
 if (Count = "00000001") then
 LMAR <= '1'; S2<='1'; S3<='1';
 S10 <= '0'; B_req <= '0'; S11 <= '0';
 Count <= Count(6 downto 0)&'0';
 STATE <= OP5;
 elsif (Count = "00000010") then
 LMAR <= '0'; B_req <= '1';
 Count <= Count(6 downto 0)&'0';
 STATE <= OP5;
 elsif (Count = "00000100") then
 if B_grnt = '1' then --check bus access
 CE <='1'; R_W<='0'; Ld_dec <='1';
 LMDR1<='0'; LMDR0<='0';
 LMAR <= '0';
 decide <= '1';
 Count <= Count(6 downto 0)&'0';
 STATE<=OP5;
 else
 Count <= Count;
 STATE<= OP5;
 end if;
 elsif (Count = "00001000") then
 CE <='0'; LMDR0<='1'; B_req <='0';
 S8<='1'; S7<='0'; Ci<='1';
 ld_dec <= '0'; clr_dec <= '1';
 Count <= "000"&Count(7 downto 3);
 STATE <= InstF;
 End if;

-- End changed part

 elsif (STATE=OP6) then
 dbug_st_sig <= "0110";
 if (Count = "00000001") then
 LMAR<='1'; S2<='1'; S3<='1';
 S10 <= '0'; B_req <= '0';
 Count <= Count(6 downto 0)&'0';
 STATE <= OP6; S11 <= '0';
 elsif (Count = "00000010") then
 LMAR <='0'; B_req <= '1';
 Count <= Count(6 downto 0)&'0';
 STATE <= OP6;
 elsif (Count = "00000100") then
 if B_grnt = '1' then
 LMAR<='0';
 LMDR1<='0'; LMDR0<='0';
 CE<='1'; R_W<='0';
 req_inpt <= '0'; req_otpt <= '1'; --signal output rdy
 Count <= Count(6 downto 0)&'0';

 299

 STATE <= OP6;
 else
 Count <= Count;
 STATE <= OP6;
 end if;
 elsif (Count = "00001000") then
 CE<='0';
 if (ODR='0') then
 LMDR1 <='1'; LMDR0 <= '1'; --MAINTAIN DATA
 STATE <= OP6; Count <= Count;
 B_req <= '0';
 else
 LMDR1<='0'; LMDR0<='1'; B_req <= '0';
 req_inpt <= '0'; req_otpt <= '0';
 Count <= "000"&Count(7 downto 3);
 STATE <= InstF;
 end if;
 end if;
 elsif (STATE=OP7) then
 dbug_st_sig <= "0111";
 if (Count = "00000001") then
 LMAR <= '1'; S2 <='1'; S3<='1';
 Count <= Count(6 downto 0)&'0';
 S10 <='0'; B_req <= '0';
 STATE <= OP7; S11 <= '0';
 elsif (Count = "00000010") then
 LMAR <= '0'; B_req <= '1';
 Count <= Count(6 downto 0)&'0';
 STATE <= OP7;
 elsif (Count = "00000100") then
 if B_grnt = '1' then
 LMAR<='0'; Ld_dec <= '1';
 LMDR1<='0'; LMDR0<='0';
 CE<='1'; R_W<='0';
 decide <= '1';
 Count <= Count(6 downto 0)&'0';
 STATE <= OP7;
 else
 Count <= Count;
 STATE <= OP7;
 end if;
 elsif (Count = "00001000") then
 CE<='0'; clr_dec <= '1'; B_req <= '0';
 LMDR0<='1'; ld_dec <= '0';
 S9<='0'; S7<='1'; S8<='0';
 Ci<='0'; S5<='0'; S6<='0';
 Count <= "000"&Count(7 downto 3);
 STATE <= InstF;
 end if;
 elsif (STATE=OP8) then -- STOP PROCESS LOOP
 dbug_st_sig <= "1000";
 if (Count="00000001") then
 LMAR <= '1'; S2<='1'; S3<='1';
 S10 <= '0'; B_req <= '0'; S11 <= '0';
 Count <= Count(6 downto 0)&'0';
 STATE <= OP8;

 300

 elsif (Count="00000010") then
 LMAR <= '0'; B_req <= '1';
 Count <= Count(6 downto 0)&'0';
 STATE <= OP8;
 elsif (Count = "00000100") then
 if B_grnt = '1' then
 LMAR<='0';
 LMDR1 <='0'; LMDR0 <= '0'; --place in MDR
 CE <= '1'; R_W<='0'; S8<='0'; S7<='1';
 Ci<='0'; S5 <= '0'; S6<='0';
 Count <= Count(6 downto 0)&'0';
 STATE <= OP8;
 else
 Count <= Count;
 STATE <= OP8;
 end if;
 elsif (Count="00001000") then
 CE <= '0';
 LMDR0 <= '1'; S8 <= '1'; S7 <= '0';
 Ci <= '1'; --subtract
 S2<='0'; S3<='0'; B_req <= '0';
 Count <= Count(6 downto 0)&'0';
 STATE <= OP8;
 elsif (Count="00010000") then
 if (Z='1') then
 STOPLOOP <= '1';
 LPC<='1'; S4<='0'; S9<='0';
 end if;
 Count <= "0000"&Count(7 downto 4);
 STATE <= InstF;
 end if;
 elsif (STATE=OP9) then
 dbug_st_sig <= "1001";
 if (Count = "00000001") then
 LMDR1 <= '1'; LMDR0 <= '1';
 S11 <= '0'; Ld_dec <= '1';
 -- extra logic added to get the output of IR0 directly to R3
 m5ctrl <='0';
 Count <= Count(6 downto 0)&'0';
 STATE <= OP9; B_req <= '0';
 elsif (Count = "00000010") then
 LMDR1 <= '0'; LMDR0 <= '1';
 S8 <= '0'; S7 <= '1'; Ci <= '0';
 S5 <= '0'; S6 <= '0'; S10 <='0';
 Ld_dec <= '0'; clr_dec <= '1';
 Count <= '0'&Count(7 downto 1);
 STATE <= InstF;
 end if;
 elsif (STATE=OP10) then
 dbug_st_sig <= "1010";
 B_req <= '0';
 if (Count = "00000001") then
 -- added to get output from shifter
 m5ctrl <= '1';
 S0 <= '1'; S1 <= '1'; S10 <='0'; --Ld MDR with 0
 LMDR1 <= '1'; LMDR0 <= '0';

 301

 ld_dec<='1'; S11 <= '0';
 Count <= Count(6 downto 0) &'0';
 STATE <= OP10;
 elsif (Count = "00000010") then
 LMDR1 <='0'; LMDR0 <= '1'; --ADD one, INC OP
 S8 <= '1'; S7 <='1'; Ci <='1';
 S5 <= '0'; S6 <='0';
 ld_dec <= '0'; clr_dec<='1';
 Count <= '0'& Count(7 downto 1);
 STATE <= InstF;
 end if;
 elsif (STATE=OP11) then
 dbug_st_sig <= "1011";
 B_req <= '0';
 if (Count = "00000001") then
 LR5 <= '1'; S11 <= '0'; --ld_dec <= '1';
 ld_dec <= '0';
 Count <= Count(6 downto 0)&'0';
 STATE <= OP11;
 elsif (Count = "00000010") then
 LR5 <= '0'; S10 <='1';
 --ld_dec <= '0'; clr_dec <= '1';
 -- we need R3_out to appear at MAR input
 -- so m5ctrl<= '1'; so that shifter output is selected and M2 output
 -- should be R3_out(7 downto 0) so set proper values for s3 and s2 => "11"
 m5ctrl <= '1'; -- get output from shifter
 ld_dec <= '1'; clr_dec <= '0';
 S8 <= '1'; S7 <= '0'; Ci <= '0';
 S5 <= '0'; S6 <= '0';
 s3<= '1'; s2 <= '1';
 Count <= Count(6 downto 0)&'0';
 State <= OP11;
 elsif (count = "00000100") then
 LMAR <= '1';
 ld_dec<='0';clr_dec <='1';
 Count <= "00"& Count(7 downto 2);
 STATE <= InstF;
 end if;
 elsif (STATE=OP12) then -- sub rd, imm
 dbug_st_sig <= "1100";
 B_req <= '0';
 if (Count = "00000001") then
 LR5 <= '1'; S11 <= '0'; ld_dec <= '1';
 Count <= Count(6 downto 0)&'0';
 STATE <= OP12;
 elsif (Count = "00000010") then
 LR5 <= '0'; S10 <='1';
 ld_dec <= '0'; clr_dec <= '1';
 S8 <= '1'; S7 <= '0'; Ci <= '1';
 S5 <= '0'; S6 <= '0';
 Count <= '0'&Count(7 downto 1);
 STATE <= InstF;
 end if;

-- addition of and extra no -op state ----

 302

elsif (STATE=OP13) then
 dbug_st_sig <= "1101";
 if (Count = "00000001") then
 LMAR<='1'; S2<='1'; S3<='1';
 S10 <= '0'; B_req <= '0';
 Count <= Count(6 downto 0)&'0';
 STATE <= OP6; S11 <= '0';
 elsif (Count = "00000010") then
 LMAR <='0';
 Count <= Count(6 downto 0)&'0';
 STATE <= OP13;
 elsif (Count = "00000100") then
 -- if B_grnt = '1' then
 LMAR<='0';
 -- LMDR1<='0'; LMDR0<='0';
 -- CE<='1'; R_W<='0';
 -- req_inpt <= '0'; req_otpt <= '1'; --signal output rdy
 Count <= Count(6 downto 0)&'0';
 STATE <= OP13;
 --else
 -- Count <= Count;
 -- STATE <= OP13;
 -- end if;
 elsif (Count = "00001000") then
 CE<='0';
 Count <= "000"&Count(7 downto 3);
 STATE <= InstF;
 -- end if;
 end if;

 else STATE <= RST; --error, goto reset state
 end if;
 end if;
end process;
 dbug_st <=dbug_st_sig;
 count_out <= count;
end architecture;

Module Name : mempe.vhd

--The IEEE standard 1164 package, declares std_logic, rising_edge(), etc.
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;
-- synopsys translate_off

Library XilinxCoreLib;

-- synopsys translate_on

entity mem_1 is
 port (data_bus : inout std_logic_vector(15 downto 0);
 Idata_bus : inout std_logic_vector(15 downto 0);
 clk, rst, CE: in std_logic;
 LMAR : in std_logic;

 303

 LMDR1, LMDR0 : in std_logic;
 Addr : in std_logic_vector(7 downto 0);
 mux16 : in std_logic_vector(15 downto 0);
 Fin, Sel_Ibus : out std_logic;
 Maddr_out : out std_logic_vector(7 downto 0));
end entity;

architecture mem_arch of mem_1 is
--
-- This file was created by the Xilinx CORE Generator tool, and --
-- is (c) Xilinx, Inc. 1998, 1999. No part of this file may be --
-- transmitted to any third party (other than intended by Xilinx) --
-- or used without a Xilinx programmable or hardwire device without --
-- Xilinx's prior written permission. --
--
component proc_imem
 port (
 addr: IN std_logic_VECTOR(7 downto 0);
 clk: IN std_logic;
 din: IN std_logic_VECTOR(15 downto 0);
 dout: OUT std_logic_VECTOR(15 downto 0);
 we: IN std_logic);
end component;

signal Mq_out : std_logic_vector(15 downto 0);
signal r_en : std_logic;
signal Mdata_out, Mdata_in : std_logic_vector(15 downto 0);
signal sel : std_logic_vector(1 downto 0);
signal q_out : std_logic_vector(7 downto 0);
signal data_in, data_out : std_logic_vector(15 downto 0);
signal Idata_out, Ddata_out : std_logic_vector(15 downto 0);
signal one, zero : std_logic;

Begin
one <= '1';
zero <= '0';

MARreg: process (clk, LMAR, rst) --MAR register
 begin
 if rst = '1' then
 q_out <= (others=>'0');
 elsif (clk'event and clk='1') then
 if (LMAR='1') then
 q_out <= addr;
 else q_out <= q_out;
 end if;
 end if;
 end process;

Maddr_out <= q_out;
sel_Ibus <= '0' when (q_out = "00000000" or q_out= "00000001" or q_out="00000010") else
 '1'; --determine source of Instruction

FIN <= '1' when q_out = "00000000" else --get instr from PE Controller not IMEM
 '0';

 304

data_bus <= Mq_out when (r_en = '0') else
 (others=>'Z');

--
-- Component Instantiation
--
Instr_mem : proc_imem port map (addr => q_out, clk => clk, din => data_in,
 dout => Idata_out, we => ZERO);

Idata_bus <= Idata_out when (CE='0') else
 (others=>'0');

--MDR register
Mdata_in <= Data_bus when r_en='1' else
 (others=>'0');

r_en <= '0' when ((LMDR1='0')and(LMDR0='1')) else
 '1';

sel <= LMDR1 & LMDR0;

regout: process (clk, rst)
 begin
 if rst = '1' then
 Mq_out <= (others=>'0');
 elsif (clk'event and clk='0') then -- at negative edge of the clock
 case (sel) is
 when "00" => Mq_out <= Mdata_in;
 when "01" => Mq_out <= Mq_out;
 when "10" => Mq_out <= mux16;
 when "11" => Mq_out <= Mq_out;
 when others => null;
 end case;
 end if;
 end process;

end architecture;

Module Name : proc_imem.xco (Xilinx IP Core)

--
-- This file is owned and controlled by Xilinx and must be used --
-- solely for design, simulation, implementation and creation of --
-- design files limited to Xilinx devices or technologies. Use --
-- with non-Xilinx devices or technologies is expressly prohibited --
-- and immediately terminates your license. --
-- --
-- XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS" --
-- SOLELY FOR USE IN DEVELOPING PROGRAMS AND SOLUTIONS FOR --
-- XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE, OR INFORMATION --
-- AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, APPLICATION --
-- OR STANDARD, XILINX IS MAKING NO REPRESENTATION THAT THIS --
-- IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT, --
-- AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE --

 305

-- FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY --
-- WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE --
-- IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR --
-- REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF --
-- INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS --
-- FOR A PARTICULAR PURPOSE. --
-- --
-- Xilinx products are not intended for use in life support --
-- appliances, devices, or systems. Use in such applications are --
-- expressly prohibited. --
-- --
-- (c) Copyright 1995-2003 Xilinx, Inc. --
-- All rights reserved. --
--
-- You must compile the wrapper file proc_imem.vhd when simulating
-- the core, proc_imem. When compiling the wrapper file, be sure to
-- reference the XilinxCoreLib VHDL simulation library. For detailed
-- instructions, please refer to the "CORE Generator Guide".

-- The synopsys directives "translate_off/translate_on" specified
-- below are supported by XST, FPGA Compiler II, Mentor Graphics and Synplicity
-- synthesis tools. Ensure they are correct for your synthesis tool(s).

-- synopsys translate_off
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

Library XilinxCoreLib;
ENTITY proc_imem IS
 port (
 addr: IN std_logic_VECTOR(7 downto 0);
 clk: IN std_logic;
 din: IN std_logic_VECTOR(15 downto 0);
 dout: OUT std_logic_VECTOR(15 downto 0);
 we: IN std_logic);
END proc_imem;

ARCHITECTURE proc_imem_a OF proc_imem IS

component wrapped_proc_imem
 port (
 addr: IN std_logic_VECTOR(7 downto 0);
 clk: IN std_logic;
 din: IN std_logic_VECTOR(15 downto 0);
 dout: OUT std_logic_VECTOR(15 downto 0);
 we: IN std_logic);
end component;

-- Configuration specification
 for all : wrapped_proc_imem use entity XilinxCoreLib.blkmemsp_v5_0(behavioral)
 generic map(
 c_sinit_value => "0",
 c_reg_inputs => 0,
 c_yclk_is_rising => 1,
 c_has_en => 0,
 c_ysinit_is_high => 1,

 306

 c_ywe_is_high => 1,
 c_ytop_addr => "1024",
 c_yprimitive_type => "16kx1",
 c_yhierarchy => "hierarchy1",
 c_has_rdy => 0,
 c_has_limit_data_pitch => 0,
 c_write_mode => 0,
 c_width => 16,
 c_yuse_single_primitive => 0,
 c_has_nd => 0,
 c_enable_rlocs => 0,
 c_has_we => 1,
 c_has_rfd => 0,
 c_has_din => 1,
 c_ybottom_addr => "0",
 c_pipe_stages => 0,
 c_yen_is_high => 1,
 c_depth => 256,
 c_has_default_data => 0,
 c_limit_data_pitch => 18,
 c_has_sinit => 0,
 c_mem_init_file => "proc_imem.mif",
 c_default_data => "0",
 c_ymake_bmm => 0,
 c_addr_width => 8);
BEGIN

U0 : wrapped_proc_imem
 port map (
 addr => addr,
 clk => clk,
 din => din,
 dout => dout,
 we => we);
END proc_imem_a;

-- synopsys translate_on

Module Name : mux16b.vhd

--The IEEE standard 1164 package, declares std_logic, rising_edge(), etc.
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

Entity mux16_4x1 is
 Port (line_out : out std_logic_vector(15 downto 0);
 Sel : in std_logic_vector(1 downto 0);
 line_in3,line_in2,line_in1,line_in0 : in std_logic_vector(15 downto 0));
end entity;

architecture mux16 of mux16_4x1 is

begin

 307

it3: process(Sel,line_in3,line_in2,line_in1,line_in0)
 begin
 case (Sel) is
 when "00" => line_out <= line_in0;
 when "01" => line_out <= line_in1;
 when "10" => line_out <= line_in2;
 when "11" => line_out <= line_in3;
 when others =>line_out <= (others=>'X');
 end case;
 end process;

end architecture;

Module Name : mux16b5.vhd

--The IEEE standard 1164 package, declares std_logic, rising_edge(), etc.
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

Entity mux16_5x1 is
 Port (line_out : out std_logic_vector(15 downto 0);
 Sel : in std_logic_vector(2 downto 0);
 line_in4, line_in3, line_in2: in std_logic_vector(15 downto 0);
 line_in1, line_in0 : in std_logic_vector(15 downto 0));
end entity;

architecture mux165 of mux16_5x1 is

begin

it3: process(Sel,line_in4,line_in3,line_in2,line_in1,line_in0)
 begin
 case (Sel) is
 when "000" => line_out <= line_in0;
 when "001" => line_out <= line_in1;
 when "010" => line_out <= line_in2;
 when "011" => line_out <= line_in3;
 when "100" => line_out <= line_in4;
 when others => null;
 end case;
 end process;

end architecture;

Module Name : mux_2x1.vhd

--The IEEE standard 1164 package, declares std_logic, rising_edge(), etc.
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

Entity mux16bit_2x1 is
 Port (line_out : out std_logic_vector(15 downto 0);

 308

 Sel : in std_logic;
 line_in1,line_in0 : in std_logic_vector(15 downto 0));
end entity;

architecture myarch of mux16bit_2x1 is

begin

muxproc: process(Sel,line_in1,line_in0)
 begin
 case Sel is
 when '0' => line_out <= line_in0;
 when '1' => line_out <= line_in1;
 when others =>NULL;--line_out <= (others=>'X');
 end case;
 end process;

end architecture;

Module Name : mux8b.vhd

--The IEEE standard 1164 package, declares std_logic, rising_edge(), etc.
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

Entity mux8_4x1 is
 Port (line_out : out std_logic_vector(7 downto 0);
 Sel : in std_logic_vector(1 downto 0);
 line_in3,line_in2,line_in1,line_in0 : in std_logic_vector(7 downto 0));
end entity;

architecture mux8 of mux8_4x1 is

begin

it3: process(Sel,line_in3,line_in2,line_in1,line_in0)
 begin
 case (Sel) is
 when "00" => line_out <= line_in0;
 when "01" => line_out <= line_in1;
 when "10" => line_out <= line_in2;
 when "11" => line_out <= line_in3;
 when others =>line_out <= (others=>'X');
 end case;
 end process;

end architecture;

Module Name : pc.vhd

--The IEEE standard 1164 package, declares std_logic, rising_edge(), etc.
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

 309

use IEEE.std_logic_unsigned.all;

Entity PC is
 Port (q_out : buffer std_logic_vector(7 downto 0);
 --q_out : inout std_logic_vector(7 downto 0);
 clk, clr : in std_logic;
 D : in std_logic_vector(7 downto 0);
 load, inc : in std_logic);
end entity;

architecture pc_arch of PC is

signal d_in : std_logic_vector(7 downto 0);

begin

it5: process (clk, clr)
 begin
 if (clr='1') then
 q_out <= (others=>'0');
 elsif (clk'event and clk='1') then
 if ((inc='1') and (load='0')) then
 q_out <= (q_out+1);
 elsif ((load='1') and (inc='0')) then
 q_out <= D;
 else q_out <= q_out;
 end if;
 end if;
 end process;

end architecture;

Module Name : reg_bin.vhd
-- This Register isolates the Data bus from the Input Mux before the ALU
-- which prevents "X" and "Z"s from appearing on the mux output
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity Reg_B_in is
port(din: in std_logic_vector(15 downto 0); -- data from data_bus
 dout:out std_logic_vector(15 downto 0); -- register output
 clk: in std_logic; -- clk
 rst: in std_logic; -- Asynch Reset
 ctrlreg: in std_logic -- Control signal
);
end Reg_B_in;
architecture Behavioral of Reg_B_in is
begin
process(rst,clk)
begin
if rst = '1' then
 dout<=(others=>'0');
elsif(clk'event and clk='1') then
 case ctrlreg is

 310

 when '0' => dout <=(others=>'0');
 when others => dout <= din;
 end case;
end if;
end process;
end Behavioral;

Module Name : regpe.vhd

--The IEEE standard 1164 package, declares std_logic, rising_edge(), etc.
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity REGS is
 port (q_out : buffer std_logic_vector(15 downto 0);
 --q_out : inout std_logic_vector(15 downto 0);
 clk, clr : in std_logic;
 D : in std_logic_vector(15 downto 0);
 Load : in std_logic);
End entity;

Architecture regs_arch of regs is

Begin

It: process(clk, clr)
 Begin
 if (clr='1') then
 q_out <= (others=>'0');
 elsif (clk'event and clk='0') then
 if (load='1') then
 q_out <= D;
 else
 q_out <= q_out;
 end if;
 end if;
 end process;

end architecture;

Module Name : shifter_16.vhd

--The IEEE standard 1164 package, declares std_logic, rising_edge(), etc.
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity Shifter_16 is
 port(ALU_out : in std_logic_vector(15 downto 0);
 Sel : in std_logic_vector(1 downto 0);
 Shf_out : out std_logic_vector(15 downto 0)) ;
End entity;

 311

Architecture shift of shifter_16 is

begin

it2: process (ALU_out, Sel)
 begin
 case (Sel) is
 when "00" => Shf_out <= ALU_out;
 when "01" => Shf_out <= (ALU_out(14 downto 0) &'0');
 when "10" => Shf_out <= ('0'&ALU_out(15 downto 1));
 when "11" => Shf_out <= (others=>'0');
 when others => null;
 end case;
 end process;

end architecture;

Module Name : token_mapr.vhd

library IEEE;
use IEEE.std_logic_1164.all;

entity Token_mapr is
 port (
 token_bus: inout STD_LOGIC_VECTOR (31 downto 0);
 --bus_req: buffer STD_LOGIC;
 bus_req: inout STD_LOGIC;
 clk : in std_logic;
 rst : in std_logic;
 bus_grnt: in STD_LOGIC;
 Avail3: in STD_LOGIC_VECTOR (4 downto 0);
 Avail4: in STD_LOGIC_VECTOR (4 downto 0);
 Avail2: in STD_LOGIC_VECTOR (4 downto 0);
 Avail5: in STD_LOGIC_VECTOR (4 downto 0);
 obstemp6_prtdbug,t6_prtdbug: out std_logic_vector(22 downto 0)
 --Pl_in_dbug :out std_logic_vector(6 downto 0);
 --tok_in_dbug : out std_logic_vector(16 downto 0)
);
end Token_mapr;

architecture Token_mapr_arch of Token_mapr is

component PRT_Cntl
 port (
 Tokbus: inout STD_LOGIC_VECTOR (31 downto 0);
 clk : in std_logic;
 rst : in std_logic;
 tbus_grant: in STD_LOGIC;
 --tbus_req: buffer STD_LOGIC;
 tbus_req: inout STD_LOGIC;
 tok_in : out std_logic_vector(16 downto 0);
 Pl_in : out std_logic_vector(6 downto 0);
 Addr : out std_logic_vector(7 downto 0);
 clr : out std_logic;
 q2 : out std_logic;

 312

 chip_on : out std_logic;
 nxt_token : in std_logic_vector(22 downto 0)
);
end component;

component dy_load_bal_ckt
 port(Clk: in std_logic;
 Clear : in std_logic;
 On1 : in std_logic;
 Tok_in: in std_logic_vector(16 downto 0);
 PL_in: in std_logic_vector(6 downto 0);
 Aval0, Aval1, Aval2,Aval3,Aval4,Aval5,Aval6,Aval7 : in std_logic_vector(4 downto 0);
 Addr: in std_logic_vector(7 downto 0);
 OBUS: out std_logic_vector(22 downto 0);
 Q2: in std_logic;
 obstemp6_dbug,t6_dbug:out std_logic_vector(22 downto 0));
end component;

signal prt_tok_in : std_logic_vector(16 downto 0);
signal prt_pl_in : std_logic_vector(6 downto 0);
signal prt_addr : std_logic_vector(7 downto 0);
signal prt_clr, prt_q2, en : std_logic;
signal prt_out : std_logic_vector(22 downto 0);
signal five1 : std_logic_vector(4 downto 0);

begin

 five1 <= "11111";

 C1: PRT_CNTL port map(Tokbus=> token_bus, clk => clk, rst => rst, tbus_grant=> bus_grnt,
 tbus_req=> bus_req, tok_in => prt_tok_in, Pl_in =>prt_pl_in,
 Addr =>prt_addr, clr =>prt_clr, q2 => prt_q2, chip_on => en,
 nxt_token => prt_out);

 M1: dy_load_bal_ckt port map (Clk => clk, Clear => prt_clr, On1 => en, Tok_in =>prt_tok_in,
 PL_in => prt_pl_in, Aval0=> five1, Aval1=> Avail2, Aval2=> Avail3,
 Aval3=> Avail4, Aval4=> Avail5, Aval5=> five1, Aval6=> five1,
 Aval7=> five1, Addr=> prt_addr, OBUS=> prt_out, Q2=> prt_q2,
 obstemp6_dbug =>obstemp6_prtdbug,t6_dbug=>t6_prtdbug);
end Token_mapr_arch;

Module Name : dy_load_bal_ckt.vhd

-- FILENAME : dlbc.v
-- MODULE : dy_load_bal_ckt
--The IEEE standard 1164 package, declares std_logic, rising_edge(), etc.
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;
entity dy_load_bal_ckt is
 port(Clk: in std_logic;
 Clear : in std_logic;
 On1 : in std_logic;
 Tok_in: in std_logic_vector(16 downto 0);
 PL_in: in std_logic_vector(6 downto 0);

 313

 Aval0, Aval1, Aval2,Aval3,Aval4,Aval5,Aval6,Aval7 : in std_logic_vector(4 downto 0);
 Addr: in std_logic_vector(7 downto 0);
 OBUS: out std_logic_vector(22 downto 0);
 Q2: in std_logic;
 obstemp6_dbug,t6_dbug:out std_logic_vector(22 downto 0)
);
End dy_load_bal_ckt;
Architecture mapr of dy_load_bal_ckt is
component mcntrlr
 port(start : buffer std_logic;
 c1,c2,c3,c4,c5,c6,c7,c8,c9 : out std_logic;
 q1, q2, q3: in std_logic;
 On1, clr : in std_logic;
 Clk: in std_logic);
End component;
component dec3x5
 port(do: out std_logic_vector(5 downto 1);
 s : in std_logic_vector(2 downto 0));
end component;
component map_Fifo
 port (data_out : out std_logic_vector(16 downto 0);
 data_in: in std_logic_vector(16 downto 0);
 stack_full : inout std_logic;
 sigl : out std_logic;
 clk, rst : in std_logic;
 write_to_stack, read_from_stack: in std_logic);
end component;
component ic_net
 port(A1,A2,A3,A4,A5 : out std_logic_vector(5 downto 1);
 S1,S2,S3,S4,S5 : in std_logic_vector(7 downto 1);
 Aval0,Aval1,Aval2 : in std_logic_vector(5 downto 1);
 Aval3,Aval4,Aval5 : in std_logic_vector(5 downto 1);
 Aval6,Aval7 : in std_logic_vector(5 downto 1));
End component;
component register_R0
 port(outr0 : buffer std_logic_vector(16 downto 0);
 clk, clear : in std_logic;
 Prt_in : in std_logic_vector(16 downto 0);
 C2 : in std_logic);
End component;
component mux_2x1
 port(muxout : out std_logic;
 in1, in0 : in std_logic;
 sel : in std_logic);
end component;
component ram_unit
 port (Ramout : out std_logic_vector(6 downto 0);
 Ramin : in std_logic_vector(6 downto 0);
 PN : in std_logic_vector(4 downto 0);
 C4, c9, Dec_in, clk : in std_logic);
End component;
component regA1_5
 port(out_reg : buffer std_logic_vector(4 downto 0);
 clk, clear : in std_logic;
 reg_in : in std_logic_vector(4 downto 0);
 c7 : in std_logic);

 314

end component;
component reg_Pl
 port(out_pl : buffer std_logic_vector(6 downto 0);
 clk, clear : in std_logic;
 Pl_in : in std_logic_vector(6 downto 0);
 C5 : in std_logic);
End component;
component comparator
 port(a_lt_b: out std_logic;
 a_gte_b : out std_logic;
 a, b : in std_logic_vector(5 downto 1));
end component;
component regR1_4
 port(regout : buffer std_logic_vector(22 downto 0);
 clk, clear : in std_logic;
 regin : in std_logic_vector(22 downto 0);
 c5, c6, y : in std_logic);
end component;
component regR5
 port(regout : buffer std_logic_vector(22 downto 0);
 clk, clear : in std_logic;
 regin : in std_logic_vector(22 downto 0);
 c5,c6,y,f : in std_logic);
end component;
component regR6
 port(regout : buffer std_logic_vector(22 downto 0);
 clk, clear : in std_logic;
 regin : in std_logic_vector(22 downto 0);
 c8, c10, c11 : in std_logic);
end component;
component regR7
 port(regout : buffer std_logic_vector(22 downto 0);
 clk, clear : in std_logic;
 regin : in std_logic_vector(22 downto 0);
 c5, c6, y, F : in std_logic);
end component;
Constant one : std_logic := '1';
Constant zero: std_logic := '0';
Signal fifo_out, OUT_R0: std_logic_vector(16 downto 0);
Signal dec_out: std_logic_vector(5 downto 1);
Signal PN, A1, A2, A3, A4, A5, OUT_A1, OUT_A2 : std_logic_vector(4 downto 0);
Signal OUT_A3, OUT_A4, OUT_A5: std_logic_vector(4 downto 0);
Signal PL_out1, PL_out2, PL_out3, PL_out4: std_logic_vector(6 downto 0);
Signal PL_out5,PL1, PL2, PL3, PL4, PL5: std_logic_vector(6 downto 0);
Signal ORC2_C7,q1,C1, C2, C3, C4, C5, C6, C7, C8, C9: std_logic;
Signal a, b, c, d, e, f, g, h, i, j, a_bar, b_bar, c_bar: std_logic;
signal d_bar, e_bar, f_bar, g_bar, h_bar, i_bar, j_bar: std_logic;
signal Y1, Y2, Y3, Y4, Y5, start, stack_full: std_logic;
signal F1, fifo_wr : std_logic;
signal t1,t2,t3,t4,t5,t6, t7 : std_logic_vector(22 downto 0);
signal OBUS_sig : std_logic_vector(22 downto 0);
--signal OBStemp : std_logic_vector(22 downto 0);
-- trying to dbug the OBUStemp buffer problem
signal OBStemp1,OBStemp2,OBStemp3 : std_logic_vector(22 downto 0);
signal OBStemp4,OBStemp5,OBStemp6,OBStemp7 : std_logic_vector(22 downto 0);
signal OBStemp5_7 : std_logic_vector(22 downto 0);

 315

--signal not_F : std_logic;
begin
--**** FIFO ****
FI_EN: process (tok_in)
 begin
 if tok_in = "00000000000000000" then
 fifo_wr <= '0';
 else
 fifo_wr <= '1';
 end if;
 end process;

f0: map_FIFO port map(fifo_out, tok_in, stack_full, q1, CLK, CLEAR, fifo_wr, C1);
--**** REGISTER R0 ****
r0: register_R0 port map(OUT_R0, CLK, CLEAR, fifo_out, C1);
--**** DECODER ****
d0: dec3x5 port map(dec_out, ADDR(2 downto 0));
--**** OR_(C2&C7) ****
orc2_c7 <= c2 or c7;

--**** MUX AFTER REG_R0 ****
mux_r0_0: mux_2x1 port map(PN(0), ADDR(3), OUT_R0(8), C7);
mux_r0_1: mux_2x1 port map(PN(1), ADDR(4), OUT_R0(9), C7);
mux_r0_2: mux_2x1 port map(PN(2), ADDR(5), OUT_R0(10), C7);
mux_r0_3: mux_2x1 port map(PN(3), ADDR(6), OUT_R0(11), C7);
mux_r0_4: mux_2x1 port map(PN(4), ADDR(7), OUT_R0(12), C7);
--**** RAM_UNITS 1_5 ****
ram0: ram_unit port map(PL_out1, PL_in, PN, C2, C7, dec_out(1), clk);
ram1: ram_unit port map(PL_out2, PL_in, PN, C2, C7, dec_out(2), clk);
ram2: ram_unit port map(PL_out3, PL_in, PN, C2, C7, dec_out(3), clk);
ram3: ram_unit port map(PL_out4, PL_in, PN, C2, C7, dec_out(4), clk);
ram4: ram_unit port map(PL_out5, PL_in, PN, C2, C7, dec_out(5), clk);
--**** REGISTER FOR LOADING PL FROM RAM ****
reg_PL0: reg_PL port map(PL1, CLK, CLEAR, PL_out1, C3);
reg_PL1: reg_PL port map(PL2, CLK, CLEAR, PL_out2, C3);
reg_PL2: reg_PL port map(PL3, CLK, CLEAR, PL_out3, C3);
reg_PL3: reg_PL port map(PL4, CLK, CLEAR, PL_out4, C3);
reg_PL4: reg_PL port map(PL5, CLK, CLEAR, PL_out5, C3);
--**** IC_NET(Nx5) ****
ic0: ic_net port map(A1, A2, A3, A4, A5, PL1, PL2, PL3, PL4, PL5, Aval0, Aval1, Aval2, Aval3, Aval4,
Aval5, Aval6, Aval7);
--**** DETERMINE WHETHER THERE IS A FAULT IN PL5 ****
faultdet: process (A1,A2,A3,A4,A5)
 begin
 if ((A1="11111") and (A2="11111") and (A3="11111")
 and (A4="11111")and (A5="11111")) then
 F1<='1';
 else
 F1<='0';
 end if;
 End process;

--**** REGISTER FOR LOADING AVAILABILITIES ****
regA0: regA1_5 port map(OUT_A1, CLK, CLEAR, A1, C4); --changed from c5
regA1: regA1_5 port map(OUT_A2, CLK, CLEAR, A2, C4);
regA2: regA1_5 port map(OUT_A3, CLK, CLEAR, A3, C4);

 316

regA3: regA1_5 port map(OUT_A4, CLK, CLEAR, A4, C4);
regA4: regA1_5 port map(OUT_A5, CLK, CLEAR, A5, C4);
--**** COMPARATORS ****
com1: comparator port map(a, a_bar, OUT_A1, OUT_A2);
com2: comparator port map(b, b_bar, OUT_A1, OUT_A3);
com3: comparator port map(c, c_bar, OUT_A2, OUT_A3);
com4: comparator port map(d, d_bar, OUT_A1, OUT_A4);
com5: comparator port map(e, e_bar, OUT_A2, OUT_A4);
com6: comparator port map(f, f_bar, OUT_A3, OUT_A4);
com7: comparator port map(g, g_bar, OUT_A1, OUT_A5);
com8: comparator port map(h, h_bar, OUT_A2, OUT_A5);
com9: comparator port map(i, i_bar, OUT_A3, OUT_A5);
com10: comparator port map(j, j_bar, OUT_A4, OUT_A5);

--**** AND GATES TO OBTAIN MOST AVAILABLE PROCESS ****
y1 <= a and b and d and g and c6;
y2 <= a_bar and c and e and h and c6;
y3 <= b_bar and c_bar and f and i and c6;
y4 <= d_bar and e_bar and f_bar and j and c6;
y5 <= g_bar and h_bar and i_bar and j_bar and c6;
--**** REGISTERS R1 THRU R7 ****
t1 <= (Out_R0(16 downto 14)&PN(4 downto 0)&PL1&OUT_R0(7 downto 0));
t2 <= (Out_R0(16 downto 14)&PN(4 downto 0)&PL2&OUT_R0(7 downto 0));
t3 <= (Out_R0(16 downto 14)&PN(4 downto 0)&PL3&OUT_R0(7 downto 0));
t4 <= (Out_R0(16 downto 14)&PN(4 downto 0)&PL4&OUT_R0(7 downto 0));
t5 <= (Out_R0(16 downto 14)&PN(4 downto 0)&PL5&OUT_R0(7 downto 0));
--t6 <= (Out_R0(16 downto 14)&OBStemp6(19 downto 8)&OUT_R0(7 downto 0));
t6 <= (Out_R0(16 downto 14)&OBuS_sig(19 downto 8)&OUT_R0(7 downto 0));
t7 <= (Out_R0(16 downto 14)&PN(4 downto 0)&"1110011"&OUT_R0(7 downto 0));

--OBUS <= OBStemp when (y1='1' or y2='1' or y3='1' or y4='1' or y5='1'
 --or c9='1') else
 --(others=>'0');
-- Debug signal added to view the contents on obstemp6
obstemp6_dbug<=OBStemp6;
t6_dbug<=t6;
OBUS_sig <= OBStemp1 when (y1='1')else
 OBStemp2 when (y2='1')else
 OBStemp3 when (y3='1')else
 OBStemp4 when (y4='1')else
 OBStemp6 when (c9='1')else
 OBStemp5_7 when (y5='1')else
 (others => '0');
OBStemp5_7 <= OBStemp5 when (F='0')
 else OBStemp7 ;
-- changes done for debugging to include it in t6
obus <= obus_sig ;
regR1: regR1_4 port map(OBStemp1, CLK, CLEAR, t1, C3, C4, Y1);
RegR2: regR1_4 port map(OBStemp2, CLK, CLEAR, t2, C3, C4, Y2);
RegR3: regR1_4 port map(OBStemp3, CLK, CLEAR, t3, C3, C4, Y3);
regR4: regR1_4 port map(OBStemp4, ClK, CLEAR, t4, C3, C4, Y4);
reR5: regR5 port map(OBStemp5, CLK, CLEAR, t5, C3, C4, Y5, F);
reR6: regR6 port map(OBStemp6, CLK, CLEAR, t6, C6, C8, C9);
reR7: regR7 port map(OBStemp7,CLK,CLEAR, t7, C3, C4, Y5, F);

--**** CONTROLLER ****

 317

cntr0: mcntrlr port map(start, C1, C2, C3, C4, C5, C6, C7, C8, C9, q1, q2,
OUT_R0(13), ON1, CLEAR, CLK);
End architecture;

Module Name : comparator.vhd

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity comparator is
 port(a_lt_b: out std_logic;
 a_gte_b : out std_logic;
 a, b : in std_logic_vector(5 downto 1));
end comparator;

architecture comp of comparator is
signal altb: std_logic;
begin
process (a,b) is
begin
if a<b then altb <='1';
else altb <= '0';
end if;
end process;
a_gte_b <= not altb;
a_lt_b <= altb;
end architecture;

Module Name : Dec3x5.vhd

-- FILENAME : dec3x5.v
-- MODULE : dec3x5

--The IEEE standard 1164 package, declares std_logic, rising_edge(), etc.
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity dec3x5 is
 port(do: out std_logic_vector(5 downto 1);
 s : in std_logic_vector(2 downto 0));
end dec3x5;

architecture decs of dec3x5 is

-- Internal wire declarations
signal s0_bar, s1_bar, s2_bar: std_logic;

begin
-- Gate instantiations
 s0_bar <= not s(0);

 318

 s1_bar <= not s(1);
 s2_bar <= not s(2);
 do(1) <= s2_bar and s1_bar and s0_bar;
 do(2) <= s2_bar and s1_bar and s(0);
 do(3) <= s2_bar and s(1) and s0_bar;
 do(4) <= s2_bar and s(1) and s(0);
 do(5) <= s(2) and s1_bar and s0_bar;

end architecture;

Module Name : ic_net.vhd

-- FILENAME : IC_NET.v
-- MODULE : ic_net

--The IEEE standard 1164 package, declares std_logic, rising_edge(), etc.
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity ic_net is
 port(A1,A2,A3,A4,A5 : out std_logic_vector(5 downto 1);
 S1,S2,S3,S4,S5 : in std_logic_vector(7 downto 1);
 Aval0,Aval1,Aval2 : in std_logic_vector(5 downto 1);
 Aval3,Aval4,Aval5 : in std_logic_vector(5 downto 1);
 Aval6,Aval7 : in std_logic_vector(5 downto 1));
End ic_net;

Architecture icn of ic_net is

Begin
 The: process (S1, S2, S3, S4, S5, Aval0, Aval1, Aval2, Aval3,
 Aval4, Aval5, Aval6, Aval7)
 begin
 case S1 is
 when "0000001" => A1 <= Aval0;
 when "0000010" => A1 <= Aval1;
 when "0000011" => A1 <= Aval2;
 when "0000100" => A1 <= Aval3;
 when "0000101" => A1 <= Aval4;
 when "0000110" => A1 <= Aval5;
 when "0000111" => A1 <= Aval6;
 when "0001000" => A1 <= Aval7;
 when others => A1 <="11111";
 end case;

 case S2 is
 when "0000001" => A2 <= Aval0;
 when "0000010" => A2 <= Aval1;
 when "0000011" => A2 <= Aval2;
 when "0000100" => A2 <= Aval3;
 when "0000101" => A2 <= Aval4;
 when "0000110" => A2 <= Aval5;
 when "0000111" => A2 <= Aval6;
 when "0001000" => A2 <= Aval7;

 319

 when others => A2 <= "11111";
 end case;

 case S3 is
 when "0000001" => A3 <= Aval0;
 when "0000010" => A3 <= Aval1;
 when "0000011" => A3 <= Aval2;
 when "0000100" => A3 <= Aval3;
 when "0000101" => A3 <= Aval4;
 when "0000110" => A3 <= Aval5;
 when "0000111" => A3 <= Aval6;
 when "0001000" => A3 <= Aval7;
 when others => A3 <= "11111";
 end case;

 case S4 is
 when "0000001" => A4 <= Aval0;
 when "0000010" => A4 <= Aval1;
 when "0000011" => A4 <= Aval2;
 when "0000100" => A4 <= Aval3;
 when "0000101" => A4 <= Aval4;
 when "0000110" => A4 <= Aval5;
 when "0000111" => A4 <= Aval6;
 when "0001000" => A4 <= Aval7;
 when others => A4 <= "11111";
 end case;

 case S5 is
 when "0000001" => A5 <= Aval0;
 when "0000010" => A5 <= Aval1;
 when "0000011" => A5 <= Aval2;
 when "0000100" => A5 <= Aval3;
 when "0000101" => A5 <= Aval4;
 when "0000110" => A5 <= Aval5;
 when "0000111" => A5 <= Aval6;
 when "0001000" => A5 <= Aval7;
 when others => A5 <= "11111";
 end case;

end process;

end architecture;

Module Name : mapfifo.vhd

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity MAP_Fifo is
 port (data_out : out std_logic_vector(16 downto 0);
 data_in: in std_logic_vector(16 downto 0);
 --stack_full : buffer std_logic;
 stack_full : inout std_logic;
 sigl : out std_logic;

 320

 clk, rst : in std_logic;
 write_to_stack, read_from_stack: in std_logic);
end MAP_Fifo;

architecture fif1 of MAP_fifo is

component add_subber4
port (
 A: IN std_logic_VECTOR(3 downto 0);
 B: IN std_logic_VECTOR(3 downto 0);
 C_IN: IN std_logic;
 C_OUT: OUT std_logic;
 ADD_SUB: IN std_logic;
 Q_OUT: OUT std_logic_VECTOR(3 downto 0));
end component;

component add_subber5
port (
 A: IN std_logic_VECTOR(4 downto 0);
 B: IN std_logic_VECTOR(4 downto 0);
 C_IN: IN std_logic;
 C_OUT: OUT std_logic;
 ADD_SUB: IN std_logic;
 Q_OUT: OUT std_logic_VECTOR(4 downto 0));
end component;

signal stack_empty: std_logic;
signal read_ptr,write_ptr: std_logic_vector(3 downto 0); -- Pointer for reading and writing
signal ptr_diff: std_logic_vector(4 downto 0); -- Distance between ptrs
type stkarray is array(15 downto 0) of std_logic_vector(16 downto 0);
signal stack: stkarray; -- memory array
signal fourB1, rsum, wsum : std_logic_vector(3 downto 0);
signal valone, zero : std_logic;
signal psum_add, psum_sub, fiveB1 : std_logic_vector(4 downto 0);

begin

stack_empty <= '1' when ptr_diff = "00000" else
 '0';
stack_full <= '1' when ptr_diff = "10000" else
 '0';
sigl <= not stack_empty;

-- begin data_transfer
datatrn: process (clk, rst)
variable i, j : integer;
begin

 321

 if (rst='1') then
 data_out <= (others=>'0');
 elsif (clk'event and clk='0') then

 case read_ptr is
 when "0000" => i := 0;
 when "0001" => i := 1;
 when "0010" => i := 2;
 when "0011" => i := 3;
 when "0100" => i := 4;
 when "0101" => i := 5;
 when "0110" => i := 6;
 when "0111" => i := 7;
 when "1000" => i := 8;
 when "1001" => i := 9;
 when "1010" => i := 10;
 when "1011" => i := 11;
 when "1100" => i := 12;
 when "1101" => i := 13;
 when "1110" => i := 14;
 when "1111" => i := 15;
 when others => null;
 end case;
 case write_ptr is
 when "0000" => j := 0;
 when "0001" => j := 1;
 when "0010" => j := 2;
 when "0011" => j := 3;
 when "0100" => j := 4;
 when "0101" => j := 5;
 when "0110" => j := 6;
 when "0111" => j := 7;
 when "1000" => j := 8;
 when "1001" => j := 9;
 when "1010" => j := 10;
 when "1011" => j := 11;
 when "1100" => j := 12;
 when "1101" => j := 13;
 when "1110" => j := 14;
 when "1111" => j := 15;
 when others => null;
 end case;
 if ((read_from_stack='1') and (write_to_stack='0') and (stack_empty='0')) then
 data_out <= stack(i);
 elsif ((write_to_stack='1') and (read_from_stack='0') and (stack_full='0')) then
 stack(j) <= data_in;
 elsif ((write_to_stack='1') and (read_from_stack='1') and (stack_empty='0') and
 (stack_full='0')) then
 stack(j) <= data_in;
 data_out <= stack(i);
 end if;
 end if;
end process;

--
-- Component Instantiation

 322

--
fourB1 <= "0001";
valone <= '1';
fiveB1 <= "00001";
zero <= '0';

rptr_add : add_subber4
 port map (A=>read_ptr, B =>fourB1, C_IN=>zero, C_OUT=>open,
 ADD_SUB=>valone, Q_OUT=>rsum);

wptr_add : add_subber4
 port map (A=>write_ptr, B =>fourB1, C_IN=>zero, C_OUT=>open,
 ADD_SUB=>valone, Q_OUT=>wsum);

ptr_add : add_subber5
 port map (A=>ptr_diff, B=>fiveB1, C_IN=>zero, C_OUT=>open,
 ADD_SUB=>valone, Q_OUT=>psum_add);

ptr_sub : add_subber5
 port map (A=>ptr_diff, B=>fiveB1, C_IN=>zero, C_OUT=>open,
 ADD_SUB=>zero, Q_OUT=>psum_sub);

unkn: process(clk, rst)
 begin
 if (rst='1') then
 read_ptr <= (others=>'0');
 write_ptr <= (others=>'0');
 ptr_diff <= (others=>'0');
 elsif (clk'event and clk='0') then
 if ((write_to_stack='1') and (stack_full='0') and (read_from_stack='0')) then
 write_ptr <= wsum; --address for next clock edge
 ptr_diff <= psum_add;
 elsif ((write_to_stack='0') and (stack_empty='0') and (read_from_stack='1')) then
 read_ptr <= rsum;
 ptr_diff <= psum_sub;
 elsif ((write_to_stack='1') and (stack_empty='0') and (stack_full='0') and
 (read_from_stack='1')) then
 read_ptr <= rsum;
 write_ptr <= wsum;
 ptr_diff <= ptr_diff;
 end if;
 end if;
end process;

end architecture;

Module Name : Mapcntlr.vhd

-- FILENAME : mapcntlr.vhd
-- MODULE : mCntrlr

--The IEEE standard 1164 package, declares std_logic, rising_edge(), etc.
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

 323

entity mcntrlr is
 port(start : buffer std_logic;
 c1,c2,c3,c4,c5,c6,c7,c8,c9 : out std_logic;
 q1, q2, q3: in std_logic;
 On1, clr : in std_logic;
 Clk: in std_logic);
End mcntrlr;

Architecture mcont of mcntrlr is

signal T, D : std_logic_vector(11 downto 1);
signal out1,out2: std_logic;
signal Din1, Din2: std_logic;

begin
-- Synchronous Sequential Process
-- Synchronous start circuit (negative edge triggered)
startckt: process (clk, clr)
 begin
 if (clr = '1') then
 out1 <= '0';
 out2 <= '0';
 elsif (clk'event and clk='0') then
 out1 <= Din1;
 out2 <= Din2;
 end if;
end process;

-- sequential controller flip flops (positive edge triggered)
contff: process (clk, clr)
 begin
 if (clr = '1') then
 T <= (others=>'0');
 elsif (clk'event and clk='1') then
 T <= D;
 End if;
End process;

-- Combinational Process
comb: process (T,out1,out2, q1, q2, q3, ON1, start)
 begin
 -- Generate 'start' signal
 Din1<= ON1;
 Din2 <= out1;
 start <= out1 and (not out2);

 -- Generate Flip Flop Next State Equations
 d(1) <= (start or (T(9) and (not q2)) or T(8) or T(11));
 D(2) <= (T(1) and q1);
 D(3) <= T(2);
 D(4) <= (T(3) and (not q3));
 D(5) <= T(4) and (not q2);
 D(6) <= T(5);
 D(7) <= T(6);
 D(8) <= T(7);

 324

 D(9) <= (T(1) and (not q1)) or (T(9) and q2) or (T(4) and q2);
 D(10) <= T(3) and q3;
 D(11) <= T(10);

 -- Generate Control Equations
 c1 <= T(2);
 c2 <= T(4);
 c3 <= T(5);
 c4 <= T(6);
 c5 <= T(7);
 c6 <= T(8);
 c7 <= T(9);
 c8 <= T(10);
 c9 <= T(11);

end process;

end architecture;

Module Name : Ram_unit.vhd

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity ram_unit is
 port (Ramout : out std_logic_vector(6 downto 0);
 Ramin : in std_logic_vector(6 downto 0);
 PN : in std_logic_vector(4 downto 0);
 C4, c9, Dec_in, clk : in std_logic);
End ram_unit;

Architecture rams of ram_unit is

component mapram2
 port (
 a: IN std_logic_VECTOR(4 downto 0);
 clk: IN std_logic;
 d: IN std_logic_VECTOR(6 downto 0);
 we: IN std_logic;
 spo: OUT std_logic_VECTOR(6 downto 0));
end component;

component mux_2x1
 port(muxout : out std_logic;
 in1, in0 : in std_logic;
 sel : in std_logic);
end component;

Signal ram_in: std_logic_vector(6 downto 0);
Signal INEN: std_logic;
Signal MUX_OUT, INN: std_logic;
signal one : std_logic;

 325

begin
 one <= '1';
 -- Instantiate 2x1 mux for CE of Ram
 m0: mux_2x1 port map(MUX_OUT, DEC_IN, one, INEN);

 -- and gate for RW
 INN <= Dec_in and c9;
 INEN <= c4 or c9;

 -- Bi-directional Buffers

 ram_in <= ramin when INEN = '1' else (others=>'Z');
 --ramout <= ram_out when INEN = '1' else (others=>'Z');

-- Instantiate 32x7 Ram
ram1 : mapram2 port map
 (a =>PN, CLK => clk, D =>ram_in, WE =>INN, spo => ramout);

end architecture;

Module Name : Mapram.vhd

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;
USE STD.TEXTIO.ALL;

entity mapram2 is
 port (a: in std_logic_vector(4 downto 0);
 clk: in std_logic;
 d: in std_logic_vector(6 downto 0);
 we: in std_logic;
 spo: out std_logic_vector(6 downto 0));
end mapram2;

architecture ram_body of mapram2 is

constant deep: integer := 31;
type fifo_array is array(deep downto 0) of std_logic_vector(6 downto 0);
signal mem: fifo_array;

signal addr_int: integer range 0 to 31;

begin
addr_int <= conv_integer(a);

process (clk)
begin
 if clk'event and clk = '1' then
 if we = '1' then
 mem(addr_int) <= d;
 end if;
 end if;
end process;

 326

spo <= mem(addr_int);
end ram_body;

Module Name : reg_pl.vhd

-- FILENAME : reg_PL.v
-- MODULE : reg_PL

--The IEEE standard 1164 package, declares std_logic, rising_edge(), etc.
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity reg_Pl is
 port(out_pl : buffer std_logic_vector(6 downto 0);
 clk, clear : in std_logic;
 Pl_in : in std_logic_vector(6 downto 0);
 C5 : in std_logic);
End reg_pl;

Architecture regp of reg_pl is

begin

Regit: process(clk, clear)
 Begin
 If clear = '1' then
 out_pl <= (others=>'0');
 elsif (clk'event and clk='0') then
 if c5 = '1' then
 out_pl <= pl_in;
 else
 out_pl <= out_pl;
 end if;
 end if;
 end process;

end architecture;
Module Name : prt_cntl.vhd

library IEEE;
use IEEE.std_logic_1164.all;

entity PRT_Cntl is
 port (
 Tokbus: inout STD_LOGIC_VECTOR (31 downto 0);
 clk : in std_logic;
 rst : in std_logic;
 tbus_grant: in STD_LOGIC;
 --tbus_req: buffer STD_LOGIC;
 tbus_req: inout STD_LOGIC;
 tok_in : out std_logic_vector(16 downto 0);
 Pl_in : out std_logic_vector(6 downto 0);
 Addr : out std_logic_vector(7 downto 0);
 clr : out std_logic;

 327

 q2 : out std_logic;
 chip_on : out std_logic;
 nxt_token : in std_logic_vector(22 downto 0)
);
end PRT_Cntl;

architecture PRT_Cntl_arch of PRT_Cntl is

component mapbuf
 port (
 din: IN std_logic_VECTOR(24 downto 0);
 clk: IN std_logic;
 wr_en: IN std_logic;
 rd_en: IN std_logic;
 ainit: IN std_logic;
 dout: OUT std_logic_VECTOR(24 downto 0);
 full: OUT std_logic;
 empty: OUT std_logic);
end component;

signal w_en : std_logic;
signal tline_in, tline_out : std_logic_vector(31 downto 0);
type optype is (reset, Ld_Ram, Operate, Hold, Normal);
signal op : optype;
signal tok_buf, tok_temp, bufout : std_logic_vector(24 downto 0);
constant lcl_addr : std_logic_vector(6 downto 0) := "0000001";
constant Load_R : std_logic_vector(5 downto 0) := "111010";
type jbuf is array(1 downto 0) of std_logic_vector(15 downto 0);
signal join_buf : jbuf;
signal join0_avl, join1_avl : std_logic;
signal buf_num, full, empty1, we, re : std_logic;
signal out_buf : std_logic_vector(31 downto 0);

begin

 tline_in <= Tokbus when w_en = '0' else (others=>'0');
 Tokbus <= tline_out when w_en = '1' else (others=>'Z');
 chip_on <= '1';
 w_en <= '1' when (tbus_grant='1' and tbus_req='1') else
 '0';

Inbuf : mapbuf port map (din => tok_buf,clk => clk,wr_en => we,rd_en => re,
 ainit => rst,dout => bufout,full => full,
 empty => empty1);

 iptproc: process (clk, tline_in, rst, full)
 begin
 if rst = '1' then
 we <= '0';
 tok_buf <= (others=>'0');
 elsif (clk'event and clk='1') then
 if tline_in(30 downto 24) = lcl_addr then
 tok_buf <= tline_in(31)&tline_in(23 downto 0);
 if full = '0' then
 we <= '1'; --place Token in buffer
 else

 328

 we <= '0';
 end if;
 else
 we <= '0';
 tok_buf <= (others=>'0');
 end if;
 end if;
 end process;

 control: process (rst, clk, op, empty1)
 variable cont, ld_delay, del2, inpt_delay, inpt_del2 : boolean;
 begin
 if rst ='1' then op <= reset;
 elsif (clk'event and clk='1') then

 case (op) is
 when reset => clr <= '1';
 q2 <= '0'; re <= '0';
 cont := false;
 ld_delay := false;
 del2 := false; inpt_del2 := false;
 inpt_delay := false;
 tok_temp <= (others=>'0');
 tbus_req <= '0';
 buf_num <= '0';
 out_buf <= (others=> '0');
 tok_in <= (others=>'0');
 Pl_in <= (others=>'0');
 Addr <= (others=> '0');
 join_buf(0) <= (others=>'0');
 join_buf(1) <= (others=>'0');
 join0_avl <= '1';
 join1_avl <= '1';
 op <= Operate;

 when Operate => clr <= '0';
 q2 <= '0';
 tok_in <= (others=>'0');
 Pl_in <= (others=>'0');
 Addr <= (others=> '0');
 if (tbus_grant = '1' and tbus_req = '1') then
 tline_out <= out_buf;
 out_buf <= (others=> '0');
 re <= '0';
 op <= Operate;
 elsif (empty1 = '0' and inpt_delay = false) then
 re <= '1'; --get token from queue
 inpt_delay := true;
 op <= Operate;
 elsif (inpt_delay = true and inpt_del2 = false) then
 re <= '0';
 inpt_del2 := true;
 op <= Operate;
 elsif (inpt_del2 = true) then --parse read token
 if (bufout(24 downto 19)) = Load_R then
 tok_temp <= bufout; --Load RAM token

 329

 inpt_delay := false;
 op <= Ld_Ram;
 elsif bufout(24) = '1' then --hold token
 tok_temp <= bufout;
 inpt_delay := false;
 op <= Hold;
 else
 tok_temp <= bufout;
 inpt_delay := false;
 op <= Normal; --normal token
 end if;
 inpt_delay := false;
 inpt_del2 := false;
 else
 re <= '0';
 op <= Operate; --wait for token
 end if;

 when Ld_Ram => clr <= '0';
 q2 <= '1';
 re <= '0';
 if (ld_delay = false and del2 = false) then
 op <= Ld_Ram;
 ld_delay := true;
 elsif (ld_delay = true and del2 = false) then
 op <= Ld_Ram;
 del2 := true;
 else
 Pl_in <= tok_temp(14 downto 8);
 Addr <= tok_temp(7 downto 0);
 tok_in <= (others=>'0');
 op <= Operate;
 del2 := false;
 ld_delay := false;
 --tok_temp <= (others=>'0');
 end if;

 when Normal => clr <= '0';
 q2 <= '0';
 re <= '0';
 tok_in(13) <= tok_temp(24);
 tok_in(12 downto 8) <= tok_temp(20 downto 16);
 tok_in(7 downto 0) <= tok_temp (7 downto 0);
 tok_in(16 downto 14) <= tok_temp(23 downto 21);
 Pl_in <= (others=>'0');
 Addr <= (others=> '0');
 --tok_buf <= (others=>'0');
 op <= Operate;

 when Hold => clr <= '0';
 q2 <= '0'; re <= '0';
 Pl_in <= (others=>'0');
 Addr <= (others=> '0');
 if (cont = true) then --send 2nd token in join
 tok_in(16 downto 14) <= "000";
 tok_in(13) <= '1';

 330

 if buf_num = '0' then
 tok_in(12 downto 0) <= join_buf(0)(12 downto 0);
 join0_avl <= '1';
 join_buf(0) <= (others=>'0');
 else
 tok_in(12 downto 0) <= join_buf(1)(12 downto 0);
 join1_avl <= '1';
 join_buf(1) <= (others=>'0');
 end if;
 cont := false;
 op <= Operate;
 elsif tok_temp(23 downto 16) = join_buf(0)(15 downto 8) then
 --send first token
 tok_in(13) <= '0';
 tok_in(12 downto 8) <= tok_temp(20 downto 16);
 tok_in(7 downto 0) <= tok_temp(7 downto 0);
 tok_in(16 downto 14) <= tok_temp(23 downto 21);
 cont := true;
 buf_num <= '0';
 --tok_buf <= (others=>'0');
 op <= Hold;
 elsif tok_temp(23 downto 16) = join_buf(1)(15 downto 8) then
 --send first token
 tok_in(13) <= '0';
 tok_in(12 downto 8) <= tok_temp(20 downto 16);
 tok_in(7 downto 0) <= tok_temp(7 downto 0);
 tok_in(16 downto 14) <= tok_temp(23 downto 21);
 cont := true;
 buf_num <= '1';
 --tok_buf <= (others=>'0');
 op <= Hold;
 elsif (cont = false and join0_avl = '1') then --wait for other token
 join_buf(0)(15 downto 8) <= tok_temp(23 downto 16);
 join_buf(0)(7 downto 0) <= tok_temp(7 downto 0);
 join0_avl <= '0';
 --tok_buf <= (others=>'0');
 op <= Operate;
 elsif (cont = false and join1_avl = '1') then --wait for other token
 join_buf(1)(15 downto 8) <= tok_temp(23 downto 16);
 join_buf(1)(7 downto 0) <= tok_temp(7 downto 0);
 join1_avl <= '0';
 --tok_buf <= (others=>'0');
 op <= Operate;
 else --join buffer overflow
 --tok_buf <= (others=>'0');
 op <= Operate;
 end if;

 end case;
 if out_buf /= "00000000000000000000000000000000" then
 tbus_req <= '1';
 else
 tbus_req <= '0';
 end if;
 if nxt_token /= "00000000000000000000000" then
 out_buf(31) <= '0';

 331

 out_buf(30 downto 24) <= nxt_token(14 downto 8);
 out_buf(23 downto 21) <= nxt_token(22 downto 20);
 out_buf(20 downto 16) <= nxt_token(19 downto 15);

 out_buf(7 downto 0) <= nxt_token(7 downto 0);

 out_buf(15 downto 8) <= "00000000";

 end if;
 end if;
 end process;

end PRT_Cntl_arch;

 332

Appendix B

Test Vectors

This section contains the Test Vectors for the Applications described in Chapter 4 and

Chapter 6. For each application, the following details have been specified

a) Instruction Memory Initialization

b) Table Load, Table Input and Load PRT Tokens

c) Command Token (s)

d) Results in the shared Data Memory after Computation

B.1 Application One – Integer Averaging Algorithm

Initialization tokens for the Look up Table – Sets of Table Load, Table Input and Load
PRT tokens –

For CE0

Process Number Table Load Table Input Load PRT
P1 83f80003 83f04430 81d0030c
P2 83f8010F 83F08800 81D00314
P3 83F8011A 83F0C800 81D0031B
P4 83F80222 83F10A60 81D00323
P6 83F8002A 83f18000 81d00333

For CE1

Process Number Table Load Table Input Load PRT
P1 82f80003 82f04430 81d0020b
P2 82f8010F 82F08800 81D00213
P3 82F8011A 82F0C800 81D0021b
P4 82F80222 82F10A60 81D00223
P6 82F8002A 82f18000 81d00233

For CE2(Divider)

Process Number Table Load Table Input Load PRT
P5 84f80004 84F14C00 81d0042C

 333

Contents of Instruction Memory for CE0 and CE1

Process P1:

Instruction Memory
Address Data Operation

3 0300 INPUT MEM[R3]
4 AF00 INC R3
5 0300 INPUT MEM[R3]
6 AF00 INC R3
7 0300 INPUT MEM[R3]
8 AF00 INC R3
9 0300 INPUT MEM[R3]
A AF00 INC R3
B 0300 INPUT MEM[R3]
C AF00 INC R3
D 0300 INPUT MEM[R3]
E 3000 JUMP #0

Process P2:

Instruction Memory
Address Data Operation

F 7300 LD R0, MEM[R3]
10 AF00 INC R3
11 1000 ADD R0, MEM[R3]
12 AF00 INC R3
13 1000 ADD R0, MEM[R3]
14 AF00 INC R3
15 1000 ADD R0, MEM[R3]
16 BF03 ADD R3, #3
17 2000 STORE MEM[R3], R0
18 6300 OUTPUT MEM[R3]
19 3000 JUMP #0

Process P3:

Instruction Memory
Address Data Operation

1A BF04 ADD R3, #4
1B 7300 LD R0, MEM[R3]

 334

1C AF00 INC R3
1D 1000 ADD MEM[R3], R0
1E BF02 ADD R3, #2
1F 2000 STORE MEM[R3], R0
20 6300 OUTPUT MEM[R3]
21 3000 JUMP #0

Process P4:

Instruction Memory
Address Data Operation

22 BF06 ADD R3, #6
23 7300 LD R0, MEM[R3]
24 AF00 INC R3
25 1000 ADD MEM[R3], R0
26 AF00 INC R3
27 2000 STORE MEM[R3], R0
28 6300 OUTPUT MEM[R3]
29 3000 JMP #0

Process P6:

Instruction Memory
Address Data Operation

2A BF08 ADD R3, #8
2B 6300 OUTPUT MEM[R3]
2C 3000 JMP #0

Process P5:

Contents of Instruction Memory for CE2 (Divider Instruction Memory)

Instruction Memory
Address Data Operation

04 0008 OFFSET ADDITION
05 0006 DIVISOR VALUE

The command token provided was x”01010003”. In the absence of Data ROM, the input

bus has a value of x”06” which is an input to the system.

Final Results in the Shared, Core Data Memory after Computation

 335

All Resulting Data and Data Address and in unsigned notation unless mentioned.

Process executed Resulting Data Data Address
P2 24 10
P3 12 09
P4 36 11
P5 06 11

B.2 Application Two - Acyclic 2x 2 Matrix Multiplication Algorithms

Initialization tokens for the Look up Table – Sets of Table Load, Table Input and Load
PRT tokens –

For CE0:

Process Number Table Load Table Input Load PRT

P1 83f80003 83f04430 81d0030c
P4 83f80213 83F10A60 81D00324
P7 83F8021A 83F1D090 81D0033C
P10 83F80222 83F296C0 81D00354
P13 83F8022A 83F35C00 81D0036C
P14 83F80032 83F38000 81D00374

For CE1:

Process Number Table Load Table Input Load PRT
P1 82f80003 82f04430 81D0020B
P4 82f80213 82F10A60 81D00223
P7 82F8021A 82F1D090 81D0023B
P10 82F80222 82F296C0 81D00253
P13 82F8022A 82F35C00 81D0026B
P14 82F80032 82F38000 81D00273

For CE3: Multiplier Processor

Process Number Table Load Table Input Load PRT
P2 85F80104 85F08800 81D00514
P3 85F80106 85F0C800 81D0051C
P5 85F80108 85F14E00 81D0052C
P6 85F8010A 85F18E00 81D00534
P8 85F8010C 85F21400 81D00544
P9 85F8010E 85F25400 81D0054C
P11 85F80110 85F2DA00 81D0055C
P12 85F80112 85F31A00 81D00564

 336

Contents of Instruction Memory for CE0 and CE1

Process P1:

Instruction Memory
Address Data Operation

3 0300 INPUT MEM[R3]
4 AF00 INC R3
5 0300 INPUT MEM[R3]
6 AF00 INC R3
7 0300 INPUT MEM[R3]
8 AF00 INC R3
9 0300 INPUT MEM[R3]
A AF00 INC R3
B 0300 INPUT MEM[R3]
C AF00 INC R3
D 0300 INPUT MEM[R3]
E AF00 INC R3
F 0300 INPUT MEM[R3]
10 AF00 INC R3
11 0300 INPUT MEM[R3]
12 3000 JUMP #0

Process P4:

Instruction Memory
Address Data Operation

13 7300 LD R0, MEM[R3]
14 AF00 INC R3
15 1000 ADD R0, MEM[R3]
16 BF07 ADD R3, #7
17 2000 STORE MEM[R3], R0
18 6300 OUTPUT MEM[R3]
19 3000 JMP #0

Process P7:

Instruction Memory

Address Data Operation

1A BF04 ADD R3, #4
1B 7300 LD R0, MEM[R3]
1C AF00 INC R3
1D 1000 ADD MEM[R3], R0
1E BF04 ADD R3, #4
1F 2000 STORE MEM[R3], R0

 337

20 6300 OUTPUT MEM[R3]
21 3000 JMP #0

Process P10:

Instruction Memory

Address Data Operation

22 BF02 ADD R3, #2
23 7300 LD R0, MEM[R3]
24 AF00 INC R3
25 1000 ADD MEM[R3], R0
26 BF07 ADD R3, #7
27 2000 STORE MEM[R3], R0
28 6300 OUTPUT MEM[R3]
29 3000 JMP #0

Process P13:

Instruction Memory
Address Data Operation

2A BF06 ADD R3, #6
2B 7300 LD R0, MEM[R3]
2C AF00 INC R3
2D 1000 ADD MEM[R3], R0
2E BF04 ADD R3, #4
2F 2000 STORE MEM[R3], R0
30 6300 OUTPUT MEM[R3]
31 3000 JMP #0

Process P 14:

Instruction Memory

Address Data Operation

32 BF08 ADD R3, #8
33 6300 OUTPUT MEM[R3]
34 AF00 INC R3
35 6300 OUTPUT MEM[R3]
36 AF00 INC R3
37 6300 OUTPUT MEM[R3]
38 AF00 INC R3
39 6300 OUTPUT MEM[R3]
3A 3000 JMP #0

 338

Contents of the Instruction Memory for the Multiplier CE-

Process P 2: Multiplication

Instruction Memory
Address Data Operation

04 0000 OFFSET ADDITION
05 000C MULTIPLICAND VAL

Process P 3: Multiplication

Instruction Memory
Address Data Operation

06 0001 OFFSET ADDITION
07 0008 MULTIPLICAND VAL

Process P 5: Multiplication

Instruction Memory
Address Data Operation

08 0004 OFFSET ADDITION
09 0005 MULTIPLICAND VAL

Process P 6: Multiplication

Instruction Memory
Address Data Operation

0A 0005 OFFSET ADDITION
0B 001E MULTIPLICAND VAL

Process P 8: Multiplication

Instruction Memory
Address Data Operation

0C 0002 OFFSET ADDITION
0D 000C MULTIPLICAND VAL

Process P 9: Multiplication

Instruction Memory
Address Data Operation

0E 0003 OFFSET ADDITION
0F 0008 MULTIPLICAND VAL

 339

Process P 11: Multiplication

Instruction Memory
Address Data Operation

10 0006 OFFSET ADDITION
11 0005 MULTIPLICAND VAL

Process P 12: Multiplication

Instruction Memory
Address Data Operation

12 0007 OFFSET ADDITION
13 001E MULTIPLICAND VAL

One Command token was used and its value was x”01010003”

Final Results in the Shared, Core Data Memory after Computation

Process Result Data Address
P4 96 11
P7 120 12
P10 64 13
P13 80 14

B.3 Acyclic 3x3 by 3x2 Matrix Multiplication algorithm

Initialization tokens for the Look up Table – Sets of Table Load, Table Input and Load
PRT tokens –

For CE0:

Process Number Table Load Table Input Load PRT

P1 83f80003 83f04430 81d0030c
P5 83f80227 83F14C70 81D0032C
P9 83F80230 83F254B0 81D0034C
P13 83F8023A 83F35CF0 81D0036C
P17 83F80244 83F46530 81D0038C
P21 83F8024E 83F56D70 81D003AC
P25 83F80258 83F67400 81D003CC
P26 83F80062 83F68000 81D00384

For CE1:

Process Number Table Load Table Input Load PRT
P1 82f80003 82f04430 81d0030B

 340

P5 82f80227 82F14C70 81D0032B
P9 82F80230 82F254B0 81D0034B
P13 82F8023A 82F35CF0 81D0036B
P17 82F80244 82F46530 81D0038B
P21 82F8024E 82F56D70 81D003AB
P25 82F80258 82F67400 81D003CB
P26 82F80062 82F68000 81D00383

For CE3: Multiplier Processor

Process Number Table Load Table Input Load PRT

P2 85F80004 85F08800 81D00513
P3 85F80106 85F0CA00 81D0051B
P4 85F80108 85F10A00 81D00523
P6 85F8000A 85F19000 81D00533
P7 85F8010C 85F1D200 81D0053B
P8 85F8010E 85F21200 81D00543
P10 85F80010 85F29800 81D00553
P11 85F80112 85F31A00 81D00564
P12 85F80104 85F08800 81D00514
P14 85F80106 85F0C800 81D0051C
P15 85F80108 85F14E00 81D0052C
P16 85F8010A 85F18E00 81D00534
P18 85F8010C 85F21400 81D00544
P19 85F8010E 85F25400 81D0054C
P20 85F80110 85F2DA00 81D0055C
P22 85F80112 85F31A00 81D00564
P23 85F80124 85F5F200 81D005BB
P24 85F80126 85F63200 81D005C3

Contents of Instruction Memory for CE0 and CE1

Process P1:

Instruction Memory
Address Data Operation

3 0300 INPUT MEM[R3]
4 AF00 INC R3
5 0300 INPUT MEM[R3]
6 AF00 INC R3
7 0300 INPUT MEM[R3]
8 AF00 INC R3
9 0300 INPUT MEM[R3]

 341

A AF00 INC R3
B 0300 INPUT MEM[R3]
C AF00 INC R3
D 0300 INPUT MEM[R3]
E AF00 INC R3
F 0300 INPUT MEM[R3]
10 AF00 INC R3
11 0300 INPUT MEM[R3]
12 3000 JUMP #0

Process P4:

Instruction Memory
Address Data Operation

13 7300 LD R0, MEM[R3]
14 AF00 INC R3
15 1000 ADD R0, MEM[R3]
16 BF07 ADD R3, #7
17 2000 STORE MEM[R3], R0
18 6300 OUTPUT MEM[R3]
19 3000 JMP #0

Process P7:

Instruction Memory

Address Data Operation

1A BF04 ADD R3, #4
1B 7300 LD R0, MEM[R3]
1C AF00 INC R3
1D 1000 ADD MEM[R3], R0
1E BF04 ADD R3, #4
1F 2000 STORE MEM[R3], R0
20 6300 OUTPUT MEM[R3]
21 3000 JMP #0

Process P10:

Instruction Memory

Address Data Operation

22 BF02 ADD R3, #2
23 7300 LD R0, MEM[R3]
24 AF00 INC R3
25 1000 ADD MEM[R3], R0
26 BF07 ADD R3, #7

 342

27 2000 STORE MEM[R3], R0
28 6300 OUTPUT MEM[R3]
29 3000 JMP #0

Process P13:

Instruction Memory
Address Data Operation

2A BF06 ADD R3, #6
2B 7300 LD R0, MEM[R3]
2C AF00 INC R3
2D 1000 ADD MEM[R3], R0
2E BF04 ADD R3, #4
2F 2000 STORE MEM[R3], R0
30 6300 OUTPUT MEM[R3]
31 3000 JMP #0

Process P 14:

Instruction Memory

Address Data Operation

32 BF08 ADD R3, #8
33 6300 OUTPUT MEM[R3]
34 AF00 INC R3
35 6300 OUTPUT MEM[R3]
36 AF00 INC R3
37 6300 OUTPUT MEM[R3]
38 AF00 INC R3
39 6300 OUTPUT MEM[R3]
3A 3000 JMP #0

Contents of the Instruction Memory for the Multiplier CE-

Process P 2: Multiplication

Instruction Memory
Address Data Operation

04 0000 OFFSET ADDITION
05 000C MULTIPLICAND VAL

 343

Process P 3: Multiplication

Instruction Memory
Address Data Operation

06 0001 OFFSET ADDITION
07 0008 MULTIPLICAND VAL

Process P 5: Multiplication

Instruction Memory
Address Data Operation

08 0004 OFFSET ADDITION
09 0005 MULTIPLICAND VAL

Process P 6: Multiplication

Instruction Memory
Address Data Operation

0A 0005 OFFSET ADDITION
0B 001E MULTIPLICAND VAL

Process P 8: Multiplication

Instruction Memory
Address Data Operation

0C 0002 OFFSET ADDITION
0D 000C MULTIPLICAND VAL

Process P 9: Multiplication

Instruction Memory
Address Data Operation

0E 0003 OFFSET ADDITION
0F 0008 MULTIPLICAND VAL

Process P 11: Multiplication

Instruction Memory
Address Data Operation

10 0006 OFFSET ADDITION
11 0005 MULTIPLICAND VAL

 344

Process P 12: Multiplication

Instruction Memory
Address Data Operation

12 0007 OFFSET ADDITION
13 001E MULTIPLICAND VAL

One Command token was used and its value was x”01010003”

Final Results in the Shared, Core Data Memory after Computation

Result Data Address
30 96
34 97
93 98
94 99
156 100
154 101

B.4 Application Four - Acyclic Pipelined integer manipulation algorithm

For CE0:

Process Number Table Load Table Input Load PRT
P1 83f80003 83f04430 81d0030c
P2 83f80017 83F08800 81D00314
P3 83F80024 83F0CA00 81D0031B
P6 83F80232 83F18E00 81D00334
P7 83F80039 83F1C000 81D0033C

For CE1:

Process Number Table Load Table Input Load PRT
P1 82f80003 82f04430 81D0020B
P2 82f80117 82F08800 81D00213
P3 82F80024 82F0CA00 81D0021C
P6 82F80232 82F10E00 81D00233
P7 82F80039 82F1C000 81D0023D

For CE2:

Process Number Table Load Table Input Load PRT
P5 84F80104 84F14C00 81D0042B

 345

For CE3:

Process Number Table Load Table Input Load PRT
P4 85F80104 85F10C00 81D00523

Contents of Instruction Memory:

Process P1:

Instruction Memory
Address Data Operation

3 0300 INPUT MEM[R3]
4 AF00 INC R3
5 0300 INPUT MEM[R3]
6 AF00 INC R3
7 0300 INPUT MEM[R3]
8 AF00 INC R3
9 0300 INPUT MEM[R3]
A AF00 INC R3
B 0300 INPUT MEM[R3]
C AF00 INC R3
D 0300 INPUT MEM[R3]
E AF00 INC R3
F 0300 INPUT MEM[R3]
10 AF00 INC R3
11 0300 INPUT MEM[R3]
12 AF00 INC R3
13 0300 INPUT MEM[R3]
14 AF00 INC R3
15 0300 INPUT MEM[R3]
16 3000 JUMP #0

Process P2:

Instruction Memory
Address Data Operation

17 7300 LD R0, MEM[R3]
18 AF00 INC R3
19 1000 ADD R0, MEM[R3]
1A AF00 INC R3
1B 1000 ADD R0, MEM[R3]
1C AF00 INC R3
1D 1000 ADD R0, MEM[R3]
1E AF00 INC R3
1F 1000 ADD R0, MEM[R3]
20 BF06 ADD R3, #6

 346

21 2000 STORE MEM[R3], R0
22 6300 OUTPUT MEM[R3]
23 3000 JMP #0

Process P3:

Instruction Memory
Address Data Operation

24 BF05 ADD R3, #5
25 7300 LD R0, MEM[R3]
26 AF00 INC R3
27 1000 ADD MEM[R3], R0
28 AF00 INC R3
29 1000 ADD MEM[R3], R0
2A AF00 INC R3
2B 1000 ADD MEM[R3], R0
2C AF00 INC R3
2D 1000 ADD MEM[R3], R0
2E BF02 ADD R3, #5
2F 2000 STORE MEM[R3], R0
30 6300 OUTPUT MEM[R3]
31 3000 JMP #0

Process P6:

Instruction Memory
Address Data Operation

32 BF0A ADD R3, #10
33 7300 LD R0, MEM[R3]
34 AF00 INC R3
35 5000 SUB MEM[R3], R0
36 AF00 INC R3
37 2000 STORE MEM[R3], R0
38 3000 JMP #0

Process P7:

Instruction Memory

Address Data Operation

39 BF0C ADD R3, #12
3A 6300 OUTPUT MEM[R3]
3B 3000 JMP #0

Process P4: Multiplication

Instruction Memory
Address Data Operation

 347

04 000A OFFSET ADDITION
05 0002 MULTIPLICAND VAL

Process P5: Division

Instruction Memory
Address Data Operation

04 000B OFFSET ADDITION
05 0002 DIVISOR VAL

Here two command tokens are provided for pipelined execution and they are
x”0101FF03” and x”0121FF11”

Contents of the shared data memory initially and after computation for copy 1-

Address Location Initially before Multiplication
and division

Result after multiplication
and division

13 10 20
14 10 5

For the first copy of the application, shared data memory has a value of ‘2’ in ten
locations from location ”03” to ”12”.The result after addition of first five numbers is
stored in location “13” and similarly the result of the addition of the next five numbers is
stored at “14”. The initial values before the multiplication and division processes are ten
which get updated to “20” and “5” after the respective processes get over.

Final result of 15 is store at location 15 for the first copy after subtraction of the above
final results of multiplication and division

Contents of the shared data memory initially and after computation for copy 2-

Address Location Result prior to
Multiplication and Division

Results after Multiplication
and Division

27 10 20
28 10 5

For the second copy of the application, shared data memory has a value of “2” in ten
locations from “17” to “26”.

Final result of “15” is store at location “29” for the first copy after subtraction of the
above final results of multiplication and division
B.5 Complex Non-Deterministic Cyclic Value Swap Application

Initialization tokens for the Look up Table – Sets of Table Load, Table Input and Load
PRT tokens –

 348

For CE0:

Process Number Table Load Table Input Load PRT
P1 83f80003 83f04440 81d0030c
P2 83f8010D 83F08600 81D00314
P3 83F80014 83F0C406 81D0031C
P4 83f8011B 83f10A00 81D00324
P5 83F80023 83F14806 81D0032C
P6 83F8022A 83F18000 81D00334

For CE1:

Process Number Table Load Table Input Load PRT
P1 82F80003 82F04440 81d0020B
P2 82F8010D 82F08600 81D00213
P3 82F80014 82F0C406 81D0021B
P4 82Ff8011B 82F10A00 81D00223
P5 82F80023 82F14806 81D0022B
P6 82F8022A 82F18000 81D00233

Contents of Instruction Memory for CE0 and CE1

Process P1:

Instruction Memory

Address Data Operation
Comments

3 0300 INPUT MEM[R3] Data Location 3 has 60
4 AF00 INC R3 Go to location 4
5 0300 INPUT MEM[R3] Data Location 4 has 100
6 AF00 INC R3 Go to location 5
7 0300 INPUT MEM[R3] Data Location 5 has 10
8 AF00 INC R3 Go to location 6
9 0300 INPUT MEM[R3] Data Location 6 has 60
A AF00 INC R3 Go to location 7
B 0300 INPUT MEM[R3] Data Location 7 has 100
C 3000 JUMP #0 Go back to DL 3

 349

Process P2:

Instruction Memory
Address Data Operation

D 7300 LD R0, MEM[R3]
E BF02 ADD R3, #2
F 1000 ADD MEM[R3], R0
10 Cf02 SUB R3, #2
11 2000 STORE MEM[R3], R0
12 6300 OUTPUT MEM[R3]
13 3000 JMP #0

Process P3:

Instruction Memory
Address Data Operation

14 BF04 ADD R3, #4
15 7300 LD R0, MEM[R3]
16 CF04 SUB R3, #4
17 8000 IS R0= MEM[R3]
18 2000 STORE MEM[R3], R0
19 6300 OUTPUT MEM[R3]
1A 3000 JMP #0

Process P4:

Instruction Memory
Address Data Operation

1b BF01 ADD R3, #1
1C 7300 LD R0, MEM[R3]
1D Af00 INC R3
1E 5000 SUB R0,MEM[R3]
1F CF01 SUB R3, #1
20 2000 STORE MEM[R3], R0
21 6300 OUTPUT MEM[R3]
22 3000 JMP #0

Process P5:

Instruction Memory
Address Data Operation

23 BF03 ADD R3, #3
24 7300 LD R0, MEM[R3]
25 CF02 SUB R3,#2
26 8000 IS R0= MEM[R3]
27 2000 STORE MEM[R3], R0

 350

28 6300 OUTPUT MEM[R3]
29 3000 JMP #0

Process P6:

Instruction Memory
Address Data Operation

2A 7300 LD R0, MEM[R3]
2B 6300 OUPUT MEM[R3]
2C AF00 INCR R3
2D 6300 OUPUT MEM[R3]
2E 3000 JMP #0

One command token was entered for the test bench and its value was x”01010003”

Finally in the shared data memory, the data values are swapped corresponding to what
they were initially entered. The initial and final values in the shared data memory and
shown below

Initial Shared Data Memory values

Data Memory Address Data Comments

03 60 Initial Temperature 1
04 100 Initial Temperature 2
05 10 Temperature Variance Rate

Final Shared Data Memory values

Data Memory Address Data Comments

03 100 Final Temperature 1
04 60 Final Temperature 2
05 10 Temperature Variance Rate

 351

B.6 Application proving the concept of Multiple Forking for the HDCA
Initialization tokens for the Look up Table – Sets of Table Load, Table Input and Load
PRT tokens –

For CE0

Process Number Table Load Table Input Load PRT
P1 83f80003 83f04430 81d0030c
P2 83f8000F 83F08E00 81D00314
P3 83F80016 83F0C850 81D0031C
P4 83F80118 83F11000 81D00324
P5 83F80120 83F15000 81d0032C
P8 83F80328 83F20C00 81D00344
P6 83F80230 83F18000 81D00334

For CE1

Process Number Table Load Table Input Load PRT
P1 82f80003 82f04430 81d0020B
P2 82f8000F 82F08E00 81D00213
P3 82F80016 82F0C850 81D0021C
P4 82F80118 82F11000 81D00223
P5 82F80120 82F15000 81d0022B
P8 82F80328 82F20C00 81D00243
P6 82F80230 82F18000 81D00234

For Multiplier CE

Process Number Table Load Table Input Load PRT
P7 85f80104 85F1CC00 81d0053C

Process P1:

Instruction Memory
Address Data Operation

3 0300 INPUT MEM[R3]
4 AF00 INC R3
5 0300 INPUT MEM[R3]
6 AF00 INC R3
7 0300 INPUT MEM[R3]
8 AF00 INC R3
9 0300 INPUT MEM[R3]
A AF00 INC R3

 352

B 0300 INPUT MEM[R3]
C AF00 INC R3
D 0300 INPUT MEM[R3]
E 3000 JUMP #0

Process P2:

Instruction Memory
Address Data Operation

F 7300 LD R0, MEM[R3]
10 AF00 INC R3
11 1000 ADD R0, MEM[R3]
12 BF06 ADD R3, #6
13 2000 STORE MEM[R3], R0
14 6300 OUTPUT MEM[R3]
15 3000 JMP #0

Process P3:

Instruction Memory
Address Data Operation

16 D300 DELAY
17 3000 JMP #0

Process P4:

Instruction Memory
Address Data Operation

18 BF02 ADD R3, #2
19 7300 LD R0, MEM[R3]
1A AF00 INC R3
1B 1000 ADD MEM[R3], R0
1C BF0E ADD R3,#14
1D 2000 STORE MEM[R3], R0
1E 6300 OUTPUT MEM[R3]
1F 3000 JMP #0

Process P5:

Instruction Memory
Address Data Operation

20 BF04 ADD R3, #4
21 7300 LD R0, MEM[R3]
22 AF00 INC R3
23 1000 ADD MEM[R3], R0
24 BF16 ADD R3, #22

 353

25 2000 STORE MEM[R3], R0
26 6300 OUTPUT MEM[R3]
27 3000 JMP #0

Process P8:

Instruction Memory
Address Data Operation

28 BF11 ADD R3, #17
29 7300 LD R0, MEM[R3]
2A BF0A ADD R3, #10
2B 5000 SUB MEM[R3], R0
2C BF0A ADD R3, #10
2D 2000 STORE MEM[R3], R0
2E 6300 OUTPUT MEM[R3]
2F 3000 JMP #0

Process P6:

Instruction Memory
Address Data Operation

30 BF07 ADD R3, #7
31 7300 LD R0, MEM[R3]
32 BF1E ADD R3, #30
33 1000 ADD MEM[R3], R0
34 BF14 ADD R3, #20
35 2000 STORE MEM[R3], R0
36 6300 OUTPUT MEM[R3]
37 3000 JMP #0

Process P7:

Contents of Instruction Memory for Multiplier CE

Instruction Memory
Address Data Operation

04 0007 OFFSET ADDITION
05 0004 MULTIPLICAND VALUE

One command token was entered for the test bench and its value was x”01010003”

Final Results in the Shared Data Memory is “16” at location “60”.

 354

REFERENCES

[1] J. R. Heath, J. Cline and J. Kennedy, "A Dynamically Alterable Topology Distributed

Data Processing Computer Architecture," Proceedings of the IEEE 1980
International Conference on Circuits and Computers, Port Chester, New York,
pp.517-524, October 1-3, 1980.

[2] J. R. Heath and J. Cline, "The Complexity and Use of Multistage Interconnection

Networks for Distributed Processing Systems," Proceedings of the 1980 IEEE
Distributed Data Acquisition, Computing, and Control Symposium, Miami Beach, Fl,
pp.1-8, December 3-5, 1980.

[3] J. R. Heath, et. al., "A Dynamic Pipeline Computer Architecture for Data Driven

Systems: Final Report," Contract No. DASG60-79-C-0052, University of Kentucky
Research Foundation, Lexington, Kentucky, February, 1982.

[4] A. D. Hurt and J. R. Heath, "A Data Flow Language and Interpreter for a

Reconfigurable Distributed Data Processor," Proceedings of 1982 IEEE International
Conference on Circuits and Computers, New York, NY, pp.56-59, September 29 -
October 1, 1982.

[5] A. D. Hurt and J. R. Heath, "The Design of a Fault-Tolerant Computing Element for

Distributed Data Processors," Proceedings of the 3rd IEEE International Conference
on Distributed Computing Systems, Miami/Ft. Lauderdale, Florida, pp.171-176,
October 18-22, 1982.

[6] J. R. Heath, A. D. Hurt, and G. D. Broomell, "A Distributed Computer Architecture

for Real-Time, Data Driven Applications," Proceedings of the 3rd IEEE International
Conference on Distributed Computing Systems, Miami/Ft. Lauderdale, Florida,
pp.630-638, October 18-22, 1982.

[7] A. D. Hurt and J. R. Heath, "A Hardware Task Scheduling Mechanism for a Real-

Time Multimicroprocessor Architecture," Proceedings 1982 IEEE Real-Time Systems
Symposium, Los Angeles, California, pp.113-123, December 7-9, 1982.

[8] G. Broomell and J. R. Heath, "Classification Categories and Historical Development

of Circuit Switching Topologies," ACM Computing Surveys, Vol. 15, No. 2, June
1983, pp. 95-133.

[9] G. Broomell and J. R. Heath, "An Integrated-Circuit Crossbar Switching System

Design," Proceedings of 4th International Conference on Distributed Computing
Systems, San Francisco, California, pp.278-287, May 14-18, 1984.

[10] James D. Cochran, “Mathematical Modeling and Analysis of a Dynamic Pipeline

Computer Architecture”, Masters Thesis, Department of Electrical Engineering,
University of Kentucky, Lexington, KY, 1982.

 355

[11] J. R. Heath, J. Cochran and W. A. Chren, Jr., "A Flow Graph Analysis Algorithm for

a Data Driven Reconfigurable Parallel Pipelined Computer Architecture,"
Proceedings IEEE Region III Southeastcon'89, Columbia, South Carolina, pp. 639-
644, April 9-12, 1989.

[12] J. R. Heath and S. Ramamoorthy, "Design and Performance of a Modular Hardware

Process Mapper (Scheduler) for a Real-Time Token Controlled Data Driven
Multiprocessor Architecture," Proceedings of the 23rd Southeastern Symposium on
System Theory, Columbia, South Carolina, pp. 478-482, March 10-12, 1991.

[13] J.R. Heath, S. Ramamoorthy, C.E. Stroud, and A. Hurt, "Modeling, Design, and

Performance Analysis of a Parallel Hybrid Data/Command Driven Architecture
System and its Scalable Dynamic Load Balancing Circuit", IEEE Trans. on Circuits
and Systems, II: Analog and Digital Signal Processing, Vol. 44, No. 1, pp. 22-40,
January, 1997.

[14] J.R. Heath and B. Sivanesa, "Development, Analysis, and Verification of a Parallel
Hybrid Data-flow Computer Architectural Framework and Associated Load
Balancing Strategies and Algorithms via Parallel Simulation", SIMULATION, Vol.
69, No. 1, pp. 7-25, July, 1997.

[15] Fernando, U. Chameera. "Modeling, Design, Prototype Synthesis and Experimental

Testing of a Dynamic Load Balancing Circuit for a Parallel Hybrid Data/Command
Driven Architecture." Master's Project. University of Kentucky, December 1999.

[16] J.R. Heath and A. Tan, "Modeling, Design, Virtual and Physical Prototyping,

Testing, and Verification of a Multifunctional Processor Queue for a Single-Chip
Multiprocessor Architecture", Proceedings of 2001 IEEE International Workshop on
Rapid Systems Prototyping, Monterey, California, 6 pps. June 25-27, 2001.

[17] Xiaohui Zhao, J. Robert Heath, Paul Maxwell, Andrew Tan, and Chameera

Fernando, “Development and First-Phase Experimental Prototype Validation of a
Single-Chip Hybrid and Reconfigurable Multiprocessor Signal Processor System”,
Proceedings of the 2004 IEEE Southeastern Symposium on System Theory, Atlanta,
GA, 5pps, March 14-16, 2004.

[18] André DeHon,”The Density Advantage of Configurable Computing”, IEEE

Computer, 33(4):41--49, April 2000

[19] Lara Simsic, “Accelerating algorithms in hardware”, Embedded.com, Jan 20, 2004.

[20] Chiang, Anna S. "Programming Enters Designer's Core." Electrical Engineering

Times, 19 Feb. 2001, 5pps, 106 – 110.

[21] Haynes, Simon D., et. al, "Video Image Processing with the Sonic Architecture."

IEEE Compute, Apr. 2000, 8pps, 50 - 57.

 356

[22] Callahan, Timothy J., et. al,”The GARP Architecture and the C Compiler”, IEEE
Computer, Apr 2000, 8pps, 62 – 69.

[23] Callahan, Timothy J. and John Wawrzynek. "Reconfiguring SoC According to

GARP", Electrical Engineering Times, 19 Feb. 2001, 82 - 120.

[24] Gregory J Donohue, K. Joseph Hass et al, “A Reconfigurable Data Path Processor

for Space Applications”, Proceedings of Military and Aerospace Applications of
Programmable Logic Devices 2000, Laurel, MD, September 24-28, 2000.

[25] Ligon, Walter B., et al., "Implementation and Analysis of Numerical Components

for Reconfigurable Computing", IEEE Aerospace Applications Conference
Proceedings 2, 1999, 11pps, 325 - 335.

[26] Jürgen Becker, Manfred Glesner, Ahmad Alsolaim, Janusz Starzyk, Darmstadt

University of Technology and Ohio Universty,” Fast Communication Mechanisms in
Coarse-grained Dynamically Reconfigurable Array Architectures”.

[27] J. R. Heath and E. A. Disch, "A Methodology for the Control and Custom VLSI

Implementation of Large Scale Clos Networks," Proceedings 1988 IEEE
International Conference on Computer Design: VLSI In Computers and Processors,
Rye Brook, New York, pp. 472-477, October 3-5, 1988

[28] J. R. Heath and S. Riley, "Modeling and Implementation of an N x N Clos-Type

Interconnect Network Employing a "Clashing" Control Procedure," Proceedings
IEEE Region III Southeastcon'89, Columbia, South Carolina, pp. 1211-1215, April
9-12, 1989.

[29] Venugopal Duvvuri, “Design, Development, and Simulation/Experimental

Validation of a Crossbar Interconnect Network for a Single-Chip Shared Memory
Multiprocessor Architecture”, Masters Project, University of Kentucky, Lexington,
KY, June 2002.

[30] Xilinx Website, Internet Resources, http://www.xilinx.com.

[31] Mentor Graphics Website, Internet Resources, http://www.mentor.com.

[32] Bhide, Kanchan, “Design Enhancement and Integration of a Processor-Memory

Interconnect Network into a Single-Chip Multiprocessor Architecture” Masters
Thesis, University of Kentucky, Lexington, KY, December 2004.

[33] Paul Maxwell, "Design Enhancement, Synthesis, and Field Programmable Gate

Array Post-Implementation Simulation Verification of a Hybrid Data/Command
Driven Architecture", Masters Project, University of Kentucky, Lexington, KY,
May, 2001

http://www.xilinx.com
http://www.mentor.com

 357

[34] Xilinx Data Sheets on Multipliers in Virtex 2 Chip family, Internet Resources,
http://direct.xilinx.com/bvdocs/appnotes/xapp636.pdf.

[35] Xiaohui Zhao, “Hardware Description Language Simulation and Experimental

Hardware Prototype Validation of a First-Phase Prototype of a Hybrid
Data/Command Driven Multiprocessor Architecture”, Masters Project, University of
Kentucky, Lexington, KY, May2002.

http://direct.xilinx.com/bvdocs/appnotes/xapp636.pdf

 358

Vita

Author's Name - Sridhar Hegde
Birthplace - Mangalore, India
Birthdate - May 28, 1978

Education
Bachelor of Science in Electrical and Electronics Engineering
Manipal Institute of Technology
July - 2000

Research Experience
02/2004 - 12/2004
Research Assistant
Lexmark International Inc.
Lexington, KY

12/2001 - 02/2004
Graduate Research Assistant
University of Kentucky
Lexington, KY

Society Memberships

Member, IEEE

	FUNCTIONAL ENHANCEMENT AND APPLICATIONS DEVELOPMENT FOR A HYBRID, HETEROGENEOUS SINGLE-CHIP MULTIPROCESSOR ARCHITECTURE
	Recommended Citation

	Abstract
	Approval Page
	Rules for the Use of Theses
	Cover Page for Thesis
	Title Page for Thesis
	Master's Thesis Release
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter One
	1.1 Background
	1.2 HDCA Concepts
	1.3 Goals and Objectives of the Thesis
	1.4 Thesis Summary

	Chapter Two
	2.1 HDCA and Related Background Work
	2.2 PRT Mapper
	2.3 Multi-Function Queue
	2.3.1 FIFO Block
	2.3.2 Rate Block

	2.4 The Computing Elements
	2.5 The CE Controller
	2.6 Interface Controller
	2.7 The Multiplier and the Divider CEs

	Chapter Three
	3.1 Design Methodology
	3.1.1 Problem Definition
	3.1.2 Requirements definition

	3.2 Design Flow Approach
	3.3 Modifications to the First Phase Prototype
	3.3.1 PE Controller
	3.3.2 Interface Controller
	3.3.3 Crossbar Interconnect Network
	3.3.4 Input Rom for the Data
	3.3.5 Multiplier CE
	3.3.6 Dynamic Load Balancing Circuit
	3.3.7 Memory-Register Computer Architecture CEs

	3.4 Second Version (Phase) HDCA System

	Chapter Four
	4.1 The Virtual Prototype
	4.2 The Simulation Environment and Overview of the Testing Process
	4.3 FPGA Based Chip Resource Utilization Reports
	4.3.1 Device Utilization report for the Multiple Forking Application
	4.3.2 The Delay and Timing Summary Report – Application One
	4.3.3 Device Utilization Report for Un-pipelined Integer Manipulation Algorithm
	4.3.4 Delay and Timing Summary Report – Application Two

	4.4 Timing Constraints Definition for Post Implementation Simulation

	Chapter Five
	5.1 Dynamic Node Level Re-configurability
	5.1.1 Introduction and Concept
	5.1.2 Assignment Policy and Implementation

	5.2 Multiple Forking
	5.2.1 Introduction and Concept
	5.2.2 Implementation
	5.2.3 Post Place n Route Simulation Validation of an Application with Multiple

	Chapter Six
	6.1 Application One: Acyclic Integer Averaging Algorithm
	6.2 Acyclic Application Two – 2x 2 Matrix Multiplication Algorithm
	6.3 Acyclic Application 3 – 3x3 by 3x2 matrix multiplication algorithm with
	6.4 Application Four – Acyclic Pipelined integer manipulation algorithm
	6.5 Complex Non-Deterministic Cyclic Value Swap Application

	Chapter Seven
	7.0 Conclusion
	7.1 Recommendations

	Appendix A
	VHDL Code for Post Place and Route Simulation

	Appendix B
	Test Vectors
	B.1 Application One – Integer Averaging Algorithm
	B.2 Application Two - Acyclic 2x 2 Matrix Multiplication Algorithms
	B.3 Acyclic 3x3 by 3x2 Matrix Multiplication algorithm
	B.4 Application Four - Acyclic Pipelined integer manipulation algorithm
	B.5 Complex Non-Deterministic Cyclic Value Swap Application
	B.6 Application proving the concept of Multiple Forking for the HDCA

	References
	Vita

