
University of Kentucky University of Kentucky

UKnowledge UKnowledge

University of Kentucky Master's Theses Graduate School

2004

AUTOMATED SYNTHESIS OF VIRTUALBLOCKS FOR INTERFACING AUTOMATED SYNTHESIS OF VIRTUALBLOCKS FOR INTERFACING

SYSTEM UNDER TEST SYSTEM UNDER TEST

Andrew Hai Liang She
University of Kentucky, ahshe0@uky.edu

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
She, Andrew Hai Liang, "AUTOMATED SYNTHESIS OF VIRTUALBLOCKS FOR INTERFACING SYSTEM
UNDER TEST" (2004). University of Kentucky Master's Theses. 251.
https://uknowledge.uky.edu/gradschool_theses/251

This Thesis is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted
for inclusion in University of Kentucky Master's Theses by an authorized administrator of UKnowledge. For more
information, please contact UKnowledge@lsv.uky.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Kentucky

https://core.ac.uk/display/232559078?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/gradschool_theses
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

12/01/04

Andrew Hai Liang She

In this thesis, I/O signal recognizers, called VIRTUALBLOCKS, are synthesized to in-

terface with a SYSTEM UNDER TEST (SUT). Methods for automated synthesis of vir-

tualblocks allow us to simulate environment interfaces with SUT and also perform

fault detection on SUT. Such methods must be able to recognize incoming sequences

of signals from SUT, and upon the signal recognition determine the proper outgo-

ing sequences of signals to SUT. We characterize our systems into four distinctive

systems: system under test, AUXILIARY SYSTEM, controller and external environ-

ment. The auxiliary system is represented as a form of condition system Petri net

(virtualblocks) and interacts with SUT along with the interaction among the con-

troller and the external environment. Fault detection is performed by subsystems

called DETECTBLOCKS synthesized from the virtualblocks. We present construction

procedures for virtualblocks & detectblocks and discuss the notion of LEGALITY and

DETECTABILITY. Finally, we illustrate our approach using a model of a scanner con-

trol unit.

KEYWORDS: Auxiliary System, Petri Nets, Fault Detection, Condition Systems,
System Under Test

AUTOMATED SYNTHESIS OF VIRTUALBLOCKS FOR

INTERFACING SYSTEM UNDER TEST

ABSTRACT OF THESIS

12/01/04

Director of Graduate Studies.
Dr. Yu-Ming Zhang

Director of Thesis.
Dr. Larry E. Holloway

By

Andrew Hai Liang She

AUTOMATED SYNTHESIS OF VIRTUALBLOCKS FOR

INTERFACING SYSTEM UNDER TEST

Name Date

Unpublished dissertations submitted for the Master’s degree and deposited in
the University of Kentucky Library are as a rule open for inspection, but are to be
used only with due regard to the rights of the authors. Bibliographical references
may be noted, but quotations or summaries of parts may be published only with the
permission of the author, and with the usual scholarly acknowledgments.

Extensive copying or publication of the thesis in whole or in part also requires
the consent of the Dean of the Graduate School of the University of Kentucky.

A library that borrows this thesis for use by its patrons is expected to secure the
signature of each user.

RULES FOR THE USE OF THESES

2004

THESIS

Andrew Hai Liang She

The Graduate School

University of Kentucky

Copyright c© Andrew Hai Liang She 2004

2004

Director: Dr. Lawrence E. Holloway,
Professor of Electrical & Computer Engineering,

University of Kentucky,

Lexington, Kentucky

THESIS

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in the

College of Engineering
at the University of Kentucky

By
Andrew Hai Liang She

Lexington, Kentucky

AUTOMATED SYNTHESIS OF VIRTUALBLOCKS FOR
INTERFACING SYSTEM UNDER TEST

ACKNOWLEDGMENTS

I thank the Graduate School and the Center for Robotics and Manufacturing Sys-

tems at the University of Kentucky for giving me a Kentucky Graduate Scholarship,

a research assistantship and unlimited usage of computing, printing, and office fa-

cilities all through the process of my master degree studies.

My parents have been given me a lot of love and support throughout my studies

in the USA. They have had to live with many years of separation from me while I

have been involved in my academic pursuits in the USA.

Finally, I would like to express my sincerest thankfulness to my thesis advisor,

Dr. Larry Holloway for giving me this opportunity to work with him. His extraor-

dinary knowledge of the control world has inspired me to do this thesis. Because

of his guidance and open mind, I have been able to make my dream come true of

completing this master’s thesis program.

iii

TABLE OF CONTENTS

Acknowledgments iii

List of Figures viii

List of Files ix

Chapter 1 Introduction 1

1.1 Background . 1

1.2 Approach . 5

Chapter 2 Condition Systems 8

2.1 Condition System Languages . 9

2.1.1 Descriptive Ordering . 11

2.1.2 Observability . 13

2.2 Condition System Model . 14

2.3 Composition of Condition System Models 19

2.4 Condition System Models Modularity 21

2.4.1 Specification Block . 21

2.4.2 Achievable Specification Block 23

2.4.3 Composition of Specification Block 24

Chapter 3 Modeling For Interfacing 27

3.1 Real and Expected Systems . 29

3.2 Systems under Modeling for Interfacing Framework 30

3.3 Fault Detection under Modeling for Interfacing Framework 34

Chapter 4 Virtualblocks 36

4.1 Legality . 37

4.2 Inputblock . 37

4.3 Outputblock . 38

4.4 Composition of Inputblocks and Outputblocks 40

iv

4.4.1 Sequential Composition of Inputblocks 41

4.5 Algorithms . 43

4.5.1 Construction Procedures for Inputblocks 43

4.5.2 Construction Procedures for Outputblocks 50

4.5.3 Construction Procedures for Virtualblocks 55

Chapter 5 Fault Detection of Virtualblock 60

5.1 Fault . 60

5.2 Detectability . 61

5.3 Detectblock . 62

5.4 Algorithm . 63

5.4.1 Construction Procedures for Detectblocks 63

5.4.2 Construction Procedures for Composing Multiple Detectblocks 69

5.4.3 Construction Procedures for Resetting Virtualblock and Detect-

block . 72

Chapter 6 Application to Scanner Control Unit 75

6.1 Binary Signal . 77

6.2 Serial Signal . 80

6.3 Software Overview . 83

Chapter 7 Conclusion 86

Bibliography 89

Vita 92

v

LIST OF FIGURES

1.1 Systems within the Methodology . 6

2.1 Examples of voltage signal time lines corresponding to the C-sequence

s = ({a}{¬c}{bd}{∅}) . 10

2.2 Example of condition system model for a scanner motor power control

unit. 15

2.3 A simple chart showing some of the structural configurations which are

allowed and not allowed for condition systems satisfying property deter-

ministic . 18

2.4 Condition subsystems model for the scanner power, lamp & motor control

unit . 19

2.5 An example SpecBlock GSB for scanner power motor control unit (GSys)

of Figure 2.2 . 22

2.6 An example SpecBlock GSB2 for scanner power motor control unit (GSys)

of Figure 2.2 . 23

2.7 An example of Composed SpecBlock SB1|SB2 for scanner power motor

control unit (GSys) of Figure 2.2 . 25

3.1 System interactions among system under test, auxiliary system and con-

troller . 28

3.2 Scheme for Real and Expected System Fault Detection 30

3.3 Scheme for General System within the Framework of Modeling for Inter-

facing . 31

3.4 SUT and Auxiliary System Interfacing under Modeling for Interfacing

Framework . 33

3.5 Fault Detection on SUT under Modeling for Interfacing Framework . 35

4.1 General Structure of Inputblock . 38

4.2 General Structure of outputblock . 39

4.3 Example of Virtualblock . 40

vi

4.4 Example of Sequential Composition for Two Inputblocks in Virtualblock

interacts Specblocks with SUT and the Controller 41

4.5 Example of voltage time line corresponding to C-sequence s =

[({d0}{d1}{d2}{d3})]
clock . 44

4.6 Condition system model of inputblock for clocked signal 46

4.7 Figure for net Gi . 46

4.8 Algorithm 4.1 An algorithm for construction of inputblock for clocked

signal. 47

4.9 Condition system model of inputblock for non-clocked signal 48

4.10 Algorithm 4.2 An algorithm for construction of inputblock for non-

clocked signal. 49

4.11 Condition system model of outputblock for clocked signals 51

4.12 Algorithm 4.3 An algorithm for construction of outputblock for clocked

signals. 52

4.13 Condition system model of outputblock for non-clocked signals . . . 53

4.14 Algorithm 4.4 An algorithm for construction of outputblock for non-

clocked signals. 54

4.15 Condition system model of multiple inputblocks and outputblocks com-

position . 56

4.16 Algorithm 4.5 An algorithm for construction of multiple inputblocks and

outputblocks composition. 57

4.17 Condition system model of multiple virtualblocks initiation 58

4.18 Algorithm 4.6 An algorithm for construction of multiple virtualblocks

initiation. 59

5.1 Scheme for Fault Detection of System Under Test and Auxiliary System 61

5.2 General Structure of Detectblock . 63

5.3 Condition system model for non-clocked inputblock fault detection . 65

5.4 Algorithm 5.1 An algorithm for non-clocked inputblock fault detection. 66

5.5 Condition system model for clocked inputblock fault detection 67

5.6 Algorithm 5.2 An algorithm for clocked inputblock fault detection. . 68

5.7 Condition system model for multiple detectblocks fault detection . . 70

5.8 Algorithm 5.3 An algorithm for multiple virtualblock fault detection. 71

5.9 Condition system model of VirtualBlock with Reset Operation 73

5.10 Algorithm 4.7 An algorithm for resetting virtualblock. 74

vii

6.1 Figure for Scanner Control Unit Connections 76

6.2 Figure for Part of TCD2558D . 77

6.3 Timing Chart for TCD2558D in Bit Clamp Mode 78

6.4 Condition Models for Binary Signal of TCD2558D in Bit Clamp Mode 79

6.5 Figure for Part of WM8199 . 80

6.6 Timing Chart for WM8199 in Register Write Back Mode 81

6.7 Condition Models for Serial Signal of Serial Interface: a5,a4 82

6.8 An example Specnet of scanner control unit in register write back mode 84

6.9 An example simulator of scanner control unit in register write back

mode . 85

viii

LIST OF FILES

AHLSthes.pdf 671 KB

ix

Chapter 1

Introduction

In this thesis, we address issues on modeling and fault detection for a class of mod-

eling systems called condition systems Petri nets. We first present the theoretical

basis for condition systems. We then establish a concept of modeling for interfacing

and define the notion of legality and detectability. The construction procedures for

virtualblocks and detectblocks will also be presented in the thesis. We conclude this

thesis by illustrating how we apply our modeling and fault detection methodologies

into a scanner control unit application.

In the next section, we will present the background information and current is-

sues on modeling and fault detection in the literature of system engineers, control

system researchers, computer scientists and reliability engineers. We end this chap-

ter with a discussion of our approach for the methodologies and an overview of the

rest of the thesis.

1.1 Background

According to system and control theory, there are two prominent features in the

very definition of SYSTEM. First, a system consist of interacting components/subsys-

tems, and second a system is associated with a functionality. As system engineers,

we are interested in the quantitative analysis of systems and therefore we seek a

mathematical model of an actual physical system. There are two distinct physical

phenomena to be modeled: physical systems which are modeled by mathemati-

cal equations, and physical signals which are modeled by mathematical functions

[PP99].

Systems are further categorized into different classes based on their own unique

characteristics. In system classifications, systems can generally be classified into

static systems and dynamic systems. A static system is a system where output is in-

1

dependent of past values of input, and whereas a dynamic system is a system where

output determination generally requires "memory" of input history. From dynamic

systems, systems can be further classified depending on their stationarity (time-

varying, time-invariant), linearity (linear, nonlinear), state space (continuous, dis-

crete), state transition mechanism (time-driven, event-driven), predictability (de-

terministic, stochastic) and time sample path (continuous, discrete). A detailed

description of those system classifications can be found in [G85].

Historically, scientists and engineers have concentrated on studying natural phe-

nomena which are well modeled by laws of physics, chemistry, astronomy and other

physical sciences. So we typically encounter with quantities such as velocity and ac-

celeration of a solid particle, temperature rates of fluids and gases, gravity force of

a planet and etc. All of these quantities are considered "continuous variables" be-

cause the state space of these variables are both continuous and comprised of real

number. Based on these system characteristics, mathematical techniques such as

calculus had been developed to perform system modeling. To use these mathemat-

ical models, there are two key properties that systems must satisfy: state space is a

continuum and the state transition mechanism is time-driven. This class of systems

is also referred as CONTINUOUS-VARIABLE DYNAMIC SYSTEMS (CVDS).

But nowadays, we encounter systems that are inefficient to be modeled math-

ematically by continuous variables. First of all, state space for such systems are

"discrete", typically involving integer numbers. And second, their state transition

mechanism depends on instantaneous "events". Such systems include computer

systems, communication systems and manufacturing systems. Based on this fact, a

class of dynamic systems: Discrete Event Dynamic Systems, or just DISCRETE EVENT

SYSTEMS (DES) is being introduced. Discrete event systems are systems whose state

space are discrete and state changes can only occur as a result of asynchronously

occurring instantaneous events over time. There are basically three levels of ab-

straction in DES: Logical (untimed), Timed and Timed Stochastic. The choice of

the appropriate level of abstraction depends on the objective of the analysis.

As for modeling formalism in discrete event systems, two major formalisms are

AUTOMATA and PETRI NET [KG95],[MA98],[ZV99],[ZD93],[E03]. Each of these for-

malisms have their own unique properties and advantageous over the issues of

concurrency, modularity, state explosion and decidability. A detailed comparison of

Petri nets and automata can be found in [CL99].

2

Detection of system failure plays a crucial role in protecting human life and

improving the overall performance of industrial processes through reducing the

risk of product failure and time to market pressure. Fault Diagnosis has been the

subject of extensive research among various research communities due to the fact

that the swift evolution of computing, communication and industrial technologies

in the era of information revolution has brought the proliferation of new dynamic

systems which is often highly complex and gigantic. Thus the increasing complexity

in technological systems have necessitated the development of systematic methods

for accurate and reliable fault detection system.

First of all, we will review the concept of "FAULT". By reading through the lit-

erature in the field of fault diagnosis, one can easily discover that the terminology

of fault in this field is not consistent. In [HA02], fault is the inconsistency of sys-

tem observation with the expected modeled behaviors. Fault on the other hand is

considered to be an unobservable event in [SSL96]. Fault in [HCJK03] represents a

normal occurrence or an inherent characteristic of system which is inevitable in the

existing industrial environment. According to SAFEPROCESS Technical committee

of control engineering society, there are distinctions among the very definition of

fault, failure, malfunction, error, disturbance and etc. For example, fault is defined

as an unpermitted deviation of at least one characteristic property or parameter of

the system from the acceptable, usual or standard condition. Failure, "a permanent

interruption of a system’s ability to perform a required function under specified op-

erating conditions". Error, "a deviation between measured or computed value of an

output variable and its true or theoretically correct one". Symptom, "a change of

an observable quantity from normal behavior". More definitions and terminologies

can be found in nomenclature section of [SFP03].

Despite the deviation in the terminology of fault among different researchers,

the term "FAULT DIAGNOSIS" is also being treated differently. While in [SSL95] the

authors define failure diagnosis as the detection of failure events and identification

of the type of failure events through the record of observable events, in [J04] the

author distinguishes the definition of fault diagnosis with different meanings by

defining fault detection as the determination that the system behavior is different

from allowed behavior and fault diagnosis as localizing or identifying the fault.

The issues of fault diagnosis are well explored problems in reliability engineer-

ing, computer science and control system research, in particularly discrete event

3

system. Fault diagnosis using fault tree analysis has been studied in detail by re-

liability engineers. The analysis starts by considering an overall failure event and

working down the tree to identify the roots/parts of failure [O’C81]. Expert systems

and model based reasoning schemes for diagnosis have been proposed by computer

scientists. Expert systems are generally being applied in the case when it is difficult

to design and obtain a model for a particular system.

In addition to MODEL-FREE methods of expert systems from computer scientists,

quantitative-analytical model based methods have been extensively used by control

system researchers. In MODEL-BASED fault detection, a traditional approach to fault

detection is based on hardware or physical redundancy methods which require the

use of multiple sensors and actuators to measure and control a particular variable.

A typical voting technique is then applied to the hardware redundant system to

decide whether a system fault has occurred. One of the main problems of the

traditional hardware redundancy methods is the extra cost incurred from the use

of multiple redundant hardware in the system. Due to the conflict between adding

extra cost and reliability, the analytical or functional redundancy methods have

gradually replaced this traditional approach.

In the analytical redundancy scheme, a mathematical model system will be ob-

tained from an actual physical system/plant. Input variables will then be applied

into the system models and actual system. The output variables from these sys-

tems will be gathered and compared. Ideally the system behavior of model system

should mimic the actual system. The difference generated from the comparison

of variables will be called a symptom or residual signal. If the system is operat-

ing normally then the residual signal should be zero. Thus the residual signal is

used to determine whether a fault has occurred or not. These model-based diagno-

sis schemes rely on continuous-variable models such as differential and difference

equations. Examples of the methodologies include observer-based approaches, pa-

rameter estimation and parity vector methods. The observer-based methods work

by generating residuals for output variables with fixed parametric models. Fixed

parametric or non parametric models are used under parity equations method and

adaptive nonparametric or parametric models are used under parameter estimation

methodology [SFP03].

In [ZKW03], the authors state that for the purpose of only detecting and di-

agnosing some particular unique failure, detailed continuous-variable models as

4

in analytical redundancy schemes are often unnecessary. Under these conditions,

discrete event system models are usually sufficient as system models in terms of

information integrity and usually provide a more convenient way to model due to

the nature of discrete systems comparing to continuous systems. DES techniques in

fault detection generally require the use of models to model faulty behaviors and

then use a form of detector system to determine a proper detection from a given set

of observed events.

1.2 Approach

In this thesis, there are two salient issues to be tackled: modeling & fault detection

of system. On the modeling issue, the goal of our system modeling is to simulate

the auxiliary system which interfaces with SUT. We begin our modeling approach by

first analyzing the details and properties of our given systems which mainly consist

of system under test, auxiliary system and the controller. Next from our analysis, we

will then determine the appropriate modeling formalism and methodology for our

given systems. In terms of modeling formalism, we will use condition system Petri

net models as our systems modeling formalism. Condition systems are a form of

Petri net where systems are composed of subsystems which interact through condi-

tion signals. The advantages of using condition system Petri net will be discussed in

the following chapter. The auxiliary system modeling methodologies are relied on

the automated synthesis of virtualblocks which capable of recognizing input signals

from SUT and providing appropriate output signals to SUT. Virtualblocks under our

modeling methodology are designed to recognize and output two different type of

signals from SUT which are either clocked signals or non-clocked signals.

As for fault detection, we will specifically focus on model-based OFFLINE PAS-

SIVE fault detection only. This means that our methodologies involve modeling of

systems and fault detection systems that are derived from auxiliary system before

the given systems are on the line of work. Our methodologies also do not use any

test inputs to detect system failure. In our approach, a fault, failure or any other

faulty terms will be treated the same and the term is defined as an inconsistency be-

tween observed system behavior from system under test with the expected system

behavior of auxiliary system. Fault detection will be defined as the determination

that the system under test is not behaving as expected according to the model of

5

I/O signals

D
ev

ic
e

C
o

n
tr

o
l u

n
it

(S

ys
te

m
 u

n
d

er
 T

es
t)

D
ev

ic
e

(A
u

xi
lia

ry
 S

ys
te

m
)

M
ic

ro
co

m
p

u
te

r
(C

o
n

tr
o

lle
r)

Fault detection signals

C
o

m
m

an
d

s

Figure 1.1: Systems within the Methodology

the auxiliary system. In addition, our approaches vary in the respect that we do not

require the modeling of fault and thus drastically simplify the modeling process.

Our fault detection methodologies rely on detectblocks which are synthesized from

virtualblocks. Detectblocks are responsible for detecting whether a given sequences

of signals are recognizable by virtualblocks. If virtualblocks are unable to recognize

the signals then detectblocks will issue a fault detection signal.

In general, systems considered within the thesis consist of a physical device,

device’s control unit and a microcomputer. The physical device interacts with its

control unit through a common signal interface. The task of the microcomputer

is to control both the device and device’s control unit and determine their correct

system operations. Such physical system design testing has several disadvantages

in term of flexibility and observability. It is impractical to use a real system in de-

sign testing due to the time, cost and future design constraint impose on it. From

these disadvantages, we are motivated to develop a systematic methodology which

utilizes software model in system design testing. The main goal of the methodology

is to create a system model out of the physical device. The system model of the

device will not only provide a virtual system to the device’s control unit but also

perform fault detection on the control unit. Initially we intend to design a complete

model from the physical device. During the modeling process, we encounter several

6

modeling issues such as insufficient system information and the existence of CVDS

environment within the system components where we are unable to obtain a com-

plete model from the device. Due to these issues, we decided to create a model to

simulate the interface between device’s control unit and physical device instead of

a complete model. To achieve these goals, there are two main tasks for the device

model: 1. Responds to control unit’s excitations with appropriate responses and 2.

Detects fault among control unit’s excitations. The device model will be modeled

and simulated in a modular approach. Such modular approach allows the system to

be modeled within the Spectool (a type of control synthesis software tool) frame-

work which will implement automated synthesis of software code for the device

model. In addition, it will also permit the performance of formal model analysis

in future research. Under our methodology framework, device’s control unit will

be denoted as system under test (SUT) and the device will be denoted as auxiliary

system. Microcomputer will be considered as a controller.

The thesis is organized as follows. In chapter 2, we present the background in-

formation of condition system languages & model and condition subsystem models

composition & modularity. We will define the concept of modeling for interfacing in

chapter 3, and in chapter 4 we present the notion of legality, virtualblocks and also

construction procedures for virtualblocks. In chapter 5 the notion of detectability,

detectblocks and construction procedures for detectblocks are illustrated. Appli-

cations for our modeling and fault detection methodologies will be illustrated in

chapter 6. Finally, chapter 7 will be our thesis conclusion.

7

Chapter 2

Condition Systems

We present our approaches for modeling & fault detection method which rely on a

form of modeling formalism namely, CONDITION SYSTEM. Condition system is a form

of Petri net modeling formalism with explicit inputs and outputs called CONDITION

SIGNALS. These explicit I/O features of the system allow us to represent a system as

a collection of subsystems which interact through condition signals. The condition

system framework is a subset of the condition/event models developed by Sreenivas

and Krogh where there are two classes of input output signals for a C/E system:

condition signals and event signals [SK91].

One of the main advantages of using condition system Petri nets is the ability to

avoid state space problem in modeling of large and complex systems. With event

communication(automata), the traditional DES approach, modeling of a huge so-

phisticated system requires synchronous composition of subsystem models which

will lead to state explosion. Modeling formalisms emphasizing state communica-

tion such as condition systems can easily overcome this issue. The well defined

notions of input and output in condition system framework consequently allow the

system model to exhibit clear cause & effect relationships. The dynamics within the

subsystems can be defined independent of each others due to these well defined

interfaces, and this would simplify the system model construction by allowing the

reuse of subsystem models.

This chapter is presented for the purpose of providing background knowledge

on condition systems which is required for the understanding of later chapters. The

chapter is organized into four sections. In the first section of the chapter, we will

define the condition system languages. We then present the model of condition

system in section 2.2. In section 2.3, we discuss about the composition of condition

system models. In the last section, we present the modularity of condition system

models by introducing a special kind of condition system, Specification Block.

8

2.1 Condition System Languages

In this section, we introduce notions and notations of the languages generated by

condition systems found in [HA98a], [HA98b], [HGSA00] & [HA02]. The systems

that we consider interact with each other and their external environment through

conditions. A condition is a signal that either has value "TRUE", or "FALSE". A condi-

tion with a "true" value would mean that the particular condition is valid and vice

versa for the condition with "false" value. Let AllC be the universe of all conditions,

such that for each condition c in AllC , there also exists a negated condition de-

noted ¬c, where ¬(¬c) = c. Such notation of negation will contribute to a form

of condition signal property: CONTRADICT; where a condition signal c is said to be

contradict to condition signal ¬c. We will define TrueC as set of conditions (C)

where their condition values are "true". Therefore ¬TrueC is defined as set of con-

ditions (C) at a given time where their condition values are "false". Also note that

condition ∅ will be defined as condition set that does not have any conditions.

Next we will introduce another condition signal property that first appeared in

[GH00]. A condition signal c is said to be EXCLUSIVE to another condition signal

c’, if at most one of c, c’ can be true at any time. Note that c’ is not necessarily

the same as ¬c. Two condition sets are exclusive if each set contains at least one

condition signal exclusive to another condition signal in the other condition set.

We assume that there exists a designation of exclusive condition signals over AllC

. Such condition signal property is essential for avoiding system conflict among

condition system model which will be illustrated in the following section. Note that

any contradicting signals are necessarily exclusive.

System behavior of a particular condition system can be described by sequence

of condition sets. A condition set sequence, called a C-SEQUENCE, is a finite length

sequence of condition sets. A C-sequence from a typical condition system will indi-

cate a string of ordered condition sets which is valid over certain period of time and

thus describing the system behavior of condition system during that time frame.

Each condition set sequence is of the form (C0C1...Cn) for some integer n and sets

Ci ⊆ AllC for all 0 6 i 6 n. From the concept of condition signal property: Contra-

dict, a C-sequence is said to be CONTRADICTION FREE if for each Ci for any c ∈ Ci,

then ¬c 6∈ Ci. Given two C-sequences s1 and s2, the expression s1s2 will indicate

the concatenation of s2 on the end of s1, and this will allow the formation of C-

sequences set. A set of C-sequences is called a language, and the set consisting of

9

a

b

c

d

t

V

H

L

H

Hdon’t care

{a} {¬c} {b,d} {Ø}

don’t care

don’t care

don’t care

don’t care

don’t care

Figure 2.1: Examples of voltage signal time lines corresponding to the C-sequence

s = ({a}{¬c}{bd}{∅})

all C-sequences is denoted L.

A C-sequence can be viewed as a sequence of conditions that must be true over

certain specified though ordered time periods. Given a C-sequence s = (C0C1...Cn)

and some 0 ≤ i ≤ n, Ci represents a subset of conditions (or negated conditions)

that are true for some (possibly non-unique) period of time. Ci does not have to

include all true conditions over the time period. However, the time period that

Ci represents must follow immediately after the time period represented by Ci−1,

and must be followed immediately by the time period represented by Ci+1. This

is further illustrated in the high level voltage signal modeling of Figure 2.1. Note

that the condition a might be true throughout the time line, but does not have to

be listed in all condition sets in the sequence. This is analogous to a "do not care"

condition on its value when it is not specified.

10

2.1.1 Descriptive Ordering

Next, we will introduce the notion of DESCRIPTIVE ORDERING from [HA98b] which

will allow us to compare elements of condition languages (sequences of condition

sets). Elements of these languages are sequences of condition sets that are responsi-

ble for representing the evolution of a condition system. These condition sequences

can also be used to specify the desired system behavior of a typical condition sys-

tem. Each elements of the language will contain condition information of a particu-

lar condition system, and the ordering will be used to compare the richness of such

information among each elements.

For the goal of simplicity in condition language analysis, we need to describe

important characteristics of condition sequence without listing all the details of all

condition activity within the C-sequence. A convenient way to characterize a C-

sequence is through a partial ordering "≤" which we had previously referred to

as the descriptive ordering. Such ordering can be used to analyze and compare

features of different C-sequences.

Definition 2.1 will formally define the notion.

Definition 2.1 Define the DESCRIPTIVE ORDERING ≤ over condition sequences

such that:

1. (C1C
′
1) ≤ (C2) if C1 ⊆ C2 and C ′

1 ⊆ C2.

2. (C1) ≤ (C2C
′
2) if C1 ⊆ C2 and C1 ⊆ C ′

2.

3. Given C-sequences s1, s ′1, s2, and s ′2 such that s1 ≤ s ′1 and s2 ≤ s ′2, then

s1s2 ≤ s ′1s
′
2.

4. If s1 ≤ s2 and s2 ≤ s3, then s1 ≤ s3.

From the definition above, we see that given sequences s1 and s2, if s1 ≤ s2,

then s1 contains no more condition information in it than s2, and s2 can be said

to be AT LEAST AS DESCRIPTIVE as s1. If s1 ≤ s2 and s2 ≤ s1, then the sequences

are said to be EQUIVALENT under the ordering, written as s1 ≡ s2. Statement 1

and 2 in the definition above establish the ordering based on subsets of condition

sets. Statement 3 considers the concatenation of smaller ordered C-sequences, and

statement 4 defines the ordering to be transitive. Conditions that are not listed are

11

considered "don’t care" conditions. The descriptive ordering lets us omit consider-

ation of specific conditions during periods when they are not of interest, while still

allowing comparison of some basic sequencing characteristics.

Example 2.1 To illustrate the descriptive ordering, consider a power control unit

for a document scanning system with condition signals SCANNER ON, MOTOR ON

and signals MU and MD to indicate that the scanner motor is moving in upward or

downward position. Example C-sequences are as follows.

s1 = ({∅}{motor on,MD})

s2 = ({motor on}{MD}{motor on,MD})

s3 = ({motor on}{motor on}{MD}{motor on, MD})

s4 = ({motor on, MU}{motor on, MD})

s5 = ({motor on, MD})

s6 = ({motor on, MU, scanner on}{motor on,MD, scanner on}

{motor on, MU, ¬scanner on})

The following relationships are true.

s1 ≤ s2 ≡ s3 ≤ s4 ≤ s6

s1 ≤ s2 ≡ s3 ≤ s5

Note that s5 and s6 are not comparable under the descriptive ordering since

{motor on, MD} 6⊆ {motor on, MU, scanner on} and vice versa.

Let (AllC) be the C-sequence of length one that consists of all conditions (includ-

ing negations). Note that it is inherently contradictory. Let ({∅}) be the C-sequence

of length one that consists of no conditions. The following results can be shown.

Lemma 2.1 (HA98b) The following statements are true:

1. s ≤ (AllC) for any C-sequence s.

2. ({∅}) ≤ s for any C-sequence s.

3. (C) ≡ (CC) ≡ (CCC) ≡ (Cn) for any condition set C and any n > 0.

12

4. Given C-sequences s1 and s2 and condition set C, s1Cs2 ≡ s1CCs2.

5. Given C-sequences s1 and s2 and condition set C, C ′, if C ⊆ C ′, then s1Cs2 ≤
s1C

′s2.

Note that statement 1 of lemma 2.1 says that the condition sequence consisting

of the set of all conditions (and their negations) being true is the most descriptive of

all C-sequences (but it is contradictory). Statement 2 says that the C-sequence con-

sisting of just an empty set of conditions is the least descriptive C-sequence, since it

says nothing about the truth value of any condition at any time. Statement 3 says

that any finite nonzero length sequence is equivalent to any other finite nonzero

length sequence of the same condition set. Statement 4 says that duplication of

a condition set within a sequence results in an equivalent sequence. Statement 5

considers two sequences that differ only in a single condition set, where the set in

the first sequence is a subset of the set in the second sequence. The statement then

says that the second sequence is at least as descriptive.

2.1.2 Observability

Finally we conclude this section with a brief definition of OBSERVABILITY over con-

ditions which was initially introduced in [HA98a]. Let Cobs ⊆ AllC be a set of con-

ditions which can be observed, where it is implied that if c ∈ Cobs then ¬c ∈ Cobs.

For any c ∈ Cobs(G), this will implied that the condition signal c is observable with

respect to G. These observed conditions can either be the inputs to G or outputs of

G. Note that the internal state of G is not always observable, and their observability

will depend on the synthesis of state observer within the system [GH00],[GH01].

Next we will associate observed condition set, Cobs with C-sequence, s in the

following definition.

Definition 2.2 OBSERVABILITY : Given a C-sequence s = (C0C1...Cn) for some

integer n and some condition set Cobs ⊆ AllC, define the projection of s onto C,

denoted s |C as s |Cobs
= ((C0 ∩ Cobs)(C1 ∩ Cobs)...(Cn ∩ Cobs)).

Therefore s |Cobs
is also known as the observed system behavior of a particular

condition system.

From the definition 2.2 we get the following basic result presented in lemma

2.2:

13

Lemma 2.2 (HA02) For any s ∈ L and any C ⊆ AllC,

s |Cobs
≤ s.

C-sequence s is said to be at least as descriptive to observed C-sequence s |Cobs
.

Note that, if s |Cobs
≡ s, these would imply that all the condition sets in C-sequence

s are observable.

2.2 Condition System Model

Condition system G is defined as a form of Petri net that requires conditions for

enabling of transitions, TG and outputs condition signals through places, PG accord-

ing to its markings m. Definition 2.1 from [HGSA00] formally defines condition

systems that we consider for this thesis.

Definition 2.3 A condition system G is characterized by a set of states MG, a

next state mapping fG : MG × 2AllC −→ 2MG , and a condition output mapping

gG : MG −→ 2AllC. In this paper, we assume that MG, fG, and gG are defined

through a form of Petri net consisting of a set of places PG, a set of transitions TG,

a set of directed arcs AG between places and transitions, and a condition mapping

function ΦG(·), where (∀p)ΦG(p) ⊆ AllC maps output conditions to each place, and

(∀t)ΦG(t) ⊆ AllC maps ENABLING CONDITIONS to each transition. The net is related

to MG, fG and gG in the following manner:

1. THE STATES ARE THE MARKINGS OF THE PETRI NET: each state m ∈ MG is a

function over PG that represents a mapping of nonnegative integers to places.

2. THE OUTPUT CONDITIONS RESULT FROM MARKED PLACES: for any m ∈ MG,

gG(m) = {c | ∃p s.t. c ∈ ΦG(p) and m(p) ≥ 1}

3. NEXT-STATE DYNAMICS DEPEND ON STATE ENABLING AND CONDITION ENABLING:

for any m ∈ MG and any set of conditions TrueC ⊆ AllC, m ′ ∈ fG(m, TrueC)

if and only if there exists some transition set T such that

(a) T is STATE-ENABLED, meaning (∀p ∈ PG) m(p) ≥ |{t ∈ T |p is input to t}|

(b) T is CONDITION-ENABLED, meaning (∀t ∈ T) ΦG(t) ⊆ TrueC

(c) the next marking m ′ satisfies ∀p ∈ PG,

m ′(p) = m(p) − |{t ∈ T | p is input to t}| + |{t ∈ T | p is output of t}|

14

motor
forward

scanner
warm up

scanner
idle

p1 p2

p3

begin
scan

end
scan

power
on

motor
backward

p4

home
position

Figure 2.2: Example of condition system model for a scanner motor power control

unit.

4. MG IS CLOSED UNDER fG(·): if m ∈ MG and m ′ ∈ fG(m, TrueC) for some

TrueC ⊆ AllC, then m ′ ∈ MG.

In statement 2, we assume all conditions that are output from G will have value

defined by the marking of G. Thus, if a condition c is forced true on one marking,

then it will also be forced to either true or false for all other markings either through

the function g or defaulting to a known value. We note that items in 3a and 3c

above correspond to standard Petri net state enabling and firing of a transition set,

respectively. Item 3b adds an additional transition set enabling constraint that the

input conditions to each transition must also be within the considered set TrueC of

true conditions.

We will define enabling conditions of transitions as the input condition set for a

condition system G, Cin(G)={c ∈ ΦG(t) | t ∈ TG}. Similarly we define the conditions

of a place as the output condition set for the condition system G, Cout(G)={c ∈
ΦG(p) | p ∈ PG}.

Example 2.2 Consider the condition system model shown in Figure 2.2. The net

shown represents a simple scanner mechanism under its motor control unit. There

are three basic operational buttons on the scanner: "power on", "begin scan" & "end

15

scan" and they are controlled by the user. The scanner motor control unit can ei-

ther be in the state of "scanner idle", "scanner warm up", "motor forward" or "motor

backward". The conditions associated with the transitions represent input condi-

tions to the system. The conditions on the places are output conditions from the

system. If a place is marked then its associated output condition is "true". According

to Definition 2.3, the marking shown in the figure is m0 = [1 0 0 0] and gG(m0) = {

scanner idle }. Under the input condition set Cin(G) = { power on }, the transition

from p1 to p2 is both state enabled and condition enabled, so fG(m0, C) = { [0 0 0

1], [0 0 1 0] }. Note that when the scanner is in the state of "motor backward", an

internal command "home position" will be issued within the scanner control unit to

bring the scanner back to the "scanner warm up" state.

The next lemma follows directly from the Definition 2.3.

Lemma 2.3 (HGSA00) Consider a condition system G, with marking m and next

state mapping fG. The following statements are true:

1. Given condition sets C and C ′, if C ⊆ C ′, then fG(m,C) ⊆ fG(m,C ′);

2. Given condition sets C and C ′, if C ∩ Cin(G) = C ′ ∩ Cin(G), then fG(m,C) =

fG(m,C ′);

3. For any true condition set TrueC, m ∈ fG(m, TrueC).

The first statement relates the next state marking with subsets of condition sets

and the second statement explores on relationship of input condition sets with the

next state marking. The third statement of the lemma 2.3 is true because the set

of transitions T in Definition 2.3 can be an empty set which means that the next

state dynamics is independent of state enabling and condition enabling of the cor-

responding set of transitions, T due to the issue of timing delay in real world mod-

eling.

Definition 2.4 Given a condition system G and a marking m0, define the language

L(G,m0) ⊆ L to be the set of condition set sequences such that (C0C1C2...Cn) ∈
L(G,m0) if there exists some marking sequence (m0m1...mk) and index mapping

function j(i) with j(0) = 0, j(k) = n such that:

1. MARKINGS EVOLVE ACCORDING TO CONDITIONS:

16

mi+1 ∈ fG(mi, Cj(i)) for 0 ≤ i ≤ k − 1.

2. OUTPUT CONDITIONS RESULT ONLY FROM THE MARKING:

gG(mi) = Cj(i)

⋂
Cout(G).

3. SEQUENCING IS MAINTAINED:

A marking mi+1 either maps to condition sequence element Cj(i) correspond-

ing to prior marking mi in the marking sequence, or it maps to the next con-

dition sequence element. More formally, for any 0 6 i < k, j(i + 1) = j(i) or

j(i + 1) = j(i) + 1.

The above definition deserves some explanation. The notation Cj(i) indicates the

condition set associated with the ith marking. From statement 1, marking mi will

evolve to marking mi+1 only if it is enabled under condition set Cj(i). Statement

2 states that the output conditions in set Cj(i) correspond to the marking mi. For

statement 3, there are only two possibilities for condition set associates with mark-

ing mi+1:it can either be the condition set that was associated with the previous

marking mi or the next condition set following immediately from the condition set

of previous marking. In this way, the condition sequencing is maintained.

The marking sequence and condition set sequences have different indices be-

cause the mapping between the sequence is not necessarily one-to-one. A marking

could change from mi to mi+1, but g(mi) and g(mi+1) could be the same. Thus,

it is possible that both markings could correspond to the same condition sets in

the C-sequence. This then implies that there could be fewer condition sets in the

C-sequence than distinct markings in the corresponding marking sequence.

On the other hand, note that for any m and any C, m ∈ fG(m,C), which implies

that there is no transition firing. From statement 3, then it is possible that mi+1 =

mi. Under these circumstances, there will be more condition sets in the C-sequence

than distinct markings in the corresponding marking sequence, Finally, we point

out that L(G,m0) is obviously prefix-closed (excluding the empty prefix).

From the definition 2.4 we get the following basic result:

Lemma 2.4 (HA98a) For any G with any marking m and for any two C-sequences

s1, s2 such that s1 ∈ L(G,m), the following are true:

1. if s2 is a prefix of s1, then s2 ∈ L(G,m)

17

Not AllowedAllowed

a

¬a

a

a’

Figure 2.3: A simple chart showing some of the structural configurations which are

allowed and not allowed for condition systems satisfying property deterministic

2. if s1 ≤ s2 and s1 |Cout,G≡ s2 |Cout,G , then s2 ∈ L(G,m).

3. if s2 ≡ s1, then s2 ∈ L(G, m).

Note from the lemma 2.4, statement 1 states that the set L(G,m) is prefix closed.

Statement 2 says a string that is more descriptive with the equivalent output condi-

tions is also in the language, L(G,m).

In this thesis, our condition system model is subjected to the limitation related to

one of the subclasses of Petri Net, Free-Choice Petri Nets [P81]. The class of systems

we consider is best illustrated with the condition system property DETERMINISTIC.

The system property DETERMINISTIC will be formally defined in Definition 2.5:

Definition 2.5 Property DETERMINISTIC: A condition system satisfies Property

DETERMINISTIC if the following is true:

1. Given a place p and the set p(t)={t ∈ T | t is output of p}, if the set p(t) has

more than one element, then for each t, t ′ ∈ p(t), there exist c ∈ ΦG(t) and

c ′ ∈ ΦG(t ′) with c and c’ exclusive with each other.

According to this limitation, a place cannot be an input to several transitions

with one exception that when enabling condition of each transitions are exclusive

18

scanner
on

scanner
idle

power on

power on

motor on

motor
off

light
on

light
off

p
ow

er

o
n

scanner
on

scanner
idle

motor
on

motor
off

lig
h

t

o
n

G1

G2G3

Figure 2.4: Condition subsystems model for the scanner power, lamp & motor con-

trol unit

or contradict among each other. But we do allow more than one place to be an

input to a single transition. A place is also allowed to be an output from several

transitions.

2.3 Composition of Condition System Models

A condition system can be subdivided into subsystems, where each subsystem is a

condition system over a set of connected places and transitions which are discon-

nected from all other places and transitions. For the remainder of this thesis, we

use the notation G to indicate the complete system, and the notation {G1, ...Gn} to

indicate the set of subsystems in G. Given an initial marking m0 of G, we let m0,i

denote the marking over just the places in Gi ∈ G.

Condition systems can also be composed to create other condition systems. Con-

current composition of condition systems is formally defined in the following defi-

nition:

Definition 2.6 CONCURRENT COMPOSITION: Given two distinct systems G1 and

19

G2 with markings m1 and m2, let G = G1 ∪ G2 the concurrent composition of G1

and G2 correspond to the simple unions of the systems, such that:

1. G: PG = PG1
∪ PG2

, TG = TG1
∪ TG2

, AG = AG1
∪ AG2

.

2. G1: ΦG(x) = ΦG1
(x) for x ∈ PG1

∪ TG1

3. G2: ΦG(x) = ΦG2
(x) for x ∈ PG2

∪ TG2

We assume x cannot be in both G1 and G2. We will define the expression m =

m1 ∪m2 such that m(p) = m1(p) for p ∈ PG1
and m(p) = m2(p) for p ∈ PG2

.

The properties in the following lemma then result.

Lemma 2.5 (HGSA00) Given systems G1 and G2 with markings m1 and m2, the

following properties are true:

1. Given some condition set C, some m1,m
′
1 ∈ MG1

, and some m2,m
′
2 ∈ MG2

,

m ′
1 ∪ m ′

2 ∈ fG1∪G2
(m1 ∪ m2, TrueC) if and only if m ′

1 ∈ fG1
(m1, TrueC) and

m ′
2 ∈ fG2

(m2, TrueC)

2. gG1∪G2
(m1 ∪m2) = gG1

(m1) ∪ gG2
(m2).

3. For each s ∈ L(G1∪G2, m1∪m2), there exist s1 ∈ L(G1,m1) and s2 ∈ L(G2,m2)

such that s1 ≤ s and s2 ≤ s

4. If Cout(G1)∩Cout(G2) = ∅, then L(G1∪G2,m1∪m2) = L(G1,m1)∩L(G2,m2).

Statement 1 in the lemma 2.5 states that if a condition set is sufficient to enable

transitions in system G1 to fire to marking m1, and to enable transitions in system

G2 to fire to marking m2, then it is sufficient to enable transitions in system G1∪G2

to fire to marking m1 ∪ m2 in the composed system. The converse is also true.

Statement 2 in the lemma states that the output of the composed system is just

the union of the output of the individual systems. Statement 3 states that for any

C-sequence s in the language of the composed system, for each of the subsystems

there is some C-sequence in the subsystem language that is comparable to s and no

more descriptive than s.

The condition in statement 4 about the composed systems having nonintersect-

ing output condition sets is often true. The lemma statement 4 states that when

the output conditions of these individual subsystems are nonintersecting, then the

20

resulting language of the composed system is just the simple intersection of the

individual languages. Figure 2.4 shows an example of a set of subsystems model

for a scanner control unit. Dashed arcs in the figure indicate the flow of conditions

between subsystems.

2.4 Condition System Models Modularity

In this section we will present a special class of condition system models, SPECI-

FICATION BLOCK (SpecBlock) introduced in [HA98A] & [HGSA00] to demonstrate

the modularity of condition models which allow us to standardize, group and reuse

system models. The specification block is a condition system used to specify the lan-

guage that a system model (i.e. an auxiliary system model) should follow. In other

words, SpecBlocks specify the desired states of a system model. Following the intro-

duction of the specification block, we will define the properties of SpecBlock by pre-

senting the notion of an achievable SpecBlock and the composition of SpecBlock.

2.4.1 Specification Block

We represent our specification of desired system model in terms of a specification

block (SpecBlock), defined as a triple (GSB,minit,SB,mcmpl,SB), where GSB is a con-

dition system, minit,SB ∈ MGSB is an INITIATION STATE and mcompl,SB ∈ MGSB is a

COMPLETION STATE. The set of states MGSB is limited to the set of states reachable

from the initiation state.

Next we will characterize the specification block by two condition sets, defined

as:

Cinit,SB = {c ∈ ΦGSB(p) | p is marked under minit,SB}

Ccmpl,SB = {c ∈ ΦGSB(p) | p is marked under mcmpl,SB}

The condition set, Cinit,SB, represents a set of conditions that are true whenever

a specification is initiated. Likewise, Ccmpl,SB is the set of conditions generated by

the final marking within the specification block. We will also defined condition

system for system model as GSys.

In the following definition, we will formally define the completion language of

SpecBlock:

21

Gsys

motor
on

Ø

scanner
idle

GSB

motor
forward

scanner
warm up

scanner
idle

begin
scan

end
scan

power
on

motor
backward

home
position

Figure 2.5: An example SpecBlock GSB for scanner power motor control unit (GSys)

of Figure 2.2

Definition 2.7 Given a SpecBlock (GSB,minit,SB, mcmpl,SB), the completion lan-

guage Lcmpl(GSB) ⊆ L(GSB, minit,SB) is defined such that: s ∈ Lcmpl(GSB) if there

exists some marking sequence (m0...mk) consistent with s where m0 = minit,SB and

mk = mcmpl,SB.

We note that the completion language for condition systems is analogous to the

marked language in traditional event-based languages. It is not necessary prefix

closed.

Example 2.3 Suppose that the scanner power control unit model shown in Fig-

ure 2.2 is the system model, GSys and specification block associates with switch-

ing the scanner off/on and turning the motor on is shown in GSB of Figure 2.5.

The SpecBlock is represented as (GSB, (100), (001)) where the marking vector cor-

respond to the places from down to up in the figure. One of the C-sequence, s

within the completion language is ({Scanner Idle} {∅} {Motor On}). The {∅} in the

C-sequence effectively allows any intermediate activity between the Scanner Idle

and Motor On conditions under the descriptive ordering. Note that the C-sequence

22

motor
on

scanner
idle

GSB2

Figure 2.6: An example SpecBlock GSB2 for scanner power motor control unit (GSys)

of Figure 2.2

is ambiguous in the sense that it describes selected output conditions of GSys, but

does not describe details of how to achieve those conditions.

2.4.2 Achievable Specification Block

In this subsection, we will now formally define an achievable specification block.

Definition 2.8 A SpecBlock (GSB,minit,SB,mcmpl,SB) is achievable with respect

to a system model GSys if for any m ∈ MGSys such that gGSys(m) =

gGSB(minit,SB)
⋂

Cout(GSys), then there exists a s ∈ Lcmpl(GSB) and a s ′ ∈ L(GSys,m)

such that s ≤ s ′.

Thus, if a specification GSB is achievable, then for any state of the system model

that matches the output of the initial state of the specblock, there will exist a C-

sequence from that state such that the sequence is at least as descriptive as some

C-sequence of the completion language of the specblock. Note that ACHIEVABIL-

ITY does not imply that the system model could be restricted to just the specified

behavior, it simply says that the system model is capable of satisfying the behavior.

Example 2.4 From example 2.3, the C-sequence within the completion language

of GSB, ({Scanner Idle} {∅} {Motor On}) is achievable with respect to GSys since

the system model can produce a C-sequence as descriptive as this. Now suppose we

omitted the middle state in the GSB of Figure 2.5 as shown in Figure 2.6 (GSB2), so

that we now had ({Scanner Idle} {Motor On}) as the C-sequence within our com-

23

pletion language of GSB2, this then would not be achievable with respect to GSys,

since the system model cannot go from scanner idle to motor on without travel-

ing through some intermediate state. C-sequences within the completion language

from both GSys and GSB2 are said to be incomparable with each other.

2.4.3 Composition of Specification Block

Next, we will present results on sequentially composing SpecBlocks into larger

SpecBlocks. If each individual SpecBlock is achievable and certain relationships

between the SpecBlocks used are satisfied, then the resulting composed block will

also be achievable.

We define the SEQUENTIAL COMPOSITION of specification blocks formally in the

following definition:

Definition 2.9 SEQUENTIAL COMPOSITION FOR SPECBLOCK:

Given two SpecBlocks SB1 = (GSB1 ,minit,SB1
,mcmpl,SB1

) and SB2 =

(GSB2 ,minit,SB2
,mcmpl,SB2

), define the sequential composition, denoted

SB1|SB2 = (GSB1 |GSB2 ,minit,SB1|SB2
,mcmpl,SB1|SB2

) such that:

1. GSB1 |GSB2 is the union of the nets GSB1 and GSB2 with the addition of an ad-

ditional transition tjoin and arcs such that, arcs lead to tjoin from each place

p ∈ PSB1
marked under mcmpl,SB1

, and lead from tjoin to each place p ∈ PSB2
,

marked under minit,SB2
.

2. minit,SB1|SB2
(p) equals minit,SB1

(p) if p ∈ PSB1
and equals 0 if p ∈ PSB2

.

3. mcmpl,SB1|SB2
(p) equals 0 if p ∈ PSB1

and equals mcmpl,SB2
(p) if p ∈ PSB2

.

Note that the initiation SB1|SB2 (GSB,seq) is the same as initiating just SB1. When

SB1 in the composition reaches completion, then SB2 initiates. The composed block

then completes upon the completion of SB2.

The following properties follow from the definition:

Lemma 2.6 (HA98A) Consider SpecBlocks SB1 and SB2 is the same as just initiat-

ing just SB1. When SB1 in the composition reaches completion, then SB2 initiates.

The composed block then completes upon the completion of SB2. The following

properties are true:

24

motor
on

Scanner
on

GSB2

Scanner
on

Scanner
idle

GSB1

tjoin

SB1 | SB2

Figure 2.7: An example of Composed SpecBlock SB1|SB2 for scanner power motor

control unit (GSys) of Figure 2.2

1. Cinit,GSB,seq
= Cinit,SB1

.

2. Ccmpl,GSB,seq
= Ccmpl,SB2

.

3. Lcmpl(GSB,seq) = {ss ′|s ∈ Lcmpl(GSB1), s ′ ∈ Lcmpl(GSB2)}.

To show the last statement of the lemma, note that for any s ∈ Lcmpl(G
SB1),

there exists a marking sequence from minit,SB1
to mcmpl,SB1

. By the composition,

mcmpl,SB1
enables the transition tjoin between the SpecBlocks. Firing tjoin empties

GSB1 and gives minit,SB2
, from which any marking sequence leading to mcmpl,SB2

gives string s ′ ∈ Lcmpl(G
SB2). Since neither SpecBlock has transition condition

inputs from the other SpecBlock, then linking of the two blocks does not cause

one to restrict the transition firings of the other. By definition 2.8, if follows then

that ss ′ ∈ L(Gseq,SB,minit,SBseq), and ss ′ ∈ Lcmpl(SBseq). We have thus shown that

Lcmpl(GSBseq) ⊆ {ss ′ | s ∈ Lcmpl(GSB1), s ′ ∈ Lcmpl(GSB2)} Containment in the other

direction is shown by noting that mcmpl,SBseq is mcmpl,SB2
by its definition, and

since GSB2 is initially unmarked in the composition, no marking sequence can reach

mcmpl,SBseq without first reaching mcmpl,SB1
to enable the firing of tjoin.

Example 2.5 Consider the composed Specblock SB1|SB2 shown in Figure 2.7,

SB1 = (GSB1, (10), (01)) is achievable with respect to system model of Figure 2.2

25

GSys and SB2 = (GSB2, (10), (01)) is also achievable with respect to GSys. SB1|SB2

will be achievable too w.r.t GSys since Cinit,GSB2 = {Scanner on}, Ccmpl,GSB1 =

{Scanner On} and therefore Cinit,GSB2 ⊆ Ccmpl,GSB1 . But SB2|SB1 will not be achiev-

able w.r.t. GSys since Cinit,GSB1 6⊆ Ccmpl,GSB2 .

Finally we will present the main result of achievable sequential composition as

presented in lemma 2.7:

Lemma 2.7 (HA98A) Given SpecBlocks SB1 and SB2 which are achievable w.r.t.

GSys, the sequential SpecBlock composition, SB1|SB2, is achievable w.r.t. GSys if

Cinit,GSB2 ⊆ Ccmpl,GSB1 .

26

Chapter 3

Modeling For Interfacing

Modeling for interfacing focuses on issues in simulating environment interfaces

with a particular target system. The environment subjected to simulation communi-

cates with target system through a common interface and the objective of modeling

for interfacing is to build a system model, Gsys out of the environment solely for

the objective of imitating its interaction with the target system. In other words, the

system model created is only responsible for providing an accurate system interac-

tion with its target system. A successful modeling process will lead target system

into "believing" that it is interacting with the actual system even though the system

it interacted with is merely a virtual system and it is not the actual and original sys-

tem. Under the modeling for interfacing framework, a subsystem model will then

be synthesized from Gsys to perform fault detection on signal interactions between

target system and Gsys. The concept of modeling for interfacing will serve as a fun-

damental foundation for the introduction of two special classes of condition system

model, virtualblock and detectblock.

In our cases, we are given a system under test (SUT) which interacts primar-

ily with an auxiliary system and a controller. The SUT will be our target system

and the auxiliary system will be the system model. Controller’s function is to de-

termine whether SUT is in working condition and the auxiliary system will act as

a supplement to SUT through their signals interface interaction. In addition, the

specification of SUT is only partially known or understood, and therefore a com-

plete system model of SUT is unavailable. However, we will have the necessary

specification of the auxiliary system which will allow us to develop the correspond-

ing system model. Under our modeling methodologies, auxiliary system, the system

interfacing with system under test, is subjected to modeling process and is repre-

sented as a form of condition system Petri net. The auxiliary system model will not

only provide signal interactions with SUT, but also detect faults on SUT.

27

I/O
 s

ig
n

al
s

S
ys

te
m

 u
n

d
er

 T
es

t

A
u

xi
lia

ry
 S

ys
te

m

Controller

commands

Interface to simulate

Figure 3.1: System interactions among system under test, auxiliary system and

controller

One of the goals of this thesis is to develop a system model out of the real

and actual auxiliary system for the purpose of interfacing with system under test.

Motivations for developing such system model originate from the disadvantages

of using a real system in terms of design time, manufacturing cost and also the

potential danger involved in actual system testing. By using a system model (such

as a software model), the corresponding system behavior can either be operated as

a STANDARD BEHAVIOR where both "normal" and "rare" behavior can be simulated

or CUSTOMIZED BEHAVIOR where forced behavior such as peripheral failures and

errors can be modeled. In comparison to hard coding specific responses, a model

based approach is more suitable in light of flexibility on future testing and design.

Coding can be synthesized from the model and device modeling can be done with

multiple behaviors instead of just a single response. Thus in order to test certain

functionality of the SUT, we will utilize the model-based approach to model the

auxiliary system.

The goal of the auxiliary system modeling is to eventually confirm the SUT cor-

rect signals interaction with the auxiliary system. To achieve this goal, there are

mainly two tasks to be completed: 1. Given an excitation of auxiliary system by

28

SUT, determine the possible responses of auxiliary system. 2. Given the possi-

ble responses of the auxiliary system, confirm that the SUT responds appropriately

(fault detection). The first task will be accomplished by virtualblock which will

be addressed in the following chapter, chapter 4. Another class of condition sys-

tem model, detectblock is introduced to tackle the second task. Detectblock will be

addressed in chapter 5.

This chapter is presented as follow: we will first briefly define the notion of real

and expected behavior on a system. From such notions, we will then formally define

our definition of fault. Next, we will present and define the system architecture

under our modeling for interfacing framework which mainly consist of: System

Under Test, Auxiliary System, Controller and External Environment. Finally, fault

detection under modeling for interfacing framework will be defined and described

in the last section of the chapter.

3.1 Real and Expected Systems

In this section, we will define the notion of real and expected behavior of a system

presented in [A04]. For a given system, we use superscripts (R,E) to distinguish

between the real and actual behavior of a system, GR and expected behavior of a

system model, GE. The REAL SYSTEM distinguishes itself from the EXPECTED SYSTEM

through the definition of fault which we will briefly define in Definition 3.1:

Definition 3.1 Under the notion of real and expected behavior, a system is said to

have a FAULT if the language of the real system (GR) is not contained within the

language of its corresponding model system (GE) of the expected behavior, i.e. For

all s ∈ L(GR,mR
0), if s 6∈ L(GE,mE

0) then s represents a fault.

Ideally, an expected system completely captures the necessary system behavior

of a real system and therefore it is fault free. The expected behavior of a system

model is considered as a subset of the real system, GE ⊆ GR.

29

INPUTS OUTPUTSREAL
SYSTEM

EXPECTED
MODEL
SYSTEM

FAULT DETECTION

Figure 3.2: Scheme for Real and Expected System Fault Detection

3.2 Systems under Modeling for Interfacing Framework

In general, there are four systems we consider: SYSTEM UNDER TEST, AUXILIARY

SYSTEM, CONTROLLER and EXTERNAL ENVIRONMENT. For any given system, we use

superscripts (SUT, Aux) to distinguish between System under Test, GSUT and Aux-

iliary System, GAux. Superscripts (Ctrl, Env) will be used to define the Controller,

GCtrl and the External Environment, GEnv. We will also use superscript (I) to denote

system which is responsible for interfacing any target systems, GI and superscript

(D) to denote system which is capable of performing fault detection, GD.

In our cases, system under test and auxiliary system are the principal systems

under the modeling for interfacing framework. Each of them interacts with one

another through some common signal paths. SUT will communicate with auxiliary

system through an I/O interface by issuing input signals to auxiliary system and

receiving output signals from the auxiliary system. Under our modeling method-

ologies, a real system under test is interacting with an expected auxiliary system

which is fault-free and the expected auxiliary system will have an additional capa-

bility of detecting a fault on SUT.

30

INPUTS

OUTPUTS

S
ys

te
m

 u
n

d
er

 T
es

t

A
u

xi
lia

ry
 S

ys
te

m

C
o

n
tr

o
lle

r

External Environment

Activation, Completion and Fault Detection Signal

U
n

o
b

se
rv

ed

C
o

m
m

an
d

Stochastic Signal

Figure 3.3: Scheme for General System within the Framework of Modeling for

Interfacing

The controller is included in our framework due to the fact that each signal

cycle between SUT and auxiliary system required an independent indicator. The

controller will communicate with both SUT and auxiliary system indicating the start

or the end of a particular command cycle. As stated before, the function of the

controller is to act as a supervisor for SUT and determine the functionality of SUT

in each cycle of commands but its commands to SUT are unobservable with respect

to auxiliary system. The controller will interact with auxiliary system to signal the

activation of each SUT command cycle and also the completion of the corresponding

command cycle. Also note that the controller is assumed to be fault-free for the

convenience of fault detection on SUT.

Another system we consider under the framework of modeling for interfacing is

the external environment. The external environment will represent the real world

surrounding systems within the framework and it is the source of stochastic/ran-

dom signals to systems (typically the auxiliary system). The inclusion of external

environment in the framework is essential to the modeling process of auxiliary sys-

tem.

31

Figure 3.3 further illustrates the systems within the modeling for interfacing

framework and their relationships with each others. We will formally define the

systems under our modeling framework in the following definition:

Definition 3.2 Systems considered within the framework of modeling for inter-

facing are real system under test, (GSUT,R); expected auxiliary system with system

interfacing and fault detecting capabilities, (GAux,E,I,D); the controller (GCtrl) and

the external environment (GEnv). Detailed descriptions for each systems are given

below:

1. GSUT,R is the system representing the real behavior of system under test and it

is possible to have some faulty behaviors within the system.

2. GAux,E,I,D is the system representing the expected behavior of auxiliary sys-

tem which provides I/O signals interaction with system under test and it will

perform fault detection on system under test.

3. GCtrl is the system representing the supervisor of system under test. It is

responsible for issuing activation signal cinit,ctrl, completion signal ccmpl,ctrl

and also the fault detection signal cd,ctrl into auxiliary system.

4. GEnv is the system representing the external environment surrounding the

auxiliary system, GAux. The output conditions of the system Cout(GEnv) are

non-deterministic with respect to GAux.

There are basically two different kinds of SUT: Real and Expected. One of the

main differences between a real and an expected SUT is that, for the real system

there is a possibility that faulty behaviors might exist within its system, whereas for

the expected system the probability of fault occurrence is zero since the expected

system completely captures the necessary system behaviors of system under test. In

order to perform fault detection on SUT, we will therefore use a real SUT in our

modeling framework.

An auxiliary system is the simulating environment supplemental to system un-

der test. As stated before, the tester has the necessary information to model and

simulate the system behavior of auxiliary system which allows us to extract an ex-

pected system out of the auxiliary system. The expected auxiliary system is modeled

such that it is assumed to be free of faulty system behavior. There are generally two

32

GSUT,E

GSUT,R GAUX,E

GAUX,E,I

INPUT

OUTPUT

GAUX,E,I

Figure 3.4: SUT and Auxiliary System Interfacing under Modeling for Interfacing

Framework

different kinds of expected auxiliary systems we considered: the expected model,

GAux,E and the expected model for interfacing SUT, GAux,E,I. The expected model

is the expected auxiliary system which consist of all the necessary system behavior

of auxiliary system whereas the expected model for interfacing SUT is the expected

system which consist of just the system behavior of auxiliary system necessary for

the purpose of interfacing with SUT. These two expected models however are not

sufficient to meet the goals of our modeling framework. We need to synthesize a

fault detector from the expected auxiliary system to perform the testing of SUT. The

fault detector will be incorporated into an expected auxiliary system and we will

denote such system as GAux,E,I,D.

We define the system which initiates and controls the SUT and auxiliary sys-

tem as the controller. The controller acts like an external supervisor or PC which

will supervise the signals interaction between the auxiliary system and SUT. Initi-

ation condition signal, cinit,ctrl from the controller will activate the beginning of

command cycle between SUT and the auxiliary system by telling auxiliary system

to begin receiving input signals from SUT. At the end of the command cycle the

controller will issue a completion condition signal, ccmpl,ctrl to auxiliary system to

33

indicate that it is time to provide output signals to SUT. In addition, the controller

of modeling for interfacing framework will also issue a fault detection signal, cd,ctrl

to GAux,E,I,D to perform fault detection on I/O interface between SUT and auxiliary

system at the end of every commands cycle.

Finally the system which interacts externally within the auxiliary system is called

the external environment according to statement 4. The system is analogous to the

real world where it is the main source of non-deterministic events for the auxiliary

system. Its input to auxiliary system is unpredictable and therefore it is incom-

patible with our modeling framework which is deterministic. Under our modeling

methodologies, the random signals interaction between the external environment

and auxiliary relationship will be reduced to a fixed and deterministic signals inter-

action. Such relationship with the auxiliary system is vital for our modeling process

especially in the case of expected auxiliary system interfacing SUT. Recall that the

expected auxiliary system interfacing SUT is the subsystem of expected auxiliary

system model and there will be some system components in expected auxiliary sys-

tem that are not being modeled. Such system components might be responsible for

interacting with the external environment and without the appropriate subsystem

model we will not be able to obtain their system dynamics. Therefore the prede-

fined, fixed, deterministic external environment incoming signals assumptions will

be made to overcome the missing system interactions issue. Such assumption is nec-

essary for the success of our modeling process and also will not affect the realness

of our auxiliary system model.

3.3 Fault Detection under Modeling for Interfacing

Framework

Next, we will define fault detection on system under modeling for interfacing frame-

work by exploring the systems relationship among different subsystems of auxiliary

systems and systems under test. The systems relation between auxiliary system

and system under test are presented in term of real, expected system behavior and

system with detector capability.

First of all, for GSUT,E and GAux,E, this is the perfect ideal situation where no faults

are possible. Both GSUT,E and GAux,E represent the expected system behaviors of

system under test and auxiliary system, thus there will be no faulty system behavior

34

GCtrl

GSUT,R

GD

GAUX,E,I,D

I/O
signals

GAUX,E

fault detection
signals

Figure 3.5: Fault Detection on SUT under Modeling for Interfacing Framework

in existence.

Secondly, for GSUT,E and GAux,E,D, this is the situation where GSUT,E is fault free

and the expected auxiliary system with detector capability GAux,E,D will never detect

a fault. GAux,E,D consists of fault detector that will perform testing on GSUT,E and

always return a negative fault detection signal because GSUT,E represent system with

expected system behavior and thus it is fault free.

Finally, for GSUT,R and GAux,E,D, this is the situation where GSUT,R represent the

real and actual system and faulty system behaviors are possible and therefore it is

possible for expected auxiliary system with detector capability, GAux,E,D to detect a

fault. The real and actual system under test, GSUT,R is subjected to faulty system

behavior and auxiliary system with detector, GAux,E,D will have the capability to

detect it. This systems relationship is the central of this thesis, and these are the

systems that are being considered under our modeling process and where fault

detection methodologies is being applied.

35

Chapter 4

Virtualblocks

From the general perspective on systems within the modeling for interfacing frame-

work, we will now shift our attention to one of the building blocks of the frame-

work, the VIRTUALBLOCK. Virtualblock is a special class of condition system model

responsible for providing a virtual system to a specific target system (i.e. a SUT) as

described in chapter 3. It is the vital element of our modeling for interface frame-

work which provides the simulation environment to SUT and can also be known

as a subsystem of auxiliary system model which interfaces with SUT, GAux,E,I. Vir-

tualblocks contain two special class of condition system models: INPUTBLOCK and

OUTPUTBLOCK. The role of the inputblock is to recognize incoming signals from the

target system according to a specific pre-defined specification of the I/O interactions

between target system and system model whereas the function of outputblock is to

produce appropriate outgoing signals from the system model to the target system

according to the specification of system model.

In this chapter, we will explore the system properties of virtualblock by first pre-

senting the notion of LEGALITY. Next in section 4.2, we will formally define one of

the system components of virtualblock, the inputblock. Following the formal defin-

ition of inputblock, formal definition of another system component of virtualblock,

the outputblock will also be presented in section 4.3. In section 4.4, we illustrate the

composition of inputblock and outputblock which will lead to the formation of vir-

tualblock. Sequential composition of inputblocks is then defined to model clocked

signal in discrete time environment. Finally, in the last section of the chapter, input-

block’s construction procedures for identifying incoming target system signal will

be presented. Construction procedures of outputblock for outputting outgoing sys-

tem model signal to target system will be presented in the similar manner. Both of

the construction procedures for inputblock and outputblock explore different mod-

eling techniques on clocked and non-clocked signals. We conclude the chapter by

36

presenting construction procedure for composition of multiple inputblocks & out-

putblocks and also the activation of virtualblocks by the Controller.

4.1 Legality

In this section, we will present a brief overview of legality over condition signals

and illustrate the legal language which describes the permitted system behavior of

a condition system. A C-sequence is said to be within a particular legal language

if it is permitted by the corresponding predefined rules/orders of a system. Let

Clegal ⊂ AllC be a set of conditions which is legal, this will imply that the condition

set is within a legal C-sequence, slegal. The sequence of legal condition sets, slegal ∈
Llegal(G) consequently will be used to represent the allowable system behavior of

the condition system G. Generally a legal C-sequence slegal can either be the inputs

to G or outputs of G, slegal ⊆ s |Cin(G) or slegal ⊆ s |Cout(G). In some cases, a legal

C-sequence slegal can also represent both input and output signal of a system.

4.2 Inputblock

Next, we will define the system properties of inputblock. Note that the system

properties of inputblock is similar to specification block presented in Chapter 2. The

general structure of condition system model for inputblock is shown in Figure 4.1.

The box in Figure 4.1 contains different kinds of condition model nets and their

structure will depend upon types of incoming signals the inputblock is detecting.

Despite the difference, every box will at least consist of a transition denoted as

tlegal. We will formally define inputblock in the following definition:

Definition 4.1 Inputblock is a form of condition system model defined as a 4-tuple

(GIB,minit,IB,mlegal,IB, slegal,IB), where GIB is a condition system, minit,IB ∈ MGIB is

an INITIATION STATE, mlegal,IB ∈ MGIB is a LEGAL STATE. Marking minit,IB will go to

marking mlegal,IB if and only if sequence slegal,IB is received.

In our cases, slegal,IB will be the sequence of conditions that is true whenever

the corresponding condition set is within a legal incoming C-sequence signals from

the target system which represent the permitted system behavior of system model.

Under our modeling for interfacing framework, slegal,IB will be viewed as incoming

37

GIB

Pinit,IB plegal,IB
BOX

Figure 4.1: General Structure of Inputblock

C-sequence from SUT. This sequence can either be clocked or unclocked as we dis-

cuss later. Finally as the last part of this section, we will formally define the legal

language of inputblock in the following definition:

Definition 4.2 Given an inputblock (GIB,minit,IB,mlegal,IB), the legal language of

the inputblock Llegal(GIB,minit,IB,mlegal,IB) represents the permitted system be-

havior of the system under modeling. It is defined such that for all s ∈ L(GIB)

where k is some positive integer, if there exists a marking sequence (m0...mk)

of s satisfies these conditions: m0 = minit,IB and mk = mlegal,IB then s ∈
Llegal(GIB,minit,IB,mlegal,IB).

Note that in contrast to inputblock, mlegal,IB is not the final marking of virtual-

block and identifying the incoming legal language is only part of the functions of

virtualblock.

4.3 Outputblock

In this section, we will formally define the OUTPUTBLOCK. The general structure

of condition system model for outputblock is shown in Figure 4.2 which is very

similar to inputblock’s model. The box in Figure 4.2 also contains different kinds of

condition nets and their structure will depend upon the types of outgoing signals

outputting from auxiliary system model to SUT. Every box of outputblocks will at

least consist of a transition denoted as tcmpl,ctrl. We will formally define outputblock

in the following definition:

38

GOB

plegal,OB pout.OB
BOX

Figure 4.2: General Structure of outputblock

Definition 4.3 Outputblock is a form of condition system model defined as

a 4-tuple (GOB,mlegal,OB,mout,OB), slegal,OB, where GOB is a condition system,

mlegal,OB ∈ MGOB is a LEGAL STATE and mout,OB ∈ MGOB is an OUTPUT STATE. The

system under mlegal,OB as initial state can move to marking mout,OB, and in doing

so will generate output C-sequence slegal,OB. There also exists transition tcmpl,ctrl

such that Ccmpl,ctrl = ΦGOB(tcmpl,ctrl).

The condition set, Ccmpl,ctrl, represents a set of conditions that is true when-

ever the Controller issue the completion signal to system model to signal the end

of the corresponding command cycle. slegal,OB is the set of conditions generated

by the system evolving to the final marking within the virtualblock. slegal,OB is re-

sponsible for outputting legal condition signals to the target system. Under our

modeling framework, Ccmpl,ctrl is a singleton condition set since there is only one

controller condition signal associated with it and slegal,OB will be regarded as the

outgoing C-sequence to SUT. Legal language for outputblock will be described in

next definition.

Definition 4.4 Given an outputblock (GOB, mlegal,OB,mout,OB), the legal language

of the outputblock Llegal(GOB,mlegal,OB,mout,OB) represents the permitted sys-

tem behavior of the system under modeling. It is defined such that for all

s ∈ L(GOB) where k is some positive integer, if the marking sequence (m0...mk)

of s satisfies these conditions: m0 = mlegal,OB and mk = mout,OB then s ∈
Llegal(GOB, mlegal,OB,mout,OB).

39

GIB

pidle

GOB
tinit,
ctrl

pinit,IB plegal,
IB

plegal,
OB

pout,
OB

tjoin tcmpl,ctrltlegal,IB

GVB

Figure 4.3: Example of Virtualblock

Marking mout,OB will be the final marking of outputblock and ultimately the final

marking of virtualblock. Upon the successful generation of the marking mlegal,OB,

virtualblock would wait for the completion signal from the Controller to generate

the final marking/state mout,OB. The generation of marking mout,OB will indicate

the end of the virtualblock’s task for the corresponding command cycle.

4.4 Composition of Inputblocks and Outputblocks

The composition of inputblock & outputblock will form a virtualblock. The pur-

pose of virtualblock composition is to identify legal language and also output legal

language for each signals cycle. Example for composition of inputblock and output-

block to create a condition net of virtualblock is shown in Figure 4.3. Be reminded

that the inputblock and outputblock shown in the figure are specific examples from

general condition net shown in Figure 4.1 & 4.2. We will formally define virtual-

block in the following definition:

Definition 4.5 Virtualblock is a form of condition system model defined as a dou-

blet (GVB,midle,VB), where GVB is a condition system and midle,VB ∈ MGVB is an IDLE

STATE. GVB is the union of GIB and GOB with the addition of one additional place

pidle and two additional transitions tinit,ctrl and tjoin such that arcs lead from place

marked under midle,VB, pidle to tinit,ctrl and then from tinit,ctrl to place pinit,IB ∈ PIB.

Another arc lead from place plegal,IB ∈ PIB to transition tjoin and from tjoin to place

plegal,OB ∈ POB. Virtualblock can be characterized by a condition sets, defined as:

Cinit,ctrl = ΦGVB(tinit,ctrl) where tinit,ctrl is the input to place marked under minit,IB

of inputblock.

40

GIB1

p idle

GOB1

VB = IB1 | IB2 | OB1

c init,ctrl

Scanner
idle

p legal,
IB,1

p legal,
OB,1

{Motor
On}

t join GIB2

Scanner
On

p legal,
IB,2

ccmpl,ctr
l

{Power On} {Scan} t join

p idle

p idle

c init,ctrl

ccmpl,
ctrl

GSB,Ctrl

GSB,SUT

{Power On} {Scan}

{Motor
On}

{ø} {ø}
{ø} {ø}

Figure 4.4: Example of Sequential Composition for Two Inputblocks in Virtualblock

interacts Specblocks with SUT and the Controller

We define Cinit,ctrl = ΦGVB(tinit,ctrl). The condition set Cinit,ctrl as noted in

Chapter 3 will be enabled whenever the Controller issue the activation signal to

system model to indicate the start of command cycle and it represents the set of

conditions responsible for generating the initial marking within the inputblock. We

also define ΦGVB(tjoin) = {∅}.

4.4.1 Sequential Composition of Inputblocks

Due to clocking issue in clocked signal, single inputblock as shown in Figure 4.1

is only suitable for identifying continuous time incoming signal from the target

system. For identifying incoming clocked signals in discrete time scenario, we will

require the use of multiple inputblocks composition. Instead of using concurrent

composition, sequential composition will be used to model and compose the group

of inputblocks. We will define the sequential composition of inputblocks formally

in the following definition:

Definition 4.6 SEQUENTIAL COMPOSITION FOR INPUTBLOCKS :

41

Given two inputblocks IB1 = (GIB1 ,minit,IB1
, mlegal,IB1

) and IB2 =

(GIB2 ,minit,IB2
,mlegal,IB2

) define the sequential composition, denoted

IB1|IB2 = (GIB1 |GIB2,minit,IB1
,minit,IB2

,mlegal,IB1
,mlegal,IB2

) such that: GIB1 |GIB2 is

the union of the nets GIB1 and GIB2 with the addition of an additional transition

tjoin and arcs such that, arcs lead to tjoin from place p ∈ PIB1
marked under

mlegal,IB1
, and lead from tjoin to place p ∈ PIB2

, marked under minit,IB2
.

Note that place marked minit,IB1
will also be denoted as pinit,VB during the vir-

tualblock formation. Next we will present an example for sequential composition

of two inputblocks in system interaction among virtualblock(auxiliary model), SUT

and the Controller as shown in Figure 4.4.

Example 4.1 Consider the scanner power control unit Gsys described in Example

2.3 of Chapter 2. We will model the Gsys as a virtualblock composed of two input-

blocks and one outputblock. The task of legal language identification of virtualblock

is designated through the sequential composition of inputblocks. Each inputblocks

is responsible for recognizing the incoming signal {PowerOn} and {Scan} from the

specblock of SUT (GSB,SUT) respectively and the outputblock will communicate with

SUT(GSB,SUT) by outputting the outgoing signal {MotorOn} to GSB,SUT to indicate

the end of command cycle. The activation and completion of the command cycle

are controlled by the specblock of the Controller (GSB,Ctrl) through the issuance of

signal {cinit,ctrl} & {ccmpl,ctrl}. The controller is mutually independent from auxiliary

system & SUT and its condition net in Figure 4.4 is designed for a single command

cycle operation between auxiliary system and SUT.

The legal identification of virtualblock can ultimately be accomplished by a sin-

gle inputblock. The modeling technique to create such inputblock will be discussed

in the next section and the inputblocks presented in Example 4.1 is meant for

demonstrating the sequential composition of inputblocks. Sequential composition

of outputblocks within a virtualblock is not required since outputblock only works

in continuous time environment and a single outputblock is sufficient to complete

the task of legal language outputting.

42

4.5 Algorithms

From section 4.2, 4.3 and 4.4, we have separately defined the inputblock, output-

block, virtualblock and presented their general condition net structure in high level

system perspective. In this section, we will explore the modeling techniques within

inputblock and outputblock to create specific condition net structure for identify-

ing and outputting legal languages within two different types of incoming signals:

clocked and non-clocked. We will also present the modeling techniques for com-

posing multiple virtualblocks to form a complete system model.

4.5.1 Construction Procedures for Inputblocks

In this subsection, we will present algorithm 4.1 & 4.2 to describe how we per-

form legality identification within the auxiliary system model. These algorithms are

based on the clocking and non-clocking properties of incoming signal from SUT.

Legal language of inputblock can be identified through the specification of the aux-

iliary system. Given the specification, we can associate each input command with

C-sequence signal. Therefore for an input command with a singular signal, we

will associate the command with a C-sequence of single condition signal s = ({c}).

Sometimes an input command will compose of several singular signals in parallel.

In that case, we will assign such command with a C-sequence of single condition

set s = (C).

For an input command compose of multiple singular signals in serial, the legal

language will consist of a C-sequence with multiple singular condition signal and/or

condition sets s = (C0...CM) where M is the total number of condition sets in the C-

sequence and some of these condition sets may be singletons. In addition to that the

C-sequence is also sequence oriented. It means that the order of the elements in the

C-sequence will also be accounted towards the legality of the entire command. Such

input command can also be known as incoming sequential signal from SUT. There

are also basically two types of sequential signal, clocked and non-clocked . For non-

clocked sequential signal, the corresponding C-sequence will not have a condition

signal governing the clocking of its elements, whereas for clocked sequential signal,

there will be a condition signal that is responsible for synchronizing the clocking

of its elements. We will formally define the condition signal synchronization of

C-sequence in the following definition.

43

clock

s = [({d0}{d1}{d2}{d3})]clock

d0

d1

d2

d3

t

V

don’t care

don’t care don’t care

don’t care

don’t care don’t care

Figure 4.5: Example of voltage time line corresponding to C-sequence s =

[({d0}{d1}{d2}{d3})]
clock

Definition 4.7 Given a set C ⊆ AllC, define the CLOCKING OPERATION []c over

a condition sequence s = {c1, c2...cn} ∈ L such that [s]c represent the clocked se-

quence where condition set Ci (1 ≤ i ≤ n) is true during the ith pulse of clock

condition set C. The set C is referred to as the clocking condition set.

In our case, we will have {cclk} ⊆ AllC as our synchronizing condition signal.

Example 4.2 To illustrate the clocking ordering, consider a scanner model unit

which output data signals to a PC. The data signals is represented as a clocked C-

sequence, s = [({d0}{d1}{d2}{d3})]
clock. Condition signal clock will be responsible to

clock the data signals. Such clocked C-sequence would mean that the data signal

{d0} will be true during the first rising edge of condition signal clock, the data value

of condition signal {d1} will be true in the second rising edge of signal clock and so

forth. Detailed description of the signal time line is shown in Figure 4.5.

As stated before, the condition model structure of inputblock as shown in Figure

4.1 is meant for providing general perspective on inputblock and also for describing

the role for Clegal,IB which are mainly legality identification. For C-sequence with

multiple elements such as a clocked sequential signals, it will require condition

system models as shown in Figure 4.6. The construction procedures for condition

44

models is presented in Algorithm 4.1. The approach of Algorithm 4.1 basically

involves three major steps:

1. Given a clocked C-Sequence slegal,IB = [({Clegal,1}{Clegal,2}......{Clegal,N})]cclk

where N represent the total number of legal condition sets in the given clocked

C-sequence, algorithm 4.1 begins by first creating N number of nets Gi as

shown in Figure 4.7.

2. Next, we will connect nets Gi together by creating arcs from ti,1 of each net

Gi to each newly created place pi,5. Transition ti,1 is associated with condition

cclk. New arcs will then connect each place pi,5 to a newly created transition

ti,4 which is associated with condition ¬cclk. From the transition we will create

an arc to place pi+1,1. Place pi,3 of each net Gi will be assigned to set of places,

Plegal,clk. Note that the value of i will increase in one increment till it reaches

the value of N.

3. Finally we will join the set of places Plegal,clk to a transition tjoin and from

tjoin to place plegal,IB.

Figure 4.8 describes the condition model structure for identifying non-clocked

C-sequence signal. Such condition model is in fact a special case for condition

model shown in Figure 4.5. We will present the construction procedures for identi-

fying non-clocked signal in Algorithm 4.2. Given a clocked C-Sequence slegal,IB =

({Clegal,1}{Clegal,2}......{Clegal,N}), we will create transitions tlegal and associate each

of them with a single unique legal condition set in the C-sequence. The transition

is created in sequential order and the last legal transition tlegal will connect to the

place plegal,IB.

45

{b},2 ndclk {c},3 rdclk

2ndclk

p init

3rdclk

cclk cclk

¬cclk

p legal,IB

{b} ¬{b} {c} ¬{c}

slegal,IB = [({a}{b}{c})]cclk

cclk

1stclk

{a} ¬{a}

¬cclk

{a},1 stclk

t join

Figure 4.6: Condition system model of inputblock for clocked signal

pi,3

pi,2

pi,1

ti,1

ti,2 ti,3

Gi

pi,4

Figure 4.7: Figure for net Gi

46

Figure 4.8: Algorithm 4.1 An algorithm for construction of inputblock for clocked

signal.

1 Given a C-Sequence slegal,IB=[({Clegal,1}{Clegal,2}{Clegal,3}...{Clegal,N})]cclk.

2 For 1 ≤ i ≤ N {

3 Create net Gi with structure as shown in figure 4.6.

4 Plegal,clk ⇐ Plegal,clk ∪ {pi,3}.

5 Define Φ(ti,1) = {cclk}.

6 Define Φ(ti,2) = Clegal,i.

7 Define Φ(ti,3) = ¬Clegal,i.

8 }

9 For 1 ≤ j ≤ N − 1 {

10 Create transition tj,4, define Φ(tj,4) = ¬cclk.

11 Create place pj,5.

12 Create arc from tj,1 to pj,5.

13 Create arc from pj,5 to tj,4.

14 Create arc from tj,4 to pj+1,1.

15 }

16 Relabel p1,1 as pinit.

17 Create a place, plegal,IB.

18 Create a transition tjoin, define Φ(tjoin) = ∅.
19 Create arcs from each p ∈ Plegal,clk to tjoin.

20 Create an arc from tjoin to plegal,IB.

47

pinit

slegal,IB = ({a}{b}{c})

{a}

plegal,IB

{b} {c}

Figure 4.9: Condition system model of inputblock for non-clocked signal

48

Figure 4.10: Algorithm 4.2 An algorithm for construction of inputblock for non-

clocked signal.

1 Given a C-Sequence slegal,IB=({Clegal,1}{Clegal,2}{Clegal,3}...{Clegal,N}).

2 Create place p1.

3 Assign place p1 as pinit.

4 For 1 ≤ i ≤ N {

5 Create transition ti.

6 Define Φ(ti) = Clegal,i.

7 Create place pi+1.

8 Create arc from ti to pi+1.

9 }

10 For 1 ≤ i ≤ N − 1 {

11 Create arc from pi to ti.

12 }

13 Assign pN as plegal,IB.

49

4.5.2 Construction Procedures for Outputblocks

The task of the outputblock will be outputting the legal language from the auxiliary

system to SUT (output command/data). The accomplishment of the task will allow

the completion of signal interaction cycle between SUT and auxiliary system. In this

section, we will present algorithm 4.3 and 4.4 to describe how we perform legality

outputting by outputblock based on the clocking properties of outgoing C-sequence

signals in similar approach as in inputblocks.

Algorithm 4.3 describes the construction procedure for output-

block outputting clocked signal. Given output clocked C-Sequence

slegal,OB=[({Clegal,1}{Clegal,2}{Clegal,3}...{Clegal,N})]cclk. The algorithm starts off

by creating a place and connect an arc to a newly created transition where we will

assign clock condition signal to it. From the transition we will create another a new

place. We will assign an output condition set to this place. This process is repeated

according to the number of legal condition sets in the C-sequence. Next we create

another transition and assign negated clock condition signals to it. This transition

is responsible for connecting the legal place to its next place.

In Algorithm 4.4 we will describe the construction procedure for outputblock

outputting non-clocked parallel signal. Given output non-clocked C-Sequence

slegal,OB=({Clegal}). we will create a place and connect arc to a transition. Com-

pletion condition sets of the Controller will be assigned to this transition. The arc

connection from the transition to a place where legal output condition is assigned

will mark the end of non-clocked outputblock construction.

50

p legal,OB

cclk cclk¬cclk

pout,2

cclk ¬cclk

pout,1

pout,3

slegal,OB = [({a}{b}{c})]cclk

{a} {b} {c}

Ccmpl,
ctrl

pout,1

¬cclk

pout,2

tcmpl,ctrl

pout,3

{a}

{b} {c}

Figure 4.11: Condition system model of outputblock for clocked signals

51

Figure 4.12: Algorithm 4.3 An algorithm for construction of outputblock for

clocked signals.

1 Create place plegal,OB.

2 Create transition tcmpl,ctrl.

3 Define Φ(tcmpl,ctrl) = {¬cclk, ccmpl,ctrl}.

4 Create arc from place plegal,OB to tcmpl,ctrl.

5 Given a C-Sequence slegal,OB=[({Clegal,1}{Clegal,2}{Clegal,3}...{Clegal,N})]cclk.

6 Let N be the number of Condition Sets(C) in slegal.

7 For 1 ≤ i ≤ N {

8 Create place pi,1.

9 Create transition ti,1.

10 Create place pi,2.

11 Create arc from pi,1 to ti,1.

12 Create arc from ti,1 to pi,2.

13 Assign pi,1 and pi,2 as pout,i.

14 Define Φ(pout,i) = Clegal,i.

15 Define Φ(ti,1) = {cclk}.

16 }

17 For 1 ≤ j ≤ N − 1 {

18 Create transition tj,2, define Φ(tj,2) = {c¬clk}.

19 Create arcs from pj,2 to tj,2.

20 Create arc from tj,2 to pj+1,1.

21 }

22 Create arc from tcmpl,ctrl to p1,1.

52

plegal,OB

tcmpl,ctrl

pout

slegal,OB = ({abc})

{abc}

Figure 4.13: Condition system model of outputblock for non-clocked signals

53

Figure 4.14: Algorithm 4.4 An algorithm for construction of outputblock for non-

clocked signals.

1 Given a C-Sequence slegal,OB=({Clegal}).

2 Create a place plegal,OB.

3 Create a place, pout.

4 Create a transition tcmpl,ctrl.

5 Define Φ(tcmpl,ctrl) = {ccmpl,ctrl}.

6 Create an arc from plegal,OB to tcmpl,ctrl.

7 Create an arc from tcmpl,ctrl to pout.

8 Define Φ(pout) = Clegal.

54

4.5.3 Construction Procedures for Virtualblocks

Under our modeling scheme, there are generally two main tasks for virtualblock

to accomplish with respect to I/O interactions with SUT. The first task of the virtu-

alblock is to recognize the incoming legal language from SUT to auxiliary system

i.e. an input command or data. Upon recognizing the legal language from SUT, the

second task of the virtualblock is to excite and output appropriate legal language

from auxiliary system to SUT i.e. an output command or data. Note that the I/O

signals from SUT can be modeled by a specblock. All of these functionality had

been covered in previous sections.

In this section, we will describe the construction procedure for forming a virtu-

alblock by connecting multiple inputblocks and outputblocks in algorithm 4.5 and

also the activation of auxiliary system by the Controller in algorithm 4.6. In Algo-

rithm 4.5, we will connect each place plegal,IB of inputblock to the corresponding

place plegal,OB of outputblock.

In algorithm 4.6, place pidle represent a place marked under initial marking m0

of the auxiliary system model and has emptyset ∅ as condition output. The algo-

rithm will create the arc from place pidle to a transition which is assigned with the

Controller’s activation condition signal. Arcs are then created from the transition to

place pinit of each inputblocks previously created.

55

plegal,IB,1 plegal,IB,2 plegal,IB,3 plegal,IB,M

plegal,OB,1

tjoin

plegal,OB,2 plegal,OB,3 plegal,OB,N

Figure 4.15: Condition system model of multiple inputblocks and outputblocks

composition

56

Figure 4.16: Algorithm 4.5 An algorithm for construction of multiple inputblocks

and outputblocks composition.

1 Given Plegal,IB = (plegal,IB,1, plegal,IB,2......plegal,IB,M).

2 Given Plegal,OB = (plegal,OB,1, plegal,OB,2......plegal,OB,M).

3 Let M be the total number of places in each Plegal,IB & Plegal,OB.

4 For i = 1 to M {

5 Create a transition tjoin.

6 Define Φ(tjoin) = {∅}.
7 Create arc from plegal,IB,i to tjoin.

8 Create arc from tjoin to plegal,OB,i.

9 }

57

pidle

pinit,VB,1

tinit,ctrl

pinit,VB,2 pinit,VB,3 pinit,VB,N

Figure 4.17: Condition system model of multiple virtualblocks initiation

58

Figure 4.18: Algorithm 4.6 An algorithm for construction of multiple virtualblocks

initiation.

1 Given set of places Pinit,VB = (pinit,VB,1, pinit,VB,2, pinit,VB,3...pinit,VB,N).

2 Let N be the total number of virtualblocks in auxiliary system.

3 Create a place pidle.

4 Create a transition tinit,ctrl.

5 Define Φ(tinit,ctrl) = {cinit,ctrl}.

6 Create an arc from pidle to tinit,ctrl.

7 Create arcs from tinit,ctrl to Pinit,VB.

59

Chapter 5

Fault Detection of Virtualblock

In this chapter, we present another building block of our modeling for interfacing

framework: DETECTBLOCKS which is synthesized from virtualblock. The role

of detectblock is to perform fault detection on target system which interacts with

the system model. Before we introduce and describe the detectblock, we will first

discuss about the relationship between our formal definition of fault and the de-

tectblock in section 5.1. We then present the notion of DETECTABILITY. Next in

section 5.3 we will present the formal definition of detectblock and also its general

condition net model. We conclude this chapter by introducing the construction pro-

cedures for detectblock to perform fault detection and also the reset operation on

both detectblock and virtualblock.

5.1 Fault

In chapter three, we formally define fault as a discrepancy between a real behavior

of a system and an expected behavior of a system. The formal definition of fault

would imply that if the incoming signal from target system is inconsistent with the

expected system behavior of the system model then we will declare the incoming

signal as a fault.

This definition of fault in general is sufficient to describe the role of the detect-

block and the type of faulty behavior it is capable of detecting. However, the fault

that is detected by the detectblock is slightly different than the fault in the formal

definition due to the differences between expected language and legal language.

Note that our system model GAux,E,I is the subsystem of expected auxiliary system

model, GAux,E. If the incoming signal is within the expected behavior of system

model but beyond the system behavior of subsystem model then it will be detected

by the detectblock as a fault. Briefly, the fault that is detected by detectblock can

60

INPUTS

OUTPUTSS
Y

S
Y

E
M

 U
N

D
E

R

T
E

S
T

A
U

X
IL

IA
R

Y

S
Y

S
Y

T
E

M
 M

O
D

E
L

F
A

U
L

T
 D

E
T

E
C

T
IO

N

Figure 5.1: Scheme for Fault Detection of System Under Test and Auxiliary System

be described as a discrepancy between a real behavior of a system and a legal be-

havior of a system. In fact, the fault that detectblock is detecting evolved from our

definition of fault in chapter 3.

Under our modeling framework, detectblock’s fault detection operates on an

observed C-sequence, s from system under test (SUT) and when the observed C-

sequence from SUT does not match any of the expected legal behaviors within the

auxiliary system model interfacing SUT, GAux,E,I then we will declare that a fault

has occurred. In other words, the specblock of SUT GSUT,SB which is achievable

within the expected auxiliary system GAux,E, may not always be achievable within

its subsystem, the expected auxiliary system interfacing SUT GAux,E,I.

5.2 Detectability

Next, we will introduce the definition of DETECTABILITY over condition signals. Let

cD ∈ AllC be a condition signal which is true whenever a fault is detected. Under our

fault detection scheme, a system under test (SUT) is said to be DETECTABLE if its

I/O interactions is within the auxiliary system and the signal interactions between

SUT and auxiliary system contained information which is rich enough to describe

the system functionality with respect to auxiliary system (i.e. a command or instruc-

tion to GAux). To further explain these, from the system information(specification)

of auxiliary system, we will have the knowledge of expected input signals from the

61

actual target system (SUT) and also the expected output signals from auxiliary sys-

tem to SUT. If these responses between SUT and auxiliary system are inconsistence

within the expected legal behaviors then we would declare that fault has occurred

and we said that the faulty system behavior in SUT is detectable. Note that if not all

of the I/O interactions of SUT is within the auxiliary system then we said the SUT

is PARTIALLY DETECTABLE by auxiliary system.

In order for our fault detection scheme to successfully detect the faults classified

above, the following definition must be satisfied:

Definition 5.1 Given real and expected systems GSUT,R, GSUT,E and given auxiliary

system GAux,E,D then GAux,E,D has detector capability for (GSUT,R, GSUT,E) if there

exists a condition CD output from GAux,E,D, such that:

1. For any s ∈ L(GSUT,R ∪ GAux,E,D), if ({∅}{cD}) 6 s then s 6∈ L(GSUT,E).

2. For any s ∈ L(GSUT,R ∪ GAux,E,D) |AllC−cD
then s ∈ L(GSUT,R ∪ GAux,E).

3. For any s ∈ L(GD) and s ′ ∈ L(GEnv), (s |Cin(GD)

⋂
s ′ |Cout(GEnv)) = ∅.

Statement 1 simply states that if the concatenation of s include cD when it initi-

ates from the initial condition then this would indicate that there is a fault occurred

in that particular C-sequence, s. Statement 2 states that despite the detector capa-

bility of GAux,E,D, GAux,E and GAux,E,D are essentially the same. And finally statement

3 states that I/O signals within system with detector capability GAux,E,D and the ex-

ternal environment GEnv are mutually exclusive. The last statement makes sure that

the system with detector capability is not subjected to any noise or random signal

from the external environment.

5.3 Detectblock

In this section, we will define the system properties of detectblock, a system with

detection capability. The general structure of condition system model for detect-

block is shown in Figure 5.2. The box in Figure 5.2 similar to inputblock’s in Figure

4.1 contains different kinds of condition model nets and their structure will depend

upon types of condition signals the detectblock is detecting (clocked/non-clocked).

Despite the difference, every box will at least consist of a transition denoted as

tcmpl,ctrl. We will formally define detectblock in the following definition:

62

GDB

pfaultBOX

Figure 5.2: General Structure of Detectblock

Definition 5.2 Detectblock is a form of condition system model defined as a dou-

blet (GDB, mfault), where GDB is a condition system and mfault ∈ MGDB is a FAULT

STATE. Detectblock can be characterized by a condition sets, defined as: Ccmpl,ctrl

= ΦGDB(tcmpl,ctrl).

Similar to outputblock’s, the condition set Ccmpl,ctrl, represents a set of condi-

tions that is true whenever the Controller issues the completion signal to system

model. In our cases, Ccmpl,ctrl will be a singleton condition set. Whenever output

place of transition tcmpl,ctrl, pfault is marked then it would indicate that a fault had

occurred.

5.4 Algorithm

The fault detector of auxiliary system model performs fault detection based on sig-

nals originated from system under test (SUT). The ultimate task of the detector

under our thesis issues will be to perform fault detection on incoming signals from

SUT based on pre-defined specification of auxiliary system. We will discuss about

these tasks in detail in the following subsection.

5.4.1 Construction Procedures for Detectblocks

After we have the capability to recognize the legal language from system under test,

our task would be to detect fault from the system under test. The fault detection

is convenient in the sense that since we categorized fault as anything that is dif-

63

ferent from the expected legal response. As long as the signals from SUT is not

within the expected legal language then the fault detection signal will be triggered.

Detectblock is synthesized from virtualblock or more precisely the inputblock since

inputblock’s task is to recognize the incoming signals from SUT.

Algorithm 5.1 & 5.2 will describe how we perform fault detection on non-

clocked & clocked signals of inputblock. In algorithm 5.1 we perform fault detection

on non-clocked signal by creating transition tcmpl,ctrl which is associated with the

condition signal ccmpl,ctrl. The number of transition tcmpl,ctrl created is depended

on the number of transition tlegal found in a particular inputblock. We will con-

nect arc from input place of transition tlegal which is associated with condition set

Clegal where Clegal 6= ∅ to a transition tcmpl,ctrl on 1 to 1 basis. From all transitions

tcmpl,ctrl created, arcs are connected to a single newly created place pfault. This

completed the procedures for algorithm 5.1.

In algorithm 5.2, we will perform fault detection on inputblock of clocked signal.

First of all we begin by determining the number of places in set of place Plegal,clk of

an inputblock. The total number of places found is denoted as N. We then create

a place pfault. Next we create a transition tN,4 with negated clocked signal ¬cclk

associate with it. This transition is connected by its input place which is a newly

created place pN,5. pN,5 is also the output place of the transition tN,1 of inputblock.

A newly created place pN+1,1 will serve as the output place of transition tN,4. A

transition tN+1,1 with clocked signal cclk associate with it is then created. An arc

is created from pN+1,1 to tN+1,1 and from the transition tN+1,1 arcs will be created

to connect to set of places Pclk = (pclk,1......pclk,N). Each of the place of Pclk and

Plegal,clk will serve as the input place to each transition tcmpl,ctrl and the place pfault

will serve as the output place of the transition.

64

pidle

pinit

tinit,ctrl tlegal

tcmpl,ctrl

pfault

plegal,IB

Figure 5.3: Condition system model for non-clocked inputblock fault detection

65

Figure 5.4: Algorithm 5.1 An algorithm for non-clocked inputblock fault detection.

1 Given inputblock of non-clocked signals.

2 Create a place, pfault.

3 For all transition t s.t. Φ(t) 6= ∅ and Φ(t) = Clegal {

4 Create a transition tcmpl,ctrl.

5 Define Φ(tcmpl,ctrl) = {ccmpl,ctrl}.

6 Create arc from the input place of t to tcmpl,ctrl.

7 Create arc from tcmpl,ctrl to pfault.

8 }

66

{a},1 stclk {b},2 ndclk {c},3 rd clk

{a} ¬{a} {b} {c}¬{b} ¬{c}

1stclk 2 ndclk

p init

cclk

3rdclk

cclk cclk
¬cclk ¬cclk ¬cclk

cclk

4thclk

p faultp legal

s legal = [({a}{b}{c})] cclk

tcmpl,ctrl tcmpl,ctrl

Figure 5.5: Condition system model for clocked inputblock fault detection

67

Figure 5.6: Algorithm 5.2 An algorithm for clocked inputblock fault detection.

1 Given inputblock of clocked signals.

2 Let N be the total number of places in set of places Plegal,clk of inputblock.

3 Create a place, pfault.

4 Create transition tN,4.

5 Define Φ(tN,4) = {c¬clk}.

6 Create place pN,5.

7 Create arc from tN,1 to pN,5.

8 Create arc from pN,5 to tN,4.

9 Create arc from tN,4 to pN+1,1.

10 Create transition tN+1,1.

11 Define Φ(tN+1,1) = {cclk}.

12 Create arc from pN+1,1 to tN+1,1.

13 Create set of places Pclk = (pclk,1......pclk,N).

14 Create arcs from tN+1,1 to Pclk.

15 For j = 1 to N {

16 Create transition tcmpl,ctrl.

17 Define Φ(tcmpl,ctrl) = {ccmpl,ctrl}.

18 Create arc from plegal,clk,j to tcmpl,ctrl.

19 Create arc from pclk,j to tcmpl,ctrl.

20 Create arc from tcmpl,ctrl to pfault.

21 }

68

5.4.2 Construction Procedures for Composing Multiple Detectblocks

In this subsection, we will present construction procedures for composing multiple

detectblocks constructed in algorithm 5.1 & 5.2 to perform fault detection on the

entire command cycle from SUT to auxiliary system. For each detectblocks con-

structed within an inputblock, we will have a place pfault to indicate whether there

is a fault exist in the corresponding block. This however is not sufficient to indi-

cate the functionality of an entire virtualblock. Note that under our fault detection

methodologies, a virtualblock is considered in working condition as long as one of

its inputblocks is not in fault state at the end of each command cycle. Therefore

in our cases fault detection in a single detectblock is not adequate and we need

a procedure to compose all the detectblocks and perform the overall system fault

detection.

Such procedure will be presented in algorithm 5.3. We will define ptotalfault as a

place with fault detection condition signal cD corresponding to the entire command

cycle from SUT. In algorithm 5.3, we will create a transition td,ctrl and assign the

condition signal {cd,ctrl} to it. Arcs will be connected from places pfault found in

detectblock to this transition. From the transition, an arc will be connected to the

place ptotalfault. At the end of each command cycle, the controller will issue the

fault detection signal {cd,ctrl} to detectblocks. If any of the pfault of detectblocks is

marked then the transition td,ctrl will fire and transfer the corresponding token to

place ptotalfault.

69

pfault,1 pfault,2 pfault,3 pfault,N

ptotalfault

td,ctrl

Figure 5.7: Condition system model for multiple detectblocks fault detection

70

Figure 5.8: Algorithm 5.3 An algorithm for multiple virtualblock fault detection.

1 Given multiple detectblocks with set of places Pfault = (pfault,1......pfault,N).

2 Let N be the total number of places in Pfault.

3 Create a transition td,ctrl.

4 Define Φ(td,ctrl) = {cd,ctrl}.

5 Create a place, ptotalfault.

6 Define Φ(ptotalfault) = {cd}.

7 Create arcs from Pfault to td,ctrl.

8 Create arc from td,ctrl to ptotalfault.

71

5.4.3 Construction Procedures for Resetting Virtualblock and Detectblock

In this final section of Chapter 5, we will introduced the reset operation for vir-

tualblock and detectblock. The reset operation of virtualblock and detectblock is

essential for the operability of the entire auxiliary system model. At the end of

each command cycle from SUT, there will be tokens left in the output places pout of

outputblocks or the fault places pfault/ptotalfault of detectblocks. These tokens will

affect the functionality of auxiliary system model if they are not removed from their

original places to an appropriate place at the beginning of next command cycle.

The main task of reset operation is to remove these redundant tokens from output

places and fault places of outputblock and detectblock to a place denoted as pdump

at the beginning of each command cycle. This operation will ensure the correct

operation of virtualblock and detectblock for each initial signals cycle.

The construction procedure to incorporated reset operation in virtualblock and

detectblock will be presented in algorithm 5.4. The algorithm is achieved by creat-

ing transitions tinit,ctrl and connect an arc from each places pout, pfault & ptotalfault

found in virtualblock and detectblock to each of their own transition tinit,ctrl. An-

other arcs will then be connected from these transitions to a common place pdump.

Upon the issuance of condition signal cinit,ctrl from the controller, each transitions

tinit,ctrl of virtualblocks and detectblock will fire and transfer the appropriate token

to place pdump if there is any token in places pout, pfault or ptotalfault.

72

tcmpl,ctrl

pdump

tinit,ctrl

poutplegalpinit
tlegal

tcmpl,
ctrl

ptotalfault tinit,ctrl

pfault
tinit,ctrl

Figure 5.9: Condition system model of VirtualBlock with Reset Operation

73

Figure 5.10: Algorithm 4.7 An algorithm for resetting virtualblock.

1 Given virtualblock and detectblock with places pout, pfault and ptotalfault.

2 Let N be the total number of corresponding places.

3 Create a place, pdump.

4 Create N number of transitions tinit,ctrl.

5 Define Φ(tinit,ctrl) = {cinit,ctrl}.

6 Assign each place with an individual transition tinit,ctrl.

7 Create arc from each place to its own tinit,ctrl.

8 Create arcs from tinit,ctrl to pdump.

74

Chapter 6

Application to Scanner Control Unit

In this chapter, we present the application of our approaches by incorporating our

modeling and fault detection methodologies into a scanner control unit of a printer.

Our scanner control unit typically consists of two basic components: Charge Cou-

pled Device(CCD) and Analog to Digital Convertor (ADC) which interact with the

system under test (SPIN). SPIN issues input commands to both CCD and ADC, and

also receives output from ADC. CCD is responsible for image capturing in the scan-

ner. Generally CCD is a collection of light-sensitive photo diodes which convert

photons (light) into electrons (electrical charge). In our application, we use Toshiba

CCD linear image sensor, TCD 2558D as our CCD. And we will use ADC to process

and digitise analogue output signals from TCD 2558D, the CCD sensors. Wolfson’s

20 MSPS 16-bit CCD digitiser (WM8199) is used as our Analog to Digital Conver-

tor. We also have a PC unit (the Controller) which interacts with SPIN internally

(unobservable) and issues activation, completion signals and fault detection signals

to CCD and ADC.

There are several factors favoring the design of systematic automated modeling

and fault detection mechanisms for the scanner control unit systems: 1) Detecting

failures in these systems is a complex task for a human monitoring the system since

the tester has to respond to signals coming from various parts of the system. 2)

Human’s fault detection mechanism relies on expert system, and any changes in

system design and system composition will complicate fault detection action since

it would mean the total or partial reconfiguration of fault detecting process. 3)

There are parts or components of system which are hard to access or observable to

human tester, and therefore unable to perform fault detection on them.

With our system modeling mechanism, we will be able to resolve the issues

encountered above. First of all, our mechanisms do not require modeling of the

entire system which is complex and huge, but rather only the modeling of crucial

75

parts of the system which is necessary and sufficient for fault detection processes.

This would greatly simplify the processes. Our system modeling mechanism also

allow the reuse of model of system components and these resolve the issues of

changes in design or system composition. Finally observability is not an issue in our

case since we perform fault detection based on signal interaction from the system

under test, and these signal interactions are observable to us.

Figure 6.1 illustrate the overview of scanner control unit system as described

above. We illustrate our systematic approach to modeling and fault detection by

considering two different types of signals found in this system: Binary Signal and

Serial signal.

S
P

IN

T
o

sh
ib

a
T

C
D

2558D W
o

lfso
n

W

M
8199

CCD_Transfer
CCD_Reset
CCD_Clamp
CCD_PH1
CCD_PH2

RINP

GINP

BINP

PC

Actv, Compl Signals

AFE_CLK

AFE_Clamp

AFE_Sample

AFE_OEB

OP(0:6),OP7/SDO

SEN, SCK, SDI, NR

Internal
Command

Figure 6.1: Figure for Scanner Control Unit Connections

76

6.1 Binary Signal

We will illustrate our systematic approach for modeling and fault detection of bi-

nary signal command in a system by first examining the specification of TCD 2558D.

The specification of the CCD typically consist of a circuit diagram and timing chart.

From the specification we will determine the modeling of the system by filtering

out the redundant system. For example the photo diodes of the CCD are considered

redundant system because we do not have complete information of the system and

more importantly it doesn’t constitute to the formation of legal command or lan-

guage from the SPIN which is our system under test. Figure 6.2 illustrates one out

of three similar parts of TCD2558D which generally consist of photo diodes, shift

gate, analog shift register and clamp.

PHOTO DIODE

SHIFT GATE SH1

CCD ANALOG SHIFT
REGISTER PH_1, PH_2CLAMP

CPRS

OS1

SH1

PH1

PH2

Figure 6.2: Figure for Part of TCD2558D

Next we will examine the timing chart. From the timing chart we can determine

the legal input command from SPIN. Figure 6.3 illustrates the bit clamp mode of

TCD 2558D which illustrate the pattern of signal SH, Φ1, Φ2, ¬RS, ¬CP and its

resulting signal OS. From this figure, we can determine that when SH, Φ1, ¬RS,

77

¬CP is high and Φ2 is low at the same time, then OS will go high from low which

represent a functional pattern for bit clamp mode of TCD 2558D.

SH

PH1

PH2

¬RS

¬CP

OS OUTPUT SIGNAL

Figure 6.3: Timing Chart for TCD2558D in Bit Clamp Mode

Condition models in Figure 6.4 illustrate the modeling and fault detection mech-

anism model derived from the timing chart of TCD 2558D bit clamp mode. We first

create a place, pidle with m0 as our initial marking. Sequence of commands for bit

clamp mode of TCD 2558D will be identified and assign to each empty transition.

In our case, the first command for bit clamp mode will be the PCinit signal from

the PC which activate the CCD. The firing of PCinit will reconfigure the marking

and take the token from pidle to a new place. The second command will come as a

form of Condition Sets which include five different signals and assign them into one

single empty transition as input conditions. Next we will identify the outputs which

result from the execution of these legal commands. A place is then to be created

and be assigned with OS, the output signal as output condition. So when the legal

transition (transition with legal command) fired, it will enabled the output place of

OS. By the end of the command cycle, the PC will issue a signal, PCcmpl to indicate

the completion of task. We will take advantage of this in our fault detection scheme

by assigning the signal to an empty transition and let the place which is an input

place of a legal transition as the input place to this transition too. In this way, we

will be able to detect a fault since if the token is still in the input place of legal

transition by the end of the cycle then this will mean that there is an error in the

commands from SPIN. And by the time the signal PCcmpl is issued the token in the

place will fire and lead it to the place, pfault. Following that, another signal PCd

78

will be issued to transfer the token from pfault to place ptotalfault to indicate the

completion of fault detection process.

We also need to indicate that for every end of cycle of commands, we will reset

the auxiliary system model with PCinit as a transition which transfer the token from

the corresponding places to a place, called pdump.

pIdle

PCinit

PCcmpl

OS1

SH1,PH1,

¬PH2,¬RS,¬CP

pfault

pdump

PCinit
PCd

t join
p init p legal,IB p legal,OB

ptotalfault

PCinit

PCinit

PCcmpl

Figure 6.4: Condition Models for Binary Signal of TCD2558D in Bit Clamp Mode

79

6.2 Serial Signal

Next, we will illustrate our systematic approach for modeling and fault detection

of serial signal in a system by first examining the specification of WM 8199. The

specification of the ADC will also typically consist of a circuit diagram and timing

chart. We will determine the modeling of the system by taking out the redundant

system such as the RLC, CDS, Offset DAC, PGA and ADC of WM8199 because we

do not have complete knowledge of the system and it doesn’t constitute to the

formation of legal command or language from the SPIN which is our system under

test. Figure 6.5 illustrate one out of three similar part of WM8199 which generally

consist of RLC, CDS, Offset DAC, PGA, ADC and Data I/O port. In our case we

will only considered the components such as configurable serial control interface,

timing control and Date I/O port.

TIMING CONTROL

D
A

T
A

 I/O
 P

O
R

T

CONFIGURABLE SERIAL
CONTROL INTERFACE

RLC

MCLKVSMP

RINP

OEB

OP[0…7]

SEN, SCK, SDI, RLC/ACYC

CDS

CL Rs Vs

RLC
DAC

VRLC/VBIAS

16 B
IT

 A
D

C

OFFSET
DAC

PGA

Figure 6.5: Figure for Part of WM8199

Next we will examine the timing chart. From the timing chart we can determine

the legal input command from SPIN. Figure 6.6 illustrate the serial interface register

write back mode for TCD2558D which illustrate the pattern of signal SCK, SDI, SEN,

OEB and its resulting signal, SDO. Note that due to simplicity and limited space

80

SCK

SDI

SEN

a5 a4 b7

b7

address data word

Output data word

SDO

OEB

Figure 6.6: Timing Chart for WM8199 in Register Write Back Mode

issues, only address signals a5, a4 and part of data word signal, b7 is illustrate in

this chart. From the chart, the read-back is initiated with address bits a5, a4 are

set to 1, followed by data bit b7. When the data has been shifted into the device, a

pulse is applied to SEN to transfer the data to SDO with OEB being held low.

Condition models in Figure 6.7 illustrate the fault detection mechanism model

derived from the timing chart of WM 8199 register write back mode for address

signal: a5, a4. As we know the configuration of these address signal will represent

a legal command. If any unexpected composition or sequences of signals occur then

these will indicate a fault. We compose our fault detection scheme by first identify-

ing the places represent element of commands and theirs appropriate sequence. We

then create an additional clock sequence from the original, for example in our case

it will be the fourth clock. Analogues to the methodology of binary signal, every

time PCcmpl of a transition is enabled it will assume that the input place is empty. If

it is not, then fault will be detected by the firing of PCcmpl which transfer the token

from the place to pfault and consequently to ptotalfault through the firing of PCd.

Upon firing of PCcmpl, the auxiliary system model will also output condition signal

b7 through pout.

81

{a5} {a4} {b7}¬{a5} ¬{a4} ¬{b7}

SDI

p init

SCK SCK SCK¬SCK ¬SCK ¬SCK

SCK

p fault

p legal,IB

¬ SDI SDI SDI¬ SDI ¬ SDI

p totalfault

SEN, ¬OEB,

PCdpout
PCcmpl

{b7}
p legal,OB

t join

¬SCK

Figure 6.7: Condition Models for Serial Signal of Serial Interface: a5,a4

82

6.3 Software Overview

The modeling and fault detection methodologies presented in this thesis can be

implemented by a software tool titled SPECTOOL first introduced in [HGSA00]. The

software is written in Microsoft Visual C++ 6.0 and runs under Windows operating

system.

In general, the goal of Spectool is to take a high-level description (the spec-

net) of the desired closed loop system behavior and develop a controller that will

implement this behavior. The high-level description describes the sequential (and

concurrent) desired inputs and outputs that the closed loop system should exhibit.

A set of component models, describing the behaviors of elements of the system, are

then analyzed in the context of the specnet. Modular controllers called taskblocks

(Actionblocks and Maintainblocks) are then synthesized to drive these individual

components to subgoals. These subgoals may be directly specified in the specnet,

or may be indirectly specified through other taskblocks that require other compo-

nents to be in specified states. Each taskblock is represented as a condition system

model, the same representation as the specnet and the component nets. The logic

of the taskblocks can be seen in the Spectool net editing software. The resulting

controller is a collection of taskblocks that interact sequentially, concurrently, and

hierarchically to control the system within the specified behavior.

A specnet can be used with component models to synthesize a controller, or can

be used by itself as a way of specifying the control directly:

• For Control Synthesis: The conditions on the specnet places represent output

conditions for the system. Thus, analysis of component models is necessary in

order to determine a controller that drives the system through these outputs.

• For Control Specification: If the conditions on the specnet places represent

output conditions for the controller (and thus input conditions for the system),

then the specnet represents a direct specification of the control logic. In this

case, conditions associated with transitions can be response conditions from

the system.

The distinction between Control Synthesis and Control Specification depends on

whether the output conditions describe the desired system outputs or the control

outputs. For a given condition on a place, spectool tries to find a component net

83

that describes how the condition will be output from the system, and an actionblock

is then synthesized for the condition. If no such component net is found, then

spectool assumes that it must drive the signal directly. Thus, it is possible to create

a specnet that contains both a specification of desired system behavior (for which

control is synthesized), and some explicit specification of control outputs. Under

our modeling methodologies, we will use the second approach Control Specification

to implement our application.

Figure 6.8: An example Specnet of scanner control unit in register write back mode

After the controller logic has been synthesized, it can be translated into C++

code. A transformed version of the specnet, called the Especnet, and all the synthe-

sized taskblocks are passed to the software CodeMaker which generates C++ code

for each. Finally, the resulting C++ files are compiled together into an executable,

"generatedcode.exe.exe." This executable then interfaces through a shared memory

to either a simulator (e.g. IODriverDummy.exe) or to an I/O hardware driver (e.g.

IODriver.exe). The interface is standardized so that the synthesized controller is

independent of the specific hardware used, so that a variety of different hardware

drivers can be written independently of the Spectool project. In our particular case,

the interface is a common commercial digital I/O board (Data Translation DT2820)

84

within the computer.

Figure 6.9: An example simulator of scanner control unit in register write back

mode

85

Chapter 7

Conclusion

In this thesis, we have considered the problem of modeling and fault detection

for complex systems from the perspective of discrete event systems. Our modeling

methodology relies on modeling of system supplementary to system under test in

the condition system Petri net framework and on the issues of fault detection we

focus only on model-based offline passive fault detection. Our methodology does

not rely on any test inputs to detect system failure. From our point of view, a fault,

failure or any other faulty terms will be treated the same. Fault is defined as an

inconsistency between observed system behavior from system under test with the

expected system behavior of auxiliary system. Fault detection will be defined as the

determination that the system under test is not behaving as expected according to

the model of the auxiliary system.

In most model-based fault detection schemes however, they perform fault de-

tection based on the modeling of system under test. Their fault detection schemes

operate by obtaining the description of system under test in its normal and faulty

modes. The issues in such fault detection schemes include modeling accuracy and

the complexity in faulty system modeling. Therefore the success of such fault detec-

tion scheme will not only be relying on one capability to understand and obtain the

complete if not sufficient information about the dynamic of system under test, but

also the ability to model faulty systems which often are complex and exponentially

large in size. One other issue of such fault detection scheme is system observability.

There are subsystems in a system under test which is hard to access and therefore

unobservable in some cases. If the corresponding sensor system fail to operate on

such subsystems, then this will significantly affect and impair the performance of

fault detection.

Our approach as mentioned above does not require the modeling of system un-

der test but instead just the system supplementary to system under test. We also

86

do not need to model the faulty behavior of system under test since we perform

fault detection based on the expected behavior of system interaction and any dis-

crepancies in the observed behavior will be classified as a fault. The problem of

observability is also not in our consideration because fault detection is performed

on system interaction which is entirely visible to us and so observability is not an

issue. The success of out methodology relies on the system suitability and ability

to be modeled as condition system. Condition system as a form of Petri net mod-

eling formalism with explicit inputs and outputs namely condition signals allow us

to represent system as a collection of subsystems which interact through the condi-

tion signals. One of the main advantages of using condition system Petri net is its

ability to avoid state space problem in modeling of large and complex system such

as state explosion. The well defined notions of input and output in condition sys-

tem framework consequently allow the system model to exhibit clear cause & effect

relationships. The dynamics within the subsystems can be defined independent of

each other due to these well defined interfaces, and this would simplify the system

model construction by allowing the reuse of subsystem models.

The fault detection of figure 3.1 is the more common fault detection ter-

minology which is being used by most research communities. For example

in quantitative, analytical redundancy methodologies and some DES researches

[SFP03],[SSL96],[ZKW03]. In their approaches, given an actual system, they will

study the system and generate an accurate system model from it. During the testing

processes, inputs will be applied to both systems and the resulting outputs are com-

pared. If the outputs discrepancy is off their fault-free limit/behavior, then failure

is within the actual system. In their methodologies, the accuracy of system model

representing the actual system is an issue.

Our fault detection scheme on the other hand does not require the modeling of

actual system. In fact, we do not have the complete knowledge of the specifica-

tion of the actual faulty system. All of our information about the actual system is

obtained indirectly from the system supplementary to the actual system. Informa-

tion is obtained through the signal interaction between the actual system (system

under test) and supplementary system (auxiliary system) i.e. the input and output

interaction between both systems. Therefore, we perform fault detection based on

these I/O interactions, and this would mean that any legality that is beyond the

interaction is out of our fault detection coverage. Therefore any legality which does

87

not cover in the system interaction is subjected to undetectability and the richness

of system interaction among the system is an important issue. The richer the infor-

mation convey from the system interaction, the more efficient our fault detection

scheme will be.

In light of observation from the system behavior of I/O interaction within the ac-

tual system under test (GSUT,R) and auxiliary system of expected behavior (GAux,E),

there is a different type of fault in comparison to the type of fault which is de-

tectable under our fault detection scheme. We are classifying faults into two dif-

ferent categories due to the fact that these two categories require slightly different

fault detection methodology. Consider an outgoing signal from auxiliary system to

system under test. This outgoing signal will represent a particular output that will

influence the following command from system under test. Suppose that with this

output signal from the auxiliary system, system under test should issue a command

"A" to the auxiliary system. But due to some malfunction within system under test,

the system issues a command "B" instead. Both command "A" and "B" are recogniz-

able by the auxiliary system such that both incoming commands are within the legal

language. Therefore, command "A" is a faulty behavior even though it is within the

legality of the auxiliary system. Note that due to this new class of fault, expected

language is different from legal language and the new fault is not within our cur-

rent fault detection scheme coverage. A fault detection scheme for this type of fault

is subjected to future research. In addition, we will also consider timed condition

system formalism for our modeling and fault detection methodologies in our future

research.

88

Bibliography

[A04] Jeffery Ashley. Doctor of Philosophy Dissertation. DEPARTMENT OF ELEC-

TRICAL ENGINEERING UNIVERSITY OF KENTUCKY, February 2004.

[CL99] Christos G. Cassandras and Stephane Lafortune. Introduction to Discrete

Event Systems. KLUWER ACADEMIC PUBLISHERS, 1999.

[E03] Hartmut Ehrig. Petri net technology for communication-based systems:

advances in Petri nets. SPRINGER-VERLAG NEW YORK LIMITED, 2003.

[GH00] Yu Gong and Lawrence E. Holloway. State Observer Synthesis for a Class

of Condition Systems. IN IEE 5TH WORKSHOP DISCRETE EVENT SYSTEMS

(WODES2000), Ghent, Belgium, August 2000.

[GH01] Yu Gong and Lawrence E. Holloway. Multi-layer State Observers for Con-

dition Systems. DEPARTMENT OF ELECTRICAL ENGINEERING UNIVERSITY

OF KENTUCKY, 2001.

[G85] T.H. Glisson. Introduction to System Analysis. MCGRAW-HILL, New York

1985.

[HA98a] Lawrence E. Holloway and Jeffery Ashley. Condition Languages and

Condition Systems for Modeling Ambiguous Control Specifications. IN

IEE INTERNATIONAL WORKSHOP DISCRETE EVENT SYSTEMS (WODES98),

Cagliari, Italy, August 1998.

[HA98b] Lawrence E. Holloway and Jeffery Ashley. Elaborative Orderings of Con-

dition Languages. IN PROCEEDINGS OF 1998 IEEE CONF. DECISION AND

CONTROL, Tampa, Florida, December 1998.

[HA02] Lawrence E. Holloway and Jeffery Ashley. Diagnosis of Condition Systems

Using Causal Structure. IN PROCEEDINGS OF THE AMERICAN CONTROL

CONFERENCE, Anchorage, Alaska, May 2002.

89

[HCJK03] Z. Huang, V. Chandra, S. Jiang, and R. Kumar. Modeling Discrete Event

Systems with Faults using a Rules Based Formalism. MATHEMATICAL AND

COMPUTER MODELING OF DYNAMICAL SYSTEMS, 9(3), 2003.

[HGSA00] Lawrence E. Holloway, Xiaoyi Guan, Ranganathan Sundaravadivelu,

Jeff Ashley, Jr. Automated Synthesis and Composition of Taskblocks for

Control of Manufacturing Systems. IEEE TRANSACTIONS ON SYSTEMS

AND CYBERNETICS-PART B: CYBERNETICS, 30(5), October 2000.

[KG95] Ratnesh Kumar, Vijay K. Garg. Modeling and control of logical discrete

event systems. KLUWER ACADEMIC PUBLISHERS, 1995.

[MA98] John O. Moody, Panos J. Antsaklis. Supervisory control of discrete event

systems using Petri nets. KLUWER ACADEMIC PUBLISHERS, 1998.

[O’C81] Patrick D.T. O’Connor. Practical Reliability Engineering. HEYDEN & SON

LTD, 1981.

[P81] James L. Peterson. Petri Net Theory and the Modeling of Systems. PREN-

TICE HALL, INC., Englewood Cliff, New Jersey 1981.

[PP99] Charles L. Phillips and John M. Parr. Signals, Systems, and Transforms.

PRENTICE HALL, INC., Upper Saddle River, New Jersey 1999.

[SFP03] Silvio Simani, Cesare Fantuzzi and Ron J. Patton. Model-based Fault Di-

agnosis in Dynamic Systems Using Identification Techniques. SPRINGER-

VERLAG LONDON LIMITED, 2003.

[SK91] Ramavarapu S. Sreenivas and Bruce H. Krogh. On Condition/Event Sys-

tems with Discrete State Realizations. DISCRETE EVENT DYNAMIC THEORY

AND APPLICATIONS, 1(2), September, 1991.

[SSL95] Meera Sampath, Raja Sengupta, Stephane Lafortune, Kasim Sinnamo-

hideen and Demosthenis C. Teneketzis. Diagnosability of discrete event

systems. IEEE TRANSACTION ON AUTOMATIC CONTROL, 40(9), 1995.

[SSL96] Meera Sampath, Raja Sengupta, Stephane Lafortune, Kasim Sinnamo-

hideen and Demosthenis C. Teneketzis. Failure Diagnosis Using Discrete-

Event Models. IEEE TRANSACTION ON CONTROL SYSTEMS TECHNOLOGY,

4(2), March, 1996.

90

[ZKW03] Shahin Hashtrudi Zad, Raymond H. Kwong and W.M. Wonham. Fault

Diagnosis in Discrete-Event Systems: Framework and Model Reduction.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 48(7), July 2003.

[ZD93] Meng Chu Zhou, Frank DiCesare. Petri net synthesis for discrete event

control of manufacturing systems. KLUWER ACADEMIC PUBLISHERS, 1993.

[ZV99] Meng Chu Zhou, Kurapati Venkatesh. Modeling, simulation, and control

of flexible manufacturing systems: a Petri net approach. WORLD SCIEN-

TIFIC, 1999.

91

Andrew Hai Liang She

Vita

Date and place of birth

January - 03 - 1980, Kuching, Malaysia.

Educational institutions attended and degrees awarded

B.S.E.E., University of Kentucky, Lexington, United States.

Professional positions held

1. August 2003 – December 2004.

Research Assistant, Department of Electrical Engineering, University of Ken-

tucky.

Scholastic and professional honors

1. August 2003.

Awarded Research Assistantship to pursue M.S.E.E studies.

2. Januaury 2002.

Awarded KGS scholarship to pursue M.S.E.E studies.

92

	AUTOMATED SYNTHESIS OF VIRTUALBLOCKS FOR INTERFACING SYSTEM UNDER TEST
	Recommended Citation

	tmp.1322500888.pdf.Hnulo

