
University of Kentucky University of Kentucky

UKnowledge UKnowledge

University of Kentucky Master's Theses Graduate School

2004

DEVELOPMENT AND EVALUATION OF A CONTROLLER AREA DEVELOPMENT AND EVALUATION OF A CONTROLLER AREA

NETWORK BASED AUTONOMOUS VEHICLE NETWORK BASED AUTONOMOUS VEHICLE

Matthew John Darr
University of Kentucky, mdarr@bae.uky.edu

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Darr, Matthew John, "DEVELOPMENT AND EVALUATION OF A CONTROLLER AREA NETWORK BASED
AUTONOMOUS VEHICLE" (2004). University of Kentucky Master's Theses. 192.
https://uknowledge.uky.edu/gradschool_theses/192

This Thesis is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted
for inclusion in University of Kentucky Master's Theses by an authorized administrator of UKnowledge. For more
information, please contact UKnowledge@lsv.uky.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Kentucky

https://core.ac.uk/display/232559068?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/gradschool_theses
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

Copyright © Matthew J. Darr 2004

ABSTRACT OF THESIS

DEVELOPMENT AND EVALUATION OF A CONTROLLER AREA NETWORK BASED
AUTONOMOUS VEHICLE

Through the work of researchers and the development of commercially available

products, automated guidance has become a viable option for agricultural producers.
Some of the limitations of commercially available technologies are that they only
automate one function of the agricultural vehicle and that the systems are proprietary to
a single machine model.

The objective of this project was to evaluate a controller area network (CAN bus)
as the basis of an automated guidance system. The prototype system utilized several
microcontroller-driven nodes to act as control points along a system wide CAN bus.
Messages were transferred to the steering, transmission, and hitch control nodes from a
task computer. The task computer utilized global positioning system data to determine
the appropriate control commands.

Infield testing demonstrated that each of the control nodes could be controlled
simultaneously over the CAN bus. Results showed that the task computer adequately
applied a feedback control model to the system and achieved guidance accuracy levels
well within the range sought. Testing also demonstrated the system’s ability to
complete normal field operations such as headland turning and implement control.

KEYWORDS: Controller Area Network, Distributed Control Systems, Autonomous
Vehicle, Precision Agriculture, Embedded Microcontroller Systems

Matthew John Darr

March 5, 2004

DEVELOPMENT AND EVALUATION OF A CONTROLLER AREA NETWORK BASED
AUTONOMOUS VEHICLE

By

Matthew John Darr

Dr. Timothy S. Stombaugh

Director of Thesis

Dr. Dwayne R. Edwards
Director of Graduate Studies

March 5, 2004

RULES FOR THE USE OF THESES

Unpublished theses submitted for the Master's degrees and deposited in the University
of Kentucky Library are as a rule open for inspection, but are to be used only with due
regard to the rights of the authors. Bibliographical references may be noted, but
quotations or summaries of parts may be published only with the permission of the
author, and with the usual scholarly acknowledgments.

Extensive copying or publication of the dissertation in whole or in part also requires the
consent of the Dean of the Graduate School of the University of Kentucky.

THESIS

Matthew John Darr

The Graduate School

University of Kentucky

2004

DEVELOPMENT AND EVALUATION OF A CONTROLLER AREA NETWORK BASED

AUTONOMOUS VEHICLE

THESIS

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in

Biosystems and Agricultural Engineering
in the College of Engineering
at the University of Kentucky

By

Matthew John Darr

Lexington, Kentucky

Director: Dr. Timothy S. Stombaugh, Assistant Extension Professor of

Biosystems and Agricultural Engineering

Lexington, KY

2004

iii

ACKNOWLEDGMENTS

 First and foremost, I would like to thank God for granting me the ability to

successfully complete this project.

I would like to thank my wife Kristi for all of her love and support throughout this

project. I would not have been successful without her help and encouragement. She

was understanding and supportive as I spent long evenings at the office and did

whatever she could to make our time in Lexington wonderful. Thank you!

I also wish to acknowledge the support and understanding of my extended family

over the past two years. To my parents, grandparents, brother, and close friends, thank

you all for your calls, visits, and encouragement!

 Dr. Tim Stombaugh served as my major advisor and was instrumental in

assisting with technical issues and theories as well as acting as a sounding board for

new ideas. Throughout this project he taught me how to conduct and analyze

engineering research. He also taught me what it means to be a professional in the field

of engineering and I will take this experience along with me throughout my future

career.

 Dr. Scott Shearer served on my committee and often provided technical

assistance. He helped me understand what it means to be a part of the academic

society and what our role is in shaping the world of agricultural.

 Dr. Jim Lumpp also served on my committee and taught me the basic principles

necessary to successfully complete this work. He also provided valuable insight when

my technical abilities were still very raw.

iv

 Dr. Michael Lichtensteiger was my undergraduate advisor while at The Ohio

State University. He was instrumental in teaching me the basic fundamentals of

engineering as well as advising me during my first introduction into engineering

experimentation. It was his advice that directed me into a master’s program and into

the field of academia.

 Finally, I would like to thank the rest of the faculty, staff, and graduate students at

the University of Kentucky. I truly enjoyed my time in Lexington and will value my

experiences here for years to come.

v

TABLE OF CONTENTS

Acknowledgments ... iii

List of tables ...vii

List of figures... viii

LIST OF FILES..xi

Chapter 1: Introduction.. 1

Chapter 2: Literature Review... 2

A. Controller Area Network (CAN Bus) ... 2

B. ISO 11783 .. 2

i. Introduction... 2

ii. Physical Layer ... 3

iii. ISO 11783 Data Link Layer .. 6

iv. Network Management .. 9

v. Application in Precision Agriculture ... 9

vi. Simulation and Testing ... 9

C. Autonomous Off-road Vehicles Control and Autosteering.................................... 10

D. Distributed Control Systems... 11

Chapter 3: Objectives.. 11

Chapter 4: Results & Discussion... 12

A. Design of a Modular Distributed Control System.. 12

B. Sensor Interfacing .. 25

C. Development of a Guidance Algorithm for Autonomous Vehicle Control 38

i. Kinematic Model Based Guidance Controller ... 41

vi

ii. Position-Based Digital PID Controller .. 52

iii. Control System Validation Testing at Increased Ground Speed....................... 54

D. Demonstrate the Ability to Traverse a Normal Field Operation 56

E. System Cost ... 61

Chapter 5: Conclusions ... 63

Chapter 6: Future Work... 64

Appendices ... 65

Appendix A: CAN Node Commands ... 66

Appendix B: Task Computer Program Code... 71

Appendix C: Node Program Code .. 79

Appendix D: Electronic Control Unit Circuit Diagram.. 96

References. ... 98

Vita. ... 101

vii

LIST OF TABLES

Table 1. ISO 11783 Documents ... 3

Table 2: ISO 11783 Physical Bus Parameters ... 5

Table 3. Message Priority Assignments (Reprinted from ISO 11783-3 5.2.1) 7

Table 4. PDU Format Description (Reprinted from ISO 11783-3 5.2.5) 8

Table 5. Message Structure for CAN-RS232 Bridge Operation 18

Table 6. Step Response Characteristics for Proportional Gain Testing........................ 47

Table 7. Step Response Characteristics for Derivative Gain Testing........................... 48

Table 8. Cost of Individual ECU and CAN Interface... 62

Table 9. Cost of System Wide Sensors.. 63

viii

LIST OF FIGURES

Figure 1. Schematic of CAN Logic Levels .. 4

Figure 2: ISO 11783 Physical Bus Layout.. 5

Figure 3: ISO 11783 Data Frame ... 6

Figure 4. Multi-node Arbitration Process .. 6

Figure 5: ISO 11783 Identifier String.. 7

Figure 6. ECU Printed Circuit Board... 14

Figure 7. Transceiver Link Between TTL Logic and CAN Logic 15

Figure 8. Controller Area Network Layout .. 16

Figure 9. Amphenol Connection Diagram .. 17

Figure 10. Electronic Control Unit .. 17

Figure 11. CAN to RS232 Bridge Node.. 19

Figure 12. Nominal Bit Time (Reprinted from CAN 2.0B Protocol) 20

Figure 13. Recommended Nominal Bit Timing.. 20

Figure 14. Adjusted Nominal Bit Timing .. 21

Figure 15. PIC18F258 CAN Baud Rate Configurations... 21

Figure 16. Data Direction Register Configuration for CAN Messaging......................... 21

Figure 17. Initial Testing Program Flow Chart .. 23

Figure 18. Laboratory configuration for Initial Node Testing... 24

Figure 19. CAN_L Communication Line during High Noise Conditions........................ 25

Figure 20. Test Vehicle for Autonomous Guidance.. 26

Figure 21. Test Vehicle Specifications ... 27

Figure 22. Electronic Control Actuator with Feedback Potentiometer 29

ix

Figure 23. Steering Actuator Calibration .. 30

Figure 24. Steering Axle Actuator Calibration .. 32

Figure 25. CG-16DB0 Conditioned Calibration Curve.. 34

Figure 26. RF Controller Calibration Curve for the Steering Actuator 36

Figure 27. Calibration Curve for the Three Point Hitch... 36

Figure 28. Final Network Layout .. 37

Figure 29. ECU Control Routine... 38

Figure 30. Task Computer Flow Chart ... 40

Figure 31. Look Ahead Distance Diagram.. 42

Figure 32. Kinematic Model of the Proportional Control Parameters 43

Figure 33. Kinematic Model of the Derivative Control Parameters............................... 45

Figure 34. Step Response for Unity Gain on Sod Surface ... 46

Figure 35. Step Response for Various Proportional Gains with a Constant Derivative

Gain of One.. 47

Figure 36. Step Response for Various Derivatives Gains with a Constant Proportional

Gain of 1.5 ... 48

Figure 37. Comparison of Integral Gains for Steady State Error Reductions 50

Figure 38. Derivative Gain Impact on Steady State Error... 52

Figure 39. Version 2 Controller Step Response Data for Various Integral Gains 54

Figure 40. Version 2 Controller Step Response Data for Various Integral Gains and

High Ground Speed ... 55

Figure 41. Field Operation Schematic .. 56

Figure 42. Headland Logic ... 57

x

Figure 43. Guidance Line Translation .. 58

Figure 44. Field Path Demonstration.. 61

xi

LIST OF FILES

Darr_MST.pdf………………………………………………………………………….1.11 MB

1

Chapter 1: Introduction
Over the past several years, technology has continued to play an increasing role

in agriculture. The industry has recently seen the advent and development of many

types of autonomous vehicles ranging from planters to sprayers to harvesters. These

vehicles have all sustained different levels of autonomous operation. Some are capable

of fully autonomous field operations while others were developed for specific control

operations such as autosteering (Reid et al., 2000). While these advances have been

impressive, commercially available products have also come at a substantial cost to the

farmer. These products range in cost from $20,000 to $50,000 depending on their

accuracy and functionality. The largest component of the system price is the level of

global positioning system (GPS) accuracy desired.

Many systems developed for fully autonomous control rely on a central

processing unit to coordinate all vehicle operations and to carry out all control routines.

This design places high demands on the processing unit, which in turn triggers high unit

cost.

There has also been a recent increase in the number of electronic components

on agricultural equipment. During normal field situations, operators must interact with

spray rate controllers, variable rate planter controllers, and implement system

controllers as well as controls for normal vehicle operation. Attempts have been made

to create a standard communication link within all agricultural equipment but have thus

far failed within the US. The most common ideology for a worldwide equipment

communication protocol is the International Organization for Standardization (ISO)

11783 standard, which was designed for agricultural and construction equipment. This

standard utilizes the Controller Area Network (CAN bus) 2.0B protocol to transmit serial

data between networked control systems (Stone et al., 1999b). The CAN bus system

was designed to link multiple electronic control units (ECUs) over a single data bus and

inherently lends itself to becoming the backbone of a distributed control system for

autonomous vehicle operations because of its high data transmission rate,

expandability, and reliability.

The overall goal of this project was to design and test an autonomous vehicle

based on a CAN distributed control scheme and to evaluate the expandability of a CAN

2

system. The functionality of the autonomous system will be tested through bench top

studies as well as through field operation routines.

Chapter 2: Literature Review
A. Controller Area Network (CAN Bus)
 Robert Bosch GmbH designed the Controller Area Network in 1986 upon request

by Mercedes to develop a system that would allow for communication between three

electronic control units (ECU). It was noted that a standard UART communication could

not complete the task because it only allowed for point-to-point communication.

Although the CAN bus was originally designed for automotive applications, it has been

applied to many areas of automation and control. CAN has been used in applications

including warehouse shipping automation, packaging machines, medical devices

including X-ray collimators and patient tables, and building controls including alarm and

sprinkler systems. The unique aspect of a CAN network is that each message is

preceded with an identifier that is unique to the transmitting controller and that multiple

controllers can communicate over a single two-wire bus. Two wires are required for the

node to assert the two different voltage levels defined by the CAN protocol. If two

messages are sent simultaneously, an automatic arbitration process ensures that the

highest priority message is sent first. The lower priority message then has the

opportunity to retransmit upon completion of the first message. Incoming messages are

filtered by the ECUs based on the unique message identifier of the sender (CAN-CIA).

There are three separate CAN standards: CAN Version 1.0, Version 2.0A

(Standard CAN), and Version 2.0B (Extended CAN). The main difference in the three

standards is the length of the identifiers that precede each message. All work

presented in this manuscript is based on the CAN 2.0B standard.

B. ISO 11783
i. Introduction
 The ISO 11783 document was created to standardize electronic communication

on agricultural tractors and equipment. The ISO 11783 standard is comprised of

thirteen documents (Table 1). CAN 2.0B was chosen for the communication protocol

3

because of its growing use in mobile equipment. The ISO 11783 standard extends the

definition of the CAN 2.0B protocol and specifies many parameters concerning the

serial communication and hardware connections. Much of ISO 11783 follows the exact

specifications of the Society of Automotive Engineers (SAE) standard J1939 in an

attempt to make the two standards compatible. SAE J1939 is an automotive network

communication standard that also uses CAN 2.0B. The SAE J1939 standard clearly

defines the physical parameters and message types used in automotive communication

systems. These standard messages include vehicle speed, engine temperature, and

fuel consumption, among many others (SAE J1939). Likewise, DIN 9684 is a European

standard for agricultural equipment networks that uses the CAN 1.0 protocol (DIN

9684). Both SAE J1939 and DIN 9684 were used as models for ISO 11783

development (Stone et al., 1999b). The first stage of ISO 11783 standardization was to

define a physical layer. This specified the type and layout of the physical wire used for

communication.

Table 1. ISO 11783 Documents

Document Description Form

ISO 11783 Part 1 General Standard Draft

ISO 11783 Part 2 Physical Layer Completed

ISO 11783 Part 3 Data Link Layer Completed

ISO 11783 Part 4 Network Layer Completed

ISO 11783 Part 5 Network Management Completed

ISO 11783 Part 6 Virtual Terminal Draft

ISO 11783 Part 7 Implement Message Layer Completed

ISO 11783 Part 8 Drive Train Message Layer Draft

ISO 11783 Part 9 Tractor ECU Interconnection Unit Completed

ISO 11783 Part 10 Task Controller Applications Layer Draft

ISO 11783 Part 11 Mobile Agriculture Data Element Dictionary Draft

ISO 11783 Part 12 Diagnostics Draft

ISO 11783 Part 13 File Server Draft

ii. Physical Layer

The physical defined by the ISO 11783 standard is unshielded twisted quad

cable. Two conductor lines, CAN_H and CAN_L, are used as the communication lines.

4

The other two lines, TBC_PWR and TBC_RTN, are used to provide power to the

terminating biased circuits. These terminating biased circuits provide an equivalent

resistance of 120 ohms at each end of the CAN bus and suppress any electrical signal

reflections (ISO 11783/2).

The CAN bus is unique among agricultural communication protocols because the

voltage levels referring to logic one and logic zero are measured between two signals of

positive voltage, rather than one positive signal and a common ground. During a

recessive bus time (logic one), both CAN_H and CAN_L are 2.5 volts. During a

dominant bus time (logic zero), CAN_H is 3.5 volts and CAN_L is 1.5 volts (Figure 1).

This creates a dominant differential voltage of 2 volts (Equation 1).

LCANHCANVdiff __ −= (1)

Where: Vdiff = Differential Voltage Level

 CAN_H = CAN High Voltage Level

 CAN_L = CAN Low Voltage Level

C A N H ig h 3 .5 V

C A N L o w 1 .5 V

2 .5 V 2 .5 V

L o g ic 1
R e c e s s iv e

L o g ic 1
R e c e s s iv e

L o g ic 0
D o m in a n t

V d if f 2 V

Figure 1. Schematic of CAN Logic Levels

5

ISO 11783 places strict guidelines on bus length and configuration (Figure 2) .

The overall length of any sub-bus (L) cannot exceed 40 meters. Node stub attachments

along the bus (S) cannot exceed 1 meter. The distance between each node stub along

the bus (d) must exceed 0.1 meters and total node attachments per bus must be less

than 30 units (Table 2). All buses are run in a straight line or S shape configuration;

thus, no T buses are permitted (Figure 2). This physical limitation reduces the risk of

message transmission error due to cable reflected waves (ISO 11783/2).

Te
rm

in
at

in
g

B
ia

s
C

irc
ui

t

Po
w

er
C

irc
ui

t

Te
rm

in
at

in
g

B
ia

s
C

irc
ui

t

ECU
1

ECU
2

ECU
n-1 ECU

n
s

d

ECU
Power

L

Figure 2: ISO 11783 Physical Bus Layout

Table 2: ISO 11783 Physical Bus Parameters

Parameter Symbol Min Nom Max Unit

Bus Length L 0 40 m

Stub Length S 0 1 m

Node Distance D 0.1 40 m

 The virtual terminal is a multi-purpose task computer and application controller

that is designed for CAN-based operations. ISO 11783 calls for standardized bus

connectors in the vehicle cab to service this virtual terminal. A standard bus breakaway

and terminating bias connector must also be present wherever implements and prime

movers are linked. This connector allows communication from the prime mover to the

implement when connected, and also provides bus termination bias when disconnected.

Furthermore, a standard diagnostics connector must be present to provide error

troubleshooting and analysis (ISO 11783/2).

6

Twenty four failure mode cases are discussed in the ISO document to indicate

that communication can continue during limited instances of bus failure (ISO 11783/2).

These failure cases include shorting one transmission line to ground and interrupting

one transmission line.

iii. ISO 11783 Data Link Layer
The ISO 11783 Data Frame is defined to be up to 128 bits and is broken into an

identifier and data section (Figure 3). The identifier is a series of 29 bits that designates

the priority and address (identity) of the message. In the CAN protocol, a zero bit has a

higher priority than a one bit, so smaller numeric identifiers have higher message

priority (ISO 11783/3).

If two or more nodes begin transmission simultaneously, a bitwise arbitration

procedure is executed on the identifier frame of the message. If a transmitter detects a

dominant bit on the bus after a recessive bit was transmitted, the node losses arbitration

and reverts to being a receiver. If multiple nodes assert a dominant bit simultaneously

then the arbitration process continues until only one node remains transmitting on the

bus (Figure 4). CAN 2.0B utilizes a 29 bit identifier, thus there are 229 – 1 possible node

definitions (Bosch, 1991).

ISO 11783 Protocol Data Frame (up to 134 Bits)

 29 Bits 0 to 8 Bytes (0 to 64 Bits)

 Identifier Data Bytes

Figure 3: ISO 11783 Data Frame

 Transmitted Bits

Node 1 0 0 1 0 1 Listen Only

Node 2 0 1 Listen Only

Node 3 0 0 1 0 0 1 1 0

Figure 4. Multi-node Arbitration Process

7

Priority Reserved
Data
Page PDU Format

PDU Specific
Destination Address Source Address

P 1 P 1 P 1 R 1 DP 1 PF 8 PS(DA) 8 SA 8

Figure 5: ISO 11783 Identifier String

The ISO 11783 identifier string is broken into six segments: priority, reserved,

data page, PDU format, PDU specific (destination address, group extension, or

proprietary), and source address (Figure 5). Each segment serves its own role while

also merging to form the identifier for the node (ISO 11783/3).

The priority section contains three bits, which are used to signify the priority of

the message. Again, a lower number holds a higher priority on the CAN bus. Message

priority levels (Table 3) are predefined to ensure critical messages will incur limited

latency times (ISO 11783/3).

Table 3. Message Priority Assignments (Reprinted from ISO 11783-3 5.2.1)

 Priority Field Number Priority Level Default System

000 0 - Highest

001 1

010 2

011 3 Control Systems

100 4

101 5

110 6 Proprietary Information

111 7 – Lowest

The reserved data section is one bit and is reserved for future use by ISO. The

node controller designates this bit as zero upon transmission of a new message (ISO

11783/3).

The data page section contains one bit of information, which acts as an auxiliary

bit to the parameter group number. Page one parameter group numbers are

designated by setting the data page bit to one. All parameter group numbers in page

zero (data page bit = 0) must be used before page one is activated (ISO 11783/3).

The protocol data unit (PDU) format section (Table 4) defines whether the PDU

specific section is a destination address or a group extension. Three groups were

8

created: PDU1 format, PDU2 format and global format. PDU1 format allows for both

node specific and global message destinations. The PDU2 format allows only global

message destinations. Global format is a message that all nodes must acknowledge

and read (ISO 11783/3).

Table 4. PDU Format Description (Reprinted from ISO 11783-3 5.2.5)

PDU Format PDU Format Field Value Destination

PDU1 0 to 239 specific or global

PDU2 240 to 254 global

Global 255 global

The PDU format section defines the PDU specific section. A PDU1 format

signifies that the PDU specific section contains the destination address. This allows the

message sender to specify a particular recipient. If the destination address is 255 then

all nodes must listen and respond to the message. A PDU2 format signifies that the

PDU specific section contains the group extension field. The group extension is a

global designator that targets multiple nodes. This message type is used to send data

or commands to several nodes simultaneously (ISO 11783/3).

The source address field is a specific address for each node on the CAN bus.

Only one controller on a network can hold a specific source address. As an eight-bit

field, the maximum amount of nodes per bus is 256. In application this number is

limited to 254, because the null (0) and global addresses (255) are not used (ISO

11783/3). While the Data Link Layer allows for 254 unique nodes, the physical layer

limits bus implementations to a maximum of 30 nodes.

The parameter group number (PGN) is defined as the reserved data bit, data

page bit, PDU format bits, and destination address bits (ISO 11783/3). ISO 11783

defines many PGNs for standard operating nodes such as engine, transmission, axles,

brakes, and implement lighting. Several of these functions also have predefined source

addresses. Those that do not have predefined source addresses must dynamically

register themselves on the bus network (ISO 11783/3).

9

Bosch GmbH designed the CAN to transmit at bus speeds of up to 1 Mbits/sec.

ISO 11783 limits this speed on agricultural buses to 250 kbits/sec in an attempt to

maintain harmony with SAE J1939. This baud rate corresponds to a bit time of 4 µs.

ISO 11783 also defins bus synchronization to occur on the rising signal edge, thus

during a transition from a recessive to dominant bit. A single bit sampling method must

be used and should cover 80 ± 3% of the total bit time as referenced from the start of

the bit (ISO 11783/2).

iv. Network Management
Network management must be addressed when linking multiple bus networks

within one tractor-implement unit. A bridge node must be present at each location

where two or more buses converge. The bridge is responsible for managing traffic on

each bus. A bridge retransmits only the information that is vital to operations on other

bus networks. This limits the amount of traffic on each bus and decreases the overall

latency within the system (ISO 11783/5).

v. Application in Precision Agriculture
Several manufacturers have implemented partial networks or CAN-based

systems on their equipment in the past several years. John Deere (Moline, IL) has

implemented ECU-based control networks since the introduction of the 7000 series

tractor in 1992 (Stone et al., 1999b). The Genesis series tractor from New Holland

(New Holland, PA) reported the use of a CAN-based network in 1994 (Young, 1993).

Ag-Chem Equipment Company Inc. (Duluth, GA) patented the use of network-based

control systems for multi-product application, which has been used in their Falcon

control systems (Monson and Dahlen, 1995).

vi. Simulation and Testing
Simulations have shown that normal agricultural machinery configured with an

ISO 11783 based CAN bus will produce average message latency of less than 6 msec

with proper prioritization. When bus loads increased to 80% capacity, messages with

low priorities could see latency times approaching 70 ms (Hofstee and Goense, 1999).

10

Hofstee and Goense (1999) also showed that average latency associated with passing

through a network bridge during normal bus load was between 2.5 and 2.6 msec with a

maximum latency of 3.6 msec for messages with a high priority.

C. Autonomous Off-road Vehicles Control and Autosteering
Researchers and agriculturalists have pursued automatic vehicle control for

many years. In fact, patents dating back to 1924 detail methods of automatic guidance

in furrow strips (Willrodt, 1924). With the advent of precision agriculture and GPS

capabilities, vehicle-based guidance again became a focus of researchers.

Researchers at the University of Illinois showed that 16 cm steady state error straight-

line accuracy could be achieved while traveling up to 6.8 m/sec (Stombaugh et al.,

1999). Benson et al. (1998) showed that at slower speeds, a geomagnetic direction

sensor (GDS) could reduce the straight-line steady state error to 1 cm.

Machine vision has also been incorporated into control systems. Work by

Carnegie-Mellon University and NASA demonstrated that vision-based systems could

be used for autonomous control (Ollis and Stentz, 1996). A camera mounted on a hay-

windrowing machine was used to identify the cut/uncut edge within the hay crop and

guide the windrower to stay along this path. Benson et al. (2001) used a single cab

mounted camera along with grain head mounted cameras to develop steering control

systems for combine harvesters.

Row crop vision systems have been developed to identify individual plants and

determine a path to stay within the plant rows. Near infrared sensors have been used

to classify the soil and row crops separately and provide a guidance directrix to a control

algorithm (Reid and Searcy, 1987).

Many kinematic vehicle models have been developed to determine the path a

vehicle will follow based on a specified steering angle (Ge, 1987). These kinematic

models are often referred to as bicycle models, because they lump a four wheel vehicle

into a two wheeled model. These models are applicable if four conditions are met: 1)

level operating surfaces, 2) constant steering rate, 3) ±20° maximum steering angle,

and 4) a rigidly fixed rear mounted implement (Choi et al., 1990). Furthermore, side

forces and slip angles could be ignored when the vehicle was traveling less than 12

11

km/h (Wong, 1978; Owen, 1982). Julian (1971) found that lateral fluctuations of the

front end of the vehicle less than ±5 centimeters would create negligible deviations of a

rear-mounted implement. All kinematic and bicycle model references in this text are

based on the work of Grovum and Zoerb (1970), who derived a mathematical model

describing tractor dynamics. This work should be used as a detailed reference to the

kinematic model work presented here.

While research has been completed on autonomous vehicle guidance, few

studies have focused on end of row turning methods. Noguchi et al. (2001) has shown

that a spline function can be used to estimate the turning function of a vehicle at the end

of a row. Other work has discussed the importance of full field operations, but has not

addressed the problem of vehicle guidance during turning (Han and Zhang, 2001).

D. Distributed Control Systems
 Distributed control systems have been used in several sub-network functions of

automatic equipment. Distributed control systems have been used to identify individual

weeds within row crops and operate appropriate control systems to apply pesticide to

the weeds (Tian et al., 1999). Similarly, Stone et al. (1999a) used a CAN-based

distributed control system to control the application rate of liquid fertilizer depending on

the fertility of the wheat as determined from a near-infrared reflectance sensor.

 Wei et al. (2001) proved that a CAN bus could be used as the foundation for a

distributed weed control system. Successful testing was documented along with

failures associated with error processing and recognition. Microcontroller use in

distributed control systems was demonstrated by controlling low-pressure plant growth

chambers at Texas A&M University (Brown and Lacey, 2002). Six microcontrollers

were successfully integrated into a distributed control system to monitor and control

pressure within a vacuum chamber based on a given set point.

Chapter 3: Objectives

The goal of this project was to evaluate the potential of a CAN bus to be used as

the communication network for a distributed control system on an autonomous field

vehicle. This project also evaluated whether an inexpensive gyroscope and compass

12

could assist with autonomous vehicle operations. Furthermore, guidance control

algorithms were developed based on a kinematic bicycle model and a digital PID

controller.

These project goals were accomplished through implementation of the following sub-

objectives.

1. Design a modular distributed control system

2. Interface the electronic control units on the CAN bus with sensors and controls

specific to the autonomous operation of a prime mover vehicle

3. Develop a guidance algorithm to control an autonomous test vehicle

4. Demonstrate the ability of the vehicle to complete a typical field operation.

Chapter 4: Results & Discussion
A. Design of a Modular Distributed Control System

The requirements for the distributed control system were as follows:

1. A dedicated node was located at each control location

2. All nodes were able to communicate to all other nodes in a multi-master

communication system

3. Each node had the capability to implement control routines and interface

with feedback sensors

4. The physical layout and enclosure unit was identical for each node

5. There was an RS232 interface to the communication system to allow for

task controller interaction.

There were several multi-master based communication systems available to use

for this project, including CAN, Inter-Intercomputer Communications (I2C), and Local

Area Network (LAN). The CAN 2.0B protocol was chosen from this list as the

communication network for the distributed control system. Not only did the CAN system

fully satisfy the objective of a multi-master network, but it also enabled simple

implementation of dedicated control systems at each node location. CAN systems have

also been shown to be very reliable when used in harsh operating environments such

as those found on automotive or agricultural vehicles. Many microcontrollers were

available with internal CAN engines, which simplified implementation and kept the

13

overall system cost relatively low. The ISO 11783 standard was followed throughout

this project whenever applicable. A bus baud rate of 250 kbits/sec was used to

maintain compliance with the ISO 11783 standard.

The microcontrollers required for this project had to execute generic control

routines and interface to external sensors to fulfill the distributed control requirements.

Specifically, the microcontroller had to have the following capabilities:

1. At least 4 Kbytes of program memory

2. At least 1 Kbyte of RAM

3. At least 3 channels of 10-bit analog to digital conversion

4. Internal CAN engine

5. Hardware pulse width modulation

6. Universal Asynchronous Receive and Transmit (UART) port.

The microcontrollers utilized in the distributed control system were PIC18F258

microcontrollers produced by Microchip (Chandler, AR). This chip provided capabilities

that met or exceed the requirements of the project, including an internal CAN module, 5

channels of 10-bit analog to digital conversion, 25 mA sink/source current loads, 8 x 8

single cycle hardware multiplier, 16-bit counter/timer, hardware pulse width modulation,

32,000 bytes of FLASH memory, 1600 bytes of SRAM, and 256 bytes of EEPROM.

The initial requirements dictated that each node must be physically identical, thus

each node had to be configured as a generic multi-purpose node. A printed circuit

board (Figure 6) was designed to serve as the general board for all ECUs. The board

incorporated all external components necessary for microcontroller operation including

an oscillator, multiple capacitors for supply voltage regulation, and a reset button. A 20

MHz oscillator was selected to provide timing to the microcontroller on most nodes.

This provided single instruction cycle execution time of 0.2 µsec.

A standard input voltage of 12 volts was chosen so that the ECU could be

connected directly to a vehicle’s battery. The 12 volts was regulated to 5 volts by using

an integrated circuit voltage regulator (LM7805), which provided a maximum source

current of 1 amp. Two rows of screw terminal connectors were incorporated to provide

access to each input and output pin on the microcontroller. Two 5 volt auxiliary power

terminals were incorporated into the design to power external sensors (Figure 6).

14

PO
R

T
C

PO
R

T
A

UK CAN NODE

PO
R

T C
PO

R
T B

CAN H

CAN LGND

GND

+5V

+5V

+5V

DIODE GND

+12V

FUSE

a1
1

a2
2

3
a3

4
a4

b1

b2

b3

b4

5

6

7

8

a1
1

a2
2

3
a3

4
a4

b1

b2

b3

b4

5

6

7

8

a1
1

a2
2

3
a3

4
a4

b1

b2

b3

b4

5

6

7

8

a1
1

b1
2

a1
1

b1
2

PIC
 18F258

a11

a2
2

3
a3

4
a4

b1

b2

b3

b4

5

6

7

8

2551

Figure 6. ECU Printed Circuit Board

The microcontroller provided the logic operations for CAN communication, but

could not drive the differential voltages required for physical implementation of the

communication protocol. An MCP2551 transceiver, also produced by Microchip

(Chandler, AR), was incorporated into the node to provide switching between the digital

TTL logic of the microcontroller and the differential output required on the CAN bus

(Figure 7). The full circuit diagram for the generic CAN node can be seen in Appendix

D.

The nominal CAN bus voltage was set based on the operating voltage of the

transceiver chip. For this project, the nominal bus voltage was set at 2.5 volts, thus

following the ISO 11783 specification.

The transceiver also acted as a buffer for the ECU and prevented transient

voltage spikes on the CAN bus from reaching the microcontroller. The slope that the

transmission bits rise and fall (slew rate) was also controlled via an external resistor

network on the transceiver. The slew rate setting for a particular bus was based on the

length and nominal voltages on the bus. Because a short bus length and a low nominal

bus voltage were utilized in this project, no slew rate control was implemented.

15

Limited bus fault protection was incorporated into the transceiver. The

transceiver disabled the CAN output lines if an extended low voltage state was sensed

on the transmit pin. This prevented the bus from being corrupted with bad data if one of

the ECUs malfunctioned. The transceiver reinitiated on the first rising edge of the

transmit pin.

Transceiver

C
A

N
Low

C
A

N
H

igh

Input
TTL

O
ut

pu
t

TT
L

Microcontroller

Figure 7. Transceiver Link Between TTL Logic and CAN Logic

A fuse and diode circuit was incorporated before the voltage regulator to protect

the board against a reversed polarity supply voltage input. If the supply voltage polarity

was reversed, the current would flow through the diode and blow the fuse, thus

eliminating any possible damage to the printed circuit board and components. The fuse

also provided over-current protection to the circuit board.

The generic printed circuit board fulfilled a portion of the generic node

requirement. A black plastic enclosure completed the rest of the requirement and made

each node interchangeable. The plastic enclosure was purchased from Futurlec

(www.futurlec.com) and measured 5.2” long by 3.5” high by 1.7” deep. Holes were

machined in the top and bottom of these boxes to facilitate the physical connection of

the printed circuit board to the CAN bus and any external sensors.

The bus cable that connected each ECU consisted of nine wires (Figure 9). Four

wires followed the physical layer standard of ISO 11783. Two additional wires provided

a 12 volt supply voltage and ground to the ECUs. The three remaining wires were

16

unused in the initial design, but provided potential for future expansion. The ECU power

supply lines were insulated 16 gauge stranded copper wire. All other communication

wires were 22 gauge twisted pair stranded copper wire.

Two options were available to link each ECU together. One option consisted of

linking each ECU via a single connector attached to the CAN bus. This would reduce

the overall connector cost, but would require the precise location of each node be

specified to designate the spacing between each connector. A second option was used

for this project. Two connectors were incorporated into each ECU to link to the CAN

bus. The CAN bus lines were then connected internally in the node to allow for a

continuous bus (Figure 8).

Electronic
Control

Unit

Electronic
Control

Unit

Electronic
Control

Unit

Electronic
Control

Unit

CAN Bus CAN Bus CAN Bus

S
en

so
r

Sensor
S

en
so

r
Sensor

S
en

so
r

Sensor

S
en

so
r

Sensor

Termination
Block

Termination
Block

Figure 8. Controller Area Network Layout

 Amphenol (Wallingford, CT) 9 pin plastic connectors (Figure 9) with positive

lockdown were chosen as the standard connector for this project. The positive

lockdown connection resisted loosening that could be caused by mechanical vibrations

from the host vehicle. Although not waterproof, the connections were water resistant. A

terminating bias connector as defined by ISO 11783 was used as the termination

connection at each end of the bus. These connectors were supplied to the project by

AGCO Corporation (Duluth, GA).

17

text

CAN
Power Aux

Aux

ECU
Grd

CAN
Grd

CAN
High

ECU
PowerAux

CAN
Low

1

7

4

Figure 9. Amphenol Connection Diagram

The final generic node design (Figure 10) included two CAN bus connections on

one end of the enclosure. The opposite end of the enclosure housed one or two

connections for interfacing with external sensors.

Figure 10. Electronic Control Unit

Machine code for the microcontroller was compiled using the PIC Basic Pro

Compiler® and written to the microcontroller using the EPIC® programmer, both

products of MicroEngineering Labs, Inc. (Colorado Springs, CO).

18

A CAN to RS232 bridge was designed to interface the CAN message information

with a task computer. The bridge was designed by configuring a specialized high-speed

serial communication ECU. The bridge node had a single objective: to receive all

messages from the CAN bus at a baud rate of 250 kbits/sec and retransmit the

message via an RS232 link to the handheld data collection unit at a baud rate of 256

kbits/sec. By retransmitting the message at a rate faster than the incoming messages,

the microcontroller ensured that the CAN receive buffers would not overflow with

incoming messages. The 256 kbits/sec baud rate was the fastest allowable serial data

rate within the Visual Basic programming environment. While this node utilized the

same microcontroller as all other nodes, it contained a specially sized external oscillator

(16.384 MHz) to create the serial bit timing of 256 kbits/sec. The CAN messages were

retransmitted via RS232 beginning with a leading identifier ($), followed by the source

address of the message and the eight message data bytes in a comma-delineated

fashion. The message concluded with an ending identifier (#) (Table 5).

Table 5. Message Structure for CAN-RS232 Bridge Operation

Source Address 10

Data Byte 0 134

Data Byte 1 24

Data Byte 2 56

Data Byte 3 64

Data Byte 4 0

Data Byte 5 0

Data Byte 6 0

Data Byte 7 0

$10,134,24,56,64,0,0,0,0#

If one chip had been used to perform both RS232 receiving and transmitting,

then hardware serial buffers and interrupt handling would have to have been utilized.

The PIC18F258 UART buffers were only 1 byte in size and would have overflowed if a

new message was received from the task computer at the same time that a new CAN

message was being transmitted to the task computer. A second ECU was developed to

19

perform bridge operations in the opposite direction. It received messages from the task

computer and retransmitted the message over the CAN bus (Figure 11).

CAN-
RS232

RS232-
CAN

CAN Bus

C
A

N

C
A

N

R
S2

32

R
S232

CAN-RS232
Bridge

Figure 11. CAN to RS232 Bridge Node

Once all physical design requirements were met, a generic code set was

developed to initialize and test the CAN-based system. For initial testing, nodes were

either receive or transmit nodes. Future work combined the two functions into a fully

operational CAN node.

The first initialization step was to configure the bit timing requirements for CAN

message transmission. A bus rate of 250 Kbits/sec corresponds to a bit rate of 4 µsec.

The CAN 2.0B protocol breaks each CAN bit into four sections (Figure 12). The

SYNC_SEG is used to synchronize the bus nodes. The PROP_SEG compensates for

physical delay times inherent within networks. PHASE_SEG1 and PHASE_SEG2

compensate for edge phase errors and can be lengthened or shortened by

resynchronization.

20

SYNC_SEG PHASE_SEG2PHASE_SEG1PROP_SEG

Nominal Bit Time

Sample
Point

Figure 12. Nominal Bit Time (Reprinted from CAN 2.0B Protocol)

Each segment of the nominal bit time can be subdivided into several segments known

as time quantum (tq). ISO 11783 recommends the time duration for each time state as

shown in Figure 13.

Figure 13. Recommended Nominal Bit Timing

The Synchronization Jump Width (SJW) may result in either PHASE_SEG1 or

PHASE_SEG2 becoming lengthened by 1 bit. The value for the SYNC must be 0

because the synchronization takes place only on the edge of a recessive to dominant

transition.

The exact values recommended in ISO 11783 for each bit segment cannot be

used in this project because the chosen oscillator speed of 20 MHz cannot be prescaled

to give and exact time quantum output of 250 nsec. Instead the values shown in Figure

14 were used.

tq = 250 nsec

SYNC_SEG = 0 tq

PROP_SEG + PHASE_SEG1 = 13 tq

PHASE_SEG2 = 2 tq

SJW = 1 tq

Total Bit Time = 13 tq + 2 tq + 1 tq = 16 tq = 4 µsec

21

Figure 14. Adjusted Nominal Bit Timing

The PIC18F258 contained three control registers associated with defining the

CAN bit times. The three registers were configured as shown in Figure 15 to implement

the appropriate bit times. These three CAN baud rate registers are standard for most

CAN-based microcontrollers, independent of brand (CAN-CIA).

Figure 15. PIC18F258 CAN Baud Rate Configurations

The PIC18F258 utilized two pins for CAN communication, RB2 (CAN

transmission) and RB3 (CAN reception). The Data Direction Register should be

appropriately set for each pin to allow data output from RB2 and data input from RB3.

This was accomplished by using the TRIS command as shown in Figure 16.

Figure 16. Data Direction Register Configuration for CAN Messaging

The final node configuration required before CAN messages could be sent and

received was to set the appropriate message receive filters within the receiving nodes.

BRGCON1 = %00000011

BRGCON2 = %10100001

BRGCON3 = %00000001

tq = 400 nsec

SYNC_SEG = 0 tq

PROP_SEG + PHASE_SEG1 = 7 tq

PHASE_SEG2 = 2 tq

SJW = 1 tq

Total Bit Time = 7 tq + 2 tq + 1 tq = 10 tq = 4 µsec (250 Kbits/sec)

TRISB = %00001000

22

When an incoming message was received by the CAN protocol engine, it automatically

checked the message identifier against the values stored in the receive filter control

registers. The receive filter must be set in software in order for messages to be

received. There were four registers (32 bits) associated with each receive filter, which

made up the 29-bit identifier used by CAN 2.0B. There were also masks associated

with each filter that were required to be set in software.

Initial testing validated the ruggedness and repeatability of the CAN based

control system. Four ECUs were linked together over the CAN bus and programmed to

transmit data at a rate of 0.5 Hz. A Garmin (Kansas City, MO) 76 GPS receiver was

used in simulation mode to provide NMEA strings while indoors. Potentiometers were

used to simulate the feedback from the electronic actuators. Three nodes where

designed to read independent analog voltages from potentiometers attached to each

node. The potentiometer was connected as a single ended input directly to pin A0 on

each of the nodes. A simple code (Figure 17) was implemented on each node to collect

analog input data and transmit the measured values on the CAN bus.

23

Start Up

Initialize
Oscillator

Configure
Identifier

Read Analog
Input

Store Input in CAN
Output Register

Trigger CAN
Transmit

Pause 1
Second

Figure 17. Initial Testing Program Flow Chart

The GPS node was unique in that the data were acquired through the on-chip serial port

rather than the analog to digital converter. There was also no Pause statement for the

GPS node. Its 0.5 Hz timing was based on the GPS output from the GPS receiver.

The message transmissions were logged via the CAN-RS232 bridge onto a task

computer, thus modeling the final system. The incoming data messages were collected

and time-stamped by an executable file created with Visual Basic.

The four transmitting ECUs and one CAN-RS232 bridge were tested for 24 hours

and were subjected to random adjustments of the input voltages (Figure 18). The data

messages were post-processed to determine the number of transmission errors that

occurred within a 24 hour period. No transmission errors were found to have occurred

24

over the 24 hour period. The resolution of the stored data was only 2 seconds, so it

was possible that transmission errors did occur, but that they were recognized by the

ECU’s and the errant messages were retransmitted according to ISO 11783 protocol.

Figure 18. Laboratory configuration for Initial Node Testing

A secondary test was performed to determine the robustness of the CAN bus to

external noise sources. A radio controller, similar to those used in remote aircraft flight,

was placed adjacent to the CAN bus network cabling. An oscilloscope was used to

monitor the noise level on the bus. The oscilloscope showed a tremendous amount of

noise occurring on both CAN bus wires, but the messages still transmitted without

errors (Figure 19).

25

Figure 19. CAN_L Communication Line during High Noise Conditions

B. Sensor Interfacing
With the initial testing of the modular network completed, the next project

objective was to interface each of the ECUs with sensors specific to autonomous

vehicle guidance. This involved developing a list of sensor requirements to provide an

appropriate level of functionality to the vehicle. The test vehicle for this project was an

18.6 kW hydrostatic drive tractor (Figure 20 &Figure 21). Manual linkages were used to

actuate the steering axle, transmission speed, and three-point hitch location. All driver

amenities were removed to reduce the gross vehicle weight and to lower the vehicle

center of gravity.

26

Figure 20. Test Vehicle for Autonomous Guidance

27

1.42 m0.10 m

1.17 m

1.20 m
Vehicle Weight: 700 kg

GPS

GPS

Figure 21. Test Vehicle Specifications

The following list outlines the minimum required control and sensing points to

convert the test vehicle from manually operated to a limited functional capability

autonomous machine.

28

1. Electronic control of the steering axle with position feedback

2. Electronic control of the hydrostatic transmission swash-plate with position

feedback

3. Electronic control of the three-point hitch control lever with position

feedback

4. Acquisition of vehicle position from a GPS receiver

5. Acquisition of vehicle heading from digital compass

6. Acquisition of vehicle turning rate from an analog gyroscope

7. Acquisition of control commands from a wireless RF controller.

The linkages on the vehicle that controlled the hydrostatic transmission swash-

plate position, three-point hitch control lever, and front end steering were replaced with

electric actuators (Figure 22). Each actuator contained a 10k potentiometer to provide

position feedback. Each ECU responsible for executing a control command via an

electronic actuator was interfaced with the position potentiometer through the internal

analog to digital converter on the microcontroller. The supply voltage to the

potentiometer was sourced from the node. By providing the supply voltage from the

same source as the microcontroller, a single ended analog to digital conversion could

be used with little worry of bias resulting from different ground potentials. Initial

calibrations were performed to determine the maximum operating ranges for each of the

potentiometers.

29

Figure 22. Electronic Control Actuator with Feedback Potentiometer

To calibrate the steering axle, a visual estimation was used to determine the

center steering point and the extreme conditions. These locations were related to

analog to digital converter count values and recorded to act as limiting values for the

control program. The three-point hitch actuator was calibrated for two positions:

maximum upward and downward position. The transmission actuator was calibrated for

three positions: maximum forward, maximum reverse, and neutral. The three-point

hitch actuator and the transmission control actuator did not require additional

calibration, because their outputs were not critical to the goals of this project. In fact,

the only critical point on either actuator was maintaining a neutral position on the

transmission actuator in order to stop the vehicle. The steering actuator calibration was

extremely critical and required a more sophisticated calibration method. Before this

calibration could be accomplished, a GPS receiver interface was required.

A Trimble (Sunnyvale, CA) AgGPS 214 GPS receiver with WAAS correction

provided vehicle positioning with sub-meter accuracy. The AgGPS 214 transmitted a

vehicle position message in the CAN 2.0B format specified in SAE J1939. This

message was not used for this project because of data processing limitations inherent

to 8-bit microcontrollers. Specifically, the microcontroller and compiler combination

could not process variables larger than 16 bits. The SAE J1939 standard format

30

packaged both latitude and longitude as 4 byte variables. To overcome this problem,

an ECU was designed to monitor the NMEA output of the receiver via an RS232

connection and capture the GGA data string at a rate specified by the task computer.

The latitude, longitude, time, GPS quality indicator, and number of satellites in use were

each transmitted onto the CAN bus upon reception. The specific identifiers associated

with each message are listed in Appendix A. The microcontroller source code for the

GPS node and a detailed description of operation logic are listed in Appendix B.

 The steering actuator was then calibrated to relate the count value acquired from

the analog to digital conversion performed on the steering feedback potentiometer to

the specific steering angle of the vehicle. The vehicle was subjected to a series of tests

in which the steering position was held constant at a known feedback setting. While

traversing a circular path, GPS location points were acquired by the task computer

through the CAN-RS232 bridge and logged into a text file. The vehicle completed three

circular paths for each steering position tested. The test was performed on a firm sod

surface to reduce the effect of wheel side slip. The data were post-processed in a GIS

package to determine the mean diameter of each circular path (Figure 23).

Figure 23. Steering Actuator Calibration

31

 A kinematic model was used to define the vehicle’s steering angle based on the

radius of the circular path (Grovum and Zoerb, 1970). The model showed that the

radius of each circle was directly related to the steering angle of the vehicle (Equation

2).

⎟
⎠
⎞

⎜
⎝
⎛=

1R
WBarctanφ (2)

Where: R1 = effective turning radius of the vehicle

WB = vehicle wheel base

 From Equation 2 and the multiple circular paths conducted during the calibration,

an equation relating the actuator feedback counts to the actual steering angle of the

vehicle was determined. This equation was as follows:

P = 19.70φ + CenterPosition (3)

Where: P = Actuator Position (Counts)

 φ = Steering Angle in Degree

For these tests, the value of CenterPosition was 470. Re-calibration was

required due to drift in the steering axle position potentiometer. This number required

regular adjustment throughout vehicle testing based on new front end calibrations. A

reference calibration line was etched into the actuator as a way to quickly re-identify the

center position. A linear regression was performed to determine the accuracy of the

steering angle equation (Figure 24). The R2 values for the linear regressions were .998

and .999 for counterclockwise and clockwise turns, respectively.

32

y = -19.767x + 470
R2 = 0.9979

y = 19.664x + 470
R2 = 0.999

0

150

300

450

600

750

900

0 5 10 15
Steering Angle (Degrees)

P
os

iti
on

 F
ee

db
ac

k
(C

ou
nt

s)

Counter Clockw ise Turn Clockw ise Turn
Linear (Counter Clockw ise Turn) Linear (Clockw ise Turn)

Figure 24. Steering Axle Actuator Calibration

Each actuator used in this design was a ball-screw linear actuator. Due to the

large current requirements of each actuator, the microcontroller itself could not supply

the necessary power to operate the actuator motor. A separate circuit was required to

operate the electronic actuators remotely from the ECU. An H-bridge motor controller

was installed to isolate the ECU from the high current and voltage loads necessary to

drive the actuators. An LMD18201 H-bridge produced by National Semiconductor

(Santa Clara, CA) was used for the transmission and hitch actuators. This H-bridge

could supply up to 3 amps of continuous current at up to 55 volts. The LMD 18201 did

not have sufficient current capabilities for the steering actuator, which could draw up to

15 amps continuously. For this application an OSMC3 (www.robot-power.com) motor

controller was used. This controller could provide well in excess of 15 amps

continuously. Digital output pins on the ECU controlled the H-bridge circuits and

allowed forward and reverse motion and locking of the electric actuators. Initial

implementation did not utilize the locking capabilities of the H-bridges. It was found that

the actuators would overshoot the desired location due to the inertia built up in the

motor and ball-screw mechanism. H-bridge braking was then incorporated into the ECU

control routine, which dramatically reduced the magnitude of actuator.

33

As stated in the requirements, a means to determine the current vehicle heading

direction was required. Several methods were available to acquire this value including

computing a value based on the incoming GPS parameters. The most practical solution

to the problem was to utilize a simple board level digital compass. This allowed for

rapid sampling of the heading state as opposed to the limited sampling capabilities of

the GPS receiver. It also allowed for much easier implementation because the

microcontroller could interface the compass through a simple serial communication link.

A Vector 2X digital compass produced by Precision Navigation (Santa Rosa, CA)

was chosen and interfaced with the steering ECU. The steering ECU was chosen as

the interface node because of its proximity to the front of the vehicle and it potential use

for heading information. The sensor was a low-cost, 2-axis compass and magnetic

sensor that provided accuracy of 2° for vehicle heading at a resolution of 1˚. The

sensor utilized a patented magneto-inductive magnetometer. The sensor was

calibrated to remove hard iron distortions in the form of a constant offset that resulted

from the host vehicle. Non-constant magnetic fields from objects such as AC motors

could not be calibrated out of the system and were physically avoided. Additional noise

suppression was incorporated by mounting the compass 12” in front of the forward most

part of the vehicle on a non-magnetic wooden surface.

The sensor was interfaced to the steering node via an SPI communication link.

Five data lines were required to interface the compass, which was the slave in the

system. Two data lines initialized the sensor and forced it to sample the heading

direction. Three more lines (chip select, clock, and data) were then used to receive the

heading information into the microcontroller. The compass could provide data at a

maximum rate of 4 Hz. The source code used to access heading data from the

compass can be reference in Appendix C.

The current turning rate of the vehicle was desired to provide an auxiliary

feedback mechanism to the steering ECU. It was hypothesized that this sensor could

sense problems with the steering axle calibration or with vehicle guidance problems due

to inadequate ground traction and front wheel sideslip. This would be accomplished by

comparing the actual turning rate of the vehicle to the predicted turning rate as defined

by a kinematic model.

34

A CG-16DB0 piezoelectric ceramic gyroscope produced by NEC Tokin (Union

City, CA) was incorporated into the system to provide real time turning rate feedback.

This sensor was comprised of a single piezoelectric ceramic column printed with

electrodes that provided a sensitivity of 1.1 mV/°/sec with a sensing range of ±90 °/sec.

It was commonly used in stability controllers for small radio-controlled aircraft. Although

a much more expensive gyroscope could provide much greater accuracy and most

likely be much easier to interface, the gyroscope was the lowest priority sensor required

by the vehicle and little resources were invested to it.

The Ceramic Gyro voltage output was connected to an instrumentation

operational amplifier circuit to increase resolution for turning angles from 0 °/sec to 10

°/sec. The output signal was amplified by a gain of 450, resulting in the calibration

curve seen in Figure 25. A dedicated ECU was developed to read the conditioned

output from the Ceramic Gyro and over-sample the signal by a factor of 25. Thus, 25

continuous readings were averaged and transmitted as the current turning rate. The

sensor was located just behind the midpoint of the rear axle on the vehicle. This

location was very near the point of rotation of the vehicle while traversing a headland

turn. The sensor was mounted on a vibration isolation surface to limit the effects of

mechanical vibrations within the vehicle on sensor output.

y = 4.950E-01x - 1.503E-15
R2 = 1.000E+00

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

0 2 4 6 8 10

Turning Rate (deg/sec)

Co
nd

iti
on

ed
 S

en
so

r O
ut

pu
t (

V
)

Figure 25. CG-16DB0 Conditioned Calibration Curve

35

Field testing was performed to determine how the sensor would respond to the

turning rate change of the vehicle during normal operations. The vehicle was guided

through a standard row and headland turn operation. Theoretically, the sensor should

have responded to the change in turning rate while the vehicle was traversing the

headland turns. Unfortunately, during field testing, the Ceramic Gyro reported erratic

results directly related to the mechanical vibrations of the vehicle. Several attempts

were made to isolate the sensor mount from these vibrations, but all designs proved

inadequate. These alterations included increasing the amount of damping material

located on the sensor mount and also implementing an analog passive filter circuit to

reduce the amount of high frequency noise. The Ceramic Gyro was no longer

incorporated into the system design because of the mechanical vibration noise.

The final requirement of the interface system was to transfer signals from a radio-

controller onto the CAN bus. The radio-controller ECU monitored four channels from

the RF receiver: variable steering angle, variable transmission speed, three-point hitch

state, and vehicle enabled state. Each of these channels were monitored and

transmitted on the CAN bus at a rate of 25 Hz. For the two variable controls (steering

and transmission), the ECU measured the pulse on-time of the corresponding input

channel with a resolution of 2 µsec. A calibration equation was developed by relating

the maximum and minimum pulse on-times from the receiver to the appropriate

maximum and minimum count values for each actuator. Figure 26 shows the calibration

curve for the steering actuator. No calibration curve for the transmission is presented

because the calibration equation changes depending on the vehicle throttle setting. The

vehicle speed was calibrated before each test to ensure consistent test methods. For

the three-point hitch and vehicle enable channels, a two position pulse input was read

from the RF receiver (Figure 27). In the high on-state, the three-point hitch was raised

to its highest point; during the low on-state, the hitch was lowered to its lowest position.

The height of the three point hitch was measured from ground level to the pin location at

the end of the lower lift arm. The vehicle enable channel was measured in a similar

manner, although if a low on-state was detected, messages were sent to all control

nodes to return to the neutral position and stop the vehicle. Further detail of the node

operation can be found in the source code located in Appendix C.

36

y = 15.271x + 1541.1
R2 = 1

y = 19.7x + 470
R2 = 1

0
200
400
600
800

1000
1200
1400
1600
1800
2000

-20 -15 -10 -5 0 5 10 15 20

Steering Angle (deg)

Fe
ed

ba
ck

 V
al

ue

Feedback Counts RF Channel Ontime
Linear (RF Channel Ontime) Linear (Feedback Counts)

Figure 26. RF Controller Calibration Curve for the Steering Actuator

y = -7.1647x + 259.19
R2 = 0.9972

0

50

100

150

200

250

5 10 15 20 25 30

Measurement Point Height (in)

Fe
ed

ba
ck

 V
al

ue
 (c

ou
nt

s)

Figure 27. Calibration Curve for the Three Point Hitch

Figure 28 depicts the complete network layout used to satisfy the system

requirements.

37

Termination
Block

Termination
Block CAN Bus

Steering
ECU

H-Bridge

Electric
Actuator

Hitch
ECU

H-Bridge

Electric
Actuator

text

HST
ECU

H-Bridge

Electric
Actuator

text GPS
ECU

GPS
Receiver

CAN-RS232
Bridge

RF
ECU

RF
Receiver

Task
Computer

CAN-RS232
Bridge

text

Digital
Compass

Turning
Rate ECU

Ceramic
Gyro

Figure 28. Final Network Layout

Since the steering, three-point hitch, and transmission nodes were the actuation points

for the distributed control system, they were required to accept a control set-point and

implement a feedback control routine to correctly position the actuator. The ECU was

programmed to continuously run the same control routine, thus it monitored the CAN

receive buffers for a new set-point message and conducted a feedback control routine

to maintain the actuator at the desired location (Figure 29). The source code for this

operation can be referred to in Appendix C.

38

No
Acquire

Feedback
Position

No No Lock
Actuator

Yes

Yes

Retract
Actuator

Yes

Extend
Actuator

Feedback
>Set-point

New Msg
Received

Feedback
<Set-point

Read New
Set-point

Initialize
System

Figure 29. ECU Control Routine

To test the feedback operation of the ECUs, control commands were asserted on

the bus from the task computer manually. It was noticed that the steering ECU had a

difficult time positioning the actuator exactly on the desired location. The ECU was

determining the current position via a 10-bit analog to digital converter. A noise level or

fluctuation in the feedback potentiometer of 4.9 millivolts or higher would result in a

change in the perceived actuator position and cause the algorithm to correct for this

change. The result was an excessive control effort that led to oscillations in the output.

To combat this problem, a 1% deadband was programmed into the control algorithm to

allow for slight variation in the feedback signal and noise within the system. The 1%

deadband was calculated based on the full scale range of the sensor. Thus, for all five

volt potentiometers used for the control nodes, the deadband was ± 5 counts.

The H-bridge controllers used for this project did have the capability to receive an

analog input signal and produce a proportional output control to the actuator motors. It

was found that the control system reacted with sufficient speed such that it was not

necessary to implement this feature. The final control system for the ECU controllers

was then a Bang-off controller.

C. Development of a Guidance Algorithm for Autonomous Vehicle Control
Each of the sensors and nodes depicted in Figure 28 were installed on the test

vehicle. CAN bus messages were defined to efficiently transfer feedback data into the

39

task computer and transmit control commands to ECUs. All messages required for

autonomous vehicle operation were sent each time a new GPS message was received.

Two different GPS update rates were used for this project: 1 Hz and 2 Hz. Average bus

load during normal transmission with a bus speed of 250 kbits/sec, a GPS signal rate of

2 Hz, and an average message length of 150 bits was 0.72%. This was very desirable

and allowed for extensive expansion of the system.

The vehicle ground speed during autonomous testing was set at 3 km/hr (1.86

mph), which resulted in a vehicle travel distance of 0.467 m (1.37 ft) per control

message when operating at a 2 Hz update rate. Appendix A details all messages

required to control the vehicle during autonomous operation. The identifier priority

levels used for this project correspond to the message priority levels defined in ISO

11783 Section 3 (Table 3).

 The first problem encountered during initial setup and testing was that the CAN

transceiver chips were failing at a high rate. Discussions with the manufacturer

determined that this failure was most likely caused by the noisy input voltage from the

vehicle’s battery. Specifically, the noisy voltage caused the current draw through the

system to exceed the specifications of the transceiver chip. A solution was reached by

adding another voltage regulator to create an isolated power supply for the transceiver

in each ECU. While this did reduce the occurrence of transceiver failures by roughly

90%, they still did occur. All transceiver chips were acquired in one shipment before the

parts were in full production. It is possible that there may have been lingering flaws in

the manufacturing process or chip design that had not been fully alleviated.

With the CAN-RS232 bridge installed, a task computer was required to link the

CAN based control system with a process control system. A Pentium 4® 1200 MHz

laptop computer served as the task computer. The task computer ran an executable file

that was written and compiled using Microsoft (Redmond, WA) Visual Basic 6.0®. The

program received information from the CAN bus through a CAN-RS232 bridge node.

Incoming messages were decoded based on the source address of the sender and

used for vehicle guidance (Figure 30).

40

Receive
New CAN
Message

New GPS
Point?

Calculate
New

Control

Send New
Control

Command

Log Data

Yes

N
o

Figure 30. Task Computer Flow Chart

The implementation of automated straight-line guidance control by the task

computer can be broken into five specific steps.

1. Initialize the system by defining a desired path of travel

2. Receive feedback information from the GPS receiver through the CAN bus

3. Determine the appropriate steering axle position for autonomous guidance

4. Transmit the appropriate control commands to the steering and

transmission ECU

5. Log position and control data for post-processing and evaluation.

To accomplish the first step, the task computer was given initial geographic

Points A and B. The task computer created a line between the two defined points and

made guidance decision based on this desired line of travel. These two points, as well

as all subsequent locations received from the GPS receiver entered the task computer

in WGS 84 format and were projected to Universal Transverse Mercator (Zone 16N)

Cartesian coordinates. The WGS 84 format contained ten significant digits, thus a

resolution of 1 mm was available after the UTM conversion. The task computer

received the GPS message by matching the GPS identifier with the identifier of the

incoming message. The specific GPS message parameters are detailed in Appendix A.

Each time a new GPS message was received, the task computer calculated the

current vehicle error from the desired line of travel and applied a digital control routine to

determine the new guidance control command. This command was transmitted through

41

the CAN-RS232 bridge and was received by the steering node. A transmission control

command was also transmitted at the same time, but simply directed the transmission

to maintain a constant forward ground speed of 3 km/hr. During the latency time

between incoming GPS messages, the task computer recorded position and control

parameters to a hard disk for future evaluation. The GPS locations were stored with

their appropriate time stamp, so no latency was seen in the recorded data. Each set of

guidance parameters was stored in a comma-delineated text file that ended with a

linefeed and carriage return. The data were then easily accessed by commercially

available spreadsheet and database software packages. Complete detail on the

operation of the task computer can be acquired from Appendix B.

i. Kinematic Model Based Guidance Controller

For the task computer to effectively control the test vehicle during autonomous

operations, a control algorithm must be developed. Several models have been

developed that predict the response of a tractor relative to changes in the steering

angle. The test vehicle for this project was light weight, small, and slow, thus a purely

kinematic model was used to describe the system. More specifically, the bicycle model

described previously was applied to this test vehicle.

 In order to apply a control algorithm, a control point or set point must be defined.

The set point was defined as a point that lies on the desired path line at a specified

distance ahead of the point on the path line perpendicular to the current vehicle

location. This specified offset distance was defined as the look-ahead distance and was

represented by the variable LD (Figure 31). The Look Ahead Distance was set at 5 m

for this project, which corresponded to the magnitude of the step input used to test the

vehicle response. Several look-ahead distances were considered, and while the

decision to use 5 m was not totally arbitrary, there was no comprehensive reason

driving its selection.

42

D
es

ire
d

Li
ne

 o
f T

ra
ve

l

Current
Location

Set Point
Location

Lo
ok

 A
he

ad
D

is
ta

nc
e

Figure 31. Look Ahead Distance Diagram

 By assuming the vehicle was already heading along a line that was parallel to the

desired line of travel, the desired steering angle was computed for the vehicle to pass

through the set point. The kinematic model was used for this computation (Grovum and

Zoerb, 1970). Equation 6 showed that the steering angle could be calculated based on

a computed radius of curvature from the current vehicle position to the desired set point

(Figure 32).

43

G
ui

da
nc

e
Li

ne

Lo
ok

 A
he

ad
D

is
ta

nc
e

θ

e

W
heel

B
ase

d

Figure 32. Kinematic Model of the Proportional Control Parameters

⎟
⎠
⎞

⎜
⎝
⎛=

d
LDarccosθ (4)

Where: LD = Look Ahead Distance

 d = Distance Between Current and Set Point

 θ = Angular Deviation

)sin(θ2
dRCP = (5)

 RCP = Path Radius of Curvature

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

CPR
WBarctanα (6)

 WB = Wheel Base

 α = Proportional Steering Angle

44

 Equation 6 showed that the Look Ahead Distance directly affected the desired

proportional steering angle. With this being the case, the Look Ahead Distance

remained 5 m throughout the project and the proportional gain was tuned accordingly.

Under normal operating circumstances, the proportional controller alone was not

sufficient for the vehicle to settle on and track a desired path. As the vehicle

approached the set point it traveled along a line that was no longer parallel to the

desired path. This contrasted the assumption made during the development of the

proportional control. A derivative control was needed to compensate for the difference

between the desired vehicle heading and the current vehicle heading. The derivative

control was developed based on the slope differential between the desired path and the

actual path. The actual path slope was calculated by creating a line between the two

most recent GPS location points. Again, the steering angle was calculated from the

kinematic model based on a radius of curvature defined by the GPS points (Figure 33 &

Equation 8).

)sin(µ2
dRCD = (7)

Where: RCD = Derivative Radius of Curvature

 d = Distance between Current and Set Point

 µ = Slope Differential

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

CDR
WBarctanτ (8)

Where: τ = Differential Steering Angle

 WB = Wheel Base

45

d

µ

Figure 33. Kinematic Model of the Derivative Control Parameters

The angles calculated for the proportional and derivative control were

incorporated into a control equation for the vehicle (Equation 9). Proportional and

derivative gains were implemented to provide tuning capabilities to the system. The

system was tested under a unity gain to create a baseline step response for the vehicle

(Figure 34).

φ = (PG × α) + (DG × τ) (9)

Where: φ = Steering Angle

 PG = Proportional Gain

 DG = Derivative Gain

46

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60

DISTANCE TRAVELED (M)

O
FF

SE
T

E
RR

O
R

(M
)

P = 1, D = 1

Figure 34. Step Response for Unity Gain on Sod Surface

 Several conclusions were drawn from this unity gain test. The system was over

damped as seen from steady state error and extended settling time in Figure 34. The

proportional gain was increased to reduce the settling time. Also, the derivative gain

was reduced to allow for a small overshoot during the step response. The sensing

location was located at the front of the vehicle, so a minor overshoot will allow the rear

end of the vehicle to converge to the guidance line faster.

 A safe assumption from this first test was that the system can be modeled as a

second-order system. If it was a higher order system, there was very little residual

effect from the third and higher order system components. According to Doebelin

(1998) a damping ratio (ζ) of 0.65 is often used for second-order systems that require a

quick, yet stable response. During a five meter step response, this enabled an

overshoot of 0.34 m. Based on the slope approach recorded during the unity gain test,

an overshoot of 0.34 m will position the rear of the tractor very near the desired line of

travel with no overshoot. Thus a damping ratio of 0.65 was used to tune the PD

controller.

The PD controller gain settings were tuned through a series of field trials. Four

proportional gains were tested ranging from 1 to 3 (Figure 35). It was found that a

proportional gain of 1.5 provided a ζ value of 0.745. Since the proportional gain was set

47

very close to one, the bicycle model provided a sufficient representation of the vehicle

motion. The derivative gain was tuned to obtain a ζ value closer to the desired value of

0.65.

-3

-2

-1

0

1

2

3

4

5

6

0 20 40 60 80 100

DISTANCE TRAVELED (M)

O
FF

SE
T

ER
R

O
R

 (M
)

P = 1 P = 1.5 P = 2 P = 3

Figure 35. Step Response for Various Proportional Gains with a Constant
Derivative Gain of One

Table 6. Step Response Characteristics for Proportional Gain Testing

 Proportional Gains

 1 1.5 2 3

Ds (m)1 17 8.5 10.4 14.7

Mp (%)2 - 3.0 4.4 50.6

Dp (m)3 - 11.5 10.5 6.3

Dr (m)4 - 9.2 6.9 2.2

1 Ds = Settling Distance

2 Mp = Percent Overshoot

3 Dp = Peak Distance

4 Dr = Rise Distance

48

Further testing of the derivative gain was performed using a proportional gain of

1.5 (Figure 36). It was hypothesized before the tests that a lower derivative gain would

reduce the damping in the system and thus reduce the settling time. A small reduction

in the derivative gain should result in an improved damping ratio of very near 0.65.

-4

-3

-2

-1

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90 100

DISTANCE TRAVELED (M)

O
FF

SE
T

ER
R

O
R

 (M

D = 1 D = 0.8 D = 0.5 D = 0.2

Figure 36. Step Response for Various Derivatives Gains with a Constant
Proportional Gain of 1.5

Table 7. Step Response Characteristics for Derivative Gain Testing

 Derivative Gain

 1 0.8 0.5 0.2

Ds (m) 8.5 14.2 19.4 51.4

Mp (%) 3.1 7.2 21.6 92.5

Dp (m) 11.8 10.4 7.8 5.0

Dr (m) 9.2 7.6 5.4 1.6

 The step response performance was improved by decreasing the derivative gain

slightly (Figure 36). A derivative gain of 0.8 provided an overshoot of 7.2%, which

corresponded to a damping ratio of 0.64. This was ideal for the vehicle response; thus,

a derivative gain of 0.8 was adopted.

49

 Tests conducted using the PD controller revealed that the control system

produced a steady state offset error that could not be reduced by further adjustment of

the PD gain parameters. The magnitude of the steady state error was 0.154 meters.

An integral control was incorporated into the system to reduce this steady state offset.

A classical digital integral controller was analyzed and determined that it would not work

for this particular situation (Equation 10).

uI(k) = K2[u(k-1)+Tx(k)] (10)

Where: uI(k) = Integral Control Command

 K2 = Integral Gain

 u(k-1) = Previous System Control Command

 T = System Sampling Time

 x(k) = Current Error Signal

The classical integral control was based on the previous command and current

offset error value. The GPS location points contain too much inherent noise and

variability to calculate a reasonable steering correction. The previous tests showed that

at least 9 position error points needed to be averaged to accurately predict the steady

state offset. Again, this estimated offset error was used in conjunction with a look-

ahead distance to determine a corrected steering angle based on the bicycle model.

The formula for the integral controller was:

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

××

×
=

∑
−

LDd

OEWB

ss

n

10

0

9
)(

arctanγ (11)

Where: γ = Integral Steering Angle

 OEn = Offset Error at Point n

 WB = Wheel Base of the Vehicle

 dss = Distance between Current and Set Point

 LD = Look Ahead Distance

The new form of the PID implementation equation became:

50

δ = Pg × φ + Dg × µ + Ig × γ (12)

Where: IG = Integral Gain

The new PID controller was tested to determine if the integral control could

reduce the steady state error in the system. Integral gain values from 0 to 10 were

tested. As the integral gain increased, the steady state error was reduced, but the

standard deviation of the error increased (Figure 37). These responses were expected

based on digital control theory. What was not expected was that a significant steady

state error of at least 0.08 m continued to exist.

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18

0 2 3 4 5 7.5 10

INTEGRAL GAINS

ER
R

O
R

 V
A

LU
ES

 (M
)

STD DEV
CI+ (M)
CI- (M)
MEAN

Figure 37. Comparison of Integral Gains for Steady State Error Reductions

The statistical parameters used to describe the accuracy of the control system

were: mean error value, standard deviation of the error, and the mean 95% confidence

interval. These statistical parameters were calculated during the steady state portion of

the test. Steady state was defined to begin when the vehicle performance settled to

within 2% of the input offset amplitude. An accurate system should produce a mean

error value at or near zero along with a 95% confidence interval of no more than 5 cm.

Julian (1971) showed that deviations of 5 cm or less at the front wheel produce

negligible deviations at the rear wheel. The position points used for the error analysis

were the current vehicle position, thus no software filtering was performed on this data.

51

The accuracy measurements were relative to the accuracy of the GPS receiver, thus

they were not absolute accuracies.

Several factors could have been causing the steady state error to exist.

1. The control system implemented an overly complex algorithm to

determine the appropriate control value

2. The GPS signal utilizing WAAS correction was supplying a noisy signal

3. The derivative gain parameter was too large when the offset error was

small and caused impulsive control responses.

One of the system parameters logged by the task computer was the seconds

value from the internal computer clock. The control algorithm was set to operate off the

GPS signal input, thus it was expected that this clock value would be incremented

sequentially for each control command. Inspection of the data revealed that often two

control commands would occur within the same second cycle. This indicated that the

program was struggling to execute all the required algorithms within the one second

cycle between messages.

Closer examination of the error signal from the PD tuning determined that there

were significant impulses within the GPS signal. This was expected due to the fact that

WAAS correction was being used. There was also a noticeable lag between data

points. This was not caused by the latency of the task computer, but rather by the fact

that corrections occurred at a rate of 1 Hz.

The derivative gain term also negatively impacted the ability of the control system

to squelch the steady state error. It was found that as the vehicle operated in the

steady state region, the derivative control signal oscillated between a positive and

negative value. This oscillation along with the 1 Hz update rate drove the vehicle away

from the desired guidance path (Figure 38).

52

-6

-4

-2

0

2

4

6

60 70 80 90 100

DISTANCE TRAVELED (m)

D
ER

IV
A

TI
VE

 S
TE

ER
IN

G

A
N

G
LE

 (d
eg

re
es

)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

O
FF

SE
T

E
R

R
O

R
 (m

)

D Control
Offset Error

Figure 38. Derivative Gain Impact on Steady State Error

ii. Position-Based Digital PID Controller
 A simpler digital PID model was developed to reduce the computational load of

the task computer, improve the error estimation, and incorporate gain scheduling.

Digital implementation of a PID controller can be derived in many forms. Multiple forms

were considered and analyzed based on their relevance to this application method. The

chosen model was based on a position PID controller, which transforms the analog PID

model into a digital form by using rectangular integration approximation. The general

form of the controller accounted for the current position error as well as the previous two

position errors. An auxiliary term was added to the control algorithm to account for the

center position of the steering actuator. The sampling time was held constant at 2 Hz

and was lumped into the values for the gains.

CPID = CP + [Pg × EK] + [Ig × (EK + EK-1 + EK-2)] + [Dg × (EK – EK-1)] (13)

Where: CPID = Current Control Signal

 CP = Center Location of Steering Actuator

 EK = Current Average Error (cm)

 EK-1 = Previous Average Error (cm)

 EK-2 = Second Previous Average Error (cm)

53

 As equation 13 shows, when all error values were driven to zero, the output will

simply be the calibrated value for the center location of the steering actuator, thus the

vehicle will travel straight. It was noticed in the previous controller that small random

errors in the GPS signal caused significant changes in the control signal relative to the

magnitude of the error. To counteract this phenomenon, three consecutive error values

were averaged together and used as the current average error value. The two previous

average error values were calculated in a similar manner, thus five data points were

used to determine each steering control command. This served as a filter for the GPS

points and dramatically smoothed the offset error values.

 Gain scheduling was incorporated to reduce the effects of large gain values

when the offset error was small, thus eliminating the impulsive motions seen in the

previous controller design. Previous testing data were used to determine the

scheduling parameters. The derivative gain value was set to zero whenever the value

of (EK – EK-1) became less than 0.5 cm. Likewise, the integral gain was not activated in

the system unless the value of EK was less than 15 cm.

 This algorithm was used to guide the vehicle through a standard step response,

which was identical to the step response used to test the previous controller. The P & D

gain variables were tuned to stabilize the vehicle response. It was found that a

proportional gain value of 0.75 and a derivative gain value of 7 produced a damping

ratio of 0.65. There was still a steady state error of 0.11 m apparent in the step

response curve. Several values of integral gains were tested to reduce the amount of

steady state offset error (Figure 39).

54

-0.05

0.00

0.05

0.10

0.15

0.20

0.6 0.7 0.8 0.9 1.1 1.5 2

INTEGRAL GAINS

O
FF

SE
T

ER
R

O
R

 (M
)

STD DEV
CI+ (M)
CI- (M)
MEAN

Figure 39. Version 2 Controller Step Response Data for Various Integral Gains

 As seen in previous testing, the standard deviation of steady state errors

increased with an increase in integral gain (Figure 39). An integral gain of 0.8 was

chosen for this application. This provided a mean offset error of 0.34 mm and a

standard deviation of 28.7 mm. The Version 2 controller significantly improved the step

response of the autonomous vehicle by reducing the computation load of the task

computer, which in turn decreased the time delay between reception of a new position

point and transmission of a control command. Incorporating error filtering and gain

scheduling routines improved the standard deviation of the guidance data by reducing

the amount of impulsive control commands.

iii. Control System Validation Testing at Increased Ground Speed
 All previous tests were conducted at a ground speed of 0.83 m/s. Further testing

using the Version 2 PID controller design was conducted at a forward ground speed of

1.7 m/s. Integral gains from 0.6 to 0.9 were used to evaluate any differences in the

system response caused by a higher ground speed. The proportional gain was held at

0.75 and the derivative gain at 7 for all tests.

55

-0.05000

0.00000

0.05000

0.10000

0.15000

0.20000

0.6 0.6 HS 0.7 0.7 HS 0.8 0.8 HS 0.9 0.9 HS

INTEGRAL GAIN VALUES

O
FF

SE
T

ER
R

O
R

 (M
)

STD DEV
CI+ (M)
CI- (M)
MEAN

Figure 40. Version 2 Controller Step Response Data for Various Integral Gains
and High Ground Speed

 Analyses showed that at a higher ground speed of 1.7 meters per second, an

integral gain of 0.8 was still optimal (Figure 40). This produced a steady state offset

error of 0.05 mm and a standard deviation of 32.3 mm. These error values were well

within the design limits of the project and showed that the control system could be

applied to a faster autonomous vehicle. Unfortunately, 1.7 m/s was the maximum

forward speed of the test vehicle; thus, the kinematic model threshold of 3.3 m/s could

not be tested.

 One anomaly was revealed during the increased speed testing. An increase in

the forward vehicle speed should have resulted in a decrease in system damping and

thus a larger overshoot and smaller damping ratio. Results from the increased speed

testing showed an overshoot of 3.6% and a damping ratio of 0.725. The result was

justified by reevaluating the governing control equation. Because the vehicle was

traveling faster during the high speed tests, the difference between the current point and

previous point had a greater magnitude than in the previous tests. This increased

magnitude allowed the derivative component to play a larger role in determining the

response of the system and resulted in a system with increased dampening.

56

D. Demonstrate the Ability to Traverse a Normal Field Operation
The final objective of the project was to demonstrate the autonomous capabilities

of the vehicle by completing consecutive headland turning and straight-line guidance

routines. Figure 41 represents the path used to test the vehicle’s autonomous

capabilities. This path was often seen in production agricultural operations and

demonstrated the feasibility of the vehicle for this application. Only the initial two

guidance points and the swath width between the operating passes were supplied to the

vehicle.

A

B

Figure 41. Field Operation Schematic

 Several objectives were set for the vehicle to effectively traverse the field

operation.

1. Develop an algorithm to determine when the headland area had been

reached

2. Develop an algorithm to calculate the next guidance line based on the

current guidance line and defined vehicle swath width

3. Utilize a digital compass to implement an open loop headland turning

routine.

57

A simple algorithm was developed to determine when the headland area had

been reached thus requiring initiation of a turning routine. The first step in the algorithm

was to determine whether the vehicle was heading towards point A or point B. Then,

the distance from the current location to the origination point and the distance between

the two initial set-points were compared (Figure 42). If the vehicle had passed into the

headland area, then the distance between its current location and the point which

originated the line of travel was greater than the distance between the two points used

to define the line of travel. Full implementation of this routine can be seen in Appendix

B.

Point A

D
is

ta
nc

e
Fr

om
 C

ur
re

nt
 P

oi
nt

To
 O

rig
in

at
io

n
Po

in
t

D
is

ta
nc

e
B

et
w

ee
n

Tw
o

In
iti

al
 S

et
-p

oi
nt

s

Point B

Figure 42. Headland Logic

The next step in completing a field operation required that the task computer be

able to calculate the next desired guidance path. Two points, A and B, defined the

58

initial path. When the vehicle extended beyond either of these end points as discussed

above, the control system redefined points A and B based on the set swath width of the

field operation (Equations 14, 15, 16, & 17). This newly defined line was parallel to the

initial line and contained new A-B points that were perpendicular to the initial points

(Figure 43).

Ø1
A1

A2

B1

B2

X

Y

SW

Figure 43. Guidance Line Translation

 Points A2 and B2 were calculated based on the following equations:

59

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

++−+
=

1
1

1
1111

1
1

2 1

1

m
m

SWAmAB
m

B
B

xyxy

x
θcos

 (14)

⎥
⎦

⎤
⎢
⎣

⎡
−−+=

1
111212 θcos

SWAmABmB xyxy (15)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

++−+
=

1
1

1
1111

1
1

2 1

1

m
m

SWAmAA
m

A
A

xyxy

x
θcos

 (16)

⎥
⎦

⎤
⎢
⎣

⎡
−−+=

1
111212 θcos

SWAmAAmA xyxy (17)

Where: A1x = Initial Point A Easting

A1y = Initial Point A Northing

B1x = Initial Point B Easting

B1y = Initial Point B Northing

m1 = Initial Slope of Line AB

SW = Swath Width

θ1 = tan-1(m1)

Open loop control was used during specialized routines such as headland turning

operations. When the end of the row was reached during a normal field operation the

vehicle was required to lift the rear implement, turn around, and beginning tracking the

next guidance line. To accomplish these functions the task computer sent a single

message specifying that the end of the row had been reached and specifying the

direction and distance to the next guidance line. The steering ECU received this

message and took appropriate action to steer the vehicle toward the next line. The

vehicle maintained a constant steering angle while maneuvering the turn. The steering

ECU monitored a digital compass and determined when the vehicle had changed

direction by 180 ±15 degrees, thus marking the end of the headland turning routine.

The steering ECU then notified all nodes that the headland turning operation had ended

60

by transmitting a single CAN message. The source code for this operation is included

in Appendix C.

During the time it took the vehicle to maneuver the turn, the task computer was

able to calculate the new guidance line and prepared to resume autonomous guidance.

The transmission node responded to the start and finish of the end of the row operation

message by slowing the vehicle speed during the turning maneuver. The speed setting

was adjusted using the configure transmission message (Appendix A). Also, the hitch

node recognized the start and finish of the headland turning message and raised or

lowered the implement appropriately.

The efficiency of this turning routine was based on the accuracy of predicting the

appropriate steering angle. Initial testing was completed by using the bicycle model to

predict the steering angle based on the turning radius, which was one half of the

implement swath width. The bicycle model defined the turning rate of a vehicle as the

forward vehicle velocity divided by the radius of turn or half the diameter of turn

(Equation 18). For this vehicle, the forward velocity was 0.83 meters per second and

the working swath width was between 7 and 20 meters. The working range of the

vehicle turning rate was then 6.79 to 2.37 °/sec.

1R
V

dt
d =φ (18)

Where: V = forward velocity of the vehicle

 R1 = effective turning radius of the vehicle

This control system was tested in a field operation simulation. Two initial set-

points and a swath width were loaded into the task computer. The vehicle

autonomously tracked the straight line between the points. It then determined when it

had passed the farthest assigned point and began the standardized turning routine

based on a given swath width. The vehicle successfully traversed the field and

demonstrated appropriate turning functionality (Figure 44). It was found that while the

deadband of ±15˚ worked well, it could have been reduced. During every recorded

turning event, the vehicle released from the turning routine on the lower side of the

deadband, thus before a full 180˚ turn had been made.

61

Figure 44. Field Path Demonstration

E. System Cost
The overall system cost was low relative to alternative designs for autonomous

vehicle control. Utilizing inexpensive microcontrollers at each node greatly reduced the

data processing expense.

62

Table 8. Cost of Individual ECU and CAN Interface

Component Units Required Unit Price Total Cost

PIC 18F258 1 $ 6.17 $ 6.17

Amp Connectors 6 $ 5.75 $ 34.50

28-pin Socket 1 $ 2.26 $ 2.26

Printed Circuit Board 1 $ 2.00 $ 2.00

Screw Terminal 2 $ 1.75 $ 3.50

Enclosure 1 $ 1.75 $ 1.75

MCP 2551 1 $ 1.48 $ 1.48

2A Fuse 1 $ 0.84 $ 0.84

20 MHz Clock 1 $ 0.75 $ 0.75

8-Pin Socket 1 $ 0.60 $ 0.60

LM7805 - 1A Reg 1 $ 0.50 $ 0.50

Switch 1 $ 0.43 $ 0.43

LM78L05 - .1A Reg 1 $ 0.40 $ 0.40

Diode 1 $ 0.27 $ 0.27

Connector Pins 54 $ 0.26 $ 14.04

22pF Cap 2 $ 0.14 $ 0.28

0.1µF Cap 1 $ 0.08 $ 0.08

Total $ 69.84

The overall unit cost per node was $69.84 (Table 8). This included all

components required to correctly operate the microcontroller and transceiver chips as

well as all materials required to enclose the ECU. The connector cost included two

CAN connections per box as well as a third connection for an auxiliary sensor. The cost

of the female connectors that attached to the ECU male connectors were also included

in the ECU analysis rather than developing a separate cost summary. Seventy percent

of the overall cost of the ECU was directly related to the connectors. Practically this is a

high percentage to allocate to the physical connection between the node and the bus,

but it was critical to use quality connections to ensure the reliability of the bus.

63

Table 9. Cost of System Wide Sensors

Component Units Required Unit Price Total Cost

Sub-meter GPS Receiver 1 $3,000.00 $3,000.00

Task Computer 1 $1,200.00 $1,200.00

Steering Actuator 1 $ 750.00 $ 750.00

Transmission Actuator 1 $ 150.00 $ 150.00

Hitch Actuator 1 $ 150.00 $ 150.00

High Current Motor Controller 1 $ 85.00 $ 85.00

Radio Frequency Controller 1 $ 80.00 $ 80.00

Digital Compass 1 $ 50.00 $ 50.00

Piezo-electric Rate Sensor 1 $ 25.00 $ 25.00

IC H-Bridge 2 $ 13.00 $ 26.00

Total $5,516.00

The total amount allocated to sensors was $5,516.00 (Table 9). This cost could

fluctuate substantially depending on the type of GPS receiver used. Also, a single

board computer could be used rather than a laptop task computer to reduce cost.

Chapter 5: Conclusions
A controller area network provided an efficient platform to develop an

autonomous vehicle control system. Individual control nodes reduced the

computational load of the task computer by implementing the feedback control logic at

the node. Additional nodes were easily added to the system to provide increased

functionality or feedback. The CAN-RS232 bridge was an inexpensive means to

transfer CAN based data into a task computer for data logging and mathematical

computation of autonomous control commands. A digital PID controller was sufficient in

controlling the steering system with a high degree of accuracy. Gain scheduling and

GPS position filtering reduced the occurrence of impulsive commands during situations

where the guidance errors were very low. When operated within the parameters of the

kinematic model, the control system exhibited errors that were nearly negligible. A low

cost piezo-electric turning rate sensor was not able to correctly determine the turning

rate of the vehicle due to the high level of mechanical vibrations from the host vehicle.

64

An open loop headland turning routine was successfully implemented using a digital

two-dimensional compass as the means of directional feedback.

Chapter 6: Future Work
Several future research topics were encountered during the completion of this

project. The transceiver chips were a problem throughout the course of the project,

most likely due to improper design of the printed circuit board. More work is required to

develop a more reliable circuit board. Also, the task computer program should be

migrated from the laptop computer to a hardened single board computer. This will

reduce the latency caused by the operating system environment. Fault protection

should also be incorporated into the task computer algorithm.

Vehicle guidance should be improved by developing a self-calibration routine that

the steering ECU performs during initialization. This could be as simple as mounting a

limit switch that would relate to the center point of the steering axle. The guidance

routine could be improved by incorporating a direction command with the predefined AB

guidance line. This would provide the control system with an initial target heading and

reduce errors at the onset of a guidance operation. A turning rate sensor with higher

sensitivity could improve the headland turn routine by providing an accurate feedback

signal. Incorporating this sensor would create an entirely closed loop control machine,

which would improve reliability. Finally, any autonomous machine should have a means

of obstacle detection and collision avoidance. This vehicle should have a basic

mechanism to sense its immediate surroundings and prevent any potentially disastrous

situations.

65

Appendices

66

Appendix A: CAN Node Commands

67

Steering Command
Description Desired Steering Angle
Source Address 1
Priority 3
Transmission Frequency
(Hertz) 5

Data Byte 0
Least Significant Byte of Desired Steering Position in
Feedback Counts

Data Byte 1
Most Significant Byte of Desired Steering Position in Feedback
Counts

Transmission Command
Description Desired Transmission Position
Source Address 2
Priority 3
Transmission Frequency
(Hertz) 5
Data Byte 0 Hydrostatic Transmission Position in Feedback Counts

Hitch Command
Description Desired Hitch Position
Source Address 3
Priority 3
Transmission Frequency
(Hertz) 5
Data Byte 0 Hitch Position in Feedback Counts

Start Turning Routine
Description Notify Nodes to Begin Turning Routine (end of row operation)
Source Address 8
Priority 5
Transmission Frequency
(Hertz)

Data Byte 0
Least Significant Byte of Desired Steering Position in
Feedback Counts

Data Byte 1
Most Significant Byte of Desired Steering Position in Feedback
Counts

Data Byte 2 Set as 1 to turn. All other values will do nothing.

Stop Operation

Description
Stop Vehicle Movement, Center Steering Axle, Raise
Implement

Source Address 12
Priority 0
Transmission Frequency
(Hertz)

68

Configure Steering Node
Description Configure Parameters within the Steering Node
Source Address 10
Priority 5
Transmission Frequency
(Hertz)
Data Byte 0 New Deadband Value
Data Byte 1 Not Used
Data Byte 2 New Lower Turn Angle Limit
Data Byte 3 New Upper Turn Angle Limit

Configure Transmission Node
Description Configure Parameters within the Transmissin Node
Source Address 11
Priority 5
Transmission Frequency
(Hertz)
Data Byte 0 New Deadband Value
Data Byte 1 Not Used

Data Byte 2
New Relay Ontime Value. Not Used in Latest Software with
H-Bridge Function

Configure Hitch Node
Description Configure Parameters within the Hitch Node
Source Address 13
Priority 5
Transmission Frequency
(Hertz)

Configure GPS Node
Description Configure Parameters within the GPS Node
Source Address 14
Priority 5
Transmission Frequency
(Hertz)

Steering Turning Routine Complete
Description Steering has Returned to Normal Operation
Source Address 9
Priority 5
Transmission Frequency
(Hertz)
Data Byte 0 Equal to 1 for Completed Turning Routine.

Transmission Turning Routine Complete
Description Transmission has Returned to Normal Operation
Source Address 15
Priority 5
Transmission Frequency
(Hertz)

69

Hitch Turning Routine Complete
Description Hitch has Returned to Normal Operation
Source Address 16
Priority 5
Transmission Frequency
(Hertz)

GPS Position
Description Vehicle Positition based on GPS Receiver
Source Address 5
Priority 2
Transmission Frequency
(Hertz) 5
Data Byte 0 Latitude Byte 0
Data Byte 1 Latitude Byte 1
Data Byte 2 Latitude Byte 2
Data Byte 3 Latitude Byte 3
Data Byte 4 Longitude Byte 0
Data Byte 5 Longitude Byte 1
Data Byte 6 Longitude Byte 2
Data Byte 7 Longitude Byte 3

Time
Description Time based on GPS Receiver
Source Address 6
Priority 2
Transmission Frequency
(Hertz) 5
Data Byte 0 Hours
Data Byte 1 Minutes
Data Byte 2 Seconds

GPS Quality
Description GPS Quality Information
Source Address 7
Priority 2
Transmission Frequency
(Hertz) 5
Data Byte 0 Differential Correction Status
Data Byte 1 Number of Satellites

70

GPS Message Processing

Incoming Latitude Format: ddmm.nnnooo

Incoming Longitude Format: eepp.qqqrrr

Variable Name Value
LATDD dd
LATMM mm

LATMMM1 nnn
LATMMM2 ooo

LONDD ee
LONMM pp

LONMMM1 qqq
LONMMM2 rrr

Outgoing GPS Message Format:

Data Byte Value
TXnD0 Low Byte of (LATDD * 1000) + LATMMM1
TXnD1 High Byte of (LATDD * 1000) + LATMMM1
TXnD2 Low Byte of (LATMM * 1000) + LATMMM2
TXnD3 High Byte of (LATMM * 1000) + LATMMM2
TXnD4 Low Byte of ((LONDD - 40) * 1000) + LONMMM1
TXnD5 High Byte of ((LONDD - 40) * 1000) + LONMMM1
TXnD6 Low Byte of (LONMM * 1000) + LONMMM2
TXnD7 High Byte of (LONMM * 1000) + LONMMM2

71

Appendix B: Task Computer Program Code

72

Const PI As Single = 3.1415927
--
Option Explicit
--
Private Sub ACCEPT_BUTTON_Click()
'WHEN THE ACCEPT BUTTON IS PRESSED THE A AND B POINTS ARE USED TO
'CALCULATE STEERING PARAMETERS

X1 = POINT_A_EAST_TEXT.Text
Y1 = POINT_A_NORTH_TEXT.Text
X2 = POINT_B_EAST_TEXT.Text
Y2 = POINT_B_NORTH_TEXT.Text

A = (Y2 - Y1) / (X2 - X1)
B = (-1)
C = Y1 - (A * X1)

UKAT_AUTOSTEER.Enabled = True

End Sub
--
Private Sub CALC_LINE_Click()
'WHEN THE CALC_LINE BUTTON IS PRESSED A NEW GUIDANCE LINE IS CALCULATED BASED ON
'THE CURRENT GUIDANCE LINE AND THE DESIRED SWATH WIDTH
 M1 = A
 B1 = C
 TURNING_COEF = TURNING_DIR_TEXT.Text 'THIS COEFFICIENT DESIGNATES RIGHT OR LEFT TURN
 THETA1 = Atn(M1)
 M2 = M1
 DB = (TURNING_COEF * SWATH_WIDTH) / Cos(THETA1)
 B2 = (B1 - DB)
 M3 = -1 / M1
 B3 = Y2 - (M3 * X2)
 M4 = M3
 B4 = Y1 - (M4 * X1)
 X2 = (B3 - B2) / (M2 - M3)
 Y2 = (M2 * X2) + B2
 X1 = (B4 - B2) / (M2 - M4)
 Y1 = (M2 * X1) + B2
 A = (Y2 - Y1) / (X2 - X1)
 B = (-1)
 C = Y1 - (A * X1)
 CALC_LINE.Value = False
End Sub
--
Private Sub CANCEL_BUTTON_Click()
'THE CANCEL BUTTON CLEARS ALL A AND B VALUES
 SET_B_BUTTON.Enabled = False
 ACCEPT_BUTTON.Enabled = False
 SET_A_BUTTON.Enabled = True
 UKAT_AUTOSTEER.Enabled = False
 POINT_A_EAST_TEXT.Text = " "
 POINT_B_EAST_TEXT.Text = " "
 POINT_A_NORTH_TEXT.Text = " "
 POINT_B_NORTH_TEXT.Text = " "

End Sub
--
Private Sub LOWER_HITCH_BUTTON_Click()
'THE LOWER_HITCH_BUTTON MANUALLY LOWERS THE THREE POINT HITCH

 While TIMEOUT < 5000
 TIMEOUT = TIMEOUT + 1
 Wend
 TIMEOUT = 0
 MSComm1.Output = "$3,200,0,0,0,0,0,0,0,0,0#"
 While TIMEOUT < 5000

73

 TIMEOUT = TIMEOUT + 1
 Wend
 TIMEOUT = 0
 DoEvents
End Sub
--
Private Sub EXIT_BUTTON_Click()
'CLOSE PORTS AND EXIT PROGRAM

 ProLatUTMClose (iHandle)
 MSComm1.PortOpen = False
 Close
 End
End Sub
--
Private Sub FILENAME_BUTTON_Click()
'FILENAME_BUTTON ALLOWS USER TO NAME FILE TO STORE DATA

 On Error Resume Next

 CommonDialog1.DialogTitle = "CHOOSE DATA FILENAME"
 CommonDialog1.ShowOpen

 'FILENAME_TEXT.Text = CommonDialog1.FileName

 Open CommonDialog1.FileName For Append As #1

 Print #1, "X1, Y1, X2, Y2, GPS_TIME, GPS_QUALITY, NUMSAT, ESTNG, NRTNG, ESTNG_PREV, NRTNG_PREV, VAR1,
D_GAIN, P_GAIN, I_GAIN, AB, AC, BC, AC_PREV, BC_PREV, UKAT_AUTOSTEER.Value, UKAT_AUTOTURN.Value, E_0, E_1,
E_2, E_K, E_K_1, E_K_2, C_PID, CENTER_POINT, HEADING_DIFF"
 'THE PRINT LINE ADDS HEADERS TO THE DATA TABLE

 OPENFILE = True

End Sub
--
Private Sub Form_Load()
'INTIALIZE PROGRAM

 'SET UP COMM PORT
 MSComm1.CommPort = 5
 MSComm1.Settings = "19200,n,8,1"
 ROUNDUP_HEADING = False

 If MSComm1.PortOpen = True Then
 MsgBox "THE PORT IS ALREADY IN USE"
 Exit Sub
 End If

 MSComm1.PortOpen = True

 'INITIALIZE UTM CONVERTER .dll
 iHandle = ProLatUTMInitialize("WGS84", 0, 1)

 CommonDialog1.InitDir = "C:\DARR\UKAT PROGRAMS"

 roundup.Show

End Sub
--
Private Sub MSComm1_OnComm()
'MSComm1 ROUTINE DEFINES OPERATIONS ON NEW SERIAL MESSAGE RECEIVE INTERRUPT

 Const PI As Single = 3.1415927
 On Error Resume Next

 If MSComm1.CommEvent = comEvReceive Then 'CHECK FOR NEW MESSAGE RECEIVED
 BUFFER_LENGTH = MSComm1.InBufferCount
 Else
 BUFFER_LENGTH = 0

74

 End If

 While BUFFER_LENGTH > 5
 BUFFER_ARRAY = BUFFER_LEFTOVER & MSComm1.Input 'ADD NEW MESSAGE TO BUFFER
 BUFFER_LENGTH = Len(BUFFER_ARRAY)
 START_POS = InStr(BUFFER_ARRAY, "$") 'DEFINE START OF MESSAGE STRING
 END_POS = InStr(BUFFER_ARRAY, "#") 'DEFINE END OF MESSAGE STRING

 If START_POS = 0 Then Exit Sub
 If END_POS = 0 Then Exit Sub

 DATA_STRING = Mid(BUFFER_ARRAY, START_POS + 1, END_POS - START_POS - 1) 'SPLIT DATA STRING
 DATA_ARRAY = Split(DATA_STRING, ",")
 SA = DATA_ARRAY(0) 'DEFINE SOURCE ADDRESS OF NEW MESSAGE
 BUFFER_LEFTOVER = Mid(BUFFER_ARRAY, END_POS + 1) 'COLLECT UNUSED BUFFER

 If SA = 5 Then 'NEW GPS POINT
 ESTNG_PREV = ESTNG 'SAVE PREVIOUS POINTS
 NRTNG_PREV = NRTNG
 SA = 0 'RESET SA
 LATDD = DATA_ARRAY(1) 'ASSIGN ARRAY STRINGS
 LATMM = DATA_ARRAY(2)
 LATMMM1 = DATA_ARRAY(3)
 LATMMM2 = DATA_ARRAY(4)
 LONDD = DATA_ARRAY(5)
 LONMM = DATA_ARRAY(6)
 LONMMM1 = DATA_ARRAY(7)
 LONMMM2 = DATA_ARRAY(8)
 LAT_MINUTE = ((LATMM * (10 ^ 6)) + (LATMMM1 * (10 ^ 3)) + LATMMM2) / (10 ^ 6)
 LAT_DEC_DEGREE = LAT_MINUTE / 60
 LAT = LATDD + LAT_DEC_DEGREE
 LON_MINUTE = ((LONMM * (10 ^ 6)) + (LONMMM1 * (10 ^ 3)) + LONMMM2) / (10 ^ 6)
 LON_DEC_DEGREE = LON_MINUTE / 60
 LON = (LONDD + LON_DEC_DEGREE) * -1
 LAT_NMEA_TEXT.Text = LAT
 LON_NMEA_TEXT.Text = LON
 ICODE = ProLatUTMTransform(iHandle, LON, LAT, ESTNG, NRTNG, 0) 'CONVERT GPS POINTS TO UTM
 EASTING_TEXT.Text = ESTNG
 NORTHING_TEXT.Text = NRTNG
 DELTA_X = (ESTNG - ESTNG_PREV)
 DELTA_Y = (NRTNG - NRTNG_PREV)

 'DETERMINE WHICH CARTESIAN QUADRANT THE SYSTEM IS IN
 If DELTA_X > 0 And DELTA_Y > 0 Then HEADING_DIR = Atn(DELTA_Y / DELTA_X) * 180 / PI 'QUAD1
 If DELTA_X < 0 And DELTA_Y > 0 Then HEADING_DIR = 180 + (Atn(DELTA_Y / DELTA_X) * 180 / PI) 'QUAD2
 If DELTA_X < 0 And DELTA_Y < 0 Then HEADING_DIR = 180 + (Atn(DELTA_Y / DELTA_X) * 180 / PI) 'QUAD3
 If DELTA_X > 0 And DELTA_Y < 0 Then HEADING_DIR = 360 + (Atn(DELTA_Y / DELTA_X) * 180 / PI) 'QUAD4
 C1 = NRTNG - (ESTNG * A)
 HEADING = ESTNG - ESTNG_PREV

 'CONTROL VARIABLE
 If C > C1 Then
 VAR1 = -1
 Else
 VAR1 = 1
 End If

 'SET SIGN CONVENTION
 If HEADING > 0 Then HEADING_FACTOR = 1
 If HEADING < 0 Then HEADING_FACTOR = -1
 If HEADING = 0 Then HEADING_FACTOR = 0

 'CALCULATE CONTROL ERRORS AND SETPOINT PARAMETERS
 D = Abs(A * ESTNG + B * NRTNG + C) / ((A ^ 2 + B ^ 2) ^ (0.5))
 OFFSET_DIST_TEXT.Text = D * VAR1
 D_GAIN = D_GAIN_TEXT.Text * HEADING_FACTOR
 P_GAIN = P_GAIN_TEXT.Text * HEADING_FACTOR
 I_GAIN = I_GAIN_TEXT.Text * HEADING_FACTOR

 'APPLY GAIN SCHEDULING

75

 If Abs(E_K) > 15 Then I_GAIN = 0
 If Abs(E_K - E_K_1) < 0.5 Then D_GAIN = 0

 'CALCULATE PARAMETERS FOR HEADLAND TURN DECISION TABLE
 AB = Sqr((X2 - X1) ^ 2 + (Y2 - Y1) ^ 2)
 AC = Sqr((X1 - ESTNG) ^ 2 + (Y1 - NRTNG) ^ 2)
 AC_PREV = Sqr((X1 - ESTNG_PREV) ^ 2 + (Y1 - NRTNG_PREV) ^ 2)
 BC = Sqr((X2 - ESTNG) ^ 2 + (Y2 - NRTNG) ^ 2)
 BC_PREV = Sqr((X2 - ESTNG_PREV) ^ 2 + (Y2 - NRTNG_PREV) ^ 2)

 SWATH_WIDTH = SWATH_WIDTH_TEXT.Text
 M1 = A
 B1 = C
 CENTER_POINT = CENTER_POINT_TEXT.Text 'STEERING ACTUATOR CALIBRATED CENTER

 'AVERAGE THREE PREVIOUS ERROR VALUES AND RECORD PREVIOUS ERRORS
 E_2 = E_1
 E_1 = E_0
 E_0 = (D * VAR1) * 100
 E_K_2 = E_K_1
 E_K_1 = E_K
 E_K = (E_0 + E_1 + E_2) / 3

 'APPLY PID CONTROLLER
 C_PID = CENTER_POINT + P_GAIN * E_K + I_GAIN * (E_K + E_K_1 + E_K_2) + D_GAIN * (E_K - E_K_1)

 'SET MAX AND MIN LIMITS ON PID CONTROL COMMAND
 If C_PID < 100 Then C_PID = 100
 If C_PID > 840 Then C_PID = 840

 'NORMAL AUTOGUIDANCE MODE
 If UKAT_AUTOSTEER.Value = 1 And ROUNDUP_HEADING = False Then

 'OUTPUT PID CONTROL COMMAND
 C_PID_TEXT.Text = C_PID
 MSComm1.Output = "$1," & C_PID & ",0,0,0,0,0,0,0,0,0#"

 'ALLOW CAN BRIDGE TIME TO TRANSMIT MESSAGE
 While TIMEOUT < 5000
 TIMEOUT = TIMEOUT + 1
 Wend
 TIMEOUT = 0

 'OUTPUT TRANSMISSION SPEED COMMAND
 MSComm1.Output = "$2,220,0,0,0,0,0,0,0,0,0#"
 While TIMEOUT < 5000
 TIMEOUT = TIMEOUT + 1
 Wend
 TIMEOUT = 0

 'OUTPUT THREE POINT HITCH COMMAND
 MSComm1.Output = "$3,200,0,0,0,0,0,0,0,0,0#"
 While TIMEOUT < 5000
 TIMEOUT = TIMEOUT + 1
 Wend
 TIMEOUT = 0
 DoEvents
 End If

 'DETERMINE IF HEADLAND TURN IS REQUIRED
 If UKAT_AUTOTURN.Value = 1 And ROUNDUP_HEADING = False Then
 If AC > AB And AC > AC_PREV Then 'TURN RIGHT
 TURN_ANGLE = CENTER_POINT + 330
 MSComm1.Output = "$1," & TURN_ANGLE & ",0,0,0,0,0,0,0,0,0#"
 While TIMEOUT < 5000
 TIMEOUT = TIMEOUT + 1
 Wend
 ROUNDUP_HEADING = True
 INITIAL_HEADING = HEADING_DIR
 CALC_LINE.Value = True

76

 DoEvents
 End If
 If BC > AB And BC > BC_PREV Then 'TURN LEFT
 TURN_ANGLE = CENTER_POINT - 320
 MSComm1.Output = "$1," & TURN_ANGLE & ",0,0,0,0,0,0,0,0,0#"
 While TIMEOUT < 5000
 TIMEOUT = TIMEOUT + 1
 Wend
 ROUNDUP_HEADING = True
 INITIAL_HEADING = HEADING_DIR
 CALC_LINE.Value = True
 DoEvents
 End If
 End If

 'TRAVERSE HEADLAND TURN
 If ROUNDUP_HEADING = True Then

 'COLLECT HEADING INFORMATION
 HEADING_DIFF = Abs(INITIAL_HEADING - HEADING_DIR)
 HEADING_TEXT.Text = HEADING_DIFF

 'TRANSMIT CONSTANT TURNING ANGLE
 MSComm1.Output = "$1," & TURN_ANGLE & ",0,0,0,0,0,0,0,0,0#"
 While TIMEOUT < 5000
 TIMEOUT = TIMEOUT + 1
 Wend
 TIMEOUT = 0

 'TRANSMIT CONSTANT TRANSMISSION SPEED
 MSComm1.Output = "$2,200,0,0,0,0,0,0,0,0,0#"
 While TIMEOUT < 5000
 TIMEOUT = TIMEOUT + 1
 Wend
 TIMEOUT = 0

 'TRANSMIT RAISED IMPLEMENT HEIGHT
 MSComm1.Output = "$3,50,0,0,0,0,0,0,0,0,0#"
 While TIMEOUT < 5000
 TIMEOUT = TIMEOUT + 1
 Wend
 TIMEOUT = 0

 'DETERMINE IF TURN IS COMPLETE
 If HEADING_DIFF > 165 And HEADING_DIFF < 195 Then
 MSComm1.Output = "$1," & CENTER_POINT & ",0,0,0,0,0,0,0,0,0,0#"
 While TIMEOUT < 5000
 TIMEOUT = TIMEOUT + 1
 Wend
 ROUNDUP_HEADING = False
 End If
 End If

 'LOG DATA IF REQUESTED
 If LOG_DATA.Value = 1 Then
 'Warn the user if no file name was selected
 If Not OPENFILE Then
 LOG_DATA.Value = 0
 MsgBox ("Select filename before logging.")
 Exit Sub
 End If
 CPU_SEC = Second(Time)
 Write #1, X1, Y1, X2, Y2, GPS_TIME, GPS_QUALITY, NUMSAT, ESTNG, NRTNG, ESTNG_PREV, NRTNG_PREV,
VAR1, D_GAIN, P_GAIN, I_GAIN, AB, AC, BC, AC_PREV, BC_PREV, UKAT_AUTOSTEER.Value, UKAT_AUTOTURN.Value,
E_0, E_1, E_2, E_K, E_K_1, E_K_2, C_PID, CENTER_POINT, HEADING_DIFF
 End If 'end of log data block

 End If

 'RECORD GPS TIME INFORMATION

77

 If SA = 6 Then
 GPS_HOUR = DATA_ARRAY(1)
 GPS_MINUTE = DATA_ARRAY(2)
 GPS_SECOND = DATA_ARRAY(3)
 GPS_TIME = GPS_HOUR & ":" & GPS_MINUTE & ":" & GPS_SECOND
 TIME_TEXT.Text = GPS_HOUR & ":" & GPS_MINUTE & ":" & GPS_SECOND
 SA = 0
 End If

 'RECORD GPS SATELLITE STATISTICS
 If SA = 7 Then
 GPS_QUALITY = DATA_ARRAY(1)
 NUMSAT = DATA_ARRAY(2)
 GPS_QUALITY_TEXT.Text = GPS_QUALITY
 NUMSAT_TEXT.Text = NUMSAT
 SA = 0
 End If
 Wend
End Sub
--
Private Sub RDUP_Click()
If RDUP.Value = 1 Then
 UKAT_AUTOSTEER.Value = 1
 UKAT_AUTOTURN.Value = 1
 ROUNDUP_HEADING = False
End If
If RDUP.Value = 0 Then
 UKAT_AUTOSTEER.Value = 0
 UKAT_AUTOTURN.Value = 0
End If
End Sub
--
Private Sub RDUP_VALUES_Click()
'THIS ROUTINE ALLOWS FOR APPLYING PREDEFINED A AND B POINTS WHEN USED FOR
'DEMONSTRATIONAL PURPOSES

X1 = 718490.411438581 'ROUNDUP
Y1 = 4211421.57805987

POINT_A_EAST_TEXT.Text = X1
POINT_A_NORTH_TEXT.Text = Y1

SET_B_BUTTON.Enabled = True
CANCEL_BUTTON.Enabled = True
SET_A_BUTTON.Enabled = False

X2 = 718466.491010205 'ROUNDUP
Y2 = 4211364.53880073

POINT_B_EAST_TEXT.Text = X2
POINT_B_NORTH_TEXT.Text = Y2

ACCEPT_BUTTON.Enabled = True
SET_B_BUTTON.Enabled = False
End Sub
--
Private Sub SET_A_BUTTON_Click()
'SET_A_BUTTON STORES CURRENT POSITION AS A POINT IN GUIDANCE PATH

X1 = ESTNG
Y1 = NRTNG
POINT_A_EAST_TEXT.Text = X1
POINT_A_NORTH_TEXT.Text = Y1
SET_B_BUTTON.Enabled = True
CANCEL_BUTTON.Enabled = True
SET_A_BUTTON.Enabled = False

End Sub
--
Private Sub SET_B_BUTTON_Click()

78

'SET_B_BUTTON STORES CURRENT POSITION AS B POINT IN GUIDANCE PATH

X2 = ESTNG
Y2 = NRTNG
POINT_B_EAST_TEXT.Text = X2
POINT_B_NORTH_TEXT.Text = Y2
ACCEPT_BUTTON.Enabled = True
SET_B_BUTTON.Enabled = False

End Sub
--

79

Appendix C: Node Program Code

80

Three Point Hitch Node

;;
;
; AUTHOR: MATTHEW J. DARR
;
; TITLE: UK_3PT_F.BAS
;
; DATE CREATED: 6/13/2003
;
; DESCRIPTION: THIS PROGRAM CONTROLS THE 3PT HITCH NODE
;
;;;

DEFINE OSC 20 ;DEFINE 20 MHZ OSCILLATOR

TRISB = %00001000 ;SET CAN DATA DIRECTION REGISTER

;CONFIGURE ANALOG TO DIGITAL CONVERTER
TRISA = 255
ADCON1 = 2
DEFINE ADC_BITS 8

;CONFIGURE CAN BAUD RATE
CANCON = %10000000
BRGCON1 = %00000011
BRGCON2 = %00010000
BRGCON3 = %00000000

;CONFIGURE RECEIVE FILTERS AND MASKS
CIOCON = %00010000
RXB0CON = %00000000
RXF0SIDH = %10101010
RXF0SIDL = %10101010
RXF0EIDH = %10101010
RXF0EIDL = %00000011
RXM0SIDH = 0
RXM0SIDL = 0
RXM0EIDH = 0
RXM0EIDL = %11111111

CANCON = 0

;ASSIGN PROGRAM VARIABLES
DEAD_BAND VAR BYTE
HST_SPEED VAR BYTE
DEAD_POS VAR WORD
DEAD_NEG VAR WORD
DIR VAR PORTC.1
PWM_PIN VAR PORTC.2
BRAKE VAR PORTC.3
SPEED_MSG VAR RXB0CON.0
ON_TIME VAR WORD
CURRENT_SPEED VAR BYTE

;SET INITIAL PROGRAM VALUES
DEAD_BAND = 5
HST_SPEED = 112
DEAD_POS = (HST_SPEED + DEAD_BAND)
DEAD_NEG = (HST_SPEED - DEAD_BAND)
PAUSE 1000

HIGH BRAKE

LOOP:

81

IF (PIR3.0 = 1) AND (SPEED_MSG = 0) THEN ;RECEIVE NEW HITCH MESSAGE
 HST_SPEED = (RXB0D0*1)
 RXB0CON = 0
 RXB0EIDL = 0
 DEAD_POS = (HST_SPEED + DEAD_BAND)
 DEAD_NEG = (HST_SPEED - DEAD_BAND)
ENDIF

ADCIN 0, CURRENT_SPEED ;CALCULATE CURRENT SPEED

;DIAGNOSTICS
SEROUT2 PORTB.7, 16468, [254,1,254,128, DEC HST_SPEED, 44, DEC CURRENT_SPEED]

IF (CURRENT_SPEED <= DEAD_POS) AND (CURRENT_SPEED >= DEAD_NEG) THEN ;DON'T ADJUST
 HIGH BRAKE
 HIGH DIR
 HIGH PWM_PIN
 BRANCHL 0,[LOOP]
ENDIF

IF (DEAD_NEG < CURRENT_SPEED) THEN ;LOWER HITCH
 HIGH PWM_PIN
 LOW DIR
 LOW BRAKE
 BRANCHL 0,[LOOP]
ENDIF

IF (DEAD_POS > CURRENT_SPEED) THEN ;RAISE HITCH
 HIGH PWM_PIN
 HIGH DIR
 LOW BRAKE
 BRANCHL 0,[LOOP]
ENDIF

BRANCHL 0,[LOOP]
BRANCHL 0,[LOOP]
GOTO LOOP
END

82

Computer Receive Node

;;
;
; AUTHOR: MATTHEW J. DARR
;
; TITLE: UK_CPU_F.BAS
;
; DATE CREATED: 6/13/2003
;
; DESCRIPTION: THIS PROGRAM RECEIVES MESSAGES FROM THE CAN BUS AND RETRANSMITS
; THE MESSAGES VIA RS232
;
;;

DEFINE OSC 20 ;DEFINE 20 MHZ OSCILLATOR

;DEFINE VARIABLES USED IN THE PROGRAM
HOUR VAR BYTE
MINUTE VAR BYTE
SECOND VAR BYTE
LATDD VAR WORD
LATMM VAR WORD
LATMMM1 VAR WORD
LATMMM2 VAR WORD
LATDIR VAR WORD
LONDD VAR WORD
LONMM VAR WORD
LONMMM1 VAR WORD
LONMMM2 VAR WORD
LONDIR VAR WORD
GPS_QUALITY VAR BYTE
NUMSAT VAR BYTE
LONDD_OFFSET VAR WORD
LONDD_SCALED VAR WORD
SA VAR BYTE
TIMEOUT VAR BYTE
LON_WORD1 VAR WORD
LON_WORD2 VAR WORD
LAT_WORD1 VAR WORD
LAT_WORD2 VAR WORD
TX0 VAR LAT_WORD1.BYTE0
TX1 VAR LAT_WORD1.BYTE1
TX2 VAR LAT_WORD2.BYTE0
TX3 VAR LAT_WORD2.BYTE1
TX4 VAR LON_WORD1.BYTE0
TX5 VAR LON_WORD1.BYTE1
TX6 VAR LON_WORD2.BYTE0
TX7 VAR LON_WORD2.BYTE1
TURN_RATE VAR WORD
TR0 VAR TURN_RATE.BYTE0
TR1 VAR TURN_RATE.BYTE1
TURN_STATUS VAR BYTE

INTCON = %00000000 ;TURN OFF INTERRUPTS
PIE3 = %11111111
TRISB = %00001000 ;ENABLE THE CAN RECEIVE PIN FOR INPUT AND CAN TRANSMIT

PIN FOR OUTPUT

;CONFIGURE THE CAN BAUD RATE
CANCON = %10000000
BRGCON1 = %00000011
BRGCON2 = %00010000
BRGCON3 = %00000000

;CONFIGURE THE CAN RECEIVE DATA REGISTERS
CIOCON = %00010000
RXB0CON = %00000000
RXF0SIDH = %10101010

83

RXF0SIDL = %10101010
RXF0EIDH = %10101010
RXF0EIDL = %00000001
RXM0SIDH = %00000000
RXM0SIDL = %00000000
RXM0EIDH = %00000000
RXM0EIDL = %10000000 ;BIT 7 OF EIDL MUST BE ZERO FOR MESSAGE ACCEPTANCE

CANCON = %00000000

LOOP2: IF PIR3.0 = 1 THEN ;CHECK FOR NEW CAN MESSAGE
 SA = RXB0EIDL ;STORE NEW MESSAGE IN GIVEN VARIABLES
 TX0 = RXB0D0
 TX1 = RXB0D1
 TX2 = RXB0D2
 TX3 = RXB0D3
 TX4 = RXB0D4
 TX5 = RXB0D5
 TX6 = RXB0D6
 TX7 = RXB0D7
 RXB0CON = %00000000 ;RESET RECEIVER BUFFER
 PIR3 = 0 ;CLEAR INTERRUPT BIT
 ENDIF

 TRISB = %00001000
 SEROUT2 PORTB.7, 16468, [254, 1, 254, 128, DEC TRISB]

 IF SA = 5 THEN ;LAT AND LON INFORMATION
 LATDD = LAT_WORD1 / 1000 ;CONDITION GPS INFORMATION FOR RS232
TRANSMISSION
 LATMMM1 = LAT_WORD1 - (LATDD * 1000)
 LATMM = LAT_WORD2 / 1000
 LATMMM2 = LAT_WORD2 - (LATMM * 1000)
 LONDD_SCALED = LON_WORD1 / 1000
 LONDD = LONDD_SCALED + 40
 LONMMM1 = LON_WORD1 - (LONDD_SCALED * 1000)
 LONMM = LON_WORD2 / 1000
 LONMMM2 = LON_WORD2 - (LONMM * 1000) ;OUTPUT MESSAGE VIA RS232

SEROUT2 PORTC.7, 16416, ["$", DEC SA, 44, DEC LATDD, 44, DEC LATMM, 44, DEC LATMMM1, 44, DEC
LATMMM2, 44, DEC LONDD, 44, DEC LONMM, 44, DEC LONMMM1, 44, DEC LONMMM2, "#", 10,
13]

 SA = 0 ;RESET THE SOURCE ADDRESS VARIABLE
 ENDIF

 IF SA = 6 THEN ;TIME INFORMATION
 HOUR = TX0
 MINUTE = TX1
 SECOND = TX2

SEROUT2 PORTC.7, 16416, ["$", DEC SA, 44, DEC HOUR, 44, DEC MINUTE, 44, DEC SECOND, "#", 10, 13]
 SA = 0
 SEROUT2 PORTB.7, 16468, [254, 1, 254, 128, DEC MINUTE, 44, DEC SECOND, 44, DEC HOUR]
 ENDIF

 IF SA = 7 THEN ;GPS QUALITY INFORMATION
 GPS_QUALITY = TX0
 NUMSAT = TX1
 SEROUT2 PORTC.7, 16416, ["$", DEC SA, 44, DEC GPS_QUALITY, 44, DEC NUMSAT, "#", 10, 13]
 SA = 0
 ENDIF

 IF SA = 9 THEN ;HEADLAND TURN STATUS
 TURN_STATUS = TX0
 SEROUT2 PORTC.7, 16416, ["$", DEC SA, 44, DEC TURN_STATUS, "#",10,13]
 SA = 0
 ENDIF

 IF (SA = %00010010) THEN ;GYRO SENSOR OUTPUT MESSAGE
 TR0 = TX0
 TR1 = TX1

84

 SEROUT2 PORTC.7, 16416, ["$", DEC SA, 44, DEC TURN_RATE, "#", 10,13]
 SA = 0
 ENDIF

 BRANCHL 0, [LOOP2] ;RETURN TO BEGINNING OF THE LOOP
 GOTO LOOP2

END

85

Computer Transmitter Node

;;
; AUTHOR: MATTHEW DARR
; TITLE: UK_GPS.BAS
; PURPOSE: READ A RS232 OUTPUT FROM A LAPTOP AND ASSERT THE MESSAGE ONTO THE CAN
; CREATED: 6/13/2003
;;;
;
; FORMAT: THE RS232 MESSAGE IS FORMATTED AS $SA,DATA1,DATA2,DATA3#
; WHERE DATA IS A WORD VARIABLE
;
;;

DEFINE OSC 20 ;DEFINE 20 MHZ OSCILLATOR

;DEFINE VARIABLES
SA VAR BYTE
DATA1 VAR WORD
H0 VAR BYTE
H1 VAR BYTE
I VAR BYTE
DATA2 VAR BYTE
DATA3 VAR BYTE

TRISB = %00001000 ;CONFIGURE CAN PORT DATA DIRECTION REGISTER

;CONFIGURE CAN BAUD RATE
CANCON = %10001000
BRGCON1 = %00000011
BRGCON2 = %00010000
BRGCON3 = %00000000
CIOCON = %00010000

CANCON = %00000110

;DEFINE UPPER THREE BYTES OF CAN MESSAGE
TXB1SIDH = %10101010
TXB1SIDL = %10101010
TXB1EIDH = %10101010

LOOP: SERIN2 PORTC.0, 16416, [WAIT("$"), DEC SA, DEC DATA1, DEC DATA2, DEC DATA3]

;WAIT FOR NEW MESSAGE FROM TASK COMPUTER
 TXB1EIDL = SA ;ASSIGN SOURCE ADDRESS
 H0 = DATA1.BYTE0
 H1 = DATA1.BYTE1
 TXB1D0 = H0 ;PLACE VARIABLES INTO CAN TRANSMIT REGISTER
 TXB1D1 = H1
 TXB1D2 = DATA2
 TXB1D3 = DATA3
 TXB1DLC = %00000100 ;ASSIGN DATA LENGTH CODE OF 8 BYTES
 TXB1CON = %00001011 ;SEND MESSAGE WITH HIGHEST PRIORITY

 WHILE TXB1CON.3 = 1 ;WAIT FOR CAN MESSAGE TO TRANSMIT BEFORE RETURNING
 I = 1 ;GIVES THE LOOP SOMETHING TO DO
 WEND

 BRANCHL 0, [LOOP] ;BRANCH TO BEGINNING OF THE LOOP
 GOTO LOOP

END

86

Global Positioning System Node

;;;
; AUTHOR: MATTHEW DARR
; TITLE: UK_GPS_F.BAS
; PURPOSE: DECODE A GPS SIGNAL AND TRANSMIT LATITUDE, LONGITUDE, TIME, GPS QUALITY,
; AND NUMBER OF SATELLITES DATA
; CREATED: 6/13/2003
;;;

DEFINE OSC 20 ;DEFINE 20 MHZ OSCILLATOR

;DEFINE VARIABLES
I VAR BYTE
HOUR VAR BYTE
MINUTE VAR BYTE
SECOND VAR BYTE
LATDD VAR WORD
LATMM VAR WORD
LATMMM1 VAR WORD
LATMMM2 VAR WORD
LATDIR VAR WORD
LONDD VAR WORD
LONMM VAR WORD
LONMMM1 VAR WORD
LONMMM2 VAR WORD
LONDIR VAR WORD
GPS_QUALITY VAR BYTE
NUMSAT VAR BYTE
LONDD_OFFSET VAR WORD
LONDD_SCALED VAR WORD
LON_WORD1 VAR WORD
LON_WORD2 VAR WORD
LAT_WORD1 VAR WORD
LAT_WORD2 VAR WORD
LAT_TX1 VAR LAT_WORD1.BYTE0
LAT_TX2 VAR LAT_WORD1.BYTE1
LAT_TX3 VAR LAT_WORD2.BYTE0
LAT_TX4 VAR LAT_WORD2.BYTE1
LON_TX1 VAR LON_WORD1.BYTE0
LON_TX2 VAR LON_WORD1.BYTE1
LON_TX3 VAR LON_WORD2.BYTE0
LON_TX4 VAR LON_WORD2.BYTE1

TRISB = %00001000 ;CONFIGURE CAN PORT DATA DIRECTION REGISTER

;CONFIGURE CAN BAUD RATE
CANCON = %10001000
BRGCON1 = %00000011
BRGCON2 = %00010000
BRGCON3 = %00000000
CIOCON = %00010000
PIE3 = %11111111

CANCON = %00000110

;DEFINE UPPER THREE BYTES OF CAN MESSAGE
TXB1SIDH = %10101010
TXB1SIDL = %10101010
TXB1EIDH = %10101010

LOOP: SERIN2 PORTC.0, 16416, 1000, LOOP, [WAIT("$GPGGA,"), DEC2 HOUR, DEC2 MINUTE, DEC2 SECOND, WAIT(","),

DEC2 LATDD, DEC2 LATMM, WAIT("."), DEC3 LATMMM1, DEC3 LATMMM2, WAIT(","), LATDIR, WAIT(","),
DEC3 LONDD, DEC2 LONMM, WAIT("."), DEC3 LONMMM1, DEC3 LONMMM2, WAIT(","), LONDIR,
WAIT(","), DEC1 GPS_QUALITY, WAIT(","), DEC2 NUMSAT]

LAT_WORD1 = (LATDD * 1000) + LATMMM1 ;FORMATS LAT VALUES INTO 4 BYTES FOR CAN
TRANSMISSION

 LAT_WORD2 = (LATMM * 1000) + LATMMM2

87

 LONDD_OFFSET = 40 ;OFFSETS LON DEGREE BY 40 TO FIT INTO A WORD VARIABLE
 LONDD_SCALED = LONDD - LONDD_OFFSET

LON_WORD1 = (LONDD_SCALED * 1000) + LONMMM1 ;FORMATS LON VALUES INTO 4 BYTES FOR
CAN TRANSMISSION

 LON_WORD2 = (LONMM * 1000) + LONMMM2
 TXB1EIDL = %00000101 ;ASSIGN SOURCE ADDRESS = 5
 TXB1D0 = LAT_TX1 ;PLACE POSITION VALUES INTO CAN TRANSMIT REGISTER
 TXB1D1 = LAT_TX2
 TXB1D2 = LAT_TX3
 TXB1D3 = LAT_TX4
 TXB1D4 = LON_TX1
 TXB1D5 = LON_TX2
 TXB1D6 = LON_TX3
 TXB1D7 = LON_TX4
 TXB1DLC = %00001000 ;ASSIGN DATA LENGTH CODE OF 8 BYTES
 TXB1CON = %00001011 ;SEND MESSAGE WITH HIGHEST PRIORITY

 WHILE TXB1CON.3 = 1 ;WAIT FOR CAN MESSAGE TO TRANSMIT BEFORE RETURNING
 I = 1 ;GIVES THE LOOP SOMETHING TO DO
 WEND

 PAUSE 30
 TXB1EIDL = %00000110 ;ASSIGN SOURCE ADDRESS = 6
 TXB1D0 = HOUR
 TXB1D1 = MINUTE
 TXB1D2 = SECOND
 TXB1DLC = %00000011
 TXB1CON = %00001011 ;SEND TIME INFORMATION

 WHILE TXB1CON.3 = 1 ;WAIT FOR CAN MESSAGE TO TRANSMIT BEFORE RETURNING
 I = 1
 WEND

 PAUSE 30
 TXB1EIDL = %00000111 ;ASSIGN SOURCE ADDRESS = 7
 TXB1D0 = GPS_QUALITY
 TXB1D1 = NUMSAT
 TXB1DLC = %00000010
 TXB1CON = %00001011 ;SEND SATELLITE INFORMATION

 WHILE TXB1CON.3 = 1 ;WAIT FOR CAN MESSAGE TO TRANSMIT BEFORE RETURNING
 I = 1
 WEND

 BRANCHL 0, [LOOP] ;RETURN TO BEGINNING OF THE LOOP
 GOTO LOOP

END

88

Hydrostatic Transmission Control Node

;;;
;
; AUTHOR: MATTHEW J. DARR
;
; TITLE: UK_HT_F.BAS
;
; DATE CREATED: 6/13/2003
;
; DESCRIPTION: THIS PROGRAM ACTS AS THE CONTROL NODE FOR THE HYDROSTATIC TRANS
;
;;

DEFINE OSC 20 ;DEFINE 20 MHZ OSCILLATOR

TRISB = %00001000 ;DEFINE CAN DATA DIRECTION REGISTERS

TRISA = 255 ;CONFIGURE ANALOG TO DIGITAL CONVERTER
ADCON1 = 2
DEFINE ADC_BITS 8

;CONFIGURE CAN BAUD RATE
CANCON = %10000000
BRGCON1 = %00000011
BRGCON2 = %00010000
BRGCON3 = %00000000

;CONFIGURE RECEIVE BUFFER FILTERS AND MASK
CIOCON = %00010000
RXB0CON = %00000000
RXF0SIDH = %10101010
RXF0SIDL = %10101010
RXF0EIDH = %10101010
RXF0EIDL = %00000010
RXM0SIDH = 0
RXM0SIDL = 0
RXM0EIDH = 0
RXM0EIDL = %11111111

CANCON = 0

;SET INITIAL VARIABLES
DEAD_BAND VAR BYTE
HST_SPEED VAR BYTE
DEAD_POS VAR WORD
DEAD_NEG VAR WORD
DIR VAR PORTC.1
PWM_PIN VAR PORTC.2
BRAKE VAR PORTC.3
SPEED_MSG VAR RXB0CON.0
ON_TIME VAR WORD
CURRENT_SPEED VAR BYTE

;SET INTITIAL PARAMETERS
DEAD_BAND = 5
HST_SPEED = 112
DEAD_POS = (HST_SPEED + DEAD_BAND)
DEAD_NEG = (HST_SPEED - DEAD_BAND)
PAUSE 1000

HIGH BRAKE

LOOP:
IF (PIR3.0 = 1) AND (SPEED_MSG = 0) THEN ;RECEIVE NEW SPEED MESSAGE
 HST_SPEED = (RXB0D0*1)
 RXB0CON = 0
 RXB0EIDL = 0
 DEAD_POS = (HST_SPEED + DEAD_BAND)

89

 DEAD_NEG = (HST_SPEED - DEAD_BAND)
ENDIF

IF (PIR3.0 = 1) AND (RXB0CON.0 = 1) THEN ;ADJUST CONTROL PARAMETERS
 DEAD_BAND = RXB0D0
 ON_TIME = (RXB0D2)*1000
 RXB0CON = 0
 DEAD_POS = (HST_SPEED + DEAD_BAND)
 DEAD_NEG = (HST_SPEED - DEAD_BAND)
 GOTO LOOP
ENDIF

ADCIN 0, CURRENT_SPEED ;CALCULATE CURRENT SPEED

SEROUT2 PORTB.7, 16468, [254,1,254,128, DEC HST_SPEED, 44, DEC CURRENT_SPEED] ;DIAGNOSTICS

IF (CURRENT_SPEED <= DEAD_POS) AND (CURRENT_SPEED >= DEAD_NEG) THEN ;DON'T ADJUST
 HIGH BRAKE
 HIGH DIR
 HIGH PWM_PIN
 BRANCHL 0,[LOOP]
ENDIF

IF (DEAD_NEG > CURRENT_SPEED) THEN ;SLOW DOWN
 HIGH PWM_PIN
 HIGH DIR
 LOW BRAKE
 BRANCHL 0,[LOOP]
ENDIF

IF (DEAD_POS < CURRENT_SPEED) THEN ;SPEED UP
 HIGH PWM_PIN
 LOW DIR
 LOW BRAKE
 BRANCHL 0,[LOOP]
ENDIF

BRANCHL 0,[LOOP]
BRANCHL 0,[LOOP]
GOTO LOOP
END

90

Radio Controller Node

;;
;
; AUTHOR: MATTHEW J. DARR
;
; TITLE: UK_RF_F.BAS
;
; DATE CREATED: 6/13/2003
;
; DESCRIPTION: THIS PROGRAM ACTS AS THE INTERFACE BETWEEN THE RADIO CONTROLLER AND
; THE CAN BUS
;
;;;

DEFINE OSC 20 ;DEFINE 20 MHZ OSCILLATOR

;DEFINE VARIABLES
WIDTH VAR WORD
WIDTH2 VAR WORD
LENGTH VAR WORD
STEERING_ANGLE VAR WORD
STEER_FB VAR WORD
HYDRO_SPEED VAR WORD
HYDRO_FB VAR WORD
H0 VAR BYTE
H1 VAR BYTE
H2 VAR BYTE
H3 VAR BYTE
ON_OFF VAR WORD
HYDRO_FB_8 VAR BYTE
I VAR BYTE

TRISB = %00001000 ;SET CAN DATA DIRECTION PINS

;ENABLE AND CONFIGURE THE ANALOG TO DIGITAL CONVERTER
TRISA = 255 ;CONFIGURE PORTA FOR INPUTS
ADCON1 = 128 ;RIGHT JUSTIFY THE RESULT REGISTER
DEFINE ADC_BITS 10 ;SET ADCONV AT 10 BIT

;CONFIGURE THE CAN BAUD RATE
CANCON = %10001000
BRGCON1 = %00000011
BRGCON2 = %00010000
BRGCON3 = %00000000
CIOCON = %00010000
PIE3 = %11111111

CANCON = %00000110

LOOP: PULSIN PORTC.5, 1, ON_OFF ;READ FIRST RADIO CHANNEL - ON/OFF OPERATION SWITCH
 IF ON_OFF < 750 THEN ;NOT OPERATIONAL
 PAUSE 100
 GOTO LOOP
 ENDIF

 PULSIN PORTC.7, 1, STEERING_ANGLE ;READ STEERING CHANNEL
 STEER_FB = (43*STEERING_ANGLE/100 - 253)*6
 IF STEER_FB > 900 THEN ;IF OVER MAX THEN STEER STRAIGHT
 STEER_FB = 470
 ENDIF
 IF STEER_FB < 100 THEN ;IF UNDER MIN THEN STEER STRAIGHT
 STEER_FB = 470
 ENDIF
 H0 = STEER_FB.BYTE0
 H1 = STEER_FB.BYTE1
 TXB1D0 = H0 ;TRANSMIT STEERING MESSAGE
 TXB1D1 = H1
 TXB1DLC = %00000010

91

 TXB1SIDH = %10101010
 TXB1SIDL = %10101010
 TXB1EIDH = %10101010
 TXB1EIDL = %00000001
 TXB1CON = %00001011

 PAUSE 20

 PULSIN PORTC.6, 1, HYDRO_SPEED ;READ SPEED CHANNEL
 HYDRO_FB = (61*HYDRO_SPEED/100 - 337)*4
 IF HYDRO_FB > 960 THEN ;IF OVER MAX THEN STOP VEHICLE
 HYDRO_FB = 450
 ENDIF
 IF HYDRO_FB < 100 THEN ;IF UNDER MIN THEN STOP VEHICLE
 HYDRO_FB = 450
 ENDIF
 HYDRO_FB_8 = (HYDRO_FB / 4) ;CONVERT DATA TO 8 BIT
 H2 = HYDRO_FB.BYTE0
 H3 = HYDRO_FB.BYTE1
 TXB1D0 = HYDRO_FB_8 ;TRANSMIT SPEED MESSAGE
 TXB1DLC = %00000001
 TXB1SIDH = %10101010
 TXB1SIDL = %10101010
 TXB1EIDH = %10101010
 TXB1EIDL = %00000010
 TXB1CON = %00001011

 WHILE TXB1CON.3 = 1 ;WAIT FOR CAN MESSAGE TO TRANSMIT BEFORE RETURNING
 I = 1 ;GIVES THE LOOP SOMETHING TO DO
 WEND

 PAUSE 20
 SEROUT2 PORTB.7, 16468, [254, 1, 254, 128, DEC STEERING_ANGLE, 44, DEC HYDRO_FB_8] ;DIAGNOSTICS
 BRANCHL 0,[LOOP] ;RETURN TO BEGINNING OF LOOP
 GOTO LOOP

END

92

Steering Node

;;;
;
; AUTHOR: MATTHEW J. DARR
;
; TITLE: UK_ST_F.BAS
;
; DATE CREATED: 6/13/2003
;
; DESCRIPTION: THIS PROGRAM OPERATES THE STEERING NODE
;
;;;

DEFINE OSC 20 ;DEFINE 20 MHZ OSCILLATOR

;DEFINE VARIABLES
SA VAR BYTE
STEERING_ANGLE VAR WORD
H0 VAR STEERING_ANGLE.BYTE0
H1 VAR STEERING_ANGLE.BYTE1
DEAD_POS VAR WORD
DEAD_NEG VAR WORD
DEAD_BAND VAR WORD
CURRENT_ANGLE VAR WORD
ON_TIME VAR WORD
DISTANCE VAR WORD
SDO VAR PORTC.3
SCLK VAR PORTC.4
PC VAR PORTC.5
SS VAR PORTC.6
HEADING VAR WORD
RS232_SEND VAR PORTC.0
RESET VAR PORTC.7
ZEROS VAR WORD
EXCESS VAR BYTE
TURN_DIR VAR BYTE
EXIT_STEER_LOOP VAR BYTE
LOOP_DIR VAR BYTE
RETURN_VALUE VAR BYTE
PHI VAR WORD
THETA1 VAR WORD
THETA2 VAR WORD
THETA3 VAR WORD
COMPASS_RETURN VAR BYTE
INT_HEAD VAR WORD
FILTER_HIT VAR BYTE
ANGLE_LOW VAR BYTE
ANGLE_HIGH VAR BYTE
AHI VAR PORTB.0
BHI VAR PORTB.1
ALI VAR PORTB.5
BLI VAR PORTB.6
DISABLE_BRAKE VAR PORTB.4

TRISB = %00001000 ;CONFIGURE THE CAN DATA DIRECTION REGISTER
TRISC = %00000000 ;CONFIGURE PORTC AS OUTPUTS

;ENABLE AND CONFIGURE THE ANALOG TO DIGITAL CONVERTER
TRISA = 255 ;CONFIGURE PORTA AS INPUTS
ADCON1 = 128 ;RIGHT JUSTIFIES RESULTS REGISTER
DEFINE ADC_BITS 10 ;SET ADCONV TO 10 BIT MODE

;CONFIGURE THE CAN BAUD RATE
CANCON = %10000000
BRGCON1 = %00000011
BRGCON2 = %00010000
BRGCON3 = %00000000

93

;SET UP CAN RECEIVE BUFFER 0 AND FILTER 0 AND MASK 1
CIOCON = %00010000
RXB0CON = %00000000
RXF0SIDH = %10101010
RXF0SIDL = %10101010
RXF0EIDH = %10101010
RXF0EIDL = %00010001
RXM0SIDH = %00000000
RXM0SIDL = %00000000
RXM0EIDH = %00000000
RXM0EIDL = %11111111

RXF1SIDL = %10101010
RXF1SIDH = %10101010
RXF1EIDH = %10101010
RXF1EIDL = %00000001
RXM1SIDH = %00000000
RXM1SIDL = %00000000
RXM1EIDH = %00000000
RXM1EIDL = %11111111

;SET UP CAN RECEIVE BUFFER 1, FILTER 2, AND MASK 1
RXB1CON = %00000000
RXF2SIDH = %10101010
RXF2SIDL = %10101010
RXF2EIDH = %10101010
RXF2EIDL = %00001000

RXF3SIDH = %10101010
RXF3SIDL = %10101010
RXF3EIDH = %10101010
RXF3EIDL = %00001010

RXM1SIDH = %00000000
RXM1SIDL = %00000000
RXM1EIDH = %00000000
RXM1EIDL = %11111111

;CONFIGURE THE HIGH THREE BYTES OF THE CAN TRANSMIT INDENTIFIER
TXB1SIDH = %10101010
TXB1SIDL = %10101010
TXB1EIDH = %10101010

CANCON = %00000000 ;SET CONTROL REGISTER TO NORMAL OPERATION MODE

;SET INITIAL PROGRAM VARIABLES
DEAD_BAND = 5
STEERING_ANGLE = 470
DEAD_POS = (STEERING_ANGLE + DEAD_BAND)
DEAD_NEG = (STEERING_ANGLE - DEAD_BAND)
PAUSE 1000

;INITIALIZE COMPASS
HIGH SS
HIGH PC
HIGH RESET

;RESET COMPASS
HIGH PC
HIGH SS
PAUSE 5
LOW RESET
PAUSE 15
HIGH RESET
PAUSE 500

;RESET LOOP DIRECTION PARAMETERS
RETURN_VALUE = 0
LOOP_DIR = 0
EXIT_STEER_LOOP = 0

94

;SET INITIAL PROGRAM VARIABLES
ANGLE_LOW = 165
ANGLE_HIGH = 190
HIGH DISABLE_BRAKE

LOOP: IF (RXB0CON.7 = 1) AND (RXB0CON.0 = 1) THEN ;CHECK FOR NEW STEERING MESSAGE IN BUFFER
ZERO
 H0 = RXB0D0 ;STORE DATA INTO VARIABLES
 H1 = RXB0D1
 PIR3.0 = 0 ;RESET INTERRUPT FLAGS
 RXB0CON = 0 ;RESET NEW MESSAGE RECEIVED FLAG
 DEAD_POS = (STEERING_ANGLE + DEAD_BAND) ;CALCULATE DEADBAND LIMITS
 DEAD_NEG = (STEERING_ANGLE - DEAD_BAND)
 ENDIF

 IF PIR3.1 = 1 THEN ;CHECK FOR NEW CONFIG MESSAGE IN BUFFER ONE
 FILTER_HIT = RXB1CON & %00000111
 IF FILTER_HIT = 2 THEN ;CHECK FOR HEADLAND TURN MESSAGE
 TURN_DIR = RXB1D2 ;STORE DATA INTO VARIABLES
 H0 = RXB1D0
 H1 = RXB1D1
 PIR3.1 = 0
 RXB1CON = 0
 DEAD_POS = (STEERING_ANGLE + DEAD_BAND)
 DEAD_NEG = (STEERING_ANGLE - DEAD_BAND)
 BRANCHL TURN_DIR,[LOOP,TURN]
 ENDIF
 IF FILTER_HIT = 3 THEN ;CHECK FOR NEW CONFIG MESSAGE
 DEAD_BAND = RXB1D0
 ANGLE_LOW = RXB1D2
 ANGLE_HIGH = RXB1D3
 PIR3.1 = 0
 RXB1CON = 0
 BRANCHL 0,[LOOP]
 ENDIF
 ENDIF

 ADCIN 0, CURRENT_ANGLE ;CAPTURE CURRENT STEERING ANGLE

 SEROUT2 PORTB.7, 16468, [254, 1, 254, 128, DEC STEERING_ANGLE, 44, DEC CURRENT_ANGLE]
 ;DIAGNOSTIC DATA

 IF (CURRENT_ANGLE <= DEAD_POS) AND (CURRENT_ANGLE >= DEAD_NEG) THEN ;DON'T STEER
 HIGH ALI
 HIGH BLI
 LOW DISABLE_BRAKE
 BRANCHL 0,[LOOP]
 ENDIF

 IF DEAD_POS < CURRENT_ANGLE THEN ;TURN LEFT
 HIGH ALI
 LOW BLI
 LOW DISABLE_BRAKE
 BRANCHL 0,[LOOP]
 ENDIF

 IF DEAD_NEG > CURRENT_ANGLE THEN ;TURN RIGHT
 LOW ALI
 HIGH BLI
 LOW DISABLE_BRAKE
 BRANCHL 0,[LOOP]
 ENDIF
 BRANCHL 0, [LOOP]

TURN: ;READ COMPASS ROUTINE
 HIGH PC
 PAUSE 50
 LOW PC ;POLL FOR NEW HEADING

95

 PAUSE 15
 HIGH PC
 PAUSE 150 ;WAIT FOR CALC TO COMPLETE
 LOW SS
 PAUSE 15
 SHIFTIN SDO,SCLK,6,[ZEROS\8,HEADING\8,EXCESS\3] ;CLOCK IN COMPASS DATA
 HIGH SS
 IF ZEROS = 1 THEN
 HEADING = HEADING + 255
 ENDIF
 INT_HEAD = HEADING
 THETA1 = 360 - INT_HEAD
 DEAD_POS = (STEERING_ANGLE + DEAD_BAND)
 DEAD_NEG = (STEERING_ANGLE - DEAD_BAND)

TURN_ACT: ;DIAL IN STEERING ANGLE
 ADCIN 0, CURRENT_ANGLE

 IF DEAD_POS < CURRENT_ANGLE THEN ;TURN LEFT
 HIGH ALI
 LOW BLI
 LOW DISABLE_BRAKE
 BRANCHL 0,[TURN_ACT]
 ENDIF

 IF DEAD_NEG > CURRENT_ANGLE THEN ;TURN RIGHT
 LOW ALI
 HIGH BLI
 LOW DISABLE_BRAKE
 BRANCHL 0,[TURN_ACT]
 ENDIF

 IF (CURRENT_ANGLE <= DEAD_POS) AND (CURRENT_ANGLE >= DEAD_NEG) THEN ;DON'T STEER
 HIGH ALI
 HIGH BLI
 LOW DISABLE_BRAKE
 BRANCHL 0,[TURN_FEEDBACK]
 ENDIF

TURN_FEEDBACK: ;TURN UNTIL VEHICLE HAS GONE 180
DEGREES
 HIGH PC
 PAUSE 50
 LOW PC ;POLL FOR NEW HEADING
 PAUSE 15
 HIGH PC
 PAUSE 150 ;WAIT FOR CALC TO COMPLETE
 LOW SS
 PAUSE 15
 SHIFTIN SDO,SCLK,6,[ZEROS\8,HEADING\8,EXCESS\3]
 HIGH SS

 IF ZEROS = 1 THEN
 HEADING = HEADING + 255
 ENDIF

 THETA2 = 360 - HEADING
 THETA3 = ABS(THETA1-THETA2)
 PHI = 360 - THETA3
 IF (PHI > ANGLE_LOW) AND (PHI < ANGLE_HIGH) THEN
 PIR3.1 = 0
 RXB1CON = 0
 TXB1EIDL = 9
 TXB1D0 = 1
 TXB1DLC = %00000001
 TXB1CON = %00001011
 BRANCHL 0,[LOOP]
 ENDIF
 BRANCHL 0,[TURN_FEEDBACK]
END

96

Appendix D: Electronic Control Unit Circuit Diagram

97

98

References

Benson, E. R., T. S. Stombaugh, N. Noguchi, J. Will, and J. F. Reid. 1998. An
evaluation of a geomagnetic direction sensor for vehicle guidance in precision
agriculture applications. ASAE Paper No. 983203. St. Joseph, MI.: ASAE.

Benson, E. R., J. F. Reid, and Q. Zhang. 2001. Machine vision based steering system

for agricultural combines. ASAE Paper No. 01-1159. St. Joseph, MI.: ASAE.

Bosch, R. 1991. CAN Specification, Version 2.0. Stuttgart, Germany: Robert Bosch

GmbH.

Brown, D., and R. E. Lacey. 2002. A distributed control system for low pressure plant

growth chambers. ASAE Paper No. 023078. St. Joseph, MI.: ASAE.

CAN-CIA. 2002. Application of Controller Area Networks. Erlangen, Germany.: CAN in

Automation. Available at: www.can-cia.de. Accessed 17 February 2003.

Choi, C.H., D. C. Erbach, and R. J. Smith. 1990. Navigational tractor guidance system.

Transactions of the ASAE 33(3):699-706.

DIN. 1993. Agricultural Tractors and Machinery; Interfaces for Signal Transfer. DIN

Standard 9684. Berlin, Germany.

Doebelin, E.O. 1998. System Dynamics: Modeling, Analysis, Simulation, Design. New

York, NY: Marcel Dekker, Inc.

Ge, J. 1987. Simulation of automatic control for tractor guidance. M.S. Thesis, Iowa

State University Library, Ames, IA.

Grovum, M. A., and G. C. Zoerb. 1970. An automatic guidance system for farm

tractors. Transactions of the ASAE 13(5):565-573,576.

Han, S., and Q. Zhang. 2001. Map-based Control Functions for Autonomous Tractors.

ASAE Paper No. 01-1191. St. Joseph, MI.: ASAE.

Hofstee, J. W., and D. Goense. 1999. Simulation of a controller area network-based

tractor-implement data bus according to ISO 11783. Journal of Agricultural
Engineering Research 73:383-394

ISO. 2002. Tractors and machinery for agriculture and forestry – Serial control and

communications data network – Part 2: Physical layer. ISO Standard 11783.
Geneva, Switzerland: ISO.

99

ISO. 1998. Tractors and machinery for agriculture and forestry – Serial control and
communications data network – Part 3: Data link layer. ISO Standard 11783.
Geneva, Switzerland: ISO.

ISO. 2001. Tractors and machinery for agriculture and forestry – Serial control and

communications data network – Part 5: Network layer. ISO Standard 11783.
Geneva, Switzerland: ISO.

Julian, A. P. 1971. Design and performance of a steering control system for agricultural

tractors. J. Agric. Eng. Res. 16(3): 324-336

Monson, R. J., and E. M. Dahlen. 1995. Mobile control system responsive to land area

maps. U.S. Patent No. 5453924.

Noguchi, N., J. Reid, Q. Zhang, and J. Will. 2001. Turning function for robot tractor

based on spline function. ASAE Paper No. 01-1196. St. Joseph, MI.: ASAE.

Ollis, M., and A. Stentz. 1996. First results in vision-based crop line tracking. In

Proceedings of the IEEE Robotics and Automation Conference, 951-956
Minneapolis, MN.

Owen, G. M. 1982. A tractor handling study. Veh. Sys. Dyn. 11:215-240

Reid, J. F., Q. Zhang, N. Noguchi, and M. Dickson. 2000. Agricultural automatic

guidance research in North America. Computers and Electronics in Agriculture
25:155-167

Reid, J. F., and S. W. Searcy. 1987. Vision-based guidance of an agricultural tractor.

IEEE Control Systems. 7(12):39-43

SAE. 1998. Part7, Vehicle Application Layer. SAE Standard J1939. SAE Handbook.

Warrendale, PA: SAE.

Stombaugh, T. S., E. R. Benson, and J. W. Hummel. 1999. Guidance control of

agricultural vehicles at high field speeds. Transactions of the ASAE 42(2):537-
544.

Stone, M., D. Giles, and K. Dieball. 1999a. Distributed network systems for control of

spray droplet size and application rate for precision chemical application. ASAE
Paper No. 993112. St. Joseph, MI.: ASAE.

Stone, M., K. McKee, C. Formwalt, and R. Benneweis. 1999b. ISO 11783: an electronic

communications protocol for agricultural equipment. ASAE Distinguished
Lecture #23, Agricultural Equipment Technology Conference. Louisville,
Kentucky.

100

Tian, L., J. F. Reid, and J. W. Hummel. 1999. Development of a precision sprayer for
site-specific weed management. Transactions of the ASAE 42(4):893-900.

Wei, J., N. Zhang, N. Wang, D. Oard, Q. Stoll, D. Lenhert, M. Neilson, M. Mizuno, and

G. Sing. 2001. Design of an embedded weed-control system using controller
area network (CAN). ASAE Paper No. 013033. St. Joseph, Mich.: ASAE.

Willrodt, F. L. 1924. Steering attachment for tractors. US Patent No. 1506706.

Wong, J. Y. 1978. Theory of Ground Vehicles. New York, NY: John Wiley & Sons, Inc.

Young, S. C. 1993. Electronic control system for GENESISTM 70 series tractor. SAE

Paper No. 941789. Warrendale, PA.: SAE

101

Vita
 Matthew John Darr was born on October 11th, 1979 at the Coshocton County

Memorial Hospital in Coshocton, Ohio. The author grew up on a rural farm in nearby

Newcomerstown, Ohio. In May of 1998 he graduated with honors from Ridgewood High

School, located in West Lafayette, Ohio. In September of 1998, the author entered The

Ohio State University with a focus in Food, Agricultural, and Biological Engineering.

The author was then awarded a Bachelor’s of Science Degree in Food, Agricultural, and

Biological Engineering in June of 2002. Upon completion of his B.S. degree, the author

accepted a fellowship to work with Dr. Tim Stombaugh at the University of Kentucky and

to pursue a Master’s of Science Degree in Biosystems and Agricultural Engineering.

 The author has been a member of the American Society of Agricultural

Engineers (ASAE) since 1998, and was inducted into the Alpha Epsilon Society for

Agricultural Engineers in the spring of 2001. He also serves as a member on the

Automation Committee within ASAE.

Matthew John Darr

	DEVELOPMENT AND EVALUATION OF A CONTROLLER AREA NETWORK BASED AUTONOMOUS VEHICLE
	Recommended Citation

	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	Table 1. ISO 11783 Documents
	Table 2: ISO 11783 Physical Bus Parameters
	Table 3. Message Priority Assignments
	Table 4. PDU Format Description
	Table 5. Message Structure for CAN-RS232 Bridge Operation
	Table 6. Step Response Characteristics for Proportional Gain Testing
	Table 7. Step Response Characteristics for Derivative Gain Testing
	Table 8. Cost of Individual ECU and CAN Interface
	Table 9. Cost of System Wide Sensors

	List of Figures
	Figure 1. Schematic of CAN Logic Levels
	Figure 2: ISO 11783 Physical Bus Layout
	Figure 3: ISO 11783 Data Frame
	Figure 4. Multi-node Arbitration Process
	Figure 5: ISO 11783 Identifier String
	Figure 6. ECU Printed Circuit Board
	Figure 7. Transceiver
	Figure 8. Controller Area Network Layout
	Figure 9. Amphenol Connection Diagram
	Figure 10. Electronic Control Unit
	Figure 11. CAN to RS232 Bridge Node
	Figure 12. Nominal Bit Time
	Figure 13. Recommended Nominal Bit Timing
	Figure 14. Adjusted Nominal Bit Timing
	Figure 15. PIC18F258 CAN Baud Rate Configurations
	Figure 16. Data Direction Register Configuration for CAN Messaging
	Figure 17. Initial Testing Program Flow Chart
	Figure 18. Laboratory configuration for Initial Node Testing
	Figure 19. CAN_L Communication Line during High Noise Conditions
	Figure 20. Test Vehicle for Autonomous Guidance
	Figure 21. Test Vehicle Specifications
	Figure 22. Electronic Control Actuator with Feedback Potentiometer
	Figure 23. Steering Actuator Calibration
	Figure 24. Steering Axle Actuator Calibration
	Figure 25. CG-16DB0 Conditioned Calibration Curve
	Figure 26. RF Controller Calibration Curve for the Steering Actuator
	Figure 27. Calibration Curve for the Three Point Hitch
	Figure 28. Final Network Layout
	Figure 29. ECU Control Routine
	Figure 30. Task Computer Flow Chart
	Figure 31. Look Ahead Distance Diagram
	Figure 32. Kinematic Model of the Proportional Control Parameters
	Figure 33. Kinematic Model of the Derivative Control Parameters
	Figure 34. Step Response for Unity Gain on Sod Surface
	Figure 35. Step Response for Various Proportional Gains with a Constant
	Figure 36. Step Response for Various Derivatives Gains with a Constant
	Figure 37. Comparison of Integral Gains for Steady State Error Reductions
	Figure 38. Derivative Gain Impact on Steady State Error
	Figure 39. Version 2 Controller Step Response Data for Various Integral Gains
	Figure 40. Version 2 Controller Step Response Data for Various Integral Gains
	Figure 41. Field Operation Schematic
	Figure 42. Headland Logic
	Figure 43. Guidance Line Translation
	Figure 44. Field Path Demonstration

	List of Files
	Chapter 1: Introduction
	Chapter 2: Literature Review
	A. Controller Area Network (CAN Bus)
	B. ISO 11783
	i. Introduction
	ii. Physical Layer
	iii. ISO 11783 Data Link Layer
	iv. Network Management
	v. Application in Precision Agriculture
	vi. Simulation and Testing

	C. Autonomous Off-road Vehicles Control and Autosteering
	D. Distributed Control Systems

	Chapter 3: Objectives
	Chapter 4: Results & Discussion
	A. Design of a Modular Distributed Control System
	B. Sensor Interfacing
	C. Development of a Guidance Algorithm for Autonomous Vehicle Control
	i. Kinematic Model Based Guidance Controller
	ii. Position-Based Digital PID Controller
	iii. Control System Validation Testing at Increased Ground Speed

	D. Demonstrate the Ability to Traverse a Normal Field Operation
	E. System Cost

	Chapter 5: Conclusions
	Chapter 6: Future Work
	Appendices
	Appendix A: CAN Node Commands
	Appendix B: Task Computer Program Code
	Appendix C: Node Program Code
	Appendix D: Electronic Control Unit Circuit Diagram

	References
	Vita

