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ABSTRACT OF THESIS 
 
 

NANOPOROUS ALUMINA ON MOLYBDENUM AND ITO SUBSTRATES FOR 
NANO-HETEROJUNCTION SOLAR CELL APPLICATIONS 

 
 
   
Indium tin oxide (ITO) and molybdenum are substrates of choice in the manufacture of 
the CdS-CIS photovoltaic cell, which is the base for the leading thin-film solar cell 
technology.  Substantial advancement in this technology is expected if these devices can 
be made in nanoporous alumina (AAO) templates.  The first step to this endeavor is to 
learn to form AAO templates on molybdenum and ITO substrates.  This was 
accomplished, and the results are reported in this thesis. 
 
Starting substrates were glass, coated with either a thin molybdenum layer or a thin ITO 
layer.  Aluminum was deposited on top of this conducting substrate.  Oxalic acid was 
used as the electrolyte for anodization.  In the case of molybdenum substrates, average 
pore diameter was 45 nm when an anodization voltage of 40 volts was used for 
approximately 46 minutes; current density was approximately 23 amps/sq. m.  In the case 
of ITO substrates, pores of 45 nm diameter were obtained for approximately 20 minute 
anodization at 40 V; current density was 40 amps/sq. m; annealing of aluminum layer 
prior to anodization, at 550 oC (degrees Centigrade) for 90 minutes was needed to obtain 
good pores.  A one micrometer thick CdS layer  was electrodeposited inside the AAO 
pores on top of the ITO substrate.  In preliminary experiments, CdS/Cu2S photovoltaic 
heterojunctions with an open circuit voltage of 242 mV were formed inside the 
nanopores. 

 
 KEY WORDS: Porous Alumina, Molybdenum, Nano-heterojunction, Solar Cells, 
CdS/Cu2S 
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Chapter 1:  Introduction 
 
1.1 Statement of Purpose 
 

Indium tin oxide (ITO) and molybdenum are substrates of choice in the manufacture of the 

CdS-CIS photovoltaic cell, which is the base for the leading thin-film solar cell technology.  

Substantial advancement in this technology is expected if these devices can be made in 

nanoporous alumina (AAO) templates.  The first step to this endeavor is to learn to form AAO 

templates on molybdenum and ITO substrates.  This was accomplished, and the results are 

reported in this thesis. 

1.2 Background 
 

The photovoltaic effect was discovered by Edmund Becquerel in 1839.  The first solar cell 

with enough efficiency for commercial applications was a diffused silicon p-n junction, 

developed by Bell Labs researchers Chapin, Fuller, and Pearson in 1954 [1], quickly followed by 

a cadmium sulfide (CdS) solar cell by Reynolds, Leies, Antes, and Marburger [2]. 

Although solar cells have largely been used in long-duration power supply for satellites and 

space vehicles, they have also been used successfully in small-scale terrestrial applications.  As 

research and development continues, large-scale use of solar energy will become economically 

viable through continued improvements in efficiency, and development of new materials and 

manufacturing processes. 

Thin-film CdS/CIS (copper indium diselenide) solar cells are a leading contender for large-

scale production at low cost.  Recent developments in nanotechnology provide opportunities for 

further improvements in cell performance and cost reduction in manufacturing processes in these 

devices.  Sections 3 and 4 present the historical background and basic operation of CdS/CIS and 
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CdS/Cu2S devices. This is followed, in Section 5, by the advantages offered by nanotechnology, 

and in Section 6, with reasons for using porous alumina as a template for forming nanostructured 

solar cells.  

1.3 CdS/CIS Solar Cell  
 

Greater than 17% efficiency thin-film CdS/CIS solar cells have already been achieved [3-10].  

CIS first drew attention as a solar cell absorber material after the work of Wagner and coworkers 

[11] who demonstrated a 12% conversion efficiency using single crystals. The relatively high 

absorption coefficient of CIS offers a distinct advantage, although the open-circuit voltage is 

limited by a relatively low 1.02 eV band gap. Recent studies have demonstrated that the band 

gap of semiconductors can be tuned by varying particle size [12]. Quantum confinement effects 

can be used to achieve higher band gap, and thus higher open-circuit voltage.  

CdS/CIS thin-film devices have been fabricated by several methods.  Physical vapor 

deposition (PVD) with selenization has yielded high efficiency devices [13–16]. Other device 

fabrication methods such as sputtering [17, 18], spray deposition [19], direct evaporation [20] 

and screen printing [21] have also been used.  

 
1.4 Cu2S/CdS Solar Cells  
 

Cu2S/CdS solar cells remain a valuable vehicle for understanding nano-electronic effects in 

thin-film devices, although interest in this structure has waned due to the cell’s degradation with 

migration of copper ions over time. Exposure of the CuxS surface to a strong oxidizer causes 

substantial degradation in device performance [22]. Cu atoms move rapidly to both the CuxS 

surface and the CdS–CuxS interface on exposure to air at room temperature [23]. The 
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degradation of the Cu2S/CdS cells, attributed to the formation of surface oxides, can be 

significantly prevented by replacing the ambient air with argon [24]. 

Cu2S/CdS thin-film solar cells are fabricated by a variety of techniques including spray 

pyrolysis/chemiplating [25, 26], a combination of evaporation/chemiplating [27, 28], all-

evaporation [29], and sputtering [30]. Chemi-plated Cu2S/evaporated ZnxCd1-xS (with anti-

reflective coating) thin-film solar cells on Zn/Cu substrates have exhibited the highest 

efficiencies [31]. These cells had a Voc of 0.599V, a Jsc of 18.5 mA/cm2, a fill factor (FF) of 

0.748 and an efficiency of 10.2%. Cu2S/CdS (with anti-reflective coating) thin-film solar cells, 

fabricated by chemiplating an evaporated CdS layer, had a conversion efficiency of 9.15% with 

Voc 0.516, Jsc 21.8mA/cm2 and FF 0.714 [28, 31].   

1.5 Nanostructures in Solar Cells  
 

Thin film solar cells such as CdS/Cu2S cells and CdS/CuInSe2 cells have the advantages of 

low cost due to lower-cost processing and materials, but have the disadvantage of low efficiency 

due to grain boundary defects. 

Two key aspects to improving solar cell efficiency are improving light harvesting, and 

improving the charge transport of free carriers. Here, nanostructured layers in thin-film solar 

cells offer four important advantages. First, the effective optical path for absorption is much 

larger than the actual film thickness, due to scattering effects.  Second, light-generated electrons 

and holes have a much shorter path to travel, so recombination losses are greatly reduced. Third, 

as a result of the shorter path, the absorber layer thickness in nanostructured solar cells can be as 

thin as 150nm instead of several micrometers required in the traditional thin-film solar cells 

[32,33], so material resources are conserved. Fourth, the energy band gap of various layers can 
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be increased to the desired design value by varying the size of the nanoparticles through quantum 

confinement.  

Nanoscience and nanotechnology are also suited to address the challenges in the manufacture 

of thin-film solar cells. Large-scale production requires an ability to produce large area, uniform 

films. For this, one needs a process for economically fabricating large periodic arrays of 

semiconductor nanostructures that will allow (i) the size and composition to be varied, (ii) 

encapsulation in a rugged host material, and (iii) flexibility to use a variety of substrate materials.  

1.6 The Nano-Template Approach 
 

A technique that can create nano-structures of uniform size and regular spacing relies on a 

form of a template or pattern that acts as a guide for deposited material. 

Although nanoscale junctions can be contained in a material made by lithographic methods, 

this work focuses on the use of self-assembled porous alumina templates.  This is because 

lithography is expensive, and solar prices need to be more competitive.  Self-assembled 

templates can be produced in bulk by electrochemical methods, thereby cutting costs of 

production.  Nanoporous alumina was chosen for the template material because it forms an 

insulating matrix around each individual nano-heterojunction. 

Two unique advantages of having an insulating matrix around each cell are that it allows us to: 

perform annealing treatments without losing nanocrystallinity, and study a single nanoscale 

heterojunction inside the pores. Electro-optical characteristics and electron transport can be 

studied in order to develop analytical models of nanoscale photovoltaic heterojunctions, which 

will help further research. 
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In summary, the principal features of this technique are: (i) uniform, regular distribution of 

nanoscopic pores, (ii) arrangement of vertically directed pores with high aspect (depth/diameter) 

ratio at regular distance from each other, (iii) ability to control diameter of cells/ pores by 

changing electrolyte composition and electrochemical processing regimes and (iv) high 

reproducibility of the film structure for samples of large sizes.   

In summary, this thesis sets the ground for making CdS-CIS solar cells of high efficiency 

inside nanoporous AAO templates.  Theory and experimental procedures are detailed in Chapters 

2 and 3.  Chapters 4 and 5 show the results of  porous alumina formation on molybdenum and 

ITO-coated glass substrates, respectively.  Deposition of CdS, and formation of the CdS-Cu2S 

heterojunction are covered in Chapters 6 and 7.  Conclusions and suggestions for future work are 

given in Chapter 8. 
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Chapter 2:  Theory 
 
2.1 Solar Cells 

2.1.1 Operation 

When a solar cell is exposed to sunlight, a photon with energy less than the bandgap is 

transmitted through the solar cell and makes no contribution to the output; while a photon with 

energy equal to or above the bandgap is energetic enough to be absorbed into the conduction 

band and contribute electron-hole pairs (see Figure 2.1), which will be separated and carried to 

the contacts. 

 

Figure 2.1: Photon Transmission or Absorption in a Solar Cell   
 

 

Electron-hole pairs photo-generated in the depletion region are separated by the built-in field 

which drifts them apart.  The electron drifts to the neutral n+ side where it makes this region 
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negative by the amount of its negative charge.  Holes drift to the neutral p-side and make this 

side positive.   

An open circuit voltage develops between the terminals; excess electrons in the n-side travel 

around the circuit, do work, and reach the p-side to recombine with the excess holes there.  The 

electron-hole pairs that are generated by long wavelength photons absorbed in the p-side diffuse 

in this region as there is no electric field.  Electrons which are generated within a distance Le = 

(Deτe)1/2, where τe is the recombination lifetime of the electron and De is the diffusion coefficient 

of the p-side, are able to diffuse to the depletion region where they drift to the n-side where they 

can contribute to the photovoltaic effect.  Holes left behind in the p-side give a net positive 

charge to this region.  Likewise, electron-hole pairs are generated by short wavelength photons 

absorbed in the n-side, and the holes can reach the depletion area if they are generated within a 

distance Lh = (Dhτh)1/2, where τh is the recombination lifetime of the hole and Dh is the diffusion 

coefficient of the n-side.   

Using the formula λ = c/ ν  = 1.24/ hν (ev)  μm,  we can calculate the band gap of 

semiconductor materials which will be useful in solar cell applications. Solar radiation from the 

sun is emitted mainly as electromagnetic radiation in wavelengths from 0.2 to 3 µm [34], 

resulting in bandgaps from 0.16 to 2.42 eV.  However, the ideal match for our solar spectrum 

occurs at approximately 1.5 eV.  

2.1.2 CdS–CIS Devices  

Although efficient thin-film CdS–CIS solar cells have already been developed, efficiency and 

cost-value can be improved by the use of nanostructures. CIS is several micrometers thick, and 

the band gap of CIS (1.1eV) is not ideally matched with the solar spectrum. Quantum 

confinement effects can be used to increase the band gap, and therefore, the open-circuit voltage 
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of these cells.  Furthermore, the optical path will be lengthened by the multiple reflections from 

the nanoporous structures.   This will result in increased short-circuit current density and an 

ability to reduce the planar thickness, hence reducing material costs of these cells [35].  

An illustrative energy band diagram [36] of the CIS/CdS heterojunction is sketched in Figure 

2.2 below. Photons with energy less than 2.41eV but greater than 1.02eV pass through the CdS 

window layer, which acts as the window material, and are absorbed by the CIS layer. Absorption 

of light in the depletion region and within a diffusion length of the junction in CIS will create 

carriers which will be collected. Photons with energy greater than 2.41eV will be absorbed by 

the CdS layer, and the carriers created in the depletion region and within a diffusion length of the 

junction in CdS will also be collected. The separation of the light-generated carriers across the 

CdS/CIS junction gives rise to the light-generated current IL. 

 

Figure 2.2: Energy band diagram of CIS/CdS heterojunction.  
 

2.1.3 CdS–Cu2S Devices  
 

The energy band diagram of the Cu2S/CdS heterojunction is shown below in Figure 2.3.  
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Figure 2.3: Energy band diagram of Cu2S/CdS heterojunction.  
 

Under illumination, most of the light is absorbed in the p-type Cu2S layer. As-prepared 

Cu2S/CdS cells consist of uncompensated CdS and nearly stoichiometric Cu2S. The space charge 

would thus be narrow, and ionization of deep levels near the junction on illumination causes 

further narrowing. Tunneling to interface states occurs, lowering the effective barrier height, and 

hence the Voc. Heat treatment of the cell allows oxygen and/or copper to reach the space-charge 

region, forming compensating acceptor states in the CdS.  This process widens the space-charge 

region, which restricts tunneling. With the increased barrier, an improvement in Voc could be 

expected.  

A major factor affecting the photocurrent in Cu2S solar cells is the high surface recombination 

velocity which results in most of the photo-generated carriers close to the surface being captured. 

Surface recombination can be reduced by proper doping of the region closer to the surface, to 

produce a drift field to counteract the minority carrier diffusion to the surface [37]. 

Device designs on lightweight, flexible substrates have also been investigated [38,39]. Due to 

reduced weight, these cells have space as well as terrestrial applications.  Inexpensive methods of 

fabrication such as spray pyrolysis, closed-space sublimation and dip coating have been 
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demonstrated [40, 41].  Molybdenum is a suitable substrate because it forms ohmic contact with 

p-type CIS and serves as an electrode. 

 
2.2 Porous Alumina Formation 

2.2.1 Basic Concept  

Porous alumina is produced by anodization of aluminum in a suitable electrolyte.  To date, 

studies have been done with oxalic, sulfuric, phosphoric, and citric acids as electrolytes.  

Aluminum serves as the anode, and generally platinum serves as the cathode of the cell.  A given 

voltage is supplied to the cell, depending on the electrolyte in use.   

The applied potential sets up an electric field between the anode and cathode.  Al3+ ions from 

the aluminum surface are drawn to the cathode, and OH- ions from the electrolyte are drawn to 

the anode.  This is depicted in Figure 2.4. 

 

Figure 2.4: Ion Movement During Anodization 
 

Aluminum is converted to a layer of aluminum oxide (alumina, or Al2O3) at the 

aluminum/electrolyte interface.  Now, the OH- ions are still attracted to the anode and the Al3+ 
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ions are attracted to the cathode, but they must make their way through a layer of aluminum 

oxide.  Pores form in the alumina layer as more Al3+ ions travel out of the alumina [42], and new 

alumina is formed at the aluminum/electrolyte interface within the pores.  An arched barrier 

layer of alumina can be seen at the bottom of the pores, above the remaining aluminum.  If 

anodization is stopped before aluminum is exhausted, the remainder can be removed by chemical 

processes, leaving only porous alumina. 

2.2.2 Porous Alumina on Conductive Glass 

Anodization behavior of deposited aluminum on ITO-coated glass is different from that of 

aluminum sheets.  The current density exhibits a stable stage which corresponds to the aluminum 

layer, and a fluctuating stage, which corresponds to the Al-ITO interface, and finally goes to 

zero.  As the anodization goes down the Al-ITO interface, the appearance of the specimens 

changes from opaque to transparent [43].  SEM images show that these alumina films have an 

arched barrier layer that is much thinner than the pore walls.  This means that etching of the 

barrier layer is possible without collapse of the pore walls.   

Anodization behavior of aluminum on molybdenum-coated glass followed a similar pattern to 

that of aluminum on ITO-coated glass. 
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Chapter 3:  Experimental Procedures 

 
3.1 Porous Alumina on Molybdenum/Glass Substrates 
 

Porous alumina was formed on a molybdenum/Glass substrate in order that, later, a p-type 

semiconductor like CIS could be deposited into the pores and make ohmic contact with 

molybdenum.   

3.1.1 Device Structure 

The potential structures of the CdS/CIS heterojunction are shown in Figure 3.1.   

 
       
 
 
 
 
 
 
 
 
 
 

n-CdS

Alumina 

p-CIS 

Mo/Glass 

ITO 

Figure 3.1: Potential Device configuration of Molybdenum-CIS-CdS solar cell in porous 
alumina. 

 

3.1.2 Substrate Preparation 
 

First, 1” x 3” glass slides were cut to 2.25” length.  Then they were ultrasonically cleaned in 

acetone for ten minutes, rinsed in deionized water, ultrasonically cleaned in methanol for ten 

minutes, rinsed in deionized water, dried in flowing nitrogen, baked at approximately 100°C for 

10 minutes to remove excess water from the cleaning process, and stored in a covered Petri dish 

until sputtering could begin.    
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They were then loaded in the sputtering machine and sputtered with approximately 300 nm of 

molybdenum at 105W power and 2mTorr pressure for approximately 23 minutes using dc gun 2.  

Average deposition rate was 1 Å/second.  Final deposition thickness registered by the quartz 

crystal monitor was 1.5kÅ (150nm).  

Profilometer readings taken on these samples ranged from 231 nm to 416 nm in thickness.  

Average thickness was 287 nm.  

Samples were dusted off with flowing nitrogen, then deposited with approximately 2 µm of 

aluminum in the e-beam evaporator.  Average deposition rate was 5.7 Å/second, aluminum was 

deposited in 4 layers:  5.5 kÅ, 5.0 kÅ, 6.5 kÅ, and 3.1 kÅ, to total 20.1 kÅ as read by the quartz 

crystal monitor. 

3.1.3 One-stage Anodization 

A1, A3, B1, and B3 were annealed at 400°C for 1 hour in flowing Nitrogen; the other samples 

were not.  The samples were then anodized in a 10% Sulfuric acid solution at varying voltages.  

Anodization continued until current began to increase.  Anodization was then stopped, samples 

were rinsed in deionized water, and then baked dry on the hot plate at low temperature for ten 

minutes.  Current density vs. time values were recorded and plotted.  A diagram of the 

anodization set-up is shown in Figure 3.2. 
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Figure 3.2:  Anodization Set-up for Porous Alumina 

3.1.4 Two-stage Anodization 

Two-stage anodization was performed in 0.3M Oxalic acid at 10°C, with an applied voltage of 

40V.  During the first stage, pores were allowed to form for 1 to 2 minutes; these were then 

partially etched away in a 5%/2% Phosphoric/Chromic acid solution heated to 60°C.  The 

remainder of the initial pores served as pre-patterning for the longer second stage of anodization 

(re-anodization), which was allowed to continue until the current spiked.  Current density vs. 

time values were recorded and plotted. 

 
3.2 Porous Alumina on Molybdenum Foil Substrates 
 

Pieces of molybdenum foil (1/2” x 1”) were ultrasonically cleaned in acetone for ten minutes, 

rinsed in deionized water, ultrasonically cleaned in methanol for ten minutes, rinsed in deionized 
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water, and dried in flowing nitrogen.  They were attached to the e-beam substrate holder with 

carbon tape. 

2.2 μm of aluminum was deposited by e-beam evaporation in 4 stages at an average rate of 24 

Å/second.   

The pieces were annealed at 400°C for 1 hour in flowing nitrogen to improve adhesion of 

aluminum to the molybdenum foil.  They were then cleaned with acetone, rinsed with deioized 

water, and dried with nitrogen.  Sheet resistance was measured using the four-point probe 

method.  An adhesive tape test was performed to test adherence of aluminum to molybdenum 

foil substrate.   

Samples were anodized in 2 different electrolytes:  Oxalic acid and Sulfuric acid.  The 

optimum applied voltage for pore formation in Oxalic acid is 40V, while the optimum applied 

voltage for pore formation in Sulfuric acid is only 25V [44].  Sulfuric acid was used so that 

lower currents might be obtained due to a lower applied voltage. 

Samples were anodized in 0.3M Oxalic acid at room temperature, 3 °C, and 1 °C.  Voltage was 

increased until current became unstable.  Decreasing the electrolyte temperature resulted in 

decreased, but still unstable, current.  By applying an insulating substance to the molybdenum 

side, it was possible to increase the applied voltage further, but not to the desired 40V. 

Other samples were anodized in 10% Sulfuric acid at room temperature.  By applying an 

insulating substance to the molybdenum side, it was possible to increase the applied voltage 

further, but not to the desired 25V.  

Pore formation results on molybdenum foil substrate were not satisfactory and will not be 

reported. 
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3.3. Porous Alumina on ITO Substrates 
 

Porous alumina was formed on an ITO/Glass substrate in order that the n-type semiconductor 

could be deposited into the pores and make contact with transparent conducting ITO.   

3.3.1. Device Structure 
 
The device structure of the Cu2S/CdS heterojunction is shown in Figure 3.3.   

 

 

 
 
 
 
 
 
 
 
 
Figure 3.3:  Device Structure of Cu2S/CdS heterojunction 
 

3.3.2. Substrate Preparation 
 

In the formation of porous Alumina on ITO-coated glass, a 1” x 2” piece of ITO-coated glass 

was scribed and broken into ½” x 1” pieces.  1 µm of aluminum was rf-sputtered on these 

substrates.  Some of the samples were annealed at 525°C in flowing Nitrogen for 90 minutes. 

3.3.3. One-stage Anodization 

One-stage anodization was performed in 0.3M Oxalic acid at 10°C, at a voltage of 40V, until 

the current became zero. Current density vs. time values were recorded and plotted. 

p- Cu2S 

Alumina

n-CdS 

Au/Cr/Pb/Cu contact 

ITO/Glass 
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3.3.4. Two-stage Anodization 

Two-stage anodization was performed in 0.3M Oxalic acid at 10°C, at a voltage of 40V.  

During the first stage, pores were allowed to form for 1 to 2 minutes; these were then partially 

etched away in a 5%/2% Phosphoric/Chromic acid solution heated to 60°C. The remainder of the 

initial pores served as pre-patterning for the longer second stage of anodization (re-anodization), 

which was allowed to continue until the current spiked. After several minutes of re-anodization, 

the current peaked indicating contact with the underlying ITO substrate.  Samples were anodized 

on both annealed and un-annealed substrates for varying duration. Current density vs. time 

values were recorded and plotted. 

 
3.4. Deposition of CdS Layer 
 

CdS was deposited by two methods, electro-deposition and thermal evaporation.  Deposition 

was made on bulk samples and porous alumina templates. 

3.4.1 Electro deposition of Bulk CdS 

CdS nanocrystals were prepared by electrochemical deposition in dimethyl sulfoxide (DMSO) 

solution composed of 0.055M CdCl2 and 0.19M elemental sulfur. The temperature was 

maintained at 120°C.  A 10V dc voltage was applied between the working electrode and the 

platinum counter electrode. Electro-deposition was performed for different durations in order to 

calculate the deposition rate.  

 

3.4.2 Electro deposition of CdS into Porous Alumina 

CdS nanocrystals were prepared by electrochemical deposition in dimethyl sulfoxide (DMSO) 

solution composed of 0.055M CdCl2 and 0.19M elemental sulfur. The temperature was 
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maintained at 120°C.  A 36V dc voltage was applied between the working electrode and the 

platinum counter electrode in order to overcome the residual barrier layer seen at the bottom of 

the pores.  Current density vs. time values were recorded and plotted. 

 

3.4.3 Thermal evaporation of CdS 

Cadmium sulfide was used as the n-type material for the p-n heterojunction. CdS was 

fabricated by thermal evaporation. Polycrystalline films of CdS were fabricated on ITO-coated 

glass substrates by thermal evaporation of CdS powder. Evaporation grade CdS powder of 

99.9% purity was purchased from AlfaAesar.  

Thermal evaporation was performed on both bulk samples and porous alumina templates in the 

same process. For bulk samples, the cleaned ITO-coated glass substrate was mounted on a disc 

on the thermal evaporator. A portion of the substrate was masked with aluminum foil in order to 

provide contact to ITO. For nano-scale heterojunction samples, the ITO-coated glass substrates 

were covered with aluminum foil masks with round openings. This confined the CdS films to an 

area well away from the edges of the ITO coated glass substrate, thereby preventing the 

possibility of films grown on top of CdS shorting with ITO. 

The quartz crystal monitor head was positioned close to the substrates.  Cadmium sulfide 

powder was loaded into a molybdenum boat and covered with glass wool. The presence of the 

glass wool ensured that finer particles of CdS evaporate onto the ITO-coated glass substrate, and 

kept large grains of CdS from ejecting from the boat prematurely. After loading CdS, the 

vacuum chamber was closed and the thermal evaporator was allowed to pump down. Once the 

pressure inside the chamber went down to 4x10-6 Torr, the molybdenum boat was heated by 

passing current through the two ends clipped to the evaporation source. This process heats up the 
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CdS powder and starts the deposition of CdS onto ITO. A constant current was passed in order to 

maintain a uniform deposition rate. Once the thickness of the film reached the desired thickness, 

the current source was turned off and the deposition was stopped. The vacuum chamber was 

allowed to cool down for one hour, then vacuum was broken by letting air into the chamber. The 

samples were then removed from the chamber and stored in an air-tight container.   

3.4.4 Annealing CdS 

 The cadmium sulfide films deposited by thermal evaporation were subjected to an 

annealing treatment in a nitrogen atmosphere. Annealing is a process wherein the films are 

heated at a very high temperature in a 3-zone quartz furnace tube in an atmosphere of a preferred 

gas. The annealing process helps in re-crystallizing the CdS film and hence improves the film 

adhesion and grain size. The quartz furnace tube consisted of an inlet for nitrogen, attached to a 

nitrogen cylinder at one end and an outlet for nitrogen at the other end. The nitrogen outlet tube 

was kept immersed in a bottle containing water.  The samples were placed in the middle zone of 

the furnace. Prior to heating the sample, the quartz furnace tube was purged with flowing 

nitrogen for duration of 25 minutes to remove any oxygen present in the tube. This was an 

important step, as any resident oxygen in the chamber could oxidize the sample during heating. 

After purging, the sample was heated at a temperature of 450oC for 90 minutes. The furnace was 

then switched off and allowed to cool down to room temperature. Finally the sample was 

removed from the quartz furnace tube.  
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3.5 Deposition of CuCl layer and formation of heterojunction 

3.5.1 Thermal evaporation of CuCl 

 A uniform film of cuprous chloride (CuCl) was deposited on top of the annealed CdS 

film by thermal evaporation. Copper (I) chloride of 99.999% purity was purchased from 

AlfaAesar. The commercially bought Copper (I) chloride is green in color due to the reaction 

with atmospheric oxygen.  The CuCl was bleached in a dilute 10% hydrochloric acid solution, 

and then rinsed with acetone.  

The powder was then placed in a molybdenum boat and loaded into the thermal evaporator. 

The pressure inside the thermal evaporator was maintained close to 4x10-6 Torr. Aluminum foil 

masks with small circular holes were wrapped on top of the CdS films. This was done to make 

sure that the heterojunction was confined to a smaller area in order to get a realistic estimate of 

short circuit currents. The CdS films were loaded onto a circular disc at the top of the chamber. 

A current in the order of 2.5A was passed through the boat. The thermal evaporation process was 

carried out as described earlier. 

3.5.2 Formation of CdS/Cu2S heterojunction 

The CuCl layer deposited must react with the CdS layer in order to form CuxS. Post-deposition 

vacuum anneal was done in the vacuum chamber following the CuCl deposition. The following 

reaction takes pace as a result of heating the substrates.   

 CdS    + 2 CuCl    Cu2S    + CdCl2  
 

The substrate temperature was heated to a temperature in the range of 190 oC – 200 oC with the 

help of a quartz lamp fitted inside the vacuum chamber. Once the temperature in the chamber 

stabilized around 190 oC, the substrates were heated for duration of 18 minutes. The heat source 

was then switched off and the chamber was allowed to cool down to 45oC. The chamber was 
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finally vented to remove the samples. The resulting thickness of CuxS was about 0.7 microns, a 

thickness sufficient enough to absorb the incident radiation.  

 Prior to rinsing to remove residual chlorides, the photovoltaic cells were measured for 

probe voltages with a multimeter in order to get a rough estimate of the open circuit voltage. 

Following the post-heat treatment, the photovoltaic cells were rinsed in order to remove the 

residual chlorides and other reaction products. The photovoltaic cells were first immersed in a 

beaker containing de-ionized water then rinsed in running de-ionized water to wash away the 

residual CdCl2 and other byproducts of the reaction. After the rinse, the samples were dried in 

flowing nitrogen and again measured for probe voltage. 

3.5.3 Deposition of contacts 
 

60 nm of gold was deposited by thermal evaporation as a top contact on the bulk samples. 

 
3.6 Field Emission Scanning Electron Microscope (FE-SEM) Imaging 
 

FE-SEM was used to characterize top views and cross sections of porous alumina on 

molybdenum and ITO substrates.  Images were also used to determine depth needed for 

deposition of CdS and Cu2S, and to indicate whether deposition had filled the pores. 

FE-SEM uses a beam of electrons generated by a field emission source to scan the surface of 

the sample.  These electrons are generated in an electron gun and are accelerated in a column 

with a high electrical field gradient.  The electron gun is usually housed on top of the column, 

which is maintained in vacuum to prevent deflection of electrons.  When the electrons bombard 

the sample, a variety of signals are generated, such as secondary electrons, back-scattered 

electrons, light, heat, and transmitted electrons.  Secondary electrons are the electrons from the 
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sample.  Surface structure of the sample can be understood from the angle and velocity of the 

secondary electrons. 

The test sample must be mounted on a clean SEM stub.  First the stub is cleaned with acetone 

and methanol, then allowed to dry in air.  Next, a small (<2mm x 6mm) piece of the sample is 

cut with a diamond scribe, and placed on a piece of conducting graphite tape which is used to 

secure the specimen to the stub. Colloidal graphite is applied around the (glass) edges of the 

sample to improve conductivity between the metal stub and the sample surface.  To further 

increase conductivity, the entire sample is sputter-coated with gold/palladium before being 

placed in the SEM chamber. 

The stub is placed into the specimen holder in one of three grooves depending on substrate 

thickness.  Once the stub is placed in the proper groove, the screw is tightened and the specimen 

holder is placed into the specimen exchange chamber, following standard procedures. 

The sample is brought into standard position, focused with low magnification, then with high 

magnification.  Aperture alignment and stigmator adjustment are performed at high 

magnification (400kx).   Images were saved in .tif format.  Both top view and cross-sections of 

the pores were taken. 

   
3.7 J-V Setup 
 

 The J-V setup was controlled with a computer interface using Labview.  Two Keithley 

multimeters were used as the voltmeter and ammeter.   The Labview software swept the dc 

voltage from -0.4 to +0.8 V at a specified time interval in increments of 0.1V.    

A solar simulator was used to provide light to the solar cells.  The illumination from the bulb is 

a standard one-sun with corresponding incident power of 100mWcm-2. 
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Probe voltages of the devices were measured with a handheld multimeter before and after 

rinsing away residual chlorides, before contacts were deposited. 

Baseline J-V curves were taken on bulk samples and silicon solar cells, but nano-porous 

heterojunctions were only able to be measured by probe voltage, because the process of rinsing 

away the chloride byproducts destroyed the samples. 
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Chapter 4: Nanoporous Alumina on Molybdenum Substrate Results 
 
4.1 Preparation 
 

The method of preparation was described in section 3.2 and is repeated below for convenience.  

First, 1” x 2.25” glass slides were ultrasonically cleaned in acetone and methanol, baked at 

100°C for 10 minutes and sputtered with approximately 400 nm of molybdenum.  Thickness was 

monitored with a quartz crystal and calibrated with a profilometer.  Sheet resistance was 

measured by four-point probe. Samples were dusted off with flowing nitrogen, then deposited 

with approximately 2 µm of aluminum in the e-beam evaporator.  Average deposition rate was 

5.7 Å/second.  The glass slide was scribed and broken into ½” x 1” pieces.  Some aluminum 

films were annealed while others were not. 

4.2 Two-stage Anodization of Aluminum on Molybdenum-coated Glass 
Substrate in Oxalic Acid  
 

Each piece was anodized for 1-2 minutes at 40 V, which resulted in anodized alumina pores on 

the Molybdenum substrate. This step was followed by an etch in 5%/2% Phosphoric/Chromic 

acid, to pre-pattern the pores for better order during second anodization.  The second anodization 

was performed at 40V, until the current peaked, indicating that a path for the ions to the 

conducting molybdenum substrate had been created.  Because the process was continued until 

the aluminum layer was completely anodized, thickness of the porous alumina layer depended on 

the initial thickness of the aluminum pre-cursor rather than on duration of anodization.  

Anodization time ranged from 30 min. to 79 min., and depended on current density and other 

factors such as the distance between the anode and the cathode during the anodization process.   
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4.3 Film Characteristics 

SEM images of the cross-section and top view of alumina nano-pores fabricated on a 

molybdenum substrate by two-stage anodization are shown in Figure 4.1 (Sample# 1_MOLY). 

    
(a)    (b) 
 
Figure 4.1: Alumina on molybdenum-coated glass substrate (1_MOLY) after two-stage 

anodization in 0.3M Oxalic Acid, Sample Blank ‘M’. First anodization lasted 1 
minute, re-anodization lasted 46 minutes. (a) SEM image of cross-section (b) SEM 
image of top view 

 
 
The variation of current density with time of the anodization process is shown in Figure 4.2. 
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Figure 4.2: Current density vs. time characteristics for two-stage anodization of Aluminum on 

Molybdenum-coated glass substrate in 0.3M Oxalic Acid, sample no.  1_MOLY  
 

The cross-section shows vertical pores extending to substrate.  The top view shows pores of an 

average width of 45 nm.  Current density vs. time characteristic in Figure 4.2 shows steady 

current density of  between 21 and 25 A/sq. m during most of the re-anodization, until a final 

spike, which indicates contact with the conducting substrate after complete anodization of 

available aluminum.   

4.4 Barrier Layer 
 

At least two semiconductor layers, such as CIS and CdS, need to be electrodeposited inside the 

alumina pores to fabricate a heterojunction solar cell.  Furthermore, CIS needs to make good 

contact with molybdenum.  It is therefore essential that the anodization process is complete and 

no aluminum or aluminum oxide is left on the Molybdenum substrate at the bottom of the pore.   

To study the nature of incomplete anodization, we deposited (e-beam evaporation) an aluminum 
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film on molybdenum substrate (5_MOLY), anodized it for 2 minutes, etched the pores for 1 

minute, and then re-anodized the etched porous template for only 15 minutes, instead of 46 

minutes needed for complete anodization.  Since the re-anodization was stopped well before the 

typical current spike which indicates a path to the substrate, one could expect a visible barrier 

layer and possibly a layer of aluminum.  The SEM images of the cross-section for this device,  

shown in Figure 4.3, indeed exhibit porous alumina, alumina barrier, aluminum, and 

molybdenum layers, in contrast with the cross-sections seen Figure 4.1 where only  porous 

alumina, alumina barrier, and a thin layer of molybdenum are visible.  

 
 

   
                  (a)              (b)                      (c) 
Figure 4.3: Alumina on molybdenum-coated glass substrate (5_MOLY) after two-stage 

anodization in 0.3M Oxalic Acid, Sample Blank ‘C’.  First anodization lasted 1 
minute; re-anodization was stopped at 15 minutes. (a) SEM image of top view (b) 
SEM image of cross-section (c) SEM image showing close-up of barrier layer. 

      
 
 
4.5 Annealing of Aluminum Layer Prior to Anodization 
 

Several pieces of samples from batch ‘C’ were annealed at 525°C for 90 minutes in nitrogen 

atmosphere, prior to anodization.   The objective was to attempt to improve the aluminum 

surface, and hence the resulting pores.  However, anodization of annealed aluminum on 
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molybdenum-coated glass substrate from sample batch ‘C’ yielded pores which were not of high 

quality.  Figure 4.4 shows a micrograph of these pores in sample # 7_MOLY (average pore 

width, 20 nm).        

           

 
Figure 4.4: Annealed Alumina film on Molybdenum-coated glass substrate after two-stage 

anodization in 0.3M Oxalic Acid, Sample Blank ‘C’.  SEM image of top view of 
7_MOLY.  First anodization lasted 1 minute; re-anodization lasted 80 minutes 

 
Several samples burned out early in the anodization process.  Thus, yields for porous alumina 

made on pre-annealed Aluminum on molybdenum-coated glass substrates was low and pores 

were of inferior quality compared to pores on substrates which were not pre-annealed, where the 

yield was 100%. 
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Chapter 5:  Nanoporous Alumina on ITO-Glass Substrate Results 
 

The method of preparation was described in section 3.3 and is repeated below for convenience.  

A one μm thick aluminum layer was deposited on ITO-coated glass slides.  Experiments were 

performed to compare different methods of depositing aluminum for this application.  These 

included d.c. sputtering, r.f. sputtering, thermal evaporation, and e-beam evaporation.  Some 

samples were annealed at 550 °C for 90 minutes in flowing nitrogen, while others were not.   

Best results were obtained on aluminum films that were r.f. sputtered and annealed prior to 

anodization.  After cooling, samples were removed and anodized at 10 °C in 0.3M Oxalic acid.   

 
5.1 Comparison of Two Anodization Schedules 
 

Two anodization schedules were evaluated.  The first one is called single-stage anodization; 

the current density vs. time plot for this case is shown in Figure 5.2.   
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Figure 5.2: 1 Stage Anodization: Current Density vs. Time (Sample 1_ITO) 
 

 

The second one is called two-stage anodization.  In this case the sample was anodized for two 

minutes, and then the oxide layer was partially removed in a heated phosphoric/chromic acid 

mixture.  Next, the sample was re-anodized for approximately twenty minutes.   Current density 

vs. time plot for this case is shown in Figure 5.3. 
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Figure 5.3: 2 Stage Anodization: Current Density vs. Time (Sample 7_ITO) 
 
 

The one-stage anodization resulted in rapid increase in current, possibly with localized pores at 

the air/electrolyte interface.  The bulk of the sample did not contain pores; this is illustrated in 

Figure 5.4.  

 

Figure 5.4:  SEM micrograph of surface after one-stage anodization (Sample 1_ITO) 
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Two-stage anodization process resulted in pores that went all the way through and a steady 

current flowed for several minutes.  This is illustrated in Figures 5.5a and 5.5b.   

 
 

Figure 5.5(a) 
 

       
 
Figure 5.5(b)                      Figure 5.5(c)                      Figure 5.5 (d) 
 
Figure 5.5:  SEM micrograph of surface after two-stage anodization on (a) top view, annealed 

(Sample 6_ITO), (b) cross-section, annealed (Sample 6_ITO), (c) top view, 
unannealed (Sample 3_ITO), (d) cross-section unannealed (Sample 3_ITO) 
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5.2 Importance of Annealing Aluminum Layer Prior to Anodization 
 

Figures 5.5(c) and 5.5(d) show the results when the aluminum layer was not annealed prior to 

anodization.  It was observed that better pores are obtained when aluminum is annealed.  

Annealed, r.f.-sputtered substrates produced smoother aluminum films that, in turn, resulted in 

better porous alumina templates; the pores were straighter and the surface was smoother.  

Unannealed, r.f. sputtered substrates produced porous alumina that started with a rough, uneven 

surface.   Pores grew in a direction perpendicular to the uneven electrolyte/aluminum interface, 

resulting in slanted pores and uneven pore surfaces. 
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Chapter 6:  Deposition of CdS in Nanopores Results 
 

The method of preparation was described in section 3.4 and is repeated below for convenience.  

n-CdS was deposited by electro deposition as well as by thermal evaporation.  A one µm thick 

porous alumina on ITO-coated glass (5_ITO) was placed in a solution composed of dimethyl 

sulfoxide (DMSO), 0.055M CdCl2 and 0.19M elemental sulfur at 120 ºC.  36V DC voltage was 

applied between the working electrode and the platinum counter electrode for 10 minutes. A plot 

of the current density vs. time characteristics for this process is shown in Figure 6.1.   
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Figure 6.1: Current density vs. time for CdS electro deposition in nanopores of alumina 

 

34 



The current density dropped to zero after electrodepositing CdS for 10 minutes; this indicated 

that the electrodeposited CdS in the pore was relatively resistive. To investigate the resistive 

nature of electro-deposited CdS further, CdS was electrodeposited onto the bulk ITO-coated 

glass substrate.  The current density vs. time characteristic for this process is shown in Figure 

6.2.   
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Figure 6.2: Current density vs. time – CdS electro deposition on bulk ITO-glass substrate 
 

 

Again, the current density decreased with time; however it did not fall to zero.  The initial 

current density was also much larger than for the previous case.  This is thought to be partially 

due to full access to conducting ITO in the bulk case, as against the porous alumina substrate 

which has 1 µm long pores of diameter 60 nm and interpore spacing of 90 nm.  When comparing 

current density of the device against the current density of the bulk sample, the sample size and 

porosity of the device must be taken into consideration.  Porosity was calculated to be 44% by 
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taking the ratio of the area of a pore to the area of the square bounded by the size of the interpore 

spacing.   

Another difference is that the device size was ½” x 1”, while the bulk sample was 1” x 1”, 

twice the size of the device. The ratio of the bulk sample area to the area of device 5_ITO is 

4.54, yet the ratio of their starting current is 7.25, so there must be another barrier to electro 

deposition in the nanostructured design.  It is known that in this device, a residual thin alumina 

barrier layer between CdS and ITO remained after anodization.  The CdS electro deposition 

occurred through micro-cracks in the barrier layer, which would reduce the available device area 

even further.  This low area of contact between ITO and CdS is thought to be the reason for high 

series resistance and very small currents in I-V measurements of the heterojunctions, so far.    

The SEM image of the particles in the pores is shown in Figure 6.3.  CdS appears as a vertical 

series of interconnected dots inside the anodized aluminum oxide (AAO) pore.  

 
Figure 6.3:  SEM image of fracture section showing CdS electrodeposited in the AAO pores of 

sample 5_ITO, before annealing.  Average diameter of CdS particles was 20-30nm. 
 
 

The typical diameter of CdS particles is 20-30 nm.   An investigation into the effects of 

annealing and cadmium chloride treatments on the CdS nanostructures in the pores would yield 

more insight into these structures. 
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Chapter 7:  CdS/Cu2S Junction Results 
 

In preliminary experiments, Cu2S/CdS heterojunctions were fabricated inside the alumina 

pores.  The method of preparation was described in section 3.5 and is repeated below for 

convenience. First, 1 μm thick CdS was electrodeposited in the pores as described above.  The 

samples were then annealed at 350 °C for 45 minutes in flowing nitrogen gas.  Next, 1.1 μm of 

CuCl was evaporated, and then annealed in vacuum at 195°C for 18 minutes.  During this heat 

treatment, the CuCl and CdS reacted to form CdCl2 and Cu2S.    

It is shown in Table 7.1 that 1.1 μm of CuCl reacts with 1 μm of CdS, consuming 0.7 μm of 

CdS and forming 0.67 μm of Cu2S.  Because the initial thickness of the porous alumina was 1 

μm, after the chemical reaction described above, the hetero-junction is formed inside the pores.  
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Table 7.1:  Deposition thickness calculations 
 

 

Under one-sun irradiation, an open-circuit voltage of 242 mV was observed (see Table 7.2)  in 

the photovoltaic Cu2S/CdS junction fabricated in the manner described above.  Further 

experiments are needed to better understand the formation of the Cu2S/CdS junction, improve 

cell performance, and next, to investigate the CIS/CdS junction in nanopores.   
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Table 7.2 Probe voltage measured under illumination for Silicon solar cell as well as bulk 
and nano CdS/Cu2S heterojunctions 

 

Sample ID Deposition by 

Probe 
Voltage 
before rinse 

Probe 
Voltage 
after rinse 

 Silicon solar cell   Purchased   600mV   -  
 Bulk ITO/glass 1   Thermal Evaporation   271mV   -  
 Bulk ITO/glass 2   Thermal Evaporation   399mV   384mV  
 Bulk ITO/glass 3   Thermal Evaporation   203mV   0.1mV  
 Bulk ITO/glass 4   Thermal Evaporation   140mV   2.5mV  
 5_ITO   Electro-deposition   242mV   15mV  
 6_ITO   Thermal Evaporation   300mV   100mV  
 7_ITO   Thermal Evaporation   217mV   17mV  
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Chapter 8:  Conclusion and Suggestions for Future Work 
 
8.1 Conclusions 
 

Nanoporous alumina films were formed on molybdenum as well as on indium tin oxide (ITO) 

substrates.  Effects of process parameters on the quality of porous alumina films were 

investigated.  For both molybdenum and ITO cases, oxalic acid was used as the electrolyte for 

anodization and the 2-step anodization yielded better results than 1-step anodization.  In case of 

molybdenum substrates, average pore diameter was 45 nm when an anodization voltage of 40 

volts was used for approximately 46 minutes; current density was approximately 23 Amps/sq. m 

and annealing of aluminum prior to anodization was not beneficial.  In case of ITO substrates, 

pores of 45 nm diameter were obtained for approximately 20 minute anodization at 40 V; current 

density was 40 Amps/sq. m; annealing of aluminum layer prior to anodization, at 525oC for 90 

minutes was essential to getting good pores in the AAO film. 

With the objective of making photovoltaic heterojunctions inside nanopores, a 1 micron thick 

CdS layer was electrodeposited inside the pores of the alumina film on the ITO substrate.  Also, 

in preliminary experiments, CdS/Cu2S photovoltaic heterojunctions were formed by a chemical 

reaction between CdS and CuCl.  These exhibited an open circuit voltage of 242 mV under one-

sun illumination.   
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8.2 Suggestions for Future Work 
 

   Deposition of semiconductors such as CdS, and Cu2S and CIS inside the AAO pores needs 

to be investigated in detail and the materials inside the pores characterized with the objectives of: 

(i) improving the quality of the semiconductor films in the AAO pores, (ii) tailoring the 

characteristics of the semiconductor films in the AAO pores, (iii) improving the quality of the 

heterojunctions inside the pores, and (iv) making efficient photovoltaic cells inside the AAO 

pores. 
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