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ABSTRACT OF THESIS 
 
 
 

CYCLE-UP OF MULTIPLE RIFTING EVENT MODELS: HOW 
LONG DOES IT TAKE TO REACH A STEADY STATE STRESS? 

 
Many geological numerical models are initiated with a background stress state of 
zero.  Often these numerical results are compared directly to geodetic data.  Recent 
work (Kenner and Simons, 2004) has shown that modeled deformation rates can 
change as the model is ‘cycled-up’ following repeated earthquakes or rifting events.  
In this study, we investigate model cycle-up in the context of time-dependent 
deformation following rifting during the 1975-1984 Krafla eruption in Iceland.  We 
consider the number of rifting cycles required for complete cycle-up, variations in 
cycle-up time at different locations in the model, background stress magnitudes in 
fully cycled-up models, and errors incurred when the models are not properly cycled-
up. 
 
     The modeling is done using the commercial software ABAQUS.  In ABAQUS a 
user-defined subroutine is used to apply repeated rifting events within the finite 
element model.  We have generated various 3D models with different fault/rift 
geometries. The models include (1) a straight rift oriented perpendicular to the far-
field velocity boundary conditions, (2) a rift oriented at an angle to the far-field 
velocities, (3) a model containing two intersecting rifts, one perpendicular to the far-
field velocities and the other rift intersecting the first at an angle, and (4) overlapping 
rift segments in which the overlapped region is bounded by strike-slip faults.  
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1. INTRODUCTION

 

 

Earth cutaway 

FIG 1. Sections of the earth have been removed to show its internal structure. 

Image by: Colin Rose, Dorling Kindersley 

 

 

The earth consists of several layers. The three main layers are the core, the mantle and the 

crust. The core is the inner part of the earth, the crust is the outer part and between them 

is the mantle. The lithosphere is comprised of both crust and a part of the upper mantle. 

The lithosphere has varying thickness and is brittle down till ~15 km. Below this layer it 

is viscoelastic over long time scales. It easily fractures at low temperatures having an 

average thickness of 25 km. The thickness of the lithosphere beneath continents ranges 
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up to 30 km and is thinner beneath oceanic ridges and rift valleys. Below the lithosphere 

is the asthenosphere* and its thickness ranges from 100-200 km. The lithosphere is not 

entirely brittle.  In this study we will be discussing the rifting events in Iceland. We will 

include both lithosphere and asthenosphere as these layers are diverging at this location. 

In the discussions to follow the terms denoting “*” are better explained in Appendix A. 

 

1.1 PLATE TECTONICS 

 

Plate tectonics is a synthesis of geological and geophysical observations in which the 

earth’s crust is conceived to be divided into six or more large rigid plates, each of which 

rotates about its own pole of rotation. The movement of these crustal plates are thought to 

produce regions of tectonic activity along their margins. These regions are believed to be 

the site of most large earthquakes, volcanism, the formation of island arcs and mid-

oceanic ridges*. The theory of plate tectonics was formulated during the late 1960’s.

 

1.1(a) Converging Plate Boundaries 

 

Converging plate boundaries are where plates run into each other.  The most common 

type are where oceanic lithosphere* subducts beneath continental lithosphere. Several 

mechanisms contribute to the generation* of magmas* in this environment 

 

1.1(b) Transform Plate Boundaries 

Transform plate boundaries are a different class of plate boundaries, where in the plates 

move horizontally past each other on strike-slip faults. Lithosphere is neither created nor 
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destroyed. Transform plate boundaries are shearing zones where plates move past each 

other without diverging or converging.  

1.1(c) Diverging Plate Boundaries 

Diverging plate boundaries are where plates move away from each other.  These include 

oceanic ridges* or spreading centers*, and rift valleys*. Oceanic Ridges are areas where 

the mantle ascends due to rising convection currents.  Decompression melting is a 

process that involves the upward movement of the earth's mantle to an area of lower 

pressure. The reduction in overlying pressure enables the rock to melt, leading to magma 

formation. Decompression melting thus results in generating magmas that intrude and 

erupt at the oceanic ridges to create new oceanic crust.  Iceland is one of the few areas 

where the diverging plate boundaries are evident on land. 

  

 
FIG 1.1c Map of Iceland and the diverging plate boundaries  

(U.S. Geological Survey.www.usgs.gov) 
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In Iceland, we can observe the Mid Atlantic Ridge* above sea level as well as its 

associated volcanism. The anomalous elevation of this segment of mid-ocean ridge is due 

to the fact that the ridge is centered on a hotspot*, generally interpreted as a mantle 

plume*. The ridge drifts away from the hotspot due to plate motion over periods of 

millions of years. Periodically, rifting is reestablished over the hotspot, abandoning the 

old ridge segment. Iceland is a result of a rare combination of tectonic processes, a hot 

spot located beneath a mid-ocean ridge and the slow-spreading* Mid-Atlantic ridge. At 

Iceland, the ridge is splitting the island apart at a rate of 3.2 cm/yr and creating new crust 

at the edges of the Eurasian and North American plates. The rifting* causes numerous 

fissure eruptions*. ( Jacoby, W., Bjornsson, A., and Moller, D., (eds.) 1980) 

 

Based on the above facts, which are stunningly interesting, modeling rift-intrusion events 

and crustal deformation in Iceland, especially over multiple rifting cycles, with multiple 

intersecting rifts, is an extremely difficult job. 

  

The engineering goals of this study are: (1) To develop finite element models of rift-

intrusion events which would aid in better understanding of crustal deformation in 

Iceland. (2) Understanding cycle-up of multiple rifting events. (3) Handling contact 

surfaces, rifting surfaces and intersecting rifts/faults. (4) Developing pre- and post-

processors to facilitate model development and analysis. The scientific goal of this study 

is make an in-depth understanding of multiple rifting events with intersecting rifts/faults 

and its effects. 
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To achieve the engineering and scientific goals as stated above we use finite elements. 

The essence of the finite element method is to break large, complex model into smaller 

interconnected components called “elements”. Each element has a function which is 

assumed to satisfy the required differential equation over the volume of the element. 

Since the differential equations are only solved for over the volume of the element, this 

leads to a piecewise representation of the actual response of the overall model. More 

elements in the model assist in better results. The modeling and analysis is carried out 

using ABAQUS, a commercial software package.  

 

1.2 FINITE ELEMENT ANALYSIS: 

 

The Finite Element Method is a versatile numerical method used to solve many types of 

problems found in engineering and the Earth Sciences. It is well adapted for problems of 

slow flow, crustal deformation, viscoelasticity and elasticity, particularly where the 

geometry and constitutive properties of the relevant volumes are complicated. Typical 

problem areas of interest in engineering and mathematical physics that are solvable by 

the use of the finite element method include structural analysis, heat transfer, fluid flow, 

mass transport, and electromagnetic potential. This method is used to solve complex 

problems that are difficult to satisfactorily solve by other analytical methods. It actually 

originated as a method of analyzing the stress distribution in different systems. 
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1.2(a) What is Finite Element Analysis? 

The Finite Element Analysis (FEA) is a numerical technique used to obtain approximate 

solutions to a wide variety of engineering problems where the variables are related by 

means of algebraic, differential and integral equations. It is a computer-based numerical 

technique for calculating the strength and behavior of the model under consideration. It 

can be used to calculate deformation, stress, buckling behavior and many other 

phenomena. It can be used to analyze either small or large-scale deformation under 

loading or applied displacement. It can analyze elastic deformation, quasi-static flow or 

plastic deformation.  

In the finite element method, a model is broken down into many small simple blocks or 

elements. The behavior of an individual element can be described with a relatively simple 

set of equations. Just as the set of elements would be joined together to build the whole 

structure, the equations describing the behaviors of the individual elements are joined 

into an extremely large set of equations that describe the behavior of the whole model. 

The computer can solve this large set of simultaneous equations. From the solution, the 

computer extracts the behavior of the individual elements. From this, the stress and 

deformation of the model can be inferred. 

The concept of Finite Element Analysis was initially proposed by Courant in 1941 (Cook, 

R.D., Malkus, D.S., and Plesha, M.E.,). In a work published in 1943, he used the 

principle of stationary potential energy and piecewise polynomial interpolation over 

triangular subregions to study the Saint-Venant torsion problem. Approximately ten years 

later engineers had set up stiffness matrices and solved the equations with the help of 
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digital computers. The exact behavior of a structure at any point can be approximated by 

using the numerical solutions at discrete points, called nodes. The nodes are connected by 

the elements. The approximate solution for each element is represented by a continuous 

function, which leads to a system of algebraic equations. The complete solution is then 

generated by assembling the elemental solutions, allowing for the continuity at the inter-

elemental boundaries. 

The term "finite element" distinguishes the technique from the use of infinitesimal 

"differential elements" used in calculus, differential equations, and partial differential 

equations. Finite element analysis is a way to deal with structures that are more 

complex than can be dealt with analytically using partial differential equations. FEA 

deals with complex boundaries better than finite difference equations will, and gives 

answers to "real world" structural problems. It has been substantially extended in scope 

during the roughly 40 years of its use. There are numerous element types that could be 

chosen for a given structure. The selection of the appropriate element type depends on 

the problem at hand. An element or mesh that works fine in a particular situation may 

not be as good for a different situation. The engineer should select the best element for 

a problem understanding well both the nature of the element behavior and the problem 

itself. The numerical hand calculations using this method become increasingly difficult 

with the complexity in the geometry of the structure and with increasing number of 

nodes. For this reason, several finite element computer programs have been developed 

by research organizations that can produce reliable approximate solutions, at a small 

fraction of the cost of more rigorous, closed-form analyses. 
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Out of all the numerous computer programs currently available to analyze finite 

element problems, ABAQUS is very popular commercial software. ABAQUS can be 

efficiently used to analyze a number of models in most of the above mentioned areas in 

slow flow, crustal deformation, viscoelasticity, engineering and mathematical physics. 

 

1.2(b) Introduction to ABAQUS 

Finite Element Analysis is done principally with commercially purchased software. We 

make use of ABAQUS. It is a suite of powerful engineering simulation programs, based 

on the finite element method, which can solve problems ranging from relatively simple 

linear analyses to the most challenging nonlinear simulations. ABAQUS contains an 

extensive library of elements that can model virtually any geometry. It has an equally 

extensive list of material models that can simulate the behavior of most typical 

engineering materials including metals, rubber, polymers, composites, reinforced 

concrete, crushable and resilient foams, and geotechnical materials such as soils and rock. 

Designed as a general-purpose simulation tool, ABAQUS can be used to study more than 

just structural (stress/displacement) problems. Use of any finite element program requires 

familiarity with the interface of the program in order to create and load the models, and to 

review the results. To do the work well requires experience, comprehension of the 

models and their classical (manual analytical) analysis, an understanding of a variety of 

FEA modeling issues, and an appreciation of the specialized field in which the design 

work is taking place. 
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ABAQUS can simulate problems in such diverse areas as heat transfer, crustal 

deformation, acoustics, soil mechanics (coupled pore fluid-stress analyses), and 

piezoelectric analysis. ABAQUS is simple to use even though it offers the user a wide 

range of capabilities. The most complicated problems can be modeled easily. In most 

simulations, even highly nonlinear ones, the user need only provide the engineering data 

such as the geometry of the structure, its material behavior, its boundary conditions, and 

the loads applied to it. In a nonlinear analysis ABAQUS automatically chooses 

appropriate load increments and convergence tolerances. Not only does it choose the 

values for these parameters, it also continually adjusts them during the analysis to ensure 

that an accurate solution is obtained efficiently. The user rarely has to define parameters 

for controlling the numerical solution of the problem. 
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2. RIFTING 
 
A rift is a place where the Earth's lithosphere expands. Rifts are frequently found at 

divergent plate boundaries between two tectonic plates. Rifting is the process by which 

the new lithosphere is made. A Continental rift is the belt or zone of the continental 

lithosphere where the extensional deformation (rifting) is occurring.  These zones have 

important consequences and geological features, and if the rifting is successful, lead to 

the formation of new ocean basins. In general, Continental crust is split by diverging 

plate boundaries. A divergent plate boundary is a condition between two tectonic plates 

where the plates move away from one another. These areas form in the middle of the 

continents but soon transform to a ocean basins. Therefore most divergent plate 

boundaries, the Mid-Atlantic Ridge and the boundary between the African Plate and the 

Arabian Plate, exist between oceanic plates and are often called oceanic rifts or mid-

ocean ridges as a result. Hence, rifting can be described as a process that occurs when 

land sinks between two parallel extensional faults. 

 

The face of the earth has seen many great rifts which include, the Great Rift Valley in 

Africa, the Mid-Atlantic Ridge, rifts throughout the Basin and Range in North America 

and the rift in the middle of the Gulf of Conrinth in Greece.  The Grear Rift Valley in 

Africa is an outcome of the rifting events that took place at the African and Arabian 

tectonic paltes. The mid-Atlantic Ridge,  an area of concern in this thesis, is an 

underwater mountain range in the Atlantic Ocean that runs from Iceland to Antarctica. It 

is the longest mountain range on Earth. This ridge is an oceanic rift which resulted from 

the separation of the North American Plate and the Eurasian Plate. The Basin and Range 
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Province is a peculiar topography that extends east from Nevada all the way to the 

Colorado Plateau. The basins are the down fallen blocks of crust and the ranges are the 

up-thrusted slabs of crust. The Gulf of Conrinth was created  by  the expansion of a 

tectonic rift. It is a body of water separating Peloponnese from western mainland Greece. 

 

2.1 HOW DOES RIFTING START? 

 This happened to be the topic of discussion over the years. A certain group attribute 

rifting to up-lifting of the crust over a hot-spot. Certainly parts of the East African rift 

system are very elevated, compared with other regions, suggesting that the up-lifting 

reflects an underlying hot low-density mantle. In some cases, mantle is rising to high 

levels beneath the rift. So, rifting can take place without extensive uplift. Material in the 

mantle is thought to flow convectively. This is the process which drives plate tectonic 

motions. To rift a continent apart it needs the rifts associated with various possible 

thermal domes to link together. As continents drift slowly over hotspots the hotspots 

weaken the plate and these weakened zones become the sites of continental rifting. 

 

2.1.1 Plate Tectonics and Boundaries: 

 

Tectonics is the study of earth’s structural features. The study of Tectonic Plates is called 

plate tectonics. This theory of Geology is developed to explain continental drift, the 

spreading of the sea floor, volcanic eruptions and how mountains are formed. The earth's 

crust is made of a number of moving plates which are moving relative to each other. The 

main features of plate tectonics are: 
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• The Earth's crust consists of nine large plates and twelve small ones.  

• The ocean floors move continuously, spreading from the center, sinking at the 

edges, and  regenerating in the mantle.  

• Convection currents in the mantle beneath the plates move the crustal plates in 

different directions.  

• The source of heat driving the convection currents is radioactivity deep in the 

Earths mantle and the remnant heat resulted from the original formation of the 

Earth. 

2.1.2 Types of Plate Boundaries: 

Plate boundaries can be broadly classified in to three different categories based on the 

movement of the plates relative to one another. They are: 

a) Transform Boundaries 

b) Divergent Boundaries 

c) Convergent Boundaries 

2.1.2a Transform Boundaries:  These plate boundaries can also be referred to as 

conservative plate boundaries.  Here the plates slide past each other. The relative motion 

of the plates is either left-lateral* or right-lateral* as one plate moves parallel to the other. 

The surfaces in contact are rough and hence the plates can not slip over one another due 

to friction. The huge amounts of energy released, when the stress accumulated over a 

period time exceeds the limiting value of friction, causes earth quakes. The San Andreas 

Fault in North America is a good example of transform plate boundaries. 
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FIG 2.1.2a The cross-section of the main types of plate boundaries. Illustration by Jose 
F.Vigil from This Dynamic Planet -- a wall map produced jointly by the U.S. Geological 

Survey, the Smithsonian Institution, and the U.S. Naval Research Laboratory. 
 
 
2.1.2b Divergent Boundaries:  These plate boundaries can also be referred to as 

constructive plate boundaries. Here the plates slide apart from one another.  As the plates 

move apart they create space which eventually is filled with new crustal material from 

molten magma. Large convective currents bring very large quantities of hot 

asthenospheric material near the surface and the kinetic energy is sufficient to break the 

lithosphere apart. Oceanic ridges are areas where the mantle ascend due to convective 

currents. The Mid-Atlantic Ridge system under Iceland is a typical result of the diverging 

plate boundaries in oceanic lithosphere. The Great Rift Valley in Africa is an example of 

diverging plate boundaries in continental lithosphere. These boundaries create huge fault 
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zones in the oceanic ridge system. In Iceland the oceanic ridge is above the sea level. In 

this study we model the multiple rifting events in Iceland. 

 

 

FIG 2.1.2b (U.S. Geological Survey. www.usgs.gov) 

 

2.1.2c Convergent Boundaries:  These plate boundaries can also be referred to as 

destructive plate boundaries. Here the plates run into each other. An ideal example for 

convergent plate boundaries is where the oceanic lithosphere subducts. We find island 

arcs when a dense oceanic lithosphere subducts beneath an other. Japan is a good 

example for island arcs.  A continental margin arc is formed when the oceanic lithosphere 

subducts beneath the continental lithosphere. One such example being the Andes. When 

two continental lithospheric plates converge the result in fold-thrust mountain ranges.  

One such example being Himalayas. 
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FIG 2.2 Geology of Iceland. Map based on Simkin and Siebert (1994). 

 

2.2 GEOLOGY OF ICELAND: 

 

Iceland can be divided into three zones based on the age of the basaltic rocks*. Tertiary 

(70,000,000 to 2,000,00 years ago. See Gological timescale in Appendix C) flood basalts 

make up most of the northwest quadrant of the island. This stack of lava flows is at least 

3,000 m thick. Quaternary (2-3 million years ago. See Geological timescale in Appendix 

C) flood basalts and hyaloclastites* are exposed in the central, southwest and east parts of 

the island. The quaternary rocks are cut by the neovolcanic zone, areas of active rifting 

that contain most of the active volcanoes. The rifts (or grabens*) are topographic 

depression bordered by and containing many faults. Fissure swarms* make up most of 

the neovolcanic zone. The swarms are 5-10 km wide and 30-100 km long. The rift zones 
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have opened about 30 m in the last 3,000-5,000 years (McClelland et al. 1989; Jacoby et 

al. 1980). The neovolcanic zone compose about one-third of the area of Iceland. 

 

Iceland is one of the most active volcanic regions on Earth. Thorarinsson (1967) 

estimated that one-third of the lava erupted since 1500 A.D. was produced in Iceland. 

Iceland has 35 volcanoes that have erupted in the last 10,000 years. On average, a 

volcano erupts about every 5 years. Eleven volcanoes have erupted between 1900 and 

1998: Krafla, Askja, Grimsvotn, Loki-Fogrufjoll, Bardarbunga, Kverkfjoll, Esjufjoll, 

Hekla, Katla, Surtsey, and Heimaey (Fig. 2.2). Most of the eruptions were from fissures 

or shield volcanoes*. 

 

The consequences of plate movement are easy to see around Krafla Volcano, in the 

northeastern part of Iceland. Here, existing ground cracks have widened and new ones 

appear every few months (W. Jacquelyne Kious and Robert I. Tilling, [26]). From 1975 

to 1984, numerous episodes of rifting (surface cracking) took place along the Krafla 

fissure zone. Some of these rifting events were accompanied by volcanic activity. 

Between 1975 and 1984, the displacements caused by rifting totaled about 7 m (W. 

Jacquelyne Kious and Robert I. Tilling, [26]). 
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2.3 REVIEW OF PUBLISHED LITERATURE: 

 

Modern day seience has undergone many changes to provide a better understanding of 

geological and geophysical events. There are many significant efforts that threw light on 

rifting events in Iceland and its geology. Most of the older models are anaytical elastic 

half-space or elastic layer over visco-elastic half-space. A mogi source (volumetric point 

source) is used to represent a volume change [2, 23]. The boundary element method has 

been employed by Hackman et al. [25] 1990 assuming linear elastic behavior. Finally, an 

extremely simple model using the finite element method was introduced by Jacoby et al. 

[24] but the results were considered less accurate than comparable analytic methods. 

Discrete rifting events were not considered. 

 

Pollitz and Sacks [1] discussed, using inversion methods and the correspondence 

pronciple, the viscosity structure beneath Iceland and states that, the dynamics of crustal 

rifting in Iceland depends to a greater extent on the lower crustal rheology, which 

controls the intensity of the upper crustal stress concentration and time of heat diffusion 

from the underlying mantle plume. Pollitz and Sacks [1] utilized horizontal and vertical 

displacement vectors using the Global Positioning System (GPS) campaigns in northeast 

Iceland since 1986. In their model the elastic part is fixed by external constarints and 

modeling is carried out in terms of steady state tectonic loading plus postseismic 

relaxation following the 1975-1984 Krafla rifting event. Pollitz and Sacks [1] draw a 

conclusion that the lower and upper mantle viscosities of about 3*1019  Pa-s and 3*1018 

Pa-s respectively were the closest match with the data. 
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Hofton and Foulger [2] presented the post-rifting anelastic deformation around the 

spreading plate boundary of north Iceland in 1996. In their study of the data, the results 

from the 1992 GPS survey differed with those from 1987 and 1990. This revealed that the 

maximum rift expansion rate near the rift was 4.5 cm/year which is in great conflict with 

the time-averaged spreading rate of 1.8 cm/year in north Iceland. Three different models 

were applied by Hofton and Foulger [2] to study the postrifting ground deformation. The 

best model that explained the above conflict was the one with a visoelastic half-space. 

This model had a viscosity of 1.1*1018 Pa-s, a relaxation time of 1.7 years, and the elastic 

layer thickness was 10 km for northeast Iceland. The results from modeling by Hofton 

and Foulger [2] had great implications and did shed light on the fundamentals of 

deformation around spreading plate boundaries. They conclude by saying that elastic-

viscoelastic models can account for deformation effects of the Krafla episode and can be 

used when modeling deformations in other regions of Iceland. 

 

Lynch and Richards [3] delt with finite element models of stress orientations in strike-slip 

fault zones. They made use of finite element models to study the stresses in an elastic 

layer overlying a viscoelastic shear zone of finte width. The dimensions of the model 

under consideration by Lynch and Richards [3] were 300 km in width, 400 km in length, 

and 50km in depth. In their model, stress on the fault accumulates naturally as the far-

field velocity boundary conditions are enforced on the edges of the model. They have 

provied valuable information in terms of maximum compressive stress orientations, 

angles of principal stress axes and had provided insight on the distribution of strain in the 
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lower crust. This paper provides an insight in to the dimensions of the finite model being 

modeled in this study using a commercial software package ABAQUS. 

 

In 1985 Bjornsson [4] discussed the dymanics of crustal rifting in north-east Iceland. 

From his discussion we know that the crustal thickness in the axial rift zone of north-east 

Iceland ranges from 8 to 10 km. The crust thickens with increasing age and is 20 to 30 

km thick in the older areas of the axial rift zone. Bjornsson proposes that, at the crust 

asthenosphere interface there is a partial molten balastic layer a few kilometers thick 

which partially decouples the crust from the mantle. The Krafla rifting is attributed to 

local tensional stress that has been accumulated over a period of time near the plate 

boundaries due to the slow retreat of the plates. This accounts for crustal thinning and 

subsidence. The local tensional stress accumulated is then released in a rifting episode. 

 

2.4 INTRODUCTION TO SIMPLE RIFT MODELS: 

 

Modeling of a rifting event, in pirticular rifting in Iceland is a complex problem. 

Applying the same principles of finite elements we have broken this complex problem 

into many small and simple ones. The levels of complexity in the rift patterns are built up 

from the simple models. The input files for all the rift models are coded in the PYTHON 

script. We have built a general code in MATLAB that could produce the desired model as 

per the user specifications. This subject is delt in detail in the chapters to follow. In all the 

models we have used same rheology in all the layers for better comparision. The simple 

 21



 

models we have considered for better understanding of the rifting problems in general 

are: 

• A straight rift model 

• An inclined rift model 

• An intersecting rift model 

• Skewed rift model 

• Double kink model 

• Box rift model 

 

2.4.1 Straight Rift Model: 

 

A straight rift model includes a straight rift that is oriented perpendicular to the far-field 

velocity boundary conditions. This rift is located right in the center of the top crustal 

surface and extends into the upper mantle. The model accomidates various rheologies for 

the crust and the mantle. The mantle is further divided into different layers and can have 

different rheologies for each layer. These rheologies are user-defined and are passed to 

the general code along with the other model parameters. Depending on the complexity of 

the model various parts of the model are built and are then assembled. Here in this model 

we build the two parts of the crust divided by the rift seperately in addition to the mantle 

and then assemble all these pieces to form an entire model. The figure below better 

explains a straight rift model. 
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FIG 2.4.1 Straight Rift Model 

 

2.4.2 Inclined Rift Model: 

 

Moving a step ahead in the direction of complexity are the inclined rift models. In an 

inclined rift model the rift is oriented at an angle to the far-field velocity boundary 

conditions. Based on the user specification of the point list the model is generated with 

the required rift inclination.  An example of an inclined rift model is shown in figure 

2.4.2 
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FIG 2.4.2 Inclined Rift Model 

 

2.4.3 Intersecting Rift Model: 

 

To better understand the behavior of intersecting rifts, we have considered two individual 

rift patterns intersecting at a point. In this model a straight rift is intersected by an other 

inclined rift at a point. This drives the complexity to a higher level. We have used a better 

mesh to handle the meshing issues more thoroughly and generated the same 

corresponding nodes on either side of the rift to ensure proper functionality of the user-

subroutine. An example of an intersecting rift is shown in figure 2.4.3 
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FIG 2.4.3 Intersecting Rift Model 

 

2.4.4 Skewed Rift Model: 

 

The complexity of the rifting problem is at a higher degree when we deal with skewed rift 

models. In these models we have a single rift inclined at two different angles to the far-

field veocity boundary conditions. These models help us understand rifting issues that 

involve corners and intersecting rifts. An example of an skewed rift model is shown in 

figure 2.4.4a figure 2.4.4b shows a model with further complexity having two kinks in 

the rift pattern. 
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FIG 2.4.4a Skewed Rift Model 

 

 

FIG 2.4.4b Double Kink Model 
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2.4.5 Box Rift Model: 

The box rifting problem has a rift pattern close to the 1st order model Dr. Kenner and Dr. 

Simons would compare real data to similar models. It is a higher degree of complexity 

when we deal with box rift models. In these models we have a straight rift intersected at 

two different location by “U” rift pattern. These models help us understand rifting issues 

that involve corners, multiple polygons, and intersecting rifts. An example of a box rift 

model is shown in figure 2.4.5. 

 

 

 
 
 

FIG 2.4.5 Box rift Model 
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3.1 DEVELOPING PRE- AND POST-PROCESSORS OF FINITE ELEMENT 
RIFITING MODELS 
 
In many cases a significant percentage of the time spent on a FEM analysis is devoted to 

the pre- and post processing stages. ABAQUS pre-and postprocessor is a command- and 

menu-driven interactive tool, whose main functions include 

• Geometry modeling and mesh generation  

• Specification of boundary and initial conditions  

• Specification of material properties  

• Step definition for analysis  

• Generating output based on step definition 

• Read and re-format the various data files produced by the analysis  

• Computation of derived quantities  

• Summary of information on the calculated results  

Abaquas-cae is both a pre-processor and post-processor, and is developed to replace 

Abaqus/Pre and Abaqus/Post modules. It is a consistent interface for creating, submitting, 

monitoring, and evaluating results from Abaqus/Standard and Abaqus/Explicit 

simulations. Abaqus-cae is made up of several modules, where each module defines a 

logical aspect of the modeling process:  

• Part module -- creating and importing parts, importing mesh from output 

databases and input files  

• Property module -- defining material properties, defining sections and assigning 

sections to parts or regions of parts  
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• Assembly module -- assembling instances of parts to create a model  

• Step module -- creating and managing analysis steps  

• Interaction module -- defining interactions between regions of a model or 

between the model and its surroundings. Surface data is defined in this module. 

• Load/BC/IC module -- defining and managing the loads, boundary conditions and 

initial conditions  

• Mesh module -- generating meshes  

• Job module -- creating, managing, submitting and monitoring analysis jobs  

• Visualization module -- viewing models and results of analyses  

As the models generated in this study are very diverse in nature, it would be a tedious 

process to build every single model from scratch. To overcome this difficulty we have 

generated a pre-processor, using Python as the scripting language. This has been carried 

out by making use of MATLAB, ABAQUS AND PYTHON. The preprocessor is 

developed in a flexible manner to handle all the requirements of the user. Arbitrary fault 

geometries can be input as well as rheological layering at depth. It builds the model to the 

user specifications and is adaptive to all the needs of the user. Arbitrary fault geometries 

can be input as well as rheological layering at depth. 

 

The coding is been done in Matlab which generates a “.py” file. This Python file is used 

as the input file (run script file) in Abaqus which eventually generates the desired model 

in the pre-processor and the “.odb” file (e.g. Abaqus output file) and the desired results in 

the post-processor. 

I have made use of three files, namely: 
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1) mktstmodel.m  

 2) ursmktstmpvw.m   

3) trail3.m 

The “mktstmodel.m” generates trial mapview geometry for testing geometry and mesh 

building techniques in abaqus cae and  generates the “.py” input file. 

The “ursmktstmpvw.m” file has the data given by the user telling us the crack pattern, 

rheology at various depths, number of layers, crustal depth and so on that are needed  to 

build a model as per the requirements of the user.  

The “trail3.m” file uses the user given data and the data from the mktstmodel.m file to 

generate a ABAQUS CAE .py script file to create the surfaces defined by the user. 

All the files are attached in the Appendix D for reference. 

 

The flow of activities in Matlab and Abaqus Environment are as follows. 

 

 

mktstmodel.m 

 
ursmktstmpvw.m 

 
trail3.m 

 
Generates the .py input 

file 

 

MATLAB ENVIRONMENT 
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the .py file is fed as i/p 

file to Abaqus cae 

 
Generates the .odb file 

and the desired results 

 
ABAQUS   ENVIRONMENT 

 

3.2 BOUNDARY CONDITIONS: 

 

Boundary conditions are defined in the Load/BC/IC module. Boundary conditions 

considered in the model generation and analysis are plate velocities and displacement 

boundary conditions on the sides of the model. The following boundary conditions are 

applied in various steps. The units of velocity are km/yr. 

Step1 (Initial):  v1=v2=v3=0  on the sides of the model, thus constraining the 

displacement in all three directions. 

Step2 (Load1): v1=1e-5 and v2=v3=0 on the eastern side and v1= -1e-5 and v2=v3=0 on 

the western side. 

Step3 (Rift1): v1=1e-5 and v2=v3=0 on the eastern side and v1= -1e-5 and v2=v3=0 on 

the western side. 

Step4 (Load2): v1=1e-5 and v2=v3=0 on the eastern side and v1= -1e-5 and v2=v3=0 on 

the western side. 

Step5 (Rift2): v1=1e-5 and v2=v3=0 on the eastern side and v1= -1e-5 and v2=v3=0 on 

the western side. 

And so on… 
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The steps definition is done in a cyclic manner. There is a loading step for 200 years 

followed by a rifting step for 20 years. This cycle of loading and rifting is done till the 

model attains a steady state. 

 

A tie constraint is used to tie the non-seismogenic zone of the lower mantle. We have 

defined rough friction as the contact property. As the rifting surfaces move away from 

each other in the lithosphere the contact surface interactions are defined between the rift 

surfaces using multi-point constraints. 

 

3.3 ELEMENT SELECTION: 

 

In ABAQUS, the element that is been made use of is “C3D8R”, an 8-noded linear brick 

element, reduced integration with hourglass control. Five aspects of an element 

characterize its behavior:  

• Family 

• Degrees of freedom (directly related to the element family) 

• Number of nodes 

• Formulation 

• Integration 

 

Each element in ABAQUS has a unique name. The element name identifies each of the 

five aspects of an element. 
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3.3.1a Family 

 

One of the major distinctions between different element families is the geometry type that 

each family assumes. The first letter or letters of an element's name indicate to which 

family the element belongs. The figure below shows the commonly used element 

families. 

 

FIG 3.3.1a Element Families 

 

3.3.1b Degrees of freedom 

 

The degrees of freedom are the fundamental variables calculated during the analysis. For 

a stress/displacement simulation the degrees of freedom are the translations and, for shell 

and beam elements, the rotations at each node.  

 

3.3.1c Number of nodes 

 

Displacements or other degrees of freedom are calculated at the nodes of the element. At 

any other point in the element, the displacements are obtained by interpolating from the 
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nodal displacements. Typically, the number of nodes in an element is clearly identified in 

its name. The 8-node brick element is called C3D8. The figure below shows a linear and 

quadratic brick elements. 

 

 

FIG 3.3.1c Linear and Quadratic Brick Element 

 

3.3.1d Formulation 

 

An element's formulation refers to the mathematical theory used to define the element's 

behavior. All of the stress/displacement elements in ABAQUS/Standard are based on the 

Lagrangian or material description of behavior: the element deforms with the material. In 

the alternative Eulerian, or spatial, description elements are fixed in space as the material 

flows through them. 

 

3.3.1e Integration 

 

ABAQUS uses numerical techniques to integrate various quantities over the volume of 

each element, thus allowing complete generality in material behavior. Using Gaussian 

quadrature for most elements, ABAQUS evaluates the material response at each 

integration point in each element. When using continuum elements, you must choose 
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between full or reduced integration, a choice that can have a significant effect on the 

accuracy of the element for a given problem. 

 

3.3.2 Naming convention 

One-dimensional, two-dimensional, three-dimensional, and axisymmetric solid elements 

in ABAQUS are named as follows (Abaqus/Standard User Manual):  

 

 

 

C3D8R is a 8-node linear brick, reduced integration with hourglass control. Active 

degrees of freedom are 1, 2, 3 ( , , ). 
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3.4 MODELING AND MESHING ISSUES: 

3.4.1 Modeling: 

Finite Element Analysis is fundamentally an approximation. The underlying 

mathematical model may be an approximation of the real physical system. There is a 

great deal of complexity in modeling the Earth’s physic. Material property definition and 

selection of the material is an approximation of reality. The finite element itself 

approximates what happens in its interior with interpolation formulas. The interior of a 2-

D or 3-D finite element has been mapped to the interior of an element with a perfect 

shape, so a severely distorted element can not deform in a manner that has an accurate 

match to the real physical response. Integration over the body of the element is often 

approximated depending on the element. The continuity of deformation between 

connected elements is interrupted at some level. Elements approximate the local shape of 

the real body.  Badly shaped elements can give less accurate results. Numerical analysis 

difficulties such as poor matrices may reduce the accuracy of calculated results. A linear 

analysis is an approximation of the real behavior of what happens in the Earths crust.  

 

The loading of the model is an approximation of what happens in the real world. It is very 

difficult to arrive at a particular loading condition in designing a rifting model. It has 

many loading conditions, which can not be accounted for, that make a significant 

contribution towards causing the rifting event. The boundary conditions approximate how 

the model is supported by the material around it. The material properties assumed are 

approximate. The dimensioning of the model is a major approximation in the design of 

the rifting models. The rift pattern is approximated with models approximating to the real 
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physical rifting zones.  Many details are idealized, simplified, or unknown. Element 

results may be reported at integration points or nodes, not continuously evaluated with 

the interpolation functions over the whole element interior. Stress and strain results are 

based on the derivatives of the displacement solution, amplifying the errors. 

 

The result of an analysis contains the accumulated errors due to all of the contributing 

approximations. Good analysis and interpretation of results requires knowing of an 

acceptable approximation, and development of a complete list of what should be 

evaluated. 

 

3.4.2 Meshing: 

Generating a good quality refined mesh is a major issue. The mesh should be fine enough 

for good detail where information is needed, but not too fine, or the analysis will require 

considerable time and space in the computer. A mesh should have well-shaped elements -

- only mild distortion and moderate aspect ratios. This can require considerable thought 

and intervention, despite Abaqus’s automatic meshing. We have put considerable effort 

into the generation of well-shaped meshes. Investigated automatic meshing controls, and 

re-meshing individual areas and volumes until the result looks "just right". Virtual 

topology was a handy tool in a producing considerable meshing. To save time and space 

on the computer we have generated fine mesh around the areas of interest and had a 

coarse mesh in other areas.  
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Most finite elements are stiffer than the real physical elements. A coarse mesh is less 

sensitive to and hides stress concentrations. A fine mesh generally gives an answer closer 

to the exact solution. To get better results around the rift zone we had a fine mesh around 

the rifting areas. A fine mesh also results in larger models, more data storage, and longer 

model solution and display times.  

 

3.4.3 Virtual Topology : 
 
 
Complex CAD models usually have detailed surface features that can be meshed only 

using very fine element densities. Even with high mesh densities, long and thin “sliver” 

surfaces often lead to poorly shaped elements that can result in analysis failure when the 

element quality checks are performed. In addition, with finer meshes there is a 

corresponding increase in the time that it takes for the analysis to complete. Version 6.3 

of ABAQUS/CAE has a powerful new capability called “virtual topology” that permits 

small, unimportant features that may lead to poorly shaped elements or meshing failures 

to be abstracted away easily. Virtual topology can be used effectively to simplify the 

surface representation of a model without modifying the underlying geometry. A good 

boundary mesh is important since it affects the tetrahedral meshing success rate and mesh 

quality. 

The virtual model created allows unimportant details (vertices and edges) to be ignored 

during meshing. In effect, ABAQUS/CAE creates a simpler, virtual representation of the 

part and applies the mesh to that representation. Using virtual topology, virtual features 

can be created very quickly. Virtual topology increases the range of parts that can be 

meshed and increases the usability of the resulting mesh.  
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4.1 USER SUBROUTINES IN ABAQUS: 

 

User subroutines are provided to increase the functionality of several ABAQUS options 

for which data line usage alone may be too restrictive. They are written as FORTRAN 

code and must be included in a model through an execution command line option. A 

subroutine is a procedure whose purpose is to produce some side effect, such as 

modifying a set of arguments and/or global variables, or performing input/output. For 

example, a subroutine is invoked either with a call statement or as a defined assignment. 

For example, a call statement or a defined assignment to invoke a subroutine of the form 

*MPC, USER, MODE=NODE (MPC stands for multi point constraint). User subroutines 

provide an extremely powerful and flexible tool for analysis. ABAQUS uses * keywords 

for various operations to be carried out in model generation through an input file. *MPC 

option is used to impose constraints between different degrees of freedom of the model. 

Including the USER and MODE parameters on the *MPC option, indicates that multi-

point constraints will be defined in user subroutine *MPC in nodal mode. (ABAQUS 

Standard User’s Manual) 

 

A subroutine defines a complete process and is self contained. It has an initial subroutine 

statement, a specification part, an execution part that comprises the algorithm, any 

internal procedures that perform ancillary processes, and an END statement. When a 

subroutine is invoked, its execution begins with the first executable construct in the 

subroutine. Data objects and other entries may be communicated to and from the 

subroutine through argument association, host association, or common storage 
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association. One or more user subroutines can be included in a model by using the user 

option on the abaqus execution procedure to specify the name of a fortran source or 

object file that contains the subroutines. 

 

4.2 NEED FOR USER SUBROUTINE IN THESE MODELS: 

 

Boundary conditions have to be enforced on the rift surfaces which enable the surfaces on 

either side of the rift to move as a single surface during loading and to move in equal and 

opposite directions during rifting. The boundary conditions need to be ON during loading 

steps and have to be OFF during the rifting steps. In other words, the boundary conditions 

on the rift surfaces need to be ON or OFF subject to the time step during analysis. To 

accomplish this requirement in the model we make use of user-subroutine. Here the 

subroutine is coded to specify equal and opposite motion during rifting and single surface 

motion during loading thus accomplishing the ON and OFF conditions during different 

steps in the processing. The ON and OFF conditions during different steps in the 

processing are therefore enforced using the subroutine. 
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4.2a What Does The Subroutine Do? L L 

 
 
 
 
 
 
 
 
 
 
 
 
         Up 
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FIG 4.2a Schematic model 

 

The above figure helps us in understanding what the subroutine does in more detail. It is 

the front view of a block with a rift in the middle and has velocity boundary conditions 

applied on either side. During analysis we have cyclic loading and rifting steps. During 

loading the nodes on both the rift surfaces should be moving in the same direction as if 

they are in tied contact. During rifting the nodes on the fault surfaces should move apart 

equally but in opposite directions 

 

 Thus, when the second cycle of loading starts, though the two blocks are apart by a 

distance D, they should be acting as if they are in tied contact.  The blocks will be 

stressed while loading, and will move in the same direction. When the second rift takes 

place the stress is released and the blocks move apart by a distance 2D. 
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To enforce these multi point constraints on the rift surfaces we have developed a *MPC 

user subroutine which does the above task. 

 

4.3 MULTI-POINT CONSTRAINT USER SUBROUTINES (*MPC) 

 

There are two methods for coding this routine, depending on the value of the MODE 

parameter on the *MPC option. If MODE=DOF (the default value), the subroutine 

operates in a degree of freedom mode. In this mode each call to this subroutine allows 

one individual degree of freedom to be constrained. If MODE=NODE, the subroutine 

operates in a nodal mode. In this mode each call to this subroutine allows a set of 

constraints to be imposed all at once; that is, on multiple degrees of freedom for the 

dependent node. In either case, the routine will be called for each *MPC constraint or set 

of constraints (ABAQUS Standard User’s Manual). 

 

In this study, we make use of the NODE  mode as we have to impose a set of constraints 

all at  once. The set of constraints can be quite general and nonlinear.  The constraints 

have the form 

 

fi(u1,u2,u3,........,uN,  geometry, temperature, field variables) = 0  i = 1,2,....,NDEP, 
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where NDEP is the number of dependent degrees of freedom that are involved in the 

constraint and should have a value between 1 and MDOF, which is the number of active 

degrees of freedom per node in the analysis (ABAQUS/Standard User’s Manual 20.2.2).  

The constraint equation for the model during RIFTING is: 

 

(ui)Master =  - (ui)Slave 

The constraint equation for the model during LOADING is:

 

(ui)Master =  (ui)Slave 

 

4.3a Variables To Be Defined: 

User must provide two items of information in subroutine *MPC. The first being a matrix 

of degree of freedom identifiers [JDOF(MDOF,N)] at the nodes that are listed on the 

corresponding *MPC constraint data line and the second being the matrices representing 

the linearized constraint function with respect to the degrees of freedom involved 

[A(MDOF,MDOF,N)]. Matrices are defined in the section to follow.

 

JDOF(MDOF,N) 

Matrix of degrees of freedom identifiers at the nodes involved in the constraint. Before 

each call to the user-subroutine *MPC, ABAQUS will initialize all of the entries of JDOF 

to zero. All active degrees of freedom for  a given column (first index ranging from 1 to 

MDOF)  must be defined starting at the top of the column  with no zeros in between. A 

zero will mark the end  of  the list for  that column. The number of nonzero entries  in  
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the first column will implicitly determine the number of dependent degrees of freedom 

(NDEP).  

 

A(MDOF,MDOF,N) 

Submatrices of coefficients of the linearized constraint function. Before each call to the 

user-subroutine *MPC, ABAQUS will initialize all of the entries of A to zero; therefore, 

only nonzero entries need to be defined.  

 

4.3b User Subroutine Interface: 

 

The subroutine interface is as follows: 

SUBROUTINE MPC(UE,A,JDOF,MDOF,N,JTYPE,X,U,UINIT,MAXDOF, 

* LMPC,KSTEP,KINC,TIME,NT,NF,TEMP,FIELD,LTRAN,TRAN) 

C 

INCLUDE 'ABA_PARAM.INC' 

C 

DIMENSION UE(MDOF),A(MDOF,MDOF,N),JDOF(MDOF,N),X(6,N), 

* U(MAXDOF,N),UINIT(MAXDOF,N),TIME(2),TEMP(NT,N), 

* FIELD(NF,NT,N),LTRAN(N),TRAN(3,3,N) 

      user coding to define JDOF, UE, A and, optionally, LMPC 

RETURN 

END (ABAQUS/Standard User’s Manual, Version6.3, 20.2.2) 
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4.3c Variables Passed In For Information: 

 

MDOF: Number of active degrees of freedom per node in the analysis.  

 

N: Number of nodes involved in the constraint. The value of N is defined as the number 

of nodes given on the corresponding *MPC data line. 

 

JTYPE: Constraint identifier given on the corresponding *MPC data line. (i.e MODE= 

NODE or OFF ). 

 

X(6,N): An array containing the original coordinates of the nodes involved in the 

constraint. 

 

U(MAXDOF,N): An  array containing  the values of  the  degrees of  freedom at  the  

nodes involved in the constraint. These values will either be the values at the end of the 

previous iteration or the current  values  based on  the  linearized  constraint equation, 

depending at which stage of the iteration the user subroutine is called. 

 

UINIT(MAXDOF,N): An  array containing  the values of the degrees of freedom  at  the 

nodes involved  in  the constraint at  the beginning of the current iteration. This 

information is useful for decision-making purposes when the user does not want the 

outcome of a decision to change during the course of an iteration.  
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MAXDOF: Maximum degree of freedom number at any node in the analysis. For 

example, for a thermally coupled analysis with continuum elements, MAXDOF is equal 

to 11. 

 

KSTEP: Step number. 

 

KINC: Increment number within the step. 

 

TIME(1): Current value of step time. 

 

TIME(2): Current value of total model time.  

 

These definitions can be found in ABAQUS/Standard User’s Manual, Version6.3, 20.2.2. 

 

4.4 USER INPUTS TO USER SUBROUTINE: 

 The matrix of degree of freedom identifiers [JDOF(MDOF,N)] and the matrices 

representing the linearized constraint function with respect to the degrees of freedom 

involved [A(MDOF,MDOF,N)] for the coded user-subroutine are defined for different 

steps as follows. 

 

4.4a During Loading: 

The constraint equations are generated based on the model behavior during loading and 

rifting steps. During loading the displacement on the master and slave surfaces are equal 
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and in the same direction. The model is pulled apart on either side by the far-field 

boundary conditions and as the model is loaded the displacements on the nodes on the 

master and slave move in the same direction. 

 

The constraint equations during loading are:  

 

f1 (um, us) = um
X – us

X = 0 

f2 (um, us) = um
Y – us

Y = 0 

f3 (um, us) = um
Z – us

Z = 0 

 

where superscript ‘m’ represents the master surface and superscript ‘s’ represents the 

slave surface.  

 

 Sub-matrices of coefficients of the linearized constraint function are as follows 

 

1    0    0 

             A(1:3, 1:3, 1) =                0    1    0 

0    0    1 

 

-1    0    0 

             A(1:3, 1:3, 2) =                 0    -1    0 

  0    0    -1 
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Matrix of degrees of freedom identifiers at the nodes involved in the constraint are : 

JDOF(1:3, 1)  =  JDOF(1:3, 2)  =  [1 2 3 ]T 

 

4.4b During Rifting: 

 

During rifting the displacement on the master and slave surfaces are equal and opposite. 

The model is pulled apart on either side by the far-field velocity boundary conditions 

resulting in the displacement of the master and slave nodes when the rift opens. 

 

 The constraint equations are  

f1 (um, us) = um
X + us

X = 0 

f2 (um, us) = um
Y + us

Y = 0 

f3 (um, us) = um
Z + us

Z = 0 

 

Sub-matrices of coefficients of the linearized constraint function are as follows 

 

1    0    0 

             A(1:3, 1:3, 1) =                0    1    0         = A(1:3, 1:3, 2) 

0    0    1 

Matrix of degrees of freedom identifiers at the nodes involved in the constraint are : 

 

JDOF(1:3, 1)  =  JDOF(1:3, 2)  =  [1 2 3 ]T 
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RESULTS & DISCUSSION 

 

Various experiments have been carried out to study the cycle-up process over multiple 

rifting event models and how long it takes to reach the steady state stress. The Earth is 

not at zero stress and hence the Earth processes should be modeled at a steady state stress 

value. This is not always the case. The target of this study is to investigate increasingly 

complex rift models. Experiments conducted include models with different rift patterns 

by ascending degree of complexity. The motivating factors that contributed to this study 

are: 

 

• Identification of various factors that contribute to model cycle-up. 

• Evaluation of effects of changes in rheology, far-field boundary conditions, and 

fault/rift pattern on model cycle-up. 

• Quantification of variations in model cycle-up time and steady state stress at 

different location in the model. 

 

The highlights of the experiments conducted are: 

• ABAQUS/Standard is the modeling and analysis tool used. 

• A *MPC user-subroutine is developed to model multiple rifting events along the 

same rift. 

• Model uses 8-noded linear brick element with reduced integration and hourglass 

control. 

 52



 

• Models are 400 km in rift perpendicular direction, 400 km in rift parallel 

direction, and 800 km in depth. 

• The bottom of each rift is 120 km in depth. 

• A loading step takes 200 yrs and the corresponding rifting step takes 20 yrs. 

• A viscosity value of ~ 1.2 * 1019 Pa-s is used in all the models considered. 

• Pre- and Post-Processing is done in MATLAB and ABAQUS environments. 

• The model is automatically generated from geologically based user-defined 

parameters. 

• The Bottom of the model is allowed to move in the vertical direction so that 

Poisson’s effects are present. 

• All layers below the rupture surface have same rheology. This is the case for all 

the models. 

• In the experiments conducted we have studied 8 loading steps and 8 rifting steps. 

The analysis is carried out in 16 cycles. 

 
The following contour plots give stress in terms of Mises Stress. The definition of Mises 

Stress is given below: 

 

 
 
 
where sigma1, sigma2, and sigma3 are the principal stresses. 
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5.1 EXPERIMENT 1: STRAIGHT RIFT MODEL 

he straight rift model is the simplest model under consideration. The rift pattern runs 

re 5.1b 

s 

 

T

parallel to the east- west boundaries and is perpendicular to the far-field velocity 

boundary conditions. The figure 5.1a better explains the model assembly and figu

shows the orientation of the rift pattern on the surface of the earth i.e in mapview. All 

layers below the rupture surface have the same rheology. This is the case for all model

discussed in this thesis. 

 

 

 

FIG 5.1a   Straight Rift Model Assembly 
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FIG 5.1b   Top View of Straight Rift Model 

 

FIG 5.1c Shaded Model with Loads and Boundary Conditions 
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Figure 5.1c represents the velocity and displacement boundary conditions applied on the 

model. The model has a velocity BC applied in the 1-direction, and is free to move in 2-

direction to account for Poisson’s effect. The displacement in the 3- direction (North-

South) is constrained as there is infinite material on the sides of the model. 

 

Figure (FIG 5.1d) is the meshed model. We have used C3D8R element. It is a 8-node 

linear brick, reduced integration with hourglass control. The model is meshed uniformly 

and with a small seed* number resulting in a fine mesh. 

 

 

 

FIG 5.1d Meshed Model 
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Figure 5.1e represents the model at the end of the initial equilibrium step and beginning 

of the first loading step. At the start of the first loading step the whole model is at a zero 

stress as shown on the left hand top corner of FIG 5.1e, confirming proper initial 

condition for the analysis. 

 

Figure 5.1f represents the Mises stresses at the end of the first loading step and beginning 

of the first rifting step. The significance of this plot is to determine the proper functioning 

of the user-subroutine. During the first loading step the model stays shut (does not rift) 

and nodes on both sides of the rift move in the same direction i.e remain on the line of 

symmetry. 

 

 

FIG 5.1e Model at the End of the Initial Step 
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FIG 5.1f  Model Mises Stresses at the End of the 1st Loading Step 

 

FIG 5.1g  Model Mises stresses at the End of the 8th Rifting Step 
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Figure 5.1g is a contour plot of Mises stress distribution at the end of the eighth rifting 

step. The distribution of the stresses around the model are studied through these contour 

plots and similar plots can be used to monitor the distribution of stress in various steps of 

the analysis. 

 

Figure 5.1h represents the stress contours on the crustal surface of the straight rift model. 

It is the top view of the rift pattern showing the detailed Mises stress distribution on the 

top surface of the model at the end of the 16th step. 

 

 

FIG 5.1h  Top View of the Rift/Fault with Mises Stresses at the End of 8th Rifting Step 

 

Figure 5.1i represents the displacement of the nodes on either side of the rift pattern 

during the 16 step analysis. This plot helps to better understand the cycle-up process and 
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function of the user-subroutine. The first horizontal line in the plot shows that the rift is 

tied together in the 1st loading step and displacements are in the same direction. As the 

rift is oriented symmetrically on the surface, the nodes remain in the same location. 

During the 1st rifting step the nodes on either side of the rift displace in the same 

magnitude but in the opposite direction, i.e the rift opens. The cycle-up of the model and 

functionality of the subroutine is emphasized by the symmetry in the repetitive steps. 

 

 

FIG 5.1i  Displacement of the Nodes on the Rift During the 16 Step Analysis 

 

Figures 5.1j, 5.1k, and 5.1l represent the Time Vs Mises Stress distribution during the 16 

step analysis (8 loading and 8 rifting cycles) of the entire model at different locations. 

They represent the steady state stress attained and the number of cycles it took to reach 

the steady state stress. 
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Figure 5.1j represents steady State Mises Stress and the number of cycles it took to reach 

the steady state stress at right hand bottom node on the front face of the model. The 

steady state Mises stresses for this node is 23.5e10-3 MPa and its corresponding cycle 

time is 10 cycles (i.e 5 loading steps and 5 rifting steps). 

 

 

FIG 5.1j  Cycle-Up and Subsequent  steady State Mises Stress for the Right Hand Bottom 
Node on the Front Face of the Model. 

 
 

Figure 5.1k represents steady State Mises Stress and the number of cycles it took to reach 

the steady state stress for the node located at the base of the rift (120 km) on the front 

face of the model. The steady state Mises stresses for this node are 0.9 MPa and its 

corresponding cycle time is 8 cycles (i.e 4 loading steps and 4 rifting steps). 
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Figure 5.1l represents steady State Mises Stress and the number of cycles it took to reach 

the steady state stress for the node located in the middle of the front face of the model. 

The depth of this node is 350 km below the tip of the rift on the front face of the model. 

The steady state Mises stresses for this are 21.0e10-3 MPa and its corresponding cycle 

time is 4 cycles (i.e 2 loading steps and 2 rifting steps). The difference between cycles 

and steps will not be defined again for later models. 

 

 

 
 
FIG 5.1k Cycle-Up and Subsequent  Steady State Mises Stress for a Node Located at the 

Base of the Rift on the Front Face of the Model. 
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FIG 5.1l  Cycle-Up and Subsequent  Steady State Mises Stress for a Node Located in the 

Middle of the Front Face of the Model. 
 
 
 
5.2 EXPERIMENT 2: INCLINED RIFT MODEL 
 
 
 
Moving to a moel with greater complexity are the inclined rift models. In an inclined rift 

model the rift is oriented at an angle to the far-field velocity boundary conditions. Plots  

from 5.2a to 5.2 l in this experiment are similar to the those expained in the straight rift 

model. 
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FIG 5.2a    Inclined Rift Model Assembly 

 

FIG 5.2b   Top View of the Inclined Rift Model 
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FIG 5.2c Shaded Model with Loads and Boundary Conditions 

 
 

FIG 5.2d  Meshed Model 
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FIG 5.2e  Final Deformation of the Model at the End of the 16th Step. 
 

 
 

FIG 5.2f  Model Mises Stresses at the End of the 1st Loading Step 
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FIG 5.2g  Model Mises stresses at the End of the 8th Rifting Step 

 
 

FIG 5.2h Top View of the Rift/Fault with Mises Stresses at the End of 8th Rifting Step 
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FIG 5.2i Displacement of the Nodes on the Rift During the 16 Step Analysis 

 

Figure 5.2i gives displacement of each node on the fault but differs from the straight fault 

model because of asymmetry. Some nodes move in one direction during loading and the 

opposite direction during rifting. Initially we have nodes on either sides of the line of 

symmetry and that is the reason why displacements are of different slopes. 

 

Figures 5.2j, 5.2k, and 5.2l represent the Time Vs Mises Stress distribution during the 16 

step cycle (8 loading and 8 rifting steps) of the entire model at different locations. They 

represent the steady state stress attained and the number of cycles it took to reach the 

steady state stress. 
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Figure 5.2j represents steady State Mises Stress and the number of cycles it took to reach 

the steady state stress for the right hand bottom node on the front face of the model. The 

steady state Mises stresses for this node is 19.5e10-3 MPa and its corresponding cycle 

time is 12 cycles. 

 

 
 
FIG 5.2j  Cycle-Up and Subsequent  steady State Mises Stress for the Right Hand Bottom 

Node on the Front Face of the Model. 
 

 

Figure 5.2k represents steady State Mises Stress and the number of cycles it took to reach 

the steady state stress for the node located at the base of the rift on the front face of the 

model. The steady state Mises stresses for this node is 1.25 MPa and its corresponding 

cycle time is 14 cycles. 

 

 69



 

Figure 5.2l represents steady State Mises Stress and the number of cycles it took to reach 

the steady state stress for the node located in the middle of the front face of the model. 

The steady state Mises stresses for this node is 22.05e10-3 MPa and its corresponding 

cycle time is 6 cycles. 

 

 

 
 
FIG  5.2k Cycle-Up and Subsequent  Steady State Mises Stress for a Node Located at the 

Base of the Rift on the Front Face of the Model. 
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FIG 5.2l  Cycle-Up and Subsequent  Steady State Mises Stress for a Node Located in the 

Middle of the Front Face of the Model. 
 
 
 
5.3 EXPERIMENT 3:  INTERSECTING RIFT MODEL 
 
This experiment is conducted to better understand the behavior of intersecting rifts. We 

have considered two individual rift patterns intersecting at a point. This drives the 

complexity to a higher level. We have used virtual topology to generate a better mesh to 

handle the meshing issues more thoroughly. Using virtual topology we have generated 

the same corresponding nodes on either side of the rift to ensure proper functionality of 

the user-subroutine.  Plots in this experiment are similar to the those explained in the 

experiment 1. The middle pattern in the displacement plot (fig 5.3i) represents the 

displacement of the nodes along the angular rift pattern. The pattern on the top and 

bottom represents the displacement of the nodes on the east and west sides of the straight 

part of the rift. 
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FIG 5.3a Intersecting Rift Model Assembly 
 

 
FIG 5.3b  Top View of the Intersecting Rift Model 
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FIG 5.3c  Model with Loads and Boundary Conditions 

 

FIG 5.3d  Meshed Model Using Virtual Topology 
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FIG 5.3e  Final Deformation of the Model at the End of the 16th Step. 
 

 
 

FIG 5.3f  Model Mises Stresses at the End of the 1st Loading Step 
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FIG 5.3g Model Mises stresses at the End of the 8th Rifting Step 

 
 

FIG 5.3h  Top View of the Rift/Fault with Mises Stresses at the End of 8th Rifting Step 
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FIG 5.3i  Displacement of the Nodes on the Rift During the 16 Step Analysis 

 

Figures 5.3j, 5.3k, and 5.3l represent the Time Vs Mises Stress distribution during the 16 

step cycle (8 loading and 8 rifting steps) of the entire model at different locations. They 

represent the steady state stress attained and the number of cycles it took to reach the 

steady state stress. 

 

Figure 5.3j represents steady State Mises Stress and the number of cycles it took to reach 

the steady state stress for the right hand bottom node on the front face of the model. The 

steady state Mises stresses for this node is 22.5e10-3 MPa and its corresponding cycle 

time is 14 cycles. 
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FIG 5.3j  Cycle-Up and Subsequent  steady State Mises Stress for the Right Hand Bottom 

Node on the Front Face of the Model. 
 

 

Figure 5.3k represents steady State Mises Stress and the number of cycles it took to reach 

the steady state stress for the node located at the base of the rift on the front face of the 

model. The steady state Mises stresses for this node is 1.3 MPa and its corresponding 

cycle time is 16 cycles. 

 

Figure 5.3l represents steady State Mises Stress and the number of cycles it took to reach 

the steady state stress for the node located in the middle of the front face of the model. 

The steady state Mises stresses for this node is 33.0e10-3 MPa and its corresponding cycle 

time is 14 cycles. 
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FIG 5.3k  Cycle-Up and Subsequent  Steady State Mises Stress for a Node Located at the 

Base of the Rift on the Front Face of the Model. 
  

 
 
FIG 5.3l  Cycle-Up and Subsequent  Steady State Mises Stress for a Node Located in the 

Middle of the Front Face of the Model. 
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5.4 EXPERIMENT 4:  BOX RIFT MODEL 
 
 

This model increases the complexity and is important for further development of Iceland 

models that have similar geometries. The box rifting problem has a rift pattern close to 

the 1st order model Dr. Kenner and Dr. Simons would compare to real data. In these 

models we have a straight rift intersected at two different location by “U” rift pattern. 

These models help us understand rifting issues that involve corners, multiple polygons, 

and intersecting rifts. 

 

 

 
 

FIG 5.4a  Box Rift Model Assembly 
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FIG  5.4b Top View of the Box Rift Model 

 
 

 
 

FIG 5.4c  Model with Loads and Boundary Conditions 
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FIG 5.4d  Meshed Model 

 
 

FIG 5.4e  Final Deformation of the Model at the End of the 16th Step. 
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FIG 5.4f  Top View of the Model Mises Stresses at the End of the 1st Loading Step 

 

FIG 5.4g  Model Mises stresses at the End of the 8th Rifting Step 
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FIG 5.4h  Top View of the Rift/Fault with Mises Stresses at the End of 8th Rifting Step 

 

FIG 5.4i  Displacement of the Nodes on the Rift During the 16 Step Analysis 
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Figure 5.4i is similar to figure 5.3i. The top and bottom lines represent displacements 

along the straight fault segment and the middle displacement comes from the nodes along 

the sides of the box. 

Figures 5.4j, 5.4k, and 5.4l represent the Time Vs Mises Stress distribution during the 16 

step cycle (8 loading and 8 rifting steps) of the entire model at different location. They 

represent the steady state stress attained and the number of cycles it took to reach the 

steady state stress. 

Figure 5.4j represents steady State Mises Stress and the number of cycles it took to reach 

the steady state stress for the right hand bottom node on the front face of the model. The 

steady state Mises stresses for this node is 21.25e10-3 MPa and its corresponding cycle 

time is 14 cycles. 

 

 
 
FIG 5.4j  Cycle-Up and Subsequent  steady State Mises Stress for the Right Hand Bottom 

Node on the Front Face of the Model. 
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Figure 5.4k represents steady State Mises Stress and the number of cycles it took to reach 

the steady state stress for the node located at the base of the rift on the front face of the 

model. The steady state Mises stresses for this node is 1.75 MPa and its corresponding 

cycle time is 10 cycles. 

 

Figure 5.4l represents steady State Mises Stress and the number of cycles it took to reach 

the steady state stress for the node located in the middle of the front face of the model. 

The steady state Mises stresses for this node is 19.25e10-3 MPa and its corresponding 

cycle time is 14 cycles. 

 

 

 
 
FIG 5.4k  Cycle-Up and Subsequent  Steady State Mises Stress for a Node Located at the 

Base of the Rift on the Front Face of the Model. 
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FIG 5.4l  Cycle-Up and Subsequent  Steady State Mises Stress for a Node Located in the 

Middle of the Front Face of the Model. 
 

5.5 EXPERIMENT 5&6:  SKEWED RIFT MODEL & DOUBLE KINK MODEL: 
 
 

 
FIG 5.5a Skewed Rift Model 
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FIG 5.5b Double Kink Model 

 
 
These models were also successfully run but for expediency the results are not shown 

here. 

 
 
In summary the stress in all models at the downward tip of the rift is highest. This result 

is expected. As for cycle-up times there is no clear trend. These cycle-up times clearly 

depend on the geometry of the model and rheology of the model at various depths. 
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6.1 CONCLUSIONS: 
 
 
 
 
The steady state Mises stresses for the node located at the right hand bottom of the 

models considered in experiments 1, 2, 3, and 4 are 23.5e10-3 MPa, 19.5e10-3 MPa, 

22.5e10-3 MPa, and 21.25e10-3 MPa respectively. Their corresponding cycle times are 10 

cycles, 12 cycles, 14 cycles and 14 cycles. Reference FIG 5.1j, 5.2j, 5.3j, and 5.4j 

 

The steady state Mises stresses for the node located at the base of the rift (120 km) on the 

front face of the models considered in experiments 1, 2, 3, and 4 are 0.9 MPa, 1.25 MPa, 

1.3 MPa, and 1.75 MPa respectively. Their corresponding cycle times are 8 cycles, 14 

cycles, 16 cycles and 10 cycles. Reference FIG 5.1k, 5.2k, 5.3k, and 5.4k 

 

The steady state Mises stresses for the node located in the middle of the front face of the 

models considered in experiments 1, 2, 3, and 4 are 21.0e10-3 MPa, 22.05e10-3 MPa, 

33.0e10-3 MPa, and 19.25e10-3 MPa respectively. Their corresponding cycle times are 4 

cycles, 6 cycles, 14 cycles and 14 cycles. Reference FIG 5.1l, 5.2l, 5.3l, and 5.4l. 

 

 

Based on the above study and all the experiments conducted we conclude that: 

• Different locations in the model have different cycle-up times and steady state 

stress values. These values are a function of model geometry; however stresses at 

the fault tip as expected are always larger than other locations in the model. 
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• Changes in Rheology, far-field boundary conditions, and rift/fault pattern causes 

variation in cycle-up time and steady state stress value at different locations in the 

model. 

 

• Multiple rifting events can be successfully modeled using an ABAQUS *MPC 

user-defined subroutine. 

 

• Complex rifting patterns, as required for Iceland models, can be successfully 

modeled using ABAQUS, User-Subroutine, and Virtual topology. 

 

• Actual discrete rifting events, as described in this document, are the first of their 

kind. 
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7.1 FUTURE WORK: 
One thing that can be said about this project is that, it is never ending. There are many 

factors that are still to be considered and have to be dealt in detail. These include 

complexity in the rift/fault pattern in Iceland, the orientations of the rift/fault, the force 

exerted by the upcoming magma beneath the rift/fault, proper far-field boundary 

conditions and many others. 

The efforts we have made towards future work include working on models of greater 

complexity to more fully describe the tectonics of Iceland are as seen below. Based on 

Dr. Shelley J. Kenner and Dr. Mark Simons work we have the capabilities to develop this 

model. Below is the 1st order model that Kenner and Simons will use to compare with 

real data. If this works the order of complexity could even get more precise and march 

toward reality. 

 

FIG 7.1 Model with a complex rift pattern. 
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The 1st order model (fig.7.1) is generated from the following sub-assemblies. They are 

East part, West part, SJuncS, SJuncN, NJuncS, NJuncN, and Non-seismogenic zone is 

located beneath these sections. 

 

 

 

 

 
 
 

FIG 7.2 Parts of the complex model 
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Appendix A 
 

GLOSSARY: 
 

Asthenosphere: The shell within the earth, some tens of kilometers below the surface 

and of undefined thickness, which is a shell of weakness where plastic movements take 

place to permit pressure adjustments. It is located beneath the lithosphere. 

Basalt: A Volcanic rock (or lava) that characteristically is a medium-gray to black 

igneous rock, contains 45% to 54% silica, and generally is rich in iron and magnesium. 

Basalt is world’s most abundant lava and is the chief constituent of isolated oceanic 

islands. 

 

Dike: A sheet like body of igneous rock that cuts across layering or contacts in the rock 

into which it intrudes. 

Fissures: Elongated fractures or cracks on the slopes of a volcano. Fissure eruptions 

typically produce liquid flows, but pyroclastics may also be ejected. 

Flood Basalt: Extremely fluid basaltic lava that erupts as a series of horizontal flows in 

rapid succession (geologically), covering vast areas; generally believed to be the product 

of fissure eruption. Flood basalts are extruded along mid-oceanic ridges during crustal 

extension. 

Generation of Magma: The temperature of the mantle is lower than its melting point. 

Hence the mantle is usually solid. If there is a hot mass of mantle , the specific gravity of 
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the mass is slightly lighter than the surrounding part, and it gradually goes up. Because 

the mantle is of low heat-conductivity it is not easy to conduct heat. The mass of mantle 

hardly cools while it rises up, this a called adiabatic rising. Continuing to rise up, it 

would finally begin to melt and this is how magma is generated. 

Graben: An elongate crustal block that is relatively depressed (downdropped) between 

two fault systems. 

Hot Spot: A heat source or a volcanic center deep with in the earth’s mantle, 60 to 120 

miles (100 to 200 km) across and persistent for at least a few tens of million of years. It is 

thought to be the surface expression of a persistent rising plume of hot mantle material.  

Hot-spot Volcanoes: Volcanoes related to a persistent heat source in the mantle. 

Hyaloclastite: A deposit formed by the flowing or intrusion of lava or magma into water, 

ice, or water-saturated sediment and its consequent granulation or shattering into small 

angular fragments. 

Igneous Rock: One of the main groups of rocks that comprise the earth’s  crust. The 

constitute about 15% of the earth’s surface, and are formed of molten material(magma) 

that flows up from the deeper part of the crust. 

Lava: Magma which has reached the surface through a volcanic eruption. The term is 

most commonly applied to streams of liquid rock that flow from a crater or fissure. It also 

refers to cooled and solidified rock. 
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Left Lateral: If you were to stand on the fault and look along its length, this is a type of 

strike-slip fault where the left block moves toward you and the right block moves away. 

Lithosphere: The rigid crust and uppermost mantle of the earth. Thickness is on the 

order of 60 miles (100 km). Stronger than the underlying asthenosphere. 

Mantle Plume: A persistent column of magma rising upwards from the earth’s mantle to 

the crust; it appears to be the main contributing factor to hot spots. 

Magma: Molten rock beneath the surface of the earth. 

Mid-ocean Ridge: A continuous feature that extends through the Atlantic, Indian, 

Antarctic, and South Pacific Oceans, the Norwegian Sea, and the Arctic Basin. It’s the 

greatest mountain range on the earth, with a total distance of over 35,000 miles. Magma 

is extruded at these location to form new lithosphere. 

Mid-Atlantic Ridge: It is that portion of the mid-oceanic ridge which lies within the 

Atlantic Ocean. Occasionally, the ridge reaches above the ocean surface as islands or 

reefs as in Iceland. 

Slow-spreading: According to plate tectonics, when two crustal plates separate, basaltic 

material wells up through the spreading center and produces a ridge. Rapid separation of 

plates builds ridges with gentle slopes and broad elevations, such as those of East Pacific 

Rise. The steep flanks of the Mid-Atlantic Ridge were formed by slow spreading. 

 96



 

Shield Volcano: A gently sloping volcano, resembling a flattened dome. It is built by 

flows of very fluid basaltic lava erupted from numerous, closely placed vents and 

fissures. It is generally of smaller area than a flood basalt. 

Ridge: An elongate , narrow, steep-sided elevation of the earth’s surface or the ocean sea 

floor. A major submarine mountain range.  

Right Lateral: If you were to stand on the fault and look along its length, this is a type of 

strike-slip fault where the right block moves toward you and the left block moves away. 

Rifting: Rifting is the process by which the continental lithosphere stretches. A 

Continental rift is the belt or zone of the continental lithosphere where the extensional 

deformation (rifting) is occurring.  These zones have important consequences and 

geological features, and if the rifting is successful, lead to the formation of new ocean 

basins. 

Rift System: The oceanic ridges formed where tectonic plates are separating and a new 

crust is being created; also, their on-land counterparts such as the East African Rift.  

Rift Valley: A valley that was developed along a tectonic rift resulting from plate 

separation. Where the plates are separating rapidly, as along the East Pacific Rise, the rift 

is filled by magma that wells up to form a new sea floor that migrates along the sloping 

flanks on either side of the original fissure. When separation of the plates is slower, as 

along the Atlantic and Indian ridges, the up welling magma doesn’t cover over the 

fissure; instead, it adheres to the trailing edge of the plate on either side of the rift, 

creating precipitous scraps* on each side. The original rift has now become a rift valley, 
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which marks the center of the ridge. The deep cleft along the crest of the mid-oceanic 

ridge is called the mid-ocean rift. 

Rift Zone: A zone of volcanic features associated with underlying dikes. The location of 

the rift is marked by cracks, faults, and vents. 

 

REFERENCE: 

1. The facts on file dictionary of Geology and Geophysics by Dorothy Farris 

Lapidus; Donald Coates, Ph.D 

2. McGraw-Hill Dictionary of Earth Science by Sybil P. Parker 

3. U.S Geological Survey.(www.usgs.gov) 
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Appendix B 
 

% USRMKTSTMPVW  is user input file where the specifications of the model to be  

%  generated are given by the user 

 

%  X-direction assumed to run E-W (+1 direction is east) 

%  Y-direction assumed to run UP-DOWN (+2 direction is up) 

%  Z-direction assumed to run N-S (+3 direction is south) 

 

% Specify required model parameters with origin (0,0,0) being at the center of the top          

% rectangular face as shown. 

%                                                           North  (+z) 
%                                                                                              Origin(0,0,0) 
% 
% 
%                  West                                                      East 
%         
%                    (-x)                                                       (+x)          
% 
% 
% 
%                                                          South  (-z) 
% 
 
 
% Specify the corners of the rectangle 

 

xmax =       ; 

xmin = -     ; 

zmax =       ; 

zmin = -     ; 
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% Enter the depth to the base of the model 

 

ymin = -    ; 

 

% Specify the crustal depth with respect to the top surface 

 

pcrstdpth =   ; 

 

% Specify the number of layers in the non-seismogenic zone 

 

nlyrs =  ; 

 

% Specify the crack pattern by entering the point list in an M*2 matrix form which  

% results in the entire crack inclusive of the top face corner points. 

% 

% 
%                               1(-5,5)       2(-3,5)                               10(5,5) 
%                               
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
%                                8(-5,-5)                     7(1,-5)                9(5,-5) 

6(2,-2) 

5(-2,-1) 

4(3,2) 

3(-1,2) 
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% Example:   ptlst = [-5,5; … 
%                                -3,5; … 
%                                -1,2; … 
%     3,2; … 
%                                -2,-1; … 
%                                 2,-2; … 
%         1,-5; … 
%                                -5,-5; … 
%        5,-5; … 
%    5,5]; 
% 
 
 
ptlst = [        ]; 
 
 
% Specify the connectivity matrix which defines the connectivity of each cell, with the       

%  eastern most cell defined at the bottom. 

 
% Example:  connect  =  [01,02,03,05,06,07,08,00,00; … 
%                                      03,04,05,00,00,00,00,00,00; … 
%                                      02,10,09,07,06,05,04,03,00]; 
% 
 
connect =  [                  ]; 
 
% Specify the point list of the layers in the non-seismogenic zone in N*2 matrix form 

%lyrptlst  =  [                ]; 

 
 
% Specify the depths of the layers in the non-seismogenic zone in 1*N matrix form 
 
dpths  =  [                ]; 
 
 
% Specify the crack tip depth 
 
deltacarck  =        ; 
 
% Specify the rheology of each layer in the non-seismogenic  zone from rheology 1 till 

%  rheology(n+1) 
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% Number of  rheologies in the non-seismogenic zone will be no:of layers+1 (i.e) n+1. 

 
Rheology1 
 E = 
 η = 
 ν = 
 
% Till 
 
Rheology(n+1) 
 E = 
 η = 
 ν = 
 
 
% Specify the rheology of each cell in the crustal layer from rheology cell1 till 

%  rheology cell(k) 

% Number of  cell will be the no:of rows(k) in the connect matrix. 

 
 
Rheology cell1 
 E = 
 η = 
 ν = 
 
% Till 
 
Rheology cell(k) 
 E = 
 η = 
 ν = 
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Appendix C 
  

GEOLOGICAL TIME SCALE 
 

(mya = million years ago)  

Cenozoic Era  
(65 mya to 
today) 

Quaternary (1.8 mya to today) 
       Holocene (10,000 years to today) 
       Pleistocene (1.8 mya to 10,000 yrs)
Tertiary (65 to 1.8 mya) 
       Pliocene (5.3 to 1.8 mya) 
       Miocene (23.8 to 5.3 mya) 
       Oligocene (33.7 to 23.8 mya) 
       Eocene (54.8 to 33.7 mya) 
       Paleocene (65 to 54.8 mya) 

Mesozoic Era  
(248 to 65 mya) 

Cretaceous (144 to 65 mya) 
Jurassic (206 to 144 mya) 
Triassic (248 to 206 mya) 

Phanerozoic Eon  
(543 mya to 

present)  

Paleozoic Era  
(543 to 248 
mya) 

Permian (290 to 248 mya) 
Carboniferous (354 to 290 mya) 
       Pennsylvanian (323 to 290 mya)  
       Mississippian (354 to 323 mya)  
Devonian (417 to 354 mya) 
Silurian (443 to 417 mya) 
Ordovician (490 to 443 mya) 
Cambrian (543 to 490 mya) 
        Tommotian (530 to 527 mya)  

Proterozoic Era  
(2500 to 543 
mya)  

Neoproterozoic (900 to 543 mya)
       Vendian (650 to 543 mya)  
Mesoproterozoic (1600 to 900 
mya) 
Paleoproterozoic (2500 to 1600 
mya) 

Archaean  
(3800 to 2500 mya) 

Precambrian 
Time 

(4,500 to 543 mya)  

Hadean  
(4500 to 3800 mya)  

 

REFERENCE: 

Geological Society of America (GSA) 1999 Geologic Timescale, compiled by A.R. 
Palmer and J. Geissman -- S. Rieboldt, Nov. 2002. 
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