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 ABSTRACT OF THESIS 

 

LEPTIN RECEPTORS IN CAVEOLAE: REGULATION OF 
LIPOLYSIS IN 3T3-L1 ADIPOCYTES 

 
 
The present study has tested the hypothesis that leptin receptors are localized in caveolae 
and that caveolae are involved in the leptin-induced stimulation of lipolysis in 3T3-L1 
adipocytes. Leptin, a peptide hormone, is secreted primarily by adipocytes and has been 
postulated to regulate food intake and energy expenditure via hypothalamic-mediated 
effects. Exposure to leptin increases the lipolytic activity in 3T3-L1 adipocytes. We 
isolated caveolae from 3T3-L1 adipocytes using a detergent free sucrose gradient 
centrifugation method. Leptin receptors were localized in the same gradient fraction as 
caveolin-1. Confocal microscopic studies demonstrated the colocalization of leptin 
receptors with caveolin-1 in the plasma membrane, indicating distribution of leptin 
receptors in the caveolae. We disrupted caveolae by treating cells with methyl-β-
cyclodextrin and found that leptin induced lipolytic activity was reduced after caveolae 
disruption, indicating an important role of caveolae in the signaling mechanism of leptin. 
 
KEY WORDS: leptin, leptin receptors, caveolae, caveolin-1, 
lipolysis. 
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INTRODUCTION 

 

Background 

Obesity is a major health risk in much of the human population. It is now 

recognized that obesity is a serious, chronic disease. The prevalence of obesity is 

increasing at an alarming rate in developed and developing countries. Obesity is a disease 

that affects nearly one-third of the adult American population (approximately 60 million). 

Each year, obesity causes at least 300,000 excess deaths in the U.S., and healthcare costs 

of American adults with obesity amount to approximately $100 billion. Environmental 

and behavioral changes brought about by economic development and urbanization are 

linked to the rise in global obesity. The morbidities associated with obesity, such as 

cardiovascular disease, type 2 diabetes and osteoarthritis, represent a major health risk to 

the obese population. Physiologically, obesity is a disorder of energy balance. Whenever 

energy intake exceeds energy expenditure, the excess of energy is stored as fat. Energy 

storage and energy expenditure are highly regulated by the complex interactions between 

hormone axes in the periphery, which is ultimately controlled at the level of the central 

nervous system (CNS). Leptin is one of the important regulators in the CNS and the 

periphery.  

Leptin is a 16 kD peptide hormone, synthesized and secreted primarily by 

adipocytes. The word leptin, meaning thin, refers to its anti-obesity effect by regulating 

food intake and energy balance, which is believed to be the primary physiological 

function of the hormone. Its circulating levels show correlation with body mass index and 

the amount of body fat stores (31, 39, 83). Both leptin deficiency (ob/ob mice) and leptin 
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resistance (db/db mice, having a defective leptin receptor) lead to an obese phenotype, 

characterized by hyperphagia and reduced energy expenditure (75, 143). The weight of 

these obese animals stabilizes at 60-70 g, compared with 25-30 g in control littermates 

(figure 1). 

 

Figure 1. Both of these mice (C57BL/6J ob/ob) have mutation in the ob gene. The mouse 

on the right, who received daily injections of leptin, weighed 35 g. while the mouse on 

the left, who did not receive leptin, weighed 67 g. (Adapted from Glick) (160). 

 

Leptin synthesis and its physiological role:  

Leptin is the product of the ob gene that was discovered by Zhang et al. (1994) 

using positional cloning technique (156). The gene is located on chromosome 7 in 

humans and on chromosome 6 in the mouse. The ob gene encodes a protein that shows a 

high degree of homology between these two species. Leptin is primarily synthesized by 

adipocytes, but it is also produced by gastric mucosa, skeletal muscle, mammary 

epithelium, placenta, bone marrow and pituitary (2, 151). Leptin is translated as 167 

amino acid protein with an amino terminal secretory signal sequence of 21 amino acids. 
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This signal sequence is truncated in microsomes and thus leptin circulates in blood as a 

protein of 146 amino acids (156). 

The adipose-derived hormone, leptin, is an important regulator of energy 

homeostasis (41, 135). Hypothalamic stimulation by leptin regulates the expression of a 

number of orexigenic and anorexigenic neuropeptides, which in turn, results in decreased 

food intake and increased energy expenditure. It has been postulated that leptin functions 

as a sensor of fat mass, indeed plasma leptin levels are correlated with body weight and 

fat mass in rodents and human (31, 39). Apart from its pivotal role in energy homeostasis, 

body weight, appetite and fat stores, leptin has diverse effects on the neuroendocrine axis. 

Leptin interacts with hypothalamic-pituitary-adrenal axis and influences sexual 

maturation. Leptin accelerates puberty in wild type mice; facilitate reproductive behavior 

in rodents, and restores puberty and fertility in ob/ob mice (1, 19, 20, 149).  

Leptin may play an important role in development, as evidenced by formation of 

leptin in placenta, widespread expression of leptin and its receptors in the fetal tissues, 

and stimulation of hematopoiesis and angiogenesis by leptin (47, 63, 86, 126). It also 

affects bone formation, phagocytic activity of macrophages, and liver function (34, 151). 

Leptin exerts several acute metabolic effects. It decreases glucose and insulin 

levels acutely in ob/ob mice before detectable weight loss (3), and also stimulates 

gluconeogenesis and glucose metabolism in wild type rodents (29, 70, 111). Leptin alters 

lipid partitioning in skeletal muscle and stimulates lipolysis and fatty acid oxidation in 

adipocytes, (29, 101) which is discussed later in detail.  

 

Regulation of leptin expression: 

 7 



Obese humans and other mammals have increased adipose ob mRNA and serum 

leptin levels, suggesting that leptin expression is influenced by the status of energy stores 

in fat (31, 39, 56, 82, 83). Plasma leptin levels are directly related with the total body fat 

stores (31, 39, 83); however it’s still not known whether increased triglyceride levels or 

lipid metabolites associated with increased adipocyte size influence leptin expression. 

Leptin levels increase after several days of overfeeding in humans and within an hour 

after a meal in rodents (57, 72, 115). Leptin levels decrease within hours after initiation 

of fasting in both species (12, 40, 115). Regulation of leptin expression by nutrition is 

partly regulated by insulin. Leptin expression is directly stimulated by insulin in isolated 

adipocytes (109) and also increases after peak insulin secretion during the feeding cycle 

(109, 115). Insulin increases leptin levels when injected into rodents (115).  

Controversy exists over whether exercise has any effect on leptin levels. 

Hypoleptinemia was detected in female and male elite gymnastics of pubertal age (152). 

Leptin gene expression was decreased after 4 weeks of exercise training in Sprague-

Dawley rats (157). Hicky et al. reported that moderate intensity aerobic exercise in 

women reduced leptin levels by 17.5 % after 12 weeks (62). However, other studies have 

shown that moderate intensity aerobic exercise and acute and chronic exercise in women 

and men do not affect the leptin levels (61, 71, 102, 104). 

Leptin levels are regulated by other factors. Leptin synthesis is also stimulated by 

infection, endotoxins and cytokines such as tumor necrosis factor (TNF), leukemia 

inhinitory factor (LIF), and interleukin-1 (IL-1) in humans and rodents, indicating that the 

rise in leptin as a result of increased cytokine levels may also contribute to the anorexia 

and weight loss in these inflammatory conditions (13, 52, 69, 117). 
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The prepubertal increase in the leptin expression precedes the rise in estradiol and 

testosterone and is believed to be involved in the maturation of gonadal axis (3, 84). 

Females have higher leptin levels than males when matched by age, weight, or body fat 

(110, 114). This could be due to the difference in body fat distribution and testosterone 

levels in both sexes (11, 110).  

 

Leptin receptors:  

Leptin exerts its hormonal effects by binding to its specific transmembrane 

receptor known as ObR or leptin receptors. Leptin receptors are the products of the 

diabetes (db) gene (64), which was discovered by Tartaglia et al. using an expression 

cloning strategy in mouse (156). Leptin receptors belong to the class I cytokine family 

(142) which is characterized by a single membrane spanning domain that associates with 

a class of protein tyrosine kinase known as Janus kinase (JAK). 
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Alternative splicing: 

 

 

Figure 2. Leptin receptor isoforms. EC – extracellular domain, TM – transmembrane 

domain.  

 

The leptin receptor gene is alternatively spliced to produce at least six different 

isoforms (ObRa – ObRf ). All isoforms of leptin receptor share an identical extracellular, 

ligand binding domain (at amino terminus) of 816 amino acids, while the intracellular 

domain at the C – terminus is distinct (75, 143). ObRa, ObRb, ObRc, ObRd and ObRf  

contain transmembrane domains of 34 amino acids, while ObRe is truncated before the 

membrane spanning domain and is therefore likely to be secreted (75). The secreted 

extracellular domains of other cytokine receptors are known to function as specific 
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binding proteins (59). ObRb is the only long form of leptin receptor which has a long 

302-residue intracellular domain, while the other isoforms have a short (32-97 amino 

acids) intracellular domain (41). ObRb is predominantly expressed in the brain but, it is 

also present at a lower level in other peripheral tissues like skeletal muscles, adipocytes 

and liver. The short leptin receptors are expressed in choroids plexus, vascular 

endothelium, and peripheral tissues like kidney, liver, lung, and gonads, where they may 

serve a transport and/or clearance role (8, 37). In extra-brain tissues, expression levels of 

the total ObRb account for only a small part of the total ObR expression (49, 66, 67).  

The ObR does not have an intrinsic tyrosine kinase domain, therefore binds 

cytoplasmic kinases, mainly, JAK2, a member of JAK family (48). The short form of 

leptin receptor has the JAK binding site, but only the long form of leptin receptor, ObRb 

contains intracellular motifs required for the binding and activation of STATs (signal 

transducers and activators of transcription) (9, 24, 49, 145). Activation of ObRb, and to a 

lesser extent ObRa, activates JAK dependent signaling to pathways other than STAT, 

such as MAP kinase (9). The relative importance of these different signaling pathways in 

leptin action is still unknown.  
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ObR induced signal transduction: 
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Figure 3. ObR-induced signaling mechanism in the hypothalamus. 

 

The figure shows a defined JAK/STAT signaling pathway in the hypothalamus. 

When leptin binds to its receptor, it causes receptor dimerization. Both the long and short 

form of leptin receptors are capable of forming homodimers even in the absence of the 

ligand, and the extent of this association does not seem to change after leptin stimulation. 

(33, 92, 154), yet dimerization is necessary for the leptin signaling (153). Leptin receptor 

binds to leptin in a 1:1 stoichiometry. Thus each receptor binds to one molecule of leptin 

forming a tetrameric complex (33). Cytoplasmic tyrosine kinases, members of the JAK 

family, recognize and associate with a specific membrane-proximal domain of the 

receptor upon ligand binding (60). JAK2 associates with leptin receptor via the box 1 
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motif common to all receptor isoforms (except ObRe). Leptin receptor may form dimers 

under nonstimulated conditions, yet the conformation of the receptor is likely to prevent 

close proximity of JAKs. Upon ligand binding the number of receptor dimmers does not 

change appreciably, yet, a conformational change allows the juxtaposition of JAKs, 

which then become activated. The activated JAKs can tyrosine phosphorylate each other 

and the tyrosine residues on ObRb. Phosphorylation of tyr-1138 on ObRb allows binding 

of the STATs, which then become phosphorylated by JAKs. The activated STATs 

dissociate from the receptor, dimerize and translocate to the nucleus and bind with 

specific DNA elements in the promoters of target genes to regulate gene expression (32). 

It has been reported that the MAPK (ERK1/ ERK2) pathway can be stimulated by 

both long and short forms of leptin receptors (7, 9). Murakami et al. have also reported 

the mRNA expression of immediate early genes c-fos, c-jun and jun-B which are induced 

by leptin addition in CHO cells expressing ObRa  (90). Thus it appears that short forms 

of leptin receptors also have the potential to mediate signal transduction. Although the 

short forms have an attenuated signal, their relative abundance in peripheral tissues may 

mediate specific effects of leptin on those tissues.  

 

Caveolae: 

Caveolae were initially described as 50-100 nm smooth surfaced omega or flask-

shaped invaginations of the plasma membrane (97). Caveolae can fuse to form grape-like 

structures (119) and tubules (99) that are significantly larger than 100 nm. 

Morphologically, caveoale are abundant in adipocytes, endothelial cells, muscle cells and 

lung epithelial cells (38, 94). Caveolae have a unique lipid composition and are mainly 
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composed of cholesterol and sphingolipids (sphingomyelin and glycosphingolipids). 

Cholesterol is crucial to the structure and function of caveolae. Depleting cells of 

cholesterol reduces  the number of caveolae at the cell surface (54, 113). Caveolins are 

the defining protein components of the caveolae. Caveolin is believed to encase and 

cover the surface of caveolae by the means of its ability to form homo and oligomeric 

complexes (112).  

 

Functional role of caveolae: 

Caveolae are involved in a variety of cellular activities such as transcytosis, 

potocytosis (5), uptake of cholesterol (128) and signal transduction. Caveolae also play a 

significant role in cholesterol trafficking. Caveolin is a cholesterol binding protein that 

forms a chaperone complex with heat shock protein-56 (HSP-56), cyclophilin A, and 

cyclophilin 40 to bind the cytosolic pool of cholesterol, presumably with the function of 

trafficking cholesterol between membrane compartments (91). Apart from this, newly 

synthesized cholesterol translocates from the ER to caveolae before diffusing into the 

bulk plasma membrane in a caveolin dependent manner. This suggests that caveolin may 

translocate cholesterol from ER to the cell surface independent of vesicles (130). 

Recent research has indicated that caveolae serve to compartmentalize various 

signaling molecules (76, 79). Caveolin-1 interacts with various signaling molecules like, 

H-Ras, c-Src, insulin receptor, endothelial nitric oxide synthase (eNOS), Gα subtypes, 

protein kinase A (PKA), and inhibits their catalytic activity (77, 100). Thus the 

interaction of the caveolin-1 with the caveolin binding domain of that protein can further 

inhibit the downstream signaling events.  
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Caveolae are enriched in molecules that play an important role in intracellular 

signal transduction. These molecules are G-protein coupled receptors, heterotrimeric G 

proteins, protein kinase C’s (PKCs), receptor tyrosine kinases, nitric oxide synthase 

(NOS), components of Ras-mitogen activated protein (MAP) kinase. As a consequence, 

these structures participate in the cross talk between different signaling molecules. Thus 

caveolae function to integrate numerous signaling events at the cell surface. Disruption of 

caveolae causes a wide range of disorders (136) – such as cancer (129), Alzheimer’s 

disease (68), and muscular dystrophy (87).  

 

Lipid metabolism:  

Triglycerols constitute both ~ 90 % of the dietary lipid and the major form of 

metabolic energy storage in humans. Triglycerols consist of glycerol triesters of fatty 

acids such as palmitic and oleic acids. Like glucose, they are metabolically oxidized to 

CO2 and H2O. The lipid digestion products absorbed by the intestinal mucosa are 

converted by these tissues to triglycerols and then packaged into lipoprotein particles 

called chylomicrons. These, in turn, are released into the blood stream via the lymph 

system for delivery to the tissues. Mobilization of triglycerols stored in adipose tissue 

involves their hydrolysis into glycerol and free fatty acids by hormone-sensitive lipase 

(HSL). The free fatty acids are released into the blood stream, where they bind to the 

albumin. Fatty acid oxidation is regulated largely by the concentration of free fatty acids 

in the blood stream, which in turn is controlled by the rate of hydrolysis of triglycerols in 

the adipocytes by HSL. The enzyme is so named because it is highly regulated by 

phosphorylation and dephosphorylation in response to the hormonally controlled cAMP 
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levels in the cell. Epinephrine, norepinephrine and glucagons act on adipocytes to 

increase the cAMP levels, which in turn, activates cAMP dependent protein kinase 

(PKA). PKA increases phosphorylation of HSL. Phosphorylation activates HSL and thus 

increases the lipolysis in the adipocytes, raising the fatty acid concentration in the blood 

stream, and ultimately activating ß–oxidation pathways in other tissues like liver and 

muscle. Insulin has the opposite effect of glucagon and epinephrine. It stimulates the 

formation of glycogen and triglycerols. It is secreted in response to the high blood 

glucose levels and decreased cAMP levels. This, in turn, dephosphorylates the HSL and 

inactivates the enzyme, thereby reducing the rate of lipolysis and the amount of fatty 

acids available for oxidation.  

 

Leptin and lipid metabolism/ lipolysis: 

Lipolysis is the process of triglyceride hydrolysis, via mono- and diglyceride 

intermediates, to free fatty acids and glycerol (108). It is a critical event controlling lipid 

storage and lipid mobilization. Lipolysis occurs in all triglyceride-storing tissues, the 

most important ones are adipose tissue, liver and muscle (both skeletal and cardiac). The 

vast majority (>95 %) of body’s triglycerides are found in the adipose tissues (108). 

Lipolysis occurs in adipocytes, releasing free fatty acids into circulation. Thus adipose 

tissue lipolysis is the major regulator of the body’s supply of lipid energy as it controls 

the release of fatty acids into the plasma.  

Regarding body composition, leptin acts as a sensing hormone or “lipostat” in a 

negative feedback control from adipose tissue to hypothalamic receptors. Plasma leptin 

levels are directly related with the total body fat stores (31, 39, 83). In other words, leptin 
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informs the brain about the body fat storage and thus controls the feeding behavior, 

metabolism, and endocrine physiology to be coupled with nutritional status of the 

organism. Leptin acts via centers in the hypothalamus, and suppresses appetite by 

inhibiting orexigenic factors such as Neuropeptide Y and by increasing thermogenesis via 

sympathetic innervation of brown adipose tissue (118). The functional leptin receptor is 

highly expressed in the hypothalamus, but it has also been found in other organs and 

tissues like liver, heart, lungs, kidneys, the small intestine, spleen, testes, and in adipose 

tissue (49, 75, 143). This suggests that leptin can act directly on peripheral tissues, 

independently of any hypothalamic mediation.  

Physiological studies in mouse models have shown that leptin administration to 

the ob/ob mice lowered their body weight, percent body fat and food intake and also 

enhanced their energy expenditure (17, 55, 101). These results strongly implicated leptin 

as a negative feedback signal, which reflects body adiposity, by its action on 

hypothalamus (17, 55, 101). The in-vitro lipolytic effects of leptin on white adipose 

tissue, provides strong evidence for the autocrine/paracrine role of leptin (43, 122). Thus 

leptin regulates fat accretion by influencing a combination of central and peripheral 

pathways. Siegrist-Kaiser et al. have shown the direct effects of leptin on the white and 

brown adipose tissue (WAT & BAT respectively) at the metabolic and molecular levels 

(125). They observed a 9-fold and 16-fold increase in the rate of lipolysis in WAT fat 

pads from lean Zucker Fa/fa rats, after incubation with 0.1 and 10 nM leptin for 2 hours, 

respectively. At the level of gene expression, they found, leptin treatment for 24 hours 

increased malic enzyme and lipoprotein lipase RNA 1.8±0.17 and 1.9±0.14-fold, 

respectively. The chronic peripheral intravenous administration of leptin in vivo for four 
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days increased glucose utilization index by 1.6 fold in BAT. These studies suggest that 

leptin has a direct effect on BAT and WAT, resulting in the increased expression of 

certain genes that are responsible partially in glucose utilization and lipolysis in leptin 

treated adipose tissue (125).  

Leptin stimulates fatty acid oxidation in vivo (22, 23) and in vitro (150). Gema et 

al have examined the effects of leptin, on lipolysis in fat cells of different types of mice 

(43). Exposure to leptin increased the lipolytic activity of fat cells obtained from lean 

mice in a dose independent manner. A greater stimulation was observed when adipocytes 

from ob/ob mice were examined.  Adipocytes derived from ob/ob mice responded in a 

dose dependent manner to leptin (43).  

Adenoviral transfer of the leptin gene into normal rats causes rapid loss of all 

visible body fat within 7 days (21). Hyperleptinemic fat loss is not accompanied by 

elevations in plasma free fatty acid (FFA) levels, or ketones or by ketonuria, unlike the 

ketonic fat loss in starvation or insulin deficiency, in which fatty acids and glycerol are 

released proportionately from the adipocytes (122). One possible explanation could be 

the fatty acids released by adipocytes are oxidized inside the adipocytes. This is 

supported by the demonstration that the expression of two major enzymes of long chain 

fatty acid oxidation, acyl CoA oxidase (ACO), and carnitine palmitoyl transferase-1 

(CPT-1) are strikingly increased in the adipocytes of the hyperleptinemic rats during the 

disappearance of their fat (158, 159). Fruhbeck et al. have shown that in adipocytes from 

lean rats, preinculated with adenosine deaminase (ADA), leptin caused a concentration-

related stimulation of lipolysis (45). These results suggest that the lipolytic effect of 

leptin is located at the adenylate cyclase/Gi proteins step (45). Overall, the mechanism of 
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leptin induced lipolysis has not been precisely described. It may involve regulation at the 

level of adenylate cyclase and subsequent stimulation of hormone sensitive lipase (44, 

45). 

 

Hypothesis and objectives of the present study : 

Caveolins and caveolae play a role in many aspects of cellular biology, including signal 

transduction. Within this framework, caveolins act as scaffolding proteins to regulate the 

activity of numerous signaling molecules, for example caveolin-1 has been shown to 

have an inhibitory interaction with PKA (105). Recent studies have shown that caveolin-

1 can be redirected from the caveolae to intracellular lipid droplets in a variety of cell 

types (46, 96, 103). Cohen et al. have addressed the role of caveolin-1 in lipid droplet 

breakdown, showing that caveolin-1 null mice exhibit markedly attenuated lipolytic 

activity (28). Lipolysis normally occurs through the stimulation of ß-adrenergic receptors 

and the subsequent activation of PKA (28).  HSL is considered as a major lipolytic 

enzyme in the adipocytes, and it is the only known neutral lipid lipase regulated by PKA 

mediated phosphorylation (6, 81). This activation of lipolysis is strictly dependent on the 

PKA-mediated phosphorylation of perilipin A (81, 139, 141). Perilipin A (lipid droplet-

associated phosphoprotien) functions as a protective coat (16, 26, 85, 141) surrounding 

the lipid droplet until phosphorylated by PKA. Phosphorylated perilipin undergoes a 

conformational change, leaving the lipid droplet as an open target for HSL (81, 95, 120, 

134, 139, 140, 155). When HSL is phosphorylated by PKA, it translocates to the lipid 

droplets via an interaction with perilipin, where it acts on the stored triglycerides (15, 25, 

36, 137-139). Alex et al. have shown that treatment with ß3- adrenergic receptor agonist 
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results in a ligand induced complex formation between perilipin, caveolin-1 and the 

catalytic subunit of PKA in the wild type but not in caveolin-1 null fat pads (28). Thus 

caveolin-1 plays a crucial role in the regulation of lipolysis in adipocytes.  

Various studies suggest that in addition to PKA, GTP binding protein (G-protein)-

coupled receptors and cAMP can also activate mitogen-activated protein kinase (MAPK) 

pathways (53, 146, 148) and one of the MAPK pathways, identified in mammalian cells, 

is extracellular signal-regulated kinases (ERKs), p44 MAPK (ERK1) and p42 (ERK2). ß-

adrenergic agonists are capable of activating ERK in adipocytes (78, 123, 133). One such 

study has shown that activation of the ERK pathway appears to be able to regulate 

adipocytes lipolysis by phosphorylating HSL on Ser600 and increasing the activity of HSL 

(51). Thus the control of lipolysis is complex and involves multiple mechanisms. 

The signaling mechanism involved in leptin-induced lipolysis is still not clear. As 

we discussed in previous sections, when leptin binds to its receptors, it activates 

JAK/STAT pathway and regulates gene expression. However, for short term (acute) 

effects of leptin, like lipolysis in adipocytes, the mechanism or the signaling pathways 

involved are not understood. As discussed before, the short form of the leptin receptors 

can activate MAPK (ERK1/ERK2) pathway and can also induce certain gene expression 

(7, 9). From these studies, we speculate that the short form of leptin receptor may be 

involved in regulating acute effects of leptin such as lipolysis. As caveolae are enriched 

in various signaling molecules which play a significant role in the regulation of lipolysis, 

such as insulin receptors, ß-adrenergic receptors, heterotrimeric Gα and Gß , MAPK, 

adenylyl cyclase (18, 35, 50, 65, 80, 107, 116, 131, 132), we also speculate that these 

structures (caveolae) may play a role in the regulation of leptin-induced lipolysis.  
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Thus the central hypothesis of this study is that caveolae regulate leptin-induced 

lipolysis in 3T3 L1 adipocytes.  
 

In order to experimentally test this hypothesis, the following specific aims were studied.                 

 

1. To determine if leptin receptors are localized in caveolae. 

2. To determine if the disruption of caveolae inhibits leptin-induced lipolysis. 
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MATERIALS AND METHODS 

Chemicals: 

Dulbecco’s modified eagle’s high glucose medium, calf serum, fetal bovine 

serum, glutamine, trypsin-EDTA and penicillin/streptomycin were from Invitrogen 

(Carlsbad, CA). The Bradford assay kit was from Bio-Rad (Hercules, CA). Percoll, 

PVDF membrane and Tween 20 were from Sigma (St. Louis, MO). Optiprep was from 

Invitrogen. Insulin, dexamethasone and IBMX (3-isobutyl-1-methylxanthine) were from 

Sigma.  The anti-caveolin IgM was from BD Transduction Laboratories™ (San Jose, 

CA). The anti-leptin receptor was from Affinity Bioreagents (Golden, CO). Horseradish 

peroxidase-conjugated IgGs were supplied by Cappel (West Chester, PA). Super Signal® 

chemiluminescent substrate was purchased from Pierce (Rockford, IL). Isopropanol was 

purchased from Fisher (Hampton, NH), and hexane was from EM Science (Darmstadt, 

Germany). Leptin was from Calbiochem (San Diego, CA). 

 

Cell Culture and experimental media: 

3T3 L1 cells (mouse fibroblasts) were cultured in DMEM high glucose medium 

containing 10 % calf serum, 2 mM L-glutamine, 100 units/ml penicillin, and 100 µg/ml 

streptomycin and 1mM sodium pyruvate in 5 %  CO2  and 95 % air /humidified 

atmosphere at 370 C, and passaged at ~  75 % confluence. The medium was changed 

every 2-3 days.  

 

Differentiation of 3T3 L1 cells to adipocytes: 
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The cells were grown in 10 cm dishes (or glass cover slips for 

immunofluorescence studies) and were used for differentiation 2 days after they reached 

confluence. The differentiation was induced by treating the confluent cells with 

adipogenic reagents such as insulin 0.85 µM, 3-isobutyl-1-methylxanthine 0.5 mM , and 

dexamethasone 0.25 µM, in DMEM high glucose media containing 20 % FBS, for 3 

days. After 72 hours, on day 3, the cells were incubated for additional 2 days with insulin 

only media (DMEM containing 0.85 µM insulin) for 2 days. And then media was 

changed on day 5 and 7 with FBS only media (DMEM containing 10 % serum) in order 

to attain maximum differentiation. The cells were used between 9 to 13 days. 

Approximately 90 % cells were differentiated into adipocyte phenotype as determined by 

accumulation of lipid droplets (58, 147).  

 

Protein determination:  

Protein content was determined by Bradford assay (14, 30). The standard curve 

was prepared from bovine serum albumin (1mg/ml water). The absorbance was 

determined at 595 nm, and the protein concentration was calculated from the standard 

curve. 

 

Isolation of Caveolae: 

Caveolae were isolated as described previously (131, 144). 

The following buffers were used.  

Buffer A: 0.25 M sucrose, 1mM EDTA, 20 mM tricine, pH 7.8. 

Buffer B: 0.25 M sucrose, 6mM EDTA, 120 mM tricine, pH 7.8. 
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Buffer C: 50 % Optiprep (v/v) in Buffer B. 

Purification of caveolae: All steps were carried out at 40C. A plasma membrane 

fraction was prepared from ten 100-mm dishes of confluent tissue culture cells (7-8 mg of 

total protein). Each dish was washed twice with buffer A and the cells were collected by 

scraping in 3 ml of buffer A. the cells were pelleted by centrifugation for 5 min, 1000 X 

g. The cells were resuspended in 1 ml of buffer A homogenized. We transferred the 

suspension to a 1.5 ml centrifuged tube and centrifuged at 1000 X g for 10 min in an 

Eppendorf centrifuge tubes. The post nuclear supernatant fraction (PNS) was removed 

and stored on ice. The pellet from each tube was resuspended in 1 ml of buffer A, 

homogenized and centrifuged at 1000 X g for 10 min again. The two PNSs were 

combined, layered on the top of 23 ml of 30 % Percoll in buffer A, and centrifuged at 

84,000 X g, for 30 min in a Beckman Ti 70 rotor. The plasma membrane fraction was a 

visible band ~ 5.7 cm from the bottom of the centrifuge bottle. The membrane fraction 

was collected and placed in a SW41 tube on ice and sonicated. An aliquot of the sonicate 

was saved before mixing the remainder with 1.84 ml of buffer C and 0.16 ml of buffer A. 

After vortexing well, a linear 20 % and 10 % Optiprep gradient (prepared by diluting 

buffer C with buffer A) was poured on the top of the sample and then centrifuged at 

52000 X g for 90 min at 4 °C. The top 5 ml of the first OptiPrep gradient was collected, 

placed in a fresh SW41 centrifuge tube, and mixed with 4 ml of Buffer B. The sample 

was overlaid with 1 ml of 15% (v/v) OptiPrep and 0.5 ml of 5% (v/v) OptiPrep (prepared 

by diluting Buffer B with Buffer A) and centrifuged at 52,000 × g for 90 min at 4 °C. A 

distinct opaque band was present at both interfaces. The band at the 5% interface was 
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collected and designated caveolae membranes. We typically obtained 10-20 µg of protein 

in this band (131).  

 

Electrophoresis and Immunoblots: 

Buffers 

Buffer D consisted of: 

 20 mM Tris, pH 7.6,  

137mM NaCl,  

0.5 % (v/v) Tween 20.  

5X sample buffer: 

 0.31 M Tris, pH 6.8,  

2.5 % (w/v) SDS,  

50 % (v/v) glycerol, and 

0.125 % (w/v) bromophenol blue. 

Lower tris: 1.5 M Tris, 0.4 % SDS, pH 8.8. 

Reagents used for acrylamide gel preparation: 

30% Acrylamide: bis                                6 ml 

H2O                                                           7.5 ml 

Lower tris                                                   4.5 ml 

TEMED                                                       20 µl 

10 % Ammonium persulfate                   70 µl 
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        The samples were concentrated by trichloroacetic acid precipitation and washed in 

acetone (131). Pellets were suspended in 1X sample buffer that contained 1.2 % (v/v) -

mercaptoethanol and heated at 95 °C for 3 min before being loaded onto gels. The 

proteins were separated in a 10 % SDS-polyacrylamide gel using the method of Laemmli 

(74). The separated proteins were then transferred electrophoretically to polyvinylidene 

difluoride (PVDF) blotting membrane. The PVDF was blocked in Buffer D that 

contained 5% dry milk for 1 h at room temperature. The primary antibodies were diluted 

in Buffer D that contained 1% dry milk and incubated with the PVDF for 1 hour at room 

temperature. The PVDF was washed four times for 10 min each time in Buffer D with 1% 

dry milk. The secondary antibodies (all conjugated to horseradish peroxidase) were 

diluted 1:20,000 in Buffer D with 1% dry milk and incubated with the PVDF for 1 hour at 

room temperature. The PVDF was then washed, and the bands were visualized by 

chemiluminescence.  

Gas Chromatography and Mass Spectrometry: 

The 3T3-L1 adipocytes were prepared as described in the methods (58, 147) and 

were maintained in 1 % serum for 20 hours before the experiment. The 3T3 L1 

adipocytes were treated with different concentrations of leptin as described in the results. 

To disrupt the caveolae structure, we treated the cells with 5 mM methyl-β-cyclodextrin 

(10, 98) for 1 hour at 370C. After treatment, the cells were washed with 1X PBS. The 

lipids were extracted twice from cell layer with isopropanol-hexane (2:3). 150 ng of 5α-

Androstane-3α-17βDiol was added as an internal standard. Samples were dried under the 

nitrogen stream. 15 µl of Bis(trimethylsisyl)trifluoroacetamide 
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(BSTFA)/trimethylchlorosilane (TMCS)/acetonitrile (100:1:10) solvent was added and 

the solution was incubated for 30 min at room temperature before injecting into the gas 

chromatography system. Individual fatty acids were identified by their mass spectra 

(library Nist98) and their retention time. The retention time for each fatty acid of interest 

was determined after gas chromatography of TMS derivative of the fatty acid.  

Agilent 6890 GC G2579A system (Agilent, Palo Alto, CA) equipped with a silica 

capillary column (15 m × 0.25 mm × 0.1 µm; Supelco, Bellefonte, PA) was used for gas 

chromatography. The temperature program was as follows: 139 °C for 3 min, to 380 °C 

with 20 °C/min, to 390 °C with 2 °C/min, held for 0.25 min. A model 5973 mass-

selective detector (Agilent Technologies, Palo Alto, CA) was used in both scan and 

selected ion monitoring modes to identify the samples.  

Immunofluorescence: 

Blocking buffer: 1.5 g BSA (1.5 %) in 100 ml of 1X PBS-MgCl2. 

Antibody dilution buffer: 0.5 g BSA (0.5 %) in 100 ml of 1X PBS-MgCl2. 

Wash buffer: 0.5 g BSA (0.5 %), ml 0.1 % TritonX-100 in 100 ml of 1X PBS-MgCl2. 

The 3T3 L1 adipocytes, grown on cover slips, were fixed with 2 % 

paraformaldehyde (PFA) (prepared in 1X phosphate buffer saline), for 15 minutes on ice 

and then treated with 100 mM ammonium chloride for 5 min. The non-specific binding 

was blocked with blocking buffer, for 1 hour at room temperature. The cells were then 

incubated with the polyclonal primary antibody against leptin receptor (rabbit polyclonal 
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IgG from Affinity Bio Reagents, prepared in antibody dilution buffer), for 1 hour at room 

temperature. The cells were rinsed with PBS-MgCl2 and then permeabilized by treating 

with 0.1 % TritonX-100 for 5 minutes on ice and then blocked again with 1.5 % BSA. 

The cells were incubated with monoclonal primary antibody against caveolin-1 

(monoclonal mouse IgM, 10µg/ml), for 1 hour at room temperature. The cells were 

rinsed with wash buffer. The primary antibodies were detected with 15 µg/ml  cy2 goat 

anti rabbit IgG (green) and 15 µg/ml  cy3 donkey anti mouse IgM (red), for 1 hour at 

room temperature. The cells were rinsed with wash buffer, and the cover slips were 

mounted with Gel / MOUNTTM with antifading agents (Bio Meda corp.), before 

examination of cells with a 100X objective (aperture = 1) in the Leica laser scanning 

confocal microscope. The leica was equipped with argon and krypton lasers. 

The negative controls were prepared by the incubating the cells with rabbit IgG 

(instead of leptin receptor antibody) and mouse IgM (instead of caveolin antibody) for 1 

hour at room temperature. 

Also live cell staining was used as a control to show the staining for leptin 

receptor only in the plasma membrane. Live 3T3-L1 adipocytes were blocked and treated 

with primary antibody against leptin receptor before fixation. The cells were then fixed 

with 2 % PFA, permeabilized with 0.1 % TritonX-100, blocked with 1.5 % BSA, and 

treated with the antibody against caveolin-1. The cells were rinsed with wash buffer, and 

the cover slips were mounted with Gel / MOUNTTM with antifading agents. This 

experiment was done to show the staining of leptin receptor only in the plasma membrane 

and not in the intracellular part of the cell. 
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RESULTS 

Differentiation of 3T3-L1 fibroblasts to adipocytes: 

Because we wanted to test our hypothesis in the adipocyte model, we used the 

3T3-L1 cell line for this project. The 3T3-L1 cell line, derived from the established 

mouse line 3T3, is extensively used as an adipocyte model for investigation of structural 

and functional aspects of adipocyets in-vitro. The 3T3-L1 cell line can differentiate into 

mature, lipid droplet containing adipocytes when stimulated with an appropriate 

adipogenic regimen. During the process of adipocyte differentiation, these preadipocytes 

lose their primitive mesenchymal character, assume a rounded morphology and acquire 

many of the enzymatic and biochemical properties of adipocytes (58, 147).  

We used an in-vitro adipocyte model system by treating the 3T3-L1 cells with 

adipogenic factors such as insulin (0.85 µM), dexamethasone (0.25 µM), and 3-isobutyl-

1-methylxanthine (0.5 mM) for 72 hours. The cells were then incubated in insulin only 

media (high glucose DMEM media containing 0.85 µM insulin) for 48 hours and after 

that maintained in DMEM media containing 10 % FBS. Figure 1 (a) shows the phase 

contrast image of undifferentiated 3T3-L1 cells. These cells have elongated spindle shape 

morphology. Figure 1 (b) shows the phase contrast image of differentiated cells. 3T3-L1 

cells have accumulated numerous lipid droplets after differentiation. We achieved 

approximately 90 % differentiation.  

 

Expression of leptin receptors in the 3T3-L1 adipocyte model: 

Leptin exerts its effects through leptin receptors. To examine the effects of leptin 

in adipocytes, we first looked at the expression of leptin receptors in the differentiated 
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3T3-L1 cells, which we have used as a model system of adipocytes. To demonstrate the 

expression of leptin receptors, we resolved the lysates of differentiated cells by SDS-

PAGE. The material was transferred to PVDF membrane and immunoblotted with the 

leptin receptor antibody. The figure 2 shows a 100 kD band for the short form of leptin 

receptors. The wild type mouse brain was used as a positive control for the leptin 

receptor.  

 

Localization of leptin receptors in the caveolae: 

Caveolae play an important role in numerous signaling mechanisms at the cell 

surface. We were interested in looking at the role of caveolae in regulating leptin 

signaling or its function (e.g. lipolysis) in adipocytes. For this specific aim, we first 

looked at the localization of leptin receptors, as many receptors and signaling molecules 

reside in caveolae. We used two approaches to determine if leptin receptors are localized 

to caveolae: subcellular fractionation and immunocytochemistry. 

(a) Subcellular fractionation:  

We subfractionated the differentiated 3T3-L1 adipocytes using a detergent free 

method to isolate caveolae (as described in methods) and resolved 20 µg of plasma 

membrane fraction (PM) and the caveolae fraction (CM) by SDS-PAGE. The material 

was transferred to the PVDF membrane and immunoblotted with the antibodies against 

leptin receptor and caveolin-1 (Figure 3). As equal amount of protein was loaded, the 

dense band of ObR in the CM fraction indicates that the caveolae membranes are 

enriched in leptin receptors. 

(b) Immunocytochemistry  
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To further support the results of subcellular fractionation, we performed 

immunocytochemistry of 3T3-L1 adipocytes with anti leptin receptor and anti caveolin-1 

antibodies. The 3T3-L1 cells were differentiated as described in the methods and were 

fixed with 2 % paraformaldehyde (PFA). To show the staining of leptin receptors only at 

the cell surface, we treated our cells with the leptin receptor antibody before 

permeabilizing the membrane. The cells were then permeabilized and treated with anti 

caveolin-1 antibody. The confocal microscopic examination (100X) showed very strong 

staining for the leptin receptors at the cells surface as shown in figure 4a (green). Figure 

4b (red) shows the staining for caveolin-1. Figure 4c represents the merged image of 

figures a and b which shows the co-localization of leptin receptors and caveolin-1 which 

is the defining protein of caveolae.  

Omission of primary antibodies served as a negative control. We prepared these 

controls by using rabbit IgG (instead of leptin receptor antibody) and mouse IgM (instead 

of caveolin-1 antibody) (figure 5).  

Also to show the staining of leptin receptors only in the plasma membrane, we did 

the same experiment with live 3T3-L1 adipocytes. In this experiment, we stained the live 

cells with anti-leptin receptor antibody before fixation. Then we fixed the cells, 

permeabilized and stained with caveolin-1 antibody. These controls showed positive 

staining for leptin receptors in the plasma membrane (figure 6a) and caveolin-1 (figure 

6b). The merged image (6c) of figures a and b shows the co-localization of leptin 

receptors and caveolin-1 in the caveolae. Omission of primary antibodies served as a 

negative control for live cell staining (figure 7). 
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Thus our second approach supports the data from subcellular fractionation and we 

conclude that leptin receptors are localized in caveolae. 

 

Lipolytic activity of leptin: 

To demonstrate the effect of leptin on triglyceride hydrolysis, we treated the 3T3-

L1 adipocytes with 10 nM leptin for 2 hours at 370C. The media was removed after 

treatment and the cells were washed with PBS. The lipids were extracted from the cells 

by adding hexane: isopropanol (3:2). The unsaturated free fatty acids were measured by 

gas chromatography/mass spectrometry. The basal lipolytic activity was measured in the 

absence of leptin. We measured only unsaturated FFAs as an index of lipolysis because 

saturated FFA are the common contaminants in this method (121). Leptin caused a three 

fold increase (P<0.005) in lipolytic activity as compared to the basal lipolytic activity. 

We also treated our cells with 10 nM, 100 nM and 1 µM leptin and the amount of 

lipolysis remained same with increasing concentrations, indicating saturation (data not 

shown). We also tested the effect of other lipolytic agents like norepinephrine in 3T3-L1 

adipocytes (figure 8). As expected, when 5 µM of norepinephrine was added to the 

incubation media, the unsaturated FFAs increased markedly (P<0.05).  

Disruption of caveolae with cyclodextrin treatment inhibits leptin induced lipolysis: 

 To demonstrate if caveolae disruption plays any significant role in the leptin 

induced lipolysis, we pretreated the cells with or without 5 mM ß-trimethyl cyclodextrin 

for 1 hour at 370C and then treated them with 10 nM leptin or 5 µM norepinephrine for 2 

hours at 370C. The cells treated only with leptin showed a three fold increase in the 
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lipolysis, as compared with the basal activity (P<0.005). While the cells treated with 

cyclodextrin prior to leptin, showed only 1.5 fold increase in the lipolysis (P<0.05). We 

found the same results with norepinephrine treatment. Norepinephrine treatment induced 

a seven fold increase in the lipolysis (P<0.05) as compared with the basal activity, while 

in the cells pretreated with ß-trimethyl cyclodextrin, norepinephrine treatment induced 

only a three fold increase in the lipolysis (P<0.05). These results suggest that disruption 

of caveolae with cyclodextrin treatment inhibits leptin and norepinephrine induced 

lipolysis in 3T3-L1 adipocytes 
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Undifferentiated 3T3-L1 cells 
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                                                                             Figure 1(a) 
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Differentiated 3T3-L1 adipocytes 

50 µm
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 35 



Figure 1. Differentiation of 3T3-L1 mouse fibroblasts. Figure 1 a and b shows the phase 

contrast images (20X) of undifferentiated and differentiated 3T3-L1 cells respectively. 

The elongated fibroblasts assumed a rounded morphology and accumulated numerous 

lipid droplets when stimulated with adipogenic factors such as insulin, dexamethasone, 

and 3-isobutyl-1-methylxanthine as described in the method section. Almost 90 % of 

cells differentiated into adipocyte phenotype as seen in figure 1(b).  
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Expression of leptin receptors in 3T3-L1 adipocytes 

 

 

 

 

 

 

 

                                                                                                   Figure 2 
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Figure 2: Expression of the short form of leptin receptors in differentiated 3T3-L1 

adipocytes. Lysates of differentiated 3T3-L1 cells were prepared and subjected to SDS 

PAGE and immunoblotted with anti leptin receptor antibody. A wild type mouse brain 

tissue lysate was loaded as a positive control. 
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Leptin receptors are co-purified with caveolin-1 

 

 

 

 

 

 

                                                                                          Figure 3 
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Figure 3. Immunoblot for leptin receptor with the plasma membrane fraction and 

caveolae fraction of differentiated 3T3-L1 adipocytes. The differentiated cells were 

subfractionated using a detergent free method to isolate caveolae. 20 µg of each fraction 

was resolved by SDS PAGE and immunoblotted with anti-leptin receptor and anti-

caveolin-1 antibodies. The immunoblots were developed by the method of 

chemiluminescence. Because equal amount of proteins were loaded in both fractions, the 

greater intensity associated with the caveolae fraction indicate that caveolae are enriched 

in leptin receptors compared with plasma membrane. PM: plasma membrane, CM: 

caveolae membrane. Figure shows representative data from four independent 

experiments. 
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Colocalization of ObRs and caveolin-1 
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Figure 4. Co-localization of caveolin-1 and leptin receptors in the differentiated 3T3-L1 

adipocytes. The differentiated adipocytes were fixed with 2 % PFA and immunolabeled 

with antibody against leptin receptor (a) before permeabilization. The cells were then 

permeabilized with 0.1 % TritionX-100 and incubated with antibody against caveolin-1 

(b). The primary antibodies were detected with cy2 goat anti rabbit IgG (green) and cy3 

donkey anti mouse IgM (red). The cells were rinsed with wash buffer, and the cover slips 

were mounted with mounting media with antifading agents. The slides were examined by 

laser scanning confocal microscopy (100X). Figure (c) represents the merged image of 

(a) and (b).  
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Negative control without primary antibodies 

 

 

                                                                                                                Figure 5 
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Figure 5. Control experiment without primary antibody. The adipocytes were fixed and 

incubated with rabbit IgG instead of primary leptin receptor antibody (a). The cells were 

then permeabilized and incubated with mouse IgM instead of primary caveolin-1 

antibody (b). The slides were examined by laser scanning confocal microscopy (100X). 

Figure (c) represents normarski.  
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Control experiment with live cell staining 

 

 

 

                                                                                                                  Figure 6 
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Figure 6. Control experiment with live cell immunostaining. To show the ObR staining 

only in the plasma membrane, we treated the live cells with the primary antibody against 

leptin receptor (a) and then fixed with 2 % PFA. We then permeabilized the cells with 0.1 

% TritonX-100 and incubated them with primary antibody against caveolin-1 (b). The 

primary antibodies were detected with cy2 goat anti rabbit IgG (green) and cy3 donkey 

anti mouse IgM (red). The cells were rinsed with wash buffer, and the cover slips were 

mounted with mounting media with antifading agents. The slides were examined by laser 

scanning confocal microscopy (100X). Figure (c) represents the merged image of (a) and 

(b). 
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Negative control without primary antibodies 

 

     

 

                                                                                                          Figure 7 
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Figure 7. Negative control for live cells. The live cells were incubated with rabbit IgG 

instead of primary antibody against leptin receptors (a) for 10 minutes and then fixed 

with 2 % PFA. The cells were then permeabilized with 0.1 % TritionX-100 and incubated 

with mouse IgM (b) instead of primary antibody against caveolin-1. The slides were 

examined by laser scanning confocal microscopy (100X). Figure (c) represents the 

normarski.  
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Leptin induced lipolysis in 3T3-L1 adipocytes 
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Figure 8. Leptin induced lipolysis in 3T3-L1 adipocytes. The figure shows the lipolytic 

activity induced by leptin and norepinephrine. The 3T3-L1 cells were incubated in media 

with 1 % serum for 20 hours before experiment, and treated with 10 nM leptin and 5 µM 

norepinephrine for 2 hours at 370C. To measure the amount of lipolytic activity, the lipids 

were extracted from the cells and unsaturated free fatty acids were measured, by gas 

chromatography/mass spectrometry. 10 nM leptin caused a three fold increase in the 

lipolysis compared with the basal lipolytic activity (P<0.005). The positive control 

norepinephrine caused a seven fold increase in the lipolysis compared with the basal 

activity (P<0.05). Data are representative of 3 independent experiments. Each experiment 

is done in triplicates. The results are expressed as mean ± S.E. Data were analyzed 

statistically using a one way analysis of variance (ANOVA). Statistical probability of 

P<0.05 was considered to be significant. * Significantly different from basal value.  
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Effect of cyclodextrin on leptin induced lipolysis 
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Figure 9. Effect of methyl-β-cyclodextrin on the lipolytic activity of leptin and 

norepinephrine. Two hours leptin treatment showed a three fold increase in the lipolytic 

activity as compared to the basal lipolytic activity (P<0.005). When the cells were 

pretreated with 5 mM cyclodextrin for 1 hour and then treated with leptin for 2 hours, the 

increase in lipolysis was only 1.5 fold (P<0.05). Norepinephrine showed a seven fold 

increase in lipolytic activity compared to the basal level (P<0.05). When the cells were 

pretreated with cyclodextrin for one hour, and then treated with norepinephrine, the 

increase in the lipolysis was only three fold as compared with the basal activity (P<0.05). 

Data are representative of 3 independent experiments. Each experiment is done in 

triplicates. The results are expressed as mean ± S.E. Data were analyzed statistically 

using a one way analysis of variance (ANOVA). Statistical probability of P<0.05 was 

considered to be significant. * Significantly different from basal value. ** Significantly 

different from stimulated conditions. 
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DISCUSSION 

Obesity, is a major risk factor for the development of type II diabetes, 

cardiovascular disease and some cancers (88, 89). Obesity occurs as a result of many 

factors which lead to the storage of lipids in the body which causes enlargement of the 

adipocytes as well as an increase in the mass of adipose tissue. There is a centrally 

controlled mechanism, residing in the adipocytes, that regulates the breakdown and 

storage of lipids. But almost always in obesity there is a dysregulation in this mechanism. 

Adipose tissue over the last few years has emerged as an endocrine organ that is central 

to the regulation of energy homeostasis (2, 124). Leptin, the adipocyte-derived hormone, 

appears to be an important player in the above mentioned mechanism (135). Leptin has 

been studied extensively in the ob/ob mouse model. Leptin deficiency in ob/ob mice 

leads to an increased appetite and decreased energy expenditure leading to an obese 

phenotype (75, 143). Leptin, meaning thin, refers to the hormone’s antiobesity effects. 

Leptin stimulates lipolysis in isolated adipocytes, implicating its autocrine/paracrine role 

(43). The largest energy reserves in mammals are the triglycerols housed within the 

intracellular lipid droplets in adipocytes. Thus adipose tissue lipolysis is a major regulator 

of the body’s supply of lipid energy. Although leptin induced-lipolysis in adipocytes has 

been previously demonstrated, the signaling mechanism causing this effect is not well 

understood. 

 To study the lipolytic effect of leptin in adipocytes, we have used 3T3-L1 

cells as an adipocyte model. As stated in the results section, the 3T3-L1 cell line can 

differentiate into mature, lipid droplet containing adipocytes when stimulated with an 

appropriate adipogenic regimen. We first conducted an experiment to detect the presence 
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of leptin receptors in the 3T3-L1 cell system. We observed that the short form of the 

leptin receptor was the predominant form expressed. We have shown that 10 nM leptin 

treatment for two hours induced a 3 fold increase in lipolytic activity in 3T3-L1 

adipocytes, as compared with basal lipolytic activity. As expected, norepinephrine, a 

potent lipolytic stimulus, increased the lipolytic activity by 7 folds as compared to the 

basal activity. Also, in agreement with our findings, Fruhbeck et al. have shown that 

exposure to leptin increased (P < 0.01) the lipolytic activity of the fat cells derived from 

lean mice (43). These in-vitro results suggest an autocrine/paracrine action of leptin on 

white fat cells and envisage the involvement of leptin, not only in centrally mediated 

pathways, but also in physiological functions that take place at the periphery (43).  The 

lipolytic activity of leptin was more pronounced in the fat cells of ob/ob mice compared 

to lean mice (43). These findings are supported by smaller reduction in weight loss, food 

intake and body fat observed in lean as compared to ob/ob mice, when they were treated 

with leptin (17, 55, 101). The lipolytic activity of leptin has also been demonstrated by 

in-vivo studies (42). In one such study the basal lipolytic activity was significantly (P < 

0.001) increased in lean mice that received 10 mg leptin per kg body weight when 

compared with the animals that received PBS. Administration of 1.0 and 10.0 mg leptin 

per kg body weight increased the basal lipolytic activity by two fold and almost three fold 

respectively (42). Thus our data are in agreement with other reports demonstrating 

lipolytic effects of leptin in adipocytes.  

Although leptin-induced lipolysis has been previously described, the underlying 

mechanism still remains to be elucidated. Fruhbeck et al suggested that the lipolytic 

effect of leptin is located at the adenylate cyclase/Gi protein step (45). Another group 
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suggested that leptin significantly increased HSL activity in J774.2 macrophages, and 

these effects were additive with the effects of cAMP (93). The signaling pathway of 

leptin induced lipolysis is still not well understood but considering the above two results 

we can say that it may involve regulation at the level of the enzyme HSL. HSL plays a 

crucial role in the release of fatty acids from the triglyceride-rich lipid droplets within the 

adipocytes which contain the body’s major energy storage. The hormonal stimulation of 

the cAMP cascade and the consequent phosphorylation and activation of HSL leads to a 

large increase in lipolysis in adipocytes. The critical step after the phosphorylation of 

HSL following stimulation of adipocytes is the translocation of the lipase from the 

cytosol to the surfaces of lipid droplets as shown by immunoflorescence studies of 

stimulated and unstimulated 3T3-L1 cells (15). Brasaemle et al have shown that in 

unstimulated 3T3-L1 adipocytes, the hormone sensitive lipase is diffusely distributed 

throughout the cytosol (15). But stimulation with the ß-adrenergic receptor agonist, 

isoproterenol, causes translocation of HSL from the cytosol to the surfaces of the 

intracellular lipid droplets concomitant with the onset of lipolysis in the 3T3-L1 

adipocytes (15). Greenberg et al have shown that activation of ERK pathway regulates 

lipolysis in 3T3-L1 adipocytes by phosphorylating HSL on Ser600 and increasing the 

lipolytic activity of HSL (51). Not much is known about leptin signaling in lipolysis at 

this time though scientific efforts are underway.  

Cellular signaling occurs through a number of different processes in the cell and 

one of the very important cellular structures that play a role in various signaling pathways 

are the caveolae. Caveolae are involved in cellular processes of receptor mediated uptake, 

receptor mediated signaling, and vesicular trafficking (106). A number of proteins 
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involved in signal transduction like ras, raf1, eNOS and others have been found in the 

caveolae (4, 27, 73, 127, 129). Thus caveolae provide a structural platform and a suitable 

environment for the interaction of different proteins and their signaling mechanism. 

Because caveolae serve to compartmentalize and integrate numerous signaling events at 

the cell surface we tried to find out if there was a role that caveolae played in leptin 

induced lypolysis. Caveoin-1 is the marker protein for caveolae. Using a subcellular 

fractionation technique (131), we demonstrated that leptin receptors were co-purified 

with caveolin-1 suggesting that leptin receptors were localized to same membrane 

fraction as caveolin-1. Confocal microscopic examination confirmed this colocalization. 

Caveolin-1 was co-purified with leptin receptors, suggesting that the two molecules 

(leptin receptors and caveolin-1) can directly interact with each other. In our experiment 

for studying lypolytic activity of leptin we showed that 10 nM leptin treatment for two 

hours induced a three fold increase when compared with basal activity. However, in a 

similar experiment disruption of caveolae by cyclodextrin pretreatment caused only 1.5 

fold increase in the lipolysis compared with basal indicating the inhibition of leptin 

induced lipolysis. We have also shown that cyclodextrin interferes with the lipolytic 

activity of norepinephrine. Though we know that disruption of caveolae leads to an 

inhibition of the lipolytic activity of leptin, the entire mechanism remains to be 

elucidated. From our work it can be speculated that the short form of leptin receptor can 

partially regulate lipolysis because it was the predominant form of leptin receptor found 

in our differentiated adipocytes as shown by immunoblotting. The exact role of the short 

form of leptin receptor is not known though there are reports suggesting that the short 

form of leptin receptor can stimulate ERK1/ERK2 pathway. It also has been shown that 
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the activation of the ERK pathway regulates lipolysis in 3T3-L1 adipocytes by 

phosphorylating HSL on Ser600 (51). The work of Shima et al.  have shown that in their 

studies with CHO cells transfected with the long or short forms of leptin receptor, the 

short form of leptin receptor induced the transcription of mRNA of immediate early 

genes like c-fos, c-jun and jun-B which are expressed upon leptin addition (90). It was 

also shown that the long form of the receptor had the same effect on the expression of the 

mRNA (90). Thus it could be said that the short form of the receptor takes part in cellular 

signaling. 

In summary, we have shown that leptin receptors are localized in the caveolae. 

Leptin induced statistically significant lipolysis in the 3T3-L1 adipocytes and caveolar 

disruption reduced this lipolytic effect of leptin suggesting that caveolae might play a 

significant role in leptin-induced lipolysis though the entire mechanism remains to be 

elucidated. The signaling pathway of leptin induced lipolysis is a complex mechanism 

and presents an enormous opportunity for further investigation. 
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